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Résumé court 
Les systèmes Spatial On-Line Analytical Processing (SOLAP) permettent de prendre en charge l’analyse 

multidimensionnelle en ligne d’un très grand volume de données ayant une référence spatiale. Dans ces 

systèmes, le vague spatial n’est généralement pas pris en compte, ce qui peut être source d’erreurs dans 

les analyses et les interprétations des cubes de données SOLAP, effectuées par les utilisateurs finaux. 

Bien qu’il existe des modèles d’objets ad-hoc pour gérer le vague spatial, l’implantation de ces modèles 

dans les systèmes SOLAP est encore à l’état embryonnaire. En outre, l’introduction de tels modèles dans 

les systèmes SOLAP accroit la complexité de l’analyse au détriment de l’utilisabilité dans bon nombre de 

contextes applicatifs. Dans cette thèse nous nous proposons d’investiguer la piste d’une nouvelle 

approche visant un compromis approprié entre l’exactitude théorique de la réponse au vague spatial, la 

facilité d’implantation dans les systèmes SOLAP existants et l’utilisabilité des cubes de données fournis 

aux utilisateurs finaux.  

Les objectifs de cette thèse sont donc de jeter les bases d’une approche de conception de cube SOLAP 

où la gestion du vague est remplacée par la gestion des risques de mauvaises interprétations induits, d’en 

définir les principes d’une implantation pratique et d’en démontrer les avantages.  

En résultats aux travaux menés, une approche de conception de cubes SOLAP où le risque de mauvaise 

interprétation est considéré et géré de manière itérative et en adéquation avec les sensibilités des 

utilisateurs finaux quant aux risques potentiels identifiés a été proposée; des outils formels à savoir un 

profil UML adapté, des fonctions de modification de schémas multidimensionnels pour construire les 

cubes souhaités, et un processus formel guidant de telles transformations de schémas ont été présentés; 

la vérification de la faisabilité de notre approche dans un cadre purement informatique avec la mise en 

œuvre de l’approche dans un outil CASE (Computed Aided Software Engineering) a aussi été présentée. 

Pour finir, nous avons pu valider le fait que l’approche fournisse non seulement des cubes aussi 

compréhensibles et donc utilisables que les cubes classiques, mais aussi des cubes où le vague n’est 

plus laissé de côté, sans aucun effort pour atténuer ses impacts sur les analyses et les prises de décision 

des utilisateurs finaux. 

Mots clés : Cubes de données spatiales, SOLAP, vague spatial, approche de conception, risque d’usage  
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Abstract 
 

SOLAP (Spatial On-Line Analytical Processing) systems support the online multi-dimensional analysis of a 

very large volume of data with a spatial reference. In these systems, the spatial vagueness is usually not 

taken into account, which can lead to errors in the SOLAP datacubes analyzes and interpretations end-

users make. Although there are ad-hoc models of vague objects to manage the spatial vagueness, the 

implementation of these models in SOLAP systems is still in an embryonal state. In addition, the 

introduction of such models in SOLAP systems increases the complexity of the analysis at the expense of 

usability in many application contexts. In this thesis we propose to investigate the trail of a new approach 

that makes an appropriate compromise between the theoretical accuracy of the response to the spatial 

vagueness, the ease of implementation in existing SOLAP systems and the usability of datacubes 

provided to end users. 

The objectives of this thesis are to lay the foundations of a SOLAP datacube design approach where 

spatial vagueness management in itself is replaced by the management of risks of misinterpretations 

induced by the vagueness, to define the principles of a practical implementation of the approach and to 

demonstrate its benefits.  

The results of this thesis consist of a SOLAP datacube design approach where the risks of 

misinterpretation are considered and managed in an iterative manner and in line with the end users 

tolerance levels regarding those risks; formal tools namely a suitable UML (Unified Modeling Language) 

profile, multidimensional schemas transformation functions to help tailored the datacubes to end-users 

tolerance levels, and a formal process guiding such schemas transformation; verifying the feasibility of our 

approach in a computing context with the implementation of the approach in a CASE (Computed Aided 

Software Engineering) tool. Finally, we were able to validate that the approach provides SOLAP 

datacubes that are not only as comprehensible and thus usable as conventional datacubes but also 

datacubes where the spatial vagueness is not left out, with no effort to mitigate its impacts on analysis and 

decision making for end users. 

 

Keywords: Spatial datacubes, SOLAP, spatial vagueness, design approach, risk of usage 
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Résumé long 
Les technologies Spatial-OLAP (SOLAP), dédiées à l’analyse multidimensionnelle de grands volumes de 

données (spatiales), ne tiennent généralement pas compte de l’incertitude sur les données spatiales, 

notamment le vague spatial. En effet dans ces systèmes, les objets spatiaux sont considérés comme 

ayant des limites et des positions bien définies et sont donc représentés par des géométries « crisp » 

(point, ligne polygone). Cependant, ces objets spatiaux représentent dans la majorité des cas des 

phénomènes géographiques dont les limites sont larges ou dont la position ne peut être connue avec 

précision (vague spatial). C’est l’exemple des zones d’inondation où les frontières sont comprises entre 

les limites des plans d’eau et les limites maximales enregistrées lors des inondations; c’est également le 

cas lorsque les géométries d’objets spatiaux, par exemple des parcelles agricoles, sont prises de diverses 

sources et intégrées pour obtenir des géométries uniques. L’écart entre cette représentation « crisp » et le 

vague de ces objets est source d’erreur dans les analyses et les prises de décisions dans tous les 

systèmes, à plus forte raison dans les systèmes SOLAP dont les utilisateurs sont avant tout des 

décideurs, rarement au fait de l’incertitude pouvant être présente sur les données analysées. Bien que de 

nombreux travaux de recherche proposent des modèles d’objets vagues pour mieux représenter les 

données qui s’y prêtent, l’intégration de ces nouveaux modèles dans les systèmes SOLAP reste encore à 

mettre en œuvre de façon performante dans la pratique. Les bases de données, serveurs SOLAP, outils 

Extract Transform and Load (ETL) et clients SOLAP classiques sont encore à gérer des géométries crisp 

et ils le font très bien. Aussi, analyser de la donnée multidimensionnelle en plus des métadonnées 

introduites par l’exploitation des nouveaux modèles peut-être trop complexe ou exigeant pour bon nombre 

de décideurs, dans la majorité des contextes applicatifs et pour certains besoins. Il se pose alors un défi 

d’intérêt pour les utilisateurs des systèmes SOLAP : Comment exploiter des cubes de données SOLAP 

classiques (implémentées avec les outils classiques donc) en tenant compte du vague spatial et ce de 

manière classique, simple et fiable?  

Pour aider à relever ce défi, en d’autres mots, à réduire les conséquences du vague spatial sur 

l’exactitude des requêtes d’analyse SOLAP dans les systèmes classiques, nous proposons une nouvelle 

approche pour gérer le vague spatial dans les systèmes SOLAP. Cette approche est élaborée dans une 

vision symbiotique faisant un compromis entre l’exactitude théorique en termes de gestion du vague 

spatial, la fiabilité en terme de prise en compte du vague spatial et l’utilisabilité des cubes de données 

SOLAP fournis aux décideurs.  Cette thèse propose donc l’introduction de la gestion des risques de 

mauvaises interprétations induits par le vague spatial dans la conception même des cubes attendus par 

les utilisateurs. En d’autres termes, il s’agit de concevoir et de transformer les schémas des cubes de 

données SOLAP suivant les niveaux de tolérance des utilisateurs finaux par rapport aux risques de 

mauvaises interprétations. Nous supposons que cette gestion de  
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risques en lieu et place de la gestion du vague (présent dans les sources) en lui-même permettrait de 

fournir aux utilisateurs finaux des cubes de données SOLAP suffisamment fiables et faciles d’utilisation 

pour leurs prises de décisions sans pour autant être la réponse parfaite au vague spatial. Pour ce faire, 

les bases d’une approche de conception orienté utilisateurs, orienté sources et consciente des risques de 

mauvaises interprétations relatives aux cubes SOLAP ont été définies: le risque de mauvaise 

interprétation a été défini et catégorisé et les principales étapes de conception consciente du risque ont 

été identifiées et décrites. Une emphase a été mise sur l’échelle de tolérance permettant de recueillir les 

sensibilités des utilisateurs finaux par rapport aux risques identifiés, ainsi que les différentes stratégies et 

actions de réduction de risque possibles. Les actions sont à appliquer sur les schémas en cours de 

conception des cubes SOLAP attendus en fonction des niveaux de tolérances. Par la suite, une méthode 

de conception mettant en œuvre l’approche a été élaborée. Cette méthode prend en entrée les besoins en 

analyse des utilisateurs, les données sources et fournit des cubes SOLAP adaptés aux paramètres de 

tolérance exprimés par les utilisateurs finaux au cours de la conception. Cette méthode a été implémentée 

dans un système de prototypage rapide et testée, dans le cadre de la validation de l’approche, sur des 

données d’épandage de boue (France). 

Cette thèse a apporté des réponses intéressantes à nos questions exprimées précédemment. En effet, 

grâce aux différents travaux menés, nous avons pu ressortir comme premier résultat une approche de 

conception de cubes SOLAP où le risque de mauvaise interprétation est considéré et géré de manière 

itérative et en adéquation avec les sensibilités des utilisateurs finaux quant aux risques potentiels 

identifiés. Ensuite, cette thèse a permis de proposer des outils formels aidant à cette conception 

consciente du risque : un profil UML adapté, des fonctions de modification de schémas 

multidimensionnels pour construire les cubes souhaités par les utilisateurs au fur et à mesure de 

l’expression de leurs tolérances aux risques, et enfin un processus formel guidant de telles 

transformations de schémas. Un autre des résultats intéressants obtenus est la vérification de la faisabilité 

de notre approche dans un cadre purement informatique avec la mise en œuvre de l’approche dans un 

outil CASE développé au sein de notre équipe de recherche. Ce résultat nous indique notamment que non 

seulement une telle approche est possible mais qu’elle est également implantable à moindre coût (temps 

et complexité) avec les outils existants. Pour finir, nous avons également pu valider le fait que l’approche 

fournisse non seulement des cubes aussi compréhensibles (nombre similaires de classes, de hiérarchies 

spatiales et de dimensions spatiales ainsi que nombre inférieur de hiérarchies multiples et de mesures par 

fait pour les cubes testés) et donc utilisables que les cubes classiques, mais aussi des cubes où le vague 

n’est plus laissé de côté, sans aucun effort pour atténuer ses impacts sur les analyses et les prises de 

décision des utilisateurs finaux. 
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Avant-Propos 
Ce projet de thèse a été réalisé dans le cadre d’une cotutelle Géomatique/Informatique entre l’Université 

Laval au Québec (Canada) et l’Université Blaise Pascal à Clermont-Ferrand (France). La première année 

s’est déroulée dans le Centre de Recherche en Géomatique de l’Université Laval, puis les deux années 

restantes ont été passées à l’Institut de Recherche en Sciences et Technologies pour l’Environnement et 

l’Agriculture (Irstea), site de Clermont-Ferrand. Il a été mené sous la direction du Pr. Yvan Bédard 

(Université Laval) et du Dr. François Pinet (Université Blaise-Pascal). 

Ce document est présenté pour rencontrer les critères de réalisation des deux universités de cotutelle. Il 

est écrit en anglais et est articulé autour de trois publications principales faisant état des résultats de nos 

travaux. Les trois publications ont été soumises à différentes revues avec comité de lecture et ont, tout 

comme cette thèse, été rédigées par l’étudiante (Elodie Edoh-Alové) qui en est donc l’auteure principale 

ainsi que la responsable de leurs soumissions. Le conseiller Sandro Bimonte, ainsi que Yvan Bédard et 

François Pinet, directeurs de ce projet de thèse, sont les co-auteurs des publications. Elles ont toutes les 

trois été ajustées afin d’obtenir un document facile à lire et cohérent. 

Le premier article constitue le Chapitre 3 de ce document. La section sur l’état de l’art a été enrichie et 

nous avons adapté le style et la mise en forme pour le rendre conforme au présent document. L’article a 

été accepté pour publication en Juillet 2015 dans la revue International Journal of Agricultural and 

Environmental Information Systems (IJAEIS) sous la référence :  

Edoh-Alove E., Bimonte, S., Pinet F., & Bédard Y. (2015). “New Design Approach to Handle Spatial Vagueness in 
Spatial OLAP Datacubes: Application to Agri-environmental Data”, IJAEIS 6(3). 

 

Le second article quant à lui se retrouve en grande majorité dans le Chapitre 4 du présent document. 

L’article original a été enrichi avec une section plus complète sur notre méthode RADSOLAP et la mise en 

forme et le style ont été adaptés pour le présent document. Il a été soumis et accepté pour publication 

dans la revue International Journal of Data Warehousing and Mining (IJDWM) sous la référence : 

Edoh-Alove E., Bimonte S., & Pinet F. (to be published) “An UML profile and SOLAP datacubes multidimensional 
schemas transformation process for datacubes risk-aware design”, IJDWM. 

 

Enfin le troisième article est repris dans le Chapitre 5 de ce document. La version courte de cet article a 

été présentée et publiée dans les actes de la conférence internationale ICCSA 2014 sous la référence : 

Edoh-Alove, E., Bimonte, S., & Bédard, Y. (2014). A New Design Method for Managing Spatial Vagueness in 
Classical Relational Spatial OLAP Architectures. In Computational Science and Its Applications–ICCSA 
2014 (pp. 774-786). Springer International Publishing. 
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A la suite de quoi, cet article a été retenu puis accepté dans sa version étendue pour publication dans une 

édition spéciale de la revue International Journal of Business Intelligence and Data Mining (IJBIDM), sous 

la référence : 

Edoh-Alove, E., Bimonte S., Bédard, Y. & Pinet, F. (in Press). “A hybrid risk-aware design method for spatial 
datacubes handling spatial vague data: implementation and validation”, IJBIDM. 

 

Cette version étendue a été donc ajustée pour le Chapitre 5. Nous avons notamment enlevé la section sur 

la méthode RADSOLAP, section qui rappelons-le se trouve dans le Chapitre 4, et rajouté les diagrammes 

de comparaison pour les critères d’utilisabilité des cubes SOLAP. Nous avons également adapté le style 

et la mise en forme tout comme pour les autres articles. 
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Chapter 1: Introduction 
 

 

 

 

1.1 Research context 

1.1.1 Spatial vagueness: an often neglected spatial data uncertainty 

The spatial data is usually the representation of an observed reality (Worboys 1998), more specifically a 

phenomenon that can be located in the real world, whether it is natural (lakes, forests, mountains etc.) or 

defined by humans activities (planned roads, buildings, electoral boundaries, census areas etc.). It is often 

subject to uncertainty which is caused in general, by the limitations of the modeling process (models too 

simplified, omission of details, definition of the observed reality itself as illustrated in the previously etc.), 

the measurements tools and/or the observers themselves (Bédard 1986). The uncertainty affects the 

spatial data conception, position, shape, attributes, and temporal accuracy (Devillers and Jeansoulin 

2006) and exposes spatial data users to faulty analysis and data interpretation afterwards. Indeed, for 

instance, an uncertainty on the conception of an object (what do we call swamp? Where does the swamp 

stop and where does the pond start), will in turn creates a thematic inaccuracy on the spatial data (the 

entity is not well classified), and the entity attributes, even if they are well measured, might be inaccurate 

because they are not the right attributes describing that entity. Using such data, analysts can have error in 

their comparison and statistics with a more or less great damage. 

Since few decades, many researchers have tackled the spatial data uncertainty issues in order to 

describe, minimize and/or report it to potential spatial data users (Bédard 1986, Beard 1989, Burrough and 

Frank 1996, Lagacherie, Andrieux et al. 1996, Dilo 2006). They have worked out different techniques and 

models (error models, measurements compensation, confusion matrix etc.) to manage the spatial data 

uncertainty in the various Geomatics application fields (Remote sensing and image interpretation, 

topography, Geographic Information Systems (GIS) etc.) 

Spatial vagueness, in particular is an uncertainty presents on the majority of spatial data related to natural 

environment (Burrough and Frank 1996). In fact, the majority of natural phenomena are characterized by: 

 A difficulty to find limits that correspond to physical discontinuity (where does the lake stop and 

where does the ground start?). Their shapes (including their boundaries) are not clear (vague 

shapes).  

 A difficulty to position them precisely due to a lack of knowledge about their location (vague 

location).  
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However, as any other geographic object, such natural phenomena are most of the time represented as 

spatial objects with definite boundaries separating their interior from their exterior on maps, in spatial data 

bases and GIS in general. It is a crisp representation (e.g. point, line, and polygon geometry types), 

chosen for the sake of simplification and manipulation of spatial objects in information systems. This 

choice of simplification creates the spatial vagueness on the spatial data presented to data consumers.  

Now, GIS are democratized via web applications (Devillers, Stein et al. 2010) and a huge amount of 

spatial data are available in geospatial infrastructures on the internet. Anybody can access spatial data 

and use them. Users, especially those that are not spatial data experts are, very often, not aware of the 

possible spatial data uncertainty, in particular spatial vagueness; therefore they often cannot take it into 

account in their analysis and decisions.  

Not considering the spatial vagueness in decision-support systems can represent a more or less great 

danger for the end-users. Let us consider the example of the lakes that have vague shape. For a user that 

needs to simply locate a lake for a navigation purpose, having a map that represents the lakes as crisp 

polygons is sufficient and does not present a real danger. For another user that needs to know the surface 

of lakes in a region in order to plan lake’s inhabitant (animals and plants) safeguarding, the same data will 

lead him to an improper estimated surfaces; he would take his decisions based on non-reliable information 

with a money loss and environment damage as ultimate result. 

1.1.2 A need for spatio-multidimensional analysis  

Over the years, companies and public organisms in different fields have accumulated a huge amount of 

data in their transactional (spatial) databases. Those data hold knowledge and information useful to the 

decisional process. For example, one can extract tendencies from the data by doing temporal and 

thematic synthesis, spatial comparisons, etc.(Bédard and Han 2009). In this Web 2.0 era, there is a 

certain need for tools that support efficiently such data interrogation and exploration in an easy, quick and 

reliable manner.  

For that purpose, Spatial OLAP1 (SOLAP) systems have emerged in the past decade. SOLAP systems 

are visual platforms that allow easy, rapid and interactive exploration of huge volume of data by simple 

clicks on pivot table, histograms or maps that present queries results to the users (Bédard, Rivest et al. 

2006). To do so, they are most of the time based on a multidimensional approach to structure an 

organization data (Proulx and Bédard 2004). This approach introduces new concepts (“dimension”, 

“measure, “fact” etc.), unknown to the transactional systems, that makes the data structure more close to 

the mental representation of the data users have (Codd, Codd et al. 1993). 

                                                           
 
1 On-Line Analytical Processing 
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Indeed, in the multidimensional approach, historic data on agricultural activities in France, for example, are 

structured as such (Bédard, Merrett et al. 2001):  

 The analysis themes are represented as dimensions Time, Operations and Location. They 

contain members (analysis objects) organized into hierarchies according to their granularity levels 

(e.g. Farming plots grouped into Farms, grouped in turn into administrative Departments, grouped 

in turn into administrative Regions, grouped in turn into France).  

 The analyzed values are represented by the measure, Quantity of Energy Used. A measure in 

general is a dependent variable that reports on the situation in regards with the analysis themes. 

With that structure, a multidimensional query can be simply defined by saying “I want to know the Quantity 

of Energy Used (a measure) for the operation Labour relatively to the farming plot FP1 during the year 

2000 (dimensions members)”. 

Note that combination of dimensions and measures are called facts and are stored in a table and queried 

by the users. A fact is for example “the quantity of energy used by the operation Labour relatively to the 

farming plot FP1 during the year 2000 is 200kJ”.  

Most of the SOLAP systems store the facts in datacubes (hypercubes actually) which is basically the 

physical implementation of the spatio-multidimensional model.  

Nowadays, SOLAP systems find more and more applications in many fields including health, finance, 

transport, agriculture, environment, etc. Their users are first and foremost decision-makers, expert 

analysts or application field professionals (Guimond 2005) that are in majority unaware of the spatial data 

uncertainty issues, in particular the spatial vagueness. Those users rely on the analyses results to make 

important strategic decisions whose consequences (positive or negative) can be far reaching. Therefore, 

they cannot afford missed problems, inexact comparisons between regions or faulty trend analysis in 

general.  

1.2 Problem definition 
We believe that it is imperative to deal with spatial vagueness issues in SOLAP systems, somehow. The 

spatial vagueness is at the source of diverse spatial data quality issues in a SOLAP datacube. First of all, 

a quality issue present on the sources spatial data (and at the finest level of the datacube) has an impact 

on the whole datacube quality. For instance, if the member Rhône is absent in the spatial dimension, there 

is an absence of measures and facts for that member at least at the corresponding aggregation level. 

Since the spatial data quality is correlated to the spatial data uncertainty, having uncertainty in the sources 

leads to spatial data quality issues on the SOLAP datacube. More specifically, spatial vagueness on 

members or facts attributes can brings inaccuracy (incompleteness, attribute inaccuracy, spatial 
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inaccuracy, etc.) not only on the geometries themselves (such as cities boundaries, fire regions or agency 

positions contained by members, members’ attributes and facts attributes), but also on the other members 

of the spatial hierarchy and the aggregation results (non-geometric and geometric facts attributes). Let us 

take the example of crop areas with vague shapes. The measures calculated based on the crop areas, 

whether it is a spatial measure such as the surface of the crop area, or non-spatial measure such as the 

quantity of energy spent on the crop area are subject to spatial or attribute inaccuracy respectively. Also, 

the spatial intersections and other predicates introduce uncertainty on the aggregates calculated based on 

those crop-areas geometries.  

To cope with spatial vagueness, very recently, some researchers (Jadidi, Mostafavi et al. 2012, Siqueira, 

Ciferri et al. 2014) have advocated the use of spatial vague objects models (fuzzy models, exact models, 

rough models etc.) to represent vague phenomena (Zadeh 1965, Cohn and Gotts 1996, Lagacherie, 

Andrieux et al. 1996, Schneider 1999, Dilo 2006, Bejaoui 2009, Pauly and Schneider 2010). Vague 

objects models are designed to be more truthful to the reality of such phenomena: they allow for instance 

the representation of broad shapes and vague locations by means of: 

 Fuzzy sets (fuzzy models): an object is a set of individuals+ their membership degrees 

expressing the possibility that the individual belongs to the set; 

 Egg-yolk concepts (exact models): an object is a combination of a core (certain part) and a 

dubiety (uncertain part). 

Therefore the distortion between the real object and its description (spatial vagueness) can be reduced. 

More specifically, they have proposed new spatio-multidimensional models and SOLAP operators that 

support the spatial vague objects models. In the following paragraphs we introduce those proposals to 

draw out some of their limits in order to justify the problem addressed in this thesis (For more details, refer 

to Chapter 2). 

Jadidi, Mostafavi et al. (2012) introduce the fuzzy logic (Dilo 2006) into spatial datacubes. They define the 

fundamental concepts needed to model and exploit objects with fuzzy semantic, vague shapes and fuzzy 

temporality in spatio-multidimensional based geo-decisional systems. The proposals are applied to coastal 

erosion risk areas. They include membership functions to define the objects (fuzzy sets), formal definition 

of the fuzzy spatial datacube elements (fuzzy spatial dimension, spatial fact, spatial measure etc.) and 

some new fuzzy spatial aggregation operators (fuzzy union, intersection, overlay etc.).The implementation 

of the fuzzy spatial datacube is identical to classic ones; nevertheless, the measures should be calculated 

with the fuzzy operators instead of the classic ones. Note that the approach is usually dedicated to raster 

data types. The implementation of the defined operators is yet to be done in classical SOLAP tools (and in 

traditional DBMSs) and also the computation of the membership functions requires specific tools that are 
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not available. On top of that, the solution calls for a case-by-case definition of the membership functions, a 

task that is not always easy (Dilo 2006). 

On their part, Siqueira, Ciferri et al. (2014) introduce the exact models (Bejaoui 2009, Pauly and Schneider 

2010) into spatial datacubes. They define the VSCube model, which is a spatio-multidimensional model 

that manages vague objects (vector data types). Their proposals include a formal definition of the VSCube 

elements (vague spatial attribute, vague spatial level, vague spatial measure etc.) as well as specific 

techniques for querying (vague window query, vague SOLAP operators) and storing the vague SOLAP 

datacubes. Regarding the storing, they propose to store separately the core and the dubieties parts (plus 

values in the interval ]0,1[ expressing the uncertainty degrees) of a vague object. Just as the previous 

approach, the implementation of the new definitions and techniques is yet in classical SOLAP tools is yet 

to be proposed and effective.  

Even though vague objects models are in theory the most accurate approach to represent spatial vague 

objects, introducing such models in SOLAP datacubes jeopardize the datacubes usability and the ability to 

easily implement them in current classical tools.  

Indeed, the introduction of complex (in opposition to the simplicity of the classical point line polygon) 

spatial objects models in datacubes always comes with more data to visualize, and to digest (complex 

geometry + uncertainty values). Also, it can be too much information for end-users regarding their context 

of use. In fact, while in some cases, they absolutely need the most accurate solution to take into account 

the spatial vagueness (it is for example the case of coastal erosion risk assessment), in other cases, the 

complexity of the solution can just be too much for the intended usage. For example, an end-user who 

wants to exploit the same coastal erosion risks zone in a datacube that will help him analyze the 

investments regarding such regions over the years, it is sufficient to show the approximate regions as 

simple polygons ( classic spatial level) with the investment values (the measure). Therefore, in this case, if 

provided with a datacube integrating the fuzzy logic to handle the zones vagueness, he will not only have 

to make a good effort to comprehend the data but also it will be an useless effort since his intended use 

does not need this accurate but complex representation. Hence the usability of this particular solution is 

compromised for this end-user.  

On the other hand, we recall that using just the simple crisp geographic data types without any 

consideration for the spatial vagueness leads to a non-reliable SOLAP datacube putting end-users under 

risks of misinterpretations. However till now, when it comes to vector data, classical SOLAP server and 

client as well as spatial DBMS are designed for the manipulation of crisp geographic data types that are 

the point, line and polygon. To benefit from their full potential with no delay and no extra effort from 

datacubes producers and to guarantee an easy implementation of produced SOLAP datacubes, it is 
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required to stick with the crisp geographic data types (point, line, and polygon) to represent all 

spatial objects, vague or not. 

To stick with crisp geographic data types and still take spatial vagueness into account in a simple 

way, we find judicious to replace the spatial vagueness management itself by the management of 

risks of data misinterpretation induced by the spatial vagueness.  

Indeed, for years now the research regarding projects risk management (Del Cano and de la Cruz 2002) 

in general, and software risk management in particular (Boehm 1991, Karolak and Karolak 1995) have 

established that an early concern with identifying, analyzing and controlling risk elements helps prevent 

providing users with unsatisfactory solutions (wrong functionalities, solutions with performance or reliability 

issues etc.). In the same line, it is increasingly recognized that spatial data risks of misuse management in 

general is required to avoid unexpected results and faulty trend analysis to spatial data consumers, 

regardless the data quality itself (Lévesque 2008, Gervais, Bédard et al. 2009, Gervais, Bédard et al. 

2012, Grira, Bédard et al. 2013, Roy 2013). The reason is that nowadays, anybody can access spatial 

data through appropriate infrastructures on the internet, but not all consumers are aware of the data 

quality, let alone the usage for which the data was produced. Therefore they make inappropriate use of 

the data which lead them to unexpected results with consequences that can be far reaching. In this case 

(spatial vagueness management), we also want to prevent end-users from faulty trend analysis thus the 

idea to take this particular approach angle.  

Doing a risk of misinterpretation management means that the risks need to be identified, assessed and 

reduced during the datacube design to provide end-users with appropriate, usable and more reliable 

SOLAP datacubes. To respect the usability condition, it is also required to consider end-users tolerance 

to potential risks of data misinterpretation soon enough in the datacubes elements definition 

(production phase).  

Lévesque (2008), Grira, Bédard et al. (2013) and Roy (2013) have interesting contributions in regard with 

risks of misuse management. Their proposals comprise not only a risk of misuse management method 

and tools for risks identification and communication in SOLAP systems via pop-up alerts (Lévesque 2008), 

but also a collaborative platform to identify and analyze risks, relative to spatial data in general (Grira, 

Bédard et al. 2013), as well as an approach to better inform the spatial data consumers (Roy 2013). The 

contributions can be applied in the same system with the risks identification and documentation based on 

Lévesque (2008) formal tools that one can implement in Grira, Bédard et al. (2013) collaborative approach 

which will help involve end-users and collect risks management strategies. Then using Roy (2013) 

approach and Lévesque (2008) alerts system, the risks can be communicated to the end-users ultimately. 

When placing those contributions on a risks of spatial data misuse spectrum, it appears that there is a gap 

regarding the technical application of the risks management strategies on SOLAP datacubes during their 
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definition. Such proposal could be used to implement the collaborative approach results in order to insure 

more reliable datacubes and then any residual risk could be communicated afterwards. Regarding the 

definition of datacubes, there are many work covering datacubes (spatial or not) modeling process in the 

literature. Some researchers propose to draw the multidimensional structure from end-users needs in 

analysis (Böhnlein, Plaha et al. 2002, Lujan-Mora, Trujillo et al. 2006, Prat, Akoka et al. 2006); others offer 

approaches that extract multidimensional knowledge from available data-sources (Jensen, Holmgren et al. 

2004, Malinowski and Zimányi 2008, Romero and Abelló 2008, Song, Piattini et al. 2008); finally, we can 

also find hybrid approaches (most used for SOLAP datacubes in particular) that based the 

multidimensional modeling not only on end-users needs in analysis but also on the available data sources 

(Guimond 2005, Mazón, Trujillo et al. 2007, Romero and Abelló 2010). Those approaches have been 

proven to be efficient and quick in furnishing datacubes models that fit end-users requirements. However, 

they do not take into account the risks and tolerance levels (expressed by end-users) on top of the end-

users needs in analysis and the available resources. With all that said, it appears that a hybrid SOLAP 

datacubes design process allowing the application of risks management rules, according to end-

users sensibility, on SOLAP datacubes schemas is missing. Such process would present the 

advantage of allowing a quick modeling and thus implementation of SOLAP datacubes where risks of 

misuse are not only detected and assessed but also reduced with the help of all parts involved in the 

project, especially end-users. 

In summary, for all the reasons above, we think a new solution that helps designing SOLAP datacubes 

which are usable for any end-user and can be easily implemented in classical tools while taking spatial 

vagueness into account is required. This solution will come as an alternative for applications where it is not 

vital to represent the spatial vague objects with a perfect theoretical accuracy (fuzzy logic for example). In 

conclusion to our previous observations and reasoning, we believe that this alternative solution should be 

based on an approach making a symbiotic trade-off between the datacubes usability (is the datacube 

schema understandable and thus easily usable?), the ability to do an easy implementation of the 

datacubes in classical tools (Can the datacube be implemented without any extra effort on technical tools 

to manage complex vague models?) and the theoretical accuracy when dealing with spatial vagueness 

(To what extent the solution is correct theoretically?). As shown in the following Figure 1-1, right now, such 

solution is yet to be proposed in the literature. In fact, the existing solutions are whether spot on regarding 

the spatial vagueness management in theory (fuzzy set theory and other vague object models) (Jadidi, 

Mostafavi et al. 2012), or focused on the usability and ease of implementation (classical crisp 

representation case), or more on the theoretical accuracy side with a concern for the ease of 

implementation (exact models implementations in SOLAP systems) (Siqueira, Ciferri et al. 2014). 
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Figure 1-1 : Classification of the existing solutions regarding the three criteria: Usability, theoretical 
accuracy and ease of implementation 

In the rest of this thesis, when talking about a symbiotic trade-off vision or approach, it specifically implies 

a trade-off between usability, easy implementation and theoretical accuracy regarding the spatial 

vagueness. Thereby, the general problem addressed in this thesis is: 

There is no solution allowing the design of usable, more reliable and easily implementable SOLAP 

datacubes where spatial vagueness issues are handled in a symbiotic trade-off approach. 

To make sure the problem, research questions and hypothesis are well understood, it is important to 

define the terms usability, reliability and ease of implementation as adopted in the context of this thesis. 

- Usability: A usable datacube is a datacube which is understandable by end-users and fits their 

use (Serrano, Trujillo et al. 2007). 

- Reliability: reliability here is attached with the notion of theoretical accuracy. A datacube is said, in 

this thesis, to be reliable when the spatial vagueness is considered regardless the extent to which 

the solution is accurate on representing vague objects. 

- Ease of implementation: A datacube is easily implementable in classical systems and 

architectures (DBMS and SOLAP for example) when the implementation does not involve any 

new techniques and data types to store and query the data. By new, we mean that they are not 

already implemented in the classical systems. 

    

Usability Ease of implementation 

Theoretical accuracy 

Siqueira et al. 

2014 

Jadidi et al. 

2012 
Symbiotic trade-off  

Target region 

Classical 

solutions 
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1.3 Questions and hypothesis of research 
The principal research question we answer is the following: is it possible to produce SOLAP datacubes 

exploiting vague spatial objects that remain as usable, reliable and easily implementable as 

classical SOLAP datacubes? 

Other questions we answer in this research are: 

- How to integrate the risk management method in a SOLAP datacubes design process? 

- How to evaluate and integrate the tolerance levels of end-users, to the potential risks of 

misinterpretation, in the design process? 

- How to implement such risk-aware SOLAP datacubes design process in a computing 

environment? 

- Is it possible to benefit from existing design and development concepts and tools to support the 

new approach in practice?  

The general hypothesis we formulate in this research is that a design approach based on a symbiotic 

trade-off vision allows producing SOLAP datacubes, exploiting spatial vague objects, that remain 

as usable, reliable and easily implementable as classical SOLAP datacubes. 

The usability will be expressed in this thesis as the datacube schema understandability; the reliability will 

be translated into the fact that the spatial vagueness is considered or not and the ease of implementation 

will be expressed as the possibility of implementing the SOLAP datacubes in existing classical SOLAP 

architectures right away. 

In the first place, such approach should allow collecting end-users needs in analysis and identify pertinent 

sources data in order to draw out a multidimensional knowledge (model plus aggregations). In the second 

place, it should allow the identification of the spatial vague objects present in the sources and to be used 

in the intended datacube. Then it should help identifying all potential risks of misinterpretation end-users 

incur as well as collecting their tolerance levels regarding the identified risks. The approach should also 

allow the identification of appropriate risks management actions (e.g. delete a spatial level that introduces 

an inacceptable risk in the datacube), actions which are used afterwards in the definition of the factual and 

multidimensional data (dimensions and hierarchies, measures, and aggregation formulas) that will 

compose the final SOLAP datacube.  
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1.4 Objectives 
To verify our hypothesis, the general objective of this research consists of proposing a SOLAP 

datacubes design method integrating a risk of misinterpretation management method to deal with 

spatial vagueness in a symbiotic trade-off approach. 

In this thesis project, it was not realistic to provide a generic and complete solution to all the possible case 

studies out there. We have preferred to provide the fundamentals of an efficient method, so as to verify 

that usable, more reliable and easily implementable SOLAP datacubes exploiting vague spatial objects 

can be provided by using the symbiotic trade-off vision. To reach this goal, we define three sub-objectives: 

 Sub-objective 1: To propose the fundamentals of a risk-aware SOLAP datacubes design 

approach. This implies: 

- To define how the spatial vagueness is taken into account in the symbiotic trade-off vision. 

- To define the risk of misinterpretation, and the tolerance concept regarding SOLAP datacubes. 

- To propose approaches to identify and manage the risks, and express the end-users tolerance to 

the identified risks. 

- To integrate a risk management method with the classic SOLAP datacubes design process.  

 Sub-objective 2: To propose the principles of a practical implementation of the risk-aware 

approach. In this thesis, because we wanted to achieve a spatial vagueness management in 

practice, it is important to provide also practical principles that will sustain the approach 

implementation by datacube producers. Here, we focus more on the informatics aspect of this 

research project. This sub-objective implies: 

- To define an agile design process implementing such an approach. 

- To define the principles of an UML-based multidimensional modeling to support the approach. 

- To define and formalize the SOLAP datacubes schemas transformation process that allows 

tailoring the datacubes to end-users tolerance. 

 Sub-objective 3: To demonstrate the implementation feasibility of the proposed risk-aware 

approach. This sub-objective is driven by the need for our Irstea research team to test the risk-

aware approach in our own prototyping CASE system (called ProtOLAP) and by our third 

research question. The demonstration is done by proposing and testing an implementation of the 

new approach in the ProtOLAP tool.  
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 Sub-objective 4: To demonstrate the benefits of the risk-aware approach. This is done by 

evaluating and comparing the risk-aware approach results with a classical SOLAP datacubes 

design results. The three elements that were at the basis of the evaluation/comparison are: the 

ease of implementation, the reliability and the usability of the designed schemas. The SOLAP 

datacubes modeling was provided for a real sludge spreading case study relative to the SILLAGE 

(formerly SIGEMO) project (Soulignac, Barnabé et al. 2006). 

1.5 Methodology 
In this thesis, we adopt a methodology based on a hypothetico-deductive reasoning. After a literature 

review, a problem has been defined and our research question has been brought out. To answer this 

question, we have defined a research framework that consists of elaborating formal and technical tools to 

put our general hypothesis to test. Indeed, using those tools to design few datacubes, we are able to 

confirm the hypothesis or not. The methodology is divided 4 main phases: 

Phase 1: Knowledge acquisition, literature review and problem definition 

We have collected knowledge about spatial data uncertainty and SOLAP concepts, architectures and 

tools. We also did at first an in-depth literature review on spatial vagueness, SOLAP systems, and spatial 

vagueness management in SOLAP systems. This was necessary to understand the issues people are 

facing when trying to exploit spatial vague objects in any kind of information system, in particular in 

SOLAP datacubes. We have specifically studied the advantages and the limits of the existing spatial 

vagueness management approach (Jadidi, Mostafavi et al. 2012, Siqueira, Ciferri et al. 2014). Then we 

have also done a literature review on risks of misuse management in general and on multidimensional 

design methods. From there we have defined the problem addressed by this research project. Note that 

the literature review has been enriched and updated during the research with newly published work. 

Phase 2: Proposal of the risk-aware design of SOLAP datacubes approach 

In this phase, we worked towards meeting our first sub-objective. The very first step was trying to answer 

this question: “What happens when spatial vague objects are introduced in the SOLAP datacubes but 

spatial vagueness is not taken into account?” To do so, we have conducted a study of the impacts of 

having vague geometric attribute in spatial levels, on the SOLAP datacube at a conceptual level, e.g. what 

is the impact of the existence of a member with a vague shape on the hierarchy, the dimension, and the 

measure? Is the measure also uncertain? If yes, is it uncertain at all aggregated levels or just the level 

concerned? This study results helped us define afterwards the diversity of the misinterpretations end-

users can face when using SOLAP datacubes exploiting spatial vague objects. 

We have also worked out a simple geometry typology, using crisp geographic data types, to take into 

account the spatial vagueness in a simple way. This typology is based on the easy to use spatial vague 
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objects model named Qualitative Min-Max advocated by our colleague Bejaoui (2009).  This first step is 

more detailed in the third chapter of this document. 

The second step consisted of defining properly the risk of misinterpretation and classifying it in order to 

provide the basis for our approach. The risk of misinterpretation has been classified in two main 

categories, namely the intrinsic risks, induced by the data themselves, and the extrinsic risks which are 

related to the user context of use. Regarding the intrinsic risks, they are defined as risk of measure poor 

evaluation and classified in turn in three groups: risk of over evaluation, risk of under evaluation and non-

significant risk. Also the intrinsic risks can be induced by the vagueness on a level geometric attribute 

(Risk-Geometry) or by the aggregation formula (Risk-Aggregation). From there, we have proposed a 

tolerance scale, composed of four (4) levels (0-totally unacceptable risk, 1-preferably unacceptable risk, 2-

somewhat acceptable risk, 3-totally acceptable risk) to help end-users express their sensibility to any 

identified risk. Then we have associated to each tolerance level a risk management strategy and possible 

corresponding actions producers can choose from to reduce the risks (e.g. delete a level present an 

unacceptable risk, communicate a risk via visualization policies, and modify an aggregator). Finally, we 

have worked out a new general risk-aware SOLAP datacubes design process by integrating a risk 

management method to the classic design process (requirement specification and conceptual design 

phases to be more precise).  The results of this phase are compiled in a paper that can be found also at 

the chapter 3 of this document. 

Phase 3: Proposal of a rapid prototyping risk-aware design method called the RADSOLAP method 

There are different multidimensional design methods:(Böhnlein, Plaha et al. 2002, Lujan-Mora, Trujillo et 

al. 2006, Prat, Akoka et al. 2006);(Jensen, Holmgren et al. 2004, Guimond 2005, Mazón, Trujillo et al. 

2007, Malinowski and Zimányi 2008, Romero and Abelló 2008, Song, Piattini et al. 2008, Romero and 

Abelló 2010). These methods are all based on user-driven, sources-driven or hybrid approaches. In our 

work, we consider a new aspect related to risks of misinterpretation of the datacubes, therefore we are 

interested in a method that is based on a hybrid approach but is also risk-aware. Such a method is yet to 

be proposed in the literature. Thus in this phase, we work towards elaborating such a risk-aware 

multidimensional design method using the results of the previous phase 2. We quickly realized that risk-

awareness and risk management calls for many multidimensional model transformations during the design 

process and additional variables that are risk communication policies. We also realized that it is important 

for SOLAP datacube producers to quickly obtain SOLAP datacube prototypes in order to validate the 

design with end-users by real testing with sample data. A rapid prototyping method is thus required. The 

RADSOLAP method proposed to answer all three requirements (hybrid, risk-aware and prototyping) is the 

extension of a ProtOLAP (Bimonte, Nazih et al. 2013) method elaborated by our research group at Irstea 

with our collaboration (Cf. middle corridor of Figure 1-2). The ProtOLAP method is a rapid OLAP 

prototyping with on-demand data supply method. It is based on the UML formalism for the 
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multidimensional and aggregation modeling; also it is semi-automatic since it allows generating logical 

schemas for the OLAP server and the DBMS from the multidimensional model. Furthermore it is supported 

by a technical CASE tool developed by the research team. Our extension activities have been the 

followings: 

- Extending the ProtOLAP design process to implement the risk-aware method developed in our 

second phase. 

- Extending the UML profile designed by Boulil, Bimonte et al. (2012) to model SOLAP datacubes 

in order to take into account  our new geographic data typology, the risk and the risk 

communication variables and the tolerance levels.  

- Formalizing multidimensional model transformation functions in order to insure that the model is 

still valid throughout the design. We have formalized for example the functions 

DeleteLowestLevel, DeleteDimension and ModifyAggregator. The formalization language is 

based on the UML profile elements. 

- Defining the transformation process to help datacube producers insure the correctness and the 

coherence of all the transformations. This process consists of three steps which are the splitting 

step, the transformation step (where the functions are applied) and the fusion step. 

The results of this phase, which allow us achieving our sub-objective 2, are also compiled in a paper that 

can be found at the Chapter 4 of this document. 

Phase 4: Validation of the thesis proposals 

This phase is where we implement our proposals and make use of them on a real case study in order to 

verify our initial research hypothesis. This phase meets sub-objectives 3 and 4. It includes the following 

stages: 

- Definition and implementation of a CASE Tool to support the RADSOLAP method:  

As explained in the phase 3, the ProtOLAP research team at Irstea has already worked on a 

CASE Tool to support ProtOLAP. The tool architecture is composed of four tiers namely: the 

Requirement Tier (where the conceptual design is done using the designed UML profile), the 

Schema Tier (where the logical schemas for the OLAP server and the DBMS are generated), 

the Feeding Tier (where end-users can feed the OLAP datacube with sample data) and the 

Visualization Tier (where users can explore the datacube via an OLAP client). For the 

extended tool, called SOLAP RADTool, we have added another tier, the Transformation Tier, 

where SOLAP datacubes models transformations are done. The Transformation Tier was 

implemented by two undergrad students under our supervision as part of a 120h student 

project. 
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- Testing on a real case study: 

Since the new risk-aware design approach and the datacube usability strongly rely on the 

end-users, the best way to analyze and understand the efficiency of our method is to use a 

case study. For that reason, we have chosen a case study related to the sewage sludge 

spreading activities. Irstea Clermont-Ferrand has been in charge of a national Web GIS-

based system (called SIGEMO/SILLAGE) dedicated to the planning of agricultural spreading 

of sewage sludge produced by French farmers and wastewater plants. It contains vector and 

numerical data on spreading activities (farms, agricultural plots and spread zones etc.) from 

2006 to 2013. The areas unsuitable for spreading activities are drawn on maps by users (e.g., 

farmers) via the Web-based system as, for example, buffers around water bodies or buildings. 

Spread zones are therefore the agricultural plots excluding the unsuitable areas. Such zones 

have vague shapes for two reasons: the excluding water bodies have vague shapes and the 

spreading equipment and methods cause an offset (uncertainty) between the spread zones 

limits drawn and the real ones. We have defined a multidimensional model for a datacube 

exploiting the spread zones using our extend UML profile. Then we have applied the 

RADSOLAP method with the ultimate goal of verifying that the method provides usable and 

reliable SOLAP datacubes that can be easily implemented in existing classical tools. That 

means: (1) risks of misinterpretation (Risk-Aggregation and Risk-Geometry) were determined 

knowing the vagueness present in the initial SOLAP datacube multidimensional model, (2) all 

possible combinations of tolerance levels were associated to the risks identified alongside 

with risks management actions; (3) and finally the initial multidimensional model have been 

transformed according to the tolerance levels using the RADTool (Transformation Tier). 

- Verifying designed SOLAP datacubes usability, reliability and ease of implementation in 

classical SOLAP architectures: 

In this step, we compare the SOLAP datacubes produced in the previous step with the 

SOLAP datacube resulting from a classical design method. First we evaluate the usability, 

reliability and ease of implementation of each produced SOLAP datacube and then we 

compare the evaluation results. Because our work focus is put on the SOLAP datacube 

multidimensional structures, we concentrate the usability testing on the multidimensional 

structure testing. There are few proposals in the literature regarding datacubes 

multidimensional structure usability tests; the testing methods are in majority based on 

quantitative metrics well defined and validated through experimentation. Since it is not our 

objective to propose testing method and/or new metrics, we have based our usability testing 

on the existing literature (Berenguer, Romero et al. 2005, Serrano, Trujillo et al. 2007, 

Golfarelli and Rizzi 2011) by choosing meaningful existing metrics (such as number of 
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measures, number of multiple hierarchies etc.) from that literature to evaluate the usability of 

all the produced SOLAP datacubes multidimensional structures.  

Concerning the reliability testing, we need to evaluate if the spatial vagueness is considered 

or not for all the resulting SOLAP datacubes. In our method, the spatial vagueness was 

recognized and considered for all the produced SOLAP datacubes since at some point of the 

design the vague objects were identified and translated into corresponding risks of 

misinterpretation. Therefore we have essentially focus the reliability testing on highlighting 

objectively how the spatial vagueness is actually considered  through our method and how 

nothing is done in that sense in the classical methods.  

Regarding the ease of implementation criteria, actually the resulting SOLAP datacubes are 

technically the same. They all use crisp representation of the spatial data and no new data 

type or SOLAP operator has been introduced. Moreover, we have integrated the 

implementation of our method in a classical CASE tool ecosystem which allow the automatic 

generation of classical schemata for the SOLAP servers and SDBMS. So the ease of 

implementation has simply been evaluated and compared through a discussion. 

The results of this fourth phase, which allow us achieving our sub-objectives 3 and 4, are detailed in the 

chapter 5 of this document. 

The following activity diagram describes our methodology (Cf. Figure 1-2). Note that there are three 

different corridors in this diagram: the first one presents the activities conducted alone; the second 

presents the results of our collaboration with research team members; and the third one presents the 

results of our collaboration with undergrad students through students’ projects. 
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Figure 1-2: UML activity diagram of the research methodology and thesis main steps 
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1.6 Thesis positioning in the Irstea and Laval University 
research on spatial data quality landscape 

This thesis has been realized in the context of an unofficial global project dealing with quality issue in 

spatial databases and spatial datacubes and web geoportals. This global project has been going on for 

few years now and different M.Sc. and Ph.D. students from our research groups from Irstea in France and 

Centre of Research in Geomatics (CRG) in Canada have participated in it. The research objectives were 

thought to be different but complementary. 

Let us start with the work carried out at the Centre of Research in Geomatics by seven of our colleagues: 

Ph.D. students Amaneh Jadidi Mardkheh, Joel Grira, Tarek Sboui, and Mehrdad Salehi; M.Sc. students 

Marie-André Lévesque and Tania Roy. 

Amaneh Jadidi Mardkheh work has been presented in section 1.2of the present document. In summary, 

she proposed fundamental tools required to represent and exploit regions with fuzzy semantic, temporality 

and vague shapes in spatial datacubes. She based her contributions on the fuzzy logic and applied them 

on coastal erosion risk assessment with the multidimensional paradigm. She defended her thesis in March 

2014. Although we both are dealing with spatial vague objects exploitation in datacubes, our goals are 

different but complementary. In fact, our work aim at offering a solution that manage the risks of 

misinterpretation related to the exploitation of vague objects in classic SOLAP datacubes while her work 

aims at offering tools that help elaborate and analyze fuzzy SOLAP datacubes. Her solution can be the 

ultimate one for end-users that do not tolerate any identified risk in our approach. 

Marie-André Lévesque focused on proposing a formal approach for a better risk of misuse identification 

and management in SOLAP datacubes. More specifically, she proposed a SOLAP datacube risk of 

misuse definition in accordance with the ISO (2000) definition of risk, as well as a risk of misuse 

classification and forms to help identify and describe the risks of misuse. She also adapted the risk 

management method and integrated it to the SOLAP datacube design process. Finally, she proposed a 

risk reduction approach which consists of communicating the risks via popping context-sensitive warnings 

in some multidimensional queries (Lévesque 2008). Her contributions offer the fundamentals for the 

SOLAP risk of misuse definition, description and management in a preventive approach. Unlike her 

solution, our solution not only aims at addressing the risk related to spatial vagueness specifically, but also 

at making the multidimensional elements definition aware of the end-users tolerance to the identified risks. 

In addition, we aim at offering a semi-automatic solution. Note that her work was over in 2008. 

Joel Grira introduced risk management in the database design process regardless the decisional platform 

(GIS, SOLAP systems etc.). He proposed a collaborative approach based on crowdsourcing technology to 

identify and analyze potential risks of data misuses (Grira, Bédard et al. 2013).  The approach relies on 

end-users’ feedbacks about the ways the elements (object class, property, function, association, domains) 
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of a conceptual database design are defined. He also proposes collaborative tools such as wiki, 

questionnaire and forum to find the identified risks for the given elements definitions and to improve these 

definitions if decided so. For a given identified risk, the database design team can afterwards select an 

appropriate risk management strategy, just as advocated in our own work. In this regard, his work is also 

complementary to ours. For the record, he defended his thesis in May 2014. 

Tania Roy proposed an a posteriori approach to help end-users (non-experts of spatial data) of an already 

existing system, namely the geoportals, identify and assess the potential risks of misuse they incur. The 

approach is based on a series of structured questions users have to answer in order to identify the risks. 

Different possible risk management actions are then determined according to the risks identified. She also 

offered recommendations to data producers in regards with the data fitness for use and risks of misuse 

communication to end-users (Roy 2013).While her solution is meant for already existing systems, the 

geoportals, ours aims at taking the risks into account during the systems (SOLAP datacubes) production 

(a priori solution). For the record, this master thesis was defended at the end of 2013. 

Tarek Sboui focused his research on the interoperability between two SOLAP datacubes. He proposed a 

conceptual framework to deal with the semantic heterogeneity issues between datacubes as well as a 

systematic approach to manage the risks related to semantic interoperability data misinterpretation. His 

solution consisted of a set of indicators which allow identifying and assessing the risks in addition with a 

framework that help the relevant stakeholders make decisions relative to the risks (Sboui 2010). His work 

was over in 2010. The fundamental quality issue is different since we are not working on semantic 

interoperability but spatial vagueness. However, the idea of a set of indicators to identify and assess the 

risks is interesting and can be used in complementary of our proposition. 

Finally, Mehrdad Salehi on his part focused his work on defining and classifying different types of integrity 

constraints in spatial datacubes. First, he proposed a required formal model for spatial datacubes where 

he defines the different elements of the spatial datacube multidimensional structure (spatial measure, 

spatial dimension, spatial fact etc.). Then, based on that model, he identified the different integrity 

constraints, before classifying them in categories and sub-categories (e.g. fact integrity constraints, 

traditional integrity constraints, summarizability integrity constraints). He also developed a formal integrity 

constraints specification language (ICSL) based on a controlled natural language and a natural hybrid 

language with pictograms (Salehi 2009). Our works are completely different but they come together on the 

quality of produced spatial datacubes aspect. Also, integrity constraints can be exploited in our approach 

to prevent some of the risks of misinterpretation. 

Now, regarding the works carried out in Irstea, Clermont-Ferrand centre to be precise, two Ph.D. students 

have tackled two different aspects of the quality issue: Kamal Boulil for the integrity constraints in spatial 

datacubes and Lotfi Bejaoui for the spatial vagueness. 
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Kamal Boulil work covered the definition and implementation of semantic integrity constraints in SOLAP 

systems based on the Spatial OCL2 standard and the UML language. His work is in the continuity of 

Mehrdad Salehi presented right above. One of his contributions is an UML Profile that allow datacube 

designers defining not only the multidimensional structure of SOLAP datacubes (core model) but also the 

aggregations model expressing end-users’ needs in analysis (Boulil 2012) as well as appropriate integrity 

constraints on both groups of elements. Our work addresses different aspects of the quality issue in 

SOLAP systems but his UML Profile has been a good tool to be exploited in our approach in order to allow 

datacube producers to define valid visual datacube model plus metadata of risks of misinterpretation and 

related tolerance values. More details are given on this particular point in the Chapter 4: of this thesis. This 

thesis was defended at the end of 2012. 

Finally, Lotfi Bejaoui proposed an exact model (the Qualitative Min-Max model) with topological 

relationships qualification to represent and exploit objects with vague shapes in spatial databases and 

spatial datacubes (Bejaoui 2009). In general, his work is of equal interest to us as Jadidi’s fuzzy logic 

approach, meaning that is it useful to offer a solution to end-users that do not tolerate any of the risks 

identified. However, we base our spatial vague objects conception on the Qualitative Min-Max model in 

our work. His thesis jointly supervised by the CRG, and Irstea Clermont-Ferrand was defended in 

2009.More details on how the model influences our work are given mainly in Chapter 3:. 

1.7 Structure of the thesis 
This thesis has six chapters. Chapter 1 introduces the problem, the research question and the 

methodology adopted to answer this question. Chapter 2 presents main general concepts related to the 

research areas targeted in this thesis: spatial data uncertainty and quality, SOLAP systems, spatial 

vagueness management in SOLAP systems, risks of misuse management and multidimensional design 

method. Chapter 3, 4 and 5 detail not only the literature review briefly presented in this first chapter, but 

also our main contributions. Chapter 3 is where the general risk-aware design approach is described. In a 

first part, the risk of misinterpretation is defined and classified and a tolerance scale is defined as well as a 

set of possible risk management actions corresponding to each tolerance level. In a second part, the 

geometric data typology adopted for the symbiotic trade-off approach as well as the analyses of the spatial 

vagueness impacts on the multidimensional are also presented here. The first part, which is the main 

content of this chapter, was submitted and accepted as a paper in a journal with blind peer-reviewed. In 

Chapter 4, the focus is on the rapid risk-aware prototyping of SOLAP datacube method implementing the 

results detailed in Chapter 3. In particular, the UML profile extension, the datacube model transformations 

functions and the transformation process are explained. This chapter was also submitted and accepted in 

a journal. In Chapter 5, we are interested in the validation of the research results. The ProtOLAP system 
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extension was briefly presented and we provide details on the validation method in addition with the 

results (usability testing, discussion on reliability and ease of implementation). This chapter has also been 

submitted and accepted in a peer-review conference and extended for a special issue of a peer-review 

journal. The extended version is the one presented in this thesis. Finally in Chapter 6, we review our 

contributions and provide a discussion for each one of them. This chapter also present our research 

perspectives. 
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Chapter 2: Concepts review 
 

 

 

 

2.1 Introduction 
This chapter focuses on the concepts related to the areas covered in this thesis, which are spatial data 

uncertainty, Spatial OLAP systems and to a lesser extent the management of datacubes risks of misuse. 

At first, spatial data uncertainty, in particular the spatial vagueness, and spatial data quality are defined 

and explained (section 2.2). Then we present Spatial OLAP systems fundamentals (section 2.3) and finally 

notions related to the management of datacube risks of misuse are provided (section 2.5). 

2.2 Spatial data uncertainty and spatial data quality 

2.2.1 Uncertainty in spatial data 

Spatial data is an object with a spatial reference and descriptive attributes (Salehi, Bédard et al. 2010). 

The spatial reference is usually a shape and/or position described textually (postal code, address, etc.) or 

with spatial coordinates (X, Y).The spatial reference and attributes acquisition is done by spatial data 

experts by means of specific communication and modeling processes, techniques and instruments. 

Spatial data is often subject to uncertainty due to the whole acquisition and dissemination process. 

Indeed, the spatial data modeling process, the acquisition and processing technologies and/or the people 

intervening at different levels of the spatial data life cycle (modeling, acquisition, processing, 

communication/dissemination and usage) tend to create different types of uncertainty not only on 

measurements of attributes, space and time but also on the identification and classification of objects. The 

uncertainty can be for instance an inaccuracy, a fuzziness, a spatial vagueness, etc. 

Fisher (1999) and Bédard (1986) have each modeled and classified the spatial data uncertainty from two 

different points of view. The combination of both their work allows us to well describe and understand the 

spatial vagueness sources and types in the next paragraphs. 

For Bédard (1986), the uncertainty introduced in the spatial data comes from two main sources: (1) the 

inherent limitations of the modeling process during the models production or communication and (2) the 

limitations relative to reality observers and model users.  

(1) Regarding the inherent limitations of the modeling process: According to the author, the most 

important limitation is probably the fact that the models are simplified and approximate 

estimations of the reality in respect of the usage goal and context. This limitation translates into 
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vagueness in the identification and labeling of the spatial objects and also into limitations in those 

objects properties measurements. Indeed, vagueness in the identification and the classification 

occurs for example when people classify spatial objects with broad semantic or physical 

boundaries into discrete groups of entities. It is not possible to determine a sharp and univocal 

separation between two objects with broad semantic or physical boundaries (example of forests 

areas: when does it become such an area? when are two such areas distinct? when does a 

forest area becomes a field with individual trees?) thus unfortunately a discrete classification 

induces an uncertainty on the existence of the object and on the classification in the right group 

even if the object attributes measurements are done with the highest accuracy (to be or not to be 

a forest area? to be a forest area or a field?). The answers are goal-dependent and context-

dependent. Higher certainty requires more explicit ontologies and more precise measurement 

devices and methods. 

(2) Regarding the limitations relative to model-makers and users: it concerns the people involved in 

the spatial data creation and communication, namely the real world observers, the intermediate 

people that transfer the data and the final users. The first main idea here is that model-makers 

introduce subjectivity into the spatial data no matter how precise, correct and well-quantified we 

think they are. In fact, the reality models we produce, both cognitive and physical, are subject to 

our reference framework fed by our own history, education, needs, experiences, cultural, 

professional and familial environment etc. Therefore, for a same reality, the produced cognitive 

model is different for each person or even for the same person at different periods, for different 

contexts and for different needs. So are physical models, to a lesser degree. The second main 

idea is that instead of analyzing all the different possibilities in order to choose the best real world 

representation, model-makers are satisfied with the first good alternative that respond to the 

needs. This is called the concept of «satisficing». Consequently, the spatial data produced is not 

always reliable for every usage. 

The uncertainty relative to both limitations is inevitable and it is clear that we cannot have a perfect 

representation of the real world in our mental models and in their physical representations. 

In view of the above,  Bédard (1986) proposes a categorization of the different kinds of spatial data 

uncertainty into four orders: 

- The first order (conceptual) refers to the uncertainty on the identification of an observed reality 

(What do we call building? Is this a building? If yes, is it Commercial or type Residential?);  

- The second order (descriptive) refers to the uncertainty on the attribute values: measurement 

error or imprecision in the quantitative values, or fuzziness on the qualitative values (e.g. rich 

soil);  
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- The third order (location) refers to the uncertainty on the localization of the observed reality in 

space and time (e.g. shape vagueness, fuzzy boundaries, imprecise positioning because of a 

lack of information);  

- The fourth order (meta-uncertainty) refers to the degree an uncertainty of one of the previous 

three levels is unknown. 

For Fisher (1999) spatial objects (observed phenomena) can be classified in two categories: spatial 

objects that allow an unequivocal separation into discrete classes (well-defined objects) and spatial 

objects for which it is not possible to do that (ill or poorly defined objects). Well defined spatial objects are 

essentially geographies defined by humans (and associated with attributes) such as census areas, land 

ownership and administrative divisions to name a few (N.B. such objects are better defined, but not 

without Bédard's four orders of uncertainty). Such objects limits are often marked on the ground (naturally 

or by humans), but not always (ex. census areas). Examples of ill-defined objects are trees stands, 

vegetation and soil occupations. In the three cases, the existence of intergrades makes it difficult to 

determine the entities to be mapped and the spaces they occupy. Majority of natural and built 

environments objects are ill-defined. 

The uncertainty differs whether the spatial object is well or ill defined. Indeed as described in his model of 

uncertainty (see Figure 2-1), when the spatial object is ill-defined, the uncertainty is due to the vagueness 

(When a forest is a forest?) or the ambiguity (discord or non-specificity) in its definition/conception. 

Whereas the definition vagueness is inherent to the spatial object to be modeled, the ambiguity occurs 

“when there is doubt as to how the phenomenon should be classified because of differing perceptions of it” 

(Fisher 1999). Just as the perceptions one have of the phenomenon, the ambiguity is context-dependent 

and model-dependent. For example, for a given modeler, an object can be perceived and classified as a 

building when for another modeler, the object can be ignored or classified as something else because of a 

non-specificity in the building definition (the first one maps for example all the buildings while the other one 

maps only the buildings that have a roof perimeter greater than 20m2). 

When the object is well-defined, the uncertainty is caused by errors (e.g. measurements errors, errors in 

spatial generalization and labeling errors). 
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Figure 2-1 : Conceptual model of uncertainty in spatial data (Fisher 1999) 

To properly describe exhaustively the types of uncertainty by benefiting from these two models, we have 

merged them keeping the entry points of Fisher (1999) (Well and ill-defined objects) and then classifying 

the uncertainty types arising under Bédard (1986) uncertainty orders (see Figure 2-2).  
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Figure 2-2: Model of uncertainty in spatial data: Fisher (1999) and Bédard (1986) uncertainty models. 

From this model, it is obvious that spatial objects vague conception issues lead to descriptive, spatial 

and/or temporal uncertainty on the spatial data while ambiguity issues lead eventually to conceptual 

uncertainty. Conceptual uncertainty can in turn introduce spatial uncertainty on spatial data. 

Also we can conclude from both Fisher (1999) and Bédard (1986) contributions that ill-definition is not only 

a matter of positioning (unknown location), but also a matter of vague conception of the entity (e.g. what 

do we call ocean?), fuzziness in its identification (e.g. when a tree is a tree?) or fuzziness in its descriptive 

qualitative attributes (e.g. poor, rich or very rich soil).  

 

2.2.2 Definition of spatial vagueness 

Spatial vagueness is an uncertainty on spatial data that can be categorized into shape vagueness and 

location vagueness:  
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 Shape vagueness designates an uncertainty on the shape of an object that represents an ill-

defined real object (e.g. forests, lakes with islets, flood zones) (Bejaoui, Pinet et al. 2009). It 

occurs when for the sake of simplification, the objects, which have broad boundaries or are 

vaguely defined, are represented by discrete polygons, lines and points. 

 Location vagueness is either an uncertainty on the position of the spatial object (resulting from a 

lack of knowledge about the position of an object with an existing sharp boundary) or an 

uncertainty on the measurement (resulting from the inability to measure such an object precisely) 

(Schneider 1999, Hazarika and Cohn 2001). E.g. a river portion in an unreachable place. 

2.2.3 Quality concepts 

Spatial data quality concept is another aspect of the uncertainty issues in spatial data. In contrary to the 

uncertainty concept, quality concept is relative to requirements and usually associated to standards. To 

determine the quality of a set of spatial data, it is possible to use the metadata or to have a comparison 

referential which is the “universe of discourse”. Usually, the quality evaluation is done using the universe 

of discourse because metadata are not always or fully provided. The universe of discourse (Devillers and 

Jeansoulin 2006) is the ideal set of data that correspond to the specifications or the user’s requirements. 

In practice, the universe of discourse consist of a data set which is known for having a better quality (e.g. 

ortho-photo, another data provider) because the ideal, perfect spatial data cannot be acquired. The 

standards offer quality criteria that one can exploit to evaluate the quality of a data set using the set of 

reference. 

Because it is a relative concept, there is not a unique definition of the quality. For some, a quality product 

is a product free of errors and that fits the specifications; for others, it is a product that fits users’ 

expectations. Those two points of view are translated into the two concepts of internal quality and external 

quality. 

Internal quality (ISO/TC 211 2002): it corresponds to the level of similarity existing between produced 

data and perfect data (universe of discourse). The criteria to evaluate the internal quality are:  

- The completeness: is the data set exhaustive (all the entities are present)? Do we have 

missing attributes or relations? Do we have entities, attributes or relations that should not be 

present in the dataset according to the specifications? This criteria indicators are the 

commission (non-expected presence of entities, attributes or relations) and omission 

(absence of entities, attributes or relations) degree. It can be evaluated for instance by 

calculating the percentage of forests or the percentage of null road names in a dataset.  

- The position accuracy (also known as geometric precision or spatial accuracy): It refers to the 

objects’ position precision. The accuracy can be expressed in absolute or relatively to the set 
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of coordinates known to be true (reference dataset). It can be indicated by the mean square 

error on the positions. E.g. the agricultural plots are positioned with a precision of 5m.  

- The attribute accuracy (also designated as non-spatial attribute precision (Servigne, Lesage 

et al. 2005)): it refers to the quantitative attributes accuracy  and the correctness of the non-

quantitative attributes. E.g. the agricultural plots areas are calculated with a precision of 5m2.  

- The thematic accuracy: it refers to the correctness of the entities and relations classification. 

The question to answer is for instance “Are the buildings correctly classified?” One way to 

answer such question is to calculate the confusion matrix; another way is to compare the 

classification to the classification done in the reference dataset. 

- The temporal accuracy (or temporal precision):  it refers to the precision of a time 

measurement, the temporal consistency and validity, and the accuracy of entities temporal 

attributes and relationships. Example of verification: Are the roads up to date? 

- The logical consistency: it refers to the degree of adherence to the logical rules of data 

structure, attributes or relationships. It includes the conceptual consistency (Do the objects in 

the database and the relationships between the objects comply with the conceptual schema 

and rules?); the values domain consistency (Do the attributes adhere to the appropriate 

values?); the format consistency (Are the data stored in the appropriate format?); and the 

topological consistency (Are the topological relationships represented and true to the reality?). 

E.g. the trees must be represented only if the foliage diameter is greater than 5m. 

External quality or “fitness for use”(Bédard 1995): it corresponds to the similarity level existing between 

the produced data and the users’ needs/expectations. To evaluate the external quality of a spatial data 

set, it is possible to use criteria such as accessibility (data set cost, format, rights etc.), genealogy 

(acquisition methods, producers etc.), precision (semantic, temporal, spatial precision relatively to user’s 

needs), definition (evaluation of the exact nature of the data and the object it represents relatively to the 

needs on the semantic, spatial and temporal aspects) or legitimacy (compliance to standards etc.). 

A dataset can present uncertainty issues but still of a good quality, internal or external, as long as it 

satisfies the specifications/users’ needs. For instance, a forests dataset which present shape vagueness 

issues might still suit most of users for whom it is enough to have open data, up to date with a spatial 

precision of 5m and for which all the name attributes are filled. 

2.3 Spatial OLAP Systems 
Even though GIS are powerful for spatial analysis and map display, they are built for transactional purpose 

and are not suitable for a rapid and interactive spatio-temporal multidimensional analysis. Therefore, they 
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have been coupled with the On-Line Analytical Processing technologies in the mid-90 (Bédard, Larrivée et 

al. 1997, Stefanovic 1997, Caron 1998, Han, Stefanovic et al. 1998) to make profit of both technologies. 

GIS bring powerful spatial analysis tools and cartographic visualization while the OLAP systems bring 

tools for large volume of data interactive exploration and analysis.  The coupling results in Spatial OLAP 

(SOLAP), defined as a «visual platform specially designed to support easy and rapid spatio-temporal 

analysis and data mining in a multidimensional approach based on aggregation levels, and to allow 

cartographic, graphical and tabular displays» (Bédard, Merrett et al. 2001). End-users of SOLAP systems 

can visually detect unknown patterns and spatial phenomena and verify and/or formulate hypotheses via a 

spatio-temporal easy and interactive analysis of their data.  

In section 2.3.1 and 2.3.2 we describe the spatio-multidimensional model which is, in most cases, the 

heart of SOLAP systems; then we present the architecture and tools supporting SOLAP platforms in 

section 2.3.3; finally, SOLAP datacubes production process and challenges are presented in section 2.3.4. 

2.3.1 The spatio-multidimensional model 

In this thesis, we are interested in spatial data with vector representation (and not matrix one) therefore 

the concepts described here are based on a vector representation of the geometric attributes. 

The multidimensional model is based on new key concepts such as the “dimension”, “measure”, “fact” etc. 

(Bédard, Rivest et al. 2006). 

Dimensions are the analysis themes (e.g. Product, Time, Location, Clients). They contain “members” 

organized in “hierarchies” according to their granularity level (e.g. hierarchy level Day containing members 

such as 01-02-2014; Day is grouped in Month, grouped in turn in Season, grouped in turn in Year). The 

members of a low level (e.g. Month) are usually aggregated to constitute the members of a superior level 

(e.g. Season) in the hierarchy.  

The measures are the analyzed values (e.g. number of products sold, sales turnover) associated to each 

combination of members belonging to the different dimensions. They reflect the state of a situation in 

relation to the dimensions of analysis.  They are dependent variables that constitute the facts attributes 

alongside with the members of dimensions. Example: number of agricultural plots Nb_agricultural_plots. 

Facts are the analysis subjects represented by the combination of measures and members of dimensions. 

It is for example “There are "5200" agricultural plots (Nb_agricultural_plots) cultivated in “2004” (Time) for 

the “Auvergne” (Location) region”. The facts are stored in a fact table that is queried afterwards. 

The dimensions instances plus the facts form the stored datacube. 
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Datacubes are the physical implementation of the multidimensional model. They are actually hypercubes 

with 2 or more dimensions.  

The extension of the multidimensional model with the spatial component results in the definition of the 

spatio-multidimensional elements (Bimonte, Wehrle et al. 2006, Salehi, Bédard et al. 2010):  

A spatial dimension is a dimension presenting at least one hierarchical level containing a spatial member 

(the level is thus a spatial level). A “spatial member” is an object with a spatial reference; it can be 

geometrical (having a geometry) or descriptive (a country name for example). In any case, there should be 

a semantic relationship between members of two spatial levels of a same spatial hierarchy and in most 

cases, not always, there is an intersection or inclusion relationship between the members. 

There are three types of spatial dimensions: the “non-geometric spatial dimension” that only holds 

descriptive spatial members; the “geometric spatial dimension” where each member possess a geometry 

(most of the time polygonal geometries) which allows the cartographic visualization, the spatial drill-down 

or other spatial operations on the members (Proulx and Bédard 2004); the “mixed spatial dimension” 

which contains a combination of descriptive and geometrical members. 

A spatial measure is a measure with a spatial reference. It can be a numerical value (“numeric spatial 

measure”) resulting from spatial data processing (e.g. calculated area of a plot Agricultural_plots_surface) 

(Rivest, Bédard et al. 2001, Malinowski and Zimányi 2004), or a set of coordinates or pointers on 

geographic primitives (“geometric spatial measure”) resulting from spatial operation such as an 

intersection or a union between two geometric  spatial dimensions (e.g. position of buildings subjects to 

flood risk resulting from the intersection between the flood risk areas and the buildings layer)(Stefanovic, 

Han et al. 2000, Rivest, Bédard et al. 2001, Malinowski and Zimányi 2004, Sampaio, Sousa et al. 2006). It 

can also be a “mixed spatial measure” with a combination of a numeric value and geometry (e.g. 

agricultural plots number associated with the plots localizations) (Bédard, Merrett et al. 2001).A spatial 

measure, when observed at coarser hierarchical levels, is aggregated using classical SQL aggregation 

functions such as SUM, MIN, MAX, etc. or specific functions that can be operated on spatial data (union, 

intersection, union + area, intersection + length etc.) either from the lower level or from the finest-grained 

level. 

A spatial fact (“non-geometric” or “geometric”) describes an event of interest for a decision-making 

process that happened in the space according to Salehi, Bédard et al. (2010). A spatial fact is geometric 

when it contains at least one geometric spatial measure and one geometric spatial member otherwise it is 

a non-geometric spatial fact. E.g. “The total number of agricultural plots cultivated in “2010” (Time) in 

“Auvergne” (Location) is “402” (Nb_agricultural_plots)” associated to a multipolygon representing the union 

of the plots extents and positions which can be visualized on a map. 
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A spatial datacube is known as a datacube where “certain facts or members of dimensions have a spatial 

reference and can be represented on a map” (Bédard, Merrett et al. 2001).In other words, it is a datacube 

that has at least one geometric spatial fact (meaning a geometric measure or mixed spatial dimension 

instances. Technically, a datacube that has only spatial but non-geometric instances of spatial facts and 

dimensions is still a spatial datacube. However the common understanding of spatial datacube, especially 

in the Computer Science community, is that it is a datacube which supplies a cartographic representation 

end-users can exploit for data visualization and exploration. 

In this thesis, we designate spatial datacube, as defined above, by SOLAP datacube in order to avoid the 

interrogations on the term “spatial”. Also, when mentioning spatial dimension we will be talking about 

geometric spatial dimension composed with geometric members. 

Using this SOLAP datacube, end-users do not need to know the database structure or any query 

language to quickly (few seconds) answer questions like “What was the total surface of agricultural plots 

cultivated in Auvergne in 2000?” In fact, thanks to SOLAP systems components, the data are presented to 

the end-users in pivot tables, diagrams and on maps (see Figure 2-6); therefore by simple clicks on tables 

and maps, they navigate through them.  

2.3.2 Spatial hierarchies 

A spatial level can be geometric or non-geometric (cf. spatial dimension definition in section 2.3.1) and 

spatial levels can be organized into a strict or a non-strict spatial hierarchy (Zimányi and Malinowski 2008).  

A strict spatial hierarchy is a spatial hierarchy where only one-to-many relationships can be found 

between the levels. That means each child member is related to at most one parent member and a parent 

member may be related to many child members in the hierarchy. For example city Clermont-Ferrand is 

located in the region Auvergne and the region Auvergne strictly contains Clermont-Ferrand, in addition 

with Aubière, Aurillac, and Moulins etc. 

A spatial hierarchy is said to be non-strict when it has at least one many-to-many relationship between 

the levels (Zimányi and Malinowski 2008). For example in a hierarchy Agricultural plots < Watersheds < 

Country, a watershed is related to many different agricultural plots and an agricultural plot may belong 

(overlap) to two different watersheds. 

In either case, it is important to define the appropriate topological relationship between consecutive spatial 

levels to ensure correct aggregation of measures in higher levels. In general, according to the Calculus-

Based Method (CBM) implemented in PostGIS (Clementini, Felice et al. 1993), there are five basic 

possible topological relationships between two single geometries: touch (the interior intersection is empty 

but the boundaries intersection is not), disjoint (the intersection is empty), in (the intersection result in one 

of the two geometries), cross (between line/line and line/polygon only), and overlap (applicable to two 
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polygons or two lines; the intersection is not empty and is not equal to one of the two geometries). The 

relationships are exclusive, meaning that it is not possible to have two relationships for two single 

geometries at the same time. The Figure 2-3 illustrates the basic topological relationships between two 

polygons. 

 

 

 

 

 

 

 

 

Figure 2-3: Illustration of the topological relationships between two single polygons 

Depending on the topological relationship, the aggregation can be done in a classic way or it can need a 

specific procedure. When the geometry representing the spatial union of the child members is in the 

parent member geometry, the aggregation is classic. We consider for example the cities child-members of 

the administrative department Puy-De-Dôme and the union of the cities’ geometries is in the department 

geometry. To aggregate the area of agricultural plots (spatial numeric measure Agricultural_plots_surface) 

of each city to obtain the total agricultural plots area for the department, one will simply add the values 

recorded for each city in the Puy-De-Dôme. We note that this is not always the case: for instance little 

isles belonging to a department could be left out of the department geometry during a cartographic 

generalization for performance purposes; the isles still belong semantically to the department but their 

geometries are not in the department geometry; aggregation in such cases can be pre-calculated based 

on the semantic relationships. 

When the topological relationship is an overlap it is required to single out which measures (hold by a 

specific child member) can be considered entirely in the aggregation and which ones should be split 

relatively to the part of the child member geometry participating in the aggregation. For example, to 

aggregate the measure Agricultural_plots_surface for a watershed, one will have to define a specific 

procedure to take into account agricultural plots overlapping the watershed. These plots will be split and 

Touch Disjoint 

In Overlap 
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only the plot parts that belong to the watershed will be taken into account, plus the whole surface of the 

ones which are in the watershed. 

2.3.3 The SOLAP architecture 

2.3.3.1 Functional architecture 

SOLAP systems can be implemented in different architectures depending on the needs and constraints of 

the organization (Kimball and Ross 2002). We have chosen to present the most commonly implemented 

SOLAP architecture since it allows us to identify the essential SOLAP systems components (database, 

SOLAP server, client module) for our thesis. 

It is a 3-tiers architecture, where useful detailed data are extracted directly from heterogeneous 

transactional sources available in a Resources tier. They are cleaned and transformed according to the 

analysis requirements, and then loaded in the SOLAP datacubes stored in spatial data warehouses (SDW 

tiers) during an Extract Transform and Loading (ETL) process. The SOLAP datacubes are interrogated by 

means of SOLAP operators executed at a SOLAP server tiers via a SOLAP client tiers. Those aggregation 

functions are exploited in SOLAP operators (or specific MDX queries) to interactively and easily analyze 

and explore data. There are various SOLAP operators including the spatial Slice, which selects a subset 

of spatial data; the spatial Roll-Up, which allows climbing into spatial hierarchy aggregating measures; and 

the spatial Drill-Down, which is the inverse of the Roll-Up.  

In most cases, SOLAP datacubes are stored as tables in a relational database; it is the Relational OLAP 

(ROLAP) architecture (see Figure 2-4). To do so, the database is structured after one of the specific 

models that are the star model (Adamson 2006), the snowflake model (Jarke, Lenzerini et al. 2003), etc. A 

mapping is done between the data structure and the client multidimensional view (via an XML file for 

example) in the ROLAP server. That allows the ROLAP server to extract the data according to a 

multidimensional view before presenting it to the SOLAP client.  
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Figure 2-4 : ROLAP Architecture (adapted from Course SCG-70063 lecture notes) 

In other cases, the SOLAP datacubes are stored in multidimensional databases (Multidimensional OLAP 

architecture - MOLAP) or in a combination of multidimensional and relational databases (Hybrid OLAP - 

HOLAP)  (Salka 1998).  

As for the SOLAP Client tiers, it combines and synchronizes tabular, graphical and map visualization of 

the data that allow end-users visualizing the data and triggering the SOLAP queries.  

2.3.3.2 Technical architecture of a ROLAP system 

SDW Tiers: 

In the ROLAP system, the useful detailed data are extracted directly from heterogeneous transactional 

sources (e.g. Spatial databases stored in PostGIS/PostgreSQL, Oracle, Informix, ArcGIS, etc., data files), 

then they are cleaned, transformed if needed and loaded in the spatial data warehouse in a transactional 

system as well but in the form of a star schema, a snowflake schema, a mixed schema or a fact-

constellation schema.  

                                                           
 
3 Notions avancées de base de données SIG 

SDW Tiers 
Relational database  
(Star or snowflake) 
 

SOLAP Tiers 
ROLAP Server 

Multidimensional view Client Tiers 
SOLAP Client 
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The star schema (see Figure 2-5) is a well-known and commonly used data structure where the central 

element is the facts table (containing the facts) which is connected to dimension tables. Each dimension 

table contains the attributes holding its members. 

 

Figure 2-5 : Example of a star schema 

The snowflake schema is a refinement of the star schema with each dimension being materialized in 

normalized tables containing the different hierarchies. The combination of the snowflake and star schemas 

result in the mixed schemas where only some dimensions (big tables) are materialized in many hierarchies 

tables. Finally, the fact-constellation schema is composed with many schemas (star of snowflake) where 

the fact tables share common dimension tables. 

SOLAP Server Tiers: 

There are more than fourteen (40) open sources (free solutions) or commercial SOLAP servers 

(Multidimensional or Relational) that are used in practice (Bédard, Proulx et al. 2005): 

Mondrian/GeoMondrian (open source and freeware), SQL Server Analysis Services and Oracle Data 

Analysis Oracle Spatial BI Enterprise Edition (commercial), Map4Decision server etc. They are all 

designed to manage crisp geometries. In this thesis, we will be using the Mondrian as SOLAP server 

because the Irstea team is already familiar with it. 
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Mondrian requires an XML file defining the SOLAP datacube schema with its dimensions and measures. It 

allows the connection to any DBMS in order to retrieve the data according to the definition provided in the 

XML schema. The company Spatialytics have developed the GeoMondrian, which is Mondrian extended 

with spatial components. GeoMondrian allows the definition of geometric spatial levels (members have 

vector geometries) and the execution of MDX queries integrating spatial predicates (union, intersection 

etc.). To the best of our knowledge, it only supports PostgreSQL/PostGIS as SDBMS. 

Client Tiers: 

For the Client Tiers, there are solutions such as Jrubik/JPivot (open source and freeware), Map4Decision 

client (shown in Figure 2-6) and SAS Web OLAP Viewer (commercial) etc. It is difficult to find a free client 

module that can be used with the GeoMondrian server in practice.  

In this thesis, we will be using JRubik as client for our implementations because it offers the possibility to 

play with the visual parameter (such as cell colors). 

JRubik, written in Java, allows the display of the datacube analysis results in pivot tables and histograms. 

It has a graphical interface allowing end-users to construct their queries by simple drag and drops and it 

also presents a MDX queries editor for advanced end-users. JPivot is the web version of JRubik and it 

presents the same features.  

JRubik and JPivot solutions are well integrated with the Mondrian server but the spatial component is not 

well managed. Indeed Mondrian does not offer SOLAP operators (spatial drill-down, roll-up, slice etc.) and 

the map visualization and exploration in the two clients is very weak. Implementing a real SOLAP system 

using free solutions is therefore a mission impossible unless work is also done on the client module 

development (Bédard, Proulx et al. 2005, Malinowski 2014).  

We note that classical commercial servers and clients are also designed to manage crisp geometries and 

not spatial vague objects models. 
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Figure 2-6 : Map, diagram and pivot table visualization in a SOLAP client (Map4Decision) 

2.3.4 SOLAP datacubes production 

As shown in the previous sub-section (section 2.3.3) SOLAP systems are based on multi-tiers 

architectures where (spatial) data should be extracted from heterogeneous data sources and transformed 

before to be loaded into the datacubes. This process (ETL) is very time and money consuming (Bédard 

2007). Indeed, during the ETL phase, producers must not only make sure that the data sources are 

topologically correct and coherent regarding the updates, and that the objects geometry is appropriate for 

each level, but also that the data uncertainty is well managed (Bédard, Rivest et al. 2006).  

Moreover, since SOLAP datacube model represents required SOLAP analyzes, the success of the whole 

SOLAP application project depends on the correctness of the designed SOLAP datacubes.  
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The following paragraphs introduce us to both SOLAP application elaboration methods in general and 

SOLAP datacube design approaches in particular, as advocated in the literature. 

A SOLAP application project is structured in four main phases (Figure 2-7): the requirements specification 

phase where end-users needs are analyzed, the conceptual-design phase where conceptual SOLAP 

datacube schemas are produced, the implementation phase where SOLAP datacube logical and physical 

schemas are produced and the feeding phase where ETL operations are conducted (Malinowski and 

Zimányi 2008). The project can be executed by following methods such as Model Driven Architecture-

based (MDA) methods as presented in Glorio and Trujillo (2008) and/or a rapid prototyping ones 

(Guimond 2005, Bimonte, Nazih et al. 2013).  

 

Figure 2-7 : SOLAP application project phases 

The MDA method is an Object Management Group standard that advocates the use of models in software 

development (OMG 2003). It addresses the complete life cycle (design, implementation and management) 

of systems by providing an approach and tools for: 

- Specifying a system Computation Independent Model (CIM) to simply describe the domain, 

the situation in which the system will be used without showing any information about how it 

will be structured. The CIM is the absolute conceptual level because it does not involve the 

implementation technology. Regarding SOLAP applications, this type of model can be 

elaborated during the requirements specification phase to support the communication 

between SOLAP experts and end-users (Glorio and Trujillo 2008).  

- Specifying a system Platform Independent Model (PIM) that describes the system structure 

according to a specific family of technologies (SOLAP systems, transactional systems etc.), 

but independently of any particular platform that will support it (Oracle, PostgreSQL/PostGIS 

etc. in the transactional systems family). The PIM is seen as a conceptual model relatively to 

a specific platform since it does not describe the actual implementation (Glorio and Trujillo 
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2008). This type of model is typically elaborated during the conceptual design phase for 

SOLAP applications.  

- Specifying a system Platform Specific Model (PSM) by transforming the PIM with addition of 

pertinent information needed for the implementation on the chosen platform (Oracle PSM, 

GeoMondrian PSM etc.). This type of model can be elaborated during the implementation 

phase for SOLAP applications. 

- Transforming the system specification (PSM) into physical models (implementation code in 

SQL, XML etc.) adapted for the platform chosen. It is done also in the implementation phase 

for SOLAP applications. 

Although the models can be elaborated using any modeling language, the Unified Modeling Language 

(UML) is widely adopted because MDA and UML are related historically and in practice. Indeed, the OMG 

members have chosen, since 2001, a unified approach that advocates the exploitation of the MDA method 

with a modeling language based on the MetaObject Facility (MOF), which is actually built on UML 2.0 by 

the same organization (OMG 2011). Using UML for the models is thus coherent with the usage of UML for 

the meta-models because it fits into the OMG unified approach. Also the fact that UML is a well-known 

standard that can be adapted to particular domains via the enrichment of meta-models or profiles 

(definition of new tagged values and new classes and attributes stereotypes) contributes to its popularity. 

Few years ago, to help guarantee the SOLAP application usability and end-users satisfaction, Guimond 

(2005) had encouraged the use of prototyping to quickly discover and specify end-users needs in analysis. 

It had been noticed from experience that end-users did not realize the full capacity of SOLAP which make 

it really difficult for them to express their needs. Thus, with the prototyping approach, they were provided 

very quickly with prototypes they could “play” with to properly and fully express their needs and/or validate 

the design. The highlighted principles in this context are iteration, rapid prototyping and user involvement. 

Now, it has become simpler, easier and more productive to directly elaborate functional classical SOLAP 

applications with Map4Decision than to prototype them first. However, the key point here is that rapid 

prototyping is proven to be efficient when end-users need to be provided very quickly with applications but 

the regular process does not allow it. 

The SOLAP datacube design itself is done during the first two phases which are the end-users 

requirements specification and the conceptual design phase. In the literature, several works investigate 

OLAP/SOLAP datacubes design (Giorgini, Rizzi et al. 2005, Guimond 2005, Prat, Akoka et al. 2006, 

Malinowski and Zimányi 2008, Romero and Abelló 2009, Pardillo, Mazón et al. 2010, Romero and Abelló 

2011, Di Tria, Lefons et al. 2012). They provide guidelines, processes, methods and/or tools that can be 

grouped into three main categories according to the approach used for specifying the multidimensional 

model: the users-driven methods, where a multidimensional intelligence is drawn from the requirements 

expressed by end-users; the sources-driven methods, where a multidimensional intelligence is (manually 
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or semi-automatically) drawn from identified data sources; hybrid methods that exploit both sources data 

and end-users requirements in specifying the multidimensional model (de-facto used approach for SOLAP 

systems in particular).  

In the computer science community, in general, the user-driven and data-driven steps are conducted in 

parallel during the requirements specification phase with as results two PIMs. The two models are then 

transformed into two CIMs and then matched during the conceptual design phase to produce a unique 

CIM for the intended OLAP datacube (Cf. Figure 2-8). Some researchers have advocated techniques and 

approaches for the models matching (Bonifati, Cattaneo et al. 2001, Mazón, Trujillo et al. 2007) while 

others have proposed a hybrid approach where the user-driven and data-driven activities are done 

simultaneously (user-driven requirements are exploited to reduce the scope of possible multidimensional 

factual data extracted from the sources or vice versa) (Phipps and Davis 2002, Winter and Strauch 2003, 

Malinowski and Zimányi 2008, Romero and Abelló 2010).    

In the Geomatics community however, first end-users’ are identified to analyze the domain and their 

needs. In the meantime, the available data-sources are also identified and, guided by the end-users and 

their needs, multidimensional knowledge (measures, dimensions, etc.) is extracted from the sources. That 

knowledge will enrich the overall analysis requirements specification. In the conceptual design phase, the 

SOLAP datacube conceptual schema (PIM) is developed according to the requirements. We have 

translated the process described in this paragraph in an UML activity diagram that can be seen on Figure 

2-9 for a better comparison with the OLAP hybrid design process. 
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Figure 2-8: OLAP datacubes hybrid design approach – adapted from (Malinowski and Zimányi 2008) 

 

Figure 2-9: SOLAP datacubes hybrid design approach 
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2.4 Risks of misuse: definition and management 
Risk management is a great topic of interest for project management and natural risks domains as well as 

the ISO regarding the usage of products, processes and services. The risk management refers to the 

reduction of a risk to a level considered acceptable (Gervais, Bédard et al. 2009).  In the recent years, the 

management of the risk of spatial data misuses has become one of the main preoccupations and thus the 

subject of a growing interest from the Geomatics community (Lévesque 2008, Gervais, Bédard et al. 2009, 

Gervais, Bédard et al. 2012, Grira, Bédard et al. 2013, Roy 2013). This is because it has become clear 

that managing the risks of misuse is one of the best ways to reduce uncertainty and prevent inappropriate 

use of geospatial data by all type of users (expert or non-expert of the spatial data). Our objective here is 

to understand the concept of risk and risk management enough to be able to address risk-awareness in 

design methods in this thesis. Therefore, this sub-section will focus on the risk management definition and 

management translated to the Geomatics world, and more specifically to SOLAP datacubes. 

In their recent work Lévesque (2008) and Gervais, Bédard et al. (2009) specifically define the risk of 

SOLAP datacube misuses, by extending the ISO/IEC-51 (1999) definition, as the probability of 

occurrence of an inappropriate use of SOLAP datacube combined with the severity of the 

inappropriate use. It is represented by a qualitative value (e.g. low, medium, high), which varies 

according to the context of use of the datacube.  

Risk management is a topic that has been addressed in project management and by the ISO (ISO/IEC-51 

1999) as stated before. The approaches proposed are more or less similar: in general, it is recommended 

to properly identify and describe the potential risks related to a project or a usage at first. That way, it is 

possible to evaluate those risks and really identify appropriate strategies to reduce the risks and thus 

prevent the risks consequences. Lévesque (2008) and Gervais, Bédard et al. (2009) have adapted the risk 

management method proposed by the and in project management field to the geospatial domain and more 

specifically to SOLAP datacubes and their risk of misuse. The results of their work is presented on Figure 

2-10. It is a risk management method which takes place in five main phases:  

(1) Identification of possible inappropriate usages of the SOLAP datacube (risks identification): This 

step is important because it is where the risks to be managed are defined; scenarios of 

inappropriate use must be identified knowing the intended usage context, the data source quality 

(through metadata, data dictionaries, data sources etc.), the processes applied or to be applied 

on the data etc. The more exhaustive the list is, the more successful the management can be. 

(2) Analysis of the risks (risk analysis): Assessing the identified risks is not an easy task but it is 

also an important one in the risk management process. The risks probability of occurrence and 

severity levels must be assessed, using among others a risk degree scale (Low, Medium, and 
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High for instance). The analysis require a good knowledge of the usage context as well as an 

experience and a good understanding of the spatial data involved.  

(3) Evaluation of the risks (risk evaluation): Usually, the risk evaluation is done by combining the 

risk severity and probability degrees using a risk degrees matrix. On  

(4) Table 2-1 we present the one proposed by Kerzner (2006) in the context of project management. 

It is a matrix where the axes are respectively the risk probability of occurrence and its severity (or 

gravity). The intersections correspond to the risk global dangerousness, which can be High (H), 

Medium (M) or Low (L). For example, for a risk with a very high probability of occurrence (E) and 

very low consequence gravity (A), the overall dangerousness is set at medium. 

 

 

 

 

 

 

 

Table 2-1: Risk evaluation matrix (Kerzner 2006) 

(5) Risk response: Here, the method recommend to choose different actions/strategies to deal with 

the identified risks. The response is tailored to the risk degree but also to data producers and 

end-users. Indeed, depending on the risk probability of occurrence and gravity, SOLAP datacube 

producers can decide to ignore the risk and deliver the datacube as such, or they can choose to 

reduce it by eliminating its source (avoidance strategy), transferring the risk to a third party (end-

users or by contracting an insurance), or controlling the risk the risk control by taking preventive 

actions. In practice, data producers or users can control the risks of misuses related to spatial 

data in different ways. For example, according to a Canadian survey presented in Gervais, 

Bédard et al. (2012) work, some producers choose to limit the access to their data to informed 

users while others prefer delivering a list of recommended and non-recommended usages with 

the data.  

(6) Risk monitoring and audit (risk audit): This is where the risks are documented to allow the 

monitoring and experiences capitalizations for future risk management activities. It is a step that 
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was specifically added to the ISO risk management method by the authors for legal purposes and 

because it helps for future SOLAP datacubes elaborations. 

Finally, if there are still risks that are not tolerable, the whole process should be started over. The 

method is iterative.  

Figure 2-10: Risk of misuse management method: adapted from Gervais, Bédard et al. (2009) 

2.5 Chapter synthesis 
In this chapter, we described fundamentals concepts related to the topics covered by this thesis with the 

goal of getting a better understanding those key concepts. At first we described and defined spatial data 

uncertainty, spatial vagueness and spatial data quality. Then we present an overview of SOLAP systems 

concepts, from the multidimensional model to SOLAP datacube production with an emphasis on the 

ROLAP architecture and existing SOLAP tools. Finally, we present the concept of risk of misuse and 

described the risk of misuse management method that will be at the basis of the risk-awareness proposals 

in our work.  

 

 

 

 



44 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

45 
 

Chapter 3: New Design Approach to Handle 
Spatial Vagueness in Spatial OLAP Datacubes: 
Application to Agri-environmental Data 
 

 

 

Accepted  in International Journal of Agricultural and Environmental Information Systems (IJAEIS), 2015 

Edoh-Alove, E., Bimonte S., Pinet, F., Bédard, Y. 

 

 

 

3.1 Introduction 
This chapter addresses the first sub-objective of our thesis which is to propose the fundamentals of a new 

risk-aware SOLAP datacubes design approach. 

As stated previously in Chapter 1, spatial data always suffer from different levels of uncertainty. Not 

dealing with uncertainty, especially the spatial vagueness, when making high-level decisions based on 

SOLAP aggregated data increases the risks of data misinterpretations (Gervais, Bédard et al. 2009). This 

leads to faulty trend analysis, missed problems and inexact comparisons between regions or periods. To 

deal with spatial vagueness in SOLAP systems, two main approaches are investigated in the literature. 

The first one tries to reduce the uncertainty (overabundance of observations to increase spatial precision 

for example) from the data or to provide decision-makers with visual feedbacks about the uncertainty 

(Worboys 1998, Lévesque 2008, Bimonte, Nazih et al. 2013). The second one proposes to handle the 

uncertainty issues by using new uncertainty-aware spatio-multidimensional models and operators (Perez, 

Somodevilla et al. 2007, Jadidi, Mostafavi et al. 2012, Siqueira, Aguiar Ciferri et al. 2012), that are based 

on the representation of the vague objects with fuzzy or exact models. Not only the implementation of 

those solutions is still in an embryonic state, but also the new paradigms brought by the uncertainty-

awareness in datacubes make the datacubes implementation and analysis more complex for designers 

and end-users respectively. Motivated by the desire to offer a solution that presents a symbiotic trade-off 

between the theoretical accuracy on spatial vagueness, the implementation feasibility in current 

technologies and the usability by intended end-users, we come up with a third approach: instead of 

dealing with the complexity of manipulating complex vague objects models in SOLAP systems, we 

propose to manage the risks of SOLAP datacubes misinterpretations, related to spatial vagueness, 

that the end-users incur. To do so, we define a new SOLAP datacubes design approach that can take 

those risks into account during the datacubes modeling process. Such approach leads to the development 
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of a classical SOLAP datacube which not only fits the end-users’ usage, but can also be implemented in 

existing (commercial) SOLAP tools and explored with classical SOLAP operators.  

This new approach extends existing methodologies with three main elements. First, it takes 

simultaneously into account available data sources, end-users’ needs and end-users’ tolerance levels to 

«well-identified risks of SOLAP datacubes misinterpretations due to spatial vagueness issues». Second, it 

delivers to end-users, different versions of SOLAP datacubes, one for a set of tolerance level, where the 

possibility of making erroneous SOLAP analyses is minimized. Third, it enriches the SOLAP datacubes 

elements with visualization policies to properly communicate risks of misinterpretations to end-users if 

necessary. 

In this chapter, at first we provide the definition and classification of the risks of SOLAP datacubes 

misinterpretation induced by the presence of vague spatial data in the datacubes. We then detail our 

proposal of a new risk-aware design process that aim to help datacubes producers design datacubes 

while considering the vagueness and the risks associated. The users’ tolerance levels scale and possible 

risk management strategies and actions that support the new approach are presented here as well. We 

also offer an illustration of the approach on agri-environmental data.  

These results have been compiled, into a scientific paper that has been submitted and accepted in the 

double-peer reviewed journal International Journal of Agricultural and Environmental Information Systems 

(IJAEIS) in July 2014.   

The chapter is organized as follows: Section 3.2 presents a the state-of-the-art on spatial vagueness 

management in SOLAP systems; motivation of our work using an agricultural case study is presented in 

Section 3.3; in section 3.4, we define and classify the risk of misinterpretation before moving on to defining 

our new risk-aware design approach requirements as well as the whole new design process proposed in 

section 3.5; in section 3.6 we detailed our contributions regarding the risk of misinterpretation assessment 

and management in the new approach; finally the approach is tested on the case study in section 3.7.  

3.2 Literature review 
There are several strategies for managing spatial data uncertainty in general (Gervais, Bédard et al. 

2007): provide the data without any indications or treating the uncertainty; model the uncertainty and 

communicate it to users; reduce the uncertainty ; make the data producer, user or both absorb the 

uncertainty or transfer it to a third party ( the producer can take an insurance to cover users who suffered 

damage because of their data) ( Bédard 1986).  

In order to reduce uncertainty related to spatial vagueness, researchers, throughout the years, have 

focused on the use of vague objects models (as opposed to crisp objects types point, line, polygon) to 
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represent some spatial phenomena in a more accurate way. Thus, four categories of vague objects 

models have been advocated: exacts models, fuzzy models, probabilistic models and rough models. 

The fuzzy model is based on the Fuzzy Set theory (Zadeh 1965) which describes the possibility that an 

individual is a member of a set or that a statement is true. Given points of a set have a membership 

degree (in the interval [0,1]) computed using a membership function. The fuzzy logic is opposed to the 

Boolean logic where an individual belonging to a set is evaluated at false (non-member of the set) or true 

(member of the set). In the fuzzy context, the spatial object with vague shape or location is generally 

described as a continuous fuzzy set associated with a membership function (monotonous, bell-shaped, or 

triangular function etc.). The membership function definition depends on the phenomenon modeled and it 

is the most difficult part of the fuzzy modeling. 

In exact models, the geographic information is represented by a complex geometry consisting of at least 

two crisp geometries (Cohn and Gotts 1996, Bejaoui 2009, Pauly and Schneider 2010): one represents 

the minimal extent/core  of the phenomenon (area where the phenomenon is surely present) , and the 

other represents its maximal extent/dubiety (area where the phenomenon is probably present). The exact 

model is designed to make use of traditional crisp concepts and in consequence to be implementable in 

classical systems. Other alternatives are to represent the information with rough sets (Worboys 1998) 

where the spatial object is described as an approximation classification with the maximum approximation 

reflecting the uncertain part of the modeled object;  and probabilistic models (Burrough and Frank 1996).  

In the following paragraphs, we present the fundamental concept of the Qualitative-Min-Max model 

proposed by (Bejaoui 2009) in our research group, which allows the representation of vague spatial 

objects by means of crisp geometries (exact model).  

The QMM model defines a region with broad boundary as being a region composed of two simple crisp 

regions: a minimal extent and a maximal extent.  

The minimal extent is the “representation of the region when the boundary is considered as close as 

possible”. It is actually the set of points certainly belonging to the region with broad boundary.  

The maximal extent is “the representation of the region when the boundary is considered as far as 

possible”. It is the union of the minimal extent and the set of points possibly belonging to the region with 

broad boundary.  

The maximal extent thus defined may contain, cover or be equal to the minimal extent. When the maximal 

extent is equal to the minimal extent, the region is a crisp region or a region with no broad boundary. The 

model also distinguishes between a region with partially broad boundary (maximal extent is equal to 
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minimal extent only at some parts of the region) and a region with completely broad boundary (Cf. Figure 

3-1).    

   

 

 

 
 

(a) A crisp region                   (b) A region with a partially                    (c) A region with a   
                             broad boundary                          completely broad boundary 

 

Figure 3-1 : Regions with broad boundaries (Bejaoui 2009) 

This concept of region with a broad boundary includes the concept of region with no broad boundary. It 

can be exploited to specify a more accurate representation of phenomena with vague shapes and location 

by means of crisp geometries. To do so, it is necessary to associate with each geographic object at least 

two polygons representing the different extents. Such representation calls for the definition and control of 

the topological relationships between the geographic objects not only for their storing but also for their 

analysis. In this regard,  (Bejaoui 2009) has proposed an adverbial Spatial Objects Constraint Language 

(Spatial OCL4) for defining topological integrity constraints for objects with vague shapes. Note that to 

present, the majority of GIS and spatial databases still manage only simple crisp objects types (Pauly and 

Schneider 2010). 

Spatial vagueness management in SOLAP systems 

Very little researches focus on the integration of vague objects models in SOLAP systems. The authors 

Siqueira, Aguiar Ciferri et al. (2012) have recently proposed an extension of the multidimensional model 

for taking into account the exacts models of Bejaoui (2009) and Pauly and Schneider (2010) with specific 

techniques for storing and querying (vague window query) the vague SOLAP datacubes (e.g. storing 

separately the core and the conjecture region of a vague object). Yet, they do not offer tools based on a 

practical implementation of their new definitions and techniques. Jadidi, Mostafavi et al. (2012) propose an 

algorithmic approach based on fuzzy set theory to integrate vagueness in the decision making process. 

Concretely, they work out a fuzzy spatial model (fuzzy spatial dimension, spatial fact, spatial measure 

etc.), a fuzzy spatial aggregation model (fuzzy union, intersection, overlay, etc.) and fuzzy indicators to 

manage and analyze areas at risk of coastal erosion in SOLAP datacubes.  The implementation of the 

                                                           
 
4 Extension of the OCL as advocated by Duboisset, M., F. Pinet, M. A. Kang and M. Schneider (2005). "Precise 
modeling and verification of topological integrity constraints in spatial databases: from an expressive power study to 
code generation principles." Lecture Notes in Computer Science (ER) 3716: 465-482. 
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fuzzy spatial datacube is identical to classic datacubes except that we have to add an attribute to support 

the membership values with regards to the spatial members. Nevertheless, the measures should be 

calculated with the fuzzy operators instead of classic ones. The implementation of the defined operators in 

commercial SOLAP clients is yet to be done, and also, the computation of the membership functions 

requires specific practical tools that are not necessarily available.   

As far as we know, research on spatial vagueness introduction in SOLAP datacube visualization is non-

existent for now, although SOLAP has been used to visualize spatial vagueness in transactional 

geospatial data (Devillers, Bédard et al. 2005, Devillers, Bedard et al. 2007). 

In the literature related to the quality of OLAP systems, there have also been proposals dealing with data 

fuzziness in particular. Some of the authors in this field advocated the use of fuzzy set theory (Laurent 

2002, Delgado, Molina et al. 2004, Fasel and Zumstein 2009) or rough set theory (Naouali and Missaoui 

2005, Naouali and Missaoui 2006) to handle the data incompleteness and imprecision. The first ones 

proposed fuzzy multidimensional database models and fuzzy slices, dices and aggregations while Naouali 

and Missaoui (2005) and Naouali and Missaoui (2006) contributions involve data approximation 

techniques by means of rough sets (upper and lower approximations). Also, the authors Pitarch, Favre et 

al. (2012) exploited the fuzzy logic in proposing new contextual hierarchies to allow the consideration of 

data experts knowledge for the definition of the hierarchies. 

Although it is interesting to integrate vague objects models in SOLAP datacubes, there is still much to do 

before we can design, implement and exploit these vague datacubes in practice. Existing SOLAP tools 

(Extract Transform Load tools -ETL, Servers, Clients etc.) and databases (Pauly and Schneider 2010) only 

allow the storage and querying of spatial data modeled as crisp entities (point, line, and polygon).  

(S) OLAP datacubes design methods 

OLAP and Spatial OLAP systems are based on complex multi-tiers architectures where (spatial) data 

should be extracted from heterogeneous data sources and transformed before being loaded into the 

datacubes. Since SOLAP datacube multidimensional model represents required SOLAP analyses, the 

success of the whole SOLAP application project depends upon the correctness of the designed SOLAP 

datacube(s). In the previous years, several multidimensional modeling methodologies where presented in 

the literature  (Giorgini, Rizzi et al. 2005, Guimond 2005, Prat, Akoka et al. 2006, Malinowski and Zimányi 

2008, Romero and Abelló 2009, Pardillo, Mazón et al. 2010, Romero and Abelló 2011, Di Tria, Lefons et 

al. 2012). They offer guidelines, processes and/or tools to designers to help them draw (manually or 

automatically) a multidimensional intelligence from end-users’ requirements (requirement-driven approach) 

or data sources (sources-driven approach) or a combination of both (hybrid approach; de-facto used for 

SOLAP systems). It is implemented in a Model Driven Architecture (MDA) method (Glorio and Trujillo 

2008) and/or a rapid prototyping one (Guimond 2005). The analysis of these methodologies shows that 
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(spatial) data uncertainty issues do not explicitly influence the resulting datacube multidimensional 

elements definition.  

Indeed, on one hand, user-driven methods focus on determining and exploiting users’ needs in defining 

the multidimensional elements. They are not designed to identify and/or consider the data types or 

uncertainty issues regarding the data to be exploited in the datacubes. On the other hand, the sources-

driven methods allow the inventory of attributes present in the sources and their types so that the 

measures and dimensions can be extracted from the sources; but the methods do not allow considering 

the attributes content. However, knowing that an attribute holds a spatial vague object is needed to 

consider spatial vagueness issues soon enough during the design process. Ultimately, most hybrid 

methods present the same limits since they usually focus on resolving the merging of user-driven and 

sources-driven results (Bonifati, Cattaneo et al. 2001, Mazón, Trujillo et al. 2007). The methods used in 

practice in Geomatics, advocate the analysis of the sources and their quality according to the needs but in 

those methods, the quality issues (spatial accuracy, incompleteness, generalization issues (Bédard, 

Proulx et al. 2005) etc.) are whether resolved during the ETL process, or during the datacube visualization 

and exploration. Recently, approaches have been proposed to integrate a risk of misuse management 

method to the design methods, allowing the producers to identify and assess those risks early on during 

the design. It is for example the proposal of a collaborative platform for the risks identification and analysis 

by Grira (2014); or the work of Lévesque (2008) leading to the proposal of risks of misuse classification 

and identification formal tools, as well as contextual alerts definition allowing the display of the risks to the 

end-users during the datacubes exploration, to reduce the risks. Grira (2014) work is set on risk definition 

and assessment and can be seen as complementary to our proposal. Lévesque (2008) does not address 

spatial vagueness in particular and also the risks are not exploited in defining the final SOLAP datacubes 

elements. 

3.3 Motivation 
We consider a stripped down agri-environmental case study on pesticide spreading activities data. We 

consider the case where the intention is to build a SOLAP application for decision-makers to support their 

decisional process in the context of the control of surface water contamination by pesticide. The control 

activity implies the monitoring of the quantity of pesticide that can contaminate surface waters. To do so, 

we have on one hand (1) decision-makers analysis needs and on the other hand (2) the available source 

data.  

(1) Regarding decision-makers analysis needs: 

Decision-makers expect a SOLAP datacube that will help them visualize and interrogate data related to all 

pesticide spreading activities in an easy and interactive way. The datacube should allow answering 

queries such as: 
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 (Q1) “What is the total quantity of pesticide applied per year that can be found within flood risk areas?” 

(Q2) “What is the greatest amount of pesticide applied per year that can be found within flood risk 

areas?” 

To help decision-makers monitor the quantity of pesticide in spread zones and flood risk areas, the 

required datacube will need to have a spatial hierarchy composed of at least a Spread Zones level 

(holding areas where pesticide have been applied), a Flood Zones level (holding flood risk areas), and 

also a measure that holds the quantity of pesticide spread values (QuantityAsub).  

(2) Regarding the source data: 

First, we note that spread zones (defined as areas where pesticide has been applied) and flood risk areas 

(defined as regions where surface water can be present during an inundation) are vague objects (see 

sample on Figure 3-2). More specifically, both spatial objects have vague shapes. 

In fact, the spreading activities should be conducted on plots parts defined beforehand as suitable areas. 

Those areas are surely spread but due to the spreading equipment and technics, pesticide can be found 

outside those suitable areas. Thus, while spread zones maximal extents are the limits of farming plots 

(i.e., no pesticide are spread outside the farming plots boundaries), their minimal extents are the suitable 

areas. Even if the quantity of applied pesticide is exactly recorded for a whole plot, it is not possible to 

determine with accuracy where that quantity has been applied inside the limits of farming plots. However, 

in the sources, this vagueness has been neglected and spread zones are represented by polygons 

covering the whole farming plot. 

Concerning the flood risk areas, official data sources provide well calculated geometries representing 

flood-prone areas. However, during an inundation, surface water does not always cover a whole flood-

prone area. Therefore the limits of those areas are rather maximal extents of flood risk areas. Meanwhile, 

areas that are certainly covered by water during an inundation, meaning minimal extents of flood risk 

areas, correspond to the actual limits of water bodies such as rivers, lakes etc. plus a little buffer of 5 

meters. The latter are stored in spreading activities database as unsuitable areas for pesticide spreading. 
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Figure 3-2: Map showing the vagueness on flood risk areas and spread zones 

Farming plots are areas where agricultural operations are conducted; they are delimited by well-defined 

cadastral limits. Farms are polygons representing the union of farming plots that belong to the same farm 

operator. Both geographic objects are spatial vagueness free. 

Exploiting the available source data (where spatial vagueness were neglected) to feed the expected 

datacube, decision-makers will be provided with a datacube where the spatial vagueness is also 

neglected. Therefore, the results of the queries will be uncertain (e.g. the analyzed value, as well as the 

members' geometry shown, for a level composed of spread zones), yet end-users may think they are 

accurate (risk of misinterpretation).  

3.4 Risks of misinterpretation: definition and classification 
In this section which launches our proposal, we answer two key questions related to our approach about 

the risk of misinterpretation: What does one call risk of misinterpretation? What type of risks of 

misinterpretation can one identify? 

Starting from the risk of misuse definition proposed by Lévesque (2008) following the International 

Organization for Standardization (ISO) risk analysis standards (ISO/IEC-51 1999), the risk of datacube 

(measures and level attributes) misinterpretation can  be defined as being the result of combining the 

probability of occurrence of a datacube misinterpretation with the severity of the potential impact of the 

misinterpretation. The risk of misinterpretation is represented by a qualitative value (e.g. low, medium, 

high), which varies according to the end-users’ context of use since both the occurrence probability and 

impact depends upon this context.  
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A datacube (measures and level attributes) misinterpretation occurs when a decision-maker makes 

decisions from faulty information leading to unexpected results. Our interest is towards unexpected results 

when spatial vague objects are involved. Also in this thesis, we focus on the numerical measures 

misinterpretation.  

We recall that in our symbiotic trade-off approach, datacubes geometric attributes are represented with 

simple polygons to allow an implementation in existing SOLAP systems. Accordingly, to still take into 

account the vagueness on spatial data, the geometric attributes will contain either the minimal 

extent or the maximal extent of the vague objects (not both as it is done for the complex vague 

objects models in Siqueira, Aguiar Ciferri et al. (2012)). For example, a flood zone can be considered 

only in its maximal extent (official flood-prone area), which will be represented by a single polygon, instead 

of being represented by a combination of two polygons (one corresponding to the official flood-prone area 

and the other to the lake+ 5m of buffer extent).    

 We classify the risks of measures misinterpretation in two main categories, which are intrinsic risks and 

extrinsic risks:  

- Intrinsic risks are usage-independent risks. They are specific to the geometric data exploited in the 

datacube. They are first and for all potential risks, since a datacube end-user can still decide that their 

impact is negligible and that they do not represent a real risk for them depending on their usage.  

For these intrinsic risks, we will use the term risks of poor measure evaluation (where “measure” is used in 

its datacube sense). The intrinsic risks can be: 

 Over evaluation; 

 Under evaluation;  

 Non-significant. There is nothing to report in this case; it happens for example when the 

vagueness is absorbed by the datacube aggregation structure.  

- Extrinsic risks are usage-dependent risks. They are specific to the intended usage and depend upon 

the user context of application. 

In this thesis we deal with the intrinsic risks. More specifically, we focus on the intrinsic risks related to 

the exploitation of spatial level vague geometric members. In other words, our interest is towards 

numerical measures poor evaluation that can occur when spatial levels of a spatial dimension contain 

vague geometric members (minimal extents or maximal extents, not both).  
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Intrinsic risks are concretely induced either by the vagueness on the spatial level geometric members (we 

call it “Risk-Geometry”), or by the aggregation algorithm (we call it “Risk-Aggregation”).  

(1) Risk-Geometry: When the geometric members of a given SOLAP datacube spatial dimension 

level are considered in their minimal (i.e. probably smaller than in reality) or maximal extents (i.e. 

probably larger than in reality), certain types of measures, involving a geospatial parameter 

related to the members’ geometries, are over or under evaluated on that level (e.g. measure 

“number of kg of pesticide per hectare” which involves the surface of the members’ geometries). 

In that case, the impact is noticeable on the measures values themselves since they vary 

according to the geospatial parameter. Other measures not involving geospatial parameters may 

also be poorly evaluated on that level (e.g. number of kg of pesticide per spread zone). In this 

case, even if the value is computed with the highest accuracy, end-users can still misinterpret 

that. 

For a detailed example, let's say that we record the exact quantity of spread pesticide as being 

68kg in a given spread zone. The zone, which is geometrically vague as explained in section 

3.3(2), is considered in its maximal extents in the datacube. In such case, we do not know exactly 

where those 68kg have been spread inside the limits considered. An end-user presented only 

with the maximal limits and the quantity recorded may think that the quantity has been spread 

uniformly in the whole extent while it is only in sub-parts of that extent.  Some decisions he will 

make based on such pretty sensitive information may lead him to unexpected results, which 

means he is exposed to risks of misinterpretation. It is important to qualify that risk to take it into 

consideration when designing the datacube, especially the spatial data visualization policies. For 

this example in particular, we can qualify that as a risk of under evaluation of the quantity per 

area: in fact, the quantity would have been greater for the maximal extents if the spreading where 

uniform on the whole geometry as unaware users may think.  

(2) Risk-Aggregation: It is a risk of misinterpreting the measures’ values, related to a given level, 

risk that is not induced by a potential vagueness on the members’ geometries themselves. 

Instead, it can be induced by: 

- The aggregation formula and/or the geometries involved in the aggregation: For the pesticide 

case above (see section 3.3), let us consider the low level Spread Zones (maximal extents) 

and the level Flood Zones (minimal extents). Only the level Spread Zones members that 

intersect a Flood Zone member are participating in the aggregations for that member. For 

example, to compute the total quantity of pesticide to be found a flood zone FZ1, one option 

would be to “sum” the weighted values related to the results of the “intersection” between 

FZ1 geometry and level Spread Zones members’ geometries (see Figure 3-3). Since the 
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flood zone is considered in its minimal extents, spread zones that only intersect the maximal 

extents of flood zones are totally left out of the aggregation. Also, the portion of spread zones 

that actually intersect the flood zone geometry is the smallest. Since the real limits are 

somewhere between the minimal extent and the maximal extent, the aggregated values 

present an uncertainty that is a source for risks of poor evaluation (see Table 3-1). In 

general, the uncertainty importance depends on the spatial predicates (e.g. intersect, touch, 

contain) used to select the lower level members that participate in the aggregation for a 

given higher level member, and the aggregator (e.g. sum, max, average). 

- Existing uncertainty on the measures’ values to be aggregated: In fact, aggregations can 

simply propagate an already existing uncertainty on the measure’s values for a lower level to 

a given level leading to a risk of misinterpretation on that level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3 : Schema illustrating the aggregation on level Flood Zones 
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Flood risk 
areas 

Spread zones 
considered 

Aggregation 
results 

Risks of misinterpretation 

Minimal 
extents (FZ1)  

SpreadZone1 
SpreadZone2 

Q1 : 23kg 

Q2 : 20kg 

Under evaluation 

Maximal 
extents 

SpreadZone1 
Spreadzone2 
SpreadZone3 

Q1 : 240kg 

Q2 : 98kg 

Over evaluation 

Table 3-1 : Example of aggregation results for flood zones 

We designate by “Risk-Level” the risk created for a given level. It is a Risk-Geometry, a Risk-Aggregation, 

or a combination of both.  

3.5 The risk-aware design approach 
In this section, we present the requirements of the new risk-aware design approach, followed by the 

design process advocated by the approach, and then the new concepts and techniques that are needed to 

accomplish the different steps of the design process. 

3.5.1 The risk-aware design approach requirements 

The design approach must not only render the resulting SOLAP datacubes Platform Independent Model 

(PIMs) and physical schemas, but also the aggregation rules, and the visualization policies to use for 

proper communication regarding the risks of misinterpretation. All those elements must be implementable 

with existing tools (Spatial Data Base Management System-DBMS, SOLAP server and client). Ideally, the 

design process should be based on an agile method. In fact, the design process, especially the 

transformation part, needs to be iterative to allow returns to the key steps of the process at any time during 

the SOLAP project to refine the design.  

3.5.2 The risk-aware design process 

It was showed in the literature review (see section 3.2) that to manage the spatial vagueness, different 

research teams have proposed the use of spatial vague objects models such as fuzzy or exact models to 

represent the spatial vague data. That means implementing those models in existing SOLAP tools, from 

the data storage in existing spatial DBMS to the map visualization of the data and results analysis in the 

SOLAP client, through the analysis of the data, using fuzzy/vague aggregation operators, by the SOLAP 

server. Even though this approach is the absolute accurate one, it does not always work well in favor of 

the datacube usability and practical implementation tools are still yet to be available. In this thesis, we aim 

at dealing with the spatial vagueness issues in a symbiotic trade-off context, and help providing relevant 

datacubes for any context of application and different end-users. Because the spatial vagueness causes 

diverse risks of misinterpretation on the datacube (details are to be found in the  Spatial vague objects 

typology), we believe that replacing the spatial vagueness management itself by the management of the 
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risks of datacube misinterpretation induced by the spatial vagueness is a pertinent way to achieve our 

goal. The idea here is thus to work out a design process that allows taking the risks into account and 

delivering datacubes (PIMs) compliant with decision-makers’ tolerance to the risks. 

To come up with the risk-aware design process, we added new steps to the requirements specification 

and conceptual design phases of the classic SOLAP datacube design process, exploiting the risk 

management method advocated by Lévesque (2008) and Gervais, Bédard et al. (2009). By classic 

SOLAP datacube design process we mean the following steps: Requirements specification (Computation 

Independent Model-CIM design in MDA method), conceptual design (Platform Independent Model-PIM 

design in MDA method), and finally the logical and physical design (Platform Specific Model-PSM design 

in MDA method). The PIMs obtained from the conceptual design phase will be used to design the PSMs in 

a classic way. 

In the rest of this section, we will first make an inventory of the type of actors involved in our risk-aware 

design process, followed by the description of all the steps advocated by our new process. 

3.5.2.1 Actors involved in the risk-aware design process 

We consider two main profiles of actors: (Actor profile 1) geospatial systems and data users that are the 

end-users of the SOLAP application (decision-makers) and systems and data sources end-users such as 

application domain experts (farmers for example) who actually know, consciously or not, about the data 

sources quality; (Actor profile 2) the SOLAP experts who have the ability to design and implement SOLAP 

application.  

The people involved in the design process are delegates of users and SOLAP experts in charge of the 

design. They form a project committee and work together through the majority of the steps of our risk-

aware design process. However, the datacubes schemas elaboration and tailoring to tolerance levels are 

done by the SOLAP experts (profile 2) involved, while the tolerance levels assessment is solely done by 

the decision-makers (profile 1) involved. In the rest of this section we will designate the users participating 

in the project committee by Actor Profile 1 and the SOLAP experts of the committee by Actor Profile 2. 

3.5.2.2 The risk-aware design process steps 

Our Risk-Aware Design Process has two phases: The requirements specification phase (see Figure 3-4) 

and the conceptual design phase (see Figure 3-5). Each phase includes new steps (in white) that did not 

exist in the classic design process.  
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Figure 3-4: Risk-aware design process: Requirements specification phase 

Concerning the requirements specification phase, it starts with an end-users’ identification (Identify 

datacube end-users), followed by an available data sources identification (Identify available data sources), 

all done by users involved in the project committee. With the results of those two steps, the project 

committee will work out the analysis needs specification (Determine analysis requirements). Then we have 

the new steps: 

- Identify vague data in the sources: This new step has to be done after the classic data sources 

identification (Identify available data sources). It consists of determining whether sources spatial 

objects present spatial vagueness issues and monitoring which objects are vague. This will be 

useful for the tagging of spatial vagueness on the SOLAP datacube multidimensional schema 

and therefore for intrinsic risks identification later. 

- Identify potential risks 1: A first risks identification is done here by the project committee. It is 

done by exploiting the analysis requirements and the spatial vagueness issues identified (“Risk of 

wrong interpretation of measures associated to flood zones” for example). It gives the committee 

a succinct idea of the potential risks of misinterpretation (intrinsic or extrinsic ones). After that, the 

requirements specification is documented, as well as spatial vagueness issues on the sources 

and risks identified (Document requirements (+risks) specification and spatial vagueness issues), 

on a CIM for example. That closes the requirement specification phase. One can then move on to 

the actual conceptual design stage (Figure 3-5), beginning with the elaboration of an initial 

intended SOLAP datacube PIM (Develop intended datacube initial PIM + Aggregation rules 

Visualization policies).After that, the actual risk-aware design activities start (new steps). 

- Identify potential risks 2: In this step, identified risks are updated by the project committee, 

knowing exactly the elements defined in the multidimensional model (PIM design results) and the 
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vague spatial data SOLAP datacube end-users will have to deal with in the intended datacube 

analysis. For example, the “risk of under evaluation of QuantityAsub on level Flood Zones” can 

be added to the list. 

- Assess Risks tolerance levels: Here, the project committee members representing the SOLAP 

application end-users (decision-makers) are asked to express their tolerance level to each 

identified risk (e.g. Risk of under evaluation of QuantityAsub on level Flood Zones: Totally 

Unacceptable i.e. tolerance level = 0). The possible tolerance levels are detailed in the following 

section 3.6. If all the identified risks are acceptable by them, the current SOLAP datacube PIM is 

provided (Deliver intended datacube final PIMs + Aggregation rules Visualization policies) and it 

is the end of the design process. If not, we proceed to the following steps. 

 

 

 Figure 3-5 : Risk-aware design process: Conceptual design phase 
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- Determine risk management actions: According to end-users’ tolerance levels, different 

strategies, and thus actions, are defined to reduce the risks of misinterpretation. One action 

would be for example to remove a level with vague members to avoid the risk of under evaluation 

of measures values for that level (case of level Spread Zones).  

  

- Transform datacube PIM + Aggregation rules Visualization policies: Here risks management 

actions are applied to obtain appropriate SOLAP datacube’s PIMs and corresponding 

aggregations rules and visualization policies. SOLAP experts can decide to only apply some of 

the identified actions. For example, they can only apply actions that have an impact on the 

multidimensional structure and/or on other identified risks at first. Then, the process goes back to 

the Identify potential risks 2 step. If the updated risks regarding the produced datacube PIMs are 

acceptable for the end-users, the design process is over and the current datacube PIMs are 

supplied (Deliver intended datacube final PIMs + Aggregation rules Visualization policies); if not, 

the process goes on again.  

The most important question left unanswered now is how end-users can actually assess tolerance levels 

and how designers can choose risks management strategies and actions. The following section presents 

the proposals in this regard.  

3.6 Risk of misinterpretation assessment and management 
 

Before determining their tolerance to an identified risk, datacube end-users representatives need to 

evaluate that risk first. In a standard manner, risks evaluation is done by classifying the risks using the 

Kerzner (2006) risk degrees matrix where the axes are respectively a risk probability of occurrence (High, 

Medium or Low) and its gravity (High, Medium or Low). According to Kerzner (2006), the risk evaluation 

step is usually the longest, complex, but also most important one in a risk management process. Here, we 

have defined a risk degree scale composed of five levels which should be enough to evaluate the risks for 

a conceptual design purpose. This risk degree scale is a simplification of the Kerzner risk degrees matrix. 

Those five levels are:  

- Very High Risk: Probability of occurrence of the risk is High and the severity is High (HH),  

- High Risk: the risk probability of occurrence is Medium and its severity High (MH) or the  

probability of occurrence is High and Severity is medium (HM),  

- Medium Risk: the probability of occurrence is Medium and the severity is Medium (MM),  

- Low Risk: the probability of occurrence is Low and Severity is Medium (LM) or Probability of 

occurrence is Medium and Severity is Low (ML), 
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- Towards Zero Risk: Probability of occurrence is Low and Severity is Low also (LL).  

Logically, the end-user evaluates the risk level according to his application context. Depending on the risk 

degree, he can then decide whether he can tolerate a risk or not. He can also decide if he can tolerate that 

risk directly based on the application context. What matters for our approach is the tolerance level (a 

qualitative parameter) that the user expresses relative to the risk, no matter at which degree he evaluates 

the risk beforehand (it’s his in-house arrangements). 

We define 4 tolerance degrees to fit with 4 risk management strategies as explained a few paragraphs 

down: 0 for totally unacceptable, 1 for preferably unacceptable, 2 for somewhat acceptable, 3 for totally 

acceptable (see Table 3-2). 

Following risks evaluation, different mechanisms should be executed to manage risks according to the 

levels of tolerance expressed. According to Gervais, Bédard et al. (2009), there are different ways to cope 

with identified risks: avoidance, control, transfer or indifference. The risk avoidance aims at reducing an 

unacceptable risk by eliminating the source from which it emerges, the risk control aims at reducing the 

risk by taking preventive actions, the risk transfer aims at reducing the risk by transmitting it to a third party 

such as the end-users or an insurance company and in the indifference strategy, the existence of the risk 

is acknowledged without taking any specific action to reduce it. Moreover, the ISO/IEC-51 (1999) 

guidelines advocate a risk reduction process that one should follow when choosing a risk reduction 

strategy. What is noted is that the risk reduction must be assumed by the SOLAP datacube producer first 

before transferring it to end-users if necessary. That means avoidance and control must be prioritized by 

the datacube producers. Also, datacube producers must do internal prevention first, then additional 

protection activities and finally security related information communication.  

In our approach, datacube producers are the members of the project committee (the SOLAP experts and 

delegates of users); delegates of decision-makers in particular are the one deciding if a risk is acceptable 

or not, using our proposed tolerance level scale.  

With all that in mind, we establish a one-to-one relationship between each tolerance level and a risk 

management strategy by issuing the following hypothesis:  

- Tolerance 0 (totally unacceptable risk): Strategy = Avoidance. Eliminating a risk source 

implies doing more or less important internal changes on the SOLAP datacube, so we 

recommend it for unacceptable risk. Reciprocally, since the risk is totally unacceptable, we find it 

appropriate to completely avoid the source. 

- Tolerance 1 (preferably unacceptable risk): Strategy = Control. The control is suggested here 

not only because it is the appropriate internal prevention strategy to reduce a risk to an 
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acceptable level, but also because as suggested in the ISO/IEC-51 (1999) guidelines, datacube 

producers must prioritize control over transfer.  

- Tolerance 2 (somewhat acceptable): Strategy = Transfer. It is the preferred strategy here 

because since the risk is somewhat acceptable, we find it appropriate to leave the decision to use 

the data or not up to the actual end-user. The transfer can be done by properly communicating 

the risk itself to all end-users so they will make the decision depending upon their particular use 

case and tolerance. 

- Tolerance 3 (totally acceptable): Strategy = Indifference. Since the risk is totally acceptable, 

there is no need to make a particular effort to reduce it. 

Even though for each risk reduction strategy, different mechanisms can be applied either before (during 

data collection, spatial ETL or datacube design) or after the datacube utilization to cope with the risks, in 

our work we are interested in actions that can take place during the datacube design stage. We distinguish 

two categories of such actions: 

- Actions that change the multidimensional data structure: they are actions that can be taken on the 

datacube dimensions, hierarchies, aggregation levels, members and choice of measures; 

- Actions that do not change the multidimensional data structure: they are actions to apply on the 

aggregation rules, the visualization policies, etc. without changing the multidimensional structure 

of the datacube. 

Those mechanisms are classified according to the risk management strategies as presented in Table 3-2. 

The list is not exhaustive, and furthermore, this classification can be used in the future to identify what type 

of actions one can define to handle the different cases of vagueness presence in datacubes (in measures 

only, in measures and spatial dimensions etc.) 
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Risks level 

(Probability X 

Severity or vice 

versa) 

Tolerance level 

Risk 

management 

strategies 

Possible actions 

 

Impact on 

multidimensional 

data structure 

No impact on 

multidimensional data 

structure 

Very High Risk 

(HH) 

0: Totally 

Unacceptable 

Risk 

Avoidance 

Delete the risk 

source: dimensions, 

levels, members 

Delete the risk source: 

aggregation rules 

High Risk (HM) 

1: Preferably 

Unacceptable  

Risk 

Control 

Modify members, 

levels, dimensions; 

 

Add/Modify aggregation rules 

Prohibit some combinations, 

define access policies; 

List the recommended and 

non-recommended usages in a 

metadata support; 

communicate the risk if 

considered necessary. 

Medium Risk 

(MM) 

2: Somewhat 

Acceptable Risk 
Transfer 

 
Communicate the risk 

Low Risk (LM) 3: Totally 

acceptable  Risk 
Indifference No action 

Zero Risk (LL) 

Table 3-2: Risk tolerance levels and risks management actions 

3.7 Application of the risk-aware design approach to our case 
study 

In this section, we propose to perform the design of the SOLAP datacube of our case study by adopting 

our risk-aware approach. This is done to illustrate the new approach. 

- Requirements specification phase 

We recall that the datacube end-users are decision-makers in the environmental field (Identify datacube 

end-users step) and the available sources are the pesticide spread activities GIS containing spatial data 

listed in section 3.3 (Identify available data sources step). Also, end-users analysis requirements were 

presented in the same section (Determine analysis requirements).The vague data in the sources are: the 

area of applied pesticide and flood risk areas (Identify vague data in the sources step). The result of the 

step “Identify potential risks1” is shown on Table 3-3. The risks identified at this step are to be 

characterized after the actual initial datacube is designed. Here they are just collected and expressed in 

an informal way. 
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Spatial Object Definition Identified risk 

Spread zone Region of applied 

pesticide (Represented 

by simple polygons) 

End-users may think that every part of the polygons 

has been spread uniformly with pesticide, which is 

not the case (spread zones have vague shapes in 

reality). 

Flood risk areas Region where water can 

be present in case of 

inundation. 

(Represented by simple 

polygons). 

End-users may think that the limits recorded are 

exact but actually the flood risk areas have broad 

boundaries. 

 

Table 3-3 : Results of « Identify potential risks 1 » 

- Conceptual design phase 

Develop intended datacube initial PIM + Aggregation rules Visualization policies step: Analysis 

requirements are expressed on the initial datacube multidimensional model (knowing the available 

sources) showed on Figure 3-6, and the aggregation rules are shown on Figure 3-7. This multidimensional 

model is defined using the UML profile for SOLAP datacubes modeling presented in Boulil, Bimonte et al. 

(2011). 

This model has: (1) a spatial dimension “Zones” containing regions (represented by simple polygons) on 

which the quantity of applied pesticides is monitored; the regions are organized according to the hierarchy 

“Spread Zones  Farms  Flood Zones”; (2) a temporal dimension “Date” with the aggregation levels 

“DayMonth” and (3) a thematic dimension “Active Substances” (contained in the pesticides) with the 

unique level “Active substances”. 
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Figure 3-6: Intended datacube multidimensional model 

The spatial data to be used in the spatial hierarchies are the spread zones (for level Spread Zones), farms 

(for level Farms) and flood risk areas (for level Flood Zones). As explained in section 3.3(2), spread zones 

and flood risk areas have vague shapes in reality. However in our symbiotic trade-off, only simple 

polygons are used to represent the spatial objects, vague or not. Thus, for the vague spatial objects, the 

actual geometries that will be stored in the implemented datacube later would be their minimal or maximal 

extents. In summary, for this initial datacube multidimensional model, we have identified for each spatial 

level, the corresponding spatial data and the corresponding geometry that is to be stored later in the 

SOLAP system (see Table 3-4). 
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Spatial Level Spatial data Geometry to be stored in the 
datacube 

Spread Zones Spread zones as defined in section 

3.3(2). 

Simple crisp polygons corresponding 
to the Maximal extents of spread 
zones as shown on Figure 3-2 
(farming plots boundaries) 

They have vague shapes. 

Ideally represented by vague 
complex geometries as shown on 
Figure 3-2 

Farms Farms as defined in section 3.3(2). Polygons corresponding to Farms 
boundaries 

They have well-defined cadastral 
limits. 

Represented by simple crisp 
polygons. 

Flood Zones Flood risk areas as defined in 
section 3.3(2). 

Simple crisp polygons corresponding 
to Minimal extents of flood risk areas 
shown on Figure 3-2 (waterbodies 
boundaries + buffer) 

They have broad boundaries 

Ideally represented by vague 
complex geometries as shown on 
Figure 3-2 

 

Table 3-4 : Dimension “Zones” spatial levels description 

The expected fact (Pesticides) is described by the measure QuantityAsub that represents the quantity (in 

Kg) of applied active substances. QuantityAsub will be aggregated along the hierarchies with the 

aggregation operation Sum to calculate the total quantity of applied pesticide (Top image of Figure 3-7), or 

with the aggregation operation Max to calculate the greatest quantity spread (Bottom image of Figure 3-7). 

Figure 3-7 : Intended Aggregation rules 

 

With this multidimensional model, it is actually possible to answer the SOLAP queries Q1 and Q2 (Cf. 

section 3.3(1)). Note that Q1 and Q2 expressions become:  
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- (Q1) “What is the TotalPesticide of Active Substance per Year for Flood Zones?” 

- (Q2) “What is the MaxPesticide of Active Substance per Year for Flood Zones?” 

The visualization policies are at this point the classic ones (plain map and plain cells in pivot table). 

Identify potential risks 2: The following Table 3-5 presents a summary of all the identified risks for the 

pesticide intended datacube. 

Levels Risks Risks descriptions 

Spread Zones 

(Maximal Extents)  

Risk Geometry 

(rgSpreadZones) 

Under evaluation 

Flood Zones (Minimal 

Extents) 

Risk Aggregation 1 on query  

Q1 (raggFZ1)  

Under evaluation 

Risk Aggregation 2 on query 

Q2 (raggFZ2) 

Under evaluation 

Table 3-5: Risks identified for the Pesticide intended datacube 

Assess risks tolerance levels: Using our tolerance level scale, end-users delegates have expressed their 

tolerance levels to the identified risks as shown in Table 3-6.  

Determine risks management actions: According to the tolerance levels, SOLAP experts have chosen 

appropriate actions among the possible actions presented in Table 3-2. See Table 3-6 for the actions. 

 

Table 3-6: Risks + Tolerance + Actions for the intended Pesticide datacube 

Risks Tolerance level Actions 

rgSpreadZones 0: totally unacceptable risk Delete Spread Zones level (see Figure 3-8) 

raggFZ1 1: preferably unacceptable  risk Modify the members geometries (use the 

maximal extents) 

raggFZ2 1: preferably unacceptable risk Modify the members geometries (use the 

maximal extents) 
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Transform datacube PIM + Aggregation rules Visualization policies: Between the actions chosen in the 

previous step, SOLAP experts have chosen to apply the one related to rgSpreadZones first, knowing that 

it will impact the Risk-Aggregations on level Flood Zones. In result, we have the new PIM shown on Figure 

3-8 (the Spread Zones level has been deleted). 

Figure 3-8: Example of final datacube schema – tolerance 0 to Risk-Geometry on Spread Zones (under 
evaluation) 

Return to “Identify potential risks 2” step: The risks are updated (see first column of Table 3-7 and then 

reassessed (see column New Tolerance Level).  
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Risks Old Tolerance level New Tolerance 
level 

Remarks 

rgSpreadZones 

(level deleted) 

0: Totally unacceptable risk  Does not exist anymore (level 

deleted) 

raggFZ1  

 

1:Preferably unacceptable risk 2: Somewhat 

acceptable risk 

It is now a risk of over 

evaluation since the 

aggregation is supposed to 

take into account all the farms 

(new lowest level) that 

intersect the flood risk areas in 

their maximal extents. 

raggFZ2 1: Preferably unacceptable risk 2: Somewhat 

acceptable risk 

Same as for raggFZ1 

Table 3-7 : Risks update and reassessment results 

For this datacube, the new actions will simply be risks communication through a visualization policy: color 

the pivot table cells in red for Flood Zone level. After applying these actions, SOLAP experts go back to 

the risk identification then the risk assessment steps. The risks are raggFZ1 and raggFZ2 still, and the 

tolerance levels are still 2 for both. 

Since all the risks are acceptable now, the datacube PIM shown on Figure 3-8 is delivered plus the 

visualization policy defined previously. 

3.8 Chapter synthesis 
In this chapter, we have proposed a new SOLAP datacube design approach that takes into account 

SOLAP datacubes risks of misinterpretation and end-users tolerance levels to those risks. First we have 

defined and classified datacubes risk of misinterpretation. Then, steps of the new design process 

integrating a risk management method have been detailed. Then we have proposed a risk tolerance levels 

scale to help the risks assessment by end-users, as well as a classification of the risk reduction strategies 

that can be adopted to manage the identified risks. More specifically, we have established a one-to-one 

relationship between each tolerance level and one of the possible strategies to help SOLAP experts 

narrow the right actions for a given tolerance later. We have presented a small case study to illustrate the 

interest of our method. 

Next, we will address our second objective by working on the elaboration of a risk-aware prototyping 

method and tool, implementing this approach.  
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Chapter 4: A Risk-Aware Design Method for 
Spatial Datacubes Handling Spatial Vague Data: 
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4.1 Introduction 
This chapter addresses the second sub-objective of our research project. Here, we define a new risk-

aware design method that implements the principles of our approach: the RADSOLAP method. The 

chapter main proposals have been submitted and accepted in the International Journal of Data 

Warehousing and Mining (IJDWM) in April 2015 under the title “An UML profile and SOLAP datacubes 

multidimensional schemas transformation process for datacubes risk-aware design”. 

In the previous Chapter 3: we proposed a design process where a risk-management approach was 

adopted to better deal with the spatial vagueness issues. The tools and principles advocated can be 

implemented in different ways (in agile methods such as Rapid Application Development, Unified 

Processing, Extreme Programming etc., in Computer Aided Software Environment-CASE tools, in 

collaborative frameworks such as the one proposed by our colleague Grira, Bédard et al. (2013) etc.) , 

however we offer here a rapid prototyping method that aims at helping SOLAP datacube producers 

throughout the risk-aware design process and validate the design quickly by playing with the prototypes. 

The method considers the risks of misinterpretation induced by vague data in the SOLAP datacubes and 

identified by spatial data experts and end-users. It also considers the tolerance levels of end-users to 

those risks, and based on those parameters, proposes to end-users a set of SOLAP datacubes prototypes 

iteratively tailored to their tolerance levels. Basically, it allows the multidimensional schemas design by 

means of UML diagrams, the schemas transformations according to the tolerance levels and actions 

chosen by SOLAP experts and finally the datacubes prototyping. The proposals detailed in this chapter 

are:  the steps of the method, an UML profile to help conceive the schemas tagged with the spatial 

vagueness, the risks and the end-users’ tolerance levels, a process for the schemas transformations, 

formal definitions of the schemas transformations functions, and finally the technical architecture of a 

CASE Tool that can support the method (the SOLAP RADTool). 

In Section 4.2of this chapter, we present the state of art related to spatial vagueness management in 

SOLAP systems and SOLAP datacubes design methods; Section 4.3 briefly describes the ICSOLAP UML 
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Profile we have extended in Section 5; an agricultural case study is introduced in Section 4.4; Section 4.5 

presents our method, including the design process, the RADSOLAP UML profile, the transformation 

functions and process; finally, Section 4.6 concludes the paper.  

4.2 Literature review 
The most accurate theoretical approach when it comes to dealing with spatial vagueness issues is 

probably using vague objects models (fuzzy models, exacts models etc.) to represent the vague spatial 

data. Some researchers have worked on the practical integration of such models in SOLAP systems. Very 

recently Jadidi, Mostafavi et al. (2012) have proposed an algorithmic approach based on Fuzzy Set 

Theory to address fuzzy boundaries of coastal erosion risk areas, among others. Siqueira, Ciferri et al. 

(2014) have extended the multidimensional model to exploit exact models of vague objects (Bejaoui 2009, 

Pauly and Schneider 2010). They introduced the “vagueness” in the multidimensional concepts by 

proposing the VSCube (VS for Vague Spatial) conceptual model. This model supports geometric models 

associated with membership values and defines the concepts of vague spatial attributes, measures, facts, 

dimensions and hierarchies, as well as new vague spatial aggregation functions (union, intersection and 

difference), vague spatial predicates (e.g., intersection range queries or vague spatial range queries), and 

vague SOLAP operations (vague drill-down, roll-up, slice-and-dice). The VSCube allows the modeling of 

datacubes exploiting vague spatial data but, no implementation tools have yet been proposed. At this time, 

there is still much to do to design, implement and exploit SOLAP datacubes exploiting vague objects 

models. Existing tools (SOLAP server and client) and Spatial DBMS (Pauly and Schneider 2010) are not 

designed to manage such models and the practical aspect of their integration in those tools is still yet to be 

developed.  

Recently, the Geomatics Community has been interested in preventing spatial data misuse in general. In 

that vein, a risk of misuse management method has been worked out (Lévesque 2008, Gervais, Bédard et 

al. 2009), as well as risk management strategies, indicators and frameworks (Gervais, Bédard et al. 2012, 

Grira, Bédard et al. 2013, Roy 2013), to help users identify and/or assess potential risks of misuses to 

prevent them during the spatial data usage. In particular, Lévesque (2008) has defined the risk of misuse 

for the SOLAP datacube in accordance with the ISO (2000) definition of risk, i.e., as being the risk of the 

probability of occurrence of inappropriate use of a datacube (a usage that leads to unexpected results) 

combined with the severity of the impact of that inappropriate use. She has also proposed tools to identify 

and manage the risk of misuse of the intended SOLAP datacube by popping context-sensitive warnings 

into some multidimensional queries. However, spatial vagueness has not been addressed specifically. 

Another study introduced risk management in the database design process (Grira, Bédard et al. 2013). 

This research focuses on introducing a collaborative approach based on crowdsourcing technology to 

identify potential risks of data misuse. This approach relies on feedback from end-users about the ways 

the elements (object class, property, function, association, domains) of a conceptual database design are 
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defined. Their approach is supported by collaborative tools such as wikis, questionnaires and forums to 

find the risks identified for the given definitions and to improve these definitions if they decide to. If not, 

other risk management strategies are adopted. The database design team, not the crowd of end-users, 

selects the best risk management strategy for each risk identified. This selection may lead to modifications 

to their database design. Their work is generic for any type of spatial database and, in this regard, can be 

seen as complementary to the work presented in this thesis. 

Jadidi, Mostafavi et al. (2012), Grira, Bédard et al. (2013) and our own research come from the same 

research group and were thought to be complementary in the way the quality issue is addressed. Other 

works by Lévesque (2008), Gervais, Bédard et al. (2009) and Roy (2013) also come from our research 

group and aim at different but complementary objectives. 

Regarding the datacube design methodologies different researchers in the OLAP field have put the focus 

specifically on the extraction of the multidimensional knowledge from either the users’ needs (expressed in 

SQL queries or ontologies – user-driven approach), the available data sources (databases relational or 

logical models – data-driven approach) or from both users and data sources (hybrid approach). It led to 

the proposal of multidimensional modeling methods where requirements and conceptual and/or logical 

datacube schema are derived in an automatic or semi-automatic way according to the type of approach 

implemented.  

The analysis of those design methodologies shows that (spatial) data uncertainty issues are not explicitly 

considered in the definition of the resulting datacube multidimensional element (i.e. facts, dimensions, 

hierarchies, measures and aggregations). Instead, uncertainty and datacube quality are principally 

addressed during the ETL process and/or reporting phase. 

4.3 Preliminaries 
In this section, we present the main concepts of an UML profile proposed by Boulil, Bimonte et al. (2012) 

in our research group, which allows the modeling of complex SOLAP applications. This profile is called the 

ICSOLAP UML Profile. This UML profile will be used to support the SOLAP datacube conceptual design 

phase in our method as described in Section 4.5. 

The purpose of UML profiles is to allow customizing UML for particular domains or platforms by extending 

its meta-classes (class, property, etc.) (OMG 2011). A profile is defined using three key concepts: 

stereotypes, tagged values and constraints. A stereotype extends a UML meta-class and is represented 

using the notation «stereotype-name» and/or an icon. For example, it is possible to create a stereotype 

«SpatialClass» that extends the UML meta-class "class". At the model level, this stereotype can be used 

on classes in UML diagrams to highlight spatial concepts. Tagged values are meta-attributes; that is, the 

tagged values are defined as properties of stereotypes. Finally, a set of constraints should be attached to 



74 
 

each stereotype to precisely define its application semantics and avoid its arbitrary use by designers in 

models: for example a constraint can be defined to guarantee that a «SpatialClass» class has a geometric 

attribute called "geom".  

The ICSOLAP profile is organized into two main models representing the static and dynamic elements of 

SOLAP applications: the SDW model and the Aggregation model (Boulil, Bimonte et al. 2012). 

The profile description provided in Boulil, Bimonte et al. (2012) mentions that the modelers use the specific 

stereotypes and tagged values offered by the SDW model to define SOLAP datacube multidimensional 

elements. In particular, the multidimensional structure is represented as a package stereotyped 

«Hypercube» containing dimensions, also represented as packages. Each dimension is composed of 

hierarchies, also represented as packages, which organize levels. A level («AggLevel» stereotype) is a 

class composed of a set of descriptive attributes («DescriptiveAttribute» stereotype) and an identifying 

attribute. «SpatialAggLevel» stereotype designates a level, in a spatial dimension, which has a spatial 

attribute: this attribute can be geometric (stereotyped «LevelGeometry») or descriptive. A fact is 

represented using the stereotype «Fact», which is a class with attributes that are measures 

(«NumericalMeasure» stereotype for example).  

Usually, aggregations along hierarchies are predefined based on needs in analysis of decision-makers (for 

example, they want to sum the quantities of sold products by year). That raises the need for conceptual 

representation of the aggregation operations.  

For that purpose, the Aggregation Model offers classes, stereotyped «BaseIndicator», to define a set of 

aggregation operations to apply to a measure. The measure affected is identified in the «BaseIndicator» 

with the tagged value «aggregatedAttribute», and the aggregation function («Aggregator») is defined as a 

parameter of the aggregation operation (stereotyped «AggRule»).  

4.4 Case study 
In this section, we present an agri-environmental case study that will be used in this chapter to illustrate 

our contributions.  

Sewage sludge produced by a wastewater treatment plant can be used as crop fertilizer in agriculture. 

Farmers spread sewage sludge on cultivated plots to fertilize the soil. Sewage sludge can contain different 

elements such as trace metals lead, cadmium, chromium, copper, nickel and zinc. Some of those trace 

metals are essential to the functioning of the biological process (e.g., copper, chromium, nickel). However, 

at high concentrations, trace metals provided by sludge can become toxic for different forms of life. Thus, 

from an environmental point of view, it is very important to monitor carefully the activity of sewage sludge 

spreading. 
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We consider a SOLAP datacube intended for the analysis and exploration of data related to the sludge-

spreading activities in agriculture to help decision-makers in their activities of trace metal concentration 

control. The SOLAP datacube Platform Independent Model (PIM as defined in the MDA method (OMG 

2003)) is shown in Figure 4-1. 

 

Figure 4-1: Sludge spreading classic SOLAP datacube PIM (modeled using the ICSOLAP UML Profile) 

The model presents the following dimensions: 

- The dimension Time has a hierarchy TimeH where months are grouped into years.  

- The dimension Products has a hierarchy ProductsH with the unique level Elements (the 

members being the trace metals: zinc, lead, mercury, etc.).  

- In the dimension Location, we have: a hierarchy LocationHWatershed composed of 

SpreadZones<Watersheds<Country; a hierarchy LocationHFarms composed of 

SpreadZones<Farms<Regions<Country.  

The measure ProductFlowFromSludge is the flow of trace metals provided by sludge spreading (i.e. 

quantity of trace metals in grams divided by the area of the developed surface in square meters). 
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Recorded flow values associated with farming plots are collected from national sludge spreading 

management GIS and aggregated along the hierarchies using the average function (Figure 4-2).  

The measure ProductConcentrationInSoils is provided by soils analysis. This measure is the flow of trace 

metals that is contained in the soils. It is the quantity of trace metals (in milligrams) divided by quantity of 

soil dry matter (in kilograms) measured at a specific track point taken on farming plots. The values are 

also collected from national sludge spreading management GIS and aggregated along the hierarchies 

using the maximum function (Figure 4-2). 

Using a SOLAP datacube implementing this model, decision-makers can, for example: 

Q1: Aggregate the ProductFlowFromSludge at the watershed level to have an indication of the flow 

at that level.  

This aggregation is described in the BaseIndicator AVGProductFlowFromSludge as the 

AvgProductFlowInWatershed aggregation operation. (cf. top image on Figure 4-2): 

Q2: Aggregate the ProductConcentrationInSoils at the watershed level to have an indication of the 

concentration at that level.  

This aggregation is described in the BaseIndicator MAXProductConcentrationInSoils as the 

MaxConcentrationInWatershed aggregation operation (cf. bottom image on Figure 4-2).  

Figure 4-2: Aggregation rules modeling some of the end-user analysis requirements 

Spread zones are defined as regions of farming plots where sewage sludge has been spread. In reality, 

those regions have broad (vague) boundaries.  

As shown in the following Figure 4-3, each spread zone can be represented by a geometry composed of: 

1. A certain surface (drawn in green), and  

2. An uncertain surface which is the space between the certain part and the red boundary.  
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The green zone is the limit of a farming plot on which sludge has been spread. The geometries of farming 

plots come from the cadaster system. Because of imprecision related to spreading activity (e.g., the 

imprecision of the tractor equipment, the impact of winds), it is possible that, in some cases, sludge has 

been spread outside the green zone. This imprecision is the reason why a larger limit has been defined 

(the red boundary); we consider that it is not realistic that sludge has been spread outside the red limit 

during the spreading of the plot.  

 

 

 

 

 

 

 

 

Figure 4-3: Cartographic representation of an example of spread zone spatial vagueness and associated 
factual data  

The spread zone geometries available in the national sludge spreading management GIS correspond to 

the green zones. Farms are defined as the union of all farming plots of a given farmer. Regions are the 

administrative regions of the continental France. Watersheds are regions inside of which all surface waters 

converge to a single point at a lower elevation (rivers, lakes or another water body). Farms, regions and 

watersheds are well-defined objects with sharp boundaries. 

With this intended datacube, when analyzing the ProductFlowFromSludge (zinc –January 2000) at the 

SpreadZones level, decision-makers are exposed to the risk of over-evaluating the values. For example, 

for the ProductFlowFromSludge associated with SpreadZone1, decision-makers will think that 4.09 g/m2 is 

exact while the real value is somewhere in the interval [3.15, 4.09] (3.15 g/m2 red polygon). 

We call this risk Risk-Geometry.  

Definition 1. Risk-Geometry 

A Risk-Geometry is a risk of poorly evaluating a measure on a level that is induced by the vagueness on 

the level geometric attribute.  

SpreadZone1 

 

Zinc - January 2000 

ProductFlowFromSludge: 4.09 g/m2 

ProductConcentrationInSoils: 158 mg/kg 
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A poor evaluation occurs when a measure is systematically over- or under-evaluated, leading to 

unexpected analysis and decisions results. 

Example 1. Risk of over-evaluation of ProductFlowFromSludge on level SpreadZones. 

When analyzing the same measure at the Watersheds level, decision-makers are exposed to the risk of 

under-evaluating the values. In fact, only the spread zone parts that pour into a given watershed are 

considered in the aggregation for that watershed. Therefore, the ProductFlowFromSludge values are 

obtained for watersheds by calculating the quantity brought by the spread zone surfaces that are included 

in the watershed surface. Because the spread zones are vague, there is an uncertainty about the 

intersections with watershed resulting surfaces, thus an uncertainty on the aggregation results. Knowing 

that the spread zones are considered to their minimal extent, we can conclude that the intersection 

surfaces are under-estimated, so the product quantity is under-evaluated as well.  

We call this risk, Risk-Aggregation. 

Definition 2. Risk-Aggregation  

A Risk-Aggregation is a risk of poorly evaluating a measure on a level that is associated with the 

aggregation formula used to compute the measures for that level. 

Example 2. Risk of under-evaluation of measure ProductFlowFromSludge on Watersheds level. 

There are other risks of poor evaluation associated to the intended SOLAP datacube (the complete list 

can be found in  List of risks of misinterpretation associated with the Sludge SOLAP datacube). Reducing 

those risks early on during the datacube design will provide decision-makers with appropriate SOLAP 

datacubes where analysis errors are minimized. Motivated by this need, we propose a new risk-aware 

SOLAP datacube rapid prototyping method in the following section.  

4.5 Rapid Prototyping of SOLAP datacubes: RADSOLAP 
method 

The main idea of our method is to explicitly manage the risks of measures poor evaluation during the 

design process. In the majority of cases, those risks of poor evaluation cannot be avoided when exploiting 

spatio-multidimensional data (measures and spatial level members) that are marked by spatial vagueness 

in classic SOLAP systems (no use of complex vague object models). The method implements the general 

risk-aware design approach we have advocated in Edoh-Alove, Bimonte et al. (2015). The management of 

the risks of misinterpretation is done in three main steps: first, the risk is identified, then a risk 

management strategy (avoidance, control, transfer or indifference as defined in Gervais, Bédard et al. 

(2009)) is chosen according to the end-users tolerance level (Totally unacceptable (level=0), somewhat 
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unacceptable (level=1), somewhat acceptable (level=2) and totally acceptable risk (level=3) to the risk and 

finally a risk reduction action is applied to the multidimensional schema. The actions can modify the 

multidimensional structure (e.g. level deleting), the aggregation formulas (e.g. aggregator modification) or 

can consist of the definition of visualization policies variables (e.g. pivot table cells colors) to communicate 

the risk to the end-users. Further explanations on the risks management approach can be found in Edoh-

Alove, Bimonte et al. (2015). 

The proposed method should: 

I. Use a data model representing vague spatial data with simple geometries (point, line, polygon) to 

allow a feasible implementation in existing SOLAP systems;  

II. Explicitly support SOLAP datacube aggregations and the definition of visualization policies 

variables, as well as spatio-multidimensional schemas definition. Indeed, our method should 

provide not only the SOLAP datacube multidimensional and physical schemas as outputs but it 

should also specifies the different pertinent and authorized aggregation operations, as well as 

visualization policies variables values (e.g. red color for SpreadZones level cells) to communicate 

the risks if needed; 

III. Allow the possibility of an implementation according to the rapid prototyping paradigm (Bimonte, 

Nazih et al. 2013): the method should facilitate the roll-back to some of the key steps of the 

design to revise the choices made and refine the datacube modeling. Because our design 

method will define visualization policies variables values and change the spatio-multidimensional 

model, the SOLAP application end-users need to “play” with prototypes to validate the resulting 

datacubes, before SOLAP experts move to the real implementation.  

The steps of our RADSOLAP method are (see Figure 4-4):  

1. Users informally define the SOLAP functional requirements and semantics, identifying vagueness 

in spatial data sources.  

2. SOLAP experts create a datacube Platform Independent Model starting from the analysis needs of 

the users defined in step 1. Vague geometric members and measures are then identified on this 

initial model. For example, in our case study, spread zones are identified as being vague.  

3. Users informally identify and assess risks associated with the multidimensional elements of the 

model marked by spatial vagueness. In our case study, for example, the Risk-Geometry of over-

evaluating the product flow brought on spread zones is identified, and a tolerance level of 0 (totally 

unacceptable risk) is expressed.  
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4. SOLAP experts extend the previously defined spatio-multidimensional schema by adding 

information on risks and associated tolerance levels to the model. 

5. SOLAP experts choose a set of risk management actions (e.g. delete a level, modify aggregator, 

communicate the risk visually for the end-user), according to the tolerance levels defined by end-

users, between possible actions associated with a given tolerance levels. Those actions are then 

applied on the PIM to create a new version in an iterative process that calls for risk reassessment 

by the users. SOLAP experts can choose first to apply the actions that modify the 

multidimensional structure or that have an impact on other identified risks. Afterwards, the residual 

risks will be reassessed by the users and then managed in a second iteration, and so on. 

Ultimately, the resulting PIMs are automatically translated into physical schemas and prototyped. 

For example, for the Risk-Geometry on spread zones, and a tolerance level of 0 (totally 

unacceptable risk), SOLAP experts can choose the avoidance strategy, thus the action “delete 

level” in a list of possible actions corresponding to that strategy; this action will delete the whole 

SpreadZones level in the spatial dimension of the spatio-multidimensional datacube model (Figure 

4-1) 

6. The prototype is fed manually with realistic sample data. 

7. Users, more specifically decision-makers, access and explore these sample data using simple 

pivot tables of the SOLAP client, to validate the prototype.  

 If the prototype is accepted by end-users but visualization policies variables values choices 

for risk display are not, then return to step 5 to test other actions. 

 If the prototype is not accepted by users, return to step 1 if tolerance levels cannot be 

changed, otherwise return to step 3. 

For example in our case study if the prototype is not accepted, return to step 1 and choose to consider the 

spread zones in their maximal extent. 
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8. Once the prototype is accepted by users, data are collected, ETL is designed, and the prototype is 

engineered by the SOLAP experts. 

Figure 4-4: RADSOLAP method  
Next, we present in Section 4.5.1 the UML profile that supports the PIM design phase (steps 1 through 4 

of the method), and in Section 4.5.2, we present the formalization of datacube PIMs transformation 

functions that support step 5 of the method.  

4.5.1 RADSOLAP UML Profile 

It has been recognized that conceptual models are mandatory during the design phases of the datacube 

(Rafanelli 2003) and spatial database (Parent, Spaccapietra et al. 2006) development process, and 

designers often use UML to describe those models. Thus, in our approach we want to provide SOLAP 
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experts with a visual formal language to model SOLAP datacubes enriched with information about the 

spatial vagueness, the risks of poor measure evaluation and the tolerance level. 

We call the datacube schema enhanced with such information the RiskHypercube. 

Definition 3. RiskHypercube 

A RiskHypercube Cr is a datacube schema that has at least one spatial level SL or measure M with 

vague geometries AND metadata on the risks and tolerance levels associated with that spatial level or 

measure. 

For that purpose, we have extended the ICSOLAP UML profile presented in Section 4.3. The complete 

UML Profile meta-model can be found in the  RADSOLAP UML Profile metamodel. We defined a new 

stereotype for the hypercube called «RiskHypercube». A RiskHypercube is a specialization of Hypercube. 

Additionally, to support the vagueness expression on the initial PIM as advocated in step 2, we defined 

different stereotypes to use for level geometric attributes or for geometric measures. Those stereotypes 

were defined according to the method recommendations (section 4.5) and based on the vague data 

representation approach introduced in Bejaoui (2009):  

«MinExtent» when the minimal extent of the phenomenon is considered: it is, for example, the case of the 

geometric attribute «SpreadZonesGEOM» (green regions on Figure 4-3), in the SpreadZones class, as 

shown in Figure 4-5; 

«MaxExtent» and «ExactExtent» for maximal (red polygons in Figure 4-3) and exact extents (for 

geometries that are spatial vagueness-free such as watersheds, farms and region geometries in our case 

study), respectively.  

Figure 4-5: Level SpreadZones with one of our new geometry stereotypes («MinExtent») 
For the risks and tolerance levels expression on the datacube PIM (step 4), a class stereotyped 

«RiskLevel» is introduced to allow the association of the identified risks with the appropriate level on the 

PIM (see Figure 4-6). The «RiskLevel» class contains attributes stereotyped «RiskGeom» or «RiskAgg» 

that handle the identified risks. For example, we associate with the Watersheds level, the class 

RiskWatersheds, which contains the attributes raggSludgeWatershed and raggSoilsWatershed that hold 

the Risk-Aggregations on Watersheds.  
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Figure 4-6: RiskLevel on the Watersheds level 

To allow the adding of the tolerance level of the end-users to each identified risk, the «RiskLevel» 

attributes are tagged with Tolerance values (Tolerance = t). For example in the RiskWatersheds class 

(«RiskLevel» class associated with Watersheds), we have the attributes: raggSludgeWatershed with the 

tolerance level of 1 (see Figure 4-6). 

As stated previously, our design method has to define risk communication policies (requirement (II)). To 

allow this definition, we added two types of tags to «RiskLevel» attributes to hold each risk communication 

policy. It is the «RiskGeomCommunication» and «RiskAggCommunication» (intended for the map visual 

variables, pivot table or charts styling) tags. For example, in the RiskWatersheds class, we have the 

attribute raggSludgeWatershed with a «RiskAggCommunication» tag. The values of those tags are at 

“DefaultVisio” which corresponds to the basic map visualization with no risk to communicate. The 

attributes will be changed later during the schema transformation process. 

Because Risk-Aggregations depend on the aggregation operations, the aggregation rules have a new tag 

(«create») to express which risk they create. That way, a relationship is created between the rule and the 

Risk-Aggregation, and if the rule is removed, the risk also disappears. For example, in aggregation rule 

AVGProductFlowInWatershed «create» points to raggSludgeWatershed (see Figure 4-7). 

Figure 4-7: Risk-Aggregation tagging in base indicator AVGProductFlowFromSludge 
 

 

Example 3. 

The RiskHypercubeSludgeRisk schema presented on the following Figure is a datacube schema where 

we have a level with vague geometries (SpreadZones level) and information about the risks and 

associated tolerance levels described in «RiskLevel» classes RiskSpreadZones, RiskWatersheds and 

RiskFarms. 
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4.5.2 Datacube PIM transformation 

In the step 5 of our method, SOLAP experts need to conduct SOLAP datacube PIM transformations. For a 

given risk, and for a given tolerance level expressed on that risk, they have to choose the appropriate 

action (delete or modify a datacube multidimensional schema element, modify visualization policies 

variables values to add quality indicator for a measure or to communicate a risk regarding the aggregation 

levels etc.) to reduce the risk and design adapted datacubes.  

The datacube models are to be transformed on the fly and in an iterative manner. So after performing 

actions that have modified the datacube, it is important to ensure that the models are still valid from a 

multidimensional point of view. Only valid datacubes are delivered at the end. We consider that to be 

valid, the resulting datacube models must respect the spatio-multidimensional model logical 

consistency, allow aggregations and fit user needs in analysis.  

Trying to guarantee the datacube model validity, one will face different issues: 

1. How to make sure that with the changes applied to manage each risk, the datacube models 

still fits user needs in analysis?  

In our case study, we have two different measures: ProductFlowFromSludge and 

ProductConcentrationInSoils. If decision-makers have a tolerance level of 0 for the Risk-

Aggregation related to ProductFlowFromSludge on SpreadZones, an action of deleting the level 

SpreadZones will deprive the users of the analysis (all BaseIndicators) on the 

ProductConcentrationInSoils.  

2. How to make sure the datacube multidimensional structure still allows aggregation each time 

one action is applied to manage the risk on a given level?  

In our case study, we have an alternative hierarchy in the spatial dimension. If the lowest level 

(SpreadZones) is deleted during the transformations, one will need to change the hierarchy by 

creating another lowest level; otherwise the model will not respect the multidimensional logic (see 

Figure 4-8), and aggregation will not be possible with the new multidimensional structure. 
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Figure 4-8: Illustration of transformation-related issue 3 

One way to resolve those issues is to satisfy the two following requirements: indicator-level dependency 

and well-formed hierarchy. 

Definition 4. Indicator-level dependency 

An indicator-level dependency is respected in a datacube model when each spatial level is associated with 

only one pair measure/BaseIndicator in the datacube model (see Figure 4-9). 

 

Figure 4-9: Indicator-level dependency 

Definition 5. Well-formed hierarchy 

To be well-formed, a hierarchy must be represented as a partial order with a bottom level (Pedersen and 

Tryfona 2001).  

Example 5. 

Non valid schema 
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The spatial hierarchy shown on the left image of Figure 4-8 is a well-formed hierarchy because it is 

represented as a partial order with the bottom level SpreadZones. 

Now, we define the concept of elementary SOLAP datacube, on which is based the transformation 

process and functions in our method. 

Definition 6. Elementary SOLAP datacube 

An elementary SOLAP datacube is a datacube where: 

- each spatial hierarchy is a total order, 

- there is a unique measure, 

- there is a unique BaseIndicator. 

Such a datacube respects the indicator-level and the well-formed hierarchy requirements:  

 Well-formed hierarchy: Because a total order is also a partial order, the elementary SOLAP 

datacube spatial hierarchies are well-formed by definition. 

 Indicator-level dependency: By definition, an elementary datacube holds a unique pair 

measure/BaseIndicator. Thus each spatial hierarchy is associated with that unique pair, meaning 

that the indicator-level dependency is respected. 

Example 6. 

The datacube shown in Figure 4-10, below, is an elementary datacube that has a spatial hierarchy 

LocationHWatershed in a total order (SpreadZones<Watersheds<Country), a unique measure 

ProductFlowFromSludge and a unique BaseIndicator AVGProductFlowFromSludge associated with the 

measure. 
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Figure 4-10: Example of an elementary SOLAP datacube 

An elementary datacube model is a valid datacube as long as it fits the need in analysis of the end-users. 

In the next section, we present the formal definition of transformation functions that help apply the risk 

management actions to elementary datacube models.  

4.5.2.1 Datacube schema transformation functions 

 
We have formalized the basic datacube schema transformation functions that are necessary to technically 

apply the actions that impact the multidimensional structure, the aggregation rules and the risk 

communication parameters. The definition of the functions is supported by the RADSOLAP UML profile 

presented in the previous section. 

Each function takes as the main input a RiskHypercube modeling an elementary datacube and delivers as 

output another RiskHypercube. The following table (Table 4-1) lists the different functions identified and 

their descriptions. This list does not pretend to be exhaustive in this thesis.  
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There are two classes of functions: 

 Functions that change the datacube multidimensional structure: they allow the modification or 

removal of multidimensional elements such as dimensions, levels, level attributes (e.g, 

DeleteSpatialDimension, ModifySpatialLevel). The addition of levels, dimensions or aggregation 

rules implies the changing of analysis requirements. For that reason, we do not recommend the 

use of such actions at this step to manage the risks. Requirement changes should be made at 

the Functional requirements analysis step. 

 Functions that do not change the datacube multidimensional structure: they aim at modifying 

datacube model elements such as aggregation rules, risks and risk communication attributes 

(e.g, ModifyRiskAgg, ModifyAggRuleAggregator). 

Table 4-1 : Datacube schema transformation functions 
 
In the following paragraphs, we present the formalization of the DeleteLowestSpatialLevel function. 

We consider Cr, a RiskHypercube with one dimension Ds, holding one spatial hierarchy Hs, one 

measure M and one associated BaseIndicator B. 

Hs = SpatialLevel [0] < SpatialLevel [1] <… <SpatialLevel [n], with SpatialLevel [i] (i  {0, 1…n}) being the 

aggregation levels at the position i in the hierarchy Hs.  

Functions Description 

Functions that change the datacube multidimensional structure 

DeleteSpatialDimension Delete a whole spatial dimension 

DeleteSpatialLevel Delete a level which is neither the leaf nor the root of the 

hierarchy 

DeleteLowestSpatialLevel Delete the lowest level (root) 

DeleteHighestSpatialLevel Delete the highest level (leaf) 

ModifySpatialLevel Modify the attributes of a spatial Level 

Functions that do not change the datacube multidimensional structure 

ModifyAggRuleAggregator Modify the aggregator defined in an aggregation rule 

ModifyAggRuleFromLevel Modification the spatial level from which the aggregation 

is done to obtain the values for a given spatial level 

ModifyRiskAgg Modify risk-aggregation attribute  

ModifyRiskGeom Modify risk-geometry attribute  

ModifyRiskGeomComm Modify risk-geometry communication attribute 

ModifyRiskAggComm Modify risk-aggregation communication attribute 
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Hs has n-1 aggregation relationships AggRel[i], (i  {0, 1…n}, n being the number of spatial levels. 

AggRel[i] is a relationship between SpatialLevel[i] and SpatialLevel [i+1]. 

B = {AggRuleSL[i], i  {1… n}} such as AggRuleSL[i] is the aggregation formula defined for a spatial level 

at the position i in the hierarchy Hs, and n is the number of spatial levels. 

A SpatialLevel[i] can have an associated class RiskLevel that describes risks of misinterpretation in Cr.  

For our illustrations, we will take this following Cr example (Cf. Figure 4-11): 

 

 

Figure 4-11: Example of elementary RiskHypercube: SludgeCr 

 

Definition 7. DeleteLowestSpatialLevel Function 

This function deletes the lowest level of the hierarchy. It takes as input a RiskHypercube and the 

dimension from which the lowest level should be deleted.  

The output is a new RiskHypercube where the level, the associated RiskLevel, the related aggregation 

relationship and aggregation rules in the BaseIndicator are all deleted. The RiskAgg attributes that are 

indexed by the tag “create” in the deleted aggregation rules are thus tagged with the tolerance value of 99, 

meaning that the risk information is invalidated for that level. 

DeleteLowestLevel (RiskHypercube Cr, SpatialDimension Cr.Ds) = RiskHypercube Cr’ 
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Such as,  

Cr’ = Cr – {Cr.Ds.Hs.SpatialLevel[0], Cr.Ds.Hs.AggRel[0], Cr.Ds.Hs.SpatialLevel[0].RiskLevel, 

Cr.Ds.Hs.DimRel}  

– Cr.BaseIndicator.AggRuleSL[i], i {0,k}, k being the number of aggregation rules to be deleted, where 

Cr.BaseIndicator.AggRuleSL[i].fromSpatialLevel is SpatialLevel[0]  

 

with new Cr.Ds.Hs.DimRel such as Cr.Ds.Hs.DimRel.identifiedFact is Cr.F and  

Cr.Ds.Hs.DimRel.identifyingLevel is Cr.Ds.Hs.SpatialLevel[1]. 

and Cr.Ds.Hs.[Cr.BaseIndicator.AggRuleSL[i].toSpatialLevel.value].RiskLevel.Ragg.tolerance = 99 for 

each i  (Boutry, Gassion et al.) such as 

Cr.Ds.Hs.[Cr.BaseIndicator.AggRuleSL[i].toSpatialLevel.value].RiskLevel.Ragg.name = 

Cr.BaseIndicator.AggRuleSL[i].create.value 

 
Example 7. Deleting the lowest level of SludgeCr (level SpreadZones). The result of this operation is 

shown in Figure 4-12 below. 

DeleteLowestLevel (SludgeCr, SludgeCr.Location) = SludgeCr’  

Such as 

SludgeCr’ = SludgeCr – {SludgeCr.Location.LocationH.SpreadZones, 

SludgeCr.Location.LocationH.ProductFlow_Location, SludgeCr. 

AVGProductFlow.AVGProductFlowInWatersheds} 

With new SludgeCr.Location.LocationH.ProductFlow_Location and 

SludgeCr.Location.LocationH.[SludgeCr.AVGProductFlow.AVGProductFlowInWatersheds. 

 

Figure 4-12: Result of the application of the DeleteLowestLevel function on SludgeCr 

The remaining defined functions can be found in  SOLAP datacube PIM transformation functions. 
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An elementary SOLAP datacube remains elementary after transformations. 

An elementary SOLAP datacube is defined as a datacube where: 

(1) each spatial hierarchy is a total order, 

(2) there is a unique measure, 

(3) there is a unique BaseIndicator. 

The transformation functions defined delete or modify spatial levels, aggregation rules, risk attributes and 

risk communication attributes. Applied on a valid elementary datacube, we will have as output a datacube 

that still has the following features: 

(1) Each spatial hierarchy is a total order: the function that impacts the spatial hierarchy is the delete 

of spatial level. Whether it is the lowest, highest or any other level that is deleted, the aggregation 

relationships are corrected in consequence so the hierarchy remains a total order with one 

bottom level. 

(2) A unique measure: no function deletes or adds measures, so the resulting datacube model still 

describes only one measure. 

(3) A unique BaseIndicator: No function adds BaseIndicators and even though aggregation rules are 

deleted, the BaseIndicator still hold aggregation rules related to the new hierarchy. Therefore, the 

resulting datacube model still presents a unique BaseIndicator. If there is only one spatial level 

left in the hierarchy and no BaseIndicator, it is a particular case of elementary datacube because 

there is still one unique measure.  

With that, we have proven that an elementary datacube remains elementary through any transformation or 

combination of transformations. 

4.5.2.2 Datacube schema transformation process 

To simplify the comprehension of the proposed transformation process, we consider only one identified 

risk for our illustrations: Risk-Geometry of over-evaluating m1 on SpreadZones with the associated 

tolerance 0 and the action chosen “Delete level”. The overall transformation process built upon the 

elementary datacube hypothesis is the following (cf. Figure 4-13): 

First, the process takes the initial datacube PIM and splits it into N elementary datacubes to guarantee the 

datacube model validity throughout the transformations (step 1). After that, each elementary datacube is 

transformed by means of the transformation functions described in the previous section, according to risk 
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management actions chosen (step 2). Finally, to reduce the number of final adapted datacubes to deliver 

to the prototyping steps, a fusion method is applied on the transformed datacubes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-13: SOLAP datacube model transformation process 

Step1.In this step, the initial model is split into N elementary datacube models (CubeInit1…, CubeInitN).  

Definition 8. Datacube Splitting 

The datacube splitting is a process where an initial datacube model with one spatial dimension, H spatial 

hierarchies in that spatial dimension, M measures, Bj (j from 1 to M) BaseIndicator for each measure 

creates N = H x  elementary datacube models CubeIniti. 

Each CubeIniti, i from 1 to N, represents some of the analysis needs of the users. Aggregation rules with 

associated risks on spatial levels present in each CubeIniti are kept for that datacube.  

Example 8. 

In our case study, we have H = 2 spatial hierarchies, M = 2 measures and B1 = 1 BaseIndicator for 

measure m1 and B2 = 1 for measure m2. The split process will return N = 2 x (1+1) = 4 new datacube 

models as shown in Figure 4-14. 
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Figure 4-14: Illustration of the transformation process step 1 with our case study 

Step2.In this step, some of the chosen transformation actions are applied in corresponding elementary 

datacube models CubeIniti by means of the transformation functions defined in section 4.5.2.1. 

Transformations could consist of deleting/modifying levels, aggregation rules, etc.  

For example, after applying the action “Delete SpreadZones level” to manage m1 on appropriate CubeIniti, 

the resulting CubeIniti’ are presented in Figure 4-15: 

 

 Country 

Watersheds 

Spread 

Zones 

Regions 

Farms 

 Country 

Spread 

Zones 

m1

B1 

 

 

 Country 

Watersheds 

Spread 

Zones 

Regions 

Farms 

 Country 

Spread 

Zones 

m1 

B1 

 

m2 

B2 

 

m2 

B2 

 

CubeInit1 has CubeInit2 has CubeInit3 has CubeInit4 has 

 

 Country 

Watersheds 

Regions 

Farms 

Spread 

Zones 

 m1- ProductFlowFromSludge;  
B1-AVGProductFlowFromSludge 

 CubeInit has 

m2- ProductConcentrationInSoils; 

B2 - MAXProductConcentrationInSoils 

Spatial hierarchies Measures/BaseIndicators 

S
plit 



94 
 

B1’ = B1 with a new aggregation rule for Country knowing that Watershed is now the lowest level. 

B1” = B1 with new aggregation rules for Regions and Country knowing that Farms is now the lowest level. 

CubeInit3’ and CubeInit4’ are no different than CubeInit3 and CubeInit4 because the risk managed is 

related to m1 and not m2. The models allow users to still make analysis related to Spread Zones and 

measure m2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-15: Illustration of the transformation process step 2 with our case study 

Step3. At this stage of the transformation, the resulting new elementary datacubes models are merged if 

possible, in order to reduce the number of datacubes the users will have to analyze. The fusion of two 

elementary datacubes is possible only when some conditions are met (see definition 9). 

Definition 9. Fusion of two elementary datacubes 

Two elementary datacube models CubeIniti and CubeInitj can be merged if: 

1. They have the same lowest spatial level in each spatial dimension AND 

2. They have the same couple measure/BaseIndicator. 
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If one of these conditions is not respected, the two datacubes are kept separate. Ultimately, the process 

will deliver many datacube models, each one offering a different view of the data as required by the needs 

of the users in analysis. 

Example 9. 

For example, if we compare CubeInit1’ and CubeInit2’ (see Figure 4-15), we find that they do not have the 

same lowest level in their spatial dimension, CubeInit1’ having Watersheds at lowest level and CubeInit2’ 

having Farms. CubeInit1’ and CubeIniti2’ models cannot be merged. Actually, this is the case for all pairs 

{CubeInit1’, CubeInitj’}, and {CubeInit2’, CubeInitj’}, j {3, 4}, so they are all kept separate. However, when 

comparing CubeInit3’ and CubeInit4’, we find that they have the same lowest level (SpreadZones) and the 

same couple measure/BaseIndicator (m2/B2); thus, they can be merged together. The process will thus 

deliver three datacube models for this particular transformation iteration (Cf. Figure 4-1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-16: Illustration of the transformation process step 3 with our case study 

4.6 Chapter synthesis 
In this chapter, we have presented our new design method for conventional SOLAP applications that 

allows handling vague spatial data analysis issues by means of SOLAP datacube risks of misinterpretation 

and the tolerance levels of decision-makers to those risks. The method allows decision-makers, enterprise 

geospatial data and systems users and SOLAP experts to collaborate in designing SOLAP datacubes that 

(1) decision-makers can easily explore and analyze; (2) that can be implemented in the existing SOLAP 

systems; and (3) that handle the spatial vagueness on the sources. The method aim at adapting the 

SOLAP datacubes PIMs, to end-users tolerance levels to identified risks of misinterpretation, in an 
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iterative way, until end-users are satisfied with the delivered datacubes prototypes. To support the PIMs 

design (with vague, risks and tolerance parameters) and transformation, we have defined an UML profile, 

a SOLAP datacube PIMs transformation process plus we have formalized transformation functions that 

help apply the risks management actions chosen according to tolerance levels. The functions can be 

implemented in a semi-automatic design tool that will help generate and transform automatically SOLAP 

datacube prototypes. 
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Chapter 5: Risk-aware design approach 
evaluation 
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5.1 Introduction 
In this chapter, we focus on the evaluation of the risk-aware design approach proposed in this thesis. The 

evaluation is about experimenting our proposals on the sludge case study presented in the previous 

Chapter 4 and then comparing the results obtained from our method with the classical approach results. 

We extracted many different SOLAP datacubes from the sludge data sources by varying the tolerance 

degrees and actions associated, analyzed and compared the results usability, reliability and ease of 

implementation with the classical approach result. 

To set up our experimental framework, we have implemented and integrated our proposals into an existing 

CASE system that has been developed in our research team at Irstea: the ProtOLAP tool. The ProtOLAP 

tool is based on a ROLAP architecture and open sources OLAP server and clients. It aims at helping 

OLAP datacubes producers to quickly design and prototype classical datacubes by generating the logical 

and physical schemas based on the multidimensional model elaborated in the requirement phase. 

Extending the ProtOLAP tool for our implementation allows us to provide the means for a quick and semi-

automatic design where the tolerance and risks parameters can be easily changed. This aspect is 

important because we need to be able to efficiently and quickly pass on the tolerance and risks 

parameters changes on the datacube schemas for many risks and different tolerance degrees and in an 

iterative manner. Also, integrating our new design method in such CASE system allows us to quickly verify 

if the produced SOLAP datacubes are easily implementable in classical SOLAP architectures. The 

extension essentially consisted of the implementation of the concepts of risks and tolerance degrees and 

the transformation functions. The programming has been entrusted to two undergrad students in their last 

year of Computer Science Engineer degree in the form of a 120 hours project. Their work have been co-

supervised by the author of this thesis and the councilor Sandro Bimonte. The author has provided the 

students with the functional design of the extension, as well as the case study, the dataset and initial 

schema of SOLAP datacubes on which the application was tested. The supervision was organized around 

weekly meetings (1-2 hours) and emails exchanges. Also the author of this thesis helped in the students’ 

final report writing by providing some of the content (project context, method global description and tool 
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architecture) and as a reviewer; ultimately, the author was a member of the board of examiners during the 

project defense. 

The chapter is structured as followed: first the experimental framework built for the method evaluation is 

described in Section 5.2. Then Section 5.3, details the risk-aware design method validation process, 

presents briefly the SOLAP datacubes design and finally presents and explains the comparison results. 

Section 5.4 concludes this chapter. 

5.2 The RADTool: an implementation of the RADSOLAP 
method 

With the RADSOLAP method, several SOLAP datacubes are designed incrementally and can be 

proposed to the decision-makers. Each SOLAP datacube corresponds to a different multidimensional 

schema, data and visualization policies. Not only it could be difficult to perform all the required schemas 

transformations in a quick and coherent way that preserves the schemas validity, but it could also be 

difficult for decision-makers to have a good idea of the impact of all actions associated to their tolerance 

levels on the resulting SOLAP datacubes, their exploration and visualization, without really “playing” with 

them (Bimonte, Nazih et al. 2013) . For example, if one of the strategies applied is to remove a level, they 

may not be really sure it still fits the analyses needs until they perform the SOLAP datacube exploration. 

Moreover, ETL procedures are usually complex and time and resources consuming (Guimond 2005). A 

rapid prototyping will help them see what they can expect with the choices made, and then decide which 

SOLAP datacube better fits their use before moving the whole project to the costly ETL process phase.  

The need of a technical solution that supports a quick design and implementation of datacubes appears 

undeniable. We therefore proposed the RADTool, a system to design and implement datacubes. The 

global architecture of the RADTool is based on the ProtOLAP system proposed in Bimonte, Nazih et al. 

(2013). The main idea of ProtOLAP is to allow datacube designers to automatically and incrementally 

implement datacube schemas and feed them with sample data, and provide end-users with real OLAP 

clients to allow them to test the designed datacube, in order to ultimately validate the spatio-

multidimensional schema. We think that such method is highly beneficial in our risk-aware design 

approach.  

However for now, our main purpose is not to develop a turnkey tool to support the risk-aware design but to 

build a system that will allow us verify that a risk-aware design approach can help produce SOLAP 

datacubes, exploiting spatial vague objects, where the spatial vagueness is considered (more reliable 

datacubes), and that are as usable and easily implementable as SOLAP datacubes designed with any 

classical design method. Therefore in this thesis, we concentrate on defining and implementing the 

RADTool features that would facilitate and make the prototyping of the datacubes quick and efficient. The 
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result is a first version of what could become a complete turnkey solution to support risk-aware design of 

SOLAP datacubes activities. 

5.2.1 Preliminary work: ProtOLAP 

ProtOLAP is a tool for rapid prototyping datacube development. The ProtOLAP architecture based on a 

Relational OLAP platform and is composed of four tiers:  

 The Requirement tier, where OLAP experts draw a UML-based PIM, using the ICSOLAP UML 

profile (Boulil, Bimonte et al. 2012) and the MagicDraw CASE tool5 (UML-based modeling 

software);  

 The Deployment tier, that includes the Oracle Relational DBMS, the Mondrian OLAP server, and 

a mechanism that creates relational schema for Oracle and metadata for Mondrian starting from 

the conceptual schema;  

 The Feeding tier, that automatically generates a visual interface through which users can feed the 

datacube stored in deployment tier with application domain data; 

 The Visualization tier, that allows decision-makers to query data stored in the deployment tier 

using the JRubik OLAP client. SOLAP Risk-Aware Design Tool (RADTool). 

5.2.2 SOLAP Risk-Aware Design Tool (RADTool) 

For our RADTool, we need to extend the ProtOLAP tool with the features that are required to support the 

SOLAP datacube risk-aware conceptual design and prototyping activities. They are: (1) the 

multidimensional schemas transformations and (2) the exploration with classical SOLAP clients. As shown 

on Figure 5-1, the RADTool architecture is similar to the ProtOLAP one with the exception of a new 

Transformation Tier we have added.  

(1) To support the schemas transformations, we have extended the ProtOLAP main interface by 

adding a Risks management view frame (see Figure 5-2); we have also added the 

Transformation Tier where some transformation functions as well as a schemas fusion module 

are implemented. The Risks management view frame is used by datacube designers to select 

risks and tolerance levels to add to the initial datacube. That way, the risks and tolerance levels 

parameters can be changed in an iterative manner and the tool can transform the datacube 

schemas accordingly by means of the functions (DeleteSpatialLevel, ChangeAggregator and 

CommunicateRisk) implemented in the Transformation Tier. Note that the transformations are 

                                                           
 
5 Official Website http://www.nomagic.com/products/magicdraw.html, June 2014 
 
 

http://www.nomagic.com/products/magicdraw.html


102 
 

applied directly on XML Mondrian schemata first generated in the Deployment Tier from the PIM 

elementary models in UML.  

 
Figure 5-1:  Architecture of the SOLAP RADTool 

(2) In the Visualization Tier, the OLAP client Jrubik is delivered to decision-makers to validate the 

spatio-multidimensional schemas and aggregation functions as well as the choice of tolerance 

levels and actions (including visualization policies such as pivot cells in red or green). 

An example of one datacube prototype implemented in our case study where SpreadZones level is not 

deleted by actions, but a visualization policy is applied, is shown on Figure 5-4. We can note that the Risk-

Geometry is communicated using a red color in the pivot table as defined in the MDX generated 

accordingly by the tool (Cf. Figure 5-3). 

 

 

 

RADTool 
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Figure 5-2:  Interface for risks, tolerance levels and actions setting. 

 

 

 

 

 

Figure 5-3:  MDX styling for the visualization policy application on SpreadZones level 

 

Figure 5-4:  Pivot Table visualization in the Visualization Tier 

5.3 Risk-aware design approach evaluation: process and 
results 

To evaluate the approach, we need to verify if the SOLAP datacubes resulting from it are more reliable 

(spatial vagueness is considered) while remaining as usable (schema understandability) and easily 

implementable in classical architectures (no specific new technique proposed to support the datacubes 
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deployment in SDBMS and SOLAP servers) as classical SOLAP datacubes. The approach evaluation 

process involve activities related to this verification. 

First, regarding the ease of implementation aspect, it is obvious that the implementation of the SOLAP 

datacubes obtained with our design method can be deployed in classical SOLAP architecture without 

having to develop any particular complex technique related to the spatial vagueness management. 

Indeed, first of all, the outputs of the RADTool are classical Spatial SQL and MDX scripts as well as XML 

Mondrian schemas; also, the new visual policies we have defined are simply based on the MDX styling, 

thus they can be enabled in any OLAP client. 

The activity diagram of Figure 5-5 presents the approach adopted to verify the usability and reliability 

aspects.  

The verification is done in four phases: 

Phase 1: Define design evaluation criteria  

The fundamental question we have to answer here is: “how are the SOLAP datacubes evaluated on the 

usability and reliability aspects?” For each evaluation activity, it is essential to define verifiable and/or 

quantifiable (if applicable) criteria early on to avoid any subjectivity. This step is where the criteria 

definition is done according to our goals. 

Phase 2: Design SOLAP datacubes using RADSOLAP method and design SOLAP datacubes using 

a classical method  

This phase simply focuses on the designing and prototyping of the SOLAP datacubes with and without our 

new risk-aware design method. 

Phase 3: Analyzing resulting datacubes based on the criteria 

In this phase, we evaluate the design results using the criteria defined in the first phase. 

Phase 4: Discuss analysis results 

In this step, a comparison is done between the results of the classical design and the RADSOLAP design 

based on the previous analysis. In this phase, we are able to answer the question “Are the SOLAP 

datacubes designed with our method more reliable than and as usable as the classical datacubes?”  

In the rest of the section, we detail each step and results obtained. 
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Figure 5-5   Datacubes usability, reliability and ease of implementation verification process 

5.3.1 Definition of the design evaluation criteria 

5.3.1.1 Usability evaluation 

Some researchers have advocated the use of quantifiable metrics to test datacubes conceptual or logical 

schema understandability (Berenguer, Romero et al. 2005, Serrano, Trujillo et al. 2007, Golfarelli and 

Rizzi 2011). Valid and useful metrics definition is a complex activity. It requires a clear definition of the 

measurements goals and organization’s needs, then the definition of the metrics based on the goals and 

needs, and finally the most important step, the metrics validation (Serrano, Trujillo et al. 2007). The 

validation should be theoretical and empirical (based on experiments, case studies and surveys). This 

thesis not being about defining new metrics, we find judicious to identify appropriate already existing 

metrics to use for our datacube understandability evaluation.  

The two main requirements that guide our metrics choice are: (1) facts, dimensions and measures must 

be considered and (2) the risk communication artifacts must be addressed.  

Ultimately, we have selected the following metrics: Total number of classes, Number of spatial 

dimensions, Number of hierarchy relationships, Number of measures per fact as defined in Serrano, 

Trujillo et al. (2007) and Number of multiple hierarchies as defined  in Gosain, Nagpal et al. (2011). 
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 Total number of classes: it counts the total number of classes existing in the SOLAP datacube 

PIM. The classes are the level classes, the fact class, and the BaseIndicator (Boulil, Bimonte et 

al. 2012) classes. This metric in particular allows us to consider a new risk class, to hold the risks, 

tolerance and visualization policies variables associated, introduced by our method into the 

SOLAP datacube models. 

 Number of spatial dimensions: it counts the number of spatial dimensions existing in the SOLAP 

datacube PIM. We have selected this metric because it allows us to evaluate the complexity of 

the model regarding the number of spatial dimensions end-users will have to wrap their mind 

around and exploit, with or without vagueness issues, in their analysis. 

 Number of hierarchy relationships: it counts the number of relationships between the levels in a 

dimension. It highlights the importance of complex hierarchies (Malinowski and Zimányi 2008) in 

the model. We have selected this metric because it allows evaluating the understandability of the 

model. 

 Number of multiple hierarchies: it counts each time a multiple hierarchy is found in the model. We 

have selected this metric because it help evaluates and compare the models complexity 

regarding the number of multiple hierarchies end-users will have to deal with while exploring the 

datacubes.  

 Number of measures per fact: it counts the number of measures associated to each fact. This 

metric focuses on the measures described in the model and we found it useful in this work 

because it allows us to evaluates and compare the models complexity on the number of 

measures end-users will have to exploit with or without spatial vagueness issues. 

Using these metrics as criteria for comparing the datacubes allow us to objectively verify if the RADSOLAP 

datacubes schemas are as usable as classical SOLAP datacubes ones. How do the metrics values differ 

from one datacube to the other? Are the values greater or lesser for the RADSOLAP datacubes? Those 

are the questions we want to answer during the phase 4 of the validation. Indeed, if the metrics values are 

similar, we could conclude that the method keeps the level of usability of the datacubes. However, if they 

differ in a significant way (e.g. 30% more or less), we could evaluate if the RADSOLAP method produces 

more usable datacubes or not in this study case:  

 A total number of classes that has increased in a significant way for RADSOLAP datacubes 

would mean that the method adds too many new risk classes for the datacubes to be as 

understandable as the classical datacubes.  
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 A Number of spatial dimensions, hierarchy relationships, measures per fact or multiple 

hierarchies significantly greater would mean that the RADSOLAP datacubes are less 

understandable.  

In contrary, a smaller number of classes, spatial dimensions, hierarchy relationships, measures per fact or 

multiple hierarchies would mean that the method simplifies the datacubes and makes them more usable in 

regards with the considered criterion. 

5.3.1.2 Reliability evaluation 

In this work, reliability refers to the fact that the spatial vagueness is considered (identified and managed) 

or not in the datacube. The question of how the reliability is evaluated has been the main issue. Indeed, 

this concept being very particular to our work, we could not find any existing metric or criteria suitable for 

this evaluation activity in the literature.  

With that said, in our RADSOLAP method (Cf. Chapter 4, Section 4.5), more specifically at step 2, we 

advocate the identification of vague geometric attributes on the initial SOLAP datacube PIM and then at 

step 3 the identification and assessment of all the risks of misinterpretation induced by the previous 

identified vague geometric attributes. The risks identification is then followed by risks management 

activities in the next step. In summary, each vague geometric attribute induces zero to multiple intrinsic 

risks of misinterpretation (risk-geometry and risk-aggregations), and each risk of misinterpretation is 

managed with 0 to multiple risk management actions (Cf. Figure 5-6).  

 

Figure 5-6:   Relationship between vagueness, risks and risk management actions 

Basically, the method allows considering the spatial vagueness. The spatial vagueness management is 

however replaced by the management of the risks of misinterpretation (induced by the vagueness). Any 

effort towards considering the risks of misinterpretation, namely a risk identification activity, and any effort 

towards managing the eventual identified risks, namely a risk management action is an effort towards 

managing the spatial vagueness and must be recognized as such. 

Ultimately, to evaluate the reliability for both classical and RADSOLAP datacubes, we just need to verify if 

the spatial vagueness has been highlighted and risks have been identified and managed or not.  
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5.3.2 SOLAP datacubes classical and RADSOLAP design 

Classical design: 

The classical design method result is a SOLAP datacube PIM where the spatial vagueness is not 

considered at all (see Figure 5-7). It is the same as the Sludge PIM showed on Figure 3-6 except that the 

spatial dimension is enriched with new spatial levels and a new measure to meet more user analysis 

requirements. It has now one multiple hierarchy with two paths as shown on Figure 5-7: Spread Zones < 

Watersheds < Country (LocationHWatershed) and Spread Zones < Farms < Regions < Country 

(LocationHFarms).   The new measure, ProductConcentrationInSoils refers to the trace metals 

concentration in the soils. It is also important to monitor this concentration in order to control the quantity 

of product added by the spreading. The new path LocationHFarms allows end-users to monitor the 

product flow brought by the sludge spread and the product concentration in the soils not only in spread 

zones and watersheds but also in farms and regions. 

RADSOLAP design: 

We have considered the spread zones in their minimal extents (Cf. green region on Figure 4-3). We note 

that considering them in their maximal extents (rather than their minimal extents) will not change the 

results of our analysis. The only things that change when exploiting the maximal extents in this case study 

is the wording of the risks identified (over-evaluation became under-evaluation, vice-versa or nothing 

changes) and eventually end-users tolerance levels since the risks are different. Since we will be trying all 

possible combinations of tolerance levels here, those changes do not impact the design resulting and 

consequently the results evaluation. 

At first, we built an initial PIM where all vague data and risks of misinterpretation are identified. Then we 

split that initial SOLAP datacube into elementary SOLAP datacubes (Cf. Appendix E for the PIMs 

obtained). We have applied a combination of all 4 tolerance levels to the elementary PIMs and actions 

were applied in accordance with the tolerance choices. The result is a set of 31 final SOLAP datacubes 

PIMs, which are actually all possible datacubes for this study case. 
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Figure 5-7:  Classical Sludge datacube PIM new spatial dimension 

5.3.3 SOLAP datacubes reliability and usability comparison 

Reliability: 

While the Sludge datacube has been designed without considering, let alone managing the spatial 

vagueness on the spread zones, the spatial vagueness on spread zones has been singled out and taken 

care of by means of risks of misinterpretation identification and management for the 31 RADSOLAP 

datacubes. In some cases, the choice to accept some of the risks, and therefore not doing any action to 

reduce them has been made; however, that choice is conscious and is part of a risk management strategy 

(indifference) itself.  

We can conclude that the SOLAP datacubes designed with the RADSOLAP method are more reliable 

than the classical Sludge datacube. 

Usability: 

Now, regarding the usability aspect, the SOLAP datacubes PIMs were tested according to the metrics 

identified previously. We recall that we have 31 final possible SOLAP datacubes for when the spread 

zones are considered in their minimal extents and 1 classical SOLAP datacube.  

First we have computed the Euclidian distance d between the vectors of metrics values corresponding to 

each resulting SOLAP datacube and the Sludge one. This distance will be used to evaluate the level of 
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similarity between the RADSOLAP datacubes and the classical and help us answer our first question: How 

do the metrics values differ from one datacube to the other?  

We consider: 

 the vector of metrics representing the Sludge datacube, 

 the vector of metrics representing one of the 31 SOLAP datacubes obtained 

with the RADSOLAP method.  

 the Euclidian distance . The computed distances are available on the Figure 5-8. 

Figure 5-8:  Figure showing the distance2 values for the 31 RADSOLAP datacubes 

Overall, three RADSOLAP datacubes PIMs are at a distance of 1 from the classical Sludge PIM, only one 

is at a distance of 54 (greatest distance) and the majority is around the median distance (d2=12). The set 

standard deviation is 12.21. Figure 5-9 detailed the statistics for each criteria. It shows that the metrics 

values are whether the same for all SOLAP datacubes, include the datacube Sludge, or that the metrics 

values for the datacubes produced with the RADSOLAP method are lesser than the ones for the classical 

SOLAP datacube. It is especially the case for the metrics Total number of classes, Number of hierarchy 

relationships, Number of multiple hierarchies. We can already conclude that the majority of the SOLAP 

datacubes designed with our method are similar to the classical Sludge datacube in terms of the usability.  
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 Figure 5-9: Diagrams illustrating the comparison of the values  

To refine the comparison, and answer our second question (“Are the values greater or lesser for the 

RADSOLAP datacubes?”) we take a closer look to the RADSOLAP datacubes PIMs corresponding to the 

smallest, greatest and median distance. We have selected three SOLAP datacubes from the 31 designed: 

one that corresponds to the smallest d2 value (SludgeRiskSmallest), one that corresponds to the highest 

d2 value (SludgeRiskGreatest) and one that corresponds to the median d2 value (SludgeRiskMedian). The 

metrics values for the Sludge datacube and the ones for the three selected SOLAP datacubes are 

computed in the following Table 5-1. 
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 SOLAP datacubes 

Metrics Sludge SludgeRisk
Smallest 

SludgeRisk
Greatest 

SludgeRisk
Median 

Total number of 
classes 

13 13 7 10 

Number of spatial 
dimensions 

1 1 1 1 

Number of 
hierarchy 

relationships 

6 6 2 5 

Number of multiple 
hierarchies 

1 1 0 1 

Number of 
measures per fact 

2 1 1 1 

Table 5-1  SOLAP datacube PIMs usability testing results 

For each one of the three RADSOLAP datacubes the metrics values are whether the same as the Sludge 

datacube metric values, or lesser. It is especially the case for the metrics Total number of classes, 

Number of hierarchy relationships and Number of measures per fact.  

Regarding the SludgeRiskGreatest PIM in particular, even though its classes include new classes holding 

risks identified + tolerance +visualization policies, it appears that this datacube is still more usable than the 

classical Sludge one (only 7 classes, 2 hierarchy relationships and 0 multiple hierarchies).  

Also, we think that the visualization policies themselves, which are new artifacts brought by our approach, 

do not harm the usability since in the worst case, only three of them are to be included in the datacubes 

interpretation by the end-users. Indeed, we note that in general, the RADSOLAP datacubes only holds 0 

to at most 3 visualization policies variables to communicate the risks when applicable.  

With all these observations, we have come to the conclusion that each SOLAP datacube designed 

with the RADSOLAP method for this case study is as usable (or even more usable) as the classical 

SOLAP datacube designed. 

5.4 Chapter synthesis  
In this chapter we evaluated the risk-aware design approach. At first we presented the RADTool, a CASE 

SYSTEM that supports the risk-aware design method. The RADTool helps generate automatically SOLAP 

datacubes prototypes that end-users can visualize and explore in order to validate the whole design. The 

RADTool has been used specifically to produce different SOLAP datacubes corresponding to all possible 

combinations of tolerance levels for our case study based on the French National sludge spread 

monitoring database (Soulignac, Barnabé et al. 2006). Then, we analyzed the SOLAP datacube design 

with the RADSOLAP method as well as the one obtained from a classical design approach in terms of 
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reliability, usability and ease of implementation in classical architectures. The analysis is based on 

quantitative criteria (total number of classes, number of multiple hierarchies, number of spatial dimension, 

number of hierarchy relationships and number of measures per fact) defined beforehand for the usability in 

particular. The analysis has shown that, overall and for this case study, our risk-aware approach provides 

SOLAP datacubes were the spatial vagueness is considered (more reliable), that are as understandable 

and as easily implementable in classical SOLAP architectures as classical SOLAP datacubes. 

The question that remains unanswered is: “How the usability is impacted when there are more than one 

datacube provided to the end-users, knowing that the process can deliver from 1 to N (N being the number 

of elementary datacubes) SOLAP datacubes?” To answer this one, we think that it is necessary to place 

the usability testing in the context of multiple datacubes exploitation, however for now, to the best of our 

knowledge, there are not objective methods or quantitative approaches to such testing in the literature yet. 

We will address this question more in details in our future work. 

 

 

 

 

 

 

 





 
 

 
 





 
 

 

Chapter 6: Conclusion and research 
perspectives 
 
 

 

 

6.1 Introduction 
As stated before, one of the challenges when dealing with spatial vague data in SOLAP datacubes is to 

take into account the spatial vagueness on spatial data while maintaining the usability and the ease of 

implementation of the datacubes. In this thesis, we wanted to progress in this direction by adopting a new 

symbiotic approach for the design of the SOLAP datacubes. Our main contribution is the fundamentals for 

an innovative SOLAP datacubes design method that is based on the introduction of risk management 

steps into the classical hybrid design method. This method is very particular in three different ways: it 

allows the identification of potential risks of misinterpretation at an early stage of the datacubes design, it 

allows taking user’s tolerance levels to the risks identified into account during the design, and most 

importantly, those tolerance levels are used to trigger and guide an unprecedented dynamic datacube 

transformation process that is the core of the risk-awareness we want to achieve.  

In Chapter 1 of this thesis, the research context was presented alongside with a targeted literature review 

from which the problem was defined. In fact, either the spatial vagueness is neglected in spatial 

databases, whether transactional or multidimensional, or it is handled by representing the spatial objects 

with vague objects models such as fuzzy or exact models. In the latter case, not only a practical and 

efficient integration of the vague objects models in existing SOLAP technologies is yet to be achieved, but 

also dealing with vague objects models during the decision making process can be a disadvantage in 

many contexts of application. The majority of end-users (which are decision-makers) are used to the crisp 

point, line and polygon representation of geographic phenomenon and changing that to a complex fuzzy 

model or exact model calls for a different and complex way to visualize and analyze results (more data, 

more complex representation and aggregations methods). In some contexts of application, the complex 

vague objects can be the best choice to have accurate models and results (for example in Hazards 

modeling and multidimensional analysis), but in other contexts, the end-users might end-up having highly 

accurate spatial data but not really usable datacubes due to the amount of data they have to analyze. It 

can be for instance the same hazards analysis case but in the context of damage costs analysis over the 

years and for different regions and activity sectors. We then stated our research question which 

concentrate on whether it is possible to adopt a new approach, based on a symbiotic trade-off between 

spatial data accuracy, usability and ease of implementation in existing SOLAP technologies, to produce 

relevant SOLAP datacubes. This led us to define the thesis main objective: proposing a SOLAP datacubes 
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design method integrating a risk of misinterpretation management method to deal with spatial vagueness 

in a symbiotic trade-off approach. Specific objectives and a research methodology were ultimately 

presented in this chapter. In Chapter 2, we study the relevant concepts underlying the research areas the 

problem is related to. It is the notions of spatial data uncertainty and spatial data quality which is the core 

of the research problem; the main concepts related to Spatial OLAP systems that we needed to 

understand in order to analyze the effects of the presence of spatial vagueness in datacubes on the 

analyzes, alongside with the way those datacubes are classically designed and implemented in theory and 

in practice; and finally the fundamentals of risks management that are needed to develop the risk-

awareness aspect of our design method. Chapter 3 is where we started addressing our problem by taking 

on the first sub-objective which lays in proposing a risk-aware SOLAP datacubes design approach. The 

proposals developed here were used to elaborate a rapid prototyping SOLAP datacubes design method in 

the next chapter (Chapter 4), allowing us to address the second sub-objective of the thesis. The third and 

fourth sub-objectives were the focus of the Chapter 5 where an experimentation of the approach was 

done on an agricultural sewage sludge spreading case study using a CASE system implementing the 

method core. The purpose of the experimentation was to validate the method by doing a comparison 

between all possible SOLAP datacubes designed with our new method to a classic SOLAP datacube in 

terms of usability, reliability and ease of implementation in classical SOLAP architectures. 

In the following sections, we describe and discuss the main contributions of this research project regarding 

each sub-objective (Section 6.2) and then some research perspectives are provided (Section 6.3).  

6.2 Contributions and discussion 

6.2.1 Sub-Objective 1: To propose the fundamentals of a risk-aware SOLAP 
datacubes design approach 

The literature review revealed the lack of a design process combining users-driven and sources-driven 

approaches in addition with a risk management method in the computer science domain. Also, the existing 

SOLAP datacube design methods that allow risks management in Geomatics can be improved by 

developing risks identification and control tools specific to spatial vagueness.  Accordingly, the main 

contribution regarding this sub-objective was a complete step by step hybrid SOLAP datacubes design 

process where steps of risks identification, assessment and management according to end-user tolerance 

levels are integrated to enable the risk-awareness. This risk-aware design process is composed of two 

main phases that are the requirements specification phase and the conceptual design phase. The main 

purpose of proposing this new process being to allow the integration of risk-aware steps into the classical 

hybrid process, we have added steps of vagueness and induced risks identification to the requirement 

specification phase which comprises also the common users and data sources identification as well as 

user’s analysis requirements identification.  To the conceptual design phase, we have added a step of risk 

identification that has to come after the datacube initial design, and steps of risks assessment via the 



 
 

 

expression of the tolerance levels, risks management by means of actions to be executed on the SOLAP 

datacube design, and SOLAP datacube schema transformations according to the actions chosen 

previously, in that order.  

This process is quite generic and can be implemented in another uncertainty (or quality) and risk 

management context and with different risk management tools by changing the uncertainty/quality element 

(e.g. Managing the incompleteness and risks of inappropriate use associated). However, because the 

spatial vagueness and relative risks assessment and management is the core of the risk-awareness in this 

thesis, it was important to address them specifically in this thesis. Thus, we first characterized the spatial 

vague data in a simplified way that complies with our symbiotic trade-off vision. Then we qualified the risk 

of misinterpretation before analyzing in which forms such risks are expressed along the hierarchies of a 

SOLAP datacube exploiting spatial vague data. This results into the definition of the concept of risk of 

misinterpretation of SOLAP datacubes and its classification in two main categories: intrinsic and extrinsic 

risks. Those contributions are to be exploited as advocated by the design process to identify vagueness 

and risks. Finally, we provided a tolerance scale and corresponding risk management strategies and 

actions to support the risks assessment and management advocated by the new design process.  

Ultimately, applying the whole process to a simplified spreading use case allows us to validate the 

pertinence and feasibility of each contribution. From that, we can say that the sub-objective was achieved.  

Discussion: 

 Risks of misinterpretation definition and classification 

For this classification, and for the whole thesis, we focused on spatial vector data, especially polygons. 

The classification can still be applied in case we are dealing with points or lines but not without an 

extension of the intrinsic risk category. The extension can be in the form of new risk classes that will 

compose the risk-level. It is even possible to apply the classification to other types of risks of datacube 

inappropriate use in general. There will always be intrinsic and extrinsic risks of datacube inappropriate 

use. However, determining all types of risks of inappropriate use can be a thesis topic in itself, with the 

objective of elaborating a risk ontology. 

 Risk-aware design process 

This design process is very innovative but stick with the classical design approach at the same time. Its 

main distinctive characteristic is the iterative SOLAP datacubes schemas transformation performed before 

even reaching the first accomplished model (one that suits the initial end-users’ requirements). Revising 

datacubes structures based on identified related risks has never been done before. Usually a model is 

directly drawn out from the requirements and then the designers can go back to revise that model 

relatively to new inputs (coming from users, application context or data sources).  
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This process can be adapted to other quality or uncertainty issues (incompleteness, temporal uncertainty, 

fuzziness on qualitative attributes etc.), for transactional databases design and/or with different risk 

management tools (risk ontology, risk identification descriptive files etc.).  

 Risks assessment and management 

The main advantage of the risk assessment and management tool provided is its simplicity of use. Indeed 

the choice of a scale of four level of tolerance was dictated by the need to keep the scale as simple as 

possible for the design process to also stay simple and easy for datacube producers. Also by making an 

equivalence between the tolerance scale and the risk management strategies, it makes it easier for 

SOLAP experts to convey the end-users tolerance into risks management actions, whether it is done 

manually or automatically. With the addition of the risk management actions categories, they can focus 

more on the design (their expertise) instead of the risk management complexity.  

Other advantages lie in the fact that the categorization of possible risk management actions allows the 

addition of new actions in the future, and the fact that the association between tolerance level and strategy 

can be rearranged differently if needed. This will not change anything for the design process defined 

previously. Therefore, we can say that risk assessment and management tool provided is quite scalable.  

6.2.2 Sub-objective 2. To propose the principles of a practical implementation 
of the risk-aware approach 

First, we translated the new risk-aware approach into an agile design process that would walk the 

datacubes project committee through the SOLAP datacubes description (vague, risks and 

multidimensional structure), the structure transformation according to the risk-aware approach and finally 

the SOLAP datacubes design validation: it resulted in the risk-aware rapid prototyping method 

(RADSOLAP method). The process steps go from the users’ requirement specification all the way to the 

datacube prototyping and final delivering, through the vagueness and risks identification, the tolerance 

levels expression by users and datacube PIM transformation according to users’ tolerance levels.  

To help insure the final datacubes PIM delivered are well formed and all the tolerance parameters were 

computed in the right way, we have worked out an UML profile for the PIM elaboration (RADSOLAP UML 

Profile), in addition with a formal definition of PIMs transformation functions and a transformation process. 

The UML profile is an extension of the ICSOLAP UML profile developed by Kamal Boulil in the context of 

his PhD thesis. The choice of this ICSOLAP UML profile for our method is mainly motivated by the fact 

that the profile has been implemented in practice, making the automation of the datacube PIMs 

transformation possible. The second reason behind that choice is that the profile belongs to our research 

team and it is interesting for us to take it further with our contributions. The transformation functions 

formalization is supported by the RADSOLAP UML profile; the functions are destined for the application of 

the risk management actions, proposed in Chapter 3, on the SOLAP datacube schemas. As for the 



 
 

 

transformation process, it aims at describing how a SOLAP datacube PIM can be transformed during the 

design in a way that conserve its validity.  

The contributions were tested manually on the sewage sludge spreading case study (SILLAGE) 

progressively with successful outcomes. With that, we were able to validate our sub-objective.  

Discussion: 
 

 A risk-aware rapid prototyping design method 

Our rapid prototyping risk-aware design method presents the following advantages: 

- It allows the exploitation of classical crisp geometries 

- It allows taking into account any spatial vagueness issue on the data sources, in contrary to most 

of the methods proposed in the computer science. 

- It allows involving the end-users themselves not only in the way the spatial vagueness issues are 

managed but also in the validation of the design itself by letting them play with prototypes.  

- The delivered datacubes implementation is identical to the implementation of any classical 

SOLAP datacube. 

 An UML Profile for SOLAP datacubes PIM design taking into account the new 

artefacts that are the risk classes, tolerance values and risk communication 

variables 

There are many benefits to the UML Profile in this context as stated previously in this thesis. The ones are 

the most valuable for us are the fact that it empower SOLAP experts with a visual formal tool to well 

describe the datacube with the new paradigms that are the vagueness, the risks, the tolerance levels and 

risk-communication policies and the fact that it makes possible a semi-automatic design of the SOLAP 

datacubes schemas. Such profile have never been proposed before and we believe that it is a very useful 

contribution for the combination of spatial data quality and design methodologies research fields. 

 A SOLAP datacubes PIM transformation functions formal definition 

The functions are designed to be primitive in a way that each one of them execute a single part of a 

transformation action. They can be combined to perform a whole action or even more complex ones. 

Being based on our UML profile, they can be implemented in any tool as long as the profile is adopted. 

Otherwise, it an adaptation of the definitions to the spatio-multidimensional model to be used is required.  
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 A SOLAP datacubes PIM transformation process (Split-Transform-Merge) 

The transformation process can seem complex to be applied manually. However, it at least guarantees the 

SOLAP datacube schema logical coherence and validity throughout the design, whereas, applying 

different management actions on an initial schema according to different tolerance levels can be very 

painful, confusing and subject to various errors due to the designers inattention or to the incompatibility 

between some of the actions chosen. With that said, in this thesis, we did not specifically address the 

order in which one should apply the changes to make the task smarter. For instance, it does not make 

sense to apply an action of attaching a risk communication policy to a certain spatial level before moving 

on with deleting the inferior spatial level (tolerance 0 on a risk-geometry on that level) knowing that the risk 

identified at that superior level comes directly from the uncertainty on the level to be deleted. A priority 

order to the actions application must be thought trough, tested and validated to complete this process. 

6.2.3 Sub-objective 3: To demonstrate the implementation feasibility of the 
proposed risk-aware approach. 

One of the gaps identified in the literature regarding spatial vague objects management is the absence of 

technical implementation tools for the proposals provided. This thesis having also a strong foot in the 

Computer Science domain, it was important for us to demonstrate the technical implementation feasibility 

of our proposals; more specifically, we needed to test the implementation in a rapid prototyping CASE 

system (ProtOLAP) we have worked on with our Irstea research team (Bimonte, Nazih et al. 2013). To 

achieve this sub-objective, we have extended ProtOLAP using the principles advocated in sub-objective 1 

and 2. We mainly developed and added a Transformation Tier to the ProtOLAP system, in addition with a 

risk management graphical interface that SOLAP datacube producers can use to key in vague, risk, and 

tolerance parameters to the initial SOLAP datacube multidimensional schema. In the new Transformation 

Tier, some SOLAP datacube transformation functions were made available as well as a Fusion module for 

datacube schemas merger as advocated by the RADSOLAP method. The result, called the Risk-Aware 

Design Tool (RADTool) was tested on our sewage sludge case study with positives results. Indeed, we 

were able to design the SOLAP datacube using our RADSOLAP UML profile, transform the schema, 

based on our tolerance scale and corresponding actions, using our transformation functions, and finally 

implement the resulting schema in a classical architecture (Oracle + Mondrian + Jrubik). 

Discussion: 

Being designed for OLAP datacubes prototyping, ProtOLAP was not destined to manage the spatial 

features. The Deployment Tier does not support spatial objects storage and spatial predicates, the 

Feeding Tier does not support spatial data insertion and the Analysis Tier does not allow a map 

visualization and exploration of the data. Also for now, a complete real Spatial OLAP system based on 

free solutions (like Jrubik and GeoMondrian) is not possible without doing a programming work on the 



 
 

 

client module in consequence (Bédard, Proulx et al. 2005, Malinowski 2014). Because such work is time 

consuming, and not essential for our demonstration, it was left out of this thesis. Indeed, the XML and SQL 

schemas being generated for datacubes exploiting single polygons as geometric data, there is no reason 

why those schemas and the spatial data to be exploited can’t be handled also with classical SOLAP 

servers’ operators, spatial ETL tools, spatial DBMS and SOLAP client regarding the deployment, feeding 

and exploration of the SOLAP datacubes. In consequence, the current version of the SOLAP RADTool 

does not allow the management of the map visualization and exploration.  

The only thing is that this limit didn’t allow an eventual demonstration of the implementation feasibility of 

risk communication policies for the map visualization. But as we can see, proposing those policies was not 

one of our objectives, even though we think that such proposition would be also valuable for the 

Geomatics aspect of this research topic and therefore be considered for future research. 

6.2.4 Sub-objective 4: To demonstrate the benefits of the risk-aware approach. 

This sub-objective calls for the approach evaluation on all the criteria we have chosen to concentrate on in 

this thesis: the datacube schema understandability, their ease of implementation and their reliability. We 

tested a total of 31 SOLAP datacubes designed with our RADSOLAP method for the sewage sludge case 

study. Those datacubes are the results of the application of all combinations of tolerance levels for all the 

risks identified on the initial SOLAP datacube schema.  

The datacubes are all implementable in existing classical tools i.e. PostgreSQL/PostGIS database, 

Mondrian Server and JRubik client just as any classical SOLAP datacube. Their improved reliability were 

demonstrated with success based on the direct relation we established between vagueness consideration 

and risk management. Regarding the schemas understandability, we have compared the 31 SOLAP 

datacubes with the one designed in the classical way based on the following metrics: Total number of 

classes, Number of spatial dimension, Number of multiple hierarchies, Number of measures per fact and 

Number of hierarchy relationships. It appeared that the metrics values are in most cases the same for all 

compared SOLAP datacubes schemas; In all other cases, the values are even inferior to the ones 

computed for the classical SOLAP datacube schema (Specifically for the Total number of classes, Number 

of hierarchy relationships and number of multiple hierarchies). 

The risk-aware design approach definitely helped designed more reliable and usable SOLAP datacubes 

when spatial vagueness is involved. The only downside is that in our method, sometimes the end-users 

will be provided with more than just one final SOLAP datacube, depending on the merger result; also the 

datacubes have new classes holding risks identified in addition with the end-users tolerance and 

visualization policies variables when applied. Regarding the latter, the schema understandability is still 

kept or better than the classical SOLAP datacube understandability, in our case study; indeed as we found 

out, the number of classes, hierarchy relationships or multiple hierarchies are lower while the other criteria 
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values are still the same for both type of datacubes. We have also noted that the presence of new artifacts 

that are the visualization policies variables in the multidimensional schema does not jeopardize the 

usability; indeed, only three variables at most are added to each SOLAP datacube to communicate the 

risks when applicable. 

Discussion: 
 

This thesis proposed a solution that have never been mentioned before to a recurrent and old issue: 

spatial vagueness management. It replaces the spatial vagueness management by a risk of 

misinterpretation management based on a compromise between the theoretical accuracy regarding spatial 

vagueness, usability and ease of implementation of SOLAP datacubes exploiting spatial vague objects.  

We recall that our thesis hypothesis is that a design approach based on a symbiotic trade-off vision 

allows producing SOLAP datacubes, exploiting spatial vague objects, that remain as usable, 

reliable and easily implementable as classical SOLAP datacubes. 

We believe that this hypothesis was validated by (1) proposing a new risk-aware design approach, (2) 

proposing a prototyping design method based on that approach and (3) implementing, testing and 

evaluating the approach on our case study. 

The two questions we still want to answer regarding the usability testing are: (1) How the usability is 

impacted when there are more than one datacube provided to the end-users, knowing that the process 

can deliver from 1 to N (N being the number of elementary datacubes) SOLAP datacube?, and (2) How 

the front-end usability is impacted by the added visual parameters that are the risks communication 

policies? 

For the first question, it is necessary to place the usability testing in the context of multiple datacubes 

exploitation and propose, validate and apply methods and quantitative approaches appropriate for such 

testing. The second question on the other hand requires a complete experimentation of the RADSOLAP 

method on a real case study, with delivery of physical prototypes, fed with real data and explored by 

different end-users. Since the proposals underlying our RADSOLAP method focused on the 

multidimensional structure for the most part ( UML profile, schemas transformation functions and process), 

the schemas usability testing was sufficient for this thesis; therefore, we think that the frond-end usability 

can be done as a future research. 

The effectiveness of the risk-aware approach basically relies upon the risks of misinterpretation 

identification. Indeed, when all the risks are well identified, it is possible to take them into account and 

thereby take the spatial vagueness into account. The percentage of risks identified as well as the 

percentage of risks managed have an impact on the SOLAP datacubes reliability per definition. The 



 
 

 

reliability level can thus be described by the combination of the risk identification level and the risk 

management level. We have three interesting scenarios that can occur when identifying or managing 

risks: (1) No risk is identified/managed, (2) Not all the risks are identified/managed, and (3) All the risks 

have been identified/managed. Considering these scenarios, we can adopt a three levels scale to evaluate 

the risk identification level, the risk management level and the SOLAP datacubes reliability level: the level 

is Null (N) in scenario (1), Medium (M) in scenario (2) and High (H) in scenario (3) in each case. The 

following matrix shows the possible scenarios of the risks identification and management levels impacts 

on the SOLAP datacube reliability level. 

First, we note that a Null reliability is also what is observed for a classical SOLAP datacube where nothing 

is done to identify the risks of misinterpretation and/or manage them. Second, the only time a very high 

reliability level is reached is when 100% of the risks have been identified and 100% of those identified 

risks have been managed. It is the ideal scenario. When risks are missed during the identification step and 

only some of the identified ones are managed, as well as when all the risks have been identified but not all 

of them have been managed and finally when not all the risks have been identified but all of those 

identified are managed, the reliability level is Medium, which means it is still better than any classical 

SOLAP datacubes one. 

 

Figure 6-1: Risks identification and management impact on reliability 

In the event not all risks are identified, especially important ones (risk identification level at Null or 

Medium), end-users are still exposed to all the non-identified risks. They may even think that because the 

method was used to produce the given SOLAP datacube, no mention of a risk equals no risk. The same 

thing goes for the Null and Medium risks management levels. The most logical solution is probably to add 

a meta-uncertainty variable that would hold the level of reliability of the designed SOLAP datacubes. The 

question related to this solution is how to compute the reliability level during the design, which translated 

R
is

k 
m

an
ag

em
en

t 
le

ve
l 

                                           Risk identification level 

 0% risks 
identified (N) 

Some risks not 
identified (M) 

100% risks 
identified (H) 

0% risks managed 
(N) 

N N  N 

Some risks not 
managed (M) 

N M M 

100% risks managed 
(H) 

N M H 



124 
 

into how to compute the identification and management levels. For the management level, it will come 

down to a ratio between the number of risks identified and the number of risk managed. For the risk 

identification level, we think that if vague geometric attributes are introduced in the datacube, at least the 

corresponding risk-geometrys should be identified. If it is not the case, and risks have been identified, we 

can definitely say that some risks are missing (level = Medium). If no risk has been identified at all, the 

level of identification and thus reliability is clearly Null. Automating identification process is probably the 

best way to prevent missing risks. It will also allow knowing for sure if the list of risks identified is 

exhaustive and therefore knowing if we are at 100% of risks identified. Two ways to do so are to base the 

identification process on a mapping file between vagueness and risks of misinterpretation created for each 

project or to exploit a risk ontology. For now, we can conclude that the method definitely allows designing 

SOLAP datacubes with a known Medium reliability level at most (Cf. bold M in Figure 6-1). It might be high 

in some cases but the meta-uncertainty parameter will not be able to express that since it is not certain. 

6.3 Research perspectives 
This thesis provided fundamentals, from a theoretical risk-aware approach all the way to a practical design 

method implementing that approach, to support a new and efficient manner to handle spatial vagueness in 

SOLAP datacubes. Doing so, and now that we know our approach is promising, the thesis opens the door 

for new research perspectives to enhance and validate the risk-aware approach as well as enhance 

SOLAP datacubes quality.  

 Enhance risk-aware approach:  

o Vagueness representation: It could be interesting to introduce into the SOLAP datacubes, a 

grid representation of the vagueness that is not as complex as the fuzzy logic. This 

representation could be based on a rough set model or a new model exploiting the existing 

exact models. For instance, we think about a model where the spatial data is composed of 3 

sets of points (minimum extent, vague extent and maximum extent) associated with values 

indicating the meta-uncertainty on their localization. Such a representation would help fine-

tune the risks of misinterpretation identification and thus their reduction. 

o Risk ontology and/or knowledge base: a research perspective could be to go beyond our risk 

classification by proposing a SOLAP datacubes risk of misuse ontology. Such an 

ontology/knowledge base would define different type of risks and their sources as well as all 

the possible risk control actions that have been used before or that are preconized. It would 

allow a better risks identification, a better risk control and a better risk monitoring. 

o Risk identification automation: We believe that automating the risk identification process 

would help leverage the full power of our risk-aware approach. Indeed, it will guarantee the 

completeness of the risks identified throughout the design iterations and in consequence a 

better risk reduction. To do so, one idea would be to base the risk identification process on a 



 
 

 

risk ontology or a risk file that should be defined at the beginning of each project where all 

potential risks have been listed knowing the spatial vagueness present on the sources. 

o Risk communication: In this thesis, we didn’t really tackle the risk visual communication on 

the client. It could be interesting to look deeper into the graphical semiology regarding the 

risks communication on the map as well as communication policies for diagrams and pivot 

table. The result could be for instance the proposition of a graphic representation for the risk-

geometry and risk-aggregation (dashed boundaries, dotted interior etc.).  

 Validating the approach on more data, with different geometries and the participation of 

decision-makers 

o This thesis concentrated on the validation of the approach from a theoretical point view. It 

would be interesting to test the approach on more case studies in real project contexts.  

o Also it would be interesting to define and validate usability criteria that are specific to this 

risk-aware SOLAP datacubes schemas, especially ones that will allow the testing of the 

usability of a combination of datacubes. 

o Finally, it would also be interesting to conduct a front-end testing with decision makers on the 

SOLAP datacube usability. The testing would be on the exploitation of both map and pivot 

tables. 

 Adapt the approach for other uncertainty or quality issues: This thesis focused on what 

happens in SOLAP datacubes when spatial vague objects are involved. We believe that for other 

type of uncertainty or data quality issue, the risk-aware approach can be adopted to limit the 

errors related to the exploitation of geospatial databases in general. For instance, it could be 

interesting to adapt the risk-aware approach to deal with incompleteness in data sources. With 

such an approach, end-users will be provided with databases that might have missing data but 

still fit their needs. The risks of misuse would be taken care of according to their tolerance levels, 

in those databases. In the same vein it would be interesting to adapt the approach to temporal 

vagueness. 

 

 Adapt and integrate the approach in other design methods: In this thesis, we have integrated 

the risk-aware design approach in a rapid prototyping method. However, it would be interesting to 

test the approach in others design methods or approaches. In particular, we think about the 

collaborative spatial database design framework proposed by Grira (2014) in his thesis. The 

result would be for example a collaborative framework where end-users are requested not only in 

the data usages description and risks identification as the approach originally advocates, but also 

in the risks assessment and control as advocated by our approach. Of course, the framework 

should be adapted to SOLAP datacubes design in particular because our contributions are limited 

to those type of databases. 
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Appendix A:  Spatial vague objects typology 
In our approach, we need to represent spatial objects with single polygons and not complex double to 

multiple polygons as in the QMM model. A single polygon can only render a part of a region with a broad 

boundary: either the minimal extent (or union of all minimal extents) or the maximal extent (or union of all 

maximal extents). Even though it is not the ultimate accurate model of the spatial vague object, having a 

polygon, representing a vague spatial object, be clearly identified as expressing a specific part of the 

phenomenon is already a good way to consider the spatial vagueness. It will also allow a highlighting of 

the spatial vagueness impacts on the datacube interpretation and reasoning around spatial vagueness 

reduction in general.  

Based on this deduction, we propose to typify the spatial data before exploiting them. That way, a 

qualitative description of the spatial vagueness can be associated to each polygon, allowing data users to 

consider the spatial vagueness to some extent. This qualitative typology is based on the concept of region 

with a broad boundary. Indeed, the types identified are: 

The minimal extent type(as defined in Bejaoui (2009) QMM Model): a minimal extent type can be 

associated with a polygon that represents a region where a vague phenomenon is certainly present. 

The maximal extent type (as defined in Bejaoui (2009) QMM model): a maximal extent type can be 

associated with a polygon that represents a region where a vague phenomenon is probably present 

(including the minimal extent). 

The exact extent type: this type is necessary to describe a crisp region or region with no broad boundary 

(minimal extent equals to the maximal extent in the Bejaoui (2009) QMM Model). Administrative 

departments can be represented for example by polygons with the type exact extent associated. 

An example of vague spatial object is a flood area, the minimal extent being the riverbed and the maximal 

extent being the limits taken as far as possible (obtained for example by computing a buffer around the 

riverbed limits or by calculating the region at flood risk extent). A flood area should be represented with a 

single polygon in the context of a classic crisp representation. With our new typology, we have the choice 

to store: 

- Only the riverbeds with the type minimal extent associated,  

- Or the buffer limits with the type maximal extent associated. 

In each case, the polygon characteristics (shape, perimeter, surface, position etc.) are different.  
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Depending on the type of spatial vague object exploited, in other words the part of the reality that is 

depicted, the data fitness for use and interpretation is impacted at different degrees. 

In the SOLAP datacube, we can choose to consider the spatial vagueness (if applicable) only for 

geometric spatial levels of a geometric spatial dimension, for geometric spatial measures or for both.  In 

this thesis, by considering the spatial vagueness, we mean introduce the new qualitative typology in the 

datacube. Whether the vagueness is considered only for levels or for measures or both, it is necessary in 

our approach to analyze the impacts of this uncertainty on the measures values and interpretation by end-

users. 

Our objective here is not to do an exhaustive, generic and complete analysis of all possibilities regarding 

the vagueness introduction in the SOLAP datacube; therefore we will first focus on the case where the 

vagueness is considered only for geometric spatial levels. What we need to do is to bring out some of the 

possible impacts to help define categories of risks of misinterpretation and develop our new risk-aware 

design approach later. 

Before we begin, we hypothesize that all the members of a spatial level have the same geometry 

qualitative type (they are all minimal extents or maximal extents) and thus the level is homogeneously 

vague.  

For the remaining of this chapter, we consider a simple case study were we have a geometric spatial 

hierarchy organized as follows: 

- Farming Plots < Flood Zones 

- A level Farming Plots grouping the farming plots; the regions with broad boundaries. The farming 

plots can thus be considered in their maximal extents (agricultural plots limits) or minimal extents 

(the limits of the part really cultivated) using single polygons. 

- A level Flood Zones; as explained earlier, flood zones are regions with broad boundaries, the 

minimal extents being the riverbeds and the maximal extents being limits of a specific well 

calculated buffer. 

We also have the quantity of pesticide spread in the farming plots (QuantityPesticide) and the surface of 

area spread with pesticide (SurfaceSpread) as measures.   

Having only maximal extents (MaxExtent) or minimal extents (MinExtent) members in a geometric spatial 

level impacts the interpretation, and in some cases the measure values themselves, at that level.  
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The measure, when linearly correlated to the shape or position of the member, will have values probably 

greater (or smaller) than what they should be because they are computing for the widest probable extent 

(or smallest extent) that represent the phenomenon. It is the case for example for measures relative to the 

surface of the member. For a flow (quantity/surface) on the member, it is the opposite because a division 

by the surface is made. 

In our example, the values of the flow of pesticide will surely be over evaluated for the level Farming Plots 

if minimal extents are considered, or under evaluated if maximal extents are considered. 

To conclude, depending on how the measure to be analyzed is defined, it is possible to deduce the cases 

of misinterpretation end-users are exposed to for a given level holding vague spatial objects. 

In a hierarchy, it is possible to have different combinations of geometry types for two consecutive levels: 

MaxExtent < MaxExtent, MaxExtent < MinExtent, MaxExtent < ExactExtent, MinExtent < MaxExtent etc. 

For each combination, the measure values aggregated for the parent members are impacted by the 

spatial vagueness on the child-members depending on the topological relationship between the two levels 

(Overlap, In, Disjoint etc.).  The interpretation of those values can in turn be twice impacted, first by the 

aggregation itself, and second by the spatial vagueness on the parent members if applicable. For 

example, in the case of an overlap (the union of the child-members’ geometries (farming plots limits) 

overlaps their parent’s geometry (a polygon representing a flood zone)), one of the solutions to compute 

the measures for the parent would be to weight the measures according to the part of the child-members 

that are inside the parent geometry (Cf. Figure A-1 below). 

 

 

 

 

 

 Total surface Surface of the 

intersection with FZ1 

SurfaceSpread for FZ1 QuantityPesticide for 

FZ1 

Plot 1 1 ha 0,7 ha 0,7 ha 12600 kg 

Plot 2 1 ha 0,5 ha 0,5 ha 6000 kg 

Figure A-1: Illustration of the case where the topological relationship between Farming Plots and Flood 
Zones is Overlap
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Appendix B:  List of risks of misinterpretation 
associated with the Sludge SOLAP datacube 

Table B-1: Risks of misinterpretation related to the measure ProductFlowFromSludge in the intended 
SOLAP datacube 

 

 

 

Measure Aggregation level Risks of poor 
measure evaluation 

Example / Remarks 

P
ro

du
ct

F
lo

w
F

ro
m

S
lu

dg
e 

SpreadZones 
(MaxExtent) 

Over-evaluation 4.09 g/m2 instead of a value in [3.15, 4.09] 
for SpreadZone1 for example. We call this 
Risk-Geometry. 

Farms Over-evaluation The measure value for a given farm is the 
average of values for spread zones 
belonging to that farm.  

We call this Risk-Aggregation. 

Regions Nothing to report The flow value for a given region is the 
average of the values for all spread zones 
situated in that region. The great number 
of spread zones to take into account in the 
calculation allows the compensation of the 
uncertainties on farming plots flow values. 

Watersheds Under-evaluation The spread zone parts that pour into a 
given watershed are considered in the 
aggregation for that watershed (the value 
is weighted according to the farming plot 
surface that is included in the watershed 
surface).  

Because the spread zones are vague, 
there is an uncertainty about the 
intersections (with watersheds) resulting 
surfaces.  

It is also a risk Risk-Aggregation. 

Country Nothing to report Same reasoning as for the Regions level. 
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Table B-2: Risks of misinterpretation related to the measure ProductConcentrationInSoils in the intended 
SOLAP datacube 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measure Aggregation level Risks of 
misinterpretation 

Example / Remarks 

P
ro

du
ct

C
on

ce
nt

ra
tio

nI
nS

oi
ls

 
SpreadZones 
(MaxExtent) 

Nothing to report Because the tracking point is taken 
somewhere on green zones, the 
concentration value is well-evaluated 
when observed on green zones (which is 
the case in this intended datacube) 

Farms Nothing to report - 

Regions Nothing to report - 

Watersheds Under-evaluation The spread zone parts that pour into a 
given watershed are considered in the 
aggregation for that watershed.  

Because the spread zones are vague, 
there is an uncertainty about the 
intersections (with watersheds) resulting 
surfaces, thus on the aggregated 
measures.  

It is a Risk-Aggregation. 

Country Nothing to report - 



 
 

139 
 

Appendix C:  RADSOLAP UML Profile metamodel 
Here, we present the extended metamodels that describe the new risk-aware UML Profile. The profile is 

composed of the packages SDWCoreModelPackage and SDWAggregationModelPackage. The 

SDWCoreModelPackage comprises the SDWCoreRiskMetamodel (Cf. Figure C-1) for the datacube 

multidimensional structure definition and the SDWAttributeMetamodel (Cf. Figure C-2) for the attribute 

type definition. The SDWAggregationModelPackage is destined for the definition of the expected 

aggregations and thus contains the metamodel for describing the aggregation rules on the 

SDWAggregationRiskMetamodel (Cf. Figure C-3). 

 

Figure C-1: Metamodel SDWCoreRiskMetamodel of the SDWCoreModelPackage  
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Figure C-2: Metamodel SDWAttributeMetamodel of SDWCoreModelPackage 
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Figure C-3: Metamodel SDWAggregationRiskMetamodel of the SDWAggregationModelPackage 
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Appendix D:  SOLAP datacube PIM 
transformation functions 

In this section, we present the SOLAP datacube schemas transformation functions defined in the thesis. 

The complete list can be found in the following Table D-1. 

Table D-1: Formal definition of SOLAP datacubes schema transformation functions 

 

DeleteSpatialLevel 

This function deletes a spatial level in a spatial hierarchy. The level to be deleted is neither the highest nor 

the lowest level of the hierarchy. The function takes as input a RiskHypercube and the spatial level to be 

DeleteSpatialLevel DeleteSpatialLevel (RiskHypercube Cr, SpatialLevel Cr.Ds.Hs.SpatialLevel[i]) 

= RiskHypercube Cr’. i  {1, ..., n-1}, n being the number of levels in Hs. 

DeleteLowestSpatialLevel DeleteLowestLevel (RiskHypercube Cr, SpatialDimension Cr.Ds) = RiskHypercube 

Cr’ 

DeleteHighestSpatialLevel DeleteHighestLevel (RiskHypercube Cr, SpatialDimension Cr.Ds) = RiskHypercube 

Cr’  

DeleteSpatialDimension DeleteDimension (RiskHypercube Cr, SpatialDimension Cr.Ds) = RiskHypercube 

Cr’ 

ModifySpatialLevel ModifySpatialLevel (RiskHypercube Cr, SpatialLevel Cr.Ds.Hs.SpatialLevel[i], 

String NewStereotype) = RiskHypercube Cr’, i  {0, n} 

, n being the number of spatial level 

ModifyAggRuleAggregator ModifyAggRuleAggregator (RiskHypercube Cr, AggRule 

Cr.BaseIndicator.AggRuleSL[i], Aggregator NewAggregator) = RiskHypercube Cr’. 

ModifyAggRuleFromLevel ModifyAggRuleFromLevel (RiskHypercube Cr, AggRule 

Cr.BaseIndicator.AggRuleSL[i], SpatialLevel Cr.Ds.Hs.SpatialLevel[j]) = 

RiskHypercube Cr’, i  {0, n}, and j  {0, i-1}, n being the number of spatial level 

ModifyRiskAgg ModifyRiskAgg (RiskHypercube Cr, RiskAgg 

Cr.Ds.Hs.SpatialLevel[i].RiskLevel.Ragg[j], String newRiskAggValue) = 

RiskHypercube Cr’, i  {0, n},  

n being the number of spatial level and j  {1, m}  

m being the number of RiskAgg attributes in the RiskLevel class, 

ModifyRiskGeom ModifyRiskGeom (RiskHypercube Cr, RiskGeom 

Cr.Ds.Hs.SpatialLevel[i].RiskLevel.Rgeom, String newRiskGeomValue) = 

RiskHypercube Cr’, i  {0, n}, n being the number of spatial level 

ModifyRiskGeomComm ModifyRiskGeomComm (RiskHypercube Cr, RiskGeom 

Cr.Ds.Hs.SpatialLevel[i].RiskLevel.Rgeom, String policy) = RiskHypercube Cr’, i  

{0, n}, n being the number of spatial level 

ModifyRiskAggComm ModifyRiskAggComm (RiskHypercube Cr, RiskAgg 

Cr.Ds.Hs.SpatialLevel[i].RiskLevel.Ragg[j], String policy) = RiskHypercube Cr’, i  

{0, n}, n being the number of spatial level and j  {1, m} m being the number of 

RiskAgg attributes in the RiskLevel class, 
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deleted and as output we have a new RiskHypercube where the level in addition with its related 

aggregation relationships, RiskLevel class and aggregation rule are all deleted. 

DeleteSpatialLevel (RiskHypercube Cr, SpatialLevel Cr.Ds.Hs.SpatialLevel[i]) = RiskHypercube Cr’. 

i  {1, ..., n-1}, n being the number of levels in Hs. 

Such as,  

Cr’ = Cr  

– {Cr.Ds.Hs.SpatialLevel[i], Cr.Ds.Hs.AggRel[i-1], Cr.Ds.Hs.AggRel[i], Cr.Ds.Hs.SpatialLevel[i].RiskLevel}  

–  Cr.BaseIndicator.AggRuleSL[i] 

 where Cr.BaseIndicator.AggRuleSL[i].fromSpatialLevel is SpatialLevel[i] or 

Cr.BaseIndicator.AggRuleSL[i].toSpatialLevel is SpatialLevel[i] 

+ {new Cr.Ds.Hs.AggRel[i-1] with Cr.Ds.Hs.AggRel[i-1].lowerLevel = Cr.Ds.Hs.SpatialLevel[i-1] and 

Cr.Ds.Hs.AggRel[i-1].higherLevel = Cr.Ds.Hs.SpatialLevel[i+1]} 

If Cr.Ds.Hs.SpatialLevel[i-1] and Cr.Ds.Hs.SpatialLevel[i+1] do not exist (a hierarchy with one level)  

Cr’ = Cr – {Cr.Ds.Hs.SpatialLevel[i].RiskLevel, Cr.Ds.Hs.DimRel, Cr.Ds} 

– Cr.BaseIndicator. AggRuleSL[i], where Cr.BaseIndicator. AggRuleSL[i].fromSpatialLevel is 

SpatialLevel[i] or Cr.BaseIndicator. AggRuleSL[i].toSpatialLevel is SpatialLevel[i] 

DeleteHighestSpatialLevel 

This function deletes the highest level of the hierarchy. The function takes as input a RiskHypercube and 

the dimension from where the highest level should be deleted. The output is a new RiskHypercube where 

the level, the associated Risk Level, the related aggregation relationship and aggregation rule are all 

deleted.  

DeleteHighestLevel (RiskHypercube Cr, SpatialDimension Cr.Ds) = RiskHypercube Cr’ 

Such as,  

Cr’ = Cr  

– {Cr.Ds.Hs.SpatialLevel[n], Cr.Ds.Hs.AggRel[n-1], Cr.Ds.Hs.SpatialLevel[n].RiskLevel} 

– Cr.BaseIndicator.AggRuleSL[n],  
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where Cr.BaseIndicator. AggRuleSL[n].fromSpatialLevel is SpatialLevel[n] or Cr.BaseIndicator. 

AggRuleSL 

[n].toSpatialLevel is SpatialLevel[n] 

DeleteSpatialDimension 

This function deletes a spatial dimension in the hypercube. The function takes as input a RiskHypercube 

and the dimension to be deleted. The output is a new RiskHypercube where the dimension, the dimension 

relationship, the related risk package and the BaseIndicator are all deleted.  

DeleteDimension (RiskHypercube Cr, SpatialDimension Cr.Ds) = RiskHypercube Cr’ such as 

Cr’ = Cr – {Cr.Ds.Hs.DimRel, Cr.R, Cr.BaseIndicator} 

ModifySpatialLevel 
 
This function modifies the stereotype of the spatial level geometric attribute. The function takes as input a 

RiskHypercube, the spatial level to modify and the name (MinExtent, MaxExtent, ExactExtent) of new 

stereotype to apply. 

 
ModifySpatialLevel (RiskHypercube Cr, SpatialLevelCr.Ds.Hs.SpatialLevel[i], String 

NewStereotype) = RiskHypercube Cr’, i {0, n}, n being the number of spatial level such as 

Cr’ = Cr with Cr.Ds.Hs.SpatialLevel[i].level_geom.AppliedStereotype is NewStereotype 

ModifyAggRuleAggregator 

This function modifies the aggregator defined by an aggregation rule. The function takes as input a 

RiskHypercube, the aggregation rule to modify and the name of the new aggregator to apply and returns a 

new RiskHypercube where the aggregator value is set to the new one. 

ModifyAggRuleAggregator (RiskHypercube Cr, AggRuleCr.BaseIndicator.AggRuleSL[i], 

AggregatorNewAggregator) = RiskHypercube Cr’. i {1…n}, n being the number of spatial levels such 

as 

Cr’ = Cr with Cr.BaseIndicator.AggRuleSL[i].aggregator = NewAggregator 

ModifyAggRuleFromLevel 

This function modifies the tag fromSpatialLevel value in the aggregation rule. The function takes as input a 

RiskHypercube, the aggregation rule to modify and the name of the spatial level to use for the 
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aggregation; and it returns a new RiskHypercube where the fromSpatialLevel value is set to the new given 

spatial level. 

ModifyAggRuleFromLevel (RiskHypercube Cr, AggRule Cr.BaseIndicator.AggRuleSL[i], 

SpatialLevel Cr.Ds.Hs.SpatialLevel[j]) = RiskHypercube Cr’, i {0, n}, and j  {0, i-1}, n being the 

number of spatial level such as  

Cr’ = Cr with Cr.BaseIndicator.AggRuleSL[i].fromSpatialLevel = Cr.Ds.Hs.SpatialLevel[j] 

ModifyRiskAgg 

This function modifies the Risk-Aggregation attributes in the RiskLevel class. The function takes as input a 

RiskHypercube, the attribute RiskAgg to modify and the new value to affect to that attribute and returns a 

new RiskHypercube where the attribute RiskAgg is set to the new given value. 

ModifyRiskAgg (RiskHypercube Cr, RiskAgg Cr.Ds.Hs.SpatialLevel[i].RiskLevel.Ragg[j], String 

newRiskAggValue) = RiskHypercube Cr’, i {0, n}, n being the number of spatial level and j  {1, m} m 

being the number of RiskAgg attributes in the RiskLevel class, 

Such as Cr’ = Cr with Cr.Ds.Hs.SpatialLevel[i].RiskLevel.Ragg[j] = newRiskAggValue 

ModifyRiskGeom 

This function modifies the Risk-Geometry attributes in the RiskLevel class. The function takes as input a 

RiskHypercube, the attribute RiskGeom to modify and the new value to affect to that attribute and returns 

a new RiskHypercube where the attribute RiskGeom is set to the new given value. 

ModifyRiskGeom (RiskHypercube Cr, RiskGeom Cr.Ds.Hs.SpatialLevel[i].RiskLevel.Rgeom, String 

newRiskGeomValue) = RiskHypercube Cr’, i {0, n}, n being the number of spatial level 

Such as Cr’ = Cr with Cr.Ds.Hs.SpatialLevel[i].RiskLevel.Rgeom = newRiskGeomValue 

ModifyRiskGeomComm 

This function modifies a Risk-Geometry communication tag. The function takes as input a RiskHypercube, 

the attribute RiskGeom for which the communication policy tag is to modify and the new policy and returns 

a RiskHypercube where the Risk-Geometry communication tag is set to the new policy. 

ModifyRiskGeomComm (RiskHypercube Cr, RiskGeom Cr.Ds.Hs.SpatialLevel[i].RiskLevel.Rgeom, 

String policy) = RiskHypercube Cr’, i {0, n}, n being the number of spatial level such as 

Cr’ = Cr with Cr.Ds.Hs.SpatialLevel[i].RiskLevel.Rgeom.RiskGeomCommunication = policy 
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policy domain values = {DefaultVisio, MapContourRed, MapContourGreen, CellColorRed, CellColorGreen, 

MakeAlert}. 

ModifyRiskAggComm 

This function modifies a Risk-Aggregation communication tag. The function takes as input a 

RiskHypercube, the attribute Risk-Aggregation for which the communication policy tag is to modify and the 

new policy and returns a RiskHypercube where the Risk-Aggregation communication tag is set to the new 

policy. 

ModifyRiskAggComm (RiskHypercube Cr, RiskAgg Cr.Ds.Hs.SpatialLevel[i].RiskLevel.Ragg[j], 

String policy) = RiskHypercube Cr’, i {0, n}, n being the number of spatial level and j  {1, m} m being 

the number of RiskAgg attributes in the RiskLevel class, 

Such as 

Cr’ = Cr with Cr.Ds.Hs.SpatialLevel[i].RiskLevel.Ragg[j].RiskAggCommunication = policy 

policy domain values = {DefaultVisio, CellColorRed, CellColorGreen, MakeAlert} 
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Appendix E:  Initial PIM and elementary PIMs for 
the Sludge case study 

 
a) 

b) 
Figure E-1: a) Initial intended SOLAP datacube multidimensional schema according to our RADSOLAP 

method; b) Initial BaseIndicators according to our RADSOLAP method 
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 Figure E-2 : SludgeRiskInit1 PIM 
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Figure E-3 : SludgeRiskInit2 PIM 
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Figure E-4 : SludgeRiskInit3 PIM 
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Figure E-5 : SludgeRiskInit4 PIM 

 

 

 

 

 

 

 

 




