
HAL Id: tel-01875724
https://theses.hal.science/tel-01875724

Submitted on 17 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Event-based detection and tracking
David Reverter Valeiras

To cite this version:
David Reverter Valeiras. Event-based detection and tracking. Robotics [cs.RO]. Université Pierre et
Marie Curie - Paris VI, 2017. English. �NNT : 2017PA066566�. �tel-01875724�

https://theses.hal.science/tel-01875724
https://hal.archives-ouvertes.fr

Université Pierre et Marie Curie

Doctoral School: Sciences mécaniques, acoustique, électronique et
robotique

Institut de la Vision, Vision and Natural Computation team

Event-Based Detection and Tracking

Defended by:

David Reverter Valeiras

Specialty:

Computer Science

Directed by:

Prof. Ryad B. Benosman

Dr. Sio-Höı Ieng

Jury composed of:

Prof. Bernabé Linares Barranco Reviewer
Dr. Laurent Perrinet Reviewer
Prof. Stéphane Régnier Examinator
Prof. Ryad B. Benosman PhD Advisor

Invited member:

Dr. Sio-Höı Ieng Co-advisor

Acknowledgments

I would first like to thank my supervisors Prof. Ryad Benosman and Dr. Sio-Höı Ieng for
making this thesis possible. Their guidance and support have been a fundamental help
for me to accomplish this work.

I would also like to stress the important role of the loulous, who have made the whole
process a lot easier. Their kindness and sympathy have been a crucial support during all
these years, and I am very grateful for their help, both moral and scientific. The great
ambiance in the lab (or after hours in Le Gamin) has made this effort a pleasant one.

Asimismo, querŕıa reconocer el apoyo de mis amistades de Cité Universitaire. En
estos años he tenido la suerte de conocer a un puñado de personas a quienes espero ya
conservar de por vida. A menudo me han escuchado quejarme de las dificultades que he
ido encontrando en este proceso, y han sido una ayuda fundamental. Hemos compartido,
además, muchos momentos de alegŕıa y diversión, tan liberadores como necesarios.

También querŕıa agradecer la ayuda de quienes, habiéndome conocido en otro tiempo y
en otra ciudad, han tenido la amabilidad de seguir acordándose de mı́ y enviando mensajes
de vez en cuando, para mandarme ánimos o preguntar qué tal la vida.

Por último, quiero agradecer a mi familia todo lo que han hecho por mı́ a lo largo
de este tiempo. Su apoyo incodicional, su constante refuerzo positivo y su exagerada fe
en mi capacidad han movido montañas, y han sido una de las razones principales para
continuar adelante en los momentos más dif́ıciles, tanto en la tesis como en la vida. A
ellas y ellos va dedicada esta tesis.

Publications

Reverter Valeiras, D., Lagorce, X., Clady, X., Bartolozzi, C., Ieng, S. H., & Benosman, R.
(2015). “An Asynchronous Neuromorphic Event-Driven Visual Part-Based Shape Track-
ing”. IEEE Transactions on Neural Networks and Learning Systems, 26(12), 3045-3059.

Akolkar*, H., Reverter Valeiras*, D., Benosman, R., & Bartolozzi, C. (2015, June).
“Visual-Auditory saliency detection using event-driven visual sensors”. IEEE 2015 Inter-
national Conference on In Event-based Control, Communication, and Signal Processing
(EBCCSP), (pp. 1-6).

Reverter Valeiras, D., Orchard, G., Ieng, S. H., & Benosman, R. (2016). “Neuromorphic
Event-Based 3D Pose Estimation”. Frontiers in Neuroscience, 9, 522.

Reverter Valeiras, D., Kime, S., Ieng, S. H., & Benosman, R. B. (2016). “An Event-Based
Solution to the Perspective-n-Point Problem”. Frontiers in Neuroscience, 10.

Reverter Valeiras, D., Clady, X., Ieng, S. H., & Benosman, R. B. (2017) “Event-Based
Least Squares Line Fitting and Segment Detection” (under preparation).

* equal contribution

Détection et Suivi Événementiels

Résumé:

Les caméras événementielles neuromorphiques sont un nouveau type de capteurs bioin-
spirés, dont le principe de fonctionnement s’inspire de la rétine. Contrairement aux
caméras conventionnelles, ces dispositifs n’encodent pas l’information visuelle comme
une séquence d’images statiques, mais comme un flux d’événements possèdant chacun
un temps précis. Chaque pixel est indépendant et génère des événements de manière
asynchrone lorsqu’un changement de luminosité suffisamment important est detecté à
la position correspondante du plan focal. Cet échantillonnage en amplitude du sig-
nal lumineux permet d’accrôıtre la résolution temporelle, sans augmenter la quantité
des données à traiter ni la consommation énergétique. Cette nouvelle façon d’encoder
l’information visuelle requiert de nouvelles méthodes pour la traiter, car les algorithmes
classiques de traitement d’image ne parviennent pas à exploiter l’integralité du potentiel de
cette information. L’objectif principal de cette thèse est le développement d’algorithmes
événementiels pour la détection et le suivi d’objets. Ces algorithmes sont spécifiquement
conçus pour traiter les données produites par des caméras neuromorphiques.

Dans un premier temps deux algorithmes 2D sont presentés. D’abord, un “tracker”
plan est décrit. Cet algorithme associe à un objet une série de formes simples reliées
par des ressorts. Le système mécanique virtuel résultant est mis à jour pour chaque
événement. Le chapitre suivant présente un algorithme de détection de lignes et de seg-
ments, pouvant constituer une primitive (feature) événementielle de bas niveau. Ensuite,
deux méthodes événementielles pour l’estimation de la pose 3D sont présentées. Le pre-
mier de ces algorithmes 3D est basé sur l’hypothèse que l’estimation de la pose est toujours
proche de la position réelle, et requiert donc une initialisation précise et, dans un premier
temps, manuelle. Le deuxième de ces algorithmes 3D est conçu pour surmonter cette
limitation. Toutes les méthodes présentées mettent à jour l’estimation de la position (2D
ou 3D) pour chaque événement. Ceci résulte en une série de trackers capables d’estimer
la position de l’objet suivi avec une résolution temporelle de l’ordre de la microseconde.
Chaque méthode est illustrée avec des expériences, et comparée avec d’autres algorithmes
issus de l’état-de-l’art. Cette thèse montre que la vision événementielle permet de refor-
muler une vaste série de problèmes en vision par ordinateur, souvent donnant lieu à des
algorithmes plus simples, donc moins coûteux, sans sacrifier la précision.

Mots clés: Vision Neuromorphique, Vision Artificielle, Suivi Visuel, Estimation de Po-
sition 3D.

Event-based Detection and Tracking

Abstract:

Neuromorphic event-based cameras are a new type of biomimetic vision sensors, whose
principle of operation is inspired by the functioning of the retina. Unlike conventional
cameras, these devices do not encode visual information as a sequence of static frames,
but as a stream of precisely timestamped events. Every pixel is independent and asyn-
chronously generates events when it detects a sufficient amount of change in the luminance
at its corresponding field of view. This frame-free approach avoids redundant sampling of
previously known information, resulting in a drastic increase of the temporal resolution
without raising the amount of data to process or the energy consumption. This new way
of encoding visual information calls for new processing methods, as classical image-based
algorithms do not fully exploit the potential of event-based neuromorphic cameras. The
main objective of this thesis is the development of truly event-based algorithms for visual
detection and tracking.

In the first place two plane trackers are introduced. Firstly, a part-based shape track-
ing is presented. This method represents an object as a set of simple shapes linked by
springs. The resulting virtual mechanical system is simulated with every incoming event.
Next, a line and segment detection algorithm is introduced, which can be employed as
an event-based low level feature. Two event-based methods for 3D pose estimation are
then presented. The first of these 3D algorithms is based on the assumption that the
current estimation is close to the true pose of the object, and it consequently requires a
manual initialization step. The second of the 3D algorithms is designed to overcome this
limitation. All the presented methods update the estimated position (2D or 3D) of the
tracked object with every incoming event. This results in a series of trackers capable of
estimating the position of the tracked object with microsecond precision. Experiments
are provided in order to test each of the methods, comparing them against other state-
of-the-art algorithms. This thesis shows that event-based vision allows to reformulate a
broad set of computer vision problems, often resulting in simpler but accurate algorithms.

Keywords: Neuromorphic Vision, Artificial Vision, Visual Tracking, 3D Pose Estima-
tion.

Contents

1 Introduction 1

2 Asynchronous Part-based Shape Tracking 7
2.1 Introduction . 7
2.2 Stream of Visual Events . 8
2.3 Part-Based Shape Tracking . 8

2.3.1 Gaussian Blob Trackers . 8
2.3.2 Spring-Like Connections . 11
2.3.3 Using the energy as a matching criterion 15
2.3.4 Remarks . 18
2.3.5 Global algorithm . 18

2.4 Results . 19
2.4.1 Tracking a planar grid . 19
2.4.2 Face tracking . 23
2.4.3 Computational Time . 24

2.5 Discussion . 26

3 Event-Based Line and Segment Detection 28
3.1 Introduction . 28
3.2 Event-Based Line Detection . 29

3.2.1 Event-Based Visual Flow . 30
3.2.2 Event-Based Least-Squares Line Fitting 30
3.2.3 Optimization strategy . 34
3.2.4 Event-Based Line Detection Algorithm 35

3.3 Event-Based Segment Detection . 35
3.3.1 Activity of each pixel . 36
3.3.2 Generation of Endpoint Events . 36
3.3.3 Event-Based Segment Detection Algorithm 36

3.4 Results . 37
3.4.1 Controlled scene . 37
3.4.2 Urban scenes . 44
3.4.3 Computational time . 45

3.5 Discussion . 47

4 Event-Based 3D Pose Estimation 49
4.1 Introduction . 49
4.2 Event-based 3D pose estimation . 50

4.2.1 Problem formulation . 50
4.2.2 Rotation formalisms . 51

4.2.3 2D edge selection . 52
4.2.4 3D matching . 53
4.2.5 Rigid motion estimation . 54
4.2.6 Global algorithm . 56

4.3 Experiments . 56
4.3.1 Icosahedron . 57
4.3.2 House . 59
4.3.3 2D matching using Gabor events 60
4.3.4 Fast spinning object . 62
4.3.5 Degraded temporal resolution . 63
4.3.6 Computational time . 63

4.4 Discussion . 66

5 An Event-Based Solution to the Perspective-n-Point Problem 68
5.1 Introduction . 68
5.2 Event-based solution to the PnP problem 69

5.2.1 Problem Description . 69
5.2.2 Rotation formalisms . 69
5.2.3 Object-space collinearity error . 70
5.2.4 Optimal Translation . 71
5.2.5 Rotation . 72
5.2.6 Global algorithm . 75

5.3 Results . 75
5.3.1 Synthetic scene . 76
5.3.2 Real recordings . 83
5.3.3 Computational time . 87

5.4 Discussion . 88

6 Conclusion and Future Perspectives 90
6.1 Conclusion . 90
6.2 Future Perspectives . 91

Appendices 103

A Event-based Weighted Mean 104
A.1 Standard Weighting Strategy . 104

B Solution to the damped harmonic oscillator equation 106

C Mathematical development yielding the optimal ρ, θ 109

D Optimization strategy for the computation of the line parameters 111

E Iterative expression for the auxiliary parameters 112

F Disambiguation of cos(θ), sin(θ) 113

G Solutions to the system of equations of the 3D matching step 114
G.1 Singular case . 114
G.2 General case . 115

H Mathematical development yielding the optimal translation 117

I Iterative update 120

J Justification of the rotation 121

K Maximum torque and optimal φ 122

Chapter 1

Introduction

Neuromorphic Engineering is an emerging field, whose goal is to build hardware and
develop applications that mimic the functioning of the nervous system, using massively
parallel hybrid analog/digital VLSI circuits [1]. The term neuromorphic was coined in the
late eighties by Carver Mead [2], whose seminal work originated this interdisciplinary field
[3] in collaboration with prominent scientists Max Delbrück, John Hopfield and Richard
Feynman [4]. There are three main motivations for such an approach:

• In spite of their increasing capability and computational power, modern computers
still fail to accomplish tasks that our brains seem to solve effortlessly. Consider,
for example, object recognition or natural language processing: biological systems
still outperform the most advanced and powerful computers available, especially
when it comes to real-world scenarios. Despite the strong research effort and the
big advances achieved in recent years, the robustness and adaptability of the biolog-
ical nervous system remain out of reach for even the most developed and powerful
artificial systems.

• Neurobiological processing systems are extremely efficient computational devices:
in spite of its stunning capabilities, the energy consumption of the human brain is
lower than that of a typical computer [5]. In a context hallmarked by the ubiq-
uity of artificial silicon-based systems, biology has a lot to teach us about how to
reduce power requirements. This can be a crucial characteristic for a number of
applications, such as mobile battery-powered devices, drones or robots.

• Building bioinspired computational devices provides a valuable insight into the way
the nervous system works. In this sense, neuromorphic engineering provides a pow-
erful tool to test hypothesis and advance in our understanding of the computational
principles governing the biological brain.

In recent years, the field of neuromorphic engineering has received increasing attention
and a number of neuromorphic applications and devices have been developed. For a recent
review of neuromorphic systems, sensors and processing, the interested reader can refer
to [6], where neuromorphic devices are classified into two broad categories:

• Processing subsystems (see Fig. 1.1): they correspond to the biological brain.
Some examples include Spinnaker [7], IBM’s TrueNorth [8], Neurogrid [9] or Brain-
ScaleS [10]-[11]. A recent review of neuromorphic computing systems can be found
in [12].

1

Figure 1.1: Processing subsystems. (a) A 48 chip SpiNNaker board1. (b) DARPA
Synapse 16 chip board with IBM TrueNorth2. (c) Neurogrid board containing 16
neurocores3. (d) Schematic of the FACETS/BrainScaleS waferscale neuromor-
phic system4.

• Sensory subsystems (see Fig. 1.2): they correspond to biological sensory organs.
Examples include neuromorphic tactile sensing (skin) [13]-[14], olfactory systems
[15], neuromorphic silicon retinas [16]-[21] and neuromorphic cochleae [22]-[24].

This PhD thesis focuses on the development of applications specifically designed to
work on the output of neuromorphic silicon retinas. Unlike conventional cameras, neu-
romorphic retinas do not encode visual information as a sequence of static frames. In-
stead, they acquire this information asynchronously: every pixel is independent and au-
tonomously encodes visual information in its field of view into precisely timestamped
events. Thus, neuromorphic vision sensors do not sample data at an arbitrary frequency

1Source: Bhattacharya, B. S., Patterson, C., Galluppi, F., Durrant, S. J., & Furber, S. (2014).
Engineering a thalamo-cortico-thalamic circuit on SpiNNaker: a preliminary study toward modeling
sleep and wakefulness, Frontiers in Neural Circuits, 8. CC BY, https://doi.org/10.3389/fncir.

2014.00046
2By DARPA SyNAPSE - http://www.darpa.mil/NewsEvents/Releases/2014/08/07.aspx, Public

Domain, https://commons.wikimedia.org/w/index.php?curid=34614979
3By Ncousin - Own work, CC BY-SA 3.0, https://en.wikipedia.org/w/index.php?curid=

37953993
4Source: Scholze, S., Schiefer, S., Partzsch, J., Hartmann, S., Mayr, C. G., Höppner, S., & Schüffny,

R. (2011). VLSI implementation of a 2.8 Gevent/s packet-based AER interface with routing and event
sorting functionality. Frontiers in Neuroscience, 5. CC BY, https://doi.org/10.3389/fnins.2011.
00117

2

https://doi.org/10.3389/fncir.2014.00046
https://doi.org/10.3389/fncir.2014.00046
http://www.darpa.mil/NewsEvents/Releases/2014/08/07.aspx
https://commons.wikimedia.org/w/index.php?curid=34614979
https://en.wikipedia.org/w/index.php?curid=37953993
https://en.wikipedia.org/w/index.php?curid=37953993
https://doi.org/10.3389/fnins.2011.00117
https://doi.org/10.3389/fnins.2011.00117

Figure 1.2: Sensory subsystems. (a) iCub Robot equipped with tactile sensors
(skin)1. (b) ATIS silicon retina.

imposed by an artificial clock signal that has no relation to the source of the visual in-
formation [19]. Instead, they are driven by “events” happening within the scene, and
they transmit information in an asynchronous manner, as the biological eye does. This
frame-free approach greatly reduces the amount of redundant information generated by
the sensor, allowing for a drastic increase of its temporal resolution without raising the
amount of data to process or the energy consumption.

As soon as change or motion is involved (which is the case for most machine vision
applications), the universally accepted paradigm of stroboscopic frame acquisition entails
a serious problem: when a conventional camera observes a dynamic scene, and because
there is no relation between the frame rate controlling the pixel’s data acquisition process
and the dynamics present in the scene, over-sampling or under-sampling will occur, and
moreover both will usually happen at the same time. As different parts of a scene usually
have different dynamic contents, a single sampling rate governing the exposure of all pixels
in an imaging array will naturally fail to adequately acquire all these different dynamics
simultaneously present.

Consider a natural scene with a fast moving object in front of a static background:
when acquiring such a scene with a conventional video camera, motion blurring of the
moving object between adjacent frames will result from under-sampling the fast motion
of the object, while repeatedly sampling and acquiring static background over and over
again will lead to large amounts of redundant, previously known data that do not contain
any new information. As a result, the scene is simultaneously under- and over-sampled.
There is nothing that can be done about this sub-optimal sampling as long as all pixels
of an image sensor share a common timing source that controls exposure intervals (such
as a frame-clock).

Frame-based methods are of course suitable for many applications, as long as the
frame rate is able to capture the motion. However, even if the frame rate is sufficient, it is
always mandatory to process non-relevant information. Most vision algorithms, especially
when dealing with dynamic input, have to deal with a mix of useless and bad quality data
to deliver useful results, and continuously invest in power and resource-hungry complex
processing to make up for the inadequate acquisition.

1By Xavier Caré - Wikimedia Commons, CC BY-SA 3.0, https://commons.wikimedia.org/w/

index.php?curid=33368478

3

https://commons.wikimedia.org/w/index.php?curid=33368478
https://commons.wikimedia.org/w/index.php?curid=33368478

One of the first attempts of designing a neuromorphic vision sensor is the pioneering
work of Mahowald [17] in the late eighties. Since then, a variety of these event-based
devices have been created, including gradient-based sensors sensitive to static edges [25],
temporal contrast vision sensors sensitive to relative luminance change [19]-[21], edge-
orientation sensitive devices and optical-flow sensors [26]-[27]. Most of these sensors out-
put compressed digital data in the form of asynchronous address events (AER) [28]. A
complete review of the history and existing sensors can be found in [29].

The increasing availability and the improving quality of neuromorphic vision sensors
open up the potential to introduce a shift in the methodology of acquiring and processing
visual information in various demanding machine vision applications [30]-[32]. As this
thesis will show, asynchronous acquisition allows us to introduce a series of novel com-
putationally efficient techniques, that rely on the accurate timing of individual pixels’
response to visual stimuli. Indeed, this new way of encoding visual information calls for
new processing methods: classical algorithms, designed to work on images, do not take
full advantage of the potential of neuromorphic cameras. Reconstructing frames from the
events to feed classical image algorithms is always possible, but this leads to two sources
of waste: first, extra resources are necessarily consumed when events are gathered into
frames. Second, the temporal accuracy of the native signal is usually lost. Avoiding these
two undesired effects is the main motivation for designing truly event-based algorithms,
which is the primary goal of this thesis.

The Asynchronous Time-based Image Sensor (ATIS) [20] used in this work is one of
these neuromorphic silicon retinas. Its event generation process is illustrated in Fig. 1.3:
each pixel contains a change detector circuit that independently generates events when a
sufficient amount of change is detected in the log of the luminance at the corresponding
position on the focal plane. We distinguish between “positive” and “negative” events,
depending on whether the luminance increased or decreased. The change detector then
initiates the measurement of an exposure/gray scale value immediately after the luminance
change has been detected. The exposure measurement circuit in each pixel individually
encodes the absolute instantaneous pixel luminance into the timing of asynchronous event
pulses, more precisely into inter-event intervals. All the techniques presented in this thesis
employ the change detector events produced by an ATIS camera.

change detector

exposure measurement

trigger

greyscale events (TCDS pairs)

Log pixel illuminance

grey level ~ 1/tint
tint

change detection events
change events

graylevel events

Figure 1.3: Functional diagram of an ATIS pixel [21]. Two types of asynchronous events,
encoding change and brightness information, are generated and transmitted individually
by each pixel in the imaging array.

This PhD thesis introduces a set of event-based techniques for visual detection, track-
ing and pose estimation, both 2D and 3D. The outline of this document is as follows:

4

first, Chapters 2 and 3 introduce the 2D tracking techniques developed in this thesis. In
the first place, a part-based [33] shape tracking is presented in Chapter 2. This plane
tracker, greatly inspired by the Pictorial Structures model introduced in [34], defines the
model of an object as a set of simple shapes linked by springs. This results in a real-time
algorithm tracking complex objects at a low computational cost. As it will be shown,
the high temporal resolution of the event-based camera allows us to model the resulting
virtual mechanical system in a simple yet robust fashion. Results are provided, including
the application of the technique to face tracking.

Next, in Chapter 3, an event-based line and segment detection algorithm is presented.
Lines and segments provide fundamental low level features for vision-based systems, and
are often used as the input for different computer vision algorithms (see, e.g. [35]-[37]).
This constitutes a fundamental previous step in order to build complex event-based vision
applications. The accuracy of the method is first studied in a controlled scene. Next,
results obtained from urban scenarios are shown.

An important motivation for this research was its application to visual servoing (i.e.
controlling the motion of a robot using visual feedback [38]-[39]). A family of visual
servoing techniques, usually referred to as position-based visual servoing (PBVS), requires
the estimation of the camera’s 3D pose relative to some tracked object. This motivates
the research for the 3D pose estimation [40] algorithms presented in chapters 4 and 5. The
3D tracker presented in Chapter 4 provides an estimation of the relative pose of a known
object with respect to a calibrated neuromorphic camera. The method is intuitively
simple, and iteratively updates the estimated pose with every incoming event, using the
distance to the line of sight of events. This tracker is able of successfully estimating the
pose of different objects, including very fast moving objects or in the case of ego-motion.

The pose estimation algorithm presented in Chapter 4 assumes that an initial estimate
of the pose of the tracked object is available. As a result, a manual initialization step is
usually required. Moreover, it requires a complex 3D structure for the model of the tracked
object. The event-based solution to the Perspective-n-Point problem [41] introduced
in Chapter 5 is designed to overcome these limitations. The method is based on the
minimization of a given error function. In order to solve this problem, a virtual mechanical
system is built (as in Chapter 2). This system is constructed in such a way that its
potential energy is equal to the error function that needs to be minimized. Consequently,
since mechanical systems tend to a minimum of their potential energy, when we simulate
the behavior of this system we will tend to minimize the error, obtaining an accurate 3D
pose of the tracked object.

A brief State-of-Art on the corresponding research topic is included at the beginning
of each chapter.

Finally, in Chapter 6, the discussion and conclusions are presented. In particular, the
main contributions of this thesis are discussed, which can be summarized in the following
points:

• This work advances in the development of purely event-based techniques. All the
methods presented in this thesis update their state with every incoming event. In
this sense, this thesis establishes and tests a number of methods and tools that can
be applied to a wide number of event-based machine vision applications.

• It progresses in the development of event-based 2D tracking techniques. When this
work began, very few event-based visual tracking algorithms had been developed.
The most common technique was to consider a blob tracker, whose position is given

5

by the average of the incoming events [42]-[43]. This thesis introduces much more
elaborated tracking techniques.

• It presents some of the first purely event-based techniques for 3D pose estimation.
To our knowledge, the algorithm introduced in Chapter 5 is the only event-based
solution to the PnP problem available today.

6

Chapter 2

Asynchronous Part-based Shape
Tracking

2.1 Introduction

Object tracking is a fundamental task in many computer vision applications, including
video-based surveillance systems [44]-[45], human-computer interaction [46], augmented
reality [47] or traffic monitoring [48]. Despite being extensively studied over the last
decade, fast object recognition and tracking remains a challenging and computationally
expensive problem.

A major application of visual tracking is face detection and tracking. This area has
been dominated in the recent years by appearance-based methods [49]. These techniques
learn a global representation of the object from a set of training images and have been
deeply studied, originating from the pioneering work of Viola & Jones introduced in [50],
later improved by different researchers such as [51]-[57]. A complete review of the recent
advances in face detection is presented in [58]. In the field of event-based vision, an
example can be found in [59].

Appearance-based methods implicitly assume a rigid spatial relation between the parts
that constitute the object. Other methods that overcome this limitation rely on modeling
an object as a set of simple parts with a flexible geometric relation between them. These
techniques, known as part-based methods, have received a lot of attention as they allow the
recognition of generic classes of objects and the estimation of their pose. An early example
of this technique can be found in [34], in which a model known as Pictorial Structures
is introduced. In the Pictorial Structures framework the local elements of the object are
assumed to be rigid and linked by springs. A probabilistic model is defined and looks
for the best match that minimizes two cost functions: one for the matching of individual
parts and another one for the geometric relations between them. The main limitation
of this technique, which has prevented its use for a long time, is the high computational
cost needed to solve the resulting minimization problem. With the increase in available
computational power, this method has received renewed attention (e.g. in [60]-[63]).

In spite of the recent improvements, these techniques are fundamentally limited by
the low dynamics imposed by the frame rates of current cameras. In this chapter we
present a new approach to the problem, which relies on event-based vision to provide
high temporal resolution and sparse output, thus yielding a true dynamic framework to
the problem [19]-[20].

Despite its promising characteristics, few object tracking algorithms exploiting the

7

possibilities of event-driven acquisition have been developed so far. An event clustering
algorithm is introduced for traffic monitoring, where clusters can change in size but are
restricted to a circular form [42]-[43]. The sensor has been recently applied to track
particles in microrobotics [64] and in fluid mechanics [65]. It was also used to track
micro-gripper’s jaws to provide real-time haptic feedback on the micro meter scale [66].
In [67] a blob tracker is described which is capable of adapting its shape and position to the
distribution of incoming events, assuming that it follows a bivariate Gaussian distribution.

The part-based shape tracking introduced in this chapter is designed to track more
complex shapes. It defines the model of an object as a set of blob tackers linked by
springs. Event-based vision, with its asynchronous acquisition, allows a data-driven part-
based update of the model iteratively for every incoming detected event. Thus, instead of
explicitly minimizing the energy function, we simply let the system evolve. As we apply
the effects of the springs, their elastic energy tends to get smaller, in the same way as it
would in a real mechanical system. Therefore the resulting algorithm is simple and still
robust.

This chapter is organized as follows: in the first place we give a mathematical descrip-
tion of the stream of visual events generated by neuromorphic cameras in Section 2.2.
Next, we describe our part-based shape tracking in Section 2.3, while Section 2.4 presents
the experiments carried out to validate the method. Finally, in Section 2.5 we briefly
discuss the obtained results.

2.2 Stream of Visual Events

As previously explained in Chapter 1, neuromorphic cameras encode visual information
as a stream of asynchronous events. Here, events indicate a sufficient change of luminance
at a given position on the focal plane and at a precise instant. The stream of visual events
can then be mathematically described as follows: let ek = [uTk , tk, pk]

T be a quadruplet
describing an event occurring at time tk at the spatial position uk = [xk, yk]

T on the focal
plane. The polarity pk can take values 1 or -1, depending on whether a positive or negative
change of luminance has been detected. The time tk is often referred to as the timestamp
of the event, and is expressed with microsecond precision.

For the remainder of this document, the subindex k will always indicate the time
dependency of a given event-based variable (i.e. its value at time tk).

2.3 Part-Based Shape Tracking

We next present our part-based shape tracking. Let us remind the reader that the method
presented in this chapter describes an object as a set of simple shapes linked by springs.
Here, the simple shapes are the Gaussian trackers developed in [67] and explained in
Section 2.3.1. The spring-like connections are then presented in Section 2.3.2.

2.3.1 Gaussian Blob Trackers

When an object moves, the pixels generate events which geometrically form a point cloud
that represents the spatial distribution of the observed shape. The event-based Gaussian
tracker developed in [67] assumes that these events are normally distributed. According to
this assumption, the event cloud approximates a bivariate Gaussian distribution, whose

8

parameters can be iteratively updated with the incoming events. Thus, the Gaussian
tracker is driven by the asynchronous events, causing it to move and to deform so as to
approximate the event cloud’s spatial distribution.

Figure 2.1: A Gaussian tracker B following a cloud of events is defined by its location µk
and covariance matrix Σk.

In order to illustrate the update procedure, let us first assume that we are observing
a scene with just one object. Let B(µk,Σk) be the Gaussian tracker shown in Fig. 2.1,
defined by its mean µk ∈ R2 and its covariance matrix Σk ∈ R2×2. Here, the mean
represents the object’s position, and the covariance matrix is used to compute its size and
orientation (the interested reader can refer to [67] for details). Following the standard
convention in this document, the subindex k indicates the time dependency of these
variables (i.e. µk represents the value of µ at time tk, etc.).

The position µk is then computed as the weighted mean of the position of the events
previously assigned (i.e. spatio-temporally close) to the tracker. Without loss of gener-
ality, and just to ease the notation during the mathematical development, let us assume
that all the previous events have been assigned to this Gaussian tracker. This yields the
following expression for µk:

µk =
1

Ωk

k∑
j=0

ωk,juk−j, (2.1)

which is the usual expression for the weighted mean of an event-based variable, as ex-
plained in the Appendix A. Here, uk−j is the position of the event ek−j happening j steps
before the current one, with j = 0, 1, ..., k. The weight of the corresponding event is then
denoted ωk,j, verifying:

ωk,j ≥ 0, ∀j = 0, 1, ..., k, (2.2)

Ωk =
k∑
j=0

ωk,j. (2.3)

We can think of a number of different weighting strategies but, in general, we will
set the weights ωk,j so that they decrease with j, giving a greater importance to the
most recent events. Here, Ωk is just a normalizing factor. The weighting strategy most
commonly used in this thesis, that we denote the standard weighting strategy, is given by:

ωk,j = ωj = ω0(1− ω0)j. (2.4)

A detailed explanation of this weighting strategy is given in the Appendix A.1.

9

Analogously to µk, the covariance matrix takes the value:

Σk =
1

Ψk

k∑
j=0

ψk,j(uk−j − µk−j)(uk−j − µk−j)T , (2.5)

with ψk, j the corresponding set of weights, and Ψk =
∑k

j=0 ψk,j.
As proven in the Appendix A.1, if the standard weighting strategy is chosen we obtain

the following update laws for µk, Σk:

µk = ω0µk−1 +
(
1− ω0

)
uk, (2.6)

Σk = ψ0Σk−1 +
(
1− ψ0

)
(uk − µk)(uk − µk)T , (2.7)

which are the iterative expressions used in [67]. Here, ω0 and ψ0 are update factors and
should be tuned according to the event rate. Let us note that these expressions still
hold when not all the previous events have been assigned to the same Gaussian tracker,
provided that the position and the covariance matrix of a tracker are only updated when
an event is assigned to it.

Next, let us imagine that the scene we are observing contains several objects. Conse-
quently, let us assume that several Gaussian trackers have been initialized. These Gaus-
sian trackers are identified by their index i, and denoted B(i)(µ

(i)
k ,Σ

(i)
k). The probability

that a Gaussian tracker B(i) generates an event ek at the spatial position uk is then given
by:

p
(i)
k =

1

2π
|Σ(i)

k−1|
− 1

2 exp
(
− 1

2

(
uk − µ(i)

k−1

)T (
Σ

(i)
k−1

)−1(
uk − µ(i)

k−1

))
, (2.8)

where the probability is computed with the last available position and covariance matrix
(i.e. the values at tk−1). Then, assuming that all the Gaussian trackers have the same
prior probability of generating an event, Bayes’ theorem [68] allows us to conclude that the
tracker that has most likely generated ek is the one with the highest Gaussian probability
p

(i)
k . Each incoming event will then be assigned to the tracker with the highest p

(i)
k ,

provided that this probability is greater than a predefined threshold, p
(i)
k > δ (usually set

to 0.1). Once the most probable tracker has been identified, its parameters are updated
by integrating the last distribution with the current event information, as described in
(2.6) and (2.7).

Finally, the activity A(i)
k of each tracker B(i) is updated with each incoming event ek,

following an exponential decay function which describes the temporal dimension of the
Gaussian kernel.

A(i)
k =

A(i)
k−1 exp

(
− ∆tk

τ

)
+ p

(i)
k , if ek belongs to tracker i

A(i)
k−1 exp

(
− ∆tk

τ

)
, otherwise,

(2.9)

where ∆tk = tk−tk−1 is the inter-event time, and τ is a factor tuning the temporal activity

decrease. If the activity A(i)
k of a tracker B(i) is greater than a predefined threshold A(up),

then B(i) is labeled as active. Thus, a tracker is said to be active when it is correctly
following a cloud of events. Otherwise it is labeled as inactive.

10

2.3.2 Spring-Like Connections

The Gaussian tracker introduced in the previous section produces robust results when
dealing with simple objects, specially in the case of ellipse-like shapes. When attempting
to track a more complex object, we can assume that this object is composed of a set of
simple shapes linked by geometric relations. These relations, however, cannot be fixed, as
the movement of the object in the 3D space will cause its projection onto the focal plane
to be modified.

In order to build a tracker capable of following the structure of observed objects, we
model our system as a set of simple trackers linked by springs. Thus, each tracker of the
set will be driven both by the incoming events and by the elastic connections linking it
to other elements.

Euclidean Configuration

The force F exerted by a linear spring is given by the well known Hooke’s law [69], which
states that the direction of the force is that of the axis of the spring, and its magnitude
is given by the expression:

‖F ‖ = C∆l (2.10)

where ∆l = l− l0 represents the elongation of the spring, which is the difference between
its current length l and the equilibrium length l0. C is a characteristic of the spring known
as its stiffness.

Fig. 2.2(a) shows a linear spring to which an object of mass m has been attached. An
energy dissipation mechanism is also added and is represented in this case by an ideal
damper. The damping force D applied by a damper is modeled as being proportional
and opposed to the speed between its opposite sides:

‖D‖ = B
d∆l

dt
, (2.11)

where B is known as the viscous damping coefficient of the damper.

Figure 2.2: Principle of a damped spring: (a) A mass m is attached to a mechanical
system composed of a linear spring and a linear damper. (b) When the system is out
of its equilibrium position two forces F (elongation) and D (frictional) appear. Their
directions are opposed respectively to those of the displacement and the velocity.

11

Fig. 2.2(b) shows the system out of its equilibrium position and with a certain speed.
In that case, two forces F and D appear, their directions being opposed to those of
the displacement and the velocity respectively. Applying Newton’s second law we obtain
the differential equation of the system, needed to solve in order to calculate the object’s
acceleration, velocity and position:

m
d2∆l

dt
= −C∆l −Bd∆l

dt
. (2.12)

This is a typical problem in classical mechanics, and its solutions are well known and
studied [69]-[70]. If a series of connections is set between the different trackers, assigning
masses to these trackers allows us to actually model the behavior of this virtual dynamic
system. Even if we are not modeling a real system, keeping the concept of masses for the
trackers allows us to control their relative displacements, assigning bigger masses to the
elements that we wish to be more stable.

Let C(ij) be a connection bounding the Gaussian trackers B(i) and B(j). As shown in
Fig. 2.1, the position of the trackers is represented by µ

(i)
k , µ

(j)
k . Fig. 2.3(a) shows this

connection in its equilibrium state, where l
(ij)
0 represents the equilibrium distance and θ

(ij)
k

the angle formed by the axis of the connection and the horizontal axis. In what follows,
we will use a simplified representation of the connection, showing only the spring.

Figure 2.3: (a) Connection C(ij) (that links the Gaussian trackers B(i) and B(j)) in its initial

equilibrium state: l
(ij)
0 represents the initial length of the spring, and θ

(ij)
0 the angle formed

by the axis of the connection and the horizontal axis. (b) The trackers follow incoming
events, moving the connection away from its equilibrium position. The difference between
the current length of the connection l

(ij)
k and the initial length is known as the elongation

of the spring ∆l
(ij)
k . (c) The trackers are driven by the connection, which tries to recover

its initial length.

Let us assume that this connection behaves as a single linear damped spring that can
freely rotate around its ends, where it is connected to the respective trackers. When
modeling the system this way, we are only taking into account the euclidean distance
between the trackers, and not at all the direction of the connection. From now on, we
will refer to this configuration as the euclidean configuration.

Fig. 2.3(b) and Fig. 2.3(c) illustrate the evolution of the trackers from equilibrium,
as they are driven by both the incoming events and the spring-like connections. As the
events start arriving, they will cause the trackers to move away from their initial positions,
eventually producing a certain elongation of the spring. Fig. 2.3(b) shows the state of

12

the system after the trackers have been displaced by the events, where l
(ij)
k represents the

current distance between the trackers and ∆l
(ij)
k the corresponding elongation, given by:

∆l
(ij)
k = l

(ij)
k − l(ij)0 . (2.13)

As a consequence of this elongation, the trackers will then be driven by the spring-
like connection, which tries to recover its initial equilibrium length. Fig. 2.3(c) shows
the corresponding displacement of the trackers ∆µk, which are always in the opposite
direction to the elongation. Thus, when we apply the effect of the springs we update the
position of the trackers making:

µ
(i)
k ← µ

(i)
k + ∆µ

(i)
k ,

µ
(j)
k ← µ

(j)
k + ∆µ

(j)
k .

(2.14)

In order to compute these displacements, we will simply assume that they are pro-
portional to the elongation. This approximation, causing an exponential decay towards
equilibrium, is valid under the conditions described in the Appendix B, and will result in
the following values for the displacements:

∆µ
(i)
k =

α(ij)

m(i)
∆l

(ij)
k

[
cos
(
θ

(ij)
k

)
sin
(
θ

(ij)
k

)
]
,

∆µ
(j)
k = −α

(ij)

m(j)
∆l

(ij)
k

[
cos
(
θ

(ij)
k

)
sin
(
θ

(ij)
k

)
]
,

(2.15)

where α(ij) is a scaling factor that controls the stiffness of the connection, and m(i), m(j)

represent the masses associated with the ith and jth trackers respectively. Here, θ
(ij)
k

denotes the angle between the axis of the connection and the horizontal line.

Torsional Configuration

If we want to keep the angle of each connection close to the equilibrium value, we can
imagine the trackers as being linked by torsion springs. The force applied by a torsion
spring is proportional to the difference between the current angle and the equilibrium
angle. Adding an ideal prismatic joint between the trackers allows us to avoid taking into
account the distance between them. The equivalent mechanical system can be seen in
Fig. 2.4, where θ

(ij)
0 represents the initial equilibrium angle of the connection and θ

(ij)
k its

current value.
We will refer to this configuration as the torsional configuration. In this case, the

torsional elongation is given by:

∆θ
(ij)
k = θ

(ij)
k − θ(ij)

0 , (2.16)

which can be corrected by subtracting its mean value along the connections, in order to
make the system insensitive to rotation:

∆̃θ
(ij)

k = ∆θ
(ij)
k −∆θk, (2.17)

13

Figure 2.4: Torsional configuration: trackers are linked by torsion springs. The equilib-
rium angle is initially θ

(ij)
0 , while θ

(ij)
k denotes its position after torsion.

where ∆θk is the mean torsional elongation. Thus, if all the connections rotate through
the same angle in the same direction, the torsional elongation will be zero for all of them,
making the system insensitive to rotation.

Next, from the value of the elongation, we compute the corresponding displacements
to be applied to the the trackers. As in the case of the euclidean configuration, we simplify
the effect of the spring using a first order approximation. Then, if the current relative

position is l
(ij)
k [cos(θ

(ij)
k), sin(θ

(ij)
k)]T , the new angle will be θ

(ij)
k +α(ij)∆̃θ

(ij)

k , and the new
relative position will be given by:

l
(ij)
k

cos
(
θ

(ij)
k + α(ij)∆̃θ

(ij)

k

)
sin
(
θ

(ij)
k + α(ij)∆̃θ

(ij)

k

)
 (2.18)

From here, the displacements to be applied to the trackers are equal to:

∆µ
(i)
k =

l
(ij)
k

m(i)

cos
(
θ

(ij)
k + α(ij)∆̃θ

(ij)

k

)
− cos

(
θ

(ij)
k

)
sin
(
θ

(ij)
k + α(ij)∆̃θ

(ij)

k

)
− sin

(
θ

(ij)
k

)
 ,

∆µ
(j)
k =− l

(ij)
k

m(j)

cos
(
θ

(ij)
k + α(ij)∆̃θ

(ij)

k)− cos
(
θ

(ij)
k

)
sin
(
θ

(ij)
k + α(ij)∆̃θ

(ij)

k)− sin
(
θ

(ij)
k

)
 .

(2.19)

Cartesian Configuration

If we want to keep both the distance and the angle of each connection close to those of the
equilibrium, we can set a horizontal and a vertical equilibrium distances. The equivalent
mechanical system is represented in Fig. 2.5, where δx

(ij)
0 and δy

(ij)
0 are the horizontal and

vertical equilibrium distances respectively. ∆x
(ij)
k and ∆y

(ij)
k represent the horizontal and

vertical elongations, given by the equation:[
∆x

(ij)
k

∆y
(ij)
k

]
= µ

(i)
k − µ

(j)
k −

[
δx

(ij)
0

δy
(ij)
0

]
(2.20)

When modeling the system this way, the computation becomes very simple. Keeping
the same simplifications as in the previous cases, the displacements to be applied to the

14

trackers are given by:

∆µ
(i)
k =

α(ij)

m(i)

[
∆x

(ij)
k

∆y
(ij)
k

]

∆µ
(j)
k = −α

(ij)

m(j)

[
∆x

(ij)
k

∆y
(ij)
k

]
.

(2.21)

We will refer to this configuration as the cartesian configuration.

Figure 2.5: Cartesian configuration: the initial distances between the trackers are equal
to δx

(ij)
0 and δy

(ij)
0 , which correspond to the horizontal and vertical equilibrium distances

of the connection. The tracker activity following events originates an elongation given by
∆x

(ij)
k and ∆y

(ij)
k causing a change of distance between trackers B(i) and B(j).

2.3.3 Using the energy as a matching criterion

The elastic energy of a mechanical spring is given by the expression:

E =
1

2
C
(
∆l
)2
. (2.22)

In the case of our spring-like connections, and depending on the type of configuration
considered, we obtain the following expressions for the energy:

• Euclidean configuration:

E
(ij)
k =

1

2
α(ij)

(
∆l

(ij)
k

)2
. (2.23)

• Torsional configuration:

E
(ij)
k =

1

2
α(ij)

(
∆̃θ

(ij)

k

)2

. (2.24)

• Cartesian configuration:

E
(ij)
k =

1

2
α(ij)

(
(∆x

(ij)
k)2 + (∆y

(ij)
k)2

)
. (2.25)

The elastic energy of a connection constitutes a measure of its deformation. Conse-
quently, the energy of the spring-like connections can be used as a quality criterion for
the tracking: if our tracker is correctly following the desired object, chances are that the
energy of all the connections will be coherent. Thus, we define two energy-based criteria
designed to yield the tracker more robust to partial occlusions.

15

Preventing a single tracker from following the wrong cloud of events

Let us imagine that our part-based tracker is correctly tracking an object. Fig. 2.6(a)
shows the state of the system in such a situation. As a certain degree of deformation is
acceptable, the energy of its connections will typically be different from zero. However, we
will assume them to be relatively stable and similar to each other as long as the system is
correctly tracking the desired object. Next, let us imagine that a partial occlusion occurs,
generating a cloud of events that does not correspond to the tracked object. In a first
step, let us imagine that a single tracker B(i) starts following this wrong cloud of events,
while the rest of the trackers are unaffected. Fig. 2.6(b) shows the resulting situation: in
this case, the energy of all the connections C(ij) bounding B(i) will grow to be much bigger
than the rest. Thus, when the energy of all the connections bounding a certain tracker is
bigger than a threshold, we will make this tracker stop following events. As we wish to
allow stable growth of the elastic energy, this threshold will be defined as proportional to
the mean elastic energy of all the connections. The criterion will therefore be expressed
by:

if E
(ij)
k ≥ sEk ∀ j s.t. C(ij) exists⇒ B(i) insensitive, (2.26)

where Ek represents the mean elastic energy of all the connections and s is a positive
scaling factor. An insensitive tracker cannot have events assigned to it. As this condition
is evaluated for every incoming event, the tracker will be insensitive until the energy of
one of its connections drops below the threshold.

Figure 2.6: (a) The system is correctly tracking an object, until an occlusion occurs. (b)
If this occlusion attracts only one tracker B(i) the energy of every connection linking this
tracker will grow to be bigger than the rest. (c) If the elastic energy of every connection
linking the tracker B(i) gets bigger than a threshold (defined as proportional to the mean
elastic energy) then the tracker becomes insensitive. This means that no event can be
assigned to the tracker. Consequently, it will be driven exclusively by its connections, and
quickly recover its equilibrium position relative to its neighbors.

As a consequence of the tracker being insensitive to the incoming events, it will exclu-
sively be driven by the spring-like connections. This will cause it to quickly recover its
equilibrium position relative to its neighbors, typically finding the desired object again.

16

Preventing a group of trackers from following the wrong cloud of events

The second mechanism is designed to avoid a group of trackers following the wrong cloud
of events. Fig. 2.7(a) shows the same system as in the previous case, correctly tracking the
desired object. In this case, however, the cloud of events generated by the partial occlusion
will attract two trackers B(i) and B(j). As we can see in Fig. 2.7(b), the previous mechanism
will not be activated by this situation, as the energy of the connection bounding B(i) and
B(j) remains stable.

Figure 2.7: (a) The system is correctly tracking an object, until an occlusion occurs. In
this case, we will suppose the occlusion to attract two trackers B(i) and B(j). (b) In this

case, E
(ij)
k remains stable, and the previous mechanism will not be activated. However,

the energy of the rest of connections linking these trackers will grow to be bigger than the
energy threshold. (c) If the elastic energy E(ik) of any connection C(ik) gets bigger than a
threshold (defined as proportional to the mean elastic energy) then both of the trackers
B(i) and B(k) linked by the connection are attracted towards their equilibrium position,
relative to the center of mass of the set of feature trackers.

Let Gk denote the coordinates of the center of mass of the set of trackers at time tk,
and let ∆G(i)

0 = µ
(i)
0 −G0 represent the difference between the center of mass and a generic

tracker B(i) at the initial equilibrium position (see figure 2.7(a)). If the energy E
(ij)
k of

a connection C(ij) is bigger than a certain multiple of the mean elastic energy, then we
will displace both trackers B(i) and B(j) towards their equilibrium position, relative to the
current position of the center of mass. In the same way as for the spring-like connections,
the displacements applied to the trackers will be proportional to the distance to the
equilibrium position (relative, in this case, to the center of mass).

if E
(ij)
k ≥ sEk ⇒

∆µ
(i)
k = α(en)

(
Gk + ∆G(i)

0 − µ
(i)
k

)
,

∆µ
(i)
k = α(en)

(
Gk + ∆G(i)

0 − µ
(i)
k

)
,

(2.27)

where α(en) is the proportionality factor, equivalent to the stiffness of our spring-like
connections. This mechanism is in fact quite similar to that of the spring-like connections.
However, there is a fundamental difference: it is just applied when the connections surpass
the energy threshold, and its equilibrium distance is defined relatively to the center of
mass.

Let us note that the parameter s has an strong impact on the behavior of the system,
and it should be chosen carefully. A detailed study of its impact will be discussed in the
next section.

17

2.3.4 Remarks

When building the model of an object we are not constrained to a unique configuration.
Instead, we can imagine any combination of the three of them and assign them different
stiffnesses, in order to obtain the desired behavior. The system is built such that there is
no constraint in this sense.

However, we need to be careful when applying the mechanisms described in the pre-
vious section. As explained in Appendix B, the stiffness α of our spring-like connections,
as well as the masses of the trackers, are nothing but dimensionless scaling factors. This
means that, when computing the Elastic Energy of a connection using (2.23), (2.24) or
(2.25), the results we are obtaining do not have dimensions of energy. Instead, they simply
are a weighted sum of the square of the elongations of each connection. The units of these
elongations are pixels for the Cartesian and Euclidean configurations, and radians for the
Torsional configuration. As a result, making a comparison between these different types
of energy does not have any physical interpretation. Consequently, we will be careful to
only compare the same types of energy.

2.3.5 Global algorithm

The general algorithm of our method is given below (Algorithm 1).

Algorithm 1 Global algorithm

Require: ek = [uTk , tk, pk]
T , ∀k ≥ 0

Ensure: µ
(i)
k ,Σ

(i)
k , ∀i

for every incoming event ek do
for every tracker B(i) do

Compute the Gaussian probability p
(i)
k using (2.8).

end for
Find the best candidate B(b), with b = arg maxi p

(i)
k

for every tracker B(i) do
Update the activity A(i)

k using (2.9).

Decide if the tracker is active, comparing A(i)
k with A(up).

end for
if p

(b)
k > δ then

Update µ
(b)
k ,Σ

(b)
k using (2.1) and (2.5).

end if
for every connection C(ij) do

Compute the displacements ∆µ
(i)
k and ∆µ

(j)
k using (2.15), (2.19) or (2.21).

Update the positions of B(i) and B(j) using (2.14).

Compute the elastic energy E
(ij)
k using (2.23), (2.24) or (2.25).

end for
Compute the mean elastic energy Ek.
Apply the energy-based criteria.

end for

18

2.4 Results

All the experiments presented in this chapter operate on recordings produced by an ATIS
sensor. The tracking method is implemented in C++ and runs on a standard computer.

2.4.1 Tracking a planar grid

In this section we present a series of experiments, where the neuromorphic sensor observes
a computer screen that displays a moving 3× 3 grid of fixed sized blobs. Distortions are
applied to the grid to simulate a free evolution in a 3D space. Fig. 2.8 shows a sample
of the stimulus recorded by the neuromorphic camera. The active trackers (in green)
are being deformed by incoming events generated by the moving stimulus. The update
factors from (2.1) and (2.5) were set to ω0 = 0.02 and ψ0 = 5×10−5. The inactive trackers
are represented in black. The position of the springs is represented by the grid’s edges,
connecting two neighboring circles together. The stimulus is updated every 10 ms (100
fps) allowed by the technology of the used screen.

Figure 2.8: Snapshot created from the output of the neuromorphic camera showing the
state of the trackers for a configuration of the moving grid. The snapshot shows events
happening over a time period of 10 ms. Active trackers are represented by green el-
lipses while the inactive ones are shown in solid black. The overimposed lines show the
connections established between the trackers.

In the first experiment, the grid is displayed while alternating a rotation around the
vertical axis with a range of −75◦ and +75◦ at a constant speed of 15◦/s. A vertical move-
ment has been added, in order to generate events in all directions. Cartesian connections
are set between the trackers, and the effect of their stiffness α tested. Fig. 2.9(a) shows
the state of the system at four temporal locations, for two different values of the stiffness
α. When α = 0.004, the set of trackers is capable of following the grid up to a large angle
until a subset of trackers (shown in black) are unable to follow the target.

Fig. 2.9(b) shows the maximum tracking angle as a function of the chosen stiffness. It
is, as expected, a decreasing relation: when the stiffness of the connections is increased, the
trackers cease the tracking at a much earlier stage. Choosing the right α requires a trade-
off between adaptability to the distortions of the scene and robustness to disturbances.

In the second experiment, the grid is shown rotating around the X and Y axes si-
multaneously, at 15◦/s and 10◦/s respectively. The boundary values of each angle are set
to −30◦ and 30◦ for the X axis, and −45◦ and 45◦ for the Y axis. We added vertical
and horizontal motions as in the previous case. We also added random disturbances to
the stimulus: an element of the grid is artificially moved away to test the reaction of the
system to deformable objects. This also allows the simulation of occlusions that usually

19

0 0.02 0.04 0.06 0.08 0.1
20
40
60
80

Figure 2.9: (a) Results of the experiment for two different values of the stiffness: α = 0.004
and α = 0.008 (b) The maximum tracking angle as a function of α.

cause a subset of the trackers to follow the wrong cloud of events. Fig. 2.10 shows six
snapshots of the stimulus, in which an element of the grid is separated and then returns
to its position according to the applied motion.

Figure 2.10: Snapshots of the stimulus video: as the grid keeps following projective
transformations, one of its blobs is taken apart.

The ground truth is computed from the positions of the points on the screen, a homog-
raphy is estimated between the screen and the focal plane of the neuromorphic camera.
The error of the element of the grid simulating an occlusion is computed by comparing its
current position to its desired one (the one it would have been located at if the artificial
elongation was not applied).

Fig. 2.11(a) shows the tracking results of a single tracker, with α = 0.001 and s = 4.5.
Fig. 2.11(b) shows the moment at which one element of the grid starts being pulled from
the rest. At the beginning, the tracker successfully follows the element (from (b)-(d)).
As the element keeps moving further away from the rest of the grid, the attraction of the
springs is bigger than the attraction due to the events. As a result, the tracker will stop
following this cloud of events, as shown in Fig. 2.11(e). After that, it quickly recovers its
relative position to its neighbors. As shown in Fig. 2.11(g), the equilibrium position to
which the point returns to will be close to the real position of the element in the scene.

We define the instantaneous error ξk at time tk as the mean error over all the trackers.
We then characterize the accuracy of the system by the mean of this error computed over
the whole recording, and expressed as a percentage of the characteristic length of the
object:

ξ(%) =
100

LK

K∑
k=0

ξk, (2.28)

where K denotes the total number of events, and L the characteristic length of the
considered object.

Fig. 2.12 shows the evolution of the mean error ξ with the value of s, for a fixed value
of α = 0.001 (let us remind the reader that the parameter s represents the scaling factor
of the mean elastic energy, in order to activate the energy-based criteria). The best value
obtained is ξ = 2.74% for s = 4.5. The error is stable for s ≥ 12, because above this

20

14 15 16 17

100

150

200

Figure 2.11: (a) Position in x of a blob of the grid. The real position is known from the
scene generation process. The second line shows the position of the tracker following the
blob. Finally, the desired position represents the position where the tracker should be if
the grid was not deformed (e.g. pulled away from the grid structure). As we can observe,
the tracker initially follows the blob in its movement away from the grid. However, once
the deformation goes beyond some threshold, the tracker recovers its equilibrium position.

value the energy threshold gets so high that no connection overpasses it. As a result, the
mechanisms defined in Section 2.3.3 are never activated. This figure shows the positive
effect of the energy criteria on the performance of the system. This shows that one can
use use small values for the stiffness, allowing the system to be robust and thus efficiently
tracking the moving target.

Figure 2.12: Evolution of the mean error with the value of s. This parameter is a propor-
tionality factor, that sets the value of the threshold for the energy-based criteria defined
in Section 2.3.3 to be activated. When s is too large, these criteria are never activated
leading to high tracking errors.

We repeat the same experiment for different values of the stiffness α and evaluate
the error produced. Table 2.1 (left) shows the minimum error for each tested value of α
when the cartesian configuration is selected and the corresponding value of s at which it
is obtained. The smaller error is obtained for α = 0.001 and s = 4.5.

In order to compare the tracking performance of the different spring configurations,
we repeat the same experiment connecting neighboring trackers by both a euclidean and
a torsional spring, imposing α to be the same for both of them. Table 2.1 (right) shows
the tracking error for this configuration. In this case, the smaller error is also obtained
for α = 0.001 and s = 4.0.

Fig. 2.13 shows the evolution of the tracking errors with the stiffness for both types
of connections. We can see that the cartesian configuration slightly outperforms the
combination of torsional and euclidean springs for every value of the stiffness.

Another experiment is carried out to test the reaction of the system to rotations of
the tracked object on the image plane. Here, the grid rotates around the normal to the
screen between 45◦ and -45◦ while it translates in the focal plane. The tracking errors are

21

Cartesian Euclidean + torsional

α× 105 min(ξ) s min(ξ) s
50 2.93 3.5 3.01 3.0
100 2.74 4.5 2.79 4.0
150 2.84 4.5 2.88 4.5
200 3.36 4.5 3.75 3.5
400 4.30 6.0 4.84 3.5
800 4.79 6.0 5.46 3.0

Table 2.1: Mean tracking error produced for different values of the stiffness.

Figure 2.13: Tracking error obtained as a function of the stiffness. The grid experiments
general deformation and motion, and the cartesian configuration slightly outperforms the
combination of a torsional and a euclidean connection.

computed for both cartesian connections and a combination of torsional and euclidean
connections. Fig. 2.14 shows the tracking error with respect to the springs parameters for
the rotating grid. In such case, we can observe how the euclidean + torsional configuration
is clearly more suited: the error is steady and much lower than in the case of the cartesian
configuration, for which it increases with α.

Figure 2.14: Tracking error as a function of the stiffness, when the grid experiments a
rotation on the image plane. In this case, the combination of torsional and euclidean
connections clearly outperforms the cartesian configuration.

This allows us to conclude that the cartesian configuration guarantees more robustness
in keeping the desired shape. However, the system becomes sensitive to rotation on the
image plane.

22

2.4.2 Face tracking

The second experiment tests the tracking technique on a real human face in an indoor
environment. The target is a moving face as shown in Fig. 2.15. The motion of the face
is subjected to complex dynamics including phase of steep acceleration changes and scale
variations as the target is waving and moving towards the camera.

40
50
60

50

60

2000
3000

−10
0

10

0 5 10 15 20 25 30 35 40 45
2000
6000

10000

A B C

D

Figure 2.15: Geometric parameters observed during the sequence. (a-b) d and L are the
distances (in pixels) between the two eyes and between the eyes and the mouth. (c) d×L
represents roughly the area of the face in the image. Its value increases when the face gets
closer to the camera: the section tagged as A, where both d and L increase, shows such a
typical case. Changes in d for a constant value of L (or viceversa) correspond to rotations
of the face around the X or Y axis. This is represented by the section tagged as B. Rapid
oscillations around the yaw axis of the head are producing such results. (d) θ is the angle
(in degrees) between the vertical axis and the central axis of the face (or the roll angle of
the head). (e) The number of incoming events is directly related to the dynamics of the
scene. The number of events is shown on a time scale of ten milliseconds. The temporal
locations of high number of events shown by D are the result of occlusions generated when
moving hands cover partially the face (see Fig. 2.17). (f) Snapshot extracted from the
grayscale output of the ATIS camera, illustrating these parameters.

To characterize this complex sequence, several measurements are defined and measured
during the sequence: d is the distance between the two eyes, L is the distance of the eyes
to the mouth and θ is the angle between the vertical axis and the central axis of the face
(usually known as the roll head angle). Fig. 2.15(left) shows the measured values of each
parameter for the entire sequence. The number of events for a binning of 10 ms is also
shown in Fig. 2.15(e). The labels A, B, C and D shown in the Fig. 2.15 outline interesting
temporal locations of the experiment.

A moving face was recorded by the ATIS camera and we produced a snapshot from
the graylevel output from which we handcrafted a set of trackers and the connections
between them. The initial size and orientation of the Gaussian trackers can be chosen
by modifying their covariance matrix, so they better adjust to the corresponding element
of the face. Fig. 2.16 shows the actual mask used in the experiment, composed of 26
blob trackers (two for the eyebrows, two for the eyes, two for the nostrils, one for the
mouth and nineteen to create the outline of the face), joined together by 40 connections.
For every connection between a pair of trackers (shown in Fig. 2.16 as the thin lines
between the ellipses) we chose to impose both a euclidean and a torsional connection.
Their equilibrium distance and angle were computed from their initial positions, and the
stiffness α was experimentally set to 0.02 for both mechanisms in every connection. The

23

update factors from (2.1) and (2.5) were set to ω0 = 0.2 and ψ0 = 0.0002. The value
of s was tested in the same way as in the previous experiment, and set to 2.5. During
the recording, we asked the subject to wave his hand in front of his face to introduce
occlusions. The total time of the recorded stimulus is 49 seconds.

Figure 2.16: The set of trackers and the structure of their connections used to follow a
face from incoming events. The ellipses show the position of the trackers, and the lines
the connections set between them. Each connection is a combination of a euclidean and
a torsional connection, with α = 0.02 for both connections.

Fig. 2.17 shows the state of the system whilst tracking a face. It shows how the system
reacts to partial occlusions. As the hand passes in front of the face, it first attracts the
trackers, displacing them from their correct position. The system is sufficiently robust to
compensate by attracting the trackers to the correct position again, without losing track
of the face.

Figure 2.17: The set of connected trackers are disturbed by a dynamic occlusion intro-
duced by waving a hand in front of the face. As the hand passes in front of the face, it
first attracts the trackers, displacing them from their right position. However, the system
is sufficiently robust to compensate by attracting the trackers to the right position again,
without loosing track of the face.

The ground truth is obtained by manually selecting seven points of the face: eye-
brows, eyes, nostrils and mouth. The error is defined in the same way as in the previous
experiment: first, we define the error of each individual tracker as the distance (in pixels)
between the position of the tracker and the position of the corresponding feature in the
image plane. Next, we define the error for each instant as the mean of the errors of the
ground truth locations. It is expressed as a percentage of the vertical length of the face.
Fig. 2.18 shows the temporal evolution of the error. We characterize the system by the
temporal mean of this error, which is equal for this experiment to 5.42%.

2.4.3 Computational Time

Let us next evaluate the computational time required by the current C++ implementation
of the algorithm. These tests were performed in a standard computer running Debian
Linux, equipped with a Intel Core i7-4790 processor. The code was not paralellized and
just one core was used.

24

10 20 30 400

10

20

Figure 2.18: Temporal evolution of the error. This error is equal to the mean error of
the seven internal trackers (eyebrows, eyes, nostrils and mouth), relative to the vertical
length of the mask. Its temporal mean (indicated by the horizontal line) is equal to 5.42%

In order to characterize the computational time required by the algorithm we measure
the time it takes to process the previously presented recordings. To that end, we measure
the processing time for every time period of one millisecond (without overlapping) and
compute the ratio of processing time to the length of the considered periods (i.e. the
number of milliseconds it takes to process one millisecond of events). Thus, if this ratio
is smaller than 1, the algorithm can process the corresponding event stream faster than
it is acquired, without increasing latency (i.e. in “real time”). In order to obtain stable
values we process each recording 10 times and average the obtained results.

Let us show in Fig. 2.19 the ratio of processing time to the length of the recording
for the face tracking task, with the same set of parameters given in Section 2.4.2. Let us
note that we are considering the processing time required by the whole processing chain.
This includes, in addition to the shape tracking, reading the recording file and processing
the events for noise removal.

0 10 20 30 40

t (s)

0

0.5

1

R
at
io

p
.t
.

Figure 2.19: We measure the processing time every ms and compute the ratio of processing
time to the length of the considered portion of the recording. We show the results obtained
for the face tracking task: since this ratio is always smaller than 1, we can conclude that
we are processing the events faster than they are acquired for this recording.

We verify that the ratio of processing time to the lenght of the recording is always
smaller than one, which allows us to conclude that we can process this stream of events
faster than it is acquired. These results are of course dependent on the precise implementa-
tion of the algorithm and the computational power available. However, we consider them
to be useful as a means of comparison. The computational time will also be influenced
by the following factors:

• The complexity of the object: more detailed objects with a greater number of track-
ers and connections will require more computations.

• The event rate: a greater number of events to process per unit of time will necessary
increase the computational time required.

25

According to this last point, it is more interesting to display the ratio of processing
time as a function of the event rate, as in [71]. We show this results in Fig. 2.20: we
verify that the computational time is increasing with the number of events, and can
be approximated by a linear function. This allows us to extrapolate and compute the
maximum rate of events that can be processed in real time. We obtain, for this object
and set of parameters, a maximum event rate of 2076 ev/ms. Let us note that this is a
big value for the event rate, not usually reached in standard conditions (as a reference,
the recording of the face has a mean event rate of 303.4 ev/ms).

0 200 400 600 800 1000

ev/ms

0

0.5

1

R
at
io

p
.t
.

Figure 2.20: Computational time per ms as a function of the number of events per ms.
The computational time grows with the event rate, and it can be approximated by a linear
function.

2.5 Discussion

This chapter introduces a new method for visual tracking of complex objects using neu-
romorphic vision and the time of arrival of events. This work introduces for the first time
a true real-time part-based model running at the native resolution of scenes’ dynamics
and updating its energy at several hundreds kHz.

Experiments are provided showing the operation of the method. We first assess the
accuracy of the algorithm in a controlled environment, where we obtain tracking errors
below 3% (relative to the characteristic length of the tracked object). Then, as a demon-
stration of its possible uses, we apply the algorithm to a face tracking task showing its
accuracy and robustness.

As we model the behavior of our virtual mechanical system, its tends to its minimum.
This is an important property, that will be further studied in Chapter 5. The method
presented in the current chapter uses the energy as a quality criterion for the tracking.
When correctly tuned, the energy-based criteria increase the performance of the method,
making it more robust to partial occlusions.

In the current state, the model of the object needs to be manually defined. Future
improvements of the algorithm include the introduction of learning techniques to deter-
mine the model of the object: the pool of trackers would then be connected based on their
temporal coactivations, thus making use of the high temporal resolution of the sensor. A
possible improvement of the system would be to use more specialized trackers, allowing
them to track specific space-time patterns rather than just following incoming blobs of
events. This should make the method more robust to occlusions as it is very improbable
that occlusions have the same shape as the tracked stimulus.

The part-based shape tracker presented in this chapter represents an advance with
respect to the previously available event-based tracking techniques. While it is designed
to track complex objects, numerous computer vision algorithms require the extraction of

26

some low-level feature from the scene. This motivates the development of the line and
segment detector introduced in the next chapter.

27

Chapter 3

Event-Based Line and Segment
Detection

3.1 Introduction

In computer vision, line detection is the task of identifying lines along straight edges
present in a visual scene, and estimating their parameters. In man-made environments,
lines (and segments) provide fundamental low-level features for vision-based systems and
they are frequently used in robotic visual odometry [35] and vision-based structure from
motion (SFM) [36], [72]. More recently, the two problems are combined into the larger
application of the Simultaneous Localization and Mapping (SLAM) [73]-[74]. Various
approaches for the detection of lines and segments have been proposed since the early
age of computer vision: one of the most known and successful algorithms is the Hough
transform [75], that can be generalized to the detection of generic shapes [76]. It is still
widely used and studied as shown in in the recent State-of-Art proposed in [77]. Other
classical approaches include gradient-based methods [78] or statistical-based techniques
[79]. In the field of segment detection, LSD [80] is one of the most popular algorithms.
However, neither of these methods applies to the stream of asynchronous events provided
by a neuromorphic camera, where the information is not conveyed by frames.

A fundamental step leading to higher level processing of the event-based visual in-
formation is to define, detect and recognize accurately low-level features. The low-level
event-based features are a difficult concept, costly to build and extremely velocity depen-
dent. Lately, event-based corner detectors have been proposed [81]-[83]. An event-based
Hough Transform implemented with a Spiking Neural Network has also been introduced
in [84]. This approach offers a limited robustness to velocity changes as only a linear decay
of the activity of the neurons is considered. As pointed out in [83], the decay function
weighting the contribution of an event must be tuned according to the expected velocities
of the observed objects on the focal plane. In spite of this precaution, small structures
such as corners are inherently velocity dependent: when the motion is parallel to one of
the corner’s edges, the corner is no longer seen by the sensor. To alleviate the velocity
dependence, we propose rather to track larger structures like lines. Because of their size,
lines are seen for a longer time and are more easily detected by the sensor. Finally, using
lines as visual features is also a reasonable constraint since human made structures are
often made of rectilinear edges.

An event-based segment detector has been published in [85], called Event-Based Line
Segment Detector (ELiSeD) and derived from the LSD [80]. The reported accuracy, when

28

tracking a single line, is about 1.36 pixels compared with the original LSD algorithm.
The ELiSeD method requires events to be stored on a circular buffer of a fixed size (they
report typical sizes of 2500 to 8000 events). As a result, fast moving objects, that generate
globally more events at constant contrast, tend to dominate the buffer contents.

To address the problem of robustness to velocity changes, we propose an alternative
event-based line and segment detector: the parameters of a given line are obtained by
weighted least squares fitting of the events attributed (i.e. spatio-temporally close) to the
line. The weight of the past events follows a speed-tuned exponentially decaying function,
which makes the method velocity-independent, as shown in [83]. Parameters of a line are
iteratively updated with each event in a truly event-based fashion.

This line detection technique can be refined into a segment detection algorithm in order
to provide pixel-wise feature detection. The main reason to develop this segment detector
is twofold: the first is that many computer vision algorithms require pixel-wise feature
detection to achieve feature identification and tracking (e.g. [86]). The second is that the
existing event-based pixel-wise feature detectors are based on corners which, as stated
before, are extremely sensitive to velocity change. Corners simply cannot be seen by the
sensor if the motions are perpendicular to the contours that subtend the corners. As we
claim that lines are more robust (but not immune) to such problem thanks to the speed-
tuned decay approach, we localize segment endpoints through the activity analysis along
the detected lines. The validity and the accuracy of the endpoint detection are validated
by the experiments, showing that they can be used for pixel-wise feature detection.

Our approach results in a real-time algorithm iteratively estimating line parameters
as exposed in Section 3.2. The approach is then extended to the detection of segments
in Section 3.3. In Section 3.4, we provide experiments assessing the accuracy of our
algorithm in a controlled environment. Visual results obtained on non controlled outdoor
and indoor real scenes are also provided. Finally, we briefly discuss the obtained results
in Section 3.5.

3.2 Event-Based Line Detection

Let us consider a stream of events generated by a neuromorphic camera. Let us remind
the reader that an event is defined as a quadruplet ek = [uTk , tk, pk]

T , which represents a
change of luminance (increase, pk = 1, or decrease, pk = −1) occurring at time tk at the
position uk = [xk, yk]

T on the focal plane. Here, we will be looking for the set of lines
that best fits the stream of recent past events, in the sense of minimizing the sum of the
squared distances from the events to the lines.

As the first events arrive, we initialize some line models passing through them. Then,
as more events are detected, we can either assign them to some pre-existing model or
generate a new one. This process results in the generation of a certain number of line
models, many of which will not be reliable as they are estimated from few events. These
line models are initially marked as inactive, meaning that we keep updating the models
but the number of events supporting them has not reached a sufficient high value yet.
A line model switches from label inactive to active if, within a short period of time, a
sufficient number of events has contributed to the update of the model.

We impose two conditions for an event to be assigned to the update of a line model:

• The distance between the event and the line has to be smaller than a threshold.

• The visual flow of the event [32] must be perpendicular to the line.

29

The first condition is trivial, since the event is spatio-temporally related to the line.
The second condition is also a logical one, because the visual flow is the event-based
equivalent of the optical flow estimated in frames, i.e. the pattern of apparent motion
of objects in a visual scene, caused by their motion relative to the camera (the specific
naming is to emphasize its event-based nature: the visual flow is not estimated from the
standard luminance consistency criterion). Thus, the visual flow estimation is subject to
the same aperture problem explained in [87]: when the flow is computed locally, only the
normal component to the local contours of the object can be obtained. Consequently,
the direction of the flow is encoding the direction of rectilinear edges, i.e. lines on the
focal plane. The proposed event-based line detection technique then fits line parameters
according to these two constrains upon arrival of each event.

3.2.1 Event-Based Visual Flow

The first step to track lines from events is to compute the visual flow of the incoming
events. To that end, we apply the technique described in [32], where the visual flow
is obtained from the normal to a 3D plane locally approximating the spatio-temporal
surface described by the incoming events. In the standard plane parametrization of
Ax+By + t+ C = 0, the normal to a plane defined by data [x, y, t]T is directly related
to the parameters A and B. To estimate these parameters we apply least squares fitting.
This is done on the centered data to avoid ill conditioned systems [88]. The plane equation
is then equivalent to:

t̃ = Ax̃+Bỹ, (3.1)

where the tilde means that the average values are subtracted from each variable. Here,
we consider the m most recent events in a given spatial neighborhood of the current event
ek (as in [81]), and we denote Ik the set of indices identifying these events (i.e. if i ∈ Ik
then ei is one of the m most recent events in a spatial neighborhood of ek). We obtain
the following linear system:

∑
i∈Ik

x̃2
i

∑
i∈Ik

x̃iỹi∑
i∈Ik

x̃iỹi
∑
i∈Ik

ỹ2
i

A
B

 =

∑
i∈Ik

x̃it̃i∑
i∈Ik

ỹit̃i

 . (3.2)

This being a 2 × 2 linear system, when the system matrix is invertible we can apply
Cramer’s rule to obtain a closed form solution, allowing us to efficiently compute A and
B. Since the visual flow estimation is subject to the aperture problem, only the normal
velocity vector can be obtained, which is computed as:

vk =
1

A2 +B2

[
−A
−B

]
. (3.3)

The output of this first step will be a stream of “oriented” events ok = [uTk ,v
T
k , tk, pk],

where vk denotes the normal flow of the corresponding event. The oriented event is then
the initially defined event augmented with the velocity vk.

3.2.2 Event-Based Least-Squares Line Fitting

With the flow, next comes the event-based algorithm for least squares line fitting. This
method is an iterative event-based adaption of the classical least squares fitting of lines
with perpendicular offsets [89].

30

Line Parametrization

Lines in 2D space are defined by two parameters. We choose here the ρ-θ parametrization
[90], which avoids the infinite or close to infinite slope that one can meet with the slope-
intercept parametrization [91]. Line models are identified by their index i and denoted

L(i)
(
ρ

(i)
k , θ

(i)
k

)
, where ρ

(i)
k is the distance from the line to the origin and θ

(i)
k the angle

between the normal n
(i)
k to the line and the horizontal (see Fig. 3.1). Following the

standard notation in this document, the subindex k relates the line to the time, i.e. ρ
(i)
k

is the angle of line L(i) at time tk, etc. The equation of the line is then:

x cos(θ
(i)
k) + y sin(θ

(i)
k)− ρ(i)

k = 0, (3.4)

where θ
(i)
k ∈ [−π/2, π/2]. The unit vector normal to the line n

(i)
k is then given by:

n
(i)
k =

[
cos(θ

(i)
k), sin(θ

(i)
k)
]T
. (3.5)

Let us note here that, while the lines are defined by the angle θ
(i)
k , we will not need

to calculate it explicitly. The algorithm can be applied directly on cos(θ
(i)
k), sin(θ

(i)
k), as

it will be shown in Section 3.2.3. This constitutes an optimization strategy that reduces
the number of required computations, as it will be explained in Section 3.2.3.

Figure 3.1: A line, identified by its index i, is denoted L(i)
(
ρ

(i)
k , θ

(i)
k

)
and defined by two

parameters: the distance ρ
(i)
k between the line and the origin and the angle θ

(i)
k between

the normal to the line n
(i)
k and the horizontal. Incoming events are assigned to previously

existing lines based on two conditions: the euclidean distance d
(i)
k between the line and

the position of the event uk, and the angular distance α
(i)
k between the normal to the line

n
(i)
k and the visual flow of the event vk.

Activity

Like the gaussian trackers in the previous chapter, each possible line model has a certain
level of activity, that we denote A(i)

k . The activity of every model is updated with the

31

incoming events ek, following a speed-tuned exponential decay function:

A(i)
k =

A
(i)
k−1e

−‖vk‖∆tk + 1 if ek is assigned to L(i),

A(i)
k−1e

−‖vk‖∆tk otherwise,
(3.6)

where ∆tk = tk− tk−1. Let us remind the reader that in the previous chapter the activity
followed a fixed decay exponential (see Section 2.3.1 for details). Here, we choose a
speed-tuned decreasing strategy instead (as in [83]), which makes the activity of the lines
independent to their respective velocities. We consider this to be an improvement with
respect to the fixed decaying strategies, as it provides an automatic and adaptive way to
characterize each line.

As in the previous chapter, if the activity A(i)
k of a line model L(i) is greater than

a predefined threshold A(up), then L(i) is said to be active, and a line is assumed to be
actually present at that position.

Assignment of events

Let ok = [uTk ,v
T
k , tk, pk]

T be an oriented event occurring at time tk at the position uk
on the focal plane, with normal flow vk. The assignment of ok to a line is based on two
criteria:

• The euclidean distance d
(i)
k from the event to the line has to be smaller than a

threshold d(max).

• The angle α
(i)
k between the normal to the line n

(i)
k and the visual flow vk must be

smaller than a threshold α(max) (see Fig. 3.1), in order to assure orthogonality of
the flow to the line.

The two criteria are translated into the following inequalities that an event has to
satisfy in order to be assigned to a line L(i): d

(i)
k =

∣∣uTkn(i)
k−1 − ρ

(i)
k−1

∣∣ < d(max),∣∣ cos(α
(i)
k)
∣∣ =

∣∣vTk n(i)
k−1

∣∣ > cos(α(max)).
(3.7)

Here, we directly compare the cosinus of the angle, which yields an equivalent result
and avoids the computation of an arc cosinus. If several line models verify these two
conditions, a competition mechanism is established and the event is assigned to the model
with the highest activity. If none of the existing models verifies them, we initialize a new
one.

Initialization of line models

If an oriented event ok cannot be assigned to any of the pre-existing line models, we
generate a new model. The parameters of this new model, indexed by i, are determined
by the event ok in the following form:{

n
(i)
k = vk,

ρ
(i)
k = uTk vk

(3.8)

32

To limit the computational time required by the algorithm we fix a maximum of N
line models to be tracked simultaneously. If N line models have already been created,
then the new one replaces the model among the N with the smallest activity.

Optimal parameters

When an event ok is assigned to a line model, the parameters of this model are updated
accordingly. The new optimal parameters must minimize the sum of the squared distances
between the line and the past events assigned to it. As in [86], these distances are weighted
in order to give a greater importance to the most recent events. Without loss of generality,
let us assume that all past events have been assigned to the same line i. Hence, the function
E

(i)
k (θ, ρ) is obtained as the weighted mean of the errors committed for the past events

assigned to the line:

E
(i)
k (θ, ρ) =

1

Ωk

k∑
j=0

ωk,j
(
xk−j cos(θ) + yk−j sin(θ)− ρ

)2
, (3.9)

where we are applying the formula of the weighted mean previously introduced in Section
2.3.1 and detailed in the Appendix A.

To minimize E
(i)
k w.r.t. ρ and θ, we look for the two values that cancel the respective

partial derivatives of E
(i)
k . As shown in the Appendix C, the optimal ρ

(i)
k is then obtained

as:

ρ
(i)
k =

x̂
(i)
k cos(θ) + ŷ

(i)
k sin(θ)

Ωk

, (3.10)

while θ
(i)
k is deduced after simplifying the vanishing derivative into the equation:

ak sin
(

2θ
(i)
k

)
+ bk cos

(
2θ

(i)
k

)
= 0, (3.11)

where:
ak = Ωk

(
ŷy

(i)
k − x̂x

(i)
k

)
+
(
x̂

(i)
k

)2 −
(
ŷ

(i)
k

)2
,

bk = 2
(
Ωkx̂y

(i)
k − x̂

(i)
k ŷ

(i)
k).

(3.12)

Here, x̂
(i)
k , ŷ

(i)
k , x̂y

(i)
k , etc. denote the weighted sum of the corresponding coordinates

of the events previously assigned to the line:

x̂
(i)
k =

k∑
j=0

wk,jxk−j, ŷ
(i)
k =

k∑
j=0

wk,jyk−j

x̂x
(i)
k =

k∑
j=0

wk,jx
2
k−j, ŷy

(i)
k =

k∑
j=0

wk,jy
2
k−j

x̂y
(i)
k =

k∑
j=0

wk,jxk−jyk−j.

(3.13)

We will refer to these values as the auxiliary parameters of a line, which are required
to compute its optimal ρ, θ. Let us note that (3.11) yields two possible solutions for θ

(i)
k

corresponding to two perpendicular lines, namely the ones maximizing and minimizing

33

the error. The minimum error is obtained when the second derivative is greater than zero,
which yields the following condition:

cos
(
2θ

(i)
k

)(
ŷy

(i)
k −x̂x

(i)
k

)
−2 sin

(
2θ

(i)
k

)
x̂y

(i)
k +ρ

(i)
k

(
x̂

(i)
k cos

(
θ

(i)
k

)
+ŷ

(i)
k sin

(
θ

(i)
k

))
> 0. (3.14)

Alternatively, and thanks to the high temporal resolution of the neuromorphic camera,
we can consider that the angle θ

(i)
k will change smoothly at each iteration step. Conse-

quently, among the two possible solutions to (3.11), we can simply choose the one closer

to the previous value θ
(i)
k−1.

The development so far is independent of the weighting strategy being used. In this
chapter, we will choose the weights to follow a speed-tuned exponentially decaying strategy
as in [83]:

wk,j =

j−1∏
i=0

e−‖vk−i‖∆tk−i = e−‖vk‖∆tkωk−1,j−1, if 0 < j ≤ k

1, if j = 0.

(3.15)

According to this strategy, similar weights (close to 1, because (tk − tk−j) ' 0) will
be associated to events ej (quasi)-simultaneously occurring at the last event’s timing (tk)
and belonging to the current line. The weights of older events, corresponding to older
locations of the line, will rapidly tend to 0. The speed-tuning automatically adapts the
decay according to the speed of the contour line.

As in the Equation (3.6) about activity, this weighting strategy allows us to com-
pute the auxiliary parameters in the following iterative form, where δk = e−‖vk‖∆tk (see
Appendix E for a complete proof):

x̂
(i)
k ≈ δkx̂

(i)
k−1 + xk

ŷ
(i)
k ≈ δkŷ

(i)
k−1 + yk

x̂x
(i)
k ≈ δkx̂x

(i)
k−1 + x2

k

ŷy
(i)
k ≈ δkŷy

(i)
k−1 + y2

k

x̂y
(i)
k ≈ δkx̂y

(i)
k−1 + xkyk

(3.16)

Additionally, when applying this set of weights we obtain:

Ωk = A(i)
k . (3.17)

Let us note that expressions in (3.16) still hold when the past events have been assigned
to different lines, since the auxiliary parameters of a given model are only updated when
an event is assigned to it.

3.2.3 Optimization strategy

As previously stated, the actual value of θ
(i)
k is never directly required. Instead, we just

need its sinus and cosinus. This avoids the computation of an arctangent, a sinus and a
cosinus, at the cost of computing three square roots. Let us remind the reader that we
are updating the parameters of the line with every event assigned to it, and consequently

34

it is of great importance to limit the number of operations carried out every time. As
shown in the Appendix D, from (3.11) and after some trigonometry we obtain:

sin
(
θ

(i)
k

)
= ±

√
1− βk

2
, cos

(
θ

(i)
k

)
= +

√
1 + βk

2
, (3.18)

where:

βk = ±

√
a2
k

a2
k + b2

k

. (3.19)

Here, we are just keeping the positive solution for cos θ
(i)
k , because θ ∈ [−π/2, π/2].

This yields a total of four possible combinations for sin θ
(i)
k , cos θ

(i)
k . To disambiguate the

right solution from the four possible ones, a procedure is given in the Appendix F. Let us

also remark that these equations are always well defined, since
a2k

a2k+b2k
≥ 0 and βk ≤ 1 for

all values of ak, bk.
This is the method used in our implementation of the algorithm tested in the experi-

ments.

3.2.4 Event-Based Line Detection Algorithm

A summary of the complete event-based line detection procedure is given in Algorithm
2. At this point, the detection provides the starting point of the next objective: how to
detect segments from the lines.

Algorithm 2 Event-Based Line Detection

Require: ok = [uTk ,v
T
k , tk, pk]

T , ∀k ≥ 0

Ensure: ρ
(i)
k , θ

(i)
k ∀i = 1...N

for every oriented event ok do
for every line L(i) do

Apply the decay to A(i)
k using (3.6)

end for
if ∃ any lines verifying (3.7) then

i← arg maxj A(j)
k s.t. L(j) verifies (3.7)

A(i)
k ← A

(i)
k + 1

Update sin θ
(i)
k , cos θ

(i)
k and ρ

(i)
k using (3.18) and (3.10)

if A(i)
k > A(up) then

Output the line
end if

else
Initialize a new line model using (3.8)

end if
end for

3.3 Event-Based Segment Detection

In this section we expand the line detection algorithm to a segment detection. Segments,
from a line, are detected by localizing discontinuities which are actually the segments’

35

endpoints. Hence, we add to the line detection algorithm some procedure to output the
positions of these endpoints at the same time the line is detected and tracked. In our
implementation, the algorithm produces a pair of endpoint events for each segment. These
events signal the position in space and time of the endpoints. As such, the output of this
segment detector is a stream of endpoint events that can be used as feature for matching
and learning tasks.

3.3.1 Activity of each pixel

Let us define, for each line L(i), two vectors X (i)
k ∈ Rw and Y (i)

k ∈ Rh. These vectors
contain the activity of each pixel of the line, projected on the x and y axis respectively,
where w, h are the width and height of the sensor. The activity of each pixel is in-
creased whenever an event is assigned to the line at a distance smaller than l pixels, and
it follows a speed-tuned exponential decay afterwards. Thus, when an oriented event
ok = [uTk ,v

T
k , tk, pk]

T is assigned to a line L(i), we update X (i)
k and Y (i)

k according to:

X (i)
k (x) =

X (i)
k−1(x)e−‖vk‖∆tk + 1 if |x− xk| < l,

X (i)
k−1(x)e−‖vk‖∆tk otherwise,

(3.20)

Y (i)
k (y) =

Y (i)
k−1(y)e−‖vk‖∆tk + 1 if |y − yk| < l,

Y (i)
k−1(y)e−‖vk‖∆tk otherwise,

(3.21)

where x = 1, 2, ..., w, and y = 1, 2, ..., h. Here, l is a tuning parameter controlling the size
of the local neighborhood for the computation of the pixel’s activity.

3.3.2 Generation of Endpoint Events

Pixels of a line are labeled as active if their activity is greater than a predefined threshold
P(up) (where we choose the symbol P(up) in order to distinguish it from the activity
threshold for the lines A(up)). The search for neighboring active pixels is then performed
on the x or y projection, depending on the orientation of the line (see Fig. 3.2)

Roughly speaking, if |θ(i)
k | > π/4

(
or cos(θ

(i)
k) < cos(π/4)

)
we can say that the line is

closer to being horizontal than vertical: in that case, each pixel of the line corresponds to
a unique x coordinate, and we consequently perform our search on X (i)

k . Otherwise we

employ Y (i)
k .

When an oriented event ok is assigned to a line L(i) we look for active pixels in its
neighborhood, starting at the position of the event. Thus, if |θ(i)

k | > π/4 we look for recent

pixels in X (i)
k starting at xk. Otherwise we perform our search in Y (i)

k starting at yk. The
endpoints are then given by the furthest active pixel in each direction, as shown in Fig.
3.2, where we impose a minimum length of l/2 to the segments. Two endpoint events
are finally generated, giving the endpoints positions in space and time after a smoothing
process using a blob tracker similar to the one introduced in [67].

3.3.3 Event-Based Segment Detection Algorithm

The event-based segment detection procedure is summarized in the Algorithm 3.

36

Figure 3.2: The normal to L(1) forms a small angle with the horizontal: |θ(1)
k | < π/4. We

can then say that this line is closer to being vertical than horizontal, and each pixel of the
line corresponds to a unique y position. The opposite holds true for L(2): if the event ek
at position uk is assigned to L(2), we look for neighboring active pixels on X (2)

k starting
at xk. The furthest active pixel in each direction gives us an endpoint, and we generate
two endpoint events at their positions.

3.4 Results

In this section, we present two experiments to assess the accuracy of the algorithm with
scenes captured by an Asynchronous Time-Based Image Sensor (ATIS) with 304 × 240
pixels resolution [20]. In the first one, we applied the line and segment detection to a
monitored scene for which we have built a ground truth. In the second experiment, we
used two real scenes while moving the sensor. The algorithm was implemented in C++
and tested in a standard computer running Debian Linux.

3.4.1 Controlled scene

In order to numerically evaluate the results of the algorithm we first apply it to a controlled
environment, containing an object composed of 13 lines oriented between 0◦ and 90◦ at
7.5◦ intervals, as shown in Fig. 3.3(a). These lines are printed on a piece of paper and
fixed on a horizontal rail, which can be moved at different controlled speeds. The scene
is then recorded with an ATIS sensor fixed above (see Fig. 3.3(b)), while the rail moves
back and forth in the field of view of the camera. The movement is repeated eight times
at increasing speeds.

Ground truth values for numerical evaluation of the algorithm are obtained from re-
constructed frames, created by plotting together every 1000 events. Since the movement
of the object is always contained on a plane, its position w.r.t. the camera can be inferred
by matching a planar template [92] estimated from a homographic transform. This is
achieved with the Matlab implementation of the ECC algorithm [93] available online.

https://fr.mathworks.com/matlabcentral/fileexchange/27253-ecc-image-alignment-algorithm–

37

Algorithm 3 Event-Based Segment Detection

Require: ok = [uTk ,v
T
k , tk, pk]

T assigned to L(i)

Ensure: stream of endpoint events

for every oriented event ok assigned to L(i) do
Update X (i)

k and Y (i)
k using (3.20) and (3.21)

if A(i)
k > A(up) then

if cos θ
(i)
k > cos π

4
then

x1 ← xk + 1
while x1 < w and X (i)

k [x1] > P(up) do
x1 ← x1 + 1

end while
x2 ← xk − 1
while x2 ≥ 0 and X (i)

k [x2] > P(up) do
x2 ← x2 − 1

end while
if x1 − x2 > l/2 then

y1 ← (x1 cos θ
(i)
k − ρ

(i)
k)/ sin θ

(i)
k

Generate an endpoint event [x1, y1, tk, pk]
T

y2 ← (x2 cos θ
(i)
k − ρ

(i)
k)/ sin θ

(i)
k

Generate an endpoint event [x2, y2, tk, pk]
T

end if
else
y1 ← yk + 1
while y1 < h and Y (i)

k [y1] > P(up) do
y1 ← y1 + 1

end while
y2 ← yk − 1
while y2 ≥ 0 and Y (i)

k [y2] > P(up) do
y2 ← y2 − 1

end while
if y1 − y2 > l/2 then

x1 ← (y1 sin θ
(i)
k − ρ

(i)
k)/ cos θ

(i)
k

Generate an endpoint event [x1, y1, tk, pk]
T

x2 ← (y2 sin θ
(i)
k − ρ

(i)
k)/ cos θ

(i)
k

Generate an endpoint event [x2, y2, tk, pk]
T

end if
end if

end if
end for

From these ground truth values we compute the true flow of the object, displayed in
Fig. 3.4 (top). We verify that the observed velocity in the y axis remains approximately
zero for the whole recording, except for some small vibrations. The x velocity takes much

image-registration-

38

Figure 3.3: (a) Simple model used for the generation of the first scene, containing 13 lines
between 0◦ and 90◦ at 7.5◦ intervals. When referring to its endpoints, we will distinguish
the outer endpoints and the inner endpoints. (b) Experimental setup for the recording
of the scene: the model is printed on a piece of paper and mounted on a horizontal rail,
which can be moved at different controlled speeds in the field of view of the ATIS camera,
placed above.

bigger values, going from positive to negative as the object moves back and forth. The
maximum absolute value is equal to 654.2 px/s. As a comparison, in the first slowest
movement the value of the flow in the x direction is around 60 px/s. Thus, the velocity
in our scene varies by more than a factor of 10. Analogously, from these ground truth
values we can obtain the apparent acceleration of the object on the image plane, denoted
[αx, αy]

T and expressed in px/s2, which can be observed in Fig. 3.4 (bottom).

0 10 20

t (s)

-500

0

500

v
x
(p
x
/s
)

0 10 20

-500

0

500

v
y
(p
x
/s
)

0 10 20

t (s)

-5000

0

5000

α
x
(p
x
/s

2
)

0 10 20

t (s)

-5000

0

5000

α
y
(p
x
/s

2
)

Figure 3.4: Top: observed velocity of the object on the focal plane, in px/s. The velocity
on the y axis remains close to zero for the whole recording, while the x velocity varies
between negative and positive values, with a maximum absolute value of 654.2 px/s.
Bottom: observed acceleration in px/s2

Line detection

In the first place we evaluate just the line detection part of the algorithm, without per-
forming segment detection. The tuning parameters used in this experiment are shown in
the Table 3.1 given below.

39

Table 3.1: List of parameters for line detection

d(max) (px) α(max) (◦) A(up) N
3 18 75 100

We show in Fig. 3.5(a) three snapshots depicting the recorded scene at three char-
acteristic instants, where frames are reconstructed by plotting events happening within
a 10 ms window. Fig. 3.5(b) shows the output of the normal flow algorithm at these
same three instants, where the flow of each oriented event is represented by a straight line
whose length is proportional to the norm of the flow. We verify that the flow is always
normal to the lines, while its norm is smaller for the lines at smaller angles.

Figure 3.5: (a) Frames reconstructed by plotting events happening within a 10 ms window,
showing the recording at three characteristic instants. (b) Output of the normal flow
algorithm: the flow is always normal to the local contours, while its norm is smaller for
the lines at smaller angles. (c) Output of the line detection step. An index is assigned
to each line as they are created, and we plot each line index with a different color. The
horizontal line can seldom be tracked, as it generates very few events, preventing the
computation of their flow. We are able of keeping track of the rest of the lines for the
whole recording. (d) Output of the segment detection step. As the movement of the lines
changes its direction we sometimes loose track of part of the endpoints, but we recover
them again.

Fig. 3.5(c) shows the output of the line detection step at the same three instants,
where active line models are superimposed on the events using a different color for each
line index. In the leftmost snapshot we show the state of the system as the object starts
its movement: we verify that all lines are detected, except the ones at 0◦ and 7.5◦. This
happens because the activity of these lines has not reached the threshold A(up) yet, for
they are almost perpendicular to the direction of the movement and they consequently
generate very few events. However, the norm of their flow is also smaller, which implies
that their activity follows a slower decay: consequently, as the movement continues, the
line at 7.5◦ reaches a sufficient level of activity and it is correctly tracked. The horizontal
line, however, can seldom be detected. Let us remind the reader that the first step of our
algorithm is the computation of the visual flow of the incoming events, which cannot be
accomplished if the number of recent events in the neighborhood of the current event is

40

not enough.
We display in Fig. 3.6 the evolution of the speed-tuned activity Ak for six different

lines: the ones oriented at 90◦, 75◦, 60◦, 45◦, 30◦ and 15◦ (the rest of lines are not shown
for simplicity, but equivalent results are obtained). We verify that the activity of the
different lines is very similar, even though the ones with greater angles generate many
more events. In the same way, the activity is stable for the different velocities, which
allows us to keep track of the lines for most of the recording.

Figure 3.6: Evolution of the activity for six different lines. We display the results obtained
with both the speed-tuned decreasing strategy and the fixed decreasing strategy. We verify
that the speed-tuned strategy is much more stable, in spite of the different orientations
and apparent velocities. The dashed line indicates the threshold A(up).

Additionally, we compare the results of the speed-tuned decay activity to a constant
decay one. The constant decay function is given by e−∆tk/τ , with τ a tuning parameter.
Here, we choose τ = 20000 μs, which yields values for the fixed decay activity in the same
order of magnitude as the speed-tuned one. The obtained values are displayed in Fig. 3.6:
we verify that the fixed decay activity is very sensitive to the orientation and the apparent
velocity of the lines, imposing the need of adjusting the tuning parameter τ according
to the velocity and the direction of movement of the observed objects. We show in Fig.
3.7 the percentage of time for which the different lines are active when applying both the
speed-tuned and the fixed decay strategies with the current set of parameters. As we can
see, the speed-tuned strategy is more reliable as it yields higher percentages.

However, we can observe in Fig. 3.6 that the activity decreases during deceleration
periods: this corresponds to an expected behavior, due to the adaption of the speed-tuned

41

7.5 22.5 37.5 52.5 67.5 82.5

Line orientation (◦)

0

50

100

T
ra
ck
in
g
(%

)

Speed-based
Fixed decaying

Figure 3.7: Percentage of the recording for which we are able of keeping track of the lines,
for both the speed-tuned and the fixed decay strategies. We verify that the speed-tuned
method is more stable

decay strategy. This is particularly significant when the apparent motion is globally slower
(in particular when looking at the activity curve for the line at 30◦, Fig. 3.6), because
the number of events generated by the silicon retina is then smaller. The algorithm
is then more sensitive to error in velocity estimation and internal noise of the sensor’s
(mismatches, thermal noise, etc.). These observations are confirmed regarding the errors
in model estimation.

Let us next numerically evaluate the error in the estimation of the line parameters.
Here, we evaluate ρ and θ independently and we define two errors: ξ

(ρ)
k (in pixels) and ξ

(θ)
k

(in degrees), given by the absolute value of the difference between the estimated and the
ground truth values of the corresponding parameters. We show in Fig. 3.8 the obtained
values for the lines oriented at 90◦, 75◦, 60◦, 45◦, 30◦ and 15◦, where the error is computed
only when the corresponding line is active. From this figure we can extract the following
conclusions:

• In general, the algorithm is capable of correctly estimating the parameters of the
observed lines. The values of the errors remain small for all lines for the whole
duration of the recording.

• Lines parallel to the motion are harder to detect and track since the motion is almost
not triggering events. This hampers the computation of the optical flow, yielding
less stable results.

• We loose lines at smaller angles more often. This usually happens when the lines
stop their movement.

In order to establish a clearer comparison between the accuracy produced for the
different orientations let us plot in Fig. 3.9 the values of the mean errors obtained for
the different lines for the whole duration of the recording. We verify that these errors are
bigger for smaller angles. As an example, for the line at 90◦ (which moves perpendicularly
to its contour) we obtain mean errors of just 0.31◦ and 0.90 px.

Segment detection

The parameters for the line detection are the same used in the previous experiment
(indicated in Table 3.1), while the extra parameters required for segment detection are:
l = 10 px, P(up) = 1.5.

We show in Fig. 3.5(d) the output produced by the segment detection step, where
the tracked endpoints are indicated by crosses in different colors for each endpoint. In
the leftmost snapshot we observe the state of the detection as the object initiates its

42

0 10 20

0

5

ξ
(θ
)

k
(◦
)

90
◦

0 10 20

0

5

10

ξ
(ρ
)

k
(p
x
)

90
◦

0 10 20

0

5

ξ
(θ
)

k
(◦
)

75
◦

0 10 20

0

5

10

ξ
(ρ
)

k
(p
x
)

75
◦

0 10 20

0

5

ξ
(θ
)

k
(◦
)

60
◦

0 10 20

0

5

10

ξ
(ρ
)

k
(p
x
)

60
◦

0 10 20

0

5

ξ
(θ
)

k
(◦
)

45
◦

0 10 20

0

5

10

ξ
(ρ
)

k
(p
x
)

45
◦

0 10 20

0

5

ξ
(θ
)

k
(◦
)

30
◦

0 10 20

0

5

10

ξ
(ρ
)

k
(p
x
)

30
◦

0 10 20

0

5

ξ
(θ
)

k
(◦
)

15
◦

0 10 20

0

5

10

ξ
(ρ
)

k
(p
x
)

15
◦

0 10 20

-500
0

500

ν
x
(p
x
/s
)

0 10 20

t(s)

-500
0

500
ν
x
(p
x
/s
)

Figure 3.8: Errors in the estimation of ρ and θ for six of the lines contained in the scene.
Results for almost horizontal lines are less stable, but we are still able of correctly tracking
these lines.

20 40 60 80

Line orientation (◦)

0

1

2

ξ
(θ
)
(◦
)

20 40 60 80

Line orientation (◦)

0

2

4

ξ
(ρ
)
(p
x
)

Figure 3.9: Evolution of the mean error in the estimation of θ and ρ with the orientation
of the line. We verify that the best results are obtained for lines oriented perpendicularly
to the direction of the movement.

movement: we verify that some of the endpoints are not detected in this first instant,
since their activity has not reached its threshold yet. Like in the previous experiment,
as the object continues moving, we are able of detecting the missing endpoints. All
endpoints, except the ones belonging to the horizontal line, are correctly detected and
tracked for the whole duration of the recording.

We next compare the obtained results with the ground truth values. We plot in Fig.
3.10 the tracking results obtained for three endpoints, namely the outer endpoints of the
lines at 90◦, 45◦ and 15◦. In the figure, ground truth values are indicated with a dashed
line and compared with the obtained results. As we can see, they are very similar, allowing
us to conclude that our method can correctly detect the endpoints in this simple scene.

We provide also a quantitative evaluation of the tracking by showing the tracking
error ξ

(t)
k (in pixels) as the distance between the tracked endpoints and the corresponding

ground truth values. We only take into account the instants when the endpoint trackers
are active. Consequently, we will also evaluate the percentage of the recording for which
the endpoints are detected. We show in Fig. 3.11 the mean tracking errors produced

43

0 5 10 15 20 25

0

200

x
(p
x
)

90
◦

0 5 10 15 20 25

0

100

200

y
(p
x
)

90
◦

Ground Truth

Estimated value

0 5 10 15 20 25

0

200

x
(p
x
)

45
◦

0 5 10 15 20 25

0

100

200

y
(p
x
)

45
◦

0 5 10 15 20 25

t (s)

0

200

x
(p
x
)

15
◦

0 5 10 15 20 25

t (s)

0

100

200

y
(p
x
)

15
◦

Figure 3.10: Tracking results for the outer endpoints of the lines at 90◦, 45◦ and 15◦.

over the whole recording for the different endpoints. As we can see, errors are greater
for smaller angles. As an example, the mean tracking errors committed for the endpoints
belonging to the vertical line are 1.49 px for the outer endpoint, and 1.54 px for the inner
endpoint.

10 20 30 40 50 60 70 80 90

0

5

10

ξ
(t
)
(p
x
)

Outer endpoints

Inner endpoints

10 20 30 40 50 60 70 80 90

Line orientation (◦)

0

50

100

T
ra
ck
in
g
(%

)

Figure 3.11: Accuracy of the endpoint tracking for the different endpoints. We obtain
more accurate results and greater percentage of active time for lines with greater angles.

In the same way, the smaller the angle the smaller the percentage of the time that we
can track the endpoints. We are able of tracking the endpoints in the vertical line for
84.6% of the time.

3.4.2 Urban scenes

We next show the output of the algorithm applied to two urban scenes. Both recordings
were performed with a hand-held ATIS camera moving in circles. We process them
using the same parameters as in the previous case, except for the maximum number
of line models, which is increased until N = 1000. In this case, we do not provide any
quantitative measurement of the accuracy produced, as ground truth values are not easily
attainable. Instead, these results are just shown as a qualitative demonstration of what
can be achieved with our algorithm. This is also a key opportunity to discuss some
properties of the proposed method, regarding its potential applications.

44

Outdoors

We first apply the method to a recording of an urban landscape, which contains a large
number of lines. We show in Fig. 3.12(a) three snapshots reconstructed from the record-
ing, while Fig. 3.12(b) depicts the output of the line detection step. We observe that
horizontal or vertical lines tend to predominate depending on the direction of the move-
ment at the corresponding instant.

Figure 3.12: (a) Frames reconstructed from the recording. (b) Output of the line detection
step. (c) Output of the segment detection step.

In Fig. 3.12(c) the output of the segment detection is also shown. For visibility
reasons, we do not display any crosses marking the endpoints’ positions. We verify that
our algorithm is capable of recovering an important part of the segments present in the
recorded scene.

Indoors

The second real scene tested with the detection/tracking algorithm is the recording of an
office. Fig. 3.13(a) shows three snapshots obtained from the recording: we observe that
the scene contains a great number of lines, whose lengths are smaller than in the urban
scene recording. As we can see in Fig. 3.13(b), many of these shorts segments are not
detected because their activities are not normalized with respect to their lengths, which
causes the longer segments to be more likely to be detected.

We show in Fig. 3.13(c) the output of the segment detection algorithm when processing
this scene with the same set of parameters as for the urban environment. We verify that
many of the small segments are not detected, for the reasons previously explained. It
is then possible to adjust the parameters, reducing the activity threshold Aup and the
length of the window l. We show in Fig. 3.13(d) the output produced after tuning the
parameters: as we can see, we are able of detecting a greater number of small segments.
Of course, the algorithm’s parameters can be automatically adjusted, requiring a given
number of lines and a maximum number of segments allowed per line.

3.4.3 Computational time

We next discuss the computational time required by the current C++ implementation of
the algorithm. These tests were performed in the same conditions described in Section

45

Figure 3.13: (a) Frames reconstructed from the recording. (b) Output of the line detection
step of the algorithm. (c) Output of the segment detection part of the algorithm. (d)
Output of the segment detection part of the algorithm after tweaking the parameters.

2.4.3, where the computational time of the shape tracking algorithm was studied. Let
us remind the reader that we are performing our tests in a standard computer running
Debian Linux and equipped with a Intel Core i7-4790 processor. As in the previous
chapter, the code was not paralellized and just one core was used.

As in Section 2.4.3, we measure the processing time every millisecond, and study the
ratio of processing time to the length of the considered portion of the recording. Let
us show in Fig. 3.14 the ratio obtained when processing the first recording (controlled
scene), using the set of parameters given in Table 3.1. Let us note that we are considering
the processing time required by the whole processing chain, which includes reading the
recording file, processing the events for noise removal and computing the visual flow of
the incoming events, in addition to the line (or segment) detection. We display at the top
of Fig. 3.14 the computational time required to perform line detection, while the results
for segment detection are shown at the bottom.

0 5 10 15 20 25

0

0.5

1

R
at
io

p
.t
.

(L
in
e
D
et
.)

0 5 10 15 20 25

t (s)

0

0.5

1

R
at
io

p
.t
.

(S
eg
m
.
D
et
.)

Figure 3.14: Ratio of processing time to the length of the recording for the first recording
(controlled scene) for both line and segment detection. Since this ratio is always smaller
than 1, we can conclude that we are processing this recording in real time. The computa-
tional time is related to the velocity of the object, because faster moving objects generate
a greater number of events.

From Fig. 3.14 we can extract the following conclusions:

46

• The ratio of processing time to the length of the recording is always smaller than
1. This implies that we are processing the event stream faster than we acquire it
(both for segment and line detection).

• The segment detection algorithm is around 10 percent more computationally de-
manding, on average.

• This ratio is clearly correlated to the speed of the object (see Fig. 3.4). This can be
easily explained because faster moving objects generate a greater number of events
that need to be processed.

As we did in Section 2.4.3, let us next display the ratio of processing time as a function
of the event rate. Here, we consider the computational time required to process the
outdoors recording, which contains a greater number of events. We show in Fig. 3.15 the
ratio of processing time for three different values of the parameter N (i.e. the maximum
number of lines that can be initialized). As in the previous chapter, we verify that the
computational time is increasing with the number of events, and can be approximated by
a linear function. This allows us to extrapolate and compute the maximum rate of events
that can be processed in real time by our algorithm, depending on the value of N .

0 100 200 300 400 500 600 700 800

0

1

2

R
at
io

p
.t
.

(L
in
e
D
et
.) N = 100

N = 500

N = 1000

0 100 200 300 400 500 600 700 800

ev/ms

0

1

2

R
at
io

p
.t
.

(S
eg
m
.
D
et
.)

Figure 3.15: Computational time per ms (for line detection -top Figure- and segment
detection -bottom Figure) as a function of the number of events per ms. The required
computational time increases with the event rate: regressions of these data are represented
as dashed lines in order to highlight their linear dependency, related to the parameter N
(i.e. the number of considered line models).

We then show in Fig. 3.16 the evolution of the maximum event rate that can be pro-
cessed in real time by the algorithm, both for line detection (top) and segment detection
(bottom). Indeed, we verify that, even for big values of N , we are able to process big event
rates in real time. As an example, for N = 500 we can perform real-time line detection
for event rates up to 760 ev/ms, and real-time segment detection for event rates up to
684 ev/ms.

3.5 Discussion

This chapter introduces a new event-based line and segment detection algorithm. Based
on an iterative process, each event is used to update the current model and forgotten
afterwards. This latter is obtained by applying a speed-tuned exponential decay to the

47

100 200 300 400 500 600 700 800 900 1000

0

1000

2000

M
ax

.
ev
/m

s
L
in
e
D
et
.

100 200 300 400 500 600 700 800 900 1000

N

0

1000

2000
M
ax

.
ev
/m

s
S
eg
m
.
D
et
.

Figure 3.16: Maximum event rate that can be processed in real time, as a function of the
parameter N (Top: line detection. Bottom: segment detection).

contribution of each event to the line model, and then to the segment model. Our approach
takes into account the dynamics of the visual information through a local computation of
the optical flow, ensuring that the models are essentially estimated on the current visual
information.

The method considers a speed-tuned exponential decay for the update of the line
models. We prove this strategy to be an important advantage with respect to fixed decay
approaches, as it provides an automatic adaptation mechanism to the different dynamics
present in the scene.

These properties are validated through an experimental protocol, involving a controlled
scene for which ground truth values are available. This allows us to assess the accuracy and
the robustness of the algorithm in a controlled environment. Indeed, the mean accuracy
obtained for the line model parameters, i.e. the distance to the origin and the angle,
are in most cases lower than 1 pixel and 1◦ respectively. The results for the segment
endpoints are also accurate: for example, the mean tracking errors committed for a line
perpendicular to the motion are around 1.5 pixels. In addition, a complete analysis of the
computational time required by the presented algorithm is proposed, showing that our
current implementation is able to process event streams in real time.

These characteristics make our event-based line and segment detection algorithms
suitable for real-time applications, such as navigation of robotic platforms in real envi-
ronments (particularly for line-based SLAM algorithms [73]-[74]).

We have introduced, in the previous and the present chapters, two event-based plane
tracking algorithms. According to these results, we can now tackle the problem of 3D
pose estimation, which often requires some previous tracking technique (see, e.g., Chapter
5). The motivation for this next step comes mainly from visual servoing: position-based
visual servoing techniques require the knowledge of the camera’s 3D pose relative to
some tracked object. We thus present in the next two chapters two event-based 3D pose
estimation algorithms.

48

Chapter 4

Event-Based 3D Pose Estimation

4.1 Introduction

This chapter addresses the problem of 3D pose estimation of an object from the visual
output of a calibrated event-based camera, assuming that an approximate 3D model of
the object is known [40]. 3D pose estimation is the problem of finding the 3D translation
and rotation of a given object relative to the camera observing it. It is a fundamental
issue with various applications in machine vision and robotics such as Structure From
Motion (SFM) [94]-[95], object tracking [96], augmented reality [97] or visual servoing
[98]-[99]. Numerous authors have tackled finding a pose from 2D-3D correspondences:
methods range from simple approaches like DLT [100] to complex ones like PosIt [101].
We can distinguish between between two classes of techniques: iterative [101]-[102] or non
iterative [100], [103]. However, most techniques are based on a linear or nonlinear system
of equations that needs to be solved, differing mainly by the estimation techniques used
to solve the pose equations and the number of parameters to be estimated.

Existing algorithms differ in speed and accuracy. Some provide a fixed computation
time independent of the number of points of the object, e.g. [103]. The DLT [100] is the
simplest, slowest and weakest approach for estimating the 12 parameters in the projection
matrix. However, it can be used to provide an initial estimate of the pose. PosIt [101] is
a fast method that does not use a perspective projection, but instead relies on an ortho-
graphic projection to estimate fewer parameters. The method was later extended [104] to
take into account planar point clouds. More recently, CamPoseCalib has been introduced
[105]. It is based on the Gauss-Newton method and nonlinear least squares optimization
[106]. Other methods are based on edge correspondences [96], [107], or photometric infor-
mation [108]. When the pose problem is solved from point correspondences it is known
as the PnP (Perspective-n-Point) problem [41], [109]. This task will be further explored
in the next chapter.

In spite of this field being extensively studied, most current 3D pose estimation algo-
rithms are designed to work on images acquired at a fixed rate. As previously stated, frame
based stroboscopic acquisition induces massively redundant data and temporal gaps that
make it difficult to estimate the 3D pose of an object without computationally expensive
iterative optimization techniques [106].

This chapter introduces a new approach, solving the 3D pose estimation problem
employing the output of an asynchronous event-based camera. This algorithm is one the
first 3D pose estimation methods designed to work on the output of such a sensor. In
[110], an event-based iterative closest point (ICP) like tracking algorithm is introduced,

49

where the pattern is a 2D point cloud which is updated with every incoming event, so
that it matches the projection of a given object. However, the method presented in [110]
assumes that the pattern is undergoing some affine transformation [111], and therefore it
does not account for a more general transformation due to perspective projection that an
object freely evolving in the 3D space can experiment. Furthermore, the pose of the object
in the 3D space is never estimated. The work presented in this chapter is an extension
to the 3D space of the method introduced in [110]. As we will show, the asynchronous
and sparse output of the sensor allows us to tackle the 3D pose estimation problem in a
simple and intuitive way, resulting in a real-time algorithm providing accurate results.

The outline of the current chapter is as follows: we first present our method in Section
4.2. The technique is then experimentally validated in Section 4.3, where four different
experiments are presented. Finally, we briefly discuss the obtained results in Section 4.4.

4.2 Event-based 3D pose estimation

Let us next explain the method for 3D pose estimation from the output of a neuromorphic
silicon retina.

4.2.1 Problem formulation

Let us consider a moving rigid object observed by a calibrated silicon retina. The move-
ment of the object generates a stream of events on the focal plane of the camera. Attached
to this object is a frame of reference, known as the object-centered reference frame, whose
origin we denote as V(0). The pinhole projection [112] maps 3D points V expressed in
the object-centered reference frame into v on the camera’s focal plane (see Fig. 4.1),
according to the relation: [

v
1

]
∼ Λ

[
R T

] [V
1

]
, (4.1)

where Λ is the 3×3 matrix defining the camera’s intrinsic parameters—obtained through
a prior calibration procedure— while T ∈ R3 and R ∈ SO(3) are the extrinsic parameters.
The sign ∼ indicates that the equality is defined up to a scale [112]. T , R are also referred
to as the relative pose between the object and the camera [113], where T represents the
translation vector and R the rotation matrix. As the object moves, only the pose changes
and needs to be estimated.

An estimation of the pose can be found by minimizing the orthogonal projection errors
on the line of sight for each 3D point, as illustrated by Fig. 4.1. Thus, we minimize a cost
function directly on the 3D structure rather than computing it on the focal plane [114].
The advantage of this approach is that a correct match of the 3D points leads to a correct
2D projection on the focal plane, but the reverse is not necessarily true.

The high temporal resolution of the camera allows us to acquire a smooth trajectory
of the moving object. We can then consider each event generated by the moving object
as relatively close to the previous position of the object. Since the event-based camera
detects temporal contours, all moving objects can be represented by a set of vertices and
edges. We can then set the following convention: let {V(i)} be the set of 3D points
defining an object, identified by their index i. These 3D points are vertices and their
projections onto the retina focal plane are noted as v(i). The edge defined by vertices
V(i), V(j) is noted as ε(ij). Fig. 4.1 shows a general illustration of the problem.

50

Figure 4.1: The 3D pose of an object is given by a rotation matrix R ∈ SO(3) and a
translation vector T ∈ R3. If an event ek has been generated by a point V(i) of the model,
then V(i) lies on the line of sight passing through the camera center and the position of
the event on the focal plane uk.

Using the usual computer graphics conventions [115]-[116], an object is described as a
polygon mesh. This means that all the faces of the model are simple polygons, triangles
being the standard choice. The boundaries of a face are defined by its edges.

Remark: in the classical computer vision literature, the intrinsic parameters matrix
is often denoted K. However, in this document we are reserving the letter k for indicating
the index of an event, and the capital letter K for the total number of events contained
in a recording. For this reason we choose here to use Λ. We will keep this notation for
the remainder of this PhD thesis.

4.2.2 Rotation formalisms

Rotation matrices are one of the most widely used formalisms for representing rotations.
Some other representations are possible, each one with its own advances and disadvan-
tages. Another convenient parametrization for the rotation is to use unit quaternions [113]:
a quaternion is a 4-tuple, providing a more efficient and less memory intensive method of
representing rotations compared to rotation matrices. It can be easily used to compose
any arbitrary sequence of rotations. For example, a rotation of angle θ about rotation
axis r̃ is represented by a quaternion q satisfying:

q(θ, r̃) = cos
(θ

2

)
+ r̃ sin

(θ
2

)
, (4.2)

where r̃ is a unit vector. In this chapter we will use the quaternion parametrization for
rotations.

When trying to visualize rotations, we will also use the axis-angle representation,
defined as the rotation vector r = θr̃.

51

4.2.3 2D edge selection

For each incoming event, the first step of the algorithm is to determine whether the event
has been generated by the tracked object and, if so, which of its points has more likely
generated it. To that end, we first perform a 2D matching step explained below.

The model of the object and its initial pose are assumed to be known. This allows us
to virtually project the model onto the focal plane as a set of edges. For each incoming
event ek occurring at position uk = [xk, yk]

T on the focal plane, we look for the closest
visible edge. Thus, for every visible edge ε(ij), projected on the focal plane as the segment
{v(i),v(j)}, we compute d

(ij)
k , the euclidean distance from uk to {v(i),v(j)} (see Fig. 4.2).

To compute this distance, uk is projected onto the line defined by {v(i),v(j)}. If this
projection falls inside of the segment {v(i),v(j)}, then the distance is given by the generic
expression:

d
(ij)
k =

‖(uk − v(i))× (v(j) − v(i))‖
‖v(j) − v(i)‖,

(4.3)

where × is the cross product. If the projection is not inside {v(i),v(j)}, then d
(ij)
k is set

to be equal to the distance between uk and the closest endpoint.

Figure 4.2: Edge selection for an event ek occurring at uk. The distance between uk and
each visible edge ε(ij) is computed as d

(ij)
k , the euclidean distance between uk and the

segment defined by the projected edge {v(i),v(j)}.

We set a maximum allowed distance for the event to be assigned to an edge as d(max).
The edge to which the event is assigned to is ε

(nm)
k such that:

d
(nm)
k = min

i,j
d

(ij)
k , (4.4)

assuming d
(nm)
k ≤ d(max), otherwise the event is considered as noise and discarded.

Remark 1: in complex scenarios, the 2D matching step can be further strengthened
by applying more refined criteria. We implement a 2D matching based on Gabor events,
which are oriented events generated by events lying on a line [117]. When the 2D matching
is performed using this technique, a Gabor event will only be assigned to a visible edge
if the angle of the event and the angle formed by the edge are close enough. An example
of application of this method will be shown in the experiments, where pose estimation is
performed even with partial occlusions and egomotion of the camera.

Remark 2: this section assumes that the visibility of the edges is known. This is
done via a hidden line removal algorithm [118] applied for each new pose of the model.

52

4.2.4 3D matching

Once ε
(nm)
k has been determined, we look for the point on the edge that has generated the

event. The high temporal resolution of the sensor allows us to set this point as the closest
to the line of sight of the incoming event. Performing this matching between an incoming
event in the focal plane and a physical point on the object allows to overcome issues
that appear when computation is performed directly in the focal plane. The perspective
projection on the focal plane is neither preserving distances nor angles, i.e. the closest
point on the edge in the focal plane is not necessarily the closest 3D point of the object.

The camera calibration parameters allow us to map each event at pixel uk to a line of
sight passing through the camera’s center. The 3D matching problem is then equivalent
to a search for the smallest distance between any two points lying on the object’s edge
and the line of sight.

Figure 4.3: Geometry of the 3D matching problem: an event ek at position uk = [xk, yk]
T

is generated by a change of luminosity in the line of sight passing through the event,
defined by the vector Mk. Ak is a point of the line of sight and Bk a point of the edge
ε

(nm)
k , such that the minimum distance between these two lines is reached. Finding Ak

and Bk is the objective of the 3D matching step.

As shown in Fig. 4.3, let Ak be a point on the line of sight of an incoming event
ek located at uk in the focal plane. Let Bk be a point on the edge ε

(nm)
k that has been

computed as being at a minimal distance from the line of sight passing through uk. We
can assume ek to be generated by a 3D point on the moving object at the location Ak,
that was at Bk before ek occurred. This hypothesis is reasonable as due to the high
temporal resolution events are generated by small motions. Finding Ak and Bk is the
scope of the 3D matching step.

Let Mk be the vector defining the line of sight of ek, it can be obtained as:

Mk = Λ−1

[
uk
1

]
, (4.5)

where Λ denotes the camera’s intrinsic parameters matrix.

53

Ak and Bk can therefore be expressed as:

Ak = αMk (4.6)

Bk = V
(n)
k + β(V

(m)
k −V

(n)
k), (4.7)

where α and β are two real valued parameters. V
(m)
k and V

(n)
k denote the 3D vertices

defining edge ε
(nm)
k .

Let ε
(nm)
k denote V

(m)
k − V

(n)
k , we are looking for solutions such that (Ak − Bk) is

perpendicular to both ε
(nm)
k and Mk. Hence, we obtain the following equation: −MT

kMk MT
k ε

(nm)
k

−MT
k ε

(nm)
k

(
ε

(nm)
k

)T
ε

(nm)
k

α
β

 =

 −(V (n)
k

)T
Mk

−
(
V

(n)
k

)T
ε

(nm)
k

 . (4.8)

Solving this equation for α and β provides both Ak and Bk. The solution to this
system is discussed in the Appendix G.

We also set a maximum 3D distance between Ak and Bk, denoted D(max). If the
distance between Ak and Bk is larger than this value we discard the event.

4.2.5 Rigid motion estimation

Knowing Bk and Ak allows us to estimate the rigid motion that transforms Bk into Ak.
The rigid motion is composed of a translation ∆Tk and a rotation ∆qk around V (0), the
origin of the object-centered reference frame.

Let us define the scaling factor λ such that ∆Tk is related to the vector Ak −Bk as:

∆Tk =

1 0 0
0 1 0
0 0 m

λ(Ak −Bk), (4.9)

where (Ak−Bk) is the translation that makesBk coincide withAk. Here, m is a multiplier
that allows us to set the scaling factor independently for the Z axis. The need for this
extra degree of freedom can be justified because changes in the depth of the object will
only become apparent through changes in the x or y position of the events on the focal
plane. Consequently, the system does not react in the same way to changes in depth as
it does to changes in the X or Y position, resulting in a different latency for the Z axis.
m is then a tuning factor that will be set experimentally.

The rotation around V (0) is given by a unit quaternion ∆qk of the form:

∆qk(φθk, r̃k) = cos
(φθk

2

)
+ r̃k sin

(φθk
2

)
, (4.10)

where r̃k is a unit vector collinear to the axis of rotation and φθk is equal to the rotation
angle, that we conveniently define as a product between a scaling factor φ and the angle
θk defined below.

If πk is the plane passing through Bk, Ak and V (0) (see Fig. 4.4(a)) such that r̃k is
its normal, then r̃k can be computed as:

r̃k =
(Bk − V (0))× (Ak − V (0))

‖(Bk − V (0))× (Ak − V (0))‖
. (4.11)

54

We define θk as the angle between (Bk − V (0)) and (Ak − V (0)) (see Fig. 4.4(b)).

θk = tan−1

(
‖
(
Bk − V (0)

)
×
(
Ak − V (0)

)
‖(

Bk − V (0)
)T (
Ak − V (0)

))
. (4.12)

If Ak, Bk and V (0) are aligned, r̃k is undefined. This happens when no rotation is
applied or when the rotation angle is equal to π. This last case is unlikely to occur because
of the small motion assumption.

Figure 4.4: (a) πk represents the plane defined by Ak, Bk and the origin of the object
centered reference frame V0. The desired rotation is contained in this plane, and thus the
rotation axis r̃k is normal to it. (b) Normal view to πk. Both (Bk − V0) and (Ak − V0)
are contained in this plane, and thus their cross product gives us the axis of rotation. The
angle θk between these two vectors is equal to the rotation angle that makes Bk and Ak

coincide.

Finally, the pose of the model is updated incrementally according to:

Tk = Tk−1 + ∆Tk (4.13)

qk = ∆qkqk−1. (4.14)

For the rest of this chapter, this described procedure will be referred to as the direct
transformation strategy.

Remark 1: Once the pose is updated, the next step is to update the transformation
between the object and the camera. This is a computationally expensive process that
requires transforming the 3D points, projecting them onto the image plane and applying
the hidden-line removal algorithm. Consequently, in order to increase the performance
of the system, we do not apply the transformation for every incoming event, but every
N events. N is experimentally chosen, and its effect on the algorithm discussed in the
experiments section.

Remark 2: λ and φ are set experimentally, and they should always be equal or
smaller than one. When they are smaller than one, we do not fully transform the model
so that Bk matches Ak for every event. Instead, we apply a small displacement for each
incoming event. Here, it is important to keep in mind that a moving edge generates more
than one event. This number and the frequency of events are proportional to the local
contrast.

Remark 2: since we are assuming that the are always close to the true position, the
angle θk will always be small. It is then possible to make the usual assumption for small

55

angles: sin(θk) ≈ θk, and compute θk as:

θk =
‖(Bk − V (0))× (Ak − V (0))‖
‖Bk − V (0)‖ ‖Ak − V (0)‖

(4.15)

4.2.6 Global algorithm

The global algorithm for 3D pose estimation is given below (Algorithm 4).

Algorithm 4 Event-Based 3D pose estimation algorithm

Require: ek = [uTk , tk, pk]
T ∀k ≥ 0

Ensure: T , q
Initialize the parameters
for every incoming event ek = [uTk , tk, pk]

T do
for every visible edge ε(ij) do

Compute the distance d
(ij)
k between uk and {v(i),v(j)}

end for
d

(nm)
k ← min(d

(ij)
k)

if d
(nm)
k ≤ d(max) then

Solve (4.8) in α and β
Compute Ak and Bk using (5.9) and (5.10)
if ||Ak −Bk|| ≤ D(max) then

Compute ∆Tk and ∆qk using (5.23) and (4.10)
Update T and q using (4.13) and (4.14)

end if
end if
for each N consecutive events do

Apply the transformation to the model
end for

end for

4.3 Experiments

In this section we present experiments to test 3D pose estimation on real data . The first
two experiments estimate the pose of a moving icosahedron and house model while viewed
by a static event-based sensor. In Section 4.3.3 we estimate the pose of the icosahedron
from the view of a moving event-based sensor in a scene containing multiple moving ob-
jects. In Section 4.3.4 we estimate the pose of the icosahedron under high rotational
velocity (mounted on a motor). Finally, in Section 4.3.5 and Section 4.3.6 we investi-
gate how temporal resolution affects pose estimation accuracy, and how implementation
parameters affect the time required for computation.

In what follows, we will denote the ground truth as {T , q} and the estimated pose as

{T̂ , q̂}.

All recordings and the corresponding ground truth data are publicly available at https://drive.

google.com/folderview?id=0B5gzfP0R1VEFNS1PZ0xKU3F5dG8&usp=sharing

56

https://drive.google.com/folderview?id=0B5gzfP0R1VEFNS1PZ0xKU3F5dG8&usp=sharing
https://drive.google.com/folderview?id=0B5gzfP0R1VEFNS1PZ0xKU3F5dG8&usp=sharing

The algorithm is implemented in C++ and tested in recordings of an icosahedron—
shown in Fig. 4.5(a)—and the model of a house—Fig. 4.5(b)—freely evolving in the 3D
space. We set the following metrics on R3 and SO(3):

• The absolute error in linear translation is given by the norm of the difference between
T̂ and T . For a given recording, let T = 1

K

∑K
k=1 Tk be the mean displacement of

the object, where K is the total number of events in the recording. We define ξ
(T)
k

the relative translation error at time tk as:

ξ
(T)
k =

‖T̂k − Tk‖
‖T ‖

. (4.16)

• For the rotation, the error is defined with the distance d between two unit quater-
nions q and q̂:

d(q, q̂) = min{‖q − q̂‖, ‖q + q̂‖}, (4.17)

which is proven to be a suitable metric for SO(3), the space spanned by 3D rota-

tions [119]. It takes values in the range [0,
√

2]. Thus, let ξ
(q)
k be the relative rotation

error at time tk:

ξ
(q)
k =

d(qk, q̂k)√
2

. (4.18)

The algorithm provides an instantaneous value of the errors for each incoming event.
In order to characterize its accuracy, we will consider ξ(T) and ξ(q), the mean error for the
whole duration of a given recording:

ξ(T) =
1

K

K∑
k=1

ξ
(T)
k , (4.19)

ξ(q) =
1

K

K∑
k=1

ξ
(q)
k . (4.20)

4.3.1 Icosahedron

The icosahedron shown in Fig. 4.5(a) is recorded by an ATIS sensor for 25 s while freely
rotating and moving. The 3D model is a mesh of 12 vertices and 20 triangular faces.

The ground truth is built from frames output from the event-based camera. We have
manually selected the image position of the visible vertices every 100 ms and applied the
OpenCV implementation of the EPnP (Efficient Perspective-n-Point) algorithm [109] to
estimate the pose. In [109], the authors test the robustness of their algorithm to gaussian
noise perturbations on the focal plane. It is important to outline that this is a theoretical
disturbance model. They are not assessing their algorithm’s performance with real noisy
data. Based on their noise model results, we can give an order of magnitude of the ground
truth accuracy. Assuming that the manual annotation of the vertices of the icosahedron
has at least 2 pixels precision, we can read the pose error from the error curves (Fig. 5 in
[109]), that is at most 2%.

The intermediate positions are obtained by linear interpolation, and the intermediate
rotations using Slerp (Spherical Linear intERPolation [120]). From the ground truth we
compute the model’s linear velocity v and the angular velocity w. In this recording, the

57

Figure 4.5: Real objects used in the experiments. (a) White icosahedron with black edges,
used in the first experiment. (b) Non-convex model of a house with cross markers on its
faces, used in the second experiment.

linear speed ‖v‖ reaches a maximum of 644.5 mm/s, while the angular speed ‖w‖ starts
with a maximum of 2.18 revolutions per second (rev/s) at the beginning of the recording
and then continuously decreases (see Fig. 4.6).

0 5 10 15 20

0

500

1000

‖
v
‖

(m
m
/
s)

0 5 10 15 20

t(s)

0

1

2

‖
w
‖

(r
ev
/
s)

Figure 4.6: Evolution of the linear and angular speeds of the icosahedron for the whole
length of the recording.

After several trials, the thresholds are set experimentally to values giving stable and
repeatable pose estimations. These are: d(max) = 20 pixels and D(max) = 10 mm. The
remaining tuning parameters are experimentally chosen for each experiment as the ones
giving the smallest sum of the mean relative estimation errors ξ(T) and ξ(q). The update
factors λ, φ are always taken between 0.001 and 0.4, a large range in which the algorithm
has proven to yield stable results.

Fig. 4.7 shows the results when applying our algorithm with λ = 0.4, φ = 0.2, N = 1
and m = 2. We show the translation vector T as well as the rotation vector r. Plain
curves, representing estimation results, are superimposed with dashed lines indicating
the ground truth. Snapshots, showing the state of the system at interesting instants are
shown. They provide the projection of the shape on the focal plane using the estimated
pose.

We verify that plain and dashed lines (representing estimated and ground truth poses
respectively) coincide most of the time, showing that the pose estimation is in general

correctly performed. Experiments provide the following mean estimation errors: ξ(T) =
1.48% for the translation, and ξ(q) = 1.96% for the rotation. Instantaneous errors reach a
local maximum, as a consequence of the large values chosen for λ and φ. These parameters

58

Figure 4.7: Results for the first experiment, where we recorded an icosahedron freely
evolving in the 3D space. By abuse of notation, we denote Tx, Ty and Tz the components
of the translation vector T , and rx, ry, rz the components of the axis-angle representa-
tion of the rotation r. The dashed lines represent ground truth, while the solid curves
represent estimated pose. The snapshots on the top show the state of the system in
some characteristic moments, with the estimation made by the algorithm printed over
the events.

being gains, large values imply an oscillatory behavior around the correct pose parameters.
We include in Fig. 4.7 a snapshot showing the state of the system at this instant, where we
observe that the estimation is slightly displaced from the true pose. However, even when
considering this local maximum, the estimation errors remain below 15%. The system is
always capable of recovering the correct pose.

4.3.2 House

This experiment tests the accuracy of the algorithm using a more complex model of
a house shown in Fig. 4.5(b). The object is recorded for 20 s while freely rotating and
moving in front of the camera. The 3D model is composed of 12 vertices and 20 triangular
faces. We compute velocities from the ground truth obtained from generated frames as
was done with the icosahedron. In this case, the linear speed reaches a maximum of 537.4
mm/s, while the angular speed starts with a maximum of 1.24 rev/s at the beginning of
the experiment and then continuously decreases (see Fig. 4.8).

As in the previous case, we experimentally choose the set of parameters that produces
the minimum sum of errors. Fig 4.9 shows the results when applying our algorithm with
λ = 0.2, φ = 0.05, m = 1 and N = 10. We verify that there is a coherence between
the ground truth and the estimated pose showing that the pose estimation is in general
correctly estimated. However, in this case we observe a larger local maxima reaching
values as high as 20%. These local maxima degrade the overall performance, they provide

59

0 2 4 6 8 10 12 14 16 18

0

500

1000
‖
v
‖

(m
m
/
s)

0 2 4 6 8 10 12 14 16 18

t(s)

0

1

2

‖
w
‖

(r
ev
/
s)

Figure 4.8: Evolution of the linear and angular speeds of the house for the whole length
of the recording.

the following values for the mean estimation errors: ξ(T) = 3.12% for the translation
and ξ(q) = 2.62% for the rotation, higher than in the previous case. Nevertheless, the
system is always capable of recovering the correct pose after these maxima, and the mean
estimation errors remain acceptable.

Figure 4.9: Results for the second experiment, where we recorded a non-convex model of
a house freely evolving in the 3D space.

In this recording, local maxima mostly occur because of the algorithm mistakenly
interpreting the cross markers as edges or viceversa. This usually happens when a given
face is almost lateral with respect to the camera. In that case, it provides the projection
of these lines very close to each other.

4.3.3 2D matching using Gabor events

In this experiment we test pose estimation in a more complex scenario, with egomotion of
the camera and partial occlusions of the object, using Gabor events for the 2D matching
step. A hand-held icosahedron is recorded for 20s while the camera moves. Ground truth
is obtained from reconstructed frames as in the previous experiments.

60

The parameters for the Gabor events’ generation process are set as in [117], and
the maximum angular distance for an event to be assigned to an edge is set as 0.174 rad
(obtained as π

1.5×12
, where 12 is the number of different orientations that the Gabor events

can take). The tuning parameters are experimentally chosen as in previous experiments.
Fig. 4.10 shows the evolution of the errors when applying our algorithm with λ = 0.4,

φ = 0.2, N = 5 and m = 4 (we do not show T or r in order to lighten the figure). We
verify that the estimation errors remain low for the whole recording, always below 10%.

Figure 4.10: Results for the third experiment, where we recorded a hand-held icosahedron
while the camera moved to follow it. Snapshots show the state of the system at some
characteristic moments. The errors remain low, always below 10%.

The leftmost snapshot in Fig. 4.10 shows the state of the system while the camera
is moving: as we can see, the number of events is much higher in this case than in the
previous recordings, as a result of the camera not being static. Consequently, most of
these events are not generated by the tracked object, but rather by other visible edges in
the scene. However, we verify that pose estimation is correctly performed, since the errors
remain low and the projection of the estimation is coincidental with the position of the
events. In the central snapshot we can see how pose estimation is performed even when a
fraction of the icosahedron has left the field of view of the camera. Finally, the rightmost
snapshot shows one of the instants in which the errors reach their highest values. This
happens when the object is at its furthest position from the camera, and thus when we are
less precise (a pixel will represent a larger 3D distance when points are further away from
the camera). However, even at this moment errors remain below 10% and the projection
of the estimation is almost coincidental with the events. We conclude that pose estimation
is correctly performed even in this complex scenario, providing the following mean values
for the estimation errors: ξ(T) = 1.65% and ξ(q) = 1.29%.

This experiment shows how the method can perform pose estimation even in complex
scenarios, by simply adding some additional criteria for the matching of events.

61

4.3.4 Fast spinning object

In order to test the accuracy of the algorithm with fast moving objects, we attached the
icosahedron to an electric brushless motor and recorded it at increasing angular speeds.
As shown in Fig. 4.11, the icosahedron is mounted on a plane with four dots, used for
ground truth. These four points are tracked using the part-based tracker described in
Chapter 2.

Figure 4.11: Experimental set-up for the fast spinning experiment. An icosahedron is
attached to a brushless motor and recorded by the event-based camera. The four dots on
the plane are used for ground truth.

Through electronic control of the motor, we created four sections during which the
angular speed is approximately constant. From the obtained ground truth we can estimate
the linear and angular velocities v and w. The angular speed is displayed in Fig. 4.12:
it reaches a maximum value of 26.4 rev/s in this case, much higher than in the previous
recordings.

0 5 10 15 20

t(s)

0

10

20

30

‖
w
‖

(r
ev
/
s)

Figure 4.12: Evolution of the angular speed of the fast spinning icosahedron for the whole
length of the recording.

The estimation errors are, for an experimentally selected optimal set of parameters:
ξ(T) = 1.06%, ξ(q) = 3.95%. Errors are in this case slightly higher, notably for the
estimation of the rotation. However, the mean values for the errors are low enough to
conclude that, in general, the pose is correctly estimated even for objects moving at high
velocity.

62

4.3.5 Degraded temporal resolution

In order to test the impact of the acquisition rate and to emphasize the importance of
the high temporal resolution on the accuracy of our algorithm, we repeated the previ-
ous experiment progressively degrading the temporal resolution of recorded events. To
degrade the temporal resolution, we select all the events occurring within a given time
window of size dt and assign the same timestamp to all of them. If several events occur at
the same spatial location inside of this time window, we only keep a single one. We also
shuffle the events randomly, since the order of the events contains implicit high temporal
resolution information. Fig. 4.13 shows, in semi-logarithmic scale, the evolution of both
the mean relative translation error and the mean relative rotation error with the size of
the time window when tracking the fast spinning icosahedron with a fixed set of tuning
parameters taken from the previous step. We only plot errors between 0% and 20%, since
we consider the estimation to be unsuccessful for errors above 20%. The errors remain
approximately stable until the time window reaches 1ms. This can be explained because
the small motion assumption is experimentally satisfied for time windows of 1 ms for the
typical velocity in this recording. From this point on the errors start growing, until the
tracker gets completely lost for values above 10 ms.

Figure 4.13: Evolution of the errors with the size of the binning window dt (in μs), when
tracking the fast spinning icosahedron. As the time resolution is degraded, the errors
start growing, until the tracker gets completely lost for values above 10 ms.

We conclude from this experiment that the high temporal resolution of the neuromor-
phic camera output is a key feature to the successful performance of the 3D pose estimation
algorithm. Beyond 10 ms pose estimation becomes a difficult problem. 10 ms is already
smaller than the frame interval used by conventional computer vision algorithms.

4.3.6 Computational time

We conclude the present chapter by discussing the computational time required by the
current C++ implementation of the algorithm. This analysis is performed in the same
conditions as in the two previous chapters (see Sections 2.4.3 and 3.4.3 for details).

As in the previous chapters, let us consider the ratio of processing time to the length
of the recording, measured every time period of 1 ms and averaged over 10 tests. We
show in Fig. 4.14 results obtained when estimating the 3D pose of the icosahedron with
N = 10. Let us remind the reader that the parameter N controls how often we execute
the hidden line removal algorithm, which is applied every N events. Since the hidden
line removal procedure is computationally demanding, the value of N will have a strong
impact on the computational time required by the algorithm. From Fig. 4.14 we verify

63

that the ratio of processing time to the length of the recording is always smaller than
one when estimating the pose of the icosahedron, allowing us to conclude that we are
processing this stream of events in real time.

0 5 10 15 20

t (s)

0

0.5

1

R
at
io

p
.t
.

Figure 4.14: Computational time required to estimated the pose of the icosahedron with
N = 10.

Let us next display in Fig. 4.15 the computational time as a function of the event rate
for three different values of N . As in the previous chapters, we verify that the computa-
tional time grows with the event rate and can be approximated by a linear function. We
then extrapolate and compute the maximum rate of events that can be processed in real
time by our algorithm. We verify as well that the value of N has a strong impact on the
computational time required, resulting in different slopes for the regression lines.

0 50 100 150 200 250 300 350 400 450 500

ev/ms

0

0.5

1

1.5

R
at
io

p
.t
.

N = 1

N = 10

N = 100

Figure 4.15: Computational time as a function of the event rate when tracking the icosa-
hedron. We show the results obtained with three different values of the parameter N ,
which has a strong impact on the computational time..

We display in the top row of Fig. 4.16 the maximum event rate that can be processed
in real time by the algorithm as a function of N , where N takes values between 1 and
100. We verify that the maximum event rate is largely increased for the first values of
N , but then it is almost insensitive to its value (indeed, it stabilizes after approximately
N = 25). This can be explained because, for small values of N , the relative importance of
the time required for applying the hidden line removal algorithm is large. Consequently,
increasing the value of N will have a strong impact on the computational time. As N
gets larger, the relative importance of this process is smaller, and increasing N will have
a weaker effect.

In order to properly evaluate the effect of the parameter N , we study its effect on the
tracking errors as well: we show in the Fig 4.16 the evolution of the mean translation
error ξ(T) (middle row) and the mean rotation error ξ(q) (bottom row) with the value of
N , when estimating the 3D pose of the icosahedron. We verify that the tracking errors
grow with N : this occurs because for large values of N the small motion assumption is
not true anymore, and thus the algorithm fails to yield correct results. In other words,
when we accumulate too many events we are losing the high temporal resolution of the
data, and the accuracy of the pose estimation will therefore degrade.

64

0 10 20 30 40 50 60 70 80 90 100

500

1000

M
ax

.
ev
/m

s

0 10 20 30 40 50 60 70 80 90 100

0

5

ξ
(T

) (
%
)

0 10 20 30 40 50 60 70 80 90 100

N

0

5

ξ
(q
) (
%
)

Figure 4.16: Top row: maximum event rate that can be processed in real time as a
function of the parameter N . Middle row: evolution of the mean translation error ξ(T)

with the value of N . Bottom row: evolution of the mean rotation error ξ(q) with the value
of N

Let us next repeat the same analysis for the second recording, containing the papercraft
model of a house. We show in Fig. 4.17 the ratio of processing time to the length of the
recording obtained when estimating the pose of the house with N = 10. We verify that
the required computational time is higher than in the case of the icosahedron, and the
ratio sometimes exceeds the value 1. This is mainly due to the higher complexity of the
hidden line removal algorithm (let us note that the model of the house is non-convex,
which greatly increases the complexity of the hidden line removal step [116]).

0 2 4 6 8 10 12 14 16 18 20

t (s)

0

1

2

R
at
io

p
.t
.

Figure 4.17: Computational time required to estimated the pose of the house with N = 10.

Let us also display, in Fig. 4.18 (top), the maximum event rate that can be processed
by the algorithm faster than it is acquired, as a function of the value of N . Once again,
we verify that the maximum event rate grows as N increases, but it always remains
smaller than in the case of the icosahedron. As previously stated, this is due to the higher
complexity of the object.

We display, in the middle and bottom rows of Fig. 4.18, the evolution of the tracking
errors with the value of N when estimating the 3D pose of the house. We verify as well
that the errors grow with the value of N . Nevertheless, for small values of N there is a
plateau in which they are very slightly affected by its value. For example, for N = 25
we get ξ(T) = 3.129% and ξ(q) = 2.776%. Therefore, we get low values for the estimation
errors while greatly reducing the required computational time. We conclude that it is
possible to guarantee real-time performance even for this more complex object by slightly

65

0 10 20 30 40 50 60 70 80 90 100

0

500

1000

M
ax

.
ev
/m

s

0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

ξ
(T

) (
%
)

0 10 20 30 40 50 60 70 80 90 100

N

0

5

10

15

ξ
(q
) (
%
)

Figure 4.18: Top row: maximum event rate than can be processed in real time as a
function of N , when considering a complex object. Middle row: evolution of the mean
translation error with the value of N . Bottom row: evolution of the mean rotation error
with the value of N .

increasing the value of N , with small effect on the accuracy.
We then conclude that the value of N should be chosen according to the desired

application. If real-time constraints apply, its value can be increased in order to reduce the
computational time required. For the typical application, we recommend values between
10 and 20.

4.4 Discussion

This chapter introduces a new method for event-based 3D pose estimation. The trans-
formation applied with each event is intuitively simple and uses the distance to the line
of sight of events. Depending on the recording, we get translation errors ranging from
1.06% to 3.12% (relative to the norm of the mean translation for the considered record-
ing) and rotation errors from 1.29% to 4.71% (relative to the maximum possible distance
between two unit quaternions). These values are reasonably low for us to conclude that
pose estimation is correctly performed.

We have also shown that when the temporal resolution of the events is degraded
to simulate frame based conditions, a point is reached after which the pose cannot be
accurately estimated. In the studied recording, this happens when the temporal resolution
is 10 ms. We conclude that the high temporal resolution of the neuromorphic camera is
a key feature to the accuracy of our algorithm.

The method can also be used in mobile scenarios by applying more robust matching
algorithms relying on additional matching criteria, such as the local orientation of edges.
The method is robust to partial occlusions and does not impose any limitation on the type
of model that can be used. The only constraint is given by the increase in computational
time associated with the complexity of the object, especially in computing hidden surfaces.
Other models, including parametric curves or point clouds, could be used with very small
modifications to the algorithm. In the case of real-time requirements, we show that the

66

tuning of the parameter N provides lower computational times with little impact on the
accuracy of the pose estimation.

The method is based on the assumption that the current estimation of the pose is close
to its true value. Thanks to the high temporal resolution of the neuromorphic camera
this is usually a reasonable assumption once a first estimation is available. However, it
implies that a manual initialization step is usually needed. Moreover, the required 3D
structure for the model of the tracked object is a complex one, including the knowledge
of its vertices and edges. This motivates the research for the solution to the PnP problem
presented in the next chapter.

67

Chapter 5

An Event-Based Solution to the
Perspective-n-Point Problem

5.1 Introduction

The Perspective-n-Point problem—usually referred to as PnP—is the problem of finding
the relative pose between an object and a camera from a set of n pairings between 3D
points of the object and their corresponding 2D projections on the focal plane, assuming
that a model of the object is available. Since it was formally introduced in 1981 [41], the
PnP problem has found numerous applications in photogrammetry and computer vision,
such as tracking [121], visual servoing [122] or augmented reality [123].

For three or four points with non-collinear projections on the focal plane, the PnP
problem can be solved up to some ambiguity in the camera pose [124]. When more
points are to be considered, the standard method is to minimize the sum of some squared
error, usually defined on the focal plane. Existing methods differ in the way this error
function is minimized, and can be classified as iterative [101] and non iterative [109]. Other
techniques consider an object-space error function instead [114], [125]. The advantage of
such an approach is that a correct matching of the 3D points leads to a correct 2D
projection on the focal plane, while the reverse is not necessarily true.

This chapter introduces a new approach to the problem designed to work on the output
of an asynchronous event-based vision sensor. To our knowledge, this is the first PnP
algorithm designed to work on the asynchronous output of neuromorphic cameras. In the
previous chapter we presented an event-based 3D pose estimation algorithm. However,
that method is based on the assumption that the estimation is always close to the true
pose of the object, and thus requires a manual initialization step. The technique described
in the present chapter, greatly inspired by the work of Lu et al. in [114], is designed to
overcome this limitation.

The problem is formulated here as a least-squares minimization problem, where the
error function is the object-space collinearity error [114], which is updated with every
incoming event. The optimal translation is then computed in closed form. The optimal
rotation, however, cannot be computed in closed form. In order to overcome this problem,
we build a virtual mechanical system whose energy is proven to be equal to the error
function: since mechanical systems evolve in the sense of minimizing their energy, the
desired rotation will then be given by the evolution of this virtual mechanical system.
This allows for a simple yet robust solution of the problem, which takes full advantage
of the high temporal resolution of the sensor, as the estimated pose is incrementally

68

updated with every incoming event. Two approaches are proposed: the Full and the
Efficient methods. These two methods are compared against a state of the art PnP
algorithm both on synthetic and on real data, producing similar accuracy in addition of
being faster.

The outline of the current chapter is as follows: we first describe the method in Section
5.2. The experimental results are then presented in Section 5.3, and the obtained results
discussed in Section 5.4.

5.2 Event-based solution to the PnP problem

In this section we develop our event-based solution to the Perspective-n-Point problem.
The task is mathematically described in 5.2.1, while the rotation formalisms used in this
chapter are explained in 5.2.2. The object-space collinearity error (which we wish to
minimize in order to obtain the pose), is given in 5.2.3. The optimal translation is then
obtained in closed form as explained in 5.2.4, while the rotation is given by the evolution
of a virtual mechanical system, as shown in 5.2.5.

5.2.1 Problem Description

Let us imagine a scene with a moving rigid object observed from a calibrated silicon retina,
as shown in Fig. 5.1. Let {V(i)} be a model of the object, described as a collection of

3D points V(i) =
[
X(i), Y (i), Z(i)

]T
. Attached to this object there is a frame of reference,

whose origin we denote as V(0).
We will keep the same notation and formalisms for the representation of 3D pose used

in the previous chapter, that we will briefly remind here. According to this, the pinhole
projection maps 3D points V(i) expressed in the object’s frame of reference into v(i) on
the camera’s focal plane, according to the relation:[

v(i)

1

]
∼ Λ

[
R T

] [V(i)

1

]
, (5.1)

where Λ is the 3× 3 matrix defining the camera’s intrinsic parameters, while R ∈ SO(3),
T ∈ R3 are the extrinsic ones, also referred to as the relative pose between the object
and the camera [113]. The intrinsic parameters matrix Λ is obtained through a prior
calibration procedure, while estimating R, T is the objective of our method. The sign
∼ in (5.1) indicates that the equality is defined up to a scale [112]. In the following,

we will denote R̂, T̂ the estimated pose, that we update with the incoming events. The
corresponding points of the estimation are denoted V̂(i) and computed with the expression:

V̂(i) = R̂V(i) + T̂ . (5.2)

Analogously, the origin of the frame of reference attached to the estimation is denoted
V̂(0).

5.2.2 Rotation formalisms

The usual rotation formalisms most frequently employed have been presented in section
4.2.2. The method introduced in the current chapter will be developed using both rotation
matrices and the axis-angle representation, where the rotation is expressed as the rotation

69

Figure 5.1: An object, given as a collection of 3D points {V(i)}, is observed by a calibrated
silicon retina. The true pose of the object is given by R, T , while the estimated pose
is denoted R̂, T̂ . Attached to the estimation there is a frame of reference, whose origin
we denote by V̂(0). An event ek has to be generated by a point lying on the line of
sight of the event, whose direction is given by the vector Mk. The point of the object
generating event ek is denoted by the index ik. Q

(ik) is then the projection of V(ik) on its
corresponding line of sight. When the estimation is aligned with the true position of the
object, then Q(ik) and V̂(ik) are the same.

vector r = θr̃, with r̃ a unit vector in the direction of the axis of rotation and θ the rotation
angle.

5.2.3 Object-space collinearity error

Let us consider an event ek = [uTk , tk, pk]
T occurring at time tk at location uk = [xk, yk]

T .
According to the pinhole camera model, we know that this event has to be generated by
a point lying on the line of sight of event ek—the line defined by the optical center and
the spatial position of the event on the focal plane—as shown in Fig. 5.1. Assuming that
we can identify which point of the object has generated the event, we try to estimate the
pose that minimizes the orthogonal projection errors on the line of sight for the last n
events.

Let Mk be a vector defining the line of sight of event ek, whose coordinates can be
easily obtained as:

Mk = Λ−1

[
uk
1

]
, (5.3)

where Λ represents the intrinsic parameters matrix of the camera.
Next, let us assume that we can identify the point of the object that has generated

event ek, that we denote by the index ik. Hence, if the true pose of the object and the
estimation were perfectly aligned, V̂(ik) would necessarily lie on the line of sight of event
ek.

70

Let Qk be the projection of V̂(ik) on the line of sight of event ek, that can be computed
as:

Qk =

(
V̂(ik)

)T
Mk

‖Mk‖2
Mk = LkV̂

(ik), (5.4)

where Lk is the Line-of-Sight projection matrix of event ek. It takes the value:

Lk =
MkM

T
k

MT
kMk

. (5.5)

For a given event ek, we define the object-space collinearity error ξk(R̂, T̂) as:

ξk(R̂, T̂) = Qk − V̂(ik) = (Lk − I)V̂(ik) = (Lk − I)(R̂V(ik) + T̂), (5.6)

where I denotes the 3 × 3 identity matrix. We will take into account the last n events
and minimize the weighted mean of their squared collinearity errors. The goal of our
algorithm will therefore be to minimize the following error function Ek(R̂, T̂):

Ek(R̂, T̂) =
1

Ωk

n−1∑
j=0

ωk,j‖ξk−j(R̂, T̂)‖2, (5.7)

where we are considering the event-based weighted mean introduced in Section 2.3.1 and
detailed in the Appendix A.

We will then be looking for the pose R̂, T̂ that minimizes the error function given
by (5.7), which is computed as the weighted mean of the collinearity errors for the last
n events. These collinearity errors depend on the estimated position of the point gen-
erating the event (where we assume that we can identify the point) and the position of
the corresponding event on the focal plane (or, equivalently, the projection of the point
generating the event). Consequently, our approach can be classified as a solution to the
PnP problem, since we are estimating the pose of an object from a set of n pairings
between 3D points of the object and their projections on the focal plane. Unlike classical
frame-based techniques, our approach allows us to consider several events generated by
the same point of the object, and thus n can be chosen to be bigger than the number of
points conforming the object.

Remark: PnP methods always require matching 3D points with their corresponding
2D projections. In the case of our method, this equals to identifying which point of the
object has generated an event. Consequently, our algorithm relies on an event-based
tracking technique. For the rest of this chapter, the term “tracking” will always refer to
this previous method. As we will show in the experiments, the overall performance of the
system is strongly dependent on the accuracy of this tracking.

5.2.4 Optimal Translation

For a given rotation R̂, the optimal translation that minimizes the sum of the squared
collinearity errors can be computed in closed form [114]. Equivalently, if the previous

estimation of the pose is given by R̂k−1, T̂k−1, the optimal displacement ∆Tk can be
computed as:

∆Tk(R̂k−1, T̂k−1) = A−1
k Bk, (5.8)

71

where Ak is a 3× 3 matrix and Bk a 3D vector given by:

Ak =
n−1∑
j=0

ωk,j(I − Lk−j), (5.9)

Bk =
n−1∑
j=0

ωk,j(Lk−j − I)V̂
(ik−j)

k−1 , (5.10)

where V̂
(ik−j)

k−1 denotes the position of V(ik−j) estimated with R̂k−1, T̂k−1:

V̂
(ik−j)

k−1 = R̂k−1V
(ik−j) + T̂k−1. (5.11)

The mathematical development yielding this result is included in the Appendix H.
We will refer to this way of computing Ak and Bk as the full method. As shown in

[114], Ak can be proven to be non-singular, guaranteeing that (5.8) can always be solved.
We then update the estimation of the position making:

T̂k = T̂k−1 + λ∆Tk, (5.12)

where T̂k denotes the estimated translation at time tk, and λ is a tuning factor. Let us
note that λ is a dimensionless quantity, and it should always be chosen smaller or equal
to one. Its effect will be more carefully studied in the experiments.

As shown in the Appendix I, if we choose the standard set of weights presented in
the Appendix A.1 and under some reasonable assumptions, Ak and Bk can be iteratively
updated making:

Ak ≈ ω0(I − Lk) + (1− ω0)Ak−1, (5.13)

Bk ≈ ω0(Lk − I)V̂
(ik)
k−1 + (1− ω0)Bk−1. (5.14)

This allows us to update Ak and Bk for each event in an iterative manner, saving
memory and computational time. We will refer to this way of updating Ak and Bk as the
efficient method, and test its effect on the experiments.

5.2.5 Rotation

As shown in [114], for a given translation T̂ the optimal rotation R̂ cannot be computed
in closed form. In [114], the rotation is obtained via an absolute orientation problem
between the points of the estimation and their projections onto the corresponding line
of sight, which is then solved using Singular Value Decomposition. This is, however, a
computationally expensive process, not well-suited to the output of the neuromorphic
camera: in order to fully exploit the high dynamics of the sensor, we wish to update
the estimated pose with every incoming event. Given the high frequency of the arrival of
events, the computations carried out with each one of them should be kept to a minimum,
in order to achieve real-time performance.

In our approach, instead of trying to find the optimal rotation for each event, we
will simply apply a rotation such that our error function is reduced at each step. Since
events happen with such a high temporal resolution, this will very fast lead to a correct
estimation. To that end, we will define a virtual mechanical system whose energy is equal

72

to the error function. Since mechanical systems evolve in the sense of minimizing their
energy, simulating the behavior of this system will be equivalent to minimizing the error
function, approaching the estimation towards its true value.

Consequently, let us picture the following virtual mechanical system: since rotations
happen around the origin of the estimation V̂(0), let us imagine V̂(0) to be attached to
the world by a spherical joint, as shown in Fig. 5.2. This allows the object to freely
rotate around this point, but prevents any translation. Next, for every event ek−j with
j = 0, 1, ..., n−1 (that is to say, for the last n events) we wish to attract the corresponding

point of the estimation V̂(ik−j) towards the line of sight of the event. To that end, let us
imagine V̂(ik−j) and the line of sight to be linked by a linear spring, whose direction is
always perpendicular to the line of sight. In other words, we link V̂(ik−j) and Qk−j by a
linear spring. In a real mechanical system, this would be achieved by linking the spring
and the line of sight with a cylindrical joint, as shown in Fig. 5.2.

Figure 5.2: In order to solve the rotation we build the following virtual mechanical system:
the origin of the estimation V̂(0) is linked to the world by a spherical joint, and every point
of the estimation V̂(ik−j) generating an event ek−j is linked to its corresponding line of
sight by a linear spring. Simulating the behavior of this mechanical system is equivalent
to minimizing the collinearity error.

Let Fk−j denote the force exerted by the virtual spring attached to some point of

the estimation V̂(ik−j), which has been assigned to the event ek−j. This force will be

dependent on the estimated pose: Fk−j = Fk−j(R̂, T̂).
As previously explained in section 2.3.2, the force exerted by a linear spring is given by

Hooke’s law, which states that the direction of the force is that of the axis of the spring,
while its magnitude is given by the expression:

‖Fk−j(R̂, T̂)‖ = Ck−j∆lk−j = Ck−j
(
lk−j − l0

)
, (5.15)

where Ck−j is the stiffness of the spring and ∆lk−j = lk−j − l0 its elongation. Since the

axis of the spring is aligned with Qk−j − V̂(ik−j), and considering (5.6), Fk−j takes the
value:

Fk−j(R̂, T̂) =
ξk−j(R̂, T̂)

‖ξk−j(R̂, T̂)‖
Ck−j∆lk−j. (5.16)

73

Next, let us make l0 = 0 for all virtual springs. This implies that the elongation at
rest is zero: in other words, the virtual spring will not produce any force when V̂(ik−j)

lies on its corresponding line of sight, that is to say when it is correctly aligned with the
corresponding event. The elongation ∆lk−j then takes the value:

∆lk−j = lk−j = ‖Qk−j − V̂(ik−j)‖ = ‖ξk−j(R̂, T̂)‖. (5.17)

Finally, let us make the magnitude of the stiffness equal to the weight of the corre-
sponding event:

Ck−j = βωk,j, (5.18)

where β is just a unit adjustment constant, that compensates for the fact that weights
are dimensionless but not the stiffness. For the rest of this chapter all distances will be
given in mm, and thus β = 1 Nmm-1. Fk−j becomes:

Fk−j(R̂, T̂) = βωk,jξk−j(R̂, T̂). (5.19)

Let us remind the reader that the energy gk−j of a linear spring is given by the
expression:

gk−j =
1

2
Ck−j(∆lk−j)

2, (5.20)

which, considering (5.18) and (5.17) becomes:

gk−j(R̂, T̂) = βωk,j‖ξk−j(R̂, T̂)‖2. (5.21)

The energy Gk of the whole virtual when considering the last n events is then computed
by applying the principle of superposition:

Gk(R̂, T̂) =
n−1∑
j=0

gk−j(R̂, T̂) =
1

2

n−1∑
j=0

βωk,j‖ξk−j(R̂, T̂)‖2 =
βΩk

2
Ek(R̂, T̂). (5.22)

According to this equation, we have built a virtual mechanical system whose energy
is equal to the error function, up to some normalization factor. Since mechanical systems
evolve in the sense of minimizing their energy, simulating the behavior of this system will
then be equivalent to minimizing the error function.

Since the translation is prevented in this case, we only wish to compute the moments
of the forces and their effect. Thus, let τk−j be the torque generated by force Fk−j with

respect to the origin of the estimation V̂(0):

τk−j(R̂, T̂) = (V̂(ik−j) − V̂(0))× Fk−j(R̂, T̂)

= R̂V(ik−j) × βωk,j(Lk−j − I)V̂(ik−j),
(5.23)

where × denotes the cross product. The resulting torque Γk when we take into account
the last n events takes the value:

Γk(R̂, T̂) =
n−1∑
j=0

= τk−j(R̂, T̂) =
n−1∑
j=0

R̂V(ik−j) × βωk,j(Lk−j − I)V̂(ik−j), (5.24)

We will compute the resulting torque using this expression when applying the full
method. As in the case of the translation, we will compute its value using the previous

74

estimated position R̂k−1, T̂k−1. We then approximate its effect by a rotation given, in its
axis-angle representation, by the vector rk computed as:

rk = φΓk(R̂k−1, T̂k−1), (5.25)

where φ is a tuning factor. A complete justification of this choice is given in the Appendix
J.

In the Appendix K we give some more insight on how to pick a value for φ, and derive
the following expression for its theoretical optimum φ(opt):

φ(opt) =
3π

2(1 +
√

2)

1

βΩk(ρ(max))2
, (5.26)

where ρ(max) is equal to the maximum distance in the object ρ(max) = max
i
{‖V(i)‖}. From

this expression it is evident that φ is not dimensionless in this case, and its optimal value
will therefore depend on the dimensions of the object whose pose we want to estimate
(and the units in which they are expressed). For the rest of this chapter, all values of φ
will be expressed in N-1mm-1.

Let ∆Rk be the rotation matrix corresponding to the rotation represented by rk. We
update the estimation with the following expression:

R̂k = ∆RkR̂k−1. (5.27)

As in the case of Ak and Bk, the resulting torque can be approximated with the
iterative expression:

Γk ≈ βω0R̂k−1V
(ik) × (Lk − I)V̂

(ik)
k−1 + (1− ω0)Γk−1, (5.28)

where, as previously stated, V̂
(ik)
k−1 denotes the position of V(ik−j) estimated with R̂k−1, T̂k−1,

as given by (5.11). The value of the resulting torque will be updated in this way when
applying the efficient method.

5.2.6 Global algorithm

The PnP problem is solved by the global algorithm described below.

5.3 Results

In this section, two experiments showing the accuracy of our method are presented. The
algorithm is implemented in Matlab and C++ and tested in a synthetic scene for the first
experiment. Next, another experiment is produced from a real recording.

In order to characterize the accuracy of our method we will consider the sum of the
squared collinearity errors Ek. Additionally, we adopt the following metrics in the space
of rigid motions:

• The absolute estimation error in linear translation at time tk is given by the norm
of the difference between the estimated translation T̂k and its true value Tk. We
define the relative translation error ξ

(T)
k as:

ξ
(T)
k (%) = 100

‖T̂k − Tk‖
‖T ‖

, (5.29)

75

Algorithm 5 Event-Based PnP algorithm

Require: ek = (uTk , tk, pk)
T ∀k > 0

Ensure: R̂, T̂
Initialize the parameters
for every incoming event ek do

Identify the point generating the event i(k)
Compute the Line-of-Sight projection matrix Lk using (5.5)
if full method then

Compute the resulting torque Γk using (5.24)
Compute Ak and Bk using (5.9) and (5.10)

else if efficient method then
Update the resulting torque Γk using (5.28)
Update Ak and Bk using (5.13) and (5.14)

end if
Compute the resulting rotation ∆Rk using (5.25)
Compute the resulting displacement ∆Tk using (5.8)

Update R̂ using (5.27)

Update T̂ using (5.12)
end for

where ‖T ‖ is the norm of the mean translation of the object for the whole experi-
ment.

• The distance d between two rotations, given by the corresponding rotation matrices
R1 and R2 can be computed as:

d(R1, R2) = ‖I −R1R
T
2 ‖F , (5.30)

where I is the 3 × 3 identity matrix and ‖ · ‖F denotes the Frobenius norm of
the matrix. This can be proven to be a metric in the space of 3D rotations [119]

and takes values in the range [0, 2
√

2]. Thus, let ξ
(R)
k be the relative rotation error

computed as:

ξ
(R)
k (%) = 100

d(R̂k, Rk)

2
√

2
. (5.31)

When the full method is employed, the weights of the past events are chosen to be
linearly decaying. Imposing Ωk = 1 yields:

ωk,j = ωj =
2(n− j)
n(n+ 1)

, ∀j = 0, ..., n− 1. (5.32)

5.3.1 Synthetic scene

The algorithm is first tested in a synthetic scene containing a virtual object. This object
is composed by 10 points whose 3D coordinates were randomly initialized following a
normal distribution with zero mean and standard deviation equal to 10 mm. Both the
object and the camera are assumed to be static, and the pose of the object relative to

76

Figure 5.3: Synthetic scene: the solid dots represent the pose of the object, static in this
experiment. We randomly select a point of the object and generate an event located on
its projection on the focal plane.

the camera is given by the translation vector T = (0, 0, 200)T (in mm) and the rotation
vector r = (2/3, 2/3, 1/3)T . Fig. 5.3 shows the resulting geometry.

The virtual camera has the following intrinsic parameters matrix:

Λ =

fmx 0 cx
0 fmy cy
0 0 1

 , with

f = 20 mm

mx = my = 30 px/mm

cx = 152 px

cy = 120 px

which corresponds to an ideal pinhole camera model. The precise geometric parameters
are those of an ATIS device equipped with an objective with focal distance 20 mm.

A stream of events is generated from this synthetic scene, sequentially selecting a
random point of the object and generating an event on its corresponding projection on
the focal plane. The inter-event times are random integers following a normal distribution
with mean 5 μs and standard deviation 2 μs (corresponding to some characteristic values
observed in ATIS recordings of real moving objects). Let us note, however, that we are
not trying to accurately simulate the event generation mechanism of neuromorphic image
sensors. For this first experiment we are just trying to evaluate the algorithm when the
object is static and assuming perfect tracking. Even if the events are not generated in a
realistic fashion, this will allow us to characterize different aspects of the algorithm in the
simplest possible situation. We will evaluate our method on real recordings in the next
experiment.

In a first step we test the accuracy of the rotation and the translation estimation
strategies separately. This will allow us to explore the space of parameters and give some
guidance on how to set them.

Translation

In order to exclusively check how the algorithm estimates translation, we make the initial
estimation of the rotation R̂(0) equal to its true value R. Additionally, we set the tuning

77

factor for the rotation φ as being zero. Let us remind the reader that the object is in this
case static, and thus the estimated rotation will remain equal to its true value at every
instant. We make the initial estimation of the translation T̂ (0) = (0, 0, 0)T .

Let us first apply the full method to the synthetic stream of events making n = 20.
Fig. 5.4(a) shows the evolution of both the sum of the squared collinearity errors Ek and

the relative translation error ξ
(T)
k with the incoming events for four different values of λ.

We do not plot the relative rotation error ξ
(R)
k , since it will always be zero in this case.

Let us note that, for the first n events, we cumulate the information (updating Ak, Bk

and Γk) but we do not update the estimation of the pose. Consequently, the relative
translation error remains stable. Ek is not stable because, in general, different points of
the object will yield different collinearity errors. After n events we start updating the
estimation, and we can see how both errors decay towards zero.

50 100 150

k

0

50

100

150

E
k
(m

m
2
)

50 100 150

k

50

100

ξ
(T

)
k

(%
)

(a)

λ = 1

λ = 0.3

λ = 0.1

λ = 0.03

50 100 150

k

0

50

100

150

E
k
(m

m
2
)

50 100 150

k

50

100

ξ
(T

)
k

(%
)

(b)

n = 10

n = 20

n = 40

n = 80

Figure 5.4: (a) Evolution of the sum of the squared collinearity errors Ek and the relative

translation error ξ
(T)
k with the number of iterations for four different values of λ, when

applying the full method with n = 20. The bigger λ, the faster the convergence. (b)

Evolution of Ek and ξ
(T)
k for four values of n when λ = 0.1. We do not start updating

the estimation until we have accumulated n events. After that point, the behavior of the
system is very similar for every value of n.

Comparing the results obtained with different values of λ, we verify that the bigger λ
the faster the convergence. As a matter of fact, we could consider making λ = 1. This
value of λ makes the estimated translation equal to the optimal one for the last n events at
every iteration. If we are confident enough in the accuracy of our tracking this constitutes
an acceptable strategy.

Fig. 5.4(b) shows the evolution of Ek and ξ
(T)
k for four different values of n, with

λ = 0.1. We can see how the estimation is not updated until n events have elapsed, but
once it does the behavior of the system is very similar for all values of n. This can be
explained because the object is in this case static and the tracking is perfect. In real
world scenarios, choosing n will require a tradeoff between acceptable velocities of the
object—a smaller n results in a shorter reaction time—and stability in the presence of
tracking errors—if n is big enough we can expect tracking errors to be canceled out. In
order to illustrate this point, let us simulate some inaccuracy in the tracking and evaluate

78

the algorithm again.
To that end, we will assume that events are correctly assigned to the points generating

them, but their position is noisy. This would correspond to a real case in which we are
estimating the position of some markers, but there is some inaccuracy in this estimation.
We will model the tracking errors as a gaussian noise with zero mean and standard
deviation equal to σ. We plot in Fig. 5.5 the evolution of the relative translation error
ξ

(T)
k for four different values of σ (in pixels) and n. We verify that an inaccurate tracking

strongly degrades the performance of our algorithm, resulting in increasing values for the
final error. Additionally, for small values of n the estimated pose has a greater variance
as the inaccuracy grows.

100 200 300 400 500

k

0

50

100

ξ
(T

)
k

(%
)

σ = 1

100 200 300 400 500

k

0

50

100

ξ
(T

)
k

(%
)

σ = 2

100 200 300 400 500

k

0

50

100

ξ
(T

)
k

(%
)

σ = 4

100 200 300 400 500

k

0

50

100

ξ
(T

)
k

(%
)

σ = 8

n = 10

n = 50

n = 100

n = 200

Figure 5.5: Evolution of the relative translation error ξ
(T)
k when the tracking is not per-

fectly accurate. As the inaccuracy σ grows, the results of the pose estimation are strongly
degraded. Additionally, when n is small the estimated pose has a greater variance.

We next evaluate the effect of matching errors, i.e. when events are not correctly
assigned to the point of the object generating them. Thus, we take a percentage of the
events and randomly assign them to some other point of the object. We show in Fig. 5.5
the evolution of the relative translation error ξ

(T)
k for four different percentages of wrongly

assigned events. Again, we observe that matching errors degrade the performance of the
algorithm.

These results allow us to conclude that the overall performance of the system is strongly
dependent on the accuracy of the tracking. Additionally, we conclude that n should be
chosen to be big enough to assure stability in the presence of tracking errors. The effect
of this parameter will be more deeply analyzed in the next experiment, when treating real
recordings. Let us note that increasing n will also result in a greater computation time.

Next, let us estimate the translation by applying the efficient method to the synthetic
stream of events. Fig. 5.7(a) shows the evolution of both Ek and ξ

(T)
k for four different

values of λ, when ω0 = 0.1. Let us note that when applying this strategy we do not set
the value of n, and thus we will start updating the estimation from the first incoming
event. As we can see in Fig. 5.7(a), both errors decay towards zero in this case as well,
and the convergence is faster for bigger values of λ. When applying the efficient method,
however, big values of λ will cause the system to oscillate. Choosing λ will consequently
require a tradeoff between speed of convergence and stability of the system.

Fig. 5.7(b) shows the evolution of Ek and ξ
(T)
k for four different values of ω0, when

79

100 200 300 400 500

k

0

50

100

ξ
(T

)
k

(%
)

5%

100 200 300 400 500

k

0

50

100

ξ
(T

)
k

(%
)

10%

100 200 300 400 500

k

0

50

100

ξ
(T

)
k

(%
)

15%

100 200 300 400 500

k

0

50

100

ξ
(T

)
k

(%
)

20%

n = 10

n = 50

n = 100

n = 200

Figure 5.6: Evolution of ξ
(T)
k with different percentages of wrongly assigned events.

50 100 150

k

0

50

100

150

E
k
(m

m
2
)

0 50 100 150

k

50

100

ξ
(T

)
k

(%
)

(a)

λ = 0.3

λ = 0.1

λ = 0.03

λ = 0.01

50 100 150

k

0

50

100

150

E
k
(m

m
2
)

0 50 100 150

k

50

100

ξ
(T

)
k

(%
)

(b)

ω
0
 = 0.3

ω
0
 = 0.1

ω
0
 = 0.03

ω
0
 = 0.01

Figure 5.7: (a) Evolution of Ek and ξ
(T)
k with the number of iterations for four different

values of λ, with ω0 = 0.1. The bigger λ, the faster the convergence. However, too big a
value of λ will cause the system to oscillate. (b) Evolution of Ek and ξ

(T)
k for four different

values of ω0, with λ = 0.03. Bigger values of ω0 make the system more stable.

applying the efficient method with λ = 0.03. We observe that the system has a tendency
to oscillate for small values of ω0. This can be explained because small values of ω0

result in a big “inertia” of the system. Let us remind the reader that we are iteratively
updating the desired displacement ∆T at each step. The parameter ω0 controls how much
we update ∆T with every incoming event. Consequently, if ω0 is too small, the desired
displacement will continue to be big even when the collinearity errors are already small.

In order to further clarify this point, let us plot in Fig. 5.8 the evolution of the relative
translation error ξ

(T)
k for different values of ω0 and λ. As we can see, for small values of ω0

the system tends to oscillate even when λ is small. This result suggests that one should
assign big values to ω0 (close to one) and to λ, allowing to achieve fast convergence while
the system remains stable. However, if the value of ω0 is too big we will be assigning a
great importance to the most recent events. This is actually equivalent to setting a small

80

value for n, which will cause the system to be less stable in the presence of tracking errors.

0 500 1000

k

0

50

100

ξ
(T

)
k

(%
)

ω0 = 0.3

0 500 1000

k

0

50

100

ξ
(T

)
k

(%
)

ω0 = 0.1

0 500 1000

k

0

50

100

ξ
(T

)
k

(%
)

ω0 = 0.03

0 500 1000

k

0

50

100

ξ
(T

)
k

(%
)

ω0 = 0.01

λ = 0.1

λ = 0.03

λ = 0.01

λ = 0.003

Figure 5.8: Evolution of the relative translation error ξ
(T)
k with the incoming events for

different values of ω0 and λ. We verify that bigger values of ω0 allow us to set a bigger
λ without loosing stability. However, the system will become more sensible to tracking
errors.

We conclude that when applying the efficient method ω0 and λ should be chosen
together. We thus recommend values of ω0 between 0.03 and 0.3, for λ between 0.01 and
0.1. In this case, the value of ω0 has no effect on the computation time required.

Rotation

We next test how the algorithm estimates only rotation. To that end, we make the initial
estimation of the translation T̂ (0) equal to its true value T , and set λ = 0. The initial

estimation of the rotation is made R̂0 = I, the 3× 3 identity matrix.
The maximum distance in the synthetic object is ρ(max) = 19.95 mm. Applying (5.26)

yields:
φ(opt) = 0.0049N-1mm-1 ≈ 0.005 N-1mm-1. (5.33)

We will test different values of φ around φ(opt). Fig. 5.9(a) shows the evolution of Ek
and ξ

(R)
k with the incoming events for four different values of φ, when applying the full

method with n = 20. We verify that the results are very similar to the ones obtained
in the case of the translation, with both errors decaying towards zero after n events.
Analogously, the convergence is faster for bigger values of φ. We verify that the system
still yields stable results for φ > φ(opt). In this case, we experimentally determine that for
values of φ greater than 0.01 the rotation fails to converge. We verify that (5.26) provides
good theoretical guidance for setting the order of magnitude of φ. We thus recommend
to simply set the value of φ as φ(opt).

Fig. 5.9(b) shows the evolution of Ek and ξ
(R)
k with the incoming events for four

different values of n, when φ = φ(opt) = 0.005 N-1mm-1. As in the case of the translation,
after n events have elapsed both errors decay towards zero. Again, since the object is
static and the tracking is perfect the behavior of the system is very similar for all values
of n. For inaccurate tracking the same tradeoff applies as in the case of the translation,
and we recommend values of n between 20 and 200.

81

50 100 150

k

0

50

100
E

k
(m

m
2
)

50 100 150

k

50

ξ
(R

)
k

(%
)

(a)

φ = 0.01

φ = 0.005

φ = 0.002

φ = 0.001

50 100 150

k

0

50

100

E
k
(m

m
2
)

50 100 150

k

50

ξ
(R

)
k

(%
)

(b)

n = 10

n = 20

n = 40

n = 80

Figure 5.9: (a) Evolution of the errors for four different values of φ (in N-1mm-1), when
n = 20. After n events both errors decay towards zero, the convergence being faster for
bigger values of φ. (b) Evolution of the errors for four different values of n, with φ = 0.005
(in N-1mm-1). After n events have elapsed, the behavior of the system is very similar for
all values of n.

Finally, let us apply the efficient method to estimate the rotation. Fig. 5.10(a) shows

the evolution of both Ek and ξ
(T)
k for four different values of φ, when ω0 = 0.1. We verify

that when applying the efficient method the system has a bigger tendency to oscillate.

50 100 150

k

0

50

100

E
k
(m

m
2
)

50 100 150

k

50

ξ
(R

)
k

(%
)

(a)

φ = 0.01

φ = 0.005

φ = 0.002

φ = 0.001

50 100 150

k

0

50

100

E
k
(m

m
2
)

50 100 150

k

50

ξ
(R

)
k

(%
)

(b)

ω
0
 = 0.3

ω
0
 = 0.1

ω
0
 = 0.03

ω
0
 = 0.01

Figure 5.10: (a) Evolution of Ek and ξ
(R)
k for four different values of φ , when ω0 = 0.1. For

big values of φ the system has a tendency to oscillate, and it might even fail to converge
(b) Evolution of the errors when φ = 0.001 N-1mm-1, for four different values of ω0. When
ω0 is small, the system has a bigger tendency to oscillate.

Fig. 5.10(b) shows the evolution of the errors for four different values of ω0, when
φ = 0.002 N-1mm-1. As in the case of the translation, we verify that small values of ω0

cause the system to oscillate. Analogously, too big a value of ω0 will cause the system to

82

be sensible to tracking errors. Consequently, we recommend the same fork of values for
ω0 between 0.03 and 0.3.

5.3.2 Real recordings

Next, our algorithm is tested on real data obtained from an ATIS sensor, where an object
moves and rotates in front the camera. As an object, we use a white piece of paper
in which we printed some logo and a set of black dots (see Fig. 5.11(a)). These dots
constitute the model of the object.

Figure 5.11: (a) Real object used in the experiments: black dots constitute the model of
the object, while the logo in the center is used just for visual verification. (b) Output of
the Spring-Linked Tracker Set : circles show the position of the simple trackers, while the
dashed lines represent the springs linking them. (c) 3-point object (d) 4-point object (e)
8-point object.

In order to determine which point of the object has generated an event, we track these
dots using the Spring-Linked Tracker Set introduced in Chapter 2.

Fig. 5.11(b) shows the output of the Spring-Linked Tracker Set when it is applied to
one of our recordings. In the image, circles represent the position of each one of the simple
trackers, while dashed lines depict the springs linking them. As we can see, we associate a
simple tracker with each one of the black dots. Thus, when an event is assigned to one of
these trackers, we consider that the event has been generated by the corresponding point
of the object. In order to increase the accuracy of the method, we make the location of
the event equal to the current position of the tracker, and then feed the resulting stream
of clustered events to our PnP algorithm.

Ground truth values for numerical evaluation are obtained from an OptiTrack system.
OptiTrack is a motion capture system that outputs reliable values for the 3D pose of
rigid bodies, provided that they are equipped with a number of infrared markers. Fixing
markers on the object and the camera allows us to obtain their poses in the 3D space, from

http://www.optitrack.com/

83

which we retrieve the pose of the object relative to the camera. Comparing this value
with the estimation of our algorithm we compute the relative translation and rotation
errors. Accuracy is characterized by the mean value of these errors computed for a whole
recording.

We consider three different objects: the ones composed by three, four or eight points
(see Figures 5.11(c), 5.11(d) and 5.11(e) respectively). This will allow us to evaluate the
effect of the number of points on the accuracy of the algorithm. For all three objects
the maximum distance is ρ(max) = 136.01 mm. Applying (5.26) yields φ(opt) ≈ 0.0001
N-1mm-1.

We make three different recordings for each one of the objects, producing a total
of nine recordings. We identify them by their index, going from one to nine, where
recordings #01 to #03 correspond to scenes containing the 3-point object. Recordings
#04 to #06 contain the 4-point object, and #07 to #09 the 8-point object. In all of them
the corresponding object is displaced and rotated in every direction. All recordings are
cropped to have the same duration of 25 s and solved using the same set of parameters.
The initial estimation of the pose is always made T̂ = (0, 0, 0)T , R̂(0) = I.

We test the accuracy of both the full method and the efficient method on these real
data. Additionally, we implement Lu’s method [114] and apply it to our recordings as
well. This allows us to evaluate our approach against a state of the art PnP algorithm.

Let us first apply the full method to the 9 recordings. Parameters are selected in
the range giving stable results in the previous experiment. After several trials, they
are experimentally set to n = 50, λ = 0.1 and φ = 0.0001 N-1mm-1. Fig. 5.12(a)
depicts the characteristic output of the PnP algorithm at a given instant, corresponding
to recording #09. Here, the background of the image shows a snapshot of the ATIS
output. Additionally, events assigned to different points of the object are indicated by
different shapes (crosses, triangles and so on), while circles represent the reprojection of
the object at the pose estimated by the algorithm. We can see that, in general, circles
surround the events generated by the corresponding points, showing that our method is
yielding good results on the focal plane. We also reproject the logo, that as we can see
matches the corresponding events. Fig. 5.12(b) shows the state of the system at the
same instant represented in the 3D space, where the camera’s optical center has been
placed at the origin. Recent trajectories of the points of the object have been plotted too,
represented with the same set of symbols as in the 2D image. We show in Video 1 the
output of the algorithm for this recordings: to the left we show results obtained on the
focal plane, while 3D results are shown on the right side.

In order to illustrate pose estimation results produced by the algorithm, let us plot in
Fig. 5.13(a) the evolution of the three components of the translation vector T (in mm)
for recording #09. In the figure, ground truth values are represented by dashed lines,
and estimated values by continuous lines. We verify that these curves are coincidental,
showing that the algorithm is correctly estimating translation. The relative translation
error ξ

(T)
k is shown at the bottom of the figure: as we can see, after a short initial transient

its value stabilizes to be always lower than 5%. This results in a mean value for the whole
recording of just 1.79%. We denote this mean error ξ(T), and use it to characterize the
accuracy of a given approach.

Analogously, Fig. 5.13(b) shows the three components of the rotation vector r. As
in the case of the translation, estimated values are coincidental with the ground truth
references provided by the OptiTrack system. Consequently, the relative rotation error
ξ

(R)
k is always below 5%, resulting in a mean value (denoted ξ(R)) of only 0.79%. These

84

Figure 5.12: (a) Characteristic output of the PnP algorithm, corresponding to recording
#09. The background of the image shows a snapshot of the ATIS recording, while events
assigned to different points of the object are represented by different shapes (crosses,
triangles, etc.). Circles indicate the reprojection of the object at its estimated pose: as
we can see, the reprojection matches the corresponding events, showing that the algorithm
is yielding good results on the focal plane. We reproject the logo as well, that matches
the corresponding events. (b) 3D representation of the same instant, where the recent
trajectories of the points of the object have been plotted using the same set of symbols.

0 5 10 15 20 25

-200

0

200

T
x
(m

m
)

0 5 10 15 20 25

-200

0

200

T
y
(m

m
)

0 5 10 15 20 25

0

1000

2000

T
z
(m

m
)

0 5 10 15 20 25

-1

0

1

r
x

0 5 10 15 20 25

-1

0

1

r
y

0 5 10 15 20 25

-0.5

0

0.5

r
z

0 5 10 15 20 25

t(s)

(a)

0

5

ξ
(T

)
k

(%
)

0 5 10 15 20 25

t(s)

(b)

0

5

ξ
(R

)
k

(%
)

Figure 5.13: (a) Evolution of the three components of the translation vector T (in mm)
for recording #09. Ground truth values are indicated by dashed lines, while the results
produced by the full method are represented by solid lines. We verify that these two
curves are coincidental. The resulting value of the relative translation error ξ

(T)
k is shown

at the bottom: after a short initial transient its value remains always below 5%, yielding
a mean value for the whole recording of just 1.79%. (b) Evolution of the rotation vector
r: estimated values are coincidental with ground truth values. This results in a mean
value for the relative rotation error of 0.79%.

results allow us to conclude that the full method is correctly estimating the pose of the
object for this recording.

85

Let us next apply the efficient method to all the recordings with the following set of
parameters: ω0 = 0.1, λ = 0.1 and φ = 0.0001 N-1mm-1 (note that λ and φ take the
same values as for the full method). Considering Lu’s algorithm, the only parameter is
n, that we experimentally set to n = 50. We show in Fig. 5.14 the mean errors obtained
for every recording with all three methods, where the relative translation error is shown
on top and the relative rotation error at the bottom. Recordings of the same object are
grouped together. From the results displayed in Fig. 5.14 we can extract the following
conclusions:

• The full method and the efficient method yield statistically equivalent results: for
every recording, results obtained with both methods are almost identical. This
proves the efficient method to be a valuable approximation.

• We cannot uniquely estimate the pose of an object with less than four points:
when the 3-point object is considered, every method fails to produce accurate pose
estimations. This is a known limitation of the PnP technique [124], not specific to
the event-based approach.

• When four or eight points are considered, pose is correctly estimated by our al-
gorithm. Results obtained by our method are as reliable as the ones provided by
Lu’s, showing the accuracy of our approach. Both the efficient method and the
full method produce errors in the same range of values, from 1.9% to 2.8% for the
translation, and from 0.8% to 1.2% in the case of the rotation.

• Increasing the number of points to more than four does not improve the accuracy
of the algorithm in the experiments. More than four points produce an overdeter-
mined system, which is not always a guarantee of a better accuracy in the pose
estimation. We hypothesize that, in this particular case, we have reached the limit
of the algorithm because of the sensor’s spatial resolution. A more thorough study
with different stimuli, experimental conditions and tracking techniques is necessary
to reach a firm conclusion.

Figure 5.14: Statistics of the errors obtained for each one of the nine recordings. The full
method and the efficient method yield equivalent results. When four or eight points are
considered, the accuracy of our algorithm is equivalent to Lu’s.

86

In summary, when the object is composed by at least four points all three methods
provide comparable accuracy. In order to establish a complete comparison between them
we next evaluate their computation time.

5.3.3 Computational time

The presented experiments were carried out using a conventional laptop equipped with
an Intel Core i7 processor and running Debian Linux. The algorithm was implemented
both in Matlab and C++. Only the computational time of the C++ implementation is
discussed. As in the previous chapters, the code is not parallelized and a single core was
used. We discuss here the total time it takes to process each recording (let us remind the
reader that all recordings have a same length of 25 s), where each recording was processed
ten times and the average result is considered.

When applying the full method or Lu’s method, the computational time depends on
the value of n (the number of past events taken into account for updating the pose). We
thus evaluate the evolution of both the computational time and the pose errors with the
value of this parameter. We show in Fig. 5.15 the results obtained for recordings #01,
#04 and #07, where n takes values between 2 and 30. Only three recordings are shown
for clarity reasons, results obtained for the remaining recordings are equivalent.

5 10 15 20 25 30

ξ
(T

) (
%
)

0

50

100

150

#01 (3-point)

Efficient
Full
Lu

5 10 15 20 25 30

ξ
(R

) (
%
)

0

10

20

30

n

5 10 15 20 25 30

c.
t.

(s
)

0

2

4

6

8

5 10 15 20 25 30

ξ
(T

) (
%
)

0

50

100

150

#04 (4-point)

Efficient
Full
Lu

5 10 15 20 25 30

ξ
(R

) (
%
)

0

10

20

30

n

5 10 15 20 25 30

c.
t.

(s
)

0

2

4

6

8

5 10 15 20 25 30

ξ
(T

) (
%
)

0

50

100

150

#07 (8-point)

Efficient
Full
Lu

5 10 15 20 25 30

ξ
(R

) (
%
)

0

10

20

30

n

5 10 15 20 25 30

c.
t.

(s
)

0

2

4

6

8

Figure 5.15: Evolution of the pose estimation errors and the computational time with the
value of n. (a) Results for recording #01. Top: mean translation error. Lu’s method is
unstable for small values of n, and its behavior is not predictable until n = 15. Middle:
mean rotation error. Since this recording contains the 3-point object, rotation cannot be
correctly estimated and rotation errors take big values for all three methods. Bottom:
computational time. The efficient method is the fastest one, and it does not depend on
n. (b) Results for recording #02. Rotation can be correctly estimated in this case. The
computational time is greater than for recording #01, because more points in the object
implies more events to treat. (c) Results for recording #07.

Fig. 5.15(a) shows the results obtained for recording #01, which contains the 3-point

object. On top, the evolution of the mean translation error ξ(T) with the value of n is
shown. If we analyze the efficient method, we observe that a straight line is obtained.
This is an expected result, since this method does not depend on n. The value of the
error is ξ(T) = 2.95%.

87

In the case of the full method, we observe that large errors are obtained for small
values of n. This is also an expected result, as explained in Section 5.3.1. From n = 6
the error stabilizes at around 3%.

Finally, when applying Lu’s method, we verify that the errors are even higher for small
values of n, and they do not stabilize until n = 15. This can be explained because Lu’s
method is not incremental. Instead, it computes at each iteration the best solution for
the last n events. Due to the nature of the neuromorphic camera, it often occurs that
several consecutive events are generated by the same point of the object. Consequently,
when Lu’s method is applied with a small value of n, pose is often estimated using just
one or two points of the object. This causes the estimation to be flawed, leading to large
oscillations which result in the large observed errors. This is an indication that Lu’s
algorithm is not well-suited to the output of the neuromorphic camera.

The middle row of Fig. 5.15(a) shows the mean rotation errors for recording #01.
Since the 3-point object is considered in this case, rotation cannot be uniquely estimated.
This results in large rotation errors for all three methods.

At the bottom of Fig. 5.15(a) we show the computational time required for applying
the PnP algorithm to recording #01. Values are averaged over 10 trials for each set of
parameters. For the efficient method we observe a straight line at the value 0.017 s. In
the case of the full method, we verify that the computational time grows linearly with n.
If we analyze Lu’s method, we verify that it also grows with n, linearly from n = 8.

We consider the computational time at n = 30 as a reference, since this value ensures
stable solutions for all recordings with every method. The efficient method is then 6.1
times faster than the full method and 57.5 times faster than Lu’s.

Fig. 5.15(b) shows the results obtained for recording #04, that contains the 4-point
object. Rotations can be correctly estimated in this case, the efficient method yields a
mean rotation error ξ(R) = 0.89%. The full method and Lu’s method stabilize around this
value from n = 6 and n = 30 respectively. As observed before, small values of n cause
the solution to oscillate, specially in the case of Lu’s method.

At the bottom of Fig. 5.15(b) the computational time required to solve recording #04
is shown. We verify that it follows the same previously observed pattern. However, the
computational time is larger for every method, because considering more points implies
more events to process. The computational time for the efficient method is 0.035 s. This
is 6.0 times faster than the full method and 58.4 times faster than Lu’s method (with
n = 30).

Figure 5.15(c) shows the results for recording #07, that contains the 8-point object.
Pose can be correctly estimated from n = 4 when applying the full method, and from
n = 15 when Lu’s method is chosen. When n = 30, the efficient method is 5.5 times
faster than the full method and 52.4 times faster than Lu’s.

It is important to emphasize that these results are implementation-dependent. Several
optimization techniques can be applied, providing faster computational times. However,
our implementation shows the efficient method to be around 50 times faster than Lu’s
method.

5.4 Discussion

This chapter introduces an event-based solution to the PnP problem. When computing
the optimal translation of the object, we adapt a preexisting closed-form solution to our
incremental approach. Rotation, however, cannot be solved in such a simple manner.

88

Previous solutions employed complicated techniques to compute the optimal rotation
for each frame, applying SVD to the solution of complex systems of equations. In our
work, the rotation is estimated by simulating the evolution of a virtual mechanical system
instead. This results in a simple yet robust algorithm, capable of accurately estimating
the pose of the tracked object with microsecond precision. As an additional advantage,
we consider our algorithm to be more intuitive and easier to implement than Lu’s one.
As a drawback, it requires the tuning of 3 parameters, while Lu’s method has only one.
However, we prove that there is a big range of values for which our method provides stable
and accurate results.

When applying the efficient method, the resulting equations are very simple. Nev-
ertheless, we prove that this approximation yields equivalent results to the full method
when dealing with real recordings of moving objects. For the chosen set of parameters,
when the object is composed of at least 4 points both the efficient method and the full
method produce errors in the same range of values: from 1.9% to 2.8% for the translation
(relative to the norm of the mean translation for the considered recording), and between
0.8% and 1.2% for the rotation (relative to the maximum possible distance between two
rotation matrices). These values, very similar to the ones produced by Lu’s algorithm,
are sufficiently low to conclude that our method can correctly estimate 3D pose at a lower
cost.

When the computational time of the different approaches is analyzed, we show that
the efficient method is faster than the full method, and much faster than Lu’s algorithm
[114], while being equally accurate. For our precise implementation, the efficient method
is around 5 times faster than the full method and 50 times faster than Lu’s algorithm.
Even if we are aware that these results are implementation-dependent, we consider the
difference to be significant enough to conclude that the efficient method is faster, and thus
recommend it as the standard choice. We claim that this gain in efficiency comes from
the fact that our method is specifically adapted to handle the output of neuromorphic
cameras.

As every PnP technique, our method requires matching 3D points with their 2D
projections on the focal plane. The matching accuracy has consequently a strong impact
on the overall performance of the system and the event-based PnP algorithm will benefit
from any advances in event-based tracking or marker detection.

89

Chapter 6

Conclusion and Future Perspectives

6.1 Conclusion

This PhD thesis introduces a series of novel techniques for visual detection and tracking,
specifically designed to operate on the asynchronous output of neuromorphic event-based
cameras. Its main contribution is the development of purely event-based algorithms, which
have been applied to a number of different tasks. Chapter 2 introduces a 2D tracking
technique that allows the tracking of complex objects, while a line and segment detection
algorithm is presented in Chapter 3. The 3D pose estimation algorithm introduced in
Chapter 4 and the solution to the PnP problem presented in Chapter 5 are the first
purely event-based algorithms available in the field.

All the techniques presented in this thesis are truly event-driven, as the position (2D
or 3D) of the tracked object is updated with every incoming event. Due to the techniques’
event-based processing fully exploiting the neuromorphic cameras’ quasi-continuous acqui-
sition of visual information, the proposed methods are particularly suitable for high-speed
applications. As a canonical example, in Chapter 4 the pose of an object is accurately
estimated, though the object is spinning at angular speeds of up to 26.4 revolutions per
second. To achieve equivalent accuracy with a frame-based camera, high frame rates
would be required, and consequently the number of frames to process would increase.
Compared to conventional frame-based acquisition, the results presented in this thesis
show that neuromorphic event-driven high temporal resolution cameras allow the track-
ing problem to be tackled by introducing true dynamics into the system.

All the presented methods have been implemented in C++ and run on a standard
computer. The computational requirements of each method are studied at the end of the
corresponding experimental section, showing that the computational time grows linearly
with the event rate (i.e. the time it takes to process one event remains, on average, approx-
imately constant). This allows to extrapolate and compute the maximum event rate that
can be processed in real time by the algorithms. Of course, computational requirements
measured in this way are dependent on the precise implementation of the algorithm, as
well as the computational power of the considered machine. However, I consider that
this measure provides a good idea of the computational load of a given algorithm, and
it is particularly useful for means of comparison. The current implementation of the
introduced algorithms is thus proven to be capable of processing event streams in real
time using a conventional computer, up to some event rate. This maximum event rate is
different for each of the studied methods, but its value is, in all cases, high (relative to
the typical event rates produced by the ATIS camera). These characteristics make these

90

algorithms suitable for real-time applications.
According to the results provided in this thesis, I think it is fair to claim that neu-

romorphic event-based computer vision makes it possible to reformulate a broad set of
computer vision tasks. The high temporal resolution of events usually allows to apply
simplifying assumptions, which result in simpler algorithms requiring a smaller number
of operations per event, without degrading the obtained results. Very often, one does not
need to find an optimal solution to the problem for each incoming event. Instead, it is
enough to take a small step in the right direction. Consider, for example, the solution to
the PnP problem presented in Chapter 5: the optimal rotation is not guaranteed for each
event. However, we know that the system is evolving towards the minimum of the error
function. Since events are numerous in the parts of the scene containing rich dynamics
(where the “important things” are happening), this approach quickly leads to an accurate
estimate of the pose. Compared to frame-based methods, I believe this approach to be
conceptually simpler: instead of redundantly processing all pixels, as it is usually done in
the frame based approach, the event-based philosophy is to minimize the computational
resources applied to each event. I thus consider that neuromorphic vision often results in
simpler and more intuitive solutions to computer vision problems.

Taking into account the achieved performances of the techniques developed in this
thesis, I consider the contribution of my work to be somehow significant to the field of
event-based computer vision.

6.2 Future Perspectives

One of the main motivations for this work has been its application to visual servoing.
The techniques presented in this thesis constitute some of the founding blocks for this
challenging undertaking. However, the complete realization of the task remains unfulfilled
and it is the most natural continuation for this research. The final goal would be to build
a complete event-based perception-action loop, fast and efficient enough to match the
performance of biological sensory-motor systems. This implies a number of challenges
that should be tackled. In the first place, most control techniques (from the basic PID
controller to the most advanced algorithms) are designed to operate on periodic sampling.
Event-based control is an emerging and challenging field, that should be explored in order
to completely exploit the potential of event-based cameras when applied to visual servoing
tasks.

Additionally, if the camera is mounted on a robot (which is usually known as the eye-
in-hand configuration in the visual servoing literature), its motion tends to generate an
important number of events, due to the relative motion of the visual scene with respect to
the neuromorphic camera. As shown in Chapter 4, the tracking problem can still be solved
by applying more refined matching criteria. However, this usually implies an increase in
computational requirements. Thus, the movement of the camera typically results in an
increased event rate and a greater computational load per event. Consequently, one needs
to be especially careful if real-time performance needs to be guaranteed (which is always
the case for visual servoing tasks).

Another challenge (common to most tracking algorithms) is the problem of initializa-
tion. If an algorithm requires a manual initialization step, its application to real-time
tasks is hampered. The part-based shape tracker described in Chapter 2 and the 3D pose
estimation algorithm from Chapter 4 both suffer from this drawback. The solution to the
PnP problem presented in Chapter 5 was in part motivated by this problem, and it offers

91

a partial solution, as the 3D pose of the tracked object does not need to be manually
initialized. Nevertheless, this issue has not been solved for our part-based shape tracker.
Further research is required for more specialized event-based object (or marker) detectors
capable of automatic initialization.

Finally, the four techniques developed in this thesis share a common philosophy, as
well as a number of tools. Future research also includes the application of this same
approach to other computer vision problems. Particularly, the problem of visual SLAM
(Simultaneous Localization and Mapping) has not yet been solved in a purely event-driven
fashion, and it is currently the subject of research for numerous scientists. This problem
is related to the 3D Pose Estimation problem explored in Chapters 4 and 5, and it thus
constitutes a natural extension to this work.

Moreover, some of these techniques can be easily adapted to operate on the output of
other event-based sensors. Although I have only worked with the visual events produced
by an event-based vision sensor, the underlying philosophy and some of the introduced
tools can be applied to generic event-based signals produced by any event-based sensing
device. Consider, for example, the event-based line detection algorithm presented in
Chapter 3: this method can be used for event-based signal smoothing with very little
modifications, locally approximating some generic event-based signal by line segments.
This approach is currently being explored, along with the extension of the method to
higher order polynomials (preliminary tests show promising results for visual tracking
and velocity estimation).

I thus consider that this thesis takes some small first steps in the direction of es-
tablishing some fundamental low level processing tools for event-based signals, that can
be further developed and explored. In my opinion, this is one of the most enticing and
fascinating lines of research as a continuation to this work: abstracting the common char-
acteristics to the different event streams produced by neuromorphic event-based sensors,
and exploring these tools with the aim of advancing in the field of event-based signal
processing.

92

Bibliography

[1] G. Indiveri and T. K. Horiuchi, “Frontiers in neuromorphic engineering,” Frontiers
in Neuroscience, vol. 5, p. 118, 2011.

[2] C. Mead, “Neuromorphic electronic systems,” Proceedings of the IEEE, vol. 78,
no. 10, pp. 1629–1636, 1990.

[3] ——, “Analog VLSI and neural systems,” Reading: Addison-Wesley, 1989, vol. 1,
1989.

[4] R. P. Feynman, J. Hey, and R. W. Allen, Feynman lectures on computation.
Addison-Wesley Longman Publishing Co., Inc., 1998.

[5] B. Sengupta and M. B. Stemmler, “Power consumption during neuronal computa-
tion,” Proceedings of the IEEE, vol. 102, no. 5, pp. 738–750, 2014.

[6] C. Bartolozzi, R. Benosman, K. Boahen, G. Cauwenberghs, T. Delbrück,
G. Indiveri, S.-C. Liu, S. Furber, N. Imam, B. Linares-Barranco, T. Serrano-
Gotarredona, K. Meier, C. Posch, and M. Valle, Neuromorphic Systems.
Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. [Online]. Available:
http://dx.doi.org/10.1002/047134608X.W8328

[7] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The SpiNNaker project,”
Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, 2014.

[8] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan,
B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A million spiking-neuron
integrated circuit with a scalable communication network and interface,” Science,
vol. 345, no. 6197, pp. 668–673, 2014.

[9] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J.-M.
Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neuro-
grid: A mixed-analog-digital multichip system for large-scale neural simulations,”
Proceedings of the IEEE, vol. 102, no. 5, pp. 699–716, 2014.

[10] J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner, “A wafer-
scale neuromorphic hardware system for large-scale neural modeling,” in Proceedings
of 2010 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE,
2010, pp. 1947–1950.

[11] S. Scholze, H. Eisenreich, S. Höppner, G. Ellguth, S. Henker, M. Ander, S. Hänzsche,
J. Partzsch, C. Mayr, and R. Schüffny, “A 32GBit/s communication SoC for a
waferscale neuromorphic system,” INTEGRATION, the VLSI journal, vol. 45, no. 1,
pp. 61–75, 2012.

93

http://dx.doi.org/10.1002/047134608X.W8328

[12] S. Furber, “Large-scale neuromorphic computing systems,” Journal of Neural En-
gineering, vol. 13, no. 5, p. 051001, 2016.

[13] S. Caviglia, M. Valle, and C. Bartolozzi, “Asynchronous, event-driven readout of
POSFET devices for tactile sensing,” in Proceedings of 2014 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 2014, pp. 2648–2651.

[14] W. W. Lee, S. L. Kukreja, and N. V. Thakor, “A kilohertz kilotaxel tactile sensor
array for investigating spatiotemporal features in neuromorphic touch,” in 2015
IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2015, pp.
1–4.

[15] T. J. Koickal, A. Hamilton, S. L. Tan, J. A. Covington, J. W. Gardner, and T. C.
Pearce, “Analog VLSI circuit implementation of an adaptive neuromorphic olfaction
chip,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 1,
pp. 60–73, 2007.

[16] M. Mahowald and R. Douglas, “A silicon neuron,” Nature, vol. 354, no. 6354, p.
515, 1991.

[17] M. Mahowald, “VLSI analogs of neuronal visual processing: a synthesis of form and
function,” Ph.D. dissertation, California Institute of Technology, 1992.

[18] E. Culurciello, R. Etienne-Cummings, and K. A. Boahen, “A biomorphic digital
image sensor,” IEEE Journal of Solid-State Circuits, vol. 38, no. 2, pp. 281–294,
2003.

[19] P. Lichtsteiner, C. Posch, and T. Delbrück, “A 128×128 120 dB 15 µs latency asyn-
chronous temporal contrast vision sensor,” IEEE Journal of Solid-State Circuits,
vol. 43, no. 2, pp. 566–576, 2008.

[20] C. Posch, D. Matolin, and R. Wohlgenannt, “An asynchronous time-based image
sensor,” in 2008 IEEE International Symposium on Circuits and Systems (ISCAS).
IEEE, 2008, pp. 2130–2133.

[21] ——, “A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless
pixel-level video compression and time-domain CDS,” IEEE Journal of Solid-State
Circuits, vol. 46, no. 1, pp. 259–275, 2011.

[22] R. F. Lyon and C. Mead, “An analog electronic cochlea,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 36, no. 7, pp. 1119–1134, 1988.

[23] E. Fragnière, “A 100-channel analog CMOS auditory filter bank for speech recogni-
tion,” in ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State
Circuits Conference. IEEE, 2005, pp. 140–589.

[24] V. Chan, S.-C. Liu, and A. van Schaik, “AER EAR: A matched silicon cochlea pair
with address event representation interface,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 54, no. 1, pp. 48–59, 2007.

[25] T. Delbrück, “Silicon retina with correlation-based, velocity-tuned pixels,” IEEE
Transactions on Neural Networks, vol. 4, no. 3, pp. 529–541, 1993.

94

[26] R. Etienne-Cummings, J. Van der Spiegel, and P. Mueller, “A focal plane visual
motion measurement sensor,” IEEE Transactions on Circuits and Systems I: Fun-
damental Theory and Applications, vol. 44, no. 1, pp. 55–66, 1997.

[27] J. Krammer and C. Koch, “Pulse-based analog VLSI velocity sensors,” IEEE Trans-
actions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 44,
no. 2, pp. 86–101, 1997.

[28] K. A. Boahen, “Point-to-point connectivity between neuromorphic chips using ad-
dress events,” IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, vol. 47, no. 5, pp. 416–434, 2000.

[29] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, and T. Delbrück,
“Retinomorphic event-based vision sensors: bioinspired cameras with spiking out-
put,” Proceedings of the IEEE, vol. 102, no. 10, pp. 1470–1484, 2014.

[30] R. Benosman, S.-H. Ieng, P. Rogister, and C. Posch, “Asynchronous event-based
hebbian epipolar geometry,” IEEE Transactions on Neural Networks, vol. 22, no. 11,
pp. 1723–1734, 2011.

[31] R. Benosman, S.-H. Ieng, C. Clercq, C. Bartolozzi, and M. Srinivasan, “Asyn-
chronous frameless event-based optical flow,” Neural Networks, vol. 27, pp. 32–37,
2012.

[32] R. Benosman, C. Clercq, X. Lagorce, S.-H. Ieng, and C. Bartolozzi, “Event-based
visual flow,” IEEE Transactions on Neural Networks and Learning Systems, vol. 25,
no. 2, pp. 407–417, 2014.

[33] S. Agarwal, A. Awan, and D. Roth, “Learning to detect objects in images via
a sparse, part-based representation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 26, no. 11, pp. 1475–1490, 2004.

[34] M. A. Fischler and R. A. Elschlager, “The representation and matching of pictorial
structures,” IEEE Transactions. on Computers, vol. 100, pp. 67–92, Jan. 1973.

[35] Y. Lu and D. Song, “Robust RGB-D odometry using point and line features,” in
Proceedings of the IEEE International Conference on Computer Vision, 2015, pp.
3934–3942.

[36] G. Schindler, P. Krishnamurthy, and F. Dellaert, “Line-based structure from motion
for urban environments,” in Third International Symposium on 3D Data Processing,
Visualization, and Transmission. IEEE, 2006, pp. 846–853.

[37] T. Lemaire and S. Lacroix, “Monocular-vision based SLAM using line segments,” in
Proceedings of 2007 IEEE International Conference on Robotics and Automation.
IEEE, 2007, pp. 2791–2796.

[38] F. Chaumette and S. Hutchinson, “Visual servo control. I. basic approaches [tuto-
rial],” IEEE Robotics & Automation Magazine, vol. 13, no. 4, pp. 82–90, 2006.

[39] ——, “Visual servo control. II. advanced approaches [tutorial],” IEEE Robotics &
Automation Magazine, vol. 14, no. 1, pp. 109–118, 2007.

95

[40] V. Lepetit and P. Fua, “Monocular model-based 3D tracking of rigid objects: A
survey,” Foundations and Trends in Computer Graphics and Vision, vol. 1, no. 1,
pp. 1–89, 2005.

[41] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography,” Communi-
cations of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[42] M. Litzenberger, B. Kohn, A. Belbachir, N. Donath, G. Gritsch, H. Garn, C. Posch,
and S. Schraml, “Estimation of vehicle speed based on asynchronous data from
a silicon retina optical sensor,” in 2006 IEEE Intelligent Transportation Systems
Conference (ITSC). IEEE, 2006, pp. 653–658.

[43] M. Litzenberger, C. Posch, D. Bauer, A. Belbachir, P. Schon, B. Kohn, and H. Garn,
“Embedded vision system for real-time object tracking using an asynchronous tran-
sient vision sensor,” in 2006 IEEE 12th Digital Signal Processing Workshop 4th
IEEE Signal Processing Education Workshop. IEEE, 2006, pp. 173–178.

[44] G. L. Foresti, “Object recognition and tracking for remote video surveillance,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 9, no. 7, pp. 1045–
1062, 1999.

[45] I. Cohen and G. Medioni, “Detecting and tracking moving objects for video surveil-
lance,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’99), Ft. Collins, CO, USA, Jun. 1999, p. 325.

[46] R. J. Jacob and K. S. Karn, “Eye tracking in human-computer interaction and
usability research: Ready to deliver the promises,” Mind, vol. 2, no. 3, p. 4, 2003.

[47] U. Neumann and S. You, “Natural feature tracking for augmented reality,” IEEE
Transactions on Multimedia, vol. 1, pp. 53–64, Mar. 1999.

[48] B. Coifman, D. Beymer, P. McLauchlan, and J. Malik, “A real-time computer vision
system for vehicle tracking and traffic surveillance,” Transportation Research Part
C: Emerging Technologies, vol. 6, no. 4, pp. 271–288, 1998.

[49] M.-H. Yang, D. J. Kriegman, and N. Ahuja, “Detecting faces in images: A survey,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, pp. 34–
58, Jan. 2002.

[50] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple
features,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’01), Kauai, HI, USA, Dec. 2001, pp. 511–518.

[51] R. Lienhart and J. Maydt, “An extended set of Haar-like features for rapid object
detection,” in Proceedings of the IEEE International Conference on Image Process-
ing, Rochester, NY, USA, Sep. 2002, pp. 900–903.

[52] P. Viola and M. Jones, “Robust real-time face detection,” International Journal of
Computer Vision, vol. 57, no. 2, pp. 137–154, 2004.

96

[53] B. Wu, H. Ai, C. Huang, and S. Lao, “Fast rotation invariant multi-view face detec-
tion based on real Adaboost,” in Proceedings of the IEEE International Conference
on Automatic Face and Gesture Recognition, Seoul, Korea, May 2004, pp. 79–84.

[54] T. Mita, T. Kaneko, and O. Hori, “Joint Haar-like features for face detection,”
in Proceedings of the Tenth IEEE International Conference on Computer Vision
(ICCV’05), vol. 2. IEEE, 2005, pp. 1619–1626.

[55] M. Jones and P. Viola, “Fast multi-view face detection,” Mitsubishi Electric Re-
search Lab, Cambridge, MA, USA, Tech. Rep. TR-20003-96, 2003.

[56] B. Froba and A. Ernst, “Face detection with the modified census transform,” in
Proceedings of the IEEE International Conference on Automatic Face and Gesture
Recognition., Seoul, Korea, May 2004, pp. 91–96.

[57] P. Menezes, J. Barreto, and J. Dias, “Face tracking based on Haar-like features
and eigenfaces,” in Proceedings of the IFAC/EURON Symposium on Intelligent Au-
tonomous Vehicles, Lisbon, Portugal, Jul. 2004.

[58] S. Zafeiriou, C. Zhang, and Z. Zhang, “A survey on face detection in the wild: past,
present and future,” Computer Vision and Image Understanding, vol. 138, pp. 1–24,
2015.

[59] X. Lagorce, G. Orchard, F. Gallupi, B. E. Shi, and R. Benosman, “HOTS: A Hi-
erarchy Of event-based Time-Surfaces for pattern recognition,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2016.

[60] M. C. Burl, M. Weber, and P. Perona, “A probabilistic approach to object recog-
nition using local photometry and global geometry,” in European Conference on
Computer Vision, Freiburg, Germany, 1998, pp. 628–641.

[61] R. Fergus, P. Perona, and A. Zisserman, “Object class recognition by unsupervised
scale-invariant learning,” in Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR’03), Madison, WI, USA, Jun. 2003, pp. 264–
271.

[62] P. F. Felzenszwalb and D. P. Huttenlocher, “Pictorial structures for object recogni-
tion,” International Journal of Computer Vision, vol. 61, no. 1, pp. 55–79, 2005.

[63] M. Andriluka, S. Roth, and B. Schiele, “Pictorial structures revisited: People de-
tection and articulated pose estimation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR’09), Miami, FL, USA, Jun.
2009, pp. 1014–1021.

[64] Z. Ni, C. Pacoret, R. Benosman, S. Ieng et al., “Asynchronous event-based high
speed vision for microparticle tracking,” Journal of Microscopy, vol. 245, no. 3, pp.
236–244, 2012.

[65] D. Drazen, P. Lichtsteiner, P. Häfliger, T. Delbrück, and A. Jensen, “Toward real-
time particle tracking using an event-based dynamic vision sensor,” Experiments in
Fluids, vol. 51, no. 5, p. 1465, 2011.

97

[66] Z. Ni, A. Bolopion, J. Agnus, R. Benosman, and S. Régnier, “Asynchronous event-
based visual shape tracking for stable haptic feedback in microrobotics,” IEEE
Transactions on Robotics, vol. 28, no. 5, pp. 1081–1089, 2012.

[67] X. Lagorce, C. Meyer, S.-H. Ieng, D. Filliat, and R. Benosman, “Asynchronous
event-based multikernel algorithm for high-speed visual features tracking,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 26, no. 8, pp. 1710–
1720, 2015.

[68] W. Mendenhall, R. J. Beaver, and B. M. Beaver, Introduction to probability and
statistics. Cengage Learning, 2012.

[69] J. Taylor, Classical Mechanics. Sausalito, CA, USA: University Science Books,
2005.

[70] V. I. Arnold, Mathematical methods of classical mechanics. Berlin, Germany:
Springer Science & Business Media, 1989, vol. 60.

[71] C. S. Chane, S.-H. Ieng, C. Posch, and R. B. Benosman, “Event-based tone mapping
for asynchronous time-based image sensor,” Frontiers in Neuroscience, vol. 10, 2016.

[72] L. Zhang and R. Koch, “Structure and motion from line correspondences: represen-
tation, projection, initialization and sparse bundle adjustment,” Journal of Visual
Communication and Image Representation, vol. 25, no. 5, pp. 904–915, 2014.

[73] W. Y. Jeong and K. M. Lee, “Visual SLAM with line and corner features,” in 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,
2006, pp. 2570–2575.

[74] J. Lv, Y. Kobayashi, A. A. Ravankar, and T. Emaru, “Straight line segments extrac-
tion and EKF-SLAM in indoor environment,” Journal of Automation and Control
Engineering, vol. 2, no. 3, 2014.

[75] J. Illingworth and J. Kittler, “A survey of the Hough transform,” Computer vision,
graphics, and image processing, vol. 44, no. 1, pp. 87–116, 1988.

[76] D. H. Ballard, “Generalizing the Hough transform to detect arbitrary shapes,” Pat-
tern recognition, vol. 13, no. 2, pp. 111–122, 1981.

[77] P. Mukhopadhyay and B. B. Chaudhuri, “A survey of Hough transform,” Pattern
Recognition, vol. 48, no. 3, pp. 993–1010, 2015.

[78] J. B. Burns, A. R. Hanson, and E. M. Riseman, “Extracting straight lines,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, no. 4, pp. 425–455,
1986.

[79] A.-R. Mansouri, A. S. Malowany, and M. D. Levine, “Line detection in digital pic-
tures: A hypothesis prediction/verification paradigm,” Computer Vision, Graphics,
and Image Processing, vol. 40, no. 1, pp. 95–114, 1987.

[80] v. G. R. Grompone, J. Jakubowicz, J.-M. Morel, and G. Randall, “LSD: a fast line
segment detector with a false detection control.” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 4, pp. 722–732, 2010.

98

[81] X. Clady, S.-H. Ieng, and R. Benosman, “Asynchronous event-based corner detec-
tion and matching,” Neural Networks, vol. 66, pp. 91–106, 2015.

[82] V. Vasco, A. Glover, and C. Bartolozzi, “Fast event-based Harris corner detection
exploiting the advantages of event-driven cameras,” in 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE, 2016, pp.
4144–4149.

[83] X. Clady, J.-M. Maro, S. Barré, and R. B. Benosman, “A motion-based feature for
event-based pattern recognition,” Frontiers in Neuroscience, vol. 10, p. 594, 2016.

[84] S. Seifozzakerini, W.-Y. Yau, B. Zhao, and K. Mao, “Event-based Hough transform
in a spiking neural network for multiple line detection and tracking using a dy-
namic vision sensor,” in Proceedings of the 2016 British Machine Vision Conference
(BMVC), 2016.

[85] C. Brändli, J. Strubel, S. Keller, D. Scaramuzza, and T. Delbruck, “ELiSeD—An
event-based line segment detector,” in IEEE Second International Conference on
Event-based Control, Communication, and Signal Processing (EBCCSP). IEEE,
2016, pp. 1–7.

[86] D. R. Valeiras, S. Kime, S.-H. Ieng, and R. B. Benosman, “An event-based solution
to the perspective-n-point problem,” Frontiers in neuroscience, vol. 10, 2016.

[87] E. H. Adelson and J. A. Movshon, “Phenomenal coherence of moving visual pat-
terns,” Nature, vol. 300, no. 5892, pp. 523–525, 1982.

[88] Å. Björck, Numerical methods in matrix computations. Berlin, Germany: Springer,
2015.

[89] S. Chatterjee and A. S. Hadi, Regression analysis by example. John Wiley & Sons,
2015.

[90] R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and
curves in pictures,” Communications of the ACM, vol. 15, no. 1, pp. 11–15, 1972.

[91] R. Larson and B. H. Edwards, Calculus of a single variable. Cengage Learning,
2013.

[92] R. Brunelli, Template matching techniques in computer vision: theory and practice.
Hoboken, NJ, USA: John Wiley & Sons, 2009.

[93] G. D. Evangelidis and E. Z. Psarakis, “Parametric image alignment using enhanced
correlation coefficient maximization,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 30, no. 10, pp. 1858–1865, 2008.

[94] N. Snavely, S. M. Seitz, and R. Szeliski, “Modeling the world from internet photo
collections,” International Journal of Computer Vision, vol. 80, no. 2, pp. 189–210,
2008.

[95] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M. Seitz, and
R. Szeliski, “Building Rome in a day,” Communications of the ACM, vol. 54, no. 10,
pp. 105–112, 2011.

99

[96] T. Drummond and R. Cipolla, “Real-time visual tracking of complex structures,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, pp. 932–
946, Jul. 2002.

[97] D. Van Krevelen and R. Poelman, “A survey of augmented reality technologies,
applications and limitations,” International Journal of Virtual Reality, vol. 9, no. 2,
p. 1, 2010.

[98] F. Janabi-Sharifi, “Visual servoing: theory and applications,” Opto-Mechatronic
Systems Handbook, pp. 15–1–15–24, 2002.

[99] F. Janabi-Sharifi and M. Marey, “A kalman-filter-based method for pose estimation
in visual servoing,” IEEE Transactions on Robotics, vol. 26, pp. 939–947, Oct. 2010.

[100] Y. Abbel-Aziz, “Direct linear transformation from comparator coordinates in close-
range photogrammetry,” in Proceedings of the American Society of Photogrammetry
Symposium on Close-range Photogrammetry. American Society of Photogramme-
try, 1971.

[101] D. F. Dementhon and L. S. Davis, “Model-based object pose in 25 lines of code,”
International Journal of Computer Vision, vol. 15, no. 1, pp. 123–141, 1995.

[102] H. Kato and M. Billinghurst, “Marker tracking and hmd calibration for a video-
based augmented reality conferencing system,” in Proceedings of the 2nd IEEE and
ACM International Workshop on Augmented Reality (IWAR’99). IEEE, 1999, pp.
85–94.

[103] F. Moreno-Noguer, V. Lepetit, and P. Fua, “Accurate non-iterative o (n) solution
to the pnp problem,” in IEEE 11th International Conference on Computer Vision.
IEEE, 2007, pp. 1–8.

[104] D. Oberkampf, D. F. DeMenthon, and L. S. Davis, “Iterative pose estimation using
coplanar feature points,” Computer Vision and Image Understanding, vol. 63, no. 3,
pp. 495–511, 1996.

[105] MIP, CAU Kiel, Germany, “BIAS: Basic Image AlgorithmS Library,”
http://www.mip.informatik.uni-kiel.de/BIAS, 2008.

[106] E. K. P. Chong and S. H. Zak, An Introduction to Optimization. John Wiley and
Sons, 2001.

[107] C. Harris, “Tracking with rigid models,” in Active vision. MIT Press, 1993, pp.
59–73.

[108] H. Kollnig and H.-H. Nagel, “3D pose estimation by directly matching polyhedral
models to gray value gradients,” International Journal of Computer Vision, vol. 23,
no. 3, pp. 283–302, 1997.

[109] V. Lepetit, F. Moreno-Noguer, and P. Fua, “EPnP: An accurate O(n) solution to
the PnP problem,” International Journal of Computer Vision, vol. 81, no. 2, pp.
155–166, 2009.

100

[110] Z. Ni, S.-H. Ieng, C. Posch, S. Régnier, and R. Benosman, “Visual tracking using
neuromorphic asynchronous event-based cameras,” Neural Computation, 2015.

[111] H. S. M. Coxeter, Introduction to geometry. New York, London, 1961.

[112] R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cam-
bridge University press, 2003.

[113] R. M. Murray, Z. Li, and S. S. Sastry, A mathematical introduction to robotic ma-
nipulation. CRC press, 1994.

[114] C.-P. Lu, G. Hager, and E. Mjolsness, “Fast and globally convergent pose esti-
mation from video images,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, pp. 610–622, Jun. 2000.

[115] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Lévy, Polygon mesh processing.
CRC press, 2010.

[116] J. O’Rourke, Computational geometry in C. Cambridge university press, 1998.

[117] G. Orchard, J. G. Martin, R. J. Vogelstein, and R. Etienne-Cummings, “Fast neu-
romimetic object recognition using fpga outperforms gpu implementations,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 24, no. 8, pp. 1239–
1252, 2013.

[118] G. Glaeser, “Hidden-line removal,” in Fast Algorithms for 3D-Graphics. Springer,
1994, pp. 185–200.

[119] D. Q. Huynh, “Metrics for 3D rotations: Comparison and analysis,” Journal of
Mathematical Imaging and Vision, vol. 35, no. 2, pp. 155–164, 2009.

[120] K. Shoemake, “Animating rotation with quaternion curves,” in ACM SIGGRAPH
computer graphics, vol. 19, no. 3. ACM, 1985, pp. 245–254.

[121] V. Lepetit and P. Fua, “Keypoint recognition using randomized trees,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 28, no. 9, pp. 1465–1479,
2006.

[122] M. M. Campos and L. de Souza Coelho, “Autonomous dirigible navigation using
visual tracking and pose estimation,” in Proceedings of the 1999 IEEE International
Conference on Robotics and Automation, vol. 4. IEEE, 1999, pp. 2584–2589.

[123] I. Skrypnyk and D. G. Lowe, “Scene modelling, recognition and tracking with invari-
ant image features,” in Third IEEE and ACM International Symposium on Mixed
and Augmented Reality (ISMAR’04). IEEE, 2004, pp. 110–119.

[124] B. M. Haralick, C.-N. Lee, K. Ottenberg, and M. Nölle, “Review and analysis of
solutions of the three point perspective pose estimation problem,” International
Journal of Computer Vision, vol. 13, no. 3, pp. 331–356, 1994.

[125] G. Schweighofer and A. Pinz, “Robust pose estimation from a planar target,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 12, pp.
2024–2030, 2006.

101

[126] M. Hazewinkel, Encyclopaedia of Mathematics: Volume 6, ser. Encyclopaedia of
Mathematics. Springer Netherlands, 2013.

102

Appendices

103

Appendix A

Event-based Weighted Mean

Let z denote some generic variable, whose value is accessible in an asynchronous event-
based fashion. Thus, we denote zk the value of z at time tk. Let us clarify that the variable
zk can represent a number of different quantities: for example, we could be considering
the mean position of some cluster, and zk would represent the x or y position of the events
assigned to this cluster [67]. In a more complex example, zk could denote the value of
some error function which we intend to minimize, computed for every incoming event [86].

Typically, one event carries little information, and we usually want to integrate the
information from some events in the recent past. Then, if we are measuring some event-
based variable zk, the most common method is to consider its weighted mean zk over the
past events, computed as:

zk =
1

Ωk

k∑
j=0

ωk,jzk−j, (A.1)

where zk−j is the value of the variable measured j steps before the current one, with
j = 0, 1, ..., k. The weight of the corresponding value is then denoted ωk,j, verifying:

ωk,j ≥ 0, ∀j = 0, 1, ..., k, (A.2)

Ωk =
k∑
j=0

ωk,j. (A.3)

We will next discuss the weighting strategy most commonly applied in this thesis, that
we denote the standard weighting strategy.

A.1 Standard Weighting Strategy

Let us define the following set of weights, that we denote the standard weighting strategy :

ωk,j = ωj = ω0(1− ω0)j, (A.4)

which is a geometric progression [126] with (1 − ω0) the common ratio and ω0 the scale
factor. Imposing ω0 < 1, we obtain a set of weights that decay with j (i.e. with the
number of events into the past), verifying:

lim
j→∞

ωk,j = 0 (A.5)

lim
k→∞

k∑
j=0

ωk,j = lim
k→∞

Ωk = 1. (A.6)

104

As an example, let us display in Fig. A.1 the set of weights obtained with ω0 = 0.1. As
we can see, they asymptotically decay towards 0 as j grows (let us note that this strategy
does not take into account the time elapsed between events in order to assign them some
weight).

0 5 10 15 20 25 30 35 40 45 50

j

0

0.05

0.1

ω
j

Figure A.1: Evolution of the standard set of weights with j (i.e. the number of events
into the past) for ω0 = 0.1. We obtain a set of weights that asymptotically decay towards
0.

Next, if we introduce this set of weights into (A.1), zk becomes:

zk =
1

Ωk

(
ω0zk +

k∑
j=1

ωjzk−j

)
=

1

Ωk

(
ω0zk +

k−1∑
j=0

ωj+1zk−j+1

)
. (A.7)

Let us also take into account that this weighting strategy verifies:

ωj+1 = ω0(1− ω0)j+1 = (1− ω0)ωj, (A.8)

which, introduced into (A.7) yields:

zk =
1

Ωk

(
ω0zk + (1− ω0)

k−1∑
j=0

ωjz(k−1)−j

)
=

1

Ωk

(
ω0zk + (1− ω0)zk−1

)
. (A.9)

The value of Ωk can be exactly computed as the sum of the first k + 1 terms of a
geometric series, yielding Ωk = 1 − (1 − ω0)k+1. However, the most common solution is
to take into account (A.6) and assume Ωk ≈ 1. This is usually a reasonable hypothesis,
due to the great number of events that are typically available. This yields the following
iterative expression for zk:

zk = ω0zk + (1− ω0)zk−1, (A.10)

which is the standard expression for computing the event-based weighted mean of some
event-based variable zk.

Remark: let us note that this expression is also valid if zk represents a matrix variable,
because of the properties of the scalar multiplication of matrices. Taking into account the
compatibility of the product of scalars with scalar multiplication, the same development
can be carried out to obtain A.10.

105

Appendix B

Solution to the damped harmonic
oscillator equation

Equation (2.12) is a very typical equation in classical mechanics, known as the differential
equation of a damped harmonic oscillator. It is a second-order differential equation, and
it is usually rewritten as:

d2∆l

dt2
+ 2ζw0

d∆l

dt
+ w2

0 = 0, (B.1)

where w0 is the undamped angular frequency of the oscillator and ζ is a constant parameter
known as the damping ratio of the system, given by:

ζ =
B

2
√
mC

. (B.2)

The damping ratio ζ is a dimensionless quantity that will determine the behavior of
the system. According to its value, the system can be:

• Overdamped (ζ > 1): the system returns to the equilibrium state without oscillat-
ing.

• Critically damped (ζ = 1): the system returns to the equilibrium state as quickly
as possible without oscillating.

• Underdamped (ζ < 1): the system oscillates.

As we do not wish our system to oscillate, we can impose it to be always overdamped.
In that case, the solution to (B.1) is given by:

∆l(t) = A(1) exp (λ(1)t) + A(2) exp (λ(2)t), (B.3)

where A(1) and A(2) depend on the initial state of the system, while λ(1), λ(2) are real
negative coefficients given by:

λ(1) =
−B −

√
B2 − 4Cm

2m
,

λ(2) =
−B +

√
B2 − 4Cm

2m
.

(B.4)

106

The elongation of the system is then given by the addition of two declining exponential
functions with different time constants 1

λ(1)
and 1

λ(2)
. The first of them is much smaller

and corresponds to the rapid cancellation of the effect of the initial speed. The second
one is bigger and describes the slow decay towards the equilibrium position.

0 5 10 15 20 25
−5

0

5

10

15

Figure B.1: Different dynamics of the two declining exponential functions for a har-
monic oscillator with C = 10 N/cm, m = 20 kg, B = 42 Ns/cm, and initial conditions
∆l(t = 0) = 10 cm and d∆l

dt
|t=0 = 2 cm/s.

Fig. B.1 shows the different dynamics of the two declining exponential functions for an
harmonic oscillator with some typical values: C = 10 N/cm, m = 20 kg, B = 42 Ns/cm,
and initial conditions ∆l(t = 0) = 10 cm and d∆l

dt
|t=0 = 2 cm/s. As we can see, the first

of them is much faster than the other one and it rapidly tends to zero. This allows us to
approximate the position ∆l(t) of the system just by the second exponential:

∆l(t) ≈ A(2) exp (λ(2)t), (B.5)

from where we can isolate t, that takes the value:

t =
1

λ(2)
log

(
∆l

A(2)

)
. (B.6)

Deriving (B.5) we obtain an approximation for the speed:

d(∆l)

dt

∣∣∣
t
≈ λ(2)A(2) exp (λ(2)t). (B.7)

Next, combining (B.7) and (B.6) we obtain the speed as a function of the position:

d(∆l)

dt
≈ λ(2)A(2) exp

(
λ(2) 1

λ(2)
log

(
∆l

A(2)

))
= λ(2)∆l. (B.8)

If we now assume the speed to be constant during a certain period of time ∆t, we can
approximate it by the expression:

d(∆l)

dt
≈ ∆(∆l)

∆t
≈ λ(2)∆l, (B.9)

where ∆(∆l) is the displacement experienced by the system during the time interval ∆t.
Isolating the displacement ∆(∆l) in (B.10) we obtain its approximate value, given by:

∆(∆l) ≈ λ(2)∆t∆l =
−B +

√
B2 − 4Cm

2m
∆t∆l =

α

m
∆l, (B.10)

107

where

α =
−B +

√
B2 − 4Cm

2
∆t (B.11)

would be the stiffness parameter of our spring-like connections.
As we can see in (B.11), α actually depends on the mass of the object for which we

are solving the differential equation, and not only on the characteristics of the harmonic
oscillator. According to this, if we were simulating a real mechanical system we could not
assign a value of α to each connection, independently of the value of the masses. However,
for simplicity, this is what we do in our method (see (2.15), (2.19) and (2.21)). Thus,
the stiffness α and the masses of the trackers become nothing but a dimensionless scaling
factor.

108

Appendix C

Mathematical development yielding
the optimal ρ, θ

Let us remind the reader that the error we are trying to minimize is given by (3.9):

E
(i)
k (θ, ρ) =

1

Ωk

k∑
j=0

ωk,j
(
xk−j cos(θ) + yk−j sin(θ)− ρ

)2
. (C.1)

Then, making ∂Ek

∂ρ
= 0 we obtain:

2

Ωk

k∑
j=0

ωk,j
(
xk−j cos(θ) + yk−j sin(θ)− ρ

)
(−1) = 0, (C.2)

which, after simplification, yields the necessary condition for ρ to produce a minimum (or
maximum) of the error function:

ρ = cos(θ)
k∑
j=0

ωk,jxk−j + sin(θ)
k∑
j=0

ωk,jyk−j = 0. (C.3)

Introducing the value of the auxiliary parameters in (C.3) we obtain (3.10):

ρ
(i)
k =

x̂
(i)
k cos(θ) + ŷ

(i)
k sin(θ)

Ωk

, (C.4)

From ∂Ek

∂θ
= 0 we obtain:

2

Ωk

k∑
j=0

ωk,j
(
xk−j cos(θ) + yk−j sin(θ)− ρ

)(
− xk−j sin(θ) + yk−j cos(θ)

)
= 0, (C.5)

Simplifying and developing this equation we obtain the following:

0 =
k∑
j=0

ωk,j

(
− x2

k−j cos(θ) sin(θ) + xk−jyk−j cos2(θ)

− xk−jyk−j sin2(θ)− y2
k−j sin(θ) cos(θ)

+ ρ(xk−j sin(θ)− yk−j cos(θ))
) (C.6)

109

Introducing (3.10) and the value of the auxiliary parameters into the previous equation,
and applying some trigonometry we get:

0 =
1

2
sin(2θ)(ŷy

(i)
k − x̂x

(i)
k) + cos(2θ)x̂y

(i)
k

+
x̂

(i)
k cos(θ) + ŷ

(i)
k sin(θ)

Ωk

(
x̂

(i)
k sin(θ)− ŷ(i)

k cos(θ)
)

=
1

2
sin(2θ)

(
ŷy

(i)
k − x̂x

(i)
k

)
+ cos(2θ)x̂y

(i)
k

+
1

Ωk

(
1

2

((
x̂

(i)
k

)2 −
(
ŷ

(i)
k

)2
)

sin(2θ)− x̂(i)
k ŷ

(i)
k cos(2θ)

)
.

(C.7)

And thus we obtain:

sin(2θ)
(

Ωk

(
ŷy

(i)
k − x̂x

(i)
k

)
+
(
x̂

(i)
k

)2 −
(
ŷ

(i)
k

)2
)

+ cos(2θ)
(

2Ωkx̂y
(i)
k − 2x̂

(i)
k ŷ

(i)
k

)
= 0 (C.8)

From which we directly obtain (3.11).

110

Appendix D

Optimization strategy for the
computation of the line parameters

Let us rewrite (3.11) dropping the superindices, in order to lighten the notation:

ak sin(2θk) + bk cos(2θk) = 0. (D.1)

Taking into account the fundamental trigonometric identity we obtain:

±ak
√

1− cos2(2θk) = −bk cos(2θk),

which yields:

a2
k

(
1− cos2(2θk)

)
= b2

k cos2(2θk) ⇒ cos2(2θk) =
a2
k

a2
k + b2

k

.

From this we get:
cos(2θk) = βk, (D.2)

with:

βk = ±

√
a2
k

a2
k + b2

k

. (D.3)

Next, we insert into (D.2) the following trigonometric identities: cos(2θ) = 2 cos2(θ)− 1,
and cos(2θ) = 1− 2 sin2(θ). We obtain:

cos(θk) =

√
βk + 1

2
, sin(θk) = ±

√
1− βk

2
. (D.4)

Where we only keep the positive sign for the cosinus, because θk ∈ [−π/2, π/2].

111

Appendix E

Iterative expression for the auxiliary
parameters

For a given line L(i), the auxiliary parameter x̂
(i)
k is given by the weighted sum of the x

coordinates of the events previously assigned to the line. When considering the speed-
tuned weighting strategy given by (3.15), this auxiliary parameter takes the value:

x̂
(i)
k =

k∑
j=0

ωk,jxk−j = ωk,0xk +
k∑
j=1

ωk,jxk−j

= xk +
k−1∑
j=0

ωk,j+1xk−(j+1)

= xk + e−‖vk‖∆tk
k−1∑
j=0

ωk−1,jx(k−1)−j

= xk + δkx̂
(i)
k−1,

(E.1)

where δk = e−‖vk‖∆tk . We can repeat the same development for the rest of the auxiliary
parameters, obtaining the iterative expressions given in (3.16).

Analogously, we obtain the following value for Ωk:

Ωk =
k∑
j=0

ωk,j = ωk,0 + e−‖vk‖∆tk
k−1∑
j=0

ωk−1,j = 1 + δkΩk−1, (E.2)

which is equivalent to the expression of the activity given in (3.6).

112

Appendix F

Disambiguation of cos(θ), sin(θ)

Let us define γ1, γ2:

γ1 =

√
1− |βk|

2
, γ2 =

√
1 + |βk|

2
, (F.1)

From (3.18) we obtain four possible combinations for cos θk, sin θk (where we drop the
superindex indicating the line in order to lighten the notation):{

if βk = +|βk| ⇒ sin(θk) = ±γ1, cos(θk) = γ2

if βk = −|βk| ⇒ cos(θk) = γ1, sin(θk) = ±γ2

(F.2)

Next, we need to disambiguate for the sign of the sinus. Here, we take into account
that tan 2θk = −bk

ak
. Then, as one can see in Fig. F.1, the following rule applies:

if
−bk
ak

> 0

{
if cos(θk) < cos(π/4) ⇒ sin(θk) < 0

if cos(θk) > cos(π/4) ⇒ sin(θk) > 0

if
−bk
ak

< 0

{
if cos(θk) < cos(π/4) ⇒ sin(θk) > 0

if cos(θk) > cos(π/4) ⇒ sin(θk) < 0

(F.3)

-π/2 -π/4 0 π/4 π/2

-3

-2

-1

0

1

2

3 tan(2θk)

cos(θk)

sin(θk)

Figure F.1: The sign of the sinus can be disambiguated from the value of λ and cos(θk).

This leaves us with two possible combinations, which correspond to the two perpen-
dicular lines yielding the maximum and the minimum error. We disambiguate between
then by choosing the value of cos(θk) closest to the previous one. Here, we choose to
compare the cosinus because for almost horizontal lines we have θk ≈ ±π/2. Values of θk
close to π/2 or −π/2 will have a similar cosinus, allowing for the line to change from one
to another.

113

Appendix G

Solutions to the system of equations
of the 3D matching step

In this section, we discuss the solutions to the system of equations defined in (4.8). Let
S be the system matrix, that has the form:

S =

(
−MT

kMk MT
k ε

(nm)
k

−MT
k ε

(nm)
k

(
ε

(nm)
k

)T
ε

(nm)
k

)
. (G.1)

Next, we discuss the solutions to this system, both in the singular and in the general
case.

G.1 Singular case

The system matrix S is singular when det(S) = 0, where the determinant takes the
following value:

det(S) = −
(
MT

kMk

)((
ε

(nm)
k

)T
ε

(nm)
k

)
+
(
MT

k ε
(nm)
k

)2

. (G.2)

Developing the dot products in this equation, we get:

det(S) = 0 ⇔ ‖Mk‖2‖ε(nm)
k ‖2 = (‖Mk‖‖ε(nm)

k ‖ cos(γ))2,

det(S) = 0 ⇔ cos(γ) = ±1.
(G.3)

where γ is the angle between Mk and ε
(nm)
k .

Consequently, S will be singular if γ = 0 or γ = π, i.e. if Mk and ε
(nm)
k are collinear.

Fig. G.1 shows the geometry of the problem when this situation occurs. In this case, Bk

is chosen between V
(n)
k and V

(m)
k by taking the one with smaller Z coordinate. We then

compute α from the perpendicularity constraint between Mk and (Ak−Bk), getting the
following result:

α =
BT
kMk

MT
kMk

, (G.4)

and insert this value in (5.9) to obtain Ak.

114

Figure G.1: If Mk and ε
(nm)
k are parallel, then the system matrix is singular. In this case

the system does not have a unique solution, since every point in the line defined by Mk

is at the same distance from ε
(nm)
k . For solving this indeterminacy, we simply choose Bk

between V
(n)
k and V

(m)
k , taking the one with smaller Z coordinate.

G.2 General case

In the general case, S will be invertible. Since S is a 2 × 2 matrix, we can analytically
precompute its inverse, saving computational power. In order to solve the system, we
define the following dot products

a = MT
kMk,

b =
(
ε

(nm)
k

)T
ε

(nm)
k ,

c = MT
k ε

(nm)
k ,

d =
(
V

(n)
k)TMk,

e =
(
V

(n)
k

)T
ε

(nm)
k .

(G.5)

Thus, the inverse will have the following expression:

S−1 =
1

det(S)

(
b −c
c −a

)
, (G.6)

where det(S) = −ab + c2. This allows us to solve the system for α and β. As a final

observation, we need to take into account that ε
(nm)
k is a segment, which means that β

has to be contained in the interval [0, 1]. Thus, the final values for α and β are:

α =
−bd+ ce

det(S)
, (G.7)

115

and

β =

0, if
−cd+ ae

det(S)
≤ 0,

1, if
−cd+ ae

det(S)
≥ 1,

−cd+ ae

det(S)
, otherwise.

(G.8)

Inserting these values in (5.9) and (5.10) yields Ak and Bk.

116

Appendix H

Mathematical development yielding
the optimal translation

Let us remind the reader that the object-space collinearity error for a given event ek and
some estimated pose R̂, T̂ is given by:

ξk(R̂, T̂) = Qk − V̂(ik) = (Lk − I)(R̂V(ik) + T̂). (H.1)

As shown in [114], the Line-of-Sight projection matrix Lk verifies the following prop-
erties:

‖x‖ ≥ ‖Lkx‖, ∀x ∈ R3, (H.2a)

LTk = Lk, (H.2b)

L2
k = LkL

T
k = Lk. (H.2c)

The weighted mean of the squared collinearity errors is then:

Ek(R̂, T̂) =
1

Ωk

n−1∑
j=0

ωk,j‖(Lk−j − I)(R̂V(ik−j) + T̂)‖2

=
1

Ωk

n−1∑
j=0

ωk,j

(
(Lk−j − I)(R̂V(ik−j) + T̂)

)T(
(Lk−j − I)(R̂V(ik−j) + T̂)

)
=

1

Ωk

n−1∑
j=0

ωk,j(R̂V(ik−j) + T̂)T (Lk−j − I)T (Lk−j − I)(R̂V(ik−j) + T̂)

=
1

Ωk

n−1∑
j=0

ωk,j(R̂V(ik−j) + T̂)T (I − Lk−j)(R̂V(ik−j) + T̂).

Next, by abuse of notation, let us note:

I − Lk−j = H =

h(1)

h(2)

h(3)

 =
[
h(1) h(2) h(3)

]
=

h(1,1) h(1,2) h(1,3)

h(2,1) h(2,2) h(2,3)

h(3,1) h(3,2) h(3,3)

 . (H.3)

Analogously, let us note R̂V(ik−j) = P = [Px, Py, Pz]
T , and T̂ = [T̂x, T̂y, T̂z]

T .

117

This yields:

Ek(R̂, T̂) =
1

Ωk

n−1∑
j=0

ωk,j

[
Px + T̂x, Py + T̂y, Pz + T̂z

]h(1)(P + T̂)

h(2)(P + T̂)

h(3)(P + T̂)

=

1

Ωk

n−1∑
j=0

ωk,j

((
Px + T̂x

)(
h(1,1)(Px + T̂x) + h(1,2)(Py + T̂y) + h(1,3)(Pz + T̂z)

)
+
(
Py + T̂y

)(
h(2,1)(Px + T̂x) + h(2,2)(Py + T̂y) + h(2,3)(Pz + T̂z)

)
+
(
Pz + T̂z

)(
h(3,1)(Px + T̂x) + h(3,2)(Py + T̂y) + h(3,3)(Pz + T̂z)

))
Next, if we compute the partial derivatives of the error with respect to the components

of T̂ we obtain:

∂Ek(R̂, T̂)

∂T̂x
=

1

Ωk

n−1∑
j=0

ωk,j

(
h(1,1)(Px + T̂x) + h(1,2)(Py + T̂y) + h(1,3)(Pz + T̂z)

+h(1,1)(Px + T̂x) + h(2,1)(Py + T̂y) + h(3,1)(Pz + T̂z)
)

=
1

Ωk

n−1∑
j=0

ωk,j

(
h(1)(P + T̂) + hT(1)(P + T̂)

)
.

(H.4)

And, analogously:

∂Ek(R̂, T̂)

∂T̂y
=

1

Ωk

n−1∑
j=0

ωk,j

(
h(2)(P + T̂) + hT(2)(P + T̂)

)
, (H.5)

∂Ek(R̂, T̂)

∂T̂z
=

1

Ωk

n−1∑
j=0

ωk,j

(
h(3)(P + T̂) + hT(3)(P + T̂)

)
. (H.6)

Making the three partial derivatives equal to zero, we obtain the necessary condition
for a translation vector to be a minimum of the error function:

1

Ωk

n−1∑
j=0

ωk,j

h(1) + hT(1)

h(2) + hT(2)

h(3) + hT(3)

 (P + T̂) =
1

Ωk

n−1∑
j=0

ωk,j(H +HT)(P + T̂) =

0
0
0

 (H.7)

Which is equivalent to:

1

Ωk

n−1∑
j=0

ωk,j

(
I − Lk−j + (I − Lk−j)T

)(
R̂V(ik−j) + T̂

)
=

2

Ωk

n−1∑
j=0

ωk,j
(
I − Lk−j

)(
R̂V(ik−j) + T̂

)
= 0.

(H.8)

118

Thus, the resulting equation:

n−1∑
j=0

ωk,j(I − Lk−j)(R̂V(ik−j) + T̂) = 0 (H.9)

is the necessary condition for a given translation to yield a minimum (or maximum) error.
From (H.9) we can compute the optimal translation at time tk for a given estimated

pose R̂, T̂ , that we will denote T ∗k (R̂, T̂):

T ∗k (R̂, T̂) =
(n−1∑
j=0

ωk,j(I − Lk−j)
)−1

n−1∑
j=0

ωk,j(Lk−j − I)R̂V(ik−j). (H.10)

Next, taking into account that V̂(ik−j) = R̂V(ik−j) + T̂ , it follows that:

T ∗k (R̂, T̂) =
(n−1∑
j=0

ωk,j(I − Lk−j)
)−1

n−1∑
j=0

ωk,j(Lk−j − I)(V̂(ik−j) − T̂)

=
(n−1∑
j=0

ωk,j(I − Lk−j)
)−1

n−1∑
j=0

ωk,j(Lk−j − I)V̂(ik−j)

−
((n−1∑

j=0

ωk,j(I − Lk−j)
)−1

n−1∑
j=0

ωk,j(Lk−j − I)

)
T̂

=
(n−1∑
j=0

ωk,j(I − Lk−j)
)−1

n−1∑
j=0

ωk,j(Lk−j − I)V̂(ik−j)) + T̂

(H.11)

Then, if the previous estimation of the pose was given by R̂k−1, T̂k−1, from (H.11) we

can compute the optimal displacement ∆Tk(R̂k−1, T̂k−1):

∆Tk(R̂k−1, T̂k−1) = T ∗(R̂k−1, T̂k−1)− T̂k−1

=
(n−1∑
j=0

ωk,j(I − Lk−j)
)−1

n−1∑
j=0

ωk,j(Lk−j − I)V̂
(ik−j)

k−1 ,
(H.12)

which allows us to make ∆Tk(R̂k−1, T̂k−1) = A−1
k Bk, with Ak, Bk given by (5.9) and (5.10)

respectively.

119

Appendix I

Iterative update

Let us consider the standard set of weights defined in the Appendix A.1:

ωk,j = ωj = ω0(1− ω0)j (I.1)

with ω0 < 1.
Since the weights decay towards zero with j, we can approximate (5.9) by taking into

account every past event ek−j, with j = 0, 1, ... , k:

Ak =
n−1∑
j=0

ωj(I3 − Lk−j) ≈
k∑
j=0

ωj(I3 − Lk−j). (I.2)

Which is the usual expression of the event-based weighted mean. According to this,
and since we are considering the standard weighting strategy we can make:

Ak ≈ ω0(I3 − Lk) + (1− ω0)Ak−1. (I.3)

In the case of Bk, (5.10) becomes:

Bk ≈
k∑
j=0

ωk,j(Lk−j − I)V̂(ik−j). (I.4)

Here, V̂(ik−j) is the current estimated pose of the corresponding point of the object,
whose value is dependent on R̂k, T̂k, which change with every incoming event. Conse-
quently, we cannot proceed as in the case of Ak in order to find an iterative expression for
Bk. Nevertheless, and thanks to the high temporal resolution of the neuromorphic cam-
era, we can assume that the pose changes slightly with each event. Since weights defined
in (I.1) decay towards zero with j, we can assume that we are only taking into account
some recent events for which the estimated pose is approximately constant. Under this
assumptions we can approximate the value of Bk in an analogous manner, making:

Bk ≈ ω0(Lk − I)V̂(ik−j) + (1− ω0)Bk−1. (I.5)

120

Appendix J

Justification of the rotation

When we apply a resulting torque Γ to a body, the Newton’s Second Law for rotation
states that [69]:

Γ =
dH

dt
, (J.1)

where H is the angular momentum of the body that takes the value:

H = Jw. (J.2)

Here, w is the angular velocity and J is a 3×3 symmetric matrix known as the inertia
tensor. The form of J depends on how the mass of a body is distributed, and it gives
an idea of how hard it is to accelerate the object around each one of the axis. However,
since we are not modeling the behavior of a real mechanical system, we can imagine the
mass of our virtual system to be equally distributed in all directions. This is equivalent to
imagining the object to be embedded in a uniform sphere. The inertia tensor of a sphere
has the form:

J = αI, (J.3)

where α is a real value, equal in the case of the sphere to 2ml2/5, l being the radius of
the sphere and m its mass.

After these considerations (J.1) becomes:

Γ = α
dw

dt
, (J.4)

which is equivalent to the Newton’s Second Law for translational motion. If we integrate
this equation for a small period of time ∆t, during which we suppose Γ to remain constant,
and assuming zero initial angular velocity, we obtain the following rotation r:

r =
1

2
α−1Γ∆t2 = φΓ, (J.5)

where we make φ =
∆t2

2α
.

121

Appendix K

Maximum torque and optimal φ

Developing (5.23) we get the following expression for the torque τk−j associated with
event ek−j:

τk−j(R̂, T̂) = βωk,j

(
R̂V (ik−j) × Lk−jR̂V (ik−j) + R̂V (ik−j)× (Lk−j − I)T̂

)
, (K.1)

which is expressed as the addition of two vectors. The first one of them is equal to the
cross product of a vector with its own projection. Taking into account that ‖RV ‖ = ‖V ‖,
its norm is thus bounded by the expression:

‖R̂V (ik−j) × Lk−jR̂V (ik−j)‖ ≤ ‖V
(ik−j)‖2

2
, (K.2)

where the maximum value is attained when R̂V (ik−j) and the line of sight form an angle
of π/4 radians.

Next, ‖(Lk−j − I)T̂ ‖ is equal to the distance between T̂ and the corresponding line of

sight. If we assume that the estimated translation is close to its true value T̂ ≈ T , then
it follows that:

‖(Lk−j − I)T̂ ‖ ≈ ‖(Lk−j − I)T ‖ ≤ ‖V (ik−j)‖, (K.3)

which takes its maximum value when RV (ik−j) is perpendicular to the line of sight.
The maximum torque will therefore be produced when both vectors in (K.1) take their

maximum value, that is to say when RV (ik−j) is perpendicular to the line of sight and
R̂V (ik−j) forms an angle of π/4 radians with the line of sight. Fig. K.1 shows the state of
the system in this case. From the geometry it follows that:

‖τk−j‖ ≤
1 +
√

2

2
βωk,j‖V (ik−j)‖2. (K.4)

If we call ρ(max) to the maximum norm ρ(max) = max
i
{‖V (i)‖}, then the resulting

torque is bounded by the expression:

‖Γk‖ ≤
1 +
√

2

2
βΩk(ρ

(max))2, (K.5)

which depends on the dimensions of the considered object.
From the geometry, it follows that the angle formed by R̂V (ik−j) and RV (ik−j) is in

this case 3π/4 radians. We will accept the optimal value of φ, that we denote φ(opt), to

122

Figure K.1: State of the system when the maximum torque is produced: R̂V (ik−j) forms
an angle of π/4 radians with the line of sight, causing ‖R̂V (ik−j) × LkR̂V

(ik−j)‖ to be
maximum. At the same time, RV (ik−j) is perpendicular to this same line of sight, making
the distance between T and the line of sight maximum: ‖(Lk−j − I)T ‖ = ‖V (ik−j)‖.

be the one that causes the angle of the rotation applied in this case to be equal to 3π/4
radians. λoptr is thus given by the expression:

φ(opt) =
3π

2(1 +
√

2)

1

βΩk(ρ(max))2
. (K.6)

Let us note that the maximum value of the torque is very unlikely to be produced.
Even if the geometry matches the right one, different points of the object are likely to
produce events, usually yielding lower values of the torque. Consequently, φ(opt) is a
conservative value, and we can have stable systems with φ greater than φ(opt). However,
we consider this expression to be an useful tool to determine the order of magnitude for
this parameter.

123

List of Figures

1.1 Neuromorphic processing subsystems. 2
1.2 Neuromorphic sensory subsystems. 3
1.3 Functional diagram of an ATIS pixel. 4

2.1 Definition of a Gaussian tracker . 9
2.2 Principle of a damped spring. 11
2.3 Effect of a connection between two trackers. 12
2.4 Torsional configuration. 14
2.5 Cartesian configuration. 15
2.6 Single tracker following the wrong cloud of events 16
2.7 Group of trackers following the wrong cloud of events 17
2.8 Experimental results: tracking of a moving grid of points. 19
2.9 Experimental results: tracking of a moving grid of points for different values

of the stiffness . 20
2.10 Experimental results: snapshots of the stimulus video. 20
2.11 Experimental results: the tracker predicts the shape of the grid. 21
2.12 Evolution of the mean error with the value of s 21
2.13 Experimental results: tracking error as a function of the stiffness for general

deformation and motion. 22
2.14 Experimental results: tracking error as a function of the stiffness for plane

rotation. 22
2.15 Experimental results: description of the recording of the moving face. . . . 23
2.16 Model used for the tracking of the face . 24
2.17 Experimental results: we introduce an occlusion. 24
2.18 Experimental results: error committed when tracking the face. 25
2.19 Experimental results: ratio of processing time to the lenght of the recording. 25
2.20 Experimental results: ratio of processing time to the lenght of the recording

as a fucntion of the event rate. 26

3.1 Parametrization of a line. 31
3.2 Explanation of the segment detection strategy 37
3.3 Set up for the simple scene. 39
3.5 Output for the simple scene. 40
3.14 Experimental results: ratio of processing time to the length of the recording. 46
3.15 Experimental results: ratio of processing time to the length of the recording

as a function of the event rate. 47
3.16 Experimental results: maximum event rate that can be processed in real

time. 48

4.1 3D pose of an object. 51

124

4.2 2D matching: selection of the edge that has generated an event. 52
4.3 3D matching: selection of the point that has generated an event. 53
4.4 Geometry of the rotation problem. 55
4.5 Real objects used in the experiments. 58
4.6 Experimental results: linear and angular speed of the icosahedron. 58
4.7 Experimental results: icosahedron . 59
4.8 Experimental results: linear and angular speed of the house. 60
4.9 Experimental results: house. 60
4.10 Experimental results: egomotion. 61
4.11 Experimental set-up: fast spinning object. 62
4.12 Experimental results: angular speed of the fast spinning icosahedron. . . . 62
4.13 Experimental results: evolution of the errors when the temporal resolution

is degraded. 63
4.14 Experimental results: computational time when tracking the icosahedron. . 64
4.15 Experimental results: computational time as a function of the event rate

when tracking the icosahedron. 64
4.16 Experimental results: maximum event rate that can be processed in real

time depending on the parameter N . 65
4.17 Experimental results: computational time when tracking the house. 65
4.18 Experimental results: maximum event rate that can be processed in real

time depending on the parameter N . 66

5.1 Mathematical description of the PnP problem. 70
5.2 Virtual mechanical system. 73
5.3 Synthetic scene. 77
5.4 Experimental results: evolution of the translation errors for the synthetic

scene. 78
5.5 Experimental results: influence of the tracking errors on the accuracy. . . . 79
5.6 Experimental results: effect of the event assignment errors on the accuracy 80
5.7 Experimental results: evolution of the relative translation error for different

sets of parameters. 80
5.8 Experimental results: evolution of the relative translation error for different

sets of parameters. 81
5.9 Evolution of the relative rotation error for different sets of parameters for

the full method. 82
5.10 Evolution of the relative rotation error for different sets of parameters for

the efficient method. 82
5.11 Real object used in the experiments. 83
5.12 Experimental results: characteristic output of the PnP algorithm. 85
5.13 Experimental results: evolution of the translation vector T and the rotation

vector r, compared with the ground truth. 85
5.14 Experimental results: statistics of the errors. 86
5.15 Experimental results: evolution of the pose estimation errors and the com-

putational time with the value of n . 87

A.1 Standard set of weights. 105

B.1 Dynamics of a damped harmonic oscillator 107

125

F.1 Disambiguation of the sign of the sinus. 113

G.1 Singular matrix system. 115

K.1 State of the system when the maximum torque is produced. 123

126

List of Tables

2.1 Mean tracking error produced for different values of the stiffness. 22

3.1 List of parameters for line detection. 40

127

