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Résumé 

 

La recherche de matériaux dentaires efficaces est une préoccupation constante de toute 
l'histoire de la dentisterie. Avec l'émergence de meilleurs produits, le développement de 
matériaux toujours plus innovants s’est imposé. De plus, la combinaison de différentes 
sciences comme la chimie, la biologie, la physique et l’ingénierie a permis de mieux 
connaître les exigences liées à la restauration dentaire. Le projet BIODENSOL est un projet 
de recherche et de mobilité doctorale entre l'Université de Lyon et LUCIDEON Ltd (Stoke-on-
Trent, Royaume-Uni), financé par la Commission européenne. Le projet a été conçu pour 
favoriser les relations entre la recherche académique et les applications commerciales, pour 
améliorer les innovations médicales et associer des chimistes de l'état solide avec des 
praticiens hospitaliers en contact direct avec les patients ayant des problèmes dentaires. Ce 
projet proposait trois thèses de doctorat permettant de répondre aux conséquences des 
caries et d'érosion de l'émail par les aliments acides, l’idée de base étant de favoriser la 
reminéralisation pour éviter ces problèmes. Les recherches ont évolué de manière 
indépendante selon trois voies distinctes examinant trois matériaux différents qui pourraient 
amener des solutions potentielles. Le sujet principal de cette thèse concerne l'étude de 
poudres de verre borosilicaté présentant une séparation de phases et pouvant être 
incorporées dans des ciments verre ionomères. Les verres borosilicatés sont des matériaux 
prometteurs qui ont été largement étudiés pour des applications biomédicales, comme par 
exemple les échafaudages dans les tissus mous où la réparation osseuse. Par analogie avec 
les verres silicatés développés par Hench en 1969, qui sont reconnus pour leur bioactivité et 
leurs propriétés antimicrobiennes, les verres borosilicatés pourraient intéresser la 
dentisterie. Le système de verre étudié ici est un verre basé sur l’association de 5 
constituants, SiO2-K2O-B2O3-CaO-Al2O3, qui a une forte tendance à la séparation des phases. 

L'objectif de ce travail est d’élaborer par fusion/trempe puis caractériser une série de 
nouvelles formulations de verres borosilicatés, puis de comprendre le mécanisme et la 
cinétique de dissolution en relation avec leur microstructure et leur composition. La 
variation des proportions de chaque constituant est déterminée par l’approche des plans 
d’expérience. L'utilisation d'un traitement thermique pour favoriser la séparation des phases 
en vue d'influencer le taux de libération cationique a été spécialement étudiée. Le processus 
de dissolution des borosilicates dans une solution aqueuse neutre (fluide corporel simulé) ou 
dans une solution acide (simulant des scénarios où des bactéries ou des aliments acides sont 
présents) fournit des informations sur le type et la concentration des espèces libérées par le 
verre. Différentes compositions ont été étudiées dans lesquelles SiO2 et K2O sont fixés tandis 
que les autres éléments varient afin d'évaluer l'effet sur la séparation de phases. Les 
cinétiques de dissolution des ions B-, Si-, Ca-, K- et Al- peuvent alors être reliées à la chimie 
du verre et à la microstructure.  
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La séparation de phases amorphes (APS) provoque la séparation d'une phase unique 
initialement homogène en deux phases ou plus de compositions différentes. Le degré 
d'interconnectivité des deux phases vitreuses dépend de la nature du mécanisme de 
séparation de phases. Les verres élaborés sont optiquement transparents, puis deviennent 
plus ou moins opalescents suite à un traitement thermique. Le degré d’opacité est 
clairement dépendant de la proportion des éléments entrant dans la composition du verre. 
Le schéma de la libération d'ions implique que l'une des phases est plus réactive et sensible 
à l'attaque ; elle sera dissoute plus rapidement du verre. L'autre phase restera dans le 
ciment, améliorant les propriétés mécaniques du matériau de restauration. A cet effet le 
mélange de la poudre de verre avec un acide poly acrylique commercial a effectivement 
montré des propriétés mécaniques et bioactives intéressantes. Ces résultats ouvrent une 
perspective de recherche prometteuse pour les applications de restauration dentaire. 

 

Remerciements : Ce travail a été financé par le programme européen FP7-PEOPLE-2013-ITN 
sous le n°608197. 

 

Mots clés : Borosilicates, Ciment verre ionomère, Libération d'ions, Séparation de phase, 
Propriétés mécaniques, Propriétés biologiques. 
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Abstract 

 

The research for efficient dental materials has been a constant throughout the history of 
dentistry. As better materials emerged, the development of ever more innovative materials 
has been pushed forward. Moreover the combination of different sciences such as 
chemistry, biology, physics and engineering has provided better knowledge to the 
demanding requirements of the dental restorations. The BIODENSOL project is a European 
commission funded mobility research project managed by the University of Lyon and 
LUCIDEON Ltd, Stoke-on-Trent, UK. The project is designed to help building relations 
between academic and commercial research to enhance medical innovations and associates 
solid state chemists and hospital practicioners in direct contact with the patients with dental 
problems. This project proposes three PhD studies to address the problems of caries and 
enamel erosion by acidic foods (leading to sensitive teeth) encouraging re-mineralization to 
help avoid these problems. The researches independently evolved in three different routes 
investigating three different materials that could provide potential solutions. The main 
objective of this thesis concerns the study of Borosilicate phase separated glass powders for 
glass ionomer cements. As silicate bioglasses developed by Hench in 1969, regarding their 
bioactivity and antimicrobial properties, borosilicates glasses are promising materials and 
have been widely studied for biomedical applications for scaffolds in soft tissues and for 
bone repair and could be of interest in dentistry. The glass system studied here is a 
borosilicate glass (SiO2-K2O-B2O3-CaO-Al2O3) with a strong tendency to phase separate. 

The objective of this work is to characterize a series of the novel borosilicate formulations 
and to understand the mechanism and kinetic of dissolution related to their microstructure 
and composition. The use of thermal treatment to promote phase separation as a means of 
influencing the rate of ion leaching was especially studied. The dissolution process of 
borosilicates in neutral body solution (simulating body fluid) or in acid solution (simulating 
scenarios where bacteria or acid foods are present) provides information regarding the type 
and concentration of species released by the glass. Different compositions have been 
investigated in which SiO2 and K2O are fixed while the other elements are varied in order to 
assess the effect on the phase separation. As the novel borosilicates produced with the melt-
quenching technique is immersed in an aqueous environment, B-, Si-, Ca-, K- and Al- species 
are released to different degrees as a function of the time. Ion leaching trends can be related 
to the glass chemistry and microstructure. 

It has been shown that the amorphous phase separation (APS) causes an initially 
homogeneous single phase to separate into two or more phases of different compositions. 
The degree of interconnectivity of the two glass phases depend on the nature of the phase 
separation mechanism. This process can occur by a nucleation and growth process which 
gives isolated spherical particles or by spinodal decomposition where an interconnected 
structure is obtained. It is significant that before a heat-treatment the glasses are optically 
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clear, but turn opalescent to different degrees following a heat treatment depending on the 
wt% of the elements in the composition. The pattern of the ion release implies that one of 
the phases is more reactive and susceptible to acid attack and will be leached out from the 
glass earlier. The other phase will remain in the cement improving the mechanical properties 
of the dental restorative material. Moreover, the mixing of the glass powder with a 
commercial poly(acrylic acid) has shown interesting mechanical and bioactive properties. 

This work showed how the ions leaching are influenced by the glass composition and the 
heat-treatment. The study of the behaviour of the borosilicate in different acid solutions and 
the elements leached out could be a promising investigation for the analysis of the 
properties of the final dental restoration.  

 

Acknowledgements : This work has received funding from the Européan Union Seventh 
Framework Program (FP7-PEOPLE-2013-ITN) under grant agreement n°608197. 

 

Key words: Borosilicates, Glass ionomer cements, Ions release, Phase separation, 
Mechanical properties, Biological properties. 
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1.1 Origins: from dental cements to glass ionomer cements 

Dental diseases are as old as human beings. Dental cares became a need as soon as the first 
civilizations developed. Surely, it was very different from the dentistry that we know now, 
but teeth extractions and prosthesis applications have been proved to be common practices 
for the Greeks and the Etruscan populations. In ancient Greece, Hippocrates and Aristotle 
wrote about dentistry (500-300 BC) especially about treating carious teeth, while the 
Etruscans practiced dental prosthetics using gold crowns and fixed bridgework. During the 
Tang Dynasty in ancient China (618 AD) experimentations with melted silver and tin, gave 
birth to the first known dental amalgams. In 1728, Pierre Fauchard, often called the ‘Father 
of Modern Dentistry’ wrote ‘The Surgeon Dentist’ in which he explained how to fill a tooth 
cavity with lead, tin and gold. 

The research for efficient dental materials has been a constant throughout the history of 
dentistry. As better materials emerged, the development of ever more innovative materials 
has been pushed forward. Moreover, the combination of different sciences such as 
chemistry, biology physics and engineering has provided better knowledge to the demanding 
requirements of the dental restorations. 

Back in the present, dental diseases are still a major problem that affects nearly 100% of the 
population in the world. To preserve teeth for longer amongst an ageing population, there is 
a strong need to focus attention on filling carious teeth with sustainable and bioactive 
materials, prevention of decay, remineralisation of early lesions and minimal invasive 
dentistry. 

Different kinds of materials can be used; among them dental cements are used for many 
purposes for example to attach crowns and inlays to teeth but also to directly fill cavities. 
The clinical application depends on the composition of the cements. They are all formed 
with two principal components: an inorganic powder and an acid. The reaction between 
these two elements is the setting reaction that brings about the hardening of the cements. 
They can be classified depending on the type of powder/liquid present in its composition.  

Historically, the first formulation was discovered in 1855 by Sorel (Sorel 1855) and was 
composed of zinc oxide and phosphoric acid (Nicholson J. 1998). Actually, the zinc powder 
was first combined with different amounts of inorganic and organic liquids, until the use of 
an aqueous solution of phosphoric acid was noted as giving the best results. Sorel’s cement 
is known as zinc phosphate cement and was fully developed at the end of the 19th century. 
Their properties make them suitable for luting crowns and inlays. Another material that can 
be classified as phosphate-bonded cement is the dental silicate cement. In this case, the 
powder is an ion leachable calcium aluminosilicate glass that is mixed together with a liquid 
very similar to the one used for the zinc oxide cements. The glass powder is composed 
principally of SiO2 and Al2O3 that provides metal ions for the setting reaction, while other 
elements are used in varying amounts (some examples are shown in the tables 1, 2 and 3). 
The setting mechanism has been fully studied by Wilson (Wilson 1991) and demonstrates 
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the importance of the aluminium ions due to their role in making the glass more suitable for 
the acid attack. The SiO2 network alone is very resistant to acid but, if Al2O3 is added, Si-O-Al 
bridges are formed and the different Si4+ and Al3+ charges provides an increasing global 
negative charge in the glass network. This will be balanced by other cations present in the 
composition (Ca2+, Na+) and the overall effect will destabilize the glass structure. H3O+ ions 
from the acid penetrate and disrupt the glass network with the subsequent liberation of 
cations for the formation of the cement. The studies of the reaction mechanism and the 
powder composition improve the dental silicate cements as a restoration but still new 
formulations brings to more advanced cements. These are the ionic polymer cements that 
are introducing the basics principles for the most recent dental restorations. The reaction 
mechanism involves acid decomposable metal-oxides or aluminosilicate glasses (as reported 
in the tables 1, 2 and 3) and an aqueous solution of poly (alkenoic acid). The formation of 
cross-linked ionic bonds derived from the ions leached from the glasses lead to the use of 
the name glass ionomer cements (GIC). These dental cements differs from the zinc oxide 
known as the zinc polycarboxylate cements, and they are usually composed of calcium 
aluminosilicate glasses. For this reason they are also called ASPA (Alumino-Silicate 
PolyAcrylate). The latter are of major importance for dentistry as they provide a stronger 
adhesive effect towards enamel and dentin. The glass formulation is quite complex and 
employs ion-leaching elements as for the silicate dental cements. The first generation of this 
material was developed by Wilson and Kent in 1969 and it was prepared mixing the 
aluminosilicate glass powder with an aqueous solution of poly (acrylic acid). 

 

Table 1. Compositions of Zinc phosphate cements (Nicholson J. 1993). 

Zinc phosphate cements Composition (%w/w) 

ZnO 89.4 90.3 88.9 
MgO 3.2 9.6 8.0 
Al2O3 6.8 - 1.5 
SiO2 0.6 - 1.6 

 

Table 2. Compositions of the glass component in dental silicate cements (Dickson J. 1972). 

Dental silicate 
cements 

Composition (%w/w) 

SiO2 41.6 38.8 31.5 
Al2O3 28.2 29.1 27.2 
CaO 8.8 7.7 9.0 
Na2O 7.7 8.2 11.2 

F 13.3 13.8 22.0 
P2O5 3.3 3.0 5.3 
ZnO 0.3 2.9 - 
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Table 3. Compositions of the glass component in modern glass ionomer cements (Nicholson J. 2009). 

Glass ionomer 
cements 

Composition (%w/w) 

SiO2 35.0 32.2 29.9 24.9 
Al2O3 29.7 27.3 16.6 14.2 
CaO 26.2 3.0 - - 
CaF2 9.1 37.5 34.3 12.8 

Na3AlF6 - - 5.0 - 
AlF3 - - 5.3 11.0 

AlPO4 - - 9.9 24.2 
NaF - - - 12.8 

 

1.2 Hench’s glass 

At the same of time of Wilson, in 1969, Hench et al. (Hench 2006) developed a new material 
for medical applications; creating a solid base for the following 40 years of research in the 
bone/tissue regeneration field. 45S5 was the first bioactive glass generated, with a 
composition showing an excellent biocompatibility (fig.1). Its composition by weight is: 45% 
SiO2, 24.5% Na2O, 24.5% CaO and 6% P2O5. This material is able to bond with bone and 
stimulates bone growth due to hydroxy-carbonate apatite (HCA) formation. This type of 
apatite is chemically and structurally very similar to the mineral phase of hard tissues. 

 

Figure 1 Triangular diagram representing the bioglass composition (Hench 2006). 

 

The original 45S5 bioglass (BG) has been already used in different materials for repairing 
bone defects in the jaw and orthopaedics. Bioactive glass grafts were originally developed 
for replacing ear bones and alveolar bone defects around teeth; the products used were 
based on particles rather than a monolithic shape, i.e. PerioGlas® and NovaBone®. Micro and 
nano-particles have superior bioactive behaviours due to a larger specific surface area that 
allows a faster ion release. Bioactive coatings are likewise very important for metallic 
implants because they have the potential to improve their performance by providing strong 
bonding to the host bone and to the resin cement (Moezzizadeh M. 2017). Nevertheless, 
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45S5 bioglasses are applied also to non-permanent materials especially used in dentistry. 
BG-pastes are favourable for the treatment of dentin hypersensitivity (Bakry A.S. 2011), 
enamel demineralization (Bakry A.S. 2014) and for tooth bleaching (Deng M. 2013). Finally, 
bioactive glasses have some satisfying characteristics as a scaffold material for bone tissue 
engineering. However despite excellent biological properties, mainly osteoblast proliferation 
and differentiation induced by the released ions by the material, bioglasses are brittle 
materials that are easily cracked. This low strength and fracture toughness prevents their 
use for load-bearing implants (Thompson I.D. 1998). The development of new glass 
compositions with improved mechanical properties is a challenging objective and the trend 
is to incorporate different elements to obtain better biological and physical characteristics. 
Crystallinity significantly changes the fracture characteristics of glasses. This opens the way 
for glass-ceramics as offerings with improved mechanical properties. On the other hand, the 
introduction of crystalline phases could decrease the bioactivity. Several attempts have been 
made to preserve the amorphous structure of the glass with the addition of silver, 
magnesium, strontium, boron, zinc, aluminium, fluoride, potassium, gallium, barium and 
zirconia. Addition of silver (Balamurugan A. 2008) and boron (Liu X. 2009) have been 
investigated in order to improve the strength and develop antibacterial and antimicrobial 
materials; magnesium has stimulatory effects on the growth of new bony tissues (Dietrich E. 
2008); calcium is shown to be responsible for osteoblast proliferation (Maeno S. 2005), while 
elements like zirconia improve the mechanical properties but decrease the bioactivity 
behaviour (Kasuga T. 1992). 

Several families of bioactive glasses have been more precisely investigated: 

• Silicate-based glasses, like 45S5, are glasses where silica (SiO2) is the classic network-
former. The basic unit is the SiO4 tetrahedron capable of sharing up to 4 oxygen atoms with 
other such tetrahedral units or other elements. 

• Phosphate-based glasses in the system CaO–Na2O–P2O5 have the tetrahedral structure 
formed by PO4 units and the phosphate group has a charge of 5+ (Abou Neel E. A. 2009). 
Therefore, they contain at least one terminal oxygen that limits connectivity to x3 P-O-M 
linkages and so the reactivity of the structure that gives unique dissolution properties in 
aqueous-based fluids for these types of glasses. 

• Borate-based glasses (Kaur G. 2014) are based on a B2O3 network that can occur both in 
triangular and tetrahedral coordination but mostly in the triangular form for vitreous 
compounds. Borate glasses show potential in bone regeneration owning to a potential for 
complete conversion to apatite through a series of dissolution-precipitation reaction similar 
to those of 45S5 bioglass. 

This thesis work is focused on the research of improved dental restorative materials. Since 
their requirements are day by day more demanding, the need for restorations with good 
manipulative properties and adequate working time together with the ability to set and 
harden rapidly once placed in position, are extremely important. Moreover, dental 
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restorative materials should adhere to tooth material and are required to function in the 
sensitive but hostile environment of the mouth. A wide range of dental materials have been 
formulated. One of the most important classes of materials used in dentistry is that of the 
dental cements. Currently, they are used in a variety of clinical dental situations such as 
restorative, lining, luting and sealing materials. Dental cements are based on the hardening 
reaction between a powdered solid and a viscous hydrogen-bonded liquid, more details of 
this reaction will be provided in chapter ”State of the Art” of this thesis. 

The 45S5 bioglass has been studied extensively by many researchers and yet still some of its 
properties are not fully satisfying for the final purpose, both in medicine as in dental 
applications. This investigation relates to formulation of a new borosilicate glass composition 
for enhancing the mechanical properties of a dental restorative biomaterial. The properties 
of this class of glasses falls in between those for silicate and borate glasses and they could be 
an ideal candidate to avoid problems encountered with the materials studied so far. 
Moreover, the tendency of the borosilicate glasses to phase separate is hypothesized as 
extremely important in regulating the ions dissolution. This phenomenon (that will be 
explained in details in the chapters of the thesis) causes a homogeneous single amorphous 
phase to separate into two or more amorphous phases of different compositions. The two 
phases will act differently in distinct chemical environments. One of the phases will be more 
reactive and susceptible to certain conditions such that it will be dissolved from the glass 
earlier; potentially delivering ions useful for the cells stimulation (Deng M. 2013) or 
remineralisation over time. The other phase will largely remain in the cement improving the 
mechanical properties of the dental restorative material. However, this phase may release 
re-mineralising ions over time, especially if exposed to acidic conditions provided by food / 
bacteria. 

The study will also help the understanding of the reaction mechanism of the dental cements. 
The dissolution of the borosilicate glass is a fundamental factor that is strongly related to the 
ion release and the biomaterial behaviour. Finally, new ideas and new developments of the 
bio-glasses can be assumed by this work that has as a final objective the innovation of the 
dental cements in the frame of the BIODENSOL project. 

 

1.3 BIODENSOL project 

BIODENSOL is a European commission funded mobility research project (FP7-PEOPLE-2013-
ITN) managed by the University of Lyon and LUCIDEON Ltd, Stoke-on-Trent, UK.  BIODENSOL 
focuses on developing novel bioactive materials for dental restoration and regeneration. 
This project proposes three PhD studies to address the problems of caries and enamel 
erosion by acidic foods (leading to sensitive teeth) encouraging re-mineralization to help 
avoid these problems. The researches independently evolved in three different routes 
investigating three different materials that could provide potential solutions. These 
materials are: Phosphate glasses as fillers in dental scaffolds, Mesoporous bioactive glasses 
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(MBGs) as fillers in dental adhesives and finally the objective of this thesis that is Borosilicate 
phase separated glass powders for GICs.  

The project is designed to help building relations between academic and industrial research 
to enhance medical innovations. For this reasons the studies where divided between the two 
locations: University of Lyon and Lucideon ltd in Stoke-On-Trent, with a displacement every 
6 months for a total of 18 month in each site. The advantage was to work on the PhD project 
in two different environments the University and the industrial one. It was also relevant for 
the experience to be involved in external activities related to the industry (working on side 
projects with ceramics materials in this case) and be familiar with commercial jobs. 

 

1.4 Targeting an ideal composition 

In the scientific literature, it is very hard to find an article that deals with the issue of how 
the properties of the cement correlate with the glass composition. Establishing composition-
structure-property relationship of the cements could improve knowledge of the material and 
help in the design of new and improved glass ionomer cements. Understanding and being 
able to control the degree of crosslinking of the glass particles within the polysalt matrix will 
enable control over cement properties and so the development of glass polyalkenoate 
cements with improved properties. The concentration of ions released into solution will 
determine the ions available for the cross-linking and so the set cement properties. A 
literature review give some important information to guide the choice of the elements in the 
novel glass composition arises. 

As previously mentioned, the setting reaction is known to involve the acid hydrolysis of the 
glass network, leading to the release of aluminium and calcium cations (Nicholson J. 1998) 
which react with the carboxylic groups of the polyacid resulting in the hardening process of 
the cement. This reaction can be influenced by the other elements present that can cause, 
for example, impediments for the cross-linking with the polysalt matrix. 

In fact, in commercial glasses, such as G338 (tab.4), there are significant quantities of 
phosphorus, fluorine and other alkali metals that are interfering the hardening process. 

 

Table 4 Composition of the commercial glass G338 (Nicholson J. 2009) 

Component %w/w 
SiO2 24.9 
Al2O3 14.2 
AlF3 11.0 
CaF2 12.8 
NaF 12.8 
AlPO4 24.2 
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The fact that AlPO4
- species are present in the cement matrix, as demonstrated by Kent and 

Wilson (Kent B. 1969), provides evidence that phosphate competes with the carboxylate 
group for the cross-linking cations. The introduction of phosphate can also enhance the glass 
degradation (Ray 1978) as already well-known for the easily degraded phosphate glasses. In 
the case that the PO4 tetrahedra are not charge-balanced by an AlO4 tetrahedra, one of the 
oxygens attached to the phosphorus will form a double bond which cannot be resonance 
stabilised leading to hydrolytically unstable phosphorus oxygen bonds.  

Aluminium contained in glass filler particles was deemed to be an important factor for 
cement setting ability (R. Pires 2009, Munhoz T. 2010) but it was found that the role of that 
component and its ratio with silicon it is not so significant (Griffin S. 1999). Actually the 
presence of both aluminium and phosphorous inhibits the number of cations available for 
the cross-linking. Aluminium release has been cited as causing a mineralisation defect 
thereby inhibiting the action of osteoid cells in glass polyalkenoate cements intended for 
orthopaedic applications (Carter D. 1997). Aluminium is also recognized as a neurotoxin and 
the cause of some neurological diseases, such as Alzheimer's and Parkinson's diseases (Zatta 
P. 1999). The results of this study are therefore important in relation to the design and 
development of low aluminium or aluminium-free polyalkenoate cements. It is a challenging 
goal because of the positive role aluminium plays in the hardening process but several 
attempts has already been made substituting the aluminium with other ions (Zn2+, Mg2+, 
Sr2+, Ce3+) as explained in the “background and information” chapter. 

Sodium will compete with the other cations to bind with the carboxylic groups. Fluorine, 
despite its positive role in inhibiting caries, can influence the crystallization of the glass 
system during the melting process if present in sufficient quantities (Griffin S.G. 2000). 

The melt-quenched borosilicate glass presented in this study is a novel composition. It is 
composed of: SiO2-B2O3-K2O-CaO-Al2O3. Each element introduced has a specific individual 
role, but the overall compositions have been varied in a way that enables the effect of two 
or more element combinations to be established. Therefore, multiple analyses were carried 
out to investigate the effect of the Al:B ratio for the degree of phase separation and of the 
B:Ca ratio for the influence on ions leaching. 

In the borosilicate system, silicon is known to be essential for metabolic processes 
associated with the formation and calcification of bone tissue (Carlisle 1981). In the early 
stages of bone matrix calcification, high silica contents have been reported and this will 
cause a precipitation of hydroxyapatite (Damen J.M. 1992) resulting in the enhancement of 
bone formation. It is not a very soluble ion and it can remain longer in the dental restoration 
probably affecting the mechanical properties of the material in which it is applied. The 
borosilicate comprises boron too, that helps induce the phase separation and the creation of 
chemically durable and non-durable phases. Furthermore boron possesses very interesting 
properties. It is thought to play a regulatory role on other elements such as calcium (also 
present in the borosilicate glass) and hence a role in bone metabolism (Naghii M.R. 1993). 
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Boron has in fact been linked with preventing calcium loss and bone demineralization in 
post-menopausal women and boron supplementation has been shown to reduce the effects 
of vitamin D deficiency in chicks (King N. 1991). Boron also affects bone regulating hormones 
involved in bone growth and bone turnover (Palacios 2006). In a recent publication, it was 
reported that the addition of B2O3 (5–10 mol%) to calcium phosphate glass systems 
increased the tensile strength from ~450 MPa to ~1200 MPa (Sharmin N. 2014). It has also 
been reported that the incorporation of B2O3 (up to 5mol%) to the same glass system 
showed favourable cell metabolic activity, proliferation and morphology (Sharmin N. 2013). 
The antimicrobial effect of this element is gaining much more attention in the research 
articles as proved by the studies of Prasad et al. (M.P. Prasad 2014) and of Gorriti et al. 
(Gorriti M. 2009). Finally due to the use of boric acid in poly(vinyl) adhesive for improving 
the thickening action it is hypothesized that boron could have an essential role in the cross-
linking of the cement. For this reason attempts at substituting boron with aluminium have 
been investigated in this work. The concentration of aluminium was generally maintained at 
a low level in glasses compositions with some even designed without aluminium. 

Potassium is considered a useful desensitizing agent (Matis B. 2007). It is also useful to 
reduce the tendency of a glass to crystallize (note that crystallisation can bring about a lower 
biocompatibility). A new glass composition, inspired by the 45S5 Bioglass®, was formulated 
by substituting the sodium oxide with potassium oxide and the results proved that the 
thermo-mechanical properties, as well as the in vitro response of the two glasses were 
comparable (Cannillo V. 2009). Due to the difference in ionic radius the ion release increased 
with increasing potassium for sodium substitution causing changes in the packing of the 
glass network, described by glass molar volume and oxygen density (Brukner R. 2016). The 
choice of an alkali ion of larger ionic radius (K for Na in this case) and also the lower 
electronegativity was employed to expand the borosilicate network, allowing a faster ion 
release. 

Calcium, as one of the main components in the biological mineral phase apatite 
(Ca10(PO4,CO3)6(OH)2), obviously plays an essential role in bone formation and resorption. 
Low calcium concentrations are suitable for osteoblastic proliferation, differentiation and 
extra-cellular matrix (ECM) mineralization (Maeno S. 2005). Moreover, calcium plays an 
important role in bone remodelling by directly activating an intracellular mechanism in 
osteoblastic cells (Marie 2010). As a network modifier, it will influence the glass structure; 
nevertheless it is important to know the specific concentration of this ion when released into 
aqueous media as it is implicated in the mechanism of interaction with the polyacid for the 
cement formation.  

This manuscript will explore the subject just introduced and will analyse every single aspect 
in detail following this structure: 
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- The first part called State of the Art will refer to the most recent development in this 
specific scientific field. There will be a complete description of theoretic concepts 
related to the glass structure and how they are related to the dental application. 

- The second part called Materials and methods will describe the techniques and 
methodologies employed to explore the mixture design, the elaboration and 
characterization of the glasses in the system SiO2-B2O3-K2O-CaO-Al2O3 

- The third part is related to the analysis and discussion of the results obtained. Three 
main aspects are here identified. The elaboration of the borosilicate glasses and their 
characterization, the experiments on the ions leaching and surface microstructure 
and finally the mechanical and biological properties of the potential restorative 
material. 

- The conclusion will finally resume the main founding and limitation of the research 
proposing solution for future studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



26 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



27 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

2. STATE OF THE ART 



28 
 
 

 

  



29 
 
 

 

2.1 Mineral glasses 

One definition of glass is as follows: 

“A glass is an inorganic product of fusion which has cooled to the rigid condition without 
crystallizing” (1945, American society for testing materials) 

This definition can be regarded as incomplete, because glasses can be obtained using other 
techniques like sol-gel processing. For this reason a glass can also be defined as “a non-
crystalline solid that exhibits the phenomenon of glass-transition”, to include a wider range 
of amorphous materials. 

In this thesis, glasses were obtained with the melt-quenching technique, so the material can 
be defined with the first definition. The technique is the most ancient method for fabricating 
glasses and will be discussed in details in the next chapters. 

 

2.1.1 Glass structure: The random network theory 

This theory so called Zachariasen model, considers glass networks to be composed of 
polyhedra of the same type found in crystals but arranged randomly between each other’s, 
basically giving a structure with no long-range order. X-ray diffraction on glasses confirms 
the fact that no crystal peaks are detectable and a characteristic halo is only observable. 
Zachariasen developed his theory by observing that the mechanical properties of an 
inorganic glass are quite similar to its corresponding crystal form. This led him to 
hypothesize that the internal forces generated by the structure should be approximately 
similar.  

The oxides forming the glass can be of two different types: network former or network 
modifiers. To be part of the first group they have to fulfil some criteria: 

1. An oxide tends to form a glass if it easily forms polyhedral groups as the smallest 
building units.  

2. Oxygens and others anions (such as S2-, F-) should form linkages with no more than 
two Metal atoms. 

3. Polyhedra must share only corner with each other, not edges, not faces. 
4. For a three-dimensional network at least three corners of each polyhedral must be 

connected with neighbour polyhedral. 
The network formers are providing the strong part of the glass, it is possible to see them as 
the skeleton of the glass network. The glass formers are elements of high ionic potential 
forming very strong bonds with the oxygen. They are usually Si, B, P, Ge, As, Be oxides with a 
coordination number of generally 3 or 4. Oxides with the formula MO and M2O are not 
satisfying these criteria and they are actually not able to form a glass alone. These kinds of 
oxides are called network modifiers and they are alkaline earth oxide and alkali metal such 
as: Na, K, Ca and Ba with coordination number generally bigger than 6. These elements are 
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generally of relative low ionic potential. The addition of the modifiers oxides result in 
breaking the Si-O-Si bond (in silicate glasses) with the formation of two Si-O- species that are 
counterbalanced by the presence of the cations from the modifiers oxide that preserve the 
neutrality of the overall structure (figure 2). In the figure it is possible to observe the effect 
of Na+ in altering the glass structure. The degree of polymerisation (proportional to the 
number of Si-O-Si bonds) is reduced causing a lower melting point, higher thermal expansion 
and a lower viscosity (the addition of the modifiers make the glass manufacturing easier). 
The glass is also more susceptible to acid attack resulting in the exchange of the modifying 
cations with the protons of the acid solution.  

 

Figure 2.  a) Crystal structure of Silica, b) Amorphous structure, c) Amorphous structure with the addition of modifiers 
oxides. 

 

2.1.2 Amorphous phase separation 

Some glasses are not homogeneous (at least less homogeneous than others if it is 
considered that all glasses present a little inhomogeneity in their structure). The glass 
system could be composed of two or more non-crystalline phases derived after the phase-
separation. This phenomenon brings to the formation of a glass with different physical and 
chemical properties and also with a different glass appearance that will change depending 
on the process and type of phase separation.  In 1979, Barry et al. (Barry T. 1979) noted that 
the ionomer glasses are separated in two phases, one of which have more affinity for the 
acid and will be attacked earlier that the other.  

In the liquid phase, phase separation can occur above or below the liquidus temperature. In 
the first case it is called stable immiscibility (like for example between oil and water) while in 
the second case the separation is known as metastable immiscibility (fig.3).  
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Figure 3. Stable and metastable two-liquid immiscibility and subliquidus metastable immiscibility (James 1975) 

 

When the glass enters in the immiscibility region on cooling or by heating at appropriate 
temperatures, the rates of diffusion are so low that there is insufficient time for a visually 
detectable separation to be formed. For this reason the phenomena can be seen thanks to 
the electron microscope in the majority of the cases. Sometimes the separation can be made 
coarse enough for the glass to become opalescent. Two or more phases can have a different 
refractive index inducing the light scarring that cause the colour changing. The appearance 
of the glass can be also due for two types of separation that can occurs. The study of the 
microstructure of the phase separated glasses make it possible to determine two different 
mechanisms that explain the phenomena: one corresponds to the formation of a continuous 
and interpenetrating phase into the other and the second occurs as a result of the second 
phase comprising isolated droplets. The first is called spinodal decomposition while the 
latter nucleation and growth (fig. 4).  

SPINODAL STRUCTURE NUCLEATION AND GROWTH 

Figure 4 The two different mechanism of phase separation: spinodal structure and nucleation and growth (Vogel 1985). 

The phase separation is a thermodynamic phenomenon that is strongly related to the free 
energy of the system (fig. 5). When different compounds are mixed the total free energy 
(ΔGmix) is related to both enthalpy and entropy by the equation: ΔGmix=ΔHm - TΔSm. Entropy 
is related to the system disorder; after mixing the system becomes more disordered and ΔSm 
always increases, causing ΔGmix to become more negative. If the enthalpy is also negative, as 
shown in the figure, the ΔGmix is much more negative and the mixing is the most favoured 
process as the free energy is reduced. If the enthalpy is positive, the mixing is unfavourable 
and the system will tend to separate into the different compositions. ΔHm is related to the 
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bond energy of the mixture, it will be positive if the bonds formed are less stable than the 
bond of the singular composition before the mixing. Phase separation will occur because the 
free energy is reduced by the demixing process.  

 

 

Figure 5. Relationship between the variables that define the free energy in a system of two components. 

 

The two different mechanisms of phase separation are explained from a thermodynamic 
point of view in figure 6. In the graph is represented the immiscibility dome related to the 
changes in free energy. It is possible to distinguish the area between the point X3 and X4 in 
which the system will spontaneously separate into a spinodal structure. This because any 
fluctuation of the binary components would result in a reduction of ΔG and the separation 
can occur without an activation energy. In outer regions, between X1, X3 and X4, X2, any small 
fluctuations in the components would cause the free energy to increase and thus result in a 
disadvantageous situation. The phases will tend to be separate and in that case the 
nucleation and growth process will bring to the formation of a phase separated droplet 
structure in which one phase will totally surround the other composed of small nuclei. The 
temperature is an important factor that strongly influences the phase separation. At low 
temperature the limits of the immiscibility dome are wide apart from each other, but when 
the temperature increases they become increasingly close together eventually reaching Tc 
which is the consolute temperature at which the components of the binary mixture are 
miscible in all proportions. 
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Figure 6. The study of the free energy (red line) trace out an immiscibility dome (black line) related to the temperature that 
evidence the spinodal region. 

 

It has been know that borosilicates can be phase separated below the liquidus temperature. 
Thanks to this property this glass system is widely used in industry and the most well-known 
product that makes use of the phenomenon is Vycor glass. It is probably also one of the first 
applications to exploit phase separation and is used for creating silica ware by a porous glass 
route. Hood and Nordberg (H. Hood 1938) developed a process to phase separate a glass 
composed of Na2O-B2O3-SiO2 choosing a composition near the centre of the immiscibility 
dome to create the spinodal microstructure after a thermal treatment at 600°C. The 
resulting glass is composed of a silica-rich phase and a sodium-borate-rich phase that are 
interconnected. The chemically weaker second phase is easily dissolved under acidic 
conditions. For that reason, after the glass has been heat treated it is immersed in an acid 
bath to cause the complete dissolution of the most soluble phase. The Vycor glass at the end 
of the process is a 96% pure SiO2 porous glass that can be used as said before for silica ware 
but also for the preparation of specialised diagnostic products, for the immobilisation of 
enzymes in fixed-bed reactors and for filters employed in protein separation. Basically they 
can be used whenever porous glasses for filtration include rigidity, chemical inertness, high 
temperature capability, superior thermal shock resistance and controlled micro-porosity are 
needed.  

A range of different compositions in the R2O-B2O3-SiO2 system, where R= Na, K or Li, exhibit 
phase separation when heat-treated with an appropriate thermal treatment, each phase 
being continuous and presenting the spinodal structure.  

If two phases are thermodynamically stable above the melting temperature we have stable 
phase separation known as liquation.  If the two phases exist only below the liquidus then 

Spinodal 
region 
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we have metastable phase separation (fig. 7).  In the last case a single phase glass can be 
obtained by rapid cooling.  Subsequent heat treatment of this glass at a lower temperature 
than the one used for melting can then bring about phase separation. In the borosilicate 
system typically metastable phase separation takes place without exhibiting liquation. 
Progressive separation upon heating between the Tg and liquidus temperatures results in 
one of two mechanism of separation: 1) Isolated droplets of one phase in the prevailing 
matrix by nucleation or 2) spinodal interconnected structure (Hlavac 1983). The temperature 
of the heat treatment was selected after consulting the literature for different glass systems 
exhibiting phase-separation and the focussing on sodium-borosilicate behaviour. 

a) 

 
 

○  Abobe phase boundary 
●  Below phase boundary 

b) 

 
c) 

 

 
 

 

Figure 7 Phase diagram showing subliquidus miscibility gap for different systems: a) B2O3-K2O (Shaw R. 1968) b) Na2B8O13-
SiO2 (Rockett T. 1965) c) Na2O-B2O3-SiO2. (Rockett T.J: 1965) 
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Atsuo et al. (Yasumori 2013) reported spinodal phase separation in the CaO-Al2O3-SiO2 
ternary system but did not describe compositions or heat treatment regimes. The CaO rich 
phase was easily leached. Moawad (Moawad M. 2007) investigated phase separation in 45S5 
glass, producing spinodal separation by heat treatment at 670°C (a temperature very close 
to that chosen in this study). Samples were then leached in 1M HCl at 85°C with 50ml of acid 
employed per gram of sample. As previously stated, Rafferty (Rafferty A. 2000) studied 
phase separation in ionomer cements of the generic composition SiO2-Al2O3-P2O5-CaO-CaF2. 
Glasses were shown to separate into two phases with an optimum nucleation temperature 
around 700°C.  

 

2.2 Bioactive glasses 

Usually, when we consider the word “glass” we rapidly connect it with common objects like 
windows, drinking vessels, optic instruments or at least artistic artefacts. In reality, this 
material known since thousands of years, ancient as much as the Egyptian civilization has 
evolved and used in always more advanced applications. Especially in the second half of our 
century, the study of glasses brought to apply this material in an environment that not so 
easily can cross our mind: the human body and especially in the mouth. The oral 
environment is very aggressive and poses many challenges to restorative materials due to a 
large variety of factors. Acids are generated by bacteria in plaque following the metabolism 
of fermentable carbohydrates derived from foods and drinks, causing erosion processes. An 
acid commonly found under these conditions is lactic acid, a breakdown product from 
bacterial attack on sugars. These lactic acid solutions may have a pH of 4.0 or less, whereas 
human saliva typically has a pH in the range 5.5-7.5. Whilst saliva can be useful as a buffer 
solution, sometimes it is over-powered. Moreover the human saliva creates a wet 
environment that adds a difficult circumstance to the restorations. The mineral component 
of the tooth enamel is calcium hydroxyapatite with the formula Ca10(PO4)6(OH)2. Defects and 
caries are caused by the dissolution of this material at low pH. A natural re-mineralization 
caused by the ions in the saliva make the following reaction exists as an equilibrium: 

Ca10(PO4)6(OH)2(S) + 8 H+
(aq) ↔ 10 Ca2+

(aq) + 6 HPO4
2-

(aq) + 2 H2O 

Finally abrasion and attrition are generated by physical effects. Restorations are expected to 
last many years while being subjected to many different mechanical forces and chemical 
attack.  

As explained in the introduction, was Professor Larry Hench from University of Florida that 
introduce the concept of bioactive glass after his discovery of the 45S5 glass in 1969. The use 
of glass for biomedical applications is due to the active role in the body, stimulating the 
natural healing of hard and soft tissues. The glass network, with its degradation in the body 
environment, will provide useful ions for tissue regrowth and the active stimulation of cells 
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for the production of new tissue. This will also help in forming a strong bound between the 
biomaterial and the living bone tissue providing long lasting implants.  

Bonding to bone and tissues is well documented and demonstrated by a large series of 
bioactive glass compositions (Gerhardt L. 2010, A. Macon 2015). The mechanism of bone 
bonding enables the bioglass to develop an adherent interface with tissues that resists 
substantial to mechanical forces. In many cases, the interfacial strength of adhesion is 
equivalent to or greater than the cohesive strength of the implant material or the tissue 
bonded to the bioactive implant. Five steps have been described for bone-bounding 
mechanism(Jones 2013): 

• Step 1: fast release of Na+ and Ca2+ exchanged with the H3O+ ions present in the 
solution, causing the hydrolysis of the silica groups and a rapid increase of the pH. 

• Step 2: network silica is attacked by hydroxyl group causing the formation of Si(OH)4 
in the solution. 

• Step 3: Silanols (-Si-OH groups) form a silica rich layer on the surface thanks to re-
polymerization reactions. 

• Step 4: Ca2+ and PO4
3- migrate to the just formed silica surface forming a CaO-P2O5 

film on top. 

• Step 5: CaO-P2O5 film crystallize and incorporate other ions from the solution (such 
as OH- and CO3-) will form a HCA layer. 

The hydroxyapatite (HA) layer can be formed on the surfaces of biomaterials in an acellular 
and protein-free solution called simulated body fluid (SBF). The HA formed is very similar to 
the bone mineral in its composition and structure. The evaluation of HA-forming ability on 
implant materials in SBF is useful for evaluating its in vivo bone-bonding ability. Applied in 
glass ionomer cement could improve their bonding within the tooth. When a bioactive 
material is implanted in a living body, a thin layer rich in Ca and P forms on its surface. The 
material then connects to the living tissue through this apatite layer without a distinct 
boundary and providing a strong bond. With this bioactivity test this hydroxyapatite layer 
can be reproduced on the surfaces of materials in SBF and the formation of HA can be 
evaluated with scanning electron microscopy. 

The five stages previously described are illustrated in figure 8. A rapid release of soluble ionic 
species from the glass into the interfacial solution induces surface reactions. A high surface 
area-hydrated silica and polycrystalline hydroxy carbonate apatite (HCA) bilayer is formed on 
the glass surface within hours in a 45S5 glass. The bioactivity is obtained because the 
reaction layers enhance the adsorption and desorption of growth factors. The macrophages 
are attached to the surface and their role is important because they are required to prepare 
the implant site for tissue repair. Finally stem cells and synchronized proliferation and 
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differentiation of the cells act on the surface of bioactive materials to create new bone (Boyd 
D. 2005). 

 
Figure 8 Five step mechanism of HA formation on the surface of a melt-quenched bioative glass. 
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2.3 Glass Ionomer Cements (GICs) 

Since their development during the late 1960s, glass ionomer cements (GICs) have been of 
great interest as dental restorative material. Several feature such as good adherence to 
dentin, good biocompatibility and proper working and setting time make GICs the ideal 
material for dental restorations. 

GICs are set through an acid-base reaction between a mineral phase and a weaker soluble 
polymer. Typically, an aqueous poly(acid), such as poly(acrylic acid), reacts with an ionomer 
glass. The glass composition is designed to be degraded by the relatively weak acid causing 
the formation of ionically cross-linked acidic polymer chains between the multivalent 
counter ions leached from the glass and the carboxylic group of the poly(acid). The result is a 
self-hardening process that ends up with a hard dental cement. 

 

2.3.1 Composition and chemistry 

GICs were invented by Wilson and Kent in 1969 at the Laboratory of the Government 
Chemist in London, United Kingdom. These first materials had very poor properties 
compared with the ones available today.  

Setting occurs by an acid base reaction that involves the carboxylic group of the polymer 
crosslinked by the multivalent counterions leached from the glass. The hydrogens on the 
carboxyl groups of the poly(acid) are progressively replaced thanks to an exchange 
mechanism, which regulates the hardening process. The glass leaching is also an important 
factor to consider because it determines the ions present into the solution. The ionomer 
glasses are complex, and often contain two phases, either completely or partially separated 
(R.G. Hill 1988). The setting reaction is also very complicated including different factors, and 
involves not only the formation of ionically cross-linked acidic polymer chains, but also 
hydration processes and long-term effects caused by slower reactions occurring also after 
the initial setting process. 

The setting mechanism has been intensively studied but there are still different 
interpretations of the overall process. M. Khoroushi in her review (Khoroushi M. 2013) 
divides the reaction in 4 stages: 

1. Decomposition of the glass:  where the glass particle are attacked by the acid 
provoking the release of the metallic cations and the formation of a silica gel layer at 
the surface of the particles. 

2. Gelation: The ion exchange mechanism decreases the proton concentration in the 
solution resulting in a pH increase. This condition promotes the ionization of the 
carboxylate groups that induce the uncoil of the poly(acid) chains. The linear 
configuration brings them to react quickly with the metallic cations. This causes the 
increase in viscosity that is the main effect of this stage. 
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3. Hardening: the cross-linking of the polymer chains by the cations leads to the 
hardening of the cement. At the end of this stage the material will be formed by 
leached glass particles surrounded by the polysalt matrix containing cross-links. 

4. Maturation: the reaction continues after the setting. Ions are still released from the 
glass but also directly from the cement to the tooth and the buccal environment. In 
this stage the mechanical properties increase (due to the stabilization of the inter-
molecular forces) although much of the strength is achieved at 24 hours of reaction. 

According to Sidhu et al. (Sidhu S.K. 2016) the reaction mechanism take place in two main 
steps.  

1. Formation of ionic crosslinks, resulting from the glass releasing ions such as Ca2+, Na+, 
and this is responsible for the immediate hardening process 

2. A second step that is still a crosslinking process, this time involving Al3+ ions. It is very 
slow and takes approximately one day to finish. 

These two steps are followed by further reactions that collectively account for the process 
“Maturation”. They are associated with the increase of strength as also reported in the 
previous interpretation.  

It is possible to notice that the main aspects of the reaction mechanism are pretty well 
described, but the details about the ions involved in the process are still unclear. There is 
much research going on in this field and lots of data can be consulted to better clarify. 

The setting reaction involves, in the first common stage, the acid hydrolysis of the Si-O-Al 
bonds of the glass network that leads to the release of aluminium and calcium cations as 
described in fig. 9. 

 

Figure 9. Hydrolysis of silicon-oxygen-aluminium bond. 

Early studies demonstrate that aluminium and calcium (as major constituents) were the first 
ions to be leached out from the glasses (Crisp S. 1974). Although spectroscopy 
measurements revealed that the initial setting resulted in the formation of only calcium 
poly(acrylate). This compares with the formation of aluminium poly(acrylate), which is 
delayed by one hour. This was postulated to be due to differences in morphologies between 
the Ca2+ and the Al3+ ions. The aluminium ion, which is fully hydrated, was seen as less 
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mobile than the calcium ion. In more recent studies 27Al MAS-NMR spectroscopy has been 
employed to better investigate the transformation of the aluminium cations occurring during 
setting. Muñoz et al (Munhoz T. 2010) show that in the initial glass, aluminium is mostly 
present in a four coordination or tetrahedral state, Al(IV), and it switches to a six 
coordination or octahedral state, Al(VI), when crosslinking the polymeric chains. It is 
interesting to observe that the conversion of aluminium is largely complete between 1 and 6 
hours of ageing. For that reasons calcium ions are the first leached ions to be part of the 
setting mechanism. 

Aluminium has also been shown to be released from conventional glass ionomer cements 
after the setting reaction. This is a cause for concern as there are several well-known toxic 
effects in humans, including adverse effects on the central nervous system, skeleton and 
hematopoietic system. 

Usually three principal components form the base composition for the ionomer glass in GICs: 
SiO2, Al2O3 and CaO. In addition the glasses can contain P2O5 and Na2O, resulting in a 
composition very similar to the one of Hench’s bioglasses. Moreover CaF2 can be added as a 
source of fluoride - very important for teeth remineralisation. Phosphorous, fluorine and 
alkali metals tend to inhibit the crosslinking process. Phosphate groups and fluoride ions will 
both compete with the carboxylate groups for the crosslinking cations. Sodium ions will 
compete with aluminium and calcium for the crosslinking with the carboxylate groups. The 
sodium is poor at cross-linking compare to ions with higher valence number, this avoid the 
multiple ionic bound with different carboxyl group. In figure 10 is show how Ca2+ ions 
ionically cross-links two carboxyl groups. 

 

 

Figure 10. Setting reaction diagram with the principal ions involved in the reaction. 

 

2.3.2 GICs properties 

The characteristics of clinical relevance in a GIC include adhesive properties to tooth 
structure, biocompatibility, fluoride release and a low thermal expansion coefficient that is 
similar to that of the tooth. The chemical adhesion of GIC to enamel and dentin is achieved 
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by the displacement of phosphate ions in the enamel surface, by carboxylate groups from 
the polymer chain (fig. 11). Electrical neutrality is maintained by the displacement of calcium 
ions with the phosphate ions (Wilson A.D. 1983). During the maturation process its ionic 
exchange continues and enhances the bond strength with dentin and enamel. 

 

 

Figure 11. Schematic representation of the adhesion mechanism of ionomer cement to the hydroxyapatite surface. 

 

One of the most important features of these cements is their biocompatibility with both 
enamel and dentine. GICs seems to be less biocompatible with the tooth pulp to which it can 
cause pulpal irritation (Hume W.R. 1988). However, since Glass-Ionomers cements are 
generally used either with a lining material or on intact dentin layer this finding is not 
thought to be significant. There was also evidence that dentin acted as a barrier for the 
diffusion of toxic components from the cement, thereby protecting the pulp under normal 
clinical conditions. There are three main aspects that enhance their biocompatibility:  

1) GIC setting reactions have one of the smallest exotherms compared to other dental 
cements (Crisp S. 1978). This is very important from a clinical point of view because 
excessive heat developed during the reaction may damage the tooth structure and 
pulp. 

2) The neutralization is rapid enough to avoid any irritation that can be caused by the 
polymeric acids. The poly (acrylic) acid is a weak acid with a pKa of 4.5-5 and the 
reaction with the glass particles generate a quick neutralization (few minutes). 

3)  The species leached from the glass are generally beneficial for the tooth tissue and 
can stimulate odontoblast cells growth and proliferation. An important role for this 
aspect of the biocompatibility is associated with the design of glass compositions that 
leach the correct ratio of ionic species for assisting the remineralisation. For example 
the calcium release favours osteoblast proliferation, differentiation and extracellular 
matrix (ECM) mineralization (Maeno S. 2005). 
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The fluoride release contributes to bacterial inhibition. The anticariogenic effect of glass 
ionomer cements is mostly due to this property (Forsten 1998). As the metabolism by 
bacteria in the mouth environment causes the release of acidic species and caries, fluoride 
acts to enhance the remineralisation of enamel and dentin assisting in the development of a 
structure that is highly resistant to caries. Dimensional changes during the GIC setting and 
lack of adaptation of the restoration to the cavity can create marginal leakage. This 
phenomenon is strictly influenced by the moisture sensitivity. It is noticed that the need to 
maintain a water balance in GICs is important, especially in the early stage of the setting-
reaction. Waterproof coatings have been used, but the risk of limiting the fluoride release is 
present (Hattab F.N. 2001). 

Despite these excellent properties, limitations in their applications may result from the low 
mechanical strength and toughness. The principal mechanical properties that characterize a 
restorative material are: elastic modulus, compressive strength, flexural strength and surface 
hardness (Vickers hardness). The Vickers hardness value of tooth enamel (274.8 ± 18.1 HV) is 
approximately 4.2 times greater than that of dentin (65.6 ± 3.9 HV) while no significant 
differences are observed among the elastic modulus (E) values (1338.2 ± 307.9 MPa for 
enamel and 1653.7 ± 277.9 MPa for dentin) (Zhang Y.R. 2014). Amalgams have an elastic 
modulus of 1437.5 ± 507.2 MPa and a Vickers hardness value of 90 HV. The E values for 
dental resins are lower (833.1 ± 92.4MPa) while Vickers hardness values (86.3–124.2) are 
marginally higher (Keyoung J.C. 2014). In the study of Shintome et al. (Shintome L. 2009) the 
highest micro-hardness values were obtain for Fuji IX with 97.79 ± 3.71 VH (table 5). A 
comparison of flexural and compressive strength for different commercial GICs is shown in 
the table 6. 

 

Table 5.  Glass ionomer formulations and their Vickers hardness measured after 7 days. 

 

Product name Powder HV 
(24hours) 

HV (7 
days) 

Fuji IX (GC) Alumino fluoro silicate glass 89.85 ± 3.1 97.79 ± 
3.71 

ChemFlex 
(Dentsply) Strontium, aluminum, fluoride, silicate 52.52 ± 

3.57 
64.68 ± 

1.70 
Magic Glass 

ART 
(Vigodent) 

Radiopaque fluoraluminum silicate crystals 49.18 ± 
2.88 

50.90 ± 
1.96 

Vidrion R        
(SS White) 

Sodium fluorosilicate calcium and aluminum, barium 
sulfate 

35.08 ± 
1.65 

42.55 ± 
1.76 
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Table 6. Comparison of the mechanical properties between different commercial GICs. (FS= flexural strength. CS= 
compressive strength). 

 

Product 
name FS (Mpa) CS(Mpa) Author 

Fuji II 

26,1 202 (D. Xie 2000) 

14,8 161,0 (Moshaverinia A. 
2008) 

2,0/15,3 / (Irie M. 2008) 
30,8/23,0 / (Bapna M.S. 2002) 

Fuji IX 

22,6/15,4 / (Iazzetti G. 2001) 

29,2 211 (Lucksanasombool 
P. 2002) 

42 236 (Peez R. 2006) 

Ketac Molar 

1,9/19,3 / (Irie M. 2008) 

19,7/33.0/35 / (Lohbauer U. 
2003) 

51 244 (Peez R. 2006) 
21,2 301 (D. Xie 2000) 

 

2.3.3 GICs: Strategies for the development and innovations  

Glass-ionomer cements possess certain exceptional properties that make them useful as 
restorative and adhesive materials. Some limitations (including brittleness, poor fracture 
toughness and sensitivity to moisture in the early stages of the placement) reduce the 
applications of these materials. 

Several attempts have been made in the last decade to improve the properties of the glass 
ionomer cements. Investigations into this restorative material are essential to succeed in the 
delivery of better products. Different directions have been taken in order to study separately 
the different aspects. 

As already highlighted, aluminium has a double effect in the material: it appears to be 
fundamental for the setting mechanism but at the same time it is recognized as a neurotoxin 
(JG 1990) and cause of some neurological diseases, such as Alzheimer's and Parkinson's 
disease. Therefore one of the aspects investigated most extensively has been the 
development of aluminium-free ionomer glasses. Replacing it with iron showed good 
biocompatibility (Nourmohammadi J. 2010) but the glasses lose their amorphous nature. 
Hurrell-Gillingham et al. (Hurrell-Gillingham K. 2006) substituted aluminium with iron - one 
trivalent metal cation for another. They developed a Fe2O3 based glass-ionomer cement with 
the purpose of avoiding Al3+ release. They concluded that it was possible to develop the 
cements from all the Fe2O3-based ionomer glasses, but that aluminium contamination was 
always present. Zinc oxide is considered a good candidate but only for orthopaedic 
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applications. The zinc-silicate ionomer glasses studied by Boyd et al. (Boyd D. 2005) with a 
composition in w% of: 5 CaO, 53 ZnO, 42 SiO2 exhibited handling properties and flexural 
strengths comparable to conventional GICs. However, it has been proved that the higher 
release of zinc ions creates adverse effects to the metabolic activity of murine osteoblastic 
cells (Brauer D.S. 2011). In a more recent study, Kim et al. (Kim D. 2014) developed an 
aluminium-free glass ionomer cement doped with magnesium and strontium. Both ions are 
acting as network modifiers and enhanced the bioactivity. Strontium in particular increased 
the mechanical properties and bone cell proliferation rate whilst maintaining a proper 
setting behaviour.  

Shape and size of the glass particles have been also studied in order to improve the 
mechanical properties. Kobayashi et al. (Kobayashi M. 2000) proposed that short glass fibres 
composed of CaO-P2O5-SiO2-Al2O3 can function as a reinforcing agent of glass-ionomer 
cement. Larger diametral tensile strength and flexural strength compared with set cements 
devoid of glass short fibres has been detected. Nano-granular glass particles with a median 
size of 0.73 μm and 6.02 μm were made in the Caluwé et al. study (De Caluwé T. 2014). 
Smaller particles have higher surface area. As such, during the reaction with the poly(acid), 
the contact area between the powder/liquid components is increased to enhance the setting 
and mechanical properties of GICs. More precisely in the study cited it is proved that the 
setting time shortens and compressive strength and elastic modulus increase in formulations 
containing nano-granular glass particles. 

Tartaric acid is nowadays incorporated in the majority of the glass ionomer cements. Since 
initial studies in 1972 it has been seen that the introduction of this additive modifies the 
cement forming reaction, thus improving manipulation, extending working time, and 
sharpening the setting rate. Therefore it is worth exploring ways to optimize the liquid part 
of the cement: changing the microstructure of the acrylic acid copolymers could be a 
possible route to improving GICs. Different research areas can be summarized as follows: 

 Study amino acids for functionalization of the acrylic acid copolymers in order to 
increase the level of crosslinking with the ions leached from the glass. 

 Develop new polymers for the visible light cured versions of GIC in order to avoid the 
use of toxic components in example the Poly(methyl methacrylate). 

 Looking to change directly the copolymer microstructure via a new synthetic route to 
obtain improved GIC. 

In-depth investigations of these routes can be useful in formulating GIC with improved 
properties. 

Another aspect that is gaining more and more interest for making new glass ionomer 
cement, is the addition of additional fillers to the glass powder in ionomer glasses. Actually 
the first attempt was made by Simmons in 1983, trying to increase the strength of 
conventional GICs with the addition of amalgam alloy powder (Simmons 1983). The result 
was a commercially available product called Miracle Mix (MM, GC Corporation, Japan). 
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However the simple addition of amalgam powder did not exhibit promising results in term of 
mechanical properties.  

It is around 2004, that the first articles have been published on the addition of bioactive 
glass to the GIC. In particular, Yli-Urpo and her group investigated this area and the different 
characteristics generated like compressive strength (Yli-Urpo H. 2005), ions release (Yli-Urpo 
H. 2004) and tooth remineralisation (Yli-Urpo H. 2005). Experimentally the materials were 
made by mixing the commercial GICs powders with the 45S5 bioactive glass powders. The 
final study gave good results only from the bioactivity point of view. The mechanical 
properties seem to be compromised by the addition of bioactive glasses. Several studies 
have used various chemical composition of bioglasses for example Xie et al. (Xie D. 2008) 
used the S53P4 formula (in w%: 53SiO2, 23Na2O, 20CaO, 4P2O5) while Wollenweider et al 
(Vollenweider M. 2007) used NBG with 45S4 formulation (in w%: 44.7SiO2, 27.6CaO, 
22.8Na2O, 4.9P2O5) and Perioglass (Novabone) with 45S5. The same conclusions were drawn 
for all the studies. 

Hydroxyapatite (HA) has been used as filler for enhancing the biological properties. It has 
excellent biological behaviour, its composition and crystal structure are similar to those of 
the apatite found in human dental structures and the skeletal system. Gu et al. (Gu Y. 2005) 
found that the combination of crystalline HA with GIC glass did not affect compressive 
strength significantly but they found that amounts > 12% (w/w) had an adverse effect on the 
mechanical properties. Increased values were found for HA/ZrO2 additions in the same 
study. ZrO2 has been widely used for the toughening and strengthening of brittle HA and 
bioglass in biomedical applications (Biological reactivity of zirconia-hydroxyapatite 
composites). In an article from Moshaverinia et al. (Moshaverinia A. 2007) nano-HA and 
nano-FA (fluoroapatite) were incorporated into commercial glass-ionomer powder (Fuji II 
GC). It was concluded that the experimental dental cements improved both mechanical 
properties and bond strength to the dentin. In this case the influence of two factor is 
considered important:  the fillers particles size and their chemistry. Proving that working on 
different aspect at the same time could be a promising area of investigation. 

Metallic additives such as silver, gold, titanium and palladium have been investigated as 
fillers in GICs. Silver and gold presented higher strength compared to the conventional glass-
ionomer cements, however, these modified GICs are difficult to polish and their aesthetic is 
poor. 

The current literature lack of studies that demonstrates how the mechanical properties of 
the glass-ionomer cements are unlikely to be enhanced alone by the addition of reinforcing 
particles and fillers such as bioactive glass fillers, glass fibers or metals fillers. Just few 
attempts has been made with glass composition that differs from the conventional GICs. 
More interest should be concerned in this direction too. It has been proved by recent articles 
that dental cements set also with non-classical glass compositions. The study of the 
properties of these materials can bring new information to the subject in order to obtain a 
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new innovative material with better properties. More details will be added in the next 
chapter. 

 

2.4 Borosilicate glasses 

Boric oxide is the second most important glass-forming oxide. It can be used without silica, 
forming borate glasses employed for very technical purposes, but in general it is used in 
conjunction with silica to give the borosilicate glasses. 

Silica and boric oxide glass formers have very different physical and chemical properties as 
described in table 7. 

 

Table 7 Comparison between silica and boric oxide properties. 

SILICA (SiO2) BORIC OXIDE (B2O3) 
High melting point (≈1700°C) Easy melting (≈450°C) 

High viscosity Low viscosity 
High chemical resistance Soluble in water 

 

Borosilicates glasses are of technological interest because they have many applications. This 
is due to their lower thermal expansion, good chemical resistance and high dielectric 
strength.  

Borosilicate glasses and more precisely alkali borosilicates compositions are the basis of 
many practically important glasses used in the chemical industry, optics, optoelectronics, the 
atomic industry, etc. Pyrex glasses are one of the most known applications of borosilicate 
glasses. It was developed in the early years of the 20th century to satisfy the demand for a 
material with high thermal resistance. This property, coupled with excellent chemical 
durability, makes Pyrex the ideal material for laboratory products. Because of its low 
expansion characteristics, Pyrex borosilicate glass is often the material of choice for 
reflective optics in astronomy applications. 

Borosilicates glasses are a promising material that have been widely studied for biomedical 
applications such as scaffolds in soft tissue repair and various bone repair scenarios. 
Although silicate glasses have received major attention for dental restorative materials, 
borosilicate glasses have recently been developed for similar applications (Neve A. D. 1992). 
A few studies already demonstrate some attempts in using borosilicates for dental cements 
with enhanced bioactivity and antimicrobial properties realized through the species released 
from those glasses. The objective of this work is to characterize a series of novel borosilicate 
glasses and to understand the mechanism and kinetics of dissolution related to their 
microstructure and composition. The use of thermal treatment to promote phase separation 
as a means of influencing the rate of ion leaching will be especially studied. The dissolution 
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process for borosilicates in neutral body solution (simulating saliva) or in acidic 
environments (simulating scenarios where bacteria or acid foods are present) provides 
information regarding the type and concentration of ionic species released by the glass. As 
the novel borosilicates generated in this work (see next section for compositional 
information) react in an aqueous environment, B-, Si-, Ca-, K- and Al- species are liberated to 
different degrees as a function of the time. Ion leaching trends can be related to the glass 
chemistry and microstructure. The dissolution rate of the different elements leached out will 
stimulate theories for which of these species are more or less involved in the mechanism of 
cement consolidation. For example boron, leached out as boric acid, could have a 
fundamental role in the crosslinking with the poly(acid) chains in addition to its excellent 
biological properties. Moreover it can potentially substitute for aluminium that has so far 
been considered as essential for the hardening of the cement due to its high (+3) oxidation 
state. Silica that remains in the less soluble phase could enhance the mechanical properties, 
the concept being that the chemically durable phase remains as a continuous layer that 
maintains mechanical properties over time. Studies on the mechanical properties discussed 
later on in the thesis, will provide evidence for the relationship between elements leached 
and the microhardness / flexural strength delivered in the cured composite.  

 

2.5 Ion release and glass dissolution 

The dissolution rate of the bioactive glass into specific solutions is one key characteristic for 
selecting glasses for different applications. The concentration of each ion in solution varies 
with the composition, surface area of the glass particles, temperature and pH of the 
solution. 

The elements that dissolve from the glass will control the hardening process of the glass 
ionomer cement formation, due to the reaction with the poly(acrylic acid). During and after 
the maturation of the cement some of the ions will then activate process related to the 
tooth remineralization and influence antimicrobial behaviour. HA precipitation is pH 
dependent so some of the ions from the glass might cause a pH change that helps the HA 
deposition process. For understanding completely the glass ionomer cement forming ability 
and its subsequent performance, it is essential to study the degradability of the glass powder 
in acid solution. The action of the different ions released from bioactive glasses is very well 
documented in a review from Hoppe et al. (Hoppe A. 2011). 

Ion release kinetics from bioactive glasses has been extensively studied in vitro. Usually the 
studies are carried out in static conditions using approximately neutral solutions like 
simulated body fluid (SBF), phosphate buffered solution (PBS) and tris(hydroxymethyl)amino 
methane solution (Tris). Alternatively acidic solutions like nitric acid (HNO3), lactic acid 
(C3H6O3) and acetic acid (CH3COOH) can be used. The choice of the solution used is strictly 
dependent on the type of study that the authors decides to perform and the oral conditions 
the experimenter wishes to replicate. After the immersion (the temperature is always 
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constant at 37°C) the ions are collected at different time-points and analysed using ionized 
coupled plasma (ICP) spectroscopy.  

The study of glass dissolution in solutions similar to those present in the human body have, 
as the main objective, the creation of preliminary test data to evaluate performance in 
potential new implantation materials. For example Cluppera et al. (Clupper D. 2002) 
observed the formation of crystalline hydroxyapatite (HA) on the surface of 45S5 bioglass 
immersed in SBF. The formation of HA is reported in the majority of the studies and it is an 
indication of the biocompatibility of the glass.  

Nourmohammadi et al. (Nourmohammadi J. 2007) investigated the dissolution of an 
aluminosilicate powder (destined for use in a glass ionomer cement) into a dilute acetic acid 
solution. This work was undertaken as the acid degradation and consequent ion leaching 
from the glass was deemed crucial for the cement forming ability. 

Most of the studies are focused on gaining an appreciation of the material behaviour in 
vitro. It is desirable to develop materials with sufficient bioactivity and controllable 
degradation behaviour to meet the requirements for a biomaterial. The absorption should 
be gradual and concurrent to the replacement with the host bone or the induced 
remineralisation. 

In silicate glasses the degradation in biological environments brings about the release of ions 
such as Na+ and Ca2+ that are responsible for initiation of HA layer formation that is able to 
bound tightly to the bone. The resulting amorphous calcium silica layer formed at the 
surface of the glasses is one of the steps of the mechanism leading to the formation of 
crystalline hydroxyapatite. It is also confirming the high biocompatibility of silicate glasses of 
which 45S5 is considered the baseline composition as documented in numerous studies 
(Wilson J. 1981). Although a network former, silicon can be leached out as silicic acid Si(OH)4. 
It is partially involved into the HA layer formation and it is also harmlessly excreted in soluble 
form through the urine (W. Lai 2002). The biological environment is significantly influenced 
by ion dissolution and pH changes occurs in loco as a resulting of this phenomenon. The 
addition of different glass modifiers results in the production of other types of silicates such 
as 13-93 (6wt% Na2O, 12wt% K2O, 5wt% MgO, 20wt% CaO, 53wt% SiO2, 4wt% P2O5) that has 
already been approved for in vivo uses in Europe because of its similar biological properties 
to 45S5; this is despite presenting a slower degradation rate. 

Phosphate glasses have unique dissolution properties due to their different structure. When 
they form 3D binary oxides, phosphorous can only share three out of its four oxygens. This 
fact limits their connectivity because phosphate anions should contain at least one terminal 
oxygen. Therefore the rigidity, related with the interatomic forces, is less in phosphate 
glasses in respect to silicate glasses. When mixed with alkali metals oxides, phosphate 
glasses contain fewer cross-links but a higher number of terminal oxygens resulting in more 
flexibility of the orientation of the structural units. Their dissolution  is considered to be 
dependent on three factors that are similar to some of the factors important for the silicate 
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glasses (Bunker B.C. 1984). These are the structure of phosphate network, the ions 
exchanged between the glass and the solution and the kinetics of phosphate hydrolysis. The 
first factor is related to the number of cross-links and is defined as the ratio that exists 
between the numbers of PO4 groups attached to other P atoms via one, two or three 
bridging oxygens (BO). The addition of modifier oxides results in the creation of Non-Bridging 
Oxygens (NBO) and a consequent faster dissolution of the phosphate network. The ions 
exchanged are regulated by acid/base reactions. Ions such as Na+ and Ca2+ lie along the 
phosphate network chains in different positions that determine their capability to be 
exchanged with the solution. The acid/base reactions aid glass dissolution by disrupting the 
ionic interaction between the chains. Finally the hydrolysis reaction will break the phosphate 
chains into orthophosphate group. The rate of hydrolysis are slow if compared to glass 
dissolution rates and the pH has a fundamental role in accelerating this type of reaction. 

In borosilicate glasses chemical durability generally decreases with an increase in boron 
concentration relative to the silicon concentration. High alkali concentrations in borosilicate 
as well as in silicates, promotes the formation of NBOs in the network structure that induce 
a decrease in durability. When compared to silicate glass, borate and borosilicate bioactive 
glasses were found to degrade faster and completely convert to HA because of their low 
chemical durability. When a proton coming from the solution, substitutes for an alkali ion in 
a borosilicate it causes an important change to the network structure: 4-coordinated borate 
units become a trigonal borate unit increasing the corrosion rate of the glass, as confirmed 
by the faster leaching rate of B and K compared to Si. This is documented in the literature 
(B.C. Bunker 1986, A. Ledieu 2004)  but also confirmed in this work.  

When a borosilicate is immersed in a solution two predominant borate species are detected, 
boric acid B(OH)3 and tetrahydroxyl borate anions B(OH)4

-. At biological pH, the B(OH)3 is the 
stable species in solution. Apparently, with different acidic solutions the pH in the presence 
of borosilicate ions increases. This was confirmed by the studies with the nitric acid in this 
work. In fact, Fu et al. (Fu Q. 2010) reported that if the solution is  SBF, the pH will increase 
too and lead to B(OH)4 species formation. Boric acid is a weaker acid compared with 
phosphoric acid associated with the SBF solution (or directly from the body saliva), and the 
consumption of PO4

3- ions associated with the release of BO3
- ions from the glass results in 

the increase of the solution pH. 

The strong affinity for a pair of electrons in boric acid and other borate compounds makes 
them valuable for adhesive applications like many other fine chemicals. Boric acid’s acidity is 
due to the acceptance of an electron pair rather than by proton dissociation. This is why the 
weakly acidic and electron deficient boric acid accepts an OH- ion from the solution and 
forms borate anions B(OH)4

-. This anion in its tetrahedral form undergoes bridging and 
creates cross-links with any polyol, cellulose, polysaccharide, glycoprotein, etc. The 
interaction of simple carbohydrates with borates is well known. Therefore, boron in boric 
acid and borates forms a hydrogen bond network with a compound containing poly-hydroxy 
groups (fig. 12). This is the basis for its importance in adhesives. Boron’s use in adhesives 
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shows that it plays primarily a structural crosslinking role. In crosslinked adhesive products, 
borate ions are all bound within the adhesive matrix. The presence of this compound 
released from the glass could also be relevant for enhancing the hardening process in glass 
ionomer cements. 

 

Figure 12. Borate ion crosslinking with the hydroxyl group of a polymer chains. The hydrogen bond formation is highlighted. 

 

2.6 From silicates bioactive glasses to borosilicates 

The bioactivity of biomaterials has been defined as “the ability to bond with host bone 
tissue” and includes the ability to encourage apatite formation. To be classified for 
biomedical applications, a bioglass has to meet three requirements. The first requirement is 
that the material must be biocompatible; it means that the organism should not treat it as a 
foreign object. Secondly, the material should be resorbable; it should be degraded or 
dissolved by the organism to allow it to resume natural functioning. Thirdly, the material 
should have appropriate mechanical properties; for the replacement of load bearing 
structures, the material should possess equivalent or greater mechanical stability than the 
natural tissue to ensure high reliability of the graft. The Hench 45S5 glass still shows the best 
bioactivity, but more recent work has shown that certain compositions in other glass-
forming systems, such as borate glass and borosilicates are also bioactive. The conversion to 
hydroxyapatite (HA) has been observed also for borate and borosilicate glasses with a similar 
mechanism postulated to that proposed for the 45S5 (fig. 13).  
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Figure 13. HA conversion mechanism of borate, borosilicate and silicate glasses. 

 

Huang et al. (Huang W. 2006) investigated the dissolution of a 45S5 glass in which the silicon 
is partially and totally replaced by boron. The experiments were performed in a phosphate 
solution and it was observed that some borate glasses converted completely to HA and at a 
faster rate than 45S5 glass. Boron has a three coordination number in glasses and it cannot 
form easily a 3-dimensional network as the one formed by silica. For this reason borate 
glasses have a lower chemical durability and a faster dissolution rate. Borosilicate dissolution 
rates fall, predictably, between the two glass types, as they are composed of both trigonal 
borate and tetrahedral silica units. Whereas the low chemical durability of some borate 
glasses has been known for decades, it is only recently that the potential of borate glasses in 
biomedical applications has been explored. The rate of conversion to HA can be tailored in 
relationship to the regeneration of new bone tissues in order to improve the resorbability of 
the biomaterial. In fact, for final applications a gradual resorption of the implanted 
biomaterials and the simultaneous replacement of the biomaterials by host bone is required.  

The biocompatibility of borate and borosilicates is has also been exploited in different 
studies that proved their ability in enhancing the cell proliferation and differentiation. 
Marion et al. (Marion N. W. 2005) showed how porous borate glass can present excellent 
cytocompatibility and the capacity of osteogenic promotion of human mesenchymal stem 
cells. Cell lineage have survived up to two weeks of seeding on porous borate glass disks, 
suggesting that porous borate glass provides a suitable environment for cell attachment and 
proliferation. Bioactive glass scaffolds with the composition (mol%): 22 CaO, 6 Na2O, 8 MgO, 
8 K2O, 18 SiO2, 36 B2O3, and 2 P2O5, were prepared by Fu et al. (Fu H. 2009). Biocompatibility 
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tests showed the enhanced proliferation of bone marrow stromal cells, as well as the 
proliferation and function of murine MLO-A5 cells, an osteogenic cell line, proving the 
potential of the borosilicates as biomaterials applications.  

Few researches demonstrate that acceptable working and setting times may be achieved 
with systems other than silicate ones. Neve et al. (Neve A. D. 1992) have manufactured a 
novel aluminoborate glass system, for use in GICs. The formulation was composed of: B2O3, 
SrCO3, Al2O3 and ZnF. The powders were mixed with freeze dried poly(acrylic acid) in varying 
proportions, and the cement forming ability of these mixes was assessed by the 
measurement of working and setting times. It was found that the alumina content has a 
major effect on the reactivity of the aluminoborate cements; zinc and strontium in the 
glasses exhibit more complex reactivity. Probably this was due to the differences in the rate 
of extraction of the cations or their mobility into the network structure during the hardening 
process. In the end these glasses are capable of forming cements with acceptable 
characteristic from a clinical point of view. In the work of Shen et al. (Shen L. 2014) borate-
based glasses were evaluated as a primary component of GICs. The borate glass 
compositions developed in this study possessed several important features: they are entirely 
free of aluminium, they contain silver in the ionic state (which is desirable for antibacterial 
applications) and they contain zinc, strontium and/or titanium. Some of the compositions 
were able to produced cements with good working and setting times. However the 
mechanical properties of the borate-based GICs considered were not sufficient for structural 
applications. They may still be of use in applications where minimal load bearing and/or 
rapid resorption is required. It was found that TiO2 helps in controlling the rheological 
properties, giving the longest working times and the shortest setting times for high wt% 
loadings into the composition. 

One way to improve the biological and mechanical properties of the GICs may be by 
controlling the composition of the glass component. To do this knowledge of (i) the 
processes that lead the glass formation and (ii) how changes versus time to the structure of 
the glass affect its properties is required. 

 

2.7 Review article: Mechanical characteristic and biological behaviour of implanted and 
restorative bioglasses used in medicine and dentistry. 
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The glasses studied in this thesis are based on the quinary system SiO2-B2O3-K2O-Al2O3-CaO  
and were obtained by melt-quenching technique. In this chapter, a factorial experimental 
design will introduce how the set of samples was built. Than a first part is dedicated to the 
description of the methods used for developing the compositions of the borosilicate glass 
powders and how they were produced with the melt-quenching technique and the heat-
treatment, with insight related to the raw materials and their behaviours. 

A second part will explain the concepts behind the techniques used for the preliminary 
characterization of the glass powders obtained and how they are applied to the study of the 
borosilicates. Refractive index calculation, X-ray powders diffraction and differential thermal 
analysis were the techniques used for this purpose. 

A third part is referred to the surface studies for the investigation of different 
microstructures found in the glasses induced by the heat-treatment. Optical microscopy and 
scanning electron microscopy are the most important techniques used and in this section 
will be describe how the samples were prepared for these analysis. 

The last two parts are addressed to tests developed for the analysis of the ions release of the 
glasses in acid conditions and to the mechanical and bioactive properties connected with the 
final material mixed with a commercial poly(acrylic acid). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14 Overall scheme of the operations 
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3.1 Projecting and manufacturing of the borosilicate glass composition 

 

3.1.1 Mixture design using an experimental design 

Designs of experiments are useful tools that allows efficient organization of the experiments 
required in scientific research or industrial process optimisation (J. Goupy 2001). The 
complete understanding of this method should start by learning the essential notions that 
describe the area of the study and should follow with the choice of the most appropriate 
strategy for the purpose of the research. 

The “response” is the property measured in final components delivered in every experiment. 
It is dependent from different variables that are called “factors” (i.e. Time, Temperature & 
Concentration). If the influence of just one factor is studied, its variations are limited 
between two (upper and lower) limit values (see figure 15).  

 

 

Figure 15 The factor domain includes all the values between the low (-1) and the high (+1) levels which are coded values 
without unit, i.e. (-1) corresponds to the minimum and (+1) to the maximum of the natural variable. 

 

The domain of the factor includes all the values that a factor can assume. If there is a second 
factor it is also defined by a domain of values between an upper and a lower limit. The 
experimental area is in such a way defined by the space created by two axis. An 
experimental point is defined by the coordinates of the two axis in this manner (see figure 
16) 
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Figure 16 Representation of the experimental point into the experimental space. 

 

The study domain is the zone of the experimental space chosen at the beginning of the 
research. The study domain groups the factor’s domain: 

 

Figure 17 Experimental points defined into the experimental space determined by the researcher. 

 

The response surface is graphically defined by an axis that is orthogonal to the experimental 
area. 

The principal objective of the design of experiment is to obtain the most optimal response 
possible from the lowest number of experiments undertaken.  

From a mathematical point of view the response can be represented as a polynomial model: 

A first degree model is used for a screening design    

A synergic model is used for factorial design     

A quadratic model for surface response designs  

              



70 
 
 

 

where 

 = response as measured during the experience 

 = represents the coded value of the factor i (given by the experimenter) 

 = coefficients of the mathematical model calculated in relation with the response 
of the experiment. 

 

From a statistical point of view the random nature of the response involves an experimental 
error for each measurement that creates dispersion inside the values of the results.  

An experimental design is associated with a model to get the matrix of the model, called ;  
is the vector of errors and  the vector of responses. 

 

 

The resolution of this system of equations is obtained by linear regression using the least 
squares method: 

 

 

where 

 = vector coefficient 

= transposed matrix of  

 

Case of experiments with mixtures: mixture design 

In this work a mixture design of experiments was selected.  

In the general mixture problem, the measured response is assumed to depend only on the 
proportions of the ingredients present in the mixture. 

The studied factors in a mixture design are the proportions of the components of the mix. If 
 represents the relative molar proportion or  the relative weight amount of the 

component i, the sum of the proportions of all the components satisfies this relationship: 

 or  

This relationship is called fundamental limit of the mix. 
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With three components the simplex factor space is an equilateral triangle. The pure products 
are found at the vertices of the triangle. The binary mixtures are found along the sides. 
Points inside the triangular area represent a ternary mixture.  

For a mixture with more than three components a regular polyhedron is use. The 
borosilicate glass studied in this work is a quinary system in which two of the components 
are displayed together as they are fixed at a certain value (SiO2= 45wt%; K2O= 15wt%). For 
this reason a regular tetrahedron will be used to represent the overall system studied (fig. 18 
(a)), and 3 factors are sufficient to describe the study domain. 

 

 

Figure (a) Quinary system represented with a tetragonal polyhedron. Several isoplethic sections were studied: 4 sections 
with a constant Al/B ratio (along the line ZP) and 3 sections with a fixed Ca content (along the line XY). 

 

 

Different mathematical models are used for the response with 3 factors: 
 
A first degree model      
 
A second degree model   
 
A special cubic model   
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The higher the degree, the higher is the number of the points that should be used in the 
experimental area to determine the coefficients.  The resolution of this system of equations 
is always obtained by linear regression using the least squares method: 
 

 

 = coefficient 

= transposed matrix of X 

 

Taking into account all the previous information, 14 glass compositions were formulated to 
study a specific area on the triangle defined by the three factors(Fig 18 (b) and Table 8). The 
glasses have to satisfy the fundamental limit relationship of the mixture design. Keeping in 
mind that SiO2+K2O is a constant equal to 60w%, the remaining 40w% will be the fixed value 
that have to be reached by the sum of the other elements.  

The constraints have been fixed in order to describe the experimental domain: 

 B2O3: 20-40w% 
 CaO: 6-15w% 
 Al2O3: 0-11,5w% 
 SiO2 = 45w% ; K2O = 15 w%  

 

 
 

 
 

Figure 18 (b)  Representation  of theoretical experiments  (DOE) from  (NEMRODW) Software-L.P.R.A.I, Marseille 

 
 

 Some compositions run were replicates that give a more robust response by 
providing information on standard deviations for repeat runs. Some compositions were 

Al2O3

B2O3 CaO

Al2O3

B2O3 CaO
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central points between the factor’s domains while others are deliberated chosen on the 
isopleth lines to maintain a ratio of two elements constant and study how one single 
element affects the properties of the glass. Moreover, three final compositions were added 
as experimental points external to the study domain in order to collect information on 
glasses belonging to the isopleth lines but without at least one of the three variable 
elements. The response studied was defined by the kinetics of ions leaching of every glasses. 

 

Table 8 Composition of the experimental borosilicate glasses (w%) 

Glass SiO2 K2O B2O3 Al2O3 CaO 
PSBS 1 45,0 15,0 22,5 7,1 10,4 
PSBS 2 45,0 15,0 26,2 3,4 10,4 
PSBS 3 45,0 15,0 25,0 0,0 15,0 
PSBS 4 45,0 15,0 20,0 11,5 8,5 
PSBS 5 45,0 15,0 20,0 5,0 15,0 
PSBS 6 45,0 15,0 26,2 3,4 10,4 
PSBS 7 45,0 15,0 25,9 8,1 6,0 
PSBS 8 45,0 15,0 34,0 0,0 6,0 
PSBS 9 45,0 15,0 30,3 0,0 9,7 

PSBS 10 45,0 15,0 25,9 8,1 6,0 
PSBS 11 45,0 15,0 34,4 5,6 0,0 
PSBS 12 45,0 15,0 30,0 10,0 0,0 
PSBS 13 45,0 15,0 22,5 11,5 6,0 
PSBS 14 45,0 15,0 22,5 2,5 15,0 
PSBS 15 45,0 15,0 29,1 4,8 6,1 
PSBS 16 45,0 15,0 21,4 7,1 11,5 

PSBS SBK 45,0 15,0 40,0 0,0 0,0 
 

Taking into account that SiO2 and K2O are constant the data were transformed by calculating 
the Janecke’s coordinates that allow glass compositions to be represented on a triaxial 
diagram regardless of constant amount of SiO2 and K2O (Table 9 and Fig 19).  

 

 

 

 

Where: 
wJ= coordinate on the Janecke triangle for each components 
m= weight percentage of the glass components. 
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Table 9 Janecke coordinates calculate in percentage. 

Janecke's coordinates wJ 
Samples B2O3 % Al2O3 % CaO % 
PSBS 1 56,14 17,96 25,90 
PSBS 2 65,55 8,48 25,98 
PSBS 3 62,50 0,00 37,50 
PSBS 4 50,00 28,75 21,25 
PSBS 5 50,00 12,50 37,50 
PSBS 6 65,55 8,48 25,98 
PSBS 7 64,70 20,30 15,00 
PSBS 8 85,00 0,00 15,00 
PSBS 9 75,68 0,00 24,32 

PSBS 10 64,70 20,30 15,00 
PSBS 11 86,00 14,00 0,00 
PSBS 12 75,00 25,00 0,00 
PSBS13 56,25 28,75 15,00 
PSBS14 56,25 6,25 37,50 
PSBS 15 72,85 11,89 15,25 
PSBS 16 53,57 17,68 28,75 

 

 

Figure 18 Triaxial diagram with the representation of PSBS samples (Janecke’s coordinates) 
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3.1.2 Batch calculations 

All the series of glass compositions based on SiO2-B2O3-K2O-Al2O3-CaO were prepared from 
raw materials purchased by different manufacturers: MICROSIL M10.2 (SIBELCO Benelux 
99% pure SiO2), H3BO3, K2CO3 (ALTAIR Chimica s.p.a.), Al2(OH)6 (Industrial mineral service) 
and CaCO3 (Ben Bennett Jr Ltd ). 

A complete list of the raw materials used can be found in table 10.  

 

Table 10 Raw materials used for the novel borosilicate system 

RAW MATERIALS DESCRIPTION CHEMICAL/PHYSICAL 
PROPERTIES 

SUPPLIER 
 (EXAMPLE) 

Sand, silica, SiO2 It is the major constituent of 
most glasses. French, English 
and Holland sands are famous 
for their purity. This will permit 
the manufacture of good and 
colourless glasses. 
MICROSIL®M4.1T is produced 
by iron-free grinding and 
accurate sieving. Silica of >99% 
purity was used in these studies 

Silica confers high 
viscosity, good chemical 
resistance and a low 
coefficient of thermal 
expansion. 

Sibelco 
Benelux 

Potassium 
carbonate, K2CO3 

It is also known as potash or 
pearl ash, appears as a white 
powder or as colourless solid 
crystal. 
 

It is similar to Na2O, in 
action, acting to 
depolymerise silica glass 
networks. It lowers glass 
melting points, raises 
thermal expansion and 
improves the appearance 
or brilliance of the glass. 
It also helps maintain 
high electrical resistance. 

Altair chimica 
s.p.a. 

Boric acid, H3BO3 Boron containing minerals such 
as borax and boric acid, most 
commonly originate in dried salt 
lakebeds of deserts or arid 
areas (such as Death Valley, CA, 
Turkey, and China) or other 
geographic regions that expose 
similar deposits (such as the 
Andes Mountains in South 
America). Boric acid crystals are 
white and odourless.  

Facilitates the melting 
operation, providing a 
lower viscosity glass 
during melting. 
Mechanical strength and 
scratch hardness are also 
increased in the final 
glass. 

 

Lime, Calcium 
carbonate, CaO 

The Derbyshire deposits in 
Great Britain are very famous 
for their good quality. The raw 

Gives great fluidity to the 
molten glass. 
 High concentrations may 

Ben Bennett Jr 
Ltd  
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material used in these studies 
comes from there, dried and 
pulverised for the best purity. 
Other sources are calcite and 
dolomite, the latter contains 
also magnesium.  

cause devitrification. 

Hydrated 
alumina, Al2(OH)6 

Alumina can be introduced as 
one of the oxide components 
present in (e.g.) feldspar or as 
calcinated alumina. It has a 
marked effect on durability and 
provoking high viscosity. It 
appears as a white crystalline 
powder. 

Produces glasses with 
high viscosity and high 
durability. 

Industrial 
mineral 
services 

 

The choice of a particular batch material depends primarily on the oxides required in the 
glass. It is very important to calculate the correct amount of raw materials, taking into 
account the appropriate conversion factors associated with chemical changes during 
heating. Any organic components can burn off completely or they can leave unwanted 
residual carbon in the glass if the combustion is incomplete. This causes reduction reactions 
that generate unwanted colorations in the melted glass; carbonates, sulfates, sulphites, 
nitrates, nitrites change to oxides during heating and no C, S, N should remain in the final 
glass structure. Fluorides, chlorides, bromides and iodides convert to an equivalent amount 
of oxide; there is usually little trace of F, Cl, Br, and I left in the glass due to their volatility; 
gases such as CO2 are produced by decomposition (e.g. of K2CO3) and result in a relevant loss 
of weight in the final glass. There are four ways of expressing a glass composition each of 
which is valid and useful for different purpose: 

1. Weight % oxide: results from XRF analysis are in this form and can be useful for 
comparing batches and samples. 

2. Mole % oxide: sometimes useful when investigating different behaviour and 
development of new formulae. 

3. Sager formula: useful shorthand for comparing compositions, sometimes referred to 
as “unity” formula. It shows the mathematical relationship between oxides in the 
glass that are “formers”, “modifiers” and “intermediates” 

4. Batch recipe: useful in preparation and specification for production. It is not ideal for 
describing the exact final compositions due to variations between raw material 
sources and minor compositional changes (e.g. due to volatilisation; or dissolution of 
elements from the crucible) during melting. 
 

When the chemical composition of the glass to be melted is known, the batch is calculated 
from the amount of each oxide and carbonates required. The conversion of a glass 
composition into a batch composition is a simple mathematical calculation that is simplified 
by the use of conversion factors (Gf). These are basically depending on the type of raw 
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materials and oxides used for the studied composition. Table 11 demonstrates how to 
calculate the amount of each raw material in grams for a total 100 grams batch ready to be 
melted.  
To calculate the conversion factor the following equation has to be use for each component: 

 

 

 

Table 11 Batch recipe calculations for PSBS1. 

Oxides w% oxide Raw 
Material 

Conversion 
Factor 

Part by 
weight 

100g Batch 
recipe 

SiO2 45 SiO2 1 45 33 
K2O 15 K2CO3 0,68 22,06 16,17 
B2O3 22,5 H3BO3 0,563 39,89 29,24 
Al2O3 7,1 Al2(OH)6 0,654 10,98 8,05 
CaO 10,4 CaCO3 0,561 18,47 13,54 
 

Table 12 Conversion from weight% to mole% for PSBS1 sample. 

Oxides w% oxide Molecular 
weight (oxide) 

Parts by mol mol% oxide 

SiO2 45 60,1 0,749 50,4 
K2O 15 94,2 0,159 10,7 
B2O3 22,5 69,62 0,323 21,7 
Al2O3 7,1 101,96 0,07 4,7 
CaO 10,4 56,1 0,185 12,5 
 

The Seger formula separates the mole parts of the oxide groups into three sets as follow: 

 

RO, R2O R2O3 RO2 
Alkali, Alkaline earths Amphoteris Acidic 

Glass modifiers Intermediates Glass formers 
 

In some cases B2O3 is included as amphoteric but it will be consider as glass former. 

The Sager formula represents the molar ratio of its constituents. In order to compare glasses 
on an equal basis the Seger formula is converted to the “unity” formula. This is achieved by 
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ratio of the alkali oxides to 1 or unity, dividing the oxides by the total amount coming from 
the glass modifiers group (table 13). 

 

Table 13 Calculation for the Sager formula 

RO, R2O R2O3 RO2 
K2O (0,159) Al2O3 (0,07) SiO2 (0,749) 
CaO (0,185)  B2O3 (0,323) 
Sum (0,344)   

 

Table 14 Sager formula example for PSBS1 

RO, R2O R2O3 RO2 
K2O (0,46) Al2O3 (0,20) SiO2 (2,18) 
CaO (0,54)  B2O3 (1,07) 

Sum (1)   
 

The “unity” formula can be used to compare formulae, oxide ratios and so on. It is 
sometimes used to describe compositions where other information such as the raw 
materials selected may be considered confidential.  

 

3.1.3 Melt quenching and Heat treatment 

 
All the weighed raw materials have to be placed into a suitable crucible. In this work, a 
quartz crucible was selected for the purpose. Usually silica crucibles are the most 
recommended because of their thermal shock resistance, low reactivity and low cost. Since 
glasses often contain silica as a major component, contamination from a pure silica crucible 
will be minimal. 

The melting is thus carried out by placing the batch inside the crucible and heating the 
crucible in an electric furnace. The melting temperature to be used is determined by 
consulting the phase diagram for related glasses. Theoretically the principles for the glass 
melting are: 

 Reaction between the components of the raw materials mix 
 Dissolution of solids in the primary melt 
 Degassing the melt 
 Chemical homogenisation of the melt. 

Glass batches were prepared by mixing dry raw materials from the recipes described and 
sieving to ensure thorough blending. Glass batch (100 grams) melting took place in a quartz 
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crucible at 1375°C, in an electric furnace. After melting for approximately 2 hours at around 
1350°C to reduce bubble in the glass generated by gas evolution, the melts were poured into 
a metal mould to produce glass bulk. The pouring of the melted glass is performed on to a 
clean steel plate to avoid any contact with water and thus the initiation of unwanted 
premature glass leaching reactions that are required when activating the GIC product 
(fig.20). 

 

 
Figure 19 Glass melting procedure: quartz crucible placed in the kiln, checking the glass melt and pouring it to obtain the 
frit. 

 

The time held at temperature chosen to induce phase separation could also be an important 
factor. For this reason, different trials at 5, 10, 20 and 40 hours have been made to establish 
the best conditions for phase separation. The results section provides details of the different 
experiments conducted. Once the phase separation heat treatment methodology was fully 
optimized, all experimental glasses were heat treated in this way using an electric 
intermittent laboratory kiln. Samples were heated (175°C/hour) to a single selected 
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temperature (700°C) and held for 20 hours. The kiln was allowed to cool naturally from the 
dwell temperature (see figure 21). 

 

 

 

 

Figure 20 Procedure used for the heat treatment. 
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3.1.4 Particle size distribution analysis 

Particle size influences many properties of particulate materials and is a valuable indicator of 
quality and performance. Smaller particles dissolve more quickly, influencing the 
biocompatibility of bioglasses and lead to higher suspension viscosities than larger ones. The 
technique of laser diffraction is based on the principle that particles passing through a laser 
beam will scatter light at an angle that is directly related to their size: large particles scatter 
at low angles, whereas small particles scatter at high angles. The measurable size ranges 
from 50 [nm] to 1000 [μm]. Suspensions are mostly prepared with water as in this case, but 
other solvents can also be used (ethanol, isopropanol, or octane). The particle size 
distribution was measured by the Malvern Mastersizer 3000 laser diffraction particle size 
analyser. The glass powders were evaluated with a Dv99 of less than 50 μm and a Dv50 of 
less than 6,9 μm. D50 means that the diameter where 50% of the particles have a smaller 
size that on a volume basis is the value reported. The particle dimension was compared to 
that one of a commercial product called GC Fuji IX GP® (GC corporation, Tokyo, Japan). 

 

3.2 Characterizations of the borosilicate glasses  

 

3.2.1 Refractive index:  

 calculated with the Appen method 
The refractive index can be calculated if the nature and the concentration of the different 
glass components are known. There are two possible ways but the most efficient and used 
one is the so called “Appen method”  and calculated with the following equation (Appen 
1956): 

 

 

 

Table 15 Factors necessary to calculate the refractive index of glasses by the composition. 

Oxides nd,i 

SiO2 1.475 

K2O 1.575 

B2O3 1.71 
CaO 1.73 

Al2O3 1.52 
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 measured with the Becke line test 
It is an immersion technique in which the refractive index in solid samples is compared with 
the index of a known liquid (Allen 1985). Particles of the sample are mounted in the 
reference liquid and the index of the PSBS8 and 16 glasses are compared with that of the 
liquids. If the solid index is higher, a liquid of higher index have to be used, if the solid is 
lower vice versa. The method continues with these repetitions until a match is obtained. To 
compare the index the Becke line test is used. The Becke line test uses the contrast of the 
particle in the liquid and the presence of a halo around the particle for the index 
comparison. When particle and liquid are exactly matched, it is not possible to detect the 
particle (although there may be inclusions and cleavage marks that are visible). This 
impossibility is due to the fact that there is no refraction of light at the interface between 
the liquid and solid, and hence, no contrast. When the liquid and solid refractive indices are 
close but not exactly the same, then you will see some particle contrast as well as a bright or 
dark halo around the particle. This bright halo is called the Becke line and the direction it 
moves when raising the focus of the microscope (generally by lowering the stage) is the 
mechanism for determining refractive index. The Becke line travels toward the material with 
the higher index. 

The precise method followed during the measurement was: 

1. Placing a small amount of the glass sample (fine particulate) on a glass slide and 
covering it with a small coverglass. 

2. Placing a small amount of the reference liquid next to the coverglass and allowing the 
liquid to flow into the sample using capillary action. 

3. Inserting the sample onto the microscope stage  
4. Closing down the substage iris. 
5. Note the contrast of the particles. With very high contrast the Becke line test may be 

ambiguous and it may be better to mount in two liquids much higher and much 
lower than the current one. 

6. Start raising the focus of the microscope (lower stage generally) while observing a 
particle of interest. 

7. If the bright halo (Becke line) is moving toward the particle, its index is greater than 
that of the liquid and the next liquid used should have a higher index. 

8. If the bright halo (Becke line) is moving toward the liquid, the particle index is lower 
than that of the liquid and the next liquid used should have a lower index. 

9. Placing next liquid based on the degree of contrast. If the contrast is low, is better 
chosing a liquid close in value with the current one and vice versa. 

10. Continue changing liquids until a match is achieved. Verify by testing the next highest 
and next lowest index values. 
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These are caused by refraction effects, and concentrate light near the edges of the glasses. 
The Becke line method is a good methodology because comparing the refractive index of the 
oil with that of the glass it is possible to determine clearly the RI of the PSBS samples. When 
the stage is moved up or down, the Becke line(s) also move in and out of the glass, towards 
or opposite to the oil. The direction of movement of the Becke Line is determined by 
lowering the stage with the Becke Line always moving into the material with the higher 
refractive index. In the figure 30 is shown where the Becke line is moving with the help of a 
black arrow that indicate the direction of the shift. The Becke Line can be considered to form 
from a cone of light that extends upwards from the edge of the mineral grain (fig. 22). 
Increasing the distance between the stage and the objective lenses the Becke lines will move 
to the material with the highest refractive index. Decreasing the distance between the stage 
and the objective lenses the Becke line will move to the material with smaller refractive 
index. 

 

Figure 21 Becke line formation. 

 

 

3.2.2 X-rays powder diffraction 

Powder X-ray diffraction (XRD) data were collected with a Bruker diffractometer with 
graphite monochromator using CuKα radiation (fig. 23). Data were collected in the range of 
2°<2θ<60° in 0.05° steps. This technique is used to determine if the glass powder is fully 
amorphous before and after the heat treatment. The amorphous glass does not have long-
range atomic order and therefore produces only broad scattering peaks. A crystal is 
composed of periodically arranged atoms in a 3D space. On the other hand amorphous 
materials do not possess that periodicity and atoms are distributed randomly in the 
3Dspace. The scattering of the X-rays by atoms is the point to be considered in this case. 
When there is a periodic arrangement of atoms the X-rays will be scattered only in certain 
directions when they hit the formed lattice planes (formed by atoms). This will cause the 
high intensity of the peaks (the width of the peaks depends on other variables). With an 
amorphous phase the X-rays will be scattered in many direction leading to a large bump 
distributed in a wide range instead of high intensity peaks. 
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Figure 22 The detector moves in a circle around the sample and its position is recorded as the angle 2theta (2θ).  The 
detector records the number of X-rays observed at each angle 2θ. The X-ray intensity is usually recorded as “counts” or as 

“counts per second”. 

 

3.2.3 Differential thermal analysis 

Thermal behaviour was analysed using differential thermal analysis (DTA). The instrument 
used is a Mettler Toledo TGA/DSC 2 in the platforme d’analyse thermique directed by Doctor 
Chiriac Rodica. The measurements were conducted with a heating rate of 20°C/min and 
using nitrogen as both protecting and purge gas. Approximately 50 mg of glass powder was 
put into an alumina crucible and gently pressed to ensure good heat transfer. The powders 
were scanned over the 30 to 1200°C range in order to obtain data on the principal 
transformations associated with each glass samples, such as glass transition, crystallization 
and melting. The heat capacity (Cp) is measured by the instrument and allows the calculation 
of different phenomena.  

 

Figure 23 A representative thermal analysis thermogram. 
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When a reaction occurs during thermal analysis, the change in heat content and in the 
thermal properties of the sample is indicated by a deflection in the thermogram that can be 
positive or negative as indicated in the figure 24. 

At the Tg the plot shifts suddenly. This means that the system is getting more heat flow. A 
change in the heat capacity of the glass is detected as the glass transitions. This results in an 
endothermic peak indicative of a phase change. 

Crystallization happens when the sample reaches a given temperature where viscosity 
allows for an ordered re-arrangement of atoms into crystalline structures. The temperature 
is called Tc and at this moment the glass will give off heat resulting in a decrease in the heat 
flow. This is represented by an exothermic peak (Kissinger 1957). 

Once the sample has passed the Tc during heating, there is eventually a further thermal 
transition associated with melting. At Tm the glass begins to melt and flow. In this case the 
thermocouple under the crucible containing the sample is producing a lot of heat in order to 
both melt the glass and keep the temperature rising at the same rate as the reference pan.  
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3.3 Ions leaching, dissolution experiments & surface analysis 

 

3.3.1 Static dissolution experiments 

Static dissolution experiments were performed for all the PSBS samples. The glass powders 
(0,4 g each) were mixed with a 0,003M HNO3 solution (40 mL) in a flacon tube and placed in 
a reactor vessel at 37°C (thermostatically controlled) as shown in figure 25. At different time 
points the solutions were centrifuged and collected for the ion coupled plasma (ICP) 
measurements to determine the ions released for each samples. 

 

  

Figure 24 A falcon tube is inserted into a reaction vessel that is controlled by a thermostat regulating the temperature at 
37°C. 
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3.3.2 Inductively coupled plasma atomic emission spectrometry 

The elements detected and the corresponding absorption wavelengths are reported in table 
17. Calibration curves were obtained by preparing multi-elements standard solutions 
containing B, Ca, K and Si in the concentrations reported in the table 16 (dilutions were 
made in HNO3 solutions). Three replicates were collected for each measurement. The result 
obtained for the same element from different emission lines were averaged and presented 
as % dissolution, calculated as the ratio between the concentration measured in solution 
and the maximum concentration that could be obtained if total dissolution of the glass 
occurred. 

 

Table 16 Standard concentration for ICP measurements. 

Element St 1 St 2 St 3  St 4 St 5 
Si 10.4107 21.2556 34.3286 60.1571 81.1483 
B 10.1793 19.8089 29.7970 60.3272 80.2119 
K 9.8642 19.9033 30.1274 50.3756 70.3344 

Ca 10.2147 19.7464 29.1073 50.6244 70.1392 
 

 

Table 17 Elements detected with ICP measurements and respective emission lines. 

Element Emission lines 
B 208.956, 249.678, 249.772 nm 
Ca 317.993, 373.690 nm 
K 766.49, 769.897 nm 
Si 250.690, 251.611, 288.158 nm 
 

3.3.3 Optical microscopy 

With reflected or transmitted light modes and different magnifications available the optical 
microscope is a very useful technique for a preliminary screening of the surface of samples. 
For the best results, the sample should be polished properly following an adapted procedure 
dependent on the type of material studied. 

Sample preparation: Mounting 

Mounting of glass bulk specimens is usually necessary to allow them to be handled easily. It 
also minimises the amount of damage likely to be caused to the specimen itself. The 
mounting material used should not influence the specimen as a result of chemical reaction 
or mechanical stresses. A cold-setting resin of methyl methacrylate (Resine mecaprex KM-U) 
was used. 
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Figure 25 Specimen on resin for optic microscopy 

 

Grinding 

Surface layers damaged by cutting must be removed by grinding. Mounted specimens are 
ground with rotating discs of abrasive paper. 

Polishing 

Polishing discs feature soft cloth impregnated with abrasive diamond particles and an oily 
lubricant. A TISSEDIAM 40 μm was used with a 3 daN pressure. The plate speed was 300 rpm 
and the sample holder speed was 135 rpm. The polishing was performed over 180/240 
seconds. 

The next step was performed in a NWF+ 9μ disc and then on a NWF+ 3μ disc. For both the 
polishing steps the speed of the plate was 150 rpm, the speed of the sample holder was 135 
rpm and the time was 180/240 seconds. 

The last disc used was NV pre-wet with deionized water and Al2O3 suspension in order to 
obtain a flat, level surface to be examined optically. This last step should be avoided in case 
of elemental analysis with EDX because it can contaminate the sample surface. 

 

3.3.4 Scanning electron microscopy & Energy dispersive x-ray spectrometry analysis 

The morphology of the samples was examined using an FEI Quanta FEG 250 Scanning 
Electron Microscope before and after an acid treatment. SEM imaging of the samples was 
conducted using Backscattered Electron Imaging; using this imaging mode the brightness of 
a given feature is proportional to its mean atomic number. Imaging and analysis conditions 
were 15 kV accelerating voltage and 10mm working distance. Microanalysis results are 
tabulated on a semi-quantitative, normalised, elemental weight basis.  Light elements such 
as lithium and boron are not quantified by this analytical technique.  Carbon is also omitted. 

Two different conditions were chosen to compare the dissolution at body temperature and 
at higher temperature to speed up the leaching process. The normal condition was 
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replicated with a 1 M HNO3 etching solution at 37°C for 48 hours. The harsher conditions 
were simulated with the same 1 M HNO3 solution for 48 hours but at 90°C. Then the PSBS 
glass samples were rinsed with deionized water and carbon coated before the analysis. The 
10nm thick carbon coating is a conducting surface applied to the samples which has a 
minimal influence on x-ray intensities due to its low atomic number but is useful to provide a 
path for the incident electrons to flow to the ground. 

 

3.3.5 BET analysis 

The Brunauer-Emmett-Teller (BET) method is the most widely used procedure for the 
determination of the surface area of solid materials and involves the use of the BET 
equation. The glass powder porosity and surface area was checked for the heat treated 
samples before and after one week of dissolution into an HNO3 solution 0,003M at 37°C. The 
samples were weighted (~23 grams) and placed in a reaction probe. Two probes at the time 
can be connected to the instrument while a third probe is placed empty and used as a 
control. The heating program consists of a ramp that takes the samples from ambient 
temperature to 150°C for eliminate any water present inside the sample. Drying and and 
degassing follows. A Dewar with liquid nitrogen is then placed on the platform below the 
three test probes. The BET method is based on the adsorption of the N2 on the surface. The 
amount of gas adsorbed as a function of pressure allows the determination of the surface 
area as well as information on pore shapes. Superficial area, pore size and pore volume were 
measured for the samples before and after the heat treatment. 

 

Figure 26 Typical adsorption/desorption isotherm obtain with BET analysis (PSBS1). 
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3.4 Mechanical properties analysis 

 
3.4.1 Sample preparation 
 
The mechanical properties were applied on two PSBS glass powder samples mixed with the 
poly(acid) liquid of a commercial glass ionomer cement (FUJI IX®GP, GC Europe N.V, Leuven, 
Belgium). The same instrucion given by the producer of FUJI IX® were used for the mixing 
and the powder:liquid ratio was 1spoon:2drops. Figure 28 indicates the test pieve 
dimensions. 
 

 
Figure 27 Mould shape and dimension used for mechanical tests. 

 
3.4.2 Microhardness test 
 
The indentation technique consists of the placement of an indenter (usually diamond) to the 
material surface, with a known force applied (see figure 29). The contact area between the 
material and the indenter is then measured directly or indirectly. From the classical point of 
view, the interpretation of the contact area is evaluated with the help of a microscope optic. 
The area is calculated by measuring the diametre of the fingerprint indent left on the surface 
of the tested material. In the case of a Vickers tests as used in the present study, the shape 
of the indenter is pyramidal. Currently, the indentation method is the only technique used to 
measuring the mechanical properties at high definition. The Vickers microhardness 
(measured in Kg/mm2) is obtained with the relation: 
 
 

HV= 1854,4 x  P x d-2 
P: charge applied in grams. 

d: average of the length of the two diagonals (d1+d2/2) 
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Figure 28 Vickers hardness indenter. 

 
 
 
3.4.3 Flexural strength 
 
A three point bend test consists of placing the sample bar horizontally upon two points prior 
to applying a force to the top of the sample through a single point so that the sample flexes 
only in the middle. The flexural strength is defined as the maximum stress at the outermost 
fiber on either the compression or tension side of the specimen. It is calculated with the 
following equation: 
 
 
 

Flexural strength =  
 
where 
Fm: Force (Newton) 
I: length (20 mm) 
b: width 
h: thickness 
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3.5 Bioactivity characterization  

 
3.5.1 Simulated body fluid (SBF) preparation  
 
Kokubo and his colleagues (A. Macon 2015) developed an acellular simulated body fluid that 
has inorganic ion concentrations similar to those of human extracellular fluid, in order to 
reproduce formation of apatite on bioactive materials in vitro. This fluid can be used not 
only for evaluation of bioactivity of artificial materials in vitro, but also coating of apatite on 
various materials under biomimetic conditions. The simulated body fluid is often 
abbreviated as SBF or Kokubo solution. The ion concentrations of SBF are given in Table 18. 
 
Table 18 Comparison between SBF solution and human blood plasma ions concentration. 

Ion Concentration (mmol/dm3) 
Simulated body fluid (SBF) Human blood plasma 

Na+ 142.0 142.0 
K+ 5.0 5.0 
Mg2+ 1.5 1.5 
Ca2+ 2.5 2.5 
Cl- 147.8 103.0 
HCO3

- 4.2 27.0 
HPO4

2- 1.0 1.0 
SO4

2- 0.5 0.5 
 
The pH of SBF is adjusted to pH 7.25 at 36.5oC, by using 50 mM (=mmol/dm3) of 
tris(hydroxymethyl)aminomethane and approximately 45 mM of HCl. 
 
For the preparation of SBF, 750 mL of ultra-pure water were placed in a 1000 mL beaker 
(polyethylene beaker is preferred). The water should be stirred continuosly with the 
temperature at 36.5°C. The beaker is preferrably placed on a clean bench and covered with 
cling film, to avoid dust pick-up 
The chemicals given in the table 19 have to be individually dissolved into the water in turn 
until  reagent number 8. Each reagent has to be completely dissolved before adding the next 
one. The Addition of reagent number 9 should be done incrementally (<  1g at a time), in 
order to avoid local increases in pH of the solution. 
 
The stability of the solution obtained has to be examined. 50 mL of the solution was stored 
in a polystyrene bottle and placed in an incubator at 36.5°C. After 2-3 days, it is suggested to 
visually assess whether the solution has any precipitation or not. If there are not 
precipitations the solution can be used for experiments. 
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Table 19 Order of reagents for the SBF solution preparation. 

Order Reagent  Amount 
#1 NaCl Assay min. 99.5%, Nacalai tesque, Kyoto, 

Japan 
7.996 g 

#2 NaHCO3 Assay (after drying) min. 99.5-100.3%, 
Nacalai tesque, Kyoto, Japan 

0.350 g 

#3 KCl Assay min. 99.5%, Nacalai tesque, Kyoto, 
Japan 

0.224 g 

#4 K2HPO4 3H2O Assay min. 99.0%, Nacalai tesque, Kyoto, 
Japan 

0.228 g 

#5 MgCl2 6H2O Assay min. 98.0%, Nacalai tesque, Kyoto, 
Japan 

0.305 g 

#6 1 kmol/m3 HCl 87.28 mL of 35,4% HCl is diluted to 1000 mL 
with volumetric flask 

40 cm3 

#7 CaCl2 Assay min. 95.0%, Nacalai tesque, Kyoto, 
Japan 
Use after drying at 120 oC for more than 12 
hours 

0.278 g 

#8 Na2SO4 Assay min. 99.0%, Nacalai tesque, Kyoto, 
Japan 

0.071 g 

#9 (CH2OH)3CNH2 Assay (after drying) min. 99.9%, Nacalai 
tesque, Kyoto, Japan 

6.057 g 

#10 1 kmol/m3 HCl See above Appropriate 
amount for 
adjusting pH 

 
 
3.5.2 Bioactivity test ISO 23317:2014 
 
The hydroxyapatite (HA) layer can be formed on the surfaces of biomaterials in an acellular 
and protein-free solution called simulated body fluid (SBF). The HA formed is very similar to 
the bone mineral in its composition and structure. The evaluation of HA-forming ability on 
implant materials in SBF is useful for evaluating its in vivo bone-bonding ability. 
Glass disks were prepared by melting prepared PSBS glass samples and pouring the melt into 
graphite moulds (pre-heated at 300°C). The conditions used in this process are useful to 
avoid any cracks during the disk formations that can be due to the high stress for pouring the 
disk in a very compressed disk mould. The disks obtained were than heat treated to induce 
the phase separation. One glass disk was made with a 45S5K glass (representing the Hench 
composition but with sodium replaced by potassium) to have, as a control, a well known 
bioactive glass. The surface area was calculated for every sample by measuring the diameter 
with a micrometer while the thinkness was fixed at 0.2 cm. This area was used to calculate 
the volume of SBF necessary for each specimen with the following formula: 
 

VS= 100mm x SA 
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Where 
VS: volume of SBF in mm3 

SA: surface area of the specimen. 
 
The disks were then fixed with a blue tac support into reaction tubes (see figure 30 below) 
and placed inside an incubator at 37°C.  After different time periods, the specimens were 
taken out from the SBF and gently rinsed with distilled water. The disks were than dried in a 
desiccator without heating as preparation for the SEM-EDX analysis. 

 

 
Figure 29 Disk fixed perpendicularly to the bottom of the reaction tube. 
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4.1 Projecting and manufacturing of the borosilicate glass composition 

 
4.1.1 Melt quenching and heat-treatment 
 
All the glasses were melted and heat treated in accordance with the procedure described in 
the previous chapter of the thesis (3. Materials and Methods). The results are shown in the 
following table (table 20). 
 
Table 20 Pictorial representation of Borosilicate glasses before and after the heat treatment plus associated melting 
temperature and viscosity observations 

SAMPLE 
NAME 

BEFORE 
Heat Treatment 

AFTER 
Heat Treatment 

Melting 
Temperature 

(°C) 
Observations of the melt 

PSBS1 
 

 

1300 Viscous 

PSBS2 

  
1250 Fluid 

PSBS3 
 

 

1250 Fluid 
(smoky boron) 

PSBS4 

  
1350 Medium Viscosity 

PSBS5 
  

1300 Viscous 

PSBS6 
  

1250 Fluid 
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PSBS7 
 

 

1250 Viscous 

PSBS8 
 

 

1200 
Fluid 

(smoky boron) 

PSBS9 
 

 

1250 
Fluid 

(smoky boron) 

PSBS10 
 

 

1280 Viscous 

PSBS11 
 

 

1250 Fluid 

PSBS12 
  

1300 Highly viscous 

PSBS13 
  

1325 Medium viscous 

PSBS14 
 

 

1300 Viscous 

PSBS15 

  

1200 Viscous 

PSBS16 

  

1250 Viscous 
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PSBSSBK 

  

1200 Fluid 
(smoky boron) 

 
 
Viscosity is one of the key properties of a glass melt that determines its behaviour in the 
initial stage of the manufacturing process. Viscosity is dependent on the chemical 
composition. The effect of the individual components also depends on the overall 
composition of the glasses. Generally, SiO2 and Al2O3 as network formers increase viscosity 
(due to enhanced M-O connectivity) whereas alkalis reduce it. Glasses with high CaO content 
usually exhibit a drop in the viscosity curve (viscosity Vs. temperature). Mixing alkalis 
generally lowers the viscosity more readily and the phenomenon is called mixed-alkali-
effect. B2O3 decreases viscosity at temperature approaching glass melting, increasing it at 
lower temperatures. The difference between the viscosity of high boron-containing glasses 
and silicon-containing glasses is explained because silica is a fully connected tetrahedral 
network whilst a boric oxide network is only triangularly connected. The variation of the 
viscosity with temperature is important as it is necessary to attain a certain viscosity to allow 
molten flow from the crucible to the steel plate. This ensures fast quenching and so 
avoidance of any crystal formation. 
 
It is important to note that during the melting process, samples without alumina (PSBS SBK ; 
8 ; 9 and 3) suffered a probable strong loss of boron. 
 
It is significant that after initial melting / quenching the glasses are often optically clear, but 
turn opalescent following subsequent heat treatment at 700°C. This trend is dependent on 
the weight % of the elements in the composition. Opalescent colouration originates from the 
scattering of light caused by the coexistence of glass phases with dissimilar refractive 
indexes while the transparent-like colour could be derived from the presence of just a low 
percentage of the secondary phase dispersed in the main one or the co-existence of two 
glass phases with the same refractive index. 
If the glasses obtained after heat treatment are compared within the triangular diagram 
given by the Janecke’s coordinates, it becomes apparent that different regions are detected 
(figure 31). The samples highlighted with red points belonging to the isopleth without 
aluminium appear to be transparent. The samples emphasized with green points belonging 
to the isopleth wJ = 25% Al become opalescent after the heat treatment except for the 
sample without calcium in the composition (orange spots). The samples found in the area 
between and above the two isopleths and highlighted with blue spots (wJ = 15% Al and 35% 
Al) assume a partial opalescent colour.  
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Figure 30 Triaxial diagram showing the samples composition in the quinary system (SiO2 and K2O are fixed). The 

composition is influencing the opacity of the samples. Several isoplethic sections were studied: 4 sections with a constant 
Al/B ratio and 3 sections with a fixed Ca content. 

 

 

4.1.2 Refractive index 

The refractive index was calculated for all the glasses assuming them to be one phase before 
the heat treatment because at that moment the samples are considered composed of one 
single transparent phase and the Appen method can be applied. As comparison, the SiO2 rich 
Pyrex glass has an index equal to 1.470. 
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Table 21 PSBS samples and their refractive index calculated for the melt quenched samples 

Samples nd 
PSBS1 1.571 

PSBS2-6 1.576 
PSBS3 1.583 
PSBS4 1.562 
PSBS5 1.577 

PSBS7-10 1.566 
PSBS8 1.581 
PSBS9 1.582 

PSBS11 1.567 
PSBS12 1.560 
PSBS13 1.561 
PSBS14 1.581 
PSBS15 1.572 
PSBS16 1.571 

PSBSSBK 1.577 
 

4.1.3 Becke line test 

Many trials have been done but here some of the most interesting figures were collected. 
The idea was to show a comparison between the calculated refractive index before the heat 
treatment and the RI measured after the heat treatment. The result clearly indicates that 
the RI decrease in both cases. PSBS8 change from 1,58 to 1,51 after the heat treatment 
while PSBS16 change from 1,57 to 1,52. While it was clear that for PSBS16 there would have 
been a change in the refractive index because of the colour change (transparent to 
opalescent) after the treatment, also the PSBS8 seems to present changes that were not 
detected just by observing the appearence of the glass that remains transparent also after 
the heat treatment. No information about the phase separation (two different refractive 
index in both glasses) was detected because the phenomenon has to be studied at a 
microstructural level.  
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PSBS8 - liq: 1,47 

  
Figure 31 Becke line observed on the left figure for PSBS8. Becke line movement through the glass as indicated by the black 
arrow.   

PSBS8 - liq:1,53 

  
Figure 32 Becke line observed on the left figure for PSBS8. Becke line movement through the liquid as indicated by the black 
arrow. 

 

PSBS8 - liq:1,51 

 
Figure 33 Becke line is not detected. The refractive index of the liquid correspond to the one of the PSBS8. 

PSBS8-GLASS 

PSBS8-GLASS 

LIQ: 1,47 

LIQ 1,53
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PSBS16 - liq: 1,47 

  
Figure 34 Becke line observed for PSBS16 in the left figure. Becke line shifting through the glass in the right figure 

 

PSBS16 - liq:1,55 

  
Figure 35 Becke line observed for PSBS16 in the left figure. Becke line shifting through the liuid in the right figure. 

 

PSBS16 liq:1,52 

 
Figure 36 Becke line not detected. The refractive index of the liquid correspond to the one of the PSBS16. 

PSBS16-GLASS LIQ: 1,47 

LIQ:1 55PSBS16-GLASS
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4.1.4 Particle size distribution 

From the analysis of each glass powder sample after the Tema ® milling, the following figures 
was obtained showing the distribution of the particle size. The first result is related to the 
commercial GIC powder called GC FUJI IX® that is used as a reference to compare with the 
other measurements. 

 

FUJI IX® 

 
PSBS1 

 
 

Figure 37 Particles size distribution of the commercial FUJI IX and the PSBS1 sample. The other graphs are reported in the 
annex 1. 

 
 
The distribution graphics are useful for extrapolating the values of the particles size at key 
percentages values (tab. 22). Dv10 represents the dimension of the population at 10 
percent, while Dv50 and Dv90 respectively at 50 and 90 percent. The majority of the glasses 
present a D90 of less than 50μm while all the samples exhibit a particle size below 100 μm 
for the 90 percent of the population. The samples that present Dv90 higher that 50 μm were 
sieved to give more homogeneity to the results of the characterization. The differencies in 
particle size in this case is due to the milling time. As it was not homogeneous and constant 
for all the samples, at least the same range of particle size was collected.  
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Table 22 Values representing the particle size of the 10, 50 and 90 percent of the distribution of the PSBS glass powders. 

D10(μm) D50(μm) D90(μm) 
FUJI IX® 1.69 6.54 24.4 
PSBS1  1.31 6.22 28.9 
PSBS2  1.64 9.67 38.9 
PSBS3  1.5 7.28 31.8 
PSBS4  1.21 5.45 26 
PSBS5  1.31 6.21 30.8 
PSBS6  1.53 9.54 39.9 
PSBS7  1.29 6.09 30.1 
PSBS8  1.51 8.8 38.3 
PSBS9  1.35 7.98 33.5 
PSBS10  1.42 7.5 33.8 
PSBS11 2.65 19.9 87.6 
PSBS12 2.16 18.8 86.7 
PSBS13 2.88 24.2 100.7 
PSBS14 2.08 21.1 99.1 
PSBS15 2.48 21.8 99.1 
PSBS16 1.75 8 36.4 
PSBSSBK 1.6 9.05 40.9 

 
 
4.2 Structural characterizaton 
 
4.2.1 X-ray powder diffraction 
 
Powder X-ray diffraction (XRD) analysis was performed for every sample after the heat 
treatment and for PSBS1 only before and after the thermal process in order to observe 
possible differences in the structure. 
 
All the XRD patterns show a characteristic amorphous shape, since they exhibit a broad 
formless “bump”, in lieu of distinctive Bragg peaks when the structure is well ordered (tab. 
23). More detailed analysis allows evaluation of the percentage amorphous material in every 
sample; this revealed a consistent 100.0 wt% amorphous except for the PSBS SBK that 
presents three unknown peaks corresponding to a 1.2 wt% of crystalline phase. It is likely 
the crystalline part is composed of Cristobalite (high temperature SiO2 crystalline form)  but 
the small peaks doesn’t permit an accurate identification. The absence of Al and Ca in the 
composition may cause a premature crystallization due to a lower viscosity and a more 
opportunity for molecular arrangement as regular crystalline phases; indeed this is 
supported by observing the DSC curves of the PSBS3 in the next section (table 24 where the 
samples without Al are more prone to crystallization). 
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Table 23 Percentage of amorphous phase in the PSBS heat treated samples. 

SAMPLE AMORPHOUS PHASE (w%) 
PSBS1 (melt quenched) 100.0  

PSBS1 100.0  
PSBS2-6 100.0  
PSBS3 100.0  
PSBS4 100.0  
PSBS5 100.0  

PSBS7-10 100.0  
PSBS8 100.0  
PSBS9 100.0  

PSBS11 100.0  
PSBS12 100.0  
PSBS13 100.0  
PSBS14 100.0  
PSBS15 100.0  
PSBS16 100.0  

PSBS SBK 98.8  
 
 
The extent to which Calcium content influences the structure dimension is interesting. The 
XRD results of the glasses without Al2O3 are compared in figure 39. The superposition of the 
resulting spectra shows a 2θ angle shift of the typical amorphous halo. It has been found to 
be related to the CaO addition in the sample compositions (Table 24). Calcium cations are 
not forming the main part of the glass structure, and the introduction of those oxides called 
“modifiers” result in an alteration of the glass structure (Aboutaleb D. 2012). The higher the 
addition of CaO in the composition, the greater is the formation of non-bridging oxygens 
(NBO) that are causing a reduction in the borosilicate network connectivity. By augmenting 
the Calcium into the borosilicate network the Si-O bonds tend to break (de-polymerization) 
and the oxygen atoms negatively charged are attracted from Si atoms (δ+) causing smaller 
range distances between the atoms (d-spacing). Figure 39 and table 24 illustrate the effect 
of network modifiers into the glass structure.  
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Figure 38 XRD pattern of the samples without Al2O3. 

 
 
Table 24 The diffraction parameters in relation with the calcium w% in different PSBS glass samples without alumina. 

PSBS SBK PSBS 8 PSBS 9 PSBS 3 
2θ 24,55° 25,80° 26,64° 27,83° 

d-spacing 3,69 3,41 3,29 3,19 
Ca (w%) 0 6 9,728 15 
B (w%) 40 34 30,272 25 

 
 
 
Aluminium has not the same effect of calcium in modifing the glass structure. Comparing the 
XRD patterns of the glasses without calcium in the composition PSBSSBK, PSBS11 and 
PSBS12 the right shift of the glass halo is not evidenced (fig. 40). Thus it is probably taking 
part of the structure as a network former instead of being a network modifier.  In fact, 
alumina is an intermediate oxide close enough in size so that Al3+ can replaces Si4+ in 
network sites: 
Al3+ (CN=4) ~0.39Å 
Si4+ (CN=4) ~0.26Å 
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Al2O3 additions increase the connectivity of an alkali modified glass by replacing 
NBO's with cross-linking Al-O-Si bonds (fig. 41). 
 

 
Figure 39 XRD pattern of the samples without CaO 

 
 

 
Figure 40 Effect of Al2O3 addition into a silicate network. 

 

 
Table 25 The diffraction parameters in relation with the aluminium w% in different PSBS glass samples. 

PSBS SBK PSBS 11 PSBS 12 
2θ 24,55° 26,80° 26,06° 

d-spacing 3,69 3,53 3,45 
Al (w%) 0 5,6 10 

 
 
4.2.2 DSC analysis 
 
Studying the phase separation within the ionomer glass is crucial since it will help in 
understanding the structure-cement properties relationship. 
One manner of studying it is demonstrate that the glass has more than one glass transition 
temperature (Tg). Differential scanning calorimetry (DSC) provides a reliable method for 
detecting existing Tgs in a glass as reported by Pedersen (Pedersen M. 2015). During the 
quenching, if the melt is cooled quickly enough to avoid crystallization, the process will 
result is an amorphous solid. Below the Tg the viscosity is so high that is avoided the 
rearrangement of the glass network into a crystal structure. Only after this point the initial 
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formation of nuclei bring to a final crystallization. There are also other method to calculate 
the Tg with the help of theoretical calculation as the ones propose by Andersson and 
O’Donnell (Andersson 1992, O'Donnell 2011) but compositional limitations doesn’t allow to 
apply this formulation to the borosilicate glass system studied in this work. 
 
The samples analyzed were: PSBS1 melt-quenched, PSBS1 heat-treated, PSBS3 melt-
quenched, PSBS3 heat-treated, PSBS4 heat-treated and PSBS SBK. These samples were 
selected because representative of glasses that become opalescent, transparent, semi-
opaque and contain maximum, medium and minimum amount of aluminium in the 
composition. 
The DSC curves (fig. 42-45) revealed the various glass transition temperatures corresponding 
to an endothermic event, where a change in heat capacity is depicted by a shift in the 
baseline. It is considered the softening point of the material or the melting of the amorphous 
regions in the glass. The principal glass transition is detected for all the samples around 
600°C, the other glass transition have to be further investigated because are smaller 
phenomena probably attribute to smaller phases. In any case should be considered as 
multiple phase system with at least two principal phases detected experimentally. The 
amorphous phase separation could have form a system consisting of a silica glass matrix in 
which a borate rich phase is dispersed but still other analysis have to be done to evaluate 
this hypotesis (SEM analysis in the chapter “surface analysis”). Only for PSBS3 heat-treated 
was observed an exothermic peak around 800°C. The exothermic peak arises when a glass 
arranges into a more ordered structure characteristic of crystals. This process give off heat 
as proven by a rapid change in the heat flow. 
The last phenomena present in each curve represents the melting temperature Tf. 
 
 

 
Figure 41   DTA traces for PSBS1 melt quenched (pink line, above) and PSBS1 heat treated (blue line, below). 
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Figure 42 DTA traces for PSBS3 melt quenched (pink line, above) and PSBS3 heat treated (blue line, below). 

 
 

 
 

 
Figure 43 DSC trace for PSBS4 heat treated. 

 
 

exo

DSC curves

Step -0.4406 Wg^-1
-19.3402 mW

Onset 956.15 °C
Inflect. Pt. 967.83 °C
Midpoint 991.99 °C
Angle  Midpoint 981.33 °C

Step -0.3197 Wg^-1
-14.0353 mW

Onset 902.27 °C
Inflect. Pt. 907.25 °C
Midpoint 905.70 °C
Angle  Midpoint 906.90 °C

Integral 3110.27 mJ
  normalized 70.85 Jg^-1
Onset 787.81 °C

Step -0.2734 Wg^-1
-12.0037 mW

Onset 724.26 °C
Inflect. Pt. 745.23 °C
Midpoint 742.92 °C
Angle  Midpoint 746.02 °C

Step -0.2444 Wg^-1
-10.7297 mW

Onset 610.65 °C
Inflect. Pt. 628.74 °C
Midpoint 607.82 °C
Angle  Midpoint 620.37 °C

Wg^-1

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

min

°C100 200 300 400 500 600 700 800 900 1000 1100 12001200

0 5 10 15 20 25 30 35 40 45 50 55

PSBS3 mq 30/1200°C 20°C/min N2, 57.6300 mg

PSBS3 30/1200°C 20°C/min N2, 43.9000 mg

Step -0.8968 Wg^-1
-51.6854 mW

Onset 884.82 °C
Inflect. Pt. 902.63 °C
Midpoint 939.17 °C
Angle  Midpoint 922.46 °C

Step -0.1236 Wg^-1
-7.1214 mW

Onset 731.73 °C
Inflect. Pt. 742.86 °C
Midpoint 745.05 °C
Angle  Midpoint 739.13 °C

Step -0.2617 Wg^-1
-15.0816 mW

Onset 604.29 °C
Inflect. Pt. 627.00 °C
Midpoint 618.78 °C
Angle  Midpoint 622.45 °C

Sample: CG FL PSBS4 HT 30/1200°C 20°C/min N2, 55.3100 mg

DSC curve

Step -0.1460 Wg^-1
-8.0765 mW

Onset 748.60 °C
Inflect. Pt. 762.72 °C
Midpoint 769.92 °C
Angle  Midpoint 759.80 °C

Step -0.1425 Wg^-1
-7.8826 mW

Onset 912.26 °C
Inflect. Pt. 931.26 °C
Midpoint 924.69 °C
Angle  Midpoint 918.17 °C

Step -0.1284 Wg^-1
-7.1005 mW

Onset 586.62 °C
Inflect. Pt. 611.90 °C
Midpoint 599.22 °C
Angle  Midpoint 577.17 °C

Wg^-1

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

min

°C100 200 300 400 500 600 700 800 900 1000 1100 120120119

0 5 10 15 20 25 30 35 40 45 50 55



111 
 
 

 

 

 
Figure 44 DSC trace for PSBSSBK heat treated. 
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reported to as: 532°C (Bretcanu O.  and R. Conradt 2009). The bioglass 45S5 contains higher 
amount of network modifiers (24,5 wt% for both CaO and Na2O) in comparison with 
borosilicate glasses and the network can be considered less connected. This can be 
determined with the comparison of the different Tg. Lower Tg values are assumed to be 
related to less compact glass network in which the mobility of the atoms tend to re-arrange 
into crystal structure due the the lower viscosity.  
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Table 26 Thermal analysis results obtained with DTA technique of Tg and Tc compared with the glass compositions. 

SAMPLE Tg1 (°C) Tg2 (°C) Tc (°C) Al2O3 
(w%) 

CaO 
(w%) 

B2O3 
(w%) 

PSBS1 
Mq 591.8 746.7 n.o. 

7.2 10.4 22.4 PSBS1 
HT 598.1 730.3 n.o. 

PSBS3 
Mq 604.3 731.7 n.o. 

0 15 25 PSBS3 
HT 610.7 n.o. 787.8 

PSBS4 586.6 748.6 n.o. 11.5 8.5 20 
PSBSSBK 438.8 n.o. n.o. 0 0 40 

 
 
The interesting observation is that only “PSBS3 heat treated” presents a Tc in its thermogram 
at 787.8 °C. In the next section the crystallization phenomenon of the “PSBS3 glass heat-
treated” sample at 800°C will be investigated in detail.  
Glass transition studies are important from the point of view of understanding the 
mechanism of glass transformations. The Tg1 values of PSBS1 and PSBS3 appear to be 
increased by the thermal treatment indicating the kinetic nature of the glass transition. If the 
comparison is made for all the samples after the heat-treatment it is possible to also note 
that Tg1 shifts to higher temperatures with increasing CaO amount in the composition. The 
Tg2 values after the heat-treatment is detected only for samples PSBS1 and PSBS4. Probably 
a Tg2 peak is also present in PSBS3 but the crystallization peak doesn’t allow the detection 
and it is probably the indication of a second phase formed that is more prone to crystallize. 
 
 

4.2.3 Crystallization studies on PSBS3 
 
After DSC analysis revealed an exothermic peak at 800⁰C, a heat treatment at different time-
points was performed to investigate the phase crystallized at a temperature higher than the 
original heat treatment. Only the phase-separated PSBS3 sample shows this phenomena, 
probably indicating that one of the phases present after the first heat treatment at 700⁰C is 
more prone to crystallization. An XRD study can then bring an understanding of the 
composition of this phase. 
The experiment started with the PSBS3 phase-separated samples heated at 800⁰C for 5h, 
10h and 20h. Pictures of the resulting sectioned samples were taken with the optical 
microscope and are showed in table 27 below. 
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Table 27 PSBS3 heat-treated at 800°C showing the development of the crystalline phase. 

Time 
(hours) 

Temperature 
(°C) Sample surface Sample section 

5 800 

10 800 

20 800 

 
 
The crystallization of an amorphous solid is a complex process involving simultaneous 
nucleation and growth of crystallites (Kalb 2009). Crystallization is initiated by crystal 
nucleation that can occur spontaneously or may be induced artificially. In this case it is 
induced by the heat provided by the thermal treatment and it is dependent on the heating 
time. The nucleation process is followed by growth of the crystal nuclei to macroscopic 
dimensions. . In PSBS3 glass the crystallization begins from the external surface and develops 
through to the deeper areas of the glass bulk. The crystalline phases were revealed by XRD 
analysis (fig. 46) and are shown in table 28. 
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Figure 45 XRD patter of PSBS3 heat-treated at 800°C at different time-points: 5h, 15h and 20h. 

 
 
Table 28 Weight% of the crystalline phases formed with the heat treatment of PSBS3 at 800°C. 

Content of phases (w%) 
Phases: 5 hours 10 hours 20 hours 

Potassium Boro-Silicate (KBSi2O6) 16.0  23.6  57.0  
Calcium Borate (CaB2O4) 3.9  6.9  22.1  

Tri-Calcium Silicate (Ca3SiO5) N.d. N.d. 2.2  
Amorphous 80.1  69.5  18.8  

 
Different types of alkali borate crystal structures are found at lower heating times. The first 
one KBSi2O6 has a molar ratio SiO2/K2O equal to 4, i.e similar to that the glass composition 
(4.6 for all PSBS). This phase may be due to the boron losses during the melting process and 
start to crystallize during the thermal treatment.  
The second one CaB2O4 is one of the four solid phases of the binary system CaO-B2O3. In the 
Janecke triangular representation (fig. 31) CaB2O4 is located at 44.6% Ca just on the right 
side of PSBS 3 composition. 
After 20 hours of thermal treatment a silicate phase start to crystallize, it is rich of calcium 
and can be identified as the mineral phase called Alite Ca3SiO5. The majority of the glass 
volume at 20 hours (see picture in table 28) has experienced crystallization.  
The phenomenon of crystallization in PSBS 3 could be interpreted as the combination of  
- the boron losses during the fusing process ; 
- the higher amount of CaO in its composition, as also demonstrated in a study conducted by 
Zhou et al (X. Zhou 2009) where it was proven that the increase in the crystallization of a 
CaO-SiO2-B2O3 glass ceramic is related to the increased CaO amount in the composition ; 
 - the absence of Al2O3 in the composition of the glass: alumina doping in borosilicate glasses 
is considered to enhance glass formation ability (Araujo R.J. 1982), the glasses without 
aluminium in this study are more prone to crystallization. 

20h 

15h 

5h 
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4.3 Ions leaching, dissolution experiments & surface analysis 

 

Due to their amorphous structure, glasses are less dependent on a specific stoichiometry 
compared to crystals. For that reason, it is possible to incorporate various amounts of 
network modifiers into their composition with each element being useful for a specific 
physiological activity. The borosilicate system studied so far, in addition, can be induced to 
structural modification with a thermal process.  

When glasses are immersed in a solution, three main processes occur: ion exchange, 
dissolution and precipitation. The ion exchange occurs especially in the glass surface where 
cations from the glass are exchanged with H3O+ from the surrounding solution: 

 Si-O-K+ + H3O+  Si-OH + K+ + H2O 

The dissolution results in an increase in the pH that cause the disruption of the glass network 
with the breaking of the Si-O-Si bonds: 

 Si-O-Si + OH-  Si-OH + Si-O- 

 Si-O- + H2O  Si-OH + OH- 

  

Finally, the precipitation of some of the ions can form salts in solution or form a kind of gel 
layers on the surface of the glass particles. Hench proposed the formation of a calcium 
phosphate-rich layer in his explication of the hydroxyapatite formation (Boyd D. 2005). 
Essentially the glasses start a degradation process in which ions will be continuously released 
from their structures. This property makes them very interesting as agents for controlled 
release of actives. 

Altering the glass composition and controlling its reactivity once immersed in solution is 
challenging, but studies can provide valuable information on what species are leached and 
when (Elgayar I. 2005). In this chapter dissolution studies following by ICP analysis are 
employed to elucidate the mechanism of ions release and how this correlates with glass 
composition and the microstructure formed after the heat treatment and leaching. 

 

4.3.1 Dissolution in acid medium 

 
4.3.1.1 pH measurement associated with ion dissolution and heat-treatment 
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The PSBS samples have been compared by measuring the pH change in an acid solution. This 
allows initial theories to be developed concerning the exchange reaction between the glass 
ions and the ions present in the solution. As borosilicate glass particles or scaffolds dissolve, 
the pH increases and the concentrations of the predominant species in solution will vary 
according to the pH.  
pH evolution as a function of time has been analysed for the samples before and after heat-
treatment  Fig. 47 shows a typical example of curve. 
 

 
Figure 46 pH variation in the HNO3 acid 1M monitored in the first 15 minutes of reaction for the PSBS samples before (dark 
blue line) and after (light blue line) the heat treatment. 

 
All glasses show the characteristic pH increase typical of the bioactive glasses when 
dispersed in aqueous media. The glass particles started to leach ions as soon as they get in 
contact with the acid solution as observed also by Zhang et al. (D. Zhang 2008). A rapid 
increase in pH that takes place during the first minutes, after which the pH increases only 
slightly (Fig. 50). This phenomenon is due to the ionic exchange between the network 
modifiers and the HNO3 solution. At 5 minutes, the pH had increased from 2 to 8 resulting in 
a fast dissolution process. After the fast pH rise it stabilizes to values between 8 and 9. 
Hydrolysis of the silica network is known to occur at higher pH values (usually above pH 10), 
resulting in congruent dissolution of silicate glasses (Hench L.L. 1978). The greatest pH 
increase is observed for the samples with higher calcium concentration (PSBS3 and PSBS5) 
confirming that the exchange of the alkaline earth ions with the protons in the solution is 
responsible for the pH increase (given that potassium ion concentration is constant). 
Comparing the pH variations of the PSBS samples this result is confirmed especially 
observing the isophlets with constant amount of aluminium. In the three isophlets in figure 
48 with Wj = 0%, 15% and 25% Al, the samples with the lower increase in pH are the ones 
without calcium in the composition. Observing this specific isopleth: Wj = 0% Ca (fig. 49) the 
increasing in aluminium concentration result in a decrease in the pH evolution rate 
confirming that the durability is also increasing with higher aluminum concentration in the 
glass composition.  
 
 
 



117 
 
 

 

 

 

 
Figure 47 Comparison of the pH evolution in the isopleths with constant amount of calcium. 
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Figure 48 Comparison of the pH evolution along the isopleths with constant aluminium concentration. 

 
  



119 
 
 

 

4.3.1.2 pH measurement associated with weak and strong acid media 
 
For PSBS1, PSBS8, PSBS16 and PSBSSBK the pH was also measured with a weak acid, the 
poly(acrylic acid) (from Sigma Aldrich, 35 wt. % in H2O, mol wt: average Mw ~250000). The 
comparison of the evolution of the pH between the HNO3 and the poly(acrylic acid) shows 
the same trend for all the samples. In fact the acid involved in the dissolution influence the 
pH increasing, especially if the acid is weak the rise in the pH will be less pronounced 
because of the low exchange between the glass ions and the protons in solution. This 
experiment want to confirm that the dissolution is affect by the type of solution and 
consequently the pH variation is different (fig. 50). 
 

  

Figure 49 pH measurement of PSBS 1, PSBS 8, PSBS 16 and PSBS SBK in two different acids: HNO3 1M (blue line) and 
poly(acrylic acid) (green line). 

pH neutralization is of recent interest in the characterization of self-adhesive resin luting 
materials because it has been related to mechanical properties (Zorzin J. 2012). Also 
Ferracane et al. (Ferracane J.L. 2011) reported that a hydrophilic behaviour due to the low 
pH value in the cured material could affect the mechanical properties. However the studies 
cited monitor the pH change in the final product, directly putting the pH probe in contact 
with a cement disk suspended in a solution providing a similar condition to that found in the 
mouth (37°C and acid environment). The studies reveal that the pH neutralization is not 
consistent when comparing different commercial materials. There is potentially much work 
to be performed to investigate different conditions and considering also the fact that contact 
between the tooth substrate can play an additional role to the acid-base interaction of the 
materials. The results obtained so far show values close to some of the materials presented 
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in literature but the most useful data should come from the final cement mixed with the 
poly(acid). Finally also, effects in term of antimicrobial activity could well be related to the 
pH neutralization ability of the restoration 
 
 
4.3.2 Analysis of the ion release 
Identification of the ion released has been done by ICP analysis as function of time during 
the first hours of de dissolution process. The glass powders were immersed in the acid 
solution, that was than collected at different time-points. Fig. 51 shows a typical example of 
Si, K, B and Ca evolution. The results were converted from ppm to the molar percentage of 
the element dissolved in solution (Ex. [Elem]%). This was done to better compare the results 
amongst glass compositions that contain different amount of oxides in their compositions.  
 

 
Figure 50 Example of PSBS1 ions release in the first 8 hours of dissolution in HNO3. 

 
 
4.3.2.1 Effect of the heat-treatment 
 
The first assay was made for two different glasses both before and after the heat treatment 
to observe the effect on ion leaching. PSBS3 and PSBS5 were selected for this test because 
they present distinct appearance (the first is transparent while the second is opalescent) and 
because they have the same amount of calcium in their composition.  
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Figure 51 Comparison of a transparent PSBS3 and an opalescent PSBS5 glass sample (graphs on the left and right 
respectively). The comparison has been made within a heat-treated sample (solid line) and a melt-quenched sample (dotted 

line) between the leaching of different ions: boron (a,b), calcium (c,d), potassium (e,f) and silicon (g,h). The ordinates axis 
presents the percentage of the available element in the glasses dissolved into the acid solution. 

 

The ions concentration profiles suggest that the dissolution rate of B, Ca, K and Si is 
enhanced by the heat treatment. Moreover, it is evidenced that different leaching rates exist 
between the opal and clear samples. In PSBS3 potassium ions are released with higher 
kinetic rate than PSBS5 (∆K/∆t =0.71 Vs. 0.53 K%/min), while for calcium ions the opposite 
trend is observed (∆Ca/∆t =0.8 Vs. 1.12 Ca%/min). 

 

4.3.2.2 Comparison of the dissolution kinetics: PSBS8 and PSBS16 
 
The comparison of samples PSBS16 and PSBS8 respectively with and without Al2O3 reveals a 
different ion leaching behaviour during time (Fig. 53). PSBS 16 (opalescent glass, 15 wt% of 
Al2O3) releases calcium at a higher kinetic rate (∆Ca/∆t =2.982 Ca%/min). For PSBS8 
(transparent glass, without Al2O3) the release of potassium and boron is congruent and 
happens at a faster kinetic rate than calcium (∆K/∆t =2.744 K%/min; ∆B/∆t =2.66 B%/min). 
Silicon release is very low for both the glass samples. This is to be expected as it is a network 
former and not prone to leaching. Boron and potassium are dissolved much more quickly 
than silicon. Fast potassium release is to be expected but boron, like silicon can play a 
network former role and shouldn’t be release as a weaker phase. The formation of NBO 
weakens the structure of glass and makes the species soluble and more accessible to water. 
The depolymerisation of the silica network by the creation of NBO generates larger cavities, 
this favourites the invasion of nitric acid solution and the exit of the soluble elements. Two 
mechanisms of dissolution are hypothesized for PSBS8; after 125 minutes in HNO3, a rapid 
increase in the ions release is detected. It has been proved that in a bulk sample of the same 
glass, the structure is starting to degrade in the same condition. The phenomenon is not 
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detected in PSBS 16 where after 125 minutes seems that the ions releasing reaches a 
plateau. 
 

 

Figure 52 Kinetic study of the ion release: comparison between transparent (PBS8) and opalescent (PBS16) glasses. Data are 
presented in a logarithmic time scale. The release of boron, calcium, potassium and silicon ions are detected at different 

time-points. 

 

The PSBS16 leaching mechanism starts with a relatively high release of Ca2+ in the first 25 
minutes of dissolution. As time passes, the amount of Ca2+ released reaches a plateau, the 
diffusion of the ions into the solution only slightly increase. This is probably due to a higher 
glass durability that maintains intact the calcium channel/rich calcium phase and permits a 
constant release of this element due to the effect of the nitric acid on the glass surface. In 
PSBS8 the ion leaching behaviour is different. In the first minutes a fast release of K+ and B3+ 
(release as borate ions) is observed, probably belonging to a separate phase more 
susceptible to acid attack. After 125 minutes a rapid increase of the glass dissolution is seen 
due to a faster degradability of the structure. The sample without Al2O3 had the highest 
solubility and this plays an important role when considering the calcium release after the 
first 125 minutes. The structure is dissolved and the calcium and the other ions are released 
faster. The two different tendencies explained above are similar for the PSBS samples 
belonging to the two main type of glasses: opalescent and transparent. 

 

4.3.2.3 Effect of the composition 
 
The entire set of glasses was then analysed under the same conditions and with the same 
time-points. The heat treated samples were used to study the compositional effect on the 
ions leaching. In this case the results are expressed as kinetic rate, and so as the percentage 

0
10
20
30
40
50
60
70

1 25 625 15625

%
 e

le
m

. d
is

so
lv

ed
 

Time(min) 

PSBS8 

Boron

Calcium

Potassium

Silicon

0
10
20
30
40
50
60
70

1 25 625 15625

%
 e

le
m

. d
is

so
lv

ed
 

Time(min) 

PSBS 16 

Boron

Calcium

Potassium

Silicon



124 
 
 

 

of element dissolved in solution every minute. To make the calculations the value obtained 
at 15 minutes was considered because this time-scale is felt to be the most pertinent in 
terms of initial setting in the cement where cross-links between poly(acrylic acid) and 
released ions start to form.  
The effect of the composition will be described across different aspects in the following 
section and a discussion at the end of the chapter will give an overall description of the data 
obtained. 
 
Glasses without CaO (WJ = 0% Ca) 

 

 
Figure 53 Part of the triaxial diagram indicating the position of the studied samples: PSBSSBK, PSBS11 and PSBS12. 

 
The three glasses without calcium PSBSSBK, PSBS11 and PSBS12 (fig. 54) were compared in 
terms of ions release. With silicon and potassium fixed in the composition, aluminum is the 
only variable factor influencing the experiment in these samples. 
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Figure 54 Release of boron, potassium and silicon from samples without calcium. 

 

Calcium ions are not present in these glasses and the only network modifier is thus K2O. It 
has been previously observed, thanks to XRD analysis, that calcium ions have a role in 
modifying the base structure built by the network formers (fig. 39). The mobility of network 
modifiers ions is affected by the openness of the glass network. Calcium ions tend to 
depolymerise the glass structure by the formation of NBO. The absence of CaO in the 
composition focusses the attention on the effect of aluminium. Increasing the w% of Al2O3 in 
the composition is associated with a decrease in the level of ions in solution after immersion. 
Former ions like boron and silicon, but also modifying ions like potassium are leached out at 
a slow kinetic rate as aluminium wt% levels increase. Consequently the glass becomes more 
durable with aluminium in the network. The explanation is related to its network forming 
nature (in the presence of Si, B oxides) that reduces the number of NBO, increasing the 
network connectivity and increasing durability. Overall this results in a decrease in the 
hydrolysis rate for the glass (Bunker 1994). Moreover alumina was proved to enhance 
glassification, with XRD studies demonstrating that glasses without aluminium tend to 
crystallize more ready with a specific thermal treatment.  

 

Glasses without Al2O3 (WJ = 0% Al) 
 

 

Figure 55 Part of the triaxial diagram indicating the position of the studied samples: PSBSSBK, PSBS11 and PSBS12. 
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Four glasses, PSBSSBK, PSBS8, PSBS9 and PSBS3 (fig. 56) - all of them without aluminium - 
are compared in this section. With the silicon and potassium concentrations are fixed , ion 
leaching trends will be interpretated in terms of the calcium concentration in their 
composition (fig. 57). 
 

 
Figure 56 Release of boron, potassium and silicon from samples without aluminium. 

 

As mentioned before, trends in different glass properties can be correlated to the 
concentration of the elements in compositions. The effect of depolymerisation induced by 
the addition of calcium is confirmed in these studies by the silicon release curve. It shows 
how the concentration in solution slightly increases in accordance with the increment of CaO 
in the glass composition. Silicate glasses have been studied for decades and experimental 
evidence exists to show that the basic structural unit is an SiO4 tetrahedron, called a Q unit 
(where Q stands for quaternary) (Karlsson H. 1987). The tetrahedra in silicate glass have a 
well-defined geometry, as already stated in the first chapter of this thesis. The tetrahedra 
are the same units present in crystalline SiO2 (quartz etc.) were these units are connected 
between each other by their corners (Geodeon O. 2008) . However, there is less geometric 
order to the way the tetrahedral are linked via Si-O-Si binding. Adding Ca2+ ions, the 
structure is modified, allowing a faster degradation of the silica network (due to a lower 
number of M-O-M connections). One quantification employed for connectivity is the 
distribution of the so called Qn units where the n is for the number of bridging oxygens (BO).  
As Ca2+ ions are added to silicate glasses,  Q4 units are diminishing in respect to the other 
structural units Q3, Q2 and Q1 (fig. 58) creating more non-bridging oxygen (NBO) as a result 
of ion bonding between oxygen and alkali species. Borosilicate glasses contain also B2O3 as a 
network former in their compositions. Borate is usually present as a planar three coordinate 
structure of boron atoms; in this case, the glass network is almost completely built with 
these units called boroxol groups that are randomly connected between each other. But, if 
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alkali oxides are added some of these units are transformed into four coordinated 
tetrahedral units. At higher alkali oxides concentration the formation of NBO are amplified 
providing boroxol rings incorporating boron atoms (fig. 59). The mechanism associated with 
increased alkaline earth addition is different from what happens in purely silicate glasses and 
this could be the reason why in the acid solution the boron is found to decrease with the 
addition of CaO. 

 

Figure 57 Different structural units of the silica glass network. 

 

 

Figure 58 Boroxol rings in pure borate glasses. 

 

 
 
Effect of the ratio B2O3/CaO 
 
In figure 60 are shown the boron, potassium, calcium and silicon release values for glasses 
belonging to two isopleths with constant amounts of aluminium. Within these glass series, 
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examples of two main heat-treated glass types (transparent and opalescent) are found. In 
the X axis are reported the weight percentage amounts related to the B2O3/CaO ratio of the 
glasses analysed in order to make an easier comparison. 
The ion release profiles suggest that the opalescent glasses release calcium with a faster 
kinetic rate than the transparent ones (average comparison of the kinetic rate is 4 and 2.65 
Ca%/min respectively). Potassium is released faster in the transparent samples (average 
rate: 3.18 K%/min) compared to the opalescent ones (average kinetic rate: 2.38 K%/min). 
The dissolution mechanism for the opalescent glasses is found to be dependent from the 
B2O3/CaO ratio. Low values of the ratio induce a slower release of potassium, calcium and 
boron. 
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Figure 59 Kinetic study of the ion release: comparison between opalescent (dotted line) and transparent (solid line) glasses. 
The kinetic release of the ions is calculated as the percentage of the single element dissolved per minute and it is related to 

the B2O3/CaO ratio (in w%) of the PSBS samples. 

 

Resuming the data showed, the opalescent glasses tend to release faster calcium ions into 
the acid solution, while in transparent glasses the potassium and the silicon are leached out 
at higher rates. The dissolution process thus depends on solution conditions (pH, 
temperature, etc.) as well as on composition and microstructure of the glass.  In this study 
the experimental conditions are maintained constant (thermostatic 37°C and solution 
pH=2.5).  
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The results from this experiments not only evidences that an high B2O3/CaO ratio slightly 
increase the leaching of calcium and potassium but also reveals a clear difference in the 
dissolution behaviour between opalescent and transparent glasses. 

 

4.3.2.4 Conclusion related to the ions leaching experiments 
 
The release of ions into acid solution provides an indication of what may happen in the glass 
ionomer cement during the setting reaction. Cement setting and subsequent mechanical 
properties are influenced by a range of factors. Ion release from the glass is the most 
important influence on cement setting; working and initial setting times are likely to depend 
on how fast ions are actually released from the glass. At the end of the hardening process 
the material will continue leaching ions but at a slower rate probably for the formation of a 
silica gel layer that retards further ions release (Khoroushi M. 2013). This stage is called 
maturation and enhances the mechanical properties due to further stabilization of the inter-
molecular forces. As modifiers are incorporated into the glass network, leaching of 
modifying ions out of the glass occurs. In the borosilicate phase-separated systems glass 
leaching occurs in the early stages of reaction with nitric acid. Ion-exchange occurs faster 
than network hydrolysis, as confirmed by the kinetic study, which leads to selective leaching 
of the modifier ions out of the glass and hydrogen ions into the glass. The dissolution 
depends on solution conditions (pH, temperature, etc.) as well as the composition and 
microstructure of the glass. In this study the experimental conditions are maintained 
constant (thermostatic 37°C and solution pH=2.5). The only variables are the compositional 
changes directly influencing the glass microstructure. The leaching rate depends on the type 
and weight amount of modifier. In alkali silicate glasses, chemical durability increases in the 
order of K+<Na+<Li+, suggesting that ionic field strength and free energy affect glass leaching 
rates. The borosilicate system in the Vycor glasses is composed of Si-Na-B. Replacing sodium 
(Ionic radius: 102pm) for potassium (Ionic radius: 138pm), the packing (compactness) of the 
glass network is changed due to the larger dimensions of the ionic radius. Increasing alkali 
size induces a glass network expansion, with weaker binding forces between alkali and NBO 
and a change in the network polymerization. This would also influence the ion release 
behaviour, with a less densely packed glass structure resulting in an enhanced or faster ion 
release (Tylkowsky 2013). Alkaline earth cations decrease the glass durability, despite their 
high field strength (charge divided by radius) and greater connectivity to oxygen atoms. If 
compared to alkali ions this will results in a lower mobility of the ions when modifying the 
network structure. The phenomena involved in the chemical attack of glass are very 
complex. These phenomena are mainly due to the effect of the chemical composition of 
glass. 
A slow increase in the dissolution kinetic rate of the silicon ions related to the amount of 
CaO in the composition can be observed, especially for the transparent glasses. For that 
reason it is possible to affirm that the disruption of the silica network is maximized for the 
glasses without Al2O3. In contrast, the addition of Al2O3 affects the glass resistance, reducing 
the number of NBO, increasing the network connectivity and increasing durability due to a 
decrease in the hydrolysis rate (Bunker 1994). Al2O3 is also promoting the leaching of Ca2+ 
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ions, as observed for the opalescent samples, the viscosity increased during the glassification 
assure the formation of one soluble phase rich of calcium. Aluminium in that case has a 
double role, it influences the opacity of the glasses after the heat-treatment probably 
encouraging the formation of two distinct phases and assists the leaching of calcium ions. 
The latter is caused by its network former nature that induces the increase of the glass 
connectivity by replacing NBO's with cross-linking Al-O-Si bonds.  
The different leaching performance is proved to be related to the composition of the PSBS 
samples and also related to a different phase separation similar to that observed in the 
Vycor type glasses. Surface studies with SEM and EDX will better show the differences in the 
structure of the opalescent and the transparent glasses. 
 
4.3.3 Surface analysis  
 
Surface studies with different microscopy techniques can possibly show differences in the 
structure of the opalescent and the transparent glasses. The formation of different phases 
can be hypothesized for the glass samples analysed, but the phase separation is still not 
clearly defined. 
 
4.3.3.1 BET analysis  
 
The superficial area (SA), the pore size and the pore volume were evaluated for the first 10 
heat-treated glasses before and after an acid dissolution. The results are showed in table 29. 
 
Before the acid dissolution the surface areas are very similar, with values between 1.73 and 
3.6 m2/g. The pore sizes have to be considered only after the acid dissolution because the 
glass is completely dense once is heat-treated. The acid dissolution dramatically increases 
the differences in the particle properties measured with BET. Opalescent glasses present an 
higher increase in the SA while the pore size varied between 9 and 17 nm (fig 61 and 63). 
This could bring to a logical conclusion based on the fact that smaller pores will result in high 
surface area of the particles. The transparent glasses in contrast show lower values for SA 
while the pore volume increase to 20 nm except for PSBS8 (fig 62 and 64). The results 
demostrate intial differences between opalescent and transparent glasses treated with acid 
solution. The first result that will assume a different structure between the glass particles 
after the heat treatment probably due to a different phase separation. 
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Table 29 BET analysis results for the PSBS samples before (HT) and after (7d) the HNO3 dissolution. 

SAMPLES SA 
 (m2*g-1) 

Pore size 
(nm) 

Pore 
volume  

(cm3*g-1) 
PSBS1 HT 3.39 11.37 0.0096 
PSBS1 7d 16.98 9.57 0.0406 
PSBS2 HT 1.73 11.09 0.0046 
PSBS2 7d 41.64 4.24 0.0441 
PSBS3 HT 1.84 13.70 0.0063 
PSBS3 7d 5.47 19.04 0.0260 
PSBS4 HT 3.60 14.14 0.0127 
PSBS4 7d 6.42 18.89 0.0303 
PSBS5 HT 2.48 13.02 0.0081 
PSBS5 7d 6.20 17.81 0.0276 
PSBS6 HT 1.93 11.56 0.0056 
PSBS6 7d 60.65 3.70 0.0562 
PSBS 7 HT 3.31 11.94 0.0099 
PSBS7 7d 9.94 9.99 0.0248 
PSBS8 HT 1.74 12.51 0.0054 
PSBS8 7d 11.78 12.34 0.0363 
PSBS9 HT 2.00 14.20 0.0071 
PSBS9 7d 5.62 20.55 0.0289 

PSBS 10 HT 2.04 14.72 0.0074 
PSBS 10 7d 11.90 9.24 0.0275 

 
 
 
 

 
Figure 60 Superficial area for opalescent glasses befor (HT) and after (7d) the acid dissolution. 
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Figure 61 Superficial area for transparent glasses befor (HT) and after (7d) the acid dissolution. 

 
 

 
Figure 62 Pore size for opalescent glasses befor (HT) and after (7d) the acid dissolution. 

 

 

Figure 63 Pore size for opalescent glasses befor (HT) and after (7d) the acid dissolution. 
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4.3.3.2 Optic microscopy studies 
 
The optic microscope is a useful technique for an initial scanning of samples surfaces (tab. 
30). PSBS1, PSBS2, PSBS3 and PSBS 7 surfaces were studied with reflected and transmitted 
light after being polished with the procedure described in the materials and method section. 
 
Table 30 Images of the polished glass samples obtained with the optic microscope using transmitted and reflected light. 

SAMPLE Magnifica
tion Reflected light Transmitted light 

PSBS1 

 

20x 

  

50x 

  

PSBS2 

 
 

20x 

  

50x 
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PSBS3 

 

20x 

  

50x 

  

PSBS7 

 

20x 

  

50x 

  
 
No relevant differencies were detected for the samples in reflected light mode. At higher 
magnifications the surfaces show approximately the same roughness and because of the 
absence of any elemental determination it is difficult to reach any conclusions. The analysis 
with transmitted light reveal more details; especially an interconnected structure linked the 
presence of a phase separation is observed. No differencies have been observed between 
the opalescent and the transparent samples except for the fact that the transmitted light 
logically diffuses better in the transparent glasses. The conclusion is that a powerful tool has 
to be used for the investigation of the microstructure and the composition of the surface of 
the PSBS glasses. 
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In order to bring to light the structure of the hypothesised phase separation a final attempt 
has been made for PSBS1. The surface of the polished sample was etched with HCl 1M for 
different time-points and than analysed with the optic microscope. The images obtained are 
showed in figure 63 and 64. 
 

 

  
 
Figure 64 Surface of PSBS1 sample etched out with HCl at different time-points: 30 seconds, 1 minute and 5 minutes. 
Magnification: 2.5x. 
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Figure 65 PSBS1 surface etched with HCl 1 M at different time-points. Magnification: 10x. 

 

The images again show the effect of the acid corrosion in the surface of the glass, but they 
don’t reveal details regarding the structure morphology. The phase separation is presenting 
changes detectable only at nanometer level. For this reason studies with SEM have been 
performed at this point. 

 

4.3.3.3 SEM and EDX analysis 
 
SEM analysis of the PSBS 16 and PSBS 8 glass samples were conducted to find evidence for 
two different amorphous phases and so proof that phase separation was occurring. It was 
hoped to find similarity with the sodium boro-silicate system of the Vycor glasses. The 
figures represent the analysis of the glass surface with the back-scatter detector and show 
two different structures for the opalescent and the transparent surfaces. The left-hand 
images (opalescent sample) present a number of sparse droplets ranging in size between 20 
and 30 nm whilst the right-hand images suggest narrow veins surrounded by a 
homogeneous phase. It is unclear why this is so and which relate to some type of phase 
separated structure, for this reason, leaching experiments were conducted to obtain more 
information. 
The etching process in normal conditions it is found to be effective for revealing new details 
of the glass surface. A porous structure is detected for the opalescent sample PSBS 16 while 
a homogeneous surface is observed in the transparent glass PSBS 8 (see lower images in 
figure 67), proving that the surfaces are different and a distinct reaction with the nitric acid 
is going on.  
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Figure 66 Glass microstructures before (a,b) and after (c,d) the dissolution test in normal condition. PSBS16 is represented 
in the left while PSBS 8 is showed in the right. 

 

The harsh conditions reveal more details for the interpretation of the glass structures. The 
opalescent glass shows a porous structure of almost pure silica. The transparent glass 
structure collapses, dissolving in the solution and leaving at the bottom of the reaction 
beaker a white unknown powder. XRD and XRF analysis demonstrate that the powder is still 
completely amorphous and it is composed of pure silica (fig. 68).  

 

a) b) 

c) d) 
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Figure 67 Hard condition dissolution studies of the remained glass structure for PSBS 16 (first line) and for the remained 
glass powder for PSBS 8 (second line). 

 

The leaching experiment undertaken with harsh conditions (at higher temperature) suggests 
that the phase separation occurs because only one phase completely dissolves. This phase is 
the boron rich phase where it might be expected that the network former, boron, shouldn’t 
be etched out as soon as the network modifiers. The process involved in the phase 
separation should be for both samples (transparent and opaque) the nucleation and growth 
mechanism (fig. 69). In the opalescent glass the nuclei are the boron-rich phases that are 
etched out leaving a porous structure, while in the transparent glass the nuclei are 
composed of silica, collapsing apart as a powder after which the surrounding boron-rich 
phase gets dissolved in the nitric acid solution. The pattern of the ion release implies that 
one of the phases is more reactive and susceptible to acid attack and will be leached out 
from the glass earlier (Rafferty A. 2003). The other phase will remain in the cement 
improving the mechanical properties of the dental restorative material. For instance, the 
existence of a nanoscale phase separation varying from that of Vycor glasses and could 
result in the different ionic dissolution/leaching rate of the constituting elements of the glass 
system. Changing the composition the level of leached ions and the microstructure could be 
altered as show in this case. 
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Figure 68 Hypothesis of the mechanism of phase separation 

 
4.4 Results of the Design Of Experiments (DOE) 
 
The data reported in the following table are the responses obtained from the dissolution 
experiments. The ions leaching were measured with ICP and the data converted from ppm 
into dissolution rate as [elem]%/min calculated on the first 15 minutes of dissolution to 
represent the data as the percentage of the single element detected dissolved per minute 
(tab. 31). 

Table 31 Dissolution rate of boron, potassium, calcium and silicon detected for each glass sample. 

Dissolution rate ([elem]%/min) of: 
SAMPLES Boron Potassium Calcium Silicon 
PSBS 1 2,51 1,78 3,64 0,84 
PSBS 2 1,97 2,25 1,89 0,87 
PSBS 3 2,13 2,84 2,43 1,89 
PSBS 4 2,39 0,99 4,70 0,36 
PSBS 5 2,28 1,59 3,35 0,98 
PSBS 6 2,39 2,55 2,22 0,98 
PSBS 7 2,38 1,77 4,06 0,50 
PSBS 8 3,34 3,70 2,91 1,62 
PSBS 9 2,70 3,01 2,65 1,69 
PSBS10 2,35 1,38 4,27 0,37 
PSBS 11 7,28 5,49 n.o. 1,16 
PSBS 12 5,70 4,79 n.o. 0,67 
PSBS 13 2,11 1,50 2,48 0,16 
PSBS 14 1,85 1,89 1,88 0,56 
PSBS 15 2,77 3,12 1,99 0,79 
PSBS 16 2,47 1,91 4,22 0,97 
PSBSSBK 11,45 9,54 n.o. 1,56 
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As a first approach the DOE allows evaluation of which factors statistically influence the 
response(s) studied. The data obtained should be verified for the precision and a key 
objective is to test if the predicted values are similar to the experimental ones. The ANOVA 
(analysis of variance) is a useful tool that allows an assessment of the importance of one or 
more factors by comparing the response variable means at the different factor levels. The 
idea behind the ANOVA is that the variation in the response variable (total variation) is 
divided in 2 parts: a part that indicates how much of the variation is explained by the 
regression model and a part that shows how much of the variation is left unexplained by the 
regression model (“residual”). The total variation is the variation explained by the regression 
model plus the error. To summarize the total variation for all data points with one number, 
the sum of squares is done for each source of variation. These have to be done for all the 
responses and so in this instance for: boron, potassium and calcium leaching. The values for 
each response are listed in the following tables and are calculated by the software 
(NEMRODW software, LPRAI, Marseille) once all the compositions had been prepared and 
the associated leaching responses were obtained. Finally the significance is calculated by a 
statistical test called “Fisher’s test”. This test is used for comparing the two statistical models 
that have been fitted to a data set, in order to identify the model that best fits the 
population from which the data were sampled. In this case the models compared are the 
response values calculated and the response values obtained experimentally. 

 

 

 

 

The first term correspond to: 

 

Where: 

 samples mean in the i-th group 

ni= number of observations 

 overall mean of the data 

K= number of groups. 

 

And the second term: 
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Where: 

 is the j-th observation in the i-th out of K group 

N= overall sample size. 

 

  

Table 32  Analysis of variance for the response: boron. 

Variation Sum of squares Degree of freedom Mean square Ratio Signif (F) 
Regression 1.5740 6 0.623 8.3477 0.654** 
Residuals 0.2200 7 0.0314     

Total 1.7940 13       
 

Table 33 Analysis of variance for the response: potassium. 

Variation Sum of squares Degree of freedom Mean square Ratio Signif (F) 
Regression 6.8695 6 1.1449 8.7001 0.580** 
Residuals 0.9212 7 0.1316     

Total 7.7907 13       
 

 
Table 34 Analysis of variance for the response: calcium. 

Variation Sum of squares Degree of freedom Mean square Ratio Signif (F) 
Regression 7.8646 6 1.3108 1.9950 19.4 
Residuals 4.5992 7 0.6570     

Total 12.4639 13       
 
The data points unfortunately are not well balanced comparing the F test obtained especially 
for the particular approach that was done from the beginning of the experimentations, with 
the addition of new experimental points. 
Another possibility with DOE is to represent response surfaces for each in order to generate 
a 2-D figure which will give contour lines indicating the variation of the response. From this it 
is possible to better understand the impact of the three different factors of the study.  
Three different figures have been obtained setting the response in order to maximize the 
leaching of each single element at the time. In figure 70 the boron leaching is maximized for 
the composition that introduces higher amounts of B2O3. In figure 71 the contour lines show 
that for maximum leaching of potassium the tendency is very similar to the previous one, i.e.  
higher B2O3 contents will also enhance the release of potassium. Finally in figure 72 is 
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represented the trends for calcium that are the opposite for boron and potassium. During 
the planning of the experiment a target composition was to be expected at this point 
delivering a compromised maximum release for all three elements. From the results 
obtained so far it is impossible to choose one single composition to characterize with further 
experiments and for that reason for the next experiences have been selected two sample 
with opposed leaching trends. This choice was made to obtain further information on the 
biological and mechanical properties of borosilicate glasses that release the ions of their 
composition with a different kinetic rate. 
 

 
Figure 69 Boron leaching maximization 

 

 
Figure 70 Potassium leaching maximization 
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Figure 71 Calcium leaching maximization. 
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5. MECHANICAL AND BIOACTIVE 
PROPERTIES ANALYSIS 
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5.1 Mechanical properties 

 
5.1.1 Vicker’s microhardness test 
 
The microhardness measurements are reported in the following table 35 and figure 73. The 
analysis were realized with the method used for the bone structural unit (BSU) system. At 
least 15 indents for each sample were measured and the average values are repoted in the 
table that show the evolution of HVN during 42 days. 
 
 
Table 35 Vicker’s indentation on PSBS cements samples 

Day GIC (FUJI IX) PSBS8 PSBS16 
8 

   
14 

   
21 

   
28 
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42 

   
 
 

 

 
Figure 72 Vicker’s microhardness comparison between two PSBS samples and FUJI IX. 

 
 
All tested PSBS cements showed high surface roughness probably due to a rapid setting 
reaction that did not allow the glass particles to mix properly in contact with the poly(acrylic 
acid). 
The surface hardness of the FUJI IX® GICs were found to be higher than those of PSBS 
samples. During all time-points the Vicker’s microhardness is significantly higher in the 
commercial GIC (FUJI IX®) when compared with PSBS16 and PSBS8 singularly, with a p value 
of <0,001 in average. The standard deviation (represented by the error bars in the graph) 
shows how there are no significative differences between the PSBS samples studied, but it is 
possible to expect different behaviour in long term data-points. PSBS16 seems to stabilize 
it’s hardness values between 21 and 42 days while PSBS8 shows a continuous increase along 
the time-points. In this respect, PSBS8 mirrors the FUJI IX microhardness values ). The 
changes in surface hardness that were found in this study are most probably related to the 
reactivity of the PSBS glasses. It appears that that no significant differences exist in values as 
a function of the aluminium concentration in the borosilicate glasses. Aluminum is 
considered very important in the setting mechanism due to its 3+ charge and its ability to 
efficiently crosslink the polyacrylic acid. Interestingly the absence of aluminium does not 



149 
 
 

 

affect the microhardness in PSBS8 that deso not contain this element in its composition. This 
confirms the hypothesis that the boron released as boric acid acts as a crosslinker providing 
a rapid setting reaction and substituing the effect of the aluminium of the conventional glass 
ionomer cements. 
A longer setting period and an essay with the interaction in a body fluid can provide a most 
complete scenario with the closer environment as the one in the mouth. 
 
 
5.1.2 Flexural strength 
 
Flexural strength analysis was performed for PSBS8, PSBS16 and a FUJI IX control after 24 
hours and after 7 days of maturation at ambient conditions. The results are show in the 
figure 74. 

 
 

Figure 73 Flexural strength values at after 1 and 7 days of maturation. 

 
 
It can be seen that after 24 hours of maturation, the PSBS8 cement exhibits higher mean 
flexural strength compared to the Fuji IX control. In contrast after 1 week there was only a 
small further increase in strength for the PSBS8 cement whilst a high increase was 
encountered for the conventional FUJI IX cement. PSBS16 didn’t show any comparable 
flexural strength after 24 hours or one week. In the study of Xie et al. (D. Xie 2000) the 
flexural strength after 7 days of immersion in distilled water for other commercial products 
revealed values between 11 and 82 MPa. The improvements in mechanical properties of the 
experimental GIC made with the PSBS8 may indicate increased homogeneity and polysalt 
bridge formation in the final set material due to the leaching of boron ions as boric acid. 
Undoubtedly, stronger bonds between the organic and inorganic networks caused the 
increase in flexural strength of the final set cement. The results of the analysis suggest that 
some important general relationships exist between the compositions, microstructures and 
mechanical properties of commercial GICs. Advances in the product improvement should 
arise via a deeper study that considers the rapid setting of the cements immersed in a 
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solution (distilled water, SBF or simulated saliva) because improvements in strength are 
important in providing resistance to attack by moisture and thanks to the remineralization 
the PSBS samples could give superior strength value compared to a conventional ionomer 
glass. 
 
 
5.2 Bioactivity 
 
5.2.1 Bioactivity test ISO 23317:2014. In vitro evaluation for apatite-forming ability of 
implant materials. 
 
The formation of an HA layer is generally considered as an indication of the bioactivity. It 
facilitate the attachment of the osteoblast (via protein) on bioactive glasses and so enabling 
the bonding with the bone. The ability of the bioactive glasses to form HA in body fluid is 
also used in toothpaste for treating dentine hypersensitivity (B.J. Tai 2006). The deposition 
of HA in dentinal tubules of root dentin allow to block the pulp to be in contact with the 
external environment thus reducing the sensitivity. 
 
The objective of this experiment is to comprehensively characterize the conversion of five 
PSBS glasses and compare the results with the control 45S5K. Weight loss and pH changes 
accompanying the conversion were measured to provide additional insight into the kinetics 
and mechanisms of the conversion of borosilicate phase separated glasses. 
 
In the following table (tab. 36) are showed the values of the glass disk’s measurements and 
the calculation to obtain the volume of SBF necessary for the experiment. 
 
 
 
 
Table 36 Glass disk dimensions and calculation for the volume of SBF (d=diameter, h=high, SA=superficial area, V=volume).  

d (cm) h (cm) SA(cm2) SA(mm2) VSBF(mm3) VSBF(mL) 

PSBS2 7days 0.84 0.20 1.64 163.53 16353.12 16.35 
21days 0.87 0.20 1.73 173.47 17346.93 17.35 

PSBS3 7days 0.81 0.20 1.54 153.88 15387.57 15.39 
21days 0.80 0.20 1.51 150.72 15072.00 15.07 

PSBS8 7days 0.73 0.20 1.30 129.51 12950.93 12.95 
21days 0.80 0.20 1.51 150.72 15072.00 15.07 

PSBS9 7days 0.73 0.20 1.30 129.51 12950.93 12.95 
21days 0.78 0.20 1.45 144.50 14450.28 14.45 

PSBS16 7days 1.02 0.20 2.27 227.40 22739.88 22.74 
21days 0.95 0.20 2.01 201.35 20135.25 20.14 

45S5K 7days 1.03 0.20 2.31 231.25 23124.53 23.12 
21days 1.04 0.20 2.33 233.18 23318.03 23.32 
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Table 37 HA formation in the surface of a 45S5K glass disk after 1 week and 3 week of immersion in SBF 

45S5K 1 week 3 weeks 

 
 

 
EDX 
(w%) 

Ca P Si O K Na Mg Cl 

1 
week 

44.9 17.4 2.4 33.1 0.3 0.6 0.6 0.8 

3 
weeks 

15.04 7.2 27.97 48.4 0.98 0.6 0.11 0.68 
 

 
 
Table 38 HA formation in the surface of a PSBS2 glass disk after 1 week and 3 week of immersion in SBF 

PSBS2 1 weeks 3 weeks 

  
EDX 
(w%) 

Ca P Si O K Na Cl Al 

1 
week 

7.21 0 29.99 48.86 11.39 0 0 2.54 

3 
weeks 

7.13 0 32.95 45.37 10.97 0.56 0.16 2.85 
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Table 39 HA formation in the surface of a PSBS3 glass disk after 1 week and 3 week of immersion in SBF 

PSBS3 1 week 3 weeks 

   
EDX 
(w%) 

Ca P Si O K Na Cl 

1 
week 

10.44 0 28.67 51.06 8.71 0 1.12 

3 
weeks 

27.58 13.49 12.96 43.58 0.22 0.98 1.18 
 

 
 
Table 40 HA formation in the surface of a PSBS3 glass disk after 1 week and 3 week of immersion in SBF 

PSBS8 1 week 3 weeks 

 
 

 
EDX 
(w%) 

Ca P  Si O K Na Mg Cl 

1 
week 

23.8 0.1 26.6 44.9 0.4 0.2 3.7 0.3 

3 
weeks 

20.8 9.8 21.82 46.16 0.46 0.43 0.14 0.38 
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Table 41 HA formation in the surface of a PSBS9 glass disk after 1 week and 3 week of immersion in SBF 

PSBS9 1 week 3 weeks 

  
EDX 
(w%) 

Ca P Si O K Na Mg Cl 

1 
week 

4.79 0 34.42 51.09 9.05 0.39 0 0.26 

3 
weeks 

25.51 12.32 12.61 41.94 3.52 1.34 0.46 2.31 
 

 
 
Table 42 HA formation in the surface of a PSBS16 glass disk after 1 week and 3 week of immersion in SBF 

PSBS16 1 week 3 weeks 

  
EDX 
(w%) 

Ca P Si O K Na Mg Cl Al 

1 
week 

7.1 0.1 30.1 38.1 15.5 0.2 0.1 3.9 4.9 

3 
weeks 

10.14 10.77 12.75 42.32 4.97 5.17 0.77 5.8 7.33 
 

 
 
Tests for HA formation are very controversial. As said before it is known and accepted that 
the HA layer formed between the hard tissue and the biomaterial facilitate the attachment 
of osteoblast/odontoblast and enhance the bonding between the two surfaces. The results 
obtained from previous experiments in scientific literature sometimes lead to false positive 
or flase negative conclusions and for this reason the interpretations should be read carefully.  
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In this study the immersion of glass disks in SBF is seen as an indication of the behaviour of 
the PSBS powder in a solution that is very similar to the one found in the human body. 
Moreover the formation of HA has been interpreted as a positive effect and of special 
interest for dental applications as confirmed by current toothpaste products: Novamin® and 
BiominF®[REF]. Finally, a comparison with the pH evolution and the associated  mass loss 
gives a complete insight of the glass behaviour in SBF. 
HA is a naturally occuring mineral and the principal component of vertebrate bone and tooth 
enamel. The ideal atomic ratio for the crystalline apatite Ca10(PO4)(OH)2 is equal to Ca/P= 
1,67. Actually the composition of bone mineral is significantly different due to carbonate 
ions incorporation and is more accurately represented by Ca8.3(PO4)4.3(HPO4,CO3)1.7(OH, 
CO3)0.3. In some studies has been identified as “hydroxyapatite” a composition that present a 
Ca/P ratios ranging around 2. This can be identified as non-stoichiometric biological apatite 
(Ca/P molar ratio≠ 1.67) and in some cases provides an excellent connection with living 
tissue (G. Stanciu 2007). 
It is also confirmed by the studies of Kim et al. (H.M. Kim 2000, H.M. Kim 2001) that the HA 
layer formed with the SBF solution presents some dissimilarity with the bone apatite found 
in the human body. This could explain the stechiometric values encountered in the EDX 
experiments of this work. For example the lower CO3

- ion concentration and higher Cl- of the 
SBF solution in comparison to human plasma could influence the doping in new HA 
formation. 
The SEM images in this work demonstrate how for PSBS8 (after one week of immersion in 
SBF) the process of HA formation is starting with deposition of a calcium-silicate layer that is 
rich in calcium but poor in phosphate. This is probably corresponding to step 3 of the HA 
formation reaction as illustrated in fig.22. In this stage the formation of a SiO2

- rich gel on the 
glass surface by ion exchange reactions occurs. The following step is the further dissolution 
of ions through the SiO2

- rich gel layer in the glass followed by the reaction between Ca2+ 
provided by the glass and PO4

3– ions coming from the surrounding SBF, finally leading to the 
growth of the HA on the gel layer. 
Comparing SEM images for PSBS8 and the 45S5K control, it is noticed that the HA formation 
process in PSBS8 is slower. In fact the control already presents the formation of an initial HA 
structure confirmed by the shape encountered in the SEM images and by the observation of 
a  Ca/P ratio of 2.58 (higher in respect to crystalline apatite, but it becomes 2,08 after the 
third week). After the third week of immersion the sample PSBS8 showed a well developed 
HA structure. The surface deposition featured almost spherical shapes, which were 
reflection images of Ca-P amorphous aggregates. Similarities with the control were found in 
terms of shape of the layer and in terms of Ca/P ratio, in this case corresponding to 2.12. 
PSBS16, the opalescent glass, did not show any formation of HA even after 3 weeks of 
immersion. A flat surface characteristic of the glass it is encountered during the analysis, 
except for salt depositions detected with the help of the EDX apparatus. NaCl, KCl and other 
possible hydrates are present but also Ca and P are detected also if the HA structure is 
missing. Salts deposition are very probably coming from SBF solution precipitation. 
Interesting is the presence of aluminium that is confirming to precipitate as a salt as soon as 
it is released from the glass. It is believe that immersed in poly(acrylic acid) it should cross-
links with the carboxil group of the polymer chains. A parallel ICP study (fig. 75) conducted 
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with the same glass, PSBS16, demonstrated how the aluminium (if present in the initial glass 
composition; in this case Al2O3= 7,1 w%) is not  found in large amounts the solution. 
Detecting this element with the EDX in the surface of the glass demonstrates that it is highly 
insoluble in aqueous solution from pH=2 to 10. Due to its amphoteric nature Al2O3 can react 
with both bases and acid. According to pH of the medium, it precipitates as aluminum 
hydroxide or alkaline aluminate as it is released into the solution. 
 
 
 

 
Figure 74 Aluminium release detected with ICP at different time-points. The glass powder is immersed in an acid solution 

[HNO3]= 0,003M. 

 
Amongst the PSBS samples analysed, HA is found to be developed only in the glasses without 
aluminium. The enhanced durability due to the presence of aluminium is not allowing fast 
leaching of the glass avoiding subsequent formation of hydroxapatite on  the surface. PSBS8, 
PSBS9 and PSBS3 are in this same order (8>9>3) able to develop a layer of HA on the surface. 
The surface of the samples exhibit signs of dissolution as well as deposition of bright 
contrasting particles of regular shapes, corresponding to the HA shape found in the control. 
In the same sample order (8>9>3) the conversion of the glass to HA is faster. The commercial 
glass ionomer cements contain both calcium and phosphate, but they do not show any 
bioactivity. It would be definitely an advantage for this material if it could possess bioactivity 
because currently, there is a trend for the development of biomaterials that have 
therapeutic or bioactive functions, in addition to their inherent properties. 
 
The conversion of the borosilicate glasses to HA in a SBF solution is accompanied by a 
decrease in the mass of the glass, for this reason weight loss measurements could provide a 
useful parameter for monitoring the kinetics of the conversion reaction. 
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Figure 75 Weight loss of glass disks immersed in SBF at different time-points: 7, 14 and 21 days. 

 
 
All the samples analyzed except from PSBS2 and PSBS16 present an high mass loss after the 
first week of dissolution in SBF. The higher values are encontered for PSBS8 and PSBS3. In 
the second week the mass losses decrease and the reason could be the initial deposition of 
HA on the surfaces that provoke a mass gain to the samples. Again, PSBS16 and PSBS2 
present different trends, the results show a small mass loss for these samples at the second 
week that could be explained in a delay of the dissolution to the higher durability of the 
samples that contains aluminium as in this case. Finally, after 3 week of immersion all the 
samples gain mass due to the deposition of HA or other salts coming from the SBF solution. 
Tha water absorbed should not count in the mass gain experiments because the samples 
were dried before the measurement. 
The behaviour observed is an indication of the ions release properties due to the differencies 
in the composition of the glasses. In fact, samples without aluminium dissolve faster in SBF 
and present an important HA formation with values comparable with the control glass made 
in the 45S5K system. Comparing the data with the pH variation it is noted that higher pH 
change can be associated to a higher mass change. PSBS2 and PSBS16 exhibit a minimal pH 
variation and at the same time their mass do not change significantly. 
 



157 
 
 

 

 
Figure 76 pH variation of SBF solution in contact with glass disks after 7, 14 and 21 days. 

 
 
The increase in pH results in differences in the acidity and basicity of the ionic species 
involved in the solution precipitation reactions that occur during the conversion process. 
Components in the glass such as K2O, SiO2, and B2O3 dissolve into the solution to form K+, 
BO3

3– (becoming boric acid), and SiO4
4– ions, whereas Ca2+ ions from the glass react with 

PO4
3– from the solution to precipitate HA. The rate of increase of the solution pH is 

controlled by the rate of the solution-precipitation reactions during the conversion to HA. It 
is confirmed that a higher B2O3 content gives a glass with lower chemical durability which 
reacts faster with the solution, so the pH increases faster. Apparently the faster the HA 
formation, the faster is the pH increase. 45S5K used as control shows better HA formation 
and a faster pH increase and it is followed by the glasses that are transparent and contain 
more boron in the composition. 
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  6. CONCLUSIONS AND FUTURE 

PROSPECTIVES 
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Biomaterials have revolutionized areas of medical therapies, transforming or extending the 
lives of many patients. This is proved observing the actual situation, where millions of people 
are dependent on the polymers of intraocular lenses, pacemakers, coronary stents that help 
them in improving and extend their life expectancy. Bioceramic and inorganic materials are 
used to build scaffolds which support cells performing the regeneration process, providing 
mechanical support and biocompatibility. They are currently used for joint replacement 
allowing people to walk again and are applied in dentistry helping to get rid of the pain. 
Indeed, with most type of implantable materials, the performance is controlled first by the 
quality of the surgery, second by the type of patient and finally by the nature of the 
biomaterial itself. The ability to achieve better control and performances, especially in newer 
technologies, it is strongly dependent on a better understanding of the mechanism of 
dissolution and resistance in biological environment. Properties of this material such as 
microstructure and surface chemistry play a primary role in obtaining a consistent answer to 
what may happen once they are implanted in living organisms. The degradation rate is 
essential in promoting the cell and tissue proliferation and additional properties like 
antibacterial effect. 

In this work has been realized the preliminary study of different types of borosilicate glasses 
with same elements in the composition but with different weight amount. Between them, 
new formulations revealed interesting mechanical and biological properties in the 
perspective of the application in advanced glass ionomer cements. 

The result has been achieved thanks to a complete characterization of all the glasses 
produced, from the point of view of the ions release and from the analysis of the 
microstructure. The first aspect is a key-point for the comprehension of the glass properties. 
Knowledge of ionic mobility in glasses is of great importance for a proper understanding of 
these materials and for their applications. The ions released from the PSBS samples are 
known for their beneficial effect especially for the biological environment. The second point 
concerning the microstructure analysis introduces the effect caused by the heat treatment 
after the glass synthesis for melt-quenching. Although also this last part is well known in 
scientific literature for its several applications, the innovation of the work presented in this 
thesis is about combining the two points. The microstructure is modified by the thermal 
treatment inducing the phase separation. 

To asses a compositional area of interest for the study, a series of samples were produced 
and characterized. Analysis technique like XRD, DSC and BET were used as first approach to 
the material produced. All of that was made with attentive correlation to the characteristics 
of the glasses already used in the commercial product. Along this line of investigation the 
parameters of amorphousity and particle size are studied after the thermal treatment. This 
was done especially to avoid any crystallization that will generate a less bioactive material. 
The concept of bioactivity has always been one of the basement of the project so far and 
finally one of the main objectives until the last test performed on which was measured the 
HA formation on the surface of the glasses.   
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The different appearance of the glasses following the thermal treatment and the studies on 
the porosity resulting after the acid dissolution have begun to arise the first differences 
inside the samples constituting the subject of the study. Between the opalescent and 
transparent glasses the chemical and physical properties are changing, this is the reason why 
the subsequent experiments were focusing on highlighting the structural and compositional 
reasons of the changing properties, trying to formulate a general rule that could possibly 
optimize the manufacturing of the final product. 

The study of the ions leaching has revealed how the thermal treatment enhance the leaching 
of the ions in acid environment, confirming the idea that a phase with high affinity for the 
acid was formed thanks to the phase separation. This founding could be considered an 
innovative prospective for the glass manufacturing of new bioactive glass systems. Finally a 
thermal process, carried out under the crystallization temperature, bring to maximization of 
the ions release.  

Understanding the structure was playing a very important part in refining the properties of 
the PSBS glasses.  

After a long history of glass-ionomer cement (GIC) evolution, researchers focused their 
thoughts to the development of entirely new materials which eventually evolved in new 
products. The most important requirement for an ideal restorative material include good 
adhesion to tooth structure without excluding aesthetic properties and avoiding the use of 
any toxic components. This study offered an overview of the process of projecting and 
developing a new inorganic powder for GICs. Some of the borosilicates glass samples 
produced where selected because of their valuable characteristics in terms of mechanical 
properties in comparison with an already existent commercial product. Especially flexural 
strength is high and comparable with a commercial GIC during the first period of the 
hardening reaction. Vicker’s microhardness is also measured with values closed to the FUJI 
IX® GIC. These founding were attributed to the boron leached from the glass present in the 
weaker phase. It should be the element releases causing the fast cross-linking between the 
polyacid chains provoking the hardening of the cement at the place of aluminium. No 
toxicity should be found in the material because of the absence of alumina in the 
composition. Finally the hydroxyapatite growth during the biocompatibility test 
demonstrates the potentiality for the formation of a strong bond with the tooth tissue.  

The problem encountered so far is related to the aesthetic features. Once mixed with the 
poly(acid) of the FUJI IX® the cement produced assumes a greyish colouring. At this point 
have to be considered that further studies should be done in terms of the liquid part of the 
cement. The FUJI IX ® liquid contains different elements in its mixture like distilled water, 
other polycarboxilic acids, tartaric acid and all of them are present in unknown 
concentrations. The investigation done so far is approaching the subject from the fabrication 
of new glass powders which is one of the two components of the glass ionomer cement. 
After all the work done seems reductive to say that the research is half way to the final 
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product because the results obtained fulfil the initial purpose of the study. In fact, a new 
powder has been characterized presenting bioactivity (not found until very recent 
application in GIC) and better mechanical properties than the ones feasible with the 45S5 
bioactive glass.  

The phrase “more research is needed” is here not an empty cliché, but a motivation to 
continue the study investigating different aspects of the material to have a complete 
understating on controlling and regulating the final properties. The addition of fluoride as 
CaF2 could be a potential route for future investigation because the cement with better 
mechanical and bioactivity properties can gain the caries-inhibitory effect due to the long-
term fluoride release. Stronger adhesion and fluoride release could really bring to an optimal 
restoration that can be used also for high load-bearing situations. In this case the colour will 
be not so determining because the restoration will be placed in posterior teeth. In any case 
caution may be adopted and a parallel study on the poly(acid) use for the mix should be 
considered. The need for new restorative materials is day by day more demanding and glass 
ionomer cements may be very useful as they provide minimal intervention and a lot of 
margins in their development could be explored. 
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APPENDIX 1 
Composition expressed in weight %, molar % and Seger formula of each 
elaborated glasses. 
 

PSBS2/6 w% mol% Seger formula 
SiO2 45 50,1 2,18 
K2O 15 10,7 0,46 
B2O3 26,2 24,9 1,096 
Al2O3 3,4 2,2 0,1 
CaO 10,4 12,1 0,54 

 

PSBS3 w% mol% Seger formula 
SiO2 45 49,3 1,79 
K2O 15 10,5 0,38 
B2O3 25 23,1 0,84 
Al2O3 0 0 0 
CaO 15 17,1 0,62 

 

PSBS4 w% mol% Seger formula 
SiO2 45 51,4 2,42 
K2O 15 10,9 0,52 
B2O3 20 19,7 0,93 
Al2O3 11,5 7,7 0,37 
CaO 8,5 10,3 0,48 

 

PSBS5 w% mol% Seger formula 
SiO2 45 49,6 1,76 
K2O 15 10,5 0,37 
B2O3 20 18,99 0,67 
Al2O3 5 3,24 0,12 
CaO 15 17,67 0,63 
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PSBS7/10 w% mol% Seger formula 
SiO2 45 51,13 2,82 
K2O 15 10,85 0,6 
B2O3 25,9 25,26 1,39 
Al2O3 8,1 5,43 0,3 
CaO 6 7,33 0,4 

 

PSBS8 w% mol% Seger formula 
SiO2 45 49,34 2,8 
K2O 15 10,47 0,6 
B2O3 34 33,14 1,88 
Al2O3 0 0 0 
CaO 6 7,05 0,4 

 

PSBS9 w% mol% Seger formula 
SiO2 45 49,41 2,26 
K2O 15 10,49 0,48 
B2O3 30,3 28,69 1,3 
Al2O3 0 0 0 
CaO 9,7 11,41 0,52 

 

PSBS11 w% mol% Seger formula 
SiO2 45 51,39 4,72 
K2O 15 10,93 1 
B2O3 34,4 33,91 3,11 
Al2O3 5,6 3,77 0,35 
CaO 0 0 0 

 

PSBS12 w% mol% Seger formula 
SiO2 45 52,11 4,69 
K2O 15 11,08 1 
B2O3 30 29,99 2,7 
Al2O3 10 6,82 0,6 
CaO 0 0 0 
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PSBS13 w% mol% Seger formula 
SiO2 45 51,62 2,82 
K2O 15 10,97 0,6 
B2O3 22,5 22,27 1,22 
Al2O3 11,5 7,77 0,43 
CaO 6 7,37 0,4 

 

PSBS14 w% mol% Seger formula 
SiO2 45 49,16 1,76 
K2O 15 10,45 0,37 
B2O3 22,5 21,22 0,757 
Al2O3 2,5 1,61 0,06 
CaO 15 17,56 0,63 

 

PSBS15 w% mol% Seger formula 
SiO2 45 50,53 2,79 
K2O 15 10,75 0,59 
B2O3 29,1 28,2 1,56 
Al2O3 4,8 3,18 0,18 
CaO 6,1 7,34 0,41 

 

PSBS16 w% mol% Seger formula 
SiO2 45 50,25 2,06 
K2O 15 10,69 0,43 
B2O3 21,4 20,63 0,83 
Al2O3 7,1 4,67 0,19 
CaO 11,5 13,76 0,57 

 

PSBSSBK w% mol% Seger formula 
SiO2 45 50,5 4,72 
K2O 15 10,74 1 
B2O3 40 38,76 3,63 
Al2O3 0 0 0 
CaO 0 0 0 
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APPENDIX 2 

Particle size distribution after milling the glass samples. 
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APPENDIX 3 

pH evolution curves of the PSBS samples before (dark blue) and after the heat-
treatment (light blue). 
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APPENDIX 4 

Fraction of dissolved elements ([element]%) measured with ICP after the acid 
immersion of the glasses and values obtained for each time-points. 
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PSBS1 Boron Potassium Calcium Silicon 
15min 12,54 8,90 18,22 4,20 
30min 14,41 10,76 21,31 4,48 

1h 15,11 11,44 21,98 4,48 
8h 17,61 14,25 23,57 4,55 

 

PSBS2 Boron Potassium Calcium Silicon 
15min 9,83 11,24 9,45 4,34 
30min 12,79 14,66 11,92 5,53 

1h 14,65 16,41 13,32 5,60 
8h 25,33 26,16 20,93 6,51 

 

PSBS3 Boron Potassium Calcium Silicon 
15min 10,65 14,19 12,17 9,46 
30min 12,23 15,34 13,20 9,96 

1h 15,23 18,69 19,23 10,42 
8h 20,96 24,98 19,50 10,44 

 

PSBS4 Boron Potassium Calcium Silicon 
15min 11,94 4,95 23,50 1,79 
30min 12,41 5,74 24,18 1,75 

1h 13,42 6,26 25,08 1,81 
8h 14,90 8,13 25,64 2,09 
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PSBS5 Boron Potassium Calcium Silicon 
15min 11,42 7,97 16,77 4,90 
30min 13,15 8,86 18,63 5,43 

1h 17,60 11,28 23,40 6,92 
8h 20,28 13,07 26,55 7,08 

 

PSBS6 Boron Potassium Calcium Silicon 
15min 11,93 12,76 11,08 4,91 
30min 13,44 14,59 12,09 5,51 

1h 13,51 14,79 12,99 5,25 
8h 26,74 26,19 21,48 6,08 

 

PSBS7 Boron Potassium Calcium Silicon 
15min 11,88 8,84 20,30 2,52 
30min 13,86 10,58 24,99 2,64 

1h 15,58 13,38 23,40 2,72 
8h 21,52 17,51 20,47 2,71 

 

PSBS8 Boron Potassium Calcium Silicon 
15min 16,70 18,49 14,53 8,11 
30min 21,79 22,61 17,96 8,50 

1h 25,16 25,12 19,77 8,50 
8h 42,35 43,11 31,53 9,03 

 

PSBS9 Boron Potassium Calcium Silicon 
15min 13,52 15,05 13,26 8,43 
30min 16,91 18,44 16,33 9,31 

1h 21,21 22,61 19,29 9,51 
8h 32,64 32,20 27,05 9,52 

 

PSBS10 Boron Potassium Calcium Silicon 
15min 11,77 6,90 21,33 1,87 
30min 13,20 8,54 20,11 2,19 

1h 14,10 9,61 21,29 2,12 
8h 19,51 15,22 21,40 2,72 
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PSBS11 Boron Potassium Calcium Silicon 
15min 36,39 27,44 / 5,82 
30min 48,22 35,37 / 7,34 

1h 58,73 43,15 / 7,19 
8h 98,50 71,44 / 3,55 

 

PSBS12 Boron Potassium Calcium Silicon 
15min 28,48 23,94 / 3,36 
30min 37,54 25,99 / 3,81 

1h 39,06 26,82 / 3,60 
8h 62,16 34,62 / 2,56 

 

PSBS13 Boron Potassium Calcium Silicon 
15min 10,56 7,51 12,41 0,81 
30min 10,35 6,90 20,07 0,78 

1h 12,89 9,86 21,97 1,57 
8h 16,46 11,77 18,13 1,13 

 

PSBS14 Boron Potassium Calcium Silicon 
15min 9,25 9,43 9,41 4,77 
30min 11,49 12,89 13,04 2,79 

1h 12,97 13,41 13,92 7,12 
8h 16,11 16,99 15,61 7,53 

 

PSBS15 Boron Potassium Calcium Silicon 
15min 13,86 15,58 9,93 3,95 
30min 15,12 16,38 10,36 3,59 

1h 17,00 18,61 11,17 3,86 
8h 32,80 30,62 19,78 4,72 

 

PSBS16 Boron Potassium Calcium Silicon 
15min 12,34 9,53 21,11 4,86 
30min 13,04 9,86 22,07 4,72 

1h 13,70 10,41 23,25 4,94 
8h 17,09 13,05 28,13 5,71 

 

 



199 
 
 

 

PSBS SBK Boron Potassium Calcium Silicon 
15min 57,23 47,69 / 7,79 
30min 72,57 61,50 / 6,82 

1h 89,40 75,14 / 6,74 
8h 99,41 95,82 / 5,25 
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9. GENERAL OVERVIEW OF THE 
THESIS (IN FRENCH) 
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THESE de DOCTORAT DE L’UNIVERSITE DE LYON 
 

Verres borosilicatés à séparation de phase pour applications 
dentaires. Formulation de la composition en relation avec la 

dissolution des ions en milieu acide et la microstructure. 
 

Introduction 

BIODENSOL est un projet de recherche et mobilité, financé par la Commission Européen et 
géré par l'Université de Lyon. BIODENSOL se concentre sur le développement de nouveaux 
matériaux bioactifs pour la restauration et la régénération dentaires. Ce projet propose trois 
études de doctorat pour aborder les problèmes de caries et d'érosion de l'émail par les 
aliments acides. Les recherches ont évolué indépendamment en trois voies parallèles, 
examinant trois matériaux différents qui pourraient apporter des solutions potentielles. Ces 
matériaux sont i)des verres phosphatés comme filler dans les échafaudages dentaires, ii)des 
verres bioactifs mésoporeux (MBG) comme filler dans les adhésifs dentaires et enfin 
iii)l'objet de cette thèse qui est les poudres de verre borosilicaté a séparation de phases pour 
les GICs. Le projet Biodensol est conçu pour aider à établir des relations entre la recherche 
académique et industrielle et pour engendrer des innovations médicales. Pour cette raison, 
les études ont été réalisées entre ces deux endroits : Université de Lyon et Lucideon à Stoke-
On-Trent (Royaume-Uni), avec 6 mois dans chaque site. L'avantage était de travailler sur le 
projet de thèse dans deux environnements différents: l'université et l'industriel. Il était 
également pertinent pour l'expérience d'être impliqué dans des activités externes liées à 
l'industrie (travailler sur des projets secondaires avec des matériaux céramiques dans ce cas) 
et être familier avec les emplois commerciaux. 

 

State of the art 

L'état de l'art commence par une introduction générale sur les verres en parlant de leur 
structure et de leurs propriétés et apportera le lecteur plus proche du sujet principal de la 
thèse en abordant d'autres sujets qui décrivent comment l'une des propriétés vitreuses est 
spécialement étudiée pour améliorer la propriété d'un matériau de restauration dentaire. 
Les sujets racontés sont de plus en plus restreints pour décrire en détail quel matériau de 
restauration dentaire a été choisi pour l'étude et comment la formulation de nouvelles 
compositions de verre, en l'occurrence des verres bioactifs, pourrait être si importante pour 
les améliorations futures du matériau final. Enfin, il sera présenté l'effet de la libération 
d'ions dans différents systèmes de verre et en relation avec la propriété du verre dans 
laquelle la thèse est mise au point, la séparation de phase amorphe. Le système de verre 
choisi était le borosilicate et le matériau de restauration dentaire est le ciment verre 
ionomère. Les verres sont des matériaux importants qui sont essentiels à notre mode de vie, 
nous les utilisons pour créer des outils et parce qu'ils sont transparents forts, très utiles pour 
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les conteneurs et les fenêtres. Les verres ont été découverts il y a environ 4000 ans, 
probablement sous la forme d'un mélange de cendres de sable et d'os fondus dans un feu et 
refroidis rapidement. Dans le XIXème siècle le développement des techniques, fournissent 
une évolution rapide des applications des verres qui ont été introduits dans d'autres 
domaines: verres de fenêtre pour le rayonnement et / ou de résistance à la chaleur, des 
verres d'éclairage pour ampoules et des fibres optiques. Cette amélioration est due à la 
recherche qui améliore la compréhension de nombreuses propriétés. Les verres sont des 
solides non cristallins avec une composition variable définie par un mélange de composants. 
La structure est composée de formateurs de réseau, modificateurs et intermédiaires (figure 
1). Les premières forment le réseau de verre interconnecté, les secondes sont présentées 
comme des ions qui modifient le réseau vitreux compensé par l'oxygène non-pontant (NBO) 
dans des verres d'oxyde et enfin les modificateurs peuvent agir comme formateurs de 
réseau ou modificateurs selon la composition du verre. 

 

 

 

 

Figure 77 Tableau des éléments dans lesquels sont surlignés en bleu les formateurs de réseau, en rouge les modificateurs de 
réseau et en vert les éléments intermédiaires. 

Les verres manquent d’ordre périodique à longue distance des cristaux, ils ont une cellule 
unitaire infinie (il n'y a pas de répétition de structures à grande échelle), leur réseau 3D 
manque de symétrie et de périodicité qui amène à différents atomes et donc à différentes 
propriétés. Pour introduire la séparation de phase amorphe, il faut dire que les verres ont 
parfois été considérés comme un mélange liquide. Un liquide différent a des propriétés 
différentes et ainsi, lorsqu'ils sont combinés, ils peuvent former un mélange homogène 
(miscible) ou un mélange hétérogène (non miscible ou séparé en phase comme par exemple 
l'huile et l'eau). Dans les oxydes fondus, un processus similaire se produit et certaines 
combinaisons d'oxydes sont miscibles, certaines ne sont pas miscibles. Cette propriété est 
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fondamentale pour la compréhension du sujet de cette thèse et sera expliquée plus loin sur 
ce résumé, en relation avec le matériel dentaire étudié. Dans la seconde partie du siècle 
dernier, la compréhension de leur structure et de leurs propriétés permet d'utiliser les 
verres pour des applications plus spécifiques comme la vitrification des déchets nucléaires, 
l'énergie solaire et enfin la découverte de verres bioactifs pour la thérapie osseuse. A ce 
stade de la thèse, un sous-chapitre est consacré au concept des verres bioactifs à partir de la 
découverte de Larry Hench en 1969, les différents types de verres bioactifs et leurs 
applications potentielles (1). Une attention particulière a été utilisée pour décrire la liaison 
au mécanisme osseux et la formation de l'hydroxyapatite dans l'intercouche entre le 
bioverre et l'os. 

Ensuite, les ciments de verre ionomère sont finalement introduits. Depuis leur 
développement à la fin des années 1960, les ciments au verre ionomère (CVI) ont été d'un 
grand intérêt en tant que matériau de restauration dentaire (2). Plusieurs caractéristiques 
telles qu'une bonne adhérence à la dentine, une bonne biocompatibilité et un temps de 
travail et de prise adéquat font des GIC le matériau idéal pour les restaurations dentaires. 

Les CVI sont fixés par une réaction acide-base entre une phase minérale et un polymère 
soluble plus faible (figure 2). Typiquement, un poly (acide) aqueux, tel qu'un poly (acide 
acrylique), réagit avec un verre ionomère. La composition de verre est conçue pour être 
dégradée par l'acide relativement faible provoquant la formation de chaînes polymères 
acides réticulées ioniquement entre les contre-ions multivalents lessivés du verre et le 
groupe carboxylique du poly (acide). Le résultat est un processus d'auto-durcissement qui se 
termine par un ciment dentaire dur (3). 

 

Figure 78 Chimie de prise des ciments verre ionomère 

Leur chimie et propriétés sont profondément étudiées avec une recherche bibliographique 
complète qui guide de l'invention et à travers les innovations les plus récentes de ce 
matériau dentaire. L'ajout de bioverre semble être une voie intéressante pour l'étude des 
futures (4). 

Les verres ionomères commerciaux, y compris le verre classique G338 (aluminosilicate), sont 
connus pour subir une séparation de phase au moins partielle lorsqu'ils refroidissent. Cela 
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conduit à des régions de composition variable et à l'apparition d'une phase plus sensible aux 
attaques acides que les autres (5). En principe, on peut s'attendre à ce que cela modifie les 
propriétés optiques du verre (et par la suite du ciment), mais aucune étude n'a été 
rapportée jusqu'à présent sur ce point. 

La tendance à la séparation de phases dans les verres de borosilicate a été étudiée de 
manière approfondie. La première application pratique de la séparation de phases a été celle 
de Hood et Nordberg qui ont développé le procédé Vycor (SiO2, B2O3, système de verre 
Na2O) pour la production de produits à haute teneur en silice par voie vitreuse poreuse (6). 
La séparation de phases amorphe (APS) provoque la séparation d'une phase unique 
initialement homogène en deux phases ou plus de compositions différentes. L'énergie libre 
de Gibbs du système avec deux ou plusieurs phases distinctes doit être inférieure à celle du 
système avec une seule phase homogène. Le degré d'interconnexion des deux phases de 
verre dépend de la nature du mécanisme de séparation de phases. Le processus peut se 
produire par un processus de nucléation et de croissance qui donne des particules 
sphériques isolées ou par décomposition spinodale où une structure interconnectée est 
trouvée (7). 

 

 

Figure 79 Les deux mécanismes de la séparation des phases: la décomposition spinodale et la nucléation et la croissance 
dans un système binaire. (8) 

 

Le nouveau système de verre rapporté ici est un borosilicate avec une forte tendance à la 
séparation de phases. Il est composé de: SiO2-K2O-B2O3-CaO-Al2O3. Il est significatif qu'avant 
un traitement thermique les verres soient optiquement clairs, mais deviennent opalescents 
à différents degrés suite à un traitement thermique dépendant du% en poids des éléments 
de la composition. Le schéma de la libération d'ions implique que l'une des phases est plus 
réactive et sensible aux attaques acides et sera lessivée plus tôt du verre (9). L'autre phase 
restera dans le ciment améliorant les propriétés mécaniques du matériau de restauration 
dentaire (figure 4). 
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Figure 80 Représentation schématique de l'idée originale basée sur la séparation des phases par le mécanisme spinodal. 

L'hypothèse est que le degré de séparation de phase influencerait directement le 
comportement de libération d'ions. SiO2 et K2O sont fixés respectivement à 45 et 15 % en 
poids dans les verres. Le premier percentage en poids concerne le verre classique 45S5 
étudié par Hench (10). Ce dernier percentage en poids est basé sur les études d'immiscibilité 
menées sur les verres Vycor avec une composition choisie proche du centre du dôme 
d'immiscibilité pour créer une microstructure séparée (11). Les autres éléments du verre 
borosilicaté sont variés afin d'étudier l'influence sur les propriétés du système. Tous les 
éléments présentent plusieurs caractéristiques clés, bénéfiques pour le matériau de 
restauration. Compte tenu de sa composition, le bore joue un rôle régulateur sur d'autres 
éléments tels que le calcium (également présent dans le système vitreux étudié) et joue 
donc un rôle dans le métabolisme osseux (12). Le bore a été associé à la prévention de la 
perte de calcium et à la déminéralisation osseuse chez les femmes post-ménopausées et il a 
été démontré que la supplémentation en bore réduit les effets de la carence en vitamine D 
chez les poussins (13). Le bore influence aussi clairement les hormones de régulation des os 
impliquées dans la croissance osseuse et le remodelage osseux (14). Le calcium est crucial 
pour la restauration du tissu dentaire endommagé, car il est un composant primaire de 
l'hydroxyapatite dans l'émail et la dentine. L'hydroxyde de calcium est utilisé depuis de 
nombreuses années dans les agents de coiffage de la pulpe en raison de sa fonction de 
reminéralisation du tissu dentaire environnant. Le potassium est un agent désensibilisant 
utile (15). L'aluminium a été considéré comme un élément important pour fournir des ions 
Al3 + utiles pour le processus d'auto-durcissement du ciment (16). Cependant, l'aluminium 
est reconnu comme une neurotoxine et la cause de certaines maladies neurologiques, telles 
que la maladie d'Alzheimer et la maladie de Parkinson (17); par conséquent, une diminution 
du pourcentage en poids de cet élément dans la composition de verre par rapport aux verres 
ionomères conventionnels est à la fois difficile mais nécessaire. Les propriétés structurales 
des verres, les caractéristiques physico-chimiques et morphologiques liées au degré de 
séparation de phase sont étudiées dans cette thèse et corrélées à la libération d'ions. 
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Le chapitre sur l'état de l'art est clôturé par un rapport de la revue systématique sur les 
propriétés mécaniques et biologiques des verres bioactifs publiée dans "Dental Materials" le 
29 mars 2017 (figure 5). Diverses bases de données électroniques (PubMed, Science Direct) 
ont été utilisées pour la collecte d'articles sur ce sujet. Cette recherche comprend des 
articles de janvier 2011 à mars 2016. Les directives PRISMA pour l'examen systématique et la 
méta-analyse ont été utilisées. 109 résumés ont été recueillis et examinés, 68 articles ont 
été lus comme articles pertinents et un total de 22 articles ont finalement été sélectionnés 
pour cette étude. La plupart des études ont mis en évidence l'amélioration des propriétés 
mécaniques et biologiques; cependant, il n'existe toujours pas de solution définitive et 
satisfaisante pour les matériaux porteurs hautement biocompatibles en médecine et en 
dentisterie. L'étude de nouvelles compositions de bioverre et des composites à base de 
bioverre offre un domaine très prometteur pour de futures recherches, qui devraient être 
menées avec des méthodes plus comparables et des résultats significatifs. 

 

Figure 81 Page de titre de la revue systématique publiée sur Dental Materials en 2017. 
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Matériels et méthodes 

L'approche utilisée pour établir une méthode de recherche appropriée est illustrée sur la 
figure 6. Elle montre l'étape unique qui amène du développement du verre à l'étude des 
propriétés et finalement à la compréhension de l'effet dans le matériau dentaire final. L'idée 
est que la formulation du verre est une étape clé qui fournira différentes propriétés au 
matériau appliqué et cette thèse veut contribuer à élucider la relation entre ces aspects. 

 

Figure 82 Chemin d'investigation qui guide à travers la section différente du chapitre sur les matériaux et les méthodes. 

Les verres étudiés dans cette thèse sont basés sur le système quinaire SiO2-B2O3-K2O-Al2O3-
CaO et ont été obtenus par une technique de trempe-fusion. Dans ce chapitre, un plan 
expérimental factoriel présentera comment l'ensemble des échantillons a été construit. Le 
plan d'expériences est un outil utile qui permet une organisation efficace des expériences 
nécessaires à la recherche scientifique ou à l'optimisation des processus industriels. Plus en 
détail à cet effet était l'utilisation d'une expérience de mélange, dans lequel les facteurs 
indépendants sont des proportions de différents composants d'un mélange. B2O3, CaO et 
Al2O3 sont les trois facteurs indépendants qui ont été choisis pour varier afin d'observer leur 
influence sur la séparation des phases. SiO2 et K2O sont fixés avec les valeurs respectivement 
de: 45 et 15% en poids. La réponse obtenue après le test de dissolution permet à 
l'expérimentateur de choisir une ou plusieurs compositions de borosilicate avec la cinétique 
de libération d'ions désirée. La zone de composition étudiée est représentée sur l'image 
(figure 7). 
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Figure 83 Diagramme triaxial avec la représentation des échantillons PSBS. 

 

Une première partie est consacrée à la description des méthodes utilisées pour la 
production de la poudre de verre borosilicate avec la technique de trempe-fusion et le 
traitement thermique (figures 8-9), avec un aperçu des matières premières et de leurs 
comportements. 

 

Figure 84 Procédés de fabrication des échantillons de verre borosilicaté: creuset à quartz, technique de trempe à l'état 
fondu. 
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Figure 85 Heat-treatment performed to the entire set of glass samples after the melting. 

 

Une deuxième partie expliquera les concepts qui sous-tendent les techniques utilisées pour 
la caractérisation préliminaire des poudres de verre obtenues et comment elles sont 
appliquées à l'étude des borosilicates. Le calcul de l'indice de réfraction, la diffraction des 
poudres aux rayons X et l'analyse thermique différentielle ont été les techniques utilisées à 
cet effet. 

Une troisième partie est consacrée aux études de surface pour l'étude des différentes 
microstructures trouvées dans les verres induits par le traitement thermique. La microscopie 
optique et la microscopie électronique à balayage (MEB) sont les techniques les plus 
importantes utilisées. Dans cette section, il y aura la description de la façon dont les 
échantillons ont été préparés pour l'analyse. 

Les deux dernières parties sont destinées à des tests développés pour l'analyse de la 
libération d'ions des verres dans des conditions acides et aux propriétés mécaniques et 
bioactives liées au matériau final mélangé à un acide polyacrylique commercial. La lixiviation 
des ions, mesurée avec la spectrométrie d'émission atomique à plasma induit de manière 
inductive (ICP), a été très utile pour déterminer le comportement des compositions de verre 
borosilicaté dans différents milieux acides (HNO3 et acide polyacrylique). La technique a été 
évaluée pour l'analyse en préparant des solutions étalons à éléments multiples et en 
vérifiant la quantité d'ions libérés à différents moments. 

Les échantillons ont été comparés entre eux en termes de composition et par rapport au 
traitement thermique. Ces études de dissolution réalisées avec l'analyse ICP sont utilisées 
pour élucider le mécanisme de libération des ions et comment cela est corrélé avec la 
composition du verre et la microstructure formée après le traitement thermique et la 
lixiviation. Les propriétés bioactives sont évaluées avec le test ISO 23317: 2014 dans lequel la 
formation d'hydroxyapatite est vérifiée par microscopie électronique à balayage (MEB) et 
spectroscopie à rayons X à dispersion d'énergie (EDX) sur la surface des disques de verre 
borosilicaté (figure 10), après l'immersion pour différents moments dans une solution de 
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fluide corporel simulé (SBF). La formation d'une couche de HA est généralement considérée 
comme une indication de la bioactivité. L'objectif de cette expérience est de caractériser 
globalement la conversion de cinq verres PSBS et de comparer les résultats avec le témoin 
45S5K. Les changements de perte de poids et de pH accompagnant la conversion ont été 
mesurés pour fournir un aperçu supplémentaire de la cinétique et des mécanismes de la 
conversion des verres séparés en phase borosilicate. 

 

Figure 86 Disque de verre inséré dans un tube et immergé dans SBF pour le test de bioactivité. 

Parmi les verres analysés, l'objectif était de ne donner la priorité à quelques-uns d'entre eux 
pour une analyse ultérieure dans laquelle les propriétés mécaniques (résistance à la flexion, 
dureté de Vicker) devaient être évaluées (figures 11-12). Pour cette raison, la réponse du 
mélange d'expériences a été utile pour déterminer la tendance à la libération d'ions. Il n'y 
avait pas une seule composition capable de libérer tous les ions à la même vitesse, donc 
deux verres de borosilicate ont été sélectionnés avec une tendance opposée à étudier leur 
effet sur les propriétés mécaniques une fois mélangé avec le poly (acide acrylique) FUJI 
IX®GP, GC Europe NV, Louvain, Belgique). 

 

Figure 87 Forme et dimension du moule utilisées pour les essais mécaniques 

 

Figure 88 Pénétrateur de dureté Vickers et indentation sur la surface de ciment 
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Elaboration et caractérisation des verres 

Ce chapitre rendra compte des résultats d'analyse menés durant toute l'étude. La succession 
des opérations peut être résumée comme suit : 

 Préparation de verre séparée par une phase de borosilicate 
 Analyse de criblage des poudres de verre pour la caractérisation structurale 
 Expériences de lixiviation d'ions 
 Etudes de surface et de microstructure 
 Test de bioactivité 
 Propriétés mécaniques (résistance à la flexion et microdureté Vicker) 

Tous les verres ont été fondus et traités thermiquement selon la procédure décrite dans le 
chapitre précédent de la thèse (Matériaux et Méthodes). Les verres obtenus se sont révélés 
complètement amorphes avant et après le traitement thermique par la technique de 
diffraction des rayons X sur poudre (XRD). Les premières différences en termes de couleur 
du verre ont été mises en évidence après le traitement thermique. En effet, les échantillons 
étaient transparents après la fusion mais certains d'entre eux prennent une coloration 
opalescente après le traitement thermique prouvant que la composition pourrait influencer 
le degré ou le type de séparation de phases. En comparant à l'intérieur du diagramme 
triangulaire donné par les coordonnées de Janecke, il apparaît que différentes régions sont 
détectées (figure 13). 
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Figure 89 Diagramme triaxial montrant la composition des échantillons dans le système quinaire (SiO2 et K2O sont fixes). La 
composition influence l'opacité des échantillons. 

 

Les échantillons surlignés avec des points rouges appartenant à l'isopleth sans aluminium 
semblent être transparents. Les échantillons mis en évidence avec des points verts 
appartenant à la même isoplèthe deviennent opalescents après le traitement thermique 
sauf pour l'échantillon sans calcium dans la composition (taches orange). Les échantillons 
trouvés dans la zone entre et au-dessus des deux isoplèthes et mis en évidence avec des 
taches bleues prennent une couleur opalescente partielle. 

Les verres à ce stade ont été broyés avec un broyeur Tema® à une taille de particule 
inférieure à 50 μm en fonction de la taille de particule mesurée pour la poudre de GIC 
commerciale appelée GC FUJI IX®. 

Les techniques utilisées pour la caractérisation structurale des poudres de verre obtenues 
étaient: XRD, Calorimétrie différentielle à balayage et calculs d'indice de réfraction. La 
superposition des spectres XRD résultants (figure 14) montre un décalage d'angle de 2θ du 
halo amorphe typique. Il a été trouvé qu'il était lié à l'addition de CaO dans les compositions 
d'échantillons. Les cations de calcium ne forment pas la partie principale de la structure de 
verre, et l'introduction de ces oxydes appelés «modificateurs» (figure 15) entraîne une 
altération de la structure de verre (18). L'analyse DSC a révélé que l'absence d'aluminium 
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dans la composition amène les échantillons à cristalliser plus facilement et qu'un pic de 
cristallisation a été identifié et étudié en détail pour l'un des échantillons de verre (PSBS3). 

 

 

Figure 90 Diffraction des rayons X des échantillons sans Al2O3. 

 

 

Figure 91 a) Structure cristalline de la silice, b) Structure amorphe, c) Structure amorphe avec addition d'oxydes 
modificateurs. 

 

Il est difficile de modifier la composition du verre et de contrôler sa réactivité une fois 
immergé dans la solution, mais des études peuvent fournir des informations précieuses sur 
les espèces lessivées et quand. Dans ce chapitre, des études de dissolution à la suite d'une 
analyse ICP sont utilisées pour élucider le mécanisme de libération des ions et comment cela 
est corrélé avec la composition du verre et la microstructure formée après le traitement 
thermique et la lixiviation. En ce qui concerne les expériences de lixiviation des ions, on a 
d'abord révélé l'effet positif du traitement thermique (figure 16) sur la vitesse de libération 
des ions pour les verres transparents et opalescents (mesures ICP-OES). 

 

 

 

 



215 
 
 

 

PSBS3 PSBS5 

  

 
 

Figure 92 Exemple comparant la dissolution du calcium d'un échantillon transparent et opalescent. La comparaison a été 
faite dans un échantillon traité thermiquement (ligne continue) et un échantillon trempé à l'état fondu (ligne pointillée) 

 

La comparaison des échantillons PSBS16 et PSBS8 respectivement avec et sans Al2O3 révèle 
un comportement différent de lixiviation d'ions au cours du temps (figure 17). Le PSBS 16 
(verre opalescent, 15% en poids d'Al2O3) libère du calcium à une vitesse de dissolution plus 
élevée (∆Ca/∆t = 2.982 Ca%/min). Pour PSBS8 (verre transparent, sans Al2O3) la libération de 
potassium et de bore est congruente et se produit à une vitesse de dissolution plus rapide 
que le calcium (ΔK/ Δt = 2,744 K%/min; ΔB/Δt = 2,66 B%/min). La libération de silicium est 
très faible pour les deux échantillons de verre. 

PSBS8 PSBS16 

 

 

 

 

Figure 93 Etude de dissolution de la libération d'ions: comparaison entre verres transparents (PBS8) et opalescents (PBS16). 
Les données sont présentées dans une échelle de temps logarithmique. La libération d'ions bore, calcium, potassium et 
silicium est détectée à différents moments. 
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L'ensemble des verres a ensuite été analysé dans les mêmes conditions et avec les mêmes 
temps. Les échantillons traités thermiquement ont été utilisés pour étudier l'effet de 
composition sur la lixiviation des ions. L'effet de la composition est décrit à travers différents 
aspects dans la section consacrée dans la thèse qui couvre: les verres sans CaO (WJ=0% Ca), 
les verres sans Al2O3 (WJ = 0% Al) et l'effet du rapport B2O3/CaO. Une discussion à la fin du 
chapitre donnera une description globale des données obtenues.  

Les expériences menées sur le comportement de lixiviation des ions pourrait être expliquée 
en se référant aux changements microstructuraux se produisant lorsque les échantillons 
sont chauffés pendant longtemps sous la température liquide. Le phénomène connu sous le 
nom de séparation de phases, largement décrit dans la littérature pour les systèmes de 
borosilicate, est l'hypothèse la plus valable pour décrire les résultats obtenus. Le mécanisme 
proposé pour la formation des deux phases provient d'autres études menées avec 
différentes techniques: SEM, EDX, XRD et la spectroscopie fluorescente aux rayons X (XRF). 

La lixiviation des verres en vrac dans de l'acide nitrique dans des conditions dures (HNO3 1M, 
90 ° C, 48h) a été poursuivie pour accélérer le processus de dissolution qui devrait décaper la 
phase la plus soluble (riche en bore) des échantillons. 

Ce qui était obtenu était différent des verres opalescents et transparents. Le premier montre 
une structure poreuse de silice presque pure. La structure de verre en vrac en verre 
transparent s'effondre laissant au fond du bécher une poudre blanche inconnue. Les 
analyses XRD et XRF démontrent que la poudre est encore complètement amorphe et 
qu'elle est composée de silice presque pure. 

Les expériences suggèrent que la séparation de phase se produit parce qu'une seule phase 
se dissout complètement. Cette phase est la phase riche en bore qui, en tant que structure 
d'ancien réseau, ne doit pas être gravée dès que le réseau est modifié. Le processus impliqué 
dans la séparation des phases doit être pour les deux échantillons le mécanisme de 
nucléation et de croissance (figure 18). Dans le verre opalescent, les noyaux sont la phase 
riche en bore qui est gravée en laissant une structure poreuse, tandis que dans le verre 
transparent, les noyaux sont composés de silice, qui s'effondre sous forme de poudre après 
que la phase riche en bore se dissout dans le solution d'acide nitrique. Cette séparation de 
phase influence directement la microstructure qui affecte les comportements de lixiviation 
des ions. 
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Figure 94 Hypothèse du mécanisme de la séparation de phase. 

Des résultats intéressants ont également été obtenus en comparant les compositions des 
verres et leur influence sur la lixiviation des ions. Plus précisément, on a comparé des verres 
appartenant à des isoplèthes spécifiques dans lesquels sont détectées les deux séries de 
verre principales (transparentes et opalescentes). Les mêmes isoplèthes identifient des 
compositions avec une quantité constante d'aluminium. Ceci parce que l'aluminium est 
considéré comme l'élément prédominant pour provoquer la séparation de phase différente 
(comme aspect de couleur) et sa présence a été prouvée pour améliorer la durabilité du 
verre. 

Les profils de libération d'ions suggèrent que les verres opalescents libèrent du calcium avec 
une vitesse cinétique plus rapide que les verres transparents (la comparaison moyenne de la 
vitesse cinétique est respectivement de 4 et 2,65 Ca%/min). Le potassium est libéré plus 
rapidement dans les échantillons transparents (taux moyen: 3,18 K%/min) par rapport aux 
opalescents (taux cinétique moyen: 2,38 K%/min). Le mécanisme de dissolution des verres 
opalescents dépend du rapport B2O3/CaO. 

Les tests de bioactivité ont été lancés pour la détection de l'hydroxyapatite sur les surfaces 
des verres en vrac immergés dans le SBF (suivant la méthode ISO/FDIS 23317). Un verre de 
sodium 45S5K remplacé par du potassium a été utilisé comme référence et un verre 
opalescent et un verre transparent ont été étudiés avec SEM après une semaine et trois 
semaines d'immersion (figures 19-20). Un échantillon de PSBS augmente la couverture de 
HA sur la surface à la troisième semaine, démontrant une bonne bioactivité par rapport au 
témoin. Les verres sans aluminium dans la composition entraînent une formation de HA 
élevée. Cela est dû à la plus grande durabilité des verres qui contiennent de l'aluminium. 
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PSBS8 1 week 3 weeks 

 

 

 
EDX 
(w%) 

Ca P  Si O K Na Mg Cl 

1 
week 

23.8 0.1 26.6 44.9 0.4 0.2 3.7 0.3 

3 
weeks 

20.8 9.8 21.82 46.16 0.46 0.43 0.14 0.38 
 

Figure 95 Formation de HA à la surface d'un disque de verre PSBS8 après 1 semaine et 3 semaines d'immersion dans SBF. 

 

PSBS16 1 week 3 weeks 

 

 

EDX 
(w%) 

Ca P Si O K Na Mg Cl Al 

1 
week 

7.1 0.1 30.1 38.1 15.5 0.2 0.1 3.9 4.9 

3 
weeks 

10.14 10.77 12.75 42.32 4.97 5.17 0.77 5.8 7.33 
 

Figure 96 Formation de HA à la surface d'un disque de verre PSBS16 après 1 semaine et 3 semaines d'immersion dans SBF 

 

Deux des poudres de PSBS ont été sélectionnées pour des tests mécaniques. Tout d'abord, 
ils ont été mélangés avec le liquide poly (acide) d'un ciment commercial (FUJI IX®GP, GC 
Europe NV, Leuven, Belgique) dans un rapport poudre/liquide de 1:2. 
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La résistance à la flexion a été mesurée avec l'essai de flexion à 3 points dans des 
échantillons de ciment. La forme a été modélisée pour ressembler à la demande de test 
mécanique ISO (dimensions: 2mmx2mmx20mm). Un des échantillons analysés présentait 
des valeurs similaires de résistance à la flexion au produit commercial qui était utilisé 
comme témoin à la fois après un et sept jours de maturation (figure 21). 

 

 

Figure 97 Valeurs de résistance à la flexion après 1 et 7 jours de maturation. 

L'échantillon cité libérait une plus grande quantité de bore au cours des essais cinétiques. Il 
est bien connu que le bore dans l'acide borique et les borates forment un réseau de liaison 
hydrogène avec un composé contenant des groupes poly-hydroxy (figure 22). C'est la base 
de son importance dans les adhésifs. L'utilisation de Boron dans les adhésifs montre qu'il 
joue un rôle structurel de réticulation. Dans les produits adhésifs réticulés, les ions borates 
sont tous liés à la matrice adhésive. La présence de ce composé libéré du verre pourrait 
également être pertinente pour améliorer le processus de durcissement dans les ciments de 
verre ionomère a démontré par les résultats dans la résistance à la flexion. Il vaudra la peine 
de comparer tous les échantillons libérant une grande quantité de bore sur les propriétés 
mécaniques. 

 

 

Figure 98 Réticulation des ions borate avec le groupe hydroxyle des chaînes d'un polymère. La formation de liaison 
hydrogène est mise en évidence. 
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La dureté de surface des CVI FUJI IX® s'est révélée supérieure à celle des échantillons de 
PSBS. A tous les points temporels, la microdureté du Vicker est significativement plus élevée 
dans le GIC commercial (FUJI IX®) que dans le PSBS16 et le PSBS8 (figure 23). 

 

Figure 99 Comparaison de la microdureté de Vicker entre deux échantillons de PSBS et FUJI IX. 
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