
HAL Id: tel-01875732
https://theses.hal.science/tel-01875732

Submitted on 17 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cellular matrix for parallel k-means and local search to
Euclidean grid matching

Hongjian Wang

To cite this version:
Hongjian Wang. Cellular matrix for parallel k-means and local search to Euclidean grid match-
ing. Other [cs.OH]. Université de Technologie de Belfort-Montbeliard, 2015. English. �NNT :
2015BELF0280�. �tel-01875732�

https://theses.hal.science/tel-01875732
https://hal.archives-ouvertes.fr


 



 



é c o l e  d o c t o r a l e s c i e n c e s  p o u r  l ’ i n g é n i e u r  e t  m i c r o t e c h n i q u e s

U N I V E R S I T É  D E  T E C H N O L O G I E  B E L F O R T - M O N T B É L I A R D

Cellular Matrix for Parallel K-means
and Local Search to Euclidean Grid
Matching

Hongjian WANG
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THÈSE
de l’Université de Technologie de Belfort-Montbéliard
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Abstract

In this thesis, we propose a parallel computing model, called cellular matrix, to provide

answers to problematic issues of parallel computation when applied to Euclidean graph

matching problems. These NP-hard optimization problems involve data distributed in

the plane and elastic structures represented by graphs that must match the data. They

include problems known under various names, such as geometric k-means, elastic net,

topographic mapping, and elastic image matching. The Euclidean traveling salesman

problem (TSP), the median cycle problem, and the image matching problem are also

examples that can be modeled by graph matching.

The contribution presented is divided into three parts. In the first part, we present

the cellular matrix model that partitions data and defines the level of granularity of

parallel computation. We present a generic loop for parallel computations, and this

loop models the projection between graphs and their matching. In the second part,

we apply the parallel computing model to k-means algorithms in the plane extended

with topology. The proposed algorithms are applied to the TSP, structured mesh

generation, and image segmentation following the concept of superpixel. The approach

is called superpixel adaptive segmentation map (SPASM). In the third part, we propose

a parallel local search algorithm, called distributed local search (DLS). The solution

results from the many local operations, including local evaluation, neighborhood search,

and structured move, performed on the distributed data in the plane. The algorithm is

applied to Euclidean graph matching problems including stereo matching and optical

flow.





Résumé

Dans cette thèse, nous proposons un modèle de calcul parallèle, appelé matrice

cellulaire, pour apporter des réponses aux problématiques de calcul parallèle appliqué

à la résolution de problèmes d’appariement de graphes euclidiens. Ces problèmes

d’optimisation NP-difficiles font intervenir des données réparties dans le plan et

des structures élastiques représentées par des graphes qui doivent s’apparier aux

données. Ils recouvrent des problèmes connus sous des appellations diverses telles

que geometric k-means, elastic net, topographic mapping, elastic image matching. Ils

permettent de modéliser par exemple le problème du voyageur de commerce euclidien,

le problème du cycle médian, ainsi que des problèmes de mise en correspondance

d’images.

La contribution présentée est divisée en trois parties. Dans la première partie, nous

présentons le modèle de matrice cellulaire qui partitionne les données et définit le

niveau de granularité du calcul parallèle. Nous présentons une boucle générique

de calcul parallèle qui modélise le principe des projections de graphes et de leur

appariement. Dans la deuxième partie, nous appliquons le modèle de calcul parallèle

aux algorithmes de k-means avec topologie dans le plan. Les algorithmes proposés

sont appliqués au voyageur de commerce, à la génération de maillage structuré

et à la segmentation d’image suivant le concept de superpixel. L’approche est

nommée superpixel adaptive segmentation map (SPASM). Dans la troisième partie,

nous proposons un algorithme de recherche locale parallèle, appelé distributed local

search (DLS). La solution du problème résulte des opérations locales sur les structures

et les données réparties dans le plan, incluant des évaluations, des recherches de

voisinage, et des mouvements structurés. L’algorithme est appliqué à des problèmes

d’appariement de graphe tels que le stéréo-matching et le problème de flot optique.
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Professor Fan Yang, for examining this thesis.

vii





Contents

Abstract iii

Acknowledgements vii

Contents viii

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Self-Organizing Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 On-Line SOM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1.1 On-Line SOM to Euclidean TSP . . . . . . . . . . . . . . 13
2.2.1.2 On-Line SOM to Structured Meshing . . . . . . . . . . . 14

2.2.2 Batch SOM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Topological K-means . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Local Search Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Standard Local Search Algorithm . . . . . . . . . . . . . . . . . . . 17
2.3.2 Variable Neighborhood Search . . . . . . . . . . . . . . . . . . . . 18

2.4 Elastic Image Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Visual Correspondence . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Pixel Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.3 General Form of Energy Function . . . . . . . . . . . . . . . . . . 23

2.4.3.1 Data Energy . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.3.2 Smoothness Energy . . . . . . . . . . . . . . . . . . . . . 24

2.5 Classification of Parallel Metaheuristic Implementations . . . . . . . . . . 26
2.5.1 A Taxonomy Based on Three Factors . . . . . . . . . . . . . . . . 27
2.5.2 Parallel Self-Organizing Map Implementations . . . . . . . . . . . 30
2.5.3 Parallel Local Search Implementations . . . . . . . . . . . . . . . . 30
2.5.4 Parallel Implementations of Other Metaheuristics . . . . . . . . . . 32

ix



Contents x

2.5.5 Discussion on Parallel Implementation Models . . . . . . . . . . . 34
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Cellular Matrix Model 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Euclidean Grid Matching Problem . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Cellular Matrix Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Basic Hierarchical Structure in the Plane . . . . . . . . . . . . . . 40
3.3.2 Possibility for Recursive Decomposition . . . . . . . . . . . . . . . 43
3.3.3 Cellular Matrix in Different Topologies . . . . . . . . . . . . . . . . 43
3.3.4 Massive Parallelism Property . . . . . . . . . . . . . . . . . . . . . 46

3.4 Spiral Search in Data Grids . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.1 Cell Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.2 Nearest Neighbor Searching . . . . . . . . . . . . . . . . . . . . . 48
3.4.3 Spiral Search in Different Topologies . . . . . . . . . . . . . . . . . 50

3.5 Basic Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.1 Generic Parallel Projection Loop . . . . . . . . . . . . . . . . . . . 51
3.5.2 Voronoi Partition Computation . . . . . . . . . . . . . . . . . . . . 53
3.5.3 Cell Refresh Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.4 Random Number Generation Kernel . . . . . . . . . . . . . . . . . 55

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Parallel Topological K-means for Superpixel Image Segmentation 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Topological K-means Problem . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Parallel SOM Algorithm in Cellular Matrix . . . . . . . . . . . . . . . . . . 61

4.3.1 Parallel On-Line SOM . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.1.1 Density Point Extraction . . . . . . . . . . . . . . . . . . . 64
4.3.1.2 On-Line SOM Kernel . . . . . . . . . . . . . . . . . . . . 65

4.3.2 Parallel Batch SOM . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Superpixel Adaptive Segmentation Map (SPASM) . . . . . . . . . . . . . . 69

4.4.1 Two-Phase K-means . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4.2 Implementation in Cellular Matrix Model . . . . . . . . . . . . . . . 71

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Experimental Study of Parallel Topological K-means 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Basic On-Line SOM Applications . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Large-Size TSP Instances . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.2 Structured Meshing Results with Different Disparity Maps . . . . . 80

5.3 Experimental Results of SPASM Application . . . . . . . . . . . . . . . . . 83
5.3.1 Different Image Attributes for Cluster Center Initialization . . . . . 84
5.3.2 SPASM vs. SLIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Distributed Local Search for Elastic Image Matching 91
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Elastic Grid Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



Contents xi

6.3 Distributed Local Search (DLS) . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.1 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.2 Neighborhood Decomposition . . . . . . . . . . . . . . . . . . . . . 94
6.3.3 Local Evaluation with Mutual Exclusion . . . . . . . . . . . . . . . 95
6.3.4 Management of Cell Frontier Access . . . . . . . . . . . . . . . . . 96

6.3.4.1 Dynamic Change of Cell Frontiers (DCCF) . . . . . . . . 97
6.3.4.2 Synchronized Execution . . . . . . . . . . . . . . . . . . . 99

6.4 Neighborhood Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4.1 Small Move Operators . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4.1.1 Local Move Operator . . . . . . . . . . . . . . . . . . . . 101
6.4.1.2 Propagation Operator . . . . . . . . . . . . . . . . . . . . 103

6.4.2 Large Move Operators . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4.2.1 Random Pixels Move Operator . . . . . . . . . . . . . . . 103
6.4.2.2 Random Pixels Jump Operator . . . . . . . . . . . . . . . 104
6.4.2.3 Random Pixels Expansion Operator . . . . . . . . . . . . 105
6.4.2.4 Random Pixels Swap Operator . . . . . . . . . . . . . . . 106
6.4.2.5 Random Window Move Operator . . . . . . . . . . . . . . 106
6.4.2.6 Random Window Jump Operator . . . . . . . . . . . . . . 107

6.5 DLS with Multiple Operators Under VNS Framework . . . . . . . . . . . . 108
6.5.1 DLS Execution Pattern from Host Side . . . . . . . . . . . . . . . . 108
6.5.2 DLS Main Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7 Experimental Study of DLS to Visual Correspondence 111
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 Evaluation of Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2.1 DLS with Single Operator . . . . . . . . . . . . . . . . . . . . . . . 112
7.2.2 DLS with Combination of Operators . . . . . . . . . . . . . . . . . 113

7.3 Influence of Solution Initialization . . . . . . . . . . . . . . . . . . . . . . . 116
7.4 Trace Execution of Different Methods . . . . . . . . . . . . . . . . . . . . . 116
7.5 Acceleration Factors According to Problem Size . . . . . . . . . . . . . . . 120
7.6 Experimental Results on Optical Flow Benchmarks . . . . . . . . . . . . . 122
7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8 Conclusions and Future Work 125
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A Experimental Results 129

B Publications 135

Bibliography 137





List of Figures

1.1 Master-slave model vs. cellular decomposition model . . . . . . . . . . . 3
1.2 Comparison between data duplication and data decomposition. . . . . . . 4

2.1 A single SOM iteration with 1D neural network . . . . . . . . . . . . . . . 12
2.2 A single SOM iteration with 2D neural network . . . . . . . . . . . . . . . 12
2.3 TSP tour construction by on-line SOM . . . . . . . . . . . . . . . . . . . . 13
2.4 Hexagonal structured mesh . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 A structured meshing example . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 A taxonomy for parallel and distributed implementation models . . . . . . 28

3.1 Grid matching illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Three possible tessellations of a plane . . . . . . . . . . . . . . . . . . . . 41
3.3 A three-level cellular matrix model in 3D view . . . . . . . . . . . . . . . . 42
3.4 A three-level cellular matrix model in 2D view . . . . . . . . . . . . . . . . 42
3.5 Recursive decomposition in 3D view . . . . . . . . . . . . . . . . . . . . . 44
3.6 Recursive decomposition in 2D view . . . . . . . . . . . . . . . . . . . . . 44
3.7 Cellular matrix models with different topologies . . . . . . . . . . . . . . . 45
3.8 Cellular matrix data structures . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.9 Spiral nearest neighbor search . . . . . . . . . . . . . . . . . . . . . . . . 49
3.10 Spiral search on data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.11 Spiral search on cellular matrix . . . . . . . . . . . . . . . . . . . . . . . . 50
3.12 Basic projections through cellular matrix model . . . . . . . . . . . . . . . 52
3.13 Voronoi projection model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.14 Voronoi partition example . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Basic projection for k-means . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Flowchart of parallel on-line SOM . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Roulette wheel random selection . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 A sampling example by roulette wheel extraction . . . . . . . . . . . . . . 65
4.5 On-line SOM parameter decreasing behaviors . . . . . . . . . . . . . . . 66
4.6 Flowchart of parallel batch SOM . . . . . . . . . . . . . . . . . . . . . . . 67
4.7 Flowchart of SPASM algorithm . . . . . . . . . . . . . . . . . . . . . . . . 70
4.8 An example of the SPASM application . . . . . . . . . . . . . . . . . . . . 72

5.1 Experimental results of 33 TSPLIB instances . . . . . . . . . . . . . . . . 78
5.2 An example of TSP tour obtained by GPU SOM . . . . . . . . . . . . . . . 79
5.3 Relationship between execution time and result quality . . . . . . . . . . . 80
5.4 Structured meshing application . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5 An example of higher resolution for closer objects . . . . . . . . . . . . . . 83

xiii



List of Figures xiv

5.6 SPASMs obtained with image gradient and disparity map . . . . . . . . . 85
5.7 Segmentation result comparison between SPASM and SLIC . . . . . . . . 87
5.8 Performance comparison between SPASM and SLIC . . . . . . . . . . . . 89

6.1 Basic projection for DLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2 Dynamic change of cell frontiers . . . . . . . . . . . . . . . . . . . . . . . 98
6.3 Synchronized execution pattern . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4 Two small move operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.5 A labeling example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.6 Example of random pixels operators . . . . . . . . . . . . . . . . . . . . . 105
6.7 Example of random window operators . . . . . . . . . . . . . . . . . . . . 107
6.8 Flowchart of DLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.1 DLS with single operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2 DLS with different operator combinations . . . . . . . . . . . . . . . . . . 114
7.3 DLS with different solution initializations . . . . . . . . . . . . . . . . . . . 115
7.4 Different methods on Tsukuba benchmark with large disparity range . . . 117
7.5 Different methods on Teddy benchmark with small disparity range . . . . 118
7.6 Different methods on Teddy benchmark with large disparity range . . . . . 119
7.7 Disparity maps for Tsukuba benchmark . . . . . . . . . . . . . . . . . . . 119
7.8 Disparity maps for Teddy benchmark . . . . . . . . . . . . . . . . . . . . . 120
7.9 Stereo matching on Teddy benchmarks with different sizes . . . . . . . . 121
7.10 DLS optical flow visualization results on Middlebury benchmarks . . . . . 123



List of Tables

2.1 Classification for implementation models of different metaheuristics . . . . 35

7.1 Middlebury optical flow evaluation results (Part 1) . . . . . . . . . . . . . . 124
7.2 Middlebury optical flow evaluation results (Part 2) . . . . . . . . . . . . . . 124

A.1 Experimental results of 33 TSPLIB instances (Part 1) . . . . . . . . . . . . 130
A.2 Experimental results of 33 TSPLIB instances (Part 2) . . . . . . . . . . . . 131
A.3 Experimental results of 19 National TSPs . . . . . . . . . . . . . . . . . . 132
A.4 Experimental results of four sets of disparity maps . . . . . . . . . . . . . 133

xv





Chapter 1

Introduction

1.1 Context

Most of the parallel implementation models for metaheuristic optimization algorithms

are based on centralized control on different levels. The most common case is the so

called master-slave model. A typical example is the well-known genetic algorithm (GA),

where a population of candidate solutions to an optimization problem is evolved toward

better solutions using techniques inspired by natural evolution, such as inheritance,

mutation, selection, and crossover. In the master-slave parallel implementation model

of GA, a master process manages the population of solutions, handing out solutions

to a number of slave processes. To evolve to a new generation, the master process

iteratively collects the results after the evaluation of slave processes and applies some

global operations such as selection. In this case, the master process plays a central role

while the slave processes act as co-processors to accelerate computation. As a result,

the algorithm could not perform its function if the master process is suppressed. On

the contrary, when all processes play the same role with no specific central process,

the approach is called decentralized. We aim to design a conceptual model without

central controller, called cellular matrix model, to deal with the problematic issues of

decentralized control when applied to metaheuristic algorithm implementations. Two

models with different control patterns are illustrated in Figure 1.1, where (a) is a master-

slave model based on centralized control, and (b) is a decentralized model that we

attempt to build. In the figure, the master-slave model has a centralized processor

which plays the role of master process and iteratively operates during the whole

algorithm. In the cellular decomposition model, there is no centralized processor, each

distributed processor doing the same work during the whole algorithm. This property of

decentralized control is an abstract characteristic of algorithm with the potential to build

1
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decentralized hardware execution platform that could present robust behaviors while

faced to injuries in the system. Certainly, since we are dealing with GPU (graphics

processing unit) implementations, there will remain the CPU-GPU relationship, where

CPU (central processing unit) is the central controller. Nevertheless, this does not

preclude further exploitation of this property of decentralized control. In our work, we

will try to reduce the effect of the central controller on very basic tasks as much as

possible, meanwhile to augment the part of the parallel work as much as possible,

following the ideal decentralized model as closely as possible.

In the literature exist attempts for designing decentralized models for parallel meta-

heuristic implementations, such as cellular genetic algorithms [MS89, Tom99] for

example, where processes are distributed on a grid, each process embedding one

solution of the optimization problem. Parallel models of this type are based upon data

duplication of each solution. It follows that the problem size allowed is limited by the

memory size allocated to one single processor locally. Instead of data duplication, data

decomposition is a way to deal with very large size problems, and our cellular matrix

model is built upon data decomposition. In this case, each process embeds only a

part of the input data and solution. The many processes locally interact in the plane in

order to make evolve some current solution into an improved one. Given a parallel

computing system with a fixed amount of memory, for example a GPU with global

memory for all threads (processors), the relationship between the input problem size

and the number of employed processors is different for the two computation models.

Figure 1.2 gives a comparison between data duplication model and data decomposition

model, in terms of the relationship between the input problem size and the number of

employed processors. Here, we assume that the solution size equals the input problem

size. In the data duplication model, the number of processors is decreasing along with

the augment of the input problem size. This is because in such a model, the problem

size allowed is limited by the memory size allocated to one single processor locally.

For example, let us suppose the maximum memory is N for a given system, then, N

processors can be employed at maximum if the input problem size is 1; N/2 processors

can be employed at maximum if the input problem size is 2; and only one processor can

be employed if the input problem size is N . The reciprocal relation is depicted by the

data duplication curve (blue) in Figure 1.2 where N = 10. By contrast, in the data

decomposition model, the number of employed processors is linearly increasing along

with the augment of the input problem size. Let us suppose the size of the decomposed

sub-problem is 1 for each processor, then, N processors are employed if the input

problem size is N , as depicted by the line (red) of data decomposition in Figure 1.2.

The data decomposition model has the potential to better exploit parallel computing

resources when the input problem size augments. While data decomposition is not a
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(a) master-slave model

(b) cellular decomposition model

FIGURE 1.1: Comparison between a master-slave model based on centralized
control and data duplication, and a cellular decomposition model based on
decentralized control and data decomposition.



Chapter 1. Introduction 4

FIGURE 1.2: Comparison between data duplication model and data decomposition
model. Given a parallel computing system with a fixed amount of memory, let us
suppose it is 10 for example, the reciprocal relation between the input problem size
and the number of employed processors, for the data duplication model, is depicted
by the blue curve. Let us suppose the size of the decomposed sub-problem is 1 for
each processor in the data decomposition model, then, the linearly increasing relation
between the input problem size and the number of employed processors is depicted
by the red line.

new way of dealing with parallelism in general, in our proposed cellular matrix model, we

specifically assume a linear association from input data to processors as the problem

size increases, when dealing with Euclidean optimization problems. This is the main

property that we refer to as “massive parallelism”, and it allows us to address large size

problems. Here, by massive parallelism, we mean the theoretical and ideal possibility

to execute O(N) simultaneous parallel operations, where N is the input problem size.

In this thesis, we propose the cellular matrix model to deal with the problematic issues of

decentralized control and data decomposition when applied to metaheuristic algorithm

implementations and problems. We choose the GPU parallel computing platform to

implement parallel algorithms, based on the cellular matrix model which should benefit

from GPU’s enormous computational power. As an essential member of the high

performance computing (HPC) family, the GPU parallel computing is a natural choice for

accelerating metaheuristic optimization algorithms which are usually time-consuming

because of the hard problems, such as NP-hard problems, that they are aimed to deal

with. In recent years, the performance of graphics hardware has improved rapidly

and GPU vendors have made it easier for developers to harness the computation

power of the GPU. Under the compute unified device architecture (CUDA) programming

interface, a GPU works as a SIMT (single instruction, multiple thread) co-processor of

a conventional CPU. It is based on the concept of kernels which are functions written
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in C, called from CUP side, and executed by a given number of CUDA threads on GPU

side. These threads will be launched onto GPU’s streaming multi-processors (SMs)

and executed in parallel [SK10].

A natural field of applications with GPU processing is image processing, which is a

domain at the origin of GPU development. A lot of image processing and computer

vision problems can be viewed as optimization problems in a more general way, dealing

with brute data distributed in some Euclidean space and system in relation to the

data. More often, these NP-hard optimization problems involve data distributed in

the plane and elastic structures represented by graphs that must match the data.

Such optimization problems, under various names, such as geometric k-means, elastic

net, topographic mapping, and elastic image matching, can be stated in a generic

framework of graph matching [Ben02, ST85, CSS07, CMC+09]. Large classes of

applications are then concerned, including visual correspondence problems, and also

problems in the combinatorial optimization filed such as locations of services, routing

problems, and even the well-known traveling salesman problem (TSP), which all can

be modeled as a matching process between two graphs. In this thesis, we are

particularly interested in moving grids in the plane following the idea of “elastic net”

matching [DW87, CHKK12], which should be applicable to a variety of matching and

representational problems. The two important classes of problems that will be dealt

with are k-means problems and elastic image matching problems. Given a set of

points in some space with a distance metric, and k cluster centers, the standard

k-means problem consists in finding the locations of cluster centers such that they

minimize the sum of square distances of each data point to its closest cluster center

location. We address these problems by implementation of a well-known topological

map algorithm called self-organizing map (SOM) provided by Kohonen [Koh82]. The

visual correspondence problem is to compute the pairs of pixels from two images that

result from the same scene element. Its two important versions are stereo matching

and optical flow, both formulated as elastic image matching problems. We address

these problems by proposing a distributed local search (DLS) algorithm.

1.2 Objectives and Contributions

The main goal of our work can be summarized as two objectives. The first objective

resides in the design of a generic parallel computation model that can partition data and

define the computational level of granularity. Based on this model, a generic formulation

is to be proposed, by which different Euclidean optimization problems can be formulated

into the common framework of graph matching. The second objective is then related
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to applying the model to different optimization algorithms in a massively parallel way,

dealing with various Euclidean optimization problems under the general formulation.

Because of the Euclidean nature of the problems under consideration, applications

based on the model are supposed to benefit from the use of hierarchically topological

data structure for data storage, search, and optimization operations, in association to

parallel processors.

The contributions of this thesis are overall divided into three parts as follows.

• Firstly, we propose a computation model—cellular matrix model—that allows

systematic association of the grid of processors to the massive data, such as

image pixels, cities, and customers, distributed in the Euclidean plane, under

different topologies of local interactions between processors. Each parallel

processor works without relying on any centralized control, and it carries out

simple and local operations on the topological data structure. One important

property is the application of parallel spiral search findings and neighborhood

examinations by the many processors. We assume a linear association from input

data to processors and memory as the problem size increases, when dealing

with Euclidean optimization problems. This property is a precondition of our work

that we explicitly state in order to deal with large size problems in a massively

parallel way. We provide a template parallel loop that encompasses different

operations executed in the plane, allowing us to implement different Euclidean

optimization algorithms in the cellular matrix model. We also propose a Euclidean

grid matching problem definition that embeds both k-means and elastic image

matching in the plane into a single and unified formulation of generic problem.

This general formulation can be instantiated in different ways depending on the

problems under consideration.

• Secondly, we apply the cellular matrix model to parallel implementations of

k-means based clustering algorithms and the corresponding applications to

several Euclidean grid matching problems. We provide a general energy

function for topological k-means problems in order to highlight the generic

components of the proposed parallel computation framework. We implement

the parallel self-organizing map (SOM) algorithm which is a k-means based

clustering algorithm with topological relationships between cluster centers. We

propose a parallel image segmentation algorithm, called superpixel adaptive

segmentation map (SPASM). It adapts the SOM for parallel execution and

superpixel segmentation, using parallel on-line SOM for a fast density “projection”

to deploy the cluster centers according to the distribution of some specified image

attribute, before the k-means based segmentation by parallel batch SOM. The
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goal is to produce a perceptually meaningful representation of a rigid pixel image,

where the distribution (density) of superpixels coincides with the distribution of

some specified attribute of the input image, such as edges, textures, and depths.

Besides the SPASM, we also apply the parallel SOM algorithm to large size TSPs

and the structured meshing of a disparity map.

• Thirdly, we apply the cellular matrix model to parallel implementations of local

search algorithms. We propose the distributed local search (DLS) algorithm

based on the cellular matrix model. It is a parallel formulation of a local

search procedure in an attempt to follow the spirit of the standard local search

metaheuristics. Starting from its location in the cellular matrix, each processor

locally acts on the data. The solution results from the many local operations,

including local evaluation, neighborhood search, and structured move, performed

on the distributed data in the plane. Mutual exclusion is guaranteed by the cellular

decomposition that allows independent moves. Classical drawbacks to address

are related to cell frontier management and solution diversification. We propose

the strategy of dynamic change of cell frontier, to eliminate conflict operations

on cell frontiers. We design two classes of move operators considering small

neighborhood and large neighborhood respectively, applying them in a similar

way to the variable neighborhood search (VNS), for solution diversification. We

formulate a general energy function to be equivalent to the elastic image matching

problems. Example applications are visual correspondence problems includ-

ing stereo matching and optical flow, which are NP-hard energy minimization

problems. We apply the DLS algorithm to the two problems by minimizing

corresponding energy functions.

The contributions correspond to the objectives, providing solutions to the main

problems.

1.3 Outline

In Chapter 2, we provide background knowledge. We firstly give basic introductions

to the two optimization algorithms that we will implement with our proposed parallel

computing model, and the corresponding problems they are applied to. Then, we

propose a new classification for parallel metaheuristic implementations based on

three main criteria: control, data, and memory, and we analyze different parallel

metaheuristic implementations.
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In Chapter 3, we propose the cellular matrix model. We firstly present a Euclidean grid

matching problem formulation which corresponds to the class of problems addressed

in this thesis. Then, we detail the design of the cellular matrix model. Moreover, we

provide a set of basic concepts and tools needed for the further developments of parallel

computation in our proposed model.

Chapter 4 is devoted to k-means based algorithms and their applications. We firstly

provide a general energy function for topological k-means problems. Then, we present

the parallel SOM algorithm as a k-means based clustering algorithm with topological

relationships between cluster centers. Afterwards, we propose the SPASM algorithm,

which is a combination of parallel on-line SOM and parallel batch SOM algorithms.

Chapter 5 focuses on the experiments on our GPU implementations of the three parallel

SOM applications: TSP, structured meshing, and SPASM. For each application, we

perform experimental analyses and carry out comparative studies between our GPU

parallel SOM approach and other approaches.

Chapter 6 is devoted to local search based algorithms. We propose the DLS algorithm

and apply it to the elastic image matching problems under our generic formulation. We

provide the DLS data structures and the local evaluations both on cell level and on

pixel level. We propose two strategies to eliminate conflict operations on cell frontiers.

We design two classes of move operators considering small neighborhood and large

neighborhood respectively, and we apply different operators in the DLS algorithm,

combining them under VNS framework.

Chapter 7 focuses on the experiments of the DLS algorithm applied to visual correspon-

dence applications. First, we apply DLS to stereo matching and evaluate operators

individually, with different parameter settings. We also evaluate different combinations

of operators, and different initializations. Then, we turn to comparative evaluations with

other energy minimization methods, performing evaluations according to the growing

size of instances. Afterwards, we apply DLS to optical flow with reporting visual results

and ground truth evaluations performed on standard benchmarks.

Chapter 8 concludes this thesis and provides some insights on future work.



Chapter 2

Background

2.1 Introduction

Before unveiling the main work of this thesis, we want to provide some basic concepts

and definitions in this chapter, which are necessary for readers to better understand

our motivations and easily catch our contributions in the latter chapters.

The main objectives of this thesis are designing a generic parallel computation model,

called cellular matrix model, and applying the model to two classes of optimization

algorithms in order to deal with various Euclidean optimization problems under a

generic formulation. The first class of optimization algorithms is based on the self-

organizing map (SOM) algorithm, which is a k-means based clustering algorithm

with topological relationships between cluster centers. In our preliminary work, we

applied SOM to the traveling salesman problem (TSP) [WZC13] and structured mesh

generation [WZC+15]. In this thesis, we have implemented this algorithm in our parallel

framework and applied it to large size instances. Therefore, in this background chapter,

we firstly introduce the SOM algorithm that we employ as a heuristic to quickly generate

sub-optimal TSP tour and the structured mesh of a disparity map.

The second class of Euclidean optimization algorithms we aim to implement in the

cellular matrix model, is based on the local search metaheuristics. We propose the

distributed local search (DLS) algorithm which is a parallel formulation of a local search

procedure in an attempt to follow the spirit of the standard local search metaheuristics.

Applications of different operators for solution diversification are possible in a similar

way to the variable neighborhood search (VNS) algorithm. In this chapter, after the

introduction of SOM, we then present a brief introduction to local search metaheuristics,

including the standard local search algorithm and the VNS algorithm.

9
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We apply the DLS algorithm to a class of Euclidean optimization problems: the visual

correspondence problems. These problems including stereo matching and optical flow

were formally studied by Keysers and Unger [KU03] under the appellation of elastic

image matching problem. In the fourth section of this chapter, we provide some

background knowledge about the problems. We firstly report the definition of elastic

image matching, then, we present the two specific examples of visual correspondence

problems. We formulate them as pixel labeling problems with energy minimization.

In the next chapter, we will propose a generic formulation of grid matching problem

which corresponds to the class of problems addressed in this thesis. The elastic image

matching problem can then be instantiated from the formulation.

In the last part of this chapter, we focus on the investigation of different parallel

metaheuristics. We propose a new classification method to parallel metaheuristic

implementations, followed by a discussion of its importance. Then, we analyze dif-

ferent parallel metaheuristic implementations, including parallel SOM implementations,

parallel local search metaheuristic implementations, and other parallel metaheuristic

implementations, classifying and summarizing them with the proposed classification

method. Our proposed cellular matrix model for parallel SOM and DLS should be inter-

esting to the research field of parallel metaheuristics: decentralized control introduces

potential for robustness; and data decomposition decides the linear association from

input data to processors and memory needed, as the problem size increases.

2.2 Self-Organizing Map

The first class of Euclidean optimization algorithms we aim to parallelize in this thesis,

is based on the self-organizing map (SOM) [Koh82] algorithm which we treat as

a k-means based clustering algorithm with topological relationships between cluster

centers. In this section, we briefly introduce this algorithm.

The Kohonen’s SOM is a neural network approach dealing with visual patterns moving

and adapting themselves to brute distributed data in space. It is often presented

as a non supervised learning procedure performing a non parametric regression that

reflects topological information of the input data. Meanwhile, it can also be seen as a

center based clustering algorithm with topological relationships between centers. The

SOM algorithm has two versions: the on-line version which consists of a stochastic

regression training procedure, and the batch version which operates on all the data

at the same time. We present these two versions in the following two subsections

respectively.



Chapter 2. Background 11

2.2.1 On-Line SOM Algorithm

The standard SOM is a non directed graph G = (V,E), called neural network, or

topological grid, where each vertex v ∈ V is a neuron, also called cluster center, having

a synaptic weight vector wv = (x, y) ∈ <2. Here, <2 is the two-dimensional Euclidean

space, and the neuron network could be a one-dimensional ring or a two-dimensional

regular grid deployed in the plane. Synaptic weight vector corresponds to the vertex

location in the plane. The set of neurons V is provided with the dG induced canonical

metric dG(v, v′) = 1 if and only if (v, v′) ∈ E, and with the usual Euclidean distance

d(v, v′). The neural network is deployed on an input data set I consisting of N data

points distributed in the same Euclidean space.

Algorithm 1: On-line SOM training procedure.
1: Randomly generate weight vectors;
2: for iter ← 0 to tmax do
3: Randomly extract a point p from the data set;
4: Perform competition to select the winner neuron n∗ according to p;
5: Apply learning law to the neurons of a neighborhood of n∗ with radius σ;
6: Slightly decrease learning rate α and radius σ of neighborhood;
7: end for

The basic incremental-learning SOM algorithm, which we call the on-line SOM, consists

of a sequential training procedure given in Algorithm 1. A fixed amount of tmax iterations

are applied to the graph (neural network), the vertex (neuron) coordinates of which

being randomly initialized into an area delimiting the data set. Each iteration follows

three basic steps, as indicated by lines 3—5. At each iteration t, a point p(t) ∈ <2 is

randomly extracted from the data set (extraction step). Then, a competition between

neurons against the input point p(t) is performed to select the winner neuron n∗ (search

step). Usually, it is the nearest neuron to p(t). Finally, the learning law (triggering step)

wn(t+ 1) = wn(t) + α(t)× ht(n∗, n)× (p(t)− wn(t)) (2.1)

is applied to n∗ and to the neurons within a finite neighborhood of n∗ with radius σt, in

the sense of the topological distance dG, using learning rate α(t) and function profile

ht. The function profile is given by a Gaussian form

ht(n
∗, n) = exp(−dG(n∗, n)2/σ2t ). (2.2)

Here, the learning rate α(t) and radius σt are geometrically decreasing functions of

time. To perform a decreasing run within tmax iterations, in each iteration t, the
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(a) (b) (c) (d)

FIGURE 2.1: A single SOM iteration with one-dimensional neural network. The red
circles represent neurons while the black dots represent input data points. (a) Initial
configuration; (b) α = 0.9, σ = 4; (c) α = 0.9, σ = 1; (d) α = 0.5, σ = 4.

(a) (b) (c)

FIGURE 2.2: A single SOM iteration with two-dimensional neural network. (a) Initial
configuration; (b) α = 0.5, σ = 6; (c) α = 1, σ = 12.

coefficients α(t) and σt are respectively multiplied by

exp(ln(χfinal/χinit)/tmax), (2.3)

where χ = α or χ = σ, χinit and χfinal being respectively the values in the starting

and the final iteration. Note that a SOM simulation is characterized by the five

running parameters (αinit, αfinal, σinit, σfinal, tmax). Examples of a basic iteration with

different learning rates and neighborhood sizes are shown in Figure 2.1 and Figure 2.2.

Figure 2.1 illustrates the SOM with one-dimensional neural network. Starting from

the initial state of Figure 2.1 (a), results of a single SOM iteration with three different

parameter settings are shown in Figure 2.1 (b), (c), and (d), respectively. Similarly,

Figure 2.2 illustrates the SOM with two-dimensional neural network.

In this thesis, we employ the on-line SOM algorithm as a heuristic to quickly generate

sub-optimal solutions. The applications to the Euclidean TSP and structured mesh

generation have been studied in our previous work [WZC13, WZC+15], where we have

used on-line SOM for the tour construction of the TSP, and for the structured mesh

generation of a disparity map. In this thesis, we extend our previous work by much

more experiments especially on large size instances. Now we give brief introductions

to these two basic applications.
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(a) (b) (c)

FIGURE 2.3: Tour construction by on-line SOM using the pr124 instance from
TSPLIB [Rei91].

2.2.1.1 On-Line SOM to Euclidean TSP

A classical and widely studied combinatorial optimization problem is the Euclidean

traveling salesman problem (TSP). From graph theory perspective, the TSP can be

simply defined as a complete weighted graph G = (V,E, d) where V = {1, 2, · · · , n} is

a set of vertices (cities), E = {(i, j)|(i, j) ∈ V ×V } is a set of edges, and d is a function

assigning a weight (distance) dij to every edge (i, j). The objective is to find a minimum

weight cycle in G which visits each vertex exactly once. The Euclidean TSP, or planar

TSP, is the TSP where cities located in Euclidean plane and the distance between two

cities is ordinary Euclidean distance. The problem is NP-complete [Pap77].

When applying on-line SOM to the TSP, we train the SOM neural network according

to cities, expecting that the distribution of neurons in the Euclidean plane coincides

with the distribution of cities in the same plane. Here, the input data set is the set of

cities of TSP; the SOM neural network is a one-dimensional ring of neurons with the

weight vector of each neuron being its correspondingly two-dimensional coordinate in

the Euclidean plane. In order to generate a final admissible tour, each city has to be

mapped to its nearest free neuron (the neuron that has no city assigned to it yet), two

cities being assigned to different neurons. Then, the application consists of applying

iterations to a ring structure with a fixed number of neurons according to the TSP size.

After the on-line SOM training procedure, the ring transforms into a possible solution

for TSP along which a determined tour of cities can be obtained.

To illustrate the on-line SOM behavior, an example of a TSP tour construction on the

pr124 instance from TSPLIB [Rei91] is given in Figure 2.3, showing different steps of a

long simulation run. The ring network dispatches its vertices/neurons (small red circles)

among cities (black dots). At the beginning starting from a scratch, which in the example

shown in Figure 2.3 (a) is a ring with randomly generated vertex coordinates into the

rectangular area containing cities, the local moves are performed with a considerable

intensity in order to let the ring deploy toward cities. Then after 100 iterations as shown
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in Figure 2.3 (b), the intensity of the moves slightly decreases in order to progressively

freeze the vertices near cities (Figure 2.3 (b)—(c)). After 10000 iterations, the ring has

almost completely been mapped onto cities, as shown in Figure 2.3 (c). As a final step,

each city just has to be assigned or mapped to its nearest vertex in the ring in order to

generate a final tour ordering.

2.2.1.2 On-Line SOM to Structured Meshing

A structured mesh in the plane is generally a grid of vertices deformed by some

coordinate transformation. In this thesis, the application to structured mesh generation

is presented as the solution of a clustering optimization problem in the plane. The goal

is to homogeneously divide a density distribution, the disparity map in our application,

between many triangles of the structured hexagonal mesh. The definition needs to

consider both the hexagonal grid (the mesh) and the underlying density distribution (the

disparity map). The target adaptive hexagonal mesh is illustrated in the left part of

Figure 2.4. It is defined as a set of hexagonal cells, each one containing six subdivided

triangles. These basic honeycomb cells are the units used to evaluate the amount of

the underlying pixels they cover in the disparity map. The right part of Figure 2.4 shows

such a hexagonal cell and its covering pixels from the disparity map. In this example,

the total value covered, called the weight of the honeycomb cell, is the summation of

the underlying pixel values (Wk = 62).

LetWk be the weight of a single honeycomb cell. Note that this weight can be computed

by using a standard pixel coloring algorithm. Let W be the average weight of the K

honeycomb cells

W =

∑
kWk

K
. (2.4)

We define the optimization problem as the minimization of the average percentage

deviation of each individual honeycomb cell weight to the average honeycomb cell

weight

% cost =

∑
k |Wk −W |
K ×W

× 100. (2.5)

Hence, the structured mesh generation problem consists in minimizing this criterion

while preserving regularity of hexagonal topology. The problem is NP-hard [ZWC+13,

WZC+15].

The application of on-line SOM to the structured mesh generation with stereo disparity

map, consists of applying the training procedure to a regular mesh (the two-dimensional

neural network), according to a density distribution represented by the disparity map.

The size of the SOM neural network is lower than and in relation to the size of the
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FIGURE 2.4: Hexagonal structured mesh with honeycomb cells and triangular
subdivision (left part). Disparity map covered with a single honeycomb cell with
weight Wk = 62 (right part).

(a) (b) (c)

FIGURE 2.5: A structured meshing example: (a) input disparity map, (b) meshing
result viewed in 2D space, (c) meshing result viewed in 3D space.

disparity map in such a way that the mesh constitutes a compressed representation

of the disparity map, with a parameterized compression rate. At the extraction step

of each iteration, a pixel is randomly extracted from the disparity map according to a

roulette wheel mechanism [WZC+15] depending on the density distribution (disparity

values). Then, the mesh deformation must respect the density distribution and topology.

This means that high disparity values, which correspond to objects close to the camera,

are represented by higher densities of neural network vertices and that the structured

network reflects the spatial topology or distances in 2D and 3D space. Proximity of grid

vertices reflects proximity in Euclidean space. The surface reconstruction in 3D space

obtained by using the adapted mesh can be seen as a compressed representation of

the 3D surface, such that objects close to the camera have higher resolution and their

details are more finely represented.

Figure 2.5 presents a structured meshing example. The tsukuba disparity map from

the Middlebury stereo datasets [SS03, Mid15b] is the input as shown in Figure 2.5 (a).

Figure 2.5 (b) and (c) are the meshing results viewed from 2D and 3D space
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respectively. In the disparity map, brighter regions are nearer to the camera view point,

such as the lamp, while in the meshing result, the adapted grid presents higher density

in such regions, with respect of the topology of the scene.

2.2.2 Batch SOM Algorithm

Algorithm 2: Batch SOM training procedure.
1: Randomly generate weight vectors;
2: for iter ← 0 to tmax do
3: for i← 0 to N do
4: For the ith point pi, perform competition to select the winner neuron nj

(j = 1, 2, ...,K) according to pi;
5: Put pi into the list Uj which denotes the union of all the points closest to

neuron nj ;
6: end for
7: for j ← 0 to K do
8: For the jth neuron nj , compute the mean value of all the points in Uj , as the

new weight vector for nj ;
9: Apply learning law to the neurons of a neighborhood of nj with radius σ,

toward the new target weight vector;
10: end for
11: Slightly decrease learning rate α and radius σ of neighborhood;
12: end for

The incremental-learning on-line SOM is a stochastic algorithm which updates the

values of weight vectors sequentially iteration by iteration. Its deterministic batch

equivalent, the batch SOM, uses all the input data points at each step. The batch

SOM algorithm is illustrated in Algorithm 2. Instead of only one point being randomly

extracted, at each iteration t of batch SOM, all points of the input data set are taken into

account, each of them being associated to its closest cluster center. This procedure

corresponds to lines 3—6, where N is the number of points in the input data set, and

K is the number of cluster centers. The set Uj is the list of points associated to cluster

center nj . At the triggering step, as illustrated by lines 7—10, each cluster center firstly

computes the mean weight of all its closest points, as the new target weight, and then

the following learning law

wn(t+ 1) = wn(t) + α(t)× ht(n∗, n)× (

∑m
i=1 pi(t)

m
− wn(t)) (2.6)

is applied to each considered cluster center n∗ and its neighboring cluster centers.

Here, m is the number of points associated to n∗, while learning rate α(t) and function

profile ht(n∗, n) are defined in the same way as in the on-line SOM algorithm.
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2.2.3 Topological K-means

The k-means problem is a standard well-known clustering problem in density distribu-

tion estimation, data analysis, and data compression. Given a set of points in some

space with a distance metric, and k cluster centers, the problem consists in finding

the locations of cluster centers such that they minimize the sum of square distances of

each data point to its closest cluster center location.

In this thesis, we view SOM as a k-means based clustering algorithm with topological

relationships between cluster centers. In this case, the neurons in the SOM neural

network act as k cluster centers, and the SOM learning process acts as the clustering

process, during which the topological relationships between neurons are preserved

through the topological gird of neural network. Especially, if we set αinit = αfinal = 1

and σinit = σfinal = 0, then the batch SOM algorithm turns into the standard k-means

clustering algorithm.

2.3 Local Search Metaheuristics

The second class of Euclidean optimization algorithms we aim to parallelize in this

thesis, is based on the local search metaheuristics. In this section, we firstly introduce

the standard local search algorithm and then present the variable neighborhood search

which is a metaheuristic algorithm using local search as basic operations.

2.3.1 Standard Local Search Algorithm

In some literature, local search is also referred as hill climbing, descent, iterative

improvement, general single-solution based metaheuristics and so on. As illustrated

in Algorithm 3, local search starts at a given initial solution. At each iteration, the

heuristic replaces the current solution by a neighbor solution that improves the fitness

function. The search stops when all candidate neighbors are worse than the current

solution, meaning a local optimum is reached. For a large neighborhood, the candidate

solutions may be a subset of the neighborhood. The main objective of this restricted

neighborhood strategy is to speed up the search.

Variants of local search may be distinguished according to the order in which the

neighboring solutions are searched. If the neighborhood is evaluated in a random

manner, the algorithm is called stochastic local search. On the contrary, if the

neighborhood is evaluated in a fully deterministic order, the algorithm is called
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Algorithm 3: Template local search pseudo-code
Input: S ∈ solution, operator, Ffitness

1 begin
2 Initialize(S);
3 improvementFound← true;
4 while improvementFound do
5 improvementFound← false;
6 S′ ← GenerateNeighbor(S, operator);
7 if Ffitness(S

′) is better than Ffitness(S) then
8 S ← S′;
9 improvementFound← true;

10 return S;

deterministic local search. With different selection strategies applied, local search

algorithms can be divided into two categories:

• Best improvement local search (steepest descent). In each local search

iteration, the best neighbor (i.e., neighbor that improves the most the fitness

function) is selected. The exploration of the neighborhood is exhaustive, and

all possible moves are tried for a solution to select the best neighboring solution.

This type of exploration may be time-consuming for large neighborhoods.

• First improvement local search. In each local search iteration, the first improv-

ing neighbor that is better than the current solution is selected to replace the

current solution. This strategy involves a partial evaluation of the neighborhood.

In the worst case (i.e., when no improvement is found), a complete evaluation of

the neighborhood is performed.

The best improvement local search (BILS) is deterministic while the first improvement

local search (FILS) could be either stochastic or deterministic. According to [Tal09], in

practice on many applications, it has been observed that FILS leads to the same quality

of solutions as BILS while using a smaller computational time.

2.3.2 Variable Neighborhood Search

Local search proceeds from an initial solution by a sequence of local changes,

improving each time the value of the objective function until a local optimum is found.

In order to avoid being trapped in local optima with poor values [OL96, Ree93], variable

neighborhood search (VNS) [Mla95, MH97, BLS13] applies a strategy that consists

in the exploration of dynamically changing neighborhoods for a given solution. VNS
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works on a set of neighborhood operators: operator1, operator2, . . ., operatormax. Each

operator explores a corresponding neighborhood structure. Therefore, max operators

define max neighborhood structures.

As illustrated in Algorithm 4, the main cycle of VNS consists of three steps: shaking

(line 6), local search (line 7), and move (line 9). In the shaking step, operatorn randomly

generates a neighbor solution S′ in the nth neighborhood of the current solution S.

Then, S′ is used as the initial solution of a local search procedure, to generate the

solution S′′. Note that the local search can use any neighborhood structure and is

not restricted to the set of VNS. At the end of the local search process, if S′′ is better

than S, then S′′ replaces S and the cycle starts again with n = 1. Otherwise, the

algorithm moves to the next neighborhood n+ 1 and a new shaking phase starts using

operatorn+1.

Algorithm 4: Variable neighborhood search
Input: S ∈ solution, operator1, operator2, . . . , operatormax, Ffitness

1 begin
2 Initialize(S);
3 while the stop condition is not satisfied do
4 n← 1;
5 while n < max do
6 Shaking: S′ ← GenerateRandomNeighbor(S, operatorn);
7 S′′ ← LocalSearch(S′);
8 if Ffitness(S

′′) is better than Ffitness(S) then
9 S ← S′′;

10 n← 1;

11 else
12 n← n+ 1;

13 return S;

A local optimum within some neighborhood is not necessarily a local optimum within

another. That is why change of neighborhoods/operators can also be performed

during the local search itself. In some cases, the use of many neighborhoods

in the local search is crucial [HM01]. This local search variant is called variable

neighborhood descent (VND), as illustrated in Algorithm 5. In the step of “Exploration

of neighborhood” in line 8, operatorn select the best neighbor solution S′ in the nth

neighborhood of the current solution S. Globally, VND can be viewed as a generic

framework [Tal09, BLS13] that allows us to deal with solution diversification and extends

the power of simple local search.
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Algorithm 5: Variable neighborhood descent
Input: S ∈ solution, operator1, operator2, . . . , operatormax, Ffitness

1 begin
2 Initialize(S);
3 improvementFound← true;
4 while improvementFound do
5 improvementFound← false;
6 n← 1;
7 while n < max do
8 Exploration of neighborhood: S′ ← GenerateBestNeighbor(S, operatorn);
9 if Ffitness(S

′) is better than Ffitness(S) then
10 S ← S′;
11 n← 1;
12 improvementFound← true;

13 else
14 n← n+ 1;

15 return S;

2.4 Elastic Image Matching

In this thesis, we propose a parallel local search algorithm, called distributed local

search (DLS), based on the cellular matrix model. We apply the DLS algorithm to a

class of Euclidean optimization problems: the visual correspondence problems. These

problems including stereo matching and optical flow were formally studied by Keysers

and Unger [KU03] under the appellation of elastic image matching problem. In this

section, we firstly report the definition of elastic image matching. Then, we present

the two specific examples of visual correspondence problems, after which we formulate

them as pixel labeling problems and transfer them into energy minimization problems.

We now introduce the formal definition of elastic image matching. Without loss of

generality, let the pair of graphs be given as regular two-dimensional grids with W ×H
vertices. In both girds, each vertex has a coordinate in the Euclidean plane and a value

from a finite alphabet V = {1, ..., v}. The grids represent images while the vertices

represent pixels with gray or color values within V. We define two distance functions.

The first one is dv : V × V → N, and it acts on vertex values measuring the match

differences in gray or color values; the second one is dd : Z × Z → N, and it acts on

displacement differences measuring the distortion introduced by the matching. Note

that Z stands for the set of all integers. For these distance functions, we assume that

they are monotonous functions that are computable in polynomial time. For example,

one can use the Euclidean distance, i.e. dv(v1, v2) = f1(‖v1 − v2‖) and dd(z) = f2(‖z‖)



Chapter 2. Background 21

with f1, f2 monotonously increasing. Let W = {1, ...,W}, and H = {1, ...,H}, the

elastic image matching problem is defined as follows.

Input: The pair (A,B) of two grids of size W ×H.

Solution: A mapping function f :W ×H →W ×H, from A to B.

Measure:

c(A,B, f) =
∑

(i,j)∈W×H

dv(Aij , Bf(i,j))

+ λ ·
∑

(i,j)∈{1,...,W−1}×H

dd(f((i, j) + (1, 0))− (f(i, j) + (1, 0)))

+ λ ·
∑

(i,j)∈W×{1,...,H−1}

dd(f((i, j) + (0, 1))− (f(i, j) + (0, 1))).

(2.7)

Goal:

f = arg min
f∈W×H→W×H

c(A,B, f). (2.8)

In other words, the problem is to find the mapping from A onto B that minimizes the

distance between the mapped vertex values together with a weighted measure for the

distortion introduced by the mapping. It is proven to be NP-complete [KU03], by means

of a reduction from 3-SAT. The grid matching problem that we propose in Chapter 3 is

an extension of this problem embeddings also k-means type problems.

2.4.1 Visual Correspondence

While the elastic image matching is as a specific case, the more general graph matching

problems are numerous [HC03, KTP00, LL00, TKP01, BvdM87]. They are considered

as complex problems in pattern recognition and computer vision. In the field of image

processing, important versions are stereo matching and optical flow problems, which

are called visual correspondence problems and studied in this thesis. The visual

correspondence problem is to compute the pairs of pixels from two images that result

from the same scene element. Normally in such problems, two pixels—e.g. one from

the first image and the other one from the second image—that belong to the same

scene element are called homologous pixels. For every pixel in the first image, if its

homologous pixel is confined to the same epipolar line (with the same y coordinate) in

the second image, then the problem is the stereo matching problem; if its homologous

pixel can locate in any position in the second image, then the problem is the optical flow

problem.
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In the computer vision domain, the visual correspondence problem is often presented

as an energy minimization problem [Vek99, BVZ01, BK04, Bar89]. Stereo matching

and optical flow problems are generally formalized in a similar way as a pixel labeling

problem [FH06, TF03, SZS+08, HRB+13, LYMD13] which assigns to every pixel in the

first image a label indicating its displacement in the second image. Then, an energy

function is defined based on the labeling that represents the matching solution, and the

labeling which gives the lowest energy is viewed as the best matching solution. We

give the definition of the pixel labeling problem and its general form of energy function

in the following two subsections respectively.

2.4.2 Pixel Labeling

Many vision problems can be formulated as labeling problems. This formulation is

convenient because it gives a common notation for diverse problems. In this thesis, we

will use the same formal definition as in [Vek99] when necessary.

To specify a labeling problem we need a set of sites and a set of labels. Sites represent

image locations on which we want to estimate some quantity, and labels represent the

quantity to be estimated. Let

P = {1, 2, ..., n} (2.9)

be a set of n sites. P can represent pixels, edges, image segments, or other image

features. Let

L = {l1, l2, ..., lk} (2.10)

be a set of k labels. Labels represent intensities, disparities, or any other quantity

to be estimated. For all the visual correspondence problems studied in this thesis,

P represents image pixels and labels represent disparities for the stereo matching

problem and spatial moves in the optical flow problem. For this reason we call P
the set of pixels. Normally P has some natural structure in the plane. For example,

pixels in an image are arranged in a two dimensional array, and each pixel which is

not at the border has top, bottom, left, and right neighboring pixels. When solving

a labeling problem, one frequently needs to define some relationships between sites,

and measure similarity between labels, therefore a natural ordering both on the set of

sites and the set of labels is helpful. In this thesis, the neighborhood structure of pixels

is defined as a graph, with different regular topologies.

The labeling problem is to assign a label from the label set L to each site in the set of

sites P that minimizes an energy function. Thus, a labeling is a mapping from P to L.
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We denote a labeling by

f = {f1, f2, ..., fn}. (2.11)

The set of all labelings Ln is denoted by F .

When specialized to the visual correspondence problems, the labeling problem and the

elastic image matching problem are interchangeable. Let P in the labeling problem

represent the grid A in the elastic image matching problem, where sites (pixels) in P
one-to-one correspond to vertices (pixels) in A. Since the labels in the labeling problem

represent disparities, we can view the label of a pixel as the displacement from this pixel

in A to its homologous pixel in the target image B. Then, a labeling f l in the labeling

problem is equivalent to a mapping fm in the elastic image matching problem. For a

give pixel (i, j) in A, the matched position fm(i, j) in B equals (i, j) + f l(i,j), where f l(i,j)
represents the label of pixel (i, j) in P. Note that the label f l(i,j) is a one-dimensional

disparity value in the stereo matching application, whereas a two-dimensional motion

vector in the optical flow application.

2.4.3 General Form of Energy Function

The labeling problem is to assign a labeling from P to L that minimizes an energy

function which expresses both the constraints of data and prior knowledge of the

problem. Normally the general form of such energy function is defined as

E(f) = Edata(f) + λ · Esmooth(f). (2.12)

The first term Edata(f), called data energy, encodes the constraints of the data and

penalizes solutions (labelings) that are inconsistent with the observed data. The second

term Esmooth(f), called smoothness energy, encodes the constraints provided by prior

knowledge. The design of the prior constraint is tricky, and it is frequently hard to

formalize the prior constraint concisely and consistently for all problems, because its

particular form depends on the particular problem in hand. A popular choice of prior

which can be easily formalized expresses smoothness constraints on the labelings

enforcing spatial coherence. The smoothness assumption is one of the oldest in

vision [MP76, HS81, Vek99]. In this thesis, we refer to the prior energy as the

smoothness energy and denote it by Esmooth(f). The constant λ controls the relative

importance of data and smoothness energy. One of the reasons why this framework is

so popular is that it can be justified in terms of maximum a posteriori estimation of a

Markov random field (MRF) [Bes86, GG84].
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2.4.3.1 Data Energy

The data energy has the form

Edata(f) =
∑
p∈P

Dp(fp). (2.13)

Here, Dp(fp) measures how much assigning label fp to pixel p disagrees with the

data. When applied to the visual correspondence problems, the label fp corresponds to

vector (u, v) which defines the displacement in x (horizontal) and y (vertical) directions1.

Then, Dp(fp) stands for the matching cost that expresses how well a pixel p in the first

image I matches the corresponding pixel in the second image I ′ shifted by vector fp.

Some very simple matching cost examples include:

1. absolute difference (AD)

Dp(fp) = ‖Ip − I ′(p+fp)
‖
1
, (2.14)

2. Euclidean difference

Dp(fp) = ‖Ip − I ′(p+fp)
‖
2
, (2.15)

3. squared difference (SD)

Dp(fp) = ‖Ip − I ′(p+fp)
‖2
2
, (2.16)

where Ip is the intensity value of pixel p in the first image I, whereas I ′(p+fp)
is the

intensity value of the corresponding pixel (p + fp) in the second image I ′. Here, the

intensity value of a pixel could be a single-channel gray value or a three-channel color

value. In order to increase robustness, some more complex matching cost usually adds

the gradient value into consideration, such as

Dp(fp) = (1−α)·‖Ip − I ′(p+fp)
‖+α·(‖∇xIp −∇xI

′
(p+fp)

‖+‖∇yIp −∇yI
′
(p+fp)

‖), (2.17)

where ∇x and ∇y are the intensity gradients in x and y direction, respectively, while α

balances the intensity and gradient terms.

2.4.3.2 Smoothness Energy

To formalize the smoothness energy, we need to model how pixels interact with

each other. Usually, we use the standard 4-connected neighborhood system, where
1For the stereo matching application, the displacement in the x direction corresponds to the disparity d

(u = d) and there is no shift in the y direction (v = 0).
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each pixel has the top, bottom, left, and right pixel as its neighbors. Then, the

smoothness energy is the sum of spatially varying horizontal and vertical nearest

neighbor smoothness costs, Vpq(fp, fq), where if p = (i, j) and q = (s, t), then

|i − s| + |j − t| = 1. If we let N denote the set of all such neighboring pixel pairs,

the smoothness energy is

Esmooth(f) =
∑

{p,q}∈N

Vp,q(fp, fq) (2.18)

where the notation {p, q} stands for an unordered set, that is, the sum is over unordered

pairs of neighboring pixels. Vp,q(fp, fq) is a neighbor interaction function [Vek99] which

gives penalties to neighboring pixels p and q if they have different labels. The form of

Vp,q determines the type of smoothness prior. Thus, the smoothness energy Esmooth

is just the sum of neighbor interaction functions for all neighbor pairs. It assigns the

labelings which are not smooth a high cost by counting all penalties between neighbor

pairs having different labels. Three possible forms of Vp,q could be:

1. everywhere smooth prior

Vp,q(fp, fq) = up,q · ‖fp − fq‖ (2.19)

2. piecewise constant prior

Vp,q(fp, fq) = up,q · δ (2.20)

δ =

1 iffp 6= fq,

0 otherwise.
3. piecewise smooth prior

Vp,q(fp, fq) =

up,q · ‖fp − fq‖ if‖fp − fq‖ < C,

up,q · C otherwise.
(2.21)

where up,q is a weight that varies depending on contextual information, whereas C is

some constant which sets the bound on the magnitude of Vp,q. In all the three cases,

Vp,q is the product of a spatially varying per-pairing weight and a nondecreasing function

of the label difference. More details about how to choose the smoothness term are

discussed in [Vek99].
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2.5 Classification of Parallel Metaheuristic Implementations

One of the main works of this thesis lies in designing a conceptual model for parallel

and distributed implementations of different optimization algorithms. Here, in this

section, we firstly give a review on parallel computing, especially focusing on the

parallelization strategies applied to metaheuristics. Then, we propose a taxonomy

for parallel implementation models of metaheuristics, with which we analyze existing

models of the two classes of algorithms that we deal with in the thesis: SOM and local

search. Models of other metaheuristic algorithms such as genetic algorithm and ant

colony optimization are also discussed based on the proposed taxonomy, after which a

summary classification for models of different metaheuristics is given.

Generally, parallel computing speeds up computation by dividing the work load among

a certain amount of processors. In the parallel computing community, two main sources

of parallelism which are well accepted are data parallelism and task parallelism.

• Data Parallelism refers to the execution of the same operation or instruction

on multiple large data subsets at the same time [FL00]. In a multiprocessor

system executing a single set of instructions, which is called single-instruction

stream-multiple-data stream (SIMD) according the Flynn’s taxonomy [Fly72], data

parallelism is achieved when each processor performs the same operation on

different pieces of distributed data. In these scenarios, the same operation is

performed concurrently (that is, in parallel) on elements in a source collection or

array. The source collection is usually partitioned so that multiple processors can

operate on different segments concurrently.

• Task Parallelism, also called control parallelism, or function parallelism, or oper-

ation parallelism, refers to the concurrent execution of different tasks allocated

to different processors, possibly working on the “same” data and exchanging

information [CT10]. Task parallelism focuses on distributing tasks, which rep-

resent asynchronous operations, across different parallel processors so that

independent tasks run concurrently. In the general case of task parallelism, each

processor executes a different process on the same or different data, and different

execution processors communicate with one another as they work.

Parallel computations based on these two parallelisms are particularly efficient when

algorithms manipulate data structures that are strongly regular, such as matrices in

matrix multiplications. Algorithms operating on irregular data structures or on data

with strong dependencies among the different operations remain difficult to parallelize
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efficiently and to characterize comprehensively, using only data parallelism or task

parallelism. Metaheuristics generally belong to this category, and parallelizing them

offers opportunities to find new ways to use parallel and distributed computational

systems and to design parallel algorithms [CT03].

Crainic and Toulouse [CT03, CT10] have proposed a classification specific to the

parallelization strategies applied to metaheuristics. In their classification, three

dimensions are considered which respectively indicate (1) how the global problem-

solving problem is controlled, (2) how information is exchanged among processes, and

(3) the variety of methods involved in the search for solutions. Specific classifications

applied to some particular metaheuristic algorithms are also found in the literature.

For example, Luong et al. [VLMT13] have studied various algorithmic issues to design

efficient parallel local search metaheuristics, and they have summarized three major

parallel models for local search metaheuristics: solution-level parallel model, iteration-

level parallel model, and algorithmic-level parallel model. Classifications for parallel

strategies of other specific metaheuristic algorithms also exist, such as the works

by Tomassini [Tom99, AT02] and Alba [AT02] for parallel and distributed evolutionary

algorithms (EAs), and the work by Pedemonte et al. [PNC11] for parallel ant colony

optimization (ACO) algorithms. However, we did not find a classification that clearly

distinguishes the possibility for “massive parallelism” for optimization. We think that

this property relies to adequate association of processors to the data, in such a way to

define precisely the relation to the problem size. This can be achieved by distinguishing

between data decomposition parallelism and data duplication parallelism, as in our

proposed classification in the following subsection.

2.5.1 A Taxonomy Based on Three Factors

In our opinion, the traditional dual data/task classification for general parallel computing

looks not sufficiently precise when dealing with the various parallel metaheuristics

specifically dedicated to the implementation level. One important point that should

be emphasized concerns the allocation of processors and memory according to the

problem size. We think that this point specific to optimization should be alighted

in the taxonomies of parallel and distributed metaheuristic implementations, since it

determines the maximum size of the input that should be solved with the system

and how the performance should grow according to the amount of physical cores and

memory.

Taking the above considerations into account, we propose a new classification criterion

as shown in Figure 2.6. We now have three criteria. They are based on the three
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factors that every parallel implementation model of metaheuristic optimization needs

to consider: control, data, and memory. Note that though two terms of our taxonomy

are literally similar to the traditional parallelism classification, they stand for different

considerations.

FIGURE 2.6: A taxonomy based on control, data, and memory, for parallel and
distributed implementation models.

— Control. This term is about algorithmic organization and its corresponding execution

pattern on parallel processors. Some parallel implementation models are based on

centralized control on different levels, such as the classic master-slave model as

shown in Figure 1.1 (a), where the master process plays a central role. In our

classification, we call this kind of implementation model “control centralized”. The

opposite implementation model should be in a completely distributed control pattern,

without depending on any central control, as the cellular model shown in Figure 1.1 (b).

Thus, the robustness can be guaranteed because the computation can continue even

when some computing units fall down. We call this kind of implementation model

“control decentralized”.

— Data. This term denotes the input data with size N of the problem to be solved, and

the representation of the solution. The size of the solution could generally be O(N)

since it is in relation to the input problem size. However, the size might depend on

optimizing operations and the implementation choices of designers. Some algorithms

perform metaheuristic exploration and exploitation within a set of solutions (population),

handling each solution in parallel, and then selecting the best-so-far solution iteratively.

Implementation models of this kind are built upon “data duplication”. Alternatively,

other algorithms generate every part of the whole solution separately in parallel.

The final solution can then be obtained by combining together partial results from

all the processors. Hence, implementation models of this kind are founded on “data

decomposition”. A linear relationship of processors to the problem size makes these

models able to handle larger scale problems with limited physical memory, than the

models which follow “data duplication” pattern.
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— Memory. This term concerns concrete implementations of memory access in

parallel computing platforms. Two commonly used categories are “global memory” (also

called “shared memory” in parallel computing community) and “distributed memory”,

and we adopt them in our classification. Normally, if the considered algorithm is

implemented in global memory systems, such as GPU platforms, then it usually has

to deal with the problem of memory access contention, especially if global memory

access is through a single path such as a bus. Cache memory alleviates the problem

but it does not solve it. On the other hand, distributed memory means that each

processors only manages its local memory and the communication is by message

passing as in the peer-to-peer communication scheme. The information exchange

among different processors is via message passing mechanism. As a result, the

communication bottleneck of distributed memory computing systems usually becomes

the main obstacle to high performance of the “distributed memory” implementation

models. Note that GPU implementations are in the “global memory” category, even

if the process behaviors only concern local memory accesses.

It should be clarified that our taxonomy is not only for the parallelization strategies

of metaheuristic algorithms, but also for their concrete implementations which are

related to the employed platforms, owing to the memory term. By classifying

the concrete implementation models of metaheuristic algorithms according to our

taxonomy, the employment of processors and memory according to the problem size

can be predicted, and the possible performance bottlenecks could also be forecast.

For example, most of the implementations under master-slave model are based on

“control centralized, data duplication”, as shown in Figure 1.1 (a). Given a parallel

computing system with a fixed amount of memory, the reciprocal relation between

the input problem size and the number of employed processors could be predicted

as shown in Figure 1.2, if the implementation is in “data duplication” model. By

contrast, the linearly increasing relation between the input problem size and the number

of employed processors is implied if the implementation is in “data decomposition”

model. If an implementation is done in global memory computing systems, for example

on GPU computing platforms, then a lot of attention should be paid on the global

memory access efficiency and contention. Implementations under coarse-grained

models, where the ratio of computation to communication is high, are more adapted

to distributed memory computing systems, such as clusters. This is the case of cellular

genetic algorithm [Tom99] implementation model that is based on “distributed memory,

data duplication, control decentralized”.
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2.5.2 Parallel Self-Organizing Map Implementations

The first class of algorithms we aim to parallelize in this thesis, is based on the

SOM algorithm which we view as a k-means based heuristic for different Euclidean

optimization problems. We continue a collective work started during the PhD work

of Naiyu Zhang [Zha13]. Between the neural network and the input data, we add a

uniform two-dimensional cellular matrix with linear relationship to input size, as a level

of decomposition of the plane and the input data. Its role is to memorize the neurons

in a distributed fashion and authorize many parallel closest point searches in the plane

by a spiral search algorithm [BWY80, CK09], and then many training procedures in

parallel. Our contribution is to propose a unified view of such methods in the context

of grid matching, and produce specific GPU implementations that are effective for large

size problem instances, into a generic GPU kernel framework in different topologies.

More details of our proposed cellular matrix model are provided in Chapter 3.

In the literature, other methods for computing SOM on GPU have been proposed [MSH+12,

YKN+12]. These methods accelerate SOM process by parallelizing the inner steps

at each basic iteration, firstly, to find out the winner neuron in parallel, secondly, to

move the winner neuron and its neighbors in parallel. Consequently, these kinds

of implementation models fall into the “control centralized” category. By contrast,

our cellular matrix approach should be attributed to the “control decentralized, data

decomposition, global memory” category, in that, firstly, decentralized controlling

guarantees the model’s robustness, secondly, data decomposition eases the burden

of massive memory usage when dealing with large-scale problems, and thirdly, global

memory reduces the communication costs among different processing units and allows

easy implementation on GPU like systems. Because of the very low level of granularity,

applications on distributed memory systems look actually unrealistic.

2.5.3 Parallel Local Search Implementations

The second class of Euclidean optimization algorithms we aim to parallelize by

the cellular matrix model, is based on the local search metaheuristics. In the

literature, several parallel strategies for local search implementations can be found.

Generally, local search is a metaheuristic which could be viewed as “walks through

neighborhoods”. The walks are performed by iterative procedures that allow moving

from one solution to another, through the solution domains of the problems in hand.

Parallelism naturally arises when dealing with a neighborhood, since each of the

solutions belonging to it is an independent unit. This kind of parallelization, called

iteration-level parallel model, is a low level master-slave model in which evaluation of the
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neighborhood is made in parallel [Tal09, VLMT13]. At the beginning of each iteration,

the master duplicates the current solution among parallel computing nodes. Each of

them manages a number of candidates, and the results are returned to the master.

This implementation model obviously follows the “control centralized, data duplication”

pattern. In [VLMT13], Luong et al. have redesigned the above model on GPU platform.

Considering a neighbor as a slight variation of the candidate solution which generates

the neighborhood, they only copy the representation of this candidate solution from

CPU to GPU. Then, N2 threads are employed to carry out the parallel 2-opt moves and

evaluations, where N is the TSP instance size. Each parallel evaluation only deals with

the slight variation based on the candidate solution, with the help of a neighborhood

mapping which locates each thread’s corresponding variation position in the solution

representation. The fitness results generated by parallel threads need to be gathered

and selected for a best one, which will become the new starting solution, called pivot,

at the next local search iteration. The solution representation and the fitness structure

are stored in the global memory of GPU. From the above, it can be concluded that this

strategy follows the “control centralized, data decomposition, global memory” pattern.

Other two major parallel models for local search can be distinguished as solution-

level and algorithmic-level [Tal09, VLMT13]. In the solution-level parallel model, the

focus is on the parallel evaluation of a single solution, and the function can be viewed

as an aggregation of partial functions. Implementations based on this model follow

the “control centralized, data decomposition” pattern. In the algorithmic-level parallel

model, several local search metaheuristics are simultaneously launched for computing

robust solutions. The well-known multistart local search (MLS), in which different local

search algorithms are launched using diverse initial solutions, is an instantiation of this

model [Tal09]. Implementations based on this model follow the “control centralized, data

duplication” pattern. In our opinion, centralized selection procedures among parallel

processors are inevitable, as long as each processor deals with a whole solution.

We think that an interesting implementation model should be fully distributed, where

each processor carries out its own local search based on part of the input data,

considering only a local part of the whole solution. Operations on different processors

should be similar, with no centralized selection procedure, except for final evaluation. A

final solution should be obtained with the partial operations from different processors.

Therefore, this implementation model of local search should follow the “control

decentralized, data decomposition” pattern, as shown in Figure 1.1 (b). Then, in its “dis-

tributed memory” form, it should be able to solve very large challenging problems, such

as the World TSP Challenge, in distributed computing systems with message passing

connection. The World TSP has already been solved by Nguyen et al. [NYYY07] using

master-slave genetic algorithm (GA) and data decomposition. They have applied an
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effective implementation of hybrid GA incorporating Lin-Kernighan (LK) heuristic, to

the 1,904,711-city World TSP Challenge. They divided the instance into a number of

smaller sub-instances and then applied GA-LK to these sub-instances. Finally, they

reconnected all the best segments of each sub-instance to form a new best tour for the

World TSP Challenge instance. This example, however, has a high level of granularity

since each processor deals with a significant part of the input data using GA-LK.

As a result, it was implemented in distributed memory systems. Another interesting

implementation model for local search metaheuristics is reported by Sánchez-Oro

et al. in [SOSR+15], where parallel local search processes are conducted under the

VNS framework, following a divide and conquer strategy. In this implementation, the

solution for the dynamic memory allocation problem is equally partitioned among the

available processors, and the partial local search behaviors performed by different

processors improve different parts of the solution independently of each other, without

relying on any central selection. Hence, this implementation model can be classified

into “control decentralized, data decomposition” category. In this thesis, our proposed

cellular matrix model for local search implementations also follows the same spirit of

“control decentralized, data decomposition” as the implementation model of Sánchez-

Oro et al. [SOSR+15]. The difference between our work and their approach is that we

systematically consider problem size, whereas such analysis was not developed in their

paper. We implement our model in GPU parallel computing systems, which are “global

memory” systems with GPU global memory.

2.5.4 Parallel Implementations of Other Metaheuristics

With the proposed taxonomy based on three factors, we can also classify and analyze

parallel implementations of other metaheuristics, such as GA and ACO. There are

several possible levels at which GAs can be parallelized: the fitness evaluation

level, the individual level or the population level [Tom99]. Parallelization at the

fitness evaluation level is usually implemented under master-slave model, in which

each individual fitness is evaluated simultaneously on a different processor. This

architecture belongs to the “control centralized, data duplication” category, and it

can be implemented on both shared memory multiprocessors as well as distributed

memory machines, ie. network of workstations. Individual or population-based

parallel approaches for GAs introduce additional terms that should be considered,

such as deme, migration and topology [Kon04]. These approaches are inspired by

the observation that natural population tends to possess a spatial structure. The two

important spatial structure based categories are island model and cellular model. The

island model [CHMR87] features geographically separated subpopulations of relatively
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large size. Subpopulations may exchange information from time to time by allowing

some individuals to migrate from one subpopulation to another according to various

patterns. In the cellular model [MS89], individuals are placed on a large toroidal one

or two-dimensional grid, one individual per grid location. Fitness evaluation is done

simultaneously for all individuals, and selection, reproduction and mating take place

locally within a small neighborhood. From an implementation point of view, these

two kinds of models are often adapted to distributed memory systems [AK96, FPS03]

and accordingly they are classified into the “control decentralized, data duplication,

distributed memory” category.

As early as when Dorigo [Dor92] initially proposed the ant colony optimization (ACO),

he suggested the application of parallel computing techniques to enhance both the

ACO search and its computational efficiency. A comprehensive survey on parallel

ACO can be found in [PNC11]. Among various parallel ACO implementations, the

master-slave model has been quite popular in the research community, mainly due

to the fact that this model is conceptually simple and easy to implement. According

to Pedemonte et al. [PNC11], the master-slave model is further divided into three

distinguished subcategories regarding the “granularity”. The standard implementation

of coarse-grain master-slave ACO assigns one ant to a slave that is executed on

an available processor. The master globally manages the global information (i.e.

the pheromone matrix, the best-so-far solution, etc.), and each slave builds and

evaluates a single solution. The communication between the master and slaves usually

follows a synchronous model. This kind of implementation model follows the “control

centralized, data duplication” pattern. In the medium-grain master-slave model, a

domain decomposition of the problem is applied. The slaves solve each subproblem

independently, whereas the master manages the overall problem information and

constructs a complete solution from the partial solutions reported by the slaves.

Furthermore, in the fine-grain master-slave, the slaves perform minimum granularity

tasks, such as processing single components used to construct solutions, or parallel

evaluation of solution elements. These two kinds of implementation models follow

the “control centralized, data decomposition” pattern and they can be implemented

both in shared memory systems and in network of workstations or clusters, with each

computing node having independent memory. Frequent communications between

the master and slaves are usually required in these models, and this issue is more

severe when they are implemented in distributed memory systems than shared memory

systems.

There exist other parallel and distributed ACO implementation models that follow

the “control decentralized” pattern. In the cellular model [PNC11, PC10], a single

colony is structured in small neighborhoods, each one with its own pheromone



Chapter 2. Background 34

matrix. Each ant is placed in a cell of a toroidal grid, and the trail pheromone

update in each matrix considers only the solutions constructed by the ants in its

neighborhood. In the multicolony model [PNC11, RL02], several colonies explore the

search space using their own pheromone matrices. The cooperation is achieved by

periodically exchanging information among the colonies. In the parallel independent

runs model [PNC11, Stü98, BOL+09], several sequential ACOs, using identical or

different parameters, are concurrently executed on a set of processors. The executions

are completely independent, without communication among the ACOs, therefore the

model does not consider cooperation between colonies. The latter two models have

distributed controlling at colony level. These three models above all follow the “data

duplication” pattern and they can be implemented in both shared memory [BOL+09]

and distributed memory [PC10] systems.

2.5.5 Discussion on Parallel Implementation Models

In Table 2.1 is reported a summary that lists the above mentioned metaheuristic

implementations according to our classification criteria. In the literature, many

metaheuristic models are labeled as “distributed” models because of the conceptual

underlying model over the implementation. These implementations most often belong

to the “control centralized, distributed memory” category while others belong to

the “control decentralized, global memory” category, or many are simply sequential

simulations of a conceptually parallel model. In our opinion, these implementation

models could be called partly distributed, or distributed in a weak sense. For

example, even if the master-slave model is implemented in distributed memory systems

with computing nodes communicating by message transfers, the master process

necessarily deals with specific data structures different from the slave data structures.

We think the implementation model based on “control decentralized, distributed

memory” could be called fully distributed, or distributed in a strong sense. In this case,

no component has special role and it could be carried out on networks of workstations

or processors, communicating by message transfers with strong robustness. This is the

case for cellular GA.

From our point of view, a very significant conceptual implementation model should

follow the “control decentralized, data decomposition” pattern, because of the ability

to solve very large size problems in computing networks. Decentralized control

guarantees the robustness of the model, while data decomposition decides the linear

association from input data to processors and memory needed, as the problem size

increases, when dealing with Euclidean optimization problems. Because of the low

level of granularity, designing algorithms that belong to the “control decentralized,
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TABLE 2.1: Classification for implementation models of different metaheuristics
according to our taxonomy with three factors.

control data memory
master-slave GAs centralized duplication distributed
island GAs decentralized duplication distributed
cellular GAs decentralized duplication distributed
coarse-grain master-slave ACO centralized duplication distributed
medium-grain master-slave ACO centralized decomposition distributed
fine-grain master-slave ACO centralized decomposition distributed
cellular ACO decentralized duplication distributed
multicolony ACO decentralized1 duplication distributed
parallel independent runs ACO decentralized1 duplication distributed
iteration-level parallel local search centralized duplication distributed
GPU local search [VLMT13] centralized decomposition global2

solution-level parallel local search centralized decomposition distributed
algorithmic-level parallel local search centralized duplication distributed
hybrid GA with LK heuristic [NYYY07] centralized decomposition distributed
parallel VNS [SOSR+15] decentralized decomposition global3

our cellular matrix model decentralized decomposition global2

1colony level. 2GPU platform. 3CPU platform.

data decomposition, global memory” category should be a reasonable starting point

exploiting the GPU platform with global memory. This is what we do through the

proposed cellular matrix model in this thesis. On the other hand, executing low-level

granularity algorithms based on data decomposition in distributed memory systems

remains an important challenge.

2.6 Conclusion

We have reviewed different parallel metaheuristic optimization implementations, ac-

cording to our proposed classification method with three criteria: control, data, and

memory. Parallel implementation models based on data duplication are numerous,

and they are more adapted to standard peer-to-peer multi-processors or networks of

workstations, since the level of granularity allows communications by message passing.

Even though some parallel implementation models based on data decomposition exist,

most of them are in the master-slave model with a central controller that plays an

important role in the algorithm behavior. Some parallel implementation models based

on “control decentralized” also exist, but they are often built upon data duplication

of each solution. In this thesis, we aim to design a conceptual model in the

“control decentralized, data decomposition” pattern. The model, called cellular matrix
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model, partitions data distributed in the plane; defines a given level of computation

granularity; and allows generic and systematic association of processors to the massive

data deployed in the plane, under different topologies of local interactions between

processors. Each parallel processor carries out simple and local operations on the

topological data structure.

We have introduced two classes of Euclidean optimization algorithms, SOM and local

search metaheuristics, for which we develop parallel implementations. They are the

target algorithms that we will implement in a massively parallel way based on the cellular

matrix model. In the literature, approaches with data decomposition already exist, for

example the parallel VNS implementation reported by Sánchez-Oro et al. [SOSR+15].

The difference between our work and the existing approaches is that we systematically

consider problem size, whereas such analysis was not developed in other papers.

According to data decomposition paradigm, GPU looks like a good platform suited to

the low level of granularity and the many local interactions that take place, because

all processors (threads) have direct accesses to global memory with high throughput.

Thus, we try to implement models of “control decentralized, data decomposition, global

memory” type in GPU parallel computing systems, even though mainly with local

memory accesses.

We have also presented the background work on visual correspondence problems

under the appellation of elastic image matching problems. We have reported the

definition of elastic image matching; we have given the two specific examples of

stereo matching and optical flow; we have formulated the problems as pixel labeling

problems and transfered them into energy minimization problems. It will be the focus

of the following chapters to propose a unified framework to describe both k-means

problems and elastic image matching problems, and derive common parallel processing

solutions.
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Cellular Matrix Model

3.1 Introduction

This chapter is dedicated to the first contribution of this thesis, the cellular matrix

model that allows systematic association of the grid of processors to the massive

data distributed in the plane, under different topologies of local interactions between

processors. Each parallel processor carries out simple and local operations on the

topological data structure. One important property is the application of parallel spiral

search findings and neighborhood examinations by the many processors. We assume

a linear association from input data to processors and memory as the problem size

increases, when dealing with Euclidean optimization problems. This property is a

precondition of our work that we explicitly state in order to deal with large size problems

in a massively parallel way.

In order to provide a general formulation for the class of problems addressed in this

thesis, we propose a grid matching problem definition that embeds both k-means and

elastic image matching in the Euclidean plane into a single and unified formulation

of a generic problem. This general formulation can be instantiated in different ways

depending on the problems under consideration. For Euclidean optimization problems,

the input data are usually numerical entities distributed onto the plane. Such distribution

of data can either be a grid of pixels for image processing applications or a set of points

representing requests or customers located on the plane for other applications. The

goal of the problem is to find a best matching grid, generally a moving grid, which fits

the input data, according to specific requirements of the problem under consideration.

For example, the matching grid could represent an image in elastic image matching, or

routes of vehicles in routing problems.

37
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The cellular matrix is defined as a hierarchical data structure which is used to partition

data distributed in the plane; to access, search and memorize brute data moving onto

the plane; and to allow different levels of parallel computation granularity. It is also

defined as a set of functions to allow easy manipulation of grid coordinate systems,

where the main tools are coordinate transfer functions provided in relation to some

subdivisions of the plane at different levels of recursive decomposition. We present

the principle of plane and data recursive decomposition with the cellular matrix, which

defines a given level of computation granularity, and allows generic and systematic

association of processors to the data deployed in the plane. We explain the principle

of spiral search and define structures that allow us to access data and perform

spiral search findings. Moreover, we provide a generic loop template algorithm that

exemplifies the massively parallel projections performed in our approaches, concerning

a matching grid projected onto another matching grid, meanwhile allowing us to

implement different Euclidean optimization algorithms in the cellular matrix model.

3.2 Euclidean Grid Matching Problem

We define a Euclidean grid matching problem version that embeds both k-means and

elastic image matching in the plane into a single and unified formulation of a generic

problem. This general formulation will be instantiated in different ways depending on the

problem under consideration. A grid matching problem involves two Euclidean graphs,

matching one onto the other. More precisely, only one grid plays the role of the moving

grid, which embeds both variables and some input values of the problem, and which

will match the other grid, being only considered as input. The former moving grid is

called the matcher grid, where as the latter the matched grid.

Let us first define basic notations. A matching grid is a non directed graph G = (V,E),

called the network, where each vertex p ∈ V is a composite vector of <d that embeds

a location in the plane pe ∈ <2, color component pc ∈ <3, intensity or density value

pd ∈ <, and other attributes depending on the problem under consideration. Attributes

can be variables of the problem or input values depending on the role played by the

grid: a matched grid with only inputs, or a matcher grid with inputs and variables. The

variable part of the matcher grid at least includes the Euclidean locations of its vertices.

The network (graph) G = (V,E) is always a regular grid in some topology (either one-

dimensional or two-dimensional depending on the problem under consideration) that

represents the elastic structure of the problem, where the edges of the graph represent

topological relationships in data, or links between pixels, or connections of successive

points in a TSP tour. As usual, dG is the induced canonical metric dG(v, v′) = 1 if and
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FIGURE 3.1: Grid matching illustration.

only if (v, v′) ∈ E, and d(v, v′) stands for the usual Euclidean distance between location

attributes.

To each point x in the plane, cVx denotes its closest vertex in set V , for some composite

distance function, including composition with the standard Euclidean norm between

location attributes. Thus, cVx is called Voronoi projection of point x into V .

The input of the problem is given by two matching grids G1 = (V1, E1) and G2 =

(V2, E2), such that G1 is the matcher grid and G2 the matched grid. The goal of the

problem is to find the matcher vertex locations in the plane, and its other variable

attributes, such that the following energy function

E(G1) =
∑
p∈V

Dm(p, cV
′

p ) + λ ·
∑

{p,q}∈E1

Ds(p, q) (3.1)

is minimized, where (V, V ′) stands for (V1, V2) or (V2, V1), depending on the direction of

the projection under consideration, while the projection direction itself depends on the

problem under consideration. The first term of the energy function expresses the data

matching interaction with composite distance matching function Dm, and the second

term expresses the smoothness or elastic constraint on the matcher with Ds smoothing

function.
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An illustration of the network components and their interaction matchings in the plane

is given in Figure 3.1. The upper part represents the marcher grid G1 = (V1, E1),

with vertices that could be neurons of the SOM network, cluster centers of k-means,

or pixels of elastic image matching. The lower part represents the marched grid

G2 = (V2, E2), with vertices that could be cities of the TSP, or pixels of topological

k-means and elastic image matching. The red part in Figure 3.1 indicates the closest

point projection on both directions: the projection of p1 is from the matcher grid G1

to the matched grid G2, corresponding to elastic image matching problems; and the

projection of p2 is from the matched grid G2 to the matcher grid G1, corresponding to

topological k-means problems. Based on the projection, the data matching interaction

(red color) Dm is defined accordingly. The smoothness term of elastic interaction Ds

for neighboring vertices (p and q in the matcher grid G1), is denoted by blue color. Note

that for projections on both directions, the data and smoothness terms share similar

structures. These natural common structures yield basic parallel processing functions

and components that constitute the cellular matrix framework.

3.3 Cellular Matrix Concept

We define the cellular matrix as a hierarchical data structure which is used (1) to

partition data distributed in the plane, based on some regular topology; (2) to access,

search and memorize brute data moving onto the plane, according to the topology; and

(3) to allow different levels of parallel computation granularity. The cellular matrix is also

defined as a set of functions to allow easy manipulation of grid coordinate systems,

where the main tools are coordinate transfer functions provided in relation to some

subdivisions of the plane at different levels of recursive decomposition. In this section,

we firstly describe the basic hierarchical structure which constitutes the skeleton of

cellular matrix model. Then, we report the possibility for recursive decomposition based

on the basic hierarchical structure. Afterwards, we provide implementations in different

topologies.

3.3.1 Basic Hierarchical Structure in the Plane

The starting points of the cellular decomposition of the plane are three possible

tessellations [Sto97] of the plane with regular polygons of the same type. The three

tessellations are presented in Figure 3.2 (a)—(c). They correspond to dividing a plane

into regular squares, triangles, and hexagons, respectively. The three tessellations

will be the basis for our regular discretization of the plane into the cellular matrix.
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(a) square tessellation (b) triangular tessellation (c) honeycomb tessellation

FIGURE 3.2: Three possible tessellations of a plane with regular polygons.

To be more specific, the square tessellation will be the basis for the cellular matrix

in quad topology or rhombus topology; the triangular tessellation and the honeycomb

tessellation will together be the basis for the cellular matrix in hexagonal topology. More

details are given in Subsection 3.3.3.

The cellular matrix consists of three essential levels of discretization of the plane. Each

level is in close relationship to the others, as shown in Figure 3.3 in 3D view and in

Figure 3.4 in 2D view for juxtaposition of the grids. First is the low level grid on the

bottom of the figure where nodes represent pixels or basic input data. Second is the

zoom-out grid (also called base grid) of low level grid. Third is the cell centers grid

called dual grid.

The low level can be viewed as a discretization of the plane according to a given

topologically regular grid. Here, we use hexagonal topology for illustration where each

node has 6 neighbors and where honeycomb cells are easily abstracted. We can state

that a cellular matrix is given by a regular grid dimension W ×H, a specific point C that

locates in the center of the grid, and a topology type. From the low level, are computed

two higher-level grids for covering the plane at a higher level of granularity. They are the

zoom-out grid and, what we call, its dualization grid, respectively presented at middle

and top of Figure 3.3 and Figure 3.4.

The zoom-out regular grid is obtained from the low level grid considering a neighbor-

hood around the center point C and replicating the new hexagonal cell obtained with

the center and the corner points. The level of the zoom-out map is adjusted with the

cell radius R, in the sense of the topological distance dG. Width and height (WZ×HZ)

are computed such that the covering is guaranteed. Basing upon zoom-out level and

center C, the dualization consists in extracting only the honeycomb cell centers from

the zoom-out grid. The dual grid, in blue color in Figure 3.3 and Figure 3.4, is the

usual geometric dual of the honeycomb tessellation derived from the zoom-out map.
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FIGURE 3.3: Cellular matrix model with hexagonal topology (3D view).

FIGURE 3.4: Cellular matrix model with hexagonal topology (2D view).

This duality corresponds to the usual Voronoi partition or Delaunay triangulation of data

points.

Based on the basic hierarchical structure in the plane, the cellular matrix framework

is aimed to provide the coordinate transfer functions that allow direct accesses to

input data coordinates at the different grid sub-levels, meanwhile making systematic
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association of processors to the massive data. Since parallel processors are usually

organized into regular 2D grids, we start from the idea of systematic association of

data grids to processor grids. A main principle, is the identification of data grids with

processor grids at a given level of abstraction. Most often in our work, it is the dual

grid which constitutes the processor grid and where parallel computation takes place.

Honeycomb cells are the covering regions associated to the dual grid of processors.

The association is one cell corresponds to one processor.

3.3.2 Possibility for Recursive Decomposition

On the basis of the three basic levels of the cellular matrix, more levels could be

continually introduced, for further recursive decomposition. As shown in Figure 3.5

as 3D representation and in Figure 3.6 as 2D view for grid juxtaposition, we repeat the

process of dualization from the dual grid. First we take “the dual of the dual” to obtain

a zoom-out grid at level R′ = 3R, as shown in green color in Figure 3.6, then again we

take the dual of the green map to generate a new dual level (orange grid) for process

computation according to a higher honeycomb subdivision (the green one). This new

level, obtained within a two step dualization, is called the dual2 level since it repeat the

original honeycomb tessellation at a higher zoom-out level, i.e. at level R′ = 3R.

We can repeat the dualization process for recursive decomposition. Eventually, all data

will be included by one single honeycomb cell at some higher level, as illustrated on top

of Figure 3.5. Parallel reduction operations could take place from the lowest level up

to the highest level using adequate coordinate transfer functions. However, we do not

implement recursive decomposition in this thesis. Reductions on sum computation are

done in a classical way with unidimensional reduction. Further works should investigate

recursive decomposition since it relies on quad-trees and spatial reductions that could

allow both parallel data computing, quick data access and memorization in a recursive

way.

3.3.3 Cellular Matrix in Different Topologies

The previous illustrations of cellular matrix model are with hexagonal topology. As

we have seen, hexagonal topology is built upon the triangular tessellation (see

Figure 3.2 (b)) of the low level. This topology allows us to consider honeycomb

(hexagon) cells of the hexagonal neighborhood regular grid. Two other topologies

can be derived from the square tessellation (see Figure 3.2 (a)). They can be quad

topology and rhombus topology, as presented in Figure 3.7. Note that we do not use
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FIGURE 3.5: Recursive decomposition of the plane (3D view).

FIGURE 3.6: Recursive decomposition of the cellular matrix model (2D view).
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FIGURE 3.7: Cellular matrix illustration with different topologies. The left column is
with quad topology; the middle column is with rhombus topology; the right column is
with honeycomb topology. Top row: the abstract cellular level derived from the regular
base map topology. Second row: covering cellular matrix illustration. Third row: zoom
in of second row. The cell radius (R) is set to 10 for each topology.

the honeycomb tessellation (see Figure 3.2 (c)) for the low level, since the honeycomb

tessellation could be derived from the triangular tessellation, by simply making a

dualization, as the dual level in Figure 3.3 and Figure 3.4.

In Figure 3.7, the top row presents the abstract cellular level derived from the regular

base map topology. The two other rows are illustrations of the cellular covering of a

given low level image. In the figure, for each cell, its internal pixels (except for the cell

frontier) are projected to the location of the center of the cell.

We implement the three types of topologies, and most of our cellular matrix applications

use honeycomb cells under the hexagonal topology. Note that brute data can also be

managed by buffered cells. Thus, it is not a strict requirement for a matching grid to be
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isomorphic to a low level cellular matrix map. It is a convenient possibility only. Cities

or moving grids (such as cluster center grid) in the plane can be unstructured and

managed by buffering, whereas images are generally isomorphic to low level grids.

There is no strict selection criterion for different topologies, and the choice should

depend on the application under consideration. For example, the hexagonal topology

is more appropriate for cluster center grid, which plays the role of matcher grid in the

structured meshing application. Actually in most of applications, we did not find great

performance differences using this or that topology for the cellular matrix.

3.3.4 Massive Parallelism Property

The role of the cellular matrix is to memorize data in a distributed fashion and authorize

massively parallel operations. Each cell is responsible for a constant and small part

of the data according to the problem size. While data decomposition is not a new

way of dealing with parallelism in general, here, we specifically assume a linear

association from input data to processors as the problem size increases, when dealing

with Euclidean optimization problems. This is the main property that we refer to

as “massive parallelism”, and it allows us to address large size problems. Here by

massive parallelism, we mean the theoretical and ideal possibility to execute O(N)

simultaneous parallel operations, where N is the problem size. It is worth noting

that uniform distribution corresponds to the most balanced cellular decomposition and

hence corresponds to the equilibrated multi-processor load.

Let us suppose that the input data is with size W × H, and the cellular matrix is with

quad topology, for the sake of easy analysis. Then, the cellular matrix partition (dual

level grid of cells) is with sizeWD×HD = W/2R×H/2R, where the parameter R is the

radius of cell measured by input data unit. So, R controls the degree of parallelism, and

the cellular matrix is in linear relationship to input size. Each uniformly sized cell in the

cellular matrix is a basic training unit and will be handled by one parallel processor. This

is the level on which massive parallelism takes place. Since the cellular matrix division

is proportional to input size, and the processors correspond one-to-one to the cells

respectively, then, both the memory and processors needed are in linear relationship

to input size. Hence, according to the increase of physical parallel processors in the

future, the approach should be more and more competitive, while at the same time

being able to deal with larger size problems.

Based on the cellular matrix model, each parallel processor can carry out spiral search

for closest point/node finding. More details about the spiral search are given in the next

subsection. A single spiral search process takes O(1) computation time, on average,
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for a bounded distribution according to input size [BWY80]. In our implementation of

the cellular matrix model, the bounded distribution is addressed by using cell buffers

(see the buffered cells in the next subsection) of fixed size independent of N , where

N(= W × H) is input size. Then, one of the main interests of the cellular matrix

model is to allow the execution of approximately N spiral searches in parallel, and

thus transforming an O(N) sequential search algorithm into a parallel algorithm with

theoretical constant time O(1) in the average case for bounded distributions. This is

another property that we refer to as “massive parallelism”, the theoretical possibility to

reduce computation time by factor N , when solving a Euclidean NP-hard optimization

problem.

3.4 Spiral Search in Data Grids

For the implementation of closest-point search, we perform the spiral search algorithm

as stated by Bentley [BWY80]. The expected running time of spiral search is O(1) for

multivariate uniform distributions over the data. Depending on the type of cell, and the

level of operation into the cellular matrix, different iterators allow us to operate step by

step on the data, starting from a center point and in a spiral way, independently of the

topology used. In this section, we present notations and symbols for data structures

and detail the spiral search paths into the different topologies.

3.4.1 Cell Data Structures

How the cells are in relation to the grid matching data is a primordial question. Data

structures in relation to the cells are visualized in Figure 3.8. Two types of cells are

necessary. One type is required for nodes memorization when the graph to manage

is distorted or unstructured. Nodes covered by a cell are memorized into a buffer

associated to the cell in sequential order. Such cells are called buffered cells. The

second type is spiral cell. In that case no buffering memorization is required, and

accesses are directly into the matching low level grid associated to the cell. This is

only possible if the cell is at some zoom-out level of the low level map. A transfer of

coordinates into the cellular matrix allows directly accessing the data and performing

spiral search, or memorization in the matching (matcher or matched) low level grid itself.

Such cells are called spiral cells.

With the technique of “cells” and the topological organization of the cellular matrix

model, we can perform an efficient spiral search [BWY80] in optimal expected-time, for
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FIGURE 3.8: Cellular matrix data structures.

many closet-point problems, including nearest neighbor searching, finding all nearest

neighbors, computing planar minimum spanning trees, and constructing the Voronoi

diagram of a point set. We assume that the point sets are either uniformly distributed

or randomly drawn from some “smooth” underlying distribution, and then use the cell

technique to give fast expected-time algorithms for these problems.

3.4.2 Nearest Neighbor Searching

Among many closest-point problems, the nearest neighbor searching, sometimes

called the post office problem, is easiest to state meanwhile can most clearly illustrate

the spiral search algorithm based on our cellular matrix model. It calls for organizing

a set S of n points in Euclidean k-space, into a data structure such that subsequent

queries asking for the nearest point in S to a new point can be answered quickly. Here,

we consider the problem of nearest neighbor searching in the Euclidean plane, where

the points (both the original n points and the query point) are chosen independently

from a uniform distribution over the unit cell. Through the data partition of the cellular

matrix, each point is exclusively contained by one cell (except for the points locate

on cell frontiers). When a query point comes in, we search the cell in which it would

locate. If that cell is empty, then we start searching the cells surrounding it in a spiral-

like pattern until a point is found. Once we have one point found, we are guaranteed

that there is no need to search any cell that does not intersect the circle centered at the
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query point and with the radius equal to the distance between the query point and the

found point.

FIGURE 3.9: Spiral nearest neighbor search in the cellular matrix model.

Figure 3.9 shows how the spiral search might proceed in the cellular matrix with quad

topology. For the query point in the middle of the circle, the cell (Cell 0) in which this

query point lies will firstly be searched. If this cell is empty, then the cells surrounding

it are searched one by one in the spiral sequence as indicated by the red dashed line,

starting from the downside neighbor cell (Cell 1). Once the point in Cell 2 is found, only

cells intersecting the circle must be searched. Each of these cells is marked with an

“x”.

The spiral nearest neighbor search is efficient because closest-point problems investi-

gate local phenomena, and cells capture locality. It has been proven in [BWY80] that

the expected running time of spiral search is in O(1), independent of the value of n, if n

points are chosen independently from a uniform distribution over the cells. Then given

the fast spiral nearest neighbor search algorithm, one can easily solve the all-nearest-

neighbors problems (which calls for finding the nearest neighbor of each point) in linear

expected time, for point sets drawn from uniform distributions. This is accomplished

by doing n spiral searches, each of expected constant cost. Here, it is important to

note that our cellular matrix model allows the execution of n spiral searches in parallel,

and thus transforming an O(n) sequential search algorithm into a parallel algorithm with

theoretical constant time O(1) in the average case. In our implementation of the cellular

matrix model, the bounded distribution for point sets is addressed by using the buffered

cell whose size is independent of n.
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(a) quad topology (b) rhombus topology (c) hexagnal topology

FIGURE 3.10: Spiral search on low level data.

(a) quad topology (b) rhombus topology (c) hexagnal topology

FIGURE 3.11: Spiral search on cellular matrix.

3.4.3 Spiral Search in Different Topologies

In the example of Figure 3.9, the spiral search is performed on the cellular matrix level

through buffered cells. Moreover, the spiral search can also be done on low level

data through spiral cells. Here, the convention should be counter-clockwise order for

low level data search and clockwise order for cellular matrix data search because of

the specific coordinates arrangement when dealing with a dual grid. The searching

trajectories on low level data in different topologies are shown in Figure 3.10, while the

searching trajectories on the cellular matrix level in different topologies are shown in

Figure 3.11.

During the spiral search performed on the low level data through spiral cells, for a given

distance of d in the grid to the center vertex, the number of vertices at this distance

is (d × size), while the number of vertices within this distance (distance d included)

is ((d × (d + 1) × size)/2 + 1). As shown in Figure 3.10, size is equal to 8, 4, and 6,

respectively for the cellular matrix with quad topology, rhombus topology, and hexagonal

topology.
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3.5 Basic Operations

In the cellular matrix model, data are partitioned by a grid of cells, and each cell

contains one part of the data. The grid of cells allows systematic association to grid

of processors, in such a way that each processor locally acts on the partial data the

cell covers, and if necessary, the data around the cell by extending the search to

neighboring cells. Under this mechanism, several fundamental operations are defined

in this section, as building blocks of different optimization algorithms.

3.5.1 Generic Parallel Projection Loop

The most basic type of operations to be carried out in the optimization algorithms

studied in this thesis is parallel projection of a grid into another grid, with specific search

and application of some grid moving operation.

Kernel 6: Generic loop template.
// For each celli of cellular matrix WD ×HD, do:

Input: G1, G2, celli, FGet, FSearch, FOperate
1 begin
2 FGet.initialize(celli);
3 while FGet.next(celli) do
4 point← FGet.get(celli, G1(or G2));
5 if point then
6 closest← FSearch.search(celli, G2(or G1), point);
7 if closest then
8 FOperate.operate(celli, G1, point, closest);

9 return G1;

A generic projection loop is illustrated in Kernel1 6. Three basic functions are used as

parameters of the projection. Such functions are called functors, and they are FGet,

FSearch, and FOperate as template arguments. The functor FGet allows traversing

the data units (points, pixels, cluster centers, et al.) in the cell and enumerating such

data points one by one. Normally, it is implemented by a specific iterator according to

the specific topology in hand. For the data points, let us say pixels of image, that locate

on cell frontiers, they are considered as inside the cell, and will be enumerated by the

FGet functor. Therefore, these pixels are not only included by one cell. As a result,

during the parallel executions of different threads for different cells, these cell frontier
1We use the term “Kernel” instead of “Algorithm” in order to indicate that the algorithm is performed

by many processors in parallel. In our GPU CUDA implementations, this corresponds to a kernel function
which is executed by many GPU threads in parallel.
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FIGURE 3.12: Basic projections through cellular matrix model.

pixels may be accessed by more than one thread at the same time. Then, conflict

operations will happen if the following operations by the other functors are related

to moving the pixels, such as the situation in the elastic image matching problem.

To handle this issue, we propose two specific strategies for the management of cell

frontier access in Subsection 6.3.4 of Chapter 6, where more details are given. The

functor FSearch allows performing searching into the data, such as spiral search for

closest finding, under some distance metric, and possibly local condition. The functor

FOperate allows carrying out some specific moves or modifications of variables.

Each cell is supposed to correspond to one processor, and the size of the cellular matrix

(dual level size) is supposed to be the same as the size of the processor grid. However,

under some parallel computing architecture, such as GPU implementation, the size of

the actually launched grid of threads (processors) for parallel execution is sometime

larger than the size of the cellular matrix. Therefore, at the beginning of the generic

loop template, we need to ensure that the thread really encapsulates a valid cell.

For a valid thread, it firstly initializes the FGet functor by FGet.initialize as illustrated

in Line 2 of Kernel 6. Basically, this function resets the iterator of FGet. Then, points

(data units) will be extracted inside the cell by the FGet.get function, until FGet.next

returns false state and the data extraction procedure stops, as illustrated in Line 3.

Note that in Kernel 6, the terms point and closest are all used to denote particular data
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units. For different algorithms, the points supposed to be extracted in one loop may

be one randomly chosen point, or a portion of the total points inside the cell, or all the

points inside the cell. For an extracted point, a searching behavior is carried out by

the FSearch.search function, in order to find the closest point to the extracted point.

If the closest point is successfully found, then some specific operations defined by

specific algorithms are performed by the FOperate.operate function, on the extracted

point and the closest point, or even with some other relevant points. For example, these

operations could be affiliating the extract point with its closest point, as in the Voronoi

partition computation (see the next subsection), or moving the closest point and its

neighboring points toward the extracted point, as in the SOM algorithm.

A vivid graphical illustration of the generic projection is given in Figure 3.12. The gray

arrows represent functors, while the white arrows indicate projection directions. Arrows

denoted with “G1→G2” indicate the projection from the matcher grid to the matched

gird. On the contrary, arrows denoted with “G2→G1” indicate the projection from the

matched grid to the matcher gird. Normally, the matched grid is a structured graph,

and the spiral cell data structure is needed for the “get” functor to access points. For

the matcher grid, it could be either unstructured graph or structured graph, depending

on the algorithm under consideration. In the case of unstructured graph, the buffered

cell data structure is needed. In the case of structured graph, either the buffered cell

data structure is needed, if the spiral search on the cellular matrix level is performed

on the structured graph which moves and distorts, like in the case of the parallel SOM

algorithm (see Chapter 4); or the spiral cell data structure is needed, if the “get” functor

needs to access points according to the graph structure, like in the case of distributed

local search algorithm (see Chapter 5).

3.5.2 Voronoi Partition Computation

One of the most basic tools one can use in planar geometry is Voronoi partitioning.

We will use it thoroughly in this thesis. A Voronoi diagram is a partitioning of a plane

into regions based on distance to points in a specific subset of the plane. The Voronoi

diagram of a point set in the Euclidean plane is a device that captures many of the

closeness properties necessary for solving closest-point problems. For any point x in a

set S, the Voronoi polygon of x is defined to be the locus of all points that are nearer x

than any other point in S. Notice that the Voronoi polygon of point x is a convex polygon

with the property that any point lying in that polygon has x as its nearest neighbor. The

union of the edges of all the Voronoi polygons in a set forms the Voronoi diagram of

the set. Normally, if the distance is measured by the Euclidean distance metric, then
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an edge for a pair of points that are close together is formed by drawing a line that is

equidistant between the two points and perpendicular to the line connecting them.

FIGURE 3.13: Voronoi projection model.

It has been proven in [BWY80] that constructing the Voronoi diagram with spiral search

algorithm takes linear expected-time, under the assumption of point sets drawn from

a bivariate uniform distribution. Here, we only perform Voronoi affectation, meaning

that we will only have to project points from some brute data onto their closest cluster

center of some cluster center grid. The structure of the projection loop instantiation

can be illustrated within Figure 3.13, where the projection direction is from the matched

grid to the matcher grid. It consists in projecting each input data point to its closest

vertex into a cluster center grid. To be more specific, the FGet functor extracts all

the input data points inside the cell. For each extracted point, the FSearch functor

finds the closest cluster center in the matcher grid by spiral search. Then, the point is

affiliated to this cluster center by the FOperate functor, which inserts the point into the

corresponding recording list for this cluster center. Since the FSearch functor performs

the spiral search on the cluster center grid that can be a distorted grid, the buffered cell

data structure is needed.

An example of Voronoi partition is shown in Figure 3.14. In this case, the input data

is a color image as the matched grid, where the points are pixels. After the Voronoi
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(a) input data (b) Voronoi partition

FIGURE 3.14: An example of Voronoi partition with an image as input data. The input
image size is 384× 288; the size of cluster center grid is 25× 21; the cell radius (R) in
the cellular matrix is set to 16.

partition, as shown in Figure 3.14 (b), each pixel is affiliated to its closest cluster center,

with its color value set according to its closest cluster center. Here, the color of a cluster

center is the average color of all its affiliated pixels.

3.5.3 Cell Refresh Kernel

For a given cell in the cellular matrix model, it contains points of the input data or

moving points in the plane. When dealing with moving points in the plane and closest

point findings in cellular matrix buffers, it should be necessary to regularly refresh

the content of the buffered cells. This behavior is implemented by a cell refresh

loop kernel presented by Kernel 7. The functor FGetDivide uniformly divides the K

points to be inserted among cells of the cellular matrix. For a given point, the function

FSearchF indCell.search(point) finds which cell this point lies in, while the function

FInsert.operate(point, cellj) inserts the point to the designated cell. In practice, it is

sufficient to make the refreshing from time to time depending on the application.

3.5.4 Random Number Generation Kernel

During stochastic processes, a cell needs random numbers. The random numbers

can be used for random cell activation, operator choices, random neighborhood

examinations, roulette wheel extraction. With respect to the large-scale input instances

with huge cellular matrix and numerous iterations, the random numbers are generated

in advance by a specific kernel. Every time the random numbers are used out, a set

of new random numbers are generated at the beginning of the procedure, or according

to a constant rate factor, called random number generation rate. The random number
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Kernel 7: Cell refresh loop.
// For each celli of cellular matrix WD ×HD, do:

Input: G, FGetDivide, FSearchF indCell, FInsert
1 begin
2 FGetDivide.initialize(celli);
3 while FGetDivide.next(celli) do
4 point← FGetDivide.get(celli, G);
5 if point then
6 cellj ← FSearchF indCell.search(point);
7 if cellj is in the cellular matrix then
8 FInsert.operate(point, cellj);

9 return

generators we use are from Nvidia CURAND library [NVI12]. It is worth mentioning that

alternative ways to generate random numbers are either to generate them on CPU,

then copy them into GPU, or to generate them on GPU in real-time at each time to be

used. Neither is faster than our method according to our trial tests.

3.6 Conclusion

The role of the cellular matrix is to memorize data in a distributed fashion and authorize

massively parallel operations. Each cell is responsible for a constant and small part of

the data according to the problem size. We specifically assume a linear association

from input data to processors as the problem size increases, when dealing with

Euclidean optimization problems. This is the main property that we refer to as “massive

parallelism”, and it allows to address large size problems. Here, by massive parallelism,

we mean the theoretical and ideal possibility to execute O(N) simultaneous parallel

operations, where N is the problem size. Based on the cellular matrix, we can perform

efficient spiral search with constant time O(1) in average for uniform distribution. Then,

one of the main interests of the cellular matrix model is to allow the execution of

approximately N spiral searches in parallel, and thus transforming an O(N) sequential

search algorithm into a parallel algorithm with theoretical constant time O(1) in the

average case for bounded distributions. This is another property that we refer to as

“massive parallelism”, the theoretical possibility to reduce computation time by factor

N , when solving a Euclidean NP-hard optimization problem.

We have presented the detailed design of the cellular matrix model which partitions

data, defines the level of computation granularity, and allows generic and systematic

association of processors to the data deployed in the Euclidean plane. We have
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provided a set of basic concepts and tools needed for the further developments of

parallel computation in the cellular matrix model. An important tool is our proposed

generic loop template that encompasses the basic working procedures of the parallel

algorithms developed in this thesis. Moreover, we have presented the Voronoi partition

computation as a simple application of the generic loop. In the following chapters,

algorithms to be developed are parallel k-means and parallel local search.





Chapter 4

Parallel Topological K-means for
Superpixel Image Segmentation

4.1 Introduction

Superpixels have become an essential tool to the vision community. As building blocks

of many vision algorithms, superpixels divide raw image into perceptually meaningful

atomic regions which can be employed to substitute the rigid structure of the pixel

grid [ASS+12, RM03, ME07]. Therefore, these atomic regions should represent or

reflect some local properties with respect to the attributes distributions of the raw image.

However, most of the existing algorithms produce uniformly distributed superpixels, as

it is the case for the state-of-the-art SLIC algorithm [ASS+12] to which we refer in our

comparative study. In this chapter, we propose the superpixel adaptive segmentation

map (SPASM) algorithm, which is a combination of the on-line and batch SOM

algorithms for k-means clustering in composite color space domain. The goal should

be to generate adaptive segmentation map where the distribution/density of superpixels

coincides with the distribution of some specified attribute of the input image, such as

edges, textures, and depths.

Based on the cellular matrix model, this chapter focuses on the designs of parallel

topological k-means algorithms and the corresponding applications to superpixel image

segmentation problems. Firstly, we provide a general energy function for topological k-

means problems in order to highlight the generic components of the proposed parallel

computation framework. Then, we present the parallel self-organizing map (SOM)

algorithm as a k-means based clustering algorithm with topological relationships

between cluster centers. The SOM algorithm has two versions: on-line SOM and batch

SOM. We show how to use the cellular matrix model to implement both of the two

59
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versions in a parallel fashion. Afterwards, we detail our proposed SPASM algorithm,

which is a combination of the parallel on-line SOM and parallel batch SOM algorithms.

The SPASM algorithm extends the state-of-the-art SLIC algorithm, by using on-line

SOM to deploy the initial cluster center grid, with respect to the density distribution of

image attributes and topological relationship between cluster centers; and by using

batch SOM with a composite space-color-density distance measure for clustering.

Differently from SLIC which performs a restricted nearest point search within a square

region, through the cellular matrix model, we can conduct the true closest point finding

in a massively parallel way, using the efficient spiral search algorithm under different

topologies.

4.2 Topological K-means Problem

The k-means problem and its related k-means standard gradient descend algorithm are

well-known and popular clustering algorithms. Here, we are dealing with its extension

according to topological interactions as exemplified by the SOM algorithm. As we

have shown in Section 2.2, the SOM algorithm can be viewed as a k-means based

clustering algorithm with topological relationships between cluster centers. In order

to easily formulate its cellular matrix implementation, we first formulate the problem

itself into our proposed Euclidean grid matching generic problem. The basic parallel

computation structure will naturally follow.

To state k-means in our framework, we propose a general formulation related to

standard k-means, elastic net, and k-medians, that all consider a combination of

matching and smoothing. We define it by instantiating the generic problem of Euclidean

grid matching as follows. Given a matcher grid G1 = (V1, E1), where vertices stand for

cluster centers, and a matched grid G2 = (V2, E2), where vertices stand for input data

distribution in some color space domain, the goal of the topological k-means problem is

to find the matcher vertex locations in the plane, and possibly its color attributes, such

that the following energy function

E(G1) =
∑
p∈V2

Dm(p, cV1
p ) + λ ·

∑
{p,q}∈E1

Ds(p, q) (4.1)

is minimized, with a direction of projection from V2 to V1. The matching cost Dm

can be either the standard Euclidean distance for clustering in the plane or composite

color space distance for segmentation purposes. The smoothness cost Ds, or elastic

constraint, is the Euclidean distance in the plane d(p, q), or the squared Euclidean

distance. According to the direction of projection, follows the natural gradient descent
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type procedure of SOM with the sequence of operations “project into” then “trigger”,

driven by the data distribution.

4.3 Parallel SOM Algorithm in Cellular Matrix

FIGURE 4.1: Basic projection for k-means based algorithms.

According to the formulation of the topological k-means problem, the data structures

and the direction of operations for parallel k-means algorithms are illustrated by

Figure 4.1. The input data set is deployed on the low level of matched grid, represented

by a regular image in the figure. The cluster center grid, represented by the SOM

neural network, is deployed in the same plane as the input data, acting as the matcher

grid. The honeycomb cells represent the cellular matrix level of operations. Each

cell is a basic processing unit that handles a basic SOM processing iteration (see

Subsection 2.2.1) with the three steps: the extraction step (get) where input data

points are randomly extracted according to the density distribution; the competition

step (search) where the spiral search is performed for the closest cluster center; and

the triggering step (operate) where the cluster centers are moved toward the extracted
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FIGURE 4.2: Flowchart of parallel on-line SOM.

data points. Since the spiral search on the cellular matrix level is performed on the

cluster center grid, the buffered cell data structure is needed.

4.3.1 Parallel On-Line SOM

We choose the GPU parallel computing platform to implement parallel optimization

algorithms, based on the cellular matrix model which should benefit from GPU’s

enormous computational power. Under the compute unified device architecture (CUDA)

programming interface, a GPU works as a SIMT (single instruction, multiple thread)

co-processor of a conventional CPU. It is based on the concept of kernels which are
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functions written in C, called from CPU, and executed by a given number of CUDA

threads. These threads will be launched onto GPU’s streaming multi-processors (SMs)

and executed in parallel [SK10].

In the parallel on-line SOM implementation based on the cellular matrix model, we

employ CUDA threads, as the parallel processors, to handle cells in parallel; we use

CPU (host code) for flow control and the entire thread synchronization. The data

transfer between the CPU side and the GPU side only occurs at the beginning and

the end of the algorithm. In Figure 4.2 is reported the flowchart of the kernel calls

sequence from the CPU side. The three kernels that are called from the CPU side and

executed on GPU are: the random number generation kernel, the refresh cell kernel,

and the on-line SOM kernel. In CUDA program, a kernel will not be executed until all

the threads for the previous kernel launch finish. Therefore, between separate kernel

calls are synchronization barriers, as indicated by the dashed lines in Figure 4.2.

On the GPU side, random numbers are needed for random cell activation and roulette

wheel extraction. With respect to the large-scale input instances with huge cellular

matrix and numerous iterations, the random numbers are generated in advance by the

random number generation kernel stated in Subsection 3.5.4. This kernel is regularly

called during the algorithm according to the random number generation rate.

For a given cell in the cellular matrix model, it contains the cluster centers that move

in the plane. When dealing with moving cluster centers in the plane and closest point

findings in cellular matrix buffers, it should be necessary to regularly refresh the content

of the buffered cells. This behavior is implemented by the refresh cell kernel, as the

Kernel 7 stated in Subsection 3.5.3.

Now, we only have to detail the on-line SOM kernel. Each GPU thread, that

corresponds to a cell, will have to perform the three steps of the sequential SOM

iteration in parallel. These steps are the extraction step where input data points are

randomly extracted according to the underlying distribution; the competition step where

the spiral search is performed for the closest cluster center; and the triggering step

where the cluster centers are moved toward the data points. We first focus on the

random point extraction step since it is an important step, where the probability for

a locally extracted point must reflect the overall density distribution of the input data.

Then, we will turn to a detailed description of the on-line SOM kernel.
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4.3.1.1 Density Point Extraction

In the original sequential version of the on-line SOM (see Section 2.2), input data points

are randomly extracted according to the density distribution in the whole data set. Here

in the parallel version, each GPU thread corresponds to a cell, and it performs the

basic on-line SOM process based on the data the cell covers. A problem that arises

is to allow many data points extracted in parallel by many threads, at a given parallel

iteration, to reflect the input data density distribution in the whole data set. As a solution

to this problem, we propose a particular cell activation formula

pri =
qi

max{q1, q2, . . . , qnum}
× δ (4.2)

to choose those cells that will execute or not at the considered iteration. Here, pri is

the probability that celli will be activated; qi is the quantity of the input data that celli
contains; and num is the number of cells in the cellular matrix model. Formally, qi is the

sum of the density values of the covered vertices. It can be the number of cities that

locate in celli, for a given TSP; or the sum disparity value of all the pixels that locate

in celli, for a given disparity map. Anyway, qi should reflect the density distribution of

the input data, at the cellular matrix level. The empirically preset parameter δ is used

to adjust the degree of activity of cells/threads. As a result, the more data density a cell

has, the higher is the probability of this cell to be activated to carry out the three steps

of SOM execution at each parallel iteration.

At the extraction step, each activated cell performs a local roulette wheel mechanism

in the cell itself, in order to get the extracted random point. The probability of a pixel

choice local to a cell is defined by

pr′i =
si∑Npic

j=0 sj
, (4.3)

where Npic is the number of pixels in the cell, and si is the density value of pixel

i in the cell. The roulette wheel mechanism is depicted in Figure 4.3. A sampling

example by roulette wheel extraction in the structured meshing application is shown

in Figure 4.4, where (b) is a sampling of the disparity map (a), obtained by extracting

10000 points with the roulette wheel mechanism. This sample has been obtained after

removing the background small density (disparity) values from the disparity map, and

after augmenting the contrast in it. Figure 4.4 (c) is the corresponding mesh result

according to the extracted points in the sample.
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FIGURE 4.3: Roulette wheel random selection. Each pixel gets a portion of the wheel
according to its density value.

(a) (b) (c)

FIGURE 4.4: A sampling example by roulette wheel extraction in the structured
meshing application: (a) input disparity map, (b) density sampling by roulette wheel
extraction, (c) corresponding mesh result.

4.3.1.2 On-Line SOM Kernel

Each GPU thread performs the basic on-line SOM process independently in parallel,

through the on-line SOM kernel detailed in Kernel 8. It corresponds to an instantiation

of the generic projection loop.

The FGetRandom.initialize function is used to set the number of times (mi) that the

function FGetRandom.get will be executed, i.e. the number of iterations of the loop

defined in lines 3—8. Each time the function FGetRandom.get firstly checks if celli is

activated for the current extraction step, then, it randomly selects an input data point

(from the matched grid G2) that locates in celli if it is activated. For the extracted point,

the spiral search is carried out by the FSpiralSearch.search function, in order to find the

closest cluster center (in the matcher grid G1). The learning operation in the triggering

step is done by the FTrigger.operate function on the cluster center grid (the matcher

grid G1). The function FGetRandom.next returns false state after mi times executions

of the function FGetRandom.get.
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Kernel 8: On-line SOM iteration loop.
// For each celli of cellular matrix WD ×HD, do:

Input: G1, G2, celli, FGetRandom, FSpiralSearch, FTrigger
1 begin
2 FGetRandom.initialize(celli);
3 while FGetRandom.next(celli) do
4 point← FGetRandom.get(celli, G2);
5 if point then
6 closest← FSpiralSearch.search(celli, G1, point);
7 if closest then
8 FTrigger.operate(celli, G1, point, closest);

9 return

(a) sequential on-line SOM (b) parallel on-line SOM

FIGURE 4.5: Parameter decreasing behaviors of sequential on-line SOM and parallel
on-line SOM.

Note that the learning rate α and radius σ are decreased during the external parallel

iterations, as shown at step 8 in Figure 4.2. For a given cell, it extracts at most mi

points in one execution of Kernel 8, performing mi single SOM iterations with same

learning rate α and radius σ. Then for the tmax external parallel iterations, the maximum

number of single SOM iterations is tmax × WD × HD × mi, with the learning rate

α and radius σ decreasing in a stair-stepping way, as illustrated in Figure 4.5 (b), in

contrast to the parameter decreasing behavior of sequential on-line SOM as illustrated

in Figure 4.5 (a).

All the cluster center locations are stored in GPU global memory that is accessible to all

the threads. Like all the multi-threaded applications, different threads may try to modify

a same cluster center location at the same time, which causes race conditions. In order

to guarantee a coherent memory update in this situation, we use the CUDA atomic

function which performs a read-modify-write atomic operation without interference from

any other threads [NVI12]. The atomic operation only concerns the triggering step.
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FIGURE 4.6: Flowchart of parallel batch SOM.

4.3.2 Parallel Batch SOM

In Figure 4.6 is reported the flowchart of the kernel calls sequence from the CPU side of

the parallel batch SOM implementation. The difference between on-line SOM and batch

SOM is that for the former the data point arrives on-line, whereas all the data points are

known in advance for the latter. Then, the batch SOM procedure can be decomposed

into two main steps. The first step performs projection to the cluster centers of all the

data points. The second step performs the triggering based on the average cluster
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center locations. To instantiate the parallel program, we duplicate the generic loop

template into two parts as detailed in Kernel 9 and Kernel 10.

Kernel 9: Batch SOM projector loop.
// For each celli of cellular matrix WD ×HD, do:

Input: G1, G2, celli, FGet, FSpiralSearchComputeAverage
1 begin
2 FGet.initialize(celli);
3 while FGet.next(celli) do
4 point← FGet.get(celli, G2);
5 if point then
6 FSpiralSearchComputeAverage.search(celli, G1, point);

7 return

Kernel 10: Batch SOM trigger loop.
// For each celli of cellular matrix WD ×HD, do:

Input: G1, G2, celli, FGet, FTrigger
1 begin
2 FGet.initialize(celli);
3 while FGet.next(celli) do
4 neuron← FGet.get(celli, G1);
5 if neuron then
6 FTrigger.operate(neuron);

7 return

In Kernel 9, the functor FGet is used to get one by one all the input data points (from

the matched grid G2) that locate in celli. For every point, the function

FSpiralSearchComputeAverage.search firstly performs the spiral search on the cluster

center gird (the matcher grid G1) to find the closest cluster center, let us say cj . Then,

the function adds the point to the closest point list of cj and recomputes the new weight

of cj according to the updated list. Thus, the expected weight of each neuron is

computed and recorded in an incremental way during the batch SOM projector loop.

Note that these expected weights are not taken until in the batch SOM trigger loop of

Kernel 10, which is assigned to each cell right after the batch SOM projector loop, at

each of the tmax external parallel iterations, as illustrated in Figure 4.6.

In Kernel 10, the functor FGet is used to get one by one all the cluster centers

(from the matcher grid G1) that locate in celli. For every cluster center, the function

FTrigger.operate updates its weight along with the related neighbors, according to

the new weight computed by FSpiralSearchComputeAverage.search in Kernel 9. At

each of the tmax external parallel iterations of the parallel batch SOM, the batch SOM
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projector loop and the batch SOM trigger loop are executed sequentially, as illustrated

in Figure 4.6.

4.4 Superpixel Adaptive Segmentation Map (SPASM)

As building blocks of many vision algorithms, superpixels divide raw image into

perceptually meaningful atomic regions which can be employed to substitute the

rigid structure of the pixel grid [ASS+12, RM03, ME07]. Therefore, these atomic

regions should represent or reflect some local properties with respect to the attributes

distributions of the raw image. However, most of the existing algorithms produce

uniformly distributed superpixels. We propose the concept of superpixel adaptive

segmentation map (SPASM), aiming to generate an adaptive segmentation result

where the distribution/density of superpixels coincides with the distribution of some

specified attribute of input image, such as edges, textures, and depths. The

corresponding algorithm, called the SPASM algorithm, is a superpixel segmentation

algorithm. By the word “adaptive” we mean in the final segmentation map of input

image, (1) the distribution (density) of superpixels is adaptive and (2) the size of

superpixel is adaptive. In order to achieve such goal, we add a learning phase

for fast density “projection” by the parallel on-line SOM, before the k-means based

segmentation by the parallel batch SOM. The density projection is very similar to

the structured meshing application, but with various input choices that are not only

restricted to the disparity map.

The SPASM could be interesting to vision applications based on superpixel repre-

sentation. For example, in the visual correspondence computation tasks that employ

superpixels as basic matching units [ZK07, TWZ08, GG15, KT15, MG15], it should

be beneficial to have more superpixels in the areas with dense edge distribution

because these areas tend to contain various objects and they need to be matched

with finer superpixels for a higher precision. On the contrary, the areas with sparse

edge distribution are more likely to contain single object or background, and hence

they should need fewer superpixels for fast computation.

4.4.1 Two-Phase K-means

The process of the SPASM algorithm is illustrated in Figure 4.7. It consists in

applying the parallel SOM k-means algorithm in two phases. The first phase consists

of the parallel on-line SOM procedure, similar to the structured meshing, in order
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FIGURE 4.7: Flowchart of the SPASM algorithm.

for the cluster centers to reflect the underlying distribution of some image attribute.

This first phase is intended to give a cluster center initialization in order for the

parallel batch SOM to be applied with color space composite distance as a second

phase of superpixel segmentation. The parallel on-line SOM could be viewed as a

construction phase where the cluster centers are further “initialized” from the uniform

distribution to our specified distribution; while the parallel batch SOM could be viewed

as an improvement phase where the k-means clustering is performed based on the

specifically deployed cluster centers.

During the parallel on-line SOM, as indicated by Step 3 in the flowchart of Figure 4.7,

the Euclidean distance is used, and the cluster centers only change their positions (2D

coordinates) in the plane defined by the input image. Once the parallel on-line SOM

learning is finished, a cluster center projection procedure is carried out, as indicated

by Step 4 in the flowchart, where each cluster center searches its closest non-edge

pixel with spiral search, and copies all attributes (coordinate, color, density value) from
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the closest pixel to the cluster center. Note that the direction of this projection is from

the cluster center grid (the matcher grid) to the input image (the matched grid), which

is opposite to the direction of the basic k-means projection as illustrated in Figure 4.1.

After the projection, cluster centers are ready for the next step of parallel batch SOM

clustering.

During the parallel batch SOM, as indicated by Step 5 in the flowchart, the distance

measure between two vertices i, j consists of spatial proximity, color, and density value,

as defined in

D(i, j) = τs‖Xspa(i)−Xspa(j)‖+τc‖Xrgb(i)−Xrgb(j)‖+τd‖Xden(i)−Xden(j)‖, (4.4)

where Xspa, Xrgb, and Xden respectively correspond to 2D coordinate, 3D RGB

color, and 1D density value, while τs, τc, and τd are their corresponding normalized

coefficients. Note that this distance measure is an extension to the SLIC distance

measure [ASS+12] with a third component of density. Therefore, the SPASM

algorithm should have the same ability of edge/boundary adherence as the SLIC

algorithm, meanwhile considering the density distribution of some attribute for distance

computation between points and cluster centers. At the triggering step of batch SOM,

cluster centers update the three component attributes—2D coordinate, 3D RGB color,

and 1D density value—according to the learning law of Equation 2.6.

After the parallel batch SOM clustering process is finished, the parallel Voronoi

projection procedure is carried out, as indicated by Step 6 in the flowchart, where

each pixel is assigned to its closest cluster center, with spiral search using the distance

measure of Equation 4.4. Then, a SPASM image is obtained where each cluster center

forms a superpixel with the pixels assigned to it. Moreover, we also generate a Voronoi

color image where the color of each pixel is filled by the color of its cluster center

according to the superpixel composite distance.

4.4.2 Implementation in Cellular Matrix Model

An example of the SPASM algorithm in the cellular matrix model is illustrated in

Figure 4.8. The input image Grove2 (640 × 480) [BSL+11, Mid15a], as shown in (a),

along with the two-dimensional grid of superpixel cluster centers which is deployed in

the Euclidean plane defined by the input image, as shown in (b), are partitioned into

uniformly sized cells with rigid topologies, as shown in (c) and (d). Note that in this

example, both the cellular matrix and the grid of cluster centers are with hexagonal

topology. However, they can be other topologies, such as quad and rhombus, in
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(a) input image (b) initial cluster center grid

(c) cellular matrix covering illustration (d) zoom in of (c)

(e) image gradient (f) on-line SOM training result

(g) superpixel segmentation (h) Voronoi image

FIGURE 4.8: An example of the SPASM algorithm in the cellular matrix model. Note
that in (g) the superpixel contours are drawn after a post-processing step applied to
the raw segmentation result where isolated pixels, which belong to very small
superpixels, are forcedly assigned to nearest bigger superpixels, for the sake of a
better visualization; while in (h) the Voronoi image is generated from the raw
segmentation result. The same situation applies to all the other examples
demonstrated in this thesis.
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the cellular matrix model. According to some underlying attribute distribution of input

image, such as the image gradient used in this example and shown in (e), massively

parallel on-line SOM training processes are carried out, to deploy superpixel cluster

centers. In the training result as shown in (f), the distribution of cluster centers

reflects the image gradient distribution, with respect to scene topology. Based on

the training result, the batch SOM is employed for the final superpixel segmentation

result as shown in (g), where the density of generated superpixels reflects the image

gradient distribution. In the corresponding Voronoi image as shown in (h), regions with

higher gradient values are more finely represented with more superpixels for detail

preservation.

Implemented based on the cellular matrix model, the SPASM application, and the

structured meshing application which can be seen as a sub-procedure of the SPASM

application, can benefit from the massive parallelism property of the cellular matrix

model. Given an input image or a disparity map with W ×H pixels, a Euclidean plane

is defined. This corresponds to the low level of the cellular matrix model. Normally,

an original image or disparity map can be viewed as a quad1 topological grid of input

data points. However, it could be easily transfered into a hexagonal grid by shifting the

horizontal coordinates of pixels in odd lines, as shown in Figure 3.3 and Figure 3.4.

Then, a two-dimensional SOM neural network will be deployed at the zoom-out level,

with the size of WZ ×HZ = W/RC ×H/RC. The size is in relation to the size of the

input image in such a way that the mesh constitutes a compressed representation of the

input image. The compression rate is 1/RC2. In the SPASM application, the network

is employed by both the on-line SOM learning and the batch SOM clustering, while

each neuron represents a cluster center which will be used to generate a superpixel

at the end of the algorithm. The dual level of the cellular decomposition is with size

WD × HD = W/2R × H/2R, where R is a constant factor to control the degree of

parallelism. Note that in a concrete application, R is not necessarily equals to RC,

which is the default parameter setting as illustrated in Figure 3.3 and Figure 3.4. The

cellular matrix decomposition is in linear relationship to the input disparity map/image

size, in O(W ×H).

4.5 Conclusion

In this chapter, we have presented topological k-means problems using our generic

formulation of grid matching, and we have provided the related parallel k-means
1The tessellation of input data points at low level is the same in quad cellular matrix model and in

rhombus cellular matrix model.
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procedures, in the cellular matrix model. We have illustrated how the parallel SOM

algorithm, both the on-line version and the batch version, can be implemented by

combination of basic projection functions and functors.

We have proposed the SPASM algorithm, as a superpixel image segmentation

algorithm, which combines the parallel on-line SOM structured mesh generation

and the parallel batch SOM clustering. The aims is to generate the segmentation

where the distribution (density) of superpixels coincides with the distribution of some

specified attribute of input image, such as edges, textures, and depths. Normally,

the segmentation result of classical k-means clustering is sensitive to the cluster

center initialization and distribution, and that is the reason we add the parallel on-line

SOM to deploy cluster centers along with the density distribution, before the k-means

based batch SOM clustering. The on-line SOM could be viewed as a construction

phase where the cluster centers are further “initialized” from the uniform distribution

to our desired distribution; while the batch SOM could be viewed as an improvement

phase where the k-means clustering is performed based on the specifically deployed

cluster centers. Batch SOM deals with positioning of cluster centers in homogeneous

superpixel regions by using a specific space-color-density distance, whereas on-line

SOM only deals with Euclidean distance. These two phases are all necessary: if we

remove the on-line SOM, then the superpixel distribution will be only decided by the

strict cluster center initialization, such as the uniform distribution used in the k-means

based SLIC algorithm; if we remove the batch SOM, then we can only get a rough

segmentation result based on the on-line SOM deployed cluster centers, eliminating

the chance of well-segmented results with good edge/boundary adherence, which are

supposed to be obtained by our batch SOM clustering using the true closest point

finding of spiral search in the cellular matrix model, with the required space-color-

density composite distance measure.

Experiments reported in the next chapter will allow us to evaluate the computation gain

of the parallel SOM approach on the three applications: TSP, structured meshing, and

SPASM.



Chapter 5

Experimental Study of Parallel
Topological K-means

5.1 Introduction

This chapter focuses on GPU implementations of the three parallel SOM applications:

TSP, structured meshing, and SPASM. For each application, we perform experimental

analyses and carry out comparative studies between our GPU parallel SOM approach

and other approaches. We evaluate our GPU implementation of the parallel SOM

TSP application, on different large-size TSP instances from different benchmarks,

including the largest TSPLIB [Rei91] instance with 85900 cities and the largest National

TSP’s [nat09] with 71009 cities. We experiment on our GPU implementation of the

structured meshing application and its counterpart CPU implementation, using input

images with different sizes and analyzing the relationship between execution time and

input image size. We test our SPASM algorithm utilizing two kinds of image attributes

as the density distributions for cluster center initialization with the on-line SOM: image

gradient and disparity value. We compare the SPASM algorithm with the state-of-the-

art SLIC algorithm [ASS+12], on input images of growing sizes, setting different initial

superpixel sizes. The comparison is carried out between both GPU version and CPU

version for both two algorithms.

The experimental studies are conducted on the following platforms:

• On the CPU side: An Intel Core i5-750 processor running at 2.67 GHz and

endowed with four cores and 4 GBytes memory. It is worth noting that only one

single core executes the SOM process in our implementation.

75
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• On the GPU side: A Nvidia GeForce GTX 570 Fermi graphics card endowed with

480 CUDA cores (15 streaming multi-processors with 32 CUDA cores each) and

1280 Mbytes memory. The compute capability is 2.0.

5.2 Basic On-Line SOM Applications

For all the experiments of basic on-line SOM applications, the default values of four

SOM parameters are set as follows: (αinit, αfinal, σinit, σfinal) = (1, 0.01, 24, 1). Note

that parameter values for SOM are standard values: they were adjusted after a

preliminary round of experiments which are not reported in this thesis. Also, note that

these parameter values may change from the default values for various experimental

purposes in our experimentation, and the change will be mentioned when happens.

To speed up the program, during the parallel spiral search of each thread, we introduce

a spiral search range (SSR) parameter to control the search scope. Then, the maximum

number of cells a thread would search equals (SSR× 2 + 1)2. Note that the original

spiral search corresponds to setting SSR infinite.

5.2.1 Large-Size TSP Instances

As the cellular matrix model is designed for large-scale optimization problems, we

evaluate our GPU implementation of the parallel SOM TSP application, on different

large-size TSP instances from different benchmarks. These instances include 33

TSPLIB [Rei91] instances with sizes from 1000 cities to 85900 cities and 19 National

TSP’s [nat09] with sizes from 1621 cities to 71009 cities.

When dealing with the number of iterations to achieve good trade-offs between result

quality and execution time, a first remark is about the ability of the method to, either act

as a construction method, since the ring deploys from random initialization; or act as an

improvement method when the algorithm has reached the asymptotic phase in which

small intensity moves massively adapt the ring to the data. It appears that dissociating

a construction phase with large initial neighborhood from an improvement phase with

small initial neighborhood, yields best performance. We adopt this scheme here. The

only parameter that distinguishes construction phase with improvement phase is the

neighborhood radius parameter σinit, which defines the window size around the winner

neuron. Then, the number of parallel iterations must be set accordingly: it should be

small in construction phase, just enough to deploy the network. For the construction

phase, the neighborhood radius σinit is proportional to the instance size, being set to
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min{instance size/10, 500}. Thus, local moves are performed with high intensity to let

the solution ring deploy from scratch. The subsequent improvement phase can be seen

as a continuation of the construction phase using a smaller intensity for moves. In that

case, the neighborhood radius parameter σinit is set constant to a value of 10 neurons

on each side of the winner neuron.

For the 52 tested TSP instances, the number of iterations is set as follows: 100

iterations in the construction phase with the neighborhood radius σinit set to

min{instance size/10, 500}, plus 10000 iterations in the improvement phase with σinit
set to 10. The SSR parameter is set to 10 and infinite respectively in two implementation

versions, namely “GPU-SOM-1” and “GPU-SOM-2”. Executions with two SSRs will

allow us to explore different trade-offs between execution time and result quality. The

results obtained from 33 TSPLIB instances and 19 National instances are given in

Table A.1, Table A.2, and Table A.3 in Appendix A. In each table, the first column

reports the names of the instances to which their sizes are concatenated. Instances

are ordered by size. The second column reports the optimum tour lengths. Other

columns present results for the different approaches considered. All the results are

obtained over 10 runs. The percentage deviation from the optimum of the mean solution

value over the 10 runs is reported in column “%PDM”. The percentage deviation from

the optimum of the best solution value that was found is reported in column “%PDB”.

The average execution time per run for each instance is reported in column “Sec” in

seconds. The last two rows of the tables report the average results of all instances and

the average results of the instances with the number of cities N ≥10000. Besides our

two GPU implementations GPU-SOM-1 and GPU-SOM-2, in the last three columns, we

also report the results obtained by the memetic SOM algorithm (CPU implementation)

which is, as claimed in [CK09], the winner of the neural network approaches to the TSP,

with respect to solution quality and/or execution time.

In Figure 5.1 are plotted the results obtained from the 33 large-size TSPLIB instances,

where Figure 5.1 (a) shows “%PDM” values according to the instances ordered by size,

and Figure 5.1 (b) shows execution time as a function of the instance size. Besides our

two GPU implementation versions of parallel SOM TSP, in Figure 5.1 we also report the

results of another two dominant neural network methods—memetic SOM [CK09] and

Co-Adaptive Net [CB03]—for comparison. It is worth noting that these two approaches

are the only neural network approaches that have performed extensive evaluations on

such large size well-known TSP instances. Our GPU SOM implementations run a

lot faster than the CPU memetic SOM and Co-Adaptive Net. In spite of the absolute

execution time results obtained from different implementations on different platforms

(CPU and GPU), we think what is more important is the relationship between execution

time and instance size, as depicted in Figure 5.1 (b). We can note that the execution
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(a) percentage deviation of the mean solution value over 10 runs

(b) execution time according to instance size

FIGURE 5.1: Experimental results of 33 TSPLIB instances.

time of our GPU implementation increases very slowly compared to either memetic

SOM or Co-Adaptive Net, when the input instance size augments.

In Figure 5.2 is given an example of TSP tour obtained by our GPU SOM implemen-

tation, using the rw1621 TSP instance from National TSP’s [nat09]. The 1621 cities of

the instance are deployed in a rectangle plane, as shown in Figure 5.2 (a). The plane

is partitioned into 45 × 45 squares by our cellular matrix model with quad topology, as

shown in Figure 5.2 (b) where each green square represents a cell and is handled by

a GPU thread. A TSP tour is obtained along the SOM ring network of vertices/neurons

(small red circles) and edges (black lines) where each city (black dot) is mapped onto

its nearest vertex in the plane.

In Figure 5.3 are depicted the relationships between execution time and result

quality, of different state-of-the-art methods on the 33 large-size TSPLIB instances in

average. Co-Adaptive Net, Memetic SOM, GPU-SOM-1 and GPU-SOM-2 are neural
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(a) rw1621 TSP instance

(b) tour result

FIGURE 5.2: An example of TSP tour obtained by our GPU SOM implementation,
using the rw1621 TSP instance from National TSP’s [nat09]. Black dots represent
cities; small red circles represent vertices/neurons of the SOM ring network; green
lines define the cellular matrix decomposition on the dual level, where each green
square represents a cell and is handled by a GPU thread.
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FIGURE 5.3: The relationship between execution time and result quality, with 33
TSPLIB instances in average, compared with state-of-the-art operations research
(OR) heuristics.

network methods while others are very sophisticated implementations of standard

heuristics such as 2-opt, 3-opt, or Lin-Kernighan (LK) as described in DIMACS TSP

Challenge [JM07, DIM09]. Certainly, neural networks do not compete with state-of-the-

art powerful heuristics of operations research (OR) for the TSP. To be competitive, the

solution quality produced by our GPU SOM implementation would have to be improved

by a factor ten. In order to further improve result quality, it is worth trying to add other

operators rather than only employ the standard on-line SOM. It can be envisaged to

extend the approach by using evolutionary operators and population based search

as in memetic SOM, or improve SOM learning procedures as in co-adaptive net, or

simply mix the method by using standard neighborhood search operators such as k-

opt operator. In the last case, the algorithm could be configured as a distributed local

search (similar method to our proposed DLS introduced in Chapter 6).

5.2.2 Structured Meshing Results with Different Disparity Maps

We experiment on our GPU implementation of the structured meshing application

as defined in Chapter 2 and its counterpart CPU implementation. Here, the CPU

sequential version of implementation is a simple simulation of the GPU parallel version.

In the CPU implementation, all operations are carried out on the CPU side sequentially.

We firstly perform experiments using six small size disparity maps (Tsukuba, Rocks1,

Aloe, Venus, Teddy, Cones) from the Middlebury datasets [Mid15b], with a smaller spiral

search range (SSR=3). Detailed results are reported in the first set (the first six rows) of
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FIGURE 5.4: Structured meshing application. From left to right: Aloe, Cones, Teddy.
From top to bottom: color image, disparity map, density sampling, meshing, 3D
visualization. The used images are from Middlebury datasets [Mid15b].
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Table A.4 in Appendix A. Note that the number of iterations for CPU version is set to its

corresponding GPU version value multiplied by cellular matrix size1, in order to make

the total SOM operations approximately similar between the two versions, and to reach

similar result qualities. Here, the result quality is measured by the %cost value defined

in Equation 2.5 in Subsection 2.2.1.2, which is the average percentage deviation of

each individual honeycomb cell weight to the average honeycomb cell weight. All the

tests are done on a basis of 10 runs per input image, and the test results are reported in

the right four columns in Table A.4. The execution time of GPU version for all six tested

images is steady and no more than 0.36 seconds. The acceleration factor, which is

the ratio of CPU version’s execution time by GPU, varies from factor 5.84 (Tsukuba) to

factor 8.33 (Aloe). Experimental results show that GPU version of the structured mesh

generation with small size disparity maps can provide near real-time performance, with

very similar result quality in average, compared with its counterpart sequential CPU

version. We also study the relationship between execution time and input size of GPU

implementation and its counterpart CPU version, by carrying out experiments with four

disparity maps, each at small, medium and large scales, respectively. Inputs, parameter

settings and results of mean values from 10 runs are all reported in the last three sets

of Table A.4 in Appendix A. The average acceleration factors of the three sets are

5.49, 12.68, and 39.74 respectively, as input size grows, which indicate augmentation

of acceleration factor with input size.

Figure 5.4 displays snapshots of our structured meshing application dealing with Aloe,

Cones, and Teddy benchmarks, respectively. In the first row are the color stereo

images from left view, and in the second row are their corresponding disparity maps.

In the third row are samplings of disparity maps obtained by extracting 10000 points

with the roulette wheel mechanism. This sample has been obtained after removing

the background small density values from the disparity map, and after augmenting the

contrast in it. Then, objects that are close to the camera have higher density values. In

the fourth row are the adaptive 2D mesh results obtained by SOM algorithm with the

disparity maps. In the second row, brighter regions are nearer to the camera view point,

and in the fourth row, the adapted grid presents higher density of network vertices in

such regions, with respect of the topology of the scene. The fifth row shows the surface

reconstruction in 3D space obtained by using the adapted mesh which can be seen as

a compressed representation of the 3D surface, such that objects close to the camera

have higher resolution and their details are more finely represented.
1The cellular matrix size is the number of cells in the cellular matrix model. Note that this setting for

CPU version corresponds to the extreme situation of GPU version where all cells in the cellular matrix
model are activated during each external iteration.
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FIGURE 5.5: An example of higher resolution for closer objects. From left to right:
uniform mesh with high resolution (450× 375), adapted mesh (75× 63), uniform mesh
(75× 63). First row: global scene. Second row: zoom-in on a part of a closest object
of the scene.

Figure 5.5 shows an example of higher resolution for closer objects, where different

visualizations of 3D reconstructions are respectively from high resolution uniform mesh

of original image; adapted mesh of low resolution with a compression rate of 36; and

uniform mesh of low resolution with a compression rate of 36. The zoom-in comparison

illustrates the resolution around a closest object. The adapted mesh presents a higher

resolution for the closest object in the scene than the uniform reduced mesh.

5.3 Experimental Results of SPASM Application

In our experiments of the SPASM application, the parallel on-line SOM parameters

are fixed as (αinit, αfinal, σinit, σfinal, tmax) = (1, 0.01, 20, 0.5, 100), while the parallel

batch SOM parameters are fixed as (αinit, αfinal, σinit, σfinal, tmax) = (1, 0.1, 1.5, 0.5, 5).

Note that parameter values for SOM are standard values: they were adjusted after a

preliminary round of experiments. For the number of iterations, we set a relatively small

value for both the parallel on-line SOM (tmax=100) and the parallel batch SOM (tmax=5),

in order for fast computation. Note that both the two processes are indispensable

for SPASM generation: if we remove the on-line SOM (set parallel on-line SOM

tmax=0), then the superpixel distribution will only be decided by the strict cluster center

initialization, which in our application is a regular grid with a uniform distribution of
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cluster centers; if we remove the batch SOM (set parallel batch SOM tmax=0), then we

can only get a rough segmentation result based on the on-line SOM deployed cluster

centers, eliminating the chance of well-segmented results with good edge/boundary

adherence, which are supposed to be obtained by our topological k-means clustering

using the true closest point finding of spiral search in the cellular matrix model, with the

required space-color-density composite distance measure.

5.3.1 Different Image Attributes for Cluster Center Initialization

We utilize two kinds of image attributes as the density distributions for cluster center

initialization with the on-line SOM. The first attribute is image gradient. In this case,

before running the algorithm, we initialize an input density map with gradient values.

In the point extraction step, we transfer the gradient g of each pixel into 1/(1 + g2)

for the local roulette wheel extraction. The reason is to make edge points (with high

gradient values) less likely to be extracted. Therefore, the image gradient distribution

is preserved on the cellular matrix level, meanwhile inside activated cells, situations

of cluster centers being moved onto edge points (pixels) are reduced. We compute

image gradient through Sobel operator which gives us a fast approximation of the edge

distribution of input image, as shown in Figure 5.6 (a). The activation probability of each

cell is computed according to the sum of gradient values of all the pixels inside the cell.

The second attribute is disparity value that is supposed to be known in advance for

the input image. The disparity map reflects the proximity of objects to the camera view

point, as presented in Figure 5.6 (b).

The other images in the two columns of Figure 5.6 respectively present the cluster

center grids after on-line SOM (c) and (d); superpixel maps after the batch SOM

phase (e) and (f); and the corresponding Voronoi maps (g) and (h) with Voronoi uniform

cell colors identical to their cluster center color components. Note that the Voronoi maps

are generated according to the space-color-density composite distance, as defined in

Equation 4.4. These results can be appreciated visually. As shown in (c) and (d), in

the adapted grid after on-line SOM learning phase, areas with high image gradient or

disparity value present high density of network vertices (cluster centers). Then, these

areas generate more superpixels after the batch SOM phase, as shown in (e) and (f).

Hence, in the Voronoi superpixel image they have higher resolution and their details are

more finely represented, as the example in the red box of (g) and the example in the

yellow box of (h). The SPASM algorithm’s ability of generating adaptive segmentation

with respect to user-specified density distribution is demonstrated through these two

tests and the comparison of their results.
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(a) image gradient (b) disparity map

(c) 2D online SOM learning result (d) 2D online SOM learning result

(e) superpixel segmentation result (f) superpixel segmentation result

(g) Voronoi image (h) Voronoi image

FIGURE 5.6: Results obtained with image gradient (left column) and disparity map
(right column) as density distribution. Both the cellular matrix and the SOM grid are in
hexagonal topologies. The Teddy benchmark from [SS03] is used. (e) and (g) are the
results from (c); (f) and (h) are the results from (d).



Chapter 5. Experimental Study of Parallel Topological K-means 86

5.3.2 SPASM vs. SLIC

A comprehensive survey and comparison study of superpixel algorithms can be found

in [ASS+12], where a fast algorithm called simple linear iterative clustering (SLIC) is

proposed to adapt k-means clustering to generate superpixels with good adherence

to image edges/boundaries. The SPASM algorithm extends the state-of-the-art SLIC

algorithm, using our adaptive meshing tool to add compression abilities, with respect

to the density distribution of image attributes and the topological relationship of cluster

centers. Differently from SLIC which performs a restricted nearest point search within a

square region, through our cellular matrix model, we can conduct the true closest point

finding in a massively parallel way, using the efficient spiral search algorithm under

different topologies.

We compare the SPASM algorithm with the SLIC algorithm using its publicly available

source code2. The image gradient, as shown in Figure 5.7 (b), is used as density

map for SPASM. We respectively set the cluster center grid as a zoom-out map in

the cellular matrix model, at levels R = 10, 20, 30, which respectively correspond to

N/100 = 2266, N/400 = 566, N/900 = 252 cluster centers (N = 584 × 388 being the

input image size). For SLIC, we set the initial superpixel size accordingly, in order to

make the two algorithms work with same number of initial cluster centers. As shown

in Figures 5.7 (c), (e), and (g), in all cases the SPASM algorithm produces a high

density of superpixels in the edge-dense area (the flower clump) while the background

is covered with relatively coarse superpixels sparsely. On the other hand, as illustrated

in Figures 5.7 (d), (f), and (h), no matter how the initial superpixel size is set, the SLIC

algorithm always generates uniformly distributed cluster centers. This is because the

SLIC algorithm is a tailored k-means approach with no function of distribution learning

like the SPASM algorithm. Therefore, the superpixel resolution of SLIC correlates with

the uniform distribution of initial cluster centers, while SPASM allows finer-resolution

regions selected by the density map attribute, meanwhile obtaining finer segmentation

results in such regions, regardless of the number of initial cluster centers.

To provide a quantification of the segmentation quality in comparison to the SLIC

algorithm, we propose to compute the mean color deviation (MCD) which is the mean

deviation of pixel’s true color to its cluster center’s color, as defined in

MCD =
1

N

N∑
i=1

(‖xrgb(i)− x̄rgb(center(i))‖), (5.1)

2http://ivrl.epfl.ch/research/superpixels
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(a) original input image (b) image gradient

(c) SPASM,2266 (d) SLIC,2266

(e) SPASM,566 (f) SLIC,566

(g) SPASM,252 (h) SLIC,252

FIGURE 5.7: Segmentation result comparison between SPASM and SLIC. From the
second row to the last row, for both algorithms, the number of initial cluster centers is
set to 2266, 566, and 252, respectively. The Hydrangea benchmark from [BSL+11] is
used. The image size is 584× 388.
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where N is the input image size, xrgb(i) is the ground truth 3D RGB color of the ith

pixel, and x̄rgb(center(i)) is the color of the ith pixel’s cluster center.

To test the performance with different input image sizes, we use seven input images

of growing sizes and set different initial superpixel sizes (20 × 20, 30 × 30, 40 × 40).

For a good adherence to image edges/boundaries, the distance parameters of SPASM

are fixed as (τspa, τrgb, τden) = (1/2Rc
2, 1/3, 1/100) and the distance parameter (the

m parameter in [ASS+12]) of SLIC is set to 20. The iteration number of SLIC is set

to the default value of 10. All results are the mean values of 10 runs. We measure

the result quality with MCD values which are reported in Figure 5.8 (a). Results from

SPASM have smaller MCD values in all the tested cases when compared with results

from SLIC. Also, the MCD values of SPASM results are steadier either with respect

to different input image sizes, or with respect to different initial superpixel sizes. This

shows the “adaptive” ability of our proposed SPASM which produces similar results

regardless of the number of initial cluster centers and the input image size.

In order to compare execution time, we test four versions: the SLIC CPU implementa-

tion (cSLIC) from the raw public source code, the SLIC GPU implementation3 (gSLIC)

reported in [RR11], the SPASM CPU implementation (cSPASM) which is a sequential

simulation of parallel SPASM algorithm, and the SPASM GPU implementation (gSPAS-

M). The initial superpixel size is set to 20× 20 for the four versions. The execution time

results are reported in Figure 5.8 (b). For small size images (360×300 and 450×375), the

execution time of cSLIC, gSLIC, and gSPASM is similar. For other larger size images,

gSPASM clearly runs faster than all the other versions, especially for the largest image.

cSPASM runs much slower than others for all images. This is because the sequential

simulation of the iterative on-line SOM is time consuming. gSLIC runs slower than

cSLIC for all images. This is because the gSLIC library from the raw public source

code is specifically optimized for high-end GPU cards, with a lot of shared memory

employment, while the platform we have used is a relatively out-dated GPU card. In

average for the seven tested images, the acceleration factor of gSPASM against cSLIC

is 2.44; the acceleration factor of gSPASM against gSLIC is 3.84; the acceleration factor

of gSPASM against cSPASM is 39.59. In spite of the absolute execution time results

of different implementations on different platforms (CPU and GPU), we think the more

important conclusion is that the execution time of gSPASM increases in a linear way

with a very weak increasing coefficient, when the input image size augments.
3https://github.com/carlren/gSLICr
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(a)

(b)

FIGURE 5.8: Performance comparison between SPASM and SLIC: (a) comparison
between SPASM and SLIC with different input image sizes and different initial
superpixel sizes; (b) execution time results of CPU SLIC (cSLIC), GPU SLIC (gSLIC),
CPU SPASM (cSPASM), and GPU SPASM (gSPASM), with different input image
sizes. The Cones image from [SS03] is used.
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5.4 Conclusion

In this chapter, we have implemented the cellular matrix model and its parallel SOM

applications on GPU parallel computing platforms with CUDA. We have performed

experiments on standard benchmarks and in comparison with state-of-the-art ap-

proaches. We have evaluated our GPU implementation of the parallel SOM TSP

application, on different large-size TSP instances from different benchmarks. Our

GPU SOM implementations run a lot faster than the CPU memetic SOM and Co-

Adaptive Net, which are two neural network methods in the literature that perform

experimental studies on large size benchmark instances. The execution time of our

GPU implementation increases very slowly compared to either memetic SOM or Co-

Adaptive Net, when the input instance size augments. We have conducted experiments

on our GPU implementation of the structured meshing application and its counterpart

CPU implementation. The execution time of GPU version for all six tested images

is steady and no more than 0.36 seconds. The acceleration factor, which is the

ratio of CPU version’s execution time by GPU, varies from factor 5.84 to 8.33. We

have also studied the relationship between execution time and input size, of GPU

implementation and its counterpart CPU version, by carrying out experiments with four

disparity maps, each at small, medium and large scales, respectively. The average

acceleration factors of the three sets are 5.49, 12.68 and 39.74 respectively, as input

size grows, which indicate augmentation of acceleration factor with input size. We

have tested our SPASM algorithm utilizing two kinds of image attributes as the density

distributions for cluster center initialization with the on-line SOM: image gradient and

disparity value. The SPASM algorithm’s ability of generating adaptive segmentation

with respect to user-specified density distribution has been demonstrated through these

two tests and the comparison of their results. We have compared the SPASM algorithm

with the state-of-the-art SLIC algorithm, on seven input images of growing sizes, setting

different initial superpixel sizes. We have tested both GPU version and CPU version

for both two algorithms. Compared with others, the execution time of GPU SPASM

increases in a linear way with a very weak increasing coefficient, when the input image

size augments. The acceleration factor of GPU SPASM against its CPU sequential

counterpart version is 39.59 in average for the seven tested images. For all the three

applications, our GPU parallel versions always produce substantial acceleration over

their sequential counterparts. An important conclusion is that the execution time of our

GPU implementations for all the three applications increases in a linear way with a very

weak increasing coefficient according to input size. Such a conclusion is encouraging

to solve very large scale problems in an efficient way, under the proposed cellular matrix

model.



Chapter 6

Distributed Local Search for Elastic
Image Matching

6.1 Introduction

Based on the cellular matrix model, this chapter focuses on the design of a parallel local

search algorithm applied to the elastic image matching problem formulated in our grid

matching framework. We propose the distributed local search (DLS) algorithm, which

is a parallel formulation of a local search procedure in an attempt to follow the spirit

of the standard local search metaheuristics. Starting from its location in the cellular

matrix, each processor locally acts on the data. It can execute local evaluation, perform

neighborhood search, and select local improvement moves to execute. Applications of

different operators for solution diversification are possible in a similar way to variable

neighborhood search (VNS). Mutual exclusion between threads is guaranteed by the

cellular matrix decomposition that allows independent moves of internal cell pixels. The

solution results from the many operations simultaneously performed on the distributed

data. Classical drawbacks to address are related to cell frontier management and

solution diversification. We propose some responses to these issues.

Firstly, we formulate a general energy function to be equivalent to the elastic image

matching problems. Then, we present the DLS algorithm in detail. We provide

the data structures based on the cellular matrix model, which also partitions the

solution between independent neighborhoods mutually exclusive to each other. We

explain the local evaluation on cell level, in order to guarantee the mutual exclusion

for parallel local evaluations among threads. We propose two strategies to eliminate

conflict operations on cell frontiers, retaining the strategy of “dynamic change of cell

frontiers” as the main solution for frontier management in our proposed DLS framework.

91
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Afterwards, we design two classes of move operators considering small neighborhood

and large neighborhood respectively, and we apply different operators in the DLS

algorithm, combining them under the VNS framework. We present the details of GPU

implementations from host and device sides, describing data transfers, kernel calls, and

the main kernel function of DLS loop.

6.2 Elastic Grid Matching

We instantiate the energy function of our grid matching formulation to be equivalent

to the elastic image matching problems such as the visual correspondence problems

presented in the background of Chapter 2. Here, we call this class of problems the

elastic grid matching problem.

Given two input images with same size and same regular topology, one is a matcher

grid G1 = (V1, E1) where a vertex is a pixel with a variable location in the plane, while

the other is a matched grid G2 = (V2, E2) where vertices are pixels located in a regular

grid. The goal of elastic grid matching is to find the matcher vertex locations in the

plane, so that the following energy function

E(G1) =
∑
p∈V1

Dp(p− p0) + λ ·
∑

{p,q}∈E1

Vp,q(p− p0, q − q0) (6.1)

is minimized, where p0 and q0 are the default locations of p and q respectively in a

regular grid; Dp and Vp,q are defined the same way as the energy function defined

in Subsection 2.4.3 in Chapter 2. A label fp in visual correspondence represents a

pixel moving from its regular position into the direction of its homologous pixel, i.e.

fp = p − p0. In the following sections, we will directly use the notations of labels as

relative displacements, as usual with such problems. The direction of projection is from

V 1 to V 2. Given p ∈ V1, the selected homologous pixel in G2 is the closest point

projection cV 2
p into the regular grid. According to the direction of projection, local search

iterations are in the form of “project into”, “evaluate and select”, then “move”.

6.3 Distributed Local Search (DLS)

It has been proven that elastic image matching is NP-complete [KU03], and finding

the global minimum for the energy function even with the simplest smoothness penalty,

the piecewise constant prior, is NP-hard [BVZ01, Vek99]. Therefore, it is impossible
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to rapidly compute the global minimum unless P=NP. In our work, we choose the local

search metaheuristics to deal with the energy minimization problem.

Based on the cellular matrix model, we propose a parallel local search algorithm,

called distributed local search (DLS), to implement many local search operations on

different parts of the data in a distributed way. It is a parallel formulation of local search

procedures in an attempt to follow the spirit of the standard local search metaheuristics.

Starting from its location in the cellular matrix, each processor locally acts on the data

located in the corresponding cell according to the cellular decomposition, in order to do

local evaluation, perform neighborhood search, and select local improvement moves to

execute. The many processes locally interact in the plane, making evolve some current

solution into an improved one. The solution results from the many independent local

search operations simultaneously performed on the distributed data in the plane.

Normally, a local search algorithm with single operator obtains local minima. In order

to escape from local minima, we design several operators. Applications of different

operators for diversification are possible in a similar way to the VNS. We firstly introduce

the detailed DLS algorithm in the section, then we provide different operators and their

application in the VNS framework, in the following two sections.

Note that the simple and popular winner-takes-all (WTA) approach [Zha13] corresponds

to a single projection step, and that DLS can be seen as an extension of WTA according

to the energy function used, as well as to the many projection iterations until no

improvement moves are possible.

6.3.1 Data Structures

The data structures and direction of operations for DLS algorithms are illustrated by

Figure 6.1. The input data set is deployed on the low level of both matcher grid and

matched grid, represented as regular images in the figure. The honeycomb cells

represent the cellular matrix level of operations. No buffered cells are necessary,

since direct access to the data is sufficient using spiral cells. Each cell is a basic

processor that handles a basic local search processing iteration with the three steps:

neighborhood generation step (get); neighbor solution evaluation and selecting the best

neighbor (search); then moving the matcher grid toward the selected neighbor solution

(operate). The nature and size of specific moves and neighborhoods will depend on

the type of operator used and the level of the cellular matrix. The higher is the level, the

larger is the local cell/neighborhood.
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FIGURE 6.1: Basic projection for DLS.

6.3.2 Neighborhood Decomposition

In the cellular matrix model, a solution is composed of many sub-solutions from many

cells. Each sub-solution is evolved from an initial sub-solution based on the distributed

data in a cell. By partitioning the data and solution, the neighborhood structure is also

partitioned at the same time.

Taking the pixel labeling problem of stereo matching for example, let us suppose that

there are n pixels in the input image and k candidate labels (possible disparities). Then,

the largest neighborhood structure includes kn neighbors (solutions) which are all the

possible labelings. After the cellular matrix decomposition, let us suppose that there

are a constant number (C) of pixels in each cell, and there are n/C cells in the cellular

matrix. Then for every cell, the largest neighborhood structure includes kC neighbors.

Therefore in DLS, the original exponential exploration in a large neighborhood (O(kn))

is transformed into n/C simultaneously parallel exploration in a smaller neighborhood

(O(kC)). This kind of transformation has no impact on the result quality, since the

local neighborhood move in a cell only contributes locally to the corresponding part

of the energy function, without influence on the energy of the sub-solutions in other

cells. This conclusion holds true as long as we can guarantee that, among the many

local neighborhood moves that are executed in parallel triggering many parallel local
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evaluations on the energy function, there are no neighborhood move conflict caused

by more than one thread moving the same pixel at the same time. This conflict

only happens on pixels that lie on cell frontiers. In the following two subsections, we

explain the local evaluation principle and the strategies we propose to eliminate possible

neighborhood move conflicts on cell frontiers.

6.3.3 Local Evaluation with Mutual Exclusion

The energy function of the problem serves as the fitness function of local search

metaheuristics. Here, we describe the process of local evaluation in order to compute

the energy improvement locally impacted by the pixels moves in a cell. According

to the formulation of the energy function defined in Subsection 2.4.3, the energy is a

summation of all pixel data costs Dp(fp) plus a weighted summation of all unordered

pairs of smoothness costs Vp,q(fp, fq). Under the cellular matrix decomposition, the

energy for a given celli is then defined as

Ei(f
i) =

∑
p∈Pi

Dp(f
i
p) + λ ·

∑
{p,q}∈Ni

Vp,q(f
i
p, f

i
q), (6.2)

where Pi is a subset of P (the set of all pixels in the image) including all the pixels

that locate in the celli; Ni is a subset of N (the set of all unordered pairs of neighboring

pixels in the image) including all the unordered pairs of neighboring pixels in the celli; f i

is the labeling restricted to the celli; f ip and f iq are the labels of pixel p and q respectively.

Then, the global energy function is

E(f) =

n/C∑
i=1

Ei(f
i), (6.3)

where n/C is the number of cells in the cellular matrix model, such that

P1
⋃
P2

⋃
, ...,

⋃
Pn/C = P,

N1

⋃
N2

⋃
, ...,

⋃
Nn/C = N .

(6.4)

Note that in Equation 6.2, the frontier pixels1 are counted in f i, Pi, and Ni. Therefore,

the contributions of frontier pixels can be computed twice by adjacent cells, in the global

energy function of Equation 6.3. This has no impact on the validity of the evaluation.

The global energy change incurred by the move of celli is given by

∆E(f, f ′) = Ei(f
i)− Ei(f

i′) (6.5)
1We refer to frontier pixels as the pixels that locate on the cell frontiers, according to the cellar matrix

partition of the image.



Chapter 6. Distributed Local Search for Elastic Image Matching 96

where f, f ′ are the labelings before and after the move respectively. Then, a local move

that improves the cell local cost necessarily improves the global energy, as long as the

frontier pixels of this cell are not moved by other threads at the same time. We call this

situation mutual exclusion, and we propose a specific strategy for the mutual exclusion

guarantee, called “dynamic change of cell frontiers” and explained in the next section.

Equation 6.2—Equation 6.5 correspond to the local evaluation on the cell level. A

finer-grained local evaluation could be carried out on the pixel level. Since a single-

pixel move only changes the data cost of this pixel and four pairs of smoothness costs

(suppose this pixel is not on image border), the energy difference introduced by the

move of a single pixel p at the position (x, y) can be computed by

∆E(f, f ′) = Dp(fp) + λ ·
∑

{p,q}∈N̂p

Vp,q(fp, fq)−Dp(f
′
p)− λ ·

∑
{p,q}∈N̂p

Vp,q(f
′
p, fq), (6.6)

where fp, f ′p are the labels of p before and after the move respectively; N̂p is a set of four

pairs consisting of p with its upper, lower, left, and right neighboring pixel respectively,

i.e.

N̂p = {{(x, y), (x, y−1)}, {(x, y), (x, y+1)}, {(x, y), (x−1, y)}, {(x, y), (x+1, y)}}. (6.7)

Then in this case, the mutual exclusion corresponds to the situation that no other thread

is moving either p or its four neighboring pixels while one thread is moving p.

In DLS, if a small move operator is employed, which only moves one pixel at a time,

we could use either pixel-level local evaluation or cell-level local evaluation. But clearly,

the pixel-level local evaluation is faster since it only computes on related pixels while

the cell-level one will compute on all the pixels in the cell. If a large move operator

is employed, which simultaneously moves multiple pixels in a cell, we should choose

the cell-level local evaluation. The designs of small move operators and large move

operators are given in Section 6.4.

6.3.4 Management of Cell Frontier Access

During the parallel operation, the coherence of local evaluation with mutual exclusion

is violated by conflict operations. A conflict operation occurs when a same pixel or two

neighboring pixels is/are being evaluated and moved simultaneously by two threads.

Conflict operations only happen on frontier pixels, which are the pixels on the cell

frontiers according to the cellular matrix partition of the image. This is because in our

data structures, a cell contains its frontier pixels. Therefore, a frontier pixel is included
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by more than one cell, and it might be handled by more than one thread at the same

time. By contrast, a non-frontier pixel is exclusively included by only one cell, hence it

is handled by one thread all the time.

We propose two strategies in order to eliminate the conflict operations in DLS. In the

first strategy, called dynamic change of cell frontiers (DCCF), we limit the move to the

internal pixels of a cell only. Cell frontier pixels remain at fixed locations, and they

are not concerned by local moves so that exclusive access of the thread to its internal

region delimited by the cell, is guaranteed. A problem that arises is how to manage cell

frontier pixels and make them participate in the optimization process. As a solution,

the cellular matrix decomposition is dynamically changeable from the CPU side before

the application of a round of DLS operations. At different moments, the cellular matrix

decomposition slightly shifts on the input image in order to change the cell frontiers and

consequently the fixed pixels. For a given cellular matrix decomposition, cell frontier

pixels are then fixed and not allowed to be moved by current DLS operations.

In DLS, if a small move operator is employed, which only moves one pixel at a time, we

only need the pixel-level local evaluation for fast execution. In this case, even though the

DCCF strategy still works, we propose another strategy, called synchronized execution,

to guarantee the mutual exclusion on pixel level in a faster way. In this strategy, cell

frontier pixels are not fixed, and the cellular matrix decomposition is constant. DLS

operations for pixels in the same cell are carried out in a deterministic order. Parallel

operations among different cells are highly synchronized, and they are performed on

pixels far away from each other.

We have implemented the two strategies. The synchronous strategy allows for faster

execution with only single pixel moves. The dynamic change strategy allows for more

complex operators in larger neighborhood, moving a set of pixels instead of a single

pixel. This strategy is then retained as the main solution for cell frontier management in

our proposed DLS framework. We now detail the implementations of the two strategies.

6.3.4.1 Dynamic Change of Cell Frontiers (DCCF)

In this strategy, we fix cell frontier pixels and do not allow any DLS move operations on

them. Note that the cell frontier pixels are decided by the cellular matrix decomposition.

Then, if we change the cellular matrix decomposition, the cell frontier pixels change

at the same time: some previously fixed pixels become free to move while some

previously unfixed pixels turn to fixed. After a few times of changing the cellular matrix

decomposition, all pixels can be made participate in the optimization process. The
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FIGURE 6.2: An example of dynamic change of cell frontiers. Red circles represent
pixels. Rectangular partition delimits pixels into different cells of the cellular matrix
decomposition. In (e) different colors mean different times that pixels have
participated in the optimization process after the four DLS operation periods with the
four cellular matrix decompositions of (a)—(d).
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change of the cellular matrix decomposition dynamically happens during the whole

DLS algorithm.

The DCCF can be implemented by simply shifting the cellular matrix decomposition in

the plane. Such an example is illustrated in Figure 6.2. The center position and the cell

radius R together decide the cellular matrix decomposition. In (a), the center position

is the pixel p0 denoted by a black circle, and the cell radius R is 3. In this example, we

only analyze the 49 pixels that locate in the center cell according to the cellular matrix

decomposition defined by (a). In (a)—(d), the red pixels are cell frontier pixels which are

fixed, according to the respective cellular matrix decompositions. Compared with (a),

the cellular matrix decomposition in (b) is shifted in the horizontal direction with the new

center position p1 which is three-pixel right of p0; the cellular matrix decomposition in (c)

is shifted in the vertical direction with the new center position p2 which is three-pixel up

of p0; the cellular matrix decomposition in (d) is shifted in the lower-left-to-upper-right

diagonal (secondary diagonal) direction with the new center position p3 which is three-

pixel upper-right of p0. So, starting from the cellular matrix decomposition of (a) and

then after a round of the three shifts of (b)—(d), any of the 49 pixels becomes unfixed

for at least one time, so as to participate in the optimization process for at least one

time. As indicated in (e), some of the pixels have participated for two times, while some

of the pixels have participated for four times.

In the DCCF strategy, multiple pixels in one cell can be moved together as long as they

are not fixed. Also, pixels at arbitrary positions could be moved at arbitrary period

of the DLS process. These properties increase the various possibilities compared

with the synchronized execution strategy. However, additional costs for storing and

dynamically switching different cellular decompositions are necessary. This method of

cellular matrix changes is retained for our framework since it is more general than the

synchronous strategy.

6.3.4.2 Synchronized Execution

In this strategy, cell frontier pixels are not fixed, and the cellular matrix decomposition is

constant. In every cell, operations are performed one by one on pixels in a deterministic

order. The order is the same for different cells. An example of the synchronized

execution is illustrated in Figure 6.3. The DLS operations in a cell consist of 49

execution steps: one pixel is dealt with at each step. Starting for the center pixel,

operations are carried out on pixels one by one in a counter-clockwise order until all

the 49 steps are finished. To guarantee that no conflict occurs, execution steps in

different cells are synchronized. Thus, parallel DLS operations among different cells
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FIGURE 6.3: Synchronized execution pattern. Red circles represent pixels. Numbers
and dash line arrows indicate the order of execution steps. Rectangular partition
delimits pixels into different cells in the cellular matrix decomposition.

are performed at a same pace. At a given time, the DLS operations are at the same

execution step in all cells, while the distributed pixels that are being handled in the same

step are far way from each other so that no conflict will ever happen.

The synchronized execution strategy is specially designed for the fast pixel-level local

evaluation with mutual exclusion, when only small move2 operators are employed in

the DLS. However, the drawback of this strategy is that it limits the variety of operator

behaviors. For example, if we want to make a move on an arbitrary pixel in a cell

meanwhile make another move on an arbitrary pixel in another cell, or if we want to

make large moves3 on some randomly picked pixels in a cell, these situations can not

be allowed. Hence, this strategy appears to be too restrictive even if easy to implement

and fast. By contrast, the DCCF strategy can eliminate conflict operations without

sacrificing the diversification of DLS operator behaviors.

6.4 Neighborhood Operators

In this section, we present different neighborhood operators that we design for the

DLS algorithm applied to the elastic grid matching. We use the notations of labeling

problems to present these operators. Move operations in a given neighborhood
2A small move operation only moves one pixel at a time.
3A large move operation simultaneously moves multiple pixels in a cell.
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structure correspond to changing labels of pixels in the corresponding labeling space.

Operators are classified between small moves and large moves. In the first case, only

a single pixel from the cell moves at a time; in the second case, larger sets of pixels

from a cell can simultaneously move.

6.4.1 Small Move Operators

In a move operation, if only one pixel moves meaning that only one pixel’s label is

changed, this kind of move operation is called small move operation. We designed two

small move operators: local move operator and propagation operator.

6.4.1.1 Local Move Operator

A move operation can be viewed as moving the considered pixel around its current

position within the range of a given window. Then, a local move operator applies an

increment/decrement to the current label of the considered pixel. An example of the

neighborhood in the matched grid, where the movement takes place, is presented in

Figure 6.4 (a), where the current label of the moving pixel p (center red circle) is fp.

All the candidate labels within a squared movement window with radius of 2 are listed.

Each candidate label, corresponding to a position in the window, is obtained by adding

an incremental/decremental displacement to the current label. Twenty-four candidate

labels are indicated in Figure 6.4 (a). The center position of the window corresponds

to the position of the considered pixel. Therefore, the local move operations can be

viewed as moving the considered vertex (pixel) in the matcher grid, around its current

position in the plane and within the range of the movement window.

Two parameters of the local move operator are the radius of the movement window

and the scale factor of the movement. The radius defines the movement range of the

operator while scale defines the moving step size. In the example of Figure 6.4 (a),

radius = 2 and scale = 1. Here, scale = 1 means that the movements are based on the

pixel wise precision. A move from fp to fp + (−1, 0) means moving the considered pixel

to the left-hand side by one pixel. If we set scale less than 1, for example scale = 1/2,

then the movements are based on the sub-pixel wise precision, and a move from fp to

fp + (−1, 0) means moving the considered pixel to the left-hand side by half pixel. In

the example of Figure 6.4 (a), the movement window is a squared window. It could also

be hexagonal window or rhombus window in our implementation, independently of the

particular topology.
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(a)

(b)

FIGURE 6.4: Two small move operators. Red circles represent pixels. f represents
label. In (a), small squares in the movement window represent positions in the plane.
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6.4.1.2 Propagation Operator

A propagation operator takes the labels of the considered pixel’s neighboring pixels, as

the candidate labels, and it replaces the current label with the best one found in the

propagation window. It “propagates” the good label from the neighboring pixels within

the propagation window, to the considered pixel. An example of propagation window

with radius 1 is presented in Figure 6.4 (b), where the grid represents the matcher grid,

and the current label of the considered pixel p (center red circle) is fp. All the labels

of the 8 neighboring pixels are within a squared propagation window with radius 1.

Note that in the propagation operator, the definition of neighboring pixels are not only

restricted to the standard 4-connected neighborhood system (as in the smoothness

energy term), and all the pixels locate in the propagation window are neighboring pixels

of the center considered pixel. The propagation operator can be viewed as moving

the considered vertex (pixel) in the matcher grid, toward the current position (in the

plane) of its neighboring vertex (in the topological grid) in order to be next to the

neighboring vertex in the plane. This operator respects the smoothness constrains

in visual correspondence applications that pixels belonging to the same object tend to

move together.

The radius of the propagation window is the only parameter of the operator. Normally

a radius of 1 which includes 8 neighboring pixels is enough. Note that in our

implementations, the propagation window could also be hexagonal window or rhombus

window.

6.4.2 Large Move Operators

Large move operators consider multiple pixels. We design two groups of large move

operators: random pixels operators and random window operators.

6.4.2.1 Random Pixels Move Operator

A random pixels move operator randomly picks several pixels in the considered cell,

and it assigns a same candidate label to these pixels. An exemplary move of such an

operator from the original labeling as shown in Figure 6.5, is illustrated in Figure 6.6 (a)

where five randomly picked pixels in the black-line circles are the considered pixels,

and they are all assigned with label of 3. The operator can be viewed as moving the

considered vertices (pixels) in the matcher grid together toward a same direction, where
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FIGURE 6.5: A labeling example. Vertices represent pixels. Different numbers
represent different labels. Rectangular partition delimits pixels into different cells in
the cellular matrix model. Note that this labeling example is used as the original
labeling in order to explain different large move operators in Figures 6.6 and 6.7.

each considered vertex is moved with the same displacement from its original position

in the plane before any movement.

The only parameter is pickedNumber which indicates the number of pixels the operator

randomly picks. The value of pickedNumber should be no larger than the cell size (the

number of pixels in a cell).

6.4.2.2 Random Pixels Jump Operator

A random pixels jump operator picks pixels in the same way as the random pixels

move operator, and it applies a same increment/decrement to the current labels of the

considered pixels. An exemplary move of such an operator from the original labeling

in Figure 6.5, is illustrated in Figure 6.6 (b) where five randomly picked pixels in the

black-line circles are the considered pixels, and their labels are all added by 2. The

operator can be viewed as moving the considered vertices (pixels) in the matcher grid

together toward a same direction, where each considered vertex is moved with the

same displacement from its current position in the plane. The difference between

the random pixels move operator and the random pixels jump operator is that the

former operator moves vertices based on their original positions in the plane before any

movement, while the latter operator moves vertices based on their current positions in
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(a) random pixels move operator (b) random pixels jump operator

(c) random pixels expansion operator (d) random pixels swap operator

FIGURE 6.6: Example of random pixels operators. Vertices represent pixels. Different
numbers represent different labels. Rectangular partition delimits pixels into different
cells in the cellular matrix model. Note that the move operations by respective
operators, are all based on the original labeling in Figure 6.5.

the plane. The only parameter is pickedNumber which has exactly the same function

as in the random pixels move operator.

6.4.2.3 Random Pixels Expansion Operator

A random pixels expansion operator randomly picks two groups of pixels, where pixels

in the same group have the same label. It “expands” the label of one group to the other,

setting the labels of all the pixels in the second group with the same label as the first

group. An exemplary move of such an operator from the original labeling in Figure 6.5,
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is illustrated in Figure 6.6 (c). Four randomly picked pixels with label of 1 in the black-

line circles, are the first group of considered pixels; two randomly picked pixels with

label of 5 in the black-dash-line circles, are the second group of considered pixels. In

Figure 6.6 (c), the operator expands the label of the first group to the second group,

setting the labels of the two considered pixels in the second group with label of 1.

The only parameter ismaxPickedNumber which indicates the max number of pixels the

operator is allowed to randomly pick for each group. The value of maxPickedNumber

should be no larger than the cell size. Then for a given group, the actual number of

considered pixels need to be picked is determined by randomly choosing a number

from 1 to maxPickedNumber. This operator is inspired by the expansion move in some

binary graph-cut implementations (see next operator).

6.4.2.4 Random Pixels Swap Operator

A random pixels swap operator picks pixels in the same way as the random pixels

expansion operator. It “swaps” the labels of the two groups, setting the labels of all the

pixels in the second group with the label of the first group, meanwhile setting the labels

of all the pixels in the first group with the label of the second group. An exemplary move

of such an operator from the original labeling in Figure 6.5, is illustrated in Figure 6.6 (d).

Four randomly picked pixels with label of 1 in the black-line circles, are the first group

of considered pixels; two randomly picked pixels with label of 5 in the black-dash-line

circles, are the second group of considered pixels. In Figure 6.6 (d), the operator sets

the labels of the two considered pixels in the second group with label of 1, and it sets the

labels of the four considered pixels in the first group with label of 5. The only parameter

is maxPickedNumber which has exactly the same function as in the random pixels

expansion operator.

The designs of random pixels expansion operator and random pixels swap operator are

inspired by the α-expansion move and the α-β-swap move in [BVZ01, Vek99], where

the authors use these two moves to find local minimum for the labeling problem by

binary graph cuts [FF62, BK04].

6.4.2.5 Random Window Move Operator

A random window move operator picks a fixed-sized window of pixels at a random

position within the considered cell, and it assigns a same candidate label to all the

pixels in this picked window. An exemplary move of such an operator from the original

labeling in Figure 6.5, is illustrated in Figure 6.7 (a) where a square window with radius
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(a) random window move operator (b) random window jump operator

FIGURE 6.7: Example of random window operators. Vertices represent pixels.
Different numbers represent different labels. Rectangular partition delimits pixels into
different cells in the cellular matrix model. Note that the move operations by
respective operators, are all based on the original labeling in Figure 6.5.

of 1 is randomly picked, containing the nine considered pixels denoted by black-line

circles. The operator assigns the labels of the nine considered pixels with label of 2.

The operator can be viewed as moving a window of vertices (pixels) in the matcher

grid together toward a same direction, where each considered vertex is moved with the

same displacement from its original position in the plane before any movement.

The only parameter is pickedWindowRadiu which indicates the radius of the randomly

picked window of considered pixels. In Figure 6.7 (a) pickedWindowRadiu is set to

1. Note that in our implementations the window could also be hexagonal window or

rhombus window.

6.4.2.6 Random Window Jump Operator

A random window jump operator picks pixels in the same way as the random window

move operator, and it applies a same increment/decrement to the current labels of all

the pixels in this picked window. An exemplary move of such an operator from the

original labeling in Figure 6.5, is illustrated in Figure 6.7 (b). The labels of the nine

considered pixels are all added by 2. The operator can be viewed as moving a window

of vertices (pixels) in the matcher grid together toward a same direction, where each

considered vertex is moved with the same displacement from its current position in the

plane. The difference between the random window move operator and the random

window jump operator is similar to the difference between the random pixels move
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operator and the random pixels jump operator: the moves of the former are based on

original positions in the plane before any movement, while the moves of the latter are

based on current positions in the plane. The only parameter of the random window

jump operator is pickedWindowRadiu which has exactly the same function as in the

random window move operator.

6.5 DLS with Multiple Operators Under VNS Framework

We present the main GPU CUDA program that implements our DLS algorithm. The

kernel calling sequence from the CPU side allows applications of different operators in

the spirit of VNS and manages dynamic change of cellular matrix frontiers. According

to our previous experiments, the repartition of tasks between host (CPU) and device

(GPU) is actually the best compromise we found to exploit the GPU CUDA platform at

a reasonable level of computation granularity.

6.5.1 DLS Execution Pattern from Host Side

The flow chart executed from the CPU side is presented in Figure 6.8. The data transfer

between the CPU side and the GPU side only occurs at the beginning and the end of

the algorithm. The two kernels that are called from the CPU side and executed on GPU

are: the random number generation kernel and the DLS kernel.

On the GPU side, random numbers are needed for random move operators. The

random numbers are generated in advance by the random number generation kernel

stated in Subsection 3.5.4. This kernel is regularly called during the algorithm according

to the random number generation rate.

It is the CPU side that controls DLS kernel calls with different operators executed within

the dynamic change of cell frontiers (DCCF) pattern for frontier cells management.

With several neighborhood operators in hand, we use them under the VNS framework

in order to enhance the solution diversification.

6.5.2 DLS Main Kernel

The generic loop template is instantiated with one single DLS operator working,

based on one cellular matrix decomposition, as illustrated in Kernel 11. In the input

parameter list, currentCellularMatrix indicates which cellular matrix decomposition



Chapter 6. Distributed Local Search for Elastic Image Matching 109

FIGURE 6.8: Flowchart of DLS implementation.

is currently used so that the FGet.initialize function can set corresponding cell

frontier pixels fixed. The FGet.get function picks one pixel or multiple pixels that

are not fixed. Based on the picked pixel/pixels, all the neighbor solutions G′1

will be sequentially generated by FNeighborhood.get, and then be evaluated by

FEnergy.CellLevelEvaluation. Cell-level local evaluation is employed in order to

allow multiple pixels to move together. If the neighbor solution is better, the procedure

replaces the current solutions G1 with G′1, through FNeighborhood.move. Note that in

our practical implementation, the contribution after the neighborhood move is evaluated

by FEnergy.CellLevelEvaluation, as indicated in Line 8 of Kernel 11, but the energy

before the neighborhood move is not necessarily computed every time. It only needs

to be done at the beginning of the DLS loop and stored as the current energy of the
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Kernel 11: DLS loop in the DCCF pattern.
// For each celli of cellular matrix WD ×HD, do:

Input: G1, G2, celli, FGet, FNeighborhood, FEnergy, currentCellularMatrix
1 begin
2 FGet.initialize(celli, currentcellularmatrix); ;
3 while FGet.next(celli) do
4 pixels← FGet.get(celli, G1); ;
5 FNeighborhood.initialize(celli, pixels); ;
6 while FNeighborhood.next(celli) do
7 G′1 ← FNeighborhood.get(celli, pixels); ;
8 if FEnergy.CellLevelEvaluation(G′1, G2, celli) <

FEnergy.CellLevelEvaluation(G1, G2, celli) then
9 G1 ← FNeighborhood.move(celli, pixels,G

′
1); ;

10 return; ;

cell. Then in each execution of Line 8, the new energy after the neighborhood move,

computed by FEnergy.CellLevelEvaluation, is compared with the current energy, and

it replaces the current energy if the new energy is lower.

6.6 Conclusion

We have proposed the distributed local search (DLS) algorithm to handle elastic image

matching. The GPU CUDA implementation consists of an instantiation of the main

projection loop on device side, together with a kernel calling sequence on different

operators and cellular matrix decompositions controlled from the CPU side. We have

provided a solution to the problem of frontier pixel access by the use of dynamic

changes of cell frontiers in the cellular matrix decomposition. Evaluations can be

performed locally inside a cell, then guaranteeing a true evaluation of the global energy

function. We have detailed operators in two classes: the first class contains the single

pixel move operators (small neighborhood); the second class contains large move

operators (large neighborhood). We have presented the details of algorithms from host

and device sides, describing data transfers, kernel calls, and the main kernel function

of DLS loop. The next chapter will deal with experimental evaluations of performances

on standard elastic grid matching problems.



Chapter 7

Experimental Study of DLS to
Visual Correspondence

7.1 Introduction

In this chapter, we experiment on the DLS algorithm applied to visual correspondence

applications. First, we apply DLS to stereo matching, since comparative evaluations

on energy minimization is relatively easy due to the many state-of-the-art methods

that are freely available in software form. We evaluate operators individually, with

different parameter settings. We also evaluate different combinations of operators,

and different initializations, under the VNS framework we proposed. Then, we turn

to comparative evaluations with graph-cut methods, belief-propagation methods and

others. Comparative evaluations are performed according to the growing size of

instances in order to evaluate the general evolution tendency of the GPU acceleration

factor. All the analyses are performed on the stereo matching problems. Afterwards,

we apply DLS to optical flow at the end of the chapter, with reporting visual results

and ground truth evaluations performed on standard benchmarks. In that case, will

be mentioned the problem of the correlation between energy minimization and ground

truth evaluation.

7.2 Evaluation of Operators

In this section, we test different DLS operators with stereo matching application.

We follow in the footsteps of Boykov et al. [BVZ98], Tappen and Freeman [TF03],

and Szeliski et al. [SZS+08], using a simple energy function for stereo, applied to

111
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benchmark images from the widely used Middlebury stereo data set [SS03]. The

labels are the disparities, and the data costs are the absolute color differences

between corresponding pixels for each disparity, as defined in Equation 2.14. For the

smoothness term in energy function, we use a truncated linear cost as the piecewise

smooth prior defined in Equation 2.21 where up,q = 1, C = 2, and ‖ · ‖ is the L1 norm.

The smoothness weight parameter λ is set to 20.

We use DLS with the dynamic change of cell frontiers (DCCF) pattern. Since the

purpose of the evaluation of operators is to analyze the potentials of different operators

in terms of minimizing the energy function, we set the stop condition of DLS to

convergence, in order to get the most out of operators. To be more specific, we

stop the algorithm after 10 external iterations without lower energy found in any cell

(by any thread). Note that this stop condition may significantly prolong the execution

time of the algorithm, and it is only for the experimental purpose of this section. More

often, we should set a reasonable number of external iterations in order to achieve a

good compromise between energy and execution time, just like what we do during the

experiments of the other sections in this chapter.

Instead of reporting the absolute energy values, we report the percentage deviation

to the best known solution (lowest energy) as the %PDB value. We choose the

best solution from the executions of several state-of-the-art energy minimization

methods1 from the literature, including the tree-reweighted message passing (TRW)

[WJW05, SZS+08], graph cuts (GC) [BVZ01, BK04, SZS+08], and belief-propagation

(BP) [Pea14, TF03, SZS+08]. Then, we compute the %PDB value as %PDB = (DLS

energy − lowest energy)× 100/lowest energy.

7.2.1 DLS with Single Operator

In Figure 7.1, are reported the experimental results of DLS with only one operator, on

the Tsukuba (384× 288) image benchmark with the maximum number of labels (repre-

senting disparities) set to 16. We test the random window move operator, the random

pixels move operator, and the random pixels expansion swap operator2, respectively.

Results show that for the random pixels move operator, larger pickedNumber values

lead to faster convergences toward higher energies, while smaller pickedNumber

values lead to slower convergences toward lower energies. For the random pixels ex-

pansion swap operator, the maxPickedNumber value has more impact on energy than
1For all the tested energy minimization algorithms, we use the original codes from

http://vision.middlebury.edu/MRF/code/.
2The random pixels expansion swap operator combines the random pixels expansion operator and the

random pixels swap operator together, selecting the best move of these two operators to act.
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FIGURE 7.1: DLS with single operator on the Tsukuba benchmark. The x-axis shows
execution time and the y-axis shows the %PDB value computed according to the
lowest energy found by the TRW approach [WJW05, SZS+08]. All the results are
mean values over 10 runs. Acronyms: “pwr” stands for pickedWindowRadiu; “pn”
stands for pickedNumber; “mpn” stands for maxPickedNumber.

execution time, and it produces lowest energy with maxPickedNumber value set to 75.

The random window move operator produces lowest energy with maxPickedNumber

value set to 3, among the four pickedWindowRadiu values. Best compromises

between energy and execution time look provided by the random pixels expansion swap

operator.

7.2.2 DLS with Combination of Operators

We also test DLS with combination of multiple operators under the proposed VNS

framework as stated in Subsection 6.5. At each external iteration, different operators

are applied to the DLS kernel one by one. The eleven combinations of operators that we

have tested are listed in Figure 7.2 (b), and their experimental results on the Tsukuba

(384× 288) image benchmark are depicted in Figure 7.2 (a).

In principle, more operators tend to lead to better diversification for solution, hence lead

to lower energies. This is supported by the result of the most complex combination—

“local move + propagation + random window move + random pixels move + random

pixels expansion swap”—which is composed of 5 operators and produces the lowest

energy. Another observation is that the combinations which include the random pixels

expansion swap operator are more likely to find lower energies than other combinations.

We think this is due to the highly stochastic nature of the random pixels expansion
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(a) results

(b) combinations of operators

FIGURE 7.2: DLS with different operator combinations, on the Tsukuba benchmark.
The x-axis shows the execution time and the y-axis shows the %PDB value
computed according to the lowest energy found by the TRW approach. All the results
are mean values over 10 runs.
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(a) results

(b) combinations of operators

FIGURE 7.3: DLS with different solution initializations, on the Tsukuba benchmark.
The x-axis shows the execution time and the y-axis shows the %PDB value
computed according to the lowest energy found by the TRW approach. All the results
are mean values over 10 runs.
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swap operator, where two randomly picked groups of pixels are considered. Also,

the combination of “propagation + random pixels expansion swap” seems like a good

choice, since it produces relatively lower energy than most of the others, with the

shortest execution time. Therefore, we use this combination of operators for our

comparative experiments between DLS and other state-of-the-art energy minimization

methods, reported in Section 7.4.

7.3 Influence of Solution Initialization

The results obtained by local search metaheuristics are usually sensitive to the initial

state of solution, especially in high-dimensional spaces with non-convex energies (such

as those that arise in vision) due to the huge number of local minima [SZS+08]. We

experiment on three different solution initializations: (1) “0 init” where DLS is started

with all labels set to 0; (2) “random init” where DLS is started with each label set to

a random value from 0 to the maximum label value (the largest disparity); (3) “WTA

init” where we assign each pixel the label with the lowest data cost in a winner-take-

all round. Results are reported in Figure 7.3. In each initialization case, we test

three combinations with 2, 3, and 5 operators respectively, as listed in Figure 7.3 (b).

According to the results shown in Figure 7.3 (a), “0 init” takes the least execution time

in average, while “random init” takes the most execution time in average. “WTA init”

produces the lowest energies in average. In all the following experiments on stereo

matching problems, we will use “WTA init” as the solution initialization.

7.4 Trace Execution of Different Methods

We compare execution traces of different methods, on the stereo matching benchmark-

s, in order to better gauge their respective behaviors with respect to energy minimization

as the number of iterations grows. We compare DLS with six other methods3: iterated

conditional modes (ICM) [Bes86] which is an old approach using a deterministic

“greedy” strategy to find a local minimum; sequential tree-reweighted message passing

(TRW-S) [SZS+08] which is an improved version of the original tree-reweighted

message passing algorithm [WJW05]; Belief-Propagation-S and Belief-Propagation-M

[SZS+08] which are two updated version of the max-product loopy belief propagation

(LBP) implementation of [TF03]; Graph-Cut-swap and Graph-Cut-expansion which are
3For all the tested energy minimization algorithms, we use the original codes from

http://vision.middlebury.edu/MRF/code/.
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FIGURE 7.4: Different energy minimization methods on Tsukuba (384×288) stereo
matching benchmark with large disparity range. The disparity range is set to 64
pixels. Note that the execution time is shown on the x-axis using a log scale. The
lower chart is a zoom-in of the upper chart.

two graph cuts (GC) based algorithms proposed in [BVZ01] and implemented in [BK04].

For DLS, we use the operator combination of “propagation + random pixels expansion

swap”. We run DLS for 100 iterations and report both the energy and the execution

time after each 10 iterations. Other methods have no preset number of iterations

and they stop running after no lower energy can be found. Among these methods,

results of ICM are reported after each 5 iterations, while results of the other methods

are reported iteration by iteration. For each experiment group, the %PDB value is

computed according to the lowest energy found among all the tested algorithms in the

current experiment group.

We firstly report the trace execution for a small size benchmark Tsukuba (384×288)

with a large (relatively large compared with image size) disparity range of 64 pixels.

Results are plotted in Figure 7.4, where the lower chart is a zoom-in of the upper

chart. The lowest energy is obtained by TRW-S. Here, DLS generates a relatively

higher energy compared with other methods (except for ICM) but with %PDB value
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FIGURE 7.5: Different energy minimization methods on half size Teddy (900×750)
stereo matching benchmark with small disparity range. The disparity range is set to
64 pixels. Note that the execution time is shown on the x-axis using a log scale. The
lower chart is a zoom-in of the upper chart.

less than %5. We then experiment on a large size benchmark Teddy (900×750) with a

small (relatively small compared with image size) disparity range of 64 pixels. Results

are plotted in Figure 7.5. In this case, the lowest energy is obtained by DLS. All the other

methods generate higher energies with %PDB value larger than %2. Afterwards, we

experiment on the same Teddy (900×750) benchmark with a large disparity range of

128 pixels. At this time, the Belief-Propagation-S, Belief-Propagation-M, and TRW-S

algorithms fail to run on our station4, due to the large amount of memory needed

for the large disparity range. But we report the results of other methods anyway

in Figure 7.6, where Graph-Cut-expansion generates the lowest energy, and DLS

generates a relatively higher energy compared with the other two graph cuts based

methods (Graph-Cut-expansion and Graph-Cut-swap) but with %PDB value less that

%5. From the results, it seems that DLS can find lower energy within a small disparity

range, when compared with other methods. Meanwhile, when operating on a large
4The detailed information of our experiment platforms is reported in the introduction section of

Chapter 5.
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FIGURE 7.6: Different energy minimization methods on half size Teddy (900×750)
stereo matching benchmark with large disparity range. The disparity range is set to
128 pixels. Note that the execution time is shown on the x-axis using a log scale. The
lower chart is a zoom-in of the upper chart.

(a) Ground Truth (b) ICM (c) Belief-Propagation-S (d) Belief-Propagation-M

(e) Graph-Cut-Swap (f) Graph-Cut-Expansion (g) TRW-S (h) DLS

FIGURE 7.7: Disparity maps for Tsukuba (384×288) benchmark obtained with
different energy minimization methods. The disparity range is set to 64 pixels.
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(a) Ground Truth (b) ICM (c) Belief-Propagation-S (d) Belief-Propagation-M

(e) Graph-Cut-Swap (f) Graph-Cut-Expansion (g) TRW-S (h) DLS

FIGURE 7.8: Disparity maps for half size Teddy (900×750) benchmark obtained with
different energy minimization methods. The disparity range is set to 64 pixels.

disparity range, there is still a gap between DLS and other state-of-the-art global

methods for energy minimization, such as the graph cuts based algorithms and the

belief propagation based algorithms.

In Figure 7.7 and Figure 7.8, are displayed the disparity maps for the two tested

benchmarks. Note that during our experiments, we choose the stereo matching

application but only view it as an energy minimization problem, just focusing on

minimizing energies. The disparity maps obtained from all the tested methods are

the raw results after energy minimization, without any additional post-treatments such

as left-right consistency check, occlusion detection, or disparity smoothing, which are

all treatments specific to stereo matching in order to minimize the errors compared with

ground truth disparity maps. Moreover, as pointed out in [SZS+08], the ground truth

solution may not always be strictly related to the lowest energy.

7.5 Acceleration Factors According to Problem Size

In this section, we focus on the performance of DLS when input size augments. We

experiment on the Teddy benchmark with six sizes from the smallest size of 630×525

to the largest size of 1620×1350. We uniformly set the disparity range to 128 pixels,

for all the sizes. We use DLS with the operator combination of “propagation + random

pixels expansion swap”. We denote this DLS implementation as DLS-GPU. We also

test the counterpart CPU sequential version which is denoted by DLScpu. Moreover,

we test ICM, Graph-Cut-swap, and Graph-Cut-expansion. For Belief-Propagation-S,
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(a) (b)

(c) (d)

(e) (f)

FIGURE 7.9: Stereo matching on Teddy benchmarks with different sizes. (b) and (d)
are zoom-in parts of (a) and (c). The plot in (e) illustrates the acceleration factor
computed according to the slowest method (DLScpu), while the plot in (f) illustrates
the acceleration factor computed according to the method (GC-expansion) that gets
the lowest energy. For the stop condition, the ICM method, and the graph cuts based
methods (GC-expansion and GC-swap) run until convergence when no lower energy
can be further found; the DLS methods (DLS-GPU and DLScpu) run for 100
iterations. The disparity range is set to 128 pixels.

Belief-Propagation-M, and TRW-S, they fail to run on our station with the image size of

900×750 and larger, due to the large amount of memory needed for the disparity range

with 128 pixels. Therefore, we do not consider these three methods in this section.

The results of different methods are reported in Figure 7.9. The charts in the

second column of the figure correspond to zoom-in of the first column. The results

of ICM, Graph-Cut-swap, and Graph-Cut-expansion are obtained after convergence

(no lower energy can be further found); the results of DLS-GPU and DLScpu are

obtained after 100 iterations. From top to bottom are reported the energy value as

%PDB, the execution time, and the acceleration factor of each method relative to
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the slowest method (DLScpu) and the method (GC-expansion) that gets the lowest

energy, respectively. For each method, the acceleration factor in Figure 7.9 (e) is

computed by (execution time of DLScup / execution time); the acceleration factor

in Figure 7.9 (f) is computed by (execution time of GC-expansion / execution time).

The Graph-Cut-expansion (GC-expansion) method generates the lowest energies.

Hence, all %PDB values are computed based on the lowest energy found by the

Graph-Cut-expansion method. The ICM method runs fastest but generates very high

energies with %PDB values in the range of 60%—70%. DLS-GPU runs a little slower

than ICM but generates much lower energies with more acceptable %PDB values

around 6%. An important observation is that, among all the tested methods, only the

DLS-GPU has an acceleration factor which increases according to the augmentation of

input size. This means that further improvement could be carried on only by the use of

multi-processor platform with more effective cores. Whereas, we think that DLS with the

required combination of operators looks promising in that it generates new intermediate

compromises between time and quality. Recall that some methods have failed to be

applied to large size images. Also, the acceleration factor for graph-cut methods over

the DLScpu clearly decreases as the image size increases. Larger experiments on

larger benchmark sets with large size images should be conducted near in the future.

7.6 Experimental Results on Optical Flow Benchmarks

In this section, we employ DLS for optical flow applications. In this application, the DLS

is applied in the synchronized execution pattern, using only small move operators for

fast computation. However, we use a complex energy function where the data term

is a window based cost aggregation of the matching cost defined by Equation 2.17.

For the smoothness term, we use a linear cost as the piecewise smooth prior and set

the smoothness weight parameter λ (see Equation 2.12) to 0.5. We use DLS with

the operator combination of “propagation + local move” under VNS framework. In

order to obtain flow values with sub-pixel precision, we set the scale parameter of local

move operator to 1/8, and access sub-pixel positions in input images through bilinear

interpolation. We start DLS with random initialization where the flow value of each pixel

is a random value within a certain range. For the occlusion detection, we apply a left-

right cross checking procedure and use a weight median filter [HRB+13] to fill invalid

pixels as post-processing. We test our method with the Middlebury data set [BSL+11]

of optical flow5. The visualized flow value results are shown in Figure 7.10. Detailed

evaluations compared with the top 5 optical flow methods in the Middlebury rank (up
5http://vision.middlebury.edu/flow/data/
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(a) Army flow (b) Army error (c) Mequon flow (d) Mequon error

(e) Schefflera flow (f) Schefflera error (g) Wooden flow (h) Wooden error

(i) Grove flow (j) Grove error (k) Urban flow (l) Urban error

(m) Yosemite flow (n) Yosemite error (o) Teddy flow (p) Teddy error

FIGURE 7.10: DLS optical flow visualization results on Middlebury benchmarks. The
error is average endpoint error evaluated by the Middlebury website.

to October 2015) are reported in Table 7.1 and Table 7.2. The average execution

time of DLS for the eight tested benchmarks is 3.1 seconds on our GPU platform,

compared with the average execution time of 573.07 seconds from the sequential CPU

counterpart version, with an average acceleration factor of 173.

It is a well-known fact that the minimum energy level does not necessarily correlate to

the best real-case matching. Here, we only address energy minimization discarding

too much complex post-treatments necessary for the “true” ground truth matching.

We conclude that a gap in quality remains to be covered with DLS applied to optical

flow yet. In order to improve the matching quality in terms of minimizing the errors

to ground truth only, specially designed terms for detecting typical situations in vision,

such as occlusion, slanted surfaces, and the aperture problem, need to be added in the

formulation of energy function. Furthermore, more complex post-treatments for invalid

flow value fixing and smoothing should also be considered.
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TABLE 7.1: Middlebury optical flow evaluation results (Part 1).

Average
endpoint

error

Army
(Hidden texture)

Mequon
(Hidden texture)

Schefflera
(Hidden texture)

Wooden
(Hidden texture)

all disc untext all disc untext all disc untext all disc untext
NNF-Local [Mid15a] 0.07 0.20 0.05 0.15 0.51 0.12 0.18 0.37 0.14 0.10 0.49 0.06

PMMST [Mid15a] 0.09 0.21 0.07 0.18 0.51 0.16 0.21 0.42 0.17 0.10 0.33 0.08
OFLAF [KLL13] 0.08 0.21 0.06 0.16 0.53 0.12 0.19 0.37 0.14 0.14 0.77 0.07

MDP-Flow2 [XJM12] 0.08 0.21 0.07 0.15 0.48 0.11 0.20 0.40 0.14 0.15 0.80 0.08
NN-field [CJL+13] 0.08 0.22 0.05 0.17 0.55 0.13 0.19 0.39 0.15 0.09 0.48 0.05

DLS 0.27 0.68 0.24 1.64 1.75 2.05 1.05 1.49 1.60 0.77 2.00 0.80

TABLE 7.2: Middlebury optical flow evaluation results (Part 2).

Average
endpoint

error

Grove
(Synthetic)

Urban
(Synthetic)

Yosemite
(Synthetic)

Teddy
(Stereo)

all disc untext all disc untext all disc untext all disc untext
NNF-Local [Mid15a] 0.41 0.61 0.21 0.23 0.66 0.19 0.10 0.12 0.17 0.34 0.80 0.23

PMMST [Mid15a] 0.51 0.74 0.28 0.24 0.65 0.20 0.11 0.12 0.17 0.37 0.74 0.35
OFLAF [KLL13] 0.51 0.78 0.25 0.31 0.76 0.25 0.11 0.12 0.21 0.42 0.78 0.63

MDP-Flow2 [XJM12] 0.63 0.93 0.43 0.26 0.76 0.23 0.11 0.12 0.17 0.38 0.79 0.44
NN-field [CJL+13] 0.41 0.61 0.20 0.52 0.64 0.26 0.13 0.13 0.20 0.35 0.83 0.21

DLS 1.15 1.57 1.07 2.45 2.68 1.47 0.46 0.32 1.21 2.26 2.86 4.28

7.7 Conclusion

We have experimented on the DLS algorithm applied to visual correspondence

applications including stereo matching and optical flow. The main encouraging result

is that the DLS on stereo matching seems to be the only method that provides

an increasing acceleration factor as the instance size augments, for a result of

quality about 4%—6% deviation to the best known energy value. For all the other

approaches, the acceleration factor, against the slowest sequential version of DLS,

is decreasing, except for the ICM method, which however only produces poor result

of about 70% deviation to the best known energy. Graph cuts based algorithms

and belief propagation based algorithms are well-performing approaches concerning

quality, however the computation time increases quickly along with the instance size.

That is why we hope for further improvements or improved accelerations of the DLS

approach with the availability of new multi-processor platforms with more independent

cores. Results of optical flow are evaluated according to ground truth, not the energy

value. It should follow that many tricks are certainly not yet implemented to make energy

minimization coincide to ground truth evaluation. Results on more benchmarks should

be carried on, together with better adjustment of the method to ground truth evaluation

and related modified energy functions.
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Conclusions and Future Work

8.1 Conclusions

Parallel implementation models based on data duplication look adapted to standard

peer-to-peer multi-processors or networks of workstations, since the level of granularity

allows communications by message passing. According to the data decomposition

paradigm, GPU platform looks more suited to the low level of granularity and the

many local interactions that take place, because all processors (threads) have direct

accesses to global memory with high throughput. In this thesis, we have tried to

implement models of “data decomposition, control decentralized, global memory” type,

on GPU platforms. Certainly, granularity of the parallel computation depends on

many compromises between the complexity of the treatments and the requirement

for non divergent codes executed on GPU. The CPU side plays a central role in the

management of kernel calls. However, we have paid a particular attention so that most

of the optimization operations are done in parallel. The model we have proposed is

called cellular matrix and it partitions data, defines the level of computation granularity,

and allows generic and systematic association of processing units to the data deployed

in the Euclidean plane. Based on the cellular matrix model, we can perform efficient

spiral search with constant time O(1) in average for uniform distribution.

We have provided a generic framework for Euclidean grid matching problems based on

the cellular matrix model. We have presented topological k-means problems formulated

in the framework, and the related parallel k-means procedures of the SOM algorithm.

We have proposed the superpixel adaptive segmentation map (SPASM) algorithm,

as a superpixel image segmentation algorithm, which combines the parallel on-line

SOM structured mesh generation and the parallel batch SOM clustering. The SPASM

algorithm can generate segmentation where the distribution/density of superpixels

125
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coincides with the distribution of some specified attribute of input image, such as edges,

textures, and depths.

We have also proposed the distributed local search (DLS) algorithm and applied it

to visual correspondence applications. In this case, the considered pixel labeling

problems can be viewed as Euclidean grid matching problems and formalized under

an energy minimization framework. Then, we have dealt with the problems as

combinatorial optimization problems by minimizing the energy function through the

proposed DLS algorithm. In DLS, classical drawbacks to address are related to

cell frontier management and solution diversification. In order to eliminate the

conflicting operations near cell frontiers, we have proposed two execution patterns

for the DLS algorithm: synchronized execution pattern and dynamic change of cell

frontiers pattern. In order to enhance the solution diversification, we have designed

different neighborhood operators including two small move operators and six large

move operators, so that we can jointly use multiple operators in the DLS algorithm,

combing them under a variable neighborhood search (VNS) framework.

We have performed experiments on GPU platform with CUDA implementations.

For all the three k-means applications, our GPU parallel versions always produce

substantial acceleration over their sequential counterparts. We have evaluated our

GPU implementation of the parallel SOM TSP application, on different large-size TSP

instances from different benchmarks. These instances include 33 TSPLIB [Rei91]

instances with sizes from 1000 cities to 85900 cities and 19 National TSP’s [nat09]

with sizes from 1621 cities to 71009 cities. Our GPU SOM implementations run a lot

faster than the CPU memetic SOM and Co-Adaptive Net, which are two neural network

methods in the literature that perform experimental studies on large size benchmark

instances. The execution time of our GPU implementation increases very slowly

compared to either memetic SOM or Co-Adaptive Net, when the input instance size

augments.

We have conducted experiments on our GPU implementation of the structured meshing

application and its counterpart CPU implementation. The execution time of GPU

version for all six tested images is steady and little. The acceleration factor, which is the

ratio of CPU version’s execution time by GPU, varies from factor 5 to 8. We have also

studied the relationship between execution time and input size of GPU implementation

and its counterpart CPU version, by carrying out experiments with four disparity maps

at small, medium and large scales, respectively. The average acceleration factors

of the three sets are 5, 12 and 39 respectively, as input size grows, which indicate

augmentation of acceleration factor with input size.
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We have tested our SPASM algorithm utilizing two kinds of image attributes as the

density distributions for cluster center initialization with the on-line SOM: image gradient

and disparity value. The SPASM algorithm’s ability of generating adaptive segmentation

with respect to user-specified density distribution has been demonstrated through these

two tests and the comparison of their results. We have compared the SPASM algorithm

with the state-of-the-art SLIC algorithm, on seven input images of growing sizes, setting

different initial superpixel sizes. We have tested both GPU version and CPU version

for both two algorithms. Compared with others, the execution time of GPU SPASM

increases in a linear way with a very weak increasing coefficient, when the input image

size augments. The acceleration factor of GPU SPASM against its CPU sequential

counterpart version is 39 in average for the seven tested images.

For DLS applications, we have carried out experiments on standard benchmarks and in

comparison with state-of-the-art energy minimization approaches. Among all the tested

methods, only DLS has an acceleration factor (either against the slowest sequential

version of DLS or against the graph cuts based method that gets the lowest energy)

which is increasing according to the augmentation of input size, for a result of quality

about 4%—6% deviation to the best known energy value. We think that the results

imply the potentiality of the approach to substantially improve its performance in the

future as more physical cores will be available in GPU. We have applied DLS to optical

flow applications and tested eight benchmarks from the Middlebury data set. The

average execution time is about 3 seconds on our GPU platform, compared with the

average execution time of 573 seconds of the CPU sequential counterpart version, with

an average acceleration factor of 173.

8.2 Future Work

Several future works can be considered as extensions of this thesis. The potential

of DLS could be further verified through systematical experiments on large size

benchmarks, as a continuation of this work on the visual correspondence problems.

Particularly, we will concentrate on the optical flow experiments for which a large set of

operators have been designed in the DLS framework.

We expect that the DLS approach could yield a new standard metaheuristic based on

parallel variable neighborhood search. An attention will be paid to the development

of robust and generic software with object orienting programming (OOP) and meta-

programming, following the continuation of the work already done for the cellular matrix

in different topologies, using functors and template codes.
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The cellular matrix model could be further improved by the introduction of dynamic load

balancing properties. It could be possible, for example, to compute adapted cells by

k-means tools for balanced covering of brute data. Also, recursive decomposition for

computation reduction should be addressed by the means of plane decomposition with

recursive grids, in a way similar to quad-tree, in different topologies. This could allow

the use of new compute capability GPUs with recursive kernel calls.

As standard tools for image processing and vision, parallel k-means and elastic match-

ing approaches could be combined in different ways to address more complex and

composite problems. For example, a possible formulation could be double-matching,

using bi-directional projection with two grids with both variables and inputs. Also,

different sequential steps in image processing could be merged into more integrated

sequences dealing with grids of same nature. For example, one could compute

disparity maps at the same time as generating some compressed representations with

superpixels, meshing or clustering.

Implementations on different platforms such as clusters, and possibly configurable

systems as field-programmable gate array (FPGA), or specific systems as application-

specific integrated circuit (ASIC), and other system on chip (SoC) architectures, could

be envisaged in the future. These applications could allow better matching of the

algorithms and data structures based on our conceptual cellular matrix model, to

hardware architectures in the future.
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[MH97] Nenad Mladenović and Pierre Hansen. Variable neighborhood search.

Computers & Operations Research, 24(11):1097–1100, 1997.

[Mid15a] Middlebury. Middlebury Optical Flow Datasets., 2015. http://vision.

middlebury.edu/flow/.

[Mid15b] Middlebury. Middlebury Stereo Datasets., 2015. http://vision.

middlebury.edu/stereo/.

[Mla95] Nenad Mladenovic. A variable neighborhood algorithm-a new metaheuris-

tic for combinatorial optimization. In papers presented at Optimization

Days, page 112, 1995.

[MP76] David Marr and Tomaso Poggio. Cooperative computation of stereo

disparity. Science, 194(4262):283–287, 1976.

[MS89] Bernard Manderick and Piet Spiessens. Fine-grained parallel genetic

algorithms. In Genetic algorithms, 1989 Third International Conference

on, pages 428–433. Morgan Kaufmann Publishers Inc., 1989.

http://vision.middlebury.edu/flow/
http://vision.middlebury.edu/flow/
http://vision.middlebury.edu/stereo/
http://vision.middlebury.edu/stereo/


Bibliography 142

[MSH+12] Sabine McConnell, Robert Sturgeon, Gregory Henry, Andrew Mayne, and

Richard Hurley. Scalability of self-organizing maps on a gpu cluster using

opencl and cuda. In Journal of Physics: Conference Series, volume 341,

page 012018. IOP Publishing, 2012.

[nat09] National Travelling Salesman Problems, 2009. www.math.uwaterloo.ca/

tsp/world/countries.html.

[NVI12] NVIDIA. CUDA C Programming Guide 4.2, CURAND Library, CUDPP

library, Profiler User’s Guide., 2012. http://docs.nvidia.com/cuda.

[NYYY07] Hung Dinh Nguyen, Ikuo Yoshihara, Kunihito Yamamori, and Moritoshi

Yasunaga. Implementation of an effective hybrid ga for large-scale

traveling salesman problems. Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on, 37(1):92–99, 2007.

[OL96] Ibrahim H Osman and Gilbert Laporte. Metaheuristics: A bibliography.

Annals of Operations research, 63(5):511–623, 1996.

[Pap77] Christos H Papadimitriou. The euclidean travelling salesman problem is

np-complete. Theoretical Computer Science, 4(3):237–244, 1977.

[PC10] Martin Pedemonte and Hector Cancela. A cellular ant colony optimisation

for the generalised steiner problem. International Journal of Innovative

Computing and Applications, 2(3):188–201, 2010.

[Pea14] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of

plausible inference. Morgan Kaufmann, 2014.

[PNC11] Martı́n Pedemonte, Sergio Nesmachnow, and Héctor Cancela. A survey
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Abstract:

In this thesis, we propose a parallel computing model, called cellular matrix, to provide answers to problematic issues of
parallel computation when applied to Euclidean graph matching problems. These NP-hard optimization problems involve
data distributed in the plane and elastic structures represented by graphs that must match the data. They include problems
known under various names, such as geometric k-means, elastic net, topographic mapping, and elastic image matching.
The Euclidean traveling salesman problem (TSP), the median cycle problem, and the image matching problem are also
examples that can be modeled by graph matching.
The contribution presented is divided into three parts. In the first part, we present the cellular matrix model that partitions
data and defines the level of granularity of parallel computation. We present a generic loop for parallel computations, and
this loop models the projection between graphs and their matching. In the second part, we apply the parallel computing
model to k-means algorithms in the plane extended with topology. The proposed algorithms are applied to the TSP, struc-
tured mesh generation, and image segmentation following the concept of superpixel. The approach is called superpixel
adaptive segmentation map (SPASM). In the third part, we propose a parallel local search algorithm, called distributed
local search (DLS). The solution results from the many local operations, including local evaluation, neighborhood search,
and structured move, performed on the distributed data in the plane. The algorithm is applied to Euclidean graph matching
problems including stereo matching and optical flow.

Keywords: cellular matrix, graph matching, k-means, local search, parallel algorithms, graphics processing
unit (GPU)

Résumé :

Dans cette thèse, nous proposons un modèle de calcul parallèle, appelé matrice cellulaire, pour apporter des réponses
aux problématiques de calcul parallèle appliqué à la résolution de problèmes d’appariement de graphes euclidiens. Ces
problèmes d’optimisation NP-difficiles font intervenir des données réparties dans le plan et des structures élastiques
représentées par des graphes qui doivent s’apparier aux données. Ils recouvrent des problèmes connus sous des ap-
pellations diverses telles que geometric k-means, elastic net, topographic mapping, elastic image matching. Ils permettent
de modéliser par exemple le problème du voyageur de commerce euclidien, le problème du cycle médian, ainsi que des
problèmes de mise en correspondance d’images.
La contribution présentée est divisée en trois parties. Dans la première partie, nous présentons le modèle de matrice
cellulaire qui partitionne les données et définit le niveau de granularité du calcul parallèle. Nous présentons une boucle
générique de calcul parallèle qui modélise le principe des projections de graphes et de leur appariement. Dans la deuxième
partie, nous appliquons le modèle de calcul parallèle aux algorithmes de k-means avec topologie dans le plan. Les
algorithmes proposés sont appliqués au voyageur de commerce, à la génération de maillage structuré et à la segmentation
d’image suivant le concept de superpixel. L’approche est nommée superpixel adaptive segmentation map (SPASM). Dans
la troisième partie, nous proposons un algorithme de recherche locale parallèle, appelé distributed local search (DLS).
La solution du problème résulte des opérations locales sur les structures et les données réparties dans le plan, incluant
des évaluations, des recherches de voisinage, et des mouvements structurés. L’algorithme est appliqué à des problèmes
d’appariement de graphe tels que le stéréo-matching et le problème de flot optique.

Mots-clés : matrice cellulaire, l’appariement de graphes, k-means, recherche locale, algorithmiques par-
allèles, graphics processing unit (GPU)


