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Abstract

This thesis focuses on scaling latent topic models for big data collections, especially

when document streams. Although the main goal of probabilistic modeling is to find word

topics, an equally interesting objective is to examine topic evolutions and transitions. To

accomplish this task, we propose in Chapter 3, three new models for modeling topic and

word-topic dependencies between consecutive documents in document streams. The first

model is a direct extension of Latent Dirichlet Allocation model (LDA) and makes use of a

Dirichlet distribution to balance the influence of the LDA prior parameters with respect to

topic and word-topic distributions of the previous document. The second extension makes

use of copulas, which constitute a generic tool to model dependencies between random

variables. We rely here on Archimedean copulas, and more precisely on Franck copula,

as they are symmetric and associative and are thus appropriate for exchangeable random

variables. Lastly, the third model is a non-parametric extension of the second one through

the integration of copulas in the stick-breaking construction of Hierarchical Dirichlet

Processes (HDP). Our experiments, conducted on five standard collections that have been

used in several studies on topic modeling, show that our proposals outperform previous

ones, as dynamic topic models, temporal LDA and the Evolving Hierarchical Processes,

both in terms of perplexity and for tracking similar topics in document streams. Compared

to previous proposals, our models have extra flexibility and can adapt to situations where

there are no dependencies between the documents.

On the other hand, the "Exchangeability" assumption in topic models like LDA often

results in inferring inconsistent topics for the words of text spans like noun-phrases, which

are usually expected to be topically coherent. In Chapter 4, we propose copulaLDA

(copLDA), that extends LDA by integrating part of the text structure to the model and

relaxes the conditional independence assumption between the word-specific latent topics

given the per-document topic distributions. To this end, we assume that the words of text

spans like noun-phrases are topically bound and we model this dependence with copulas.

We demonstrate empirically the effectiveness of copLDA on both intrinsic and extrinsic

evaluation tasks on several publicly available corpora.

To complete the previous model (copLDA), Chapter 5 presents an LDA-based model that

generates topically coherent segments within documents by jointly segmenting documents

and assigning topics to their words. The coherence between topics is ensured through a

copula, binding the topics associated to the words of a segment. In addition, this model re-

lies on both document and segment specific topic distributions so as to capture fine-grained
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differences in topic assignments. We show that the proposed model naturally encompasses

other state-of-the-art LDA-based models designed for similar tasks. Furthermore, our

experiments, conducted on six different publicly available datasets, show the effectiveness

of our model in terms of perplexity, Normalized Pointwise Mutual Information, which

captures the coherence between the generated topics, and the Micro F1 measure for text

classification.
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Résumé

Ce travail de thése a pour objectif de s’intéresser à une classe de modèles hiérarchiques

bayesiens, appelés topic models, servant à modéliser de grands corpus de documents et

ceci en particulier dans le cas où ces documents arrivent séquentiellement. Pour cela, nous

introduisons au Chapitre 3, trois nouveaux modèles prenant en compte les dépendances

entre les thèmes relatifs à chaque document pour deux documents successifs. Le premier

modèle s’avère être une généralisation directe du modèle LDA (Latent Dirichlet Allocation).

On utilise une loi de Dirichlet pour prendre en compte l’influence sur un document des

paramètres relatifs aux thèmes sous jacents du document précédent. Le deuxième modèle

utilise les copules, outil générique servant à modéliser les dépendances entre variables

aléatoires. La famille de copules utilisée est la famille des copules Archimédiens et plus

précisément la famille des copules de Franck qui vérifient de bonnes propriétés (symétrie,

associativité) et qui sont donc adaptés à la modélisation de variables échangeables. Enfin le

dernier modèle est une extension non paramétrique du deuxième. On intègre cette fois ci les

copules dans la construction stick-breaking des Processus de Dirichlet Hiérarchique (HDP).

Nos expériences numériques, réalisées sur cinq collections standard, mettent en évidence

les performances de notre approche, par rapport aux approches existantes dans la littérature

comme les dynamic topic models, le temporal LDA et les Evolving Hierarchical Processes,

et ceci à la fois sur le plan de la perplexité et en terme de performances lorsqu’on cherche

à détecter des thèmes similaires dans des flux de documents. Notre approche, comparée

aux autres, se révèle être capable de modéliser un plus grand nombre de situations allant

d’une dépendance forte entre les documents à une totale indépendance.

Par ailleurs, l’hypothèse d’échangeabilité sous jacente à tous les topics models du type

du LDA amène souvent à estimer des thèmes différents pour des mots relevant pourtant du

même segment de phrase ce qui n’est pas cohérent. Dans le Chapitre 4, nous introduisons

le copulaLDA (copLDA), qui généralise le LDA en intégrant la structure du texte dans

le modèle of the text et de relaxer l’hypothèse d’indépendance conditionnelle. Pour cela,

nous supposons que les groupes de mots dans un texte sont reliés thématiquement entre

eux. Nous modélisons cette dépendance avec les copules. Nous montrons de manière

empirique l’efficacité du modèle copLDA pour effectuer à la fois des tâches de nature

intrinsèque et extrinsèque sur différents corpus accessibles publiquement. Pour compléter

le modèle précédent (copLDA), le chapitre 5 présente un modèle de type LDA qui gén‘ere

des segments dont les thèmes sont cohérents à l’intérieur de chaque document en faisant

de manière simultanée la segmentation des documents et l’affectation des thèmes à chaque
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mot. La cohérence entre les différents thèmes internes à chaque groupe de mots est assurée

grâce aux copules qui relient les thèmes entre eux. De plus ce modèle s’appuie tout à

la fois sur des distributions spécifiques pour les thèmes reliés à chaque document et à

chaque groupe de mots, ceci permettant de capturer les différents degrés de granularité.

Nous montrons que le modèle proposé généralise naturellement plusieurs modèles de

type LDA qui ont été introduits pour des tâches similaires. Par ailleurs nos expériences,

effectuées sur six bases de données différentes mettent en évidence les performances de

notre modèle mesurée de différentes manières : à l’aide de la perplexité, de la Pointwise

Mutual Information Normalisée, qui capture la cohérence entre les thèmes et la mesure

Micro F1 measure utilisée en classification de texte.
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Introduction

Numerous pieces of content are currently exchanged in social media, making them an

important source of information. For example, people share, per month, 30 billion pieces

of content on Facebook and over 5 billion tweets (see for example the site mashable.com).

This importance is also reflected in the fact that, when searching for information online,

18% of the users directly search on social media sites (as Twitter, Facebook or blog

sites), a proportion constantly growing. Searching, filtering, enriching and organizing this

information, as well as being able to rapidly identify important new events, are major

challenges faced by researchers from different communities, as information retrieval, data

mining and machine learning.

Several approaches have been developed in the past to address these challenges, even

though not at the scale and speed required by current data collections and streams. Among

these different approaches, the ones based on latent topic/class analysis (as Latent Dirichlet

Allocation proposed by [Blei et al., 2003]) or their hierarchical extensions are particu-

larly interesting as they yield state-of-the-art results and allow one to categorize/annotate

documents with existing taxonomies (filtering and enriching), to infer new taxonomies

or complement existing ones (organizing) and to detect outliers and new events (event

detection). However, current latent topic models have major drawbacks that prevent their

use on large-scale collections and high-speed streams, like they are mainly static and do

not take into account the dynamics of the data. The goal of this thesis is precisely to

address these problems, by constructing new latent topic models able to handle dynamic

data, and by designing new learning and inference methods able to provide good estimates

of the parameters of the new models. In following, we state an introduction on language
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2 1. INTRODUCTION

models, generative methods, latent topic models and finally copula as a generic tool to

capture dependencies between random variables.

A language model is a way to assign probability distribution over a sequence of

words which are sampled from a big collection of data like vocabulary [Rosenfeld, 2000].

knowing a way to estimate the relative likelihood for different phrases and sentences is

always useful in many language processing applications, especially when one generates

text as output. The simplest type of language model may be equal to a probabilistic

finite automaton with a single probability distribution for producing different words. This

model generates a term and then decides whether to stop or keep searching for producing

another term, so this model also desires a probability for making a decision on stopping or

looping in the finishing state. This kind of model applies a probability distribution over any

sequence of words. Using this structure, it can also be a model to generate long sentences

or text according to its distribution.

We now try to explain some types of language models. To apply a probability distri-

bution over sequences of words, it is always helpful to apply the chain rule to break the

probability of a sequence of words down into the probability of each successive sampled

word conditioned on previous words. For simplicity, we assume four words and the model

can be as follows:

P(w1w2w3w4) = P(w1)P(w2|w1)P(w3|w1w2)P(w4|w1w2w3) (1.1)

Here wi shows the words which are based in each document of the collection. The

simplest type of language model can be interpreted by unchaining all conditions in the

context and estimates each word’s probability independently. This kind of language model

is called unigram language model and it is illustrated in Figure 1.1(a).

Puni(w1w2w3w4) = P(w1)P(w2)P(w3)P(w4) (1.2)

There are several complicated kinds of language model, as an example bigram language

model, which keeps condition on the previous word for estimating the probabilities:

Pbigram(w1w2w3w4) = P(w1)P(w2|w1)P(w3|w2)P(w4|w3) (1.3)

In the unigram language model structure, the order of words is meaningless. Even

though there is no condition for generating the text, this model can still provide the
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probability of a particular order of words. So, we can conclude a multinomial distribution

between the words and infer this model as a multinomial model. Using these assumptions,

this model refers to:

P(d) =
(
P

wfi)!Q
wfi!

Y
P(wi)wfi : (1.4)

wf stands for the word occurrence frequency inside document d. If we incorporate

a discrete random vector of topic variable z into the unigram model, we attain a mixture

of unigrams model [Nigam et al., 2000]. Generating procedure for this mixture model

that is illustrated in Figure 1.1(b), is as follows: each document is generated by firstly

choosing a topic z then generating independently N words from the multinomial conditional

distribution of P(w|z). Then the probability of a document consisting of W words [Blei

et al., 2003]:

P(W ) =
X

z

P(z)
NY

n=1

P(wn|z). (1.5)

w

N

D

(a) Unigram

z

w

N

D

(b) Mixture

Figure 1.1: Graphical models for Unigram and Mixture of Unigrams

Using this model, the word distributions can be interpreted as a representation of topics

with the assumption that the model assigns only one topic for each document. Typically,

this assumption is too restricting to have a precise model for a large corpus of words. The

experimental results in [Blei et al., 2003] have proved this conclusion. As a way to avoid

this problem, Latent Dirichlet Allocation (LDA) model introduced by [Blei et al., 2003]

allows documents to obtain multiple topics with different probabilities. This problem
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is fixed in LDA with integrating one additional parameter; in particular, the mixture of

unigrams model has k � 1 parameters associated with P(z) as the probability of topics,

where in LDAmodel there are k parameters associated with P(✓ |↵)which is the probability

distribution over topics and will be explained in sequel.



1.1. TOPIC MODELS 5

1.1 Topic models

Topic models are based on the concept that documents of a collection of words are mixtures

of topics, where topics are vectors of probability distribution over words. In fact, a topic

model is a generative model for the document and the words that belong to them. It makes

a specific probabilistic procedure to generate words and consecutively documents. The

procedure is as follows: for generating a new document, it first chooses a distribution over

topics. Then, for each word in that document, one randomly chooses a topic according

to this distribution and finally selects a word based on the topic which has been selected.

Different statistical techniques and inferences can be used to reverse the whole process,

presenting the matrix of topics that were assigned for generating a collection of documents.

A generative model for documents is formed by a simple probabilistic sampling procedure

that rules the way of generating words in documents based on the latent and hidden

variables distributions. Observing the words of documents, the goal of topic model (fitting

a generative model) is to find the most precise set of latent variables that can describe this

observed data. Using this model, various set of documents can be produced by choosing

words from a topic-word distribution depending on the weight of the topic in document-

topic distribution. This generative process does not make any assumptions about the order

of words and the way that they appear in documents. The only important information

related to the model, is the number of times words occurred and chosen in the generative

process. This is a well-known assumption, bag-of-words assumption, and is common

to statistical language models like Latent Semantic Analysis (LSA, [Deerwester et al.,

1990]) or the other topic models like Latent Dirichlet Allocation (LDA, [Blei et al., 2003]

or Hierarchical Dirichlet Process (HDP, [Teh et al., 2006]). Of course, this is not a correct

assumption when words-order contains important information regarding the content of a

document or the relation between them. Later, we are going to consider this problem and

the solutions.
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As one of the leading statical topic models, the Latent Semantic Analysis (LSA)

[Deerwester et al., 1990] or Latent Semantic Indexing (LSI) [Landauer and Dumais,

1997]) posits a linear topic model that refers to a matrix factorization way over the matrix

of document-word in corpus C consists of cdw as the count of occurrences of word w

in document d. This model aims to find a low-rank approximation of the matrix C by

factorizing it into two separate matrices. One of these matrices represents the relation

between documents and topics, and the other shows the relation between topics and words.

According to Eckart–Young–Mirsky theorem [Eckart and Young, 1936], having an M ⇥ N

matrix of C and a positive integer k, a low-rank approximation of C with rank k will be

a matrix of Ck with rank at most k which minimizes the Frobenius norm of the C � Ck.

Applying Singular Value Decomposition (SVD) on X = U⌃V
T we can conclude Ck. SVD

chooses the K largest singular values of the matrix ⌃ and the corresponding values in the

matrix U and V
T , then best rank K approximation of matrix C will be obtained. This

low-rank approximation of C brings in a new representation regards to each document.

Although there are some advantages in usual vector space representation for a document

like: homogeneous behaviors of queries and documents in terms of vectors, taking benefits

from the induced computation score according to cosine similarity between vectors, the

ability to put different weights to different words, and its application beyond the document

retrieval to accomplish the tasks like clustering and classification, it is inadequate to cope

with two fundamental problems which should be solved in natural languages. First, the

Synonymy when two different words have the same meaning and second, Polysemy when

the same word have different meanings. Latent semantic indexing or analysis deploys the

SVD to compose a low-rank approximation for the word-document matrix, for a rank of

k that is way smaller than the original rank of matrix C . Indeed, it maps each row and

column of this matrix which is word occurrence in the corpus to a k-dimensional space.

Then, one can apply cosine similarity between the vectors over this new representation

to carry a clustering task out. LSI can be inferred as a soft clustering by interpreting

each dimension of the new reduced space as a cluster, then the fractional membership

of the cluster will be the value that a document owed on this dimension. These clusters

can be recognized as ground topics that can explain the structure and the meaning of

the collection. In this model, the SVD helps to obtain rows of U as a representation of

documents, and rows of V
T the representation of topics. Then each document can be

exhibited as a linear combination of topics. As a conclusion, the Latent Semantic Analysis

gains three characteristics in topic models: the semantic information can be stemmed from

a co-occurrence matrix of word-document, the dimension of the model is reduced to very
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small value, and also the words and documents now can be showed as points in Euclidean

space.

Different probabilistic topic models have also been used to analyze the content of

documents and the relation between the words. All models share the same fundamental

belief that a document contains of a mixture of topics but with slight difference in terms of

statistical assumptions. Probabilistic Latent Semantic Indexing (pLSI [Hofmann, 1999])

is one of probabilistic topic models which widely deployed for document summarization

as an application in the topic model. The pLSI model, represented in Figure 1.2, claims

that a document d and a word w in the whole collection are conditionally independent

given an unobserved latent topic z:

P(d, wn) = P(d)
X

z

P(wn|z)p(z|d). (1.6)

d

z

w

N

D

Figure 1.2: Graphical models for pLSI

The pLSI model endeavors to relax the simplifying assumption made in the mixture

of unigrams model. In the mixture models, each document is generated only from one

topic, where pLSI is able to assign multiple topics to a document as P(z|d) contains a

mixture of weights of the topics z for a particular document d. It is important to note that

d is supposed to be chosen from the list of documents in the training set. Thus, d is a

multinomial random variable with possible values of total number of training documents.

Thus, the model can learn the topic proportions P(z|d) only for the documents that are

in the training set. Assuming this problem, pLSI is not a very well-suited generative
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model for documents in topic modeling where there is no intrinsic way to use this model to

assign probabilities to an unseen document. Another disadvantage of pLSI is is that the

number of parameters which must be estimated grows linearly with the number of training

documents which stems from applying a distribution indexed by training documents. The

whole number of parameters that should be used in a k-topic pLSI model is kV + kD.

These are k multinomial distributions of size V (unique words in vocabulary) and D

(number of documents in the collection) mixtures over the k hidden topics. This results in

a linear growth in D. As [Blei et al., 2003] illustrated in their results, the linear growth

in parameters makes the model prone to overfitting and this problem prevents the topic

model to estimate the content precisely. As a solution, a tempering heuristic has been used

to smooth the parameters in the model for an acceptable accurate prediction. However, it

has been shown, that overfitting can happen even when the tempering method is applied

( [Popescul et al., 2001]).

LDA overcomes both the linear growth and unseen prediction problems. It uses the topic

mixture weights as a k hidden random variables rather than a huge set of individual

parameters that are linked explicitly to the training documents. Also, in LDA, each word in

the observed or unseen documents is generated by a topic which randomly has been chosen

from a distribution with a randomly chosen parameter. This parameter is also drawn from

a smooth distribution once per document with a dimension k. Thus, the k+ kV parameters

in LDA are not increased with D.
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Latent Dirichlet Allocation (LDA, [Blei et al., 2003]) is a probabilistic Bayesian model

used to describe a corpus of D documents, associated with a vocabulary of size V . LDA is

based on the idea that documents in collection represented using random mixtures over

hidden variables (topics) and each topic is identified by a distribution over words of the

vocabulary associated with corpus. In the model illustrated in Figure 1.3, latent variables,

indexed in {1, · · · , K}, are used to represent the hidden (in the sense non-observed) topics

underlying each document. It should be noted that referring to the latent multinomial

variables for topics in LDA is for captureing text-oriented information, as [Blei et al., 2003]

has mentioned there is no epistemological claim regards to these latent variables more

than their benefits to represent the probability distributions over the words. The challenge

for LDA is that the topics are not known previously and the goal would be learning them

from the collection of words. Hidden variable models like LDA are structured distributions

where observed data like words interact with hidden random variables like topics. In these

models, the user puts a hidden structure over the observed data and then learns the structure

using posterior inference. Hidden variable models are common in the machine learning

domain; they can be Hidden Markov Models [Rabiner, 1990] or Kalman Filters [Kalman

and Others, 1960] or Mixture Models [McLachlan and Peel, 2000]. In LDA, the observed

data are the words from documents and the hidden variables show the latent topical format

of each document. LDA is associated to the following generative model1:

• Generate, for each topic k, 1 k  K , a distribution over the words: �k ⇠ Dir(�),

where �k and � are V dimensional vectors;

• For each document d:

– Choose a distribution over the topics: ✓ d ⇠ Dir(↵), where ✓ d and ↵ are K

dimensional vectors;

– For each position (indexed by n, 1  n  N ) in d: (a) Choose a topic as-

signment: z
d

n
⇠ mul t(1,✓ d); (b) Choose the word w

d

n
from the topic z

d

n
with

probability P(wd

n
= v|zd

n
= k) = �k,v;

where N is the length of each document and �k,v is the v
th coordinate of �k. ↵ and �

correspond to the priors of the model.

There are assumptions that are made in LDA. First, the dimension of the number of latent
1For simplification and following standard practice, we do not model here the length of each document,

assumed to be fixed and equal to N .
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↵ ✓ z

w

��

N

D

K

Figure 1.3: Graphical models for LDA

topics K , which is also the dimension of Dirichlet distribution over the topics, is assumed

fixed and known. Second, the word probabilities � is a K ⇥ V matrix that should be

estimated after running the model. Third, ↵ and � are usually fixed, following [Blei et al.,

2003]. Furthermore, in almost all previous studies on LDA, the priors are considered to be

symmetric, each coordinate of the vector being equal: ↵1 = · · · = ↵K . If one assumes a

broad Gamma prior for both ↵ and � , then their value can be easily learned from data by

maximum a posteriori [Asuncion et al., 2009] or Markov Chain Monte Carlo [Neal, 2003]

methods. One can also envisage learning asymmetric Dirichlet priors [M. Wallach et al.,

2009], which raises no particular difficulties for the models we are considering. For clarity

sake, we however assume here fixed, symmetric priors; the extension to their learning

through Gamma priors or through asymmetric priors is purely technical. In the remainder,

we will denote by ↵ and � the priors for the Dirichlet distributions as well the constant

value taken by each coordinate of these priors, the context being sufficient to determine

which element is referred to.

There is still a question that why this model deploys the Dirichlet Distribution. The

Dirichlet Distribution is a convenient distribution over the fundamental elements. It is also

positioned in the exponential family and relies on finite dimensional statistics. The most

important characteristics of this distribution is conjugation with multinomial distribution

which makes the model easy for the development of inference and parameter estimation.

The K-dimensional Dirichlet distribution over ✓ given a vector of hyper-parameters ↵ is as
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follows:

P(✓ |↵) =
� (
P

K

i=1↵i)Q
K

i=1 � (↵i)
✓
↵1�1
1 . . .✓↵K�1

K
(1.7)

where � stands for the Gamma function.

The generative process explained above has led to the following joint distribution:

P(w, z,✓ ,�|↵,�) = P(�|�)P(✓ |↵)P(z|✓ )P(w|�z) (1.8)

The hyper-parameters ↵, � and the random variable � are in the corpus level and are

assumed to be drawn once during the generating a corpus. The random variables ✓ are in

the document level and are drawn once per document. Finally, the hidden variables z
n

d
and

w
n

d
are in the word level and are sampled once for each word of a document.

The prominent problem in topic models is the posterior inference. Posterior inference

is reversing the derived generative process and learning the distributions of the latent

variables and parameters in the model using the observed words. This inference for LDA

is defined as follows:

P(z,✓ ,�|w,↵,�) =
P(w, z,✓ ,�|↵,�)

P(w|↵,�)
(1.9)

The problem with the computation of P(w|↵,�), makes this posterior intractable.

However, there are a number of approximation techniques for the inference including

Variational Bayes and Gibbs Sampling methods.

An important characteristic of LDA is that each document is generated independently

from the previous ones. This is not a realistic assumption in different settings, as document

streams and also an interesting objective in topic model can be to examine topic evolution

and transitions, that in this case, LDA is not capable of capturing this evolution. Also

in LDA, the word-order is not relevant and words are generated independently. This

assumption called Exchangeability and has a direct influence on the LDA to facilitate the

inference development. Nonetheless, this is not again a realistic assumption as we may

miss important information with various orders. Also, words can be divided into different

semantically coherent units such as Segments, Chunks, Sentences and Phrases that are not

captured in LDA.

Regarding these two problems, we introduce our models respectively for the former in

Chapters 3 and for the later in Chapter 4 and 5. These models are based on the integration
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of Copula into LDA as a tool to capture dependencies between random variables. In the

next section, we describe more about this tool and its features.
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1.2 An introduction to copulas

The study of copula and its applications is a quite contemporary section in mathematics

and specially statistics. Until recently, it was very difficult even to find the word of copula

in the statistical articles. The very first referring of term copula in the Encyclopedia of

Statistical Sciences is in year 1981 by [Schweizer and Wolff, 1981]. Although, in the first

eighteen volumes of the indexes to statistics (1975-1992) there are only eleven papers

mentioning copulas, however, there are 71 referring in the next ten volumes (1993-2002)

which evidences the growth of interest in copulas and their applications to statistics and

probability. Recently, there have been several venues devoted to or invoked somehow this

concept, for example, the conference related to Distributions with Fixed Marginals, Doubly

Stochastic Measures, and Markov Operators; the conference on Distributions with Given

Marginals and Moment Problems; the conference on Distributions with Given Marginals

and Statistical Modeling; the conference on Computational and Methodological Statistics.

Then, there are conferences on the application of copulas into finance: conference on

Dependence Modeling: Statistical Theory and Applications in Finance and Insurance;

the conference on Statistics and Econometrics. As most of the titles indicate, copulas are

mostly supposed to be part of study upon to marginal distributions.

To define a good description for this concept, from [Nelsen, 2007], copulas are functions

that join or couple multivariate distribution functions to their one-dimensional marginal

distribution functions. In other words, copulas can be seen as multivariate distribution

functions whose one-dimensional margins are uniform on the interval (0,1). But what is

important about copula is to know how it is of interest to statisticians and mathematicians.

[Fisher, 1997] has responded to this question in his article: “Copulas [are] of interest

to statisticians for two main reasons: Firstly, as a way of studying scale-free measures

of dependence; and secondly, as a starting point for constructing families of bivariate

distributions, sometimes with a view to simulation.”

The term copula was first engaged in a mathematical and statistical view by [Sklar,

1959] in the theorem, now known as Sklar theorem, described the functions that “join

together” one-dimensional distribution functions to form multivariate distribution functions.

This word is a Latino term that means “a link, tie, bond” (Latin Dictionary of Cassell)

and grammatically it can be used to explain “that part of a proposition which connects the

subject and predicate” (Dictionary of Oxford English). At the moment that Sklar wrote

his 1959 paper with the term “copula,” he was working with Berthold Schweizer on the
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development of the probabilistic metric spaces (PM) theory. During years 1958 to 1976,

most of the results which were related to copulas were obtained in the terms of PM studies.

To illustrate the relation between copulas and PM spaces , we assume a metric space

consists of a set like S and a metric value like d that measures the distances between points

of p and q in the set of S. In a probabilistic version of metric space, we can replace the

distance metric d(p, q) by a distribution function of Fpq. The value of Fpq(x) for any real

amount of x is the probability that the distance between points of p and q is less than x . The

first difficulty in this structure happens when one attempts to estimate a probabilistic analog

of the triangle inequality d(p, r) d(p, q)+d(q, r)which is the corresponding relationship

between the distribution functions of Fpr , Fpq , and Fqr for all points like p, q, and r in

set S. [Menger, 1942] has proposed an inequality of the Fpr(x + y)� T (Fpq(x), Fqr(y));

where T is a triangle norm or t-norm. Like a copula, t-norms map [0, 1]2 to [0, 1], and

join distribution functions. Accordingly, some of t-norms are copulas and contrarily some

of copulas are t-norms. So, as it makes sense, copulas had to proceed in PM spaces

studies. One of the most important results in PM spaces was Archimedean t-norms, those

t-norms that satisfy T (u, u)< u for all u in (0, 1). Archimedean t-norms are also called

Archimedean copulas. For some reasons, Archimedean copulas frequently have been

applied in multivariate distributions applications like measuring dependencies. The reasons

would be the simplicity of their forms, the convenience of constructing this family, and

their properties. This is the main topic discussed in [Nelsen, 2007] and we are going to

discuss more on this type of copula later, as we choose them as a solution for our problem.

We now focus more on copulas and dependency measurement. The earliest paper which

explicitly showed the role of copulas in the study of dependency between random variables

is titled "On nonparametric measures of dependence for random variables" by [Schweizer

and Wolff, 1981]. In this paper, [Schweizer and Wolff, 1981] discussed the [Rényi, 1959]

criteria and modified it to measure the dependency between pairs of random variables.

They have expressed the basic invariance properties of copulas under strictly monotone

transformations of random variables and introduced the metric of dependency measuring

which is now known as Schweizer and Wolff’s �.

In conclusion, copulas are the tools for formalizing dependency structures of random

variables. Although copulas have been known about forty years, they have been just

recently more applied into sciences like biostatistics, biology, reliability, finance and etc.

In finance, they have turned to be a standard tool with several applications like multiasset

pricing, risk management, credit portfolio modeling and etc.

Although the concept of copulas is well defined, however, they are recognized as a very
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difficult tool for empirical estimation. The problem with the estimation of copulas is

that usually every marginal distribution of the fundamental random variables must be

estimated and boosted into an estimated multivariate distribution. This procedure makes

lots of unexpected effects regarding the usual statistical methods like noisy estimations,

non-standard limiting behaviors etc.

Considering the property of copula to capture dependencies among random variables

and the flexibility that it provides us in terms of learning the model parameters, we decided

to leverage copula for solving the problems of LDA mentioned before. Copula can be

accommodated into LDA to secure topic model regarding streams of documents and words

dependencies within a document.

The outline of this work is as follows. In the next Chapter, we present the related

works with respect to the limitations of LDA. In Chapter 3, we introduce efficient ways to

capture topic dependencies when documents stream in topic models like LDA and infinite

version of LDA(called iLDA) that topic model is supposed to estimate the number of

topics as well. Consecutively, we expose the results obtained with our approaches on

distinct datasets. We then describe in Chapter 4 the model that integrates text structure

into LDA using copulas to relax the Exchangeability assumption of LDA and make use

of words information in topic model. There is also the results achieved by this approach

and the comparison with the other well-known methods. In Chapter 5, we position our

joint latent model for topics and segments as a complete solution for compensating the

independence assumption among words of a document in LDA. There is again the results

applying this model to different datasets. In Chapter 6, we summarize this work regarding

the methods that we developed and the results that we concluded, we will also describe

the future plans for the new direction of investigation on LDA. Finally, the last Chapter is

devoted to the mathematical computations for each model named Appendices.
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Related works

2.1 Streams of documents in topic models

Some studies have considered the possibility of modeling different streams of documents.

Regarding the properties of the topic model (in terms of estimating the number of topics),

streaming can be incorporated into the parametric topic models, such as LDA or non-

parametric versions such as HDP.

2.1.1 Parametric topic models

In [Hong et al., 2011], authors tried to leverage standard models (as LDA) by considering

topics common to the different streams. In this work, they first extended the standard topic

models by integrating each text stream with both the local and share topic distributions, and

then for the case of streams, they proposed to associate each topic with a time-dependent

function that defines its popularity over time. By adding these two methods, they have

tried to capture the dynamics of text streams in a united model. In this paper, they have

also evaluated their model using a large dataset that includes text streams from Twitter and

Yahoo News. In such studies, the evolution of topics over time is not considered.

The study presented in [Wang and McCallum, 2006], known as TOT, aims at modeling,

through an extension of LDAwhere the timestamp associated with each token in a docu-

ment. This topic model not only captures the low-dimensional structure of data, but also

can show how the structure of data changes over the time. This work, unlike the others

that commit on Markov assumptions, assumes topics are associated with a continuous

17
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distribution over timestamps, and the mixture distribution of topics for each topic is ef-

fected by both the word co-occurrences and the timestamp of document. In this model,

the occurrence and correlations of topics evolve significantly by time. The authors have

presented their results using nine months personal email and 17 years of NIPS papers

in research and 2 centuries of presidential state-of-the-union addresses. Nevertheless, if

dependencies between topics are not explicitly modeled, topics tend to specialize over

different time periods through the joint dependence of each word and timestamp on the

topic variable (z in LDA).

Other studies have addressed the problem of topic evolution and dependencies within a

single document, as the recent sequential LDA model described in [Du et al., 2010b]. This

model aspires to uncover the underlying sequential structure. As an example, a document

consists of multiple segments like chapters or paragraphs, each of them is correlated to its

antecedent and the subsequent segments. In this model, this type of progressive sequential

dependency is supposed to be captured by applying a hierarchical two-parameter Poisson

Dirichlet process. The difference between this model and the previous one is, instead

of modeling topic evolution in documents based on their timestamps, they model topic

progress within each document by taking advantage of the correlations between its seg-

ments. They have shown that their model outperforms LDA in terms of perplexity metric

over 1000 patent documents that are randomly selected from 8000 U.S patents. In the

field of information theory, perplexity proposed by [Shannon, 1948] is a measurement to

show how well a probability distribution or model can predict a sample. It can be used to

compare different probability models. A lower perplexity for a probability model shows

that this model is well trained to predict a sample.

We rather focus in this study on explicitly modeling topic dependencies across documents,

for both topic and word-topic distributions. Several studies have addressed a similar prob-

lem. One of the first proposals corresponds to the Dynamic Topic Model (DTM), introduced

in [Blei and Lafferty, 2006] and illustrated in Figure 3.1. This approach chains the natural

parameters of each topic (called �k in LDA) in a state space model that changes with

Gaussian noise. In this model, instead of using Dirichlet distribution for document-specific

topic proportions, they have leveraged a logistic normal distribution with mean ↵ (like

↵ in LDA) to express the uncertainty over topic proportions. The sequential dependency

between this new variable is again captured with a similar Gaussian distribution. They

have also mapped the multinomial distributions to mean parameters for sampling topics

and generating words of each document. A variational Bayes approximation based on

kalman filters and non parametric wavelet regression over the hidden topics is deployed to
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approximate the posterior inference for this model. An interesting feature of DTM is its

use of time slices; we have not considered time slices in our study, but the models that we

propose in Chapter 3 (as most dynamic models) can be extended to deal with them. They

have analyzed this model by considering the task of predicting the next year of Science on

the OCR archives of the journal science from years 1880 to 2000. They have also shown

the perplexity results by comparing their method and the simple LDA. As it is mentioned

before, DTM captures dependencies for both topic and word-topic distributions. These

dependencies are however captured through Gaussian distributions, the expectation of

which corresponds to the previous parameters. This entails that new parameter values are

constrained to be distributed around the values observed previously. In contrast, even in our

model ST-LDA-D (a direct extension of LDA using Dirichlet distribution that we propose

in Chapter 3) the expectations of the new topic and word-topic distributions (Eqs. 3.2 and

3.4) can be uncorrelated to the previous distributions in the absence of dependencies. Our

models will thus offer additional flexibility over the presence or absence of dependencies

between consecutive documents in a stream.

The Dynamic Mixture Model (DMM, see Fig.3.1) introduced in [Wei et al., 2007] is similar

to DTM except that topic dependencies are directly considered at the topic level (as similar

as in our models but not for DTM which operates at the prior level) and that word-topic

dependencies are dropped. In comparison with TOT model, DTM relies on discrete time

stamps and defines dependencies between two consecutive documents as snapshots. Al-

though TOT model captures both short-term and long-term topics evolution by having

time stamps as an observed random variable, DMM is able to capture more details in terms

of evolution. Also DMM is capable of modeling the dependency between any sequential

shots, which is applicable to any streaming data. In comparison with DTM, DMM tracks the

evolution between consecutive documents instead of between grouped slices of documents.

It should be also noted that in both DTM and LDA, documents in a corpus and words within

a document are completely exchangeable. In DMM, multiple time series which are related

to documents, have very strong time order and exchanges of documents can result in a very

different model. By this perspective, DMM can be recognized as a real online method for

topic modeling. As for DTM, the expectation of a new topic distribution is given by the

values obtained in the previous document but instead of Gaussian distribution, it enjoys

Dirichlet distribution. This again contrasts with our proposal that introduces additional

flexibility, as mentioned before. Results have shown that DMM has outperformed LDA

using Chlorine dataset. This dataset is generated by EPA-NET that simulates the hydraulic

and chemical phenomena in a drinking water distribution system and light intensity mea-
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surements that gathered by Berkeley Mote sensors.

The Topic Tracking Model (TTM, see Fig.3.1) introduced in [Iwata et al., 2009] is similar

to our models in the sense that both topic and word-topic (more precisely interest-topic)

dependencies are considered. However, as for DTM and DMM, the means of the current

topics and interests are the same as the ones of the previous topics and interests. The

model is thus again limited in its ability to model the presence or absence of dependencies

between consecutive documents. This model showed better results than LDA and an online

version of LDA using two real purchase log datasets for movie and cartoon downloading

service.

A more recent proposal, called Temporal LDA (TM-LDA, see Fig.3.1), was introduced

in [Wang et al., 2012]. TM-LDA attempts to learn the transition parameters among topics

by minimizing the prediction error on topic distributions for sequential documents. By

training TM-LDA, this model is capable of predicting the expected topic distribution

for the future document. For being more accurate in terms of predictions in a realistic

online setting, they have developed an updating algorithm to adjust transition parameters

when a new document streams in. They have presented their results over a corpus of

30 million Tweets, showed that TM-LDA can outperform the simple version of LDA

model for estimating the topic distribution of a new document. TM-LDA differs from

the previous models as it also aims at predicting future topics even in the situation where

future documents are not seen. It thus assumes a strong dependency between consecutive

documents, which is not always realistic, even on such collections as Tweets. Furthermore,

TM-LDA does not consider dependencies for the word-topic distributions.

2.1.2 Non parametric topic models

The Hierarchical Dirichlet Process (HDP, [Teh et al., 2006]) is a Bayesian non-parametric

model that can be used to model collection of documents with a possibly infinite number

of topics as components. It has been widely used in probabilistic topic models, where by

giving a collection of documents to model, a posterior inference can estimate the number of

topics that potentially needed and describe their distributions. One drawback of HDPmodel

is that standard posterior inference algorithm that defined for it, needs to pass multiple times

through all the dataset which makes it intractable for many large-scale datasets. In [Wang

et al., 2011], they proposed an online variational inference algorithm for the HDP that is

easily applicable for massive data. Their model is much faster than the traditional inference

and lets the user analyze larger datasets. They applied coordinate-ascent variational Bayes
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without numerical approximation as an inference into the stick-breaking representation

of HDP model. Their method was inspired by the online variational bayes algorithm

which was proposed by [Hoffman et al., 2010] for LDA. The idea behind this model is to

optimize the variational objective function using stochastic optimization. In this model,

optimization is carried out by constantly taking a random subdivision of data, and updating

the variational parameters regards to them. They have used a log-likelihood metric for

evaluating two datasets that consist of Nature (the articles from years 1869 to 2008) and

PNAS (the Proceedings of the National Academy of Sciences from years 1914 to 2004).

They have finally concluded that this model outperforms the online extension of LDA.

Although, this algorithm is applicable to large-scale streaming data, the authors didn’t

really integrate the streaming assumption as timestamps into the model.

[Wang et al., 2008] have developed the continuous time dynamic topic model (cTDM). As

an extension of DTM, it is based on a dynamic topic model that uses Brownian motion

to model the latent topics (only �k) through a sequential collection of documents. They

assume each topic as a pattern of the word that evolves over the course of the collection.

A limitation of DTM is that the time is discretized into many periods. In DTM, if the

resolution is chosen roughly, then the assumption that a group of documents within a

time slot is exchangeable will not be a correct one. If the resolution is chosen too fine,

then the variational parameters will grow when more timestamps added to the collection.

Acknowledging this limitation, the discretization’s resolution should be based on the

features of data and the computational complexity for the topic model. cTDM, in contrast

with DTM, is a model based on continues sequential time-series with arbitrary granularity.

In this way, cTDM can be assumed as a normal limit of DTM with the finest resolution.

They have shown their results for per-word perplexity and timestamps prediction on two

different datasets. The first one is AP collection which is a subset of the TREC AP corpus

consists of the news from 05/01/1988 to 06/30/1988 and they are time-stamped by hour.

The second one is the Election 2008 that are the top articles from Digg.com about the 2008

presidential election.

As another extension of DTM, [Ahmed and Xing, 2010] introduced an infinite dynamic

topic model (iDTM). In this paper, the authors have considered that documents in the

collection are organized into epochs and documents within each epoch are exchangeable

in terms of order. Also, the order between the documents is still kept over epochs. In this

work, they have accommodated the evolution of document-specific topic and topic-words

distributions into normal Chinese Restaurant Franchise (CRF) representation. In iDTM,

an infinite number of topics can be activated and deactivated at any epoch, the topic-words
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distributions evolve according to a first-order state space model, and the document-specific

topics distribution evolve using the idea that rich gets richer with a �-order process. The

iDTM constructed over the recurrent Chinese Restaurant Franchise (RCRF) process which

captures dependencies between the topics and popularity of each epoch. RCRF is also

constructed on top of RCRP (Recurrent Chinese Restaurant Process) which is introduced

in [Ahmed and Xing, 2008]. For iDTM, an efficient Gibbs sampling inference has been

developed. It relies on a dynamic way of maintenance of sufficient statistics to make the

sampler faster. The iDTM has been evaluated for the birth and evolution of topics on

the NIPS collection1 and showed better performance than HDP and DTM models in the

small number of topics (less than 60 topics). However, results have shown that if the

number of topics increases, there is an improvement for the performance of DTM and it

may outperform iDTM.

Furthermore, a simple non-parametric dynamic topic model is mentioned as an example for

Temporal Dirichlet Mixtures model (TDPM) that they have introduced in [Ahmed and Xing,

2008]. In their framework, they applied the same technique of collection dividing into the

epochs and exchangeability within each epoch for documents, they also used a recurrent

process in the model by adding the effect of previous document’s topic assignment into the

current document’s topics assignment However, in this model, each document is generated

from a single topic instead of a mixture of topics due to inference difficulty of the model

but it is still a big assumption for a topic model.

The Dynamic Hierarchical Dirichlet Process (dHDP) [Ren et al., 2008] is one of the direct

extensions of HDP where document streams. The authors of this model have applied

a bayesian dynamic structure from [Dunson, 2006] to extend HDP and integrate time

dependence. They incorporate a linear mixture of weighted topic distribution of the

previous document and shared topic distribution within collection for estimating current

document’s topic distribution. They have used a modified version of block Gibbs sampler

proposed in [Ishwaran and James, 2001] for dHDP inference. Nevertheless, they have

not evaluated their method for topic modeling tasks nor compared with the other state of

art topic models. They analyzed their method in the case of music segmentation to infer

relationships between various parts of a sample music, and also time-evolving features of

the gene-expression collection.

In the same direction, [Wang et al., 2017] have introduced Evolving Dirichlet Processes

(EDP) and Evolving Hierarchical Dirichlet Processes (EHDP) models to track nonlinear

1It is available at http://www.datalab.uci.edu/author-topic/NIPs.htm
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evolutionary in temporal data. They have used a combination of Dirichlet processes

(accordingly for EHDP, Dirichlet base distributions) of previous document and the current

one to conclude topic distribution of the current document, they have also applied the same

trick to capture the topic-word distributions dependency between consecutive documents.

These models are built on the top of the Chinese Restaurant Process representation and a

Gibbs sampling method has been developed for them as posterior inference. They have

evaluated their methods using 4 different real-world datasets consists of NIPS articles,

DBLP abstract of articles, NSF awards2 and Douban comments about the movies3, and

especially a synthetic dataset to show whether their method can correctly follow the

evolutionary evidence of temporal data. They have shown that EHDP can outperform the

methods like DTM, HDP, RCRF and TOT in terms of perplexity. This fact has been the

reason why we use this method for comparing with our non parametric streaming model

(CopHDP which will be proposed in Chapter 3).

2It is available in https://victorfang.wordpress.com/2011/09/01/860/
3http://movie.douban.com/
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2.2 Word dependencies in topic models

Despite the success that vector-space models [Salton et al., 1975] have enjoyed, they come

with a number of limitations. We mention, for instance, their inability to model synonymy

and polysemy and the sparse, high-dimensional induced representations. Many research

studies have researched these problems, and Probabilistic Latent Semantic Indexing [Hof-

mann, 1999] was among the first attempts to model textual corpora using latent topics.

pLSI was the first probabilistic model that explained the generation of co-occurrence data

using latent random topics and, the EM algorithm for parameter estimation. The model

was found more flexible and scalable than the Latent Semantic Analysis [Deerwester et al.,

1990], which is based on the singular value decomposition of the document-term matrix,

however, pLSI is not a generative model as parameter estimation should be performed

with each addition of new documents. To overcome this drawback, [Blei et al., 2003]

have proposed the Latent Dirichlet Allocation (LDA) by assuming that the latent topics

are random variables sampled from a Dirichlet distribution and that the generated words,

occurring in a document, are exchangeable. In this context, the corpus is associated with

a set of latent topics, and each document is associated with a random mixture of those

topics. The words are assumed exchangeable, that is their joint probability is invariant to

their permutation. Previous works have proposed a variety of extensions to LDA in order

to incorporate additional information such as class labels [Mcauliffe and Blei, 2008] and

temporal dependencies between stream documents [Wang et al., 2012]. The interdepen-

dence assumption allows the parameter estimation and the inference of the LDA model to

be carried out efficiently, it is not realistic in the sense that topics assigned to similar words

of a text span are generally incoherent.

Different studies, presented in the following sections, attempted to remedy this problem

and they can be grouped into two broad families depending on whether they make use

of external knowledge-based tools or not in order to exhibit text structure for word-topic

assignment.

2.2.1 Knowledge-based topic assignments

The main assumption behind these models is that text-spans such as sentences, phrases

or segments are related in their content. Therefore, the integration of these dependent

structures can help to discover coherent latent topics for words. Different attempts to

combine LDA-based models with statistical tools to discover document structures have
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been successfully proposed. In [Griffiths et al., 2005], the authors have investigated a

combination of a topic model with a Hidden Markov Model (HMM). They have assumed

that the HMM generates the words that handle the long range dependencies (semantic

dependencies) and the topic model that generates the words that handle the short range

dependencies (syntactic dependencies). Syntactic conditions that bring in short range

dependencies, cover many words but not going further than the boundary of a sentence.

Semantic conditions that bring in long range dependencies, make various sentences within

a document are more likely to have identical content, and consequently, have similar words.

In this paper, they have proposed an algorithm that captures the interacts between the short

and long range dependencies, base on a generative model where a HMM model decides

when a word can be emitted from a topic model. The different abilities of the two elements

of this model lead to factorizing a sentence into function words as syntactic classes which

controlled by HMM, and content words as semantic classes which controlled by the topic

model. They have evaluated their model in different quantitative tasks, like document

classification and part-of-speech tagging and concluded better results than simple HMM

and LDA.

[Boyd-Graber and Blei, 2009] have proposed the Syntactic topic model whose goal is to

integrate the text semantics and the syntax in a non-parametric topic model. In contrast with

the previous model that generate the words either from the syntactic or semantic context,

this syntactic topic model generates the words that are constrained to be dependent to the

both. In this work, they attempt to model a document in a collection as an exchangeable

sets of sentences, each of which should be associated with a tree structure like a parse

tree. The words within a sentence are supposed to be sampled from a distribution that

affected by both of their observed role in mentioned tree and the latent dominant topics in

the document. Having the tree, the semantic consistency of each document is given by a

distribution over latent topics, as in topic models, and the syntactic consistency by the fact

that each element in the tree has also a distribution over the topics of its children. They

have used perplexity metric to compare their model with HDP and obtained better results

over a Penn Treebank [Marcus et al., 1993] corpus dataset.

In another effort, [Zhu et al., 2006] have proposed TagLDA, where they replace the

unigram word distributions by a factored representation that is conditioned on the topic

and the part-of-speech tag of a term. In this model, they have assumed a group of tags are

Known and pre-defined, they have also assumed that each word in the collection has its

own tag given. By this way, tags construct the domain knowledge. In this paper, topics

and tags are assumed orthogonal to each other and the same topic can have different
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word distribution under different tags. A variational inference has been developed for

this model, and it has been analyzed by a group of synthesized and real-world datasets

consist of AP news articles, WebKB corpus, and the NIPS one. In the experiments part,

TagLDA showed a better result than LDA in terms of perplexity, but there is no significant

improvement when TagLDA is applied for the classification task.

Recently, [Balikas et al., 2016a] have introduced senLDA, that assumes that the terms

occurring within a sentence are generated by the same topic. They have claimed that the

latent topics of short text spans like sentences should be consistent across the words of those

spans. In this method, these text spans can include the paragraphs or sentences or even

phrases. They have Also showed that in the extreme case of this model where words are the

coherent units of text segments, LDA becomes a special case of this approach. senLDA

and LDA differ in the case that LDA assumes complete independence between the words

of a document in general where senLDA assumes a very strong dependence between the

topics assigned to the words of sentences. In the experiments, they have obtained better

results than LDA in terms of classification. LDA has shown better performance in terms of

perplexity, while senLDA has been still faster convergence in comparison to LDA. In a

part of our study in Chapter 4, we integrate part of the text structure in LDA by relying

only on the boundaries of contiguous text spans like sentences, which can be obtained

without deep linguistic analysis like the one required in the Syntactic Topic Model. Also,

differently from senLDA, we do not restrict the words of the spans to be generated by the

same topic. Instead, using copulas we pose correlations between those topics, which is

more flexible. In this model, contrary to identifying such spans like segments, we assume

them to be topically coherent a priori, and we investigate how to leverage and incorporate

this information to LDA.

In the same line, [Du et al., 2013] following [Du et al., 2010a] have presented a hierarchical

Bayesian model for unsupervised topic segmentation. This model integrates a boundary

sampling method used in a Bayesian segmentation model introduced by [Purver et al.,

2006] to the topic model. For inference, a non-parametric Markov Chain inference

is used that splits and merges the segments while a Pitman-Yor process [Teh, 2006]

binds the topics. Although, this model has a novel way of binding segmentation with

topic models, it is only applied into segmentation tasks and has not been compared with

the other stat-of-arts topic models. The authors have used Choi’s dataset [Choi, 2000]

which is commonly used for topic segmentation evaluation. They have also utilized two

annotated meeting transcripts [Kazantseva and Szpakowicz, 2011, Eisenstein and Barzilay,

2008] to show the ability of this method to outperform other models such as Bayesian
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segmentation [Purver et al., 2006] and Segmented Topic Model [Du et al., 2010a]. For the

evaluation propose, they used Pk (introduced by [Beeferman et al., 1999]) and WindowDiff

(WD, introduced by [Pevzner and Hearst, 2002]) which are two widespread metrics used

in topic segmentation.

Recently, [Tamura and Sumita, 2016] have extended this idea to the bilingual setting.

They have assumed that documents consist of segments and the topic distribution of each

segment is generated using a Pitman-Yor process. They have built their model on top

of Bilingual Latent Dirichlet Allocation model (BiLDA) [Mimno et al., 2009] which

considers only cross-lingual alignments between the whole documents, and proposed to

also considers the cross-lingual alignments between segments in addition and assigns the

same topic distribution to the aligned segments. They have incorporated unsupervised topic

segmentation method [Du et al., 2013] mentioned before into this model. Experimental

results of this paper have shown that the proposed model outperforms BiLDA in terms of

perplexity and illustrated an improvement for the translation pair extraction task.

Though, the topic assignments follow the structure of the text; these models suffer from

the bias of statistical or linguistic tools they rely on. To overcome this limitation, other

systems integrate automatically the extraction of text structure, in the form of phrases, in

their process.

2.2.2 Knowledge-free topic assignments

This type of models extracts text-spans using n-gram counts and word collections and

use bigrams to integrate the order of words as well as to capture the topical content of

a phrase [Lau et al., 2013]. In [Shafiei and Milios, 2006], the authors have proposed a

four-level hierarchical structure where the latent topics of paragraphs are decided after

performing a nested word-based LDA operation. This work contains a four-level Bayesian

model, in which each document is a random mixture of document topics, and each topic is

a distribution over some segments, then each of these segments within a document can be

a mixture of word-topics where each topic is a distribution over words. They have also

presented an efficient inference based on a combination of Markov Chain Monte Carlo

method and Moment-Matching algorithm. They have reported their results for tasks such

as document modeling, document and term clustering and showed a better outcome than

LDA using two real-world datasets, NIPS collection mentioned previously and Wikipedia

XML collection4.
4It is available at http://www-connex.lip6.fr/~denoyer/wikipediaXML
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[Wang et al., 2007] have studied how the word order in the form of n-grams can be

leveraged to better capture a document’s topical content. Their topical n-gram model

extends LDA by determining unigram words and phrases based on context and assigning

mixture of topics to both individual words and n-gram phrases. This model generates words

with their textual order where for each word, model first samples a topic then samples its

status as a unigram or bigram, and then samples the word from a topic-specific unigram or

bigram distribution. As an example, this model can capture white house as a special phrase

in the politics category and not in the real estate category. The authors have showed an

improvement in the retrieval performance and topic assignment in the experiments run

over NIPS and TREC collections.

Further, [Wang et al., 2009] have merged topic models with a unigram model over sentences

that assigns topics to the sentences instead of the words. In this paper, they have proposed

a new Bayesian topic model for summarization by using both the term-document and

term-sentence associations, they also explicitly modeled the probability distributions of

selected sentences given over topics and made a prominent way for the summarization task.

To evaluate this model, they have presented results using the DUC2002 and DUC2004

datasets, which are the benchmark datasets from Document Understanding Conference for

generic automatic summarization. They have shown better performance than models such

as non-negative matrix factorization (NMF) or Latent Semantic Analysis (LSA).

The approach that we propose in Chapter 5 also does not make use of external statistical

tools to find text segments. The main difference with the previous knowledge-free topic

model approaches is that the proposed approach assigns topics to words based on two,

segment-specific and document-specific distributions selected from a Bernoulli law. Topics

within segments are then constrained using copulas that bind their distributions. In this

way, segmentation is embedded in the model and it naturally comes along with the topic

assignment.
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2.3 Copula applications

Lately, there is an increasing interest in the integration of copulas in machine learning

applications. Gal Elidan in [Elidan, 2013] has argued the context of information estimation

and multivariate modeling, the strengths and flaws of machine learning domain and showed

how copulas offer opportunities for cooperative constructions. This work proposes several

structures in machine learning which are based on copula such as multivariate copula-

based construction, tree-structured copulas, Bayesian mixtures of copula trees and finally

Copula Bayesian Networks (CBN). Network-based classifiers like naive Bayes models

are appealing since they are easy to interpret and quite effective most of the time. They

can also naturally manage the missing data and some other problems in classification.

But for complex datasets with continuous interpretive variables, they have a sub-optimal

performance. To overcome this issue, [Elidan, 2012] has presented a Copula Network

Classifiers (CNCs) that combine the flexibility of a graph-based construction with the

modeling ability of copulas. He has shown that CNCs offer better performance than linear

and nonlinear generative models, and also discriminative models such as Radial Basis

Functions(RBF, [Powell, 1987]) or Suppor Vector Machines (SVM, [Cortes and Vapnik,

1995]) with polynomial kernel.

[Liu et al., 2009] have introduced a nonparanormal model which is a type of Gaussian

copula with nonparametric marginals that is applicable for estimating high dimensional

graphs. The nonparanormal model can be assumed as a sparse additive extension for the

setting of graphical models. This paper has presented an estimator for the component

functions that is built on the tails of the empirical distribution function with relevant levels.

Experimentally, the authors showed that fitting a high dimensional nonparanormal model

is not computationally more difficult than estimating a multivariate Gaussian model.

Interestingly in the same direction, [Wilson and Ghahramani, 2010] have shown how to

incorporate copulas in Gaussian processes in order to model the dependency between

random variables with arbitrary marginals with a practical application on predicting the

standard deviation of variables in the financial sector (volatility estimation).

In another generic framework, [Tran et al., 2015] have shown the benefits of using copulas

to model complex dependencies between latent variables in the general variational inference

setting. In this thesis, we present the idea of integrating copulas into topic models which is

recently presented in our articles [Amoualian et al., 2016, Balikas et al., 2016b, Amoualian

et al., 2017] partially.
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Copula-based parametric and

non-parametric LDA models for

document streams

The recent proliferation of temporal textual data on the Internet such as Tweets or comments

on Youtube has brought new challenges for learning with interdependent data. Thou-

gh important progress has been made in some directions [Gaber et al., 2005], popular

approaches for most of these tasks are designed to deal with static collections of documents.

This is specially the case for latent topic modeling, albeit analyzes of social content have

gained much attention in recent years for different aspects of daily life, such as latent

health-related topic analysis [Paul and Dredze, 2011] or buzz detection [Sakaki et al.,

2010].

Although the main goal of probabilistic modeling is to find word topics, an equally

interesting objective is to examine topic evolutions and transitions. In this chapter, we

propose three extensions of LDA for modelling the dependency between two consecutive

documents in a stream and examine their topic evolutions and transitions. The seminal

work of [Blei and Lafferty, 2006] proposed to model the dynamic evolution of topics by

first grouping documents into time slices and then by chaining the evolution of both the

word-topic and topic mixture distributions via a Gaussian process. In some cases, the

Gaussian distribution was not found to be the appropriate distribution in modelling the

topic shifts and some studies considered other probability distributions for capturing the

evolution of topics over time, e.g. [Wang and McCallum, 2006]. However, the idea of

31
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grouping documents into epochs for modelling topic evolution was echoed in a number of

studies. For example, [Wang et al., 2012] estimated a transition matrix over topic vectors

between two predefined epochs and they showed that the LDA model [Blei et al., 2003]

can be enhanced by considering directly the evolution of the topics over time.

In this study, we propose three models to capture topic and word-topic dependencies

in document streams. In the first model, we suppose that the dependency between topic

distributions of two consecutive documents follows a Dirichlet distribution controlled by

an hyperparameter. This model is similar to the one of [Blei and Lafferty, 2006] with time

slices equal to 1, but it offers a more precise mechanism for controlling the dependencies

and is based on a framework encompassing all the situations (from complete independence

to plain equality). This first study paves the way for a more general topic model in which

the dependencies between the topics of two consecutive documents are captured by copulas

which constitute generic tools to model dependencies between random variables [Derrode

and Pieczynski, 2013]. Among the several families of copulas that have been defined in the

literature, our choice fell on Archimedean copulas [McNeil, 2008, McNeil and Nešlehovà,

2009] as they are symmetric and associative, necessary conditions when dealing with

exchangeable random variables [Ostap et al., 2013]. More particularly, we use Franck

copulas, a special case of Archimedean copulas that rely on a single parameter, easier

to estimate and more robust to sparse data. Lastly, the third model is a non-parametric

extension of the second one through the integration of copulas in the stick- breaking

construction of Hierarchical Dirichlet Processes.

This study is an extension of the one we presented in [Amoualian et al., 2016] in which

the parametric models, already proposed in [Amoualian et al., 2016], are further detailed

and in which a new, non-parametric version of the copula-based model is proposed. In

addition, the experiments have been extended to cover new datasets, as well as new results,

so as to better illustrate the behaviour of the proposed models.

Using five collections with different characteristics, we show that our approaches are

faster and outperform state-of-the-art topic models both in terms of perplexity and for

tracking similar topics in document streams.

The outline of this chapter is as follows: In the next section, we present the first model,

a direct extension of LDA to capture topic dependency. Section 3.2 includes a copula-based

extension of LDA to track the dependency when documents stream. Section 3.3 presents

a Non parametric version of copula-based approach uses stick-breaking to represent the

infinite extension of LDA. In Section 3.4, we introduce an efficient procedure to estimate

the most important, in terms of size, parameters. We then describe in Section 3.5 the results
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obtained with our approaches on five distinct datasets. Finally, Section 3.6 concludes our

chapter by summarizing its main results and by giving some pointers to future research.
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3.1 Dirichlet-based dependencies for LDA

We introduce here a first extension of LDA, that we refer to as ST-LDA-D.

3.1.1 Presentation of ST-LDA-D model

In this first model, we rely on a direct extension of the LDA model to take into account

dependencies between the document-specific topic distributions of two sequential doc-

uments, denoted (d � 1) and d (2  d  D). This extension uses, as the standard LDA

model, Dirichlet distributions for the document-specific topic distributions, the parameters

of which are linear combination of the standard prior ↵ and the topic distribution estimated

in the previous document:

✓ d |✓ d�1 ⇠ Dir(↵+�d✓
d�1) (3.1)

where �d is a uniformly distributed parameter that controls the influence of the topics

of document (d �1) on the topics of document d (see Figure 3.1). The expectation of each

component of ✓ d is given by:

E[✓ d

i
|✓ d�1

i
] =

↵+�d✓
d�1
i

K↵+�d

(3.2)

Hence, if �d is high, i.e. if document d covers the same topics as document (d � 1),

then E[✓ d

i
|✓ d�1

i
]⇡ ✓ d�1

i
.

We furthermore assume that the previous document, (d � 1), can influence the word-

topic distributions of the current document d. This assumption, also made in dynamic

topic models [Blei and Lafferty, 2006] and topic tracking models [Iwata et al., 2009], is

motivated by the fact that, within a given topic, if word distributions evolve over time, they

tend to do so in a smooth way. As before, one can use a direct extension of the LDA model

to account for dependencies between word-topic distributions in sequential documents:

8k, 1 k  K ,�d

k
|�d�1

k
⇠ Dir(� +µd�

d�1
k
) (3.3)

Here µd is again a uniformly distributed parameter that controls the tradeoff between

the prior � and the learned topic-word distributions �d�1. As usual �d�1
k

is the word
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distribution of topic k. The conditional mean of each component of �d

k
is given by:

E[�d

k
|�d�1] =

� +µd�
d�1
k

V� +µd

(3.4)

and is approximately the value of the same component of document (d � 1) when the

two documents are strongly dependent.

Lastly, as one can note, by setting �d = µd = 0, 8d, 2  d  D, one “forgets”

the dependencies between consecutive documents. The streaming model is in this case

identical to the standard LDA model.
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Figure 3.1: Graphical models for Dynamic Mixture Models (DMM, [Wei et al., 2007]),

Topic Tracking Models (TTM, [Iwata et al., 2009]), Dynamic Topic Models (DTM, [Blei

and Lafferty, 2006]), Temporal LDA (TM-LDA, [Wang et al., 2012]) and Streaming-LDA

(ST-LDA-[D|C])

3.1.2 Inference with gibbs sampling for ST-LDA-D

As mentioned before, the parameters ↵ and � are considered fixed. The other parame-

ters can be estimated through Gibbs sampling, with Metropolis-Hasting updates for the
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parameters �d and �d . We give here the update formulas of each parameter.

For ✓ , one has:

✓ d ⇠ P(✓ d |✓ d�1, z
d , w

d ,↵,� ,�d ,�d�1,�d ,µd)

=
P(✓ d ,✓ d�1, z

d , w
d ,↵,� ,�d ,�d�1,�d ,µd)

P(✓ d�1, zd , wd ,↵,� ,�d ,�d�1,�d ,µd)

=
P(zd |✓ d)P(✓ d |✓ d�1,↵,�d)

P(zd |↵)
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Q

N

n=1 ✓
d

zd
n

)Dir(↵+�d✓
d�1)

B(⌦d+↵)
B(↵)
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B(↵)B(↵+�d✓

d�1 +⌦d)
B(↵+⌦d)B(↵+�d✓ d�1)

⇥

Dir(⌦d +↵+�d✓
d�1) (3.5)

where ⌦d is defined as in [Wang, 2008] and represents the d
th row of the D⇥ K count

matrix⌦, with⌦d,k being the number of times that topic k is assigned to words in document

d.

The update for �d

k
, 1 k  K is similar:

�d

k
⇠ P(�d

k
|✓ d�1,✓ d , z

d , w
d ,↵,� ,�d ,�d�1

k
,µd)

=
P(�d

k
,�d�1

k
,✓ d�1,✓ d , z

d , w
d ,↵,� ,�d ,µd)

P(�d�1
k

,✓ d�1,✓ d , zd , wd ,↵,� ,�d ,µd)

=
P(wd |zd ,�d

k
)P(�d

k
|�d�1

k
,� ,µd)

P(wd |zd ,�)

=
B(�)B(� +µd�

d�1
k
+ k)

B(� + k)B(� +µd�
d�1
k
)
⇥

Dir( k + � +µd�
d�1
k
) (3.6)

where  k is again defined as in [Wang, 2008] and represents the k
th row of a K ⇥ V

count matrix,  k,v being the number of times that topic k is assigned to word v in the

documents seen so far.

The Gibbs update for z is the same as the one for the standard LDA model:
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8k, 1 k  K , P(zd

v
= k|✓ d ,�d) =

P(zd

v
= k|✓ d)⇥ P(wd

n
= v|zd

v
= k,�d)

P
j

�
P(zd

v
= j|✓ d)⇥ P(wd

n
= v|zd

v
= j,�d)
�

=
✓ d

k
⇥�d

k,vP
j
✓ d

j
⇥�d

j,v

(3.7)

Finally, for �d and µd , one can not directly compute Gibbs updates as the normalizing

factor for the distribution of � given all the other parameters can not be computed exactly.

One can nevertheless rely on a Metropolis-Hasting procedure, detailed in Appendix A.1.
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3.2 Copula-based dependencies for LDA

Model ST-LDA-D captures topic and word-topic dependencies through Dirichlet dis-

tributions, which allow one to balance the influence of the priors (↵ and �) and of the

topic and topic-word distributions of the previous document. We introduce now another

extension of LDA in which the dependencies between the topics of consecutive documents

are modeled through copulas, which constitute a generic tool to model dependencies and

do not rely on a specific distribution. We first provide a brief overview of copulas, prior to

describe our model.

3.2.1 Basics on copulas

For every p � 2, a p–dimensional copula is a p–variate density function on [0, 1]p, whose

univariate marginals are uniformly distributed on [0, 1]. Copulas are particularly useful

when modeling dependencies between random variables. Indeed, the joint cumulative

distribution function (CDF) FX1,··· ,Xp
of any random vector X= (X1, · · · , Xp) can be written

as a function of its marginals, as follows:

Theorem 3.1 (Sklar’s theorem Theorem 2.3.3 of [Nelsen, 2007]) Let FX1,··· ,Xp
be a p–

dimensional distribution function with marginals FX1
, · · · , FXp

. Then there exists a copula

C with uniform marginals such that:

FX1,··· ,Xp
(x1, · · · , xp) = C(FX1

(x1), · · · , FXp
(xp))

Furthermore, when the CDF FX1,··· ,Xp
is continuous, the copula is unique.

Copulas represent a general way of modeling the dependencies between random

variables, from complete independence to equality. If the random variables X1, · · · , Xp are

pairwise independent, their copula is the so–called independency copula:

FX1,··· ,Xp
(x1, · · · , xp) = FX1

(x1) · · · FXp
(xp)

whereas in the case X1 = · · ·= Xd , one gets the comonotonicity copula:

FX1,··· ,Xp
(x1, · · · , xp) = min

i2{1,··· ,p}
FXi
(xi)
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Several copula families have been defined in the literature, among which the Archimedean

copulas ( [Nelsen, 2007, Ch. 4]), particularly interesting in our case. A p–dimensional

Archimedean copula C with generator  is defined as:

Cp(u; ) := ( �1(u1) + · · ·+ �1(up)), u 2 [0, 1]p

where is a continuous, decreasing function, from [0,1] to (0, 1), strictly decreasing

on [0, inf{t : (t) = 0}], and satisfying:

 (0) = 1,  (1) = lim
t!1

 (t) = 0

Archimedean copulas have the following interesting properties:

• They are symmetric, that is invariant by any permutation of their coordinates, which

is important when dealing with exchangeable random variables, as is the case here1;

• They are associative: for any (u1, · · · , up) 2 [0, 1]p, one has:

Cp�1(C2(u1, u2; ), u3, · · · , up; )

= Cp�1(u, · · · , up�2, C2(up�1, up; ); )

This means that the dependency properties are the same whatever the way we group

the random variables.

In this study, we further consider a particular case of the Archimedean copulas, namely the

one–parameter family of Franck copula, defined, for any � 2 R \ {0}, as:

C�(u, v) = �(1/�) ln(1+ (e
��u � 1)(e��v � 1)

e�� � 1
) (3.8)

When �! 0, one approaches the independency copula, whereas � =1 yields the

comonotonicity copula. Lastly, for any � 2 R \ {0}, C� is twice differentiable on [0,1]2

so that the copula function admits a density, denoted in the sequel c�.

c�(u, v) =
@ d

C�(u, v)
@ u@ v

c�(u, v) =
�[1� e

��][e��(u+v)]
([1� e��]� (1� e��u)(1� e��v))2

1The LDA model is based on the assumption that topics are infinitely exchangeable within a document.
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By varying � from 0 to 1, Franck copula allows one to model all the possible

dependencies between two random variables, from complete independency to equality.

Dependency/independency is furthermore controlled by a single parameter, �, which

makes parameter estimation both easier and more robust.
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3.2.2 Presentation of ST-LDA-C model

Instead of generating the topic distribution of each document ✓ d independently, as is done

in standard LDA we bind, as for our first model, ST-LDA-D, the topic distributions ✓ d�1

and ✓ d of consecutive documents, this time by using copulas, and more precisely Franck

copula.

One can not however directly use Sklar’s theorem as it does not extend to joint distribu-

tions over random vectors. This means that if we are given two random vectors X1,X2, one

can not claim that there exists a copula C such that, for any (x1,x2) 2 [0, 1]p1 ⇥ [0, 1]p2:

FX1,X2
(x1,x2) = C(FX1

(x1), FX2
(x2))

except in very specific situation as when X1 and X2 are independent for example. One

can nevertheless relate latent topics ✓ d�1 and ✓d through their components. Indeed, the

topic Dirichlet distribution can be decomposed into univariate Gamma distributions with

parameters (↵, 1), denoted Ga(↵):

Theorem 3.2 (from Theorem 2.1 of [Ng et al., 2011]) A random vector ✓ follows a

Dirichlet distribution Dir(↵) iff there exists a random vector T ⇠ Ga(↵)⌦ · · ·⌦ Ga(↵)

such that:

✓
(L )
=

T
kT k`1

(3.9)

where
(L )
= means “equality in distribution”. In addition, if we are given ✓ ⇠ Dir(↵)

and R⇠ Ga(K↵) independent, then T = R✓ ⇠ Ga(↵)⌦ · · ·⌦ Ga(↵).

To bind the topic distributions ✓ d�1 and ✓ d of two consecutive documents, we thus

consider the associated vectors T d�1 and T d , and bind them coordinate per coordinate

using Franck copula. For the word-topic distributions, we use the same coupling between

consecutive documents as the one used in model ST-LDA-D, as a tighter coupling through

copulas would be too costly. We will come back to this issue in Section 3.4.

In the sequel for any � > 0, f� (resp. F�) denotes the pdf (resp. cdf) of the Gamma

distribution with parameters (�, 1). The global generative model is thus as follows:

1. Generate the first document according to the standard LDA model

2. For each document d, 2 d  D:
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(a) Generate �d ⇠ U[0,⌧�]

(b) Generate µd ⇠ U[0,⌧µ]

(c) For each topic k, 1 k  K:

• Generate T d

k
whose conditional density w.r.t. T d�1

k
is:

P(T d

k
|T d�1

k
) = f↵(T d

k
) c�d
(F↵(T d�1

k
), F↵(T d

k
))

• Generate �d

k
|�d�1

k
⇠ Dir(� +µd�

d�1
k
)

(d) Set ✓ d = T d/kT dk`1

(e) For each word n, 1 n N in d:

• Choose a topic assignment: z
d

n
⇠ mul t(1,✓ d)

• Choose the word w
d

n
from the topic z

d

n
with probability P(wd

n
|zd

n
) = �d

zd
n

,wd
n

where T d

k
represents the k

th coordinate of the vector T d , and follows a distribution

Ga(↵) according to Theorem 3.2. We refer to the corresponding model as ST-LDA-C.

Figure 3.1 provides a graphical representation of this model, together with the ones of

previous models.

3.2.3 Inference with gibbs sampling for ST-LDA-C

The updates for z
d , �d and µd are identical to the ones for model ST-LDA-D. For �d ,

one gets:

P(�d |T d�1,T d , z
d , w

d ,↵,� ,�d�1,�d ,µd)/

P(�d)
KY

k=1

f↵(T d�1
k
) f↵(T d

k
)c�(F↵(T d�1

k
), F↵(T d

k
))

The same Metropolis-Hasting procedure as the one used for model ST-LDA-D and

detailed in Appendix A.1 can then be used.

For ✓ d , one needs first to estimate the conditional probability of the random vector T d

with respect to the other parameters. This expression can be factored as follows:

P(T d |T d�1, z
d , w

d ,↵,� ,�d ,�d�1,�d ,µd) =
P(T d |T d�1,↵,�d)P(zd |T d)

P(zd |↵)
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As in the classical context of LDA, one has P(zd |↵) = B(⌦d +↵)/B(⌦d) where ⌦d is

defined as before. By assumption on the distribution of the random vectors (T d�1,T d):

P(T d |T d�1,↵,�d) =
KY

k=1

f↵(T d

k
)c�(F↵(T d�1

k
), F↵(T d

k
))

Developing P(zd |T d) as detailed in Appendix A.2, finally leads to:

P(T d |T d�1, zd , wd ,↵,� ,�d ,�d�1,�d ,µd) / (
KX

k=1

T d

k
)�N

⇥
KY

k=1

f(⌦d,k+↵�1)(T d

k
)⇥ c�(F↵(T d�1

k
), F↵(T d

k
)) (3.10)

Each T d

k
can then be estimated through the Metropolis-Hasting procedure presented in

Appendix A.1; ✓ d is finally obtained from T d through Eq. 3.9.
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3.3 Non parametric extension

The standard LDA model on which we have based our developments can be generalized

in order to dispense with specifying the number of latent topics. Such a generalization

amounts to consider a non-parametric extension based on Hierarchical Dirichlet Processes

(HDPs) illustrated in Figure 3.2(a) and referred to here as iLDA for infinite LDA. Indeed,

HDPs introduce a prior over the Dirichlet distribution used in LDA that leads to a model

with an a priori infinite number of topics ( [Heinrich, 2011]). However, for any collection,

the number of active topics is always finite and determined during inference.

We here describe the basic definition of Dirichlet Process in brief, then we discuss three

different interpretations on the Dirichlet [rocess. The first one based on the Stick-Breaking

representation, the second one based on a Polya urn construction named Chinese Restaurant

Process, and the last one formed by a limit of finite mixture models. Dirichlet Process

was first etablished by [Ferguson, 197]. As [Teh et al., 2006] explained the Dirichlet

Process, one assume ⇥ and B as two measurable spaces and G0 as a probability measure

on this spaces. Now one consider ↵0 as a positive real number, then a Dirichlet Process of

DP(↵0; G0) can be defined as a distribution of a random probability measure like G over ⇥

and B spaces in the way that for any finite measurable partition (A1, A2, . . . , Ar) in ⇥ space,

the random vector (G(A1), . . . , G(Ar)) will be a finite-dimensional Dirichlet distribution

with parameters of (↵0G0(A1), . . . ,↵0G0(Ar)). We can write G ⇠ DP(↵0; G0) when G is a

random probability distribution given by a Dirichlet Process. It means:

(G(A1), . . . , G(Ar))⇠ Dir(↵0G0(A1), . . . ,↵0G0(Ar)) (3.11)

As it is mentioned before, there exist three perspectives for the Dirichlet Process that

we here detail them to choose one of them based on their characteristics.
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3.3.1 Stick-Breaking representation for dirichlet process

The stick-breaking representation is formed by sequences of independent and identically

distributed random variables (⇡0
k
)1

k=1 and (�k)
1
k=1 as below:

⇡0
k
|↵0, G0 ⇠ Beta(1,↵0) and �k|↵0, G0 ⇠ G0

One can define a random measure G as

⇡k = ⇡0k

k�1Y

l=1

(1�⇡0
l
) and G =

1X

k=1

⇡k��k
(3.12)

Where ⇡ = (⇡k)
1
k=1 to satisfy the constraint

P1
k=1⇡k = 1 and �� is a probability

estimation concentrated on �. Similar to the measures drawn from a Dirichlet process,

these random variables are discrete with probability one. [Sethuraman, 1994] proved that G

as defined in this construction is a same random probability measure distributed according

to DP(↵0, G0). Using this definition we may write ⇡ as a random probability measure on

the positive integers. Therefore, we may draw ⇡ from a GEM(↵0) distribution [Pitman,

2002].
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3.3.2 Chinese restaurant process for dirichlet process

The second perspective of Dirichlet process is based on the Polya urn construction into-

duced by [Blackwell and MacQueen, 1973]. The Polya urn scheme uses the property of

DP that drawing from a Dirichlet process is discrete and also implies a clustering attitude.

In fact, The Polya urn scheme is not referring to G directly, instead it uses the draws from

random measure G. Again one assume ✓1,✓2, . . . a sequence of independent and identically

distributed random variables distributed based on G. Here it means, the random variables

✓1,✓2, . . . are conditionally independent and hence exchangeable given G. [Blackwell and

MacQueen, 1973] showed that one can consider the conditional distributions of ✓i given

the rest of ✓1, . . . ,✓i�1, and G integrated out as follows:

✓i|✓1, . . . ,✓i�1,↵0, G0 ⇠
i�1X

l=1

1
i � 1+↵0

�✓l
+

↵0

i � 1+↵0
G0 (3.13)

Here again �✓ is a probability measure concentrated on ✓ . This conditional distributions

can be interpreted as a simple urn model. In this model, for each atom we assume a ball

of a distinct color. The balls are drawn with equal probability and when a ball is drawn

from the urn it should be get back to the urn together with another ball from the same color.

Additionally, by drawing from G0 with probability that is proportional to ↵0, a new atom

can be created means a ball with new color is added to the urn. Equation 3.13 has another

part shows that ✓i has a positive probability of drawing a ball similar to the previous draws.

In this model, there is also intrinsically a reinforcement; it is expressed the more oa ball

with a color is drawn, the more probable it is to be drawn again in the future.

Another property of this representation is the clustering property that can be implied using

a different interpretation of the Polya urn scheme which is close to the Chinese Restaurant

Process [Aldous, 1985]. Chinese Restaurant Process turns out to be useful for generalizing

the Dirichlet Process in a simple and meaningful way. For having another representation

of Polya urn, we assume a new set of random variables that show different values for the

atoms. We define �1, . . . ,�K to be the different values that are supposed to be taken by

✓1, . . . ,✓i�1, and let mk be the number of times ✓i0 for 1 < i
0 < i are equal to �k, then

we can redefine the equation 3.13 as:

✓i|✓1, . . . ,✓i�1,↵0, G0 ⇠
KX

k=1

mk

i � 1+↵0
��k
+

↵0

i � 1+↵0
G0 (3.14)
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Now the Chinese Restaurant Process interpretation would be like this: assume we have

a Chinese restaurant with an unlimited number of tables. For each costumer who gets enter

to the restaurant there is a ✓i corresponds to that customer and the distinct values of �k

correspond to the tables that the customers is going to sit at. The i
th customer will sit at the

table labeled by �k, with probability proportional to the number of customers of mk that

already seated in table �k (we now set ✓i = �k), and will sit at a new table with probability

proportional to ↵0 where we need to increment the K , and draw the new �K ⇠ G0 and set

✓i = �K in the model.
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3.3.3 Finite mixture models for dirichlet process

As [Rasmussen, 1999, Green, 2001, Ishwaran and Zarepour, 2002] have shown, another

representation of Dirichlet Process can be inferred by a limit over sequence of finite

mixture models, with infinite number of mixture components. This limiting process forms

the third perspective over Dirichlet process. We suppose L mixture components with

mixing proportions of ⇡ = (⇡1, . . . ,⇡L). The ⇡s were denoted to the weights associated

with atoms in random measure G in the stick-breaking model. Here in this model, one

can deliberately redefine ⇡ in this way as they are completely relevant in two models.

In fact, [Pitman, 1996] showed with the limit L ! 1 these ⇡ vectors are equivalent

regards to a random permutation of their entries having a size biased. In this model ⇡ is

drawn from a Dirichlet distribution with symmetric hyper-parameters (↵0/L, . . . ,↵0/L)

and �k sampled from a categorical distribution over G0 and devoted to a random variable

associated with the mixture component of k. Finally one can draw an observation xi from

the mixture model by picking a specific mixture component zi with probability given by

the mixing proportions ⇡. The model is as follows:

⇡|↵0 ⇠ Dir(↵0/L, . . . ,↵0/L) zi|⇡⇠ ⇡
�k|G0 ⇠ G0 xi|zi, (�k)

L

k=1 ⇠ F(�zi
) (3.15)

Assuming G
L =
P

L

k=1⇡k��k
[Ishwaran and Zarepour, 2002] showed that for every

function of f which is integrable regarding G0 when L!1 we have:

Z
f (✓ )dG

L(✓ )!
Z

f (✓ )dG(✓ ) (3.16)

This shows that the marginal distribution on the observations x1, . . . , xn will be the

same as the one in Dirichlet process model.

There are consecutively three different perspectives on the Hierarchical Dirichlet

Process by incorporating an appropriate non-parametric prior to Dirichlet Process based on

the Stick-Breaking construction or based on a Polya urn model(Chines Restaurant Process)

or based on a limit of finite mixture models to infinite. Because of the decomposition it

provides on the latent topics, we rely here on the stick-breaking construction.
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3.3.4 Stick-breaking construction for iLDA

w

z

✓ d

✓
0
d

�

↵0

�

�

�

N

D

K

(a) HDP

w w

z z

✓ d�1 ✓ d

✓
0
d�1 ✓

0
d

�d�1 �d

�d�1 �d

µd�1 µd

↵0�

�

�

N N

(b) CopHDP

Figure 3.2: Graphical models for non parametric extensions of LDA (left, iLDA model

of [Teh et al., 2006]) and of streaming LDA (right, model CopHDP). Both extensions

are based on Hierarchical Dirichlet Processes; we make use here of the stick-breaking

construction for these processes.

The generative process for iLDA based on the stick-breaking construction (illustrated

in Figure 3.2(a)) goes as follows:

1. Draw a base distribution �|� ⇠ GEM(�). This amounts to generate indenpendent

�1, · · · ,�k, · · · variables as follows:

�
0

k
⇠ Beta(1,�) for k = 1, . . . ,1

�k = �
0

k

k�1Y

`=1

(1��0`) (3.17)

where � is a concentration parameter for �. By construction,
P

k
�k = 1.

2. Then, for each document d, draw ✓ d |↵0,� ⇠ DP(↵0,�). This amounts to generate

each coordinate ✓ d

k
(k = 1, . . . ,1) according to:

✓
0
d

k
⇠ Beta(↵0�k, ↵0(1�

k�1X

`=1

�`)) and ✓ d

k
= ✓

0
d

k

k�1Y

`=1

(1� ✓ 0d` )
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where ↵0 plays the role here of a scaling parameter.

3. Once ✓ d has been generated, one can proceed with the generation, for each position

in the document, of the topics z
d

n
and then of the word w

d

n
after having drawn

� ⇠ Dir(�) as in standard LDA.

We now introduce an extension of the above model that takes into account dependencies

between topics using copulas.

3.3.5 Copula-based extension for iLDA

Similarly to the development proposed in Section 3.1, one can incorporate dependencies

between topics of consecutive documents by coupling the variables ✓ 0d on each dimension.

This leads to the following generative model, illustrated in Figure 3.2(b):

1. Draw � following equation (3.17),

2. Then:

• For the first document:

– For each k,

✓
01
k
⇠ Beta(↵0�k, ↵0(1�

k�1X

`=1

�`)) and ✓ 1
k
= ✓

01
k

k�1Y

`=1

(1� ✓ 01` )

– Then generate the document according to the standard LDA model.

• For each document d, 2 d  D:

(a) Generate �d ⇠ U[0,⌧�]

(b) Generate µd ⇠ U[0,⌧µ]

(c) For each topic k,

– Let Gk (resp gk) denote the cdf (resp pdf) of the Beta distribution with

parameters (↵0�k,↵0(1�
P

k�1
`=1 �`)).

– Generate ✓
0
d

k
whose conditional density w.r.t. ✓

0
d�1

k
is:

P(✓
0
d

k
|✓ 0d�1

k
) = gk(✓

0
d

k
) c�d
(Gk(✓

0
d�1

k
), Gk(✓

0
d

k
))

Then set:

✓ d

k
= ✓

0
d

k

k�1Y

`=1

(1� ✓ 0d` ) (3.18)
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– Generate �d

k
|�d�1

k
⇠ Dir(� +µd�

d�1
k
)

(d) For each word n, 1 n N in d:

– Choose a topic assignment: z
d

n
⇠ Mul t(1,✓ d)

– Choose the word w
d

n
from the topic z

d

n
with probability P(wd

n
|zd

n
) =

�d

zd
n

,wd
n

As before, we rely on Franck copula, defined in Eq. 3.8.

3.3.6 Inference with gibbs sampling for CopHDP

Follwing [Teh and Jordan, 2010], one can sample � using:

�1, . . . ,�K ,�K+1|�⇠ Dirichlet(m.1, . . . , m.K ,�) (3.19)

where m.k is number of times that �k, as a base proportion, has been used to create a

new topic from the Dirichlet Process. As [Heinrich, 2011] mentioned, simulating how new

topics are created in document d using �k is a sequence of Bernoulli trials. Furthermore,

as shown in [Antoniak, 1974]:

P(md,k = m)|z, m
�d,k,�) =

� (↵0�k)
� (↵0�k +⌦d,k)

s(⌦d,k, m)(↵0�k)m (3.20)

where s(n, m) are unsigned Stirling numbers of the first kind and ⌦d,k counts the num-

ber of time a word occurred for document d and topic k. By sampling m.k from equation

3.20, one can simply draw base proportions �k for k 2 1, . . . , K + 1 using Equation 3.19.

Note that � is used in this equation to create a new topic, indexed by K + 1.

The estimation of ✓
0
d is based on:

p(✓
0
d |✓ 0d�1, z

d , w
d ,↵0�,� ,�d ,µd ,�d ,�d�1) =

p(✓
0
d ,✓

0
d�1, z

d , w
d ,�d ,µd ,�d ,�d�1|↵0�,�)

p(✓ 0d�1, zd , wd ,�d ,µd ,�d ,�d�1|↵0�,�)

With:

p(✓
0
d ,✓

0
d�1, z

d , w
d ,�d ,µd ,�d ,�d�1|↵0�,�) = p(wd |zd ,�d)p(zd |✓ 0d)p(✓ 0d |✓ 0d�1,↵0�)p(✓

0
d�1|↵0�)

And:
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p(✓
0
d�1, z

d , w
d ,�d ,µd ,�d ,�d�1|↵0�,�) = p(wd |zd ,�d)p(✓

0
d�1|↵0�)p(zd |↵0�)

So:

p(✓
0
d |✓ 0d�1, z

d , w
d ,↵0�,� ,�d ,µd ,�d ,�d�1) =

p(zd |✓ 0d)p(✓ 0d |✓ 0d�1,↵0�)
p(zd |↵0�)

Analogous to equation 3.10 and from Appendix A.3 we have:

p(✓
0
d |✓ 0d�1, z

d , w
d , . . . ,�d�1)/

Q
K+1
k=1 g⌦d,k+↵0�k ,

P
K+1
m=k+1⌦d,m+↵0(1�

P
k�1
`=1 �`)

(✓
0
d

k
)⇥

Q
K+1
k=1 c�(G↵0�k ,↵0(1�

P
k�1
`=1 �`)

(✓
0
d�1

k
), G↵0�k ,↵0(1�

P
k�1
`=1 �`)

(✓
0
d

k
))(3.21)

Each ✓
0
d

k
can then be estimated through a Metropolis-Hasting procedure based on

Eq. 3.21. Finally one can find ✓ d

k
using equation 3.18.

The estimation of �, µ, z and� follows the same procedure as the one for ST-LDA-C,

while taking care of potentially added topics (see below).
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3.4 Computational considerations

The word-topic distributions �d

k
(1  k  K) can be estimated in the same way as ✓ d

is estimated, as mentioned in Section 3.2. However, this would entail running K ⇥ V

Metropolis-Hasting procedures, which is problematic as soon as the collections considered

are relatively large. We thus proposed in Section 3.2 to estimate these distributions

through Eq. 3.6, for both ST-LDA-D and ST-LDA-C, as only K ⇥ V Gibbs sampling

updates are required. If this estimation procedure is faster, it may still be too slow

for really large collections. Theorem 3.2 nevertheless suggests a way to approximate

�d

k
(1 k  K , 2 d  D) through Gamma updates, as follows:

1. For each word v in d, generate tk,v ⇠ Ga(� +�d�1
k,v )

2. For each word v in the vocabulary V , �d

k,v  
tk,vP

v2V tk,v

where � corresponds to the real parameter (i.e., the constant value that makes up the V

dimensional vector of priors). The quantities tk,v are first initialized through tk,v ⇠ Ga(�),

and updated each time a new document is encountered.

As one can note, this update primarily concerns the words present in the current

document (step 1), the components for the other words being just renormalized (step 2).

This contrasts with Eq. 3.6 in which the contribution of all words is resampled for each

document via a multivariate Dirichlet distribution. The above procedure simplifies this

by relying on the univariate equivalent of the Dirichlet distribution, namely the Gamma

distribution, and by binding the variables through the renormalization step. It is faster as it

involves only K ⇥ N samplings from a Gamma distribution instead of K samplings from a

multivariate, V (V >> N) dimensional Dirichlet distribution (the K ⇥ V renormalizations

in step 2 do not really harm the procedure and are negligible compared to the Dirichlet

samplings).

We have observed in practice no difference between this procedure and the more

complex ones mentioned before, and make use of it in the remainder of this chapter. In

terms of speed, this procedure performed 1.5 times faster on the NIPS collection, which

contains long documents and a relatively small vocabulary (ca. 12,000 words), and 2 times

faster for the TDT4 and Tweets collections, which contain shorter documents with a larger

vocabulary, up to 42,000 words (see Section 5.3).

Algorithm 1 summarizes the inference process we rely on for ST-LDA-D and

ST-LDA-C. It makes use of the above procedure to estimate �, referred to as �-
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procedure. Algorithm 2 summarizes the inference process for the CopHDP. In this

inference, we use two additional variables (U1 for active topics and U0 for inactive topics)

to keep track of the evolution of topics. � is also estimated with the �-procedure above.



56 3. COPULA-BASED PARAMETRIC AND NON-PARAMETRIC LDA MODELS FOR DOCUMENT STREAMS

Algorithm 1: Inference process for ST-LDA-[D|C]
Input: Stream of D documents of length N ; number of topics K

Output: For each document d, topic distribution ✓ d , word-topic distributions �d

k

(1 k  K); for each word v in d, topic assignment z
d

v

// Initialization

1 for k = 1 to K , v 2 V do

2 tk,v ⇠ Ga(�)

3 for d = 1 to D do

4 Random initialization of �d , µd and z
d

n
, 1 n N

5 �1 = µ1 = 0

// Document processing

6 for d = 1 to D do

7 repeat

8 For ST-LDA-D: update ✓ d acc. to Eq. 3.5

9 For ST-LDA-C:

10 (a) update T d (Metropolis-Hasting)

11 (b) obtain ✓ d from T d through Eq. 3.9

12 Update �d

k
acc. �-procedure

13 Update �d and µd (Metropolis-Hasting), d > 2

14 Update z
d

n
acc. to Eq. 3.7, 1 k  K , 1 n N

15 until estimates are stable
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Algorithm 2: Inference process for CopHDP
Input: Stream of D documents of length N ; initial number of topics K0.

Output: For each document d, topic distribution ✓ d , word-topic distributions �d

k

(1 k  leng th(U1)); for each word v in d, topic assignment z
d

v
, number of topics

// Initialization

1 U1 = [1, . . . , K0] active topics, U0 = [ ] inactive topics

2 for k = 1 to leng th(U1) + 1, v 2 V do

3 tk,v ⇠ Ga(�)

4 �k = 1/K0

5 for d = 1 to D do

6 Random initialization of �d , µd and z
d

n
, 1 n N

7 �1 = µ1 = 0

// Document processing

8 for d = 1 to D do

9 repeat

10 For each topic sample m acc. to Eq. 3.20, then update � acc. to Eq. 3.19

11 Update ✓
0
d acc. to Eq. 3.21 (Metropolis-Hasting)

12 Obtain ✓ d from ✓
0
d through Eq. 3.18

13 Update �d

k
acc. �-procedure

14 Update �d and µd (Metropolis-Hasting), d > 2

15 for n= 1 to N do

16 topicold = z
d

n

17 Update z
d

n
acc. to Eq. 3.7 with 1 k  leng th(U1) + 1

18 if z
d

n
== K + 1 then

19 if U0 is empty then

20 topicnew = K + 1

21 Append topicnew to the end of U1

22 Add a topic coordinate to the end of �,✓ 0,✓ and �

23 Update m,� and eventually ✓

24 else

25 topicnew = pop out first element of U0

26 Append topicnew to the end of U1

27 Update the topicnew’s coordinate of �,✓ 0,✓ and �

28 if ⌦d

topicold

== 0 then

29 remove topicold from U1 and add it to U0

30 Update m,� and eventually ✓

31 until estimates are stable

32 Number of topics = Leng th(U1)
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3.5 Experimental study

We relied on five datasets with different properties for analyzing our methods:

• The NIPS dataset contains 1,500 scientific papers with no time dependency between

them. The size of the vocabulary is 12,375; Documents contain 500 unique words in

average. The collection was collected from the NIPS proceedings and is relatively

homogeneous in terms of the topics covered. This collection allows one to assess

whether topic dependencies are still useful in a "loose" context in which there is

no clear temporal dependency. It is available at the UCI ML Repository [Lichman,

2013];

• The Multilingual Text and Annotations data set TDT4
2, proposed for topic detection

and tracking, has 3,190 original documents in English and a vocabulary compris-

ing 22,965. Documents are ordered by time and correspond to newswire articles

extracted from different broadcasts; The number of unique words per document is

100 in average;

• The Tweets dataset is collected using Twitter’s streaming API during 20 days from

8/10/2014 to 27/10/2014. The collection contains 72,592 tweets and a vocabulary of

size 42,336. Tweets have been sequenced by time and are filtered over health issues

using an SVM classifier trained over MeSH categories3;

• The NYT dataset4 consistes of articles, ordered by time, from the New York Times

global news (from January 1st to December 31st, 2011). A complete description of

this dataset can be found in [Yao et al., 2016];

• Lastly, the Tech dataset5 is a one year (staring on 7th August 2011) excerpt from

Techcrunch’s blogs. It is also detailed in [Yao et al., 2016]. The documents are

relatively long (in average 1,000 unique words) and ordered by time.

Each dataset was separated into training and test sets. The NIPS collection was

randomly split into training (90% of the collection) and test (10% of the collection) sets.
2Linguistic Data Consortium, The Trustees of the University of Pennsylvania https://catalog.

ldc.upenn.edu/LDC2005T16.
3https://www.nlm.nih.gov/mesh/
4https://github.com/yao8839836/COT/tree/master/data/NYT
5https://github.com/yao8839836/COT/tree/master/data/TechCrunch%

201%20year%20(3%2C158%20docs)
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For TDT4, we used the first 2800 newswires released in time for training, and the last 390

ones for testing. For the Tweets dataset, we used the tweets issued in the first 17 days for

training (60,000 documents) and those of the last 3 days (12,000 documents) for testing.

For NYT and Tech collections, we used approximately 10% of the documents from the last

time stamps as test set. Table 3.1 summarizes the characteristics of these collections.

Table 3.1: Datasets used in our experiments along with their properties.

NIPS TDT4 Tweets Tech NYT

Documents in Train set 1,350 2,800 60,000 2,800 6,100

Documents in Test set 150 390 12,000 370 678

Vocabulary size 12,375 22,965 42,336 27,870 42,244

# of unique words per doc. 500 100 15 350 500

Words in total 1.9M 0.78M 0.9M 3,5M 1.1M

Evaluation. Results are evaluated over the test set using the widely used perplexity

measure that can be calculated by [Blei et al., 2003].

perplex i t y(C test) = exp

0
B@
�
X

d

X

n

log
X

k

✓ d

k
⇥�d

k,vd
n

D
test ⇥ N

1
CA (3.22)

where C
test denotes the test collection, D

test is its size and v
d

n
represents the word at

position n in document d. The parameters ✓ d

k
and �d

k
are estimated on the training set.

Furthermore, for the TDT4 collection we use the available semantic labels of newswires

in the test set in order to evaluate the ability of the models to find documents of the same

semantic labels using only their predicted topic distributions (Section 3.5.2). To this aim,

we measure ROC curves and AUC of different topic models on TDT4.

Settings and comparisons. For all models, both hyperparameters ↵ and � were

fixed to 0.5. � is also fixed to 2.0 for the non-parametric models considering the constraint

of Beta distribution mentioned before. Documents of the NIPS dataset are initially sto-

plisted, we did not perform further preprocessing of the data nor removed stop words from

the TDT4 , Tweets, Tech and NYT documents as for all methods best results are obtained

when collections are not filtered.

To validate the streaming LDA models described above, we tested several methods for

comparison purposes:
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• The first two are LDAmodels [Blei et al., 2003]: (a) LDA1, which consists in training

an LDA model on the whole training data, then fixing � and updating ✓ for each

document in the test set, (b) LDAall , which consists in training an LDA model on

the whole training data and updating both � and ✓ for each document in the test set;

• In addition, we considered two state-of-the-art latent models that take into account

dependencies between topics: Dynamic Topic Model (DTM) [Blei and Lafferty,

2006] and Temporal LDA (TM-LDA) [Wang et al., 2012]. DTM is certainly the most

popular model to take into account topic dependencies. It is furthermore complete

in the sense that it integrates both topic and word-topic distributions. TM-LDA is a

very recent proposal with nice features;

• We used the standard non-parametric version of LDA, namely the Hierarchical

Dirichlet Processe (HDP) model [Teh et al., 2006] that serves as a baseline for the

non-parametric mixture topic models.

• We also used the Evolving Hierarchical Dirichlet Process (EHDP), one the most

recent hierarchical streaming topic models that obtained good results in streaming

environnements [Wang et al., 2017];

• Lastly, we also considered the three streaming LDA models we have introduced

(ST-LDA-D ST-LDA-C6 and CopHDP). For these last three models, ⌧� (see

Appendix A.1) is set to 30,000 7.

All the algorithms were implemented in Python with Numpy and Scipy8 except DTM that

is a C++ implementation tool from [Blei, 2008]. For both training and test, DTM is used

considering that each document corresponds to a time slice.

3.5.1 Perplexity results

To measure the perplexity for each model, we estimate ✓ and � over respectively all

documents and all words of the training set. These estimates are then used to evaluate

iteratively new � and ✓ distributions for each document in the test set. This iterative

update of � and ✓ is done for all of the methods except LDA1 in which � is fixed and only

✓ is updated over the test documents.
6This can be found in https://github.com/Hesamalian/StreamingLDA-Copula
7This value, upper bounding �d , corresponds to a regime of the Franck copula close to comonotonicity.
8We are working to release all the programs developed in this study publicly available for research

purpose.
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Table 3.2 summarizes the perplexity results of all models, on all datasets, with the

number of topics varying in the set {20,40, 60,80} (this number is just used as initial

value for the non-parametric models CopHDP and EHDP, whereas it is fixed for the other

models). As one can note, on all collections, the best results are obtained with either

CopHDP or ST-LDA-C, these two models being almost systematically (18 times out of

20) the best two models (represented in bold and italics in the table). They are followed by

ST-LDA-D (which is twice the second best model) and EHDP, then LDAall , HDP and

DTM. TM-LDA the temporal LDA model, does not perform well as it is systematically

worse than the the standard LDA model represented here by LDAall . This result is however

not really surprising as TM-LDA does not make advantage of the fact that the words in the

new documents are known. Indeed, this model was designed for a slightly different purpose

and its ability to predict future topics is not exploited here. All in all, we see here that the

extra flexibility of the ST-LDA-[D|C] and CopHDP models allow them to outperform

previously proposed ones.Comparing ST-LDA-[D|C] and CopHDP one can note that

the two behave similarly. CopHDP is a priori more flexible than ST-LDA-C as the final

number of topics is inferred from the data (and not predetermined). However, as one can

note, the choice of the initial value for the number of topics impacts the results obtained so

that one still has to test several initial values. This said the variation in perplexity according

to the number of topics is less important for CopHDP than for ST-LDA-C, suggesting

that the former is more stable than the latter on this aspect. On the other hand, it is also

more time consuming (see below). Thus, if one does not have a priori knowledge on the

number of topics and does not have time constraints, then CopHDP should be preferred;

otherwise it should be ST-LDA-C.
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Table 3.2: Perplexity with respect to different number of topics in {20, 40, 60,80}. Best

results are in bold, second best in italics.

Data Topics LDA1 LDAall TM-LDA DTM HDP EHDP ST-LDA-D ST-LDA-C CopHDP

NIPS

20 2068.4 1625.4 2038.7 1737.5 1635.5 1624.7 1620.4 1612.8 1616.6

40 2034.5 1534.7 2025.4 1551.2 1511.1 1506.5 1520.9 1497.6 1479.6

60 1986.4 1458.1 1985.3 1450.7 1488.3 1460.7 1450.2 1434.5 1456.6

80 1890.1 1450.1 1964.3 1418.4 1426.6 1412.9 1410.4 1401.3 1398.7

TDT4

20 900.8 723.1 876.7 869.1 750.6 746.4 724.4 720.6 735.2

40 930.2 768.4 900.3 836.7 788.4 774.2 758.1 752.5 763.7

60 960.4 792.7 916.3 820.9 791.2 786.2 784.4 780.8 765.2

80 962.3 853.2 924.3 814.2 815.3 806.3 810.4 802.3 784.4

Tweets

20 470.8 431.8 455.1 559.4 415.3 404.1 393.9 388.2 389.5

40 580.3 508.6 520.1 578.2 483.3 476.2 480.1 474.1 447.12

60 615.5 577.1 585.2 607.4 563.3 551.7 552.7 546.8 480.2

80 690.4 652.2 658.3 637.3 632.6 618.3 621.1 617.3 526.2

Tech

20 956.8 789.5 913.3 876.2 777.3 753.5 766.2 741.6 742.7

40 972.3 801.3 926.4 825.5 784.2 769.3 771.2 760.6 753.8

60 985.3 831.6 945.2 814.3 812.2 803.1 785.5 774.8 772.9

80 998.9 856.6 973.6 812.7 821.4 806.4 803.5 794.6 786.2

NYT

20 900.9 723.1 832.1 825.3 725.2 714.4 703.1 694.1 694.4

40 905.3 753.1 856.3 785.1 733.4 724.9 714.3 696.2 712.8

60 926.2 781.2 888.2 755.2 742.3 731.8 722.1 708.4 723.7

80 944.5 816.5 910.4 745.8 792.4 741.3 742.5 721.4 738.4

To further illustrate the behaviours of the different models, Figure 3.3 shows the

evolution of perplexities of the parametric models with 80 topics over the test set, with

respect to the training time of each model on the NIPS and TDT4 datasets (the non-

parametric models are not considered here as their running time is not comparable to the

one of parametric models). The code program of DTM (in C++) generally executes faster



3.5. EXPERIMENTAL STUDY 63

than the other code programs (written in Python), we nevertheless ignore this detail and

consider all the curves identically.
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Figure 3.3: Perplexity curves with respect to time for all methods on NIPS and TDT4

collections (80 topics).

As expected, all perplexity curves decrease monotonically with respect to time. On both

datasets, perplexity curves of ST-LDA-D and ST-LDA-C lower-bound the other curves

on all iterations. On the NIPS dataset, DTM becomes competitive with the two others, at the

end of the iterations, while on TDT4, where test documents come in a stream, ST-LDA-C

stands clearly as the best model. These results show the ability of ST-LDA-C to capture

dependencies between topics in document streams. Further, we note that at the beginning

of iterations where dependencies are not yet apparent, the perplexity curves of both models

are very similar to the one of LDAall . This is in line with our assertion of the previous

section that both models reduce to LDA in the case where topics are independent. As noted

above, TM-LDA is not competitive in this setting as it does not make advantage of the fact

that the words in the new, arriving documents are known.

In addition, Figure 3.4 illustrates the evolution of the perplexity on the Tweets dataset

with 80 topics9 when new tweets are continuously considered and used to estimate the

parameters of the model (this experiment parallels the one presented in [Blei and Lafferty,

2006]). As once can note, all models need roughly the same amount of data (ca. 2,000

tweets) prior to have stable estimates of their parameters. The perplexity curves continue
9As before, this value is fixed for parametric models and serves as initial value for the non-parametric

ones.
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to decrease when new tweets are observed, but the decrease is less marked. TM-LDA

and LDAall do not behave well on this dataset and are slgihtly less stable (the perplexity

increases after 2,000 tweets, prior to slowly decreasing again). A similar instability can

be observed for DTM after 11,000 tweets. In contrast, the other models (ST-LDA-D,

ST-LDA-C, HDP, EHDP and CopHDP) are more stable, the best performing model

being here CopHDP.
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Figure 3.4: Perplexity of each method by number of tweets added to the test set (80 topics).

Table 3.3: Time consumption (in minutes) till convergence and perplexity reached (80

topics). Best method is in bold, second best in italics.

Data LDA1 LDAall TM-LDA DTM HDP EHDP ST-LDA-D ST-LDA-C CopHDP

NIPS

Time 41.5 36.4 39.3 33.6 65.8 72.7 32.3 31.1 54,2

Perp 1890.1 1450.1 1964.3 1418.4 1426.6 1412.9 1410.4 1401.3 1398.7

TDT4

Time 20.4 17.3 19.7 16.2 30.2 33.1 15.8 15.1 28.3

Perp 962.3 853.2 924.3 814.2 815.3 806.3 810.4 802.3 784.4

Lastly, Table 3.3 provides the running time for training the methods on the NIPS and
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TDT4 as well as the perplexity obtained (again considering 80 topics)10. Convergence is

here defined by the fact that the relative perplexity between two consecutive iterations is

no more than 10�3. As one can note, as expected, the parametric models run faster than the

non-parametric models. Among the parametric models, ST-LDA-D and ST-LDA-C are

by far the fastest ones. Similarly, CopHDP is the fastest model among the non-parametric

family (that also contains HDP and EHDP) and the best model overall.

The fact that ST-LDA-D and ST-LDA-C run faster than the standard LDA models

may seem surprising. Indeed, an iteration for ST-LDA-D and ST-LDA-C is slower

than an iteration for LDA. The explanation lies here in the fact that the number of iterations

required for convergence is lower for ST-LDA-D and ST-LDA-C than for the other

models. The same applies for CopHDP and explains why it is faster than HDP.

10All experiments on a processor 3 GHz Intel Core i7 with memory 8 GB 1600 MHz DDR3.
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3.5.2 Ability to detect semantic correlations

We further investigate on the ability of models to find topics that can detect documents

of the same semantic class. For doing so, we used the TDT4 collection for which some

documents are assigned semantic classes by experts. We hence use the cosine measure

or the �d parameter of ST-LDA-C and CopHDP, to detect consecutive documents in

the test set of this collection that are found similar on the basis of their topic distributions;

two consecutive documents are considered as similar if the cosine measure of their topic

distributions (resp. estimated �d - line 13 Algorithm 1) is higher than a given threshold. If

two consecutive and similar documents share the same semantic label, we count them as a

true positive; if they do not share the same semantic label, we count them as false positive.

By changing the threshold, we can plot the ROC curves for the corresponding method.

Figure 3.5 depicts ROC curves of DTM, EHDP, TM-LDA, ST-LDA-C and CopHDP

defined over 8 different thresholds taken in the set [0.2 0.5 0.7 0.86 0.89 0.92 0.95 0.98]

for the cosine measure and [0.5 1 2 5 10 15 20 50] for �d when the number of topics is

fixed to 20 and to 80.
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Figure 3.5: ROC curves of "semantic class matching" methods working over the topic

distributions found by DTM, TM-LDA, ST-LDA-C and CopHDP for the number of

topics fixed to 20 (left) and 80 (right).

In order to compare between the different ROC curves, we estimated the area under

them, shown in Table 3.4. From these results it is clear that topic distributions found
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by ST-LDA-C and CopHDP are more able to detect these semantic classes than topic

distributions of DTM, EHDP and TM-LDA.

Table 3.4: Areas under the ROC curves of figure 3.5.

Methods 20 (Fig. 3.5, left) 80 (Fig. 3.5, right)

ST-LDA-C with �d 0.7982 0.8306

ST-LDA-C with cosine 0.8004 0.7755

CopHDP with cosine 0.775 0.7702

TM-LDA with cosine 0.7652 0.7349

EHDP with cosine 0.7201 0.6562

DTM with cosine 0.7357 0.6301

Finally, to illustrate the role of �d , we pictorially illustrate the correlation between the

estimated �d and the topic distributions of three consecutive documents (Figure 3.6) with

identical labels in the TDT4 collection. As one can see, the distributions of topics in the

three pairs of consecutive documents with high �d are similar. In addition, the two most

probable topics of the document pairs retained in Figure 3.7, also taken from TDT4, do not

share any word when �d is small and are almost identical when �d is high. These examples

illustrate the fact that �d is a good indicator of the topic dependencies between documents.
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Figure 3.6: Topic distribution of three pairs consecutive documents that have the same

topic (Olympic - left, Election - middle, Sport - right) and subject labels in TDT4 dataset

(20 topics).
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Figure 3.7: 5 most frequent words of the most probable topic (20 topics)
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3.6 Summary

We have proposed in this chapter new models for modelling topic and word-topic depen-

dencies between consecutive documents in document streams. The first model is a direct

extension of Latent Dirichlet Allocation model (LDA) and makes use of a Dirichlet distri-

bution to balance the influence of the LDA prior parameters wrt to topic and word-topic

distribution of the previous document. The second extension makes use of copulas, which

constitute a generic tool to model dependencies between random variables. Lastly, the third

model is a non-parametric extension of the second one through the integration of copulas

in the stick-breaking construction of Hierarchical Dirichlet Processes. Our experiments,

conducted on five standard collections that have been used in several studies on topic

modelling, show that our proposals outperform previous ones, as dynamic topic models,

temporal LDA and the Evolving Hierarchical Processes, both in terms of perplexity and for

tracking similar topics in a document streams. Compared to previous proposals, our models

have extra flexibility and can adapt to situations where there is in fact no dependencies

between the documents.

In the future, we plan to develop versions of these models that scale well, following the

improvements on the inference methods for LDA, proposed in streams [Yao et al., 2009]

or in online settings [Hoffman et al., 2010, Banerjee and Basu, 2007].
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Integrating text structure to LDA using

copulas

A limitation inherent from the bag-of-words representation in such state-of-the-art models

concerns the independence assumption: given their topics, words are assumed to occur

independently. While this exchangeability assumption greatly impacts the involved com-

putations and, in particular, the calculations of the conditional probabilities, it is rather

naive and unrealistic [Heinrich, 2005]. As another limitation caused by the exchangeability

assumption, the grouping of words in topically coherent spans, that is contiguous text

spans like sentences, is lost.

On the other hand, text structure generally contains useful information that could be

leveraged in inference process. Sentences or phrases, for instance, are by definition text

spans complete in themselves that convey a concise statement. To better illustrate how text

structure could help in topic identification, consider the example of Figure 4.1. It illustrates

the topics inferred by LDA for the words (excluding stop-words) of a sentence drawn from

a Wikipedia page. At the sentence level, one could argue that the sentence is generated

by the “Cinema” topic since it discusses a film and its authors. LDA, however, fails and

assigns several topics to the words of the sentence. Importantly, several of those topics

like “Elections” and “Inventions” are unrelated. In finer text granularity, LDAalso fails to

assign consistent topics in noun-phrases like “film noir classic” and entities like “Brian

Donlevy”. A binding mechanism among the topics of the words of a sentence, or a phrase,

could have prevented those limitations and taking simple text structure into account would

be beneficial.

71
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The film is a remake of the 1947 film noir

classic that starred Victor Mature, Brian

Donlevy and Richard Widmark.
Cinema Science Elections Inventions

Figure 4.1: Applying LDA on Wikipedia

documents.

Motivated by the previous example, we

propose to incorporate text structure in the

form of sentence or phrase boundaries as an

intermediate structure in LDA. We plan to

model this binding mechanism with copulas.

Copulas have been found to be a flexible tool

to model dependencies in the fields of risk

management and finance [Embrechts et al.,

2002]. They are a family of distribution func-

tions that offer a flexible way to model the joint probability of random variables using only

their marginals. This results in decoupling the marginal distributions by the underlying

dependency. These properties make them appealing and some preliminary studies have

started investigating their integration into different learning tasks [Wilson and Ghahramani,

2010, Tran et al., 2015, Amoualian et al., 2016].

The remainder of this chapter is organized as follows: the main contribution of this

article is presented in next section, in which we propose to bind the latent topics that

generate the words of a segment using copulas. We show that sampling word topics from

copulas offers an elegant way to impose different levels and types of correlation between

them. Section 4.3 then illustrates the behavior of copulaLDA, the copula-based version

of LDA introduced in Section 4.1.2, while Section 4.4 concludes the chapter.
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4.1 Integrating text structure to LDA

In this section we develop copulaLDA (hereafter copLDA), that extends LDA by

integrating simple text structure in the model using copulas [Balikas et al., 2016b]. We

assume that the topics that generate the terms of coherent text spans are bound. A strong

binding signifies high probability for the terms to have been generated by the same topic.

Therefore, as we show, the conditional independence of topics given the per-document

topic distributions does not hold. Before presenting the generative and inference processes

of copLDA, we shortly discuss the idea of coherent text spans.

The film is a remake of the 1947 film

noir classic that starred Victor Mature,

Brian Donlevy and Richard Widmark.

Figure 4.2: Shallow parsing using the Stan-

ford Parser. Contiguous words in italics de-

note a noun-phrase.

Each sentence is a coherent, meaning-

ful segment of text and we consider them

as coherent text spans in this study. How-

ever, each sentence can be further decom-

posed into smaller segments through syn-

tactic analysis. Figure 4.2 illustrates the

output of a shallow parsing step of the ex-

ample sentence of Figure 4.1, generated

using the Stanford Parser.1 Among these different segments, noun phrases play a particular

role as they are, for instance, at the basis of terminology extraction that aims at capturing

concepts from a document. Noun phrases usually constitute a semantic unit, pertaining to a

given concept related to few, related topics. For this reason, we also consider noun phrases

as coherent text spans in this study. Another advantage of the two types of coherent text

spans we consider (whole sentences and noun phrases) is that they can be easily extracted

using shallow parsing techniques, and one needs not resort to complex syntactic analysis

in practice.

1http://nlp.stanford.edu/software/lex-parser.shtml
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4.1.1 Apply copulas to random variables

As it mentioned in Section 3.2.1, Copulas are interesting because they separate the depen-

dency structure of random variables from their marginals. Formally [Nelsen, 2007, Trivedi

and Zimmer, 2007], a p-dimensional copula C is a p-variate distribution function with

C : Ip = [0,1]p ! [0, 1] whose univariate marginals are uniformly distributed on I and

C(u1, . . . , up) = P(U1  u1, . . . , Up  up). Copulas allow one to explicitly relate joint and

marginal distributions, through Sklar’s theorem [Sklar, 1959]. Once again, we present this

theorem:

Theorem 4.1 Let F be a p-dimensional distribution function with univariate margins

F1, . . . , Fp. Let Aj denote the range of Fj. Then there exists a copula C such that for all

(x1, . . . , xp) 2 Rp

F(x1, . . . , xp) = C(F1(x1), . . . , Fd(xp)) (4.1)

Furthermore, when F1, . . . , Fp are all continuous, then C is unique.

As a result any multivariate distribution F can be decomposed into its marginals

Fi, i 2 {1, . . . , p} and a copula, allowing to study the multivariate distribution indepen-

dently of the marginals. Sklar’s theorem also provides a way of sampling multivariate

distributions with a large number of random variables using copulas: F(x1, . . . , xp) =

F

Ä
F
�1
1 (u1), . . . , F

�1
p
(up)
ä
= P[U1  u1, . . . , Up  up] = C(u1, . . . , up). Hence, to sample

F it suffices to sample the dependence structure modeled by copulas and then transform the

obtained sample in the marginals of interest using the probabilistic integral transform. We

illustrate this transformation for one variable in Figure 4.3. Sampling the copula returns,

for each variate, a sample as the one indicated in the histogram of the y axis. One can then

transform the sample using the quantile (F�1) of an arbitrary marginal.

Before proceeding further, we visit some extreme conditions of dependence illustrating

the respective copulas that model them: (1) Independence, which is a frequently assumed

simplification in topic models and is obtained with
pQ

i=1
ui, and (2) Co-monotonicity, which

is the complete, positive correlation between the random variables up, obtained with

min(u1, . . . , up).

In the rest of our development we will be using a particular family of copulas, the

Archimedean copulas. Archimedean copulas are widely used copulas and are defined with

respect to a generator function  . They take the form: C(u1, · · · , ud) = �1( (u1) + · · ·+
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0
Topic 1 Topic 2 Topic 3 Topic 4

Copula sample 
using uniform marginals Quantile of the multinomial

Probabilistic
integral transform

Figure 4.3: The transformation of a ran-

dom variate to multinomial (or arbitrary)

marginals. The arrows illustrate the gen-

eralized inverse; the histograms in y

(resp. x) axis depict the distributions of

the initial (resp. transformed) samples.

0 1
0

1

U1

U
2

Dependency of a random sample with Frank copula

Figure 4.4: The positive correlation im-

posed to two random variates when sam-

pling from a Frank copula with � = 25.

The histograms in x (resp. y) axis show

the distributions of each of the variates

that generate the scatterplot.

 (ud)). A special case of Archimedean copulas corresponds to Frank copulas, which are

obtained by setting:  �(u) =
�1
� log(1� (1� e

��)e�u). When �! 0, the Frank copula

approaches the independency copula; when �!1 it approaches the co-monotonicity

copula. Hence, the Frank copula allows one to model all dependencies between complete

independence to perfect dependence while varying � from 0 to 1. Therefore, � can

be seen as an additional hyper-parameter to be tuned or learned from the data. Figure

4.4 illustrates the positive dependence between two random variables sampled from a

Frank copula with � = 25. To sample from the Archimedean copulas, we rely on the

algorithm proposed by [Marshall and Olkin, 1988], which was further improved in [McNeil,

2008, Hofert, 2011] and implemented in the R language [Hofert et al., 2011].
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4.1.2 Extending LDA with copulas

As mentioned above, copulas provide a nice way to bind random variables. We are making

use of them here to bind word-specific topics (the z variables in LDA) within coherent text

spans, the rationale being that coherent text spans can not be generated by many different,

uncorrelated topics. This leads us to the following generative model:

• For each topic k 2 [1, K], choose a per-word distribution: �k ⇠ Dir(�), with

�k,� 2 R|V |

• For each document di, i 2 {1, . . . , D}:

– Choose a per-document topic distribution: ✓i ⇠ Dir(↵), with ✓i,↵ 2 R|K |

– Sample number of segments in di: Si ⇠ Poisson(⇠);

– For each segment si, j, j 2 {1, . . . , Si}:

⇤ Sample number of words: Ni, j ⇠ Poisson(⇠d);

⇤ Sample topics Zi, j = (zi, j,1, . . . , zi, j,Ni, j
) from a distribution admitting

Mul t(1,✓i) as margins and C as copula;

⇤ Sample words Wi, j = (wi, j,1, . . . , wi, j,Ni, j
): wi, j,n ⇠ Mul t(1,�zi, j,n

), 1 
n Ni, j.
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Figure 4.5: The copLDA generative model.

We model the dependency between the topics

underlying a segment with copulas.

There are two main differences between

copLDA and LDA. Firstly, the former as-

sumes a hierarchical structure in the docu-

ments: the topics that generate the words in

the coherent segments exhibit topical corre-

lation, hence the conditional independence

assumption between the terms of a segment

given the document per-topic distribution

(✓i) no longer holds. Secondly, this topi-

cal correlation is modeled using copulas.

Figure 4.5 provides the graphical model

for copLDA. For clarity, we draw each

word in a coherent segment S (w1, . . . , wN )

to make the dependencies explicit. Notice

how the topics of those words depend on both the copula parameter � and the per-document

topic distribution ✓ .

The hyper-parameters ↵ and � correspond to priors of the model. Following [Blei

et al., 2003], we assume them here to be symmetric and we fix them to 1
K

, with K the

number of topics retained. The hyper-parameter � is chosen after exploration of a grid of

possible values, and is the same for the whole corpus. We choose the value that minimizes

perplexity.
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4.1.3 Inference with Gibbs sampling for copLDA

The parameters of the above model, that are �,✓ and the topics of each segment Zi, j =

(zi, j,1, · · · , zi, j,Ni, j
), can be directly estimated through Gibbs sampling. Denoting ⌦ and  

the count matrices such that ⌦ = (⌦i,k) (resp.  = ( k,v)) represents the count of word

belonging to topic k assigned to document di (resp. the count of word v being assigned

to topic k), the Gibbs updates for ✓ and � are the same as the ones for the standard LDA

model [Blei et al., 2003]:

✓i ⇠ Dir(↵+⌦i) and �k ⇠ Dir(� + k) (4.2)

The update for the variables z is obtained as follows:

p(Zi, j |Z�i, j , W,⇥,�,↵,� ,�) =
p(Zi, j ,Z�i, j , W |⇥,�,↵,� ,�)

p(Z�i, j , W |⇥,�,↵,� ,�)
=

p(Zi, j , Wi, j |⇥,�,�)p(Z�i, j , W�i, j |⇥,�,�)
p(Wi, j |⇥,�)p(Z�i, j , W�i, j |⇥,�,�)

=
p(Zi, j , Wi, j |⇥,�,�)P
Zi, j

p(Zi, j , Wi, j |⇥,�,�)
=

p(Wi, j |Zi, j ,�)p(Zi, j |⇥,�)P
Zi, j

p(Wi, j |Zi, j ,�)p(Zi, j |⇥,�)
⇠ p(Wi, j |Zi, j ,�)p(Zi, j |⇥,�) = p(Zi, j |⇥,�)

Ni, jY

n=1

�wi, j,n,zi, j,n

(4.3)

where W , ⇥ and � stand for the whole parameter set of w, ✓ and � and the probability

outside the product in the last step admits a copula C� and Mul t(1,✓i) as margins. As is

standard in topic models, the notation �i, j means excluding the information for i, j. Note

that in case where �! 0, the words of a segment become conditionally independent given

the per-document distribution and one recovers the non collapsed Gibbs sampling updates

of LDA.

From the expression of Eq. (4.3), a simple acceptance/rejection algorithm can be

formulated: (1) Sample a random variable of pdf p(Zi, j|⇥,�) using copula, and, (2) Accept

the sample with probability p(Wi, j|Zi, j,�) =
QNi, j

n=1�wi, j,n,zi, j,n
. Algorithm 3 summarizes

the inference process.
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4.2 Computational considerations

As the values of �wi, j,1,zi, j,1
⇥ · · ·⇥�wi, j,n,zi, j,n

tend to be very low, the acceptance/rejection

sampling step described above is very slow in practice (see below). We propose here to

speed it up by considering, for each word wi, j,n in a given segment, not the exact probability

of zi, j,n, but its mean (noted M) over all the other words in the segment:

M(zi, j,n|Z�i, j, W,⇥,�,↵,� ,�) =
X

wi j,l ,l 6=n

X

zi j,l ,l 6=n

P(Zi, j|Z�i, j, W,⇥,�,↵,� ,�)/ �wi, j,n
✓d,zi, j,n

as
P

wi j,l
�wi, j,l

= 1. Note that the above form is a marginalization of P(Zi, j|Z�i, j, W,⇥,�,↵,� ,�)

and thus defines a valid probability and a valid Gibbs sampler, even though on a joint

distribution that slightly differs from the original one.

Algorithm 3: A Gibbs Sampling iteration for copLDA

1 Input: documents’ words grouped in segments, ↵, � , K , Copula family and its

parameter �

2 //Initialize counters  ,⌦

3 for document di, i 2 [1, D] do

4 for segment si, j : j 2 {1, . . . , Si} do

5 Draw a random vector U = (U1, . . . , UNi, j
) that admits a copula C�

6 do
/* If the mean approximation is used, the loop is done once, ignoring the acceptance

condition */

7 for words wi, j,k, k 2 [1, WNi, j
] in si, j do

8 Decrease counter variables  ,⌦

9 Get zi, j,k by transforming Uk to Mult. marginals with the generalized

inverse

10 Assign topic zi, j,k to wi, j,k

11 Increase counters  ,⌦

12 while Accept the new segment topic assignments with probability

�wi, j,1,zi, j,1
⇥ · · ·⇥�wi, j,n,zi, j,n
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Figure 4.6 compares the perplexity scores achieved in 200 documents from the

Wikipedia dataset “Wiki46” of Table 4.1 by the copLDA model, when considering noun-

phrases as coherent spans, with and without rejection sampling. We repeat the experiment

10 times and also plot the standard deviation. We first note that approximating Algorithm 1

by ignoring the rejection sampling step results in slightly worse performance. On the other

hand, without the rejection sampling, copLDA converges faster in terms of iterations.

Furthermore, the cost in terms of running time of a single iteration is significantly smaller:

for instance, for 30 iterations with rejection sampling, the algorithm needs almost 6 hours,

that is 100 times more than the 3.5 minutes needed without the rejection sampling. Hence,

in the rest of the study, for scaling purposes, we adopt the above mean approximation.
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4.3 Experimental study

Models In our experiments, we compare the following topic models: (1) copLDAsen that

considers sentences as coherent segments, (2) copLDAnp that considers noun-phrases

as coherent segments, (3) LDA as proposed in [Blei et al., 2003] using the collapsed

Gibbs sampling inference of [Griffiths and Steyvers, 2004], and (4) senLDA described

in [Balikas et al., 2016a] using its public implementation. For copLDAx models, we

use the Frank copula which was reported to obtain the best performance in similar tasks

[Amoualian et al., 2016] and was also found to achieve the best performance in our local

validation settings compared to Gumbel and Clayton copulas. We have implemented

the models using Python;2 for sampling the Frank copulas we used the R copula

package [Hofert et al., 2011] and rPY.3 As mentioned in Section 4.1.2, � is set to 2 for

copLDAsen and to 5 for copLDAnp (values which we found to perform well in every

dataset we tried). Furthermore, the hyper-parameters ↵ and � where set to 1/K , where K is

the number of topics, which was selected from {50, 100, 200, 300,400} for each dataset.

For the shallow parsing step, required for copLDAnp, we used the Stanford Parser [Klein

and Manning, 2003]. The text pre-processing steps performed are: lower-casing, stemming

using the Snowball Stemmer and removal of numeric strings.

Datasets We have used the following publicly available data collections to test the perfor-

mance of the topic models: (1) 20NG (20 news groups), which is a standard text dataset for

such tasks as provided by [Bird et al., 2009], (2) Reuters (Reuters-21578, the “ModApte”

version), also discussed in [Bird et al., 2009], (3) TED, that is transcriptions of TED talks

released in the framework of the International Workshop on Spoken Language Translation

2013 evaluation campaign4 (we have merged the train, development and test parts and we

selected the transcriptions with at least one associated label among the 15 most common

in the data5), (4) Wikix , with x 2 {15,37, 46} and PubMed, both excerpts6 from the

Wikipedia dataset of [Partalas et al., 2015] and the PubMed dataset of [Tsatsaronis et al.,

2015] used in [Balikas et al., 2016a], and (5) “Austen”, where we concatenated three

2The models used in this chapter are available for research purposes at https://github.com/

balikasg/topicModelling.
3https://pypi.python.org/pypi/rpy2
4http://workshop2013.iwslt.org/59.php
5Technology, Culture, Science, Global Issues, Design, Business, Entertainment, Arts, Politics, Education,

Art, Creativity, Health, Biology and Music.
6https://github.com/balikasg/topicModelling/tree/master/data
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Figure 4.6: The effect of rejection sampling in efficiency and perplexity performance.
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Figure 4.7: The perplexity curves of the investigated models for 200 Gibbs sampling

iterations and different datasets.

books7 written by Jane Austen, available from the Gutenberg project (each paragraph is

considered as a document). Table 4.1 presents some basic statistics for these datasets.

7We used the books: Emma, Persuasion, Sense. We considered each paragraph as a document.
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Table 4.1: The basic statistics, the perplexity and the classification scores of the datasets

used.

Basic Statistics Perplexity Scores Classification (MiF1) scores

Docs. |N | |V | Classes senLDA copLDAsen LDA copLDAnp senLDA copLDAsen LDA copLDAnp

20NG 19,056 1.7M 75.4K 20 2636 2083 2200 1483 0.5622 0.6328 0.6246 0.6490

TED 1,096 1.16M 30.4K 15 2099 1812 1805 1775 0.4612 0.4678 0.4633 0.4764

PubMed 5498 1.09M 28.7K 50 1601 1385 1384 1085 0.6666 0.7525 0.7406 0.7431

Reuters 10,788 875K 21.4K 90 579 512 501 499 0.7504 0.7692 0.7893 0.7851

Wiki15 1,198 162K 13.4K 15 2988 2766 2640 2397 0.6920 0.7230 0.74 0.7403

Wiki37 2,459 317K 19.7K 37 3103 2871 2711 2395 0.5717 0.6053 0.6447 0.6220

Wiki46 3,657 478K 23.4K 46 2220 2280 2135 1978 0.5326 0.6170 0.6599 0.6326

Austen 5,262 170K 6.3K - 1110 898 798 805 - - - -

Manual inspection of the topics We begin by comparing LDA and copLDAnp. For

presentation purposes, we train the two topic models using the Wiki47 dataset with 10

topics and we illustrate the top-10 words learned for each topic by the two models in Table

4.2. As one can note, since the two models have been trained on the same data with the same

training parameters, the identified topics are very similar. This said, copLDAnp manages

to produce arguably better topics. This is for example the case for the topic “Birth”;

although both models assign high probability to words like “born” and “american” due to

the content of the dataset, copLDAnp manages to identify several words corresponding

to months which makes the topic more thematically consistent and easier to interpret

compared to its LDA counterpart. In the same line, Table 4.3 visualizes the inferred topics

for parts of the Wiki47 dataset. Notice here that given the topic interpretations of Table

4.2, both models manage to identify intuitive topics. Note however how in most of the

cases the text structure information used by copLDAnp helps to obtain consistent topics

to generate noun-phrases like “crime thriller film” and “raspy voice”, a consistency that

LDA is lacking.

Intrinsic evaluation: perplexity We present in Table 4.1 the perplexity scores achieved

by the 4 models in each of the datasets we examined. We split each dataset in two parts

with 80%/20% of the documents: we use the former for learning the model and the second

for calculating the perplexity scores. First note that copLDAnp achieves the lowest scores

in most of the datasets. LDA is the second best performing model, whereas the third one is

copLDAsen. We believe that the difference between copLDAsen and copLDAnp stems

from the fact that perplexity is an evaluation measure that is calculated on the basis of

words. Hence, considering sentences as coherent spans whose topics are bound results in
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Table 4.2: The top-10 words of copLDA (upper half) and LDA (lower half) in the Wiki46

dataset.

Profession Science Books Art Cinema Places Music Birth Elections Inventions

profession univers book art film state record born elect california

world research new new televis unit music american canadian plant

footbal scienc work work role us band known parti use

wrestl professor american paint appear township album best member invent

play work publish york also school song actress liber flower

born institut time american actor univers also decemb minist compani

american award author artist born serv produc june hous north

championship prize also museum play war releas april canada patent

team born year painter seri nation new juli serv inventor

first receiv york studi star build singer januari conserv found

known univers book art film township record play elect work

wrestl research new new born state music footbal canadian first

born scienc american york televis counti band born serv year

world professor author paint role us album american parti photograph

profession work publish american actor california song tour member design

american institut novel work appear michigan also golf liber state

name born time artist also plant singer year hous new

wrestler prize also painter seri civil releas profession minist use

best studi writer museum actress popul produc first state also

championship award magazin born american flower american season born build

Table 4.3: The discovered topics underlying the words of example documents for LDA

(left) and copLDA (right). The parts of the documents in italics indicate the noun-phrases

obtained by the Stanford Parser. The text colours refer to the topics described in Table 4.2.

Kiss of Death is a 1995 crime thriller film starring David

Caruso Samuel L. Jackson and Nicolas Cage. The film is a

very loosely based remake of the 1947 film noir classic of the

same name that starred Victor Mature, Brian Donlevy and

Richard Widmark.

Kiss of Death is a 1995 crime thriller film starring David

Caruso Samuel L. Jackson and Nicolas Cage. The film is a

very loosely based remake of the 1947 film noir classic of the

same name that starred Victor Mature, Brian Donlevy and

Richard Widmark.

Bertram Stern (born 3 October 1929) is an American fashion

and celebrity portrait photographer.

Bertram Stern (born 3 October 1929) is an American fashion

and celebrity portrait photographer.

Dana Hill (born Dana Lynne Goetz in Los Angeles, California;

May 6, 1964 - July 15, 1996) was an American actress and

voice actor with a raspy voice and childlike appearance,

which allowed her to play adolescent roles well into her 20s.

Dana Hill (born Dana Lynne Goetz in Los Angeles, California;

May 6, 1964 - July 15, 1996) was an American actress and

voice actor with a raspy voice and childlike appearance,

which allowed her to play adolescent roles well into her 20s.
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less flexibility and this is reflected in higher perplexity scores. However, using copulas

results in more flexibility than assigning the same topic in each term of the sentence

which is illustrated in the performance difference between copLDAsen and senLDA. The

former being more flexible, due to the copulas, performs better. In the same line, Figure

4.7 illustrates the perplexity curves of the hold-out documents for the four models on three

of the datasets of Table 4.1 for 200 Gibbs sampling iterations. Note that senLDA is the

model with the fastest convergence rate with respect to the number of Gibbs iterations. On

the other hand, LDA, copLDAsen and copLDAnp require the same number of iterations,

which depends on the dataset. copLDAnp manages to achieve the lowest perplexity scores:

notice its steep curves in the first iterations.

Extrinsic evaluation: text classification To further highlight the merits of copLDA, we

also present in Table 4.1 the classification results for the datasets used. The reported scores

are the averages of 10-fold cross-validation. We use the per-document topic distributions

as classification features fed to Support Vectors Machines (SVMs). We have used the

implementation of [Pedregosa et al., 2011] with C = 1 for the SVM regularization param-

eter. For the multi-label datasets (TED and PubMed) we employed one-versus-rest: the

SVMsreturn every category with a positive distance from the separating hyper-planes. As

one can note, copLDAnp and LDA achieve the highest MiF scores in most of the datasets,

without a clear advantage to one vs the other. Binding the topics of sentence words with

copulas improves over the results of senLDA: copLDAsen performs only slightly worse

than LDA and copLDAnp on most datasets and outperforms them, only slightly again, on

one dataset.
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4.4 Summary

In this chapter, we proposed copLDA that extends LDA to incorporate the topical depen-

dencies within sentences and noun-phrases using copulas. We have shown empirically the

advantages of considering text structure and incorporating it in LDA with copulas. In our

future work we plan to integrate procedures to learn the � parameter of Frank copulas and

to investigate ways to model not only dependencies within text segments like noun-phrases,

but also dependencies between such segments with nested copulas.
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Topical coherence in LDA-based models

through induced segmentation

Since the seminal works of [Hofmann, 1999] and [Blei et al., 2003], there have been several

developments in probabilistic topic models. Many extensions have indeed been proposed

for different applications, including ad-hoc information retrieval [Wei and Croft, 2006],

clustering search results [Zeng et al., 2004] and driving faceted browsing [Mimno and

McCallum, 2007]. However, the majority of these studies follow the initial exchangeability

assumption of pLSI and LDA, stipulating that words within a document are interdepen-

dent. In most of these studies, the initial exchangeability assumptions of PLSA and LDA,

stipulating that words within a document are interdependent, has led to incoherent topic

assignments within semantically meaningful text units, even though the importance of

having topically coherent phrases is generally admitted [Griffiths et al., 2005]. More re-

cently, [Balikas et al., 2016b] has shown that binding topics, so as to obtain more coherent

topic assignments, within such text segments as noun phrases improves the performance

(e.g. in terms of perplexity) of LDA-based models. The question nevertheless remains as

to which segmentation one should rely on.

Furthermore, text segments can refer to topics that are barely present in other parts of

the document. For example, the segment “the Kurdish regional capital” in the sentence1

“A thousand protesters took to the main street in Erbil, the Kurdish regional capital, to

condemn a new law requiring all public demonstrations to have government permits.”

refers to geography in a document that is mainly devoted to politics. Relying on a single

1This sentence is taken from New York Times news (NYT) collection described in Section 5.3.

87
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topic distribution, as done in most previous studies including [Balikas et al., 2016b], may

prevent one from capturing those segment specific topics.

Furthermore, recent studies have pointed out that, perplexity, the generally accepted

measure to evaluate the performance of topic models cannot capture the coherence in topic

assignments and proposed other alternative measures, such as the Normalized Pointwise

Mutual Information (NPMI) [Mimno et al., 2011], as accurately modeling and capturing

such units can be crucial for down-stream NLP tasks, and for many case studies involving

for example the visualization of results, the importance of having topically coherent phrases

is generally admitted [Griffiths et al., 2005].

Text units such as documents, sentences, phrases, segments and even chunks can be

related in the content. Therefore, as we have discussed, a topic model that is capable

to integrate these structures for generating a context, can be more accurate and natural

in terms of parameter estimation. This language model will become more realistic if

it follows a flexible and controllable way to incorporate these dependent structures for

discovering the latent topics. Also topic model can generate various level of a text division

simultaneously. Intuitively applying a method to cohere the topic of each unit and assigns

the same topic for more words in each level, makes model closer to the ideal. Recently

many researches have been proposing different binding tehcnices for capturing dependency

within a text ( [Blei and Lafferty, 2006] for document level, [Du et al., 2010a] for segment

level, [Balikas et al., 2016b] for chunks level) but they still suffer from the lack of having

different level of cohesion at the same time.

In this chapter, we propose a novel LDA-based model that automatically segments

documents into topically coherent sequences of words, while relying on both document

and segment specific topic distributions so as to capture fine grained differences in topic

assignment to words [Amoualian et al., 2017]. The coherence between topics is ensured

through copulas [Elidan, 2013] that bind the topics associated to the words of a segment.

In addition, this model relies on both document and segment specific topic distributions so

as to capture fine grained differences in topic assignments. A simple switching mechanism

is used to select the appropriate distribution (document or segment specific) for assigning a

topic to a word. We show that this model naturally encompasses other state-of-the-art LDA-

based models proposed to accomplish the same task, and that it outperforms these models

over six publicly available collections in terms of perplexity, Normalized Pointwise Mutual

Information (NPMI), a measure used to assess the coherence of topics with documents,

and the Micro F1-measure in a text classification context.

This chapter is structured as follows: In Sections 5.1.1 and 5.1.2 we present the



89

models accompanying Gibbs Sampling inference based on the incorporation of copula for

chaining the topics of the words within each segment that we estimate jointly with our

generative model using an efficient segmentation way. Section 5.3 exposes the competence

of the model intrinsically and extrinsically using distant metrics (perplexity, classification

accuracy, topic coherence and visualization) compared with different seminal topic models.

We apply 6 kinds of well-known collection for topic modeling having various properties (

different amount of vocabulary, words and documents, labeled and unlabeled) to evaluate

the ability of this method in the different setting of experiment. Eventually, in Section 5.4

we conclude our methods and illustrate the main clues for the future contributions.
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5.1 Joint latent model for topics and segments

We define here a segment as a topically coherent sequence of contiguous words. By

topically coherent, we mean that, even though words in a segment can be associated

to different topics, these topics are usually related. This view is in line with the one

expressed in [Balikas et al., 2016b], in which a latent topic model, referred to as copLDA

in the remainder, includes a binding mechanism between topics within coherent text spans,

defined in their study as noun phrases (NPs). The relation between topics is captured

through a copula that provides a joint probability for all the topics used in a segment. That

is, to generate words in a segment, one first jointly generates all the word specific topics z

via a copula, and then generates each word in the segment from its word specific topic and

the word-topic distribution �. Figure 5.1(a) illustrates this.

Following what we discussed in Section 3.2.1, Copulas are particularly useful when

modeling dependencies between random variables, as the joint cumulative distribution

function (CDF) FX1,··· ,Xn
of any random vector X= (X1, · · · , Xn) can be written as a function

of its marginals, according to Sklar’s Theorem [Nelsen, 2007]:

FX1,··· ,Xn
(x1, · · · , xp) = C(FX1

(x1), · · · , FXn
(xn))

where C is a copula. For latent topic models, as discussed in Chapter 3 and [Amoualian

et al., 2016], Frank’s copula is particularly interesting as (a) it is invariant by permutations

and associative, as are the words and topics z in each segment due to the exchangeability

assumption, and (b) it relies on a single parameter (denoted � here) that controls the

strength of dependence between the variables and is thus easy to implement. In Frank’s

copula, when the parameter � approaches 0, the variables are independent of each other,

whereas when � approaches +1, the variables take the same value. For further details on

copulas, we refer the reader to [Nelsen, 2007].

One important problem, however, with copLDA is its reliance on a predefined seg-

mentation. Although the information brought by the segmentation based on NPs helps to

improve topic assignment, it may not be flexible enough to capture all the possible seg-

ments of a text. It is easy to correct this problem by considering all possible segmentations

of a document and by choosing the most appropriate one at the same time that topics are

assigned to words. This is illustrated in Figure 5.1(b), where a segmentation S is chosen

from the set S d of possible segmentations for a document d, and where each segment in S

are generated in turn. We refer to the associated model as segLDAcopp=0 for reasons
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Figure 5.1: Graphical model for Copula LDA (copLDA), extension of Copula

LDA with segmentation (segLDAcopp=0), LDA with segmentation and topic shift

(segLDAcop�=0) and complete model (segLDAcop).

that will become clear later.

Another point to be noted about copLDA (and segLDAcopp=0) is that the topics

used in each segment come from the same document specific topic distribution ✓ d . This
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entails that, in these models, one cannot differentiate the main topics of a document from

potential segment specific topics that can explain some parts of it. Indeed, some text

segments can refer to topics that are barely present in other parts of the document; relying

on a single topic distribution may prevent one from capturing those segment specific topics.

It is possible to overcome this difficulty by generating a segment specific topic distri-

bution as illustrated in Figure 5.1(c) (this model is referred to as segLDAcop�=0, again

for reasons that will become clear later). However, as some words in a segment can be

associated to the general topics of a document, we introduce a mechanism to choose, for

each word in a segment, a topic either from the segment specific topic distribution ✓ s or

from the document specific topic distribution ✓ d (this mechanism is similar to the one used

for routes and levels in [Paul and Girju, 2010]). The choice between them is based on the

Bernoulli variable f , as explained in the generative story given below.

The above developments can be combined in a single, complete model, illustrated in

Figure 5.1(d) and detailed below. We will simply refer to this model as segLDAcop.
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5.1.1 Complete generative model

As in standard LDA based models, with V denoting the size of the vocabulary of the

collection and K the number of latent topics, � and �k, 1  k  K , are V dimensional

vectors, ↵ and ✓ (i.e., ✓ d ,✓ s,✓ d,s,n) are K dimensional vectors, whereas zn takes value in

{1, · · · , K}. Lower indices are used to denote coordinates of the above vectors. Lastly, Dir

denotes the Dirichlet distribution, Cat the categorical distribution (which is a multinomial

distribution with one draw) and we omit, as is usual, the generation of the length of the

document. The complete model segLDAcop is then based on the following generative

process:

1. Generate, for each topic k, 1 k  K , a distribution over the words: �k ⇠ Dir(�);

2. For each document d, 1 d  D:

(a) Choose a document specific topic distribution: ✓ d ⇠ Dir(↵);

(b) Choose a segmentation S of the document uniformly from the set of all possible

segmentations S d : P(S) = 1
|S d | ;

(c) For each segment s in S:

(i) Choose a segment specific topic distribution: ✓ s ⇠ Dir(↵);

(ii) For each position n in s, choose fn ⇠ Ber(p) and set:

✓ d,s,n =

(
✓ s if fn = 1

✓ d otherwise

(iii) Choose topics Z s = {z1, . . . , zn} from Frank’s copula with parameter � and

marginals Cat(✓ d,s,n);

(iv) For each position n in s, choose word wn: wn ⇠ Cat(�zn).

As on can note, the generative process relies on a segmentation uniformly chosen from

the set of possible segmentations (step 2.b) to generate related topics within each segment

(Frank’s copula in step 2.c.(iii)), the distribution underlying each word specific topic zn

being either specific to the segment or general to the document (steps 2.c.(i) and 2.c.(ii)).

The other steps are similar to the standard LDA steps.

As in almost all previous studies on LDA, ↵ and � are considered fixed and symmetric,

each coordinate of the vector being equal: ↵1 = · · ·= ↵K . The hyperparameters p (2 [0, 1])

of the Bernoulli distribution and � (2 [0,+1]) of Frank’s copula respectively regulate the
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choice between the segment specific and the document specific topic distributions and the

strength of the dependence between topics in a segment. As for the other hyperparameters,

we consider them fixed here (the values for all hyperparameters are given in Section 5.3).

As mentioned before, all the models presented in Figure 5.1 are special cases of the

complete model segLDAcop: hence segLDAcop�=0 is obtained by dropping the

topic dependencies, which amounts to setting � to (a value close to) 0, segLDAcopp=0

is obtained by relying only on the topic distribution obtained for the document, which

amounts to setting p to 0, and the previously introduced copLDA model is obtained by

setting p to 0, and fixing the segmentation.
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5.1.2 Inference with gibbs sampling for segLDAcop

The parameters of the complete model can be directly estimated through Gibbs sampling.

The Gibbs updates for the parameters � and ✓ are the same as the ones for standard

LDA [Blei et al., 2003]. The parameters fn are directly estimated through: fn ⇠ Ber(p).

Lastly, for the variables z, we follow the same strategy as the one described in [Balikas

et al., 2016b] and based on [Amoualian et al., 2016], leading to:

P(Z s|Z�s, W,⇥,�,�) = p(Z s|⇥,�)
Y

n

�zn

wn

where W denotes the document collection, and⇥ and � the sets of all ✓ and�k, 1 k  K ,

vectors. p(Z s|⇥,�) is obtained by Frank’s copula with parameter � and marginals

Cat(✓ d,s,n). As is standard in topic models, the notation �s means excluding the in-

formation from s.

From the above equation, one can formulate an acceptance/rejection algorithm based

on the following steps: (a) sample Z s from p(Z s|⇥,�) using Frank’s copula, and (b)

accept the sample with probability
Q

n
�zn

wn

, where n runs over all the positions in segment

s.
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5.2 Efficient segmentation

As topics may change from one sentence to another, we assume here that segments cannot

overlap sentence boundaries. The different segmentations of a document are thus based on

its sentence segmentations. In the remainder, we use L to denote the maximum length of a

segment and g(M ; L) to denote the number of segmentations in a sentence of length M ,

each segment comprising at most L words.

Generating all possible segmentations of a sentence and then selecting one at random

is not an efficient process as the number of segments rapidly grows with the length of the

sentence. In practice, however, one can define an efficient segmentation on the basis of the

following proposition, the proof of which is given in Appendix A.4:

Proposition 5.2.1 Let l
s

i
be the random variable associated to the length of the segment

starting at position i in a sentence of length M (positions go from 1 to M and l
s

i
takes value

in {1, · · · , L}). Then P(ls

i
= l) := g(M+1�i�l);L)

g(M+1�i;L) defines a probability distribution over l
s

i
.

Furthermore, the following process is equivalent to choosing sentence segmentations

uniformly from the set of possible segmentations.

From pos. 1, repeat till end of sentence:

(a) Generate segment length acc. to P;

(b) Add segment to current segmentation;

(c) Move to position after the segment.

In practice, we thus replace steps 2.b and 2.c of the generative story by a loop over all

sentences, and in each sentence use the process described in Prop, 5.2.1. Furthermore, as

described in Appendix A.4, the values of g needed to compute P(ls

i
= l) can be efficiently

computed by recurrence.
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5.3 Experimental study

We conducted a number of experiments aimed at studying the impact of simultaneously seg-

menting and assigning topics to words within segments using the proposed segLDAcop

model.

Datasets: We considered six publicly available datasets derived from Pubmed2 [Tsat-

saronis et al., 2015], Wikipedia [Partalas et al., 2015], Reuters3 and New York Times

(NYT)4 [Yao et al., 2016]. The first two collections were considered in [Balikas et al.,

2016a], we followed their setup by considering 3 subsets of Wikipedia with different

number of classes (namely, Wiki0, Wiki1 and Wiki2). The Reuters dataset comes from

Reuters-21578, Distribution 1.0 as investigated in [Bird et al., 2009] and the NYT dataset is

collected from full text of New York Times global news, from January 1st to December

31st, 2011.

These collections were processed following [Blei et al., 2003] by removing a standard

list of 50 stop words, lemmatizing, lowercasing and keeping only words made of letters.

To deal with relatively homogeneous collections, we also removed documents that are

too long. The statistics of these datasets, as well as the admissible maximal length for

documents, in terms of the number of words they contain, can be found in Table 5.1.

Settings: We compared our models (segLDAcopp=0, segLDAcop�=0, segLDAcop)

with three models, namely the standard LDA model, and two previously introduced models

aiming at binding topics within segments:

1. LDA: Standard Latent Dirichlet Allocation implemented using collapsed Gibbs

sampling inference [Griffiths and Steyvers, 2004]5. Note that there are neither

segmentation nor topic binding mechanisms in this model;

2. senLDA: Sentence LDA, introduced in [Balikas et al., 2016a], which forces all

words within a sentence to be assigned to the same topic. The segments considered

thus correspond to sentences, and the binding between topics within segments is

maximal as all word specific topics are equal;

3. copLDA: Copula LDA, introduced in [Balikas et al., 2016b] already discussed

before, which relies on two types of segments, namely NPs (extracted with the
2https://github.com/balikasg/topicModelling/tree/master/data
3https://archive.ics.uci.edu/ml/datasets/Reuters-21578+Text+

Categorization+Collection
4https://github.com/yao8839836/COT/tree/master/data
5http://gibbslda.sourceforge.net
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Table 5.1: Dataset statistics.

Wiki0 Wiki1 Wiki2

# words 32,354 70,954 103,308

– vocabulary size 7,853 12,689 14,715

# docs 1,014 2,138 3,152

– maximal length 100 100 100

# labels 17 42 53

Pubmed Reuters NYT

# words 104,683 192,562 237,046

– vocabulary size 12,779 10,479 17,773

# docs 2,059 6,708 2,564

– maximal length 75 50 200

# labels 50 83 -

nltk.chunk package [Bird et al., 2009]) and single words. In addition, a copula

is also used to bind topics within NPs, from the document specific topic distribution.

Both senLDA and copLDA implementations, can be found in https://github.

com/balikasg/topicModelling.

In all models ↵ and � play a symmetric role and are respectively fixed to 1/K , following

[Asuncion et al., 2009]. For copula based models, � is set to 5, following [Balikas et al.,

2016b]. As already discussed, p is set to 0 for segLDAcopp=0; it is set to 0.5 for

segLDAcop so as not to privilege a priori one topic distribution (document or segment

specific) over the other. For sampling from Frank’s copula, we relied on the R copula

package [Hofert et al., 2011]. We chose L (the maximum length of a segment) using

line search for L 2 [2,5] and used L = 3 in all our experiments. Finally, to illustrate the

behaviors of the different models with different number of topics, we present here the

results obtained with K = 20 and K = 100.

We now compare the different models along three main dimensions: perplexity, use of

topic representations for classification and topic coherence.
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5.3.1 Perplexity results

Table 5.2: Perplexity with respect to different number of topics (20 and 100).

Models
Wiki0 Wiki1 Wiki2 Pubmed Reuters NYT

20 100 20 100 20 100 20 100 20 100 20 100

LDA 853.7 370.9 1144.6 541.1 1225.2 570.6 1267.8 628.7 210.6 118.8 1600.1 1172.1

senLDA 958.4 420.5 1236.7 675.3 1253.1 625.2 1346.3 674.3 254.3 173.6 1735.9 1215.3

copLDA 753.1 264.3 954.1 411.5 1028.6 420.6 1031.5 483.2 206.3 101.3 1551.5 1063.2

segLDAcopp=0 670.2 235.4 904.2 382.4 975.7 409.2 985.5 459.3 194.2 96.7 1504.2 1033.2

segLDAcop�=0 655.1 222.1 890.3 370.2 949.2 404.3 971.3 451.2 190.1 91.3 1474.6 1014.3

segLDAcop 621.2 213.5 861.2 358.6 934.7 394.4 960.4 442.1 182.1 87.5 1424.2 992.3

We first randomly split here all the collections, using 75% of them for training, and 25%

for testing.

In order to see how well the models fit the data and following [Blei et al., 2003], we

first evaluated the methods in terms of perplexity again defined as:

Perplex i t y = exp

Ç
�
P

d2D

P
w2d

log
P

K

k=1 ✓
d

k
�k

wP
d2D
|d|

å
,

where d is a test document from the test set D, and |d| is the total number of words in d,

and K is the total number of topics. The lower the perplexity is, the better the model fits

the test data. Table 5.2 shows perplexities of different methods for K = 20 and K = 100

topics.

From Table 5.2, it comes out that the best performing model in terms of perplexity over

all datasets and for different number of topics is segLDAcop. Further, segLDAcop�=0,

that uses both document and segment specific topic distributions, performs better than

segLDAcopp=0, which in turn outperforms copLDA, bringing evidence that using all

possible segmentations rather than only NPs unit extracted using a chunker yields a more

flexible and natural topic assignment.

segLDAcop also converges faster than the other methods to its minimum as it is

shown in Figure 5.2, depicting the evolution of perplexity of different models over the

number of iterations on the NYT collection (a similar behavior is observed on the other

collections).
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Figure 5.2: Perplexity with respect to training iteration on NYT collection (20 topics).

5.3.2 Topical induced representation for classification

Some studies compare topic models using extrinsic tasks such as document classification.

In this case, it is possible to reduce the dimensionality of the representation space by using

the induced topics [Blei et al., 2003]. In this study, we first randomly splitted the datasets,

except NYT that does not contain class information, into training (75%) and test (25%) sets.

We then applied SVMswith a linear kernel; the value of the hyperparameter C was found

by cross-validation over the training set {0.01,0.1, 1, 10, 100}. For datasets where certain

documents have more than one label (Pubmed, Reuters), we used the one-versus-all6

approach for performing multi-label classification.

In Table 5.3, we report the Micro F1 (MiF) score of different models on the test sets.

Again, the best results are obtained with segLDAcop, followed by segLDAcop�=0.

This shows the importance of relying on both document and segment specific topic dis-

tributions. As conjectured before, our model is able to captures fine grained topic as-

signments within documents. In addition, all models relying on an inferred segmentation

(segLDAcopp=0, segLDAcop�=0, segLDAcop) outperform the models relying on

fixed segmentations (sentences or NPs). This shows the importance of being able to

discover flexible segmentations for assigning topics within documents.

6class sklearn.multiclass.OneVsRestClassifier
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Table 5.3: MiF score (percent) with respect to different number of topics (20 and 100).

Models
Wiki0 Wiki1 Wiki2 Pubmed Reuters

20 100 20 100 20 100 20 100 20 100

LDA 55.3 63.5 42.4 51.4 41.2 48.7 54.1 63.5 75.5 82.7

senLDA 41.4 53.2 33.5 44.5 36.4 40.9 50.2 62.5 69.4 74.2

copLDA 51.2 62.7 43.4 52.1 40.8 46.5 53.5 63.1 75.2 81.5

segLDAcopp=0 59.1 64.2 44.8 51.2 42.3 50.1 55.4 63.1 76.8 82.5

segLDAcop�=0 61.1 67.4 46.5 53.8 44.1 52.2 57.1 65.2 79.6 84.4

segLDAcop 62.3 68.4 48.4 55.2 44.8 53.5 59.3 66.5 80.2 85.1

5.3.3 Topic coherence

Another common way to evaluate topic models is by examining how coherent the produced

topics are. Doing this manually is a time consuming process and cannot scale. To overcome

this limitation the task of automatically evaluating the coherence of topics produced by

topic models received a lot of attention [Mimno et al., 2011]. It has been found that scoring

the topics using co-occurrence measures, such as the pointwise mutual information (PMI)

between the top-words of a topic, correlates well with human judgments [Newman et al.,

2010]. For this purpose an external, large corpus is used as a meta-document where the

PMI scores of pairs of words are estimated using a sliding window.

PM I(wi, wj) = log
P(wi, wj)

P(wi)P(wj)

As discussed above, calculating the co-occurrence measures requires selecting the

top-N words of a topic and performing the manual or automatic evaluation. Hence, N is a

hyper-parameter to be chosen and its value can impact the results. Very recently, [Lau and

Baldwin, 2016] showed that N actually impacts the quality of the obtained results and, in

particular, the correlation with human judgments. In their work, they found that aggregating

the topic coherence scores over several topic cardinalities leads to a substantially more

stable and robust evaluation.

Following the findings of [Lau and Baldwin, 2016] and using [Newman et al., 2010]’s

equation, we present in Figure 5.3 the topic coherence scores as measured by the Normal-

ized Pointwise Mutual Information (NPMI) . Their values are in [-1,1], where in the limit

of -1 two words w1 and w2 never occur together, while in the limit of +1 they always occur
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together (complete co-occurrence).

Wiki0 Wiki1 Wiki2 PubmedReuters NYT

4

6

8

10

12

5.1

6

8

9

4.4

7.1

6.5
6.7

9.2

10.4

6.1

8.2

6.2 6.3

9.4

10.1

5.8

8.5

6.3

7.2

10.1

10.9

6.4

8.9

6

6.9

9.9

10.3

6

8.6

6.9

7.6

10.5

11.5

6.8

9.2

N
PM

I(
%

)
LDA senLDA copLDA segLDAcopp=0 segLDAcop�=0 segLDAcop

Figure 5.3: Topic coherence (NPMI) score with respect to 100 of topics.

For the reported scores, we aggregate the topic coherence scores over three different

topic cardinalities: N 2 {5, 10,15}. segLDAcopmodel which uses copulas and segmen-

tation together, shows the best score for the given reference meta-data (Wikipedia) in all of

the datasets. It should be noted that segLDAcop�=0 which has not copula binder inside

the model has less improvement against the segLDAcopp=0 which has the copula. This

means using copula has more effect on the topic coherence than only the segment-specific

topic distribution.
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5.3.4 Visualization

In order to illustrate the results obtained by segLDAcop, we display in Figure 5.5 the

top 10 most probable words over 5 topics (K = 20) for the Reuters dataset, for both

segLDAcop and LDA. In segLDAcop, topic 1, the top-ranked words are mostly

relevant to the topic “date” (e.g., march, january, year, fall, february, week). However, a

similar topic learned by LDA appears to involve less such words (year, january, february),

indicating a less coherent topic. It almost happens for the rest of categories.

Figure 5.4 illustrates another aspect of our model, namely the possibility to detect

topically coherent segments. In particular, as one can note, the sentence is segmented

in six parts by our model, the first one is a NP, Ralph Borsodi where one single topic is

assigned to both words, there are other NPs and segments which have the same way in

topics assignment and our model has cohered their topics. The data-driven approach we

have adopted here can discover such fine grained differences, something the approaches

based on fixed segmentations (either based on sentences or NPs), are less likely to achieve.

Ralph Borsodi was an economics theorist and practical experimenter

interested in ways of living

Figure 5.4: Topic assignments with segmentation boundaries using segLDAcop. Colors

are topics (examples from Wiki0 including stopwords with 20 topics).
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Topic1

march, fell, rose, january, rise,

year, fall, february, pct, week

fell, mln, year, january, dlrs,

rise, rose, pct, billion, febru-

ary

Topic2

currency, bank, pct, cut, rate,

day, prime, exchange, interest,

national

billion, prime, day, rate, dlrs,

pct, reserve, federal, fed, bank

Topic3

term, agreement, acquire, buy,

sell, unit, acquisition, corp,

company, sale

term, dlrs, buy, company, sell,

unit, corp, acquisition, sale,

mln

Topic4

approved, american, common,

split, merger, company, board,

stock, share, shareholder

acquire, mln, company,

common, stock, shareholder,

share, corp, merger, dlrs

Topic5

tokyo, life, intent, letter, buy,

insurance, yen, japan, dealer,

dollar

central, european, japan, yen,

ec, dollar, bank, rate, dealer,

market

Figure 5.5: Top-10 words of segLDAcop (left) vs LDA (right) for the Reuters (5 out of

20 topics).
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5.4 Summary

In this chapter, we have introduced an LDA-based model that generates topically coherent

segments within documents by jointly segmenting documents and assigning topics to

their words. The coherence between topics is ensured through Frank’s copula, that binds

the topics associated to the words of a segment. In addition, this model relies on both

document and segment specific topic distributions so as to capture fine grained differences

in topic assignments. We have shown that this model naturally encompasses other state-of-

the-art LDA-based models proposed to accomplish the same task, and that it outperforms

these models over six publicly available collections in terms of perplexity, Normalized

Pointwise Mutual Information (NPMI), a measure used to assess the coherence of topics

with documents, and the Micro F1-measure in a text classification context. Our results

confirm the importance of a flexible segmentation as well as a binding mechanism to

produce topically coherent segments.

As regards complexity, it is true that more complex models, as the one we are consid-

ering, are more prone to underfitting (when data is scarce) and overfitting than simpler

models. This said, the experimental results on perplexity (in which the word-topic distribu-

tions are fixed) and on classification (based on the topical induced representations) suggest

that our model neither underfits nor overfits compared to simpler models. We believe

that this is due to the fact that the main additional parameters in our model (the segment

specific topic distribution) do not really add complexity as they are drawn from the same

distribution as the standard document specific topics. Furthermore, the parameters p and f

are simple parameters to choose between these two distributions.

The comparison with other segmentation methods is also an important point. While

state-of-the-art supervised segmentation models can be used before applying the LDA

model, we note such a pipeline approach comes with several limitations. The approach

requires external annotated data to train the segmentation models, where certain domain and

language specific information need to be captured. By contrast, our unsupervised approach

learns both segmentations and topics jointly in a domain and language independent manner.

Furthermore, existing supervised segmentation models are largely designed for a very

different purpose with strong linguistic motivations, which may not align well with our

main goal in this chapter which is improving topic coherence in topic modeling. Similarly,

unsupervised approaches, used for example in the TDT (Topic Detection and Tracking)

campaigns or more recently in [Du et al., 2013], usually consider coarse-grained topics, that
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can encompass several sentences. In contrast, our approach aims at identifying fine-grained

topics associated with coherent segments that do not overlap sentence boundaries. These

considerations, explain the choice of the baselines retained: they are based on segments of

different granularities (words, NPs, sentences) that do not overlap sentence boundaries.

In the future, we plan on relying on other inference approaches, based for example on

variational Bayes known to yield better estimates for perplexity [Asuncion et al., 2009]; it

is however not certain that the gain in perplexity one can expect from the use of variational

bayes approaches will necessarily result in a gain in, say, topic coherence. Indeed, the

impact of the inference approach on the different usages of latent topic models for text

collections remains to be better understood.
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Conclusion

The goal of this thesis was to explore the problem of summarizing and discovering topics

in a big collection of text dataset. Topic models as a solution to describe the semantics of a

text corpus, are based on the concept that documents of a collection of words are mixtures

of topics, where topics are vectors of probability distribution over words. As a matter of

fact, a topic model is a generative model for the document and the words belong to them.

It makes a specific probabilistic procedure to generate the words and consecutively the

documents that contain them. Latent Dirichlet Allocation (LDA, [Blei et al., 2003]) as a

probabilistic Bayesian topic model used to describe a corpus of D documents, associated

with a vocabulary of size V . LDA based on the idea that documents in the collection are

represented using random mixtures over hidden topics and each topic is identified by a

distribution over words of the vocabulary associated with corpus.

In this work, we tried to study the main challenges with LDA: An important charac-

teristic of LDA is that each document is generated independently from the previous ones.

This is not a realistic assumption in different settings, as document streams and also an

interesting objective in topic model can be to examine topic evolution and transitions, that

in this case, LDA is not able to capture this evolution. Also, in LDA, word-order is not

relevant and they are generated independently. This assumption called Exchangeability and

has a direct influence on LDA to facilitate the inference development. Nonetheless, This is

not again a realistic assumption as we may miss important information with various orders.

Also words can be divided into different semantically coherent units such as Segments,

Chunks, Sentences and Phrases that are not captured in LDA.

Regarding these two problems, we first positioned the recent relevant works in Chapter

107
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2 and then introduced our models respectively for the former challenge in Chapter 3 and

for the later challenge in Chapter 4 and 5. These models are based on the integration of

Copula into LDA as a tool to capture dependencies between random variables.

Our distinct motivation to solve the problems using copula was the integrability of this tool

into multinomial distribution on random variables that LDA utilizes for the topics. Copula

is also capable of showing all the situations that may happen for the random variables like

topics distribution and topic-words distribution in LDA, from completely independent to

totally dependent. Among all of the families of copula and different functions of each

family, we relied here on Archimedean copulas as they are symmetric, that is invariant by

any permutation of their coordinates, which is important when dealing with exchangeable

random variables, they are associative, meaning that the dependency properties are the

same whatever the way we group the random variables. In the sequel, we used Frank

function of Archimedean family which suits better with our problems where by varying its

the only hyper-parameter � from 0 to 1, this function allows one to model all the possible

dependencies between two random variables, from complete independency to equality.

In Chapter 3, we have proposed new models for modeling topic and word-topic

dependencies between consecutive documents in document streams. The first model is a

direct extension of LDAand makes use of a Dirichlet distribution to balance the influence

of the LDA prior parameters wrt to topic and word-topic distribution of the previous

document. The second extension makes use of copulas, which constitute a generic tool to

model dependencies between random variables. Lastly, the third model is a non-parametric

extension of the second one through the integration of copulas in the stick-breaking

construction of Hierarchical Dirichlet Processes. Our experiments, conducted on five

standard collections that have been used in several studies on topic modeling, show that

our proposals outperform previous ones, as dynamic topic models, temporal LDA and the

Evolving Hierarchical Processes, both in terms of perplexity and for tracking similar topics

in a document streams. Compared to previous proposals, our models have extra flexibility

and can adapt to situations where there is, in fact, no dependencies between the documents.

In the future, we plan to develop versions of these models that scale well, following the

improvements on the inference methods for LDA, proposed in streams [Yao et al., 2009]

or in online settings [Hoffman et al., 2010, Banerjee and Basu, 2007].

In Chapter 4, we proposed copLDA that extends LDA to incorporate the topical de-

pendencies within sentences and noun-phrases using copulas. We have shown empirically

the advantages of considering text structure and incorporating it in LDA with copulas.

In our future work we plan to integrate procedures to learn the � parameter of Frank
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copulas and to investigate ways to model not only dependencies within text segments like

noun-phrases, but also dependencies between such segments with nested copulas.

In Chapter 5, we have introduced a LDA-based model that generates topically coherent

segments within documents by jointly segmenting documents and assigning topics to

their words. The coherence between topics is ensured through Frank’s copula, that binds

the topics associated to the words of a segment. In addition, this model relies on both

document and segment specific topic distributions so as to capture fine-grained differences

in topic assignments. We have shown that this model naturally encompasses other state-of-

the-art LDA-based models proposed to accomplish the same task, and that it outperforms

these models over six publicly available collections in terms of perplexity, Normalized

Pointwise Mutual Information (NPMI), a measure used to assess the coherence of topics

with documents, and the Micro F1-measure in a text classification context. Our results

confirm the importance of a flexible segmentation as well as a binding mechanism to

produce topically coherent segments.

In the future, we plan on relying on other inference approaches, based for example on

variational Bayes known to yield better estimates for perplexity [Asuncion et al., 2009]; it

is however not certain that the gain in perplexity one can expect from the use of variational

bayes approaches will necessarily result in a gain in, say, topic coherence. Indeed, the

impact of the inference approach on the different usages of latent topic models for text

collections remains to be better understood.
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A.1 Metropolis-Hasting procedure

The Metropolis-Hasting procedure is based on the following steps:

1. Generate an initial value of x : draw x
1 ⇠ Pprior(x)

2. Initialize j = 1

3. Repeat till sequence is stable

(a) Draw x ⇠ q, where q represents the "jump" function

(b) Draw u⇠ U[0, 1]

(c)

↵=

(
⇧(x j)q(x)
⇧(x)q(x j) if ⇧(x j)q(x)< ⇧(x)q(x j)
⇧(x)q(x j)
⇧(x j)q(x) otherwise

(d) If u ↵, then x
j+1 = x ; x

j+1 = x
j otherwise

For x = �d , one has:

P(�d |✓ d�1,✓ d , z
d , w

d ,↵,� ,�d�1,�d ,µd)

/ Pprior(�d)P(✓ d |✓ d�1,↵,�d) := ⇧(�d)

where Pprior(�d)⇠ U[0,⌧�]. As �d should be higher when ✓ d�1 and ✓ d are more similar

(as in such a case the influence of ✓ d�1 on ✓ d is more important), we make use of the

following jump function, based on the exponential distribution:

q(�d) = (1� cos(✓ d�1,✓ d))⇥ e
�(1�cos(✓ d�1,✓ d ))⇥�d

For x = µd , the same distribution is used for the jump function, the cosine being taken

between the vectors that correspond to the column-wise concatenation of the columns of

each matrix �d�1 and �d . The prior this time is P(µd) ⇠ U[0,⌧µ]. Lastly, for x = T d

k
,

Pprior(T d

k
) ⇠ Ga(↵), the jump function also corresponds to gamma distribution, and

⇧(T d

k
) corresponds to the k

th contribution in Eq. 3.10.
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A.2 Gibbs sampling updates for ST-LDA-C

We provide here the complete derivation of Eq. 3.10. For any d � 2, one has:

T d ⇠ P(T d |T d�1, z
d , w

d ,↵,� ,�d ,�d�1,�d ,µd)

=
P(T d�1|↵)P(T d |T d�1,↵,�d)P(zd |T d)P(wd |zd)

P(T d�1|↵)p(zd |↵)P(wd |zd)

=
P(T d |T d�1,↵,�d)P(zd |T d)

P(zd |↵)

Let F↵ (resp f↵) denote the cdf (resp pdf) of the Gamma distribution with parameters

(↵, 1). By assumption:

P(T d |T d�1,↵,�d) =
KY

k=1

f↵(T d

k
)c�(F↵(T d�1

k
), F↵(T d

k
)) (1)

and, since ✓ d = T d/
�P

K

k=1T d

k

�
,:

P(zd |T d) =
NY

n=1

✓ d

zd
n

=

Ç
KX

k=1

T d

k

å�N
NY

n=1

T d

zd
n

Further, as usual [Wang, 2008]:

P(zd |↵) =
Z

P(zd |✓ d)P(✓ d |↵)d✓ d =
B(⌦d +↵)

B(⌦d)

Hence:

p(T d |T d�1, z
d , · · · ) =
�P

K

k=1T d

k

��NQN

n=1T d

zd
n⇥Q

K

k=1 � (↵)
⇤

B(⌦d +↵)/B(⌦d)
⇥

ñ
KY

k=1

T d

k

↵�1
exp�T

d

k c�(F↵(T d�1
k
), F↵(T d

k
))

ô

=

�P
K

k=1T d

k

��NQK

k=1T d

k

⌦d,k+↵�1

⇥Q
K

k=1 � (↵)
⇤

B(⌦d +↵)/B(⌦d)
⇥

exp�
P

K

k=1 T d

k

KY

k=1

c�(F↵(T d�1
k
), F↵(T d

k
))
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To sum up:

P(T d |T d�1, zd , wd ,↵,� ,�d ,�d�1,�d ,µd)/

(
KX

k=1

T d

k
)�N

KY

k=1

f(⌦d,k+↵�1)(T d

k
)⇥

KY

k=1

c�(F↵(T d�1
k
), F↵(T d

k
))

Since we have proportion again we can use Metropolis-Hasting same as Appendix

A.1 for sampling T d , rather than having Dirichlet distribution we use Frank copula joint

distribution. We need also update � parameter of copula distribution. We can access the

�d |T d�1,T d , z
d , w

d ,↵,� ,�d�1,�d ,µd assuming equation (1):

p(�d |T d�1,T d , z
d , w

d ,↵,� ,�d�1,�d ,µd)/

p(�d)
KY

k=1

f↵(T d�1
k
) f↵(T d

k
)c�(F↵(T d�1

k
), F↵(T d

k
))

By getting benefit from Metropolis-Hasting algorithm with same configure as model

ST-LDA-D, � can be estimated.
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A.3 Gibbs sampling updates for CopHDP

We provide here the complete derivation of Eq. 3.21. For any d � 2, one has:

p(✓
0
d |✓ 0d�1, z

d , w
d ,↵O�,�d ,µd ,�d ,�d�1,�) =

p(zd |✓ 0d)p(✓ 0d |✓ 0d�1,↵0�)
p(zd |↵0�)

Let G↵0�k ,↵0(1�
P

k�1
`=1 �`)

(resp g↵0�k ,↵0(1�
P

k�1
`=1 �`)

) denote the cdf (resp pdf) of the Beta

distribution with parameters (↵0�k,↵0(1�
P

k�1
`=1 �`)). By assumption:

p(✓
0
d |✓ 0d�1,↵0�) =

K+1Y

k=1

g↵0�k ,↵0(1�
P

k�1
`=1 �`)

(✓
0
d

k
)c�(G↵0�k ,↵0(1�

P
k�1
`=1 �`)

(✓
0
d�1

k
), G↵0�k ,↵0(1�

P
k�1
`=1 �`)

(✓
0
d

k
))

(2)

and, since ✓ d

k
= ✓

0
d

k

Q
k�1
`=1(1� ✓

0
d

` ),:

P(zd |✓ 0d) =
NY

n=1

✓ d

zd
n

=
K+1Y

k=1

(✓
0
d

k
)⌦d,k

K+1Y

k=1

Ç
k�1Y

`=1

(1� ✓ 0d` )
å⌦d,k

=
K+1Y

k=1

(✓
0
d

k
)⌦d,k

K+1Y

k=1

Ç
K+1Y

m=k+1

(1� ✓ 0d
k
)

å⌦d,m

=
K+1Y

k=1

(✓
0
d

k
)⌦d,k ⇥

K+1Y

k=1

(1� ✓ 0d
k
)
P

K+1
m=k+1⌦d,m

Further, as usual [Wang, 2008]:

P(zd |↵) =
Z

P(zd |✓ d)P(✓ d |↵)d✓ d =
B(⌦d +↵)

B(⌦d)

Hence, using the explicit expression of the Beta distribution we deduce that
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p(✓
0
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A.4 An efficient segmentation

Let us recall the property presented before:

Proposition A.4.1 Let l
s

i
be the random variable associated to the length of the segment

starting at position i in a sentence of length M (positions go from 1 to M and l
s

i
takes value

in {1, · · · , L}). Then P(ls

i
= l) := g(M+1�i�l);L)

g(M+1�i;L) defines a probability distribution over l
s

i
.

Furthermore, the following process is equivalent to choosing sentence segmentations

uniformly from the set of possible segmentations.

From pos. 1, repeat till end of sentence:

(a) Generate segment length acc. to P;

(b) Add segment to current segmentation;

(c) Move to position after the segment.

Proof Any segmentation of the sentence of length M starts with either a segment of length

1, a segment of length 2, · · · , or a segment of length L. Thus, g(M ; L) can be defined

through the following recurrence relation:

g(M ; L) =
LX

l=1

g(M � l; L) (3)

together with the initial values g(1; L), g(2; L), · · · , g(L; L), which can be computed

offline (for example, for L = 3, one has: g(1; 3) = 1, g(2; 3) = 2, g(3; 3) = 4). Note that

g(1; L) = 1 for all L.

Thus:

LX

l=1

P(ls

i
= l) =

LX

l=1

g(M + 1� i � l); L)
g(M + 1� i; L)

= 1

due to the recurrence relation on g. This proves the first part of the proposition.

Using the process described above where segments are generated one after another ac-

cording to P, for a segmentation S, comprising |S| segments, let us denote by l1, l2, · · · , l|S|

the lengths of each segment and by i1, i2, · · · , i|S| the starting positions of each segment

(with i1 = 1). One has, as segments are independent of each other:
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P(S) =
|S|Y

j=1

P(ls

i j

= l j) =
|S|Y

j=1

g(M + 1� (i j + l j); L)
g(M + 1� i j; L)

=
g(M � l1; L)

g(M ; L)
g(M � l1 � l2; L)

g(M � l1; L)
· · ·= 1

g(M ; L)

as g(1; L) = 1. This concludes the proof of the proposition. 2

Furthermore, as one can note from Eq. 3, the various elements needed to compute

P(ls

i
= l) can be efficiently computed, the time complexity being equal to O(M). In

addition, as the number of different sentence lengths is limited, one can store the values of

g to reuse them during the segmentation phase.
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