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Introduction

Information is physical

The past century witnessed the concept of information pervading nearly every human ac-
tivity. Communications, economy, scienti�c research, and even social interactions were rev-
olutionized by the advent of information and the technological revolution that came with
it, to the point that some say we now live in the information society [Webster ].

Information and the closely related �eld of computer science have had a twofold e�ect
on the scienti�c endeavour: on the one hand, computers allowed to carry out calculations,
store and confront data on unprecedented scales. On the other hand, the need to describe
computers and communication channels led to the development of a new language. In such
a language, new questions and answers to old ones could be phrased in much simpler terms.

These two tendencies can also be identi�ed in quantum computation and quantum infor-
mation science. Quantum computers promise to solve some tasks more e�ciently, including
the simulation of quantum systems. But describing what a quantum computer is and how it
works requires a new perspective on quantum physics. This resulted in a great deal of new
understanding about how nature works.

The priciples of quantum mechanics have essentially remained unchanged since its in-
ception in the 1920s. However, many phenomena were discovered in relatively recent times
using the language of information. Famous examples are quantum teleportation and the no-
cloning theorem. The latter a�rms that the state of a quantum system cannot be copied (at
least not exactly and deterministically at the same time). This is a striking di�erence with
respect to the state of classical systems, like the zeroes and ones encoded in a hard drive. Al-
though this result was implicitly contained in the principles of quantum mechanics, it was
only discovered more than �fty years after their invention. Moreover, despite the success
of quantum mechanics in describing blackbody radiation, the spectra of atomic transitions,
the decay rate of atomic nuclei and many other phenomena, open questions remain on its
interpretation and applicability. How the classical macroscopic reality can emerge from
the interaction of microscopic constituents obeying quantum mechanics, for example, still
puzzles scientists, even if several solutions to this conundrum have been proposed.

Information can help rephrase this kind of abstract questions in the form of operational,
practically testable problems. To understand where the boundary between quantum and
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INTRODUCTION

classical reality lies (if it actually exists), for example, one �rst has to understand what are
the di�erences between the classical and quantum world. To this end, one can look at the
di�erent performances of a computer obeying quantum mechanics with respect to a classical
one, or the amount of elementary quantum systems that are needed to transmit a certain
amount of information.

This leads to practical questions such as: how many bits can be conveyed by a two
dimensional quantum system? What is the minimal time required to compute a function if
the input is encoded in the state of a quantum system?

This approach is a natural consequence of the realization that information is physical.
Even if it may at �rst seem like a merely abstract concept, each instance of information,
including this text, needs to be stored in the state of some physical system, be it a hard
drive, a sheet of paper or a photon. As a consequence, modifying a system (any system)
implies a change in the information it encodes, and can be seen as information processing,
also known as computing.

Quantum technology

Although a strong connection has always existed between scienti�c and technological progress,
seldom have they been so intertwined throughout history as they have become in the mod-
ern age [Seife 07]. Information has created a new link between the two. The above line
of reasoning goes, in a sense, from technology to science, allowing us to look at nature as
if it was a piece of hardware. The link may as well be traversed in the opposite, perhaps
more familiar, direction: that of the transfer of scienti�c knowledge to technology. The fa-
mous formula Claude Shannon introduced for quantifying information was in fact derived
when he was trying to �gure out how much communication could be conveyed in a sin-
gle channel. The ties to thermodynamics and all other sciences were only recognized later.
Questions stated in the language of information often retain their operational nature, which
often leads to the discovery of potential improvements in solving practically useful tasks. It
is not surprising then that looking at quantum mechanics through the lenses of information
theory played a major role in the birth of what is now known as quantum technology.

We are in the midst of what has been called the second quantum revolution [Aspect 14].
The �rst quantum revolution was driven by the theoretical e�ort to produce a consistent
theory able to explain some phenomena that escaped the mathematical description of real-
ity provided by the physics of the nineteenth century. Quantum mechanics was the result.
With the new theory came the idea that both subatomic "matter" and light can sometimes
behave as particles and sometimes as waves. This feature caused much of the technological
advances of the last century, including the development of the physics of semiconductors
and of lasers that enabled the current technology for the processing and communication of
information in the classical sense. However, "In the �rst quantum revolution, we used quan-
tum mechanics to understand what already existed. We could explain the periodic table, but
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INTRODUCTION

not design and build our own atoms. We could explain how metals and semiconductors be-
haved, but not do much to manipulate that behavior" [Dowling 03].

Now that quantum mechanics has reached a mature stage as a physical theory, we are
starting to be able to exploit untapped aspects of it in order to engineer systems that do not
occur in nature for our own purposes. We can create quantum states and manipulate them,
we can create arti�cial atoms and tune the properties of single quantum systems. A plethora
of systems can now be controlled at the quantum level, from electrons, to superconducting
circuits, to micro-mechanical oscillators, to light.

Concerning light, a great amount of technological know-how was acquired thanks to its
many uses for the transmission of classical information and as a metrological tool. Much
of this thesis will be concerned with taking advantage of that technology to transmit or
process quantum information encoded in light �elds.

Light and continuous-variable quantum information
Several properties make light an appealing candidate to carry quantum information. First
of all, light is relatively robust to decoherence. Decoherence degrades quantum states and
is caused by the leakage of information from quantum systems to their environment, which
inlcudes everything that is not controlled by the experimenter. Photons do not interact
with each other and interact only weakly with matter. As a consequence, light is easily
isolated from the environment, making it relatively easy to preserve its quantum state and
the information encoded in it. Moreover, highly e�cient schemes exist for its manipulation
and detection at room temperature, whereas other systems need to be cooled down to very
low temperatures to display quantum features.

Since the groundbreaking results of Shannon on coding and the invention of Turing’s
machines, information and computer science have greatly bene�ted from the use of discrete
variables (DV) 1. Much progress came in fact from the realization that information can be
written, processed and transmitted using a �nite set of symbols, like 0 and 1. Correspond-
ingly, quantum information was initially developed in �nite dimensional Hilbert spaces, in
which measurable quantities can only take a �nite set of values. On the other hand, many
natural systems are described in in�nite dimensional Hilbert spaces. The latter can acco-
modate physical observables whose measurement can result in a continuum of values and
are thus also called continuous-variable (CV) systems.

In optics, current technology allows for precise measurements of the quadratures of the
�eld through an interferometric scheme known as homodyne detection. Quadratures are
physical observables related to amplitude and phase of classical waves, assuming a continu-
ous spectrum of values, akin to position and momentum of a mechanical particle. This also

1Interestingly, (long) before the success of Shannon theory and Turing machines, analog, classical com-
puters were used in many contexts [Wikipedia, Analog computer ], from tide-prediction to gun�re-control,
and maybe did not sound so exotic as they do now that we are accustomed to bits and bytes. At least not more
exotic than discrete-variable ones.
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INTRODUCTION

made light the main platform to study CV systems.
From the fundamental point of view, it is interesting to ask whether and how quantum

information protocols can be translated to CV. It so happens that CV systems also have some
practical advantages over DV implementations. In the case of light, for example, entangled
states, peculiar to quantum mechanics and essential in quantum information, can be pro-
duced deterministically. On the contrary, DV quantum protocols exploit the properties of
single photons. The latter are so far produced probabilistically, which hinders the scalability
of photonic platforms to large systems for quantum information. This is a serious drawback,
since many of the practical advantages of quantum computers and communication chan-
nels are only relevant when much information can be encoded and processed. For example,
the celebrated quantum algorithm invented by Shor to �nd the prime factors of an integer
number is in principle faster than any known classical algorithm. However, if the largest
number that can be encoded in a quantum system is 15, we do not need a computer, let
alone an expensive quantum one.

In the case of CV, it is as of today easier to scale the size of the system keeping its
quantum nature. The wave-particle nature of light can be exploited to increase the size of
the system using a �nite number of hardware components taking advantage of multiplex-
ing techniques. The largest entangled state (to the author’s best knowledge) was indeed
produced in a CV system using time-multiplexing [Yokoyama 13]. Throughout this thesis
we will extensively exploit wavelength division multiplexing (WDM) [Ishio 84] to devise
scalable quantum information platforms. WDM is the standard paradigm to increase the
transmission rate of classical data. In practice, it relies on the fact that light at di�erent
frequencies can be used to convey independent streams of information.

An advantage of WDM is the possibility to manipulate and measure light at di�erent
frequencies independently at the same time, which, besides scalability, ensures a great de-
gree of tuneability of the system. To exploit WDM for quantum information, a suitable
source must be available with a large enough spectrum. To this end it is possible to use a
mode-locked laser, that is a laser that emits phase-coherent light at many equally-spaced
frequencies, also known as optical frequency comb.

Since their invention, mode-locked lasers have been a powerful tool for fundamental
and practical applications, and many techniques are now available to manipulate them. In
this thesis we study their potential application for quantum information. The work goes
two ways: on the one hand, our investigations focussed on adapting existing theoretical
protocols to the speci�c experimental scenario of frequency combs. On the other hand, we
tried to �gure out which protocols can be achieved using the tools available in the lab or
minimal modi�cations thereof.

Previous work has shown that shining a mode-locked laser (pump beam) onto crystals
possessing a nonlinear electrical suscepticibily can produce highly entangled states. To use
them for technological purposes, however, one needs to be able to control and engineer
the state of the system. In particular, we study how the quantum state generated by the
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INTRODUCTION

nonlinear interaction changes and how it can be optimized if the spectrum of the pump
beam is modi�ed.

The quantum state then needs to be related to the measurement technique used to in-
vestigate its properties. Homodyne detection mentioned above is a �exible and relatively
easy to realize measurement scheme. As we already noted, it enables to directly measure
the quadratures of the (quantum) electromagnetic �eld, which are central in most CV quan-
tum information protocols. More subtly, it also enables to replace some manipulation of
the quantum state with a clever choice of the way one looks at it, exploiting the interplay
between the classical and quantum description of the �eld in terms of modes.

Homodyne detection is also important in the computation model known as CV measurement-
based quantum computing. In this model information is �rst encoded in a resource entan-
gled state and then processed exploiting the back-action of successive measurements on the
system. We will show that the production of suitable entangled states can be optimized
controlling the spectrum of the light injected in a nonlinear crystal.

Unfortunately, such entangled states and homodyne detection are not enough to pro-
vide computational advantages with respect to the classical case. Nonlinear interactions of
higher order would be needed, but these are currently out of technological reach, due to
the aforementioned low interaction between photons. An alternative route consists in com-
bining techniques developed in the context of DV with a CV setup. In particular, we will
show that adding a component which is able to detect a single photon could lead to uni-
versal quantum computation. The main drawback is the reintroduction of the probabilistic
element inherent to the manipulation of single photons with current technology.

Apart from computation, interesting quantum communication protocols can still be re-
alized without single-photon operations, as we show for the case of quantum secret sharing.
Secret sharing consists in distributing information to a given number of players in such a
way that only selected subsets of them (called access parties) can retrieve the original mes-
sage, but in order to do so they have to collaborate. In quantum versions of such protocols,
information is encoded in entangled states. This may have several bene�ts, as a better qual-
ity of the reconstrustructed secret or improved security of the protocol. Secret sharing can
also be seen as a form of error correction: information about the state of one mode is en-
coded in a larger, multimode system in such a way that it can then be recovered from a
subsystem (the access party).

Outline of the thesis
The manuscript is structured as follows.

The �rst part is devoted to an introduction to quantum optics and CV quantum infor-
mation with light. In chapter 1 we brie�y review the description of the quantized electro-
magnetic �eld, introducing the notion of modes and multi-mode quantum states of light. In
chapter 2 we describe quantum computation with CV, focussing on the measurement-based
(also known as one-way) model of quantum computation. In this chapter; we also brie�y
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INTRODUCTION

report some original results on a modi�ed scheme of measurement-based computation that
can be realized in particular (but not only) in experiments with frequency combs.

Part two reports our work on the possibility to engineer the quantum state of light pro-
duced by the interaction of a broad-band pump with a χ (2) non-linear optical crystal by
changing the spectrum of the pump. In chapter 3 we recall the basics of spontaneous para-
metric down-conversion of broadband light in a χ (2) crystal. We detail how the spectrum
of the pump can be related to the output state and how the properties of the latter in any
basis of modes can be computed. We illustrate these methods with some simple examples.
Chapter 4 reports the results of an approach based on numerical optimization to �nd the
pump spectrum most suited for several quantum information protocols.

The third and last part of the manuscript is devoted to two quantum information process-
ing tasks that use some readily available experimental techniques developed in the context
of frequency combs. In chapter 5 we tackle the problem of implementing non-Gaussian evo-
lutions on arbitrary states using detectors that can count up to one photon. Finally, chapter 6
deals with CV quantum secret sharing. We outline a method based on cluster states and re-
port a proof of principle experimental realization. From the adaptation of the theory to the
experimental setup we deduce general results for secret sharing using squeezed states and
linear optics.
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Quantum light: more than photons
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1.4.4 Gaussian channels and measurements . . . . . . . . . . . . . . . . 25
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We introduce in this chapter most of the notations and concepts from quantum optics
that will be useful in the rest of the manuscript. It is by no means an exhaustive treaty
on the subject but rather a pragmatic presentation of the notions we will exploit to derive
and build a context for our results. For the quantization of the electromagnetic (EM) �eld
we essentially follow [Grynberg 10], a more �eld-theory oriented treatment can be found
in [Kok 10].
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1.1. QUANTIZING THE ELECTROMAGNETIC FIELD

1.1 Quantizing the electromagnetic �eld
A simple way to quantize a classical �eld is the so called canonical quantization procedure.
In a few words, it consists in writing the Hamiltonian H , corresponding to the energy of
the classical �eld, in terms of a set of canonical variables (q,p) such that their temporal
evolution satis�es the classical Hamilton equations




dqj
dt =

∂H

∂pj
dpj
dt = −

∂H

∂qj

(1.1)

and then promoting the canonical variables to Hermitian operators satisfying the commu-
tation relations of positions and momenta. The classical equations of motions governing
the dynamics of the electromagnetic (EM) �eld are Maxwell’s equations. In this chapter we
will only consider the free �eld, in the absence of charges and currents. The energy of the
free electromagnetic �eld in a region of space Ω at time t is

H =
ϵ0
2

∫
Ω

d3r
[
E2 (r ,t ) + c2B2 (r ,t )

]
(1.2)

where ϵ0 is the electrical permittivity of vacuum and c the speed of light in vacuum. A
common route to quantization is to consider the �elds in a cubic region of space of vol-
ume V and impose periodic boundary conditions. This choice is particularly convenient
because it leads to a natural basis of solutions of Maxwell’s equations in vacuum which is
mathematically very easy to handle, namely linearly polarized plane waves

fj (r ,t ) = εje
i (kj ·r−ωjt ) (1.3)

where the wave vectors kj assume discrete values allowed by the boundary conditions and
ωj = ckj . We use a collective index j for polarization and wave vector. On physical grounds,
periodic boundary conditions are suited to describe quantized �elds in free space, which is
obtained in the limitV → ∞. Normalized solutions of Maxwell’s equations are called modes.
Normalization is time-independent and reads∫

Ω
d3r f ∗j (r ,t ) fl (r ,t ) = Vδjl (1.4)

Any �eld with the prescribed periodicity and satisfying Maxwell’s equations can be ex-
panded in this basis. In particular, the electric and magnetic �elds can be written as

E (r ,t ) = E (+) (r ,t ) + E (−) (r ,t ) =
∑
j

Ej

(
αj (0) fj (r ,t ) + αj (0)∗ f ∗j (r ,t )

)
B (r ,t ) = B (+) (r ,t ) + B (−) (r ,t ) =

∑
j

Ej

c

(
αj (0) f̄j (r ,t ) + αj (0)∗ f̄ ∗j (r ,t )

) (1.5)

10



CHAPTER 1. QUANTUM LIGHT: MORE THAN PHOTONS

where Ej are real constants with the dimensions of an electric �eld, and we introduced the
positive and negative frequency parts of the �elds. f̄j denotes here the mode kj × fj/kj .
De�ning

Qj ≡ 2Ej

√
ε0V

ωj
Re

[
αj (0) e−iωjt

]
(1.6)

Pj ≡ 2Ej

√
ε0V

ωj
Im

[
αj (0) e−iωjt

]
(1.7)

and substituting Eq. (1.5) in (1.2) we have

H =
1
2
∑
j

ωj

(
Q2
j + P

2
j

)
. (1.8)

It is easy to see that Qj and Pj satisfy Eqs. (1.1). Canonical quantization is then completed
promoting the canonical variables to operators and imposing that at any time t

[
Q̂j , P̂l

]
= i~δjl (1.9)

[
Q̂j ,Q̂l

]
= 0 (1.10)

[
P̂j , P̂l

]
= 0. (1.11)

The complex amplitude αj (t ) = αj (0) e−iωjt is also replaced by an operator âj such that 1

Q̂j + iP̂j
√

2
= Ej

√
2ε0V

ωj
â. (1.12)

Evaluating the commutator with its adjoint gives
[
âj , â

†

j

]
=
~ωj

2ε0E2
j

. (1.13)

The constant Ej can be chosen arbitrarily modulo a rescaling of αj (0) in Eq. (1.5), so we �x
it to

Ej =

√
~ωj

2ε0V
(1.14)

in order to have [
â, â†

]
= 1 (1.15)

1We add here a factor
√

2 such that if one imposes ~ = 1 the transformation (q̂,p̂) 7→
(
â, â†

)
becomes

unitary.
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1.1. QUANTIZING THE ELECTROMAGNETIC FIELD

and we �nd the familiar description of the EM �eld as an ensemble of harmonic oscillators.
From Eq.(1.14) follows that Ej has the dimensions of an electric �eld. Substituting Eq. (1.12)
in (1.8) with the prescription (1.14) the hamiltonian takes the form

Ĥ =
∑
j

~ωj

(
â†j âj +

1
2

)
. (1.16)

The electric �eld is replaced by a hermitian operator which can be written in Heisenberg
picture as

Ê (r ,t ) =
∑
j

√
~ωj

2ε0V
âj (0) e−iωjt fj (r ,0) + h.c.. (1.17)

Note that while the classical description of the temporal evolution is straightforward, in the
quantum case it has to be speci�ed whether the �eld operator or the state are to be evolved.
With the basis of modes we have chosen for quantization, time and space are decoupled, so
it is easy to see that the annihilation and creation operators evolve like classical amplitudes.

To simplify some formulas, it is practical to replace position and momentum with oper-
ators corresponding to adimensional quantities so we introduce the quadrature operators

q̂j ≡ Q̂j/
√
~ and p̂j ≡ P̂j/

√
~ (1.18)

such that
[
q̂j ,p̂l

]
= iδjl and âj =

(
q̂j + ip̂j

)
/
√

2.

1.1.1 Photons
Using the common techniques for the harmonic oscillator [Sakurai 94], one can solve the
eigenvalue problem of

Hj = ~ωj

(
a†j aj +

1
2

)
(1.19)

and we see that each mode j can be populated by excitations, each carrying an energy ~ωj .
These are of course interpreted as photons. The Hilbert space associated to the EM �eld is

HEM =
⊗
j

Hj �
⊗
j

L2 (R,C) . (1.20)

As customary in second quantization, the state of the �eld is fully speci�ed by the number
of excitations in each mode

|Ψ〉EM =
∑

n1,n2,...

λn1,n2,... |n1,n2, ...〉. (1.21)

with λn1,n2,... ∈ C, ∑
n1,n2,...

��λn1,n2,...
��2 = 1. The constant Ej can then be intepreted as the

amplitude of the electric �eld of a single photon in mode j.
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CHAPTER 1. QUANTUM LIGHT: MORE THAN PHOTONS

1.1.2 Generalized mode bases
The speci�c partitioning of the Hilbert space of the �eld in single-mode Hilbert spaces
Eq. (1.20) is determined by the choice of plane waves as quantization basis. As we noted
earlier, these are a convenient choice when one ultimately wants to describe a general �eld
in free space, but di�erent basis of solutions of Maxwell’s equations can be more suited in
other situations. For example, spherical harmonics would be more suited if the system was
enclosed in a conducting sphere or had radial symmetry. To obtain di�erent mode bases,
we can consider a unitary transformation of the annihilation operators

b̂l =
∑
j

Ul jâj (1.22)

one �nds that the operators b̂l are themselves annihilation operators satisfying
[
b̂l ,b̂

†

j

]
= δl j . (1.23)

Correspondingly one can reexpress the electric �eld as

Ê (r ,t ) =
∑
l

b̂l (0)дl (r ,t ) + h.c. (1.24)

with
дl (r ,t ) =

∑
j

EjU
∗
l j fj (r ,t ) . (1.25)

The functionsдl (r ,t ) are a basis of solutions of Maxwell’s equations, although not orthonor-
mal in the general case. However, if U does not mix modes at di�erent frequencies or the
factors Ej can be all approximated by the same constant for all the modes of interest, the
operator b̂†

l
can easily be interpreted as creating a photon in the mode дl (r ,t ).

It is often practical to work in the frequency, rather than time, domain. Spectral modes
are obtained by Fourier transform

f̃j (r ,ω) =
1
√

2π

∫
dt fj (r ,t ) eiωt . (1.26)

Since modes generally couple time and space, the spectral mode will generally depend on
space as well. However, throughout this thesis we will generally make some simplifying
assumptions. First of all, we will mostly be dealing with light beams propagating in a single,
well-de�ned direction z. This corresponds to the so-called paraxial approximation, valid
when the �eld varies slowly in the plane orthogonal to the propagation direction, or, in
other words, all modes have wave-vectors close to k0 ‖ Oz. We can then use modes of the
form

uj (r ,t ) = εju
(s)
j (x ,y,z)u (t)

j (z/c − t ) (1.27)
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1.2. COMMON STATES IN QUANTUM OPTICS

where u (s)
j (x ,y,z) is the transverse (spatial) mode and u (t)

j (z/c − t ) is the longitudinal (tem-
poral) mode. For the transverse mode at z = 0 one can choose any basis of functions of x
and y. The transverse mode at any other z is deduced with the laws of classical optics. The
longitudinal modes are functions of the variable τ = z − ct , so they are orthonormal in each
variable z and t . An electric �eld polarized along ε1 in a single transverse mode u (s)

1 (x ,y,z)
can then be written within the paraxial approximation as

Ê (r ,t ) = ε1u
(s)
1 (x ,y,z)

∑
j

Eju
(t)
j (z/c − t ) b̂j (0) + h.c. (1.28)

Assuming furthermore that, for the problems at hand, all the relevant frequencies are su�-
ciently close to a central frequency ω0, the factors Ej can all be approximated by E0 and we
can write the electric �eld as a superposition of single-frequency components as

Ê (r ,t ) ≈ ε1u
(s)
1 (x ,y,z) E0

∑
j

e (ikjz−iωjt )âj (0) + h.c.. (1.29)

In situations verifying these approximations, frequency is the only relevant degree of free-
dom.

1.2 Common states in quantum optics
We now introduce some states commonly encountered in quantum optics. Let us �rst take
a step back and treat a single mode of radiation, which we may assume to be a single-
frequency mode, at frequency ω0, whose annihilation operator we denote by â. Its free
hamiltonian is given by

Ĥ0 = ~ω0

(
â†â +

1
2

)
. (1.30)

We will outline the multi-mode generalization toward the end of this section.

1.2.1 Fock states
These states are eigen states of the number operator N̂ = â†â

N̂ |n〉 = n |n〉 (1.31)

and correspond to a quantum state of the electromagnetic �eld containing a de�nite number
of photonsn. From the theory of the quantum harmonic oscillator, we know that these states
can be written as superpositions of eigenstates |s〉q of the position operator q̂ as

|n〉 =

∫
ds q 〈s |n〉 |s〉q (1.32)
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CHAPTER 1. QUANTUM LIGHT: MORE THAN PHOTONS

with

q 〈s |n〉=
e−s

2/2√
2nn!
√
π

hn (s ) , (1.33)

hn (y) denoting the Hermite polynomial of order n. Since
[
Ĥ0, N̂

]
= 0, Fock states have

de�nite energy. The ground state |0〉 is called the vacuum. Any excited state can be created
via repeated application of the creation operator â† using the relation

â† |n〉 =
√
n + 1|n + 1〉. (1.34)

1.2.2 Coherent states
Coherent states can be de�ned as eigenstates of the annihilation operator â

â |α〉 = α |α〉 (1.35)

Introducing the displacement operator

D (α ) = exp
(
αâ† − α∗â

)
= exp (ipq̂ − iqp̂) (1.36)

with q =
√

2 Re (α ), p =
√

2 Im (α ) it can be shown that coherent states are obtained from
the vacuum as

|α〉 = D (α ) |0〉. (1.37)
The name "displacement" operator comes from the fact that D (α )† âD (α ) = â + α2 and
consequentlyD (α )† q̂D (α ) = q̂ +q, D (α )† p̂D (α ) = p̂ +p. Coherent states are minimum
uncertainty states, saturating Heisenberg inequalities for position and momentum

∆q̂∆p̂ =
1
2 (1.38)

with
〈
Ô
〉
= 〈α |Ô |α〉 and ∆2Ô =

〈
Ô2

〉
−

〈
Ô
〉2

. Moreover, for coherent states (and for vacuum
in particular)

∆2q̂ = ∆2p̂ =
1
2 ≡ ∆2

0. (1.39)

The quantity ∆2
0 is known as vacuum noise. Its value is �xed by the convention we chose

for the relation between quadratures and annihilation and creation operators. Di�erent
conventions are used within the quantum optics community, leading to di�erent numerical
values for the vacuum noise, so we will often leave it indicated as ∆2

0 in the following to
facilitate conversion of the relevant formulas to other conventions.

2This is a slight abuse of notation, as α is actually an operator proportional to the identity operator in the
Fock space. As customary, this will be understood in the following whenever real or complex numbers appear
in sums together with operators.
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1.2. COMMON STATES IN QUANTUM OPTICS

Due to the symmetry in the �uctuation relations and the minimal �uctuations of the
quadratures, coherent states are as close as quantum mechanics allows to be to a single
value for the complex amplitude of the EM �eld, so they are often regarded as the "most
classical" quantum states of the electromagnetic �eld. It is worth stressing that they are
fundamentally quantum entities, even if they are often used to model classical �elds in a
quantum context. As such they had an important role in the development of the theory
of coherence for quantum light and in the formulation of quantum optics in phase space
by Glauber and Sudarshan in the 1960s [Glauber 63a, Glauber 63b, Sudarshan 63], which
resulted in the most widely used formalism for quantum optics.

1.2.3 Squeezed vacuum states
We introduce the squeezing operator 3

S (r ) = exp
(
−
i

2r
(q̂p̂ + p̂q̂)

)
. (1.40)

From the di�erential equations

d
dr S

† (r ) q̂S (r ) = iS (r )†
[
q̂p̂ + p̂q̂

2 , q̂

]
S (r ) = S (r )† q̂S (r )

d
dr S

† (r ) p̂S (r ) = iS (r )†
[
q̂p̂ + p̂q̂

2 , p̂

]
S (r ) = −S (r )† p̂S (r )

(1.41)

the action on position and momentum is found to be

S (r )†
(
q̂
p̂

)
S (r ) =

(
er 0
0 e−r

) (
q̂
p̂

)
. (1.42)

De�ning the squeezed vacuum state

|r 〉 = S (r ) |0〉 (1.43)

one deduces for the variances
∆2
r q̂ = 〈r |q̂

2 |r 〉 = e2r∆2
0

∆2
r p̂ = 〈r |p̂

2 |r 〉 = e−2r∆2
0

(1.44)

still saturating the uncertainty relations, but now asymmetric in position and momentum:
one, depending on the sign of the squeezing parameter r , is squeezed, having �uctuations
below the shot noise, while the other has increased �uctuations (excess noise), and is said to
be anti-squeezed. Squeezing (or anti-squeezing) is often quanti�ed in dB

sqz dB = 10 log10
(
∆2
r ξ̂/∆

2
0
)

(1.45)
3A slightly di�erent notation will be used in Chapter 5.
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CHAPTER 1. QUANTUM LIGHT: MORE THAN PHOTONS

with ξ̂ = q̂, p̂. Squeezed states were produced experimentally for the �rst time in the 1980s
[Slusher 85] and besides their theoretical and fundamental relevance also have many im-
portant applications in domains as diverse as quantum information processing and metrol-
ogy. To cite just two examples, they were used for deterministic quantum teleportation
[Furusawa 98] and it has been shown theoretically [Caves 81] and experimentally [Aasi 13]
that they would allow to improve the sensitivity of gravitational wave detectors.

1.2.4 Quadrature eigenstates
In the limit r → ∞, from Eq. (1.44) one has ∆2

r p̂ → 0, corresponding to a state with perfectly
de�ned momentum, which must then be an eigenstate of p̂. From the analogy between
the quadrature p̂ and the momentum of a mechanical particle, for which momentum eigen-
states are non-normalizable plane waves, one may guess that these states are not physical.
Computing the mean photon number and making use of Eq. (1.42) one �nds

〈r |â†â |r 〉 = sinh2 (r )
r→±∞
−−−−−−→ ∞ (1.46)

so the state would have in�nite energy, which is indeed unphysical. Eigenstates of p̂ or q̂
such that

p̂ |s〉p = s |s〉p

q̂ |t〉q = t |t〉q
(1.47)

represent nonetheless useful mathematical tools. In fact, recalling ordinary results from
the quantum description of a mechanical particle, the eigenstates of either of the two form
a basis in the single mode Hilbert space and the two bases are related by a Fourier trans-
form [Sakurai 94]. We will return to this point later, as we shall see that momentum eigen-
states are at the heart of the formulation of Measurement-Based quantum computing with
continous-variable systems (See Chapter 2).

1.2.5 Multi-mode generalization
Fock states are easily generalized to many modes. In fact we already used states with a
de�nite number of photons in each mode in Eq. (1.21). These can obtained from vacuum by
repeated application of the creation operators

|n1,n2, ...〉 =
∏
j

(
â†j

)nj√
nj !
|0〉 (1.48)

where |0〉 is the multimode vacuum state, statisfying aj |0〉 = 0 ∀j. It is easy to see that in a
di�erent mode basis b̂l =

∑
j U
∗
l j
âj one has b̂l |0〉 = 0 ∀l . On the other hand, a single photon

in mode âj results in a superposition of single-photon states in the new mode basis

â†j |0〉 =
∑
l

U ∗jl b̂
†

l
|0〉. (1.49)
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1.2. COMMON STATES IN QUANTUM OPTICS

This is an instance of the more general fact that the "local" photon number, that is, the num-
ber of photons in each mode, is not conserved by a mode-basis change. What is conserved
is the total photon number

N̂tot ≡
∑
j

N̂j =
∑
j

â†j âj =
∑
j

b̂†j b̂j (1.50)

If one looks at the formal transformation of the state vector when the mode basis is changed,
"forgetting" the underlying change in the tensor product structure identi�ed by the quan-
tization basis, the e�ect ot the mode-basis change is the same as if the system was evolved
through a passive (or linear) optical network. The peculiarity of this kind of optical transfor-
mations, experimentally realizable combining beam-splitters and phase shifters [Kok 10],
is precisely to conserve the total photon number. This analogy will be extensively used
throughout this thesis.

It is easy to generalize coherent states as tensor products of single-mode coherent states
obtained from applying a local displacement operator to each mode

|α1,α2, ...〉 ≡ D1 (α1) ⊗ D2 (α2) ⊗ ...|0〉 ≡ D (α ) |0〉 (1.51)

whereDj

(
αj

)
acts on mode j only. On the other hand, any coherent state can be expressed

in a single mode, called mean-�eld mode. Applying the Baker-Campbell-Hausdor� formula

eαâ
†−α∗â = e−|α |

2/2eαâ
†

e−α
∗â (1.52)

one �nds⊗
j

Dj

(
αj

)
|0〉 =

⊗
j

e−|α j |
2
/2eα j â

†

j e−α
∗
j âj |0〉 =j e

−
∑
j
|α j |

2
/2
e

∑
j
α j â
†

j
|0〉 = eβb̂

†−β∗b̂ |0〉 (1.53)

with β =
√∑

l
|αl |

2 and

b̂† =
1√∑
l
|αl |

2

∑
j

αjâ
†

j . (1.54)

So, in a sense, thinking of coherent states as a model for classical states, we conclude that
any classical, free, perfectly coherent (in the classical sense) EM �eld can be described by a
single mode.

Squeezed states are similarly generalized to the multi-mode case as the states obtained
from vacuum applying independent local squeezing operators to each mode

|r1,r2, ...〉 =
⊗
j

Sj

(
rj
)
|0〉. (1.55)
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This time it is no longer possible, in general, to express the resulting state as a single-mode
state. This kind of states will be central in our work, as they play an important role in the
representation of multi-mode pure Gaussian states, which will be introduced later in this
chapter.

1.3 Mixed states, Wigner functions

1.3.1 Density operator

Up to now, we only considered pure states, which can be represented as normalized vectors
inHR . These correspond to the most complete mathematical description of the system when
the maximum possible information is available. A more general situation is encountered
when only partial information is available, namely, when the system in only known to be
in each of a set of states {��ψk

〉}, with probability P (k ) [Nielsen 10]. This can be represented
elegantly by an operator called density operator 4

ρ̂ =
∑
k

P (k ) |ψk〉〈ψk | . (1.56)

ρ̂ is manifestly self-adjoint and positive-semide�nite. We can without loss of generality
assume that the states {��ψk

〉} are orthonormal 5. Since P (k ) is a probability distribution and
the states ��ψk

〉 are normalized, we have Tr (ρ̂) = 1. For the same reasons, the trace of the
square of the density operator is bounded

Tr
(
ρ2

)
≤ 1 (1.57)

and it is easy to convince oneself that the inequality is saturated if and only if P (k ) = δkk̄
for some k̄ , namely, if the state is pure. For this reason the quantity Tr

(
ρ2

)
is called purity.

1.3.2 Wigner function: quantum optics in phase space

Building on the analogy with classical dynamical variables that we used for canonical quan-
tization, one can de�ne the quantum version of a classical probability distribution over phase
space. In a sense, this role was already taken by the density matrix, but we are talking here
about a formulation that explicitly exploits the canonical structure embodied in the commu-
tation relations for positions and momenta, the quantum counterpart of Poisson’s brackets.

4The index k may as well take continuous values, in which case the sum is replaced by an integral.
5Otherwise we could apply the spectral theorem and �nd an orthonormal set {��ϕl

〉} such that ρ̂ =∑
l
Q (l ) |ϕl 〉〈ϕl | ,

∑
l
Q (l ) = 1.
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This can be achieved introducing the Wigner function, de�ned for n modes as

Wρ (q,p) =
1

(2π )n
∫

dnx *.
,

⊗
j

〈
qj −

xj

2
����qj

+/
-
ρ̂ *.

,

⊗
j

����qj +
xj

2

〉
qj

+/
-
eip·x (1.58)

where q̂j ��y
〉
qj
= y ��y

〉
qj

. The Wigner function can be de�ned for any operator Ô on the
Hilbert space of the n modes. We outline some properties that will be useful to build the
basic intuition of the Wigner function in order to understand the results derived in this
thesis. For a pedagogical exposition with some more detail we refer to [Leonhardt 97].

Trace rule Given two operators Â and B̂ on the Hilbert space of n modesHn, the trace
of their product can be computed as

Tr
(
ÂB̂

)
=

∫
dnqdnpWA (q,p)WB (q,p) . (1.59)

A derivation of this useful formula can be obtained directly substituting Eq. (1.58) forWA (q,p)
andWB (q,p) in the right hand side of Eq. (1.59) [Ferraro 05, Leonhardt 97].

Mean values Choosing Â = ρ̂ and B̂ = Ô with Ô some observable, the left hand side
of Eq. (1.59) reduces to the mean value〈

Ô
〉
ρ
≡ Tr

(
ρ̂Ô

)
=

∫
dnqdnpWρ (q,p)WO (q,p) . (1.60)

This formula shows that the Wigner function can be used to compute averages of operators
similarly as one would compute ensemble averages of functions of the canonical variables
in the classical case. There is a subtlety here coming from the non-commutative nature
of quantum canonical variables. Suppose Ô was a function of q̂ and p̂. Naively, one may
think of just replacing the canonical operators with real variables and integrate the function
weighted by the Wigner function of the stateWρ (q,p). This would not give the correct re-
sult, unless one considered the symmetrically ordered version of Ô , Ôsymm in which all prod-
ucts of operators of the form q̂k1

j p̂
k2
j appear in the Weyl-symmetrized form [Leonhardt 97].

For example

Tr
(
ρ̂

(
q̂2
j p̂j

)symm)
≡ Tr

(
ρ̂

1
3

(
q̂2
j p̂j + q̂jp̂jq̂j + p̂jq̂

2
j

))
=

∫
dnqdnpWρ (q,p) q2

jpj . (1.61)

Probabilities of measurement outcomes If Ô is chosen from a POVM [Nielsen 10]{
Π̂m

}
, the left hand side of Eq. (1.59) is the probability P (m) to obtain outcomem according

to Born’s rule
P (m) ≡ Tr

(
ρ̂Π̂m

)
=

∫
dnqdnpWρ (q,p)WΠm (q,p) (1.62)
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Marginal distributions Restricting to the single mode case for simplicity and spe-
cializing further to a projective measurement in the position (Πm → |q〉〈q |q) or momentum
(Πm → |p〉〈p |p) basis, one easily �nds that the integral over position or momentum of the
Wigner function gives the probability distribution of the conjugated variable∫

dpWρ (q,p) =
〈
q��q ρ̂ ��q

〉
q (1.63)∫

dqWρ (q,p) =
〈
p��p ρ̂ ��p

〉
p (1.64)

Normalization for density operators Looking at the complex conjugated of Eq. (1.58)
and substituting x with −x in the integral one sees thatWA (q,p) is real if Â is a hermitian
operator. Moreover, setting Â = ρ̂ and B̂ = In in Eq. (1.59), with In the identity operator on
Hn, we have

Tr (ρ̂) =
∫

dnqdnpWρ (q,p) = 1 (1.65)

Negativity One may feel uneasy thinking of the Wigner function as a joint probability
distribution of q and p, since these correspond to non-commuting operators that cannot
assume de�nite value at the same time. The uneasiness is completely justi�ed, and in fact,
despite the analogies outlined here, the Wigner function has striking di�erences with a
probability distribution: for example it may assume negative values for some states. The
typical example is that of Fock states with nj > 0. For this and other reasons the Wigner
function is called a quasiprobability distribution. As a matter of fact, the negativity of the
Wigner function is regarded as a �ngerprint of "non classicality" of a state or a process, with
practical implications for quantum information processing. We will come back to this in the
next chapter.

s-parametrized phase-space distributions The Wigner function can also be de-
�ned as the 2n dimensional Fourier transform

W (s ) (q,p) = F
{
χA (λ,s )

} (1.66)

of the characteristic function

χA (λ,s ) = Tr
(
ÂD (λ)

)
es |λ |

2
(1.67)

for s = 0 [Ferraro 05, Leonhardt 97]. Di�erent choices for s ∈ [−1,1] lead to di�erent
quasiprobability distribuitons. In particular, s = 1 corresponds to Glauber’s P function,
which can be highly non-regular, and s = −1 to Husimi’s Q function, which is regular and
positive for any density operator. Since the Fourier transform maps products of functions
into convolutions, it is easily seen that all s parametrized quasiprobability distributions can
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be obtained convoluting the P function with a Gaussian �ltering function. This has broadly
speaking, the e�ect of smoothing the distribution. One can then ask to which extent the
"negativity" of the Wigner function can represent a mark of non-classicality. A possible
answer is that when using s-parametrized distributions for, say, a state ρ and the element Π
of a POVM, the trace rule for mean values Eq. (1.60) has to be modi�ed as

Tr
(
ρ̂Π̂

)
=

∫
dnqdnpW (s )

ρ (q,p)W (1−s )
Π (q,p) . (1.68)

A more sensible classicality criterion related to information processing is then the non-
negativity of the whole integrand in Eq. (1.68) [Rahimi-Keshari 16].

1.4 Gaussian states and operations
A very important class of states in quantum optics is that of Gaussian states. They can
be de�ned simply as those states whose Wigner function is Gaussian. Vacuum, coherent
states and squeezed states all belong to this class, whereas Fock states do not. Introducing
the collective notation ξT = (qT ,pT ) for the 2n canonical variables, the general Gaussian
Wigner function is written

WG (ξ ) =
1√

(2π )n det Γ
exp

(
−

1
2
(ξ − ξ0)

T Γ−1 (ξ − ξ0)
)

(1.69)

with ξ0 a vector of real numbers, translating in phase-space displacements, or mean values of
the quadratures, and Γ a positive semi-de�nite symmetric matrix called covariance matrix.

1.4.1 Covariance matrices
It is easy to understand where the word covariance comes from. De�ning δξ = ξ̂ − ξ0 and
computing the mean value of(

δξ̂jδξ̂k
)symm

=
1
2

(
δξ̂jδξ̂k + δξ̂kδξ̂j

)
(1.70)

one has
Tr

(
ρ̂G

(
δξ̂jδξ̂k

)symm)
=

∫
d2nξWG (ξ ) δξjδξk = Γjk (1.71)

showing that the diagonal elements of Γ are the variances of the canonical operators, while
the o�-diagonal terms are the quantum generalization of their covariances obtained after
symmetrization. Γ contains all the information about the noise properties of a Gaussian
state. We will treat this in detail later on in Section 2.4.1. For a Gaussian probability dis-
tribution to represent a quantum state, Γ must satisfy some additional conditions related to
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uncertainty relations. These can be written in a form which is manifestly independent of
the canonical basis chosen in phase space [Ferraro 05, Dutta 95]

Γ +
i

2 J
(n) ≥ 0 (1.72)

with
J (n) =

(
0 In
−In 0

)
(1.73)

the standard symplectic form. We see here the �rst signature of the canonical structure of the
quantum phase space, which will be further investigated in the next subsection. A simple
yet important example is the covariance matrix of the vacuum state

Γ0 =
1
2I2n . (1.74)

1.4.2 Gaussian unitaries and symplectic matrices
The canonical commutators can be written compactly using the standard canonical form

[
ξ̂j , ξ̂k

]
= i J (n)

jk
. (1.75)

Let us consider the special class of unitariesUG whose action on the canonical operators in
Heisenberg picture can be represented as a linear transformation

Û †G ξ̂ÛG = Sξ̂ + η ≡ ξ̂ ′ (1.76)

with η a vector of real numbers. Imposing that the operators ξ̂ ′ still satisfy the canonical
commutation relations we have the following condition

S J (n)ST = J (n) (1.77)

namely, that S be a symplectic matrix. Symplectic matrices form a group and together
with phase-space displacements they form the inhomogenoeous symplectic group [Ferraro 05,
Dutta 95]. Any transformation of this kind can be generated by a Hamiltonian at most
quadratic in the canonical operators, which can be expressed compactly in matrix form as

HG = ξ̂
TMξ̂ + l · ξ̂ (1.78)

with M a hermitian matrix and ~l an arbitrary real vector.
Turning to Schrödinger picture, the Wigner function transforms under symplectic trans-

formations as
W (ξ ) 7→W

(
S−1 (ξ − η)

)
(1.79)
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that is, as a change of variables in phase space which is the inverse of the transformation
acting on the canonical operators. As a consequence, the new Wigner function is still a
Gaussian with covariance matrix

Γ′ = SΓST . (1.80)
For this reason transformations UG whose action can be represented as in Eq. (1.76) are
called unitary Gaussian operations. Note that if the initial state was vacuum, the covariance
matrix Γ′ is simply

Γ′ =
1
2SS

T (1.81)

An important result known as Hudson-Piquet theorem relates the Gaussian character of a
pure state to the non-negativity of the Wigner function. Speci�cally, it tells that if a state is
pure, its Wigner function is everywhere non-negative (and thus a well-de�ned probability
density) if and only if it is Gaussian [Hudson 74]. This has important consequences for
information processing, as we shall see in the next chapter. Moreover, from the previous
discussion follows that unitary Gaussian operations, being just coordinate changes, cannot
alter the positivity of the Wigner function.

1.4.3 Bloch-Messiah factorization
We will make extensive use of a factorization theorem, known as Bloch-Messiah or Euler
decomposition for symplectic matrices [Ferraro 05, Dutta 95], which allows to break uni-
tary Gaussian operations (neglecting displacements) into three steps with a clear physical
interpretation [Braunstein 05]. Namely, any symplectic matrix S can be written as a product

S = R2KR1 (1.82)

where R1 and R2 are both symplectic and orthogonal matrices and

K = diag
(
κ1,κ2, ...,κn,κ

−1
1 , ...,κ

−1
n

)
(1.83)

is a diagonal matrix with positive entries. K clearly represents a squeezing transformation
(see Eq. (1.42) with κj = er j ). For the matrices R1 and R2, the symplecticity and orthogonality
conditions imply [Dutta 95]

Rl =

(
Xl −Yl
Yl Xl

)
(1.84)

with Xl and Yl square matrices such that Ul = Xl + iYl is unitary. From the relation 6(
â
â†

)
=

1
√

2

(
In iIn
In −iIn

) (
q̂
p̂

)
(1.85)

6Unless otherwise speci�ed, for vectors of operators we adopt the convention that the dagger symbol
denotes the element-wise adjoint, whereas transposition is intended as transposition of the vector, not the
operators.
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we see that annihilation operators transform under Rl as

â 7→ Ulâ (1.86)

implying the conservation of the photon number. In other words, theRl correspond to linear
optics transformations, or, equivalently, mode-basis changes. Since applying a linear optics
transformation to vacuum has no e�ect, it immediately follows that any pure Gaussian
state of n modes can be produced from vacuum with n independent squeezing operations
and a �nal linear optics transformation. This is crucial for the experimental production of
continuous-variable cluster states, as we shall see in the next chapter.

1.4.4 Gaussian channels and measurements

Until now, we only considered pure Gaussian states and unitary Gaussian operations. It
is of course possible to consider mixed Gaussian states and general Gaussian transforma-
tions. The latter are de�ned as those physical transformations that map Gaussian states to
Gaussian states.

The most general physical transformation of a density operator corresponds to a com-
pletely positive trace preserving map7 acting on the density operator [Nielsen 10]. Accord-
ing to Stinespring’s dilation theorem [Stinespring 55], any such transformation on a quan-
tum system can be realized coupling the system to an environment in a reference state,
applying a unitary evolution on the two and then discarding the environment. The last
step amounts to a partial trace of the density operator on the degrees of freedom of the
environment [Nielsen 10], which translates to the Wigner function formalism as integra-
tion over the variables of the corresponding modes. It can be proven [Giedke 02] using the
Choi-Jamiolkowski isomorphism (see [Jiang 13] and references therein) that any Gaussian
transformation can be obtained combining states, unitaries and measurements on the sys-
tem and environment with a Gaussian Wigner function (or limiting cases thereof, as the
example in the next section). The e�ect of partial trace on a Gaussian state is particularly
simple, as it amounts to removing from the covariance matrix the rows and columns corre-
sponding to the discarded modes (as well as the displacements in ξ0).

1.4.5 Projective quadrature measurements

Projective measurements of the quadrature operators represent an important example of
Gaussian measurements. In the laboratory they can be realized to a very good degree of

7More generally, one may consider trace non-increasing maps that can happen with probability smaller
than one. The trace of the non-normalized output density matrix is then the probability that the process takes
place. An example is provided by post-selection after a measurement, in which one considers the state of the
system after a measurement has been performed, resulting in a speci�c outcome. To get the normalized state
one has to divide by the probability of the outcome.
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approximation with the scheme of homodyne detection, described in the next subsection.
We show in the following that performing a projective quadrature measurement and con-
ditioning on the outcome results in a Gaussian operation, since it conserves the Gaussian
character of the state. Consider the linear combination of quadratures

x̂θ = cosθq̂ − sinθp̂. (1.87)

The generalized quadrature x̂θ is related to q̂ by

x̂θ = Û
†

θ
q̂Ûθ (1.88)

where
Ûθ = ei

θ
2 â
†â (1.89)

can be obtained from the free hamiltonian of the mode. The projectors on Eigenstates |s〉θ
of x̂θ are obtained from

Û †
θ
q̂Ûθ =

∫
ds s Û †

θ
|s〉〈s |q Ûθ ≡

∫
ds s |s〉〈s |θ . (1.90)

The Wigner function of the projector |m〉〈m |θ is then readily obtained

Wθ ,m (q,p) = δ (cosθq + sinθp −m) . (1.91)

Consider now a Gaussian multimode state ρ. Suppose a measurement of x̂θ is performed on
mode j, giving outcomem. The Wigner functionWρ ′ (q̄, p̄) of the state ρ′ of the unmeasured
modes is given by8

p (m)Wρ ′ (q̄, p̄) =
∫

dqjdpjWρ (q,p)Wθ ,m

(
qj ,pj

)
(1.92)

with q̄, p̄ the canonical variables vector without qj and pj and p (m) the probability density
corresponding to the outcome m. Wρ ′ (q̄, p̄) is then a section of a multi-variate Gaussian
function and thus a Gaussian itself. In fact the Wigner function Wθ ,m can be seen as the
product of an in�nitely narrow Gaussian in the variable cosθq+sinθp, centered inm, and an
in�nitely wide Gaussian in the orthogonal direction in phase-space. This is consistent with
the fact that quadratures eigenstates can be seen as the limiting case for in�nite squeezing
of squeezed states, which are Gaussian.

8Usually, quadrature measurements are performed through homodyne detection, which destroys the mea-
sured mode. For this reason we omitted it from the state of the unmeasured modes after the detection.
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1.4.6 Homodyne detection
Homodyne detection has a central role in quantum optics, and speci�cally in the CV setting,
for several reasons. On one side, it can be modeled simply as a projective quadrature mea-
surement. Moreover, it can be used as a primitive for schemes of higher complexity (like
phase-randomized homodyne detection or eight-port homodyne detection [Leonhardt 97]),
and its description can easily be extended to include experimental imperfections such as
losses [Leonhardt 97, Ferraro 05]. On the other side, homodyne detection is relatively easy
to realize in the lab and higly e�cient setups can be implemented with current technology.
A simple description of the typical scheme is given in the following.

For a single mode, homodyne detection can be achieved mixing the mode to be measured
in a balanced beam splitter with a strong �eld, called local oscillator, in a coherent state
|αLO〉 =

���|αLO | e
iθ
〉

with |αLO | � 1, and measuring the di�erence of the photon number at
the two output ports.

A simple argument shows that the measured quantity corresponds to the generalized
quadrature x̂θ . At the beginning, the input or signal mode is described by the annihilation
operator âin while the local oscillator has annihilation operator âLO. The action of the beam
splitter is

Û †BS

(
âin
âLO

)
ÛBS =

1
√

2

(
âin − âLO
âin + âLO

)
≡

(
b̂−
b̂+

)
(1.93)

and the di�erence in the photon number at the two output ports is

N̂+ − N̂− = b̂
†
+b̂+ − b̂

†
−b̂− = â†inâLO + âinâ

†

LO. (1.94)

Assuming that the local oscillator is in a strong coherent state, so that its quantum �uctu-
ations can be neglected, one can replace âLO with its mean value αLO = |αLO | e

iθ and â†LO
with α∗LO to obtain

N̂+ − N̂− ≈ |αLO |
(
â†ine

iθ + âine
−iθ

)
=
√

2 |αLO | x̂in,θ . (1.95)

Suppose now the state to probe is multimode. The local oscillator and the input in Eqs. (1.93-
1.94) must be replaced by multimode �elds. It is convenient to describe these in the fre-
quency mode basis. The �elds are described by vectors of annhilation operators aLO and
ain respectively. If the local oscillator is in a coherent state ��βLO

〉
= |α1〉|α2〉... with αj the

(complex) amplitude of the �eld at frequency ωj , it can be shown that the di�erence in the
photon number at the two outputs of the beam splitter in Eqs. (1.94-1.95) becomes

N̂+ − N̂− ≈
∑
j

(
â†in, jαj + âin, jα

∗
j

)
=
√

2
∑
j

(
Re

(
αj

)
q̂in, j + Im

(
αj

)
p̂in, j

)
. (1.96)

Thus, using a local oscillator with the appropriate spectral shape, the generalized quadra-
tures of any spectral mode can be measured via homodyne detection. In principle, local
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homodyne measurements of each relevant mode are su�cient to carry out a full tomogra-
phy of the state [Leonhardt 97]. An alternative strategy for Gaussian states is to measure
the covariance matrix Γ, which only requires O

(
n2

)
measurements, where n is the number

of modes on which the experimenter decides to describe the system. To this end, one �rst
decides an orthonormal set of modes of interest, with quadratures ξ det

k
. One then mea-

sures the �uctuations of the quadratures of each mode ∆2ξ det
k

, for ξ = p, q, which gives the
diagonal elements of the covariance matrix in the chosen basis. For the o�-diagonal ele-
ments, the �uctuations of quadratures corresponding to pairwise superpositions of modes
are measured

1
2

〈(
ξ det
k ± ξ det

l

)2〉
=

∆2ξ det
k
+ ∆2ξ det

l

2 ±
〈
ξ det
k ξ det

l + ξ
det
l ξ det

k

〉
(1.97)

from which the elements Γkl of the covariance matrix can be extracted subtracting the diag-
onal terms (see Eq. (1.70)).

1.4.7 Williamson decomposition
We conclude the discussion on Gaussian states with a characterization of the covariance ma-
trix of general Gaussian states provided by a theorem known as Williamson decomposition:
any symmetric positive-de�nite matrix can be diagonalized by a symplectic transformation

Γ = SDST (1.98)

with
D = diag (d1,d2, ...,dn,d1, ...,dn ) (1.99)

a diagonal matrix with positive entries. When Γ is the covariance matrix of a Gaussian state,
uncertainty relations imply dj ≥ 1/2 for all j [Dutta 95]. Moreover, since symplectic matri-
ces have unit determinant [Dutta 95], applying Binet’s theorem we �nd det Γ = detD. For
the vacuum state det Γ0 = 2−2n and, since any covariance matrix corresponding to a pure
state can be obtained from vacuum with a symplectic transformation, we have det Γ = 2−2n

for any pure state. Smaller values of this determinant are not compatible with Heisenberg’s
uncertainty relations [Dutta 95, Ferraro 05]. Only larger values are allowed. Since uni-
tary Gaussian operations can be built by mode-basis changes, squeezing and displacements,
which all conserve the product of the uncertainties of the quadratures, Gaussian states with
det Γ > 2−2n must correspond to mixed states.

The diagonal matrix D is indeed related to a system in which each mode is in a thermal
state, characterized by increased �uctuations in both position and momentum with respect
to the vacuum. Combining the Williamson and Bloch-Messiah decompositions we can then
say that any Gaussian state (up to phase-space displacements) can be obtained from de-
coupled thermal modes with a change of basis (or a passive interferometer), independent
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single-mode squeezers, and a �nal change of mode basis (or another interferometer). This
can be interpreted as the existence of two basis of modes for which the "classical" (thermal)
�uctuations and the "quantum" �uctuations (squeezing) are decoupled, respectively.
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In this chapter we introduce concepts and notations of Quantum Information (QI) with
Continuous-Variable (CV) systems. First, in Sec. 2.1 we give an overview of CV Quantum
Computing, focussing on the Measurement-Based or One-Way model (MBQC), based on
cluster states. This provides the motivation for introducing several notions which will be
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used in later chapters, and at the same time an intuitive understanding thereof. We then
outline how these concepts can be realized in quantum optics experiments in Sec. 2.2. In
Sec. 2.3 we reformulate Gaussian MBQC in the Heisenberg picture and outline a strategy
for MBQC alternative to the standard one based on cluster states. Ideas in this section were
introduced in [Ferrini 16], coauthored by me. Finally, in Sec. 2.4 we collect further notions
and mathematical tools from QI. Speci�cally, we will de�ne entanglement and detail how it
can be certi�ed in CV systems, with a focus on multimode Gaussian states, and introduce
�delity as a means for comparing quantum states, which will be used in the last part of the
thesis to benchmark QI protocols.

2.1 A journey in CV-MBQC
We provide here a pragmatic introduction to CV-MBQC. By now, an extensive literature
exists on the subject, so we will favour readability over completeness. Pointers will be given
to works where detailed treatments and proofs of our statements can be found. We heavily
rely on [Gu 09].

2.1.1 CV quantum computers
Computation can be de�ned in many di�erent ways. The following, very general, de�nition
was given in [Deu 85]

A computation is a process that produces outputs that depend in some desired
way on given inputs.

Deutsch goes on to say

In one sense, inputs and outputs are abstract symbols that may or may not refer
to anything concrete.

In the classical theory of computation, such abstract symbols are usually assumed to belong
to a discrete, �nite set. The simplest and most familiar instance of this approach is repre-
sented by the use of bits, variables that can assume the values zero or one. One can think of
the input and output symbols in Deutsch’s statement as strings of bits. A classical universal
computer can then be de�ned as a device taking any string of bits ~x ∈ {0,1}n as input and out-
putting the result of any given boolean function of the input f (

~x
)
∈ {0,1}m [Nielsen 10].

This is readily generalized to the quantum case replacing the bits with n qubits, each of
which is a two level system described by a state ��ψ

〉 that can be represented as a normal-
ized vector of two complex numbers 1. Since unitary evolution in quantum mechanics is

1When many qubits interaction are considered, the state of a single qubit will in general be mixed, so it
will be described by a 2 × 2 density operator.
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reversible, the translation from classical to quantum computation is easier if one consid-
ers classical reversible computations 2. A classical computation f is said to be reversible
if f can be inverted. The logical AND operator acting on two bits a and b (a,b) 7→ a ⊕ b,
with ⊕ denoting the sum modulo 2, is an example of an irreversible computation. Any ir-
reversible computation д : x 7→ y can be regarded as a restriction of the reversible funcion
f : (x ,r ) 7→ (x ,r ⊕ y) where r is some reference string of bits. In quantum computation,
boolean functions are then replaced by unitary operations U f which achieve the reversible
version of any classical boolean function. The input state is then complemented with a
(quantum) register of suitable dimension, initialized in a reference state ��ϕ

〉
∈ C2m, and the

action of the computer is 3

��ψ
〉 ��ϕ

〉
7→ U f

��ψ
〉 ��ϕ

〉 (2.1)
whereU f is a unitary operator such that if ��ψ

〉
= ��~x

〉and ��ϕ
〉
= ��~y

〉,U f |x〉 ��y
〉
= ��~x

〉 ��~y ⊕ f
(
~x
)〉.

As we saw in the previous chapter, the electromagnetic �eld, like other interesting phys-
ical systems [Cerf 07], is naturally described in Quantum Mechanics in an in�nite dimen-
sional Hilbert space. It may seem tough to de�ne what computation means for this kind of
systems, since there is no unambiguous correspondence with a classical digital encoding of
information if one considers the whole Hilbert space. Any two-dimensional subspace can
be mapped to a qubit, any four dimensional subspace can represent two qubits and so on.
Photonic realizations of qubits, such as time-bin [Humphreys 13] or multi-rail [Reck 94]
encodings used in linear-optical quantum computing, correspond to considering speci�c
subspaces of a certain number of modes of the EM �eld. The CV approach takes a dif-
ferent path, de�ning computation in in�nite dimensional Hilbert spaces in an encoding-
independent fashion. This can be done generalizing a computer to something that is able to
manipulate the state of the system in a controlled way, and consequently the information
encoded in its state. In this respect, CV quantum computers resemble "universal quantum
simulators" [Lloyd 96]. Following [Lloyd 99], we may de�ne a CV quantum computer as
a device that can be programmed to take as input the state of n harmonic oscillators (or n
modes of the electromagnetic �eld)

��ψ
〉
∈ ⊗nL2 (R,C) (2.2)

and apply to it a unitary operator

U (t ) = exp
(
−
it

~
H (q,p)

)
(2.3)

generated by a HamiltonianH (q,p) which is a polynomial function of the quadrature oper-
ators. Note that demanding the Hamiltonian to be a polynomial is not very restrictive since

2In fact, starting from classical logically reversible algorithms makes the translation to the quantum case
easier in the so-called circuit model. This is no longer the case in the measurement-based model, introduced
below. It is however di�cult to de�ne the classical equivalent of the measurement-based paradigm, so we
favour the circuit model to describe the logical transition from classical to quantum computation.

3Throughout the chapter we drop the "hat" sign for operators.
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any analytical function can be approximated to any degree of accuracy by a polynomial.
It is easy to convince oneself that such a device would allow to simulate a universal quan-
tum computer in the qubit sense for any �nite-dimensional encoding employing a subspace
of the n modes system. For example, the �rst four levels of a harmonic oscillator, corre-
sponding to states of up to three photons of a single mode of the EM �eld, could be used
to represent the state of two qubits, since the span of states with up to three photons is
isomorphic to C4, which is in turn isomorphic to C2 ⊗ C2. A universal quantum computer
on two qubits would be able to apply an arbitrary unitary operation in the span of these
four states. These form a subset of the unitary transformations on the in�nite-dimensional
space of the oscillator/mode, which can all be approximated at will by a universal CV quan-
tum computer taking the mode as input. Analogously, two qubits can be represented in the
two-dimensional Hilbert space containing linear superpositions of the states of two modes
such that each mode contains either none or one photon. Unitary operations on these states
are a subset of all the possible unitary evolutions on the Hilbert space of two modes, which
again can be implemented by a two-modes universal CV quantum computer.

An analogy with the classical case can clarify the CV approach to computation. Ref-
erence values of the voltage can used to encode classical bits in physical computers. In
principle, voltage can take continuous values, but two values, let us say 0 V and 5 V, are
chosen to represent the logical 0 and 1 respectively. Alternatively, the values 0 V, 1 V, 2 V,
3 V could represent the strings 00, 01, 10, 11. We could think of a CV (analogical) classical
computer that would allow to manipulate the voltage of the output nodes of the circuit de-
pending on the input values, regardless of the chosen reference values. Logic gates can be
seen as a subset of the operations achievable with such a device. We will refer to unitaries
generated by polynomial hamiltonians as CV programs.

2.1.2 Universal sets of hamiltonians
Following this track, one can go on and de�ne a universal set of gates as a generalization of
the same concept from qubits, which is in turn inherited from the classical case. In fact, we
will rather consider universal sets of hamiltonians, as explained in the following.

In classical logic, it can be shown [Nielsen 10] that any boolean function on n bits can
be constructed combining functions taken from a �nite set {

f1, f2, ..., fk
}, each acting on

m ≤ n bits. Such building blocks are also called logic gates. This is the starting point for the
so-called circuit model of computation, in which algorithms are represented as nets of wires,
representing the bits, connected by boxes, representing the gates. Analogously, any unitary
operator onm qubits can be approximated to any degree of accuracy by sequential application
of quantum gates, namely unitary operators taken from a �nite set {U1, U2, ..., Uk }. There
is a kind of a subtlety here: a classical universal set allows an exact reconstruction of any
function, whereas in the quantum case only an approximated representation of a unitary
operator is possible with a �nite number of gates. Moreover, there is no guarantee that the
number of gates in the decomposition of a target unitary will scale nicely (read "bounded
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by a polynomial") with the required degree of approximation. Exact representability can be
recovered turning to the generators of unitaries. Namely, there exist sets of hamiltonians
{H1, H2. ..., Hk } such that any unitary operator can be constructed exactly combining the
unitaries they generate for di�erent evolution times. We will call these universal sets of
hamiltonians, to distinguish them from the universal sets of unitary quantum gates. Each
hamiltonian generates a one-parameter family of unitary operators, that is, a continuous
in�nity of gates.

Building on the latter notion of universal sets of hamiltonians, for the CV case one would
look for a �nite set of polynomial hamiltonians {

H1 (q,p) , H2 (q,p) , ..., Hm (q,p)
} such

that their sequential application for judiciously chosen times leads to a unitary operation
approximating an arbitrary (given) CV program. The existence of such a set is not obvious
a priori, but one was explicitly constructed in [Lloyd 99]. The universality proof relies on
the following version of the Baker-Campbell-Hausdor� formulae [Nielsen 10], also known
as Zassenhaus formula [Magnus 54]

et (A+B) = etAetBe
t2
2 [A,B]e

t3
6 (2[B,[A,B]]+[A,[A,B]]) ... = etAetBe

t2
2 [A,B] + O

(
t3

)
. (2.4)

Suppose that a device existed that could apply the hamiltonians ±H1 and ±H2 for any given
time. Using Eq. (2.4) with A = ±iH1 and B = ±iH2 one has 4

eitH2eitH1e−itH2e−itH1 = e−t
2[H2,H1] + O

(
t3

)
(2.5)

showing that the device can also approximate the evolution generated by the hamiltonians
±i [H2,H1] for small times. It is possible to proove that any polynomial of degree up to two
on a single mode can be generated by commutation of the hamiltonians

G = {q, q2, q2 + p2}. (2.6)

In other words, combining unitaries generated by hamiltonians in G it is possible to approx-
imate any Gaussian unitary, but no unitary generated by polynomials of higher order. From
the previous chapter, we identify q as the generator of momentum translations, while q2+p2

is proportional to the free hamiltonian of a mode, generating phase-space rotations. The op-
erator q2 generates a shear, whose action on the quadrature operators can be represented
as

e−isq
2
(
q
p

)
eisq

2
=

(
1 0
1 s

) (
q
p

)
=

(
q

p + sq

)
. (2.7)

4To proove Eq. (2.5), note that Eq. (2.4) can be rewritten etAetB = et (A+B )e−
t2
2 [A,B] + O

(
t3

)
. Consider the

operator U = eitH2eitH1 . Zassenhaus formula applied to U † gives U † = e−itH1e−itH2 = e−it (H1+H2 )e
t2
2 [H1,H2] +

O
(
t3

)
so that U = e−

t2
2 [H1,H2]eit (H1+H2 ) + O

(
t3

)
. De�ning V = e−itH2e−itH1 , Zassenhaus formula gives V =

e−it (H1+H2 )e−
t2
2 [H1,H2] + O

(
t3

)
. Computing the product UV leads then to Eq. (2.5).
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To achieve unitary operators generated by hamiltonians of degree higher than 2, at least
one hamiltonian of higher degree, generating a non-Gaussian unitary, is needed, such as q3

or
(
q2 + p2

)2
. The �rst is the generator of the so-called cubic phase gate, while the second

describes Kerr interaction [Kok 10]. Kerr interactions can in principle be realized in nonlin-
ear optical �bers. Computing the commutators of either q3 or

(
q2 + p2

)2
with the elements

of G shows that every monomial of degree 3 can be realized. In general, commutation with
one of these hamiltonians with another hamiltonian H̄ will result in a polynomial of higher
degree than H̄ . It can then be proven by induction that any monomial of arbitrary degree
can be achieved [Lloyd 99]. As a consequence, a single non-Gaussian hamiltonian allows
for full single-mode universality. The method used in the proof leads to an explicit decom-
position of an arbitrary single-mode unitary. However, if used naively, such decomposition
may require a large number of elementary gates. An e�cient scheme to decompose any
single-mode unitary operator derived from this technique was introduced in [Se� 11].

The missing element for multi-mode universality is an entangling gate to connect dif-
ferent modes. A beam splitter would do the trick, but we will rather use the so-called CZ

interaction, generated by the hamiltonian qj ⊗ qk . This choice is motivated by the fact that
theCZ is used to de�ne cluster states, which we introduce in the following. A universal set
of CV hamiltonians is then

U = {q, q2, q2 + p2, q3, qj ⊗ qk }. (2.8)

The technique of the proof shows that any set of CV hamiltonians including

• A universal set of single-mode Gaussian unitaries,

• Any two mode Gaussian unitary,

• at least one non-Gaussian unitary

is universal.

2.1.3 The importance of being non-Gaussian
It is by now a well established result that any quantum process starting from Gaussian states,
to which j Gaussian operations are applied and �nally a Gaussian measurement takes place
can be e�ciently simulated on a classical computer. This result, which is the CV analogue of
the Gottesman-Knill theorem for qubits [Gottesman 98], was originally proven by Bartlett
and Sanders [Bartlett 02] using the formalism of stabilizer operators, which we only brie�y
mention later on. However, the key idea of the proof is based on the properties of Gaus-
sian unitaries and can be intuitively understood using the language of Wigner functions
introduced in Chapter 1.

Any quantum algorithm can ideally be divided in three steps: preparation of the input
state, evolution and �nally measurement. An algorithm is e�ciently classically simulatable
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CHAPTER 2. CONTINUOUS-VARIABLE QUANTUM INFORMATION

if each of these steps can be described on a classical computer with an amount of resources
that grows at most polynomially in the number of modes. As discussed in Section 1.4.7, a
Gaussian state of n modes can be described by O

(
n2

)
real numbers. Any Gaussian unitary

evolution accounts for another O
(
n2

)
real numbers, which describe the simplectic matrix

transforming the covariance matrix and phase-space displacements. This amounts to the
update of the Wigner function according to Eq. (1.79). Non-unitary Gaussian maps can also
be described as a unitary process on the system and O

(
n2

)
additional modes in a Gaussian

state, according to Stinespring dilation [Giedke 02]. The most general physical operation
on a multi-mode state can include classical feedback. This can be de�ned as a Gaussian
measurement on a subset of modes followed by a Gaussian evolution depending on the out-
come. This type of operation can be accounted for replacing it with Gaussian two-mode
gates and a measurement delayed until the end of the algorithm [Bartlett 02]. So in the
end, a j-steps Gaussian quantum process on n modes can be described by O

(
j × n2

)
real

parameters. Finally, since the Wigner function of the output state is Gaussian by construc-
tion, it is also a well de�ned probability distribution, and e�cient classical algorithms can
be devised to sample from each marginal distribution for the quadratures. The complexity
of the whole process, including arbitrary quadrature measurements, then scales as a poly-
nomial of the number of modes times the depth of the quantum circuit (the number of gates
j). The result was extended with a di�erent technique to states and operations with posi-
tive Wigner function, even if not necessarily Gaussian in [Mari 12], provided each Wigner
function corresponds to a probability distribution a classical (probabilistic) computer can
e�ciently sample from.

E�cient classical simulation is not possible when general non-Gaussian states, oper-
ations and measurements are considered, since the overall Wigner function is no longer
guaranteed to be a positive probability distribution 5.

These results show that at least some non-Gaussian resource is needed to achieve a pro-
cess which a classical computer cannot simulate e�ciently. In other words, non-Gaussian
resources are necessary to achieve the so-called quantum advantage. Performing non-
Gaussian unitaries on arbitrary quantum states is notoriously di�cult in the optical setting,
since they require hamiltonians of order higher than 2, that is, highly nonlinear interac-
tions. The simplest example comes from Kerr interaction [Kok 10], which is described by
a fourth-order hamiltonian. This, however, requires materials with a third-order electrical
susceptibility, which is typically very small, so a noticeable e�ect at the quantum level can
only be obtained for long interaction times, which imply losses.

Preparing non-Gaussian states or performing non-Gaussian measurements is somewhat
easier, even if still challenging. Typical non-Gaussian states include single photons and

5On the other hand, the probability distribution of the outcomes of the measurement, obtained by inte-
gration over the correct variables of the overall Wigner function will of course be positive, but in general not
Gaussian, and more parameters will be required to specify it, making hard for a classical computer to sample
from it.
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Schrödinger cat states (superpositions of coherent states) [Ourjoumtsev 06], whereas sin-
gle photon detectors and photon-counters are common non-Gaussian measurements. The
drawback is the probabilistic nature of such operations, so that the resulting protocols usu-
ally require post-selection at some stage. The possibility of inducing a non-Gaussian evolu-
tion coupling a non-Gaussian state to the input or performing non-Gaussian measurements
contributes to the appeal of the measurement-based approach in CV, introduced in the next
subsection.

2.1.4 Measurement-based quantum computation
In the previous sections we introduced quantum computation essentially describing what
is known as the circuit model. Within this framework, constructed as a translation from
classical logic, information is encoded in the state of a quantum system which is then
evolved applying unitary operations, and �nally read out with measurements. This was
the point of view of early descriptions of quantum computers by Feynman [Feynman 86],
then formalized by Deusch [Deu 85, Deu 89]. An alternative paradigm, known as one-way
or measurement-based approach to quantum computation (MBQC), was later proposed by
Raussendorf and Briegel [Raussendorf 01]. As the names say, although applying a controlled
unitary evolution to a system is still the goal, MBQC deviates from the circuit model in two
fundamental aspects: it is not reversible (one-way) and measurements take a more active
role than just extracting information from the output state. The general idea is to prepare
an entangled resource state of many qubits, called cluster state, to which the input state is
entangled, and then process information performing local projective measurements. Mea-
suring all but the qubits chosen to encode the output state in the appropriate basis (and in
the correct order) leaves the output qubits in a state which is precisely the input state to
which the desired unitary has been applied.

The MBQC model was adapted to CV quantum computing in [Menicucci 06] and [Gu 09].
Beyond its intrinsic theoretical interest, several practical considerations motivated the de-
velopment of the measurement-based approach to quantum computation with CV (CV-
MBQC), especially in the context of quantum optics. On the one hand, photons interact
only weakly with their environment, making them robust to decoherence with respect to
other potential quantum information carriers. Moreover, many quantum states of radiation,
including entangled states, can be produced determinitstically in the CV regime and they
can be measured e�ciently with homodyne detection. It is then convenient, once a resource
state is produced, to keep it isolated from the environment while the required measurements
are performed. On the other hand, it is di�cult, as we mentioned, to realize interactions at
the single-photon or few-photons level, and thus to implement non-Gaussian unitaries on
quantum states. This makes computations based on the circuit model hard to achieve. In the
measurement-based paradigm, this di�culty is shifted to the preparation of non-Gaussian
ancillae or the realizations of non-Gaussian measurements, using the teleportation gate out-
lined in the next subsection. Moreover, as explained in subsection 2.1.7, cluster states can be
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produced deterministically in CV. Achieving suitable non-Gaussian evolution in MBQC is
still experimentally challenging, but schemes have been proposed based on photon-counting
as a non-Gaussian measurement [Gottesman 01] or non-Gaussian ancilla states [Ghose 07].
Moreover, two proposals using current technology are the object of Chapter 5.

2.1.5 Teleportation gate

Consider the following circuit [Gu 09]

��ψ
〉

• p m

|0〉p • ρout

(2.9)

where each horizontal line represents one mode. The vertical line is aCZ interaction applied
for a unit time, resulting in the unitary evolution exp (iq1 ⊗ q2)

6. Note that the word time
here and throughout the chapter does not necessarily refer to physical time. It is rather a
parameter that speci�es the "strength" of the applied hamiltonians, for example the strength
of the coupling between the two modes induced by the CZ gate in the above circuit. There
is however a time ordering from left to right in the circuits we examine. Gates and measure-
ments can be thought to be instantaneous in this picture. Of course, in an actual physical
scenario they would require a �nite time, which may be subject to experimental limita-
tions such as the time needed to implement a classical feed-back following a measurement.
Coming back to circuit 2.9, the �rst mode is initialized in some arbitrary state 7

��ψ
〉
1 =

∫
dsψ (s ) |s〉q1 (2.10)

where q1 |s〉q1 = s |s〉q1 is an eigenstate of the position operator of the �rst mode. The sec-
ond mode is initialized in the eigenstate of the momentum operator of zero eigenvalue
p2 |0〉p2 = 0. We already noted that this state is unphysical but can be approximated at
will by a squeezed state. Let us suppose that the squeezing is high enough to approximate
the input with |0〉p for the moment, we will treat the �nitely squeezed case later. Next in the
circuit, after the coupling, the momentum operator is measured on the �rst mode, giving
outomem. As discussed in subsection 1.4.4, this can be done with homodyne detection. The
unmeasured mode is then left in a state ρout. This circuit is readily translated to an equation

6Here and in the following we assume ~ = 1 for simplicity.
7We use numerical subscripts to denote which mode the states belong to. In case the state is also an

eigenstate of some operator O acting on mode j we attach the subscript to the operator. For instance, the
eigenstate of the position quadrature of mode 1 with eigenvalue s will be denoted |s〉q1 .
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allowing to compute the output state

〈m |p1 e
iq1⊗q2 ��ψ

〉
1 |0〉p2 = 〈m |p1 e

iq1⊗q2

∫
dsψ (s ) |s〉q1 |0〉p2 (2.11)

= 〈m |p1

∫
dsψ (s ) eisq2 |s〉q1 |0〉p2 (2.12)

= 〈m |p1

∫
dsψ (s ) |s〉q1 |s〉p2 (2.13)

=
1
√

2π

∫
dsψ (s ) e−ism |s〉p2 (2.14)

=
e−imp2

√
2π

∫
dsψ (s ) |s〉p2 (2.15)

where we used the fact that for any operator A and any analytic function f , f (A) |s〉A =
f (s ) |s〉A if A |s〉A = s |s〉A. Thus we see that the output state is actually pure and contains
the same information as the input state. De�ning

X (m) ≡ e−imp (2.16)

and introducing the Fourier transform operator F , that connects eigenvectors of position
and momentum

|s〉p =
1
√

2π

∫ ∞

−∞

dteist |t〉q = F |s〉q (2.17)

the output state rewrites as X (m) F ��ψ
〉. So the circuit of Eq. (2.9) implements a form of

quantum teleportation. Suppose now that it is possible to measure the observable D†qpDq

for some unitary Dq = exp (i f (q)) generated by a function of the position operator only.
This corresponds to the circuit

��ψ
〉

• D†qpDq m

|0〉p • ��χ
〉

(2.18)

Measuring D†qpDq is the same as acting with Dq just before measuring p and since Dq com-
mutes with the CZ this circuit is equivalent to

Dq
��ψ

〉
• p m

|0〉p • ��χ
〉

(2.19)

which is the same as Eq. (2.9) with a di�erent input state, so without any further calculation
we can write

��χ
〉
= X (m) FDq

��ψ
〉
. (2.20)
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So measuring the correct observable has the e�ect of applying a unitary operator to the input
state, followed by some Gaussian transformation depending on the measurement result but
always of the same form for any input state and for any observable, e�ectively "teleporting"
the quantum gate Dq on the input.

2.1.6 Sequences of transformations
Suppose now we want to apply another transformation. We could send the output mode
of the circuit Eq. (2.18) as the input of a similar circuit, but measure a di�erent observable
D′q
†pD′q with D′q = exp (iд (q)), resulting in

��ψ
〉

• D†qpDq m1

|0〉p • • D′q
†pD′q m2

|0〉p • X (m2) FD
′
qX (m1) FDq

��ψ
〉

(2.21)

Using X † (s ) qX (s ) = q + s and F †qF = −p the output state is rewritten as

X (m2) FD
′
qX (m1) FDq

��ψ
〉
= X (m2) FX (m1) FD

′
−p+m1Dq

��ψ
〉 (2.22)

with
D′−p+m1 = exp (iд (−p +m1)) . (2.23)

We see explicitly that the presence of the Fourier transform allows to achieve operators
that depend on p without any modi�cation to the circuit. Moreover, transformations after
the �rst one will generally depend on the results of previous measurement. So to realize
deterministically a given transformation one has to adapt the measured observable. In our
example, to apply D′p one should have measured D′−q−m1

†pD′−q−m1 on the second mode.
Concerning these comments, it is worth stressing two facts about Gaussian transfor-

mations. First, any Gaussian unitary can be realized via homodyne detection and classical
post processing [Ukai 10]. Secondly, adaptivity is trivial if only Gaussian transformations
are implemented, meaning that the measurement angles for the homodyne can be decided
in advance and one just has to keep track of the measurement results in order to correctly
interpret the output of the computation [Gu 09]. This is known as Gaussian parallelism.
More formally, the Fourier transform is obtained measuring simply p, which does not re-
quire adaptivity. The displacement X (s ) is obtained measuring e−isqpeisq = p + s , the same
as measuring p and adding s to the result. If a previous measurement result m has to be
accounted for, then the measured quantity should be

e−is (q+m)peis (q+m) = e−isqpeisq = p + s (2.24)
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which also requires no adaptivity. To complete the single-mode universal Gaussian set one
needs to implement eisq2 , which is achieved measuring

e−isq
2/2peisq

2/2 = p + sq = κ (cosθ + p sinθq) (2.25)

with κ =
√

1 + s2 and θ = arctan (s ) [Ukai 10], which amounts to multiplying the result of
the homodyne with angle θ by κ. Accounting for a previous measurement result m means
measuring

e−is (q+m)2/2peis (q+m)2/2 = p + sq +ms = κ (cosθp sinθq) +ms (2.26)

so the measurement angle does not change but ms has to be added to the result in order to
interpret the output correctly.

On the other hand, to implement the cubic phase gate eisq3/3, if the result of the previous
measurement wasm the observable to be measured is

e−is (q+m)3/3peis (q+m)3/3 = p + sq2 +
2
3msq +

1
3m

2s (2.27)

which has a non trivial dependence on m. As a consequence, the deterministic application
of a unitary operator involving non-Gaussian gates requires the ability to adapt the mea-
surement based on the outcomes of the previous ones.

2.1.7 Cluster states

From the circuit in Eq. (2.21) one sees that, since the two CZ commute with each other, the
same result would have been obtained coupling mode two and three �rst and then coupling
the input state and performing the measurements. This is trivially generalized to more
modes and gates. As a consequence, longer computations may be implemented creating an
entangled resource state coupling modes in momentum eigenstates throughCZ gates o�ine,
that is, beforehand. The resource state is a CV cluster state. This state can be represented as a
graph. A graphG is mathematically de�ned as an ordered pair of sets (V ,E). The elements
ofV are called vertices and are connected by a set of edges E. It is customary to associate
to the graph a matrixV , called adjacency matrix, whose elementsVij represent the strength
of the oriented coupling from node i to node j. We will only deal with non oriented graphs,
for which Vij = Vji . In the graphical representation of cluster states, vertices correspond to
modes and edges correspond to CZ gates. Since the adjacency matrix identi�es the graph,
we will often talk about "the graph V ". Two simple examples are shown in Fig. 2.1.

We only detailed how to process a single-mode state, in which case a linear (1-dimensional)
cluster state is needed. The graphs needed for processing multi-mode states can generally
be embedded in 2D geometries [Gu 09]. The generic n-modes cluster state can be written
as

|G〉 = CZ [V ] |0〉⊗np (2.28)
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where
CZ [V ] =

∏
1≤j<k≤n

exp
(
iVjkqj ⊗ qk

)
(2.29)

and V is the adjacency matrix of the graph. Although more general situations can be con-
sidered [Menicucci 11], we will only deal unit-weight graphs, for which Vjk = 1 if and only
if vertices j and k are connected by an edge and Vjk = 0 otherwise. The CZ gate leaves
position operators invariant and it acts as a "translation by an operator" on momenta 8

eiq1⊗q2p1e
−iq1⊗q2 = p1 − q2 (2.30)

eiq1⊗q2p2e
−iq1⊗q2 = p2 − q1. (2.31)

This is nicely generalized to many modes

CZ [V ]
(
q
p

)
CZ [V ]† =

(
I 0
−V I

) (
q
p

)
. (2.32)

From Eq. (2.28) and Eq. (2.32) we have

(p −Vq) |G〉 =
(
CZ [V ]pCZ [V ]†

)
CZ [V ] |0〉⊗np = 0 (2.33)

showing that the cluster state corresponding to the graph V is a simultaneous eigenvector
with eigenvalue zero of the operators

η = p −Vq. (2.34)

These operators are called nulli�ers. Each nulli�er is hermitian, and thus observable. Note
that for any set of real coe�cients uj ∑

j

ujηj |G〉 = 0. (2.35)

One can then de�ne the real vector space N = span
({
ηj

})
of operators which are linear

combinations of nulli�ers. This space is called nulli�er space of |G〉 [Gu 09]. It is easy to see
that any operator Σ = exp (isµ ) with µ ∈ N and s ∈ R satis�es

Σ |G〉 = |G〉 . (2.36)

Σ is said to stabilize |G〉. These operators form a Lie group, called stabilizer group of |G〉. Nul-
li�ers are a basis of the corresponding Lie algebra [Gu 09]. The stabilizer group links CV-
MBQC with its discrete-variables counterpart [Kok 10, Furusawa 11]. Qubit cluster states

8The sign of the evolution time is deliberately reversed with respect to the usual Heisenberg transformation
for operators. This expression will be useful later.
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Figure 2.1: Adjacency matrix, pictorial representation and nulli�ers of two simple tree-
modes cluster states.

can be de�ned as simultaneaous eigenstates of stabilizer operators, that is, elements of the
stabilizer group, with eigenvalue one. Since in DV, stabilizers are products of Pauli matri-
ces, they are hermitian and correspond to physical observables. In CV, cluster states can
be de�ned in the same way. This de�nition is equivalent to the operational one we gave in
Eq. (2.28). However, in CV stabilizers are not hermitian. One could use the hermitian nulli-
�ers instead, and equivalently de�ne cluster states as simultaneous eigenstates of nulli�ers
with eigenvalue zero.

2.1.8 Gaussian cluster states and �nite squeezing
As argued in subsection 1.2.4 a momentum eigenstate is unphysical, being characterized by
perfectly de�ned momentum and completely unde�ned position. For the state correspond-
ing to the eigenvalue zero, its Wigner function reads

W|0〉p (q,p) = δ (p) (2.37)

which can be seen as a limit of the product of a narrow Gaussian in the variable p and a
wide Gaussian for q, namely, the Wigner function of a squeezed state in the limit of ininite
squeezing. The Wigner function of a cluster state is readily computed noting thatCZ [V ] is
a symplectic transformation and applying the transformation rule Eq. (1.79)

WG (q,p) =
∏
j

δ *
,
pj −

∑
k

Vjkqk+
-
=

∏
j

δ
(
ηj

)
= lim

r→∞

∏
j

Gr

(
qj

)
G1/r

(
ηj

)
(2.38)

where Gr is a (normalized) Gaussian function of standard deviation r . Thanks to Bloch-
Messiah reduction, approximate cluster states with a Gaussian Wigner function can be cre-
ated sending squeezed modes through a passive interferometer [van Loock 07] (see also
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subsection 2.2.1). This is one of the main features that make CV-MBQC interesting for ex-
perimental realizations of quantum information processing, since single-mode squeezing
and linear optics (or, generally, multi-mode squeezing) can be realized deterministically in
quantum optics laboratories.

Before treating the experimental production of cluster states, let us look at the e�ect of
�nite squeezing on the computation. Eq. (2.9) is replaced by

��ψ
〉

• p m

S (r ) |0〉 • X (m) F ��ψ ′
〉

(2.39)

For a meaningful comparison with the ideal case, one can look at the state ��ψ ′
〉 obtained

undoing the Gaussian by-products. The Wigner functionWψ ′ (q,p) is given by

P (m)Wψ ′ (q,p) = Gr (p −m)
[(
Wψ ∗1 G1/r

)
(q,p)

]
(2.40)

where ∗1 denotes the convolution with respect to the �rst argument and P (m) is the prob-
ability of getting outcome m. The e�ect of �nite squeezing is two-fold: a Gaussian enve-
lope on momentum, centered on the measurement outcome and larger as the squeezing
increases, and the convolution in the position variable with a Gaussian �lter, which is nar-
rower for higher squeezing, ultimately converging to a Dirac delta. A simpler equation is
obtained averaging over all possible measurement outcomes〈

Wψ ′ (q,p)
〉
=

∫
dmP (m)Wψ ′ (q,p) =

(
Wψ ∗1 G1/r

)
(q,p) . (2.41)

By iteration, teleporting the state along a longer cluster state with �nite, uniform squeezing,
after commutation of all the by-products to the left, correction and averaging one has〈

Wψ ′ (q,p)
〉
=

(
Wψ ∗1 G1/r ∗2 G1/r ∗1 G1/r ...

)
(q,p) (2.42)

that is, the convolution is applied in alternating quadratures [Gu 09]. The above results
generalize trivially to gate teleportation.

In discrete-variable quantum computing, noise does not have a fundamental nature, but
is due to imperfect experimental control of the information carriers and/or operations. The
above discussion implies that noise is instead unavoidable in any physical realization of CV-
MBQC, even in principle. The intrinsic imperfection of CV-MBQC was a big concern for the
experimental realizability of CV quantum computing until it was proven in [Menicucci 14]
that the errors due to �nite squeezing can be tamed by choosing a speci�c DV encoding,
introduced in [Gottesman 01] and known as GKP encoding (from Gottesman, Kitaev and
Preskill), as long as the squeezing is high enough. Menicucci showed that using the GKP
encoding and results from DV quantum error correction, error correction can be achieved
in CV-MBQC if the squeezing of the codewords and cluster nodes is higher than about 20
dB.

45



2.2. EXPERIMENTAL PRODUCTION OF CLUSTER STATES

2.2 Experimental production of cluster states
As mentioned in the previous section, part of the appeal of CV-MBQC comes from the pos-
sibility to generate cluster states deterministically. In this section we review how this is
achieved using the Bloch-Messiah reduction and introduce the experimental scenario that
will provide the context for the results in the following parts of the thesis.

2.2.1 Gaussian cluster states with linear optics

The canonical way to produce physically achievable approximations of cluster states ���G̃
〉

was outlined in subsection 2.1.8, and consists in replacing momentum eigenvectors with
higly squeezed vacuum states

���G̃
〉
= CZ [V ] (S (r ) |0〉)⊗n (2.43)

This technique, however, is very demanding in terms of resources, since it involves online
squeezing: theCZ gate can be decomposed in a two-mode passive interferometer, two inde-
pendent squeezers and another interferometer. The squeezers would be applied to already
squeezed states, which is experimentally harder than producing squeezed vacuum states.
Moreover, the number of squeezers would increase both with the size of the cluster state
and with the number of links in the graph. A more e�cient strategy can be devised noting
that the overall transformation applied to the vacuum in Eq. (2.43)

UV = CZ [V ]S (r )⊗n (2.44)

is Gaussian, so Bloch-Messiah reduction can be applied to it directly [van Loock 07]

UV = R
(V )
2 K

(V )
R

(V )
1 (2.45)

where R (V )
j are linear interferometers and

K =

n⊗
j=1
S

(
rj
)
. (2.46)

In general there will be di�erent squeezing factors rj even to build approximate cluster
states with homogeneous squeezing, as a part of the squeezing comes from the CZ s. The
approximate cluster state is obtained as

���G̃
〉
= UV |0〉 = R

(V )
2 K

(V )
R

(V )
1 |0〉. (2.47)

As noted in Chapter 1, linear optics transformations can be interpreted either as interferom-
eters or as mode-basis changes. The transformation R (V )

1 is often omitted in the experemen-
tal design, as the vacuum state is invariant under linear optics transformations. However, if
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R
(V )
1 represents a mode-basis change, it is sometimes useful to include R (V )

1 in the descrip-
tion. An example will be given in the next subsection. In Eq. (2.47) the number of squeezers is
independent of the topology of the graphV , and they are all applied to vacuum, making this
strategy more suitable for experiments. Hence, most of the experiments producing CV clus-
ter states to date exploited this technique. Especially in early works, cluster states were pro-
duced with interferometers acting on spatially separated beams [Su 07, Yukawa 08]. Scal-
ability was the main issue with such setups, as building larger cluster states, needed for
longer computations, would require a larger number of optical components, increasing the
complexity of the experiment. Later experiments started to consider a limited number of
spatial modes and exploit other types of mode transformations, especially in the tempo-
ral [Yokoyama 13] or in the frequency [Chen 14, Roslund 14] domain. Designs have also
been proposed using a combination of the two [Alexander 16]. In these setups spectral and
temporal multiplexing allow to produce cluster states with a high number of modes with
essentially a �xed number of optical components. In some experiments, which we brie�y
describe in the next subsection, replacing physical interferometers with mode-basis changes
also adds in versatility, making it possible to produce cluster states with di�erent topologies
with little or no change to the experimental setup [Cai 17].

So far we have seen how online squeezing can be avoided in the production of cluster
states. It remains to discuss how the input state can be coupled to the resource once this
is created. Any known input state could be created from a larger cluster if measurements
corresponding to a universal set of gates can be implemented. On the other hand, in some
situations the input state may be an unknown state that has to be coupled to the cluster from
the outside. For example it may result from a previous computation. From the previous
section, one sees that a CZ gate is still needed to couple the input state to the resource
state in the gate teleportation model we described 9. A more e�cient strategy discussed in
[Ukai 10] consists in replacing the CZ interaction by a CV Bell measurement, such as that
used for CV quantum teleportation [Braunstein 98]. This measurement can be implemented
with a beam splitter and two homodyne measurements.

2.2.2 Cluster states with broadband light and homodyne detection

We illustrate here the case of wavelength-division multiplexing [Roslund 14]. Second-order
nonlinear processes pumped with pulsed lasers can produce multi-mode squeezed states
in which each independently squeezed mode is a complex linear superposition of single-
frequency modes [Patera, G. 10] (See also Chapter 3). Let us denote by aj the annihilation
operator at frequency ωj . This mode is initially in the vacuum state. The transformation R1
of Eq. (1.82) in this case links the frequency modes to the spectral pro�les of the squeezed
modes, with annihilation operator sk . It corresponds to a unitary transformation U1 such

9OneCZ is needed to couple a single-mode input state. If the input consists ofm modes,mCZ s are needed
instead.
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that
s = U1a. (2.48)

The squeezing operation acts in Heisenberg picture on each sk as

S† (rk ) skS (rk ) = cosh (rk ) sk − sinh (rk ) s
†

k
= s

sqz
k
. (2.49)

The annihilation operators of the frequency modes after squeezing can then be obtained
with the inverse of the �rst mode basis change, taking R2 = RT1 in Eq. (1.82) (in terms of an-
nihilation operators,U2 = U

†

1 ). On the other hand, one can consider the linear combinations
of supermodes de�ned by the symplectic representation of the operator R (V )

2 obtained from
the Bloch-Messiah decomposition of a cluster state forming operator in Eq. (2.47). By con-
struction, the resulting modes will have cluster-like quadrature correlations, corresponding
to reduced �uctuations of the nulli�ers. Their complex spectral pro�les will be orthogonal
but will also have overlapping support in the general case, so it will not be possible to sepa-
rate them without nonlinear optical interactions. It is nevertheless possible to measure the
quadratures of any linear combination of the squeezed modes’ quadratures via pulse-shaped
homodyne detection. This is realized changing the amplitudes αj of the frequencies of the
local oscillator of a multimode homodyne detector (see Eq. (1.96)), and allows to reconstruct
the covariance matrix of a multi-mode state. The covariance matrix is trivially diagonal in
the squeezed modes basis, but the technique can be applied to arbitrary modes. This al-
lows for instance to directly measure the noise of nulli�ers, as explained in more detail in
Section 3.5.2. This was the approach considered in [Roslund 14] and [Cai 17] to certify the
production of CV cluster states. The ability to measure the quadratures of modes corre-
sponding to virtually any R2 (and possibly the nulli�ers for di�erent graphs) makes these
experiments highly versatile. The main drawback is the spectral overlap of the modes cor-
responding to the nodes of the cluster state. Each time one of them is measured, the whole
cluster state is destroyed. This hinders its use for MBQC, which would require sequential
measurements of the nodes. A possible way around this is to use non-linear interactions to
separate the modes one at a time [Eckstein 11, Reddy 14]. A more experimentally feasible
modi�cation to the setup to produce useful cluster states shaping the spectum of the pump
�eld of the non-linear process is studied in the second part of this manuscript.

2.3 GaussianMBQC in Heisenberg’s picture and a direct
approach

In some situations, a multimode squeezed state can be created but there are constraints on
the linear optical transformations (or mode-basis changes) Rj . These constraints, coming
from the experimental design, an explicit example of which will be treated in Sec. 2.3.4, limit
the class of resource states that can be produced. To cope with it, instead of creating a cluster
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state and applying the sequence of measurements prescribed by the standard MBQC model,
one can perform an optimization of the degrees of freedom provided by the experimental
setup in order to implement a given symplectic transformation once the measurements are
performed. This approach is best described reformulating a general Gaussian MBQC in
Heisenberg picture as in the next subsection.

2.3.1 General formulation of symplectic MBQC
If phase-space displacements are not considered, a Gaussian quantum computation on n
input modes results in the multiplication of the vector of quadratures by a symplectic matrix(

qin

pin

)
7→

(
qout

pout

)
=

(
A B
C D

) (
qin

pin

)
. (2.50)

This is achieved in MBQC using m ancillary squeezed modes (we can assume without loss
of generality that they are all squeezed in the p quadrature). We denote by aIN the annihila-
tion operators of the input and squeezed modes

(
aIN

)T
=

((
ain

)T
, (asqz)T

)
. To perform an

MBQC, �rst a linear optical transformation is applied

aIN 7→ aOUT = UaIN (2.51)

which generally establishes quantum correlations and entanglement between the modes.
Writing U = X + iY , with X and Y real square matrices, the action of U on the quadrature
operators is [Dutta 95] (

qIN

pIN

)
7→

(
qOUT

pOUT

)
=

(
X −Y
Y X

) (
qIN

pIN

)
. (2.52)

We call the �rstm of the OUT modes auxiliary modes and denote their quadraturesqaux and
paux. The MBQC is then carried out performing homodyne measurements with appropriate
angles on the auxiliary modes. Without loss of generality, we can include the choice of the
angles in the matrix U and suppose that all the paux are measured. All the measurements
may be performed simultaneously without harming the determinism of the operation, as
for Gaussian operations adaptivity is trivial, as explained in subsection 2.1.6. The n unmea-
sured modes are the output modes of the computation, with quadratures qout and pout. This
process is represented in Fig. 2.2.

As noted in the previous chapter, homodyne detection usually results in the destruction
of the measured mode after the projection on the eigenstate of the measured observable.
For this reason, it is customary to represent its e�ect in Heisenberg picture replacing the
measured operators, paux

j in our case, with the measurement outcomes µj , which are real
numbers. The measured modes are then omitted from the from the description of the system
(see for example [Pirandola 06]). This leads to equations of the form

µj = λj
(
qin, qsqz, pin, psqz

)
(2.53)
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for j = 1, ..., m with λj linear functions. These equations can be used to eliminate the
anti-squeezed quadratures qsqz

k
in the expressions for qout and pout in Eq. (2.52). As a result,

the quadratures of the output modes will be expressed as (linear) functions of the squeezed
quadratures psqz

j , the input quadratures and the measurement outcomes. We then have the
system of equations (

qout

pout

)
=

(
Ã B̃

C̃ D̃

) (
qin

pin

)
+

(
δq
δp

)
+

(
ηq
ηp

)
(2.54)

where δq,k =
∑m

j=1 c
kj
q p

sqz
j and δp,k =

∑m
j=1 c

kj
p p

sqz
j are operators, while ηq,k =

∑m
j=1 l

kj
q µj and

ηp,k =
∑m

j=1 l
kj
p µj are real numbers. ckjq , ckjp , lkjq and lkjp are real coe�cients which depend on

the matrix U .
The matrix

S̃ =

(
Ã B̃

C̃ D̃

)
(2.55)

represents the symplectic computation realized. It also depends on the matrix U (recall
this includes the homodyne angles). The described MBQC procedure succeeds if S̃ is close
enough to the desired transformation appearing in Eq. (2.50).

The operators δq,j and δp,j can be interpreted as excess noise added to the output modes
due to �nite squeezing. In the limit of in�nite squeezing they can be seen to converge to
zero recalling Eq. (1.42).

The real numbers ηq,k and ηp,k are phase-space displacements, which can be easily cor-
rected, or simply accounted for with classical post-processing after the output state is mea-
sured.

2.3.2 Recovering the cluster-based model
The cluster-based model can be recovered as a special case of the procedure described above
specifying the form ofU as follows. In the cluster-based model,U has three functions: cre-
ating a cluster state from the squeezed states, coupling the input to it, so that the input state
can then be teleported onto n nodes of the cluster state by a CV Bell measurement10, and
�xing the homodyne angles corresponding to the desired computation. As a consequence,
in a cluster-based MBQC, U can be factorized as

U = Ucomp = DmeasUBellUV (2.56)

where UV is derived from the Bloch-Messiah factorization for the experimental production
of the desired cluster state and Dmeas rotates the quadratures of the measured modes, so that
in the end p is measured on the auxiliary modes.

10A single-mode CV Bell measurement consists in coupling a single mode input to one mode of a two-mode
squeezed state in a balanced beam splitter and then performing homodyne measurements on the output ports
of the beam splitter [Pirandola 06].
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ρin

U

paux
1 µ1

...
...

S (r1) |0〉 paux
m µm

...
ρout

S (rm ) |0〉

Figure 2.2: Scheme of a general Gaussian MBQC. A generic m-modes state ρin is mixed
with m p-squeezed states by a linear optical network. m auxiliary modes, which we can
assume to be the �rst m, undergo homodyne detection: the momentum quadrature of each
auxiliary mode paux

j is measured, giving outcome µj . The remaining n unmeasured modes
at the output are left in the state ρout.

2.3.3 Direct approach
Consider a given target simplectic transformation in Eq. (2.50). In the MBQC scenario de-
scribed in the previous section, many di�erent linear networks U may allow to implement
this transformation, and not necessarily all of them factorizable in the form in Eq (2.56). In
other words, resource states other than a cluster state may be used for MBQC if appropri-
ate homodyne angles are chosen. In fact, depending on the experimental constraints, other
choices may turn out to be more advantageous for U than that of Eq. (2.56).

Suppose that in an experiment some degrees of freedom are available, associated with
the real parameters u, so that a class of unitary matrices Uexp (u) can be implemented. In
the simplest case, the parameters u may consist of only the homodyne angles, Uexp (u) be-
ing �xed in all other respects. A richer example will be treated in the next subsection. If
Uexp (u) , DmeasUBellUV for any allowed choice of u, then MBQC cannot be realized with
the standard cluster-based strategy. On the other hand, one could bypass the cluster state
creation by looking directly for the value ofu that gives the closest available transformation
to the desired Gaussian computation. This can be stated as the minimization of

f1 =


(
A B
C D

)
−

(
Ã B̃

C̃ D̃

)
(2.57)

with ‖·‖ some suitable matrix norm, for example the Frobenius norm. This paradigm was
called direct MBQC in [Ferrini 16], where it was shown thatU = Ucomp for some cluster state
is a su�cient but not necessary condition to have f1 = 0. The direct approach can then be
used to achieve computation in experimental setups that do not allow for cluster state-
based MBQC. Moreover, it is possible to exploit the degrees of freedom of the experiment
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to minimize simultaneously the noise due to �nite squeezing

f2 =
n∑
j=1

(
∆2δq,j + ∆

2δp,j
)
. (2.58)

2.3.4 An example

The above results can be used for the optimization of any experimental setup. In this sub-
section we present an explicit example where the direct approach proves to be useful.

Consider a four modes system where the spectral amplitude of the squeezed and input
modes are shown to the left of Fig. 2.3 while the measured modes’s amplitude are shown on
the right. The transition matrix UT between the two sets is �xed, but the homodyne angles
can be adjusted at will. Di�erent types of quantum algorithms can be considered whose
output is either a quantum state or the classical information corresponding to the outcomes
of the measurement performed to read out the result. Supposing that the direct method is
employed as the last stage, involving the read-out, of an algorithm, one is only concerned
in the statistics of the oucomes of the measurements.

A further restricted symplectic transformation can then be virtually applied by the use of
classical post-processing after the measurements are performed. Call pmeas the momentum
quadratures right before the measurement. Measuring each pmeas

j gives also the values of
any real linear combination

paux
k =

∑
k

Lkjp
meas
j (2.59)

because
[
paux
k
,pmeas

j

]
= 0. If Lkj can be interpreted as the action on momenta of a symplec-

tic transformation SL that does not mix the quadratures q and p, then the values obtained
measuring pmeas and then recombining the outcomes according to L have the same proba-
bility distribution as the outcomes obtained applying L and then measuring paux. It is worth
stressing that such probability distribution is not necessarily easy to sample on a classical
computer, as the same line of reasoning holds if the input state does not have a positive
Wigner function. Within this sampling paradigm all transformations of the following form
can be implemented exploiting classical post-processing (MHD stands for multi-mode ho-
modyne detection)

SMHD =

(
K 0
0 K−1

) (
O 0
0 OT

)
SmeasST (2.60)

where ST is the symplectic matrix corresponding to the change of modes UT , Smeas imple-
ments the local rotations �xing the homodyne angles, O is an orthogonal matrix and K is
a diagonal matrix with positive entries. The homodyne angles, the parameters of the or-
thogonal matrix O and the diagonal elements of K are all free parameters which can be
used to optimize f1 and/or f2. Restricting to K = I, the post-processing can only simulate
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IN modes OUT modes

Figure 2.3: Basis transformation between the input and squeezed modes (left), collectively
denoted IN, and the modes measured by multimode homodyne detection, denoted by OUT.
Frequency is represented on the horizontal axis. The two sets of modes are connected by
the transfer matrix UT .

mode-basis changes and we can describe SMHD with a unitary matrix

UMHD = ODmeasUT (2.61)

acting on annihilation operators. It was shown in [Ferrini 16] that with the direct method it
is possible to achieve Symplectic operations that cannot be achieved with the cluster-based
method. For these computations there is no experimental con�guration such thatUMHD can
be factorized as in Eq. (2.56), so

UMHD , Ucomp = DmeasUBellUV (2.62)

for any choice of the experimental parameters.
One may wonder whether allowing for post-processing operations in the form ofO and

R could make the use of squeezed ancillae useless altogether. This was shown not to be the
case in [Ferrini 16], where a lower boundm ≥ 3n/2 was derived for the number of squeezed
ancillae needed to cover the full symplectic group using the free parameters in this example.

2.4 Useful tools for CV Quantum Information
For later convenience, we conclude this chapter with a section presenting a brief introduc-
tion to the concepts of entanglement and �delity, to provide a reference for the use that will
be made of them later on in the manuscript.
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2.4.1 Entanglement
Entanglement is a property of some quantum states of composite systems related to the
notion of "locality" induced by the tensor product structure. Consider two physical systems
A and B. Quantum Mechanics prescribes that a Hilbert space is associtated with each. Let us
call themHA andHB . The composite system AB is described in the tensor product Hilbert
spaceHA ⊗ HB . Transformations acting trivially on the states of either A or B, such as the
unitary operationsUA ⊗ IB or IA ⊗UB are called local operations. Products of pure states ofA
and B of the form ��ψ

〉
A

��ϕ
〉
B are pure states of the composite systemAB, but so are normalized

superpositions thereof, like ∑
jk

λjk
���ψj

〉
A

��ϕk
〉
B . (2.63)

In this case, the state of a subsystem may be mixed even if the composite state is pure, which
can be interpreted as the "delocalization" of some information between the systems. Locality
refers here to the elementary Hilbert spaces appearing in the tensor product. Historically,
this term comes from the statement of the problem in terms of particles with an associated
position (operator). In most of the cases of interest in this manuscript the constituent sys-
tems will be modes of the electromagnetic �eld de�ned in the same region of physical space,
so no "spooky action at a distance" arises. We encounter nonetheless the same mathematical
structure, allowing us to de�ne entanglement and study it with the same techniques.

Going directly to the point, the state of two systems A and B is said to be separable state
if it can be written as a convex combination of factorized density matrices

ρAB =
∑
j

pjρA,j ⊗ ρB,j . (2.64)

A state is entangled if and only if it is not separable. Many criteria exist to check en-
tanglement or rule it out, based on mathematical properties or observable quantities (see
[Nielsen 10] for an introduction and [Adesso 07] for a review on the CV case). A very gen-
eral criterion is that of the positive partial transpose (PPT). The transposition map T is
positive but not completely positive. This means that transposition of a density matrix ρA
gives to another legitimate density matrix. By linearity, transposing a separable state ρAB
as in Eq. (2.63) with respect to a basis ofHA orHB also gives a positive semide�nite density
matrix. On the other hand, since T is not completely positive, there exist states ρAB of the
composite system for which

TA ⊗ IB (ρAB ) � 0 (2.65)

where I denotes the identity map in the space of density matrices of B. Such states must
be entangled. Note that the reverse is not true, namely there exist entangled states with a
positive partial transpose. More sensitive tests can be designed for those states.

The PPT criterion is very handy when dealing with Gaussian states, since it acts as time-
reversal in phase space, mapping for example pA 7→ −pA. In the case in which A and B are
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two modes, partial transposition on A can be described in the Heisenberg picture through
the matrix

γA =
*....
,

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

+////
-

(2.66)

as

*....
,

qA
qB
pA
pB

+////
-

7→ γA

*....
,

qA
qB
pA
pB

+////
-

=

*....
,

qA
qB
−pA
pB

+////
-

(2.67)

Equivalently, one may look at the covariance matrix ΓAB , which transforms according to

ΓAB 7→ γAΓABγA. (2.68)

If the state is separable, the density matrix still corresponds to a physical state after par-
tial transposition. In particular, it still satis�es Heisenberg’s uncertainty relations in the
form 11 [Dutta 95]

γAΓABγA +
i

2 J ≥ 0 (2.69)

with J the symplectic form (see Sec. 1.4.2). If the condition in Eq. (2.69) is violated, then the
state must be entangled.

Entanglement gets more complicated when more subsystems are considered. In fact,
even considering a systemABC with just one more mode one sees that the possibilities grow
exponentially: there are now three possible bipartitions of the system {(AB |C ) , (A|BC ) , (AC |B)}.
The state may be entangled with respect to some but separable with respect to others. A
state which is entangled with respect to every bitpartition is called completely inseparable.
The PPT criteria can still be applied to each bipartition. The Gaussian case is easily gener-
alized to an arbitrary number of modes: partial transposition on anm-modes subsystem M
of a multimode system MN withm +n modes will correspond to changing the sign of all of
the momenta in the relative phase space. The condition in Eq. (2.69) is formally unchanged,
the matrix γM now having a minus sign in correspondence to the momentum of every mode
in M . E�cient entanglement detection for multipartite systems constitute a broad research
area in its own, and many criteria have been derived to certify entanglement in CV based on
homodyne measurements, such as Duan criterion [Duan 00] and the Furusawa-van Loock
inequalities [van Loock 03]. However, the PPT criterion works reasonably well for all the
problems treated in this manuscript, so we will end here our digression on entanglement.

11Note that with di�erent conventions for the shot-noise ∆2
0 the second term in this equation is multiplied

by κ−2/2 where a = κ (q + ip) [Ferraro 05].
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2.4.2 Comparing quantum states: �delity
It is often needed to compare quantum states in order to assess how much they resemble
each other. For example, in typical quantum information settings, some protocol is supposed
to produce the state ρ but due to approximations or experimental imperfections the state σ
is produced instead. A commonly used �gure of merit is the Fidelity [Nielsen 10], de�ned
as

F (ρ,σ ) = Tr
[ √

ρ
1
2σρ

1
2

]
(2.70)

which is a generalization of the overlap between two states, to which it reduces if both ρ
and σ are pure

F (��ψ
〉〈
ψ ��, ��ϕ

〉〈
ϕ��) = ��〈ψ |ϕ〉�� . (2.71)

The �delity is always a number between zero and one, assuming the latter value if and only
if ρ = σ . Even if it is not evident from Eq. (2.70), F is symmetric in its arguments. If
σ = ��ψ

〉〈
ψ �� is a pure state, then F 2 (ρ,σ ) can be given operational meaning as probability

that ρ will pass a test checking whether ρ = σ , modeled as the POVM {��ψ
〉〈
ψ �� ,I − ��ψ

〉〈
ψ ��

}
[Wilde 11].
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Chapter 3

SPDC of Broad-Band Light
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In the previous chapters we introduced the quantized EM �eld and explained how it
can be exploited for CV quantum computing. In subsection 2.2.1 we explained how the
resource states for CV-MBQC can be produced by a set of single-mode squeezers and a
passive interferometer. We also anticipated in subsection 2.2.2 that these can be realized
through the spontaneous parametric down-conversion (SPDC) of broad-band light, but if
the pump �eld is �xed there are limitations on the use one can make of the resource states.

In the present chapter, we study in more detail the relation between the spectral pro�le
of the pump �eld of the parametric process and the properties of the down-converted �eld.
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In particular, we introduce numerical methods which will be the starting point for the next
chapter, dealing with the numerical optimization of the pump �eld to engineer the output
state.

Our interest in this problem is motivated by the availability of mode-locked lasers that
can provide broad-band light and of pulse-shapers, that can be used to carve their spectrum
with relative ease. When combined, these tools allow to tailor many di�erent pump shapes,
and thus resource states, with no hardware modi�cation to the experiments.

We �rst introduce a widely used phenomenological hamiltonian describing the nonlin-
ear optical process of parametric down-conversion. We then go on to solve Heisenberg’s
equations for the quadrature operators and show how to compute the properties of the out-
put state given any set of modes. To this end, we introduce mathematical tools based on
Autonne-Takagi and Bloch-Messiah factorizations, that allow us to derive the covariance
matrix of the output state in the frequency-mode basis for a pump �eld with an arbitrary
spectral pro�le. We argue that these techniques are more suited to study type I collinear
down-conversion, in which signal and idler photons are indistinguishable in all respects
except for frequency, than the singular value decomposition commonly used to treat non-
degenerate down-conversion [Law 00]. Finally, in section 3.6 we use these methods to study
some examples of simple pump shapes.

Most of the chapter is contained in [Arzani 17a].

3.1 Spontaneous parametric down-conversion

The process of spontaneous parametric down-conversion can be realized using dielectric
media with second-order optical susceptibility (denoted χ (2)), most often bulk crystals. A
�eld at frequency ωp is sent through the medium and this induces the polarization to oscil-
late at frequencies ωj and ωk , with ωp = ωj + ωk , generating the so-called signal and idler
�elds. On the quantum level, considering a single mode for each �eld (pump, signal and
idler) this can be modeled by the hamiltonian

H = i~дχ (2)ap
(
ωj + ωk

)
a†s

(
ωj

)
a†i (ωk ) + h.c. (3.1)

which can be interpreted as the conversion of a photon of the pump into a photon of the
signal and a photon of the idler (and back). The real constantд is usually included to account
for the geometrical characteristics of the experiment, such as the section of the pump beam.

We will consider spatially degenerate, type I SPDC, which means that signal and idler
are described by the same spatial modeand have the same polarization, orthogonal to that
of the pump.

We are only interested in the quantum description of the evolution of signal and idler,
assuming that the pump can be treated as classical and its amplitude is approximately con-
stant during the process. The operator ap

(
ωj + ωk

)
can then be replaced by the classical
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amplitude of the pump �eld α
(
ωj + ωk

)
. This is a good approximation as long as the pump

is in a coherent state with amplitude large enough such that its quantum �uctuations can be
neglected but not too large, so that we can assume that the down-conversion happens in the
low-gain regime (or below-threshold, for cavity setups [Patera, G. 10]). The latter condition
ensures that the amplitude of the pump can be treated as constant, disregarding the loss of
photons that are converted to lower frequencies.

Considering a single spatial mode, a single polarization and discrete spectra of N fre-
quencies 1 for signal and idler, the process can then be described by the e�ective hamiltonian

HI = iη
N∑

j,k=1
Ljka

†

j a
†

k
+ h.c.. (3.2)

where aj is the annihilation operator at frequency ωj . The real constant η depends on the
single-photon energy, the nonlinear susceptibility (de�ned in the next section), the intensity
and the geometry of the pump �eld [Patera 08].

The coupling matrix L is known as the joint spectral distribution and is given by

Ljk = sinc
(
ϕ

(
ωj ,ωk

))
α

(
ωj + ωk

)
. (3.3)

The �rst factor is the phase matching function, with sinc (x ) = sin (x ) /x , and ϕ the phase
mismatch angle

ϕ
(
ωj ,ωk

)
=

(
kp

(
ωj + ωk

)
− ks

(
ωj

)
− ks (ωk )

) l

2 , (3.4)

kp
(
ωj + ωk

)
being the wave number in the medium of the pump �eld at frequency ωj +ωk ,

ks (ωk ), the wave number of the signal �eld at frequency ωk , and l denoting the length of
the crystal 2. The factor α (ω) in Eq. (3.3) is the complex spectral amplitude of the (classical)
pump �eld. We note that L is symmetric: Ljk = Lkj , which is easily veri�ed by inspection.

The physical interpretation of the hamiltonian HI is that a photon of the pump at fre-
quency ωj + ωk is converted in a pair of photons at frequencies ωj and ωk with probabil-
ity amplitude proportional to ηLjk (or vice versa). Since photons at the signal frequencies
are always created in pairs, HI will induce correlations between di�erent frequencies. The
present chapter and the next are essentially focused on these correlations.

A derivation of HI is beyond the scope of the manuscript. Details can be found in
[Kolobov 99] and references therein. A phenomenological approach based on the quan-
tization of the classical evolution equations for the �elds in nonlinear media can be found

1Using discrete frequencies we implicitly assume that we work either with frequency combs or with the
discretization of continuous spectra. Otherwise all frequencies should be considered for signal and idler sum-
ming to a frequency of the pump �eld, even if the latter only contains a discrete set of frequencies. We will
come back to the discretization of signal and idler frequencies in the following.

2The wave numbers can be computed using Sellmeier’s equations, as explained in Appendix A for a BiBO
crystal.
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in [Medeiros De Araújo 12], while [Patera 08] contains a derivation of HI from the quanti-
zation of the electric �eld E and (the second order term of) the polarization P in the electric
dipole hamiltonian HD =

∫
d3rE · P .

3.2 Broad-Band light
The second ingredient we will assume in order to implement HI in a useful regime and in
a tuneable setup is broad-band light. This is provided by mode-locked lasers, producing
optical frequency combs.

But what does useful mean in our case? This thesis is ultimately concerned with the
practical realization of quantum information protocols. This requires the production of
states with strongly non-classical properties. Moreover, quantum protocols often perform
better than their classical counterpart only when large systems are considered (computa-
tions involving many qubits, transmission of long strings of data, ...). Scalability of the
system is then crucial. In the context of parametric down-conversion, the hamiltonian HI

leads naturally to the consideration of optical frequency combs as a means to satisfy these
criteria.

Frequency combs are laser sources whose spectrum consists of a series of equally spaced
frequency lines with a �xed relative phase, the "teeth" of the comb. This so-called phase
locking induces interferences between the teeth, which implies that the laser outputs a train
of pulses in the temporal domain. The maximum intensity of the pulse corresponds to
the constructive interference of all frequency components. In a sense, the energy coming
from all the frequencies is concentrated in time, resulting in high peak power. This is very
convenient to explore the non-linear contributions of the polarizability.

The hamiltonian HI can be derived from the second-order term of the power-series de-
velopment of the electric polarizability

Pi (t ) = ϵ0
∑
j

χ (1)
ij Ej (t ) + ϵ0

∑
j,k

χ (2)
ijk

Ej (t ) Ek (t ) + ϵ0
∑
j,k,l

χ (3)
ijkl

Ej (t ) Ek (t ) El (t ) + ... (3.5)

where subscripts denote the spatial directions x , y, z. The linear term, describing refraction
and absorption in the medium, is dominant for low intensities. Higher-order contributions,
instead, dominate when the �elds are more intense. It is then clear that the high peak power
of frequency combs comes in handy.

Concerning scalability, optical frequency combs can contain of the order of 105 single
frequencies (or more), implying that HI has many terms, which can potentially be exploited
to generate highly multimode down-converted �elds. Furthermore, the high number of
frequencies in the pump �eld provides a correspondingly large degree of tunability of the
interaction, as the hamiltonian depends on the spectral pro�le of the pump.

The spectral pro�le can in turn be controlled with a pulse shaper employing a spatial
light modulator in a 4f con�guration. Adding a pulse-shaped homodyne detection (see
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subsection 1.4.6), which can be realized with the same principle, one can access a great
variety of non-classical states, as we will show in this chapter and the next. Before building
such a setup, a quantitative investigation of its potential is needed, which constitutes a
strong motivation for our work.

We note that exploiting all the degrees of freedom provided by the spectral ampli-
tude and phase of the laser leads to a great �exibility compared to engineering the phase-
matching conditions or simply the width of the pump. The latter route has been explored
before, often for Gaussian pulses with at most quadratic spectral phase, especially in con-
nection to the heralded production of single photons [U’Ren 03, U’Ren 05, Humble 08] or
Fock states [Brańczyk 10]. The focus of most earlier works on the subject was on the purity
and entanglement of the signal and idler photons, which could be engineered to some extent
by tuning few parameters. This simpli�cation allowed to treat the problem analytically, but
the degree of control on the output state was correspondingly low.

3.2.1 Modeling a frequency comb
At a given spatial point and assuming a single polarization, an ideal frequency comb can
be described in the temporal domain by a scalar electric �eld which is the product of an
envelope A and a rapidly oscillating carrier

E (t ) = A (t ) e−iωc t + c.c.. (3.6)

Since A (t ) is periodic with period ∆t

A (t ) =
∞∑

n=−∞

α̃ (t + n∆T ) (3.7)

it has discrete Fourier components

A (t ) =
∞∑

n=−∞

α (ωn ) e
−iωnt (3.8)

withωn = 2πn/∆T ≡ nΩ. Ω is the spacing between the teeth of the comb and for this reason
is called free specral range. The �eld can then be written

E (t ) =
∞∑

n=−∞

α (nΩ) e−i (nΩ+ωc )t + c.c.. (3.9)

Commercial TiSa lasers can produce trains of Gaussian pulses with duration of about
∆t ≈ 140 fs, with central wavelength λc = 2πc/ωc = 795 nm and Ω ≈ 76 MHz. This free
spectral range implies that it is usually di�cult to resolve the single teeth of the comb in
experiments. Furthermore, the spectrum of the pulse is ∆λ ≈ 10 nm, so that the number
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of relevant frequency components is ∼ 105. Rather than treating the problem exactly, it
is then convenient to approximate the spectrum of the laser as continuous and then dis-
cretize the frequency space, considering small frequency bins compared to the spectrum,
still containing many teeth each. We will come back to this in section 3.4.

For the cases we are interested in, the pump �eld is obtained through frequency doubling
of the output of the TiSa laser, and thus consists of a Gaussian pulse (in temporal and spectral
domain) centered around 397.5 nm, with a spectral width of about 3.5 nm.

3.3 Deriving the output state from the pump spectral
pro�le

The properties of the signal �eld essentially depend on the joint spectral distributionL. The
joint spectral distribution has been widely studied in the speci�c case in which α

(
ωj + ωk

)
is real for any j, k [Patera 12, Law 00, Brecht 15], namely when the pump has no spectral
phase up to a global phase factor. Since by construction L is symmetric, if the pump has
no spectral phase L can be diagonalized with an orthogonal matrix, leading to decoupled
modes (called supermodes) which are independently squeezed [Patera 12]. Once the super-
modes are found, the noise properties of the state are easily computed.

To �nd the supermodes, a slighly more sophisticated treatment is required to include
pump shapes having arbitrary spectral phases. Examples of non trivial spectral phases can
be met in fairly common situations, for example in the presence of a quadratic phase (spec-
tral chirp). Two di�erent approaches are possible: either diagonalizing the joint spectral dis-
tribution by congruence [Autonne 15, Takagi 24, Siegel 43] or applying the Bloch-Messiah
decomposition [Dutta 95, Braunstein 05] to the symplectic transformation corresponding
to a �nite-time evolution of the system under the e�ective hamiltonian of the �eld inside
the crystal (see subsection 1.4.3). The diagonalization of a complex symmetric matrix by
a congruence transformation through a unitary matrix is also known in the literature as
Autonne-Takagi factorization or symmetric singular value decomposition. We shall now de-
tail both approaches and show how they allow to �nd modes of the electric �eld whose
evolution is decoupled inside the crystal.

3.3.1 Autonne-Takagi factorization
As we already noted, the joint spectral distribution L is symmetric (see Eqs.(3.3-3.4)). Ev-
ery complex symmetric matrix can be diagonalized by a congruence transformation with a
unitary matrix. This result is known as Autonne-Takagi factorization 3. Speci�cally, for any
L in Eq. (3.3) one can �nd a unitary matrix V such that

VLVT = Λ (3.10)
3Numerical routines for Autonne-Takagi factorization can be found in [Hahn 06, Chebotarev 14].
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with Λ a diagonal matrix with real, non-negative entries. Suppose such matrix V is known
for a given L, then one can de�ne the vector of annihilation operators s4

s ≡ V †a (3.11)

with a = (a1,a2, ...,aN )
T . Each sk is a linear superposition of the single-frequency annihila-

tion operators. SinceV is unitary, the operators s correspond to a set of orthonormal modes
whose spectral pro�le is given by the rows ofV . Substituting in Eq. (3.2) and using Eq. (3.10)
one �nds

HI = i~
η

2
∑
k

Λkk

(
s†
k

)2
+ h.c. (3.12)

showing that the modes bk evolve independently, each according to a squeezing hamilto-
nian. These modes are referred to as supermodes in the literature. The singular values Λkk

(multiplied by the parameter η) correspond to the gains of the downconversion process.
Note that having the same matrixV on both sides of L in Eq. (3.10) is crucial to �nd the

same decoupled modes for signal and idler (and thus a single creation operator b†
k

for each
k in Eq. (3.12)).

Autonne-Takagi factorization is actually a special case of singular-value decomposition,
amounting to a speci�c choice of the left and right eigenvectors (see below).

It is woth highlighting the di�erence in the description of the system that would re-
sult from using the ordinary (non-symmetric) singular-values decomposition instead of the
more speci�c Autonne-Takagi factorization. Ordinary singular-values decomposition would
generally lead to di�erent mode bases for signal and idler, unless each singular value is non-
degenerate. In fact, standard singular-value decomposition would result in a factorization

V1LV
T
2 = Λ (3.13)

whereΛ is the same as in Eq. (3.10) up to permutations of the diagonal elements. Introducing
the annihilation operators

b ≡ V †1 a (3.14)
c ≡ V †2 a (3.15)

(3.16)

for the signal and idler �elds, the hamiltonian would then read

HI = i~
η

2
∑
k

Λkkb
†

k
c†
k
+ h.c. (3.17)

so that modes with di�erent k are still decoupled, but the non-orthogonal modes bk and ck
are still coupled. This is not a concern when treating non-degenerate SPDC in either polar-
ization or spatial mode, since the signal and idler photons are distinguishable. However, for

4The symbol † denotes here the hermitian conjugation of the matrix of complex numbers V .
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the problem at hand, since signal and idler are degenerate, the fully-decoupled description
is to be preferred, as the parametric interaction is more naturally described in terms of inde-
pendent single-mode squeezers. Autonne-Takagi factorization states that if L = LT we can
always choose V2 = VT

1 . Note that if each singular value is non-degenerate, then V1 and V2
are unique. Otherwise, using singular-values decomposition, as opposed to Autonne-Takagi
factorization, would generally require additional steps to achieve this.

As we shall see in the following, degenerate singular values are very common in realistic
situations.

3.3.2 Finite time evolution and Bloch-Messiah decomposition

The previous approach solved the problem of �nding the supermodes and the relative gains
directly from the hamiltonian, which describes the di�erential evolution of the system. Al-
though leading to the same physical results, it is sometimes more practical to work with
the input-output relations corresponding to the evolution of the system for a �nite time or
its propagation over a �nite crystal length. The main advantage is that from this approach
it is straighforward to derive the covariance matrix of the output state, encoding its noise
properties. This is described in the following.

Consider the equations of motion for the annihilation operators in the Heisenberg pic-
ture 5

d
dt a =

i

~
[HI ,a] = ηLa†. (3.18)

Complementing this set of equations with their adjoint one has

d
dt

(
a
a†

)
= ηL̃

(
a
a†

)
(3.19)

where

L̃ =

(
0 L

L∗ 0

)
. (3.20)

Eq. (3.19) is readily integrated for a �nite time t(
a (t )
a† (t )

)
= exp

(
ηL̃t

) (
a (0)
a† (0)

)
. (3.21)

Recalling the de�nition of the amplitude and phase quadrature operators of each frequency

5We do not consider losses, so the output state will be pure. If the losses are not frequency dependent,
the spectral shape of the supermodes is una�ected [Jiang 12]. Losses can then be easily included using a
single-mode model for each supermode [Jacquard 17].
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mode

qj =
aj + a

†

j
√

2
(3.22)

pj =
aj − a

†

j

i
√

2
. (3.23)

and introducing the matrix

C =
1
√

2

(
I iI
I −iI

)
(3.24)

we have (
q
p

)
= C†

(
a
a†

)
. (3.25)

Combining Eq. (3.25) and Eq. (3.21) we �nd the expression for the �nite-time evolution of
the quadrature operators of frequency modes inside the crystal

S = C† exp
(
ηL̃t

)
C (3.26)

so that (
q (t )
p (t )

)
= S

(
q (0)
p (0)

)
(3.27)

S is actually a spatial propagator corresponding to the input-output relation for the �elds
before and after the crystal, which is �xed. This may seem to lead to an inconsistency with
the hamiltonian description, in which time is a free parameter. This inconsistency is avoided
noting that what really matters in order to compute physical quantities is the product ηt .
The factor η can easily be changed adjusting the pump power (as long as it stays in the
low-gain or below threshold regime in a cavity setup, which is the domain in which HI can
be derived in the form used here). Although the propagation length (and thus time) is �xed,
changing the intensity of the pump has the same e�ect as changing the evolution time in
the e�ective hamiltonian model.

Since HI is quadratic in the annihilation and creation operators, S is a symplectic ma-
trix. The matrix C links it to its complex representation S (c ) = exp(ηL̃t ), appearing in
Eq. (3.21) [Dutta 95]. We can apply the Bloch-Messiah decomposition (see subsection 1.4.3)
and �nd a factorization [Braunstein 05]

S = R1KR2 (3.28)

where R1 and R2 are both symplectic and orthogonal matrices and

K = diag {
er1 ,er2 , ...,erN ,e−r1 ,e−r2 , ...,e−rN

} (3.29)
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is a squeezing matrix, namely a symplectic diagonal matrix. Its diagonal entries are the sin-
gular values of S . In our case, single-frequency modes are the input and output of the overall
process, so R2 = R−1

1 = RT1 and S is symmetric. In fact, the matrix K has to be applied to the
vector of quadratures of the supermodes, which are linear combinations of the quadratures
of single-frequency modes. Since we are describing the evolution of the single-frequency
modes, then, R2 must take the quadratures of frequency modes to those of supermodes,
which are squeezed independently by HI . Finally, R1 brings us back to frequency modes.

The spectral pro�les of the supermodes are given by the rows of the unitary matrix U
appearing in the complex representation of R1 [Dutta 95]

R (c )
1 ≡ CR1C

† = diag {
U ,U ∗

}
. (3.30)

As we will see in the next subsection, the supermodes found in this way are the same as
those obtained through the Autonne-Takagi factorization.

In the hypothesis that the system was initially in the vacuum state, the covariance matrix
of the output state in the frequency modes basis can also be computed from S as [Ferraro 05]

Γω =
1
2SS

T =
1
2R1K

2RT1 . (3.31)

Note that it is not necessary to compute the Bloch-Messiah decomposition to get the co-
variance matrix from S .

3.3.3 Relating the two approaches
Given the Autonne-Takagi factorization of L, it is straightforward to compute the Bloch-
Messiah decomposition of S . In fact, de�ning

R1 = C
†diag

{
V †,VT

}
C (3.32)

R2 = RT1 (3.33)

one �nds

RT1SR
T
2 = R†1SR

†

2 (3.34)

= C† exp
{
ηt

(
0 VLVT

V ∗L∗V † 0

)}
C (3.35)

= exp
{
ηt

(
Λ 0
0 −Λ

)}
= K (3.36)

where K is the same as in Eq. (3.28) (up to permutations of the diagonal elements).
The advantage of using Autonne-Takagi factorization is that it is numerically easier to

compute with respect to Bloch-Messiah decomposition. The link between Autonne-Takagi
factorization and Bloch-Messiah decomposition was also recently noted in [Cariolaro 16].
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3.4 Numerical simulations
Most of our results are obtained through numerical simulations. We are mainly concerned
with optical frequency combs, in which case the number of frequency modes involved is
of the order of 105. Using the full comb to describe the system would make the problem
numerically intractable. We adopt then a coarse-grained description of the system, treating
�rst the comb as a continuum and then discretizing the problem. This is also motivated by
the fact that the free spectral range is too small for the single teeth of the comb to be resolved
in experiments. We took about 500 points for the discretization 6. The state is ideally
mixed in this coarse grained desription, but our approximation turns out to be very good
as long as the number of frequencies we take into account is large enough to represent all
the supermodes which are signi�cantly squeezed. Throughout this work, frequency modes
will be identi�ed with the coarse grained frequency pixels, although analytical calculations
rigorously hold only for the teeth of the comb or considering a continuous spectrum.

For our examples, we take the unshaped pump α (g) (ω) to be a Gaussian pulse of spectral
width about ∆λ ≈ 1 nm full-width-half-maximum (FWHM) centered around λ0 = 397.5
nm, which can be obtained by upconversion of a 10 nm pulse FWHM, corresponding to
a duration of about 100 fs, centered around 795 nm. We consider free-space setups and
assume the nonlinearity is provided by bulk BIBO crystals of length between 0.5 mm and
2 mm, whose refractive indexes are computed using Sellmeyer’s equations. We denote the
unshaped spectral pro�le by

α (g) (ω) =
1√

σω
√

2π
e
(ω−ω0)

2

4σ 2
ω (3.37)

with ω0 = 2πc/λ0 and σω = ω2
0∆λ/4πc

√
2 ln 2, c being the speed of light in vacuum.

In previous works considering a real pump with a Gaussian spectrum [Patera 12], it was
noted that the diagonalization of L leads to alternating signs in the gains, meaning that the
supermodes are squeezed in alternating quadratures. This actually comes from imposing
that the spectral pro�le of the supermodes is real, which is possible because the supermodes
have a trivial spectral phase. An equivalent choice would be to de�ne the supermodes to be
all squeezed in the same quadrature, which amounts to multiplying the spectral amplitudes
of half of the supermodes by i . In fact, multiplying a row of V by i in Eq. (3.10) �ips the
sign of the corresponding diagonal element in Λ and rotates the squeezing direction by π/2
in phase space. De�ning the modes such that the phase quadrature is always the squeezed
one is more suited to handle the case in which the pump has a non-trivial spectral phase.
The reason is that in this case supermodes may have non-trivial specral phases as well, as
we shall see, so there is no simple criterion to choose which quadrature should be squeezed
based on supermodes.

6This is compatible with the resolution of commercially available spatial light modulators that may be used
in experiments.
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It is worth clarifying how we derive physical values for the squeezing of the supermodes.
These are proportional to the factor η in the Hamiltonian of Eq. (3.2). Although this is in
principle possible, we are not interested in predicting squeezing from �rst principles. For our
purposes, it will be more convenient to adjust it so that the squeezing of the �rst supermode
approximately matches the experimentally measured value. Once the highest squeezing is
�xed, the ratio between the squeezing parameters of the supermodes is the same for any
pump power below threshold [Patera 12].

3.5 Noise properties of the output state
Here we introduce the formalism we will use to compute the relevant measurable quantities
of the output state from the covariance matrix in the frequency basis.

3.5.1 Noise of a set of modes

The noise properties of any spectral mode can be computed from the covariance matrix in
the frequency basis Γω as follows.

Consider �rst the mode corresponding to the annihilation operator

d =
∑
l

vlal (3.38)

where the vl are complex numbers satisfying ∑
l |vl |

2 = 1. vl is the complex amplitude of
the electric �eld mode at frequency ωl . The quadratures of d 7 are given by

q (d ) =
∑
l

(Re (vl ) ql − Im (vl ) pl ) (3.39)

p (d ) =
∑
l

(Im (vl ) ql + Re (vl ) pl ) . (3.40)

By comparison with Eq. (1.96) we see that q (d ) and p (d ) can be measured by pulse-shaped
homodyne detection.

Consider now a set of M ≤ N orthogonal modes related to the frequency modes by

d = Da (3.41)

where the matrix D has M × N complex entries. The orthonormalization condition of the
modes takes the form

DD† = IM . (3.42)
7We will identify modes with their annihilation operator.
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The quadratures of modes d are then given by(
q (d )

p (d )

)
=

(
Re (D) −Im (D)
Im (D) Re (D)

) (
q
p

)
≡ RD

(
q
p

)
. (3.43)

The covariance matrix of the modes d is then obtained from that of frequency modes as

Γd = RDΓωR
T
D . (3.44)

When M < N , the transformation in Eq. (3.44) can be understood as changing the modes to
a basis of which d constitute the �rst M elements and then discarding the remaining modes
(which amounts to removing the corresponding rows and columns from the covariance
matrix).

3.5.2 Cluster states and nulli�ers
One of the main goals of our work is to exploit the methods outlined above in optimization
routines to �nd the shape of the pump which is best suited to produce CV cluster states on a
given set of modes. In order to do this, we have to compare the state of a given set of modes
d after the application of HI with a cluster state.

In subsection 2.1.7 we saw that a CV cluster state is a multimode state which, in its ideal
version, can be de�ned as the simultaneous eigenstate of a set of operators called nulli�ers.
In subsection 2.1.8 we saw that such state is unphysical but can be approximated by states
for which the nulli�ers have reduced �uctuations.

For the given set of modesd we can de�ne the nulli�ers corresponding to a graphG and
measure their �uctuations through homodyne detection. This is explained in the following.

If G is the graph associated with the cluster state, which we will identify with its adja-
cency matrix, nulli�ers can be written as

δ = p (d) −Gq (d) . (3.45)

Although more general situations can be considered [Menicucci 11], we will restrict to unit-
weight cluster states. In this caseGjk = 1 if and only if modes j and k are nearest neighbours
in the graph and all the other entries of G are zero. Di�erent conditions may be used to
certify the experimental production of cluster states, but a basic one is that the noise of the
nulli�ers operators lay below the vacuum noise. We show now that standard homodyne
detection techniques are su�cient to measure the quantum �uctuations of these operators.

In fact, even though each δj in Eq. (3.45) is not the quadrature of a mode, its normalized
version is. Let us de�ne δ̄j ≡ rjδj where rj is a real number such that the �uctuations of δ̄j
when the �eld is in the vacuum state satisfy

〈0| δ̄ 2
j |0〉 = ∆2

0 ≡
1
2 . (3.46)
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Then it is possible to �nd a mode whose amplitude quadrature is precisely δ̄j . The nor-
malization rj is readily computed as rj = 1/

√
1 + N (j ), with N (j ) the number of nearest

neighbours of node j.
Using the de�nition of quadratures for thed modesdj =

(
q (d )j + ip

(d )
j

)
/
√

2 and Eq. (3.41),
δ̄j may be rewritten as

δ̄j =
1
√

2
*
,

∑
l

Wjlal +
∑
l

W ∗
jla
†

l
+
-
≡

1
√

2

(
Aj +A

†

j

)
(3.47)

where Aj is the annihilation operator associated with the mode de�ned by the spectral am-
plitudes

Wjl = −rj *
,
iDjl +

∑
k

GjkDkl
+
-
. (3.48)

These are the amplitudes of the electic �eld to print on the local oscillator in order to measure
δ̄j . They may as well be used to de�ne a transformation RW analogous to RD in Eq. (3.43).
Accordingly, one �nds the covariance matrix associated with the nulli�ers, which contains
their squeezing as well as correlations between them and the conjugated operators ζ̄j

Γδ̄ = RW ΓωR
T
W =

*
,

Γδ̄ δ̄ Γδ̄ ζ̄
ΓT
δ̄ ζ̄

Γζ̄ ζ̄
+
-
. (3.49)

For an ideal cluster state Γδ̄ δ̄ → 0 [Menicucci 11]. Note that Γδ̄ contains variances and
covariances of the normalized nulli�er operators, even if the corresponding modes, de�ned
by the rows ofW in Eq. (3.48), are not always orthogonal.

3.5.3 Frexel modes

For the analysis of the system and its later use for information processing, it is convenient
to introduce a speci�c set of m orthogonal modes which are slices of a Gaussian pulse. We
refer to these as frexel modes (from "frequency elements") and denote their annihilation
operators by

{
πj

}
. Frexels can be seen as a speci�c realization of the modes d in Eq. (3.41).

First, we choose a set of frequency bands of limits (Ω1,Ω2) , ..., (Ωm,Ωm+1). The frexel modes
are then de�ned by the spectral amplitudes




πj (ω) =
eiθj√
Nj
α (π ) (ω) Ωj ≤ ω ≤ Ωj+1

πj (ω) = 0 otherwise
(3.50)
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where α (π ) is a Gaussian pulse with a FWHM of 10 nm centered around 2λ0 = 795 nm, θj
are tuneable phases, which will turn out to be useful in the following, and 8

Nj =

Ωj+1∫
Ωj

dω ���α
(π ) (ω)���

2
. (3.51)

Examples with four and six frexels are depicted in Fig. 3.1. The interest of these modes
resides in the fact that, having non-overlapping spectra, they can be physically separated
rather easily from one another using a prism or a grating 9. It is worth noting that, in prin-
ciple, modes with an arbitrary spectral pro�le could also be separated from a bunch of co-
propagating modes [Eckstein 11, Reddy 14], but this would require nonlinear interactions
which would make it unpractical to separate more than one mode from all the others. MBQC
with frequency or spatial pixel modes was also introduced in [Ferrini 13]. After being sep-
arated, it is in principle possible to send frexels to di�erent parties in a network or directly
subject to independent homodyne measurements, for example. Indeed, the availability of
multi-pixel homodyne detection schemes [Beck 00, Armstrong 12] is the main reason to in-
troduce an overall Gaussian envelope in the de�nition of frexel modes and an individual
phase θj for each of them. The latter could be adjusted simply changing the phase of the
local oscillator in each frequency band. This is an important degree of freedom to consider,
as a phase shift of the local oscillator implies the measurement of a di�erent quadrature,
which is at the heart of CV-MBQC. Moreover, although a local phase-shift cannot change
the amount of entanglement between frexels, it can change the kind of quantum correla-
tions. In particular, we will make use of this in the next chapter to optimize the production
of CV cluster states (see subsection 4.4.1).

3.6 Examples
In the next chapter, we will use the formalism developed in the previous sections for the
numerical optimization of the pump spectrum for various purposes. Before that, we apply
the formalism to study some examples with pump spectra having a simple analytical form.

3.6.1 Gaussian pump
The case of a pump with a Gaussian spectrum was extensively studied. We �nd it is useful,
nonetheless, to report here the results of the numerical calculation for the parametric gains

8If discrete frequency are considered the integrals are to be replaced by sums.
9A prism will not separarate πj from all the modes having the same frequency support. Pixel modes as

de�ned here make sense if one wishes to ultimately measure them through homodyne detection using a local
oscillator shaped asαLO. This is the simplest setting for CV information processing with multi-pixel homodyne
detectors [Ferrini 13]
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Figure 3.1: Spectral amplitude of (a) four and (b) six frexels and within 3 standard devi-
ations around the central frequency of the downconverted comb. The amplitudes are not
normalized for clarity of representation.
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Figure 3.2: (a) Parametric gains obtained with a Gaussian pump and BiBO crystals of 0.5
mm and 1.0 mm for the di�erent supermodes and the respective supermodes’ spectra cor-
responding to the three highest parametric gains (b)-(c).

and the supermodes. This will provide a consistency check for our methods and a useful
comparison for other results.

In Fig. 3.2 we see that we recover the familar results for the supermodes, resembling
hermite-Gaussian functions, with wider spectra and parametric gains that decrease faster
with the order j in the case of a shorter crystal. This is consistent with [Patera 08, Patera, G. 10].

3.6.2 Chirped pump
A main advantage of our numerical methods is the ability to handle pump pro�les with non-
trivial spectral phases, consistently �nding both the parametric gains and the supermodes.
As a �rst example of a pump with a non-trivial spectral phase we consider a Gaussian pump
with a quadratic spectral phase, namely a spectrally chirped pump of amplitude

α (ch) (ω) = α (g) (ω) ei
ϕ2
2 (ω−ω0)

2
(3.52)

where ϕ2 is the quadratic phase. Spectral chirp is fairly common in experimental situations,
often as an unwanted e�ect, so it is interesting to study its impact on the down-conversion
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process. The quadratic spectral phase implies that the pulse is no longer Fourier limited:
the duration of the pulse increases while the spectrum remains constant. This makes the
duration of the pulse a useful parameter to characterize the amount of chirp. If ∆t = 1/(2σω )
is the duration of the un-chirped pulse 10 (ϕ2 = 0), the duration after chirp is [Thiel 15]

∆t ′ = ∆t

√
1 +

(
ϕ2

2∆t2

)2
. (3.53)

Studying the dependence of the output state it is then natural to ask how much modi�cation
is really due to the spectral phase and how much is just a consequence of the increased du-
ration. We then compare two cases: we study what happens when we add a quadratic phase
and when we increase the duration of the pulse without any spectral phase (thus decrasing
the spectrum). It turns out that the two situations are very di�erent, as can be seen from
the plots in Fig. 3.3. We compare, for the two cases, the largest parametric gain (Fig. 3.3a) as
well as the �rst one hundred parametric gains (Fig. 3.3b) as functions of ∆t ′/∆t . The plots
were obtained for a �xed energy in each pump pulse. We assume the downconversion of a
pulse with ∆t ≈ 30 fs takes place in a 0.5 mm BIBO crystal. All the gains are normalized to
the highest gain for ϕ2 = 0 and ∆t ′/∆t = 1. In both cases, the gain of the �rst supermode
Λ11 increases with ∆t ′ at �rst but then starts decreasing. However, the descent is steeper in
the chirped case. Moreover, numerically we �nd that for increasing quadratic phase

Λtot =
∑
j

Λ2
jj = const. (3.54)

within machine precision, whereas Λtot monotonically increases for un-chirped pulses of
longer duration.

To get a physical picture of Λtot, consider the perturbative expansion of the evolution
for small times/pump power/nonlinearity. The Λjj are then seen to be proportional to the
probability amplitude for a pump photon to be converted into two photons in the supermode
j. In fact, applying the evolution operator for a small time δt to the vacuum one gets

U (δt ) |0〉 =
∞∑
l=0

(−iδtHI )
l

l !~l
|0〉 (3.55)

= *
,
I + δt

η

2
∑
k

Λkk

(
b†
k

)2
+ O

(
δt2

)+
-
|0〉 . (3.56)

The sum of Λ2
jj is then proportional to the probability of converting a photon of the pump

into two photons in any supermode within time δt . This can be interpreted as the conserva-
tion of the overall e�ciency of the down-conversion process for increasing quadratic phase.

10With the convention ∆t = 1/(2σω ), ∆t is also the standard deviation of the temporal envelope α̃ (g) (t ) =

(2π )−
1
2
∫

dωα (g) (ω) exp (iωt ), where α (g) (ω) is the Gaussian spectral envelope de�ned in Eq. (3.37) [Thiel 15].
Namely ∆t2 =

∫
dt t2 ���α̃

(g) (t )���
2
.
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Figure 3.3: Comparison between the e�ect of the quadratic phase and simply increasing the
pulse duration. (a) and (b) show, respectively, the �rst and the �rst 100 parametric gains as
a function of the increase in pulse duration ∆t ′/∆t . The gains are all divided by the largest
parametric gain for ϕ2 = 0 and ∆t ′/∆t = 1, denoted by Λ(0)

11 . (b). First one hundred gains
for increasing pulse duration for chirped (blue) and non-chirped (green) pulses. (c) Spectral
amplitude (blue, solid line) and phase (orange, dotted line) of the �rst supermode obtained
with ∆t ′ = 2∆t (ϕ2 ≈ 2700 fs−2 ) compared to the �rst supermode for ϕ2 = 0 (gray, dashed
line).

On the other hand, it is clear that the details of the process are not insensitive to the quadratic
spectral phase: more signal modes are excited as the quadratic phase increases, while the
highest gain for a single mode decreases. The overall e�ciency increases for un-chirped
pulses of longer duration, but the magnitude of the gains drops faster with the order of the
supermodes. As a consequence, for large ∆t ′ the number of modes with approximately the
same squeezing is higher for a chirped pump, as can be seen from Fig. 3.3b. Chirp can be
added easily in experiments at constant pump power, whereas changing the pulse duration
generally involves losses.

Fig. 3.3c shows spectral amplitude and phase of the �rst supermode obtained for ϕ2 ≈
2700 fs2, the quadratic phase doubling the duration of the pulse. For the plot, we subtracted a
linear term from the spectral phase, which only amounts to a temporal delay. Interestingly,
the remaining spectral phase is not quadratic, as in the pump. Instead, it is well �tted by a
cubic term

ϕ�t (ω) = eiϕ3 (ω−ω0/2)3 . (3.57)

The same cubic phase �ts well the spectral phase of all the supermodes and is thus an impor-
tant e�ect to take into account in experiments. The coe�cientϕ3 seems to have a non-trivial
dependence on ϕ2.

A systematic study of the e�ect of chirp is beyond the scope of the present work and is
left to future investigations. However, these results show that Autonne-Takagi factorization
can be used to study pump �elds with arbitrary spectral phases and this can lead to the
discovery of new and interesting features already in quite simple situations.
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3.6.3 Gaussian pulse with a relative phase between the two halves
the spectrum

We conclude this chapter with some results concerning a pump with a Gaussian pro�le
with a relative phase between the lower and upper half of the spectrum. Such pro�le can
easily be produced in the lab and is probably the most accessible experimental check for our
methods.

We consider the pump shape

α (θ ) (ω,ϕ) = α (g) (ω) eiϕθ (ω−ω0) (3.58)

where θ (x ) = 0 for x < 0 and θ (x ) = 1 for x ≥ 0. For ϕ = 0 we recover the Gaussian
pro�le α (g) (ω). For ϕ = π the pump has a sign �ip in the middle. In both cases the spectral
amplitude is real. Considering 15 frexel modes, the covariance matrix does not contain
correlations between theQ and P quadratures if θj = 0 for each frexel, namely if we assume
no relative spectral phase between frexels (see Eq. (3.50)). The covariance matrix are then
block-diagonal

Γ =

(
ΓQ 0
0 ΓP

)
. (3.59)

The blocks are shown in Fig. 3.4. Since frexels are not a complete basis of modes, the state
is in general not pure. As a consequence, it is not always possible to diagonalize exactly
the two blocks with the same basis change. In general one would have to use Williamson’s
decomposition (see subsection 1.4.7). This would lead to two distinct basis of modes for
which the "classical" and "quantum" noise are decorrelated, respectively.

Alternatively, it is possible to consider the modes diagonalizing one of the two blocks.
If the purity is high enough (or at least the classical noise is homogenoeous through all the
modes), these will approximately diagonalize the other block as well 11.

The symplectic representation of a general change of modes was given in Eq. (1.84).
Consider the modes de�ned by the symplectic unitary matrix [Medeiros de Araújo 14]

RQ =

(
X 0
0 X

)
(3.60)

such that
X ΓQX

T = ∆Q (3.61)
11This can be intuitively understood thinking of Williamson’s decomposition. From Eq. (1.98) we have

Γ = SDST . If the state is pure, D = ∆2
0I. Using Bloch-Messiah decomposition S = R1KR2 and Γ = ∆2

0R1K
2RT1

and since there are no correlations between Q and P , R1 must be block-diagonal with R1 = diag {X ,X } with X
an orthogonal matrix diagonalizing both ΓQ and ΓP . The same argument holds for D = dI for any d > ∆2

0. If
D = dI + δ with d > 0 and δ a diagonal matrix conaining the mode-dependent part of thermal �uctuations,
in general ΓQ and ΓP will not commute. If X diagonalizes one of the two blocks, say ΓQ , then the o� diagonal
terms of XT ΓPX will be bounded by κ max |δii |, where κ is a constant depending on squeezing.
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with ∆Q a diagonal matrix. Then we have

RQΓR
T
Q =

(
∆Q 0
0 ∆P

)
(3.62)

where ∆P is approximately diagonal. The rows of RQ de�ne modes which are linear com-
binations of the frexel modes and can be thought of as the reconstructed squeezed modes
in the frexels basis. The diagonal elements of ∆Q and ∆P will correspond to the measured
�uctuations in the quadratures of said reconstructed modes.

The reconstructed modes corresponding to the highest squeezings are reported in Fig. 3.5,
along with their squeezing values. For this example we assumed that the leading supermode
computed via the Takagi factorization has 3 dB of squeezing. All the results of this section
were obtained for a BIBO crystal of 2 mm. We note that for ϕ = 0 the Hermite-Gaussian
functions are reconstructed quite well. As a consequence, the squeezing of the supermodes
is close to that computed diagonalizing the full covariance matrix in the full frequency basis.
Forϕ = π instead, the reconstructed supermodes are more complex. The purity is also lower
compared to the Gaussian case (0.62 compared to 0.77). This may be due to the fact that the
actual �rst supermodes, computed with the full basis, have a much broader spectrum, and
thus a small overlap with the local oscillator (see Fig. 3.5c).

For intermediate values of ϕ ∈ (0,π/2), there are correlations between the Q and P
quadratures, as can be seen from Fig. 3.6 for ϕ = π/2. As a consequence, the covariance
matrix is no longer diagonal, which makes it harder to de�ne reconstructed squeezed modes
in a simple way.

3.7 Conclusions
In this chapter we introduced a framework to study the parametric down-conversion of
broad-band light. The simple examples of the previous section show that macroscopic ef-
fects on the output state can be achieved exploiting the degrees of freedom provided by the
spectral amplitude and phase of the pump �eld. They also show that the relation between
pump and output is highly non trivial. In the context of quantum information protocols,
this inherent complexity makes it hard to tackle the problem of �nding the best pump for a
given protocol analytically. In particular, the simple shapes of subsections 3.6.3 and 3.6.2 do
not lead to a clear advantage in terms of resources. This motivates the approach detailed in
the next chapter and based on numerical optimizations.

The examples of the previous section are still a valuable pedagogical illustration of our
methods. Moreover, they are practically easy to realize in experiments, making our numer-
ical methods and our assumptions readily testable.
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Figure 3.4: Blocks of the covariance matrix relative to the Q and P quadratures in the case
of (a) ϕ = 0 and (b) ϕ = π . The diagonal contribution coming from the vacuum component
has been subtracted for a better representation.
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Figure 3.5: Recostructed squeezed modes on a basis of 15 frexels for (a) ϕ = 0 and (b) ϕ = π .
Positive squeezing values correspond to excess noise in the Q quadrature. The third and
fourth order supermodes are reversed with respect to the calculation using the full basis.
This can be explained by the losses induced by the mismatch between the local oscillator and
the squeezed modes. The spectral width of the latter increases roughly with the square root
of the order, while that of the former is �xed. As a consequence there is a mode mismatch
which is equivalent to mixing with vacuum. When the overlap degrades both the squeez-
ing and anti-squeezing tend to the shot noise. The squeezing however degrades faster and
since the quadrature of the third mode is squeezed in this picture, the anti-squeezing of the
fourth mode is larger in absolute value. (c) Supermodes computed for ϕ = π using the full
frequency basis. Notice the di�erent scale for wavelength.
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Figure 3.6: Covariance matrix of 15 frexels for ϕ = π/2.
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Optimization of the Pump Spectrum

Contents
4.1 Model of the pulse shaper . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 Optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3 Optimizing properties of the parametric gain distribution . . . . . 86

4.3.1 Linear combinations of quasi-degenerate supermodes . . . . . . . 88
4.4 Cluster states on frexels . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.1 Finding the optimal frexel permutation . . . . . . . . . . . . . . . 91
4.4.2 Optimal pump pro�les . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.3 Relation between highest squeezing and nulli�ers’ noise . . . . . . 94

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

From the previous chapter it should be clear that the relation between the spectral pro�le
of the pump and the properties of the output state is far from trivial. As a consequence, it is
generally very di�cult to �nd an analytical form for the pump optimizing speci�c properties
of the output, such as the entanglement pattern of a given set of modes. Instead, one could
run a numerical optimization algorithm to try and improve the desired quantities. Several
results obtained with the latter approach are discussed in this chapter.

Optimizing the spectrum of the pump beam for the e�cient generation of a speci�c
multimode quantum state of light is of paramount importance for quantum information ap-
plications. In the CV regime, which we are concerned with, the system is characterized by
the quantum �uctuations in each mode and the correlations between their quadrature oper-
ators. In this context, an analytic approach to general pump spectra with no spectral phase
was developed for both spatial and temporal modes in [Patera 12]. However, the resulting
theoretical pro�les were hard to achieve with realistic experimental con�gurations.

We tackle here the problem by the use of an algorithmic approach, having in view the
optimized generation of speci�c cluster states, and in mind the experimental way to shape
the pump, which consists in modifying the pump laser spectrum, both in phase and ampli-
tude, using pulse shapers based on the use of Spatial Light Modulators, already introduced
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in the previous chapter.
We show that numerical optimizations can be fruitfully used to �nd the pump pro�les

producing multimode squeezed states with the properties needed for many di�erent pro-
tocols. We also show that the numerical routines can be modi�ed to take into account the
physical limitations of a realistic pulse-shaper, ensuring that the optimized pro�les are also
experimentally realizable.

We �rst describe how we model the action of the pulse shaper on the spectral pro�le of
the pump and introduce the optimization algorithm we use. We then show the results of
the optimization of several functions that can be derived from the parametric gains alone.
Finally, we tackle the problem of optimizing cluster states whose nodes are the frexel modes
introduced in subsection 3.5.3. The choice of frexels is motivated by the relative ease to sepa-
rate them and measure them independently, which is crucial for many quantum information
protocols, such as MBQC.

Most the chapter is contained in [Arzani 17a].

4.1 Model of the pulse shaper
To keep close to an experimental scenario, we assume that the spectral pro�le of the pump
is modi�ed by a pulse shaper, which can be built with a spatial light modulator in a 4-f con-
�guration [Monmayrant 10]. In this con�guration, each pixel of the spatial light modulator
can control amplitude and phase of a small frequency band. In principle, each pixel can be
controlled independently. CallingU the collective vector containing amplitude and phase
for each pixel, the action of the shaper on the pump �eld can be modeled as the multiplica-
tion by a transfer function I (U ) (ω) as

α (U ) (ω) = α (g) (ω) I (U ) (ω) . (4.1)

In practice, the con�guration of neighbouring pixels is correlated due to electromagnetic
interactions, which makes, for example, a π phase between neighbouring pixels practically
impossible to realize. As a consequence, pump shapes with discontinuities would hardly be
realizable in experiments. To ensure we only consider practically achievable pump pro�les,
we regularize the con�guration of the shaper as follows. Instead of using all the degrees
of freedom of the shaper, we consider that only the amplitude at some equally spaced fre-
quency ticks (ω̄1, ω̄2, . . . , ω̄n ) can be controlled independently (we choose n � N , where
N is the number of frequencies assumed for the discretization of the frequency space, see
3.4). We callu =

(
uamp,uph

)
the vector of amplitude and phase at the given frequency ticks.

These will be the free parameters in our optimization. To obtain a continuous transfer func-
tion, we replace I (U ) (ω) with a function depending on the smaller set of parameters u

I
(u) (ω) = I (u)

amp (ω) exp
(
iI (u)

ph (ω)
)

(4.2)
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where I (u)
amp is a function that interpolates the points

((
ω̄1,u

amp
1

)
,
(
ω̄2, u

amp
2

)
, . . .

)
and I (u)

ph

interpolates
((
ω̄1,u

ph
1

)
,
(
ω̄2, u

ph
2

)
, . . .

)
. The resulting pump pro�le α (u) (ω) is found as

α (u) (ω) = α (g) (ω) I (u) (ω) . (4.3)

In most of our calculations we consider that the shaper independently controls between
20 and 40 frequencies within a spectral window centered at the central frequency of the
Gaussian pumping comb ω0. This is compatible with the spectral resolution of the shaper
in a 4-f con�guration [Monmayrant 10]. We choose the half width of the window to be two
or three times the standard deviation of the Gaussian, depending on the quantity to be opti-
mized. For the interpolation we chose to use functions constructed with cubic polynomials.

Using the result of the previous chapter, we will be able to write properties of the output
state as the spectrum of the supermodes and the respective gains u.

4.2 Optimization algorithm

For the optimization we used an evolutionary algorithm developed in [Roslund 09]. The
algorithm mimicks Darwinian evolution to stochastically explore the parameter space and
uses statistical analysis to �nd the direction of fastest ascent of a �tness function. It goes as
follows: �rst, a point in the parameter space is chosen at random. A new generation, that is
a number of mutations (which grows logarithmically with the dimension of the parameter
space) is generated around the �rst point. At the �rst iteration, the mutations are generated
according to an isotropic Gaussian probability distribution. The �tness function is evalu-
ated for each mutant. The best half of the mutants are linearly combined to generate a new
starting point for the algorithm. Since the algorithm was initially developed for applica-
tions in experiments, to mitigate the e�ect of experimental noise the new point is actually a
combination of the mutants and the starting points of previous generations. Statistical anal-
ysis is then performed on the current generation to �nd the axes corresponding to greater
improvement of the �tness function. The covariance matrix for the next generation is mod-
i�ed accordingly, stretching the corresponding axes. A general step size parameter is also
adjusted as follows: if the direction of fastest ascent was roughly the same in the last gener-
ations, then the algorithm is travelling in the good direction and the step-size is increased. If
the direction changed many times over the last generations, the algorithm is probably close
to an optimum and the step-size is decreased to accelerate convergence.

In our case the parameters of the optimization will be the vector u of amplitude and
phase parameters of the shaper introduced in the previous section and the �tness functions
will be derived from properties of the output state obtained when the pump of the SPDC
has the corresponding spectrum.
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4.3 Optimizing properties of the parametric gain distri-
bution

We have already seen in the previous chapter that changing the spectral pro�le of the pump
can impact the squeezing spectrum. We investigate here to which extent this can be used
to enhance a given property. Speci�cally, we look for the spectral pro�les that �atten the
squeezing spectrum, equalizing the �rstk gains, or separate the highest gain from the others,
e�ectively concentrating more squeezing in the �rst supermode. For the �rst task, we run
the optimization for the �tness function

f1 (u) =
1

Λ11 (u)

k∑
j=1

Λjj (u) (4.4)

where u are the shaper’s parameters and Λ11 (u) the singular values of the joint spectral
distribution L obtained from the pump shape corresponding to the parameters u for the
shaper. They are proportional to the gains of the parametric down-conversion, so maximiz-
ing f1 amounts to �nding the pro�le for which the squeezing is as constant as possible across
the �rst k supermodes. We will assume the parametric gains are ordered as Λ11 > Λ22 > . . ..
At this point we are not concerned with the absolute value of the gains, which can in prin-
ciple be adjusted changing the power of the pump, so we divide all the gains by the largest
one. For the second task, we run the optimization with the �tness function

f2 (u) =
Λ11 (u)

Λ22 (u)
. (4.5)

Since we assume the singular values are sorted in decreasing order, when f2 is maximized,
the gap between the squeezing of the �rst supermode and all the others will be as large
as possible. In other words, the squeezing will be as concentrated as possible in the �rst
supermode.

For the optimization to be meaningful some constraints have to be imposed. Indeed,
if no constraint is imposed, the algorithm may converge to solutions which have a very
small overlap with the Gaussian pulse that would be obtained without the shaper. This is a
problem because, since the shaper is a passive optical component, it means that much of the
power in the pulse is thrown away in the process and a very high power would be needed
to realize such pro�les. The unconstrained optimization is however interesting because it
makes clear that the "amount" of squeezing and its distribution among di�erent modes are
very di�erent resources, as will be especially evident in the following sections about cluster
states. More realistic pro�les can be obtained with a modi�cation to the �tness function
which adds a weight hindering convergence towards pro�les having a small overlap with
the original Gaussian. To this end one can add a function of the power of the shaped pump,
renormalized by the maximum of the shaper’s transfer function to impose that the shaper

86



CHAPTER 4. OPTIMIZATION OF THE PUMP SPECTRUM

is only attenuating 1. The relative power of the shaped pump is given by

w (u) =
1

m (u)2

∫
dω ���α

(u) (ω)���
2

(4.6)

where
m (u) = max

ω

���I
(u) (ω)��� . (4.7)

The �tness functions f1 and f2 are then replaced by

f̄1 (u) =
1

Λ11 (u)

k∑
j=1

Λjj (u) + a · x (w (u)) (4.8)

f̄2 (u) =
Λ11 (u)

Λ22 (u)
+ b · y (w (u)) (4.9)

with a and b positive real numbers. x and y may be arbitrary functions. A possible criterion
to choose such a function may be that it should be negligible if the power is above some
fraction of the original Gaussian and very rapidly becomes negative and large if the power is
below this threshold. Solutions with a power lower than the threshold are then disfavoured
but the weight does not in�uence the optimization as long as the power stays "acceptable".
The magnitude of a and b can then be used for �ne tuning. Fig. 4.1 shows the results of
two optimizations starting from a reference Gaussian spectrum with a shaper working in a
window of about 9 nm, corresponding to ±3 standard deviations (in amplitude) around the
central frequency, and a 1.5 mm BIBO crystal for down-conversion.

The supermodes resulting from the optimized pumps are shown in Fig. 4.1b. We stress
that the optimization algorithm is stochastic and there is no guarantee that the optima are
also global optima. Our aim here is to show that optimizing the shaper’s co�guration we
could �nd pump pro�les giving a signi�cant improvement on the initial Gaussian.

When f̄1 is optimized, the squeezing spectrum is made �atter, with Λjj > 0.9Λ11 for j up
to ∼ 80, to be compared with j ∼ 30 for a Gaussian pump. The pump carries about 30% of
the power of the unshaped Gaussian pump, meaning it may realistically be implemented in
the lab. At �rst sight both amplitude and phase of the supermodes seem very complicated.
This complexity may be explained by and solved with the quasi-degeneracy of the gains, as
detailed in subsection 4.3.1.

Optimizing f̄2 we �nd that a noticeable gap can be induced between the �rst and second
gains, in this case Λ11/Λ22 ≈ 1.43, to be compared with Λ11/Λ22 ≈ 1.00 for a Gaussian
pump. The relative power of the shaped pump is about 40%. In this case the �rst supermode
has a nice bell-shaped pro�le. This is a good sign, because the �rst supermode is the most
interesting one, being by far the most squeezed. As for the others, they are complicated as it

1Note that for numerical simulations we allow ���I
(u ) (ω)��� > 1, hence the factor 1/m (u)2
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was the case of f̄1, which can be ascribed again to the quasi-degeneracy of the paramtetric
gains.

The opportunity of introducing the modi�cations in Eq. (4.8) and Eq. (4.9) is made more
evident by comparison with the power of the pump pro�les optimizing f1 and f2 (not shown
here), which is of the order of 0.1% of the unshaped Gaussian.

The procedure outlined in this section can be carried out for any function that can be
written in terms of the shaper’s parameters u. For example maximizing the gain of the �rst
supermode for a given maximum power, minimizing the spectral width of the �rst super-
mode, maximizing or minimizing the Schmidt number of the parametric gains as de�ned
in [Gatti 12, Harder 13], which gives a measure of the number of modes excited in the pro-
cess (See also Appendix B). An example of interest for quantum information processing is
treated in section 4.4.

4.3.1 Linear combinations of quasi-degenerate supermodes
The supermodes resulting from the optimization of f1 and f2 in the previous section have
a complicated spectral shape. When many supermodes have approximately the same para-
metric gain, one can show that modes with simpler spectral shapes still retain quantum
properties. As an example, we explain in the following how to �nd a mode with Gaussian
spectrum that is squeezed after optimization of f̄1.

Consider the �rst supermodes resulting from the optimization of f̄1 and the associated
gains λj ≡ Λjj . Remember that from Eq (1.45) and Eq (3.34), the squeezing in dB of a super-
mode is computed for given pump power, non-linearity and interaction time as

λjdB = 10Log10
(
e2ηtλj

)
. (4.10)

Since λ20 > 0.99λ1 and λ30 > 0.97λ1, when the �rst supermode has 5 dB of squeezing, the
di�erence of squeezing with the thirtieth supermode is about≈ 0.13 dB, while the squeezing
of the twentieth supermode di�ers by less than 0.05 dB from that of the �rst (See Fig. 4.2a).
This di�erence would hardly be detectable in experiments. It is then reasonable to assume
that an appropriate linear combination of the �rst supermodes will also be squeezed. Note
that the coe�cients in this linear combination need to be real if one wants the resulting
mode to be squeezed. This can be understood recalling that we de�ned the supermodes
to all have reduced �uctuations in the p quadrature. From Eqs. (3.38 - 3.40) we see that, if
sj are the annihilation operators of the sumermodes, the quadrature q (d ) of a mode d with
annihilation operator

d =
k∑
j=1

vjsj (4.11)

will only contain anti-squeezed quadratures if Im
(
vj

)
= 0∀j, whilep (d ) will only contain the

squeezed quadratures of the supermodes. The normalization of the mode v reads ∑k
j=1v

2
j =
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Figure 4.1: (a) The normalized gain distributions obtained for a Gaussian pump and after
optimizing f̄1 in Eq. (4.8), with a = 3, x (w ) = 1/ (5w )6 and k = 100 and f̄2 in Eq. (4.9), with
b = 1, y (w ) = 1/ (5w )6. (b) The �rst supermodes resulting from the pump optimizing f̄1
(top) and f̄2 (bottom). The solid blue line represents the amplitude, in arbitrary units, while
the orange dashed line represents phase, in radiants (scale on the right). For clarity of rep-
resentation we subtracted a linear phase of 260, 812 and 805 fs from the supermodes arising
from the optimization of f̄1 and of 275, 275 and −390 fs from the supermodes arising from
the optimization of f̄2. (c) and (d) show the pump pro�les maximizing f̄1 and f̄2, respectively.
The gray dashed line shows the original Gaussian, the solid blue line the optimal amplitude
pro�le and the red dotted line the optimal phase.
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1. We then have

∆2q (d ) ≡
〈
q (d )2

〉
=

k∑
j=1

v2
j e
ηtλj∆2

0 ≥ eηtλk∆2
0 (4.12)

∆2p (d ) ≡
〈
p (d )2

〉
=

k∑
j=1

v2
j e
−ηtλj∆2

0 ≤ e−ηtλk∆2
0 (4.13)

showing that the �uctuations of p (d ) are bounded by those of the least squeezed of the k
supermodes. Note that unless λj is the same for all the supermodes in the de�nition of d
one has ∆q (d )∆p (d ) > ∆2

0 so the state of the mode d will not be pure.
Now, it is not possible, in the general case, to write simple spectral shapes exactly as

linear combinations of k supermodes if k < N , since they are not a complete basis. What is
possible, though, is to consider simple spectra with some free parameters and maximize the
norm of their projection on the span of k supermodes. We look for a mode with Gaussian
amplitude pro�le centered at 395.5 nm. To maximize the projection on the span of the k su-
permodes we also allow for polynomial spectral phase. The spectral width of the amplitude
and the amount of linear, quadratic spectral phase and so on are the free parameters.

Fig. 4.2b shows the norm of the projection of Gaussian modes with polynomial spectral
phases up to order �ve on the span of k of supermodes (computed with the Autonne-Takagi
method) as a function of k . The overlap almost always increases with k , as should be ex-
pected. When this is not the case, it is due to the fact that the numerical optimization over
the free parameters of the Gaussian mode fails to �nd the global optimum.

We found that a real Gaussian mode of about 37 nm FWHM has more than 92% overlap
with a real combination of the 30 �rst supermodes. Assuming 5 dB of squeezing for the
�rst supermode computed through Autonne-Takagi factorization, the optimized Gaussian
mode would have 4.93 dB of squeezing in the p quadrature and 4.94 dB of excess noise on
the q quadrature, resulting in a purity of 0.999. If one allows for a linear phase, which only
amounts to a delay, as we noted earlier, the overlap is about 98% for a Gaussian amplitude
of about 24 nm FWHM considering a real combination of 22 supermodes. The squeezing
and anti-squeezing are 4.97 dB and 4.98 dB respectively, and the purity is also 0.999.

4.4 Cluster states on frexels

We detail here how to optimize the pro�le of the pump to reduce the noise of the nulli�ers
of CV cluster states when the nodes of the graph are associated with a speci�c set of modes
which have non-overlapping spectra: the frexel modes introduced in subsection 3.5.3.
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Figure 4.2: (a) Di�erence between the squeezing in dB of the �rst and kth supermodes com-
puted through Autonne-Takagi factorization for the pump optimizing f̄1 (see Fig. 4.1c) as
a function of the squeezing of the �rst supermode. (b) Norm of the projection of a Gaus-
sian mode with optimized spectral width on the span of k supermodes for increasing k and
polynomial spectral phases of order up to �ve.

4.4.1 Finding the optimal frexel permutation

We consider, as an example, four frexels, with annihilation operators πj . We look for the
pump spectum that minimizes the �uctuations of the nulli�ers corresponding to the cluster
state de�ned so that the mode πj is the jth node of the 4-mode linear cluster state depicted
in Fig. 4.3b. The adjacency matrix of the graph is

Glin =
*....
,

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

+////
-

. (4.14)

This cluster state is universal for single-mode Gaussian MBQC [Ukai 10]. We can compute
the variance of nulli�ers using the procedure explained in Sec. 3.5.2 for a general set of
modes. The choice of the local phases θj de�nes which quadratures correspond to amplitude
qπ and which to phase pπ . Since we assumed to be free to choose an independent phase
reference for each pixel, we can use the θj giving the lowest �uctuations for the nulli�ers on
average. For the numerical calculation, we assume that the unshaped pump is a Gaussian
of amplitude α (д) (see Eq. (3.37)) and that parametric down conversion happens in a 0.5 mm
BIBO crystal. We �x the pump power so that the squeezing in the leading supermode is 7
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dB 2. In the de�nition of frexels, we take the lower and upper frequency limits 2πc/Ω1 '
808 nm and 2πc/Ω5 ' 782 nm.

For the Gaussian pump α (g) , the average of nulli�ers’ variances is found to be ∆2
avgδ '

0.49 (vacuum is normalized to 0.5), which amounts to a noise reduction of about −0.08
dB. The same calculation may be carried out for any permutation σ of frexels, namely as-
signing πσ (j ) to node j on the graph. It turns out that some permutations allow to sensi-
bly reduce the average noise of nulli�ers. For example ∆2

avgδ ' 0.29 for the permutation
σ2 = (π1,π4,π2,π3), corresponding to about−2.35 dB. This may look surprising at �rst, since
a simple relabeling of the modes cannot change the amount of entanglement. Indeed, each
bipartition of the four frexels is PPT entangled regardless of the permutation (see Fig. 4.3c).
The point is that nulli�ers’ noise reduction is not just a signature of entanglement, but rather
of very speci�c correlations among the nodes of the corresponding graph, and these may
very well vary from one permutation to the other. In our example, the linear graph has a
link between nodes 1 and 2, corresponding to frexels π1 and π2 if the trivial permutation is
considered and to frexels π1 and π4 if one instead considers the σ2. Being symmetric with
respect to the central frequency, we expect frexels π1 and π4 to be more entangled after the
downconversion than frexels π1 and π2 whose spectra are on the same side of the central
frequency of the downconverted �eld. We then expect a better noise reduction in the corre-
sponding nulli�er. The permutation σ2 is actually the optimal for the conditions considered
here.

4.4.2 Optimal pump pro�les
Starting from the best permutation in the previous section, we used numerical optimization
to �nd the pump pro�les minimizing the function 3

f3 (u) = Tr [
Γδ̄ δ̄ (u)

] (4.15)

with Γδ̄ δ̄ de�ned as in Eq. (3.49) for the four-modes linear cluster. For the optimization, we
start from a reference Gaussian pump and assume the shaper is acting on a spectral window
of ±2 standard deviations around the central frequency, corresponding to approximately
95% of the pump power. As in section 4.2, the algorithm tends to converge to pump pro�les
which have a small overlap with the original pulse, so we also ran the optimization for the
modi�ed function

f̄3 (u) = Tr [
Γδ̄ δ̄ (u)

]
− h ·w (u) (4.16)

where h is a positive real number and w is de�ned as in Eq. (4.6). The results are shown
in Fig. 4.4. Optimization of f3 leads to a larger improvement of the nulli�ers squeezing on

2We did not include losses in our model, so strictly speaking, this value refers to free space experiments or
cavity setups in which the output coupling mirror has high re�ectivity.

3Γδ̄ δ̄ is a covariance matrix, so it is positive-semide�nite by construction. As a consequence Tr [
Γδ̄ δ̄

]
→ 0

is equivalent to Γδ̄ δ̄ → 0
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Figure 4.3: (a) Spectral amplitude of four frexels within 3 standard deviations around the
central frequency of the downconverted comb. The amplitudes are not normalized for clar-
ity of representation. (b) A linear four-modes cluster state and two possible mappings of
frexels onto its nodes. The second permutation σ2 leads to smaller nulli�ers’ noise for an ap-
propriate choice of the global phase of each pixel (not shown in the drawing). (c) Minimum
eigenvalue of the covariance matrix after partial transposition for all possible bipartitions
of four modes for a Gaussian pump and the spectral pro�les optimizing f̄3 and f3 (See sub-
section 4.4.2). The notation (1,2|3,4) means that partial transposition was carried out for
modes π1 and π2. After partial transposition, each bipartition violates the PPT criterion
(see subsection 2.4.1). This implies that the state is fully inseparable in the three cases. We
assumed the �rst supermode has 7 dB of squeezing.
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average, but as shown in Fig. 4.4c the corresponding pump pro�le has a small overlap with
the original Gaussian. As a consequence, the shaped pulse only contains ∼ 2% of the power
of the unshaped pulse. Optimization of f̄3 leads to a pro�le (Fig. 4.4b) that still allows to
reduce the average nulli�ers’ noise of about 0.5 dB with respect to the Gaussian pro�le
while containing ∼ 80% of the Gaussian pulse’s power. This could lead to a measurable
improvement in realistic experimental conditions. The compromise between power in the
shaped pump and noise reduction can be tuned changing the parameter h in Eq. (4.16) in
order to adapt to speci�c experimental constraints. If more power is available, for example,
the optimization could be performed for smaller values of h.

We note that after optimization every bipartition of the four frexels is still PPT entangled,
as can be seen from Fig. 4.3c.

4.4.3 Relation between highest squeezing and nulli�ers’ noise

It is interesting to compute what happens when one changes the pump power keeping the
shaper’s con�guration �xed. As long as the low-gain or below-threshold conditions are sat-
is�ed, this should just multiply the gains by a common factor. One could try and guess that
more power, meaning a higher squeezing in all supermodes, would imply better noise reduc-
tion for the nulli�ers. This is not actually the case, as can be seen from Fig. 4.5. In fact, the
average nulli�ers’ noise is reduced from the shot noise until a certain value of the squeezing
of the �rst supermode. If the power of the pump is further increased, the average nulli�ers’
noise starts increasing as well. One explanation is that the number of squeezed modes in
the system largely exceeds the number of frexels, so the contribution of all anti-squeezed
quadratures to the nulli�ers cannot be made arbitrarily small. The optimal con�guration is
found minimizing the contribution of the leading anti-squeezed quadratures. But even if the
remaining anti-squeezed quadratures appear in the nulli�ers with very small coe�cients,
at some point the corresponding noise will dominate, since it grows inde�nitely with the
gain. Running the optimization with the squeezing of the leading supermode set to a di�er-
ent value results in a di�erent optimal pump pro�le. With this di�erent pro�le, the average
nulli�ers’ noise will attain a minimum when the squeezing of the �rst supermode is close to
the one chosen for the optimization. An example is shown in Fig. 4.5b, where the average
nulli�ers’ noise as a function of the leading squeezing for a Gaussian pump and two pro�les
optimized at di�erent leading squeezing are compared.

4.5 Conclusions
In summary, we showed that pump shaping can be used e�ectively to engineer the quantum
state produced by the spontaneous parametric down-conversion of a frequency comb.

Combining an optimization algorithm with the numerical methods developed in the
Chapter 3 we found spectral pro�les �attening the values of the parametric gains or creating
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Figure 4.4: Results of the optimization of the pump shape to reduce the average noise of
the nulli�ers of a four-modes linear cluster. (a) shows the nulli�ers’ noise reduction in dB
for a Gaussian pump and for the optimal pro�les found optimizing f3 (Eq. (4.15)) and f̄3
(Eq. (4.16)) with h = 1.35. The squeezing of the leading supermode was �xed to 7 dB. The
horizontal lines show the average squeezing in each case. The pump pro�les optimizing f̄3
and f3 are shown in in (b) and (c), respectively. The scale on the left refers to amplitude,
while that for the phase is on the right.
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Figure 4.5: Average nulli�er’s noise for a linear cluster on four frexel modes as a function of
the squeezing of the leading supermode. The curves in (a) are obtained for a Gaussian pump
and the pump pro�les obtained optimizing f3 and f̄3 �xing the leading supermode’s squeez-
ing to 7 dB, while in (b) the curves for a Gaussian pump and the con�gurations optimizing
f3 for a squeezing of 7 dB and 20 dB of the leading supermode are shown.

a gap between the gain of the �rst and second supermodes. In both cases we showed that the
shape of the pump has a macroscopic e�ect on the output state which can lead to measurable
improvements in realistic experimental conditions.

We applied the same technique to �nd the pump pro�les which are optimal to produce
CV cluster states when the nodes of the cluster correspond to spectral slices of a Gaussian
pulse. We focused on a four-mode linear cluster state. This is universal for single-mode
Gaussian CV-MBQC, so our results are directly applicable to CV-MBQC with frexel modes.
Similar results can be obtained for di�erent graphs, such as the six-mode centered pentagon
used for CV secret sharing protocols in [van Loock 11] and [Cai 17], which is also studied
in Chapter 6 (see also Appendix B).

We stress that our approach is very general and, besides the examples cited here, it can
be applied with small modi�cations to optimize any property of the output state after the
down-conversion, such as the squeezing of the leading supermode or the Schmidt number.
The same approach was used, for example, in a recent work proposing the simulation of
quantum complex networks with an all-optical setup [Nokkala 17]. Some additional results
relative to other optimizations are collected in Appendix B.

Finally, we note that our results rely on the use of a non-deterministic optimization rou-
tine. Our goal was to show the e�ectiveness of the overall approach but we did not compare
the performances of this speci�c algorithm with others. This speci�c algorithm was chosen
because it has proven to provide a good compromise between robustness of the optimal
solutions and convergence time in several theoretical and experimental contexts, includ-
ing some works related to the present manuscript [Ferrini 15, Ferrini 16, Cai 17]. On the
other hand, the general procedure is the same if a di�erent routine is used. The results may
then potentially be improved using a di�erent optimization algorithm. Also, conceptually
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the same approach can be used in closed-loop experiments in which the �tness function is
replaced by a measured quantity.
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Chapter 5

Polynomial approximation of
non-Gaussian unitaries
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In Chapter 2 we described the measurement-based approach to quantum computation
in CV. This requires the creation of suitable entangled cluster states and the introduction
of some appropriate non-Gaussian operation. As explained in subsection 2.1.3, at least one
non-Gaussian operation is needed in order to achieve the so-called quantum advantage.
Yet, for the moment, non-Gaussian gates arguably represent the biggest challenge to the
practical implementation of CV quantum computing.

Most of the existing proposals to realize non-Gaussian operations suited for quantum
computation [Gottesman 01] require resources currently out of technological reach [Ghose 07].

An approach that attracted some attention is based on the fact that a unitary operator can
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be approximated by the �rst terms of its Taylor expansion [Marek 11, Yukawa 13, Park 14,
Marshall 15]. This is a polynomial in the quadratures of the �eld, and even though it is not
a unitary operator, it can approximate the evolution due to a polynomial Hamiltonian if the
evolution time is small enough.

In the present chapter, we propose and analyze two new methods to implement poly-
nomial gates using squeezed states and detectors that allow to project on a single-photon
state, which we will refer to as single-photon counters (SPC). They are inspired by the CV
formulation of the measurement-based paradigm for quantum computation (CV-MBQC).

Our �rst approach uses a single photon detector 1 to herald the subtraction of a photon
from a beam in a squeezed state, generating an ancillary non-Gaussian state; the building
block of the protocol is then completed entangling this state with the input mode and then
performing a homodyne detection on the latter.

Similar methods for engineering non-Gaussian states were already studied, based on the
use of ancillary single-photon states and homodyne [Etesse 15, Etesse 14] or heterodyne
[Park 14] detection respectively.

In the second method that we propose, the input state is coupled to a squeezed ancilla
and a single photon is detected in one mode by means of a SPC. As we will see, the two
protocols result in di�erent performances, and their applicability therefore will strongly
depend on the practical goal, as well as on the speci�c experimental implementation.

Our schemes may be used either to directly apply a target gate to an unknown input
state or to prepare a resource state starting from a known input.

The chapter is structured as follows. In Sec. 5.1 we explain the general method to con-
struct a polynomial approximation of a unitary operation. Then, after recalling some de�-
nitions in Sec. 5.2, in Sec. 5.3 we illustrate the �rst protocol, in which a prototypical circuit
for CV-MBQC is fed with a photon subtracted squeezed state instead of a squeezed state, as
it would be the case in standard cluster-state computation. We derive the expression of the
resulting e�ective transformation and assess the quality of the gate for a target unitary in
terms of �delity of the transformation on coherent and Fock input states with up to ten pho-
tons. In Sec. 5.4 the same is done for the second protocol, in which the homodyne detector
in the basic circuit for CV-MBQC is replaced by a SPC.

This chapter closely follows [Arzani 17b].

5.1 Polynomial approximation of unitary transforma-
tions

Consider a Hamiltonian operator
Ĥ = P (q̂) (5.1)

1This is ideally a SPC but standard avalanche photodiodes are usually employed in the experiments.
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with P a polynomial of degree d and q̂ the position quadrature. The evolution after a time
t under this Hamiltonian is given by the unitary operator

Û (t ) = exp
(
−itĤ

)
. (5.2)

If t is su�ciently small,U (t ) can be approximated by the �rst terms of its Taylor expansion
in the time parameter

Û (t ) ' Û (n) (t ) =
n∑
j=0

(
−itĤ

) j
j! (5.3)

which is itself a polynomial in q̂ of degree l = d × n and can be decomposed in a product of
monomials in the q̂ quadrature

Û (n) (t ) =
l∏

j=1

(
q̂ − λj (t )

)
, (5.4)

where each λj is a complex number [Park 14].
We want to provide protocols, requiring currently available technology, that allow achiev-

ing evolutions of the form of Eq. (5.4), thereby approximating arbitrary polynomial evolu-
tions (5.2). The building block of our protocols will be the non-unitary e�ective transfor-
mation

T̂e� = A (q̂) (q̂ − λ) (5.5)
whereA (q̂) has the form exp

(
−a (q̂ − b)2

)
, q̂ is the amplitude quadrature of the �eld, a and

b are real numbers.
The value of λ at each realization of the circuit will have to match the λj (t ) in Eq. (5.4).

As we will see, in an experimental scenario λ depends on tunable parameters, and in one
protocol on the output of a homodyne measurement. The factor A (q̂) is an undesired
attenuation of the wave function that determines the range of values of q for which the
protocols reproduce a polynomial. This range tends to the whole real axis in the limit of
in�nite squeezing resources.

By comparing Eqs. (5.4) and (5.5) we see that a polynomial approximation of degree l
requires applying the e�ective transformation Eq. (5.5) l times. We will show that this can
be obtained by using either l photon-subtracted squeezed states and l homodyne detections,
or l single photon detections, depending on the method used.

Chaining the e�ective transformation T̂e� to achieve Û (n) (t ) comes at the expense of
applying the product of the attenuations Aj (q̂) at each step, where a subscript j has been
added, because the parameters aj andbj characterizing the attenuation depend in general on
the step, as well as on the experimental conditions and the target unitary. As a consequence,
the resulting transformation

T̂ =

l∏
j=1

T̂e� (j ) (5.6)
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can be divided in two parts, one being the product of Gaussian envelopes on the position
wave function of the input and the second consisting of a polynomial approximating Û (n) (t ).

The transformation T̂ is not unitary and obviously di�ers from the target transforma-
tion, so one needs a criterion to evaluate how good the approximation is. We choose to use
as a �gure of merit the �delity between the output state obtained with the e�ective trans-
formation and the result that one would obtain applying the target gate. We consider the
case in which the input is a pure state ��ψ

〉. The ideal unitary target gate then produces a
pure state Û ��ψ

〉. The output state of our approximated gate will in general be a mixed state,
which we denote here by ρ. The �delity is then [Nielsen 10] (see also subsection 2.4.2)

F =

√〈
ψ �� Û †ρÛ ��ψ

〉
. (5.7)

If both output states are pure, this reduces to the overlap

F =
���
〈
ψ �� Û †T̂ ��ψ

〉��� . (5.8)

The �delity will generally depend on ψ . To test the performance of our protocols we will
compute F on input Fock states and coherent states.

As it is a widely studied non-Gaussian operation, that allows promoting the Cli�ord set
to a universal set of gates for CV-QC [Gu 09], we will take the so called cubic phase gate

γ̂ (ν ) = exp
(
iνq̂3

)
(5.9)

as the target gate. We will compare it to its third order expansion in ν

eiνq̂
3
≈ I + iνq̂3 = (q − λ1) (q − λ2) (q − λ3) , (5.10)

that can be obtained chaining three e�ective transformations of the form in Eq. (5.5), modulo
the envelope A. The roots of the polynomial are λ1 = −i/ν

− 1
3 , λ2 = − (−1)−

1
6 /ν−

1
3 , λ2 =

− (−1)−
5
6 /ν−

1
3 .

Being a function of the q̂ quadrature only, the cubic phase gate is a multiplicative operator
in the position representation. The real and imaginary parts of this function are plotted
for the third order polynomial approximation as well as for the ideal cubic phase gate in
Fig. 5.1, giving an indication of the quality of the polynomial approximation. Besides the
imperfections of the e�ective gate resulting from the application of our protocols, which will
be studied in the next sections, one already sees that the bare polynomial function resembles
the cubic phase gate only close to the origin, so we expect it to be a good approximation
only when applied to states whose position-representation wave function is concentrated
around zero. Fig. 5.2 shows the �delity of the polynomial gate with the cubic phase gate
for Fock and coherent states. As expected, this turns out to be better for states containing
fewer photons, since their support is more concentrated around the origin. Also, the �delity
of the gate drops faster for increasing photon number when the parameter ν of the cubic
phase gate is increased. This indeed corresponds to increased evolution times, for which
the Taylor expansion becomes a worse approximation.
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Figure 5.1: Position representation of the target (a) cubic phase gate and (b) its third-order
expansion for ν = 0.1. The blue dashed lines correspond to the real parts, the yellow solid
lines correspond to the imaginary parts.
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Figure 5.2: Fidelity (Eq. (5.8)) between the state obtained applying either Û = exp
(
iνq̂3

)
or

its third order Taylor expansion T̂ on (a) Fock states and (b) coherent states. The x axis
corresponds to (a) the input photon number and (b) average photon number, respectively.
The various curves correspond to three di�erent values of the parameter ν : blue solid line
for ν = 0.1, red dashed line for ν = 0.2 and orange dot-dashed for ν = 0.5.
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5.2 De�nitions
Before starting the analysis of the protocols, we recall here some basic de�nitions. Most of
them were already introduced in Chapters 1 and 2. For ease of reference, we collect here
the ones we will use throughout the present chapter with few complements.

To each mode of the �eld are associated a creation operator â† and an annihilation op-
erator â, obeying the commutation relation

[
â, â†

]
= 1, that we use to de�ne the quadrature

operators q̂ =
(
â + â†

)
/
√

2 and p̂ =
(
â − â†

)
/(i
√

2). We will denote the quadratures’
eigenstates corresponding to the eigenvalue s as |s〉q and |s〉p respectively. They are related
by a Fourier trasform:

|s〉p =
1
√

2π

∫ ∞

−∞

dteist |t〉q = F̂ |s〉q (5.11)

|s〉q =
1
√

2π

∫ ∞

−∞

dte−ist |t〉p = F̂ † |s〉p (5.12)

which also gives 〈t |p |s〉q = e−ist/
√

2π . Any eigenstate of q̂ can be obtained from |0〉q apply-
ing the translation operator X̂ (s ) = e−isp̂ , namely

|s〉q = X̂ (s ) |0〉q (5.13)

and similarly
|s〉p = Ẑ (s ) |0〉p (5.14)

with Ẑ (s ) = eisq̂ . The displacement operator can be expressed in terms of translation oper-
ators as

D̂ (α ) = e−iIm(α )∗Re(α )Ẑ
(√

2Im (α )
)
X̂

(√
2Re (α )

)
. (5.15)

The squeezing operator is de�ned as 2

S (k ) = e
− i

2 ln
(
k√

2

)
(q̂p̂+p̂q̂) (5.16)

and acts on the quadratures according to

S (k )†
(
q̂
p̂

)
S (k ) = *

,

k√
2 0

0
√

2
k

+
-

(
q̂
p̂

)
. (5.17)

A general squeezed state is obtained applying the squeezing and then the displacement
operators to the vacuum state. We will use the notation

|α ,k〉 = D (α ) S (k ) |0〉 . (5.18)
2Note the di�erent notation with respect to Eq. 1.40. With the new notation, If kdB is the amount of

squeezing in dB, the corresponding value of k is k =
√

2 × 10 kdB
20 .
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The position-representation wave function of a squeezed state is

σα ,k (s ) = 〈s |q |α ,k〉 = C exp
(
−
(s − q0)

2

k2 + ip0s

)
(5.19)

with C =
(
k
√

π
2

)− 1
2 , q0 =

√
2Re (α ) and p0 =

√
2Im (α ). Fock states are eigenstates of

the number operator N̂ = â†â, so, in the optical setting, they have a well de�ned photon
number. Their position wave functions are given by

〈s |q |n〉 =
e−

s2
2√

2nn!
√
π

Hn (s ) (5.20)

where Hn (x ) denotes the Hermite polynomial of degree n [Leonhardt 97].

5.3 Method 1: Photon subtracted ancilla
For our �rst protocol, we exploit the idea that it is possible to induce a non-Gaussian evolu-
tion on an input state by coupling it with a non-Gaussian resource [Gottesman 01, Ghose 07,
Gu 09, Miyata 16, Sabapathy 17].

We focus here on photon-subtracted squeezed states as a resource. These are non-
Gaussian states, displaying a negative Wigner function, whose experimental production
is well established [Wenger 04, Neergaard-Nielsen 11, Ra 17]. A possible experimental im-
plementation is depicted in Fig. 5.3. The photon subtraction can be modeled as the action
of the annihilation operator â.

Inspired by the basic circuit for CV-MBQC [Gu 09] we consider the situation described
by the following circuit:

��ψ
〉

• p̂ m

â |α ,k〉 • ��χ
〉

(5.21)

The input state ��ψ
〉 is coupled to a photon-subtracted squeezed state â |α ,k〉 through a ĈZ non

demolition interaction ĈZ = exp (iq̂1 ⊗ q̂2) (represented by the vertical line). The quadrature
p̂ is then measured on the �rst mode, giving outcome m. As a result, the second mode is
projected on a state ��χ

〉. In the following subsection we will show that ��χ
〉may be expressed

as ��χ
〉
= T̂e� ��ψ

〉 where T̂e� has the same form as in Eq. (5.5).

5.3.1 Derivation of the e�ective transformation
Neglecting for now its normalization, the output state of circuit (5.21) can be written as

��χ
〉
∝ 〈m |p1 ĈZ

��ψ
〉
1 â2 |α ,k〉2 (5.22)
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Figure 5.3: A method to subtract a photon from a travelling light �eld consists in mixing
the �eld with vacuum in a highly transmittive beam splitter and placing a single photon
detector at the output arm corresponding to the transmitted vacuum. If the transmittivity
T is high enough to ensure that no more than one photon is scattered from the input beam,
then a click of the detector heralds a successful photon subtraction. This can be represented
as the application of the annihilation operator â to the input state. The result is exact in the
limit T → 1.

where the projection on the eigenvector |m〉p1 of the �rst mode results from the homodyne
measurement. Using the position representation of the operators and states involved we
have

��χ
〉
∝ 〈m |p1 ĈZ â2

∫
dsdtψ (t )σα ,k (s ) |t〉q1 |s〉q2

∝ 〈m |p1 ĈZ

∫
dsdtψ (t )

(
s +

d
ds

)
σα ,k (s ) |t〉q1 |s〉q2

=

∫
dsdteistψ (t ) f (s )

e−imt

√
2π
|s〉q2

(5.23)

where we made use of â = q̂+ip̂
√

2 andψ (t ) = 〈t |q ��ψ
〉, with

f (s ) =
(
s −

2
k2 (s − q0) + ip0

)
σα ,k (s ) . (5.24)

Recalling now that f (q̂) |s〉q = f (s ) |s〉q we can take the parts of the integrand depending
on s but not on t out of the integral. The remaining integral over ds is the de�nition of the
Fourier transform. We thus �nd

��χ
〉
∝ f (q̂)

∫
dtψ (t )e−imt

∫
ds eist
√

2π
|s〉q2

= f (q̂)

∫
dtψ (t )e−imt |t〉p2

= f (q̂)X̂ (m) F̂ ��ψ
〉
.

(5.25)
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The operator f (q̂) can be written explitly using Eq. (5.19) and Eq. (5.24) as

f (q̂) ∝
(
q̂ −

2
k2 (q̂ − q0) + ip0

)
e−

(q̂−q0)
2

k2 +ip0q̂ . (5.26)

Some observations allow to simplify this expression. First, we can drop the last Fourier
transform, taking ��ψ ′

〉
= F̂ † ��ψ

〉 as input. This amounts to add an inverse Fourier transform,
which is just a phase-shift in the optical setting, before feeding the input to the considered
circuit. We can then multiply on the left by I = X̂ (m) X̂ † (m) and use X̂ † (m) q̂X̂ (m) = q̂+m,
so that X̂ † (m) f (q̂) X̂ (m) = f (q̂ +m). Having commuted the displacement to the left,
we can undo it adding a post-processing stage to our circuit consisting in a displacement
depending on the homodyne outcomem. Finally, the output state ��χ

〉 has to be normalized.
We introduce a normalization constant N depending on k and α in which we re-absorb all
numerical prefactors. As a result, the output state reads

��χ
〉
= N Ẑ (p0) e

−
(q̂−q0+m)

2

k2
(
q̂ − λ (α ,k,m)

)
��ψ

〉 (5.27)

where
λ (α ,k ,m) = −

( 2
k2 − 2

)
q0 − i

(
k2

k2 − 2

)
p0 −m. (5.28)

Including a further corrective displacement in the circuit we may rede�ne T̂e� according to

��ψ
〉

F̂ † • p̂ •

â |α ,k〉 • X̂ † (m) Ẑ † (p0) T̂e� ��ψ
〉

(5.29)

which gives

T̂e� (α ,k ,m) = N exp
{
−
(q̂ − q0 +m)2

k2

} (
q̂ − λ (α ,k ,m)

)
. (5.30)

Note that the last correction does not depend on the outcome of the measurement and does
not require adaptivity to be performed.

The e�ective transformation obtained, Eq. (5.30), is composed of two operators. The fac-
tor q̂−λ (α ,k,m) is the desired monomial transformation. The exponential part corresponds
to A (q̂) in Eq. (5.5). It concentrates the values of the output state wave function around
the value q0 −m, which depends on the outcome of the homodyne measurement. It tends
to the identity operator in the limit k → ∞ corresponding to high squeezing of the ancilla
in the p̂ quadrature. However, the amount of squeezing also a�ects the displacements of
the ancilla q0 and p0 that are needed to realize a target monomial for a given measurement
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outcome m. In particular, if k → ∞ then it must also be q0 → ∞ if λ (α ,k ,m) needs to have
a �nite real part. This has the e�ect to change the position of the peak of the envelope, and
the resulting monomial could be distorted for high squeezing. Note that for some gates the
displacements sum to zero when all the monomials in the polynomial approximation are
considered. This is the case for the cubic phase gate which we study in detail. The product
of the envelopes is then centered and there is no additional distortion of the gate.

It is worth mentioning that essentially the same result is found considering a photon
added rather than photon subtracted ancilla. The only di�erence in the above derivation
consists in a minus sign before the derivative operator in the second line of Eq. (5.23). The
e�ective transformation would then have the same form, just with a di�erent λ (α ,k ,m).
Photon addition may be easier in some experimental con�gurations, for example when the
ancilla is only weakly squeezed, so that the average photon number is low. In that case the
probability of subtracting one photon is also low.

5.3.2 Gate �delity and success probability

As explained in Sec. 5.1, one should concatenate l times the circuit (5.29) to obtain an ap-
proximation of a unitary gate. The resulting transformation T̂e� (m) depends on the vector
of the measurement outcomes m ∈ Rl which are intrinsically random numbers. To �x the
ideas, let us assume that the target polynomial is achieved for m = 0. Then the e�ective
transformation will be close to the target unitary for small values of mj . The quality of the
approximation as a function of m can be quanti�ed through the �delity of the output state
of the protocol with the state obtained applying the desired unitary to the input state.

Since both states are pure, we may use for the �delity the formula in Eq. (5.8). However,
the vector m spans a continuous space, hence it is not possible to post-select on a single
vector, as the probability of a realization of a single vector is zero. One may consider instead
an acceptance region Ω around the ideal values. We introduce a tolerance value δ such that
each stage succeeds if |mj | < δ . If at some step |mj | > δ , the protocol fails. We assume that
δ is much bigger than the resolution of the homodyne detector, so that this can in turn be
considered as ideal. The output state of such a procedure is hence a statistical mixture of the
(normalized) states Te� (m) ��ψ

〉 weighted by the probability p (m) of obtaining the vector of
outcomes m divided by pΩ, which is the probability of obtaining m within the acceptance
region. This ensures that the output density matrix has unit trace:

ρΩ =

∫
Ω

dnmp (m)

pΩ
T̂e� (m) ��ψ

〉〈
ψ �� T̂ †e� (m) . (5.31)

The general formula Eq. (5.7) must then be used to compute the �delity. We expect that to
large values of δ correspond high success probabilities. On the other hand, large values of
m imply large deviations from the target polynomial, and thus a worse approximation of
the desired unitary.
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5.3.3 Details of the calculation of success probability and �delity

We give here some details about the calculation of the �delity between a target unitary
and the polynomial gate obtained chaining three circuits of the form of Eq. (5.29). Namely,
we will apply Eq. (5.7) to the state in Eq. (5.31). To do this we need �rst the probability
distribution

p (m) = p (m1,m2,m3) (5.32)

of getting the outcomesmi from the homodyne measurements.

Success probability

The input state at the �rst step is ��ψ
〉. At the second step the �rst monomial has been applied,

so the input state of the second circuit is T̂e� (α1,k ,m1) ��ψ
〉. Similarly, the input state of the

third circuit is T̂e� (α2,k ,m2) T̂ (α1,k ,m1) ��ψ
〉. We can thus rewrite

p (m1,m2,m3) = p (m3 |m1,m2) p (m2 |m1) p (m1) . (5.33)

Let us denote the two-mode state after the CZ by

|Ψ〉 = ĈZ
��ψ

〉
1 ⊗Mâ |α ,k〉2 , (5.34)

M being a normalization factor for the photon subtracted state. The probability of obtaining
m1 at the �rst homodyne detection is then

p (m1) = 〈Ψ|
(���m1

〉
p1

〈
m1

��� ⊗ I2
)
|Ψ〉 . (5.35)

This can be rewritten as

p (m1) =

∫
dx |ψp (m1 − x ) |

2 × ���M 〈x |q â |α ,k〉
���
2

(5.36)

where ψp (s ) is the wave function of the input state in momentum representation. The
expressions for the probabilities at the second and third steps are obtained replacing ��ψ

〉
with T̂e� (α1,k,m1) ��ψ

〉 and T̂e� (α2,k ,m2) T̂e� (α1,k,m1) ��ψ
〉 respectively. If the input state is

a Gaussian pure state or a Fock state, the integrals can in principle be computed analyti-
cally. In fact, for these input states, the integrand is always of the form G (x ) Q (x ) where
G (x ) is the exponential of a second-order polynomial and Q (x ) is a polynomial. A change
of variable x = x (y) allows to replace G (x ) with a centered Gaussian distribution G̃σ (y)
of standard deviation σ , depending on α , k , m1 and the input state. This also maps the
polynomial to

Q̃ (y) =
∑
n

γny
n, (5.37)
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with coe�cients γn depending on α , k ,m1 and the input state. The integral in Eq. (5.36) then
takes the form

p (m1) =
∑
n

γnµn (5.38)

where µn is the nth moment of G̃σ (y)

µn =



0 if n is even
σn (n − 1)!! if n is odd.

(5.39)

This is clearly still true for the second and third stage of the protocol, in which case the
input state is T̂e� (α1,k ,m1) ��ψ

〉 and T̂e� (α2,k ,m2) T̂e� (α1,k ,m1) ��ψ
〉 respectively.

Fidelity

Once p (m) is computed, we can compute the �delity. Plugging Eq. (5.31) into Eq. (5.7), we
see that the square of the �delity of the output state obtained post-selecting on homodyne
outcomes within the acceptance region is the average of the square of the �delity for the
single outcomes weighted with the respective probability

F 2
Ω =

∫
Ω

d3m
p (m)

pΩ
F (m)2 (5.40)

with
F (m) = ���

〈
ψ �� e−iνq̂

3
Te� (m) ��ψ

〉��� . (5.41)

5.3.4 Targeting the cubic phase gate
As anticipated, we target a cubic phase gate. Fig. 5.4 shows the �delity of the approximated
cubic phase gate with the ideal one for Fock states and coherent states input. In the plot, the
lines represent the �delity obtained by supposing that the perfect outcome corresponding to
the desired λ are obtained at each iteration, for various squeezing levels ranging from 1 to 20
dB. As it should result, in the high squeezing limit (blue curve) the �delity closely resembles
to that of the �delity between the polynomial approximation and the cubic phase gate (solid
blue curve in Fig. 5.2), because �nite squeezing e�ect are negligeable in the implementation
of our gate in this case.

However, one sees that despite being a closer approximation to the polynomial, the
e�ective gate obtained using higher squeezing ancillae turns out not to be a better approxi-
mation of the target gate. As discussed in Sec. 5.1, this is due to the fact that the polynomial
itself di�ers from the target gate far from the origin, growing inde�nitely for large q. This
di�erence is attenuated faster by the Gaussian envelope if the squeezing is lower (see also
discussion in Sec. 5.4.4).
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Figure 5.4: Method 1: �delity between the state obtained applying the approximate cubic
phase gate ei0.1q̂3 and its polynomial approximation built from three sequential applications
of the circuit Eq. (5.29) to Fock states (a) and coherent states (b). The lines are obtained for
the speci�c triple of homodyne outcomes realizing the exact polynomial. The solid red line
was obtained for 1 dB of squeezing in the ancilla, the orange dashed line for 5 dB, the cyan
dot-dashed line for 10 dB and the blue dotted line for 20 dB. The orange squares represent
the �delity by post-selecting on the three homodyne outcomes in the acceptance region
de�ned by δ = 0.1 and using a 5 dB squeezed ancilla, while the triangles represent the same
but for δ = 0.5.

Next, we evaluate the �delity in the case where a �nite acceptance region is considered
for the outcomes of the homodyne measurement. Although it is possible, in principle, to
compute the success probability analytically for coherent and Fock states input (see Ap-
pendix 5.3.3), the calculation of the �delity is in general computationally heavy. We then
estimated it with a numerical integration method, which we could only carry out for coher-
ent states and the single photon state.

We notice that for coherent states containing up to ten photons, the �delity is higher
when the post-selection occurs in a �nite region, rather than on a single point. This counter-
intuitive e�ect may be due to the complex interplay between the Gaussian envelope ap-
pearing in Eq.(5.30) and the measurement outcomes in the post-selected region. However,
as expected, the �delity then degrades when a larger region is considered. For the single
photon case the e�ect of post-selecting on a �nite region is more detrimental.

5.3.5 State preparation
The probability of measuring all the three outcomes in the acceptance region can be very
low (of the order of 10−9 or smaller in the examples considered), which makes this protocol
hardly realizable in the lab. The success probability can however be improved having some
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a priori information on the input state. This is due to the fact that the value of λ in each
monomial depends on the combination of the displacement in the ancilla and the homodyne
outcome. Namely, from Eq. (5.29) one sees that the measurement outcome for which the
correct monomial is achieved is given by

mo = −Re [λ (α ,k,m)] −
( 2
k2 − 2

)
q0. (5.42)

Since the probability of the outcomes depend on the displacement in the ancilla, one could,
knowing the input state, choose the value of the displacement that maximizes the probability
of getting the corresponding outcomemo . This way success probabilities of the order of 10−4

can be achieved.
Ideally, any method for applying a quantum gate should be independent of the input

state, but this optimized protocol can be used to improve the generation rate of a resource
state. For example, instead of directly applying a cubic phase gate, one could produce an
approximated cubic phase state, de�ned as

��γ (ν )
〉
= γ̂ (ν ) |0〉p (5.43)

by using three sequential applications of Eq. (5.29) to an input squeezed state. The cubic
phase state may then be used to apply the cubic phase gate with a further teleportation gate
[Gu 09].

Fig. 5.5 shows the contour plot of the Wigner functions obtained applying to a 5 dB
squeezed state (a) the ideal cubic phase gate, (b) its polynomial third order approximation
and (c) our iterative protocol for exact measurement outcomes. The marked di�erence be-
tween (a) and (b) stems as a result of the polynomial approximation, as is also illustrated
in Fig. 5.1. Three regions of negativity of the Wigner function obtained with the polyno-
mial approximation are recognizable in Fig. 5.5 (b) and are retrieved with our protocol. The
�delity of the obtained state (c) with the target state (a) is of 0.90.

5.4 Method 2: Single-photon counter

In our second protocol, the main non-Gaussian resource is again a single-photon counter
(SPC). In the previous protocol such a detector was employed to herald the production of
the non-Gaussian ancilla. Here we consider instead a Gaussian ancilla, namely a squeezed
state, and the SPC will replace the homodyne detector. This is represented by the circuit

��ψ
〉

• ��χ
〉

|α ,k〉 • Π̂ 1

(5.44)
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Figure 5.5: Contour plots of the Wigner functions of the states obtained applying (a) the
cubic phase gate for ν = 0.1 (b) its polynomial approximation (hence these two �gures
are independent on our protocols), (c) method 1 for exact measurement outcomes and (d)
method 2, all of them for a 5 dB momentum-squeezed state as input state.
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Note that the detection happens this time on the second mode. The positive-operator-valued
measure (POVM) Π̂ needs not be a full-�edged photon counter, but should be able to distin-
guish between no photons, one photon or more than one photon impinging on the detector.
This allows to project on the one-dimensional subspace spanned by the single photon state.
Such a detector is slighly more re�ned than a plain “click" detector, that would only distin-
guish any number of photons from vacuum, causing the output state to be mixed in the case
of a detection event.

The projection on the single photon state applies instead an e�ective transformation
similar to the one derived in Sec. 5.3, as we shall see in the next section.

The output state ��χ
〉 of circuit (5.44) reads

��χ
〉
∝ 〈1|2 ĈZ

��ψ
〉
1 |α ,k〉2 . (5.45)

The e�ective transformation acting on the input state ��ψ
〉
1 may be written as (neglecting

normalization) 〈1|2 ĈZ |α ,k〉2 which is an operator on the Hilbert space of the �rst mode.
This expression is the adjoint of that studied in [Park 14], so we expect it to induce a similar
dynamics on the input state. We shall see that this is actually the case. On the other hand the
physical interpretation is rather di�erent. In Ref. [Park 14] the e�ective transformation is
obtained entangling a single photon with the input state and then projecting on a squeezed
state. This can be done with heterodyne detection [Leonhardt 97]. This implies a projection
on a continuous space, leading again to a trade-o� between �delity of the gate and success
probability, as was the case for our �rst protocol. Projecting on a single photon, instead,
allows for actual post-selection, since it corresponds to a well de�ned one-dimensional sub-
space, and no averaging is needed to obtain a non-zero success probability.

5.4.1 Derivation of the e�ective transformation
Using Eqs. (5.19) and (5.20), the output state is evaluated as

��χ
〉
∝ 〈1|2 ĈZ

��ψ
〉
1 |α ,k〉2

= 〈1|2 ĈZ

∫
dsdtψ (t ) σα ,k (s ) |t〉q1 |s〉q2

∝

∫
dtI (t )ψ (t ) |t〉q1

(5.46)

with
I (t ) =

∫
dsσα ,k (s ) se−

s2
2 +ist . (5.47)

Evaluating the integral I (t ) we are left with a function of t that can be taken out of the
integral using again I (q̂) |t〉q = I (t ) |t〉q . We then have

��χ
〉
∝ Ẑ

( 2q0
2 + k2

)
e
−

(
k2

4+2k2

)
(q̂+p0)

2 (
q̂ −

2i
k2q0 + p0

)
��ψ

〉
. (5.48)

116



CHAPTER 5. POLYNOMIAL APPROXIMATION OF NON-GAUSSIAN UNITARIES

As in the case of the �rst protocol, we can modify the circuit (5.44) adding a corrective
displacement to the output state and de�ne the e�ective transformation T̂e� via

��ψ
〉

• Ẑ †
(

q0
2+k2

)
T̂e� ��ψ

〉
|α ,k〉 • Π̂ 1

(5.49)

so that it takes the form

T̂e� = Ñ exp
{
−

(
k2

4 + 2k2

)
(q̂ + p0)

2
} (

q̂ − λ (α ,k )
)

(5.50)

where Ñ is a normalization factor that depends on the input state and experimental param-
eters and

λ (α ,k ) =
2i
k2q0 − p0. (5.51)

The e�ective transformation in Eq. (5.50) is remarkably similar to that obtained in (5.30) for
our �rst protocol. A �rst di�erence comes from the fact that the exponential attenuation
becomes negligible in the limit k → 0, corresponding to in�nite squeezing in the position
operator. Again, the required displacementq0 depends on the amount of squeezingk . Unlike
the �rst method, this does not have an e�ect on the Gaussian envelope but it does in�uence
the success probability, as higher values for the displacement imply a larger average photon
number. At some point, this will in turn imply a smaller probability to measure exactly
one photon in the second mode. The other important di�erence is that now, due to the
absence of homodyne measurement, no random number appears in the de�nition of λ (α ,k ).
This means that once a single photon impinges on the detector, the complex number in the
monomial is completely determined by the experimental parameters α and k .

5.4.2 Gate �delity and success probability
In this case, contrary to method one, there is no projection on a continuous space, and thus
no need to dicretize the space of outcomes to obtain a physical result. However, the e�ective
transformation obtained chaining several times the process in circuit (5.49) cannot match
exactly the desired unitary transformation. This is due, on the one hand, to the fact that we
anyway only e�ect a polynomial approximation of a unitary. On the other hand, each step
adds a Gaussian envelope attenuating the wave function. Furthermore, detecting a single
photon is by itself a probabilistic process 3. Therefore, a non-unit success probability is
associated with the implementation of the desired transformation.

3Note that the photon subtraction needed to produce the ancillae for method one is probabilistic. There,
however, we assumed photon subtractes squeezed states were available. Including the probability of photon
subtraction would further decrease the success probability.
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To assess the quality of the transformation we consider again the example of the cubic
phase gate when the input states are either Fock states or coherent states. Speci�cally,
for each input state ��ψ

〉 we compute the �delity (the overlap) between the state obtained
applying the target unitary and the state obtained chaining circuit (5.49) three times, by
means of Eq. (5.8), as well as the success probability of the protocol. We assume k to be �xed
and compute the values of α such that λ (α ,k ) matches the coe�cients in the factorization
of the Taylor expansion in Eq. (5.10).

5.4.3 Calculation of the success probability
We �rst focus on one realization of the circuit Eq. (5.49). The two-mode state after the CZ

is now
|Ψ〉 = ĈZ

��ψ
〉
1 ⊗ |α ,k〉2 . (5.52)

The probability of detecting n photons is given by

p (n) = 〈Ψ| (I ⊗ |n〉2〈n |) |Ψ〉 (5.53)

with |n〉2〈n | the projector on the n-photons Fock state of the second mode. Using Eq. (5.19),
one gets with a few lines of algebra

p (n) =

∞∫
−∞

dx ��ψ (x )��2 ×
���〈n |e

ixq̂ |α ,k〉���
2
. (5.54)

The probability p (1) of detecting a single photon at the �rst step is obviously computed
with the initial state as input state and setting α = α1. At the second step, the input state is
T̂e� (α1,k ) ��ψ

〉, assumed to be normalized. Similarly, the probability of a single photon detec-
tion at the third step has to be computed by taking as input the normalized state obtained
applying T̂e� (α2,k ) T̂e� (α1,k ) to ��ψ

〉. The success probability of the three-steps protocol is
given by the product of these three numbers.

5.4.4 Targeting the cubic phase gate
The results for the �delity of the polynomial approximation of the cubic phase gate obtained
with method two are shown in Fig. 5.6. As it was found for the �rst protocol, the high-
squeezing case reproduces the blue solid curve of Fig. 5.2, i.e. the �delity of the polynomial
approximation with the target cubic phase gate. The �delity decreases at increasing mean
photon number for both Fock and coherent input states.

As anticipated in Sec.5.1 (and consistently with the discussion of Fig. 5.2), this is due to
the fact that the larger the support of the input wave-function is, the more pronounced is
the error intrinsic to the polynomial approximation. This e�ect is sort of smoothened by
the Gaussian envelope caused by �nite squeezing that appears in Eq. (5.50): this Gaussian
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Figure 5.6: Method 2: �delity between the states obtained applying either the actual cubic
phase gate ei0.1q̂

3 or its polynomial approximation obtained with three sequential realiza-
tions of the circuit Eq. (5.49) to (a) Fock states and (b) coherent states. The solid red line
was obtained for 1 dB of squeezing in the ancilla, the orange dashed line for 5 dB, the cyan
dot-dashed line for 10 dB and the blue dotted line for 20 dB.

envelope indeed suppresses the tails of the polynomial and hence yields counter-intuitively
to a better �delity for intermediate (Fig. 5.6, orange-dashed curve) rather than high (Fig. 5.6,
blue-dotted curve) squeezing values.

The gate success probability is the product of the probabilities that a single photon is
detected at each step. The results are plotted in Fig. 5.7. The success probability is higher
with respect to the �rst protocol, being of the order of 10−5 − 10−2 if the squeezing of the
ancilla is between 1 and 10 dB.

The probability of detecting a single photon at each iteration of the protocol is lower at
larger mean photon number in the input state. As a consequence, also the success probabil-
ity of the gate decreases with larger mean photon number (Fig. 5.7). The number of photons
in the ancillary squeezed states also participates to this e�ect: at too high squeezing, the
probability of detecting a single photon at each iteration of the protocol is considerably low,
so the overall success probability is also low.

We conclude that intermediate values of the squeezing in the ancillary squeezed state
(between 0 and 5 dB for the gate we studied) are optimal for both �delity and success prob-
ability. For these values, both �delity and success probability are reasonably good for input
states containing few photons (say up to four), and indicate that our protocol can be ex-
ploited experimentally for implementation of the cubic phase gate.
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Figure 5.7: Method 2: success probability of three sequential applications of the circuit
Eq. (5.49) to (a) Fock states and (b) coherent states. The solid red line was obtained for 1 dB
of squeezing in the ancilla, the orange dashed line for 5 dB, the cyan dot-dashed line for 10
dB and the blue dotted line for 20 dB.

5.4.5 State preparation

As done for the �rst protocol that we have presented, we target the preparation of a cubic
phase state by applying the protocol outlined above to an input squeezed state. We present
the obtained state in Fig. 5.5 (d), where again we compare it to the Wigner function of the
corresponding state obtained with a perfect cubic phase gate (a) as well as its polynomial
approximation (b). Our protocol results in a �delity between the retrieved state (d) and the
corresponding cubic phase gate of 0.93.

5.5 Conclusions
In summary, we have presented two probabilistic protocols for engineering arbitrary evolu-
tions diagonal in the amplitude quadrature of a single mode of the electromagnetic �eld, by
means of a polynomial approximation. These were obtained by chaining elementary build-
ing blocks, each exploiting entanglement of the system with an ancilla and measurement.
All these operations may be achieved with existing technology. The spirit of our protocols
is similar to that of [Park 14], of which they represent an alternative. Which one to choose
depends on the experimental conditions.

As an example, we refer to the experiments with frequency combs outlined in [Roslund 14]
in which the relevant squeezed modes are linear combinations of frequency modes. In that
case heterodyne detection of one mode would destroy the whole state, while it has been
shown theoretically [Averchenko 16, Averchenko 14] as well as experimentally [Ra 17] that
one or possibly more photons can be subtracted from or added to a set of squeezed modes
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preserving the multimode state, allowing for an implementation of our �rst protocol.
However, as we have seen the typical success probabilities of this protocol are prohibitive

for its actual successful implementation. Despite this fact, this protocol still retains a con-
ceptual interest in the context of recent proposals for sub-universal models of quantum
computation, such as CV Instantaneous Quantum Computing [Douce 17]. In the latter pro-
tocol, polynomial evolutions diagonal in the quadrature q̂ are required as building blocks,
and homodyne detections of the p̂ quadrature are performed.

Beyond the apparent match of these tools with the elements required for the implemen-
tation of our �rst protocol, the proof of hardness of this computational model builds on
post-selection used as a mathematical trick, and therefore low success probability is not a
critical issue.

The second protocol that we have presented uses single photon detection at the stage
of the measurement, and results in more realistic success probabilities for a variety of input
states. Therefore, it is a sensible candidate for implementations of higher-than-quadratic
evolutions in the amplitude quadrature representation. Also, it could be embedded in a
Measurement-Based quantum computing procedure based on the use of cluster states. This
would yield an architecture where the required higher-than-quadratic order evolutions, e.g.
cubic, are probabilistically implemented by means of single-photon detection on suitably
chosen cluster nodes.
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This last chapter is devoted to quantum secret sharing protocols exploiting CV quantum
systems. Secret sharing schemes, �rst introduced by Shamir [Shamir 79] are cryptography
protocols in which an agent, called the dealer, distributes information to a set of players in

123



such a way that only certain authorized subsets of them, called access parties, can retrieve
the original message (the secret), but in order to do this they have to collaborate. The unau-
thorized subsets, collectively designed as the adversary structure, on the other hand, get no
information about the secret.

The principle can easily be undestood with a simple classical example: the dealer, Al-
ice, holds a secret string of bits x and there are only two players, Bob and Charlie. Alice
generates a random string of bits y and computes z = x ⊕ y, where ⊕ denotes the bitwise
sum modulo two. Alice then sends y to Bob and z to Charlie. The probability that either
Bob or Charlie guess x from their respective strings is not higher than the probability that
a randomly generated string is equal to x , thus their respective shares individually contain
no information about x . On the other hand, if they collaborate, they can retrieve x exactly
by computing y ⊕ z = x . In this example, the only access party is composed of both Bob
and Charlie, while the adversary structure is either of the two alone.

In quantum secret sharing protocols, classical or quantum information is encoded in
quantum states. Quantum secret sharing was �rst introduced for the DV case in [Cleve 99].
A CV protocol based on squeezed states and optical interferometry was later described in
[Tyc 02] and [Tyc 03] (see also [Tyc 07] for a pedagogical introduction).

Reconstruction of the secret can have several meanings in the quantum case. Assuming
the dealer encodes information in a state ρ, we can de�ne reconstruction as a procedure
that allows access parties to perform a tomography of ρ over many runs of the protocol.
Alternatively, reconstruction can be de�ned as a procedure that each access party can carry
out to prepare a quantum system in the state ρ. We will refer to the latter setting as quantum
state sharing.

We will assume that the secret consists of the state of a single mode of the EM �eld, which
is encoded in a multimode entangled state by the dealer who then distributes a mode to each
player. We will focus on so called (k ,n) threshold schemes, in which the number of players
is n and any set of k players is an access party, while the adversary structure is composed by
all subsets of less than k players. For quantum state sharing, (k ,2k − 1) threshold schemes
are the most relevant class to study. In fact, if these protocols can be realized, then the dealer
can also implement protocols with n < 2k − 1 by discarding n − 2k + 1 modes. Protocols
with n > 2k − 1, instead, are forbidden by the no-cloning theorem, for if such schemes
were possible, then two disjoint sets of players could reconstruct the secret quantum state,
e�ectively creating two copies of it.

Quantum secret sharing prococols can also be seen as quantum error correction codes
called erasure codes: the state of a single mode is encoded in a 2k − 1-modes system, from
which it can later be extracted, even up to k − 1 modes are lost. However, secret sharing
schemes must also satisfy the additional condition that unauthorized sets get no information
about the secret.

We �rst review the protocol outlined in [van Loock 11] for error correcting codes based
on CV cluster states. General secret sharing schemes with CV cluster states were also stud-
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ied in [Lau 13]. We then present an original contribution consisting in the translation of the
protocol to the setting of SPDC of frequency combs. The adaptation of the theoretical pro-
posal was the base for an experimental proof of principle of a (3,5) secret sharing scheme.
The experiment was described in [Cai 17]. Formulating the protocol in a di�erent language
also led to the derivation of general conditions for quantum state sharing protocols in CV
with squeezed states, linear optical networks and unitary Gaussian decoding procedures.
Speci�cally, I was able to show that for almost all linear networks (in the sense of Haar
measure), a (k ,2k − 1) protocol can be performed using 2k −1 squeezed states and Gaussian
decoding. These original results are not yet published.

6.1 A protocol for quantum secret sharing with CV clus-
ter states

The starting point of our investigations is the scheme proposed in [van Loock 11]. Although
we use a di�erent language, the results are the same. The scheme uses 2k-modes cluster
states to perform a (k ,2k − 1) threshold scheme to share a single-mode secret state. The
procedure works for any k with obvious modi�cations, but for consistency with the next
section we only describe in detail the case k = 3. We will also restrict in this section to the
in�nite squeezing case using ideal cluster states constructed from momentum eigenvectors.
The imperfections due to the unavoidable use of not in�nitely squeezed states will only be
discussed in later sections.

6.1.1 Shifted cluster states
First, we need to set some notations. Consider the (ideal) �ve-modes ring cluster state |G〉
in Fig. 6.1a. As explained in Chap. 2, this can be obtained as

CZ

[
VG

] (
|0〉⊗5

p

)
(6.1)

with the adjacency matrixVG connecting each of the �ve modes on the ring to the following
one

VG =

*......
,

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

+//////
-

. (6.2)

|G〉 is the simultaneous eigenstate with eigenvalue zero of all the nulli�ers

N (j ) = pj −
5∑

l=1
VG
jl ql . (6.3)
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Figure 6.1: Depiction of the states used for the secret sharing protocol. (a) The �ve-modes
ring cluster state |G〉, from which the shifter graphs |G (x )〉 can be obtained by local dis-
placements. (b) The six modes cluster state that the dealer can use to share the secret state
with the players. (c) Schematic representation of the encoding procedure: the dealer couples
the sixth mode at the center of the cluster with the secret s in a balanced beam splitter and
measures the quadratures qs and p6 of the output modes by homodyne detection, e�ectively
teleporting the secret state onto the ring.

Let us now de�ne the "shifted" cluster state after a momentum boost in modes one to �ve
|G (x )〉 as

|G (x )〉 = *
,

5∏
l=1

Zl (x )+
-
|G〉 . (6.4)

withZl (x ) = eixql . Using the relationZl (x )
† pjZl (x ) = pj+δjlx we haveZl (x )

† N (j ) Zl (x ) =
N (j )+δjlx which shows that |G (x )〉 is an eigenstate of the nulli�ers with eigenvalue x , since

N (j ) |G (x )〉 = N (j ) *
,

5∏
l=1

Zl (x )+
-
|G〉 (6.5)

= *
,

5∏
l=1

Zl (x )+
-

*
,

5∏
l=1

Zl (x )
†+

-
N (j ) *

,

5∏
l=1

Zl (x )+
-
|G〉 (6.6)

= *
,

5∏
l=1

Zl (x )+
-

[N (j ) + x] |G〉 = *
,

5∏
l=1

Zl (x )+
-
x |G〉 = x |G (x )〉 . (6.7)
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6.1.2 Encoding the secret
Suppose now the dealer couples a sixth in�nitely p-squeezed mode to each mode on the
ring. Using the position representation of the in�nitely p-squeezed state |0〉p6

|0〉p6 =

∫
ds |s〉q6 (6.8)

and the relation
eiq6ql |x〉q6 |0〉pj = eixql |x〉q6 |0〉pj = |x〉q6 Zl (x ) |0〉pj (6.9)

where x is a real number, we can write the six-modes state as

|H 〉 = *
,

5∏
l=1

eiq6ql +
-
|0〉p6 |G〉 =

∫
dx |x〉q6 |G (x )〉 . (6.10)

This is in fact the six-modes cluster state shown in Fig. 6.1b corresponding to the adjacency
matrix

VH =

*.........
,

0 1 0 0 1 1
1 0 1 0 0 1
0 1 0 1 0 1
0 0 1 0 1 1
1 0 0 1 0 1
1 1 1 1 1 0

+/////////
-

. (6.11)

The dealer can use this state to teleport a secret state ��ψ
〉
s , encoded in a single mode which

we label with the letter s , onto the ring. This can be realized mixing the mode s and the
central mode in a balanced beam splitter and measuring the q quadrature on the output
corresponding to s and the p quadrature on the output corresponding to the sixth mode.
The dealer then broadcasts the outcomes to all the players. The state of the remaining �ve
modes can be computed as follows.

Let us call U (6s )
BS the unitary operator of the beam splitter between the modes 6 and s . It

acts on the position eigenstates of the two modes as [Leonhardt 97]

U (6s )
BS |x〉q6

��y
〉
qs
=

�����
x + y
√

2

〉
q6

�����
x − y
√

2

〉
qs

(6.12)

so, given the position representation of ��ψ
〉
s

��ψ
〉
s =

∫
dy ψ (y) ��y

〉
qs
, (6.13)

we can write the state of the seven modes after the coupling as

U (6s )
BS

��ψ
〉
s |H 〉 = U

(6s )
BS

∫
dx dy ψ (y) |x〉q6

��y
〉
qs
|G (x )〉 (6.14)

=

∫
dx dy ψ (y)

�����
x + y
√

2

〉
q6

�����
x − y
√

2

〉
qs

|G (x )〉 (6.15)
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We now show that if the dealer measures qs and p6 the state ��ψ
〉 is e�ectively teleported on

the ring. As it will turn out, even if the outcomes are random, the teleportation is determin-
istic, modulo a Gaussian unitary correction depending on the outcomes that can be undone
if the results are known, as in standard CV teleportation.

First, suppose the dealer gets the outcome ms measuring qs . The state of the remaining
six modes is then (up to a normalization factor)

〈ms |qs U
(6s )
BS

��ψ
〉
s |H 〉 ∝

∫
dx dy ψ (y)

�����
x + y
√

2

〉
q6

δ

(
ms −

x − y
√

2

)
|G (x )〉 (6.16)

∝

∫
dy ψ (y) ���

√
2y +ms

〉
q6

���G
(
y +
√

2ms

)〉
(6.17)

where we used 〈u |qs |v〉qs = δ (u −v ), withδ (u −v ) the Dirac delta, and the relationδ (αu) =
δ (u) / |α | for a real number α . Analogously, if the dealer measures p6 and gets outcomem6,
using the relation 〈u |p6 |v〉q6 = exp (−iuv ) /

√
2π , we can write the state |Φ〉of the �ve modes

on the ring as

|Φ〉 ≡ 〈m6 |p6 〈ms |qs U
(6s )
BS

��ψ
〉
s |H 〉 ∝

∫
dy ψ (y) exp

(
im6

(√
2y +ms

)) ���G
(
y +
√

2ms

)〉
(6.18)

∝

∫
dy ψ (y) exp

(
im6
√

2y
) ���G

(
y +
√

2ms

)〉
. (6.19)

Although it may not look obvious from this equation, this state contains all the information
about ��ψ

〉. To make it more explicit we may introduce the logical operators

QL = N (j ) (6.20)

PL =
5∑

l=1
ql (6.21)

(6.22)

where N (j ) is any of the nulli�ers of the cluster state |G〉. We see then that |G (x )〉 is an
eigenstate of QL and de�ning XL (x ) = exp (−ixPL) we can rewrite Eq. (6.4) as

|G (x )〉 = X †L (x ) |G〉. (6.23)

The state |Φ〉 can then be written in the compact form

|Φ〉 ∝ X †L

(√
2ms

)
exp

(
im6
√

2QL

) ∫
dy ψ (y) ��G (y)

〉 (6.24)

= X †L

(√
2ms

)
ZL

(√
2m6

) ∫
dy ψ (y) ��G (y)

〉 (6.25)
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where for the last line we de�ned ZL (u) = exp (iuQL). Supposing the operations X †L and ZL

could be undone, then we see that the measurement outcomes of QL on the corrected state
|Φc〉

|Φc〉 ≡ ZL

(√
2m6

)
X †L

(√
2ms

)
|Φ〉 =

∫
dy ψ (y) ��G (y)

〉 (6.26)

follow the same probability distribution as the outcomes that would be obtained measuring
qs on ��ψ

〉
s . Similarly PL gives rise to the same distribution as ps .

6.1.3 Secret state recovery
To reconstruct the secret, an access party must be able to sample from the distributions of
QL and PL. This would allow the access party to perform a tomography of the secret state ��ψ

〉
over many runs of the protocol. Since ZL and XL only amount to translations of the logical
operators, it is su�cient to sample QL and PL on |Φ〉 and account for the displacements.
More precisely we have 1

X †L

(√
2m6

)
QLXL

(√
2m6

)
= QL +

√
2m6 (6.27)

ZL

(√
2ms

)
PLZ

†

L

(√
2ms

)
= PL −

√
2ms (6.28)

so undoing ZL

(√
2ms

)
X †L

(√
2m6

)
and then measuring QL has the same outcome as mea-

suring QL and adding
√

2m6, and similarly for PL. Note that it is crucial that the dealer
broadcastsms andm6.

It is clear that if all the players collaborate, they can measure the logical operators. We
now show that the protocol is actually a (3,5) threshold protocol, since any group of three
or more players can measure the logical operators as well. This readily follows from the
observation that for any a, b = 1, 2, ..., 5 we have

[N (a) − N (b)] ��G (y)
〉
= (y − y) ��G (y)

〉
= 0 (6.29)

so measuring operators of the form

Q′L = QL + [N (a) − N (b)] (6.30)
P ′L = PL + [N (a) − N (b)] (6.31)

on the state |Ψ〉 leads to the same statistics as QL and PL. It follows that Q′L and P ′L are valid
logical operators as well. We claim that any group of three or more players can construct
operators of this form that only involve quadratures of the modes of the access party. To
�x the ideas, consider the access party composed of players one, two and three. As Q′L they
can simply use the nulli�er N (2) = p2 − q1 − q3. As for P ′L, they can set

P ′L = PL + [N (1) − N (2)] + [N (3) − N (2)] = p1 + 3q1 − 2p2 + p3 + 3q3. (6.32)
1Note the analogy to the discussion about Gaussian transformations in CV-MBQC in 2.1.6.
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Since both Q′L and P ′L are linear combinations of local quadrature operators of each player,
the access party can perform a tomography doing local homodyne measurements and then
sharing the results with the other players in the party.

The strategy is the same for any access party composed of contiguous nodes on the
graph. Any set of non-contiguous modes can achieve the same. Thanks to the symmetry of
the graph VG we just need to check this for one non-contiguous access party. Consider for
example players one, two and four. We can readily compute

Q′′L = N (4) + [N (1) − N (4)] + [N (2) − N (4)] = p1 − q1 + p2 − q2 − p4 (6.33)
P ′′L = PL + [N (4) − N (1)] + [N (4) − N (2)] = −p1 + 2q1 − p2 + 2q2 + 2p4 + q4 (6.34)

that contain only quadratures from the access party.
In fact, each access party can also construct a (multimode) physical operation that leaves

one of their modes in the secret state ��ψ
〉, but we will only prove this in the more general

setting of section 6.3.

6.1.4 Unauthorized sets get no information

In the previous subsection we showed that the secret state can be reconstructed by any
group of three or more players. This proves that the devised strategy allows to achieve
error correction in the following sense: since the secret is encoded in �ve modes but can be
reconstructed with any three of them, if up to two modes are lost or corrupted, the others
still encode for the full information. We then have what we could call a "mode erasure
correcting code". Secret sharing requires in addition that no unauthorized set of players get
any information about the secret state. Again, we will only formalize this in section 6.3.
However, that this is the case can be intuitively understood as follows.

Eliminitating the quadratures that do not belong to a given set of players means �nding
a linear combination of the equations de�ning the logical quadratures and the nulli�ers in
which the coe�cients of external quadratures are all zero. This amounts to solving a linear
system, whose unknowns are the coe�cients in the aforementioned linear combinations.
The system can always be solved for groups of three or more players. Any group of two
players needs to satisfy two more equations, because they have to put to zero the coe�-
cients of two more quadratures. As a consequence, the system is overdetermined and has
no solution. This is also true considering each player alone.

The fact that unauthorized sets cannot get rid of all external quadratures re�ects the fact
that they cannot disentangle their state from the modes of the other players. This implies
that in all attempt to sample from the statistics of the logical operators they will get excess
noise. Since we are dealing with the in�nitely-squeezed case, each measurement outcome
will contain a contribution from a (classical) random variable which is uniformly distributed
between −∞ and∞, so they get no information about the secret.
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6.1.5 Alternative encoding

In the protocol we outlined above, there is an overhead of one mode to encode the secret
state on the ring of modes which are distributed to the players. This makes the encoding
more similar to the standard way of coupling an input state to a cluster in MBQC [Ukai 10].
There may also be practical advantages: for example the dealer may prepare the six-modes
cluster in Fig. 6.1b o�ine and distribute the modes to the players before the input state is
coupled to it, or even before the resource state has been produced 2. On the other hand, in
proof of principle demonstrations such as that described in the next section, using a mode for
the encoding alone may compromise the feasibility and the result, since, in practice, adding
a mode also increases the amount of noise and losses. The overhead and the additional noise
can be avoided by directly coupling the secret state to the ring, either withCZ gates or linear
optics.

Consider the �rst case: the dealer prepares the state |G〉 on �ve modes and couples a
mode in the secret state ��ψ

〉
s to each of them with a CZ gate. The result is an equation

similar to Eq. 6.10

*
,

5∏
l=1

eiq6ql +
-

��ψ
〉
s |G〉 =

∫
dx ψ (x ) *

,

5∏
l=1

eixql +
-
|x〉q6 |G〉 (6.35)

=

∫
dx ψ (x ) |x〉q6 |G (x )〉 . (6.36)

If the dealer measures ps getting outcomems , the state of the �ve modes is

〈ms |ps
*
,

5∏
l=1

eiq6ql +
-

��ψ
〉
s |G〉 ∝

∫
dx ψ (x ) e−imsx |G (x )〉 = Z † (ms )

∫
dx ψ (x ) |G (x )〉 (6.37)

and the decoding procedure works as before, except now only one correction operator is
needed (Z (ms )).

6.2 Heisenberg picture and anExperimental proof of prin-
ciple coupling the secret with linear optics

We outline now an experiment emulating a �ve-partite secret sharing protocol inspired by
the alternative scheme described in subsection 6.1.5. In the experiment, the (not in�nitely)
squeezed modes are the supermodes of the SPDC of a mode-locked laser and the interaction
between modes is replaced by a mode-basis change. The di�erences with the theoretical pro-
posal outlined in the previous section are most easily dealt with in the Heisenberg picture.

2Although this may require a quantum memory.
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LINEAR OPTICS

In particular, this allows us to use the same language that was adopted in other chapters
of the thesis to describe experiments with optical frequency combs. This section presents
the original theoretical contribution that resulted in the adaptation of the secret sharing
protocol to the experimental setting.

All the results of the present section were published in [Cai 17].

6.2.1 Encoding

Let us start start by considering the experimentally reconstructed six leading supermodes of
a broad-band SPDC process pumped with a mode-locked laser delivering Gaussian pulses in
the temporal and spectral domain. If the output of the SPDC is measured through multi-pixel
homodyne detection, reconstructed squeezed modes can be found from the experimental
covariance matrix in the frexel basis with the same method used in subsection 3.6.3.

We denote by a
sqz
l

the annihilation operators of these modes. The sixth supermode,
in particular,encodes the secret state. In order to adapt the protocol of [van Loock 11] to
the experimental capabilities accessible at LKB, the coupling between the six modes is ob-
tained through a linear optics transformation. In practice, this is implemented by means
of a change of basis (See 1.2.5). The modes after the encoding, with annihilation operators
anet
l

, are linear combinations of the squeezed modes. The linear combinations correspond
to the matrixUH used to build the cluster state in Fig. 6.1b within the linear optics approach
described in subsection 2.2.2. We have:

anet = UH ·

*.........
,

a
sqz
1

a
sqz
2

a
sqz
3

a
sqz
4

a
sqz
5
as

+/////////
-

(6.38)

where asqz
l

for l ranging from 1 to 6 is the Heisenberg picture operator of the i-th squeezed
supermode.

6.2.2 Decoding

We consider a (5,3) threshold scheme: any set of three or more players is an access party.
To �x the ideas, let us consider the access party of players one, two and three. In order to
reconstruct the secret, they have to retrieve the quadratures of the secret state, qs and ps . In
particular, they can do a tomography of the secret if they can measure linear combinations
of the two by e.g. homodyne detection. This is in turn possible if they can �nd linear com-
binations of their quadratures that contain the secret quadratures and the squeezed ones,
but not the anti-squeezed quadratures. This would ensure that when the initial squeezing
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goes to in�nity the statistics of the measurements are precisely those of the secret state. The
solution (if it exists) depends on the unitary matrix UH . If a solution exists, it means that
the access party can measure operators of the form

q (123) =
3∑
j=1

mjq
net
j +

3∑
j=1

nlp
net
j + p

dealer = qs +
5∑
j=1

ajp
sqz
j (6.39)

p (123) =
3∑
j=1

kjq
net
j +

3∑
j=1

ljp
net
j + p

dealer = ps +
5∑
j=1

bjp
sqz
j . (6.40)

where pdealer = p6 is the mode that the dealer keeps after the encoding procedure, and
mj , nj , kj , lj , aj , bj are real coe�cients. We now show how these linear combinations can
be found with the linear network we used.

Let us start from the coupling matrix. The real part X of the matrixUH used in equation
(6.38) is

*.........
,

.6234 .0078 −.1375 −.1375 .0078 −.0591

.0078 .6234 .0078 −.1375 −.1375 −.0591
−.1375 .0078 .6234 .0078 −.1375 −.0591
−.1375 −.1375 .0078 .6233 .0078 −.0591
.0078 −.1375 −.1375 .0078 .6234 −.0591
−.0591 −.0591 −.0591 −.0591 −.0591 .4822

+/////////
-

, (6.41)

and the corresponding imaginary part, Y , is

*.........
,

−.0434 .4268 −.1887 −.1887 .4268 .3641
.4268 −.0434 .4268 −.1887 −.1887 .3641
−.1887 .4268 −.04342 .4268 −.1887 .3641
−.1887 −.1887 .4268 −.0434 .4268 .3641
.4268 −.1887 −.1887 .4268 −.04342 .3641
.3641 .3641 .3641 .3641 .3641 −.2954

+/////////
-

. (6.42)

Its action on the quadrature operator is represented by the symplectic matrix

SH =

(
X −Y
Y X

)
. (6.43)

The network quadrature operators are then obtained as

qnet
l =

6∑
j=1

(
Xl jq

sqz
j − Yl jp

sqz
j

)
(6.44)

pnet
l =

6∑
j=1

(
Yl jq

sqz
j + Xl jp

sqz
j

)
, (6.45)
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which are actually a set of twelve equations expressing the local quadratures given to the
players (l = 1, ...,5) and the dealer (l = 6).

The secret is encoded in the sixth squeezed mode. To explain how the secret quadra-
tures are measured by an access party, let us concentrate on a speci�c one, namely the one
composed by players one, two and three. Players are allowed to measure either the local
position or momentum quadrature, or a rotated version of the two. They may then collab-
orate, combining their outcomes. Moreover, the dealer measures pdealer and broadcasts the
result to all the players. In practice, in the experiment the local quadratures of each access
party and the dealer’s momentum quadrature were measured at the same time by a suit-
able shaping of the local oscillator followed by classical post-processing; nonetheless, we
will detail the procedure to retrieve the secret quadrature in the scenario outlined in this
section. The result is the same.

Let us consider again the access party of players one, two and three. Assume that the
dealer measures pdealer = pnet

6 getting the result µ. As a consequence, Eq.(6.45) for l = 6
becomes a relation between the initially squeezed quadratures and the secret quadratures.
We can use this relation to rewrite one of the anti-squeezed quadratures, say q

sqz
1 in terms

of µ, the �ve remaining anti-squeezed quadratures qsqz
i , and the squeezed quadratures psqz

i .
The �rst three components of both equations (6.44) and (6.45) are rewrritten as (l = 1,2,3)

qnet
l =

6∑
j=2

X ′l jq
sqz
j −

6∑
j=1

Y ′l jp
sqz
j +Aµ (6.46)

pnet
l =

6∑
j=2

Y ′′l jq
sqz
j +

6∑
j=1

X ′′ijp
sqz
j + Bµ, (6.47)

where A and B are real numbers. In order to reconstruct one of the secret quadratures, say
qs = q

sqz
6 , the players need to consider linear combinations of the local operators qnet

l
and

p̂net
l

of the form

q (123) =
3∑

l=1
mlq

net
l
+

3∑
l=1

nlp
net
l

=
6∑
j=2

3∑
l=1

(
mlX

′
l j
+ nlY

′′
l j

)
q

sqz
j

+
6∑
j=1

3∑
l=1

(
nlX

′′
l j
−miY

′
l j

)
p

sqz
j +Cµ

(6.48)

where C is a real number which depends on the coe�cients ml and nl . The goal of the
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players is to �nd coe�cientsml and nl such that




3∑
l=1

(
mlX

′
l j
+ nlY

′′
l j

)
= 0 for j = 2, 3, 4, 5

3∑
l=1

(
mlX

′
l j
+ niY

′′
l j

)
= 1 for j = 6

3∑
l=1

(
nlX

′′
l j
−mlY

′
l j

)
= 0 for j = 6.

(6.49)

If this is veri�ed, q (123) will not contain the anti-squeezed quadratures, and the coe�cient
of the secret momentum quadrature qs is one. If a solution of the linear system (6.49) exists,
the access party has access to the measurement of

q (123) = qs +
5∑
j=1

ajp
sqz
j +Cµ (6.50)

where the aj ’s are �xed by the solution of (6.49). The real number Cµ is known since µ is
broadcasted by the dealer. Thus, with classical post-processing, the access party can mea-
sure

q (123) = qs +
5∑
j=1

ajp
sqz
j . (6.51)

A similar reasoning can be applied to �nd a linear combination of quadratures of the access
party that allows it to measure p (123) . For the experiment, we checked numerically that a
solution exists for both q (123) and p (123) for every possible access party. Also, we veri�ed
that no solution exists when any pair of players is considered. Consequently, no less than
three players can avoid the anti-squeezed quadratures, which spoils a retrieval of the secret
quadrature. From the approach outlined above it is possible to construct a systematic treat-
ment of quantum secret sharing with squeezed states and linear optical networks. This is
the object of the next section. Before we turn to that, let us describe how the input squeezing
re�ects in the quality of the state reconstructed by the access parties.

If instead ofUH we had used a completely general unitary matrix, it is not a priori obvious
that the last equality in Eqs. (6.39-6.40) would hold for some combination of the quadratures
of each access parties. If this is the case, the corresponding linear network can be used for
secret sharing. This is true for the unitary we chose. We will show in Sec. 6.3 that almost
any unitary matrix has this property. It is also possible to show that no solution exist for
these equations when groups of only two players are considered, meaning that any two
players cannot get rid of the anti-squeezed quadratures, so that they only measure noise as
squeezing tends to in�nity.
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6.2.3 Fidelity of the reconstructed state

In order to assess the quality of the simulated quantum network for secret sharing, the noise
was measured (see Eq. 6.55). If we assume that the secret state is Gaussian, measuring the
noise is su�cient to compute the �delity of the state that each access party could reconstruct
through homodyne tomography with the secret state. The results for all 10 possible access
parties are shown in Fig. 6.2a. The �delities obtained for -4 dB (-6.6 dB after correction for
losses), -3 dB (-4.5 dB after correction for losses), and 0 dB (green curve) of squeezing in the
leading supermode are presented. As an additional check, we also give the �delities (black
curves) inferred from the individual squeezing of individual eigenmodes, psqz

l
using a Monte

Carlo simulation.
To compute the �delities, we used the fact that for two single-mode Gaussian states, the

�delity (see Eq. 2.70) can be written [Marian 12]

F =
2

√
A + B −

√
B

exp
[
−αT (Vs +VreS)

−1α
]
, (6.52)

where Vs and VreS are the covariance matrices of the input secret and reconstructed secret,
respectively; A = det(Vs +VreS), B = (detVs − 1) (detVreS − 1); and α is the di�erence of the
mean amplitudes of the two Gaussian states (secret and reconstructed). When the secret is
squeezed vacuum, or when the mean �eld can be retrieved exactly, α = 0, which permits
the �delity to be recast as

F =
2

√
A + B −

√
B
.

(6.53)

The covariance matrix of the reconstructed secret state and of the initial secret are

VreS =

(
∆2q (jkl ) 0

0 ∆2p (jkl )

)
(6.54)

and

Vs =

(
∆2q 0

0 ∆2ps )

)
, (6.55)

respectively, whereVreS was measured shaping the local oscillator to measure the combina-
tion of squeezed quadratures on the right of Eqs. (6.39-6.40) and (jkl ) is any access party.
Since the supermodes are independently squeezed at the beginning, the variances of the
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reconstructed quadratures can also be computed as

∆2q (jkl ) =∆2qs +
5∑

i=1
(ajkli )2∆2p

sqz
i

∆2p (jkl ) =∆2ps +
5∑

i=1
(b jkli )2∆2p

sqz
i .

(6.56)

Fig. 6.2b is obtained from equation (6.56) under the assumption that the secret is a coherent
state and the squeezing ratio between the modes underlying the network is �xed and follows
the same distribution as the experimentally reconstructed squeezed modes. The overall
squeezing is thus adjusted with a common scaling factor. If no squeezing is present in
the resource, the best retrieval �delity among the access parties computed from Eq. 6.2.3
approaches 2/3, which is consistent with the teleportation limit achievable with classical
resources [Grosshans 01]. Likewise, the average �delity approaches 3/5, consistent with
the k/n classical limit for threshold schemes of quantum secret sharing [Tyc 07]. Both the
maximum and the average �delity, as well as the minimum �delity across the access parties,
approach a value of unity as the overall squeezing level increases.

Due to the imperfect purity of the multimode quantum state, the blocks relative to the
amplitude and phase quadratures of the covariance matrix cannot be diagonalized simulta-
neously. Therefore the form of the eigenmodes is slightly di�erent for amplitude and phase.
This is the main reason for the deviation between the �delity curves from directly recon-
structed modes and inferred ones. In principle, this can be improved reducing losses in the
generation and measurement process of the SPOPO.

However, the inferred and directly measured �delities are in good agreement and both
lie above the ones obtained for a classical resource, which demonstrates the achievement of
the simulation of this quantum secret sharing protocol.
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Figure 6.2: (a) Experimental �delity measured shaping the local oscillator according to
Eqs. (6.39-6.40). The red and blue curves were obtained assuming that the squeezing in
the �rst supermode of the multi-mode resource state was 6.6 and 4.5 dB, respectively. The
green curve was obtaine assuming the resource state was vacuum. The black curves are
obtained from Monte Carlo simulations of the noise based on the experimentally measured
values for the squeezing.(b) Theoretical �delity between the secret and the reconstructed
state. The �delity was computed assuming that the ratio between the squeezing parameters
of the modes used to build the network is �xed, and the overall squeezing level is controlled
with a common scaling factor. This is justi�ed by the fact that, as explained in chapters 3
and 4 the absolute value of the squeezing can be adjusted by changing the power of the
pump in the SPDC process. The horizontal axis is the squeezing level of the most squeezed
mode. The top line (green) is the highest �delity among all the possible access parties while
the bottom line (blue) represents the worst. The line in the middle (orange) was obtained
by averaging the �delity over all access parties.
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6.3 A general scheme for Symplectic encoding and de-
coding

The scheme described in the previous section cannot exactly be recast in the strategy of
section 6.1, in that the secret is coupled to the ring through a linear network and not CZ

gates. From direct inspection, several linear optical couplings seemed to work when the
other �ve modes were in a ring cluster state. The speci�c choice of the last section was
inspired by the theoretical protocol outlined in section 6.1 but only justi�ed a posteriori.
The attempt to �nd a formal justi�cation and a systematic treatment of any scheme in which
the mode encoding the secret is coupled to the players’ modes through linear optics resulted
in the �ndings presented in this section. These original results have not yet been published.

We consider the general scenario of a (k ,2k − 1) scheme in which the dealer couples
a mode in the secret state to 2k − 1 modes which are (not in�nitely) squeezed in an arbi-
trary quadrature. As we have seen, linear optical networks can be represented as unitary
matrices acting on the vector of annihilation operators. We �nd explicit conditions on the
entries of such matrices that ensure that the output state will be suitable for a secret sharing
protocol. We show that when such conditions are met, each access party can perform a to-
mography of the secret state by local homodyne detection. These conditions are similar to
those discussed in [Tyc 03], which were derived in a restricted setting with respect to that
considered here. Moreover, we show how it is possible, under said conditions, to construct
a Gaussian unitary operation that allows each access party to output a mode in the secret
state. Finally, unitary matrices admit a measure (in the sense of mathematical measure the-
ory), called Haar measure [Knapp 13]. When properly normalized, Haar measure can be
thought to represent the uniform probability distribution over the unitary group. We show
that the Haar measure of the set of unitary matrices that cannot be used for secret sharing,
according to our conditions, is zero. In other words, choosing a random linear network, the
probability that it cannot be used for secret sharing with Gaussian decoding is zero. This
can be used to devise a general and experimentally friendly secret sharing scheme, also in
relation with the results of chapters 3 and 4.

6.3.1 Encoding scheme
Suppose we start from n = 2k modes, of which the �rst 2k − 1 are squeezed and the last is
in the secret state. We stress that the secret state may be an arbitrary single-mode state. We
collectively denote the vector containing all the quadratures by

ξ sqz =

(
qsqz

psqz

)
(6.57)

and send it through a linear network (or equivalently change the mode basis), which is
represented by the symplectic orthogonal matrix SL ∈ K (n) = Sp (2n,R)∩O (2n). Since local
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phase shifts are symplectic unitary transformations and K (n) is a group, we can assume
without loss of generality that the �rst 2k − 1 modes are all squeezed in the p quadrature.
The output quadratures are given by

ξ net =

(
qnet

pnet

)
= SLξ

sqz =

(
X −Y
Y X

) (
qsqz

psqz

)
(6.58)

where we used explicitely the block form of SL withX andY n real matrices such thatX +iY
is unitary [Dutta 95].

As in the previous sections, we suppose that the dealer performs a homodyne measure-
ment on the nth mode to teleport the secret state on the modes to be distributed to the play-
ers. Again, we can assume without loss of generality that the dealer measures the quadrature
pnet
n , as the homodyne angle can be incorporated in SL. We denote by µ the outcome of the

measurement, that the dealer broadcasts to the players. Following the homodyne detection,
pnet
n is replaced by µ and qnet

n is discarded.
We are left with the set of equations

qnet
i =

n−1∑
l=1

Xilq
sqz
l
−

n−1∑
l=1

Yilp
sqz
l
+ Xinqs − Yinqs i = 1, ...,n − 1 (6.59)

pnet
i =

n−1∑
l=1

Yilq
sqz
l
+

n−1∑
l=1

Xilp
sqz
l
+ Yinqs + Xinps i = 1, ...,n − 1 (6.60)

µ =
n−1∑
l=1

Ynlq
sqz
l
+

n−1∑
l=1

Xnlp
sqz
l
+ Ynnqs + Xnnps (6.61)

where we explicitly separated the secret quadratures qs ≡ q
sqz
n , ps ≡ psqz

n .

6.3.2 Conditions on SL for a single access party

As in the previous section, the goal will be to �nd linear combinations of quadratures that
do not involve the anti-squeezed quadratures. To start with, all access party can elimi-
nate one using the information broadcasted by the dealer. Suppose Ynl , 0 for some
l ∈ {1, 2, ..., n − 1}. Since up to now we did not make any assumption on SL, we can
assume Yn1 , 0 modulo a relabeling of the squeezed modes. Then we can use Eq (6.61) to
eliminate qsqz

1 from the remaining qnet
i and pnet

i , namely substituting

q
sqz
1 =

1
Yn1

*
,
µ −

n−1∑
l=2

Ynlq
sqz
l
−

n−1∑
l=1

Xnlp
sqz
l
− Ynnq̂s − Xnnps+

-
(6.62)

into Eqs. (6.59) and (6.60). This leads to
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qnet
i =

n−1∑
l=2

(
Xil −

Xi1Ynl
Yn1

)
q

sqz
l
−

n−1∑
l=1

(
Yil +

Xi1Xnl

Yn1

)
p

sqz
l
+

(
Xin −

Xi1Ynn
Yn1

)
qs −

(
Yin +

Xi1Xnn

Yn1

)
ps +

Xi1
Yn1

µ

(6.63)

pnet
i =

n−1∑
l=2

(
Yil −

Yi1Ynl
Yn1

)
q

sqz
l
+

n−1∑
l=1

(
Xil −

Yi1Xnl

Yn1

)
p

sqz
l
+

(
Yin −

Yi1Ynn
Yn1

)
qs +

(
Xin −

Yi1Xnn

Yn1

)
ps +

Xi1
Yn1

µ .

(6.64)

We are interested in (k ,2k − 1) threshold schemes. Consider then a subset of k players
A = {a1, a2, ..., ak } who are given the modes with quadratures ξA

ξA =

(
QA

PA

)
, QA =

*.....
,

qnet
a1

qnet
a2
...

qnet
ak

+/////
-

, PA =

*.....
,

pnet
a1
pnet
a2
...

pnet
ak

+/////
-

(6.65)

In order to reconstruct the secret, they need to �nd two real linear combinations of their
quadratures that do not contain the anti-squeezed quadratures qsqz

l
for l = 1, ...,n − 1 and

containing one of the secret quadratures qs and ps each.
We will now �nd conditions on SL under which reconstruction is always possible. To

simplify Eqs. (6.63) and (6.64) let us de�ne the matrices MA and NA and the vectors hAq , hpq
and η such that the quadratures of the access party can be written(

QA

PA

)
= MAqsqz + NApsqz + hAqqs + h

A
pps + η

Aµ (6.66)

where the entries are easily found by comparison with Eqs. (6.63) and (6.64). In particular




MA
il = Xai l −

Xai1Ynl
Yn1

MA
(i+k )l = Yai l −

Yai1Ynl
Yn1

(6.67)

(6.68)

for i = 1, 2, ...., k and l = 2, 3, ..., n − 1 and




(
hAq

)
i
= Xain −

Xai1Ynn
Yn1(

hAq
)
i+k
= Yain −

Yai1Ynn
Yn1

(6.69)

(6.70)
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(
hAp

)
i
= −Yain −

Xai1Ynn
Yn1(

hAp
)
i+k
= Xai6 −

Yai1Xnn

Yn1

(6.71)

(6.72)

for i = 1, 2, ...., k .
A real linear combination of the QAs and PAs can be obtained multiplying Eq. (6.66) on

the left by a vector in R2k . Let us call such vectorv . Asking thatvTξA does not contain any
of the anti-squeezed quadratures amounts to asking thatv be in the kernel of the transpose
of the matrix MA: v ∈ Ker

(
MA

)T
. By construction,

(
MA

)
has 2k rows and n − 2 = 2k − 2

columns, so the kernel of
(
MA

)T
is at least two-dimensional. This means that we can actually

�nd two linearly independent vectors v,w ∈ Ker
(
MA

)T
. Let us organize them as the rows

of a matrix
R =

(
vT

wT

)
. (6.73)

Multiplying ξA on the left by R we then get

RξA =

(
v · hAq v · hAp
w · hAq w · hp

) (
qs
ps

)
+ RNApsqz + RηAµ (6.74)

≡ T

(
qs
ps

)
+ RNApsqz + RηAµ (6.75)

where in the last line we de�ned

T =

(
v · hAq v · hAp
w · hAq w · hp

)
(6.76)

and a · b =
∑

i aibi is the usual euclidean product. In practice the matrix T contains the
projections of v and w on hq and hp . The access party A can then sample from the secret
quadratures if T is invertible. In fact, if T −1 exists, then we can again multiply on the left
and get, de�ning D ≡ T −1R, B = T −1RNA and µ̃A = T −1RηAµ

DξA =

(
qs
ps

)
+ Bpsqz + µ̃A. (6.77)

This equation tells us that when the access partyA measures one of the linear combinations
of quadratures de�ned by D, the outcomes will follow the same probability distribution as
eitherqs orps apart from random displacements drawn from a Gaussian probability distribu-
tion, due to the termBpsqz, and apart from a constant o�set due to the term µ̃A. The latter can
either be corrected, if each player performs a displacement on its mode, or just accounted

142



CHAPTER 6. CV QUANTUM STATE SHARING WITH GAUSSIAN ENCODING AND DECODING

for after the measurement. The Gaussian distributed random shifts due to the squeezed
quadratures, on the other hand, cannot be corrected. However, they become smaller when
the squeezing in the initial modes increases, ultimately converging to zero when the squeez-
ing becomes in�nite. In this limit, the access party can sample from the original secret state.
Note that real linear combinations of the rows of D are linear combinations of qs and ps plus
the squeezed quadratures, so A can also measure arbitrary quadratures of the secret (see
also subsection 6.3.3).

We can rephrase this as follows. Sampling from the combination of quadratures de�ned
byD, the access party can perform a tomography of the secret state. Of course, the tomogra-
phy will be perturbed by the random displacements. As a consequence, the best "guess" that
the access party can make about the secret state measuring their quadratures corresponds
to the wigner function

Wout (q,p) =

∫
dx dyWs (q − x ,p − y) G (x ,y) = (Ws ∗ G) (q,p) (6.78)

that is the Wigner function of the secret state convoluted with a Gaussian functionG de�ned
by D and the initial squeezing. G acts as a �lter function that blurs the Wigner function of
the secret state. The wider G is, the more severe the blurring. The variance of G is a sum
of the variances of the squeezed quadratures psqz

l
, weighted by the coe�cients of D. In the

limit of in�nite squeezing G tends to a Dirac delta regardless B, and the Wigner function of
the secret is perfectly reconstructed.

In summary, we found that A can reconstruct the secret if two conditions are met

• There exists at least one l ∈ {1, 2, ..., n − 1} such that Ynl , 0. This allows us to
eliminate one quadrature and derive Eq. (6.66).

• The matrixT in Eq. (6.75) is not singular, so that invertingT the access party can �nd
the linear combinations that allow them to sample from the secret quadratures.

Given any linear optical network SL, these conditions can be checked for each access
party (all groups of k players). If they are satis�ed for all access parties, then SL can be
used for a (k ,2k − 1) quantum secret sharing scheme. Constructing the matrix T to com-
pute its determinant requires �nding two vectors in the kernel of

(
MA

)T
. In C.2 we show

that an equivalent condition can be derived which involves the coe�cients of SL directly.
Speci�cally

det (T ) , 0 ⇐⇒ det
(
MA | hAq | h

A
p

)
, 0. (6.79)

where
(
MA | hAq | h

A
p

)
denotes the matrix obtained appending hAq and hAp to MA as columns.

This condition will be especially useful to prove that the the set of matrices that cannot be
used for secret sharing has zero Haar measure.

In the next subsection we relate the coe�cients of SL and T to the angles each player
in the access party has to choose for the homodyne in order to sample from the secret
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quadratures. In subsection 6.3.4 we show that whenever the above conditions are satis�ed,
the access party can perform a unitary Gaussian operation that leaves one of their modes
in the secret state, apart from the Gaussian blurring due to �nite squeezing.

6.3.3 Tomography of the secret through local homodyne measure-
ments

Let us consider an access partyA and suppose the two conditions of the previous subsection
are satis�ed. Clearly the linear combinations of quadratures DξA can be measured through
homodyne detection, with D = T −1R.

From Eq. (6.77) we have

qs −
n−1∑
l=1

B1lp
sqz
l
− µ̃A1 =

j=k∑
j=1

(
D1jQ

A
j + D1j+kP

A
j

)
=

j=k∑
j=1

αj
(
cosθjQA

j + sinθjPAj
)

(6.80)

with

αj =
√
D1j

(
1 + D1j+k

)
(6.81)

θj = arccos
*..
,

D1j√
D2

1j + D
2
1j+k

+//
-
. (6.82)

This shows that measuring locally the rotated quadrature with an angle θj and summing
their results multiplied byαj , thek players of theA can sample from the position distribution
of the secret. Since the same reasoning applies to the momentum operator and any linear
combination of the two, the access party can carry out a full homodyne tomography of the
secret if many copies are shared by the dealer. This was the approach taken in [Cai 17]. We
show in the next section that the conditions derived in the previous one also ensure that A
can construct a unitary Gaussian operation that leaves a mode in the secret state.

6.3.4 Constructing a Gaussian decoding operation
Let us assume again that the conditions of subsection 6.3.2 are met, so that T −1 exists and
A can construct the matrix D = T −1R. Let us call ξ out = DξA and ξ s = (qs ,ps )

T . Evaluating
the commutators

[
ξ out
l
,ξ out
m

]
and remembering that the secret quadratures are conjugated

canonical operators we have
[
ξ out
l ,ξ

out
m

]
=

[
ξ s
l ,ξ

s
m

]
= i J (1)

lm
(6.83)

with
J (N ) =

(
0 IN
−IN 0

)
(6.84)
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the standard symplectic form for N modes. But since SL is symplectic, the quadratures of
the access party are also proper canonical operators satisfying

[
ξAl ,ξ

A
m

]
= i J (k )

lm
(6.85)

and using ξ out = DξA we get
[
ξ out
l ,ξ

out
m

]
= i

(
D J (k )DT

)
lm
= i J (1)

lm
. (6.86)

The last equation tells us that the rows of D are conjugated vectors of a symplectic basis of
R2k [Fasano 06] (remember that by construction they have 2k real entries). Thanks to Dar-
boux theorem, this basis can be extended to a symplectic basis of the full space R2k through
a Gram-Schmidt like procedure 3. In practice, the algorithm outlined in Appendix C.1 can
be used.

Let us call SAD the symplectic matrix obtained with the above procedure. Its action on
the 2k vector of quadratures of the access party A ξA corresponds to a unitary Gaussian
transformation UA

D such that (
UA
D

)†
ξAUA

D = SADξ
A. (6.87)

By construction, the �rst and the k + 1th entries of SADξ
A are the output quadratures ξ out, so

if the players of A apply the physical evolution corresponding to the unitary operator UA
D

(or equivalently SAD) they end up with a mode in the secret state, modulo the noise coming
from the squeezed quadratures and the displacements depending on the dealer’s homodyne
outcome.

We thus proved that the same conditions that allow the access party to sample from the
secret quadratures imply that the access party can also physically reconstruct the secret,
producing a mode in the secret state (exactly, in the in�nite-squeezing limit).

Note that SD is symplectic, but it is not necessarily orthogonal, so it may involve squeez-
ing in the general case. Before we discuss the relation between SL and the squeezing required
to implement SD we prove an interesting result about the abundance of linear networks that
can be used for secret sharing.

6.3.5 Almost all linear networks can be used for secret sharing
Given a linear network corresponding to the symplectic and orthogonal matrix SL, if the
second condition in Eq. (6.79) is satis�ed for any group of k players, a secret sharing protocol
with symplectic decoding can be implemented starting from 2k − 1 squeezed state. Let us
denote by B the set of matrices that cannot be used for secret sharing. Eq. (6.79) tells us that
the matrices B are those for which a polynomial function of their entries is equal to zero.
Leveraging the parametrization of n × n unitary transformations in terms of n2 angles and

3See [Fasano 06], theorem 10.3, p. 337.

145



6.3. A GENERAL SCHEME FOR SYMPLECTIC ENCODING AND DECODING

the fact that the zero sets of polynomials have Lebesgue measure zero we can prove that the
set B has zero Haar measure.

Haar measure can be de�ned for locally compact topological groups [Knapp 13]. It as-
signs an "invariant volume" to subsets of the group, and can thus be used to de�ne an integral
for functions de�ned on the group. In particular it can be de�ned for the Lie group of n × n
unitary matrices U (n). Right (left) Haar measures on a group G are measures that are in-
variant by right (left) action of the group. Supposing integration onG is de�ned, invariance
of the measure under right action of G means that for any measurable function

f : G → R (6.88)

we have ∫
G
f (x ◦ y) dµ (x ) =

∫
G
f (x ) dµ (x ) ∀y ∈ G . (6.89)

where ◦ denotes the operation of groupG. The Haar measure onU (n) is both right and left
invariant. This means that it can be thought as the generalization of the constant measure
on the circle. This is easy to visualize for the case G = U (1). U (1) is the set of complex
numbers of unit modulus U (1) = eiϕ for ϕ ∈ R. So on the complex plane U (1) can be
represented as the circle of radius one. The right or left action of U (1) on any x = eiϕ is
simply represented by a multiplication by a complex number eiψ and can be visualized as
a rotation of the circle. The integral of any function de�ned on the circle can be written
as a the integral over the angle ϕ = arg (x ) for any x ∈ U (1). With some handwaving,
demanding that the integral of any measurable function de�ned on the circle is invariant
under rotations of the circle∫

U (1)
f

(
eiϕeiψ

)
dµ

(
eiϕ

)
=

∫
U (1)

f
(
eiϕ

)
dµ

(
eiϕ

)
∀eiψ ∈ U (1) (6.90)

singles out dµ
(
eiϕ

)
= αdϕ for α ∈ R. If properly normalized, the Haar measure can

be thought of as the uniform probability distribution on the unitary group. We can then
rephrase the statement "the Haar measure of B ⊂ U (n) is zero" as "if a matrix is drawn at
random fromU (n), the probability that it cannot be used for a secret sharing protocol is zero".

A proof that the Haar measure of B is zero that uses an explicit parametrization ofU (n)
can be found in Appendix C.3. In the remainder of the present section we give an intuitive
argument why this should be the case. Numerical evidence can also be derived generating
Haar distributed unitary matrices and checking that either of the two conditions in Eq. 6.79
is satis�ed. Numerical routines to generate Haar distributed matrices can be found in many
computer algebra systems and for small k , millions of matrices can be checked in a couple of
hours. We tested several tens of millions of matrices for k = 2 and k = 3 and found that all
the generated matrices could be used for secret sharing. Note that B is not empty: it is easy
to see that I ∈ B for example (as would be expected, since if SL = I the secret is not coupled
to any other mode, so when the dealer measures it the secret state is simply destroyed).
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The set of symplectic orthogonal matrices K (n) ≡ Sp (2n,R) ∩ O (2n) = Sp (2n,R) ∩
SO (2n) form a Lie group of dimension n2 [Dutta 95]. K (n) is actually a maximal compact
subgroup of the symplectic group Sp (2n,R) and is isomorphic to the group of n×n unitary
matrices U (n), K (n) � U (n) thanks to the correspondence(

X −Y
Y X

)
∈ K (n) 7→ X + iY ∈ U (n) . (6.91)

A given SL ∈ K (n) is in the set B if at least one of the two following conditions is met

• Ynl = 0 ∀l = 1, 2, ..., n − 1, in which case we say that SL ∈ B̄.

• There is at least one access party A for which det
(
M | hAq | h

A
p

)
= 0, so that A cannot

reconstruct the secret. In this case we say that SL ∈ BA.

Clearly

B = B̄ ∪ *
,

⋃
A

BA+
-
. (6.92)

Because of positivity and countable additivity, the Haar measure of B cannot be larger than
the sum of the measure of the sets appearing on the right, so we just need to show that each
of them has zero measure. Intuitively, this is true because B is the union of the zero sets of
polynomial functions of the entries of SL. Since K (n) is a Lie group of dimension n2, it can
be parametrized by n2 real variables de�ned in an appropriate region E ⊂ Rn2 . In particular,
the entries of SL can be written as polynomials of trigonometric functions of n2 angles. The
zero set of such function has zero Lebesgue measure on E and this implies that B has zero
Haar measure in K (n).

6.3.6 Unauthorized sets

Let us brie�y consider the adversary structure. Given an access partyA, the complementary
subset of players Ā should not be able to reconstruct the secret. In analogy with MA we can
de�ne a matrix MĀ, and vectors hĀq , hĀp . However, Ā is composed of k − 1 players, so MĀ has
2k−2 rows and 2k−2 colums. As a consequence, in general the kernel of

(
MĀ

)T
may consist

of the null vector only, unless some additional condition on SL is satis�ed. With arguments
analogous to those used in the previous section, one can prove that the matrices for which
subsets of less than 2k players can reconstruct the secret are a set of zero Haar measure.
It is obvious that some matrix with said property must exist. An example is provided by a
matrix that prepares two modes in a twin-beam state and then couples the secret with one
of those, while leaving all other modes una�ected. This particular network can be used for
quantum teleportation, but there is a single mode that can reconstruct the secret.
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The proof that if SL can be used for a (k ,2k − 1) secret sharing scheme, then no set of
k − 1 players or less cannot reconstruct the secret is left for future investigations. We only
note here that if the equation (

MĀ
)T

x = 0 (6.93)

has the only solution x = 0, then any non-trivial linear combination of quadratures of Ā
contains at least one of the anti-squeezed quadratures qsqz

l
. This implies that the statistics

of any observable that Ā can measure with homodyne detection will contain a component
of Gaussian noise that increases with the initial squeezing, ultimately converging to white
noise in the in�nite squeezing limit. In this limit the outcome of any homodyne measure-
ment contains a random number between −∞ and∞, so that no information is gained about
the secret state.

6.3.7 Alternative encodings and links with previous works

The scheme presented in this section is a generalization of the alternative encoding of sub-
section 6.1.5 and of that used in the previous section. The mode containing the secret is
coupled to 2k − 1 modes to be distributed to the players and then measured by the dealer.

All the calculations can easily be extended to generalize the scheme of subsection 6.1.2,
in which one more mode is used. The dealer performs two measurements, so there is an ad-
ditional equation that the players can use to eliminate the added anti-squeezed quadrature.
The analog of the matrix MA can then be de�ned accordingly and the same results hold.

The calculations can also be adapted to a scheme in which the mode initially containing
the secret state is also distributed to the players, so the dealer does not have to perform any
measurement. This scheme was studied in [Tyc 03]. The authors there consider a restriscted
setting in which the amount of squeezing is homogeneous across all the modes, but half of
the modes are squeezed in thep quadrature and half in theq quadrature. Moreover, they only
consider linear networks SL that result in coordinate changes involving only the position,
not the momentum. They �nd similar geometric conditions to our equivalent condition on
the invertibility of the matrix T . However, since they only consider a speci�c subset of all
possible linear optical couplings their formalism is not suited to consider Haar distributed
SLs.

6.3.8 Squeezing in the decoding operation

As mentioned earlier, SAD in general may contain squeezing. Two �gures are relevant for
experiments: the amount of squeezing and the number of squeezers required in the decod-
ing. Under the restricted conditions of [Tyc 03] the authors were able to prove that there
is always an optimal con�guration that only requires one single-mode squeezer for the de-
coding.
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We did not check whether this is still true in our setting. On the other hand, we were
able to study numerically the relation between the matrixT , the matrix

(
MA | hAq | h

A
p

)
(see

C.2) and the amount of squeezing required for the decoding. Speci�cally, we generated Haar
distributed unitary matrices, constructed the corresponding SL and constructed the decond-
ing symplectic matrix SD for each access party. Fig. 6.3 shows the amount of squeezing that
an access party would need for a physical decoding against the determinant of T for 5000
randomly generated SL. The amount of squeezing is quanti�ed as the maximum singular
value of SAD . It is interesting to note that the squeezing seems to diverge when det (T ) ap-
proaches zero. In fact, the squeezing distribution is bounded from below by 1/(2 det (T )).
A similar behaviour is found with the equivalent condition derived in C.2. In a sense, this
suggests that squeezing is needed to "amplify" the di�erence between the secret quadratures
to resolve them. In fact the determinant ofT is small when either the projections of the vec-
tors coupling the secret quadratures players hAq , hAp on the access partyhave a small angle,
or when either of the two projections is small. Squeezing is then needed to di�erentiate qs
and ps and retrieve the full information about the secret.

We note that the operational procedure we used to �nd a physical decoding operation
is not optimized in terms of squeezing. We leave a more thorough study of squeezing in the
decoding procedure to further investigations.

6.4 Conclusions and outlook
In summary, we introduced quantum secret sharing and quantum state sharing in CV sys-
tems. We discussed a protocol proposed in [van Loock 11] for protocols based on CV cluster
states. We discussed how the protocol was adapted to the experimental scenario of multi-
mode squeezed states produced by parametric down-conversion of optical frequency combs
and described an experimental proof of principle.

In trying to derive the general conditions on the linear network that would enable
threshold quantum state sharing schemes with input squeezed states, we found that suf-
�cient conditions are sati�ed for almost all linear networks, in the sense of Haar measure.
This means that in any experiment in which squeezed states can be produced and com-
bined in a passive interferometer, it is very likely that even if there are constraints on the
interferometer, a con�guration can be found to perform a secret sharing protocol.

This is also true for the case of optical frequency combs. The experimental proof of
principle of section 6.2 su�ered from a big drawback, namely, that the nodes of the cluster
states, corresponding to the players, could not be easily separated. A possible way around
this is to use the results of chapter 4 to optimize the shape of the pump for the production
of cluster states whose nodes are easy to separate, such as frexels. The results of the last
subsection suggest that it may be better to optimize on other quantities, such as the amount
of squeezing or the purity of the state of the frexels. Any mode-basis change resulting from
the transition from the supermodes to the frexels could probably be used for secret sharing.
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Figure 6.3: Relation between the determinant of the matrix T and the maximum squeez-
ing required for the decoding to the corresponding access party. Each squeezing value is
the largest singular value of SAD . Singular values are the diagonal elements in the diagonal
squeezing matrix appearing in the Bloch-Messiah decomposition of SAD . Squeezing values
are bounded from below by 2/(2det (T )) (solid red line).
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Moreover, due to the analogy between secret sharing and quantum error correcting
codes, our results may be useful for the de�nition of random error correcting codes based
on squeezed states and linear optics.

Other open questions that are left to further investigations include relating the encoding
matrix SL to some quantitave measure of the quality of the reconstructed quadratures, such
as the mutual information or the �delity between the output of input modes. It would be
interesting to check whether the optimal con�guration requiring a single squeezer, derived
in the restricted scenario of [Tyc 03] can be adapted to the setting of subsection 6.3.
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Conclusions & outlook

In this thesis we presented some investigations concerning the use of optical frequency
combs for quantum information. Experimentally available techniques have been the red
ribbon guiding our work, so most of our results are readily applicable to experiments that
can be devised with currently available technologies. Nevertheless, the e�ort in trying to
match the theoretical requirements to achieve some task with the experimental feasibil-
ity, often led us to results of greater generality. This was for example the case of Direct
MBQC (chapter 2), of the polynomial approximation of non-Gaussian unitaries (chapter 5)
and secret sharing (chapter 6). In the following we summarize our results and discuss their
applicability and limitations and some possible extensions to our work.

The �rst part of the manuscript was devoted to the introduction of the necessary results
and context from quantum optics and quantum information with continuous variables. In
particular we recalled the concept of modes and the measurement-based model of quan-
tum computation in CV (CV-MBQC). We detailed how the resource states for CV-MBQC,
called cluster states, can experimentally be obtained from squeezed states and linear optics.
Equivalently, the linear optical interferometer can be replaced by a change of mode basis
at the detection level. As we noted in chapter 2, the latter approach is naturally �tted to
describe experiments with optical frequency combs. In this case, the interesting modes are
spectral-temporal modes, linear superpositions of single-frequency modes.

The main problem in experiments using spectral modes is that if their spectra overlap,
they cannot be easily separated. As a consequence, it is di�cult to measure them indepen-
dently, which is a serious obstacle to their use for quantum computation and information
protocols.

These limitations can partly be surpassed by direct MBQC, introduced in section 2.3. The
idea is that multi-mode entangled states can be used for MBQC even if they are not cluster
states, provided some degrees of freedom are available. If this is the case, it is possible to
perform an optimization to �nd the con�guration which gives the closest result to a given
computation.

In the case of optical frequency combs, the degrees of freedom consist in the phases
of the local oscillators for example of frequency-pixel modes (frexels) that can undergo si-
multaneous homodyne detection. These physical parameters can be complemented with
the parameters of a classical digital post-processing that allows to reinterpret the outcome
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of the measurements and simulate additional transformations. Although motivated by the
speci�c limitations of the setting, our results can be applied to any experiment in which
a multi-mode squeezed state is measured by homodyne detection, provided the setup has
enough �exibility to run the optimization.

With the direct method a class of quantum computations can be achieved that is larger
than that achievable with the standard cluster-based approach when the experimental appa-
ratus has limitations. However, the improvement is mainly restricted to symplectic trans-
formations, a subclass of Gaussian transformations. This is a big drawback considering
that quantum advantage can only be achieved in CV when some non-Gaussian resource
is present, even if quantum advantage is not completely ruled out in the direct approach
provided the input state is non-Gaussian and one focuses on sampling from the statistics of
the output state.

An alternative solution to the problem is to engineer the SPDC process that is used to
produce multi-mode squeezed states from optical frequency combs. This idea was inves-
tigated in the second part of the manuscript. As recalled in chapter 3, the output state of
the process depends on the spectrum of the broad-band laser used to pump the nonlinear
process. A �exible design can be realized adding a pulse-shaper on the pump beam. A pulse-
shaper allows to control the spectral amplitude and phase of the pump, giving access to a
vast class of multi-mode states with no hardware modi�cation to the setup.

We showed that Takagi factorization and Bloch-Messiah decomposition can be used to
derive the properties of the output state given a pump �eld with arbitrary spectral am-
plitude and phase. We used these tools to investigate the properties of the state when a
quadratic phase is added to a standard Gaussian pulse, showing that the number of e�ec-
tively squeezed modes can be tuned at constant pump power. We also derived the covariance
matrix of a set of frexels when a constant spectral phase is added between the lower and
upper halves of the spectrum of a Gaussian pulse. These two examples provide results that
can be readily tested in experiments to check the validity of our numerical methods.

In chapter 4 we tackled the problem of �nding the optimal pump pro�le for a given
task. This was achieved combining the techniques of chapter 3 with an evolutionary op-
timization algorithm. The motivation comes from the fact that in general, an information
processing task may require states whose properties have a highly non trivial dependence
on the spectrum of the pump. A numerical optimization may then be more productive than
an analytical approach. In particular, we �rst focused on optimizing quantities that can be
derived from the parametric gains alone. Speci�cally, we showed that it is possible to make
the largest parametric gains (or, equivalently, the squeezing factors) approximately equal or
to create a gap between the squeezing of the �rst and second supermodes. Although these
results do not have so far a direct application, they prove that pulse-shaping can lead to
output states that are very di�erent from those obtained with the original Gaussian pulse.

We then turned to the optimization of the CV cluster states assuming the output state is
measured in the frexels basis. Our results show that even with the constraint on the mea-

154



CONCLUSIONS & OUTLOOK

surement mode basis, we could reduce the noise in the nulli�er operators, thus improving
the approximation of the cluster states that can be produced. We stress that due to the non
trivial relation between the modes squeezed by the SPDC and the nulli�ers, it would be very
hard to treat this problem analytically.

A drawback of this approach is that the squeezing of the nulli�ers is not merely propor-
tional to the squeezing in the supermodes of the down-converted �eld. This may be due to
several factors, including the fact that the number of supermodes is large compared to the
control one has on the system, even when both spectral amplitude and phase of the pump
can be controlled. As a consequence, even for the optimal solutions the nodes of the cluster
are entangled to modes that are e�ectively discarded. This leads to excess noise that pre-
vails on the noise reduction due to the optimization when the squeezing in the supermodes
increases.

In our optimizations routine, we modeled the pulse shaper taking into account its limita-
tions, in particular the limited complexity of the pulses that could be realized in practice. We
also discussed how it is possible to use �tness functions that automatically prevent the al-
gorithm to converge to unphysical situations, such as those that would require an excessive
amount of energy to be implemented. This makes us con�dent that the theoretical results
are not too far from what it would be possible to achieve in an experiment.

Overall, we have demonstrated that in realistic experimental conditions, complement-
ing the setup with a pulse shaper would add great �exibility which may be leveraged for
quantum information tasks. It is reasonable to think that these results could be of interest
in other applications that require the production of a speci�c resource state. A proposal
was recently advanced, for instance, to use such a setup for an optical implementation of
complex networks of quantum oscillators with spring-like couplings.

We note that once the experimental setup for pump shaping is built, one can implrmrnt
a closed-loop feedback mechanism to realize a direct optimization of the setup based on
physically measured quantities.

The second part of the manuscript deals with controlling a source of non-classical states
to match the requirements of existing quantum information protocols, while the third part
is dedicated to how existing experimental techniques can be used for quantum information.

In chapter 5 we turned to the implementation of non-Gaussian gates. As noted in chap-
ter 2, non-Gaussian resources are necessary to achieve quantum computations that cannot
be simulated on a classical computer. However, non-Gaussian coherent evolutions are di�-
cult to achieve, especially in CV quantum optics experiments. It is relatively easier to imple-
ment non-Gaussian measurements like photon counting, either directly, to induce a back-
action on a state to be processed, or indirectly, to herald the production of a non-Gaussian
resource state. However, not every non-Gaussian measurement or state can be used to
induce relevant evolutions for computing. Motivated by recent experiments demonstrat-
ing mode-selective photon subtraction, we investigated the potential of photon subtracted
squeezed states for quantum computation.
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We showed that with a procedure inspired by MBQC, photon-subtracted ancillae can
be used to implement polynomial approximations of arbitrary non-Gaussian gates. The
main drawback consists in the fact that the method requires post-selection over the result
of homodyne measurements. Since the outcomes span a continous space, one is forced to
introduce an acceptance region, so the e�ective transformation will be averaged over all
the accepted outcomes. This introduces a trade-o� between the quality of the implemented
gate and the success probability, which is generally low.

We found that higher success probabilities can be achieved with a scheme in which the
ancilla is Gaussian and the post-selection happens after a photon counting measurement
revealing the presence of exactly one photon.

In both cases the quality of the transformation was evaluated by computing the dis-
crepancy between the state obtained applying the approximate and the exact gate to either
Fock or coherent states. We found that the approximation leads to reasonable results if the
number of photons in the input state is not too high.

The methods as they have been presented are however hardly realizable in practice,
mostly due to the low success probability. An interesting perspective in this sense is rep-
resented by the idea of using a di�erent gate synthesis procedure [Eisert ]. As recalled in
chapter 2, any non-Gaussian unitary could promote Gaussian transformations to a univer-
sal set for CV quantum computing. Gate synthesis essentially amounts to decomposing a
target evolution as a combination of the gates in the universal set. Instead of aiming at
the cubic phase state and post-selecting on the good results, one could start from a known
state, repeat the protocol and accept the resulting resource state regardless of the results.
The resulting state is generally a non-Gaussian state that could be used to implement some
non-Gaussian transformation, which also promotes Gaussian transformations to a universal
set. Computing how the target gate could be synthesized from the obtained non-Gaussian
transformation would require a classical overhead, but this may turn out to be comparable
to the overhead required in other quantum computing stategies, as for example those based
on the surface code. This idea will be left for future investigations.

Finally, the last chapter is devoted to quantum secret sharing. In a sense, this chapter
subsumes the spirit of mutual inspiration between theoretical primitives and experimental
resources. Starting from a theoretical protocol, we described an adaptation to the context of
experiments with frequency combs which lead to a proof of principle demonstration of the
scheme. The adaptation required some modi�cations of the original scheme which were not
fully justi�ed within the original theoretical proposal. Searching for a rigorous explanation,
�nally led us to build a more general framework for quantum secret sharing of arbitrary
single-mode states with Gaussian resources.

Within this framework, we were able to show that combining squeezed states in almost
any linear network (or change of mode-basis) one would obtain a good resource state for a
threshold quantum secret sharing scheme. The players would always be able to perform a
tomography of the state by local homodyne measurements and classical communication to
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share their outcomes. Alternatively, we have shown that they could reconstruct the secret
state applying a multi-mode Gaussian operation to their modes. An interesting open ques-
tion is whether it is possible to �nd an encoding such that the decoding procedure could
be carried out by local operations and measurements only, possibly combined with classical
communication.

Due to the similarities between secret sharing and error correcting codes, these results
could also �nd some use in the second context.

As is always the case in CV protocols, the tomography or reconstruction of the secret
would only be perfect in the limit of in�nite squeezing of the resource state. An important
point would then be to relate the squeezing in the resource with a �gure of merit assessing
the quality of the reconstruction. We leave this point for future investigations.
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Appendix A

Phase-matching SPDC in BiBO

This appendix brie�y reviews how phase matching is achieved for SPDC in BiB3O6 crystals,
commonly known as BiBO [Ghotbi 06]. In practice birefringence is exploited to match the
propagation velocity of pump and signal/idler �elds.

BiBO is a biaxial crystal. The dispersion relations for polarized light propagating along
one of the axis x , y or z can be computed using Sellmeier’s equations

ni (λ) =

√
Ai +

Bi
λ2 −Ci

− Diλ2 (A.1)

where i = x , y, z and λ is the wavelength. The Sellmeier’s coe�cients are

Index Ai Bi Ci Di

nx 3.07403 0.03231 0.03163 0.013376
ny 3.16940 0.03717 0.03483 0.01827
nz 3.6545 0.05112 0.03713 0.02261

Consider a plane wave of wave vector k propagating in the medium. We denote by Π the
plane perpendicular tok and containing the origin of the ellipsoid E of indices. For historical
reasons, the phase mathing angles θ and ϕ describing the rotation of E with respect to its
axes is described with geographical coordinates, so the triad of axis is left-handed. ϕ is the
angle from the xz plane to the yz plane and θ is the angle from y to z. The refractive index
for given wavelength and propagation direction is determined through

1
n (λ,θ ,ϕ)

=

√
cos2 (θ ) cos2 (ϕ)

n2
x (λ)

+
cos2 (θ ) sin2 (ϕ)

n2
y (λ)

+
sin2 (θ )

n2
z (λ)

. (A.2)

According to [Ghotbi 06], BiBO can phase-match Type I (e +e → o) processes with ϕ = π/2
for signal and idler and θ varying depending on the fundamental wavelength. For SPDC,
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this means that we can take the pump �eld polarized along x (θ = 0) and the polarization
of signal and idler in the yz plane. Eq. (A.2) gives for the the refraction index of signal and
idler

ne (λ,θ ) = *
,

cos2 (θ )

n2
y (λ)

+
sin2 (θ )

n2
z (λ)

+
-

− 1
2

. (A.3)

We consider a collinear con�guration and denote by 2ω0 the central frequency of the pump.
The down-converted �eld will then be centered around ω0. The phase matching condition
requires that the phase mistmatch (Eq. (3.4)) is zero for the central frequencies

kp (2ω0) − 2ke (ω0,θ ) = 0 (A.4)

with

kp (ω) =
ωnx

(
2πc
ω

)
c

(A.5)

ke (ω,θ ) =
ωne

(
2πc
ω ,θ

)
c

. (A.6)

Eq. (A.4) is then satis�ed if ne (2πc/ω0,θ ) = nx (πc/ω0). Assuming that the central wave-
length of the pump is 2πc/2ω0 = 397.5 nm, this is achieved for θ = 2.63214 (θ = 150.811°).
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Appendix B

Additional results on pump
optimization

The numerical methods developed in chapters 3 and 4 can be applied to any pump shape
and any �tness function. We collect in this appendix some additional results we obtained
optimizing di�erent �tness functions.

B.1 Flatten and concentrate squeezing
We include here some additional results for the optimizations of f̄1 and f̄2 in section 4.3. The
results in Fig. B.1 show that the optima have a certain stability: the optimal pump shapes for
a given �tness function and the respective distribution of parametric gains are very similar
in di�erent runs of the optimization.

B.2 Schmidt number
The Schmidt number K as de�ned in [Averchenko 16]

K =

∑
j Λ

2
jj∑

j Λ
4
jj

(B.1)

is a widely used measure of the e�ective number of signal/idler modes in an SPDC process
[Gatti 12, Harder 13]. Fig. B.2 shows the results we obtained maximizing or minimizing
the Schmidt number. Note that our de�nition may di�er from that used in works treating
the single-photon regime because in our case the distribution of singular values j j is not
normalized so we have to include a normalization factor to get meaningful values of K .

The comparison of these results with those obtained for the functions f̄1 and f̄2 in 4.3
and the previous section shows that those �tness functions capture a di�erent meaning of
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Figure B.1: Results for the optimization of f̄1 and f̄2 as in section 4.3. (a) and (c) show
four optimized pump pro�les for each �tness function f̄1 and f̄2, respectively. The solid
blue line represents amplitude, the dotted red line represents the spectral phase (scale on
the right). The gray dashed line represents the unshaped amplitude. The ratio w of power
of the unshaped pump going into the shaped pump is displayed for each optimized pro�le.
The same weights as in section 4.3 were used for the �tness function to ensure a good
overlap with the unshaped Gaussian. (b) and (d) show the �rst one hundred parametric
gains for the Gaussian, unshaped pump and the four optimized pro�les on the left for the
two optimizations. Parametric gains are normalized to the highest parametric gain of each
optimization, so that in each case the �rst parametric gain is normalized to one.
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APPENDIX B. ADDITIONAL RESULTS ON PUMP OPTIMIZATION

"�attening" or "concentrating" the squeezing with respect to the Schmidt number, even if
some resemblance can be seen in the �gures.

B.3 Maximizing the �rst parametric gain
As seen in chapter 3, the squeezing of the �rst supermode can be tuned changing the in-
tensity of the pump. However, many down-converted modes get a contribution from the
increased energy of the pump. It is interesting to ask whether it is possible to �nd a pump
shape that increases the parametric gain of the �rst supermode without increasing the in-
tensity of the pump. This is indeed the case: as can be seen from Fig. B.3 pump pro�les
very close to the unshaped Gaussian can lead to an increase of more than 40% in the largest
parametric gain. For this optimization we enforced ���I

(u)
amp (ω)

��� ≤ 1, so that the pulse shaper
is only attenuating. The aim is to check whether an appropriate �ltering or spectral phase
can lead to a higher squeezing for the �rst supermode given the power of the unshaped
pump. The optimization was carried out for a 1.5 mm crystal. In this case there is no need
to add a weight to the �tness function to have a good overlap of the optimized pumps with
the unshaped Gaussian because a lower overlap would imply a lower maximum gain.

B.4 Six modes pentangonal cluster state
Last but not least, we consider the six modes cluster state corresponding to the graph in
Fig. B.4. A graph with the same topology was used for the experimental proof of principle
demonstration of secret sharing outlined in chapter 6. However, the modes corresponding
to the nodes of the graph were in that demonstration superpositions of frexels. We report
here the results obtained looking for the pump spectral pro�le that minimizes the nulli�ers
de�ned on six frexels. The optimized pro�le is found in the same way as for the four modes
linear cluster state in section 4.4. The optimal permutation of frexels in this case is shown
in Fig. B.4b.

Results for the optimized nulli�ers are shown in Fig. B.5. As in the case of the linear four
modes cluster, each bipartition of frexels is entangled before and after the optimizations.
The improvement in the nulli�ers’ noise is smaller compared to the case of the four modes
linear cluster but still measurable, even when the optimization is ran on f̄3, namely, with a
penalty for spectral shapes having a small overlap with the Gaussian. In particular, referring
to Eq. 4.16, we took h = 0.4. The pump pro�le found without penalty contains about 3% of
the power of the unshaped Gaussian, whereas if the penalty is added the optimal pro�le has
about 52% the power of the unshaped one.
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Figure B.2: Results for the optimization of the Schmidt numberK . (a) and (c) show four op-
timized pump pro�les for maximizing and minimizingK (and thus the e�ective number of
squeezed modes), respectively. The solid blue line represents amplitude, the dotted red line
represents the spectral phase (scale on the right). The gray dashed line represents the un-
shaped amplitude. The ratiow of power of the unshaped pump going into the shaped pump
is displayed for each optimized pro�le. We used the same weight as for the �tness function
f̄2 in 4.3. This results in a slighly lower power in the shaped pump, since the Schmidt num-
ber can take larger values. As a consequence, the penalty has a smaller e�ect. (b) and (d)
show the �rst one hundred parametric gains for the Gaussian, unshaped pump and the four
optimized pro�les on the left. Parametric gains are normalized to the highest parametric
gain of each optimization, to that in each case the �rst parametric gain is normalized to one.
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Figure B.3: Results for the optimization of the �rst parametric gain. (a) shows four opti-
mized pump pro�les. The solid blue line represents amplitude, the dotted red represents
spectral phase (scale on the right). The gray dashed line represents the unshaped ampli-
tude, the ratio w of power of the unshaped pump going into the shaped pump is displayed
for each optimized pro�le. (b) shows the �rst one hundred parametric gains for the Gaus-
sian, unshaped pump and the four optimized pro�les. All parametric gains are normalized
to the highest parametric gain for the Gaussian pump.
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Figure B.4: (a) Spectral amplitude of six frexels within 3 standard deviations around the
central frequency of the downconverted comb. The amplitudes are not normalized for clar-
ity of representation. (b) A linear four-modes cluster state and the permutation of frexels
onto its nodes that gives the lowest nulli�ers’ noise for the unshaped Gaussian pump.
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Figure B.5: Results of the optimization of the pump shape to reduce the average noise of
the nulli�ers of a four-modes linear cluster. (a) shows the nulli�ers’ noise reduction in dB
for a Gaussian pump and for the optimal pro�les found optimizing f3 (Eq. (4.15)) and f̄3
(Eq. (4.16)) with h = 1.35. The squeezing of the leading supermode was �xed to 7 dB. The
horizontal lines show the average squeezing in each case. The pump pro�les optimizing f̄3
and f3 are shown in in (b) and (c), respectively. The scale for the phase is shown on the
right.
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Appendix C

Miscellaneous results and proofs about
secret sharing

C.1 Extending the matrix D to a symplectic matrix
We outline here an algorithm that can be used to extend the matrix D de�ned in subsec-
tion 6.3.2 for an access party to a symplectic operation corresponding to a physical unitary
Gaussian operation that the access party can implement to output a mode in the secret state.

Let us start from the symplectic basis de�ned by the rows of D. The �rst line, that we
denote by x1 plays the role of canonical "position" variable, while the second, denoted y1,
is the canonical "momentum" (as de�ned by their symplectic product). Let us introduce the
following notation for the symplectic product〈

x ,y
〉
= x ·

(
J (k )y

)
. (C.1)

Our goal is to �nd two vectors x2, y2 such that

{
〈x2,x1〉 =

〈
x2,y1

〉
=

〈
y2,x1

〉
=

〈
y2,y1

〉
= 0〈

x2,y2
〉
= 1

(C.2)
(C.3)

To this end, �rst pick any vector x ∈ R2k . Check that x is linearly independent from both
rows of D. If this is not the case, pick another vector. Evaluate the symplectic products

〈x ,x1〉 = α (C.4)〈
x ,y1

〉
= β (C.5)

where α and β will be real numbers. Then the vector

x2 = x − βx1 + αy1 (C.6)
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satis�es
〈x2,x1〉 =

〈
x2,y1

〉
= 0 (C.7)

and can be used as a new "position". Pick then a vector y that is linearly independent from
x1,y1 and x2 and such that 〈x2,y

〉
= γ , 0. Consider then ȳ = y/γ . Evaluate the symplectic

products 〈
ȳ,x1

〉
= δ (C.8)〈

ȳ,y1
〉
= ϵ (C.9)

The vector
y2 = y/γ − δy1 + ϵx1 (C.10)

satis�es {〈
y2,x1

〉
=

〈
y2,y1

〉
= 0〈

x2,y2
〉
= 1

(C.11)
(C.12)

which shows that x2 and y2 can be used to extend the symplectic basis {
x1,y1

}. The pro-
cedure can then be iterated. Suppose we carried out the procedure for l modes, that is
we found a symplectic basis of 2l vectors in R2k . To add the mode l + 1 pick a vector
x ∈ R2k \ span {

x1, x2, ...,xl , y1, y2, ...,yl
}, de�ne

xl+1 = x −
l∑

j=1

〈
x ,yj

〉
xj +

l∑
j=1

〈
x ,xj

〉
yj (C.13)

as the new "position". Pick another vector y ∈ R2k/span {
x1, x2, ...,xl+1, y1, y2, ...,yl

} and
such that 〈

xl+1,y
〉
, 0 and de�ne

yl+1 =
1〈

xl+1,y
〉 *.

,

l∑
j=1

〈
yj ,y

〉
xj −

l∑
j=1

〈
xj ,y

〉
yj

+/
-

(C.14)

as the new "momentum".
Let us call SAD the matrix whose rows are x1, x2, ..., xk , y1, y2, yk . SD is by construction a

symplectic matrix, since it veri�es

SAD J
(k )

(
SAD

)T
= J (k ) (C.15)

so this is the matrix we were looking for.
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C.2 Equivalent condition for invertibility of T
The decodability conditions derived in subsection 6.3.2 are readily computed once SL is
known but they require the explicit calculation of two vectors in the kernel of

(
MA

)T
, which

is not very practical. We prove here a condition equivalent to the invertibility ofT in the case
that M has full rank rank (M ) = 2k − 2 1. The condition results in a polynomial equation in
the coe�cients of SL and thus does not require computing the kernel of MT explicitly. This
will be particularly useful in the latter sections.

Let us callV = Ker
(
MT

)
⊂ R2k . If MA has full rank, then dim (V ) = 2, since MA always

has 2k rows and 2k − 2 columns. Let us denote by hAq
���V and hAp

���V the projections on V of
hAq and hAp respectively. We proved in subsection 6.3.2 thatT −1 exists if and only if hAq

���V and
hAp

���V are linearly independent. Suppose thatv and w are a basis of V . Then

hAq = a + αv + βw (C.16)
hAp = b + γv + δw (C.17)

with α ,β ,γ ,δ ∈ R and a,b ∈ V⊥ ⊂ R2k . Then

{
hAq

���V , h
A
p

���V
}

are linearly independent ⇐⇒ det
(
α β
γ δ

)
, 0. (C.18)

Consider now the square matrix obtained appendinghAq andhAp to M as columns. We denote
this matrix by

(
MA | hAq | h

A
p

)
. Since the determinant is a multilinear, alternating function

of the columns we have

det
(
MA | hAq | h

A
p

)
= det

(
MA | a + αv + βw | b + γv + δw

)
= det

(
MA | αv + βw | γv + δw

)
= αδdet

(
MA | v | w

)
+ βγdet (M | w | v )

= (αδ − βγ ) det
(
MA | v | w

)
= det

(
α β
γ δ

)
det

(
MA | v | w

)
(C.19)

where the second line follows from the fact that, since M is full rank,V⊥ = span
({
MA (i )

})
,

having denoted byMA (i ) the columns ofMA (in other words,V is the space of the vectors or-
thogonal to all the rows of

(
MA

)T
), so terms of the form det

(
MA | a | x

)
or det

(
MA | y | b

)
1Although I was not able to prove that this must always be the case, this was true for all the (millions of)

matrices I randomly generated and checked.
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are automatically zero. Since by hypotesis det
(
MA | v | w

)
, 0, it follows that

{
hAq

���V , h
A
p

���V
}

are linearly independent ⇐⇒ det
(
MA | hAq | h

A
p

)
, 0. (C.20)

Since MA, hAq and hAp are de�ned in terms of the coe�cients of SL and the determinant is a
polynomial function thereof, this is the condition we were looking for.

C.3 Proof that the Haar measure of B is zero
We outline here a proof of the fact that the set B of matrices that cannot be used for secret
sharing has zero Haar measure. We �rst note that integration with respect to the Haar
measure of a function de�ned on U (n) can be written as an ordinary integral over some
real variables. We then recall a parametrization of U (n) providing a realization of said
variables. Finally, we conclude the proof linking the decodability conditions to the zero set
of real analytic functions.

C.3.1 Haar measure in terms of real variables
Although the treatment could apply to more general situations, let us consider directly the
case of U (n). Since the unitary group is a Lie group of dimension n2, we can �nd an atlas,
that is, a family of pairs

{(
Vj ,γj

)}
such that the open setsVi ⊆ U (n) cover (n) and each map

γ : Vi → Rn2 is a homeomorphism. For any function f de�ned on U (n) we can de�ne д on
E =

⋃
i γ (Vi ) ⊆ Rn2 as

д (x ) = f
(
γ−1 (x )

)
(C.21)

for any x ∈ E. Using the theorem of change of variable, we can then �nd real valued
functions ∆i (x ) such that we can write any integral with respect to the Haar measure,
which we denote by dµH , as∫

Vi

f (α ) dµH (α ) =

∫
γi (Vi )

f
(
γ−1
i (x )

)
∆i (x ) dn2

x . (C.22)

The integral over the whole unitary group can be de�ned appropriately glueing toghether
the charts

{(
Vj ,γj

)}
[Knapp 13].

C.3.2 Parametrization of U(n)

Instead of an atlas, we consider here a single chart which covers almost all ifU (n) (we will
not prove this). This is su�cient for our goals.

In particular, we will consider the parametrization in terms of Euler angles that was used
in [Zyczkowski 94] to numerically generate Haar distributed unitary matrices. It relies on
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the fact that any unitary matrix α ∈ U (n) can be obtained as the composition of rotations
in two-dimensional subspaces. Each elementary rotation is represented by a n matrix E (j,k )

whose entries are all zero except for

E
(j,k )
ll
= 1 for l = 1, 2, ..., n − 1 l , j, k

E
(j,k )
jj = cos

(
ϕjk

)
eiψjk

E
(j,k )
jk
= sin

(
ϕjk

)
eiχjk

E
(j,k )
kj
= − sin

(
ϕjk

)
e−iχjk

E
(j,k )
kk
= cos

(
ϕjk

)
e−iψjk

(C.23)

From these elementary rotations one can construct the n − 1 composite rotations

E1 = E (1,2) (ϕ12,ψ12, χ1)

E2 = E (2,3) (ϕ23,ψ23,0) E (1,3) (ϕ13,ψ13, χ2)

E3 = E (3,4) (ϕ34,ψ34,0) E (2,4) (ϕ24,ψ24,0) E (1,4) (ϕ14,ψ14, χ3)

...

En−1 = E (n−1,n) (ϕn−1,n,ψn−1,n,0
)
E (n−2,n) (ϕn−2,n,ψn−2,n,0

)
...E (1,n) (ϕ1n,ψ1n, χn−1)

(C.24)

and �nally any matrix α ∈ U (n) can be written as

α = eiηE1E2...En−1. (C.25)

This can be seen as a function that takes n2 angles
{{
ϕjk for 1 ≤ j < k ≤ n

}
,

{
ψjk for 1 ≤ j < k ≤ n

}
,
{
χl for 1 ≤ l < n

}
,η

}
(C.26)

and outputs a n ×n unitary matrix. The function is de�ned in the region E ⊂ Rn2 such that

0 ≤ ϕjk <
π

2 ; 0 ≤ ψjk < 2π ; 0 ≤ ψjk < 2π ; 0 ≤ χl < 2π . (C.27)

In summary we de�ned a map γ−1 : E → V ⊂ U (n) which is one-to-one and whose image
is the whole U (n). In practice, given any x ∈ E we can construct the matrix α = γ−1 (x ).
So for any funtion f : U (n) → R we can de�ne д : Rn2

→ R such that д (x ) = f
(
γ−1 (x )

)
.

If f is measurable with respect to the Haar measure, we can write∫
U (n)

f (α ) dµH (α ) =

∫
V
f (α ) dµH (α ) =

∫
E

f
(
γ−1 (x )

)
∆ (x ) dn2

x (C.28)
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with

∆ (x ) =
1

n∏
k−1

Vol
(
S2k−1

) *.
,

∏
1≤j<k≤n

sin2j−1
(
ϕjk

)+/
-

(C.29)

where Vol
(
S2k−1

)
is the hypersurface of the 2k − 1 dimensional sphere in 2k dimensions 2,

and

dn2
x = *.

,

∏
1≤j<k≤n

dϕjk+/
-

*.
,

∏
1≤j<k≤n

dψjk
+/
-

*.
,

∏
1≤l<n

χl
+/
-

dη. (C.30)

The normalization included in the function ∆ ensures that∫
V

dµH (α ) =

∫
E

∆ (x ) dn2
x = 1. (C.31)

Now, since 0 ≤ ∆ (x ) ≤ 1 ∀x ∈ E we have∫
U (n)

f (α ) dµH (α ) =

∫
E

f
(
γ−1 (x )

)
∆ (x ) dn2

x ≤

∫
E

f
(
γ−1 (x )

)
dn2

x . (C.32)

What we want to prove is that the integral of the indicator function IB of B

IB (α ) =



1 α ∈ B

0 α < B
(C.33)

over U (n) with respect to the Haar measure is equal to zero. This will be achieved if we
manage to prove that ∫

E

IB
(
γ−1 (x )

)
dn2

x = 0 (C.34)

which is equivalent to ∫
γ (B)

dn2
x = 0 (C.35)

namely that the image ofB underγ has zero measure in E. This is proven in the next section
leveraging the fact that throughγ−1 the coe�cients of any unitary matrix are written as real
analytic functions of the angles.

C.3.3 Real analytic functions
Our main results then follows from the observation that B is the union of the zero sets of
real analytic functions. Real analytic functions are de�ned analogously to their complex

2For example, for k = 1, Vol
(
S2k−1

)
= 2π is the length of the circle in the plane.
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counterpart as functions de�ned in some open set of RN that can be written as the sum of a
power series [Rudin 64]. As in the complex case, a real analytic function is either identically
zero, or its zero set has zero measure [Rudin 64, Krantz 02] (See also [Mityagin 15] for a self-
contained proof).

The parametrization of unitary matrices introduced in the previous subsection gives
the coe�cients of any unitary matrix as a product of trigonometric functions and complex
exponentials of the angles. The coe�cients of any simplectic orthogonal matrix are real
or imaginary part of a unitary matrix, so they are trigonometric functions of the angles.
As it is well known, sine and cosine can always be written as power series. Since the set
of real analytic functions F is closed under linear combinations with real coe�cients and
point-wise multiplication 3, the coe�cients Ynl (x ) are real analytic functions de�ned on E.
It follows that γ−1

(
B̄
)

has zero Lebesgue measure on E and thus B̄ has zero Haar measure
in U (n).
F is also closed under quotient as long as the denominator is not equal to zero 4. As a

consequence
det

(
M | hAq | h

A
p

)
(C.36)

de�nes a real analytic function of the angles in E\γ−1
(
B̄

)
, where there is at least one l such

that Ynl , 0 and we can de�ne MA, hAq and hAp . As for B̄, this implies that the Haar measure
of each BA is zero, and thus the Haar measure of B is also zero. This concludes the proof.

3If f (x ) , д (x ) ∈ F , then h (x ) = f (x ) д (x ) ∈ F .
4If f (x ) , д (x ) ∈ F , then the function h de�ned wherever f and д are both de�ned and д (x ) , 0 as

h (x ) = f (x ) /д (x ) ∈ F .
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Résumé

Ce manuscrit porte sur l’étude théorique
de techniques expérimentales récemment
développées pour réaliser des protocoles
d’information quantique en variables contin-
ues.
Les états Gaussiens multi-modes produits
par conversion paramétrique de peignes de
fréquences optiques jouent un rôle centrale
dans ce travail. Ce phénomène permet de
générer de façon déterministe un grand nom-
bre d’états Gaussiens de la lumière. L’état de
sortie peut ensuite être de-Gaussifié par sous-
traction ou addition d’un photon dans une su-
perposition cohérente de modes du champ,
puis mesuré par détection homodyne.
La thèse est organisée en trois projets princi-
paux. Le premier concerne l’optimisation du
spectre du laser de pompe pour manipuler
l’état de sortie de la conversion paramétrique.
Nous avons développé les outils mathéma-
tiques pour traiter des profils spectraux avec
amplitude et phase spectrales arbitraires. On
a ensuite utilisé un algorithme d’optimisation
pour trouver les specres maximisant des dif-
férentes propriétés de l’état de sortie. Une
importance particulière est donnée à la pro-
duction d’"états cluster" en variables contin-
ues. Les optimisations ont été développées
pour prendre en compte les limitations expéri-
mentales pour assurer la faisabilité des forme
spectrales dans les expériences.
Dans le deuxième projet nous avons étudié
comment les états non-Gaussiens obtenus
par soustraction d’un photon d’un état com-
primé peuvent être utilisés pour le calcul quan-
tique. Nous proposons un protocole inspiré
par le paradigme de "calcul quantique basé
sur la mesure" qui combine l’etat de-Gaussifié
et la mesure homodyne pour approximer des
opérators unitaires non-Gaussiens. On montre
que les mêmes résultats peuvent être obtenus
avec des mesure projectives sur des états de
photon unique.
Finalement, le troisième projet porte sur le
partage de secret quantique ("quantum secret
sharing"). Dans les protocoles de partage de
secret quantique un donneur veut distribuer
de l’information codée dans un système quan-
tique à plusieurs joueurs d’une façon qui oblige
des sous-ensembles de joueurs à collaborer
s’ils veulent retrouver l’information originale.
Nous avons développé un protocole qui peut
être transféré aux expériences de notre groupe
et nous avons participé à la formulation d’une
preuve de concept éspérimentale. À partir de
cela, nous avons dérivé des résultats généraux
sur le partage et la reconstruction d’états arbi-
traires de la lumière en utilisant des ressources
Gaussiennes.

Mots Clés

information quantique; optique quantique; vari-
ables continues

Abstract

The present manuscript reports theoretical in-
vestigations about the use of recently devel-
oped experimental techniques in the realiza-
tion of quantum information protocols with con-
tinuous variables.
The focus of the work is on the multi-mode
Gaussian states produced by spontaneous
parametric down-conversion of optical fre-
quency combs. Such setup allows to de-
terministically engineer many different Gaus-
sian states of light. The output state can
be de-Gaussified subtracting or adding a pho-
ton coherently on a superposition of modes
and finally measured with pulse-shaped and
wavelength-multiplexed homodyne detection.
The thesis encompasses three projects. The
first concerns the optimization of the spectrum
of the pump laser field to engineer the Gaus-
sian output state. We developed mathematical
techniques to treat spectral profiles with arbi-
trary amplitude and spectral phase. We then
ran an optimization algorithm to find the spec-
tra maximizing several interesting properties of
the state of the down-converted field. A par-
ticular emphasis was put on the production of
continuous-variable cluster states. The opti-
mizations were developed in such a way as to
ensure the experimental feasibility of the opti-
mized pump spectra.
In the second project we studied how the non-
Gaussian states produced subtracting a pho-
ton from a squeezed state can be used for
quantum computation. We propose a protocol
inspired by the measurement-based paradigm
for quantum computation combining the pho-
ton subtracted states and homodyne detec-
tion to approximate unitary non-Gaussian op-
erations. We show that the same results can
be obtained with projective measurements on
single-photon states.
Finally, the third project deals with quantum
secret sharing. In quantum secret sharing
schemes a dealer wants to share informa-
tion encoded in some quantum system with a
group of players in such a way that subsets
of players need to collaborate if they want to
retrieve the information. We devised a secret
sharing protocol that could be mapped to the
experimental setups developed in our group
and participated in the formulation of an ex-
perimental proof of principle of such protocol.
Starting from this we derived general results
for sharing and reconstructing arbitrary quan-
tum states using Gaussian resources.

Keywords

quantum information; quantum optics;
continuous-variables
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