, The inverse source problem for Biot equations with a high damping term is still under research

T. Abboud and J. Nédélec, Electromagnetic waves in an inhomogeneous medium, Journal of mathematical analysis and applications, vol.164, issue.1, pp.40-58, 1992.

G. Alessandrini and V. Nesi, Univalent ?-harmonic mappings. Archive for Rational Mechanics and Analysis, vol.158, pp.155-171, 2001.

G. Bal and G. Uhlmann, Inverse diffusion theory of photoacoustics, Inverse Problems, vol.26, issue.8, p.85010, 2010.
DOI : 10.1088/0266-5611/26/8/085010

URL : http://arxiv.org/pdf/0910.2503

M. Bellassoued, M. Cristofol, and E. Soccorsi, Inverse boundary value problem for the dynamical heterogeneous Maxwell's system, Inverse Problems, vol.28, issue.9, p.95009, 2012.
DOI : 10.1088/0266-5611/28/9/095009

URL : http://arxiv.org/pdf/1210.2293

M. Bellassoued and M. Yamamoto, Carleman estimate and inverse source problem for Biot's equations describing wave propagation in porous media, Inverse Problems, vol.29, issue.11, p.115002, 2013.
DOI : 10.1088/0266-5611/29/11/115002

URL : http://arxiv.org/pdf/1304.5695

J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of computational physics, vol.114, issue.2, pp.185-200, 1994.

M. A. Biot, Generalized theory of acoustic propagation in porous dissipative media, The Journal of the Acoustical Society of America, vol.34, issue.9A, pp.1254-1264, 1962.
URL : https://hal.archives-ouvertes.fr/hal-01368727

A. Maurice and . Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. low-frequency range, The Journal of the acoustical Society of america, vol.28, issue.2, pp.168-178, 1956.

A. Maurice and . Biot, Mechanics of deformation and acoustic propagation in porous media, Journal of applied physics, vol.33, issue.4, pp.1482-1498, 1962.

T. Bowen, Radiation-induced thermoacoustic soft tissue imaging, Ultrasonics Symposium, pp.817-822, 1981.
DOI : 10.1109/ultsym.1981.197737

F. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible Navier-Stokes equations and related models, vol.183, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00777731

J. H. Rodrigo-i-brevis, D. Ortega, and . Pardo, A source time reversal method for seismicity induced by mining, Inverse Problems & Imaging, vol.11, issue.1, 2017.

E. Karl, D. Butler, A. W. Russell, M. Kepic, and . Maxwell, Measurement of the seismoelectric response from a shallow boundary, Geophysics, issue.6, pp.1769-1778, 1996.

C. José-m-carcione, J. E. Morency, and . Santos, Computational poroelasticity-A review, Geophysics, 2010.

J. Chen and . Maarten-de-hoop, Inverse problem of electroseismic conversion. I: Inversion of Maxwell's equations with internal data, 2014.

J. Chen and Y. Yang, Inverse problem of electro-seismic conversion, Inverse Problems, vol.29, issue.11, p.115006, 2013.
DOI : 10.1088/0266-5611/29/11/115006

URL : http://arxiv.org/pdf/1303.2135.pdf

W. C. Chew, J. , and E. Michielssen, Complex coordinate stretching as a generalized absorbing boundary condition. Microwave and Optical Technology Letters, vol.15, pp.363-369, 1997.
DOI : 10.1002/(sici)1098-2760(19970820)15:6<363::aid-mop8>3.0.co;2-c

W. C. Chew and Q. H. Liu, Perfectly matched layers for elastodynamics: a new absorbing boundary condition, Journal of Computational Acoustics, vol.4, issue.04, pp.341-359, 1996.

C. Weng, . Chew, and . William-h-weedon, A 3d perfectly matched medium from modified Maxwell's equations with stretched coordinates. Microwave and optical technology letters, vol.7, pp.599-604, 1994.

F. Collino and C. Tsogka, Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media, Geophysics, vol.66, issue.1, pp.294-307, 2001.

D. Colton and L. Päivärinta, The uniqueness of a solution to an inverse scattering problem for electromagnetic waves. Archive for rational mechanics and analysis, vol.119, pp.59-70, 1992.

M. Matthias, M. Eller, and . Yamamoto, A carleman inequality for the stationary anisotropic Maxwell system, Journal de mathématiques pures et appliquées, vol.86, pp.449-462, 2006.

C. Antony, A. Fraser-smith, P. R. Bernardi, M. Mcgill, R. A. Ladd et al., Low-frequency magnetic field measurements near the epicenter of the ms 7.1 loma prieta earthquake, Geophysical Research Letters, vol.17, issue.9, pp.1465-1468, 1990.

J. Frenkel, On the theory of seismic and seismoelectric phenomena in a moist soil, Journal of Physics, pp.230-241, 1944.

S. Garambois and M. Dietrich, Seismoelectric wave conversions in porous media: Field measurements and transfer function analysis, Geophysics, vol.66, issue.5, pp.1417-1430, 2001.
DOI : 10.1190/1.1487087

V. Girault and P. Raviart, Finite element methods for Navier-Stokes equations: theory and algorithms, vol.5, 2012.

S. Seth, . Haines, and . Steven-r-pride, Seismoelectric numerical modeling on a grid, Geophysics, vol.71, issue.6, pp.57-65, 2006.

S. Seth, . Haines, . Steven-r-pride, L. Simon, B. Klemperer et al., Seismoelectric imaging of shallow targets, Geophysics, vol.72, issue.2, pp.9-20, 2007.

V. Isakov, Inverse problems for partial differential equations, vol.127

V. Isakov, Carleman estimates and applications to inverse problems, Milan Journal of Mathematics, vol.72, issue.1, pp.249-271, 2004.
DOI : 10.1007/s00032-004-0033-6

J. David-linton-johnson, R. Koplik, and . Dashen, Theory of dynamic permeability and tortuosity in fluid-saturated porous media, Journal of fluid mechanics, vol.176, pp.379-402, 1987.

. Mjs-johnston, Y. Mueller, and . Sasai, Magnetic field observations in the near-field the 28 june 1992 mw 7.3 landers, california, earthquake, Bulletin of the Seismological Society of America, vol.84, issue.3, pp.792-798, 1994.

A. Kirsch and F. Hettlich, Mathematical Theory of Time-harmonic Maxwell's Equations, 2016.

V. Michael, A. Klibanov, and . Timonov, Carleman estimates for coefficient inverse problems and numerical applications, vol.46, 2004.

D. Komatitsch and R. Martin, An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation, Geophysics, vol.72, issue.5, pp.155-167, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00528418

P. Kuchment and L. Kunyansky, Mathematics of photoacoustic and thermoacoustic tomography, Handbook of Mathematical Methods in Imaging, pp.817-865, 2011.

M. Kuzuoglu and R. Mittra, Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers. Microwave and Guided Wave Letters, IEEE, vol.6, issue.12, pp.447-449, 1996.

A. R. Levander, Fourth-order finite-difference P-SV seismograms, Geophysics, vol.53, issue.11, pp.1425-1436, 1988.

Q. Liu, Perfectly matched layers for elastic waves in cylindrical and spherical coordinates, The Journal of the Acoustical Society of America, vol.105, issue.4, pp.2075-2084, 1999.

R. Martin, D. Komatitsch, and A. Ezziani, An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media, Geophysics, vol.73, issue.4, pp.51-61, 2008.

Y. J. Masson, K. T. Sr-pride, and . Nihei, Finite difference modeling of Biot's poroelastic equations at seismic frequencies, Journal of Geophysical Research: Solid Earth, vol.111, issue.B10, 2006.

W. Charles and H. Mclean, Strongly elliptic systems and boundary integral equations, 2000.

. Oleg-v-mikhailov, . Matthijs-w-haartsen, and . Toksöz, Electroseismic investigation of the shallow subsurface: Field measurements and numerical modeling, Geophysics, vol.62, issue.1, pp.97-105, 1997.

R. J. Mueller and M. Johnston, Seismomagnetic effect generated by the october, 1989, ml, 7.1 loma prieta, california, earthquake, Geophysical Research Letters, vol.17, issue.8, pp.1231-1234, 1990.
DOI : 10.1029/gl017i008p01231

. Steve-r-pride, Governing equations for the coupled electromagnetics and acoustics of porous media, Physical Review B, vol.50, issue.21, p.15678, 1994.

R. Steven, S. Pride, and . Garambois, Electroseismic wave theory of Frenkel and more recent developments, Journal of Engineering Mechanics, vol.131, issue.9, pp.898-907, 2005.

R. Steven, . Pride, and . Matthijs-w-haartsen, Electroseismic wave properties. The Journal of the, vol.100, pp.1301-1315, 1996.

A. Roden and . Stephen-d-gedney, Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media. Microwave and optical technology letters, vol.27, pp.334-338, 2000.

J. E. and S. , Elastic wave propagation in fluid-saturated porous media

I. Part, the existence and uniqueness theorems, ESAIM: Mathematical Modelling and Numerical Analysis, vol.20, issue.1, pp.113-128, 1986.

P. Stefanov and G. Uhlmann, Multi-wave methods via ultrasound. Inverse Problems and Applications, Inside Out II, vol.60, pp.271-323, 2012.

J. Virieux, SH-wave propagation in heterogeneous media: velocity-stress finitedifference method. Geophysics, vol.49, pp.1933-1942, 1984.
DOI : 10.1071/eg984265a

URL : http://www.publish.csiro.au/eg/pdf/eg984265a

J. Virieux, P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method, Geophysics, vol.51, issue.4, pp.889-901, 1986.
DOI : 10.1071/eg984265a

URL : http://www.publish.csiro.au/eg/pdf/eg984265a

M. Yamamoto, Carleman estimates for parabolic equations and applications. Inverse problems, vol.25, p.123013, 2009.
DOI : 10.1088/0266-5611/25/12/123013

Y. Kane, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propag, vol.14, issue.3, pp.302-307, 1966.

Y. Zeng and Q. Liu, A staggered-grid finite-difference method with perfectly matched layers for poroelastic wave equations, The Journal of the Acoustical Society of America, vol.109, issue.6, pp.2571-2580, 2001.
DOI : 10.1121/1.1369783

Y. Zeng, J. He, and Q. Liu, The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media, Geophysics, vol.66, issue.4, pp.1258-1266, 2001.

Z. Zhu, M. N. Matthijs-w-haartsen, and . Toksöz, Experimental studies of seismoelectric conversions in fluid-saturated porous media, Journal of Geophysical Research: Solid Earth, issue.B12, pp.28055-28064, 1978.