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Abstract
This dissertation contributes to the linearization techniques of high power ampli-
fier using digital predistortion method. High power amplifier is one of the most
nonlinear components in radio transmitters. Baseband adaptive digital predis-
tortion is a powerful technique to linearize the power amplifiers and allows to
push the power amplifier operation point towards its high efficiency region. Lin-
earization of power amplifiers using digital predistortion with low complexities is
the focus of this dissertation. An algorithm is proposed to determine an optimal
model structure of single-stage or multi-stage predistorter according to a trade-off
between modeling accuracy and model complexity. Multi-stage cascaded digital
predistortions are studied with different identification methods, which have advan-
tages on complexity of model identification compared with single-stage structure.
In terms of experimental implementations, this dissertation studies the impact of
different gain choices on linearized power amplifier. All studies are evaluated with
a Doherty power amplifier.

Keywords: Power amplifier Digital predistortion Nonlinear distortion
Cascaded model Optimization
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Chapter 1

Introduction

1.1 Motivation and Objective
High power amplifier (PA) is one of the most nonlinear components in radio trans-
mitters. It is a critical element of radio transmitters in current and future gener-
ations of wireless systems and is responsible for a large amount of the power
consumption. So the power autonomy and the size of transmitters strongly de-
pend on the power efficiency of the PA. Unfortunately, for most current types of
PA, e.g. the Doherty Power Amplifier [1], a good efficiency is obtained at the
price of a poor linearity specially with modern communication waveforms that
have very high peak-to-average power ratio (PAPR) and large bandwidths. High
efficiency and linearity are two important requirements which are not easy to ful-
fill simultaneously. For high efficiency, PAs are usually driven towards saturation
region where high nonlinear behavior is exhibited. PAs may have not only very
strong nonlinearities but also memory effects [2]. Baseband adaptive digital pre-
distortion (DPD) is a powerful technique to linearize the PA and allows to push
the PA operation point towards its high efficiency region. The principle of DPD
is to apply, upstream of PA, a pre-correction on the signal so that the cascade of
the DPD and the PA is close to an ideal linear, memoryless system. In this way,
the PA can be driven more towards the high efficiency saturation region without
compromising much on linearity.

Different models for DPD have been proposed during the recent decades of
years. The first objective of this dissertation is to present how to compensate for
the nonlinearities and memory effects of PA and improve its efficiency using DPD
method. Different DPDs are analyzed experimentally. The mathematical model
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of DPD should have low complexity so that its implementation on hardware is
viable.

Reducing the model complexity and the complexity of DPD implementation
is always a key topic. Multi-stage cascaded model has been studied in [3]. The
identification complexity is able to be reduced by decomposing a single-stage
model into multi-stage of simpler models. The multi-stage cascaded model is
very different from a single-stage model. Different identification orders result in
different lienarization performances.

In another side, the dimension of the DPD models directly decides the model
complexity. Good modeling accuracy demands large dimension. However, it is
not always true in reverse. A method which can determine the structure of a DPD
with a good trade-off between modeling accuracy and model complexity is widely
needed. As the performances of DPD models depend on the PA characteristics
and its input signal, this method should be applied once the PA or input signal is
changed. In this case, the execution time of this method needs to be short.

This dissertation discusses the techniques of DPD that have been studied and
makes new contributions on optimal DPD model structure determination and cas-
caded DPDs. The optimal cascaded DPD structrue can be also determined using
the proposed method.

This dissertation focuses mainly on:

• Searching the optimal DPD mathematical model structure according to a
given criterion which represents the trade-off between modeling accuracy
and model complexity.

• Identification algorithm and performance of cascaded DPD models, and
comparison between multi-stage cascaded models and single stage models.

• Experimental evaluation of the proposed techniques using a high power. A
high power Doherty PA is tested with different linearization methods.

1.2 Main Contributions
The contributions of this dissertation are listed as follows:

• An algorithm based on hill-climbing heuristic is proposed to determine the
optimal structure of DPD model according to a given criterion. Its effective-
ness has been confirmed in case of generalized memory polynomial models.
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– Different criteria are proposed to represent the trade-off between mod-
eling accuracy and model complexity.

– Different methods to accelerate the algorithm are proposed and stud-
ied.

• One-stage DPD and multi-stage cascaded DPD model are studied and ap-
plied on test bench.

– Different methods to identify the cascaded DPD are compared and
discussed.

– An efficient way to determine the structure of cascaded DPD models
is also proposed and confirmed on test bench.

• An adjustment of implementation in measurement of PA with linear gain
is proposed. The experimental linearizations of PA in this dissertation are
based on it. The impact of different choices of gain is also studied.

1.3 Outline
The dissertation is organized as follows.

Chapter 2 gives general concepts and the background of PA and DPD. Dif-
ferent DPD mathematical models are cited and reviewed in this chapter. The test
bench for experimental implementations is also introduced.

The algorithm based on hill-climbing heuristic to determine the optimal struc-
ture of a generalized memory polynomial (GMP) model is described in Chapter
3. Different optimizations of the algorithm are proposed and studied and the solu-
tions of GMP model structures are tested on test bench with a Three-way Doherty
PA. This algorithm is compared with genetic algorithm (GA).

In Chapter 4, cascaded DPD is introduced to linearize PA with less complexity
of identification. The cascaded DPD is proved to have less coefficient dynamic
range and lower conditioning number of matrix while potentially keeping similar
linearization performance compared with one-stage DPD. Different identification
methods of cascaded DPD are studied and compared. The optimal structure of
cascaded DPD can be determined by the algorithm proposed in Chapter 3.

Chapter 5 shows the experimental results on test bench. The test bench cal-
ibration algorithm is investigated. The characterization of PA is implemented in
this chapter and different gains for linearization are chosen and compared.

Finally Chapter 6 gives the conclusion and prospects.
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Chapter 2

Generalities on Power Amplifiers
and Linearization Techniques

2.1 Introduction
The nonlinearity and the efficiency of PA depend on the input signal amplitude as
shown in Fig 2.1. The blue curve is the output power of PA in function of input
power, and the red curve is the efficiency of the PA in function of input power.
To get the maximal efficiency, it is better to move the operating point near the
saturation zone. However, the signal falls into the nonlinear zone and undesired
distortion comes out. To avoid nonlinear spectral distortion, the operating point
needs to be backed off away from the saturation zone.

There are three linearization techniques to compensate for the distortion of
PA: the feedforward technique, the feedback loop, and the predistortion (PD).
The disadvantages of feedforwad approach are its high hardware complexity, lim-
itations on operating point of PA and on efficiency limits. The feedback loop has
limitation on bandwidth of the signal.

There have been numerous studies on implementations of predistortion: ana-
log predistortion [4] [5] [6] [7] and digital predistortion [8] [9] [10] [11]. The
former is implemented on analog hardware using nonlinear components, which
limits its performance [9]. The latter has better adaptability and performance for
signals of bandwidths up to several tens of MHz [12]. For ultra wide bandwidth,
signals as generated by carrier aggregation, analog predistortion may be a better
solution [13]. In this dissertation, we discuss only about digital predistortion.

This chapter is organized as follows. Section 2 discusses the nonlinearity of
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Figure 2.1: Trade-off between the linearity and the efficiency of PA

PA. Section 3 defines some criteria to evaluate the PA effects on signals. In Sec-
tion 4, main concepts of DPD are introduced. Different models for PA and DPD
modeling are presented in Section 5. Section 6 introduces the techniques used to
identify the coefficients of models. The test bench is presented in Section 7. The
conclusion is given in Section 8.

2.2 Distortions Introduced by Power Amplifiers

2.2.1 Nonlinearity
The nonlinearity of PA can be shown with characteristic curves which are called
AM/AM & AM/PM (Amplitude Modulation/Amplitude Modulation & Amplitude
Modulation/Phase Modulation) curves as shown in Fig 2.2. The blue curve is
AM/AM curve which shows the power of a Three-way Doherty PA’s output signal
magnitude in function of its input signal magnitude. The orange curve is AM/PM
curve which shows the phase deviation of this PA’s output signal in function of its
input signal magnitude at the fundamental frequency f0.

We can see that the gain is compressed by PA when the input power increases.
The 1dB compression point (P1dB) is defined at the point where the compression
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Figure 2.2: AM/AM & AM/PM curve of a Three-way Doherty PA

of gain equals to 1 dB. The 3dB compression point (P3dB) is defined at the point
where the compression of gain equals to 3 dB.

To avoid saturation at the PA output, we need to keep the PA input peak power
within a threshold as shown in Fig 2.3. The PA output peak power is denoted by
PPeak. An output peak back-off (OPBO) is expressed as:

OPBOdB = PSat − PPeak (2.1)

where PSat is the saturated output power of PA.

2.2.2 Harmonics and Intermodulation Products
The nonlinearity of PA can be approximated with a power series:

y(t) =
Ka∑
k=1

akx
k(t) (2.2)

where x(t) and y(t) are the input and output signal of PA, Ka is the highest order
of nonlinearity.

When the incident signal is a single tone signal as

x(t) = Acos(2πf0t), (2.3)
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Figure 2.3: Application of OPBO

the output signal can be written as

y(t) =
Ka∑
k=1

bkcos(2πkf0t). (2.4)

The terms corresponding to k > 1, which are multiples of the original frequency,
are called the harmonics. Fig 2.4 shows the harmonics generated by a Three-way
Doherty PA excited by an 2 GHz one-tone signal. The spectrum shows the spikes
at 4 GHz and 6 GHz frequencies.

When the incident signal is a two-tone signal as

x(t) = A1cos(2πf1t) + A2cos(2πf2t) (2.5)

where |f1−f2| is very small compared with the carrier frequency in transmission,
there are more spectral components generated at the output of PA. The frequencies
of these components can be expressed as:

fcom = pf1 + qf2. (2.6)

The order of the term is decided by N = |p| + |q|. These components are called
intermodulation (IMD) products. The most important distortion generally results
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Figure 2.4: Harmonics at PA output excited by a 2 GHz one-tone signal

from the third order IMD products (IMD3) nearest to f1 and f2: at frequencies of
2f1 − f2 and 2f2 − f1. A 1 & 6 MHz two-tone signal is used to study the IMD
products. The signal is modulated by a carrier of 2.14 GHz and is sent to a Three-
way Doherty PA. Fig 2.5 shows the IMD generated by the PA after the PA output
signal is demodulated to baseband. In this case we can see IMD3, IMD5, IMD7
and IMD9. We can also observe some adjoint spikes beside each intermodulation
spike which are resulted from the direct component (f = 0) introduced by the
equipment.

2.2.3 Memory Effect
The AM/AM & AM/PM curves in Fig 2.6 represent the characteristics of a memo-
ryless PA model. However, the AM/AM & AM/PM curves of most of high power
amplifiers exhibit strong dispersions as shown in Fig 2.2. This is caused by mem-
ory effects [2]. The output signal of a PA depends on both the present and the
historical input signal [12]. Thus one power of input signal may correspond to
several different powers of output signal.

The memory effects can be categorized in terms of their time constant com-
pared with the reciprocal of their bandwidth: long-term memory effects with
large time constant, and short-term memory effects with low time constant. Large
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Figure 2.5: Intermodulation products at PA output excited by a 1 & 6 MHz two-
tone signal

time-constant memory effects are mainly due to thermal effects and biasing cir-
cuits [14]. Short-time constant memory effects are due to short time constants of
biasing circuits.

There are different sources of memory effects [12].
The electrical memory effects are caused by the variation of circuit component

(transistors, matching networks and bias networks) impedances in function of dif-
ferent signal modulation frequencies [15]. For the wide-bandwidth signal, the
impedances variations of varying envelope can be very large, which is the main
source of memory effects compared with that of fundamental or second harmonic
impedances. Since the envelope frequency range covers from dc to the maximum
modulation frequency, it produces both long-term and short-term memory effects.
Besides, the modulation will generate a dc component in harmonics which intro-
duces the bias voltage variation.

The thermal memory effects [16] are caused by electro-thermal couplings.
The dissipated power of transistors increases the temperature which may affect
the electrical parameters of the transistors. Since the temperature is not changed
instantaneously, the thermal memory effects are long-term memory effects.
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(a) AM/AM curve

(b) AM/PM curve

Figure 2.6: PA linearization with DPD
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Figure 2.7: Upper and Lower Adjacent Channels

2.3 Parameters to Evaluate PA Effects on Signals
The distortion introduced by PA could be evaluated with the normalized mean
square error (NMSE), the adjacent channel power ratio (ACPR) and Error Vector
Magnitude (EVM) [17].

The NMSE between the PA output signal y(n) and the desired PA output sig-
nal ỹ(n) (proportional to the input signal x(n)), expressed as

NMSEdB = 10log10

[∑N
n=1 |ỹ(n)− y(n)|2∑N

n=1 |ỹ(n)|2

]
, (2.7)

is used to evaluate both in-band and out-band distortion of PA.
The ACPR at PA output is used to evaluate the out-of-band distortion of PA:

ACPRdB = 10log10

[∑
ω∈L |Y (ω)|2 +

∑
ω∈U |Y (ω)|2∑

ω∈M |Y (ω)|2

]
(2.8)

where L and U are the first lower adjacent channel frequencies and the first upper
adjacent channel frequencies as shown in Fig 2.7, respectively, M is the main
channel frequencies, Y (ω) is Discrete Fourier Transform of y(n).
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Figure 2.8: Constellation of a 64 QAM signal with EVM=14%

The error vector magnitude (EVM) is used to evaluate the in-band distortion
of PA. It is applied for the constellation of modulated signals.

EVM% =

√√√√√√ 1
N

N−1∑
j=0

(δI2 + δQ2)

S2
avg

× 100% (2.9)

where δI and δQ are errors magnitude corresponding to in-phase symbol and
quadrature symbol of received data compared with an ideally reconstructed con-
stellation respectively, N is the number of symbols, S2

avg is the average square
magnitude of N symbols. The offset and the rotation of the constellation can be
also taken into consideration in the definition of EVM. Fig 2.8 shows the constel-
lation of a 64 QAM signal. The black stars are ideally reconstructed constellation.
The red points are received data. The EVM in this case is 14%.

2.4 Principle of Digital Predistortion
Baseband adaptive digital predistortion (DPD) is a powerful technique to com-
pensate for nonlinearities and memory effects of the PA. Theoretically a DPD has
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inverse characteristics of that of the PA. In Fig 2.6, the blue curve is the AM/AM
curve of PA, which has a nonlinearity when the input signal power approaches
PInSat, the saturation input power. The PD’s characteristics can be obtained by
reversing that of PA, as the red curve. By combining PD and PA, the AM/AM
curve of the entire system become linear (at least up to a maximum limit) as the
black curve shows.

The DPD is required to have high linearization performances and low cost.
The coefficients of DPD can be identified in different ways which are thoroughly
introduced in Section 2.6. The cost of DPD can be the model complexity of DPD
or the complexity of its identification procedure, which is influenced by the num-
ber of coefficients of the DPD model.

2.5 Different PA and DPD Models
Behavioral modeling of PA considers the PA as a black-box and only its input
signal and output signal are needed. The DPD design and identification can be
independent of deep knowledge of the RF circuit physics and functionality [18].

Numerous mathematical models have been proposed to model PAs and to
serve as DPD. Most of them are based on Volterra Series Model. A commonly
used model which can compensate for both nonlinearities and memory effects is
Memory Polynomial (MP) model [8] [19]. However, MP model may have limited
performance when the PA exhibits strong nonlinearities and memory effects.

In recent years there has been growing interest in more complex models de-
rived from Volterra series. In MP model which is also called the diagonal Volterra
model [8], only the diagonal terms are used, and all off-diagonal terms are zero. A
“near-diagonality” structure is proposed in [20] and it has been shown that the off-
diagonal terms may be more important than the diagonal terms. The Generalized
Memory Polynomial (GMP) model [21], Laguerre-Volterra model [22], Kautz-
Volterra model [23] and dynamic-deviation-reduction (DDR) Volterra model [24]
have been proposed using different pruning techniques of the Volterra series.
These models are linear combinations of some basis functions.

According to the input signal, we may have RF model or baseband model [25].
In case of RF model, the input signal is modulated with a carrier frequency which
is much greater than the bandwidth of the signal. The baseband model is used
to make a study of the envelope of the RF signal, which is equivalent to a signal
centered to zero frequency.
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2.5.1 Memoryless and quasi-memoryless Models
The DPD models can be divided into two categories: memoryless models and
models with memory. For low power amplifier or narrow-bandwidth input signal,
the characteristics of PA can be modeled as a memoryless or quasi-memoryless
model, e.g. polynomial model, Saleh model [26] and Rapp model [27]. A memo-
ryless model describes only AM/AM conversion.

We use a baseband equivalent model to study the RF system because it requires
lower sampling frequency compared with the carrier frequency. The baseband
signal x(n) is complex signal. Considering that x(n − l) ≈ x(n), the relation
between PA input and output signal can be presented as a memoryless polynomial
model:

y(n) =
K−1∑
k=0

bk|x(n)|kx(n), (2.10)

where x(n) and y(n) are the baseband PA input and output signal respectively,
and bk is the complex-valued coefficient of kth order of nonlinearity, K is the
maximum order of nonlinearity. However, in this case, the model can compensate
for the phase shift and it creates also an AM/PM conversion. Thus the model is
called quasi-memoryless model.

For quasi-memoryless models, there are many different models. Here we
present Saleh model and Rapp model which are two of the most used quasi-
memoryless models. Saleh model is one of the first proposed to model a TWT
amplifier with two-parameter formulas [26]:

A(x(n)) =
αA|x(n)|

1 + βA|x(n)|2

φ(x(n)) =
αφ|x(n)|2

1 + βφ|x(n)|2

(2.11)

where αA, βA, αφ and βφ are constants, A(x(n)) and φ(x(n)) represent AM/AM
and AM/PM curves respectively.

Rapp model is proposed in [27] by replacing the formula of A(x(n)) with:

A(x(n)) =
G|x(n)|

(1 + (G|x(n)|
A0

)2p)
1
2p

(2.12)

where A0 is the maximum output power of PA, G is the small signal gain, p is
used to control the smoothness of the AM/AM curve near saturation zone.
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2.5.2 Models Derived from Volterra Series
The electrical cause and electro-thermal couplings introduce memory effects which
can seriously limit the performance of DPD. For high power amplifiers with wide
band applications, the memory effects are too strong to be neglected. In this case,
the Volterra series model is a good choice to take into account these memory ef-
fects.

The Volterra series model for radio frequency (RF) system can be expressed
as:

ỹ(n) =
+∞∑
k=1

∫ +∞

0

· · ·
∫ +∞

0

hk(τ1, . . , τk)
k∏
j=1

x̃(t− τj)dτj (2.13)

where x̃ is the RF input signal, hk(·) is the real-valued k-th order Volterra kernel.
After demodulating the RF signal to baseband, the envelope of signal can be

obtained by a low-pass filter. Thus we can have baseband equivalent discrete time
Volterra series model with complex signal x(n) input:

y(n) =
K∑
k=0

L−1∑
l1=0

L−1∑
l2=l1

· · ·
L−1∑

l2k+1=l2k

h2k+1(l1, . . , l2k+1)
k+1∏
j=1

x(n− lj)
2k+1∏
j=k+2

x∗(n− lj)

(2.14)

where L represents the memory depth and K represents the order of nonlinearity.
The modeling performance of Volterra series model strongly depends on the

number of terms. The large number of terms make the full Volterra series model
very complicated and time consuming to identify.

Memory Polynomial Model and Generalized Memory Polynomial Model

Memory polynomial (MP) model is a particular case of Volterra series model,
which has only the diagonal terms. Suppose x(n) is the baseband input signal and
y(n) is the output signal of PD, the MP model is represented as (2.15):

y(n) =
K−1∑
k=0

L−1∑
l=0

cklx(n− l)|x(n− l)|k. (2.15)

Though the MP model is proven effective in predistortion modeling for non-
linear PA with memory effect, we can still achieve even better performance by for-
mulating more general memory structures. As the basis functions in MP model are
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diagonal in terms of memory, the off-diagonal terms x(n− l)|x(n−m)|k, where
l 6= m, are added to form the generalized memory polynomial model (GMP).

The GMP model is widely used [28] [29] [30] [31], and it has been shown
in [32] that it has a good trade-off for accuracy versus complexity. The GMP can
be written as:

y(n) =
Ka−1∑
k=0

La−1∑
l=0

aklx(n− l)|x(n− l)|k

+

Kb∑
k=1

Lb−1∑
l=0

Mb∑
m=1

bklmx(n− l)|x(n− l −m)|k

+
Kc∑
k=1

Lc−1∑
l=0

Mc∑
m=1

cklmx(n− l)|x(n− l +m)|k

(2.16)

where the DPD input is x(n), the DPD output is y(n), k is the index for non-
linearity, and l, m are the indices for memory. akl, bklm, cklm are the complex
coefficients of the signal and envelope, the signal and lagging envelope, and the
signal and leading envelope, respectively. Ka, Kb, Kc are the highest orders of
nonlinearity. La, Lb, Lc are the highest memory depths. Mb, Mc denote the
longest lagging and leading delay tap length, respectively.

The GMP model may outperform MP model on reducing spectral regrowth
or adjacent channel power ratio (ACPR) by adding more model complexity. But
as the number of terms increasing, the model structure sizing and its coefficients
identification become more complicated [21].

Orthogonal Polynomial Model

The basis functions of conventional polynomial models as (2.15) are not orthogo-
nal. The polynomial model with orthogonal basis proposed in [33] alleviates the
numerical instability problem associated wtih the conventional polynomials and
generally yield better modeling accuracy.

The conventional memoryless polynomial model (2.10) is written in a new
way with orthogonal basis ψk(|x|)

y(n) =
K−1∑
k=0

βkψk(x(n)) (2.17)
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where

ψk(x) =
k∑
i=0

Uik|x|ix (2.18)

and Uik are the coefficients of orthogonal polynomial basis functions.
The orthogonal polynomials depend on the probability density functions of

signal amplitude. When the absolute module of input complex signal |x| is uni-
formly distributed in [0, 1], we can have:

Ulk =

{
(−1)i+k (k+i)!

(i−1)!(i+1)!(k−i)! , i 6 k

0, i > k
(2.19)

The transform of memory polynomial model is also proposed [33]:

y[n] =
K−1∑
k=0

L−1∑
l=0

βklψkl(x(n− l)). (2.20)

In this case, the orthogonality is kept only among the terms of the same delay.

2.5.3 Block-Oriented Nonlinear Systems
The nonlinearities and memory effects can be modeled separately by the associ-
ation of linear time invariant (LTI) dynamic blocks and static nonlinear blocks:
Block-oriented nonlinear (BONL) system [34].

Hammerstein, Wiener, and Wiener-Hammerstein models are widely used BONL
systems and their identification algorithms are thoroughly researched. Suppose
u(n) is the input signal and x(n) is the output signal of the predistorter. If we
model the nonlinear part with a polynomial, the Hammerstein model is given in
(2.21) and (2.22):

w(n) =
K∑
k=0

aku(n)|u(n)|k (2.21)

x(n) =
L∑
l=0

blw(n− l). (2.22)

where w(n) is the intermediate signal between the 2 stages of the model.
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Nonlinearity LTI

x(n)w(n)u(n)

Figure 2.9: Hammerstein model

LTI Nonlinearity

u(n) x(n)w(n)

Figure 2.10: Wiener model

In Hammerstein model, it represents the output of Nonlinear part and the input
of LTI part as shown in Fig 2.9. In Wiener model, it represents the output of LTI
part and the input of Nonlinear part as shown in Fig 2.10.

The memoryless nonlinearity part is represented by (2.21). The LTI system is
represented by (2.22). And the Wiener model is given in (2.23) and (2.24):

w(n) =
L∑
l=0

alu(n− l) (2.23)

x(n) =
K∑
k=0

bkw(n)|w(n)|k. (2.24)

The LTI system is represented by (2.23) and the memoryless nonlinearity part is
represented by (2.24).

The Wiener-Hammerstein model is given in (2.25), (2.26) and (2.27):

w(n) =
L∑
l=0

alu(n− l) (2.25)

s(n) =
K∑
k=0

bkw(n)|w(n)|k (2.26)

x(n) =
M∑
m=0

cms(n−m). (2.27)

It is a memoryless nonlinearity sandwiched between two linear filters, as shown
in Fig 2.11. Wiener model and Hammerstein model can be considered as the par-
ticular cases of Wiener-Hammerstein model [35].
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LTI Nonlinearity LTI

s(n)u(n) w(n) x(n)

Figure 2.11: Wiener-Hammerstein model

Nonlinearity LTI Nonlinearity

x(n)u(n)

(a) Hammerstein-Wiener model

LTI

LTI Nonlinearity

u(n) x(n)

(b) Parallel Wiener model

+

+

Nonlinearity

Nonlinearity LTI

LTI

u(n) x(n)

(c) Parallel Hammerstein model

+

+

Nonlinearity

Nonlinearity

LTI LTI

LTILTI

u(n) x(n)

(d) Parallel Wiener-Hammerstein model

Figure 2.12: Different BONL systems

With different combinations, we can derive also Hammerstein-Wiener model,
Parallel Wiener model, Parallel Hammerstein model, Parallel Wiener-Hammerstein
model as shown in Fig 2.12 [36].

2.5.4 Polynomial Model with Separable Functions
A general structure of DPD is described in [37] using separable functions.

For any nonlinear model with memory depth L, the relation between input x
and output y can be defined with an operator P : CL → C that

y(n) = P (x(n), x(n− 1), ..., x(n− L+ 1)). (2.28)

We denote the function of PA or DPD model by P0. As x(n)k+1 can be de-
composed into the product x(n)|x(n)|k when k is even, an approximation is made
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from a multivariate function to a sum of separable functions:

P0(x(n), x(n− 1), ..., x(n− L+ 1)) ≈
K∑
k=1

L−1∏
l=0

Pkl(x(n− 1))

=
K∑
k=1

x(n−mk)
L−1∏
l=0

Pkl(|x(n− l)|)

(2.29)

where 0 6 mk 6 L − 1. The separation of term x(n − mk) allows to replace
the function of complex variable Pkl(x(n − l)) by the function of real variable
Pkl(|x(n− l)|), which reduces the complexity of computation.

The systematic structure (2.29) is such a general structure that many DPD
models proposed in literature are some particular cases of it [37]. The basis func-
tions Pkl can be polynomials, sinusoidal functions and LUTs, or mixture of them.

The separable functions can be represented also by polynomials, which are
expressed in terms of a group of orthonormal basis {ψ0(|x|), ..., ψM−1(|x|)}:

Pkl(|x|) =
M−1∑
m=0

uklmψm(|x|) (2.30)

where ψm(|x|) is an orthogonal polynomial of degree m whose weight function is
the probability density function (PDF) of the transmitted signal. The coefficients
uklm can be estimated by solving a system of linear equations.

2.5.5 Vector-switched Model and Decomposed Vector Rotation
Model

Instead of modeling the PA or DPD with one model, we can also construct several
submodels according to different amplitudes of input signal.

The DPD using a vector-switched model is proposed in [38]. It applies Volterra
series or GMP models with different nonlinearity orders according to the am-
plitudes of the input signal segments. The partitioning of these segments needs
reasonable decision borders, which can be solved as a vector quantization prob-
lem [39].

The amplitude space is divided into several switching regions which are de-
signed based on the current and previous complex-valued input samples of the
training set. Every region has a centroid. With the amplitudes of input samples
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of the training set, the closest centroid could be found and then the corresponding
switching region is selected. This technique can linearize PAs with irregular in-
put/output characteristics at low computational complexity. The potential concern
is that when different models are used for consecutive samples, there will be some
distortion introduced by the switching.

A Decomposed Vector Rotation (DVR) model which is different from Volterra
models is proposed in [40]. It is based on the canonical piecewise-linear function
(CPWL) [41] which works in the discrete time domain and can represent both
static nonlinearity and memory effects. The DVR model inherits these features
and furthermore satisfies linear-in-parameters condition of DPD model selection
and dealing with complex-valued signals. The representation of DVR model is
written below:

y(n) =
M∑
i=0

aix(n− i)

+
K∑
k=1

M∑
i=0

cki,1||x(n− i)| − βk|ejθ(n−i)

+
K∑
k=1

M∑
i=0

cki,21||x(n− i)| − βk|ejθ(n−i) · |x(n)|

+
K∑
k=1

M∑
i=1

cki,22||x(n− i)| − βk| · x(n)

+
K∑
k=1

M∑
i=1

cki,23||x(n− i)| − βk| · x(n− i)

+
K∑
k=1

M∑
i=1

cki,24||x(n)| − βk| · x(n− i)

+ · · ·

(2.31)

where x(n) and y(n) are input and output of the model respectively, βk is the
breakpoint, K is the number of breakpoints, M is the memory depth.

Very high order of nonlinearities can be characterized by this model with a
small number of terms. And it is much more flexible and capable in modeling
highly nonlinear and ”unusual” PAs compared to the Volterra models [40]. This
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representation (2.31) is simplified in [42] by rewriting the 1st-order basis

K∑
k=1

M∑
i=0

cki,1||x(n− i)| − βk|ejθ(n−i) (2.32)

as a summation

M∑
i=0

δkix(n− i) +
M∑
i=0

x(n− i)
K∑
k=1

αki||x(n− i)− βk| (2.33)

assuming the CPWL is transfered back to the polynomials. The first basis of the
second order

K∑
k=1

M∑
i=0

cki,21||x(n− i)| − βk|ejθ(n−i) · |x(n)| (2.34)

is also replaced by

K∑
k=1

M∑
i=0

cki,21||x(n− i)| − βk|x(n− i) · |x(n)| (2.35)

The calculation of exponential functions are thus approximated by calculating
polynomials, which reduces the model complexity while keeping nearly the same
modeling performance.

2.5.6 Neural Network Models
Neural network (NN) is another choice for PA and DPD modeling. Multilayer
perceptron NN is well used because it can be trained to learn any arbitrary nonlin-
ear input-output relationships from corresponding data [43]. As developed from
imitating the biological nervous system, a multilayer perceptron neural network
consists of an input layer, some hidden layers, and an output layer. The input
signal is fed to the input layer, and the output signal is found at the output layer.
Each layer is a group of neurons which have no connection between each other
but have connections with the neurons of the next layer.

Multilayer perceptron neural network is illustrated in Fig 2.13. The total num-
ber of layers is L, where L > 3. Each layer has different number of neurons. The
memory depth is represented by the number of samples N1 at the input layer.
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Figure 2.13: Multilayer Perceptron Neural Network model

Different artificial neural network models have been applied on PA and DPD
modeling. A real-valued time delay neural network is proposed in [44] using
only real-valued parameters and the real components of input and output signals.
Thus the complexity is largely reduced with complex modulated signals having
highly time-varying envelopes. In [45], a distributed spatiotemporal neural net-
work based model is proposed to model the PA/transmitter with modulated sig-
nals. It is proved to have low computational load and fast convergence.

2.6 DPD Model Identification
An important aspect of digital predistortion is the estimation of the digital predis-
torter model coefficients.

Two approaches can be used to estimate model coefficients: indirect learning
architecture (ILA) and direct learning architecture (DLA) [46]. In the ILA ap-
proach, a post-inverse block of the PA is first identified with the input and output
signals of the PA and then applied upstream of PA as a DPD. In the DLA approach,
the DPD is directly identified with the input and output signals of the system [47].

In the following, we consider the case where the model is linear with respect
to its coefficients such as Volterra series, MP, GMP, DDR models and many other
models derived from Volterra series.

In this section, we discuss only the identification of single block DPD. The
identification in the case of multi-blocks DPD such as BONL or cascade DPD is
introduced in Chapter 4.
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Figure 2.14: Indirect Learning Architecture

2.6.1 Indirect Learning Architecture
The indirect learning architecture (ILA), which is depicted in Fig 2.14, is a sim-
ple architecture to identify DPD models using different techniques such as least
squares (LS), least mean square (LMS) or recursive least square (RLS) [19] [48]
[46] [3]. Here we describe the LS approach.

A post-inverse of the PA is identified and used as a DPD. The aim is to min-
imize LS criterion built on the difference between the output zp of the postdistorter
and the input x of the PA. The instantaneous error is defined as ε(n) = zp(n)− x(n).

For the post-inverse block of models linear with respect to their coefficients,
the relation between its input and output can be rewritten using matrix notation
for a block of N samples:

zp = Zc (2.36)

where zp= [zp(1), . . . , zp(N)]T , z= [z(1), . . . , z(N)]T , c is a R × 1 vector con-
taining the set of coefficients ckl, Z is N × R matrix containing basis functions
of z. For example, in the case of a memory polynomial model, this matrix is
represented as:

Z =


Φ1,1(z(n)) · · · ΦK,1(z(n)) Φ1,2(z(n)) · · · ΦK,L(z(n))
Φ1,1(z(n− 1)) · · · · · · · · ΦK,L(z(n− 1))
· · · · · · · · · ·
· · · · · · · · · ·
Φ1,1(z(n−N + 1)) · · · · · · · · ·

 ,

(2.37)
where Φk,l(z(n)) = z(n− l + 1)|z(n− l + 1)|k−1 and R = KL the total number
of coefficients of an MP model.
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Table 2.1: Computational complexity of each step in DPD identification

Step Number of flops
1 2NR2 − 2

3
R3

2 2NR−R
3 R2

The least square (LS) solution will be the solution for the following equation

[ZHZ]ĉ = ZHx (2.38)

which minimizes the LS cost function

C =
N∑
n=1

|zp(n)− x(n)|2. (2.39)

Many approaches can be used to solve (2.38). It should be noticed that the
matrix ZHZ is generally badly conditioned. A possible technique is to use QR
decomposition. Eq (2.38) can be solved by three steps:

• In step 1, we compute a QR factorization Z = QR, where Q is a N × N
square matrix and R is a N × R upper-triangle matrix. In case of House-
holder triangularization method, there are 2N × R2 − 2

3
R3 flops (floating

point operations) [49].

• In step 2, the matrix QHx is computed. There are 2NR − R flops in this
step.

• In step 3, an upper-triangle matrix Rĉ = QHx is solved for ĉ. There are R2

flops in this step.

Table 2.1 summarizes roughly the number of complex multiplications needed
in the post-inverse identification, where N is the length of dataset for DPD identi-
fication. If N is large compared with R, we can estimate the computation load by
O(2NR2).
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Figure 2.15: Direct Learning Architecture - DLA

2.6.2 Direct Learning Architecture
The direct learning architecture (DLA) is depicted in Fig 2.15, where the error to
be minimized is directly the difference between the DPD input and the PA output
normalized by a reference gain.

The DLA using Nonlinear filtered-x least mean square algorithm (NFxLMS)
is proposed in [47]. The model of DPD is estimated according to the PA model
and the reference error ε(n) which is the difference between the DPD input u(n)
and the normalized PA output z(n). The coefficient ck of the k-th basis function
Φk[u(n)] could be updated by applying the stochastic gradient algorithm, where
the gradient is represented by the derivative

∂ε2(n)

∂ck
=2ε∗(n)

∂ε(n)

∂ck

=− 2ε∗(n)
∂z(n)

∂ck
.

(2.40)

Assuming that ck vary slowly, we can have

∂z(n)

∂ck
=

L−1∑
l=0

∂z(n)

∂x(n− l)
· ∂x(n− l)

∂ck

≈
L−1∑
l=0

∂z(n)

∂x(n− l)
· Φk[u(n− l)]

(2.41)

where L is the memory depth of DPD model, and ∂z(n)
∂x(n−l) is the derivative of a

nonlinear model of PA normalized by its gain. Thus a model of PA needs to be
firstly identified.
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If we denote g(l, n) = ∂z(n)
∂x(n−l) , then (2.41) can be rewritten as

∂z(n)

∂ck
≈

L−1∑
l=0

g(l, n)Φk[u(n− l)]. (2.42)

It is equivalent that each basis function Φk[u(n)] is filtered by an instantaneous
equivalent linear (IEL) filter g(n) = [g(0, n), .., g(L − 1, n)] [50]. Using this
method, an NFxRLS is proposed for recursive least square (RLS) algorithm. Re-
placing (2.42) into (2.40), we can have

∂ε2(n)

∂ck
≈− 2ε∗(n)

L−1∑
l=0

g(l, n)Φk[u(n− l)]

=− 2[
L−1∑
l=0

ε(n)g∗(l, n)]∗Φk[u(n− l)]

=− 2[
L−1∑
l=0

ε(m+ l − L+ 1)g∗(l,m+ l − L+ 1)]∗Φk[u(m− L+ 1)]

(2.43)

if we change the variable m = n− l + L− 1.
An adjoint IEL filter gadj(n) = [g∗(L − 1, n), .., g(0, n − L + 1)∗] is then

defined in [50]. It is equivalent that the error signal ε(n) is filtered by the adjoint
IEL filter. By applying the adjoint IEL for LMS and RLS: Nonlinear adjoint least
mean square algorithm (NALMS) and Nonlinear adjoint recursive least square
algorithm (NARLS) are proposed in [50]. The computational complexity and
memory requirements are reduced because only the error signal is filtered instead
of every basis function of u(n).

Instead of minimizing the residual between measured output and input sig-
nal, Weighted Adjacent Channel Power (WACP) is used in [51] as the objective
function to minimize. WACPs represent the distortions in the lower and upper
adjacent channel frequencies. It is chosen to avoid the gain/delay compensation
errors and Analog Digital Convertor (ADC) distortion associated with a full time
domain feedback path.

In [52], a closed-loop estimator of DLA is proposed to estimate the DPD coef-
ficients. The advantage of this algorithm is that there is no need to identify the PA
model and the identification of the coefficient errors is solved as a linear problem.
Thus it is mainly explained in this section. For models linear with respect to their
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coefficients, the relation between the input u and the output x of the DPD can be
expressed in matrix form by

x =Uc (2.44)

where x= [x(1), . . . , x(N)]T , c is R× 1 coefficient vector containing the set of ci
(i=1,..,R), U isN×Rmatrix of basis functions ΦR[u] whereu= [u(1), . . ., u(N)]T .

The reference error of measurement is calculated by

ε(n) =
y(n)

G
− u(n) = z(n)− u(n). (2.45)

The origin of the reference comes from two parts:

• The coefficients of DPD are not ideal. As the DPD model is linear with its
coefficients, we can express the error generated by the coefficients error ∆c
by U ·∆c, where ∆c is R× 1 vector containing the set of coefficient errors
∆ci.

• The LS error εLS in the identification. In LS calculation, QR factorization
is an orthogonal projection. Thus εLS is orthogonal to the input signal U.

Thus the error signal can be also written as

ε = εLS + U ·∆c, (2.46)

To reduce εLS = ε− U ·∆c, we have the cost function to minimize:

J =
∑
n

|ε(n)−
∑
k,l

∆ck,l · ΦR[u(n)]|2. (2.47)

The LS solution of the coefficient error which minimize (2.47) is the solution for
the following equation

UHε = [UHU]∆c (2.48)

where ε = [ε(1), . . . , ε(N)]T .
With the estimated coefficient error ∆c(i) at i-th iteration, the coefficients are

updated iteratively:

c(i+1) = c(i) − η ·∆c(i) (2.49)

where i indicates the iteration number, 0 < η ≤ 1.
In this approach, we do not need to calculate the inverse of the PA model.
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2.7 Test bench
In order to validate the effectiveness of the proposed algorithms and criteria, ex-
periments have been carried out using a test bench. The block diagram and the
photo of the test bench are shown in Fig 2.16 and Fig 2.18 respectively.

PC

Load

VSA

Coupler

AWG

Driver
PA

Figure 2.16: Test Bench Blocks Diagram (AWG stands for Arbitrary Waveform
Generator and VSA for Vector Spectrum Analyzer)

The baseband IQ signal is fed from the PC Workstation to the PA chain through
an Arbitrary Waveform Generator (AWG) using a 200 MHz sampling frequency.
The AWG up-converts the baseband signal to the carrier frequency. An N5182B
MXG X-Series RF Vector Signal Generator is used as AWG (carrier frequency
range from 9 kHz to 6 GHz).

The signal at the output of the PA is then down-converted to baseband by
a Vector Spectrum Analyzer (VSA) which provides to the PC workstation the
baseband signal digitized with a maximum sampling frequency of 200 MHz. A

Driver

(a) Driver in the test bench

Doherty PA

(b) Three-way Doherty PA

Figure 2.17: Three-way Doherty PA and Driver
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PADriver

VSA
AWG

Figure 2.18: Test bench for Experimental Implementation

Rohde & Schwarz FSW signal & spectrum analyzer is used as VSA (reception
frequency range between 2 Hz and 8 GHz). In this dissertation, the VSA sampling
frequency used is 150 MHz.

The input and output baseband signals are then synchronized in time to be
used by the identification algorithm (2.38).

Two PAs have been used to validate the proposed algorithms.
The first PA line is made of a three-way Doherty PA designed for base sta-

tion (BS-PA) (Fig 2.17b) with three LDMOS transistors BLF7G22LS-130 from
Ampleon, formerly NXP and its associated driver (Fig 2.17a). This Doherty PA
is capable of a peak output power of 57 dBm (500 W) and has a linear gain of
16 dB. For most of the experiments in this dissertation, the stimulus signal is an
LTE signal with 20 MHz bandwidth and a PAPR of approximately 8 dB, and the
carrier frequency is 2.14 GHz. The modulation of the LTE signal is QPSK.

The nonlinearities and the memory effect of this PA can be seen from the
AM-AM/AM-PM curves in Fig 2.19. In this example, the average power of the
signal at the input of the driver is 5 dBm. The linear gain of the driver is 31.5 dB.
The measured average output power of DPA is 47.3 dBm, and the measured peak
power is 53.4 dBm. The spectrum of PA output captured by VSA is illustrated in
Fig 2.20.

The second PA line is made of a Doherty PA designed for broadcast (BrC-PA).
Its average output power is 200W. Its normalized AM/AM & AM/PM curves are
depicted in Fig 3.2. The input signal is an OFDM signal with 8 MHz bandwidth
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Figure 2.19: AMAM & AMPM curves of driver and Doherty PA for an LTE
20MHz input signal with 7.8 dB PAPR

and a PAPR of approximately 11 dB, and the carrier frequency is 666 MHz.
These measurements have been obtained thanks to the support of National In-

struments on Digital Predistortion Framework research activity [53] and the sup-
port of Teamcast in the frame of the ambrun project (FUI AAP11) [54].

The computations described hereafter have been done on an Intel Xeon CPU
E3-1245 v3 at 3.40 GHz.

2.8 Conclusion
This chapter introduces the generalities of digital predistortion of power ampli-
fiers. The characteristics of PA and the motivation of applying DPD are discussed.
Different models can be used as DPD.

The simplest model is a polynomial model which has a deficiency in the per-
formance of high power amplifier predistortion with wide bandwidth signals be-
cause it cannot compensate for the memory effect. Thus more general Volterra
series model is preferred in the case when memory effects of PA are not negligi-
ble. However the complexity of Volterra series model is too high to implement.
Hammerstein model and Wiener model are substitutions which compensate for the
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Figure 2.20: Output signal spectrum of Doherty PA excited by 20MHz bandwidth
LTE signal

nonlinearity and the memory effect separately with a reasonable number of terms.
For more general performance, Wiener-Hammerstein model is composed by con-
catenating these two models together. Memory polynomial model and generalized
memory polynomial model are proposed to enhance the modeling accuracy with
a reasonable increase of model complexity.

To improve DPD performance, some models are proposed by optimizing dif-
ferent aspects. The polynomial model can be orthogonalized to improve the per-
formance of model coefficient estimation. Vector-switched model and Decom-
posed Vector Rotation model are based on vector quantification which may sim-
plify the model when the PA characteristics is strongly nonlinear.

Multilayer perceptron neural network is different from the mathematical mod-
els above, which can also achieve a good performance in behavioral modeling.

The coefficients of the DPD model can be identified using DLA and ILA. In
the end of this chapter, the test bench for the experimental implementations in this
dissertation is introduced.

The main contributions of this dissertations are thoroughly presented in the
following chapters.
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Chapter 3

Determining the Structure of Digital
Predistortion Models

3.1 Introduction
Volterra series has good performances in PA or DPD modeling. However its com-
plexity is very high. Some models are derived from Volterra series by applying
different pruning techniques. The number of basis functions can be reduced by re-
moving those terms which have very few influences on modeling accuracy. Thus
an optimal structure of the model which has low complexity while keeping also a
good linearization performance is needed.

There are different methods which optimize the structure to have a good trade-
off between modeling accuracy and model complexity. Some basis function se-
lection techniques to make the model sparse are discussed in this chapter. Another
way to prune the model is to cut off the basis functions with high orders and deep
memories. Thus some optimization algorithms can be also applied on this prob-
lematic to optimize the model dimension. The state of the art is presented in the
following sections.

In this chapter we present the first contribution of this dissertation which is
an algorithm based on hill-climbing heuristics to determine an optimal model
structure of DPD according to some criteria. These criteria represent trade-offs
between modeling accuracy and model complexity. The performance of this algo-
rithm is verified on test bench and is compared with other optimization algorithms.
The advantage of the proposed algorithm is that its search path can be controlled
and some optimizations can then be made to reduce the execution time. The GMP
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model is taken as an example in the implementations.
This chapter is organized as follows:

• Section 2 presents a bibliographic study in model structure optimization.

• The proposed search algorithm based on Hill-Climbing is described in Sec-
tion 3.

• In Section 4, we propose two different search criteria for Hill-Climbing
heuristic.

• Section 5 presents different pruned neighborhoods to reduce the execution
time.

• In Section 6, two methods to estimate the weighting coefficient of the crite-
ria are explained.

• The experimental results are presented and discussed in Section 7.

• Section 8 compares the performances of hill-climbing and genetic algo-
rithms.

• Section 9 introduces First-choice hill-climbing which can reduce the execu-
tion time while keeping the same performance.

• A brief conclusion is given in Section 10.

3.2 Bibliographic study
Behavioral modeling, which is known as black-box modeling, is a very high level
modeling as it is based only on the observation of circuit input and output signals.
Even with a priori knowledge of the PA internal composition, it is difficult to
determine the structure of a behavioral model which has low complexity and high
performance. There are mainly two methods: selection of basis functions and
optimization algorithms for model structure determination.
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3.2.1 Basis Functions Selecting
The complexity of model identification using (2.38) and (2.48) depends on the
number of basis function R. Some pruning technique to reduce the number of
basis function while keeping the same modeling performance have been studied
[55] [56] [57].

An adaptive scheme for selecting basis functions in stochastic conjugate gra-
dient (SCG) computations is proposed in [55].

In matrix calculation of SCG, the basis functions are selected according to
their corresponding residual values r = [γ1, · · · , γR]. The residual γi (i=1,..,R)
of each basis function fi is defined as the scalar product 1

N
(f i · ε) where f i =

[fi(1), · · · , fi(N)], ε is the N -sample error vector. For ILA, the error is the differ-
ence between the predistorted signal x(n) and estimated signal zp(n) in Fig 2.14;
and for DLA, the error is the difference between the original signal u(n) and the
feedback signal z(n) when DPD is present as in Fig 2.15 [56].

When the residual is negligible, it means the corresponding basis function is
not important and can be omitted. The actual value of residual is registered as
the residual value of that basis function. The average value of the residuals of
the set of basis functions are set as a threshold. The basis function with residual
higher than the threshold is selected. The SCG uses different sample sets of the
input signal u(n) at different iterations. Thus the threshold is adjusted periodically
according to the new residual calculated in new iterations because the importance
of basis functions varies for different sample sets. In the preconditioned stochastic
gradient method (PSGM) proposed in [58] based on SCG, a constraint is added to
limit the change in derivatives from one sample set to another.

The advantage of this adaptive scheme with SCG is that the complexity is re-
duced and, at the same time, the convergence rate and the stability of iteration
are increased. However this method to calculate the residual of basis functions
is not very stable because the different basis functions present collinearity. Er-
ror Variation Ranking (EVR) method has been proposed to alleviate the effect of
collinearity of basis functions [59].

In EVR method, the importance of a basis function is evaluated by the dif-
ference between the modeling performances of DPD model with this basis and
without this basis. The modeling performance is estimated by the normalized
mean square error (NMSE) value (2.7) between the predicted and measured out-
put signals. The basis functions are ranked according to their importances and
only some of the most important basis function will be taken. The NMSE vari-
ation caused by removing a basis function is used as quantification factor of its
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importance. This helps overcoming the problem that potential multicollinearity
between basis functions of MP model influences the pruning effects on prediction
precision.

In [60], a technique to prune the MP model structure is proposed. The aim
is to minimize the number of kernels while the residual between measured signal
and predicted signal is kept in a tolerable range. The total number of kernels is de-
cided by the nonlinearity order and the memory depth. Assuming that the kernel
solution is sparse, we can keep only few of the coefficients active. The inactive
coefficients are set to zero. The active coefficients of the model is estimated with
a maximum likelihood method. With different groups of active coefficients, the
models performances are evaluated. A technique combining Orthogonal Match-
ing Pursuit (OMP) method and Bayesian Information Criterion (BIC) is used as
criterion to evaluate their performances. The best model is then determined ac-
cording to this criterion.

For a nonparametric identification model, a pruning technique is proposed
in [61]. The model structure is not decided a priori. In this case, the character-
istic curve of PA is cut into several intervals according to the input amplitude. A
static nonlinear function is used as the model kernel to describe the curve by av-
eraging the amplitude of output samples in each interval. The input signal u(n)
is orthogonalized to remove the correlation between u(n) and u(n − l) using the
Gram-Schmidt (GS) process. With the orthogonalized input matrix, a static non-
linear function of each kernel which represents its importance can be calculated.
The noncontributing ones are eliminated from the model structure and the model-
ing performance can be retained.

3.2.2 Model Structure Optimization Algorithms
The model structure with good trade-off between modeling accuracy and model
complexity can be also determined by optimization algorithms. There have been
few studies on sizing nonlinear models in DPD implementation [62] [63] [64]
[65].

If we take the example of GMP model as (2.16), there are 8 sizing parameters:
the nonlinearity orders (Ka, Kb and Kc), and memory depths (La, Lb, and Lc),
and the lagging and leading delay tap lengths (Mb andMc). As these parameters
can have their values changed independently, they may compose an 8-dimension
discrete space of GMP model structures. An exhaustive search could be used to
size the GMP model but it may be too time consuming. An inadequate number
of basis functions can result in insufficient accuracy or over-fitting problems. The
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difficulty of sizing GMP model is due to the very large number of different pos-
sible model structures. The model basis functions have impacts on each other
because of nonorthogonality. New identification of model coefficients is needed
even if only one basis function is added or removed. Adding or removing some
basis functions may have a predictable effect on model complexity, but an uncer-
tain influence on modeling accuracy.

For illustration purposes, let us consider the sizing of an MP model which has
only two sizing parameters: the order of nonlinearity K, and the memory depth
L. The basis functions in this case are in the form x(n − l)|x(n − l)|k, where
k ∈ [0,K − 1] and l ∈ [0,L − 1]. If K = 4 and L = 3 and the terms of (k =
0, l = 0) and (k = K− 1, l = L− 1) always exist, we have the following possible
arrays of nonlinear orders: {0, 1, 2, 3}, {0, 1, 3}, {0, 2, 3}, {0, 3}, and memory
taps: {0, 1, 2}, {0, 2}. In this case, both full and sparse arrays are considered
since it may not be necessary to implement all nonlinear orders or delay taps over
the given ranges. Thus there are a total of 8 possible model structures in this case.
In general, for each combination of K and L, there are 2K+L−4 possible model
structures. By increasing the values of K and L, the number of possible solutions
will increase geometrically.

In this chapter we will consider only the discrete space of GMP structures with
full arrays. For the GMP model which has 8 sizing parameters, an exhaustive
search is very time consuming. For instance if all parameters of the GMP model
are bounded between 1 and 10, there are 108 models to test using exhaustive search
when only full arrays are considered, which is very computationally demanding
and time consuming.

A general sweep method, in which only full arrays have been considered, has
been used to size MP model in [66] and [67]. All possible combinations of K
and L have been evaluated in order to assess the models with different trade-
offs between modeling accuracy and complexity. The one which conforms user
demands the most is chosen as the best model. However other models with more
sizing parameters, e.g. GMP, cannot be sized with this method. To date, their
parameters are most of the time determined empirically by adjusting one or more
parameter values until the adequate performance is achieved [21] [38] [68]. And
there is no guarantee that the model found in this way achieves the best trade-off
between modeling accuracy and complexity.

A search algorithm is needed to find the optimal GMP model structure [62].
Optimization algorithms have been widely used in analog electronic domain. Ge-
netic Algorithms (GA) have been applied for microwave circuit models [69]. In
digital predistortion, it has been used to identify the coefficients of DPD [70] [71].
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In the sizing of analog circuits, not only GA [72] [73] but also Particle Swarm
Optimization (PSO) [74] have already been shown to be effective. There are also
a large number of parameters, constraints and performances to handle. Though
some studies on optimizing DPD architectures with PSO [63] [64] or with evolu-
tionary algorithms in [75] have been done, the DPD models used have much less
parameters to determine than GMP model.

PSO is used to estimate the dimension of MP model DPD in [63]. A system
is proposed to achieve the best trade-off between accuracy and number of zeros
in the coefficients’ vector. PSO simulates the social behavior of a particle swarm,
e.g. swarm of birds or fish. The particles approach the optimum by iteratively
improving the candidate solutions according to their positions and velocities.

A method using an integer GA to find the 8 sizing parameters of the GMP
model has been proposed in [62]. In this algorithm, a fitness function which rep-
resents the trade-off between modeling accuracy and structure complexity is used
as a search criterion. Compared with the exhaustive search, a solution close to the
optimal model structure can be found much faster.

Simulated annealing (SA) is another algorithm for optimization problems,
which simulates the process of annealing in metallurgy. This method is a meta-
heuristic which accepts not only the best solutions in order to overcome the local
optima. The global optimum will be approached if a very long execution time
is allowed. However, the execution time is critical on sizing the model structure,
especially when the procedure is implemented in real time.

3.3 Hill-Climbing Heuristic
Though PSO and GA are good methods of optimization, it is difficult to control
and interpret the path followed by the search algorithm because of its random
nature. Compared with PSO and GA, the advantage of HC is that the search path
can be controlled by configuring the neighborhood definition. To the best of the
author knowledge, this is the first time that an algorithm based on Hill-Climbing
for sizing a GMP model DPD structures has been proposed and studied.

Hill-Climbing algorithm [76] [77] is a heuristic which is an iterative algorithm
that begins from an initial solution, then attempts to find a better solution by com-
paring the current solution with its neighbors. If there is a better solution among
the neighbors, it is taken as the new solution. The search procedure repeats until
no better solution can be found.

Instead of exhaustive search, we apply an iterative search (Hill-Climbing al-
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gorithm [76]) and test only a small number of models in each iteration. The tested
models in each iteration can be selected in different ways. In this chapter, we se-
lect the neighbors of the solution of each iteration to test. The neighbors have also
different definitions because the search space is multi-dimensioned. The algo-
rithm depends on two factors: the expression of merit function and the definition
of neighborhood used for search.

In the discrete space U which embodies all different GMP model structures,
each element xi can be assigned to a unique structure. The element xi consists of
8 integer coordinates: Ka,i, La,i, Kb,i, Lb,i, Mb,i, Kc,i, Lc,i, Mc,i, which are the
sizing parameters of the model structure. The value of a merit function J(xi) is
associated to each element xi.

Hill-Climbing heuristic tests only the elements which are the neighbors of the
solution at each iteration. In our implementation, we define a neighbor of element
xi as an 8-tuple (Ka,i + δ1, La,i + δ2, Kb,i + δ3, Lb,i + δ4, Mb,i + δ5, Kc,i + δ6,
Lc,i + δ7,Mc,i + δ8), where δ1,...,8 ∈ [0,±1] and δ1,...,8 are not 0 at the same time.
The subspace of neighbors is denoted by S, S ⊂ U .

Algorithm 1: Overview of Hill Climbing Heuristic

Set the loop counter q=1;
Choose an 8-tuple element x0(1) as the initial element;
Evaluate the initial element merit value J(x0(1));
xs(0) = x0(1);
while (1) do

Compute all J(xi(q)) where xi(q) ∈ S(q);
xs(q) = arg minxi(q)∈S(q)

(
J(xi(q))

)
;

if J(xs(q)) < J(xs(q−1)) then
q = q + 1;
x0(q) = xs(q−1);

else
end while loop;

end
end
Take the last solution xs(q) as the best element;

As Algorithm 1 shows, the Hill-Climbing heuristic starts from a given x0(1) at
the first iteration and continually moves in the direction of the element with the
best merit value. At the q-th iteration, the search procedure starts from x0(q) and
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test the subspace of its neighbors S(q). The neighbors are denoted by xi(q), where
xi(q) ∈ S(q). The merit value J(xi(q)) associated to xi(q) is evaluated. The solution
xs(q) is the element with the minimum merit value among the neighbors.

To simplify the notations, we denote the merit value J(xi(q)) by Ji(q).
We compare the merit value of the solution xs(q) with the solution of the pre-

vious iteration xs(q−1). If Js(q) is lower than Js(q−1), at the following iteration, the
search procedure starts from xs(q) and tests its neighbors. Otherwise the algorithm
stops and xs(q) is taken as the final solution. As the neighbors of x0(q) and x0(q+1)

are partially overlapped, i.e. S(q) ∩ S(q+1) 6= ∅, we do not evaluate the elements
which have been already evaluated at the previous iterations. The search ends
when the solution is not changed in the latest iteration.

3.4 Search Criteria
Improving modeling accuracy by increasing the number of basis functions induces
inevitably an increase in model complexity [56]. Thus the trade-off between mod-
eling accuracy and model complexity is a very important criterion for DPD model
selection.

The merit value in our algorithm refers to a certain criterion which leads to
a trade-off between modeling accuracy and model complexity. NMSEdB (2.7)
can be used to evaluate modeling accuracy. It will be denoted by Y hereafter.
The model complexity is represented by the number of coefficients of the model,
denoted by R.

We can also take the complexity of model identification instead of model com-
plexity as a criterion. The complexity of model identification is in order of R2

if we consider solving (2.38) using a QR decomposition as described in Sec-
tion 2.6.1.

In the following sections, NMSEdB, number of coefficients and the merit value
of element xi are denoted by Yi, Ri and Ji respectively.

3.4.1 Weighted Combination of Objectives
The aim of combining two objectives into one criterion is for example to find the
model with minimum number of coefficients R while its modeling accuracy Y is
kept in a tolerable range.

In [62], a fitness function is defined as a weighted additive combination of
accuracy and the complexity which is represented by the number of coefficients.
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In our work, we have considered two different ways to combine Y and R into
a single hybrid criterion: additive and multiplicative combinations.

For the additive combination, the resulting criterion has the same form as in
[62] [65]

Ji = Yi + µRi, (3.1)

where µ is a positive real value.
For the multiplicative combination

Ji = Yi (1− α ·Ri) (3.2)

which can be rewritten in

Ji = Yi + β(Yi)Ri (3.3)

where β(Yi) = −α · Yi is a dynamic weighting coefficient compared to µ in (3.1).
The value of α should respect (1−α ·Ri) > 0. Thus 1

α
is the maximum of number

of coefficients.
If we take the complexity of model identification for complexity evaluation,

the criteria are kept the same except Ri is replaced by R2
i in (3.1) and (3.3).

3.4.2 Additive Criterion
While comparing two elements xi and xj in the whole space, we denote the dif-
ferences of NMSEdB and number of coefficients between xi and xj by ∆Yij and
∆Rij respectively:

∆Yij = Yi − Yj
∆Rij = Ri −Rj,

(3.4)

For the additive criterion, two elements xi and xj are considered as equivalent
if:

Yi + µRi = Yj + µRj

or equivalently Yi − Yj = −µ(Ri −Rj)
(3.5)

According to (3.4) and (3.5), we obtain

∆Yij = −µ∆Rij

or
∆Yij
∆Rij

= −µ.
(3.6)
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We make the trade-off with the additive criterion that an increment of the
number of coefficients by an amount ∆Rij with Ri > Rj should bring the cor-
responding improvement of NMSEdB |∆Yij| equal to or better than µ∆Rij , i.e.
|∆Yij| > µ∆Rij . Equivalently, we can say that we accept to degrade the NMSEdB

by an amount ∆Yij = Yi − Yj > 0 if the reduction in number of coefficients
|∆Rij| is equal to or better than ∆Yij

µ
, i.e. |∆Rij| > ∆Yij

µ
.

From (3.6), µ is a constant which represents the NMSEdB tolerance per coef-
ficient, or unit tolerance.

3.4.3 Multiplicative Criterion
Two elements xi and xj are considered as equivalent if:

Yi(1− αRi) = Yj(1− αRj) (3.7)

According to (3.4) and (3.7), we have

∆Yij =α (YiRi − (Yi −∆Yij)(Ri −∆Rij))

=α(Yi∆Rij + ∆YijRi −∆Yij∆Rij)

=αYi∆Rij + α∆Yij(Ri −∆Rij).

(3.8)

The normalized variation of NMSEdB is formulated as:

∆Yij
Yi

=
∆Rij

1
α
− (Ri −∆Rij)

. (3.9)

In practical case as we will see in the Section 3.7, the value of 1
α

is much
greater than (Ri − ∆Rij). We can neglect the term (Ri − ∆Rij) and make the
following approximation of (3.9) as:

∆Yij
Yi
≈ α∆Rij. (3.10)

When |Yi| gets large, the acceptable value of |∆Rij| decreases. In other words,
when the modeling is more accurate, we have more requirements on number of
coefficients.

For example, if α = 0.002, to have an improvement of NMSEdB |∆Yij|=1 dB
when NMSEdB is around -10 dB, we accept a GMP model with 50 coefficients
more. When NMSEdB is around -50 dB, we accept a GMP model with only 10
coefficients more. The main idea of this criterion is that when the modeling accu-
racy is low, we take it as the major factor, and when it is satisfactorily high, we
take the model complexity as the major factor.
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3.5 Weighting Coefficient Determination
In this chapter, we propose two methods to determine the weighting coefficient
µ or α: off-line computation and on-line computation, using a sub-space of the
discrete space U of GMP model structures.

As described in previous subsections, µ could be determined by giving certain
values of ∆Yij

∆Rij
in (3.6), and α could be determined by giving directly a certain

percentage value depending on the constraint of the application.
And the approach is to consider the global optimum that can be defined in the

following objective as shown in Fig 3.1:

min R, then min Y
subject to Y 6 Yth.

(3.11)

where the threshold Yth is the worst NMSEdB value that we tolerate and its value
depends on the lowest NMSEdB that a GMP model can reach. If there are more
than one element with the same number of coefficients satisfying the condition,
the one with the lowest NMSEdB value is selected. However, it is impossible to
know the lowest NMSEdB for GMP without testing all possible models. Thus the
criteria (3.1) and (3.2) are used to replace (3.11) with correct values of µ or α
determined by the proposed methods.

If we denote this global optimum by xp, µ or α is determined in order that
the merit value of xp is better than any other element. Thus, for all elements xn,
n 6= p. We have Jn > Jp, which can be written as:

µ(Rn −Rp) > −(Yn − Yp). (3.12)

for the additive criterion, and

α(YnRn − YpRp) 6 Yn − Yp. (3.13)

for the multiplicative criterion.
For a certain value of Yth, there is a corresponding µ or α to make the com-

bined criterion (3.1) or (3.2) realize (3.11). Off-line and on-line computation are
used to estimate their values by sampling the whole space.

At the q-th iteration, NMSEdB and number of coefficients of element xi(q) are
denoted by Yi(q) and Ri(q) respectively.

As the determinations of µ in (3.1) and α in (3.2) are identical, we explain
only determination of µ in following subsections.
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Figure 3.1: Global Optimum

3.5.1 Off-line Computation
In this method, µ is computed off-line before the search with respect to (3.11).

We choose a subset that includes all MP model structures with memory order
Ka bounded by Ka 6 Ka,max and memory length La bounded by La 6 La,max.
This subset contains Ka,maxLa,max MP structures (which is much smaller than the
number of GMP structures).

We calculate the NMSEdB for all the elements in this subset. We fix the thresh-
old of NMSEdB, Yth, equal to bYmin with bYmin > Ymin = b · Ymin, where Ymin
is the minimum NMSEdB value obtained for MP models and 0 < b < 1 is a con-
stant. For a given b, we get the element xp which has the minimum number of
coefficients Rp and Yp 6 Yth The element xp, with p ∈ [0,Ka,maxLa,max − 1], is
regarded as the best element. µ is determined in order that the merit value of xp
is better than any other element. Thus, several inequalities are constructed for all
elements xn, with n 6= p. We have Jn > Jp, which gives (3.12).

The estimation of µ is described in Algorithm 2. As (Rn−Rp) can be positive
or negative, we can get an interval of µ. The middle value of the interval will be
then taken as µ for the search in the full space of GMP structures.
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3.5.2 On-line Computation
In this method, µ is computed on-line during the search. The chosen subspaces
are composed of the GMP models tested at each iteration (at q-th iteration, the
subspace is S(q)). The number of models in the subset at q-th iteration is F(q).

At the first iteration, µ is not estimated and the merit function does not exist.
The solution xs(1) is decided by the following steps:

• find Ymin(1)

• select all elements with Y 6 b · Ymin(1)

• find the element with the minimal R among these elements

• then find the element with the minimal Y if multiple elements found in last
step

where Ymin(1) is the lowest Y at the first iteration.
To calculate µ, at each iteration, we select a local optimum xp(q) exactly with

the same method as the method described in off-line computation. The only differ-
ence is that the subspace here is the neighborhood tested at each iteration instead
of MP models.

Considering xp(q) as the element with the highest merit value in the q-th it-
eration, F(q) inequalities as (3.12) are constructed for each element xn(q), with
n ∈ [0, F(q)], n 6= p. Thus at each iteration, we can have an interval of µ and we
take the middle value.

On-line computation allows to benefit from a larger sample size than off-line
computation, the actual µ is updated using a damping factor over the previous
values by.

µ(q+1) = µ(q) + γ × (µcomputed − µ(q)). (3.14)

The value of γ controls the convergence trend of estimation of µ. When γ is
too large, the value of µ fluctuates much. When γ is too little, the convergence
speed is very slow. In the experiments, a damping coefficient γ = 0.6 is used.

3.6 Pruned Neighborhoods
Since we noticed that the complexity of the algorithm depends on the number
of tested elements, several methods are proposed to reduce the complexity by
pruning the neighborhoods.
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Algorithm 2: Estimation of µ interval
Initialize upper bound ceiling = inf;
Initialize lower bound floor = 0;
while n ∈ S,Rn 6= Rp do

µ(Rn −Rp) > −(Yn − Yp);
µlimit = −(Yn−Yp)

Rn−Rp
;

if µlimit ∈ [floor, ceiling] then
if Rn > Rp then

floor = µlimit;
else

ceiling = µlimit;
end

end
end

Literally, the neighborhood refers to the individuals with addresses in the same
region or nearby. By applying different constraints on neighborhood, the size of
neighborhood can be controlled. To reduce the number of neighbors, we proposed
several pruned neighborhoods in this section. The constraints can be directly on
the 8 sizing parameters, or on the total number of coefficients.

3.6.1 Constraint on Number of Coefficients
The numbers of coefficients in the neighbor may have huge variations. We pro-
pose a variation limit d for the number of coefficients. In the neighborhood
S(q) of the element x0(q) at q-th iteration, we test only those elements xi(q) with
|Ri(q) −R0(q)| 6 d. The set of this constrained neighborhood is denoted by C(q)

and C(q) ⊂ S(q). In this way, we can reduce the number of tests in each iteration.
When there is no neighbor element better than x0(q), the search is paused.

In order to keep the algorithm performance, we increment the value of the
variation limit d once the search is paused. The neighborhood is broadened to
make sure that a better element is not missed because of the pruning technique. In
terms of complexity, we allow only one increment of d for the same element. If
no better element is found in the broadened neighborhood after the increment of
d, we take this element as the best solution and the search terminates.
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3.6.2 Jumping on Number of Coefficients
Considering thatC(q) still includes many elements, we propose a jumping distance
s for number of coefficients. In the neighborhood S(q) of the element x0(q) at q-th
iteration, we test only those elements xi(q) with |Ri(q) −R0(q)| = s. The set of this
constrained neighborhood is denoted by D(q) and D(q) ⊂ C(q).

The algorithm will move forward by jumping over a large amount of elements,
which makes it converge to the global optimum very fast.

With the same idea, once the algorithm is stuck at an element, we increment
the value of the jumping distance s to detect if there are better elements in the
broadened neighborhood. This increment is applied only one time for one solu-
tion. When the search terminates, we take the current solution as the final solution.

3.6.3 Unidimensional neighbor
The pruning technique can be also applied on the sizing parameters. In the con-
ventional neighborhood definition, all the parameters of a neighbor of element xi
can have a variation of ±1. Thus in case of 8 parameters, the maximum size of
neighborhood is 38 − 1.

To reduce the size of neighborhood, we propose to limit the the number of
varied parameters to one. The neighbors of xi have parametersKa,i+δ1, La,i+δ2,
Kb,i+ δ3, Lb,i+ δ4,Mb,i+ δ5, Kc,i+ δ6, Lc,i+ δ7,Mc,i+ δ8, where

∑8
i=1 |δi| = 1.

The number of neighbors of an element decreases sharply to 16.
This definition of neighborhood is called unidimensional neighborhood while

the conventional one without constraint is called full-dimensional neighborhood.
This helps the search path to converge to the region of the global optimum with
very few tested models.

Once the search path is stuck at an element, we will remove this constraint
and test its full-dimensional neighbors. If no better element is found, we take the
current solution as the final solution.

3.7 Experiments and Results

3.7.1 Experimental Signal Acquisition
As indicated in Chapter 2, two PAs have been used to validate the proposed al-
gorithm. The first PA line is made of the Doherty PA (Fig 2.17b) introduced in
Chapter 2, which is designed as a base station PA (BS-PA).
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Figure 3.2: AMAM & AMPM curves of Doherty Broadcast PA

The second PA line is made of a Doherty Broadcast PA. The measured data
of this PA were provided by Teamcast group. Its normalized AM/AM & AM/PM
curves are depicted in Fig 3.2.

The input and output baseband signals are synchronized in time to be used by
the identification algorithm (2.38).

The following subsections present the experimental results.
For each PA, base station (BS-PA) and broadcast (BrC-PA), the results searched

with the following criteria are presented:

1. the additive criterion with µ determined off-line (ACoff)

2. the additive criterion with µ determined on-line (ACon)

3. the multiplicative criterion with α determined off-line (MCoff)

4. the multiplicative criterion with α determined on-line (MCon)

In each result, there are two different implementations of the search algorithm:
the first implementation (1-step) is to search the best GMP model from the very
beginning; and the second implementation (2-step) is divided into two steps: first
we find out the MP model minimizing the search criterion; then we start from this
MP model, to find the best GMP model.
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The 1-step search starts from the element which corresponds to the linear func-
tion yGMP (n) = ax(n) where

Ka =1,La = 1

Kb =0,Lb = 1,Mb = 1

Kc =0,Lc = 1,Mc = 1.

(3.15)

In our searches, we estimate µ and α with b = 97% in (3.11). We restrict the
parameters to the following intervals:

1 6 Ka 6 11, 1 6 La 6 5

0 6 Kb 6 10, 1 6 Lb 6 5, 1 6Mb 6 4

0 6 Kc 6 10, 1 6 Lc 6 5, 1 6Mc 6 4,

(3.16)

with a global constraint on the total number of coefficients R < 80. Each GMP
model is identified using 15000 samples.

In off-line computation, the interval of µ or α is determined as described in
Section 3.5, with Ka,max = 11 and La,max = 11.

In on-line computation, the interval of µ or α is computed with the tested
elements at every iteration. The middle of the interval is taken to renew the value
of µ or α.

3.7.2 Exhaustive Search
In order to evaluate our proposed criteria (3.1) and (3.2), we have conducted an ex-
haustive search as a reference to get all (Y,R) couples. Inspection of these results
allows to determine the best GMP model (i.e. minimum number of coefficients)
for a given NMSEdB requirement.

For the BS-PA, the lowest NMSEdB is -33.91 and is obtained with 79 coef-
ficients. As shown in Fig 3.3, we have the threshold bYmin=-32.90 dB in (3.11)
with b = 0.97. From that we get xp = (Y,R) = (−32.96, 43) with structure

Ka =11,La = 2

Kb =1,Lb = 3,Mb = 3

Kc =3,Lc = 4,Mc = 1.

(3.17)

For the BrC-PA, the lowest NMSEdB is -41.79 also with 79 coefficients. We
have the threshold bYmin=-40.54 dB. From that we get xp = (Y,R) = (−40.56, 28)
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Figure 3.3: Determination of upper bound and lower bound of µ with a concave
edge

with structure

Ka =9,La = 2

Kb =1,Lb = 1,Mb = 1

Kc =3,Lc = 3,Mc = 1.

(3.18)

In the following paragraph we will use the results of the exhaustive search to
compute reference values for µ and α as described in Section 3.5.1. Considering
xp as the element with the best merit value, we can construct inequalities as (3.12)
or (3.13) to determine an interval for µ or α.

Here we take the estimation of µ as an example.
From (3.11) and (3.12), we have

µ > − Yn − Yp
Rn −Rp

= µfloor (3.19)

for Rn > Rp. The interval of µ is given [µfloor, inf[.
We can also set an upper bound. Let us consider the entire space. As xp is the

best element, we should have Jp 6 Jm where Rm < Rp and Ym > Yp (there is no
element xm with Rm < Rp and Ym < Yp, otherwise this xm is taken as xp). Thus
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Figure 3.4: Determination of upper bound and lower bound of µ with a concave
edge

we have

µ 6 − Ym − Yp
Rm −Rp

= µceiling. (3.20)

In this way we can have a refined interval of µ: [µfloor, µceiling].
However as our search space is discrete, the edge of the blue cloud in Fig 3.3

can be concave. For instance, in Fig 3.4, if we define a such value of µ that xp and
x1 have the same merit value, we can plot a curve passing by these two points with
slope equal to µ. The lower bound µfloor = 0.08 is determined by xp and x1, and
the upper boundµceiling = 0.05 is determined by xp and x2. From the inspection
of Fig 3.4 we can see that xp lies in a concave region of the edge. This will result
in an empty interval for µ.

In this case we can observe that µ can be approximated to the slope of the
dashed line passing by x1 and x2. Thus with the signal of the BS-PA, we take
0.055 for the value of µ.

For the multiplicative criterion, the upper bound is 1.4e−3, and the lower
bound is 2.2e−3. In the same way, we take finally 1.5e−3 for the value of α.

The GMP model space is represented into 3-D. The merit values are given in
function of NMSEdB value, number of coefficients and the merit value in Fig 3.5.
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Figure 3.5: BS-PA: Exhaustive search results in function of NMSEdB and number
of coefficients in 3D

With the signal of the BrC-PA, we get an interval of µ equal to [0.0823, 0.0927]
for the additive criterion. The mean value µ = 0.0875 is taken.

For the multiplicative criterion, we get an interval of α equal to [1.9e−3, 2.2e−3].
The mean value α = 2e−3 is chosen.

We denote the element with the lowest merit value Jmin by Xmin. The impact
of different values of µ and α in the intervals on the algorithm performances and
on Xmin is shown in Tables 3.1-3.4, where SolNMSE, SolNb, NMSEXmin

and
NbXmin

are the NMSEdB value and number of coefficients of the solution found by
the algorithm and Xmin respectively. For base station PA, the solution and Xmin

at the upper limit of interval of µ and α have more coefficients and also have better
NMSEdB. For broadcast PA, both the solution and Xmin are not sensitive to the
values of µ and α in these intervals.

3.7.3 Test with Doherty PA for Base Station
Hill-Climbing heuristic using Off-line additive criterion (ACoff)

In 1-step search, we determine µ with the subspace of MP models before the
GMP model search. The interval of µ is [0.039, 0.070]. If we choose the mean
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Table 3.1: Additive criterion with different µ for BS-PA

SolNMSE: NMSEdB value of the solution found by the algorithm
SolNb: The number of coefficients of the solution found by the algorithm
NMSEXmin

: NMSEdB value of Xmin

NbXmin
: The number of coefficients of Xmin

µ SolNMSE SolNb NMSEXmin
NbXmin

0.050 -32.96 43 -33.04 44
0.055 -32.71 38 -33.04 44
0.060 -32.71 38 -32.71 38
0.065 -32.71 38 -32.71 38
0.070 -32.65 37 -32.65 37
0.075 -32.65 37 -32.65 37
0.080 -32.65 37 -32.65 37

Table 3.2: Multiplicative criterion with different α for BS-PA

α SolNMSE SolNb NMSEXmin
NbXmin

1.4e−3 -32.96 43 -33.04 44
1.5e−3 -32.70 38 -33.04 44
1.6e−3 -32.70 38 -32.71 38
1.7e−3 -32.70 38 -32.71 38
1.8e−3 -32.71 38 -32.71 38
1.9e−3 -32.71 38 -32.71 38
2.0e−3 -32.65 37 -32.65 37
2.1e−3 -32.65 37 -32.65 37
2.2e−3 -32.65 37 -32.65 37
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Table 3.3: Additive criterion with different µ for BrC-PA

µ SolNMSE SolNb NMSEXmin
NbXmin

0.082 -38.50 18 -40.64 29
0.084 -38.50 18 -40.56 28
0.086 -38.50 18 -40.56 28
0.087 -38.50 18 -40.56 28
0.088 -38.50 18 -40.56 28
0.090 -38.50 18 -40.56 28
0.092 -38.50 18 -40.56 28

Table 3.4: Multiplicative criterion with different α for BrC-PA

α SolNMSE SolNb NMSEXmin
NbXmin

1.9e−3 -38.50 18 -40.64 29
2.0e−3 -38.50 18 -40.56 28
2.1e−3 -38.50 18 -40.56 28
2.2e−3 -38.50 18 -40.37 26

value which is 0.055, the final solution, Sol in Fig 3.6, given by the algorithm is
(Y,R) = (−32.71, 38). The structure found is

Ka =11,La = 2

Kb =4,Lb = 1,Mb = 1

Kc =3,Lc = 4,Mc = 1.

(3.21)

In this search, there are totally 10821 different GMP models tested in 11 iterations.
The execution time is 15.85 minutes. The searching iterations are indicated in
Fig 3.6.

The iterations in function of Y (NMSEdB) and R (Nb of Coeff) are depicted in
Fig 3.6. The results of the exhaustive search are the background blue points (same
for the following figures). The solutions of successive iterations are indicated by
circles. The best element Xmin according to the criterion (3.1) with µ = 0.055
has 44 coefficients with NMSEdB of -33.04 dB.

In Fig 3.6, the elements of the neighborhood tested in each iteration are shown
in different colors. The point with an arrow “1” is the initial element x0(1). The
points around with the same color are the neighbors of this element. The other
black circles shows the best elements picked among their neighbors as the solution
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Figure 3.6: BS-PA: search path of Hill-Climbing heuristic with off-line additive
criterion (µ = 0.055)

at each iteration.
The evolution of the algorithm is depicted in Fig 3.7 for the first two iterations.

In Fig 3.7a, the red points are neighbors of x0(1), which are tested at the first
iteration. Then the black circle “2” is selected as the solution xs(1). In Fig 3.7b,
the purple points are neighbors of xs(1), which are tested at the second iteration,
and the circle “3” is selected as xs(2). We can see that the search path converges
towards the lowest merit value which corresponds to the best structure given as
Xmin. As each element will be tested at most only once, there is no overlap
between the red points and the purple points.

With the same method to determine µ, the two-step implementation (ACoff2)
firstly searches only MP models, and then searches GMP models from the MP
model solution. in the first step, there are 39 different MP models tested in 11
iterations during 3.6 seconds. The structure of the MP model with the best merit
value found is Ka = 11, La = 3 with NMSEdB of -31.56 dB. And in the second
step, starting from the element where Ka = 11, Kb = 0, Kc = 0, La = 3, Lb = 1,
Lc = 1,Mb = 1,Mc = 1, there are 7037 different GMP model structures tested
in 4 iterations during 12.64 minutes. The search path is depicted in Fig 3.8. The

69



(a) BS-PA: Neighborhood of the initial solution

(b) BS-PA: Neighborhood of the 2nd iteration

Figure 3.7: BS-PA: Neighborhoods demonstration of Hill-Climbing heuristic with
additive criterion (µ = 0.055)
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Figure 3.8: BS-PA: Two-step search path of Hill-Climbing heuristic with Off-line
additive criterion (µ = 0.055)

best structure Xmin found by the algorithm is

Ka =11,La = 2

Kb =1,Lb = 4,Mb = 1

Kc =3,Lc = 3,Mc = 2.

(3.22)

which has 44 coefficients and its NMSEdB value is -33.04 dB.
Using the additive criterion when µ determined with off-line computation, 2-

step search can reduce the number of tests and execution time. As there are much
less MP models than GMP models, by searching the best MP model, ACoff2
converges to Xmin with only a few tests. Here Xmin is evaluated with criterion
(3.1) with µ = 0.055. The GMP search step has only 4 iterations in Fig 3.8 instead
of 11 iterations in Fig 3.6. The 2-step search avoids many tests in the zones which
are not the neighborhood of Xmin.

Hill-Climbing heuristic using On-line additive criterion (ACon)

As mentioned before, in ACon, µ is determined with the subspace discovered at
each iteration and its value is renewed according to (3.14). The evolution of the
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Table 3.5: BS-PA: Evolution of µ

No. It 1 2 3 4 5 6
µ 0 0.242 0.176 0.163 0.148 0.116
No. It 7 8 9 10 11
µ 0.107 0.086 0.075 0.058 0.055

Table 3.6: BS-PA: Evolution of µ in Two Steps

No. It 1 2 3 4
µ 0 0.711 0.688 0.694

(a) MP search step

No. It 1 2 3 4
µ 0.829 0.139 0.112 0.105
No. It 5 6 7 8
µ 0.085 0.075 0.057 0.055

(b) GMP search step

value of µ is shown in Table 3.5. The value of µ converges towards the reference
value 0.065 and becomes stable after 8 iterations.

In this search, the algorithm has 11 iterations and there are totally 8539 differ-
ent GMP model structures tested during 12.78 minutes. The iterations in function
of Y (NMSEdB) and R (Nb of Coeff) are depicted in Fig 3.9. The solutions of it-
erations are indicated by circles with annotations. We can see that the search path
converges towards the lowest merit value which corresponds to the best structure
given as Xmin. Here Xmin, the same as (3.22), is evaluated based on the latest
value of µ which is 0.055. According to all these (Y , R) couples, we found the
solution the same as (3.21) which has 38 coefficients and NMSEdB of −32.71 dB.

In 2-step search (ACon2), with the same method to estimate µ, we can reach
the best element in 12 iterations. The evolution of the value of µ is shown in
Table 3.6. With the final value µ = 0.055, Xmin given by the criterion (3.2) has
44 coefficients with NMSEdB equal to -33.04 dB, and its structure is the same as
(3.22).
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Figure 3.9: BS-PA: On-line additive criterion in function of NMSEdB and number
of coefficients (µ = 0.055)

In the first step, there are 15 different MP models tested in 4 iterations during
0.649 seconds. The structure of the MP model with the best merit value found is
Ka = 4, La = 2 with NMSEdB of -25.88 dB. In the second step, starting from the
element where Ka = 4, Kb = 0, Kc = 0, La = 2, Lb = 1, Lc = 1, Mb = 1,
Mc = 1, there are 8155 different GMP model structures tested in 8 iterations
during 12.58 minutes. The search path is depicted in Fig 3.10. The blue points are
again the exhaustive results, and the circles with annotations are the solutions of
iterations in the Hill-Climbing heuristic. The best structure found by the algorithm
is also (3.21).

Comparing ACon2 with ACon, we can see that, 2-step search does not reduce
the number of tests and execution time in on-line computation as it did in off-
line computation. That is due to the inaccurate determination of µ during the first
step. In MP model search, we tested only 15 MP models in 4 iterations. In other
words, less than 4 models in average are used to determine µ at each iteration.
Determining the value of µ with these small size sampling sometimes get a result
far from its final converged value, which can be seen in Table 3.6. Thus in this
case the first step does not improve the algorithm.
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Figure 3.10: BS-PA: Two-step search path of Hill-Climbing heuristic with On-line
additive criterion (µ = 0.055)

Furthermore with the on-line computation, we can see that the search path
follows the envelop of the blue points cloud, which can reduce the computation
complexity. Further discussions are presented in Section 3.7.5.

Hill-Climbing heuristic using Off-line multiplicative criterion (MCoff)

Using the MP models subspace, the interval for α is [0.0012, 0.0021] and the mean
value 1.7e−3 has been chosen. With this α, the best element Xmin given by the
criterion is the same as (3.21).

In 1-step search, the algorithm has 11 iterations and there are totally 19598
different GMP model structures tested. The iterations in function of Y (NMSEdB)
and R (Nb of Coeff) are depicted in Fig 3.11. The solutions of iterations are
indicated by circles with annotations. We can see that the search path converges
towards the lowest merit value which corresponds to the best structure given as
Xmin which is (3.21). The execution time is 29.89 minutes.

In two-step search (MCoff2), in the first step, there are 39 different MP models
tested in 11 iterations during 3.6 seconds. The structure of the MP model with
the best merit value found is Ka = 11, La = 3 with NMSEdB of -31.13 dB. In
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Figure 3.11: BS-PA: Off-line multiplicative criterion in function of NMSEdB and
number of coefficients (α = 1.7e−3)

the second step, starting from the element where Ka = 11, Kb = 0, Kc = 0,
La = 3, Lb = 1, Lc = 1, Mb = 1, Mc = 1, there are 7364 different GMP
model structures tested with 4 iterations during 14.20 minutes. The search path is
depicted in Fig 3.12. The solution found by the algorithm is the same as (3.22)
which has 44 coefficients and its NMSEdB value is -33.04 dB.

The value of α estimated by off-line computation, 1.7e−3, is close to the refer-
ence value, 1.8e−3. Comparing with MCoff, we can see that MCoff2 reduces the
number of tests and execution time with a solution close to the optimum.

Hill-Climbing heuristic using On-line multiplicative criterion (MCon)

Using the subspace composed of the models tested at each iteration, we can de-
termine α dynamically.

In 1-step search, the algorithm has 13 iterations and there are totally 12692
different GMP model structures tested during 17.12 minutes. The evolution of the
value of α is shown in Table 3.7.

Xmin given by the criterion (3.2) with α = 0.0016 is the same as (3.22). The
iterations in function of Y (NMSEdB) andR (Nb of Coeff) are depicted in Fig 3.13.

75



Figure 3.12: BS-PA: Two-step search path of Hill-Climbing heuristic with Off-
line multiplicative criterion (α = 1.7e−3)

Table 3.7: BS-PA: Evolution of α

No. It 1 2 3 4 5
α 0 11.7 0.0079 0.0064 0.0054
No. It 6 7 8 9 10
α 0.0038 0.0034 0.0027 0.0022 0.0024
No. It 11 12 13
α 0.0019 0.0017 0.0016

76



Figure 3.13: BS-PA: On-line multiplicative criterion in function of NMSEdB and
number of coefficients (α = 1.6e−3)

According to all these (Y , R) couples, the algorithm found the best structure with
44 coefficients having NMSEdB of −33.04 dB as (3.22).

In two-step search (MCon2), the best element is reached in 12 iterations. In
the first step, there are 15 different MP models tested in 4 iterations during 1.7138
seconds. The evolution of the value of α is shown in Table 3.8. Xmin given by the
criterion (3.1) with α = 1.6e−3 is the same with (3.22).

The structure of the MP model with the best merit value found is Ka = 4,
La = 2 with NMSEdB of -25.88 dB. In the second step, starting from the element
where Ka = 4, Kb = 0, Kc = 0, La = 2, Lb = 1, Lc = 1,Mb = 1,Mc = 1,
there are 12692 different GMP model structures tested in 10 iterations during
18.31 minutes. The search path is depicted in Fig 3.14. The best structure found
by the algorithm is the same as (3.22) which has 44 coefficients and its NMSEdB

value is -33.04 dB.
The first step of the algorithm does not help reducing the execution time be-

cause the determination of α decays with very small number of MP models. The
final result is the same with MCon.
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Table 3.8: BS-PA: Evolution of α in Two Steps

No. It 1 2 3 4
α 0 0.0169 0.0219 0.0220

(a) MP search step

No. It 1 2 3 4 5
α 0.0262 0.0048 0.0038 0.0034 0.0027
No. It 6 7 8 9 10
α 0.0022 0.0024 0.0019 0.0017 0.0016

(b) GMP search step

Figure 3.14: BS-PA: Two-step search path of Hill-Climbing heuristic with On-line
multiplicative criterion (α = 1.6e−3)

78



3.7.4 Test with Doherty PA for Broadcast
Hill-Climbing heuristic using Off-line additive criterion (ACoff)

The estimated interval of µ is [0.163, 0.263] with MP model subspace, and we
take the mean µ = 0.213 which is outside the reference interval. In this case we
found that the determined value of µ is much different from the reference value
µ = 0.0875 in Section 3.7.2. As the sample size of off-line computation is not
large enough, the estimation is not always accurate.

In 1-step search, we can find a solution in 5 iterations. There are totally 4608
GMP model structures tested. The search path is depicted in Fig 3.15. Xmin given
by the criterion (3.1) with µ = 0.213 has 15 coefficients and NMSEdB value of
-38.7473 dB, and its structure is

Ka =8,La = 1

Kb =1,Lb = 1,Mb = 1

Kc =2,Lc = 3,Mc = 1.

(3.23)

The search path ends at the point with a distance of (3,−1.22dB) from to Xmin

which is the best GMP model structure according to the additive criterion. The
parameters of the final solution are:

Ka =5,La = 1

Kb =1,Lb = 1,Mb = 1

Kc =2,Lc = 3,Mc = 1

(3.24)

with NMSEdB of -37.52 dB and 12 coefficients. The execution time is 4.50 min-
utes.

Using 2-step approach (ACoff2), first we find the MP model (Ka = 4,La = 2)
with NMSEdB of -32.82 dB. In this step, 14 MP model structures are tested in 4
iterations during 1.28 seconds. From this MP model, we can find a GMP model
structure as the final solution with 3 iterations, and 3606 GMP model structures
are tested during 3.47 minutes. The final solution is the same as (3.24) with
NMSEdB of -37.52 dB and 12 coefficients. In Fig 3.16 we can see that the search
path ends at the point with a distance of (3,−1.22dB) from the star Xmin which
is the same as (3.23).

Hill-Climbing heuristic using On-line additive criterion (ACon)

In 1-step search, with the additive criterion, we can find a solution in 5 iterations.
There are totally 6168 GMP model structures tested during 6.41 minutes. The
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Figure 3.15: BrC-PA: search path of Hill-Climbing heuristic with Off-line additive
criterion (µ = 0.213)

search path is depicted in Fig 3.17. The final solution which is the same as

Ka =5,La = 2

Kb =1,Lb = 1,Mb = 1

Kc =3,Lc = 2,Mc = 1

(3.25)

which has 17 coefficients and NMSEdB of -38.20 dB.
It has a distance of (4,−1.69dB) to Xmin which is the best GMP model struc-

ture according to the additive criterion. Here Xmin evaluated based on the latest
value µ = 0.1416 has 21 coefficients and NMSEdB of -39.89 dB. The structure of
Xmin is

Ka =4,La = 1

Kb =1,Lb = 1,Mb = 1

Kc =8,Lc = 2,Mc = 1.

(3.26)

The evolution of the value of µ is shown in Table 3.9.
Using 2-step approach (ACon2), first we find the MP model (Ka = 5,La = 2)

with NMSEdB of -33.16 dB. In this step, 14 MP model structures are tested in 4
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Figure 3.16: BrC-PA: Two-step search path of Hill-Climbing heuristic with Off-
line additive criterion (µ = 0.213)

Table 3.9: BrC-PA: Evolution of µ

No. Iter 1 2 3 4
µ 0 0.0686 0.2150 0.1954
No. Iter 5 6 7
µ 0.1933 0.1923 0.1416
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Table 3.10: BrC-PA: Evolution of µ in Two Steps

No. It 1 2 3 4
µ 0 0.0775 0.1223 0.1309

(a) MP search step

No. It 1 2 3
µ 0.0883 0.2781 0.2199

(b) GMP search step

iterations during 1.28 seconds. From this MP model, a GMP model structure as
the final solution is found with 3 iterations, and 2856 GMP model structures have
been tested during 2.91 minutes. This final solution is the same as (3.24) with 12
coefficients and NMSEdB of -37.52 dB.

In Fig 3.18 we can see the solution of the search path has a distance of (9,−2.48dB)
to the star which represents Xmin. Here Xmin evaluated based on the latest value
µ = 0.2199 is the same as (3.23).

The evolution of the value of µ is shown in Table 3.10.

Hill-Climbing heuristic using Off-line multiplicative criterion (MCoff)

With the Off-line multiplicative criterion, the interval of α is [0.0077, 0.0047], and
we take the mean α = 6.2e−3.

In 1-step search, the solution is found in 5 iterations. There are totally 3056
GMP model structures tested. The search path is depicted in Fig 3.19. This final
solution as

Ka =5,La = 1

Kb =1,Lb = 1,Mb = 1

Kc =2,Lc = 2,Mc = 1

(3.27)

with NMSEdB of -37.04 dB and 10 coefficients. It approaches Xmin which is
the best GMP model structure according to the multiplicative criterion with α =
6.2e−3. Here Xmin is the same as (3.23). The execution time is 2.66 minutes.

Using 2-step approach (MCoff2), first we find the MP model (Ka = 4,La = 2)
with NMSEdB of -32.82 dB. In this step, 14 MP model structures are tested during
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Figure 3.17: BrC-PA: search path of Hill-Climbing heuristic with On-line additive
criterion (µ = 0.1416)

2.35 seconds. From this MP model, we can find a GMP model structure as the
final solution with 3 iterations, and 2568 GMP model structures are tested during
2.66 minutes. The final solution is the same as (3.27) and Xmin is the same as
(3.23). In Fig 3.20 we can see the search path and it ends at the point with a
distance of (3,−1.22dB) from the star which represents Xmin which is evaluated
by the multiplicative criterion with α = 6.2e−3.

Hill-Climbing heuristic using On-line multiplicative criterion (MCon)

In 1-step search, with the multiplicative criterion, we can find a solution in 5 iter-
ations. There are totally 3820 GMP model structures tested during 3.41 minutes.
The search path is depicted in Fig 3.21. The final solution is the same as (3.24).
Here Xmin evaluated based on the latest value of α which is 0.0050 is the same as
(3.23).

The evolution of the value of α is shown in Table 3.11.
Using 2-step approach (MCon2), first we find the MP model (Ka = 4,La = 2)

with NMSEdB of -32.83 dB. In this step, 15 MP model structures are tested in 4
iterations during 1.79 seconds. From this MP model, we can find a GMP model
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Figure 3.18: BrC-PA: Two-step search path of Hill-Climbing heuristic with On-
line additive criterion (µ = 0.2025)

Table 3.11: BrC-PA: Evolution of α

No. It 1 2 3 4 5
α 0 0.0030 0.0063 0.0053 0.0050
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Figure 3.19: BrC-PA: search path of Hill-Climbing heuristic with Off-line multi-
plicative criterion (α = 6.2e−3)

structure as the final solution with 4 iterations, and 3000 GMP model structures
are tested during 3.09 minutes. The final solution is the same as (3.24).

In Fig 3.22 we can see the search path which ends at the point with a distance
of (3,−1.22dB) from the star which representsXmin. HereXmin evaluated based
on the latest value of α = 0.0038 is the same as (3.23).

The evolution of the value of α is shown in Table 3.12.

3.7.5 Discussion
For the exhaustive results which are depicted by the light blue point cloud in
Fig 3.5 - Fig 3.22, the left and lower edge of the point cloud is defined as its
envelop. The slope of this envelop is steep on the left edge and flat on the lower
edge. The connection of these two edges is the turning area where the slope
decreases prominently. For broadcast PA, e.g.

The normalized execution times show the comparative complexities of differ-
ent search procedures. The total execution time of ACoff (search plus off-line
determination of µ, which lasts 15.85 minutes in case of base station PA and 4.50
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Figure 3.20: BrC-PA: Two-step search path of Hill-Climbing heuristic with Off-
line multiplicative criterion (α = 6.2e−3)

Table 3.12: BrC-PA: Evolution of α in Two Steps

No. It 1 2 3 4
α 0 0.0017 0.0035 0.0038

(a) MP search step

No. It 1 2 3 4
α 0.0062 0.0060 0.0051 0.0038

(b) GMP search step
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Figure 3.21: BrC-PA: search path of Hill-Climbing heuristic with On-line multi-
plicative criterion (α = 5e−3)

minutes in case of broadcast PA) is taken as the unit time. The complexity is rep-
resented by the execution time and the number of tested model which are provided
in the Tables summarizing the performances of the different implementations.

The exhaustive search covers all possible models with R < 80. So Xmin can
be regarded as the global optimum. Though using Hill-Climbing heuristic can
not always reach Xmin, as sometimes it seems stuck at a local optimum when the
search path does not reach Xmin or its neighbors, e.g. Fig 3.19 and Fig 3.20, it is
still a reliable method to size the GMP models. The results show that the search
path starts from the simplest model straightly towards the global optimum. And
we can observe that the found solution is most of the time very close to the global
optimum and located on the envelop.

Both the additive criterion and the multiplicative criterion achieve a good per-
formance. For the signal of base station PA, the search with additive criterion takes
less execution time than the multiplicative criterion. For the signal of broadcast
PA, the multiplicative criterion has advantage on execution time.

According to the results, the velocity of algorithm convergence depends mainly
on two factors: the number of tested models and the complexity of tested models.
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Figure 3.22: BrC-PA: Two-step search path of Hill-Climbing heuristic with On-
line multiplicative criterion (α = 3.8e−3)

Table 3.13: Comparison of GMP Results of Different Searches with BS-PA

ACoff ACoff2 ACon ACon2
NMSEdB -32.71 -33.04 -32.71 -32.71
NbCoeff 38 44 38 38
Nb of Test 10821 39+7037 8539 15+8155
Nb of Iter 11 11+4 11 4+8
Ex. Time 1 0.80 0.81 0.79

MCoff MCoff2 MCon MCon2
NMSEdB -32.71 -33.04 -33.04 -33.04
NbCoeff 38 44 44 44
Nb of Test 19598 39+7364 12692 15+12692
Nb of Iter 11 11+4 13 4+10
Ex. Time 1.89 0.90 1.08 1.16
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Table 3.14: Comparison of GMP Results of Different Searches with BrC-PA

ACoff ACoff2 ACon ACon2
NMSEdB -37.52 -38.75 -38.20 -37.52
NbCoeff 12 15 17 12
Nb of Test 4608 14+3606 6168 14+2856
Nb of Iter 5 4+3 7 4+3
Ex. Time 1 0.77 1.42 0.65

MCoff MCoff2 MCon MCon2
NMSEdB -37.04 -37.04 -37.52 -37.52
NbCoeff 10 10 12 12
Nb of Test 3056 18+2568 3820 14+3000
Nb of Iter 5 5+3 5 4+4
Ex. Time 0.59 0.56 0.76 0.69

From Table 3.13 and Table 3.14, we can see that the number of tested models has
impact on the execution time, but not in a proportional way. For example in Table
3.13 ACoff has 25406 GMP models tested during 39.91 minutes while ACoff2 has
10130 GMP models tested during 19.99 minutes. The average execution time per
model of ACoff2 (which is 0.1184 s/model) is greater than that of ACoff (which
is 0.0943 s/model). That is because ACoff2 starts to search GMP models from an
element which has high order of nonlinearity and/or deep memory depth and the
neighbors of this element have very large number of basis functions.

The points on the envelop correspond to the GMP models with the simplest
structure among those of the same NMSEdB value. When the path follows the
envelop, the tested models have less complexity compared with models which are
not on the envelop. When it follows the envelop as in Fig 3.19 than having zigzag
shapes, e.g. in Fig 3.11 or in Fig 3.20, the search path has less average execution
time.

The determination of weighting coefficients is a challenge in construction of
merit functions. According to (3.11), the final solution should have the least num-
ber of coefficients while its NMSEdB is better than bYmin. With the estimation
methods proposed in this chapter, we can restrict the weighting coefficient to a
given range. On-line computation allows to refine the value of weighting coeffi-
cient as it has more samples for the estimation.

With the signal of the broadcast PA, the final solutions found by the algo-
rithms are not located exactly at but very close to the points of Xmin. The search
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path stops at the local optimum after approaching the zone where the values of
NMSEdB get stable.

The broadcast PA can be well modeled by a GMP model with low nonlinearity
order and memory depth (NMSEdB <-37 dB). Thus we can see that the envelop
falls down very fast when R < 10 in Fig 3.15-3.22. When R > 20 we can see that
the envelop is stable in terms of NMSEdB. The area 10 < R < 20 is the turning
area. Once a model in this area is reached, we need to add much more coefficients
to have the same improvement of modeling accuracy.

For the algorithms with weighting coefficients determined with off-line method,
2-step search always reduces the number of tests and execution time for both PAs.
The search for the best MP model is faster because an MP model has much fewer
neighbors than a GMP model. Starting from the linear memoryless model, MP
model search reaches a region towards the best element rapidly, e.g. Fig 3.8.

For the algorithms with weighting coefficients determined with on-line com-
putation, the advantage of 2-step search is very limited. The tested models in the
first step are too few to assure the determined weighting coefficient values close
to the reference value. Therefore the searching path of this step is not beneficial.

In the next section, we present the results obtained with different pruned neigh-
borhoods. Only MCoff criterion is applied to make a comparison with the con-
ventional algorithm. The improvements on execution time is obvious and the final
searched results are always kept in the region of global optimum.

3.7.6 Results of HC with pruned neighborhoods
HC with constraint on Number of Coefficients

In this test, for the actual solution x0(q) at the q-th iteration, only the elements xi(q)
with |Ri(q) −R0(q)| 6 d are tested.

The search result of HC using MCoff criterion (α = 1.7e−3) with constraint
on number of coefficients tested on BS-PA are shown in this section.

In 1-step search, there are totally 3835 different GMP model structures tested.
The number of coefficients variation limit starts from d = 2 and ends with d = 3.
The elements in function of Y (NMSEdB) and R (Nb of Coeff) are depicted in
Fig 3.23. The searching steps are also indicated in this figure. We can see that
the searching path converges directly towards the low criterion merit value region.
The best structure is given as Xmin in this figure. The solution is the same as
(3.21) with 38 coefficients having NMSE of -32.71 dB. The result of the algorithm
shown in Fig 3.23 successfully finds the best element.
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Figure 3.23: Seaching path of Hill-Climbing with constraint on Number of Coef-
ficients

In the criterion, the value of the constant α is an influential factor which affects
the merit function and may also have an impact on decision of the searching path.

There are totally 21 steps during 4.71 minutes and we can see that the search-
ing path converges towards the lowest merit value which corresponds to the best
structure given as Xmin in this figure.

In two-step search, first we find out the MP model minimizing the merit func-
tion (3.2). Then we start from this MP model, to find the best GMP model. In
this search, we can reach the best element in 7 iterations. In the first step, there
are 39 different MP models tested. The structure of the MP model with the best
NMSE value found is Ka = 11, La = 3 with -31.13 dB NMSE. The searching
path in map of NMSE vs number of coefficients is depicted in Fig 3.24. The
blue points are exhaustive results, and the colorful points are tested by the Hill-
Climbing heuristic. There are 959 different GMP model structures tested during
1.77 minutes. The best structure found by the algorithm is the same as (3.21)
with 38 coefficients and its NMSE value is -32.71 dB. The number of coefficients
variation limit starts from d = 2 and ends with d = 3.
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Figure 3.24: Two-step seaching path of Hill-Climbing with constraint on Number
of Coefficients

HC with jumping on Number of Coefficients

In this test, for the actual solution x0(q) at the q-th iteration, only the elements xi(q)
with |Ri(q) −R0(q)| = s are tested.

The search result of HC using MCoff criterion (α = 1.7e−3) with jumping
constraint on number of coefficients tested on BS-PA are shown in this section.

The merit values of each element in function of Y (NMSE) and R (Nb of
Coeff) is depicted in Fig 3.25. The searching steps are also indicated in this figure.
We can see that the searching path converges directly towards the low merit value
region. The best structure is given as Xmin in this figure. The solution has its
parameters which are

Ka =11,La = 2

Kb =3,Lb = 1,Mb = 1

Kc =3,Lc = 4,Mc = 1

(3.28)

with 37 coefficients having NMSE of -32.65 dB. The number of coefficients jump-
ing distance begins with s = 2 and ends with s = 4.
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Figure 3.25: Seaching path of Hill-Climbing with jumping on Number of Coeffi-
cients

In this search, the algorithm has 18 iterations and there are totally 1438 differ-
ent GMP model structures tested during 1.49 minutes. The merit values of each
element in function of Y (NMSE) and R (Nb of Coeff) is depicted in Fig 3.25.
The current elements of each iteration steps are indicated by circles with anno-
tations in this figure. We can see that the searching path converges towards the
lowest merit value which corresponds to the best structure given as Xmin in this
figure.

In 2-step search, we first test 121 different MP models. The structure of Ka =
11, La = 3 with -31.13 dB NMSE is the best MP model which minimize (3.2).
There are then 725 different GMP model structures tested in 7 iterations during
1.25 minutes. The searching path in map of NMSE vs number of coefficients is
depicted in Fig 3.26. The blue points are again the exhaustive results, and the
circles with annotations are the current element of each step in the Hill-Climbing
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Figure 3.26: Two-step searching path of Hill-Climbing with jumping on Number
of Coefficients

heuristic. The best structure found by the algorithm is

Ka =11,La = 2

Kb =1,Lb = 2,Mb = 2

Kc =3,Lc = 4,Mc = 1

(3.29)

with 38 coefficients having NMSE of -32.61 dB. The number of coefficients jump-
ing distance begins with s = 2 and ends with s = 4.

HC with Unidimensional Neighbor

In this test, for the actual solution x0(q) at the q-th iteration, only the elements xi(q)
with the variation of only one parameter are tested.

The search result of HC using MCoff criterion (α = 1.7e−3) with unidimen-
sional neighbor tested on BS-PA are shown in this section.

The merit values of each element in function of Y (NMSE) and R (Nb of
Coeff) is depicted in Fig 3.27. The searching steps are also indicated in this figure.
We can see that the searching path converges directly towards the low merit value
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Figure 3.27: Seaching path of Hill-Climbing with Unidimensional neighborhood

region. The best structure is given as Xmin in this figure. The solution has its
parameters which are

Ka =2,La = 4

Kb =10,Lb = 1,Mb = 1

Kc =9,Lc = 3,Mc = 1

(3.30)

with 45 coefficients having NMSE of -32.82 dB.
In this search, the algorithm has 10 iterations and there are totally 3575 dif-

ferent GMP model structures tested during 11.30 minutes. The merit values of
each element in function of Y (NMSE) and R (Nb of Coeff) is depicted in Fig
3.27. The current elements of each iteration steps are indicated by circles with
annotations in this figure. We can see that the searching path converges towards
the lowest merit value which corresponds to the best structure given as Xmin in
this figure.

In 2-step search, we can reach the best element in 12 iterations starting from
MP model withKa = 11, La = 3. There are 1393 different GMP model structures
tested during 3.21 minutes. The searching path in map of NMSE vs number of
coefficients is depicted in Fig 3.28. The solution is the same as (3.21) with 38
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Figure 3.28: Two-step searching path of Hill-Climbing with Unidimensional
neighborhood

coefficients having NMSE of -32.71 dB.

Comparison of results obtained with pruned neighborhoods

The optimized algorithms are tested only on BS-PA with MCoff criterion. The
execution time of conventional HC MCoff is taken as the reference to calculate
the normalized execution times of the optimized algorithms in Table 3.15. By
applying the three different pruned neighborhoods, the execution time is largely
reduced. The result of constraint on number of coefficients shows that the best
search path goes along the envelope. According to the result of unidimensional
neighborhood, the search paths passing away from the envelope have heavy com-
putational complexity even though the neighborhood size has been tremendously
reduced. Jumping constraint on number of coefficients has the least execution
time to converge. But as it jumps with a large step, the global optimum may be
skipped.

The GMP models found by conventional HC with multiplicative criterion and
HC with pruned neighborhoods are evaluated on test bench. Their spectra are il-
lustrated in Fig 3.29. To evaluate the in-band and out-of-band linearization perfor-
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Table 3.15: Comparison of Search Results of HC with Different Optimizations on
BS-PA

Conv( 2): Conventional algorithm using MCoff criterion(two-step)
Optim1( 2): Constraint on NbCoeff is applied(two-step)
Optim2( 2): Jumping constraint on NbCoeff is applied(two-step)
Optim3( 2): Neighborhood is unidimensional(two-step)

Conv Optim1 Optim2 Optim3
NMSEdB -32.71 -32.71 -32.65 -32.82
NbCoeff 38 38 37 45
Nb of Test 19598 3835 1438 3575
Nb of Iter 11 21 18 10
Ex. Time 1 0.16 0.08 0.38

Conv 2 Optim1 2 Optim2 2 Optim3 2
NMSEdB -33.04 -32.71 -32.61 -32.71
NbCoeff 44 38 38 38
Nb of Test 39+7364 39+959 39+725 39+1393
Nb of Iter 11+4 11+7 11+7 11+12
Ex. Time 0.46 0.06 0.04 0.11

mances, error vector magnitude (EVM) and adjacent channel power ratio (ACPR)
are listed in Table 3.16.

According to Fig 3.29 and Table 3.16, we can see that the linearization per-
formances of the GMP models found by different means are close to each other.
This confirms the efficiency of the proposed method in searching for the optimal
GMP structures. And the proposed optimization methods do not deteriorate the
robustness of the algorithm but tremendously improve the execution time.

All these optimizations are based on controlling the definition of the neigh-
borhood during the search, which confirms the advantage of HC on the other
algorithms with randomness.
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Conv MCoff: Conventional HC with multiplicative criterion (3.21)
Conv MCoff2: Conventional HC with multiplicative criterion in 2-step (3.22)
Optim2: HC with jumping constraint on number of coefficients (3.28)
Optim2 2: HC with jumping constraint on number of coefficients in 2-step (3.29)
Optim3: HC with unidimensional neighborhood (3.30)

Figure 3.29: Comparison of spectra of Doherty PA output linearized by different
DPD

Table 3.16: Performance comparison of GMP model solutions

GMP GMP GMP GMP GMP
(3.21) (3.22) (3.28) (3.29) (3.30)

Nb of Coeff 38 44 37 38 45
EVM(%) 3.4 4.8 3.3 4.0 3.0
ACPR L1 gain(dB) 18.4 18.3 17.8 18.9 18.5
ACPR U1 gain(dB) 18.1 17.8 17.8 18.9 18.2
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3.8 Comparison Between Genetic Algorithm and Hill-
Climbing Heuristic

3.8.1 Integer Genetic algorithm
A method using an integer genetic algorithm (GA) to select the orders of nonlin-
earities and memory lengths of the GMP model has been proposed in [62].

Genetic algorithms are stochastic search mechanisms inspired by the process
of natural evolution. It is based on the idea of Darwinian natural selection theory
that individuals with low values of quality will be eliminated and only those genes
of good quality can be preserved in successive generations [78]. The quality is
modeled by a fitness function in GA. In our implementation, the fitness function
is given by the additive criterion (3.1).

To size the GMP model, the standard GA with functions for generating integer
population and integer mutations is used in [62]. A vector of integer numbers
represents the structure of a GMP model. The applied GA algorithm is described
in Algorithm 3.

The initial population P individuals is generated as a random vector of integer
numbers (Ka,Kb,Kc, La, Lb, Lc,Mb,Mc) which represents a chromosome made
of genes at the beginning of the algorithm. The fitness function of the individual
xi(q) at the q-th generation is denoted by Ji(q). And Q is the maximum generation
number that the algorithm can reach.

At each generation, the offspring is created in three ways: selection, crossover
and mutation. The groups of created offspring are denoted by O1, O2 and O3

respectively.

• Selection: The best 5% of P are kept in the next generation as offspring O1.

• Crossover: The parents can be represented in binary. For the parent Pi, its
binary vector vi are subdividing into groups vi = [g1,i g2,i], and same for
other parents. The crossover between Pi and Pj is to regroup g1,i, g2,i and
g1,j , g1,j into new vectors, e.g. [g1,i g2,j] and [g2,j g1,j], etc.

• Mutation: The binary vectors can have some random variation on the bits.

The parents of the following generation is the sum of O1, O2 and O3.
The Stall condition is that the number of iterations reaches the limit or the

fitness values variance of the population is lower than a threshold.
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In this section, we compare the performances of these two methods for the siz-
ing of GMP model structure using the same criterion based on trade-off between
its modeling accuracy and complexity.

Algorithm 3: Overview of Genetic Algorithm

Set generation counter q = 1;
Generate initial random integer populations of P individuals;
while q 6 Q do

Compute fitness of all individuals;
Selection: The best 5% of P are kept as offspring O1;
Crossover: The 80% of the rest (P−O1) are subdivided into groups
and combined with each other to create offspring O2 ;

Mutation: for the rest, their genes in a chromosome are randomly
changed to create offspring O3;

q=q+1;
P = O1 + O2 + O3;
if Stall then

end while loop;
end

end

3.8.2 Performance comparison
In this section, we test only the additive criterion. If we choose µ = 0.065, the
best GMP model according to (3.1) has 38 coefficients (Ka = 11,La = 2,Kb =
4,Lb = 1,Mb = 1,Kc = 3,Lc = 4,Mc = 1) and -32.71 dB NMSEdB.

The two algorithms (GA and HC) have pretty different behaviors. HC is a
deterministic algorithm looking at each step for the neighbor which has a better
merit function, it can therefore be sensitive to local extrema. On the other side the
GA algorithm may be seen as a probabilistic search starting from random initial
population randomly spread throughout the whole solution space. Thus it could
be quite sensitive to the size of the population which in turn has an impact on the
complexity.

The sensitivity of the GA to different population sizes P is illustrated in Table
3.17 while its sensitivity to the number of ”generation” (iteration) is highlighted
by Table 3.18. By analyzing Table 3.17, we can see that the population size has
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Table 3.17: GMP Results of Genetic Algorithm with Different Generation Sizes
(µ = 0.065)

Population Size 50 100 150 200
NMSEdB -32.22 -31.73 -32.71 -32.65
NbCoeff 40 34 38 37
Nb of Gen. 10 10 10 10
Ex. Time 5.48 min 10.99 min 14.63 min 20.35 min

Table 3.18: GMP Results of Genetic Algorithm with Different Total Numbers of
Generation (µ = 0.065)

Population Size 100 100 100 100
NMSEdB -32.50 -32.74 -32.34 -32.48
NbCoeff 37 42 36 35
Nb of Gen. 15 20 25 30
Ex. Time 13.72 min 17.81 min 19.80 min 22.52 min

a strong impact for the convergence towards the global optimum. We can check
that the final solution is able to converge to the optimum when the population size
is equal to or larger than 150 in this case. Table 3.18 shows that the increase of
the number of generations does not help to converge towards the global optimum
as the increase of the population size.

The results obtained with the HC algorithm and its convergence behavior are
summarized in the two left columns of Table 3.19 and in Fig 3.30. From this
picture we can see that HC behaves like a descent algorithm with iterations.

Table 3.19 allow to make some comparisons between both algorithms. First
we can check that HC is able to converge to the global optimum while GA con-
verges to a solution very close to this optimum solution but with a slightly higher
complexity. The right column of Table 3.19 highlights that, unsurprisingly the
two step approach does not improve the convergence speed and behavior of the
GA algorithm, likely because of its randomness.

The lower subtable of Table 3.19 shows that different walks of the GA al-
gorithms could lead to pretty different solutions. As the GA is a random search
procedure, it may be improved by launching multiple times the GA search, pick-
ing the best solution among the results. This will make its performance more
stable, but this will increase the execution time.
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Table 3.19: GMP Results Comparison between Hill-Climbing Algorithm and Ge-
netic Algorithm

HC HC2
Population Size - -
NMSEdB -32.71 -32.71
NbCoeff 38 38

Structure
Ka = 11,La = 2 Ka = 11,La = 2

Kb = 4,Lb = 1,Mb = 1 Kb = 4,Lb = 1,Mb = 1
Kc = 3,Lc = 4,Mc = 1 Kc = 3,Lc = 4,Mc = 1

Nb of Iter/Gen 11 6
Ex. Time 10.67 min 7.74 min

GA GA2
Population Size 150 150
NMSEdB -32.88 -32.48
NbCoeff 42 38

Structure
Ka = 11,La = 2 Ka = 10,La = 2

Kb = 4,Lb = 1,Mb = 1 Kb = 1,Lb = 3,Mb = 2
Kc = 4,Lc = 4,Mc = 1 Kc = 3,Lc = 4,Mc = 1

Nb of Iter/Gen 10 10
Ex. Time 14.63 min 16.36 min
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Figure 3.30: Hill-Climbing heuristic searching path in function of NMSE and
number of coefficients in 3D (µ = 0.065)

3.8.3 Conclusion
GA is an algorithm strongly depending on user settings, e.g. population size and
total number of generation. Large population size helps approaching the best
GMP result, but this also increases the execution time. With some appropriate
settings, GA and HC have very approximate performances which converge to the
global optimum in a short time compared with exhaustive search.

The advantage of HC as well demonstrated in the previous sections is that we
can optimize the searching time by controlling the search path. But GA cannot be
controlled because of its randomness.

3.9 First-Choice Hill Climbing
For the HC technique, we can also reduce the number of tested elements by con-
trolling the search procedure among the neighbors, e.g. First-choice technique.

To reduce the number of tests during the search, we propose to test the neigh-
bors under a certain condition, instead of testing all of them. The first tested
neighbor which has better merit value than that of the current solution will be
taken directly as the solution and the rest of neighborhood will not be tested. A
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new iteration starts immediately. The neighbors are tested one by one following
a random order, e.g. uniform law. The search procedure terminates when there is
no neighbor better than the current solution. Then this solution is the solution of
the algorithm. In this procedure, we added randomness to the algorithm and the
final solution will not be always the same for each search.

This optimization method differs from the formers as it changes the search
procedure instead of the neighborhood definition. However the induced random-
ness decreases its potential to be controlled and improved furthermore.

The light blue points in Fig 3.31 are all the possible GMP models in function
of Y (NMSEdB) and R (number of coefficients) in the search space. The colorful
points represents the models tested during the search.

Using HC with ACoff, 10821 models are tested during 15.9 minutes and the
solution is (3.21).

With FCHC, we have 16 iterations and totally 1691 structures of different
GMP models are tested. The solutions of each iteration are indicated by the circles
on the search path as shown in Fig 3.31. The search path converges towards the
optimum Xmin. The solution found by the algorithm is

Ka =3,La = 2

Kb =4,Lb = 1,Mb = 1

Kc =10,Lc = 3,Mc = 1

(3.31)

with 40 coefficients and NMSEdB of −32.28 dB. The execution time is 4.2 min-
utes.

As in this algorithm the neighbors are randomly chosen, We launch more times
to verify the stability of the algorithm. Fig 3.32 shows another search path which
also converges towardsXmin. There are totally 4382 models tested in 15 iterations
during 5.6 minutes. The final solution is

Ka =11,La = 2

Kb =1,Lb = 4,Mb = 1

Kc =3,Lc = 3,Mc = 1

(3.32)

with 35 coefficients and NMSEdB of −32.48 dB.
We can see that the found solutions have different structures but their lineariza-

tion performances and execution times in search are very close.
The structure of GMP models (3.31) and (3.32) are evaluated on PA. The spec-

tra of linearized PA output are illustrated in Fig 3.33. The blue curve is the spec-
trum corresponding to model 3.31 and the red curve is the spectrum corresponding
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Figure 3.31: Result 1 of FCHC search

Figure 3.32: Result 2 of FCHC search
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Figure 3.33: Comparison of spectra of Doherty PA output linearized by different
DPD

to model 3.32. Their performances are very similar. The green curve is the spec-
trum of the reference GMP model (3.21).

To evaluate the in-band and out-of-band linearization performances, error vec-
tor magnitude (EVM) and adjacent channel power ratio (ACPR) are listed in
Tab 3.20. The stability of FCHC is confirmed by the similarity of the perfor-
mances of these two models.

We can see that the execution time of First-choice hill-climbing is only one
third of that of conventional HC.

3.10 Conclusion
In this chapter, an algorithm is presented to find the optimal GMP model struc-
ture with a very limited number of computations. Two search criteria performing
a trade-off between complexity and modeling accuracy of the GMP model are
compared.

The algorithm is applied on two different dataset: signals of Base station PA
and signals of broadcast PA. The characteristics of these two PAs and their input
signals are very different. The performances of the proposed algorithm are good
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Table 3.20: Performance comparison of GMP models obtained with FCHC

GMP (3.21) GMP 1 GMP 2
Nb of Coeff 38 40 35
EVM(%) 2.3 3.2 2.6
ACPR L1 gain(dB) 19.3 18.8 19.0
ACPR U1 gain(dB) 19.1 18.8 18.3
Ex. Time 15.9 min 4.2 min 5.6 min

in both cases, which confirm the robustness of the algorithm.
Several optimizations of the algorithm are proposed and verified. The opti-

mizations are made by giving different constraints on the neighborhood of search
or on the search procedure. The results show that the computational complexity
of search is dependent on the search path. When the search path follows the enve-
lope edge of exhaustive result cloud, the complexity is lower compared with the
case that search path is far from the envelope.

A comparison between hill-climbing and genetic algorithm is made. They may
have similar performances when the parameters of algorithms are well configured.

The genetic algorithm relies more on the population size which has a great
impact on convergence speed and computational complexity. One of the advan-
tages of the hill-climbing algorithm compared with evolutionary algorithms is that
the search path can be controlled by configuring the parameters, which results in
different optimizations on execution time.

The technique to determine the optimal single-block DPD is proved robust in
this Chapter and will be applied in case of cascaded DPD in the next chapter.
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Chapter 4

Multi-stage Cascaded Digital
Predistortion

4.1 Introduction
PD model can be not only one system, but also an union of several systems.
Cascaded DPDs are found beneficial by some researches in [79], [3], [80], [81].
In [79], the cascaded model is identified in a nonparametric method. A paramet-
ric identification using multi-stage ILA is proposed in [3]. In [80], a two-stage
DPD is used to compensate separately for high-order memoryless nonlinearities
and low-order memory effects. The nonlinear bloc is realized with a look-up table
(LUT) which is identified using ILA. The memory bloc is upstream of the nonlin-
ear bloc, which is identified using DLA. In [81], a three-layer DPD is proposed as
a bias information is introduced in the second layer.

Hammerstein, Wiener, and Wiener-Hammerstein models are widely used and
their identification algorithms are thoroughly researched [82] [83]. In [82], the
Wiener model is identified using particle swarm optimization (PSO) instead of
least squares (LS). An enhanced Hammerstein model is proposed in [83] to sup-
press the spectrum regrowth caused by the memory effects. A branch parallel to
the linear filter bloc is added where the input signal is multiplied by its magnitude.
Each stage of the cascaded model is identified separately at different iterations.

Different multi-stage cascaded models have been studied in recent years, such
as multi-stage Volterra Series [84], multi-stage MP models [85] or multi-stage
GMP models [86].

The advantage of cascaded-structure PD is the relative simplicity of the low
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order modules in terms of computational complexity and extensibility to the re-
alization of higher-order functions [87]. Though the identification of cascaded
DPD needs additional steps, the complexity increase of the identification task can
be compensated for by the lower number of model coefficients [88].

This chapter is organized as follows. Block-oriented Nonlinear System iden-
tification methods are presented in Section 2. Identification methods of general
multi-stage cascaded DPD are presented in Section 3. Section 4 gives some cas-
caded DPD performances experimental studies and analysis. An algorithm and
criterion is used in Section 5 to find the optimal structure of cascaded DPD model.
Section 6 gives a brief conclusion.

4.2 Block-oriented Nonlinear System Identification
Identification of multi-stage cascaded DPD is more complicated than that of single-
stage model. A particular case of multi-stage cascaded DPD is the block-oriented
nonlinear (BONL) system. The BONL structure is composed of blocks connected
in series or in parallel: the Hammerstein model as Fig 2.9 and the Wiener model as
Fig 2.10 are particular cases. The identification of Wiener or Hammerstein model
has been studied in [89] [90] [91] [92].

The iterative identification algorithm of Hammerstein model proposed by Naren-
dra and Gallman in [89] has been used in [93] for DPD. The Hammerstein model
in Fig 2.9 which can be described by (2.21) and (2.22) is identified by an itera-
tive method alternately adjusting the coefficients ak and bl by least square (LS)
method. In this algorithm, a relationship among the coefficients of nonlinear part,
memory effect part and passing signals is built. First of all, we need to initialize
the values of ak. By knowing the coefficients of nonlinear part, we can calculate
the coefficients of memory effect part, and vice versa. In the following iterations,
we can calculate the coefficients of both two parts iteratively till the algorithm
converges.

A non-iterative method for Hammerstein identification was proposed in [90].
In this method, the values of ck,l =

∑K−1
k=1

∑L−1
l=0 akbl are estimated in one iteration

with the input and output signals of the system. Here a0 is assumed unity and
other coefficients ak (k > 0) are normalized by a0. For each memory depth l
(l ∈ [0;L− 1]), we can calculate a corresponding value of ak(l) by:

ak(l) =
ck,l
c0,l

(4.1)
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where k ∈ [1;K−1]. If we denote the vector of coefficients by a = [a1, .., aK−1],
there are L different possible coefficient vectors a(i) (i ∈ [0;L−1]). Each of them
is tested and the one which generates the least error between the expected signal
and measured signal is taken as the best. Comparing with iterative method, this
method can reduce the computational complexity by limiting the iteration number
to only one, but the matrix size is largely increased (the array ck,l has K × L
elements where ak and bl have only K and L elements respectively). Thus the
non-iterative method has advantage only when the orders of model structure K
and L are lower than a certain threshold.

A discrete-time Hammerstein model is identified in [94]. The linear dynamic
stage can be identified by the correlation between the input and output signals.
Then the nonlinear stage is identified using kernel regression estimates which was
proposed independently by Nadaraya [95] and Watson [96]. With the same algo-
rithm, the Wiener model is identified in a nonparametric method in [97].

Both iterative method and the correlation-based method have been two most
studied method for years. However, the convergence of iteration method is con-
firmed in [91] and it is preferable because the correlation-based method with fi-
nite data lengths can not cover any particular realization of the input process over
a finite time period. The convergence of iterative identification of Hammerstein
model is also confirmed in [98].

The identification of a Hammerstein-Wiener model (as Fig 2.12a) using max-
imum likelihood (ML) estimation is discussed in [92]. The parameters vector of
the system are denoted by θ = [aT , bT , cT ]T where a and c are coefficient vec-
tors of nonlinear blocs and b is the coefficient vector of the middle linear filter.
An estimate of θ is

θ̂ = argmaxθLθ(YN) (4.2)

where YN are the measured output signal of the system, N is the number of real-
izations. According to Bayes’ rule, the likelihood can be written as

Lθ(YN) =
N∑
t=1

log pθ(yt|Yt−1), pθ(y1|Y0) = pθ(y1) (4.3)

where yN are the estimated system output, pθ(y1) denotes the joint density of y1,
and pθ(yt|Yt−1) is the prediction density for the realization Yt−1.

The initial values of the parameters are very important for the convergence
of ML to the global optimum. The best linear approximation (BLA) [99] and
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Figure 4.1: 2-stage MP model

ε-approximation [100] can be used to extract the simple function of the linear
dynamic bloc in the system. In [36], BLA is applied to identify different types of
BONL with input signal u(t) and output signal y(t):

Gbla(e
jωTs) =

SY U(ejωTs)

SUU(ejωTs)
(4.4)

where SY U is the cross-power spectrum of y(t) and u(t), SUU is the auto-power
spectrum of u(t).

4.3 Identification of General Multi-stage DPD Model
For general multi-stage cascaded DPD models, we identify stage by stage as pro-
posed in [3]. As multi-stage DPD is composed of several cascaded blocks, the
block nearest to the PA is denoted by “Stage 1”. We take a 2-stage MP model as
an example in this dissertation (Fig 4.1).

The relation between the input and output of DPD can be expressed as:

w(n) =

K2−1∑
k=0

L2−1∑
l=0

eklu(n− l)|u(n− l)|k

x(n) =

K1−1∑
k=0

L1−1∑
l=0

hklw(n− l)|w(n− l)|k
(4.5)

where u(n) and x(n) are the input and output signal of the DPD respectively,w(n)
is the output signal of Stage 2.

In case of a 2-stage MP as (4.5), we can model a DPD which has nonlinearities
of order K1K2 and memory depth of order L1 + L2 − 2. The total number of
coefficients is K1L1 + K2L2. But the values of the coefficients have very strong
constraints. The coefficients of the equivalent predistorter structure comes from
the product combinations of the coefficients of the 2 stages MP models.

The identification procedure using indirect learning structure (ILA) of cas-
caded DPD is presented in this section (Fig 4.2). A Post-inverse of each stage is
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Figure 4.2: Indirect Learning Architecture - ILA

identified and used in the Pre-inverse block as a DPD. The identifications of both
stages have the same procedure. Thus we take Stage 2 as an example.

The total number of coefficients of Stage 2 is R2 = K2L2. For a total number
of samples equal to N , we can write

zp2 = Za (4.6)

where zp2= [zp2(1), . . . , zp2(N)]T is the vector of output samples of the post-
inverse, Z is a N ×R matrix of basis functions of z, a is the vector of coefficients
akl. The Least square (LS) solution of (4.6) is also the solution of the normal
equation

[ZHZ]â = ZHx2 (4.7)

where â is the estimated value of a.
For the identification of multi-stage DPD, all stages can be identified with ILA

iteratively in two ways: the order of identification from the stage furthest from the
PA to the stage closest to the PA is called “forward (FW)”; (Fig 4.3a) the order of
identification from the stage closest to the PA to the stage furthest from the PA is
called “backward (BW)”. (Fig 4.3b) The DPD stages are identified in an alternate
way: after the last stage is identified, the following system iteration restarts from
stage 1. We can re-identify the other stages after the modification of one stage.

In each system iteration, only one stage of DPD is identified while other stages
are applied [3].
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Figure 4.3: Identification order of multi-stage DPD

4.4 Experimental Results for Multi-stage MP model
DPD

4.4.1 Case of a cascade of 2 low order MP models
In the following experiments, each stage is identified with 4 iterations. The DPD
identification dataset buffer size is 6 000 samples. The DPD performance is eval-
uated on BS-PA with an LTE signal of 240 000 samples.

The simplest cascaded DPD is composed of only two stages. We choose the
following cascaded MP structures:
Model K6L2/K2L6

K1 =6, L1 = 2

K2 =2, L2 = 6
(4.8)

and Model K2L6/K6L2

K1 =2, L1 = 6

K2 =6, L2 = 2.
(4.9)

Both of them have 24 coefficients.
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The computational complexity depends on the number of samples N and on
the total number of coefficients of the model. The main computation load comes
from finding the solution of (4.7). We consider solving (4.7) using a QR decom-
position. If N is large compared to R, we can estimate the computation load by
O(2NR2). As 2N is a constant, we express the complexity with R2. The com-
plexities of (4.9) and (4.8) are both 288.

In purpose of reference, we choose three MP models of similar complexity to
test:
Model K6L4

K = 6, L = 4; (4.10)

which has 24 coefficients with complexity equal to 576.
Model K6L3

K = 6, L = 3; (4.11)

which has 18 coefficients with complexity equal to 324.
Model K5L3

K = 5, L = 3. (4.12)

which has 15 coefficients with complexity equal to 225.
The model K6L4 is chosen because it has the same number of coefficients

with the proposed cascaded MP model. The model K6L3 is chosen because it is
similar to one stage of the proposed cascaded MP model and it has also a very
close complexity to the proposed cascaded MP model. The model K5L3 is cho-
sen because a model with complexity less than the proposed cascaded MP model
needs to be tested as a reference.

The spectra of output signal of PA linearized with MP DPD (4.10)-(4.12) are
shown in Fig 4.4. We can see that Model K6L4 has better linearization perfor-
mance and it is taken as a reference in Fig 4.7 to compare with the cascaded MP
models.

The spectra of output signal of PA linearized with Model K6L2/K2L6 in dif-
ferent identification orders are shown in Fig 4.5. The light blue curve is the output
of PA without DPD. The linearization performance of BW is better than that of
FW. The spectra of output signal of PA linearized with Model K2L6/K6L2 in dif-
ferent identification orders are shown in Fig 4.6. In this case, the linearization
performance of FW is better than that of BW.
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Figure 4.4: Spectra of Doherty PA output linearized by different MP DPD

In Fig 4.7, we compare the best results that the MP model and two cascaded
models can achieve. We can see that Model K6L2/K2L6 and Model K2L6/K6L2
have the same performance and both of them outperform Model K6L4. This is
confirmed in Table 4.1. In this table, the error vector magnitude (EVM) of the
output signal and the first-adjacent-channel adjacent channel power ratio (ACPR)
gain of the DPD identified with different algorithms are used to evaluate the lin-
earization performances. The ACPR gain is the improvement of ACPR after lin-
earization compared with the the output of PA without DPD.

Each stage of Model K6L2/K2L6 or Model K2L6/K6L2 have the same dimen-
sion, but one stage represents mainly nonlinearity and the other one represents
mainly memory effect. Fig 4.5 and Fig 4.6 show that the identification of DPD
starting from the model with the higher nonlinearity can always achieve the best
performance of a given model. Fig 4.7 shows that cascaded DPDs with different
structures can reach the same performance, which confirms that linearization per-
formance of cascaded DPD depends not on the order of the blocks in the cascade.

Conclusion

In this section, we analyzed the interest of using a 2-stage cascaded DPD com-
posed of two different low order MP models. By switching the order of the
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Figure 4.5: Spectra of Doherty PA output linearized by Model K6L2/K2L6 with
different identification

Figure 4.6: Spectra of Doherty PA output linearized by Model K2L6/K6L2 with
different identification
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Figure 4.7: Comparison of spectra of Doherty PA output linearized by different
DPD

Table 4.1: Performance comparison of 3 DPD models

ACPR L1 ACPR U1 EVM J2

gain (dB) gain (dB) (%)
K6L4 14.3 11.8 5.2 576
K6L3 13.2 10.1 6.8 324
K5L3 13.0 10.1 6.7 225
K6L2/K2L6 FW 9.7 8.7 9.7 288
K6L2/K2L6 BW 14.9 12.9 5.8 288
K2L6/K6L2 FW 14.2 12.4 5.3 288
K2L6/K6L2 BW 12.6 12.1 8.3 288
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two stages, we compared their performances. We showed that the identification
method of 2-stage cascaded DPD is of importance and the stage with higher non-
linearity order should be identified first. In the test case here, the switching of the
stages does not alter the linearization performance provided that the right identi-
fication procedure is conducted.

4.4.2 Comparison of a multi-stage cascaded MP DPD with a
single-stage MP or GMP model

This section makes an experimental study on comparison between a single-stage
DPD and a multi-stage cascaded DPD model. The performance of cascaded DPD
model is evaluated with the Three-way Doherty PA (BS-PA) and LTE signal.

To make a comparison between the single stage DPD and multi-stage DPD,
we tested an MP model, a GMP model and a 2-stage MP model which have very
similar number of coefficients.

Using our hill-climbing method, we can find an appropriate GMP model struc-
ture:

Kb =11, Lb = 2

Kc =1, Lc = 3,Mc = 3

Kd =3, Ld = 4,Md = 1.

(4.13)

As the GMP model has totally 43 coefficients, the MP model structure is set
as

K =11, L = 4. (4.14)

The 2-stage MP structure is arbitrarily set as:

K1 =9, L1 = 4

K2 =4, L2 = 2.
(4.15)

In the following experiments, each stage is identified with 4 iterations. For ex-
ample in case of BW, firstly we identify the stage 1 for 4 iterations. Then we fix
the stage 1 and identify the stage 2 for 4 iterations. This procedure is denoted by
“system iteration”. In this section, the cascaded DPDs are identified with 2 system
iterations.

The results of 8th iteration are shown in Fig 4.8 and Table 4.3. The DPD iden-
tification dataset buffer size is 6 000 samples. The DPD performance is evaluated
with an LTE signal of 240 000 samples.
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Table 4.2: Performance comparison of 3 DPD models

GMP MP 2-stage MP
EVM(%) 2.34 5.86 3.66
ACPR L1 gain(dB) 19.1 16.1 17.1
ACPR U1 gain(dB) 18.1 15.3 16.0

The spectra of output signal of linearized PA are shown in Fig 4.8. The light
blue curve is the output of PA without DPD. The red, green and black curves are
the output of PA with DPD of 2-stage MP model, MP model and GMP model
respectively.

These three DPDs have very close linearization performances. The GMP
model DPD can reach the best linearization performance. Comparing with MP
model, the performance of 2-stage MP is a little better.

Table 4.2 shows the EVM of the output signal and the first-adjacent-channel
ACPR gain of the DPD identified with different algorithms compared with the
output of PA without DPD while applying each model. We can see that 2-stage
MP has the best in-band performance and the out-band performance is between
the MP model and GMP model.

Table 4.3 shows the number of coefficients of each model, the dynamic range
of model coefficients (the difference between the maximum and the minimum),
the condition number of the matrix computation in identification procedure and
the normalized complexity (Number of complex multiplications normalized by
that of the MP case). The dynamic ranges of coefficients of GMP and MP mod-
els are large and their matrices exhibit large condition numbers. For “2-stage
MP” model, the number of coefficients, EVM and ACPR are close to GMP and
MP models, but its computational complexity is much less. As “2-stage MP”
model has less order in nonlinearity and memory depth in each stage, its condi-
tion number is smaller by a factor of 100. The complexity of “2-stage MP” model
identification is also reduced by more than 30%.

In this section, we analyzed the interest of using a multi-stage cascaded digital
predistorter composed of two MP models. We compared its performance with that
of a single stage predistorter made of an MP or GMP model. The optimal structure
(orders of non-linearity and memory lengths) of the single stage DPD (MP or
GMP) are determined using an HC, but the 2-stage MP model is determined in an
ad-hoc way. GMP model reaches the best linearization performance but using a

119



Figure 4.8: Comparison of spectra of Doherty PA output linearized by different
DPD

Table 4.3: Performance comparison of 3 DPD models

GMP MP 2-stage MP
Stage 1 Stage 2

Number of Coefficients 43 44 36 8
Coeff Dynamic Range 4.0e6 4.7e6 4.2e5 7.4
Condition Number 8.8e18 1.1e19 7.6e16 3.0e6

Normalized Complexity 0.96 1 0.67 0.04
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2-stage MP model can decrease the complexity and dynamic range of coefficients
and improve the condition number of the identification of the DPD parameters.

In this comparison, we have chosen arbitrarily the structure of the 2-stage
DPD. In the next section, we propose a method to size the cascaded DPD structure.

4.5 Sizing of Cascade DPD Structure
In this section we apply the method proposed in Chapter 3 to size a cascaded
model. We propose a new criterion to represent the trade-off between modeling
accuracy and the complexity of model identification. A 2-stage MP model is
chosen to be the cascaded DPD in this section. Its performance is evaluated with
a Three-way Doherty PA.

4.5.1 Search Algorithm and Criterion
In a discrete set, each node xi is assigned to a unique cascaded MP model struc-
ture. The coordinate of xi consists of 4 dimensions: K(i)

1 , L(i)
1 , K(i)

2 , L(i)
2 . The

value of a merit function J(xi) is associated to each node xi.
The searching procedure is described in Algorithm 1.
In our implementation, we define a neighbor of node xi as a node of which

parameters are K(i)
1 + δ1, L(i)

1 + δ2, K(i)
2 + δ3, L(i)

2 + δ4, where δ1,...,4 ∈ [0,±1] and
δ1,...,4 are not 0 at the same time.

The merit value of the node xi here refers to a criterion Ji which leads to a
tradeoff between modeling accuracy and model complexity. NMSE value (2.7)
denoted by Y , is the criterion to judge the modeling accuracy. The complexity of
model identification is represented by the square sum of number of coefficients of
the model which is denoted by R2

1 +R2
2.

We combine the objective on the number of coefficient and the constraint on
the NMSE in a single criterion, using a trade-off weight coefficient λ:

Ji = Yi + λ(R2
1,i +R2

2,i). (4.16)

4.5.2 Experimental Validation
In this section we evaluate our algorithm with 2 values of λ corresponding to two
trade-offs between the modeling accuracy and complexity of models identifica-
tion. The values used for λ are: 1e−3 and 2e−3.
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In each case the algorithm starts from the node which corresponds to two linear
functions x1(n) = bx2(n) and x2(n) = au(n), where K1 = 1, L1 = 0, K2 = 1,
L2 = 0.

With λ = 1e−3, the algorithm has 11 iterations and there are totally 417 differ-
ent cascaded MP model structures tested during 37.7 seconds. The merit values of
each node in function of Y (NMSE) and R2

1 +R2
2 is depicted in Fig 4.9. The cur-

rent nodes of each iteration steps are indicated by circles in this figure. The light
blue points are all possible cascaded MP models. The tested models are illustrated
in colors. We can see that the searching path converges towards the lowest merit
value which corresponds to the best structure given as Xmin in this figure. Ac-
cording to all these nodes, we found a structure having NMSE of −31.13 dB with
the following parameters

K1 = 11, L1 = 3

K2 = 1, L2 = 1.
(4.17)

This structure is a particular case of cascaded model. It is equal to a 1-stage MP
model because Stage 2 is only a gain.

With λ = 2e−3, the first simulation also starts from the node which corre-
sponds to simple gains.

In this search, the algorithm has 10 iterations and there are totally 368 different
cascaded MP model structures tested during 35.6 seconds. The merit values of
each node in function of Y (NMSE) and R2

1 +R2
2 is depicted in Fig 4.10. We can

see that the searching path converges towards Xmin. According to all these nodes,
we found a structure having NMSE of −31.03 dB with the following parameters

K1 = 10, L1 = 2

K2 = 3, L2 = 3.
(4.18)

In this structure, the two stages are not balanced. Stage 1 has much higher
nonlinearity order than Stage 2 and their memory depths are similar.

The linearization performances of these two cascaded models ((4.17) and (4.18))
on test bench are shown in Fig 4.11 and Table 4.4. Both PDs can linearize the PA
with an improvement of adjacent channel power ratio (ACPR) up to 16 dB and the
error vector magnitude (EVM) is limited to 4%. In Table 4.4, ACPR L1 gain rep-
resents the improvement of ACPR in the first lower adjacent channel, and ACPR
U1 gain represents that in the first upper adjacent channel. The two DPD have
very similar performances but Model K10L2/K3L3 has less complexity.
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Figure 4.9: Cascaded model structure searching path with λ equal to 1e−3

Figure 4.10: Cascaded model structure searching path with λ equal to 2e−3
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Figure 4.11: Comparison of spectra of Doherty PA output linearized by found
DPD

Table 4.4: Performance comparison of 3 DPD models

ACPR L1 ACPR U1 EVM R2
1 +R2

2

gain (dB) gain (dB) (%)
K11L3/K1L1 17.4 16.1 4.0 1090
K10L2/K3L3 16.5 16.9 4.0 481
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4.5.3 Conclusion
In this section we extend the search algorithm based on hill-climbing heuristic for
a 2-stage MP models. We have also proposed a new criterion to search the struc-
ture of a 2-stage cascaded DPD composed of two MP models, which represents a
trade-off between complexity of model identification and modeling accuracy. The
solutions of the search algorithm are applied successfully to a three-way Doherty
PA. Their linearization performances are robust.

4.6 Conclusion
This chapter thoroughly studied the linearization of PA using cascaded DPD. Ex-
perimental results show that the cascaded DPD may have advantages on computa-
tional complexity while keeping a good linearization performance compared with
some single-block DPDs.

As the structure of cascaded DPD is more complicated, there are different
ways to identify the coefficients of the model. Identifying stage by stage can es-
timate the coefficients by solving linear equations. Different identification orders
can result in different performances. The DPD identified from the stage with the
highest nonlinearity order has always the best performance.

The structure of cascaded DPD can be optimized according to a given criterion
in a similar way to the algorithm presented in Chapter 3.

Next chapter explores the techniques of experimental implementation.
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Chapter 5

Impact of PA Gain Choices

5.1 Introduction
The choice of the reference gain G used in predistortion has been discussed in
different papers [101] [102] [103] [104].

The linearized PA gain which impacts the DPD model can be decided arbitrar-
ily [101]. In particular, two very often used gains are the small signal gain G1 and
the peak power gain G2. The small signal gain G1 is the gain of the PA when its
behavior is generally linear. The peak power gain G2 is calculated with the input
peak power and output peak power of PA.

In [102], different normalization gains with look-up table (LUT) model DPD
are tested. Zhu et al. [103] emphasize that usingG1 needs an extra calibration step
and using G2 does not. In [105], different normalization gains with memory poly-
nomial (MP) model DPD are tested. The power alignment issue has been studied
and the normalization gain for which the average powers at the input and output
of the DPD is equal is considered optimal in [88]. In [106], G1 is applied and the
gain of DPD is set unity. A one-step method to extract the optimal normalization
gain is proposed in [104]. The impact of choice of gains on the average output
power of PA is studied in [107]. However, the scaling of gain is seldom discussed
in terms of power added efficiency (PAE) in publications.

This chapter presents an experimental study of linearization and PAE with a
Three-way Doherty PA at different choices of normalization gain. In Section 2,
the power variation and PAE at the operating point are studied. And we propose an
adjustment in the DPD identification to improve the PA linearization performance
in case ofG1. The experimental results are presented in Section 3. Section 4 gives
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Figure 5.1: PA input signal vs PA output signal

a brief conclusion.

5.2 Linearization of PA at different gains

5.2.1 PA power compression effect
From Fig 2.14 we can see that: at the first iteration of identification, the PA input
signal is x(n) = u(n), and the post-inverse block is estimated with signal z(n)
which is the normalized output signal of PA; and at the second iteration, the esti-
mated model of post-inverse block is applied at the pre-inverse block as the DPD
while the DPD input signal is u(n).

Because of the nonlinearity of PA near to the saturation zone as shown in
Fig 5.1, the PAPR of PA output signal is compressed compared with the PAPR of
PA input signal. We can easily have PAPRu > PAPRz. Thus the input signals
of pre-inverse and post-inverse blocks are different.

As the signal z(n) is normalized by the gain G (z(n) = y(n)/G), the average
power or peak power of z(n) can be decided by G. If we respect the consistency
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Figure 5.2: Two choices of gain

of average power, so we should have

E(Pu) =
E(Py)

G
. (5.1)

If we respect the consistency of peak power, so we should have

max(Pu) =
max(Py)

G
. (5.2)

Howerver, the consistencies of average power and peak power cannot be respected
at the same time. We can also have different other choices of gain that none of
them is respected.

In this dissertation, we choose only two gains as shown in Fig 5.2 to compare:
small signal gainG1 and peak power gainG2. The output amplitude is normalized
by the chosen gain G1.

5.2.2 Linearization at G1

There are many different ways to set the normalization gain which is used to
calculate the coefficients of the DPD.
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Figure 5.3: Small signal gain G1

The small signal gain G1 is calculated using the low amplitude input signals.
We can make an approximation E(Pu) ≈ E(Pz).

In Fig 5.3, the blue curve shows the AM/AM curve of PA, and the green curve
is the AM/AM curve of DPD identified with input and output signals of PA. The
pink line shows that the PA is linearized by the DPD. We can see that the output
signal is saturated when the input signal amplitude is higher than a threshold.
PPAOutSat is the saturated output of PA normalized by G1.

Therefore, we need to apply an input peak back-off (IPBO) to reduce the dy-
namic range of the input signal. If we denote the threshold amplitude of the sys-
tem input signal by Pth, a first step (calibration step) with a high power signal
is needed to find out Pth. As PPAOutSat is the normalized PA saturated output
amplitude, the input saturation power Pth is obtained by

Pth = PPAOutSat. (5.3)

In this linearization method, the average power of the system input signal is
kept at a constant value. In each iteration, the training signal z(n) has peak power
equals to E(Pu) + PAPRz. In the following iterations, this DPD model is fed
with a signal which has peak power equals to Pth = E(Pu) + PAPRu. As
PAPRu > PAPRz, the DPD model does not cover the entire power range of the
input signal. An extrapolation of the DPD characteristic function is needed for
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(a) Iteration 1: Identification without
Back-off

(b) Iteration 2: Identification with Back-
off

Figure 5.4: Adjustment for small signal gain G1

the signals which have higher power than E(Pu) + PAPRz. This degrades the
performance of PA linearization.

5.2.3 Adjustment at G1

As discussed in the previous subsection, when G1 is chosen, the performance of
the first identified DPD is degraded due to the extrapolation. The effect is evident
when the PA has very strong nonlinearity. We propose an adjustment as shown in
Fig 5.4:

• at the first iteration, a post-inverse model “M1”is identified without IPBO;

• at the second iteration, IPBO is applied on the input signal and “M1” is
applied as DPD, and a new post-inverse model “M2” is identified.

The peak power of training signal of “M1” is the input peak power before
IPBO. If we take this signal to train the post-inverse model, the input power range
will be covered.

Then at the second iteration, the output signal of DPD will not diverge and the
model “M2” can be identified.
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Figure 5.5: Peak power gain G2

5.2.4 Linearization at G2

In case of peak power gain G2, the input power of PA should be high enough to
push the PA to the critical point where it starts to be saturated. In Fig 5.5, the green
straight line shows G2 of the PA linearized by DPD which is calculated with the
maximal amplitude of signals at input and output of PA:

GPeak =
Py
Pu
. (5.4)

The advantage of this choice of gain is that no IPBO is needed and u(n) and
z(n) have the same peak power. The drawback of this linearization method is that
there is an average power difference between u(n) and z(n).

We can observe in Fig 5.5 that the average input power of DPD is higher than
that of PA. In another word, the DPD compresses the power.

5.3 Experimental validation
The linearization performances are evaluated by the error vector magnitude (EVM)
and the adjacent channel power ratio (ACPR) between the input signal of DPD and
output signal of PA. The ACPR gain (ACPR G) is the improvement of ACPR of
PA output after applying DPD compared with the ACPR of PA output without
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DPD. The EVM is not the real EVM as (2.9). Since we process the signals in
baseband, it is simply calculated by

EVM% =
std(z(n)− u(n))

std(u(n))
× 100% (5.5)

where u(n) is the stimulus signal, z(n) is the normalized PA output signal, std(·)
calculates the standard deviation.

Using the method proposed in Chapter 3, we can find an appropriate GMP
model structure:

Ka =11,La = 2

Kb =1,Lb = 3,Mb = 3

Kc =3,Lc = 4,Mc = 1.

(5.6)

5.3.1 Performance of linearization with adjustment at G1

The measured spectra at the output of the linearized PA are presented in Fig 5.6.
The green curve represents the spectrum of PA output signal without DPD. The
blue curve shows the output signal spectrum of PA linearized at G1. The red and
the black curves are spectra of the output signal of linearized PA with the DPD
identified during the calibration step and during the second step respectively. The
spectra captured by FSW have 30 dB attenuation compared with the PA output
power.

The measured ACPR gain and EVM are shown in Table 5.1. In the table, L1
refers to lower band 1st adjacent channel, U1 refers to upper band 1st adjacent
channel, L2 refers to Lower band 2nd adjacent channel, U2 refers to Upper band
2nd adjacent channel.

We can see that the adjusted method improves the ACPR gain of the lower
band 1st adjacent channel 9.52 dB, and the EVM is lowered from 15.3% to 6.2%.

Comparing these three spectra, we can see that the linearization with the ad-
justment outperforms the method without adjustment on the linearization of PA
both in-band and out-of-band.
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Table 5.1: Linearization performances of the PA at G1

Original Adjusted
Approach 1st step 2nd step

ACPR Gain(G) (dB)

L1 6.17 9.35 15.69
U1 4.99 12.84 15.69
L2 0.98 5.81 9.02
U2 -2.95 4.61 6.75

EVM (%) 13.3 23.2 4.2

Figure 5.6: Measured spectra of the linearized PA
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Figure 5.7: PAE of Doherty PA with different input signals

5.3.2 PAE vs PA output
The efficiency of the PA without DPD is measured as a reference. PAE is calcu-
lated by:

PAE =
Pout − Pin
Psupply

, (5.7)

where Pin and Pout are system input and output power respectively, Psupply is the
power offered by supply.

In Fig 5.7, the blue and the red curve show the PAE tested with both one-tone
signal and LTE signal respectively. The PAE keeps increasing when the average
output power of PA is less than 44 dBm. When the average output power of PA is
more than 47 dBm, we notice that PAE begins to decrease. To avoid the risk the
overload of PA, we need to keep the peak power of PA output signal less than 57
dBm.

We chose 2 operating points to evaluate the performance of the 3 linearization
methods: output at 45 dBm and output at 46 dBm.
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Figure 5.8: Measured spectra of the linearized PA at 45 dBm PA output

5.3.3 Performance comparison at 45 dBm & 46 dBm output
In Fig 5.8 and Fig 5.9, the spectra of each linearization method at iteration 3 when
PA output average power is 45 dBm and 46 dBm respectively are shown in the
figure and compared.

The comparison of the EVM, the ACPR gain and the PAE of 3 linearization
methods at the 3rd iteration is shown in Table 5.2. We can see that the 3 lineariza-
tion methods have very similar performances except the EVM of “G1” is higher.
This is due to its instability at the first iteration. The efficiencies are close to that
of LTE without DPD in Fig 5.7.

5.4 Conclusion
In this chapter, we discussed the impact of PA linear gain choices on linearization
performances.

The characterization of PA is an indispensable step for calculating the model
of DPD. The characteristics of PA depend on the dynamic power range and the
power distribution function of the input signal.

Linearization of PA at different gains are compared with experimental study
in terms of ACPR, EVM and PAE. An adjustment approach is very important for
PA linearization at G1.
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Figure 5.9: Measured spectra of the linearized PA at 46 dBm PA output

Table 5.2: Performance of 3 linearizations

Output 45 dBm 46 dBm
Method G1 Adj G2 G1 Adj G2
EVM(%) 7.1 3.5 5.9 8.1 5.9 7.1
ACPR G L1(dB) 17.36 17.28 17.30 17.56 17.66 18.16
PA output(dBm) 45.24 45.24 45.35 45.81 45.95 46.3
System Gain(dB) 44.07 44.07 41.35 43.49 43.63 41.3
Supply Vol(V) 28 28 28 28 28 28
Supply Cur(A) 3.5 3.5 3.6 4.1 4.1 4.4
PAE(%) 34.1 34.1 34.0 33.2 34.3 34.6
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Despite the fact that the choice of the nomilization gain is sometimes seen as
critical, the experiments conducted in this work for two choices of gain, namely
small signal gain and peak power gain, show that:

• their convergences of the linearization performances are similar.

• the efficiency of the linearized PA is not impacted by the chosen gain.
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Chapter 6

Conclusion and Future Work

In this dissertation, we presented the nonlinearities and memory effects of high
power amplifiers and linearized it using digital predistortion. The DPD model
structures are studied and implemented on a test bench. This dissertation mainly
focuses on study on model structure determination and on cascaded DPD in or-
der to reduce the complexity of DPD models while respecting the linearization
performances.

6.1 Contributions
The contribution of this dissertation consists of three aspects: Model structure
optimization, PA linearization with cascaded DPD, different choices of PA linear
gains.

1. For model structure optimization, an algorithm based on hill-climbing
heuristic is proposed to search for a model structure which represents a trade-off
between the modeling accuracy and model complexity. The proposed algorithm
has no randomness comparing with genetic algorithm, which allows more pos-
sibilities to optimize the execution time by controlling its search path. With the
proposed method, the DPD models can have very few complexity while keeping
the linearization performances in a tolerant level.

2. Cascaded DPD are explored to reduce the complexity of model identifica-
tion, matrix conditioning number and coefficients dynamic range, which have sim-
ilar performances to a single-block DPD. Matrix condition number has an impact
on the accuracy of LS calculation. The coefficients dynamic range can influence
the floating-point precision which influences the complexity of implementation
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on hardware, e.g. DSP and FPGA.
3. Different choices of PA linear gains are compared. The analysis consid-

ers especially their impacts on PAE. An adjustment of DPD model coefficients
identification is proposed in the case of small signal gain.

The verification of DPD performances are made on an Ampleon Three-way
Doherty PA with output peak power up to 500 W. These measurements have been
obtained thanks to the support of National Instruments on Digital Predistortion
Framework research activity [53] and the support of Teamcast in the frame of the
ambrun project (FUI AAP11) [54].

6.2 Future Work
To extend this dissertation, some future work can be done:

1. Adapt the optimal DPD model structure when the input signal is changed.
The characteristics of PA depend on many factors, e.g. the signal average power,
the probability density function of the signal amplitude, the bandwidth of the sig-
nal and the circuit temperature, etc. The optimal DPD needs to be renewed and to
fit the characteristics of PA once it is changed. The execution time should be short
so that the real-time implementation is viable.

2. Explore the cascaded DPD with more than two stages while each stage have
very low complexity. In this dissertation, it is shown that a multi-stage model can
have similar linearization performance with a single-stage model. It will be in-
teresting to study the performance of a multi-stage model where each stage has
minimum orders (not only a gain) of nonlinearity and memory effect. In another
word, the number of basis functions in each stage is limited to four, and we config-
ure the structure by increasing the number of stages. In this case, the complexity
of identification is always the minimum.

3. Implement the DPD on digital hardware, e.g. FPGA.
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