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Abstract

The two-dimensional Cutting & Packing problem consists in allocating a set of two-dimensional
items into a set (possible singleton) of two-dimensional large objects in such a way that items are
completely contained in the objects without overlapping. A particular instance of two-dimensional
Cutting & Packing problem arises in the context of thermal building renovation. This special
case deals with the design of an insulating envelope by packing a set of rectangular panels over
a rectangular façade surface. The envelope is used to reduce the thermal transfer between the
interior and the exterior of the building in the aim of reducing the building’s energy consumption.
Five particularities makes this problem novel and interesting. Firstly, the number of panels to
design an envelope and their size are not known a priori (tough their size is bounded). Secondly,
due to manufacturing conditions, each window and door over the façade surface must be covered
by one and only one panel. Thirdly, panels are attached in specific areas over the façade strong
enough to support the weight added by the envelope. Fourthly, in order to guaranty a perfect
external insulation, no holes and no panels overlapping are allowed. Lastly, to reach a good
building thermal performance while minimizing the retrofit global cost, the envelopes should be
composed of the minimum number of panels.

The motivation behind this dissertation lies in the existing need for designing external insu-
lating envelopes for residential buildings. The design of an envelope depends on geometry and
strength of the façade to be renovated as well as in the architects preferences and artistic flair.
The result of such design is a numerical model (nomenclature) used as input for the manufac-
turing of panels (respectively envelopes). In consequence, the problem is not only treated as
a two-dimensional Cutting & Packing problem but also as a configuration one. These facts
have led us to use the constraint satisfaction framework to reason and to solve the envelopes
design problem. We consider that the mathematical model of constraint satisfaction fits neatly
in the constrained nature of Cutting & Packing problems as well as configuration problems. In
particular, its declarative view allows a clear knowledge representation, it divides modelling from
solving and it allows the inclusion of an objective function. The thesis then builds upon the con-
straint satisfaction framework to solve design problem under different techniques from artificial
intelligence and operational research. As such, the dissertation presents two major contributions.

Due to the unusual characteristics of the industrial case, the description and constraint-
based model of the design problem becomes the first contribution of the thesis. In particular, the
industrial renovation description, the envelopes design as a Cutting & Packing problem and the
support system for architects decision-making as a product configuration software are discussed.
Requirements, limitations and design knowledge extracted by stakeholders and architects have
been compiled into a constraint satisfaction model that acts as foundation of the algorithmic
solutions and a resulting decision support system.

The second contribution dwells in five constraint-based algorithmic solutions for the design
problem; InDiE, a manual interactive solution to guide architects design; GaLaS, an automatic
solution that packs panels on the fly in a greedy fashion; CaSyE, an automatic solution that
packs panels considering the geometry of the façade with a cutting approach; SkEdE, a manual
solution for architects sketching that uses Choco as underlying solver; OpackS, an automatic
solution that applies filtering and search from the underlying solver Choco and treats the problem
as a constraint optimization problem.

Additionally, the dissertation introduces a product configuration software, specialized version
of a decision support system, for the design/configuration of panels (respectively envelopes).
The system makes a division between key configuration tasks that allows the transparent ma-
nipulation of the architects preferences. Also, it includes some recommendation capabilities for
some features in the configuration of panels. Evaluation is performed over some real-life facades
in France and prove the validity of our methods. Conception and implementation of the thermal
retrofit of buildings are then supported by this work.





Résumé

Les travaux de recherche présentés dans cette thèse se situent dans une problématique d’aide
à la conception d’enveloppes isolantes pour la rénovation thermique de bâtiments résidentiels
collectifs. Ces enveloppes isolantes sont composées de panneaux multifonctionels rectangulaires,
configurables et préfabriqués en usine. Leur conception repose sur les cinq caractéristiques sui-
vantes. Premièrement, le nombre de panneaux nécessaires pour concevoir une enveloppe ainsi
que leur taille respective ne sont pas connus au début de la rénovation (mais leur taille est
cependant bornée). Deuxièmement, en raison des contraintes de fabrication, chaque fenêtre et
chaque porte présentes sur la façade à rénover doivent être insérées dans un et un seul panneau.
Troisièmement, les panneaux sont fixés à des endroits spécifiques de la façade, assez résistants
pour supporter leur poids, nommés zones d’accroche. Quatrièmement, ni trous (zone non cou-
verte), ni chevauchements entre panneaux ne sont autorisés. Cinquièmement, afin de garantir
une isolation thermique performante tout en minimisant son coût, les enveloppes doivent être
composées d’un nombre minimal de panneaux. Au vue de la complexité de ce problème, nous
restreignons nos travaux de recherche aux façades rectangulaires portant des menuiseries et des
zones d’accroche rectangulaires.

Compte tenu des cinq caractéristiques énoncées et de l’hypothèse de forme rectangulaire
des éléments traités (panneaux, façades, menuiseries, zones d’accroche), la conception des en-
veloppes est à la fois un problème de découpe et de conditionnement à deux dimensions et un
problème de configuration. Ce problème est formalisé et traité comme un problème de satisfac-
tion de contraintes et a pour but d’aider la conception dédites enveloppes isolantes. En tant que
tel, la thèse présente deux contributions majeures.

En raison des caractéristiques originales du problème de calepinage de façades, sa description
et sa formalisation comme un problème de satisfaction de contraintes est la première contribution
de ces travaux de thèse. En particulier, la description du processus de rénovation industriel, la
conception des enveloppes perçue comme un problème de découpe et de conditionnement et
le système d’aide à la décision pour les architectes sont discutés. L’ensemble des exigences, des
limites et des connaissances « métier » recueillies auprès des parties prenantes et des architectes
a été intégré dans un seul modèle de satisfaction de contraintes et sert de base aux solutions
algorithmiques et un système d’aide à la décision.

Deuxièmement, les solutions algorithmiques basées sur les contraintes constituent notre se-
conde contribution. En particulier, ces travaux de thèse présentent deux solutions manuelles et
trois automatiques pour le problème de conception ; InDiE, une solution interactive manuelle
pour guider pas à pas la conception des enveloppes ; GaLaS, une solution automatique pour
générer des envelopes à partir d’un algorithme glouton ; CaSyE, une solution automatique pour
générer des enveloppes à partir d’un algorithme de type « guillotine » ; SkEdE, une solution
manuelle pour esquisser des enveloppes qui s’appuie sur le solveur Choco ; OpackS, une solution
automatique pour générer des enveloppes exploitant le filtrage des contraintes et recherche du
solveur Choco.

De plus, une maquette logicielle du système d’aide à la décision pour concevoir différentes
solutions de calepinage, intégrant l’ensemble de nos solutions a été développée. Les solutions
générées par les architectes qui utilisent notre maquette d’aide à la décision sont des modèles
numériques d’enveloppes isolantes, dont la nomenclature peut être envoyée aux usines de fabri-
cation. En tant que tel, notre maquette, qui utilise la satisfaction de contraintes comme modèle
sous-jacent et met en œuvre les solutions algorithmiques proposées dans cette thèse, peut être
classée à la fois comme un système d’aide à la conception par ordinateur ou CAO et comme un
logiciel de configuration de produit ou PCS.
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The past lies like a nightmare upon the present.

The 18th Brumaire of Louis Bonaparte
Karl Marx, 1852
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This dissertation studies the framework of constraint satisfaction as a model for analyzing
constrained industrial scenarios. The thesis is that the declarative model of constraint satisfaction
is suitable for describing, reasoning and implementing consistent solutions for orthogonal two-
dimensional Cutting & Packing problems with unknown number of configurable entities. The
work is intended to assist architects decision-making in the context of industrialized building
thermal renovation.

1.1 Foreword

The two-dimensional Cutting & Packing problem consists in allocating a set of two-dimensional
items into a set (possible singleton) of two-dimensional large objects in such a way that items
are completely contained in the objects with no-overlapping (Bennell et al., 2013). Different
characteristics of the problem may vary depending on the targeted industry. Typical variations
include the possibility of items rotation, maximizing the number of allocated items, minimiz-
ing the uncovered space or even the mandatory covering of space (Hopper and Turton, 2000).
These kinds of problems appear in industries as lumber processing, glass and metal cutting,
leather cutting, web-page design, microcircuits design and apartment design.

1



CHAPTER 1. INTRODUCTION

Given that two-dimensional Cutting & Packing problems are difficult problems, classified
as NP-hard, scientists have been developing computer-based solutions to support decision-making
in different industry sectors. In particular, techniques from artificial intelligence and operation
research have shown their robustness in addressing these problems (Hopper and Turton, 2001a).
For instance, the cutting stock problem, a particular case of Cutting & Packing often present
in steel and aluminum industries, has been treated as a linear programming model, dynamic
programming model and evolutionary model (Imahori et al., 2007). These kinds of solutions,
however, are either to general or to specific, to solve all Cutting & Packing problems that
arise in the industry. Above all, it is difficult to create general purpose heuristics that exploit the
expertise knowledge of any given problem.

A particular instance of Cutting & Packing problems arises in the context of thermal
building external renovation (Vareilles et al., 2013). This special case, termed as Façade-Layout
Synthesis Problem, deals with the allocation of rectangular configurable panels over a rectangular
façade surface. The set of allocated panels covering a façade is called an insulating envelope and
is used to reduce the thermal transfer between the interior and the exterior of the building. The
motivation behind this insulation is to achieve a reduction of the buildings energetic consumption
that currently exceeds transportation and industry sectors (Pérez-Lombard et al., 2008). Five
particularities make this problem novel and interesting:

1. The main characteristic is that the number of panels to design an envelope, as well as their
sizes, is not known a priori. The size of panels, however, is bounded to a given interval.

2. Second, some rectangular areas inside façades (existing windows and doors) are meant to
be completely overlapped by panels. Each area must be covered by one and only one panel
at a time.

3. Third, panels are attached in specific rectangular areas that are strong enough to support
their added weight.

4. Fourth, in order to guaranty a perfect external insulation, in addition to the non-overlapping
condition, no holes are allowed in a packing solution.

5. Finally, to reach a good building thermal performance while minimizing the renovation
global cost, the envelopes should be composed of the minimum number of panels.

One of the key problems in this setup is to propose a computational process that allows
configuring the specific set of non-overlapping panels with respect to each façade to renovate.
This process is referred to as design. The output of the design, i.e., an insulating envelope, is
called a layout plan.

The motivation behind this dissertation lies in an existing need for designing external insulat-
ing envelopes for residential buildings. Considering only plane rectangular façades, panels, frames
and supporting areas, the envelopes design can be considered as a constrained two-dimensional
Cutting & Packing problem. Each of the façades in a building has potentially different size,
number and position of frames (windows and doors) and different strength (how much additional
weight the façade can support and where this additional weight can be located). Clearly, the
design of an insulating envelope depends on the geometry and strength of the façade to be reno-
vated. Also, architects preferences, such as panel size and orientation, play an important role as
they must be considered in the design process. Then, the problem is also a product configuration
problem. These facts have led us to apply several techniques from operation research (OR) and
artificial intelligence (AI) to tackle this Cutting & Packing problem.

From the set of techniques from OR and AI, the constraint satisfaction framework has
proven to be remarkably robust for addressing two-dimensional Cutting & Packing problems
(Beldiceanu et al., 2011). Also, it has been proven that constraint satisfaction fits neatly in the
constrained nature of layout-synthesis problems and configuration problems. In particular, its
declarative view allows a clear knowledge representation of items as constraint decision variables
and their relations as constraints. Such declarative knowledge model is independent of the imple-
mented solution and its underlying programming language. Thus, the constraint model, which
is the most critical for solving a problem, can be implemented using different techniques such as
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mixed integer linear programming, constraint programming and optimized with meta-heuristic
techniques such as genetic algorithms.

The modeling and solving of two-dimensional Cutting & Packing problems is considered,
mainly for building renovation purposes. The main scientific question addressed in this disserta-
tion is: How to generate close to optimal packing solutions, w.r.t. minimum number of panels,
for the façade-layout synthesis problem while taking into account the stakeholders expectations
and industrial limitations? Among the same lines the dissertation answers the following specific
scientific questions:

1. How to model the Cutting & Packing problem as a constraint satisfaction problem when
the number of configurable items and their size are unknown?

2. How to cut/pack/cover a rectangular surface with unfixed number of rectangular config-
urable items?

The thesis then builds upon the constraint satisfaction framework to solve the façade-layout
synthesis problem under different techniques from AI and OR. It is intended to model and solve
the cutting or packing of two-dimensional insulating panels under building renovation setups.
The constraint satisfaction model has been mapped into consistent solutions implemented under
an object-oriented programming language. The diverse set of solutions here presented deals with
the problem when the number of rectangular items (panels) and their size are unknown. As such,
the dissertation presents two major contributions:

1. Due to the unusual characteristics of the problem, the description and constraint-based model
of the design problem becomes the first contribution of the thesis. In particular, the indus-
trial renovation description, the envelopes design as a Cutting & Packing problem and
the support system for architects decision-making as a product configuration software are
discussed. Requirements, limitations and design knowledge extracted by stakeholders and
architects have been compiled into a constraint satisfaction model that acts as foundation of
a decision support system.

2. The constraint-based algorithmic solutions that are the gist of the support system, is our
second contribution. In particular, the dissertation introduces two manual solutions (i, iv)
and three automatic ones (ii, ii, v) for the design problem:

i First, InDiE, a manual interactive solution to guide architects design. It uses the capabil-
ities of a graphical user interface along with validation algorithms, to allow an interactive
configuration of each panel on the envelopes. The interaction with the architect is made
visually by presenting different colors for well-configured panels and ill-configured ones.

ii Second, GaLaS, an automatic design of panels by packing on the fly with a greedy
solution. It follows the greedy approach by making local decisions when assigning size
and positions to panels. It solves constraints conflicts locally when allocating each panel.
Design knowledge is taken into account when assigning size to panels thus providing
solutions close to optimal.

iii Third, CaSyE, an automatic design of panels by considering the geometry of the façade
with a cutting solution. It exploits the geometry of the façade (size, windows, doors,
supporting areas) to execute vertical and horizontal cuts in order to partition the façade.
Once the façade has been partitioned it follows a greedy approach to allocate panels
in non-conflictive areas, thus avoiding constraints conflicts from happening. In this
solution, the alignment of junctions between panels is taken as aesthetics criterion.

iv Four, SkEdE, a manual solution for architects sketching design. It starts by allowing
architects to draw in a draft way sketched panels and creates a constraint model by
considering the number, size and position of panels from the predefined sketch. Then,
the constraint model is used as input to a constraint solver that applies filtering and
search to find compliant solutions.
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v Five, OpackS, an automatic design that solves constraint conflicts by means of filtering
algorithms. This solution assumes a maximum number of panels potentially in an insu-
lating envelope. Then, it proceeds by placing one panel at the time as does the greedy
approach. When a panel is placed, a filtering of inconsistent values is performed for the
remaining panels. If the façade surface is covered then the unused panels are discarded.
A dedicated heuristic boots the performance of the solution.

From the industrial perspective, the dissertation introduces a product configuration software,
specialized version of a decision support system, for the configuration of panels (respectively
envelopes) in the renovation project. The system makes a division between key configuration
tasks that allows the transparent manipulation of the architects preferences. Also, it includes
some recommendation capabilities for some features in the configuration of panels.

Each solution presents an analysis with respect to the underlying allocation process. Con-
versely, benefits for each solution are discussed and clearly exemplified.

The backbone of the dissertation is the application of the constraints satisfaction framework
to solve the industrial problem of façade-layout synthesis. In consequence, the significant part
of the thesis is practical rather than theoretical. The results may be applied to two-dimensional
Cutting & Packing problems in different industries.

The remaining of the chapter is structured as follows. The next section presents a literature
review of the fields the thesis builds on, namely, constraint satisfaction, Cutting & Packing,
product configuration and layout synthesis. Afterwards, we describe in a more detailed way the
contributions of the dissertation, list of publications result of the research and the structure of
the document.

? ? ?

This research is supported by the French agency ADEME - Agence de l’Environnement et
de la Maîtrise de l’Énergie - under the project CRIBA (for its French acronyms of Construction
and Renovation in Industrialized Wood Steel): A joint effort between academics at École des
Mines d’Albi - Carmaux and several French companies. Conception and implementation of the
industrialized buildings renovation are supported by this work.
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1.2 Background & Related Work

This dissertation unifies work from the following fields:

— Constraint satisfaction: The modelling and some of the solving techniques used on the
dissertation are taken from this field (section 1.2.1).

— Cutting & Packing: The problem at hand falls into this category. The problem definition
as well as solving techniques are taken from this field (section 1.2.2 on the next page).

— Product configuration: The support system introduced in this work, conceived for the
envelopes design and to support architects decision-making, is built using the concepts
from this field (section 1.2.3 on page 11).

— Layout synthesis: Relevant works, in which some solutions (greedy and cutting) have been
inspired, are taken from this field (section 1.2.4 on page 14).

This section presents related work on of these fields. The constraint programming con-
cepts, however, will be deeply explained latter in a dedicated chapter for solutions exploiting the
capabilities of a constraint solver (Chapter 4 on page 93).

1.2.1 Constraint Satisfaction Problems

Constraint satisfaction problems (CSPs) and constraint programming (CP) have been iden-
tified as key paradigms in the expansion of applied computer science. It is, arguably, the most
used framework at the intersection of artificial intelligence and operational research. The com-
bination of the modeling capabilities of CSP and the solving techniques of CP have provided
to scholars and practitioners with a powerful framework for addressing combinatorial problems
whereas their ties with logic allow to reason on the behavior of different systems. In this section
we present a brief background on this constraint satisfaction framework and their use to tackle
two-dimensional packing problems.

Constraint satisfaction problems are problems in which their solutions must satisfy a given
set of requirements known as constraints. The CSP modeling focuses on problems that may be
described in terms of requirements or constraints, among which are found several combinatorial
problems and were conceived to allow the end-user to state the logic of the computation rather
than its flow. For example, in the context of scheduling, instead stating a set of steps to avoid
tasks overlapping, the user states “for any pair of tasks they must not overlap” . Thus, CSP is
part, and good representative, of the declarative modeling frameworks. This declarative view
makes the modeling straightforward in many applications where experts have clearly identified
the requirements a solution to their problem has.

To model a problem under CSP it is necessary to state the elements of the problem as
variables, their potential instantiation values and, a set of relations (named constraints) over the
stated variables (Montanari, 1974). Definition 1 formally describes a CSP.

Definition 1 (Constraint Satisfaction Problem): A CSP is described in terms of a tuple
〈V ,D,C〉, where

1. V is a set of constraint variables, also referred to as decision variables,

2. D is a collection of potential values associated for each variable in V, also known as
domains and,

3. C is a set of relations over the variables in V, referred to as constraints. A constraint is a
relation representing partial information over the variables of the problem.

A CSP solution is a unique assignment of values in D to the variables in V, in such a way that
all constraints in C are satisfied (see Barták (1999), Brailsford et al. (1999), Montanari (1974) for
further references). Variable domains may take different representation such as integer domains,
real domains and boolean domains. The domain representation allows to tackle different kinds of
problems. If a CSP is based only on integer domains the model is called a finite domain constraint
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satisfaction problem and is the most common representation for many problem instances (Schulte
et al., 1998, Schulte and Carlsson, 2006).

Now, Definition 1 on the preceding page describes the satisfaction of a problem, meaning that
the constraints in C must be simply satisfied. By contrast, real-world applications may involve
optimization criteria. In such cases, a satisfaction to C, prerequisite to find optimal solutions, is
transformed into a constraint optimization problem (COP). Definition 2 describes a constraint
optimization problem (COP).

Definition 2 (Constraint Optimization Problem): A COP is a CSP 〈V ,D,C〉 in which a func-
tion F is optimized:

1. F is a cost function, or loss function, if the objective is to minimize a given value.

2. F is an utility function, or reward function, if the objective is to maximize a given value.

In addition, multi-criteria optimization is possible by considering a Pareto-like optimization
approach (Marler and Arora, 2004).

Although the modeling is language independent, the solving of such models is done with re-
spect to an underlying constraint system and its corresponding logic. In other words, a declarative
model can be solved using different constraint programming systems as SWI-Prolog (Wiele-
maker et al., 2012), Mozart-Oz (Müller, 2001), ECLiPSe (Schimpf and Shen, 2010), IBM CP
optimizer (Laborie, 2009), Minion (Miguel, 2006), Choco (Prud’homme et al., 2014) and the
C++ library Gecode (Gecode Team, 2006), among others.

1.2.2 Cutting & Packing

According to Wäscher et al. (2007), any Cutting & Packing problem possesses a common
structure that allows identify it as such. The structure relates two aspects. In the first place,
there exist two elements taking part on the Cutting & Packing problem:

— A set, possibly singleton, of large objects: These objects are the spatial entities in which
the packing takes place.

— A set of small items: These are the spatial entities to be packed into the large objects.

On the other hand, as part of the Cutting & Packing problems structure, every problem
must satisfy:

— no overlapping among small items and

— all small items, or a selection of them, must be completely contained in the large object(s).

These elements are specifically defined in one, two, three or more dimensions. Also, both
elements may take regular or irregular shapes: Most studies deal with regular shapes (such
as rectangles (Korf, 2003) and circles (George et al., 1995)) although small items with irregular
shapes appear often in the industry (Julia A. Bennell, 2001, Hopper and Turton, 2001b). Further,
regardless of the shape of the large object and the small items, the packing must satisfy a set
of requirements inherit from the application domain. These requirements are typically known as
side constraints. These problems with particular side constraints appear, among other industries,
in:

— Lumber processing (Yanasse et al., 1991), glass and metal cutting (Pantalé et al., 2004,
Pan and Rao, 2009), leather cutting (Senel et al., 2015): The material is meant to be
cut into different shapes, although typically rectangular, in such a way that the waste is
minimum.

— Web-page design (Ben Amor and Valério de Carvalho, 2005, Cintra et al., 2008): It ad-
dressed appearance of web-pages by considering the browser window as an area to be filled
with different shapes. Colors, adjacency and small items size are among other the packing
criteria.
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— Microcircuits design (Fan et al., 2005, Ziesemer et al., 2014): The design is made with
sizes measured in micrometers and thus is an error prune task. The packing of different
logical items is done by taking into account, for instance, the total covered area, flow and
production cost.

— Apartment design (Liggett, 2000): Convex shaped small items must be packed follow-
ing adjacency and areas requirements. Here, the rotation of small items is possible as
doors communicating rooms (for instance the principal room with a door communicating
a bathroom) must be considered.

A subcategory of Cutting & Packing problems is the set of two-dimensional problems.
Withing it, a special case of two-dimensional Cutting & Packing problems is called the rect-
angular Cutting & Packing problem (Huang and Korf, 2009, 2014). In this case, both the
small items and the large objects are of rectangular geometry. Further distinctive versions of
the rectangular Cutting & Packing problem forbids the small items rotation and in some case
address only the orthogonal case. By orthogonal we meant that the borders of the rectangles
are parallel to the enclosing large object. The orthogonal property is exhibit by the Cutting &
Packing problem addressed in the dissertation.

A classification of the two-dimensional Cutting & Packing problems (independent of the
shapes) is useful to understand the novelty of our problem (to be presented in Chapter 2 on
page 23). The classification presented in Figure 1.1 is based on the typology introduced in
Wäscher et al. (2007). It expresses the properties exhibited by particular instances of two-
dimensional Cutting & Packing problems found in the literature during the last three decades.
These properties are related to the number of large objects (multiple or single), the size of the
small items (different or identical) and the fact that their size is variable or fixed.

Figure 1.1 – Rectangular Cutting & Packing problems classification. A given path in the graph
defines a problem category.

The classification is not representative of all Cutting & Packing problems but it works
as a comparison basis for our work. Nonetheless, well-known classifications, such as the those
presented in Dyckhoff (1990) and Wäscher et al. (2007), cannot fully describe the problem
addressed in this dissertation; for example, open dimension problems are only represented those
with one open dimension with fixed number small items, which is not enough to represent the
particularities of our problem. Then, as part of the scientific problem description, in Section
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2.1.1, we further extend the classification to include the novelties of our Cutting & Packing
problem.

Now, as stated before, regarding the difficulty, the set of two-dimensional Cutting & Packing
problems are classified as NP-Hard (Korf, 2003). This means that there exists no algorithm to
solve them in polynomial time (provided that P 6= NP) (Imahori et al., 2007). In other words, as
the number of small items increases, enumerate all the possibilities for allocating them becomes
insolvable in a human life. To understand the difficulty of the problem here considered, we will
later study the combinatorics within a minimalistic example (Example 1 on the facing page). It
does not show only that Cutting & Packing problem are complex, but also, it provides a valid
argument for the use of computer-based solutions for assisting real-world industrial problems.

Review

Along the past three decades, Cutting & Packing problems have been tackled using a
broad spectrum of models and techniques. To our knowledge, the more advanced and recent
survey of Cutting & Packing literature is presented in Wäscher et al. (2007). It is with respect
to that survey that our Cutting & Packing analysis is based on. In our work, however, we
focus our attention on constraint-based techniques. Brief discussion about greedy approaches
and cutting ones for Cutting & Packing, are presented in their respective sections in Chapter 3
on page 47.

Constraint satisfaction is one of the most used frameworks to address Cutting & Packing
problems (Beldiceanu et al., 2011), having among other abstractions, the geometrical constraint
GEOST (Beldiceanu et al., 2007), which is a generalization of non-overlapping of small items
in k-dimensions (k ≥ 1). The framework capabilities allow to efficiently model and solve; one-
dimensional Cutting & Packing problems such as planning and scheduling problems (Barták
et al., 2008, Letort et al., 2014); two-dimensional Cutting & Packing problems such as the
two-dimensional bin packing (Beldiceanu et al., 2011); three-dimensional Cutting & Packing
problems such as container loading problem (Bortfeldt and Wäscher, 2013); and k-dimensional
Cutting & Packing problems (Beldiceanu et al., 2007).

Due to the Cutting & Packing problem object of our study, we are only interested in
the orthogonal two-dimensional case. This implies that we do not survey studies on the two-
dimensional Cutting & Packing of irregular shapes as it is of marginal interest to our research
(but they are described as future research). Also, given the specific rectangular Cutting &
Packing problem at hand and the fact that it handles a fixed number of small items, we consider
the GEOST constraint not well adapted to our needs.

Common two-dimensional orthogonal Cutting & Packing problems addressed with CP
technology are:

— Two-dimensional Bin Packing (2BP) (Lodi et al., 2002): It consists in allocating a set of
small items into a set of large objects called bins. The objective is to minimize the number
of used bins. Entities rotation are possible.

— Two-dimensional Pallet Loading (2PL) (Neliben, 1995): It consists in allocating a set of
small items into a large object called pallet. Usually, the small items have identical size
and may be rotated. The objective is to maximize the number of packed small items.

— Two-dimensional Bin Design (2BD) (Lodi et al., 2002): It consists in finding the minimal
size for packing a set of small items. Items rotation and they are typically of different sizes.

— Two-dimensional Item Design (2ID) (Hifi and Ouafi, 1998, Martello et al., 2003): It consists
in setting the size for small items, in at least one dimension, in order to fill a given area.
This category is called Open Dimension Problem. Problems in which small items must
be defined in two dimensions are rare in the literature (Wäscher et al., 2007). As we will
study in Section 2.1.1 on page 25, the problem addressed in this dissertation is close to
the open dimension problem category.
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Generally, industrial problems are variations or extensions of the previously listed Cutting
& Packing problems. These variations include a set of (side) constraints, typically geometrical.
Common variations are:

— Vessel Loading Problem (Brown, 2014, Iris and Pacino, 2015): A problem that arises in
container terminals and container ships. Side constraints state that, to avoid containers
damage, a minimal distance must separate the containers (vessels). As we will study in
Chapter 2 on page 23, the problem addressed in this dissertation includes the side constraint
of minimal distance.

— Floor Planning Problem (Zawidzki et al., 2011, Izadinia et al., 2014): A problem that arises
in design. The packing of rooms, however usually not rectangular, is made with respect to
some adjacency, connections, area and more topological constraints. The particular field
of these Cutting & Packing problems is called layout synthesis or space planning.

— Circuits Design Problem (Fan et al., 2005, Ziesemer et al., 2014): A problem that arises in
the devices-manufacturing industries. The design is made with sizes measured in microm-
eters and thus is an error prone task. The Cutting & Packing of different logical items
is done taking into account, for instance, the total covered area, flow and production cost.

— Vehicle loading Problem (Leung et al., 2011): A problem that arises in the transportation
sector. The Cutting & Packing of small items must be done in such a way that the
loading and unloading respect a given order. Precedence constraints are then one kind of
side constraints for this problem. The problem is often extended in three-dimensions.

The problem of façade-layout synthesis is a particular orthogonal two-dimensional Cutting
& Packing problem. Its main characteristic, as we will study latter, is that the number of
small items and their size are not known at any stage of the Cutting & Packing process.
This makes the problem an instance of open dimension problems (Wäscher et al., 2007). From
the constraint programming viewpoint, this peculiarity represents a challenge: Not having a
predefined number of small items becomes a drawback given that the great majority of CP
environments implement global constraints and search engines with a fixed set of input variables
(OpenRules, Inc., 2013). In fact, performing filtering and searching using an unfixed number
of variables, i.e., a dynamically changing problem, is an open research topic in the constraint
programming community. For instance, in Barták (2003), the author solves the problem of
unknown variables by dynamically adding variables while exploring the search tree. In essence,
it introduces a setup in which constraints may be deactivated to be replaced with new activated
constraints involving more or less variables. This is a CP implementation of a CSP extension
called dynamic CSP (Mittal and Falkenhainer, 1990). Nonetheless, even though the idea seems
simple, a good implementation is intricate. Our approach, as we will study latter, exploits the
notion of open global constraints and optional variables (van Hoeve and Régin, 2006) and a
dedicated search heuristic to address this gap.

Packing & Cutting Example

In order to consistently tie the theory with the Cutting & Packing problem, we introduce
the following example used as reference in some parts of the document.

Example 1 (Two-dimensional packing problem): Given a set R of rectangles described by
their width wi and height hi and a rectangle area S, find all solutions on how pack the rectangles
in R, or a subset of R, in S with no-overlapping.

The previous statement presents the basic two-dimensional packing problem which is a NP-
hard problem (Korf, 2003). Variations of the problem, depending on the targeted industry,
attach different constraints and often optimization features. For illustration purposes and as it
is compliant with our Cutting & Packing problem, we will study the orthogonal case when
no rotation is allowed. First, let us instantiate the problem by setting the size of 10 rectangles.
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Figure 1.2 – a) Small items and b) large object.

Figure 1.2 shows this instantiation. In addition, let us consider the rectangular area to be
synthesized with a size of 4×4 meters.

The process of allocating rectangles over the surface must choose, among the set of rectan-
gles, which one to pack first. Afterwards, it must choose where to pack it. The first combinatorial
property emerges in this setup: How many possibility for positioning a given rectangle exists as-
suming that the discretization is in centimeters? In general, the number of possibilities for
allocating the rectangle is in proportion with its size and the size of object. For instance, let us
select as the first rectangle the one at the bottom-left whose size is 100×100 centimeters. In this
case the rectangle may be placed along the vertical axis in 30 different locations. Conversely,
along the horizontal axis, the rectangle can be placed in 30 possible locations. In consequence,
to allocate the rectangle 30×30 = 900 locations are possible. Now, the problem statement in
Example 1 on the previous page does not discard solutions with holes. Thus, some of the rect-
angles may be left out of a packing solution, increasing even more the combinatorics within the
problem. Figure 1.3 illustrates three valid solutions for the problem.

Figure 1.3 – Three possible packing solutions for Example 1 on the preceding page.

Consider now the three conceptually different solutions in Figure 1.4 on the next page, that
are in fact the same practical solutions. In fact, although having the same size, rectangles 1,
2 and 3 are actually different small items. Thus, swapping locations between two rectangles
with the same size is valid and will lead to a symmetrical solution. These solutions are often
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discarded by applying symmetry breaking constraints (Ågren et al., 2009), typically applying
certain ordering (Walsh, 2009). The problem undertaken in this thesis deals with symmetry as
small items (rectangular panels) are indistinguishable from each other.

Figure 1.4 – Three symmetrical solutions for Example 1 on page 9.

To conclude with Example 1 on page 9, let us add one degree of difficulty. Suppose that the
10 rectangles previously stated do not have fixed sizes. Instead, assume that the rectangles have
a given lower bound and upper bound for the possible sizes they can take for both width and
height. This fact increases the possibilities of rectangle allocation with the size of the domain,
i.e., upper bound less lower bound. This particular case, of unfixed size, is a peculiarity of our
packing problem (to be described in Chapter 2 on page 23). On top of it, let us further add
another degree of difficulty shared by our Cutting & Packing problem: The number of small
items to allocate is unknown. Simply put, the number of possible packing solutions increases
with these new incognitos.

Tribunes

Tribunes for literature on Cutting & Packing is as wide as the engineering field due to
the diverse set of Cutting & Packing problems that arise in different scenarios. From these
tribunes, we highlight the ones dedicated to AI and OR. Notably, international conferences Inter-
national Conference on Principles and Practice of Constraint Programming , International Confer-
ence on Integration of Artificial Intelligence and Operational Research Techniques in Constraint
Programming , INFORMS Conferences, International Joint Conference on Artificial Intelligence,
European Conference on Artificial Intelligence, The AAAI Conference on Artificial Intelligence
and The European Conference on Operational Research are the main meetings for Cutting &
Packing academics and practitioners. In addition, international journals as Constraints, Euro-
pean Journal of Operational Research, Operations Research - INFORMS and Computers and
Operations Research among other, present the state-of-the-art developments of theory and prac-
tice related to Cutting & Packing problems.

Link to thesis

The problem addressed in this work is an instance of orthogonal two-dimensional Cutting
& Packing problems. The set of peculiarities on the problem, to be discussed in next chapter,
makes the problem novel. Further, we will propose an extension of the classification for Cutting
& Packing problems; a classification that allow us to represent this unstudied case.

1.2.3 Product Configuration

With the advent of Internet and the World Wide Web, individual user’s preferences and
needs have pullulated today’s commerce. Current trends show that customers demand products
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to be adapted to their requirements while keeping, or improving, traditional delivery times and
costs (Da Silveira et al., 2001). This challenge has led academics and industry representatives
to work on knowledge models with expressive power to capture complex configurable products
and with the ability to search for solutions (Sabin and Weigel, 1998), to optimize (Nica et al.,
2014), to debug and to diagnose (Felfernig et al., 2014b) while taking into account needs of
particular customers. The body of knowledge models for product configuration is referred to as
knowledge-based configuration.

Product configuration refers to the process of building a personalized target product using
predefined components, respecting requirements from customers and following some rules that
shape a correct configuration (Soininen et al., 1998, Yang et al., 2008). This process has been
increasingly supported by intelligent systems given the complexity and size of relations within a
single product. The possible number of outputs for a configuration is in proportion to the number
of components and relations within the product, and is inversely proportional to the number of
rules that restrict combinations. Actually, solving a configuration problem is complex in such an
extend that specialized techniques from Artificial Intelligence (AI) and Operation Research (OR)
have been used, often extended, to handle these ubiquitous industrial problems (Felfernig et al.,
2014a). One of these techniques is constraint satisfaction problems.

Traditionally, a configuration problem may be described as a tuple 〈V ,D,C〉. Semantics in C
is subject to the configuration problem as customers requirements are taken into account.

Definition 3 (Configuration Problem): A configuration problem may be described in terms
of a tuple 〈V ,D,C,P〉, where

1. V is a set of variables describing components,

2. D is a collection of component types associated to each variable in V,
3. C = T ∪R where

— T are the compatibility constraints between components that describes a correct
configuration (from the technical viewpoint) and,

— R are the constraints describing the customers preferences over the configuration.

4. P is a set of parameters customizing some components of V, defining types of D or
personalizing some constraints of C.

This traditional configuration definition is the one used along the document. But, differ-
ent configuration problems may be described using particular extensions of this definition. For
instance, determining a hierarchical structure of the problem (Kokeny, 1994), using activation
constraints (Mittal and Falkenhainer, 1990), defining a configuration problem as a set of subprob-
lems with composite CSP (Sabin and Freuder, 1996), and more. Nevertheless, for the problem
at hand, only the traditional view is considered as it allows us to completely express the problem.

Let us now create the configuration for the Cutting & Packing problem presented in Ex-
ample 1 on page 9. Following our example, we may construct a model as

V For every rectangle i the position (x, y) of top-left corner over the rectangular area S.

D Domain for x is [0,Sw ] and for y is [0,Sh], where Sw and Sh are, respectively, the width and
height of the rectangular area S.

C What are the constraints and requirements?

— T Panels overlapping is not allowed.

— R The customer rather prefers square panels.

Review

The development of robust techniques for product configuration problems influenced the use
of Product Configuration Software (PCS) in different industry domains. A PCS is a specialized
version of decision support system that focuses on configuring products and services. These
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systems support different stages of the production process, such as design (Myung and Han,
2001), sales (Haag, 1998) and manufacturing (Aldanondo et al., 1999). As such, at companies
eyes, product configuration software is a source of profit as it improves decision-making and
manufacturing. Industry decision support systems for product configuration include but are not
limited to railways interlocking systems (Falkner and Schreiner, 2014), equipment and services
on cement and minerals industries (Orsvärn and Bennick, 2014), sales and marketing (Höfling,
2014), mobile networks (Nica et al., 2014) and technical documents (Rabiser et al., 2014).
Nonetheless, the industry continuously provides new challenges on this domain, so the field of
configuration is far from closed. This dissertation involves the design of insulating envelopes that
may be seen as the configuration of each of the panels on the envelope. Ergo, the prototype
support system result from the thesis is a PCS for insulating envelopes.

Now, PCSs have their foundations in different techniques from applied computer science,
such as integer linear programming (Frutos et al., 2004, Feinerer, 2013) and mixed integer linear
programming (Hutter et al., 2010), answer set programming (Schenner et al., 2013) and con-
straint satisfaction problems (CSPs) (Felfernig et al., 2011). Although each of these techniques
has provided certain benefits on regard to the particular configuration problem, it is the constraint
satisfaction model the one originating the research on configuration problems with AI in the first
International workshop of Configuration collocated in the AAAI’96 Fall Symposium. This is one
of the most used techniques for solving configuration problems. In fact, CSPs have been used
in product configuration problems in such an extend that there is an entire chapter to product
configuration in the Handbook of Constraint Programming (Junker, 2006). The author, Ulrich
Junker, presents a complete overview of the application of CSP on configuration problems. The
constrained nature of packing problems makes an additional argument for the adoption of CSP
to develop the PCS for configuring insulation envelopes.

Now, despite the fact that CSP modeling is actually very simple and intuitive, product con-
figuration problems involve difficulties that sometimes exceeds the capabilities of model (e.g.
dynamic view and interactivity). Thus, it was argued that CSPs paradigm as original conceived
was not well suited for addressing most of the configuration problems, due to the lack of mech-
anisms to handle variables that in some cases are relevant and in other cases not. Mittal et
al. in their seminal work, enhanced CSP with a dynamic view (Mittal and Falkenhainer, 1990):
Constraint variables may be either activated or deactivated. In the first case variables take part
of the problem and hence in the solving process. This dynamic view is important to our work as
the number of panels for configuring an envelope is not known and thus new instances of panels
may be demanded and generated dynamically.

The work started a cascade effect of research on product configuration and CSP. For instance,
in Sabin and Freuder (1996), the authors have developed Composite CSP, incorporating into CSP
the possibility to have model complex configuration relations such as whole-part, is-a and part-of.
Thus, if a sub-problem variable is activated, all the problem is dynamically changed to handle
all information in the problem and sub-problem. Hierarchical relations in the renovation process,
such as building part-of block, are easily modeled under this CSP view. Among the same lines of
work is Gelle and Weigel (1996) in which CSP is enhanced with the manipulation of continuous
variables in order to address a wide range of real-life configuration problems. Critical to model
the problem at hand as it mixes different variable representation such as discrete variables,
continuous variables, boolean variables and even symbolic ones. Studies for treating constraints
as formulae and computable procedures using a constraint modeling tool (Xie et al., 2005) and
to handle advanced structural relationships (Yang et al., 2012), are also found in the literature.

Given the efforts commented above, constraint satisfaction is now a mature framework to
address combinatorial problems including configuration problems. More extensions and applica-
tions of CSP to product configuration have been and are still proposed constantly. However,
regardless the considerable body of literature on configuration and constraint satisfaction, there
is no generic solution capable of addressing all configuration problems that rise in the industry. It
is necessary, then, to develop a dedicated computer-based solution for the configuration problem
of insulating envelopes.
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Tribunes

Due to the broad spectrum of techniques used to solve configuration problems, tribunes for
this research include the journals IEEE Intelligent Systems, Artificial Intelligence for Engineering
Design, Analysis and Manufacturing , AI Communications, AI Magazine and the International
Journal of Mass Customization, and successful events like IEEE International Conference on
Industrial Engineering and Engineering Management, European Conference on Artificial Intel-
ligence, ACM Conference on Recommender Systems, International Conference on Mass Cus-
tomization and Personalization in Central Europe and one of the oldest, most constant and
important meetings, the International Configuration Workshop.

Link to thesis

The reason for which product configuration is part of the underlying theories of this disserta-
tion is two-fold. First, the manufacturing of envelopes is a configuration task. A given envelope
must be designed taking into account geometrical and structural aspects of the façades as well
as the preferences of architects. The design of envelopes is a configuration problem where the
first actor to impose its requirements is the façade itself. In addition, architects’ preferences are
taken into account as much as possible (soft constraints). For example, in the support system,
a personalization feature is provided; the preferred orientation of panels in an envelope configu-
ration solution. At the end of the design process, the specific envelope design for a given façade
is given to the panels provider so the manufacturing of these products can start.

On the other hand, the support system whose core is the result of this dissertation, is meant
to be used in the buildings systematic thermal renovation. Panels are products that need to be
designed before their manufacturing, properly manufactured and then delivered to the working
site. The support system is then a PCS.

1.2.4 Layout Synthesis

Layout synthesis, also known as space planning, involves the placement of objects into a
given space following certain criteria. Although sometimes these objects may refer to abstract
entities (such as departments or services inside company), the majority of cases the placement
means real object. As far as we know, there is no formal definition of layout problems but rather
instantiations under well-defined theories (such as CSP). Nonetheless, according to the literature
(Liggett, 2000), any layout or placement problems must have well defined:

1. Space S: Entity in which the placement will take place. This space may take different
shapes and may be defined in n = 1 or more dimensions (most practical works however has
n ≤ 3). In addition, the space may be seen as an area or a set of discrete objects.

2. A set of indivisible objects Obs to be placed in the space S. These objects, in most cases,
have well defined height and width although they may be configured (set in run-time)
according to the problem specification.

3. A set of side-constraints that describe a correct layout-plan. Instance of such constraints
are:
— Adjacency constraints between all or some objects.
— Size constraints to objects.
— Distance constraint between objects (may include flow analysis).
— Overlapping constraints between objects or portion of the space S.
— ...

These problems may be considered as configuration problems (Drira et al., 2007) and thus
may take advantage of the techniques and finding in the knowledge-based configuration field
(see previous section). As a consequence, no other notion is necessary for understanding lay-
out problems. Further, these problems may be modelled using CSP and may be solved using
constraint technology. The following review shows the methods used in the field.
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Review

As pointed out researchers in Liggett (2000) layout synthesis, commonly referred to a space
planning, “...is concerned with the allocation of activities to space such that a set of criteria (for
example, area requirements) are met and/or some objective optimized...”. Here “activities” may
refer to two concepts. On the one hand it may refer to spatial entities such as panels, rooms or
machines. On the other hand, it may refer to more abstract concepts such as departments inside
an office or services inside an hospital facility. The allocation of entities in space is classified as
a combinatorial problem (Baykan and Fox, 1991, Dutta and Sarthak, 2011).

The leading research topic in the area is that of synthesis or planning algorithms. From the
body of these algorithms several approaches may be distinguished, such as direct solving with
Linear Programming and Constraint Programming or user-designed with an interactive layout
design. Among the most used approaches are the constructive and the iterative one (Liggett,
2000). The former follows an incremental fashion, i.e., each activity (e.g. room, office, panel)
is put in the space following a given criteria and, if all conditions are satisfied, the algorithm
proceeds by placing the next activity until the construction of the entire layout has been done.
The iterative improvement approach, on the other hand, is based on the improvement of an
already configured space that, although fulfill some requirements, does not satisfy all criteria.
Of course, some studies go further by mixing the constructive and iterative approaches.

Despite the great body of literature on the field, work on layout synthesis for façades using
any kind of spatial entity is scarce. Actually, works relating to façades and their layout focus
over predefined layout solutions and not on the actual composition or structure of the façade.
For instance, in Teboul et al. (2010) authors use shape grammars and supervised classification
to generate a segmentation of the façades in order to model buildings and understand patterns
as part of urban planning. Among the same line of research, in Wu et al. (2014) is used an
approach based on inverse modeling to build knowledge on how façade layouts are generated
and how elements are related. Also, researches have used the available partial structure of some
buildings to determine the total layout of façades and thus enable image capturing software and
automatic layout design to capture urban reconstruction (Fan et al., 2014). None of these works
intent to allocate entities over the façade and thus we consider them interesting from the design
point of view but not suitable for the problem at hand.

Concerning the actual allocation of activities over space, the majority of studies focus on
layout plans for buildings floors, rooms inside apartments, machines inside factories and depart-
ments inside offices. In fact, such kind of research has a profound impact on energy consumption
over buildings, production efficiency and management (Rodrigues et al., 2014, Ansary and Sha-
laby, 2014). These works, however, present a setup where the number of entities to allocate is
known in advance making them no suitable for façade-layout synthesis. Nonetheless, these works
present interesting algorithms and optimization features that have inspired our work although
not all of them are constraint-based.

The simplest version of layout synthesis problem is called the Quadratic Assignment Problem.
The problem focuses on assigning n entities over n possible locations, where each pair of entities
has a distance cost and associated flow. The goal is to minimize the total distance times
flow on the layout plan. Application of this problem can be found in hospital departments
locations (Elshafei, 1977, Helber et al., 2015), numerical analysis (Brusco and Stahl, 2000),
cellular manufacturing systems (Solimanpur et al., 2004), among others.

Evolutionary computation, from which the most representative is the meta-heuristic genetic
algorithm, may be used to tackle layout problems as they avoid the problem of local optimum
by allowing bad chromosomes to continue to reproduce and thus helping explore the entire
search space. Then, this is a particular realization of the iterative approach. Such technique is
found in Ansary and Shalaby (2014) when optimizing the position of house inside a finite space
prioritizing aspects such as incidence light and indoor privacy. A similar approach is used in
Krishnan et al. (2014) where a swarm optimization technique is applied to the layout planning of
flexible manufacturing systems. The main optimization feature is to minimize the travel distance
between key entities on the layout. Another study using an evolutionary approach is Garcá-
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Hernández et al. (2015) where authors capture expertise knowledge into the genetic algorithms
thus helping to considerably reduce the search space.

Some studies exploit interactivity as a way to include designer’s preferences in the layout
generation process. For instance, in Michalek and Papalambros (2002) authors use an object-
oriented approach to allow the designer modify elements of the layout meanwhile the underlying
mathematical model adapts the solution with respect to optimization features. Similarly, authors
in Goetschalckx (1992) explore the interactive approach with adjacency graphs. In essence, the
heuristic designs a set of layouts and the designer selects the more appropriated one. In a second
stage an heuristic improves the selected layout based on integer programming optimization.
Another study under mathematical programming is found in Izadinia et al. (2014) and addresses
the floor layout plan in an uncertain environment where flow among entities may vary. One of
our proposed solutions, in Section 3.1 on page 48, allows interactive design by providing to the
architect a visual feedback when drawing panels thus guiding them through the design process.

Additionally, well-known search strategies have also been applied to facility layout problems.
It is the case of Liang and Chao (2008) where tabu search is used to optimize layout plans
and Solimanpur and Jafari (2008) where the branch and bound technique is used to explore the
solution space for optimizing two-dimensional entities over a two-dimensional space by using a
mixed-integer nonlinear mathematical programming model. Although the authors acknowledged
that the solution is not well suited for large-size problems, it is efficient and provides optimal
solutions on small and medium scale problems. As well as most works, these models and solutions
are conceived for a fixed number of entities.

Regarding layout synthesis under a constraint satisfaction perspective, we have selected a set
of studies that we consider interesting and related to our work. Indeed, several studies on layout
synthesis under the scope of CSP are found. For example, a theoretical framework for addressing
layout synthesis problems using an interactive based approach (Shikder et al., 2010), another
that uses topological constraints (e.g. adjacency) and ordering heuristics to analyze the search
space in a room apartments setup (Medjdoub and Yannou, 2001), and even the combination of
CSP technology with shape grammars and data structures to determine the interior layout of
buildings (Yue et al., 2008).

A common scenario in the field is the planning of rooms within a residential apartment
and departments within offices. In these works, a grid/matrix space division and heuristics to
select optimal solutions are common. In (Zawidzki et al., 2011) an apartment space is divided
into a matrix in which rooms are placed following area and adjacency constraints. Authors
used backtrack search to find solutions and then an heuristic to rank all the solutions found.
In Charman (1993) is introduced Geometric CSP, which is an extension of CSP for handling
geometric domains, and presents some consistency methods as well as backtracking algorithms.
Another work on layout synthesis and CSPs is found in Baykan and Fox (1997). The authors have
developed a constraint-based framework to tackle layout synthesis problems in a 2D reference
plane. Their work, called Disjunctive CSP, uses disjoints of atomic constraints to represent spatial
relations among entities. Solutions are found by applying search to each one of the disjuncts
in the constraint model. Here, the performance of the solving process depends largely on the
underlying solver. In Liggett (2000) the reader can found a comprehensive survey of layout
synthesis models and applications.

Our problem includes five particularities that have been never consider simultaneously and
thus, no support system nor computer-aided design software is well suited for addressing the
problem. Nevertheless, the field of space planning counts with several systems implemented
using different approaches, here we name a few of them. Let us start with Shikder et al.
(2010) where is introduced a prototype for the interactive layout synthesis of rooms inside
facilities which includes design information and an iterative design process. Interactive behavior is
strongly welcome in design and thus one manual solution presented in this dissertation implements
interactive behavior (Section 3.1 on page 48). In Rodrigues et al. (2014) a tool for the design of
house interior layouts that applies a hybrid stochastic-evolutionary technique to allocate rooms
is presented. This tool runs simulations of energetic performance of the house for each floor
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plan thus assisting architects to make decisions. Our dedicated support system do not performs
simulations but supports architect decision-making by computing the cost and length of junctions
of each generated insulating envelope. In Baykan and Fox (1992) is introduced WRIGHT, a
constraint-based layout generation system that exploits disjunctions of constraints to manage
the possibilities on positioning two-dimensional objects in a two-dimensional space. Another
system, LOOS (Flemming, 1990), is able to configure spaces using rectangles that cannot be
overlapped but that may have holes. It uses test rules applied by steps to the rectangles in order
to reach a good plan based on its orientation and relation with other rectangles. The same
authors have developed SEED (Flemming and Woodbury, 1995): A system based on LOOS used
for early stages on design. A comparison between WRIGHT and LOOS can be found in Flemming
et al. (1992). The system HeGel (Akin et al., 1992) (for Heuristic Generation of Layouts) is
yet another space planning tool that simulates human design based on experimental cases. In
(Medjdoub and Yannou, 2000) is presented the system ARCHiPLAN which integrates geometrical
and topological constraints to apartment layout planning.

Again, the particularities of our façade-layout packing problem would make necessary to
deeply extend these tools, or any other packing related software, which is potentially more time
consuming. More software such as computer-aided design systems and support systems may be
found in the literature, a brief review of different tools for site layout planning can be found in
Kumar and Bansal (2014).

Tribunes

The field of layout synthesis is closely related to architecture and design but, their under-
lying theories are taken from computer science and applied mathematics. Thus, tribunes for
this research include the journals Environment and Planning B: Planning and Design, Journal
of Architectural Engineering , Artificial Intelligence in Engineering and Automation in Construc-
tion and successful events like Conference on design computing and cognition, Conference on
Computer-Aided Architectural Design Research in Asia and Conference on Education and Re-
search in Computer Aided Architectural Design in Europe, among others.

Link to thesis

Layout synthesis is part of the dissertation mainly because it provides many works on con-
structive algorithms. The design of an insulating envelope is seeing here as a novel layout problem
where the space plan is vertical and the number of entities to allocate is unknown. Further, one
of the allocation processes presented in the dissertation, the greedy solution GaLaS, follows the
very same constructive approach of these algorithms whereas one manual solution InDiE exploits
interactive behavior to provide compliant layout-plan solutions.
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1.3 Contribution & Structure
This section summarizes the contribution of the dissertation, its communications results and

the structure of the remaining of the document.

Clarifying note #1
From a Cutting & Packing perspective, a solution is called a cutting solution or packing
solution. From a layout synthesis perspective, a solution is called a layout-plan solution.
From the industrial scenario perspective, a solution is called an insulating envelope. Thus,
the following equivalence holds:

cutting/packing solution ≡ layout plan ≡ insulating envelope.

Along the document, however, we will use only the terms insulating envelope or just
envelope.

1.3.1 Contribution

As stated previously, the main scientific question addressed in this dissertation is How to
generate close to optimal packing solutions, w.r.t. minimum number of panels, for the façade-
layout synthesis problem while taking into account the stakeholders expectations and industrial
limitations? As such, the central contributions of this dissertation are summarized as follows.

1. Chapter 2 on page 23:

ä This dissertation introduces the problem of Façade-layout Synthesis as a novel non-
studied orthogonal two-dimensional Cutting & Packing problem and layout syn-
thesis problem (Section 2.1 on page 23).

ä This dissertation develops a solid constraint-based model for the Cutting & Packing
problem of façade-layout synthesis (Section 2.2 on page 37).

2. Chapter 3 on page 47:
ä This dissertation introduces an interactive manual design for insulating envelopes,

named InDiE. Validation algorithms are implemented for each constraint in the
constraint-model and a visual communication guides the architects through the design
process (Section 3.1 on page 48).

ä This dissertation presents a dedicated on-line greedy solution for Cutting & Packing
problem, named GaLaS. The greedy solution is part of the constructive algorithms
family and uses stakeholders knowledge to generate layout plans close to optimal
(Section 3.2 on page 56).

ä This dissertation presents a dedicated cutting algorithm for the packing problem,
named CaSyE. Its underlying mechanism is that of guillotine vertical and horizontal
cuts. No optimal solutions are generated with this approach but it has other benefits
such as aesthetics of insulating envelopes (Section 3.3 on page 75).

3. Chapter 4 on page 93:
ä This dissertation presents a fully declarative model to assist architects sketching,

named SkEdE. A constraint model is created from a hand-made sketch and is executed
by a constraint programming environment. Its generates the more compliant and
aesthetics envelopes from an architectural point of view (Section 4.2 on page 97).

ä This dissertation presents constraint programming filtering algorithms and a dedicated
search heuristic for the problem under the model of optional decision variables, named
OpackS. The heuristic exploits stakeholders knowledge to arrive rapidly to solutions
on façades where most predefined search heuristics fails (Section 4.3 on page 106).

4. Chapter 5 on page 127:
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ä This dissertation introduced a novel decision support system for the manual and auto-
matic design of façades insulating envelopes. Configuration aspects of the renovation
project, such as the inclusion of architects preferences and recommendation features,
and division of configuration tasks are included in the conception and development
of the system (Chapter 5 on page 127).

1.3.2 Scientific Dissemination

The fundamental aspects of this thesis have been previously reported in the following publi-
cations whose first author is Andrés Felipe Barco.

— Building Thermal Renovation Overview. In 22nd International Symposium on Methodologies
for Intelligent Systems (ISMIS’15), pages 379-385.
Joint work with Élise Vareilles, Paul Gaborit and Michel Aldanondo.

Contributions associated with Chapter 2 on page 23.

— A Recursive Algorithm for Building Renovation in Smart Cities. In 21st International Sym-
posium on Methodologies for Intelligent Systems (ISMIS’14), pages 144-153.
Joint work with Élise Vareilles, Paul Gaborit and Michel Aldanondo.

Contributions associated with Chapter 3 on page 47.

— External Buildings Retrofit: Employing Guillotine Cuts for Aesthetic Envelopes. In IEEE
International Conference on Industrial Engineering and Engineering Managements (IEEM’16)
Joint work with Michel Aldanondo, Paul Gaborit and Élise Vareilles.

Contributions associated with Chapter 3 on page 47.

— Open Packing for Façade-Layout Synthesis Under a General Purpose Solver. In 21st Inter-
national Conference in Principles and Practice of Constraint Programming (CP’2015), pages
508-523.
Joint work with Jean-Guillaume Fages, Élise Vareilles, Paul Gaborit and Michel Aldanondo.

Contributions associated with Chapter 4 on page 93.

— Industrialized building renovation: Manufacturing through a constraint-based on-line support
system. In IEEE International Conference on Industrial Engineering and Engineering Man-
agements (IEEM’15), pages 947-951.
Joint work with Élise Vareilles, Paul Gaborit and Michel Aldanondo.

Contributions associated with Chapter 5 on page 127.

— Building renovation adopts mass cutsomization. Configuring insulating envelops. In Journal
of Intelligent Information Systems (JIIS’16)
Joint work with Élise Vareilles, Paul Gaborit and Michel Aldanondo.

Contributions associated with Chapter 5 on page 127.

Three additional conference publications that have been part of the research, but whose content
is not included in this dissertation, are:

— Constraint-based Decision Support System: Designing and Manufacturing Building Facades.
In 7th Joint Conference on Mechanical Design Engineering and Advanced Manufacturing
(JCM’14), pages 276-282.
Andrés F. Barco, Élise Vareilles, Michel Aldanondo, Paul Gaborit and Marie Falcon.

— Towards a BIM Approach for a High Performance Renovation of Apartment Buildings. In
11th IFIP WG 5.1 International Conference on Product Lifecycle Management (PLM’14),
pages 21-30.
Michel Aldanondo, Andrés F. Barco, Élise Vareilles, Marie Falcon, Paul Gaborit and Linda
Zhang.
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— Layout Synthesis for Symmetrical Facades: Constraint-Based Support for Architects Decision-
Making. In 11th International Conference on Artificial Intelligence Applications and Innova-
tions (AIAI’15), pages 293-306.
Andrés F. Barco, Élise Vareilles, Michel Aldanondo and Paul Gaborit.

1.3.3 Road Map

In what follows we describe the structure of this dissertation. Figure 1.5 shows the dependency
among chapters.

1. Intro-
duction

2. Problem
& Model

3.
Heuristic-
based

4. Filtering-
based

5. Support
System

6. Con-
clusions

Figure 1.5 – Organization of the dissertation.

Chapter 2 on page 23 [Facade-Layout Synthesis Problem] In this Chapter, the specification
of the problem at hand from both scientific and industrial viewpoints are presented.
— The scientific problem of the dissertation, orthogonal two-dimensional Cutting &

Packing problems, is described in this section.
— The industrial problem of designing insulating envelopes is described in detail. The

knowledge provided by stakeholders is synthesized here in specific limitations for the
packing problem.

— The model gives a formal declarative view of the restrictions and limitations of the
packing problem. To do this, constraint decision variables, their domains and a set
of constraints are stated.

— The three façade examples that are presented are used along the document to evaluate
our algorithmic solutions. Two of them are models of real existing façades from the
pilot renovation site whereas the last one is a realistic instance.

Chapter 3 on page 47 [Interactive & Heuristic-Based Design] In this chapter, a manual
interactive solution and two automated heuristic-based ones are introduced.
— A first manual solution InDiE aims to guide the user on the envelope design. It does

so by testing constraints each time the user draws a panel thus providing immediate
feedback and interactive design.

— A second solution GaLaS is based on a greedy approach, making local decision for
packing panels. Local decisions respect stakeholders knowledge to assign size for
panels thus providing solutions close to optimal.

20



1.3. CONTRIBUTION & STRUCTURE

— Finally is presented a solution that uses a guillotine approach CaSyE, performing
vertical and horizontal cuts while respecting constraints. Albeit the algorithm is
restricted for generating at most two solutions, it is smarter than the greedy in
the sense that the geometrical structure of the façade is taken into account when
allocating panels. Further, the algorithm throws aesthetics of envelopes with respect
to their symmetry.

Chapter 4 on page 93 [Filtering-Based Design] Filtering-based solutions that exploit the
capabilities of a constraint solver are discussed in the chapter.

— The first solution is a declarative model that throws a packing solution using an
user-defined sketch SkEdE. In this setup, the user may draw panels with constraint
conflicts (a hand-made sketch). A consistent solution is generated by performing
filtering and search over the defined user sketch.

— As a second approach, we present an automated filtering solution for the problem
OpackS. It uses the notion of optional decision variables for performing filtering. It
includes a simple but efficient search heuristic and its comparison against traditional
CP search heuristics.

Chapter 5 on page 127 [Decision Support System] The solutions presented in the disser-
tation are included in an on-line support system introduced in this chapter. The on-line
system is based on a service-oriented architecture that allows the configuration tasks within
the renovation process.

— An overview of the system capabilities and its internal design are discussed.

— The specific configuration tasks within the renovation process are described here.

Chapter 6 on page 139 [Concluding Remarks] The last chapter presents a comparison
of results and summary of the research presented in this dissertation. In addition, some
perspectives for future work are presented in this chapter.
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For me, it is far better to grasp the Universe as it really is than
to persist in delusion, however satisfying and reassuring.

The Demon-Haunted World: Science as a Candle in the Dark
Carl Sagan, 1995
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The façade-layout synthesis problem is classified among the family of Cutting & Packing
problems, more concisely, among the orthogonal two-dimensional Cutting & Packing prob-
lems. It arises in the context of industrialized building renovation and hence some particularities,
modelled as constraints, are inherit from this domain. This chapter presents the problem and its
modelling with constraint satisfaction problems. A brief report of this chapter has been presented
in Barco et al. (2015a).

2.1 Problems

This section presents the scientific issues, in regard to the Cutting & Packing problem,
addressed in the dissertation. Likewise, details of the industrial problem are introduced along with
assumptions and optimality notions used in the algorithmic solutions. The section systematically
breaks down the problem, industrial limitations and the packing requirements from a design
process viewpoint.

2.1.1 Scientific Problem

As commented in Section 1.1 on page 1, the problem subject of our study has five particu-
larities. One of these is key for defining the Cutting & Packing problem whereas the others
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only imposes specific side constraints. Then, to understand the scientific issues addressed in the
dissertation, we will briefly analyze four of the particularities and, in a more deeply analysis, the
main characteristic that differentiates our problem from the literature works. Here, and ignoring
the industrial details, it is worth noticing that façades, panels, windows, doors and supporting
areas have all rectangular shapes and their edges are parallel to the façade edges (orthogonal
problem). Therefore, the problem belongs to the family of orthogonal two-dimensional Cutting
& Packing problems.

Mandatory overlapping (of frames). The first side constraint of the problem is that specific
rectangular areas (existing windows and door) over the large object (façade) must be completely
overlapped by the small items (panels). Any of these areas must be covered with only one specific
small item, meaning that partially overlapping any of these areas is not allowed. As far as we
know, this property is inexistent in previous works on Cutting & Packing or layout-synthesis
literature.

Panels’ installation (over supporting areas). The second side constraint involves the instal-
lation of the small items (panels) over the large object (façade surface). In fact, due to the
added weight of the set of small items (envelope composed of panels) and given the vertical
orientation of the large object (façades), the small items can only be attached in specific rect-
angular areas that will uniformly distribute their weight thus preventing the small items to fall
and the large object to collapse. To the best of our knowledge, the second characteristic of the
problem, as well as the previous one, is inexistent in the literature of Cutting & Packing and
layout synthesis.

No overlapping, no holes. Likewise most Cutting & Packing problems, small items (panels)
overlapping is forbidden. In addition, given the renovation context, the existence of holes in a
solution is infeasible (holes are impractical for the thermal insulation). In consequence, the small
items in a solution (envelope) must be adjacent to each other. This third side constraint appears
often in Cutting & Packing and layout synthesis problems typically as the minimization of
uncover space (respectively maximization of packed small items).

Desired thermal performance and cost equals minimum number of panels. As we will
study in next section, the ranking of solutions (insulating envelopes) is made with the number
of small items (panels) on it. This fact introduces a goal for the algorithmic solutions developed
along the thesis. As expected, many Cutting & Packing and layout-synthesis problems involve
the optimization of a given feature (sometimes more than one value, multi-criteria optimization).
Within the set of envelopes with the minimum number of small items, the best solutions, from
the thermal perspective, are those in which the length of junctions is minimal. These facts will
be explained in detail in Section 2.1.2 on page 36.

Now, we have found that last particularity of our problem is unique. This means that, to the
best of our knowledge, it has never been studied in the Cutting & Packing and layout-synthesis
literature.

Number and size incognito. The more distinguishable characteristic of our problem is that
the number of small items and their size are not known a priori. This property makes most of
the work on Cutting & Packing and layout synthesis not well suited for tackling it. Further,
in layout-synthesis literature it is rather logic that entities to create layout plans are well-defined
before the design starts due to the specific layout requirements. For instance, when designing
a residential floor plan, the customer demands the architect a certain number of rooms (e.g.
one for each family member) and a given number of bathrooms, kitchens, etc. For services
inside companies, or components in an electronic circuit, small items are well-defined and have
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specific flow between them that must be considered when designing the layout-plan solution. In
consequence, works on the field address the design with fixed number of entities (small items).

Now, one would assume that the Cutting & Packing literature may solve this gap as it
studies a wider set of problems. However, the classification presented in Section 1.2.2 on page 6
Figure 1.1 on page 7 is not adapted to our problem. In fact, the more closely related works
tackle open dimension problems and, as we have shown in Section 1.2.2 on page 6, the open
dimension problem only relates one of the dimension of the small items to be packed, leaving
the other dimension and the number of small items fixed. In consequence, we consider that the
classification for two-dimensional Cutting & Packing problems should be modified in order to
represent the properties of unknown number of small items and unfixed size (in both dimensions).
Figure 2.1 illustrates the proposed classification.

Figure 2.1 – Proposed classification for two-dimensional Cutting & Packing problems.

In the proposed classification are included all characteristics of the façade-layout synthesis
problem, the thick-black path expresses all of them. An alternative to a new classification would
be to consider the façade-layout synthesis problem as a variation of open dimension problem.
However, we consider that there is enough additional elements to improve the classification and
in that way represent a wider set of problems that may appear in the future. Our particular
Cutting & Packing problem, that has been named as façade-layout synthesis, is defined as
follows:

Definition 4 (Façade-layout synthesis problem): Given a rectangular façade surface and an
unbounded set of rectangular configurable panels, find a solution to determine the number of
panels, assign size to them and place them over the façade under the next conditions:

i Rectangular windows and doors over the façade must be completely overlapped by panels,
each of them covered by one and only one panel (no partial overlapping).

ii Panels must be attached in specific rectangular areas that are strong enough to support
their weight.

iii No holes are allowed in order to guaranty a perfect external insulation.
iv The best solutions are composed of the minimum number of panels.

Clarifying note #2
In the remaining of the document, we use façade(s) instead of large object(s) and panel(s)
instead of small item(s) or rectangle(s).

Now, without further delay we introduce the details of the industrialized building renovation.
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2.1.2 Industrial Problem

The addressed problem appears in a large French multi-partner project called CRIBA (for its
acronym in French of Construction and Renovation in Industrialized Wood Steel) that aims to
industrialize building renovation in order to reduce energy consumption (Vareilles et al., 2013,
Aldanondo et al., 2014). One of the major problems for the industrialization project is to propose
a computational process to assist the manual and automatic design of insulating envelopes that
respect the set of limitations while minimizing the cost and maximizing the thermal performance.

This renovation is firstly based on a complete, true and accurate description of each of
the façades in terms of geometry and structure and, secondly, on a precise description of the
configurable panels. This first-hand knowledge enriched by the user’s expectations about the
renovation leads to an insulating envelope taking into account all the stakeholders’ requirements.
In this section we present the problem from the industrial point of view: The industrial context,
industrial process, elements description and restrictions are made and a clear definition is laid
down. The main purpose of the section is to understand the key issues of the industrial case.
We shall begin by describing the context and process of the renovation.

Renovation Environment and Process

Although the core elements of the renovation are façades and panels, spatial entities are
important for the manufacturing of panels, their shipment and their installation. This section then
describes how spatial entities, for instance a building, imposes limitations over the configurable
items, i.e., rectangular panels.

Façades habitats. Façades, as well as any spatial entity, are not isolated structures as they
always belong to another bigger entity. For instance, a neighborhood belongs to a city and a city
to a country. This part-of relation may be described as a hierarchical relation, the smaller part
being lower in the hierarchy. This holds true in the renovation process for its spatial entities. This
hierarchy is crucial for setting panels lower and upper bounds for a given façade renovation. For
instance, if a building is in a region with high seismic activity, panels and attaching devices must
be specially designed to deal with earthquakes. The hierarchy of the renovation is as follows.
A façade is part of a building, a building is part of a block, a block part of a working site. An
instance of such hierarchical structure is presented in Figure 2.2.

Figure 2.2 – Hierarchical view of renovation.

Now, each node in the Figure 2.2 is described by environmental properties. These environ-
mental properties, for now assumed to be independent between nodes, impose some limitations
on the size of panels. These environmental properties are the accessibility and weather conditions.

The accessibility conditions refers to the surroundings circumstances that allow to get in and
out of the spatial entity. For instance, a working site may have wide streets and gates, railways
and even a seaport. The more possibilities and the more easy to access the spatial entity the
less limitations impose over the panels. Let us study this fact further.
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Suppose two buildings A and B with the following accessibility conditions. The building A
has big dual carriageway whereas the building B has a small one-way road. In addition, A has no
trees in its surroundings whereas B has one garden and several trees in its proximities. Clearly,
the building B is restricted in the size and number of trucks that can access it as well as the kind
of supporting machinery to install panels. As expected, the smaller the trucks the smaller the
panels. Now consider that surroundings circumstances may include playground, water sources,
electric lines, unstable ground, sculptures and so on.

At the other end of the spectrum are the weather conditions. These conditions refer to the
climatological circumstances in which the renovation takes part. From these circumstances the
wind and the season are taken into account. On the one hand, if a given working site is subject
to strong wind then either panels must be specially attached or their size must be further limited
(reduced) in order to properly do the on-site assembly process. In this particular renovation
the panels’ size are limited. Conversely, if the season in which the on-site work takes place is
winter, then it is physically harder for working, as well as technically harder, to move and install
bigger panels than small ones. Moreover, the cost of the renovation may increase because more
workforce is needed or because non-working days may come up due to the weather.

In short, the environmental properties of spatial entities play an important role in the reno-
vation. A crucial aspect remains to be measured: The impact of these environmental conditions
over the hierarchical structure of the renovation. But before that, the renovation process may
provide a better idea of why this hierarchical view is important from the industrial perspective.

Renovation Process. To get a clear understanding about the limitations and constraints im-
posed over the Cutting & Packing problem by each one of the stages of the renovation (Al-
danondo et al., 2014), it is necessary to have a global view of it. The following stages describe
the renovation process.

Stage 1. Information collection. In this stage a certified surveyor uses laser range-finder devices,
along with pattern recognition software, to create a numerical model describing the build-
ing. In essence, the model includes the dimension of each façade on the building, their
windows, doors and any other element visually accessible to the lasers, i.e., the buildings’
geometry.

Limitation Façade size and panel size

Each façade is potentially different from the others. Thus, to be consistent, panels
size must be set according to the façade it will be allocated on. In addition, in this
stage an early check is done: If frames (windows and doors) over the façade are
bigger than the panel size, then no solution is possible.

Stage 2. Semantic enrichment. Once the building information model, or BIM, has been built, it
is necessary to enrich it with three crucial information. This information is, first, the specific
areas where it is possible to attach panels, along with their load bearing capabilities, second,
the areas that are not part of Cutting & Packing problem as they need specific panel’s
design and, third, the architects requirements such as deletion or addition of windows,
doors and balconies.

Limitation Load bearing capability and panel size

Assuming that the bigger a panel the heavier, size of panels may be limited by
the load bearing capabilities of the façade they will be attached onto. If the enve-
lope, plus the future look (optional cladding) plus new windows, is not successfully
supported by the façade, it may collapse.

Stage 3. Envelope definition. Using the complete numerical model, the generation of envelopes
is executed. In this stage, each of the façades to renovate is synthesized using Cutting
& Packing algorithms.
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Limitation Cutting & Packing algorithms and envelopes

The insulating envelopes design is limited by two facts. First, the computational
tools (hardware and software) used in the design. And second, the algorithmic
solutions to tackle this specific problem.

Stage 4. Manufacturing. Once an insulting envelope has been designed in the previous stage,
the panels composing it are manufactured in the factories. Each panel is manufactured
one by one, with their specific size, including new frames (windows and doors), and with
every detail for its installation.

Limitation Manufacturing and panel size

A given panels’ provider has limitations on the manufacturing process. Thus, each
manufacturer provides:

— Two bounds on the size for panels; one bound indicating the minimum panel
size and another bound indicating the maximum panel size.

— A minimum distance between panels’ border and frames’ border must be as-
sured for a correct panel manufacturing.

— A constraint between width and height stating the possible combination of
size that may be manufactured.

Stage 5. Supply chain. In this stage panels are shipped to the working site for their installation.
Additionally, support for installing the panels is decided. This support includes cranes,
harnesses and any additional machinery needed by workers.

Limitation Supply and panel size

Panels size may be limited by the available machinery. For instance, the size of
panels is constrained w.r.t. the size of trucks available for their transportation (e.g.,
the smaller the trucks the smaller the panels).

Stage 6. On-site installation. The final stage is the installation of panels on each one of the
façades. The supply chain planning of the CRIBA project is the core of the PhD thesis of
a colleague in Mines d’Albi (Gholizadeh-Tayyar et al., 2015).

Limitation Installation and panel size

Accessibility conditions may restrict the use of transportation, cranes or other sup-
porting machinery. As a bandwagon effect, supporting machinery affects panels
size.

The aforementioned stages describe the global process of the renovation. The dissertation
focuses on the Stage 3. From an envelope-definition point of view, the limitations on each
stage have an impact on the limits for panel size. When executing the Cutting & Packing
algorithms, panel size bounds, product of the environmental conditions, hierarchy and each stage
limitation, are unequivocally set and are not changed during the Cutting & Packing process.
For the time being, let us study further each one of the elements taking part on the renovation.

Renovation Elements

In the interest of understanding the Cutting & Packing problem, it is necessary to deeply
describe the elements (façades and configurable panels) taking part on the building renovation
process. Limitations on the renovation process and the manufacturing of items are considered as
constraints that are included in the constraint-based model of the Cutting & Packing problem.
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Rectangular Façades. The description of the façades is one of the key points in building
renovation. Their description has to be complete, true and accurate in terms of geometry
and structural properties. Indeed, each of the façades in a building has potentially different size,
number and position of frames (windows and doors) and different strength (how much additional
weight the façade can support and where this additional weight can be located). Clearly, the
design of an insulating envelope depends on the geometry and strength of the façade to be
renovated.

Information about façades is essentially acquired from a certified surveyor for their geometry
and from a structural engineer for their structural properties. Only specific elements are kept
for the design of the envelope: (1) frames, such as windows, doors and garage entrances, and
(2) supporting areas, such as shear walls and concrete slabs. All the rest, such as rain gutters,
balconies or street lights directly attached to the building, are removed and thus not considered
in the problem. Also, the building’s gable (triangular portion of a wall between the edges of
intersecting roof pitches) is considered out of configuration as it needs specific panels shapes
that will be manually tuned by the architect. Lastly, upon architects request and for any reason,
any given portions of the façade may be leave out of the Cutting & Packing process. As a
restriction to these portions, that we call zones out of configuration (ZOC), their shape must be
rectangular as well so to not interfere with the Cutting & Packing process and to treat these
zones as already-defined panels.

Façade Restrictions: In the problem addressed here, we only consider rectangular ele-
ments: façades, frames and supporting areas are approximated by rectangular shapes. Indeed,
gables and round frames make the formalization of the envelopes design problem as well as the
research of solutions very complex and are therefore out of scope as we target a first solving
approach.

Façade Definition: A façade, as illustrated in Figure 2.3 on the next page is represented
by a two-dimensional rectangular vertical plane, with origin of coordinates at the bottom-left
corner of the façade ( f acxo = 0, f acyo = 0), containing rectangular zones defining:

— Perimeter of façade with its size: height f ach and width f acw in meters.

— Frames. Existing windows and doors over the façade play the first key role as they are
meant to be completely overlapped by one and only one panel. Frames f r j are defined
by:

— Origin point, i.e. the bottom-left corner, ( f r j
x , f r j

y ) with respect to origin of façade
( f acxo , f acyo).

— Width f r j
w and height f r j

h in meters.

— Supporting areas. Supporting areas over the façade play the second key role as they support
the weight of the panels composing the insulation envelope. Supporting areas sak have
well-defined:

— Origin point, i.e. the bottom-left corner, (sak
x ,sak

y ) with respect to origin of façade
( f acxo , f acyo).

— Width sak
w and height sak

h in meters.

— Load bearing capability sak
l in kg /m2.

— Rectangular zones out of configuration zocm with:

— Origin point, i.e. the bottom-left corner, (zocm
x ,zocm

y ) with respect to origin of
façade ( f acxo , f acyo).

— Width zocm
w and height zocm

h in meters.

These zocs are treated as user-defined panels and thus will affect by not being considered
in the envelope’s design.
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Figure 2.3 – Façade description: frames and supporting areas.

Cascade effect over façades: As commented previously, spatial entities inherit environ-
mental conditions of entities on superior levels of the hierarchy. This fact is decisive for setting
the panels bounds for a given façade. A simple illustration helps in understanding this fact.

Let us consider again the buildings A and B now belonging to the working site W . Suppose
three levels accessibility conditions: easy, medium and hard. Also, suppose three types of trucks:
big, medium and small. Further, let us assume three types of panel size: big, medium and small.
Now let us instantiate the accessibility of the working site W to medium, and the accessibility
to the building A easy and building B hard. Then access to the working site W can be done
with medium size and small size trucks. These trucks can carry medium size and small size
panels. Given that A building’s accessibility conditions is easy, it can be accessed using both
medium size and small size trucks. But it is not the case for building B with hard accessibility
conditions which can only be accessed by small trucks with small panels. This is a rather logical
consequence.

From the point of view of the building A, it can be accessed with big size trucks and big
size panels; the accessibility condition is easy. But, here is where dependency in the hierarchy
originates. For the working site cannot be accessed by big size trucks due to his accessibility
conditions and, in order to access the building, it is mandatory to access the working site.
Therefore, the accessibility condition of the working site is inherited by the building, restricting
it to medium size and small size trucks. This property of inheritance is a monotonic operation,
i.e., it can only reduce panels size.

Bear in mind during the rest of the document that all these environmental conditions, and
their inherit property, have an impact on the panels size and consequently in the thermal perfor-
mance of the insulating envelopes.

Rectangular panels. Panels are rigid rectilinear rectangles (see Figure 2.4 on page 32) with
sides parallel to the façade reference axis. The problem, as explained before, is an instance of
a orthogonal two-dimensional Cutting & Packing problems. The description of the insulated
panels is the second key point in building renovation. Their description has to be precise in
terms of admissible sizes, weights and thermal properties. Indeed, each panel is configurable
and has therefore a range of different sizes (width and height), different weights (depending on
several factors relative to their size, insulation characteristics, included frames, chosen cladding),
a certain number of included frames and different thermal performances (taking into account
insulation type, insulation thickness and included frames). Clearly, the design of an insulating
envelope depends on the admissible size of panels. We have to highlight the fact that each
panel is especially configured (size fitted, weight computed, insulation selected, and so on) and
manufactured with the appropriated structure containing the new frames for each façade. There
is no on-site fitting (the accuracy is around 1mm).

Information about panels is essentially acquired from the panels manufacturers. They have
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to specify the panels range of widths pw (lower and upper bounds), heights ph (lower and upper
bound), the constraints linking the width pw and the height ph of the panels (width upper
bound not compatible with height upper bound, for instance), the possible insulation thickness
Ith (lower and upper bound), the insulation types It y and the constraints linking thickness Ith

and type It y , and the range of external cladding types C lt y which are allowed (range of colors,
from natural to exotic ones, and materials and textures, such as wood, vinyl, stone or aluminum).

Panels are manufactured prior to shipment. The chosen mode of transportation (special
convoys or small trucks) has an impact on their size: the use of special convoys to deliver the
panels will not affect their admissible sizes (every combination is allowed), on the contrary, the
use of small trucks will impact them: the panels have to be smaller in order to fit the truck size.

Panels have an orientation (horizontal or vertical) depending on the ratio between their
width pw and height ph . If the ratio pw

ph
is less than one, the panel is vertical, otherwise, it is

horizontal. This information impacts the inner structure of the panel and its laying direction onto
the façade, even more pertinent if the panel contains frames. When a panel contains frames,
given its internal structure, a minimal distance d must be respected between the panel borders
and each frame required space. Panels are also characterized by a thermal performance T Pp and
a weight Wp both depending on its size (pw , ph), its insulation thickness (Ith), its insulation
type (It y), the frames it contains and the cladding C lt y only for the weight computation.

Panels can be attached onto a façade in different manners: hanged, supported or stapled
along their perimeter. The way to attach panels onto the façade has an impact on the way
to spread their weights over the supporting areas and consequently on the insulating envelope.
They are attached by means metallic devices called fasteners. Each fastener by its own is defined
by the length of its threaded shaft: The part that goes into the wall. Additionally, these elements
consist of two parts: One fixed directly onto the façade (support bracket) and one installed on
the panel at the factory (panel bracket). The exact position of fasteners depend on the position
of panels. Thus, fasteners definitions are only taken into account in the support system (Chap-
ter 5 on page 127) when the insulating envelopes are already designed.

Panels Restrictions: In the problem addressed here, we only consider two main charac-
teristics of the panels: their size and weight. Indeed, the insulation type and its thickness are
determined for the whole renovation by energy performance simulations at the beginning of the
renovation process. Therefore, panels thermal performance becomes unnecessary to compute
by itself but thermal leaks become critical to estimate. These leaks appear mainly at the junc-
tion between panels. Our objectives of maximizing panels size and minimizing their number is
therefore strengthened. Considering the weight, the cladding is chosen upstream for the whole
renovation similarly to the insulation type and thickness. Its weight is directly included in the
panels weight. The panel’s weight is, potentially, supported by two supporting areas. If the
panel is supported by its bottom edge, then the weight is concentrated on the bottom-left and
bottom right corners whereas the remaining attaching act mainly as a stabilizing mechanism.
If the panel is hanged in its top edge, then its weight if concentrated on the top-left and top-
right corners whereas the remaining attaching act mainly as a stabilizing mechanism. Finally,
if the panel is attached by the lateral edges, then its weight is concentrated on the lowest at-
taching point in both lateral edges whereas the remaining attaching act mainly as a stabilizing
mechanism. Assuming that a fastener can support two contiguous panels, we check for each
panel if its total weight can be supported by the relevant supporting areas of each attaching point.

Panel Definition: A panel p i (see Figure 2.4 on the following page) is represented by a
two-dimensional rectangular shape with origin of coordinates at the bottom-left corner of the
panel (p i

xo ,p i
yo) and is defined by:

— Size: width p i
w and height p i

h in meters. Its size is restricted by given limits: p i
w ∈

[pwl , pwu] and p i
h ∈ [phl , phu]. The domains for p i

w and p i
h are defined by two intervals:

[mi n↓,max↓] and [mi n↑,max↑], with max↓ < max↑. Manufacturing limitations state that
one panel dimension must take as domain the first interval and the other dimension the
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External siding

External air space
Wood fiber insulation
Cellulose wadding insulation

Wood frame
Bracing
Internal air space
Internal siding

Figure 2.4 – Technical concept: Rectangular configurable panel.

second interval. In other words, it does not matter which interval is taken by one dimension
as far as the other dimension takes as domain the other interval. This limitation forces the
panel to have an orientation except when p i

w = p i
h , in which case pwu = phu = max↓. An

illustrative example of this limitation is presented in Section 2.2.3 on page 38.

— Orientation. The orientation is determined by the ratio between its width p i
w and height

p i
h . If the ratio p i

w

p i
h

< 1 then orientation is vertical, else horizontal.

— New frames with defined origin point (n f r r
x ,n f r r

y ), corresponding to the bottom-left corner
of the frame, with respect to the panel origin (p i

xo , p i
yo) they belong to. Each frame n f r r

has a width n f r r
w and a height n f r r

h in meters. Also, these new frames must respect the
minimum distance d to the panels borders.

— Weight. The weight of a given panel p i
we depends on different factors: size (p i

w , p i
h),

thickness (Ith), insulation type (It y) and new frames (ner
we). Regarding our restrictions

on panels, its weight is computed with:

p i
we = (p i

w ×p i
h)×β (2.1)

where pi
w and pi

h are respectively the panel p i width and height and β is a factor which
depends on the panel material, its internal structure, the chosen thickness It y , the chosen
insulation type It y and the chosen cladding C lt y .
The weight of panels is supported in a square meter of the façade surface where the
fasteners devices are located. Ergo, the weight (in kilograms) is compared to the load
bearing capabilities (in kilograms) of a square meter supporting area where the fastener is
located.
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Renovation Requirements

Renovation requirements or expectations have also an impact on the insulating envelope
design and style. In order to give to the renovated building a specific good looking with respect
to urban design guidelines, building owners’ expectations and tenders’ wishes, architects need a
complete overview on the renovation and have to achieve acceptable compromise solutions.

Firstly, they have to select from the large range of cladding C Lt y the one composing the new
skin of the renovated building. This aesthetic choice has an impact on the weight of the panels
pwe and therefore, on their maximum size (pwu ,phu) but also on the orientation of the panels
(horizontal or vertical).

Secondly, despite all possible care taken for the building renovation, the joints between
panels are still visible and draw simple geometric patterns onto the façade. Architects may turn
to advantage these visible joints by imposing a preferred orientation for the panels Po . The new
envelope is therefore composed mainly by horizontal or vertical panels, all aligned and drawing
good looking patterns, such as straight vertical lines as illustrated in Figure 2.5 (a), straight
horizontal lines, brickwork style, 90 degree Herringbone bond as illustrated in Figure 2.5 (b), etc.

(a) Vertical lines pattern (b) 90 Degree herringbone bond pattern

Figure 2.5 – Façade geometric patterns examples.

Thirdly, when designing the envelope, architects keep constantly in mind as a target the
beauty of the façade. The panels size are consequently thought out with the utmost care and
tuned if necessary (reduction of their size, modification of their location onto the façade, etc)
with always the most minimal impact on the final envelope design and style.

Fourthly, always for aesthetic reasons, the architects start designing the new envelope by a
specific point (st ar tx , st ar ty ), such as the middle of the façade meaning that st ar tx = f ach

2

and st ar ty = f acw
2 or the bottom-left corner meaning that st ar tx = f acx0 and st ar ty = f acy0,

depending on the expected final design result and architect’s artistic flair.

Renovation Requirements Restrictions: In the problem addressed here, no aesthetic
aspect is considered as hard requirement as the process to design a good looking envelope is
based on high human skill, know-how and flair, really difficult to formalize (tacit knowledge). A
proposed cutting solution CaSyE presented in Section 3.3 on page 75, however, is conceived to
generate more aesthetic envelopes by considering symmetry. Additionally, the chosen cladding
C Lt y is taken into account directly into the panels weight computation and consequently on the
permissible upper bounds.

Considering the resultant geometric patterns due to the joints between panels, when using
the support system the architect has the possibility to mention which panels orientation Po

(horizontal, vertical, none) is preferable to the other. This preferred orientation can be either
used as a soft or hard constraint:

— Using it as a soft constraint, it allows the algorithms to swap the orientation of a panel
(for instance, from horizontal to vertical) when they fail to find a solution.
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— By contrast, using it as a hard constraint, it forces the algorithms to find envelopes re-
specting the architect’s orientation preference.

— When no orientation is specified (none), the algorithms are able to find close to optimal
solutions by always selecting the largest panels whatever their orientation.

Optimality issues: The target is to reduce energy consumption of buildings by means of
an external panels-made insulating envelope. This insulating envelope has as goal to reduce the
heat transfer between the interior and the exterior of the building. Thus, an ideal envelope will
have zero heat transfer, i.e., the best possible thermal performance. Given that all panels in an
envelope are produced by a single manufacturer, it is the case that all panels in a given envelope
has the same internal structure in such a way that any panel is indistinguishable from any other
except for its size and position over the façade. In that way the performance of a given envelope
is computed only with respect to panels allocation and sizing.

Now, differences on thermal performance for different envelopes for a given façade do not
depend on the façade size. Considering that a valid envelope is the one covering all the façade,
then it is the case that the summation of all panels areas equals the façade area, no matter how
many panels or in which position they are. Then, the panels insulation is constant over a given
façade, but it is not the same for an envelope. In fact, the junction between two consecutive
panels associates to the envelope a thermal leak. So, from the energy conservation perspective,
the thermal performance of an envelope depends only on the length of junctions plus façade
perimeter. Hence, an envelope composed by one panel will provide better insulation that an
envelope of two panels over the same façade. Let us study an illustration of this fact.

In Figure 2.6 we can see that both envelopes have the same number of panels, six of them.
Although both envelopes are valid because they cover the entire façade and respect all limitations,
they do not have the same thermal performance and cost. The façade at the left has a bigger
thermal transfer because its junctions length is bigger (13 meters×5 + 5 meters×2 + 10 meters
×4 = 115 meters) than the envelope of façade at the right (18 meters×2 + 10 meters×7 = 106
meters).

Figure 2.6 – Two valid envelopes with different junctions length: Envelope at the left has 115
meters and envelope at the right has 106 meters.

Computing the length of the junctions for a given envelope is straightforward, Formula 2.2
expresses this knowledge

f aclo j =
N∑

i=1
(p i

w +p i
h)+ ( f acw + f ach) (2.2)

where f aclo j stands for length of junctions of façade f ac, f acw and f ach are, respectively,
the width and height of the façade, pi

w and pi
h represent the width and height of panel i ,

respectively, and N is the number of panels composing the envelope.
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Clarifying note #3
The cost of an envelope is computed with respect to the cost of a panel of a given
manufacturer. One of the associated companies in the CRIBA project has provided us
some information on how to compute the costs cp for panels they manufacture. Thus,
knowledge on how to compute the cost of a given façade envelope f acc is represented in
the Formula 2.3

f acc =
N∑

i=1
(p i

w ×p i
h ×α) (2.3)

where p i
w and p i

h represent the width and height, respectively, of panel i . The constant
α is a factor provided by the manufacturer that depends on the particular manufacturing
process.

Recall that an insulating envelope is characterized by three related aspects. First, the number
of panels regardless the position. Second, the length of junctions between panels. Finally, the
associated cost of the envelope. From these characteristics the number of panels gives a good
approximate of the length of junctions and cost. Actually, minimizing the number of used
panels entails the junctions length and cost minimization. Then, the optimization is reduced to
minimizing the number of panels used on an envelope. However, as we saw in Figure 2.6 on the
facing page, two insulating envelopes with the same number of panels may be compared using
the length of junctions, preferring always the one with minimum length of junctions.

Support system requirements

Within the CRIBA project different needs on the insulating envelopes design, logistics and
interoperability between partners have been identified. In this thesis we focus our attention
in supporting the architects decision-making by modeling the design problem and developing
computer-based solutions to tackle it. The computer-based solutions are merged together into a
PCS dedicated to configure insulating envelopes. This means, on the one hand, that functional
requirements for the support system must be isolated in order to fully satisfy the project needs.
And, on the other hand, it means that non-functional requirements, to successfully implement
the functional requirements, must be clearly defined. After a joint analysis with companies within
the project and academics at the École des Mines d’Albi-Carmaux, these requirements have been
defined as follows.

— Functional requirements:

1. Manual design of envelopes. In this setup the architects draws panels, one by one, on
a graphical user interface. The system is responsible to either inform about constraint
conflicts (as in InDiE) or, ideally, correct conflicts and throw a compliant solution
(as in SkEdE). Interactive behavior and short delays are expected in this setup.

2. Automatic design of envelopes. In this setup, architects push a button and expect
from the system compliant envelopes solutions.

3. Semi-automatic design of envelopes. This setup mixes the two previous approaches
by letting the system finish the design of a partial envelope manually drawn by an
architect.

4. Given that the architect looks for both valid envelopes as well as aesthetic ones, the
system should provide different insulating envelopes solutions for a given façade.

5. Computing the cost and length of junctions is a task delegated to the system. Further,
if the system throws several solutions for a given façade, then a ranking w.r.t. to the
number of panels, and within this envelopes with minimum length of junctions, must
be guaranteed.

— Non-functional requirements:
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1. The major non-functional requirement refers to portability. The decision is then to
allow the support system to run over Internet browsers. The system is then a web-
oriented application.

2. The input (spatial entities specification) and output (envelopes numerical models)
format should be standard as to allow the communication with other systems. The
decision is then to use a web-compliant format called JSON, that is used in many
applications and may be parsed effortless to many other formats.

3. Finally, the response time of the system, when generating automatic solutions, is
not a critical requirement as the architects have enough time to plan the renovation.
However, the expected time for the generation of insulating envelopes should not
exceed 30 seconds for a façade of 20 meters width and 10 meters height.
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2.2 Constraint Model
A constraint model using the above problem description is here introduced. The model is

intended to reflect the key issues of the problem in a simple and declarative way. Thus, to
formalize the packing problem as a CSP, the parameters describing the façade and panel’s size
lower and upper bounds, variables describing the packing solution and constraints describing the
relations over panels and façade, are introduced.

2.2.1 Parameters

In order to give limit to variables, a set of parameters is necessary. In essence, the parameters
contain all geometrical and structural information linked to the façade and needed to establish
the relation among panels, and panels and façade. For instance, the position of frames, and
their size, are important in order to avoid their partial overlapping. Further, in order to map
the model into a computer-based solution, it is important to have an accurate description of the
façade and its elements, regardless of the input format.

Each renovation being unique, the problem has to be adjusted considering some parameters:

— Considering the façade:

— Height f ach and width f acw in meters.

— Set F of frames and for each frame f r j ∈ F :

— Origin point ( f r j
x , f r j

y ) with respect to origin of façade ( f acxo , f acyo).

— Width f r j
w and height f r j

h in meters.

— Set Sa of supporting areas and for each supporting area sak ∈ Sa:

— Origin point (sak
x ,sak

y ) with respect to origin of façade ( f acxo , f acyo).

— Width sak
w and height sak

h in meters.

— Load bearing capability sak
l in kg /m2.

— Set Z oc of zones out of configuration and for each zone zocm ∈ Z oc:

— Origin point (zocm
x ,zocm

y ) with respect to origin of façade ( f acxo , f acyo).

— Width zocm
w and height zocm

h in meters.

— Considering the panels:

— Minimal distance d between the panel borders and each frame required space,

— Size limits (lower and upper bounds for each dimension) defined by [mi n↓,max↓]
and [mi n↑,max↑], with max↓ < max↑.

— Weight factor β in order to compute the weight of the panels.

— Cost factor α in order to compute the cost of the envelope.

— Constraint between width and height stating the compatibility between sizes allowed
by the manufacturing process.

— Considering the renovation requirements:

— Preferred orientation for the panels Po : vertical or horizontal.

2.2.2 Decision Variables

Decision variables are linked to the position and size of each panel in an insulating envelope.
Let us assume that N represents the number of panels in a given insulating envelope. Then,
each panel p i with i ∈ [1, N ] is described by its origin and size attributes:

— p i
x0 ∈ [0, f acw ] is the origin of rectangle p i in the horizontal axis.

— p i
y0 ∈ [0, f ach] is the origin of rectangle p i in the vertical axis.
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— p i
w ∈ [mi n↓,max↓] or p i

w ∈ [mi n↑,max↑] is the length of the rectangle p i the horizontal
axis.

— p i
h ∈ [mi n↓,max↓] or p i

h ∈ [mi n↑,max↑] is the length of the rectangle p i the vertical axis.

Domain for each variable depends on the variable semantics. As well, some result variables
that are not part of the solving process but rather generated by a given solution are:

— The number of panels N composing the insulating envelopes,
— for each panel covering frames, for each frame it contains: Position (n f rx ,n f ry) with

respect to the panel origin (pxo , pyo) as well as width (n f rw ) and height (n f rh) in meters,
— weight p i

we ∈ [pwel , pweu] of each panel, computed with formula 2.1 on page 32 (p i
we =

(p i
w ×p i

h)×β),
— length of junctions f acl o j computed with the panels’ size (pw ,ph) and façade size ( f acw , f ach)

and,
— cost f acc computed with the panels’ size (pw ,ph).

2.2.3 Constraints

In order to design the envelope of a given façade, stakeholders knowledge is mapped into
constraints over the variables representing panels. The following constraints have been extracted
from the problem domain by stakeholders (e.g., architects and building renovation companies).
They state the properties well-designed panels, consequently envelope, must posses. Instances
of good and ill panels design are illustrated for each constraint.

Design constraints

We shall begin the description of four constraints that are related to the problem specification.

Size Panels have a range of width p i
w ∈ [pwl , pwu] and a range of height p i

h ∈ [phl , phu].

∀p i ,1 ≤ i ≤ N : pwl ≤ pw ≤ pwu ∧phl ≤ ph ≤ phu (2.4)

Size compatibility This constraint links the width and the height of panels to reflect manu-
facturing limitations. It states a compatibility between the domains of pw and ph with respect
to the panel sizes permitted by the manufacturing process and defined by [mi n↓,max↓] and
[mi n↑,max↑], with max↓ < max↑. More precisely, the constraint states that pw must take one
of these domains and ph the other one. This knowledge is expressed as

∀p i ,1 ≤ i ≤ N : (mi n↓ ≤ pw ≤ max↓∧mi n↑ ≤ ph ≤ mi n↑)

∨ (mi n↑ ≤ pw ≤ max↑∧mi n↓ ≤ ph ≤ mi n↓)
(2.5)

Then, for instance, pw ∈ [mi n↑,max↑] and ph ∈ [mi n↑,max↑] is not allowed. Figure 2.7.a,
illustrates the two panel size possibilities. Thus, two panel instantiation are possible, as shown
in Figure 2.7.b. Note also that when max↓ 6= max↑ the constraint imposes a panel orientation.

Area The entire façade must be covered with panels. It implies no holes in the envelope and
that the summation of all panels areas equals the façade area. Figure 2.8.a presents an envelope
with a hole and thus does not cover all façade areas as does Figure 2.8.b.

N∑
i=1

(
p i

w ×p i
h

)= f acw × f ach (2.6)
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Figure 2.7 – a) Possible panel instantiations and b) valid instantiations w.r.t. size compatibility.

Figure 2.8 – a) Ill-defined envelope and b) well-defined envelope w.r.t. area constraint.

Non-Overlapping Panels overlapping is forbidden. It means that for two given panels u and
v there is at least one dimension (vertical or horizontal) where their projections do not overlap.

∀pu ,qv | pu
x0 ≥ pv

x0 +pv
w ∨pv

x0 ≥ pu
x0 +pu

w

∨ pu
y0 ≥ pv

y0 +pv
h ∨pv

h0 ≥ pu
h0 +pu

h

(2.7)

The panel p2 in Figure 2.9.a overlaps panel p1. A correct allocation of the same panel is
shown in Figure 2.9.b.

Frames Each frame over the façade must be completely overlapped by one and only one panel.
Additionally, frame borders and panel borders must be separated by a minimum distance denoted
by d :

∀ f r j ∈ F,∃p i ,1 ≤ i ≤ N | p i
x0 +d ≤ f rx ∧ f rx + f rw ≤ p i

x0 +p i
w +d

∧ p i
y0 +d ≤ f ry ∧ f ry + f rh ≤ p i

y0 +p i
h +d

(2.8)

In Figure 2.10.a, the panel is not correctly designed as it partially overlaps a frame. A correct
design would be either completely cover the window or, as presented in Figure 2.10.b, avoid the
overlapping by leaving the responsibility to another panel.

Installation Panels must be attached by their corners over supporting areas. Let px1 = px0+pw

and py1 = py0 +ph , then we have
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Figure 2.9 – a) Ill-defined panel and b) well-defined panel w.r.t. non-overlapping constraint.

Figure 2.10 – a) Ill-defined panel and b) well-defined panel w.r.t. frames constraint.

∀p ,

∃sak | (sak
x ≤ px0 ∧px0 ≤ sak

x + sak
w ∧ sak

y ≤ py0 ∧py0 ≤ sak
y + sak

h)

∃sal | (sal
x ≤ px0 ∧px0 ≤ sal

x + sal
w ∧ sal

y ≤ py1 ∧py1 ≤ sal
y + sal

h)

∃sam | (sam
x ≤ px1 ∧px1 ≤ sam

x + sam
w ∧ sam

y ≤ py0 ∧py0 ≤ sam
y + sam

h )

∃san | (san
x ≤ px1 ∧px1 ≤ san

x + san
w ∧ san

y ≤ py1 ∧py1 ≤ san
y + san

h )

(2.9)

Note k = l = m = n is possible. The panel in Figure 2.11.a cannot be attached as its top-right
corner does not match a supporting area. Conversely, Figure 2.11.b shows the same panel well
designed.

Weight Assuming that a fastener can support two contiguous panels, we check for each panel
if its weight pwe can be supported by the relevant supporting areas sak

l (in a square meter).
The following constraint expresses the knowledge

pwe ≤ sak
l (2.10)

Supplementary constraints

As we want to present to the end-user (e.g. an architect) a diverse set of good if not
optimal insulating envelopes, we must avoid to enumerate symmetrical ones. Additionally, an
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Figure 2.11 – a) Ill-defined panel and b) well-defined panel w.r.t. installation constraint.

interference constraint helps to avoid failure when positioning panel at the façade edges. The
following constraints then improve the solving process and the solutions quality.

Interference In order to allow forthcoming panels to be placed, a given panel p i must either
be at the façade edge or ensure that enough space is left to fix another panel.

∀p i ,1 ≤ p i ≤ N (p i
x0 +p i

w ≤ f acw −pwl ∨p i
x0 +p i

w = f acw )

∧ (p i
y0 +p i

h ≤ f ach −phl ∨p i
y0 +p i

h = f ach)
(2.11)

The minimum space depends on the panels lower bound in a given dimension (respectively
pwl for panels width and phl for panels height ). For example, in Figure 2.12.a the panel is not
well-designed as it does not allow the allocation of a new panel below it. In Figure 2.12.b the
same panel is well-designed as it leaves enough space for further panels.

Figure 2.12 – a) Ill-defined panel and b) well-defined panel w.r.t. interference constraint.

Ordering Panels are ordered: This is done by imposing an ordering on px0 and py0

LexChainLessEq({{p i
x0, p i

y0}|1 ≤ p i < N }) (2.12)

This lexicographic constraint (van Hoeve and Hooker, 2009) ensures that priority is given to
use the first rectangles and that rectangles are ordered. Assigning an order forbids the swapping
of rectangles and thus avoid the generation of symmetrical solutions (as explained in section 1.2.2
on page 6).

An illustration of this constraint is presented in Figure 2.13 on the next page. In the first
case, façade at the left, panels enumerated as p1, p2, p3 are ordered, i.e., p1

x0 ≤ p2
x0 ≤ p3

x0. This
ordering prevents the second case, façade at the right, from happening and thus preventing the
generation of symmetrical solutions.
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Figure 2.13 – a) Reachable panels’ design and b) not reachable panels’ design w.r..t. ordering
constraint.
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2.3 Evaluation Cases
In this section we introduce three façade instances on which the algorithmic solutions will be

tested. The first two instances, Figures 2.14 on the following page and 2.15 on the next page,
are real façades part of the working site La Pince in the commune Saint Paul-lès-Dax in the
department of Landes, France. These two façades have:

— Several strong supporting areas (1000 kg /m2) in shear walls and concrete slabs, whereas
the remaining walls have weak load bearing capabilities (1 kg /m2),

— a width equals to f acw=18.95 meters and a height equals to f ach=10.64 meters,

— 7 small windows of 1.8×0.4 meters for the façade presented in Figure 2.14 on the following
page and 14 small windows of 1.4×1.3 meters for the façade presented in Figure 2.15 on
the next page,

— 14 big windows of 1.4×1.3 meters for the façade presented in Figure 2.14 on the following
page and 7 big windows of 2.09×2.2 meters for the façade presented in Figure 2.15 on the
next page,

— 1 door of 0.8×2.2 meters for façade in Figure 2.14 on the following page and 2 doors of
the same size for façade in Figure 2.15 on the next page,

— 1 zone out configuration of 3.5×2.7 meters for the façade presented in Figure 2.14 on the
following page.

The last façade, Figure 2.16 on the next page is a realistic instance used in our tests with :

— the same load bearing properties,

— a width equals to f acw=10 meters and a height equals to f ach=7.5 meters,

— 10 small windows of 0.8×0.8 meters,

— 1 big windows of 3.5×0.5 meters,

— 1 door of 1.4×2.25 meters.

The façade in Figure 2.15 on the following page is used for the evaluation of the solutions
over different façade sizes, i.e., scalability tests (Sections 3.2 on page 56, 3.3 on page 75 and 4.3
on page 106). Then, a set of 20 façades, that have the same geometrical structure, are generated
under specifications where frames and supporting areas are uniformly distributed over the façade
surface. Also, all tests use the same lower and upper bounds of panels. In particular we use the
same lower bounds for both width and height of pwl = phl = 0.9 meters and, we use 10 meters
as upper bound for one dimension and 3 meters as upper bound for the other dimension.
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Figure 2.14 – Façade instance 1: f acw=18.95 meters, f ach=10.64 meters, small windows
1.8×0.45 meters, big windows 1.4×1.3 meters, door 0.8×2.25 meters, zone out configuration
3.575×2.74 meters.

Figure 2.15 – Façade instance 2: f acw=18.95 meters, f ach=10.64 meters, small windows
1.4×1.3 meters, big windows 2.09×2.2 meters, doors 0.8×2.25 meters.

Figure 2.16 – Façade instance 3: f acw=10 meters, f ach=7.5 meters, small windows 1.4×1.3
meters, big window 4.9×0.97 meters, door 1.4×2.25 meters.
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2.4 Digest
The industrial renovation of buildings has to cope with a multiple and diverse requirements,

guidelines and constraints coming from urban design guidelines, owners’ expectations, tenders’
wishes, building geometry and structure, panels manufacturer and architects’ skills and ability
in design art. In this section we have presented the Cutting & Packing problem elements,
limitations and requirements in regard to the industrial renovation. We have provided a detailed
description of the elements taking part in a renovation along with its context and process.
The requirements and limitations have been formalized as constraints under the CSP model. In
addition, envelopes evaluation w.r.t. number of panels and length of junctions has been discussed
and formulas representing the knowledge have been presented. The main characteristics and
assumptions for tackling this problem may be summarized as follows.

— All the elements (façade, panels, frames and supporting areas) have a rectangular shape.

— Only two characteristics of the panels are fundamental in our problem: their position
(px0, py0) and their size (pw , ph).

— Panel size lower and upper bounds may be different for each façade (depending on acces-
sibility and impact of the spatial entities hierarchy).

— Panels are attached onto the façade by their corners.

— The design of insulating envelopes should be done in such a way that the number of panels
is minimized.

— Aesthetics of envelopes is optional for the algorithms but a necessity for the architects
point of view.

The goal of the renovation is to reduce energy consumption. The goal of our work is to
model the Cutting & Packing problem under CSP and solve it using different techniques from
operation research and artificial intelligence. The goal of the support system, product of our
work, is to assist architects design and decision-making. As a consequence, our algorithmic
solutions try to generate different envelopes solutions for façade in order to give the architect
a wide spectrum of possibilities. Also, to give freedom to the architects intuitions, manual
design and automatic design (although some panels may be drawn manually letting the system
to complete the envelope) are identified as strong requirements.

Clarifying note #4
The core problem of the dissertation is the design of insulating envelopes. As we have
seen, the design problem is treated as a two-dimensional Cutting & Packing problem
as well as a configuration problem. Along the document, and when no confusion arises,
we use “design problem” , “Cutting & Packing problem” and “configuration problem”
indistinctly.
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I don’t know. How did Beethoven hear the Ninth Symphony in
his head before he wrote it down? The brain’s a pretty good
computer, too, isn’t it?

The Bicentennial Man and Other Stories
Isaac Asimov, 1976
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Design is a complex process referring to the creation or elaboration of plans, blueprints,
diagrams and process for objects or systems (Dinar et al., 2015). As such, design has been
identified as an important conception phase in the Product LifeCycle Management of any product.

In this chapter three envelopes design algorithmic solutions are described. In the first place, we
present a functional programming approach, named InDiE, supporting manual interactive design
of panels, consequently insulating envelopes. As such, the functions implementing the conflict
solving are discussed and exemplified. Benefits of this method are the interactive design provided
to the user and the fast implementation setup for developers. In a second step, we introduce two
heuristic approaches for supporting the automatic envelopes design. Here, instead of functions,
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we develop two constraint-based heuristics, one based on the greedy approach, named GaLaS
and one based on the cutting approach, named CaSyE. Again, constraint resolution is discussed
and evaluation cases are provided.

3.1 Interactive Design: InDiE

This section presents a real-time manual interactive design of insulating envelopes, named
InDiE.

3.1.1 Motivation

As previously established in Section 2.1.2 on page 35, one of the support system functional
requirements is the support of manual design of panels and relevant insulating envelopes. A
manual design involves creative efforts of the architect when designing each panel thus gener-
ating subjective insulating envelopes. Designing or dawning each panel is an application of the
constructive approach from the layout synthesis field (Liggett, 2000). It is then the task of the
support system to aid the construction process by informing or resolving constraint conflicts.
Then, this design may be seen as a guided design. This means that the reactions of the support
system to the user actions (interaction) must be clearly identified. Also, given the hand-eye
coordination when dawning, the reactions of the system must be communicated to the user in a
very short time (real-time). The first algorithmic solution for manual design is here introduced.

The solution presented in this section, that we have called InDiE for Interactive Design of
Insulating Envelopes, implements the constructive approach to interactively guide the architect
in his/her design and see, in real-time, the impact of his/her own panels’ dawning in regard to
the industrial conditions. We do so by developing validation functions for each of the constraint
in the model. The solution may be implemented in any functional language without relying on
complex black-box tools as constraint solvers, linear programming libraries or meta-heuristics.
Further, we propose a web-oriented Java-script implementation that gives the possibility to have
a real-time interaction with the user (see concept in Figure 3.1 on the next page). What is
more, partial envelopes design may be finished by the automated algorithms, presented latter in
Chapter 5 on page 127, in a web-service setup.

3.1.2 Scheme

As explained before, our efforts focus on providing to the architects an interactive design of
insulating envelopes in real-time. An interactive design refers to the system reactions to the user’s
actions in order to help him/her to reach her/his (design) goals (Dix et al., 2003). Interactive
behavior have been widely study in many knowledge areas and industry sectors (Glover et al.,
2005, Godin, 1978, Jankowski and Hachet, 2013, Shin and Ravindran, 1991). Among other
things, the human interface allowing the interactive communication is one of the major study
topics in computer science and informatics (Dix et al., 2003).

On the other hand we have real-time support. Real-time support refers to the capabilities of
the support system to react to the user’s actions in "no time". Real-time interaction is needed,
mostly, when the user’s actions require a response within the next 100 milliseconds (cf. Chapter
17 in Dix et al. (2003)). For instance, for activities involving hand-eye coordination, the system
answers must be fast enough as to not block the activity or deteriorate the results. In the
envelopes design case, immediate support must be given to the architects when designing each
panel. This means that the underlying support system must execute validation or resolution
algorithms in such a way that the design process is continuously fed by the system responses.

One fundamental concept functional programming is the tasks division. This concept is
implemented by means of functions that are assembled together to provide a major functional-
ity. The manual design of envelopes is addressed under the functional programming paradigm,
meaning that the tasks to solve constraint conflicts have been delegated to different functions.
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Figure 3.1 – Concept: Real-time manual interactive design.

In this case, and for convenience, several constraint up-to two constraints are linked to a unique
function.

Now, an alternative for doing manual design is to provide instantaneous feedback to the
architect drawing. Essentially this mean that the manual design may be interactively guided
by the support system. When drawing a panel the system may restrict its possible size to be
smaller than the upper bounds, bigger than the lower bounds, visually inform of conflicts with
frames and supporting areas, and ideally, completely avoid panels overlapping or inform about
such overlapping. An interactive architects manual design of envelopes would work as follows:

1. The system presents a drawing of the façade.
2. The architect draws a panel over the façade while the system informs:

— If the size of the panel is too small or too big given panel bounds and the compatibility
constraint betwen width and height,

— if the panel is in conflict with windows and/or doors,
— if the panel cannot be installed because its corners cannot be attached,
— if the panel is in overlapping conflict with an already designed panel,
— if the panel definition is blocking the definition of further panels.

3. The architects iterates step 2 until satisfaction.

As a matter of choice, and if the graphical user interface (GUI) capabilities allows it, a given
drawn panel may be re-designed by the architect as part of aesthetics considerations or because as
far the architect can tell current constraint conflicts may get solved. This means that in manual
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design, ill definition of panels should be possible. Further, stopping ill definition of panels may be
counterproductive for the architects aesthetic flair. The underlying validation algorithm informs
the architect that constraints are being violated but it is the architect who decides lastly the
exact size and position of panels. Among the set of alternatives to support architects manual
design we have chosen the following:

— Informing about constraint conflicts is done visually: Our design choice is to set different
colors for well-defined (green) panels and ill-defined ones (red).

— As an invariant, for drawing a panel, each of the previously drawn panels must be well
defined.

— Re-design of a given well-define panel is possible. Colors of the panel are changed interac-
tively depending on constraint conflicts.

— Gaps between panels are not conflictive for the result. In other words, when doing manual
interactive design the area constraint (2.6 on page 38), that implies no holes, is ignored.

In consequence, the support system has two main responsibilities. Firstly, knowing that
constraint conflicts exists for the selected/drawn panel. Secondly, it must inform the user about
those conflicts. The former responsibility is fulfilled by the validation algorithms described in
next Section. The latter responsibility is fulfilled with the GUI capabilities 1.

3.1.3 Implementation

In this section we present how functional programming is used to implement validation al-
gorithms for the constraints presented in Section 2.2 on page 37. We give a brief behavior
description for every function. The ouput for each function is true if the panel is well defined
and false otherwise. Improved versions of these functions will be latter used in the implemen-
tation of the greedy algorithm. Examples of each function result are presented in the next
Section.

Size constraint & size compatibility constraint

The size constraint (2.4 on page 38) states limits for the width and height of panels. The
inputs of this function are a panel’s current size (pw , ph) and, the lower (mi n↓,mi n↑) and
upper bounds (max↓,max↑) for panel size. Algorithm 1, presented in Figure 3.2 on the facing
page, implements the size constraint validation.

Recall that if the ratio pw
ph

is less than one, the panel orientation is vertical, otherwise, it
is horizontal. Then, the size constraint is implemented respecting the compatibility constraint
(2.5 on page 38) between width and height (i.e., orientation) and lower and upper bounds
in both dimensions. Taking into account this information, the current panel width lies between
[mi n↑,max↑] whereas its height must lie between [mi n↓,max↓], for horizontally oriented panels.
Conversely, for vertically oriented panels a swap between width and height bounds is executed.
This function is executed when decreasing or increasing the size of panel by means of the graphical
interface.

Non-overlapping constraint

The non-overlapping constraint (2.7 on page 39), implemented as illustrates the Algorithm
2, introduced in Figure 3.3 on the next page, states that panels cannot overlap in at least one
dimension. The inputs of this function are the position (px0, py0) and assigned size (pw , ph) of
the panel currently being designed, and a list of already-defined panels (adp). Note that a given
already-defined panel can be in fact a zone out of the configuration (zoc); these zones are of
rectangular shape and thus their non-overlapping is managed the same as if they were a panels.

1. It is worth mentioning that the support system GUI has been implemented by the engineer Philippe Chantry
when he was working in Mines d’Albi. No details about the GUI capabilities are provided as they are of marginal
interest to our work.
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Figure 3.2 – Algorithm 1: Validation of size constraint.
Inputs: Current panel size (pw , ph), panel size bounds (max↑,mi n↑,max↓,mi n↓).
Output: Whether size constraint is being violated (True/false).

Figure 3.3 – Algorithm 2: Validation for non-overlapping constraint.
Inputs: Current panel position (px0, py0), current panel size (pw , ph), list of already-defined
panels (ad p).
Output: Whether non-overlapping constraint is being violated (True/false).

To verify panels overlapping, the current designed panel must be checked against every
already-defined panel (adp). An overlapping exists between panels p and q, if the projection
of their widths and heights overlaps. If an overlapping exists, the color of the current designed
panel is changed to red while the already defined panel remains green. This function is executed
in two cases. First, when decreasing or increasing the size of panel by means of the graphical
interface. Second, when the defined panel is moved (re-designed) around the façade surface.
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Frames and interference constraint

Algorithm 3, in Figure 3.4, checks at the same time whether an assigned panel violates
interference constraint (2.11 on page 41) and frames constraint (2.8 on page 39). The input of
this function are the bottom-left corner (px0, py0), width (pw ) and height (ph) of an assigned
panel, the range of width and height (for instance, [mi n↑,max↑] and [mi n↓,max↓]), the minimal
distance between panels and frames borders (d) and the list of frames over the façade (F ). The
following flowchart depicts the behavior when checking conflicts of frames and interference in
the vertical axis. A similar process is executed for the horizontal axis, i.e., for the left and right
edges of the façade.

Figure 3.4 – Algorithm 3: Validation algorithm for frames and interference constraints.
Inputs: Current panel position (px0, py0), current panel size (pw , ph), panel size bounds
([mi n↑,max↑]), list of frames over façade (F ), minimum distance between panel border and
frames borders (d), façade size ( f acw , f ach).
Output: Whether frames or interference constraints are being violated (True/False).

The first step of Algorithm 3 is to validate the interference constraint (2.11 on page 41) by
checking if there is enough space for forthcoming panels. If the panel does not interfere with
forthcoming panels, the algorithm checks partial overlapping of the panel against all frames.
In the case there is a conflict, the algorithm terminates informing that a conflict exists. This
function is executed every time a new panel is drawn or re-designed.

Installation and weight constraints

The last function ties up a single panel definition and implements the validation of the
installation (2.9 on page 40) and weight constraint (2.10 on page 40). The input of this
function are the bottom-left corner (px0, py0), width (pw ) and height (ph) of an assigned panel
and the list of supporting areas (sa). Recall that in order to attach panels, their corners must
be located on supporting areas (sa). and that supporting areas at the bottom corners must be
strong enough to support the weight of the panel.

In essence, the Algorithm 4, shown in Figure 3.5 on the facing page, checks that every corner
match a supporting area. To do so, it tests corners against every supporting area, finishing the
executing if at least one corner is not included in any supporting area. The panels’ weight and
the supporting area load bearing capabilities are checked after the corners check. Here, it is
worth noticing that supporting areas do not overlap. This means that a given corner can be
located in at most one supporting area.
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Figure 3.5 – Algorithm 4: Validation algorithm for installation and weight constraints.
Inputs: Current panel position (px0, py0), current panel size (pw , ph), list of rectangular sup-
porting areas (sa).
Output: Whether weight or installation constraints are being violated (True/False).

The remaining constraints, i.e., area and symmetry breaking constraints, are overlooked as
the manual design does not involve them.

3.1.4 Evaluation Cases

Examples of the previous validation algorithms are presented in this section. To do that,
we use the façade illustrations introduced in Section 2.4 on page 45. Panels bounds are [1,10]
meters for one dimension and [1,2] meters for the other dimension.

— Figure 3.6 presents two well-defined panels in green and one ill-defined panel in red. The
figure illustrates the fact that the size of a panel is constrained to the inputed upper
bounds.

Figure 3.6 – Illustration of interactive support for size constraint constraint.

— Figure 3.7 on the next page presents six well-defined panels in green and one ill-defined
panel in red. The figure illustrates the behavior of the support system when the designed
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panel enters in conflicts with frames. The red panel is partially overlapping one door and
one window on the façade.

Figure 3.7 – Illustration of interactive support for frames constraint.

— Figure 3.8 presents four well-defined panels in green and one ill-defined panel in red. The
figure illustrates the behavior of the support system when the designed panel cannot be
installed over the façade. The red panel does not have its top-right corner in a supporting
area.

Figure 3.8 – Illustration of interactive support for installation constraint.

— Figure 3.9 on the next page presents four well-defined panels in green and one ill-defined
panel in red. The figure illustrates the behavior of the support system when the designed
panel interferes with the further definition of panels. The red panel cannot be designed
there as the remaining space (at its left) is smaller than the panel width lower bound; no
panel can be designed in that space.

— Figure 3.10 on the facing page presents six well-defined panels in green and one ill-defined
panel in red. The figure illustrates the behavior of the support system when the designed
panel overlaps one or more already defined panels.
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Figure 3.9 – Illustration of interactive support for interference constraint.

Figure 3.10 – Illustration of interactive support for panels overlapping constraint.

3.1.5 Discussion

In this section we have shown how the manual design may be made interactive with a visual
communication with the user. Then, we have discussed the fact that functional programming
allows the design support to be executed less than 100 milliseconds thus providing real-time
interaction with the user. Finally, we have briefly presented four of the key functions to support
the design problem.

At the beginning of our research, we have considered that constraint satisfaction techniques
were appropriated for addressing the envelopes design problem. Our results have shown us
right when assisting the automatic and automatic design of envelopes (studied in detail in
forthcoming sections). Further, the framework of constraint satisfaction is known to address
support interactive design (Gelle and Weigel, 1996). Nevertheless, for providing a real-time
feedback we have rely on the simple yet powerful concept of task division instead of OR and AI
techniques. Doing this we bypass the time expend in having an output that potentially exceeds
the real-time requirements.
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3.2 Greedy Design: GaLaS

This section presents a greedy approach for the automatic design of insulating envelopes,
named GaLaS. Part of the content of this section has been presented previously in Barco et al.
(2014).

3.2.1 Motivation

As previously established in the requirement Section 2.1.2 on page 35, one of the support sys-
tem functional requirements is the support of automatic design of panels (respectively insulating
envelopes). The automatic design refers to the capabilities of the system to provide compliant
design solutions with the minimal human intervention. But, the fully automation of the build-
ing renovation process is not possible given that input (renovation specification) and output
(envelopes) depends on human analysis, human manufacturing and even the human tuning of
envelopes (for aesthetics reasons). Nevertheless, automation of the envelopes design is desirable
to avoid non-compliant solutions, eliminate by hand configuration errors and to unload charges
to the architects (to focus more on aesthetics properties). Besides, the algorithmic solution pre-
sented in this section, as well as the automatic design solutions to be discussed in Sections 3.3 on
page 75 and 4.3 on page 106, allows a semi-automatic design: The architect draws well-designed
panels on the façade and inputs the partial envelope the algorithmic solution.

The idea behind the GaLaS algorithm is to be as fast and simple as possible. The greedy
heuristic strategy is based on very simple and powerful concepts. In essence, a greedy algorithm
works by dividing the problem in steps. At each step the algorithm makes a choice that is
assumed to be the best in the current state. At the core this is a local optimal decision.
Then, by making the best local decision the algorithm expects to arrive to an optimal solution.
However, in general, greedy algorithms do not achieve the optimal but close to optimal solutions.
In consequence, the algorithm here developed is "blind" in the sense than it does not take into
account the global façade geometry and structure, and it does not consider future states (except
for the implementation of the interference constraint— 2.11 on page 41). One of its advantages
is to generate solutions in a short computational time thus satisfying the execution requirements
of the project (see 2.1.2 on page 35).

Now, according to Cormen et al. (2009a), to implement a greedy algorithm it is first nec-
essary to determine the optimal substructure of the problem. Here, a substructure to the two-
dimensional Cutting & Packing problem of designing optimal insulating envelopes is to design
one optimal panel. Due that the minimization of number of panels is an objective, an optimal
panel is the one that covers the largest area surface while respecting the set of constraints,
including panel orientation soft or hard constraint, imposed by the problem domain. Thus, con-
straint conflicts are as well resolved using local optimal choices in regard to the panel surface.
The algorithm decreases the failures possibilities by executing backtracking if a local decision
cannot be made due to constraint conflicts.

Our algorithm, that we have called GaLaS for Greedy algorithm for Layout Synthesis, follows
an intuitive constructive approach (Liggett, 2000), i.e., optimally place one panel at a time
without considering forthcoming panels (see greedy concept in Figure 3.11 on the facing page).
The application of the greedy approach to Cutting & Packing problems is also known as on-
line packing (Csirik and Woeginger, 1998, Jylänki, 2010). The on-line packing assumes that
items arrive to the packing process on-the-fly, i.e., in runtime. This does not hold completely
true in our case as there is no panels to be packed one by one. Instead, our on-line packing
"created" panels on-the-fly in regard to the local façade geometry. This first algorithmic solution
for automatic design is presented in this section.

3.2.2 Scheme

The main characteristics of greedy solutions is the local decision-making. This is, no matter
in which stage the process is, the next step is computed with respect to present state and no
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Figure 3.11 – Concept: Local decision-making for greedy design.

future states are taken into account. Thus, for developing a greedy algorithm that generates
valid insulating envelope, several local decisions for designing panels must be isolated. These
local decisions concern mainly the definition of a single panel, i.e., its origin point (px0,py0), its
size (width pw and height ph).

This local decision-making must be done by taking into account the (constraint) knowledge
inherit from the industrial scenario while trying to reduce the number of panels composing the
resulting envelope. Before explaining the general scheme of the greedy algorithm, it is worth to
remember that each panel must respect the compatibility constraint between width and height,
constraint that imposes a given orientation for the panel (in the support system—Chapter 5 on
page 127—the architect may choose his/her preferred orientation as a personalization feature).
The local decisions concerning the design of a given panel are:

1. How to choose an origin point to place a the panel? The origin point (px0, py0) in which
the panel is designed has a big impact on the envelope design. Considering the origin point
of panels, Figure 3.12 on the following page shows two decision possibilities over a surface.
Literal (a) illustrates the decision: Choose the lowest and leftmost point. Then, literal (b)
illustrates the decision: the rightmost and lowest point. Note how these envelopes differ
by changing the local decision of origin point. In our case, we have chosen to start from
the bottom-left corner of the façade.
In order to avoid holes, the origin point for the currently-designed panel is always adjacent
to one or more panels (except for the first panel) or to zones out of configuration. The
origin of the panel is set either at the bottom-right corner of the already-defined panel
(illustrated in Figure 3.13 on the next page bottom-right point) or at the top-left corner of
the already-defined panel (illustrated in Figure 3.13 on the following page top-left point).
In our case, given that the panel has not defined size yet, we have chosen the bottom-
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Figure 3.12 – Criteria: (a) Point bottom→left: (b) Point right→top

Figure 3.13 – Possible origin points for currently-designed panel.

first approach. In this approach, at each step the algorithm chooses as (px0, py0) the
first available bottom-left point of the façade with priority to the bottom. This option
presents two advantages. Firstly, the panel may be extended up and to the right avoiding
overlapping with the panels already designed by the process. Already-defined panels, such
as user-designed panels and zocs, must be dealt with if they are at the right or top of
the currently designed panel. And secondly, this allows to locate the largest panels at the
bottom of the façade, which is a good choice for the on-site assembly process.

2. How to choose the size assigned to a the panel? The initial size assigned to any given
panel is the maximum allowed, for both the width and the height, and respecting the
compatibility constraint. Then, for a given execution, the algorithm sets either pw > ph or
pw < ph and continues applying local decision respecting such ratio (orientation). If further
local decisions make the panel enter in constraint conflicts, then the current ratio between
pw and ph is changed, i.e., changes orientation in an attempt to prevent no solution setup.
Now, the local decision of setting the maximum allowed size for both dimensions is done
in order to reduce the number of panels and then have solutions close to optimal. In case
of constraint conflicts using the maximum size, then the panel size is reduced in one or
both dimensions. Trying to respect the current panel’s orientation, the width is reduced if
pw < ph , otherwise the height.

3. How to solve panels-frames and panels-panels conflicts? If a panel, with defined origin
point and size, enters in conflict with a given frame (partial overlapping) or with already-
defined panels or zocs (overlapping), then its width or its height are reduced in such a
way that the conflict gets solved. To do so another local decision is made: It reduces
the width if vertical orientation and the height if horizontal orientation (in order to keep
consistency).
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4. How to choose where to attach panels? If the panel’s corner are not included in supporting
areas, then reduce the width or height until a supporting area is found. The decision
whether to reduce the width or the height is made taking into account the panel’s current
orientation and largest surface.

Note that defining different local decisions generates different insulating envelopes. Con-
versely, different envelopes can be drawn by choosing different panel’s size or the way require-
ments are satisfied. For example, designing panels following an spiral pattern (Huang and Chen,
2008), i.e., following the perimeter of the façade, from the exterior to the interior.

3.2.3 Implementation

Bearing in mind the above scheme, the algorithm GaLaS that solves the packing of panels in
a greedy fashion has been developed. It makes local decisions for positioning panels following the
first-fit bottom-left approach. Also, it performs backtracking when the positioning of a panel is
not possible due to requirements conflicts. To understand the algorithm internals, we present the
subroutines that address most of the constraints in the model and that are used by the greedy
algorithm. They are divided in three subroutines; one for frames and interference constraints, a
second one for dealing with the installation and weight constraints and, one dedicated to solve
panels overlapping with already-defined panels or zocs.

Subroutines

First, the Algorithm 5 presented in Figure 3.14 on the next page, called Frames & Interference
Resolution, is introduced. This algorithm has two responsibilities. It checks whether an assigned
panel violates the frames constraint (2.8 on page 39) and at the same time, the interference
constraint (2.11 on page 41). The inputs of this function are therefore the current panel
position (px0, py0), the current panel size (pw , ph), the list of frames (F ) of the façade, the
minimum distance between panel borders and frames borders (d), the panel orientation (po) and
the façade size ( f acw , f ach). In the case a conflict exists the algorithm returns a new value for
the size of panels. The output of this function is a new consistent size for the current panel.
Note that the algorithm describes only the constraint conflicts using the vertical axis (y-axis)
but it is executed for both axis sequentially.

The first step of this algorithm is to leave enough space for the next panel (interference
constraint—2.11 on page 41) if needed. Then, it uses a stack to perform an ordered check of
all frames covered by the panel in the axis. In case there is a conflict, the algorithm proceeds
by adjusting one of the coordinates of the end point, i.e., reducing its size. In the case the
frame is completely covered by the panel, it marks the panel as covered in the given axis. Once
algorithm has been executed for both axis, every covered frame has been marked twice. The
final step of the algorithm is to discard all frames successfully covered by the panel in order to
avoid forthcoming checks. The new size for the panel is returned: A size which is consistent
with all frames and forthcoming panels. Note here that the new size is consistent with respect to
frames but not with respect to the panel size bounds. It is responsibility of the GaLaS algorithm
to check the resulting panel size against the size bounds.

Algorithm 6 presented in Figure 3.15 on the next page, called Weight Resolution, introduces
the resolution of the weight constraint (2.10 on page 40) in a greedy fashion. Note that any
previously-defined panel must have its corners in supporting area in order to be properly attached.
The origin point is therefore always adjacent to one or more panels or to zones out of configuration
(expect for the first panel, which is always at the bottom-left corner of the façade). The inputs
of this function are therefore the current panel position (px0, py0), the current panel size (pw ,
ph), the panel’s orientation (po) and the list of supporting areas (sa) of the façade. In the case
a conflict exists the algorithm returns a new value for the size of panels. The output of this
function is a new consistent size for the current panel.
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Figure 3.14 – Algorithm 5: Frames & interference resolution.
Inputs: Current panel position (px0, py0), current panel size (pw , ph), list of frames (F ),
minimum distance between panel borders and frames borders (d), panel orientation (po), façade
size ( f acw , f ach).
Output: New size of panel (pw , ph).

Figure 3.15 – Algorithm 6: Weight resolution.
Inputs: Current panel position (px0, py0), current panel size (pw , ph), list of supporting areas
(sa), current panel orientation (po).
Output: New panel size (pw , ph).

Respecting our scheme choices, priority is given to the origin point at the bottom. In con-
sequence, as an invariant, the origin point for every panel already belongs to a supporting area.
For the first panel at the bottom-left corner of the façade this holds true as the existence of a
supporting area in (0,0) is mandatory to cover all the façade surface. What remains is then to
choose a valid point for the remaining three corners.

In essence, the Algorithm 6 looks for valid attaching points for panel’s corners. To do so, it
takes the current panel definition (position and size) and checks if its corners match supporting
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areas. If one or more corners fall out supporting areas it proceeds by reducing width and/or height
until the next supporting area is found. The process is executed iteratively until all corners have
been placed in valid attaching points. After computing the weight of the panel, it checks whether
it is successful supported by supporting areas. In the case it is not possible, it reduces panels’
size in proportion with the overweight, computes the weight and checks again with supported
areas. As well as Algorithm 5, the resulting panel size may not be consistent with the panel size
bounds. This constraint consistency is checked by the GaLaS algorithm.

The last subroutine solves overlapping conflicts between the currently-designed panel and the
already-defined panels or zocs (non-overlapping constraint—2.7 on page 39). The inputs of
this function are therefore the current panel position (px0, py0), the current panel size (pw , ph),
the panel’s orientation (po) and the list of already-defined panels (ad p) of the façade. In the
case a conflict exists the algorithm returns a new value for the size of panels. The output of
this function is a new consistent size for the current panel.

Given that the panels designed by the automatic solution are all at the left and bottom of the
currently-designed panel, the overlapping resolution is made with respect to the panels or zocs
that have been manually designed by the architect. No assumption about the position of these
panels or zocs is made and thus the need to solve overlapping conflicts. Algorithm 7 presented
in Figure 3.16, called Non-overlapping Resolution, introduces the flowchart of this resolution.

Figure 3.16 – Algorithm 7: Non-overlapping resolution.
Inputs: Current panel position (px0, py0), current panel size (pw , ph), list of already-defined
panels (ad p), current panel orientation (po).
Output: New panel size (pw , ph).

Essentially, the Algorithm 7 checks for overlapping in both axis between the currently-designed
panel and each of the already-defined ones. If an overlapping in both axis exists, then one of the
dimensions must be reduced. The chosen dimension is the one that respects the current ratio
between width and height, i.e., the current orientation. Reducing a dimension that allows the
largest panel area is also possible. However, the algorithm takes local decisions aiming as well
to respect the architect preferences.
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Greedy Solution

Algorithms 5 in Figure 3.14 on page 60, 6 in Figure 3.15 on page 60 and 7 in Figure 3.16
on the previous page, are used in the Algorithm 8 presented in Figure 3.17 on the facing page,
called GaLaS. It is implemented for designing panels and re-designing them (backtracking) when
the design of a given panel fails. The inputs of the algorithm are:

1. Façade size ( f acw , f ach),

2. panels’ width lower and upper bounds (pwl , pwu),

3. panels’ height lower and upper bounds (phl , phu),

4. list of frames (F ),

5. list of supporting areas (sa),

6. list of alread-defined panels (ad p) which can be empty,

7. initial origin points (op, with op = [(0,0)] if no already-defined panels nor zocs exist),

8. architects preferred orientation (po),

9. minimum distance between panel borders and frame borders (d),

10. an empty list where designed panels will be stored (sol uti on) and,

11. a boolean variable indicating for the current panel if its size (width and height) has already
been swapped due to backtracking.

The output of the algorithm is either a set of envelopes or an empty set (meaning no solution
has been found).

Before entering in the algorithms details, it is worth mentioning that at the beginning of
the process exists a list of possible origin points. Initially, when there is no already-defined
panels, the list contains only the bottom-left corner of the façade, i.e., op = [(0,0)]. This list
op is dynamically changed when designing panels. For instance, the panel p1 in Figure 3.13 on
page 58, removes the origin point (0,0) and adds two new points, namely, (13,0) and (0,2.7).
Any new panel fetches its origin point from this list and adds new origin points (except for the
last panel that matches the top and left edges of the façade). The algorithm GaLaS behaves as
follows.

The stop condition is the absence of origin points or the failing at positioning the first panel
over the façade, meaning that the façade cannot be covered at all by such an insulated envelope.

The algorithm begins by retrieving an available origin point for the panel p i , the first panel
p1 been (0,0), and finding an end point given panel upper bounds and current orientation. Then
it checks for panel overlapping against already-defined panels using Algorithm 7 (Figure 3.16 on
the preceding page).

Afterwards, it checks the validity of the panel with respect to the façade frames using the
Algorithm 5 (Figure 3.14 on page 60) which if necessary, generates a new valid end point for the
panel. If the size of the panel p i violates size limitations then it fails at positioning the panel.
Upon failure, the current orientation is swapped and the design process starts again for panel p i .
Then, if no solution is found for p i , the previous panel p i−1 is re-designed with size 10% 2 less
and the design process starts again for panel p i−1. This reduction is done in both dimensions.

If a valid end point has been set for panel p i , the algorithm checks if the panel corners match
supporting areas, otherwise reduces its size, using the Algorithm 6 (Figure 3.15 on page 60). If
the panel p i size has been modified by Algorithm 6, then it checks again the validity of the panel
again frames by Algorithm 5. These two checks, panels vs frames and panels vs supporting areas,
run sequentially until a consistent panel is designed. Once the panel p i is designed respecting all
the constraints, it proceeds by computing new origin points, using the top-left and bottom-right
corners, and adding the next panel iteratively. If no more origin points are left it means that no
more panels can be placed as the entire façade surface is already covered. Thus, a solution have
been found.

2. The proportion of the size to be reduce may be set in a new parameter. We use 10% because it is a good
approximated to the number of times a panel size may be reduced (maximum 10 times).
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Figure 3.17 – Algorithm 8: GaLaS algorithm.
Inputs: Panel size bounds (pwl , pwu , phl , phu), list of frames (F ), list of supporting areas (sa),
minimum distance between panel borders and frames borders (d), architects preferred orientation
(po), façade size ( f acw , f ach), list of origin points (OP=[(0,0)]), solution list=[].
Output: Envelope solution (panels coordinates and size).

Solution diversity

Given that each façade has many different valid solutions and some valid solutions using the
minimum number of panels, we need a way to generate the biggest possible set of insulating
envelopes and take from them the best ones with respect to the number of panels. Therefore, we
use a basic search strategy to explore the solution space and enumerate all solutions found. Our
built search tree is binary: Left branch imposes the ratio pw > ph for the panel’s size whereas
the right branch imposes the ratio pw < ph . This means that a given left node in the tree sets
the current panel orientation as horizontal and the right node sets the current orientation as
vertical. Figure 3.18 on the next page illustrates this search behavior.

For each node are executed the same local decisions discussed before but with different width
and height ratio. If a solution using only horizontal panels exists, this solution is found at the
left most leaf of the tree. Conversely, the right most leaf contains a solution with only vertical
panels. Plausibly, these two leaves have a smaller height in the tree than those leaves with
envelopes with panels in both orientations.

After all solutions in the search tree have been found, we proceed by ranking them according
with a given criterion. For instance:
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Figure 3.18 – Solution diversity using binary trees

— The number of panels.

— Length of junctions.

— Envelopes with panels in a given orientation.

— Envelopes with a given ratio between number of panels vertical oriented and number of
panels vertically oriented.

— ...

Further, the set of solutions contain all numerical information about panels (size, position,
etc). Ergo, the ranking in which solutions are ordered and presented to the user is only an ad hoc
procedure that is executed at the end of the design process. Then, the raking of envelopes may be
built with any criterion that depends on the insulating envelopes numerical model. Additionally,
the solutions presented to the user maybe only a subset of all solutions found. Although, showing
all acceptable envelope solutions is important in order to provide the user the possibility to choose
her/his preferred envelope among several valid options. Indeed, it is the case that a given solution
is adequate with respect to the thermal renovation goals but, according to architects request
and aesthetic considerations, another solution may be implemented.
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3.2.4 Evaluation Cases

In this section are presented some scalability tests and examples of envelopes generated by
the greedy solution GaLaS.

Scalability

As stated in Section 2.3 on page 43, panel size upper bounds are 10 meter for one dimension
and 3 meters for the other one. Consequently, for the left branch of the search tree the ratio
pw > ph is assured with pwu = 10 meters and phu = 3 meters whereas the right node swaps these
values, i.e, pwu = 3 meters and phu = 10 meters. Following the non-functional requirement in
Section 2.1.2 on page 35, the executing time is limited to 30 seconds. Figure 3.19 shows the
time expended by the GaLaS algorithm to find the first solution (independently of the number
of panels).
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Figure 3.19 – Time first solution versus façade area.

As expected for greedy algorithms, and taking into account that no real-time interaction is
presumed, the solution runs in competitive computational time, generating a envelope in less than
a second for 2000 m2 façade. From the figure is deduced that increasing the façade area does
not necessarily more computational time. In fact, given that panels’ corners must be matched
with supporting areas in order to be properly attached, it may be the case that panels using their
maximum width and height can be placed sooner in a large façade than in a small one. Lastly,
the time depends on the conflicts with frames and the alignment on supporting areas which is
dependent of the structure of the façade and panel size limits rather than the area of the façade.

Next, Figure 3.20 on the next page shows the number of solutions found in the time window of
30 seconds versus façade area. The number of solutions increases with the façade area provided
the panel bounds remain the same. Then, from a façade with area 600 m2, the number of
solutions decreases as it has no time, in 30 seconds, to generate all possible solutions.

Finally, we have taken all solutions found in the 30-seconds time window and have ranked
them with respect to the number of panels (increasing order). Figure 3.21 on the following
page presents how many panels has the best ranked insulating envelopes (minimum number of
panels). Naturally, the number of panels increases with the façade area.

65



CHAPTER 3. INTERACTIVE & HEURISTIC-BASED DESIGN

 0

 50000

 100000

 150000

 200000

 250000

 0  200  400  600  800  1000  1200  1400  1600  1800  2000  2200

N
u

m
b

e
r 

o
f 

so
lu

tio
n

s

Facade surface (square meters)

Number of solutions versus facade surface

Figure 3.20 – Number of solutions (in 30 seconds) versus façade area.
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Figure 3.21 – Number of panels versus façade area.

Façades illustrations

The façades presented in Figures 2.15 on page 44, 2.14 on page 44 and 2.16 on page 44 in
Section 2.4 on page 45, are used to illustrate the results generated by the algorithm. We present,
before the resulting insulating envelopes, the original façade.

— Figure 3.22 on the next page presents the original façade number 1.

— Figure 3.23 on the facing page shows an envelope thrown by the GaLaS algorithm, using
pwu = 3 meters as width upper bound and phu = 10 meters as height upper bound, i.e.,
vertically oriented panels. The envelope is composed of 15 panels and its length of junctions
is 113.2 meters.

— Figure 3.24 on page 68 shows an envelope thrown by the GaLaS algorithm, using pwu = 10
meters as width upper bound and phu = 3 meters as height upper bound, i.e., horizontally
oriented panels. The envelope is composed of 13 panels and its length of junctions is 106.9
meters. Note that the four small panels in the middle respect the constraint and are well
designed but they are not optimal as they add more junctions to the envelope than only
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Figure 3.22 – Façade instance 1.

Figure 3.23 – Solution with pwu = 3 meters and phu = 10 meters.

one big vertical panel. This may be overcome by the architect by designing a manual panel
before launching the greedy algorithm.

— Façades in Figures 3.23 and 3.24 on the next page, however, are not the best envelopes
(w.r.t. minimum number of panels or junctions length) thrown by the GaLaS algorithm;
these are the best envelopes when respecting as much as possible the vertical or horizontal
orientation. When asking the best solution, no matter the orientation, the generated
envelope improves considerably. Figure 3.25 on the following page shows this resulting
insulating envelope. The envelope is composed of 11 panels and its length of junctions is
100.555 meters. Another 16 envelopes composed of 11 panels have been generated, each
of them with slightly bigger length of junctions. The envelopes are shown in Figure 3.26.

— Figure 3.27 on page 70 presents the original façade number 2.

— Figure 3.28 on page 70 shows a envelope solution made out with pwu = 3 meters as width
upper bound and phu = 10 meters as height upper bound, i.e., vertically oriented panels.
The envelope is composed of 13 panels and its length of junctions of the envelope is 115.2
meters.

— Figure 3.29 on page 70 shows a envelope solution made out with pwu = 10 meters as width
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Figure 3.24 – Solution with pwu = 10 meters and phu = 3 meters.

Figure 3.25 – Best solution of GaLaS algorithm for façade instance 1.

upper bound and phu = 3 meters as height upper bound, i.e., vertically oriented panels.
The envelope is composed of 8 panels and its length of junctions of the envelope is 97.0
meters.

— Again, façades in Figures 3.28 on page 70 and 3.29 on page 70 are not the best envelopes
thrown by the GaLaS algorithm. Figure 3.30 on page 71 shows the best solution thrown,
independently of the orientation. The envelope is composed of 8 panels and its length of
junctions is 95.6.

— Figure 3.31 on page 71 presents the original façade number 3.
— Figure 3.32 on page 71 shows a envelope solution made out with pwu = 3 meters as width

upper bound and phu = 10 meters as height upper bound, i.e., vertically oriented panels.
Note that the blocking frame in the middle of the façade prevents the design with vertical
panels from the bottom to the top of the façade. Thus, the GaLaS algorithm changes to
overcome the situation. The envelope is composed of 8 panels and its length of junctions
is 84.64 meters.

— Figure 3.33 on page 72 shows a envelope solution made out with pwu = 10 meters as width
upper bound and phu = 3 meters as height upper bound, i.e., horizontally oriented panels.
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The envelope is composed of 6 panels and its length of junctions is 57 meters. This is the
best solution thrown by the algorithm.

Figure 3.26 – Eight envelopes composed of 11 panels with different length of junctions.
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Figure 3.27 – Façade instance 2.

Figure 3.28 – Solution with pwu = 3 meters and pwu = 10 meters.

Figure 3.29 – Solution with pwu = 10 meters and phu = 3 meters.

70



3.2. GREEDY DESIGN: GALAS

Figure 3.30 – Best solution of GaLaS algorithm for façade instance 2.

Figure 3.31 – Façade instance 3.

Figure 3.32 – Solution with pwu = 3 meters and phu = 10 meters.
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Figure 3.33 – Solution with pwu = 10 meters and phu = 3 meters.
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3.2.5 Discussion

In this section we have proposed a constraint-based heuristic approach, named GaLaS, based
on optimal local decisions when assigning panels position and size. These local decisions allow
to:

— Position (px0, py0): Choosing the first bottom-left available point of the façade makes each
panel be adjacent to a previous one (or adjacent to a zoc). Then, the decision prevents
holes from happening during the Cutting & Packing process.

— Size (pw , ph): Choosing the maximum allowed panel size allows to minimize the number
of used panels. Also, due to the bottom-left origin point decision, the bigger panels will
be, plausibly, at the bottom of the façade which facilitates the on-site assembly process.

This solution considers the already-defined panels (adp) or zones out of configuration (zocs)
by avoiding overlapping (these adp or zocs must be well defined). Ergo, a partially designed
envelope generated, for instance, by the interactive manual solution InDiE presented in Sec-
tion 3.1 on page 48, may be finished by the GaLaS algorithm. Moreover, the generated relevant
insulating envelopes can be adapted and tuned by a user allowing him/her to express his/her
own artistic sense (discussed in Chapter 5 on page 127). This allows the user to start his/her
design with a close to optimal solution and avoids starting from scratch.

The heuristic uses a given preferred panel orientation (soft constraint) to construct the
envelope but it may change such orientation in order to avoid a no-solution setup. Additionally,
we use a binary-tree scheme, in which left nodes positions horizontal panels and right nodes
vertical ones, in the aim of generating solutions with lowest number of panels and different
solutions which makes the approach more robust.

The GaLaS algorithm seeks to minimize the number of panels by always trying to place the
largest ones first. Our heuristic approach provides good quality solutions, w.r.t. the number of
panels and length of junctions, and is a source for strong design aiding tool for the following
reasons:
Reason 1: The on-line packing is straightforward implemented under the greedy approach, ad-

dressing transparently the fact that the number of panels to design a given envelope
is not known in advance.

Reason 2: The local-decision making allows the heuristic to find solutions fast whereas its
combination with search trees allows the generation of solution diversity.

Reason 3: The different tests that have been carried out show the scalability of our approach
as well as evaluation over different real-life French façades.

Reason 4: The design of the GaLaS algorithm makes it easily to adapt while keeping the same
assumptions, to convex polygon shapes, such as triangles or pentagons to cover
gables for instance, without modifying the core of the algorithm.

We acknowledge that the approach is “blind” in the sense that the façade geometry and
structure, as well as future states in the packing process, are overlooked. Nevertheless, it is a
fast and intuitive design and, as discussed, presents different benefits.

To conclude, we present a summary of the GaLaS algorithm results over the three façade
instances introduced in Section 2.3 on page 43. Table 3.1 on the next page presents the results
where N and Lo j represents, respectively, the number of panels and the length of junctions
in the envelopes. The columns vertical and horizontal show the results, respectively, of the
GaLaS algorithm when asking envelopes with only one orientation and without combination of
the binary tree. Finally, the column V & H shows the result when combined with binary tree
and thus envelopes are a mix of horizontal and vertical panels. In addition, and for convenience,
we present in Figure 3.34 on the following page the best solutions generated by the algorithm.

As the table shows, the combination of horizontal and vertical panels in an insulating en-
velopes decreases the number of used panels and consequently the length of junctions. The
vertical solution for the façade 1 and 2, however, does not have all its composing panels in a
vertical orientation (cf. façade in Figures 3.23 on page 67 3.28 on page 70). This makes the
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Table 3.1 – Results of GaLaS algorithm over façade instances.

Panels orientation

Vertical Horizontal V & H

Fa
ça
de

#
1

N 15 13 11

Loj 113.2 106.9 100.5
Fa

ça
de

#
2

N 13 8 8

Loj 115.2 97.0 95.6

Fa
ça
de

#
3

N 8 6 6

Loj 63.8 57.0 57.0

the vertical envelope for the façade 1 to have more panels and for the second façade less panels
than it would if the orientation would not have been changed. This is consequence of the local
decision-making and the soft constraint for panel orientation implemented by the GaLaS solution.

(a) 11 panels (b) 8 panels (c) 6 panels

Figure 3.34 – Best solutions founded for the three façades.
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3.3 Cutting Design: CaSyE

This section presents a cutting solution approach for the automatic design of insulating
envelopes. Part of the content of this section has been presented in Barco et al. (2016a).

3.3.1 Motivation

Tacit knowledge as aesthetics is a major challenge for both the modelling and implementation
of computer-based solutions. It is known that aesthetics flair has no universally agreed standard.
Nonetheless, properties like symmetry are well accepted as aesthetic concept in different domains
such as human beauty (Jacobsen and Höfel, 2003), web design (Tuch et al., 2010), computer
interfaces (Bauerly and Liu, 2008) and art (McMANUS, 2005). In consequence, we have adopted
symmetry as a reference point for the aesthetics of insulating envelopes. This symmetry notion
is considered as the alignment of panel junction. The second algorithmic solution for automatic
design, that focuses on symmetry of envelopes, is here presented.

This second automatic algorithmic solution contrasts with the greedy approach in that it
designs panels following the geometry and structure of the façade (e.g., it is not “blind”). Due
to this fact, the solution designs envelopes with aligned junctions (symmetric). We do so by
developing a rule-based heuristic, called CaSyE for Cutting Algorithm for Symmetrical Envelopes,
based on the well-known technique of guillotine cuts (Christofides and Hadjiconstantinou, 1995).
Indeed, cutting is a technique from operations research widely used to solve different industrial
problems (Bennell et al., 2013, Christofides and Hadjiconstantinou, 1995, Wäscher et al., 2007)
and it has been applied on problems where symmetry is relevant for the final output. For instance,
arranging items in a news paper (Strecker and Hennig, 2009), automatic mosaic generation
(Battiato et al., 2013) and aesthetics photo post-processing (Greco and Cascia, 2013).

The guillotine approach refers to the process of executing orthogonal cuts, horizontal or
vertical, from one edge of the object to the other edge (Christofides and Hadjiconstantinou,
1995, Ntene and van Vuuren, 2009). The non-guillotine technique, by contrast, may traverse
only a portion of the object in a orthogonal manner (Baldacci and Boschetti, 2007, Alvarez-
Valdes et al., 2007). The guillotine is often seen as a constraint, as well as the orthogonal
property, imposed by the automated machines in particular industry sectors (Cui et al., 2008).
Our motivations behind using the guillotine techniques are, in the first place, the orthogonality of
the items (panels) and the large object (façades), and on the second place, the goal of generating
(symmetric) solutions with aligned junctions. Then, we use the guillotine approach and show
that it is able to generate aesthetic (aligned junctions) insulating envelopes not generated by the
greedy approach, thus satisfying this crucial architectural requirement. The algorithm executes
horizontal and vertical cuts to partition the façade and to find non-conflictive areas to attach
panels. The concept of design using guillotine cuts is illustrated in Figure 3.35 on the next page.

3.3.2 Scheme

The main idea behind the algorithm is to generate envelopes “aesthetically pleasant” by
considering their junctions alignment (symmetry) while respecting the industrial conditions com-
mented above. To do this, and respecting the compatibility constraint between width and height,
the set of panels in an envelope are configured according to a given ration between pw and ph ,
i.e., a given panel orientation (horizontal for pw > ph and vertical for pw < ph). Then, for a given
façade, the algorithm tries as much as possible to design panels using the chosen orientation. If
due to the geometry of the façade, a portion of the envelope cannot be designed using the cho-
sen orientation, the algorithm creates a partition of the façade (called here subfaçade) and tries
to design that partition by changing the panel orientation. This means, on the one hand, that
insulating envelopes may contain only vertical panels, only horizontal panels or a combination of
both. And, on the other hand, that the final insulating envelope is the set of panels belonging to
every subfaçade no matter their orientation. As it is shown later in the document, mixing panels
orientation on the same envelope does not necessarily interferes with the aesthetics goal. The
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Figure 3.35 – Concept: Guillotine cuts for envelope design.

algorithmic solution is divided in three phases executed sequentially. Be aware that the preferred
panel orientation is taken into account at the begging of the process but may be changed if
needed.

Phase 1 The goal of the phase 1 is two-fold. First, using guillotine cuts, find the rectangular
areas, vertical or horizontal, in which panels can be attached (i.e., those places with no
conflicts with frames). And second, given the rectangular areas that have been found
and the façade structure, determine if portions of the envelope cannot be designed with
the preferred orientation. The façade then may be partitioned into pieces that we call
subfaçades. An attempt to design all subfaçades using the other orientation is latter
made.

Phase 2 For an envelope designed using vertical (respectively horizontal) panels, find the columns
(respectively rows) where panels have to be placed. This columns (respectively rows) are
generated taking into account the available areas to attach panels generated by the Phase
1 and the panel upper bounds.

Phase 3 For an envelope designed using vertical (respectively horizontal) panels, pack panels
over the columns (respectively rows). The panels packing is done one by one following a
greedy approach to assign the final size and to solve remaining conflicts with the frames
over the façade.
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Invariant. As an invariant for all phases, a guillotine cut in a given façade or subfaçade is done
only if no frames conflicts exists.

Phase 1: Free zones and subfaçades

The goal of the phase 1 is to know whether the envelope can be designed using only vertical
panels, only horizontal panels, both or to find the subfaçades and characterize them within the
façade. Intuitively, when using guillotine cuts to design an envelope with vertical panels, for
instance, the façade horizontal axis is traversed looking for points with absence of frames. When
there is no frames in a given horizontal point, a vertical guillotine cut may trace from the bottom
to the top of the façade (see Figure 3.36.a). A set of consecutive cuts make an interval (see
Figure 3.36.b). These lines or intervals, termed as Zones Free of Conflicts (ZoFCo), are latter
used to place panels’ borders. Then, the algorithm of the phase 1 tries to deduce if the façade
insulating envelope can be designed using vertical panels by checking the position and dimension
of the ZoFCos. If portions of the façade (subfaçades) cannot be cover with panels in the chosen
orientation, the algorithm makes a division into subfaçades and marks each of them with a type
for further processing. In particular, subfaçade types are:

— Vertical: The envelope for the subfaçade can be designed using vertical panels.

— Horizontal: The envelope for the subfaçade can be designed using horizontal panels.

— NotVertical: The envelope for the subfaçade cannot be designed using vertical panels.

— NotHorizontal: The envelope for the subfaçade cannot be designed using horizontal
panels.

Figure 3.36 – Guillotine cuts for intervals and subfaçades definition.

A subfaçade may be marked more than one time. However, only some combinations are
generated by the phase 2; NotVertical-Horizontal when a subfaçade has been marked as
NotVertical and consequent processing has marked it as Horizontal; NotHorizontal-Vertical
when a subfaçade has been marked as NotHorizontal and consequent processing has marked
it as Vertical and; NotVertical-NotHorizontal when a subfaçade has been marked as
NotVertical and consequent processing has marked it as NotHorizontal. In the last case the
insulating envelope cannot be designed using the proposed algorithm. For instance, let us study
the façade in Figure 3.37 on the following page. Here, let us assume panels’ upper bounds of 3
meters for one dimension and 10 meters for the other dimension (i.e., 10×3 for a horizontal panel
or 3×10 for a vertical panel). Envelopes for the subfaçades sub1 and sub2 may be designed
using vertically and horizontally oriented panels. But, the subfaçade sub3 at the right cannot
be designed: One dimension (width or height) may be successfully covered with 10 meters but
the other dimension, that can only takes as maximum size 3 meters, cannot be covered. Now,
if a subfaçade cannot be designed then the original façade would have a hole in its insulating
envelope, which is forbidden.

To clearly understand the scheme previously discussed, let us study the steps for the phase 1
using as example vertical orientation.
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Figure 3.37 – Subfaçade (consequently façade) with no solution with guillotine cuts.

Step 1: Let x1 = 0 (i.e., left border of façade) iterate to the right until the end of façade and
do:

i) Let x2 be equal to the origin point of the first frame found.

ii) Define a ZoFCo from x1 to x2.

iii) Set x1 equals to the right edge of the frame. If another frame is blocking the
guillotine cut at x1, then update x1 to the end point of that blocking frame and
repeat until no blocking frames are found. For example, in Figure 3.36.b, after
adding the ZoFCo defined by [e,f], it should start the new iteration with x1 = g
as in this point a vertical non-conflictive cut is possible.

Step 2: For all ZoFCo found, make an ordered check: If the distance between the end of
ZoFCo i and start of ZoFCo i+1 is bigger than the maximum panel width pwu , then at
least two subfaçades and at most three subfaçades have been found (more subfaçades
may be found when checking the remaining ZoFCos). This means that the space to
be covered has a larger width than the maximum panel width. In our example, the
first subfaçade sub1, labeled as Vertical, goes from a until the point f (see Figure
3.38.b subfaçade at the left). The second subfaçade sub2, labeled as NotVertical,
goes from f until the point g (see Figure 3.38.b subfaçade in the middle). The third
subfaçade sub3, labeled as Vertical, goes from g until the point l (see Figure 3.38.b
subfaçade at the right).

Figure 3.38 – Definition of subfaçades according to ZoFCos.
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Step 3: For each subfaçade try failure detection. If its width is less than pwl , then; a) merge
it with an adjacent subfaçade already marked as NotVertical (if any) or; b) mark
the subfaçade as NotVertical. For instance, the width of the subfaçade 1 in Figure
3.39.a is smaller that the panel’s width lower bound pwl , then, the subfaçade must
be marked as horizontal and merged with an adjacent subfaçade as is shown in Figure
3.39.b.

Step 4: For any subfaçade marked as NotVertical, try to design the subfaçade envelope
using horizontal orientation.

Figure 3.39 – Subfaçades failure detection and solution.

At the end of the process, every subfaçade has been marked at least one time.

Phase 2: Defining columns and rows

After the phase 1, the second phase is executed for each subfaçade. In this phase, the
columns (respectively rows) for the vertically (respectively horizontally) designed envelope must
be defined. It is at these columns (rows) where panels are going to be placed, the edges of
the panels matching the edges of the columns. For convenience, let us continue our solution
description using vertical panels. The first task is to determine where the left border and the
right border of columns will be placed. To do so, the phase 2 uses the ZoFCos intervals that have
been found in the previous phase as they are free of frames conflicts. Then, it suffices to select a
point within the ZoFCos to define the columns. As an invariant, given that the entire subfaçade
must be covered (no holes in the envelope) and considering the column definition from the left
to the right of the subfaçade, the end of the column i must be equal to the start of column i +1.

Taking into account that envelopes should be composed of the minimum number of panels,
the definition of the columns, for instance, is made using the upper bounds for panels width
(respectively height). The idea is to place the left and right edge of the column over one or
two ZoFCo, in such a way that the width is maximal (see Figure 3.40.a). If using the width
upper bound makes the column enter in a frame conflict, meaning that the point in which the
width is maximal does not match a ZoFCo, then the upper bound cannot be used for the current
column width (see Figure 3.40.b). In consequence, the width of the column is reduced, as less
as possible, while solving the conflict (see Figure 3.41.a). Potential inconsistent sizes are handle
as well. The algorithm for the phase 2 is applied to every subfaçade independently and behaves
as follows.

Let x1 and x2 define the start and end of the column i . Both variables are used to iterate
until the end of the subfaçade. Then do:

Step 1: Let x1 be equal to the origin (left border) of the subfaçade.

Step 2: Let x2 = x1 +pwu .

Step 3: If the point x2 does not belong to any ZoFCo, then move x2 to be the end (right edge)
of the previous ZoFCo (the previous at the left). As an illustration, the second column
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Figure 3.40 – Guillotine cut for columns definition.

in Figure 3.40.b is redefined to match the first ZoFCo on the left, as shown in Figure
3.41.a.

Step 4: Try failure detection. If x2 − x1 < pwl , then reduce width of previous column i −1 by
pwl −(x2−x1) and update x1 and x2. This process must be done iteratively as a width
reduction in any previous column may generate new size conflicts. Lastly, if there is
no previous column then fail and exit.

Figure 3.41 – Guillotine cut for columns definition (continuation).

Step 5: Define the column i from x1 to x2.
Step 6: Set x1 = x2 and iterate again from Step 2 until all the subfaçade has been processed.
At the end of the process, every subfaçade has been divided in columns (respectively rows)

where panels borders will be located. The last process then sets the final position and size of
panels over these columns.

Phase 3: Panels packing

The packing of panel is executed for each of the columns and rows generated in the phase 2.
As commented before, this last phase has as objective to set the final position and size of panels.
Additionally, this phase handles potential conflicts with frames by executing guillotine cuts in
non-conflictive zones. Likewise the previous phases, the packing starts by an extreme of the
subfaçade until its end. In the case of an envelope designed using vertical panels, the packing
process starts in the bottom of each column by extending the panel in its maximum allowed
height (see Figure 3.42.a). If a frame is blocking the horizontal cut, then the panel height must
be reduced to the first place in which no conflict exists (see Figure 3.42.b).

The packed panels in a given column will have the width of the column and the height defined
by the horizontal guillotine cut. Again, a similar process is carried on rows when designing
envelopes with horizontally oriented panels. The algorithmic solution of the third phase, applied
to each column independently, behaves as follows.

Let y1 and y2 define the bottom edge and top edge of the panel i . Both variables are used
to iterate until the end of the column. Then do:
Step 1: Let y1 equals the bottom of the column
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Figure 3.42 – Guillotine cuts for packing panels.

Step 2: Let y2 = y1 +phu

Step 3: If horizontal guillotine cut in y2 has conflicts with frames, then move y2 to be under
conflictive frames (as illustrated in Figure 3.42.b).

Step 4: Check if top corners are included in supporting areas. If this is not the case, reduce
the panel’s height until the first supporting areas are found (as presented in Figure
3.43).

Step 5: Using the current position and size, compute the panel’s weight and check if it is
successfully supported in the supporting areas at the bottom corners. If the weight
cannot be supported then reduce the panel size in 10% and iterate again from Step 3.

Step 6: Try failure detection. If the y2− y1 < phl , then reduce height of previous panel i −1 by
phl − (y2 − y1) and update y1 and y2. If there is no previous panel then fail and exit.

Step 7: Define a panel from y1 to y2 in the current column.
Step 8: Set y1 = y2 and iterate from Step 2 until the column has been processed.

Figure 3.43 – Guillotine cuts for packing panels.

It may be the case that the defined columns defined in the previous phase do not traverse
supporting areas, in which case the envelope cannot be designed with the CaSyE algorithm
using the current panel size bounds. Otherwise, at the end of the this phase, each column
(respectively row) has been covered by panels (as presented in Figure 3.43.b). The resulting
insulating envelope for the façade is the union of all panels of every subfaçade (if any). Now, let
us discuss how these phases are merged together to assist architects design.

3.3.3 Implementation

The phases 1, 2 and 3 are executed sequentially to generate a given envelope. This sequential
process is executed twice in order to generate two different solutions (if the façade geometry
allows it): One setting the ratio pw > ph (horizontally oriented panels) and one setting the ratio
pw < ph (vertically oriented panels). To understand how the phases work together, we present
to figures of algorithms. The first one, in Figure 3.44 on the next page called Guillotine Design
Given Orientation, executes all the phases using a given orientation. To do so, starting from
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the original façade, it finds the ZoFCos, then finds the subfaçades (marking them accordingly),
creates the columns/rows and then allocates the panels according to the orientation. Every
subfaçade marked with the selected orientation, for instanceVertical, is processed by the phase
2 and phase 3 whereas the other subfaçades are stored in a list of unknown subfaçades. Panels
successfully designed in the execution are stored in a list called solution.

Figure 3.44 – Algorithm 9: Guillotine design given orientation.
Inputs: Panel size bounds (pwl , pwu , phl , phu), list of frames (F ), list of supporting areas (sa),
minimum distance between panel borders and frames borders (d), orientation (po), façade size
( f acw , f ach), subfaçades list unknown=[], list solution=[].
Output: Designed panels in solution list and new subfaçades in unknown list.

Algorithm 9 is used in the Algorithm 10 named CaSyE, presented in Figure 3.45 on the facing
page, which represents the full solution.

It begins by setting the list of subfaçades that have not yet been processed, i.e., the original
façade. Then, it executes Algorithm 9 attempting to design the envelope using vertical orienta-
tion. This process may dynamically create more subfaçades to be latter processed by the same
Algorithm 9 but using horizontal orientation. In any moment, if the list of not processed sub-
façades is empty then the algorithm ends. Also, after executing the design with vertical panels,
every subfaçade is checked for two marks, NotVertical and NotHorizontal, to early detec-
tion of failure. In an attempt to overcome the no solution situation, the algorithm is executed
twice: One starting vertically designed envelopes and another starting with horizontally designed
envelopes. Indeed, the orientation in which starts an envelope design has an influence in the
kind of subfaçades found and consequently in the final output. In other words, swapping the
execution of vertical and horizontal orientation has an impact in the resulting solution. Thus, a
given façade has, potentially, two different solutions.

3.3.4 Evaluation Cases

In this section are presented some scalability tests and examples of envelopes generated by
the cutting solution CaSyE.

Scalability

As stated in Section 2.3 on page 43, panel size upper bounds are 10 meter for one dimension
and 3 meters for the other one. Consequently, the CaSyE algorithm is executed twice, one with
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Figure 3.45 – Algorithm 10: CaSyE - Cutting Algorithm for Symmetrical Envelopes
Inputs: Panel size bounds (pwl , pwu , phl , phu), list of frames (F ), list of supporting areas (sa),
minimum distance between panel borders and frames borders (d), façade size ( f acw , f ach),
solution list=[].
Output: Designed panels in solution list (possibly empty).

vertically oriented panels assured with pwu = 3 meters and phu = 10 meters, and a second time
with horizontally oriented panels assured with pwu = 10 meters and phu = 3 meters.

Figure 3.46 shows the time expended by the CaSyE algorithm to find the first solution
(independently of the number of panels and orientation) whereas Figure 3.47 shows the number
of panels of the best solution (w.r.t. number of panels) on the envelopes versus façade area.
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Figure 3.46 – Time versus façade area.

According to the graphic, the cutting solution solution runs in competitive computational
time, generating a envelope in less than a second for a façade with area 2000 m2. As com-
mented previously, the complexity of the solution is in relation with the position and number of
frames over the façade surface; the more frames the more comparisons the algorithm does and
consequently the relation façade area-time is almost linear.
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In the same way, the number of panels used in a given envelope grows with the façade area,
number and position of frames (see Figure 3.47). This holds true only if the panel size bounds
are the same in every instance, as is the case in our experiments. Here, however, no aesthetics
measurement is done. In fact, although an evaluation of symmetry may be built with respect
to the junctions alignment and panels sizes, these are not a sufficient condition to consider an
envelope aesthetically pleasant. The aesthetics evaluation must be still done visually. The next
subsection will then present some insulating envelopes generated by the algorithm and their
aesthetics aspects will be discussed.
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Figure 3.47 – Number of panels versus façade area.

Façades illustrations

The façades presented in Figures 2.15 on page 44, 2.14 on page 44 and 2.16 on page 44 in
Section 2.4 on page 45, are used to illustrate the results generated by the algorithm. Similarly
as the GaLaS illustrations, every literal (a) of each figure presents the original façade whereas
literals (b) and (c) present, respectively, insulating envelopes with vertical and horizontal panels.

— Figure 3.48 presents the original façade number 1.

Figure 3.48 – Façade instance 1.
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— Figure 3.49 shows an envelope thrown by the CaSyE algorithm, using pwu = 3 meters as
width upper bound and phu = 10 meters as height upper bound, i.e., vertically designed
envelope. Note that the already-defined panel (black rectangle) has a width bigger than
the panels width upper bound pwu = 3. In consequence, the area above it has been divided
in two columns and lastly two different panels. The envelope is composed of 14 and its
length of junctions is 108.2 meters.

Figure 3.49 – Solution with pwu = 3 meters and phu = 10 meters.

— Figure 3.50 shows the result when executing the CaSyE algorithm using pwu = 10 meters as
width upper bound and phu = 3 meters as height upper bound, i.e., horizontally designed
envelope.

Figure 3.50 – Solution with pwu = 10 meters and pwu = 3 meters.

Simply stated, the envelope for this façade cannot be designed with the CaSyE algorithm
using horizontally oriented panels. The reason for this is evident; it is not possible to
generate the respective ZoFCos to attach panels’ corner due to the position of the frames
(the figure illustrates the impossibility over a set of these frames). In consequence, the
algorithm would try to design the envelope in the other orientation, given as result the
same envelope of Figure 3.49. To overcome this situation, the technique of non-guillotine
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cuts seems a good strategic direction of work. This consideration will be discussed as
future work (Section 6.2 on page 141).

— Figure 3.51 presents the original façade number 2.

Figure 3.51 – Façade instance 2.

— Figure 3.52 shows a envelope solution made out with pwu = 3 meters as width upper
bound and phu = 10 meters as height upper bound, i.e., vertically designed envelope. The
envelope is composed of 16 panels and its length of junctions is 123.02 meters.

Figure 3.52 – Solution with pwu = 3 meters and phu = 10 meters.

— Figure 3.53 on the next page shows a envelope solution made out with pwu = 10 meters as
width upper bound and phu = 3 meters as height upper bound, i.e., horizontally designed
envelope. The envelope is composed of 8 panels and its length of junctions is 97.0 meters.
Note that this solution is almost the same as the one generated by the GaLaS algorithm
(cf. Figure 3.29) differentiable only because the joints in the CaSyE solutions are aligned.

— Figure 3.54 on the facing page presents the original façade number 3.
— Figure 3.55 on the next page illustrates an envelope solution made out with pwu = 3 meters

as width upper bound and phu = 10 meters as height upper bound, i.e., vertically designed
envelope. Here, although the frame in the middle of the façade is blocking the definition
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Figure 3.53 – Solution with pwu = 10 meters and phu = 3 meters.

Figure 3.54 – Façade instance 3.

of vertical panels, the insulating envelope still has its vertical junctions aligned (symmetric
appearance). Further, in the middle only 3 panels were designed thus preventing the length
of junctions to increase with small panels. The envelope is compose of 7 panels and its
length of junctions is 65.5 meters.

Figure 3.55 – Solution with pwu = 10 meters and phu = 3 meters.
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— Figure 3.56 illustrates an envelope solution made out with pwu = 10 meters as width upper
bound and phu = 3 meters as height upper bound, i.e., horizontally designed envelope.
The envelope is compose of 6 panels and its length of junctions is 57.0 meters.

Figure 3.56 – Solution with pwu = 3 meters and phu = 10 meters.

3.3.5 Discussion

In this section we have proposed a constraint-based heuristic approach, named CaSyE, that
exploits façade geometrical structure and takes inspiration from the human aesthetic concept
of symmetry. The motivation behind the cutting approach is the need for designing aesthetics
insulating envelopes for façades in an automated fashion. Given that no standard definition of
aesthetics exists, we have considered the junctions alignment (symmetry) as a good criterion.
The heuristic is based on the well known technique of guillotines cuts and is able to generate
up-to two envelopes. Then, it tries to artificially behave as a human being would behave in the
sense that conflicts with frames are avoided while attempting to provide a pleasant appearance.
The guillotine cuts approach allows to:

— Avoid constraint conflicts with frames as cuts traverses the façade only in zones free of
frames.

— Given that cuts are made from one extreme of the façade to the other, panels junctions
are aligned thus given a symmetric appearance.

— Once defined the columns or rows to place panels, it sets the final position and size
according to the columns/rows size and the panel size upper bounds. This decision is
made in order to minimize the number of used panels.

As well the GaLaS solution, the architect may use a generated insulating envelope as a good
basis for designing a new solution: The relevant envelope can be therefore adapted and tuned
by adding some tacit knowledge (really difficult to formalize), such as his/her own artistic flair,
in order to turn the renovation more pleasing to the eye or give it an architectural expression.
The heuristic uses the preferred orientation to design an envelope as a soft constraint and a hard
constraint. It does so by starting the design with the preferred orientation making partitions
of the façade (subfaçades) and changing the orientation when the portions of the envelope
cannot be designed using the preferred orientation. Then, any partition on the façade has all
its composing panels in a given orientation (hard constraint) but the complete envelope may
have panels (partitions) in any orientation (soft constraint). This solution, unlike the greedy
GaLaS one, considers the geometry and structure of the façade to execute guillotine cuts in
non-conflictive areas and thus it is not “blind”. Note, however, that the CaSyE algorithm follows
the same local optimal decisions as the GaLaS one: The phase 2, columns/rows generation,
is defined with respect to the panel size upper bounds and is limited only by the presence of
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ZoFCos. Further, the phase 3, panels allocation, sets the final size of panels, again, with the
maximum allowed panel size and is limited by the presence of frames and absence of supporting
areas. Thus, the same principles that guide the GaLaS algorithm (“blind”) are useful as well as
for the junctions alignment (symmetrical) goal of the CaSyE algorithm (not “blind”). As the
heuristic includes too the bottom-left preference, bigger panels are, potentially, designed at the
bottom of the façade which is coherent with the on-site assembly process requirements.

The CaSyE algorithm, as well as the GaLaS one, seeks to minimize the number of panels by
always trying to set their size in their maximum allowed. Our cutting heuristic provided more
aesthetic solution than GaLaS and is a source for strong design aiding tool for the following
reasons:

Reason 1: As well as the previous approaches (InDiE and GaLaS) it does not assume a fixed
number of panels to create insulating envelopes but rather considers the geometry
of the façade to design them.

Reason 2: Although no solution diversity is generated, it does provide aesthetics envelopes
considered as junctions alignment (symmetric).

Reason 3: According to our scalability tests, the algorithm performs in competitive computa-
tional time.

We acknowledge that this approach, although not “blind” , can only generate up-to two
insulating envelopes with the current scheme. Nonetheless, it is a fast, even when considering
the façade geometry, and generates “pleasant” symmetrical insulating envelopes not generated
by the GaLaS solution.

To conclude, we shall now compare the GaLaS and CaSyE algorithms in a more detailed
way. Figure 3.57 presents the time spent to reach a first solution for each algorithm against the
façade area. Due to the high number of solutions found by the GaLaS algorithm, the execution
time is limited to 30 seconds. The results show that both algorithms behave in a competitive
computational time as solutions for big instances are reached in less than 0.10 seconds.
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Figure 3.57 – Time to reach first solution versus façade area.

We do not show the comparison of number of solutions found by each algorithm as the CaSyE
solution can only generate up-to two insulating envelopes. In other words, the GaLaS solution
generates solution diversity whereas the CaSyE one does not.

Finally, let us compare the insulating envelopes thrown by GaLaS algorithm presented in
Section 3.2 on page 56 with the CaSyE solution. Table 3.2 on the next page presents the results
of both algorithms over the three façade instances. For convenience, we present in Figure 3.58
on the following page the best solutions generated by each algorithm.
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As the table shows, the greedy GaLaS algorithm is more robust than the CaSyE algorithm; it
is faster and finds the best (close to optimal) solutions as it is able of changing panel orientation
(soft constraint). The solutions of GaLaS, nonetheless, are not aesthetically pleasant as junctions
alignment is not part of its capabilities and thus do not generate envelopes with aligned junc-
tions. The CaSyE algorithm, on the other hand, generates envelopes with the highest number
of panels, ergo largest length of junctions) but in return, it does generates aesthetics envelopes
if junctions alignment (symmetry) is considered and it does so intentionally independent of the
façade geometry. The algorithm, by contrast, is restricted in number of solutions.

Table 3.2 – Results comparison for GaLaS and CaSyE solutions.

GaLaS CaSyE

Panels orientation Panels orientation

Vertical Horizontal V & H Vertical Horizontal

Fa
ça
de

#
1

N 15 13 11 14 -

Loj 113.2 106.9 100.5 108.2 -

Fa
ça
de

#
2

N 13 8 8 16 8

Loj 115.2 97.0 95.6 123.0 97.0

Fa
ça
de

#
3

N 8 6 6 7 6

Loj 63.8 57.0 57.0 65.5 57.0

GaLaS

(a) 11 panels (b) 8 panels (c) 6 panels

CaSyE

(d) 14 panels (e) 8 panels (f) 6 panels

Figure 3.58 – Best solutions for the three façades for GaLaS and CaSyE.
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3.4 Digest
In this chapter, we have shown one manual interactive approach InDiE and two constraint-

based heuristics, GaLaS and CaSyE, used to assist the design of insulating envelopes.
In a first step, we have introduced solution named InDiE for the a manual interactive design

of insulating envelopes. The design process is performed by drawing one panel at a time over
a GUI presenting a given façade. For each panel, the system executes several functions to
validate each of the constraints in the model. If an ill-designed panel is drawn, i.e., a panel
with constraint conflicts, the system visually informs by setting the panel’s color to red. On
the contrary, if a well-designed panel is drawn, the color is set to green. The architect then
is guided by the system reactions that are performed in less than 100 milliseconds (real-time).
Now, given that the InDiE implements constraint validation and not solving, drawn panels may
be re-dimensioned and re-allocated while the system continues to inform about conflicts.

In a second step, we have presented our first automatic solution, called GaLaS. This constraint-
based heuristic uses the knowledge extracted from the industrial case to make local decisions in
the aim to arrive to close to optimal envelope designs. We have discussed the underlying scheme
of the solution and explained our algorithmic design choices. In particular, we have highlighted
the local (optimal) decisions for choosing the origin point (first available point at the bottom-left
of the façade) and for choosing the size assigned to a given panel. Conversely, we have presented
and discussed the internal of the algorithms in charge of solving constraint conflicts, which are
bases as well in local (optimal) decisions. The solution treats the orientation of panels in two
different setups. First, it tries to build an envelope design using only a given orientation but
changes it, or performs backtrack, if the panel cannot be well-designed. In a second setup, we
let the GaLaS algorithm to mix panel orientation intentionally, by using search trees, which has
proven a good choice for designing envelopes with the lowest number of panels. The binary tree
allows as well a great solution diversity.

In a third step, we have discussed the second automatic solution, named CaSyE, conceived
to generate aesthetics insulating envelope designs. The constraint-based heuristic is built on the
technique of guillotine cuts. It studies the geometrical composition of the façade to execute
orthogonal cuts from one extreme of the façade to the other. We have studied the phases in
which the solution is divided and discussed how similar local decisions as those ones used by
GaLaS guide the design process in the three phases. In particular, the assignment of position and
size for panels is done with respect to zones free of constraint conflicts, found by the guillotine
cuts, and the maximum allowed size for panels. The preference for panel orientation is taken
into account but, if the façade conditions blocks the panel orientation, the algorithm makes
partitions of the subfaçade and design those partitions by changing orientation. This makes the
solution slightly more robust. The envelope designs thrown by the CaSyE have a better aesthetic
appearance as the junctions between panels are aligned.
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In three years, Cyberdyne will become the largest supplier of military computer
systems. All stealth bombers are upgraded with Cyberdyne computers, becoming
fully unmanned. Afterwards, they fly with a perfect operational record. The
Skynet Funding Bill is passed. The system goes online on August 4th, 1997.
Human decisions are removed from strategic defense. Skynet begins to learn at
a geometric rate. It becomes self-aware 2:14 AM, Eastern time, August 29th. In
a panic, they try to pull the plug.

Terminator 2: Judgment Day
T-800 Terminator, 1991
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In this chapter two filtering-based solutions for the insulating envelopes design are proposed.
The motivation to develop two more solutions lies on the particular benefits provided by each one
of them. The first filtering solution, named SkEdE, is in fact the second manual design solution.
Here, the filtering and exploration capabilities of the constraint solver are used to solve a declar-
ative model generated from a sketch specification manually drawn by the architect. The second
filtering-based solution, called OpackS, is in fact the third automatic design solution. Here,
filtering algorithms and a dedicated search heuristic have been developed to address the design
problem as a constraint optimization problem. In order to understand the proposed solutions,
a brief description of the constraint programming paradigm, filtering and search, introduces the
chapter.
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4.1 A Word on Constraint Programming

Constraint satisfaction problems, as discusses in Section 1.2.1 on page 5, may be tackled
with different methods as linear programming, genetic algorithms or local search and may be
adapted to be solved by SAT (abbreviation of Boolean Satisfiability Problem) and ASP (Answer
Set Programming) methods, among others. A particular well-suited method for solving CSP, the
one used by the solutions in this chapter, is Constraint Programming (CP).

Constraint programming has been recognized as a powerful computer-programming paradigm
for solving combinatorial problems. It encompasses a wide body of techniques from computer
science, artificial intelligence, graph theory, operational research and more (Rossi et al., 2006).
Although it has its origins on image processing applications, on the very first paper dedicated
to constraint programming (Montanari, 1974), it has been used on almost all branches of the
industry, from organizing social events (Brailsford et al., 1996, Dotú and Van Hentenryck, 2005)
and machine scheduling (Baptiste et al., 2012, Lombardi and Milano, 2012) to academic papers
assignment (Aranda et al., 2005) and bio-informatics (Barahona et al., 2011).

Usually, constraint programming is divided in three major notions; constraint variables and do-
mains, filtering and search. These programming notions are often encapsulated in a programming
environment or toolkit that allows a fast application development. Some of these environments
implement a mixture of mathematical models, such as Mozart-Oz and IBM CP optimizer, and
many more solely dedicated to CP, such as Gecode, Choco and ECLiPSe among others. These
CP environments are referred to as constraint solvers or constraint engines (Schulte, 2002).
Constraint solvers used to tackle a wide spectrum of problems (i.e., independent of the any
problem particularities) are known as general purpose solvers. These solvers provide abstractions
for declaring constraint variables, posting constraints over those variables and applying search
procedures. Given that, this dissertation exploits the capabilities of a constraint solver with
search capabilities, namely Choco version 3 (Prud’homme et al., 2014), the three notions are
further discussed in what follows.

4.1.1 Constraint variables & domains

Decision variables in a constraint solver are known as constraint variables and represent the
objects of the problem. Domains are the values to be, potentially, assigned to the variables.
These domains may take different types of representation whose most emblematic are discrete
domains (or integer domains), continuous domains (or real domains), set domains and boolean
domains. Variables and domains are then closely tied in such a way that every variable is declared
with a given domain type. Further modification of the domain type is not allowed due to the
declarative view of the paradigm. The ultimate goal of solving a constraint model is to assign
to each variable a single value from its domain. Solvers do so by repeatedly applying filtering of
incompatible values and search.

4.1.2 Filtering

At the core of a constraint engine is a constraint. A constraint expresses partial information
among the variables the constraint holds on. For instance, the first order formula T1 ≥ T 2+2
states a constraint over the domains of T1 and T2. Semantically, it could express “the team T1

must have at least 2 more members than team T2” or maybe “the task T1 should start 2 time
units after the task T2”. Constraints are implemented by domain-dependent filtering algorithms
which aim at removing values from variable domains that are not compatible with the constraint
semantics. These algorithms implement one or several notions of consistency: The consistency
indicates how well it filters values without loosing valid solutions whilst removing values as much
as possible. The filtering process is known as constraint propagation, for short propagation.

Typically, general purpose solvers implement two types of constraints (propagators) that are
used in a wide range of applications. The first ones are the conventional constraints, or atomic
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constraints, such as <,≤,=, 6=,>,≥. The second ones are called global constraints and are seen
as a composition of conventional constraints:

“A global constraint is a constraint that captures a relation between a non-fixed
number of variables. An example is the constraint alldifferent(x1, ..., xn), which
specifies that the values assigned to the variables x1, ..., xn must be pairwise distinct.
Typically, a global constraint is semantically redundant in the sense that the same
relation can be expressed as the conjunction of several simpler constraints. Having
shorthands for frequently recurring patterns clearly simplifies the programming task.
What may be less obvious is that global constraints also facilitate the work of the
constraint solver by providing it with a better view of the structure of the problem.”
(cf. van Hoeve and Katriel, 2006, p. 205)

The dissertation makes uses of several global constraints from Choco, such as arithmetic
constraints of the form x + y < z and ordering constraints (as discussed in ordering constraint—
2.12 on page 41 in Section 2.2.3 on page 38). A representative global constraint used to tackle
Cutting & Packing problems, and used by the solutions in this chapter, is the non-overlapping
constraint, called in most CP environments as DiffN, which states that variables are pairwise
different in at least one of N dimensions, with N ≥ 1.

Other kinds of global constraints used in the present chapter builds on the notion of reification
(Beldiceanu et al., 2013). Reification of a constraint works as follows. Suppose a constraint
C stating that x ≤ z + 2. Also, suppose a boolean decision variable B with domain [0,1]. A
reification may be used to express the fact that posting the constraint C is dependent on the
value of B (B → x ≤ z + 2). Then, if B = 1 the constraint C is posted. The reification may
work in the other sense, meaning that the true value of B is dependent on the satisfaction of
C (x ≤ z +2 → B). Then, if the constraint is satisfied, the variable B will be assigned the value
1. Using this reification notions is possible to define logical constraints such as and, or, if and
ifThen. These logical constraints, implemented by Choco, enhance the expressive power of the
language (Jefferson et al., 2010).

Finally, CP solvers users may be given the option to implement new constraints for specific
applications. They do so by defining the filtering algorithm and clearly stating when a constraint
is redundant in the problem (entailed) and thus may be discarded. In Section 4.3 on page 106
we take our Cutting & Packing problem structure to implement specific propagators for some
constraint in our model.

4.1.3 Search

At the other end of the spectrum, solvers provide well-known search procedures (such as Large
Neighborhood Search (Pisinger and Ropke, 2010), First Fail (Haralick and Elliott, 1980, Beck
et al., 2005) and Depth-First Search (Cormen et al., 2009b)) that are interleaved with filtering in
order to arrive rapidly to solutions. Search procedures are used because, habitually, the filtering
is not powerful enough to find CSP solutions (Barták, 1999). Combining filtering and search is
then necessary to solve most problem instances. In essence, a search procedure traverses the
solution space by dividing the problem into subproblems thus generating a search tree. The way
the search traverses the tree depends on the speculation on decision variables. One of the most
basic search heuristics considers a binary search tree to assure a complete search. This means
that the problem is divided into two subproblems. This process is often called branching. The
following description depicts one branching possibility by considering a single constraint variable
and a single domain value. Figure 4.1 and Table 4.2 present, respectively, an illustration of the
search tree and the variable domain after propagation (node 4 is a solution).

1. Execute constraint propagation to filter incompatible domain values,

2. choose one variable cstv from the set of unassigned variables,

3. choose a value valv from the values in the current domain of cstv ,

4. create two subproblems with:
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— the variable assigned to the value, i.e., cstv = valv ,

— the variable different to the value, i.e., cstv 6= valv ,

5. for each of the subproblems, start from Step 1.

As expected, creating two subproblems (assigning a value and its negation) makes the search
complete, i.e., no solutions are lost in search although it is time consuming.

Figure 4.1 – Binary branching.

Node x y z

1 {2,4} {3,4,5} {2, ...,4}
2 2 {3,4,5} {2, ...,4}
3 4 {4,5} {2, ...,4}
4 2 3 2
5 2 {4,5} {2, ...,4}
6 2 4 {2,3}
7 2 5 {2, ...,4}

Table 4.2 – States of branching.

As a final note, it is worth mentioning that a CP environment may be conceived, or used, not
to find solutions but rather to perform filtering. In fact, most solvers are capable of executing
filtering without executing search; it depends on the methods provided by the solver. To the best
of our knowledge, there exists only one environment solely dedicated to perform filtering; the
filtering engine CoFiADe (Vareilles et al., 2012). It only performs filtering because it is conceived
for the interactive support of decision-making processes and not to solve combinatorial problems.
Then, one of the main applications of this filtering engine is interactive configuration.
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4.2 Sketching Design: SkEdE

This section presents a filtering-based solution for the manual design of insulating envelopes.

4.2.1 Motivation

One of the earlies stages of design is that of sketching in which architects draw their initial
ideas while making improvements in the process: “Normally during the conceptual phase, design-
ers quickly represent as many as possible different solutions in a short time. These are evaluated
visually before exploring further possibilities” (cf. Stuyver and Hennessey, 1995, p. 236).

Thus, sketching is one of the design key elements as it improves the quality of novel ideas
(McKoy et al., 2001) as well as their quantity (Hernandez et al., 2014). This design phase
has been subject to studies in the last 20 years or so. Consequences of such efforts are the
improvement of techniques and methods within computer-aided design systems. This element is
in particular useful to architects as their communication language is mostly visual. Architects in
charge of designing insulating envelopes use these sketches as a departure solution point. They
do so by considering the façade structure to design aesthetics patterns while respecting the set
of constraint imposed by the façade and industrial conditions.

We have previously presented the first alternative for manual envelopes design that imple-
ments an interactive behavior (Section 3.1 on page 48). The second alternative for this manual
design, presented in this section, is to generate an envelope from a hand-made architect sketch.
This approach contrasts with the first one in two aspects. First, no interactive design is achieved
during sketching but rather an envelope design as similar as the architect’s sketch. And second,
it uses an underlying constraint solver to tune the drawn panels by removing incompatible val-
ues from variable domains (constraint propagation) to reach well-designed panels as well as to
generate compliant envelopes by applying search. Although the interactive design is lost, the
design through complete sketch allows the architects’ ideas to be free because constraints in
this setup may be violated (panels larger than size upper bounds, frames partial overlapping,
panels overlapping and holes). Further, the solution is fully declarative in the sense that no
specialized filtering algorithms or dedicated search heuristics are needed but only a constraint
solver application programming interface (API).

The input of the algorithmic solution is a computer-based sketch, possibly with ill-designed
panels, and its output is an insulating envelope, with well-designed panels, with smaller or equal
size of those of the original sketch, and possibly holes. The filtering-based sketching approach
is illustrated in Figure 4.2 on the following page.

4.2.2 Scheme

To understand the constraint sketching solution, it is important to know the traditional
architects design process of sketching. The traditional sketching process is as follows:

Step 1: The architect makes a rough drawing of the façade on a paper sheet with a pencil.

Step 2: The architect analyses the façade and divides it into vertical and horizontal areas where
the panels will be located.He does so in regard to the façade geometry.

Step 3: They make use of the vertical and horizontal areas previously drawn, to design panels
by setting their exact position and size.

Step 4: Iterates steps 2 and 3 until satisfaction.

As the reader can remark, the process finishes when the architect is satisfied with the sketch,
or if he/she wants to start over, meaning that panels in the sketch do not need to cover all
the façade surface: An exploratory idea may involve few panels and holes between them. Once
the architect has finished her/his sketch, she/he and a structural engineer must make sure that
all constraints are satisfied. In particular, they must adjust the panels size in order to respect
the manufacturers size limitations and the maximum load bearing capabilities of the façade.
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Figure 4.2 – Concept: Filtering-based sketching.

After tuning the sketch, the length of junctions is computed. Finally, a numerical model of the
insulating envelope must be mapped from the sketch: The model of the insulating envelope
needed by the manufacturer. Conventionally, the sketching task has been made using pen-and-
paper (Tversky, 2012). However, CAD systems have replaced this paper sketching in different
industry sectors (Suwa and Tversky, 1996). Our purpose is to support the design of insulation
envelopes by replacing the paper sketching with a (constraint) computer-based sketch.

Considering the conditions when using a GUI and a computer mouse or drawing pens, steps
1, 2 and 3 of the traditional sketching process are changed. First, as the system already has a
numerical model of the façade product of the Stage 1 of renovation process, the façade is no
longer drawn by the architect but by the system. And second, the definition of the sketch is no
longer achieved by vertical and horizontal lines but rather by precise rectangular panels drawn
with the cursor. The tasks of the architect is then to draw panels over the façade presented by
the GUI. Consequently, the input for the filtering-based solution of sketching is a) the façade and
panels related information (sizes, bounds, minimum distances, etc.) and the position and size of
each of the panels, possibly ill-designed, on the architect sketch. The output of the system is a
set of well-designed panels that resemble as much as possible to those of the original sketch. As
an invariant, and given that filtering is a monotonic process, the resulting well-designed panels
are always smaller or equal than the drawn panels.

Before going any further, let us analyze the behavior of the filtering-based sketching for one
panel sketch. Here, let us assume that the size constraint (2.4 on page 38) is the only one
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taking part in the design process. Figure 4.3.a shows the façade and a panel drawn by the
architect. A CP representation of this (potentially) ill-designed panel is created in the filtering-
based sketching. Then, as a CP representation, the position (px0, py0) and size (pw , ph) are
constraint variables with given domains defined by the current position (a,c) and size (b-a,d-c)
of the drawn panel. Simply stated, the panel is only defined by bounded decision variables.

At this point the panel may be smaller (in one or both dimensions) than the panels’ lower
bounds or bigger (in one or both dimensions) than the panel’s upper bounds, i.e., an ill-designed
panel w.r.t. size constraint. If at least one dimension of the panel is smaller than the lower
bounds in that dimension, then the panel has no correct design under filtering-based sketching.
This is because the declarative view of CP prevents to add values to variable domains (constraint
filtering is monotonically decreasing) and thus the generated panel cannot be bigger than the
drawn panel. For all other cases, it is the responsibility of the constraint solver to prevent the
size constraint conflicts by applying filtering over the size of the panel.

Figure 4.3.b shows the panel representation after applying the size constraint. Here, however,
after applying the constraint, the panel is not yet assigned as it has not a fixed position and neither
a fixed size: The panels’ size bounds are consistent with the size constraint (pw = [pwl ,mi n(b−
a, pwu)], pw = [phl ,mi n(d − c, phu)]) 1 but different sizes, as many as its domain size, can be
assigned to it and consequently different positions (px0i n[a,b −pwl ], py0i n[c,d −phl ]). Figure
4.3.c shows two possible panel designs that are completely consistent w.r.t. the size constraint.
Each of the them, and many more, is reached by applying search over the decision variables.
Now, from a renovation point of view, the large panel is preferred over the small one and thus
the search heuristic should explore the solution space by considering first the panels’ size upper
bounds that will, plausibly, generate the biggest panel area. We will discuss later this exploration
preference.

According to the above description, we have divided the filtering-based sketching in three
phases: (a) drawing of panels, (b) constraint posting and filtering and, (c) solving by applying
a search procedure. To further understand these phases, we study again one panel sketch but
including the rest of the constraints of the model (except for the non-overlapping constraint, for
evident reasons).

Phase a) Drawing one panel. In the phase of drawing, none of the constraints needs to be
respected so to not limit the aesthetic flair of the architect (although it is limited by the graphical
user interface capabilities). In Figure 4.4.a, for instance, the architect has drawn a panel that
does not fulfill any of the requirements: The panel is out of the façade area, it partially overlaps
windows and it is as big as the architect wants regardless of the panel size limitations. All these
constraint conflicts are latter solved by the filtering process in the phase b.

Phase b) Constraint posting and filtering over one panel. In the filtering phase all
constraint conflicts, except that of panels overlapping, are solved by exploiting global constraints
of the underlying constraint solver. In Figure 4.4.b, for example, the width of the panel has been
reduced in such a way that px0 and py0 remain inside the façade surface and in such a way that
the windows are no longer partially overlapped. The same occurs in the vertical axis. Note here
that the panel keeps its relative position to the façade as it was originally conceived. In other
words, instead of moving the value of px0 while keeping its original size, the domain of pw has
been reduced. Note also that more panel designs are possible because, as discussed before, the
panel is not yet assigned.

Phase c) Solving over one panel. Finally, the solving phase takes into account the CP
representation of all drawn panels by using the search procedure to assigns the final value to
decision variables. A set of panel designs may be obtained, for instance, by assigning to the
panel’s width any value between its current lower bound and upper bound. These different panel
designs are very similar but, at the practical level, are in fact different insulating panel designs.

Before discussing the details of the solution space exploration, let us now analyze the filtering-
based sketching over several panels sketch. In this case, the drawing and filtering phase remain

1. Note that the upper bounds for the panels size must be consistent with the size of the drawn panel and
with the size constraint and thus the minimum of these values is chosen.
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Figure 4.3 – CP representation of architects’ drawn panel.
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Figure 4.4 – a) Drawing phase and b) filtering phase for one panel sketch.

the same although it now includes one additional constraint, namely, non-overlapping (Beldiceanu
et al., 2011).

Figure 4.5 presents an illustration when sketching four panels.

Figure 4.5 – a) Drawing phase and b) filtering phase for four panels sketch.

Filtering of incompatible values (phase b) makes each panel be inside the façade surface, avoid
frames partial overlapping and force corners to be included in supporting areas (see Figure 4.5.b).
Nonetheless, as the panels are not yet assigned, the filtering of the non-overlapping constraint
only removes values from domains that are incompatible with the current not assigned position.
It may finish its work only when the panels begin to be assigned one by one; once a panel is
assigned the non-overlapping filtering algorithm can prune domains of adjacent panels. Then,
the final position avoiding panels overlapping is achieved by applying a search procedure (phase
c). The intersection between two panels may be used to present the user a set of compliant
solutions: Each solution generated by iterating over an intersected interval. We, by contrast,
are only interested in the first solution which, as we will see in what follows, is the one with the
largest panels areas.

The search heuristic, that assigns the final panels sizes and positions, cannot make use of
the objective of minimizing number of panels as it is a fixed value in this setup. So, to reach
a solution as similar to the original sketch, we introduces an intermediary constraint variable
for the panel area: par ea = pw × ph . This variable is used in the search strategy by choosing
as branching value the upper bound of the variable domain (strategy implemented in most CP
environments). In consequence, the first solution, where all panels have a fixed position and size,
has panels as large as possible and thus resembles as much as possible as those designed by the
architect.

Given that constraint posting is a monotonic operation, panels may be drawn in any order

101



CHAPTER 4. FILTERING-BASED DESIGN

causing no conflicts. However, the order in which panels are drawn may affect the final output.
Be aware that panels are stored, in standard data structures (e.g., lists), in the order they were
drawn. When the search procedure is applied to a list of variables, for instance the areas, it
selects one variable and one value of its domain to create two subproblems (as explained in
Section 4.1 on page 94). The chosen variable is always the first unassigned variable of the list.
This means that the first panel to be assigned a position and a size, by filtering and search,
is the first panel drawn by the architect; a policy “first-drawn first-served”. Now, an envelope
sketch may be designed with different panel order, for instance, one design starts with panels
drawn at the left of the façade and a second design starts with panels drawn at the right of
the façade. Ergo, due to the first-drawn first-served policy, drawing panels in different order
will, potentially, generate different envelopes. This behavior may be changed by ordering the
panels with respect to the position of px0, for example. However, we consider the first-drawn
first-served a good policy to allow more diversity in the resulting insulating envelopes and to
respect architects choices.

4.2.3 Implementation

In this section, we illustrate how to support architects sketching by exploiting the declarative
nature of CP and show that practitioners without any expertise on CP can implement a CAD
with a CP environment and its application programming interface (API). Simply put, the imple-
mentation may use any general purpose CP environment, for example Choco and Gecode, as
black-box solver. Given the reduced global constraints in the continuous domain module of most
CP environments, the real representation may be mapped into integer representation by simple
arithmetic operations. The implementation is as follows.

Size constraint. Constraint variables declaration in a given domain. Each variable is instanti-
ated according to its semantics. For example, the domain of panels width may be instantiated
with pw = [0.5,13] meters. Domains may contain holes, which is a capability provided by several
solvers (such as Choco, Gecode (Schulte et al., 2010) and Mozart-Oz (Schulte et al., 1998)). In
addition, using reified constraints, we can restrict the possible combinations between the panels
width and height. In essence, the conditions state that if one dimension takes the larger possible
value (max↑), then the other dimension should be constrained to the smaller domain (max↓).

Non-overlapping constraint. Ensured with the DiffN global constraint (Beldiceanu et al.,
2011). Although this is one of the most complex relations in the model, the filtering is very
“ligth” as most of the panels have conflicts only with the adjacent ones. This means that from
the beginning of the filtering the constraint is entailed for the majority of pairs p i -p j .

Installation and weight constraint. This constraint can be implemented using logical con-
straints. For instance, fixing a panel’s px0 one may constraint the corresponding py0 as illustrated
in Figure 4.6 on the next page. The implementation then constrains each rectangle against each
supporting area. As a final step, the matching is forced by telling the solver that either px0 or
py0 is in a supporting area.

Frames and interference constraint. Conversely, the mandatory overlapping of frames is
achieved using a logical constraint. In this case, the condition states that if the panel is partially
overlapping a frame then one of its dimensions (width or height) must be reduced in order to
solve the conflict.

Area constraint. This constraint is ignored in the sketching model. Likewise the interactive
solution presented in Section 3.1 on page 48, when doing manual design the architects may left
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Figure 4.6 – Illustrative example of matching panel corners with logical constraints.

holes in the envelope as it may be beneficial for the artistic process. Adding the constraint, how-
ever, may be a good choice to differentiate between fully compliant solutions and not compliant
ones.

4.2.4 Evaluation Case

In this section we present one example of envelope design using manual architects sketching.
Figure 4.7 on the next page presents an illustrative sketch over the façade presented in 2.14 on
page 44. Panels size upper bounds have been set in [1,13] meters for one dimension and [1,3.5]
meters for the other dimension. In the sketch, the seven panels have been drawn from the left
of the façade to the right and from the bottom to the top.

As the reader can see, constraint may be violated in the sketch. The underlying constraint
handling of the Choco solver version 3 will resolve conflicts in the filtering phase. Recall that the
solving process tries to set panels as large as possible following the order the user draws them.
After asking the solver to find all solutions, the system throws several results, among them the
following:

Figure 4.8 on the next page shows the first solution thrown by the support system. In it, the
panels are designed in their maximum allowed size while respecting the constraints. The length
of junctions of the envelopes is 76.80 meters.
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Figure 4.7 – Architects sketching.

Figure 4.8 – First resulting compliant insulating envelope from sketch.

4.2.5 Discussion

In this section we have described our experience on constructing a CAD system for the
design problem of designing façades insulating envelopes. The system uses declarative nature
of CP to assist architects conception phase of sketching then improving the design process.
Then we have given the motivation behind a CAD for supporting the architects sketching of
insulating envelopes, described the traditional pen-and-paper sketching that most architects
follow, illustrated a computer-based sketching that is supported by the filtering capabilities of a
constraint solver and we have shown how the CAD can be constructed having a constraint solver
and its respective API.

The SkEdE solution, as well as the InDiE one, seeks to assist the manual design of panels
(respectively envelopes) and exploits the capabilities of a GUI to achieve the goal. Then, both
approaches promotes the architects creativity by let him/her to design panels following its own
artistic flair. In addition, the architect’s hand-made sketch may contain holes given the opportu-
nity, as well as the interactive design InDiE, to generate partially designed envelopes and send
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them to automatic solutions for completion. Nevertheless, they present significant differences.
In contra position with the first manual solution InDiE that implements functions for each

of the constraints in the model, the sketching design is a fully declarative solution of the CSP
that is supported by the filtering algorithms and search strategies of a constraint solver (Choco).
Secondly, whereas the interactive design of InDiE works in a panel-by-panel basis and informs
for each panel the constraint conflicts (in different colors), the SkEdE solution allows the drawing
of multiple panels and solves constraint conflicts for all of them in a given execution. Finally,
the envelopes generated with the filtering-based sketch resemble as much as possible, from the
point of view of size, to those ones drawn by the architects.

The use of CP technology and its declarative model is in such extend intuitive that the
development of the CAD system focused mostly on the panel CP representation and the GUI
capabilities and no adaptations were needed for the filtering and search phases. Our proposed
computer-based sketching have been implemented with the Choco solver by referencing only its
API. Then. we consider that, from the techniques offered by OR and AI, CP is the most intuitive
out-of-the-box for modeling and solving. This highlights the importance of the great flexibility,
expressive power and simplicity of the declarative model of CP.
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4.3 Open Packing Design: OpackS

This section presents a filtering-based solution for the automatic design of insulating en-
velopes. A previous version of this section has been presented in Barco et al. (2015c).

4.3.1 Motivation

The essence of this solution is to generate optimal insulating envelopes with respect to the
number of panels. It do so by applying the constraint programming approach of filtering and
search. Here, however, the preferred orientation of panels is considered as a hard constraint,
meaning that all panels in a given insulating envelope will have the same orientation. Then,
this solution contrasts to the other automatic approaches (GaLaS and CaSyE), not only because
it takes into account future states by applying a filtering to the panel variables but because it
is more limited as it takes the orientation as a hard constraint. Nevertheless, it traverses the
solution space (as explained in Section 4.1 on page 94) and thus performs a complete search
under the orientation condition. An illustration of the concept is presented in Figure 4.9.

Figure 4.9 – Concept: Filtering-based design using backtrack search.

Now, unlike the sketching design, where the underlying solver Choco version 3 handles a
defined set of decision variables coming from the envelope sketch, the filtering-based design
does not count in advance with the set of panels (decision variables) to perform filtering and
search. Not having a predefined number of panels becomes a drawback given that the great
majority of CP environments implement global constraints and search strategies with a fixed set
of input variables. To overcome this situation, it is then necessary to apply special notions as
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dynamic creation of variables and constraints (Barták, 2003) or allow variables to be optional
(Laborie, 2009). We have chosen to rely on the latter notion. Our approach then targets the
problem of unfixed number of variables by speculating about their number and enabling them
to be optional (as does the scheduling environment of IBM CP optimizer (Schutt et al., 2013)
in one dimension).

We have implemented filtering algorithms (propagators in Choco) for several constraints
in the model that allow us to reflect the fact that panels are optional in the solution. In
addition, we have developed a dedicated search heuristic exploiting the problem structure to
arrive rapidly to solutions. The search heuristic is based on the same greedy principle that
guide the other automatic solutions: Extending the panel sizes in its maximum allowed size and
starting the packing from the bottom-left corner. We show that our heuristic performs, under the
orientation limitation, equal or better than the GaLaS and CaSyE solutions. Also, we show that
our heuristic outperforms predefined search heuristics natively implemented in the underlying
constraint solving, such as first-fail and activity search.

4.3.2 Scheme

In order to exploit the capabilities of a general purpose constraint solver, the problem of
unfixed number of variables (panels) must be settled. Our work is inspired from van Hoeve and
Régin (2006), where the authors introduce open global constraints. An open global constraint
is an extension of an existing global constraint that includes a set variable (or an array of binary
variables) to indicate the subset of decision variables the former constraint holds on. In other
words, some decision variables of the problem become optional (see Laborie (2009), Schutt et al.
(2013) and Section 4.4.16 in Schulte et al. (2010) for further information).

Optional panels

At first glance, we know that decision variables are related to panels (i.e., panels). But,
to link variables to panels at a low level it is first necessary to speculate about the number
of panels to be used in an insulation envelope. Thus, we first heuristically bound this number
by setting a minimum and maximum number of panels that may be in a façade envelope.
Computing the minimum and maximum number of panels that can be packed over a given
façade is straightforward; it is a relation between the panels size bounds and the façade size.
Let mi n denote an estimate of the minimum number of panels to cover the façade. Conversely,
let max denote an estimate of the maximum number of panels to cover the façade. Given the
lower and upper bounds for panels’ size and the façade size, we consider:

mi n =
⌊

f acw × f ach

max↓×max↑

⌋
(4.1) max =

⌈
f acw × f ach

mi n↓×mi n↑

⌉
(4.2)

We then create a set of max optional panel variables, each one referring to a panel that
may or may not belong to the solution. Using the maximum number of panels to create the
set of potentially used panels represents the worst case scenario, i.e., each panel is bounded to
the length lower bound in each dimension. As we will see later, the worst case scenario is never
reached in the experiments and is not likely to be reached in real-life façades. Then, apart from
the variables describing their position and size, each panel 1 ≤ p i ≤ max is also described by its
presence on the solution:

— p i
b ∈ {0,1} indicates whether or not the panel p i is used in the solution.

Note that, as a panel is already defined by an array of integer variables (its coordinates and
size), it is more natural to extend it with a fifth binary variable representing its presence in the
solution than introducing a set variable to represent all present panels (van Hoeve and Régin,
2006). The total number of used panels is then given by
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N =
max∑
i=1

p i
b (4.3)

Constraints Semantics (for optional panels)

In regard to optional panels setup, some of the constraints of the CSP model presented
in Section 2.2.3 on page 38 are modified to include the boolean variable semantics. Also, an
additional constraint for symmetry breaking of unused panels is added.

Size compatibility This compatibility constraint links the width and the height of panels. For
the constraint model of OpackS, we set this as a hard constraint, meaning that for a given
execution the panel has an orientation that cannot be changed on run time.

Area Used panels area equals to façade area. It modifies constraint 2.6 on page 38 to reflect
the fact that only used panels are relevant to cover the façade area.

max∑
i=1

(
p i

b ×p i
w ×p i

h

)= f acw × f ach (4.4)

Non-Overlapping Any pair of used panels pu and pv must not overlap in at least one dimen-
sion. It modifies constraint 2.7 on page 39

∀pu ,qv | pu
b = pv

b = 1, pu
x0 ≥ pv

x0 +pv
w ∨pv

x0 ≥ pu
x0 +pu

w

∨ pu
y0 ≥ pv

y0 +pv
h ∨pv

h0 ≥ pu
h0 +pu

h

(4.5)

This corresponds to the Open variant (van Hoeve and Régin, 2006) of the DiffN (Beldiceanu
et al., 2011) constraint, i.e. a generalization of DiffN to handle optional panels.

Ordering Priority is given to use the first panels and used panels are ordered geometrically. It
modifies constraint 2.12 on page 41.

LexChainLessEq({{(1−p i
b), p i

x0, p i
y0}|1 ≤ p i < max}) (4.6)

As explained in Section 2.2.3 on page 38 for constraint 2.12 on page 41, the constraint
imposes an order to panels in the aim of avoiding the generation of symmetrical solutions. In
the open version, the boolean variable states that used panels come first than unused ones:

1− (p i
b = 1) ≤ 1− (p i

b = 1) ≤ 1− (p i
b = 0) ≤ ... ≤ 1− (pmax

b = 0)
↓ ↓ ↓ ... ↓
0 ≤ 0 ≤ 1 ≤ ... ≤ 1

Unused Unused panels are arbitrarily fixed. In order to avoid wasting time on unused panels,
we may fix their origin variables to the first possible attachment point as well as its size variables
to their minimum values.

∀p i ,1 ≤ p i ≤ max, bi
p = 0 ⇒ (p i

x0 = p i
x0.LB ∧p i

y0 = p i
y0.LB ∧p i

w = pw l ∧p i
h = ph l ) (4.7)

Where LB stands for lower bound of the variable domain. This means that if a given panel
is not going to be used (p i

b = 0), the position and size will no affect the resulting insulating
envelope and thus its variables may be set deterministically.
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Optimization

A COP may be constructed using the aforementioned constraint model and a given objective
function. Thus, the result variable N may be turned into a decision variable and thus utilize it
as optimization feature. For the problem at hand, the minimization of the number of panels has
been chosen as it entails the length of junctions minimization. The number of panels is bounded
by

mi n ≤ N ≤ max (4.8)

The optimization then is mi ni mi ze(N ).

4.3.3 Implementation

The previous stated scheme has been implemented with the constraint solver Choco. Some
other constraints like the open variant of DiffN must be implemented by using the API of the
solver. As well, to exploit the structure of the problem we have developed a dedicated search
heuristic. It is worth mentioning that we use only integer representation and thus, the façade
size and panel bounds are mapped from real to integer. For instance, a panel size upper bound
of 8.5 meters is mapped into 850 centimeters.

Filtering

This section provides details on the model implementation. Basically, our solution follows
the approach in van Hoeve and Régin (2006) to handle decision variables that are potentially in
the solution. In our work, however, as panels are already represented of several integer decision
variables, we found more natural to use an extra binary variable per panel instead of a set variable.
Intuitively, an open constraint with boolean variables may be implemented following traditional
filtering algorithms and may be enhanced by targeting the structure of the problem (van Hoeve
and Régin, 2006).

An open constraint for panel non-overlapping As can be seen in the literature, the OpenDiffN
constraint has already been implemented (see No-Overlap with optional panels in Section 4.4.16
in Schulte et al. (2010) for instance) but we consider necessary to provide a brief description of
its behavior. The filtering algorithm of the OpenDiffN checks whether two panels that are part
of the solution, i.e., whose bi is equal 1, overlap and proceeds to domain filtering to prevent
overlaps, as traditional DiffN propagators do. Conversely, if the overlapping of two panels is
unavoidable, then domain filtering on the boolean variables ensures that at least one of the two
panels is not used (bi = 0). The overall filtering is strengthened by a constructive disjunction
algorithm (Würtz and Müller, 1996, Hentenryck et al., 1998) that computes an attaching point
for the bottom left corner of each panel, that is valid (from the packing point of view only) with
respect to already fixed panels. In essence, it ensures that px0 lower bound is feasible when
branching on it and, if it is not the case then the problem comes from an earlier node in the
search tree.

A logical (reified) constraint for installing panels In order to attach panels onto the façade,
it is necessary that the four panel corners match supporting areas.

This constraint is implemented using logical constraints in the same way that it is done in
the constraint-based sketching. Using the Figure 4.6 on page 103 in Section 4.2 on page 97 as
example, suppose that px0 = a (left edge of façade), then possible locations for py0 must be
constrained to the horizontal points {e, g , i ,k} as it is in these points where supporting areas are
located. If, by contrast, b < px0 < c then the value of py0 must be constrained to {e, f ,h, j }.

The implementation then constrains each panel against each supporting area. As a final step,
the matching is forced by telling the solver that all corners are in supporting areas. This can
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be done using the membership constraint that forces a decision variable to be part of a given
domain.

A constraint dedicated to frame covering The constraint 2.8 on page 39, that ensures frames
covered by one and only one panel, is propagated using a dedicated approach. The constraint
has not been modified by the notion of optional panels but it is not natively implemented within
the Choco solver. The filtering algorithm is pretty simple and works as follows: For every frame,
two support panels (i.e. panels the frame fits in) are computed (illustration in Figure 4.10). In
case no support panel is found then the solver fails, i.e., there is no more panels that may cover
the frame. In case only a single panel is found, then a filtering procedure is applied to enforce it
to cover the frame. Finally, in case two panels have been found, then no propagation is triggered
because, at that time, we do not know which panel will be used to cover the frame.

Figure 4.10 – Compute two panels to potentially cover a frame.

Embedding symmetry-breaking The lexicographic constraint (van Hoeve and Hooker, 2009)
has a strong influence on the model. It enables to output different solutions, to reduce the size
of the search tree but that is not all: It is possible to speed up the other global constraints by
taking that information into account while filtering. For instance, any for loop seeking all used
panels (bi = 1) can stop as soon as one undetermined panel (bi = {0,1}) has been found because
further panels are either undetermined or unused. Thus, it is possible to exploit the problem
structure to improve the implemented constraints.

Search heuristic

The search heuristic is responsible of assigning panel’s decision variables when propagation
cannot infer more information. Our heuristic is described in Figure 4.11 on the facing page
Algorithm 11. It is a constructive approach that considers each panel one by one and uses the
following variable selection priority:

— bi presence of the panel in the solution,

— px0 position of left edge over the façade,

— py0, position of bottom edge over the façade

— pw width of the panel and,

— ph height of the panel.
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Figure 4.11 – Algorithm 11: Dedicated search heuristic.
Inputs: Set of optional panels.
Outputs: Variable to branch, and value to be assigned, a given node of the search tree.

We apply a traditional binary branching scheme over stated variables (Smith, 2005). It
means that, instead of iterating over domain values, the heuristic assigns a value to a variable
and removes that value from the variable domain upon backtracking. The heuristic then selects,
for each node of Figure 4.12 on the next page, the pair variable-value with which the branching
is performed.

The originality of our method is that some decisions cannot be negated, i.e., the negation
are not alternatives for backtracking. The “prevent backtrack for” box in Algorithm 11 tells the
solver not to try different values on failure for pb , px0 and py0. For instance, if px0 = 1 and
the node fails, it will not try to propagate px0 6= 1 and compute a new decision. Instead, it will
backtrack once more (to the decision associated with the size of the previous panel). We do this
because not setting px0 in its lower bound means that the panel would not be adjacent to the
already-placed panels which would result in a hole in the envelope. Also, given that panels are
indistinguishable from each other, backtracking on pb = 0 is not allowed: If a panel p j is not
going to be used, then the remaining potentially used panels (pb = [0,1]) are not going to used
neither.

The heuristic implements the following key design choices:
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Figure 4.12 – Concept: Dedicated search heuristic.

1. We set the pb variables to 1 in order to arrive rapidly to solutions.

2. The position variables px0 and py0 are fixed to their lower bounds in order to leave no
uncovered places between the considered panel and previously placed panels. In short, the
real decision variables are pb , pw and ph . But px0 and py0 should be set in a deterministic
way without backtracking. As panels are ordered, trying a larger value would lead to a
hole on the façade, which is forbidden. Note that this is only possible because the filtering
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is strong enough: The lower bound is indeed a valid support from the packing point of
view.

3. The size variables pw and ph are set to their upper bounds in order to try panels as large
as possible and thus cover the largest possible area. This enables to get a first solution
that is very close to the optimal value (greedy decision).

Finally, as we explained, the backtrack is only allowed for the width and height. Then,
referencing the Figure 4.12 on the facing page, the assignment pw = upper Bound is applied to
one node and pw 6= upper Bound is applied to a second node. The variable in the latter node
is not yet assigned as it has as domain many different values from which to choose. From the
application perspective, the process over this variable has basically only removed 1cm from its
domain. Further exploration will assign the variable to different size values.

4.3.4 Statistics & Examples

In this section are presented some scalability tests and examples of envelopes generated by the
filtering-based solution OpackS. The underlying solver used in the tests is Choco (Prud’homme
and Fages, 2013).

Scalability

2-step approach. In a first experiment we want to evaluate whether or not the maximum
number of used panels is a good approximation of the optimum. Figure 4.13 on the next page
presents the number of used panels and the number of optional panels for every instance. The
maximum number of panels, which represents the worst case scenario where panels’ size lower
bounds are used, is never reached. Further, this maximum number is an upper bound far to
high: For a façade of size 60×31 meters, the solver handles 2640 optional panels to compute
a first solution that uses only 66 panels. This means that we create too many useless variables
that will slow down the solving process. Therefore, in order to boost performance, we set up a
2-step approach:

Step 1: In a first step, we execute the model asking the solver to find one optimal solution. In
this executing no time-limit is imposed.

Step 2: In a second step, we create a new model in which the maximum number of optional
panels is replaced by the number of panels composing the envelope found in the
previous step. Then, we enumerate all optimal solutions within a 30 seconds time
window.

Impact of symmetry breaking. In a second experiment, we measure the impact of adding
symmetry-breaking constraints. More precisely we compare the time to find a first solution and
the number of computed solutions with and without symmetry-breaking constraints. Due to the
huge amount of solutions, we use a time limit of five minutes.

Figure 4.14 on the following page shows the time to reach the first solution, with and without
symmetry breaking constraints, when constraining the y-coordinate to match supporting areas.

As we can see it on Figure 4.14 on the next page, symmetry-breaking constraints speed up
the search. Moreover, it enables to skip solutions that are identical for the end user. Using
symmetry breaking constraints the execution time and used memory improves as the number of
nodes and failures decrease.

Finally, Figure 4.15 on page 115 shows the number of solutions found in 30 seconds without
and with symmetry breaking constraints. Note that the number of symmetrical solutions found
is huge in comparison with the non-symmetrical solutions. Also, note that it seems like the
number of solutions decreases when the façade area increases: this is due to the time limit. As
the problem gets bigger, the solving process gets slower and enumerates less solutions in a given
time window.
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Figure 4.14 – Time to reach a first solution with and without symmetry breaking constraints.

Search comparison

In regard to different search heuristics, we have not found any well-suited for addressing
the problem. Actually, well-known black-box search strategies such as domOverWDeg (Bousse-
mart et al., 2004), impact-based search (Refalo, 2004) or activity-based search (Michel and
Van Hentenryck, 2012), do not perform well given the problem particularities. These heuristics
are designed to solve problems in a blind way, when we have no expert knowledge of the problem.
In our case, we mix very different kind of variables (booleans, positions, sizes) that we are able
to group by panels and order. Introducing randomness on either the variable selection or the
value selection may be disastrous. In particular, using arbitrary values for px0 and py0 makes a
huge amount of possibilities for uncovered places.

Given that the traditional search heuristics do not find solutions for the smallest façade (15×13
meters) with which the GaLaS, CaSyE and OpackS algorithms have been tested, we changed the
representation to pixels in order to reach at least one solution with Choco predefined search
heuristics. Also, we have increased the computing time from 30 seconds to 3 minutes. We have
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Figure 4.15 – Number of solutions found without and with symmetry breaking constraints.

tested 16 predefined heuristics from Choco on a small façade (400×100) with panel size bounds
of [20,150] pixels in both dimensions. In consequence, whereas the initial façade representation
has as width 1500 centimeters, domain taken by px0, the new representation has only 400 pixels.
We present the results for those ones that threw at least one solution over a time window of 180
seconds. These strategies are:

— domOverWDeg which selects the variable with the smallest ratio |d(x)|
w(x) , where |d(x)| denotes

the domain size of a variable x and w(x) its weighted degree;

— lexico_LB which chooses the first non-instantiated variable, and assigns it to its lower
bound;

— lexico_Split which chooses the first non-instantiated variable, and removes the second
half of its domain;

— maxReg_LB which chooses the non-instantiated variable with the largest difference between
the two smallest values in its domain, and assigns it to its lower bound;

— minDom_LB which chooses the first non-instantiated variable with the smallest domain size,
and assigns it to its lower bound and;

— minDom_MidValue which chooses the first non-instantiated variable with the smallest do-
main size, and assigns it to the value closest to the middle of its domain.

No results are shown without symmetry breaking constraints because predefined search heuris-
tic does not generate solution diversity: They always enumerate the same symmetrical solution
whereas our heuristic finds 31 different solutions from the total number of solutions. Using sym-
metry breaking constraints, by contrast, predefined heuristics find the same number of solution
as our dedicated search heuristic.

Tables 4.1 on the next page and 4.2 on the following page respectively provide the results
for a 400×100 and 400×200 instance. The last entry is our own search heuristic. Although
some predefined heuristics have a good performance on the first (small) instance, none of them
scales. In fact, no predefined search heuristic finds a solution for a façade with size 400×200
in reasonable computational time whereas our dedicated heuristic already finds 726 different
solutions in 180 seconds. Our heuristic clearly outperforms the others.
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Table 4.1 – Heuristic comparison on a 400×100 (pixels) façade.

Strategy First solution time (s) Total time (s) #nodes #solutions
domOverWDeg 18.77 19.94 1412897 66

lexico_LB 0.03 0.22 2380 66
lexico_Split 0.03 0.16 441 66
maxReg_LB 0.03 0.22 2380 66
minDom_LB 0.74 19.96 1411183 66

minDom_MidValue 43.43 47.32 4755206 66
dedicated 0.03 0.85 10978 66

Table 4.2 – Heuristic comparison on a 400×200 (pixels) façade with a 3−minute time limit

Strategy First solution time (s) #nodes #solutions
domOverWDeg - 7286594 0

lexico_LB - 5772501 0
lexico_Split - 4966920 0
maxReg_LB - 5490088 0
minDom_LB - 11961712 0

minDom_MidValue - 11157755 0
dedicated 0.039 3499527 726

Façades illustrations

The façades presented in Figures 2.14 on page 44, 2.15 on page 44 and 2.16 on page 44 in
Section 2.4 on page 45, are used to illustrate the results generated by the algorithm. As we did
before, the original façade is shown in the literal (a) of each figure and insulating envelopes in
literals (b) and (c).

— Figure 4.16 presents the original façade number 1.

Figure 4.16 – Façade instance 1.

— Figure 4.17 on the facing page shows the first envelope solution thrown by the constraint
solver using 3 meters as width upper bound and 10 meters as height upper bound. The
envelope is composed of 14 panels and its length of junctions is 108.25 meters. The OpackS
generates more solutions with the same number of panels and same length of junctions.
In fact, it generates hundreds of solutions with small, even tiny, panel differences and thus
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are meaningless solutions from the renovation perspective.

Figure 4.17 – Packing with vertical optional panels over façade 1.

— Figure 4.18 shows the first envelope solution thrown by the constraint solver using 10
meters as width upper bound and 3 meters as height upper bound. The envelope is
composed of 12 panels and its length of junctions is 106.2 meters. Note that this solution
is has the same design as those ones generated by the GaLaS and CaSyE algorithms. The
reason for this is the decisions of taking the first available bottom-left point of the façade
and the maximum allowed size for with and height. Note as well that the OpackS solution
cannot do better than this envelope without changing the orientation.

Figure 4.18 – Packing with horizontal optional panels over façade 1.

— Figure 4.19 on the following page presents the original façade number 2.

— Figure 4.20 on the next page shows the first envelope solution thrown by the constraint
solver using 3 meters as width upper bounds and 10 meters as height upper bound. The
envelope is composed of 15 panels and its length of junctions is 120.36 meters. In this
insulating envelope, the limitation of having the panel orientation as a hard constraint
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Figure 4.19 – Façade instance 2.

is more noticeable: In comparison to the GaLaS design, the OpackS cannot design a
horizontal panel at top-right of the façade and thus it has to use several small ones to
cover the remaining area.

Figure 4.20 – Packing with vertical optional panels over façade 2.

— Figure 4.21 on the facing page shows the first envelope solution thrown by the constraint
solver using 10 meters as width upper bound and 3 meters as height upper bound. The
envelope is composed of 8 panels and its length of junctions is 97.08 meters.

— Figure 4.22 on the next page presents the original façade number 3.

— Figure 4.23 on the facing page shows the partial designed envelope reach by OpackS when
using 3 meters as width upper bound and 10 meters as height upper bound. Note that,
as the panel orientation is a hard constraint, the middle region of the envelope cannot be
designed due to the size of the frames. The façade under the stated conditions has no
solution with OpackS algorithm.

— Figure 4.24 on page 120 shows the first envelope solution thrown by the constraint solver
using 10 meters as width upper bound and 3 meters as height upper bound. The envelope
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Figure 4.21 – Packing with horizontal optional panels over façade 2.

Figure 4.22 – Façade instance 3.

Figure 4.23 – Packing with vertical optional panels over façade 3.

is composed of 6 panels and its length of junctions is 57 meters. The same solution have
been generated by the other approaches.
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Figure 4.24 – Packing with horizontal optional panels over façade 3.

4.3.5 Discussion

This section presented the third automatic solution, called OpackS, to the façade-layout
synthesis problem. This is also the second solution that uses as underlying mechanism the
constraint solver Choco that enhances the development of the support system thanks to all the
pre-defined constraints, search and provided abstractions. The filtering-based automatic solution
allows to:

— Design correct panels and envelopes by applying filtering algorithms to the variable do-
mains. The solution then minds the future states by removing values incompatible with
the constraints in the model.

— Define a dedicated search heuristic that may exploit the structure of the problem in order
to boots performance.

— To efficiently traverse the solution space by means of backtrack search provided by the
solver.

— Find optimal solutions, w.r.t. the number of panels and under the conditions of only one
panel orientation, by exploring good candidate nodes while avoiding bad ones (capabilities
of the backtrack search).

Additionally, and likewise the GaLaS and CaSyE solutions, the architect may adapt the en-
velopes generated by OpackS in order to improve quality w.r.t. to number of panels or aesthetic
tunning. The OpackS solution contrast with the GaLaS (Section 3.2 on page 56) and CaSyE
(Section 3.3 on page 75) in three key points. Firstly, it assumes a minimum and maximum num-
ber of optional panels part of an insulating envelope and works with all of them in the solving
process whereas the GaLaS and CaSyE pack panels on-the-fly. Secondly, the constraint solving
is achieved by dedicated filtering algorithms to bootstrap the performance. Finally, it uses the
optimality issues of the problem domain to look for valid optimal solutions. On this regard,
the OpackS design only generates optimal solution for a given orientation, meaning that it is a
hard constraint. This is due to the hard constraint of panel orientation that we have consider
in the OpackS model. We have found that allowing the panel to have any orientation, i.e., the
disjunction pw > ph ∧pw ≤ ph , increases the combinatorics and the solving time to unpractical
limits (no solution after one computing hour). So, the greedy GaLaS algorithm is more robust
as it accepts to swap orientation in run time. Further development of filtering algorithms and/or
the search strategy may help to solve this gap. Lastly, the generation of envelopes does not
takes into account the junctions alignment and thus no aesthetics envelopes are generated.

The OpackS solution, nonetheless, implements a dedicated search heuristic that uses the
same decisions of that we have highlighted along the thesis; it assigns to the origin point of
panels the first bottom-left available point of the façade and assigns the panels’ size in their
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upper bounds. Once more, the biggest panels on the first envelope are generated at the bottom
of the façade under this setup (congruent with the on-site assembly requirements). The search
mechanism then combines two different principles, a greedy constructive approach that is efficient
but limited and a customized backtracking algorithm to explore alternatives. The customized
search heuristic prevents backtracking for pb , px0 and py0 in order to avoid holes in the resulting
envelopes.

Considering the orientation as a hard constraint, the OpackS solution minimizes the number
of panels by setting panels size in their maximum allowed value while using backtrack search to
leave no valid node unexplored. Our approach provides good quality solutions and is a source
for strong design aiding tool for the following reasons:

Reason 1: The implementation of the OpackS, enhanced by the use of constraint solver toolkit
(decision variables, constraints and search heuristics), addresses particularity of un-
known number of panel by assuming a big set of optional panels. This optionality
notion is transparently implemented with boolean constraint variables.

Reason 2: The solving computing time, for realistic façades, is competitive for the industrial
scenario (even when the other algorithmic solutions performs better), as it generates
optimal envelopes with a given panel orientation.

Reason 3: The different tests that have been carried out show the scalability of our approach
as well as evaluation over different real-life French façades.

Reason 4: The model is easier to extend than the previous approaches (GaLaS and CaSyE) as
the addition of variables and constraints is transparent in the declarative nature of
CP. Then, after the respective modelling of aesthetics aspects such as symmetry, for
instance, the knowledge needed to be added to the constraint-based model effortless.

The utilization of the constraint solver in this automatic solution differs from the one in
the sketching solution SkEdE presented in the previous Section 4.2 on page 97. Essentially, the
sketching solution uses the Choco API to apply filtering and predefined search heuristics over
an architects hand-made sketch. Here, in opposition, we had to develop our own propagators
for specific constraint in our model and adapt traditional constraints, as DiffN, to give them an
“open” view. The adaptation is based on the manipulation of optional panels represented by an
extra (boolean) decision variable. Then, unlike the sketching solution, a certain level of expertise
is required for the development of the OpackS one.

To conclude, we shall now compare the three automatic algorithms (GaLaS, CaSyE and
OpackS) in a more detailed way. Figure 4.25 on the next page presents the time spent to reach
a first solution for each algorithm against the façade area. One more time, and as presented in
Section 3.2.5 on page 73, the execution time is limited to 30 seconds. The results show that for
small façade instance, the algorithms behave in a competitive computational time. Nevertheless,
the filtering-based algorithm OpackS increases the computational time from façade size of 45×23
meters. This is due to the exponential combinatorics within the problem and the solution space
exploration of the OpackS algorithm.

Figure 4.26 on the next page presents the number of solutions found in a time window of 30
seconds, for each algorithm against the façade area. According to the figure, the GaLaS algorithm
along with the binary tree implementation generates more solution diversity than those of CaSyE
and OpackS. The number of generated envelopes exceeds in several times of magnitude the other
approaches. The CaSyE algorithm as it is currently conceived only generates up-to two envelopes
but with symmetrical aspect. On the other hand, the OpackS has the limitation, and advantage,
of generating optimal non-symmetrical solutions (with orientation as a hard constraint), although
in a high computational time, and thus it is not able to enumerate as much solutions as the
GaLaS solutions.

Finally, let us compare the insulating envelopes thrown by GaLaS, CaSyE and OpackS for the
three façade instance presented in Section 2.3 on page 43. Table 4.3 on page 123 presents the
results. For convenience, we present in Figure 4.27 on page 124 the best solutions generated by
each algorithm.
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Figure 4.26 – Number of solutions in 30 seconds time window versus façade area.

As the table shows, the greedy GaLaS algorithm is the more robust solution to the façade-
layout synthesis problem; it is fast and finds the best (close to optimal) solutions as it is able of
changing panel orientation. The solutions of GaLaS, nonetheless, are not aesthetically pleasant
as junctions alignment is not part of its capabilities and thus do not generate symmetrical
envelopes. Additionally, when asking only envelopes composed of only one orientation, we have
found that the OpackS performs better or equal than the other solutions due to the way it
traverses the solution space (filtering + backtrack search). As we commented in Section 3.2.5
on page 73, the vertical envelope for the second façade generated by the GaLaS algorithm, has
one horizontal panel (cf. Figure 3.28 on page 70) and thus presents a better solution than
OpackS which has the orientation as a hard constraint. One would assume that, overcoming
the hard constraint setup, the OpackS would outperform the GaLaS solution (discussed as future
work in Section 6.2 on page 141). Likewise the GaLaS algorithm, the OpackS does not generate
symmetrical envelopes intentionally but rather “by change” if the façade geometry leads to it.
Lastly, the CaSyE algorithm does generate envelopes with the biggest length of junctions (bigger
number of panels) but, in return, it generates aesthetics envelopes if symmetry is considered
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Table 4.3 – Results comparison for three automatic solutions.

GaLaS CaSyE OpackS

Panels orientation Panels orientation Panels orientation

Vertical Horizontal V & H Vertical Horizontal Vertical Horizontal

Fa
ça
de

#
1

N 15 13 11 14 - 14 12

Loj 113.2 106.9 100.5 108.2 - 108.2 104.2

Fa
ça
de

#
2

N 13 8 8 16 8 15 8

Loj 115.2 97.0 95.6 123.0 97.0 120.3 97.0

Fa
ça
de

#
3

N 8 6 6 7 6 - 6

Loj 63.8 57.0 57.0 65.5 57.0 - 57.0

and it does so intentionally independent of the façade geometry. The algorithm, by contrast, is
restricted in number of solutions and may fail as the OpackS solution does.
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GaLaS

(a) 11 panels (b) 8 panels (c) 6 panels

CaSyE

(d) 14 panels (e) 8 panels 6 panels(f)

OpackS

(g) 12 panels (h) 8 panles (i) 6 panels

Figure 4.27 – Best solutions for the three façades for GaLaS, CaSyE and OpackS.
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4.4 Digest
In this chapter, we have shown how to use constraint programming technology, mixing fil-

tering and solving, to assist the design of insulating envelopes. We have presented two design
approaches, SkEdE and OpackS, that rely on the constraint solver Choco to perform the design.

In the first step, we have presented a brief background of constraint programming technol-
ogy. We have discussed the constraint programming notions of variables and domains, filtering
algorithms including global constraints and logical constraints, and we have discussed the details
in which backtrack search is based.

In a second step, we discussed a manual filtering-based design approach SkEdE that generates
well-defined panels taking as input an architect hand-made sketch. Benefits from this approach
are, on the one hand, that it braces up architects creative ideas by admitting as input ill-designed
panels. Second, and unlike the manual solution of InDiE (Section 3.1 on page 48), it is not
limited by the one-by-one panel setup as it may solve constraint conflicts and throw solutions
for an undetermined number of panels. Finally, it is a fully declarative solution that exploits all
capabilities of the constraint solver without specialized adaptation.

In a third step, we have presented an automatic filtering-based design approach OpackS that
uses the power of global constraints to efficiently remove inconsistent values for panel variables.
To do so, we have embraced the notion of optional decision variables to reflect the fact that
panels are optional in an insulating envelopes. Consequently, constraints in the CSP model have
been adapted, as well as filtering algorithms on the constraint solver, to reflect the optional panels
setup. In addition, the approach uses a customized backtrack search, in which some decisions
cannot be negated, that implements the same optimality choices of the GaLaS and CaSyE solution
to arrive rapidly to solutions. As a major condition in this setup, the panel orientation is a hard
constraint in the model. This is a limitation given that the geometrical composition of some
façades, as illustrated in Figure 4.23 on page 119, cannot be designed using only panels in a
given orientation. Nonetheless, in comparison to the other automatic approaches, it performs
better or equal w.r.t. the number of panels. Thus, assumingly, a workaround to overcome the
hard constraint should probably provide better results that the other solutions.
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The good thing about science is that it’s true whether or not you believe in it.

Neil deGrasse Tyson, 2011
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The chapter presents the system architecture, the configuration tasks within it and, the input
and output specifications. Screen-shots of the support system usage are presented in Appendix A
on page 171. Different versions of this chapter have been presented in Barco et al. (2015b) and
in Barco et al. (2016b).

5.1 Motivation
Computer support for the thermal renovation process, and its conception by means of decision

support system, is motivated by the following facts. First, the diversity of existing façades is very
large as a result of history, building’s technical aspects, or locations. Second the expectations of
the architects or building owners about the façade style to renovate are also numerous. These
two points lead to an extreme diversity of façade renovation problems. Traditional methods
of course are able to handle them but for a high cost and they require expertise and are time
consuming. The challenge is to be able to achieve the façade renovation problem with all its
diversity at a much lower cost within industrialized approaches and methods.
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The support system here presented implements a web-oriented architecture that divides dif-
ferent configuration tasks into different web-services. The system allows:

1. To efficiently introduce the renovation specifications (geometrical, structural, etc.),

2. to generate different valid configuration of panels and envelopes,

3. to rank the different solutions based on several criteria (number of panels, length of junc-
tions, etc) and,

4. to present them to the person in charge of the renovation, such as an architect.

The solutions generated by the architects using the support system are numerical models of
insulating envelopes to be send to factories for manufacturing. As such, the system, that uses
constraint satisfaction as underlying model and implements the algorithmic solutions (InDiE,
GaLaS, CaSyE, SkEdE and OpackS) proposed in this dissertation, is classified both as a computer-
aiding design (CAD) system as well as a product configuration software (PCS).

5.2 Configuration Tasks

The support system here introduced is a web-oriented application where a web-service archi-
tecture allows to solve all configuration tasks within a three-step renovation process, presented
in Figure 5.1.

Figure 5.1 – Configuration process overview.

To understand the configuration tasks, let us first consider the information flow from the
user’s perspective, between the user and the system within a three step process.

Step 1: The user uploads a json file, as shown in Figure 5.2 on the facing page, containing the
geometry and structural specification of spatial entities (working site, buildings and
blocks and façade). This file comes from Stage 1 and Stage 2 of the renovation
industrialization process, presented in Section 2.1.2. Information is stored in a data
base.

⇒ The system generates a questionnaire for each of the spatial entities (from working
site to façade) in the input file. The aim of the questionnaire is to determine for each
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Type id ref x z width height load
faa̧de fac3 0.00 0.00 12.598 10.907 0

slab nose sln1 fac3 0.00 0.00 12.598 0.2 2
shear wall shw1 fac3 9.373 0.16 0.14 10.97 3
window win1 fac3 9.614 9.177 1.398 1.444 0
door doo1 fac3 9.614 0.326 2.419 2.036 0
panel pan1 fac3 0.00 0.00 2.980 2.881 0

Figure 5.2 – Json Input File Example

spatial entity the limits for panels’ size and weight. This questionnarie is built thanks
to generic CSP instances, one for each spatial entity.

Step 2: The user has to answer the questions as much as possible (leaving blanks for the
questions he cannot answer). Using the information about spatial entities (database)
and their manufacturing/installation/environmental conditions (user’s answers), the
system deduces panels’ lower and upper bounds for width, height and weight for each
façade (parametrization of each CSP). The user has the possibility to overwrite these
bounds within the deduced limits.

⇒ The system creates a constraint satisfaction model for each façade using the in-
formation in the input file and the deduced limits for panels’ size (deduced by the
questionnaire, Step 3). Here, each constraint satisfaction model instance is parame-
terized according to the façade information and the particular deduced panels’ limits.

Step 3: The user invokes the second service for panels/envelopes configuration: he/she sends
the parameterization of each façade, including panels’ limits, and gets support (manual
and automatic) for insulating envelopes design. She/he is able to draw panels, sketch
an envelope, ask the system to find a solution in an automatic way and to tune any
solution.

⇒ Several insulating envelopes are designed in a manual, automatic or semi-automatic
way, depending on the user’s expectations. For each of the insulating envelopes, the
system provides the number of used panels and the length of junctions. The user is
therefore able to select, for each façade, the best insulating envelope with respect to
his/her needs: the one which contains the less panels or the one which is the more
aesthetic.

5.2.1 Questionnaire Configuration

Once the questionnaire generated from the json input file, the user can start answering the
information which has an impact on the panels’size and weight, Step 2 of the configuration
process presented in Section 5.2 and illustrated in Figure 5.3. The questionnaire inquires the
following information.

Working site. This is the bigger spatial entity of the renovation.

1. Values provided by the user are:

— Is the working site in a windy region? {yes, no}

— When does the on-site work take place? {summer, fall, winter, spring}

— What is the cost target ? Euros.

— What is the performance target ? w.m−2.k−1

— Is there some obstacles ? {yes, no}
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Figure 5.3 – Questionnaire screen-shot: Working site questions.

— How is the accessibility ? {easy, medium, hard}

2. Parameters deduced by the first filtering service which can be overwritten by the user:

— Panels’ width (w pwl ) and height (w phl ) lower bound.

— Panels’ width (w pwu) and height (w phu) upper bound.

Block. A block is a set of buildings which are usually attached by a common wall.

1. Values provided by the user are:

— Is there some obstacles ? {yes, no}

— How is the accessibility ? {easy, medium, hard}

2. Parameters deduced by the first filtering service which can be overwritten by the user:

— Panels’ width (bpwl ) and height (bphl ) lower bound.
bpwl ∈ [w pwl , w pwu] and bphl ∈ [w phl , w phu]

— Panels’ width (bpwu) and height (bphu) upper bound.
bpwu ∈ [w pwl , w pwu] and bphu ∈ [w phl , w phu]

Building. A building is the spatial entity where apartments are arranged and is the host of
several façades.

1. Values provided by the user are:

— Is there some obstacles ? {yes, no}

— How is the accessibility ? {easy, medium, hard}

2. Parameters deduced by the first filtering service which can be overwritten by the user:

— Panels’ width (bg pwl ) and height (bg phl ) lower bound.
bg pwl ∈ [bpwl ,bpwu] and bg phl ∈ [bphl ,bphu]

— Panels’ width (bg pwu) and height (bg phu) upper bound.
bg pwu ∈ [bpwl ,bpwu] and bg phu ∈ [bphl ,bphu]

Façade. A façade is a composition of apartments along with frames.

1. Values provided by the user are:

— Is there some obstacles ? {yes, no}
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— How is the accessibility ? {easy, medium, hard}

2. Parameters deduced by the first filtering service which can be overwritten by the user:

— Panels’ width ( f pwl ) and height ( f phl ) lower bound.
f pwl ∈ [bpwl ,bpwu] and f phl ∈ [bphl ,bphu]

— Panels’ width ( f pwu) and height ( f phu) upper bound.
f pwu ∈ [bpwl ,bpwu] and f phu ∈ [bphl ,bphu]

This information collection has two specific goals: (1) to provide details about renovation
aspects, such as the accessibility conditions, that are needed in the configuration process and
(2) to provide upper bound for panels’ size and weight for each level of spatial entities. Note
then that panel’s limits may be overwritten due to limitations of each spatial entity.

5.2.2 CSP-based Façade Configuration Problem

The support system relies on a configured constraint satisfaction model for each façade to
renovate (generated at the end of Step 2 of the configuration process presented in Section 5.2
and illustrated in Figure 5.3). Each façade has (potentially) different size, number of windows,
supporting areas, etc. It is important from the point of view of the configuration to assign valid
range of values to panels, for instance, possible positions for panels must lie between zero and
the façade width and height. Simply put, each façade has its own configuration parameters used
in the constraint satisfaction model and in the envelope configuration process. Also, each façade
may have different accessibility conditions, obstacles or even user preferences.

When configuring these CSP instances (Step 3 of the configuration process presented in
Section 5.2 on page 128), it is important to conserve downwards consistency. Downwards
consistency refers to the fact that information on higher level of the spatial entities hierarchy
is propagated to the inferior levels, i.e., working site → blocks → buildings → façades, but it
cannot be propagated upwards. As an example consider only accessibility conditions, obstacles
presence and panels’ size limits, for the specification in Figure 5.4.

Figure 5.4 – Downwards consistency among entities.
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Note that lower spatial entities on the hierarchy inherit values from upper levels. In Figure 5.4
on the previous page, for instance, façade 1 has an accessibility condition valuated to hard and
thus the upper bound for panels’ size is reduced to a given Z . This upper bound is not propagated
upwards to the building 1; it conserves its inherited value X . Consequently, façade 2 inherits the
value of X from the building 1 as no further reduction is needed for their panels’ configuration.
Naturally, it is the case that Z < X <U . Using this information a CSP is configured for each
façade to be renovated. Note that monotonic properties of constraint satisfaction framework
make transparent this configuration process.

5.3 Implementation

As commented before, different configuration tasks are assigned to different web-services.
The information inputted into the questionnaire is processed by the first service called Pre-
processing Service. Once the first service has pre-processed the information, the user invokes
the second one to provide compliant envelope configurations. The second service is then called
Envelopes Design Service. The architecture of the on-line support system is presented in Fig-
ure 5.5.

Figure 5.5 – Service-based architecture for on-line configurator.

Now, let us describe its input and output in a formal way. For each of the services the
input is a tuple of the form 〈SPEC,V ,D(V),C(V )〉 with |V | = |D(V)| and

— SPEC = 〈WS ,BK,BG,FAC〉; WS variables describing the working site, BK variables
describing blocks, BG variables describing buildings and FAC variables describing façades.

— V = 〈P ,FA〉; P variables describing a generic panel and FA variables describing a generic
fastener.

— D(V) = 〈D(P),D(FA),〉; domain for each one of the variables in V.
— C(V) a set of constraints over variables in V.
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Information in SPEC describes only properties of the spatial entities such as the number of
façades, sizes, frames positions, etc. It corresponds to the parameters presented in Section 2.2.1
on page 37. Variables in V and D(V) are manufacturer dependent and include the generic panels’
domains which depends on the manufacturing process. These variables in V correspond to the
decision variables presented in Section 2.2.2 on page 37. Constraints in C(V) correspond to those
from the problem domain by stakeholders, as presented in section 2.2.3 on page 38.

5.3.1 Pre-Processing Service

In this section, details of the pre-processing service in charge of the questionnaire configuration
are introduced. The pre-processing service exploits the filtering engine CoFiADe (Vareilles et al.,
2012). We only exploit the CoFiADe compatibility tables filtering in our implemetantion in order
to deduce the relevant bounds for panels’size and weight. Compatibility tables are constraints
expressed by enumerating all possible valid compatibility of values (these kinds of constraints can
also be found, for instance, in the finite domain constraint module of SWI-Prolog (Wielemaker
et al., 2010, Triska, 2012)).

Mapping

The pre-processing service is in charge of removing values from elements in D(V) that are
not allowed by the established constraints. Here, constraints C(V) describe valid combination
among different arguments in SPEC and variables in V. We denote this set of constraints C f (V)
to distinguish them from the ones used in the envelopes design service. These constraints are
formalized as compatibility tables. Formally, the filtering is a mapping M from variables and
domains to domains

M(SPEC,V ,D(V),C f (V)) →D′(V) (5.1)

The result D′(V) contains the new domain of the decision variables describing the generic
panels and fasteners, where D′(V) ⊆D(V).

As stated previously in Steps 1 and 2 of the configuration process presented in Section 5.2
on page 128, the goal of pre-processing is to set domains for configurable components using
spatial entities information and constraints to do so. In our on-line support system we use the
filtering engine CoFiADe to perform this filtering. Several reasons support our choice. First, the
system is already on-line, making it usable in no time. Second, it is well conceived for supporting
decision-making processes. And third, it uses efficient compatibility tables for domain pruning;
applying a given compatibility table is made in constant time O(1).

Stakeholders Knowledge

Configurable components of the renovation are panels. Panels are configurable by fixing their
width, height and position over the façade.

The following material describes the compatibility tables, presented in Table 5.1 on the next
page, which state the allowed combinations between the user’s input values and configurable
components values. Now, to deepen the details of the spatial entities conditions, we have
further divided the conditions presented in Section 2.1.2 on page 26 into wind speed presence
(more than 80 km/h), season (i.e., summer, spring, fall, winter), obstacles presence (e.g., trees,
water source, etc) and accessibility conditions (e.g. roads).

C1: Relation between the wind speed conditions of spatial entities and panels’ size, where
env pwu and env phu are upper-bounds for panels’ width and height, respectively, when
constrained by environmental conditions

C2: Relation between the season in which the on-site work will take place and panels’ size,
where seapwu and seaphu are upper-bounds for panels’ width and height, respectively,
when constrained by the season.
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C3: Relation between obstacles in spatial entities and panels’ size, where obspwu and obsphu

are upper-bounds for panels’ width and height, respectively, when constrained by the
presence of obstacles.

C4: Relation between accessibility of spatial entities and panels’ size, where accp1wu and
accp1hu are upper-bounds for panels’ width and height, respectively, when constrained
by medium level accessibility conditions, and accp2wu and accp2hu are upper-bounds
for panels’ width and height, respectively, when constrained by hard level accessibility
conditions, with accp2wu ≤ accp1wu and accp2hu ≤ accp1hu .

It is worth highlighting that the different upper bounds for panels coming from wind, season,
obstacles and accessibility conditions, along with the user’s preferred bounds, are coherently
used to set panels’ limits. For instance, we consider the final panels’ width upper bound for
a given façade as min(env pwu , seapwu ,obspwu , accp2wu ,user pwu), where user pwu is the
upper bound imposed by the user.

Table 5.1 – Compatibility tables on pre-processing service.

C1
Wind Panels’ size
yes (wp ≤ env pwu )∧ (hp ≤ env p : hu)
no ;

C2
Season Panels’ size
summer ∨ spring ;
fall ∨ winter (wp ≤ seapwu )∧ (hp ≤ seaphu )

C3
Obstacles Panels’ size
yes (wp ≤ obspwu )∧ (hp ≤ obsphu )
no ;

C4
Accessibility Panels’ dimensions
easy ;
medium (wp ≤ accp1wu )∧ (hp ≤ accp1hu )
hard (wp ≤ accp2wu )∧ (hp ≤ accp2hu )

5.3.2 Envelopes Design Service

As stated in Step 3 of the configuration process presented in Section 5.2 on page 128, the
envelopes design service uses the proposed algorithms InDiE, GaLaS, CaSyE, SkEdE and OpackS
to help the user to design compliant envelopes. As presented in Chapter 3 on page 47, when the
envelopes design service uses the InDiE, GaLaS or CaSyE algorithms, it exploits either functional
programming or heuristic approaches. As explained in Chapter 4 on page 93, when the envelopes
design service uses SkEdE and OpackS solutions, it exploits CP techniques, and more precisely,
the constraint solver Choco. Choco implementation is based on filtering algorithms as studied in
Section 4.1 on page 94 (these kinds of constraints can be found, for instance, in the constraint
programming environments Gecode (Schulte et al., 2010) and ECLiPSe (Schimpf and Shen,
2012)).

Envelopes Knowledge

The envelopes design service is in charge of insulating envelope designs. The system uses
the algorithms presented in this dissertation to help the user’s drawing to generate insulating
envelope designs. Now, while information of SPEC and V are the same as the pre-processing
services, it is not the case for domains and constraints. To differentiate them let’s call the input
domains Ds (V) and the constraints Cs (V). Intuitively, variable domains Ds (V) are provided by
the mapping of the pre-processing service, i.e.,

M(SPEC,V ,D(V),C f (V)) =D′(V) =Ds (V) (5.2)
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where D(V) is the initial domain for panels’ size and weight. Constraints in Cs (V) are stated
as first order formulas and express, not compatibility among elements but, requirements for valid
envelopes (see Section 2.2 on page 37). The output of the solving service is a set of insulating
envelopes, each one characterized by the number of panels and length of junctions. Formally,
the envelopes design service is a function of the form

F (SPEC,V ,Ds (V),Cs (V),H) = 〈PX ,PY ,PW ,PH,FX ,FY〉 (5.3)

where PX and PY represent the origin of coordinates for each panel in the solution, PW
and PH the width and height, respectively, for each panel in the solution, and FX and FY
represent the position of each frame on the envelope. Additionally, the function is parameterized
by an heuristic H stating which algorithm is meant to be used.

5.4 Personalization and Recommendation

In order to improve the configuration capabilities of the system, it is useful to allow the
personalization of the insulating envelopes. In this section we present the personalization (pref-
erences) set by the user, the features that are crucial for the configuration and the features that
may be excluded or completed by the system (our analysis is based on Falkner et al. (2011)).

5.4.1 User’s Preferences

As indicated in Section 2.1.2 on page 26, in Stage 3 of the renovation industrialization
process, the user has the possibility to overwrite panels’ limits within those deduced by the
system, as presented in Figure 5.6. For instance, the user can enforce panels to be square
(pw = ph) in order to give the façade a specific look. This first feature for personalization allows
the user to generate more solution diversity (defined as different solutions (Schreiber, 2010)).

Figure 5.6 – Questionnaire screen-shot: Overwriting of panels’ limits.

The second feature for personalization of the configuration depends on panels’ orientation.
Panels’ orientation is only a relation between panels’ width pw and height ph , being horizontally
oriented when pw > ph and vertically oriented otherwise. This is an important personalization
feature as it affects the aesthetics properties of the envelopes, which is a hard constrain in
the OpackS solution. Nonetheless, the preferred panels’ orientation may be not respected due
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to conflicts in the constraint model (such as in GaLaS; it is therefore considered as a soft-
constraint. When the preferred orientation cannot be satisfied, the system recommends to the
user the solutions composed of the maximum number of panels in the preferred orientation; an
application of the nearer-is-better similarity function (Falkner et al., 2011). Choosing a minimum
number of panels to be vertical (respectively horizontal) is a personalization feature considered
as future work (Section 6.2 on page 141).

5.4.2 Features Ranking and Exclusion

To simplify the process from the user’s viewpoint, we have selected a set of key features to
the configuration as well as the optional ones which can be left to the system. The idea behind
this ranking is to avoid overwhelming the final user with the process (Tiihonen and Felfernig,
2010). Three of the features are key for the configuration, meaning that they are the most highly
ranked (Falkner et al., 2011):

— Number of panels: It is important to present to the user first the envelopes composed of
the minimum number of panels. Among the set of solutions with minimum number of
panels, it presents first those with minimum length of junctions.

— Orientation: It is important to achieve a pleasant aesthetic envelope. If this feature is
not set, the system recommends envelopes configured using only one panel’s orientation
(hard constraint, OpackS). Then, it tries to configure envelopes using only vertically or
only horizontally oriented panels.

— Panels’ size bounds: The limits for the panels’ size are mandatory and have to take into
account all the renovation industrialization process limitations. Forgetting one of them
(manufacturing, shipping or installing limitations) leads to envelopes configuration which
cannot be either manufactured, shipped or installed onto the façades.

At the other end of the spectrum are the optional features which can be left in blank or be
filled by the support system. In the renovation process, these features concern mainly information
that has an impact on the configuration:

— Working site in windy region and season of on-site work: Default values are no wind in
the region and summer for on-site work which have no impact on panels’ limits.

— Obstacles presence and accessibility conditions: These properties are inherited from the
working site information and propagated downwards. If no information is available, default
values are no obstacles and easy accessibility which have no impact on panels’ limits.

— Fasteners location: The location of fasteners (bottom, lateral edges, top) is another pref-
erence (soft constraint). This is however bypassed by the system if the size of panels
demands it. For instance, the system recommends bottom fasteners for horizontal panels
and lateral fasteners for vertical ones.

5.5 Discussion

A brief discussion about the division of task into different services, and its communication
behavior, closes the chapter.

5.5.1 Underlying Handling

The division of configuration tasks and its handling by different services is supported by
the underlying declarative model of constraint satisfaction. Indeed, the monotonic properties
of constraint-based systems make it possible to collect the requirements from the problem do-
main, state them as constraint and map them into constraint-based implementations in a simple
intuitive way.
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Now, note that the user’s answers to the questionnaire are sent to the pre-processing service
which replies with the panels’ size bounds for a particular façade. This means that the clients’
browser is the one capturing the panels’ bounds. Then, upon user’s request, the system sends the
façades specifications and particular panels’ bounds to the envelopes design service which replies
with different envelopes solutions (when automatic mode is needed by the user). Therefore,
there is no need for any intermediary procedures to map information from one service to the
other; only values (answer to questions) are sent to the pre-processing service and only values
(panels’ bounds) are returned from it whereas only values (façade specification and panels’
bounds) are sent to the envelopes design service and only values (envelopes numerical model for
manufacturing) are returned from it.

5.5.2 Advantages

Benefits for configuration tasks division into web-services are rather simple. On the one hand
we use a modular design for the architecture. In our on-line system the modular design allows to
add or remove variables, domains and questions in the pre-processing service, i.e., by means of
adding or removing compatibility tables. In addition, as we use CoFiADe, we may mix different
variable representations as integer domains, continuous domains and symbolic domains whereas
in most constraint systems mixing variable domains is not allowed or is not efficient enough.
For instance, given the reduced number of constraints for continuous domains in Choco, the
representation has to be changed to integer domains.

On the other hand, as a benefit of tasks division, we improve performance by avoiding the use
of binary equalities and binary inequalities constraints whose computational time is O(n ∗m),
where n and m are the number of values in the domain of the two variables involved in the
constraint. Thus, at the moment of finding solutions, the underlying Cutting & Packing al-
gorithms, focus on the envelopes generation rather than deducing panels limits or other time
consuming responsibilities. In particular, the underlying constraint solver Choco, used to explore
the solution space for optimal solutions, propagates and applies search using only those con-
straints defining insulating envelopes and not compatibilities between configurable components.

Regarding the performance, the two configuration tasks must be studied separately. As
commented before, applying a given compatibility table in the filtering service is made in constant
time. Thus, the time involved in the pre-processing service depends on the questionnaire and on
the number of spatial entities (buildings, façades and so on). On the envelopes design service, by
contrast, the performance depends on the underlying Cutting & Packing algorithm. Execution
over façades with size 40×10 meters, 50×12 meters and 60×15 meters lasts between one and
two seconds. The use of a dedicated heuristic that exploits the problem structure allows to reach
such good performance.
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And yet the working part of this population of 2,500 persons was producing as
much real wealth for society, as, less than half a century before, it would have
required the working part of a population of 600,000 to create. I asked myself
what became of the difference between the wealth consumed by 2,500 persons
and that which would have been consumed by 600,000?

The Revolution in the Mind and Practice of the Human Race
Robert Owen, 1849

6
Concluding Remarks

We conclude this dissertation with a synthesis of the thesis context, contributions of our work
and possible directions for future research.

6.1 Synthesis

The problem of façade-layout synthesis consists in designing façades insulating envelopes
using rectangular configurable panels. The problem raises in a multi-partner project called CRIBA
which aims at the industrialization of buildings thermal renovation. Our work within the project
focused on assisting architects in the manual and automatic design of envelopes that, according
to stakeholders, should have the minimum number of panels, and within those minimum length
of junctions, and the largest panels should be located at the bottom of the façade.

This design problem is the main scientific problem addressed in the dissertation. The problem,
that we have called façade-layout synthesis problem, is subject to the following particularities.

1. Firstly, the number of rectangular panels to design an envelope and their size are not known
in advance though panels sizes are bounded.

2. Secondly, rectangular windows and doors over the façade must be covered by panels with
the condition that no partial overlapping is allowed.

3. Thirdly, panels are attached by their corners in specific rectangular areas over the façade.

4. Fourthly, no overlapping between panels, and no holes in the insulating envelopes, are
allowed.

5. Lastly, envelopes should be composed of the minimum number of panels and, among those,
the preferred one have minimum length of junctions.

On regard to the particularities of the problem and the rectangular geometry of elements
(façades, windows/doors, supporting areas and panels), the problem was treated as an orthog-
onal two-dimensional Cutting & Packing problem. In this dissertation we have studied the
modelling capabilities of constraint satisfaction problems as well as solving techniques, from ar-
tificial intelligence and operational research, to solve this two-dimensional Cutting & Packing
problem. Under a scientific viewpoint, we have focused our attention on the characteristic of
unknown number of panels as it is a particularity overlooked in the literature. Further, to the
best of our knowledge, there is no other work tacking simultaneously the five particularities of
the problem and thus we have proposed a new Cutting & Packing classification that expresses
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the traditional problems while including the the façade-layout synthesis one (see Figure 2.1 on
page 25). The results of our research have been condensed in a (mock-up) decision support
system dedicated to assist architects in the insulating envelopes design. As such, the dissertation
was built upon the fields of constraint satisfaction, Cutting & Packing, product configuration
and layout-synthesis. The remaining of this section is devoted to outline the major contributions
of the dissertation.

The first contribution of our research is the description of this previously unaddressed problem
and its modelling by constraint satisfaction problems (CSPs). We have contributed to the fields
of Cutting & Packing and layout synthesis by describing the particularities and novelties of
the façade-layout synthesis problem. To do so, we have presented, in Section 2.1 on page 23,
the renovation process, spatial entities, façade and configurable panel details along with the
renovation requirements that guides our modelling decisions. Conversely, we have contributed to
the fields of constraint satisfaction and Cutting & Packing by developing a constraint-based
model of the problem. We have then used the knowledge extracted by stakeholders to represent
the envelopes design problem as a CSP. To do so, we have presented, Section 2.2 on page 37, the
parameters customizing the CSP, decision variables and constraint defining well-designed panels
as well as well-designed insulating envelopes along with optimality issues. More precisely, we have
presented and discussed nine constraints (size, size compatibility, area, panels non-overlapping,
frames overlapping, installation, weight, interference and symmetry breaking constraints) and
one design objective (minimization the number of panels in a given envelope).

On a second step, we have contributed with the fields of Cutting & Packing, layout syn-
thesis and product configuration by developing five algorithmic solutions (two manual and three
automatic) to the design problem and implementing them in a decision support system. We will
now discuss each of these solutions in regard to their benefits and limitations.

The first manual solution, called InDiE (Section 3.1 on page 48), implements an interactive
behavior as it provides real-time feedback to the user. This interactive approach presents a
major benefit; it allows to design panels one-by-one while informing, visually, about constraint
conflicts. Then, the user is capable to iteratively construct the envelope by re-dimensioning and
re-allocating panels when constraint conflicts exists. As a condition, and given the hand-eye
coordination demanded in this setup, the visual responses of the InDiE design is made in less
than 100 milliseconds.

The second manual solution, called SkEdE (Section 4.2 on page 97), supports architects cre-
ative sketching by exploiting the filtering and search capabilities of a constraint solver. This so-
lution does not implements an interactive behavior, unlike the InDiE one, and it does not inform
the architects about constraint conflicts during the sketching. Thus, the iterative construction
process of envelopes is lost in this setup. However, this solution presents other advantages. First,
the design based on sketch is not limited to one panel at the time design; the architect may
draw any number of panels over the façade, even ill-designed ones. Second, although it does
not inform about constraint conflicts, it does solve conflicts when they are present by executing
filtering algorithms from an underlying constraint solver. This behavior is independent of the
number of panels as global constraints may be applied to any number of variables. Finally, it
performs search over the panel representation (decision) variables in order to present a consistent
envelope design. Here, the SkEdE presents panels design as similar as possible to those drawn
in the sketch by setting their size in their maximum allowed value.

The first automatic solution, called GaLaS (Section 3.2 on page 56), makes local (optimal)
decisions in the aim to arrive fast to a close to optimal solution. This solution implements the
well-known greedy algorithmic notion. It iteratively designs envelopes by placing one panel at
the time and solving constraint conflicts locally. The key local decisions involve the positioning
of the panel in the first bottom-left point of the façade and the sizing on their maximum allowed.
These local decisions are “blind” in the sense that no future states of the design, neither the
façade geometry, is considered which is a limitation it has. Due to this local decision-making,
the resulting envelopes have not their junctions aligned or, if they are, it is only accidentally

140



6.2. FUTURE WORK

(aesthetics aspects). The GaLaS heuristic allows the design under the soft constraint of preferred
panel orientation. Then, when assigning size and solving conflicts it will respect, as much as
possible, the chosen orientation. Two handy decisions allow to overcome no-solutions setup
when the design of a panel fails due to constraint conflicts: First, it changes the orientation
of the panels and, if it still does not work, it performs backtracking to change the position
and/or size of the previously designed panels. These two decision are significant benefits of
the solution. Lastly, we have allowed the solution to overpass the orientation preference and
thus combine panel orientation indistinctly. The combination provides two major benefits: First,
it allows to reach solution with the lowest number panels as it mixes vertical and horizontal
orientation to design the envelopes and, second, it allows to generate different solutions in a
short computational time (achieved with binary trees).

The second automatic solution, called CaSyE (Section 3.3 on page 75), executes cuts over
the façade in order to design panels in areas free of constraint conflicts. This solution implements
the guillotine cuts technique that executes orthogonal cuts from one extreme of the façade to the
other. This solution, unlike the GaLaS one, is not “blind” as it takes into account the geometrical
composition of the façade to execute the guillotine cuts. Executing orthogonal guillotine cuts
engenders the main advantage of the solution; it generates solutions in which the panels junctions
are aligned, i.e., more aesthetic envelopes. In addition, the heuristic adopts the same local
decisions as the GaLaS algorithm as it sets panels origin point in the first available bottom-left
point of the façade and sets panels size according to the maximum allowed and the position of
the guillotine cuts. The construction mechanism of the algorithm forces portions of the envelope
to be designed only with one orientation (hard constraint). But, the resulting envelopes have a
mixture of vertical and horizontal panels (soft constraint) as the final envelopes are the union of
different portions. The solution has three major drawbacks. On the one hand, it generates up-to
two envelopes for a given façade, i.e., low solution diversity. Second, the generated envelope has
more panels than those generated by the GaLaS one (except for symmetrical façade where both
approaches throw analogous results). Lastly, the solution will throw no result for façade in which
no guillotine cuts can be made and thus is not as robust as the GaLaS solution.

The third automatic solution, called OpackS (Section 4.3 on page 106), is supported by
filtering and search capabilities of a constraint solver in the aim to generate optimal solutions
w.r.t. the number of panels. As a condition and limitation, the orientation of panels is a
hard constraint in this solution, meaning that envelopes are composed of panels with only one
orientation and this orientation cannot be changed on run-time. Considering this limitation, i.e.,
design with panels in only one orientation, we have shown that the OpackS solution generates
optimal insulating envelopes. Moreover, the OpackS behaves better or equal than the GaLaS
and CaSyE solutions under the hard constraint of panel orientation. This performance have
been reached by adapting the CSP model to reflect the fact that panels are optional in a given
envelope and adapting some filtering algorithms to exploit this fact. Then, the solution is not
“blind” as the GaLaS solution because, although it does not consider the geometry of the façade
as does the CaSyE one, it does take into account future states by applying filtering over the panel
variables. Further, an additional and borrowed benefit of the solution is the backtrack search
“skills” provided by the underlying constraint solver (complete search although limited by time).

As a concluding note, the dissertation has presented an (mock-up) on-line product con-
figuration software (specialized version of a decision support system) in which the model and
algorithmic solutions have been implemented. The novelty of this support system is the divi-
sion of configuration (consequently design) tasks within the renovation process (Chapter 5 on
page 127).

6.2 Future Work

The study presented in this dissertation raises new questions and challenges. The following
are some of the future directions contemplated by the author. Now, before entering in future
directions for each algorithmic solution, we discuss three issues directions for the improvement
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of all of the solutions, mainly the automatic ones.
To begin, it is appealing to put efforts on the improvement of the solutions, or development

of new ones, in such a way that aesthetics aspects, other than junctions alignment, are taken into
account. To our understanding, the symmetry consideration on the envelopes look, alignment
of junctions, is a good criterion for generating “pleasant” solutions (as shown by the CaSyE
solution). Nevertheless, no other criteria aesthetics have been studied. An attractive starting
point of research, is the inclusion of patterns in the design knowledge. Here, however, the goal
of minimizing the number of panels may compromised, as proven by the CaSyE algorithm that
generates envelopes with the highest number of panels. Aesthetics of envelopes is a property
highly appreciated by architects and is a fascinating challenge for us.

Next, we consider future research for the Cutting & Packing of shapes that are not rect-
angles. This is one of the most interesting directions as it would remove limitations of the
algorithms and would strengthen the aesthetics of envelopes as new design patterns may be
conceived. Then, the algorithms would be able to cope with different convex shapes of panels,
façades and frames (see illustration in Figure 6.1).

Figure 6.1 – Triangular gable, convex panel shapes and circular frames shapes.

Lastly, we consider post-processing capabilities to be, potentially, a powerful aiding mecha-
nism for improving the quality of the results. These capabilities may come in two forms. First,
a manual post-processing in which, for instance, the architect re-dimensions one panel and the
system automatically re-dimension the remaining panels to be consistent with the new panel de-
sign and constraints. Here is the architect who guides the post-processing. The second form is
to have a fully automated post-processing. Once an insulating envelope has been thrown, a pro-
cedure may re-dimension the panels in order to align the junctions between them, or make them
more similar in size, for instance, and thus achieve a more pleasant envelope. The automated
re-dimension of panels is tricky due to the diverse set of constraints that must be respected.

In what follows, we discuss future work for each algorithmic solution.

1. Interactive manual design InDiE (Section 3.1 on page 48). The interactive design may be
promoted to a semi-recommender design. Up-to-now, when the user manually draws panels
over the GUI, it receives a feedback about the ill- or well-design of the panel. When the
panel is ill-designed, the system only informs about conflicts existence but does not suggest,
or recommend, any alternative direction. An interactive design under a recommender setup
would visually show two or three alternatives for a well-designed panel. The guided design
would be further strengthened.

2. Greedy automatic design GaLaS (Section 3.2 on page 56). The following strategic di-
rections have been identified. First, inclide pre-processing capabilities to the algorithm.
Intuitively, a human design takes advantages of the façade dimensions and positions of
frames and supporting areas to start the design. Thus, it is a good choice to perform a
geometrical analysis of the façade and use the results to guide the design. In particular, an
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analysis may look for symmetries in the façade, distances between windows and between
supporting areas to define better local decisions when assigning the panels’ sizes (currently
in its maximum allowed size). Figure 6.2 presents an illustration of such case. Note in the
figure that the panels in literal (b) are almost of the same size whereas the size difference
of the panels in literal (a) is noticeable. Having panels with similar sizes may not only
improve the envelope aesthetics but also it is also a good choice for the renovation logistic
as it would required fewer types of trucks and installation machinery.

Figure 6.2 – Preprocessing stuff.

The second direction of the solution is to enhance the search with better exploration
capabilities. For instance, using a Branch and Bound strategy we can avoid exploring
nodes that, given their partial design and its respective evaluation, do not satisfy the user
criteria (e.g., number of panels, length of junctions, etc.). Thus, at the end of the process
would only remain those envelopes that the architect has requested.

3. Cutting automatic design CaSyE (Section 3.3 on page 75). Some attractive improvements
to this solution may be achieved with the following research. A strategic direction for the
CaSyE algorithm is to enhance it to generate more than two solutions. A tentative alter-
native is to exploit non-guillotine cuts techniques as well as the combination of horizontal
and vertical cuts. Indeed, allowing the algorithm to make partial orthogonal cuts over the
façade, in both dimension, will generate different results on the envelopes and, potentially,
better results w.r.t. number of panels and length of junctions. More important, executing
non-guillotine cuts in both dimensions may allow the algorithm to find solutions where it
currently fails. For instance, the façade in Figure 6.3.a, that have been already studied in
Section 3.3.4 on page 84, may be solved with this approach as shown Figure 6.3.b.

Figure 6.3 – Non-guillotine cuts in both dimensions.

4. Filtering-based manual design SkEdE (Section 4.2 on page 97). Even when we have already
proposed an interactive design of envelopes (InDiE design), research on how to promote
the SkEdE design into an interactive one is interesting. In fact, the current implementation
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of the sketching design may be adapted to an interactive one: Every drawn panel is sent
to the constraint solver to execute filtering without executing search. Here, nonetheless,
the response time may not satisfy the real-time requirements (< 100 milliseconds).

5. Filtering-based automatic design OpackS (Section 4.3 on page 106). This solution can
be further explored with the following strategic directions. First, the relaxation of the
hard constraint for panels’ orientation. This is, to be sure, one of the most interesting
directions as it would improve the quality of the results, w.r.t. the minimum number of
panels, that will potentially be better than the other automatic solutions. This is, however,
not a simple task due to the combinatoric within the problem. Also, the current maximum
number of optional panels is too high and thus the two-step approach that we have used.
Further analysis must stress the calculation of this maximum with regard to the façade
composition rather than its size. Finally, the proposed dedicated heuristic follows the same
greedy approach when assigning the origin point (currently bottom-left) and size of panels
(currently upper bound). Choosing different values may lead to different solutions ergo
different appearance. Randomness, although may produce holes, is an interesting direction
to generate different geometrical patterns.
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Dans ce singulier pays, où les hommes ne sont certainement pas
à la hauteur des institutions, tout se fait carrément, les villes, les
maisons et les sottises.

Le Tour du monde en quatre-vingts jours
Jules Verne, 1873

7
Résumé Long en Français

Les travaux de recherche présentés dans cette thèse se situent dans une problématique d’aide
à la conception d’enveloppes isolantes pour la rénovation thermique de bâtiments résidentiels
collectifs. Ces enveloppes isolantes sont composées de panneaux multifonctionels rectangulaires,
configurables et préfabriqués en usine. Leur conception repose sur les cinq caractéristiques sui-
vantes. Premièrement, le nombre de panneaux nécessaires pour concevoir une enveloppe ainsi
que leur taille respective ne sont pas connus au début de la rénovation (mais leur taille est
cependant bornée). Deuxièmement, en raison des contraintes de fabrication, chaque fenêtre et
chaque porte présentes sur la façade à rénover doivent être insérées dans un et un seul panneau.
Troisièmement, les panneaux sont fixés à des endroits spécifiques de la façade, assez résistants
pour supporter leur poids, nommés zones d’accroche. Quatrièmement, ni trous (zone non cou-
verte), ni chevauchements entre panneaux ne sont autorisés. Cinquièmement, afin de garantir
une isolation thermique performante tout en minimisant son coût, les enveloppes doivent être
composées d’un nombre minimal de panneaux. Au vue de la complexité de ce problème, nous
restreignons nos travaux de recherche aux façades rectangulaires portant des menuiseries et des
zones d’accroche rectangulaires.

Compte tenu des cinq caractéristiques énoncées et de l’hypothèse de forme rectangulaire
des éléments traités (panneaux, façades, menuiseries, zones d’accroche), la conception des en-
veloppes est à la fois un problème de découpe et de conditionnement à deux dimensions et un
problème de configuration. Ce problème est formalisé et traité comme un problème de satisfaction
de contraintes et a pour but d’aider la conception dédites enveloppes isolantes.

Ce mémoire est divisé en six chapitres. Dans ce résumé étendu, nous présentons les idées
principales de nos travaux et nous nous concentrons sur ses contributions majeures.

7.1 Introduction

Le problème de découpe et de conditionnement à deux dimensions consiste à positionner des
composants à l’intérieur d’un ensemble de contenant (éventuellement singleton) de telle sorte
que les composants soient complètement contenus dans les contenants sans se chevaucher. Les
caractéristiques du problème peuvent varier en fonction du secteur d’application visé, tels que la
transformation du bois, la découpe de métal, de verre ou de cuir, la conception de pages Web,
de microcircuits ou d’appartement.

Étant donné que les problèmes de découpe et de conditionnement à deux dimensions sont
N P-difficiles, plusieurs travaux de recherche ont mis au point des solutions algorithmiques et
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informatiques pour soutenir la prise de décision dans les différents secteurs de l’industrie. En
particulier, les techniques d’intelligence artificielle et de recherche opérationnelle ont montré
leur robustesse face à ces problèmes. Par exemple, le problème de découpe de pièces minimi-
sant les chutes, un cas particulier des problèmes de de découpe et de conditionnement souvent
présents dans les industries de l’acier et de l’aluminium, a été formalisé comme un modèle de
programmation linéaire, un modèle de programmation dynamique et un modèle évolutif. Ces
types de solutions, cependant, sont soit trop généraux ou trop spécifiques, pour résoudre tous
les problèmes de découpe et de conditionnement qui proviennent de l’industrie. Par-dessus tout,
il est difficile de créer des heuristiques génériques qui exploitent efficacement la connaissance et
l’expertise de chaque problème spécifique.

Un cas particulier de problème de découpe et de conditionnement se pose dans notre contexte
de rénovation thermique de bâtiments par l’extérieur. Ce cas particulier, aussi appelé problème
de calepinage de façades, concerne l’allocation de panneaux rectangulaires configurables sur des
façades rectangulaires. L’ensemble des panneaux couvrant une façade constitue son enveloppe
isolante qui réduit le transfert thermique entre l’intérieur et l’extérieur du bâtiment. La motivation
derrière cette isolation est de parvenir à une réduction de la consommation énergétique des bâti-
ments qui dépasse actuellement le secteur des transports et de l’industrie. Cinq caractéristiques
rendent notre problème original et intéressant :

1. Premièrement, le nombre de panneaux constituant une enveloppe, ainsi que leur taille, ne
sont pas connus a priori. La taille des panneaux est cependant bornée par un intervalle
donné dépendant des contraintes de fabrication et de transport sur site.

2. Deuxièmement, les menuiseries des façades (fenêtres et portes existantes) doivent être
complètement recouvertes par les panneaux, chacune devant être couverte par un et un
seul panneau.

3. Troisièmement, les panneaux sont fixés dans des zones spécifiques qui sont assez résistantes
pour supporter leur poids supplémentaire (mur de refend, nez-de-dalle, etc), appelées zones
d’accroche.

4. Quatrièmement, afin de garantir une isolation extérieure performante, aucun trou, ni aucun
chevauchement entre panneaux ne sont admis dans les enveloppes.

5. Cinquièmement, afin de garantir une isolation extérieure performante tout en minimisant le
coût global de la rénovation, les enveloppes doivent être composées d’un nombre minimal
de panneaux.

L’un des problèmes clés adressés dans ces travaux est de permettre aux architectes de conce-
voir rapidement plusieurs solutions de calepinage de façade respectant l’ensemble des contraintes
et besoins exprimés. Nos travaux de recherche trouvent donc leur origine dans ce besoin indus-
triel de conception d’enveloppes isolantes pour la rénovation thermique de bâtiments résidentiels
collectifs.

Dans le cadre de nos travaux de thèse, nous posons la restriction suivante sur la géométrie des
éléments considérés : les façades, les menuiseries (portes et fenêtres), les zones d’accroche ainsi
que les panneaux sont rectangulaires. Cette limitation nous permet de considérer le problème de
conception de solutions de calepinage comme un problème de découpe et de conditionnement à
deux dimensions. Il est à noter que chacune des façades d’un bâtiment a ses propres dimensions,
porte un nombre de menuiseries potentiellement différent et positionnées distinctement des autres
façades du bâtiment, et possède des zones d’accroche avec une résistance spécifique. Clairement,
la conception d’une enveloppe isolante dépend d’une part de la géométrie de la façade (position
des menuiseries et des zones d’accroche) et de sa résistance, et d’autre part, des préférences de
l’architecte (rendu esthétique du bâtiment).

7.2 Contexte Scientifique
Tout problème de découpe et de conditionnement possède une structure commune qui permet

de l’identifier comme tel. Cette structure concerne deux aspects. En premier lieu, deux éléments
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participent au problème de découpe et de conditionnement :

— Un ensemble, peut-être singleton, de grands objets ou contenants : Ces objets sont les
entités spatiales dans lesquelles le conditionnement a lieu.

— Un ensemble de petites entités ou articles : Ce sont les entités spatiales à conditionner
dans les grands objets.

En second lieu, dans le cadre de la structure du problème de découpe et de conditionnement,
chaque problème doit satisfaire :

— Le non-chevauchement des petites entités,

— Le conditionnement de toutes les entités ou d’un sous-ensemble dans le grand objet.

Ces éléments sont spécifiquement définis dans une ou plusieurs dimensions. En outre, les
éléments peuvent avoir des géométries régulières ou irrégulières : La plupart des travaux scienti-
fiques portent sur des éléments à géométrie régulière (comme des rectangles ou cercles), alors que
des éléments à géométrie irrégulière apparaissent souvent dans les contextes industriels. Quelle
que soit la géométrie du contenant et des entités, le conditionnement doit satisfaire un ensemble
des exigences héritées du domaine d’application. Ces exigences sont généralement connues sous
le nom contraintes supplémentaires.

Une sous-catégorie de problèmes de découpe et de conditionnement correspond aux problèmes
à deux dimensions. Parmi ces derniers, un cas particulier de problèmes est appelé le problème de
découpe et de conditionnement rectangulaire. Dans ce cas, les petites entités et les contenants
sont de géométrie rectangulaire. Il existe deux possibilités pour conditionner le petites entités dans
les contenants : celles-ci sont autorisées à pivoter ou non. Dans ce dernier cas, nous parlons de
problèmes de découpe et de conditionnement orthogonaux : les bords des entités sont parallèles à
ceux des contenants. Nous retrouvons cette propriété d’orthogonalité dans ces travaux de thèse.

En ce qui concerne la complexité, l’ensemble des problème de de découpe et de conditionne-
ment sont classés comme N P-difficile. Cela signifie qu’il n’y existe aucun algorithme permettant
de les résoudre en temps polynomial (à condition que P 6= N P). En d’autres termes, l’augmen-
tation du nombre de petites entités rend le problème insoluble en temps fini.

En raison de la complexité des problèmes de découpe et de conditionnement à deux dimen-
sions, classé comme N P-difficile, les scientifiques ont mis au point des solutions algorithmiques
appuyant la prise de décision dans différents secteurs de l’industrie. En particulier, les techniques
d’intelligence artificielle et de recherche opérationnelle ont montré leur robustesse face à ces
problèmes.

Par exemple, le problème de découpe de pièces minimisant les chutes souvent présent dans
les secteurs de l’acier et de l’aluminium et se formalise comme un modèle de programmation
linéaire, modèle de programmation dynamique ou modèle évolutif. Ces types de solutions, cepen-
dant, sont soit trop généraux ou trop spécifiques, pour résoudre tous les problèmes de découpe
et de conditionnement qui proviennent de l’industrie. Par dessus tout, il est difficile de créer
des heuristiques génériques qui exploitent efficacement la connaissance et l’expertise de chaque
problème spécifique.

7.3 Contexte Industriel

Un cas particulier de problèmes de découpe et de conditionnement à deux dimensions se pose
dans le contexte de rénovation thermique de bâtiments par l’extérieur du projet CRIBA. Ce cas
particulier, aussi appelé problème de calepinage de façades, concerne à la fois le dimensionnement
des panneaux et leur positionnement sur la façade. L’ensemble des panneaux dimensionnés et
positionnés couvrant une façade constitue son enveloppe isolante. Cette enveloppe réduit le
transfert thermique entre l’intérieur et l’extérieur du bâtiment. La motivation derrière cette
isolation est de parvenir à une réduction de la consommation énergétique des bâtiments qui
dépasse actuellement les secteurs des transport et de l’industrie.
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La conception des solutions de calepinage repose d’une part, sur une description complète,
précise et exacte de chacune des façades en termes de géométrie et de résistance et, d’autre part,
sur une description générique des panneaux configurables. Cette connaissance, enrichie par les
attentes de l’architecte (orientation des panneaux, tailles imposées), conduit à des solutions de
calepinage tenant compte des exigences de toutes les parties prenantes (architectes, fabricants
de panneaux, etc).

La description des façades est essentiellement acquise auprès d’un géomètre pour leur géo-
métrie (taille et position des menuiseries) et d’un bureau d’étude structure pour leurs propriétés
structurelles (position et résistance des zones d’accroche). Cette description donne lieu à la réa-
lisation d’une maquette numérique du bâtiment sur laquelle les éléments clés sont conservés : les
menuiseries telles que les fenêtres, les portes et entrées de garage, ainsi que les zones d’accroche,
telles que les murs de refend ou les nez-de-dalle. Tout le reste, comme les gouttières, balcons
ou lampadaires directement attachés au bâtiment, sont enlevés et ne sont donc pas considérés
dans le problème. En outre, le pignon du bâtiment (partie triangulaire d’un mur entre les bords
de l’intersection des pentes de toit) est considéré comme étant hors périmètre de nos travaux
car il a besoin de panneaux à géométrie spécifique (triangulaire) qui seront dimensionnés et
positionnés manuellement par l’architecte. Enfin, à la demande des architectes et pour plusieurs
raisons principalement géométriques, des zones de la façade peuvent être retirées du processus
de calepinage, appelées « Zone hors Configuration » ou Z oC . La géométrie de ces zones doit
être rectangulaire, afin de ne pas interférer avec le processus de découpe et de conditionnement
et traiter ces zones comme des panneaux déjà définis.

Les panneaux sont des rectangles non-déformables avec leurs côtés parallèles à ceux de la
façade. Le problème adressé dans cette thèse est donc une instance d’un problème de découpe
et de conditionnement orthogonal à deux dimensions. La description des panneaux isolants est
le deuxième point clé dans la rénovation des bâtiments. Leur description doit être précise en
termes de tailles admissibles, des poids admissibles et de leurs propriétés thermiques. En effet,
chaque panneau est configurable et possède une plage de tailles différentes (largeur et hauteur),
un nombre potentiel de menuiseries incluses, une plage de poids différents (fonction de leur taille,
de leurs caractéristiques d’isolation, des menuiseries qu’ils contiennent et du revêtement choisi)
et une performance thermique (fonction du type d’isolation, de son épaisseur et les menuiseries
incluses). Nous soulignons le fait que chaque panneau est individuellement configuré (taille, poids,
isolation, etc) puis fabriqué avec la structure approprié contenant les nouvelles menuiseries. Il
est à préciser qu’aucun raccord n’est possible sur le chantier, rendant la précision exigée au
millimètre.

Les caractéristiques des panneaux sont essentiellement recueillies auprès des fabricants de
panneaux. Doivent être spécifiés la plage de largeurs possibles pw (bornes inférieures et supé-
rieures), les hauteurs possibles ph (bornes inférieures et supérieures), les contraintes reliant la
largeur pw et la hauteur ph des panneaux (par exemple, la combinaison des deux bornes supé-
rieures n’est pas autorisée), l’épaisseur d’isolation possible It h (bornes inférieures et supérieures),
les types d’isolation It y , les contraintes reliant l’épaisseur It h et le type d’isolation It y , et l’en-
semble des types de revêtement externe Cl t qui sont autorisés (gamme de couleurs, matériaux
et textures, comme le bois, le vinyle, la pierre ou l’aluminium).

Les panneaux sont fabriqués juste avant leur expédition, sans stock. Le type de transport
choisi (convois exceptionnels ou plus petits camions) a un impact sur leur taille : l’utilisation
de convois exceptionnels pour livrer les panneaux sur site n’a aucun impact sur leurs tailles
admissibles (toutes les combinaisons autorisées), alors que l’utilisation de plus petits camions
impose aux panneaux des dimensions qui leur sont adaptées.

Les panneaux ont une orientation (horizontale ou verticale) fonction du rapport entre leur
largeur pw et leur hauteur ph . Si le rapport pw

ph
est inférieur à 1, le panneau est vertical, sinon,

horizontal. Cette information a un impact fort sur la structure interne du panneau et son sens
de pose sur la façade. Ceci est d’autant plus pertinent si le panneau contient des menuiseries.
Quand un panneau contient des menuiseries, compte tenu de sa structure interne, une distance
minimale d doit être respectée entre les bords du panneau et ceux des menuiseries. Les panneaux
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sont également caractérisés par une performance thermique Tp et un poids Wp , fonction de sa
taille (pw , ph), de l’épaisseur de l’isolant (It h), du type d’isolant (It y), des menuiseries qu’il
contient et du revêtement Cl t , uniquement utilisé dans le calcul de poids Wp .

Les panneaux peuvent être fixés sur une façade de différentes manières : « suspendus »,
« posés » ou « agrafés » le long de leur périmètre. La façon de fixer les panneaux sur la façade
a un impact sur la manière de répartir leur poids sur les zones d’accroche et par répercussion
sur le calepinage de l’enveloppe isolante. Les panneaux sont fixés par des attaches métalliques,
appelées fixations. Chaque fixation est composée de deux parties : l’une fixée directement sur la
façade (patte de support) et l’autre installée directement sur le panneau à l’usine (support du
panneau). La position exacte des fixations dépend du calepinage de la façade et de la position
des panneaux. Son poids est directement inclus dans celui des panneaux. Le poids de chaque
panneau est divisé en deux et réparti sur deux zones d’accroche : soit sur les coins du bas à
droite et à gauche, si le panneau est « posé », soit sur les deux coins du haut à droite et à
gauche, si le panneau est « suspendu », soit au milieu de ses cotés verticaux si le panneau est
« agrafé ». Chaque fixation peut supporter le poids de deux panneaux, car le mode d’accroche
« suspendu », « posé » et « agrafé » est choisi pour l’ensemble de la façade à rénover. Lors du
positionnement d’un panneau, nous vérifions donc que les zones d’accroche impactées puissent
effectivement encaisser chacune, la moitié de son poids.

Dans le problème abordé ici, nous ne considérons que deux caractéristiques principales des
panneaux : leur taille et leur poids. En effet, le type d’isolant et son épaisseur sont déterminés
pour toute la rénovation par des simulations de performance énergétique au début du processus
de rénovation. Il devient donc inutile de calculer la performance de chaque panneau et de chaque
calepinage, mais il devient important d’estimer les fuites thermiques pour différencier les diffé-
rentes solutions de calepinage. Ces fuites thermiques apparaissent principalement à la jonction
entre les panneaux. Notre objectif de minimisation du nombre de panneaux est donc renforcé.
Concernant le poids des panneaux, le revêtement extérieur est choisi en amont pour toute la
rénovation, de manière similaire au type et à l’épaisseur d’isolant.

7.4 Méthode & Objectifs

Parmi l’ensemble des techniques d’intelligence artificielle et de recherche opérationnelle, les
problèmes de satisfaction de contraintes ou CSP se sont avérés remarquablement robustes pour
aborder les problèmes de découpe et de conditionnement orthogonaux à deux dimensions. De
plus, il a été prouvé que les CSP permettent de modéliser aisément à la fois les problèmes de
calepinage et de configuration. En particulier, leur caractère déclaratif permet une représentation
claire des connaissances comportant des variables de décision et de leurs relations, aussi nommées
contraintes. Ce modèle de connaissances est indépendant de la solution mise en œuvre pour
trouver une ou plusieurs solutions au problème ainsi que du langage de programmation sous-
jacent. En effet, le modèle de connaissances, qui est le plus critique pour la résolution d’un
problème, peut être résolu en utilisant différentes techniques telles que la programmation linéaire
en nombres entiers mixtes et la programmation par contraintes ou optimisé par l’utilisation de
méta-heuristiques telles que algorithmes génétiques.

Dans nos travaux, nous nous concentrons sur la modélisation et la résolution de problèmes
de découpe et de conditionnement orthogonaux à deux dimensions pour aider à la décision en
rénovation de bâtiments. La question scientifique principale abordée dans ce mémoire se résume
à « Comment générer des solutions optimales, en terme de nombre minimal de panneaux, pour
le problème de calepinage de façades, en tenant compte des attentes de l’ensemble des parties
prenantes et des limites industrielles ? » Les travaux de cette thèse tendent à répondre aux deux
questions suivantes :

1. Comment modéliser le problème de découpe et de conditionnement orthogonal à deux
dimensions comme un problème de satisfaction de contraintes lorsque le nombre d’entités
configurables et leur taille sont inconnus ?
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2. Comment couper / paquer / couvrir une surface rectangulaire avec un nombre non fixé
d’entités rectangulaires configurables ?

7.5 Contributions

Parmi l’ensemble des techniques issues de l’intelligence artificielle et de la recherche opéra-
tionnelle, nos travaux de thèse s’appuient sur les approches de satisfaction de contraintes pour
modéliser et résoudre le problème de calepinage de façades. Ce problème est mis en oeuvre avec
différentes solutions algorithmiques en utilisant un langage de programmation orientée objet.

L’ensemble des solutions algorithmiques présentées ici aborde le problème de calepinage de
façades lorsque le nombre d’entités rectangulaires (panneaux) et leur taille sont inconnus. Ces
travaux de thèse présentent deux contributions majeures :

Contribution 1 : En raison des caractéristiques originales du problème de calepinage de fa-
çades, sa description et sa formalisation comme un problème de satisfaction de contraintes
est la première contribution de ces travaux de thèse. En particulier, la description du pro-
cessus de rénovation industriel, la conception des enveloppes perçue comme un problème
de découpe et de conditionnement et le système d’aide à la décision pour les architectes
sont discutés. L’ensemble des exigences, des limites et des connaissances « métier » re-
cueillies auprès des parties prenantes et des architectes a été intégré dans un seul modèle
de satisfaction de contraintes et sert de base au système d’aide à la décision. Dans ce mo-
dèle, les variables de décision sont liées à la position et la taille des panneaux pour chaque
enveloppe isolante. Supposons que N représente le nombre de panneaux constituant une
enveloppe isolante donnée. Chaque panneau p i où i ∈ [1, N ] est décrit par l’origine de son
coin en bas à gauche et sa taille :

— p i
x0 ∈ [0, f acw ] est l’origine du rectangle p i selon l’axe horizontal.

— p i
y0 ∈ [0, f ach] est l’origine du rectangle p i selon l’axe verticale.

— p i
w ∈ [pwl , pwu] est la longueur du rectangle p i selon l’axe horizontal.

— p i
h ∈ [phl , phu] est la longueur du rectangle p i selon l’axe vertical.

Les contraintes régissant notre modèle sont les suivantes :

— Taille Les panneaux ont une plage de largeurs p i
w ∈ [pwl , pwu] et une plage de

hauteurs p i
h ∈ [phl , phu], avec pwl = phl = 0.5m. Certaines contraintes peuvent lier

la largeur et la hauteur des panneaux pour exprimer, par exemple, des contraintes de
fabrication. Dans notre cas, les deux dimensions d’un panneau ne peuvent pas être
mises en même temps à leur borne supérieure : Si pwu > phu alors pw = ph = pwu

n’est pas autorisé et, si pwu < phu alors pw = ph = phu n’est pas autorisé (contrainte
de fabrication).

— Area L’ensemble de la façade doit être recouvert de panneaux. Cette contrainte
implique qu’aucun trou n’est autorisé dans l’enveloppe, et que la somme des surfaces
des panneaux doit être égale à la surface de la façade (contrainte de métier).

— Non-chevauchement Le chevauchement entre panneaux est interdit. Cela signifie
que pour deux panneaux donnés u et v il y a au moins une dimension (verticale ou
horizontale) où leurs projections ne s’intersectent pas (contrainte d’installation).

— Menuiserie Chaque menuiserie de la façade doit être complètement recouverte par
un et un seul panneau. De plus, chaque bord des menuiseries et chaque bord des pan-
neaux les incluant doivent être séparés par une distance minimale notée d (contrainte
de fabrication).

— Installation Les panneaux doivent être fixés par leurs quatre coins sur des zones
d’accroche assez résistantes pour supporter leur poids (contrainte d’installation).

150



7.5. CONTRIBUTIONS

— Poids En supposant qu’une fixation peut supporter deux panneaux contigus, nous
vérifions pour chaque panneau, que la moitié de son poids pwe

2 peut être supportée
par un mètre carré de la zone d’accroche sak

l pour chacun de ses coins inférieurs
(contrainte d’installation).

— Interférence Afin de couvrir toute la façade, un panneau donné p i doit être adja-
cent au bord de la façade ou veiller à ce que suffisamment d’espace soit laissé pour
positionner un autre panneau. Cet espace minimum dépend des bornes inférieures
des panneaux dans une dimension donnée (respectivement pwl pour le largeur des
panneaux et phl pour la hauteur) (contrainte de métier).

— Ordre Les panneaux étant équivalents entre eux, nous les ordonnons géométrique-
ment en imposant un ordre sur px0 et py0. Cette contrainte lexicographique assure
que la priorité est donnée aux panneaux rectangles pour la constitution des enve-
loppes. Cet ordre géométrique permet d’éviter la génération de solutions symétriques
en interdisant la permutation des panneaux (contrainte de résolution).

Contribution 2 : Deuxièmement, les solutions algorithmiques basées sur les contraintes consti-
tuent notre seconde contribution. En particulier, ces travaux de thèse présentent deux
solutions manuelles (i, iv) et trois automatiques (ii, ii, v) pour le problème de calepinage :

i Premièrement, une solution interactive manuelle pour guider pas à pas la conception
des enveloppes, nommée InDiE. Cette solution utilise les capacités d’une interface
graphique avec des algorithmes de validation des panneaux, afin de permettre une
configuration interactive de chaque panneau pris un à un, sur la façade considérée. La
conception est faite visuellement en présentant différentes couleurs pour les panneaux
bien configurés (respectant l’ensemble des contraintes évoqué) et les mal configurés
(violant au moins une contrainte). Cette conception manuelle permet à l’architecte
d’exprimer sa créativité lors de la conception de chaque panneau et de générer des
solutions esthétiques issues de ses désirs et de sa vision du bâtiment après rénovation.
Cette conception manuelle est constructive et est réalisée panneau par panneau.
L’objectif du système est d’informer l’architecte de la présence d’un conflit lors de la
conception de l’enveloppe isolante. Les interactions entre le système et l’utilisateur
se doivent d’être en temps réel pour permettre la libre expression de l’architecte.
La solution algorithmique InDiE peut être mise en œuvre dans tous les langages
fonctionnels sans s’appuyer sur des outils complexes de type boîte noire, tels que
les solveurs de contraintes, les bibliothèques de programmation linéaire ou méta-
heuristiques. En outre, nous proposons une implémentation Java script orientée Web
qui nous offre la possibilité d’avoir une interaction en temps réel avec l’utilisateur
évitant le trafic potentiel du réseau et les retards.

ii Deuxièmement, une solution automatique pour générer plusieurs solutions de cale-
pinage à partir d’un algorithme glouton et d’une heuristique de recherche, nommée
GaLaS. Cette solution suit une approche constructive en prenant des décisions lo-
cales lors du positionnement et du dimensionnement des panneaux, et en résolvant
les conflits (violation de contraintes) localement.
L’idée derrière la solution GaLaS est d’être aussi simple et rapide que possible et
repose sur un algorithme glouton. Par définition, un algorithme glouton fonctionne
en divisant le problème en étapes. À chaque étape, l’algorithme fait un choix qui
est supposé être le meilleur dans l’état actuel de la résolution : il prend la meilleure
décision locale. Puis, en cumulant les meilleures décisions locales, l’algorithme tend à
converger vers une solution optimale. Cependant, de manière générale, les algorithmes
gloutons n’atteignent pas la solution optimale mais des solutions proches de l’optimal.
En conséquence, la solution GaLaS peut être qualifiée d’ « aveugle » dans le sens
où elle ne tient pas compte ni de la géométrie de la façade, ni de sa structure, ni
des états futurs (à l’exception pour la mise en oeuvre de la contrainte d’interférence
Interférence). Néanmoins, l’un des avantages des algorithmes gloutons consiste
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à générer plusieurs solutions dans un temps de calcul raisonnable, satisfaisant ainsi
l’exigence sur le temps de réponse du système, exigence identifiée dans le projet
CRIBA.
Notre algorithme suit une approche constructive intuitive, à savoir, placer un par
un de façon optimale les panneaux, sans tenir compte de ceux à venir. L’utilisation
des algorithmes gloutons dans les problèmes de découpe et de conditionnement est
également connu sous le nom de conditionnement en ligne. Le conditionnement de
chaque article est réalisé à la volée, durant la phase d’exécution. Cela n’est pas le
cas dans notre solution GaLaS, car il n’existe pas d’ensemble prédéfini de panneaux à
positionner en façade à priori. La solution GaLaS crée durant la résolution du problème
de calepinage, autant de panneaux que nécessaire pour couvrir la façade.
L’une des sous-étapes clés du problème de calepinage de façade est la définition du
panneau optimal. En raison de notre objectif de minimisation du nombre de pan-
neaux présents dans la solution, un panneau optimal est celui qui couvre la plus
grande surface de la façade tout en respectant l’ensemble de contraintes du problème.
Les conflits sont donc résolus à l’aide de décisions locales et optimales qui portent
uniquement sur le dimensionnement des panneaux. La solution GaLaS exécute un
retour-arrière si la décision locale ne peut être appliquée au regards des contraintes
du problème.

iii Troisièmement, une solution automatique pour générer plusieurs solutions de calepi-
nage à partir d’un algorithme de type « guillotine », nommée CaSyE. Cette solution
exploite la géométrie et la structure de la façade pour réaliser des coupes transver-
sales verticales et horizontales. Une partition de la façades en zones sans conflits est
ainsi réalisée. Une fois la façade partitionnée, la solution CaSyE suit une approche
gloutonne afin de positionner et dimensionner les panneaux dans chacune des zones
sans conflits. Cette solution limite ainsi les retour-arrières en évitant la violation des
contraintes de Menuiserie et d’Installation. Dans cette solution, la notion de
symétrie des solutions de calepinage est considérée comme critère esthétique. Cette
seconde solution algorithmique automatique CaSyE contraste avec l’approche glou-
tonne GaLaS car chaque panneau est conçu en tenant compte de la géométrie et
de la structure de la façade. Elle se base, en effet, sur une approche de recherche
de solutions moins aveugle qu’un algorithme glouton et génère ainsi des solutions de
calepinage plus esthétiques et harmonieuses.

iv Quatrièmement, une solution manuelle pour esquisser une solution de calepinage par
les architectes, nommée SkEdE. Cette solution repose sur un modèle de contraintes
instancié à partir de l’esquisse réalisée puis résolu par le solver de contraintes Choco.
Cette seconde solution algorithmique manuelle SkEdE contraste avec l’approche inter-
active InDiE sur deux aspects. Premièrement, l’esquisse de l’enveloppe est complète-
ment dessinée avant d’être confrontée aux contraintes, et résolue en cas de conflits.
Deuxièmement, cette solution exploite le solveur de contraintes Choco pour redimen-
sionner et réduire la taille des panneaux mal-conçus (ne respectant pas au moins une
contrainte du problème) et aboutir à une solution de calepinage valide.
Bien que le dialogue avec l’architecte soit perdu lors de la construction des solu-
tions de calepinage avec la solution SkEdE, celle-ci permet à l’architecte de réaliser
un croquis complet de la façade librement. Chaque panneau esquissé ne respecte pas
obligatoirement l’ensemble des contraintes du problème : il peut être plus grand qu’au-
torisé par la contrainte Taille chevaucher d’autres panneaux esquissés (contrainte
Non-chevauchement) ou des menuiseries (contrainte Menuiserie), etc. Lorsque l’es-
quisse est terminée, le CSP est généré et résolu : chaque panneau est redimensionné
si besoin et la solution de calepinage est définie.

v Cinquièmement, une solution automatique pour générer plusieurs solutions de calepi-
nage à partir d’un algorithme exploitant le filtrage des contraintes et une heuristique
de recherche dédiée, nommée OpackS. Cette solution est une solution constructive,
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comme la solution gloutonne GaLaS, mais elle présuppose un ensemble maximal de
panneaux optionnels entrant potentiellement dans la constitution d’une enveloppe iso-
lante. Tant que la surface de la façade n’est pas totalement recouverte de panneaux,
la solution OpackS sélectionne un panneau optionnel, selon un ordre lexicographique
(contrainte Ordre), le positionne et le dimensionne en respectant l’ensemble des
contraintes du problème. Quand un panneau est placé sur la façade, un filtrage des
valeurs inconsistantes est effectuée pour les panneaux optionnels restants. Si la sur-
face de la façade est complètement recouverte alors les panneaux optionnels restants
ne sont plus considérés et sont forcés à « non-utilisés ».
L’essence de cette solution consiste à générer des enveloppes isolantes optimales en
nombre de panneaux par l’utilisation de la programmation par contraintes et plus spé-
cifiquement, des algorithmes de filtrage et de résolution. La solution OpackS contraste
avec les autres approches automatiques GaLaS et CaSyE non seulement car elle tra-
verse de manière exhaustive l’espace de solution, mais aussi parce qu’elle tient compte
des états futurs en retirant les valeurs incompatibles des panneaux optionnels avec
ceux composant l’enveloppe en construction. De plus, contrairement à la solution
SkEdE, où le solveur Choco est sous-jacent et résout un problème borné en nombre
de panneaux, la solution OpackS doit composer avec un nombre de panneaux néces-
saires à la rénovation qui est inconnu au début de la résolution et variable dans le
temps. Ne pas connaître le nombre de panneaux entrant dans une solution est un in-
convénient majeur pour les approches par contraintes. En effet, la grande majorité des
environnements de programmation par contraintes mettent en œuvre des contraintes
globales et des stratégies de recherche portant sur un ensemble fini et fixe de va-
riables d’entrée. Pour remédier à cette situation, il est alors nécessaire d’appliquer
des notions particulières comme la création dynamique de variables et de contraintes
ou de permettre à des variables d’être optionnelles. Dans nos travaux de recherche,
nous avons choisi d’utiliser cette notion d’optionalité de variables. Pour ce faire, le
nombre de panneaux maximum est estimé (surface de la façade divisée par la surface
minimale autorisée des panneaux) et l’ensemble des panneaux optionnels est généré
(comme le fait l’environnement d’ordonnancement d’IBM CP optimiseur dans une
dimension). Les panneaux sont activés les uns après les autres jusqu’à ce que la sur-
face de la façade soit totalement recouverte ou qu’il soit avéré qu’il n’existe aucune
solution de calepinage.

De plus, une maquette logicielle du système d’aide à la décision pour concevoir différentes
solutions de calepinage, intégrant l’ensemble de nos solutions a été développée. Le développement
de cette maquette est motivé par deux points majeurs. Tout d’abord, il existe une grande diversité
de façades à rénover, en termes de géométrie et de propriétés structurelles, liée à l’histoire, aux
techniques et aux lieux de construction. Puis, les besoins et exigences des architectes et/ou des
maîtres d’ouvrage sur le style des façades après rénovation sont également nombreux et subjectifs.
Les deux points soulevés ici conduisent à une grande diversité des problèmes de rénovation de
façades.

Bien entendu, les méthodes traditionnelles de rénovation sont en mesure de proposer des
solutions de rénovation, mais à un coût élevé. Le défi de nos travaux de recherche est d’être
en mesure de proposer des solutions à l’ensemble des problèmes de rénovation de façades par
l’extérieur, avec toute leur diversité, à un coût moins élevé par l’utilisation d’approches et de
méthodes industrialisées (tel que défini dans le cadre du projet CRIBA).

Le problème de rénovation de façades par l’extérieur revêt toutes les particularités des pro-
blèmes de personnalisation de masse : la définition d’une solution spécifique (ou sur-mesure) à
partir d’un ensemble de composants standards et paramétrables, au prix d’une solution stan-
dardisée et produite en masse. En outre, en plus de la diversité des façades et des attentes de
rénovation, est associée celle liée à la diversité des solutions : pour une façade et un ensemble
d’attentes de rénovation, de nombreuses solutions peuvent être identifiées, chacun d’entre elles
ayant une performance thermique et un coût donnés (liés principalement au nombre de panneaux
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présents dans celle-ci).
La maquette du système d’aide à la décision présentée ici met en œuvre une architecture

orientée service ou SOA qui associe les différentes tâches de configuration à différents services.
Le système permet de :

1. introduire efficacement les spécifications de rénovation, tels que les informations géomé-
triques et structurelles des façades, les limitations sur la taille des panneaux et leur poids
admissibles pour chacune d’entre elles,

2. produire différentes solutions de calepinage valides pour chaque façade, de manière ma-
nuelle, automatique et semi-automatique,

3. classer les différentes solutions en fonction de plusieurs critères, tels que leur nombre de
panneaux et leur longueur de joints,

4. présenter chacune de ces solutions en deux dimensions, à la personne en charge de la
rénovation, comme un architecte.

Les solutions générées par les architectes qui utilisent notre maquette d’aide à la décision
sont des modèles numériques d’enveloppes isolantes, dont la nomenclature peut être envoyée aux
usines de fabrication. En tant que tel, notre maquette, qui utilise la satisfaction de contraintes
comme modèle sous-jacent et met en œuvre les solutions algorithmiques proposées dans cette
thèse, peut être classée à la fois comme un système d’aide à la conception par ordinateur ou
CAO et comme un logiciel de configuration de produit ou PCS.

7.6 Perspectives
Les perspectives de nos travaux de thèse sont nombreuses mais nous ne présenterons que les

trois principales à nos yeux :
Esthétique des solutions de calepinage Pour commencer, un effort conséquent doit être mené

pour améliorer nos solutions algorithmiques automatiques ou en proposer de nouvelles pour
générer des solutions de calepinage plus esthétiques. En effet, dans nos solutions algorith-
miques, seul le critère d’alignement des joints entre panneaux, est retenu comme critère
esthétique. D’autres critères esthétiques pourraient être pris en compte dans le futur. Par
exemple, un point de départ prometteur pour la génération de solutions de calepinage
esthétique est l’identification et la prise en compte de motifs lors de la génération des
solutions de calepinage. Ce critère, comme tous ceux permettant la génération de solu-
tions esthétiques, pourrait faire perdre le caractère optimal des solutions en nombre de
panneaux.

Calepinage avec des polygones simples Une autre piste intéressante se porte sur la géométrie
des panneaux à prendre en compte. Actuellement, dans nos travaux, seuls les panneaux rec-
tangulaires non-déformables sont considérés. Cette limitation nous conduit, par exemple, à
exclure les pignons de la surface de la façade à calepiner. La définition et la modélisation de
panneaux de type polygone simple, déformable ou non, permettraient de traiter l’ensemble
de la surface des façades avec toutes leurs spécificités géométriques et structurelles, mais
aussi de générer d’autres types de solutions et peut être plus esthétiques.

Post-traitement des solutions de calepinage Enfin, nous considérons deux possibilités de post-
traitement des solutions de calepinage afin de les améliorer. La première possibilité est ma-
nuelle et permettrait, par exemple, à un architecte, de retoucher une solution simplement.
Pour cela, les panneaux pourraient être un à un repris, redimensionnés par exemple, et
le système automatiquement répercuterait cette modification à l’ensemble de la solution
de calepinage et garantirait sa consistance. La seconde possibilité de post-processing est
automatique. Suite à la génération d’une solution de calepinage, le système pourrait au-
tomatiquement redimensionner certains panneaux pour aligner leurs joints, par exemple,
ou les rendre plus similaires en dimension. Ce post-traitement automatique est délicat à
mettre au point au vu de la nature et de la complexité des contraintes à prendre en compte.
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A
Support System Demonstration

The remaining of the section presents the execution of the system over real façades on France.

Figure A.1 – After opening a working site specification, every block, building and façade is
parsed and shown in the interface.
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ANNEXE A. SUPPORT SYSTEM DEMONSTRATION

Figure A.2 – For every spatial entity the system presents a questionnaire about its accesibility
conditions.

Figure A.3 – For every spatial entity the system presents a questionnaire about the panels’
constraints.
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Figure A.4 – When selecting a façade, the geometrical properties and the panels’ bounds are
shown. The design button is enabled.
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ANNEXE A. SUPPORT SYSTEM DEMONSTRATION

Figure A.5 – At pressing the design button, a two-dimensional view of the façade is shown,
along with the input/output information and the design toolbar.

Figure A.6 – Adding a new solution and its respective information.
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Figure A.7 – Over the two-dimensional view the architects draws panels. The interactive design
visually informs of well and ill defined panels.

Figure A.8 – When asking for a solution, the system throws compliant insulating envelopes
that includes the architect-defined panels. The cost and length of junctions is shown for every
solution.
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ANNEXE A. SUPPORT SYSTEM DEMONSTRATION

Figure A.9 – Fully automatic solutions are also possible.
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Conception sous Contraintes : Configuration de Panneaux Isolants à Deux Dimensions
Les travaux de recherche présentés dans cette thèse se situent dans une problématique d’aide à

la conception d’enveloppes isolantes pour la rénovation thermique de bâtiments résidentiels collectifs.
Ces enveloppes isolantes sont composées de panneaux multifonctionels rectangulaires, configurables et
préfabriqués en usine. Leur conception repose sur les cinq caractéristiques suivantes. Premièrement, le
nombre de panneaux nécessaires pour concevoir une enveloppe ainsi que leur taille respective ne sont pas
connus au début de la rénovation (mais leur taille est cependant bornée). Deuxièmement, en raison des
contraintes de fabrication, chaque fenêtre et chaque porte présentes sur la façade à rénover doivent être
insérées dans un et un seul panneau. Troisièmement, les panneaux sont fixés à des endroits spécifiques
de la façade, assez résistants pour supporter leur poids, nommés zones d’accroche. Quatrièmement, ni
trous (zone non couverte), ni chevauchements entre panneaux ne sont autorisés. Cinquièmement, afin
de garantir une isolation thermique performante tout en minimisant son coût, les enveloppes doivent
être composées d’un nombre minimal de panneaux. Aux vues de la complexité de ce problème, nous
restreignons nos travaux de recherche aux façades rectangulaires portant des menuiseries et des zones
d’accroche rectangulaires.

Compte tenu des cinq caractéristiques énoncées et de l’hypothèse de forme rectangulaire des éléments
traités (panneaux, façades, menuiseries, zones d’accroche), la conception des enveloppes est à la fois
un problème de découpe et de conditionnement à deux dimensions et un problème de configuration.
Ce problème est formalisé et traité comme un problème de satisfaction de contraintes et a pour but
d’aider la conception dédites enveloppes isolantes. En tant que tel, les travaux de cette thèse présentent
deux contributions majeures. En raison des caractéristiques originales du problème de calepinage de
façades, sa description et sa formalisation comme un problème de satisfaction de contraintes constituent
la première contribution de ces travaux de thèse. Deuxièmement, les solutions algorithmiques basées sur
les contraintes constituent notre seconde contribution. En particulier, ces travaux de thèse présentent
deux solutions manuelles et trois automatiques pour le problème de conception d’enveloppes isolantes.

Mots-clés : Problème de satisfaction de contrainte, Configuration, Calepinage, Aide à la décision,
Rénovation du bâtiment, Génie Civil

Constraint-Based Design : Two-Dimensional Insulating Panels Configuration
The research presented in this thesis falls within the problem of supporting the design of thermal

insulating envelopes for the renovation of collective residential buildings. These insulating envelopes are
composed of rectangular multi-functional panels, configurable and prefabricated in the factory. Their
design is based on the following five characteristics. First, the number of panels needed to design an
envelope and their size are not known at the beginning of the renovation (but their size is however
bounded). Second, because of manufacturing constraints, every window and every door present on the
façade to be renovated must be inserted into one and only one panel. Third, panels are attached to specific
areas of the façade strong enough to support their weight, called supporting areas. Fourth, neither holes
(uncovered area) or overlapping between panels are allowed. Fifth, to ensure efficient thermal insulation
while minimizing cost, envelopes should be composed of a minimum number of panels. In view of the
complexity of this problem, we restrict our research to rectangular façades with rectangular joinery and
supporting areas.

Given the five stated characteristics and the assumption of rectangular elements (panels, façades,
joinery, supporting areas), the envelopes design is both a two-dimensional Cutting & Packing problem
as well as a configuration one. This problem is formalized and treated as a constraint satisfaction
problem and aims to support the design of such insulating structures. As such, the thesis presents two
major contributions. Given the original features of the building renovation problem, its description and
its formalization as a constraint satisfaction problem are the first contribution of the work. Second,
constraint-based algorithmic solution’s are our second contribution. In particular, the thesis presents two
manual and three automatic solutions for the design problem of insulating envelopes.

Keywords : Constraint satisfaction problem, Configuration, Layout synthesis, Decision support sys-
tem, Building renovation, Civil engineering
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