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Figure 1: Real section of the complex surface of integrable quantizations, dispersionless
limits and perturbative reconstruction.





To my father.





“If a man does not keep pace with his companions, perhaps it is
because he hears a different drummer. Let him step to the music which he hears
however distant or far away.”

Henry David Thoreau





Abstract
This PhD thesis is about a framework in complex geometry and methods
thereof for solving sets of compatible differential equations arising from

integrable systems, classical or quantum, in the context of the geometry of
moduli spaces of connections over complex curves, or Riemann surfaces.
It is based on the idea in mathematical Physics that integrable systems

possess symmetries that impose algebro-differential constraints, so-called
loop equations, on the objects of interest (e.g. partition or correlation
functions). In turn, we intend to solve these constraints recursively in
certain topological regimes using a particular procedure called the

topological recursion. Their solutions are in general generating functions
of enumerative-geometric quantities. Since they are for the most part
determined by the initial data of the recursive process, it realizes in the
making an algebro-geometric classification of the family of integrable

models under consideration.

Résumé
Cette thèse de doctorat traîte d’un cadre en géométrie complexe et de
méthodes pouvant y être développées pour résoudre des ensembles

d’équations différentielles compatibles venant de systèmes intégrables,
classiques ou quantiques, dans le contexte de la géométrie d’éspaces de
modules de connexions au-dessus de courbes complexes, ou surfaces de
Riemann. Elle vient de l’idée en physique mathématique que les symétries

des systèmes intégrables imposent aux objets d’intérêt (fonctions de
partitions ou de corrélations) des contraintes algebro-différentielles

nommées équations de boucles. Le but est par la suite de résoudre ces
contraintes par récurrence dans des régimes dits topologiques en utilisant
une procédure nommée récurrence topologique. Leurs solutions sont en
général les fonctions génératrices de quantités issues de problèmes de
géométrie énumérative. Etant principalement déterminées par les
conditions initiales de la récurrence, on produit au passage une

classification algebro-géométrique de la famille de systèmes intégrables
considérée.
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Introduction

1 Integrability : a marriage

Theoretical Physics tries to give objective mathematical descriptions of not
necessarily visible physical phenomena. To do so, it uses mathematical
modeling to logically derive equations that measurable quantities of in-
terest should satisfy. True objectivity not being possible to obtain, the
theoretical approach would not have any meaning without its experimental
counterpart. Statements or claims will then be called objectively true if
they can be checked up to satisfying precisions in experimental devices.
Its range of application is limitless and as such, it caused a lot of people
to think that a theory of everything could be constructed. Unfortunately,
simple reasoning gives a heuristic to the contrary. Indeed, a choice of the-
oretical framework carries its own limits although whichever phenomenon
we are trying to study will admit a description in terms of a mathematical
model. Knowing what a model under consideration does not describe is
of the utmost importance. A counterpart to this remark from logic theory
can be found in the mathematician and logician G

..
odel’s completeness and

incompleteness theorems that we will loosely state as

• Any theory admits a model.

• Any model admits an assertion that can neither be proved nor disproved

That being written, we can at most hope for a theory describing objec-
tively every phenomenon we know exists right now.

The equations arising from this method appear to be of various really
different natures. In particular, they can be exactly solvable, or integrable,
namely one can give (an algorithm to compute) an expression of their

v
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solutions, or not. If not, we have other ways to extract information from
the model, from approximations and numerics to chaos theory. In this
thesis we will study exclusively those problems that are integrable in this
given sense.

One of the most important facts about exactly solvable equations aris-
ing from theoretical Physics is that they are not at all the generic situation.
Indeed as we shall see, they are those whose solutions satisfy many rela-
tions. Intuitively, these relations enlarge the vocabulary at our disposition
and this is what allows to formulate how to compute the corresponding
solutions.

In the early XIXth century, Liouville defined classical integrable systems
as a subclass of models whose equations of motions are Hamiltonian flows
on finite dimensional symplectic manifolds. They are those that possess
enough independent quantities that are conserved by the dynamics, enough
being half the dimension of the underlying space of states accessible to
the system, namely the phase space. The reader can find all the needed
definitions to understand these statements in the next chapter. This defin-
ing theorem then shows that their equations of motions can be solved by
means of algebraic operations and integrals (periods). Moreover, by use of
so-called generating functions, these equations become those of uniform
translations on invariant tori. We will generalize this notion of integra-
bility throughout what follows. Moreover, in 1918, Nœther related smooth
symmetries of the corresponding action to conserved quantities. These
smooth symmetries are typically Lie group actions leaving the dynamics
unchanged.

At this point one should note that in the past, all major advances
in theoretical Physics were always achieved by using and developing
contemporary Mathematics. The study of integrable systems explores
this tight relationship in all its glory. Developing such theories requires
some of the latest advances in virtually all fields of the mathematical uni-
verse and gives rise to beautiful new structures among them. The reason
is simple, the quest for objectivity that turned out to be so successful in
Physics and the relative truth Mathematics provide are always compati-
ble as being part of the same temporality and thus encompassing similar
paradigm. An immediate consequence of this remark is that such paral-
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lels can be made outside of those fields, with other sciences and arts. As
mentioned, the core aim of the theoretical approach to Physics is to relate
our reasoning and logical understanding to our perceptions, experiences
and observations. The pre-Socratic Greek philosopher Protogoras defined
humanity as “the measure of all things”.

Topology, geometry and algebra are those parts of Mathematics that
deal respectively with the notions of shapes, distances and angles, and
mathematical symbols and the rules to manipulate them. In our way to use
mathematical modeling, the objects that are considered in any one of these
broad topics are interpreted in relation with the underlying Physics. In par-
ticular, all the quantities one wishes to consider in a theory, fixed constants
of nature or not, can be treated as variables parameterizing deformations
of the studied systems.

This brings us to the notion of deformation of theories, through the
variations of their so-called moduli, namely their parameters. A natural
question is then whether two given theories can be deformed one into the
other in this sense. The answer is of course no in general. We know already
however from elementary Physics textbooks some instances where this is
the case. Let us mention two of those.

• the series RLC circuit is equivalent to the dissipative dynamics of
a one dimensional spring, indeed they are both second order linear
filters,

• incompressible vorticity in the hydrodynamics of smoke rings is equiv-
alent to the magnetism of toroidal solenoids, indeed they both de-
scribe rotational propagation of waves.

In addition, these are examples of integrable models, and as we shall
see, the ability to switch from different viewpoints using deformations of
geometrical structures is a key feature of integrability.

In 1931, Bethe proposed an ansatz he used to solve exactly for accessi-
ble states and their levels of energy in the so-called one-dimensional anti-
ferromagnetic Heisenberg model [24]. This is a problem treated quantum
mechanically to study critical points and phase transitions of certain mag-
netic systems of spins. Thus was born the notion of quantum integrability.
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Since then there has been a tremendous amount of work done to under-
stand the geometry behind the algebraic structures whose presence allowed
for exact solvability in quantum problems.

Figure 2: Elementary Physics correspondences.

In the last chapter of this thesis we will be interested in a particular type
of quantum integrable system, namely conformal field theory, possessing
huge symmetry algebras. Let us therefore review some fundamentals of
quantum Physics from an oriented geometric point of view, starting by a
bit of history.

2 Quantum Physics and theory

At the dawn of the XXth century, long after the industrial revolution, a
short list of problems stood apart from the seemingly global understand-
ing of the world that had been offered by thermodynamics and electro-
magnetism. These unsolved problems had all been formulated during the
previous century

• 1838 : Faraday discovers cathode rays

• 1860 : Kirchhoff states the black-body radiation problem

• 1877 : Boltzmann suggests that the accessible energy levels of a system
might be discrete

• 1887 : Hertz discovers the photo-electric effect
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In 1900, Planck made the quantum hypothesis, stipulating that energy-
radiating systems can be decomposed as fundamental energy blocks with
energies proportional to the frequencies to which they respectively radiate.
If we denote the energy of a building block by ε and its frequency by ν,
this relation is written

ε= hν, (2-1)

thus defining the universal constant h ' 6.626.10−34m2kg
/

s, called
Planck’s constant and measured since with great accuracy.

In 1905, as part of what has been called later the Annus Mirabilis papers
of Einstein, he extended Planck’s hypothesis to light by introducing the
photon, quantum of light, and explained in this way the photo-electric
effect.

• 1913 : Bohr quantizes the angular momentum of electrons in atoms

• 1923 : de Broglie introduces matter-waves

• 1925 : Heisenberg, Born and Jordan develop matrix mechanics,
Schr

..
odinger defines wave-mechanics and his famous equation as an

approximation to de Broglie’s theory, Dirac writes his equation for the
dynamics of electrons

• 1932 : von Neumann lays the rigorous mathematical basis for quantum
mechanics as the theory of linear operators on Hilbert spaces

The quantum paradigm that came with these discoveries is a change
of logic. Indeed, experiments such as Young’s experiment in 1801, that was
generalized as the double slit experiment of Davisson and Germer in 1927,
show that light and matter (with matter particles as big as the fullerene C60

whose molecule contains 60 carbon atoms) behave sometimes as waves and
sometimes as particles, according to the observer. The quantum theory
therefore redefined the notions of observation and measure in the sense
that it identified them as fundamental interactions. On one hand subparts
of the system under consideration observe one another while on the second
hand, the experimentalists are themselves an interacting part of the system.
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Figure 3: Both energy and angular momentum levels are quantized in an atom.

By a quantum system we will from now on mean any collection of ob-
jects, visible or not, that we may want to study from a quantum perspective.

Rather than the usual cat of Schr
..
odinger’s thought experiment, let us

consider human beings, part of a society where they can sometimes express
their opinion through vote. At all time they may have several possibly
contradictory opinions but the closer we get to the measure of that opinion
the less multiple we appear, until the moment when a choice has to be
made, choice from which we will have to evolve once again.

Quantum systems behave as voters : at all time in a superposition
of states until one of these states is singled out by an observation or
measurement.

As my dear friend Remi Jaoui once told me, we knew human beings
were as such, we just had not realized matter as well. At least we had
not taken it into account in the way we had tried to describe the world
through Physics. Mystics from all around the globe and from as far back
in time as one can imagine had already expressed this idea in their own
words. The reason is probably that the European middle-age caused for a
strong materialistic back-reaction that lasted around three hundred years in
science and is still the predominant doctrine e.g. in economy or agriculture.

In 1941, Feynman introduced the notion of path integral, a way of relating
phenomena in quantum systems to their classical counterparts that tells us
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that the outcome of a quantum event is an average over all the possible
classical outcomes with respect to a (complexified) probability measure.

Let us briefly and schematically describe this procedure. Let us denote
by X the (possibly infinite dimensional symplectic) phase space, or space
of states accessible to a classical system. According to the principle of least
action, there exists a function

Scl : π′
1(X) −→R

Γ 7−→ Scl [Γ] (2-2)

where π′
1(X) is the set of all possible trajectories in X, called the action

functional and such that the classical trajectories followed by the system
are those minimizing this action. They are in particular critical trajectories
satisfying

δScl

δΓ
= 0 (2-3)

Feynman’s method of the path integral is then to introduce the wave-
function ψ :L−→C defined on a Lagrangian subspace L⊂X such that for
any initial and final states ϕi ,ϕ f ∈L, ψ is given in terms of an integral over
all possible trajectories γ⊂L, that is over one dimensional paths drawn on
the space L, starting at ϕi and ending at ϕ f , as

ψ(ϕi ,ϕ f ) =
de f

∫
Γ∈π′1(L)
∂Γ=ϕ f −ϕi

[DΓ]e i
Scl [Γ]

ħ (2-4)

where we introduced Planck’s reduced constant ħ = h
2π and the

Boltzmann-type weight e i
Scl [Γ]

ħ on the space of trajectories. The wave-
function written as such is not, in general, a well-defined mathematical
object but we will very soon see an alternative way to construct the physical
quantities of interest. For the time being, let us consider these equalities
as notations, a formal way to encode the algebraic properties the wave-
function is assumed to have by definition.
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We may not be willing to chose an initial and a final state for the system
in which case we would define the so-called partition function by summing
over all possible coinciding initial and final conditions.

Z =
de f

∫
L

[Dϕ]
∫
Γ∈π′1(L)
ϕ f =ϕi =ϕ

[DΓ]e i
Scl [Γ]

ħ (2-5)

=
∫
Γ∈π1(L)

[DΓ]e i
Scl [Γ]

ħ (2-6)

Classically, physical quantities of interest, or observables, are functions
O : X−→ R. In the quantum theory, their measure becomes uncertain and
the previous construction allows to define their vacuum expected value at
a state ϕ ∈L as

〈
O (ϕ)

〉 =
de f

1

Z

∫
Γ∈π1(L)

ϕ∈Γ

[DΓ]e i
Scl [Γ]

ħ O (ϕ) (2-7)

and similarly, for any integer n ∈ N∗, define the correlation of n ob-
servables O1, . . . ,On : X −→ R in the classical states ϕ1, . . . ,ϕn ∈ L by the
formula

〈
O1(ϕ1) · · ·On(ϕn)

〉 =
de f

1

Z

∫
Γ∈π1(L)
ϕ1,...,ϕn∈Γ

[DΓ]e i
Scl [Γ]

ħ O1(ϕ1) · · ·On(ϕn) (2-8)

Solving the theory then amounts to computing all such correlation func-
tions between observables of interest. Let us now investigate a possible way
for one to do so.

Assuming the Lagrangian L⊂X to be such that

|Scl [Γ]| −→
Γ→∂π1(L)

∞ (2-9)

when the trajectory Γ goes to the boundary ∂π1(L), yields

∫
Γ∈π1(L)
ϕ1,...,ϕn∈Γ

[DΓ]
δ

δΓ

(
e i

Scl [Γ]
ħ O1(ϕ1) · · ·On(ϕn)

)
= 0 (2-10)
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for generic values of all the other arguments and using Leibniz rule, this
can be rewritten as the so-called Schwinger-Dyson equations

〈
δScl

δΓ
O1(ϕ1) · · ·On(ϕn)

〉
= iħ

n∑
j=1

〈
O1(ϕ1) · · ·

(
δO j (ϕ j )

δΓ

)
· · ·On(ϕn)

〉
(2-11)

The hope is then to be able to find a set of observables {O j } j∈J such that
all possible Schwinger-Dyson equations one can write in this way form a
complete set of compatible equations, by which we exactly means that they
can be solved together.

Notice that in the limit where ħ−→ 0, one can rewrite the leading order
of the Schwinger-Dyson equations as

〈
δScl

δΓ
O1(ϕ1) · · ·On(ϕn)

〉(0)

= 0 (2-12)

for any number n of observables O1, . . .On in any insertion states
ϕ1, . . . ,ϕn ∈ L. This implies that in this limit any physical measure would
yield the classical equations of motion δScl

δΓ
= 0.

We verify the fundamental fact that Planck’s reduced constant ħ
measures quantization and that one recovers the classical Physics in
the limit ħ −→ 0. We call it taking the classical limit of a quantum
model.

The path integral formulation of a theory is not well-defined in general
and a way to circumvent this problem is to define directly a theory by
the Schwinger-Dyson equations the correlation functions of interest should
satisfy. In this thesis, we will study a certain type of Schwinger-Dyson
equations arising from some (classical and quantum) two-dimensional field
theories, namely Fuchsian differential systems and Casimir conformal field
theories at the classical level and abelian W-symmetric conformal field
theories at the quantum level.

3 Categorification and topological string theory

In the process of constructing a theory describing a physical phenomenon,
the first two basic questions to be answered are who are the actors at
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play and what information exchange defines their interaction. The answers
to these questions given in mathematical terms define the nature and the
scope of a theory. Let us give a few examples :

• Newtonian Physics : leaving electromagnetism and gravity aside since
they cannot be properly described in this framework, it deals with the
mechanical contact interactions of a finite given number of massive
objects. The information is exchanged in the form of mechanical
energy (kinetic or potential).

• Thermodynamics : when the given number of objects considered in
newtonian physics becomes large, their individual dynamics becomes
irrelevent and even though the objects are of the same nature than
before, interacting by colliding one with another, statistical quantities
such as pressure, temperature, entropy and free energy emerge as the
right variables to consider.

Figure 4: Classical contact interaction vs. quantum long-range correlation.

• Quantum electrodynamics : following Feynman, this theory can be in-
terpreted as describing charged electrons interacting by the exchange
of virtual photons. The information exchanged is in this case encoded
in the quantized electromagnetic field.

The right mathematical notion to describe this idea for systems at equi-
librium is that of cobordism. It is an equivalence relation on the class of
compact manifolds with a given dimension, say d ∈N. Two such manifolds
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are said to be cobordant if and only if their disjoint union is the boundary
of a d +1-dimensional manifold. It is a fundamental equivalence relation.
Indeed, the word problem of the fundamental group of topological mani-
folds of dimensions higher that 4 cannot be solved, hence such manifolds
cannot be classified up to homeomorphism. They can however be clas-
sified up to cobordism. This is at the root of the functorial definition of
topological quantum field theory.

Figure 5: Cobordism in 0+1d and 1+1d. Time flows upward from incoming to outgoing.

Topological quantum field theories were first defined as those quantum
field theories whose partition functions do not depend on the choice of
metric on the physical space on which the fields are defined [73]. With an
action that typically takes the form

Scl [g ,ϕ] =
∫

M
dd+1 x

p
g Lϕ(x) (3-1)

where ϕ is now some section of a bundle over a Riemannian d + 1-
dimensional manifold (M , g ),

p
g denotes the square root of the determi-

nant of the metric on M and Lϕ, called the Lagrangian density, is typically
a scalar-valued (differential) polynomial expression of ϕ.

The metric-independence hypothesis means that one can scale the met-
ric g 7−→ t · g for some non-zero complex number t ∈C∗ without changing
the value of the partition function. Then taking the particular limit t −→∞
would localize the path integral on its saddle points.
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They were later on redefined as functors from cobordism categories to
the category of vector spaces satisfying a certain set of axioms we will not
be describing here but we refer the reader to [2] for more details.

Let us consider the particular example of 1+1d. In this case, the only
one-dimensional closed, compact, connected manifold is the circle S1 to
which a topological quantum field theory functor associates a vector space
that we denote by V . The non-cited axioms imply that V has the structure
of a Frobenius algebra (see the next chapter’s definitions).

Let us upgrade the definition of a 1+1d topological quantum field theory
to that of a so-called topological conformal field theory where the topological
surfaces used as cobordism are now endowed with conformal structures
and are thus Riemann surfaces.

In the spirit of how we have defined physical theories so far, following
the mathematical treatment of [37], let us define topological string theory
on a compact almost K

..
ahler manifold X , called the target space, as a

theory of branes interacting by cobordism. More precisely, the branes are
represented by cohomology classes in H∗(X ,Q), that we suppose such that

Hodd(X ,C) = 0 (3-2)

for simplicity. The correlation functions of the theory are called
Gromov-Witten invariants and can be defined as intersection numbers of
certain cycles on the sequence of moduli stacks M g ,M (X ,β) of stable maps
of a given degree β ∈ H2(X ,Z)

/
T (T is the torsion), defined for g , M ∈ N

such that 2g −2+M > 0 by

M g ,M (X ,β) =
de f

{ f : (Σ; z1, . . . , zM ) −→ X | f∗[Σ] =β}
/
equivalence (3-3)

Σ is an algebraic complex curve of genus g with M pairwise distinct
marked points z1, . . . , zM . Two such maps are equivalent when they have
identical images and are identical on the marked points.

The M-point correlation functions are then defined for any choice of
cohomology classes ϕ1, . . . ,ϕM ∈ H∗(X ,Q) and integers p1, . . . , pM as
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〈
τp1(ϕ1) · · ·τpM (ϕM )

〉
g ,β =

de f

∫
[M g ,M (X ,β)]vi r t

ev∗
1 (ϕ1)ψp1

1 · · ·ev∗
M (ϕM )ψpm

M (3-4)

where evi : M g ,M (X ,β) −→ X is the evaluation map at the i th marked
point, ψi =

de f
c1(Li ) is the first (and only) Chern class of the tautological

line bundle Li over M g ,M (X ,β) whose fiber over f : (Σ; z1, . . . , zM ) −→ X is
the cotangent plane T ∗

zi
Σ. Finally, since the compactification M g ,M (X ,β)

is made of strata of various dimensions, one cannot define integration
properly in the usual way and we need to introduce the virtual fundamental
class, an element of the Chow ring

[M g ,M (X ,β)]vi r t ∈ A∗
(
M g ,M (X ,β)

)
(3-5)

dim[M g ,M (X ,β)]vi r t = (1− g )(dim X −3)+M +〈
β,c1(T X )

〉
(3-6)

that has the right expected dimension. The correlation functions are
defined to vanish whenever the integrated cohomology class do not have
matching degree.

If now (γ1 =
de f

1,γ2, . . . ,γn) is a basis of H∗(X ,C), with γi ∈ H2qi (X ,C)

(in particular q1 = 0 and qn = d ), let us define the generating function of
correlation functions, or free energy, in genus g to be the series

Fg (t, q) =
de f

∞∑
M=0

∑
(i1,p1),...,(iM ,pM )

t i1
p1 . . . t iM

pM

M !

∑
β∈H2(X ,Z)

〈
τp1(γi1) · · ·τpM (γiM )

〉
g ,βqβ

(3-7)

where the sums over i j ’s run from 1 to n, the sums over p j ’s run from 0
to ∞, t = {t i

p}i ,p are indeterminates and

qβ =
de f

qm1
1 · · ·qml

l (3-8)

is an element of the Novikov ring for β = m1β1 + ·· ·+mlβl in a basis
β1, . . . ,βl of H2(X ,Z)

/
T .
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The total Gromov-Witten potential is defined by summing over all gen-
era as

F (t, q,ε) =
de f

∞∑
g=0

ε2g−2Fg (t, q) (3-9)

=
de f

lnT(t, q,ε) (3-10)

where we defined the τ-function T by the last equality.
This theory is identified with the topological conformal field theory

obtained by choosing the vector space associated to the boundary circles
to be the Frobenius algebra H∗(X ,Q). Recall that we assumed the odd part
of this cohomology ring to vanish otherwise we would have had to take
into account its Frobenius super-algebra structure.

In [37] Dubrovin associates to this data a dispersive integrable hierar-
chy by first using the genus 0 free energy F0(t, q), satisfying the WDVV
relations, as prepotential to define a Frobenius manifold. Then, as we
shall review in the next chapter, to any Frobenius manifold can be associ-
ated a principal hierarchy of compatible hamiltonian equations to which a
quasi-triviality transformation can be applied to obtain the corresponding
dispersive integrable hierarchy [38].

Its original definition from the A-twisted nonlinear sigma model is far
more involved but a localization phenomenon similar to the one described
before shows that its partition function can be reduced drastically and
eventually coincides with that of the topological conformal field theory just
defined.

4 Integrable dispersive field theories

In [64], Lax defined those integrable systems in which the information
needed to describe the dynamics with respect to a time evolution parameter
t ∈T can be encoded in an object called the Lax pair and denoted (L ,R).
The Lax operators L (t ) and R(t ) depend locally holomorphically in the
time variable t and they are typically elements of the space C[X]⊗A ,
where C[X] is the coordinate ring of (or ring of functions on) the phase
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space X and A is a (non-necessarily finite dimensional) Lie algebra or an
associative algebra endowed with the corresponding Lie algebra structure.

Figure 6: Branes interacting by quantum intersection, or cobordism.

They define a Lax pair whenever the corresponding equations of mo-
tions take the form

d

d t
L (t ) = [R(t ),L (t )] (4-1)

Notice that in an infinite dimensional situation, X could be a space of
functions in which case C[X] would typically be the corresponding ring
of differential polynomials and similarly A could be a ring of pseudo-
differential operators endowed with the Lie algebra structure coming from
the fact that it is an associative algebra although in this case L is assumed
to be differential (no negative powers of the formal derivation).

From our perspective, the procedure of the inverse-scattering method
then goes as follows : for a given complex number x ∈ SpecL ⊂C, consider
the eigenvalue equation

L ·ψ= xψ (4-2)
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The Lax form ensures that the eigenvalues x ∈ SpecL of the Lax op-
erator do not depend on the parameter t ∈ T . Such evolutions are thus
called isospectral.

If A is finite dimensional, ψ will typically take its values in a chosen
vector representation of the associative algebra. If it is infinite dimensional
[13] ψ will typically be a function acted upon by the pseudo-differential
operators.

In any case, one can define a fundamental matrix solution Ψ therefore
depending on both t ∈ T and x ∈ SpecL . It is a function on X×T ×L

valued in G, a compact connected reductive complex Lie group. Notice
that if A is a ring of pseudo-differential operators, then Ψ will also depend
on the formal complex parameter on which they act.

We will for simplicity and from now on forget about the X part of the
objects that were used to define the setup, just remember that the objects at
stake may have this additional dependence. It brings no loss of generality
as the whole construction is done at fixed value of the C[X] part and as
such it can be thought of as evaluated at fixed given points in X.

The topology of SpecL depends on the choice of Lax operator L and
it carries a complex structure with respect to which Ψ(·, t ) is holomorphic
at fixed t ∈T . SpecL together with this complex structure defines a Rie-

mann surface that we will denote
o
Σ. This will be our notation throughout

the text for the so-called base curve.
In turn, one can choose a t-dependent family of connections {∇(t )}t∈T

acting only in the x ∈ o
Σ direction in a principal G-bundle over

o
Σ and

such that ∇(t )Ψ(x, t ) = 0, where we now included the x dependence in the
notation for Ψ. Locally these connections take the usual form

∇(t ) ∼ dx −φ(x, t ) (4-3)

By studying the connection ∇ with respect to a (once and for all)
fixed reference connection ∇0, one can associate [9] a sequence {Wn}n∈N∗

of so-called correlators that were shown to satisfy constraints called loop
equations, generalizing the constructions of [15], [16]. As we will recall, they
take the form of symmetrizations of the Wn’s, with respect to Casimir ele-
ments of the Lie algebra g, that end up having nice analytic properties in
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the variable x ∈ o
Σ. It was conjectured that when a set of hypothesis called

the Topological Type are satisfied (it includes the fact that the correlators
admit topological expansions Wn = ∑

g≥0ε
2g−2+nωg ,n in terms of a formal

small parameter ε 6= 0), then the topological recursion procedure [43], [15]
allows to reconstruct perturbatively these expansions. It is a recursive algo-
rithm to compute the ωg ,n’s from complex geometry of a covering space of
o
Σ called the spectral curve associated to the ε−→ 0 limit of the setup. It was
put in practice and proved in [57], [58], [10] for special cases (in particular
o
Σ had genus 0 and g was a matrix Lie algebra).

5 On the use of conformal field theory

A phase transition in a physical system is a transformation of its macro-
scopic properties due the variation of one of its parameters across a thresh-
old. Phase transitions can arise from classical statistical systems in the
thermodynamic limit as well as from quantum systems at zero tempera-
ture. Different phases of a system do not always have different symmetries
but the converse is somehow true, a change of symmetry properties is a
phase transition.

For the classical case of statistical systems admitting thermal fluctua-
tions, phase transitions can be obtained by crossing a certain critical value
with the temperature. They occur in the thermodynamic limit (collective
effects) when the free energy (first order) or its derivative (second order) has
a singularity. If a symmetry breaking occurs, the most symmetric phase is
often the stable one at high temperature.

At the singularity, the renormalization procedure averages over the small
scales to yield universal exponents. They are universal in the sense that they
do not depend on the microscopic structure over which the averaging was
done. Finite size effects can however change the macroscopic behavior even
at critical points. Let us assume their absence.

Second order phase transitions exhibit scale invariance at the critical
points where the transition occurs. Which can often be lifted to a full
conformal invariance. Let us mention the example of critical opalescence
of water at its boiling point where one can easily see that there would be
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air bubbles of all sizes if the water recipient did not introduce an upper
length scale.

Quantum phases are quantum states of matter at zero temperature.
They might be described by some microscopic (short-range) Hamiltonian
and two such Hamiltonians will belong to the same class if they yield the
same macroscopic properties for the system, assumed to be described by
some effective quantum field theory.

The quantum fluctuations then might depend on some extra parameters
of the problem and therefore phase transitions can occur.

Take for example the quantum Hall effect. One can show that its large
scale properties are well described by Cern-Simons theory in three dimen-
sions which is known to be equivalent to a conformal field theory located
at the boundary of its physical space, namely a WZW model.

Figure 7: Classical opalescence of water and quantum Hall plateaux.

In this thesis we will not be dealing with what would happen away from
equilibrium. Indeed, one might expect conformal symmetry to be broken
in that situation, in the presence for example of disorder introducing its
own length scale.

Last but not least, let us mention that conformal field theory appears
naturally in two ways in string theory, the first one being through the con-
formal symmetry of the world-sheet of the string and the second one being
through holography and the fact that, similarly as was mentioned in the
case of Chern-Simons theory and a WZW model on its boundary, quan-
tum gravity theories are expected to be dual to (super-) conformal field
theories.
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6 Plan of the thesis

• In chapter 1, we will recall some mathematical notions that will be
need either for technical support or for inspiration in order to some-
times achieve their generalization. We will describe some features of
the complex geometry first of Riemann surfaces and then of K

..
ahler

manifolds, recall some definitions and results of the theory of (Kac-
Moody) Lie algebras, introduce the notion of Frobenius manifolds and
their relation with integrable hierarchies [38], define the Hitchin inte-
grable system and its realization of the non-abelian Hodge correspon-
dence and we will then end the chapter by some notions of symplectic
geometry and the corresponding methods of quantization.

• In chapter 2, we will study the geometry of the Fuchsian (integrable)
system, defined as a fibration of the moduli space of Fuchsian differen-

tial systems over Riemann surfaces (P → o
Σ,∇) ∈MFuchs . To do so, we

will first construct the non-perturbative spectral curve Σ̂ associated
to a Fuchsian differential system, the correlators Wn’s satisfying the
loop equations and the corresponding homology of cycles Ĥ1. It will
be related to deformations δ ∈ T ∗MFuchs and the underlying special
geometry gives a natural conjectural definition of a non-perturbative
τ-function of the theory and we will mention how it should relate to
enumerative geometry. What is understood however is the perturba-
tive reconstruction of the correlators by the topological recursion in a
topological regime. This regime consists in promoting the considered
connections to ε-connections ∇ε for some small complex parame-
ter ε ∈ C∗ and study the WKB asymptotics of the construction when
ε −→ 0. There, a cameral curve ΣH (Φ(0)) emerges, associated to the
Higgs field obtained by the limit Φ(0) = lim

ε→0
(ε∇0 −∇ε). The cameral

geometry allows to define the cameral curve topological recursion recon-
struction procedure. This gives a natural scheme to compute pertur-
batively the generating functions for derivatives of the τ-function of
any integrable hierarchy given in Lax form [8]. We apply this scheme
to propose a spectral curve for the KdV hierarchy. We end the chap-
ter by studying the Topological Type property ensuring that one can
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reconstruct from the usual topological recursion [43] and apply it to
the six Painlevé equations and the (p, q) minimal models of Liouville
gravity [10]

• In chapter 3, we turn towards defining the quantum geometry of con-
formal field theories with extended algebras of symmetry given by
W-algebras. We start by recalling basic definitions and facts about
conformal field theories with W-algebra symmetry defined from a chi-
ral spin-one current J valued in a dual g∗ of a Lie algebra g of ADE
type, including their operator product expansions and Ward identi-
ties. We then define the corresponding quantum spectral curve Ê and
show that the usual topological recursion procedure allows to recon-
struct the correlation functions with a non-zero number of currents
inserted [5]. We then see that what changes is actually that the initial
data of the recursion has to be defined from the quantum spectral
curve. We then introduce a special geometry ansatz (Seiberg-Witten
relations) [35] to propose a scheme to reconstruct perturbatively chiral
correlation functions of the theory without insertions of currents, that
is M-point correlation functions of Toda lattice quantum field theory.

• We will then conclude and give a list of possible projects for the future.

To conclude this introduction, note that this text is based on the pub-
lished paper [10], the pre-prints [9] and [11] and the articles still in prepara-
tion [12], [8], [13], [5] and [6] that will hopefully be available soon. [9], [10]
and [11] are collected at the end of the text after the bibliography.



Chapter 1

Mathematical preliminaries

In this section we will present in an informal way some needed mathe-
matical material. It is not needed in the sense that we will use all of the
following definitions and results in the developments of this work but rather
because it allows one to get much more context around the objects at stake.
Almost no proof will be given since everything can be found quite easily
in textbooks or in the references that we give here. A few of them will be
given nevertheless when they contain useful insights for what will follow.

1 Complex geometry

1.1 Complex curves

Definition 1.1 Riemann surfaces
A Riemann surface Σ is a complex algebraic curve. It is defined as the zero locus
of a polynomial expression of two variables P ∈C[T1,T2], that is

Σ= {(x, y) ∈C2 |P (x, y) =
de f

∑
i , j

Pi , j x i y j = 0} (1-1)

immersed in C2.

Proposition 1.2 Space of holomorphic functions
The only holomorphic functions on a Riemann surface are the constants.

1
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Figure 1.1: A compact Riemann surface.

As a real two-dimensional surface, the topology of the curve is classified
by its genus, an integer g ∈N such that its first homology group is given by

H1(Σ,Z) =Z2g (1-2)

Fundamental theorems

The Riemann-Hurwitz formula helps computing genera of covers.

Theorem 1.3 Riemann-Hurwitz
Let Σ −→ o

Σ be a holomorphic map. It realizes a finite branched cover. Let

d ∈N∗ be the number of sheets of the cover and
o
g , g ∈N be the genera of o

Σ and
Σ respectively. They are related by

2g −2 = d(2
o
g −2)+B (1-3)

where B is the total index of the branch points, that is the sum of the
number of sheets coalescing at each branch point minus the number of branch
points itself.
Definition 1.4 Divisors on curves
A divisor on the curve Σ is a formal sum of points with multiplicities,

D = n1P1 +·· ·+nr Pr (1-4)

n1, ..,nr ∈Z, P1, ..,Pr ∈Σ. Its degree is the number deg(D) =∑
i ni .
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Figure 1.2: A branched covering.

For any function f on Σ, denote by ( f ) the divisor of its poles and ze-
roes counted with multiplicities (positive for zeroes and negative for poles).
For any divisor D on Σ, let M 0(D) (resp. M 1(D)) denote the space of
meromorphic functions f (resp. forms ω) whose poles are at most the
ones specified by D and whose zeroes are at least the ones specified by D
(denoted D ≤ ( f ) resp. D ≤ (ω)).

The Riemann-Roch formula helps computing dimensions of spaces of
meromorphic functions and forms with given zeroes and poles on a Rie-
mann surface in terms of its genus.

Theorem 1.5 Riemann-Roch
Let D be a divisor on a Riemann surface of genus g ∈N∗.

dim M 0(−D) = dim M 1(D)+deg(D)− g +1 (1-5)

Example 1.6 Space of holomorphic differentials
When D = 0, since the only holomorphic functions on Σ are constants, we get
that the space of holomorphic differentials on Σ has dimension equal to g .
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Theorem 1.7 Riemann’s bilinear identity
Let {Ai }i=1,..2g be an integer basis of H1(Σ,Z) with intersection product defined
as

Ai

⋂
A j =

de f
Ii , j (1-6)

for any i , j ∈ {1, ..,2g }. Then for any holomorphic one-forms ω,ω′ ∈
H1(Σ,OΣ), and any generic point z0 ∈Σ,

∑
x∈p(ω)

Res
z=x

(
ω(z)

∫ z

z0

ω′
)

− ∑
x∈p(ω′)

Res
z=x

(
ω′(z)

∫ z

z0

ω

)

= 1

2πi

2g∑
i , j=1

(∮
Ai

ω

)
(I−1)i , j

(∮
A j

ω′
)
(1-7)

where we introduced the notation p(ω) (respectively p(ω′)) for the set of poles
of ω (respectively ω′).

Newton’s polygon

Definition 1.8 Newton’s polygon
Newton’s polygon N (P ) associated to the Riemann surface defined by a polyno-
mial P ∈C[T1,T2] is the convex hull of the set {(i , j ) ∈Z2|Pi , j 6= 0}.

Figure 1.3: The Newton polygon of Y 3X 2 + (1+Y +Y 2)
(
1+X +X 2 +X 3

)+X 4.

Proposition 1.9 Critical exponents
In a local coordinate z, generic asymptotic directions of the curve immersed in
C2 are of the form (x ∼∞ zp , y ∼∞ zq ) with p, q ∈N such that −p

q ∈Q∪ {∞} is
the slope of one of the edges of N (P ).



1. COMPLEX GEOMETRY 5

proof:
In a local coordinate in an asymptotic direction of the curve,

{
x∼∞zp

y∼∞zq (1-8)

for some integers p, q ∈N. In this vicinity, introducing the number

mp,q = max
(i , j )

{i p + j q}, (1-9)

the leading term of the equation defining the curve reads

∑
{(i , j )∈N (P )|i p+ j q=mp,q }

Pi , j = 0 (1-10)

The sum can’t reduce to one single term otherwise it would contradict
the fact that the corresponding (i , j ) pair belongs to N (P ). Therefore,
the sum generically contains two terms thus yielding that the straight line
{(i , j ) ∈ Z2|mp,q = i p + j q} is tangent to N (P ), assertion that contains the
wanted result. ■

The genus of a Riemann surface can in most case be computed from its
Newton’s polygon but in general, the number of interior points of Newton’s
polygon only gives an upper bound to the genus through the following

Proposition 1.10 g ≤ #
o
N (P )

with equality if and only if the singularities of the projectivization of the curve
in P2 are non-degenerate and located at (001), (010), (100).

proof:
To prove this inequality we will exhibit a generating family of H1(Σ,OΣ)

consisting of #
o
N (P ) holomorphic one-forms.

By differentiating the defining equation along the curve we get the equality

P ′
x d x +P ′

y d y = 0 (1-11)
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but generically we can’t have P ′
x and P ′

y vanishing at the same point

(which would correspond to a cusp singularity) so that d x
P ′

y
= −dd y

P ′
x

cannot

have a pole at any zero of P ′
x (or P ′

y either by symmetry) and therefore
is a holomorphic form on Σ. This is the starting point and now, for any
(i , j ) ∈ Z2, define the one-form ωi , j on Σ by ωi , j (x, y) = x i y j d x

P ′
y (x,y) . By

the previous argument, this differential form is regular everywhere except
maybe at infinity in an asymptotic direction. In such a direction (x ∼∞
zp , y ∼∞ zq ), in a local coordinate z ∈ C and with the notations of the
previous proposition,

ωi , j (x, y) ∼
z→∞ z i p+ j q zp−1 d z∑

k,l l Pk,l zkp+(l−1)q
(1-12)

∼
z→∞

z(i+1)p+ j q−1 d z

zmp,q−q ∑
kp+l q=mp,q

lPk,l
(1-13)

As seen before, there are generically two distinct terms (k, l ) and (k ′, l ′)
in the sum of the denominator for which we know that Pk,l +Pk ′,l ′ = 0. The
condition for l Pk,l + l ′Pk ′,l ′ to vanish as well is therefore l = l ′ which is
generically equivalent to k = k ′ and is thus contradicting the fact that there
are two distinct terms. Therefore l Pk,l + l ′Pk ′,l ′ 6= 0 and

ωi , j (x, y) ∼
z→∞ z(i+1)p+( j+1)q−mp,q−1 d z (1-14)

∼
z′→0

(z ′)mp,q−(i+1)p−( j+1)q−1 d z ′ (1-15)

where we have changed the local coordinate to z ′ = 1
z . From this last

expression we can conclude that ωi , j is holomorphic on Σ if and only if

(i +1)p + ( j +1)q < mp,q , that is (i +1, j +1) ∈ o
N (P ) which concludes the

proof. ■

Jacobi variety and theta-functions

Definition 1.11 Symplectic basis of cycles
A basis {Ai ,Bi }i=1,...,g of H1(Σ,Z) such that the intersection product is given for
any pair of indices i , j ∈ {1, . . . , g } by
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Ai

⋂
A j = 0, Bi

⋂
B j = 0, and Ai

⋂
B j = δi , j , (1-16)

is called a symplectic basis or a Torelli marking of Σ. It admits a dual basis
of H1(Σ,OΣ), {ωi }i=1,...,g normalized on A -cycles, that is for any i , j ∈ {1, . . . , g },

∮
Ai

ω j = δi , j ,
∮

Bi

ω j =
de f

τi , j (1-17)

where we introduced the period matrix τ.

Figure 1.4: A symplectic basis of cycles on a torus.

Definition 1.12 Jacobian of curves
The Jacobian variety of Σ is defined as the g -dimensional torus defined by the
quotient

Jac(Σ) =
de f

Cg /
(Zg +τ ·Zg ) (1-18)

Figure 1.5: The Jacobian of a genus 1 Riemann surface.
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We can embed the Riemann surface Σ into its Jacobian Jac(Σ) by

Definition 1.13 The Abel map
The Abel map at a point z0 ∈Σ is the embedding defined by

Az0 : Σ −→ Jac(Σ)

z 7−→Az0(z) =
(∫ z

z0

ω1, . . . ,
∫ z

z0

ωg

)
(1-19)

Changing the base point z0 amounts to a translation in the Jacobian.

Proposition 1.14 Matrix of periods
τ is symmetric and the real matrix I m(τ) is positive definite.

This allows for the definition of the following fundamental objects

Definition 1.15 Riemann theta-functions
It is the locally analytic function Θ defined for any u ∈Cg by

Θ(u;τ) =
de f

∑
m∈Zg

e2πi 〈m,u〉+πi 〈τm,m〉 (1-20)

where 〈 . , .〉 denotes the canonical scalar product on Cg .

It has simple automorphic properties with respect to the period lattice
of the Riemann surface.

Property 1.16 Automorphic of theta-functions
For any u ∈Cg and l ∈Zg ,

Θ(u + l ;τ) = Θ(u ;τ) (1-21)

Θ(u +τ · l ;τ) = e−πi 〈τl ,l〉−2πi 〈l ,u〉Θ(u ;τ) (1-22)

Definition 1.17 Theta divisors
The divisor of the theta-function is the zero locus of the theta-function in the
Jacobian of the Riemann surface Σ. It is a well defined g − 1 dimensional
subvariety in Jac(Σ) thanks to the automorphic properties.
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Definition 1.18 Theta characteristics
It is a point χ ∈Cg such that 2χ= a +τ ·b ∈Zg +τ ·Zg . It is said to be odd if
and only if 〈a,b〉 is odd. It is otherwise said to be even.

Remark 1.19 A theta characteristic endows a spin structure on Σ, namely a
line bundle whose tensor square is the canonical bundle of the curve. Indeed,
χ has vanishing class in Jac(Σ) which is an abelian group isomorphic to the
Picard group of line bundles. This correspondence and the integrality of the
characteristic yield the spin structure.

Definition 1.20 Siegel theta-functions
Let χ = a

2 +τ · b
2 be a odd theta characteristic on Σ. The corresponding Siegel

theta-function is the analytic function Θχ defined for any u ∈Cg by

Θχ(u;τ) =
de f

∑
m∈Zg

e2πi 〈m+ a
2 ,u+b

2 〉+πi 〈m+ a
2 ,τ·(m+b

2 )〉 (1-23)

Remark 1.21 Regularity of odd theta-characteristics
The theta-characteristics such that Θχ does not vanish identically are called
regular theta-characteristics. We will assume from now on χ to be regular.

Prime forms and twists

Let z0 ∈ Σ be a point on the Riemann surface and let φz0 be the map that
sends any point z ∈ Σ to the complex number φz0(z) = Θχ(Az0(z) ;τ). φz0

has exactly g zeroes (including q ). Then the holomorphic one-form defined
by

h =
de f

∑
i=1,...,g

(
∂Θχ

∂ui

)
|u=0

ωi (1-24)

has exactly g − 1 double zeroes such that
p

h is a well defined holo-
morphic spinor and has exactly g − 1 simple zeroes. Moreover, let
χ =

de f

1
2(n +τ ·m) ∈Cg be an odd theta-characteristic. Following [45],
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Definition 1.22 Fay’s prime form
The prime form Eχ is the skew-symmetric (−1

2 ,−1
2) spinor defined on the squared

universal cover Σ̃× Σ̃ by

Eχ(p̃, q̃) =
de f

φq (p)√
h(p)h(q)

(1-25)

It vanishes linearly on the diagonal and nowhere else. For any choice of
coordinates,

Eχ(p̃, q̃) = Θχ(Aq (p);τ)√
h(p)h(q)

=
p∼q

p −q√
d p d q

(1+O (p −q)2) (1-26)

It can be shown not to depend on the choice of odd spin characteristics
χ and we will therefore drop the subscript χ from now on.

Remark 1.23 it is not clear from this local definition that the prime form is
indeed defined on the universal cover but one can easily check that although E

has no monodromy around A -cycles, it satisfies

E (p̃ +Bi , q̃) = E (p̃, q̃)e−2iπ(Aq (p)i+χi ) e−iπτi ,i (1-27)

for any choice of index i ∈ {1, . . . , g }.

In our following constructions we will need a prime form defined glob-
ally on our base curve and not its universal cover. This is the reason to
introduce a twist. It consists in compensating the B-cycle monodromies of
E by use of a meromorphic one-form.

Definition 1.24 Twisted prime forms
Let f be a meromorphic one-form on Σ with vanishing A -cycle integrals

∮
Ai

f = 0, and
1

2πi

∮
Bi

f =
de f

ζi (1-28)
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such that ζ =
de f

(ζ1, . . . ,ζg ) ∈ Cg − (Zg + τ ·Zg ). ζ is called a polarization

and its required property implies that f has singularities. Define the f -twisted
prime form by

E f (p, q) =
de f

E (p̃, q̃)
Θχ(ζ;τ)

Θχ(Aq (p);τ)
e−∫ p

q f (1-29)

with
∫ p

q f defined as integrating along the unique homology chain not inter-
secting A nor B-cyles with boundary p −q .

Remark 1.25 The dependence in the odd theta-characteristic χ was reintro-
duced in the twisted prime form but in all uses that we will make of prime
forms, that is cyclic products of the form E f (p1, p2) · · ·E f (pn, p1) for a given
number n ∈N∗ of generic points p1, . . . , pn ∈Σ, the dependence in χ will disap-
pear and the dependence in f will only be through the polarization ζ. Moreover,
the skew-symmetry is broken by the twist.

Proposition 1.26 Globality of the twisted prime form
The twisted prime form E f is well-defined (−1

2 ,−1
2) spinor on Σ with essential

singularities at the poles of the meromorphic differential one-form f of order
≥ 2.

Theorem 1.27 Fay’s identities
Let n ∈ N∗ be a positive integer and consider 2n generic points
p1, q1, . . . , pn, qn ∈Σ. We have the equality

Θχ

(
Aqi (pi )+ζ)
Θχ(ζ)

Det
1≤i , j≤n

(
1

E f (pi , q j )

)
=

∏
i< j E f (pi , p j )E f (qi , q j )∏

i , j E f (pi , q j )
(1-30)

Remark 1.28 In the genus g = 0 situation, Fay’s identities reduce to Cauchy’s
identity

Det
1≤i , j≤n

(
1

pi −q j

)
=

∏
i< j (pi −p j )(qi −q j )∏

i , j (pi −q j )
(1-31)
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We also define the evaluation of this twisted prime form on a degree 0
divisor on the Riemann surface D =

de f

∑
i αi [pi ] to be

E f (D) =
de f

∏
i 6= j

E f (pi , p j )−αiα j (1-32)

such that when the divisor is taken to be D = p −q , E f (p −q) coincides
with E f (p, q) for any pair of distinct points (p, q) on the surface.

Klein form, Bergman kernel and third kind differentials

Definition 1.29 Klein form
The Klein form is defined from a twisted prime form E f by the formula

Bζ(p, q) =
de f

− 1

E f (p, q)E f (q, p)
(1-33)

Remark 1.30 The Klein form can be shown as mentioned before to depend only
on the polarization ζ hence the subscript.

Definition 1.31 Bergman kernel
The fundamental second kind differential, or Bergman kernel Bm associated
to the symplectic basis of cycles m = {Ai ,Bi }1≤i≤g , is the unique symmetric bi-
differential such that

∮
Ai

B(z, ·) = 0,
∮

Bi

B(z, ·) =ωi , B(p, q) ∼
p∼q

d p d q

(p −q)2
(1-34)

for any index i ∈ {1, . . . , g } and generic point z ∈Σ.

It is related to the Klein form by the identity

B(p, q) = Bζ(p, q)−2πi
g∑

i , j=1

(
∂2

i , j l n Θχ(ζ;τ)
)
ωi (p)ω j (q) (1-35)

and as a consequence of this identity, it’s right hand side does not de-
pend on the choice of polarization ζ.
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Definition 1.32 Third-kind differentials
Given two generic points p, q ∈ Σ, define accordingly two corresponding third-
kind differentials to be

• Klein :

ω
p−q
ζ

(x) =
de f

∫ p

q
Bζ(x, ·) (1-36)

• Bergman :

ωp−q (x) =
de f

∫ p

q
B(x, ·) (1-37)

where the integral is once again computed along the only homology chain
with vanishing intersection with the symplectic basis m and boundary equal to
p −q . They are both meromorphic one-forms with a simple pole at p (resp. q)
with residue +1 (resp. −1).

1.2 Kähler geometry

Definition 1.33 Hermitian manifolds
A hermitian manifold is a pair (M , g ) where M is a complex manifold and
g is a hermitian metric, that is a riemannian metric on M as a differentiable
manifold which is invariant under the action of the complex structure I . It has
a canonical 2-form called the Kähler form of (M , g ) and defined by

Ω(ξ,ζ) = g (I ·ξ,ζ) (1-38)

It is also invariant under the action of I .

We will write M instead of (M , g ) for a hermitian manifold, without
specifying the metric g , whenever no confusion is possible.

Property 1.34 Let Ω be the Kähler form of a hermitian manifold M with a
given dimension di mCM = d ∈N∗, then Ω∧d is a nowhere vanishing 2d -form.

Definition 1.35 Kähler manifolds
A Kähler manifold is a hermitian manifold whose Kähler form is closed.
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Every Kähler manifold is also a symplectic manifold but the converse
is not true and a general symplectic manifold does not have an integrable
complex structure compatible with the symplectic form.

Definition 1.36 Hyperkähler metrics
A hyperkähler metric on a 4d -dimensional manifold M is a riemannian metric
g which is kählerian with respect to three complex structures I , J and K that
satisfy the algebraic identities of the quaternions,

I 2 = J 2 = K 2 = −1, (1-39)

I J =−J I = K , (1-40)

JK =−K J = I , (1-41)

K I =−I K = J . (1-42)

Corresponding to each complex structure is a Kähler form,

ω1(ξ,ζ) = g (I ·ξ,ζ), ω2(ξ,ζ) = g (J ·ξ,ζ), ω3(ξ,ζ) = g (K ·ξ,ζ), (1-43)

and furthermore this set of symplectic (Kähler) forms determines the metric
uniquely.

Figure 1.6: A hyperkähler manifold has a CP1 of complex structures.

2 Algebras of symmetries

2.1 Definitions and examples

Definition 2.1 Lie algebras
A Lie algebra (g, [., .]) is a vector space g together with a skew-symmetric bilinear
operation [., .] : g2 → g called the Lie bracket and satisfying the Jacobi identity
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∀A,B ,C ∈ g, [A, [B ,C ]]+ [B , [C , A]]+ [C , [A,B ]] = 0 (2-1)

we will most of the time omit the bracket and simply write g when no
confusion is possible.

Example 2.2 • Let A be an associative algebra, then [a,b] = ab−ba is a
Lie bracket in A and (A , [., .]) is a Lie algebra.

• Let X be a differential manifold and Γ(T X ) be the set of its vector fields.
For any two vector fields χ,η ∈ Γ(T X ), define [χ,η] to be the vector field
such that for any function f ∈C∞(X ), [χ,η]( f ) =χ[η( f )]−η[χ( f )]. Then
(Γ(T X ), [., .]) is a Lie algebra.

• Let V be a vector space and let φ : V → g be an injective linear map into
a Lie algebra g such that [φ(V ), φ(V )] ⊂φ(V ). Then (V ,φ∗[., .]) is a Lie
algebra. In particular, every subspace of g stable by the bracket with itself
has a Lie algebra structure.

Definition 2.3 Ideals of Lie algebras
An ideal I of a Lie algebra g is a Lie sub-algebra such that [I ,g] ⊂I .

Definition 2.4 Simple, semi-simple and reductive Lie algebras

• A simple Lie algebra is a non-abelian Lie algebra whose only ideals are 0
and itself.

• A Lie algebra is said to be semi-simple if it has no non-zero abelian ideal.

• A Lie algebra is said to be reductive if it is a direct sum of semi-simple Lie
algebras.

Proposition 2.5 A Lie algebra is reductive if and only if it admits a faithful,
completely reducible, finite-dimensional representation.
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2.2 Lie algebras and Lie groups

Definition 2.6 Lie groups
A Lie group is a differential manifold G with a compatible group structure,
that is a product G2 →G and an inverse map G →G that are both smooth with
respect to the differential structure.

Definition 2.7 Interior automorphisms, Adjoint and adjoint actions

• G acts on itself by interior automorphism, that is for any g ∈ G , define
ig ∈ Aut(G) such that for any h ∈G by ig (h) = g hg−1.

• G acts on TeG by the Adjoint action, Ad : G → GL(TeG) defined for any
g ∈G by Adg = Teig ∈ GL(TeG).

• TeG acts on itself by the adjoint action, ad : TeG → End(TeG) defined by
ad = Te Ad.

Theorem 2.8 Cartan
A Lie algebra is semi-simple if and only if its Killing form defined by

K (E ,F ) =
de f

Tr(adE ◦adF ) (2-2)

is non-degenerate.

Proposition 2.9 Left-invariant vector fields
Let G be a Lie group, e be its identity element and LG ⊂ Γ(TG) be the set of its
left-invariant vector fields. Then LG ' TeG and (TeG , [., .]), where

[A,B ] =
de f

adA(B) (2-3)

is a Lie algebra. We will denote it g= Li e(G).

To each Lie group G we can therefore canonically associate a Lie algebra
g but the converse is only partially true. Indeed, there exists an application,
called the exponential map and denoted by exp allowing us to associate to
any Lie algebra g a connected Lie group exp g isomorphic to the connected
part of G containing the identity element. It is defined as follows
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Definition 2.10 Exponential map
Let G be a Lie groupe and let g = Li e(G) be its corresponding Lie algebra.
For any element A ∈ g ' TeG . Let us denote by γA : R→ G the unique one-
parameter subgroup of G such that γ′

A(0) = A. Then define the exponential map
exp : g→ G by exp(A) = γA(1) for any Lie algebra element A ∈ g. Its image
lie by definition in the connected component of the identity in G and it actually
surjects onto it.

2.3 Root systems and semi-simple Lie algebras

Definition 2.11 Cartan subalgebras
A cartan subalgebra h of a given reductive Lie algebra g is a Lie subalgebra
h⊂ g that is equal to its normalizer

h= N (h) =
de f

{E ∈ g | adE (h) ⊂ h} (2-4)

All Cartan subalgebras of g have the same dimension denoted r =
de f

rk g and

called the rank of the Lie algebra. Since we assumed the Lie algebra to be
reductive, they are maximal abelian Lie subalgebras.

Remark 2.12 Cartan subalgebras h ⊂ g generically correspond to centralizers,
or commutants, of elements of the Lie algebra. Any non-trivial element whose
centralizer is maximal in this sense is called regular.

Let us now assume the Lie algebra to be semi-simple. h acts on g by
restriction of the adjoint representation ad and for any linear form λ ∈ h∗,
define

gλ =
de f

{E ∈ g |∀H ∈ h,adH (E) =λ(H)E } (2-5)

Lemma 2.13 g0 = h and for any λ,µ ∈ h∗, [gλ,gµ] ⊂ gλ+µ.

Definition 2.14 Roots and Weyl group
A root of h in g is a linear form λ ∈ h∗ such that gλ 6= 0. Let us denote by R
the set of all roots. It is independent of the choice of Cartan subalgebra.
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Let w =
de f

〈sλ〉λ∈R ⊂ Aut(h∗) the so-called Weyl group generated by the maps

sλ defined for any root λ ∈R by

sλ : h∗ −→ h∗

µ 7−→µ−2
〈λ,µ〉
〈λ,λ〉λ (2-6)

where 〈., .〉 is the so-called minimal bilinear form on h∗. Choose a set of
simple roots R0 =

de f
{r1, . . . ,rr } (an integer basis of the root lattice R). It is then

defined as the unique bilinear form such that 〈ri ,r j 〉 = 2δi , j .
sλ is precisely the orthogonal reflexion with respect to the hyperplane of h∗

defined by λ.

Lemma 2.15 The root system R spans h∗ and it is invariant under the action
of the Weyl group. Namely, w ·R=R.

Proposition 2.16 Dimension of root spaces
For any root λ ∈R, dim gλ = 1 and {n ∈Z |nλ ∈R} = {±1}.

Corollary 2.17 For any λ ∈R, gλ⊕ [gλ,g−λ]⊕g−λ ' sl2(C)

Theorem 2.18 Construction of semi-simple Lie algebras
i) Let g be a semi-simple Lie algebra, h ⊂ g a Cartan subalgebra and R the
corresponding root system. Let R0 = {r1, . . . ,rr } ⊂R be a basis of simple roots
and define the dual basis {H1, . . . , Hr } of h by the requirement ri (H) = 2 K (Hi ,H)

K (Hi ,Hi )
for any H ∈ h.
Then g is generated by {Ei ,Fi , Hi }1≤i≤r required for any i , j ∈ {1, . . . ,r } to

satisfy

• [Hi , H j ] = 0

• [Ei ,F j ] = δi , j Hi

• [Hi ,E j ] = r j (Hi )E j and [Hi ,F j ] =−r j (Hi )F j

• (adEi )−r j (Hi )+1(gr j ) = 0 and (adFi )−r j (Hi )+1(g−r j ) = 0
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ii) The previous presentation defines a semi-simple Lie algebra.
iii) This correspondence between semi-simple Lie algebras and reduced root

systems is bijective up to isomorphism.

Definition 2.19 Cartan matrix
The Cartan matrix associated to a set of simple roots R0 = {r1, . . . ,rr } ⊂R is
defined as

κ =
de f

(
κi , j =

de f
r j (Hi )

)
1≤i , j≤r

(2-7)

Lemma 2.20 R is determined by κ up to isomorphism and if R′
0 is another

basis of simple roots of g, then its associated Cartan matrix κ′ is conjugated to
κ.

Figure 1.7: Root system and Dynkin diagram of the exceptional Lie algebra of type G2.

Definition 2.21 Dynkin diagram
The Dynkin diagram associated to a Cartan matrix κ of a basis of simple roots
R0 of the Lie algebra g is the graph satisfying the following :

• its set of vertices is R0

• the number of edges relating ri to r j is ni , j =
de f

κi , jκ j ,i

• if ni , j > 1 and |κi , j | = 1, then the edges are oriented from ri to r j .
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Proposition 2.22 This construction of the Dynkin diagram is a bijective pro-
cess.

Definition 2.23 Simply laced Lie algebra
The Lie algebra is said to be simply laced if its Dynkin diagram only contains
simple links.

Remark 2.24 This implies that all non-zero roots have same length.

Proposition 2.25 Lie algebras of A, D and E type are simply laced while those
of type B, C, F and G are not.

Figure 1.8: Dynkin diagrams corresponding to simply laced Lie algebras (ADE).

2.4 Representation theory

Definition 2.26 Representations and group actions
Let G be a Lie group and let V be a vector space (not necessarily of finite
dimension). A representation of G into V is equivalently defined as a map
ρ : G → Aut(V ), where Aut(V ) is the set of automorphisms of the vector space
V , or as the corresponding action G×V →V mapping a pair (g , v) to the vector
ρ(g )v . We call (V ,ρ) a G-module.
Moreover ρ pushes forward to a Lie algebra homomorphism ρ∗ : g−→ gl(V )

and we call (V ,ρ∗) a representation of the Lie algebra g or equivalently a g-
module.
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Theorem 2.27 Weyl
A Lie algebra g is semi-simple if and only if all its finite dimensional represen-
tations are entirely reducible.

Definition 2.28 Weights of g in a representation
Similarly as we did in the case of the adjoint action of a Cartan subalgebra
h⊂ g on the Lie algebra, consider for any λ ∈ g∗ the eigenspace

Vλ =
de f

{v ∈V |∀E ∈ g,ρ(E)v =λ(E)v} (2-8)

If Vλ 6= 0 we say that λ is a weight of g in the representation (V ,ρ). Let us
denote by R(ρ) the set of weights of g in representation ρ.

Example 2.29 Roots are weights of h in the h-module (g,ad).

2.5 Universal enveloping algebras, casimirs and central extensions

The universal enveloping algebra of a given Lie algebra is in essence an
algebra containing it and such that every true relation will hold in any
representation. It is defined as follows:

Definition 2.30 Universal enveloping algebra
Let g be a Lie algebra. Its universal enveloping algebra U (g) is the smallest
unital associative algebra containing g and such that for any two elements
A,B ∈ g,

[A,B ] = AB −B A (2-9)

for the product in U (g).

Proposition 2.31 Explicit realization
For any Lie algebra g,

U (g) '
∞⊕

k=0

g⊗k
/

{A⊗B −B ⊗ A = [A,B ]} (2-10)
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Example 2.32 If g is an abelian Lie algebra, then its universal enveloping
algebra is identified with its symmetric algebra S (g).

Remark 2.33 Let us notice that the universal enveloping algebra U (g) pos-
sesses more structure than just that of an associative algebra. Indeed the map

ϕ : g −→ U (g)⊗U (g)

E 7−→ E ⊗1+1⊗E (2-11)

satisfies the co-associativity axiom (ϕ⊗ Id) ◦ϕ = (Id⊗ϕ) ◦ϕ showing that
U (g) is a bi-algebra. Without going into any details, it is in fact a Hopf alge-
bra with a unique one-dimensional deformation quantization family

(
Uq (g)

)
q

(with formal complex parameter q) conserving this property. Uq (g) is called
the quantum group associated to the Lie algebra g. Although nothing related is
described in this work, the q-deformation of the presented constructions will be
investigated in the near future.

Let ρ : g−→Md (C) be a matrix realization of a Lie algebra g. The trace
Tr
ρ

and the determinant Det
ρ

in this representation canonically define two

applications U (g) −→C.

Definition 2.34 Casimirs of a representation
Let g be a reductive Lie algebra, d ∈ N∗ be a non-negative integer and let
ρ : g −→Md (C) be a faithful matrix realization of g. The casimirs of ρ are
defined as the symmetric maps C (ρ)

k ∈ Hom(g⊗k ,C), for k ∈ {1, . . . ,d}, such that
for any A ∈ g and formal variable y ∈C,

Det
ρ

(y − A) =
d∑

k=0

(−1)k yd−kC (ρ)
k (A⊗k) (2-12)

They depend on a choice of representation but we will drop the upper-script
ρ whenever no confusion is possible.

Proposition 2.35 Casimirs and center of universal enveloping algebras
The casimirs of any faithful matrix realization of a Lie algebra generate the
center of its universal enveloping algebra.
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Remark 2.36 There is an alternative definition of the casimirs {Ck} by use of
differential equations. Indeed, identifying g' g∗ with its dual a Casimir can
be defined as a function C ∈ C∞(g∗) that Poisson commutes (for the Kirillov-
Kostant bracket associated to g∗, see the later paragraph on symplectic geometry)
with all the others, namely {C ,F } = 0 for any F ∈C∞(g∗). It takes the form of
a differential operator in terms of coordinate variables in g∗.

2.6 Affine Kac-Moody algebras

Let g be a reductive complex Lie algebras and 〈.〉 a non-degenerate sym-
metric bilinear bracket.

Definition 2.37 Affine Lie algebras
For any complex number c ∈C, The corresponding affine Lie algebra with central
charge c is defined as a central extension of the infinite dimensional Lie algebra
g⊗C[t , t−1] with one dimensional center Cc

gc =Cc ⊕g⊗C[t , t−1] (2-13)

where C[t , t−1] is the space of Laurent polynomials in the variable t and the
Lie bracket is defined for any elements E1,E2 ∈ g and f1, f2 ∈C[t , t−1] by

[E1 ⊗ f1,E2 ⊗ f2] = [E1,E2]⊗ f1 f2 +〈E1E2〉 Res
t=0

(
f1 d f2

)
(2-14)

In such a central extension gc there exists a distinguished vector field (or
derivation) δ= t d

d t ∈ End(gc) which in turn allows to define the associated

Definition 2.38 Affine Kac-Moody algebras
The affine Kac-Moody algebra associated to the affine Lie algebra gc is defined
as the semi-direct product ĝc = gc ×Cd where the extra generator d is defined
by the differential action [d, M ] = δ(M) for any M ∈ gc .

We will come back to Kac-Moody algebras as they will be the start-
ing point to define the generators of the W-algebras of symmetry of the
conformal field theories we will study.
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2.7 Examples of infinite dimensional Lie algebras

Canonical quantization

Let us consider the canonical quantization of a classical particle of mass
m moving in a one dimensional space in some potential V (x) ∈R[|x|].

Classically, the phase space corresponding to this system is the sym-
plectic space T ∗R=R2 with canonical symplectic structure and symplectic

form ω= d p ∧d x. The energy of a given state (p, x) is E = p2

2m +V (x).
Canonical quantization in the Heisenberg picture consists in studying

one-parameter families of non trivial hermitian representations (ρt )t∈R of a
Lie algebra g containing a non-trivial central element ħ, and two elements
X and P satisfying [P, X ] = iħ (quantization of the Poisson structure of
Hamiltonian dynamics). It is called the Heisenberg algebra.

Introducing the notation At = ρt (A) for any A ∈ g and t ∈R, we ask that
it has the Ehrenfest time dependence

iħt
d At

d t
= [Ht , At ] (2-15)

where we introduced the Hamiltonian operator H = P 2

2m +V (X ) (notice
that in this formulation there can be no explicit time dependence in the
elements of g). In particular this immediately implies the conservations
dħt
d t = d Ht

d t = 0 such that we will denote (abusively) these elements as ħ and
H respectively. The Ehrenfest equation then rewrites

iħd At

d t
= [H , At ] (2-16)

Property 2.39 Isospectrality
For any A ∈ g, t ∈R and k ∈N∗,

d

d t
Tr Ak

t = 0 (2-17)

Corollary 2.40 For any A ∈ g, Det(At ) is a constant.
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We will from now on assume that Det(ħ) 6= 0. Furthermore, Ehrenfest
equation applied to X and P gives

d X t

d t
= 1

iħ[
P 2

t

2m
, X t ] = Pt

m
and

dPt

d t
= 1

iħ[V (X t ),Pt ] =−V ′(X t ) (2-18)

where we can formally recognize the equations we would have expected
from Hamiltonian mechanics at the classical level by making the replace-
ment 1

iħ[. , .] −→ {. , .} to extract the Hamiltonian dynamicswe shall describe
in the next section.

Proposition 2.41 Infinite dimensionality of ρ
For any t ∈R, ρt is infinite dimensional and ħ acts as a constant scalar.

proof:
The Heisenberg algebra admits a unique (up to isomorphism) faithful 3

dimensional minimally non-trivial nilpotent representation in the space of
upper triangular matrices given by

(αP +βX + iγħ) 7−→

0 α γ

0 0 β

0 0 0

 (2-19)

This shows that any non-trivial hermitian representation of the Heisen-
berg algebra has to be infinite dimensional. The fact that ħ acts as a scalar
is then a consequence of the Stone-von Neumann theorem. ■

The Virasoro algebra

The Virasoro algebra is the Lie algebra of the group of conformal (or
holomorphic) transformations of the plane. It is the fundamental algebra
of symmetries of conformal field theories. We will not elaborate too much
on these for now but simply state that they are quantum field theories in
which the symmetry algebra contains the following

Definition 2.42 Virasoro algebra
For any complex number c ∈ C, the Virasoro algebra with central charge c is
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the infinite dimensional Lie algebra generated by the family (Ln)n∈Z of elements
satisfying the following commutation relations

[Ln,Lm] = (n −m)Ln+m + c

12
n(n2 −1)δn+m,0 (2-20)

Let us notice at this point that the Virasoro algebra contains an sl2(C)
subalgebra generated by (L−1,L0,L1).

As is usual in physics, the information of the possible field content of
a quantum field theory endowed with certain symmetries is contained in
the representation theory of the corresponding algebra. We will come back
to conformal field theories in 2D later on when exploring an associated
quantum geometry.

3 Symplectic geometry

3.1 Symplectic structures

Definition 3.1 Symplectic manifolds
A symplectic manifold (X ,ω) is a holomorphic complex (resp. smooth real)
manifold X endowed with an exact skew-symmetric non-degenerate holomorphic
(resp. smooth) two-form ω.

Being non-degenerate, a symplectic form induces a smooth bundle au-
tomorphism of T X . Allowing to introduce the following

Definition 3.2 Symplectic orthogonal
Let (X ,ω) be a symplectic manifold, then the symplectic orthogonal of a distri-
bution D ⊂ T X , that is a holomorphic (resp. smooth) subbundle of T X with
constant dimension k over X , is defined as D⊥ = Ker ω(D, .).

Theorem 3.3 Darboux
Let (X ,ω) be a symplectic manifold of dimension 2d ∈N∗. There exists an atlas
of X (Darboux atlas) in which ω is the pullback of the standard symplectic form
on C2d (resp. R2d ). We write it in local coordinates (qi , pi ) ∈ X as

ω=
d∑

i=1

d pi ∧d qi = dα (3-1)
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where we introduced the Liouville 1-form α=∑d
i=1 pi d qi . Such coordinates

are called Darboux coordinates.

For any vector fields χ,ψ on X , denote by iχ the interior product by (or
insertion of) χ, Lχ the Lie derivative in the χ direction and [χ,ψ] the Lie
bracket of χ and ψ such that

Lχ = iχd+d iχ, (3-2)

L[χ,ψ] = LχLψ−LψLχ, (3-3)

i[χ,ψ] = Lχiψ− iψLχ. (3-4)

Definition 3.4 Canonical transformations
Changes of Darboux coordinates are called canonical transformations.

Assuming that the variety X is compact and connected implies that

Property 3.5 de Rham cohomology classes
For any k ∈ {1, . . . ,d}, [ωk] ∈ H2k

dR(X ) is nonzero and the de Rham cohomology
class [ωd ] generates the one-dimensional vector space H2d

dR(X ).

Definition 3.6 Hamiltonian vector field
Given a symplectic manifold (X ,ω) and for any function H ∈ H0(X ,C) (resp.
C∞(X )), there exists a unique vector field χH on X such that for any other vector
field Y on X ,

d H(Y ) =
de f

ω(χH ,Y ) (3-5)

It is called the Hamiltonian vector field associated to the function H . The
converse remains only locally true, for any vector field χ on X , there locally
exists around each point a function H such that for any other local vector field
ψ, d H(ψ) =ω(χ,ψ). H is called a Hamiltonian of χ. Moreover, (X ,ω, H) for
any choice of smooth function H will be called a Hamiltonian manifold.

Definition 3.7 Poisson bracket
Let (X ,ω) be a symplectic manifold, then the Poisson a bracket is the bilinear
antisymmetric operation on functions on X defined for any f , g ∈ H0(X ,C) (resp.
C∞(X )) by { f , g } =ω(χ f ,χg ) ∈ H0(X ,C) (resp. C∞(X )).
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3.2 Symplectic actions of compact Lie groups

We will from now on only consider complex symplectic manifolds.

Definition 3.8 Moment map
Let g be a finite dimensional Lie algebra. Suppose that it the Lie algebra of a
connected compact Lie group G = exp g acting on a symplectic manifold (X ,ω)
by isometries that preserve ω. If all the fundamental vector fields corresponding
to this action are Hamiltonian vector fields, then define a moment map to be
an equivariant application µ : X −→ g∗ defined for any x ∈ X and E ∈ g by
µ(x)(E) = f (x), where f is a Hamiltonian of the fundamental vector field of
E .

Notice that without the equivariance requirement, a moment map would
be far from unique. Indeed, there would be as many possibilities as there
are choices for the Hamiltonian representations of the fundamental vector
fields of the Lie algebra. In this situation, since two Hamiltonians of the
same vector field differ by a constant, this amounts to an affine line of
Hamiltonians for each independent direction in g, in turn the space of
moment maps is of dimension dim g.

Given a moment map µ, the group G acts on both the definition space X
and the target space g∗ via the coadjoint representation. The equivariance
of µ is the fact that this map intertwines between the two actions. It reads

µ(g · x) = Ad∗
g µ(x) (3-6)

for any elements x ∈ X and g ∈ G and requiring this property fixes the
integration constant.

Moreover, it yields that the level set µ−1({0}) is preserved by the action
of G and if this action is free and proper, the quotient µ−1({0})

/
G will be a

smooth manifold. In general, it may only be an orbifold (the generalization
of a manifold where the data of local finite automorphism groups is added).
In turn we have the following

Theorem 3.9 Marsden-Weinstein’s symplectic reduction
If µ−1({0})

/
G is a manifold, then it is symplectic.



3. SYMPLECTIC GEOMETRY 29

The usual notation for the symplectic manifold thus obtained is
µ−1({0})

//
G .

Example 3.10 When X = T ∗Rn and G = Rn acts by affine translations, the
moment map is the linear momentum and the symplectic reduction is the space
of constant momenta Rn .

CoAdjoint orbits

Definition 3.11 CoAdjoint action and orbits
G acts on the dual of its Lie algebra g∗ by the coAdjoint action Ad∗ defined for
any g ∈ G , Ξ ∈ g∗ and E ∈ g by [Ad∗

g Ξ](E) = Ξ(Adg−1 E). We will denote by
Ad∗

G Ξ the corresponding orbit of an element Ξ ∈ g∗.
By differentiation, it descends to the coadjoint action of g on g∗ defined for

any E ,E ′ ∈ g and Ξ ∈ g∗ by [ad∗
E Ξ](F ) =−Ξ([E ,E ′]).

Denote by F (g∗) the set of smooth functions (not necessarily linear) on
g∗. For any F ∈ F (g∗), its differential dF ∈ Hom(g∗,C) can be identified
with an element of g, thus leading to this next

Definition 3.12 Kirilov-Kostant bracket
For any F,G ∈ F (g∗) define their Poisson bracket to be the function denoted
{F,G}K K ∈F (g∗) and defined for any Ξ ∈ g∗ by

{F,G}K K (Ξ) =Ξ([dF,dG]) (3-7)

Property 3.13 The Kirilov-Kostant bracket is in general degenerate.

Example 3.14 If the structure constants of the Lie algebra g are totally anti-
symmetric, then the function Ξ 7−→ Ξ2 = ∑

aΞ
2
a Poisson commutes with every

element of F (g∗).

Proposition 3.15 Center of the Kirilov-Kostant bracket
The center of {., .}K K consists in all the Ad∗-invariant functions.

Corollary 3.16 Coadjoint orbits are symplectic
The Kirilov-Kostant bracket is non-degenerate on any coadjoint orbit.
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3.3 Hamiltonian actions of loop groups

Definition 3.17 Loop groups and loop algebras
Let g be a reductive complex Lie algebra, G its associated connected Lie groupe
and let Σ be a Riemann surface. The corresponding loop group at a point z0 ∈Σ
is the group of invertible G valued power series expansions around z = z0. Let
us denote it by Lz0G . Its elements are regular series g (ζ) = ∑∞

k=0 gk ζ
k in a

local coordinate ζ around z = z0. The product law is given by the pointwise
product (g h)(ζ) = g (ζ)h(ζ) for any g ,h ∈ Lz0G . Accordingly, its Lie algebra
Lz0g consists of Lie algebra valued power series of the form M(ζ) =∑∞

k=0 Mk ζ
k .

The corresponding Lie bracket is given by the pointwise Lie bracket.

Property 3.18 Linear dual of the loop algebra
Given a faithful representation ρ of g, the linear dual L ∗

z0
g = (Lz0g)∗ of the

loop algebra at the point z0 ∈ Σ can be identified with the set of polar Lie
algebra valued elements Ξ(ζ) = ∑

1≤kΞkζ
−k , where the sum contains a finite

but arbitrary large number of terms, by the pairing

〈Ξ, M〉 = Tr
ρ

(
Res
ζ=0

Ξ(ζ)M(ζ)

)
= ∑

k∈Z
Tr
ρ

(Ξk+1Xk) (3-8)

for any two elements Ξ ∈ L ∗
z0
g, M ∈ Lz0g, where the residue is defined as

taking the coefficient of ζ−1 and the last sum is actually finite.

The coAdjoint action of g ∈Lz0G on Ξ ∈L ∗
z0
g is defined as usual for any

M ∈ Lz0g by [Ad∗
g Ξ](M) = Ξ(g−1M g ) which by invariance of the pairing

〈., .〉 (following from the cyclicity of the trace) yields

Ad∗
g Ξ= (g Ξg−1)− (3-9)

where (.)− indicates that we keep only the polar part of the expression.

3.4 Liouville integrability

Definition 3.19 Liouville’s integrability
Let (X ,ω, H) be a Hamiltonian manifold of dimension 2d ∈ N∗ and consider
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the one-parameter dynamical system γ′ = γ∗χH defined by the Hamiltonian
flow of H with unknown curve γ : I ⊂R−→ X . We will say that it is Liouville
integrable if and only if there exists a set {F1, . . . ,Fd } of d independant smooth
functions on X conserved by the dynamics and in involution. That is for any
pair of indices i , j ∈ {1, . . . ,d},

{H ,Fi } = 0 and {Fi ,F j } = 0 (3-10)

where {., .} is the Poisson bracket associated to the symplectic form ω.

Proposition 3.20 Hamilton’s equations
In any set of Darboux coordinates (p, q), denoting γ(t ) = (P (t ),Q(t )) for any
t ∈ I , the differential equation γ′ = γ∗χH is equivalent to Hamilton’s equations

dP j

d t
= −∂H

∂q j
(P,Q) (3-11)

dQ j

d t
= ∂H

∂p j
(P,Q) (3-12)

for any j ∈ {1, . . . ,d}.

Theorem 3.21 Geometric interpretation
Such a Liouville integrable system on (X ,ω) defines a Lagrangian foliation
X −→ Cd (resp. Rd ) whose fiber over any vector f = ( f1, . . . , fd ) ∈ Cd (resp. Rd )
is the level manifold defined by

X f =
de f

{x ∈ X |∀i ∈ {1, . . . ,d}, Fi (x) = fi } (3-13)

proof:
The only thing to prove is that X f is indeed a Lagrangian submanifold

of (X ,ω) for any choice of f . Let χi be the Hamiltonian vector field associ-
ated to Fi for any index i ∈ {1, . . . ,d}. From involutiveness of the conserved
quantities we get that these vector fields are tangent to the manifold. In-
deed, this is equivalent to χi (F j ) = {Fi ,F j } = 0. Therefore, since the F j ’s are
assumed to be independant functions, the tangent space to X f is generated
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by {χi , i ∈ {1, . . . ,d}}. In turn, ω(Fi ,F j ) = 0 implies ω|X f = 0 which is the
wanted result. ■

In particular, denoting by α a Liouville 1-form such that dα = ω, its
restriction to X f is closed and for any x1, x2 ∈ X f ,

∫ x2
x1
α|X f is a well defined

number.

Definition 3.22 Generating function of canonical transformations
For any f ∈ Cd (resp. Rd ) and points x1, x2 ∈ X f , define the corresponding
generating function to be the number

S( f , x2; x1) =
de f

∫ x2

x1

α|X f =
∫ q2

q1

d∑
i=1

pi ( f , q)d qi = S( f , q ; q0) (3-14)

where the integration path lies in X f and the last two equalities are loosely
written in Darboux coordinates such that q(x1) = q1 and q(x2) = q2, assuming
that we can invert the relations Fi (p, q) = fi into functions pi ( f , q). Moreover,
define ψ j = ∂

∂ f j
S( f , x2; x1) for any j ∈ {1, . . . ,d}.

Theorem 3.23 Equations of motion
Introducing the classical action

Scl [γ] =
de f

∫
γ
α−

∫ t2

t1

γ∗H(t )d t (3-15)

for any continuous path γ : I = [t1, t2] −→ X starting from γ(t1) = x1 ∈ X
and ending at γ(t2) = x2 ∈ X , it is extremal for paths satisfying Hamilton’s
equations.

We do not prove it here but just say that is follows from the Euler-
Lagrange equations associated to an integral functional. It sits at the
foundation of classical mechanics. We now get to the main result of this
paragraph
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Theorem 3.24 Liouville
Any Liouville integrable system is solvable by quadrature.

proof:
Starting from a set of Darboux coordinates (p, q), the change of coordi-

nates (p, q) 7−→ ( f ,ψ) is a canonical transformation in which the dynamical
equations of the position variables will be particularly simple. Indeed, by
definition of the generating function S we have dS = ∑d

j=1ψ j d f j +p j d q j

and exactness of this 1-form implies

d2 S = 0 =−
d∑

j=1

dψ j ∧d f j +
d∑

j=1

d p j ∧d q j (3-16)

In turn, with loose notations, Hamilton’s equations now read for any
j ∈ {1, . . . ,d},

d f j

d t
= {H ,F j } = {H ,F j } = 0 (3-17)

dψ j

d t
= {H ,ψ j } = ∂H

∂ f j
=Ω j (F ) (3-18)

where Ω j (F ) is a constant for all j . ■

3.5 Noether’s theorem

Liouville’s theorem ensures that when studying Hamiltonian dynamical sys-
tems, finding conserved quantities can be decisive in the process of finding
the solution to the problem. The next natural question is then whether one
can find enough of these conserved quantities when given such equations of
motion. Unfortunately the result is no in general. Noether however brought
some positive answer.

When our problem posesses some coninuous symmetries, namely when
the symplectic action of a Lie group generated by independent vector fields
commutes with the Hamiltonian flow, then we have a conserved quantity
for each of these independent vector fields.
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Theorem 3.25 Nœther

Consider the symplectic action of a Lie group G on a symplectic manifold
(X ,ω) with Liouville one-form α= p d q (in a set of Darboux coordinates). For
any smooth path γ : I −→ X , let us introduce the associated Lagrangian function

Lγ =
de f

γ∗p
d

d t
γ∗q −γ∗H (3-19)

defined on I =
de f

[t1, t2]. Suppose there exists a function K such that for any

g ∈G , and any smooth path γ : I 7−→ X ,

g ·Lγ(t ) =Lγ(t )+ dK

d t
(3-20)

then any choice F1, . . . ,Fr of functions such that the corresponding Hamilto-
nian vector fields χ1, . . . ,χr coincide with the fundamental vector fields associ-
ated to a basis E1, . . . ,Er of g = Li e(G) yields r = rk g conserved quantities in
involution.

Corollary 3.26 Enough symmetries imply integrability
With the hypotheses of last theorem, if r = rk g≥ d then the system is Liouville
integrable.

Liouville’s and Nœther’s theorem sit together at the foundation of mod-
ern theoretical Physics.

4 Frobenius manifolds and integrable hierarchies

A Frobenius manifold as introduced by Dubrovin and Zhang [38] axioma-
tizes the structure that physical parameters’ spaces should bear. An under-
lying notion is the one of a Frobenius algebra which is the mathematical
counterpart of the algebras of scalar fields as they appear in field theories.
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4.1 Physical Motivation

Here we show formally that whenever correlators are defined in a physical
theory, some particular structure emerges on the corresponding space of
parameters.

Consider a physical system in which observable {φk}k∈I fluctuate. Solv-
ing the theory consists in determining all correlation functions of the type
〈φk1 . . .φkn〉, k1, . . . ,kn ∈ I , that is computing the amplitude of probability
for the fields to simultaneously have given values at given points of the
manifold. We arrange them into a formal generating function of an infinite
set of formal variables {tk}k∈I called times (or coupling constants).

Definition 4.1 Partition function
Denoting t = (tk)k∈I , let Z ∈C[[t]] be the generating function, called the parti-
tion function of the theory, of all such correlation functions

Z (t) =
de f

〈
exp

(∑
k∈I

tkφk

)〉
(4-1)

" = "
∫

exp

(∑
k∈I

tkφk

)
(4-2)

It is a generating function in the sense that

〈φk1 . . .φkn〉 =
∂n Z

∂tk1 · · ·∂tkn

(t = 0) (4-3)

Now consider the parameter space M = {t = (tk)k∈I }. The data of a
partition function Z implies the following

• A flat metric is defined on M by the formula

η(∂tk ,∂tl ) = 〈φkφl〉, (4-4)

• An operator algebra structure is defined on any of the tangent spaces
to M by the totally symmetric tensor

c(∂tk ,∂tl ,∂tm ) = 〈φkφlφm〉 (4-5)
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4.2 Frobenius structures

The first structure to introduce here is the one of a Frobenius algebra,
characterizing tangent spaces to Frobenius manifolds. Following [38]

Definition 4.2 Frobenius algebras
A Frobenius algebra A is a commutative, associative unital algebra (over C) of
finite dimension di mCA <∞ together with a non-degenerate symmetric bilin-
ear form denoted η : A × A → C satisfying η(uv, w) = η(u, v w) for any three
elements u, v, w ∈ A.

Property 4.3 A Frobenius algebras admits the following

• a projection onto C defined by A →C/u 7→ η(u,1)

• a dualilty isomorphism λ : A
∼→ A∗/u 7→ η(u, .)

• a comultiplication µ defined as the only map making the following dia-
gram commutative

A

λ
��

µ // A⊗ A

λ⊗λ
��

A∗ m∗
// A∗⊗ A∗

(4-6)

where m∗ is the dual map to the usual multiplication. In any basis
{e1, ..,edi mCA} of A, and for any α ∈ A

µ(α) =
di mCA∑

a,b,i , j=1

η(α,eaeb)ηaiηb j ei ⊗e j (4-7)

where we introduced the inverse matrix notation (ηab)a,b = (η(ea,eb))−1
a,b .

Definition 4.4 Frobenius manifolds
A Frobenius manifold is a complex manifold whose tangent space at each point
is endowed with the structure of a Frobenius algebra such that

• η defines a flat metric on M ,



4. FROBENIUS MANIFOLDS AND INTEGRABLE HIERARCHIES 37

• the unity vector field e is covariantly constant w.r.t. the Levi-Cività con-
nection ∇ of η,

• if c(u, v, w) = η(u · v, w), the 4-tensor (∇zc)(u, v, w) is symmetric in the
four vector fields u, v, w, z,

• there exists a vector field E such that ∇(∇E) = 0 and the corresponding one-
parameter group of diffeomorphisms acts by conformal transformations of
η and rescalings on tangent spaces Tt M for t ∈ M .

The associated deformed (or Dubrovin) connection is then defined to be
the symmetric connection

∇̃u(z)v =
de f

∇u v + z u × v (4-8)

depending on the complex parameter z.

Theorem 4.5 Prepotential [Dubrovin-Zhang]
Identical flatness in z ∈ C is then equivalent to the existence of a function
F0 : M −→C, the prepotential, such that

η(∂α×∂β,∂γ) = ∂α∂β∂γF0 (4-9)

here ∂α = ∂
∂θα

with (θα)1≤α≤d a basis of flat coordinates for ∇ (i.e. such that
dθα’s are nowhere vanishing flat sections).

Proposition 4.6 WDVV equations
The associativity of the Frobenius structure is equivalent to the set of equations

∂3F0

∂vα∂vβ∂vλ
ηλµ

∂3F0

∂vµ∂vγ∂vδ
= ∂3F0

∂vδ∂vβ∂vλ
ηλµ

∂3F0

∂vµ∂vγ∂vα
(4-10)

for the prepotential. They are called the WDVV equations on the Rieman-
nian manifold (M ,η).

Corollary 4.7 Alternative definition
If F0 is a solution of the WDVV equations on (M ,η), then it endows M with a
Frobenius manifold structure.
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4.3 Integrable hierarchies

The principal hierarchy associated to the Frobenius manifold M is a hier-
archy of partial differential systems linear in derivatives (so-called hydro-
dynamic type) for an M-valued function v(t) = (vα(t))1≤α≤d of an infinite
set of times t = (tα,p)1≤α≤d

p≥0
,

∂tα,p vβ = (cα,p)β
γ
∂x vγ, (4-11)

where (cα,p)β
γ
are some matrix coefficients and x = t 1,0, called the cosmo-

logical constant, plays a special role as it will be considered as the variable
on which the unknown function depends and the other times are viewed
as parameters. As a consequence, introducing the loop space L (M) of
M-valued functions v(X ) and the Poisson bracket

{vα(X ), vβ(Y )} = ηα,βδ′(X −Y ), (4-12)

this system has Hamiltonian form

∂tα,p vβ(X ) = {vβ(X ), Hα,p}, (4-13)

where the Hamiltonians are of the form Hα,p = ∫
hα,p+1(v(X ))d X with

Hamiltonian densities such that hα(v, z) = ∑∞
p=0 hα,p(v)zp coincide with

flat coordinates {θ̃(z)α}1≤α≤d of the deformed connection ∇̃(z). These
Hamiltonians commute pairwise. Then defining the density of flux of the
Hamiltonian Hα,p−1 along the flow tβ,q , denoted fα,p;β,q , by the equation
∂tβ,q hα,p = ∂x fα,p;β,q allows to define the

Definition 4.8 τ-function of the principal hierarchy

F (t) = l og τ(t) = 1

2

∑
α,p
β,q

f (t)α,p;β,q tα,p tβ,q . (4-14)

F is the corresponding tree-level free energy.
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All known integrable hierarchies admit such a principal hierarchy
as semi-classical (or dispersionless) limit and conversely, so-called quasi-
triviality transformations introduce a dispersion parameter back into a
principal hierarchy [38]. They are Miura-type deformations of the cor-
responding Poisson pencils.

We will argue in the following that some of the quasi-triviality trans-
formations turning dispersionless into dispersive integrable systems can be
realized by the topological recursion of [43]. They are the ones given in
a Lax form corresponding to very special solutions of the associated loop
equations, in the spirit of [16] and [39]. We will accordingly give a sim-
ple scheme of study using WKB techniques expected to work away from
semi-simple points.

5 Hitchin system and moduli spaces of flat connections

5.1 Geometric setting

In 1986, N. Hitchin was studying the condition under which a connec-
tion in a principal differential G-bundle over R4, where G is a compact
connected Lie group, written as A = ∑4

i=1 Ai d xi , has a self dual curvature
tensor F = d A+ 1

2[A, A] =∑
i< j Fi j d xi∧d x j , that is satisfying the Yang-Mills

self-duality equations ∗F = F |R4 where ∗ is the Hodge star operator [55]. He
assumed furthermore that the connection potential A did not depend on
the coordinates (x3, x4). This translation invariance in half the directions
has no clear physical interpretation a priori (though intuition for two di-
mensional systems lie in condensed matter). Indeed, imposing translation
invariance in one direction yields instanton solutions related to magnetic
monopoles. Going one step further and considering solutions with trans-
lation invariance along two independent directions will in term lead to a
conformally invariant theory on a Riemann surface.

Introducing the complex parameter z = x1+ i x2 over the complex plane
and changing variables to
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D =
de f

A1 d x1 + A2 d x2 = A1 − i A2

2
d(x1 + i x2)+ A1 + i A2

2
d(x1 − i x2)

(5-1)

= D1,0 +D0,1 (5-2)

φ =
de f

A3 − i A4p−2i
d(x1 + i x2) (5-3)

he obtained the following

Theorem 5.1 Hitchin’s equation
The Yang-Mills self-duality equations are in this case equivalent to the following
system:

FD + [φ,φ†] = 0 (5-4)

D0,1φ = 0 (5-5)

where FD is the curvature associated to the 2-dimensional connection D , † is
complex conjugation and D0,1 acts on φ by partial covariant derivation.

Proposition 5.2 Let
o
Σ be a Riemann surface and denote byMH =

de f
{(D,φ,µ)}

the moduli space of solutions to the Hitchin equations on
o
Σ taken together with

a hermitian metric on the surface, it is diffeomorphic to the Dolbeau moduli
space MDol =

de f
{(P,φ)} of Higgs pairs, that is stable holomorphic principal G-

bundle over Σ together with a Higgs field φ ∈ H0(Σ,Ad(P )⊗Ko
Σ

), where K is the
canonical bundle functor. MDol then comes equipped with a complex structure

that we will denote I and coming from that of
o
Σ.

5.2 The Hitchin system

When g= glr (C), it is usual to associate to a Higgs field its spectral cover,
the family of characteristic polynomials of the values it takes over the base
curve. For general finite dimensional reductive Lie algebras, taking the
determinant requires to choose a representation and the whole construc-
tion therefore depends upon this choice. In [36] was understood that a
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generalization of the spectral cover, namely the cameral cover, was more
fundamental and independent of a choice of representation.

Here we introduce the Hitchin fibration [55], it is the mathematical
framework that will describe the moduli space of possible classical (or
ε −→ 0) limit. To emphasize this fact we will from now on denote Higgs
fields by Φ(0) instead of φ. It will indeed appear as the limit of the difference
of two ε-connections when ε−→ 0.

Let g be the finite-dimensional reductive complex Lie algebra of a con-

nected Lie group G , and choose a complex curve
o
Σ, with genus

o
g and

M ∈N punctures such that the stability condition 2
o
g −2+M ≥ 0 is satisfied.

Definition 5.3 Hitchin’s fibration
The Hitchin system [55] is the algebraically completely integrable system defined
by the so-called Hitchin fibration

H : MDol −→B =
de f

r⊕
i=1

H0(
o
Σ,K⊗di

o
Σ

) (5-6)

(P,Φ(0)) 7−→ (σ1(Φ(0)), . . . ,σr (Φ(0))) (5-7)

where di is the degree of σi in a basis σ1, . . . ,σr ∈ C[g]G of Ad-invariant
polynomials. This map, sometimes also called the abelianization of the Hitchin
moduli space, has fibers that are Lagrangian polarized abelian varieties (so-
called distinguished pryms), thus defining an algebraically completely integrable
system.

5.3 Cameral covers

Let h ⊂ g be a Cartan subalgebra of g and denote the associated Weyl
group by the symbol w ⊂ Aut(h∗). By Chevalley’s theorem, the restriction
of polynomials yields an isomorphism C[g]G ' C[h]w, thus identifiying G-
invariant polynomial functions on g with w-invariant polynomial functions
on the subalgebra h.

In turn, twisting the quotient map h∗ −→ h∗
/
w by the canonical bundle

yields a w-Galois cover πw : h∗⊗Ko
Σ
−→ [h∗⊗Ko

Σ
]
/
w, the image of which is

isomorphic to the Hitchin base [h∗⊗Ko
Σ

]
/
w'B.
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Definition 5.4 Cameral cover
The cameral cover associated to any regular point b ∈Br eg of the Hitchin map
is then defined as the fiber Σb = π−1

w (b) ⊂ h∗⊗Ko
Σ
and projecting onto the base

induces a w-Galois cover Σb −→
o
Σ, where the Weyl group acts naturally on the

first factor by what we choose to be a right action.

If Ro ⊂ h∗ is a set of simple roots, then for any α ∈Ro and any point
b ∈B in the base, evaluation by the Chevalley basis element Eα dual to the
simple root α defines a projection pα : Σb −→ Ko

Σ
whose image is realized

as a Lagrangian immersion that we will denote pα(Σb) =Sb,α ⊂ T ∗ o
Σ.

Σb
pα //

��

Sb,α
ib,α //

��

T ∗ o
Σ

}}o
Σ

Definition 5.5 Spectral curve
For a generic cameral cover and a generic pair of simple roots α,β ∈ Ro, the
curves Sb,α and Sb,β have the same desingularization that we denote Sb and
that we shall call the underlying spectral curve. The various projection maps
introduced here are equivariant in the sense that for any y ∈Σb and α,β ∈Ro,
pα(y) = pσαβ.α(σαβ · y), where we denoted the element of the Weyl group acting
as the transposition exchanging the simple roots α and β by σαβ ∈w⊂ Aut(h∗).

Definition 5.6 Branch points
The set of branch points br(Σb) of this covering map is the set of points a ∈ Σb

that are fixed by the action of a Weyl group element, that is

br(Σb) =
de f

{a ∈Σb| ∃σ ∈w, σ ·a = a} (5-8)

Remark 5.7 The fiberwise group action of a Galois cover being transitive, all
the preimages of a given basepoint are alike in the sense that either all the points
of a fiber are ramification points or it contains no branch point at all.
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At one of these branch points a ∈ br(Σb), generically simple, one has a
unique order 2 Weyl group element σa ∈w that fixes it.

In the case g= glr (C) in its fundamental representation, these evaluation
correspond to the coefficients of the characteristic polynomial, valued in
the ring of differential forms over the curve, seen as sections of the tensor
products of the canonical bundle over Σ with itself, they can be collected
in Det(y −Φ(0)) ∈B where y is a formal variable.

5.4 Deformation of Higgs bundles

Let us denote by U
G ,

o
g ,M

the moduli space of stable holomorphic principal

G-bundles P over stable curves
o
Σ of genus

o
g ∈ N with M ∈ N punctures,

that is such that 2−2
o
g −M < 0, up to isomorphism. It is a bundle over

the corresponding moduli space of stable curves Mo
g ,M

. We then have the
following

Proposition 5.8 The Hitchin moduli space via cohomology
The fiber of the deformation space, the total space of the cotangent bundle,

T ∗U
G ,

o
g ,M

over a point P −→ o
Σ ∈U

G ,
o
g ,M

is isomorphic to H0(
o
Σ,Ad(P )⊗Ko

Σ
).

proof:
Isomorphism classes of holomorphic principal G-bundles are uniquely

determined by isomorphism classes of transition functions on charts and
that are valued in G . These transition functions should satisfy inverse,
cocycle and restriction relations such that their isomorphism classes define

unique elements of H1(
o
Σ,G). This correspondence is a biholomorphism

and by deformation (in this case going to the tangent bundle) yields that, for

any choice of principal bundle P −→ o
Σ ∈ U

G ,
o
g ,M

, TPU
G ,

o
g ,M

= H1(
o
Σ,Ad(P ))

which allows to conclude by Serre duality and identifying Ad(P ) ' Ad(P )∗.
■

In this study, we will thoroughly rely on the fact that the Hitchin system
is very closely related to the moduli space of meromorphic connections in
principal G-bundles over curves. When describing the geometry of Fuch-
sian differential systems we will count the following dimension.
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Proposition 5.9 Generic dimension of a fiber of the Hitchin map
Considering Higgs fields with at most simple poles at the punctures (so-called
Fuchsian case), we have

dim H0(
o
Σ,Ad(P )⊗Ko

Σ
) = 1

2
[(2

o
g −2+M)dim g−Mrk g] (5-9)

where rk g is the dimension of any Cartan subalgebra of g.

In the special cases where the Lie algebra of the structural group is g=
slr (C) with no punctures (in particular with

o
g ≥ 2 and globally holomorphic

Higgs fields),

dim MDol = 2(r 2 −1)(
o
g −1) (5-10)

dim H0(
o
Σ,Ad(P )⊗Ko

Σ
) = (r 2 −1)(

o
g −1) (5-11)

dim B = (r 2 −1)(
o
g −1) (5-12)

5.5 Non-abelian Hodge correspondence

MDol ' T ∗U
G ,

o
g ,M

is the total space of a cotangent bundle and therefore
comes equipped with a natural symplectic structure such that in particular
it is a Poisson manifold. Moreover,

Property 5.10 MDol has a natural hermitian metric for which it is a Kähler
manifold.

Property 5.11 The natural metric on MDol is hyperkähler.

We now relate the moduli space MDol to MdR , the moduli space of
holomorphic connections in G-bundles over stable curves with genus g

and number of punctures M satisfying 2
o
g −2+M > 0.

Proposition 5.12 Connection counterparts to Hitchin pairs
MDol is diffeomorphic to MdR .
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5.6 Relation to integrability

Recall that the Hitchin map MDol −→B sends a Higgs field to its spectral
invariants.

Definition 5.13 Vertical deformations
Families of element in MDol that have the same image by the Hitchin map will
be called vertical, or isospectral, deformation families of Hitchin pairs.

Theorem 5.14 Integrability of Hitchin systems
The Hitchin map induces an abelian Lagrangian fibration of MDol in which
the Hamiltonian flows with respect to the (Poisson commuting) spectral invari-
ants are integrable isospectral deformations of Hitchin pairs.

Remark 5.15 Although we are not proving the theorem here, we just note that
in this formalism, the Poisson commutation of the Hamiltonians is a rather easy
result to get. Indeed they are the spectral invariant functions of the Higgs field
and therefore do not depend on a (polarized) half of a Darboux set of coordinates
onMDol , namely the dependence on the moduli of the principal bundle. In turn,
their Poisson brackets vanish.
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Chapter 2

Geometry of the Fuchsian system

We have argued in the introduction that in order to study integrable sys-
tems given in convenient Lax pairs, we would consider a corresponding

G-equivariant local system on a base Riemann surface
o
Σ. These are in

one to one correspondence with connections ∇ in principal G-bundles P
over the same curve, where G is a connected complex reductive Lie group.
This space of connections is an affine space and we will pick a reference
holomorphic connection ∇0.

For the time being, we abstract ourselves from the underlying Lax for-
mulation and consider the triplet (P,∇0,∇) allowing to associate to any
choice of faithful representation ρ : g −→ gld (C) [9] a sequence {Wn}n∈N∗

of so-called correlators defined on a bundle Σ̂ −→ o
Σ. They will be shown

to satisfy constraints called loop equations [16], [30], [15], [9]. These take
the form of symmetrizations of the Wn’s, with respect to Casimir elements
of the Lie algebra g in some representation and they end up having nice

analytic properties in the variable x ∈ o
Σ.

From these correlators we will associate a notion of cycles to Σ̂ that
will allow to describe deformations of Φ =

de f
∇0 −∇ and derive special ge-

ometry relations of Seiberg-Witten type [11], [12]. This construction is to
be understood as introducing dispersion into the Riemannian geometry
of complex curves, generalizing it non-perturbatively. The space of cy-
cles carries a symplectic structure such that to any Lagrangian subspace
of cycles one can associate a τ-function. We conjecture that when the
triplet (P,∇0,∇) comes from an integrable hierarchy, then it coincides with

47
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its non-perturbative τ-function as defined in [38]. To motivate solving the
loop equations let us mention that it was shown in many cases [21], [23]
that generating functions for derivatives of the τ-function with respect to
the various times of the hierarchy take the form of correlators {Wn}n∈N∗ .

When a set of hypothesis called the Topological Type are satisfied (includ-
ing in particular the fact that the correlators have to admit a topological
expansions of the form Wn = ∑

g≥0ε
2g−2+nωg ,n in terms of a formal small

parameter ε 6= 0), then a topological recursion procedure [43], [15], [8] allows
to reconstruct perturbatively the expansions. It is a recursive algorithm to

compute the ωg ,n’s from complex geometry of a cover of
o
Σ. Several situa-

tions can then occur.
First, independently of the choice of representation of g, one can intro-

duce [8] a new version of the topological recursion that we call the cameral
curve topological recursion. To do so we will have to extract from the
starting data an object called a Higgs bundle [55] to which is canonically
associated an algebraic covering called the cameral cover. We will then
associate a so-called cameral geometry that will be of use in the develop-
ments, recall the usual formulation of the topological recursion and then
its cameral version. After this is done we will reconstruct solutions to the
loop equations in the same way as in [9] to show in turn that the cameral
curve topological recursion allows to solve them perturbatively when the
topological type property is satisfied. We will then end investigating a pos-
sible application to integrable hierarchies, where the parameter space T is
infinite dimensional.

Second, we will use the choice of representation ρ to associate a projec-
tion of the cameral cover called the spectral curve associated to the ε−→ 0
limit of the setup. We will then give necessary conditions for the Topologi-
cal Type property to be satisfied [10] for a special case (where in particular
o
Σ has genus 0 and g is a matrix Lie algebra).
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1 Non-perturbative aspects

1.1 Correlation functions and loop equations

Let P −→ o
Σ be a holomorphic principal G-bundle with a holomorphic ref-

erence connection ∇0 and a meromorphic connection ∇, and let π1 −→
o
Σ

be the family of fundamental groups, it has fiber π1(
o
Σ, x) over a generic

point x ∈ o
Σ.

Define the quotient space

Definition 1.1 Non-perturbative spectral curve as a π1-invariant bundle

Σ̂ =
de f

[
π1 ×o

Σ
Ad(P )

]/
π1 (1-1)

It is an orbifold of dimension dim g and is naturally immersed in the total
space of Ad(P ) by the map

M : Σ̂ −→ Ad(P )

X = [γ ·E ] 7−→ Hol∇γ E (1-2)

where X ∈ Σ̂ over a point x ∈ o
Σ is represented by choosing a homology class of

closed paths γ ∈ π1(
o
Σ, x) and an element E ∈ Ad(P )x . This definition is easily

seen to be independent of the choice of representative and fits into the short exact
sequence of bundles

1 −→π1 −→π1 ×o
Σ

Ad(P )
M−→ Σ̂Ψ −→ 0 (1-3)

Let ρ be a faithful matrix realization of g in Md (C) for a certain integer
d ∈N∗. The trace in this representation yields a bracket on the universal
enveloping algebra U (g)

〈 .〉 = Tr
ρ

: U (g) −→C (1-4)
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Figure 2.1: The map M realizes the holonomy pairing.

The difference of the two connections is an Ad(P )-valued meromorphic

branch point on
o
Σ. We will denote it by

Φ =
de f

∇0 −∇∈H0(
o
Σ,Ad(P )⊗Ko

Σ
). (1-5)

We restrict our study to the Fuchsian case, that is when Φ has at most

regular singularities at the punctures (M ∈N non-compact directions on
o
Σ)

and denote the moduli space of all such equivariant connections as MFuchs

(it has many strata such as the ones consisting of the cases when the base

curve
o
Σ is assumed to be any Riemann surface with fixed genus and number

of punctures). This hypothesis is less restrictive than it seems. Indeed,
connections with higher order poles, so-called irregular singularities [25],
[26], can be realized as Fuchsian connections with collapsing tuples of
singularities which correspond to non-compact directions of MFuchs .

The differential system associated to the principal G-bundle P by the
connection ∇ ∈ MFuchs in this context takes the form of the linear differ-

ential equation for flat local sections ∇0Ψ = Φ ·Ψ over
o
Σ (here · denotes
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Lie derivation from the left). If o ∈ o
Σ denotes a reference point and go its

adjoint fiber, then the local solutions to the connection problem can be
analytically continued starting at o to global sections of the principal G-

bundle P pulled back to the universal cover
o

Σ̃ of the curve. We will denote

the set of these ∇-flat local sections by H0
loc(

o
Σ,P )0 and choosing such a

solution yields the isomorphism

Lemma 1.2 Coordinate representation

Σ̂' [
o

Σ̃×go ]
/
π1(

o
Σ,o) =

de f
Σ̂Ψ (1-6)

where the quotient is relative to the monodromy action of ∇ at the reference

point o ∈ o
Σ. It is the natural action given for any γ ∈π1(

o
Σ,o) and (x̃,F ) ∈

o

Σ̃×go

by

γ · (x̃,F ) =
(
x̃ +γ, Hol∇

γ−1 F
)

(1-7)

where x̃ +γ means concatenation of homology classes in reading order. Iden-
tifying Σ̂Ψ with the image of the map MΨ, it fits into the short exact sequence

1 −→π1(
o
Σ,o) −→

o

Σ̃×go
MΨ−→ Σ̂Ψ −→ 0 (1-8)

Corollary 1.3 The choice of Ψ yields the isomorphism

MΨ : Σ̂Ψ
∼−→ Ad(P )

[x̃ ·F ] 7−→ AdΨ(x̃)F (1-9)

allowing the identification of [γ·E ] ∈ Σ̂ and [x̃ ·F ] ∈ Σ̂Ψ whenever the equal-
ities M(X ) = Hol∇γ E = AdΨ(x̃)F = MΨ ([x̃ ·F ]) hold.
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Figure 2.2: The map MΨ realizes parallel transport along continuous paths starting at o.

Remark 1.4 This map yields a nice geometrical interpretation of Σ̂Ψ. Indeed,
MΨ satisfies almost by definition the differential system

∇0MΨ([x̃ ·F ]) = [Φ(x), MΨ([x̃ ·F ])] (1-10)

at any generic x̃ ∈
o

Σ̃ and for any fixed F ∈ go . Conversely, any ∇-flat local
section of the adjoint bundle s ∈ H0

loc(
o
Σ,AdP )0 is easily shown to satisfy

s(x̃) = MΨ

(
[x̃ ·AdΨ({o})−1s({o})]

)
(1-11)

such that Σ̂Ψ gives a ∇-flat parametrization of AdP in terms of values of
the corresponding flat local sections.

Definition 1.5 Monodromy matrices
For any choice of ∇-flat local section Ψ, the corresponding monodromy matrices
are defined for any loop γ ∈π(

o
Σ,o) by

Sγ =
de f

Ψ(x̃)−1Ψ(x̃ +γ) (1-12)
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Remark 1.6 This allows to rewrite the definition of the π(
o
Σ,o)-action as

γ · (x̃,E) =
(
x̃ +γ,AdS−1

γ
E

)
(1-13)

To this data is now associated a sequence of so-called connected corre-
lators, or n-points function {Ŵn}n∈N∗ by

Definition 1.7 Connected correlators

Ŵ1 : Σ̂Ψ −→ Ko
Σ

X 7−→ 〈MΨ(X )Φ(x)〉 (1-14)

∀n ≥ 2, Ŵn : Σ̂�n
Ψ −→ S�n(Ko

Σ
)

X1, . . . , Xn 7−→ (−1)n−1
∑
τ∈Sc

n

〈
MΨ(X1) · · ·MΨ(Xτn−1(1))

〉
o

E f (x̃1, x̃τ(1)) · · ·E f (x̃τn−1(1), x̃1)

(1-15)

where the sum is over so-called connected permutations Sc
n (containing a

single element in their cycle decomposition) and this formula for Ŵn(X1, . . . , Xn)
is extended linearly to

Σ̂�n
Ψ = SpanC{X1 ⊗·· ·⊗Xn|∀i , j ∈ {1, . . . ,n}, x̃i 6= x̃ j } (1-16)

the nth tensor power of Σ̂Ψ at different base points (remove a codimension 1
subspace, namely the diagonal divisor), S� is the symmetric tensor product over
distinct base points, 〈 ·〉o means that all objects are parallel transported one to
the base point of the next by the reference connection ∇0 through the reference

point o, and E f is a twisted prime-form over
o
Σ. Recall that the twist consists

in the introduction of essential singularities in Fay’s (untwisted) prime-form
to annihilate its monodromies around non-contractible cycles of the curve [45].
These singularities appear as e

∫ y
x f for a certain choice of a meromorphic 1-form

f . In turn they vanish in the expressions of theWn ’s yielding that the correlators

are meromorphic (globally defined) objects on
o
Σ.

These correlators naturally appear in various contexts such as random
matrix models, conformal field theories [35], Painlevé equations [17], [57],
[58] or even cohomological field theories [22].
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Remark 1.8 The Ŵn ’s seem to depend heavily on a choice ofΨ however, switch-
ing to another solution of the flat section equation ∇·Ψ= 0 amounts to multi-
plying Ψ from the right by a given element C ∈Go, Ψ′ =

de f
ΨC , in the fiber Go

of the principal bundle over the reference point o ∈ o
Σ. Such different solutions

have conjugate monodromy data in the sense that

(Ψ(x̃)C )−1 (
Ψ(x̃ +γ)C

) = AdC−1

(
Ψ(x̃)−1Ψ(x̃ +γ)

)
(1-17)

= AdC−1 Sγ (1-18)

which immediately implies

MΨC

(
[x̃ +γ ·AdC−1S−1

γ
E ]

)
= MΨ([x̃ ·E ]) (1-19)

for any C ∈Go and γ ∈π1(
o
Σ,o). As a consequence, the whole construction is

G×π1(
o
Σ,o) equivariant on the trivial G-bundle of flat sections Ψ over MFuchs

(actually over the pullback of MFuchs to the universal curve where the reference
point o lives).

One of the fundamental and most important properties of the correla-

tors, apart from being globally defined meromorphic on the base curve
o
Σ,

is their symmetry.

Proposition 1.9 Symmetry of the correlators
For any n ∈N∗, Wn is a symmetric function of its arguments.

proof:
The cyclic symmetry of the bracket 〈 ·〉o implies that Wn can be rewritten

as a sum over the whole set of permutations Sn as

Wn(X1, . . . , Xn) = (−1)n−1

n

∑
τ∈Sn

〈
MΨ(Xτ(1)) · · ·MΨ(Xτ(n))

〉
o

E f (x̃τ(1), x̃τ(2)) · · ·E f (x̃τ(n), x̃τ(1))
, (1-20)

expression through which the symmetry is now explicit. ■
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Definition 1.10 Non-connected correlators

Wn(X1, . . . , Xn) = ∑
µ`{X1,...,Xn}

`(µ)∏
i=1

Ŵ|µi |(µi ) (1-21)

for any integer n ∈N∗.

For example

W1(X1) = Ŵ1(X1), (1-22)

W2(X1, X2) = Ŵ1(X1)Ŵ1(X2)+Ŵ2(X1, X2), (1-23)

W3(X1, X2, X3) = Ŵ1(X1)Ŵ1(X2)Ŵ1(X3)+Ŵ1(X1)Ŵ2(X2, X3)
+Ŵ1(X2)Ŵ2(X1, X3)+Ŵ1(X3)Ŵ2(X1, X2)
+Ŵ3(X1, X2, X3) (1-24)

and so on . . .
An important remark at this point is that these definitions are singular

whenever two of the Xi ’s have coinciding base points. Their behaviour
near the diagonal divisor is described by the following lemma that will
be useful in particular when comparing the correlators to conformal field
theory amplitudes in the last chapter.

Lemma 1.11 Coinciding base-points singularities
Let n ∈ N∗ and consider n + 1 points (X , X1, . . . . Xn) ∈ Σ̂�n+1 of the non-
perturbative spectral curve with distinct base points. Then Ŵn+1(X , X1, . . . , Xn)

is a meromorphic 1-form of the variable defined by x =
de f

π(X ) ∈ o
Σ and for n > 1,

it has a simple pole at each point xi =
de f

π(Xi ), for i ∈ {1, . . . ,n}, with residue

Res
x=xi

Ŵn+1(X , X1, . . . , Xn) = Ŵn(. . . Xi−1, [X , Xi ], Xi+1, . . . ) (1-25)

where [X , Xi ] in Ŵn is defined by replacing M(Xi ) by [ lim
x→xi

M(X ), M(Xi )]

in the expression of Ŵn(X1, . . . , Xn). For n = 1, W2(X , X1) is a meromorphic
one-form of x with a double pole at x1 with bi-residue 1 and residue given by
the same formula.
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proof:
For n = 1 it can be read from the definition. For n > 1, it is a straightfor-

ward computation in local coordinates around x ∼ xi , denoting x = x0 and
considering Sc

n+1 as 1-cycle permutations of {0,1, . . . ,n},

Ŵn+1(X , X1, . . . , Xn) ∼
x→xi

∑
τ∈Sc

n+1
τ(0)=i

(−1)τ 〈···M(X )M(Xi )··· 〉o
···(x−xi )···

√
d x d xi

+∑
τ∈Sc

n+1
τ−1(0)=i

(−1)τ 〈···M(Xi )M(X )··· 〉o
···(xi−x)···

√
d x d xi (1-26)

= ∑
τ∈Sc

n+1
τ(0)=i

(−1)τ
〈
···M(X

τ−1(0)[M(X )M(Xi )]M(Xτ(i ))···
〉

o
···E (x

τ−1(0),x)(x−xi )E (xi ,xτ(i ))···
√

d x d xi (1-27)

where the last equality is obtained by associating term by term the
dummy permutation τ to (0i )τ−1(0i ), (0i ) being the transposition exchang-
ing 0 and i . Notice that the last sum is realized as a sum over σ′ ∈Sc

n

where σ′ is such that σ′(τ−1(0)) = i and for any k ∈ {1, . . . ,n}, k 6= τ−1(0),
σ′(k) = τ(k). Reading the residue yields the wanted result. ■

In what follows, and in particular to write the loop equations, we will
need a prescription to evaluate the correlators at these singular points. The
prescription goes as follows :

Definition 1.12 Normal ordering /coinciding base-points prescription
For any given n ∈ N∗, starting from the explicit definition of the connected
correlator Ŵn(X1, . . . , Xn) for a generic n-tuple (X1, . . . , Xn) ∈ Σ̂Ψ, make the
replacement

1

E f (x̃i , x̃ j )
−→

xi=x j
Φ(x) (1-28)

explicitly in the definition when the base points xi and x j , of Xi and X j

respectively, are assumed identical. It practically amounts to removing the sin-
gular part and then taking the wanted limit, using the differential equation
satisfied by MΨ. It extends the definition of the correlators (connected as well
as non-connected) to the diagonal divisor and is closely related to the normal
ordering of operators in conformal field theories.
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Recall that the center Z (U (g)) ⊂ U (g) of the universal enveloping al-
gebra of g is generated by d +1 elements {Ck}0≤k≤d called the Casimirs of
g in representation ρ and defined by

d∑
k=0

(−1)k yd−kCk(v) =
de f

Det
ρ

(y − v) (1-29)

where y ∈ Z (U (g)) is a formal variable and C0 is the identity element
of U (g). As such, Ck ∈ (g∗)⊗k ' g⊗k has a class in U (g) that we still denote
Ck (some of them may be trivial).

Definition 1.13 Insertion of Casimirs
This allows to define the insertion of Casimirs in the correlation functions for

any n,k ∈ N, generic (X1, . . . , Xn) ∈ Σ̂�n
Ψ and x̃ ∈

o

Σ̃ such that x 6= xi for any
given i ∈ {1, . . . ,n}, by

Wk;n(x̃; X1, . . . , Xn) =
de f

Wk+n ([x̃ ·Ck], X1, . . . , Xn) (1-30)

with [x̃ ·Ck] is defined by expanding Ck in any tensor basis of g⊗k and where
we use thoroughly the prescription for evaluating correlators at coinciding base
points. We can sometime denote formally the object thus obtained by

Wk;n(x̃; X1, . . . , Xn) =Ck(x̃) ·Wn(X1, . . . , Xn) (1-31)

to put emphasis on an action by the Casimir element.

The insertion of the k th Casimir element Ck into a correlator Wn can
be viewed as a symmetrization of the k variables involved. Note eventu-
ally that the resulting object Ck ·Wn is still symmetric in the n unaffected
variables.

These insertions of Casimirs together with the behaviour of the correla-
tors near the diagonal divisor in Σ̂ will be the starting point to investigate
the parallels between Fuchsian differential systems and conformal field the-
ories with Casimir algebra symmetry [11], [12] where they will correspond to
insertions of W-algebra generators. Their main property is that they satisfy
an infinite set of relations called loop equations [16], [30], [15], [9].
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Theorem 1.14 Loop equations [B.-Eynard-Marchal]

d∑
k=0

(−1)k yd−kWk;n(x̃; X1, . . . , Xn) =
de f

Pn(x, y ; X1, . . . , Xn) (1-32)

= [ε1 . . .εn]Deto
ρ

(
y −Φ(x)−Mε(x; X1, . . . , Xn)

)
(1-33)

=
de f

d∑
k=0

(−1)k yd−kPk;n(x; X1, . . . , Xn) (1-34)

where y ∈Z (U (g))⊗Ko
Σ
is a formal variable and for ε= (ε1, . . . ,εn),

Mε(x; X1, . . . , Xn) =
de f

d∑
k=1

1≤i1<···<ik≤n

εi1 · · ·εik

MΨ(Xi1) · · ·MΨ(Xik )

E f (x̃, x̃i1) · · ·E f (x̃ik , x̃)
(1-35)

Moreover one has to be careful here and the subscript o in Deto
ρ

means that

all the factors appearing in the determinant in the right hand side have to be

parallel transported through the reference point o ∈ o
Σ by connection ∇0 before

evaluation. Lastly, the symbol [εi1 · · ·εik ] for any k-tuple of indices (i1, . . . , ik) is
defined for any polynomial expression p(ε) of ε= (ε1, . . .εn) by

p(ε) =
de f

∞∑
k=0

∑
1≤i1<···<ik≤n

εi1 · · ·εik [εi1 · · ·εik ]p(ε) (1-36)

where the sum has by definition only finitely many non-zero terms.

To prove this theorem we first need the following lemma which is ob-
tained by straightforward computation using the definition of the correla-
tors.

Lemma 1.15 Determinantal formulae
For any n ∈N∗ and generic X1, . . . , Xn ∈ Σ̂,

Wn(X1, . . . , Xn) =
〈

Det
1≤i , j≤n

(
Ei KΨ(x̃i , x̃ j )

)〉
o

(1-37)
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with determinant defined as a sum over permutations, Xi = [x̃i ·Ei ] is any
choice of representative for i ∈ {1, . . . ,n} and where we introduced the formal
kernel

KΨ(x̃i , x̃ j ) =
de f

Ψ(x̃ j )−1Ψ(x̃i )

E f (x̃i , x̃ j )
(1-38)

to be inserted into brackets 〈 ·〉o . In particular, the factors in the numerator
being evaluated over different basepoints, one has to use the normal ordering
prescription thoroughly.

Remark 1.16 Since the determinant is that of a matrix with coefficients in a
non-commutative space, an ordering prescription has to be chosen. We choose

Det
n×n

(A) =
de f

∑
τ∈Sn

(−1)τA1,τ(1) · · · An,τ(n) (1-39)

We can now prove the theorem.
proof:

Let (e1, . . . ,edi mg) be a basis of go and consider its dual basis

(e1, . . . ,edi mg) defined by requiring 〈ei ,e j 〉 = δ j
i and let Ψ ∈ H0

l oc(
o
Σ,Ad(P ))0.

On one hand,

d∑
k=0

(−1)k yd−kWk;n(x̃; X1, . . . , Xn) =
d∑

k=0

(−1)k yd−kWk+n([x̃ ·Ck], X1, . . . , Xn)

(1-40)

=
d∑

k=0

(−1)k yd−k
∑

1≤m1,...,mk≤di mg

Ck;m1,...,mk

〈
Det

1≤i , j≤n+k
(Ei KΨ(x̃i , x̃ j ))

〉
o

(1-41)

where we used the determinantal formulae and for any l ∈ {1, . . . ,n},
X l = [x̃l ·El ] while we decomposed

[γx ·Ck] = ∑
1≤m1,...,mk≤di mg

Ck;m1,...,mk [x̃ ·em1]⊗·· ·⊗ [x̃ ·emk ] (1-42)



60 CHAPTER 2. GEOMETRY OF THE FUCHSIAN SYSTEM

in Σ̂⊗k and denoted for any l ∈ {1, . . . ,k}, x̃n+l = x̃ and En+l = eml in each
determinant term of the second sum.

On the other hand, in representation ρ and with the same notations,

AdΨ(x̃)−1 [Φ(x)+Mε(x; X1, . . . , Xn)] =
ρ

KΨ(x̃, x̃)+
n∑

i=1

εi KΨ(x̃, x̃i )Ei KΨ(x̃i , x̃)

+
n∑

k=2

∑
1≤i1 6=···6=ik≤n

εi1 · · ·εik KΨ(x̃, x̃i1)Ei1KΨ(x̃i1, x̃i2) · · ·Eik KΨ(x̃ik , x̃)

(1-43)

such that the coefficient of ε1 . . .εn in the right hand side of the loop
equations gives exactly the sum over permutations of k +n elements

[ε1 · · ·εn]Det
ρ

(
y − (Φ(x)+Mε(x; X1, . . . , Xn))

)
= [ε1 · · ·εn]Det

ρ

(
y −AdΨ(x̃)−1[Φ(x)+Mε(x; X1, . . . , Xn)]

)
(1-44)

=
d∑

k=0

(−1)k yd−kWk;n(x̃; X1, . . . , Xn) (1-45)

which is the wanted result. ■
The set of loop equations satisfied by the correlation functions can be

interpreted as meromorphic conditions on the objects obtained by inserting
the Casimirs of the Lie algebra g in the representation ρ. Indeed, the right
hand side depends polynomially in the formal variable y ∈ Z (U (g))⊗Ko

Σ

and depends meromorphically on x ∈ o
Σ. In particular, Wk;n(x̃; X1, . . . , Xn)

depends in fact in x̃ ∈
o

Σ̃ only through its base projection x ∈ o
Σ.

With previous notations we can rewrite them formally as

C (x, y) ·Wn =
de f

(
d∑

k=0

(−1)k yd−kCk(x)

)
·Wn = Pn(x, y) (1-46)

where we have introduced the notation C (x, y) = ∑d
k=0(−1)k yd−kCk(x)

and not written explicitly the dependence in the Xi ’s. We immediately get
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Corollary 1.17 Multi-insertions of Casimirs
For any n,m ∈N, m 6= 0, and choice of indices k1, . . . ,km ∈ {1, . . . ,d}, the symbol

Ck1(x1) · · ·Ckm (xm) ·Wn (1-47)

defines a meromorphic differential form of the variables x1, . . . , xm ∈ o
Σ with

respective corresponding degrees k1, . . . ,km .

These equations are in general hard to solve but they happen to be
affine relations in terms of the non-connected correlators. Such affine rela-
tions admit an underlying linear structure generated by some very special
solutions to the loop equations. Dimension counting shows that these are
the solutions that can be computed perturbatively – under a precise set
of assumptions called the Topological Type property – by the spectral curve
topological recursion [43], [15]. We will recall what this property amounts
to when studying from a WKB perspective what this setup becomes in a
topological asymptotic regime.

1.2 Forms, cycles, intersections and integration

The correlators that we associated to the triplet (P,∇0,∇) are defined as
maps from tensor products of copies of Σ̂Ψ to symmetrized spaces of dif-

ferentials over the base Riemann surface
o
Σ. We will now define a notion of

differential forms on Σ̂Ψ to interpret the correlators in this way.

Definition 1.18 Non-perturbative differentials
Let n ∈N be an integer. A holomorphic n-differential on Σ̂Ψ is a holomorphic
map

ω : Σ̂�n
Ψ −→ K�n

o
Σ

(1-48)

such that the for any E ,E ′ ∈ go and generic x̃ ∈
o

Σ̃,

ω([x̃ · (E +E ′)], . . . ) =ω([x̃ ·E ], . . . )+ω([x̃ ·E ′], . . . ) (1-49)
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In other words, we require differential forms on Σ̂Ψ to depend linearly on the
Lie algebra component of X = [x̃ ·E ]. We denote the space of all holomorphic
n-differentials on Σ̂Ψ by Ω̂n

Ψ. In particular, each n-differential on Σ̂Ψ is a
1-differential in each of its variables.

This definition immediately yields

Proposition 1.19 Correlators as non-perturbative differentials
For any n ∈N∗, Wn and Ŵn are meromorphic n-differentials on Σ̂Ψ. That is

Wn,Ŵn ∈ Ω̂n
Ψ (1-50)

We know from the study of dispersionless completely algebraically in-
tegrable systems [48] that they exhibit so-called special geometry, or equiv-
alently the data of Seiberg-Witten type relations. We will now show that
taking into account the dispersion does not alter this feature. Indeed, there

exists a notion of homology associated to Σ̂Ψ, pulled-back from that of
o
Σ,

such that the corresponding period integrals of the 1-point function W1 (of
the first, second and third kind) overdetermine the base of an integrable
system [11], [12]. As stated, let us therefore define the relevant notion of
cycles, boundaries and pairing with differentials on Σ̂Ψ.

Definition 1.20 Arcs and their boundaries
Let an arc in Σ̂ be an equivalence class of the form Γ= [γ′ ·E ] under the action
of π1, where γ

′ is an element of the Poincaré groupoid of the universal cover
o

Σ̃. Recall that the Poincaré groupoid π′
1(Y ) of a topological manifold Y can be

defined as the total space of the bundle over Y whose fiber over a given point
y ∈ Y is the space of all oriented Jordan arcs drawn on the manifold starting
from y and considered up to homotopy.

In the case where Y =
o

Σ̃ is the universal cover, it carries a natural free
π1-action that we twist by the monodromy representation of the connection ∇
to define the equivalence classes denoted Γ = [γ ·E ]. Accordingly, define the
boundary operator by the formula

∂Ψ[(x̃, ỹ) ·E ] =
de f

y MΨ([ỹ ·E ])−x MΨ([x̃ ·E ]) (1-51)
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Remark 1.21 We could have adopted the equivalent convention that consists
in defining the boundary operator without evaluating by the bundle map MΨ,
it would then have taken the form ∂Ψ[(x̃, ỹ) ·E ] = [ỹ ·E ]− [x̃ ·E ] of a linear
combination of points of Σ̂Ψ. Instead we chose to represent the boundaries of the

arcs just defined as g-valued divisors on
o
Σ.

Definition 1.22 First kind cycles
Define a first kind cycle on Σ̂ to be a formal linear combination of homotopy
classes of arcs with vanishing boundary. Namely, a cycle of the first kind is of
the form

Γ=∑
i

ci [(x̃i , ỹi ) ·Ei ] (1-52)

∂ΨΓ=
∑

i

ci

(
yi MΨ([ỹi ·Ei ])−xi MΨ([x̃i ·Ei ])

)= 0 (1-53)

where the vanishing of the boundary has to be implemented at each of the
points xi or yi involved. We denote this homology space of 1-cycles over Σ̂ by
Ĥ

′
1 =

de f
Ker(∂Ψ) and call it the space of cycles of the first kind.

We now wish to compute the dimension of Ĥ
′
1 and extend it to a larger

space (understand higher dimensional) of similar cycles satisfying a form-
cycle duality. To do so let us first denote by P =

de f
{z1, . . . , zM } the set of

(simple) poles of Φ and define, for any point p ∈ o
Σ and Lie algebra element

E ∈ go, the class

A (p ·E) =
de f

[Cp ·E ] (1-54)

where Cp is equivalent to a small circle surrounding p . Notice then that
Ĥ

′
1 contains an M-dimensional subspace consisting of elements of the form

A (z j ·E) for some puncture index j ∈ {1, . . . , M }. For Γ to be a cycle, the
Lie algebra element E ∈ go has to satisfy



64 CHAPTER 2. GEOMETRY OF THE FUCHSIAN SYSTEM

∂Ψ[Cz j ·E ] = oMΨ

(
[{o} · (E −Hol∇Cz j

E)]
)
= 0 (1-55)

where we used the π1(
o
Σ,o)-equivariance of MΨ and therefore E has to

belong to the linear subspace

h j =
de f

{E ∈ go | Hol∇Cz j
E = E } (1-56)

which is generically a Cartan subalgebra hz j ⊂ go and thus has dimen-
sion rk g.

Definition 1.23 First homology
Define the first homology Ĥ1 of the bundle Σ̂Ψ as the coset

Ĥ1 =
de f

Ĥ
′
1

/ M⊕
j=1

A (z j ·h j ) (1-57)

or equivalently by the short exact sequence of vector spaces

0 −→
M⊕

j=1

A (z j ·h j ) −→ Ĥ
′
1 −→ Ĥ1 −→ 0 (1-58)

In the spirit of a form-cycle duality, a cycle is viewed as a linear form

on the vector space of π1(
o
Σ,o)-equivariant differential forms acting by an

integration procedure to be explicited.

Definition 1.24 Second kind cycles
For any puncture index j ∈ {1, . . . , M }, define the associated second kind cycle by

B′′
j =

de f
ev [z̃ j ·Ad

C−1
j
Φ j ] (1-59)

where for any X ∈ Σ̂Ψ of the form X = [z j ·E ], evX is defined as the eval-
uation linear form at [z j ·E0], E0 being the orthogonal projection of E on h j
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with respect to a root decomposition go = h j ⊕⊕
r∈R j

gr corresponding to a root
system R j ∈ Aut h∗j . We define Φ j =

de f
Res

z j
Φ and lastly the constant element C j

is defined uniquely by the asymptotics

Ψ(x̃) =
x∼z j

(1+O (ξ))ξΦ j C j (1-60)

in a local coordinate ξ =
de f

x − z j near the puncture z j . We denote the vector

space generated by these M independent elements as Ĥ
′′
1 and call it the space of

second kind cycles.

Remark 1.25 Second kind cycles are defined with the help of an orthogonal
projection. This ensures that correlators, whose dependence in Σ̂Ψ is through
the bundle map MΨ will have convergent integrals on second kind cycles as we
shall see.

Moreover, in the spirit of generalizing the geometry of Riemann surfaces
recalled in the introduction, we want to define the third kind cycles as arcs
on Σ̂Ψ whose boundary might be located at the punctures.

Definition 1.26 Third kind cycles
A cycle of the third kind is an arc B′′′ whose boundary ∂ΨB′′′ satisfies

∂ΨB′′′ ∈
M⊕

j=1

z jh j (1-61)

which is the condition for MΨ(∂ΨB′′′) to be well defined even though it
involves terms located at the punctures. We denote the space of third kind cycles
by Ĥ

′′′
1 . In particular, for any j ∈ {1, . . . , M } define cycles of the form

B′′′
j ,E =

de f
[(p̃, z̃ j ) ·E ]+ [(p̃, p̃ ′) ·E ′]+ [(p̃ ′, p̃ ′′) ·E ′′] (1-62)

where p = p ′ = p ′′, E ∈ Ad−1
C j
h j and E ′,E ′′ ∈ go are Lie algebra elements

chosen such that δΨB′′′
j ,E = z j AdC j E (this is not unique). Moreover we have

Ĥ
′
1 ⊂ Ĥ

′′′
1 (1-63)
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Definition 1.27 Generalized cycles
Define the finite dimensional vector space

Ĥ1 =
de f

Ĥ
′′
1 ⊕ Ĥ

′′′
1 , (1-64)

that we call the space of generalized 1-cycles on Σ̂Ψ.

Theorem 1.28 Dimensions of the spaces of cycles [B.-Eynard-Ribault]
Let us define the number

ĝ =
de f

(2
o
g −2+M)

dim g−3rk g

2
+ (3

o
g −3+M)rk h (1-65)

Then

dim Ĥ1 = 2 ĝ , dim Ĥ
′
1 = 2 ĝ+Mrk g, (1-66)

dim Ĥ
′′
1 = M , dim Ĥ

′′′
1 = 2 ĝ+2Mrk g (1-67)

and therefore

dim Ĥ1 = 2 ĝ +2Mrk h+M (1-68)

The only non-trivial case is the first one, that is computing dim Ĥ1.
Once this dimension is computed, all the others will follow directly from
their definitions. We will exhibit a linear basis of this space and to do so
we will need the following definition and property.

Definition 1.29 Channels on Riemann surfaces

A channel on the Riemann surface
o
Σ is a trivalent unicellular graph G ⊂ o

Σ

considered up to homotopy, with boundary equal to the pole divisor of Φ

∂G =
M∑

j=1

z j (1-69)
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and such that its complement on the complex curve
o
Σ−G is simply connected

π1(
o
Σ−G ,o) = 0 (1-70)

where we supposed that generically the reference point does not belong to the
channel.

Proposition 1.30 Combinatorics of channels

Any channel G on
o
Σ has

v =
de f

4
o
g −2+M vertices, (1-71)

e =
de f

6
o
g −3+M internal edges (1-72)

and M external edges ending at thez j
′s (1-73)

proof:
This is a standard counting procedure from graph theory. The graph

G has 2e= 3v+M half-edges and its Euler characteristic is the topological
invariant 2−2

o
g = M +v− e+1. A 2×2 linear system that easily yields the

wanted result. ■
A choice of channel G ⊂ o

Σ defines a fundamental domain on the base
Riemann surface, allowing for example for any pair of points p, q ∉ G to
define a unique homology chain γq,p with boundary ∂γq,p = p−q and such
that γq,p ∩G =;.

Remark 1.31 There are numerous possible choices of channels on a given Rie-
mann surface. We didn’t count how many but one easily sees that if we choose

a channel G ⊂ o
Σ, then they can all be obtained from G by so-called π-moves

(related to the crossing symmetry of conformal field theories). Moreover, they are
dual to pants decompositions of the base curve (identifying the punctures with
length zero boundaries).
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Figure 2.3: A channel on a punctured torus, the corresponding fundamental domain and
the associated pant decomposition.

We can now use this notion to prove the theorem.
proof:

Let G ⊂ o
Σ be a channel and consider the dual pant decomposition. We

will now associate to this choice a basis of Ĥ1. Recall that this vector
space was defined as a coset of the space of arcs with vanishing boundaries
Ĥ1 = Ker(∂Ψ)

/⊕M
j=1 A j (h j ). Let us draw and describe the different generic

possibilities.

• Each boundary of a pair of pants that is not a boundary of the surface
crosses an internal edge e . First we associate to each of those rk g
independent cycles of the form

Ae,E =
de f

[γe ·E ] ∈ Ĥ1 (1-74)
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with AdSγe
E = E (the space of such elements E is generically rk g-

dimensional) and where γe denotes the unique homology class on
o
Σ

intersecting G exactly once through the edge e. In total we therefore
get (3

o
g −3+M)rk g elements. Indeed there are 3 edges not crossing

any boundary of a pair of pants for each hole of the surface.

Second, to each of the edges e that can be extended to loops γ̃e going
once around the holes of the surface we associate cycles of the form

Be,E =
de f

[γ̃e ·E ] (1-75)

with Lie algebra element E ∈ go again satisfying AdS−1
γ̃

E = E thus pro-

viding with
o
g × rk g new independent elements to the basis.

• Similarly to each pair of pants of the decomposition corresponds a
unique vertex v , denoting the corresponding adjacent edges by e1,e2

and e3, such that we can associate a trefoil cycle (not crossing the
edges of channel) of the type

Γv = [γe1 ·E1]+ [γe2 ·E2]+ [γe3 ·E3] (1-76)

To count the dimension of such cycles with vanishing boundaries, no-
tice that we have three Lie algebra elements E1,E2 and E3 constrained
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by the two relations in g, namely, ∂ΨΓv = 0 and γe1 +γe2 +γe3 = 0 such
that only dim g independent directions remain. Removing the 3rk g

dimensions already counted, we have (2
o
g −2+M)(dim g−3rk g) ad-

ditional elements. Indeed, there are 2 vertices for each hole of the
surface from which such a cycle cannot be drawn without intersecting
G.

• Finally, to each internal edge crossing a boundary where two distinct
pairs of pants meet, we associate a cycle of the form

Γ⊥e =
6∑

i=1

[γi ·Ei ] (1-77)

It involves six Lie algebra elements. However, the vanishing boundary
condition, taking into account that only four of the six arcs γ1, . . . ,γ6

are independent and avoiding redunduncy of the previously intro-
duced cycles yields

6dim g−2dim g−2dim g−2(dim g−3rk g)−5rk g= rk g (1-78)

remaining degrees of freedom.
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We will denote these cycles as Be,E = [γ̂e ·E ]+ . . . , where γ̂e surrounds
e and the dots are contributions from the other arcs involved in the
cycle (such as the light blue cycle in Fig. 2.4).

The number of such internal edges is 2
o
g −3+M , it is equal to the di-

mension 3
o
g −3+M of the Teichmuller space of the topological surface

underlying
o
Σ minus 1 for each pant surrounding a hole (since they are

glued to themselves).

.
Summing all these contributions gives the wanted dimension. Moreover,

one can check that no independent cycle can be added and that these cycles
therefore form a basis of Ĥ1. ■

We will from now on assume that we have made a choice of channel
G ⊂ o

Σ. As we have seen it allows to construct a basis of Ĥ1. As in
dispersionless limit, there exists a notion of intersection of cycles

Definition 1.32 Intersection form
The space of arcs on Σ̂Ψ carries a natural (skew-symmetric) intersection form
given for any generic arcs, denoted Γ= [γ ·E ] and Γ′ = [γ′ ·E ′], by

Γ
⋂
Γ′ =

de f

∑
x∈γ∩γ′

(γ,γ′)x

〈
E ,E ′〉 (1-79)

where (γ,γ′) =
de f

+1 (resp. −1) if the tangents of the arcs γ and γ′ intersecting

at x ∈ o
Σ define a positively (resp. negatively) oriented basis of the corresponding

tangent plane.

This intersection form is skew-symmetric, stable under homotopic de-
formations and extends bilinearly to whole space of cycles on Σ̂Ψ.

Theorem 1.33 Symplectic structure [B.-Eynard-Ribault]
The intersection form vanishes on

⊕M
j=1 A (z j ·h j ) and is non-degenerate on Ĥ1,

therefore endowing it with a symplectic structure.
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proof:
The intersection form vanishes by definition on

⊕M
j=1 A (z j ·h j ) and writ-

ing its matrix in the basis exhibited for computing the dimension of Ĥ1

shows that it is non-degenerate. ■

Corollary 1.34 Symplectic basis
There exists a symplectic basis of cycles {Ah,Bh}1≤h≤ĝ in Ĥ1,

Ah

⋂
Ah′ = 0, Bh

⋂
Bh′ = 0 and Ah

⋂
Bh′ = δh,h′ (1-80)

These notions of cycles and differentials are dual in the sense that they
can be paired in a non-degenerate way by integration.

Definition 1.35 First and third kind integration pairing
For any generic cycle Γ = [

∑
i γi ·Ei ] ∈ Ĥ

′
1 ⊕ Ĥ

′′′
1 and any differential ω ∈ Ω̂1

having no singularity along Γ,

∫
Γ
ω =

de f

∑
i

∫
x∈π(γi )

ω([x̃ ·Ei ]) (1-81)

which does not depend on a choice of representative of Γ and is bilinear in
(Γ,ω).

proof:
We have to check that

∫
Γω does not depend on a choice of representative

for Γ. Indeed, if p is an end point of some homology cycle appearing in
Γ= [

∑
i [γi ·Ei ]] but is not a puncture,

dp

∫
Γ
ω = ∑

i
π(pi )=π(p)

ω
(
[p̃i ·Ei ]

)
(1-82)

which vanishes since the boundary ∂ΨΓ of the cycle Γ is located at the
z j ’s. ■
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Remark 1.36 If we wish to integrate W1 on a third kind cycle we need a
regularization procedure since this differential has the same singularities than
Φ at the punctures. We use the prescription

∫
[(x̃0,z̃ j )·E ]

W1 =
de f

∫ z j

x0

(
W1([x̃ ·E ])−〈AdC j E ,Φ j 〉ωz j−o(x)

)
(1-83)

for any point in the universal cover x̃0 ∈
o

Σ̃ over a point x0 6= o, any puncture
index j ∈ {1, . . . , M } and any Lie algebra element E ∈ AdC−1

j
h j .

Definition 1.37 Second kind integration pairing

Similarly, let us extend the definition to the second kind cycles by

∫
B′′

j

ω =
de f

ω
(
[z̃i ·AdC−1

j
Φ j ]

)
(1-84)

where for any puncture index j ∈ {1, . . . , M }, z̃ j is the unique homology chain
with boundary z j −o that does not intersect the channel G .

1.3 Non-perturbative special geometry

Let us end this section on the non-perturbative aspects of the Fuchsian
system by introducing the form-cycle duality and by stating some (almost
proved) conjectures about the underlying geometry. Recall that we defined
MFuchs as the moduli space of equivariant connections (P,∇). Our point-
wise study involves the choice of a reference connection ∇0 and this can be
done holomorphically only locally in the moduli space. A consequence of
this is that deformations of such equivariant connections in the ∇ direction
are isomorphic to deformations of the moduli of Φ = ∇0 −∇, keeping ∇0

constant, namely [δ,∇0] = 0. We also allow for deformations of the flat
local section Ψ.

In local coordinates, one can easily study how the various elements of
the construction change under deformations.
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For any deformation δ ∈ T ∗MFuchs , one can define

Fδ =
de f

δΨ ·Ψ−1 (1-85)

such that (δ−Fδ) ·Ψ = 0. This implies in particular the zero curvature
equation

[δ−Fδ,∇0 −Φ] = 0 (1-86)

which translates the fact that the two differential systems defined by
these operators admit a common solution. On the punctured Riemann

sphere
o
Σ= CP1 − {z1, . . . , zM }, choosing only isomonodromic deformations,

namely a deformation such that δSγe = 0 for any edge e of the channel,
would yield the Schlessinger system of differential equations [68].

Recall that we have the asymptotic behaviour Ψ(x̃) =
x∼z j

(1+O (ξ))ξΦ j C j

in local coordinates ξ = x − z j around the j th puncture and this implies
immediately

Lemma 1.38 Singularities of Fδ
For any puncture index j ∈ {1, . . . , M },

Fδ(x̃) =
x∼z j

− δz j

x − z j
Φ j + ln(ξ)δΦ j +MΨ([x̃ ·C−1

j δC j ])+O (1) (1-87)

where O (1) means terms that are analytic at x = z j .

Remark 1.39 We see from the last asymptotics that Fδ is automatically singu-
lar at z j if the deformation affects the position of this puncture. Nevertheless,
although the term MΨ([x̃ ·C−1

j δC j ]) is generically divergent at a given puncture,
the condition

∀ j ∈ {1, . . . , M }, ∀r ∈R, Re
(
r(Φ j )

)>−1 (1-88)

ensures that ξFδ(z j +ξ) is bounded near z j (ξ= 0).
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Lemma 1.40 Monodromies of Fδ
For any deformation δ ∈ T ∗MFuchs , Fδ is analytic in the fundamental domain
o
Σ−G defined by the channel G with possible singularities at the punctures and
its discontinuity across an edge e at a point x ∈ e, denoted ∆x∈eFδ, is

∆x∈eFδ = MΨ

(
[x̃ ·δSγe S−1

γe
]
)

(1-89)

proof:

One can easily compute the monodromy of Fδ around a loop γ ∈π1(
o
Σ, x)

Fδ(x̃ +γ) = δΨ(x̃ +γ) ·Ψ(x̃ +γ)−1 (1-90)

= (
δΨ(x̃)Sγ+Ψ(x̃)δSγ

) ·S−1
γ Ψ(x̃)−1 (1-91)

such that

Fδ(x̃ +γ)−Fδ(x̃) = MΨ

(
[x̃ ·δSγS−1

γ ]
)

(1-92)

and this last equality implies the wanted result. ■

Lemma 1.41 For any deformation δ ∈ T ∗MFuchs and any meromorphic one-

form ω on
o
Σ such that ω′′′−ωx−o is holomorphic,

Fδ(x)−Fδ(o) =
∫
δ∗

MΨ(X ′)ω′′′(x ′) (1-93)

where

δ∗ =−
M∑

j=1

δz j B
′′
j +

M∑
j=1

B′′′
j ,(δSγz j

·S−1
γz j

)
mod δΨ (1-94)

meaning equality up to boundary terms, or equality of the corresponding
classes in Ĥ1

/
Ĥ

′
1.
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proof:

Applying Cauchy’s formula around a point x ∈ o
Σ−G in the fundamental

domain to the analytic function

F̃ (x) =
de f

Fδ(x)−Fδ(o)+
M∑

j=1

δz j

∫
B′′

j

MΨ(X ′)ω′′′(x ′) (1-95)

and then moving the small contour around that point to the boundary
we get

Fδ(x)−Fδ(o) =−
M∑

j=1

δz j

∫
B′′

j

MΨ(X ′)ω(x ′)− 1

2πi

∮
x′∈∂(

o
Σ−G )

F̃ (x ′)ω′′′(x ′)(1-96)

where since each edge appears twice at the boundary of the fundamental
domain, the last integral is equal to the integral of the discontinuity of F̃
along the channel. The second kind integrals are meromorphic in the
variable x (it appears as the location of the first order pole of ω) and
therefore we are left with the integral of the discontinuity of Fδ alone, that
is MΨ([x̃ ·δSγe S−1

γe
]) for each edge e.

It reads

Fδ(x)−Fδ(o) = −
M∑

j=1

δz j

∫
X ′∈B′′

j

MΨ(X ′)ω(x ′)

− 1

2πi

∑
e

∫
x′∈e

MΨ

(
[x̃ ′ · (δSγe ·S−1

γe
)]

)
ω′′′(x ′)

(1-97)

=
∫

X ′∈δ∗
MΨ(X ′)ω′′′(x ′) (1-98)

where δ∗ =
de f

−∑M
j=1δz j B

′′
j +Γ, with Γ =

de f

1
2πi

∑
e e(δSγe ·S−1

γe
). Since the

interior vertices of the channel are not singularities of Φ, for any interior
vertex v we have the identity Sγe1

Sγe2
Sγe3

= Id, where we labelled e1, e2 and
e3 the adjacent edges in direct order (up to cyclic permutation), we get that
the only contributions to the boundary of Γ come from the punctures
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δΨ

(
Γ−

M∑
j=1

B′′′
j ,(δSγz j

·Sγz j
)

)
= 0 (1-99)

which concludes the proof. ■

Corollary 1.42 For any holomorphic one-form ω ∈ H1(
o
Σ,C),

∫
X∈δ∗

MΨ(X )ω(x) = 0 (1-100)

proof:
The previous lemma being true for any third-kind differential that has

the wanted simple poles with residues ±1, the space of differences of two
such one-forms is the space of holomorphic one-forms and this implies the
result. ■

Similarly to the cycles introduced by Bertola in [19], [20], we therefore
introduce

Proposition 1.43 Deformation dual cycle
To each deformation can be associated a dual cycle by the injective mapping

∗ : T ∗MFuchs −→ Ĥ1

δ 7−→ δ∗ =
de f

−
M∑

j=1

δz j B
′′
j +

∑
e

[e ·δSγe S−1
γe

] (1-101)

Corollary 1.44 Symplectic structure
The intersection product on Ĥ1 ⊕ Ĥ

′
1 restricts to a symplectic structure on

T ∗MFuchs defined for any pair of deformations δ1,δ2 ∈ T ∗MFuchs by

ΩFuchs(δ1,δ2) =
de f

δ∗1
⋂
δ∗2 (1-102)

Theorem 1.45 Seiberg-Witten relations [B.-Eynard-Ribault]
The correlators satisfy Seiberg-Witten relations. That is for any positive integer
n ∈N∗ and any deformation δ ∈ T ∗MFuchs ,
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δWn =
∫
δ∗

Wn+1 (1-103)

proof:
Let us start from KΨ(x̃, x̃ ′) = Ψ(x̃′)−1Ψ(x̃)

E f (x̃,x̃′) (remember that this expression
only makes sense inside brackets 〈·〉o .

δKΨ(x̃, x̃ ′) = Ψ(x̃ ′)−1 Fδ(x̃)−Fδ(x̃ ′)
E f (x̃, x̃ ′)

Ψ(x̃) (1-104)

=
∫

X ′′∈δ∗
Ψ(x̃ ′)−1 M(X ′′)

E f (x̃, x̃ ′)E f (x̃, x̃ ′)
Ψ(x̃) (1-105)

= −
∫

[x̃′′·E ′′]∈δ∗
KΨ(x̃, x̃ ′′)E ′′ KΨ(x̃ ′′, x̃ ′) (1-106)

Now recall the determinantal formula

Wn(X1, . . . , Xn) =
〈

Det
1≤i , j≤n

(
Ei KΨ(x̃i , x̃ j )

)〉
o

(1-107)

and the Leibniz rule together with the integral formula for δKΨ inserts
an additional factor of KΨ in all possible ways

δ

( ∑
τ∈Sn

(−1)τ
〈

→n∏
i=1

KΨ(x̃i , x̃τ(i ))

〉
o

)
=

∫
[x̃n+1·E ′′]∈δ∗

∑
τ∈Sn+1

(−1)τ
〈

→n∏
i=1

KΨ(x̃i , x̃τ(i ))

〉
o

(1-108)

which concludes the proof. ■

1.4 τ-functions and enumerative geometry

Theorem 1.46 τ-function [B.-Eynard-Ribault]
For any Lagrangian submanifold L ⊂ T ∗MFuchs , there exists a function TL

such that for any δ ∈L ,

δ l nTL =
∫
δ∗

W1 (1-109)

It is a generalization of the isomonodromic τ-function of [59].
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proof:
Using the Seiberg-Witten relation for deformations of W1,

[δ1,δ2] lnTL = δ1

∫
δ∗2

W1 −δ2

∫
δ∗1

W1 (1-110)

=
[∫

δ∗2
,
∫
δ∗1

]
W2 +

∫
δ1(δ2)−δ2(δ1)

W1 (1-111)

= 2πiδ∗1
⋂
δ∗2 (1-112)

= 0 (1-113)

where the intersection of cycles appearing in the line before the last
comes from shrinking the contours to the diagonal where W2 has its singu-
larities and vanishes by definition of the Lagrangian submanifold. ■
Remark 1.47 Note that in the heuristics of the introduction and in the disper-
sionless classical case of Liouville’s theorem, a choice of Lagrangian was needed
in order to define the action, in both case to ensure single-valuedness of an
integral. We recover this feature for the non-perturbative τ-function.

Conjecture 1.48 Flat period coordinates [B.-Eynard-Ribault]
There exists a symplectic basis of cycles {Ah,Bh}1≤h≤ĝ in Ĥ1 such that for any
index h ∈ {1, . . . , ĝ } and positive integer n ∈N∗,

∮
Ah

Wn = εhδn,1 (1-114)

The εh ’s are called the flat period coordinates of the Fuchsian system and
denoting by δεh the corresponding deformation, it satisfies

(
δεh

)∗ =Bh (1-115)

Their dual coordinates are defined similarly for any h ∈ {1, . . . , ĝ } by

εD
h =

de f

∮
Bh

W1 (1-116)

= δεh l nTL (1-117)
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Remark 1.49 The last relation with the dual period coordinates shows that
TL would play the role of an effective superpotential similarly to that of [66].
There, starting from a six dimensional (0,2) super conformal field theory on

the product
o
Σ×R2

ε1
×R2

ε2
in the so-called Ωε1,ε2-background [65], they define an

effective superpotential by

W e f f (ε1) =
de f

lim
ε2→0

(ε2F (ε1,ε2)) (1-118)

However, the Non-perturbative Fuchsian geometry we are describing here
corresponds to ε1 = −ε2 = 1. We will now deform this to get ε1 = −ε2 =

de f
ε

to study the ε−→ 0 limit using WKB techniques. In general, and it will be the
case when we investigate the geometry of the Ward identities of W-symmetric
conformal field theories, there are two deformation parameters, the background
charge Q =

de f
ε1 + ε2 6= 0 and the WKB expansion parameter ε satisfying the

relation ε2 =−ε1ε2. We keep Q = 0 for now.

2 Perturbative aspects

2.1 Topological expansions and cameral geometry

Let us now introduce the "small" deformation parameter ε. The previ-
ous construction can be carried without any additional trouble when the
connection ∇ is replaced by an ε-connection ∇ε. Redefining

∇0 − 1

ε
∇ε =

de f

1

ε
Φε, (2-1)

Φε =
de f

∑
k≥0

εkΦ(k) (2-2)

is now a formal power series in ε valued in the vector space

H0(
o
Σ,Ad(P )⊗Ko

Σ
).

As was noted before, the principal G-bundle P −→ o
Σ together with the

leading order term of the ε-expansion of Φε, Φε|O (ε)0 =Φ(0) define the struc-
ture of a Higgs bundle (P,Φ(0)) ∈M .
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Theorem 2.1 WKB asymptotics

Denoting by ho ⊂ go a Cartan subalgebra of the adjoint fiber at the reference
point o and diagonalizing the Higgs field potential as

Φ(0) = AdV Y , (2-3)

Y is a local ho-valued meromorphic 1-form (its Weyl group valued mon-
odromies define a cameral curve as we shall later see). WKB analysis consid-
ers Ψε, defined as a formal fundamental solution of the connection problem

∇εΨ= 0 admitting for any x̃ ∈
o

Σ̃ an asymptotic expansion of the form

Ψε(x̃) =
ε→0

V (x)Ψ̂ε(x̃)e
1
ε

∫
x̃ Y C x̃ (2-4)

where Ψ̂ε is a solution of the linear equation

(AdV −1∇0)Ψ̂= [Y ,Ψ̂] = Y · Ψ̂− Ψ̂ ·Y , (2-5)

· denoting respectively Lie derivation from the left and from the right, and
such that it satisfies Ψ̂ε(x̃) = 1+O (ε). C x̃ ∈ Po 'G is an integration constant

that does not depend on ε and depends on the point x̃ ∈
o

Σ̃ through Stokes’
phenomenon only [69].

Indeed, if we introduce the so-called Stokes and anti-Stokes lines on
o

Σ̃

respectively defined for any root α ∈R by

Γα =
de f

{
x̃ ∈

o

Σ̃ | Re

(∫
x̃
α(Y )

)
= 0

}
(2-6)

Γα =
de f

{
x̃ ∈

o

Σ̃ | Im

(∫
x̃
α(Y )

)
= 0

}
(2-7)

then from Stokes’s theorem, C x̃ is piecewise constant in any connected

component of
o

Σ̃−⋃
α∈RΓα ∪Γα, where we removed the Stokes’ network
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⋃
α∈RΓα∪Γα from the universal cover. By definition, the reference point

o is a vertex of the network and we will furthermore consider paths not
ending on the network, that is such that x̃ 6∈⋃

α∈RΓα∪Γα.

Theorem 2.2 Emergent cameral geometry [B.-Eynard-Hurtubise]
The cameral cover ΣH (Φ) is the semi-classical limit ε−→ 0 of Σ̂Ψε .

proof:
Let [x̃ ·E ] ∈ Σ̂Ψε and let us write AdC x̃ E = Eo +∑

α∈REα introducing to
the direct sum decomposition go = ho ⊕⊕

α∈Rgα, where R denotes the root
system. We then get the asymptotic expression

MΨε([x̃ ·E ]) =
ε→0

AdV (x̃)[1+O (ε)]Ad
e

1
ε

∫
x̃ Y AdC x̃ E (2-8)

=
ε→0

AdV (x̃)[1+O (ε)]e
1
ε

∫
x̃ AdY

(
Eo +

∑
α∈R

Eα

)
(2-9)

=
ε→0

AdV (x̃)[1+O (ε)]

(
Eo +

∑
α∈R

e
1
ε

∫
x̃ α(Y )Eα

)
(2-10)

from which we conclude that MΨε([x̃ ·E ]) will admit a ε −→ 0 limit if
and only if for any α ∈R such that Re

(∫
x̃α(Y )

)> 0 we have Eα = 0 and for
any α ∈R such that Re

(∫
x̃α(Y )

)= 0 we also have Im
(∫

x̃α(Y )
)= 0. AdC x̃ E

thus has to belong to the Borel subalgebra ho ⊕⊕
α∈R+(x̃)gα, where

R+(x̃) =
de f

{
α ∈R|Re

(∫
x̃
α(Y )

)
≤ 0

}
(2-11)

or equivalently that E has to belong to Bx̃ =
de f

AdC−1
x̃

[h⊕⊕
α∈R+ gα]. In

turn, introducing

o

Σ̃′ =
de f

[
o

Σ̃− ⋃
α∈R

Γα∪Γα
]

(2-12)

and the Borel bundle
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B′ =
de f

⊔
x̃∈

o

Σ̃′

Bx̃ ⊂
o

Σ̃′×g (2-13)

we get that for any x̃ ∈
o

Σ̃′ and E ∈Bx̃ , MΨε([x̃ ·E ]) has a well defined
ε−→ 0 limit given by

M̃cl ([x̃ ·E ]) =
de f

lim
ε→0

MΨε([x̃ ·E ]) = AdV (x̃)Eo (2-14)

where the cl subscript stands for classical and as previously Eo ∈ ho

denotes the Cartan part of AdC x̃ E . Note that there could a priori be a
non-Cartan part that would converge to∑

α∈R
α(Y (x̃))=0

Eα

but since x̃ ∈
o

Σ̃′, it is not on the Stokes network and this sum is therefore
over the empty set. In turn, outside of Stokes’ network, only the Cartan
part of AdC x̃ E contributes to the limit

MΨε(Bx̃) −→
ε→0

AdV (x̃)C x̃ho (2-15)

thus allowing to define the quotient space

B̂o =
de f

B′
/

M̃cl (2-16)

by identifying the elements of the Borel subbundle whose images by
MΨε admit the same ε−→ 0 limit. Similarly, the map

Mcl :
⊔

x̃∈
o

Σ̃′
AdC−1

x̃
ho −→ Ad(P )

[x̃ ·Eo] 7−→ AdΨcl (x̃)Eo (2-17)
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with Ψcl (x̃) = V (x̃)C x̃ allows, by identifying preimages of a same ele-
ment, to take the corresponding quotient

Ŝcl =
de f

 ⊔
x̃∈

o

Σ̃′

AdC−1
x̃
ho

/
Mcl (2-18)

It is such that for any E ∈Bx̃ , MΨε([x̃ ·E ]) −→ Mcl ([x̃ ·ΠAd
C−1

x̃
ho

E ]), where

we introduced the projector ΠAd
C−1

x̃
ho

on AdC−1
x̃
ho with respect to a root

decomposition corresponding to this Cartan subalgebra.

Define Φcl ∈H0
l oc(

o
Σ,Ko

Σ
⊗g) by

Φcl (x̃) =∇0Ψcl (x̃) ·Ψcl (x̃)−1 =∇0V (x̃) ·V (x̃)−1, (2-19)

a multivalued expression on the base curve
o
Σ but with meromorphic

singularities, the last equality coming from the fact that the symbol C x̃ is

constant in every connected component of
o

Σ̃′.

Let us now consider a point x̃ ∈
o

Σ̃′ and a closed loop γx ∈ π1(
o
Σ, x). We

define the following monodromy matrices,

Ψε(x̃ +γx) =
de f

Ψε(x̃)Sεγx
(2-20)

Ψcl (x̃ +γx) =
de f

Ψcl (x̃)Scl
γx

(2-21)

The previous arguments show that in the ε −→ 0 limit, the relevant
monodromy matrices are in fact Scl

γx
, that is the monodromy matrices of the

connection defined by ∇cl =∇0−Φcl . In turn, representing the monodromy
of V , Scl

γx
is an element of the Weyl group w and as such allows to define a

representation

Scl :π1(
o
Σ,o) −→ w

γo 7−→ Scl
γo

(2-22)
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We thus obtained that in the appropriate ε −→ 0 limit, that consists
in removing the singular part of the connection, the monodromy repre-
sentation of the connection ∇ε reduces to a Weyl action on the Cartan
subalgebra ho of go . Such a representation contains the information of an

algebraic cover of
o
Σ as the monodromy representation of a w-cover of this

curve which is isomorphic to the cameral cover denoted x : ΣH (Φ(0)) −→
o
Σ.

Indeed, the Weyl action arising as a gauge freedom when diagonaliz-
ing the Higgs field Φ(0) is precisely the right action of which the map
πw : h∗⊗Ko

Σ
−→ [h∗⊗Ko

Σ
]
/
w is the quotient projection. Which concludes

the proof. ■
The cameral curve ΣH (Φ(0)) canonically associated to the Higgs pair

(P0,Φ(0) = AdV Y ) has a local parametrization given for any x̃ ∈
o

Σ̃ and σ ∈w
by

σ

x̃ = Rσ(Y (x̃ )) (2-23)

where we introduced the dual representative Rσ ∈ Aut(ho) of the Weyl
group element σ ∈w⊂ Aut(h∗o ).

We will now define non-perturbative correlators defined on copies the
cameral curve. First, let us define new 1-point and 2-points classical cor-
relators by

W cl
1 : Ŝcl −→ Ko

Σ

[x̃ ·E ] 7−→ 〈AdC x̃ E ·Y (x)〉 (2-24)

Ŵ cl
2 : Ŝ �2

cl −→ S�2 Ko
Σ

[x̃ ·E ]⊗ [x̃ ′ ·E ′] 7−→ −〈Mcl ([x̃ ·E ])Mcl ([x̃ ′ ·E ′])〉o

E f (x̃, x̃ ′)E f (x̃ ′, x̃)
(2-25)

=−〈AdC x̃ E ·AdV (x)−1V (x′)
(
AdC x̃′E

′)〉o

E f (x̃, x̃ ′)E f (x̃ ′, x̃)
(2-26)

from which the input of the cameral curve topological recursion, to be
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defined in the next section, can be defined for any generic x̃, x̃ ′ ∈
o

Σ̃′ and
Weyl group elements σ,σ′ ∈w as

Ω̃(
σ

x̃) = ∑
α∈Ro

W cl
1 ([x̃ · Rσ(Hα)])α (2-27)

B̃(
σ

x̃,
σ′

x̃ ′) = ∑
α,β∈Ro

Ŵ cl
2 ([x̃ · Rσ(Hα)], [x̃ ′ · Rσ′(Hβ)])α⊗β (2-28)

where we denoted by {Hα}α∈Ro the standard Chevalley basis associated
to the set of simple roots Ro . These definitions are consistent with the
input data described previously thanks to the identities

Scl
γ · Ω̃(

σ

x̃ +γ) = ∑
α∈Ro

W cl
1 ([x̃ +γ · Rσ(Hα)])Scl

γ (α) (2-29)

= ∑
α∈Ro

W cl
1

(
[x̃ · (RScl

γ
Rσ)Hα]

)
α (2-30)

= Ω̃(
σScl

γ

x̃ ) (2-31)

which is the definition of an h∗o-valued w-equivariant differential form
on the cameral curve ΣH (Φ(o)). Similarly, B̃ is symmetric and satisfies

(Scl
γ ⊗1) · B̃(

σ

x̃ +γ,
σ′

x̃ ′) = B̃(
σScl

γ

x̃ ,
σ′

x̃ ′) (2-32)

together with the singular behavior

B̃(
σ

x̃,
σ′

x̃ ′) ∼
x∼x′ −1

2

∑
α,β∈Ro

κσ·α,σ′·β
E f (x̃, x̃ ′)E f (x̃ ′, x̃)

α⊗β (2-33)

where κ denotes the Cartan matrix. Ω̃ and B̃ are then both well-defined
h∗o-valued (resp. (h∗o )⊗2 -valued) w-equivariant meromorphic forms on the

cameral cover ΣH (Φ(0)) −→
o
Σ (by additionally identifying the tangent spaces

at a base point and one of its pre-images by this covering map).
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2.2 Cameral curve topological recursion and reconstruction

Topological recursion for spectral curves

We start by reminding the usual formulation of the spectral curve topolog-
ical recursion [43], [30].

Definition 2.3 Spectral curves
Define a spectral curve to be the data (S ,Ω,B) consisting of a Lagrangian
immersion

S
i //

x ��

T ∗ o
Σ

~~o
Σ

together with a meromorphic one-form Ω= i∗η on Σ with Liouville one-form

η on T ∗ o
Σ and a symmetric bi-differential B on Σ�Σ having a double pole on

the diagonal divisor

B(z, z ′) ∼
z∼z′

d z d z ′

(z − z ′)2
(2-34)

with no residue and no other singularity. When a choice of Torelli marking,

a symplectic basis of cycles in H1(
o
Σ,Z), is made, the associated Bergman kernel

is a natural candidate for B . Similarly, when a choice of polarization is made,
the Klein form is an other candidate.

The Eynard-Orantin topological recursion procedure was introduced to
solve perturbatively the Schwinger-Dyson, or loop equations, arising in ran-
dom matrix models. It associates to the data of a spectral curve (S ,Ω,B)
a sequence of so-called invariants denoted {ωg ,n}g ,n∈N with numerous al-
gebraic and modular properties. In particular, ωg ,n is a symmetric n-

differential on
o
Σ called the n-points correlator in genus g .

Denoting by br(S ) the set of critical points of the projection x and
generically by σa, for any a ∈ br(S ), its corresponding local Galois involu-
tion, the procedure goes as follows :
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Definition 2.4 Global spectral curve topological recursion
First define ω0,1 =

de f
Ω and ω0,2 =

de f
B , then for any stable (g ,n) ∈ N, that is

such that 2−2g −n < 0, and any generic n-tuple of points (z1, . . . , zn) ∈S n,

ωg ,n(z1, . . . , zn) = ∑
a∈br(S )

Res
z=a

Ka(z1, z)[ωg−1,n+1(z,σa(z), z2, . . . , zn)

+ ∑′

h+h′=g
ItJ={2,...,n}

ωh,1+|I |(z, zI )ωh′,1+|J |(σa(z), z J )]

(2-35)

where Ka(z1, z) =
de f

∫ z
σa (z)ω0,2(z1,·)

ω0,1(z)−ω0,1(σa(z)) is called the kernel at branch point a

and
∑′

means that in the sum over (h, I ) and (h′, J ) we ommit the terms
corresponding to (h, I ) = (0,;) or (h, I ) = (g , {2, . . . ,n}).

Definition 2.5 Free energies
The free energies associated to this topological recursion procedure are defined in
the following way :

• for any g ≥ 2,

ωg ,0 =
de f

Fg =
de f

1

2−2g

∑
a∈br(S )

Res
z=a

φ(z)ωg ,1(z) (2-36)

where φ =
de f

∫
ω0,1 is a choice of primitive of ω0,1 = Ω from which this

definition can be shown to be independent.

• for g = 1,

F1 =
de f

−1

2
ln τB − 1

24
ln

( ∏
a∈br(S )

y ′(a)

)
(2-37)

where the symbol τB is the so-called Bergmann τ-function defined such
that for any branch point a ∈ br(S ), ∂lnτB

∂x(a) =
de f

Res
z→a

B(z,z)
d x(z) . It is well defined
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up to a non-relevant multiplicative constant since the Rauch variational
formula implies that the right hand side of the last equality is a closed
form. Moreover, defining a good local coordinate ζa(z) =

de f

p
x(z)−x(a)

near the simple branch point a, such that y ′(a) = dΩ(·, ∂
∂x )

dζa
|z=a .

• for g = 0, introducing a Torelli marking {Ai ,Bi }
1≤i≤o

g
⊂ H1(

o
Σ,Z),

F0 =
de f

1

2

 o
g∑

i=1

εi

∮
Bi

ω0,1 +
∑

s∈p(ω0,1)

ts

∫
B
′′′
s,o

ω0,1 +
∑

k∈N∗
s∈p(ω0,1)

ts,k

∮
B
′′
s,k

ω0,1


(2-38)

where we introduced the periods εi =
de f

1
2πi

∮
Bi
ω0,1, the set p(ω0,1) of

poles of the one-form ω0,1, ts =
de f

Res
s

ω0,1, the homology chain B
′′′
s,o

uniquely defined by requiring that its boundary is ∂B
′′′
s,o = s − o and

that its intersection with the marking vanishes, with o ∈ o
Σ a reference

point from which this definition can be shown to be independent, simi-
larly define the times ts,k =

de f
Res
z=s

[(x(z)− x(s))kω0,1(z)] and their duals∮
B
′′
s,k
ω0,1 =

de f

1
k Res

z=s
[(x(z)− x(s))−kω0,1(z)]. It is a quadratic expression in

the input data ω0,1 =Ω.

The general solution of the topological recursion procedure involves
intersection numbers on certain moduli spaces of coloured, stable, nodal,
Riemann surfaces [41]. Without going into too much detail, it takes the
form

Theorem 2.6 General solution [Eynard]
For any g ,n ∈ N such that 2g −2+n > 0, the general solution of the spectral
curve topological recursion has the form
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ωg ,n(z1, . . . , zn) =

23g−3+n
∑

d1
a1,...,

dn
an

(
n∏

i=1

dξai ,di (zi )

)∫
M

{a1,...,an }
g ,n

ψd1
1 . . .ψdn

n Λ(S ){a1,...,an}

(2-39)

where the sum is over branch point indices a1, . . . , an ∈ br(S ) and non-

negative integers d1, . . . ,dn ∈ N. M
{a1,...,an}

g ,n denotes the compactified moduli
space of stable Riemann surfaces each stable component of which is labelled by
a branch point index in {a1, . . . , an}. It is realized as

M
{a1,...,an}

g ,n =
de f

{(C ; z1, . . . , zn;ϕ) | (C ; z1, . . . , zn) ∈M g ,n,

ϕ : C − {nodes} −→ {a1, . . . , an}continuous}

(2-40)

where M g ,n is the moduli space of nodal Riemann surfaces of genus g with
n marked points. Note that the function ϕ being continuous from a discrete set
means that it is constant on each stable component of the nodal curve. This is
what we call a colouring of the Riemann surface.
For any p ∈ {1, . . . ,n}, ψp is the p th tautological class, namely the Chern

class ψp =
de f

c1(Lp), where Lp −→ M
{a1,...,an}

g ,n is the tautological line bun-

dle whose fiber over a coloured Riemann surface with n marked points

(C ; z1, . . . , zn) ∈ M
{a1,...,an}

g ,n is the cotangent plane Lp |(C ;z1,...,zn) =
de f

T ∗
zp

C . The

symbol Λ(S ){a1,...,an} is the Eynard class (related to the Chiodo class), it is a

generating function of cohomology classes on M
{a1,...,an}

g ,n defined in [41] for any
spectral curve S and last but not least,

dξa,d =
de f

−(2d −1)!!2−d Res
z′→a

(
B(z, z ′)ζa(z ′)−2d−1) (2-41)
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Cameral curves and the recursion

In the spirit of the previous framework, we now define a cameral curve

to be the data (Σb,Ω̃, B̃) consisting of a cameral cover x : Σb −→ o
Σ over a

point b ∈ Br eg in the regular locus of the Hitchin fibration, an h∗-valued
w-equivariant one-form Ω̃ on Σb of the form

Ω̃ =
de f

∑
α∈R0

Ω̃αα (2-42)

for a given set of simple roots Ro . Given the cameral cover Σb, a natural
candidate could be

Ω̃= ∑
α∈Ro

[(pα)∗(ib,α)∗η]α (2-43)

where we used the notations of the introduction

Σb
pα //

��

Sb,α
ib,α //

��

T ∗ o
Σ

}}o
Σ

and where η is still the Liouville one-form on T ∗ o
Σ, and a choice of

symmetric (h∗)⊗2-valued w-equivariant bi-differential B̃ on Σb required to
have a double pole on the pullback of the diagonal in the squared base

curve (
o
Σ)2 with no residue and no other singularity, namely we choose it

such that

B̃(z, z ′) ∼
z∼σ·z′

1

2
καβ

o
B(x(z), x(z ′))α⊗β (2-44)

where σ ∈w is a Weyl group element sending the simple root β, labelling
the sheet to which z ′ belongs, to α=σ(β) where z is. Also introducing the
Cartan matrix κ = (καβ)α,β∈Ro of the Lie algebra g viewed as an element

of (h∗)⊗2 and the Bergman kernel
o
B associated to a given choice of Torelli
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marking on the base curve that we denote by
o
m = {Ai ,Bi }

1≤i≤o
g
⊂H1(

o
Σ,Z)

on the base curve.
This choice is the one of bi-residues 1

2καβ when the base points z and
z ′ are, in the limit x(z) ∼ x(z ′), in the sheets labelled by some simple roots
α and β respectively. In particular, since the Cartan matrix has entry 2 at
any diagonal position, this bi-residue is 1 when z ′ ∼ z (or x(z ′) ∼ x(z) with
z and z ′ located in the same sheet of the cameral cover).

We will now associate to any cameral curve (Σb,Ω̃, B̃) a sequence of in-
variants {ω̃g ,n}g ,n∈N, ω̃g ,n being a (h∗)⊗n-valued w-equivariant n-differential
on Σb . For any integer n > 0 and any generic points z1, . . . , zn ∈ Σb we will
use the notation

ω̃g ,n(z1, . . . , zn) =
de f

∑
α1,...,αn∈Ro

ω̃α1,...,αn
g ,n (z1, . . . , zn) α1 ⊗·· ·⊗αn

(2-45)

To do so, the remaining ingredient to introduce is the recursion kernel.
For a given generic branch point a ∈ br(Σb) fixed by the order two element
σa ∈w, it is defined in a similar fashion than in the case of spectral curves
as

K̃a(z1, z) =
de f

−
∫

Hα·(z,σa(z)) ω̃0,2(z1, ·)
ω̃0,1(z)(Hα)− ω̃0,1(σa(z))(Hα)

· Hα⊗Hα

4
(2-46)

where we used the pairing between equivariant differential forms and
generalized cycles and Hα ∈ h is dual to the simple root α ∈ Ro corre-
sponding to branch point a (that is such that σa is the orthogonal reflexion
with respect to the hyperplane orthogonal to root α).

Definition 2.7 Cameral curve topological recursion [B.-Eynard-Hurtubise]
Define the invariants ω̃g ,n for any stable g ∈N and n ∈N∗, 2−2g −n < 0, by
the following recursion with respect to −χg ,n and which is the same as the one
for spectral curves.
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ω̃g ,n+1(z1, . . . , zn+1) = r

|w|
∑

a∈br(Σb)

Res
z→a

K̃a(z1, z)[ω̃g−1,n+2(z,σa(z), z2, . . . , zn)

+ ∑ ′
ItI ′={2,...,n+1}

h+h′=g

ω̃h,|I |+1(z, zI )⊗ ω̃h′,|I ′|+1(σa(z), zI ′)]

(2-47)

where K̃a is contracted with the two first tensors of all the terms between
brackets [ · ], z{i1,...,ik } = {zi1, . . . , zik } for any choice of pariwise distinct indices
that we denote {i1, . . . , ik} ⊂ {2, . . . ,n+1} and

∑′ means that we omit in the sum
the terms with (h, I ) =; or (h, I ) = (g , {2, . . . ,n +1}).

Notice at this point that the sum over the set of branch points has many
more terms in the present case of cameral covers compared to that of
spectral curves, hence the symmetry factor.

Reconstruction

The cameral curve topological recursion associated to the triplet
(ΣH (Φ(0)),Ω̃, B̃) yields a sequence {ω̃g ,n}2g−2+n>0, where ω̃g ,n is an (h∗o )⊗n-
valued w-equivariant meromorphic n-differential on ΣH (Φ(0)). Defining

̂̃Wn(
σ1

x̃1, . . . ,
σn

x̃n) =
de f∑

α1,...,αn∈Ro

Ŵn

(
[x̃1 ·Rσ1(Hα1)], . . . , ([x̃n ·Rσn (Hαn )]

)
α1 ⊗ ·· · ⊗αn

(2-48)

The proof has not been completed yet but we wish to show the following
equality of formal power series in ε

Conjecture 2.8

̂̃Wn =
∞∑

g=0
ε2g−2+n ω̃g ,n (2-49)
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Notice that for these definitions we used the connected correlators Ŵn

and not the non-connected ones Wn . Similarly, we can define the non-
connected cameral n-points function by

W̃n(
σ1

x̃1, . . . ,
σn

x̃n) = ∑
µ`{

σ1
x̃1,...,

σn
x̃n }

`(µ)⊗
i=1

̂̃W|µi |(µi ) (2-50)

and show that they also satisfy a set of loop equations. Indeed, if we
choose a Weyl group element τ ∈ w, we can write a twisted k th Casimir
element C τ

k , for each k ∈ {1, . . . ,d} (restricted to the Cartan subalgebra ho)

C τ
k =

de f

∑
α1,...,αk∈Ro

C
α1,...,αk
k R−1

τ (Hα1)⊗·· ·⊗R−1
τ (Hαk ) (2-51)

=
de f

∑
α1,...,αk∈Ro

C
τ;α1,...,αk
k Hα1 ⊗·· ·⊗Hαk (2-52)

and the set of twisted Casimirs {C τ
k }1 ≤ k ≤ d still generate the cen-

ter Z (U (g)). We then write the loop equations with this set of twisted
Casimirs

d∑
k=0

(−1)k yd−k
∑

α1,...,αk∈Ro

C
τ;α1,...,αk
k Wk+n([x̃ ·Hα1], . . . , [x̃ ·Hαk ], X1, . . . , Xn)

= Pn(x, y ; X1, . . . , Xn) (2-53)

in which we can make the replacement Xi = [x̃i ·Rσi (Hβi )], i ∈ {1, . . . ,n},

for any generic (x̃1, . . . , x̃n) ∈
o

Σ̃n and any n-tuples of Weyl group elements
σ1, . . .σn ∈w and simple roots β1, . . . ,βn ∈Rn

o to obtain

d∑
k=0

(−1)k yd−k
∑

α1,...,αk∈Ro

C
τ;α1,...,αk
k Wk+n([x̃ ·Hα1], . . . , [x̃ ·Hαk ], (2-54)

[x̃1 ·Rσ1(Hβ1)], . . . , [x̃n ·Rσn (Hβn )]) (2-55)

= Pn(x, y ; [x̃1 ·Rσ1(Hβ1)], . . . , [x̃n ·Rσn (Hβn )])
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=
d∑

k=0

(−1)k yd−k
∑

α1,...,αk∈Ro

C
τσ−1;α1,...,αk
k Wk+n([x̃ ·Rσ(Hα1)], . . . , [x̃ ·Rσ(Hαk )], (2-56)

[x̃1 ·Rσ1(Hβ1)], . . . , [x̃n ·Rσn (Hβn )]) (2-57)

which we can now multiply by β1⊗·· ·⊗βn . Summing over β1, . . . ,βn ∈Rn
o

and relabeling τσ−1 −→ τ then yields the set of cameral loop equations

d∑
k=0

(−1)k yd−k C τ
k (

σ

x̃) ·W̃n(
σ1

x̃1, . . . ,
σn

x̃n)

= ∑
β1,...,βn∈Ro

Pn

(
x, y ; [x̃1 ·Rσ1(Hβ1)], . . . , [x̃n ·Rσn (Hβn )]

)
β1 ⊗·· ·⊗βn

(2-58)

=
de f

P̃n(x, y ;
σ1

x̃1, . . . ,
σn

x̃n) =
de f

d∑
k=0

(−1)k yd−kP̃k;n(x;
σ1

x̃1, . . . ,
σn

x̃n)

(2-59)

for any Weyl group elements τ,σ ∈w, where C τ
k ·W̃n means contraction

of C τ
k with the k first tensor elements of each term in the definition of

W̃k+n . Note that the right hand side of the last equalities/definitions are
independent of the choice of τ,σ ∈w. Symbolically we may write

C τ
k (

σ

x̃) ·W̃n(J ) =
de f

〈
C τ

k

∣∣W̃k+n(
σ

x̃, . . . ,
σ

x̃, J )
〉

(2-60)

where the bracket in the right hand side is the contraction of tensors
over ho .

The next steps are then to decompose the non-connected correlators
into connected ones and use their ε expansions to derive the perturbative
loop equations. Notice at this point that we generically only need the
linear and quadratic loop equation to show that the correlators are indeed
reconstructed from topological recursion. Let us therefore consider the
coefficient of y r−2 in the cameral loop equations. It states that

C τ
2 (

σ

x̃) ·W̃n(
σ1

x̃1, . . . ,
σn

x̃n) = P̃2;n(x;
σ1

x̃1, . . . ,
σn

x̃n) (2-61)
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is a meromorphic quadratic differential in the variable x defined on the

base curve
o
Σ with possible singularities at the xi ’s and z j ’s but nowhere

else.
Let us now assume the existence of topological expansions for the con-

nected correlators given in the form

̂̃Wn =
∞∑

g=0
ε2g−2+nωg ,n (2-62)

defined on products of the cameral cover. The quadratic loop equations
can then be expanded in powers of ε and extracting the coefficient of
ε2g−2+n yields

P̃ (g )
2;n(x; J )β1,...,βn =

de f

〈
Hβ1 ⊗·· ·⊗Hβn

∣∣P̃ (g )
2;n(x; J )

〉
=

de f

〈
C τ

2 ⊗Hβ1 ⊗·· ·⊗Hβn

∣∣∣ ωg−1,n+2(
σ

x̃,
σ

x̃, J )

+ ∑
ItI ′=J
h+h′=g

ωh,1+#I (
σ

x̃, I )⊗ωh′,1+#I ′(
σ

x̃, I ′)
〉

+ . . . (2-63)

for any generic x̃ ∈
o

Σ̃, σ ∈w and β1, . . . ,βn ∈Ro, where J =
de f

{
σ1

x̃1, . . . ,
σn

x̃n}

and the dots . . . in the right hand side hide terms that already have the
wanted regularity (implied from quadratic loop equations at lower values
of 2g −2+n). Accordingly to previous notations, we also introduced

P̃ (g )
2;n(x; J ) =

de f

∑
α1,...,αn∈Ro

P̃ (g )
2;n(x; J )α1,...,αnα1 ⊗·· ·⊗αn (2-64)

=
de f

〈
C τ

2

∣∣∣ ωg−1,n+2(
σ

x̃,
σ

x̃, J )

+ ∑
ItI ′=J
h+h′=g

ωh,1+#I (
σ

x̃, I )⊗ωh′,1+#I ′(
σ

x̃, I ′)
〉

+ . . . (2-65)
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For any given sequence of simple roots (βn)n∈N ∈RN
o , we obtained a set

of expressions
(〈

Hβ1 ⊗·· ·⊗Hβn

∣∣P̃ (g )
2;n

〉)
g ,n∈N

2g−2+n>0

identical to those appearing

in the perturbative expansion of quadratic loop equations of [43], [30].

2.3 A scheme for solving integrable hierarchies given in Lax form

From Lax presentations to cameral curves

Keeping the notations of the previous section, let us consider a family of
Fuchsian differential systems (Pε,dx −1

ε
Φε) ∈ MFuchs with "small" deforma-

tion parameter ε and let us assume that this family also depends on on a
set of (complex) parameters {tk}k∈I called times for some (possibly infinite)
set I . We will furthermore assume that they are part of an integrable
hierarchy

[εdx −Φε,εdtk −A(k)
ε ] = [εdtk −A(k)

ε ,εdtl −A(l )
ε ] = 0 (2-66)

for any indices k, l ∈ I . In this section, all the considered objects have
time-dependences but we will never write these explicitly.

For generic values of ε, the pair (Pε,dx −1
ε
Φε) defines a Fuchsian differ-

ential system. Following the previous constructions, we can associate to any
choice of Lagrangian submanifold L ⊂ Ĥ1 a non-perturbative τ-function
TL such that for any k ∈ I ,

dtk lnTL =
∫
Γk

W1 (2-67)

where the cycle Γk =
de f

(
dtk

)∗ ∈ Ĥ1 is dual to the deformation dtk and is

given by the formula

Γk =−
M∑

j=1

(dtk z j )B′′
j +

1

2πi

∑
e

e
(
dtk Sγe ·Sγe

)
(2-68)

In principle, assuming all the correlators to admit topological expan-
sions that can be computed from topological recursion would reconstruct
perturbatively the τ-function TL .
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Assuming the they all admit a well-defined ε−→ 0 limit, we then get in
particular that Φε and the A(k)

ε are codiagonalizable at leading order in the
expansion parameter ε. That is there exists a decomposition

Φε|O (ε)0 = AdV Y , A(k)
ε |O (ε)0 = AdVαk (2-69)

where Y and the αk ’s are ho-valued meromorphic 1-forms.
These commutation relations also imply that there exists a common

globally flat local solution Ψε ∈ H0
loc(

o
Σ,P )0 to the integrable hierarchy of

equations

εdxΨε = ΦεΨε (2-70)

∀k ∈I , εdtk Ψε = A(k)
ε Ψε (2-71)

In this case and for any x̃ ∈
o

Σ̃, Ψε admits an asymptotic ε−→ 0 descrip-
tion of the form

Ψε(x̃) =
ε→0

V (x)Ψ̂ε(x̃)e
1
εS(x̃)C x̃ (2-72)

where S :
o

Σ̃ −→ ho ⊗Ko
Σ
is an h-valued function on the universal cover

and is set to satisfy

∂xS = Y , ∂tk S =αk (2-73)

Ψ̂ε is a solution of the linear equation

(AdV −1 dx)Ψ̂= [Y ,Ψ̂] = Y · Ψ̂− Ψ̂ ·Y , (2-74)

· denoting respectively Lie derivation from the left and from the right,
and such that it satisfies Ψ̂ε(x̃) = 1+O (ε). Once again, C x̃ = C ∈ Po is
sectorwise constant where now Stokes sectors are defined as being the
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connected components of
o

Σ̃′ = [
o

Σ̃− ⋃
α∈R

Γα∪Γα], where the Stokes and anti-

Stokes lines are now defined as

Γα =
de f

{x̃ ∈
o

Σ̃ | Re S(x̃) = 0} (2-75)

Γα =
de f

{x̃ ∈
o

Σ̃ | Im S(x̃) = 0} (2-76)

This Stoke’s network can be used once again to show the emergence of
cameral geometry in the WKB limit. The corresponding cameral cover is
still that associated to the Higgs pair (P0,Φ(0)) but now also depends on
the times {tk}k∈T of the hierarchy.

In the last chapter, we will investigate how quantum W-algebras can
be comprised in this setup. They are indeed the natural quantum analog
of the Fuchsian system since their classical counterparts, namely classical
W-algebras, are the Poisson structures relevent for the study of Gelfand-
Dickey hierarchies [3] or more generally Drinfeld-Sokolov hierarchy [51].
The background charge Q will play the role of the quantization parameter
and the Q = 0 case will be identified with a Fuchsian system.

3 A spectral curve for the KdV hierarchy

3.1 The Korteweig-de Vries equation and its applications

The Korteweig-de Vries equation, or KdV, originated in the study of shal-
low dispersive water waves. It allows for solitary wave solutions, or solitons,
that are localized but propagate through space and time. It is a non-linear
equation that possess two contributions that have clear physical interpreta-
tions. In its dimensionless form, it can be written as

∂t u = u∂xu + ε2

12
∂3

xu (3-1)

The first term of the right hand side is the non-linear term and accounts
for the finite size effects (depth of water) while its second term is directly
related to dispersion. The typical hydrodynamic situation in which these
waves can be observed is the propagation of waves on the surface of a
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canal (cf. the canals of Amsterdam for which it was written down). In this
situation, the finite depth of the water slows the front of the wave down
and accelerates its tail while dispersion acts the other way around. This
heuristics gives a hint to understand how such solitary waves that keep the
same size over time can emerge.

Figure 2.4: Finite size effects (black) vs. dispersion (red).

Hydrodynamics being scale invariant (what allows for example for the
use of wind tunnels in engeneering), the KdV equation can be applied to

• tidal waves caused by the competition between the gravitational pulls
of celestial bodies (e.g. earth vs. moon)

• tsunamis triggered by large (often underwater) earthquakes, volcanic
eruptions, (possibly submarine) landslides, etc.

• both of the above but in the sky !

as long as the shallow hypothesis can be applied, namely that the height
of the wave is negligeable compared to its width. Furthermore, there are
other fields of Physics in which such competing features as non-linear fi-
nite size effects and dispersion appear and where one can therefore hope
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to use this equation as a descriptive tool. Let us mention that it goes
from acoustics (e.g. acoustic waves in crystal lattices or ionic plasmas) to
electromagnetism, where it was hypothesized that the KdV equation could
describe ball lightning although there exists no consensus whatsoever on
the subject. In any case, one would still have to compare numerically the
predictions from the KdV equation to the particular phenomena under
study and sometimes this can rule it out from bearing responsibility (e.g.
in [70] the author shows the innocence of the KdV dynamics regarding the
Chilean tsunami of 1960 by studying its magnitude ).

Now this equation is also interesting mathematically speaking as it pos-
sesses an infinite dimensional space of solutions. In other words, complex-
ifying the problem, the generic solution of this equation depends holomor-
phically on an infinite number of additional parameters and this infinite
set of flows commute in the space of solutions. This gives rise to the KdV
hierarchy. It is a special case, namely the 2-reduced, of a more general
construction of integrable hierarchies called the Kadomtsev-Petiashvili hi-
erarchy or KP. Moreover, it fits in the framework of [38] as the most simple
non-trivial integrable hierarchy one can think of.

In what follows we will start by introducing the notion of τ-function
of the KdV hierarchy. It is known that τ-functions of the KdV hierarchy
is a generating function for intersection numbers of ψ and κ-classes on
the Deligne-Mumford moduli spaces M g ,n of stable algebraic curves. Af-
ter following their introduction to the subject, we state results by Bertola,
Dubrovin and Yang [21] expressing in a closed way the generating functions
of such intersection numbers.

After noticing that they are correlators associated with an sl2(C) Fuch-
sian system of topological type, we will determine the spectral curve un-
derlying the topological recursion satisfied by their WKB genus expansions
(notice that rk sl2(C) = 1 and therefore the cameral geometry coincides with
the usual geometry of spectral curves [42].
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3.2 KdV hierarchy and higher Weil-Petersson volumes

Hierarchy and τ-function

As we have seen, the KdV hierarchy is an infinite set of compatible in-
tegrable Lax equations, integrable in the sense that they possess an infi-
nite number of Poisson commuting conserved quantities. In the pseudo-
differential operators formalism it was constructed as

∂tk L = [((Lk/2)+,L] (3-2)

where L =
de f

∂2 −u and L1/2 = ∂− 1
2u∂−1 − 3

4(∂u)∂−2 + . . . is determined

recursively by requiring that no negative powers of ∂ occur in (L1/2)2. With
these notations, the general solution u of the hierarchy depends on the
odd times (t2k+1)k∈N and of course on a family of parameters for the initial
conditions (sk)k∈N∗ with respect to which we will specify the dependence
soon enough (they are the coupling constants generating the κ-classes).
Here we will change our conventions to a normalization better fit to study
the relationship with intersection theory on M g ,n . That is we consider the
Lax operator L = ∂2 +2u satisfying the hierarchy

∂tk L = [Ak ,L] (3-3)

Ak =
de f

1

(2k +1)!!
(L

1+2k
2 )+ (3-4)

With these conventions, the KdV equation is ∂t u = u∂xu + 1
12∂

3
xu where

we identified t0 = x as the space variable and t1 = t as the first time. We
will denote t = (tk)k∈N and s = (sk)k∈N∗

Definition 3.1 τ-function
A Sato τ-function of the KdV hierarchy is a formal power series expansion
τ ∈C[[t,s]] satisfying the Hirota bilinear identities

Res
z=∞

(
ψ(z;t;s)ψ∗(z; t̃;s)z2pd z

)= 0 (3-5)
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for any t and t̃, where we respectively defined the wave and dual wave-
functions by

ψ(z;t;s) =
de f

τ(tk − (2k−1)!!
z2k+1 ;s)

τ(tk ;s)
eϑ(z,t) (3-6)

and ψ∗(z;t;s) =ψ(−z;t;s) =
de f

τ(tk + (2k−1)!!
z2k+1 ;s)

τ(tk ;s)
e−ϑ(z,t) (3-7)

with a phase ϑ given by ϑ(z,t) =
de f

∑∞
j=0 t j

z2 j+1

(2 j+1)!! .

Proposition 3.2 τ-function of KdV τ ∈ C[[t,s]] is a τ-function of the KdV
hierarchy if and only if u = ∂2

xlogτ is a solution of the KdV hierarchy and

τ(t;s) = exp

 ∑
g ,n,l≥0

1

n!

∑
k1,...,kn≥0

d1,...,dl≥0

〈κd1
1 · · ·κdl

l τk1 · · ·τkn〉g ,n tk1 · · · tkn

sd1
1 · · · sdl

l

d1! · · ·dl !


(3-8)

where

〈κd1
1 · · ·κdl

l τk1 · · ·τkn〉g ,n =
∫

M g ,n

ψk1
1 · · ·ψkn

n κd1
1 · · ·κdl

l (3-9)

Definition 3.3 n-point correlation functions and generating functions
For any τ-function of the KdV hierarchy and any integer n ∈ N∗, define the
n-point correlation functions as

〈〈τk1 · · ·τkn〉〉(t;s) = ∂nlog τ

∂tk1 · · ·∂tkn

(t;s) (3-10)

and their generating function to be

Fn(z1, . . . , zn;t;s) = ∑
k1,...,kn∈N

〈〈τk1 · · ·τkn〉〉(t;s)
(2k +1)!!

z2k1+2
1

· · · (2kn +1)!!

z2kn+2
n

(3-11)
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Lax presentation of the problem and expression of the generating functions

The wave functions are formal eigenfunctions of the Lax operator Lψ= z2ψ

and Lψ∗ = z2ψ∗ and their dependence in the times is specified by the
compatible system ∂tkψ= Akψ, ∂tkψ

∗ =−Akψ
∗ for any integer k ≥ 0. They

fit into the fundamental matrix solution

Ψ(z;t;s) =
(

ψ(z;t;s) ψ∗(z;t;s)
−∂xψ(z;t;s) −∂xψ

∗(z;t;s)

)
(3-12)

Theorem 3.4 Closed form for the generating functions [Bertola, Dubrovin,
Yang]
Defining the matrix Θ by Θ(z;t;s) = zΨ(z;t;s)σ3Ψ(z;t;s)−1, where we used the

usual definition σ3 =
de f

(
1 0
0 −1

)
is a Pauli matrix, then for any integer n ≥ 2,

the generating functions for multi-point correlation functions take the form

F1(z;t;s) = 1

2
Tr

(
Ψ(z;t;s)−1∂zΨ(z;t;s)σ3

)−∂zϑ(z,t) (3-13)

Fn(z1, . . . , zn;t;s) = − 1

n

∑
σ∈Sn

Tr
(
Θ(zσ(1);t;s) · · ·Θ(zσ(n);t;s)

)
∏n

j=1

(
z2
σ( j ) − z2

σ( j+1)

) −δn,2
z2

1 + z2
2

(z2
1 − z2

2)2

(3-14)

3.3 WKB analysis

Introducing the "small" parameter ε, we apply our scheme using standard
WKB analysis (up to first order only !) applied to the formal eigenfunc-
tion relations (they are second order ordinary differential equations of the
variable x). This yields the asymptotics

ψ(±z;t;s) ∼
ħ→0

(
1− 2u0(t;s)

z2

)−1/4

e± 1
ε

∫ x
0 dχ

p
2u0(t0=χ,t1,...;s)−z2

(3-15)

Straightforward computations of limits from the definitions of the gen-
erating functions of the 1-point and 2-points generating functions and the
topological expansions
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F1 =
∞∑

g=0
ε2g−1ωg ,1, and F2 =

∞∑
g=0

ε2gωg ,2, (3-16)

then allow to find the expressions

ω0,1(z) = d z[(1− t1)z2 −∑
j≥2

(t j −h j−1(−s))
z2 j

(2 j −1)!!

−
∫ x

0

dχ√
1− 2u0(t0=χ,t1,...;s)

z2

] (3-17)

with the coefficients (h j ) j∈N∗ being obtained from the parameters
(s j ) j∈N∗ by solving the formal equation

1+∑
j≥1

h j (s)z j = exp(
∑
j≥1

s j z j ) (3-18)

ω0,2(z1, z2) = d z1 d z2[z2
1 + z2

2 −4u0(t;s)]

(z2
1 − z2

2)2
√

1− 2u0(t;s)
z2

1

√
1− 2u0(t;s)

z2
2

(3-19)

ω1,1(z1) =

 ∂xu0(t;s)

8z4
(
1− 2u0(t;s)

z2
1

)5/2
+ ∂2

xu0(t;s)

24z2∂xu0(t;s)
(
1− 2u0(t;s)

z2
1

)3/2

d z1

(3-20)

KdV spectral curve

Definition 3.5 KdV spectral curve [B.-Yang]
Let S = ((λ,η),Ω,B) be the genus 0 spectral curve given by
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λ(z) =
de f

1

2
z2 (3-21)

η(z) =
de f

(1− t1)z −∑
j≥2

(t j −h j−1(−s))
z2 j−1

(2 j −1)!!

−
∫ x

0

dχ√
z2 −2u0(t0 =χ, t1, . . . ;s)

(3-22)

Ω(z) =
de f

η(z)dλ(z) (3-23)

B(z1, z2) =
de f

d z1 d z2[z2
1 + z2

2 −4u0(t;s)]

(z2
1 − z2

2)2
√

1− 2u0(t;s)
z2

1

√
1− 2u0(t;s)

z2
2

(3-24)

where z is a local parameter around 0 ∈ C, t0 = x and u0(t;s ) is the genus
0 part of the general solution u(t;s;ħ) =∑

g≥0ε
2g ug (t,s ) to the KdV hierarchy,

it is the unique solution to the dispersionless KdV hierarchy

∂tk v = vk

k !
∂t0 v, k ∈N (3-25)

such that the initial data u0(t0 = x,0,0, . . . ;s) = f (x;s) satisfies

x = f (x;s)+ ∑
k≥2

hk−1(−s)
f (x;s)k

k !
, (3-26)

WKB analysis gives the only natural candidate for a spectral curve to
run the topological recursion to compute the correlators and therefore
yields the following reconstruction conjecture

Conjecture 3.6 Higher W-P volumes by topological recursion [B.-Yang]
Define the symplectic invariants (ωg ,n)2g−2+n≥0 of S by the topological recursion
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ωg ,n(z1, . . . , zn;t;s) =
de f

∑
a∈{±p2 v(t:s)}

Res
z=a

∫ z
a ω0,2(z1, ·;t;s)

2ω0,1(z;t;s)

×
(
ωg−1,n+1(z,−z, z2, . . . , zn;t;s)

+ ∑
g1+g2=g

ItJ={2,...,n}

′
ωg1,1+|I |(z, zI ;t;s)ωg2,1+|J |(−z, z J ;t;s)

)
,

(3-27)

where ia is the local involution around z = a sending a +ξ to a −ξ and ∑′

means omitting the terms with (g1, I ) = (0,Ø) and (g1, I ) = (g , {2, . . . ,n}).

They are the generating functions of the higher Weil-Petersson volumes.
Namely, for any g ,n ∈N such that 2g −2+n > 0,

ωg ,n(z1, . . . , zn;t;s) = ∑
k1,...,kn≥0

(2k1 +1)!!
d z1

z2k1+2
1

· · · (2kn +1)!!
d zn

z2kn+2
n

×
∞∑

m=0

1

m!

∑
j1,..., jm≥0

∫
M g ,n+m

ψk1
1 · · ·ψkn

n ψ
j1
n+1 · · ·ψ jm

n+m t j1 · · · t jm exp

(∑
i≥1

si κi

)

(3-28)

3.4 A non semi-simple cohomological field theory

In the case where s1 = s2 = ·· · = 0, the spectral curve becomes

λ = 1

2
z2, (3-29)

η = z −
∫ t0

0

d x

(z2 −2 v(x, t1, t2, . . . ))
1
2

− t1z − ∑
k≥2

tk
z2k−1

(2k −1)!!
. (3-30)

The input data for the topological recursions become
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ω0,1(z;t;0) =
z2 −

∫ t0

0

d x(
1− 2 v(x,t1,t2,... )

z2

) 1
2

− t1 z2 − ∑
k≥2

tk
z2k

(2k −1)!!

 d z,

(3-31)

ω0,2(z1, z2;t;0) = z2
1 + z2

2 −4 v(t)

(z2
1 − z2

2)2
(
1− 2 v(t)

z2
1

) 1
2
(
1− 2 v(t)

z2
2

) 1
2

d z1 d z2, (3-32)

ω1,1(z;t;0) = vt0t0(t) d z

24z2
(
1− 2v(t)

z2

)3/2
vt0(t)

+ vt0(t) d z

8z4
(
1− 2v(t)

z2

)5/2
. (3-33)

The conjecture takes the following simpler form

Conjecture 3.7 Vanishing initial conditions for the KdV hierarchy [B.-Yang]
For any integers g ,n ∈N such that 2g −2+n > 0, the following formula holds
true

ωg ,n(z1, . . . , zn;t;0) = ∑
k1,...,kn≥0

n∏
`=1

(2k`+1)!!
d z`

z2k`+2
`

∑
k1,...,kn≥0

∫
M g ,n

ψk1
1 · · ·ψkn

n Ωg ,n(t)

(3-34)

where Ωg ,n(t) is an analogue of a CohFT given by

Ωg ,n(t) =
de f

∑
m≥0

1

m!

∑
j1,..., jm≥0

∑
τ∈Sn

κτ,( j1,..., jm) t j1 . . . t jm . (3-35)

and κτ,( j1,..., jm) is a product of Mumford classes associated to certain cycle
decompositions of the permutation τ.

Example 3.8 If furthermore t0 = t1 = t2 = ·· · = 0 the KdV curve becomes

λ = 1

2
z2, (3-36)

η = z + ∑
k≥2

hk−1(−s)
z2k−1

(2k −1)!!
. (3-37)
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This curve coincides with Eynard–Orantin–Zhou’s curve [43], [75]. We have
in this case

ω0,1(z;0;s) =
(

z2 + ∑
k≥2

hk−1(−s)
z2k

(2k −1)!!

)
d z, (3-38)

ω0,2(z1, z2;0;s) = z2
1 + z2

2

(z2
1 − z2

2)2
d z1 d z2, (3-39)

ω1,1(z;0;s) = d z

8z4
+ s1 d z

24z2
(3-40)

It has been proved by Eynard–Orantin and by Zhou from different approaches
that

ωg ,n(z1, . . . , zn;0;s) = ∑
k1,...,kn≥0

n∏
`=1

(2k`+1)!!
d z`

z2k`+2
`

× ∑
k1,...,kn≥0

∫
M g ,n

ψk1
1 · · ·ψkn

n e
∑

k≥1 sk κk

(3-41)

Back to the conjecture, on can easily check that the sequence of coho-
mology classes

(
Ωg ,n(t)

)
2g−2+n>0 do not satisfy the most elementary axioms

of cohomological field theories [61] and this relates to works that have stud-
ied cases corresponding to semi-simple Frobenius algebras [39] or semi-
simple cohomological field theories [1] and remarks thereof that these were
not the general situation where the topological recursion could appear.

4 The Topological Type property

Following the work of [16] and [15] we define the following topological type
property:

The ε-connection ∇ε = ε∇0 −Φε is said to be of “topological type" if and
only if all the following conditions are met:
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1. Asymptotic expansion: There exists some simply connected open do-

main of
o
Σ and an Cartan subalgebra h of g (this allows for the local

identifications
o

Σ̃ ' o
Σ and Σ̂ ' o

Σ×g), in which the connected correla-

tors Ŵn(X1, . . . , Xn)’s with each Xi ∈
o
Σ×h, have a Poincaré asymptotic

ε expansion

Ŵn(X1, . . . , Xn) = δn,1

ε
Ŵ (0)

1 (X1)+
∞∑

k=0

εk Ŵ (k)
n (X1, . . . , Xn), (4-1)

such that each Ŵ (k)
n ([x1.E1], . . . , [xn.En]) is, at fixed Ei ∈ h, an algebraic

symmetric n−form of the variables x1, . . . , xn . In other words, there
must exist a (possibly nodal) Riemann surface S independent of k

and n, which is a ramified cover of
o
Σ, such that the pullbacks, at fixed

Ei ∈ h, of Ŵ (k)
n ([x1.E1], . . . , [xn.En]) to S n are meromorphic symmetric

n-forms.

2. Pole only at branch points: For any pair of integers (k,n) ∉
{(0,1), (0,2)} and any n-tuple (E1, . . . ,En) ∈ hn, the k th order connected
correlation functions Ŵ (k)

n ([x1.E1], . . . , [xn.En]) pulled back to S , may

only have poles at the ramification points of S → o
Σ. In particular they

cannot have singularities at nodal points of S , or at the punctures,
i.e. the pullbacks of singularities of Φ. Moreover Ŵ (0)

2 ([x1.E1], [x2.E2])
may only have a double pole along the pullback of the diagonal in
o
Σ× o

Σ to S ×S of the form d x1 d x2〈E1,E2〉
(x1−x2)2 but no other singularities.

3. Parity: Under the involution ε→−ε:

∀n ≥ 1 : Ŵn|−ε = (−1)n Ŵn|ε (4-2)

for n ≥ 1. This is equivalent to say that for any generic E1, . . . ,En ∈ ho,
the series expansion of Wn([x1.E1], . . . , [xn.En]) is even (resp. odd)
when n is even (resp. odd).
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4. Leading order: For all n ≥ 1, the leading order term of the series

expansion in ε of the correlation function Ŵn is at least of order εn−2.
In other words:

∀n ≥ 1, ∀0 ≤ k ≤ n −3 : Ŵ (k)
n = 0 (4-3)

If the system satisfies the topological type property, we denote

ω̂g ,n = Ŵ (2g−2+n)
n (4-4)

and we have

Ŵn =
∞∑

g=0
ε2g−2+n ω̂g ,n (4-5)

All those conditions are non-trivial, and there exist plenty of examples
of Φε for which they are not met. Fortunately, there are also plenty of very
interesting examples for which they are. We now recall a set of simplifying
assumptions that is shown in [10] in Appendix to imply the Topological
Type property.

4.1 Sufficient assumptions

Here we shall restrict ourselves to the case where the Lie algebra is the set
of d×d matrices g =

de f
Md (C) and the base curve is the punctured Riemann

sphere

o
Σ =

de f
CP1 − {z1, . . . , zM } (4-6)

In particular we are allowed to choose the usual de Rham differential as
reference connection ∇0 =

de f
d x ∂x
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Setting : compatible linear differential systems

• In the spirit of the WKB study of Lax systems we shall consider a
compatible system of linear equations of the form :

ε∂xΨε(x, t ) = Φε(x, t )Ψε(x, t ) (4-7)

ε∂tΨε(x, t ) = Rε(x, t )Ψε(x, t ) (4-8)

where the d ×d matrix therefore belongs for any value of its argu-
ments to the group of invertible matrices Ψε(x, t ) ∈G =

de f
GLd (C). The

d ×d matrices Lε and Rε are assumed to be rational functions of x
for any values of t and ε. Even though they appear to play symmetric
roles, x is usually called the spectral parameter and t the time param-
eter. To shorten notations, we will often not write explictely the time
dependence when no confusion is possible.

We shall give a set of sufficient conditions on Φε and Rε for the system
to be of Topological Type. We will then apply this to two examples,
namely the (p, q) minimal models et the six Painlevé equations.

• The compatibility relation of the two equations is called the Lax equa-
tion :

ε∂tΦε(x, t )−ε∂xRε(x, t ) = [Rε(x, t ),Φε(x, t )]. (4-9)

• Recall that the construction that was presented associated to a given
solutionΨε of the differential system is associated a Lie algebra-valued
solution Mε of the adjoint system :

ε∂x Mε(x, t ) = [Φε(x, t ), Mε(x, t )] (4-10)

ε∂t Mε(x, t ) = [Rε(x, t ), Mε(x, t )] (4-11)

whose solutions are of the form

Mε(x, t ) =Ψε(x, t )EΨε(x, t )−1 =
de f

MΨε([x ·E ]) (4-12)
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where E is a fixed Lie algebra element (it is constant in the sense
∂xE = 0).

Recall that any another solution of the Lax compatible system of dif-
ferential equations is obtained from Ψ through the right multiplication
Ψ(x) →Ψ(x)C by a constant matrix C ∈G , ∂xC = 0, which can be re-
absorbed in a global conjugation of the Lie algebra g. Moreover, Ψε

and Mε are multivalued on
o
Σ and globally defined only on its uni-

versal cover. The construction of the non-perturbative bundle Σ̂Ψε
allowed in the general framework to have a uniquely valued map MΨε

taking into account different choices of Lie algebra element E .

We shall now describe our assumptions on the Lax pair (Φε,Rε). These
assumptions are described in terms of algebraic geometry and the notion
of spectral curve. There are in total 6 assumptions that are presented in
the following paragraphs. Each assumption allows new definitions and/or
implies new properties that are presented in several lemmas and proposi-
tions. Although they may appear technical, these assumptions have been
proved to hold in many cases like Painlevé Lax pairs [17], [57] , [58]. We
prove them for all (p, q) minimal models in the next section.

Spectral curve(s)

Assumption 4.1 (ε expansion) We make the assumption that Φε and Rε ad-
mit a well defined limit when ε−→ 0 :

lim
ε→0

Φε(x, t ) =Φ(0)(x, t ) , lim
ε→0

Rε(x, t ) = R (0)(x, t ), (4-13)

and that both limits are rational functions of x. Furthermore, we assume
that they admit a ε expansion (formal or asymptotic) of the form :

Φε =
∞∑

k=0

εkΦ(k) , Rε =
∞∑

k=0

εk R (k) (4-14)

where for any k ≥ 0, Φ(k) and R (k) are rational functions of x.

The spectral curve is defined as the zero locus of the characteristic
polynomial of the matrix Φ(0), i.e. the eigenvalue locus, whence the name
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“spectral" curve. In the general Lie group context, this corresponds to
Hitchin’s map.

Definition 4.2 Spectral curve
The (family of ) spectral curve of the differential system is the zero locus of the
characteristic polynomial in C×C :

St =
de f

{(x, y) ∈C2 |Et (x, y) =
de f

Det(y −Φ(0)(x, t )) = 0} (4-15)

This defines an (a family of ) algebraic plane curve immersed into C×C. We
define the two meromorphic functions corresponding to the x and y projection
in C×C :

xt : St −→C

(x, y) 7−→ x (4-16)

yt : St −→C

(x, y) 7−→ y (4-17)

The plane curve can be desingularized. Its desingularization is a smooth
compact Riemann surface noted Σt , and the functions xt and yt can be identi-
fied with meromorphic functions Σt −→ C. This allows to redefine the spectral
curve as the triplet :

St = (Σt , xt , yt ), (4-18)

given by a (family of ) compact Riemann surface Σ≡ Σt , equipped with two
meromorphic functions xt :Σt −→C and yt :Σt −→C. On a compact curve, any
two meromorphic functions are related by an algebraic equation :

∀z ∈Σt , Et (xt (z), yt (z)) = 0 where Et is a polynomial (4-19)

thus giving an alternative definition of the spectral curve directly from (4-18).
All these objects come in time dependent families

x =
de f

(xt )t , y =
de f

(yt )t , E =
de f

(Et )t and S =
de f

(St )t (4-20)
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We shall also be interested in the time dependent family of one-forms ω(0)
1 ,

defined at any time t on the corresponding Riemann surface Σt defined by
ω(0)

1 (t ) = yt d xt , sometimes referred to as the Liouville form. It is indeed the
pullback of the tautological form of C×C to the spectral curves.
The characteristic polynomial has degree in the variable y equal to the size

of the matrices (the dimension of the fundamental representation of gld (C)) :

degy Et (x, y) = d (4-21)

and thus for a given generic x ∈C, the equation Et (x, y) = 0 has d solutions,
namely the d eigenvalues Y1(x, t ), . . . ,Yd (x, t ) of Φ(0)(x, t ). They are the images
by the function yt , of the d pre-images of x by xt :

x−1
t (x) = {z ∈Σt |, xt (z) = x} =

de f
{z1(x, t ), . . . , zd (x, t )} (4-22)

gives

Yi (x, t ) = yt (z i (x)). (4-23)

Here we took an arbitrary ordering of the eigenvalues and this ordering
can always be chosen locally to be analytic within some open simply connected
domain of the punctured sphere C− {Singularities of xt and x−1

t }. This will
turn out to be irrelevant for our purpose.

Definition 4.3 Auxiliary spectral curve
Similarly we define the family of auxiliary spectral curves S̃ =

de f
(Ŝt )t by the

zero locus of the characteristic polynomial of R (0). That is at any time t by

S̃t =
de f

{(x, s) ∈C2 | Ẽt (x, s) =
de f

Det(s −R (0)(x, t )) = 0} (4-24)

that we shall encode as the triple

S̃t = (Σ̃t , x̃t , st ), (4-25)

given by a Riemann surface Σ̃ =
de f

(Σ̃t )t , equipped at each time t with two

meromorphic functions x̃t : Σ̃t → C and st : Σ̃t → C, related by the algebraic
equation
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∀z ∈ Σ̃t , Ẽt (x̃t (z), st (z)) = 0. (4-26)

Similarly, for a given x there exists a set of d solutions denoted
(S1(x, t ), . . . ,Sd (x, t )) of the equation of the auxiliary curve Ẽt (x, s) = 0. They
are the d eigenvalues of R (0)(x, t ), and they satisfy Si (x, t ) = st (z̃ i

t (x)) with
x̃t (z̃ i

t (x)) = x.

Lemma 4.4 The matrices Φ(0)(x, t ),R (0)(x, t ) commute thus they generically
have a common basis of eigenvectors and their eigenvalues are not algebraically
independent. In particular the spectral curves St ,S̃t have the same desingular-
ization : Σt = Σ̃t and the same x-projection to C : x̃t = xt .

proof:
At order ε0, the Lax compatibility condition (4-7) reads :

[Φ(0)(x, t ),R (0)(x, t )] = 0. (4-27)

For generic x, all the eigenvalues of R (0)(x, t ) are distinct. It implies
that the set of matrices commuting with R (0)(x, t ) is the algebra of polyno-
mials of R (0)(x, t ). Consequently there exists a polynomial Q(x, s) (the in-
terpolating Lagrange polynomial) such that Φ(0)(x, t ) =Q(x,R (0)(x, t )), and
Yi (x) =Q(x,Si (x)), i.e. y(z) =Q(x̃(z), s(z)) for all z ∈ Σ̃t . This implies that
yt is a meromorphic function on Σ̃t . Exchanging the roles of R (0) and Φ(0)

also shows that st is a meromorphic function on Σt . Therefore Σt = Σ̃t , and
xt = x̃t . ■

Geometry of the spectral curve

Genus 0 assumption From now on, we shall assume that our system is such
that :

Assumption 4.5 (Genus zero Spectral Curve) The compact Riemann sur-
face Σt has genus equal to 0. This implies that it is isomorphic to the Riemann
sphere

Σt =
de f

CP 1 (4-28)
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and that, for any given t in an open domain, the functions xt , yt , st , are
rational functions of a variable z ∈C :

xt (z), yt (z), st (z) ∈C(z) = { rational functions of z} (4-29)

Remark 4.6 The issue of determining if this genus zero hypothesis can be lifted
is mostly open. In fact in the example of matrix models, it is known that the
TT property is generically not satisfied when the genus is strictly positive. But
a generalization of the TT property can be found by allowing the coefficients
in the ε expansion, to be “oscillatory”, i.e. bounded quasi-periodic functions of
1
ε
. In that case, the oscillatory terms are themselves found by the topological
recursion. See [40].
Besides, in knot theory, the TT property happens to hold with spectral curves

(A-polynomial) of strictly positive genus. This is due to a miracle that the 1
ε
term

is exactly a period of the oscillatory term, and thus can be treated as a constant
coefficient, see [40], and then the TT property holds. The general situation is
still unclear.

Remark 4.7 The choice of the parameterizing variable z is arbitrary up to
Möbius transformations (automorphisms of the Riemann sphere) :

z 7−→ az +b

cz +d
. (4-30)

In particular, we may chose the coefficients of the Möbius transformation
a,b,c,d to be time dependent : a(t ),b(t ),c(t ),d(t ).

The functions x, y and s depend on both z and t . They are moreover ra-
tional in z. Let us mention that their dependence on t is not required to be
rational. On the contrary, there are case for which they are transcendental
functions of t , like for example solutions of Painlevé equations.

We shall denote for any function f = f (z, t ),

f ′(z, t ) =
de f

∂ f

∂z
, ḟ (z, t ) =

de f

∂ f

∂t
. (4-31)

Note that taking a time derivative at a fixed value x(z, t ), the chain rule
yields a Poisson bracket { f , x} = ḟ x ′− ẋ f ′ :
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d f (z, t )

d t

∣∣∣∣
x(z,t )

= ḟ − ẋ
f ′

x ′ =
ḟ x ′− ẋ f ′

x ′ = 1

x ′ { f , x}, (4-32)

thus reflecting the symplectic structure of C×C of which the family
Σ= (Σt )t defines a Lagrangian foliation.

Behavior at poles

Lemma 4.8 Bound on the orders of the singularities of the eigenvalue functions
The poles of the eigenvalue functions yt (resp. st ) are poles of Φ(0)(x(z), t ) (resp.
R (0)) of at least the same order.

proof:
Let α be a pole of yt (z) of order dα > 0 so that yt (z) = O

(
(z −α)−dα

)
.

Let us assume that (z −α)dαΦ(0)(x(z), t ) = o(1). This would imply that

0 = Det
(
yt (z)Id−Φ(0)(x(z), t )

)= yt (z)d (1+o(1)) (4-33)

which is a contradiction. This implies that Φ(0)(x(z), t ) has a pole of
order at least dα. Obviously, the same holds for R (0)(x, t ). ■

Lemma 4.9 Poisson structure
The eigenvalues (Yi (x, t ))1≤≤d of Φ(0)(x, t ) and (Si (x, t ))1≤≤d of R (0)(x, t ) are
related by the following Schwartz relation :

∂Yi (x, t )

∂t
= ∂Si (x, t )

∂x
. (4-34)

Equivalently, the functions xt (z), yt (z), st (z) satisfy :

∂yt (z)

∂t

∂xt (z)

∂z
− ∂xt (z)

∂t

∂yt (z)

∂z
= ∂st (z)

∂z
,

or written in the notations of (4-31) :

{yt , xt } = ẏt x ′
t − ẋt y ′

t = s ′t .
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proof:
Since Φ(0)(x, t ) and R (0)(x, t ) commute, they generically have a com-

mon basis of eigenvectors, let us denote V (x, t ) the matrix whose i th col-
umn is the eigenvector of Φ(0)(x, t ) with eigenvalue Yi (x, t ) and of R (0)(x, t )
with eigenvalue Si (x, t ). Denoting Y (x, t ) = diag(Y1(x, t ), . . . ,Yd (x, t )) and
S(x, t ) = diag(S1(x, t ), . . . ,Sd (x, t )), we have

Φ(0)(x, t ) =V (x, t )Y (x, t )V (x, t )−1 , R (0)(x, t ) =V (x, t )S(x, t )V (x, t )−1.
(4-35)

Now write the Lax equation to order ε1 and conjugate by V (x, t ) :

[S(x, t ),V (x, t )−1Φ(1)(x, t )V (x, t )]+ [V (x, t )−1R (1)(x, t )V (x, t ),Y (x, t )]
= ∂t Y (x, t )−∂xS(x, t )(4-36)

The left hand side is a sum of commutators with diagonal matrices,
hence has vanishing entries on the diagonal. On the contrary, the right
hand side is a diagonal matrix and evaluating its diagonal entries gives the
wanted result. ■

As an immediate corollary we get :

Corollary 4.10 Auxilary singularities and their orders
Finite (i.e at x 6= ∞) singularities of S are also singularities of Y , of at least
the same degree. And if S has a singularity of order d∞ at x =∞, then Y has
a singularity at x =∞ of order at least d∞+1.

Note that the converse is not true : some singularities of Y may be
time independent and may not be singularities of S. In some sense, we
can say that R (0) is less singular than Φ(0). We here see how having a Lax
pair simplifies the discussion. Indeed, when having a set of compatbile
differential systems, consider the less singular.

branch points and double points

Definition 4.11 Branch points
We define the branch points (ai )1≤i≤r as the points of Σ around which the
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projection map z 7−→ x(z) is no longer locally invertible. There may be two
kinds of branch points :

• Finite branch points, at which x(ai ) 6=∞. They are zeros of the differential
d x :

d x(ai ) = 0.

Moreover, they are among the simultaneous solutions of E(x, y) = 0 and
Ey (x, y) ≡ ∂y E(x, y) = 0.

• branch points at poles of x of order ≥ 2.

A branch point ai of the spectral curve S (resp. S̃ ) is called regular if it is
not a branch point of y (resp. s). Generic finite branch points of x have order 2,
i.e. are simple zeros of d x, and regularity means that they are not zeros of d y
(resp. d s).

Note that the branch points may depend on time t . However, the num-
ber of branch points r ≥ 1 does not locally depend on t . We will also need
the following definition:

Definition 4.12 Self-intersections

We define the double points ( (bi ,bi ) )1≤i≤r ′′ (resp. ((b̃i , b̃i ))1≤i≤r̃ ′′) of the spectral
curve St = (Σt , xt , yt ) (resp. of S̃t = (Σ̃t , x̃t , st )), as the pairs (bi ,bi ) = (z, z ′)

(resp. (b̃i , b̃i ) = (z, z ′)) solutions of


x(z) = x(z ′)
y(z) = y(z ′)

z 6= z ′
,

resp.


x(z) = x(z ′)
s(z) = s(z ′)

z 6= z ′

 (4-37)

These double points (x, y) = (x(bi ), y(bi )) = (x(bi ), y(bi )) ∈C×C of the spec-
tral curve (resp. (x, s) = (x(bi ), s(bi )) = (x(bi ), s(bi )) ∈C×C), are then solutions
of the system


E(x, y) = 0

Ey (x, y) = 0
Ex(x, y) = 0

,

resp.


Ẽ(x, s) = 0

Ẽs(x, s) = 0
Ẽx(x, s) = 0

 (4-38)
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We shall make the following assumption regarding the double points of
the auxiliary spectral curve :

Assumption 4.13 (Regularity of St and no double points for S̃t ) Let
us make the assumption that for any value of the time parameter t , the
auxiliary spectral curve S̃t is regular and has no double points. In other words,
S̃t is a smooth embedding into C×C (rather than an immersion) with no
self-intersection. Moreover we assume that St is regular.

Note that the last assumption does not exclude the possibility that the
spectral curve St admits double points. Moreover, the auxiliary spectral
curves S̃t = (Σ̃t , x̃t , st ) satisfying assumptions 4.5 and 4.13 are the same as
the ones described in [27]. We will sometimes lighten notations by dropping
the subscript t when no confusion is possible.

We have the following lemma :

Lemma 4.14 The meromorphic one-form

d x(z)

Ey (x(z), y(z))
(4-39)

is holomorphic at all branch points (finite or infinite). It has poles only
at double points (generically simple poles at bi and bi with opposite residues)
and/or at simple poles of x.

proof:
This is a classical algebro-geometric result, we refer to [45]. Let us sketch

the proof as the method is quite instructive. Near a finite branch point a
of given order k ≥ 2, z =

de f
(x − x(a))1/k can be used as a local coordinate.

Consider the case y(a) 6=∞. Since the branch point is regular, d y does not
vanish at that point, i.e.

y(z) = y0 + y1z +O(z2), y1 6= 0. (4-40)

This gives :

E(x, y) = ((y − y0)k − yk
1 (x −x(a)))× (1+o(1)), (4-41)
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and

d x

Ey (x, y)
= kzk−1 d z

k(y − y0)k−1
× (1+o(1)) (4-42)

and thus d x
Ey (x,y) is analytic at z = 0, i.e. at x = a. The other cases where

x(a) =∞ or y(a) =∞ can be treated similarly in a local variable. In other
words, at a finite regular branch point, both d x(z) and Ey (x(z), y(z)) vanish
at the same order such that the ratio remains finite.

For double points, Ey (x(z), y(z)) vanishes but not d x(z), so the ratio has
a pole. Factor the polynomial E as

E(x, y) =
d∏

k=1

(
y − y(zk(x))

)
(4-43)

We then have that when z −→ bi and z ′ −→ bi simultaneously, and

Ey (x(z), y(z)) ∼ (y(z)− y(z ′))Ey,y (x(bi ), y(bi )) (4-44)

∼ (z − z ′)
d y(z)

d z
Ey,y (x(bi ), y(bi )) (4-45)

Assuming that the double point is generic, i.e. Ey,y d y 6= 0, we get :

Res
z=bi

d x(z)

Ey (x(z), y(z))
= −Res

z=bi

d x(z)

Ey (x(z), y(z))
(4-46)

= d x(bi )

d y(bi )Ey,y (x(bi ), y(bi ))
(4-47)

■

Eigenvectors

Let div∞x =
p∑

k=1
dkαk be the divisor of poles of the rational map z 7−→ x(z),

dk being the degree of αk (αk may depend on t ). The total degree is then
defined as the size of the matrix
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p∑
k=1

dk =
de f

d . (4-48)

Up to a Möbius change of variable on z, we may assume that none of
the αk ’s is located at ∞. We can thus can write the rational function x(z)
uniquely as :

x(z) = X∞,0 +
p∑

k=1

dk∑
l=1

Xk,l

(z −αk)l
. (4-49)

where dk ≥ 1. Moreover, if dk ≥ 2 then αk is a (non-finite) branch point.
Note that if one of the αk is at α∞ =∞ we would rather write :

x(z) =
d∞∑
l=0

X∞,l z l +
p∑

k=1

dk∑
l=1

Xk,l

(z −αk)l
, (4-50)

But to avoid useless notation complications, upon changing z by a
Möbius transformation, we shall assume that all poles of x(z) are finite.

The generalized Vandermonde matrix V (x)

Definition 4.15 Generalized Vandermonde matrix
For generic points z ∈ Σ, in particular away from the branch points, let us
define the d -dimensional vector ~V (z) with entries labeled by all possible pairs
(k, l ) with 1 ≤ k ≤ p and 1 ≤ l ≤ dk :

~V (z) = (Vk,l (z))k,l , where Vk,l (z) =
de f

1

(z −αk)l
p

x ′(z)
. (4-51)

In addition we define these matrix entries to be ordered as follows

~V (z) =
de f

(
V1,1(z), . . . ,V1,d1(z), . . . ,Vp,1(z), . . . ,Vp,dp (z)

)
. (4-52)

Let V (x) be the d ×d square matrix whose columns are the vectors ~V (z j (x))
:

∀1 ≤ k ≤ p,1 ≤ l ≤ dk ,1 ≤ j ≤ d : (V (x))k,l ; j =
de f

Vk,l (z j (x)) (4-53)
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It is analytic locally in some open simply connected domain, in which the z i

and the square root are defined.

Remark 4.16 The sign of the square root, chosen arbitrarily, is well defined
and analytic only locally in some open simply connected domain – the same
domain in which we defined the ordering of z i (x)’s. This will eventually be
irrelevant as the square root will always appear to even powers.

Remark 4.17 Note that if x has only one pole (p = 1 and d1 = d ) then the
previous matrix is a Vandermonde matrix multiplied by 1

(z−α1)
p

x′(z)
, hence the

denomination “generalized Vandermonde matrix”.

The matrix V (x) satisfies remarkable properties.

Lemma 4.18 Charge conjugation
There exists an invertible d ×d matrix C ≡C (t ) (independent of x), such that

V (x)T CV (x) = Id, (4-54)

where V T denotes the transpose of the matrix V . Its coefficients are given by

Ck,l ;k ′,l ′ =−δk,k ′Xk,l+l ′−1 (4-55)

proof:
From (4-49) we have

x(z)−x(z ′)
z − z ′ = ∑

k,l ;k ′,l ′

Ck,l ;k ′,l ′

(z −αk)l (z ′−αk ′)l ′ , Ck,l ;k ′,l ′ =−δk,k ′Xk,l+l ′−1

(4-56)
The matrix C is made of triangular blocks because Xk,l+l ′−1 = 0 if l+l ′ >

dk +1. C is invertible because the antidiagonals of each triangular block is
−Ck,dk 6= 0 by definition of dk . We have :

∀ 1 ≤ i , j ≤ d :
(
V (x)T CV (x ′)

)
i , j =

x −x ′

z i (x)− z j (x ′)
1√

x ′(z i (x))x ′(z j (x ′))
(4-57)
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Evaluating at x = x ′ we get :

V (x)T CV (x) = Id. (4-58)

■
For example in the case k = 3 and (d1,d2,d3) = (3,2,4), the matrix C

looks like :

C =

∗ ∗ . . . . . . .
∗ . . . . . . . .
. . ∗ ∗ ∗ ∗ . . .
. . ∗ ∗ ∗ . . . .
. . ∗ ∗ . . . . .
. . ∗ . . . . . .
. . . . . . ∗ ∗ ∗
. . . . . . ∗ ∗ .
. . . . . . ∗ . .

(4-59)

where the stars ∗ are the only non-zero elements.
Lemma 4.18 implies that :

V (x)−1 = V (x)T C and V (x)V (x)T =C−1 (4-60)

In particular, the matrix C is always symmetric, and in each block it
satisfies the so-called Hankel property, namely it depends only on l + l ′.

Corollary 4.19 Maurer-Cartan form
The matrix valued function V −1 dV is antisymmetric, has vanishing diagonal
elements and its off-diagonal entries are given by :

∀ i 6= j :
(
V (x)−1 dV (x)

)
i , j =

−
√

d z i (x)d z j (x)

z i (x)− z j (x)
= −1

E (z i (x), z j (x))
(4-61)

where E (z, z ′) = z−z′p
d zd z′

is the prime form on the Riemann sphere.

proof:
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Taking the x-differential of (4-60) and using the fact that C is indepen-
dent of x directly shows that V (x)−1 dV (x) is antisymmetric. Starting from
(4-57) and differentiating with respect to x ′ we get :

(
V (x)−1 dV (x ′)

)
i , j =

(x −x ′) d z j (x ′)
(z i (x)− z j (x ′))2

1√
x ′(z i (x))x ′(z j (x ′))

−x ′(z j (x ′)) d z j (x ′)
z i (x)− z j (x ′)

1√
x ′(z i (x))x ′(z j (x ′))

−1

2

x ′′(z j (x ′)) d z j (x ′)
x ′(z j (x ′))

x −x ′

z i (x)− z j (x ′)
1√

x ′(z i (x))x ′(z j (x ′))
(4-62)

We now take the limit x −→ x ′. Since x = x(z i (x)) = x(z j (x)) we get
the equalities d x = x ′(z i (x))d z i (x) = x ′(z j (x))d z j (x). When i 6= j , the
denominator does not vanish and only the terms without x − x ′ in the
numerator survive thus giving the claimed result. When i = j , the first
two terms are computed by Taylor expansion up to the second order, i.e.
involve the second derivative of x, which is exactly canceled by the last
term. ■

Corollary 4.20 With G = GLd (C) and the Cartan subalgebra h given by the
set of diagonal matrices, defining the canonical basis of h by the usual expression

ei = diag(0, . . . ,0,
i
1,0, . . . ,0) implies the following identity :

TrV (x)eiV (x)−1V (x ′)e j V (x ′)−1

(x −x ′)2
d x d x ′ = d z i (x)d z j (x ′)

(z i (x)− z j (x ′))2
= B(z i (x), z j (x ′)),

(4-63)
where B(z, z ′) = d z d z′

(z−z′)2 is the fundamental second-kind bi-differential of the
Riemann sphere.

Moreover, we get the following property :

Proposition 4.21 The matrix x 7→ V (x)eiV (x)−1 is a rational function of
z i (x). It is only singular when z i (x) is at the branch points (i.e. finite branch
points where x ′(z) = 0 and poles of x(z) of degree at least 2).
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proof:
Use V (x)−1 = V (x)T C and the definition of V (x) :

(
V (x)eiV (x)T )

(k,l ),(k ′,l ′) =
1

(z i (x)−αk)l (z i (x)−αk ′)l ′x ′(z i (x))

This function has poles when x ′(z i (x)) vanishes, i.e. at branch points,
and also possibly at the punctures z i (x) =αk .

If α j is a puncture (i.e. a pole of x(z)) but not a branch point we must
have d j = 1 and thus l = 1. We get that :

(
V (x)eiV (x)T )

(k,l ),(k ′,l ′) =O
(
(z i (x)−α j )d j+1−lδk, j−l ′δk′, j

)
. (4-64)

In the worst case, k = k ′ = j implying l = l ′ = 1, and the exponent then
vanishes. This shows that V (x)eiV (x)T is regular. ■

We will now use the matrix V (x) and its properties to formulate our
next assumption.

Decomposition of the matrix of eigenvectors at order ε0

Assumption 4.22 (Eigenvector decomposition) We assume that there ex-
ists an invertible d ×d matrix v(t ), independent of x, such that

V (x, t ) = v(t )V (x) (4-65)

is an invertible matrix whose columns are the eigenvectors of Φ(0) (and thus of
R (0)). Consequently we have (not writing the t dependence to lighten notations)
:

Φ(0)(x) = vV (x)Y (x)V (x)T C v−1, (4-66)

R (0)(x) = vV (x)S(x)V (x)T C v−1. (4-67)

In coordinates it is equivalent to :
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(Φ(0)(x))i , j = ∑
k,l ,k ′,l ′,l ′′,m

−y(zm(x))vi ;k,l Xk ′,l ′+l ′′−1(v−1)k ′,l ′′; j

(zm(x)−αk)l (zm(x)−αk ′)l ′x ′(zm(x))
(4-68)

(R (0)(x))i , j = ∑
k,l ,k ′,l ′,l ′′,m

−s(zm(x))vi ;k,l Xk ′,l ′+l ′′−1(v−1)k ′,l ′′; j

(zm(x)−αk)l (zm(x)−αk ′)l ′x ′(zm(x))
(4-69)

Notice that the last assumption implies that :

v(t )−1Φ(0)(x, t )v(t )C (t )−1 and v(t )−1R (0)(x, t )v(t )C (t )−1 (4-70)

are symmetric matrices at all times.

Remark 4.23 This is a very strong assumption on Φ(0)(x, t ) and R (0)(x, t ). It
implies that the x-dependent part of Φ(0)(x, t ) (resp. R (0)(x, t )) has in fact only
d(d+1)

2 degrees of freedom, rather than d 2. In other words it imposes d(d−1)
2

constraints on Φ(0)(x, t ) (resp. R (0)(x, t )). However, most (if not all) well-
known integrable systems satisfy it and examples of Painlevé systems and (p, q)
minimal models are given at the end of the chapter.

Remark 4.24 The purpose of assumption 4.22 is to match the (defined below)
correlator W (0)

2 with the fundamental 2nd kind bi-differential B(z1, z2), defined
in Corollary 4.20, as it is necessary for the system to satisfy the topological type
property.

Classification of admissible systems

From (4-68) we must have :(
v−1Φ(0)(x)vC−1)

k,l ;k ′,l ′ =
d∑

j=1

Vk,l (z j (x))Vk ′,l ′(z j (x)) y(z j (x)) (4-71)

=
d∑

j=1

1

(z j (x)−αk)l

1

(z j (x)−αk ′)l ′
y(z j (x))

x ′(z j (x))
(4-72)

=
d∑

j=1

Res
z→z j (x)

1

(z −αk)l

1

(z −αk ′)l ′
y(z)

x(z)−x
(4-73)

= − ∑
p∈{polesof x and y}

Res
z→p

1

(z −αk)l

1

(z −αk ′)l ′
y(z)

x(z)−x

(4-74)
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The pole at z =αi gives a polynomial of x of degree lower or equal to
lδk,i+l ′δk′,i−2di+degαi

y

di
. Thus if y has no pole at αi , this gives at most an x

independent term, and only for k = k ′ = i , l = l ′ = di .

If p is a pole of y which is not a pole of x, we get a pole (x(p)− x)m

with m ≤ degp y

1+ordp x′ .

Decomposition on zr Any rational function y(z) can be uniquely written as

y(z) =
d−1∑
r=0

zr fr (x(z)). (4-75)

where fr (x) is a rational function of x. Since functions of x go through
(4-71), it is sufficient to study the cases y(z) = zr .

So let us substitute y(z) → zr in (4-71), with 0 ≤ r ≤ d −1, and we assume
(up to a Möbius transformation of z) that x is regular at z =∞ (i.e. none
of the αi ’s are located at ∞). The contribution to (4-71) of poles at αi ’s
is a constant matrix Âi ,r , which is a triangular block of size di , which we
denote :

Ar,0 =
∑

i

Âi ,r , (Âi ,r )k,l ;k ′,l ′ = δk,iδk ′,i Âi ,r,l+l ′ (4-76)

that is non vanishing only if l + l ′ ≥ di +1.

On the anti-diagonal we get :

Âi ,r,di+1 =
−αr

i

Xi ,di

. (4-77)

Example :
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Â2,r =

. . . . . . . . .

. . . . . . . . .

. . . . . ∗ . . .

. . . . ∗ ∗ . . .

. . . ∗ ∗ ∗ . . .

. . ∗ ∗ ∗ ∗ . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

(4-78)

The contribution of the pole at z =∞ takes the form :

r∑
m=1

Âr,m

(x −x(∞))m
(4-79)

and we have that :

(Âr,m)k,l ;k ′,l ′ = 0 if l + l ′−2 > r −m. (4-80)

For example if r = 1 we have (Â1,1)k,l ′k ′,l ′ = δl ,1δl ′,1 :

Â1,1 =

1 . 1 . . . 1 . .
. . . . . . . . .

1 . 1 . . . 1 . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .

1 . 1 . . . 1 . .
. . . . . . . . .
. . . . . . . . .

(4-81)

Finally :

v−1Φ(0)(x)vC−1 =
d−1∑
r=0

r∑
m=0

fr (x)

(x −x(∞))m
Âr,m, (4-82)

we end up with a matrix Φ(0)(x) that, up to some left/right multiplica-
tions by x-independent matrices (v on the left and C v−1 on the right) of a
very restrictive form.
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Decomposition on (z −αi )−r

A better decomposition is the following : any function y(z) can be uniquely
written as

y(z) =∑
i

di∑
r=1

Yi ,r (x(z))

(z −αi )r
, (4-83)

where each Yi ,r (x) is a rational function of x, given by

Yi ,r (x) =−∑
j

y(z j (x))

x ′(z j (x))

di∑
l=r

Xi ,l (z j (x)−αi )r−l−1 (4-84)

This gives

v−1Φ(0)(x)vC−1 =∑
i ,r

Yi ,r (x)Ai ,r (x) (4-85)

where the matrices Ai ,r (x) are computed using y(z) = (z −αi )−r with
1 ≤ r ≤ di . Using (4-71), we find that each Ai ,r (x) is a polynomial of x of
degree at most 1

Ai ,r (x) = x A′
i ,r + Ai ,r , (4-86)

where the matrices A′
i ,r and Ai ,r have the following block shape :

r = 1 : A2,1 =

. . . . . ∗ . . .

. . . . . ∗ . . .

. . . . ∗ ∗ . . .

. . . ∗ ∗ ∗ . . .

. . ∗ ∗ ∗ ∗ . . .
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
. . . . . ∗ . . .
. . . . . ∗ . . .
. . . . . ∗ . . .

, A′
2,1 =

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . ∗ . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .
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r = 2 : A2,2 =

. . . . ∗ ∗ . . .

. . . . ∗ ∗ . . .

. . . ∗ ∗ ∗ . . .

. . ∗ ∗ ∗ ∗ . . .
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
. . . . ∗ ∗ . . .
. . . . ∗ ∗ . . .
. . . . ∗ ∗ . . .

, A′
2,2 =

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . ∗ . . .

. . . . ∗ ∗ . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

and so on. For larger value of r , the non-vanishing off-diagonal blocks
have size r ×di , and the non-vanishing entries are some universal functions
of the Xi ,k ’s, in the sense that these functions themselves do not depend on
the choice of differential system as long as it satisfies the assumptions we
made so far. Eventually we have

v−1Φ(0)(x)vC−1 =∑
i ,r

Yi ,r (x)(x A′
i ,r + Ai ,r ) (4-87)

Again we obtain a very restrictive class of matrices Φ(0)(x).

Classification of R(0)(x) The previous results also hold for R (0) with y re-
placed by s. However, the requirement for the auxiliary curve not to have
any double points makes the combine to make the assumptions even more
restrictive.

We may uniquely write

s(z) =
m∑

j=0

f j (x(z)) z j , m ≤ d −1. (4-88)

If m = 1, then it is obvious that there can be no double points, in that case

s(z) = f0(x(z))+ f1(x(z))z. (4-89)

In other words, R (0)(x, t )

R (0)(x, t ) = f0(x, t )v(t )Â0,0(t )C (t )v(t )−1
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+ f1(x, t ) v(t )

(
Â1,0(t )C (t )+ Â1,1(t )C (t )

x −x(∞, t )

)
v(t )−1. (4-90)

Up to a Möbius transformation on z we could have chosen z =∞ to be
a pole of x, and then we would have obtained

R (0)(x, t ) = f∞(x, t ) v(t )
(

A∞,1(t )C (t )+x A′
∞,1(t )C (t )

)
v(t )−1. (4-91)

Notice that if d∞ > 1, then A′
∞,1(t )C (t ) is a nilpotent matrix :

(
A′
∞,1(t )C (t )

)
k,l ;k ′,l ′ =

1

X∞,d∞
δk,∞δk ′,∞δl ,d∞δl ′,1. (4-92)

Assumptions regarding the higher orders in the ε expansions

In order to prove the topological type property and in addition to assump-
tions 4.5 and 4.22, we make the following sufficient assumptions regarding
the spectral curve and the possible singularities of the system. We shall
need the notion that L(k≥1) has to be “less singular” than Φ(0) – symboli-
cally denoted Φ(k) ≺Φ(0) –. Our precise statement is the following :

Assumption 4.25 (Analytic behavior Φ(k) ≺Φ(0)) We assume that :

• for every k ≥ 1, all poles of Φ(k)(x, t ) are among the poles of Φ(0)(x, t ).

• for any matrix C̃ , and any generic distinct x0, x1, the following ε-formal
series whose coefficients are bi-rational functions of x and y :

Det
(

y −Φε(x)− C̃
(x−x0)(x−x1)

)
−Det

(
y −Φ(0)(x)

)
Ey (x, y)

d x (4-93)

is, when restricted to the spectral curve, a one-form Ω(z) that is analytic
(at each order in ε) at all singularities of Φ(0)(x).

Equivalently, its only singularities can either be poles over x = x0 and
x = x1, due to the C̃

(x−x0)(x−x1) term, or at double points of S : (bi , b̃i ).

Ω(z) = Det

(
y(z)−Φε(x(z))− C̃

(x(z)−x0)(x(z)−x1)

)
d x(z)

Ey (x(z), y(z))
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=∑
i

βi

(
d z

z −bi
− d z

z − b̃i

)
+ ∑

i∈{0,1}

d∑
j=1

d∑
k=1

ci , j ,k d z

(z − z j (xi ))k
(4-94)

where the coefficients βi , ci , j ,k are formal power series of ε, starting at
O(ε).

In other words, the ε corrections do not change the Newton’s polygon of
E(x, y). They may only change the interior coefficients, as well as possibly
adding poles over x = x0 or x = x1.

Evaluating this one-form at z i (x), inserting and subtracting the diagonal
term Y (x) = V (x)−1Φ(0)(x)V (x) and then expanding the determinant, we
get after simplification that it is equal to

Ω(z i (x)) = d x
∑

I⊂{1,...,d}, i∈I

Det
I×I

(
V (x)−1

(
Φε(x)−Φ(0)(x)+ C̃

(x−x0)(x−x1)

)
V (x)

)
∏

j∈I , j 6=i
(y(z i (x))− y(z j (x)))

.

(4-95)
In particular, to order ε we must have ∀ i :

d x
(
V (x)−1Φ(1)(x)V (x)

)
i ,i = 0 (4-96)

(which implies W (0)
1 (x.ei ) = 0, as we will see below). This is equivalent

to say that Φ(1)(x) must be derived from Φ(0)(x), i.e. ∃Φ̃(1)(x) such that

Φ(1)(x) = [Φ̃(1)(x),Φ(0)(x)]. (4-97)

At order ε2 we get that

d x
(
V (x)−1Φ(2)(x)V (x)

)
i ,i−

∑
j 6=i

d x

(
V (x)−1Φ(1)(x)V (x)

)
i , j

(
V (x)−1Φ(1)(x)V (x)

)
j ,i

(y(z i (x))− y(z j (x)))

is analytic at all poles of y .

Remark 4.26 Assumption 4.25 may appear technical but it can be proved easily
in many cases. For example :

1. Assumption 4.25 is trivially verified if for all k ≥ 1, Φ(k) is independent
of x. (This happens for the Airy Lax pair for example).
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2. Assumption 4.25 is verified if Φε defines a Fuchsian system, i.e. has only
simple poles ci (t ) independent of ε, and residues Ci (t ,ε) whose eigenvalues
are independent of ε

Φε =
p∑

i=1

Ci (t ,ε)

x − ci (t )
(4-98)

Indeed, in that case the poles of L(k) are the same as those of Φ(0). The
eigenvalues of Φε have only simple poles above x = ci (t ), with residues the
eigenvalues of Ci (t ,ε), and thus all the singular behavior of the eigenvalues
of Φε, is independent of ε, showing that the characteristic polynomials of
Φε and Φ(0)(x, t ) can differ only by the interior of their Newton’s polygon.

Parity Assumption

In order to prove sufficient conditions for the topological type property, we
need (as proposed in [15]) another assumption :

Assumption 4.27 (Parity) We assume that there exists a matrix

Γ(t ,ε) =
de f

∞∑
k=0

εkΓ(k)(t ), (4-99)

independent of x, such that

Φ−ε(x, t ) = Γ(t ,ε)−1ΦT
ε Γ(t ,ε). (4-100)

with

Γ(0) = (vT (t ))−1C v(t )−1 = Γ(0)T . (4-101)

This assumption can be shown to hold for many well-known integrable
systems. Moreover, its leading order in ε is a consequence of assumption
4.22. It was made in [15] and yields one of the Topological Type require-
ments.

Notice that we have
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Γ(t ,−ε) = Γ(t ,ε)T , (4-102)

i.e. for all k ≥ 0 :

Γ(k)(t ) = (−1)k Γ(k)(t )T . (4-103)

In other words, the coefficients of the matrices appearing in the se-
ries expansion of Γ(t ,ε) are either symmetric or antisymmetric matrices
depending on the parity of their index.

As is proved in Appendix [10], these assumptions imply that the Topo-
logical Type property and therefore that one can reconstruct the correlators
from topological recursion. We will now end this chapter by presenting as
examples various cases in which the assumptions are met and the method
applies. The first one deals with (p, q) minimal models that were studied
in [15]. The second one deals with the Painlevé Lax pairs and was devel-
oped in [57]. For clarity we will only focus on the Painlevé VI case though
all other Painlevé systems can be treated similarly (details can be found
in [58]).

4.2 (p, q) minimal models

These were studied with the topological recursion in [15]. However the
proof presented in this article was incomplete (the proof of the leading
order property used an insertion operator. A part of the definition of this
operator was missing. The gap was completed for q = 2 in [40] but the
general case remained incomplete). This new proof doesn’t use insertion
operators, it uses our general loop equations method. We will here follow
the standard notations of [15] taking in particular q = d .

In (p, q) minimal models (p and q are coprime strictly positive integers,
see [15] for details), Rε(x, t ) is a q ×q companion matrix :

Rε(x, t ) =


0 1 0 . . . 0

0 1
...

... . . . 0
0 . . . 0 1

ud−1(t ,ε) . . . u1(t ,ε) u0(t ,ε)−x

 (4-104)
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The matrix Ψ(x, t ), described in [?], is given by :

Ψε(x, t ) =


ψ1(x, t ) . . . ψq (x, t )

(ε∂t )ψ1(x, t ) . . . (ε∂t )ψq (x, t )
... ...

(ε∂t )q−1ψ1(x, t ) . . . (ε∂t )q−1ψq (x, t )

 (4-105)

where (ψi )1≤i≤q are linearly independent solutions of the system :

xψ(x, t ) =Qψ(x, t ) , ε∂tψ(x, t ) =−Pψ(x, t ) and [P,Q] = ε (4-106)

where the operator (P,Q) are of the form :

P =
p∑

k=0

vk(t )(ε∂t )k , vp = 1, vp−1 = 0, vp−2 =−pu(t ) (4-107)

Q =
q∑

l=0

ul (t )(ε∂t )l , uq = 1,uq−1 = 0,up−2 =−qu(t ) (4-108)

In particular, the condition [P,Q] = ε determines all functions (vi )1≤i≤p

and (ui )1≤i≤q in terms of u(t ) and its derivatives. The matrix denoted
Φ(x, t ) = (

Φk, j (x, t )
)

1≤k, j≤q is determined by decomposing the operators
(Φk)k≥0 on the basis

(
(ε∂t )i

)
i≥0 :

Φk(x, t ) =
q∑

j=0

Φk, j (x, t )(ε∂t ) j (4-109)

where the operators (Φk)k≥0 are defined recursively as :

Φ0(x, t ) =−
p∑

l=0

vl (t )Fl (x, t ) , Φk+1(x, t ) = (ε∂t )Φk(x, t )+Φk,q−1(x, t )(x −Q)

(4-110)
with Fl (x, t ) = ∑

j≥0
Fl , j (x, t )(ε∂t ) j defined recursively by :

F0(x, t ) = 1 , Fl+1(x, t ) = (ε∂t )Fl (x, t )+Fl ,q−1(x, t )(x −Q) (4-111)
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In particular, it is obvious from the definitions that L(x, t ) is a polyno-
mial in x.

In the context of (p, q) minimal models, one is interested in formal
expansion in ε. Since the functions (ui (t ,ε))i≥0 and (vi (t ,ε))i≥0 admit a
formal expansion in ε, we get that assumption 4.1 is verified. Moreover, the
spectral curve is of genus 0, so assumption 4.5 is verified. It is given by
(see Proposition 5.2 of [15]) :

xt (z) =
q∑

k=0

u(0)
k (t )zk (4-112)

yt (z) =
p∑

l=0

v (0)
l (t )z l (4-113)

The auxiliary spectral curve is given by the characteristic polynomial of
the companion matrix Rε(x, t ) :

Ẽε=0

(
x, s, t ) = Det(s −R (0)(x, t )

)= xt (s)−x (4-114)

The set of solutions of Ẽt (x, s; t ,0) = 0 is thus the set of all (xt (z), z)

for points z ∈ o
Σ=CP1 − {si ng ul ar i t i es}. Therefore the auxiliary spectral

curve is equivalent to the triplet :

S̃t = (
o
Σ, x̃t , st ) (4-115)

with the function st is the identity map st : z 7−→ z. The auxiliary spec-
tral curve obviously does not admit any double points and the spectral
curve (4-112) is regular so assumption 4.13 is verified. Note that in our set-
ting, the poles of the xt function correspond to k = 1, d1 = q and α1 =∞.
In other words, z 7−→ xt (z) has only one pole at infinity of order q (in the
general theory developed above, the point z =∞ was assumed not to be a
pole of x. This means that some of the above formulas require some basic
adaptations to accommodate this particular case). Since the R(x, t ) matrix
is a companion matrix, its eigenvectors are given by a Vandermonde-like
matrix and we obtain :

V (x, t ) = V (x) ⇒ v(t ) = Iq (4-116)
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In particular, assumption 4.22 is trivially satisfied.

Notice that by definition, Φε(x, t ) depends polynomially in the variable
x whose coefficients admit an ε-expansion. Thus, assumption 4.25 is satis-
fied.

Assumption 4.27 was partly proved in [15]. Indeed, the authors proved
that the matrix Γ(t ) given by (note that there is a change of convention
from the cited article where the Γ matrix is defined as the inverse of our
present matrix and with a global (−1)q−1 constant) :

Γ(t ) = γ(t )−1 with γ(t ) = (−1)q−1Φ(x, t )Ψ(x, t )T (4-117)

satisfy (4-100). A precise definition of Φ(x, t ) is given in [15] and in par-
ticular, Theorem 5.2 in this paper shows that the matrix γ(t ) does not
depend on x. Therefore the only remaining issue to prove assumption 4.27
is to match Γ(0) with

(
v(t )T

)−1
C v(t )−1 to satisfy (4-101). We observe that by

definition, the generalized Vandermonde matrix V (x) leads to :

C =



u(0)
1 (t ) u(0)

2 (t ) . . . u(0)
q−2(t ) 0 1

u(0)
2 (t ) . . . . . . . . . 1 0
... . . . . . . . . . . . . 0

u(0)
q−2(t ) . . . . . . . . . . . .

...
0 1 . . . . . . . . . 0
1 0 0 . . . 0 0


(4-118)

In other words : we have both Ci , j = 0 if i+ j > q+1 and Ci , j = u(0)(t )i+ j−1

if i + j ≤ q +1. Its inverse is given by :

C−1 =



0 0 . . . 0 0 1
0 . . . . . . . . . 1 a2
... . . . . . . . . . . . . a3

0 . . . . . . . . . . . .
...

0 1 . . . . . . . . . aq−1

1 a2 a3 . . . aq−1 aq


(4-119)

In other words,
(
C−1

)
i , j = 0 if i + j < q +1 and

(
C−1

)
i , j = ai+ j−q if i + j ≥

q +1. The coefficients (ai )1≤i≤q are determined by the following recursion
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(obtained by looking at the term (C−1C )i ,1 = δi ,1 with 1 ≤ i ≤ q ) :

a1 = 1 , a2 = 0 and ai+1 =−
i−1∑
j=1

a j u(0)
j+q−i+1(t ) for 2 ≤ i ≤ q −1 (4-120)

Since v(t ) = Iq , condition (4-101) is equivalent to prove that C−1 = γ(0)(t ).
The matrix γ(t ) (unfortunately denoted C with entries labeled from 0 to
q −1 in [?]) is described in equations 5.77, 5.78 and 5.79 of [?]. It satisfies
γi , j = 0 if i + j < q +1 and

γ1, j = δ j ,q for 1 ≤ j ≤ q
ε∂tγi , j = γi , j+1 −γi+1, j for 1 ≤ i , j ≤ q −1

ε∂tγi ,q−1 = −γi ,q −
q−2∑
l=0

ul (t )γi ,l+1 for 1 ≤ i ≤ q −1 (4-121)

Let us denote for clarity B = γ(0). Projecting the last set of equations at
order ε0 gives Bi , j = 0 if i + j < q +1 and :

B1, j = δ j ,q for 1 ≤ j ≤ q
Bi+1, j = Bi , j+1 for 1 ≤ i , j ≤ q −1

Bi ,q = −
q−2∑
l=0

u(0)
l (t )Bi ,l+1 for 1 ≤ i ≤ q −1 (4-122)

The second equation is equivalent to say that B is a Hankel matrix of the
same form as C−1. In other words, Bi , j = 0 if i + j < q +1 and Bi , j = bi+ j−q

if i + j ≥ q +1. The coefficients (bi )1≤i≤q are determined by the first and
last equations of (4-122). We get :

b1 = 1 , b2 = 0 and bi+1 =−
q−2∑
l=1

bl u(0)
l (t ) for 2 ≤ i ≤ q −1 (4-123)

Hence we recover the same recursion as (4-120). This finally proves that
C−1 = γ(0) so that assumption 4.27 is verified.

In conclusion, we have proved all required assumptions for the (p, q)
minimal models that therefore satisfy the Topological Type property.
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4.3 Painlevé VI case

Painlevé equations were studied with the topological recursion in [57]
(Painlevé II) and [58] (all six Painlevé equations). A simpler method (only
valid in the case d = 2) was used to prove that the Painlevé Lax pairs
satisfy the topological type property. We propose here to show that our
generalization also applies directly to these cases. We will only carry out
the Painlevé VI case (which is the most difficult) in details but all results
presented here can be easily adapted to the other Painlevé cases using
computations presented in the cited articles.

In the Painlevé 6 system we have :

ΦVI
ε (x, t ) = A0(t ,ε)

x
+ A1(t ,ε)

x −1
+ At (t ,ε)

x − t
(4-124)

RVI
ε (x, t ) =−At (t ,ε)

x − t
− (q − t )(θ∞−ε)

2t (t −1)
σ3 (4-125)

A0 =
(

z0 + θ0
2 −q

t
t z0(z0+θ0)

q −
(
z0 + θ0

2

)) , A1 =
(

z1 + θ1
2

q−1
t−1

− (t−1)z1(z1+θ1)
q−1 −

(
z1 + θ1

2

)) (4-126)

At =
(

zt + θt
2 − q−t

t (t−1)
t (t−1)zt (zt+θt )

q−t −
(
zt + θt

2

)) , A∞ =
(
θ∞
2 0
0 −θ∞

2

)
=−(A0 + A1 + At )

(4-127)

Here, z0(t ), z1(t ) and zt (t ) are auxiliary functions of t that can be ex-
pressed in terms q(t ) and a function p(t ) defined by :

p = z0 +θ0

q
+ z1 +θ1

q −1
+ zt +θt

q − t
(4-128)

The explicit expression for z0, z1 and zt in terms of q can be found
in [58] where q(t ) is shown to satisfy a ε-deformed version of the Painlevé
6 equation. Note that the matrix form ΦVI

ε (x, t )d x has simple poles located
at x ∈ {0,1,∞, t } while RVI

ε (x, t )d x only has simple poles at x ∈ {∞, t }. Exis-
tence of an ε-expansion is discussed in [58] where assumption 4.1 is proved.
At first order in ε it is shown in [58] that the spectral and auxiliary curves
are of genus 0 :
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y2 = θ2
∞(x −q0)2P2(x)

4x2(x −1)2(x − t )2

s2 = (q0 − t )2θ2
∞P2(x)

4t 2(t −1)2(x − t )2
(4-129)

where P2(x) = x2+
(
−1− θ2

0 t 2

θ2∞q2
0
+ θ2

1(t−1)2

θ2∞(q0−1)2

)
x+ θ2

0 t 2

θ2∞q2
0
= (x−a)(x−b) that can

be written equivalently P2(x) = x2+
(
−θ2

0 t (t+1)

θ2∞q2
0

+ θ2
1 t (t−1)

θ2∞(q0−1)2 − θ2
t t (t−1)

θ2∞(q0−t )2

)
x+ θ2

0 t 2

θ2∞q2
0
.

Here q0 stands for q (0)(t ) the leading order in ε of q(t ). It satisfies an
algebraic equation of degree 6 that can be found explicitly in [58]. Inserting
this result in the definition of R (0)(x, t ), we get an expression of z(0)

t and q0

in terms of a,b and t (and the monodromy parameters):

z(0)
t = −θt

2
+ 1

4
+ θ∞(q0 − t )

(
t − a+b

2

)
2t (t −1)

=−θt

2
± t − a+b

2

2
p

(t −a)(t −b)

(q0 − t ) = ± t (t −1)θt

θ∞
p

(t −a)(t −b)
(4-130)

so that we get :

R (0)(x, t ) = ±

− θt

(
x− a+b

2

)
2(x−t )

p
(t−a)(t−b)

θt

θ∞(x−t )
p

(t−a)(t−b)

− (b−a)2θtθ∞
16(x−t )

p
(t−a)(t−b)

θt

(
x− a+b

2

)
2(x−t )

p
(t−a)(t−b)


Φ(0)(x, t ) = (x −q0)t (t −1)

x(x −1)(q0 − t )
R (0)(x, t ) (4-131)

The spectral curve (4-129) is of genus 0 with two finite branch points
located at the two simple zeros of the polynomial P2 denoted a and b.
Thus assumption 4.5 is satisfied. Note that there is also a double point
at x = q0 for the spectral curve but it is absent in the auxiliary curve.
Since the spectral curve is of genus 0, it can be parametrized globally on C
and we choose a parametrization suitable with the convention that z =∞
is not a pole of x(z) (so that it slightly differs from the usual Zhukovski
parametrization of [58]). We take:
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x(z) = a +b

2
+ b −a

2

(
1+ 1

z −1
− 1

z +1

)
= b + b −a

(z +1)(z −1)

y(z) = θ∞(x(z)−q0)(b −a)z

2(z −1)(z +1)x(z)(x(z)−1)(x(z)− t )

s(z) = (q0 − t )θ∞(b −a)z

2(z −1)(z +1)t (t −1)(x(z)− t )

= ± (b −a)zθt

2(z −1)(z +1)(x(z)− t )
p

(t −a)(t −b)
(4-132)

Note that x ′(z) = − 2z(b−a)
(z+1)2(z−1)2 . In the z variable, the two branch points

are located at z = 0 and z =∞ while the poles are located at z =±1. The
involution (corresponding to x(z) = x(z)) is given by z =−z. Inverting the
relation between x and z leads to :

z1(x) =
√

x −a

x −b
and z2(x) =−

√
x −a

x −b
(4-133)

so that

S1(x) = θ∞(q0 − t )
p

(x −a)(x −b)

t (t −1)(x − t )
=± θt

(x − t )

√
(x −a)(x −b)

(t −a)(t −b)

S2(x) = −θ∞(q0 − t )
p

(x −a)(x −b)

t (t −1)(x − t )
=∓ θt

(x − t )

√
(x −a)(x −b)

(t −a)(t −b)

Y1(x) = θ∞(x −q0)
p

(x −a)(x −b)

x(x −1)(x − t )

Y2(x) = −θ∞(x −q0)
p

(x −a)(x −b)

x(x −1)(x − t )
(4-134)

In particular, from the last identities it is straightforward to verify that
the auxiliary curve has no double points, i.e. that assumption 4.13 is satis-
fied. Moreover, application of the previous formulas leads to :

~V (z) =
(
− i (z +1)p

2(b −a)
p

z
,− i (z −1)p

2(b −a)
p

z

)
(4-135)

and thus :
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V (x) =
− i (z1(x)+1)p

2(b−a)

(
x−b
x−a

) 1
4 − (z2(x)+1)p

2(b−a)

(
x−b
x−a

) 1
4

− i (z1(x)−1)p
2(b−a)

(
x−b
x−a

) 1
4 − (z2(x)−1)p

2(b−a)

(
x−b
x−a

) 1
4


=

− ip
2(b−a)

p
x−a+px−b

((x−a)(x−b))
1
4

− 1p
2(b−a)

p
x−b−px−a

((x−a)(x−b))
1
4

− ip
2(b−a)

p
x−a−px−b

((x−a)(x−b))
1
4

1p
2(b−a)

p
x−b+px−a

((x−a)(x−b))
1
4


= 1p

2(b −a)

−i
((

x−a
x−b

) 1
4 + (

x−b
x−a

) 1
4
) (

x−a
x−b

) 1
4 − (

x−b
x−a

) 1
4

i
((

x−b
x−a

) 1
4 − (

x−a
x−b

) 1
4

) (
x−a
x−b

) 1
4 + (

x−b
x−a

) 1
4

 (4-136)

It is then straightforward to verify that :

V (x)V (x)T =
 (z2(x)−z1(x))

(b−a)

(
x−b
x−a

) 1
2 ((z2(x))2−(z1(x))2)

(b−a)

(
x−b
x−a

) 1
2

((z2(x))2−(z1(x))2)
(b−a)

(
x−b
x−a

) 1
2 − (z2(x)−z1(x))

(b−a)

(
x−b
x−a

) 1
2


=

(− 2
b−a 0
0 2

b−a

)
(4-137)

Hence we get C = b−a
2 diag(−1,1) as claimed from (4-56). Note that we

also get :

V (x, t )

(
1 0
0 0

)
V (x, t )T =

−
p

x−a
x−b +

√
x−b
x−a +2

2(b−a)

√
x−b
x−a −

p
x−a
x−b

2(b−a)√
x−b
x−a −

p
x−a
x−b

2(b−a) −
p

x−a
x−b +

√
x−b
x−a −2

2(b−a)


V (x, t )

(
0 0
0 1

)
V (x, t )T =


p

x−a
x−b +

√
x−b
x−a −2

2(b−a) −
√

x−b
x−a −

p
x−a
x−b

2(b−a)

−
√

x−b
x−a −

p
x−a
x−b

2(b−a)

p
x−a
x−b +

√
x−b
x−a +2

2(b−a)

 (4-138)

Computing V (x)S(x)V (x)T C leads to :

V (x)S(x)V (x)T C =

θ∞(q0−t )
2t (t−1) + θ∞(q0−t )

(
t− a+b

2

)
2(x−t ) −θ∞(q0−t )(b−a)

4t (t−1)(x−t )

θ∞(q0−t )(b−a)
4t (t−1)(x−t ) −θ∞(q0−t )

2t (t−1) − θ∞(q0−t )
(
t− a+b

2

)
2(x−t )
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=±

 θtp
(t−a)(t−b)

+
(
t− a+b

2

)
t (t−1)θt

2
p

(t−a)(t−b)(x−t )
− θt (b−a)

4
p

(t−a)(t−b)(x−t )

θt (b−a)
4
p

(t−a)(t−b)(x−t )
− θtp

(t−a)(t−b)
−

(
t− a+b

2

)
t (t−1)θt

2
p

(t−a)(t−b)(x−t )

 (4-139)

where we used (4-130) to replace q0. Eventually a direct computation
from (4-136) and (4-131) shows that :

V (x, t ) = v(t )V (x) with v(t ) =
(

0 4
θ∞(b−a)

1 0

)
(4-140)

Φ(0)(x, t ) = v(t )V (x)Y (x)V (x)T C v(t )T (4-141)

R (0)(x, t ) = v(t )V (x)S(x)V (x)T C v(t )T (4-142)

so that assumption 4.22 is verified.

Eventually since

ΦVI
ε (x, t ) = A0(t ,ε)

x
+ A1(t ,ε)

x −1
+ At (t ,ε)

x − t
(4-143)

RVI
ε (x, t ) = −At (t ,ε)

x − t
− (q − t )(θ∞−ε)

2t (t −1)
σ3 (4-144)

we see that there is no mixing between the x-dependence and the ε-
expansion. In particular, Φ(k) has poles only at x ∈ {0,1, t } and assumption
4.25 is trivially verified. Finally, the symmetry condition is answered in [58]
where it is proved that

ΓVI(t ) =
(
− t 2z0(z0+θ0)

q + (t−1)2z1(z1+θ1)
q−1 0

0 1

)
satisfies assumption 4.27. Note that at order ε0 computations from [58]

gives :

Γ(0)
VI (t ) =

(
−θ2∞(b−a)2

16 0
0 1

)
(4-145)

Since Γ is only determined up to a global multiplication by a constant,
we can easily match it with the direct computation of :
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(vT )−1C v−1 = b −a

2

(
−θ2∞(b−a)2

16 0
0 1

)
(4-146)

and thus assumption 4.27 is satisfied.



Chapter 3

W-symmetric conformal field theories

1 Lightning review of conformal field theory

Conformal field theories in two dimensions have appeared in the physics
litterature as powerful tools to study numerous systems, from critical (pos-
sibly quantum) statistical models in two dimensions (in some thermody-
namic limit) to the worldsheet conformal symmetry of string theories [7].
They have the particularity to exhibit infinite dimensional conformal al-
gebras of symmetries, namely extensions of the Virasoro algebra (that are
not necessarily Lie algebras as we shall see). It was in turn argued in some
cases [4] that there exists an underlying structure of quantum integrable
system with commuting transfer matrices and such.

Mathematically speaking, all these constructions assume the existence
of a certain set of functions called M-point correlation functions, for some
integer M ∈N∗, defined on M copies of a given connected Riemann surface
Σ, and denoted formally as

〈
M∏

i= j

Φα j ,α j (z j , z j )

〉
(1-1)

for distinct generic points z1, . . . , zM ∈ Σ, called the punctures, to which
are associated labels α1,α1, . . . ,αM ,αM , called the charges, in the linear
dual h∗ of a Cartan subalgebra h of the considered considered reductive
complex Lie algebra g. They are moreover assumed to be smooth on the
generic locus of ΣM and to satisfy a set of axioms, written here for our
purpose.

147
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• Axiom 1 : Holomorphic factorization. For any M ∈ N∗, much like a
Hodge decomposition, or a separation of variables, there exists a se-
quence of objects called conformal blocks {Fγ}γ∈BG

such that

〈
M∏

i= j

Φα j ,α j (z j , z j )

〉
= ∑

γ,γ′∈BG

Cγ,γ′Fγ(z)Fγ′(z) (1-2)

where we introduced the notation z = (z1, . . . , zM ). BG is the set of la-
bels parametrizing this basis of conformal blocks and it contains the
data of G , a channel, namely a certain choice of unicellular trivalent
graph on the considered Riemann surface satisfying ∂G = {z1, . . . , zM }
and π1(Σ−G ,o) = 0 with respect to a chosen reference point o ∈ Σ.
In particular, the labelling γ (resp. γ′) of Γ contains the data of
(α1, . . . ,αM ) (resp. (α1, . . . ,αM )). This allows to reduce the problem
to its holomorphic (often called chiral) and anti-holomorphic (anti-
chiral) parts.

In Physics, one wishes the correlation functions that are reconstructed
in this way to be modular invariant and this constrains admissible root
geometries for the Lie algebras. It is known that in the case of g = sl2(C)
this requires the corresponding Dynkin diagram to be simply laced (ADE)
but such a statement does not exist for higher rank Lie algebras.

In this chapter we will be interested solely in studying chiral, or holo-
morphic, conformal blocks denoted Fγ(z) =

〈∏M
i= j Vα j (z j )

〉
, where we in-

troduced the vertex operators Vαi merely as a notation (although the vertex
operator formalism [28] is the right way to give a precise meaning to the
bracket 〈 ·〉 and operator product expansions to come). To do so (and as is
customary in quantum mechanics, to mimic the interaction of an observer
with the system) we introduce a probe, a so-called chiral spin-one current
J(x̃) valued in the dual g∗ of the Lie algebra and defined for points x̃ ∈ Σ̃
in the universal cover Σ̃ −→ Σ. It can be seen as multivalued on Σ and
generically having essential singularities at the z j ’s.

In this quantum theory, the vertex operators are interpreted as the mat-
ter content with which the current interacts. This interaction is such that to
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configurations of points on the Riemann surface, where the operators and
currents are inserted, are associated correlations, describing the entangle-
ment of the particles.

The following axioms are analytic and algebraic requirements these cor-
relations should satisfy as functions of these configurations of points.

Let us choose once and for all a set of simple roots R0 =
de f

{r1, . . . ,rr }

in h∗, where r =
de f

rk g is the rank of g. Then, introducing the minimal

invariant bilinear form (·, ·) on g∗×g∗ (giving length 2 to maximal roots),
let us consider the algebra generated by a central element K together with
the harmonics (J(n))n∈Z, or modes, obtained by decomposing the chiral
current around any generic point x̃0 ∈Σ (with local coordinate t = x−x0) as

J(x̃) =
de f

∑
n∈Z

J(n)(x̃0)

(x −x0)n+1
(1-3)

Remark 1.1 We will drop the explicit writing of the dependence of the modes in
the generic point x0 when no confusion is possible. Modes can only be compared
when taken at the same point.

These generators satisfy the commutation relations

[J(n),J(m)] = [J,J](n+m) + (J(n),J(m))δn+m,0K (1-4)

where the J symbols in [J,J] are generically evaluated at different Lie
algebra elements and therefore have non-trivial Lie bracket. The so-called
affine Kac-Moody algebra at level κ ∈ C denoted ĝκ is then defined as the
Lie algebra ĝκ =

de f
ĝ
/

(κ−K ), where ĝ, called the generic affine Kac-Moody

algebra associated to g, is defined as the central extension of vector spaces

0 −→CK −→ ĝκ −→L (g)⊕C∂−→ 0 (1-5)

where L (g) is the loop algebra of g denoted L (g) =
de f

g((t )) (endowed

with the natural Lie algebra structure coming from g) and the extra gener-
ator ∂ is defined to satisfy
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[∂, M ] = d
dt

M , (and thus [∂,K ] = 0) (1-6)

for any M ∈L (g) = g((t )). K is a central element assumed to act trivially
as multiplication by κ (using the fact that the short exact sequence splits,
this is equivalent to focusing on diagonalizable ĝ-module with finite weight
spaces [54] and restricting ourselves to the highest weight representations
they define). The levels κ are in general not constrained but they are for
example in the case where the conformal field theory can be extended
to a certain three dimension topological field theory named Cern-Simons
theory on a given 3-manifold M whose boundary ∂M = Σ is the Riemann
surface. Then the levels are often required to make two copies of Cern-
Simons on M equivalent if they yield the same conformal field theory on
∂M . They are then parametrized by maps MΣM −→ G considered up
to homotopy, where MΣM denotes gluing of the copies of M along their
identical boundary Σ with matching of orientations. In the case where
G = SU (2), Σ is the Riemann sphere and M ⊂ R3 is the unit ball, since
gluing in this case yields a 3-sphere, the levels of the Kac-Moody algebras
of interest are then parametrized by the third homotopy group given by
π3(SU (2)) ' Z. Constraints can also arise from the representation theory
of the Kac-Moody algebra, indeed, when the levels under consideration are
positive integers, ĝ admits unitary highest weight representations whose
highest weights are dominant integral.

Figure 3.1: Gluing two copies of Chern-Simons theory on M along their identical boundary
Σ is parametrized by maps Ψ : MΣM −→G .

Definition 1.2 Insertions of currents
By insertions of currents into chiral correlation functions we mean that we
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consider an infinite countable set of additionnal (g∗)⊗n-valued functions of
interest denoted

〈〈J(x̃1) · · ·J(x̃n)〉〉 =
de f

〈
J(x̃1) · · ·J(x̃n)

M∏
i= j

Vα j (z j )

〉
. (1-7)

This will allow us to define our algebra of symmetries W (g) by requiring
some closure condition under Lie bracket. It takes the form of some pre-
scriptions for the singular behaviour the obtained functions are assumed
to exhibit near the divisor where two of the points to which currents are
inserted have base point projections that come together, or when one of
them goes to one of the punctures z1, . . . , zM (where the vertex operators are
located).

• Axiom 2 : Operator product expansion.

Keeping the notation (·, ·) for the form on g×g dual to minimal in-
variant bilinear form on g∗×g∗,

J(x̃ ·E)J(ỹ ·F ) =
x∼y

−κ (E ,F )

(x − y)2
+ J(ỹ · [E ,F ])

x − y

+ : J(x̃ ·E)J(ỹ ·F ) :
x=y

+O (x − y) (1-8)

J(x̃ ·E)Vα j (z j ) =
x∼z j

b
α j (E)

x − z j
Vα j (z j )+ : J(x̃ ·E)Vα j (z j ) :

x=z j
+O (x − z j )

(1-9)

for x̃, ỹ ∈ Σ̃, with some Lie algebra elements E ,F ∈ g and some punc-
ture index j ∈ {1, . . . , M }. We also introduced the parameter b ∈ C∗

and the notation J(x̃ ·E) =
de f

J(x̃)(E) to relate with our notations in the

study of Fuchsian differential systems for the evaluation. We denote
the normal ordering operation as : A(x̃)B(ỹ) :

x=y
defined as the next

to singular term when the basepoints of x̃, ỹ ∈ Σ̃ come together (but
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are not necessarily such that x̃ = ỹ ). The last asymptotic equality de-
fines Vα j as a primary field, that is an eigenvector of the zero mode
J(0) that is anihilated by all positive modes J(n), n > 0, and moreover,
the presence of a simple pole means that we consider only regular
singularities. Irregular singularities in the g= sl2(C) case of Liouville
theory were studied in [52].

Definition 1.3 Background charge
Define the background charge as the number Q =

de f
b +b−1

These asymptotic relations are to be understood as holding when in-
serted into correlation functions, that is to say that they are meromorphic
conditions on the functions we denoted 〈〈J · · · · · J〉〉. They are strong re-
quirements as J contains for example both data of the Lie bracket and the
minimal invariant bilinear form of g.

Recall that the Virasoro algebra V i r is the infinite dimensional Lie
algebra that generates the conformal transformations of the complex plane.
It is defined as the central extension of vector spaces

0 −→Cc −→V i r −→DerC −→ 0 (1-10)

where we introduced the Lie algebra DerC of holomorphic derivations
of the field of Laurent series on the complex plane as well as the central
element c (c stands for Casimir) called the central charge. V i r is generated
by c together with the elements (Ln)n∈Z satisfying the famous commutation
relations

[Ln,Lm] = (n −m)Ln+m + c

12
n(n2 −1)δn+m,0, (n,m) ∈Z2 (1-11)

where for any n ∈ Z, Ln generates the one-parameter family of local
conformal transformations (z 7−→ t zn+1)t∈C e.g. L0 is the dilation operator.
It goes to the Witt algebra in the zero central charge limit c −→ 0. The
generators of the Virasoro algebra can be gathered into a meromorphic
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stress-energy tensor (anticipating on the next axiom by denoting the vari-
able by x and not one of its preimages x̃ by the universal covering map)
around a base point x0 ∈Σ by

T (x) =
x∼x0

∑
n∈Z

Ln(x0)

(x −x0)n+2
, (1-12)

such that the Virasoro canonical commutation relations are translated
in the following operator product expansion

T (x)T (x ′) =
x∼x′

c/2

(x −x ′)4
+ 2T (x)

(x −x ′)2
+ ∂T (x)

x −x ′ + O (1) (1-13)

and similarly

T (x)J(ỹ) =
x∼y

J(ỹ)

(x − y)2
+ ∂J(ỹ)

x − y
+O (1) (1-14)

to be again understood as identities holding when inserted into corre-
lation functions. The coefficient 1 in front of the second order pole in the
last expression tells us that the current J has spin 1.

Remark 1.4 One might be afraid that such a decomposition for the stress-energy
tensor would create singularities of infinite order in some operator product ex-
pansion appearing in the theory but a requirement of the vertex operator algebra
formalism is that any admissible field Vα should be anihilated by all high
enough modes of T , see [28] for details. In particular, define an admissible
ground state as a vector |0〉 ∈ A in the considered representation satisfying the
so-called Virasoro constraints

∀n ≥−1, Ln|0〉 = 0 (1-15)

In particular, if we were to assume that L†
n = L−n, then the Virasoro con-

straints would yield that the expected value of the stress-energy tensor vanishes

〈0|T (x)|0〉 = 0 (1-16)
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namely that we have conformal symmetry in this ground state at the quan-
tum level.

The next axiom is at the heart of the method we adopt to study confor-
mal field theories. As was mentioned in the introduction, a path integral
formulation of the problem with a Lagrangian allows for the derivation of
Schwinger-Dyson equations. Their counterparts in this non-perturbative
definition of conformal field theories are the following conformal Ward
identities.

• Axiom 3 : Conformal Ward identities.

For any generic x̃1, · · · , x̃n ∈ Σ̃, any holomorphic one-form η on Σ and
small circle Ct surrounding a point t ∈Σ− {z1, . . . , zM },

∮
Ct

η(x)〈〈T (x)J(x̃1) · · ·J(x̃n)〉〉 =
∮

Ct

η(x)

〈
T (x)J(x̃1) · · ·J(x̃n)

M∏
j=1

Vα j (z j )

〉
(1-17)

= 0 (1-18)

This is (again !) an axiom prescribing some analytic conditions for the
functions of interest. It can be rewritten by decomposing the integration
homology class on a basis of cycles in Σ− {z1, · · · , zM }. We will be applying
similar ideas for the generating series of generators of W (g) for which the
conformal Ward identities together with the operator products expansions
yield the so-called loop equations.

The two last axioms deal with how one can reconstruct the full theory
from its chiral and anti-chiral parts. We will not be needing them in the
context of this work but we still state them for completeness.

• Axiom 4 : Single-valuedness.

The M-point correlation functions have no monodromy around cycles
in the moduli space of configurations of M distinct points on the
Riemann surface Σ.
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• Axiom 5 : Fusion and crossing symmetries.

The decomposition of the real correlation functions in terms of the
conformal blocks requires in particular a choice of channel, a unicel-
lular trivalent graph, on the base Riemann surface Σ and different
choices of such channels should lead to the same correlation function
after reconstruction. This is often referred to as the associativity of the
operator product expansions.

There is no general proof that all these axioms are actually compatible.
We will therefore work at the formal level, assuming these axioms to be
compatible and satisfied, to define the algebra W (g) and the so-called in-
sertions of W-generators in these chiral correlation functions with currents.
In turn, this will yield W (g)-symmetric conformal Ward identities. In the
second part we will define the associated quantum geometry through the
quantum spectral curve. This will turn out to be the initial data needed to
run the topological recursion of [43] in this context and we will show that it
solves the W (g)-symmetric conformal Ward identities perturbatively in the
topological regime.

2 W-algebras and associated conformal field theories

2.1 From Virasoro to W-algebras

A conformal field theory is a quantum field theory defined on a Riemann
surface Σ and endowed with an action of the product A ×A ′ of two ex-
tensions V i r ⊂ A, V i r ⊂ A ′ of the Virasoro algebra (they need not be the
same).

Let us stress at this point that these two extensions A and A ′ act re-
spectively upon the holomorphic and the anti-holomorphic dependence of
the observables defined on the Riemann surface. We will here only be
interested in the chiral theory, that is in the action of A and in the mero-
morphic properties of the soon to be defined chiral correlation functions.

We will be interested particularly in the extension V i r ⊂A =
de f

W (g) de-

fined from a finite dimensional Lie algebra g, using a higher rank general-
ization of the Sugawara construction [71], namely the quantum Miura trans-
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form, and defining generating functions whose modes generate W (g). Let
us just mention that another way to define the algebra Wc(g) is by canon-
ical quantization of the Poisson algebra underlying the Drinfeld-Sokolov
hierarchy associated to g [46].

The idea behind W-algebras is that they allow for a better encoding
of some representations of V i r . Indeed, there are spaces representing
both the W-algebra and the Virasoro algebra that decompose as an infinite
direct sums of irreducible representations of V i r but as a finite direct sums
of irreducible representations of W (g). In particular, the operator product
expansions they satisfy should be expressible in terms of these generators
only. We will see two different situations in which this is possible but we
will not get any further in studying the representation theory of W-algebras
and refer the reader the [31], [32].

We will start by defining the Casimir algebra W0(g) with integer central
charge c =

de f
rk g and consider W0(g)-symmetric conformal field theory in

the presence of currents in the affine Lie algebra at level 1 denoted ĝ1. We
will show how to compute the correlation functions with insertions of such
currents in terms of an associated Fuchsian differential system will then
argue that it can be reconstructed by the topological recursion in some
situations. This corresponds to the non-generic situation of a more general
construction of the algebra W (g), where a parameter called the background
charge and denoted Q , is sent to 0.

We will then consider the generic situation Q 6= 0. In this case, the
definition of the W-algebra generators involves non-commutative geometry
and the algebra does not close if we do not restrict the current J to a Cartan
subalgebra h⊂ g. The choice of level then becomes irrelevant, as it can be
reabsorbed in the definition of J, and W (g) will then appear as a subalgebra
W (g) ⊂ U (ĥ) of a completion of the universal envelopping algebra of the
affine commutative Kac-Moody Lie algebra ĥ which is defined from with
the same root system as g.

The background charge plays the role of a quantization parameter
and noticing that the W-algebra for generic values of Q reduces to the
Casimir algebra in the limit Q −→ 0 will allow for the interpretation of
W (g)-symmetric conformal field theory as the quantization of the Fuchsian
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system.

Before defining these algebras, let us review a few generalities on W-
algebras.

2.2 Operator product expansions

Let us now make, once and for all, the choice of a faithful d-dimensional
representation ρ : g −→ gld (C) of the considered Lie algebra. Similarly
to the case of the Virasoro algebra, introducing the rank r = rk g, the
soon to be defined generators of W (g), denoted {W

(dp )
n }n∈Z

1≤p≤r , fit for a given
p ∈ {1, . . . ,r }, into a generating function defined around a base point x0 ∈Σ
by

W(dp )(x̃) = ∑
n∈Z

W
(dp )
n

(x −x0)n+dp
forp ∈ {1, . . . ,r } (2-1)

where the dp ’s are integer indices defined as follows : since h is a com-
mutative Lie algebra, we have an isomorphism U (h∗) 'C[h] and moreover,
by a theorem of Chevalley, the subspace of this last ring invariant under the
action of the Weyl group is actually a polynomial ring C[h]w 'C[σ1, . . . ,σr ]
where for any p ∈ {1, . . . ,r }, dp ∈ N∗ is then defined as the degree of the
invariant polynomial σp .

We will assume the algebra W (g) to be an extension of the Virasoro
algebra and will define its generators, denoted W(k), for any k ∈ {1, . . . ,d}
although some of them might actually vanish. Let us mention the classical
rank r = d −1 example of g= sld (C) in its fundamental representation for
which W(1) = 0. For sl2(C) we then have r = 1 and d1 = 2.

Following the introduction of [32], the corresponding operator product
expansions can be presented schematically as
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W(dp )(x̃)W(dq )(ỹ) =
x∼y

g p,q

(x − y)dp+dq

+
r∑

s=1
f p,q

(1),s

W(ds )(ỹ)+ g p,q
s ∂W(ds )(ỹ)+ . . .

(xy )dp+dq−ds

+
r∑

s,t=1
f p,q

(2),s,t

: W(ds )(ỹ)W(dt )(ỹ) : + . . .

(x − y)dp+dq−ds−dt
+ . . .

(2-2)

Moreover we assume these generating functions to be primary fields
with respect to the Virasoro algebra, in turn they are required to satisfy the
operator product expansions

T (x)W(dp )(ỹ) =
x∼y

dp
W(dp )(ỹ)

(x − y)2
+ ∂W(dp )(ỹ)

x − y
+O (1) (2-3)

In particular this implies the commutation relations

[Ln,W
(dp )
m ] = [(dp −1)n −m]W

(dp )
n+m (2-4)

Let us mention that the g= sl3(C) case was investigated in [74] and the
algebra implied by the corresponding operator product expansions is

[Ln,W(3)
m ] = (2n −m)W(3)

n+m (2-5)

where we identified the modes of W(2) with some Virasoro generators
and

[W(3)
m ,W(3)

m ] = (n −m)[
1

15
(n +m +2)(n +m +3)− 1

6
(n +2)(m +2)]Ln+m

+ c

3 ·5!
n(n2 −1)(n2 −4)δn+m,0 + 16

22+ c
(n −m)Λn+m (2-6)

where we introduced the symbols
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Λn =
de f

∑
k∈Z

: LkLn−k : +1

5
νnLn (2-7)

with ν2l =
de f

(1+ l )(1− l ) (2-8)

and ν2l+1 =
de f

(2+ l )(1− l ) (2-9)

2.3 Casimir algebras

The Casimir algebra we shall define in this paragraph could in principle
be defined as the Q −→ 0 limit of the general construction we will present
afterwards but it has another definition which is purely algebraic and we
shall present it in this way first. Assume b = i such that Q = 0.

Definition 2.1 Casimir algebra
The Casimir algebra, denoted W0(g), is the extension of the Virasoro algebra
generated by the modes of fields {W

(dp )
0 }1≤p≤r defined through the formula

W
(dp )
0 =

de f
:σp(J) : for any p ∈ {1, . . . ,r }, (2-10)

with the algebraic basis (σ1, . . . ,σr ) of the Ad-invariant polynomials
C[g]Ad 'C[h]w with respective degrees deg σp = dp that was introduced before,
and again the normal ordering prescription has been thoroughly used to evaluate
products of components of the chiral spin-one field at coinciding points. Notice
that this definition is purely algebraic.

The W-algebra W0(g) embeds in a completion of U (ĝκ) and the Vira-
soro algebra in particular since after a rescaling, T S =

de f

1
2(κ+h∨)W(2), called

the Segal-Sugawara vector, satisfies the same operator product expansions
as the ones of the stress-energy tensor of the Virasoro algebra-symmetric
conformal field theory but with the central charge

c(g,κ) = κdimg

κ+h∨ (2-11)
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where recall that the level κ ∈ C is the complex number by which the
central extension of the Lie algebra g is chosen to act trivially and hV is
the dual coxeter number. κ = −h∨ is called the critical level [14]. In the
language of vertex operator algebras, W (g) is said to be endowed with the
conformal structure coming from the conformal vector W(2).

We are now ready to state a theorem that follows straight from the
axiomatics of the Casimir algebra-symmetric conformal field theory.

Theorem 2.2 Casimir CFT from Fuchsian systems [B.-Eynard-Ribault]
Consider a Fuchsian differential system (P −→Σ,∇) where ∇ is a meromorphic
connection in a principal G-bundle P over the base curve Σ. Choose a solution
Ψ to the flat section equation ∇ ·Ψ = 0. Let ∇0 be a reference holomorphic
connection and assume that Φ =

de f
∇0 −∇ has a simple pole at each z j , j ∈

{1, . . . , M }, with corresponding residue Φ j =
de f

Res
z j
Φ such that

iα j (E) =
〈
Φ j ,π j

(
AdC j E

)〉
(2-12)

where we introduced the projector π j : g−→ h j on the comutant of Φ j . Then
the sequence of correlators {Ŵn}n∈N∗ defines a chiral Casimir algebra-symmetric
conformal field theory at level κ= 1 in the sense that we can make the identi-
fication

Ŵn(X1, . . . , Xn) =
〈

J(X1) · · ·J(Xn)
∏M

j=1 Vα j (z j )
〉

〈∏M
j=1 Vα j (z j )

〉 (2-13)

for all n ∈N∗ and generic arguments X1, . . . , Xn ∈ Σ̂Ψ.

proof:
The proof consist in checking that the correlators Wn satisfy all the

desired axioms from conformal field theory and indeed this is true, the
operator product expansions can be checked from the definitions of the
correlators and the Ward identities are identical to the loop equations. In
particular, the singularity profile of W2 imposes that the level should be
κ= 1 ■
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As a consequence, both the non-perturbative and perturbative studies
of Fuchsian differential systems of the previous chapter can be applied here
and to Casimir algebra-symmetric conformal field theories. In particular,

Conjecture 2.3 τ-function and conformal blocks
For any choice of Lagrangian submanifoldL ⊂ Ĥ1, TL is a linear combination
of conformal blocks of W0(g) conformal field theory.

The Casimir algebra is the special case W (g) with c = rk g of the con-
struction we shall now describe.

2.4 Generic background charge Q

Let us now return to the generic situation where Q = b + b−1 6= 0. As
mentioned earlier, for generic values of Q , the W-algebra with non-abelian
currents does not close. It does however when we restric ourselves to
abelian currents defined by the following.

Definition 2.4 W-algebra generators
Let H1, . . . , Hd ∈ h be a set of Cartan elements dual to a set of highest weights of
the representation ρ. The generating functions of generators of the algebra W (g)
are expressed through the quantum Miura transform

Ê =
d∑

k=0

(−1)kW(k) ŷ d−k =
de f

:
(
ŷ − J1

) · · ·(ŷ − Jd

)
: (2-14)

where ŷ =
de f

Q∂ and the subscripts 1, . . . ,d of J1, . . . ,Jd denote the evaluation

of highest weights by the current as Ji =
de f

J(Hi ). The non-commutative prescrip-

tion for evaluating these products at coinciding points has been used. These
generating functions could in principle be multivalued on Σ.

This definition is to be understood as the identification of the coefficients
of the polynomial expression in ŷ obtained by commuting all the derivative
symbols to the right.
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Example 2.5

W(1)(x̃) =
d∑

i=1

J(x̃ ·Hi ) (2-15)

W(2)(x̃) = ∑
1≤i< j≤d

: J(x̃ ·Hi )J(x̃ ·H j ) : −Q
d∑

i=2

(i −1)∂J(x̃ ·Hi ) (2-16)

Lemma 2.6 For any k ∈ {1, . . .d}, the k th generator W(k) of W (g) is equal to

k∑
p=1

(−1)k−pQk−p
∑

1≤i1<···<ip≤d
k≤ip

∑
∀l∈J1,pK

0≤ql≤il−il−1−1
p+∑p

l=1
ql=k

p∏
l=1

(
il − il−1 −1

ql

)
: ∂q1

(
Ji1 · · ·∂qp Jip

)
:

(2-17)

proof:
The proof consists in using non-commutative algebra in the ring of

differential operators DΣ overs the base curve to commute all Q∂ symbols
to the right before identifying the coefficients of the differential operators.
To do so we first identifiy holomorphic functions f ∈ OΣ with the degree
0 differential operators f · ∈ DΣ of multiplication by f on the left. For any
function f ∈ OΣ we then have the commutation relation [Q∂, f ] = Q(∂ f )
and it recursively yields the non-commutative version of Leibniz formula

(Q∂)p f =Qp
p∑

q=0

(
p

q

)
(∂q f )∂p−q (2-18)

where the equality takes place in DΣ. It is then a straightforward com-
putation to derive the wanted result. ■

Example 2.7 Straightforward computation for example yields, for d = 2,3,

• Êd=2 = (Q∂)2 − [J1 + J2](Q∂)+ : J1J2 : −Q (∂J2) (2-19)
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• Êd=3 = (Q∂)3 − [J1 + J2 + J3](Q∂)2

+ [: J1J2 + J2J3 + J1J3 : −Q∂J2 −2Q∂J3](Q∂)

+ Q2(∂2J3)+Q : [J1 + J2] (∂J3) : +Q : (∂J2)J3 : (2-20)

and for any d ∈N∗, for k = 1,2,3,

• W(1) =
d∑

i=1

Ji (2-21)

• W(2) = ∑
1≤i< j≤d

: Ji J j : −Q
d∑

i=2

(i −1)∂Ji (2-22)

• W(3) = ∑
1≤i< j<k≤d

: Ji J j Jk :

−Q
∑

1≤i< j≤d
3≤ j

[( j − i −1) : Ji∂J j : + (i −1)∂
(
: Ji J j :

)
]

+Q2
d∑

i=3

(
i −1

2

)
∂2Ji (2-23)

For l ∈ {1, . . . ,r }, W(dl ) therefore involves at most terms of degree dl as
differential polynomials in d copies of a chosen so-called “chiral h∗-valued
spin-one field” J(x̃) as described before. We require as stated in Axi om 2
that it satisfies

J(x̃ ·E)J(ỹ ·F ) =
x∼y

− (E ,F )

(x − y)2
+ : J(x̃ ·E)J(ỹ ·F ) :

x=y
+O (x − y) (2-24)

for Cartan elements E ,F ∈ h, where (·, ·) still denotes the corresponding
minimal invariant bilinear form and we redefined the current by a factor
of κ−1/2.

2.5 Ward identities

We now generalize Axi om 3 to the algebra W (g) (not necessarily a Lie
algebra) defined by the operator coefficients of the expansions of the gen-
erators W(k), k ∈ {1, . . .d}, around a base point x0 ∈Σ. We then get that the
chiral spin-one current J should be chosen such that it satisfies
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Definition 2.8 The Ward identities of this W (g)-symmetric conformal field
theory is the set of relations defined for any k ∈ {1, . . . ,d}, any generic
x̃1, · · · , x̃n ∈ Σ̃, any holomorphic one-form η on Σ and small circle Ct surround-
ing a point t ∈Σ− {z1, . . . , zM } by

∮
Ct

η(x)〈〈W(k)(x̃)J(x̃1) · · ·J(x̃n)〉〉 =
∮

Ct

η(x)

〈
W(k)(x̃)J(x̃1) · · ·J(x̃n)

M∏
j=1

Vα j (z j )

〉
(2-25)

= 0 (2-26)

This definition yields that for an admissible chiral current J, the inser-
tion 〈〈W(k)(x̃)J(x̃1) · · ·J(x̃n)〉〉 of any of the fields W(k), k ∈ {1,d}, should be
uniquely valued as a holomorphic function of x ∈ Σ− {z1, . . . , zM }. We can
therefore drop the upperscript in x̃ and simply write W(k)(x) when evaluat-
ing the insertion of such a generator. Notice that they are trivially satisfied
when k 6= dl for all l ∈ {1, . . . ,r } since we then have W(k) = 0.

Replacing the previously computed expression for W(k) in terms of the
current J in 〈〈W(k)(x)J(x̃1) · · ·J(x̃n)〉〉 yields that

Proposition 2.9 Ward identities as loop equations

〈〈W(k)(x)J(x̃1) · · ·J(x̃n)〉〉
=

k∑
p=1

(−1)k−pQk−p
∑

1≤i1<···<ip≤d
k≤ip

∑
∀l∈J1,pK

0≤ql≤il−il−1−1
p+∑p

l=1
ql=k

(
p∏

l=1

(
il − il−1 −1

ql

))

× 〈〈: ∂q1
(
Ji1 . . .∂qp Jip

)
(x̃) : J(x̃1) · · ·J(x̃n)〉〉

(2-27)

is a holomorphic function of x ∈Σ− {z1, . . . , zM }.

For a generic value of Q and specializing to the cases k = 1,2, the
expressions for W(1) and W(2) yield that
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Corollary 2.10

d∑
i=1

〈〈Ji (x̃)J(x̃1) · · ·J(x̃n)〉〉 and (2-28)

∑
1≤i< j≤d

〈〈: Ji J j (x̃) : J(x̃1) · · ·J(x̃n)〉〉− Q
d∑

i=2

(i −1)∂x〈〈Ji (x̃)J(x̃1) · · ·J(x̃n)〉〉

(2-29)

are holomorphic functions of x ∈Σ− {z1, . . . , zM }.

2.6 Classical limit and quantization

The definition of the generators of W (g) involved identifying the coeffi-
cients of two differential operators. We get the following classical limit

Theorem 2.11 Quantization of Fuchsian differential systems [B.-Eynard]

d∑
k=0

(−1)kW(k)
0 y r−k = Symb

(
d∑

k=0

(−1)kW(k) ŷ r−k

)
(2-30)

where the symbol of a differential operator P (x, ŷ ) ∈C(x)[ ŷ ] is defined as

Symb
(
P (x, ŷ )

) =
de f

lim
Q→0

(
e−x y/QP (x, ŷ ) ·ex y/Q)

(2-31)

and therefore the W (g)-symmetric conformal field theory quantizes the Fuch-
sian differential system corresponding to this classical limit W0(g).

More explicitely, putting Q = 0 in the Ward identities, the only remaining
term of the expression of last proposition is for p = k and is equal to

〈〈W(k)
0 (x)J(x̃1) · · ·J(x̃n)〉〉 = ∑

1≤i1<···<ik≤r

〈〈: (Ji1 · · ·Jik

)
(x̃) : J(x̃1) · · ·J(x̃n)〉〉(2-32)

that is the sum over all possible ways to insert k of the d copies of the
chiral current J. This is exactly what one would obtain by writing the Ward
identities for a Casimir algebra-symmetric conformal field theory and we
can read the loop equations on the right hand side.
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3 Quantum geometry

We shall now define the quantum geometry associated to the W (g)-
symmetric conformal field theory we are considering [5]. It first consists in
a definition of the quantum spectral curve and quantum complex structure,
encoded in the 2-points function, when we assume the existence of a topo-
logical regime. We will then introduce the relevent topological recursion
and show one of the main results of the chapter, namely that it solves the
Ward identities.

We will for simplicity restrict ourselves to the case where the Riemann
surface is the Riemann sphere Σ= CP1, although most of the reasoning is
local and could be generalized to an arbitrary Riemann surface.

3.1 Topological regime and quantum spectral curve

This is the main assumption of this study. Let us suppose that all the func-
tions appearing in our construction are now formal series in an expansion
parameter ε−→ 0.

This could for instance be the limit b −→ i 0 (0 along the imaginary axis)
keeping Q = b+b−1 fixed to a generic value and taking b and the expansion
parameter ε to be proportionnal one to the other ε∼ b.

Let us now assume that the chiral correlation functions with current
insertions admit ε−→ 0 asymptotic expansions of the form

〈〈
J(x̃1 ·Hi1) · · ·J(x̃n ·Hin )

〉〉 =
de f

∞∑
g=0

ε2g−2+n

(
Wg ,n(

i1
x1, . . . ,

in
xn)−δn,2δg ,0

(Hi1, Hi2)

(x1 −x2)2

)

(3-1)

for all n ∈N∗ for which Wg ,n, with g ∈N, is a multi-valued meromorphic
function on n copies of the Riemann sphere.

As a consequence, the differential operators obtained by inserting Ê (x)
into a chiral correlation function with current insertions 〈〈J(x̃1) · · ·J(x̃n)〉〉
also admit asymptotic expansions of a similar form
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〈〈
Ê (x)J(x̃1 ·Hi1) · · ·J(x̃n ·Hin )

〉〉 =
de f

∞∑
g=0

ε2g−1+nE
(g )
n (x;

i1
x1, . . . ,

in
xn) (3-2)

=
de f

d∑
k=0

∞∑
g=0

(−1)d−kε2g−1+n

× P (g )
n,d−k(x;

i1
x1, . . . ,

in
xn)ŷ k

(3-3)

Definition 3.1 The differential operator E =
de f

E (0)
0 is called the quantum spec-

tral curve.

The Ward identities extended to these formal ε-expansions imply that

the operator E
(g )
n (x;

i1
x1, . . . ,

in
xn) is, for all g ,n ∈ N, n 6= 0, a meromorphic

function of the variable x ∈ C with possible singularities at x =∞, x = xi

for some i ∈ {1, . . . ,d} or x = z j for some j ∈ {1, . . . , M } and nowhere else.
This definition can be interpreted as exhibiting the quantization of a

classical spectral curve, perturbatively this time. Indeed , define a function
E of the variables x, y ∈C by the generic assignment

E(x, y) =
de f

Symb
(
E (0)

0 (x)
)

(3-4)

The Riemann surface defined by the equation E(x, y) = 0, the character
variety of the quantum spectral curve, embeds in C2 and defines a d : 1
cover of the complex plane by a meromorphic projection x : S −→C called
the classical spectral curve of the W (g)-symmetric conformal field theory.

Recall that to any classical integrable systems presented in Lax form can
be associated its corresponding spectral curve, a meromorphic covering of
complex curves, and that this is the starting point to run the topological
recursion of [43], [30] in order for example to compute recursively the ex-
pansion coefficients of generating functions of derivatives of the τ-function.
We wish to upgrade these techniques to the non-commutative, or quantum,
case using this operator formalism arising from conformal field theory.
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3.2 Fermionic description and notion of sheets

A dual point of view to describe the quantum spectral curve is through
the solutions of the linear differential equation it defines. Let us therefore
consider a set of d independent functions ψ j , for j ∈ {1, . . . ,d}, satisfying

ψ j ·E = 0 (3-5)

where the differential operator acts from the right.

Theorem 3.2 The quantum spectral curve decomposes as

E = (ŷ −Y1(x)) · · · (ŷ −Yd (x)) (3-6)

where for any k ∈ {1, . . . ,d},

Yk =
de f

Q∂

(
ln

Dk−1

Dk

)
= Q∂Dk−1

Dk−1
− Q∂Dk

Dk
(3-7)

with

Dk =
de f

Det
0≤i , j≤k−1

(
(−Q∂)iψ j+1

)
(3-8)

and the convention that D0 =
de f

1.

proof:
This is a straightforward corollary of the following

Lemma 3.3 For any k ∈ {1, . . . ,d},

(ŷ −Y1(x)) · · · (ŷ −Yk(x)) = Det
k+1


1 ψ1(x) . . . ψk(x)
ŷ (−Q∂)ψ1(x) . . . (−Q∂)ψk(x)

ŷ 2 (−Q∂)2ψ1(x) . . . (−Q∂)2ψk(x)
... ...

ŷ k (−Q∂)kψ1(x) . . . (−Q∂)kψk(x)


1

Dk(x)

(3-9)
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and in particular for any j ∈ {1, . . . ,d},

ψ j · (ŷ −Y0(x)) · · · (ŷ −Y j (x)) = 0 (3-10)

Indeed, since then the differential operator of the right hand side and
the quantum spectral curve have same degree and space of solutions they
are thus equal. ■

Definition 3.4 Master loop equation
Define the auxilary operator

U =
de f

(ŷ −Y2(x)) · · · (ŷ −Yd (x)) (3-11)

such that the following identity holds

(ŷ −Y1(x))U = E (3-12)

and is called the master loop equation.

Remark 3.5 This terminology comes from the similarities existing between the
quantum geometry of the W (g)-symmetric conformal field theory we are studying
and that of the β(g)-deformed two-matrix model, a generalization of that of [34]
and [18]. These similarities hide a full correspondence between the theories that
is being described and should appear soon [6].

Remark 3.6 The geometrical interpretation of this factorization is that there
exists a function Y that is actually multivalued on the punctured sphere in such

a way that Y (
i
x) = Yi (x) is its value at a generic point x ∈ Σ taken in sheet

i ∈ {1, . . . ,d}. The sheet labelled by i = 1 is often called the physical sheet. The
quantum sheets therefore label solutions of the quantum spectral curve and in
this sense, the function Y is defined on the quantum spectral curve.

This allows to define the meromorphic multivalued potential V of the
theory defined by the deformed multi-Penner type formula
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V (
i
x) =

de f

d+1∑
k=0

tk
xk+1

k +1
+

M∑
j=1

(α j , Hi ) ln(x − z j ) (3-13)

for generic values of the arguments. The parameters tk , k ∈ {0, . . . ,d+1},
are chosen such that the following identity holds

W0,1(
i
x)+Y (

i
x) = ∂V (

i
x) =

d+1∑
k=0

tk xk +
M∑

j=1

(α j , Hi )

x − z j
(3-14)

From a quantum field theory perspective, this potential is interpreted
as the one to which are submitted Toda fields ϕα related locally to our
currents by Q∂ϕα ∼ Jα, that is the sum of a polynomial interaction with the
vacuum and a Coulomb type potential with the fields inserted at the z j ’s.
Note that the currents cannot globally be such derivatives since they have
non-trivial monodromy in general.

Although the multi-penner potential is what we expect to be needed
to reconstruct perturbatively correlation functions of Toda quantum field
theory with the right deformation properties, we do not need this precise
form for the present construction.

3.3 2-points function

Recall that the 2-points function has the asymptotic expansion

〈〈J(x̃1 ·Hi1)J(x̃2 ·Hi2)〉〉 =
∞∑

g=0
ε2g−2+n

(
Wg ,2(

i1
x1,

i2
xn)−δn,2δg ,0

(Hi1, Hi2)

(x1 −x2)2

)
(3-15)

In the classical formalism of [43], [30], the initial data needed to run
the topological recursion included a symmetric bi-differential ω0,2 on two
copies of this curve having a double pole with no residue and bi-residue 1
on the diagonal divisor and no other singularities. In the special instance
where the spectral curve is a complex curve embedded in C2, a natural
candidate then was the Bergman kernel, or second-kind fundamental form,
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associated to a choice of Torelli marking, that is to a symplectic basis of
real codimension 1 homology cycles. The wanted singularities plus the
requirement of vanishing periods on a gvien half of the symplectic basis
fixes the Bergman kernel uniquely.

Our quantum situation is a direct generalization of that of [33] where
the construction can be interpreted as solving the Ward identities of a
W (sl2(C))-symmetric conformal field theory. The existence of an hyper-
elliptic involution then simplified the discussion and a structure of quan-
tum Riemann surface with cuts, cycles, holomorphic differential forms and
their mutual pairing was defined. In particular, the periods of the quantum
Bergman kernel were vanishing on a corresponding half of a symplectic
basis of quantum cycles.

This geometric construction is expected to extend to our setup and will
be further investigated in subsequent work. By anticipation

Definition 3.7 Quantum Bergman kernel
We interpret the leading order of the 2-points function of the theory as the
quantum Bergman kernel, or second-kind fundamental form, and denote it by

B =
de f

W0,2 (3-16)

Accordingly, we define the third-kind differential form G (up to a constant
additive factor) by the formula

∂zG(
i
x,

j
z) = 2B(

i
x,

j
z) (3-17)

proof:
The only thing to check is that since W0,2 is symmetric, any function of

the variable x that one can add to the last equlity without changing the
property is actually constant. ■
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4 Topological recursion

4.1 Ward identities in the ε−→ 0 expansion

To solve the Ward identities recursively, we must rewrite them order by
order in the topological regime. An exceptionnal feature of the structure
of these equations is that only the two lowest order Ward identities, that
we will call linear and quadratic loop equation, are needed to reconstruct
the chiral correlation functions with current insertions perturbatively. This
illustrates the over-determination of integrable systems.

Recall that using the multi-sheet notation, we denoted the insertion
of the k th W (g)-algebra generator W(k) at a generic point x ∈ Σ into a
chiral correlation function with n ∈N∗ current insertions at generic points
x1, . . . , xn ∈Σ by

〈〈W(k)(x)J(x̃1 ·Hi1), . . . ,J(x̃n ·Hin )〉〉 =
de f

∞∑
g=0

(−1)kε2g−1+nP (g )
n,k(x;

i1
x1, . . . ,

in
xn)

(4-1)

Replacing this expression in the two first conformal Ward identities
yields

Theorem 4.1 Linear and quadratic loop equations
The axioms of the W (g)-symmetric conformal field theory require the linear
and quadratic loop equations in the topological limit. Namely for any choice
of integers n, g ∈ N, n 6= 0, and any generic choice of points and sheet indices

J = {
i1
x1, . . . ,

in
xn},

P (g )
n;0(x, J ) =

d∑
i=1

W (g )
n+1(

i
x, J ) (4-2)

and
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P (g )
n;1(x, J ) = ∑

1≤i< j≤d

W (g−1)
n+2 (

i
x,

j
x, J )+ ∑

ItI ′=J
h+h′=g

W (h)
1+#I (

i
x, I )W (h′)

1+#I ′(
j
x, I ′)


−Q

d∑
i=2

(i −1)∂xW (g )
n+1(

j
x, J ) (4-3)

are holomorphic functions of x ∈Σ− {z1, . . . , zM }.

proof:
The proof is a done by induction on 2g−2+n and it is a straightforward

computation. ■

4.2 Bethe roots and kernel

Generically, a zero of Di for a given i ∈ {1, . . . ,d} is both a pole of Yi and
Yi+1, with residue ±1 and is not a zero of any other D j and therefore not a
pole of any other Y j . This statement is the quantum analog to that saying
that generically, there are only two sheets meeting at a branch point of an
algebraic curve.

Definition 4.2 Bethe roots
Let us denote by S =

de f
{s ∈ C |∃ j , D j (s) = 0} the set of all roots of the D j ’s and

call them the Bethe roots. We will moreover generically denote by sα ∈ S the root
such that there exists exactly two functions Yα+ and Yα−, of which sα is a pole
with |α+−α−| = 1.

Definition 4.3 Recursion kernel
Let us define the "recursion kernel" Kα(

i0
x0, x) as the solution of the following

differential equation which is analytic at x = sα:

(
Yα+(x)−Yα−(x)+ (α+−α−)Q∂x

)
Kα(

i0
x0, x) =G(

i0
x0,

α+
x )−G(

i0
x0,

α−
x ) (4-4)

Notice that Kα is symmetric under the exchange α+ ↔α−.
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If α+−α− = 1, we get

(
−2

QD ′
α−

Dα−
+ QD ′

α−+1

Dα−+1
+ QD ′

α−−1

Dα−−1
+Q∂x

)
Kα(

i0
x0, x) =G(

i0
x0,

α+
x )−G(

i0
x0,

α−
x )

(4-5)

4.3 Recursion

Theorem 4.4 Reconstruction by topological recursion [B.-Eynard]
We have the topological recursion

W (g )
n+1(

i0
x, J ) = ∑

α

Res
x→sα

Kα(
i0
x0, x)

(
W (g−1)

n+2 (
α+
x ,

α−
x , J )

+
′∑

ItI ′=J
h+h′=g

W (h)
1+#I (

α+
x , I )W (h′)

1+#I ′(
α−
x , I ′)

)
(4-6)

where the recursion kernel is the solution of

(
Yα+(x)−Yα−(x)+ (α+−α−)Q∂x

)
Kα(

i0
x0, x) =G(

i0
x0,

α+
x )−G(

i0
x0,

α−
x ) (4-7)

which is analytic at the roots S = {s ∈C |∃ j , D j (s) = 0} with the third-kind
differential G defined by

∂x G(
i0
x0,

α
x) = 2B(

i0
x0,

α
x) (4-8)

proof:
Let us compute the expression

∑
α

Res
x→sα

Kα(
i0
x0, x)

(
W (g−1)

n+2 (
α+
x ,

α−
x , J )+

′∑
ItI ′=J
h+h′=g

W (h)
1+#I (

α+
x , I )W (h′)

1+#I ′(
α−
x , I ′)

)
(4-9)

where
∑′

h,h′,I ,I ′ means that we exclude both the cases (h = 0, I =;) and
(h′ = 0, I ′ = ;) from the sum. Let us define the same quantity as the one
between parentheses but without the prime symbol ′ :
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Qi , j =
de f

W (g−1)
n+2 (

i
x,

j
x, J )+ ∑

ItI ′=J
h+h′=g

W (h)
1+#I (

i
x, I )W (h′)

1+#I ′(
j
x, I ′) (4-10)

for root indices i , j ∈ S. We thus have to compute:

∑
α

Res
x→sα

Kα(
i0
x0, x)

(
Qα,α+1 −W (0)

1 (
α+1
x )W (g )

n+1(
α
x, J )−W (0)

1 (
α
x)W (g )

n+1(
α+1
x , J )

)
(4-11)

Let us rewrite

2Qα,α+1 = Qα+1,α+Qα,α+1

= ∑
i 6= j

Qi , j −
∑

j 6=α,α+1

(Qα, j +Qα+1, j )− ∑
i 6=α,α+1

(Qi ,α+Qi ,α+1)

− ∑
i 6= j , i 6=α,α+1, j 6=α,α+1

Qi , j

= 2
∑
i< j

Qi , j −
∑

i 6= j , (i , j ) 6=(α,α+1), (i , j ) 6=(α+1,α)

Qi , j

= 2P (g )
n;1(x, J )+2Q

∑
j

j ∂x W (g )
n+1(

j
x, J )− ∑

i 6= j , (i , j ) 6=(α,α+1), (i , j ) 6=(α+1,α)

Qi , j

= +2Qα∂x W (g )
n+1(

α
x, J )+2Q(α+1)∂x W (g )

n+1(
α+1
x , J )+analyticat sα

(4-12)

where we used the i ←→ j symmetry of the symbol Qi , j and the linear
loop equation after we have introduced P (g )

n;1. Multiplying by the recursion
kernel and summing over residues at the Bethe roots imply that

∑
α

Res
x→sα

Kα(
i0
x0, x)

(
Qα,α+1 −W (0)

1 (
α+1
x )W (g )

n+1(
α
x, J )−W (0)

1 (
α
x)W (g )

n+1(
α+1
x , J )

)
= ∑

α

Res
x→sα

Kα(
i0
x0, x)

(
−W (0)

1 (
α+1
x )W (g )

n+1(
α
x, J )−W (0)

1 (
α
x)W (g )

n+1(
α+1
x , J )

+Qα∂x W (g )
n+1(

α
x, J )+Q(α+1)∂x W (g )

n+1(
α+1
x , J )

)
(4-13)

Since W (g )
n+1(

α
x, J )+W (g )

n+1(
α+1
x , J ) is analytic at sα, we may rewrite:
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∑
α

Res
x→sα

Kα(
i0
x0, x)

(
Qα,α+1 −W (0)

1 (
α+1
x )W (g )

n+1(
α
x, J )−W (0)

1 (
α
x)W (g )

n+1(
α+1
x , J )

)
= ∑

α

Res
x→sα

Kα(
i0
x0, x)

(
W (0)

1 (
α
x)−W (0)

1 (
α+1
x )+Q ∂x

)
W (g )

n+1(
α
x, J ) (4-14)

Integrating by parts then yields

∑
α

Res
x→sα

Kα(
i0
x0, x)

(
Qα,α+1 −W (0)

1 (
α+1
x )W (g )

n+1(
α
x, J )−W (0)

1 (
α
x)W (g )

n+1(
α+1
x , J )

)
= −∑

α

Res
x→sα

W (g )
n+1(

α
x, J )

(
W (0)

1 (
α+1
x )−W (0)

1 (
α
x)+Q ∂x

)
Kα(

i0
x0, x) (4-15)

and using the defining differential equations of each Kα we get

∑
α

Res
x→sα

Kα(
i0
x0, x)

(
Qα,α+1 −W (0)

1 (
α+1
x )W (g )

n+1(
α
x, J )−W (0)

1 (
α
x)W (g )

n+1(
α+1
x , J )

)
= −∑

α

Res
x→sα

W (g )
n+1(

α
x, J )

(
G(

i0
x0,

α+1
x )−G(

i0
x0,

α
x)

)
= −1

2

∑
α

Res
x→sα

(
W (g )

n+1(
α
x, J )−W (g )

n+1(
α+1
x , J )

)(
G(

i0
x0,

α+1
x )−G(

i0
x0,

α
x)

)
(4-16)

Using again the linear loop equation we have

∑
α

Res
x→sα

Kα(
i0
x0, x)

(
Qα,α+1 −W (0)

1 (
α+1
x )W (g )

n+1(
α
x, J )−W (0)

1 (
α
x)W (g )

n+1(
α+1
x , J )

)
= 1

2

∑
α

Res
x→sα

(
W (g )

n+1(
α
x, J )G(

i0
x0,

α
x)+W (g )

n+1(
α+1
x , J )G(

i0
x0,

α+1
x ))

)
= 1

2

∑
α

(
δα,i0 W (g )

n+1(
i0
x0, J )+δα+1,i0 W (g )

n+1(
i0
x0, J )

)
= W (g )

n+1(
i0
x0, J ) (4-17)

where we used the fact that G has simple poles along the diagonal (third
kind differential). ■
Remark 4.5 Notice that the proof of the topological recursion in this quantum
setup is almost the same as the proof that was done in the previous chapter in
the context of cameral curves.
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4.4 Special geometry and free energies

This topological recursion procedure applied to a quantum spectral curve
is expected to allow the perturbative reconstruction of the correlation func-
tion

〈
M∏

j=1

Vα j (z j )

〉
(4-18)

viewed as a function on the moduli space of all such W-symmetric con-
formal field theories on the Riemann sphere

MW (g) =
de f

{
(
{(z j ,α j ) ∈CP1 ×h∗}1≤ j≤M ,t

)
} (4-19)

where the potential V , with ∂V = W0,1 +Y , is defined as a function of
the times t through the multi-Penner formula of section 3.2.

We would then like to define the τ-function Tz,α,t associated to the
W-symmetric conformal field theory as the function on the moduli space
MW (g) by

lnTz,α,t =
de f

∞∑
g=0

ε2g−2Fg (4-20)

where the genus g free energy Fg is such that for any deformation
δ ∈ T ∗MW (g), we have the special geometry relations

δFg =
∫
δ∗

Wg ,1 (4-21)

with a cycle δ∗ dual to the deformation and defined such that

δWg ,n =
∫
δ∗

Wg ,n+1 (4-22)

for any g ,n ∈N, n 6= 0. Such a definition needs a systematic definition
and study of deformations and associated cycles that should generalize the
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one introduced in [33] and [35]. In particular, the additional choices that
have to be made to define form-cycle type dualities should correspond to
parameters of bases of conformal blocks and the natural conjecture

Conjecture 4.6 τ-function as conformal block

l nTz,α,t =
〈

M∏
j=1

Vα j (z j )

〉
(4-23)

would then go one step further in performing the conformal bootstrap
of W-symmetric conformal field theories. Indeed, the remaining problem
would then be to recollect these conformal blocks into single-valued smooth
correlation functions.

Similarly, the wave function reconstructed from topological recursion
applied to the quantum spectral curve of the W (g)-symmetric conformal
field theory is defined as

Ψ(D) =
de f

exp

(
∞∑

n=0

∞∑
g=0

ε2g−2+n

n!

∫
D
· · ·

∫
D

Wg ,n d x1 · · ·d xn

)
(4-24)

and is expected to be related to correlation functions of the theory with
insertions of degenerate fields, in the sense that it should satisfy some BPZ
equation.



Conclusions

In this thesis we have worked out a unifying geometric framework for some
classical as well as some quantum integrable systems. In this setting, in-
tegrability is encoded in the form of symmetry and analytic constraints
called loop equations.

The classical context we started from was the one of Fuchsian differ-
ential systems. They are classes of local systems on Riemann surfaces up
to gauge transformations. From there were defined correlators satisfying
some loop equations that one can hope to solve by topological recursion
when in presence of nice topological expansions. Nevertheless we showed
that the special geometry they exhibit allows for the definition of a non-
perturbative τ-function. Investigation of the KdV hierarchy suggests once
more [40] that the topological recursion procedure should indeed repro-
duce the τ-functions of integrable hierarchies with initial data given by the
WKB asymptotics of the differential system. The next steps in this direction
are to finish the proofs of the conjectures regarding the cameral curve topo-
logical recursion and the KdV hierarchy and then apply the method in the
enhanced setup of the Drinfeld-Sokolov hierarchy as presented in [23]. Un-
fortunately for the dream of solving Gromov-Witten theory by this method,
a Lax formulation of the corresponding integrable hierarchy [37] is still
missing. Finding such a Lax formulation would therefore mean tremen-
dous progress towards reaching the dream.

The corresponding quantum context is that of W-symmetric conformal
field theories, where the W-algebra is defined from a reductive Lie algebra
g. It realizes a quantization of the Poisson structure [31] [32] [72] associ-
ated to equivariant integrable hierarchies of Drinfeld-Sokolov type and in
our setup this quantization is identified with the presence of a deforma-
tion parameter Q called the background charge. From this point of view,
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one recovers Casimir algebras by appropriately extracting the Q −→ 0 limit
from the non-commutative algebra. We then showed that the quantum
spectral curve allows for a perturbative reconstruction of the correlation
functions with current insertions in the topological regime. An important
feature of this part was that the recursion commutes with the variation
of the background charge in the sense that the initial data is quantized
while the recursion stays the same as the one used in the classical theory.
The next steps in this direction would be to give explicit computations of
the corresponding free energies in higher ranks examples. Moreover, even
though it was virtually absent of this work, the q-deformation, or second
quantization of these constructions seems to be a promising direction to-
ward using topological recursion e.g. for quantum integrable systems in the
context of quantum groups.
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