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Introduction 
 

The notion of homeostasis can be traced back to the work of Claude Bernard in sugar metabolism and 

thermoregulation. Indeed, he proposed that “all the vital mechanisms, varied as they are, have only 

one object, that of preserving constant the conditions of life in the internal environment”.  Specifically, 

he enunciated that “far from […] being indifferent to their surroundings, they are on the contrary in 

close and intimate relation to them, so that their equilibrium is the result of compensation established 

as continually and as exactly as if by a very sensitive balance.”  The term homeostasis was first used by 

Walter B. Cannon: “The coordinated physiological reactions which maintain most of the steady states 

in the body are so complex, and are so peculiar to the living organism, that [I have] suggested … that a 

specific designation for these states be employed — homeostasis” (For review: Cooper, 2008 and 

references therein). 

Homeostasis was thus defined as a dynamic equilibrium at the level of an organism. However, it can 

also be envisioned at smaller scales. For instance, a cell also maintains an equilibrium state within its 

boundaries, which is commonly referred to as “cell homeostasis”. By extension, the notion of 

homeostasis is often applied to the scale of a metabolic process like ribosome biogenesis. The latter 

however derogates from the notion of a homeostatic system because it does not maintain a constant 

equilibrium. Indeed, its intensity is modulated in response to a number of cues, which allows cells to 

adapt to stressful environments or lack of energetic resources. In this aspect, ribosome biogenesis is 

an important component of cell homeostasis, at extensive interplay with other cellular processes.  

Yet, the idea that ribosome biogenesis would be homeostatic remains a very useful working 

hypothesis. Indeed, while its intensity is highly modulable, the relative abundance of its components 

is retained at all times, through the action of a myriad of feedback mechanisms. Thus, it can be 

approximated to a homeostatic system with externally modulable equilibrium. Under this hypothesis, 

a perturbation of any component of ribosome biogenesis would echo onto the whole system, and 

experimental data are generally consistent with that idea. To further the analogy with a homeostatic 

system, ribosome biogenesis also displays the ability to modify the external environment, i.e. the cell. 

Indeed, a surge of observations described ribosome biogenesis components regulating cell 

metabolism.  

The extra-ribosomal functions of ribosomal proteins may couple ribosome biogenesis and cell 

homeostasis. Indeed, they have been shown to carry feedback mechanisms towards ribosome 

biogenesis components, but also to regulate other cell processes. The loss of such coupling may lead 

to dramatic consequences, as underlined by the paradoxical statement that both an increase or 

decrease of ribosome biogenesis intensity may drive tumorigenesis (Barna et al., 2008; Cai et al., 2015). 

In this context, it is likely that the study of extra-ribosomal functions will yield important discoveries 

regarding the ability of cells to monitor and regulate their ribosome synthesis activity. These could 

have implications in growth metabolism, development and cancer biology. 

The interaction between ribosomal protein uL11 and epigenetic factor Corto, which I have been 

working on, can be seen as a bridge between two worlds: ribosome biology and epigenetics. My team 

has been thoroughly investigating the functions of Corto, and its partners in transcription and 

epigenetics. However, the ribosomal side of this project was yet mostly unexplored. Thus, I felt that 

introducing this work through its context in ribosome biology would bring reflection material to 

understand the extra-ribosomal function of uL11. In this manuscript, I tried to first give an overview of 

ribosomal function and biogenesis, then to summarize their interplay with cell metabolism from the 

most general to the most specific features. 
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 I. The ribosome 
 

The ribosome was observed as early as the mid-50s as an electron-dense particle abundantly present 

in the cytoplasm. It was soon established that it possessed a polymerase activity, assembling proteins 

of any sequence. However, precise insight about its inner working remained elusive due to the lack of 

atomic-resolution structural data. The first crystal structures published in 2000 (Ban et al., 2000; 

Wimberly et al., 2000), which won the 2009 chemistry Nobel prize, started a new era in ribosome 

research. 

The recent surge of data on ribosome structure has brought valuable insight in the mechanism of 

translation and the precise role of the different ribosome components. In the following chapter, I will 

first describe ribosome composition and the mechanism of translation. I will then describe the process 

by which ribosomes are assembled, termed « Ribosome biogenesis ». 

 

  A. Ribosome and translation 
 

The translating ribosome is a complex particle made of two distinct subunits. Both contain ribosomal 

proteins (r-proteins) assembled onto ribosomal RNA (rRNA). The large and small sub-units (LSU and 

SSU) display a similar organization between all three domains of life. Nevertheless, archaeal and 

eukaryotic ribosomes are bigger and contain specific additions as compared to the bacterial ribosome, 

suggesting additional complexity in the mechanism of translation. For clarity purpose, this thesis will 

focus on the eukaryotic ribosome, unless explicitly specified. Additionally, r-proteins will be named 

following the recently proposed nomenclature (Ban et al., 2014). A conversion table for r-protein 

names can be found in appendix (Tables S1 and S2). It should also be noted that the previous yeast 

nomenclature was proposed in 1998 (Planta and Mager, 1998). Thus, another table is provided to 

convert to earlier r-protein names (Table S3). 
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   1. Composition of the ribosome 

Figure 1. Structure of the 40S subunit of the ribosome. 
a, Secondary structure of the Drosophila melanogaster 18S rRNA (Petrov et al., 2014). Taken from 
http://apollo.chemistry.gatech.edu/RiboVision. b, c, Interface (b) and solvent (c) view of the human 40S ribosome 
subunit with rRNA shown in grey and r-proteins coloured. H, head; Bd, body; Pt, platform. Taken from (Anger et 
al., 2013). 

The core of the 40S subunit of the ribosome is the 18S rRNA. Its secondary structure allows to 

distinguish four domains, which correspond to the landmarks of the 40S-SSU (Fig 1). The 5’ and 3’ 

minor (3’m) domains make up the body, while the 3’ major (3’M) domain forms the head of the SSU. 

Meanwhile, the central domain (C) makes up the platform. The organisation of the 18S rRNA is very 

similar to that of its bacterial counterpart (16S rRNA), with the exception of 5 regions containing 

additional nucleotides, termed expansion segments (ES), and 5 variable regions (VR). Thirty-three r-

proteins can be found assembled on the 18S rRNA, six of which are specific to eukaryotes (For review: 

Wilson and Cate, 2012). 

http://apollo.chemistry.gatech.edu/RiboVision
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Figure 2. Structure of the 60S subunit of the ribosome 
a, Secondary structure of the Drosophila melanogaster 28S, 5,8S, 5S and 2S rRNA (Petrov et al., 2014). Taken from 
http://apollo.chemistry.gatech.edu/RiboVision. b, c, Interface (b) and solvent (c) view of the human 60S ribosome 
subunit with rRNA shown in grey and r-proteins coloured. CP, central protuberance. Taken from (Anger et al., 
2013). 

The 60S subunit contains three rRNA species in most eukaryotes: 28S, 5.8S and 5S. Together, they 

organize into domains I to VII, with the 5S rRNA as domain VII (Fig 2). Eukaryotic rRNA of the LSU display 

16 expansion segments as compared to bacterial counterparts, as well as two variable regions. The 60S 

subunit harbours 47 r-proteins (46 in yeast), among which 7 are specific to eukaryotes. The LSU displays 

three structural landmarks in the form of stalks: The P stalk, the L1 stalk and the central protuberance 

(CP) (Fig 2) (For review: Wilson and Cate, 2012). As an exception to eukaryotic LSU organisation, insects 

display an additional 2S rRNA which is homologous to the 3’ end of the 5.8S rRNA in other species 

(Pavlakis et al., 1979).  Insects also display a cleavage of the 28S rRNA in expansion segment 19, 

separating the 28S rRNA into the 28α and 28β rRNA (Ware et al., 1985). 

http://apollo.chemistry.gatech.edu/RiboVision
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   2. Translation initiation 

Figure 3. Assembly of the 80S initiation complex and recognition of the initiation codon 
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Protein synthesis requires that the ribosome assembles onto an mRNA over an AUG codon, a step 

called translation initiation. The small subunit is first loaded with several initiation factors (IF): eIF1, 

eIF1A, eIF5 and the eIF3 complex.  These factors further promote the binding of the ternary complex 

(TC) containing the methionyl-tRNA and eIF2 bound to a GTP molecule. This 43S pre-initiation complex 

(PIC) is then recruited onto mRNAs through the interaction between eIF3 and the eIF4F complex that 

assembles on the 5’-m7G cap (For review: Kim, 2017). The eIF4A helicases from the eIF4F complex then 

unwind RNA secondary structures in an ATP-dependent manner to allow the PIC to scan for a proper 

AUG initiation codon. Inside the PIC, the methionyl-tRNA is bound with its anticodon close to the 

peptydil decoding center (P site). Steric clashes with eIF1 prevent it from fully entering the P site. Upon 

reaching a proper AUG codon, perfect base complementarity relocates it completely into the P site, 

dislodging eIF1 and causing a shift in the conformation of other eIFs. This results in the 40S subunit 

taking a closed conformation that stops it from moving further along the mRNA (Hinnebusch, 2017). 

The conformation shift allows the release of eIF2 and eIF5. The 60S subunit joining is then catalysed 

by eIF5B in a GTP-dependent manner (Pestova et al., 2000), resulting in the formation of a translation 

competent 80S initiation complex.    
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   3. Translation elongation 

 

At the end of the initiation stage of translation, the 80S ribosome is assembled on a mRNA with the 

methionyl-tRNA bound at the P site over the initiation codon, while the acceptor site (A site) is free. 

Translational elongation is a cycle consisting in delivery of the proper aminoacyl-tRNA to the A site, 

formation of the peptide bond, translocation of the ribosome and release of the deacylated tRNA (Fig 

4).  

 

Figure 4. Model of the eukaryotic translation elongation pathway. 
In this model, the large ribosomal subunit is drawn transparent to visualize tRNAs, factors, and mRNA binding to 
the decoding center at the interface between the large and small subunits and tRNAs interacting with the peptidyl 
transferase center in the large subunit. Throughout, GTP is depicted as a green ball and GDP as a red ball; also, 
the positions of the mRNA, tRNAs, and factors are drawn for clarity and are not meant to specify their exact places 
on the ribosome. Taken from (Dever and Green, 2012). 

The aminoacyl-tRNA is delivered to the A site as part of a ternary complex with GTP-bound eukaryotic 

Elongation Factor 1A (eEF1A).  The ternary complex is able to sample the codon in the A site, but cannot 

fit completely inside of it. A perfect match between the A site codon and the tRNA anticodon triggers 

hydrolysis of the GTP molecule by eEF1A, and their release from the ribosome. The free aminoacyl-

tRNA can subsequently fully enter the A site, stabilized by its interaction with the A site codon and the 

18S rRNA (Dever and Green, 2012).  
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Figure 5. Peptide bond formation on the ribosome. 
(a) Reaction scheme. The α-amino group of aminoacyl-tRNA in the A site (yellow) attacks the carbonyl carbon of 
the peptidyl-tRNA in the P site (orange). (b) Structure of the prokaryotic ribosome with bound tRNAS. Taken from 
(Rodnina et al., 2007). 

While bound to the A and P sites, tRNAs point their 3’ end towards a cleft in interface side of the large 

subunit, the so-called Peptidyl transferase centre (PTC). Interactions between the 28S rRNA and the 

universal 3’ end of the tRNAs positions the aminoacyl close to the peptidyl chain. This allows the 

peptide bond formation through a nucleophilic attack of the amine function of the aminoacyl on the 

ester carbonyl group of the peptidyl-tRNA (Fig 5, Rodnina et al., 2007). The structure of the PTC is 

considered superimposable between eukaryotic and prokaryotic ribosomes, suggesting that the 

mechanism of peptide-bond formation is conserved in both kingdoms of life (Klinge et al., 2011). 

Following the peptide bond formation, the tRNA takes a hybrid conformation where their 3’ end shift 

to the E and P sites while their anticodon stem loop (ASL) are still in the A and P sites. Binding of GTP-

bound eukaryotic Elongation Factor 2 (eEF2) stabilizes this conformation, and causes a 6° rotation of 

the SSU in regard to the LSU. This rotation causes a displacement of the ASL of both tRNAs towards the 

E and P sites. Subsequent GTP hydrolysis causes a conformational change in eEF2, allowing it to enter 

the A site and sever the connection between the A site tRNA and the decoding center. This triggers a 

conformational change in the SSU that completes the translocation of the ASL of both tRNA to the E 

and P sites. eEF2 is then released from the ribosome, allowing the SSU to rotate back to its initial 

conformation (Taylor et al., 2007). The E site tRNA then dissociates from the ribosome either 

spontaneously or under an allosteric effect of the binding of the next tRNA at the A site (Chen et al., 

2011).  
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Interestingly, fungi have a unique requirement among eukaryotes for a third elongation factor: eEF3. 

This stabilizes the L1 stalk in an open conformation that facilitates the release of the deacylated tRNA 

from the E site (Andersen et al., 2006). Interestingly, eEF3 carries a chromodomain suspected to 

interact with uL5, uS13, eS25 and the 5S rRNA. Although this domain is not required for eEF3 to bind 

the ribosome, it is necessary for its ATPase activity. It is thought that the binding of the chromodomain 

to the ribosome triggers an allosteric effect that enhances ATP hydrolysis rates (Sasikumar and Kinzy, 

2014). 

   4. Translation termination 

 

Translation termination occurs when the ribosome stumbles upon a UGA, UAG or UAA codon in the A 

site. STOP codons are decoded in a similar way as others, albeit with a tRNA-shaped protein instead. 

Indeed, eukaryotic Release Factor 1 (eRF1) exists as a ternary complex with eRF3 and a GTP molecule 

off the ribosome. Its N-terminal domain is able to sample the codon in the A site, and the presence of 

any STOP codon allows it to bind the ribosome. Subsequent interaction between eRF3 and the PABP 

bound at the poly(A) site of the mRNA stimulates GTP hydrolysis (Uchida et al., 2002), resulting in the 

release of eRF3 and GDP from the ribosome. This reaction also leads to the positioning of the middle 

domain of eRF1 into the PTC, where it triggers hydrolysis of the peptidyl-tRNA bond  (Salas-Marco and 

Bedwell, 2004). 

 

  B.  Ribosome biogenesis 
 

Ribosome biogenesis is the process that leads to the assembly of translationally competent ribosomes. 

It is considered the most energy demanding mechanism in cell metabolism, accounting for more than 

half of a cell’s whole energy (Moss and Stefanovsky, 2002). Ribosome biogenesis starts in a dedicated 

organelle: the nucleolus, where ribosomal components accumulate. From the transcription of 

ribosomal RNA to the assembly of the last ribosomal proteins on the 80S ribosome, a plethora of 

maturation and assembly steps is required. These occur sequentially during the entire journey from 

the nucleolus fibrillar centre to the cytoplasm. In this part, I will provide an overview of the mechanical 

steps that are required to produce ribosomes and translation factors. As there are differences in 

nomenclature for ribosomal components and assembly factors, I will use mammalian nomenclature 

for clarity purpose, unless explicitly specified. 

 

   1. Ribosomal RNA transcription 

 

rRNA account for more than 80 % of the RNA content in proliferating cells. Accordingly, rRNA gene 

organization and transcription display many unique features that allow for such intense activity.  

    Expression of the 47S rRNA 

 

The 28S, 18S and 5.8S rRNA are transcribed from hundreds of clustered gene copies, mostly organized 

in tandem arrays. Within the cluster, each repetition contains one copy of each gene. The number of 

units as well as the number of rDNA loci varies within species and individuals. For instance, human cells 

carry approximately 400 repeats, while yeast only contain around 150 (Birch and Zomerdijk, 2008; 



 
   20 
 

Nomura et al., 2013). Their transcription is responsible for the formation of a specialized organelle: the 

nucleolus (Mélèse and Xue, 1995). Consequently, these rDNA cluster regions are termed Nucleolar 

Organizer Regions (NOR).  

 

Figure 6. Organization of the nucleolus. 
(a) Electron micrograph of a nucleolus in HeLa Cells. (b) Schematic representation of nucleolus-associated DNA. 
FC, Fibrillar Center; DFC, Dense Fibrillar Component; GC, Granular component; Nu, nucleolus; RC, ribosomal 
chromosome; NRC, non-ribosomal chromosome. Adapted from (Sirri et al., 2002; Smirnov et al., 2016) 

 

Among the rRNA genes, only a subset is actively transcribed. The proportion of active versus inactive 

repeats may vary between species (Madalena et al., 2012) and cell types (Sanij et al., 2008). Inactive 

repeats display heterochromatin characteristics with methylated DNA, high histone compaction and 

repressive histone marks (methylation of Histone 3 lysines 9 and 27, and histone 4 lysine 20) (Németh 

and Längst, 2011). On the contrary, active rDNA repeats are characterized by acetylated histones, 

hypo-methylated DNA, and an open chromatin state. The latter correlates with an enrichment in the 

Upstream Binding Factor protein (UBF), which participates in the maintenance of eukaryotic rDNA by 

displacing repressive histone H1 (Németh and Längst, 2011). Active rDNA repeats form a sub-

compartment of the nucleolus: the Fibrillar Center (FC), a region characterized by low density in 

electron microscopy (Fig. 6a). Interestingly, electron microscopy studies showed that the transcription 

of active rDNA repeats occurs in the neighbouring compartment: the Dense Fibrillar Component (DFC), 

or at the border between the FC and the DFC (Koberna et al., 2002). Meanwhile, chromatin capture 

analysis showed that the promoter and terminator region of active rDNA contact each other, and 

several other loci in the rDNA repeat. Thus a “core-helix” model has been proposed where the rDNA 

unit forms loops at the FC/DFC interface, anchored in the FC by its joined promoter and terminator 

(Fig 6b, Denissov et al., 2011). 
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Figure 7. Transcription of the rRNA genes. 
(a) Organization of the rRNA genes in eukaryotes. IGS, InterGenic Spacer; ETS, Externally Transcribed Sequence; 
ITS, Internally Transcribed Sequence. Taken from (Eickbush and Eickbush, 2007). (b) Schematic of the mammalian 
PolI pre-initiation complex. Taken from (Goodfellow and Zomerdijk, 2012). 

The organization of rDNA repeats is conserved among eukaryotes. A single transcription unit contains 

the genes for the 28S, 18S and 5.8S rRNA; and gives rise a pre-rRNA whose size varies greatly within 

species (13kb in mammals vs 6.9 in yeast). The rRNA genes are separated by an Intergenic Spacer (IGS) 

that contains many regulatory elements including a core promoter, repetitive enhancers and a 

terminator (Fig. 7a). RNA polymerase I (RNAPolI) is dedicated to the transcription of this locus, and it 

relies on the assembly of a specific pre-initiation complex for its recruitment. In mammalians, it is the 

SL1 complex, made of the TATA-binding Protein (TBP), and several PolI-specific TBP-associated factors 

(TAF). Among them, TAFI110, TAFI63 and TAFI48 bind DNA directly and are thought to be responsible 

for the promoter selectivity of SL1 (Beckmann et al., 1995). RNAPolI binds the SL1 complex by 

interacting with TAFs. Furthermore, SL1 binds UBF and stabilizes its interaction with rDNA at the core 

promoter, which is required for transcription (Friedrich et al., 2005). After PIC assembly, productive 

transcription requires that RNAPolI dissociates from the SL1 complex, a process called promoter 

escape. This step is rate-limiting for in vitro transcription suggesting that it is a major target in the 

regulation of PolI activity (Panov et al., 2001). In mammals, promoter escape requires the release of 

PolI subunit RRN3, which is triggered by its phosphorylation by Casein Kinase 2 (Bierhoff et al., 2008). 

The association of UBF within the PIC is also important to facilitate promoter escape though the 

underlying mechanism is unclear (Panov et al., 2006). The dissociation of RNAPolI leaves SL1 and UBF 

still assembled on the core promoter, and competent for recruitment of another RNAPolI complex. 

Additionally, the promoter and terminator regions of active rDNA repeats are juxtaposed, allowing for 

rapid re-initiation after RNAPolI reaches the terminator. Thus, the looping organization of active rDNA 

repeats participate in the high efficiency of RNAPolI transcription (Panov et al., 2001). 
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    Expression of the 5S rRNA 

 

Figure 8. Structure of A. thaliana 5S rDNA units. 
(a) Two tandemly organized 5S rDNA units. (b) One 5S rDNA unit with the 120 bp-transcribed sequence containing 
the internal promoter composed of box A (A), intermediate element (IE) and box C (C). The upstream region 
contains three motifs necessary for transcription at -28, -13 and -1. The downstream region contains the poly-T 
cluster used as transcription terminator. Taken from (Douet and Tourmente, 2007). 

Similarly to the other rRNA species, the 5S rRNA is encoded by hundreds of clustered gene copies. 

However the 5S rRNA clusters are separated from NOR loci in most eukaryotes (with S.cerevisiae as an 

exception) and can be found on euchromatic regions. Their length and number vary among species. 

Their organization is quite similar to the NOR: a short transcribed sequence is separated from other 

repeats by an intergenic spacer (Fig. 8a). As the 47S rRNA cluster, only a subset of 5S rRNA genes are 

active, with their chromatin state showing high level of histone acetylation (Douet and Tourmente, 

2007). 

Transcription of the 5S rRNA gene is performed by RNA polymerase III (RNAPolIII), which specializes in 

short non-coding RNAs. Unlike PolI, its transcription activity does not occur inside the nucleolus. FISH 

experiments showed that RNAPolIII transcribes the 5S rRNA in a nucleoplasmic foci that tends to 

localize near the nucleolus in yeast (Haeusler and Engelke, 2006).  

As with other polymerases, the recruitment of RNApolIII on target genes is dependent on the assembly 

of a specific pre-initiation complex. In the case of the 5S rRNA, sequences responsible for recruitment 

of the PIC are intragenic (Fig. 8b). The intragenic promoter contains three conserved elements: box A, 

box C and an Intermediate element, which are all recognized by the zinc-finger protein TFIIIA (Clemens 

et al., 1992). The PIC then forms with the sequential binding of TFIIIC and TFIIIB. The latter is a 

multimeric complex that contains TBP and binds the TATA box upstream of the 5S rRNA gene. Once 

bound, TFIIIB is able to recruit RNAPolIII and position it over the initiation region (Kassavetis et al., 

1990). RNAPolIII is then able to initiate transcription without displaying significant pausing at the 

promoter (Bhargava and Kassavetis, 1999). It then transcribes the 5S rRNA gene through the binding 

sites for TFIIIA without dissociating the PIC from chromatin (Bogenhagen et al., 1982). Finally, RNAPolIII 

is able to recognize the poly(T) sequence autonomously and accurately terminates transcription 

(Cozzarelli et al., 1983).  
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   2. Ribosomal RNA processing 

 

Transcription of the nucleolar rDNA locus by RNAPolI generates a 47S precursor RNA that will 

subsequently be cleaved into the mature 28S, 18S and 5.8S rRNA. The processing of ribosomal RNA is 

a complex cascade of events that requires the activity of many endo- and exonucleases. The different 

cleavage events follow a precise order, extensively reviewed in Henras et al., 2015 (Fig. 9). Importantly, 

these maturation steps are coupled to rRNA folding and assembly of r-proteins, and occur at all steps 

of the journey from the nucleolus to the cytoplasm.  

 

 

 

Figure 9. Pre-ribosomal RNA processing in mammalian cells. 
Taken from (Henras et al., 2015) 

One of the early steps of maturation of the precursor rRNA is an endo-nucleolytic cleavage at site 2 in 

the ITS1, resulting in the separation of the small subunit pre-rRNA from the large subunit pre-rRNAs. 

This event occurs quickly after transcription, and even co-transcriptionally in yeast (Kos and Tollervey, 

2010). Following this event, the pre-subunits undergo independent processing pathways. The pre-40S 

is quickly exported to the nucleus where its maturation continues, and then to the cytoplasm where it 

is achieved. Meanwhile, the pre-60S lingers in the granular component of the nucleolus (Fig. 6a and 
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Hernandez-Verdun et al., 2010). While the 28S rRNA maturation is completed prior to export, the 5.8S 

undergoes the last steps of its maturation in the cytoplasm. 

In contrast to the complex processing of the 47S pre-rRNA, the maturation of the 5S rRNA is very 

straightforward. It is transcribed with a 7-13nt 3’ expansion that is removed by exonucleases Rex1p, 

Rex2p, and Rex3p in yeast (Hoof et al., 2000).  

Importantly, the processing of ribosomal RNA is monitored by the so-called “nucleolar surveillance 

pathway”. Improperly processed rRNA are quickly targeted for degradation, through the addition of a 

short poly-adenosine tail in 3’ by the TRAMP4 and TRAMP5 in yeast, and PAPD5 in mammals (Houseley 

and Tollervey, 2006; LaCava et al., 2005; Shcherbik et al., 2010). The recognition mechanism for 

defective rRNA is currently unclear. Interestingly, it has been reported that a delay in processing the 

18S pre-rRNA also triggers degradation (Wery et al., 2009), leading to the theory that pre-rRNA 

routinely carry the ability to be recruited for degradation, which they only escape through timely 

maturation (Dez et al., 2006). In mammals, rRNA degradation relies on the activity of 5’→3’ 

exonuclease XRN2, which trims the 5’ ends of rRNA after each endo-nucleolytic cleavage during normal 

processing (Fig. 9). Therefore, these exonucleolytic steps of rRNA processing could also serve as quality 

checks targeting pre-rRNA to either continued maturation or degradation (Wang and Pestov, 2011). 
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   3. rRNA modifications and snoRNPs 

 

Mature ribosomal RNAs are known to be heavily modified: approximately 200 sites have been 

identified in humans (http://people.biochem.umass.edu/fournierlab/3dmodmap/ and Piekna-

Przybylska et al., 2008). Among them, 2’O-methylation of the ribose cycle and isomerisation of uridine 

to pseudouridine (Ψ) are the most common, being ten times more frequent than base modifications. 

Importantly, these modifications are distributed in several clusters that correspond to functional sites 

in the mature ribosome, among which the peptidyltransferase center, and the decoding center (Fig. 

10 and Decatur and Fournier, 2002). 

 

Figure 10. Distribution of rRNA modifications on the yeast ribosome. 
The S. cerevisiae 80S ribosome (PBD 4V88)6 is shown – 40S in teal and 60S in gray. The positions of 2′-O-
methylations (purple), pseudouridines (blue) and base modification installed by stand-alone enzymes (orange) 
are indicated. Three functionally important regions of the ribosome, the peptidyltransferase center (PTC), the 
decoding site and the intersubunit bridge eB14, are also shown in a magnified view. Taken from (Sloan et al., 
2016). 

 

While 2’O-methylation and pseudouridylation are crucial for ribosome function (Esguerra et al., 2008; 

Tollervey et al., 1993), the loss of individual modifications display mostly subtle phenotypes (Esguerra 

et al., 2008).  On the contrary, loss of several modifications in the same functional region of the 

ribosome often displays severe phenotypes, showing that they do carry functional importance in 

http://people.biochem.umass.edu/fournierlab/3dmodmap/
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ribosome activity (King et al., 2003; Liang et al., 2009). Indeed, these modifications stabilize RNA 

secondary structures: 2’O-methylations increase base stacking, while pseudouridines establish more 

hydrogen bonds than their unmodified counterpart (Helm, 2006). 

The bulk of these modifications is catalysed by two classes of small nucleolar RNPs. The boxH/ACA 

snoRNPs complexes contains an eponymous snoRNA, along with the pseudouridine synthetase Dys-

kerin (Cfb5 in yeast, Lafontaine et al., 1998). In a similar manner, the boxC/D snoRNAs enter a second 

snoRNP complex that contains the methyltransferase fibrillarin (Nop1 in yeast, Tollervey et al., 1993). 

In both cases, the snoRNA recognizes a specific site on ribosomal rRNA through base pairing, allowing 

the enzymatic subunit to catalyse rRNA modification. 

There are approximately 700 snoRNA expressed in humans, and most of them belong to the box 

HA/ACA and box C/D families. A significant proportion possesses more than one target (Jorjani et al., 

2016). In yeast, snoRNAs are mostly expressed from independent or polycystronic transcripts by 

RNAPolII. In contrast, vertebrate snoRNA are mainly processed from the introns of protein-coding 

genes, most of which participate in ribosome biogenesis (Dieci et al., 2009; Filipowicz et al., 1999). This 

coupling between snoRNA and coding genes raised the idea that this peculiar organization underlies a 

coordination between several steps in ribosome biogenesis. Additionally, some snoRNA display strong 

tissue specificity (Cavaillé et al., 2000). Accordingly, some snoRNA-catalyzed modifications appear to 

be sub-stoichiometric, suggesting that rRNA modifications could also underlie ribosome heterogeneity 

(Krogh et al., 2016; Taoka et al., 2016).    
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   4. Ribosomal proteins biogenesis 

 

While rRNA make up the core of the ribosome, both structurally and functionally, r-proteins form its 

surface layer. In eukaryotes, 80 r-proteins are found in the mature ribosome (79 in yeast). The severe 

phenotypes associated to their loss of function underscore their importance in the synthesis of 

functional ribosomes (Marygold et al., 2007; Terzian and Box, 2013). However, their role in translation 

has mostly been associated to folding and stabilizing the rRNA. 

    r-protein genes characteristics 

 

 Human Fly Worm Yeast 

Gene length (bp) 4316 922 742 764 

CDS length (bp) 541 524 520 498 

Number of exons 5.3 2.5 3.0 1.6 

Exon length (bp) 103 206 172 303 

Intron length (bp) 888 258 110 413 

Table 1. Ribosomal protein gene features among model organisms 
Taken from (Yoshihama et al., 2002) 

Ribosomal protein coding genes (RPG) are scattered throughout the genome, but they share some 

characteristic features. RPG are small genes with a highly-conserved coding sequence (CDS): their 

human CDS display 59 % homology with their yeast counterpart, and 69% with Drosophila’s. They 

possess short 5’ and 3’UTR sequences, and in humans, their initiation codon is always located near the 

splice site for the first intron, either on the first or second exon. Interestingly, the position of the introns 

in the CDS is conserved between species: for instance, 80% of Drosophila RPG introns are also found 

in humans. This may be linked with the presence of snoRNA within RPG introns (cf. I.A.3.). In humans, 

their transcription start site (TSS) is always a cytosine located inside an oligopyrimidine tract (5’TOP), 

and while their promoter is rich in GC, most RPG exhibit a TATA box or a TATA-like sequence in 5’ 

(Yoshihama et al., 2002). Another feature of RPG in several species is the existence of duplicates, either 

functional or pseudogenes. The most notorious example is the baker’s yeast, S. cerevisiae, where an 

ancient whole genome duplication event gave rise to duplicates. While only 12 % gene pairs conserved 

a paralog, almost 75 % of RPG did (59 out of 79) (Kellis et al., 2004; Planta and Mager, 1998). In contrast, 

mammalians carry thousands of RPG duplications, 99.8% of which stem from retro-transposition 

events. Interestingly, analysis of their evolutionary trajectory shows that they are under strong 

purifying selection, particularly when they display transcriptional activity. It is thought that the 

opposed selection trajectory between yeast and mammalian duplicates is a consequence of the 

duplication pattern. Indeed, whole genome duplications does not modify the relative stoichiometry 

within a gene family, while retro-transposition may severely compromise it (Dharia et al., 2014).  

    r-protein shuttling 

 

Given that r-proteins are translated in the cytoplasm and associate with the pre-ribosome in the nu-

cleolus, they must be imported into the nucleus. Most r-proteins do so through redundant β-karyo-

pherins (Kap123, Kap108, Kap121) from yeast to humans (Jäkel et al., 2002; Rout et al., 1997). Some r-
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protein also use specific import pathways: uL5 and uL18 are imported together by the combination of 

a β-karyopherin and the symportin Syo1 (Kressler et al., 2012). Similarly, uL11 enters the nucleus 

through importin11, and not by the general mechanism of r-protein import (Plafker and Macara, 2002).  

The use of active shuttling pathways may seem intriguing, given that r-proteins are mostly small 

enough to diffuse passively through the nuclear pore. However, several studies showed that free ribo-

somal proteins are rapidly ubiquitylated and degraded in the nucleus (Lam et al., 2007; Sung et al., 

2016a). Further evidence pointed out that r-proteins can escape this degradation pathway by forming 

complexes with other proteins, protecting their ubiquitylation sites (Bursać et al., 2012; Kim et al., 

2006). The interaction between r-proteins and importins may serve the same purpose. Indeed, several 

recent studies report that r-protein chaperones bind their substrate co-translationally, and escort 

them all the way to their assembly site in the ribosome (Pausch et al., 2015; Pillet et al., 2015; Schütz 

et al., 2014). This precautious importation system is thought to prevent the nuclear accumulation of r-

protein, which displays deleterious properties. Indeed, free r-proteins often display large unstructured 

domains (Gunasekaran et al., 2004; Lupas and Alva, 2017), and their basic expansions can bind nucleic 

acids unspecifically. The combination of these properties with their massive number allow r-proteins 

to form aggregates in the presence of polyanions. Their binding by importins have been shown to cover 

their basic domains and prevent the formation of such aggregates (Jäkel et al., 2002). Thus, the com-

bination of active importation by chaperones and degradation of free supernumerary r-proteins may 

serve as a safeguard for cell metabolism.   
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   5. Ribosomal protein assembly 

 

In the absence of r-proteins, the rRNA rapidly folds into secondary and tertiary structures that 

resemble normal ribosomes. However, they can follow different folding pathways, and more than half 

fold into kinetically trapped structures in vitro (Adilakshmi et al., 2005; Woodson, 2011). r-proteins 

bind specific rRNA secondary structure, and stabilize them. By assembling at all steps of rRNA folding, 

they constrain it into following the proper folding pathway. An interesting property of r-protein 

assembly is their cooperative behaviour: primary binding r-proteins first engage rRNA in a weak 

association. The conformational changes induced by this interaction allow the binding of secondary r-

proteins, which stabilizes the rRNA further, and strengthens the binding of primary r-proteins. Tertiary 

r-protein can then bind, with the same effect (Ferreira-Cerca et al., 2007; Ohmayer et al., 2013). 

Because r-protein induced folding of the rRNA is a necessary prelude to pre-rRNA cleavage, loss of 

functions of r-proteins often causes the accumulation of pre-ribosomal particles stalled at a certain 

point of rRNA maturation. It is therefore possible to pinpoint the step at which r-proteins assemble by 

analysing these kinetically trapped pre-ribosomes. 

 

Figure 11. Correlation of function and location of the small subunit and large subunit r-proteins of 
Saccharomyces cerevisiae 
Early-acting (yellow), middle-acting (blue), and late-acting (red) r-proteins are mapped onto the crystal structure. 
(a,c) The subunit interface of the SSU and LSU, respectively. (b,d) The solvent-exposed surface of the SSU and LSU, 
respectively. Ribosomal RNA (rRNA) and r-proteins are shown in cartoon and surface representation, respectively. 
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Abbreviations: CP, central protuberance; GAC, GTPase-activation center. The crystal structure is adapted from 
Protein Data bank codes 3U5D and 3U5E. Taken from (de la Cruz et al., 2015). 

The first r-proteins assemble onto the 5’ domain of the pre-18S, and form the body of the small subunit 

(Fig. 11a, b, yellow). Their deficiency blocks the earliest steps of rRNA processing in the 5’ETS (Fig. 6). 

The next group of r-protein bind the head domain of the SSU (Fig. 11a, b, blue), and are necessary for 

the cleavage of the ITS1, which happens very early after transcription in mammals, and co-

transcriptionally in yeast (Ferreira-Cerca et al., 2007; Osheim et al., 2004). Those proteins, which make 

up 70% of the SSU r-proteins, must therefore bind co-transcriptionally in yeast, and at least very early 

in mammals. The last r-proteins to assemble are not necessary for pre-SSU export, and are therefore 

thought to participate only to cytoplasmic maturation (Fig. 11a, b, red). With the exception of RACK1 

(Asc1 in yeast), they localize near the mRNA-binding  channel (For review: de la Cruz et al., 2015). 

While the 60S subunit seems somewhat monolythic due to its rRNA domains forming intertwined 

structures, large subunit r-proteins also bind in a hierarchical fashion. The first 12 r-proteins are 

required before the very first processing steps of the pre-60S rRNA (removal of the ITS1 3’ region). 

They bind mostly to the domains I and II of the 28S rRNA, and are located on the solvent-exposed 

surface (Fig 11c, d, yellow). The next 11 r-proteins are necessary for the cleavage of the ITS2 that 

separates the pre-5.8S and pre-28S rRNA. They bind the 28S rRNA domains I and III, and the 5.8S rRNA, 

and clusterize around the polypeptide exit tunnel (PET).  An additional set of r-proteins is required for 

further processing of the pre-5.8S rRNA, and localizes on the interface side of the LSU (Fig11c, d, blue). 

The last group of r-protein to bind the pre-60S subunit assembles either right before export or in the 

cytoplasm, and clusterize around the central protuberance. Among them, uL5 and uL18 bind the pre-

ribosome as a complex with the 5S rRNA, between 28S rRNA domains II and IV (Fig. 11c, d, red, for 

review: de la Cruz et al., 2015).   
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   6. Pre-ribosomal factors and quality control 

 

Ribosomal particles that are exported to the cytoplasm are not competent for translation. Indeed, 

several pre-ribosomal factors are still bound to pre-subunits, and thus several maturation steps 

remain. In most cases, these factors are bound at functional sites of the ribosome, and prevent the 

premature subunits from engaging in translation activity (Strunk et al., 2011). Interestingly, these 

cytoplasmic events also serve as quality controls, allowing maturation to complete only if the pre-

subunit is properly folded. 

 

 

Figure 12. Overview of the ribosome cytoplasmic maturation steps 
(a) Cytoplasmic steps of 40S incorporation. (b) Cytoplasmic steps of pre-60S subunit maturation. Taken from (de 
la Cruz et al., 2015) 
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On the pre-40S, seven assembly factors are bound on the beak, intersubunit surface, and platform. 

Notably, Ltv1 and Enp1, bound at the beak, prevent uS3 from taking its final conformation, thus 

preventing the binding of eS10 (Strunk et al., 2011). Their release is triggered by the phosphorylation 

of Ltv1 by Hrr25 (Ghalei et al., 2015), and allows the final maturation of the mRNA entry channel. The 

pre-40S is subsequently bound by eIF5B, promoting the recruitment of a mature 60S subunit. This 80S-

like complex is not able to perform translation since assembly factors Rio2 and Tsr1 are blocking the 

mRNA channel and tRNA binding site (Strunk et al., 2012). It is in that 80S-like particle that the last step 

of 18S rRNA processing (removal of the ITS1) occurs (García-Gómez et al., 2014), as well as the removal 

of most remaining assembly factors. Notably, the release of the 60S subunit requires the binding of 

Rli1 which shares its binding site with Tsr1, and its cofactor Dom34, which binds in the decoding center 

(Strunk et al., 2012). To sum it up, completion of this translation-like cycle requires that the pre-40S 

subunit displays the ability to bind and release 60S subunits, and that its decoding center and mRNA 

channel be properly structured. Hence, this maturation step is considered to work as a final quality 

control. 

Similarly, the pre-60S subunit carries a number of assembly factors in the cytoplasm. Those are located 

at functional sites: the GTPase activating center (GAC) and the PTC. Cytoplasmic maturation is required 

to dissociate Tif6 from the pre-60S, which prevents its association with 40S subunits (Si and Maitra, 

1999). Assembly factor Rlp24 is first removed and replaced by eL24, which triggers further removal of 

several AFs (Saveanu et al., 2003). Meanwhile, uL11 recruits Yvh1, which displaces Mrt4, allowing 

irreversible binding of acidic ribosomal protein P0 at the GAC. P0 then serves as a platform for the 

binding of P1 and P2 heterodimers that form the acidic stalk (Lo et al., 2009). The assembly of the stalk 

is required to recruit the GTPase Elf1 (Lo et al., 2010). The integrity of the peptidyl-transferase site is 

then probed by a flexible extension of uL16, which triggers a conformational change in Elf1, triggering 

the GTP-dependent release of Tif6 (Bussiere et al., 2012). The 60S subunit can then engage in 

translation. Interestingly, P0 and the acidic stalk have been shown to be able to assemble in the nucleus 

in absence of Mrt4 (Francisco-Velilla et al., 2013). Thus, Mrt4 and possibly other factors could function 

as placeholders, delaying the formation of active structures of the ribosome. For instance, preventing 

nuclear formation of the stalk bans inappropriate interactions with translation factors before 

completion of ribosome maturation (Panse and Johnson, 2010).  
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   7. tRNA biogenesis 

 

The activity of the ribosome relies on the unique properties of transfer RNA (tRNA) to polymerize 

polypeptides. These small RNAs amount for 15 % of all cell RNA, making it the second prominent class, 

after rRNA. Their biogenesis is very conserved among eukaryotes, and shares some similarities with 

rRNA biogenesis. 

Eukaryotes typically harbour hundreds of tRNA genes (274 in yeast). They are scattered throughout 

the genome, although they are sometimes found in clusters of variable size. Whereas their sequence 

is highly conserved, their organization shows considerable variation even between close species 

(Bermudez-Santana et al., 2010). Actively transcribed tRNA have been shown to cluster together at the 

nucleolus in yeast (Thompson et al., 2003), but whether this organization is conserved in other 

eukaryotes is not obvious. For instance RNAPolIII transcription has been described to occur in 

numerous foci throughout the nucleus in HeLa cells, suggesting some sort of spatial clustering, but not 

with the nucleolus (Pombo et al., 1999). 

 

Figure 13. Overview of tRNA processing and modification. 
Purple circles indicate the 5’ leader and 3’ trailer sequences, red ones indicate the anticodon while yellow circles 
are intronic bases. Solid black circle indicates a modification known to occur on initial pre-tRNAs. Several 
modifications occur in the nucleus; magenta circles indicate those modifications that require the substrate to 
contain an intron, whereas orange circles indicate modifications that do not appear to require intron-containing 
tRNAs as substrate. Numerous other modifications occur in the cytoplasm; those that require that the intron first 
be spliced are brown, whereas those with no known substrate specificity or are restricted to tRNAs encoded by 
intronless genes are colored khaki. Open circles are catalyzed by enzymes whose subcellular locations are 
unknown. Particular nucleosides that can possess numerous different modifications are indicated; half-colored 
circles indicate that the modifying enzymes have varying substrate specificity and/or subcellular location. Note 
that modification of G37 by Trm5 that requires tRNAs to be spliced occurs in the nucleoplasm after retrograde 

nuclear import.  Taken from (Hopper, 2013). 

tRNA genes are transcribed by RNAPolIII. Like 5S RNA genes, they harbour an intragenic promoter 

responsible for the recruitment of the PIC (Geiduschek and Tocchini-Valentini, 1988). They are 

transcribed as a long precursor RNA, which contains a 5’ leader and 3’ trailer sequence. Those are 

removed by a series of conserved RNAses (for review: Maraia and Lamichhane, 2011). The terminal 

ends are then processed by RNA polymerases with very peculiar properties. All eukaryotic tRNA require 
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the post-transcriptional addition of a universal CCA 3’ terminus. This is achieved by the tRNA 

nucleotidyl-transferase, which displays a template-independent polymerase activity (Xiong and Steitz, 

2004). Processing of the tRNAHis requires the addition of a G in 5’ by Thg1, which does so through a 

3’→5’ polymerisation reaction (Jackman et al., 2012).  

A number of tRNA contain an intron that is always positioned one base 3’ of the anticodon in 

eukaryotes (Phizicky and Hopper, 2010). The splicing occurs in the nucleus through a process that bears 

little resemblance to mRNA splicing. The intron is first spliced out by endonucleolytic cleavages, 

generating two half tRNAs that are joined by a ligase. A phosphotransferase then removes the  extra 

phosphate produced by the previous reaction (For review : Hopper, 2013). 

During their maturation, tRNAs acquire a plethora of modifications, with more than 15 % of their bases 

being uncanonical (Fig.13). Those modifications are located all over the tRNA sequence, with the most 

variable region being the anticodon, who also carries the most elaborate modifications (a list of 

modifications and associated enzymes can be found on the Modomics database at 

http://modomics.genesilico.pl). Their functions range between promoting folding, increasing stability, 

allowing discrimination by translation factors, or altering the specificity of the anticodon (Anderson et 

al., 1998; Aström and Byström, 1994). Notably, the deamination of adenosine into inosine (I) at the 

wobble position (34) allows it to base pair with any A, U or C base on the mRNA (Gerber and Keller, 

1999). 

 

Figure 14. Double-sieve model of editing by aaRSs. 
The aaRS aminoacylation active site as the first sieve accepts the cognate (shown in green) and structurally similar 
near-cognate (i.e., Ser for ThrRS, shown in red) amino acids but rejects the majority of noncognate amino acids. 
The editing site serves as the second sieve to hydrolyze only the misactivated products (aminoacyl adenylate or 
aa-tRNA). The correct aa-tRNA is excluded from the editing site and participates in protein synthesis. Taken from 

(Ling and Söll, 2010). 

Mature tRNA must next be charged with the appropriate amino acid before engaging in translation. A 

set of dedicated enzymes, the aminoacyl-tRNA synthetases (aaRSs) are responsible for this step. Their 

substrate specificity relies on their ability to probe the tRNA for identity elements, mostly in the 3’ 

acceptor stem - the discriminator base for instance – and the anticodon loop (Breitschopf and Gross, 

1994). Because several amino acids are very similar (isoleucine and valine, or glycine and alanine), aaRS 

are at risk of mischarging tRNA. The frequency of these errors is greatly reduced by the ability of aaRSs 

to hydrolyse mischarged tRNAs in their editing site (Fig 14 and Pang et al., 2014).  
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 II. Ribosome biogenesis as a conductor of cell metabolism 
 

Homeostasis has been described as the ensemble of reactions dedicated to keeping biological 

parameters within a range permissive for survival. As the most energy expensive process in the cell, 

ribosome biogenesis is at a very strategic place to coordinate cell homeostasis. Indeed, it was found to 

orchestrate the response to many a cue, being able to adjust cell proliferation tempo, conduct the cell 

through mitosis, and catch any wrong note in cell metabolism. Accordingly, many processes turn to 

ribosome biogenesis for directions, thus defining cell fate and organization. The importance of 

ribosome biogenesis in homeostasis is underscored by the developmental cacophony that follow its 

impairment in any species. 

 

  A. Metabolic cues dictate the activity of ribosome synthesis  
 

Despite its complexity, ribosome biogenesis displays the ability to modulate its activity in a coordinated 

manner. Even more impressive is the fact that it is reactive to virtually any kind of stress or metabolic 

event. Indeed, ribosome biogenesis components have been found to be the target of many signalling 

pathways. Those are intimately intricated, thus providing a regulatory network integrating metabolic 

cues, and regulating ribosome biogenesis in turn.   

 

  



 
   36 
 

   1. Cell growth and proliferation signals 

 

In order to maintain their ability to synthetize proteins, cells need to double their number of ribosomes 

before every division. Indeed, proliferating cells spend most of their energy for ribosome synthesis 

(Schmidt, 1999). Consistently, increased ribosome production is a feature of fast growing cells, to the 

point it has become a hallmark of cancer (Drygin et al., 2010). Signalling pathways that induce cell 

growth and proliferation regulate ribosome biogenesis at many levels, allowing for tight coupling of 

proliferation and ribosome production. Notably, the Ras-ERK and PI3K-mTor pathways are most 

remarkable for their ability to induce ribosome synthesis at multiple levels. 

 

Figure 15. Core components of the Ras-ERK and PI3K-mTor pathways 
(a) The Ras-ERK-MAPK Pathway. In quiescent cells, inactive Ras-GDP associates with the plasma membrane and 
inactive Raf, MEK, and ERK are largely cytoplasmic. GF (growth factor) binding activates RTK auto-
phosphorylation, generating binding sites for the SHC and GRB2 adaptor molecules that recruit SOS, the RasGEF 
(GTPase exchange factor), to the membrane. SOS catalyzes Ras GTP exchange and Ras-GTP then recruits Raf to 
the membrane, where it gets activated. HNC (polypeptide hormone, neurotransmitter, and chemokine) activation 
of GPCRs feed into the MAPK cascade by trans-activating upstream RTKs, thereby inducing SOS translocation, 
and/or Raf activation. Cell-permeable phorbol esters such as PMA directly bind and activate PKC by mimicking 
the natural PKC ligand diacylglycerol. The mechanism by which PKC activates ERK is not resolved and could be 
through activation of SOS or Raf. Raf activates MEK and MEK activates ERK via activation loop phosphorylation. 
ERK also feeds back to negatively regulate the pathway. (b) The PI3K-mTOR Pathway. In quiescent cells, the lipid 
phosphatase PTEN maintains low levels of PIP3, resulting in AKT inactivation. TSC2, in complex with TSC1, 
maintains RHEB in the GDP-bound state. Insulin and IGF1 bind their cognate RTKs, and subsequent receptor 
autophosphorylation creates binding sites that then recruit IRS, an adaptor protein for PI3K. Different RTKs 
activate PI3K through distinct docking proteins, such as FRS (FGF Receptor Substrate) or GAB (c-Met or EGFR), or 
via direct binding of PI3K (Platelet-derived Growth Factor Receptor). Activated PI3K phosphorylates PIP2 to 
generate membrane-bound PIP3. Pleckstrin homology (PH) domains in AKT and PDK1 recognize PIP3 and 
translocate to the membrane. PDK1 phosphorylates the activation loop and mTORC2 phosphorylates the 
hydrophobic motif of AKT, thus promoting AKT activation and phosphorylation of TSC2. This TSC2 phosphorylation 
inhibits TSC2 GAP activity. RHEB-GTP localizes to the lysosome and activates mTORC1 following its recruitment 
by the Rag GTPases. Taken from (Mendoza et al., 2011). 
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Cell proliferation signalling pathways can be triggered by a number of external cues including growth 

factors, hormones and neurotransmitters. Both the Ras-ERK and PI3K-mTor pathways are triggered by 

the binding of such molecules to a cognate receptor. Subsequent activation of the receptor kinase 

activity triggers a cascade of events that results in the activation of effector proteins, which has been 

extensively reviewed in Mendoza et al., 2011 (Fig. 15). Importantly, both pathways are largely 

intricated, with the Ras-ERK pathway able to cross-activate the PI3K-mTor effector complexes. 

Additionally, their substrates are largely overlapping with the effector kinases S6K, AKT, RSK and PKC 

displaying very close target specificity. 

More unintuitively, both pathways also display the ability to cross-inhibit each other, and this may be 

necessary to prevent intense pathway activation leading to deleterious consequences and subsequent 

cell cycle arrest and senescence (Cheung et al., 2008).  

Activation of either pathway induces numerous regulatory events, promoting cell survival, 

proliferation and motility. Strikingly, many of their targets are involved in ribosome synthesis and 

translation. A most impressive feature of these pathways is their ability to regulate transcription by 

the three RNA Polymerases, enhancing the synthesis of all ribosome components in a coordinated 

manner. 

Transcription of the rRNA precursor is one of the limiting factors for ribosome synthesis. The activity 

of RNAPolI requires the assembly of a specific pre-initiation complex containing TIF-1A (RRN3) and UBF 

(cf. I.B.1). The ability of TIF-1A to associate with SL1 (TIF-1B) and RNAPolI to promote transcription is 

regulated by multiple phosphorylations. After Ras-ERK pathway activation, the RSK kinases 

phosphorylates TIF-1A on serine 649, which is required for its transcriptional activity. Serine 633 can 

be subsequently phosphorylated by ERK, resulting in further increased efficiency (Zhao et al., 2003). 

Activation of the PI3K-mTor pathway also regulates the phosphorylation pattern of TIF-1A. Its activity 

requires the phosphorylation of serine 44 which is catalysed by CDK2 and removed by PP2A. PI3K-mTor 

mediated repression of PP2A is thus necessary to prevent TIF-1A inactivation (Mayer et al., 2004). In 

addition, UBF activity is also regulated by the PI3K-mTor pathway. Indeed, mTor activation triggers an 

increase in CycD1 translation, improving the activity of CDK4 which phosphorylates Rb. In turn, 

phospho-Rb releases UBF, allowing for increased RNAPolI inititation  (Nader et al., 2005). Furthermore, 

activation of S6K induces UBF phosphorylation indirectly, and this is required for it to bind SL1 (Hannan 

et al., 2003).  

Ribosome synthesis and translation require the transcription of both the 5S and transfer RNAs by 

RNAPolIII which is also regulated by the PI3K-mTor pathway. Indeed, mTor binds chromatin over the 

5S and tRNA genes, and associates with PIC component TFIIIC (Kantidakis et al., 2010; Tsang et al., 

2010). It has also been shown to phosphorylate the RNAPolIII repressor Maf1 on several residues, 

notably serine 75. While the exact consequences remain unclear, a phospho-deficient variant of Maf1 

has been shown to repress RNAPolIII transcription more efficiently than wild type Maf1, suggesting 

that these phosphorylations adversely regulate Maf1 activity as a repressor (Shor et al., 2010). 

Consistently, dephosphorylation of Maf1 by mTor antagonist PP2A in yeast promotes its accumulation 

in the nucleus and subsequent association to RNAPolIII (Roberts et al., 2006). In a similar way, 

inhibition of Ras-ERK signalling in Drosophila has been shown to increase the nuclear localization of 

Maf1 and reduce tRNA synthesis in a Maf1-dependent manner (Sriskanthadevan-Pirahas et al., 2016). 

Thus, Maf1 is could function as a master regulator of RNAPolIII transcription by integrating positive 

and negative feedback from both Ras-ERK and PI3K-mTor signalling. 

In addition to stimulating transcription by RNA Polymerases I and III, the PI3K-mTor pathway also 

modulates the activity of several transcription factors involved in r-protein genes regulation. The yeast 

transcription factor FHL1 is a striking example: it is constitutively bound to RPG promoters and exerts 
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its regulatory activity through the recruitment of co-factors. The trans-activator IHF1 and trans-

repressor CRF1 compete for binding to FHL1. Upon inactivation of the Tor pathway, CRF1 can 

accumulate in the nucleolus, compete with IHF1, and switch FHL1-mediated regulation from activation 

to repression of RPG (Martin et al., 2004). In a somewhat similar fashion, the yeast transcription factor 

Sfp1 binds RPG promoters under permissive growth conditions, but is relocated to the cytoplasm upon 

Tor pathway inactivation (Marion et al., 2004). While these two examples illustrate the mechanisms 

through which the Tor pathway regulates RPG expression, it should be noted that several other 

transcription factors (Abf1, Hmo1, Rap1) link this pathway to ribosomal protein gene expression 

regulation (Berger et al., 2007; Fermi et al., 2016; Klein and Struhl, 1994). 

Chief among PI3K-mTor and Ras-ERK effectors, the transcription factor Myc regulates the activity of all 

three polymerases. Myc exists as a family of proteins (c-Myc, N-Myc, L-Myc) with overlapping biological 

function in mammals (Eilers and Eisenman, 2008). It activates transcription of RNAPolII genes by 

associating with its co-factor Max, and competes with its antagonist Mad to do so. Myc activity is 

enhanced by the PI3K-mTor and Ras-ERK pathways in two ways. First, Myc is phosphorylated by ERK, 

which increases its stability (Sears et al., 2000). Secondly, Mad is phosphorylated by RSK and S6K, which 

triggers its degradation, thus alleviating the competition for Max binding (Zhu et al., 2008). Myc has 

been described to bind up to 15 % gene loci in several species, and has profound effect on gene 

expression patterns (Fernandez et al., 2003; Orian et al., 2003). 

 

Figure 16. Coordinated regulation of ribosome biogenesis by the transcription factor Myc 

Adapted from (van Riggelen et al., 2010). 

Indeed, Myc binds the human rDNA promoter and terminator regions, and facilitates the recruitment 

of RNAPolI by interacting with the Pre-initiation complex component SL1 (Grandori et al., 2005). It also 

recruits TRRAP and the histone acetyltransferases (HATs) GCN5 and Tip60, promoting acetylation of 

histones H3 and H4, further increases rDNA transcription through chromatin remodelling (Arabi et al., 

2005).  

Similarly, Myc also activates RNAPolIII transcription of the 5S rRNA and tRNA genes though direct 

association with the pre-initiation complex component TFIIIB (Gomez-Roman et al., 2003). Upon 
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binding, Myc recruits its co-factor TRRAP and in turn, GCN5 which facilitates transcription by 

acetylating histone H3 (Kenneth et al., 2007).  

Myc also localizes to RNAPolII promoters as an heterodimer with Max, where it binds E-box elements 

(CACA/GTG), but also non-consensus motives, or adaptor proteins such as Miz1 (Blackwell et al., 1993; 

Staller et al., 2001). It serves as a platform for the recruitment of chromatin remodelling factors, such 

as HATs (GCN5, Tip60, CBP and p300), nucleosome exchange factors (p400), chromatin remodelling 

complexes ATPase subunits (TIP48 and TIP49) and DNA methyltransferases (DNMT3a) (Brenner et al., 

2005; Fuchs et al., 2001; McMahon et al., 2000; Vervoorts et al., 2003; Wood et al., 2000). Additionally, 

Myc recruits transcription factors such as the Mediator and pTef-b complexes (Bouchard et al., 2004). 

Depending on the recruited factors, Myc can function either as an activator or repressor of 

transcription. Its mode of action varies considerably and seems to depend on cellular context. 

However, as a general feature, Myc has no effect on RNAPolII recruitment, and rather regulates 

promoter clearance and elongation (Brenner et al., 2005; Eberhardy and Farnham, 2001). Among 

target genes, Myc activates the transcription of r-protein genes, translation factors, rRNA processing 

factors, and transcription factors such as UBF, which further increases rDNA transcription (For review 

: Adhikary and Eilers, 2005). 

In addition to increasing transcription of ribosome biogenesis components, the activation of cell 

proliferation signalling pathways regulate the translation of their messenger RNA. Indeed, most r-

protein and translation factors mRNAs display a 5’TOP motif (cf I.B.4). These mRNA display very specific 

translation kinetics, with poor translation initiation efficiency under even optimal conditions. 

Strikingly, their translation is drastically reduced upon inhibition of either Ras-ERK or PI3K-mTor 

pathways (Patursky-Polischuk et al., 2009; Romeo et al., 2013). However, the molecular mechanisms 

of this regulation are largely unknown. Many RNA binding factors have been shown to associate with 

TOP mRNAs and proposed to mediate their regulation. However, in each case contradictory evidence 

challenged the requirement of the proposed factor for TOP mRNA regulation. These data suggest that  

the regulation of TOP mRNA by signalling pathways may involve a complex network and differ with cell 

types or stimuli (For review: Meyuhas and Kahan, 2015) 

   2. The cell cycle 

 

Tightly linked to cell proliferation, progression into the cell cycle triggers many changes in transcription, 

protein localization or nuclear organization. Ribosome synthesis activity is no exception to this rule, as 

evidenced by the disruption of the nucleolus during mitosis in mammalian cells. Indeed, several 

mechanisms regulate both the transcription and assembly of ribosome components in a phase specific 

manner, leading to the observation that rRNA synthesis is inhibited during mitosis, gradually recovers 

during G1 phase, and peaks during S and G2 phases (Klein and Grummt, 1999). 

The entry into prophase is accompanied by the release of ribosomal processing factors from the 

nucleolus, and followed by the inhibition of rDNA transcription (Gébrane-Younès et al., 1997). 

Interestingly, the RNAPolI transcription machinery stays associated to rDNA through the whole mitotic 

phase, which may allow rapid resumption of transcription in G1 phase (Jordan et al., 1996). Their 

activity is however inhibited by a series of phosphorylations orchestrated by the Mitosis Promoting 

Factor (MPF). The phosphorylation of the pre-initiation complex SL1 prevents its interaction with UBF, 

which is necessary for promoter escape (Heix et al., 1998). This inhibition is further mediated by the 

inactivation of UBF in mitosis (Klein and Grummt, 1999). Additionally, the termination factor TTF-1 is 

also phosphorylated by the MPF complex, lowering its affinity for rDNA and thus possibly interfering 

with its role in active rDNA chromatin remodelling (Sirri et al., 1999). Similarly, the pre-initiation 
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complex for RNAPolIII is inactivated during mitosis by the phosphorylation of TFIIIB subunits Bdp1 and 

Brf1 by the MPF complex, preventing the transcription of the 5S and transfer RNAs (Fairley et al., 2003). 

 

 

Figure 17. Regulation of RNAPolI during the cell cycle 
Regulation of Pol I transcription during the cell cycle. During progression through the G1-phase and S-phase, UBF 
is activated by phosphorylation of Ser484 by Cdk4–cyclin D and Ser388 and Cdk2–cyclin E/A, respectively. In 
addition, mTOR-dependent and ERK-dependent pathways activate TIF-IA by phosphorylation of Ser44, Ser633 and 
Ser649. At entry into mitosis, Cdk1–cyclin B phosphorylates TAFI110, a subunit of the TAFI–TBP complex SL1, at 
Thr852. Phosphorylation at Thr852 inactivates SL1, leading to repression of Pol I transcription during mitosis. At 
the exit from mitosis, Cdc14B dephosphorylates Thr852, leading to recovery of SL1–TIF-IB activity. Activating 
phosphorylations are marked in green, and inhibiting ones in red. Transcription is low in resting cells (G0), and 
resumption of full transcriptional activity on re-entry into the cell cycle requires phosphorylation of TIF-IA by 

ERK/RSK and phosphorylation of UBF by ERK, Cdk4–cyclin D and S6K. Taken from (Grummt, 2010). 

The onset of anaphase triggers the degradation of the MPF, and subsequently alleviates the inhibition 

of rRNA transcription. Interestingly, RNAPolI transcription only resumes gradually during the G1 phase, 

and requires both removal of inhibitory phosphorylations and renewal of activating ones. Interestingly, 

the different factors that participate to rDNA transcription are reactivated at different rates. Indeed, 

SL1 is fully functional as early as the exit of mitosis, but UBF is still inactive during early G1 phase. The 

inhibitory phosphorylation deposited by the MPF complex needs to be removed by the PP2A 

phosphatase for UBF to recover its trans-activator properties (Klein and Grummt, 1999). Its ability to 

promote transcription is then progressively restored throughout interphase by the phosphorylation of 

serines 484 and 388 by the Cdk4/CyclinD, Cdk2/CyclinE and Cdk2/CyclinA complexes (Grummt, 2003).  

Ribosome assembly is also halted during mitosis as the nucleolar components are released in early 

prophase. Strikingly, they have been shown to tether around condensing chromosomes and form the 

peri-chromosomal compartment (Gautier et al., 1992). This layer surrounds the chromosome arms and 

has been shown to contain r-proteins, rRNA processing factors, partially processed rRNAs and snoRNAs 

(Gautier et al., 1994; Piñol-Roma, 1999). Interestingly, FRET analysis of the interaction between rRNA 

processing factors showed that Fibrillarin, Nop52, Bop1 and NPM co-localize but do not interact in this 

compartment, suggesting that their assembly into processing complexes may also be regulated in a 

cycle-dependent manner (Angelier et al., 2005). The assembly of nucleolar proteins into a peri-
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chromosomal compartment is believed to allow equal distribution of ribosomal components between 

daughter cells upon division, and is a conserved mechanism among many species (Van Hooser et al., 

2005). During telophase, nucleolar components are released and assemble into pre-nucleolar bodies 

(PNB). Interestingly, rRNA processing factors traffic between reforming nucleoli and PNB, which 

gradually disappear as their pre-rRNA contents are released. Thus, PNB may function as extra-nucleolar 

sites that ensure the maturation of the partially processed rRNAs that were distributed to the peri-

chromosomal layer during mitosis (Carron et al., 2012). 
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3. Energy levels 

 

Ribosome synthesis and translation require the activity of hundreds of energy releasing enzymes such 

as GTP and ATP hydrolases (For review: Strunk and Karbstein, 2009). Indeed, a large portion of cell 

energy is dedicated to these processes under permissive conditions. However, energy can become 

scarce under poor environmental conditions, and several mechanisms are dedicated to reorganizing 

cell metabolism under these circumstances. As a common feature, most of these mechanisms monitor 

energy levels to maintain the activation of the PI3K-mTor pathway specifically under permissive 

conditions, and are thus necessary to sustain ribosome biogenesis. 

    Amino-acids availability 

 

Figure 18. Amino-acid dependent activation of mTor at the lysosome 
Amino acids are thought to accumulate within the lysosomal lumen and to signal to vacuolar H+-ATPase (v-
ATPase) through an ‘inside–out’ mechanism. v-ATPase controls RAG GTPase–Ragulator binding, and therefore 
Ragulator guanine exchange factor (GEF) activity and RAGA and RAGB guanine nucleotide loading (RAGA/B·GTP). 
The active RAG complex (RAGA/B·GTP–RAGC/D·GDP) binds to mammalian target of rapamycin complex 1 
(mTORC1) and recruits it to the lysosome, through an unknown mechanism, possibly in close proximity to RHEB 
(RAS homologue enriched in brain). Downstream of growth factor signalling, GTP-bound RHEB potently activates 

mTORC1. Taken from (Jewell et al., 2013). 

A comfortable supply of amino-acids is necessary for sustained protein synthesis. Their availability is 

monitored by several mechanisms that feed into the PI3K-mTor pathway. Indeed, nutrient intake 

results in the accumulation of amino-acids in the lysosome lumen. This is required for Rag GTPases-

mediated activation of the mTORC1 complex at the lysosome membrane (Fig. 18 and Jewell et al., 

2013). Importantly, amino-acids are also sensed from the cytoplasm and Golgi apparatus to activate 

mTORC1 (Goberdhan et al., 2016). Additionally, amino-acids starvation induces an increase in 

uncharged tRNA, which can bind and activate GCN2. This kinase is able to phosphorylate the 

translation initation factor eIF2α, which represses general translation (Wang and Proud, 2008). The 

activation of GCN2 together with the repression of the PI3K-mTor pathway further triggers autophagic 

responses to the lack of amino-acids. Importantly, ribosomes are specifically degraded in 

autophagosomes, in a process called “ribophagy”. Interestingly, free inactive ribosomes are selectivally 

degraded, suggesting that this mechanism could serve both in restoring amino-acid levels and 

eliminate defective ribosomes (Cebollero et al., 2012). 

    Oxygen levels 

 

In a similar manner, appropriate oxygen levels are required for energy production by the mitochondria. 

The hypoxia-inducible factor (HIF) family of transcriptions factors are hydroxylated in a O2-dependent 

manner under normoxia (Semenza, 2014). When oxygen levels decrease, their stabilization allows 

them to activate the transcription of a set of genes involved in energetic metabolism. Among them, 
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REDD1 encodes a protein that competes with TSC2 for binding 14-3-3. The hypoxia-induced release of 

TSC2 allows it to inactivate mTORC1 and thus inhibit the PI3K-mTor pathway (DeYoung et al., 2008). 

Hypoxia also induces a shift from respiration to fermentation, allowing the production of energy in the 

absence of oxygen. The fermentation process is less efficient in producing energy, and is accompanied 

by the release of lactic acid in the environment. The latter triggers an acidification of the extracellular 

compartment, termed acidosis. This condition correlates with a reduction in nucleolus size and rDNA 

synthesis which requires the acidosis-induced relocalization of the tumor suppressor VLH into the 

nucleolus. While the underlying mechanism is unclear, it is interesting to note that contrary to RNAPolI 

inhibitors, prolonged hypoxia response does not jeopardize the architecture of the nucleolus. It has 

thus been postulated that a reduction in ribosome synthesis allows to adapt energy expenditure to the 

reduced energy production efficiency of fermentation (Mekhail et al., 2006). 

    NAD+ availability 

 

Production of energy through the mitochondrial respiration pathway requires constant regeneration 

of the NADH supply. Accordingly, NAD+ availability results from the balance between metabolic activity 

and energy production. This metabolite is a required co-factor for a family of deacetylases with a broad 

range of substrates: the sirtuins. They are activated in conditions of energy deficiency and trigger many 

adaptive changes (Covington and Bajpeyi, 2016). Interestingly, ribosomal components are among their 

substrates, possibly linking NAD+ metabolism to ribosome biogenesis homeostasis. Indeed, SIRT1 has 

been shown to reduce rRNA synthesis by deacetylating the TAFI68 subunit of SL1, thus reducing Pol I 

initiation (Blander and Guarente, 2004). In addition, it has been shown to promote epigenetic silencing 

of rDNA by deacetylating H3K9 (Murayama et al., 2008). More confusingly, SIRT7 has been shown to 

increase RNAPolI and RNAPolIII transcription, but repress transcription of r-protein genes (Blank and 

Grummt, 2017). As a general feature, the amount of sirtuin family proteins correlates with 

proliferation, and their activity is regulated by stress cues. Indeed, their activity is subject to additional 

layers of regulation besides NAD+ levels(Chung et al., 2010; Yang and Chen, 2014). Thus, the apparently 

contradictory behaviour of sirtuins in regard to ribosome biogenesis may reflect the complexity of their 

regulation by different stress signalling pathways.    
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    ATP levels 

 

 

Figure 19. The AMPK pathway interacts with the PI3K-mTor and Ras-ERK pathway 
Inhibiting phosphorylations are depicted in yellow while activating phosphorylations are displayed in red. Adapted 

from (Mihaylova and Shaw, 2011). 

Cells store chemical energy in the form of ATP, which is necessary to catalyse a myriad of enzymatic 

reactions. Sustenance of the cell metabolism require a balance between production and consumption 

of ATP. The ratio between ATP and its hydrolysed counterparts, ADP and AMP, are therefore a good 

measure of the cell’s energy reserves. ATP levels are monitored by the AMP-activated protein kinase 

(AMPK). Its activation requires two steps: phosphorylation by the upstream kinase LKB1, followed by 

a conformational change that prevents subsequent dephosphorylation. While ADP binding to the γ 

subunit of AMPK promotes only the latter, AMP binding enhances both steps of AMPK activation 

(Oakhill et al., 2011; Xiao et al., 2011). The activation of the AMPK pathways triggers the renewal of 

mitochondria by promoting both mitophagy and mitochondrial biogenesis. Importantly, it also triggers 

a reduction in ribosome metabolism by activating the mTORC1 repressor TSC2 (For review: Mihaylova 

and Shaw, 2011). In addition, activated AMPK has been shown to directly phosphorylate TIF-IA which 

prevents its interaction with SL1, thus impairing RNAPolI recruitment and rRNA synthesis (Hoppe et 

al., 2009). 
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4. Metabolic stress 

 

Cells display the ability to thrive in environments that fluctuate to a certain extent. However, their 

survival can be endangered under adverse conditions. Such stress can be induced by a number of ways, 

and generally disrupts the metabolism at many levels. The activation of stress response mechanisms 

allows cells to quickly reorganize their energy expenditure to survive. 

    Endoplasmic reticulum stress 

 

 

Figure 20. The unfolded protein response pathway 
Upper left panel: In resting conditions, the stress sensors IRE1, PERK and ATF6 interact with Bip/GRP78. Lower 
left panel: Accumulation of misfolded proteins in the ER lumen separates the chaperone from each sensor. IRE1α 
and PERK activation involves oligomerization and transphosphorylation of their cytosolic effector region. ATF6 
activation, on the other hand, requires its transport to the Golgi, where it is sequentially cleaved by S1P and S2P. 
Right panel: PERK induces global attenuation in protein anabolism, and favours lipid synthesis, both effects via 
eIF2α phosphorylation. IRE1 cooperates with these responses and stimulates mitochondrial biogenesis through 
the regulation of master metabolic switches, such as PGC1α, mTOR, AMPK and FOXO1. ATF6, on the other hand, 
stimulates lipid utilization. Calcium released by IP3R increases mitochondrial activity during ER stress, in order to 

revert energy imbalance. Adapted from (Bravo et al., 2013). 

The endoplasmic reticulum (ER) is a critical hub of cell metabolism, which regulates calcium 

concentrations, lipid metabolism and synthesis, and vesicle trafficking. Ribosomes bind its membrane, 

forming the rough endoplasmic reticulum (RER) compartment. Indeed, the presence of a hydrophobic 

signal in the N-terminal part of a nascent polypeptide can be recognized by the signal recognition 

particle (SRP), which induces a pause in translation, and the translocation of the ribosome-SRP complex 

to the RER membrane (Corsi and Schekman, 1996). The nascent polypeptide traverses the membrane 

through a pore, allowing it to enter the RER, which contains a variety of chaperone proteins. Thus, it 



 
   46 
 

also plays a crucial role in protein folding. Several stress cues can disturb ER metabolism such as 

calcium depletion and oxidative stress, lipid perturbation, or increased protein load (Görlach et al., 

2015; Ozcan et al., 2008; Volmer and Ron, 2015). Those lead to an increase in misfolded proteins inside 

the ER lumen, which trigger the activation of the Unfolded Protein Response (UPR) pathway (Fig. 20). 

The most immediate response to an increase in misfolded proteins is the transient inhibition of 

translation. Indeed, activated PKR-like endoplasmic reticulum kinase (PERK) phosphorylates eIF2α, 

thus inhibiting general translation (cf. II.A.3 and Harding et al., 2000). In addition, eIF2α 

phosphorylation promotes the dissociation of RRN3 and RNAPolI from rDNA, further reducing protein 

synthesis capacity (DuRose et al., 2009). Another consequence of ER stress is the release of calcium to 

the cytoplasm, activating CaMKKβ which in turn phosphorylates AMPK, thus leading to activation of 

the AMPK pathway (Høyer-Hansen and Jäättelä, 2007). This activation can also be mediated by the 

UPR effector IRE1 under nitric oxide stress conditions (Meares et al., 2011). In both cases, AMPK 

activation leads to the inactivation of mTORC1 and reduction of ribosome biogenesis (cf. II.A.1). 
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    Heat shock 

 

Temperature variation is another common source of metabolic distress. Indeed, an acute increase in 

temperature, or heat shock, may induce protein misfolding and denaturation thus damaging cells. Heat 

stressed cells display an acute reorganization upon heat shock, among which the inhibition of 

translation and ribosome synthesis is of paramount importance. Indeed, newly synthetized peptides 

are particularly sensitive to misfolding and aggregation upon heat shock (Zhou et al., 2014) In addition, 

heat stressed cells display formation of stress granules (Anderson and Kedersha, 2009). These 

aggregates of proteins and mRNA have been shown to protect their components from degradation 

and permit their return to activity during recovery (Wallace et al., 2015). 

 

Figure 21. Stress granules and P-bodies in arsenite-treated human U2OS cells 
(A) Stress granules (SG, purple arrows) are visualized by staining for TIA-1 (blue), a translational silencer. As stress 
granules also contain the RNA helicase RCK1 (stained in red), the merged colors appear purple. Similarly, P-bodies 
(PB, yellow arrows) are visualized by hedls/GE-1 staining (green) but appear yellow due to RCK1 colocalization. A 
single cell can contain isolated P-bodies and stress granules, as well as interacting pairs of stress granules and P-
bodies. (B) Large ribosomal subunits (RP0, green) are excluded from stress granules or localized to the edges, 
defined by small ribosomal subunits (RPS6, red) and eIF3b (blue). (C) P-bodies (DCP1a, green) and stress granules 
(eIF3b, blue) both contain eIF4E (red). (D) A region of (A), showing separated colors in the inset. (E) Stress granules 
exclusively contain eIF3b (blue) and eIF4G (green), whereas eIF4E (red) is found both in stress granules and in a 
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bound P-body. Insets show the separate colors within the boxed regions. Taken from (Anderson and Kedersha, 
2009). 

Importantly, the majority of proteins sequestered in stress granules are linked to translation, notably 

initiation and elongation factors, and aminoacyl-tRNA synthetases. Ribosome biogenesis factors also 

accumulate in insoluble nuclear deposits, although separately from stress granules (Cherkasov et al., 

2015). Stress granules are also specifically enriched in r-protein mRNAs in Arabidopsis, further 

preventing de novo ribosome synthesis during stress (Merret et al., 2017). In addition, heat shock 

induces a reduction in RNAPolI activity. First, the heat-dependent sequestration of CK2 in the nuclear 

matrix prevents it from activating TIF-1A through Serines 170/172 phosphorylation. Secondly, heat 

induced transcription of the long non coding RNA (lncRNA) PAPAS in antisense of the rDNA repeat 

recruits the chromatin remodelling complex NuRD to deacetylate histones on the rDNA promoter, 

further silencing transcription (Zhao et al., 2016).   

During recovery from heat shock, aggregates dissociate under the control of the heat shock proteins 

chaperones, allowing resumption of translation. Interestingly, the amount of free 40S and 60S subunits 

does not decrease following translation resumption, suggesting that it is newly synthetized ribosomes 

that engage in translation. Consistently, it was observed that ribosome subunits can be ubiquitinated 

under stress conditions or translation inhibition, leading to altered translation or degradation (Higgins 

et al., 2015; Kraft et al., 2008). It was thus hypothesized that pre-existing ribosome subunits may be 

altered during heat shock, possibly because they are not shielded from modification through 

aggregation (Merret et al., 2017). 

    Cold shock 

 

While an elevation of temperature triggers stress responses, so does its reduction. Cold shock has been 

shown to trigger an elevation of the AMP/ATP ratio, thus triggering the AMPK pathway. In addition, it 

causes a release of Ca2+ to the cytoplasm, thus activating CaMKKβ. Both events lead to the 

phosphorylation of eIF2α, resulting in the inhibition of translation (Knight et al., 2015). Interestingly, 

cold stress has also been shown to induce the SUMOylation of EXOSC10, which impedes its activity in 

rRNA and snoRNA processing, and degradation of non-functional RNA. This event impedes rRNA 

biogenesis at specific steps of 18S rRNA processing, leading to the accumulation of partially processed 

40S subunits. It has thus been postulated that besides reducing global translation activity, this could 

permit completion of 40S processing upon recovery, thus allowing rapid resumption of translation 

(Knight et al., 2016). 
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  B. Ribosome biogenesis regulates homeostasis 
 

1. Ribosome biogenesis is monitored at several stages of cell life 

 

As previously demonstrated, ribosome biogenesis activity is tightly regulated and can be inhibited a 

number of ways in times of metabolic distress. Thus, ribosome synthesis can be considered a proxy for 

cell health. Indeed, several mechanisms monitor the state of ribosome biogenesis and regulate cell 

fate in accordance. 

    Cell cycle commitment 

 

One such example is the progression into the cell cycle. Indeed, the transition from G1 phase to S 

phase, implies a commitment to cell division, and is subject to extensive regulation. Passing the G1/S 

checkpoint requires to reach a critical size, and the same condition applies for the G2/M checkpoint 

(for review: Barnum and O’Connell, 2014). As ribosomes constitute the largest part of the cell material, 

their abundance may serve to evaluate cell size. In turn, ribosome number may be measured through 

translation capacity. Indeed, it has been shown that in yeast, the depletion of many translation factors 

and tRNA biosynthesis genes induce an arrest of the cell cycle in G1 phase, suggesting that G1 to S 

phase transition is translation-dependent (Yu et al., 2006). Indeed, translation of the yeast Cln3p was 

shown to be required to pass this checkpoint (Barbet et al., 1996). Cln3p is an extremely unstable 

protein, so its accumulation requires intense translation (Tyers et al., 1992). In addition, the presence 

of an upstream open reading frame (uORF) in the 5’ UTR of the Cln3p mRNA represses its translation 

when the amount of ribosomes is limited (Polymenis and Schmidt, 1997). Thus, accumulation of Cln3p 

is only possible after ribosome number reaches a certain point.  

Interestingly, a study pointed out that depletion of an rRNA processing factor triggered defects in cell 

cycle progression before the number of ribosomes or translation capacity started to dwindle, in a 

Cln3p-independent manner. These data suggest that ribosome biogenesis activity may also be 

monitored at the level of newly synthetized subunits to trigger cell cycle progression (Bernstein et al., 

2007). In addition, the depletion of r-proteins in yeast caused stage specific cell-cycle arrest. Many of 

them caused G1 phase arrest, consistent with monitoring of either ribosome biogenesis or steady-

state levels. Interestingly, nine r-proteins of the large subunit triggered an arrest in G2 phase, 

suggesting that they are required at the G2/M checkpoint. This specific defect could result from 

another mechanism than G1 arrest. Strikingly, all nine r-proteins cluster on the solvent side of the 60S 

subunit, where they could interact with non-ribosomal factors. Thus, they may be needed either as 

part of “specialized” ribosomes, or they could participate in cytoplasmic export of G2 phase-specific 

factors, through “ribosome riding” (cf. II.B.2) (Thapa et al., 2013). 
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    Stem cell renewal 

 

 

Figure 22. Extrinsic and intrinsic regulation of ES cell self-renewal and differentiation 
Oct4, Sox2, and Nanog are master genes causing formation of the core transcription regulatory network and 
control embryonic stem cell pluripotency. The activity of the core regulatory network is modulated by multiple 
extrinsic factors, which are different for human ES cells and mouse ES cells. Taken from (Zhang and Wang, 2008). 

The integrity of ribosome biogenesis is of utmost importance for stem cells, which carry the 

responsibility of self-renewal. Maintenance of the stem cell state depends on a network of 

transcription factors and external signals, whose disturbance leads to aberrant differentiation (for 

review Zhang and Wang, 2008). In embryonic stem cell models, disruption of fibrillarin and six genes 

of the small subunit processome induced early differentiation. Strikingly, the overexpression of 

fibrillarin prolonged ES cells pluripotency in the absence of external stemness maintenance cues 

(Watanabe-Susaki et al., 2014; You et al., 2015). It was postulated that sufficient ribosome capacity is 

required to keep the expression of key pluripotence-promoting transcription factors above a threshold 

level (Fig. 22). Another explanation for the aberrant differentiation phenotype would be the 

prolongation of G1 phase upon ribosome biogenesis impairment. Indeed, pluripotence loss upon 

depletion of the nucleolar GTPase nucleostemin was rescued upon depletion of cell cycle inhibitors, 

concomitantly with G1 phase shortening (Qu and Bishop, 2012). Indeed, embryonic stem cells are 

particularly sensitive to differentiation cues during G1 phase, whose prolongation increases the 

likelihood of committing to differentiation (For review: Orford and Scadden, 2008).   

Developmentally regulated differentiation events are also affected by ribosome biogenesis 

impairments. Loss of several ribosome components in zebrafish triggered early differentiation of 

neural stem cells, correlating with a down-regulation of Notch pathway targets (Essers, 2013). 

Similarly, Drosophila egg chambers mutant for subunits of the SL1 complex displayed early 

differentiation of GSC into cyst cells, correlated with a down-regulation of the BMP pathway factor 

Mothers against decapentaplegic (Zhang et al., 2014). In both cases, wild type stem cells were shown 

to display higher ribosome biogenesis intensity than their differentiated sister cell, suggesting that high 
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translation capacity is required pluripotence. Consistently, the rRNA processing U3 snoRNP component 

Wicked segregates asymmetrically to stem cells during mitosis, and has been shown to be required for 

maintenance of germ stem cells and neural stem cells during development (Fichelson et al., 2009). 

Similarly, the SL1 component Under-developped was shown to segregate preferentially to germ stem 

cells during asymmetric mitosis (Zhang et al., 2014). The requirement for high ribosome capacity and 

preferential repartition of ribosome components in stem cells suggest that pluripotence indeed relies 

on functional ribosome biogenesis. 

    Cell competition 

 

Many heterozygous mutants for ribosomal protein genes or ribosomal assembly factors are viable, at 

the expense of a range of developmental defects (cf. II.B.4). Indeed, cells can live with reduced 

ribosome synthesis activity, despite the importance of ribosomal functions. However, these otherwise 

viable cells undergo apoptosis in a genetic mosaic context, in the presence of wild type cells. This 

observation led to the discovery that disadvantaged cells are eliminated by a process called “cell 

competition” (Morata and Ripoll, 1975).  

Extensive research on the underlying mechanisms yielded the idea that adjacent cells compare their 

fitness, and that the outcompeted cells trigger apoptosis. However, the precise nature of the criteria 

that are evaluated remain elusive. Indeed, besides ribosomal components, mutations for genes 

involved in many signalling pathways have been shown to provide such disadvantage (For review: 

Baker, 2017). Among them, the transcription factor Myc was shown to be a master regulator of cell 

competition, with its overexpression turning cells into “supercompetitors” able to induce apoptosis in 

wild type cells (Moreno and Basler, 2004). The ability of Myc and many competition-inducing genes to 

regulate ribosome biogenesis led to the idea that there is a direct relationship between cell fitness and 

ribosome number. However, loss of Wnt/Wg  or JAK/STAT signalling was shown to induce cell 

competition independently of Myc and ribosome biogenesis regulation (Rodrigues et al., 2012; Vincent 

et al., 2011). These data suggest that while ribosome biogenesis is critical for cell fitness, other 

parameters may also weight into the competition between cells. 
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Figure 23. Myc heterogeneity may drive cell competition in wild type mammalian embryos 
a, b Confocal sections showing Myc expression. Scale bars, 50 μm. c Colour coding of Myc levels; green indicates 
the lower and blue the higher Myc levels in arbitrary fluorescence units i, Detail of Myc and active caspase-3 
expression in the wild-type epiblast. Scale bar, 50 μm. j, Distribution of Myc levels in non-apoptotic and apoptotic 
wild-type epiblast cells (n = 8 embryos, 2,376 cells). Embryos in j were collected from various genetically equivalent 
litters and represent biological replicates. Dashed lines in j indicate averages. ***P < 0.001 by a mixed linear 

model with different variances per level. Taken from (Clavería et al., 2013) 

The physiological relevance of this mechanism has long been questioned since it had been observed 

only in genetically manipulated context. However, recent studies provided data suggesting that cell 

competition plays a role in physiological conditions. Indeed, it was shown that differences in Myc levels 

drive cell competition in mice embryos. Concomitantly, cells contain variable amounts of endogenous 

Myc in these embryos, and apoptosis occurs during early development in the cells that contain the 

least Myc (Fig. 23 and Clavería et al., 2013). As Myc levels are the consequence of many signalling 

pathways regulated by metabolic health (cf. II.A), this could participate to remove unfit cells from the 

embryo. In addition, another study showed that BMP defective and tetraploid embryonic stem cells 

are eliminated from mice embryos before the onset of gastrulation. It was postulated that cell 

competition allows to identify and remove defective stem cells before the next developmental stages, 

where they undergo intense proliferation. Strikingly, Myc level differences were again shown to be 

necessary to establish cell competition in this case, suggesting that ribosome biogenesis intensity may 

be a vital parameter to select fit cells (Sancho et al., 2013). 
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   2. Ribosome biogenesis drives cellular organization 

 

The nucleolus is a membrane-less organelle, thought to form upon coalescence of ribosome biogenesis 

factors around the site of rDNA transcription. It has thus been described as an organelle made by the 

act of building ribosomes (Mélèse and Xue, 1995). One of its functions is to concentrate ribosome 

biogenesis factors at the site of ribosome production, but the nucleolus also plays an important role in 

nuclear organization. Not only does it separate many proteins from the nucleoplasm, it also recruits 

specific chromatin domains shaping genomic spatial organization and therefore gene expression. 

Importantly, the nucleolus is a highly dynamic structure, which disappears and reassembles during 

each cell cycle (cf. II.A.2). Being the site of ribosome synthesis, it is also very responsive to stress. 

Indeed, many cues that inhibit ribosome biogenesis trigger morphological changes, up to sheer 

disruption of the nucleolus, and these phenotypes are termed “nucleolar stress” (Boulon et al., 2010). 

Through this mechanism, ribosome biogenesis impairments impact the whole nuclear organization, 

causing massive changes in both gene expression and cell metabolism. 

    The nucleolar associated domains 

 

The nucleolus forms around active rRNA genes, which can be found in the fibrillar centre in a de-

condensed state (cf I.B.I). Meanwhile, inactive rDNA genes can be found in a layer of heterochromatin 

that surrounds the nucleolus, and that localization is required for rDNA stability (Guetg et al., 2010). 

But rDNA repeats are not the only residents of this peri-nucleolar heterochromatin layer. Indeed, many 

chromosomal loci are recruited in there, following a reproducible pattern. For instance, the Y and 

inactive X chromosomes associate preferentially to the peri-nucleolar layer in humans (Bobrow et al., 

1971; Zhang et al., 2007). These Nucleolus Associated Domains (NADs) contain a high amount of 

satellite DNA, notably centromeric, and pericentromeric sequences (Németh and Längst, 2011). In 

Drosophila , their recruitment is mediated by the nucleolar protein Modulo, and is necessary to 

maintain the silencing of repetitive regions and maintain proper chromosome segregation during 

mitosis (Padeken et al., 2013). Telomeric sequences have also been shown to associate with nucleolar 

heterochromatin. In Arabidopsis, this association requires uc1, and its disruption results in drastic 

telomere shortening. Nucleolar heterochromatin also contains RNAPolII genes and transposable 

elements, which are maintained in a transcriptionally repressed state (Pontvianne et al., 2016).  

NADs also contain a high amount of RNAPolIII genes, among which 5S rRNA, tRNA and U6 snoRNA 

genes (Németh and Längst, 2011; Thompson et al., 2003). Those have been shown to induce silencing 

of nearby RNAPolII promoters. This repression is dependent on active transcription by RNAPolIII and 

indeed, it is alleviated upon inhibition of ribosome biogenesis. As the loss of nucleolar localization 

correlated with the de-repression of proximal RNAPolII genes, it was postulated that tRNA silence 

nearby genes by changing their sub-nuclear localization (Wang et al., 2005). Interestingly, tRNA genes 

have also been shown to display insulator properties, and prevent the spread of heterochromatin. 

Unlike their function in proximal gene silencing, this property is independent of transcription by 

RNAPolIII (Raab et al., 2012). Indeed, the minimal requirement for this heterochromatin barrier activity 

is the binding of the pre-assembly complex component TFIIIC, which binds the B box on the tRNA genes 

internal promoter (Simms et al., 2008). As many tRNA genes cluster near the pericentromeric 

heterochromatin, their insulator property is thought to be necessary to delimit its boundaries (Noma 

et al., 2006). Another property of tRNA genes is their ability to establish cohesion points with the sister 

chromatin, further participating to genome stability. Importantly, this cohesion requires not only the 

binding of TFIIIC, but also active transcription by RNAPolIII (Dubey and Gartenberg, 2007). 
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    Nucleolar sequestration 

 

One could expect that all residents of the nucleolus take part in ribosome biogenesis but such is not 

the case. Among 4500 nucleolar proteins and molecules, only a third have been involved with ribosome 

biogenesis (Boulon et al., 2010). Indeed, the nucleolus is now thought to participate into several 

processes, including the biogenesis of many ribonucleoparticles (Boisvert et al., 2007; Pederson, 1998). 

However, one of its major functions is to alternatively sequester or release a number of proteins, thus 

allowing a rapid change in nuclear composition in response to stress cues (Nalabothula et al., 2010). 

The nucleolus is a highly dynamic structure which continually exchanges proteins with other nuclear 

sub-compartments and with the nucleoplasm (Hernandez-Verdun, 2006). Several peptides sequences 

have been identified as nucleolar localization signals (NoLS), but no consensus could be described (For 

review: Emmott and Hiscox, 2009). Importantly, different NoLS target proteins to different 

components of the nucleolus, and the addition of a GC NoLS to the DFC protein fibrillarin was sufficient 

to mislocalize it, suggesting that nucleolar localization works in a hierarchical manner. Interestingly, in 

this experiment, Nop56 which interacts with fibrillarin, was also re-localized to the granular 

component, suggesting that its nucleolar localization is in fact driven by protein-protein interactions 

Lechertier et al., 2007). Indeed, nucleolar proteins form an intricate network of protein-protein 

interactions, and several key residents may work as hub proteins, i.e. proteins with more than ten 

specific interacting partners (Krasowski et al., 2008). For instance, nucleolin and nucleophosmin 

contain long disordered domains, which increases their surface, facilitating the binding of multiple 

ligands at the same time (Lam and Trinkle-Mulcahy, 2015). Thus, nucleolar localization may not be a 

consequence of an import machinery but rather that of specific interactions with either nucleolar 

proteins or nucleic acids. 
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Figure 24. Structural/functional reorganization of the nucleolus in response to stress 
(1) Stress stimulus-specific induction of long non-coding RNA transcripts from distinct regions of the intergenic 
spacer (IGS). (2) IGS transcripts bind and sequester/immobilize a diverse range of cellular proteins within the 
nucleolus. Interaction is mediated via a discrete nucleolar detention sequence (NoDS). (3) Formation of the 
nucleolar detention centre leads to restructuring of nucleolar architecture and silencing of ribosome biogenesis. 
Taken from (Lam and Trinkle-Mulcahy, 2015). 

In response to many stress cues, the nucleolus changes its morphology. The severity of the changes 

varies depending on the nature and intensity of the stimulus, but a typical stress response is the 

topological separation of the nucleolus compartments, or “nucleolar segregation”. As part of this 

mechanism, several long non-coding RNAs are transcribed by RNAPolI from the rDNA intergenic spacer 

(Fig. 24). These lncRNA display the ability to bind proteins containing a nucleolar detention signal 

(NoDS) and immobilize them inside a newly formed component of the segregated nucleolus: the 

detention centre (Audas et al., 2012; Jacob et al., 2013). On the contrary, many nucleolar proteins are 

released to the nucleoplasm upon ribosomal stress (Nalabothula et al., 2010). As a general feature, the 

nucleolar localization of these proteins isolates them from their co-factors or targets. The most 

extensively studied example is the nucleolar regulation of p53. Indeed, activating the “gatekeeper” 

first requires protecting it from its antagonist MDM2. This can be done a number of ways, notably by 

the p14ARF (p19ARF in mice) protein. It is however sequestered in the nucleolus through its interaction 

with the nucleolar hub protein nucleophosmin (NPM1). In response to genotoxic stress, both NPM1 

and p14ARF are released to the nucleoplasm. The latter is then able to interact with MDM2, disrupting 

its association with p53 (Kruse and Gu, 2009). 
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   3. Phenotypic consequences of ribosome biogenesis defects 

 

Considering the absolute necessity for protein synthesis at the cellular level, it comes as no surprise 

that mutations affecting ribosome biogenesis are associated with dire phenotypes. Most of them 

adversely impact viability and fertility, but they also generate a very broad range of phenotypes, some 

of which can be hard to link with translation. While there is a considerable amount of data about the 

specific effects of ribosome impairments, some general features do emerge.  

    r-protein mutations in S. cerevisiae 

 

The study of S. cerevisiae phenotypes upon ribosome biogenesis impairments provides insight about 
its importance at the cellular level. It comes as no surprise that the complete loss of most ribosomal 
proteins prevents proliferation. Indeed, 64 out of 79 r-protein genes are essential, and their conditional 
inhibition triggers the arrest of the cell cycle at specific checkpoint. They can however be studied by 
using heterozygous deletion strains. In most cases, they display a slow growth phenotype (Steffen et 
al., 2012; Thapa et al., 2013). Molecular study of the effect of their depletion on ribosome synthesis 
showed that the lack of any essential r-protein impairs the production of mature ribosomes. Indeed, 
mutant cells accumulate pre-subunits stalled at different maturation stages depending on the lacking 
r-protein (Ferreira-Cerca et al., 2005; Pöll et al., 2009). In contrast, non-essential r-proteins are not 
required for the production of mature ribosomes. They do however take part in its translational 
function, and their mutations most often result in very slow growth phenotypes (Baronas-Lowell and 
Warner, 1990; Briones et al., 1998; DeLabre et al., 2002; Peisker et al., 2008; Remacha et al., 1995). 
Thus, the reduction in growth rate is thought to result from a limitation of translation capacity. 
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    The Drosophila Minute mutants 

 
Ribosomal protein gene loss of function alleles have been studied for almost a hundred years in 
Drosophila, where they are known as “Minute” mutations. They have puzzled researchers for decades. 
Indeed, mutations at more than 50 loci in the genome gave rise to similar phenotypes sharing the same 
genetic properties (Schultz, 1929). The latter were extensively studied, providing exceptional insight 
about the requirements for ribosomal protein genes in a developing organism.  
 

 
Figure 25. The Minute bristle phenotype 
Minute flies have shorter and thinner bristles than wild type flies. This is most clearly seen by comparing the 
scutellar bristles, indicated here by the arrows and pseudocoloring. (a, a') Wild type. (b, b') uS151 heterozygotes. 
(c, c') eL141 heterozygotes. Taken from (Marygold et al., 2007). 

All Minute mutations are dominant and lethal when homozygous. Minute mutants were first described 
for displaying thin and short (minute) bristles, together with prolonged development (Brehme, 1939). 
The vast majority of Minute mutations strongly impact viability and fertility, to the point that several 
Minute loci could only be identified through transient aneuploidy experiments and were proposed to 
be “extreme Minute” (Lindsley et al., 1972). Interestingly, the combination of different Minute 
mutations shows no cumulative effect on bristle length or development length. Additionally, Minute 
mutations display the same interactions with genetic modifiers. These data led to the hypothesis that 
Minute mutations affected different components of a single “Minute reaction”, which requires all 
Minute genes to function. Furthermore, in triploid flies, these mutations were found to be recessive to 
two copies of a wild type allele. On the opposite, two copies of a Minute allele were lethal in presence 
of a single wild type allele. These experiments showed that the dominance of Minute mutations is the 
consequence of haplo-insufficiency. Thus, the core Minute phenotypes were attributed to the 
limitation of the “Minute reaction”, consequence of the reduction in expression of one of its 
components (Schultz, 1929). Minute loci have been characterized over time and the Minute genes have 
now been identified to encode r-proteins with very few exceptions (Cook et al., 2012; Marygold et al., 
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2007). Indeed, all the characteristics of Minute mutations are consistent with the “Minute reaction” 
corresponding to the synthesis of mature ribosomes. 

In addition to bristle and development length phenotypes, Minute mutants display a broad range of 
developmental defects, which have been remarkably summarized by Jack Schultz: “The eyes are larger 
and rougher than normal; the wings are blunt in shape, sometimes beaded. Their venation is slightly 
plexus-like, and the fifth vein may stop short of the wing margin. Minute flies have weak legs, and a 
somewhat pale body colour; the aristae may be reduced, the abdominal sclerites irregular. The post-
vertical bristles of the head are frequently missing, and other bristles (notably the alars) are occasionally 
duplicated. The total body size may be smaller than normal. Females are likely to be sterile, and are 
generally weaker than males. Most striking of all the characters of the Minutes, however, are the 
retardation of development and the elimination of chromosomes in somatic cells” (Schultz, 1929). 
Indeed, it was proposed that certain tissues are more dependent on rapid translation ability during 
development, thus explaining why Minute phenotypes appear organ-specific. However, different 
Minute mutations trigger specific sets of organ failures. If all Minute phenotypes were the consequence 
of suboptimal synthesis of ribosomes, one could expect that every Minute mutation should give rise to 
the same phenotypes, albeit with varying severity. Several hypotheses can reconcile these 
observations. First, ribosome composition may differ between tissues, which would thus display 
specific sensitivity to the loss of only a subset of r-proteins. Indeed, r-proteins have been shown to 
possess tissue-specific expression patterns in Drosophila and mammals (Kearse et al., 2011; 
Kondrashov et al., 2011). A second explanation would be that r-proteins impact development through 
their numerous ribosome-independent functions (Warner and McIntosh, 2009). The relative 
contribution of the ribosomal and extra-ribosomal functions of r-proteins to the Minute phenotypes 
still remain to be investigated. 
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    Ribosome-related diseases: the ribosomopathies 

 

Mutations in ribosome biogenesis components are responsible for a series of rare human diseases 
termed “ribosomopathies”. Like Minute mutations, they are associated to a number of organ-specific 
failures and congenital malformations. The different ribosomopathies and their pathology have been 
extensively reviewed in Danilova and Gazda, 2015; Nakhoul et al., 2014.  
 

 
Figure 26. Duplicated digits and phalanges in mice heterozygous for eL24. 
Skeletal stain of newborn fore limbs (upper) and hind limbs (lower). Mice heterozygous for a mutation in eL24 

(Bst/+ phenotype) show preaxial polydactyly (0) and triphalangy of the first digit (1). Taken from (Oliver et al., 
2004) 

Mutation in several ribosomal protein genes (eS7, 10, 17, 19, 24, 26, 27, 28; uS14; eL15, 27, 31, 33; uL5, 
18, 24) have been associated to Diamond-Blackfan Anemia (DBA) in humans. This syndrome is 
characterized by pure red cell aplasia, growth retardation and congenital malformations of the head, 
upper limb, kidney or heart. They also display increased cancer predisposition. These phenotypes are 
conserved to some extent in different species, which are used as models to study ribosomopathies (For 
review: Yelick and Trainor, 2015). For instance, the belly spot tail mutation (loss of function of eL24) in 
mice leads to the formation of a supernumerary finger, and malformation of the first digit, which is 
similar to abnormalities observed in Diamond-Blackfan Anemia patients (Fig 26, Oliver et al., 2004). 

Similarly to Minute mutants, the rationale behind global translation defect giving rise to such specific 
phenotypes is poorly understood. One explanation for the consistent phenotypes between different 
ribosomopathies is the observed upregulation of p53 activity. This was proposed to cause apoptosis in 
erythropoietic progenitors and neural crest cells, thus leading to bone marrow failure and craniofacial 
malformations. Indeed, inhibition of p53 rescued the differentiation defect phenotypes in uL18 and 
eS19 mutant mice (Singh et al., 2014). But despite there being a set of core common phenotypes, 
different mutations do cause unique phenotypes. For instance, mutations in uL5 gives rise to thumb 
malformation, while disruption of uL18 leads to cleft palate formation (Bursać et al., 2012). Similarly, 



 
   60 
 

mutations in eL33 cause genito-urinary malformations (Boria et al., 2010). Several observations offer a 
basis to reconcile the ubiquity of ribosome biogenesis with the specificity of ribosomopathies’ 
phenotypes: i) ribosomes participate in tissue-specific functions, notably gene regulation. ii) ribosome 
components carry important functions out of the ribosome. 
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 III. Ribosomes regulate gene expression: the second lives of the housekeepers 
 
The idea that some genes are dedicated to the cell’s basic metabolism has been longstanding. These 
housekeeping genes would be constitutively expressed in all cells, at all times (Eisenberg and Levanon, 
2013). Logically, they would be essential for cell survival and require no regulation mechanism 
whatsoever. Ribosomal biogenesis components perfectly fitted that idea, and were thus considered 
housekeepers. Unfortunately, “nature was not designed to make life easy for biologists” (Tudge, 2006), 
which came to realize that even the housekeepers have days off. Indeed, beside doing the cell’s laundry, 
housekeeping genes have a life of their own, and engage in many activities. Thus began the quest for 
biologists to discover what the housekeepers do when they are not polishing the silverware (after re-
counting the silver spoons, though).  
 

  A. Ribosome-mediated regulation of translation 
 
In the absence of powerful techniques to study proteins, mRNA levels have long been used as proxies 
to estimate protein abundance. The advent of quantitative mass spectrometry and its tremendous 
improvements in the recent years opened new perspectives in gene expression research (Ong and 
Mann, 2005). Notably, the correlation between mRNA and corresponding protein levels were soon 
found to be surprisingly low. Indeed, depending on organisms and environmental context, mRNA 
abundance only explain around 40% of the variation in protein levels, suggesting that translation and 
degradation are major components of gene expression regulation (Abreu et al., 2009; Vogel and 
Marcotte, 2012). Apprehending the importance of translation regulation has raised concerns, as it 
seems to render transcription regulation somewhat superfluous. However, a study showed that upon 
drug treatment, differentially expressed mRNA correlated with protein levels more than steady mRNA 
(Koussounadis et al., 2015). These data imply that, as expected, transcriptional regulations are reflected 
at the protein level. Indeed, it has been proposed recently that under steady-state conditions, protein 
levels could be estimated from mRNA levels by applying to each gene an RNA-To-Protein (RTP) ratio. 
Strikingly, this ratio was found to vary by orders of magnitude between genes, but to be independent 
of cell type (Edfors et al., 2016; Silva and Vogel, 2016). Paradoxically, these theories question in turn 
the necessity for translational regulation. It should however be considered that they spawn from high-
throughput analyses and reflect general trends. As such, they do not account for individual genes or 
gene groups. Furthermore, it is questionable whether they still hold true under stress induction, when 
ribosome biogenesis is heavily altered. Indeed, an exciting hypothesis would be that regulation of 
transcription and translation serve different purposes. For instance, it is believed that translational 
regulation has a much quicker impact on metabolism that transcriptional regulation, and is thus more 
fit to accommodate stress response mechanisms.  
 
 

   1. Ribosomes interact with mRNA cis-regulatory elements 

 
While many mechanisms tune general translation through the number of ribosomes (cf. II.A), it is 
important to note that translational activity can be regulated in a mRNA-specific manner. The affinity 
of the ribosome for specific mRNA, and the efficiency of translation are critical parameters in gene 
expression. Indeed, cells contain a finite pool of ribosomes and translation factors, for which mRNAs 
must compete (Chu et al., 2011; Raveh et al., 2016). Accordingly, their untranslated sequences abound 
with cis-regulatory elements which influence ribosome recruitment or initiation rate, and allow 
spatiotemporal control of protein synthesis (For review: Araujo et al., 2012).  
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    The Kozak sequences 

 

Translation initiation typically requires that the initiation complex scans a mRNA until finding an 

appropriate codon (cf I.A.2.). However, some mRNA displays leaky scanning, where the first AUG codon 

is not always selected for initiation (Kozak, 2002). Indeed, the sequence context has been shown to be 

critical for initiation efficiency, directly influencing translation rate and start codon choice. The optimal 

sequence, also known as the Kozak sequence (GCCA/GCCaugG), has been shown to yield 20 times 

more protein than weak sequences. Interestingly, the presence of a purine at the    [-3] position and a 

guanine at [+4] contributes the most to initiation efficiency (Kozak, 1986). It was postulated that AUG 

codon selection was enhanced by ribosome stalling mediated by base specific interactions. Indeed, 

uS19 interacts with both a U or G at the [+4] position, though other bases were not tested. More 

interestingly, uS7 interacts with a U at the [-3] position but not with a G, possibly underlying base 

discrimination mechanisms for AUG selection. Similarly, eS26 was shown to bind a U between positions 

[-8] and [-11] (Pisarev et al., 2006). Strikingly, ribosomes lacking eS26 were shown to translate mRNA 

with weak Kozak sequences more than complete ribosomes. Those mRNA are enriched for specific 

stress response pathways. Cells lacking eS26 expression constitutively activate those response 

pathways suggesting that incorporation of eS26 in the ribosome may be a mechanism that modulates 

the translational landscape (Ferretti, 2015, 10th EMBO conference on ribosome synthesis, unpublished 

data). 
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    Upstream open reading frames 

 
Initiation codon selection is a determinant factor in translation. Indeed, many mRNA possess several 
potential initiation sites, with different outcomes for gene expression. Strikingly, a huge proportion of 
mRNAs contain AUG codons 5’ of the canonical initiation site (44% in mice, 49% in humans) (Calvo et 
al., 2009). While those may promote the translation of long isoforms of the canonical protein, most of 
them are not in frame with the main coding sequence, or are separated from it by a termination codon. 
In the latter two occurrences, ribosomes can be recruited to translate the upstream open reading frame 
(uORF), which may either inhibit or facilitate translation of the canonical CDS, depending on mRNA 
topology. 
 
The presence of an uORF typically results in a 30-80% reduction of the translation of the main ORF. 
Several mechanisms participate to this repression: i) the majority of ribosomes may dissociate after 
translation of the uORF, thus never reaching the main ORF. Ii) the uORF may overlap with the main ORF, 
thus preventing the scanning of the AUG proper. iii) preventing ribosomes from translating the main 
ORF may facilitate degradation of the mRNA by the NMD pathway (For review: Somers et al., 2013). 
However, some uORFs positively affect gene expression by reducing the translational inhibition induced 
by cis-regulatory elements. For instance, translation of an uORF was shown to allow ribosomes to skip 
a repressive stem loop structure in the 5’UTR of a mRNA and reach the main ORF, a process called 
ribosome shunting (Hemmings-Mieszczak et al., 2000).   

 
Figure 27. The mechanism of regulation of ATF4 and ATF5 mRNA translation. 
(a) Diagram of the two upstream open reading frames (uORFs) in human, mouse, rat, cow and chicken activating 
transcription factor 4 (ATF4) mRNAs and the four mammalian ATF5 mRNAs. (b) The pattern of translation in 
control (unstressed) conditions, when eukaryotic initiation factor 2 (eIF2)–GTP–Met-tRNAi ternary complexes 
(eIF2-TCs) are abundant. In this case, most of the 40S subunits that resume scanning after uORF1 translation will 
acquire a new eIF2-TC in time to initiate translation of uORF2, and ribosomes that translate this second uORF will 
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be unable to initiate at the ATF4 or ATF5 AUG. (c) Pattern of translation in stressed conditions, when eIF2-TC 
availability is low, for instance owing to eIF2 phosphorylation. Most of the 40S subunits that resume scanning 
after translating uORF1 acquire a new eIF2-TC only after they have migrated past the uORF2 initiation codon, but 

in time to initiate at the next AUG, which is at the start of the ATF ORF in both cases. Taken from (Jackson et al., 
2010) 

The disposition of uORFs and their combination with other regulatory elements are the basis of very 
elaborate regulation schemes. For instance, the Drosophila female-specific factor Sex lethal (Sxl) was 
shown to bind the 5’UTR of the male specific lethal 2 (msl-2) mRNA, resulting in the activation of an 
uORF, and the repression of the main ORF (Moschall et al., 2017). In another instance, uORF translation 
also permits stress-dependent activation of a specific ORFs, owing to a delay in a translation re-
initiation (Fig. 27 and Jackson et al., 2010). Thus, gene expression can be regulated during development 
or stress induction through the affinity of ribosomes for different AUG codons. 
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    Internal ribosome entry sites 

 
Messenger RNAs can display secondary structures, and those who are located in the 5‘UTR region 
generally antagonize translation (Davuluri et al., 2000). Indeed, stable stem-loop structures were 
shown to block the scanning 43S PIC and prevent initiation of translation (Gray and Hentze, 1994). 
Some structures, however, have the paradoxical ability to recruit ribosomes to mRNAs independently 
of the scanning mechanism. They are thus called internal ribosome entry sites (IRES). 
 

 
Figure 28. Examples of the diversity of viral IRES factor requirements 
Canonical initiation requires the full complement of translation eIFs (top), while IRES initiation can use subsets of 
these factors as well as IRES trans-acting factors (ITAFs). Shown are examples of some viral IRES with the factors 
each requires. For simplicity, all the factors associated with the 40S subunit are not shown. As a trend, IRES RNAs 
with the most inherent stably folded structures (left arrow) are those that require the fewest factors, and as the 

IRES becomes less inherently structured, more ITAFs and eIFs are needed (right arrow). Taken from (Filbin and 
Kieft, 2009) 

IRES elements were first discovered in viral mRNAs, and found to allow the translation of these cap-
less messengers. They are not restricted to viruses, and it has been estimated that more than 10% of 
cellular mRNAs may possess IRES features. These elements share remarkably few structural features, 
which complicates their systematic discovery. However, they do share the property to recruit the pre-
initiation complex in a cap-independent manner, with reduced requirements for translation initiation 
factors (Fig. 28). Thus, IRES-mediated translation escapes general repression of translation by 4E-BP or 
limiting initiation factor concentrations. Indeed, IRES-containing messengers are still translated under 
stress conditions (Spriggs et al., 2008). 

Interestingly, different IRES groups show specific requirements for ribosome components and 
modifications. Thus was it found that a defect in rRNA pseudouridylation caused by the impairment of 
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DKC1 caused a specific loss of IRES-mediated translation of a subset of mRNAs, including p53 
(Montanaro et al., 2010; Yoon et al., 2006). Similarly, the recruitment of ribosomes to some groups of 
IRES has been shown to require specific r-proteins (Horos et al., 2012; Landry et al., 2009). Furthermore, 
it was found that viral IRES-bound ribosomes display a different pattern of ribosomal protein 
methylation than host mRNA-bound ribosomes (Ong and Mann, 2005). Altogether, these data suggest 
that mRNA translation specificity may be regulated not only by ribosomal protein contents, but also by 
rRNA and r-protein modifications.  

 
  



 
   67 
 

   2. Trans-acting factors control translation 

Ribosomal proteins are abundant, bind nucleic acids unspecifically, are susceptible to aggregation, and 

populate all cellular components. Those properties hinder the analysis of their interactions with other 

molecules. Indeed, they have historically been discarded as contaminants from classical molecular 

biology experiments, up to even recent mass-spectrometry analysis workflows (Dahlberg et al., 2003; 

Mellacheruvu et al., 2013). Indeed, while many translation regulators are known, their regulatory 

mechanism is only poorly understood. 

    RNA binding factors 

 

Experimental studies have identified more than 800 mRNA binding proteins in mammals, many of 

which potentially regulate translation (Baltz et al., 2012; Castello et al., 2012). Several such regulators 

have already been characterized which display context dependant activity. The Drosophila sex lethal 

protein represses translation in females (cf III.A.1), and the Iron Response Element binding protein 

(IRE-BP) does the same in the absence of iron (Hentze and Kühn, 1996; Moschall et al., 2017). Similarly, 

the expression of 15-lipoxygenase is repressed by hnRNPK and hnRNPE1 at the translational level in 

erythroid precursors (Ostareck et al., 2001). 

 

 

Figure 29. Mechanisms of translational regulation by 3′-UTR-binding proteins. 
Large ovals depict the small (43S) and large (60S) ribosomal complexes. The initiation factors that participate in 
closed-loop formation are indicated. A miRNA, as well as its binding site on the target mRNA, is also highlighted. 
(1) Recruitment of eIF-4E isoform eIF4EHP which displays low affinity for eIF-4G. (2) Inhibition of eIF-4G binding 
to eIF-4E. (3) Inhibition of ribosome recruitment. (4) Inhibition of 60S subunit joining. (5) Attenuation of 
translational elongation. (6) Deadenylation of the poly(A) tail. (7) Modulation of miRNA activity. (8) Promotion of 
inter-molecular interactions. Taken from (Szostak and Gebauer, 2013). 
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RBP are mostly repressors that may interfere with a number of translation steps. As a general feature, 

they primarily target the initiation step, by hindering ribosome recruitment (Fig. 29, 1-4). The 

mechanistic bases for this repression are rather poorly known, and do not necessarily involve 

interaction with ribosomes. On the other hand, a few examples of alternative mechanisms have been 

shown, which specifically target translating ribosomes. For instance, human PUM2 and hnRNP E1 were 

shown to induce ribosome stalling during translation elongation (Friend et al., 2012; Hussey et al., 

2011).  

Among regulators of translation, micro RNAs (miRNAs) are particularly important for their ability to 

coordinate the expression of hundreds of transcripts. miRNA display the ability to both inhibit 

translation and promote mRNA degradation. However, to know which mechanism is responsible for 

the bulk of miRNA-mediated regulation of mRNA expression is a decade-long debate (Jonas and 

Izaurralde, 2015; Wilczynska and Bushell, 2015). Furthermore, the mechanisms by which miRNA affect 

translation are also unclear. All steps of translation have been proposed to be regulated by miRNAs, 

including ribosome recruitment, initiation, elongation, and termination (Gu et al., 2009; Mathonnet et 

al., 2007; Nottrott et al., 2006; Petersen et al., 2006; Pillai et al., 2005). Most of these data are however 

subject to controversy. However, it is interesting to note that the small subunit r-protein RACK1 has 

been shown to interact with components of the RISC complex in worms and humans, and is necessary 

for the association of miRNAs with polyribosomes (Jannot et al., 2011). These data suggest that direct 

interaction with the ribosome may underlie a part of miRNA functions in translational repression. 
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    Local translation 

 

 

Figure 30. Model for translational compartmentalization. 
a | Translation initiation begins in the cytosol. Ribosomes translating mRNAs encoding cytosolic proteins that lack 
a topogenic endoplasmic reticulum (ER)-targeting signal remain in the cytosol. By contrast, ribosomes translating 
mRNAs that encode a protein containing a signal peptide or a transmembrane domain (such as secretory and 
integral membrane proteins) are targeted to the ER co-translationally by the SRP. b | Translation initiation can 
occur directly on the ER. Moreover, mRNAs that encode cytosolic proteins can also be translated by ER-bound 
ribosomes. Thus, a large fraction of the proteome can be translated by ER-associated ribosomes. Taken from (Reid 
and Nicchitta, 2015). 

Many proteins are addressed to a specific subcellular compartment. In most cases, this is achieved by 

the recognition of a proteic signal and subsequent import by a variety of shuttling pathways. However, 

as an alternative, proteins can be translated at the location that requires their function. Indeed, several 

such instances have been reported, with the most famous one being the translation of proteins at the 

ER membrane (Fig. 30). Indeed, upon recognizing signal sequences on nascent polypeptides, the signal 

recognition particle (SRP) binds the ribosome by contacting rRNA and r-proteins uL23 and uL29. 

Interestingly, while the SRP can bind signal sequences post-translationally, these interactions with the 

ribosome greatly improve its binding affinity. SRP binding induces a halt in translational elongation, 

and the translocation of the ribosome to the ER membrane, where it binds the SRP receptor and 

resumes translation (For review: Akopian et al., 2013). In a very similar manner, the Nascent chain-

associated complex (NAC) is able to bind peptides co-translationally, and promotes the association of 

ribosomes with the mitochondria outer membrane (George et al., 2002; Wang et al., 1995). 

One of the most puzzling cases of local translation comes from neurones. These highly polarized cells 

display extreme specialized morphology. Neuronal translation not only occurs at the periphery of the 

nucleus, but also in dendrites with functions in synaptic plasticity, and developing axons to promote 

growth, guidance and regeneration (for review: Rangaraju et al., 2017). Local translation requires the 

presence of the translation machinery in the dedicated subcomponents, and indeed, ribosomes have 

been identified in both axons and dendrites. Interestingly, axonal ribosomes are found in discrete 

cortical plaque-like structures termed periaxoplasmic ribosomal plaques, where they are bound to a 

matrix (Koenig and Martin, 1996). In addition, ribosomes have been found tethered to the membrane 

in axons and dendrites by association with the receptor DCC. Indeed, DCC was shown to interact with 

a number of small and large subunit r-proteins through its cytoplasmic domain, therefore inhibiting 
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translation. Upon the binding of its ligand Netrin-1, it dissociates from ribosomes, thus allowing 

translation to initiate in a signal-dependent and local manner (Tcherkezian et al., 2010). 
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   3. Ribosome heterogeneity 

 

For a coding gene to be transcribed does not guarantee that it will be translated. Many regulatory 

mechanisms participate in translation regulation, from cis-regulatory elements to trans-acting factors. 

The importance of those mechanisms was epitomized by the discovery of Hox mRNA translational 

regulation in mammals (Xue et al., 2015). Indeed, some of those genes, which display exquisite 

transcriptional regulation patterns studied for decades, were shown to simply not be translated in the 

absence of r-protein eL38. This example is only part of a rising amount of data on translation regulation 

mechanisms, which have led to the general idea that studying transcription alone is not sufficient to 

explain gene expression. This domain of genetics is still largely unexplored, and many questions remain 

open. While it is now admitted that different mRNAs have unique affinity for ribosomes, it should be 

considered whether the reverse is true. Are all ribosomes the same? Or can translation be regulated 

by tampering with the translator? 

 

    The Ribo-interactome 

 

The ribosome possesses a large solvent exposed surface, where protein-protein and RNA-protein 

interactions are likely to occur. Indeed, many proteins bind the ribosome, and participate in 

translational regulation (cf. III.A.1 and III.A.2). However, many known examples involve ribosome 

binding in a nascent peptide or mRNA specific manner. An inventory of proteins that associate to the 

ribosome itself has recently been described in mouse embryonic stem cells, and termed the ribo-

interactome (Fig. 31 and Simsek et al., 2017). 

 

 

Figure 31. The ribo-interactome consists of diverse functional groups of proteins. 
(A) The ribo-interactome is defined as the intersection of RNase-independent and puromycin-independent 
interactions. The number of identified proteins related to canonical translation machinery in the MS experiments 
is presented along with the known number of factors in each class. (B) The ribosome as a hub for interactions 
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with a multitude of proteins with diverse functions. Representative examples of direct ribosome interactors found 
in each functional group are presented. In the schematic, the pink circles represent the nascent peptides; red 
circles on the mRNA represent mRNA modifications. Taken from (Simsek et al., 2017). 

Strikingly, more than 400 proteins were found to bind the ribosome, and belong to a variety of 

functional groups. Further study of the association of PMK with the ribosome showed that it only 

bound a sub-pool of ER-bound ribosomes. These data prove that Ribosome associated proteins (RAP) 

can generate ribosome diversity. Indeed, it is expected that all ribosomes are not bound by all four 

hundred RAPs at the same time. It is also likely that the repertoire of RAPs may differ between cell 

types or upon cue induction. Thus, the combination of ribosome interactants can generate nearly 

unlimited ribosome diversity with so far unknown effects on their translational activity 
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    Specialized ribosomes 

 

Along with the idea that ribosomal components were housekeeping genes, existed the assumption 

that they would be monotonously expressed in all cell types. The ribosome has thus long been 

envisioned as a molecular complex with fixed stoichiometry. However, it has been known for a long 

time that r-protein genes are expressed at different levels across tissues (Bortoluzzi et al., 2001). In 

addition, r-protein mutations have been known to cause tissue-specific phenotypes, and to affect the 

translation of a subset of mRNAs (Kondrashov et al., 2011). These data led to the idea that ribosome 

composition could be variable, with consequences on gene expression.  

The study of the duplicated r-protein genes in S. cerevisiae provided invaluable information. Indeed, it 

was observed that deletion of any duplicated r-protein gene conferred different phenotypes than its 

paralog, contradicting the hypothesis of redundancy. It was thus hypothesized that ribosome 

composition could be modulated by r-protein composition or post-translational modifications. The 

limitless amount of possible combinations may thus be considered a “ribosome code”, giving rise to a 

variety of functionally different ribosomes, and controlling the translational program (Komili et al., 

2007). While the difference in phenotypes for paralogs deletion has now been proposed to rise from 

gene expression specificity rather than translational function differences, the ribosome code 

hypothesis has now been reinforced by a large amount of data (Parenteau et al., 2015). 

 

 

Figure 32. The Stoichiometry among r-proteins in Mouse Ribosomes Depends on the Number of Ribosomes per 
mRNA. 
(A) Velocity sedimentation in sucrose gradients allow separating ribosomes that are free or bound to a single 
mRNA (monosomes, depicted in black) from multiple ribosomes bound to a single mRNA (polysomes, depicted in 
blue). The vertical dashed lines indicate the boundaries of the collected fractions. Fractions are labeled at the top 
with numbers reflecting the number of ribosomes per mRNA. (B) Replicate MS measurements of the monosomes 
(A and B) indicate reproducible estimates for r-protein enrichment in polysomes. (C and D) Some r-proteins are 
enriched in monosomes (C) and others in polysomes (D). The relative levels of each r-protein are quantified as the 
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median levels of its unique peptides, and the probability that the r-protein levels do not change across the 
quantified fractions is computed from ANOVA (indicated at the top). The distribution levels of all unique peptides 
from trypsin (left panels) and from lys-C (right panels) digestions are juxtaposed as boxplots to depict the 
consistency of the estimates across proteases, different peptides, and experiments. Adapted from (Slavov et al., 
2015). 

Importantly, it was found that the stoichiometry of r-proteins within ribosomes is variable. Indeed, 

most of them are enriched in either heavy polyribosomes or monosomes in yeast and mammals (Fig. 

32 and Slavov et al., 2015). Moreover, substitution of the energy source from ethanol to glucose 

triggered a change in r-protein stoichiometry in yeast, correlating with an increase in polyribosome to 

monosome ratio. The fact that r-proteins display different stoichiometry implies that they are not 

contained in every ribosome, and by consequence, that ribosomes are heterogenous. Importantly, the 

pattern of r-protein enrichment in regard to translational activity was found to be conserved between 

yeast and mouse, suggesting that it may underlie a conserved mechanism.  

Another important concern rises from the biogenesis of such diverse ribosomes. Indeed, it is puzzling 

that ribosomes lacking r-proteins would be routinely generated while so many r-proteins are required 

for their maturation. An important clue may come from the observation that the r-proteins that vary 

the most are located at the surface of the ribosome, while the ones that are steadier are usually buried 

within. Interestingly, r-proteins located at the periphery of the ribosome are known to dissociate more 

easily than the innermost ones (Piir et al., 2014). Furthermore, it was shown that uL13 is both 

phosphorylated and released from the ribosome in response to interferon-γ signalling (Mazumder et 

al., 2003). It is thus tempting to hypothesized that ribosomes would be matured as complete 

complexes, and that the surface-most r-proteins would be able to dissociate under specific conditions. 
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    Ribosome modifications 

 

Both the ribosomal RNA and proteins are heavily modified in mature ribosomes (cf. I.B.3 and Lee et 

al., 2002; Yu et al., 2005). Many such modifications are believed to be required for canonical 

maturation of the ribosome, and to be therefore constitutive. For instance, mutation of histidine 243 

residue site of uL3 to an alanine was found to trigger the accumulation of pre-rRNA intermediates and 

defects in translational elongation (Al-Hadid et al., 2016a). However, snoRNAs expression is known to 

fluctuate with the circadian rhythm and change between cell types, suggesting that some rRNA 

modifications may also be the target of regulations (Castle et al., 2010; Hughes et al., 2012). Similarly, 

the pattern of r-protein modifications was found to be highly variable between tissues (Williamson et 

al., 1997), life stages (Mangiarotti, 2002; Ramagopal, 1991), or cell cycle phases (Chang et al., 1978). It 

is thus likely that ribosome modifications participate in generating ribosome diversity.  

 

 

Figure 33. Surface and buried sites of methylation on cytoplasmic ribosomal proteins in the yeast 
Saccharomyces cerevisiae. 
The 25S ribosomal RNA of the large subunit is shown in light gray; the 18S ribosomal RNA of the small subunit is 
shown in dark gray. Non-methylated proteins are shown in light blue; methylated proteins are shown in pink 
(Rpl12ab, Rpl23ab, Rps27a, Rps3) and red (Rpl3, Rps2, Rps25ab, Rpl42ab). The approximate positions of surface-
exposed methyl groups are shown as yellow spheres; buried methyl groups are represented as green spheres. The 

illustration was made using PyMOL from the PDB structures 3U5F, 3U5G, 3U5H, and 3U5I. Taken from (Clarke, 
2013). 

Many r-protein post-translational modifications (PTMs) have been identified, including lysine, di- and 

tri-methylation, phosphorylation, acetylation, SUMOylation and ufmylation.  Their functional 

significance is however poorly characterized. Interestingly, several such modifications have been 

shown to be exposed at the surface of the ribosome, where they would be accessible for interactions 

with translation factors, or other RAPs (Fig. 33 and Clarke, 2013). Interestingly, the deletion of several 
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ribosomal protein methyltransferases in yeast caused in most cases no defect in ribosome biogenesis 

or translation initiation. The deletion mutants however displayed decreased translation fidelity during 

elongation and termination (Al-Hadid et al., 2016b).  These data suggest that r-protein PTMs indeed 

modulate the translational properties of the ribosome. 
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  B. Extra-ribosomal functions of r-proteins 
 

Once considered full-time constituents of the ribosome, r-proteins are now studied for their 
participation in many cellular processes. While a substantial part of their contribution to cell 
metabolism has been attributed to their ability to alter ribosome behaviour with consequences on 
protein synthesis, it has been known for a long time that some ribosome-free r-proteins also carry 
regulatory activities, consequently termed “extra-ribosomal functions”. The increasing number of such 
examples over the last decades led to the idea that those would be a general feature of r-proteins. 
However, the existence of a genuine extra-ribosomal function is hard to prove and harder to study. 
Three criteria must be met (Warner and McIntosh, 2009). 1) The r-protein interacts with a non-
ribosomal component. 2) This interaction must have a physiological effect. 3) It occurs away from the 
ribosome. Since tampering with an r-protein is expected to cause translation defects, with extensive 
effects on physiology, careful attention must be paid to specifically attribute observations to the extra-
ribosomal function alone. This can be difficult as most of these functions are involved in the regulation 
of ribosome biogenesis, or response to nucleolar stress, with expected effects on ribosomal activity. 
Solving this conundrum is no small feat, explaining why despite numerous observations implicating r-
proteins in various processes, readily characterized extra-ribosomal functions are still scarce. 
    

   1. When are r-proteins free? 

 

The idea that r-proteins carry regulatory functions out of the ribosome is problematic on several levels. 

Indeed, extensive studies about their role in ribosome biogenesis yielded the notion that their 

existence is very tightly controlled, and that they are very unstable on their own. Thus, it seems 

important to question under which circumstances can r-proteins exert functions out of the ribosome. 

In the next section, several studies are mentioned which use the r-protein mediated stabilisation of 

p53 as a readout for the ability for r-proteins to perform their extra-ribosomal functions. For clarity 

purpose, the underlying mechanism of this stabilisation will be detailed in a further section (cf. III.B.2). 
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    Stability of free r-proteins 

 

 

Figure 34. The nanny model. 
Once an Intrinsically disordered protein (IDP) is synthesized, it is susceptible for ubiquitin-independent 
degradation by the 20S proteasome (I) unless the disordered segment is masked by a nanny that binds the newly 
synthesized IDP (II). The binding of the nanny to the client IDP is a transient process enabling the proper 
maturation and formation of the functional complex (III). Once in a complex, the IDP is refractory to degradation 
by default and can only be degraded by the ubiquitin-dependent pathway mediated by the 26S proteasome (IV). 
The decay kinetics of the two degradation processes (I and IV) are biphasic, as outlined below. Taken from 
(Tsvetkov et al., 2009) 

For r-proteins to carry extra-ribosomal functions means that they must be stable. Ribosomes and their 

r-protein contents are stable indeed, but free r-proteins are not. Indeed, they are intrinsically 

disordered proteins, which are known to be targeted for degradation by default by the 20S proteasome 

(Bloom and Pagano, 2004; Tofaris et al., 2001). Accordingly, it was shown that several r-proteins are 

degraded by the proteasome upon drug-induced inhibition of rRNA transcription. uL5 and uL18 were 

exceptions, and accumulated in a mutually dependent manner (Bursać et al., 2012). While the 

underlying mechanism has not been explained, it is possible that these proteins mutually hide their 

disorganized regions, in a similar fashion to molecular nannies (Fig. 34), thus resulting in protection 

from ubiquitin-independent degradation. However, it was shown that r-proteins are also degraded in 

a ubiquitin-dependent manner (Sung et al., 2016a). Importantly, it requires the ubiquitination of 

specific lysine residues. A number of those were found to be concealed in ribosome-bound r-proteins, 

explaining the difference in stability (Sung et al., 2016b). Thus, the association of free r-proteins within 

functional complexes could shield them from degradation, provided they protect critical lysine 

residues.   
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    r-protein availability 

 

Under physiological conditions, r-proteins are quickly imported to the nucleolus after synthesis, where 

they are delivered on the site of ribosomal assembly. Extreme cases were reported, where some r-

proteins are captured co-translationally or released only after binding to the pre-ribosome (Pillet et 

al., 2015; Schütz et al., 2014). Thus, one could wonder at which point such proteins would be available 

to perform extra-ribosomal functions. 

 

Figure 35. The balance between rRNA and r-protein synthesis regulates p53 levels. 
(a) Homeostatic rRNA and ribosomal protein synthesis. r-proteins not used for ribosome building bind to MDM2, 
thus regulating the MDM2-mediated p53 proteasomal degradation. (b) rRNA synthesis downregulation. 
Ribosomal proteins no longer engaged in ribosome biogenesis bind in larger amount to MDM2, thus reducing the 
MDM2-mediated p53 proteasomal degradation with the consequent increase of p53 stabilisation. (c) rRNA 
synthesis upregulation. A greater amount of ribosomal proteins is used for ribosome building, which are therefore 
no longer available for MDM2 binding. A greater portion of MDM2 is left free to induce p53 proteasomal 
degradation. Adapted from (Donati et al., 2011). 

An interesting clue came from the study of r-proteins degradation kinetics. Namely, the Tom1 ubiquitin 

ligase is responsible for the ubiquitin-dependent degradation of a subset of r-proteins. Importantly, 

Tom1 deletion triggered the aggregation of these r-proteins in insoluble deposits (Sung et al., 2016b). 

These data suggest that under physiological conditions, there are excess r-proteins to be degraded. 

Consequently, the limiting factor in steady-state ribosome biogenesis would be either rRNA synthesis 

or ribosome assembly rate. Indeed, a specific reduction of rRNA synthesis was shown to promote the 

extra-ribosomal functions of several r-proteins in stabilizing p53 in U2OS cells. Importantly, this 

regulation was lost when r-proteins were repressed concomitantly to rRNA synthesis, showing that r-

protein availability depends on the balance of rRNA and r-protein synthesis. Interestingly, up-
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regulation of rRNA synthesis resulted in decreased p53 levels (Donati et al., 2011). These data suggest 

that p53 stabilization does occur at a basal level under physiological conditions, which would imply 

that the steady-state amount of free r-proteins is sufficient for them to carry some extra-ribosomal 

functions (Fig. 35). 
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    r-protein localization 

 

r-proteins are sequestered in the granular component of the nucleolus and within the ribosomal 

particles under physiological conditions. However, their extra-ribosomal functions occur in other cell 

compartments. For instance, many r-proteins are known to bind MDM2, which is mainly located in the 

nucleoplasm. Despite the abundance of r-proteins, this interaction is only marginal in stress-free 

conditions, suggesting that there is indeed a compartmental separation between the r-proteins and 

MDM2. Thus, another pre-requisite for r-proteins to exert regulatory function is that they escape their 

usual localization. 

 

 

Figure 36. Schematic of RP-MDM2-p53 pathway regulation by nucleolar stress. 
Under normal growth conditions (no stress), small (S, 40S) and large (L, 60S) RPs are assembled in the nucleolus 
(NO) and transported to the cytoplasm (CP) for protein synthesis. Under nucleolar stress, ribosomal biogenesis is 
inhibited and Ribosome-free forms of RPs (RPL and RPS) enter the nucleoplasm (NP) to interact with MDM2, 
resulting in p53 stabilization and activation. Similarly, RPs either released from breaking down (indicated by wavy 
edges) of cytoplasmic Ribosomes or overproduced in the cytoplasm can enter the nucleoplasm to interact with 

MDM2. Adapted from (Zhang and Lu, 2009). 

As the nucleolus is a membrane-less organelle, its contents are very dynamic, shuttling between 

different nuclear bodies. It was thus proposed that there could be protein exchanges between the 

nucleolus and the nucleus. Interestingly, ribosomal proteins are indeed able to leave the nucleolus, 

albeit with slower rates than other nucleolar components. Importantly, their exchange rate was shown 

to increase upon inhibition of rRNA synthesis (Chen and Huang, 2001). It is thought that r-proteins are 

retained in the nucleolus because they associate with pre-ribosomes. Thus, an increase of r-proteins 

relative to ribosome biogenesis activity would give them room to freely shuttle in and out of the 

nucleolus. More drastically, the inhibition of ribosome biogenesis and a number of cellular stresses 

cause nucleolar disruption. Depending on the intensity of the cue, the nucleolus can either reduce its 

size, segregate, or disappear. In each case, r-proteins are massively released in the nucleoplasm (Fig. 

36 and Sirri et al., 2008)). Thus, localization of r-proteins is highly dependent on metabolic cues, making 

extra-ribosomal functions good candidates for stress response mechanisms. 
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   2. r-proteins participate in cell metabolism 

 

Numerous extra-ribosomal functions have been discovered over the last years, and the number is still 

on the rise. Several reviews have made attempts to provide a list of these (Bhavsar et al., 2010; Wool, 

1996; Zhou et al., 2015). It should however be noted that authentic extra-ribosomal functions are often 

intermingled with potential functions suggested by circumstantial lines of evidence (for instance uL16 

was attributed the extra-ribosomal function “Autism” while eL13 was assigned an extra-ribosomal 

function for being up-regulated in response to DNA damage). Those should only be considered with 

caution, as the demonstration of an extra-ribosomal function requires stringent criteria (Warner and 

McIntosh, 2009). Nevertheless, several of them have been readily characterized, implicating extra-

ribosomal functions in a number of metabolic events. Many such functions are the prerogative a single 

r-protein, and the range of affected processes is broad. For instance an extra-ribosomal function was 

attributed to eS19 as a monocyte chemotactic factor (Yamamoto, 2000). For these reasons, the next 

chapter will not contain an exhaustive list of extra-ribosomal functions, but rather describe those that 

are general features of r-proteins. 
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    Self-regulation of r-protein abundance 

 

The amount of free r-proteins largely depends on their incorporation into pre-ribosomes. They are 

recruited there in a stoichiometric manner, implying that dysregulation of a single r-protein gene 

expression would result in either one, or all but one r-proteins accumulating. Free r-proteins were 

however shown to carry extra-ribosomal functions in the regulation of their own abundance. These 

mechanisms may coordinate r-protein levels, thus providing robustness to ribosome homeostasis. 

 
Figure 37. Knockdown r-protein genes expressing unproductive mRNA oppositely affects productive splicing of 
its own transcript and the other r-protein gene transcripts. 
A red line in each graph indicates the change in the molar ratio of the productive mRNA isoform to the sum of the 
two isoforms of the r-protein gene indicated on the left after feeding with the bacteria for RNAi of the r-protein 
gene indicated at the top. A blue line indicates the change in worms fed with the control bacteria in a parallel 
experiment. X-axis indicates the time of feeding for knockdown in hours.  
Please note that ubl-1 was C.elegans nomenclature for the newly named eS31. 
Taken from (Takei et al., 2016) 

On the one hand, free r-proteins can target their expression in a global manner. Indeed, uL5 and uL18 

bind the 3’UTR region of the Myc mRNA, where they recruit miR24 and the RISC complex, preventing 

its translation (Challagundla et al., 2011; Liao et al., 2014). In addition, uL5 and uS11 bind the Myc 

protein and inhibit its activity as a transcriptional activator (Zhou et al., 2013). As Myc is an activator 

of the transcription of r-protein genes (cf. II.A.1), this is expected to reduce the synthesis of new r-

proteins. 

On the other hand, many r-proteins were shown to repress their own expression specifically. Strikingly, 

several r-protein genes were found to generate unproductive mRNA, which are quickly degraded by 

the nonsense mediated decay (NMD) pathway in worms, flies and humans (Cuccurese et al., 2005; 

Hansen et al., 2009; Mitrovich and Anderson, 2000). Interestingly, the overexpression of several of 
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them (uL3, uL11) was shown to increase the proportion of unproductive mRNA for their own gene but 

not for other r-proteins. While the molecular mechanism has not been solved for most r-proteins, it 

was shown that uL1 binds its own mRNA over a conserved 39 nt sequence (L10ARE). Binding of uL1 

promotes the skipping of a splice site, leading to the integration of a premature stop codon (Takei et 

al., 2016). As human uS15 and yeast eL30 (thereby named L32 after the pre-1998 nomenclature) were 

also shown to bind their own mRNA, this feature could be shared by more self-regulating r-proteins 

(Dabeva and Warner, 1993; Malygin et al., 2007). Strikingly, upon RNAi inactivation of several 

individual r-protein genes in worms, the proportion of unproductive mRNA decreased for the 

inactivated gene but increased for all others (Fig. 37 and Takei et al., 2016) . These data suggest that 

this mechanism may fulfil a homeostatic function by averaging r-protein levels. 

 

Figure 38. Asymmetric regulation of a pair of r-protein paralog genes 
Schematic representation of the multi-level RPS9 (uS4) regulatory circuit. The differential regulation of RPS9A and 
RPS9B is illustrated at different levels of gene expression. The coding regions are shown in the form of boxes and 
non-coding sequence (introns and UTRs) are shown as lines. The transcription start sites are illustrated by arrows. 
The secondary structure within the RPS9A intron represents the structure required for the inhibition of RPS9A 
splicing. Steady state inhibition and enhancement of splicing are illustrated by grey lines. 

Interestingly, this mechanism was shown to participate in the asymmetric expression of duplicated r-

protein genes in S.cerevisiae. Indeed, uS4B binds the intron of the uS4A mRNA specifically, keeping it 

from being spliced out. This results in the degradation of the uS4A mRNA by the NMD pathway, thus 

keeping its expression low. In addition, the deletion of the binding locus resulted in decreased splicing 

efficiency for the uS4B mRNA. It was thus concluded that uS4B binds both mRNA with a preference for 

uS4A, establishing a hierarchy in the expression of the paralogs (Petibon et al., 2016). Strikingly, 

deletion of the intron in the minor paralog r-protein genes was reported to increase their expression 

in 83% of cases. Furthermore, it caused the hierarchical inversion of the paralog pair in 57% cases. 

Thus, it is expected that this mechanism would apply to many other r-protein paralogs.  

It should however be noted that a previous screen for the regulatory effect of intron in r-protein genes 

demonstrated that half introns were responsible for gene repression while the other half increased it. 

Furthermore, in most cases the deletion of an intron triggered a change in the expression of the 
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paralogous gene. Surprisingly, the effect was opposite to gene compensation in most cases (Parenteau 

et al., 2015). Thus, paralogous r-protein genes splicing seems to be subject to more than classical 

negative feedback loops, and it will be interesting to know whether extra-ribosomal functions are 

involved in these regulatory schemes. 

 

    The MDM2-p53-r-protein pathway 

 

Ribosome biogenesis is required for cell growth and proliferation, and is known to be increased in 

cancer cells (Drygin et al., 2010). Thus, it used to be implicitly admitted that ribosome biogenesis 

components would behave as oncogenes. Quite oppositely, many ribosome biogenesis components 

turned out to be tumour suppressors. For instance, 18 out of 28 studied r-protein mutants in zebrafish 

were paradoxically both growth-impaired and prone to developing malignant tumours (Lai et al., 

2009). This apparent contradiction was resolved with the discovery that many r-proteins, while indeed 

important for translation, also carry extra-ribosomal functions in the regulation of p53 stability.  

Under physiological conditions, p53 is bound and ubiquitinated by MDM2, thus targeting it for 

degradation and keeping it at low levels (Haupt et al., 1997; Kubbutat et al., 1997). The interaction 

between MDM2 and p53 can be disrupted a number of ways, resulting in an augmentation of p53 

levels and activity (Moll and Petrenko, 2003). Under various conditions ranging from genotoxic stress 

to ribosome biogenesis defects, r-proteins are released from the nucleolus (cf. III.B.1 and Fig. 36). 

Strikingly, 14 of them can bind MDM2 and separate it from p53 (Kim et al., 2014 and Fig. 35). 

Interestingly, while each individual r-protein can suppress MDM2, uL5 and uL18 seem to carry a critical 

role in this regulation. Indeed, they were found to be required for p53 activation in human cells, while 

uS14 and eS7 were not (Fumagalli et al., 2012). Thus, a part of these r-proteins seems to be redundant 

in activating p53. A few theories have been proposed to address their functional significance. On the 

one hand, the binding of several r-proteins may have a cooperative effect on MDM2, or be a 

requirement for its inactivation. On the second hand, specific sets of r-proteins could be released from 

the nucleolus depending on the nature of the stress cues (Kim et al., 2014). 

It is expected that other r-proteins will be added to the list of p53 regulators in the years to come. In 

addition, they may regulate p53 at other levels than its interaction with MDM2. For instance, r-protein 

uL24 was shown to bind the 5’UTR region of the p53 mRNA and enhance its translation, under both 

basal and stress conditions (Takagi et al., 2005).  

 

   3. r-proteins are bound to chromatin 

 

A fascinating development in the field of r-protein study was the observation that many of them can 

be found associated to chromatin (Brogna et al., 2002). While the idea of extra-ribosomal functions in 

gene expression immediately spring to the mind, only a couple examples where chromatin-bound r-

proteins regulate transcription have been properly documented (Dai et al., 2007; Wan et al., 2007). 

Other functions have been proposed, but lack compelling evidence (Ni et al., 2006; Tchórzewski et al., 

1999). In addition, the number of r-proteins detected on chromatin questions whether they are 

recruited individually, or as part of ribosome-like or pre-ribosomal subunits. Thus, r-protein activity on 

chromatin typically enters the category of potential extra-ribosomal functions in need of supporting 

evidence. Indeed, the significance of their binding to chromatin remains subject to considerable 

speculation and controversy. 



 
   86 
 

    r-protein chromatin binding properties 

 

The association of r-proteins with chromatin has been shown in several ways. In Drosophila, 

immunofluorescence assays on polytene chromosomes allowed to identify 20 such r-proteins (Fig. 39 

and Brogna et al., 2002).  

 

Figure 39. eS30 associates with transcription sites. 
 (A) Single-channel showing the typical banding pattern produced by anti-RpS30 detected with a Cy3 
(indocarbocyanine)-labelled secondary antibody. (B) Same chromosome squash, showing the DAPI (4′,6-
diamidino-2-phenylindole) signal (blue) to visualize DNA; note that the Cy3 signal (red) highlights a decondensed 
region of the chromosomes (interbands), which corresponds to transcription sites. Taken from (De and Brogna, 
2010). 

Concern was subsequently raised towards antibody specificity and possible contamination by 

cytoplasmic components during the preparation of the samples (Dahlberg et al., 2003). Chromatin 

binding was thus validated by in vivo imaging of r-protein fusions with fluorescent tags. Furthermore, 

it was shown that endogenously tagged eL41 also bound chromatin, confirming that r-protein binding 

to chromatin is not an artefact resulting from ectopic expression (Rugjee et al., 2013). In both studies, 

r-proteins were found to bind DAPI interbands, which correspond to decondensed chromatin, and are 

considered sites of active transcription (Zhimulev et al., 2004). While all r-proteins displayed similar 

banding patterns, it is not known to what extent they co-localize. It is thus not known whether they 

possess unique binding patterns or bind chromatin through a shared mechanism. Interestingly, the 

binding of several r-proteins was shown to be reduced upon RNAse treatment in the first study, 

suggesting that they would bind chromatin through the interaction with RNA.  

r-proteins were also found to bind chromatin in yeast. In S.cerevisiae, ChIP experiments demonstrated 

that uL24A, uL30B and eL36B bind some coding and non-coding genes. In the case of protein-coding 

genes, r-protein signal was found to be enriched in the coding sequence. In addition, the signal was 

increased upon activation of transcription, and reduced upon RNAse treatment. The authors thus 

suggested that r-proteins may be recruited in a nascent RNA-dependent manner (Schroder and Moore, 

2005). In S.pombe, uL5, uL23 and uL30 were also found to bind both coding and non-coding genes, 

with tRNA genes displaying the most enrichment. Interestingly, the association of uL5 and uL30 to the 

ACT1 gene was lost upon RNAse treatment, but not that of uL23. It is thus possible that multiple 

mechanisms underlie r-protein binding to chromatin. Indeed ChIP-on-chip assays revealed that these 

r-proteins not only bind a subset of genes, but are also enriched in pericentromeric heterochromatin. 

Surprisingly, this enrichment was also found to be sensitive to RNAse treatment. (De et al., 2011). 

While it is possible that nascent RNAs stemming from heterochromatin may underlie such association, 

the authors proposed that other kinds of RNAs may be involved in the binding of r-proteins. For 
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instance, if r-proteins bind as pre-ribosomal complexes, rRNA integrity could be important to tether 

them together on chromatin. 

Another study in Drosophila cells provided another candidate mechanism: r-protein eL22 was found 

to co-localize and interact specifically with linker histone H1. Surprisingly, eL22 display two alternative 

subcellular distribution profiles: in the vast majority of cells, it is found throughout the cytoplasm, 

nucleolus and on chromatin. In that case it partially co-localizes with activating histone mark H3K4me3, 

suggesting that it is present on actively transcribed regions. On the other hand, in 5 to 10% of cells, it 

would appear predominantly nuclear and be excluded from such active chromatin. In these cells, its 

co-localization with histone H1 is enhanced. The authors proposed that this association could be 

transient, and may be regulated during the cell cycle. ChIP experiments showed that the binding of 

eL22 and uL30 on several coding genes was reduced upon depletion of histone H1, confirming that it 

participates in their recruitment to chromatin (Ni et al., 2006). A number of other r-proteins were 

found to interact with histone H1. In the aforementioned study, 19 were identified, whereas a study 

in human cells found 4 r-proteins to interact with H1.2 (Kim et al., 2008). More recently, mass-

spectrometry analysis of histone H1.0 interactants in human cells identified 24 r-proteins. 

Interestingly, only three of them were found to no longer bind H1.0 upon RNAse treatment (eS1, uS15, 

eL22) (Kalashnikova et al., 2013). 

To summarize, many r-proteins bind chromatin. They can be found both on actively transcribed 

regions, and pericentromeric chromatin. They may be recruited through different mechanisms, one 

being dependent of some kind of RNA, the other on histone H1. It is not known whether they bind 

alone or in a complex. Similarly, it is not known to what extent they share binding sites and function 

on chromatin. 
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    Proposed functions of r-proteins on chromatin 

 

Finding so many r-proteins bound to chromatin at regions of active transcription is strikingly 

reminiscent of the organisation of gene expression in prokaryotes and archaea, where transcription 

and translation occur at the same time and influence each other (French et al., 2007; Yanofsky, 1981). 

Indeed, these observations sparkled interest for the idea of a form of nuclear ribosome performing 

regulatory functions on nascent RNAs. 

A first theory proposed that they may scan nascent mRNA for premature termination codons. 

Supporting lines of evidence include the fact that these codons induce perturbations in mRNA splicing, 

which occurs co-transcriptionally, suggesting a very early surveillance mechanism (Aoufouchi et al., 

1996; Gersappe et al., 1999). However, alternate hypotheses may explain these observations in the 

absence of nuclear mRNA scanning (Dahlberg et al., 2003). Furthermore, in yeast, r-proteins are found 

associated to non-coding genes such as tRNA and their binding is unaffected by the introduction of a 

nonsense mutation in a coding gene (Schroder and Moore, 2005). Thus, there seems to be rather weak 

supporting data in favour of this hypothesis. 

Another explanation proposed that chromatin bound r-proteins may engage in nuclear translation. 

The presence of most translation factors in the nucleus, as well as the detection of nuclear peptidyl-

transferase activity support this theory. While several interesting developments arose in this evermore 

controversial field, reported nuclear translation activity did not display particular association with 

chromatin (Al-Jubran et al., 2013; Apcher et al., 2013; Dahlberg and Lund, 2012; David et al., 2012). 

Furthermore, it was reported that unlike r-proteins, translation factors did not bind chromatin 

efficiently, suggesting that if there is indeed some form of nuclear translation, it would be away from 

chromatin (Schroder and Moore, 2005). Additionally, r-proteins are bound indifferently to coding and 

non-coding genes, but also on pericentromeric chromatin (De et al., 2011). It is thus unlikely that 

nuclear translation would be responsible for the whole pattern of r-proteins binding. 

In this context, the precise role for chromatin-bound r-proteins remain elusive. One could wonder 

whether they all possess unique functions, binding sites and recruitment mechanisms, or whether they 

are recruited as a whole. Indeed, many r-proteins display similar binding patterns (Brogna et al., 2002; 

De et al., 2011; Rugjee et al., 2013). However, the few documented studies show little common ground 

between individual r-proteins. While uL5 is recruited through its interaction with a transcription factor, 

eS22 interacts with a histone protein and uS3 binds DNA over specific sequences. Similarly, uS3 and 

uL5 display non-autonomous trans-activating or -repressing properties, while eS22 is described as a 

repressor, and P1 as an activator (Dai et al., 2007; Ni et al., 2006; Tchórzewski et al., 1999; Wan et al., 

2007). To date, there is still too little data to determine whether individual r-protein functions are the 

exception, or the rule. 
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 IV. Regulation of ribosome homeostasis by uL11 and Corto 
 

The idea that uL11 may carry extra-ribosomal functions in the regulation of transcription is not new 

(Tu et al., 2011). However, it remained undemonstrated for lack of evidence that it interacted with a 

non-ribosomal component out of the ribosome. In these conditions, the discovery that transcription 

factor Corto recognized uL11 specifically provided an unprecedented opportunity to investigate its 

involvement in transcription regulation. Subsequent work provided the robust demonstration of an 

extra-ribosomal function with implications in ribosome biogenesis homeostasis (Coléno-Costes et al., 

2012). 

  A. The ribosomal protein uL11 
 

Ribosomal protein uL11 has had a number of aliases over the years. Mostly known as RpL12 in 

eukaryotes, it used to be named YL23 or L15 in yeast (See Tables S1, S2 and S3 for conversion). The 

nomenclature of r-proteins has indeed always led to confusions. In particular, bacterial r-protein 

counterparts followed a different numeration, in such a way that eukaryotic RpL12 was in fact 

homologous to bacterial RpL11. Even among eukaryotes, the use of different terminologies between 

species sometimes led to important misinterpretations. For instance, in 2002, RpL12 was reported to 

bind chromatin on polytene chromosomes as detected by immunofluorescence (Brogna et al., 2002). 

Unfortunately, the antibody had been described to recognize eL12, which is the Artemia salina 

nomenclature for ribosomal protein P2 (Elkon et al., 1986). While the new nomenclature should solve 

this problem, it remains important to avoid any further ambiguity between eukaryotic and prokaryotic 

homologs. For this reason, I will use the uL11 appellation for the eukaryotic r-protein, and refer to the 

bacterial one as bL11. 
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   1. General features of Drosophila uL11 

 

Drosophila uL11 is encoded by a unique gene (RpL12/CG3195/FBgn0034968) located on the right arm 

of chromosome 2, at cytogenetic position 60B7. Three annotated transcripts encode the same 165 

amino-acids protein. Surprisingly, none of them carries a 5’ terminal oligo-pyrimidine tract. However, 

an 18 nucleotide-long stretch of pyrimidines can be found within the first 50 nucleotides of two 

annotated transcripts. As transcriptional start sites (TSS) are often curated based on bioinformatical 

predictions, it remains conceivable that a non-annotated TSS may produce a 5’TOP mRNA. uL11 

epression is ubiquitous and described as “very high” to “extremely high” in all tissues, developmental 

stages, and cell lines. 

 

 

Figure 40. The RpL12/uL11 genomic locus. 
Orange triangles mark predicted insulator sites. Red boxes indicate regions of the genome for which a deletion 
mutant is available. Blue arrows: coding genes. Light red arrow: non-coding gene. The bottom panel displays gene 
expression data, each line corresponding to a different developmental stage. Taken from FlyBase 
(http://flybase.org/).  

Interestingly, uL11/RpL12 is located within a cluster of highly and ubiquitously expressed genes (Fig. 

40). They are encompassed by predicted insulator sites, which demarcate an area of the genome for 

which no deletion mutant is available. Two such deletions have however been described. The first one 

- Df(2R)bwVDe2LPxKR - was defined to cover cytological regions 59E1 to 60D1, thus encompassing the 

whole uL11/RpL12 area. However, in a recent personal communication to FlyBase, Kevin R Cook 

proposed that the cytological borders of this deletion did not cover the uL11/RpL12 region 

(http://flybase.org/reports/FBrf0230794.html). The second one - Df(2R)Exel6081 – was described to 

delete regions 60B4 to 60C6. It was however not molecularly mapped, and was considered lost when 

homozygotes were found in the stock (http://flybase.org/reports/FBrf0206661.html). Thus, no 

evidence remains that flies can accommodate aneuploidy at this locus, which is indeed described as 

http://flybase.org/
http://flybase.org/reports/FBrf0230794.html
http://flybase.org/reports/FBrf0206661.html
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haplo-lethal (Cook et al., 2012; Lindsley et al., 1972). It is likely that uL11/RpL12 contributes to this 

phenotype: no classical allele has been described and its ubiquitous RNAi-mediated inactivation is 

lethal during the first larval instar. However, another r-protein gene (eL39/RpL39), and several 

essential genes (eIF5A, yki) are found in the vicinity of uL11/RpL12 (Huang et al., 2005; Park et al., 

2010). For this reason, which genes are responsible for this haplo-lethality remains uncertain. 

 

Figure 41. Alignment of uL11 protein sequence among eukaryotes. 
The alignment was realized with Clustal Omega v1.2.4. D.m, Drosophila melanogaster; H.s, Homo sapiens; S.c 
Saccharomyces cerevisiae; S.p, Schizosaccharomyces pombe. 

Drosophila uL11 is a highly conserved 165 amino-acids protein with a mildly basic isoelectric point 

(8.29) and a molecular weight of 17.7 kDa (Fig. 41). Its structure off the ribosome has never been 

solved, but bioinformatic tools predict the existence of several secondary structures. There is 

otherwise very little structural data available for ribosome-free uL11. 
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   2. Known functions of uL11 on and off the ribosome 

 

uL11 is imported into the nucleus specifically by importin-11 (Plafker and Macara, 2002). It has been 

described to bind the pre-60S at late nucleolar/nuclear stages of assembly (de la Cruz et al., 2015). It 

associates with the GTPase domain of the 28S rRNA, at the base of the P stalk of the ribosome (Uchiumi 

and Kominami, 1997). Structural data on ribosome-bound eukaryotic uL11 is scarce. Indeed, it is 

missing from most crystal structures of the ribosome, perhaps due to its labile nature. It was however 

built as a polyalanine chain in a structure of the yeast ribosome, and was found to align completely on 

the structure of bL11 (Ben-Shem et al., 2011). Consequently, the data about bL11 ribosomal function 

may provide insight about its eukaryotic counterpart.  

 

Figure 42. Conformational changes in bL11 during translation elongation. 
Top panel: Interplay between the bL11 NTD and the bL12 CTD on the ribosome. Left: The bL11 NTD (blue) and the 
bL12 CTD (yellow). Proline Switch 22 (PS22, red) is cis and loop 62 (brown) is inserted into the cleft between α4 
and α6 of the bL12 CTD. Right: when bL11 from the isolated structure is aligned with bL11 from the ribosome 
complex, the trans PS22 (red) makes the bL11 NTD too far to connect the bL12 CTD. Taken from (Wang et al., 
2012). Lower panel: presentation of the fitting of the X-ray structures of EF-G and bL11-23S rRNA complex into 
the cryo-EM density of the 70S·EF-G complexes obtained before and after GTP hydrolysis. The cryo-EM densities 
are shown as grey wire-mesh. (a) 70 S·EF-G·GMPPCP complex; and (b) 70 S·(tRNA)2·EF-G·GDP·fusidic acid 
complex. (a) Based on the fitting, hairpin portions of three loop structures of domain V (red) of EF-G are facing 
downward in the GTP state. (b) Following GTP hydrolysis, domain V rotates such that the three loop structures 
move into the cleft between RNA (blue) and N-terminal domain (NTD) (gold) of protein bL11, thereby inducing a 
shift of NTD. The lower tip of NTD is brought closer to the G′ domain (brown) of EF-G, which also moves upward, 
helping in the formation of the arc-like connection. Landmarks: RNA, 58 nt RNA; C, CTD of L11; N, NTD of L11; V, 
domain V of EF-G; G (magenta), portion of G domain of EF-G; and G′, portion of G′ domain of EF-G. Taken from 
(Agrawal et al., 2001). 

 
bL11 contains two globular domains separated by a flexible linker. It has been described to bind the 

23S rRNA and bacterial uL10 through its C-terminal domain (Wimberly et al., 1999). It is not necessary 
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to recruit bL10 and the L7/L12 stalk, but increases their binding efficiency a hundred fold (Iben and 

Draper, 2008). Importantly, it was shown to change conformation at all steps of the elongation cycle 

(Ilin et al., 2005; Kavran and Steitz, 2007). Indeed, the N-terminal domain of bL11 contains a proline 

switch that can be found in the trans position in factor-free ribosomes. Elongation factor EF-G catalyses 

its isomerisation to the cis position, displacing the bL11 NTD, which subsequently contacts the CTD of 

bL12. This movement is a pre-requisite for EF-G binding (Wang et al., 2012). Upon GTP hydrolysis, the 

N-terminal domain of bL11 forms an arc-like connection with EF-G (Fig. 42 and Agrawal et al., 2001). It 

was thus proposed that bL11 transmits conformational changes induced by GTP hydrolysis to bL10, 

bL12 and the 23S rRNA (Diaconu et al., 2005). This mechanism is likely to be shared with other GTPases 

that bind the same region (EF-Tu, IF2, IF4, RF3) since they both contact bL11 and display peptidyl prolyl 

isomerase activity (Wang et al., 2012). Importantly, ribosomes lacking bL11 were found to be deficient 

for EF-G dependent GTP hydrolysis, which is required for elongation (Schrier and Möller, 1975). As 

eukaryotic uL11 is reported to bind EF-2 and the rRNA at the same location, these roles may be 

conserved in eukaryotic ribosomes (Uchiumi and Kominami, 1997; Uchiumi et al., 1986). 

 

 

Figure 43. Model of uL11 contribution to translational fidelity. 
uL11 is depicted in the form of two C-terminal and N-terminal domains - CTD and -NTD, respectively. The P-stalk 
is shown as a separate structure, and P1 and P2 proteins with C-terminal domains responsible for G-domain 
binding of eEF1A are also shown. uL11 is in its basic 'open conformation'. The cognate ternary complex binding is 
stabilized by allosteric rearrangements within the GAC, involving movement of uL11 CTD into 'close conformation' 
and probably interacting with the G-domain of eEF1A. uL11 'closing' prevents cognate TC dissociation and leads 
to 'productive state' stabilization, leading at the same time to GTPase activation. Near-cognate TC does not 
induce uL11 'closing', which induces TC dissociation before GTPase activation. Taken from (Wawiórka et al., 2016). 

Interestingly, uL11 does not seem important for pre-60S maturation since its absence only leads to a 

mild accumulation of precursor RNA (de la Cruz et al., 2015). It is however necessary for the assembly 

of the P stalk which occurs in eukaryotes at the onset of translation (cf. Fig. 12 and Briones et al., 1998). 

Furthermore, uL11 has been described to be important at many steps of the translation cycle. Indeed, 

deficiency for uL11 in yeast prevents the release of ribosome associated protein Tif6, which is the last 

maturation step before 60S subunits become functional. Furthermore, uL11-deficient ribosomes 

display a decrease in translational fidelity, which may participate in the reduction of translational 

elongation speed (Fig. 43 and Wawiórka et al., 2016). 
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In addition to its role in translation, uL11 was shown to carry extra-ribosomal activities. Indeed, it was 

shown in C. elegans and M. musculus that uL11 binds its own messenger RNA and inhibits its splicing 

(cf III.B.2) (Cuccurese et al., 2005; Mitrovich and Anderson, 2000; Takei et al., 2016). Furthermore, uL11 

was shown to be required for the transcription of a subset of PHO pathway genes that are inducible 

under low phosphate conditions in S. cerevisiae (Tu et al., 2011). However, while the authors showed 

that the observed decrease in mRNA levels was not a result of decreased mRNA stability (which may 

occur upon translation inhibition), they provided no evidence that uL11 regulates the PHO pathway at 

the transcriptional level. Indeed, some ribosomal proteins were shown to be required for the 

translation of specific mRNA (cf III.A.3), and one could argue that uL11 may promote the translation of 

a PHO pathway transcription factor. For this reason, the involvement of uL11 in transcriptional 

regulation is still in need of solid evidence. 
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   3. Methylation of uL11 

 

 

Figure 44. Summary of uL11 post-translational methyl modifications. 
The methylation sites and corresponding enzymes are depicted. The red lollipops represent methyl modifications. 
Taken from (Sadaie et al., 2008). 

uL11 is known to be methylated over several residues of its N terminal domain, in a reproducible 

pattern (Fig. 44). The function of these modifications is rather poorly known: mono-methylation of 

arginine 66 was found to be catalysed by Rmt2 in S. cerevisiae, but no physiological role was uncovered 

yet (Chern et al., 2002). The same applies for lysine methylations, though some lines of data allow to 

speculate.  

Di-methylation of lysine 39 was observed in yeast, as a facultative modification (Sadaie et al., 2008). 

No enzyme or function was associated to it. It is interesting to note that uL11 lysine 39 is a predicted 

ubiquitination site. Methylated proteins were shown to have longer half-lives than their unmethylated 

counterpart, correlating with the fact that nearly half methylation sites overlap ubiquitination sites in 

S. cerevisiae. It was thus postulated that lysine methylation might protect a protein from ubiquitination 

at the corresponding site (Pang et al., 2010). 

Mass-spectrometry analysis allowed to discover that uL11 is di-methylated on its terminal amine 

function in S. cerevisiae, S. pombe and A. thaliana (Carroll et al., 2008; Sadaie et al., 2008; Webb et al., 

2008). While the enzyme responsible for this modification was not uncovered, the study of a similar 

modification on human RCC1 allowed to describe that a consensus (N-ter-A/S/P-P-K) motif was 

required. In addition, RCC1 N-terminal di-methylation was shown to improve its binding to dsDNA, 

stabilizing its presence on chromatin. As N-terminal methylation grants a pH-independent positive 

charge to the modified amine function, the authors propose that it could enhance the interaction 

between a protein and the phosphate backbone of nucleic acids (Chen et al., 2007). 

Trimethylation of uL11 lysine 3 was also confirmed in S. cerevisiae, S. pombe and A. thaliana (Carroll 

et al., 2008; Sadaie et al., 2008; Webb et al., 2008). S. pombe Set11 and S. cerevisiae Rkm2 were found 

to be responsible for this modification, and uL11 was their only identified substrate. Interestingly, in 

vitro methylation test showed that recombinant Set11 was able to methylate uL11 from ΔSet11 cell 

extracts but not from wild-type ones. The authors thus concluded that uL11 lysine 3 must be 

predominantly methylated in wild-type cells. The physiological role of this modification however 

remained unclear: deletion of Set11 had little impact on growth rates and uL11 incorporation in 

ribosomes but its overexpression caused a severe growth defect (Sadaie et al., 2008). It however 

remains to be demonstrated whether Set11 has other functions than uL11 methylation, or substrates.  

Ten ribosomal protein methyltransferases were studied in S. cerevisiae for their effect on ribosome 

biogenesis and functions.  Among them, Rkm2 had no effect on ribosome synthesis, UAA codon 

readthrough, -1 ribosome frameshifting or amino-acids misincorporation. It however increased the 

level of UAG codon readthrough albeit having the most moderate effect among ribosomal protein 

methyltransferases (Al-Hadid et al., 2016b).  
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Figure 45. Conservation of uL11 between E. coli and D. melanogaster. 
Clustal Omega (v1.2.4) alignment of E. coli uL11 (up, bL11) versus D. melanogaster uL11 (down, uL11). 

Interestingly, bL11 is also known to be methylated on lysine 3 and di-methylated on its terminal amine 

function. It has been referred to as “the most heavily methylated protein from Escherichia coli 

ribosomes” (Dognin and Wittmann-Liebold, 1977). However, while uL11 is structurally conserved, it 

displays eukaryote-specific extensions in N-ter and C-ter (Fig. 45). For this reason, it is debatable 

whether the methylation pattern of bL11 lysine 3 can be informative for that of uL11. 

Recent work in our laboratory has established that D. melanogaster uL11 is bound by a chromodomain-

like structure of the epigenetic co-factor Corto. Chromodomains are known to recognize specifically 

trimethylated lysine residues, and the interaction between uL11 and Corto was indeed shown to 

require uL11 lysine 3 to be trimethylated (Coléno-Costes et al., 2012). Thus, the methylation of uL11 

lysine 3 is likely to regulate a potential extra-ribosomal function. 
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  B. The transcription factor corto 
 

As the interactor of methylated uL11, Corto is likely to mediate its extra-ribosomal function. Three 

lines of evidence suggest a role in the regulation of transcription. 1) uL11 and Corto bind polytene 

chromosomes at largely overlapping sites. 2) They are found on heatshock genes’ body and their 

presence correlates with transcriptional activity. 3) Their overexpression alters the expression of a 

same subset of genes, many of which are involved in ribosome biogenesis (Coléno-Costes et al., 2012). 

While light remains to be shed on the underlying mechanism of this extra-ribosomal activity, the 

wealth of data about the functions of Corto in gene regulation and metabolism may provide some 

insight towards its functional implications. 

   1. General features of Corto 

 

Corto is encoded by a gene located on the right arm of chromosome 3, at cytogenetic position 82E7. 

Five annotated intron-less transcripts encode a single 550 amino-acids protein. However, northern blot 

analysis detected only a 3.2kb and a 3.6kb transcript, which are expressed from different TSS. The first 

one was described to be expressed from the embryonic to the pupal stage. The second is expressed in 

adult females, and deposited maternally in embryos, where it can be detected until the pupal stage 

(Kodjabachian et al., 1998).  

 

Figure 46. Transcriptomic profile of corto expression during development. 
Taken from FlyBase (http://flybase.org/). 

Consistently, transcriptomic data show that the expression of corto follows a well-defined 

developmental trajectory, very high in embryos and decreasing gradually until the third larval instar. 

Corto is then expressed differently between males and female adults. Its expression is seen to increase 

during the late third instar larvae and pupal stage, but in the absence of sex-specific data, it cannot be 

determined whether this results from general or female-specific expression (Fig. 46). 

http://flybase.org/
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corto is uncovered in a deletion covering cytological regions 82E to 82F: Df(3R)6-7. Furthermore, 

several loss-of-function alleles have been described. corto420 is a deletion of the whole corto gene 

obtained by the imprecise excision of a P element (Coléno-Costes, 2012; Kodjabachian et al., 1998). 

cortoL1 contains a premature stop codon allowing but the expression of a 24 amino-acids peptide 

(Daldalhon-Cuménal et al., submitted; Marenda et al., 2004). Lastly, corto07128 is a regulatory mutant 

with a P element inserted in the promoter region, and behaves as a null allele (Mouchel-Vielh et al., 

2011; Smulders-Srinivasan et al., 2010).  

Homozygous mutants for corto display 90% lethality, spread from the first larval instar to the pupal 

stage. They exhibit prolonged development and low activity during larval stages. Survivors carry bristle 

defects, with some thoracic macrochaetae either duplicated or absent. Furthermore, their wings carry 

ectopic veins. Half surviving males possess an ectopic sex comb on the second segment of the first pair 

of legs (Kodjabachian et al., 1998). Germinal clones for the corto420 allele result in complete first larval 

instar lethality in homozygous offspring, underlining the importance of the maternal contribution. 

Heterozygotes for the corto420 allele display a thoracic bristle defect phenotype with 10% penetrance 

(Lopez et al., 2001). 

 

Figure 47. Hydrophobic cluster analysis of Corto. 
Each letter represents an amino-acid. Colours represent hydrophobic properties. Blue: alkaline. Red: Polar. Black: 
neutral. Green: hydrophobic. Amino-acids with specific structural properties are depicted with symbols. Red star: 
proline. Black diamond: glycine. Square: threonine. Dotted square: serine. The globular domains of Corto, at 
positions 127-203, 418-455 and 480-550, are shown in black boxes. Homopeptide stretches are underlined in red. 
The HCA plot was obtained with HCA v1.0.2 (Callebaut et al., 1997). 

Corto is a 68 kDa protein showing little homology to any known protein sequence. It contains three 

structured domains (Fig. 47). Among them, the one encompassing amino-acids 127 to 203 was shown 

to display all the characteristics of a chromodomain: it binds RNA, recruits Corto to chromatin, and 

recognizes a trimethylated lysine in a sequence-specific manner. This domain is responsible for the 

interaction between Corto and uL11 over tri-methyl lysine 3. (Coléno-Costes et al., 2012). Corto 

otherwise displays a very unusual amino-acid composition. Its 118 glutamines, 93 alanines and 67 

serines make up more than half of the protein. Interestingly, glutamines form several homopeptide 

stretches (Fig. 47). These have been associated to protein-protein interactions and in particular with 

the assembly of large multiprotein of nucleic acid complexes (Faux et al., 2005; Hancock and Simon, 

2005). Indeed, Corto contains large unstructured domains and specifically interacts with a number of 

proteins (Fig. 48). Thus, it carries all the properties of a hub protein (Krasowski et al., 2008). 
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Figure 48. Network representation of the physical interactions of Corto. 
EasyN diagram of physical interactions centered on Corto. Golden edges represent a physical interaction. 
Interactions between Corto and other proteins have been experimentally validated in the following studies: 
(Coléno-Costes et al., 2012; Mouchel-Vielh et al., 2011; Peng et al., 2016; Rougeot et al., 2013; Salvaing et al., 
2003, 2008). A black edge between uL11 and CycG was added to fit the preliminary observation of a physical 
interaction by co-immunoprecipitation (Delphine Dardalhon-Cumenal, unpublished data). Note that dMP1 stands 
for the CG5110 gene product, following the nomenclature used in the cited articles. The diagram was adapted 
from FlyBase (http://flybase.org/). 

 

  

http://flybase.org/
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   2. corto participates in epigenetic maintenance of segmental identity during 

development. 

 

Originally called centrosomal and chromosomal factor (ccf), Corto was shown to bind chromatin and 

participate in chromosome condensation during mitosis (Kodjabachian et al., 1998). Its loss of function 

causes the second tarsus (T2) of the first pair of legs to transform into a first tarsus (T1) structure, as 

evidenced by the presence of ectopic sex combs in males. In addition, the overexpression of corto 

causes a transformation of the aristae into leg structures (aristapedia phenotype).  These phenotypes 

correspond to the loss of identity of these segments and its replacement by that of another.  

 

Figure 49. Hox gene expression boundaries in Drosophila melanogaster. 
Hox genes form two clusters in Drosophila. Their expression pattern is set during embryogenesis and maintained 
throughout development to give rise to the adult segments. Taken from (Sadava et al., 2009). 

Segment identity is defined by the specific expression of Hox genes (Fig. 49). Their pattern is first 

established by transcription factors of the gap and pair-rule gene families during embryogenesis. Hox 

gene expression is maintained during development by the Polycomb group (PcG) and trithorax group 

(trxG) genes (Kennison, 1995). As a general feature, PcG genes prevent ectopic expression of Hox genes 

while trxG genes maintain their activation in the appropriate segments. Consistently, mutations in PcG 

or trxG genes do not prevent the establishment of homeotic territories, but they interfere with the 

maintenance of their boundaries during development. This typically results in the transformation of a 

segment into another, a phenotype termed homeotic transformation. 

The transformation of leg segment T2 to T1 is typically associated with the loss of repression of the Sex 

comb reduced gene (Scr) within this territory (Struhl, 1982). This phenotype is observed upon loss of 

function of PcG genes. Thus, the ectopic sex combs observed in corto420 mutants suggest that Corto is 

involved in epigenetic repression. Indeed, it was found to bind the maintenance element (ME) of Scr, 

suggesting that it is directly involved in its regulation during development. However, the presence of 

Corto is not sufficient to establish repression of Scr: Corto was also found to bind this element in S2 
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cells where Scr is expressed (Salvaing et al., 2006). In addition, corto was also shown to repress ectopic 

expression of the Hox genes Ultrabithorax in third instar larvae and Abdominal-B in embryos (Lopez et 

al., 2001; Salvaing et al., 2008). 

Further evidence suggests the involvement of Corto in epigenetic repression: genetic interaction 

experiments show that heterozygous mutation of corto increases the phenotypes of mutations for PcG 

genes Polycomb, Enhancer of Zeste, Polyhomeotic, Polycomblike, multi sex combs and Sex comb on 

midleg (Kodjabachian et al., 1998; Lopez et al., 2001). However, corto was also shown to genetically 

interact with the trxG genes osa for the formation of scutellar bristles, and ash1, kohtalo, kismeth, 

moira, and Vha55 for the patterning of wing veins (Lopez et al., 2001).   

These data designate corto as a member of the Enhancer of Trithorax and Polycomb (ETP) family, which 

participates both in epigenetic activation and repression of Hox genes during development. While their 

molecular function is unclear, they are believed to associate alternatively with Polycomb or Trithorax 

complexes, depending on target genes, tissues, or developmental stages. Interestingly, physical 

interaction between Corto and several PcG proteins have been established (Fig. 49). Among them, PSC, 

SCM, PC and PH are core components of the Polycomb repressive complex 1 (PRC1). These interactions 

suggest that Corto may associate with the PRC1 complex. On the contrary, no physical interaction was 

found with trxG proteins to date. 

   3. corto may be involved in developmental homeostasis 

 

Although the mechanisms through which corto regulates transcription are largely unknown, it was 

found to interact physically with the Elongin complex, which supresses RNA polymerase II pausing 

(Bradsher et al., 1993; Takagi et al., 1995). The analysis of corto and Elongin complex members 

dysregulation revealed their antagonistic relationship in wing vein patterning. Furthermore, Corto was 

found to bind chromatin on the rhomboid gene at the expected location of paused RNA polymerase 

(Rougeot et al., 2013). In addition, Corto co-localizes extensively with paused polymerase 

(RNAPolIISer5p) on polytene chromosomes, and much less with elongating polymerase 

(RNAPolIISer2p) (Coléno-Costes et al., 2012). These data suggest that corto may regulate transcription 

at the level of RNA polymerase pausing. 

Interestingly, Corto was shown to interact specifically with the MAP kinase ERK (encoded by rolled, the 

homolog of mammalian ERK), and the dMP1 scaffold protein. These two proteins were shown to 

genetically interact with Corto during wing vein specification. Importantly, Corto is phosphorylated by 

ERK. The effect of this phosphorylation is unknown, but it is likely that it modifies the behaviour of 

Corto. Since it co-localizes with MP1 and ERK on polytene chromosomes, and their interaction is 

detected only in the nucleus, it is possible that the transcriptional function of Corto may be affected 

(Mouchel-Vielh et al., 2011). Three sites meet the criteria for ERK-mediated phosphorylation (Serines 

139, 190 and 428). The first two are located within the chromodomain of Corto, while the third one 

localizes to another globular domain. It is tempting to speculate that phosphorylation of any or a 

combination of these sites modifies the ability of Corto to bind chromatin, protein partners, or to 

dimerize. Strikingly, ERK is an effector kinase of the MAPK pathway, while dMP1 is a component of the 

Tor pathway. Phosphorylation of Corto could thus be regulated by these pathways in response to 

metabolic cues (cf II.A). Indeed, in serum-starved S2 cells, it is possible to induce phosphorylation of 

Corto within 15 minutes by addition of serum (Mouchel-Vielh et al., 2011).  

Interestingly, Corto also interacts with Cyclin G (CycG), a transcriptional cyclin that genetically behaves 

as an enhancer of Polycomb for the regulation of Hox genes (Dupont et al., 2015). This protein was 

shown to regulate the specificity of the TOR pathway antagonist PP2A by associating with its subunits 
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Well rounded (Wrd) and Widerborst (Wdb). Through this interaction, CycG was shown to regulate 

growth and lipid metabolism throughout development (Fischer et al., 2015, 2016). 

Indeed, Corto is at the centre of a nexus of proteins involved either in epigenetic regulation of gene 

expression, or cell homeostasis. Its interaction with uL11 may also be regulated in such a way: the 

availability of ribosomal proteins for extra-ribosomal function is heavily dependent on ribosome 

biogenesis homeostasis (cf III.B.1). Consistently, Corto was shown to regulate the expression of 

ribosome biogenesis genes, which are known target of the TOR and MAPK pathway (Coléno-Costes et 

al., 2012). Thus, Corto may behave as a link between epigenetic regulation, cell homeostasis, and 

ribosome biogenesis. 
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 V. Presentation of the thesis project 
 

At the beginning of my thesis project, our team had extensively studied Corto and its interaction with 

a number of epigenetic and transcription factors. The study that preceded this project characterized 

the interaction between Corto and an unexpected partner: uL11. It yielded a number of conclusions 

that served as foundation for the hypotheses and methodology of this work. 

1) Corto contains a domain that displays structural and functional homology to chromodomains 

(CortoCD). 2) This domain is essential for the function of Corto. 3) This domain binds uL11. 4) This 

interaction requires uL11 to be tri-methylated on its lysine 3 (uL11K3me3). 5) uL11 and Corto bind 

chromatin and co-localize on polytene chromosomes. 6) uL11 and Corto are recruited on the hsp70 

gene upon transcriptional activation. 7) Expression of CortoCD or uL11 dysregulate a common set of 

genes, enriched in ribosome biogenesis components (Coléno-Costes et al., 2012). 

This study provided solid evidence that uL11 possesses an extra-ribosomal function, and strongly 

suggested that it was carried directly on chromatin. We thus hypothesized that the interaction 

between Corto and uL11K3me3 underlaid a transcriptional function, possibly in the regulation of 

ribosome biogenesis genes. Thus, the purpose of my work was to further characterize the role of this 

interaction in the regulation of transcription. 

As a first approach, we sought to determine which genomic loci they bound and whether they 

overlapped. To this end, we generated the genome-wide binding profile of uL11K3me3 and CortoCD 

by ChIP-seq. In addition, preliminary results from one of my supervisors showed that uL11 interacts 

with Calypso, the catalytic subunit of the PR-DUB complex (Sébastien Bloyer, unpublished). This 

complex is known to catalyse the removal of histone H2A lysine 118 mono-ubiquitination (H2AK118ub) 

Conversely, Corto physically and genetically interacts with components of the PRC1 complex, that 

ubiquitinate H2A on lysine 118. These data suggested that there may be an interplay between Corto, 

uL11 and the Polycomb complexes that control the ubiquitination of H2AK118. Thus, we also described 

the genome-wide distribution of H2AK118ub by ChIP-seq. The analysis of these data will be presented 

in the first chapter of results. 

To study the extra-ribosomal function of uL11, we needed tools to disrupt it without affecting its 

ribosomal function. Since Corto interacts specifically with uL11 methylated on lysine 3, we decided to 

replace that amino-acid with an alanine. However, mutating uL11 turned out to be more challenging 

than we originally thought: uL11 is part of a haplo-lethal locus with very little intergenic sequences. 

Therefore, we designed a CRISPR/Cas9-mediated one-step homologous recombination strategy and 

refrained from inserting a phenotypic marker at the uL11 locus. The latter part implied that we set up 

a phenotype-independent screening protocol. To this end, we combined an allele-specific 

amplification strategy with real-time PCR. We improved its robustness by using tetramethylammonium 

chloride buffer and inserting locked nucleic acid bases into the screening primers. Our method 

achieved sufficient sensitivity and specificity to be used in a high-throughput manner. Furthermore, 

we generated a bacterial artificial chromosome (BAC) carrying a similar mutation by using a one-step 

recombination protocol. We also showed that our screening method permits to quickly recover a 

recombinant BAC in spite of the absence of a phenotypic marker. These results are presented in the 

second chapter of results. 

We hypothesized that this mutation affecting but the lysine 3 of uL11, should disrupt its interaction 

with Corto, but not its ribosomal function. To validate this hypothesis, we depleted uL11 in flies, and 

rescued it by expressing of a variant of uL11 whose lysine 3 is replaced by an alanine (uL11K3A). We 

found that it partially rescues the growth defects resulting from the loss of wild-type uL11 (uL11WT), 
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suggesting that the mutated form keeps at least a part of uL11 functions. Furthermore, we showed 

that uL11K3A is distributed in ribosomal fractions with the same profile as uL11WT, showing that the loss 

of lysine 3 does not hinder its assembly into ribosomes nor the ability of uL11K3A-containing ribosomes 

to commit to translation. These results validated the use of uL11K3A to study the specific loss of the 

extra-ribosomal function of uL11. Thus, we studied the phenotypes of the uL11K3A flies, and those of a 

uL11ΔK3 mutant which displays milder phenotypes. Strikingly, uL11 lysine 3 mutations generate minute-

like phenotypes, but while uL11ΔK3 is recessive, uL11K3A behaves as a dominant negative. The fact that 

different mutations deleting uL11 lysine 3 exhibit different phenotypes suggests that the N-terminal 

part of uL11 likely interacts with other partners in addition to Corto. These results are presented in the 

third chapter of results. 

Over the course of my thesis, I have been involved with another project that focused on another 

interacting partner of Corto: Cyclin G. Indeed, our team produced RNA-seq and ChIP-seq data to study 

its transcriptional function. I performed the analysis of these data. Strikingly, it revealed that CycG 

binds and regulates a number of genes involved in ribosome biogenesis. Correlation of its binding sites 

with those of PcG genes strongly suggested an interaction with both the PRC1 and PR-DUB complexes. 

These results corroborated the observations that: 1) CycG physically binds Asx, which is part of the PR-

DUB complex. 2) CycG is an enhancer of Polycomb (Dupont et al., 2015). 3) CycG-induced fluctuating 

asymmetry phenotype is enhanced by mutations in PR-DUB and PRC1 complexes members. 4) Corto 

physically interacts with PRC1 complex core members (Salvaing et al., 2003). 5) Corto enhances the 

penetrance of PcG gene mutants phenotypes (Kodjabachian et al., 1998; Lopez et al., 2001). These 

data will be presented in the appendix. 
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Results 
 

 I. Ribosomal protein uL11 tri-methylated on lysine 3 binds broad genomic 

regions and displays an exclusion pattern with Corto on chromatin. 
 

Several lines of evidence place the interaction between Corto and uL11K3me3 on chromatin. Indeed, 

the chromodomain of Corto autonomously binds chromatin and reproduces the binding sites of the 

full-length protein. Furthermore, its overexpression causes the retention of uL11 but not uL11K3A in the 

nucleus. Both Corto and uL11 bind polytene chromosomes where they share binding sites, and they 

are recruited to the hsp70 gene upon transcriptional activation (Coléno-Costes et al., 2012). Thus, in 

order to understand what function this interaction could underlie on chromatin, we set to determine 

their genome-wide binding pattern by ChIP-seq. 

Importantly, our lab had been using third instar female larvae wing discs as a source of chromatin for 

such experiments. Indeed, this material offers the advantage of containing relatively few cell types and 

displays little cell death while still being a developing tissue. However, the expression of ribosomal 

protein genes is described to decrease four-fold between the second larval instar and the pupal stage. 

Furthemore, the mechanisms that regulate ribosome biogenesis are extremely sensitive to 

environmental fluctuations such as food condition or even temperature. Thus, we reasoned that the 

amount of time required to gather sufficient biological material from larvae dissections would likely 

compromise consistency between replicates. In addition, we expected that describing the genomic 

targets of uL11K3me3 and Corto would benefit from comparison with known epigenetic marks. The 

amount of ChIP-seq data available in third instar female larvae wing discs is somewhat limited, 

prompting us to choose another source of material. Thus, we worked with S2 cells, for they carry the 

double advantage of allowing fast collection of a large quantity of material, and to be the material 

source for a number of ChIP-seq datasets available on GEO.  

Among histone marks, we were particularly interested in the genome-wide distribution of histone H2A 

ubiquitination on lysine 118. Indeed, evidences of physical interactions between Corto and PRC1 

components, as well as between uL11 and Calypso, hinted towards a function in the regulation of 

H2AK118ub. A ChIP-seq dataset is available for this mark, but it was obtained from a cell line derived 

from a mutant carrying a thermosensitive mutation for E(Z) (Lee et al., 2015). Thus, to ensure that our 

comparisons would be relevant, we decided to generate our own genome-wide profile for H2AK118ub.  

Importantly, there was no available antibody that could immunoprecipitate endogenous Corto. In 

addition, stable expression of the latter is deleterious to cells, and it is difficult to reliably express a 

tagged version of this protein (Emmanuèle Mouchel-Viehl, personal communication). In contrast, it is 

possible to stably express the chromodomain of Corto alone (CortoCD). Previously obtained data 

showed that CortoCD reproduces most of the binding sites of full length Corto on polytene 

chromosomes, suggesting that their binding profile would be similar (Coléno-Costes et al., 2012). We 

thus decided to immunoprecipitate CortoCD as a proxy for full length Corto. 
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A. Results 
 

uL11 associates with the H2AK118 deubiquitinase Calypso. 

 

 

Figure 50. uL11 physically interacts with H2AK118 C-terminal hydrolase Calypso. 
S2 cells were co-transfected with expression vectors encoding uL11-Myc and Flag-Calypso. They were fixated in 
1% paraformaldehyde before protein extraction. Immunoprecipitations were performed with either anti-Flag, 
anti-Myc or anti-HA (Mock IP) antibodies. They were revealed with anti-Flag and anti-Myc antibodies. Three 
replicates were obtained. IP: immunoprecipitation. Vertical lines indicate that different wells from the same gel 
were juxtaposed in the image for clarity. 

A previous study identified uL11 among the proteins that co-immunoprecipitate with Calypso, by mass-

spectrometry (Scheuermann et al., 2010). However, ribosomal proteins are often detected in such 

experiments as contaminants. Thus, we decided to confirm whether this interaction was specific. To 

this end, we co-transfected S2 cells with pAct-Flag-Calypso and pAct-uL11-Myc vectors, and performed 

co-immunoprecipitations with anti-Myc and anti Flag antibodies. Co-immunoprecipitation between 

uL11-Myc and Flag-Calypso was detected with either protein as bait, confirming that this interaction is 

specific (Fig. 50). As Calypso is known to deubiquitinate H2AK118 in Drosophila, these results prompted 

us to determine the genome-wide distribution of this mark in addition to that of uL11K3me3 and Corto. 

Characterisation of the uL11 antibodies. 

Polyclonal antibodies were generated in rabbits by injection of a peptide corresponding to the N-

terminal domain of uL11, tri-methylated on lysine 3. To obtain an antibody that recognizes specifically 

the tri-methylated lysine of uL11, one of these antibodies underwent differential purification. The 

antibodies retained on a column loaded with the tri-methylated uL11 peptide were further purified on 

a similar column loaded with the same peptide, though unmethylated. The flow-through was 

recovered and is referred to as the uL11K3me3 antibody, while the retained fraction is referred to as 

the uL11 antibody. Both were shown to recognize a single band in western blot, at the approximate 

molecular weight of uL11 (17.7kDa) (Anne Coléno-costes, Sébastien Bloyer).  
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Figure 51. Characterisation of ChIP-seq antibodies. 
A) Dot-blot showing the reactivity of the uL11 and uL11K3me3 antibodies for a variety of peptides containing 
lysines in different methylation states. B) and C) Chromatin from stable S2 cells lines expressing Flag-HA-CortoCD 
(B) or uL11-HA (C) was crosslinked and sonicated according to our ChIP-seq protocol (cf. Materials and methods). 
It was then used as material for immunoprecipitation with uL11, uL11K3me3, HA or Flag antibodies. Immuno-
precipitates were denatured by heating and separated by SDS-PAGE. Shown are western blot revelation for HA 
(B) or all forms of uL11 (C). Vertical lines indicate that different wells from the same gel were juxtaposed in the 
image for clarity. Asterisks: IgG. 

To determine the specificity of these antibodies, their reactivity towards a range of methylated and 

unmethylated peptides was tested by dot-blotting (Anne Coléno-Costes, Hélène Thomassin, Fig. 51A). 

The results show that while the uL11 antibody recognizes all uL11 peptides, the uL11K3me3 antibody 

specifically reacts with tri-methylated lysine 3 of uL11. 

I adapted a protocol previously used by our team to perform ChIP, for use in S2 cells. To validate it, I 

immunoprecipitated chromatin from stable cells expressing the chromodomain of Corto tagged with 

Flag and HA in N-ter (FH-CortoCD), with either anti-HA or anti-Flag antibodies, which had already been 

validated for ChIP experiments. Both antibodies yielded a band corresponding to the expected 

molecular weight of FH-CortoCD, thus validating the adapted ChIP protocol (Fig. 51B). 

To determine whether the uL11K3me3 antibody may be used to produce ChIp-seq data, I tested its 

ability to immunoprecipitate uL11 from chromatin preparations. To this end, I generated a vector to 

express uL11 with a HA tag in C-ter. A stable S2 cell line was generated by transfection with this plasmid 

(Hélène Thomassin). I then precipitated chromatin from these cells with either the anti-uL11, anti-

uL11K3me3 or an anti-HA antibody. Western blot revealed that the anti-uL11K3me3 antibody 

immunoprecipitated two bands, corresponding to uL11-HA and endogenous uL11 (Fig. 51C). Strikingly, 

the band corresponding to uL11-HA was very faint as compared to endogenous uL11. This suggests 
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that either uL11-HA is expressed at much lower levels than uL11, or that it is methylated less efficiently. 

These results however validate the use of the uL11K3me3 antibody for ChIP experiments. 

ChIP-seq analysis. 

In order to compare the distribution of FH-CortoCD, uL11K3me3 and H2AK118ub within the same 

sample, we decided to perform all chromatin immunoprecipitations within a single cell line expressing 

FH-CortoCD. Three sub-lines were established, and maintained independently for two weeks. Cells 

from each sub-line were then collected at the same time, and their chromatin purified for ChIP 

experiments. Each preparation was split in three parts to immunoprecipitate H2AK118, FH-CortoCD 

and uL11K3me3. Immunoprecipitated chromatin was then sent to the “transcriptome and epigenome” 

platform at the Pasteur institute for library preparation and sequencing (Caroline Proux). 

Figure 52. Overview of the ChIP-seq profiles for H2AK118ub, FH-CortoCD and uL11K3me3. 
A) Zoomed-in view of the tag density for H2AK118, FH-CortoCD and uL11K3me3 replicates over the eL6-CycG 
region. Transcript models are provided for comparison. Black boxes: exons. Dotted lines: introns. Note the high 
similarity of the tag distribution between replicates. B) Genome-wide view of the density of regions enriched for 
H2AK118ub (red), FH-CortoCD (blue) and uL11K3me3 (green) as obtained with MACS 2.0. Gene density (black) is 
provided for comparison. Note the high density of regions enriched for uL11K3me3 corresponds to areas of low 
gene density. Two of them encompass the centromeres of second and third chromosomes (highlighted in blue).  

All three immunoprecipitations produced clear enrichment signals with very high reproducibility 

between samples (Fig. 52A). Strikingly, FH-CortoCD was enriched over sharp regions, mostly located 
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at the TSS of annotated genes. In contrast, both H2AK118ub and uL11K3me3 displayed broad 

enrichment profiles. 

Regions significantly enriched in regard to the input were determined with the MACS 2.0 software. 

Computation of the Irreproducible Discovery Rate (IDR) showed that the called regions were highly 

reproducible for FH-CortoCD, and moderately for uL11K3me3 and H2AK118ub (cf. Materials and 

Methods). The latter may be explained by the lower detection accuracy of the MACS software for 

broad enrichment profiles. Strikingly, uL11K3me3 was found to be enriched both within coding genes 

and large regions devoid of them. Indeed, the genome-wide distribution of uL11K3me3-enriched sites 

displayed an unusual bias towards regions of low gene density (Fig. 52B). Two of them encompass the 

centromeres of the second and third chromosome. A third one may correspond to the centromeric 

region of the X chromosome. This suggests that uL11K3me3 may bind within heterochromatin 

domains.  

Analysis of the gene-wise binding pattern of FH-CortoCD, uL11K3me3 and H2AK118. 

The TSS bound by FH-CortoCD could be reliably identified, and 7588 genes were identified for the 

presence of Corto in all replicates. However, they proved to be too numerous to perform a Gene 

Ontology analysis. On the opposite, while many regions enriched for uL11K3me3 and H2AK118ub 

could be detected, their large binding domains were detected as multiple enriched regions clustering 

next to each other.  The large number of those enrichment regions and their approximative placement 

in regard to enrichment domains caused the IDR method to eliminate most of them. We were thus 

concerned that the selected regions would thus not be representative of the general enrichment 

pattern of uL11K3me3 and H2AK118ub.  

To circumvent those issues, and describe their target genes, I decided to characterize their binding 

patterns over all coding genes in the genome. By clustering together genes that display the same 

enrichment profiles, it is possible to describe the general binding patterns of uL11K3me3, FH-CortoCD 

and H2AK118ub. Furthermore, to gain insight into the transcriptional state of their target genes, I 

included in the clustering analysis some ChIP-seq data generated in S2 cells for RNAPolII, H3K4me3 

and H3K27me3. For ease of reading, the results of this clustering are split between genes enriched or 

depleted for RNAPolII, as a proxy for transcriptional competence.  
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Upper panel: Heatmap showing the relative enrichment of FH-CortoCD, uL11K3me3, H2AK118ub, H3K4me3, 

Figure 53. Hierarchical clustering of genes enriched for RNAPolII. 
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H27K3me3 and RNAPolII over their respective input, along the transcribed regions of coding genes enriched for 
RNAPolII. Unsupervised hierarchical clustering was performed using the enrichment signal for all six datasets. 
After an initial round of clustering, each cluster was submitted to further clustering until no new patterns could 
be discovered. Resulting clusters that shared the same patterns were then merged. The colour keys display the 
log2(Fold change over input) and its translation into the colour code. Genes are aligned over their Transcription 
start site (TSS) and Transcription end sites (TES). A 2000 base pair region is displayed 5’ of the TSS and 3’ of the 
TES. Lower panel: Gene ontology analysis of the enrichment for Cellular Compartment, Molecular Function and 
Biological Process GO terms within each identified cluster.  

Strikingly, FH-CortoCD localizes at the TSS and correlates with the enrichment for RNAPolII. Gene 

clustering reached saturation without identifying a cluster that contained RNAPolII but not FH-

CortoCD. This suggests that FH-CortoCD can bind every transcribed or paused TSS.  

In contrast, uL11K3me3 was found on the gene bodies. While it covered the whole gene bodies in 

clusters 1 and 2, it displayed a preference for the 5’ region in cluster 4. Interestingly, it was not 

contained within the gene body and extended 3’ of the TES in cluster 5. Remarkably, uL11K3me3 was 

locally depleted within all the TSS bound by FH-CortoCD. 

H2AK118ub was found within the bodies of a single cluster of RNAPolII-enriched genes. Strikingly, this 

cluster displayed the least enrichment for RNAPolII and H3K4me3, suggesting that those genes are 

weakly transcribed or transcriptionally paused in S2 cells. 

It is interesting to note that unlike FH-CortoCD, gene clusters were found that are devoid of uL11K3me3 

(clusters 3, 6 and 7) or H2AK118ub (clusters 1 to 6). This suggests that their binding is specific to certain 

genes either regarding their ontology or their transcriptional status. I thus performed a Gene Ontology 

analysis to determine whether these clusters were enriched for functional categories. While the cluster 

enriched for H2AK118ub did not show any striking gene ontology, all four clusters that contained 

uL11K3me3 displayed functional term enrichment. Notably, clusters 1 and 2 were highly enriched for 

cytoplasmic and mitochondrial translation, respectively. On the other hand, cluster 4 and 5 displayed 

milder enrichment for spliceosome components, ATP-binding and helicase ativity.  
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Figure 54. Hierarchical clustering of RNAPolII-depleted genes. 
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Upper panel: Heatmap showing the relative enrichment of FH-CortoCD, uL11K3me3, H2AK118ub, H3K4me3, 
H27K3me3 and RNAPolII over their respective input, along the transcribed regions of coding genes depleted for 
RNAPolII. Unsupervised hierarchical clustering was performed using the enrichment signal for all six datasets. 
After an initial round of clustering, each cluster was submitted to further clustering until no new patterns could 
be discovered. Resulting clusters that shared the same patterns were then merged. The colour keys display the 
log2(Fold change over input) and its translation into the colour code. Genes are aligned over their Transcription 
start site (TSS) and Transcription end sites (TES). A 2000 base pair region is displayed 5’ of the TSS and 3’ of the 
TES. Lower panel: Gene ontology analysis of the enrichment for Cellular Compartment, Molecular Function and 
Biological Process GO terms within each identified cluster.  

No enrichment for FH-CortoCD was detected over genes devoid of RNAPolII. In contrast, both 

uL11K3me3 and H2AK118ub displayed strong enrichment over many such genes. Interestingly, 

uL11K3me3 enrichment was strongest within the clusters marked by H3K27me3 (clusters B, C, D and 

E). It spanned across gene bodies and visual inspection on a genome browser confirmed that in many 

cases, it covered broad regions that corresponded to H3K27me3 domains. Similarly, H2AK118ub 

spanned across gene bodies and formed broad domains. It however seemed to localize indifferently 

over genes either depleted or enriched for uL11K3me3 and H3K27me3. 

Gene ontology analysis revealed no specific enrichment within these clusters, with the exception of 

the term proteolysis in cluster B. Membrane components were also found to be enriched, but as this 

ontology appeared in most of these clusters, it is likely that this enrichment is rather a feature of 

RNAPolII-depleted genes in general. 
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Figure 55. ChIP-qPCR validation of the binding profiles of FH-CortoCD, uL1K3me3 and H2AK118ub over cluster 
1 and 7 genes. 
A) and B) Average profiles of the enrichment for FH-CortoCD, uL11K3me3 and H2AK118ub over all genes from 
clusters 1 and 7. Genes were aligned over their TSS and TES (vertical lines). C) and D) ChIP-qPCR analysis of 
genes from clusters 1 and from cluster 7. IPs were performed with anti-HA antibody in cells expressing FH-
CortoCD (blue) or in wild-type cells as a mock control (yellow). Tri-methylated uL11 was immunoprecipitated 
with the described uL11K3me3 antibody in cells expressing FH-CortoCD (light green, uL11K3me3-FHCD) or wild-
type cells (dark green, uL11K3me3-S2). H2AK118ub was immunoprecipitated from FH-CortoCD cells (red). Note 
the difference in scale of the y-axis, justifying the double representation for a given set of genes. Error bars 
represent the standard error mean over two replicates. TSS: Transcription start site. The list of primers used and 
their genomic coordinates can be found in table 2. 
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Figure 56. ChIP-qPCR validation of the binding profiles of FH-CortoCD, uL11K3me3 and H2AK118ub over 
cluster B and D genes. 
A) and B) Average profiles of the enrichment for FH-CortoCD, uL11K3me3 and H2AK118ub over all genes from 
clusters B and D. Genes were aligned over their TSS and TES (vertical lines). C) and D) ChIP-qPCR analysis of 
genes from clusters B and from cluster D. IPs were performed with anti-HA antibody in cells expressing FH-
CortoCD (blue) or in wild-type cells as a mock control (yellow). Tri-methylated uL11 was immunoprecipitated 
with the described uL11K3me3 antibody in cells expressing FH-CortoCD (light green, uL11K3me3-FHCD) or wild-
type cells (dark green, uL11K3me3-S2). H2AK118ub was immunoprecipitated from FH-CortoCD cells (red). Note 
the difference in scale of the y-axis, justifying the double representation for a given set of genes. Error bars 
represent the standard error mean over two replicates. TSS: Transcription start site. Inter.: intergenic region. 
The list of primers used and their genomic coordinates can be found in table 2. 



 
   117 
 

Validation of the described binding patterns by ChIP-qPCR 

The enrichment of uL11K3me3, FH-CortoCD and H2AK118ub was tested by ChIP-qPCR over two genes 

from clusters 1 and 7 (Fig. 55), and two genes from clusters B and D (Fig. 56). Since the expression of 

FH-CortoCD was previously shown to modify the localization of uL11 in S2 cells (Coléno-Costes et al., 

2012), we also decided to verify whether the uL11K3me3 binding pattern was similar in wild type cells.  

FH-CortoCD was detected specifically at the TSS of cluster 1 genes uL18 and eL15, and to a lesser extent 

at those of cluster 7 genes foxo and Ecdysone Receptor (EcR), in accordance to the heatmap data. 

Furthermore, it showed no noteworthy enrichment at the TSS of cluster B gene hamlet (ham) and 

cluster genes lazaro (laza) and fat (ft). Some enrichment was detected at the TSS of cluster B gene 

spineless (ss), but its specificity is questionable, considering that the mock IP also displayed stronger 

signal at this location.  

The binding patterns of uL11K3me3 was also consistent with the heatmap data: it was specifically 

enriched over the gene body in regard to the TSS in cluster 1 genes uL18 and eL15. Some signal could 

however be detected over the gene bodies of cluster 7 genes foxo and EcR, though it was weaker than 

in cluster 1 genes. In addition, uL11K3me3 displayed a monotonous enrichment over cluster B and D 

genes ham, ss, laza and ft, confirming the binding pattern observed in the heatmap. Strikingly, the 

signal strength was very high in those genes, ranging between 20 and 40% of input recovery, a range 

reminiscent of histone ChIP signal. The binding pattern of uL11K3me3 obtained from wild type cells 

was similar over all tested genes, suggesting that expression of FH-CortoCD does not qualitatively 

change it. However, it was subtly, but consistently higher at all tested locations. These data suggest 

that FH-CortoCD expression reduce the overall amount of uL11K3me3 bound on chromatin. 

As expected, H2AK118ub was detected in a monotonous pattern over cluster B and D genes ham, ss, 

laza and ft and was depleted in cluster 1 genes uL18 and eL15. Furthermore, it was indeed detected 

over the gene bodies of cluster 7 foxo and EcR. Interestingly, it distribution was not homogenous 

throughout these genes, displaying stronger signal within introns than exons in both cases. 
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H2AK118ub displays a preference for genes containing large introns. 

 

Figure 57. Average profile of H2AK118ub signal over all genes classified according to the size of their largest 
intron. 
Coding genes were separated into three categories depending on the size of their largest intron. The average 
enrichment for H2AK118ub over the gene body is represented for each category. 

The enrichment pattern of H2AK118ub appeared different within cluster 7 genes than within RNAPolII-

depleted genes. Indeed, it was contained within gene bodies, and was not monotonous. Thus, we 

looked whether they shared a common feature that might explain such a pattern.  

Strikingly, upon visual inspection on a genome browser, many of these genes appeared to contain very 

large introns. Indeed, 38,4% of cluster 7 genes contained introns larger than 5kb, while these are found 

in only 11,4% of all genes (binomial p-value < 10-6). To determine whether H2AK118ub displayed 

enrichment over such genes genome-wide, we separated all coding genes in three categories based 

on the size of their largest intron. Computing the average profile of H2AK118ub enrichment over these 

gene categories revealed its preference for genes containing introns larger than 5 kilobases. 

Furthermore, H2AK118ub enrichment was skewed towards the 5’ of those genes (Fig. 57). This 

oriented profile further suggests that there may be a structural feature within those genes that 

correlates with H2AK118ub enrichment. 
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 B. Discussion 
 

FH-CortoCD binds the same TSS as RNAPolII 

Genome-wide analysis of the pattern of FH-CortoCD enrichment revealed its presence at all TSS 

enriched for RNAPolII (Clusters 1 to 7, Fig. 53). Conversely, FH-CortoCD was not detected at TSS lacking 

RNAPolII (Clusters A to F, Fig. 54). Hierarchical clustering attained saturation without identifying any 

cluster of genes containing one but not the other. These results suggest that FH-CortoCD may be 

recruited onto TSS by associating with the RNAPolII complex. Consistently, previous work showed that 

FH-CortoCD was recruited onto the hsp70 gene upon heatshock induced activation of transcription 

(Coléno-Costes et al., 2012).  

Interestingly, that work also showed that FH-CortoCD co-localized with paused RNAPolII (Ser5p) on 

polytene chromosomes, to a greater extent than with elongating RNAPolII (Ser2p). Furthermore, 

another study showed that Corto specifically interacts with the elongin complex, and antagonizes its 

function in wing vein specification (Rougeot et al., 2013). Since the elongin complex is known to 

promote RNAPolII elongation, it suggests that Corto may regulate RNAPolII pausing at the TSS. The 

observed binding profile is consistent with this hypothesis. Indeed, FH-CortoCD signal sharply localizes 

at the TSS, and does not spread towards the gene body as much as RNAPolII signal does over the most 

active gene clusters (1 to 4). 

It should however be noted that FH-CortoCD peaks can be found at other sites than TSS (Fig. 52 shows 

several such peaks within the introns of the CycG gene). It would be interesting to analyse whether 

these sites correspond to regulatory elements. Additionally, Corto has been described to associate 

with several Polycomb-group proteins and Enhancers of Polycomb and Trithorax (cf Fig.48), It would 

be thus interesting to determine whether it co-localizes with PRC1 components genome-wide. 

uL11 binds both active genes and repressed chromatin domains 

The genome-wide distribution of uL11K3me3 revealed that it binds broad chromatin domains. 

Interestingly, significantly enriched regions detected by the MACS 2.0 software clustered near the 

centromeres of the second and third chromosomes. These data suggest that uL11K3me3 may associate 

with heterochromatin. Consistently, high enrichment density is also detected over the fourth 

chromosome, which is mostly heterochromatic in Drosophila. In contrast, the Y chromosome that is 

also heterochromatic, shows no such enrichment. It should however be noted that this chromosome 

is frequently lost in S2 cells, and fails to produce reads for DNA-seq (Lee et al., 2014). The observation 

that uL11 binds to both gene bodies and heterochromatin is reminiscent of the binding pattern of uL5, 

uL23 and uL30 described in S. pombe. Indeed, these three r-proteins were found by ChIP-on-chip to 

bind genes and pericentromeric chromatin (De et al., 2011). 

Indeed, uL11K3me3 was also found to be enriched over the gene bodies of both active and repressed 

coding genes. In repressed chromatin, it formed broad enrichment domains that spanned across gene 

bodies and correlated with H3K27me3 enrichment. In contrast, it was mainly found contained within 

gene bodies in RNAPolII-enriched genes. In that aspect, its pattern on cluster 5 genes was an exception: 

uL11K3me3 enrichment could be detected within the gene body, but it also extended 3’ of the TES. 

While this warrants further investigation, it is possible that those genes are located at the borders of 

repressed chromatin domains. Indeed, the heatmap representation displays RNAPolII and H3K4me3 

signal 5’ of the TSS and 3’ of the TES of most active genes, which likely correspond to the presence of 

neighbouring active genes. In the case of Cluster 5, RNAPolII and H3K4me3 signal were depleted 3’ of 

the TES in comparison to other clusters. Furthermore, subtle signal could be detected for H2AK118ub 

and H3K27me3, suggesting the presence of neighbouring repressed chromatin domains. 
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Thus, we conclude that uL11 displays at least two different binding patterns, which suggests that it 

may be recruited to chromatin by different mechanisms. Notably, we found that the intensity of 

uL11K3me3 signal in ChIP-qPCR is on par with that of histone ChIP. A previous study showed that 

several r-proteins bind chromatin though interaction with histone H1 in Drosophila and mediate gene 

repression (Ni et al., 2006). Such an interaction could explain the broad distribution of uL11K3me3 on 

chromatin. Alternatively, r-proteins have been shown to bind coding genes and pericentromeric 

chromatin in an RNA-dependent manner (De et al., 2011; Schroder and Moore, 2005). It was thus 

proposed that r-proteins associated with nascent transcripts on chromatin. Consistently, uL11 was 

recruited to the hsp70 gene upon transcription activation (Coléno-Costes et al., 2012). While this may 

explain a part of the binding pattern of uL11K3me3, it should be noted that at least one cluster was 

identified that displayed all the characteristics of actively transcribed genes, but did not contain 

uL11K3me3 (cluster 3). While this should be confirmed by analysing transcriptomic data, it suggests 

that transcription of a gene is not sufficient to recruit uL11K3me3. Thus, its binding appears specific to 

a subset of genes, which are most enriched for cytoplasmic and mitochondrial ribosome biogenesis 

ontologies. 

uL11K3me3 and FH-CortoCD are mutually exclusive over coding genes. 

uL11K3me3 was sharply depleted at the TSS that were bound by FH-CortoCD, but not at other TSS. 

This is surprising considering that FH-CortoCD specifically interacts with the tri-methylated lysine of 

uL11. Several hypotheses may explain this exclusion. 1) The binding of FH-CortoCD to uL11K3me3 may 

prevent the antibodies from accessing the trimethylated lysine 3 epitope, especially after 

paraformaldehyde fixation. This would be consistent with the observation that FH-CortoCD colocalizes 

with uL11 on polytene chromosomes (Coléno-Costes et al., 2012). This hypothesis could be tested by 

doing ChIP experiments with an antibody that recognizes a tagged version of uL11, though it will not 

allow to determine its methylation state. 2) FH-CortoCD may antagonize the binding of uL11K3me3. 

While they do interact, it is possible that FH-CortoCD relocalizes uL11 away from chromatin, or that it 

induces its degradation or demethylation. This would be consistent with the fact that FH-CortoCD 

expression in S2 cells decreases the signal for uL11K3me3 over all the genomic loci we tested by ChIP-

qPCR. uL11K3me3 was found to be also depleted at the TSS in wild type cells, but this may reflect the 

same effect from endogenous Corto. Thus, to test that hypothesis, the chromatin binding profile 

uL11K3me3 should be compared to that of a variant whose lysine 3 is replaced or deleted, preventing 

its interaction with Corto. 3) As RNAPolII binds the TSS of active genes, it displaces nucleosomes, 

resulting in a local depletion of histone ChIP signals. The deficit of uL11K3me3 signal at the TSS of active 

genes is reminiscent of this effect. Indeed, H2AK118ub displays the very same depletion pattern as 

uL11K3me3 in all described clusters. Since FH-CortoCD signal greatly correlates with that of RNAPolII, 

this exclusion pattern could be explained if uL11K3me3 were to bind chromatin by associating with 

histones.  

H2AK118ub is enriched in repressed chromatin and a specific cluster of RNAPolII-enriched genes. 

Similarly, H2AK118ub displayed two binding patterns. It covered repressed genes in a monotonous 

manner, and extended across the limits of those genes. Conversely, H2AK118ub localized within the 

gene body of specific RNAPolII-enriched genes. Interestingly, H2AK118ub enrichment within genes 

seemed to correlate with the presence of large introns. This correlation does not necessarily mean that 

H2AK118ub binds large introns. It could be that the genes that contain large introns share specific 

features that correlate with H2AK118 ubiquitination. Notably, large introns are known to frequently 

contain regulatory elements, and cryptic TSS or exons (Sibley et al., 2015). It would thus be interesting 

to determine if H2AK118ub specifically correlates with any such feature. To this end, average profiles 

could be computed over a set of features, and compared to the enrichment for nucleosomes, as 

obtained with a pan H2A or H3 ChIP. 
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Relationship between H2AK118 and uL11 

No obvious co-localization or exclusion pattern could be observed between uL11K3me3 and 

H2AK118ub. There is thus no evidence that the interaction between uL11 and Calypso may regulate 

H2AK118 ubiquitination over coding genes. Several possibilities however remain to be tested. 1) This 

interaction may occur away from chromatin. 2) It might occur away from coding genes, for instance at 

PREs, which have not yet been analysed. 3) This interaction could be specific of unmethylated uL11, 

which may display a different localization than uL11K3me3.  
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 C. Materials and methods 
 

Cell culture and transfections 

The uL11 and Calypso CDS were cloned into the pAWM and pAFW Gateway® Drosophila vectors 

allowing expression of uL11 with a Myc tag in C-ter or Calypso with a Flag tag in N-ter, respectively. S2 

cells were cultured at 25°C in Schneider’s Drosophila medium supplemented with 10%, heat 

inactivated foetal bovine serum and 100 units.mL-1 of penicillin and streptomycin. S2 cells were 

cultured at 25°C in Schneider’s Drosophila medium supplemented with 10%, heat inactivated foetal 

bovine serum and 100 units.mL-1 of penicillin and streptomycin. For transfection, a mix of pAWM-uL11 

and pAFW-Calypso expression vectors was prepared in a 1:1 molar ratio. Cells were transfected with 

2µg DNA of this mix using Effecten® transfection reagent (Qiagen) according to the manufacturer’s 

instructions (1:10 DNA/Effecten® ratio). For stable expression of FH-CortoCD, a mix of the expression 

vector pAFHW-CortoCD-NLS (Coléno-Costes et al., 2012) and the pCoBlast selection plasmid was 

prepared in a 5:1 molar ratio. Cells were transfected with 2 µg DNA of this mix according to the same 

procedure as described above. Selection was performed by addition of 10 µg.mL-1 of blasticidin after 

48 hours. After initial selection, stable cell lines were cultured with 2 µg.mL-1 blasticidin. 

Co-Immunoprecipitations 

48 hours after transfection, protein crosslinking was realised by treating cells with 1% 

paraformaldehyde for 10 minutes on ice, followed by neutralization with 1.3M Glycine on ice. Protein 

lysates were extracted in RIPA buffer (50mM Tris-HCl pH 7.5, 150mM NaCl, 25mM NaVO4, 25mM NaF, 

0.1% SDS, 0.5% NP40) supplemented with protease inhibitor cocktail and phosphatase inhibitor 

cocktail (Roche Diagnostics, Meylan, France). 500µg of protein exctract were immunoprecipitated with 

3 µg of either anti-Myc (ab9132), anti-Flag (FC3165) or anti-HA (ab9110) antibodies, using magnetic 

protein G-agarose beads (Ademtech). Immunoprecipitates were dissociated from the beads by heating 

5 minutes at 95°C and loaded onto 12% SDS gels. Western blot was performed according to standard 

protocols. Anti-Flag (FC3165, 1/5000) and Anti-Myc (ab9132, 1/5000) antibodies were used for 

revelation. 

 

Dot-Blot 

50 and 200 ng of H3K9me3, H3K4me3, uL11K3me3, uL11K3me2, uL11K10me3, unmethylated uL11 or 

unmethylated histone3 peptides, previously described in (Coléno-Costes et al., 2012), were deposited 

on a wet nitrocellulose membrane. The membrane was left to dry 5 minutes at room temperature 

before saturation for 3 hours in TBS-Tween (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 0.2 % Tween 20) 

supplemented with 5 % Régilait. The membrane was washed twice in TBS-Tween and incubated with 

uL11 (1/14000) or uL11K3me3 (1/2000) antibodies at 4°C overnight. The membrane then underwent 

classical Western blot protocols.  

 

Chomatin Immunoprecipitation 

 2*107 S2 cells stably expressing FH-CortoCD were harvested at 50% confluence and washed in 

Schneider’s medium to remove foetal bovine serum. Cross-linking was realised in 1% 

paraformaldehyde for 10 minutes at room temperature, followed by neutralization with 1.3 M glycine. 

Cells were then washed in ice-cold PBS and resuspended in 3 mL hypotonic buffer (20 mM HEPES pH 

7.9, 10 mM KCl, 1 mM EDTA, 10% glycerol, 1 mM DTT) supplemented with EDTA-free protease inhibitor 

cocktail (Roche Diagnostics). Cells were lysed in a dounce tissue grinder (Sigma-Aldrich) by applying 30 
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strokes of the loose pestle. Nuclei were then pelleted by centrifugation at 600 g for 5 min at 4 °C, and 

flash frozen in liquid nitrogen after removal of the supernatant. Nuclei were lysed by thawing in 3 mL 

RIPA buffer (50 mM Tris-HCl pH 8, 150 mM NaCl, 1 % NP-40, 0.5 % sodium deoxycholate, 0.1 % SDS, 1 

mM DTT) supplemented with EDTA-free protease inhibitor cocktail (Roche Diagnostics). After 

incubation on ice for 30 minutes, lysates were separated into 12 microtubes of 200 µL and underwent 

sonication for 20 cycles (Diagenode Bioruptor sonifier; cycles of 30'' ON, 30'' OFF, high power). They 

were then pooled and centrifugated twice at 13,000 g for 15 minutes at 4°C to pellet insoluble 

chromatin. The supernatant was recovered and 24nµL were kept as input. For immunoprecipitation, 

120 µL of A protein coated paramagnetic beads (Diagenode) were washed twice in RIPA buffer, and 

incubated for 4 hours with 12 µg of antibodies in RIPA buffer, on a rotating wheel at 4°C. After washing 

twice with RIPA buffer to eliminate excess antibody, beads were resuspended in the sonicated 

chromatin extract and incubated overnight on a rotating wheel at 4 °C. Beads were then washed 3 

times for 10 minutes in RIPA buffer, once in LiCl buffer (10 mM Tris-HCl pH 8, 250 mM LiCl, 0.5 % NP-

40, 0.5 % sodium deoxycholate, 1 mM EDTA, 1 mM DTT), and twice in TE buffer (10 mM Tris-HCl pH 8, 

1 mM EDTA, 1 mM DTT).  

For ChIP-Western blot experiments, proteins were dissociated from the beads by heating at 95 °C for 

5 minutes, and were loaded onto 15% SDS gels. Western blots were performed according to standard 

protocols. Anti-uL11 (Santa Cruz sc-82359, 1/1000) and anti-HA (Sigma F2411, 1/1000) were used to 

reveal uL11 and FH-CortoCD, respectively. 

For qPCR and sequencing, immunoprecipitated DNA was purified with the IPure kit following the 

manufacturer’s instructions (Diagenode). Elution was realized in 70 µL buffer C. Antibodies used for 

immunoprecipitation were: anti-uL11K3me3, anti-H2AK118ub (Cell signalling D27C4), and anti-HA 

(ab9110). 

ChIP-seq analysis 

Library reparation and sequencing were performed at the “Transcriptome and Epigenome” platform 

of the Pasteur institute, using 50 ng of IP or input DNA. Libraries were multiplexed by 12 on one 

Illumina flow cell run.  A 51 bp single read sequencing provided an average of 45.9 reads per sample. 

Reads were filtered by the "fastq_quality_filter" command from the "fastx-toolkit" package 

(http://hannonlab.cshl.edu/fastx_toolkit/), using a threshold of 90 % bases with mapping quality ≥ 20. 

Reads that successfully passed the filtering step were aligned to the Drosophila genome (dm6, r6.13) 

using Bowtie 2 (http://bowtie-bio.sourceforge.net/bowtie2/) (v2.1.0) with default parameters 

(Langmead and Salzberg, 2012). Peaks were called by MACS2 (v2.1.0) by comparing each ChIP to its 

input library with default parameters (Zhang et al., 2008). Alignment files from replicates were merged 

by using the Samtools suite command “merge”. Datasets for histones marks and RNAPolII, and their 

inputs obtained from S2 cells were recovered from GEO: H3K4me3 (IP: GSM1017409, Input: 

GSM1017398), H3K27me3 (IP: GSM1017406, Input: GSM1017397), RNAPolII (IP: GSM796331, Input: 

GSM796332). Heatmaps and aggregation plots of ChIP signal over gene bodies and Transcription Start 

Sites (TSS) were generated using the ngsplot package. (https://github.com/shenlab-sinai/ngsplot) 

(Shen et al., 2014). Some genes with spurious signal (such as genes from the histone complex) were 

excluded from the analysis based on signal uniformity over the full length of the gene. For heatmaps, 

unsupervised hierarchical clustering was performed over the signal for FH-CortoCD, uL11K3me3, 

H3K4me3, H3K27me3 and RNAPolII over gene bodies, in a recursive manner: clusters identified from 

a first step were submitted to further clustering until no new pattern could be discovered. Clusters 

displaying similar patterns were then merged, and represented as a heatmap.  
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qPCR 

For validations, ChIP were performed similarly with the anti-uL11K3me3, anti-H2AK118ub and anti-HA 
antibodies. A mock immunoprecipitation was realised with the anti-HA antibody with chromatin 
extracted from untransfected S2 cells. qPCR experiments were carried out in a CFX96 system (Bio-Rad) 
using SsoFast EvaGreen Supermix (Bio-Rad). Two biological replicates – three technical replicates per 
biological replicate - were performed for each condition. Sequences of primer couples are listed in 
Table 2. Data were normalized against Input chromatin.  
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ChIP-qPCR primers Coordinates 

uL18-TSS-F 5'-agcgtcaaaggcacagcacaac-3' 2L:22536908-22536930 

uL18-TSS-R 5'-atcgttcataccgttcacatcgc-3' 2L:22536739-22536760 

uL18-genebody-F 5'-ccgaccgagaagaagacaggg-3' 2L:22535850-22535871 

uL18-genebody-R 5'-ctcactacaacgatggcaaggc-3' 2L:22535669-22535689 

eL15-TSS-F 5'-tatcccaaagcaactctgagc-3' 3L:27267208-27267228 

eL15-TSS-R 5'-acaaccaacttacagcacgg-3' 3L:27267277-27267296 

eL15-genebody-F 5'-cagtgctattcgtcgtgatccaa-3’ 3L:27268199-27268221 

eL15-genebody-R 5'-gctcacggttcttgcgcttcc-3’ 3L:27268357-27268377 

foxo-TSS-F 5'-ggtgaagtgagcggttgtgg-3' 3R:14056802-14056802 

foxo-TSS-R 5'-actgattcgccgtcgccttc-3' 3R:14056925-14056944 

foxo-intron-F 5'-atgagaggggcaggtacagc-3’ 3R:14061742-14061761 

foxo-intron-R 5'-aaggtgtccgccagatgctc-3’ 3R:14061896-14061915 

foxo-exon-F 5'-gccgaactcagtaaccacaac-3' 3R:14081012-14081032 

foxo-exon-F 5'-accatcagtgccgcagtgtc-3' 3R:14081115-14081134 

EcR-TSS-F 5'-tttactttggtgtgcgtgcc-3’ 2R:6131970-6131989 

EcR-TSS-R 5'-cgtgcgagcgaacaaccg-3’ 2R:6131875-6131892 

EcR-intron-F 5'-ctctccgttttctggctcacc-3’ 2R:6126017-6126037 

EcR-intron-R 5'-gttatccctgttttgtgttctgc-3’ 2R:6125822-6125844 

EcR-exon-F 5'-gagtgccgcctgaaaaagtg-3’ 2R:6094780-6094799 

EcR-exon-R 5'-agtggtcattttgtccttctcc-3’ 2R:6094677-6094698 

ham-TSS-F 5'-aatagtcggcgttctctgct-3’ 2L:18792882-18792901 

ham-TSS-R 5'-cccacaaagctcctcgaaag-3’ 2L:18792977-18792996 

ham-genebody-F 5'-ctcgctgtcatccgtgtccg-3' 2L:18765739-18765758 

ham-genebody-R 5'-gccttggagcacacctcgc-3’ 2L:18765641-18765659 

ham-intergenic-F 5'-ggttatttggtcacagtctgc-3’ 2L:18761513-18761533 

ham-intergenic-R 5'-atcactctcatattcctaacttgg-3’ 2L:18761388-18761411 

ss-TSS-F 5'-cagtgtagtatgtgtgtgcg-3’ 3R:16403972-16403991 

ss-TSS-R 5'-acgatgttccactaccaacc-3’ 3R:16403841-16403860 

ss-genebody-F 5'-tcggtcctaggggtgaatag-3’ 3R:16384510-16384529 

ss-genebody-R 5'-tacagtgatgggtatgtgcg-3’ 3R:16384349-16384368 

ss-intergenic-F 5'-tcccctattcaattcgaggc-3’ 3R:16408973-16408992 

ss-intergenic-R 5'-cattgatcaggatgcagcag-3’ 3R:16409123-16409142 
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laza-TSS-F 5'-aagaccgtagagcgtagagcg-3’ 3L:22461196-22461216 

laza-TSS-R 5'-ctgcgaccgagaaggcgac-3’ 3L:22461085-22461103 

laza-genebody-F 5'-gtaacctattgcggcggc-3’ 3L:22459880-22459897 

laza-genebody-R 5'-ggcgtcgttgtggtcattg-3’ 3L:22459729-22459747 

ft-TSS-F 5'-acaacaggtatctctctccg-3’ 2L:4221907-4221926 

ft-TSS-R 5'-ctcgctcagtggtctcaacg-3’ 2L:4221772-4221791 

ft-genebody-F 5'-gggtcgcctccacttac-3’ 2L:4207282-4207299 

ft-genebody-R 5'-cgtccttatccgttgctctg-3’ 2L:4207139-4207158 

Table 2. List of ChIP-qPCR primers. 
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 II. Editing essential genes: a marker independent CRISPR mutagenesis strategy. 
 

  A. Overview 
A classical way to study the functional importance of a gene is to examine the phenotypes caused by 

its mutation, inactivation, or overexpression. These approaches seemed however unfit for uL11. 

Indeed, no mutant was available, and its inactivation by RNA interference triggered the loss of nearly 

any tissue it was performed in (cf. Introduction chapter IV, Coléno-Costes, 2012). In addition, attempts 

to overexpress uL11 with the UAS-Gal4 system yielded no obvious phenotype. This would be consistent 

with the description of uL11 as resistant to overexpression in nematodes, as a consequence of its ability 

to regulate its own expression (Mitrovich and Anderson, 2000).  

More importantly, uL11 is known to play an important role in translation, and its dysregulation was 

expected to impact that function. As we aimed to study specifically the biological meaning of its 

interaction with Corto, we decided to generate a variant of uL11 whose lysine 3 is mutated to an 

alanine (uL11K3A). To this end, we set to generate the first genetic alleles for this gene. 

We first considered to use an ends-out homologous recombination method to replace uL11 with 

uL11K3A. An elegant system allowed both positive and negative selection of mutant flies, at the cost of 

inserting a selection cassette within a few kilobases of the mutation of interest (Zhou et al., 2012). 

Unfortunately, the genomic locus of uL11 contained no suitable location to insert such a sequence 

without taking the risk of disturbing the regulation of other essential genes (cf. Results chapter II.B).  

Coincidentally, a new method was emerging during the first years of my thesis: CRISPR/Cas9-mediated 

mutagenesis This tool, first developed in bacteria, and later in eukaryotic cells, achieved remarkable 

efficiency (Jinek et al., 2012; Mali et al., 2013).  It did not take much time before Drosophila researchers 

harnessed it for mutagenesis through Non Homologous End Joining (NHEJ) or Homologous Directed 

Repair (HDR) (Gratz et al., 2013, 2014). The high mutagenesis rates of this method (up to 22% injected 

flies displaying recombination events, and up to 18 % transmission to their progeny), made it 

conceivable to recover an HDR event by molecular screening. 

  B. Article 
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Abstract 

Single step CRISPR/Cas9-mediated generation of small scale nucleotide 

replacements can sometimes be the only option for mutagenesis, such as when 

working with essential genes. It can also be used to obtain precise mutation quickly in 

any gene, since it requires very limited upstream reagents. However, this formidable 

tool is plagued by lack of options to recover given mutations. Here, we adapted an 

allele-specific quantitative PCR technology for high-throughput screening of desired 

mutations in Drosophila. We generated a one codon substitution in the essential 

gene RpL12/uL11 by CRISPR/Cas9-mediated homologous directed repair, thus 

obtaining the first allele for this gene. We describe here a high throughput qPCR-

based method to quickly recover successful HDR events in uL11. Discriminating 

efficiency is increased by introducing a locked nucleic acid (LNA) at a strategic 

position in the screening primer. This improved specificity allows to test pools of flies 

for presence of a single allele copy. Additionally, we describe how this method can be 

adapted to recover a similar HDR event after BAC recombineering in bacteria. This 

strategy is a valuable addition to the CRISPR repertoire, as it serves the purpose of 

both recovering a small-scale HDR in flies, and the recombined BAC to perform 

rescue experiments. 
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Introduction 

 Drosophila melanogaster has been a model of choice for genetics, owing to its 

large collection of mutants. A hundred years of research on Drosophila yielded a 

number of strategies to alter its genome, from random gene disruption to insertional 

mutagenesis1. The recent advent of CRISPR/Cas9 mediated mutagenesis has now 

brought further the ability to modify the genome in ever more precise ways2-5. Its 

unprecedented ease of use and efficiency now allows researchers to target virtually 

any region of the genome.  

 However, while generating mutations is becoming simpler, such cannot be 

said of recovering mutants. Indeed, the identification of successful mutational events 

has always been somewhat tedious, and this step may discourage many researchers 

from using such approaches. Numerous strategies have emerged to ease the 

screening for mutants, many of which rely on phenotypic markers6,7. These 

convenient gene markers come with a price though: their insertion in the vicinity of 

the mutation site is likely to bias the expression of the mutated gene. Such confusing 

effect is expected to cloud the analysis of the mutant phenotypes, and defeats the 

purpose of precise gene editing. Recent “pop in/pop out” strategies have been 

described that elegantly address this caveat8,9 . These strategies employ a two-step 

transformation protocol: the locus to be mutated is first replaced by a marker gene. A 

second mutagenesis is then performed to remove the marker and insert the desired 

mutation instead. 

 While these methods constitute a remarkably fool-proof approach to obtain 

scarless gene modifications, they require extensive preliminary reagent generation by 

molecular cloning. Additionally, the requirement for two successive rounds of 

mutagenesis implies a significant delay before mutant recovery. 
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 A more important caveat is that the loss of function mutants that result from 

the marker integration need to be viable and fertile in order to proceed to the second 

mutagenesis step. Therefore, some essential genome locations cannot be targeted 

with these methods. Indeed, many Drosophila genes are essential either in 

development10, or at the cellular level11. Unsurprisingly, genetic alleles are 

unavailable for many of the latter. Additionally, several genomic regions are 

described as haplo-lethal12. The study of this yet unreachable portion of the genome 

is a challenge that can now be undertaken with the CRISPR/Cas9 technology. It is 

indeed possible to study essential genes and loci by introducing a punctual mutation, 

for instance to replace a specific amino-acid13. This method however requires that 

target genes be left functional at all steps of mutagenesis. 

 This requirement provides little room for the insertion of a phenotypic marker, 

leaving no choice but to identify the mutant by molecular screening. In Drosophila, it 

typically requires individually crossing the G1 progeny, and collecting it for 

genotyping after it mated. The whole screening process must then be completed 

before the emergence of G2 adults, otherwise the number of mutant candidates 

becomes unmanageable. This calls for high-throughput screening methods, which 

can be tedious, for small-scale sequence changes are difficult to detect. A variety of 

techniques can be used, such as High Resolution Melting Analysis (HRMA)14, allele-

specific PCR15, endonuclease assays16, or even Sanger sequencing. However, these 

come with the draw-back of being time-consuming, labour-intensive, costly, or prone 

to false negatives. 

 A second challenge rises from the property of CRISPR/Cas9 to generate 

rather unpredictable off-target mutations17,18. Most of these can be removed by 

crossing the mutant with a control genetic background over several generations. 
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However, when the desired mutation has no phenotypic marker and/or causes 

viability and fertility defects, this process can become very cumbersome. Additionally, 

off-targets localized close to the target mutation may still be co-purified. 

 Thus, to indisputably attribute phenotypes to the mutation, the golden standard 

remains to perform functional rescue experiments. To this end, a Bacterial Artificial 

Chromosome (BAC) containing the whole gene region and surrounding regulatory 

sequences can be inserted in the Drosophila genome19. A similar mutation can be 

engineered in the BAC to ensure that the observed phenotypes are only rescued by 

a wild-type copy of the target. To this end, recombineering strategies have been 

developed, most of which also rely on a “pop in/pop out” strategy20,21. Once again, 

these strategies are very efficient but require a gruelling amount of molecular cloning, 

and two successive rounds of homologous-directed repair (HDR). In the case of 

small-scale HDR, an alternative approach removes these caveats: single-stranded 

DNA templates can catalyse HDR with high efficiency, abolishing the requirement for 

phenotypic selection22,23. They do however require a molecular screening method to 

recover recombinants. 

 We generated a one codon substitution in the essential gene RpL12/uL11 by 

CRISPR/Cas9 mediated HDR, thus obtaining the first genetic allele for this gene in 

Drosophila melanogaster. It should be noted that we will henceforth follow the new 

nomenclature proposed to eliminate the confusion caused by the assignment of 

identical names to ribosomal proteins from different species24 and use the name 

uL11 instead of RpL12. We describe here a high throughput quantitative PCR-based 

method to quickly recover the successful HDR events in uL11. Discriminating 

efficiency is increased by introducing a locked nucleic acid (LNA) at a strategic 

position in the screening primer. This improved specificity allows to test pools of flies 
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for the presence of a single allele copy. Combination with real time qPCR makes 

easy to distinguish specific versus artefactual amplification without extensive 

upstream development. Additionally, we describe how the same method can be 

adapted to recover a similar HDR event after BAC recombineering in bacteria. By 

testing a pool of transformed cells, the efficiency of HDR can be verified, and the 

mutant isolated by a few rounds of dilutions. 

 Thus, our strategy is a valuable addition to the CRISPR repertoire, as it serves 

the purpose of both recovering a small-scale HDR in flies, and the recombined BAC 

to perform rescue experiments. 

 

Results 

The uL11 protein (aka RPL12) is a canonical component of the ribosome in all 

domains of life. Its depletion in flies is lethal, likely due to major ribosome 

impairments, as shown in yeast25. However, uL11 may be involved in other 

processes than translation. We have previously shown that it interacts through its 

lysine 3 with the Enhancer of Trithorax and Polycomb Corto and controls transcription 

26. We therefore decided to target this interaction by replacing lysine 3 into an alanine 

codon in the uL11 gene.  

 The latter is located within a cluster of highly transcribed genes, many of which 

are also essential (eIF5A, RpL39/eL39, yki...)27,28. Unsurprisingly, this cluster is part 

of the 1.6% of haplo-lethal regions of the euchromatic Drosophila genome29. The 

immediate neighbourhood of uL11 contains only two small intergenic sequences (465 

and 620 bp, respectively) that might contain regulatory elements (Fig. 1A). Thus, the 

insertion of a selection cassette at any position inside this locus would be likely to 

disturb gene expression and impede viability. We therefore opted to edit the uL11 
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lysine 3 to alanine (K3A) by single step CRISPR/Cas9 mediated HDR using a single-

strand DNA probe as template (ssODN). 

 

Choice of a guide RNA and cutting tests in S2 cells. 

The choice of an appropriate single guide RNA (sgRNA) is crucial to ensure the 

efficiency of mutagenesis. Indeed, the ability of different sgRNA to mediate Cas9 

mediated mutagenesis is known to vary greatly and the cleavage site should be as 

close as possible to the sequence to be edited. We identified 6 Protospacer Adjacent 

Motives (PAM) within 25 bp of the target lysine codon (Fig. 1B).  We thus cloned the 

corresponding sgRNAs into pAc-sgRNA-Cas9 under the control of the U6 promoter 

to test their ability to generate insertion and deletion (indel) mutations in Drosophila 

S2 cells. The 6 sgRNA were found to display similar efficiency (data not shown). 

Hence, sgRNA corresponding to the PAM sequence 4 (sgRNA4) (Supplementary Fig. 

1) was chosen for it drives cleavage immediately next to the target codon and its 

orientation ensures that the target but not the ATG codon is deleted by Cas9 

exonuclease activity.  

 

Mutagenesis of the uL11 lysine 3 codon in Drosophila. 

We next undertook fly mutagenesis. First, we cloned sgRNA4 in pU6-BbsI-chiRNA to 

express it in Drosophila embryos30. In this plasmid, the sgRNA is expressed together 

with a tracrRNA (trans-activating CRISPR RNA) that is required for Cas9-mediated 

DNA interference31 (Fig. 2). To replace the target codon, we generated a 123 

nucleotide ssODN template carrying the lysine (AAA) to alanine (GCC) substitution 

(K3A) encompassed in two 60 nucleotide-long homology arms. The uL11 region of 

the recipient line vasa-Cas9 (w1118; PBac{y[+mDint2]=vas-Cas9}VK00027) was 
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sequenced before designing the ssODN in order to respect possible polymorphisms. 

To prevent base pairing with sgRNA4, the ssODN was designed to be homologous to 

the PAM-carrying strand. 

 Two-hundred vasa-Cas9 embryos were injected with a mix of ssODN and 

sgRNA expression vector (Fig. 2). Expressing Cas9 under the control of the germline-

specific promoter vasa ensured that no mutations would occur in the soma, therefore 

reducing potential toxicity for the injected individuals. The 44 males and 48 females 

that emerged from the injected embryos were crossed with the balancer strain 

Gla/SM5 (Fig. 3). Among them, only 18 males and 11 females were fertile. We 

recovered around 10 progenies from each G0, and individually crossed them with 

Gla/SM5 strain. After G2 progenies were produced, a total of 294 G1 individuals were 

genotyped to detect the presence of the mutant allele of uL11. 

 

Screen for uL11 mutations. 

To easily detect successful HDR events, we set up a high-throughput qPCR method 

relying on the use of discriminative primers. Upon recombination, the uL11 lysine 3 

codon (AAA) should be replaced by an alanine one (GCC). We designed allele-

specific primers which 3’-ends matching either the wild-type or the recombinant 

codon. To improve the discriminative power of these oligonucleotides, we included a 

LNA at the second position of the mismatch codon (Fig. 4A)32,33. In addition, we used 

TMAC (Tetramethyl ammonium chloride) buffer which is known to increase both the 

specificity of hybridization and the Tm of the primers34,35. To quicken processing of 

large number of samples, we prepared mixtures of genomic DNAs from 4 to 5 

individuals. We then amplified the uL11 locus with either the lysine codon (LNAWT, 

data not shown) or the alanine codon (LNAK3A) matching primer. While most 
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genomic DNA mixtures displayed amplification kinetics close to the level of the 

negative control, six of them exhibited faster amplification (ΔCt between 2 and 7) 

(Fig. 4B). We thus repeated the experiment on individual genomic DNAs from these 6 

pools. Ten genomic DNA exhibited quicker amplification than the control with the 

LNAK3A forward primer (ΔCt > 5) (Fig. 4C). Sequencing the uL11 locus confirmed 

that the ten positive genomic DNA contained the recombinant allele uL11K3A at the 

heterozygous state (Fig. 4D shows the sequence of one of them). These flies 

originated from two independent G0 founding males. 

 

Mutagenesis of the uL11 lysine 3 codon in a bacterial artificial chromosome 

(BAC) by recombineering. 

The attB-P[acman]-CmR-BW:CH322-137O14 BAC (further called BAC137O14) 

contains the uL11 gene as well as surrounding genomic sequences (22.4 kbp 

covering ppk29, CG13563, eIF-5A, CR44814, uL11/RpL12, RpL39/eL39, Rap21, yki 

genes as well as part of sei and CG3209 genes). This BAC could thus be used to 

rescue the uL11 mutants. To verify that the observed phenotypes of the uL11K3A 

allele were due to this mutation and not to mutation of one surrounding genes, we 

generated this mutation in BAC 137O14 by HDR. 

 In Escherichia coli, small mutations are recognized and repaired by the 

methyl-directed mismatch repair (MMR) pathway, reducing efficiency one hundred-

fold23. The MMR is however unable to repair large mutations, and the presence of 4 

consecutive mismatches is sufficient to reduce its activity. We thus generated ssDNA 

templates carrying a silent nucleotide substitution directly 5' of the K3A mutation, 

encompassed in 35 nucleotide-long homology arms (Fig. 5A). Since the orientation of 

the ssDNA template also affects efficiency of recombination, we generated ssDNA 
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templates complementary to each strand (ssODN-sense and ssODN-antisense)22. 

We then performed recombination in the dedicated SW102 bacterial strain and plated 

the potential recombinants. Since no selection marker was introduced during 

recombination, we diluted the transformed bacteria until obtaining isolated colonies. 

To determine whether the recombination was successful, we harvested a plate of 

bacteria by washing it with LB medium, and purified all BACs together. We then 

performed allele-specific qPCR (as previously described) to test for the presence of 

the K3A allele. While it was detected after recombination with both the sense and 

antisense ssDNA templates, it was amplified faster in the bacteria treated with the 

sense ssDNA, suggesting that its recombination efficiency was higher (Fig. 5B). 

 Thus, we focused on the isolation of a recombinant clone from these bacteria. 

To this end, we transferred isolated colonies to plates of 20 clones. Each plate was 

then harvested and all colonies tested together (data not shown). The recombinant 

allele was amplified in the DNA harvested from one plate, suggesting that at least 

one colony was recombinant. Each clone was then tested individually for the 

presence of the wild-type allele (Fig. 5C) and the recombinant allele (Fig. 5D). Out of 

these, only one was containing the recombinant uL11K3A allele but not the wild-type 

one. Sequencing the uL11 gene in this recombinant BAC confirmed the presence of 

the desired mutation (Fig. 5E). 

 

Discussion 

 Single step CRISPR/Cas9-mediated generation of small-scale nucleotide 

replacements can sometimes be the only option for mutagenesis, such as when 

working with essential genes. It can also be used to obtain precise mutation quickly in 

any gene, since it requires very limited upstream reagents. However, this formidable 
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tool is plagued by the lack of options to recover given mutations. Here, we adapted 

an allele-specific PCR technology for high-throughput screening of desired mutations 

in Drosophila. This method eases the burden of screening hundreds of flies, by 

achieving sufficient sensitivity to assay up to 480 individuals within a single 96-well 

qPCR plate. 

 Small mutations can be hard to detect, and strategy for molecular screening 

should be carefully envisioned. Several methods have been developed for this 

purpose, with different advantages and liabilities (Table1). Undoubtedly, the most 

unambiguous one is the direct sequencing of the target region in all mutant 

candidates. However, this method can become very expensive as it requires to purify 

PCR amplicons and sequence them individually. Furthermore, to detect 

heterozygous mutations detection requires the examination of each chromatogram 

and its comparison with the reference sequence. Thus, this method should be used 

only when the mutation rate is expected to be very high (for instance when looking for 

any null mutation, or after observing phenotypes in mutant candidates). 

In comparison, T7 endonuclease I and HRMA assays allow to detect mutational 

events in a more economic manner. T7 endonucleases detect mismatches that form 

upon amplifying heterozygous regions by PCR. It should be noted that T7E1 only 

recognizes a subset of SNP, depending on the base substitution36. Importantly, T7-

based assays require multiple steps downstream of PCR, and are known to be very 

sensitive to DNA:enzyme ratio and incubation time. Robust screening thus requires 

very careful upstream development. In addition, unspecific PCR products can be 

readily mistaken for digested amplicons which appear as faint additional bands upon 

gel electrophoresis. Thus, several protocols advise to add a nested PCR step or to 

purify PCR products on gel before enzymatic digestion. In contrast, HRMA screening 
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is quicker, more robust and requires less development. It can detect both 

substitutions and indels, and its resolution can be pushed to SNP level. However, 

achieving such precision will require dedicated material: saturating dyes, specialized 

thermocycler, and most importantly, normalization software. While this method was 

developed to analyse a temperature shift between the melting curves of different 

alleles, the most spectacular effect can be seen upon formation of heteroduplexes 

during PCR, which are denatured much quicker than homoduplexes of any 

sequence. This property makes HRMA sensitive to the presence of polymorphisms 

within the amplicon. Therefore, it is a powerful tool for the recovery of random 

mutations, at the expense of specialized equipment and careful upstream 

development. 

 When a punctual mutation is set, the method of choice for screening is allele-

specific PCR. Indeed, a primer matching the mutation should only amplify the 

mutated allele. To achieve sufficient specificity, the mutation should match the 3’-end 

of the primer, whose base pairing is the most important for polymerase elongation37. 

The draw-back is that only two primers can be designed, their 3’ matching the 

mutation in either orientation, leaving little room for primer optimisation. Furthermore, 

a few mismatches in the primer binding sequence often delay PCR amplification 

rather than prevent it, resulting in false positives. Thus, only the reaction conditions 

can be tweaked to try and achieve specificity. This often implies finding PCR 

conditions stringent enough so that only the matching primer can amplify. Under such 

restrictive conditions, PCR may lack robustness and be prone to false negatives. This 

implies that robust screening requires a very careful upstream optimisation, and 

tightly controlled PCR conditions. 



 
   140 
 

 The method we describe here offers several improvements in that regard. 

First, by using real time PCR, we analyse the amplification speed rather than the final 

product of PCR. Even should the primers amplify the wrong allele, the presence of a 

complete match should result in faster amplification. PCR can thus be performed 

under permissive conditions, reducing the need for upstream optimisation and the 

risk of false negatives. Additionally, since visual inspection of qPCR amplification 

curves is sufficient to identify mutation events, it is possible to read the results directly 

on the qPCR device monitor (Fig. 4 and 5). Our method thus removes the need for 

gel electrophoresis or bioinformatical analysis steps. 

 To increase discrimination efficiency, we included TMAC in the PCR buffer. 

This salt is commonly used in commercial PCR enhancer solutions to reduce 

unspecific priming. TMAC generally increases oligonucleotide hybridization 

temperature and renders it independent of GC content. These properties allow the 

robust amplification of even impractical regions such as AT-rich promoter sequences 

or GC-rich islands33,38. In addition, it broadens the choice of a satisfactory reverse 

primer: since there are no composition requirements, the only concern should be to 

find a unique matching primer. Thus, the use of TMAC buffer allows to deploy our 

method in most non-repetitive loci in the genome. 

The introduction of a LNA also serves to improve discriminative power. Indeed, LNA 

display very high affinity and specificity for their complementary base, thus improving 

the discrimination between a match or mismatch allele. They have been used to 

increase PCR specificity for applications in SNP genotyping39. Importantly, LNA 

bases increase the binding stability of the neighbour DNA bases. Thus, a single LNA 

can improve the binding efficiency for three nucleotides40. Such improved 3’ stability 

is expected to favour robust PCR amplification. For this very reason, it is not 
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recommended to introduce multiple LNA bases, since unspecific amplification may 

arise from very stable binding of a short part of the primer 3’ region. It should also be 

noted that mismatches occurring out of the LNA area of influence are unlikely to 

prevent specific amplification. For instance, the mutated allele was specifically 

amplified on a BAC despite the introduction of a mismatch two bases 5’ of the LNA. It 

is thus possible that recombined alleles containing an unwanted mutation in the 5’ 

area of the primer would be detected as positive. For this reason, all positive alleles 

should be sequenced after recovery. 

 While our method significantly hastens the allele detection step, molecular 

screening still remains labour-intensive. Specifically, the extraction of individual 

genomic DNA is a bottleneck for large screens, especially since many detection 

methods require clean DNA extractions and controlled DNA amounts. Lesser quality 

extractions may quicken this step but will result in a drastic increase in PCR failure or 

unspecific amplification. The use of  high-throughput DNA extraction methods such 

as described by Lang et al. provide an opportunity to reduce the time spent in 

extracting DNA41. Additionally, commercial kits allow column purification of genomic 

DNA on plates of 96 samples, allowing for large scale high-quality gDNA preparation. 

 Generating a BAC carrying the same mutation should be readily considered 

when working with genes for which genetic tools are unavailable, rendering the 

interpretation of mutant phenotypes vulnerable to off-target effects (OTEs). OTEs can 

be eliminated for the most part by backcrossing into a control genetic background, 

but it requires crossing individual heterozygotes at each generation. In the absence 

of a phenotypic marker, heterozygotes need to be identified after laying eggs. Thus, 

they must be crossed blindly, and genotyped at each generation. In addition, 

mutations in essential genes are expected to have deleterious effects on viability and 
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fertility in many cases. For instance, uL11K3A homozygous flies display almost 50% 

larval lethality and poor fertility. Therefore, isogenization can be even more tedious 

than mutant recovery. In contrast, phenotypes can be unambiguously assigned to the 

mutation if they are rescued by the wild-type BAC but not by the mutated BAC. 

Engineering such mutation is time-consuming however, for phenotype-based 

screening methods require two recombination steps. In contrast, our method can not 

only be used to isolate mutations after single step, marker-less HDR event, but also 

to verify that the recombination worked before proceeding to the screen. It then 

allows to test pools of colonies and specifically detects a recombinant within up to 50 

clones. Without the requirement for two rounds of recombination, it allows to consider 

generating both the mutant fly and BAC at the same time. 

 To conclude, the method described here simplifies the isolation of small 

CRISPR/Cas9-induced mutations in the absence of phenotypic markers and provides 

the means to recover a matching mutation on a BAC. Furthermore, this method is 

cost-efficient and readily usable with limited upstream development. As a 

complement to CRISPR/Cas9 gene editing, it can thus be a particularly valuable tool 

in conquering the most reluctant regions of the genome. 

 

Materials and Methods 

Construction of sgRNA vectors for S2 cells. 

 Single guide RNAs (sgRNA) were cloned into pAc-sgRNA-Cas9 (from Dr. Ji-

Long Liu’s lab; Addgene plasmid # 49330) as described in Bassett et al.42. Briefly, 

forward and reverse 5'-phosphorylated oligonucleotides (100 µM) (Supplementary 

Table S1) were annealed in T4 ligation buffer (NEB) by heating to 95°C and slowly 

cooling down to 25°C. The annealed oligonucleotides were then ligated to the pAc-
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sgRNA-Cas9 plasmid linearized with BspQ1. The ligation product was introduced into 

DH5α competent cells. Proper insertion was confirmed by Sanger sequencing. 

 

Cell culture and transfection. 

 S2 cells (Drosophila Genomics Resource Center) were cultured at 25°C in 

Schneider’s medium supplemented with 10% fetal bovine serum, 100 units/mL 

penicillin and 100 µg/mL streptomycin. The day before transfection, 2 mL of medium 

were seeded with 0.5 106 cells. Two µg of DNA were transfected using Effectene 

transfection reagent (Qiagen) according to the manufacturer’s instructions using a 

1 :10 DNA to Effectene ratio. Cells were then incubated during 3 days before addition 

of selective medium containing 5 µg/mL of puromycin (Sigma). They were 

subsequently maintained for 7 days in selective medium. DNA extraction was 

performed and analyzed by High Resolution Melting Analysis (HRMA) as described 

by Bassett et al.14. Briefly, oligonucleotides uL11HRMA_F and uL11HRMA_R 

(Supplementary Table S1) were used to amplify a 173 bp region centred on the uL11 

lysine 3 codon. PCR were performed with Sso Fast EvaGreen SupermixTM  (Bio-Rad) 

in 20 µL reactions containing 2 to 15 ng genomic DNA and 0.5 µM each 

oligonucleotide. Cycles were carried out in a CFX96 system (Bio-Rad): [98°C 3 min, 

40 cycles (98°C 2 s; 57,3°C 15 s)]. Thermal melting profiles were obtained in the 

same device by increasing temperature from 75°C to 95°C using a temperature 

increment of 0.2°C. They were normalized as described by Wittwer et al.43. 

 

Construction of sgRNA vector for fly transgenesis. 

 The pU6-chiRNA:sgRNA4 plasmid was obtained by incorporating the sgRNA4 

sequence (obtained by annealing pho-sgRNA4_F and pho-sgRNA4_R, 
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Supplementary Table S1) into pU6-BbsI-chiRNA (Addgene plasmid # 45946)30 

following the protocol provided on the flyCRISPR website 

(http://flycrispr.molbio.wisc.edu/protocols/gRNA). Proper insertion was confirmed by 

sequencing using the T3 universal primer. 

 For homologous recombination, a single-strand DNA template of 123 

nucleotides (ssODN) was used as template (Supplementary Table S1). It was 

synthetized and purified by standard desalting by Integrated DNA Technologies, Inc. 

 

Fly transgenesis and crosses. 

Flies were raised on standard yeast-cornmeal medium (1% agar, 8.25% brewer’s 

yeast, 9.1% cornstarch, 2.5% moldex) at 25°C. Embryos of the w1118; 

PBac{y[+mDint2]=vas-Cas9}VK00027 strain (BL-51324) were injected by BestGene 

Inc. with a mixture containing 100 ng/µL pU6-chiRNA:sgRNA4 and 100 ng/µL 

ssODN. 

 Transformant G0 flies were individually crossed to w1118; In(2LR) Gla, wgGla-

1/SM5 flies (Gla/SM5). Curly wing G1 siblings were individually crossed to Gla/SM5 

flies. Once the G2 progeny was born, G1 founding flies were harvested, genomic 

DNA extracted, and genotyping performed as described below. Curly wing G2 

offspring of G1 flies carrying a mutant allele of uL11 were crossed with each other to 

establish mutant strains.     

 

Genomic DNA extraction. 

 Genomic DNA was extracted by crushing single flies in 100 µL SB buffer (10 

mM Tris pH 8.0, 1 mM EDTA, 25 mM NaCl, 200 µg/µL Proteinase K), followed by a 
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30 min incubation at 37°C. DNA was further purified by standard phenol:chloroform 

extraction followed by ethanol precipitation. 

 

Locked Nucleic Acid (LNA) allele-specific qPCR 

 Forward allele-specific primers with 3’-end matching either wild-type (LNAWT) 

or mutated 3rd codon (LNAK3A) of uL11 (AAA or GCC, respectively) were used in 

combination with a reverse primer (CRISPR1_R) to amplify a 219 nucleotide region 

(Supplementary Table S1). 25 µL reactions were set to contain 5 to 15 ng of genomic 

DNA, 0.5 µM forward and reverse primers, 0.4 nM dNTP, 0.75 µL SYBR green 

(Diagenode), and 2.5 Units of DreamTaq polymerase (Thermo Fisher Scientific) in 

TMAC buffer (67 mM Tris pH8.8, 6.7 mM MgCl2, 16.6 mM ammonium sulphate, 0.5 

mM tetra-methyl-ammonium chloride, 0.17 mg/mL BSA). qPCR plates were prepared 

and kept at 4°C until starting PCR cycles. 0.5 ng of plasmid containing the uL11 

coding region in which the AAA lysine 3 codon is replaced by GCC was used as 

positive control. qPCRs were carried out in a CFX96 system (Bio-Rad): [95°c 3 min, 

40 cycles of (95°C 20 s, 64°C 20 s, 72°C 30 s)]. To confirm the presence of the 

mutated allele, a 1.5 kb region centred on the lysine 3 codon was amplified from 

positive genomic DNA and sequenced. 

 

Bacterial strains and recombineering. 

 SW102 bacteria44 were rendered electro-competent using the Krantz lab’s 

protocol45. Briefly, a culture was grown at 30°C until reaching 0.5-0.6 OD at 600 nm. 

All subsequent steps were carried out at 4°C. Ten mL of culture were pelleted at 500 

g for 5 minutes. The pellet was resuspended in 10 mL cold water and pelleted again 

under the same conditions. This step was repeated once. The pellet was next 



 
   146 
 

resuspended in 1 mL cold water, transferred to a 1.5 mL microtube, and pelleted 

again under the same conditions. The pellet was then resuspended in 50 µL cold 

water and transformed by electroporation (Gene Pulser II BioRad, 0.2 cm cuvette, 2.5 

kV, 25 µFa, 100 Ω) with 500 ng of attB-P[acman]-CmR-BW:CH322-137O14 plasmid 

(further called BAC 137O14) (obtained from the BACPAC resources Center 

https://bacpacresources.org)46. Bacteria were then plated on chloramphenicol plates, 

and a clone containing the BAC (as verified by PCR) was selected for amplification at 

30°C until 0.5-0.6 OD600. Ten mL of culture were then incubated at 42°C for 15 

minutes to induce expression of the bacterial recombination genes. After chilling on 

ice, bacteria were rendered competent following the protocol described above. They 

were transformed by electroporation with either no DNA, 0.72 µg of ssODN-sense or 

the same amount of ssODN-antisense (Supplementary Table S1) synthesized by 

Integrated DNA Technologies, Inc. then diluted by a factor 106 and plated on 

chloramphenicol plates to obtain single colonies. 
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Figure legends 

 

Figure 1: Genomic organization of the uL11 locus 

A - Genomic locus containing the uL11/RpL12 gene (dm6 2L:24,060,378..24,061, 

860). 

B - Sequence of the target uL11 locus. In green the initiation codon, in purple the lysine 

3 target codon. Red dashes indicate the PAM sequences corresponding to all possible 

single guide RNAs. 
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Figure 2: Mutagenesis reagents 

CRISPR/Cas9 mediated homologous recombination requires three components: a 

single guide RNA (sgRNA), a template for recombination (ssODN), and the Cas9 

nuclease. The sgRNA corresponding to PAM sequence 4 (sgRNA4) was subcloned 

into plasmid pU6-chiRNA under the control of the Drosophila U6 promoter. The 

tracrRNA (trans-activating CRISPR RNA) was shown to be required for Cas9-mediated 

DNA interference (Karvelis et al., 2013). Recombination template was provided as a 

123 nucleotide-long ssODN containing the desired mutation (GCC alanine codon) 

between two 60 nucleotide-long homology arms (ssODN-sense). These two 

components were injected in embryos from the vasa-Cas9 strain which expresses 

Cas9 in the germ-line. 
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Figure 3: Genetic crosses scheme for mutant recovery 

uL11* designates a potential mutant allele of uL11. G0 flies were individually crossed 

with the Gla/SM5 balancer strain. Then, G1 flies bearing the SM5 balancer were 

individually crossed with the same balancer strain. Once few larvae were present, the 

G1 parent was collected for genotyping. 
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Figure 4. Molecular screening for the uL11K3A allele 

A - Rationale for the discriminative PCR. Purple bases correspond to the target codon. 

Red bases stand for locked nucleic acids (LNA). The LNAWT primer ended with the 

lysine AAA codon of the wild-type uL11 gene whereas the LNAK3A primer ended with 

the alanine GCC codon corresponding to the desired mutation. 

B - qPCR were performed with the LNAK3A primer matching the uL11K3A allele. Red 

curve: plasmid carrying the uL11K3A allele as positive control. Black curve: genomic 
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DNA from a wild-type fly. Blue curves: pools of up to 5 different genomic DNA from 

candidate G1 flies considered to be positive. Green curves: pools of up to 5 different 

genomic DNA from candidate G1 flies considered to be negative. 

C - The same qPCR were performed on individual genomic DNA from the pools that 

were previously found to be positive for the uL11K3A allele. Several indivuals wearing 

the mutation were thus identified (blue curves). 

D - Sequencing of the uL11 locus from one positive individual. Chromatogram analysis 

and alignment were obtained from http://crispid.gbiomed.kuleuven.be 

RFU: Relative Fluorescence Units. 

  



 
   159 
 

 

Figure 5. Generation and recovery of a BAC containing the uL11K3A allele 

A - The desired mutation was introduced by recombination in BAC 125O14 using 

ssODN-sense as template. Purple nucleotides: lysine (AAA) and alanine (GCC) 

codons. Black nucleotide: a silent fourth nucleotide substitution was added to avoid 

repair by the MMR pathway. 

B - qPCR were performed on plasmids extracted from pools of bacteria obtained after 

recombination on the uL11 locus using the LNAK3A primer which matches the K3A 

allele. Black curves: recombination without template; Green curves: recombination with 

ssODN-antisense template; Red curves: recombination with ssODN-sense template. 

Three technical replicates are shown. 
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C, D - Twenty clones isolated from a positive plate after recombination with the ssODN-

sense template were tested individually for the presence of the uL11K3A allele. BACs 

from individual clones were analysed by qPCR with the LNAWT primer (matching the 

wild-type uL11 allele) in C, and with the LNAK3A primer (matching the uL11K3A allele) 

in D. The red curves indicate a clone deemed positive. 

E - The uL11 locus from this positive clone was sequenced and aligned with the wild-

type uL11 allele. 

RFU: Relative Fluorescence Units. 
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Table 1. Comparison of several molecular screening options for CRISPR-

mediated HDR. +++: High, ++: Moderate, +: Low, - No, +/- Unreliable, y: yes, n: no, 

o: optional. 

 

  

Method   
Allele-specific 

qPCR 
HRMA 

Sanger se-
quencing 

T7E1 nu-
clease 

Detection 
range 

Indels - +++ +++ ++ 

Substitution +++ +++ +++ ++ 

SNPs ++ ++ +++ +/- 

Cost  + ++ +++ ++ 

Labor  ++ +++ +++ +++ 

Upstream de-
velopment 

 + ++ + +++ 

Specificity  +++ +++ +++ + 

Sensitivity  +++ +++ +++ + 

Polymorphism 
sensitivity 

 + ++ - +/- 

Protocol steps 

Individual G1 cross y y y y 

Single fly gDNA extraction y y y y 

Phenol/column purifica-
tion 

y y o o 

DNA quantification o o o o 

PCR y y y y 

Melting curve acquisition n y n n 

PCR purification n n y y 

Quantification n n y y 

Hybridization n n n y 

Enzymatic digestion n n n y 

Gel electrophoresis n n n y 

Bioinformatical analysis n y y n 
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Figure S1: Guide RNA efficiency assay 

Melting profile of the uL11 amplicon after transfection of S2 cells by a pU6-sgRNA-

Cas9 plasmid containing the guide RNA sequence 4 (sgRNA4) (green), or empty 

(grey). Three biological replicates are represented by different shades of the same 

colour. Left: melting curves; Right: derivatives. RFU: Relative Fluorescence Units. 
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High Resolution Melting Analysis 

uL11HRMA_F              5'-tgcggtaaagtacatgagctg-3' 

uL11HRMA_R               5'-tcgaagctcaactcctcaca-3' 

LNA Primers 

LNAWT_F                  5'-gataccgctatgcctcccaAa-3' 

LNAK3A _F         5'-gataccgctatgcctcccgCc-3' 

CRISPR1_R               5'-gaccgaggggaccgatctt-3' 

uL11 Sequencing 

uL11-708_F                5'-cgctactgagctttgctacacccc-3' 

uL11+805_R         5'-caataacatcgtgagggtgct-3' 

Guide RNA tested 

gRNA1 5’-gcctcccaaattcgacccaa-3' 

gRNA2 5’-cgacccaacggaagttaaat-3' 

gRNA3 5’-gtcgaatttgggaggcatag-3' 

gRNA4  5’-tccgttgggtcgaatttggg-3' 

gRNA5 5’-acttccgttgggtcgaattt-3' 

gRNA6 5’-aacttccgttgggtcgaatt-3' 

Cloning of sgRNA4 in pU6-BbsI-chiRNA 

PHO-sgRNA4_F  5'-CTTCGtccgttgggtcgaatttggg-3' 

PHO-sgRNA4_R     5'-AAACcccaaattcgacccaacggac-3' 

Template for fly mutagenesis 

ssODN 
5'-agctcaactcctcacaaaaacactcgcttacttacccaatttaacttccg 
ttgggtcgaaggcgggaggcatagcggtatcttggcttgaacagtcgctg 
taaggcaaagattacgttagttt-3' 

Templates for BAC recombineering 

ssODN-sense                 
5'-agcgactgttcaagccaagataccgctatgcctccGGCCttcgacc   
caacgcaagttaaattgggtataagc-3' 

ssODN-antisense           
5'-gcttacttacccaatttaacttgcgttgggtcgaaggCCGGaggcat 
agcggtatcttggcttgaacagtcgct-3' 

 

Table S1: Oligonucleotides used in this study. 
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In primers LNAWT_F and LNAK3A_F, bold uppercase nucleotides correspond to the 

LNA bases.In primers PHO-sgRNA4_F and PHO-sgRNA4_R, uppercase nucleotides 

correspond to the floating sequences used for cloning. The bold guanosine was intro-

duced to increase efficiency of the U6 promoter.  
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  C. Complementary data 
 

CRISPR/Cas9-induced double strand breaks are highly mutagenic, and promote both HDR and NHEJ-

induced mutations at the desired locus. While we introduced a template to promote homologous 

directed repair, it was likely that NHEJ-mediated also occurred in the injected flies. The endonuclease 

activity of Cas9 generates double strand breaks at predictable sites, and the fortunate placement 

sgRNA4 was expected to induce one immediately next to the lysine 3 codon of uL11. Importantly, Cas9 

also displays exonuclease activity, which was shown to promote insertion/deletion events (indels) 

stemming from the DSB site, and extending in the 5’ direction of the PAM carrying strand (Bassett et 

al., 2014; Jinek et al., 2012). Therefore, it was conceivable that some G1 flies would harbour indel 

events deleting this codon.  

Such mutated alleles would not be detected with our allele-specific method. Thus, we tested each DNA 

sample extracted from G1 flies by HRMA, using the protocol we previously used to detect indels in S2 

cells. Denaturation kinetics of the uL11 amplicons were analysed individually for 294 G1 flies. Among 

them, 36 differed from a wild-type control. Consistently, they included all ten identified uL11K3A 

mutants. Sequencing those amplicons confirmed the presence of mutations in every one of these 

samples. Eight different alleles were thus identified that each corresponded to a reproducible HRMA 

pattern (Table 3, Fig. 58).  
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Founder(s) Allele(s) Sequence 
M-12 
M-43 

K3A-12 
K3A-43 

ACCGCTATGCCTCCCAAATTCGACCCAACGGAA 

ACCGCTATGCCTCCCGCCTTCGACCCAACGGAA 
M-12 
M-43 

∆K3-12 
∆K3-43 

ACCGCTATGCCTCCCAAATTCGACCCAACGGAA 

ACCGCTATGCCTCCC---TTCGACCCAACGGAA 
M-5 ∆K3F4 ACCGCTATGCCTCCCAAATTCGACCCAACGGAA 

ACCGCTATGCCTCCC------GACCCAACGGAA 
M-31 K3Y ACCGCTATGCCTCCCAAATTCGACCCAACGGAA 

ACCGCTATGCCTCCCTACTTCGACCCAACGGAA 
M-12 P2LK3E ACCGCTATGCCTCCCAAATTCGACCCAACGGAA 

ACCGCTATGCCTCTTGAATTCGACCCAACGGAA 
M-5 P2QK3R ACCGCTATGCCTCCCAAATTCGACCCAACGGAA 

ACCGCTATGCCTCAACGCTTCGACCCAACGGAA 
M-43 F+2 ACCGCTATGCCTCCCAAA--TTCGACCCAACGGAA 

ACCGCTATGCCTCCCTATGCTTCGACCCAACGGAA 

F-6 F-4 ACCGCTATGCCTCCCAAATTCGACCCAACGGAA 

ACCGCTATGCCTCC----TTCGACCCAACGGAA 
Table 3. Sequence of the uL11 alleles of G0 flies. 
Founder G0 flies were named after their sex (M-, male; F-, female) and the order of their recovery. Each allele was 
recovered in several descendants of the same founders. The uL11K3A and uL11∆K3 alleles were found in the progeny 
of two different founders. Substitution alleles were named to reflect the amino-acid change in the uL11 protein, 
following the amino-acid one-letter code. (K, lysine ; A, alanine ; F, phenylalanine ; Y, tyrosine; P, proline; L, 
leucine; E, glutamate; Q, glutamine; R, arginine). The lower two alleles are named after the reading frame shift 
that they introduce in the uL11 gene. The sequence of each allele is provided with a wild-type uL11 sequence as 
reference. The start codon of uL11 is highlighted in green and the lysine 3 codon in purple. Sequence changes are 
highlighted in red. 
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Figure 58. HRMA profiles of the uL11 alleles. 
Melting profile of the uL11 amplicons from genomic DNA of G1 flies (gDNA).  One example of each discovered 
allele is provided. Melting peaks flatter and broader than the reference reveal the presence of two different 
amplicons, indicating that the tested gDNA contains a mutation at the uL11 locus. Melting curves were 
normalized according to the method described by (Wittwer et al., 2003). 

It is interesting to consider that this mutagenesis was not our only attempt at obtaining mutations for 

uL11 through CRISPR/Cas9-mediated mutagenesis. Indeed, we concomitantly tried to obtain indel 

mutants at this locus by injecting the same flies with the same guide RNA at higher concentration (150 

ng/µL), but without a HDR template. We however failed to identify any indel event within 516 G1 

descendants obtained from 53 fertile G0 flies. Finding multiple indels in this screen was thus surprising. 

It suggested that the presence of the ssODN template improved indel generation efficiency at this 

locus. A possible explanation would be that while indels mostly stem from NHEJ-mediated repair, they 

can also be generated by aberrant recombination with a repair template.  

Strikingly, the reading frame of uL11 is intact in five recovered indel mutants out of seven. While there 

are not enough alleles to draw a firm conclusion, it is higher than the expected one in three in-frame 

indels. This is however not surprising: considering that uL11 is an essential gene, nonsense mutations 

are likely to be deleterious. The two frameshift mutants that we recovered (F+2 and F-4) indeed 

exhibited dire phenotypes (cf. Results chapter III). It should be noted that their mutation introduces a 

+2 reading frame shift in both cases. While uL11 may no longer be produced from its canonical initiator 

codon, the frame shift puts its CDS in frame with an ATG codon located in the 5’UTR. It is thus possible 

that a protein may be expressed, with a 24 amino-acids extension to uL11. Whether these are 

complete loss-of-function alleles of uL11 thus remains to be ascertained.  
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 III. Mutation of a single amino-acid on ribosomal protein uL11 generates a 

Minute-like phenotype in Drosophila. 
 

The demonstration that ribosomal protein uL11 interacts with the Enhancer of Trithorax and Polycomb 

Corto suggested that their interaction underlaid an extra-ribosomal function. This interaction occurs 

only when uL11 lysine 3 is tri-methylated. Thus, mutations that delete or replace that lysine are 

expected to prevent the association between uL11 and Corto. Importantly, that lysine is not part of a 

structured domain of uL11. Furthermore, when uL11 is bound to the ribosome, its lysine 3 is located 

at the surface. It is thus unlikely that it would participle in binding rRNA or other structural components 

of the ribosome. We thus hypothesized that mutations that remove or replace the lysine 3 of uL11 

would not prevent it from assembling into ribosomes, and to carry its ribosomal function. These 

mutations would however prevent uL11 from interacting with Corto, giving us the opportunity to 

understand the biological implications of this interaction.  

 A. Results 
 

uL11K3A assembles into functional ribosomes 

To verify whether the lysine 3 is necessary for its ribosomal function, we aimed to determine whether 

a uL11K3A variant protein would retain the ability of uL11 to associate with translating ribosomes. 

Typically, several ribosomes can be found carrying translation simultaneously on the same messenger 

RNA. The complex that they form together is called a polyribosome. Importantly, the presence of 

several ribosomes over the same mRNA implies that they moved after the initiation step. For this 

reason, ribosomes that associate into polyribosomes are considered as caught in the act of translation.  

To determine whether uL11K3A associated with polyribomes, we generated stable cell lines expressing 

either uL11K3A-HA or uL11WT-HA under the control of the Actin:5C promoter (cf Materials and 

Methods). Cytoplasmic extracts were purified from both genotypes for polysomal fractionation. As a 

control, an extract of each genotype was supplemented with 25mM EDTA, a concentration that 

disrupts the interaction between ribosomal subunits and mRNA. Lysates were then loaded on a sucrose 

gradient and centrifuged to allow differential sedimentation of ribosomal complexes. Gradients were 

then separated in 22 fractions containing complexes of increasing density. Every second fraction was 

analysed by western blot to reveal the presence of uL11K3A-HA or uL11WT-HA. 
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Figure 59. uL11 lysine 3 is not required for integration in active ribosomes. 
Cytoplasmic lysates (Left) and EDTA-treated lysates (Right) from S2 cells expressing uL11WT-HA (A) or uL11K3A-HA 
(B) were separated by centrifugation over a sucrose gradient. Optical density at 254 nm allows to estimate the 
amount of RNA at any point in the gradient, and was monitored during fractionation (Top panels). The peaks 
observed in the gradient correspond to the different ribosomal complexes. By increasing order of density: 40S 
subunit, 60S subunit, 80S monosome, polyribosomes. A schematic representation of these complexes is provided 
above their respective peaks for clarity. Note that EDTA treatment dissociates ribosomes from mRNA, causing the 
disappearance of monosomes and polyribosomes from the gradient. Proteins collected from fractions were 
analysed by Western blotting with anti-HA antibody (Lower panels). A vertical line indicates that different wells 
from the same gel were juxtaposed in the image for clarity. Images are representative for three obtained 
replicates. 

These experiments revealed the presence of uL11K3A-HA in all ribosomal fractions. Furthermore, EDTA 

treatment triggered its relocalisation towards lighter fractions, confirming that uL11K3A-HA 

sedimentated into heavy fractions by association with polyribosomes (Fig. 59). Thus, ribosomes that 

contain uL11K3A-HA are competent for translation initiation and elongation. Furthermore, its 

distribution among fractions was not biased towards inactive ribosomal fractions when compared to 

the distribution of uL11WT-HA. Thus, 60S subunits containing uL11K3A displayed no obvious defect in 

40S binding or initiation rates. We thus concluded that the loss of uL11 lysine 3 had no critical impact 
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on its ribosomal function, thus validating the use of lysine 3 deletion or replacement variant to study 

the extra-ribosomal function of uL11.  

Characterization of the uL11K3A and uL11ΔK3 alleles 

Using CRISPR/Cas9-mediated HDR, we obtained 8 alleles, among which 6 deleted or replaced lysine 3 

without disrupting the uL11 gene (cf results section chapter II, Table 3). We reasoned that phenotypes 

caused by the loss of interaction between uL11 and Corto should be observed with different alleles 

removing uL11 lysine 3. We thus decided to study both the uL11K3A and the uL11ΔK3 allele. 

CRISPR/Cas9-mediated mutagenesis is known to cause off-target mutations. Those may generate 

phenotypes that can be mistakenly attributed to the mutation of interest. To eliminate this risk, we 

introduced the uL11 alleles into a controlled genetic background (w1118) to separate them from most 

off-target mutations. To this end, we crossed heterozygous females with w1118 males for eight 

generations (Hélène Thomassin and Héloïse Grunchec). Since the uL11 alleles are not associated to a 

phenotypic marker, 10 females were crossed individually at each generation, then genotyped by HRMA 

after laying eggs.  

 

Figure 60. Characterisation of the expression of the uL11 ΔK3 and uL11K3A alleles. 
Total proteins were extracted from third instar larvae heterozygous or homozygous for the uL11ΔK3 and uL11K3A 

mutations or from wild-type larvae. 30 µg proteins were loaded onto SDS-PAGE gels. uL11 was revealed with an 
anti-uL11 antibody that recognizes an internal epitope (A), or the anti-uL11K3me3 antibody that specifically 
reacts with uL11 tri-methylated on lysine 3 (B). α-tubulin was revealed as a loading control. 
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We then analysed their expression by Western blotting (Fig. 60A). As expected, uL11 could be detected 

in all lines with an antibody that recognizes all forms of uL11 through an internal epitope. In contrast, 

uL11 could no longer be detected in homozygotes with the anti-uL11K3me3 antibody (Fig. 60B). These 

results show that both the uL11K3A and the uL11ΔK3 allele express an unmethylable version of uL11 

(Heloïse Grunchec). 

Viability of the uL11 alleles 

Both alleles generated obvious phenotypes. The first of those was revealed by our inability to establish 

homozygous strains. Both the uL11K3A and the uL11ΔK3 alleles produced very little homozygotes. These 

were mostly males that hatched with a large developmental delay (>2 days) at 25°C. Interestingly, a 

smaller delay could be observed with uL11K3A heterozygotes as compared to wild-type flies (about one 

day at 25°C). In addition, heterozygous uL11K3A females were frequently sterile, and produced less 

progeny than wild type flies. This phenotype was most apparent when crossing males and females 

heterozygous for the uL11K3A allele, suggesting that both sexes display reduced fertility. While it was 

possible to keep the uL11K3A allele over the SM5 balancer chromosome for a few generations, it was 

necessary to regularly cross heterozygous uL11K3A males with the Gla/SM5 balancer strain to maintain 

the number of individuals. In contrast, the uL11ΔK3 allele could be established over the SM5 balancer 

chromosome, and heterozygotes showed normal developmental time and fertility. 

It should be noted that the rate of recovery of uL11K3A homozygotes was too low (about 5 per week) 

to gather enough individuals for robust phenotypic characterisation. However, all their phenotypes 

could be observed in uL11K3A heterozygotes, albeit less severely. 

uL11 mutants display Minute bristles 

One of the most apparent phenotypes that we could observe was a reduction in the size and thickness 

of the bristles of the uL11K3A heterozygotes and homozygotes. We could also visually detect this 

phenotype in uL11ΔK3 homozygotes, but not in uL11ΔK3 heterozygotes (Fig. 61A). Scanning electron 

miscroscopy confirmed the thin bristle phenotype of uL11K3A heterozygotes and uL11ΔK3 homozygotes. 

In contrast, it revealed no thickness difference between the bristle of control and heterozygous uL11ΔK3 

flies (Fig.61B).  
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Figure 61. uL11 mutants display Minute bristles. 
Left and middle panels: Light microscopy pictures of the uL11 mutants. Fly bodies were disposed on gelose after 
their wings and heads were cut. Images were then captured using a Leica Model MZ FLIII microscope equipped 
with a Leica Model DC480 camera. For clarity, scutellar bristles were pseudocolored in red with Photoshop (Middle 
panels). Note the reduced size and thickness of the scutellar bristles in heterozygous uL11K3A and homozygous 
uL11ΔK3 mutants. Pictures are representative of 5 imaged individuals. Right panels:  Scanning electron 
micrography of the post-alar bristles of uL11 mutants (cf. Materials and methods). 5 males per genotype were 
pictured. Note the decreased thickness of the bristle in heterozygous uL11K3A and homozygous uL11ΔK3 mutants. 
Images were obtained by Heloïse Grunchec and Hélène Thomassin. 
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The uL11 mutants exhibit bristle duplications 

 

Figure 62. uL11 mutants display bristle duplication phenotypes. 
Scanning electron micrography of duplicated post-alar bristles in uL11 mutants. Images were obtained by Heloïse 
Grunchec and Hélène Thomassin. 

The uL11 mutants displayed another bristle phenotype. The anterior post-alar macrochaete was 

frequently duplicated in both uL11K3A heterozygotes and homozygotes (a schematic representation of 

the thoracic macrochaetes can be found on Fig. S1 in appendix). Once again, this phenotype could be 

observed in uL11ΔK3 homozygotes but not in heterozygotes.  

In Drosophila, each macrochaete stems from a socket cell. Duplication phenotypes can be observed 

when two bristles emerge from a single socket, but also when both structures are duplicated. Scanning 

electron microscopy allowed us to determine that the phenotype of the uL11 mutants belonged to the 

second category (Fig. 62). 
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The uL11K3A mutation is responsible for the bristle duplication phenotype. 

To confirm whether the bristle duplication phenotypes were caused by the mutation of uL11, we set 

to perform functional rescue experiments. To this end, we recovered a bacterial artificial chromosome 

that contained the entire uL11 locus - BAC(uL11WT). We then introduced a uL11K3A mutation by 

recombineering - BAC(uL11K3A), as described in chapter II. We inserted both at the same genomic locus 

on the third chromosome (VK00027), by φC31-mediated integration (BestGene Inc.). Recovered flies 

were then crossed with balancer strains to replace the first and second chromosomes by those of the 

w1118 genetic background. Both transgenes were homozygous lethal, and the lines were established 

over the TM6c balancer chromosome. We then crossed uL11K3A flies with each BAC strain to determine 

whether they would rescue the bristle duplication phenotype (Table 4). 
 

AVERAGE NUMBER OF ANTERIOR POST-
ALAR BRISTLES  
Males Females 

w1118 2 2,02 

ul11K3A/+ 2,54 2,8 

BAC(ul11WT) /+  2 2,02 

ul11K3A/+ ; BAC(ul11WT) /+  2,49 2,8 

BAC(ul11K3A) /+ 2,28 2,53 

Table 4. analysis of the anterior post-alar bristle phenotype of the uL11K3A mutant. 
The number of anterior post-alar bristles of 40 individuals per genotype was determined. Statistical analysis was 
performed on R. As variances were not homogeneous Scheirer-Ray-Hare tests were performed. The effects on the 
phenotype of the uL11K3A mutation, the BAC(uL11WT), the BAC(uL11K3A) and that of the interaction between the 
uL11K3A mutation and the BAC(uL11WT) were tested. 
For males: uL11K3A mutation, p=3*10-4; BAC(uL11WT), NS; BAC(uL11K3A), p=0,02; Interaction between the uL11K3A 
mutation and BAC(uL11WT), NS. 
For females: uL11K3A mutation, p=9*10-6; BAC(uL11WT), NS; BAC(uL11K3A), p=4*10-6; Interaction between the 
uL11K3A mutation and BAC(uL11WT), NS. 
NS, Not significant. Data were obtained by Hélène Thomassin and Héloïse Grunchec. 

As previously observed, surnumerary anterior post-alar bristles were detected in uL11K3A 

heterozygotes. Strikingly, the BAC transgene carrying a wild-type copy of uL11 had no effect on bristle 

number on its own, and failed to rescue this phenotype. In contrast, the BAC(uL11K3A) transgene 

induced post-alar bristle duplications in an otherwise control genetic background. We were so far 

unable to recover enough uL11K3A/+; BAC(uL11K3A) flies to assess whether this association modifies the 

penetrance of the bristle duplication phenotype.  

These data confirm that the bristle duplication phenotype can be attributed to the uL11K3A mutation, 

since it is the only difference between the BAC(uL11K3A) and the BAC(uL11WT) transgenes.  
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The uL11K3A, but not the uL11ΔK3 mutations cause the appearance of ectopic wing veins. 

Drosophila melanogaster flies display a very stereotyped wing vein pattern (Fig. 63, left). In contrast, 

both heterozygous and homozygous uL11K3A mutants exhibited ectopic veins and cross-veins (Fig. 63, 

right). Surprisingly, this phenotype could not be detected in either heterozygous or homozygous 

uL11ΔK3 mutants. 

 

Figure 63. uL11K3A mutant wings display ectopic veins. 
Left: wing from a control fly. Right: wings from uL11K3A heterozygotes display ectopic veins and crossveins. 

Representative pictures of 60 wings collected on 30 females of each genotype. 
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 B. Discussion 
 

Mutations of the lysine 3 of uL11 generate Minute-like phenotypes  

The phenotypes of uL11K3A and uL11ΔK3 mutants, reduced viability and fertility, small and thin bristles, 

are signature phenotypes of the Minute mutants (cf. Introduction chapter II.B.3). Furthermore, ectopic 

wing veins and alar bristle duplications have also been described in some Minute mutants (Marygold 

et al., 2005; Schultz, 1929). While the other alleles of uL11 have not been introduced in a controlled 

genetic background, it is interesting to note that we observed similar phenotypes in several of them (a 

summary of phenotypes and preliminary observations can be found in Table S4 in appendix). Minute 

mutations have been associated to the loss of function of ribosomal proteins, and their phenotypes 

are thought to reflect a decreased capacity for protein synthesis (Marygold et al., 2007). Under that 

hypothesis, tissues that are the most dependent on translation are likely to be the most affected. For 

instance, high ribosome biogenesis intensity was suggested to be necessary for the maintenance of 

germinal stem cells in the Drosophila ovarium, which could explain the reduced fertility of Minute 

females (Zhang et al., 2014). Similarly, macrochaetes are described to require a very high amount of 

protein synthesis over a short developmental period (Marygold et al., 2007). The Minute-like 

phenotypes that we observed suggest that translation rates may also be altered in the uL11 lysine 3 

mutants. 

Minute mutations however display characteristic genetic features: they are all dominant, and 

homozygous lethal. Furthermore, they are recessive to two doses of a wild-type allele (Schultz, 1929). 

In contrast, uL11ΔK3 was recessive over all phenotypes. uL11K3A was dominant over two copies of the 

wild-type gene for the bristle duplication phenotypes. In addition, other alleles of uL11 could be 

maintained as homozygous strains (K3Y, P2LK3E, P2QK3R). We thus conclude that they are not Minute 

mutations.  

Reduction in translation capacity may arise from other mechanisms than r-protein gene loss of 

functions. For instance, loss of function of diminutive, the Drosophila gene that encodes Myc, results 

in small body size, Minute bristles and female sterility (Lindsley and Zimm, 1992). Myc is a transcription 

factor that activates the expression of ribosome biogenesis genes (cf. Introduction chapter II.A.1). This 

suggests that Minute-like phenotypes may result from a dysregulation of this category of genes. By 

analogy, uL11 may regulate the transcription of ribosome biogenesis genes. This would be consistent 

with a previous report that overexpression of uL11 increases the transcription of r-protein genes 

(Coléno-Costes et al., 2012), and the fact that uL11K3me3 binds the bodies of these genes (cf. Results 

chapter I). 

uL11 mutations disturb the establishment of the anterior post-alar bristle 

In Drosophila, the macrochaetes are composed of four cells that originate from a single Sensory Organ 

Precursor (SOP) cell, following a well-establish differentiation program. The SOP cell (also called pI) 

divides into the pIIa and pIIb cells. Then, pIIa gives rise to the shaft and socket cells, while pIIb divides 

into pIIIb and a glial precursor. Finally, pIIIb divides into the sheath and neurone cells while the glial 

precursor undergoes apoptosis (a schematic representation of the mechanosensory bristle 

organization and lineage can be found in Figure S2 in appendix). Both the uL11ΔK3 and uL11K3A alleles 

were associated with duplication of the anterior post-alar bristle. Furthermore, scanning electron 

microscopy allowed to determine that both the bristle and the socket cells were duplicated. Therefore, 

the duplication event occurs prior to pIIa division. Preliminary neural tracking experiments were 

realised (Michel Gho), where neuronal cells (identified by anti-Elav staining), could be observed to be 

duplicated in uL11 mutants. This would suggest that duplication arises before the asymmetrical 

division of the SOP.  
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During development, proneural clusters of 20 to 30 cells segregate from the undifferentiated cells of 

the wing disc. Each of them carries the potential to become a SOP cell. One of them, that expresses 

the highest level of the Notch ligand Delta, triggers the Notch signalling cascade in the neighbouring 

cells, resulting in the repression of proneural genes in all of them (Koch et al., 2013). This lateral 

inhibition phenomenon ensures that only one SOP cell is specified in each proneural cluster. 

Interestingly, mutations in ribosome biogenesis components were shown in zebrafish to induce ectopic 

expression of proneural genes, correlating with a neuronal expansion phenotype (Essers, 2013). It was 

thus proposed that Notch-mediated inhibition of neuronal differentiation requires a minimum level of 

ribosomal activity. In addition, many reports have linked mutations in ribosome biogenesis factors with 

stem cell renewal failure or premature differentiation (for review: Brombin et al., 2015). Thus, the 

duplication phenotypes we observe could also be a consequence of ribosome biogenesis impairment. 

uL11K3A may be a neomorphic or antimorphic allele. 

The dominant bristle duplication phenotype generated by the uL11K3A allele displayed very peculiar 

genetic properties. Indeed, it was not rescued by a bacterial artificial chromosome carrying a copy of 

the uL11 gene, arguing against haploinsufficiency. Furthermore, the same transgene carrying a uL11K3A 

allele generated bristle duplications in a control genetic background. These data suggest that the 

uL11K3A allele genetically behaves like an antimorph or a neomorph since both the uL11K3A mutation or 

the overexpression of uL11K3A result in the same bristle duplication phenotype. It would be very 

interesting to determine whether these dominance patterns also apply to its other phenotypes.  

uL11 has been demonstrated to regulate its own expression by interfering with the splicing of its mRNA 

in nematodes and mammals (Cuccurese et al., 2005; Mitrovich and Anderson, 2000). If this mechanism 

were to be conserved in Drosophila, expression of a mutant uL11 gene copy may reduce the expression 

of the wild type copies by inhibiting the splicing of their messenger. This would make uL11K3A a 

dominant negative allele. This hypothesis could be tested by adapting the allele-specific qPCR method 

we described in chapter II for RNA quantification. 

Mutations of the uL11 lysine 3 display different phenotypes. 

We obtained six different alleles that remove or replace the lysine 3 of uL11. All of them should prevent 

the association between uL11 and Corto. We expected that this would result in the same phenotypes 

in all these mutants. However, the phenotypes that we identified displayed different severity and 

dominance properties among uL11 alleles. So far none was identified in all mutants, as the P2QK3R 

allele displayed no apparent phenotypes (though bristle size and number still need to be studied). It is 

thus very likely that some of these phenotypes are not directly related to Corto.  

To further study the role of the interaction between uL11K3me3 and Corto, it will thus be necessary 

to first verify that none of these mutants retained the ability to bind Corto. Then, phenotypes common 

to all mutants should be sought. Since none could be easily identified, it would be informative to 

combine these mutants with a gain of function for the chromodomain of Corto (CortoCD). Indeed, 

overexpression of the latter in flies with the UAS-Gal4 system was described to cause high lethality, 

bristle duplications, partial transformation of the aristae into leg structures and reduction of the 

number of sex comb teeth (Coléno-Costes et al., 2012). If some of those phenotypes were to result 

from the interaction between CortoCD and uL11K3me3, they should no longer be observed in uL11 

lysine 3 mutants. 

The uL11 mutant phenotypes may reveal a new function of the N-terminal extension of uL11 

While they have different properties, all described phenotypes could be observed in several alleles of 

uL11 lysine 3 (Table S4). This argues that they are indeed linked to the N-terminal part of uL11. Notably, 

the bristle duplication phenotype could be reproduced by a bacterial artificial chromosome containing 
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a uL11K3A, but not a wild-type gene copy. It is thus very likely that these phenotypes reflect the loss of 

function of the N-terminal extension of uL11.  

One explanation would be that these mutations may affect the ribosomal function of uL11. Indeed, 

structural modifications could differentially impede the function of the N-terminal domain of uL11 

within the ribosome. The phenotypes of the uL11K3A mutants were among the most severe, but uL11K3A-

HA was found to associate with the same ribosomal fractions as uL11-HA, suggesting that the lysine 3 

to alanine mutation does not compromise its general ribosomal function. It is still possible that the 

ribosomes that contain uL11K3A may have altered translation accuracy or speed, as these phenotypes 

were associated to the loss of function of uL11 in yeast (Wawiórka et al., 2016). These could be tested 

respectively by performing STOP codon readthrough and polysome “run-off” experiments. Another 

possibility would be that the ribosomes that contain uL11K3A may display altered affinity for specific 

mRNA, as has been described for ribosomes lacking eS26 in yeast (Ferretti, 2015, 10th EMBO 

conference on ribosome synthesis, unpublished data), or uL38 in mice (Xue et al., 2015). This 

hypothesis could be tested by ribosome profiling. These phenotypes may also result from a yet 

undescribed function of the N-terminal part of uL11, on or off the ribosome. Purifying and comparing 

the interactome of each of the uL11 lysine 3 mutants would surely provide insight about the nature of 

this function. 

In any case, the high lethality of several uL11 lysine 3 mutants suggest that some essential function 

requires its integrity. Interestingly, subtle changes in its sequence greatly affect the severity of these 

phenotypes. For instance, ΔK3 is recessive while ΔK3F4 is dominant. Similarly, K3A causes high lethality 

but K3Y is homozygous viable. This suggests that the activity of the N-terminal part of uL11 is highly 

dependent on its structure, charge or hydrophobicity. In this context, one could readily imagine that 

Corto - a 68 kDa protein with a chromodomain and RNA binding properties and a propension to 

dimerize - would interfere with uL11 activity when bound to trimethylated lysine 3.  This could be one 

of the biological functions of the interaction between uL11K3me3 and Corto.  
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 C. Materials and methods 
 

Plasmids and S2 cells transfection 

The uL11 and uL11K3A coding sequences were cloned into the pAWH Gateway® Drosophila vector al-

lowing expression of fusion proteins with a HA tag in C-ter (Dardalhon-Cuménal et al., submitted). S2 

cells were cultured at 25°C in Schneider’s Drosophila medium supplemented with 10%, heat inacti-

vated foetal bovine serum and 100 units.mL-1 of penicillin and streptomycin. For transfection, a mix 

containing a 5:1 molar ratio of either expression vector and the selection plasmid pCoBlast was pre-

pared. 106 cells were then transfected with 2µg DNA using Effecten® transfection reagent (Qiagen) 

according to the manufacturer’s instructions (1:10 DNA/Effecten® ratio). Selection was performed by 

addition of 10 µg.mL-1 of blasticidin after 48 hours. After initial selection, stable cell lines were cultured 

with 2 µg.mL-1 blasticidin. 

Polyribosome fractionation 

Cells were harvested at 50% confluence and washed in Schneider medium at room temperature to 

remove the foetal bovine serum. They were then resuspended in ice-cold lysis buffer (20 mM HEPES 

pH 7.5, 250 mM KCl, 10 mM MgCl2, 5 mM DTT, 1 mM EDTA, 0.5 % NP-40) supplemented with EDTA-

free protease inhibitor cocktail (Roche Diagnostics, Meylan, France) and 40 U.mL-1 Ribolock RNAse 

Inhibitor (ThermoFisher). For EDTA treatment, the lysis buffer was replaced with (20 mM HEPES pH 

7.5, 250 mM KCl, 5 mM DTT, 25 mM EDTA, 0.5 % NP-40). After centrifugation at 500g for 5 min to 

pellet nuclei, supernatants were layered onto 10-50% sucrose gradients in polyribosome buffer (20 

mM HEPES pH7.5, 250 mM KCl, 20 mM MgCl2, 2 mM DTT), supplemented with EDTA-free protease 

inhibitor cocktail (Roche Diagnostics, Meylan, France) and 40 U.mL-1 Ribolock RNAse Inhibitor 

(ThermoFisher). Gradients were centrifugated at 39,000 rpm for 2 hours and 45 minutes at 4°C in a 

Beckman SW41-Ti rotor. Optical density at 254 nm was monitored using a density gradient fractionator 

(Teledyne Isco, Lincoln, NE).  

Protein extraction and Western Blotting 

Total proteins were extracted from third instar larvae in RIPA buffer (150 mM sodium chloride, 1% NP-

40, 0,5% sodium deoxycholate, 0,1% SDS, 50 mM Tris-HCl pH 8,0) supplemented with phosphatase and 

protease inhibitors (Roche). 30 µg of protein extracts were resolved on a 15 % acrylamide gel. For 

polyribosomal fractions, proteins were purified by precipitation in two volumes of 100 % ethanol, 

followed by incubation overnight at -20°C and centrifugation for 30 minutes at 13,000 g at 4°c. 

Fractions 1 and 2 protein pellets were resuspended in 200 µL 1X Laemmli buffer, while other fractions 

were resuspended in 50 µL. 15 µL were loaded onto 15% acrylamide gels. Western-blot analysis was 

performed according to standard protocols. Antibodies used were: anti-uL11 (Santa-Cruz sc-82359, 

1/1,000), anti-uL11K3me3 (described in Results chapter I, 1/6,000), anti-α-tubulin (gift from M.H. 

Verlhac, 1/10,000), anti-HA (Sigma F2411, 1/1,000). 
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Drosophila stocks and culture 

The uL11K3A and uL11 ΔK3 alleles were obtained by CRISPR/Cas9-mediated mutagenesis as described in 

chapter II. They were introduced in the w1118 genetic background by backcrossing heterozygous 

females with w1118 males for eight generations. BAC(uL11) and BAC(uL11K3A) were obtained by 

recombineering as described in chapter II. BAC(uL11) and BAC(uL11K3A) were inserted at the VK00027 

site by φC31 -mediated integration, using the BL-9744 strain (BestGene Inc.). The recovered transgenes 

were crossed with balancer strains to replace the first and second chromosomes by those of the w1118 

genetic background. Other fly strains were obtained from the Bloomington Stock Center. D. 

melanogaster stocks and crosses were kept on standard medium (1 % agar, 8.25 % brewer’s yeast, 9.1 

% cornstarch, 2.5 % methyl hydroxy-4 benzoate) at 25°C. 

Name Genotype 

w w1118 

uL11ΔK3/SM5 w1118; uL11ΔK3/SM5 

uL11K3A/SM5 w1118; uL11K3A/SM5 

BAC (uL11wt) w1118; Pbac{y[+]-attR-wBAC(CH322-137O14)-w[+]-attL}VK00027/TM6c 

BAC (uL11K3A) w1118; Pbac{y[+]-attR-BAC(CH322-137O14-uL11K3A)-w[+]-attL}VK00027/TM6c 

Gla/CyO, GFP w1118; Gla/CyO, P{w[+mC]=3xP3-EGFP}2 

BL-9744 y1 w1118; PBac{y[+]-attP}VK00027 

Table 5. Fly strain genotypes. 

Scanning Electron Microscopy (SEM) 

Adult flies were kept overnight in 70% ethanol after their wings and legs were cut. They were next 
dehydrated by immersion in increasing concentrations of alcohol (2x in 95% ethanol, and 2x in 100% 
ethanol, 20 min each). The samples were dried (by the critical point of CO2 method). They were 
mounted on aluminium stubs with double-sided sticky tapes and coated with a layer of platinum (5 
nm). Observation was realised with a Zeiss ULTRA55 SEM. 
 

Rescue experiments 

The ability of the BAC(uL11WT) to rescue post-alar bristle duplication phenotype of observed in uL11K3A 
mutants was tested by crossing BAC(uL11WT)/TM6c or BAC(uL11K3A)/TM6c females with uL11K3A/SM5 
males. Post-alar bristles were quantified in the progeny and a Scheirer-Ray-Hare test (as variances 
were non-homogeneous) was performed using the R software. 
 

Wing imaging 

Adult flies were kept in 70% ethanol for 48 h and transferred into 1:1 (v/v) PBS/glycerol. Wings were 
then dissected and mounted on glass slides, dorsal side up, in Hoyer’s medium. Slides were scanned 
with a Hamamatsu Nanozoomer Digital Slide scanner, running the Nanozoomer software with a 20 x 
objective and an 8-bit camera. Wing pictures were separately exported into tif format using NDP.view 
and the 5 x lens.  
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Discussion and perspectives 
 

Previous work demonstrated that Corto interacts specifically with uL11 tri-methylated on lysine 3, and 

suggested that they both have a role in activating the transcription of ribosome biogenesis genes 

(Coléno-Costes et al., 2012). The fact that both proteins would bind chromatin on largely overlapping 

sites further suggested a direct regulation of transcription. In addition, Corto had been extensively 

characterized as an Enhancer of Trithorax and Polycomb (ETP), which can both activate or repress 

genes, by associating with different epigenetic complexes. Thus, we hypothesized that the association 

between Corto and uL11K3me3 underlaid a function in regulation of transcription directly on 

chromatin. 

What is the function of uL11K3me3 and CortoCD on chromatin? 

The chromodomain of Corto (CortoCD) reproduces the binding sites of the full-length protein on 

polytene chromosomes, and its overexpression causes the same phenotypes, though less severely. It 

is thus likely that its genome-wide binding pattern represents that of Corto. Strikingly, it displays a very 

sharp enrichment at the transcription start site (TSS) of coding genes. The large amount of TSS it binds 

– 7588 – are also enriched for RNAPolII. In contrast, it cannot be found in TSS lacking RNAPolII (cf. 

Results chapter I.A). These data suggest that Corto might physically interact with either the pre-

initiation complex or RNAPolII itself. On polytene chromosomes, Corto preferentially co-localized with 

paused RNA polymerase (RNAPolIISer5p) rather than with elongating polymerase (RNAPolIISer2p). 

This is consistent with its sharp enrichment at the TSS of coding genes. In addition, Corto was shown 

to antagonize the elongin complex in Drosophila vein patterning (Rougeot et al., 2013). Since the 

elongin complex is known to regulate RNAPolII elongation, these data would suggest a role for Corto 

in the regulation of transcriptional pausing.  

However, the overexpression of CortoCD disturbs the expression of but a subset of genes. It is thus 

likely that the Corto does not have trans-activator or trans-repressor properties by itself. That would 

be coherent with its description as an ETP: these transcription factors are thought to be bridge together 

proteins and allow the assembly of diverse epigenetic complexes. Indeed, Polycomb and Trithorax 

complexes do not display strong DNA sequence specificity. Their recruitment to specific sites on 

chromatin has been postulated to depend on their interaction with other factors, among which ETPs 

(Déjardin et al., 2005). Corto itself possesses all the properties of a hub protein: it contains large 

unstructured domains with aggregative properties and specifically interacts with more than ten 

proteins (Krasowski et al., 2008). Thus, its function in transcription may be to bridge together different 

transcription factors and epigenetic complexes. Indeed, uL11K3me3 may be part of one of those 

complexes. 

The genome-wide binding profile of uL11K3me3 however displays little similarity with that of CortoCD. 

The ribosomal protein is detected on broad domains, and within gene bodies. Interestingly, the binding 

of many r-proteins to chromatin has been observed in Drosophila. Several of them associate to histone 

H1, and localize to condensed chromatin (Ni et al., 2006). Other observations reported that a number 

of r-proteins bind transcribed regions in an RNA-dependent manner (Brogna et al., 2002; Rugjee et al., 

2013). In yeast, transcriptional activation correlates with recruitment of r-proteins over the gene body, 

suggesting an association with nascent RNA (Schroder and Moore, 2005). It is possible that uL11K3me3 

is recruited to chromatin through similar mechanisms. Notably, it was shown to be recruited to the 

hsp70 gene upon heatshock induction (Coléno-Costes et al., 2012). This would also correlate with the 

fact that uL11 co-localizes with elongating RNAPolII more than with paused RNAPolII on polytene 

chromosomes. Interestingly, uL11K3me3 is not enriched in all transcribed gene bodies, suggesting that 

it displays gene-specific recruitment. Importantly, it is detected in clusters of genes enriched for 
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cytoplasmic and mitochondrial translation. It is thus possible that it participates in the regulation of 

their transcription. 

Intriguingly, uL11K3me3 was found to be enriched in many regions clustering near the centromeres of 

chromosomes II and III. It also forms broad enrichment domains that cover inactive genes, and 

preliminary observation suggests that these correspond to H3K27me3 domains. The binding of r-

proteins to heterochromatin has been described in yeast, and was also found to be RNA-dependent 

(De et al., 2011). While no mechanism or function for this phenomenon has been proposed yet, it may 

be worthy to consider that ribosomal proteins aggregate around chromosomes during mitosis (Van 

Hooser et al., 2005), and that Minute mutants share a propension to lose chromosomes in somatic 

cells (Schultz, 1929). It could thus suggest a role for r-proteins in genome stability. 

Strikingly, uL11K3me3 was depleted at the TSS bound by CortoCD. Several hypotheses may explain this 

exclusion. The binding of Corto may prevent antibodies from accessing the K3me3 epitope, or Corto 

may remove uL11K3me3 from chromatin. Alternatively, CortoCD correlates with the presence of 

RNApolII, which is known to displace nucleosomes from the TSS, resulting in sharp depletion of histone 

signal. This could affect uL11K3me3 if its recruitment to chromatin were to occur through histone 

binding. While this remains to be elucidated, it appears that the TSS of active genes are the only 

genomic loci where uL11K3me3 and CortoCD are found in close proximity. These loci are further 

restricted to the genes bound by uL11K3me3, i.e. a subset of genes among which ribosome biogenesis 

components are enriched. This is consistent with the hypothesis that their interaction underlies a 

function in direct regulation of transcription.  Importantly, since each protein displays a specific binding 

pattern, it is unlikely that their interaction serves the purpose of addressing them to chromatin. An 

exciting possibility would be that the recognition of uL11K3me3 by the Corto chromodomain triggers 

a molecular event such as a change in conformation, affinity or a post-translational modification of 

either protein. Indeed, such mechanism was proposed for eEF3 in yeast: this translational elongation 

factor contains a chromodomain-like domain that is thought to interact with several ribosomal 

proteins. Mutation of critical residues of this domain does not impede the binding of eEF3 to the 

ribosome, but compromises its ATPase activity (Sasikumar and Kinzy, 2014).  

Interestingly, preliminary results from our team show that uL11 co-immunoprecipitates with CycG, 

which also physically interacts with Corto. CycG is a transcriptional cycline, and the analysis of its 

binding sites revealed that it binds the TSS of genes enriched for ribosome biogenesis genes in 

Drosphila wing imaginal discs (cf. Appendix). In addition, its overexpression also increases the 

transcription of these genes. These data suggest that there is an interplay between Corto, uL11 and 

CycG in the regulation of ribosome biogenesis genes. Most interestingly, CycG interacts with Cyclin-

dependent kinase 2 (CDK2), which has been shown to phosphorylate uL11 on Serine38 (Chi et al., 

2008). Interestingly, CDK2 was also shown to promote the transcription of HIV-1 by phosphorylating 

the C-terminal domain (CTD) of RNAPolII on Serine 2, at the onset of transcriptional elongation. 

Altogether, these data suggest that the interaction between Corto and uL11K3me3 may enhance the 

transcription of ribosome biogenesis genes at the level of RNAPolII pausing. Notably, the distribution 

of uL11K3me3 would be consistent with the idea that it binds nascent RNA and promotes 

transcriptional elongation. A possibility would be that uL11K3me3 may interact with the short 

transcripts that emerge from paused polymerases. Transient association with Corto could trigger an 

allosteric effect with other transcription factors, such as CycG or the elongin complex, as has been 

proposed for eEF3. This could result in RNAPolII release from pause, allowing transcription of ribosome 

biogenesis genes. Binding of uL11 to the nascent mRNA would result in its ChIP signal spreading across 

the gene body, without being enriched at the TSS or spreading further than the TES. 
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Is uL11K3me3 involved in epigenetic regulation of gene expression? 

Chromodomains usually bind tri-methylated lysines on the tails of histones. Furthermore, Corto is a 

known co-factor of the Polycomb complexes (Kodjabachian et al., 1998; Lopez et al., 2001; Salvaing et 

al., 2003, 2006). It was thus tempting to hypothesize that epigenetic complexes would participate in 

the uL11K3me3-mediated regulation of transcription.  

Indeed, we found that uL11 interacts physically with the Polycomb-group protein Calypso. 

Interestingly, CycG was shown previously to interact with Additional Sex Combs (ASX) in both S2 cells 

and embryos (Dupont et al., 2015). Calypso and ASX are part of the PR-DUB complex, and are both 

necessary to deubiquitinate histone H2A (Scheuermann et al., 2010). In contrast, Corto is known to 

physically interact with PRC1 complex core components PC and PH (Salvaing et al., 2003).  As the PRC1 

complex ubiquitinates histone H2A on lysine 118, these data suggest that the interaction between 

uL11K3me3 and Corto could play a role in the establishment and removal of this mark. However, there 

is no obvious correlation between the distribution of H2AK118ub and the genomic localization of Corto 

and uL11K3me3.  

Several other functions can be proposed for the interaction between uL11 and Calypso. Indeed, it could 

occur away from coding genes, or from chromatin. Additionally, it remains to be tested whether uL11-

bound Calypso is always complexed with ASX, which is required for its deubiquitinase activity. For 

instance, the association of Caypso and ASX could be promoted by the interaction between uL11 and 

CycG. On chromatin, this would amount to the TSS of active genes. 

Importantly, a study demonstrated that the promoters of a subset of active genes are ubiquitinated 

during mitosis in human cells. These genes are silenced during that phase, but their transcription 

resumes in G1 phase. Strikingly, that ubiquitination was dependent on PRC1 components BMI1 and 

RING1A, though its substrate was not histone H2A.  Depletion of RING1A prevents this ubiquitination, 

blocks cell proliferation, and reduces the G1 phase transcription of those genes, among which Myc, 

uS11, eL8 and eL19. It was thus proposed that PRC1 “bookmarks” during mitosis a subset of genes 

whose expression is required for proliferation in early G1 phase (Arora et al., 2012, 2016). 

An exciting hypothesis would be that instead of uL11 recruiting Calypso to target genes, it may rather 

be Calypso that targets uL11 to bookmarked promoters, through recognition of this ubiquitinated 

substrate. Indeed, ribosomal biogenesis genes are typically silenced in mitosis and re-expressed in G1 

phase. Furthermore, they are required for cell growth and proliferation (cf. Introduction chapter 

II.A.2). It would thus be very interesting to determine whether the subset of active genes bound by 

uL11K3me3 correspond to bookmarked promoters. 

The N-terminal domain of uL11 carries a critical function in Drosophila 

Several lines of evidence suggest that the methylation of lysine 3 is not required for the translational 

activity of uL11. First, its position in the ribosome leaves the lysine 3 residue at the surface, where it is 

unlikely to engage in interactions with core ribosomal components. Second, deletion of the enzyme 

responsible for uL11 lysine 3 methylation in S. cerevisiae and S. pombe has little impact on ribosome 

assembly and function or on cell viability (Porras-Yakushi et al., 2006; Sadaie et al., 2008). 

We thus generated mutant alleles of uL11 that remove or replace that residue. These alleles are 

expected to disrupt the ability of uL11 to bind Corto. Strikingly, these mutants displayed phenotypes 

akin to those of Minute mutants. Their viability is reduced, they display sterility, minute and duplicated 

bristles, and ectopic veins. However, these phenotypes display different dominance properties 

between alleles, and none is common to all mutants. This inconsistency strongly argues that most of 

these phenotypes are linked to something else than the loss of interaction between uL11 and Corto. 

Rather, it shows that the N-terminal domain of uL11 is involved into something very important during 
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development. Indeed, several of these alleles are sub-viable, suggesting that this function is essential. 

Furthermore, their Minute-like phenotypes suggest a reduction in translation capacity. 

One of the most parsimonious explanations would be that the N-terminal extension of uL11 is critical 

for translation. The diverse sequence modifications in the uL11 alleles could produce proteins with 

more or less severe impairments for their ribosomal function, explaining the difference in phenotype 

strength. Interestingly, while the uL11K3A allele displays phenotypes amongst the most severe, we 

observed that a uL11K3A fusion protein associates to the same ribosomal fractions as its wild-type 

counterpart. uL11 loss of function was shown in yeast to impede inter-subunit joining, and to halve 

translation speed (Wawiórka et al., 2016). If uL11K3A were non-functional in translation, we would 

expect it to display bias for lighter ribosomal fractions, which is not the case. While this argues against 

mutations of the N-terminal part of uL11 impeding its ribosomal function, it is likely that much more 

sensitive assays will be required to obtain such certitude. Indeed, we cannot exclude that the 

ribosomes which contain mutated versions of uL11 display altered properties. For instance, uL11 loss 

of function causes increased amino-acid misincorporation and termination codon readthrough in yeast 

(Wawiórka et al., 2016). Such phenotypes could be assayed by performing polysome run-off and STOP 

codon readthrough assays.   

Another explanation for these phenotypes would be that the N-terminal extension of uL11 is involved 

in other extra-ribosomal functions. For instance, uL11K3me3 was detected over many broad chromatin 

domains devoid of CortoCD. It would be conceivable that uL11 carries functions that do not require 

the trimethylation of lysine 3. The N-terminal domain of uL11 is an unstructured extension composed 

of hydrophilic aminoacids. It could be a hub for protein interactions. Indeed, one of the phenotypes 

that we observed, i.e. ectopic wing veins, do not seem to correlate with the others. Indeed, this 

phenotype can be observed in uL11P2LK3E and uL11K3Y homozygous mutants, but not in uL11ΔK3 

homozygotes, even though this allele displays more severe phenotypes. In contrast, it can be observed 

in uL11K3A heterozygotes and homozygotes, which respectively display lesser and stronger phenotypes 

than uL11ΔK3 homozygotes. While these observations are still at the preliminary stage, it could suggest 

that the wing vein phenotype is caused by something else than the other phenotypes. 

While these potential functions are unlikely to reflect the role of the interaction between Corto and 

uL11K3me3, it should be considered that they may be related. Indeed, whichever function is carried 

by the N-terminal extension of uL11 appears to be critically sensitive to its sequence, structure or 

charge. The binding of Corto to tri-methylated lysine 3 could easily affect these parameters, and 

promote or antagonize other functions of the N-terminal domain of uL11. It would thus be very 

interesting to investigate the existence of such functions. For instance, the protein-protein interactions 

of each version of uL11 could be compared to identify which partners correlate with the observed 

phenotypes. 

The methylation of uL11 lysine 3 is not essential in Drosophila. 

In the midst of these mutant phenotypes, consequences of the loss of uL11K3me3 interaction with 

Corto remain undetected. One possible, though unlikely explanation would be that this interaction is 

actually inconsequential. A few lines of evidence suggest otherwise. Notably, the overexpression of 

the uL11 methyltransferase Set11 in S. pombe causes severe growth defects (Sadaie et al., 2008). 

Although it is not known whether Set11 carries other functions, it suggests that the methylation of 

uL11 has a biological function. In addition, most of the phenotypes of the overexpression of Corto 

could be reproduced by the expression of its chromodomain (CortoCD) in flies. While CortoCD likely 

associates with other proteins than uL11K3me3, it is plausible that some of these phenotypes result 

from this interaction. For this reason, it should be very informative to determine whether each uL11 

mutation rescues these phenotypes.  



 
   187 
 

Another explanation for the lack of obvious phenotypes is that this function may not be required under 

permissive growth conditions. Indeed, many extra-ribosomal functions are triggered under stress 

conditions, and participate in the coordination between ribosome biogenesis and cell homeostasis (cf. 

Introduction chapter III.B). It would thus be interesting to test whether the uL11 mutants display 

altered resistance to stresses that affect ribosome biogenesis, for instance by raising them with specific 

food diets. 

Is the function of uL11 lysine 3 methylation strictly transcriptional? 

The prevalence of uL11 lysine 3 methylation was not quantified, but it is thought to be high. Indeed, in 

S. pombe, the methyltransferase that catalyses this modification is unable to methylate uL11 from 

wild-type cell extracts. Its activity could only be detected by incubating it with extracts from ΔSet11 

mutants. It was thus proposed that most, if not all uL11, is methylated in S. pombe under steady-state 

conditions (Sadaie et al., 2008). Consistently, we could detect the presence of uL11K3me3 in all 

ribosomal fractions. It is worthy to consider that Corto is found both in the nucleus and in the 

cytoplasm, enabling the possibility that it would interact with ribosome-bound uL11.  

As mentioned previously, the lysine 3 of ribosome-bound uL11 is exposed at the surface of the 

ribosome (Fig. 33). The whole N-terminal domain of uL11 is located at the base of the P stalk of the 

ribosome. It is known to be labile and to change its conformation at all steps of the elongation cycle. 

Importantly, it is bound by elongation and termination factors during translation (cf. Introducton 

chapter IV.A.2). It is likely that the binding of Corto to methylated lysine 3 would sterically interfere 

with the binding of elongation or termination factors. While the binding of Corto to the ribosome 

remains but a possibility, our team observed that CycG associates to the same ribosomal fractions as 

uL11 in S2 cells. It is not known whether this association occurs through physical interaction with uL11, 

but suggests that there is merit in investigating the possibility. 

Indeed, a recent study demonstrated that the ribosome is bound by numerous proteins, which are 

likely to affect its properties (Simsek et al., 2017). Several roles could be proposed: Corto or CycG may 

repress translation by excluding elongation factors from the GTPase centre of the ribosome. 

Alternatively, they might promote or repress the translation of specific mRNA. Noteworthily, the P 

stalk of the ribosome binds only at the onset of translation elongation. Thus, the immediate 

neighbourhood of uL11 in free 60S subunits is remarkably accessible for protein-protein interactions. 

In addition, the lysine 3 of uL11 is located near the intersubunit interface. In addition, Corto was shown 

to bind specific regions of both the 18S and 28S rRNA. One could thus imagine that CycG, Corto or 

other factors may bind to uL11 and promote the association of free 60S subunits to a subset of 43S 

initiation complexes. Performing ribosome profiling experiments in the uL11 mutants would likely be 

very informative about this possibility. 

uL11 as an amplifier of ribosome biogenesis? 

Many extra-ribosomal functions have been identified to regulate ribosome biogenesis. However, most 

of them are involved in its repression. Metabolic stresses, or cues that impair ribosome biogenesis 

trigger the release of r-proteins, which in turn supress the production of surnumerary ribosome 

components. An extra-ribosomal function of uL11 in activation of ribosome biogenesis implies the 

existence of an amplification loop, and goes against this paradigm. Indeed, uL11K3me3 is expected to 

increase its own abundance together with ribosome components. Specifically, it implies that the 

release of uL11 from the nucleolus or the ribosome, unlike other r-proteins, is not a sign of metabolic 

distress. 

Several layers of safety are dedicated to preventing r-proteins from accumulating out of the ribosomal 

component. They are often escorted to the nucleolus, where they are retained. Additionally, they are 

quickly degraded in the nucleoplasm (cf. Introduction chapter III.B.1). Not much is known about the 
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peculiar case of uL11, though. Because it is hardly ever present in crystal structures of the eukaryotic 

ribosome, data about its incorporation are very indirect. The situation has been emphatetically 

summarized: "Data on the assembly of [uL11] ... are both scarce and contradictory …" (Francisco-Velilla 

et al., 2013). A few peculiarities have been discovered though. Unlike other r-proteins, uL11 is 

imported into the nucleolus by the importin-11 pathway (Plafker and Macara, 2002). In addition, its 

depletion only causes a minor delay in the maturation of the 60S subunit  (de la Cruz et al., 2015). Thus, 

it is possible that uL11 would be less constrained to assemble into the ribosome than other r-proteins. 

If it were to be the case, ribosome-free uL11 could accumulate under normal conditions. 

However, it seems very likely that the extra-ribosomal function of uL11 would be the target of 

regulatory events. Indeed, our lab demonstrated that Corto is phosphorylated in response to the 

activation of the MAPK pathway (Mouchel-Vielh et al., 2011). Three potential phosphorylation sites 

have been predicted, two of which are located within the chromodomain. Such phosphorylations could 

regulate the localization, conformation, or protein interactions of Corto. The MAPK pathway is 

activated in response to growth signals, and is a positive regulator of ribosome biogenesis (cf. 

Introduction chapter II.A.1). Thus, one could expect this post-translational modification to enhance its 

function in activating ribosome biogenesis gene transcription. Such a mechanism would couple the 

regulation of ribosome biogenesis and the sensing of metabolic cues, through the extra-ribosomal 

function of uL11.  
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Appendix 
 

Cyclin G and the Polycomb Repressive Complexes PRC1 and PR-DUB cooperate for 

developmental stability. 
 

   A. Overview 
 
Among the protein partners of Corto, Cyclin G met particular attention from our team. Indeed, the 

expression of a short version lacking its C-terminal PEST-rich sequence (CycGΔP) generates a very 

unusual phenotype in flies: fluctuating asymmetry (FA). Indeed, while a low level of stochastic 

asymmetry can be detected in any population, the expression of CycGΔP was shown to increase it 

nearly forty-fold (Debat et al., 2011). 

z  

Figure 64. The fluctuating asymmetry phenotype. 
Left panel: Overexpression of a version of CycGΔP induces extreme asymmetry of the wings, as can be seen by 
the superposition of the left and right wings of an individual. Adapted from (Debat et al., 2011). Middle and 
right panels: examples of the distribution of the wing size difference (right minus left) in a population with low 
fluctuating asymmetry (middle) and one where it is higher (right). The values of the (right minus left) wing size 
differences follow a normal distribution within a population. Fluctuating asymmetry is quantified as the 
variance of this distribution. Adapted from (Dupont, 2015). 

Since fluctuating asymmetry measures the organ size variation within individuals (albeit at the level 

of a population), it cannot be attributed to environmental or genetic variations. Rather, it results 

from the intrinsic stochasticity of development. Indeed, generation of an adult organ such as the 

wing requires a myriad of biological reactions. Whether it is the binding of a ligand to a receptor, the 

transcription of a gene, or the death of a cell, all of them are subject to a level of randomness. The 

fact that the final organs are so consistent in spite of all this stochasticity betrays the existence of a 

system that buffers developmental noise. While the exact nature of this system remains unclear, it is 

called developmental stability. The observed surge of fluctuating asymmetry suggests that ectopic 

expression of CycGΔP interferes with developmental stability, providing a unique opportunity to 

investigate its genetic bases. 

Our team observed that the deletion of the N-terminal domain of CycGΔP reduces its ability to 

generate FA by half. This domain underlies the interaction between CycGΔP and Corto. Thus, our team 

asked whether Corto and other epigenetic factors would be instrumental to CycGΔP-mediated 

induction of fluctuating asymmetry. Indeed, genetic interaction experiments showed that CycGΔP-

induced FA is significantly increased by mutations of the PRC1 and PR-DUB complexes, but not by 

that of PRC2. Since CycG was shown to behave as an enhancer of Polycomb-group genes, it was 
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hypothesized that its role in the regulation of transcription could underlie the fluctuating asymmetry 

phenotype (Dupont et al., 2015). 

To further characterize this role in transcription, our team generated RNA-seq data for the 

expression of CycGΔP, from the wing discs of third instar female larvae.  I then analysed it to find 

genes that were differentially expressed as compared to a control genotype (w1118). A set of 530 de-

regulated genes was identified, whose analysis by gene ontology revealed its enrichment in genes 

involved in translation and energy production. 

To determine whether their regulation was directly mediated by CycG, our team produced ChIP-seq 

data for Myc-CycGΔP from third instar female larvae wing discs. I analysed these data and established 

that CycG is significantly enriched over 889 target genes, where it binds at the TSS. Gene ontology 

analysis showed that they are enriched in GO terms “translation” and “phosphorylation”. To 

determine whether CycG could cooperate with Polycomb-group genes in the regulation of 

transcription, I recovered ChIP-seq data sets generated in the same tissue for Calypso, ASX, PC, PH, 

PSC, RNAPolII and H3K27me3. and analysed whether these are associated with CycG over the whole 

genome. To this end, I updated the coordinates of the author-designated enrichment regions to the 

current genome coordinates. I then assessed the significance of their overlap with CycG-enriched 

regions with a genomic association test (GAT software). This analysis found that CycG significantly co-

localized with ASX, PC, PH, PSC, and RNAPolII, but was significantly excluded from H3K27me3-

enriched regions. To confirm whether these conclusions also apply to gene regions, I then assessed 

the significance of the overlap between the lists of genes enriched for CycG and for other factors. 

Consistently, CycG-bound genes were found to significantly overlap with ASX, PC, PH, PSC, and 

RNAPolII bound genes. 

Altogether, these results suggest that CycG directly regulates a set of genes among which translation-

related genes are enriched. Interestingly, many of these are described as targets of members of the 

PRC1 and PR-DUB complexes. Since CycG associates with those over the whole genome, and 

genetically behaves as an Enhancer of PcG gene, it is tempting to speculate that they cooperate in 

the regulation of gene expression. Furthermore, mutations for members of PRC1 and PR-DUB 

complexes significantly increase the fluctuating asymmetry phenotype, which suggests that indeed, 

the transcriptional regulation of these genes plays a role in developmental stability. 

   B. Article 
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ABSTRACT 

In Drosophila, ubiquitous expression of a short Cyclin G isoform generates extreme 

developmental noise estimated by fluctuating asymmetry (FA), providing a model to tackle 

developmental stability. This transcriptional cyclin interacts with chromatin regulators of the 

Enhancer of Trithorax and Polycomb (ETP) and Polycomb families. This led us to investigate 

the importance of these interactions in developmental stability. Deregulation of Cyclin G 

highlights an organ intrinsic control of developmental noise, linked to the ETP-interacting 

domain, and enhanced by mutations in genes encoding members of the Polycomb Repressive 

complexes PRC1 and PR-DUB. Deep-sequencing of wing imaginal discs deregulating CycG 

reveals that high developmental noise correlates with up-regulation of genes involved in 

translation and down-regulation of genes involved in energy production. Most Cyclin G direct 

transcriptional targets are also direct targets of PRC1 and RNAPolII in the developing wing. 

Altogether, our results suggest that Cyclin G, PRC1 and PR-DUB cooperate for developmental 

stability.   
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INTRODUCTION 

 

Developmental stability has been described as the set of processes that buffer disruption of 

developmental trajectories for a given genotype within a particular environment (Palmer, 

1994). In other words, developmental stability compensates the random stochastic variation of 

processes at play during development. Many mechanisms working from the molecular to the 

whole organism levels contribute to developmental stability (Nijhout and Davidowitz, 2003). 

For example, chaperones, such as heat-shock proteins, participate in developmental stability 

in a large variety of developmental processes by protecting misfolded proteins from 

denaturation (Feder and Hofmann, 1999; Queitsch et al., 2002; Rutherford et al., 2007). In 

Drosophila melanogaster, adjustment of cell growth to cell proliferation is essential to 

developmental stability by allowing to achieve a consistant organ size (e.g. wing size) in spite 

of variation in cell size or cell number (Debat et al., 2011; Debat and Peronnet, 2013). 

 Developmental noise, the “sum” of the stochastic part of each developmental process, 

can be observed macroscopically for morphological traits. In bilaterians, quantification of 

departure from perfect symmetry, the so-called fluctuating asymmetry (FA), is the most 

commonly used index to estimate developmental noise (Van Valen, 1962; Palmer and 

Strobeck, 1992). Indeed, the two sides of bilaterally symmetrical traits are influenced by the 

same genotype and environmental conditions, and differences between them are thus only 

due to developmental noise. The use of FA as an index of developmental noise makes analysis 

of the mechanistic and genetic bases of developmental stability compatible with custom 

genetic and molecular approaches of developmental biology. 

 The evolutionary role of developmental stability is subject to many speculations (e.g. 

Dongen, 2006) as its genetic bases remain unclear (for reviews see Leamy and Klingenberg, 

2005; Debat and Peronnet, 2013). Experiments showing the role of Hsp90 in buffering genetic 

variation led to the idea that developmental stability could be ensured by specific genes 

(Rutherford and Lindquist, 1998; Milton et al., 2003; Debat et al., 2006; Yeyati et al., 2007; 

Sangster et al., 2008). On the other hand, both theory and experiments show that complex 

genetic networks can become intrinsically robust to perturbations, notably through negative 

and positive feedbacks, suggesting that the topology of gene networks is of paramount 

importance for developmental stability (Barabasi and Albert, 1999; Siegal and Bergman, 2002; 

Newman, 2003; Kitano, 2004). Several authors have further suggested that hubs, i.e. the most 

connected genes in these networks, might be particularly important for developmental stability 

(Rutherford et al., 2007; Levy and Siegal, 2008). 
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In Drosophila, mutants for dILP8 and hid, two genes involved in the control of systemic 

growth and apoptosis respectively, have been reported to display high FA as compared to wild 

type flies from the same genetic background (Garelli et al., 2012; Colombani et al., 2012; Neto-

Silva et al., 2009), suggesting that these genes are important for developmental stability. Two 

studies have scanned the Drosophila genome for regions involved in developmental stability 

using FA as an estimator of developmental noise (Breuker et al., 2006; Takahashi et al., 2011). 

Several deletions increased FA but the genes responsible for this effect inside the deletions 

were not identified. Nevertheless, these studies confirm that the determinism of developmental 

stability could well be polygenic, as suggested by Quantitative Trait Loci analyses in mouse 

(Leamy et al., 2002; Leamy et al., 2005; Leamy et al., 2015). Together, these data reinforce 

the idea that developmental stability depends on gene networks.  

 We have shown that the gene Cyclin G (CycG) of Drosophila melanogaster, which 

encodes a protein involved in transcriptional regulation and in the cell cycle, is important for 

developmental stability (Salvaing et al., 2008a; Faradji et al., 2011; Debat et al., 2011; Dupont 

et al., 2015). Indeed, ubiquitous expression of a short Cyclin G version lacking the C-terminal 

PEST-rich domain (CycGΔP) generates a very high FA in several organs, notably in the wing. 

Interestingly, FA induced by CycGΔP expression correlates with high variability in cell size and 

loss of correlation between cell size and cell number, suggesting that the noisy process would 

somehow be connected to cell cycle related cell growth (Debat et al., 2011). Hence, CycG 

deregulation provides a convenient sensitized system to tackle the impact of cell growth 

variability on developmental stability. 

 We previously showed that CycG encodes a transcriptional cyclin and interacts with 

genes of the Polycomb-group (PcG), trithorax-group (trxG), and Enhancer of Trithorax and 

Polycomb (ETP) families (Salvaing et al., 2008a; Salvaing et al., 2008b; Dupont et al., 2015) . 

These genes encode evolutionary conserved proteins assembled into large multimeric 

complexes that bind chromatin. They ensure maintenance of gene expression patterns during 

development (for recent reviews see Grossniklaus and Paro, 2014; Kingston and Tamkun, 

2014; Geisler and Paro, 2015). PcG genes are involved in long-term gene repression, whereas 

trxG genes maintain gene activation and counteract PcG action. ETP genes encode co-factors 

of both trxG and PcG genes, and behave alternatively as repressors or activators of target 

genes (Gildea et al., 2000; Grimaud et al., 2006; Beck et al., 2010). More recently, we 

discovered that CycG behaves as an Enhancer of Polycomb regarding homeotic gene 

regulation suggesting that it is involved in the silencing of these genes (Dupont et al., 2015). 

Importantly, Cyclin G physically interacts with the ETP proteins Additional Sex Comb (ASX) 

and Corto via its N-terminal ETP-interacting domain, and co-localizes with them on polytene 

chromosomes at many sites (Salvaing et al., 2008a; Dupont et al., 2015) . Hence, Cyclin G 
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and these ETPs might share many transcriptional targets and might in particular control cell 

growth via epigenetic regulation of genes involved in growth pathways. 

 Here, we investigate in depth the role of CycG in developmental stability. We first show 

that localized expression of CycGΔP in wing imaginal discs is necessary and sufficient to induce 

high FA of adult wings. Furthermore, this organ-autonomous effect increases when the ETP-

interacting domain of Cyclin G is removed. We show that several mutations for PcG or ETP 

genes, notably those encoding members of the PRC1 and PR-DUB complexes, substantially 

increase CycG-induced FA. Next, we report analysis of the transcriptome of wing imaginal 

discs expressing CycGΔP by RNA-seq and find that transcriptional deregulation of genes 

involved in translation and energy production correlates with high FA of adult wings. By ChIP-

seq, we identify Cyclin G binding sites on the whole genome in wing imaginal discs. Strikingly, 

we observe a significant overlap with genes also bound by ASX, by the Polycomb Repressive 

complex PRC1, and by RNAPolII in the same tissue. We identify a sub-network of 222 genes 

centred on Cyclin G showing simultaneous up-regulation of genes involved in translation and 

down-regulation of genes involved in mitochondrial activity and metabolism. Taken together, 

our data suggest that Cyclin G and the Polycomb complexes PRC1 and PR-DUB cooperate in 

sustaining developmental stability. Precise regulation of genes involved in translation and 

energy production might be important for developmental stability. 

 

 

RESULTS 

 

Expression of CycGΔP in wing precursors is necessary and sufficient to induce high 

wing FA 

We previously reported that expression of CycG deleted of the PEST-rich C-terminal domain 

(amino-acids 541 to 566) (CycGΔP) under control of ubiquitous drivers (da-Gal4 or Actin-Gal4) 

generated extremely high FA, notably in wings (Debat et al., 2011) (Figure 1). The strength of 

this effect was unprecedented in any system or trait. Expression of CycGΔP thus provides a 

unique tool to investigate developmental stability in depth. To determine whether wing FA was 

due to local or systemic expression of CycGΔP, we tested a panel of Gal4 drivers specific for 

wing imaginal discs or neurons. A brain circuit which relays information for bilateral growth 

synchronization was recently identified (Vallejo et al., 2015). It notably involves a pair of 

neurons expressing the dILP8 receptor that connects with the insulin-producing cells (IPCs) 
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and the prothoracicotropic hormone (PTTH) neurons. This circuit was particularly appropriate 

to test the existence of a remote effect of CycGΔP expression in generating high FA in the wing. 

Expression of CycGΔP in this circuit (using dilp3-, NPF-, pdf-, per-, phm- and R19B09-Gal4 

drivers) did not increase FA of adult wings (Figure 2 and Table 1). Furthermore, expression of 

CycGΔP in cells of the future wing hinge using the ts-Gal4 driver did not affect wing FA either. 

By contrast, expressing CycGΔP with 5 different wing pouch drivers (nub-, omb-, rn-, sd- and 

vg-Gal4) induced high FA. We thus concluded that CycGΔP-induced wing FA was due to an 

intrinsic response of the growing wing tissue. 

 

The Cyclin G ETP interacting domain sustains developmental stability 

The 566 amino-acid Cyclin G protein exhibits 3 remarkable domains: the ETP-interact-

ing domain (amino-acids 1 to 130) that physically interacts with the ETPs Corto and 

ASX, a cyclin domain (amino-acids 287 to 360) that presents high similarity with the 

cyclin domain of vertebrate G-type cyclins, and a PEST-rich domain (amino-acids 541 

to 566) (Salvaing et al., 2008a; Faradji et al., 2011; Dupont et al., 2015). To test 

whether the interaction with ETPs (and thus transcriptional regulation by Cyclin G) 

could be important to control FA, we generated new transgenic lines enabling to ex-

press different versions of the CycG cDNA: CycGFL (encoding the full-length protein), 

CycGΔE (encoding an ETP-interacting domain deleted protein), CycGΔP (encoding a 

PEST domain deleted protein), and CycGΔEΔP (encoding an ETP-interacting plus PEST 

domain deleted protein). In order to express these different cDNAs at the same level 

and compare the amounts of FA induced, all transgenes were integrated at the same 

site using the PhiC31 integrase system (at position 51C on the second chromosome). 

Expression of these transgenic lines was ubiquitously driven by da-Gal4. We first con-

firmed that expression of CycGΔP induced very high FA as compared to yw and da-

Gal4/+ controls. Furthermore, expression of CycGFL also significantly increased FA, 

although to a much lesser extent. Interestingly, expression of either CycGΔE or 

CycGΔEΔP significantly increased FA as compared to CycGFL or CycGΔP, respectively 

(Figure 3 and Table 2). These results show that the ETP interacting domain tends to 

limit Cyclin G-induced FA and suggest that the interaction between Cyclin G and chro-

matin regulators sustains developmental stability. 
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CycG and PcG or ETP genes interact for developmental stability 

We next addressed genetic interactions between CycG and PcG or ETP genes for 

developmental stability. The alleles used are listed in Table 3. FA of flies heterozygous for PcG 

and ETP loss of function alleles was not significantly different from that of control flies. 

However, when combined with a da-Gal4, UAS-CycGΔP chromosome, many of these 

mutations significantly increased wing FA as compared to da-Gal4, UAS-CycGΔP flies (Figure 

4 and Table S1). This was notably the case for alleles for PRC1 and PR-DUB encoding genes, 

the PcG genes Sex comb extra (Sce1, Sce33M2 and SceKO4), calypso (caly1 and caly2), Sex 

comb on midleg (ScmD1), Polycomb (Pc1), and polyhomeotic (ph-p410 and ph-d401ph-p602). No 

modification of CycGΔP-induced FA was observed with the Psc1 allele. However, this allele has 

been described as a complex mutation with both loss and gain of function features (Adler et 

al., 1989). 

 Opposite effects were observed for different alleles of the ETPs Asx and corto. Asx22P4 

increased da-Gal4, UAS-CycGΔP FA whereas AsxXF23 decreased it. AsxXF23 behaves 

genetically as a null allele but has not been molecularly characterized (Simon et al., 1992), 

whereas the Asx22P4 allele does not produce any protein and thus likely reflects the effect of 

loss of ASX (Scheuermann et al., 2010). Similarly, the cortoL1 allele increased CycGΔP-induced 

FA whereas the corto420 allele had no effect. In order to characterize these corto alleles, we 

combined them with the Df(3R)6-7 deficiency that uncovers the corto locus, amplified the 

region by PCR and sequenced it. The corto420 allele corresponds to a substitution of 14,209 

nucleotides starting at position -59 upstream of the corto Transcriptional Start Site (TSS) by a 

30-nucleotide sequence. Hence, this allele does not produce any truncated protein. By 

contrast, cortoL1 corresponds to a C towards T substitution that introduces a stop codon at 

position +73 downstream the TSS, generating a 24 amino-acid polypeptide. cortoL1 might then 

behave as a dominant-negative mutation. Lastly, no modification of CycGΔP-induced FA was 

observed for E(z)63 and esc21. 

 Interestingly, Asx and caly encode proteins of the Polycomb Repressive complex PR-

DUB whereas Pc, ph, Sce and Scm encode proteins of the Polycomb Repressive complex 

PRC1, and E(z) and esc encode proteins of the Polycomb Repressive complex PRC2. Taken 

together, these results indicate that Cyclin G interacts with the Polycomb complexes PRC1 

and PR-DUB, but not with PRC2, for developmental stability.  

 

Expression of CycGΔP or CycGΔEΔP does not modify the bulk of H2AK118ub 

Cyclin G binds polytene chromosomes at many sites and co-localizes extensively with PH and 
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ASX suggesting a potential interaction with the PRC1 and PR-DUB complexes on chromatin 

(Salvaing et al., 2008a; Dupont et al., 2015). The two genes Sce and caly encode antagonistic 

enzymes of the PRC1 and PR-DUB complexes, respectively. SCE, aka dRing, ubiquitinates 

histone H2A on lysine 118 (H2AK118ub) whereas Calypso, aka dBap1, is the major 

deubiquitinase of the same H2A residue (Scheuermann et al., 2010; Scheuermann et al., 

2012). To investigate whether Cyclin G was related to these ubiquitin ligase/deubiquitinase 

activities, we immunostained polytene chromosomes from w1118 larvae with anti-Cyclin G and 

anti-human H2AK119ub antibodies (homologous to Drosophila H2AK118ub) (Pengelly et al., 

2015). Cyclin G and H2AK118ub co-localized extensively on chromosome arms suggesting 

that Cyclin G transcriptional activity might somehow be connected to the presence of this 

histone mark (Figure 5A). However, when either CycGΔP or CycGΔEΔP was expressed in the 

posterior compartment of wing imaginal discs using the en-Gal4 driver, the global amount of 

H2AK118ub was not markedly modified (Figure 5B, Figure 5C). We thus concluded that high 

FA was not related to a global perturbation of H2AK118 ubiquitination level. 

 

Cyclin G controls the expression of genes involved in translation and energy production 

Cyclin G controls the transcription of the homeotic gene Abdominal-B and more specifically 

behaves as an Enhancer of PcG gene in the regulation of homeotic gene expression (Salvaing 

et al., 2008b; Dupont et al., 2015). However, the high number of Cyclin G binding sites on 

polytene chromosomes suggests that this cyclin has many other transcriptional targets. We 

thus hypothesized that the high FA induced by expression of CycGΔP might be related to the 

deregulation of Cyclin G transcriptional targets. To further address the role of Cyclin G in 

transcriptional regulation, we deep-sequenced the transcripts from wing imaginal discs of da-

Gal4, UAS-CycGΔP/+ and da-Gal4/+ third instar larvae. Sequence reads were aligned with the 

Drosophila melanogaster genome to generate global gene expression profiles. We performed 

differential analyses to obtain expression changes for da-Gal4, UAS-CycGΔP/+ as compared 

to the da-Gal4/+ control. With an adjusted p-value threshold of 0.05, we retrieved 530 genes 

whose expression was significantly different between the two genotypes (Table S2). 

Surprisingly, expression of CycG was only weakly induced in da-Gal4, UAS-CycGΔP/+ imaginal 

discs as compared to da-Gal4/+ imaginal discs (1.3 fold). In order to test the hypothesis that 

Cyclin G could directly or not, induce its own repression, we designed primers in the 3’UTR to 

measure expression of the endogenous CycG gene. Indeed, expression of endogenous CycG 

was significantly decreased when CycGΔP was expressed (Figure 6A and Table S3). Among 

the 530 genes deregulated in da-Gal4, UAS-CycGΔP/+ imaginal discs, 216 were up-regulated 

and 314 down-regulated. Analysis of Gene Ontology (GO) revealed that up-regulated genes 
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were enriched in the categories cytoplasmic translation and translational initiation whereas 

down-regulated genes were enriched in the category mitochondrial respiratory chain complex 

(Figure 6B and Table S4). By RT-qPCR, we verified that several ribosomal protein genes 

(RpL15, RpL7 and Rack1) were over-expressed in da-Gal4, UAS-CycGΔP/+ imaginal discs 

(Figure 6C and Table S5). 

 In conclusion, CycG-induced fluctuating asymmetry correlates with activation of genes 

involved in translation and repression of genes involved in energy production. 

 

Cyclin G binds the Transcriptional Start Sites of many genes also bound by PRC1 and 

ASX 

In order to determine the direct transcriptional targets of Cyclin G, we analysed by ChIP-seq 

the genome-wide binding sites of Cyclin G in +/ UAS-Myc-CycGΔP; da-Gal4/+ imaginal discs. 

889 genes with significant peaks at the transcriptional start site (TSS) were recovered (Table 

S6 and Figures 7A and 7B). ChIP-qPCR analysis of Cyclin G binding on RPL7, RPL5, and 

Rack1 confirmed that Cyclin peaked on the TSS of these genes and decreased on the gene 

body (7C and Table S7). Furthermore, Cyclin G bound its own TSS almost significantly. We 

then analysed the binding of Cyclin G on its own gene by ChIP-qPCR and verified the presence 

of Cyclin G on its TSS (Figure 7C and Table S7). As endogenous CycG was down-regulated 

when CycGΔP was expressed, this suggests that Cyclin G represses its own promoter. 

 The 889 Cyclin G-bound genes were enriched in GO categories cytoplasmic translation 

and protein phosphorylation (Figure 7D). Comparison of the 530 genes deregulated in imaginal 

discs expressing CycGΔP with the 889 genes presenting a peak at the TSS showed that only 

62 genes were both deregulated (39 up- and 23 down-regulated) and bound by Cyclin G (Table 

S8). Strikingly, the 39 up-regulated genes were significantly enriched in the GO category 

translation (GO:0002181~cytoplasmic translation, 14 genes, enrichment score: 11.84, 

adjusted p-value 2.07E-16). 

 Using published datasets, we analysed the correlation between regions bound by 

Cyclin G in +/UAS-Myc-CycGΔP; da-Gal/+ imaginal discs and those bound by PRC1, PR-DUB 

or RNAPolII, or enriched in H3K27me3, in wild type wing imaginal discs (Table S9). Cyclin G-

bound regions were significantly exclusive from H3K27me3, corroborating polytene 

chromosome immunostainings (Dupont et al., 2015). The same comparisons were performed 

gene-wise and gave the same results. Notably, 80% of Cyclin G-bound genes were bound by 

RNAPolII (Figure 8). Considering RNAPolII as a proxy for transcriptional activity, we concluded 

that Cyclin G-bound genes were located in open chromatin and were either paused or 



 
   231 
 

transcribed. However, Cyclin G-bound genes were also significantly enriched in PRC1 target 

genes. Given that PRC1 has the ability to block transcriptional initiation (Dellino et al., 2004), 

it suggests that Cyclin G-bound genes were most probably paused. Cyclin G also shared many 

target genes with ASX but, though ASX and Calypso belong to the PR-DUB complex, Cyclin 

G did not share binding sites with Calypso. This indicates either that the interaction between 

Cyclin G and ASX destabilizes the PR-DUB complex or that it takes place outside PR-DUB.  

 

Cyclin G is central in the wing imaginal disc network 

These genome-wide analyses indicate that Cyclin G coordinates the expression of genes 

involved in translation and energy production. However, only a few Cyclin G-bound genes were 

deregulated in da-Gal4, UAS-CycGΔP/+ imaginal discs. To better understand how Cyclin G 

orchestrates target gene expression, we developed a systems biology approach. We first built 

an interactome based on genes expressed in control da-Gal4/+ wing imaginal discs (with a 

cutoff of 10 reads). Edges corresponding to protein-protein interactions (PPI) and transcription 

factor-gene interactions (PDI) were integrated into this interactome through DroID (Murali et 

al., 2011). The resulting wing imaginal disc interactome, further called the WID network, was 

composed of 9,966 nodes (proteins or genes) connected via 56,133 edges (interactions) 

(WID.xmml file). We then examined the position of Cyclin G in this network. Betweenness 

centrality - i.e. the total number of non-redundant shortest paths going through a certain node 

– is a measure of centrality in a network (Yu et al., 2007). A node with a high betweenness 

centrality could control the flow of information across the network (Yamada and Bork, 2009). 

With 8.32E-03, Cyclin G had one of the highest value of betweenness centrality of the network, 

ranking at the 30th position among the 9,966 nodes. This suggests that Cyclin G represents a 

hub in the WID network. 

 In order to isolate a connected component of the WID network that showed significant 

expression change when CycGΔP is expressed, we introduced the expression matrix describing 

expression of the 530 significantly deregulated genes in the WID network. We next used 

JactiveModules to identify sub-networks of co-deregulated genes (Ideker et al., 2002). A 

significant sub-network of 222 nodes and 1069 edges centred on Cyclin G was isolated (Z 

score 48.53). This sub-network was laid out according to functional categories (Figure 9A, 

CycG_subnetwork.xmml). Four modules composed of genes respectively involved in 

transcription, mitochondrial activity, translation, and metabolism, were found to be highly 

connected to Cyclin G. Strikingly, the “translation” module was mainly composed of genes up-

regulated in da-Gal4, UAS-CycGΔP/+ wing imaginal discs. On the contrary, the “mitochondrion” 

and “metabolism” modules were mainly composed of genes down-regulated in da-Gal4, UAS-
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CycGΔP/+ wing imaginal discs. Hence, high fluctuating asymmetry of da-Gal4, UAS-CycGΔP/+ 

flies correlated positively with the expression of genes involved in translation and negatively 

with the expression of genes involved in energy production and metabolism. Interestingly, 

Cyclin G-bound genes in this sub-network were enriched in genes bound by the PRC1 proteins 

PC, PH and PSC, as well as by RNAPolII, and to a lesser extent by ASX (Figure 9B). 

 

DISCUSSION  

The CycG gene of Drosophila melanogaster encodes a cyclin involved in transcriptional 

control, cell growth and the cell cycle (Salvaing et al., 2008; Faradji et al., 2011). Mild 

overexpression of a cDNA encoding Cyclin G deleted of a short C-terminal sequence 

potentially involved in Cyclin G degradation (a PEST-rich domain; da-Gal4, UAS-CycGΔP/+) 

induces high fluctuating asymmetry (FA), notably of wings (Debat et al., 2011). Under 

laboratory conditions (i.e. low environmental variation combined with near isogenic lines), this 

FA should mainly result from developmental noise (Debat and Peronnet, 2013). Thus, da-Gal4, 

UAS-CycGΔP flies provide a unique tool to investigate the genetic bases of developmental 

stability. Cyclin G interacts physically with two chromatin regulators of the Enhancers of 

Trithorax and Polycomb family (ETP), and genetically with many Polycomb-group (PcG) and 

trithorax-group (trxG) genes (Dupont et al., 2015). This prompted us to re-examine CycG-

induced developmental stability, notably by testing the effect of chromatin regulator mutations, 

and to investigate deeply the role of Cyclin G in transcriptional regulation. 

 

Cyclin G maintains developmental stability through an organ-autonomous process that 

involves the PRC1 and PR-DUB complexes 

In Drosophila very few mutations have been shown to induce an abnormally high FA. Among 

them are mutations of the gene encoding the Drosophila insulin-like peptide 8 (Dilp8). Dilp8 

participates in systemic coordination of growth. Being produced in growing tissues, it is 

secreted into the haemolymph and regulates hormone production via a well-identified neuronal 

circuit (Parker and Shingleton, 2011; Garelli et al., 2012; Colombani et al., 2012). Notably, the 

neurons that produce Lgr3, the Dilp8 receptor, have been identified, and inactivation of Lgr3 

in these neurons also induces high FA. We investigated here the role of CycG in this process 

by deregulating it in the different modules of the circuit. CycG-induced wing FA only occured 

when the deregulation was local, i.e. in wing imaginal discs. More particularly, deregulation of 

CycG in the Lgr3 neurons did not increase FA. We cannot exclude that Cyclin G induces 

expression of a systemic factor that is dumped into the haemolymph. However, neither Dilp8 
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nor any other insulin-like peptide gene were found deregulated in da-Gal4, UAS-CycGΔP wing 

imaginal discs. Altogether, these observations suggest that CycG maintains developmental 

stability through an autonomous mechanism which would not involve the systemic Dilp8/Lgr3 

pathway. Such a mechanism recalls Garcia-Bellido’s Entelechia model which proposes that 

local interactions between wing imaginal disc cells, or populations of these cells, orchestrate 

their own proliferation in order to generate an adult organ of constant size and shape, 

independently of global cues (García-Bellido and García-Bellido,1998; García-Bellido 2009). 

 Expression of Cyclin G deleted of the ETP interacting domain doubles FA as compared 

to expression of Cyclin G with this domain, irrespective of whether the PEST domain is present 

or not. Hence, the interaction between Cyclin G and chromatin regulators might somehow 

participate in developmental stability. To test this hypothesis, we combined the da-Gal4, UAS-

CycGΔP chromosome and ETP or PcG mutations. We observed that mutations of the PRC1 

and PR-DUB encoding genes strongly increase FA. Moreover, many of the genes that are 

bound by Cyclin G in wing imaginal discs are also bound by PRC1 and by ASX. Altogether 

these observations suggest that transcriptional regulation of target genes shared by Cyclin G, 

PRC1 and ASX is of paramount importance for developmental stability. We did not observe 

any significant overlap between Cyclin G-bound genes and binding sites for Calypso, the 

second component of PR-DUB. Yet, caly mutations strongly increase CycG-induced FA. Thus, 

the role of PR-DUB in this context remains to be clarified. 

 PRC1 and PR-DUB contain antagonistic enzymes (SCE/dRing and Calypso) that 

respectively ubiquitinates and deubiquitinates H2A on lysine 118 in Drosophila (lysine 119 in 

human). Cyclin G co-localizes extensively with H2AK118ub on polytene chromosomes. 

However, no modification in the global level of H2AK118 ubiquitination was detected in tissues 

where Cyclin G isoforms were expressed. It was recently shown that canonical PRC1 accounts 

for only a small fraction of global H2AK118ub, most of this ubiquitination being due to 

L(3)73Ah, a homolog of mammalian PCGF3 (Lee et al., 2015). Altogether, our data suggest 

that H2AK118ub is not involved in developmental stability and rather support the importance 

of the interaction between Cyclin G and canonical PRC1 in this process. It is tempting to 

speculate that PRC1 and PR-DUB are partners in the ubiquitination/deubiquitination of an 

unknown protein important for developmental stability.  

 

Regulation of growth during the cell cycle might be a factor of developmental stability  

Additional evidence further connects developmental stability to growth regulation during the 

cell cycle. Indeed, CycG-induced developmental noise is associated with high variance in cell 
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size along with loss of correlation between cell size and cell number (Debat et al., 2011). As 

Cyclin G is involved in the control of growth in G1 phase of the cell cycle (Faradji et al., 2011), 

this supports the hypothesis that a mechanism linked to the regulation of cell cycle-dependent 

growth is essential for developmental stability (Debat et al., 2011). The fact that genes 

deregulated in wing imaginal discs deregulating CycG are involved mainly in translation, 

energy production and metabolism, strengthens this hypothesis. 

 It was shown that promoters of actively transcribed genes, notably GAPDH and several 

ribosomal protein genes, are bookmarked by ubiquitination during mitosis (Arora et al., 2012; 

Arora et al., 2015). This mechanism would allow post-mitotic resumption of their transcription 

at the very beginning of the G1 phase. Ubiquitination of these genes correlates with active 

histone marks such as H3K4me3 and H3K36me3 but not with the repressive histone mark 

H3K27me3. The enzymes responsible for this ubiquitination are the vertebrate PSC homolog 

BMI1, and Ring1A, one of the SCE/dRing homologs (Arora et al., 2015). In vertebrates, the 

major PRC1 component that catalyzes H2A ubiquitination is not Ring1A but its homolog 

Ring1B suggesting that the role of BMI1 and Ring1A in molecular bookmarking are 

independent of PRC1, and that BMI1 and Ring1A ubiquitinate another chromatin protein (Arora 

et al., 2015). In Drosophila, this role might be played by PRC1 and SCE/dRing. Cyclin G is 

exclusive of H3K27me3, and binds the promoter of many ribosomal protein genes (Dupont et 

al., 2015 and the present work). Furthermore, CycG deregulation impairs G1 phase 

progression and cell growth (Faradji et al., 2011). Lastly, the highest FA is observed when 

Cyclin G lacking the PEST domain, a potential ubiquitination site, is expressed. Hence, an 

exciting hypothesis would be that Cyclin G is ubiquitinated by PRC1, or PSC and SCE/dRing 

outside PRC1, thus releasing the transcriptional standby of active genes at the end of mitosis. 

In agreement with this, we found that genes involved in metabolism and mitochondrial activity 

are down-regulated in the CycGΔP context. However, we observed at the same time that 

ribosomal protein genes are up-regulated which should rather promote growth. This 

foreshadows a complex relationship between Cyclin G and the PRC1 and PR-DUB complexes 

in the cell cycle-dependent regulation of these genes and appeals to the use of a more 

integrative, systems biology, approach.  

 

Fine-tuned regulation of genes involved in translation, metabolism and mitochondrial 

activity is necessary for developmental stability 

Cyclin G appears central in a small regulatory sub-network that connects genes involved in 

metabolism, mitochondrial activity and translation. Besides, many of Cyclin G’s direct 

transcriptional targets in this network are also targets of PRC1 and RNAPolII, and to a lesser 
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extent of ASX. Interestingly, it was recently shown by a large scale analysis of the Drosophila 

wing imaginal disc proteome that wing size correlates with some basic metabolic functions, 

positively with glucose metabolism and negatively with mitochondrial activity, but not with 

ribosome biogenesis (Okada et al., 2016). In agreement with this, we report here that many 

genes involved in basic metabolism, such as for example Gapdh1, Gapdh2 or Jafrac1, are 

down-regulated in the CycGΔP context, which also agrees with the small mean size of CycGΔP 

flies, organs and cells. However, while mitochondrial genes are negatively regulated, 

ribosomal biogenesis genes are simultaneously positively regulated. Although transcriptome 

variations are probably not a direct image of proteome variations, our data suggest that 

robustness of wing size correlates with the fine-tuning of these key functions relative to each 

other. 

 

Noisiness of gene expression as a source of developmental noise 

Cyclin G, PRC1 and PR-DUB are mainly involved in the regulation of transcription. An exciting 

hypothesis would be that alteration of developmental stability is due to the noisy transcription 

of their shared targets. CycG-induced high FA is associated with high variability of cell size, 

that might be due to variability in expression of target genes which are mainly involved in 

growth control. Phenotypic variations in isogenic populations of both prokaryotic and 

eukaryotic cells may indeed result from stochastic gene expression mechanisms (McAdams 

and Arkin, 1997). An increasing corpus of data suggests that the process of gene regulation 

per se can strongly affect variability in gene expression among adjacent cells (for a review see 

Sanchez et al., 2013). Transcriptional noise may arise at all steps of transcription. For example, 

the architectural features of promoters have clear effects on mRNA and protein fluctuations in 

a population of genetically identical cells (Sanchez et al., 2013). RNA polymerase II pausing 

during elongation is also a source of transcriptional noise (Rajala et al., 2010). In particular, 

H3K36 methylation, that is related to transcriptional elongation, prevents spurious cryptic 

transcription from within the gene body (Venkatesh et al., 2012). Recently, activity of the 

Polycomb complex PRC2 was shown to be important to prevent spurious transcription of 

inactive genes and to suppress pervasive transcription of intergenic regions (Lee et al., 2015). 

Mutations of E(z) and esc that encode two PRC2 members had no effect on CycG-induced 

FA. Dysfunction of PRC2-dependent spurious transcription control is thus unlikely to be the 

cause of any CycG-induced developmental noise. Nevertheless, a similar but weaker effect on 

intergenic transcription was attributed to PRC1 (Lee et al., 2015). The binding of Cyclin G on 

many TSS is rather in favor of a role in limiting noisy initiation of transcription. Interestingly, in 

several cases, noise in gene expression specifically concerns a subset of genes (Weinberger 
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et al., 2012). For example, H3K36 methylation hinders cryptic transcription in a subclass of 

genes involved in longevity in S. cerevisiae and C. elegans (Sen et al., 2015). It is thus tempting 

to speculate that cooperation between Cyclin G and the PRC1 and PR-DUB complexes is 

important to prevent spurious transcription of genes involved in growth in the broad sense. It 

will be very interesting to address these points in the future. 

 

MATERIAL AND METHODS 

 

Plasmids 

The pPMW-attB plasmid was built as follows: Gateway® vector pPMW (Invitrogen, a gift from 

T. Murphy; (Huynh and Zieler, 1999) was linearized by digestion with NsiI; the attB sequence 

was amplified from pUASTattB (Bischof et al., 2007) using primers attB-NsiIF and attB-NsiIR 

(Table S10) and the PCR product was digested with NsiI; the digested PCR product and the 

linearized plasmid were ligated and sequenced. This plasmid was deposited at Addgene 

(plasmid # 61814). 

 The full-length CycG cDNA (CycGFL, encoding the 566 amino-acid protein) was 

amplified from S2 cell cDNAs using primers CycGnF and CycGnR. cDNAs encoding truncated 

forms of Cyclin G (CycGΔP, Cyclin G deleted of the putative PEST domain corresponding to 

amino-acids 542 to 566; CycGΔE, Cyclin G deleted of the ETP-interacting domain 

corresponding to amino-acids 1 to 130; CycGΔEΔP, Cyclin G deleted of both domains) were 

amplified from the full-length CycG cDNA using primers CycGnF and CycG541R, CycG130F 

and CycGnR, and CycG130F and CycG541R, respectively (Table S10 and Dupont et al., 

2015). The PCR products were cloned into pENTR/D-TOPO® (Invitrogen), transferred into 

pPMW-attB and the resulting plasmids pPMW-attB-CycGFL, pPMW-attB-CycGΔP, pPMW-attB-

CycGΔE, pPMW-attB-CycGΔEΔP were sequenced. 

 

Drosophila melanogaster strains and genetics 

Flies were raised on standard yeast-cornmeal medium at 25°C. 

 Myc-CycG transgenic lines were obtained by PhiC31-integrase mediated insertion into 

strain y1M{vas-int.Dm}ZH-2Aw*;M{3xP3-RFP.attP'}ZH-51C (stock BL-24482). Plasmids 

pPMW-attB-CycGFL, pPMW-attB-CycGΔP, pPMW-attB-CycGΔE and pPMW-attB-CycGΔEΔP were 

injected into embryos, G0 adults were back-crossed to yw, and G1 transformants were crossed 
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to yw again to obtain G2 transformants (BestGene Inc.). Transformants were individually 

crossed with yw; Sp/CyO, and the curly wing siblings were crossed with each other. 

Homozygous transgenic lines were then obtained by crossing 5 females and 5 males. The 

resulting lines were named UAS-Myc-CycGFL, UAS-Myc-CycGΔP, UAS-Myc-CycGΔE and UAS-

Myc-CycGΔEΔP. 

 Gal4 drivers used were daughterless-Gal4 (da-Gal4) (Wodarz et al., 1995), nubbin-

Gal4 (nub-Gal4), optomotor-blind-Gal4 (omb-Gal4), rotund-Gal4 (rn-Gal4), scalloped-Gal4 

(sd-Gal4), teashirt-Gal4 (tsh-Gal4), vestigial-Gal4 (vg-Gal4) (from the Bloomington Drosophila 

stock center), and Insulin-like peptide 3-Gal4 (dILP3-Gal4), neuropeptide F-Gal4 (NPF-Gal4), 

Pigment-dispersing factor-Gal4 (Pdf-Gal4), period-Gal4 (per-Gal4), phantom-Gal4 (phm-

Gal4), Prothoracicotropic hormone-Gal4 (Ptth-Gal4), R10B09-Gal4, kind gifts from Dr Maria 

Dominguez’s lab (Ferres-Marco et al., 2006). 

 The da-Gal4, UAS-CycGΔP third chromosome, obtained by recombination of da-Gal4 

with the original UAS-CycGΔP transgene (RCG76), was used to test genetic interactions 

between CycG and several PcG or ETP mutations (Dupont et al., 2015). Alleles used are 

described in (Soto et al., 1995; Beuchle et al., 2001;Salvaing et al., 2006; Gaytán de Ayala 

Alonso et al., 2007; Fritsch et al., 2003; Gutiérrez et al., 2012) (Table 3).  

 For fluctuating asymmetry (FA) analyses, five replicate crosses were performed for 

each genotype, wherein 6 females carrying a Gal4 driver were mated with 5 males carrying a 

CycG transgene. Parents were transferred into a new vial every 48 h (three times) then 

discarded. Thirty females were sampled from the total offspring of the desired genotype. For 

genetic interactions with PcG or ETP mutants, crosses were performed similarly except that 6 

PcG or ETP mutant females were mated either with 5 da-Gal4, UAS-CycGΔP males, or with 

da-Gal4 males as control. 

 

Morphometrics 

Right and left wings of 30 sampled females were mounted on slides, dorsal side up, in Hoyer’s 

medium. Slides were scanned with a Hamamatsu Nanozoomer Digital Slide scanner, running 

the Nanozoomer software with a 20x objective and an 8-bit camera. Wing pictures were 

separately exported into tif format using NDP.view and the 5x lens. All wings were oriented 

with the hinge to the left. Image J was used to digitize 15 landmarks or only landmarks 3 and 

13 when indicated (Figure 1B). All wings were measured twice. Analysis of size FA was 

performed as described previously using the Rmorph package (Debat et al., 2011). The FA10 

index was used as FA estimator, i.e. FA corrected for measurement error, directional 
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asymmetry and inter-individual variation (Palmer and Strobeck, 1992). For all genotypes, the 

interaction individual*side was significant, indicating that FA was larger than measurement 

error. F-tests were performed to compare the different genotypes. 

 

RNA-seq experiments and RT-qPCR validations 

Wing imaginal discs from da-Gal4/UAS-CycGΔP and da-Gal4/+ third instar female larvae were 

dissected, and total RNAs were extracted as previously described except that 150 discs 

homogenized by pipetting were used for each extraction (Coléno-Costes et al., 2012). Three 

biological replicates (wing imaginal discs dissected from three independent crosses) were 

generated for each genotype. Library preparation and Illumina sequencing were performed at 

the Ecole Normale Supérieure Genomic Platform (Paris, France). Messenger (polyA+) RNAs 

were purified from 1 µg of total RNA using oligo(dT). Libraries were prepared using the strand 

specific RNA-Seq library preparation TruSeq Stranded mRNA kit (Illumina). Libraries were 

multiplexed by 6 on 2 flowcell lanes. A 50 bp single read sequencing was performed on a 

HiSeq 1500 device (Illumina). A mean of 38.1 ± 4.8 million reads was obtained for each of the 

6 samples (Table S11). They were aligned with the Drosophila melanogaster genome (dm6, 

r6.07) using TopHat 2 (v2.0.10) (Kim et al., 2013). Unambiguously mapping reads (a mean of 

24.9 ± 4.9 million reads) were then assigned to genes and exons described by the Ensembl 

BDGP5 v77 assembly, by using the “summarizeOverlaps” function from the 

“GenomicAlignments” package (v 1.2.2) in “Union” mode (Lawrence et al., 2013). Library size 

normalization and differential expression analysis were both performed with DESeq 2 (v 1.6.3) 

and genes with adjusted p-value below 0.05 were retained as differentially expressed (Love et 

al., 2014). Gene Ontology analysis was performed using DAVID (Huang et al., 2009; Huang 

et al., 2009). 

 For RT-qPCR validations, RNAs were extracted from wing imaginal discs and treated 

with Turbo DNAse (Ambion), and cDNA were synthesized with SuperScript II Reverse 

transcriptase (Invitrogen) using random primers. RT-qPCR experiments were carried out in a 

CFX96 system (Bio-Rad) using SsoFast EvaGreen Supermix (Bio-Rad). Two biological 

replicates (cDNA from wing imaginal discs of larvae coming from independent crosses) and 

three technical replicates (same pool of cDNA) per biological replicate were performed for each 

genotype. Expression levels were quantified with the Pfaffl method (Bustin et al., 2009). The 

geometric mean of two reference genes, Lamin (Lam) and rasputin (rin), the expression of 

which did not vary when CycGΔP was expressed, was used for normalization (Vandesompele 

et al., 2002). Sequences of primer couples are listed in Table S10. 
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 An interactome was built using Cytoscape (v 2.8.3) and the DroID plugin (v 1.5) to 

introduce protein-protein and transcription factor-gene interactions (Murali et al., 2011). The 

jActiveModules plugin (v 2.23) was used to find sub-networks of co-deregulated genes in the 

interactome by using “overlap threshold” 0.8, “score adjusted for size”, and “regional scoring” 

(Ideker et al., 2002). 

 

ChIP-seq experiments and ChIP-qPCR validations 

Wing imaginal discs from +/UAS-Myc-CycGΔP; +/da-Gal4 and +/da-Gal4 third instar female 

larvae were used for chromatin immunoprecipitation (ChIP). 

 For ChIP-seq experiments, 600 wing imaginal discs were dissected (taking one disc 

per larva) in Schneider medium and aliquoted per 50 in 1.5 mL microtubes on ice. The 12 

microtubes were treated as described in (Coléno-Costes et al., 2012) with minor modifications. 

Discs were fixed at 22°C. 12 sonication cycles were performed (Diagenode Bioruptor sonifier; 

cycles of 30'' ON, 30'' OFF, high power). After centrifugation, the 12 supernatants were pooled, 

homogenized, and 2% were removed (Input). The remaining fragmented chromatin was 

redistributed into 12 tubes and each tube was adjusted to 1 mL with 140 mM NaCl, 10 mM 

Tris-HCl pH 8.0, 1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% BSA, Roche 

complete EDTA-free protease inhibitor cocktail). For immunoprecipitation, 3 µg of anti-Myc 

antibody (Abcam 9132) were added per tube. Two biological replicates were performed.  

 Library preparation and Illumina sequencing were performed at the Ecole normale 

superieure Genomic Platform (Paris, France). Libraries were prepared using NEXTflex ChIP-

Seq Kit (Bioo Scientific), using 38 ng of IP or Input DNA. Libraries were multiplexed by 10 on 

one flowcell run. A 75 bp single read sequencing was performed on a NextSeq 500 device 

(Illumina). Reads were filtered by the "fastq_quality_filter" command from the "fastx-Toolkit" 

package (http://hannonlab.cshl.edu/fastx_toolkit/), using a threshold of 90% bases with 

mapping quality ≥ 20. A mean of 55.6 ± 15.2 million reads was obtained for each of the 4 

samples (Table S12). Reads that successfully passed the filtering step were aligned to the 

Drosophila genome (dm6, r6.07) using Bowtie 2 (http://bowtie-bio.sourceforge.net/bowtie2/) 

(v2.1.0) with default parameters (Langmead and Salzberg, 2012). Peaks were called by 

MACS2 (v2.1.0) by comparing each ChIP to its input library, with fragment size fixed at 110 bp 

and otherwise default parameters (Zhang et al., 2008). Peak reproducibility between the two 

biological replicates was then analysed with the IDR method 

(https://www.encodeproject.org/software/idr/) (Li et al., 2011). Briefly, an IDR score was 

assigned to each peak by the "batch-consistency-analysis" function, using the recommended 
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parameters for MACS peaks (peak ranking based on p-value). Peaks below the 0.05 threshold 

were considered reproducible. The overlapping reproducible peaks from both replicates were 

fused using the BEDtools suite "merge" function (Quinlan and Hall, 2010), resulting in the final 

list of peaks kept for subsequent analysis. Cyclin G-bound genes were defined as genes from 

the genome annotation file (dm6, r6.07) which overlapped at least one of these Cyclin G peaks, 

as obtained by the BEDtools suite "intersect" function (Quinlan and Hall, 2010). 

 For ChIP-qPCR validations, ChIP were performed similarly with the anti-Myc antibody. 

Rabbit IgG (Diagenode) were used as a negative control (mock). qPCR experiments were 

carried out in a CFX96 system (Bio-Rad) using SsoFast EvaGreen Supermix (Bio-Rad). Three 

biological replicates – three technical replicates per biological replicate - were performed for 

each antibody and for the Input. Sequences of primer couples are listed in Table S10. Data 

were normalized against Input chromatin.  

 Heatmaps and aggregation plots of Cyclin G signal over gene bodies and Transcription 

Start Sites (TSS) were generated using the ngsplot package. (https://github.com/shenlab-

sinai/ngsplot) (Shen et al., 2014). Some genes with spurious signal (such as genes from the 

histone complex) were excluded from the analysis based on signal uniformity over the full 

length of the gene (cumulative derivative of Cyclin G signal over gene length = 0). 

 

Data access 

High-throughput sequencing data have been submitted to Gene Expression Omnibus. 

Accession numbers for RNA-seq data: GSE99462, GSM2644389, GSM2644390, 

GSM2644391, GSM2644392, GSM2644393, GSM2644394. 

Accession number for ChIP-seq data: GSE99461, GSM2644385, GSM2644386, 

GSM2644387, GSM2644388. 

Genomic association 

Genomic loci enriched for Polycomb (PC), Posterior Sex Comb (PSC), Polyhomeotic (PH), 

RNA Polymerase II (RNAPolII) and H3K27me3 in wild type imaginal discs of third instar larvae 

were retrieved from GEO (GSE42106) (Schaaf et al., 2013) (H3K27me3_WholeWingDisc 

GSM1032567, PcRJ_AnteriorWingDisc GSM1032571, PcRJ_PosteriorWingDisc 

GSM1032574, Ph_WholeWingDisc GSM1032576, PolII_WholeWingDisc GSM1032577, 

Psc_WholeWingDisc GSM1032578. Binding sites for PC in the whole wing disc were defined 

as the overlap between PC binding sites in the anterior and posterior wing disc compartment, 

as obtained by the BEDtools "intersect" function. For ASX and Calypso, the bed files were a 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1032567
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1032571
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1032574
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1032576
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1032577
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1032578
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kind gift from Dr. Jürg Müller (Scheuermann et al., 2010). The mappability file for dm6 genome 

with 25 nt reads (the smallest size in the compared data) was generated using the Peakseq 

code (http://archive.gersteinlab.org/proj/PeakSeq/ Mappability_Map/Code/). The overall size 

of the mappable genome was used as the effective genome size for the GAT software 

(https://github.com/AndreasHeger/gat) to assess the significance of the overlap between 

peaks of Cyclin G and other factors (Heger et al., 2013). As GAT performs a two-tailed test, it 

displays low p-values both for significant overlap and exclusion (as between Cyclin G and 

H3K27me3). 

 Gene overlap significance assessment was made as follows: under the null hypothesis, 

genes that are enriched for ASX, Calypso, PC, PSC, PH, RNAPolII or H3K27me3 in wild type 

imaginal discs of third instar larvae should not exhibit any bias towards Cyclin G targets. Thus, 

the overlap between n enriched genes and K Cyclin G targets genes should be explained by 

random sampling without replacement of n genes within the total amount N of Drosophila 

melanogaster genes. The amount of overlap under the null hypothesis X follows a 

hypergeometric law: 𝑋~𝐻𝑌(𝐾, 𝑁, 𝑛). The significance of the observed overlap k was computed 

as the probability of observing X higher or equal to k under the null hypothesis: P(X ≥ k ).  
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Figures 

 

Figure 1: Acquisition of morphometric data. 

A – Superimposition of the left and right wings of a sample of da-Gal4, UAS-CycGΔP flies (left 

wings in red, right wings in green) showing high asymmetry. 

B - Red dots show the 15 landmarks digitized on the wings. FA10 was computed using these 

landmarks obtained from the left and right wings of at least 30 females randomly sampled from 

the population as described (Debat et al., 2011). 
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Figure 2: Local deregulation of CycG induces high fluctuating asymmetry. 

A – Wing length fluctuating asymmetry (FA10) of females bearing a Gal4 driver either 

associated with UAS-CycGΔP (dark orange) or alone (light orange). Wing length was measured 

as the distance between landmarks 3 and 13. (F-tests, *** p-value<0.001-. (Source data are 

provided in Table 1_Source_Data.xls). 

B – Expression of the driver genes in 3rd instar larva wing imaginal discs (dark grey) and central 

nervous system (light grey) as indicated in modENCODE  (Graveley et al., 2011). 
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Figure 3: The ETP interacting domain limits CycG-induced fluctuating asymmetry 

A – Centroid size fluctuating asymmetry (FA10) of females da-Gal4/+ (+), +/UAS-Myc-CycGFL;  

da-Gal4/+, (CycGFL) and +/UAS-Myc-CycGΔE; da-Gal4, (CycGΔE). 

B – Centroid size fluctuating asymmetry (FA10) of females da-Gal4/+ (+), +/ UAS-Myc-CycGΔP; 

da-Gal4/+ (CycGΔP) and +/UAS-Myc- CycGΔEΔP; da-Gal4/+ (CycGΔEΔP). 

(F-tests, *** p-value<0.001). 

(Source data are provided in Table 2_Source_Data.xls). 

Wing centroid size was calculated using the 15 landmarks described in Figure 1B. 
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Figure 4: CycG interacts with several PcG and ETP genes for developmental stability. 

Centroid size fluctuating asymmetry (FA10) of ETP or PcG heterozygous mutant females 

combined with da-Gal4, UAS-CycGΔP (dark orange; da-Gal4, UAS-CycGΔP; PcG/+ or da-Gal4, 

UAS-CycGΔP; ETP/+) and ETP or PcG heterozygous mutant females combined with da-Gal4 

(light orange; da-Gal4/+; PcG/+ or da-Gal4; ETP/+). In brown (+), centroid size fluctuating 

asymmetry of da-Gal4, UAS-CycGΔP/+ and da-Gal4/+ females. (Source data are provided in 

Table 3_Source_Data.xls). 

(F-tests, *p-value<0.05; ** p-value<0.01; *** p-value<0.001). 



 
   246 
 

 

Figure 5: Cyclin G co-localizes with H2AK118ub at many sites on polytene 

chromosomes; expression of CycGΔP does not modify the bulk of H2AK118ub. 

A, A’, A” – Immunostaining of polytene chromosomes from w1118 third instar larvae. 

H2AK118ub (red), Cyclin G (green), DAPI (blue). A’’’ – Close-up of the box showed in 

A”. 

B, B’ – Wing imaginal discs of 3rd instar larvae expressing CycGΔP in the posterior 

compartment under control of the engrailed-Gal4 driver, stained with anti-Cyclin G 

(green) and anti-H2AK118ub (red).  

C, C’ – Wing imaginal discs of 3rd instar larvae expressing CycGΔEΔP in the posterior 

compartment under control of the engrailed-Gal4 driver, stained with anti-Cyclin G (green) and 

anti-H2AK118ub (red). 
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Figure 6: Genes deregulated in wing imaginal discs expressing CycGΔP. 

A – RT-qPCR analysis of endogenous CycG expression in da-Gal4,UAS-CycGΔP/+ and da-

Gal4/+ wing imaginal discs. Expression of CycG was normalized on the geometric mean of 

Lam and rin (Table S3). Two biological replicates (called 1 and 2) were performed per 

experiment. (t-tests, ** p-value<0.01). Error bars correspond to standard deviation. 

B – Ontology of up-regulated and down-regulated genes in da-Gal4, UAS-CycGΔP/+ versus 

da-Gal4/+ wing imaginal discs. Gene ontology analysis was performed with DAVID (Huang et 
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al., 2009; Huang et al., 2009).  

C – RT-qPCR analysis of RPL15, RPL7 and Rack1 expression in da-Gal4, UAS-CycGΔP/+ and 

da-Gal4/+ wing imaginal discs. . Expression of RPL15, RPL7 and Rack1 were normalized on 

the geometric mean of Lam and rin (Table S5). Two biological replicates (called 1 and 2) were 

performed per experiment. (t-tests, ** p-value<0.01). Error bars correspond to standard 

deviation. (t-tests, ** p-value<0.01; *** p-value<0.001). 
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Figure 7: Identification of Cyclin G genome-wide binding sites in wing imaginal discs. 
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A – Heat-map showing the enrichment of Cyclin G over the Input signal on the TSS of 889 

genes. TSS: Transcriptional Start Site; TES: Transcriptional End Site. 

B – Average profile of Cyclin G signal over these genes shown as an aggregation plot. 

C – ChIP-qPCR analysis of RPL7, RPL5, Rack1 and CycG. IPs were performed either with 

Myc antibody (-Myc) to reveal the presence of Cyclin G, or with rabbit IgG as negative control 

(mock). qPCR were performed using oligonucleotide primers located either at the TSS or in 

the gene body as indicated in Table S1. Error bars represent the coefficient of variation (CV) 

(Table S7). 

D – Ontology of the 889 genes. Gene ontology analysis was performed with DAVID (Huang et 

al., 2009; Huang et al., 2009). 
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Figure 8: Cyclin G shares target genes with PRC1, ASX and RNAPolII but not with 

Calypso. 

Venn diagrams showing the intersection between Cyclin G-bound genes in +/ UAS-Myc-

CycGΔP; da-Gal4/+, wing imaginal discs and PH, PC, PSC, ASX, Calypso and RNApolII in wild-

type wing imaginal discs. 
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Figure 9: Functional subnetwork identified in wing imaginal discs expressing CycGΔP.  

A – Schematic representation of a sub-network of 222 genes centred on Cyclin G and identified 

using JactiveModules (Z score 48.53) (Ideker et al., 2002). In this sub-network, 65 genes were 

up-regulated in da-Gal4, UAS-CycGΔP versus da-Gal4/+ wing imaginal discs (green gradient), 

124 genes were down-regulated (red gradient), and 33 genes were not significantly 

deregulated (grey). Genes bound by Cyclin G are circled in red. Transcription factor genes are 

represented by squares. Genes were clustered depending on their function. Black edges 

correspond to interactions discovered in the present study. Grey edges correspond to 

interactions described in the literature and imported into the WID network using DroID (Murali 

et al., 2011). 

The WID.xmml and CycG_subnetwork.xmml files are provided. 

B – Genes bound by ASX, Calypso, PC, PH, PSC, or RNAPolII, or enriched in H3K27me3 in 

the sub-network are represented in red. 
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n FA10 Df 

 

 

 
UAS-CycGΔP + UAS-CycGΔP + UAS-CycGΔP + F p-value 

nub-Gal4 28 30 59.34 18.80 26.25 26.45 3.1561 2.34E-03 

omb-Gal4 30 30 107.90 36.17 28.41 27.88 2.9829 2.87E-03 

rn-Gal4 30 30 229.69 12.59 28.80 25.30 18.2390 9.60E-11 

sd-Gal4 30 30 101.85 19.83 28.56 26.45 5.1367 3.64E-05 

tsh-Gal4 29 30 15.49 12.32 23.89 22.27 1.2576 2.97E-01 

vg-Gal4 30 30 67.11 20.90 28.45 26.67 3.2107 1.88E-03 

dilp3-Gal4 30 28 23.90 11.51 26.97 23.71 2.0776 4.02E-02 

NPF-Gal4 29 28 13.90 9.90 25.09 22.98 1.4048 2.12E-01 

pdf-Gal4 30 30 22.14 14.75 24.60 25.09 1.5012 1.60E-01 

per-Gal4 28 27 12.69 9.09 23.12 21.53 1.3963 2.23E-01 

phm-Gal4 30 30 13.81 20.18 23.86 27.06 1.4609 1.80E-01 

ptth-Gal4 29 30 17.62 22.14 25.17 26.30 1.2565 3.39E-01 

R19B09-Gal4 30 30 10.76 7.81 23.15 21.87 1.3782 2.32E-01 

 

Table 1: Size fluctuating asymmetry of flies expressing CycGΔP with different Gal4 

drivers. 

Size fluctuating asymmetry was estimated with the FA10 index using landmarks 3 and 13 

(Palmer and Strobeck, 1992) as described previously (Debat et al., 2011). Standard F-tests 

were used to compare FA values between genotypes. Df: degrees of freedom.CycGΔP: cDNA 

encoding the protein deleted of the PEST domain. n: number of females measured. (Source 

data are provided in Table 1_Source_Data.xls). 
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   +/da-Gal4 
 +/UAS-CycGFL;   

da-Gal4/+ 
+/UAS-CycG△E; 

da-Gal4/+ 
+/UAS-CycG△P; 

da-Gal4/+ 

Genotype n FA10 Df F p-value F p-value F p-value F p-value 

da-Gal4/+ 89 3.73E-06 16.37 - -             

+/UAS-CycGFL; 
da-Gal4/+ 

89 2.34E-05 72.82 6.27 9.30E-05 - -         

+/UAS-CycGΔE; 
da-Gal4/+ 

90 4.92E-05 85.78 13.19 4.49E-07 2.10 6.96E-04 - -     

+/UAS-CycGΔP; 
da-Gal4/+ 

111 6.57E-04 108.76 176.01 7.08E-16 28.06 4.52E-35 13.34 6.63E-28 - - 

+/UAS-CycGΔEΔP; 
da-Gal4/+ 

95 1.22E-03 93.28 328.22 5.34E-18 52.32 7.18E-44 24.88 1.12E-37 1.86 9.32E-04 

 

Table 2: Centroid size fluctuating asymmetry of flies expressing different versions of 

Cyclin G.    

Centroid size fluctuating asymmetry was estimated with the FA10 index using the 15 

landmarks (Palmer and Strobeck, 1992) as described previously (Debat et al., 2011). Standard 

F-tests were used to compare FA values between genotypes. Df: degrees of freedom. n: total 

number of females analysed. CycGFL: cDNA encoding the full-length protein;  CycGΔE: cDNA 

encoding a protein deleted of the ETP-interacting domain;  CycGΔP: cDNA encoding a protein 

deleted of the PEST domain;  CycGΔEΔP:  cDNA encoding a protein deleted of both domains 

(Source data are provided in Table 2_Source_Data.xls). 
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Table 3: Polycomb and Enhancer of Polycomb and Trithorax alleles used in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

Class Gene Allele Allele class Reference 

ETP Additional sex combs Asx22P4 no protein detected Scheuermann et al., 2010   
AsxXF23 loss of function Simon et al., 1992  

corto corto420 loss of function Salvaing et al., 2006   
cortoL1 amorphic Salvaing et al., 2006 

PcG calypso caly1 no protein detected Scheuermann et al., 2010  
calypso caly2 no protein detected Scheuermann et al., 2010  
Enhancer of zeste E(z)63 loss of function Beuchle et al., 2001  
extra sexcombs esc21 amorphic Gindhart and Kaufman, 1995  
Polycomb Pc1 amorphic Capdevilla et al., 1986  
polyhomeotic ph-d401ph-p602 null Dura et al., 1987  
polyhomeotic proximal ph-p410 loss of function Dura et al., 1987  
Posterior sex combs Psc1 hypomorphic Adler et al., 1989  
Sex combs extra Sce1 null  Gorfinkiel et al., 2004  
Sex combs extra Sce33M2 loss of function Fritsch et al., 2003  
Sex combs extra SceKO4 null Gutiérrez et al., 2012 

  Sex comb on midleg ScmD1 amorphic McKeon and Brock, 1991, 
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SUPPLEMENTARY DATA 

 

Table S1: Centroid size fluctuating asymmetry of flies expressing CycG△P combined 

with different PcG or ETP mutant all 

Centroid size fluctuating asymmetry was estimated with the FA10 index using the 15 

landmarks (Palmer and Strobeck, 1992) as described previously (Debat et al., 2011). 

Standard F-tests were used to compare FA values between genotypes. Df: degrees of 

freedom. (Source data are provided in Table 3_Source_Data.xls). 

 

Table S2: List of the 530 genes deregulated in da-Gal4/+, UAS-CycG△P wing imaginal 

discs as compared to da-Gal4/+ wing imaginal di 

 

Table S3: Measure of endogenous CycG expression by RT-qPCR. 

AE: amplification efficiency. Expression of RPL15, RPL7 and Rack1 were normalized on the 

geometric mean of Lam and rin. Two biological replicates (called 1 and 2) were performed 

per experiment.  t-tests were performed to compare expression of CycG in da-Gal4, UAS-

CycGΔP/+ and da-Gal4/+ wing imaginal disc. 

 

Table S4: Ontology of genes deregulated in UAS-CycG△P, da-Gal4/+ wing imaginal 

discs. 

 

Table S5: Validation of RNA-seq experiments by RT-qPCR. 

AE: amplification efficiency. Expression of RPL15, RPL7 and Rack1 were normalized on the 

geometric mean of Lam and rin. Two biological replicates (called 1 and 2) were performed 

per experiment. t-tests were performed to compare expression of these genes in da-Gal4, 

UAS-CycGΔP/+ and da-Gal4/+ wing imaginal discs. 

 

Table S6: List of the 889 genes bound by Cyclin G in wing imaginal discs. 
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Table S7: Validation of ChIP-seq experiments by RT-qPCR. 

AE: amplification efficiency. Cq of the Input were adjusted taking dilution into account. 

Results were normalized in comparison to the Input. 

 

Table S8: List of the 62 genes deregulated in da-Gal4, UAS-CycGΔP/+ wing imaginal 

discs and bound by Cyclin G at the TSS. 

 

Table S9: Comparison of fragments bound by Cyclin G with fragments bound by ASX, 

Calypso, PC, PH, PSC, RNAPolII, or enriched in H3K27me3 in 3rd larval instar wing 

imaginal discs. 

 

Table S10: Primers used in this study. 

Coordinates on the Drosophila genome (dm6, r6.13) 

 

Table S11: RNA-seq of wing imaginal discs. 

 

Table S12: ChIP-seq of wing imaginal discs. 
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 Supplementary tables and figures 
 

New nomenclature for proteins from the small ribosome subunit 

New name* Taxonomic range** Bacteria name Yeast name Human name 

bS1 B S1 - - 

eS1 A E - S1 S3A 

uS2 B A E S2 S0 SA 

uS3 B A E S3 S3 S3 

uS4 B A E S4 S9 S9 

eS4 A E - S4 S4 

uS5 B A E S5 S2 S2 

bS6 B S6 - - 

eS6 A E - S6 S6 

uS7 B A E S7 S5 S5 

eS7 E - S7 S7 

uS8 B A E S8 S22 S15A 

eS8 A E - S8 S8 

uS9 B A E S9 S16 S16 

uS10 B A E S10 S20 S20 

eS10 E - S10 S10 

uS11 B A E S11 S14 S14 

uS12 B A E S12 S23 S23 

eS12 E - S12 S12 

uS13 B A E S13 S18 S18 

uS14 B A E S14 S29 S29 

uS15 B A E S15 S13 S13 

bS16 B S16 - - 

uS17 B A E S17 S11 S11 

eS17 A E - S17 S17 

bS18 B S18 - - 

uS19 B A E S19 S15 S15 

eS19 A E - S19 S19 

bS20 B S20 - - 

bS21 B S21 - - 

bTHX B THX - - 

eS21 E - S21 S21 

eS24 A E - S24 S24 

eS25 A E - S25 S25 

eS26 E - S26 S26 

eS27 A E - S27 S27 

eS28 A E - S28 S28 

eS30 A E - S30 S30 

eS31 A E - S31 S27A 

RACK1 E - Asc1 RACK1 
Table S 1. Small subunit r-proteins conversion table 
* b, bacterial; e, eukaryotic; u, universal 
** B, bacteria; A, archaea; E, eukaryotes 

Taken from (Ban et al., 2014).  
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New nomenclature for proteins of the large ribosome subunit 

New name* Taxonomic range** Bacteria name Yeast name Human name 

uL1 B A E L1 L1 L10A 

uL2 B A E L2 L2 L8 

uL3 B A E L3 L3 L3 

uL4 B A E L4 L4 L4 

uL5 B A E L5 L11 L11 

uL6 B A E L6 L9 L9 

eL6 E - L6 L6 

eL8 A E - L8 L7A 

bL9 B L9 - - 

uL10 B A E L10 P0 P0 

uL11 B A E L11 L12 L12 

bL12 B L7/L12 - - 

uL13 B A E L13 L16 L13A 

eL13 A E - L13 L13 

uL14 B A E L14 L23 L23 

eL14 A E - L14 L14 

uL15 B A E L15 L28 L27A 

eL15 A E - L15 L15 

uL16 B A E L16 L10 L10 

bL17 B L17 - - 

uL18 B A E L18 L5 L5 

eL18 A E - L18 L18 

bL19 B L19 - - 

eL19 A E - L19 L19 

bL20 B L20 - - 

eL20 E - L20 L18A 

bL21 B L21 - - 

eL21 A E - L21 L21 

uL22 B A E L22 L17 L17 

eL22 E - L22 L22 

uL23 B A E L23 L25 L23A 

uL24 B A E L24 L26 L26 

eL24 A E - L24 L24 

bL25 B L25 - - 

bL27 B L27 - - 

eL27 E - L27 L27 

bL28 B L28 - - 

eL28 E - - L28 

uL29 B A E L29 L35 L35 

eL29 E - L29 L29 

uL30 B A E L30 L7 L7 

eL30 A E - L30 L30 

bL31 B L31 - - 

eL31 A E - L31 L31 

bL32 B L32 - - 

eL32 A E - L32 L32 

bL33 B L33 - - 
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New name* Taxonomic range** Bacteria name Yeast name Human name 

eL33 A E - L33 L35A 

bL34 B L34 - - 

eL34 A E - L34 L34 

bL35 B L35 - - 

bL36 B L36 - - 

eL36 E - L36 L36 

eL37 A E - L37 L37 

eL38 A E - L38 L38 

eL39 A E - L39 L39 

eL40 A E - L40 L40 

eL41 A E - L41 L41 

eL42 A E - L42 L36A 

eL43 A E - L43 L37A 

P1/P2 A E - P1/P2 (AB) P1/P2 (αβ) 
Table S 2. Large subunit r-proteins conversion table. 
* b, bacterial; e, eukaryotic; u, universal 
** B, bacteria; A, archaea; E, eukaryotes 

Taken from (Ban et al., 2014). 
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New name Previous name Earlier designations 

eS1 S1A  rp10A  PLC1 

S1B  rp10B  PLC2 

uS2 S0A    NAB1A 

S0B    NAB1B 

uS3 S3 S3 rp13 YS3  

uS4 S9A S13 rp21 YS11  

S9B    SUP46 

eS4 S4A S7A rp5 YS6  

S4B S7B    

uS5 S2 S4 rp12 YS5 SUP44 

eS6 S6A S10A rp9 YS4  

 S6B S10B    

uS7 S5 S2 rp14 YS8  

eS7 S7A  rp30   

S7B     

uS8 S22A S24A rp50 YS22  

S22B S24B    

eS8 S8A S14A rp19 YS9  

S8B S14B    

uS9 S16A  rp61R   

S16B     

uS10 S20    URP2 

eS10 S10A     

S10B     

uS11 S14A  rp59A  CRY1 

S14B  rp59B  CRY2 

uS12 S23A S28A rp37 YS14  

S23B S28B    

eS12 S12 S12    

uS13 S18A     

S18B     

uS14 S29A S36A  YS29  

S29B S36B    

uS15 S13 S27a  YS15  

uS17 S11A S18A rp41A YS12  

S11B S18B rp41B   

eS17 S17A  rp51A   

S17B  rp51B   

uS19 S15 S21 rp52   

eS19 S19A S16aA rp55A YS16A  

S19B S16aB rp55B YS16B  

eS21 S21A S26A    

S21B S26B    

eS24 S24A     

S24B     

eS25 S25A S31A rp45 YS23  

S25B S31B    
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New name Previous name Earlier designations 

eS26 S26A     

S26B     

eS27 S27A  rp61 YS20  

S27B     

eS28 S28A S33A  YS27  

S28B S33B    

eS30 S30A     

S30B     

eS31 S31 S37  YS24 UBI3 

uL1 L1A    SSM1A 

L1B    SSM1B 

uL2 L2A L5A rp8 YL6  

L2B L5B    

uL3 L3 L3 rp1 YL1 TCM1 

uL4 L4A L2A rp2 YL2  

L4B L2B    

uL5 L11A L16A rp39A YL22  

L11B L16B rp39B   

uL6 L9A L8A rp24 YL11  

L9B L8B    

eL6 L6A L17A rp18 YL16  

L6B L17B    

eL8 L8A L4A rp6 YL5  

L8B L4B    

uL10 P0    A0 

uL11 L12A L15A  YL23  

L12B L15B    

uL13 L16A L21A rp22 YL15  

L16B L21B rp23   

eL13 L13A     

L13B     

uL14 L23A L17aA  YL32  

L23B L17aB    

eL14 L14A     

L14B     

uL15 L28 L29 rp44 YL24 CYH2 

eL15 L15A L13A rp15R YL10  

L15B L13B    

uL16 L10    GRC5 

uL18 L5 L1a  YL3  

eL18 L18A  rp28A   

L18B  rp28B   

eL19 L19A L23A rp15L YL14  

L19B L23B    

eL20 L20A L18A    

L20B L18B    

eL21 L21A    URP1 

L21B     
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New name Previous name Earlier designations 

uL22 L17A L20A  YL17  

L17B L20B    

eL22 L22A L1c rp4 YL31  

L22B     

uL23 L25 L25 rp16L YL25  

uL24 L26A L33A  YL33  

L26B L33B    

eL24 L24A L30A rp29 YL21  

L24B L30B    

eL27 L27A     

L27B     

uL29 L35A    SOS1 

L35B    SOS2 

eL29 L29   YL43  

uL30 L7A L6A rp11 YL8  

L7B L6B    

eL30 L30 L32 rp73 YL38  

eL31 L31A L34A  YL28  

L31B L34B    

eL32 L32     

eL33 L33A L37A rp47 YL37  

L33B L37B    

eL34 L34A     

L34B     

eL36 L36A L39  YL39  

L36B     

eL37 L37A L43  YL35  

L37B     

eL38 L38     

eL39 L39 L46  YL40 PUB2 

eL40 L40A    UBI1 

L40B    UBI2 

eL41 L41A L47A  YL41  

L41B L47B    

eL42 L42A L41A  YL27  

L42B L41B    

eL43 L43A     

L43B     

P1 P1A   YP1α A1 

P1B L44’  YP1β Ax 

P2 P2A L44  YP2α A2 

P2B L45  YP2β  
Table S 3. Yeast r-proteins conversion table. 
Please note that small subunit RACK1/Asc1 is not included, as it was not considered a ribosomal protein before 

2004 (Gerbasi et al., 2004). Adapted from (Planta and Mager, 1998). 
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Figure S 1 Schematic representation of the macrochaete pattern on the thorax of a wild type drosphila 
melanogaster thorax. 
aDC and pDC: anterior and posterior dorsocentral bristles (green), aSC and pSC: anterior and posterior scutellar 
bristles (red), aPA: anterior post-alar bristle (in blue). 
The schematic representation of a wild-type macrocheate pattern is juxtaposed to the thorax of a wild-type 
individual. Realised by Heloïse Grunchec.  

 
   

Preliminary observations 
 

K3A ΔK3 K3Y P2QK3R P2LK3E ΔK3F4 

Homozygote viability Sub-viable Sub-viable Viable Viable Viable Lethal 

Developmental delay Dominant Recessive None None None Dominant 

Minute bristles Dominant Recessive ND ND ND Dominant 

Bristle duplications Dominant Recessive ND ND ND Dominant 

Ectopic veins Dominant None Recessive None Recessive ND 

Table S 4. Summary of the phenotypes of uL11 mutants. 
The uL11K3Y, uL11P2QK3R, and uL11P2LK3E alleles were established as homozygous stock lines without isogenisation. 
They were only observed as homozygotes; therefore, it is not known whether any of their phenotypes are 
dominant. The uL11ΔK3F4 allele was established on the SM5 balancer chromosome without isogenisation. ND, No 
Data. 
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Figure S 2. The bristle cell lineage in Drosophila. 
(A) A mechanosensory bristle of Drosophila consisting of four cells: a hair cell, a socket cell, a sheath cell and a 
neuron. (B) Once a sensory organ precursor (SOP) cell has been generated within the proneural cluster in the 
ectoderm it undergoes three rounds of asymmetric cell division to form the different cell types of a sensory 
bristle. The first division gives rise to two cells (IIa and IIb), then IIb divides further into IIIb and into a glial cell 
that undergoes apoptosis. The final division of IIa generates the hair and socket cells (outer cells), while IIIb 
gives rise to a neuron and a sheath cell (inner cells) of the terminally differentiated organ. Asymmetric Notch 
signaling (N) is necessary at each cell division to specify cell fates: the Notch inhibitor Numb is asymmetrically 
distributed between the two daughter cells (orange), resulting in high Notch signaling in one daughter, and low 
activity in the other. Taken from (Koch et al., 2013).
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Translation is an essential metabolic activity in all cells, carried by ribosomes. These large complexes 
are synthetized in the nucleolus, and require the coordinated expression of 4 ribosomal RNA, 80 
ribosomal proteins, and more than 200 assembly factors. Indeed, their biogenesis is both complex and 
expensive, consuming more than half of the energy in proliferating cells. As the cellular need for 
ribosomes varies with environmental or metabolic conditions, it is no surprise that their synthesis is 
tightly regulated in response to a number of cues. Many mechanisms ensure that the intensity of 
ribosome biogenesis is coupled to cell homeostasis. One of them is the ability of ribosomal proteins to 
regulate gene expression at many levels, ranging from the translation specificity to the activation or 
repression of transcription. Many of these functions are performed off the ribosome, and are therefore 
termed extraribosomal. Our team has discovered a new extraribosomal function of ribosomal protein 
uL11 in Drosophila. Indeed, when it is trimethylated on lysine 3 (uL11K3me3), it associates with Corto, 
a transcription factor of the Enhancers of Trithorax and Polycomb family. By studying their genome-
wide binding profile on chromatin in S2 cells, we show that these proteins are distributed along 
different patterns, and that uL11K3me3 specifically binds a subset of active genes enriched in ribosome 
biogenesis components. Additionally, we generated the first genetic alleles for Drosophila uL11 and 
describe the molecular screening method that we employed. Last, we studied the phenotypes of uL11 
alleles that delete or replace lysine 3. We describe that their Minute-like phenotypes suggest an 
essential role for the N-terminal domain of uL11, but that it may not result from the association 
between Corto and uL11K3me3. 

Key words: Translation, Transcription, Epigenetics, Ribosome biogenesis, uL11, RpL12, Corto, 

Homeostasis.  

Contrôle épigénétique de l’homéostasie de la biogenèse des ribosomes 

La traduction est une activité métabolique essentielle dans les cellules, réalisée par les ribosomes. Ces 
particules sont synthetisées dans le nucléole, ce qui nécessite l’expression coordonnée de 4 ARN 
ribosomaux, 80 protéines ribosomales, et plus de 200 facteurs d’assemblage. En effet, leur biogenèse 
est complexe et coûteuse, sollicitant plus de la moitié de l’énergie des cellules en prolifération. La 
quantité de ribosomes requise varie selon les conditions environnementales et métaboliques, et de ce 
fait, leur synthèse est modulée en réponse à de nombreux stimuli. De nombreux mécanismes assurent 
la coordination de la biogenèse des ribosomes et de l’homéostasie cellulaire. L’un d’eux est la capacité 
des protéines ribosomiques à réguler l’expression des gènes à tous les niveaux, depuis la spécificité de 
la traduction jusqu’à l’activation ou la répression transcriptionnelle des gènes. Nombre de ces 
fonctions sont effectuées hors du ribosome et sont donc qualifiées d’extraribosomales. Notre équipe 
a mis en évidence une nouvelle fonction extraribosomale de la protéine ribosomale uL11 chez la 
Drosophile. En effet, quand sa lysine 3 est triméthylée (uL11K3me3), elle interagit avec Corto, un 
facteur de transcription de la famille des Enhancers de Trithorax et Polycomb. En étudiant leur fixation 
à la chromatine, nous avons montré que ces protéines se répartissent différemment à l’échelle du 
génome, et que uL11K3me3 est présente au niveau d’un sous-ensemble de gènes actifs enrichi en 
composants de la biogenèse des ribosomes. De plus, nous avons généré les premiers allèles génétiques 
du gène uL11 chez la Drosophile, et nous décrivons la stratégie de crible moléculaire employée pour 
leur identification. Finalement, nous avons étudié les phénotypes des mutants de uL11 dont la lysine 
3 est délétée ou substituée. Nous décrivons que leurs phénotypes ressemblent à ceux des mutants 
Minute, et suggèrent que le domaine N-terminal de uL11 possède une fonction essentielle, mais peut-
être indépendante de l’association entre uL11K3me3 et Corto. 

Mots clés : Traduction, Transcription, Epigénétique, Biogenèse des ribosomes, uL11, RpL12, Corto, 

Homéostasie.  


