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We define geodesic normal forms for the general series of complex reflection groups G(de, e, n). This requires the elaboration of a combinatorial technique in order to determine minimal word representatives and to compute the length of the elements of G(de, e, n) over some generating set. Using these geodesic normal forms, we construct intervals in G(e, e, n) that give rise to Garside groups. Some of these groups correspond to the complex braid group B(e, e, n). For the other Garside groups that appear, we study some of their properties and compute their second integral homology groups. Inspired by the geodesic normal forms, we also define new presentations and new bases for the Hecke algebras associated to the complex reflection groups G(e, e, n) and G(d, 1, n) which lead to a new proof of the BMR (Broué-Malle-Rouquier) freeness conjecture for these two cases. Next, we define a BMW (Birman-Murakami-Wenzl) and Brauer algebras for type (e, e, n). This enables us to construct explicit Krammer's representations for some cases of the complex braid groups B(e, e, n). We conjecture that these representations are faithful. Finally, based on our heuristic computations, we propose a conjecture about the structure of the BMW algebra.

The aim of this chapter is to give an outline of the thesis and present its main results. We include the necessary preliminaries about the complex reflection groups, the complex braid groups, and the Hecke algebras.

Complex reflection groups

In this section, we provide the definition of a finite complex reflection group and recall the classification of Shephard and Todd of finite irreducible complex reflection groups. We also recall the definition of Coxeter groups and the classification of finite irreducible Coxeter groups.

Let n be a positive integer and let V be a C-vector space of dimension n. Definition 1.1.1. An element s of GL(V ) is called a reflection if Ker(s -1) is a hyperplane and s d = 1 for some d ≥ 2.

Let W be a finite subgroup of GL(V ). Definition 1.1.2. W is a complex reflection group if W is generated by the set R of reflections of W .

We say that W is irreducible if V is an irreducible linear representation of W . Every complex reflection group can be written as a direct product of irreducible ones (see Proposition 1.27 of [START_REF] Lehrer | Unitary reflection groups[END_REF]). Therefore, the study of complex reflection groups reduces to the irreducible case that was classified by Shephard and Todd in 1954 (see [START_REF] Shephard | Finite unitary reflection groups[END_REF]). The classification is as follows.

Proposition 1.1.3. Let W be an irreducible complex reflection group. Then, up to conjugacy, W belongs to one of the following cases:

• The infinite series G(de, e, n) depending on three positive integer parameters d, e, and n (see Definition 1.1.4 below).

• The 34 exceptional groups

G 4 , • • • , G 37 .
We provide the definition of the infinite series G(de, e, n) and some of their properties. For the definition of the 34 exceptional groups, see [START_REF] Shephard | Finite unitary reflection groups[END_REF]. Definition 1.1.4. G(de, e, n) is the group of n × n matrices consisting of monomial matrices (each row and column has a unique nonzero entry), where

• all nonzero entries are de-th roots of unity and

• the product of the nonzero entries is a d-th root of unity. , where I k denotes the identity k × k matrix and ζ l the l-th root of unity that is equal to exp(2iπ/l). The following result can be found in Section 3 of Chapter 2 in [START_REF] Lehrer | Unitary reflection groups[END_REF].

Proposition 1.1.6. The set of generators of the complex reflection group G(de, e, n) are as follows.

• The group G(e, e, n) is generated by the reflections t e , s 1 , s 2 , • • • , s n-1 .

• The group G(d, 1, n) is generated by the reflections u d , s 1 , s 2 , • • • , s n-1 .

• For d = 1 and e = 1, the group G(de, e, n) is generated by the reflections u d ,

t de , s 1 , s 2 , • • • , s n-1 .
Now, let W be a finite real reflection group. By a theorem of Coxeter, it is known that every finite real reflection group is isomorphic to a Coxeter group. The definition of Coxeter groups by a presentation with generators and relations is as follows.

Definition 1.1.7. Assume that W is a group and S be a subset of W . For s and t in S, let m st be the order of st if this order is finite, and be ∞ otherwise. We say that (W, S) is a Coxeter system, and that W is a Coxeter group, if W admits the presentation with generating set S and relations:

• quadratic relations: s 2 The presentation of a Coxeter group can be described by a diagram where the nodes are the generators that belong to S and the edges describe the relations between these generators. We follow the standard conventions for Coxeter diagrams. The classification of finite irreducible Coxeter groups consists of:

-Type A n (the symmetric group S n+1 ): 

s
A n-1 is G(1, 1, n), type B n is G(2, 1, n), type D n is G(2,

Complex braid groups

Let W be a Coxeter group. We define the Artin-Tits group B(W ) associated to W as follows.

Definition 1.2.1. The Artin-Tits group B(W ) associated to a Coxeter group W is defined by a presentation with generating set S in bijection with the generating set S of the Coxeter group and the relations are only the braid relations: st s • • • mst = ts t • • • mst for s, t ∈ S and s = t, where m st ∈ Z ≥2 is the order of st in W .

Consider W = S n , the symmetric group with n ≥ 2. The Artin-Tits group associated to S n is the 'classical' braid group denoted by B n . The following diagram encodes all the information about the generators and relations of the presentation of B n . s1 s2 sn-2 sn-1

Broué, Malle, and Rouquier [START_REF] Broué | Complex reflection groups, braid groups, Hecke algebras[END_REF] managed to associate a complex braid group to each complex reflection group. This generalizes the definition of the Artin-Tits groups associated to real reflection groups. We will provide the construction of these complex braid groups. All the results can be found in [START_REF] Broué | Complex reflection groups, braid groups, Hecke algebras[END_REF].

Let W < GL(V ) be a finite complex reflection group. Let R be the set of reflections of W . There exists a corresponding hyperplane arrangement and hyperplane complement: A = {Ker(s -1) | s ∈ R} and X = V \ A. The complex reflection group W acts naturally on X. Let X/W be its space of orbits and p : X → X/W the canonical surjection. By Steinberg's theorem (see [START_REF] Steinberg | Differential equations invariant under finite reflection groups[END_REF]), this action is free. Therefore, it defines a Galois covering X → X/W , which gives rise to the following exact sequence. Let x ∈ X, we have

1 -→ π 1 (X, x) -→ π 1 (X/W, p(x)) -→ W -→ 1.
This allows us to give the following definition. Definition 1.2.2. We define P := π 1 (X, x) to be the pure complex braid group and B := π 1 (X/W, p(x)) the complex braid group attached to W .

Let s ∈ R and H s its corresponding hyperplane. We define a loop σ s ∈ B induced by a path γ in X. Choose a point x 0 'close to H s and far from the other reflecting hyperplanes'. Define γ to be the path in X that is equal to s.( γ -1 ) • γ 0 • γ where γ is any path in X from x to x 0 , s.( γ -1 ) is the image of γ -1 under the action of s, and γ 0 is a path in X from x 0 to s.x 0 around the hyperplane H s . The path γ is illustrated in Figure 1.1 below.

s • x x H s • • H s ⊥ • • x 0 s • x 0 • 0 γ s.( γ -1 ) γ 0 Figure 1.1: The path γ in X.
We call σ s a braided reflection associated to s. The importance of this construction will appear in Proposition 1.2.4 below. We have the following property for braided reflections (see [START_REF] Broué | Complex reflection groups, braid groups, Hecke algebras[END_REF] for a proof).

Proposition 1.2.3. Let s 1 and s 2 be two reflections that are conjugate in W and let σ 1 and σ 2 be two braided reflections associated to s 1 and s 2 , respectively. We have σ 1 and σ 2 are conjugate in B.

A reflection s is called distinguished if its only nontrivial eigenvalue is exp(2iπ/o(s)), where o(s) is the order of s. One can associate a braided reflection σ s to each distinguished reflection s. In this case, we call σ s a distinguished braided reflection associated to s. We have the following result (see [START_REF] Broué | Complex reflection groups, braid groups, Hecke algebras[END_REF] for a proof). Proposition 1.2.4. The complex braid group B is generated by the distinguished braided reflections associated to all the distinguished reflections in W .

Remark 1.2.5. By a theorem of Brieskorn [START_REF] Brieskorn | Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe[END_REF], the complex braid group associated to a finite Coxeter group W is isomorphic to the Artin-Tits group B(W ) defined by a presentation with generators and relations in Definition 1.2.1.

An important property of the complex braid groups is that they can be defined by presentations with generators and relations. This generalizes the case of complex braid groups associated to finite Coxeter groups (see Remark 1.2.5). Presentations for the complex braid groups associated to G(de, e, n) and some of the exceptional irreducible reflection groups can be found in [START_REF] Broué | Complex reflection groups, braid groups, Hecke algebras[END_REF]. Presentations for the complex braid groups associated to the rest of the exceptional irreducible reflection groups are given in [START_REF] Bessis | Explicit presentations for exceptional braid groups[END_REF], [3], and [START_REF] Malle | Constructing representations of Hecke algebras for complex reflection groups[END_REF].

Hecke algebras

Extending earlier results in [12], Broué, Malle, and Rouquier [START_REF] Broué | Complex reflection groups, braid groups, Hecke algebras[END_REF] managed to generalize in a natural way the definition of the Hecke (or Iwahori-Hecke) algebra for real reflection groups to arbitrary complex reflection groups. Actually, they defined these Hecke algebras by using their definition of the complex braid groups (see Definition 1.2.2). The aim of this section is to provide the definition of the Hecke algebra as well as some of its properties.

Let W be a complex reflection group and B its complex braid group as defined in the previous section. Let R = Z[a s,i , a -1 s,0 ] where s runs among a representative system of conjugacy classes of distinguished reflections in W and 0 ≤ i ≤ o(s) -1, where o(s) is the order of s in W . One can choose one distinguished braided reflection σ s for each distinguished reflection s. The definition of a distinguished braided reflection was given in the previous section. Definition 1.3.1. The Hecke algebra H(W ) associated to W is the quotient of the group algebra RB by the ideal generated by the relations

σ s o(s) = o(s)-1 i=0 a s,i σ s i
where σ s is the distinguished braided reflection associated to s, where s belongs to a representative system of conjugacy classes of distinguished reflections in W .

Remark 1.3.2. By Proposition 1.2.3 and the fact that the relations defining the Hecke algebra are polynomial relations on the braided reflections, the previous definition of the Hecke algebra does not depend on the choice of the representative system of conjugacy classes of distinguished reflections of W , nor on the choice of one distinguished braided reflection for each distinguished reflection. It also coincides with the usual definition of the Hecke algebra (see [START_REF] Broué | Complex reflection groups, braid groups, Hecke algebras[END_REF] and [START_REF] Marin | The freeness conjecture for Hecke algebras of complex reflection groups and the case of the Hessian group G 26[END_REF]).

Remark 1.3.3. When W is a finite Coxeter group with generating set S, the Hecke algebra (also known as the Iwahori-Hecke algebra) associated to W is defined over R = Z[a 1 , a -1 0 ] by a presentation with a generating set Σ in bijection with S and the relations are σ s σ t σ s • • • mst = σ t σ s σ t • • • mst along with the polynomial relations σ 2 s = a 1 σ s +a 0 for all s ∈ S.

An important conjecture (the BMR freeness conjecture) about H(W ) was stated in [START_REF] Broué | Complex reflection groups, braid groups, Hecke algebras[END_REF]: Even without being proven, this conjecture has been used by some authors as an assumption. For example, Malle used it to prove that the characters of H(W ) take their values in a specific field (see [START_REF] Malle | On the Rationality and Fake Degrees of Characters of Cyclotomic Algebras[END_REF]). Note that the validity of this conjecture implies that H(W ) ⊗ R F is isomorphic to the group algebra F W , where F is an algebraic closure field of the field of fractions of R (see [START_REF] Marin | The freeness conjecture for Hecke algebras of complex reflection groups and the case of the Hessian group G 26[END_REF]). Conjecture 1.3.4 is known to hold for real reflection groups (see Lemma 4.4.3 of [35]). Thanks to Ariki and Ariki-Koike (see [1] and [2]), the BMR freeness conjecture holds for the infinite series G(de, e, n). Marin proved the conjecture for G 4 , G 25 , G 26 , and G 32 in [START_REF] Marin | The cubic Hecke algebra on at most 5 strands[END_REF] and [START_REF] Marin | The freeness conjecture for Hecke algebras of complex reflection groups and the case of the Hessian group G 26[END_REF]. Marin [START_REF] Marin | The BMR freeness conjecture for the 2-reflection groups[END_REF]. In her PhD thesis and in the article that followed (see [START_REF] Chavli | The BMR freeness conjecture for exceptional groups of rank 2[END_REF] and [START_REF] Chavli | The BMR freeness conjecture for the tetrahedral and octahedral family[END_REF]), Chavli proved the validity of this conjecture for G 5 , G 6 , • • • , G [START_REF] Chavli | The BMR freeness conjecture for the tetrahedral and octahedral family[END_REF] . Recently, Marin proved the conjecture for G 20 and G 21 (see [START_REF] Marin | Proof of the BMR conjecture for G 20 and G 21[END_REF]) and finally Tsushioka for G 17 , G 18 , and G 19 (see [START_REF] Tsuchioka | BMR freeness for icosahedral family[END_REF]). Therefore, after almost a quarter of a century, a case-by-case proof of this conjecture has been established. Hence we have: Theorem 1.3.5. The Hecke algebra H(W ) is a free R-module of rank |W |.

The reason for recalling the BMR freeness conjecture is that in Chapter 4, a new proof of this conjecture is provided for the general series of complex reflection groups of type G(e, e, n) and G(d, 1, n).

Motivations and main results

It is widely believed that the complex braid groups share similar properties with Artin-Tits groups. One would like to extend what is known for Artin-Tits groups to the complex braid groups. Denote by B(de, e, n) the complex braid group associated to the complex reflection group G(de, e, n).

In this PhD thesis, we are interested in constructing interval Garside structures for B(e, e, n) as well as explicit Krammer's representations that would probably be helpful to prove that the groups B(e, e, n) are linear. The next subsection gives an idea about the interval structures obtained for B(e, e, n). In the second subsection, we talk about the construction of a Hecke algebra associated to each complex reflection group of type G(e, e, n) and G(d, 1, n) and its basis obtained from reduced words in the corresponding complex reflection group. The last subsection is about the construction of Krammer's representations for B(e, e, n).

Garside monoids for B(e, e, n)

Brieskorn-Saito [START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF] and Deligne [START_REF] Deligne | Les immeubles des groupes de tresses généralisés[END_REF] obtained nice combinatorial results for finitetype Artin-Tits groups that generalize some results of Garside in [START_REF] Garside | The theory of knots and associated problems[END_REF] and [START_REF] Garside | The braid group and other groups[END_REF]. They described an Artin-Tits group as the group of fractions of a monoid in which divisibility behaves nicely, and there exists a fundamental element whose set of divisors encodes the entire structure of the group. In modern terminology, these objects are called Garside monoids and groups. Many problems like the Word and Conjugacy problems can be solved in Garside structures with some additional properties about the corresponding Garside group. For a detailed study about Garside monoids and groups, see [START_REF] Dehornoy | Foundations of Garside Theory[END_REF]. Unfortunately, the presentations of Broué, Malle, and Rouquier for B(de, e, n) (except for B(d, 1, n)) do not give rise to Garside structures as it is shown in [START_REF] Corran | On monoids related to braid groups[END_REF] and [START_REF] Corran | Braid groups of imprimitive complex reflection groups[END_REF]. Therefore, it is interesting to search for (possibly various) Garside structures for these groups. For instance, it is shown by Bessis and Corran [4] in 2006, and by Corran and Picantin [26] in 2009 that B(e, e, n) admits Garside structures. It is also shown in [START_REF] Corran | Braid groups of imprimitive complex reflection groups[END_REF] that B(de, e, n) admits quasi-Garside structures (the set of divisors of the fundamental element is infinite). We are interested in constructing Garside structures for B(e, e, n) that derive from intervals in the associated complex reflection group G(e, e, n).

We use the presentation of Corran and Picantin for G(e, e, n) obtained in [26]. The generators and relations of this presentation can be described by the following diagram. Details about this presentation can be found in the next chapter. In [26], it is shown that if we remove the quadratic relations of this presentation, we get a presentation of the complex braid group B(e, e, n) that we call the presentation of Corran and Picantin of B(e, e, n). The first step is to define geodesic normal forms (words of minimal length) for all elements of G(e, e, n) over the generating set of the presentation of Corran and Picantin. This is the main result of Section 2.1 of Chapter 2 where the geodesic normal forms are defined by an algorithm using the matrix form of the elements of G(e, e, n). Moreover, these normal forms are generalized to the case of G(de, e, n) in Section 2.2 of the same chapter.

We will provide an idea about the interval structures for B(e, e, n) obtained in Chapter 3 that follows essentially [START_REF] Neaime | Interval structures for the braid groups B(e, e, n)[END_REF]. First, we equip G(e, e, n) with a left and a right division. The description of a normal form for all elements of G(e, e, n) allows us to determine the balanced elements (the set of left divisors coincide with the set of right divisors) of maximal length and to characterize their divisors (see Theorem 3.2.22). We get e -1 balanced elements of maximal length which we denote by λ, λ 2 , • • • , λ e-1 . Suppose λ k is a balanced element for 1 ≤ k ≤ e -1 and [1, λ k ] is the interval of the divisors of λ k in the complex reflection group. We manage to prove that the interval [1, λ k ] is a lattice for both left and right divisions (see Corollary 3.3.13). This is done by proving a property in Proposition 3.4.2 for each interval [1, λ k ] that is similar to Matsumoto's property for real reflection groups, see [START_REF] Matsumoto | Générateurs et relations des groupes de Weyl généralisés[END_REF]. By a theorem of Michel, see Section 10 of [START_REF] Michel | Groupes finis de réflexion[END_REF], we obtain a Garside monoid M ([1, λ k ]) attached to each interval [1, λ k ]. Moreover, we prove that M ([1, λ k ]) is isomorphic to a monoid that we denote by B ⊕k (e, e, n) and that is defined by a presentation similar to the presentation of Corran and Picantin, see Definition 3.4.1. By B (k) (e, e, n), we denote its group of fractions. One of the important results obtained is the following (see Theorem 3.4.15). B (k) (e, e, n) is isomorphic to B(e, e, n) if and only if k ∧ e = 1.

When k ∧ e = 1, each group B (k) (e, e, n) is described as an amalgamated product of k ∧e copies of the complex braid group B(e ′ , e ′ , n) with e ′ = e/e∧k, over a common subgroup which is the Artin-Tits group B(2, 1, n -1). Furthermore, we compute the second integral homology group of B (k) (e, e, n) using the Dehornoy-Lafont complexes [START_REF] Dehornoy | Homology of Gaussian groups[END_REF] and the method of [START_REF] Callegaro | Homology computations for complex braid groups[END_REF] in order to deduce that B (k) (e, e, n) is not isomorphic to B(e, e, n) when k ∧ e = 1. This is done in Section 3.4 of Chapter 3.

The Garside monoids B ⊕k (e, e, n) have been implemented using the development version of the CHEVIE package for GAP3 (see [START_REF] Michel | The development version of the CHEVIE package of GAP3[END_REF] and [START_REF] Michel | Contribution to the Chevie package[END_REF]). In Appendix A, we explain this implementation and provide an algorithm that computes the integral homology groups of B (k) (e, e, n) by using their Garside structures.

Hecke algebras for G(e, e, n) and G(d, 1, n)

Ariki and Koike [2] proved Conjecture 1.3.4 for the case of G(d, 1, n). Ariki defined in [1] a Hecke algebra for G(de, e, n) by a presentation with generators and relations. He also proved that it is a free module of rank |G(de, e, n)|. The Hecke algebra defined by Ariki is isomorphic to the Hecke algebra defined by Broué, Malle, and Rouquier in [START_REF] Broué | Complex reflection groups, braid groups, Hecke algebras[END_REF] for G(de, e, n) (the details why this is true can be found in Appendix A.2 of [START_REF] Rostam | Cyclotomic quiver Hecke algebras and Hecke algebra of G(r[END_REF]). Hence one gets a proof of Conjecture 1.3.4 for the case of G(de, e, n).

In Chapter 4, we define the Hecke algebra H(e, e, n) associated to G(e, e, n) as the quotient of the group algebra R 0 (B(e, e, n)) by some polynomial relations, where R 0 is a polynomial ring. It is also described by a presentation with generators and relations by using the presentation of Corran and Picantin of B(e, e, n). Similarly, we define the Hecke algebra H(d, 1, n) associated to G(d, 1, n) over a polynomial ring R 0 and describe it by a presentation with generators and relations by using the presentation of the complex braid group B(d, 1, n).

Next, we use the geodesic normal forms obtained in Chapter 2 for G(e, e, n) and G(d, 1, n) in order to provide a nice description for a basis of the corresponding Hecke algebra that is probably simpler than the one obtained by Ariki for the case of G(e, e, n) and by Ariki-Koike for the case of G(d, 1, n). Note that a basis for the Hecke algebra associated with G(d, 1, n) is also given in [START_REF] Bremke | Reduced words and a length function for G(e, 1, n)[END_REF]. Getting a basis for the Hecke algebra from geodesic normal forms is not very surprising since a spanning set for the Hecke algebra in the case of real reflection groups is made from reduced word representatives of the elements of the Coxeter group (see Lemma 4.4.3 of [35]). By Proposition 2.3 (ii) of [START_REF] Marin | Proof of the BMR conjecture for G 20 and G 21[END_REF], the construction of these bases provide a new proof of Theorem 1.3.5 for the general series of complex reflection groups of type G(e, e, n) and G(d, 1, n). We use Proposition 2.3 (i) of [START_REF] Marin | Proof of the BMR conjecture for G 20 and G 21[END_REF] to reduce our proof to find a spanning set of the Hecke algebra over R 0 of cardinal equal to the size of the corresponding complex reflection group. We get Theorems 4.2.1 and 4.3.1 that are the main results of Chapter 4.

Krammer's representations for B(e, e, n)

Both Bigelow [START_REF] Bigelow | Braid groups are linear[END_REF] and Krammer [START_REF] Krammer | The braid group B 4 is linear[END_REF][START_REF] Krammer | Braid groups are linear[END_REF] proved that the classical braid group B n is linear, that is there exists a faithful linear representation of finite dimension of the classical braid group. This result has been extended to all Artin-Tits groups associated to finite Coxeter groups by Cohen and Wales [START_REF] Cohen | Linearity of Artin groups of finite type[END_REF] and Digne [START_REF] Digne | On the linearity of Artin braid groups[END_REF] by generalizing Krammer's representation as well as Krammer's faithfulness proof. Paris proved in [START_REF] Paris | Artin monoids inject in their groups[END_REF] that Artin-Tits monoids inject in their groups (see Definition 1.2.1). This is done by constructing a faithful linear (infinite dimentional) representation for Artin-Tits monoids. The construction of the representation and the proof of the injectivity are based on a generalization of the methods used by Cohen and Wales, Digne, and Krammer. Moreover, a simple proof of the faithfulness of these representations was given by Hée in [START_REF] Hée | Une démonstration simple de la fidélité de la représentation de Lawrence-Krammer-Paris[END_REF]. Note that for the case of the classical braid group B n , the representations of B n occur in earlier work of Lawrence [START_REF] Lawrence | Homological representations of the Hecke algebra[END_REF].

Consider a complex braid group B(de, e, n). For d > 1, e ≥ 1, and n ≥ 2, it is known that the group B(de, e, n) injects in the Artin-Tits group B(de, 1, n), see [START_REF] Broué | Complex reflection groups, braid groups, Hecke algebras[END_REF]. Since B(de, 1, n) is linear, we have B(de, e, n) is linear for d > 1, e ≥ 1, and n ≥ 2. Recall that B(1, 1, n) is the classical braid group, B(2, 2, n) is an Artin-Tits group, and B(e, e, 2) is the Artin-Tits group associated to the dihedral group I 2 (e). All of them are then linear. The only remaining cases in the infinite series are when d = 1, e > 2, and n > 2. This arises the following question: Is B(e, e, n) linear for all e > 2 and n > 2?

A positive answer for this question is conjectured to be true by Marin in [START_REF] Marin | Krammer representations for complex braid groups[END_REF] where a generalization of the Krammer's representation has been constructed for the case of 2-reflection groups. The representation is defined analytically over the field of (formal) Laurent series by the monodromy of some differential forms. It has been generalized by Chen in [18] to arbitrary reflection groups.

Zinno [START_REF] Zinno | On krammer's representation of the braid group[END_REF] observed that the Krammer's representation of the classical braid group B n factors through the BMW (Birman-Murakami-Wenzl) algebra introduced in [START_REF] Birman | Braids, Link polynomials and a new algebra[END_REF][START_REF] Murakami | The kauffman polynomial of links and representation theory[END_REF]. In [START_REF] Cohen | BMW Algebras of simply laced type[END_REF], Cohen, Gijsbers, and Wales defined a BMW algebra for Artin-Tits groups of type ADE and showed that the faithful representation constructed by Cohen and Wales in [START_REF] Cohen | Linearity of Artin groups of finite type[END_REF] factors through their BMW algebra. In [START_REF] Chen | Type Algebras for Arbitrary Coxeter Systems[END_REF], Chen defined a BMW algebra for the dihedral groups, based on which he defined a BMW algebra for any Coxeter group extending his previous work in [START_REF] Chen | Birman-Murakami-Wenzl algebras for general Coxeter groups[END_REF]. He also found a representation of the Artin-Tits groups associated to the dihedral groups. He conjectured that this representation is isomorphic to the generalized Krammer's representation defined by Marin in [START_REF] Marin | Krammer representations for complex braid groups[END_REF] for the case of the dihedral groups.

Inspired by all the previous works, we define a BMW algebra for type (e, e, n) that we denote by BMW(e, e, n), see Definitions 5.2.1 and 5.2.2 of Chapter 5. These definitions are inspired from the monoid of Corran and Picantin of B(e, e, n) and from the definition of the BMW algebras for the dihedral groups given by Chen in [START_REF] Chen | Type Algebras for Arbitrary Coxeter Systems[END_REF] and the definition of the BMW algebras of type ADE given by Cohen, Gijsbers, and Wales in [START_REF] Cohen | BMW Algebras of simply laced type[END_REF]. Moreover, we describe BMW(e, e, n) as a deformation of a certain algebra that we call the Brauer algebra of type (e, e, n) and we denote it by Br(e, e, n), see Definitions 5.2.5 and 5.2.6 of Chapter 5. We prove in Proposition 5.3.13 that Br(e, e, 3) is isomorphic to the Brauer-Chen algebra defined by Chen in [18] when e is odd.

We are able to construct explicit linear (finite dimensional and absolutely irreducible) representations that are good candidates to be called the Krammer's representations for the complex braid groups B(3, 3, 3) and B (4,4,3). They are irreducible representations of the BMW algebras BMW (3,3,3) and BMW (4,4,3), respectively. We use the package GBNP ( [START_REF] Cohen | GBNP package version 1.0.3[END_REF]) of GAP4 and the platform MATRICS ( [START_REF]Plateforme MATRICS[END_REF]) for our heuristic computations. In Chapter 5, we explain how to construct these representations. We conjecture that they are faithful, see Conjecture 5.4.1.

Our method uses the computation of a Gröbner basis from the list of polynomials that describe the relations of BMW(e, e, n). These computations are very heavy for e ≥ 5 when n = 3. However, we were able to compute the dimension of BMW [START_REF] Bessis | Explicit presentations for exceptional braid groups[END_REF][START_REF] Bessis | Explicit presentations for exceptional braid groups[END_REF]3) and BMW(6, 6, 3) over a finite field for many specializations of the parameters of the BMW algebra. This enables us to propose Conjecture 5.4.2 about the structure and dimension of BMW(e, e, 3). In Appendix B, we provide the algorithms that enable us to construct the Krammer's representations and to propose Conjecture 5.4.2.

The aim of this chapter is to define geodesic normal forms for the elements of the general series of complex reflection groups G(de, e, n). This requires the elaboration of a combinatorial technique to determine a reduced expression decomposition of an element over the generating set of the presentation of Corran-Picantin [26] in the case of G(e, e, n) and Corran-Lee-Lee [START_REF] Corran | Braid groups of imprimitive complex reflection groups[END_REF] in the case of G(de, e, n) with d > 1. We start by studying the case of G(e, e, n) and then the general case of G(de, e, n). The reason for studying the case of G(e, e, n) separately is that we use it to prove the general case and we will essentially use the results of the case of G(e, e, n) in the next chapters. We therefore wanted to separate it from the other cases of the general series of complex reflection groups.

Geodesic normal forms for G(e, e, n)

Recall that G(e, e, n) is the group of n × n monomial matrices where all nonzero entries are e-th roots of unity and such that their product is equal to 1. We start by recalling the presentation of Corran-Picantin for G(e, e, n). Then, we define an algorithm that produces a word representative for each element of G(e, e, n) over the generating set of the presentation of Corran-Picantin. Finally, we prove that these word representatives are geodesic. Hence we get geodesic normal forms for the groups G(e, e, n).

Presentation for G(e, e, n)

Let e ≥ 1 and n > 1. We recall the presentation of the complex reflection group G(e, e, n) given in [26].

Definition 2.1.1. The complex reflection group G(e, e, n) can be defined by a presentation with set of generators:

X = {t i | i ∈ Z/eZ} ∪ {s 3 , s 4 , • • • , s n } and relations as follows. 1. t i t i-1 = t j t j-1 for i, j ∈ Z/eZ, 2. t i s 3 t i = s 3 t i s 3 for i ∈ Z/eZ, 3. s j t i = t i s j for i ∈ Z/eZ and 4 ≤ j ≤ n, 4. s i s i+1 s i = s i+1 s i s i+1 for 3 ≤ i ≤ n -1, 5. s i s j = s j s i for |i -j| > 1, and 6. t 2 i = 1 for i ∈ Z/eZ and s 2 j = 1 for 3 ≤ j ≤ n.
The matrices in G(e, e, n) that correspond to the set of generators X of this presentation are given by t i -→

t i :=   0 ζ -i e 0 ζ i e 0 0 0 0 I n-2   for 0 ≤ i ≤ e -1, and 
s j -→ s j :=     I j-2 0 0 0 0 0 1 0 0 1 0 0 0 0 0 I n-j     for 3 ≤ j ≤ n.
To avoid confusion, we use normal letters for matrices and bold letters for words over X. Denote by X the set

{t 0 , t 1 , • • • , t e-1 , s 3 , • • • , s n }.
This presentation can be described by the following diagram. The dashed circle describes Relation 1 of Definition 2.1.1. The other edges used to describe all the other relations follow the standard conventions for Coxeter groups. 3. For e ≥ 2 and n = 2, we get the dual presentation of the dihedral group I 2 (e), see [START_REF] Picantin | Explicit presentations for the dual braid monoids[END_REF].

2 t 0 2 t 1 2 t 2 2 t i 2 t e-1 2 s 3 2 s 4 2 s n-1 2 s n • • •
Remark 2.1.3. In their paper [26], Corran and Picantin showed that if we remove the quadratic relations (Relations 6 of Definition 2.1.1) from the presentation of G(e, e, n), we get a presentation of the complex braid group B(e, e, n). They also proved that this presentation provides a Garside structure for B(e, e, n). The notion of Garside structures will be developed in the next chapter.

We set the following convention.

Convention 2.1.4. A decreasing-index expression of the form s i s i-1 • • • s i ′ is the empty word when i < i ′ and an increasing-index expression of the form s i s i+1 • • • s i ′ is the empty word when i > i ′ . Similarly, in G(e, e, n), a decreasing-index product of the form

s i s i-1 • • • s i ′ is equal to I n when i < i ′ and an increasing-index product of the form s i s i+1 • • • s i ′ is equal to I n when i > i ′
, where I n is the identity n × n matrix.

Minimal word representatives

Recall that an element w ∈ X * is called a word over X. We denote by ℓ(w) the length over X of the word w.

Definition 2.1.5. Let w be an element of G(e, e, n). We define ℓ(w) to be the minimal word length ℓ(w) of a word w over X that represents w. A reduced expression of w is any word representative of w of word length ℓ(w).

Our aim is to represent each element of G(e, e, n) by a reduced word over X, where X denotes the set of the generators of the presentation of Corran and Picantin of G(e, e, n). This requires the elaboration of a combinatorial technique to determine a reduced expression decomposition over X for an element of G(e, e, n).

We introduce Algorithm 1 below (see next page) that produces a word RE(w) over X for a given matrix w in G(e, e, n). Note that we use Convention 2.1.4 in the elaboration of the algorithm. Later on, we prove that RE(w) is a reduced expression over X of w, see Proposition 2.1.16.

Let w n := w ∈ G(e, e, n). For i from n to 2, the i-th step of Algorithm 1 transforms the block diagonal matrix

w i 0 0 I n-i
into a block diagonal matrix We provide two examples in order to better understand Algorithm 1. The first one is for an element w of G(3, 3, 4) and the second example is for an element w of G(2, 2, 4), that is the Coxeter group of type D 4 . At each step, we indicate the values of i, k, and c such that

w i-1 0 0 I n-i+1 ∈ G(e, e, n) with w 1 = 1. Actually, for 2 ≤ i ≤ n, there exists a unique c with 1 ≤ c ≤ n such that w i [i, c] = 0. At each step i of Algorithm 1, if w i [i, c] =
w i [i, c] = ζ k e .
Example 2.1.6. We apply Algorithm 1 to w := (3,3,4).

    0 0 0 1 0 ζ 2 3 0 0 0 0 ζ 3 0 1 0 0 0     ∈ G
Step

1 (i = 4, k = 0, c = 1): w ′ := ws 2 s 3 s 4 =     0 0 1 0 ζ 2 3 0 0 0 0 ζ 3 0 0 0 0 0 1     .
Step

2 (i = 3, k = 1, c = 2): w ′ := w ′ s 2 =     0 0 1 0 0 ζ 2 3 0 0 ζ 3 0 0 0 0 0 0 1     , then w ′ := w ′ t 1 =     0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1     , then w ′ := w ′ s 3 =     0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1     .
Step

3 (i = 2, k = 0, c = 1): w ′ := w ′ s 2 = I 4 . Hence RE(w) = s 2 s 3 t 1 s 2 s 4 s 3 s 2 . Recall that s 2 = t 0 . Thus, RE(w) = t 0 s 3 t 1 t 0 s 4 s 3 t 0 .
Input : w, a matrix in G(e, e, n), with e ≥ 1 and n ≥ 2. Output: RE(w), a word over X.

Local variables: w ′ , RE(w), i, U , c, k.

Initialisation: U := [1, ζ e , ζ 2 e , ..., ζ e-1 e
], s 2 := t 0 , s 2 := t 0 , RE(w) := ε: the empty word, w ′ := w.

for i from n down to 2 do c := 1; k := 0; while w ′ [i, c] = 0 do c := c + 1; end #Then w ′ [i, c] is the root of unity on the row i; while U [k + 1] = w ′ [i, c] do k := k + 1; end #Then w ′ [i, c] = ζ k e . if k = 0 then w ′ := w ′ s c s c-1 • • • s 3 s 2 t k ; #Then w ′ [i, 2] = 1; RE(w) := t k s 2 s 3 • • • s c RE(w); c := 2; end w ′ := w ′ s c+1 • • • s i-1 s i ; #Then w ′ [i, i] = 1; RE(w) := s i s i-1 • • • s c+1 RE(w); end Return RE(w);
Algorithm 1: A word over X corresponding to an element w ∈ G(e, e, n).

Example 2.1.7. We apply Algorithm 1 to w :=

    0 1 0 0 0 0 0 -1 0 0 1 0 -1 0 0 0     ∈ G(2, 2, 4).
Step

1 (i = 4, k = 1, c = 1): w ′ := wt 1 =     -1 0 0 0 0 0 0 -1 0 0 1 0 0 1 0 0     , then w ′ := w ′ s 3 s 4 =     -1 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 1     , Step 2 (i = 3, k = 0, c = 2): w ′ := w ′ s 3 =     -1 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 1     .
Step 

3 (i = 2, k = 1, c = 2): w ′ := w ′ s 2 =     0 -1 0 0 -1 0 0 0 0 0 1 0 0 0 0 1     , then w ′ := w ′ t 1 = I 4 . Hence RE(w) = t 1 s 2 s 3 s 4 s 3 t 1 = t 1 t 0 s 3 s 4 s 3 t 1 (since s 2 = t 0 ).
• If w i [i, c] = 1, we define RE i (w) to be the word s i s i-1 • • • s c+1 (decreasing-index expression). • If w i [i, c] = ζ k e with k = 0, we define RE i (w) to be the word s i • • • s 3 t k if c = 1, s i • • • s 3 t k t 0 if c = 2, s i • • • s 3 t k t 0 s 3 • • • s c if c ≥ 3.
Remark that for 3 ≤ i ≤ n, the word RE i (w) is either the empty word (when w i [i, i] = 1, see Convention 2.1.4) or a word that contains s i necessarily but does not contain any of s i+1 , s i+2 , • • • , s n . Remark also that for i = 2, by using Convention 2.1.4, we have

RE 2 (w) ∈ {ε, t 0 , t 1 , • • • , t e-1 , t 1 t 0 , • • • , t e-1 t 0 }. Lemma 2.1.12. We have RE(w) = RE 2 (w)RE 3 (w) • • • RE n (w).
Proof. The output RE(w) of Algorithm 1 is a concatenation of the words RE 2 (w), RE 3 (w), 

s 3 t 1 t 0 RE3(w) s 4 s 3 t 0 RE4(w)
. Proposition 2.1.14. The word RE(w) given by Algorithm 1 is a word representative over X of w ∈ G(e, e, n).

Proof. Algorithm 1 transforms the matrix w into I n by multiplying it on the right by elements of X. We get

wx 1 • • • x r = I n , where x 1 , • • • , x r are elements of X. Hence w = x -1 r • • • x -1 1 = x r • • • x 1 since x 2 i = 1 for all x i ∈ X. The output RE(w) of Algorithm 1 is RE(w) = x r • • • x 1 .
Hence it is a word representative over X of w ∈ G(e, e, n).

The following proposition will prepare us to prove that the output of Algorithm 1 is a reduced expression over X of a given element w ∈ G(e, e, n). Proposition 2.1.15. Let w be an element of G(e, e, n). For all x ∈ X, we have

|ℓ(RE(xw)) -ℓ(RE(w))| = 1. Proof. For 1 ≤ i ≤ n, there exists a unique c i such that w[i, c i ] = 0. We denote w[i, c i ] by a i . Case 1: Suppose x = s i for 3 ≤ i ≤ n.
Set w ′ := s i w. Since the left multiplication by the matrix x exchanges the rows i -1 and i of w and the other rows remain the same, by Definition 2.1.11 and Lemma 2.1.9, we have:

RE i+1 (xw)RE i+2 (xw) • • • RE n (xw) = RE i+1 (w)RE i+2 (w) • • • RE n (w) and RE 2 (xw)RE 3 (xw) • • • RE i-2 (xw) = RE 2 (w)RE 3 (w) • • • RE i-2 (w).
Then, in order to prove our property, we should compare

ℓ 1 := ℓ(RE i-1 (w)RE i (w)) and ℓ 2 := ℓ(RE i-1 (xw)RE i (xw)).
Suppose c i-1 < c i , by Lemma 2.1.9, the rows i -1 and i of the blocks w i and w ′ i are of the form:

w i : i i -1 .. c .. c ′ .. i b i-1 a i w ′ i : i i -1 .. c .. c ′ .. i b i-1 a i
with c < c ′ and where we write b i-1 instead of a i-1 since a i-1 may change when applying Algorithm 1 if c i-1 = 1, that is a i-1 on the first column of w.

We will discuss different cases depending on the values of a i and b i-1 .

• Suppose a i = 1.

-

If b i-1 = 1, we have RE i (w) = s i • • • s c ′ +2 s c ′ +1 and RE i-1 (w) = s i-1 • • • s c+2 s c+1 . Furthermore, we have RE i (xw) = s i • • • s c+2 s c+1 and RE i-1 (xw) = s i-1 • • • s c ′ +1 s c ′ . It follows that ℓ 1 = ((i -1) -(c + 1) + 1) + (i -(c ′ + 1) + 1) = 2i -c -c ′ -1 and ℓ 2 = ((i -1) -c ′ + 1) + (i -(c + 1) + 1) = 2i -c -c ′ hence ℓ 2 = ℓ 1 + 1.
-

If b i-1 = ζ k e with 1 ≤ k ≤ e -1, we have RE i (w) = s i • • • s c ′ +2 s c ′ +1 and RE i-1 (w) = s i-1 • • • s 3 t k t 0 s 3 • • • s c . Furthermore, we have RE i (xw) = s i • • • s 3 t k t 0 s 3 • • • s c and RE i-1 (xw) = s i-1 • • • s c ′ . It follows that ℓ 1 = (((i-1)-3+1)+2+(c-3+1))+(i-(c ′ +1)+1) = 2i+ c-c ′ -3 and ℓ 2 = ((i-1)-c ′ +1)+((i-3+1)+2+(c-3+1)) = 2i+c-c ′ -2 hence ℓ 2 = ℓ 1 + 1. It follows that if a i = 1, then ℓ(RE(s i w)) = ℓ(RE(w)) + 1.
(a)

• Suppose now that

a i = ζ k e with 1 ≤ k ≤ e -1.
-

If b i-1 = 1, we have RE i (w) = s i • • • s 3 t k t 0 s 3 • • • s c ′ and RE i-1 (w) = s i-1 • • • s c+1 . Also, we have RE i (xw) = s i • • • s c+1 and RE i-1 (xw) = s i-1 • • • s 3 t k t 0 s 3 • • • s c ′ -1 . It follows that ℓ 1 = ((i -1) -(c + 1) -1) + ((i -3 + 1) + 2 + (c ′ -3 + 1)) = 2i-c+c ′ -5 and ℓ 2 = (((i-1)-3+1)+2+((c ′ -1)-3+1))+(i-(c+1)-1) = 2i -c + c ′ -6 hence ℓ 2 = ℓ 1 -1.
-

If b i-1 = ζ k ′ e with 1 ≤ k ′ ≤ e -1, we have RE i (w) = s i • • • s 3 t k t 0 s 3 • • • s c ′ and RE i-1 (w) = s i-1 • • • s 3 t k ′ t 0 s 3 • • • s c . Also, we have RE i (xw) = s i • • • s 3 t k ′ t 0 s 3 • • • s c and RE i-1 (xw) = s i-1 • • • s 3 t k t 0 s 3 • • • s c ′ -1 . It follows that ℓ 1 = ((i-1)-3+1)+2+(c-3+1)+(i-3+1)+2+(c ′ -3+1) = 2i + c + c ′ -5 and ℓ 2 = ((i -1) -3 + 1) + 2 + ((c ′ -1) -3 + 1) + (i -3 + 1) + 2 + (c -3 + 1) = 2i + c + c ′ -6 hence ℓ 2 = ℓ 1 -1. It follows that if a i = 1, then ℓ(RE(s i w)) = ℓ(RE(w)) -1. (b)
Suppose, on the other hand,

c i-1 > c i . Recall that w ′ = s i w. If w ′ [i -1, c ′ i-1 ] and w ′ [i, c ′ i ]
denote the nonzero entries of w ′ on the rows i -1 and i, respectively, we have

w ′ [i -1, c ′ i-1 ] = a i and w ′ [i, c ′ i ] = a i-1 . For w ′ , we have c ′ i-1 < c ′ i
, in which case the preceding analysis would give:

if a i-1 = 1, then ℓ(RE(s i (s i w))) = ℓ(RE(s i w)) + 1, if a i-1 = 1, then ℓ(RE(s i (s i w))) = ℓ(RE(s i w)) -1. Hence, since s 2 i = 1, we get the following: if a i-1 = 1, then ℓ(RE(s i w)) = ℓ(RE(w)) -1. (a ′ ), if a i-1 = 1, then ℓ(RE(s i w)) = ℓ(RE(w)) + 1. (b ′ ). Case 2: Suppose x = t i for 0 ≤ i ≤ e -1.
Set w ′ := t i w. By the left multiplication by t i , we have that the last n -2 rows of w and w ′ are the same. Hence, by Definition 2.1.11 and Lemma 2.1.9, we have:

RE 3 (xw)RE 4 (xw) • • • RE n (xw) = RE 3 (w)RE 4 (w) • • • RE n (w).
In order to prove our property in this case, we should compare ℓ 1 := ℓ(RE 2 (w)) and ℓ 2 := ℓ(RE 2 (xw)).

• Consider the case where c 1 < c 2 .

Since c 1 < c 2 , by Lemma 2.1.9, the blocks w 2 and w ′ 2 are of the form:

w 2 = b 1 0 0 a 2 and w ′ 2 = 0 ζ -i e a 2 ζ i e b 1 0 with b 1 instead of a 1 since a 1 may change when applying Algorithm 1 if c 1 = 1.
-Suppose a 2 = 1,

we have b 1 = 1 necessarily hence ℓ 1 = 0. Since RE 2 (xw) = t i , we have ℓ 2 = 1. It follows that when c 1 < c 2 , if a 2 = 1, then ℓ(RE(t i w)) = ℓ(RE(w)) + 1. (c) -Suppose a 2 = ζ k e with 1 ≤ k ≤ e -1, then b 1 = ζ -k e . We get RE 2 (w) = t k t 0 . Thus, ℓ 1 = 2. We also get RE 2 (xw) = t i-k . Thus, ℓ 2 = 1. It follows that when c 1 < c 2 , if a 2 = 1, then ℓ(RE(t i w)) = ℓ(RE(w)) -1. (d)
• Now, consider the case where c 1 > c 2 .

Since c 1 > c 2 , by Lemma 2.1.9, the blocks w 2 and w ′ 2 are of the form:

w 2 = 0 a 1 b 2 0 and w ′ 2 = ζ -i e b 2 0 0 ζ i e a 1 with b 2 instead of a 2 since a 2 may change when applying Algorithm 1 if c 2 = 1.
-Suppose

a 1 = ζ -i e , then b 2 = ζ i e .
We have ℓ 1 = 1 necessarily, and since

ζ i e a 1 = 1, we have ℓ 2 = 2. Hence when c 1 > c 2 , if a 1 = ζ -i e , then ℓ(RE(t i w)) = ℓ(RE(w)) + 1. (e) -Suppose a 1 = ζ -i e , we have ℓ 1 = 1 and ℓ 2 = 0. Hence when c 1 > c 2 , if a 1 = ζ -i e , then ℓ(RE(t i w)) = ℓ(RE(w)) -1. (f )
This finishes our proof.

Proposition 2.1.16. Let w be an element of G(e, e, n). The word RE(w) is a reduced expression over X of w.

Proof. We must prove that ℓ(w) = ℓ(RE(w)).

Let x 1 x 2 • • • x r be a reduced expression over X of w. Hence ℓ(w) = ℓ(x 1 x 2 • • • x r ) = r. Since RE(w) is a word representative over X of w, we have ℓ(RE(w)) ≥ ℓ(x 1 x 2 • • • x r ) = r.
We prove that ℓ(RE(w)) ≤ r. Observe that we can write w as x 1 x 2 

ℓ(RE(w)) = ℓ(RE(x 1 x 2 • • • x r )) ≤ ℓ(RE(x 2 x 3 • • • x r ))+ 1 ≤ ℓ(RE(x 3 • • • x r )) + 2 ≤ • • • ≤ r. Hence ℓ(RE(w)) = r = ℓ(w)
and we are done.

The following proposition is useful in the next chapter. Its proof is based on the proof of Proposition 2.1.15.

Proposition 2.1.17. Let w be an element of G(e, e, n). Denote by a i the unique nonzero entry w[i, c i ] on the row i of w where 1 ≤ i, c i ≤ n.

1. For 3 ≤ i ≤ n, we have: (a) if c i-1 < c i , then ℓ(s i w) = ℓ(w) -1 if and only if a i = 1. (b) if c i-1 > c i , then ℓ(s i w) = ℓ(w) -1 if and only if a i-1 = 1. 2. If c 1 < c 2 , then ∀ 0 ≤ k ≤ e -1, we have ℓ(t k w) = ℓ(w) -1 if and only if a 2 = 1. 3. If c 1 > c 2 , then ∀ 0 ≤ k ≤ e -1, we have ℓ(t k w) = ℓ(w) -1 if and only if a 1 = ζ -k e .
Proof Remark 2.1.18. Proposition 2.1.17 will be useful to implement in Appendix A the interval Garside monoids that we will construct in the next chapter.

2.2

The general case of G(de, e, n)

In this section, we generalize the geodesic normal forms to all the general series of complex reflection groups G(de, e, n) where d > 1, e > 1, and n ≥ 2. Geodesic normal forms for G(d, 1, n) are studied in the last subsection. We start by providing the presentation of Corran-Lee-Lee [START_REF] Corran | Braid groups of imprimitive complex reflection groups[END_REF] of G(de, e, n).

Presentation for G(de, e, n)

Recall that the complex reflection group G(de, e, n) is the group of monomial matrices whose nonzero entries are de-th roots of unity and their product is a d-th root of unity.

There exists a presentation of the complex reflection group G(de, e, n) given in [START_REF] Corran | Braid groups of imprimitive complex reflection groups[END_REF] for d > 1, e ≥ 1, and n ≥ 2.

Definition 2.2.1. The complex reflection group G(de, e, n) is defined by a presentation with set of generators:

X = {z}∪{t i | i ∈ Z/deZ}∪{s 3 , s 4 , • • • , s n }
and relations as follows.

1.

zt i = t i-e z for i ∈ Z/deZ, 2. zs j = s j z for 3 ≤ j ≤ n, 3. t i t i-1 = t j t j-1 for i, j ∈ Z/deZ, 4. t i s 3 t i = s 3 t i s 3 for i ∈ Z/deZ, 5. s j t i = t i s j for i ∈ Z/deZ and 4 ≤ j ≤ n, 6. s i s i+1 s i = s i+1 s i s i+1 for 3 ≤ i ≤ n -1, 7. s i s j = s j s i for |i -j| > 1, and 
8. z d = 1, t 2 i = 1 for i ∈ Z/deZ, and s 2 j = 1 for 3 ≤ j ≤ n.
The generators of this presentation correspond to the following n × n matrices.

The generator t i is represented by the matrix

t i =   0 ζ -i de 0 ζ i de 0 0 0 0 I n-2   for i ∈ Z/deZ, z by the diagonal matrix z = Diag(ζ d , 1, • • • , 1)
where ζ d = exp(2iπ/d), and s j by the transposition matrix s j = (j -1, j) for 3 ≤ j ≤ n. To avoid confusion, we use normal letters for matrices and bold letters for words over X. Denote by X the set

{z, t 0 , t 1 , • • • , t de-1 , s 3 , • • • , s n }.
This presentation can be described by the following diagram. The dashed circle describes Relation 3 of Definition 2.2.1. The curved arrow below z describes Relation 1. The other edges used to describe all the other relations follow the standard conventions for Coxeter groups. 

Proof. Let e = 1. Relation 1 of Definition 2.2.1 becomes zt 1 = t 0 z, that is t 1 = z -1 t 0 z. Also by Relation 3 of Definition 2.2.1, we have t k = z -k t 0 z k for 1 ≤ k ≤ d-1. If we remove t 1 , • • • , t d-1
from the set of generators and replace every occurrence of t k in the defining relations with z -k t 0 z k for 1 ≤ k ≤ d -1, we recover the classical presentation of the complex reflection group G(d, 1, n). Remark 2.2.4. In [START_REF] Corran | Braid groups of imprimitive complex reflection groups[END_REF], it is shown that if we remove Relations 8 of Definition 2.2.1 from the presentation of G(de, e, n), we get a presentation of the complex braid group B(de, e, n). It is also shown that this presentation provides a quasi-Garside structure for B(de, e, n). The notion of Garside (and quasi-Garside) structures will be developed in the next chapter.

We set Convention 2.1.4 in the case of the presentation of G(de, e, n) given in Definition 2.2.1 and in the case of the presentation of G(d, 1, n) described by the diagram of Figure 2.3. We also set the convention that z 0 is the empty word. These conventions will be helpful to provide all the possible cases of the words that appear in Definitions 2.2.7 and 2.2.13 below. Also they ensure that Algorithms 2 and 3 that we will introduce in the next subsections work properly.

Minimal word representatives

Consider the complex reflection group G(de, e, n) with d > 1, e > 1, and n ≥ 2. Our aim is to represent each element of G(de, e, n) by a reduced word over X, where X is the set of the generators of the presentation of Corran-Lee-Lee of G(de, e, n), see Definition 2.2.1. Recall that X denotes the set of the matrices in G(de, e, n) that correspond to the elements of X.

We introduce Algorithm 2 below (see next page) that produces a word RE(w) over X for a given matrix w in G(de, e, n). For d = 1, this algorithm is the same as Algorithm 1 that corresponds to the case of G(e, e, n). We will also have that the output RE(w) of Algorithm 2 is a reduced word representative of w ∈ G(de, e, n) over X.

Let w n := w ∈ G(de, e, n). For i from n to 2, the i-th step of Algorithm 2 transforms the block diagonal matrix w i 0 0 I n-i into a block diagonal matrix

w i-1 0 0 I n-i+1
∈ G(de, e, n) in the same way as Algorithm 1. We finally get

w 1 = ζ k d for some 0 ≤ k ≤ d -1
, where ζ k d is equal to the product of the nonzero entries of w. By multiplying

w 1 0 0 I n-1
on the right by z -k , we get the identity matrix I n .

Example 2.2.5. We apply Algorithm 2 to w := [START_REF] Bremke | Reduced words and a length function for G(e, 1, n)[END_REF]3,4).

    ζ 9 0 0 0 0 0 1 0 0 0 0 ζ 9 0 ζ 9 0 0     ∈ G
Step

1 (i = 4, k = 0, c = 1): w ′ := ws 2 =     0 ζ 9 0 0 0 0 1 0 0 0 0 ζ 9 ζ 9 0 0 0     , then w ′ := w ′ t 1 =
Input : w, a matrix in G(de, e, n) with d > 1, e > 1, and n ≥ 2.

Output: RE(w), a word over X.

Local variables: w ′ , RE(w), i, U , V , c, k.

Initialisation: U := [1, ζ de , ζ 2 de , ..., ζ e-1 de ], V := [1, ζ d , ζ 2 d , • • • , ζ d-1 d
], s 2 := t 0 , s 2 := t 0 , RE(w) := ε: the empty word, w ′ := w.

for i from n down to 2 do c := 1; k := 0; while w ′ [i, c] = 0 do c := c + 1; end #Then w ′ [i, c] is the root of unity on the row i; while U [k + 1] = w ′ [i, c] do k := k + 1; end #Then w ′ [i, c] = ζ k de . if k = 0 then w ′ := w ′ s c s c-1 • • • s 3 s 2 t k ; #Then w ′ [i, 2] = 1; RE(w) := t k s 2 s 3 • • • s c RE(w); c := 2; end w ′ := w ′ s c+1 • • • s i-1 s i ; #Then w ′ [i, i] = 1; RE(w) := s i s i-1 • • • s c+1 RE(w); end k := 0; while V [k + 1] = w ′ [1, 1] do k := k + 1; end #Then w ′ [1, 1] = ζ k d ; w ′ := w ′ z -k ; #Then w ′ = I n ; if k = 0 then RE(w) = z k RE(w); end Return RE(w);
Algorithm 2: A word over X corresponding to a matrix w ∈ G(de, e, n).

    ζ 2 9 0 0 0 0 0 1 0 0 0 0 ζ 9 0 1 0 0     , then w ′ := w ′ s 3 s 4 =     ζ 2 9 0 0 0 0 1 0 0 0 0 ζ 9 0 0 0 0 1     .
Step

2 (i = 3, k = 1, c = 3): w ′ := w ′ s 3 s 2 =     0 ζ 2 9 0 0 0 0 1 0 ζ 9 0 0 0 0 0 0 1     , then w ′ := w ′ t 1 =     ζ 3 9 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1     , then w ′ := w ′ s 3 =     ζ 3 9 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1     .
Step

3 (i = 2, k = 0, c = 2): w ′ =      ζ 3 9 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1      =     ζ 3 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1     .
Step 4 (k = 1):

w ′ := w ′ z -1 = I 4 . Hence RE(w) = zs 3 t 1 s 2 s 3 s 4 s 3 t 1 s 2 = zs 3 t 1 t 0 s 3 s 4 s 3 t 1 t 0 (since s 2 = t 0 ).
The next lemma follows directly from Algorithm 2.

Lemma 2.2.6. For 2 ≤ i ≤ n, suppose w i [i, c] = 0. The block w i-1 is obtained by

• removing the row i and the column c from w i , then by

• multiplying the first column of the new matrix by w i [i, c].

Moreover, if we denote by a i the unique nonzero entry on the row i of w, we have

w 1 = n i=1 a i = ζ k d for 0 ≤ k ≤ d -1. Definition 2.2.7. Let 1 ≤ i ≤ n. Let w i [i, c] = 0 for 1 ≤ c ≤ i. • If w 1 = ζ k d with 0 ≤ k ≤ d -1, we define RE 1 (w) to be the word z k . • If w i [i, c] = 1, we define RE i (w) to be the word s i s i-1 • • • s c+1 (decreasing-index expression). • If w i [i, c] = ζ k de with k = 0, we define RE i (w) to be the word s i • • • s 3 t k if c = 1, s i • • • s 3 t k t 0 if c = 2, s i • • • s 3 t k t 0 s 3 • • • s c if c ≥ 3.
The output RE(w) of Algorithm 2 is a concatenation of the words RE 1 (w), RE 2 (w), 

s 3 t 1 t 0 s 3 RE3(w) s 4 s 3 t 1 t 0 RE4(w)
, where RE 2 (w) is the empty word. Proposition 2.2.9. Let w ∈ G(de, e, n). The word RE(w) given by Algorithm 2 is a word representative over X of w ∈ G(de, e, n).

Proof. Let w ∈ G(de, e, n) such that the product of all the nonzero entries of w is equal to ζ k d for some 0 ≤ k ≤ d -1. Algorithm 2 transforms the matrix w into I n by multiplying it on the right by elements of X. We get

wx 1 • • • x r-1 x r = I n , where x 1 , • • • , x r-1 are elements of X \ {z} and x r = z -k . Hence w = x -1 r x -1 r-1 • • • x -1 1 = z k x r-1 • • • x 1 since x 2 i = 1 for 1 ≤ i ≤ r -1. The output RE(w) of Algorithm 2 is RE(w) = z k x r-1 • • • x 1 .
Hence it is a word representative over X of w ∈ G(de, e, n).

The following proposition is similar to Proposition 2.1.15. It enables us to prove that the output of Algorithm 2 is a reduced expression over X of a given element w ∈ G(de, e, n). Proposition 2.2.10. Let w be an element of G(de, e, n). For all x ∈ X, we have

ℓ(RE(xw)) ≤ ℓ(RE(w)) + 1.
Proof. For 1 ≤ i ≤ n, there exists a unique c i such that w[i, c i ] = 0. We denote

w[i, c i ] by a i . We have n i=1 a i = ζ k d for some 0 ≤ k ≤ d -1. Case 1: Suppose x = s i for 3 ≤ i ≤ n.
This case is done in the same way as in the proof of Proposition 2.1.15. We get (a), (b), (a ′ ), and (b ′ ), see Case 1 in the proof of Proposition 2.1.15.

Case 2: Suppose x = t i for 0 ≤ i ≤ de -1.

Set w ′ := t i w. By the left multiplication by t i , we have that the last n -2 rows of w and w ′ are the same. Hence, by Definition 2.2.7 and Lemma 2.2.6, we have:

RE 3 (xw)RE 4 (xw) • • • RE n (xw) = RE 3 (w)RE 4 (w) • • • RE n (w).
In order to prove our property in this case, we should compare ℓ 1 := ℓ(RE 1 (w)RE 2 (w)) and

ℓ 2 := ℓ(RE 1 (xw)RE 2 (xw)).
• Consider the case where c 1 < c 2 .

Since c 1 < c 2 , by Lemma 2.2.6, the blocks w 2 and w ′ 2 are of the form:

w 2 = b 1 0 0 a 2 and w ′ 2 = 0 ζ -i de a 2 ζ i de b 1 0 with b 1 instead of a 1 since a 1 may change when applying Algorithm 2 if c 1 = 1.
-Suppose a 2 = 1,

we have b 1 = ζ k d hence ℓ 1 = k. We also have RE 2 (xw) = t i+ke and RE 1 (xw) = z k . Hence we get ℓ 2 = k + 1. It follows that when c 1 < c 2 , if a 2 = 1, then ℓ(RE(t i w)) = ℓ(RE(w)) + 1. (c) -Suppose a 2 = ζ k ′ de with 1 ≤ k ′ ≤ de -1, we have b 1 = ζ ke-k ′ de . We get RE 2 (w) = t k ′ t 0 and RE 1 (w) = z k . Thus, ℓ 1 = k + 2. We also get RE 2 (xw) = t ke+i-k ′ and RE 1 (xw) = z k . Thus, ℓ 2 = k + 1. It follows that when c 1 < c 2 , if a 2 = 1, then ℓ(RE(t i w)) = ℓ(RE(w)) -1. (d)
• Now, consider the case where c 1 > c 2 .

Since c 1 > c 2 , by Lemma 2.2.6, the blocks w 2 and w ′ 2 are of the form:

w 2 = 0 a 1 b 2 0 and w ′ 2 = ζ -i de b 2 0 0 ζ i de a 1
with b 2 instead of a 2 since a 2 may change when applying Algorithm 2 if c 2 = 1.

-Suppose a 1 = ζ -i de , we have ℓ 1 = k + 1, and since ζ i de a 1 = 1, we have ℓ 2 = k + 2. Hence when

c 1 > c 2 , if a 1 = ζ -i de , then ℓ(RE(t i w)) = ℓ(RE(w)) + 1. (e) -Suppose a 1 = ζ -i de , we have b 2 = ζ i+ek de . We get ℓ 1 = k + 1 and ℓ 2 = k. Hence when c 1 > c 2 , if a 1 = ζ -i de , then ℓ(RE(t i w)) = ℓ(RE(w)) -1. (f ) Case 3: Suppose x = z.
Set w ′ := zw. By the left multiplication by z, we have that the last n -1 rows of w and w ′ are the same. Hence, by Definition 2.2.7 and Lemma 2.2.6, we have:

RE 2 (xw)RE 3 (xw) • • • RE n (xw) = RE 2 (w)RE 3 (w) • • • RE n (w).
In order to prove our property in this case, we should compare ℓ 1 := ℓ(RE 1 (w)) and ℓ 2 := ℓ(RE 1 (xw)).

We get w 1 is equal to b 1 and w

′ 1 = ζ d b 1 with b 1 instead of a 1 since a 1 may change when applying Algorithm 2 if c 1 = 1. We have b 1 = n i=1 a i = ζ k d for some 0 ≤ k ≤ d-1. Hence if k = d -1, we get ℓ 1 = k and ℓ 2 = k + 1 and if k = d -1, we get ℓ 1 = d -1 and ℓ 2 = 0. It follows that ℓ(RE(zw)) ≤ ℓ(RE(w)) + 1.
(g) By using Proposition 2.2.10, we apply the argument of the proof of Proposition 2.1.16 and deduce that RE(w) is a reduced expression over X of w ∈ G(de, e, n). Hence Algorithm 2 produces geodesic normal forms for G(de, e, n). Proposition 2.1.17 is also valid for the case of G(de, e, n), where we replace e by de. It summarizes the proof of Proposition 2.2.10.

The case of G(d, 1, n)

We provide similar constructions for the case of G(d, 1, n) for d > 1 and n ≥ 2. We recall the diagram of the presentation of

G(d, 1, n). d z 2 s 2 2 s 3 2 s n-1 2 s n
The set of the generators is denoted by

X = {z, s 2 , • • • , s n }. The generator z corresponds to the matrix z := Diag(ζ d , 1, • • • , 1) in G(d, 1, n) with ζ d = exp(2iπ/d)
and s j corresponds to the transposition matrix s j := (j -1, j) for 2 ≤ j ≤ n. Denote by X = {z, s 2 , s 3 , • • • , s n } the set of these matrices.

We define Algorithm 3 below (see next page) in the same way as Algorithms 1 and 2. It produces a word RE(w) for each matrix w of G(d, 1, n). We explain the steps of the algorithm. Let w n := w ∈ G(d, 1, n). For i from n to 1, the i-th step of the algorithm transforms the block diagonal matrix Step

w i 0 0 I n-i into a block diagonal matrix w i-1 0 0 I n-i+1 ∈ G(d, 1, n). Let w i [i, c] = 0 be the nonzero coefficient on the row i of w i . If w i [i, c] = 1,
1 (i = 3, k = 2, c = 1): w ′ := wz -2 =   0 ζ 3 0 0 0 ζ 2 3 1 0 0   , then w ′ := w ′ s 2 s 3 =    ζ 3 0 0 0 ζ 2 3 0 0 0 1   .
Step

2 (i = 2, k = 2, c = 1): w ′ := w ′ s 2 =   0 ζ 3 0 ζ 2 3 0 0 0 0 1   , then w ′ := w ′ z -2 =   0 ζ 3 0 1 0 0 0 0 1   , then w ′ := w ′ s 2 =   ζ 3 0 0 0 1 0 0 0 1   .
Step

3 (i = 1, k = 1, c = 1): w ′ := w ′ z -1 = I 3 . Hence RE(w) = zs 2 z 2 s 2 s 3 s 2 z 2 .
Input : w, a matrix in G(d, 1, n), with d > 1 and n ≥ 2.

Output: RE(w), a word over X.

Local variables: w ′ , RE(w), i, U , c, k.

Initialisation: U := [1, ζ d , ζ 2 d , • • • , ζ d-1 d
], RE(w) := ε: the empty word, w ′ := w.

for i from n down to 1 do c := 1; k := 0; while w ′ [i, c] = 0 do c := c + 1; end #Then w ′ [i, c] is the root of unity on the row i; while U [k + 1] = w ′ [i, c] do k := k + 1; end #Then w ′ [i, c] = ζ k d . if k = 0 then w ′ := w ′ s c s c-1 • • • s 3 s 2 z -k ; #Then w ′ [i, 2] = 1; RE(w) := z k s 2 s 3 • • • s c RE(w); c := 1; end w ′ := w ′ s c+1 • • • s i-1 s i ; #Then w ′ [i, i] = 1; RE(w) := s i s i-1 • • • s c+1 RE(w); end Return RE(w); Algorithm 3: A word over X corresponding to an element w ∈ G(d, 1, n).
The next lemma follows directly from Algorithm 3. Remark the difference between the next lemma and lemmas 2.1.9 and 2.2.6. Lemma 2.2.12. For 2 ≤ i ≤ n, the block w i is obtained by removing the row i and the column c from w i . Moreover, w 1 is equal to the nonzero entry on the first row of w.

Definition 2.2.13. Let 1 ≤ i ≤ n. Let w i [i, c] = 0 for 1 ≤ c ≤ i. • If w 1 = ζ k d for some 0 ≤ k ≤ d -1
(this is equal to the nonzero entry on the first row of w), we define RE 1 (w) to be the word z k .

• If w i [i, c] = 1, we define RE i (w) to be the word s i s i-1 • • • s c+1 (decreasing-index expression). • If w i [i, c] = ζ k d with k = 0, we define RE i (w) to be the word s i • • • s 3 z k if c = 1, s i • • • s 3 s 2 z k s 2 s 3 • • • s c if c ≥ 2.
As for Algorithm 2, the output of Algorithm 3 is equal to

RE 1 (w)RE 2 (w) • • • RE n (w). In Example 2.2.11, we have RE(w) = z RE1(w) s 2 z 2 s 2 RE2(w) s 3 s 2 z 2 RE3(w)
.

The proof of the next proposition is the same as the proof of Proposition 2.2.9. Proposition 2.2.14. Let w ∈ G(d, 1, n). The word RE(w) given by Algorithm 3 is a word representative over X of w ∈ G(d, 1, n).

The following proposition enables us to prove that the output of Algorithm 3 is a reduced expression over X of a given element w ∈ G(d, 1, n). It is similar to Propositions 2.1.15 and 2.2.10. Proposition 2.2.15. Let w be an element of G(d, 1, n). For all x ∈ X, we have ℓ(RE(xw)) ≤ ℓ(RE(w)) + 1.

Proof. We have two cases. The first one is for x = s i (2 ≤ i ≤ n). This is done in the same way as Case 1 in the proof of Proposition 2.1.15. The second case is for x = z. This is done in the same way as Case 3 in the proof of Proposition 2.2.10. We get (a), (b), (a ′ ), (b ′ ), and (g) as in the proofs of Propositions 2.1.15 and 2.2.10. Now, we apply the argument of the proof of Proposition 2.1.16 and deduce that RE(w) is a reduced expression over X of w ∈ G(d, 1, n). Hence Algorithm 3 produces geodesic normal forms for G(d, 1, n). We also get Proposition 2.1.17 (1). When d = 2, that is the case of the Coxeter group G(2, 1, n) of type B n , as a direct consequence of the proof of Proposition 2.2.15, we have the following. Proposition 2.2.16. Let w be an element of G(2, 1, n). Denote by a i the unique nonzero entry w[i, c i ] on the row i of w where 1 ≤ i, c i ≤ n.

1. We have ℓ(zw) = ℓ(w) -1 ⇐⇒ a 1 = -1. 2. For 2 ≤ i ≤ n, we have: (a) if c i-1 < c i , then ℓ(s i w) = ℓ(w) -1 ⇐⇒ a i = 1. (b) if c i-1 > c i , then ℓ(s i w) = ℓ(w) -1 ⇐⇒ a i-1 = 1.

Elements of maximal length

Using the geodesic normal forms of the elements of G(de, e, n) defined by Algorithms 1, 2, and 3, we will characterize in this section the elements of G(de, e, n) that are of maximal length. We distinguish three cases: the first one is for the group G(e, e, n) defined by the presentation of Corran 

(t k2 t 0 )(s 3 t k3 t 0 s 3 ) • • • (s n • • • s 3 t kn t 0 s 3 • • • s n ), with 1 ≤ k 2 , • • • , k n ≤ e -1.
The number of elements of this form is (e -1) (n-1) .

Proof. By Algorithm 1, an element w in G(e, e, n) is of maximal length when

w i [i, i] = ζ k e for 2 ≤ i ≤ n and ζ k e = 1
. By Lemma 2.1.9, this condition is satisfied when w is a diagonal matrix such that w[i, i] is an e-th root of unity different from 1 for 2 ≤ i ≤ n. A minimal word representative given by Algorithm 1 for such an element is of the form (t k2 t 0 )(s

3 t k3 t 0 s 3 ) • • • (s n • • • s 3 t kn t 0 s 3 • • • s n ) with 1 ≤ k 2 , • • • , k n ≤ (e-1)
which is of length n(n -1). The number of elements of this form is (e -1) (n-1) .

Denote by λ the element

     (ζ -1 e ) (n-1) ζ e . . . ζ e      ∈ G(e, e, n). Example 2.3.2. We have RE(λ) = (t 1 t 0 )(s 3 t 1 t 0 s 3 ) • • • (s n • • • s 3 t 1 t 0 s 3 • • • s n ). Hence ℓ(λ) = n(n -1)
which is the maximal length of an element of G(e, e, n).

Remark 2.3.3. Consider the group G(1, 1, n), that is the symmetric group S n . There exists a unique element of maximal length in S n that is of the form

t 0 (s 3 t 0 ) • • • (s n-1 • • • s 3 t 0 )(s n • • • s 3 t 0 ).
This corresponds to the maximal number of steps of Algorithm We have e = 2. Then, by Proposition 2.3.1, the number of elements of maximal length is equal to (e -1) (n-1) = 1. Hence there exists a unique element of maximal length in G(2, 2, n). It is of the form

(t 1 t 0 )(s 3 t 1 t 0 s 3 ) • • • (s n • • • s 3 t 1 t 0 s 3 • • • s n ).
The length of this element is n(n -1) which is already known for Coxeter groups of type D n , see Example 1.5.5 of [35].

The next two propositions are a direct consequence of Algorithms 2 and 3.

Proposition 2.3.5. Let d > 1, e > 1, and n ≥ 2. The maximal length of an element of G(de, e, n) is n(n -1) + d -1. It is realized for diagonal matrices w such that for all 2 ≤ i ≤ n, we have w

[i, i] = ζ ki de with 1 ≤ k i ≤ de -1 and w[1, 1] = ζ x de with x + (k 2 • • • k n ) = e(d -1). A minimal word representative of such an element is of the form z d-1 (t k2 t 0 )(s 3 t k3 t 0 s 3 ) • • • (s n • • • s 3 t kn t 0 s 3 • • • s n ), with 1 ≤ k 2 , • • • , k n ≤ de -1.
The number of elements that are of maximal length is then (de -1) (n-1) .

Proposition 2.3.6. Let d > 1 and n ≥ 2. There exists a unique element of maximal length of G(d, 1, n). Its minimal word representative is of the form

z d-1 (s 2 z d-1 s 2 )(s 3 s 2 z d-1 s 2 s 3 ) • • • (s n • • • s 2 z d-1 s 2 • • • s n ).
Its length is then equal to n(n + d -2).

Remark In this chapter, we are interested in Garside structures that derive from intervals. We construct intervals in the complex reflection group G(e, e, n) which give rise to Garside groups. Some of these groups correspond to the complex braid group B(e, e, n). For the other Garside groups that appear, we give some of their properties in order to understand these new structures.

Generalities about Garside structures

In his PhD thesis, defended in 1965 [START_REF] Garside | The theory of knots and associated problems[END_REF], and in the article that followed [START_REF] Garside | The braid group and other groups[END_REF], Garside solved the Conjugacy Problem for the classical braid group B n by introducing a submonoid B + n of B n and an element ∆ n of B + n that he called fundamental, and then showing that there exists a normal form for every element in B n . In the beginning of the 1970's, it was realized by Brieskorn and Saito [START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF] and Deligne [START_REF] Deligne | Les immeubles des groupes de tresses généralisés[END_REF] that Garside's results extend to all finite-type Artin-Tits groups. At the end of the 1990's, after listing the abstract properties of B + n and the fundamental element ∆ n , Dehornoy and Paris [START_REF] Dehornoy | Gaussian groups and Garside groups, two generalizations of Artin groups[END_REF] defined the notion of Gaussian groups and Garside groups which leads, in "a natural, but slowly emerging program" as stated in [START_REF] Dehornoy | Foundations of Garside Theory[END_REF], to Garside theory. For a detailed study about Garside structures, we refer the reader to [START_REF] Dehornoy | Foundations of Garside Theory[END_REF]. The aim of this section is to give the necessary preliminaries about Garside structures.

Garside monoids and groups

Let M be a monoid. Under some assumptions about M , more precisely the assumptions 1 and 2 of Definition 3.1.2, one can define a partial order relation on M as follows.

Definition 3.1.1. Let f, g ∈ M . We say that f left-divides g or simply f divides g when there is no confusion, written f g, if f g ′ = g holds for some g ′ ∈ M . Similarly, we say that f right-divides g, written f r g, if g ′ f = g holds for some g ′ ∈ M .

We are ready to define Garside monoids and groups. Definition 3.1.2. A Garside monoid is a pair (M, ∆), where M is a monoid and

1. M is cancellative, that is f g = f h =⇒ g = h and gf = hf =⇒ g = h for f, g, h ∈ M , 2. there exists λ : M -→ N s.t. λ(f g) ≥ λ(f ) + λ(g) and g = 1 =⇒ λ(g) = 0,
3. any two elements of M have a gcd and an lcm for and r , and 4. ∆ is a Garside element of M , this meaning that the set of its left divisors coincides with the set of its right divisors, generate M , and is finite.

The divisors of ∆ are called the simples of M .

A quasi-Garside monoid is a pair (M, ∆) that satisfies the conditions of Definition 3.1.2, except the finiteness of the number of divisors of ∆.

Assumptions 1 and 3 of Definition 3.1.2 ensure that Ore's conditions are satisfied. Hence there exists a group of fractions of the monoid M in which it embeds. This allows us to give the following definition. Consider a pair (M, ∆) that satisfies the conditions of Definition 3.1.2. The pair (M, ∆) and the group of fractions of M provide a Garside structure for M .

Note that one of the important aspects of a Garside structure is the existence of a normal form for all elements of the Garside group. Furthermore, many problems like the Word and Conjugacy problems can be solved in Garside groups which makes their study interesting.

Interval Garside structures

Let G be a finite group generated by a finite set S. There is a way to construct Garside structures from intervals in G.

We start by defining a partial order relation on G. Definition 3.1.4. Let f, g ∈ G. We say that g is a divisor of f or f is a multiple of g, and write g f , if f = gh with h ∈ G and ℓ(f ) = ℓ(g) + ℓ(h), where ℓ(f ) is the length over S of f ∈ G. 

• relations: f g = h if f, g, h ∈ [1, w], f g = h, and f h, that is ℓ(f ) + ℓ(g) = ℓ(h).
Similarly, one can define the partial order relation on G g r f if and only if ℓ(f g -1 ) + ℓ(g) = ℓ(f ), then define the interval [1, w] r and the monoid M ([1, w] r ). Definition 3.1.6. Let w be in G. We say that w is a balanced element of

G if [1, w] = [1, w] r .
We have the following theorem due to Michel (see Section 10 of [START_REF] Michel | Groupes finis de réflexion[END_REF] for a proof). The previous construction gives rise to an interval structure. The interval monoid is M ( [1, w]). When M ([1, w]) is a Garside monoid, its group of fractions exists and is denoted by G(M ([1, w])). We call it the interval group. We will give a classical example of this structure. It shows that Artin-Tits groups admit interval structures. For details about this example, see Chapter 9, Section 1.3 in [START_REF] Dehornoy | Foundations of Garside Theory[END_REF].

Example 3.1.8. Let W be a finite coxeter group and B(W ) the Artin-Tits group associated to W .

W =< S | s 2 = 1, sts • • • mst = tst • • • mst for s, t ∈ S, s = t, m st = o(st) >, B(W ) =< S | st s • • • mst = ts t • • • mst f or s, t ∈ S, s = t >.
Take G = W and g = w 0 the longest element over S in W . We have [1, w 0 ] = W . Construct the interval monoid M ([1, w 0 ]). We have M ([1, w 0 ]) is the Artin-Tits monoid B + (W ), where B + (W ) is the monoid defined by the same presentation as B(W ). Hence B + (W ) is generated by a copy W of W with f g = h if f g = h and ℓ(f ) + ℓ(g) = ℓ(h); f, g, and h ∈ W . It is also known that w 0 is balanced and both posets ([1, w 0 ], ) and ([1, w 0 ] r , r ) are lattices. Hence by Theorem 3.1.7, we have the following result. Our aim is to construct interval structures for the complex braid group B(e, e, n). Since the interval Garside structures depend on the definition of a length function in the corresponding complex reflection group, we will use the results and notations of Section 2.1 of Chapter 2 where geodesic normal forms are constructed for all the elements of G(e, e, n). The aim of this section is to prove that the only balanced elements of G(e, e, n) that are of maximal length over

Balanced elements of maximal length

X are λ k with 1 ≤ k ≤ e -1, where λ is the diagonal matrix such that λ[i, i] = ζ e for 2 ≤ i ≤ n and λ[1, 1] = (ζ -1 e )
n-1 , see Proposition 2.3.1. This is done by characterizing the intervals of the elements of maximal length.

We start by defining two partial order relations on G(e, e, n). Definition 3.2.1. Let w, w ′ ∈ G(e, e, n). We say that w ′ is a divisor of w or w is a multiple of w ′ , and write w ′ w, if w = w ′ w ′′ with w ′′ ∈ G(e, e, n) and ℓ(w) = ℓ(w ′ ) + ℓ(w ′′ ). This defines a partial order relation on G(e, e, n).

Similarly, we have another partial order relation on G(e, e, n). Definition 3.2.2. Let w, w ′ ∈ G(e, e, n). We say that w ′ is a right divisor of w or w is a left multiple of w ′ , and write w ′ r w, if there exists w ′′ ∈ G(e, e, n) such that w = w ′′ w ′ and ℓ(w

) = ℓ(w ′′ ) + ℓ(w ′ ). Lemma 3.2.3. Let w, w ′ ∈ G(e, e, n) and let x 1 x 2 • • • x r be a reduced expression over X of w ′ . We have w ′ w if and only if ∀ 1 ≤ i ≤ r, ℓ(x i x i-1 • • • x 1 w) = ℓ(x i-1 • • • x 1 w) -1.
Proof. On the one hand, we have

w ′ w ′′ = w with w ′′ = x r x r-1 • • • x 1 w and the condi- tion ∀ 1 ≤ i ≤ r, ℓ(x i x i-1 • • • x 1 w) = ℓ(x i-1 • • • x 1 w)-1 implies that ℓ(w ′′ ) = ℓ(w) -r. So we get ℓ(w ′′ ) + ℓ(w ′ ) = ℓ(w). Hence w ′ w.
On the other hand, since

x 2 = 1 for all x ∈ X, we have ℓ(xw) = ℓ(w) ± 1 for all w ∈ G(e, e, n). If there exists i such that ℓ(x i x i-1 • • • x 1 w) = ℓ(x i-1 • • • x 1 w) + 1 with 1 ≤ i ≤ r, then ℓ(w ′′ ) = ℓ(x r x r-1 • • • x 1 w) > ℓ(w) -r. It follows that ℓ(w ′ ) + ℓ(w ′′ ) > ℓ(w). Hence w ′ w. Consider the homomorphism -: X * -→ G(e, e, n) : x -→ x := x ∈ X. If RE(w) = x 1 x 2 • • • x r with w ∈ G(e, e, n) and x 1 , x 2 , • • • , x r ∈ X, then RE(w) = x 1 x 2 • • • x r = w where x 1 , x 2 , • • • , x r ∈ X.
In the sequel, we fix 1 ≤ k ≤ e -1 and let w ∈ G(e, e, n). Definition 3.2.4. Let λ be the diagonal matrix of G(e, e, n) such that λ

[i, i] = ζ e for 2 ≤ i ≤ n and λ[1, 1] = (ζ -1 e ) n-1 . We define D k to be the set w ∈ G(e, e, n) s.t. RE i (w) RE i (λ k ) f or 2 ≤ i ≤ n ,
where RE i (w) is given in Definition 2.1.11.

Proposition 3.2.5. The set D k consists of the elements w of G(e, e, n) such that for all 2 ≤ i ≤ n, RE i (w) can be any of the following words:

s i • • • s i ′ with 2 ≤ i ′ ≤ i, s i • • • s 3 t k ′ with 0 ≤ k ′ ≤ e -1, and 
s i • • • s 3 t k t 0 s 3 • • • s i ′ with 2 ≤ i ′ ≤ i. Proof. We have RE i (λ k ) = s i • • • s 3 t k t 0 s 3 • • • s i . Let w ∈ G(e, e, n). Note that RE i (w)
is necessarily one of the words given in the first column of the following table. For each RE i (w), there exists a unique w ′ ∈ G(e, e, n) with RE(w ′ ) given in the second column, such that

RE i (w)w ′ = RE i (λ k ). For RE i (w) = s i • • • s i ′ with 2 ≤ i ′ ≤ i, we get RE(w ′ ) = s i ′ -1 • • • s 3 t k t 0 s 3 • • • s i . For RE i (w) = s i • • • s 3 t k ′ with 0 ≤ k ′ ≤ e -1, we get RE(w ′ ) = t k ′ -k s 3 • • • s i . In this case, RE i (w) RE(w ′ ) = s i • • • s 3 t k ′ t k ′ -k s 3 • • • s i = s i • • • s 3 t k t 0 s 3 • • • s i = RE i (λ k ). For RE i (w) = s i • • • s 3 t k t 0 s 3 • • • s i ′ with 2 ≤ i ′ ≤ i, we get RE(w ′ ) = s i ′ +1 • • • s i . Finally, for RE i (w) = s i • • • s 3 t k ′ t 0 s 3 • • • s i ′ with 1 ≤ k ′ ≤ e -1, k ′ = k, and 2 ≤ i ′ ≤ i, we get RE(w ′ ) = s i ′ • • • s 3 t k-k ′ t 0 s 3 • • • s i .
In the last column, we compute

ℓ RE i (w) +ℓ(RE(w ′ )). It is equal to ℓ RE i (λ k ) =
2(i -1) only for the first three cases. The result follows immediately.

RE i (w) RE(w ′ ) s i • • • s i ′ with 2 ≤ i ′ ≤ i s i ′ -1 • • • s 3 t k t 0 s 3 • • • s i 2(i -1) s i • • • s 3 t k ′ with 0 ≤ k ′ ≤ e -1 t k ′ -k s 3 • • • s i 2(i -1) s i • • • s 3 t k t 0 s 3 • • • s i ′ with 2 ≤ i ′ ≤ i s i ′ +1 • • • s i 2(i -1) s i • • • s 3 t k ′ t 0 s 3 • • • s i ′ with 1 ≤ k ′ ≤ e -1, s i ′ • • • s 3 t k-k ′ t 0 s 3 • • • s i 2(i -1)+ k ′ = k, and 2 ≤ i ′ ≤ i 2(i ′ -1)
The next proposition characterizes the divisors of λ k in G(e, e, n).

Proposition 3.2.6. The set D k is equal to the interval [1, λ k ],
where

[1, λ k ] = w ∈ G(e, e, n) s.t. 1 w λ k . Proof. Let w ∈ G(e, e, n). We have RE(w) = RE 2 (w)RE 3 (w) • • • RE n (w). Let w ∈ X *
be a word representative of w. Denote by ←w ∈ X * the word obtained by reading w from right to left. For 3 ≤ i ≤ n, we denote by α i the element that corresponds to

←------ REi-1(w) • • • ← ----- RE2(w) in G(e, e, n).
Suppose that w ∈ D k . We apply Lemma 3.2.3 to prove that w λ k . Fix 2 ≤ i ≤ n. By Proposition 3.2.5, we have three different possibilities for RE i (w).

First, consider the cases

RE i (w) = s i • • • s 3 t k t 0 s 3 • • • s i ′ or s i • • • s i ′ with 2 ≤ i ′ ≤ i. Hence ←---- RE i (w) = s i ′ • • • s 3 t 0 t k s 3 • • • s i or s i ′ • • • s i , respectively.
Note that the left multiplication of the matrix λ k by α i produces permutations only in the block consisting of the first i -1 rows and the first i -

1 columns of λ k . Since λ[i, i] = ζ k e ( = 1
), by 1(a) of Proposition 2.1.17, the left multiplication of α i λ k by s i ′ • • • s i decreases the length maximallythat is, each generator causes a decrease of length 1. Now, by 2 of Proposition 2.1.17, the left multiplication of

s 3 • • • s i α i λ k by t k decreases the length of 1. Note that by these left multiplications, λ k [i, i] = ζ k e is shifted to the first row then transformed to ζ k e ζ -k e = 1.
Hence, by 1(b) of Proposition 2.1.17, the left multiplication of

t 1 s 3 • • • s i α i λ k by s i ′ • • • s 3 t 0 decreases the length maximally. Thus, by Lemma 3.2.3, we have w λ k . Suppose that RE i (w) = s i • • • s 3 t k ′ with 0 ≤ k ′ ≤ e -1. We have ←---- RE i (w) = t k ′ s 3 • • • s i . Since λ k [i, i] = ζ k e ( = 1
), by 1(a) of Proposition 2.1.17, the left multiplication of α i λ k by s 3 • • • s i decreases the length maximally. By 2 of Proposition 2.1.17, the left multiplication of s 3 • • • s i α i λ k by t k ′ also decreases the length of 1. Hence, by applying Lemma 3.2.3, we have w λ k .

Conversely, suppose that w / ∈ D k , we prove that w

λ k . If RE(w) = x 1 • • • x r , by Lemma 3.2.3, we show that there exists 1 ≤ i ≤ r such that ℓ(x i x i-1 • • • x 1 λ k ) = ℓ(x i-1 • • • x 1 λ k ) + 1. Since w /
∈ D, by Proposition 3.2.5, we may consider the first

RE i (w) that appears in RE(w) = RE 2 (w) • • • RE n (w) such that RE i (w) = s i • • • s 3 t k ′ t 0 s 3 • • • s i ′ with 1 ≤ k ′ ≤ e -1, k ′ = k, and 2 ≤ i ′ ≤ i. Thus, we have ← ----- RE i (w) = s i ′ • • • s 3 t 0 t k ′ s 3 • • • s i . Since λ k [i, i] = ζ k e ( = 1
), by 1(a) of Proposition 2.1.17, the left multiplication of α i λ k by s 3 • • • s i decreases the length maximally. By 2 of Proposition 2.1.17, the left multiplication of

s 3 • • • s i α i λ k by t k ′ also decreases the length of 1. Note that by these left multiplications, λ k [i, i] = ζ k e is shifted to the first row then transformed to ζ k e ζ -k ′ e = ζ k-k ′ e . Since k = k ′ , we have ζ k-k ′ e = 1
. By 3 of Proposition 2.1.17, it follows that the left multiplication of

t k ′ s 3 • • • s i α i λ k by t 0 increases the length. Hence w λ k .
We want to recognize if an element w ∈ G(e, e, n) is in the set D k directly from its matrix form. For this purpose, we introduce nice combinatorial tools defined as follows. Fix

1 ≤ k ≤ e -1. Let w ∈ G(e, e, n). Definition 3.2.7. An index [i, c] is said to be a bullet if w[j, d] = 0 for all [j, d] ∈ {[j, d] s.t. j ≤ i and d ≤ c} \ {[i, c]}. When [i, c] is a bullet, w[i, c
] is represented by an encircled element. Definition 3.2.8. We define two sets of matrix indices Z(w) and Z ′ (w) as follows.

• Z(w) := {[j, d] s.t. j ≤ i and d ≤ c f or some bullet [i, c]}. • Z ′ (w) is the set of matrix indices not in Z(w).
We draw a path in the matrix w that separates it into two parts such that the upper left-hand side is Z(w) and the other side is Z ′ (w). Let us illustrate this by the following example.

Example 3.2.9. Let w =           0 0 0 ζ 2 3 0 0 0 0 0 ζ 3 0 0 ζ 3 0 0 1 0 0 0 0 0 ζ 2 3 0 0 0           ∈ G(3, 3, 5). When [i, c] is a bullet, w[i, c
] is an encircled element and the drawn path separates Z(w) from Z ′ (w).

Remark 3.2.10. Let [i, c] be one of the bullets of w ∈ G(e, e, n). We have

[i -1, c] ∈ Z(w) and [i, c -1] ∈ Z(w). An index [i, c] such that w[i, c] = 0 and [i, c
] is not a bullet does not satisfy this condition.

Remark 3.2.11. The indices corresponding to nonzero entries on the first row and the first column of w are always bullets. In particular, when w[1, 1] = 0, we have [1,1] is a bullet and it is the only bullet of w (as this nonzero entry at [1,1] is above, or to the left of, every entry of w).

The following proposition gives a nice description of the divisors of λ k in G(e, e, n).

Proposition 3.2.12. Let w ∈ G(e, e, n). We have that w

∈ D k (i.e. w λ k ) if and only if, for all [j, d] ∈ Z ′ (w), w[j, d] is either 0, 1, or ζ k e . Proof. Let w ∈ D k and let w[i, c] = 0 for [i, c] ∈ Z ′ (w). Since w ∈ D k , by Proposition 3.2.5, we have RE i (w) = s i • • • s i ′ or s i • • • s 3 t k t 0 s 3 • • • s i ′ for 2 ≤ i ′ ≤ i (the case RE i (w) = s i • • • s 3 t k ′ for 0 ≤ k ′ ≤ e -1 appears only when w[i, c] = 0 and [i, c] is a bullet). By Lemma 2.1.9, we have w[i, c] = w i [i, d] for some 1 < d ≤ i. It follows that for RE i (w) = s i • • • s i ′ , we have w[i, c] = 1 and for RE i (w) = s i • • • s 3 t k t 0 s 3 • • • s i ′ , we have w[i, c] = ζ k e . Conversely, suppose that w[j, d] is 0, 1, or ζ k e whenever [j, d] ∈ Z ′ (w). Firstly, consider a nonzero entry w[i, c] of w for which [i, c] ∈ Z ′ (w). From Remark 3.2.11, we have i ≥ 2. Once again RE i (w) = s i • • • s 3 t k t 0 s 3 • • • s i ′ or s i • • • s i ′ for 2 ≤ i ′ ≤ i. On the other hand, if w[i, c] is a nonzero entry of w for which [i, c] / ∈ Z ′ (w) -that is, [i, c
] is a bullet of w, so by Lemma 2.1.9, we have

w i [i, 1] = ζ k ′ e for some 0 ≤ k ′ ≤ e -1, for which case RE i (w) = s i • • • s 3 t k ′ . Hence, by Proposition 3.2.5, we have w ∈ D k . Example 3.2.13. Let w =            0 0 0 1 0 0 0 0 0 ζ 3 0 0 ζ 3 0 0 ζ 3 0 0 0 0 0 1 0 0 0            ∈ G(3, 3, 5). For all [i, c] ∈ Z ′ (w), we have w[i, c] is equal to 1 or ζ 3 (these are the boxed entries of w). It follows immediately that w λ (w ∈ [1, λ]). Example 3.2.14. Let w =            0 0 0 1 0 0 0 0 0 1 0 0 ζ 3 0 0 1 0 0 0 0 0 ζ 2 3 0 0 0            ∈ G(3, 3, 5). For all [i, c] ∈ Z ′ (w), we have w[i, c] is equal to 1 or ζ 2 3 (these are the boxed entries of w). It follows immediately that w ∈ [1, λ 2 ]. Example 3.2.15. Let w =        ζ 2 3 0 0 0 0 0 ζ 3 0 0 ζ 3 0 0 0 0 0 ζ 2 3        ∈ G(3, 3, 4).
There exists

[i, c] ∈ Z ′ (w) such that w[i, c] = ζ 2 3 (the boxed element in w). It follows immediately that w / ∈ [1, λ]. Moreover, there exists [i ′ , c ′ ] ∈ Z ′ (w) such that w[i ′ , c ′ ] = ζ 3 . Hence w / ∈ [1, λ 2 ]. Remark 3.2.16. Let w be an element of the Coxeter group G(2, 2, n). The nonzero elements w[i, c] with [i, c] ∈ Z ′ (w) are always equal to 1 or -1. Hence by Proposition 3.2.12, all the elements of G(2, 2, n) are left divisors of the unique element of maximal length λ in G(2, 2, n), see Remark 2.3.4. For example, Let w =            0 0 0 1 0 0 0 0 0 1 0 0 -1 0 0 1 0 0 0 0 0 -1 0 0 0           
be an element of G(2, 2, 4). Since all the nonzero elements w[i, c] with [i, c] ∈ Z ′ (w) are equal to 1 or -1, it follows immediately that w λ.

Our description of the interval [1, λ k ] allows us to prove easily that λ k is balanced. Let us recall the definition of a balanced element. Definition 3.2.17. A balanced element in G(e, e, n) is an element w such that w ′ w holds precisely when w r w ′ .

The next lemma is obvious. Lemma 3.2.18. Let g be a balanced element and let w,

w ′ ∈ [1, g]. If w ′ w, then (w ′ ) -1 w g.
In order to prove that λ k is balanced, we first check the following.

Lemma 3.2.19. If w ∈ D k , we have w -1 λ k ∈ D k and λ k w -1 ∈ D k . Proof. Let w ∈ D k . We show that w -1 λ k = t w λ k ∈ D k and λ k w -1 = λ k t w ∈ D k ,
where t w is the complex conjugate of the transpose t w of the matrix w. We use the matrix form of an element of

D k . If [i, c] is a bullet of w, then [c, i] is a bullet of t w = w -1 and w -1 [c, i] = w[i, c]. Then, if [i, c] ∈ Z ′ (w -1 ), we have [c, i] ∈ Z ′ (w). Since w ∈ D k , we have w[c, i] ∈ 0, 1, ζ k e whenever [c, i] ∈ Z ′ (w). Then w -1 [i, c] ∈ 0, 1, ζ -k e whenever [i, c] ∈ Z ′ (w -1 ). Multiplying w -1 by λ k , we get that (w -1 λ k )[i, c] and (λ k w -1 )[i, c] are equal to 0, 1, or ζ k e whenever [i, c] ∈ Z ′ (w -1 λ k ) and Z ′ (λ k w -1 ). Hence w -1 λ k and λ k w -1 belong to D k .
Example 3.2.20. We illustrate the idea of the proof of Lemma 3.2.19 for k = 1.

Consider w ∈ D 1 as follows and show that t w λ ∈ D

1 : w =            0 0 0 0 1 0 1 0 0 0 0 0 0 ζ 3 0 ζ 2 3 0 0 0 0 0 0 1 0 0            tw -→            0 0 0 ζ 2 3 0 0 1 0 0 0 0 0 0 0 1 0 0 ζ 3 0 0 1 0 0 0 0            tw -→            0 0 0 ζ 3 0 0 1 0 0 0 0 0 0 0 1 0 0 ζ 2 3 0 0 1 0 0 0 0            twλ -→            0 0 0 1 0 0 ζ 3 0 0 0 0 0 0 0 ζ 3 0 0 1 0 0 ζ 3 0 0 0 0            . Proposition 3.2.21. The element λ k is balanced. Proof. Suppose that w λ k . By Proposition 3.2.6, we have w ∈ D k , so λ k w -1 is in D k by Lemma 3.2.19. Hence λ k = (λ k w -1 )w satisfies ℓ(λ k w -1 ) + ℓ(w) = ℓ(λ k ), namely w r λ k .
Conversely, suppose that w r λ k . We have

λ k = w ′ w with w ′ ∈ G(e, e, n) and ℓ(w ′ ) + ℓ(w) = ℓ(λ k ). It follows that w ′ ∈ D k , then w ′ -1 λ k ∈ D k by Lemma 3.2.19. Since w = w ′ -1 λ k , we have w ∈ D k , namely w λ k .
In the following theorem, we show that the elements λ k are the only balanced elements of maximal length of G(e, e, n) for 1 ≤ k ≤ e -1.

Theorem 3.2.22. The balanced elements of G(e, e, n) that are of maximal length are precisely λ k with 1 ≤ k ≤ e -1. The set D k of the divisors of each λ k is characterized in Propositions 3.2.5 and 3.2.12.

Proof. Let w ∈ G(e, e, n) be an element of G(e, e, n) of maximal length, namely by Proposition 2.3.1, a diagonal matrix such that for 2 ≤ i ≤ n, w[i, i] is an e-th root of unity different from 1. Analogously to Proposition 3.2.12, a left divisor w ′ of w

satisfies that for all 2 ≤ i ≤ n, if [i, c] is not a bullet of w ′ , then w ′ [i, c] is either 0, 1, or w[i, i].
By Proposition 3.2.21, we already have that λ k is balanced for 1 ≤ k ≤ e -1. Suppose that w is of maximal length such that w[i, i] = w[j, j] for 2 ≤ i, j ≤ n and i = j. Let s ij be the transposition matrix. We have s ij [1,1] is nonzero and so, by Remark 3.2.11, [1,1] 

is the unique bullet of s ij . Hence if [j, d] is not a bullet of s ij , then s ij [j, d] is either 0 or 1. So, s ij left-divides w. Hence w ′ := s -1 ij w = s ij w right- divides w.
We also have w ′ [1, 1] is nonzero, and so [1,1] is the unique bullet of w ′ . Thus, [j, i] is not a bullet and w ′ [j, i] = w[i, i] is neither 0, 1, nor w[j, j] (which was assumed different from w[i, i]). So w ′ w, and so w is not balanced.

It follows that the balanced elements of G(e, e, n) that are of maximal length are precisely

λ k with 1 ≤ k ≤ e -1.
We are ready to study the interval structures associated with the intervals

[1, λ k ] with 1 ≤ k ≤ e -1.

Interval structures

In this section, we construct the monoid

M ([1, λ k ]) associated to each of the intervals [1, λ k ] constructed in the previous section with 1 ≤ k ≤ e -1. By Proposition 3.2.22, λ k is balanced. Hence, by Theorem 3.1.7, in order to prove that M ([1, λ k ]) is a Garside monoid, it remains to show that both posets ([1, λ k ], ) and ([1, λ k ], r )
are lattices. This is stated in Corollary 3.3.13. The interval structures are given in Theorem 3.3.15.

Least common multiples

Let 1 ≤ k ≤ e -1 and let w ∈ [1, λ k ].
For each 1 ≤ i ≤ n there exists a unique c i such that w[i, c i ] = 0. We denote w[i, c i ] by a i . We apply Lemma 3.2.3 to prove the following lemmas. The reader is invited to write the matrix form of w to illustrate each step of the proof.

Lemma 3.3.1. Let t i w where i ∈ Z/eZ. • If c 1 < c 2 , then t k t 0 w and • if c 2 < c 1 , then t j w for all j with j = i.
Hence if t i w and t j w with i, j ∈ Z/eZ and i = j, then t k t 0 w.

Proof. Suppose c 1 < c 2 . Since a 1 = w[1, c 1 ]
is nonzero , and above and to the left of

a 2 = w[2, c 2 ] (as c 1 < c 2 ), then [2, c 2 ] is not a bullet. It belongs to Z ′ (w). Since w ∈ [1, λ k ] and [2, c 2 ] ∈ Z ′ (w), by Proposition 3.2.12, a 2 = 1 or ζ k e . Since t i w, we have ℓ(t i w) = ℓ(w) -1.
Hence by 2 of Proposition 2.1.17, we get a 2 = 1. Hence a 2 = ζ k e . Again by 2 of Proposition 2.1.17, since a 2 = 1, we have ℓ(

t k w) = ℓ(w) -1. Let w ′ := t k w. We have w ′ [1, c 2 ] = ζ -k e a 2 = ζ -k e ζ k e = 1.
Hence by 3 of Proposition 2.1.17, ℓ(t

0 w ′ ) = ℓ(w ′ ) -1. It follows that t k t 0 w. Suppose c 2 < c 1 . Since t i w, we have ℓ(t i w) = ℓ(w) -1.
Hence by 3 of Proposition 2.1.17, we have

a 1 = ζ -i e .
If there exists j ∈ Z/eZ with j = i such that t j w, then ℓ(t j w) = ℓ(w)-1. Again by 3 of Proposition 2.1.17, we have a 1 = ζ -j e . Thus, i = j which contradicts the hypothesis. The last statement of the lemma follows immediately. Lemma 3.3.2. If t i w with i ∈ Z/eZ and s 3 w, then s 3 t i s 3 = t i s 3 t i w.

Proof. Set w ′ := s 3 w and w ′′ :

= t i w ′ . Suppose c 1 < c 2 . Since w ∈ [1, λ k ] and [2, c 2 ] ∈ Z ′ (w), by Proposition 3.2.12, we get a 2 = 1 or ζ k e . Since t i w, we have ℓ(t i w) = ℓ(w) -1. Thus, by 2 of Proposition 2.1.17, we get a 2 = 1. Hence a 2 = ζ k e . Suppose that c 3 < c 2 . Since s 3 w, we have ℓ(s 3 w) = ℓ(w) -1. Hence by 1(b) of Proposition 2.1.17, a 2 = 1 which is not the case. So instead it must be that c 2 < c 3 . Assume c 2 < c 3 . Since c 1 < c 2 < c 3 , a 1 = w[1, c 1 ] is a nonzero entry which is above and to the left of a 3 = w[3, c 3 ]. Then [3, c 3 ] is in Z ′ (w). Since w ∈ [1, λ k ] and [3, c 3 ] ∈ Z ′ (w), we have a 3 = 1 or ζ k e .
By 1(a) of Proposition 2.1.17, we have a 3 = 1. Hence a 3 is equal to ζ k e . Now, we prove that s 3 t i s 3 w by applying Lemma 3.2.3. Indeed, since a 3 = 1, by 2 of Proposition 2.1.17, we have ℓ(t i w ′ ) = ℓ(w ′ ) -1, and since a 2 = 1, by 1(a) of Proposition 2.1.17, we have ℓ(s

3 w ′′ ) = ℓ(w ′′ ) -1. Suppose c 2 < c 1 . Since ℓ(t i w) = ℓ(w) -1, by 3 of Proposition 2.1.17, we have a 1 = ζ -i e . • Assume c 2 < c 3 .
Since ℓ(s 3 w) = ℓ(w) -1, by 1(a) of Proposition 2.1.17, we have a 3 = 1. We have ℓ(t i w ′ ) = ℓ(w ′ ) -1 for both cases c 1 < c 3 and c 3 < c 1 . Actually, if c 1 < c 3 , since a 3 = 1, by 2 of Proposition 2.1.17, we have ℓ(t i w ′ ) = ℓ(w ′ ) -1, and if

c 3 < c 1 , since a 1 = ζ -i e , by 3 of Proposition 2.1.17, ℓ(t i w ′ ) = ℓ(w ′ ) -1. Now, since ζ i e a 1 = ζ i e ζ -i e = 1, by 1(b) of Proposition 2.1.17, we have ℓ(s 3 w ′′ ) = ℓ(w ′′ ) -1. • Assume c 3 < c 2 .
Since

a 1 = ζ -i e , by 3 of Proposition 2.1.17, ℓ(t i w ′ ) = ℓ(w ′ ) -1. Since ζ i e a 1 = 1, by 1(b) of Proposition 2.1.17, we have ℓ(s 3 w ′′ ) = ℓ(w ′′ ) -1. Lemma 3.3.3. If t i
w with i ∈ Z/eZ and s j w with 4 ≤ j ≤ n, then t i s j = s j t i w.

Proof. We distinguish four different cases: case 1: c 1 < c 2 and c j-1 < c j , case 2: c 1 < c 2 and c j < c j-1 , case 3: c 2 < c 1 and c j-1 < c j , and case 4: c 2 < c 1 and c j < c j-1 . The proof is similar to the proofs of Lemmas 3.3.1 and 3.3.2 so we prove that s j t i w only for the first case. Suppose that c 1 < c 2 and c j-1 < c j . Since t i w, we have ℓ(t i w) = ℓ(w) -1. Hence, by 2 of Proposition 2.1.17, we have a 2 = 1. Also, since s j w, we have ℓ(s j w) = ℓ(w) -1. Hence, by 1(a) of Proposition 2.1.17, we have

a j = 1. Set w ′ := s j w. Since a 2 = 1, then ℓ(t i w ′ ) = ℓ(w ′ ) -1. Hence s j t i w.
The proof of the following lemma is similar to the proofs of Lemmas 3.3.2 and 3.3.3. Lemma 3.3.4. If s i w and s i+1 w for 3 ≤ i ≤ n-1, then s i s i+1 s i = s i+1 s i s i+1 w, and if s i w and s j w for 3 ≤ i, j ≤ n and |i -j| > 1, then s i s j = s j s i w.

The following proposition is a direct consequence of all the preceding lemmas.

Proposition 3.3.5. Let x, y ∈ X = {t 0 , t 1 , • • • , t e-1 , s 3 , • • • , s n }. The least common multiple in ([1, λ k ],
) of x and y, denoted by x∨y, exists and is given by the following identities:

• t i ∨ t j = t k t 0 = t i t i-k = t j t j-k for i = j ∈ Z/eZ, • t i ∨ s 3 = t i s 3 t i = s 3 t i s 3 for i ∈ Z/eZ, • t i ∨ s j = t i s j = s j t i for i ∈ Z/eZ and 4 ≤ j ≤ n, • s i ∨ s i+1 = s i s i+1 s i = s i+1 s i s i+1 for 3 ≤ i ≤ n -1, and 
• s i ∨ s j = s i s j = s j s i for 3 ≤ i = j ≤ n and |i -j| > 1.
We have a similar result for ([1, λ k ], r ). Proposition 3.3.6. Let x, y ∈ X. The least common multiple in ([1, λ k ], r ) of x and y, denoted by x ∨ r y, exists and is equal to x ∨ y.

Proof. Define a map on the generators of G(e, e, n) by φ : t i -→ t -i and s j -→ s j with i ∈ Z/eZ and 3 ≤ j ≤ n. On examination of the relations for G(e, e, n), it is quickly verified that this map extends to an anti-homomorphism G(e, e, n) -→ G(e, e, n). Clearly φ 2 is the identity, so in particular, φ respects the length function on G(e, e, n): ℓ(φ(w)) = ℓ(w). Suppose that x, y ∈ X and x r w and y r w, we will show that x ∨ y r w. Write w = vx and w = v ′ y with v, v ′ ∈ G(e, e, n). Thus, φ(w) = φ(x)φ(v) = φ(y)φ(v ′ ), and since φ respects length, φ(x) φ(w) and φ(y) φ(w). Hence φ(x) ∨ φ(y) φ(w).

For each pair of generators, it is straightforward to check that φ(x) ∨ φ(y) = φ(x ∨ y): the only non-trivial case being when x = t i and y = t j for i = j, when we have: e,e,n). Applying φ again gives w = φ(u)(x ∨ y), and since φ respects length, x ∨ y r w.

φ(t i ) ∨ φ(t j ) = t -i ∨ t -j = t k t 0 = φ(t 0 t -k ) = φ(t k t 0 ). Thus, φ(x ∨ y) φ(w), that is φ(w) = φ(x ∨ y)u for some u ∈ G(
Note that Propositions 3.3.5 and 3.3.6 are important to prove that both posets ([1, λ k ], ) and ([1, λ k ], r ) are lattices. Actually, they will make possible an induction proof of Proposition 3.3.12 in the next subsection.

The lattice property and interval structures

We start by recalling some general properties about lattices that will be useful in our proof. Let (S, ) be a finite poset. Definition 3.3.7. Say that (S, ) is a meet-semilattice if and only if f ∧g := gcd(f, g) exists for any f, g ∈ S.

Equivalently, (S, ) is a meet-semilattice if and only if T exists for any finite nonempty subset T of S. Definition 3.3.8. Say that (S, ) is a join-semilattice if and only if f ∨g := lcm(f, g) exists for any f, g ∈ S.

Equivalently, (S, ) is a join-semilattice if and only if T exists for any finite nonempty subset T of S. Proposition 3.3.9. Let (S, ) be a finite poset. (S, ) is a meet-semilattice if and only if for any f, g ∈ S, either f ∨ g exists, or f and g have no common multiples.

Proof. Let f, g ∈ S and suppose that f and g have at least one common multiple. Let A := {h ∈ S | f h and g h} be the set of the common multiples of f and g. Since S is finite, A is also finite. Since (S, ) is a meet-semilattice, A exists and

A = lcm(f, g) = f ∨ g. Conversely, let f, g ∈ S and let B := {h ∈ S | h
f and h g} be the set of all common divisors of f and g. Since all elements of B have common multiples, B exists and we have B = gcd(f, g) = f ∧ g. Definition 3.3.10. The poset (S, ) is a lattice if and only if it is both a meet-and join-semilattice.

The following lemma is a consequence of Proposition 3.3.9. Lemma 3.3.11. If (S, ) is a meet-semilattice such that S exists, then (S, ) is a lattice.

We will prove that ([1, λ k ], ) is a meet-semilattice by applying Proposition 3.3.9.

For 1 ≤ m ≤ ℓ(λ k ) with ℓ(λ k ) = n(n -1), we introduce ([1, λ k ]) m := {w ∈ [1, λ k ] s.t. ℓ(w) ≤ m}. Proposition 3.3.12. Let 0 ≤ k ≤ e -1. For 1 ≤ m ≤ n(n -1) and u, v in ([1, λ k ]) m , either u∨v exists in ([1, λ k ]) m , or u and v do not have common multiples in ([1, λ k ]) m . Proof. Let 1 ≤ m ≤ n(n -1)
. We make a proof by induction on m. By Proposition 3.3.5, our claim holds for m = 1. Suppose m > 1. Assume that the claim holds for all 1 ≤ m ′ ≤ m -1. We want to prove it for m ′ = m. The proof is illustrated in Figure 3.1 below. Let u, v be in ([1, λ k ]) m such that u and v have at least one common multiple in ([1, λ k ]) m which we denote by w. Write u = xu 1 and v = yv 1 such that x, y ∈ X and ℓ(u) = ℓ(u 1 ) + 1, ℓ(v) = ℓ(v 1 ) + 1. By Proposition 3.3.5, x ∨ y exists. Since x w and y w, x ∨ y divides w. We can write x ∨ y = xy 1 = yx 1 with ℓ(x ∨ y) = ℓ(x 1 ) + 1 = ℓ(y 1 ) + 1. By Lemma 3.2.18, we have

x 1 , v 1 ∈ [1, λ k ]. Also, we have ℓ(x 1 ) < m, ℓ(v 1 ) < m and x 1 , v 1 have a common multiple in ([1, λ k ]) m-1 . Thus, by the induction hypothesis, x 1 ∨ v 1 exists in ([1, λ k ]) m-1 . Similarly, y 1 ∨ u 1 exists in ([1, λ k ]) m-1 . Write x 1 ∨v 1 = v 1 x 2 = x 1 v 2 with ℓ(x 1 ∨v 1 ) = ℓ(v 1 )+ℓ(x 2 ) = ℓ(v 2 )+ℓ(x 1 ) and write y 1 ∨ u 1 = u 1 y 2 = y 1 u 2 with ℓ(y 1 ∨ u 1 ) = ℓ(y 1 ) + ℓ(u 2 ) = ℓ(u 1 ) + ℓ(y 2 ). By Lemma 3.2.18, we have u 2 , v 2 ∈ [1, λ k ]. Also, we have ℓ(u 2 ) < m, ℓ(v 2 ) < m and u 2 , v 2 have a common multiple in ([1, λ k ]) m-1 . Thus, by the induction hypothesis, u 2 ∨ v 2 exists in ([1, λ k ]) m-1 . Write u 2 ∨ v 2 = v 2 u 3 = u 2 v 3 with ℓ(u 2 ∨ v 2 ) = ℓ(v 2 ) + ℓ(u 3 ) = ℓ(u 2 ) + ℓ(v 3 ). Since uy 2 v 3 = vx 2 u 3
is a common multiple of u and v that divides every common multiple w of u and v, we deduce that u ∨ v = uy 2 v 3 = vx 2 u 3 and we are done. Similarly, applying Proposition 3.3.6, we obtain the same results for ([1, λ k ], r ). We thus proved the following. Proof. Applying Proposition 3.3.9, ([1, λ k ], ) is a meet-semilattice. Also, by definition of the interval [1, λ k ], we have [1, λ k ] = λ k . Thus, applying Proposition 3.3.9,

([1, λ k ],
) is a lattice. The same can be done for

([1, λ k ], r ).
We are ready to define the interval monoid M ([1, λ k ]).

Definition 3.3.14. Let D k be a set in bijection with D k = [1, λ k ] with [1, λ k ] -→ D k : w -→ w.
We define the monoid M ([1, λ k ]) by the following presentation of monoid with

• generating set: D k (a copy of the interval [1, λ k ]) and

• relations: w = w ′ w ′′ whenever w, w ′ and w ′′ ∈ [1, λ k ], w = w ′ w ′′ and ℓ(w) = ℓ(w ′ ) + ℓ(w ′′ ).
We have that λ k is balanced. Also, by Corollary 3.3.13, both posets ([1, λ k ], ) and ([1, λ k ], r ) are lattices. Hence, by Theorem 3.1.7, we have:

Theorem 3.3.15. (M ([1, λ k ]), λ k
) is an interval Garside monoid with simples D k , where D k is given in Definition 3.3.14. Its group of fractions exists and is denoted by

G(M ([1, λ k ])).
These interval structures have been implemented by Michel and the author using the package CHEVIE of GAP3 (see [START_REF] Michel | The development version of the CHEVIE package of GAP3[END_REF] and [START_REF] Michel | Contribution to the Chevie package[END_REF]). We provide this implementation in Appendix A. The next section is devoted to the study of these interval structures.

About the interval structures

In this section, we provide a new presentation for the interval monoid M ([1, λ k ]). Furthermore, we prove that G(M ([1, λ k ])) is isomorphic to the complex braid group B(e, e, n) if and only if k ∧ e = 1 (k and e are relatively prime). When k ∧ e = 1, we describe these new structures and show some of their properties.

Presentations

Our first aim is to prove that the interval monoid M ([1, λ k ]) is isomorphic to the monoid B ⊕k (e, e, n) defined as follows.

Definition 3.4.1. For 1 ≤ k ≤ e -1, we define the monoid B ⊕k (e, e, n) by a presentation of monoid with

• generating set: X = { t0 , t1 , • • • , te-1 , s3 , • • • , sn } and • relations:            si sj si = sj si sj f or |i -j| = 1, si sj = sj si f or |i -j| > 1, s3 ti s3 = ti s3 ti f or i ∈ Z/eZ, sj ti = ti sj f or i ∈ Z/eZ and 4 ≤ j ≤ n, ti ti-k = tj tj-k f or i, j ∈ Z/eZ.
Note that the monoid B ⊕1 (e, e, n) is the monoid B ⊕ (e, e, n) of Corran and Picantin, see [26]. It is shown in [26] Fix k such that 1 ≤ k ≤ e -1. We define a diagram for the presentation of B ⊕k (e, e, n) in the same way as the diagram corresponding to the presentation of Corran and Picantin of B(e, e, n) given in Figure 3.2, with a dashed edge between ti and ti-k and between tj and tj-k for each relation of the form ti ti-k = tj tj-k , i, j ∈ Z/eZ. For example, the diagram corresponding to B (2) (8, 8, 2) is as follows.

• 0 • 1 • 2 • 3 • 4 • 5
• 6

• 7 The following result is similar to Matsumoto's property in the case of real reflection groups, see [START_REF] Matsumoto | Générateurs et relations des groupes de Weyl généralisés[END_REF].

Proposition 3.4.2. There exists a map F : [1, λ k ] -→ B ⊕k (e, e, n) defined by F (w) = x1 x2 • • • xr whenever x 1 x 2 • • • x r is a reduced expression over X of w, where xi ∈ X for 1 ≤ i ≤ r.
Proof. Let w 1 and w 2 be in X * . We write w 1 B w 2 if w 2 is obtained from w 1 by applying only the relations of the presentation of B ⊕k (e, e, n) where we replace ti by t i and sj by s j for all i ∈ Z/eZ and 3 ≤ j ≤ n. Let w be in [1, λ k ] and suppose that w 1 and w 2 are two reduced expressions over X of w. We prove that w 1 B w 2 by induction on ℓ(w 1 ).

The result holds vacuously for ℓ(w 1 ) = 0 and ℓ(w 1 ) = 1. Suppose that ℓ(w 1 ) > 1.

Write

w 1 = x 1 w ′ 1 and w 2 = x 2 w ′ 2 , with x 1 , x 2 ∈ X. If x 1 = x 2 , we have x 1 w ′ 1 = x 2 w ′ 2 in G(e, e, n) from which we get w ′ 1 = w ′ 2 .
Then, by the induction hypothesis, we have

w ′ 1 B w ′ 2 . Hence w 1 B w 2 . If x 1 = x 2 , since x 1 w and x 2 w, we have x 1 ∨ x 2 w where x 1 ∨ x 2 is the lcm of x 1 and x 2 in ([1, λ k ], ) given in Proposition 3.3.5. Write w = (x 1 ∨ x 2 )w ′ . Also, write x 1 ∨ x 2 = x 1 v 1 and x 1 ∨ x 2 = x 2 v 2 where we can check that x 1 v 1 B x 2 v
2 for all possible cases for x 1 and x 2 . All the words x 1 w ′ 1 , x 2 w ′ 2 , x 1 v 1 w ′ , and x 2 v 2 w ′ represent w. In particular, x 1 w ′ 1 and x 1 v 1 w ′ represent w. Hence w ′ 1 = v 1 w ′ and by the induction hypothesis, we have w ′ 1 B v 1 w ′ . Thus, we have

x 1 w ′ 1 B x 1 v 1 w ′ .
Similarly, since x 2 w ′ 2 and x 2 v 2 w ′ represent w, we get

x 2 v 2 w ′ B x 2 w ′ 2 . Since x 1 v 1 B x 2 v 2 , we have x 1 v 1 w ′ B x 2 v 2 w ′ .
We obtain:

w 1 B x 1 w ′ 1 B x 1 v 1 w ′ B x 2 v 2 w ′ B x 2 w ′ 2 B w 2 .
Hence w 1 B w 2 and we are done. [START_REF] Matsumoto | Générateurs et relations des groupes de Weyl généralisés[END_REF].

By the following proposition, we provide an alternative presentation for the interval monoid M ([1, λ k ]) given in Definition 3.3.14.

Proposition 3.4.4. The monoid B ⊕k (e, e, n) is isomorphic to M ([1, λ k ]). Proof. Consider the map ρ : D k -→ B ⊕k (e, e, n) : w -→ F (w) where F is defined in Proposition 3.4.2. Let w = w ′ w ′′ be a defining relation of M ([1, λ k ]). Since ℓ(w) = ℓ(w ′ ) + ℓ(w ′′
), a reduced expression for w ′ w ′′ is obtained by concatenating reduced expressions for w ′ and w ′′ . It follows that F (w ′ w ′′ ) = F (w ′ )F (w ′′ ). We conclude that ρ has a unique extension to a monoid homomorphism M ([1, λ k ]) -→ B ⊕k (e, e, n), which we denote by the same symbol. Conversely, consider the map ρ ′ : X -→ M ([1, λ k ]) : x -→ x. In order to prove that ρ ′ extends to a unique monoid homomorphism B ⊕k (e, e, n)

-→ M ([1, λ k ]), we have to check that w 1 = w 2 in M ([1, λ k ]) for any defining relation w 1 = w 2 of B ⊕k (e, e, n). Given a relation w 1 = w 2 = x1 x2 • • • xr of B ⊕k (e, e, n), we have w 1 = w 2 = x 1 x 2 • • • x r a
reduced word over X. On the other hand, applying repeatedly the defining relations in

M ([1, λ k ]) yields to w = x 1 x 2 • • • x r if w = x 1 x 2 • • • x r
is a reduced expression over X. Thus, we can conclude that w 1 = w 2 , as desired. Hence we have defined two homomorphisms ρ : D k -→ B ⊕k (e, e, n) and ρ ′ :

X -→ M ([1, λ k ]) such that ρ • ρ ′ = id B ⊕k (e,e,n) and ρ ′ • ρ = id M ([1,λ k ]) . It follows that B ⊕k (e, e, n) is isomorphic to M ([1, λ k ]).
Since B ⊕k (e, e, n) is isomorphic to M ([1, λ k ]), we deduce that B ⊕k (e, e, n) is a Garside monoid and we denote by B (k) (e, e, n) its group of fractions.

Identifying B(e, e, n)

Now, we want to check which of the monoids B ⊕k (e, e, n) are isomorphic to B ⊕ (e, e, n). Assume there exists an isomorphism φ : B ⊕k (e, e, n) -→ B ⊕ (e, e, n) for a given k with 1 ≤ k ≤ e -1. We start with the following lemma. Lemma 3.4.5. The isomorphism φ fixes s3 , s4 , • • • , sn and permutes the ti where i ∈ Z/eZ.

Proof. Let f be in X * . We have ℓ(f ) ≤ ℓ(φ(f )). Thus, we have ℓ(x) ≤ ℓ(φ(x)) for x ∈ X. Also, ℓ(φ(x)) ≤ ℓ(φ -1 (φ(x))) = ℓ(x). Hence ℓ(x) = ℓ(φ(x)) = 1. It follows that φ maps generators to generators, that is φ(x) ∈ { t0 , t1 , • • • , te-1 , s3 , • • • , sn }.
Furthermore, the only generator of B ⊕k (e, e, n) that commutes with all other generators except for one of them is sn . On the other hand, sn is the only generator of B ⊕ (e, e, n) that satisfies the latter property. Hence φ(s n ) = sn . Next, sn-1 is the only generator of B ⊕k (e, e, n) that does not commute with sn . The only generator of B ⊕ (e, e, n) that does not commute with sn is also sn-1 . Hence φ(s n-1 ) = sn-1 . Next, the only generator of B ⊕k (e, e, n) different from sn and that does not commute with sn-1 is sn-2 . And so on, we get φ(s j ) = sj for 3 ≤ j ≤ n. It remains that Proof. Assume there exists an isomorphism φ between the monoids B ⊕k (e, e, n) and B ⊕ (e, e, n). By Lemma 3.4.5, we have φ(s j ) = sj for 3

φ({ ti | 0 ≤ i ≤ e -1}) = { ti | 0 ≤ i ≤ e -1}.
≤ j ≤ n and φ({ ti | 0 ≤ i ≤ e -1}) = { t i | 0 ≤ i ≤ e -1}.
Write tai for the generator of B ⊕k (e, e, n) for which φ( tai ) = ti . The existence of the isomorphism implies tai+1 tai = ta1 ta0 for each i ∈ Z/eZ. But the only relations of this type in B ⊕k (e, e, n) are tai+k tai = ta0+k ta0 . Thus,

a 1 = a 0 + k, a 2 = a 0 + 2k, • • • , a e-1 = a 0 + (e -1)k. Since φ is bijective on the ti -type generators, {a 0 + ik | i ∈ Z/eZ} = Z/eZ, so k ∧ e = 1.
Conversely, let 1 ≤ k ≤ e -1 such that k ∧ e = 1. We define a map φ : B ⊕ (e, e, n) -→ B ⊕k (e, e, n) where φ(s j ) = sj for 3 ≤ j ≤ n and φ( ti

) = φ( tik ), that is φ( t0 ) = t0 , φ( t1 ) = tk , φ( t2 ) = t2k , • • • , φ( te-1 ) = t (e-1)k .
The map φ is a well-defined monoid homomorphism, which is both surjective (as it sends a generator of B ⊕ (e, e, n) to a generator of B ⊕k (e, e, n)) and injective (as it is bijective on the relations). Hence φ defines an isomorphism of monoids.

When k ∧ e = 1, since B ⊕k (e, e, n) is isomorphic to B ⊕ (e, e, n), we have the following.

Corollary 3.4.7. B (k) (e, e, n) is isomorphic to the complex braid group B(e, e, n) for k ∧ e = 1.

The reason that the proof of Proposition 3.4.6 fails in the case k ∧ e = 1 is that we have more than one connected component in Γ k that link t0 , t1 , • • • , and te-1 together, as we can see in Figure 3.3. Actually, it is easy to check that the number of connected components that link t0 , t1 , • • • , and te-1 together is the number of cosets of the subgroup of Z/eZ generated by the class of k, that is equal to k ∧ e, and each of these cosets have e ′ = e/k ∧ e elements. This will be useful in the next subsection.

New Garside structures

When k ∧ e = 1, we describe B (k) (e, e, n) as an amalgamated product of k ∧ e copies of the complex braid group B(e ′ , e ′ , n) with e ′ = e/e ∧ k, over a common subgroup which is the Artin-Tits group B(2, 1, n -1). This allows us to compute the center of B (k) (e, e, n). Finally, using the Garside structure of B (k) (e, e, n), we compute its first and second integral homology groups using the Dehornoy-Lafont complex [START_REF] Dehornoy | Homology of Gaussian groups[END_REF] and the method used in [START_REF] Callegaro | Homology computations for complex braid groups[END_REF].

By an adaptation of the results of Crisp [START_REF] Crisp | Injective maps between Artin groups[END_REF] as in Lemma 5.2 of [START_REF] Callegaro | Homology computations for complex braid groups[END_REF], we have the following embedding. Let B := B(2, 1, n -1) be the Artin-Tits group defined by the following diagram presentation.

q 1 q 2 q 3 q n-2 q n-1
Proposition 3.4.8. The group B injects in B (k) (e, e, n).

Proof. Define a monoid homomorphism φ : B + -→ B ⊕k (e, e, n) :

q 1 -→ ti ti-k , q 2 -→ s3 , • • • , q n-1 -→ sn .
It is easy to check that for all x, y ∈ {q 1 , q 2 , • • • , q n-1 }, we have lcm(φ(x), φ(y)) = φ(lcm(x, y)). Hence by applying Lemma 5.2 of [START_REF] Callegaro | Homology computations for complex braid groups[END_REF],

B(2, 1, n -1) injects in B (k) (e, e, n).
We construct B (k) (e, e, n) as follows: • the generators are the union of the generators of the two copies of B(3, 3, 3),

• the relations are the union of the relations of the two copies of B(3, 3, 3) with the additional relations s3 = s′ 3 and t2 t0 = t3 t1 This is exactly the presentation of B (2) Proof. By Corollary 4.5 of [START_REF] Karrass | Combinatorial Group Theory[END_REF] that computes the center of an amalgamated product, the center of B (k) (e, e, n) is the intersection of the centers of B and B(e ′ , e ′ , n). Since the center of B and B(e ′ , e ′ , n) is infinite cyclic [START_REF] Broué | Complex reflection groups, braid groups, Hecke algebras[END_REF], the center of B (k) (e, e, n) is infinite cyclic isomorphic to Z.

Since the center of B(e, e, n) is also isomorphic to Z (see [START_REF] Broué | Complex reflection groups, braid groups, Hecke algebras[END_REF]), in order to distinguish B (k) (e, e, n) from the braid groups B(e, e, n), we compute its first and second integral homology groups. We recall the Dehornoy-Lafont complex and follow the method in [START_REF] Callegaro | Homology computations for complex braid groups[END_REF] where the second integral homology group of B(e, e, n) is computed.

We order the elements of X by considering sn < sn-1

< • • • < s3 < t0 < t1 < • • • < te-1 . For f ∈ B ⊕k (e, e, n), denote by d(f ) the least element in X which divides f on the right. An r-cell is an r-tuple [x 1 , • • • , x r ] of elements in X such that x 1 < x 2 < • • • < x r and x i = d(lcm(x i , x i+1 , • • • , x r )).
The set C r of r-chains is the free ZB ⊕k (e, e, n)-module with basis X r , the set of all r-cells with the convention

X 0 = {[∅]}. We provide the definition of the differential ∂ r : C r -→ C r-1 .
Definition 3.4.12. Let [α, A] be an (r + 1)-cell, with α ∈ X and A an r-cell. Denote α /A the unique element of B ⊕k (e, e, n) such that (α /A )lcm(A) = lcm(α, A). Define the differential ∂ r : C r -→ C r-1 recursively through two Z-module homomorphisms s r : C r -→ C r+1 and u r : C r -→ C r as follows.

∂ r+1 [α, A] = α /A [A] -u r (α /A [A]), with u r+1 = s r • ∂ r+1 where u 0 (f [∅]) = [∅], for all f ∈ B ⊕k (e, e, n), and s r ([∅]) = 0, s r (x[A]) = 0 if α := d(xlcm(A)) coincides with the first coefficient in A, and otherwise s r (x[A]) = y[α, A] + s r (yu r (α /A [A])) with x = yα /A .
We provide the result of the computation of ∂ 1 , ∂ 2 , and ∂ 3 for all 1, 2, and 3-cells, respectively. For all x ∈ X, we have

∂ 1 [x] = (x -1)[∅], for all 1 ≤ i ≤ e -1, ∂ 2 [ t0 , ti ] = ti+k [ ti ] -tk [ t0 ] -[ tk ] + [ ti+k ], for x, y ∈ X with xyx = yxy, ∂ 2 [x, y] = (yx + 1 -x)[y] + (y -xy -1)[x], and for x, y ∈ X with xy = yx, ∂ 2 [x, y] = (x -1)[y] -(y -1)[x].
For j = -k mod e, we have:

∂ 3 [s 3 , t0 , tj ] = (s 3 tk t0 s3 -tk t0 s3 + tj+2k s3 )[ t0 , tj ] -tj+2k s3 tj+k [s 3 , tj ] + ( tj+2k - s3 tj+2k )[s 3 , tj+k ] + (s 3 -tj+2k s3 -1)[ t0 , tj+k ] + (s 3 t2k -t2k )[s 3 , tk ] + ( t2k s3 + 1 - s3 )[ t0 , tk ] + [s 3 , tj+2k ] + t2k s3 tk [s 3 , t0 ] -[s 3 , t2k ] and ∂ 3 [s 3 , t0 , t-k ] = (s 3 tk t0 s3 -tk t0 s3 + tk s3 )[ t0 , t-k ] -tk s3 t0 [s 3 , t-k ] + (1 -t2k + s3 t2k )[s 3 , tk ] + (1 + t2k s3 -s3 )[ t0 , tk ] + ( tk -s3 tk + t2k s3 tk )[s 3 , t0 ] -[s 3 , t2k ].
Also, for 1 ≤ i ≤ e -1 and 4 ≤ j ≤ n, we have:

∂ 3 [s j , t0 , ti ] = (s j -1)[ t0 , ti ] -ti+k [s j , ti ] + tk [s j , t0 ] -[s j , ti+k ] + [s j , tk ],
for x, y, z ∈ X with xyx = yxy, xz = zx, and yzy = zyz,

∂ 3 [x, y, z] = (z + xyz -yz -1)[x, y] -[x, z] + (xz -z -x + 1 -yxz)y[x, z] + (x -1 -yx + zyx)[y, z],
for x, y, z ∈ X with xyx = yxy, xz = zx, and yz = zy,

∂ 3 [x, y, z] = (1 -x + yx)[y, z] + (y -1 -xy)[x, z] + (z -1)[x, y],
for x, y, z ∈ X with xy = yx, xz = zx, and yzy = zyz,

∂ 3 [x, y, z] = (1 + yz -z)[x, y] + (y -1 -zy)[x, z] + (x -1)[y, z],
and for x, y, z ∈ X with xy = yx, xz = zx, and yz = zy, ,e,n) Z be the differential with trivial coefficients. For example, for d 2 , we have: for all 1 ≤ i ≤ e -1, We are ready to compute the first and second integral homology groups of B (k) (e, e, n). Using the presentation of B (k) (e, e, n) given in Definition 3.4.1, one can check that the abelianization of [START_REF] Broué | Complex reflection groups, braid groups, Hecke algebras[END_REF]), the first integral homology group does not give any additional information whether these groups are isomorphic to some B(e, e, n) or not.

∂ 3 [x, y, z] = (1 -y)[x, z] + (z -1)[x, y] + (x -1)[y, z]. Let d r = ∂ r ⊗ ZB ⊕k (e,e,n) Z : C r ⊗ ZB ⊕k (e,e,n) Z -→ C r-1 ⊗ ZB ⊕k (e
d 2 [ t0 , ti ] = [ ti ] -[ t0 ] -[ tk ] + [ ti+k ], for x, y ∈ X with xyx = yxy, d 2 [x, y] = [y] -[x]
B (k) (e, e, n) is isomorphic to Z. Since H 1 (B (k) (e, e, n), Z) is iso- morphic to the abelianization of B (k) (e, e, n), we deduce that H 1 (B (k) (e, e, n), Z) is isomorphic to Z. Since H 1 (B(e, e, n), Z) is also isomorphic to Z (see
Recall that by [START_REF] Callegaro | Homology computations for complex braid groups[END_REF], we have

• H 2 (B(e, e, 3), Z) ≃ Z/eZ where e ≥ 2,
• H 2 (B(e, e, 4), Z) ≃ Z/eZ × Z/2Z when e is odd and H 2 (B(e, e, 4), Z) ≃ Z/eZ × (Z/2Z) 2 when e is even, and

• H 2 (B(e, e, n), Z) ≃ Z/eZ × Z/2Z when n ≥ 5 and e ≥ 2.
In order to compute H 2 (B (k) (e, e, n), Z), we follow exactly the proof of Theorem 6.4 in [START_REF] Callegaro | Homology computations for complex braid groups[END_REF] and use the same notations. We only point out the part of our proof that is different from [START_REF] Callegaro | Homology computations for complex braid groups[END_REF]. Define

v i = [ t0 , ti ] + [s 3 , t0 ] + [s 3 , tk ] -[s 3 , ti ] -[s 3 , ti+k ] where 1 ≤ i ≤ e -1.
As in [START_REF] Callegaro | Homology computations for complex braid groups[END_REF], we also have

H 2 (B (k) (e, e, n), Z) = (K 1 /d 3 (C 1 )) ⊕ (K 2 /d 3 (C 2 )). We have d 3 [s 3 , t0 , tj ] = v j -v j+k + v k if j = -k and d 3 [s 3 , t0 , t-k ] = v -k + v k . Denote u i = [s 3 , t0 , ti ] for 1 ≤ i ≤ e -1.
We define a basis of C 2 as follows. For each coset of the subgroup of Z/eZ generated by the class of k, say { tx , tx+k ,

• • • , tx-k } such that 1 ≤ x ≤ e -1, we define w x+ik = u x+ik + u x+(i+1)k + • • • + u x-k for 0 ≤ i ≤ e -1,
and when x = 0, we define

w ik = u ik + u (i+1)k + • • • + u -k for 1 ≤ i ≤ e -1. Written on the Z-basis (w k , w 2k , • • • , w -k , w 1 , w 1+k , • • • , w 1-k , • • • , w x , w x+k , • • • , w x-k , • • • ) and (v k , v 2k , • • • , v -k , v 1 , v 1+k , • • • , v 1-k , • • • , v x , v x+k , • • • , v x-k , • • • ), d 3 is in trian- gular form with (e ∧ k) -1 diagonal
coefficients that are zero, all other diagonal coefficients are equal to 1 except one of them that is equal to e ′ = e/(e ∧ k). In this case, we have H 2 (B (k) (e, e, 3), Z) = Z (e∧k)-1 × Z/e ′ Z. The rest of the proof is essentially similar to the proof of Theorem 6.4 in [START_REF] Callegaro | Homology computations for complex braid groups[END_REF].

When 

• If n = 3, we have H 2 (B (k) (e, e, 3), Z) ≃ Z (e∧k)-1 × Z/e ′ Z. • If n = 4, we have H 2 (B (k) (e, e, 4), Z) ≃ Z (e∧k)-1 × Z/e ′ Z × (Z/2Z) c
, where c is defined in the previous paragraph.

• If n ≥ 5, we have H 2 (B (k) (e, e, n), Z) ≃ Z (e∧k)-1 × Z/e ′ Z × Z/2Z.
Comparing this result with H 2 (B(e, e, n), Z), one can check that if k ∧ e = 1, B (k) (e, e, n) is not isomorphic to a complex braid group of type B(e, e, n). Thus, we conclude by the following theorem. In Appendix A, we provide a general code to compute the homology groups of order r ≥ 2 of Garside structures by using the Dehornoy-Lafont complexes. In particular, we apply the code for the Garside monoids B ⊕k (e, e, n) that have been already implemented (see [START_REF] Michel | The development version of the CHEVIE package of GAP3[END_REF] and [START_REF] Michel | Contribution to the Chevie package[END_REF]). This enables us to compute the second integral homology groups for B (k) (e, e, n) and to check the results of Proposition 3.4.14.

Chapter 4

Hecke algebras for G(e, e, n) and G(d, 1, n) In this chapter, we define the Hecke algebra associated to each complex reflection group of type G(e, e, n) and G(d, 1, n) as a quotient of the group algebra R 0 B by some polynomial relations, where R 0 is a polynomial ring and B is the corresponding complex braid group. We define a basis for this Hecke algebra and get a new proof of Theorem 1.3.5 for the general series of complex reflection groups of type G(e, e, n) and G(d, 1, n). An important consequence of our computations in the case of G(e, e, n) is that the quotient of the monoid algebra R 0 (B ⊕ (e, e, n)) by the polynomial relations is a finitely generated R 0 -module, see Proposition 4.2.17, where B ⊕ (e, e, n) is the monoid described by the presentation of Corran and Picantin.

Presentations for the Hecke algebras

We start by recalling the presentation of the complex braid group B(e, e, n) for e ≥ 1 and n ≥ 2, see Definition 3.4.1 for k = 1. Note that we remove the tilde character from each generator symbol of the presentation in order to simplify the notations. 

t i t i-1 = t j t j-1 for i, j ∈ Z/eZ, 2. t i s 3 t i = s 3 t i s 3 for i ∈ Z/eZ, 3. s j t i = t i s j for i ∈ Z/eZ and 4 ≤ j ≤ n, 4. s i s i+1 s i = s i+1 s i s i+1 for 3 ≤ i ≤ n -1, 5. s i s j = s j s i for |i -j| > 1.
Recall that this presentation can be described by the following diagram. The dashed circle describes Relation 1 of Definition 4.1.1. The other edges used to describe all the other relations follow the standard conventions for Artin-Tits diagrams. 1. zs 2 zs 2 = s 2 zs 2 z, 2. zs j = s j z for 2 ≤ j ≤ n, and 3. s i s i+1 s i = s i+1 s i s i+1 for 2 ≤ i ≤ n -1 and s i s j = s j s i for |i -j| > 1.

t0 t1 t2 t i te-1 s 3 s 4 s n-1 s n • • •
This presentation can be described by the following diagram. 

2 0 = 1, • • • , t 2 e-1 = 1, s 2 3 = 1, • • • , s 2 n = 1
to the presentation of B(e, e, n), we get a presentation of the complex reflection groups G(e, e, n). Also, if we add the relations

z d = 1, s 2 2 = 1, • • • , s 2 n = 1 to the presentation of B(d, 1, n),
we get a presentation of the complex reflection group G(d, 1, n).

We are ready to give the definitions of the Hecke algebras. Definition 4.1.4. Let e ≥ 1 and n ≥ 2. We exclude the case (n=2, e even), see Remark 4.2.5. Let R 0 = Z[a]. We define a unitary associative Hecke algebra H(e, e, n) as the quotient of the group algebra R 0 (B(e, e, n)) by the following relations.

1. t 2 i -at i -1 = 0 for 0 ≤ i ≤ e -1, 2. s 2 j -as j -1 = 0 for 3 ≤ j ≤ n.
Then, a presentation of H(e, e, n) is obtained by adding these relations to the braid relations of the presentation of B(e, e, n) given in Definition 4.1.1.

Definition 4.1.5. Let d > 1 and n ≥ 2. Let R 0 = Z[a, b 1 , b 2 , • • • , b d-1 ].
We define a unitary associative Hecke algebra H(d, 1, n) as the quotient of the group algebra R 0 (B(d, 1, n)) by the following relations.

1.

z d -b 1 z d-1 -b 2 z d-2 -• • • -b d-1 z -1 = 0, 2. s 2 j -as j -1 = 0 for 2 ≤ j ≤ n.
Then, a presentation of H(d, 1, n) is obtained by adding these relations to the braid relations of the presentation of B(d, 1, n) given in Definition 4.1.2.

In the previous definitions, we use the polynomial ring R 0 , instead of the usual Laurent polynomial ring R that was introduced originally in Definition 1. 

Basis for the case of G(e, e, n)

The Hecke algebra H(e, e, n) is described in Definition 4.1.4 by a presentation with generating set {t 0 , t 1 , • • • , t e-1 , s 3 , • • • , s n }. We will replace t 0 by s 2 in some cases to simplify notations. We use the geodesic normal form of G(e, e, n) defined in Section 2.1 of Chapter 2 in order to construct a basis for H(e, e, n) that is different from the one defined by Ariki in [1]. We introduce the following subsets of H(e, e, n).

Λ 2 = { 1, t k for 0 ≤ k ≤ e -1, t k t 0 for 1 ≤ k ≤ e -1 },
and for 3 ≤ i ≤ n,

Λ i = { 1, s i • • • s i ′ for 3 ≤ i ′ ≤ i, s i • • • s 3 t k for 0 ≤ k ≤ e -1, s i • • • s 3 t k s 2 • • • s i ′ for 1 ≤ k ≤ e -1 and 2 ≤ i ′ ≤ i }. Define Λ = Λ 2 • • • Λ n to be the set of the products a 2 • • • a n , where a 2 ∈ Λ 2 , • • • , a n ∈ Λ n . Recall that R 0 = Z[a]
. The aim of this section is to prove the following theorem. In order to prove this theorem, it is shown in Proposition 2.3 (i) of [START_REF] Marin | Proof of the BMR conjecture for G 20 and G 21[END_REF] that it is enough to find a spanning set of H(e, e, n) over R 0 of |G(e, e, n)| elements. This is a general fact about Hecke algebras associated to complex reflection groups. We have We prove Theorem 4.2.1 by induction on n ≥ 2. Propositions 4.2.4 and 4.2.6 correspond to cases n = 2 and n = 3, respectively. Suppose that ,e,). As mentioned above, in order to prove that

|Λ 2 | = 2e, |Λ 3 | = 3e, • • • ,
Λ 2 • • • Λ n-1 is an R 0 -basis of H(e
Λ = Λ 2 • • • Λ n is an R 0 -basis of H(e, e, n), it is enough to show that it is an R 0 -generating set of H(e, e, n), that is Λ stable under left multiplication by t 0 , • • • , t e-1 , s 3 , • • • , and s n . Since Λ 2 • • • Λ n-1 is an R 0 -basis of H(e, e, n -1), the set Λ 2 • • • Λ n is stable under left multiplication by t 0 , • • • , t e-1 , s 3 , • • • , and s n-1 . We prove that it is stable under left multiplication by s n , that is s n (a 2 • • • a n ) = a 2 • • • a n-2 s n (a n-1 a n ) belongs to Span(Λ) for a 2 ∈ Λ 2 , • • • ,
and a n ∈ Λ n . We will check now all the different possibilities for 

a n-1 ∈ Λ n-1 and a n ∈ Λ n . Let us consider the case n > 3. If a n-1 = 1 and a n ∈ Λ n , it is obvious that s n (a n-1 a n ) belongs to Span(Λ n-1 Λ n ). Also, if a n-1 ∈ Λ n-1 and a n = 1, it is obvious that s n (a n-1 a n ) belongs to Span(Λ n-1 Λ n ). If a n-1 = s n-1 • • • s i for 2 ≤ i ≤ n -1,
= s n-1 • • • s 3 t k s 2 • • • s i for 1 ≤ k ≤ e -1 and 2 ≤ i ≤ n -1,
we also check the 3 different possibilities for a n ∈ Λ n . This is done in Lemmas 4.2.14, 4.2.15, and 4.2.16.

In order to prove all this, we first need to establish the following two preliminary lemmas.

Lemma 4.2.2. For i, j ∈ Z/eZ, we have t j t i ∈ Span(Λ 2 ).

Proof. If i = j, then we have t 2 i = at i + 1 ∈ Span(Λ 2 ). Suppose i = j. We have t i t i-1 = t j t j-1 . If we multiply by t j on the left and by t i-1 on the right, we get

t j t i t 2 i-1 = t 2 j t j-1 t i-1 .
Using the quadratic relations, we have t j t i (at i-1 + 1) = (at j + 1)t j-1 t i-1 , that is at j t i t i-1 + t j t i = at j t j-1 t i-1 + t j-1 t i-1 . Replacing t i t i-1 by t j t j-1 and t j t j-1 by t i t i-1 , we get at 2 j t j-1 + t j t i = at i t 2 i-1 + t j-1 t i-1 . Using the quadratic relations, we have a(at j + 1)t j-1 + t j t i = at i (at i-1 + 1) + t j-1 t i-1 , that is a 2 t 1 t 0 + at j-1 + t j t i = a 2 t 1 t 0 + at i + t j-1 t i-1 . Simplifying this relation, we get

t j t i = t j-1 t i-1 + a(t i -t j-1 ).
Now, we apply the same operations to compute t j-1 t i-1 and so on until we arrive to a term of the form t k t 0 for some k ∈ Z/eZ. Thus, if i = j, then t j t i belongs to Span(Λ 2 \ {1}).

Lemma 4.2.3. For 1 ≤ k ≤ e -1, we have t k t 0 ∈ R 0 (t 1 t 0 ) + R 0 (t 1 t 0 ) 2 + • • • + R 0 (t 1 t 0 ) k + R 0 t 1 + R 0 t 2 + • • • + R 0 t k-1 .
Proof. We prove the property by induction on k. The property is clearly satisfied for

k = 1. Let k ≥ 2. Suppose t k-1 t 0 ∈ R 0 (t 1 t 0 ) + R 0 (t 1 t 0 ) 2 + • • • + R 0 (t 1 t 0 ) k-1 + R 0 t 1 + R 0 t 2 + • • • + R 0 t k-2 . We have that t k+1 t k = t k t k-1 .
Multiplying by t k+1 on the left and by t 0 on the right, we get t 2 k+1 t k t 0 = t k+1 t k t k-1 t 0 . Using the quadratic relations and replacing t k+1 t k with t 1 t 0 , we get (at k+1 + 1)t k t 0 = t 1 t 0 t k-1 t 0 . After simplifying this relation, we have t k t 0 = t 1 t 0 (t k-1 t 0 )a(t 1 t 0 )t 0 . Using the induction hypothesis, we replace t k-1 t 0 by its value and we get

t k t 0 ∈ t 1 t 0 (R 0 (t 1 t 0 ) + R 0 (t 1 t 0 ) 2 + • • • + R 0 (t 1 t 0 ) k-1 + R 0 t 1 + R 0 t 2 + • • • + R 0 t k-2 ) + R 0 (t 1 t 0 )t 0 . This is equal to R 0 (t 1 t 0 ) 2 + R 0 (t 1 t 0 ) 3 + • • • + R 0 (t 1 t 0 ) k + R 0 (t 1 t 0 )t 1 + R 0 (t 1 t 0 )t 2 + • • • + R 0 (t 1 t 0 )t k-2 + R 0 (t 1 t 0 )t 0 . Now (t 1 t 0 )t m is equal to t m+1 t m t m ∈ R 0 t 1 t 0 + R 0 t m+1 for 1 ≤ m ≤ k -2 and (t 1 t 0 )t 0 ∈ R 0 (t 1 t 0 )+R 0 t 1 . It follows that t k t 0 ∈ R 0 (t 1 t 0 )+R 0 (t 1 t 0 ) 2 +• • •+R 0 (t 1 t 0 ) k + R 0 t 1 + R 0 t 2 + • • • + R 0 t k-1 . Proposition 4.2.4. Let x = t l with l ∈ Z/eZ. For all a 2 ∈ Λ 2 , we have xa 2 belongs to Span(Λ 2 ).
Proof. This is an immediate consequence of Lemma 4.2.2. Remark 4.2.5. We excluded the case n = 2 and e even in Definition 4.1.4. In this case, there are two conjugacy classes of reflections. One can define H(e, e, 2) for e even in the same way as Definition 4.1.4 with R 0 = Z[a 1 , a 2 ] and two types of polynomial relations t 2 ia 1 t i -1 = 0, t i 's corresponding to the first conjugacy class and t 2 ja 2 t j -1 = 0, t j 's corresponding to the second conjugacy class. Similarly to Proposition 4.2.4, one shows that Λ 2 is stable under left multiplication by t i for i ∈ Z/eZ. Then, by Proposition (2.3) (i) of [START_REF] Marin | Proof of the BMR conjecture for G 20 and G 21[END_REF], Λ 2 is an R 0 -basis of H(e, e, 2) for e even.

Proposition 4.2.6. For all a 2 ∈ Λ 2 and a 3 ∈ Λ 3 , the element s 3 (a 2 a 3 ) belongs to Span(Λ 2 Λ 3 ).

Proof. The case where a 1 ∈ Λ 1 and a 2 = 1 is obvious. The case where a 1 = 1 and a 2 ∈ Λ 2 is also obvious.

Case 1. Suppose a 2 = t k for 0 ≤ k ≤ e -1 and a 3 = s 3 . We have

s 3 t k s 3 = t k s 3 t k ∈ Span(Λ 2 Λ 3 ).
Case 2. Suppose a 2 = t k for 0 ≤ k ≤ e -1 and a 3 = s 3 t l for 0 ≤ l ≤ e -1. We have s 3 t k s 3 t l = t k s 3 t k t l . After replacing t k t l by its decomposition over Λ 2 (see Lemma 4.2.2), we directly have s 3 t k s 3 t l ∈ Span(Λ 2 Λ 3 ).

Case 3. Suppose a 2 = t k for 0 ≤ k ≤ e -1 and a 3 = s 3 t l t 0 or a 3 = s 3 t l t 0 s 3 for 1 ≤ l ≤ e -1. We have s 3 t k s 3 t l t 0 s 3 = t k s 3 t k t l t 0 s 3 . By replacing t k t l by its value (see Lemma 4.2.2), we obviously have s 3 t k s 3 t l t 0 and s 3 t k s 3 t l t 0 s 3 belong to Span(Λ 2 Λ 3 ).

Case 4. Suppose a 2 = t k t 0 for 1 ≤ k ≤ e -1 and a 3 = s 3 . We have s 3 (a 2 a 3 ) = s 3 t k t 0 s 3 ∈ Span(Λ 2 Λ 3 ).

Case 5. Suppose a 2 = t k t 0 with 1 ≤ k ≤ e -1 and a 3 = s 3 t l with 0 ≤ l ≤ e -1. We have s 3 (a 2 a 3 ) = s 3 t k t 0 s 3 t l . Recall that by Lemma 4.2.3, we have

t k t 0 ∈ R 0 (t 1 t 0 )+ R 0 (t 1 t 0 ) 2 + • • • + R 0 (t 1 t 0 ) k + R 0 t 1 + R 0 t 2 + • • • + R 0 t k-1 .
Replacing t k t 0 by its value, we have to deal with the following two terms:

s 3 t x s 3 t l with 1 ≤ x ≤ k -1 and s 3 (t 1 t 0 ) x s 3 t l with 1 ≤ x ≤ k.
The first term is done in Case 2. For the second term, we decrease the power of (t 1 t 0 ) and use t 1 t 0 = t l+1 t l to get s 3 (t 1 t 0 ) x-1 t l+1 t l s 3 t l . We apply a braid relation and then get s 3 (t 1 t 0 ) x-1 t l+1 s 3 t l s 3 . Again, we decrease the power of (t 1 t 0 ) and use

t 1 t 0 = t l+2 t l+1 . We get s 3 (t 1 t 0 ) x-2 t l+2 t 2 l+1 s 3 t l s 3 ∈ R 0 s 3 (t 1 t 0 ) x-2 t l+2 t l+1 s 3 t l s 3 + R 0 s 3 (t 1 t 0 )
x-2 t l+2 s 3 t l s 3 . We continue by decreasing the power of (t 1 t 0 ) and we get in the next step that s 3 (a 2 a 3 ) belongs to R 0 s 3 (t

1 t 0 ) x-3 t l+1 s 3 t l s 3 3 +R 0 s 3 (t 1 t 0 ) x-3 t l+2 s 3 t l s 2 3 +R 0 s 3 (t 1 t 0 ) x-3 t l+1 s 3 t l s 2 3 +R 0 s 3 (t 1 t 0 )
x-3 t l+3 s 3 t l s 3 . Inductively, we arrive to terms of the form

s 3 t 1 t 0 t x ′ s 3 t l (s 3 ) x ′′ (0 ≤ x ′ ≤ e -1 and x ′′ ∈ N). Replace t 1 t 0 by t x ′ +1 t x ′ , we get s 3 t x ′ +1 (t x ′ ) 2 s 3 t l (s 3 ) x ′′ which belongs to R 0 s 3 t x ′ +1 t x ′ s 3 t l (s 3 ) x ′′ +R 0 s 3 t x ′ +1 s 3 t l (s 3 ) x ′′ .
Replacing t x ′ +1 t x ′ by t l+1 t l and applying a braid relation in the first term, we get R 0 s 3 t l+1 s 3 t l (s 3 ) x ′′ +1 +R 0 s 3 t x ′ +1 s 3 t l (s 3 ) x ′′ . Since s 2 3 = as 3 + 1, it remains to deal with these 2 terms:

s 3 t x s 3 t l and s 3 t x s 3 t l s 3 , for some 0 ≤ x ≤ e -1.
It is easily checked that they belong to Span(Λ 2 Λ 3 ).

Case 6. Suppose a 2 = t k t 0 and a 3 = s 3 t l t 0 or a 3 = s 3 t l t 0 s 3 (1 ≤ k, l ≤ e -1). By Case 5, we get two terms of the form s 3 t x s 3 t l and s 3 t x s 3 t l s 3 . Multiplying them on the right by t 0 then by s 3 , we get that s 3 (a 2 a 3 ) obviously belongs to Span(Λ 2 Λ 3 ).

In the sequel, we will indicate by (1) the operation that shifts the underlined letters to the left, by (2) the operation that applies braid relations, and by (3) the one that applies quadratic relations. The following lemma is useful in the proofs of Lemmas 4.2.13, 4.2.15, and 4.2.16. Denote by S * n-1 the set of the words over

{t 0 , • • • , t e-1 , s 3 , • • • , s n-1 }. Lemma 4.2.7. Let 3 ≤ i ≤ n. We have s n • • • s 4 s 2 3 s 4 • • • s i belongs to Span(S * n-1 Λ n ). Proof. If i = 3, we have s n • • • s 4 s 2 3 ∈ R 0 s n • • • s 4 s 3 + R 0 s n • • • s 4 (the last term is equal to 1 if n = 3). If i = 4, we have s n • • • s 4 s 2 3 s 4 ∈ R 0 s n • • • s 4 s 3 s 4 + R 0 s n • • • s 2 4 ∈ R 0 s 3 s n • • • s 3 +R 0 s n • • • s 4 +R 0 s n • • • s 5 . The last term is equal to 1 if n = 4. Let i ≥ 5. We have s n • • • s 4 s 2 3 s 4 • • • s i belongs to R 0 s n • • • s 4 s 3 s 4 • • • s i +R 0 s n • • • s 5 s 2 4 s 5 • • • s i .
We apply the quadratic relation s 2 4 = as 4 + 1 to the second term and get

R 0 s n • • • s 5 s 4 s 5 • • • s i + R 0 s n • • • s 6 s 2 5 s 6 • • • s i .
And so on, we apply quadratic relations. We get terms of the form

s n • • • s k+1 s k s k+1 • • • s i with k + 1 ≤ i and a term of the form s n • • • s i+1 s i s 2 i-1 s i . We have s n • • • s i+1 s i s 2 i-1 s i belongs to R 0 s n • • • s i+1 s i s i-1 s i + R 0 s n • • • s i+1 s i + R 0 s n • • • s i+1 ⊆ R 0 s i-1 s n • • • s i-1 + R 0 s n • • • s i+1 s i + R 0 s n • • • s i+1 (the last term is equal to 1 if i = n). Hence it belongs to Span(S * n-1 Λ n ).
The other terms are of the form

s n • • • s k+1 s k s k+1 • • • s i (k + 1 ≤ i).
We have

s n • • • s k+1 s k s k+1 • • • s i (2) = s n • • • s k+2 s k s k+1 s k s k+2 • • • s i (1) = s k s n • • • s k+2 s k+1 s k+2 s k s k+3 • • • s i (2) = s k s n • • • s k+1 s k+2 s k+1 s k s k+3 • • • s i (1) = s k s k+1 s n • • • s k+2 s k+1 s k s k+3 • • • s i-1 s i .
We apply the same operations to s k+3 , • • • , s i-1 and get

s k s k+1 • • • s i-2 s n • • • s k s i (1) = s k s k+1 • • • s i-2 s n • • • s i s i-1 s i s i-2 • • • s k (2) = s k s k+1 • • • s i-2 s n • • • s i+1 s i-1 s i s i-1 s i-2 • • • s k (1) = s k s k+1 • • • s i-1 s n s n-1 • • • s k , which belongs to Span(S * n-1 Λ n ). Lemma 4.2.8. If a n-1 = s n-1 s n-2 • • • s i with 3 ≤ i ≤ n -1 and a n = s n s n-1 • • • s i ′ with 3 ≤ i ′ ≤ n, then s n (a n-1 a n ) belongs to Span(Λ n-1 Λ n ). Proof. Suppose i < i ′ . We have s n (a n-1 a n ) is equal to s n s n-1 s n-2 • • • s i s n s n-1 • • • s i ′ (1) = s n s n-1 s n s n-2 • • • s i s n-1 • • • s i ′ (2) = s n-1 s n s n-1 s n-2 • • • s i s n-1 • • • s i ′ (1) 
=

s n-1 s n s n-1 s n-2 s n-1 • • • s i s n-2 • • • s i ′ (2) = s n-1 s n s n-2 s n-1 s n-2 • • • s i s n-2 • • • s i ′ (1) = s n-1 s n-2 s n s n-1 s n-2 • • • s i s n-2 • • • s i ′ .
We apply the same operations to the underlined letters

s n-2 • • • s i ′ in order to get s n-1 s n-2 • • • s i ′ -1 s n s n-1 • • • s i which belongs to Span(Λ n-1 Λ n ). Suppose i ≥ i ′ . We have s n (a n-1 a n ) is equal to s n s n-1 • • • s i s n s n-1 • • • s i ′ .
We apply the operations (1) and (2) and get

s n-1 s n s n-1 • • • s i s n-1 • • • s i ′ .
Then we apply the same operations to s n-1 and get

s n-1 s n-2 s n s n-1 • • • s i s n-2 • • • s i ′ . Since i ≥ i ′ , we write s i+2 s i+1 s i in s n-2 • • • s i ′ and get s n-1 s n-2 s n s n-1 • • • s i s n-2 • • • s i+2 s i+1 s i • • • s i ′ .
Similarly, we apply the same operations to s n-2 , • • • , s i+2 and get

s n-1 • • • s i+1 s n • • • s i+1 s i s i+1 s i • • • s i ′ (2) = s n-1 • • • s i+1 s n • • • s i+2 s i s i+1 s 2 i s i-1 • • • s i ′ (1) = s n-1 • • • s i s n • • • s i+2 s i+1 s 2 i s i-1 • • • s i ′ (3) = as n-1 • • • s i s n • • • s i+1 s i s i-1 • • • s i ′ + s n-1 • • • s i s n • • • s i+2 s i+1 s i-1 • • • s i ′ .
The first term belongs to Span(Λ n-1 Λ n ). For the second term, the underlined letters commute with s n • • • s i+2 s i+1 hence they are shifted to the left. We thus get

s n (a n-1 a n ) is equal to as n-1 • • • s i s n • • • s i ′ + s n-1 • • • s i ′ s n • • • s i+1 which belongs to Span(Λ n-1 Λ n ). Lemma 4.2.9. If a n-1 = s n-1 • • • s i with 3 ≤ i ≤ n -1 and a n = s n • • • s 3 t k with 0 ≤ k ≤ e -1, then s n (a n-1 a n ) belongs to Span(Λ n-1 Λ n ).
Proof. This corresponds to the case i ′ = 3 in the proof of Lemma 4.2.8 with a right multiplication by t k for 0 ≤ k ≤ e -1. Since i ≥ 3, by the case i ≥ i ′ of Lemma 4.2.8, we have

s n (a n-1 a n ) = as n-1 • • • s i s n • • • s 3 t k + s n-1 • • • s 3 s n • • • s i+1 t k . In the second term, t k commutes with s n • • • s i+1 hence it is shifted to the left. We get s n (a n-1 a n ) = as n-1 • • • s i s n • • • s 3 t k + s n-1 • • • s 3 t k s n • • • s i+1 which belongs to Span(Λ n-1 Λ n ). Lemma 4.2.10. If a n-1 = s n-1 • • • s i with 3 ≤ i ≤ n-1 and a n = s n • • • s 3 t k s 2 s 3 • • • s i ′ with 1 ≤ k ≤ e -1 and 2 ≤ i ′ ≤ n, then s n (a n-1 a n ) belongs to Span(Λ n-1 Λ n ).
Proof. According to Lemma 4.2.9, we have

s n (a n-1 a n ) = as n-1 • • • s i s n • • • s 3 t k s 2 • • • s i ′ + s n-1 • • • s 3 t k s n • • • s i+1 s 2 • • • s i ′ . The first term is an element of Span(Λ n-1 Λ n ).
We check that the second term also belongs to Span(Λ n-1 Λ n ). Actually,

If i ′ < i, the second term is equal to s n-1 • • • s 3 t k s n • • • s i+1 s 2 • • • s i ′ .
The underlined letters commute with s n • • • s i+1 and are shifted to the left. We get

s n-1 • • • s 3 t k s 2 • • • s i ′ s n • • • s i+1 ∈ Span(Λ n-1 Λ n ). If i ′ ≥ i, we write s i-1 s i s i+1 in s 2 • • • s i ′ and get s n-1 • • • s 3 t k s n • • • s i+1 (s 2 • • • s i ′ ) = s n-1 • • • s 3 t k s n • • • s i+1 (s 2 • • • s i-1 s i s i+1 • • • s i ′ ) (1) 
=

s n-1 • • • s 3 t k s 2 • • • s i-1 s n • • • s i+1 (s i s i+1 • • • s i ′ ) (2) = s n-1 • • • s 3 t k s 2 • • • s i-1 s n • • • s i s i+1 s i (s i+2 • • • s i ′ ) (1) 
=

s n-1 • • • s 3 t k s 2 • • • s i-1 s i s n • • • s i+1 s i (s i+2 • • • s i ′ ) (1) = s n-1 • • • s 3 t k s 2 • • • s i-1 s i s n • • • s i+2 s i+1 s i+2 s i (s i+3 • • • s i ′ ) (2) = s n-1 • • • s 3 t k s 2 • • • s i-1 s i s n • • • s i+1 s i+2 s i+1 s i (s i+3 • • • s i ′ ) (1) = s n-1 • • • s 3 t k s 2 • • • s i s i+1 s n • • • s i+2 s i+1 s i (s i+3 • • • s i ′ ).
We apply the same operations to the underlined letters s i+3 , • • • , s i ′ . We finally get

s n-1 • • • s 3 t k s 2 • • • s i ′ -1 s n • • • s i ∈ Span(Λ n-1 Λ n ). Lemma 4.2.11. If a n-1 = s n-1 • • • s 3 t k with 0 ≤ k ≤ e -1 and a n = s n • • • s i with 3 ≤ i ≤ n, then s n (a n-1 a n ) belongs to Span(Λ n-1 Λ n ).
Proof. We have s n (a n-1 a n ) is equal to

s n s n-1 • • • s 3 t k s n • • • s i (1) = s n s n-1 s n • • • s 3 t k s n-1 • • • s i (2) = s n-1 s n s n-1 • • • s 3 t k s n-1 • • • s i (1) = s n-1 s n s n-1 s n-2 s n-1 • • • s 3 t k s n-2 • • • s i (2) = s n-1 s n s n-2 s n-1 s n-2 • • • s 3 t k s n-2 • • • s i (1) = s n-1 s n-2 s n s n-1 • • • s 3 t k s n-2 • • • s i . Now we apply the same operations for s n-2 , • • • , s i . If i = 3. We get s n-1 • • • s 3 s n s n-1 • • • s 3 t k s 3 . Next, we apply a braid relation to get s n-1 • • • s 3 s n s n-1 • • • t k s 3 t k ,
then we shift t k to the left and we finally get

s n-1 • • • s 3 t k s n s n-1 • • • s 3 t k which belongs to Span(Λ n-1 Λ n ). If i > 3. We directly get s n-1 • • • s i s i-1 s n • • • s 3 t k which also belongs to Span(Λ n-1 Λ n ). Lemma 4.2.12. If a n-1 = s n-1 • • • s 3 t k with 0 ≤ k ≤ e -1 and a n = s n • • • s 3 t l with 0 ≤ l ≤ e -1, then s n (a n-1 a n ) belongs to Span(Λ n-1 Λ n ). Proof. By Lemma 4.2.11, one can write s n (a n-1 a n ) = s n-1 • • • s 3 t k s n s n-1 • • • s 3 t k t l .
By Lemma 4.2.2 where we compute t k t l , we directly deduce that

s n (a n-1 a n ) belongs to Span(Λ n-1 Λ n ). Lemma 4.2.13. If a n-1 = s n-1 • • • s 3 t k with 0 ≤ k ≤ e-1 and a n = s n • • • s 3 t l s 2 • • • s i with 2 ≤ i ≤ n and 1 ≤ l ≤ e -1, then s n (a n-1 a n ) belongs to Span(S * n-1 Λ n ). Proof. By the previous lemma, we have s n (a n-1 a n ) = s n-1 • • • s 3 t k s n • • • s 3 t k t l (s 2 • • • s i ).
By Lemma 4.2.2, the case i = 2 is obvious. Suppose i ≥ 3. After replacing t k t l by its value given in Lemma 4.2.2, we have two different terms in

s n (a n-1 a n ) of the form s n-1 • • • s 3 t k s n • • • s 3 t x (s 2 • • • s i ) with 0 ≤ x ≤ e -1 and of the form s n-1 • • • s 3 t k s n • • • s 3 t x (s 3 • • • s i ) with 0 ≤ x ≤ e -1.
For terms of the form

s n-1 • • • s 3 t k s n • • • s 3 t x (s 3 • • • s i ) with 0 ≤ x ≤ e -1, we have s n-1 • • • s 3 t k s n • • • s 3 t x (s 3 • • • s i ) (2) 
=

s n-1 • • • s 3 t k s n • • • t x s 3 t x (s 4 • • • s i ) (1) 
=

s n-1 • • • s 3 t k t x s n • • • s 3 t x (s 4 • • • s i ) (1) 
=

s n-1 • • • s 3 t k t x s n • • • s 4 s 3 s 4 t x (s 5 • • • s i ) (2) 
=

s n-1 • • • s 3 t k t x s n • • • s 3 s 4 s 3 t x (s 5 • • • s i ) (1) = s n-1 • • • s 3 t k t x s 3 s n • • • s 3 t x (s 5 • • • s i ).
We apply the same operations for the underlined letters to get

s n-1 • • • s 3 t k t x s 3 • • • s i-1 s n • • • s 3 t x which belongs to Span(S * n-1 Λ n ). Consider the terms of the form s n-1 • • • s 3 t k s n • • • s 3 t x (s 2 • • • s i ) with 0 ≤ x ≤ e-1. If x = 0, they belong to Span(Λ n-1 Λ n ). If x = 0, we have s n-1 • • • s 3 t k s n • • • s 3 t 0 (s 2 s 3 • • • s i ) ∈ R 0 s n-1 • • • s 3 t k s n • • • s 3 t 0 s 3 • • • s i + R 0 s n-1 • • • s 3 t k s n • • • s 4 s 2 3 s 4 • • • s i .
The first term correspond to the previous case (with x = 0) and then belongs to Span(S * n-1 Λ n ). By Lemma 4.2.7, the second term also belongs to Span(S

* n-1 Λ n ). Lemma 4.2.14. If a n-1 = s n-1 • • • s 3 t k s 2 • • • s i with 2 ≤ i ≤ n -1, 1 ≤ k ≤ e -1 and a n = s n • • • s i ′ with 3 ≤ i ′ ≤ n, then s n (a n-1 a n ) belongs to Span(Λ n-1 Λ n ).
Proof. Suppose i < i ′ . We have s n (a n-1 a n ) is equal to

s n • • • s 3 t k s 2 • • • s i s n • • • s i ′ (1) = s n s n-1 s n • • • s 3 t k s 2 • • • s i s n-1 • • • s i ′ (2) = s n-1 s n s n-1 • • • s 3 t k s 2 • • • s i s n-1 • • • s i ′ (1) = s n-1 s n s n-1 s n-2 s n-1 • • • s 3 t k s 2 • • • s i s n-2 • • • s i ′ (2) = s n-1 s n s n-2 s n-1 s n-2 • • • s 3 t k s 2 • • • s i s n-2 • • • s i ′ (1) = s n-1 s n-2 s n s n-1 s n-2 • • • s 3 t k s 2 • • • s i s n-2 • • • s i ′ +1 s i ′ .
We apply the same operations to the underlined letters and we get

s n-1 • • • s i ′ s n • • • s 3 t k s 2 • • • s i s i ′ . If i ′ = i + 1, we directly have s n (a n-1 a n ) ∈ Span(Λ n-1 Λ n ). If i ′ > i + 1, then we write s i ′ +1 s i ′ s i ′ -1 in the underlined word of s n-1 • • • s i ′ s n • • • s 3 t k s 2 • • • s i s i ′ and get s n-1 • • • s i ′ s n • • • s i ′ +1 s i ′ s i ′ -1 • • • s 3 t k s 2 • • • s i s i ′ (1) = s n-1 • • • s i ′ s n • • • s i ′ +1 s i ′ s i ′ -1 s i ′ • • • s 3 t k s 2 • • • s i (2) = s n-1 • • • s i ′ s n • • • s i ′ +1 s i ′ -1 s i ′ s i ′ -1 • • • s 3 t k s 2 • • • s i (1) = s n-1 • • • s i ′ -1 s n • • • s 3 t k s 2 • • • s i which belongs to Span(Λ n-1 Λ n ). Suppose i ≥ i ′ . We have s n (a n-1 a n ) is equal to s n • • • s 3 t k s 2 • • • s i s n • • • s i ′ .
We shift s n to the left and apply a braid relation to get

s n-1 s n s n-1 • • • s 3 t k s 2 • • • s i s n-1 • • • s i ′ . Write s i+2 s i+1 in the underlined word to get s n-1 s n s n-1 • • • s 3 t k s 2 • • • s i s n-1 • • • s i+2 s i+1 • • • s i ′ .
We apply the same operations to the underlined letters to get

s n-1 • • • s i+1 s n • • • s 3 t k s 2 • • • s i s i+1 s i s i-1 • • • s i ′ (2) = s n-1 • • • s i+1 s n • • • s 3 t k s 2 • • • s i+1 s i s i+1 s i-1 • • • s i ′ (1) = s n-1 • • • s i s n • • • s 3 t k s 2 • • • s i-1 s i s i+1 s i-1 • • • s i ′ (
The details of the computation is left to the reader). Then we have

s n-1 • • • s i s n • • • s 3 t k s 2 • • • s i-1 s i s i+1 s i-1 • • • s i ′ (1) = s n-1 • • • s i s n • • • s 3 t k s 2 • • • s i-1 s i s i-1 s i+1 s i-2 • • • s i ′ (2) = s n-1 • • • s i s n • • • s 3 t k s 2 • • • s i s i-1 s i s i+1 s i-2 • • • s i ′ (1) = s n-1 • • • s i-1 s n • • • s 3 t k s 2 • • • s i-2 s i-1 s i s i+1 s i-2 • • • s i ′ +1 s i ′ .
We apply the same operations to the underlined letters and we finally get

s n-1 • • • s i ′ +1 s n • • • s 3 t k s 2 s 3 • • • s i s i+1 s i ′ . We write s i ′ -1 s i ′ s i ′ +1 in the underlined word and get s n-1 • • • s i ′ +1 s n • • • s 3 t k s 2 s 3 • • • s i ′ -1 s i ′ s i ′ +1 • • • s i s i+1 s i ′ . We shift s i ′ to the left. We get s n-1 • • • s i ′ +1 s n • • • s 3 t k s 2 s 3 • • • s i ′ -1 s i ′ s i ′ +1 s i ′ • • • s i s i+1 .

We apply a braid relation and get s

n-1 • • • s i ′ +1 s n • • • s 3 t k s 2 s 3 • • • s i ′ -1 s i ′ +1 s i ′ s i ′ +1 • • • s i s i+1 . Now we shift s i ′ +1
to the left and get

s n-1 • • • s i ′ +1 s n • • • s i ′ +1 s i ′ s i ′ +1 s i ′ -1 • • • s 3 t k s 2 • • • s i+1 (2) = s n-1 • • • s i ′ +1 s n • • • s i ′ s i ′ +1 s i ′ s i ′ -1 • • • s 3 t k s 2 • • • s i+1 (1) = s n-1 • • • s i ′ +1 s i ′ s n • • • s i ′ +1 s i ′ s i ′ -1 • • • s 3 t k s 2 • • • s i+1 = s n-1 • • • s i ′ s n • • • s 3 t k s 2 • • • s i+1 , which belongs to Span(Λ n-1 Λ n ). Lemma 4.2.15. If a n-1 = s n-1 • • • s 3 t k s 2 • • • s i with 2 ≤ i ≤ n-1, 1 ≤ k ≤ e -1 and a n = s n s n-1 • • • s 3 t l with 0 ≤ l ≤ e -1, then s n (a n-1 a n ) belongs to Span(S * n-1 Λ n ). Proof.
By the final result of the computations in Lemma 4.2.14, we have

s n (a n-1 a n ) is equal to s n-1 • • • s 3 s n • • • s 3 t k s 2 s 3 • • • s i+1 t l .
We shift t l to the left and get

s n-1 • • • s 3 s n • • • s 3 t k s 2 s 3 t l • • • s i+1
. By Case 5 of Proposition 4.2.6, we have to deal with the following two terms:

• s n-1 • • • s 3 s n • • • s 3 t x s 3 t l s 4 • • • s i+1 and • s n-1 • • • s 3 s n • • • s 3 t x s 3 t l s 3 s 4 • • • s i+1 with 1 ≤ x, l ≤ e -1.
The first term is of the form

s n-1 • • • s 3 s n • • • s 3 t x s 3 t l s 4 • • • s i+1 (2) = s n-1 • • • s 3 s n • • • s 4 t x s 3 t x t l s 4 • • • s i+1 (1) = s n-1 • • • s 3 t x s n • • • s 3 t x t l s 4 • • • s i+1 (1) = s n-1 • • • s 3 t x s n • • • s 4 s 3 s 4 t x t l s 5 • • • s i+1 (2) = s n-1 • • • s 3 t x s n • • • s 3 s 4 s 3 t x t l s 5 • • • s i+1 (1) = s n-1 • • • s 3 t x s 3 s n • • • s 4 s 3 t x t l s 5 • • • s i+2 s i+1 .
We apply the same operations to the underlined letters, we get

s n-1 • • • s 3 t x s 3 • • • s i-1 s n • • • s 4 s 3 t x t l s i+1 . Finally, we shift s i+1 to the left and get s n-1 • • • s 3 t x s 3 • • • s i s n • • • s 4 s 3 t x t l . Since 2 ≤ i ≤ n -1
and by the computation of t x t l in Lemma 4.2.2, the lemma is satisfied for this case. The second term is equal to

s n-1 • • • s 3 s n • • • s 3 t x s 3 t l s 3 s 4 • • • s i+1 (2) = s n-1 • • • s 3 s n • • • t x s 3 t x t l s 3 s 4 • • • s i+1 (1) = s n-1 • • • s 3 t x s n • • • s 3 t x t l s 3 s 4 • • • s i+1 .
We replace t x t l by its value given in Lemma 4.2.2, we get terms of the three following forms:

• s n-1 • • • s 3 t x s n • • • s 3 t m t 0 s 3 s 4 • • • s i+1 with 1 ≤ m ≤ e -1, • s n-1 • • • s 3 t x s n • • • s 3 t m s 3 s 4 • • • s i+1 with 0 ≤ m ≤ e -1, • s n-1 • • • s 3 t x s n • • • s 4 s 2 3 s 4 • • • s i+1 .

The first term belongs to Span(S *

n-1 Λ n ). The third term also belongs to Span(S * n-1 Λ n ). This is done by using the computation in the proof of Lemma 4.2.7. For the second term, we have

s n-1 • • • s 3 t x s n • • • s 4 s 3 t m s 3 s 4 • • • s i+1 (2) = s n-1 • • • s 3 t x s n • • • s 4 t m s 3 t m s 4 • • • s i+1 (1) = s n-1 • • • s 3 t x t m s n • • • s 4 s 3 s 4 t m s 5 • • • s i+1 (2) = s n-1 • • • s 3 t x t m s n • • • s 3 s 4 s 3 t m s 5 • • • s i+1 (1) = s n-1 • • • s 3 t x t m s 3 s n • • • s 4 s 3 t m s 5 • • • s i+2 s i+1 .
We apply the same operations to the underlined letters and get

s n-1 • • • s 3 t x t m s 3 • • • s i-1 s n • • • s 3 t m s i+1 . Now we shift s i+1 to the left and finally get s n-1 • • • s 3 t x t m s 3 • • • s i s n • • • s 3 t m with 2 ≤ i ≤ n -1 which belongs to Span(S * n-1 Λ n ).
Note that for i = 2, we get terms that are equal to the itemized terms (given at the beginning of this proof) after replacing

s 4 • • • s i+1 by 1. Lemma 4.2.16. If a n-1 = s n-1 • • • s 3 t k s 2 • • • s i with 2 ≤ i ≤ n -1, 1 ≤ k ≤ e -1 and a n = s n • • • s 3 t l s 2 • • • s i ′ with 1 ≤ l ≤ e -1 and 2 ≤ i ′ ≤ n, then s n (a n-1 a n ) belongs to Span(S * n-1 Λ n ). Proof.
According to the computation in the proof of Lemma 4.2.15, we get the following possible terms. They appear in the proof of Lemma 4.2.15 in the following order.

s

n • • • s 3 t x t l with 0 ≤ x, l ≤ e -1, 2. s n • • • s 3 t m t 0 s 3 • • • s i+1 with 1 ≤ m ≤ e -1, 3. s n • • • s 3 t m with 0 ≤ m ≤ e -1, 4. s n • • • s 4 s 2 3 s 4 • • • s i+1
We show that the product on the right by s 2 • • • s i ′ of each of the previous terms belongs to Span(S * n-1 Λ n ). Case 1. Consider the first term

s n • • • s 3 t x t l (s 2 • • • s i ′ ) with 0 ≤ x, l ≤ e -1.
We replace t x t l by its decomposition given in Lemma 4.2.2, we get these terms

• s n • • • s 3 t m t 0 s 3 • • • s i ′ with 1 ≤ m ≤ e -1, • s n • • • s 3 t m s 3 • • • s i ′ with 0 ≤ m ≤ e -1, • s n • • • s 4 s 2 3 s 4 • • • s i ′ . The first term belongs to Span(S * n-1 Λ n ).
The third one is done in Lemma 4.2.7. For the second one, we have

s n • • • s 3 t m s 3 • • • s i ′ (2) = s n • • • t m s 3 t m s 4 • • • s i ′ (1) = t m s n • • • s 4 s 3 s 4 t m s 5 • • • s i ′ (2) = t m s n • • • s 3 s 4 s 3 t m s 5 • • • s i ′ (1) = t m s 3 s n • • • s 4 s 3 t m s 5 • • • s i ′ -1 s i ′ .
We apply the same operations to s 5 ,

• • • , s i ′ -1 and get t m s 3 • • • s i ′ -2 s n • • • s 3 t m s i ′ .
We shift s i ′ to the left and finally get

t m s 3 • • • s i ′ -1 s n • • • s 3 t m which belongs to Span(S *
n-1 Λ n ). We now consider Case 3 because we use the computation we made in Case 1. In this case, the term is of the form

s n • • • s 3 t m (s 2 • • • s i ′ ) with 0 ≤ m ≤ e -1. If m = 0, then it belongs to Span(S * n-1 Λ n ). If m = 0, we get two terms s n • • • s 3 t 0 s 3 • • • s i ′ and s n • • • s 4 s 2 3 s 4 • • • s i ′ .
The first term is done in Case 1. The second term is done in Lemma 4.2.7.

Consider Case 4. We replace s n • • • s 4 s 2 3 s 4 • • • s i+1 by its decomposition given by the computation in the proof of Lemma 4.2.7. We multiply each term of the decomposition by s 2 • • • s i ′ on the right and we prove that it belongs to Span(S * n-1 Λ n ) in the same way as the proof of Lemma 4.2.10.

Finally, it remains to show that the term corresponding to Case 2 belongs to Span(S

* n-1 Λ n ). It is of the form s n • • • s 3 t m t 0 s 3 • • • s i+1 (s 2 • • • s i ′ ) with 1 ≤ m ≤ e -1. Suppose i ′ ≤ i. We have s n • • • s 3 t m s 2 s 3 • • • s i+1 s 2 • • • s i ′ (1) = s n • • • s 3 t m s 2 s 3 s 2 s 4 • • • s i+1 s 3 • • • s i ′ (2) = s n • • • s 3 t m s 3 s 2 s 3 s 4 • • • s i+1 s 3 • • • s i ′ (2) = s n • • • t m s 3 t m s 2 s 3 s 4 • • • s i+1 s 3 • • • s i ′ (1) = t m s n • • • s 3 t m s 2 s 3 s 4 • • • s i+1 s 3 • • • s i ′ (1) = t m s n • • • s 3 t m s 2 s 3 s 4 s 3 s 5 • • • s i+1 s 4 • • • s i ′ (2) = t m s n • • • s 3 t m s 2 s 4 s 3 s 4 s 5 • • • s i+1 s 4 • • • s i ′ (1) = t m s n • • • s 4 s 3 s 4 t m s 2 s 3 s 4 s 5 • • • s i+1 s 4 • • • s i ′ (2) = t m s n • • • s 3 s 4 s 3 t m s 2 s 3 s 4 s 5 • • • s i+1 s 4 • • • s i ′ (1) = t m s 3 s n • • • s 4 s 3 t m s 2 s 3 s 4 s 5 • • • s i+1 s 4 • • • s i ′ -1 s i ′ .
We apply the same operations to

s 4 , • • • , s i ′ -1 to get t m s 3 • • • s i ′ -1 s n • • • s 3 t m s 2 s 3 • • • s i s i+1 s i ′ . We shift s i ′ to the left and finally get t m s 3 • • • s i ′ s n • • • s 3 t m s 2 s 3 • • • s i s i+1 which satisfies the property of the lemma since i ′ ≤ i ≤ n -1. Suppose i ′ > i.
As previously, we have

s n • • • s 3 t m s 2 s 3 • • • s i+1 s 2 • • • s i ′ (1) = t m s n • • • s 3 t m s 2 s 3 • • • s i+1 s 3 • • • s i ′ (1) = t m s 3 s n • • • s 3 t m s 2 s 3 • • • s i+1 s 4 • • • s i ′ . Now we write s i s i+1 in s 4 • • • s i ′ and get t m s 3 s n • • • s 3 t m s 2 s 3 • • • s i+1 s 4 • • • s i s i+1 • • • s i ′ .
We apply the same operations to

s 4 , • • • , s i to get t m s 3 • • • s i s n • • • s 3 t m s 2 s 3 • • • s i s 2 i+1 s i+2 • • • s i ′ . Applying a quadratic relation, we fi- nally get at m s 3 • • • s i s n • • • s 3 t m s 2 s 3 • • • s i ′ + t m s 3 • • • s i s n • • • s 3 t m s 2 s 3 • • • s i s i+2 • • • s i ′ .
The first term satisfies the property of the lemma. For the second term, we write

s i+2 s i+1 in s n • • • s 3 of t m s 3 • • • s i s n • • • s 3 t m s 2 s 3 • • • s i s i+2 • • • s i ′ and get t m s 3 • • • s i s n • • • s i+2 s i+1 • • • s 3 t m s 2 s 3 • • • s i s i+2 • • • s i ′ (1) = t m s 3 • • • s i s n • • • s i+2 s i+1 s i+2 • • • s 3 t m s 2 s 3 • • • s i s i+3 • • • s i ′ (2) = t m s 3 • • • s i s n • • • s i+1 s i+2 s i+1 • • • s 3 t m s 2 s 3 • • • s i s i+3 • • • s i ′ (1) = t m s 3 • • • s i+1 s n • • • s 3 t m s 2 s 3 • • • s i s i+3 • • • s i ′ .
We apply the same operations to s i+3 ,

• • • , s i ′ and finally get t m s 3 • • • s i ′ -1 s n • • • s 3 t m s 2 s 3 • • • s i . Since i ′ -1 ≤ n -1, this term belongs to Span(S * n-1 Λ n ).
By Proposition 2.3 (ii) of [START_REF] Marin | Proof of the BMR conjecture for G 20 and G 21[END_REF], we get another proof of Theorem 1.3.5 for the complex reflection groups G(e, e, n). Moreover, from our previous computations, we need not to inverse the generators of H(e, e, n). Recall that the monoid described by the presentation of Corran and Picantin is denoted by B ⊕ (e, e, n). We have the following result. Proposition 4.2.17. The quotient of the monoid algebra R 0 (B ⊕ (e, e, n)) by Relations 1 and 2 of Definition 4.1.4 is a finitely generated R 0 -module with generating set equals to Λ.

The above proposition is interesting because of the following phenomenon. If one tries to define the Hecke algebras from the Broué-Malle and Broué-Malle-Rouquier diagrams of complex braid groups, the more general hope would be to define them over a polynomial ring with no invertibility conditions, namely as quotients of the monoid algebra of the monoid described by the diagram and then prove that they are finitely generated over the polynomial ring. This happens in the case of Coxeter groups. However, it is proved in [START_REF] Marin | The freeness conjecture for Hecke algebras of complex reflection groups and the case of the Hessian group G 26[END_REF] that this is not the case in general, and in particular for the case of the infinite series of complex reflection groups of type G(d, 1, n) (see Subsection 3.2.3 of [START_REF] Marin | The freeness conjecture for Hecke algebras of complex reflection groups and the case of the Hessian group G 26[END_REF]). This motivates the previous proposition where our result is expressed without any invertibility condition by using the monoid of Corran and Picantin B ⊕ (e, e, n). This therefore provides an additional interest to our construction.

The case of

G(d, 1, n) Let d > 1 and n ≥ 2. Let R 0 = Z[a, b 1 , b 2 , • • • , b d-1 ].
Recall that the Hecke algebra H(d, 1, n) is the unitary associative R 0 -algebra generated by the elements z, s 2 , s 3 , • • • , s n with the following relations:

1. zs 2 zs 2 = s 2 zs 2 z, 2. zs j = s j z for 2 ≤ j ≤ n, 3. s i s i+1 s i = s i+1 s i s i+1 for 2 ≤ i ≤ n -1 and s i s j = s j s i for |i -j| > 1, 4. z d -b 1 z d-1 -b 2 z d-2 -• • • -b d-1 z -1 =
0 and s 2 jas j -1 = 0 for 2 ≤ j ≤ n. We use the geodesic normal form defined in Section 2.2 of Chapter 2 for all the elements of G(d, 1, n) in order to construct a basis for H(d, 1, n) that is different from the one defined by Ariki and Koike in [2]. We introduce the following subsets of H(d, 1, n).

Λ 1 = { z k for 0 ≤ k ≤ d -1 },
and for 2 ≤ i ≤ n,

Λ i = { 1, s i • • • s i ′ for 2 ≤ i ′ ≤ i, s i • • • s 2 z k for 1 ≤ k ≤ d -1, s i • • • s 2 z k s 2 • • • s i ′ for 1 ≤ k ≤ d -1 and 2 ≤ i ′ ≤ i }. Define Λ = Λ 1 Λ 2 • • • Λ n to be the set of the products a 1 a 2 • • • a n , where a 1 ∈ Λ 1 , • • • , a n ∈ Λ n .
We prove the following theorem. We have

|Λ 1 | = d, |Λ i | = id for 2 ≤ i ≤ n. Then |Λ| is equal to d n n! that is the order of G(d, 1, n).
Hence by Proposition 2.3 (i) of [START_REF] Marin | Proof of the BMR conjecture for G 20 and G 21[END_REF], it is sufficient to show that Λ is an R 0 -generating set of H(d, 1, n). This is proved by induction on n in much the same way as Theorem 4.2.1. We provide some preliminary lemmas that are useful in the proof of the theorem. , where each term is of the form λ 1 λ 2 with λ 1 ∈ Λ 1 and λ 2 ∈ Λ ′′ 2 . For the first term s 2 z k-1 s 2 s 2 zs 2 , by the induction hypothesis, the terms that appear in the decomposition of s 2 z k-1 s 2 are of the following forms.

Lemma 4.3.2. For 1 ≤ k ≤ d -1, the element (s 2 zs 2 ) k belongs to λ1∈Λ1, λ2∈Λ ′ 2 R 0 λ 1 λ 2 , where Λ ′ 2 = {1, s 2 , s 2 z, s 2 z 2 , • • • , s 2 z k-1 , s 2 zs 2 , s 2 z 2 s 2 , • • • , s 2 z k s 2 }. Proof. The property is clear for k = 1. Let k = 2. We have (s 2 zs 2 ) 2 =
• z c and z c s 2 with 0 ≤ c ≤ d -1,

• z c (s 2 zs 2 ) c ′ with 0 ≤ c ≤ d -1 and 1 ≤ c ′ ≤ k -1, • z c s 2 z c ′ with 0 ≤ c ≤ d -1 and 1 ≤ c ′ ≤ k -2.
Multiplying these terms by s 2 zs 2 on the right, we get the following 3 cases.

Case 1. We have z c s 2 zs 2 and z c s 2 s 2 zs 2 = az c s 2 zs 2 + z c+1 s 2 , where each term in both expressions is of the form

λ 1 λ 2 with λ 1 ∈ Λ 1 and λ 2 ∈ Λ ′′ 2 . Case 2. The term z c (s 2 zs 2 ) c ′ s 2 zs 2 = z c (s 2 zs 2 ) c ′ +1 is of the form λ 1 λ 2 with λ 1 ∈ Λ 1 and λ 2 ∈ Λ ′′ 2 since 1 ≤ c ′ ≤ k -1. Case 3. We have z c s 2 z c ′ s 2 zs 2 = z c s 2 2 zs 2 z c ′ = az c s 2 zs 2 z c ′ + z c+1 s 2 z c ′ .
The first term is equal to z c+c ′ s 2 zs 2 and the second term is equal to

z c+1 s 2 z c ′ with 1 ≤ c ′ ≤ k -2. Both are of the form λ 1 λ 2 with λ 1 ∈ Λ 1 and λ 2 ∈ Λ ′′ 2 .
The following proposition ensures that the case n = 2 of Theorem 4.3.1 works properly.

Proposition 4.3.5. For all a 1 ∈ Λ 1 and a 2 ∈ Λ 2 , the elements za 1 a 2 and s 2 a 1 a 2 belong to Span(Λ 1 Λ 2 ).

Proof. It is readily checked that za 1 a 2 belongs to Span(Λ 1 Λ 2 ). Note that when the power of z exceeds d -1, we use Relation 1 of Definition 4.1.5.

It is easily checked that if a 1 ∈ Λ 1 and a 2 = 1, the element s 2 a 1 a 2 belongs to Span(Λ 1 Λ 2 ). Also, when a 1 = 1 and a 2 ∈ Λ 2 , we have that s 2 a 1 a 2 belongs to Span(Λ 1 Λ 2 ).

Suppose a 1 = z k with 1 ≤ k ≤ d -1 and a 2 = s 2 . We have s 2 a 1 a 2 is equal to s 2 z k s 2 . Hence it belongs to Span(Λ 1 Λ 2 ).

Suppose

a 1 = z k with 1 ≤ k ≤ d -1 and a 2 = s 2 z k ′ with 1 ≤ k ′ ≤ d -1.
We have s 2 a 1 a 2 = s 2 z k s 2 z k ′ . We replace s 2 z k s 2 by its decomposition given in Lemma 4.3.4, then we use the result of Lemma 4.3.2 to directly deduce that s 2 z k s 2 z k ′ belongs to Span(Λ 1 Λ 2 ).

Finally, suppose 

a 1 = z k with 1 ≤ k ≤ d -1 and a 2 = s 2 z k ′ s 2 with 1 ≤ k ′ ≤ d -1. We have s 2 a 1 a 2 is equal to s 2 z k s 2 z k ′ s 2 .
(Λ n-1 Λ n ). Lemma 4.3.11. If a n-1 = s n-1 • • • s 2 z k with 1 ≤ k ≤ d -1 and a n = s n • • • s 2 z l with 1 ≤ l ≤ d -1, then s n (a n-1 a n ) belongs to Span(Λ n-1 Λ n ).
Proof. By the case i = 2 in the proof of Lemma 4.3.10, we get

s n (a n-1 a n ) = s n-1 • • • s 2 s n • • • s 3 s 2 z k s 2 z l . If we replace s 2 z k s 2 z l
by its decomposition over Λ 1 Λ 2 (this is the case n = 2 of Theorem 4.3.1, see Proposition 4.3.5), we get the three following terms:

• s n-1 • • • s 2 s n • • • s 3 z c with 0 ≤ c ≤ d -1, • s n-1 • • • s 2 s n • • • s 3 z c s 2 z c ′ with 0 ≤ c ≤ d -1 and 0 ≤ c ′ ≤ d -1, • s n-1 • • • s 2 s n • • • s 3 z c s 2 z c ′ s 2 with 0 ≤ c ≤ d -1 and 1 ≤ c ′ ≤ d -1.

The first term is equal to s

n-1 • • • s 2 z c s n • • • s 3 which belongs to Span(Λ n-1 Λ n ). The second term is equal to s n-1 • • • s 2 z c s n • • • s 3 s 2 z c ′ which belongs to Span(Λ n-1 Λ n ). Finally, the third term is equal to s n-1 • • • s 2 z c s n • • • s 2 z c ′ s 2 which also belongs to Span(Λ n-1 Λ n ). Lemma 4.3.12. If a n-1 = s n-1 • • • s 2 z k with 1 ≤ k ≤ d-1 and a n = s n • • • s 2 z l s 2 • • • s i with 2 ≤ i ≤ n and 1 ≤ l ≤ d -1, then s n (a n-1 a n ) belongs to Span(S * n-1 Λ n ). Proof.
According to the proof of the previous lemma, we have to deal with the following three terms:

• s n-1 • • • s 2 z c s n • • • s 3 (s 2 • • • s i ) for 0 ≤ c ≤ d -1, • s n-1 • • • s 2 z c s n • • • s 3 s 2 z c ′ (s 2 • • • s i ) for 0 ≤ c ≤ d -1 and 0 ≤ c ′ ≤ d -1, • s n-1 • • • s 2 z c s n • • • s 2 z c ′ s 2 (s 2 • • • s i ) for 0 ≤ c ≤ d -1 and 1 ≤ c ′ ≤ d -1.
For the first case, we have

s n • • • s 3 s 2 s 3 s 4 • • • s i = s n • • • s 2 s 3 s 2 s 4 • • • s i .
We shift s 2 and s 4 to the left in the previous expression and get

s 2 s n • • • s 4 s 3 s 4 s 2 s 5 • • • s i = s 2 s n • • • s 3 s 4 s 3 s 2 s 5 • • • s i .
We shift s 3 to the left in the previous expression and get

s 2 s 3 s n • • • s 2 s 5 • • • s i .
We apply the same operations to s 5 , • • • , s i and get

s 2 s 3 • • • s i-1 s n • • • s 2 .
Hence the term of the first case can be written as follows

s n-1 • • • s 2 z c s 2 • • • s i-1 s n • • • s 2 . Since i -1 ≤ n -1, it belongs to Span(S * n-1 Λ n ).
For the second case, we have a term of the form

s n-1 • • • s 2 z c s n • • • s 3 s 2 z c ′ (s 2 • • • s i ) for 0 ≤ c ≤ d -1 and 0 ≤ c ′ ≤ d -1. If c ′ = 0,
this term belongs to Span(S * n-1 Λ n ) and if c ′ = 0, by the computation in the proof of Lemma 4.3.6, it also belongs to Span(S * n-1 Λ n ). For the third case, we have In this chapter, we construct irreducible representations of some complex braid groups B(e, e, n) by defining a BMW algebra for B(e, e, n) and by studying its properties. We call these representations the Krammer's representations for B(e, e, n). We provide Conjecture 5.4.1 about the faithfulness of these representations. We also provide Conjecture 5.4.2 about the structure and the dimension of the BMW algebra.

s n-1 • • • s 2 z c s n • • • s 2 z c ′ s 2 2 s 3 • • • s i = as n-1 • • • s 2 z c s n • • • s 2 z c ′ s 2 • • • s i + s n-1 • • • s 2 z c s n • • • s 2 z c ′ s 3 • • • s i . The first term is an

Motivations and preliminaries

Both Bigelow [START_REF] Bigelow | Braid groups are linear[END_REF] and Krammer [START_REF] Krammer | The braid group B 4 is linear[END_REF][START_REF] Krammer | Braid groups are linear[END_REF] proved that the classical braid group is linear, that is there exists a faithful linear representation of finite dimension of the classical braid group B n . We recall that B n is defined by a presentation with generators {s 1 , s 2 , • • • , s n-1 } and relations s i s i+1 s i = s i+1 s i s i+1 for 1 ≤ i ≤ n-2 and s i s j = s j s i for |i -j| > 1. It can be described by the following diagram:

s 1 s 2 s n-2 s n-1
The representation of Krammer ρ : B n -→ GL(V ) is defined on an R(q, t)-vector space V with basis {x s | s ∈ R} indexed on the set of reflections (i, j) of the symmetric group S n with 1 ≤ i < j ≤ n -1. Its dimension is then #R = n(n-1)

x (i,j) by x i,j . The representation is defined as follows.

s k x k,k+1 = tq 2 x k,k+1 , s k x i,k = (1 -q)x i,k + qx i,k+1 , i < k, s k x i,k+1 = x i,k + tq (k-i+1) (q -1)x k,k+1 , i < k, s k x k,j = tq(q -1)x k,k+1 + qx k+1,j , k + 1 < j, s k x k+1,j = x k,j + (1 -q)x k+1,j , k + 1 < j, s k x i,j = x i,j , i < j < k or k + 1 < i < j, and s k x i,j = x i,j + tq (k-i) (q -1) 2 x k,k+1 , i < k < k + 1 < j.
The faithfulness criterion used by Krammer can be stated for a Garside proup. It provides necessary conditions to prove that a linear representation of a Garside group is faithful. Let M be a Garside monoid and G(M ) its group of fractions. Denote by ∆ and P the Garside element and the set of simples of M , respectively. Define α(x) to be the gcd of x and ∆ for x ∈ M . Let ρ : G(M ) -→ GL(V ) be a linear representation of finite dimension of G(M ) and let (C x ) x∈P be a family of subsets of V indexed by the set of simples P . If the C x are nonempty and (pairwise) disjoint and xC y ⊂ C α(xy) for all x ∈ M and y ∈ P , then the representation ρ is faithful.

Krammer's representation as well as the faithfulness proof have been generalized to all Artin-Tits groups of spherical type by a work of [START_REF] Digne | On the linearity of Artin braid groups[END_REF], [START_REF] Cohen | Linearity of Artin groups of finite type[END_REF], and [START_REF] Paris | Artin monoids inject in their groups[END_REF]. Note also that a simple faithfulness proof was given in [START_REF] Hée | Une démonstration simple de la fidélité de la représentation de Lawrence-Krammer-Paris[END_REF]. Marin generalized in [START_REF] Marin | Krammer representations for complex braid groups[END_REF] this representation to all the 2-reflection groups. His representation is defined analytically over the field of (formal) Laurent series by the monodromy of some differential forms and has dimension the number of reflections in the complex reflection group. It was conjectured in [START_REF] Marin | Krammer representations for complex braid groups[END_REF] that this representation is faithful. It has also been generalized by Chen in [18] to arbitrary reflection groups.

In type ADE of Coxeter groups, the generalized Krammer's representations can be constructed via BMW (Birman-Murakami-Wenzl) algebras. For more details, see Section 1.4.3 of Chapter 1. We recall the definition of the BMW algebra for the case ADE as it appears in [START_REF] Cohen | BMW Algebras of simply laced type[END_REF]. Definition 5.1.1. Let W be a Coxeter group of type A n , D n for any n, or E n for n = 6, 7, 8. The BMW algebra associated to W is the Q(l, x)-algebra with identity, with the generating set:

{S 1 , S 2 , • • • , S n }∪{F 1 , F 2 , • • • , F n },
and the defining relations are the braid relations along with:

1. mF i = l(S 2 i + mS i -1) with m = l-l -1 1-x for all i, 2. S i F i = F i S i = l -1 F i
for all i, and 3. F i S j F i = lF i for all i, j when s i s j s i = s j s i s j .

For the proof of the following proposition, see Propositions 2.1 and 2.3 of [START_REF] Cohen | BMW Algebras of simply laced type[END_REF].

Proposition 5.1.2. We have S i is invertible with S -1 i = S i + m -mF i . We also have F 2 i = xF i and S j S i F j = F i S j S i = F i F j when s i s j s i = s j s i s j .

If l = 1, then the BMW algebra of Definition 5.1.1 degenerates to the following Brauer algebra, see [START_REF] Brauer | On algebras which are connected with the semisimple continuous groups[END_REF] and [START_REF] Cohen | Brauer algebras of simply laced type[END_REF]. In this case, m = l-l -1

1-x = 0 and Relation 1 of Definition 5. 1.

S 2 i = 1 for all i, 2. F 2 i = xF i for all i, 3. S i F i = F i S i = F i for all i, 4. F i S j F i = F i
for all i, j when s i s j s i = s j s i s j , and

5. S j S i F j = F i S j S i = F i F j when s i s j s i = s j s i s j .
Chen defined in [18] a Brauer algebra for all complex reflection groups that generalizes earlier works in [START_REF] Brauer | On algebras which are connected with the semisimple continuous groups[END_REF] and [START_REF] Cohen | Brauer algebras of simply laced type[END_REF]. Completing his results in [START_REF] Chen | Birman-Murakami-Wenzl algebras for general Coxeter groups[END_REF], Chen also defined in [START_REF] Chen | Type Algebras for Arbitrary Coxeter Systems[END_REF] a BMW algebra for the dihedral groups I 2 (e) for all e ≥ 2 based on which he defined a BMW algebra for any Coxeter group that degenerates to the Brauer algebra introduced in [18]. It is also shown in [START_REF] Chen | Type Algebras for Arbitrary Coxeter Systems[END_REF] the existence of a representation for each Artin-Tits group associated to I 2 (e). The representation has dimension e and is explicitly defined over Q(α, β), where α and β depend on the parameters of the BMW algebra. It is also conjectured in [START_REF] Chen | Type Algebras for Arbitrary Coxeter Systems[END_REF] that this representation is isomorphic to the monodromy representation constructed by Marin in [START_REF] Marin | Krammer representations for complex braid groups[END_REF].

Attempting to make a similar approach in order to explicitly construct faithful irreducible representations for the complex braid groups B(e, e, n), we define a BMW algebra for B(e, e, n) that we denote by BMW(e, e, n), see Definitions 5.2.1 and 5.2.2. We show that it is a deformation of an algebra that we denote by Br(e, e, n) and we call the Brauer algebra, see Definitions 5.2.5 and 5.2.6. We also show in Proposition 5.3.13 that Br(e, e, n) is isomorphic to the Brauer-Chen algebra defined by Chen in [18] for n = 3 and e odd. By using the BMW algebra BMW(e, e, n), we explicitly define what we call the Krammer's representations for B(3, 3, 3) and B(4, 4, 3) by using the package GBNP [START_REF] Cohen | GBNP package version 1.0.3[END_REF] of GAP4 without being able to go further since the computations become very heavy for e > 5. In the last section, we provide some conjectural properties about BMW(e, e, n) and the Krammer's representations, see Conjectures 5.4.1 and 5.4.2.

BMW and Brauer algebras for type (e, e, n)

We are inspired by the monoid B ⊕ (e, e, n) of Corran and Picantin in order to construct a BMW algebra for the complex braid groups B(e, e, n). The presentation of B ⊕ (e, e, n) is given in Definition 3.4.1 for k = 1 and described by the diagram of Figure 3.2. It consists of attaching the dual presentation of the dihedral group I 2 (e) with generating set { t0 , t1 , • • • , te-1 } to the classical presentation of the braid group of type A n-1 with set of generators { ti , s3 , s4 , • • • , sn } for all 0 ≤ i ≤ e -1. Inspired by the definition of Chen of the BMW algebra for the dihedral groups in [START_REF] Chen | Type Algebras for Arbitrary Coxeter Systems[END_REF] and the definition of the BMW algebra for the type ADE of Coxeter groups in [START_REF] Cohen | BMW Algebras of simply laced type[END_REF], we define a BMW algebra for B(e, e, n) as follows. We distinguish the cases when e is odd and even and we suppose n ≥ 3. Definition 5.2.1. Suppose e odd. We define the BMW algebra associated to B(e, e, n) to be the Q(l, x)-algebra with identity, with the generating set:

{T i | i ∈ Z/eZ} ∪ {S 3 , S 4 , • • • , S n } ∪ {E i | i ∈ Z/eZ} ∪ {F 3 , F 4 , • • • , F n },
and the defining relations are the relations of BMW of type

A n-1 for {T i , S 3 , S 4 , • • • , S n } ∪ {E i , F 3 , • • • , F n } with 0 ≤ i ≤ e -1
as described in Definition 5.1.1 along with the dihedral BMW relations that can be described as follows:

1. T i = T i-1 T i-2 T -1 i-1 and E i = T i-1 E i-2 T -1 i-1 for all i ∈ Z/eZ, i = 0, 1, 2. T 1 T 0 • • • T 1 e = T 0 T 1 • • • T 0 e , 3. mE i = l(T 2 i + mT i -1) for i = 0, 1, where m = l-l -1 1-x , 4. T i E i = E i T i = l -1 E i for i = 0, 1, 5. E 1 T 0 T 1 • • • T 0 k E 1 = lE 1 , where 1 ≤ k ≤ e -2, k odd, 6. E 0 T 1 T 0 • • • T 1 k E 0 = lE 0 , where 1 ≤ k ≤ e -2, k odd, 7. T 1 T 0 • • • T 0 e-1 E 1 = E 0 T 1 T 0 • • • T 0 e-1 , 8. T 0 T 1 • • • T 1 e-1 E 0 = E 1 T 0 T 1 • • • T 1 e-1 .
Definition 5.2.2. Suppose e even. Let m = vv -1 and x be such that m = l-l -1 1-x . We define the BMW algebra associated to B(e, e, n) to be the Q(l, v)-algebra with identity, with the generating set:

{T i | i ∈ Z/eZ} ∪ {S 3 , S 4 , • • • , S n } ∪ {E i | i ∈ Z/eZ} ∪ {F 3 , F 4 , • • • , F n },
and the defining relations are the relations of BMW of type

A n-1 for {T i , S 3 , S 4 , • • • , S n } ∪ {E i , F 3 , • • • , F n } with 0 ≤ i ≤ e -1
as described in Definition 5.1.1 along with the dihedral BMW relations that can be described as follows:

1. T i = T i-1 T i-2 T -1 i-1 and E i = T i-1 E i-2 T -1 i-1 for all i ∈ Z/eZ, i = 0, 1, 2. T 1 T 0 • • • T 0 e = T 0 T 1 • • • T 1 e , 3. mE i = l(T 2 i + mT i -1) for i = 0, 1, 4. T i E i = E i T i = l -1 E i for i = 0, 1, 5. E 1 T 0 T 1 • • • T 0 i E 1 = (v -1 + l)E 1 for i = 4k + 1 < e/2 and i = 4k + 3 < e/2, 6. E 0 T 1 T 0 • • • T 1 i E 0 = (v -1 + l)E 0 for i = 4k + 1 < e/2 and i = 4k + 3 < e/2, 7. T 1 T 0 • • • T 1 e-1 E 0 = E 0 T 1 T 0 • • • T 1 e-1 = v -1 E 0 , 8. T 0 T 1 • • • T 0 e-1 E 1 = E 1 T 0 T 1 • • • T 0 e-1 = v -1 E 1 , 9. E 0 AE 1 = E 1 AE 0 = 0,
where A is any square-free word over {T 0 , T 1 } of length at most e -1.

Remark 5.2.3. Additional relations for the BMW(e, e, n) algebras can be found in the same way as in Lemmas 2.1 and 5.1 of [START_REF] Chen | Type Algebras for Arbitrary Coxeter Systems[END_REF] for the dihedral groups. Also we can get additional relations similar to those of Propositions 2.5 and 2.8 of [START_REF] Cohen | BMW Algebras of simply laced type[END_REF] that correspond to the BMW algebra of type A n .

Remark 5.2.4.

There exists a natural quotient map BMW(e, e, n) -→ H(e, e, n) by sending T i to t i , S j to s j , E i to 0, and F j to 0, where {t

0 , t 1 , • • • , t e-1 , s 3 , s 4 , • • • , s n }
is the set of generators of H(e, e, n), see Definition 4.1.5.

In Definition 5.2.1, when l = 1, BMW(e, e, n) degenerates to the algebra Br(e, e, n) that we provide in Definition 5.2.5 below and that we call the Brauer algebra of type (e, e, n). In this case, we have m = 0 and Relation 3 of Definition 5.2.1 degenerates to T 2 i = 1. Hence we have T -1 i = T i for all i. We still have E 2 i = xE i and F 2 j = xF j for all i and j, see Proposition 5.1.2. In Proposition 5.3.13, we prove that Br(e, e, n) coincides with the Brauer algebra defined by Chen in [18] for n = 3 and e odd. Definition 5.2.5. Suppose e odd. We define the Brauer algebra Br(e, e, n) to be the Q(x)-algebra with identity, with the generating set:

{T i | i ∈ Z/eZ} ∪ {S 3 , S 4 , • • • , S n } ∪ {E i | i ∈ Z/eZ} ∪ {F 3 , F 4 , • • • , F n },
and the defining relations are the relations of the Brauer algebra of type

A n-1 for {T i , S 3 , S 4 , • • • , S n } ∪ {E i , F 3 , • • • , F n } with 0 ≤ i ≤ e -1
as described in Definition 5.1.3 along with the normalized dihedral Brauer relations that can be described as follows:

1. T i = T i-1 T i-2 T i-1 and T 1 T 0 • • • T 1 e = T 0 T 1 • • • T 0 e for i ∈ Z/eZ, 2. E i = T i-1 E i-2 T i-1 for all i ∈ Z/eZ, 3. T 2 i = 1 for i = 0, 1, 4. E 2 i = xE i for i = 0, 1, 5. T i E i = E i T i = E i for i = 0, 1, 6. E 1 T 0 T 1 • • • T 0 k E 1 = E 1 , where 1 ≤ k ≤ e -2, k odd, 7. E 0 T 1 T 0 • • • T 1 k E 0 = E 0 , where 1 ≤ k ≤ e -2, k odd, 8. T 1 T 0 • • • T 0 e-1 E 1 = E 0 T 1 T 0 • • • T 0 e-1 , 9. T 0 T 1 • • • T 1 e-1 E 0 = E 1 T 0 T 1 • • • T 1 e-1 .
In Definition 5.2.2, when l = 1 and v = 1, BMW(e, e, n) degenerates to the algebra Br(e, e, n) that we provide in Definition 5.2.6 below and that we call the Brauer algebra of type (e, e, n) for e even. Definition 5.2.6. Suppose e even. We define the Brauer algebra Br(e, e, n) to be the Q(x)-algebra with identity, with the generating set:

{T i | i ∈ Z/eZ} ∪ {S 3 , S 4 , • • • , S n } ∪ {E i | i ∈ Z/eZ} ∪ {F 3 , F 4 , • • • , F n },
and the defining relations are the relations of the Brauer algebra of type

A n-1 for {T i , S 3 , S 4 , • • • , S n } ∪ {E i , F 3 , • • • , F n } with 0 ≤ i ≤ e -1
as described in Definition 5.1.3 along with the normalized dihedral Brauer relations that can be described as follows:

1. T i = T i-1 T i-2 T i-1 and T 1 T 0 • • • T 0 e = T 0 T 1 • • • T 1 e for i ∈ Z/eZ, 2. E i = T i-1 E i-2 T i-1 for all i ∈ Z/eZ, 3. T 2 i = 1 for i = 0, 1, 4. E 2 i = xE i for i = 0, 1, 5. T i E i = E i T i = E i for i = 0, 1, 6. E 1 T 0 T 1 • • • T 0 i E 1 = E 1 , where i = 4k + 1 < e/2 or i = 4k + 3 < e/2, 7. E 0 T 1 T 0 • • • T 1 i E 0 = E 0 , where i = 4k + 1 < e/2 or i = 4k + 3 < e/2, 8. T 1 T 0 • • • T 1 e-1 E 0 = E 0 T 1 T 0 • • • T 1 e-1 = E 0 , 9. T 0 T 1 • • • T 0 e-1 E 1 = E 1 T 0 T 1 • • • T 0 e-1 = E 1 , 10. E 0 AE 1 = E 1 AE 0 = 0,
where A is any square-free word over {T 0 , T 1 } of length at most e -1.

Remark 5.2.7. In the definition of Br(e, e, n), one can replace Relations 6 and 7 of Definitions 5.2.5 and 5.2.6 by

E 1 T 0 T 1 • • • T 0 i E 1 = µE 1 and E 0 T 1 T 0 • • • T 1 i E 0 = µE 0
for a given parameter µ. In our definitions, we set µ = 1 in the dihedral relations that we call the normalized dihedral Brauer relations.

Proposition 5.2.8. The group algebra Q(x)(G(e, e, n)) injects in the Brauer algebra Br(e, e, n).

Proof. Define a map r from the set of generators (of the presentation of Corran and Picantin) of the group algebra Q(x)(G(e, e, n)) to the set of generators of Br(e, e, n) by r(t i ) = T i and r(s j ) = S j for all i ∈ Z/eZ and 3 ≤ j ≤ n. Also define a map r ′ from the set of generators of Br(e, e, n) to the set of generators of Q(x)(G(e, e, n)) by r ′ (T i ) = t i , r ′ (S j ) = s j , r ′ (E i ) = 0, and r ′ (F j ) = 0 for all i ∈ Z/eZ and 3 ≤ j ≤ n. On examination of the relations of Q(x)(G(e, e, n)) and Br(e, e, n), it is readily checked that r extends to a morphism from Q(x)(G(e, e, n)) to Br(e, e, n) and r ′ extends to a morphism from Br(e, e, n) to Q(x)(G(e, e, n)). We have r ′ • r = id, where id is the identity morphism on Q(x)(G(e, e, n)). Hence r is injective.

In the following two propositions, we provide additional relations that hold in Br(e, e, n). Proposition 5.2.9. When e is odd, we have

E 1 E 0 E 1 = E 1 , E 0 E 1 E 0 = E 0 .
(5.1)

Proof. Suppose that e is odd. By Relation 8 of Definition 5.2.5, we have

T 1 T 0 • • • T 0 e-1 E 1 = E 0 T 1 T 0 • • • T 0 e-1 . Since T 2 0 = 1 and T 2 1 = 1, this implies that E 1 = T 0 T 1 • • • T 1 e-1 E 0 T 1 T 0 • • • T 0 e-1
.

Hence

E 1 E 0 = T 0 T 1 • • • T 1 e-1 E 0 T 1 T 0 • • • T 0 e-1 E 0 = T 0 T 1 • • • T 1 e-1 E 0 T 1 T 0 • • • T 1 e-2
E 0 with e -2 odd. By Relation 7 of Definition 5.2.5, we get

E 1 E 0 = T 0 T 1 • • • T 1 e-1 E 0 . It follows that E 1 E 0 E 1 = T 0 T 1 • • • T 1 e-1 E 0 T 0 T 1 • • • T 1 e-1 E 0 T 1 T 0 • • • T 0 e-1 = T 0 T 1 • • • T 1 e-1 E 0 T 1 T 0 • • • T 1 e-2 E 0 T 1 T 0 • • • T 0 e-1 = T 0 T 1 • • • T 1 e-1 E 0 T 1 T 0 • • • T 0 e-1 = E 1 . Similarly, one can prove E 0 E 1 E 0 = E 0 .
Remark 5.2.10. By Relation 10 of Definition 5.2.2, we have

E 1 E 0 E 1 = E 0 E 1 E 0 = 0
when e is even. That's why in the previous proposition, we only consider the case e odd.

Proposition 5.2.11. For e ≥ 3 and for 0 ≤ k ≤ e -1, we have

T k S 3 E k = F 3 T k S 3 = F 3 E k , S 3 T k F 3 = E k S 3 T k = E k F 3 , (5.
2)

E k F 3 E k = E k , F 3 E k F 3 = F 3 , (5.3 
)

T k F 3 E k = S 3 E k , S 3 E k F 3 = T k F 3 , (5.4 
)

E k F 3 T k = E k S 3 , F 3 E k S 3 = F 3 T k , (5.5 
)

T k F 3 T k = S 3 E k S 3 .
(5.6)

Proof. Equation (5.2): We have

F 3 = T k S 3 E k S -1 3 T -1 k = T k S 3 E k S 3 T k . Thus, F 3 E k = T k S 3 E k S 3 T k E k = T k S 3 E k S 3 E k = T k S 3 E k .
Equation ( 5.3): By Equation (5.2), we have

E k F 3 = E k S 3 T k . Hence E k F 3 E k = E k S 3 T k E k = E k S 3 E k = E k . Similarly, one can prove F 3 E k F 3 = F 3 . Equation (5.4): We have T k F 3 E k = T k T k S 3 E k = T 2 k S 3 E k = S 3 E k . Similarly, one can prove S 3 E k F 3 = T k F 3 .
Equation (5.5):

We have

E k F 3 T k = E k S 3 T k T k = E k S 3 . Similarly, we prove F 3 E k S 3 = F 3 T k .
Equation (5.6): We have

F 3 = T k S 3 E k S 3 T k by Equation (5.2). Hence T k F 3 T k = T 2 k S 3 E k S 3 T 2 k = S 3 E k S 3 .
From now on until the end of the next section, we set the convention that an expression of the form

T 1 T 0 • • • T 1 -1
is equal to T 0 . Then, an expression of the form

T 1 T 0 • • • T 1 -1 E 0 T 1 T 0 • • • T 1 -1 is equal to E 0 .
In Br(e, e, 3), for 0 ≤ k ≤ e -1, one can express T k in terms of T 0 and T 1 and E k in terms of T 0 , T 1 , E 0 , and E 1 . We have the following. Lemma 5.2.12. For 0 ≤ k ≤ e -1, we have

• T k = T 1 T 0 • • • T 1 2k-1 =        T 1 T 0 • • • T 0 k-1 T 1 T 0 T 1 • • • T 1 k-1 if k is odd, T 1 T 0 • • • T 1 k-1 T 0 T 1 T 0 • • • T 1 k-1 if k is even. • E k =        T 1 T 0 • • • T 0 k-1 E 1 T 0 T 1 • • • T 1 k-1 if k is odd, T 1 T 0 • • • T 1 k-1 E 0 T 1 T 0 • • • T 1 k-1 if k is even. Proof. For k = 0, we have T 1 T 0 • • • T 1 -1 = T 0 by the convention. Let 1 ≤ k ≤ e -1.
For k = 1, we have

T 1 = T 1 T 0 • • • T 1 2k-1
. From Relation 1 of Definitions 5.2.5 and 5.2.6, we get T 2 = T 1 T 0 T 1 . We also have

T 3 = T 2 T 1 T 2 . After replacing T 2 by T 1 T 0 T 1 , we get T 3 = T 1 T 0 T 1 T 1 T 1 T 0 T 1 . Using that T 2 1 = 1, we get T 3 = T 1 T 0 T 1 T 0 T 1 . Let k > 3. Inductively, we get T k+1 = T k t k-1 T k = T 1 T 0 • • • T 1 2k-1 T 1 T 0 • • • T 1 2(k-1)-1 T 1 T 0 • • • T 1 2k-1 = T 1 T 0 T 1 T 0 • • • T 1 2k-1 = T 1 T 0 • • • T 1 2k+1 . Hence for all 1 ≤ k ≤ e -1, we have T k = T 1 T 0 • • • T 1 2k-1 . It is clear that this expression is equal to T 1 T 0 • • • T 0 k-1 T 1 T 0 T 1 • • • T 1 k-1
if k is odd and

T 1 T 0 • • • T 1 k-1 T 0 T 1 T 0 • • • T 1 k-1 if k is even.
Let us prove the expression for E k for 0 ≤ k ≤ e -1. For k = 0, it corresponds to the convention we have set. The expression is obvious for k = 1. From Relation 2 of Definitions 5.2.5 and 5.2.6, we have

E 2 = T 1 E 0 T 1 . We also have E 3 = T 2 E 1 T 2 . After replacing T 2 by T 1 T 0 T 1 , we get E 3 = T 1 T 0 T 1 E 1 T 1 T 0 T 1 . Using the fact that T 1 E 1 = E 1 T 1 = E 1 , we finally get E 3 = T 1 T 0 E 1 T 0 T 1 . Let k > 3 and k odd. Inductively, we get E k+1 = T k E k-1 T k = T 1 T 0 • • • T 1 2k-1 T 1 T 0 • • • T 1 k-2 E 0 T 1 T 0 • • • T 1 k-2 T 1 T 0 • • • T 1 2k-1 = T 1 T 0 • • • T 0 k+1 E 0 T 0 T 1 • • • T 1 k+1 = T 1 T 0 • • • T 1 k E 0 T 1 T 0 • • • T 1 k . Similarly, if k is even, we get E k+1 = T 1 T 0 • • • T 0 k E 1 T 0 T 1 • • • T 1 k .
In the following lemma, we extend the result of the previous lemma to all k ∈ N.

Lemma 5.2.13. Let k ∈ N. In Br(e, e, 3), we have

• T k = T 1 T 0 • • • T 1 2k-1
and

• E k =        T 1 T 0 • • • T 0 k-1 E 1 T 0 T 1 • • • T 1 k-1 if k is odd, T 1 T 0 • • • T 1 k-1 E 0 T 1 T 0 • • • T 1 k-1 if k is even. Proof. Let k ∈ N. We have k = k ′ + xe for 0 ≤ k ′ ≤ e -1 and x ∈ N. Let k ′ = 0.
In Br(e, e, 3), we have

T k = T k ′ +xe = T k ′ . We show that T k ′ = T 1 T 0 • • • T 1 2k-1
. Actually,

T 1 T 0 • • • T 1 2k-1 = T 1 T 0 • • • T 1 2(k ′ +xe)-1 = T 1 T 0 • • • T 1 2k ′ -1 T 0 T 1 • • • T 0 2xe . It is clear that T 0 T 1 • • • T 0 2xe is equal to 1. Hence T 1 T 0 • • • T 1 2k-1 = T 1 T 0 • • • T 1 2k ′ -1 = T k ′ . It follows that for all k ∈ N, we have T k = T 1 T 0 • • • T 1 2k-1 . For k ′ = 0, it is easy to check that T k = T 1 T 0 • • • T 1 2xe-1 = T 0 .
Now, we prove the second item of the lemma. Assume that e is odd. We have to distinguish two different cases: k odd or k even. We provide the proof for the case k odd. The proof when k is even is similar and left to the reader. Suppose k is odd with k = k ′ + xe for 0 ≤ k ′ ≤ e -1 and x ∈ N. We prove that

E k = E k ′ = T 1 T 0 • • • T 0 k-1 E 1 T 0 T 1 • • • T 1 k-1 .
First consider x even. Then k ′ is odd. We have

T 1 T 0 • • • T 0 k-1 E 1 T 0 T 1 • • • T 1 k-1 = T 1 T 0 • • • T 0 k ′ +xe-1 E 1 T 0 T 1 • • • T 1 k ′ +xe-1 = T 1 T 0 • • • T 0 k ′ -1 T 1 T 0 • • • T 0 xe E 1 T 0 T 1 • • • T 1 xe T 0 T 1 • • • T 1 k ′ -1
.

By Relation 8 of Definition 5.2.5, we have

T 0 T 1 • • • T 0 e E 1 = T 0 E 0 T 1 T 0 • • • T 0 e-1 . Re- placing T 0 E 0 by E 0 , we get T 0 T 1 • • • T 0 e E 1 = E 0 T 1 T 0 • • • T 0 e-1
. Similarly, we have

T 1 T 0 • • • T 1 e E 0 = T 1 T 0 T 1 • • • T 1 e-1 E 0 = T 1 E 1 T 0 T 1 • • • T 1 e-1 = E 1 T 0 T 1 • • • T 1 e-1
. Thus,

we get T 1 T 0 • • • T 0 2e E 1 = T 1 T 0 • • • T 1 e T 0 T 1 • • • T 0 e E 1 = T 1 T 0 • • • T 1 e E 0 T 1 T 0 • • • T 0 e-1 = E 1 T 0 T 1 • • • T 1 e-1 T 1 T 0 • • • T 0 e-1 = E 1 . Since x is even, it follows that T 1 T 0 • • • T 0 xe E 1 = E 1 . Similarly, one can check that E 1 T 0 T 1 • • • T 1 xe = E 1 . It follows that E k = T 1 T 0 • • • T 0 k-1 E 1 T 0 T 1 • • • T 1 k-1 = T 1 T 0 • • • T 0 k ′ -1 E 1 T 0 T 1 • • • T 1 k ′ -1 = E k ′ .
Consider x odd. Then k ′ is even. Using the same technique, we also get

E k = T 1 T 0 • • • T 0 k-1 E 1 T 0 T 1 • • • T 1 k-1 = E k ′ .
Assume that e is even. As for the case e odd, we have to distinguish two different cases: k odd or k even. We provide the proof for the case k odd. The proof when k is even is similar and left to the reader. Suppose k is odd with

k = k ′ + xe for 0 ≤ k ′ ≤ e -1 and x ∈ N. We prove that E k = E k ′ = T 1 T 0 • • • T 0 k-1 E 1 T 0 T 1 • • • T 1 k-1
. Since e is even and k is assumed to be odd, we have k ′ is odd for all x ∈ N. We have

T 1 T 0 • • • T 0 k-1 E 1 T 0 T 1 • • • T 1 k-1 = T 1 T 0 • • • T 0 k ′ +xe-1 E 1 T 0 T 1 • • • T 1 k ′ +xe-1 = T 1 T 0 • • • T 0 k ′ -1 T 1 T 0 • • • T 0 xe E 1 T 0 T 1 • • • T 1 xe T 0 T 1 • • • T 1 k ′ -1 . We have T 1 T 0 • • • T 0 e E 1 = T 0 T 1 • • • T 1 e E 1 = T 0 T 1 • • • T 0 e-1
E 1 that is equal to E 1 by Rela-tion 9 of Definition 5.2.6. Similarly, one gets

T 1 T 0 • • • T 0 xe E 1 = E 1 and E 1 T 0 T 1 • • • T 1 xe = E 1 . It follows that E k = T 1 T 0 • • • T 0 k-1 E 1 T 0 T 1 • • • T 1 k-1 = T 1 T 0 • • • T 0 k ′ -1 E 1 T 0 T 1 • • • T 1 k ′ -1 = E k ′ .
In our study of the BMW and Brauer algebras, we restrict from now on to the case n = 3 so that the computations (by hand or by using a computer) are feasible.

Isomorphism with the Brauer-Chen algebra

Recall that Chen defined in [18] a Brauer algebra for all complex reflection groups and found a canonical presentation for this algebra in the case of Coxeter groups and complex reflection groups of type G(d, 1, n). For the symmetric group, it coincides with the classical Brauer algebra, see [START_REF] Brauer | On algebras which are connected with the semisimple continuous groups[END_REF]. For simply laced (m st ∈ {1, 2, 3} in Definition 1.1.7) and finite Coxeter groups, it coincides with the definition of the simply laced Brauer algebras described by Cohen, Frenk, and Wales in [START_REF] Cohen | Brauer algebras of simply laced type[END_REF]. For the case of G(d, 1, n), the cyclotomic Brauer algebra introduced by Häring-Oldenburg in [START_REF] Häring-Oldenburg | Cyclotomic Birman-Murakami-Wenzl algebras[END_REF] appears as a component of Chen's algebra.

We start by recalling in Definition 5.3.3 the Brauer-Chen algebra B(e, e, 3) associated to the complex reflection group G(e, e, 3) for all e ≥ 1. Next, we prove that our definition of the Brauer algebra Br(e, e, n), see Definition 5.2.5, coincides with the definition of the Brauer-Chen algebra when n = 3 and e odd. Thus, it provides a canonical presentation for B(e, e, 3) when e is odd. At the end of this section, we ask the question whether Br(e, e, n) is isomorphic to the Brauer-Chen algebra B(e, e, n) for all e and n.

Denote by s i,j;k the reflection of G(e, e, 3) of hyperplane H i,j;k : z i = ζ -k e z j for 1 ≤ i < j ≤ n and 0 ≤ k ≤ e -1. We denote s i,j;k by s and s i ′ ,j ′ ;k ′ by s ′ when there is no confusion. The corresponding hyperplanes can also be denoted by H s and H s ′ , respectively. Let R be the set of reflections of G(e, e, 3). Definition 5.3.1. Let s i,j;k and s i ′ ,j ′ ;k ′ be two reflections of G(e, e, 3) and L the codimension

2 edge H i,j;k ∩ H i ′ ,j ′ ;k ′ . We say that L is a crossing edge if {s ∈ R | L ⊂ H s } = {s i,j;k , s i ′ ,j ′ ;k ′ }. Otherwise, L is called a noncrossing edge.
Proposition 5.3.2. Let s i,j;k and s i ′ ,j ′ ;k ′ be two different reflections, we have H i,j;k ∩ H i ′ ,j ′ ;k ′ is a noncrossing edge. Hence there is no crossing edges in G(e, e, 3). Proof. Let s i,j;k and s i ′ ,j ′ ;k ′ be two different reflections. If i = i ′ and j = j ′ , it is easy to check that H i,j;k ∩ H i ′ ,j ′ ;k ′ is a noncrossing edge. Suppose i = i ′ . Case 1 : i = 1 and i ′ = 2. Note that i ′ cannot be equal to 3 since i ′ < j ′ . We have two possibilities depending on the values of j and j ′ : 

• s 1,2;k and s 2,3;k ′ , • s 1,3;k and s 2,3;k ′ , for all 0 ≤ k, k ′ ≤ e -1.
c 2 2 = ζ -(k+k ′ +l) e
. We get two cases depending on the parity of k + k ′ + l.

If k + k ′ + l is even, then c 2 = ζ -(k+k ′ +l)/2 e
and w is equal to

w =    0 ζ -(k+k ′ +l)/2 e 0 ζ (k+k ′ -l)/2 e 0 0 0 0 ζ l e   .
• If l = 0, then w ∈ R and w = t k+k ′

2

. Relation 5 of Definition 5.3.3 is:

e 1,2;k e 1,2;k ′ = t k+k ′ 2 e 1,2;k ′ = e 1,2;k t k+k ′ 2 .
We refer to this case as Case (1.1).

• If l = 0, then w / ∈ R and w = t x s 3 t l t 0 s 3 with x = k+k ′ +l 2

. Relation 4 of Definition 5.3.3 is:

t x s 3 t l t 0 s 3 e 1,2;k = e 1,2;k ′ t x s 3 t l t 0 s 3 , with x = k+k ′ +l 2 .
We refer to this case as Case (1.2). • If l = 0, then w ∈ R and w = t x with x = k+k ′ +e 2

If k + k ′ + l is odd, then k + k ′ + l + e is
. Relation 5 of Definition 5.3.3 is: e 1,2;k e 1,2;k ′ = t x e 1,2;k ′ = e 1,2;k t x , with x = k+k ′ +e 2 .

We refer to this case as Case (1.3).

• If l = 0, then w / ∈ R and w = t x s 3 t l t 0 s 3 with x = k+k ′ +l-e 2

. Relation 4 of Definition 5.3.3 is:

t x s 3 t l t 0 s 3 e 1,2;k = e 1,2;k ′ t x s 3 t l t 0 s 3 , with x = k+k ′ +l-e 2 .
We refer to this case as Case (1.4).

The second case is when c 1 is nonzero and

c 5 = ζ k ′ -k e c 1 for which case w =   c 1 0 0 0 ζ k ′ -k e c 1 0 0 0 ζ l e   with c 2 1 = ζ k-k ′ -l e
. Similarly, we get two cases depending on the

parity of k -k ′ -l. If k -k ′ -l is even, then c 1 = ζ k-k ′ -l 2 e and w =     ζ k-k ′ -l 2 e 0 0 0 ζ k ′ -k-l 2 e 0 0 0 ζ l e     . We have w = t x t 0 s 3 t l t 0 s 3 with x = k ′ -k-l 2
. Relation 4 of Definition 5.3.3 is:

t x t 0 s 3 t l t 0 s 3 e 1,2;k = e 1,2;k ′ t x t 0 s 3 t l t 0 s 3 , with x = k ′ -k-l 2 .
We refer to this case as Case (1.5).

If k -k ′ -l is odd, then k-k ′ -l+e is even and c 2 1 = ζ k-k ′ -l+e e . Hence c 1 = ζ k-k ′ -l+e 2 e and w =     ζ k-k ′ -l+e 2 e 0 0 0 ζ k ′ -k-l+e 2 e 0 0 0 ζ l e     . We have w = t x t 0 s 3 t l t 0 s 3 with x = k ′ -k-l+e 2 .
Relation 4 of Definition 5.3.3 is:

t x t 0 s 3 t l t 0 s 3 e 1,2;k = e 1,2;k ′ t x t 0 s 3 t l t 0 s 3 , with x = k ′ -k-l+e 2 .
We refer to this case as Case (1.6).

Case 2: s = s 1,2;k and

s ′ = s 2,3;k ′ We have s = t k and s ′ = t 0 t k ′ s 3 t k ′ t 0 with 0 ≤ k, k ′ ≤ e-1. Let w =   c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9   be
an element of G(e, e, 3). We determine the solutions of the equation

wt k w -1 = s 2,3;k ′ .
It is easy to check that we get c 3 = 0. Thus, we necessarily have

c 1 = c 2 = c 6 = c 9 = 0 since w is monomial. Set c 3 = ζ l e with 0 ≤ l ≤ e -1.
We have two different cases.

The first case is when c 4 is nonzero and

c 8 = ζ k ′ -k e c 4 with c 2 4 = ζ k-k ′ -l e . If k -k ′ -l is even, we have c 4 = ζ k-k ′ -l 2 e
and in this case we have

w =     0 0 ζ l e ζ k-k ′ -l 2 e 0 0 0 ζ k ′ -k-l 2 e 0     with w = t -l s 3 t k ′ -k-l 2 t 0 . Relation 4 of Definition 5.3.3 is: t -l s 3 t k ′ -k-l 2 t 0 e 1,2;k = e 2,3;k ′ t -l s 3 t k ′ -k-l 2 t 0 .
We refer to this case as Case (2.1).

If k -k ′ -l is odd, we have c 4 = ζ k-k ′ -l+e 2 e and w =     0 0 ζ l e ζ k-k ′ -l+e 2 e 0 0 0 ζ k ′ -k-l+e 2 e 0     with w = t -l s 3 t k ′ -k-l+e 2 t 0 . Relation 4 of Definition 5.3.3 is: t -l s 3 t k ′ -k-l+e 2 t 0 e 1,2;k = e 2,3;k ′ t -l s 3 t k ′ -k-l+e 2 t 0 .
We refer to this case as Case (2.2).

The second case is when c 5 is nonzero and c • If l ≡ -kk ′ modulo e, then w ∈ R and w = t k+k ′ s 3 t k+k ′ . Relation 5 of Definition 5.3.3 is:

e 1,2;k e 2,3;k ′ = t k+k ′ s 3 t k+k ′ e 2,3;k ′ = e 1,2;k t k+k ′ s 3 t k+k ′ .
We refer to this case as Case (2.3).

• If l ≡ -k -k ′ modulo e, then w / ∈ R. Relation 4 of Definition 5.3.3 is: t -l s 3 t k+k ′ -l 2 e 1,2;k = e 2,3;k ′ t -l s 3 t k+k ′ -l 2 .
We refer to this case as Case (2.4). 

If k + k ′ + l is odd, we have c 5 = ζ -k-k ′ -l+e 2
t -l s 3 t k+k ′ -l+e 2 e 1,2;k = e 2,3;k ′ t -l s 3 t k+k ′ -l+e 2 .
We refer to this case as Case (2.5). Note that if l ≡ -kk ′ modulo e in this case, we get w ∈ R and the corresponding relation in B(e, e, 3) is the same as in Case (2.3). Case 3: s = s 1,2;k and s

′ = s 1,3;k ′ We have s = t k and s ′ = s 1,3;k ′ = t k ′ s 3 t k ′ . Let w =   c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 
 be an element of G(e, e, 3). We determine the solutions of the equation ws 1,2;k w

-1 = s 1,3;k ′ . We get c 6 is nonzero. Set c 6 = ζ l e with 0 ≤ l ≤ e -1. It follows that c 4 = c 5 = c 3 = c 9 = 0 since w is monomial. We get two cases.
The first one is when c 2 is nonzero and c 7 = ζ k+k ′ e c 2 for which case we get

w =   0 c 2 0 0 0 ζ l e ζ k+k ′ e c 2 0 0   with c 2 2 = ζ -(k+k ′ +l) e . If k + k ′ + l is even, then c 2 = ζ -(k+k ′ +l) 2 e . We get w =     0 ζ -(k+k ′ +l) 2 e 0 0 0 ζ l e ζ k+k ′ -l 2 e 0 0     with w = t l t 0 s 3 t k+k ′ -l 2 
. Relation 4 of Definition 5.3.3 is:

t l t 0 s 3 t k+k ′ -l 2 e 1,2;k = e 1,3;k ′ t l t 0 s 3 t k+k ′ -l 2 .
We refer to this case as Case (3.1).

If k + k ′ + l is odd, then k + k ′ + l + e is even and c 2 = ζ -k-k ′ -l+e 2 e . We get w =     0 ζ -k-k ′ -l+e 2 e 0 0 0 ζ l e ζ k+k ′ -l+e 2 e 0 0     with w = t l t 0 s 3 t k+k ′ -l+e 2 
. Relation 4 of Definition 5.3.3 is:

t l t 0 s 3 t k+k ′ -l+e 2 e 1,2;k = e 1,3;k ′ t l t 0 s 3 t k+k ′ -l+e 2 .
We refer to this case as Case (3.2).

The second case is when c 1 is generic and

c 8 = ζ k ′ -k e c 1 for which case w =   c 1 0 0 0 0 ζ l e 0 ζ k ′ -k e c 1 0   with c 2 1 = ζ k-k ′ -l e . If k -k ′ -l is even, then c 1 = ζ k-k ′ -l 2 e and c 8 = ζ k ′ -k-l 2 e
. We get

w =     ζ k-k ′ -l 2 e 0 0 0 0 ζ l e 0 ζ k ′ -k-l 2 e 0     . • If l ≡ k -k ′ modulo e, then w ∈ R and w = t k-k ′ t 0 s 3 t k ′ -k t 0 . Relation 5 of Definition 5.3.3 is: e 1,2;k e 1,3;k ′ = e 1,2;k t k-k ′ t 0 s 3 t k ′ -k t 0 = t k-k ′ t 0 s 3 t k ′ -k t 0 e 1,3;k ′ .
We refer to this case as Case (3.3).

• If l ≡ k -k ′ modulo e, then w / ∈ R. We have w = t l t 0 s 3 t k ′ -k-l 2 
. Relation 4 of Definition 5.3.3 is:

t l t 0 s 3 t k ′ -k-l 2 t 0 e 1,2;k = e 1,3;k ′ t l t 0 s 3 t k ′ -k-l 2 t 0 .
We refer to this case as Case (3.4).

If k -k ′ -l is odd, then k -k ′ -l + e is even and c 1 = ζ k-k ′ -l+e 2 e . We get w =     ζ k-k ′ -l+e 2 e 0 0 0 0 ζ l e 0 ζ k ′ -k-l+e 2 e 0     with w = t l t 0 s 3 t k ′ -k-l+e 2 t 0 . Relation 4 of Definition 5.3.3 is: t l t 0 s 3 t k ′ -k-l+e 2 t 0 e 1,2;k = e 1,3;k ′ t l t 0 s 3 t k ′ -k-l+e 2 t 0 .
We refer to this case as Case (3.5). Note that if l ≡ kk ′ modulo e in this case, we get w ∈ R and the corresponding relation in B(e, e, 3) is the same as in Case (3.3). We have s = s 2,3;k = t 0 t k s 3 t k t 0 and s ′ = s 2,3;k . We get two cases depending on the parity of k + k ′ + l.

′ = t 0 t k ′ s 3 t k ′ t 0 with 0 ≤ k, k ′ ≤ e
If k + k ′ + l is even, then c 6 = ζ -k-k ′ -l 2 e and w =     ζ l e 0 0 0 0 ζ -k-k ′ -l 2 e 0 ζ k+k ′ -l 2 e 0     . • If l = 0, then w ∈ R and w = t -k-k ′ 2 t 0 s 3 t k+k ′ 2 t 0 . Relation 5 of Definition 5.3.3 is: e 2,3;k e 2,3;k ′ = t -k-k ′ 2 t 0 s 3 t k+k ′ 2 t 0 e 2,3;k ′ = e 2,3;k t -k-k ′ 2 t 0 s 3 t k+k ′ 2 t 0 .
We refer to this case as Case (4.1).

• If l = 0, then w = t -k-k ′ -l 2 t 0 s 3 t k+k ′ -l 2 t 0 / ∈ R. Relation 4 of Definition 5.3.3 is: t -k-k ′ -l 2 t 0 s 3 t k+k ′ -l 2 t 0 e 2,3;k = e 2,3;k ′ t -k-k ′ -l 2 t 0 s 3 t k+k ′ -l 2 t 0 .
We refer to this case as Case (4.2).

If k + k ′ + l is odd, then c 6 = ζ -k-k ′ -l+e 2 e and w =     ζ l e 0 0 0 0 ζ -k-k ′ -l+e 2 e 0 ζ k+k ′ -l+e 2 e 0     . • If l = 0, then w ∈ R and w = t -k-k ′ +e 2 t 0 s 3 t k+k ′ +e 2 t 0 . Relation 5 of Definition 5.3.3 is: e 2,3;k e 2,3;k ′ = t -k-k ′ +e 2 t 0 s 3 t k+k ′ +e 2 t 0 e 2,3;k ′ = e 2,3;k t -k-k ′ +e 2 t 0 s 3 t k+k ′ +e 2 t 0 .
We refer to this case as Case (4.3).

• If l = 0, we have w = t -k-k ′ -l+e 2 t 0 s 3 t k+k ′ -l+e 2 t 0 / ∈ R. Relation 4 of Definition 5.3.3 is: t -k-k ′ -l+e 2 t 0 s 3 t k+k ′ -l+e 2 t 0 e 2,3;k = e 2,3;k ′ t -k-k ′ -l+e 2 t 0 s 3 t k+k ′ -l+e 2 t 0 .
We refer to this case as Case (4.4).

The second case is when c 5 is nonzero and

c 9 = ζ k ′ -k e c 5 for which case w =   ζ l e 0 0 0 c 5 0 0 0 ζ k ′ -k e c 5   . We also have c 2 5 = ζ k-k ′ -l e . If k -k ′ -l is even, then c 5 = ζ k-k ′ -l 2 e and w =     ζ l e 0 0 0 ζ k-k ′ -l 2 e 0 0 0 ζ k ′ -k-l 2 e     with w = t k-k ′ -l 2 t 0 s 3 t k ′ -k-l 2 t 0 s 3 . Relation 4 of Definition 5.3.3 is: t k-k ′ -l 2 t 0 s 3 t k ′ -k-l 2 t 0 s 3 e 2,3;k = e 2,3;k ′ t k-k ′ -l 2 t 0 s 3 t k ′ -k-l 2 t 0 s 3 .
We refer to this case as Case (4.5).

If k -k ′ -l is odd, then c 5 = ζ k-k ′ -l+e 2 e and w =     ζ l e 0 0 0 ζ k-k ′ -l+e 2 e 0 0 0 ζ k ′ -k-l+e 2 e     with w = t k-k ′ -l+e 2 t 0 s 3 t k ′ -k-l+e 2 t 0 s 3 . Relation 4 of Definition 5.3.3 is: t k-k ′ -l+e 2 t 0 s 3 t k ′ -k-l+e 2 t 0 s 3 e 2,3;k = e 2,3;k ′ t k-k ′ -l+e 2 t 0 s 3 t k ′ -k-l+e 2 t 0 s 3 .
We refer to this case as Case (4.6). We have s = s 2,3;k = t 0 t k s 3 t k t 0 and s 

′ = s 1,3;k ′ = t k ′ s 3 t k ′ with 0 ≤ k, k ′ ≤ e -1. Let w =   c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9   ∈ G(e, e , 
  with c 2 3 = ζ -k-k ′ -l e . If k + k ′ + l is even, then c 3 = ζ -k-k ′ -l 2 e and w =     0 0 ζ -k-k ′ -l 2 e ζ l e 0 0 0 ζ k+k ′ -l 2 e 0     with w = t k+k ′ +l 2 s 3 t k+k ′ -l 2 t 0 . Relation 4 of Definition 5.3.3 is: t k+k ′ +l 2 s 3 t k+k ′ -l 2 t 0 e 2,3;k = e 1,3;k ′ t k+k ′ +l 2 s 3 t k+k ′ -l 2 t 0 .
We refer to this case as Case (5.1). We refer to this case as Case (5.2).

If k + k ′ + l is odd, then c 3 = ζ -k-k ′ -
The second case is when c 2 is nonzero and

c 9 = ζ k ′ -k e c 2 for which case w =   0 c 2 0 ζ l e 0 0 0 0 ζ k ′ -k e c 2   and c 2 2 = ζ k-k ′ -l e . If k -k ′ -l is even, then c 2 = ζ k-k ′ -l 2 e and w =     0 ζ k-k ′ -l 2 e 0 ζ l e 0 0 0 0 ζ k ′ -k-l 2 e     . • If l ≡ k ′ -k modulo e, we get w = t k ′ -k ∈ R. Relation 5 of Definition 5.3.3 is: e 2,3;k e 1,3;k ′ = t k ′ -k e 1,3;k ′ = e 2,3;k t k ′ -k .
We refer to this case as Case (5.3).

• If l ≡ k ′ -k modulo e, we get w = t k ′ -k+l 2 s 3 t k ′ -k-l 2 t 0 s 3 / ∈ R. Relation 4 of Definition 5.3.3 is: t k ′ -k+l 2 s 3 t k ′ -k-l 2 t 0 s 3 e 2,3;k = e 1,3;k ′ t k ′ -k+l 2 s 3 t k ′ -k-l 2 t 0 s 3 .
We refer to this case as Case (5.4). Note that if l ≡ k ′k modulo e in this case, we get w ∈ R and the corresponding relation in B(e, e, 3) is the same as in Case (5.3).

If k -k ′ -l is odd, then c 2 = ζ k-k ′ -l+e 2 e and w =     0 ζ k-k ′ -l+e 2 e 0 ζ l e 0 0 0 0 ζ k ′ -k-l+e 2 e     with w = t k ′ -k+l+e 2 s 3 t k ′ -k-l+e 2 t 0 s 3 / ∈ R. Relation 4 of Definition 5.3.3 is: t k ′ -k+l+e 2 s 3 t k ′ -k-l+e 2 t 0 s 3 e 2,3;k = e 1,3;k ′ t k ′ -k+l+e 2 s 3 t k ′ -k-l+e 2 t 0 s 3 .
We refer to this case as Case (5.5).

Case 6: 

s = s 1,3;k and s ′ = s 1,3;k ′ We have s = s 1,3;k = t k s 3 t k and s ′ = s 1,3;k ′ = t k ′ s 3 t k ′ with 0 ≤ k, k ′ ≤ e -
  with c 2 3 = ζ -k-k ′ -l e . If k + k ′ + l is even, then c 3 = ζ -k-k ′ -l 2 e and w =     0 0 ζ -k-k ′ -l 2 e 0 ζ l e 0 ζ k+k ′ -l 2 e 0 0     . • If l = 0, then w ∈ R with w = t k+k ′ 2 s 3 t k+k ′ 2
. Relation 5 of Definition 5.3.3 is:

e 1,3;k e 1,3;k ′ = t k+k ′ 2 s 3 t k+k ′ 2 e 1,3;k ′ = e 2,3;k t k+k ′ 2 s 3 t k+k ′ 2 .
We refer to this case as Case (6.1).

• If l = 0, then w / ∈ R and w = t k+k ′ +l 2

s 3 t k+k ′ -l 2 
. Relation 4 of Definition 5.3.3 is:

t k+k ′ +l 2 s 3 t k+k ′ -l 2 e 1,3;k = e 1,3;k ′ t k+k ′ +l 2 s 3 t k+k ′ -l 2 .
We refer to this case as Case (6.2).

If k + k ′ + l is odd, then c 3 = ζ -k-k ′ -l+e 2 e and w =     0 0 ζ -k-k ′ -l+e 2 e 0 ζ l e 0 ζ k+k ′ -l+e 2 e 0 0     with w = t k+k ′ +l+e 2 s 3 t k+k ′ -l+e 2 . • If l = 0, then w ∈ R with w = t k+k ′ +e 2 s 3 t k+k ′ +e 2
. Relation 5 of Definition 5.3.3 is:

e 1,3;k e 1,3;k ′ = t k+k ′ +e 2 s 3 t k+k ′ +e 2 e 1,3;k ′ = e 2,3;k t k+k ′ +e 2 s 3 t k+k ′ +e 2 .
We refer to this case as Case (6.3).

• If l = 0, then w / ∈ R with w = t k+k ′ +l+e 2 s 3 t k+k ′ -l+e 2 
. Relation 4 of Definition 5.3.3 is:

t k+k ′ +l+e 2 s 3 t k+k ′ -l+e 2 e 1,3;k = e 1,3;k ′ t k+k ′ +l+e 2 s 3 t k+k ′ -l+e 2 .
We refer to this case as Case (6.4).

The second case is when c 1 is nonzero and

c 9 = ζ k ′ -k e c 1 for which case w =   c 1 0 0 0 ζ l e 0 0 0 ζ k ′ -k e c 1   with c 2 1 = ζ k-k ′ -l e . If k -k ′ -l is even, then c 1 = ζ k-k ′ -l 2 e and w =     ζ k-k ′ -l 2 e 0 0 0 ζ l e 0 0 0 ζ k ′ -k-l 2 e     with w = t l t 0 s 3 t k ′ -k-l 2 
t 0 s 3 . Relation 4 of Definition 5.3.3 is:

t l t 0 s 3 t k ′ -k-l 2 t 0 s 3 e 1,3;k = e 1,3;k ′ t l t 0 s 3 t k ′ -k-l 2 t 0 s 3 .
We refer to this case as Case (6.5).

If k -k ′ -l is odd, then c 1 = ζ k-k ′ -l+e 2 e and w =     ζ k-k ′ -l+e 2 e 0 0 0 ζ l e 0 0 0 ζ k ′ -k-l+e 2 e     with w = t l t 0 s 3 t k ′ -k-l+e 2 
t 0 s 3 . Relation 4 of Definition 5.3.3 is:

t l t 0 s 3 t k ′ -k-l+e 2 t 0 s 3 e 1,3;k = e 1,3;k ′ t l t 0 s 3 t k ′ -k-l+e 2 t 0 s 3 .
We refer to this case as Case (6.6).

Remark 5.3.4. From the six cases above, one can check that Relation 6 of Definition 5.3.3 does not occur in the case of B(e, e, 3) when e is odd.

The following lemmas are useful in the proof of Proposition 5.3.8 below.

Lemma 5.3.5. The following relations hold in B(e, e, 3).

1. Let k ∈ N. We have t k = t 1 t 0 • • • t 1 2k-1 . 2. For 2 ≤ k ≤ e -1,
we have e 1,2;k = t k-1 e 1,2;k-2 t k-1 .

3. For 0 ≤ k ≤ e -1, we have

e 1,2;k =        t 1 t 0 • • • t 0 k-1 e 1,2;1 t 0 t 1 • • • t 1 k-1 if k is odd, t 1 t 0 • • • t 1 k-1 e 1,2;0 t 1 t 0 • • • t 1 k-1 if k is even.
Proof. The first item of the lemma is obvious. It is done in the same way as the proof of the first item of Lemma 5.2.13.

Since

t k = t k-1 t k-2 t k-1 for 2 ≤ k ≤ e -1
, by Relation 4 of Definition 5.3.3, we have t k-1 e 1,2;k-2 = e 1,2;k t k-1 , that is e 1,2;k = t k-1 e 1,2;k-2 t k-1 . Hence we get the second relation of the lemma.

Using the previous relation, one can prove the last statement of the lemma by induction in the same way as the proof of the second item of Lemma 5.2.12.

Lemma 5.3.6. Let 0 ≤ k ≤ e -1.
The following relations hold in B(e, e, 3) for e odd.

1. e 1,2;k e 2,3;0 = s 3 t k e 2,3;0 = e 1,2;k s 3 t k and e 2,3;0 e 1,2;k = t k s 3 e 1,2;k = e 2,3;0 t k s 3 .

2. e 1,2;k s 3 e 1,2;k = e 1,2;k and e 2,3;0 t k e 2,3;0 = e 2,3;0 .

Proof. From Case (2.3) above, for k ′ = 0, we have e 1,2;k e 2,3;0 = t k s 3 t k e 2,3;0 = e 1,2;k t k s 3 t k . Using Relation 2 of Definition 5.3.3, we get e 1,2;k e 2,3;0 = s 3 t k e 2,3;0 = e 1,2;k s 3 t k . We also have (t k s 3 t k )s 3 (t k s 3 t k ) -1 = t k . Hence, from Relations 5 and 2 of Definition 5.3.3, we also get e 2,3;0 e 1,2;k = t k s 3 e 1,2;k = e 2,3;0 t k s 3 . Moreover, multiplying s 3 t k e 2,3;0 = e 1,2;k s 3 t k on the right by e 1,2;k , we get s 3 t k e 2,3;0 e 1,2;k = e 1,2;k s 3 t k e 1,2;k . Using Relation 2 of Definition 5.3.3, we get s 3 t k e 2,3;0 e 1,2;k = e 1,2;k s 3 e 1,2;k . Now, replace e 2,3;0 e 1,2;k by t k s 3 e 1,2;k , we get s 3 t k t k s 3 e 1,2;k = e 1,2;k s 3 e 1,2;k , that is e 1,2;k s 3 e 1,2;k = e 1,2;k . Similarly, we also get e 2,3;0 t k e 2,3;0 = e 2,3;0 .

Lemma 5.3.7. The following relations hold in B(e, e, 3) for e odd.

1. Let 1 ≤ k ≤ e -2 and k odd, we have: e 1,2;1 t 0 t 1 • • • t 0 k e 1,2;1 = e 1,2;1 and e 1,2;0

t 1 t 0 • • • t 1 k e 1,2;0 = e 1,2;0 . 2. t 1 t 0 • • • t 0 e-1 e 1,2;1 = e 1,2;0 t 1 t 0 • • • t 0 e-1
and

t 0 t 1 • • • t 1 e-1
e 1,2;0 = e 1,2;

1 t 0 t 1 • • • t 1 e-1 .
Proof. Consider Case (1.1) above. In this case, we have w = t k+k ′ 2 ∈ R, where k + k ′ is even. Suppose k and k ′ are both even. We have

t k+k ′ 2 = t 1 t 0 • • • t 1 k+k ′ -1
(see the first item of Lemma 5.3.5). The first equation of Relation 5 of Definition 5.3.3 becomes

t 1 t 0 • • • t 1 k-1 e 1,2;0 t 1 t 0 • • • t 1 k-1 t 1 t 0 • • • t 1 k ′ -1 e 1,2;0 t 1 t 0 • • • t 1 k ′ -1 = t 1 t 0 • • • t 1 k+k ′ -1 t 1 t 0 • • • t 1 k ′ -1 e 1,2;0 t 1 t 0 • • • t 1 k ′ -1
.

After simplification, we get e 1,2;0

t 1 t 0 • • • t 1 k-1 t 1 t 0 • • • t 1 k ′ -1 e 1,2;0 = t 0 t 1 • • • t 1 k ′ t 1 t 0 • • • t 1 k ′ -1
e 1,2;0 = t 0 e 1,2;0 = e 1,2;0 .

Similarly, the second equation of Relation 5 of Definition 5.3.3 gives e 1,2;0

t 1 t 0 • • • t 1 k-1 t 1 t 0 • • • t 1 k ′ -1
e 1,2;0 = e 1,2;0 .

• If k < k ′ , then we get e 1,2;0 t 0 t 1 • • • t 1 k ′ -k
e 1,2;0 = e 1,2;0 , that is e 1,2;0

t 1 t 0 • • • t 1 k ′ -k-1
e 1,2;0 = e 1,2;0 , where k ′k -1 is odd.

• If k > k ′ , then we get e 1,2;0 t 1 t 0 • • • t 1 k-k ′ -1
e 1,2;0 = e 1,2;0 , where k ′k -1 is odd.

The case when k and k ′ are both odd is done in the same way and we get e 1,2;

1 t 0 t 1 • • • t 0 k ′ -k-1
e 1,2;1 = e 1,2;1 if k < k ′ and e 1,2;

1 t 0 t 1 • • • t 0 k-k ′ -1 e 1,2;1 = e 1,2;1 if k > k ′ ,
where k ′k -1 is odd. In conclusion, the first statement of the lemma is satisfied.

Since t 0 t 1 • • • t 1 e-1 t 0 t 1 t 0 • • • t 0 e-1
= t 1 , then by Relation 4 of Definition 5.3.3, we have

t 0 t 1 • • • t 1 e-1
e 1,2;0 = e 1,2;

1 t 0 t 1 • • • t 1 e-1
. Also, since

t 1 t 0 • • • t 0 e-1 t 1 t 0 t 1 • • • t 1 e-1
= t 0 , by Relation 4 of Definition 5.3.3, we also have

t 1 t 0 • • • t 0 e-1 e 1,2;1 = e 1,2;0 t 1 t 0 • • • t 0 e-1 .
In the remaining part of this section, our goal is to prove that the algebra Br(e, e, 3) is isomorphic to B(e, e, 3) for all e ≥ 3 and e odd.

Consider the map ψ on the set of generators defined by ψ(T 0 ) = t 0 , ψ(T 1 ) = t 1 , ψ(S 3 ) = s 3 , ψ(E 0 ) = e 1,2;0 , ψ(E 1 ) = e 1,2;1 , and ψ(F 3 ) = e 2,3;0 . Proposition 5.3.8. For e ≥ 3 and e odd, the map ψ extends to a morphism from Br(e, e, 3) to B(e, e, 3).

Proof. In order to prove that ψ extends to a morphism from Br(e, e, 3) to B(e, e, 3) for e odd, we should show that ψ preserves all the relations of Definition 5.2.5. We have two types of relations: the relations that correspond to the Brauer algebra of 3 gives e 1,2;k s 3 e 1,2;k = e 1,2;k and e 2,3;0 t k e 2,3;0 = e 2,3;0 . By the second item of Lemma 5.3.6, these relations hold in B(e, e, 3).

Relation 5 of Definition 5.1.3 gives e 1,2;k e 2,3;0 = s 3 t k e 2,3;0 = e 1,2;k s 3 t k and e 2,3;0 e 1,2;k = t k s 3 e 1,2;k = e 2,3;0 t k s 3 . By the first item of Lemma 5.3.6, these relations hold in B(e, e, 3).

Relation 1 of Definition 5.2.5 gives

t k = t k-1 t k-2 t k-1 and t 1 t 0 • • • t 0 e-1 = t 0 t 1 • • • t 1 e-1
that are particular relations of the first item of Definition 5.3.3. Relation 2 of Definition 5.2.5 gives e 1,2;k = t k-1 e 1,2;k-2 t k-1 . By the second item of Lemma 5.3.5, these relations hold in B(e, e, 3).

Relations 3, 4, and 5 of Definition 5.2.5 are already checked. Relations 6 and 7 of Definition 5.2.5 give e 1,2;1 t 0 t 1 • • • t 0 k e 1,2;1 = e 1,2;1 and e 1,2;0

t 1 t 0 • • • t 1 k e 1,2;0 = e 1,2;0 .
By the first item of Lemma 5.3.7, these relations hold in B(e, e, 3).

Relations 8 and 9 of Definition 5.2.5 give

t 1 t 0 • • • t 0 e-1 e 1,2;1 = e 1,2;0 t 1 t 0 • • • t 0 e-1
and

t 0 t 1 • • • t 1 e-1
e 1,2;0 = e 1,2;

1 t 0 t 1 • • • t 1 e-1
. By the second item of Lemma 5.3.7, these relations hold in B(e, e, 3).

It follows that ψ extends to a morphism from Br(e, e, 3) to B(e, e, 3).

Lemmas 5.3.9, 5.3.10, and 5.3.11 below will be useful in the proof of Proposition 5.3.12 below. Lemma 5.3.9. Let 0 ≤ k, k ′ ≤ e -1 with k = k ′ and k + k ′ even, the following relations hold in Br(e, e, 3) for e odd.

1.

E k E k ′ = T k+k ′ 2 E k ′ = E k T k+k ′ 2 . 2. T k F 3 T k T k ′ F 3 T k ′ = T k+k ′ 2 S 3 T k+k ′ 2 T k ′ F 3 T k ′ = T k F 3 T k T k+k ′ 2 S 3 T k+k ′ 2 .
Proof. Suppose k and k ′ are both even. We have

T k+k ′ 2 E k ′ = T 1 T 0 • • • T 1 k+k ′ -1 T 1 T 0 • • • T 1 k ′ -1 E 0 T 1 T 0 • • • T 1 k ′ -1 = T 1 T 0 • • • T 0 k E 0 T 1 T 0 • • • T 1 k ′ -1 = T 1 T 0 • • • T 1 k-1 E 0 T 1 T 0 • • • T 1 k ′ -1 . Also we have E k T k+k ′ 2 = T 1 T 0 • • • T 1 k-1 E 0 T 1 T 0 • • • T 1 k-1 T 1 T 0 • • • T 1 k+k ′ -1 = T 1 T 0 • • • T 1 k-1 E 0 T 0 T 1 • • • T 1 k ′ = T 1 T 0 • • • T 1 k-1 E 0 T 1 T 0 • • • T 1 k ′ -1 that is equal to T k+k ′ 2 E k ′ . It remains to show that E k E k ′ = T k+k ′ 2 E k ′ . We have E k E k ′ = T 1 T 0 • • • T 1 k-1 E 0 T 1 T 0 • • • T 1 k-1 T 1 T 0 • • • T 1 k ′ -1 E 0 T 1 T 0 • • • T 1 k ′ -1 . • If k > k ′ , then we have E k E k ′ = T 1 T 0 • • • T 1 k-1 E 0 T 1 T 0 • • • T 0 k-k ′ E 0 T 1 T 0 • • • T 1 k ′ -1 = T 1 T 0 • • • T 1 k-1 E 0 T 1 T 0 • • • T 1 k-k ′ -1 E 0 T 1 T 0 • • • T 1 k ′ -1 . Since k -k ′ -1 is odd, by Relation 7 of Definition 5.2.5, we replace E 0 T 1 T 0 • • • T 1 k-k ′ -1 E 0 by E 0 and get T 1 T 0 • • • T 1 k-1 E 0 T 1 T 0 • • • T 1 k ′ -1 which is equal to T k+k ′ 2 E k ′ . • If k < k ′ , then E k E k ′ = T 1 T 0 • • • T 1 k-1 E 0 T 0 T 1 • • • T 1 k ′ -k E 0 T 1 T 0 • • • T 1 k ′ -1 = T 1 T 0 • • • T 1 k-1 E 0 T 1 T 0 • • • T 1 k ′ -k-1 E 0 T 1 T 0 • • • T 1 k ′ -1 = T 1 T 0 • • • T 1 k-1 E 0 T 1 T 0 • • • T 1 k ′ -1 = T k+k ′ 2 E k ′ .
Hence we get Relation 1.

For the second relation, we have

T k F 3 T k T k ′ F 3 T k ′ = S 3 E k S 3 S 3 E k ′ S 3 = S 3 E k E k ′ S 3 and T k+k ′ 2 S 3 T k+k ′ 2 T k ′ F 3 T k ′ = S 3 T k+k ′ 2 S 3 S 3 E k ′ S 3 = S 3 T k+k ′ 2 E k ′ S 3 . Similarly, we have T k F 3 T k T k+k ′ 2 S 3 T k+k ′ 2 = S 3 E k T k+k ′ 2 S 3
. By Relation 1, we get that Relation 2 holds in Br(e, e, 3).

The case when k and k ′ are both odd is similar and left to the reader.

Lemma 5.3.10. Let 0 ≤ k, k ′ ≤ e -1 with k = k ′ , the following relations hold in Br(e, e, 3) for e odd.

1.

T 0 T k F 3 T k T 0 T k ′ F 3 T k ′ = T k ′ -k T k ′ F 3 T k ′ = T 0 T k F 3 T k T 0 T k ′ -k . 2. E k T 0 T k ′ F 3 T k ′ T 0 = T k+k ′ S 3 T k+k ′ T 0 T k ′ F 3 T k ′ T 0 = E k T k+k ′ S 3 T k+k ′ .
Proof. We have

T k T 0 T k ′ = T 1 T 0 • • • T 1 2(k+k ′ )-1 = T k+k ′ . Then T 0 T k F 3 T k T 0 T k ′ F 3 T k ′ = T 0 T k F 3 T k+k ′ F 3 T k ′ = T 0 T k F 3 T k ′ . Since T k T 0 T k ′ -k = T k ′ , we have T 0 T k F 3 T k ′ = T 0 T k F 3 T k T 0 T k ′ -k . Also, since T k ′ -k T k ′ = T 0 T k , we get T k ′ -k T k ′ F 3 T k ′ = T 0 T k F 3 T k ′ .
Hence we get Relation 1.

Let us now prove the first identity of Relation 2, that is

E k T 0 T k ′ F 3 = T k+k ′ S 3 T k+k ′ T 0 T k ′ F 3 . We have T k+k ′ T 0 T k ′ = T k+2k ′ . Also, we have S 3 T k+2k ′ F 3 = E k+2k ′ F 3 . We compute T k+k ′ E k+2k ′ . If k is even, then T 1 T 0 • • • T 1 2(k+k ′ )-1 T 1 T 0 • • • T 1 k+2k ′ -1 E 0 T 1 T 0 • • • T 1 k+2k ′ -1 = T 1 T 0 • • • T 0 k E 0 T 1 T 0 • • • T 1 k-1 T 0 T 1 • • • T 1 2k ′ = T 1 T 0 • • • T 1 k-1 E 0 T 1 T 0 • • • T 1 k-1 T 0 T 1 T 0 • • • T 1 2k ′ -1 = E k T 0 T k ′ .
The case when k is odd is similar and left to the reader. Hence we get the first identity of Relation 2.

For k even, the second identity is

T k+k ′ S 3 T k+k ′ E k T k+k ′ S 3 T k+k ′ = T 0 T k ′ F 3 T k ′ T 0 . It is easy to check that T k+k ′ E k T k+k ′ = E k+2k ′ . Hence T k+k ′ S 3 T k+k ′ E k T k+k ′ S 3 T k+k ′ = T k+k ′ S 3 E k+2k ′ S 3 T k+k ′ = T k+k ′ T k+2k ′ F 3 T k+2k ′ T k+k ′ .
It is easy to check that T k+k ′ T k+2k ′ = T 0 T k ′ and we are done. The case when k is odd is done in the same way and is left to the reader. Lemma 5.3.11. Let 0 ≤ k, k ′ , l ≤ e -1 with k = k ′ and kk ′l even, the following relations hold in Br(e, e, 3) for e odd.

T k

′ T l T 0 S 3 T k ′ -k-l 2 T 0 E k T 0 T k ′ -k-l 2 S 3 T 0 T l T k ′ = F 3 . 2. T k ′ T 0 T k-k ′ -l 2 T 0 (T 0 T 1 ) k S 3 T k ′ -k-l 2 T 0 F 3 T 0 T k ′ -k-l 2 S 3 (T 1 T 0 ) k T 0 T k-k ′ -l 2 T 0 T k ′ = F 3 .
Proof. Let us start by proving the first identity. Suppose k is even.

• If k ′ ≥ k + l, we have T k ′ -k-l 2 T 0 E k T 0 T k ′ -k-l 2 = T 1 T 0 • • • T 1 k ′ -k-l-1 T 0 T 1 T 0 • • • T 1 k-1 E 0 T 1 T 0 • • • T 1 k-1 T 0 T 1 T 0 • • • T 1 k ′ -k-l-1 = T 1 T 0 • • • T 1 k ′ -l-1 E 0 T 1 T 0 • • • T 1 k ′ -l-1 = E k ′ -l . We should prove that T k ′ T l T 0 S 3 E k ′ -l S 3 T 0 T l T k ′ = F 3 , that is T k ′ T l T 0 T k ′ -l F 3 T k ′ -l T 0 T l T k ′ = F 3 . It is easily checked that T k ′ T l T 0 T k ′ -l = 1
and the relation we want to prove follows immediately.

• If k ′ < k + l, let x = k ′ -k -l + 2e. We have T k ′ -k-l 2 T 0 E k T 0 T k ′ -k-l 2 = T x/2 T 0 E k T 0 T x/2 = T 1 T 0 • • • T 1 x-1 T 0 T 1 T 0 • • • T 1 k-1 E 0 T 1 T 0 • • • T 1 k-1 T 0 T 1 T 0 • • • T 1 x-1 .
After simplification, this is equal to

T 1 T 0 • • • T 1 k ′ -l+2e-1 E 0 T 1 T 0 • • • T 1 k ′ -l+2e-1 = E k ′ -l+2e .
We should prove that T k ′ T l T 0 S 3 E k ′ -l+2e S 3 T 0 T l T k ′ = F 3 . This is done as in the previous case.

Note that the case when k is odd is similar and is left to the reader. Hence we get Relation 1 of the lemma.

For the second relation, we have

S 3 T k ′ -k-l 2 T 0 F 3 T 0 T k ′ -k-l 2 S 3 = S 3 T k ′ -k-l 2 S 3 E 0 S 3 T k ′ -k-l 2 S 3 = T k ′ -k-l 2 S 3 T k ′ -k-l 2 E 0 T k ′ -k-l 2 S 3 T k ′ -k-l 2 . Suppose k ′ ≥ k + l. We have T k ′ -k-l 2 E 0 T k ′ -k-l 2 is equal to E k ′ -k-l . We get T k ′ -k-l 2 S 3 E k ′ -k-l S 3 T k ′ -k-l 2 = T k ′ -k-l 2 T k ′ -k-l F 3 T k ′ -k-l T k ′ -k-l 2 = T 0 T 1 • • • T 1 k ′ -k-l F 3 T 1 T 0 • • • T 0 k ′ -k-l
. On the one hand, we have

T k ′ T 0 T k-k ′ -l 2 T 0 (T 0 T 1 ) k T 0 T 1 • • • T 1 k ′ -k-l = T k ′ T 0 T k-k ′ -l 2 T 0 T 0 T 1 • • • T 1 2k T 0 T 1 • • • T 1 k ′ -k-l = T 1 T 0 • • • T 1 2k-1 T 0 T 1 • • • T 1 k ′ -k-l = T k ′ T 0 T k-k ′ -l 2 T 1 T 0 • • • T 1 k ′ +k-l-1 = T k ′ T 0 T 1 T 0 • • • T 1 k-k ′ -l-1 T 1 T 0 • • • T 1 k ′ +k-l-1 = T k ′ T 0 T 0 T 1 • • • T 1 2k ′ = T k ′ T 1 T 0 • • • T 1 2k ′ -1 = T k ′ T k ′ = 1.
On the other hand, we also have

T 1 T 0 • • • T 0 k ′ -k-l (T 1 T 0 ) k T 0 T k-k ′ -l 2 T 0 T k ′ = 1 since it is the inverse of T k ′ T 0 T k-k ′ -l 2 T 0 (T 0 T 1 ) k T 0 T 1 • • • T 1 k ′ -k-l .
The relation we want to prove follows immediately.

Suppose

k ′ < k + l. Let x = k ′ -k -l + 2e. We have T k ′ -k-l 2 E 0 T k ′ -k-l 2 = T x/2 E 0 T x/2 = T 1 T 0 • • • T 1 x-1 E 0 T 1 T 0 • • • T 1 x-1 = E x . We get T x/2 T x F 3 T x T x/2 , where T x/2 T x = T 1 T 0 • • • T 1 x-1 T 1 T 0 • • • T 1 2x-1 = T 0 T 1 • • • T 0 x with x = k ′ -k -l + 2e. Similarly to the previous case, we show that T k ′ T 0 T k-k ′ -l 2 T 0 (T 0 T 1 ) k T 0 T 1 • • • T 1 x = 1.
Hence the second relation of the lemma is satisfied in Br(e, e, 3).

Consider the map φ on the set of generators defined by

φ(t k ) = T k , φ(s 2,3;k ) = T 0 T k S 3 T k T 0 , φ(s 1,3;k ) = T k S 3 T k , φ(e 1,2;k ) = E k , φ(e 2,3;k ) = T 0 T k F 3 T k T 0 , and φ(e 1,3;k ) = T k F 3 T k .
Proposition 5.3.12. For e ≥ 3 and e odd, the map φ extends to a morphism from B(e, e, 3) to Br(e, e, 3).

Proof. Mapping Relations 1, 2, and 3 of Definition 5.3.3 by φ, we get relations that are clearly satisfied in Br(e, e, 3). Relation 6 of Definition 5.3.3 does not occur when e is odd, see Remark 5.3.4. For Relations 4 and 5 of Definition 5.3.3, they have been explicitly written in the 6 cases above. We prove that the image by φ of the relation we get in each case is satisfied in Br(e, e, 3).

Consider Case (1.1). In the first paragraph of the proof of Lemma 5.3.7, we showed that if k and k ′ are both even, we get the following relations.

• If k < k ′ , then we get e 1,2;0 t 1 t 0 • • • t 1 k ′ -k-1
e 1,2;0 = e 1,2;0 , where k ′k -1 is odd.

The corresponding relation in Br(e, e, 3) is

E 0 T 1 T 0 • • • T 1 k ′ -k-1 E 0 = E 0 which is a
case of Relation 7 of Definition 5.2.5.

• If k > k ′ , then we get e 1,2;0 t 1 t 0 • • • t 1 k-k ′ -1
e 1,2;0 = e 1,2;0 , where kk ′ -1 is odd. The corresponding relation in Br(e, e, 3) is a case of Relation 7 of Definition 5.2.5.

The case when k and k ′ are both odd is done in the same way.

We now consider Case (1.3) because it is similar to the previous case. We have l = 0 and w = t k+k ′ +e 2 ∈ R with k + k ′ odd. Suppose k even and k ′ odd. We have

t k+k ′ +e 2 = t 1 t 0 • • • t 1 k+k ′ +e-1
. Relation 5 of Definition 5.3.3 is

t 1 t 0 • • • t 1 k-1 e 1,2;0 t 1 t 0 • • • t 1 k-1 t 1 t 0 • • • t 0 k ′ -1 e 1,2;1 t 0 t 1 • • • t 1 k ′ -1 = t 1 t 0 • • • t 1 k+k ′ +e-1 t 1 t 0 • • • t 0 k ′ -1 e 1,2;1 t 0 t 1 • • • t 1 k ′ -1 = t 1 t 0 • • • t 1 k+e e 1,2;1 t 0 t 1 • • • t 1 k ′ -1 = t 1 t 0 • • • t 1 k-1 t 0 t 1 • • • t 1 e+1 e 1,2;1 t 0 t 1 • • • t 1 k ′ -1 . After simplification by t 1 t 0 • • • t 1 k-1
on the left and by

t 0 t 1 • • • t 1 k ′ -1
on the right, we get e 1,2;0

t 1 t 0 • • • t 1 k-1 t 1 t 0 • • • t 0 k ′ -1 e 1,2;1 = t 0 t 1 • • • t 0 e e 1,2;1 = t 1 t 0 • • • t 0 e-1 e 1,2;1 . Multiplying by t 0 t 1 • • • t 1 e-1
on the left, we get

t 0 t 1 • • • t 1 e-1 e 1,2;0 t 1 t 0 • • • t 1 k-1 t 1 t 0 • • • t 0 k ′ -1
e 1,2;1 = e 1,2;1 .

• If k < k ′ , we get t 0 t 1 • • • t 1 e-1 e 1,2;0 t 1 t 0 • • • t 1 k-1 t 1 t 0 • • • t 0 k ′ -1 e 1,2;1 = t 0 t 1 • • • t 1 e-1 e 1,2;0 t 0 t 1 • • • t 0 k ′ -k e 1,2;1 = t 0 t 1 • • • t 1 e-1 e 1,2;0 t 1 t 0 • • • t 0 k ′ -k-1 e 1,2;1 that is equal to e 1,2;1 t 0 t 1 • • • t 1 e-1 t 1 t 0 • • • t 0 k ′ -k-1
e 1,2;1 by the second item of Lemma 5.3.7.

Since 0 ≤ k ′ -k ≤ e-1, it is equal to e 1,2;1 t 0 t 1 • • • t 1 e-k ′ +k e 1,2;1 = e 1,2;1 t 0 t 1 • • • t 0 e-k ′ +k-1 e 1,2;1 .

Hence in B(e, e, 3), we have e 1,2;1 t 0 t 1 • • • t 0 e-k ′ +k-1 e 1,2;1 = e 1,2;1 .

Since 0 ≤ ek ′ + k -1 ≤ e -1 and ek ′ + k -1 is odd, by Relation 6 of Definition 5.2.5, it is clear that the image of this relation by φ is satisfied in Br(e, e, 3).

• If k > k ′ , we get e 1,2;1 t 0 t 1 • • • t 1 e-1 t 1 t 0 • • • t 1 k-k ′ e 1,2;1 = e 1,2;1 , that is e 1,2;1 t 0 t 1 • • • t 0 k ′ -k+e-1
e 1,2;1 = e 1,2;1 . This is similar to the previous case.

The case when k is odd and k ′ is even is done in the same way.

Consider Case (1.2). We have w = t x s 3 t l t 0 s 3 with k + k ′ + l even and x = k+k ′ +l 2 . Relation 4 of Definition 5.3.3 is t x s 3 t l t 0 s 3 e 1,2;k = e 1,2;k ′ t x s 3 t l t 0 s 3 . We need to show that T x S 3 T l T 0 S 3 E k = E k ′ T x S 3 T l T 0 S 3 in Br(e, e, 3), that is 

T x S 3 T l T 0 S 3 E k S 3 T 0 T l S 3 T x = E k ′ . We have T x S 3 T l T 0 S 3 E k S 3 T 0 T l S 3 T x = T x S 3 T l T 0 T k F 3 T k T 0 T l S 3
T l T 0 T k = T 1 T 0 • • • T 1 2l-1 T 0 T 1 T 0 • • • T 1 2k-1 = T 1 T 0 • • • T 1 2(k+l)-1 = T k+l . Hence T x S 3 T l T 0 T k F 3 T k T 0 T l S 3 T x = T x S 3 T k+l F 3 T k+l S 3 T x = T x S 3 S 3 E k+l S 3 S 3 T x = T x E k+l T x . We prove that T x E k+l T x = E k ′ .
Suppose k + l even. Since k + k ′ + l is even, we have k ′ even. We have

E k+l = T 1 T 0 • • • T 1 k+l-1 E 0 T 1 T 0 • • • T 1 k+l-1 and T x E k+l T x = T 1 T 0 • • • T 1 k+k ′ +l-1 T 1 T 0 • • • T 1 k+l-1 E 0 T 1 T 0 • • • T 1 k+l-1 T 1 T 0 • • • T 1 k+k ′ +l-1 = T 1 T 0 • • • T 0 k ′ E 0 T 0 T 1 • • • T 1 k ′ = T 1 T 0 • • • T 1 k ′ -1 E 0 T 1 T 0 • • • T 1 k ′ -1 = E k ′ .
The case k + l odd is done in the same way.

Case (1.4) is similar to Case (1.2).

Consider Case (1.5). We have kk ′l is even and w = t x t 0 s 3 t l t 0 s 3 with x = k ′ -k-l 2 . Relation 4 of Definition 5.3.3 is t x t 0 s 3 t l t 0 s 3 e 1,2;k = e 1,2;k ′ t x t 0 s 3 t l t 0 s 3 . We prove the following relation in Br(e, e, 3):

T x T 0 S 3 T l T 0 S 3 E k S 3 T 0 T l S 3 T 0 T x = E k ′ . Actually, T x T 0 S 3 T l T 0 S 3 E k S 3 T 0 T l S 3 T 0 T x = T x T 0 S 3 T l T 0 T k F 3 T k T 0 T l S 3 T 0 T x = T x T 0 S 3 T k+l F 3 T k+l S 3 T 0 T x = T x T 0 S 2 3 E k+l S 2 3 T 0 T x = T x T 0 E k+l T 0 T x .
One can easily check that for both cases k + l even (then k ′ is even) and k + l odd (then k ′ is odd) we have

T x T 0 E k+l T 0 T x = E k ′ .
Case (1.6) is similar to Case (1.5).

Consider Case (2.1). In Br(e, e, 3), we show that

T k ′ T l T 0 S 3 T k ′ -k-l 2 T 0 E k T 0 T k ′ -k-l 2 S 3 T 0 T l T k ′ = F 3 .
This is the first identity of Lemma 5.3.11.

Cases (2.2), (2.4), and (2.5) are similar to Case (2.1).

Consider Case (2.3). The identity we prove in Br(e, e, 3) for this case is given by the second item of Lemma 5. Consider Case (4.2). In Br(e, e, 3), we prove

T -k-k ′ -l 2 T 0 S 3 T k+k ′ -l 2 T k F 3 T k T k+k ′ -l 2 S 3 T 0 T -k-k ′ -l 2 = T 0 T k ′ F 3 T k ′ T 0 . Suppose k ≤ k ′ -l. We have T k+k ′ -l 2 T k = T 1 T 0 • • • T 0 k ′ -l-k
. Similarly, we have

T k T k+k ′ -l 2 = T 0 T 1 • • • T 1 k ′ -k-l , T k ′ T 0 T -k-k ′ -l 2 T 0 = T 1 T 0 • • • T 0 k ′ -k-l
, and

T 0 T -k-k ′ -l 2 T 0 T k ′ = T 0 T 1 • • • T 1 k ′ -k-l
. Then we should prove

T 1 T 0 • • • T 0 k ′ -k-l S 3 T 1 T 0 • • • T 0 k ′ -k-l F 3 T 0 T 1 • • • T 1 k ′ -k-l S 3 T 0 T 1 • • • T 1 k ′ -k-l = F 3 . Set k ′ -k -l = 2x
. The equation we prove is equivalent to

T x T 0 S 3 T x T 0 F 3 T 0 T x S 3 T 0 T x = F 3 .
The left-hand side is equal to

T x T 0 S 3 T x S 3 E 0 S 3 T x S 3 T 0 T x = T x T 0 T x S 3 T x E 0 T x S 3 T x T 0 T x = T 2x S 3 T x E 0 T x S 3 T 2x = T 2x S 3 E 2x S 3 T 2x = T 2 2x F 3 T 2 2x = F 3 .
The case when k > k ′l is done in the same way.

Case (4.4) is done in the same way as Case (4.2).

Consider Case (4.5). In Br(e, e, 3), we show

T k ′ T 0 T k-k ′ -l 2 T 0 S 3 T k ′ -k-l 2 T 0 S 3 T 0 T k F 3 T k T 0 S 3 T 0 T k-k ′ -l 2 S 3 T 0 T k-k ′ -l 2 T 0 T k ′ = F 3 . For 0 ≤ x ≤ e -1, we have S 3 (T 1 T 0 ) x S 3 T 0 = S 3 (T 1 T 0 ) x-1 T 1 T 0 S 3 T 0 = S 3 (T 1 T 0 ) x-1 T 1 S 3 T 0 S 3 = S 3 T x S 3 T 0 S 3 = T x S 3 T x T 0 S 3 .
Also for 0 ≤ x ≤ e -1, we have

S 3 (T 1 T 0 ) x S 3 T 1 = S 3 (T 1 T 0 ) x-1 T 2 T 1 S 3 T 1 = S 3 (T 1 T 0 ) x-1 T 1 T 0 T 1 S 3 T 1 S 3 = S 3 T x+1 S 3 T 1 S 3 = T x+1 S 3 T x+1 T 1 S 3 .
Similarly, one can prove that for 0 ≤ x ≤ e -1, we have T 0 S 3 (T 0 T 1 ) x S 3 = S 3 T 0 T x S 3 T x and T 1 S 3 (T 0 T 1 ) x S 3 = S 3 T 0 T x S 3 T x+1 .

Suppose k ′ -k-l > 0. Using the previous relations, we have

S 3 T k ′ -k-l 2 T 0 S 3 T 0 T k = S 3 (T 1 T 0 ) k ′ -k-l 2 S 3 T 0 T k = T k ′ -k-l 2 S 3 T k ′ -k-l 2 T 0 S 3 T 1 T 0 • • • T 1 2k-1 = T k ′ -k-l 2 S 3 (T 1 T 0 ) k ′ -k-l 2 S 3 T 1 T 0 T 1 • • • T 1 2k-2 = T k ′ -k-l 2 T k ′ -k-l 2 +1 S 3 T k ′ -k-l 2 +1 T 1 S 3 T 0 T 1 • • • T 1 2k-2 = • • • = (T 0 T 1 ) k S 3 T k ′ -k-l 2 T 0 S 3 . Also we get T k T 0 S 3 T 0 T k ′ -k-l 2 S 3 = T 1 T 0 • • • T 1 2k-1 T 0 S 3 (T 0 T 1 ) k ′ -k-l 2 S 3 = T 1 T 0 • • • T 1 2k-1 S 3 T 0 T k ′ -k-l 2 S 3 T k ′ -k-l 2 = T 1 T 0 • • • T 0 2k-2 S 3 T 0 T k ′ -k-l 2 S 3 T k ′ -k-l 2 +1 T k ′ -k-l 2 = T 1 T 0 • • • T 0 2k-2 S 3 T 0 T k ′ -k-l 2 S 3 T 1 T 0 = • • • = S 3 T 0 T k ′ -k-l 2 S 3 (T 1 T 0 ) k .
The equation we prove is then

T k ′ T 0 T k-k ′ -l 2 T 0 (T 0 T 1 ) k S 3 T k ′ -k-l 2 T 0 F 3 T 0 T k ′ -k-l 2 S 3 (T 1 T 0 ) k T 0 T k-k ′ -l 2 T 0 T k ′ = F 3 .
This is Relation 2 of Lemma 5.3.11. Note that the case when k ′kl < 0 is similar after replacing

T k ′ -k-l 2 by T k ′ -k-l 2 +e , where 0 ≤ k ′ -k-l 2 + e ≤ e -1.
Case (4.6) is similar to Case (4.5).

Consider Case (5.1). In Br(e, e, 3), we show that

T k+k ′ +l 2 S 3 T k+k ′ -l 2 T k F 3 T k T 0 T 0 T k+k ′ -l 2 S 3 T k+k ′ +l 2 = T k ′ F 3 T k ′ .
This is similar to Case (4.2). Also Case (5.2) is similar to Case (5.1).

Consider Case (5.4). In Br(e, e, 3), we show that

T k ′ -k+l 2 S 3 T k ′ -k-l 2 T 0 S 3 T 0 T k F 3 T k T 0 S 3 T 0 T k ′ -k-l 2 S 3 T k ′ -k+l 2 = T k ′ F 3 T k ′ .
This is done in the same way as Case (4.5). Also Case (5.5) is similar to Case (5.4).

Consider Case (5.3). In Br(e, e, 3), we show

T 0 T k F 3 T k T 0 T k ′ F 3 T k ′ = T k ′ -k T k ′ F 3 T k ′ = T 0 T k F 3 T k T 0 T k ′ -k .
This is Relation 1 of Lemma 5.3.10.

Note that Cases (6.2) and (6.4) are similar. They are done in the same way as Case (4.2). Also, Cases (6.5) and (6.6) are similar. They are done in the same way as Case (4.5). Case (6.3) is similar to Case (6.1). Consider Case (6.1): In Br(e, e, 3), we show

T k F 3 T k T k ′ F 3 T k ′ = T k+k ′ 2 S 3 T k+k ′ 2 T k ′ F 3 T k ′ = T k F 3 T k T k+k ′ 2 S 3 T k+k ′ 2 .
This is Relation 2 of Lemma 5.3.9.

The following proposition is a direct consequence of Propositions 5.3.8 and 5.3.12.

Proposition 5.3.13. The algebra Br(e, e, 3) is isomorphic to B(e, e, 3) for all e ≥ 3 and e odd.

Proof. It is readily checked that φ • ψ is equal to the identity morphism on Br(e, e, 3). It is also straightforward to check that ψ • φ is equal to the identity morphism on B(e, e, 3). The only non-trivial cases are to check that ψ • φ(e 2,3;k ) = e 2,3;k and ψ • φ(e 1,3;k ) = e 1,3;k .

For the first case, we have ψ In conclusion, the algebra Br(e, e, 3) is isomorphic to B(e, e, 3) for all e ≥ 3 and e odd. Proof. By Proposition 5.3.13, since Br(e, e, 3) is isomorphic to B(e, e, 3), we get the generating set of Br(e, e, 3) described by Chen in Theorem 5.1 of [18]. In Proposition 5.3.13, we proved that the Brauer algebra given in Definition 5.2.5 is isomorphic to the Brauer-Chen algebra for n = 3 and e odd. Even if this isomorphism corresponds to a small value of n and e odd, it is tempting to think that the Brauer-Chen algebra associated to a complex reflection group G(e, e, n) defined by Chen in [18] is isomorphic to the Brauer algebra Br(e, e, n) given in Definitions 5.2.5 and 5.2.6 for all e and n. This enables us to ask the following question: Is the Brauer-Chen algebra isomorphic to Br(e, e, n) for all e and n?

• φ(e 2,3;k ) = ψ(T 0 T k F 3 T k T 0 ) = t 0 t k e 2

Constructing Krammer's representations

Recall that in type ADE of Coxeter groups, the generalized Krammer's representations can be constructed via the BMW algebras. We attempt to construct explicit linear representations for the complex braid groups B(e, e, n) by using the algebra BMW(e, e, n). We call these representations the Krammer's representations for B(e, e, n). We adopt a computational approach using the package GBNP (version 1.0.3) of GAP4 ( [START_REF] Cohen | GBNP package version 1.0.3[END_REF]). We are able to construct Krammer's representations for B(3, 3, 3) and B (4,4,3). We also provide some conjectures about the BMW algebra and about Krammer's representations, see Conjectures 5.4.1 and 5.4.2. We use the platform MATRICS ( [START_REF]Plateforme MATRICS[END_REF]) of Université de Picardie Jules Verne for our heuristic computations. We restrict to the case n = 3 in order to make these computations more efficient.

The algebra BMW(e, e, n) is defined by a presentation with generators and relations, see Definitions 5.2.1 and 5.2.2. The list of relations of BMW(e, e, 3) for a given e is defined with GBNP as a list L of non-commutative polynomials. Once a Gröbner basis of L is computed, BMW(e, e, 3) is the quotient of the free algebra < T 0 , T 1 , S 3 , E 0 , E 1 , F 3 > by the two-sided ideal generated by the list of the noncommutative polynomials (or its Gröbner basis). The indeterminates m and l of BMW(e, e, 3) are specialized over Q or over a finite field when the computation over the rationals is very heavy. For the implementation, see Appendix B.

We compute a basis of the quotient algebra BMW(e, e, 3) by using the function BaseQA. The dimension of BMW(e, e, 3) can be computed with DimQA. Right multiplication by an element of BMW(e, e, 3) is a linear transformation A r : BM W -→ End Q (BM W ). The matrix of this linear transformation with respect to the base is computed by using the function MatrixQA. Denote R 1 , R 2 , • • • , R 6 the images by A r of T 0 , T 1 , S 3 , E 0 , E 1 , and F 3 , respectively. We define the left multiplication to be

A l : BM W -→ End Q (BM W ) with L 1 , L 2 , • • • , L 6 the images by A l of T 0 , T 1 , S 3 , E 0 , E 1 ,
and F 3 , respectively.

Krammer's representation for B (3,3,3) Here we explain the algorithm that enables us to construct Krammer's representation for B (3,3,3), see Appendix B for the implementation.

For many specializations of m and l over Q, by using the function DimQA, we get that the dimension of BMW (3,3,3) is equal to 297. We remark that 297 = 54+3×9 2 = #(G(3, 3, 3)) + 3 × (#R) 2 , where R is the set of reflections of the complex reflection group G (3,3,3).

After computing R 1 , R 2 , • • • , and R 6 with GBNP, we define the matrix algebra A over Q generated by R 1 , R 2 , • • • , and R 6 . Then we compute the central idempotents of A by using the function CentralIdempotentsOfAlgebra of GAP4. We get a central idempotent of trace equal to 243 = 3 × 9 2 . Denote this element by i 1 .

We use the generator of the center of the complex braid group B(3, 3, 3) that is T 1 T 0 S 3 T 1 T 0 S 3 . We compute its image by A r that we denote by N z . We compute i 1 N z in the basis (i 1 , i 1 N z , i 1 N z 2 ). For many specializations of the parameters m and l, we clearly have i 1 N z 3 = 1 l 2 i 1 and we guess that the minimal polynomial of i 1 N z is X 3 -1 l 2 . One can set l = λ 3 for a rational specialization of λ and redefine the algebra A over Q and compute its central idempotents. We get an idempotent element of trace equal to 81 and i 1 A is the algebra corresponding to Krammer's representation. This method will be used for B (4,4,3). However, we find a faster way to construct the representation for B(3, 3, 3) without computing the central idempotent elements. We describe this method now.

In BMW(e, e, 3), we have E i = l m T 2 i + lT i -l m and E i = xE i for i = 0, 1, where x = ml-l 2 +1 ml . Let E i = ml-l 2 +1 ml , we get l m T 2 i + lT i -l m = ml-l 2 +1 ml , that is l m T 2 i + lT i -1 -1 lm = 0. We factorize this equation and get

(T i -1 l )(T i + m + 1 l ) = 0. We determine Ker(N z -λ -2 ) ∩ Ker(R 1 -λ -3 ).
We get a vector space of dimension 9 stable by left multiplication and define Krammer's representation ρ 3 by providing A = ρ 3 (T 0 ), B = ρ 3 (T 1 ), and C = ρ 3 (S 3 ) in M 9×9 (Q(m, λ)) after interpolation of the coefficients over Q in order to get the corresponding coefficients over Q(m, λ). We checked that A, B, and C satisfy all the relations of BM W (3, 3, 3). The representation is defined over Q(m, λ) as follows.

A =                0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 -m 0 0 0 m(λ-m) λ 3 0 0 0 1 0 -m 0 0 m λ 6 0 0 0 m 2 0 m 0 1 m λ 4 0 0 0 -m(m 2 + 1) 0 -m 2 1 -m 0 0 0 0 0 0 0 0 0 1 λ 3 0 0 -m 2 λ 3 -m(m 2 + 1) -m λ 3 -m 2 0 0 A 8,7 0 1 m(m 2 +1) λ 3 m 2 (m 2 + 2) m 2 λ 3 m(m 2 + 1) 0 0 A 9,7 1 -m                with A 8,7 = m(λ 4 -mλ 3 -m(m 2 +1)λ+m 2 ) λ 7
and A 9,7 = -m(λ 4 m-λ 2 m+λm 2 +λ-m) 

λ 7 . B =                1 λ 3 0 0 0 0 0 0 0 0 0 -m 0 0 0 1 λ-m 0 0 0 0 0 0 0 0 0 λ -m 0 0 -m λ 3 0 -1 λ 3 -m 0 1 1 λ 3 0 λ m(λ-m) m(λ+m) λ 4 mλ 0 λ λ -m m(λm+1) λ-m 0 λ m mλ λ-m m λ 4 λ -m 0 0 0 0 0 0 0 m λ-m 0 1 λ-m 0 0 0 -m 0 0 B 8,
-m λ 4 m(λ-m) λ 0 0 m(λ-m) λ 3 0 0                with B 8,1 = -m 3 (λ 3 -2mλ 2 -λ+m) λ 6 (λ-m) , B 8,2 = -m 2 (λ 2 -λm+m 2 +1) λ , B 8,3 = m(λ 2 -λm+m 2 ) λ 4 (λ-m) , B 8,4 = -m(λ 2 -λm+m 2 ) λ , B 8,5 = m(-λ 2 +λm+1) λ , B 8,6 = -m(λm 2 +λ+m) λ-m , B 8,7 = -m(m 2 +1) λ 3 , B 8,8 = -λ, B 8,9 = -λ(m 2 +1) λ-m , B 9,1 = -2m 2 (λ 2 -1) λ 6
, and

B 9,2 = m(-λ 2 +2λm-m 2 ) λ . C =                -m 0 0 0 0 λ 0 0 0 0 1 λ 3 0 0 0 0 0 0 0 m 2 mλ 3 0 λ 3 λ 3 -mλ 3 -m λ 3 m -λ 3 0 0 0 0 0 0 1 λ 3 0 0 -m λ m(λm+1) λ 3 -1 λ 0 0 λ 2 1 λ 0 λ 2 m 1 λ m(λ-m) λ 3 0 0 0 0 0 0 0 0 mλ 3 0 λ 3 0 0 -m 0 0 C 8,1 C 8,2 C 8,3 0 m 2 λ 2 -λ 2 m -m 3 C 8,7 0 -λ 2 -m 2 C 9,1 C 9,2 m 2 λ 3 0 m(λ 2 +1) λ 2 -m 2 (2λ 2 -1) λ 2 -m 2 λ 3 1 -2m                with C 8,1 = m 2 (λ 2 +m 2 ) λ 3 , C 8,2 = -m 2 (λ 2 m+m 3 +λ+m) λ 4 , C 8,3 = m(λ 2 +m 2 +1) λ 3 , C 8,7 = -m(λ 2 +m 2 +1) λ 3 , C 9,1 = -m(λ 2 -m 2 ) λ 3
, and C 9,2 = -m 2 (λ 2 -λm+m 2 ) λ 4

.

Absolute irreducibility being an open condition (see [START_REF] Lubotzky | Varieties of representations of finitely generated groups[END_REF]), it is sufficient to check it for one arbitrary specialization. For a rational specialization of m and λ (for example m = 2 and λ = 17 as in Appendix B), we check that the dimension of the matrix algebra generated by A, B, and C is equal to 81. Hence ρ 3 is absolutely irreducible over Q(m, λ).

We get two other irreducible Krammer's representations ρ ′ 3 and ρ ′′ 3 for B(3, 3, 3) by replacing λ by ζ 3 λ and ζ 2 3 λ, respectively. The trace of the matrix BAC is equal to 1 λ . Hence ρ 3 , ρ ′ 3 , and ρ ′′ 3 are pairwise non-isomorphic. We deduce that if BMW(3, 3, 3) is of dimension 297 over Q(m, l), we know all its irreducible representations: those from the representations of the Hecke algebra H(3, 3, 3) and those that correspond to the Krammer's representations. In particular, it is semi-simple. This is one of the reasons that led us to state Conjecture 5.4.2 at the end of this section.

Let m = r -1 r and λ = 1 rt , we checked that the restriction of the representation ρ 3 to a parabolic subgroup of type A 2 is isomorphic to the direct sum K of the Cohen-Gijsbers-Wales representation of type A 2 and of the Hecke algebra representation associated to the permutation action of the symmetric group S 3 on R\{s 1,2;0 , s 2,3;0 , s 1,3;0 }, where R is the set of reflections of G (3,3,3). Note that this property is satisfied by the monodromy representation, see Proposition 4.7 in [START_REF] Marin | Krammer representations for complex braid groups[END_REF]. The representation K is as follows.

K(T 0 ) =               t 3 r 3 0 t 3 (r 4 -r 2 ) 0 0 0 0 0 0 0 1/r -r 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1/r -r 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1/r -r 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1/r -r 0 0 0 0 0 0 1 0 0 0               K(S 3 ) =               1/r -r 0 1 0 0 0 0 0 0 0 t 3 r 3 t 3 (r 4 -r 2 ) 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1/r -r 0 0 0 1 0 0 0 0 0 1/r -r 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1/r -r 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0               Krammer's representation for B(4, 4 , 3) 
The method used for B(4, 4, 3) is similar to the one used for B(3, 3, 3). We get for many specializations of the parameters of the BMW algebra v and l that the dimension of BMW(4, 4, 3) is equal to 384. We remark that 384 = 96 + 2 × 12 2 2 , where R is the set of reflections of G(4, 4, 3).

= #(G(4, 4, 3)) + 2 × (#R)
In order to get a model of Krammer's representation over Q using GAP, we set a rational specialization of v and l such that v = µ 2 and l = λ 2 (v and l are square numbers). We compute the central idempotents and search for the central idempotent i 1 of trace 12 2 = 144. Hence i 1 A is the algebra corresponding to Krammer's representation. This enables us to construct the Krammer's representation of B(4, 4, 3) that we denote by ρ 4 , see Appendix B for the implementation. We conjecture that this Krammer's representation is faithful, see Conjecture 5.4.1. We provide the matrices A = ρ 4 (T 0 ), B = ρ 4 (T 1 ), and C = ρ 4 (S 3 ) over Q(µ, λ) that we get after interpolation of many rational specializations of µ and λ. As for the case of B(3, 3, 3), we checked that A, B, and C satisfy all the relations of BMW (4,4,3) and that ρ 4 is absolutely irreducible over Q(µ, λ) since the dimension of the corresponding matrix algebra for

Compte-rendu 1

Dans ce compte-rendu nous mettons en évidence les motivations, les enjeux et les apports de cette thèse en exposant ses principaux résultats. Nous commençons par rappeler les définitions des groupes de réflexions complexes, des groupes de tresses complexes et des algèbres de Hecke. Soit W un sous-groupe fini de GL(V ).

Groupes de réflexions complexes

Définition. W est un groupe de réflexions complexes si W est engendré par l'ensemble R des réflexions de W .

On dit que W est irréductible si V est une représentation linéaire irréductible de W . Tout groupe de réflexions complexes peut être écrit comme produit direct d'irréductibles (cf. Proposition 1.27 de [START_REF] Lehrer | Unitary reflection groups[END_REF]). Donc on peut se restreindre à l'étude des groupes de réflexions complexes irréductibles. Ces derniers ont été classifiés par Shephard et Todd en 1954 (cf. [START_REF] Shephard | Finite unitary reflection groups[END_REF]). La classification est comme suit.

Proposition. Soit W un groupe de réflexions complexes irréductible. À conjugaison près, W appartient à l'un des cas suivants :

• La série infinie G(de, e, n) qui dépend de trois paramètres entiers strictement positifs d, e et n (cf. la définition suivante).

• Les 34 groupes exceptionnels G 4 , • • • , G 37 .

Nous donnons la définition de la série infinie G(de, e, n) ainsi que certaines de ses propriétés. Pour la définition des 34 groupes exceptionnels, consulter [START_REF] Shephard | Finite unitary reflection groups[END_REF].

Définition. G(de, e, n) est le groupe des matrices monomiales de tailles n × n telles que

• les coefficients non nuls de chaque matrice sont des racines de-ième de l'unité et

• le produit des coefficients non nuls est une racine d-ième de l'unité.

Remarque. Le groupe 

i, i + 1) pour 1 ≤ i ≤ n -1, t e =   0 ζ -1 e 0 ζ e 0 0 0 0 I n-2   et u d = ζ d 0 0 I n-1
, où I k est la matrice identité de taille k × k et ζ l est la racine l-ième de l'unité égale à exp(2iπ/l). Le résultat suivant peut être trouvé dans la section 3 du chapitre 2 de [START_REF] Lehrer | Unitary reflection groups[END_REF].

Proposition. L'ensemble des générateurs du groupe de réflexions complexes G(de, e, n) est comme suit. Broué, Malle et Rouquier [START_REF] Broué | Complex reflection groups, braid groups, Hecke algebras[END_REF] ont réussi à associer un groupe de tresses complexes pour chaque groupe de réflexions complexes. Ceci généralise la notion des groupes d'Artin-Tits associés aux groupes de réflexions réels. Nous fournissons la construction de ces groupes de tresses complexes. Tous les résultats peuvent être trouvés dans [START_REF] Broué | Complex reflection groups, braid groups, Hecke algebras[END_REF].

Groupes de tresses complexes

Soit W < GL(V ) un groupe fini de réflexions complexe. Soit R l'ensemble des réflexions de W . Soit A = {Ker(s -1) | s ∈ R} l'arrangement des hyperplans et X = V \ A le complémentaire des hyperplans. Le groupe de réflexion complexes W agit naturellement sur X. Soit p : X → X/W la surjection canonique. Par un théorème de Steinberg (cf. [START_REF] Steinberg | Differential equations invariant under finite reflection groups[END_REF]), cette action est libre. Donc, elle définit un recouvrement galoisien X → X/W qui donne lieu à la suite exacte suivante. Soit x ∈ X, on a

1 -→ π 1 (X, x) -→ π 1 (X/W, p(x)) -→ W -→ 1.
Ceci nous permet de donner la définition suivante.

Définition. On définit P := π 1 (X, x) le groupe de tresses complexes pur et B := π 1 (X/W, p(x)) le groupe de tresses complexes associés à W .

Soit s ∈ R et H s l'hyperplan correspondant. On définit le lacet σ s ∈ B donné par le chemin γ dans X. Choisissons un point x 0 'proche de H s et loin des autres hyperplans'. On définit γ le chemin dans X égal à s.( γ -1 ) • γ 0 • γ, où γ est n'importe quel chemin dans X de x à x 0 , s.( γ -1 ) est l'image de γ -1 sous l'action de s et γ 0 est un chemin dans X de x 0 à s.x 0 autour de l'hyperplan H s . Le chemin γ est illustré par la figure suivante.

s • x x H s • • H s ⊥ • • x 0 s • x 0 • 0 γ s.( γ -1 ) γ 0
On appelle σ s une réflexion tressée associée à s. Les réflexions tressées satisfont la propriété suivante (cf. [START_REF] Broué | Complex reflection groups, braid groups, Hecke algebras[END_REF] pour une preuve). Proposition. Soient s 1 et s 2 deux réflexions conjuguées dans W et soient σ 1 and σ 2 deux réflexions tressées associées à s 1 et s 2 , respectivement. Les réflexions tressées σ 1 et σ 2 sont conjuguées dans B.

Une réflexion s est dite distinguée si son unique valeur propre non-triviale est exp(2iπ/o(s)), où o(s) est l'ordre de s dans le groupe de réflexions complexes. On peut associer une réflexion tressée σ s à chaque réflexion distinguée s. Dans ce cas, on appelle σ s une réflexion tressée distinguée associée à s. On a le résultat suivant (cf. [START_REF] Broué | Complex reflection groups, braid groups, Hecke algebras[END_REF] pour une preuve).

Proposition. Le groupe de tresses complexes B est engendré par les réflexions tressées distinguées associées aux réflexions distinguées de W .

Remarque. Par un théorème de Brieskorn [START_REF] Brieskorn | Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe[END_REF], le groupe de tresses complexes associé à un groupe de Coxeter fini W est isomorphe au groupe d'Artin-Tits B(W ) associé à W .

Une propriété importante des groupes de tresses complexes est qu'ils peuvent être définis par des présentations finis par générateurs et relations qui ressemblent aux présentations des groupes de Coxeter. Ceci généralise le cas des groupes de tresses complexes associés aux groupes finis de Coxeter (consulter la remarque précédente).

Des présentations des groupes de tresses complexes associés à la série infinie G(de, e, n) et à certains des groupes exceptionnels peuvent être trouvées dans [START_REF] Broué | Complex reflection groups, braid groups, Hecke algebras[END_REF]. Des présentations des groupes de tresses complexes associés aux autres groupes exceptionnels sont données dans [START_REF] Bessis | Explicit presentations for exceptional braid groups[END_REF], [3] et [START_REF] Malle | Constructing representations of Hecke algebras for complex reflection groups[END_REF].

Algèbres de Hecke

Généralisant des résultats précédents dans [12], Broué, Malle et Rouquier ont réussi à généraliser d'une manière naturelle la définition de l'algèbre de Hecke (ou Iwahori-Hecke) des groupes de réflexions réels à n'importe quel groupe de réflexions complexes. En effet, ils ont défini ces algèbres de Hecke en utilisant leur définition des groupes de tresses complexes que nous avons déjà rappelée. Nous donnons maintenant la définition de ces algèbres de Hecke ainsi que certaines de leurs propriétés.

Soit W un groupe de réflexions complexes et B le groupe de tresses complexes associé. Soit R = Z[a s,i , a -1 s,0 ] où s appartient à un système de représentants des classes de conjugaison de réflexions distinguées dans W et 0 ≤ i ≤ o(s) -1, où o(s) est l'ordre de s dans W . On choisit une réflexion tressée distinguée σ s pour chaque réflexion distinguée s. La définition d'une réflexion tressée distinguée a été donnée avant.

Définition. L'algèbre de Hecke H(W ) associée à W est le quotient de l'algèbre du groupe RB par l'idéal engendré par les relations

σ s o(s) = o(s)-1 i=0
a s,i σ s i où σ s est la réflexion tressée distinguée associée à s et s appartient à un système de représentants des classes de conjugaison de réflexions distinguées dans W .

Remarque. Du fait que deux réflexions tressées distinguées associées à deux réflexions conjuguées dans W sont conjuguées dans B et du fait que les relations qui définissent l'algèbre de Hecke sont des relations polynomiales sur les réflexions tressées, la définition précédente de l'algèbre de Hecke ne dépend pas ni du choix du système de représentants des classes de conjugaison des réflexions distinguées dans W , ni du choix de la réflexion tressée distinguée associée à chaque réflexion distinguée. De plus, elle coincide avec la définition usuelle des algèbres de Hecke (cf. [START_REF] Broué | Complex reflection groups, braid groups, Hecke algebras[END_REF] et [START_REF] Marin | The freeness conjecture for Hecke algebras of complex reflection groups and the case of the Hessian group G 26[END_REF]).

Remarque. Soit W un groupe de Coxeter fini d'ensemble générateur S. L'algèbre de Hecke (ou Iwahori-Hecke) associée à W est définie sur R = Z[a 1 , a -1 0 ] par une présentation avec un ensemble générateur Σ en bijection avec S et les relations sont

σ s σ t σ s • • • mst = σ t σ s σ t • • • mst avec les relations polynomiales σ 2 s = a 1 σ s +a 0 pour tout s ∈ S.
Une conjecture importante (la conjecture de liberté de BMR) sur H(W ) a été donnée dans [START_REF] Broué | Complex reflection groups, braid groups, Hecke algebras[END_REF]:

Conjecture. L'algèbre de Hecke H(W ) est un R-module libre de rang |W |.

Cette conjecture a été utilisée par un certain nombre d'auteurs en tant qu'hypothèse. Par exemple, Malle l'a utilisé pour prouver que les caractères de H(W ) prennent leurs valeurs dans un corps spécifique (cf. [START_REF] Malle | On the Rationality and Fake Degrees of Characters of Cyclotomic Algebras[END_REF]). Notons que la validité de cette conjecture implique que H(W )⊗ R F est isomorphe à l'algèbre du groupe F W , où F est la clôture algébrique du corps des fractions de R (cf. [START_REF] Marin | The freeness conjecture for Hecke algebras of complex reflection groups and the case of the Hessian group G 26[END_REF]).

Cette conjecture est vraie pour les groupes de réflexions réels (cf. Lemma 4.4.3 de [35]). De plus, par un travail de Ariki [1] et Ariki-Koike [2], cette conjecture est aussi vraie pour la série infinie G(de, e, n). 

Formes normales géodésiques pour G(de, e, n)

Rappelons que G(e, e, n) est le groupe des matrices monomiales de taille n × n où les coefficients de ces matrices sont des racines e-ième de l'unité et le produit des coefficients non nuls de chaque matrice est égal à 1. Soient e ≥ 1 et n > 1. On rappelle la présentation de Corran-Picantin de G(e, e, n) donnée dans [26].

Définition. Le groupe de réflexions complexes G(e, e, n) peut être défini par une présentation ayant comme ensemble générateur

X = {t i | i ∈ Z/eZ} ∪ {s 3 , s 4 , • • • , s n } et les relations sont les suivantes. 1. t i t i-1 = t j t j-1 pour i, j ∈ Z/eZ, 2. t i s 3 t i = s 3 t i s 3 pour i ∈ Z/eZ, 3. s j t i = t i s j pour i ∈ Z/eZ et 4 ≤ j ≤ n, 4. s i s i+1 s i = s i+1 s i s i+1 pour 3 ≤ i ≤ n -1, 5. s i s j = s j s i pour |i -j| > 1 et 6. t 2 i = 1 pour i ∈ Z/eZ et s 2 j = 1 pour 3 ≤ j ≤ n.
Les matrices de G(e, e, n) qui correspondent à l'ensemble des générateurs X de la présentation sont données par t i -→ t L'algorithme précédent se généralise aux autres cas de la série infinie des groupes de réflexions complexes G(de, e, n) pour d > 1, e ≥ 1 et n ≥ 2. Nous avons utilisé la présentation de Corran-Lee-Lee des groupes G(de, e, n), cf. [START_REF] Corran | Braid groups of imprimitive complex reflection groups[END_REF]. Elle est définie comme suit.

i :=   0 ζ -i e 0 ζ i e 0 0 0 0 I n-2   pour 0 ≤ i ≤ e -1 et s j -→ s j :=     I j-2 0 0 0 0 0 1 0 0 1 0 0 0 0 0 I n-j     pour 3 ≤ j ≤ n.
Définition. Le groupe de réflexions complexes G(de, e, n) est défini par une présentation ayant comme ensemble des générateurs X = {z}∪{t i | i ∈ Z/deZ}∪{s 3 , s 4 , • • • , s n } et les relations sont :

1. zt i = t i-e z pour i ∈ Z/deZ, 2. zs j = s j z pour 3 ≤ j ≤ n,

3. t i t i-1 = t j t j-1 pour i, j ∈ Z/deZ, 4. t i s 3 t i = s 3 t i s 3 pour i ∈ Z/deZ, 5. s j t i = t i s j pour i ∈ Z/deZ et 4 ≤ j ≤ n, 6. s i s i+1 s i = s i+1 s i s i+1 pour 3 ≤ i ≤ n -1, 7. s i s j = s j s i pour |i -j| > 1 et 8. z d = 1, t 2 i = 1 pour i ∈ Z/deZ et s 2 j = 1 pour 3 ≤ j ≤ n.
Les générateurs de cette présentation correspondent aux matrices n × n suivantes : Le générateur t i est représenté par la matrice t

i =   0 ζ -i de 0 ζ i de 0 0 0 0 I n-2   pour i ∈ Z/deZ, z par la matrice diagonale z = Diag(ζ d , 1, • • • , 1) où ζ d = exp(2iπ/d)
, et s j par la matrice de la transposition s j = (j -1, j) pour 3 ≤ j ≤ n.

Cette présentation peut être décrite par le diagramme suivant. La flèche courbée au-dessous de z décrit la relation 1 de la définition précédente. Nous allons maintenant donner les éléments de G(e, e, n) de longueur maximale. Il s'agit d'une application directe de l'algorithme qui produit les formes normales géodésiques de G(e, e, n).

Proposition. Soit e > 1 et n ≥ 2. La longueur maximale d'un élément de G(e, e, n) est n(n -1). Elle est réalisée pour les matrices diagonales w telle que w[i, i] est une racine e-ième de l'unité qui est différente de 1 pour 2 ≤ i ≤ n. Un mot réduit qui représente cet élément est de la forme

(t k2 t 0 )(s 3 t k3 t 0 s 3 ) • • • (s n • • • s 3 t kn t 0 s 3 • • • s n ), avec 1 ≤ k 2 , • • • , k n ≤ e -1.
Le nombre d'éléments de cette forme est (e -1) (n-1) . Dans les définitions précédentes, nous avons utilisé l'anneau des polynômes R 0 au lieu de l'anneau usuel des polynômes de Laurent R que nous avons déjà introduit dans la définition générale des algèbres de Hecke. En effet, par Proposition 2.3 (ii) de [START_REF] Marin | Proof of the BMR conjecture for G 20 and G 21[END_REF], la conjecture de liberté de BMR (appliquée au cas de G(e, e, n)) est équivalente au fait que H(e, e, n) est un R 0 -module de rang |G(e, e, n)|. La même chose est valable pour G(d, 1, n). Donc, en prouvant que H(e, e, n) et H(d, 1, n) sont des R 0 -modules libres de rang |G(e, e, n)| et |G(d, 1, n)|, respectivement, on obtient une nouvelle preuve de la conjecture de liberté de BMR pour les cas de G(e, e, n) et G(d, 1, n).

Notons par

λ l'élément      (ζ -1 e ) (n-1) ζ e . . . ζ e      ∈ G(e, e, n). Exemple. Nous avons RE(λ) = (t 1 t 0 )(s 3 t 1 t 0 s 3 ) • • • (s n • • • s 3 t 1 t 0 s 3 • • • s n ). Donc ℓ(λ) = n(n - 
On utilise la forme normale géodésique que nous avons introduite précédemment pour G(e, e, n) afin de construire une base de H(e, e, n) qui est différente de celle de Ariki définie dans [1]. On introduit les sous-ensembles suivants de H(e, e, n). Proposition. Le quotient de l'algèbre du monoïde R 0 (B ⊕ (e, e, n)) par les relations polynomiales qui définissent H(e, e, n) est un R 0 -module de type fini engendré par Λ.

Λ 2 = { 1, t k pour 0 ≤ k ≤ e -1, t k t 0 pour 1 ≤ k ≤ e -1 }, et pour 3 ≤ i ≤ n, Λ i = { 1, s i • • • s i ′ pour 3 ≤ i ′ ≤ i, s i • • • s 3 t k pour 0 ≤ k ≤ e -1, s i • • • s 3 t k s 2 • • • s i ′ pour 1 ≤ k ≤ e -1 et 2 ≤ i ′ ≤ i }. Définissons Λ = Λ 2 • • • Λ n l'ensemble des produits a 2 • • • a n où a 2 ∈ Λ 2 , • • • , a n ∈ Λ n .
La proposition précédente est intéressante pour le phénomène suivant. Si nous essayons de définir les algèbres de Hecke à partir des diagrammes de Broué-Malle et Broué-Malle-Rouquier des groupes de tresses complexes, nous pouvons espérer de les définir sur un anneau de polynômes sans des inverses c'est-à-dire comme quotients des algèbres des monoïdes décrits par les diagrammes et de prouver que ces algèbres sont de type fini sur l'anneau des polynômes. Ce phénomène apparaît dans le cas des groupes de Coxeter. Cependant, il est prouvé dans [START_REF] Marin | The freeness conjecture for Hecke algebras of complex reflection groups and the case of the Hessian group G 26[END_REF] que ce n'est pas le cas en général et en paticulier pour le cas des groupes de réflexions complexes de type G(d, 1, n), consulter la sous-section 3.2.3 de [START_REF] Marin | The freeness conjecture for Hecke algebras of complex reflection groups and the case of the Hessian group G 26[END_REF]. Ceci motive la proposition précédente où le résultat est exprimé sans des conditions d'inversibilité en utilisant le monoïde de Corran et Picantin B ⊕ (e, e, n). Ceci donne alors un intérêt supplémentaire à notre construction.

Nous revenons maintenant au cas de l'algèbre de Hecke H(d, 1, n) définie avant par une présentation par des générateurs et relations. Nous allons construire une base de H(d, 1, n) qui est différente de celle de Ariki et Koike, cf. [2]. On introduit les sous-ensembles suivants de H(d, 1, n).

Λ 1 = { z k pour 0 ≤ k ≤ d -1 }, et pour 2 ≤ i ≤ n, Λ i = { 1, s i • • • s i ′ pour 2 ≤ i ′ ≤ i, s i • • • s 2 z k pour 1 ≤ k ≤ d -1, s i • • • s 2 z k s 2 • • • s i ′ pour 1 ≤ k ≤ d -1 et 2 ≤ i ′ ≤ i }. Définissons Λ = Λ 1 Λ 2 • • • Λ n l'ensemble des produits a 1 a 2 • • • a n où a 1 ∈ Λ 1 , • • • , a n ∈ Λ n .
Nous avons démontré le théorème suivant :

Théorème. L'ensemble Λ fournit une R 0 -base de l'algèbre de Hecke H(d, 1, n).

Remarque. On remarque que pour d et n au-moins égaux à 2, notre base de H(d, 1, n) ne coïncide jamais avec la base de Ariki-Koike comme le montre l'exemple suivant. Considérons l'élément s 2 zs 2 2 = s 2 zs 2 .s 2 qui appartient à la base de Ariki-Koike. Dans notre base, il est égal à la combinaison linéaire as 2 zs 2 + s 2 z, où s 2 zs 2 et s 2 z sont deux éléments distincts de notre base de H(d, 1, n).

Monoïdes et groupes de Garside

Dans sa thèse de Doctorat, défendue en 1965 [START_REF] Garside | The theory of knots and associated problems[END_REF] et dans l'article qui a suivi [START_REF] Garside | The braid group and other groups[END_REF], Garside a résolu le Problème de Conjugaison pour le groupe de tresses 'classique' B n en introduisant un sous-monoïde B + n de B n et un élément ∆ n de B + n qu'il avait appelé élément fondamental. Il a prouvé l'existence d'une forme normale pour chaque élément de B n . Au début des années 70, Brieskorn-Saito et Deligne ont remarqué que les résultats de Garside s'étendent à tous les groupes d'Artin-Tits, consulter [START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF] et [START_REF] Deligne | Les immeubles des groupes de tresses généralisés[END_REF]. À la fin des années 90 et après avoir lister les propriétés abstraites de B + n et de l'élément fondamental ∆ n , Dehornoy et Paris [START_REF] Dehornoy | Gaussian groups and Garside groups, two generalizations of Artin groups[END_REF] ont défini la notion de groupes Gaussiens et groupes de Garside, ce qui a mené à la théorie de Garside. Pour une étude détaillée sur les structures de Garside, le lecteur est invité à lire [START_REF] Dehornoy | Foundations of Garside Theory[END_REF]. Nous fournissons ici les préliminaires nécessaires sur les structures de Garside.

Soit M un monoïde. Sous certaines hypothèses sur M , plus précisément les hypothèses 1 et 2 de la définition suivante d'un monoïde de Garside, nous pouvons définir un ordre partiel sur M comme suit.

Définition. Soient f, g ∈ M . On dit que f divise à gauche g ou tout simplement f divise g s'il n'y a pas de confusion, et on écrit f g, si f g ′ = g pour un certain g ′ ∈ M . De la même manière, on dit que f divise à droite g, et on écrit f r g, si g ′ f = g pour un certain g ′ ∈ M . Représentations de Krammer et algèbres de BMW Bigelow [6] et Krammer [START_REF] Krammer | The braid group B 4 is linear[END_REF][START_REF] Krammer | Braid groups are linear[END_REF] ont prouvé que le groupe de tresses classique est linéaire c'est-à-dire qu'il existe une représentation linéaire fidèle de dimension finie du groupe de tresses classique B n . Rappelons que B n est défini par une présentation avec comme ensemble générateur {s 1 , s 2 , • • • , s n-1 } et les relations sont s i s i+1 s i = s i+1 s i s i+1 pour 1 ≤ i ≤ n -2, et s i s j = s j s i pour |i -j| > 1. Cette présentation est illustrée par le diagramme suivant :

s 1 s 2 s n-2 s n-1
La représentation de Krammer ρ : B n -→ GL(V ) est définie sur un R(q, t)-espace vectoriel V de base {x s | s ∈ R} indexée par l'ensemble des réflexions (i, j) du groupe symétrique S n avec 1 ≤ i < j ≤ n -1. Sa dimension est alors égale à #R = n(n-1)

2

. Notons x (i,j) par x i,j . La représentation est définie comme suit : s k x k,k+1 = tq 2 x k,k+1 , s k x i,k = (1q)x i,k + qx i,k+1 , i < k, s k x i,k+1 = x i,k + tq (k-i+1) (q -1)x k,k+1 , i < k, s k x k,j = tq(q -1)x k,k+1 + qx k+1,j , k + 1 < j, s k x k+1,j = x k,j + (1q)x k+1,j , k + 1 < j, s k x i,j = x i,j , i < j < k ou k + 1 < i < j et s k x i,j = x i,j + tq (k-i) (q -1) 2 x k,k+1 , i < k < k + 1 < j.

Le critère de fidélité utilisé par Krammer peut être énoncé pour un groupe de Garside. Ce critère fournit des conditions nécessaires qui assurent qu'une représentation linéaire d'un groupe de Garside est fidèle. Soit M un monoïde de La représentation de Krammer ainsi que la preuve de fidélité ont été généralisées à tous les groupes d'Artin-Tits de type sphérique par les travaux de [START_REF] Digne | On the linearity of Artin braid groups[END_REF], [START_REF] Cohen | Linearity of Artin groups of finite type[END_REF] et [START_REF] Paris | Artin monoids inject in their groups[END_REF]. Notons aussi qu'une preuve simple de la fidélité a été donnée dans [START_REF] Hée | Une démonstration simple de la fidélité de la représentation de Lawrence-Krammer-Paris[END_REF]. Marin a généralisé dans [START_REF] Marin | Krammer representations for complex braid groups[END_REF] cette représentation à tous les groupes de 2-réflexions. Sa représentation est définie analytiquement sur le corps des séries formelles de Laurent par la monodromie de certaines formes différentielles et elle est de dimension égale au nombre de réflexions dans le groupe de réflexions complexes correspondant. Il était conjecturé par Marin dans [START_REF] Marin | Krammer representations for complex braid groups[END_REF] que cette représentation est fidèle. Elle a aussi été généralisée par Chen [18] à tous les groupes de réflexions.

Pour le type ADE des groupes de Coxeter, les représentations de Krammer généralisées peuvent être construites à partir de l'algèbre de BMW (Birman-Murakami-Wenzl). Nous avons détaillé ceci dans l'introduction de la dissertation. Dans ce compte-rendu, nous allons juste rappeler la définition de l'algèbre de BMW pour le cas ADE, consulter [START_REF] Cohen | BMW Algebras of simply laced type[END_REF]. 1. mF i = l(S 2 i + mS i -1) avec m = l-l -1 1-x pour tout i, 2. S i F i = F i S i = l -1 F i pour tout i et 3. F i S j F i = lF i pour tout i, j quand s i s j s i = s j s i s j .

Pour la preuve de la proposition suivante, consulter Propositions 2.1 et 2.3 de [START_REF] Cohen | BMW Algebras of simply laced type[END_REF].

Proposition. On a S i est inversible d'inverse S -1 i = S i + m -mF i . Nous avons aussi F 2 i = xF i et S j S i F j = F i S j S i = F i F j quand s i s j s i = s j s i s j .

Si l = 1, cette algèbre de BMW dégénère à l'algèbre de Brauer suivante, consulter [START_REF] Brauer | On algebras which are connected with the semisimple continuous groups[END_REF] et [START_REF] Cohen | Brauer algebras of simply laced type[END_REF]. Dans ce cas, on a m = l-l -1

1-x = 0 et la relation 1. S 2 i = 1 pour tout i, 2. F 2 i = xF i pour tout i, 3. S i F i = F i S i = F i pour tout i, 4. F i S j F i = F i pour tout i, j quand s i s j s i = s j s i s j et 5. S j S i F j = F i S j S i = F i F j quand s i s j s i = s j s i s j .

Chen a défini dans [18] une algèbre de Brauer qui généralise les travaux de [START_REF] Brauer | On algebras which are connected with the semisimple continuous groups[END_REF] et [START_REF] Cohen | Brauer algebras of simply laced type[END_REF]. Complétant ses résultats dans [START_REF] Chen | Birman-Murakami-Wenzl algebras for general Coxeter groups[END_REF], Chen a aussi défini dans [START_REF] Chen | Type Algebras for Arbitrary Coxeter Systems[END_REF] une algèbre de BMW pour les groupes diédraux I 2 (e) pour tout e ≥ 2 à partir de laquelle il a défini une algèbre de BMW pour tous les groupes de Coxeter qui dégénère à l'algèbre de Brauer qu'il avait déjà introduite dans [18]. Il est aussi prouvé dans [START_REF] Chen | Type Algebras for Arbitrary Coxeter Systems[END_REF] l'existence d'une représentation des groupes d'Artin-Tits associés aux groupes diédraux. La représentation est de dimension e et elle est définie explicitement sur Q(α, β) où α et β dépendent des paramètres de l'algèbre de BMW. Il est aussi conjecturé dans [START_REF] Chen | Type Algebras for Arbitrary Coxeter Systems[END_REF] que cette représentation est isomorphe à la représentation monodromique construite par Marin dans [START_REF] Marin | Krammer representations for complex braid groups[END_REF].

Algèbres de BMW et de Brauer pour le type (e, e, n) Nous nous sommes inspirés par le monoïde de Corran et Picantin pour construire une algèbre de BMW pour le groupe de tresses complexes B(e, e, n). Nous utilisons la définition de l'algèbre de BMW associée aux groupes diédraux [START_REF] Chen | Type Algebras for Arbitrary Coxeter Systems[END_REF] et la définition de BMW des groupes de Coxeter de type ADE [START_REF] Cohen | BMW Algebras of simply laced type[END_REF]. Nous distinguons les cas où e est impair et e est pair.

Définition. Supposons que e est impair. On définit l'algèbre BMW(e, e, n) associée à B(e, e, n) comme étant la Q(l, x)-algèbre unitaire avec l'ensemble générateur

{T i | i ∈ Z/eZ} ∪ {S 3 , S 4 , • • • , S n } ∪ {E i | i ∈ Z/eZ} ∪ {F 3 , F 4 , • • • , F n },
et les relations sont les relations de l'algèbre de BMW de type A n-1 pour {T i , S 3 , S 4 , • • • , S n } ∪ {E i , F 3 , • • • , F n } avec 0 ≤ i ≤ e -1 avec les relations de type diédral suivantes :

1. T i = T i-1 T i-2 T -1 i-1 et E i = T i-1 E i-2 T -1 i-1 pour tout i ∈ Z/eZ, i = 0, 1, 2. T 1 T 0 • • • T 1 e = T 0 T 1 • • • T 0 e , 3 
. mE i = l(T 2 i + mT i -1) pour i = 0, 1, où m = l-l -1 1-x , 4. T i E i = E i T i = l -1 E i pour i = 0, 1,

5. E 1 T 0 T 1 • • • T 0 k E 1 = lE 1 , où 1 ≤ k ≤ e -2, k impair, 6. E 0 T 1 T 0 • • • T 1 k E 0 = lE 0 , où 1 ≤ k ≤ e -2, k impair, 7. T 1 T 0 • • • T 0 e-1 E 1 = E 0 T 1 T 0 • • • T 0 e-1 , 8. T 0 T 1 • • • T 1 e-1 E 0 = E 1 T 0 T 1 • • • T 1 e-1 .
Définition. Supposons que e est pair. Soient m = vv -1 et x tels que m = l-l -1 1-x . On définit l'algèbre BMW(e, e, n) associée à B(e, e, n) comme étant la Q(l, v)-algèbre unitaire avec l'ensemble générateur i + mT i -1) pour i = 0, 1, 4. T i E i = E i T i = l -1 E i pour i = 0, 1,

{T i | i ∈ Z/eZ} ∪ {S 3 , S 4 , • • • , S n } ∪ {E i | i ∈ Z/eZ} ∪ {F 3 , F 4 , • • • , F n },
5. E 1 T 0 T 1 • • • T 0 i E 1 = (v -1 + l)E 1 pour i = 4k + 1 < e/2 et i = 4k + 3 < e/2, 6. E 0 T 1 T 0 • • • T 1 i E 0 = (v -1 + l)E 0 pour i = 4k + 1 < e/2 et i = 4k + 3 < e/2, 7. T 1 T 0 • • • T 1 e-1 E 0 = E 0 T 1 T 0 • • • T 1 e-1 = v -1 E 0 , 8. T 0 T 1 • • • T 0 e-1 E 1 = E 1 T 0 T 1 • • • T 0 e-1 = v -1 E 1 ,
9. E 0 AE 1 = E 1 AE 0 = 0, où A est un mot sans carrés sur {T 0 , T 1 } de longueur au plus e -1.

Pour des spécialisations l = 1 et v = 1, l'algèbre BMW(e, e, n) dégénère en ce que nous avons appelé l'algèbre de Brauer associée. Elle est notée par Br(e, e, n). Nous avons prouvé que Br(e, e, n) coïncide avec l'algèbre de Brauer-Chen définie par Chen dans [18] pour n = 3 et e impair. Donc Br(e, e, 3) fournit une présentation canonique de l'algèbre de Brauer-Chen pour e impair. À la fin de la section 5.3 de la dissertation, nous posons la question si l'algèbre de Brauer Br(e, e, n) que nous avons définie est isomorphe à l'algèbre de Brauer-Chen pour tout e et n.

Représentations de Krammer du groupe de tresses complexes B(e, e, n) et conjectures

Rappelons qu'en type ADE des groupes de Coxeter, les représentations de Krammer généralisées se construisent via les algèbres de BMW. Nous tentons la construction de représentations linéaires explicites des groupes de tresses complexes B(e, e, n) en utilisant l'algèbre BMW(e, e, n). Nous appelons ces représentations : les représentations de Krammer de B(e, e, n).

Nous adoptons une approche combinatoire et nous avons utilisé le package GBNP (version 1.0.3) de GAP4 ( [START_REF] Cohen | GBNP package version 1.0.3[END_REF]) pour nos calculs. Notre méthode repose sur le calcul d'une base de Gröbner de la liste des polynômes qui définissent BMW(e, e, n). Nous avons trouvé une méthode pour construire des représentations de Krammer explicites pour B(3, 3, 3) et B (4,4,3). Nous notons ces deux représentations par ρ 3 et ρ 4 , respectivement. Dans la section 5.4 de la dissertation, nous donnons ces deux représentations en expliquant la manière de les construire. Dans Appendix B, nous avons fourni les codes qui ont permis de faire ces constructions. Nous avons utilisé la plate-forme MATRICS ( [START_REF]Plateforme MATRICS[END_REF]) de l'Université de Picardie Jules Verne pour nos calculs heuristiques.

Rappelons que Chen a étudié les algèbres de BMW pour les groupes diédraux dans [START_REF] Chen | Type Algebras for Arbitrary Coxeter Systems[END_REF] et il a été capable de construire des représentations irréductibles des groupes d'Artin-Tits associés aux groupes diédraux. Il a aussi conjecturé que ces représentations sont isomorphes aux représentations monodromiques correspondantes. Nos représentations ρ 3 et ρ 4 sont construites à partir de l'algèbre de BMW. Nous avons prouvé qu'elles sont absolument irréductibles et sont de dimension égale au nombre de réflexions dans le groupe de réflexions complexes correspondant. Nous avons aussi étudié la restriction de ρ 3 aux sous-groupes paraboliques maximaux de B(3, 3, 3). Toutes ces propriétés sont satisfaites pour les représentations de Krammer généralisées. C'est pour ces raisons que nous pensons que les représentations ρ 3 et ρ 4 sont de bons candidats pour être appelées les représentations de Krammer de B(3, 3, 3) et B(4, 4, 3), respectivement. Nous pensons aussi que ces deux représentations sont isomorphes aux représentations monodromiques de B(3, 3, 3) et B(4, 4, 3) construites par Marin dans [START_REF] Marin | Krammer representations for complex braid groups[END_REF], où il conjecture que la représentation monodromique est fidèle, consulter Conjecture 6.3 de [START_REF] Marin | Krammer representations for complex braid groups[END_REF]. Ceci nous permet de proposer la conjecture suivante sur les représentations de Krammer explicites ρ 3 et ρ 4 .

Conjecture. Les représentations de Krammer ρ 3 et ρ 4 sont fidèles.

Interval Structures, Hecke Algebras, and Krammer's Representations for the Complex Braid Groups B(e, e, n) Abstract: We define geodesic normal forms for the general series of complex reflection groups G(de, e, n). This requires the elaboration of a combinatorial technique in order to determine minimal word representatives and to compute the length of the elements of G(de, e, n) over some generating set. Using these geodesic normal forms, we construct intervals in G(e, e, n) that give rise to Garside groups. Some of these groups correspond to the complex braid group B(e, e, n). For the other Garside groups that appear, we study some of their properties and compute their second integral homology groups. Inspired by the geodesic normal forms, we also define new presentations and new bases for the Hecke algebras associated to the complex reflection groups G(e, e, n) and G(d, 1, n) which lead to a new proof of the BMR (Broué-Malle-Rouquier) freeness conjecture for these two cases. Next, we define a BMW (Birman-Murakami-Wenzl) and Brauer algebras for type (e, e, n). This enables us to construct explicit Krammer's representations for some cases of the complex braid groups B(e, e, n). We conjecture that these representations are faithful. Finally, based on our heuristic computations, we propose a conjecture about the structure of the BMW algebra. Résumé : Nous définissons des formes normales géodésiques pour les séries générales des groupes de réflexions complexes G(de, e, n). Ceci nécessite l'élaboration d'une technique combinatoire afin de déterminer des décompositions réduites et de calculer la longueur des éléments de G(de, e, n) sur un ensemble générateur donné. En utilisant ces formes normales géodésiques, nous construisons des intervalles dans G(e, e, n) qui permettent d'obtenir des groupes de Garside. Certains de ces groupes correspondent au groupe de tresses complexe B(e, e, n). Pour les autres groupes de Garside, nous étudions certaines de leurs propriétés et nous calculons leurs groupes d'homologie sur Z d'ordre 2. Inspirés par les formes normales géodésiques, nous définissons aussi de nouvelles présentations et de nouvelles bases pour les algèbres de Hecke associées aux groupes de réflexions complexes G(e, e, n) et G(d, 1, n) ce qui permet d'obtenir une nouvelle preuve de la conjecture de liberté de BMR (Broué-Malle-Rouquier) pour ces deux cas. Ensuite, nous définissons des algèbres de BMW (Birman-Murakami-Wenzl) et de Brauer pour le type (e, e, n). Ceci nous permet de construire des représentations de Krammer explicites pour des cas particuliers des groupes de tresses complexes B(e, e, n). Nous conjecturons que ces représentations sont fidèles. Enfin, en se basant sur nos calculs heuristiques, nous proposons une conjecture sur la structure de l'algèbre de BMW.

Mots clés : Groupes de Réflexions, Groupes de Tresses, Algèbres de Hecke, Formes Normales Géodésiques, Structures de Garside, Structures d'Intervalles, Homologie, Conjecture de Liberté de BMR, Algèbres de Brauer, Algèbres de BMW, Représentations de Krammer.
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Remark 1 . 1 . 5 .

 115 The group G(1, 1, n) is irreducible on C n-1 and the group G(2, 2, 2)is not irreducible so it is excluded from the classification of Shephard and Todd.Let s i be the transposition matrix (i, i+1) for 1 ≤ i ≤ n-1, t e =

= 1

 1 for all s ∈ S and • braid relations: sts • • • mst = tst • • • mst for s, t ∈ S, s = t, and m st = ∞.

  2, n), and type I 2 (e) is G(e, e, 2). For the exceptional groups, we have H 3 = G 23 , F 4 = G 28 , H 4 = G 30 , E 6 = G 35 , E 7 = G 36 , and E 8 = G 37 .

Conjecture 1 . 3 . 4 .

 134 The Hecke algebra H(W ) is a free R-module of rank |W |.

Figure 1 . 2 :

 12 Figure 1.2: Diagram for the presentation of Corran-Picantin of G(e, e, n).

Figure 2 . 1 :

 21 Figure 2.1: Diagram for the presentation of Corran-Picantin of G(e, e, n).

w 4 =

 4 by multiplying the first column of this matrix by 1. The same can be said for the other block w 2 . Definition 2.1.11. Let 2 ≤ i ≤ n. Denote by w i [i, c] the unique nonzero entry on the row i with 1 ≤ c ≤ i.

.

  The claim 1(a) is deduced from (a) and (b), 1(b) is deduced from (a ′ ) and (b ′ ), 2 is deduced from (c) and (d), and 3 is deduced from (e) and (f ) where (a), (b), (a ′ ), (b ′ ), (c), (d), (e), and (f ) are given in the proof of Proposition 2.1.15.

Figure 2 . 2 :Figure 2 . 3 :

 2223 Figure 2.2: Diagram for the presentation of Corran-Lee-Lee of G(de, e, n). Proposition 2.2.2. Let e = 1. The presentation provided in Definition 2.2.1 is equivalent to the classical presentation of the complex reflection group G(d, 1, n) that can be described by the following diagram.

Remark 2 . 2 . 3 .

 223 For d = 2, the presentation described by the diagram of Figure 2.3 is the classical presentation of the Coxeter group of type B n .

  we shift it into the diagonal position [i, i] by right multiplication by transpositions. If w i [i, c] = ζ k d with k ≥ 1, we shift it into position [i, 1] by right multiplication by transpositions, followed by a right multiplication by z -k , then we shift the 1 obtained in position [i, 1] into the diagonal position [i, i] by right multiplication by transpositions. Let us illustrate these operations by the following example. Example 2.2.11. Let w :=

Definition 3 . 1 . 3 .

 313 A Garside group is the group of fractions of a Garside monoid.

Definition 3 . 1 . 5 .

 315 For w ∈ G, define a monoid M ([1, w]) by the monoid presentation with • generating set P in bijection with the interval [1, w] := {f ∈ G | 1 f w} and

Theorem 3 . 1 . 7 .

 317 If w ∈ G is balanced and both posets ([1, w], ) and ([1, w] r , r ) are lattices, then (M ([1, w]), w) is a Garside monoid with simples [1, w], where w and [1, w] are given in Definition 3.1.5.

Proposition 3 . 1 . 9 .

 319 (B + (W ), w 0 ) is a Garside monoid with simples W , where w 0 and W are given in Example 3.1.8.

  Consider the group G(e, e, n) defined by the presentation of Corran and Picantin with generating set X, see Definition 2.1.1. We always assume Convention 2.1.4. Denote by ℓ(w) the length over X of w ∈ G(e, e, n). It is equal to the word length of the output RE(w) of Algorithm 1, see Proposition 2.1.16.

Figure 3 . 1 :

 31 Figure 3.1: The proof of Proposition 3.3.12.

Corollary 3 . 3 . 13 .

 3313 Both posets ([1, λ k ], ) and ([1, λ k ], r ) are lattices.

Figure 3 . 2 :

 32 Figure 3.2: Diagram for the presentation of Corran-Picantin of B(e, e, n).

Figure 3 . 3 :

 33 Figure 3.3: Diagram for the presentation of B (2) (8, 8, 2).

Proposition 3 . 4 . 6 .

 346 The monoids B ⊕k (e, e, n) and B ⊕ (e, e, n) are isomorphic if and only if k ∧ e = 1.

Proposition 3 . 4 . 9 .Figure 3 . 4 :

 34934 Figure 3.4: The construction of B (k) (e, e, n). Example 3.4.10. Consider the case of B (2) (6, 6, 3). It is an amalgamated product of k ∧ e = 2 copies of B(e ′ , e ′ , 3) with e ′ = e/(k ∧ e) = 3 over the Artin-Tits group B(2, 1, 2). Consider the following diagram of this amalgamation. The presentation of B(3, 3, 3) * B(3, 3, 3) over B(2, 1, 2) is as follows:

  [START_REF] Bigelow | Braid groups are linear[END_REF][START_REF] Bigelow | Braid groups are linear[END_REF] 3) given in Definition 3.4.1.

3 B

 3 (2) [START_REF] Bigelow | Braid groups are linear[END_REF][START_REF] Bigelow | Braid groups are linear[END_REF] 3) Proposition 3.4.11. The center of B (k) (e, e, n) is infinite cyclic isomorphic to Z.

  , and for x, y ∈ X with xy = yx, d 2 [x, y] = 0. The same can be done for d 3 . Definition 3.4.13. Define the integral homology group of order r to be H r (B (k) (e, e, n), Z) = ker(d r )/Im(d r+1 ).

Proposition 3 . 4 . 14 .

 3414 Let e ≥ 2, n ≥ 3, 1 ≤ k ≤ e -1, and e ′ = e/e ∧ k.

  Theorem 3.4.15. B (k) (e, e, n) is isomorphic to B(e, e, n) if and only if k ∧ e = 1.
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Definition 4 . 1 . 1 .

 411 Fix e ≥ 1, and n ≥ 2. The group B(e, e, n) is defined by a presentation with set of generators: {t 0 , t 1 , • • • , t e-1 , s 3 , s 4 , • • • , s n } and relations as follows.1.

Figure 4 . 1 :

 41 Figure 4.1: Diagram for the presentation of Corran-Picantin of B(e, e, n).

Figure 4 . 2 :

 42 Figure 4.2: Diagram for the presentation of B(d, 1, n).

Remark 4 . 1 . 3 .

 413 As mentioned in Chapter 2, if we add the relations t

  3.1. Actually, by Proposition 2.3 (ii) of [51], Conjecture 1.3.4 (for W = G(e, e, n)) is equivalent to the fact that H(e, e, n) of Definition 4.1.4 is a free R 0 -module of rank |G(e, e, n)|. The same can be said for G(d, 1, n). Then, by proving that H(e, e, n) and H(d, 1, n) are free R 0 -modules of rank |G(e, e, n)| and |G(d, 1, n)|, respectively, we get a proof of Theorem 1.3.5 for the case of G(e, e, n) and G(d, 1, n).

Theorem 4 . 2 . 1 .

 421 The set Λ provides an R 0 -basis of the Hecke algebra H(e, e, n).

  and |Λ n | = ne by the definition of Λ 2 , • • • , and Λ n . Thus, |Λ| is equal to e n-1 n! that is the order of G(e, e, n). If we manage to prove that Λ is a spanning set of H(e, e, n) over R 0 , then we get Theorem 4.2.1. Denote by Span(S) the sub-R 0 -module of H(e, e, n) generated by S.

Theorem 4 . 3 . 1 .

 431 The set Λ provides an R 0 -basis of the Hecke algebra H(d, 1, n).
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1 . 1 i=Definition 5 . 1 . 3 .

 11513 1.1 degenerates to S 2 i = Hence we have S -S i . By Proposition 5.1.2, we still have the relation F 2 i = xF i in the Brauer algebra. Let W be a Coxeter group of type A n , D n for all n, or E n for n = 6, 7, 8. The Brauer algebra associated to W is the Q(x)-algebra with identity, with the generating set: {S 1 , S 2 , • • • , S n } ∪ {F 1 , F 2 , • • • , F n }, and the defining relations are the braid relations along with:

Case 1 : c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 

 19 s = s 1,2;k and s ′ = s 1,2;k ′ Let w =  be an element of G(e, e, 3). We determine the solutions of the equation ws 1,2;k w -1 = s 1,2;k ′ . It is easy to check that we get c 9 = 0. Thus, we necessarily have c 3 = c 6 = c 7 = c 8 = 0 since w is monomial. Set c 9 = ζ l e with 0 ≤ l ≤ e -1. We have two different cases. The first case is when c 2 is nonzero and c 4 = ζ k+k ′ e c 2 for which case w = with the product of the nonzero entries being 1, that is

even and we have c 2

 2 

7 = ζ k+k ′ e c 5 .-

 75 Then we have c 2 5 = ζ -(k+k ′ +l) e . If k + k ′ + l is even, we get c 5 = ζ w = t -l s 3 t k+k ′ -l 2 .

e and c 7 2 .

 72 w = t -l s 3 t k+k ′ -l+e Relation 4 of Definition 5.3.3 is:

Case 4 :

 4 s = s 2,3;k and s ′ = s 2,3;k ′

- 1 and c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 

 19 k = k ′ . Let w =  ∈ G(e, e, 3). We determine the solutions of the equation ws = s ′ w. We get c 1 is nonzero. Set c 1 = ζ l e with 0 ≤ l ≤ e -1. Then we have c 2 = c 3 = c 4 = c 7 = 0 since w is monomial. We get two different cases. The first case is when c 6 is nonzero and c 8 = ζ k+k ′ e c 6 for which case w = also have c 2 6 = ζ -k-k ′ -l e

Case 5 :

 5 s = s 2,3;k and s ′ = s 1,3;k ′

3 ).

 3 We determine the solutions of the equation ws = s ′ w. We get c 4 is generic nonzero. Set c 4 = ζ l e with 0 ≤ l ≤ e -1. Then we have c 1 = c 7 = c 5 = c 6 = 0 since w is monomial. We get two different cases. The first case is when c 3 is nonzero and c 8 = ζ k+k ′ e c 3 for which case w =

l+e 2 ewith w = t k+k ′ +l+e 2 s 3 t k+k ′ -l+e 2 t 0 .t k+k ′ +l+e 2 s 3 t k+k ′ -l+e 2 t 2 s 3 t

 22202223 Relation 4 of Definition 5.3.3 is: 0 e 2,3;k = e 1,3;k ′ t k+k ′ +l+e k+k ′ -l+e 2 t 0 .

1  c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 

 19 and k = k ′ . We determine the solutions of the equation ws = s ′ w for w =  , e, 3). We get c 5 is nonzero. Set c 5 = ζ l e with 0 ≤ l ≤ e -1. Then we have c 2 = c 8 = c 4 = c 6 = 0 since w is monomial. We get two different cases. The first case is when c 3 is nonzero and c 7 = ζ k+k ′ e

type A 2 2 k = 1 and s 2 3 = 1

 2231 for {T k , S 3 } ∪ {E k , F 3 } for 0 ≤ k ≤ e -1 (see Definition 5.1.3) and Relations 1 to 9 of Definition 5.3.3. Relation 1 of Definition 5.1.3 gives t that are particular relations of the first item of Definition 5.3.3. Relation 2 of Definition 5.1.3 gives e 2 1,2;k = xe 1,2;k and e 2 2,3;0 = xe 2,3;0 that are particular relations of the third item of Definition 5.3.3. Relation 3 of Definition 5.1.3 gives t k e 1,2;k = e 1,2;k t k = e 1,2;k and s 3 e 2,3;0 = e 2,3;0 s 3 = e 2,3;0 that are particular relations of the second item of Definition 5.3.3. Relation 4 of Definition 5.1.

  T x by Equation (5.6) of Proposition 5.2.11 and

3 . 10 .

 310 Cases (3.1), (3.2), (3.4), and (3.5) are done in the same way as the first item of Lemma 5.3.11. Case (3.3) is similar to the first item of Lemma 5.3.10. Cases (4.1) and (4.3) are done in the same way as the second item of Lemma 5.3.9.

Corollary 5 . 3 . 14 .

 5314 The set {wE k } ∪ {wF 3 } for w ∈ G(e, e, 3) and 0 ≤ k ≤ e -1 is a generating set of Br(e, e, 3) for e odd.

  Nous rappelons la définition d'un groupe de réflexions complexes et la classification de Shephard et Todd des groupes finis de réflexions complexes. Nous rappelons aussi la définition des groupes de Coxeter et la classification des groupes de Coxeter finis et irréductibles. Soit n un entier positif non nul et soit V un C-espace vectoriel de dimension n. Définition. Un élément s de GL(V ) est appelé une réflexion si Ker(s -1) est un hyperplan et si s d = 1 pour un entier d ≥ 2.

SoitW

  un groupe de Coxeter. On définit le groupe d'Artin-Tits B(W ) associé à W comme suit. Définition. Le groupe d'Artin-Tits B(W ) associé à W est défini par une présentation avec un ensemble générateur S en bijection avec l'ensemble générateur S du groupe de Coxeter et les relations sont seulement les relations de tresses st s • • • mst = ts t • • • mst pour s, t ∈ S et s = t, où m st ∈ Z ≥2 est l'ordre de st dans W . Soit W = S n le groupe symétrique avec n ≥ 2. Le groupe d'Artin-Tits associé à S n est le groupe de tresse 'classique' noté B n . Le diagramme suivant décrit la présentation par générateurs et relations de B n . s1 s2 sn-2 sn-1

  Soit e = 1. La présentation de la définition précédente est équivalente à la présentation classique du groupe de réflexions complexes G(d, 1, n) qui est décrite par le diagramme suivant. Pour d = 2, la présentation décrite par le diagramme précédent est la présentation classique du groupe de Coxeter de type B n . Les algorithmes qui produisent des formes normales géodésiques pour G(de, e, n) et G(d, 1, n) sont les algorithmes 2 et 3 que nous avons donnés dans le chapitre 2 de cette dissertation. Nous ne rappelons pas ces deux algorithmes dans ce compte-rendu. Ils sont similaires à l'algorithme qui produit des formes normales géodésiques pour les groupes G(e, e, n).

1 )

 1 ce qui correspond à la longueur maximale d'un élément de G(e, e, n).

  Nous avons prouvé le théorème suivant :Théorème. L'ensemble Λ fournit une R 0 -base de l'algèbre de Hecke H(e, e, n).Notons par B ⊕ (e, e, n) le monoïde décrit par la présentation de Corran et Picantin. Nous avons aussi prouvé le résultat suivant :

  Nous donnons maintenant la définition d'un monoïde et groupe de Garside. Définition. Un monoïde de Garside est une paire (M, ∆) où M est un monoïde et 1. M est simplifiable c'est-à-dire f g = f h =⇒ g = h et gf = hf =⇒ g = h pour f, g, h ∈ M , ensuite définir l'intervalle [1, w] r et le monoïde M ([1, w] r ). Définition. Soit w un élément dans G. On dit que w est un élément équilibré de G si [1, w] = [1, w] r . Nous avons le théorème suivant qui est dû à Michel (consulter la section 10 de [54] pour une preuve). Théorème. Si w ∈ G est un élément équilibré et si ([1, w], ) et ([1, w] r , r ) sont des treillis, alors (M ([1, w]), w) est un monoïde de Garside avec simples [1, w], où w et [1, w] sont donnés dans la définition d'un monoïde d'intervalle. La construction précédente donne lieu à une structure de Garside. Le monoïde d'intervalle est M ([1, w]). Quand M ([1, w]) est un monoïde de Garside, son groupe des fractions existe et est noté par G(M ([1, w])). On l'appelle le groupe d'intervalle. Nous donnons un exemple classique de cette structure qui montre que les groupes d'Artin-Tits admettent des structures d'intervalles. Exemple. Soit W un groupe fini de Coxeter et B(W ) le groupe d'Artin-Tits associé à W .W =< S | s 2 = 1, sts • • • mst = tst • • • mst pour s, t ∈ S, s = t, m st = o(st) >, B(W ) =< S | st s • • • mst = ts t • • • mst pour s, t ∈ S, s = t >.Prendre G = W et g = w 0 l'élément de plus grande longueur sur S dans W . On a [1, w 0 ] = W . Construisons le monoïde d'intervalle M ([1, w 0 ]). On a M ([1, w 0 ]) est le monoïde d'Artin-Tits B + (W ), où B + (W ) est le monoïde défini par la même présentation que B(W ). Donc, B + (W ) est engendré par une copie W de W avec f g = h si f g = h et ℓ(f ) + ℓ(g) = ℓ(h); f, g et h ∈ W . Il est aussi connu que w 0 est équilibré et que ([1, w 0 ], ) et ([1, w 0 ] r , r ) sont des treillis. Par le théorème précédent, il s'ensuit le résultat suivant. Proposition. (B + (W ), w 0 ) est un monoïde de Garside avec simples W , où w 0 et W sont donnés dans l'exemple précédent. Notre but est de construire des structures d'intervalles pour le groupe de tresses complexes B(e, e, n). Comme les structures de Garside d'intervalles reposent sur la définition d'une fonction qui décrit la longueur dans le groupe de réflexions complexes correspondant, nous allons utiliser la forme normale géodésique que nous avons déjà définie auparavant pour le groupe G(e, e, n) afin d'étudier les structures d'intervalles du groupe de tresses complexes B(e, e, n). Structures d'intervalles pour B(e, e, n) Il est prouvé par Bessis et Corran [4] en 2006 et par Corran et Picantin [26] en 2009 que B(e, e, n) admet des structures de Garside. Il est aussi prouvé dans [25] que B(de, e, n) admet des structures de quasi-Garside. Nous sommes intéressés dans la construction des structures de Garside de B(e, e, n) qui dérivent des intervalles dans le groupe de réflexions complexes G(e, e, n). La description d'une forme normale géodésique de G(e, e, n) nous permet de déterminer les éléments équilibrés de G(e, e, n) qui sont de longueur maximale et de déterminer aussi l'ensemble de leurs diviseurs. Soit λ la matrice diagonale de G(e, e, n) telle que λ[i, i] = ζ e pour 2 ≤ i ≤ n. Proposition. Les éléments équilibrés de G(e, e, n) de longueur maximale sont λ k pour 1 ≤ k ≤ e -1. Nous avons défini une technique combinatoire simple qui permet de reconnaître si un élément de G(e, e, n) est un diviseur de λ k ou pas en utilisant directement sa forme matricielle. Ceci nous permet de caractériser explicitement l'ensemble des diviseurs de λ k que nous avons noté par D k . Soient λ k un élément équilibré et [1, λ k ] l'intervalle des diviseurs de λ k dans le groupe de réflexions complexes. Nous avons prouvé dans Proposition 3.4.2 une propriété pour chaque intervalle [1, λ k ] qui est similaire à la propriété de Matsumoto pour un groupe de réflexions réels. Ensuite, nous avons prouvé que [1, λ k ] est un treillis pour la division à gauche et à droite (consulter Corollary 3.3.13 de cette dissertation). Par le théorème de Michel, nous obtenons alors le résultat suivant : Théorème. Nous avons que (M ([1, λ k ]), λ k ) est un monoïde de Garside d'intervalles avec simples D k où D k est l'ensemble des diviseurs de λ k . Son groupe des fractions existe et est noté par G(M ([1, λ k ])). De plus, nous avons prouvé que M ([1, λ k ]) est isomorphe au monoïde que nous avons noté par B ⊕k (e, e, n). Ce dernier est défini comme suit : Définition. Pour 1 ≤ k ≤ e -1, on définit le monoïde B ⊕k (e, e, n) par une présentation de monoïde avec • ensemble générateur :X = { t0 , t1 , • • • , te-1 , s3 , • • • , sn } et • relations :            si sj si = sj si sj pour |i -j| = 1, si sj = sj si pour |i -j| > 1, s3 ti s3 = ti s3 ti pour i ∈ Z/eZ, sj ti = ti sj pour i ∈ Z/eZ et 4 ≤ j ≤ n, ti ti-k = tj tj-k pour i, j ∈ Z/eZ.Notons que le monoïde B ⊕1 (e, e, n) est le monoïde B ⊕ (e, e, n) de Corran et Picantin, consulter[26]. Notons par B (k) (e, e, n) le groupe des fractions (qui existe par la structure de Garside) de B ⊕k (e, e, n). L'un des résultats importants obtenus est le suivant :Théorème. B (k) (e, e, n) est isomorphe à B(e, e, n) si et seulement si k ∧ e = 1.Quand k ∧ e = 1, chaque groupe B (k) (e, e, n) est décrit comme un produit amalgamé de k ∧ e copies du groupe de tresses complexes B(e ′ , e ′ , n) avec e ′ = e/e ∧ k, au-dessus du sous-groupe d'Artin-Tits B(2, 1, n -1).

  Garside et G(M ) son groupe des fractions. Notons par ∆ et P l'élément de Garside et l'ensemble des simples de M , respectivement. Définissons α(x) le pgcd de x et ∆ pour x ∈ M . Soit ρ : G(M ) -→ GL(V ) une représentation linéaire de dimension finie de G(M ) et soit (C x ) x∈P une famille de sous-ensembles de V indexée par l'ensemble des simples P . Si les C x sont non vides et deux à deux disjoints et si xC y ⊂ C α(xy) pour tout x ∈ M et y ∈ P , alors la représentation ρ est fidèle.

Définition. Soit W

 Soit un groupe de Coxeter de type A n , D n pour tout n, ou E n pour n = 6, 7, 8. L'algèbre de BMW associée àW est la Q(l, x)-algèbre unitaire d'ensemble générateur {S 1 , S 2 , • • • , S n } ∪ {F 1 , F 2 , • • • , F n } etles relations sont les relations de tresses avec les relations suivantes :

, 3 .

 3 et les relations sont les relations de l'algèbre de BMW de typeA n-1 pour {T i , S 3 , S 4 , • • • , S n } ∪ {E i , F 3 , • • • , F n } avec 0 ≤ i ≤ e -1 avecles relations de type diédral suivantes :1. T i = T i-1 T i-2 T -1 i-1 et E i = T i-1 E i-2 T -1 i-1 pour tout i ∈ Z/eZ, i = 0, 1, 2. T 1 T 0 • • • T 0 e = T 0 T 1 • • • T 1 e mE i = l(T 2

  Keywords: Reflection Groups, Braid Groups, Hecke Algebras, Geodesic Normal Forms, Garside Structures, Interval Garside Structures, Homology, BMR Freeness Conjecture, Brauer Algebras, BMW Algebras, Krammer's Representations. *** Structures d'Intervalles, Algèbres de Hecke et Représentations de Krammer des Groupes de Tresses Complexes B(e, e, n)

  -H 3 , F 4 , H 4 , E 6 , E 7 , and E 8 . Remark 1.1.8. Using the notations of the groups that appear in the classification of Shephard and Todd (see Proposition 1.1.3), we have: type

		1		s 2	s n
		s 1		s 2	s 3	s n
	-Type B n :				
		s 1			
	-Type D n :	s 2		s 3	s 4	s n
	-Type I 2 (e) (the dihedral group):	s 1	e	s 2	

  and Pfeiffer proved it for G 12 , G 22 , G 24 , G 27 , G 29 , G 31 , G 33 , and G 34 in

  • • • , and RE n (w) obtained at each step i from n to 2 of Algorithm 1.

	Example 2.1.13. If w is defined as in Example 2.1.6, we have
	RE(w) = t 0
	RE2(w)

  • • • , and RE n (w) obtained at each step i from n to 1 of Algorithm 2. Then we have RE(w) = RE 1 (w)RE 2 (w) • • • RE n (w).

	Example 2.2.8. If w is defined as in Example 2.2.5, we have
	RE(w) = z
	RE1(w)

  Let e > 1 and n ≥ 2. The maximal length of an element of G(e, e, n) is n(n -1). It is realized for diagonal matrices w such that w[i, i] is an e-th root of unity different from 1 for 2 ≤ i ≤ n. A minimal word representative of such an element is of the form

	-Picantin (see Definition 2.1.1), the second case
	is for G(de, e, n) with d > 1, e > 1, and n ≥ 2 defined by the presentation of Corran-
	Lee-Lee (see Definition 2.2.1), and the third case is for G(d, 1, n) with d > 1 defined
	by its classical presentation (see Proposition 4.1.2).
	Proposition 2.3.1.

  2.3.7. When d = 2, the group G(2, 1, n) is the Coxeter group of type B n . By Proposition 2.3.6, the longest element is of the form z(s 2 zs 2 )(s 3 s 2 zs 2 s 3) • • • (s n • • • s 2 zs 2 • • • s n ).
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  n = 4, we get [s 4 , ti ] + [s 4 , ti+k ] ≡ [s 4 , tk ] + [s 4 , t0 ] for every i and since 2[s 4 , ti ] ≡ 0 for every i, we get K 2 /d 3 (C 2 ) ≃ (Z/2Z) c , where c is the number of [s 4 , tj ] that appear in the solution of the congruence relations [s 4 , ti ] + [s 4 , ti+k ] ≡ [s 4 , tk ] + [s 4 , t0 ] and 2[s 4, ti ] ≡ 0 in Z/eZ. We summarize our proof by providing the second integral homology group of B (k) (e, e, n) in the following proposition.

  we distinguish 3 different cases for a n that belongs to Λ n . This is done in Lemmas 4.2.8, 4.2.9, and 4.2.10 below. If a n-1 = s n-1 • • • s 3 t k for 0 ≤ k ≤ e-1, we also distinguish 3 different cases for a n ∈ Λ n . This is done in Lemmas 4.2.11, 4.2.12, and 4.2.13. Finally, if a n-1

  s 2 zs 2 2 zs 2 . We apply a quadratic relation and get as 2 zs 2 zs 2 + s 2 z 2 s 2 . Applying a braid relation, one gets azs 2 zs 2

2 + s 2 z 2 s 2 . Using a quadratic relation, this is equal to a 2 zs 2 zs 2 + zs 2 z k-1

  We replace s 2 z k s 2 by its decomposition given in Lemma 4.3.4. Then by the results of Lemmas 4.3.3 and 4.3.2, we deduce that s 2 z k s 2 z k ′ s 2 belongs to Span(Λ 1 Λ 2 ). Let n ≥ 3. Denote by S * n-1 the set of the words over {z, s 2 , s 3 , • • • , s n-1 }. The rest of this section is devoted to the proof of Lemmas 4.3.6 to 4.3.15. Proof. We follow exactly the proof of Lemma 4.2.11 and we get the following terms. If i = 2, we get s n-1 • • • s 2 s n • • • s 2 z k s 2 (see line 8 of the proof of Lemma 4.2.11) which belongs to Span(Λ n-1 Λ n ). If i > 2, we get s n-1 • • • s i-1 s n • • • s 2 z k (see the last line of the proof of Lemma 4.2.11) which also belongs to Span

	In order to prove Theorem 4.3.1, we introduce Lemmas 4.3.6 to 4.3.15 below that
	are similar to Lemmas 4.2.7 to 4.2.16. Along with Proposition 4.3.5, they provide
	an inductive proof of Theorem 4.3.1 that is similar to the proof of Theorem 4.2.1.
	Therefore, by Proposition 2.3 (ii) of [51], we get another proof of Theorem 1.3.5 for
	the complex reflection groups G(d, 1, n).

  ,3;0 t k t 0 . Since t k t 0 s 2,3;k t 0 t k is equal to s 2,3;0 , by Relation 4 of Definition 5.3.3, we have t k t 0 e 2,3;k = e 2,3;0 t k t 0 , that is e 2,3;k = t 0 t k e 2,3;0 t k t 0 . Hence ψ • φ(e 2,3;k ) is equal to e 2,3;k .For the second case, we have ψ• φ(e 1,3;k ) = ψ(T k F 3 T k ) = t k e 2,3;0 t k . Since s 1,3;k = t k s 2,3;0 t k ,by Relation 4 of Definition 5.3.3, we have t k e 2,3;0 t k = e 1,3;k . Hence ψ • φ(e 1,3;k ) is equal to e 1,3;k .

  G(1, 1, n) est irréductible sur C n-1 et le groupe G(2, 2, 2) n'est pas irréductible donc il est exclu de la classification de Shephard et Todd. Soit s i la matrice de la transposition (

  Considérons maintenant W un groupe de réflexions réels. Par un théorème de Coxeter, il est connu que tout groupe fini de réflexions réel est isomorphe à un groupe de Coxeter. La définition des groupes de Coxeter par une présentation par générateurs et relations est la suivante.Définition. Supposons que W est un groupe et que S est un sous-ensemble de W . Pour s et t dans S, soit m st égal à l'ordre de st dans W si cet ordre est fini et égal à ∞ sinon. On dit que (W, S) est un système de Coxeter et que W est un groupe de Coxeter si W admet la présentation avec ensemble générateur égal à S et relations :• relations quadratiques: s 2 = 1 pour tout s ∈ S et • relations de tresses: sts • • • ∈ S, s = t et m st = ∞.La présentation d'un groupe de Coxeter peut être décrite par un diagramme où les noeuds sont les générateurs de la présentation qui appartiennent à S et les arêtes décrivent les relations entre ces générateurs. Nous suivons les conventions standard des diagrammes de Coxeter. La classification des groupes de Coxeter finis irréductibles comporte :-Type A n (le groupe symétrique S n+1 ):-H 3 , F 4 , H 4 , E 6 , E 7 et E 8 .Remarque. En utilisant la notation des groupes qui apparaissent dans la classification de Shephard et Todd, nous avons : typeA n-1 est G(1, 1, n), type B n est G(2, 1, n), type D n est G(2, 2, n) et type I 2 (e)est G(e, e, 2). Pour les groupes exceptionnels, on a H 3 = G 23 , F 4 = G 28 , H 4 = G 30 , E 6 = G 35 , E 7 = G 36 et E 8 = G 37 .

		s 1		s 2	s n
		s 1		s 2	s 3	s n
	-Type B n :				
		s 1			
	-Type D n :	s 2		s 3	s 4	s n
	-Type I 2 (e) (le groupe diédral):	s 1	e	s 2	
	= tst • • •				
	mst				

• Le groupe G(e, e, n) est engendré par les réflexions t e , s 1 ,

s 2 , • • • , s n-1 . • Le groupe G(d, 1, n) est engendré par les réflexions u d , s 1 , s 2 , • • • , s n-1 . • Pour d = 1 et e = 1,

le groupe G(de, e, n) est engendré par les réflexions u d , t de , s 1 , s 2 , • • • , s n-1 . mst pour s, t

  Marin a prouvé la conjecture pour G 4 , G 25 , G 26 et G 32 dans [48] et [50]. Marin et Pfeiffer l'ont prouvé pour G 12 , G 22 , G 24 , G 27 , G 29 , G 31 , G 33 et G 34 dans[START_REF] Marin | The BMR freeness conjecture for the 2-reflection groups[END_REF]. Dans sa thèse de doctorat et dans l'article qui a suivi (cf.[START_REF] Chavli | The BMR freeness conjecture for exceptional groups of rank 2[END_REF] et[START_REF] Chavli | The BMR freeness conjecture for the tetrahedral and octahedral family[END_REF]), Chavli a pouvé la validité de cette conjecture pour G 5 , G 6 , • • • , G 16 . Récemment, Marin a prouvé la conjecture pour G 20 and G 21 (cf. [51]) et finalement Tsushioka pour G 17 , G 18 et G 19 (cf. [64]). Il s'ensuit alors le théorème suivant : Théorème. L'algèbre de Hecke H(W ) est un R-module libre de rang |W |. La raison pour laquelle nous rappelons la conjecture de liberté de BMR est que nous en donnons dans cette thèse une nouvelle preuve dans le cas des séries infinies des groupes de réflexions complexes de type G(e, e, n) et G(d, 1, n).

  Pour éviter les confusions, nous utilisons des lettres en gras pour désigner les générateurs de la présentation et des lettres normales pour désigner les matrices correspondantes. Notons par X l'ensemble{t 0 , t 1 , • • • , t e-1 , s 3 , • • • , s n }.Cette présentation est décrite par le diagramme suivant où le cercle pointillé décrit la relation 1 dans la définition de la présentation. Les autres arêtes suivent les conventions standard des diagrammes des groupes de Coxeter. Soit w n := w ∈ G(e, e, n). Pour i allant de n jusqu'à 2, l'étape i de l'algorithme ≤ n, il existe un unique c avec 1 ≤ c ≤ n tel que w i [i, c] = 0. À chaque étape de l'algorithme, si w i [i, c] = 1, on décale le 1 jusqu'à la position diagonale [i, i] par une mutiplication à droite par des matrices de transpositions. Si w i [i, c] = 1, on décale cette racine de l'unité à la première colonne par une multiplication à droite par des transpositions, puis on la transforme en 1 par une multiplication par un élément de {t 0 , t 1 , • • • , t e-1 }. Enfin, on décale le 1 obtenu en position [i, 2] à la position diagonale [i, i] grâce à une multiplication à droite par des matrices de transpositions du groupe symétrique S n . Nous avons le lemme suivant :

	transforme la matrice diagonale par blocs	w i 0 I n-i 0	en une matrice diagonale
	par blocs de la forme	w i-1 0	0 I n-i+1	∈ G(e, e, n) avec w 1 = 1. En effet, pour
	2 ≤ i			

Lemme. Pour 2 ≤ i ≤ n, supposons que w i [i, c] = 0. Le bloc w i-1 est obtenu • en enlevant la ligne i et la colonne c de w i et puis • en multipliant la première colonne de la nouvelle matrice par w i [i, c].

  1 de la définition précédente devient S 2 i = 1. Ainsi, on a S -1 i = S i . Par la proposition précédente, nous avons toujours la relation F 2 i = xF i dans l'algèbre de Brauer. Définition. Soit W un groupe de Coxeter de type A n , D n pour tout n, ou E n pour n = 6, 7, 8. L'algèbre de Brauer associée à W est la Q(x)-algèbre unitaire d'ensemble générateur {S 1 , S 2 , • • • , S n } ∪ {F 1 , F 2 , • • • , F n } et les relations sont les relations de tresses avec les relations suivantes :

. We denote

Lorsque la langue de rédaction de la dissertation est l'anglais, l'Université de Caen Normandie nous demande d'inclure un compte-rendu de la thèse rédigé en français.

Appendix B Implementation for Krammer's representations

Compte-rendu Bibliography azs 2 z + s 2 z 2 s 2 , where each term is of the form λ 1 λ 2 with λ 1 ∈ Λ 1 and λ 2 ∈ {1, s 2 , s 2 z, s 2 zs 2 , s 2 z 2 s 2 }.

Let k ≥ 3. Suppose the property is satisfied for (s 2 zs 2 ) 3 , • • • , and (s 2 zs 2 ) k-1 . We have (s 2 zs 2 ) k = (s 2 zs 2 ) k-1 (s 2 zs 2 ). By the induction hypothesis, the terms that appear in the decomposition of (s 2 zs 2 ) k-1 are of the following forms.

• z c with 0 ≤ c ≤ d -1,

Multiplying these terms by s 2 zs 2 on the right, we get the following 3 cases.

Case 1 : A term of the form z c s 2 zs 2 with 0 ≤ c ≤ d -1. It is of the form λ 1 λ 2 with λ 1 ∈ Λ 1 and λ 2 ∈ Λ ′ 2 . Case 2 : A term of the form z c s 2 z c ′ s 2 zs 2 with 0 ≤ c ≤ d -1 and 0 ≤ c ′ ≤ k -2. We shift z c ′ to the right by applying braid relations and get z c s 2 2 zs 2 z c ′ . Applying a quadratic relation, this is equal to az c s 2 zs 2 z c ′ + z c+1 s 2 z c ′ . Now we shift z c ′ to the left by applying braid relations and get az c+c ′ s 2 zs 2 + z c+1 s 2 z c ′ . Each term is of the form λ 1 λ 2 with λ 1 ∈ Λ 1 and λ 2 ∈ Λ ′ 2 . Case 3 : A term of the form z c s 2 z c ′ s 2 2 zs 2 with 0 ≤ c ≤ d -1 and 1 ≤ c ′ ≤ k -1. By applying a quadratic relation, we have z c s 2 z c ′ s 2 2 zs 2 = az c s 2 z c ′ s 2 zs 2 +z c s 2 z c ′ +1 s 2 . The first term is the same as in the previous case. Then both terms are of the form λ 1 λ 2 with λ 1 ∈ Λ 1 and λ 2 ∈ Λ ′ 2 .

Lemma 4.3.3. For 1 ≤ k ≤ d -1, the element (s 2 zs 2 ) k s 2 belongs to R 0 (s 2 zs 2 ) k + R 0 z(s 2 zs 2 ) k-1 + • • • + R 0 z k-1 (s 2 zs 2 ) + R 0 s 2 z k .

Proof. For k = 1, we have (s 2 zs 2 )s 2 = s 2 zs 2 2 = as 2 zs 2 + s 2 z. Then the property is satisfied for k = 1. Let k ≥ 2. Suppose that the property is satisfied for (s 2 zs 2 ) k-1 . We have (s 2 zs 2 ) k s 2 = (s 2 zs 2 )(s 2 zs 2 ) k-1 s 2 . By the induction hypothesis, it belongs to R 0 (s 2 zs 2 )(s 2 zs 2 ) k-1 + R 0 (s 2 zs 2 )z(s 2 zs 2 ) k-2 + • • • + R 0 (s 2 zs 2 )z k-2 (s 2 zs 2 ) + R 0 (s 2 zs 2 )s 2 z k-1 . Then it belongs to R 0 (s 2 zs 2 ) k +R 0 z(s 2 zs 2 ) k-1 +• • •+R 0 z k-2 (s 2 zs 2 ) 2 +R 0 z k-1 (s 2 zs 2 )+R 0 s 2 z k . It follows that for all 1 ≤ k ≤ d-1, the element (s 2 zs 2 ) k s 2 belongs to R 0 (s

where Suppose the property is satisfied for s 2 z k-1 s 2 . We have

2 by s 2a. For the second term, we shift z k-1 to the right and get s 2 2 zs 2 z k-1 . We apply a quadratic relation to get as 2 zs 2 z k-1 + zs 2 z k-1 then we shift z k-1 to the left and finally get az k-1 s 2 zs 2 + Lemma 4.3.6. Let 2 ≤ i ≤ n. We have

The proof is the same as the proof of Lemma 4.2.7. If i = 2, we have that

We continue as in the proof of Lemma 4.2.7, we get two terms of the form (see line 7 of the proof of Lemma 4.2.7):

Proof. The proof is the same as for Lemma 4.2.8.

Proof. This case correspond to the case i ′ = 2 in the proof of Lemma 4.3.7 with a right multiplication by z k for 0 ≤ k ≤ d-1. Since i ≥ 2, by the case i ≥ i ′ in the proof of Lemma 4.3.7, we get, using the same technique as in the proof of Lemma 4.2.9, that

Proof. The proof is exactly the same as the proof of Lemma 4.2.10. According to the computation in the proof of Lemma 4.3.8, we have

The first term is an element of Span(Λ n-1 Λ n ). For the second term, we follow exactly the proof (starting from line 3) of Lemma 4.2.10 :

For the second term, we have

Proof. We follow exactly the proof of Lemma 4.2.14. 

According to the computations in the proof of the previous lemma, we have

If we replace (s 2 z k s 2 )z l by its decomposition over Λ 1 Λ 2 (this is the case n = 2 of Theorem 4.3.1, see Proposition 4.3.5), we get terms of the three following forms:

The first term is equal to s

This is done in the first case of the proof of Lemma 4.3.12. Hence we get

According to the proof of the previous lemma, we have to prove that the following three terms belong to Span(S * n-1 Λ n ):

The first case is similar to Case 4 in the proof of Lemma 4.2.16.

For the second term, if c ′ = 0, it belongs to Span(S * n-1 Λ n ) and if c ′ = 0, by the computation in the proof of Lemma 4.3.6, it also belongs to Span(S * n-1 Λ n ). For the third term, we apply the same technique as in Case 2 of the proof of Lemma 4.2.16. We get that

Remark 4.3.16. We remark that for every d and n at least equal to 2, our basis never coincides with the Ariki-Koike basis as illustrated by the following example. Consider the element s 2 zs 2 2 = s 2 zs 2 .s 2 which belongs to the Ariki-Koike basis. In our basis, it is equal to the linear combination as 2 zs 2 + s 2 z, where s 2 zs 2 and s 2 z are two distinct elements of our basis. a given specialization of the parameters (µ = 2 and λ = 3 as in Appendix B) is equal to 144.

The matrix A is equal to [ 1 λ 2 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] [ (µ 4 -1) µ 4 , 0, 1 µ 2 , 0, 0, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]

, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] [ (-µ 16 +4µ 12 -5µ 8 +3µ 4 -1)

, 0, 0, 0, (µ 4 -1) µλ , 0, 0, 0,

, 0, 0, 1, 0, 0, 0, 0, 0, 0, (-µ 4 +1)

, 0] [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, (-µ 4 +1)

].

The matrix B is equal to [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] [1, 0, (-µ 4 +1)

, 0, 0, 0, 0, 0, 0, 0, 0, 0] [0, 1, 0, (-µ 4 +1)

, 0, 0, (µ 4 -1) µ 6 , 0, 0, 0, 0, 0]

µ 2 , (µ 4 -1) µ 2 , 0, 0, 1, (µ 4 -1) (µ 5 λ) , 0, 0, 0, 0, 0] [ (-µ 12 +2µ 8 -2µ 4 +1)

, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 1 λ 2 , 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, (µ 4 -1)(µ 5 λ+µ 4 -1)

, 0, 1, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 1, (-µ 4 +1) µ 2 , 0, 0, 0] [0, 0, 0, 0, 0, 0, (µ 4 -1) (µ 7 λ) , 0, 0, 0, 1, 0] [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, (-µ 4 +1)

The matrix C is equal to

(µ 4 -µλ-1) , 0, 0, 0, 0, 0, 0] [0, 1 λ 2 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] [0, µ 8 λ-µ 7 -2µ 4 λ+µ 3 +λ

, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] [0, µ 2 (µ 4 -1)

, 0, 0, 0, µ 8 -2µ 4 +1 µ 8 (µ 4 -µλ-1) , 0, 0,

, 0, 0, 0, 0, 0]

, 0, 0, 0, 0, 0]

, C 8,2 = (µ-1)(µ+1)(µ 2 +1)(µ 12 λ+µ 11 -2µ 9 λ 2 -3µ 8 λ-µ 6 λ 3 -2µ 7 +3µ 5 λ 2 +3µ 4 λ+µ 2 λ 3 +µ 3 -2µλ 2 -λ)

.

Recall that Chen studied the BMW algebras for the dihedral groups in [START_REF] Chen | Type Algebras for Arbitrary Coxeter Systems[END_REF] and was able to construct irreducible representations for the Artin-Tits groups associated to the dihedral groups. He also conjectured that these representations are isomorphic to the monodromy representations. Each of our explicit representations ρ 3 and ρ 4 is constructed via the corresponding BMW algebra. We proved that these representations are absolutely irreducible and have dimension the number of reflections of the complex refection group. We also studied the restriction of ρ 3 to parabolic subgroups. All these properties are satisfied for the generalized Krammer's representations. That's why we think that ρ 3 and ρ 4 are good candidates to be called the Krammer's representations for B(3, 3, 3) and B(4, 4, 3), respectively. We also think that each of these representations is isomorphic to the monodromy representation constructed by Marin in [START_REF] Marin | Krammer representations for complex braid groups[END_REF], where he conjectured that the monodromy representation is faithful, see Conjecture 6.3 in [START_REF] Marin | Krammer representations for complex braid groups[END_REF]. This enables us to propose the following conjecture about the explicit Krammer's representations ρ 3 and ρ 4 .

Conjecture 5.4.1. The Krammer's representations ρ 3 and ρ 4 are faithful.

Our method uses the computation of a Gröbner basis from the list of polynomials that describe the relations of the algebra BMW(e, e, n). It it is not possible to make these heavy computations for e ≥ 5 when n = 3. However, we try to compute the dimension of the BMW algebra over a finite field. We were able to compute the dimension of BMW(5, 5, 3) and BMW(6, 6, 3) over a finite field for many specializations for m and l, see Appendix B for the implementation. The computations for BMW(6, 6, 3) took 40 days on the platform MATRICS of Université de Picardie Jules Verne ( [START_REF]Plateforme MATRICS[END_REF]). For all the different specializations, we get that the dimension of BMW(5, 5, 3) is equal to 1275 and the dimension of BMW(6, 6, 3) is equal to 1188. Recall that we get 297 for BMW (3,3,3) and 384 for BMW (4,4,3). We remark that for e = 3 or e = 5, we get that the dimension of BMW(e, e, 3) is equal to #(G(e, e, 3)) + e × (#R) 2 , where R is the set of reflections of G(e, e, 3). Also, we remark that for e = 4 and e = 6, we get that the dimension of BMW(e, e, 3) is equal to #(G(e, e, 3))+ e 2 ×(#R) 2 .

Based on the previous experimentations, we conclude this section by proposing the following conjecture.

Conjecture 5.4.2. Let K = Q(m, l) and let H(e, e, 3) be the Hecke algebra associated to G(e, e, 3) over K. Let N be the number of reflections of the complex reflection group G(e, e, 3).

Over K, the algebra BMW(e, e, 3) is semi-simple, isomorphic to H(e, e, 3) ⊕ (M N (K))

e if e is odd, H(e, e, 3)

if e is even, where M N (K) is the matrix algebra over K of dimension N 2 . In particular, the algebra BMW(e, e, 3) has dimension #(G(e, e, 3)) + e × N 2 if e is odd, #(G(e, e, 3)) + e 2 × N 2 if e is even.

Appendix A

Monoid and homology implementations

We start by explaining the way to implement the Garside monoids B ⊕k (e, e, n) into GAP by using the package CHEVIE ([55]) of GAP3. We provide the implementation of these monoids by defining the function CorranPicantinMonoid that can be found in [START_REF] Michel | Contribution to the Chevie package[END_REF].

Recall that for 1 ≤ k ≤ e -1, the monoid B ⊕k (e, e, n) is defined by the following presentation.

• Generating set:

• Relations: In order to construct these Garside monoids, we create a record M containing some specific operations for the monoid B ⊕k (e, e, n) and then call CompleteGarsideRecord(M). Since we are dealing with interval monoids, we provide a second argument rec(interval:=true) to CompleteGarsideRecord. We name the function CorranPicantinMonoid. It takes three arguments: e, n, and k and defines the monoid B ⊕k (e, e, n). Note that the simples of the interval structure of B ⊕k (e, e, n) are defined as elements of the complex reflection group G(e, e, n).

First, we define the list M.atoms of the atoms of B ⊕k (e, e, n). It consists of t 0 , t 1 , • • • , t e-1 , s 3 , • • • , s n that are elements of G(e, e, n). Next, we define the operation M.IsLeftDescending(s, i) that tells whether M.atoms[i] divides the simple s on the left. To do this, we use the matrix form of the elements of G(e, e, n) and apply Proposition 2.1.17. Since the atoms satisfy (M.atoms[i]) 2 = 1, we automatically have the operation M.IsRightDescending(s, i) that tells whether M.atoms[i] divides the simple s on the right. Moreover, we define the operation M.IsRightAscending(s, i) that tells whether the product of the simple s by the atom M.atoms[i] is still simple. This is simply done by calling the function M.IsLeftDescending(s -1 M.delta,i) where M.delta is the Garside element λ k ∈ G(e, e, n). Other operations should also be defined like M.identity that is the identity element of the monoid and M.stringDelta that defines how the Garside element should be printed in normal forms.

Finally, we define the Reverse operation for the simples. Since B ⊕k (e, e, n) is an interval monoid, if (M.delta) 2 =M.identity, the Reverse operation is just the function x → x -1 and is then automatically defined. This is the case when e = 2k. In the other cases, the function x → x -1 sends CorranPicantinMonoid(e, n, k) into CorranPicantinMonoid(e, n, ek). Thus, we equip M with a field M.revMonoid containing this monoid. The implementation is as follows. Now, we provide an application of this implementation in order to compute the second integral homology group of B (k) (e, e, n), the group of fractions of the monoid B ⊕k (e, e, n), see Proposition 3.4.14. One needs to implement the differential d r after defining the two Z-module homomorphisms s r and u r , see Definition 3.4.12. This is a general procedure when we compute the homology groups of Garside structures using the Dehornoy-Lafont complexes. On his webpage [START_REF] Marin | Homological computations for complex braid groups[END_REF], Marin published the implementation (into GAP3) that he used in his paper [START_REF] Marin | Homology computations for complex braid groups II[END_REF] for the homology computations for some complex braid groups. We use the same file with some changes in order to be compatible with the new distribution of the package CHEVIE of GAP3 and the implementation of the monoid B ⊕k (e, e, n). The implementation (with comments) is given at the end of this Appendix. This allows us to compute the matrices of the differentials d 2 and d 3 . We denote these matrices by M2 and M3, respectively.

In order to compute the second integral homology group, one can use the package HAP of GAP4, see [START_REF] Marin | Homological computations for complex braid groups[END_REF] for the implementation. We simply use SAGE to compute the second integral homology group of B (k) (e, e, n). For example, if M := CorranPicantinMonoid(e, n, k) for some parameters e, n, and k, we get two matrices M2 and M3 from GAP3. Using SAGE, we put the following commands in order to get the second integral homology group. 

Implementation for Krammer's representations

In this appendix, we provide the implementation of the BMW algebra for types (3, 3, 3), (4, 4, 3), [START_REF] Bessis | Explicit presentations for exceptional braid groups[END_REF][START_REF] Bessis | Explicit presentations for exceptional braid groups[END_REF]3), and (6, 6, 3) using the GBNP package of GAP4, see [START_REF] Cohen | GBNP package version 1.0.3[END_REF]. We also provide the method used in order to construct Krammer's representations for the complex braid groups B(3, 3, 3) and B(4, 4, 3). For the computations, we use the platform MATRICS of Université de Picardie Jules Verne, see [START_REF]Plateforme MATRICS[END_REF].

Recall that the BMW algebra is defined by a presentation with generators and relations, see Definitions 5.2.1 and 5.2.2. First, we load the package GBNP and set the standard infolevel InfoGBNP and the time infolevel InfoGBNPTime. The variables are t 0 , t 1 , s 3 , e 0 , e 1 , and f 3 , in this order. In order to have the results printed out with these symbols, we invoke GBNP.ConfigPrint. Next, we enter the relations of the BMW algebra. This is done in NP (non-commutative polynomial) form. The inderminates m and l in the coefficient ring of the BMW algebra are specialized (over Q or a finite field) in order to make the computations possible. We print the relations using PrintNPList. Next, we compute a Gröbner basis of the set of relations using the function Grobner and then calculate a basis of the quotient algebra with BaseQA. This is done for types (3,3,3), (4,4,3), [START_REF] Bessis | Explicit presentations for exceptional braid groups[END_REF][START_REF] Bessis | Explicit presentations for exceptional braid groups[END_REF]3), and (6, 6, 3) below. For types (3,3,3) and (4, 4, 3), we define the right and left multiplication of the corresponding matrix algebra and apply the method explained in Section 5.4 of Chapter 5 in order to get the Krammer's representations over Q for B(3, 3, 3) and B(4, 4, 3) for a certain specialization over Q of m and l. This is given in KrammerRep of the following codes.