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Introduction

The error estimates control the difference between the exact solution of some partial
differential equation and its approximation. Usually they have the following form

‖u− uh‖ ≤ C(h, . . .),

where u is the exact solution of the problem, uh is a computed approximate solution,
h is an approximation parameter and C(h, . . .) is some function of h and other quan-
tities. In a priori error estimates, the right-hand side depends on the exact solution u.
This is not very useful in practice since generally we don’t know the exact solution.
Conversely, a posteriori error estimates depend on known quantities only, i.e. on the
computed solution and thus they can be evaluated in practice.

A posteriori error analysis of finite element approximations for partial differential
equations plays an important role in mesh adaptivity techniques. The cases of ellip-
tic and parabolic problems are well studied in the literature [EJ91; LMP14; LPP09].
On the contrary, the a posteriori error analysis for hyperbolic equations of second or-
der in time is much less developed. Some a posteriori bounds are proposed in [BS05;
GLM13] for the wave equation using the Euler discretization in time, which is how-
ever known to be too diffusive and thus rarely used for the wave equation. More
popular schemes, i.e. the leap-frog and cosine methods, are studied in [Geo+16] but
only the error caused by discretization in time is considered. On the other hand, er-
ror estimators for the space discretization only are proposed in [Pic10; Adj02]. Goal-
oriented error estimation and adaptivity for the wave equation were developed in
[BGR10; BR01; BR99].

Thesis contribution

The aim of the thesis is to develop a posteriori error analysis in time and space in
energy norm for the wave equation discretized with the Newmark scheme in time
and with finite elements in space. We present the a posteriori error bounds and a
corresponding adaptive algorithm in time and in space. The theoretical analysis is
validated by various numerical experiments.

Scope of the thesis

In the first chapter we introduce the settings for a posteriori error estimates and give
a brief overview of the so-called residual type a posteriori error estimators for ellip-
tic, parabolic and hyperbolic problems. The main purpose here is to highlight the
relevance of the derivation of the a posteriori error bounds for the wave equation dis-
cretized by the second order scheme in time. We start from the space error bounds
and remind the classical results of a posteriori error analysis for finite element dis-
cretization on isotropic meshes on the example of Laplace problem. We also present
the technique for anisotropic finite element developed in [Pic03], which is in turn
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based on the anisotropic interpolation estimates developed in [FP01; FP03]. We turn
then to the a posteriori error bound in time for the heat equation discretized in time
with Crank-Nicolson method from [LPP09], that is constructed using continuous,
piecewise quadratic polynomial reconstruction in time and some properties of the
Crank-Nicolson scheme. The rest of the chapter is dedicated to a posteriori error esti-
mates for the wave equation available in the literature. We start from the a posteriori
error bound for the wave equation discretized with the Euler method in time [BS05].
For the sake of brevity, we explain the technique of deriving the time a posteriori
bound on the example of ordinary differential equation of second order. The basic
technical tool is the piecewise linear in time reconstruction of the discrete solution
which leads to the first order in time error bound. We also derive two new alterna-
tive error estimators that are sharper then Bernardi-Süli estimator. Next we describe
the approach for deriving the a posteriori error estimates for general cosine-type sec-
ond order methods controlling the time discretization error from [Geo+16]. The es-
timator is based on the rewriting the scheme as the one-step system as in [BS05] and
on the appropriate time reconstruction adapted from [AMN06]. Finally, we present
the anisotropic estimator proposed in [Pic10] for the error due only to the the finite
element discretization of the wave equation.

The aim of the second chapter is to obtain the a posteriori error bounds of opti-
mal order in time and space for the linear second-order wave equation discretized
by the Newmark scheme in time and by the finite elements in space. The main re-
sults of this chapter were announced in [GLP17b]. Error estimate is derived in the
L∞-in-time/energy in space norm. We set the parameters in the Newmark scheme
β = 1/4, γ = 1/2 [BW76], since it provides a conservative method with respect to the
energy norm. Another interesting feature of this variant of the method, which is in
fact essential for our analysis, is the fact that the method can be reinterpreted as the
Crank-Nicolson discretization of the reformulation of the governing equation in the
first-order system, as in [Bak76]. Therefore we use the techniques stemming from
a posteriori error analysis for the Crank-Nicolson discretization of the heat equation
in [LPP09], based on a piecewise quadratic polynomial in time reconstruction of the
numerical solution. The proposed strategy leads to a posteriori error estimate in time
and also allows us to easily recover the estimates in space. The resulting estimates
are referred to as the 3-point estimator since our quadratic reconstruction is drawn
through the values of the discrete solution at 3 points in time. The reliability of the
3-point estimator is proved theoretically for general regular meshes in space and
non-uniform meshes in time. It is also illustrated by numerical experiments. We
discuss through this part also the question of optimality for our error estimate. Al-
though we do not have a lower bound for our error estimators, we prove that the
error indicator in time provides the estimate of second order at least on sufficiently
smooth solutions and on uniform meshes. This result is obtained under a particular
discretization of the initial conditions and the right-hand side function. This is val-
idated by numerical experiments. Finally, we give the anisotropic a posteriori error
estimate based on the technique from [FP01; FP03].

In the third chapter we propose a cheaper version of the 3-point a posteriori error
estimator. This is achieved by replacing the second derivatives in space (Laplacian
of the discrete solution) in the 3-point error estimate with the fourth derivatives
in time. We call the resulting estimate the 5-point estimator since it contains the
fourth order finite differences in time and thus involves the discrete solution at 5
points in time at each time step. The main results of this chapter were announced
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in [GLP17a]. The new estimator preserves all the properties of the previous one
(reliability, optimality on smooth solutions and quasi-uniform meshes) but no longer
requires an extra computation of the Laplacian of the discrete solution on each time
step. We perform some numerical tests that show the equivalence between the 3-
point error estimator and the 5-point error estimator.

Chapter 4 is dedicated to the a posteriori error analysis in time for general second
order Newmark scheme (γ = 1/2) in the case of second order ordinary differential
equation. This is done by extending the approach for the 3-point error estimator
from Chapter 2. Numerical experiments confirm similarity between convergence
rate of the time error estimator and that of the true error. We consider explicit (β = 0)
and implicit (β = 1/4) second order Newmark scheme. We also present numerical
comparison between our time error estimator and the staggered grids time error
estimator from [Geo+16] for the case of a constant time step.

Our goal in Chapter 5 is to apply the a posteriori analysis presented in Chapter 2
to mesh adaptivity in time and space. Numerical studies are reported for several test
cases and show that the manner of interpolation of the numerical solution from mesh
to mesh plays an important role for optimal behavior of the time error estimator and
thus for the whole adaptation algorithm.

Finally, Chapter 6 is dedicated to PANLIM research project realized during CEM-
RACS 2016 project. We investigate the feasibility of applying the Parareal algorithm
[Lio01; MT05] for quasi-static nonlinear structural analysis problems. We describe
how this proposal has been realized and present some preliminary numerical re-
sults of applying this algorithm to a beam undergoing nonlinear deflection with a
contact boundary condition. Further numerical experiments are needed to provide
an evidence for the efficiency of the method.
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Chapter 1

State of the art

We present in this chapter the main results in a posteriori error analysis for elliptic,
parabolic and hyperbolic problems. We focus on residual type a posteriori error es-
timators. The purpose of this chapter is to motivate the derivation of a posteriori
error bounds for the wave equation discretized by a second order scheme in time.
Since high aspect ratio finite elements reduce the number of degrees of freedom,
anisotropic a posteriori error estimates have received much more attention and thus
we present the technique for anisotropic finite element developed in [Pic03], which
is in turn based on the anisotropic interpolation estimates developed in [FP01; FP03].
This chapter is organized into three sections.

The first part introduces some notations and preliminary results that we will
use all along the thesis. Then we give a brief summary of a posteriori error analysis
for finite element method discretization on isotropic and anisotropic meshes on the
example of Laplace problem. We recall the classical result of the residual type a
posteriori error estimator for Laplace equation in the case of isotropic finite elements
and briefly explain the approach to anisotropic finite elements from [Pic03].

The second part of this chapter is devoted to residual-based a posteriori error
analysis for the heat equation discretized in time with Crank-Nicolson method and
with continuous, piecewise linear finite elements in space [LPP09]. The a posteriori
error bound in time is constructed using continuous, piecewise quadratic polyno-
mial reconstruction in time and some properties of Crank-Nicolson scheme. The
anisotropic space error estimator is derived using the same approach as in Laplace
problem.

The third section of this chapter presents a review of a posteriori error estimates
for the wave equation available in the literature. We start from the pioneering result
for the wave equation using the Euler discretization in time [BS05]. For the sake of
simplicity we explain the technique of deriving the time a posteriori bound on the
example of ordinary differential equation of second order. The basic technical tool
is the piecewise linear in time reconstruction of the discrete solution which leads to
the optimal first order in time error bound. Then we present analogous estimate
of the global error for fully discretized wave equation with standard residual-based
local space estimator in space. Next we turn to a posteriori error estimates for gen-
eral cosine-type second order methods controlling the time discretization error from
[Geo+16]. The approach is based on the scheme as the one-step system as in [BS05]
and uses an appropriate time reconstruction adapted from [AMN06]. Finally, we
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present the anisotropic error estimator for the wave equation for the space discretiza-
tion only, proposed in [Pic10].

Chapter contents
1.0.1 Preliminary results and notations . . . . . . . . . . . . . . . . 5
1.0.2 Anisotropic finite elements . . . . . . . . . . . . . . . . . . . 6

1.1 The Laplace equation . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.1 Isotropic a posteriori error estimate . . . . . . . . . . . . . . . 9
1.1.2 Anisotropic a posteriori error estimate . . . . . . . . . . . . . 12
1.1.3 Zienkiewicz-Zhu recovery . . . . . . . . . . . . . . . . . . . . 13

1.2 The heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.1 A posteriori error estimate for a first order ordinary differen-

tial equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 A posteriori error estimates in space and time . . . . . . . . . 16

1.3 The wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.1 Time adaptivity for the wave equation discretized by the

backward Euler scheme . . . . . . . . . . . . . . . . . . . . . 22
1.3.2 A posteriori error estimates for the leap-frog method . . . . . 34
1.3.3 A posteriori error estimator for the finite element discretiza-

tion of the wave equation . . . . . . . . . . . . . . . . . . . . 36

1.0.1 Preliminary results and notations

Given a polygonal domain Ω ⊂ R2, for any 0 ≤ h ≤ 1, let Th be a conforming
triangulation of Ω into triangles K with diameter hK less than h. Let Eh represent
the internal edges of the mesh Th.

Definition 1.0.1. A family of meshes {Th}h>0 is said to be shape-regular if there exists σ0

such that

∀h, ∀K ∈ Th, σK =
hK

ρK
≤ σ0, (1.1)

where ρK is the diameter of the largest ball that can be inscribed in K.

Let Vh ⊂ H1
0 (Ω) be the usual finite element space of continuous, piecewise linear

functions on the triangles of Th, vanishing on ∂Ω:

Vh =
{
vh ∈ C(Ω̄) : vh|K ∈ P1 ∀K ∈ Th and vh|∂Ω = 0

}
. (1.2)

Here and in what follows, we consider the usual Hilbertian Sobolev spacesHs(Ω)
for all non-negative real number s. The norms and semi-norms in Sobolev spaces
Hs(Ω) are denoted, respectively, by ‖ · ‖Hs(Ω) and | · |Hs(Ω). H1

0 (Ω) is the closure
in H1(Ω) of the space C∞c (Ω) of infinitely differentiable functions with a compact
support in Ω. Its dual space is denoted by H−1(Ω) and is equipped with the corre-
sponding dual norm ‖ · ‖H−1(Ω).

Definition 1.0.2. The L2-orthogonal projection Ph : L2(Ω)→ Vh is defined by

∀v ∈ L2(Ω) : (Phv, ϕh) = (v, ϕh) , ∀ϕh ∈ Vh. (1.3)
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Definition 1.0.3. The H1
0 -orthogonal projection operator Πh : H1

0 (Ω)→ Vh is defined by

∀v ∈ H1
0 (Ω) : (∇Πhv,∇ϕh) = (∇v,∇ϕh) , ∀ϕh ∈ Vh. (1.4)

We denote by Ih a Scott-Zhang interpolation operator Ih : H1
0 (Ω) → Vh which is

also a projection, i.e. IhVh = Vh [EG04; SZ90].
Let us recall, for future reference, the well known stability and approximation

properties of the H1
0 -orthogonal projection operator:

Proposition 1. For every sufficiently smooth function v the following inequalities hold

|Πhv|H1(Ω) ≤ |v|H1(Ω), |v −Πhv|H1(Ω) ≤ Ch|v|H2(Ω), (1.5)

with a constant C > 0 which depends only on the regularity of the mesh.

Proof. The stability estimate from (1.5) directly follows from the definition of elliptic
projection. Indeed,

|Πhv|2H1(Ω) = (∇Πhv,∇Πhv) = (∇v,∇Πhv) ≤ |v|H1(Ω) |Πhv|H1(Ω) . (1.6)

The approximation property (1.5) follows from interpolation properties of the Scott-
Zhang interpolation operator [EG04]

|v − Ihv|H1(Ω) ≤ Ch |v|H2(Ω) . (1.7)

Since Πhv is the best approximation in H1-norm, the desired result follows easily.

We now recall the approximation properties of the Scott-Zhang interpolation op-
erator:

Proposition 2. For every sufficiently smooth function v, for all K ∈ Th and E ∈ Eh we
have

‖v − Ihv‖L2(K) ≤ ChK |v|H1(ωK) and ‖v − Ihv‖L2(E) ≤ Ch
1/2
E |v|H1(ωE). (1.8)

Here ωK (resp. ωE) represents the set of triangles of Th having a common vertex with triangle
K (resp. edge E) and the constant C > 0 depends only on the regularity of the mesh.

Proof. See [SZ90].

1.0.2 Anisotropic finite elements

In this chapter we will work with a posteriori error estimates in 2-dimensional space
for anisotropic finite elements. In order to describe the mesh anisotropy we intro-
duce some definitions and properties from [FP01; FP03] which are used in a posteriori
error estimates for the Laplace equation [Pic03]and in space a posteriori indicators for
the heat equation [LPP09] and for the wave equation [Pic10].

For any triangle K of the mesh Th, let TK be the affine transformation mapping
the reference triangle K̂ into K defined by

x = TK(x̂) = MKx̂+ tK ,
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where MK is the Jacobian of TK . MK admits a singular value decomposition

MK = RTKΛKPK ,

where RK and PK are orthogonal matrices and

ΛK =

(
λ1,K 0

0 λ2,K

)
, λ1,K ≥ λ2,K > 0. (1.9)

We set

RK =

(
rT1,K
rT2,K

)
, (1.10)

where rT1,K , rT2,K are the unit vectors corresponding to directions of maximum and
minimum stretching.

In the framework of anisotropic meshes, the classical minimum angle condition
is not required. However, for each vertex, the number of neighboring vertices should
be bounded from above, uniformly with respect to the mesh size h. Also, for each
triangle K of the mesh, there is a restriction related to the patch ∆K of elements
around K. More precisely, the diameter of the reference patch ∆K , that is, ∆K̂ =
T−1
K (∆K), must be uniformly bounded independently of the mesh geometry (see

[Pic03] for illustrations). We suppose in the rest of this work that the family Th meets
the above mentioned restrictions.

Proposition 3. Let Ih be the Scott-Zhang interpolation operator. There is a constant C
independent of the mesh size and aspect ratio such that, for any v ∈ H1(Ω) and any K ∈ Th
we have:

‖v − Ihv‖L2(K) ≤ CωK(v), (1.11)

λ2,K‖∇(v − Ihv)‖L2(K) ≤ CωK(v), (1.12)

‖v − Ihv‖L2(∂K) ≤ C
1

λ
1/2
2,K

ωK(v). (1.13)

Here ωK(v) is defined by

ω2
K(v) = λ2

1,K

(
rT1,KGK(v)r1,K

)
+ λ2

2,K

(
rT2,KGK(v)r2,K

)
, (1.14)

where λi,K and ri,K are given by (1.9) and (1.10) and GK(v) is the following 2× 2 matrix

GK(v) =
∑
T∈∆K


∫
T

(
∂v

∂x1

)2

dx

∫
T

∂v

∂x1

∂v

∂x2
dx∫

T

∂v

∂x1

∂v

∂x2
dx

∫
T

(
∂v

∂x2

)2

dx

 . (1.15)

We shall use the interpolation estimates of Proposition 3 in order to derive a
posteriori error estimates at first for the model Laplace equation and after to derive
space a posteriori error estimates for the heat equation and for the wave equation.
More precisely, in all cases the technique is based on the following principles: the
error is first related to the equation residual Scott-Zhang interpolation operator is
introduced, as in standard textbooks [EG04]. Then, the anisotropic interpolation
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estimates presented in Proposition 3 are used, and finally, a Z-Z error estimator is
used to approach the error gradient matrix.

We are going to prove now the stability properties for the Scott-Zhang interpola-
tor on anisotropic mesh. We choose a particular implementation of the Scott-Zhang
interpolator Ih, defined for any v ∈ L2(Ω) as follows. For any interior mesh node x,
consider the patch ∆x of mesh triangles attached to x. Let Kx be the triangle in ∆x

with maximal area. We set then

Ihv(x) =
1

|Kx|

∫
Kx

vψx,

where ψx is the polynomial of degree 1 which is dual to the hat function ϕx (the
standard basis function of Vh associated to node x) in the scalar product of L2(Kx).
We mean by this

(ψx, ϕx)L2(Kx) = 1 and (ψx, ϕy)L2(Kx) = 0,

for all the hat function ϕy associated to mesh nodes y other than x. For the boundary
nodes x we should proceed differently in order to preserve homogeneous Dirich-
let boundary conditions. We thus denote by Ex a boundary edge attached to any
boundary node x and define

Ihv(x) =
1

|Ex|

∫
Ex

vψx,

with ψx redefined as the dual function in the scalar product of L2(Ex). This defines
uniquely Scott-Zhang interpolator Ih : H1

0 (Ω)→ Vh.

Proposition 4. We have for any triangle K ∈ Th and any v ∈ H1
0 (Ω)

‖Ihv‖L2(K) 6 3‖v‖L2(ωK).

Proof. Consider any triangle Kx ∈ Th with the vertices, say, x, y, z. Denoting by
ϕx, ϕy, ϕz the hat functions associated to these vertices and applying a quadrature
rule, we compute easily

(ϕx, ϕx)L2(Kx) =
|Kx|

6
, (ϕx, ϕy)L2(Kx) = (ϕx, ϕz)L2(Kx) =

|Kx|
12

, . . .

Recalling the definition of the dual function ψx, i.e. the polynomial of degree 1 such
that

(ψx, ϕx)L2(Kx) = 1, (ψx, ϕy)L2(Kx) = (ψx, ϕz)L2(Kx) = 0,

we can easily compute it as a linear combination of ϕx, ϕy, ϕz . This gives

ψx =
1

|Kx|
(9ϕx − 3ϕy − 3ϕz),

so that
‖ψx‖L2(Kx) =

3

|Kx|1/2
.

Take now any triangle K ∈ Th with vertices x1, x2, x3. Suppose for the moment
that all these vertices are interior nodes of the mesh. Also denote the midpoints of
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the edges of K by m1,m2,m3. Observe, using the quadrature rule exact for polyno-
mials of degree 2,

‖Ihv‖2L2(K) =
|K|
3

3∑
i=1

|Ihv(mi)|2 6
|K|
3

3∑
i=1

|Ihv(xi)|2 (1.16)

=
|K|
3

3∑
i=1

∣∣∣∣∣
∫
Kxi

ψxiv

∣∣∣∣∣
2

6
|K|
3

3∑
i=1

9

|Kxi |
‖v‖2L2(Kxi )

6 9‖v‖2L2(ωK).

The last inequality is valid since Kxi is the mesh triangle of maximal area in the
patch ∆xi and K ∈ ∆xi so that |K| ≤ |Kxi |.

Note, finally, that all the estimates above remain valid if some of the vertices of
triangle K lie on the boundary ∂Ω. Indeed, we simply have Ihv(xi) = 0 at such a
node xi so that it can be neglected in the sums over the vertices in (1.16).

1.1 The Laplace equation

Given f ∈ L2(Ω), we are searching for u : Ω→ R such that

−∆u = f, in Ω,

u = 0, on ∂Ω. (1.17)

The simplest finite element approximation of (1.17) therefore consists in seeking
uh ∈ Th such that ∫

Ω
∇uh · ∇ϕh =

∫
Ω
fϕh, ∀ϕh ∈ Vh. (1.18)

1.1.1 Isotropic a posteriori error estimate

In order to remind the basic technique for residual-based a posteriori error estimates
we start from the following classical isotropic a posteriori error estimate [EG04].

Lemma 1. There is a constant C depending only on the interpolation constants of Proposi-
tion 2 such that the following a posteriori error estimate holds

|u− uh|H1(Ω) ≤ C
∑
K∈Th

ηK(uh, f), (1.19)

where local error indicator is defined by

ηK(uh, f) =
∑
K∈Th

hK ‖f + ∆uh‖L2(K) +
1

2

∑
E∈EK

h
1/2
E ‖ [n · ∇uh] ‖L2(E)

 . (1.20)

Here [·] stands for the jump of the bracketed quantity across an internal edge E ∈ Eh, EK is
the set of internal edges of K, and n is the unit edge normal (in arbitrary direction).
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Proof. Using (1.18) and the standard idea of integration by parts, we have, for any
v ∈ H1

0 (Ω)∫
Ω
fϕ−

∫
Ω
∇uh · ∇ϕ =

∫
Ω
f(ϕ− Ihϕ)−

∫
Ω
∇uh · ∇(ϕ− Ihϕ)

=
∑
K∈Th

(∫
K

(f + ∆uh)(ϕ− Ihϕ) +
∑
E∈∂K

∫
E

[n · ∇uh] (ϕ− Ihϕ)

)
.

Second, using the Cauchy-Shwarz inequality and the fact that ϕ − Ihϕ vanishes on
∂Ω, we obtain

∫
Ω
fϕ−

∫
Ω
∇uh · ∇ϕ ≤

∑
K∈Th

(
‖f + ∆uh‖L2(K) ‖ϕ− Ihϕ‖L2(K)

+
1

2

∑
E∈EK

‖[n · ∇uh]‖L2(E) ‖ϕ− Ihϕ‖L2(E)

)
.

We now use the standard interpolation estimates of Proposition 2 and obtain∫
Ω
fϕ−

∫
Ω
∇uh · ∇ϕ (1.21)

≤ C

∑
K∈Th

hK ‖f + ∆uh‖L2(K) +
1

2

∑
E∈EK

h
1/2
E ‖ [n · ∇uh] ‖L2(E)

 |ϕ|H1(Ω).

It then suffices to choose ϕ = u − uh in the estimate above and use the fact that, by
definition of u and uh we have

|u− uh|2H1(Ω) =

∫
Ω
f(u− uh)−

∫
Ω
∇uh · ∇(u− uh), (1.22)

to obtain the desired result.

We now present the lower bound of the error. Following [EG04], [Ver96] and
[Ver94], we introduce some notations and present two technical lemmas.

We first introduce an extension operator which maps functions define on an in-
terface to triangles sharing the interface. Let E be an interior mesh face and K
be a triangle containing the edge E. Consider the reference triangle K̂ and let TK
be the affine transformation mapping from reference triangle K̂ into K. Without
loss of generality we assume, that E = TK(Ê). We define the extension operator
P̂Ê : P1(Ê)→ P1(K̂) as

P̂Êφ̂(x, y) = φ̂(x), ∀φ̂ ∈ P1(Ê), ∀(x, y) ∈ K̂.

The extension operator PE,K : P1(Ê)→ P1(K̂) is defined ∀φ ∈ P1(E) as

PE,K(φ) = P̂Ê(φ ◦ TK) ◦ T−1
K .

Let DK be the union of the triangles sharing an edge with the triangle K and DE

be the union of two triangles K and K ′ sharing the edge E. The extension operator
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PE is defined ∀φ ∈ P1(E) as {
PE,K(φ) on E,
PE,K′(φ) on E′.

(1.23)

Lemma 2. Let bK ∈ P3(K) be a function such that:

(i) 0 ≤ bK ≤ 1.

(ii) ∃D ⊂ K with meas(D) > 0 and bK|D ≥ 1/2.

Here meas(D) is the Lebesgue measure of D. Then, there exists c1 and c2 such that, ∀K ∈
Th, ∀φ ∈ P1(K),

‖bKφ‖L2(K) ≤ ‖φ‖L2(K) ≤ c1

∥∥∥b1/2K φ
∥∥∥
L2(K)

, (1.24)

|bKφ|H1(K) ≤ c2h
−1
K ‖φ‖L2(K) . (1.25)

Proof. See [Ver96] and [Ver94].

Lemma 3. Let bE ∈ P3(DE) be a function such that:

(i) 0 ≤ bE ≤ 1.

(ii) ∃D ⊂ DE with meas(D) > 0 and bE|D ≥ 1/2.

(iii) bE|E ∈ H1
0 (E).

(iv) ∃D′ ⊂ E with meas(D′) > 0 and bE|D′ ≥ 1/2.

Then, there exists c1, c2, c3 and c4 such that, ∀E ∈ Eh, ∀φ ∈ P1(E),

‖bEφ‖L2(E) ≤ ‖φ‖L2(E) ≤ c1

∥∥∥b1/2E φ
∥∥∥
L2(E)

, (1.26)

c2h
1/2
E ‖φ‖L2(E) ≤ ‖bEPE(φ)‖L2(DE) ≤ c3h

1/2
E ‖φ‖L2(E) , (1.27)

|bEPE(φ)|H1(DE) ≤ c4h
−1/2
E ‖φ‖L2(E) . (1.28)

Proof. See [Ver96] and [Ver94].

The optimality result for the error indicator (1.19) is stated in the following:

Theorem 4. There exists a constant c, depending only on the shape-regularity of the mesh
Th and the reference finite element, such that

ηK(uh, f) ≤ c
(
|u− uh|H1(DE) + hK inf

vh∈Vh
‖f − vh‖L2(DE)

)
, (1.29)

where local error indicator ηK(uh, f) is defined by (1.20).

Proof. The proof is standard and can be found in [EG04]. For brevity, we provide
here only the bound for term ‖f + ∆uh‖L2(K). For all vh ∈ Vh we have

‖f + ∆uh‖L2(K) ≤ ‖f + vh‖L2(K) + ‖vh + ∆uh‖L2(K).
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From Lemma 2, using the fact that bK vanishes on the boundary of K, we obtain

c‖vh + ∆uh‖2L2(K) ≤ ‖b
1/2
K (vh + ∆uh)‖2L2(K) =

∫
K

(vh + ∆uh)bK(vh + ∆uh)∫
K

(f + ∆uh)bK(vh + ∆uh) +

∫
K

(vh − f)bK(vh + ∆uh)

≤
∫
K
∇(u− uh) · ∇(bK(vh + ∆uh)) + ‖vh − f‖L2(K)‖vh + ∆uh‖L2(K).

The inverse inequality from Lemma 2 yields

c‖vh+∆uh‖2L2(K) ≤ |u−uh|H1(K)|bK(vh+∆uh)|H1(K)+‖vh−f‖L2(K)‖vh+∆uh‖L2(K)

≤
(
ch−1
K |u− uh|H1(K) + ‖vh − f‖L2(K)

)
‖vh + ∆uh‖L2(K).

Thus
‖f + ∆uh‖L2(K) ≤ c

(
h−1
K |u− uh|H1(K) + ‖vh − f‖L2(K)

)
.

1.1.2 Anisotropic a posteriori error estimate

Anisotropic mesh adaptation is now widely used in numerical simulations to im-
prove the accuracy of the solutions as well as to capture the behavior of physical
phenomena. An anisotropic, adaptive finite elements allow to reduce the number of
vertices required to reach a given level of accuracy. Thereby anisotropic a posteriori
error estimates plays an important role for improving the accuracy of the numerical
solution.

Reproducing the proof of Lemma 1 and using the results from Proposition 3 we
obtain the following anisotropic error estimate [Pic03].

Lemma 5. There is a constant C = C(K̂) depending only on the interpolation constants of
Proposition 3 (thus not on the mesh size or aspect ratio) such that

|u− uh|2H1(Ω) (1.30)

≤ C
∑
K∈Th

‖f + ∆uh‖L2(K) +
1

2λ
1/2
2,K

‖ [n · ∇uh] ‖L2(∂K)

ωK(u− uh),

where ωK is defined by (1.14).

Proof. The proof is similar to that of Lemma 1. We reproduce it up to equation (1.21).
We now use the interpolation estimates of Proposition 3 and obtain∫

Ω
fϕ−

∫
Ω
∇uh · ∇ϕ (1.31)

≤ C
∑
K∈Th

‖f + ∆uh‖L2(K) +
1

2λ
1/2
2,K

‖ [n · ∇uh] ‖L2(∂K)

ωK(ϕ),

where C = C(K̂). Then, as in Lemma 1, we conclude by choosing v = u − uh and
using (1.22).
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Remark 1. Note that the constantC in Lemma 1 depends on the triangles aspect ratio, while
in the proof of Lemma 5 the classical regularity (or minimum angle) is not used. That is to
say the estimate holds for highly anisotropic meshes. Moreover, if we assume that λ1,K/λ2,K

is bounded from above (that said, the triangles aspect ratio is bounded above), then from
estimate (1.30) we easily recover the classical isotropic estimate (1.19).

1.1.3 Zienkiewicz-Zhu recovery

Note that estimate (1.30) is not a standard a posteriori error estimate since the exact
solution u is still involved in ωK(u−uh) at the right-hand side. In this paragraph we
explain the approach to derive an anisotropic error indicators from papers [Pic03;
LPP09; Pic10]. The technique to approach the error gradient is based on Z-Z error
estimator [ZZ87; Ain+89; ZZ92]. More precisely, following Z-Z recovery technique,

we replace the first order space partial derivatives of the exact solution
∂u

∂x1
and

∂u

∂x2

by, respectively, P̃h

(
∂uh

∂x1

)
and P̃h

(
∂u

∂x2

)
, where P̃h : L2(Ω) → Vh is an approxi-

mate L2(Ω) projection on Vh defined for any g ∈ L2(Ω) as∫
Ω
rh

((
P̃hg

)
vh

)
=

∫
Ω
gvh ∀vh ∈ Vh.

Here rh denotes the piecewise linear Lagrange interpolant operator. That is to say

from constant values of ∇uh on triangles, P̃h

(
∂uh

∂xi

)
is defined by its values at each

vertex P as


P̃h

(
∂uh

∂x1

)
(P )

P̃h

(
∂uh

∂x2

)
(P )

 =
1∑

K∈Th
P∈K

|K|



∑
K∈Th
P∈K

|K|

(
∂uh

∂x1

)
|K

∑
K∈Th
P∈K

|K|

(
∂uh

∂x2

)
|K


.

Thus the anisotropic error estimator is obtained by replacing the matrix GK(u−
uh) in (1.30) by the matrix G̃K(uh) defined by

G̃K(uh) =


∫
K

(ηZZ1 (uh))2dx

∫
K
ηZZ1 (uh)ηZZ2 (uh)dx∫

K
ηZZ1 (uh)ηZZ2 (uh)dx

∫
K

(ηZZ2 (uh))2dx

 , (1.32)

where

ηZZ(uh) =

(
ηZZ1 (uh)
ηZZ2 (uh)

)
=


(I − P̃h)

(
∂uh

∂x1

)

(I − P̃h)

(
∂uh

∂x2

)
 . (1.33)

Numerical results show the efficiency of Z-Z post-processing for anisotropic space a
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posteriori error estimate for elliptic [Pic03], parabolic [LPP09] and hyperbolic prob-
lems [Pic10].

1.2 The heat equation

The aim of this subsection is to give the main ideas for deriving time and space
a posteriori error estimates for the heat equation given in [LPP09]. The approach
from [AMN06] is used in order to estimate error from time discretization and the
approach to anisotropic finite elements developed in [Pic98; Pic03; Pic10] is used for
space error estimators.

1.2.1 A posteriori error estimate for a first order ordinary differential equa-
tion

Consider a given final time T > 0. In order to explain the main idea for a posteriori
error estimate in time we consider first the following ordinary differential equation

du(t)

dt
+Au(t) = 0, t ∈ [0;T ]

u(0) = u0,
(1.34)

with a constant A > 0. This problem serves as simplification of the heat equation
in which we get rid of the space variable. For the sake of simplicity we derive a
posteriori error estimates for homogeneous equation (1.34), but the results can be
easily extended to general case of non-zero right-hand side. In order to describe the
time discretization corresponding to (1.34), let us introduce a subdivision of the time
interval [0, T ]

0 = t0 < t1 < · · · < tN = T,

with time steps τn = tn+1 − tn for n = 0, . . . , N − 1 and τ = max
0≤n≤N−1

τn. The

discretization considered here corresponds to the Crank-Nicolson method and has
the following form for n = 0, . . . , N − 1

un+1 − un

τn
+A

un+1 + un

2
= 0, (1.35)

where u0 = u0.
We shall need the following notations for n = 0, . . . , N − 1

∂nu =
un+1 − un

τn
, un+1/2 =

1

2
(un+1 + un), τn−1/2 =

1

2
(τn + τn−1), (1.36)

and for n = 1, . . . , N − 1:

∂2
nu =

∂nu− ∂n−1u

τn−1/2
. (1.37)

We introduce continuous piecewise quadratic approximation in time for t ∈
[tn, tn+1] where n = 1, . . . , N − 1

ũτ (t) = un+1/2 + (t− tn+1/2)∂nu+
1

2
(t− tn)(t− tn+1)∂2

nu. (1.38)
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Lemma 6. The following a posteriori error estimate holds between the solution u of problem
(1.34) and the time reconstruction ũτ (1.38), for all tn+1, n = 1, . . . , N − 1:∫ tn+1

t1

A |u− ũτ |2 dt+ |u(tn+1)− ũτ (tn+1)|2

≤ |u(t1)− ũτ (t1)|2 +

n∑
m=1

η2(tn), (1.39)

where the error estimator η(tn) is defined by

η2(tn) = τ3
n

(
τ2
n−1

48
+

τ2
n

120

)
A|∂2

nu|2.

Proof. The a posteriori analysis relies on an appropriate residual equation for the re-
construction ũτ . Thus, introducing the error between reconstruction ũτ and solution
u to problem (1.34) ẽ = u− ũτ the residual equation is defined as follows

dẽ

dt
+Aẽ = −

dũτ (t)

dt
−Aũτ (t)

= −(t− tn−1/2)∂2
nu−A(t− tn−1/2)∂nu−A(t− tn−1)(t− tn)∂2

nu. (1.40)

Consider now (1.35) at time steps n + 1 and n. Subtracting one from another and
dividing by τn−1/2 yields

∂2
nu+A

(
un+1 − un−1

τn + τn−1

)
= 0. (1.41)

Moreover, note that

−
un+1 − un−1

τn + τn−1
+ ∂nu =

τn−1

2
∂2
nu,

so that (1.40) simplifies to

dẽ

dt
+Aẽ = −A

τn−1

2
(t− tn+1/2)∂2

nu−A
1

2
(t− tn)(t− tn+1)∂2

nu. (1.42)

Thus multiplying (1.42) by ẽ, using the fact that ab ≤ 1

2
a2 +

1

2
b2 and the Cauchy-

Schwarz inequality we obtain

d|ẽ|2

dt
+A|ẽ|2 ≤ A

∣∣∣∣∣τn−1

2
(t− tn+1/2)∂2

nu+
1

2
(t− tn)(t− tn+1)∂2

nu

∣∣∣∣∣
2

. (1.43)

Integrating the last inequality from tn to tn+1 we obtain∫ tn+1

tn

A |ẽ|2 dt+ |ẽ(tn+1)|2 ≤ |ẽ(tn)|2 + τ3
n

(
τ2
n−1

48
+

τ2
n

120

)
A|∂2

nu|2. (1.44)

Summing up this inequality on n leads to the desired result.
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1.2.2 A posteriori error estimates in space and time

Let u = u(x, t) : Ω× [0, T ]→ R be the solution to
∂u

∂t
−∆u = f, in Ω× ]0, T ] ,

u = 0, on ∂Ω× ]0, T ] ,

u(·, 0) = u0, in Ω,

(1.45)

where f, u0, v0 are given functions. We suppose henceforth f ∈ L2(0, T ;H−1(Ω)),
u0 ∈ L2(Ω) and seek a solution u ∈W [Eva10] with

W =

{
w ∈ L2

(
0, T ;H1

0 (Ω)
)

and
∂w

∂t
∈ L2

(
0, T ;H−1(Ω)

)}
, (1.46)

such that u(x, 0) = u0 and〈
∂u

∂t
, ϕ

〉
+ (∇u,∇ϕ) = (f, ϕ) , ∀ϕ ∈ H1

0 (Ω), (1.47)

where 〈·, ·〉 denotes the duality pairing between H−1(Ω) and H1
0 (Ω) and the paren-

theses (·, ·) stand for the inner product in L2(Ω). Let Vh be the usual finite element
space of continuous, piecewise linear functions on the mesh Th defined in (1.2). We
set the initial condition to u0

h = rhu
0. For each n = 1, . . . , N we compute unh ∈ Vh

such that ∀ϕh ∈ Vh∫
Ω

(
un+1
h − unh
τn

)
ϕhdx+

1

2

∫
Ω

(∇un+1
h +∇unh) · ∇ϕhdx

=
1

2

∫
Ω

(fn+1 + fn)ϕhdx. (1.48)

From here on, fn is an abbreviation for f(·, tn). In this section the following notations
will be used for the first order discrete derivatives in time for n = 0, . . . , N − 1:

∂nuh =
unh − u

n−1
h

τn−1
, u

n+1/2
h =

1

2
(un+1
h + unh), (1.49)

and for the second order discrete derivatives for n = 1, . . . , N − 1:

∂2
nuh =

∂n+1uh − ∂nuh
τn−1/2

. (1.50)

We start from introducing the continuous piecewise linear approximation in time for
t ∈ [tn, tn+1] where n = 0, . . . , N − 1

uhτ (x, t) = u
n+1/2
h + (t− tn+1/2)∂nuh. (1.51)
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We also introduce continuous piecewise quadratic approximation in time for t ∈
[tn, tn+1] where n = 1, . . . , N − 1

ũhτ (x, t) = u
n+1/2
h + (t− tn+1/2)∂nuh +

1

2
(t− tn)(t− tn+1)∂2

nuh. (1.52)

Exactly the second order reconstruction allows an a posteriori error estimate of op-
timal second order in time to be obtained. We also set for t ∈ [tn, tn+1] where
n = 1, . . . , N − 1

f̃ = fn+1/2 + (t− tn+1/2)
fn+1 − fn−1

τn + τn−1
.

The a posteriori analysis relies on an appropriate residual equation for the reconstruc-
tion ũhτ . We set e = u− uhτ and ẽ = u− ũhτ . To derive the a posteriori error estimate
in time, like in the case of ordinary differential equation, we need the following
properties of the Crank-Nicolson scheme and of the reconstruction ũhτ .

Proposition 5. For all ϕh ∈ Vh and for t ∈ [tn, tn+1] where n = 1, . . . , N − 1 we have

∫
Ω

∂ũhτ

∂t
ϕhdx+

∫
Ω
∇uhτ · ∇ϕhdx

=

∫
Ω
f̃ϕhdx+ (t− tn+1/2)

τn−1

2

∫
Ω
∇∂2

nuh · ∇ϕhdx. (1.53)

We will now present the error indicator based on ũhτ .

Isotropic error estimate

We will present isotropic error estimate for the error measured in a slightly stronger
norm than before, namely

u 7→

(∫ T

0
|u(t)|2H1(Ω)) +

∫ T

0

∥∥∥∥∂u∂t (t)

∥∥∥∥2

H−1(Ω))

)1/2

.

The choice of the norm is motivated by the fact that the upper and the lower
bounds of optimal order can be proved for the space and time indicators.

Lemma 7 (Upper bound). Let u be the solution of problem (1.45) and (unh)0≤n≤N be the
discrete solution given by Crank-Nicolson method (1.35). Then the following global upper
bound of the error holds

∫ T

t1
|ẽ|2H1(Ω)) +

∫ T

t1

∥∥∥∥∂ẽ∂t
∥∥∥∥2

H−1(Ω))

≤ ||e(·, t1)||2L2(Ω) + C

N−1∑
n=1

{ ∑
K∈Th

(ηSK,n)2

+ (ηTn )2 +

∫ tn+1

tn

∥∥∥f − f̃∥∥∥2

L2(Ω)
dt+

∑
K∈Th

h2
kτ

3
n

12

∥∥∂2
nuh
∥∥2

L2(K)

}
, (1.54)

where the traditional local error indicator in space is defined ∀K ∈ Th by

(ηSK,n)2 =

∫ tn+1

tn

(
h2
K ‖f − ∂nuh + ∆uhτ‖2L2(K) + hK ‖[∇uhτ · n]‖2L2(∂K)

)
dt,
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and the error indicator in time is defined by

(ηTn )2 =
{τ2

n−1τ
3
n

48
+

τ5
n

120

}∥∥∇∂2
nuh
∥∥2

L2(Ω)
. (1.55)

Proof. Follows from Proposition 5 and standard estimates for the Scott-Zhang inter-
polation Ih on isotropic meshes (1.8).

Lemma 8 (Lower bound). Let u be the solution of problem (1.45) and (unh)0≤n≤N be the
discrete solution given by Crank-Nicolson method (1.35). Then the following local in time
lower bounds ∀n ≥ 1 hold

1

3
(ηTn )2 ≤

∫ tn+1

tn
|ẽ|2H1(Ω) +

∫ tn+1

tn

∥∥∥∥∂ẽ∂t
∥∥∥∥2

H−1(Ω)

+

∫ tn+1

tn

∥∥∥f − f̃∥∥∥2

H−1(Ω)
dt,

(1.56)

and ∑
K∈Th

(ηSK,n)2 ≤ C

(∫ tn+1

tn
|ẽ|2H1(Ω) +

∫ tn+1

tn

∥∥∥∥∂ẽ∂t
∥∥∥∥2

H−1(Ω)

)
, (1.57)

where constant C depends on the aspect ratio of any triangle K ∈ Th

Proof. We first prove the lower bound (1.56). The identity in Proposition 5 can be
rewritten as

1

2
[(t− tn+1/2)τn−1 − (t− tn)(t− tn+1)]

∫
Ω
∇∂2

nuh · ∇vh dx

=

∫
Ω

∂ẽ

∂t
vh dx+

∫
Ω
∇ẽ · ∇vh dx−

∫
Ω

(f − f̃)vh dx.

This is valid for any vh ∈ V 0
h . In particular, taking vh = ∂2

nuh yields

1

4
[(t− tn+1/2)τn−1 − (t− tn)(t− tn+1)]2||∇∂2

nuh||
2
L2(Ω)

≤ 3

(∥∥∥∥∂ẽ∂t
∥∥∥∥2

H−1(Ω)

+ ‖ẽ‖2H1(Ω) + ||f − f̃ ||2H−1(Ω)

)
.

Integrating in time from tn to tn+1 we obtain the lower bound (1.56).
Next we prove the lower bound (1.57). Introducing a piecewise linear function

h(x) measuring the local meshsize, i.e. for example

h(xi) =

∑
K∈∆xi

hK |K|

|∆xi |
at any nodexi,

and the bubble functions bK on any triangle K we observe∑
K∈Th

h2
K ‖fh + ∆uhτ − ∂nuh‖2L2(K) 6 C

∑
K∈Th

∫
K

(fh + ∆uhτ − ∂nuh) vhh
2,
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with vh = (fh + ∆uhτ − ∂nuh) bK onK. Then, assuming for brevity fh = f = −∆u+
∂tu

∂t
, we get by integration by parts

∑
K∈Th

h2
K ‖fh + ∆uhτ − ∂nuh‖2L2(K) 6 C

∑
K∈Th

(∫
K
∇ẽ · ∇(vhh

2) +

∫
K

∂ẽ

∂t
vhh

2

)
.

Let w be the solution to

−∆w =
∂ẽ

∂t
on Ω, w = 0 on ∂Ω,

so that |w|H1(Ω) =

∣∣∣∣∂ẽ∂t
∣∣∣∣
H−1(Ω)

and

∑
K∈Th

∫
K

∂ẽ

∂t
vhh

2 =

∫
Ω

(−∆w)vhh
2 =

∫
Ω
∇w · ∇(vhh

2)

6

∥∥∥∥∂ẽ∂t
∥∥∥∥
H−1(Ω)

∑
K∈Th

‖∇(vhh
2)‖2L2(K)

1/2

.

Hence∑
K∈Th

h2
K ‖fh + ∆uhτ − ∂nuh‖2L2(K)

6 C

(
|ẽ|H1(Ω) +

∥∥∥∥∂ẽ∂t
∥∥∥∥
H−1(Ω)

)∑
K∈Th

‖∇(vhh
2)‖2L2(K)

1/2

.

We have on any K

max
x

h2(x) 6 Ch2
K and max

x
|∇h|2(x) 6 ChK ,

which implies

‖∇(vhh
2)‖L2(K) 6 C(h2

K‖∇vh‖L2(K) + hK‖vh‖L2(K))

6 ChK‖vh‖L2(K) 6 ChK‖fh + ∆uhτ − ∂nuh‖L2(K).

Finally,∑
K∈Th

h2
K‖fh + ∆uhτ − ∂tuhτ‖2L2(K)

6 C

(
|ẽ|H1(Ω) +

∥∥∥∥∂ẽ∂t
∥∥∥∥
H−1(Ω)

)∑
K∈Th

h2
K‖fh + ∆uhτ − ∂nuh‖2L2(K)

1/2

,

or ∑
K∈Th

h2
K‖fh + ∆uhτ − ∂tuhτ‖2L2(K) 6 C

(
|ẽ|2H1(Ω) +

∥∥∥∥∂ẽ∂t
∥∥∥∥
H−1(Ω)

)
.
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The part of the estimator with jump residuals is handled similarly.

Anisotropic error estimate

Lemma 9. Suppose that the mesh Th is such that there exists a constant c independent of
the mesh size and aspect ration such that

λ2
1,K

(
rT1,KGK(ẽ)r1,K

)
≤ cλ2

2,K

(
rT2,KGK(ẽ)r2,K

)
∀K ∈ Th,

where GK is defined by (1.15). Then there is a constant C independent of the mesh size and
aspect ratio such that

∫ T

t1
‖∇e‖2L2(Ω)dt+ ‖∇e(·, T )‖2L2(Ω) ≤ ‖∇e(·, t

1)‖2L2(Ω) + C
N−1∑
n=1

{ ∑
K∈Th

(ηS,AK,n)2

+ (ηTn )2 +

∫ tn+1

tn

∥∥∥f − f̃∥∥∥2

H−1(Ω)
dt+

∑
K∈Th

λ2
2,Kτ

3
n

12

∥∥∂2
nuh
∥∥2

L2(K)

}
, (1.58)

where the local anisotropic space error estimator ηS,AK,n is defined by

(ηS,AK,n)2 =

∫ tn+1

tn

(
‖f − ∂nuh + ∆ũhτ‖L2(K) +

1

2λ
1/2
2,K

‖ [n · ∇ũhτ ] ‖L2(∂K)

)
ωK(ẽ)dt,

where ωK is defined by (1.14). The time error estimator ηTn is defined by (1.55).

Proof. Follows from Proposition 9 and the interpolation estimates of Proposition 3.

Remark 2. The second term in the error estimate of Lemma 9 corresponds to anisotropic
residual-based space error estimator. The last three terms are used to estimate the error due
to the time discretization.

Remark 3. The estimate of Lemma 9 is not a traditional a posteriori estimate since it involves
the gradient of the exact solution u. A way to approximate the gradient of u by a computable
quantity was explained in subsection 1.1.3. The resulting error estimator was proved very
efficient for the adaptive algorithm for the Crank-Nicolson scheme [LPP09].

1.3 The wave equation

We consider initial boundary-value problem for the wave equation. Let u = u(x, t) :
Ω× [0, T ]→ R be the solution to

∂2u

∂t2
−∆u = f, in Ω× ]0, T ] ,

u = 0, on ∂Ω× ]0, T ] ,

u(·, 0) = u0, in Ω,

∂u

∂t
(·, 0) = v0, in Ω,

(1.59)
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where f, u0, v0 are given functions. Note that if we introduce the auxiliary unknown
v = ∂u

∂t then model (1.59) can be rewritten as the following first-order in time system

∂u

∂t
− v = 0, in Ω× ]0, T ] ,

∂v

∂t
−∆u = f, in Ω× ]0, T ] ,

u = 0, on ∂Ω× ]0, T ] ,

u(·, 0) = u0, v(·, 0) = v0, in Ω.

(1.60)

The possibility to rewrite the problem (1.59) as a first-order in time system (1.60) is
crucial for deriving the time error estimates in [BS05; Geo+16]. The above problem
(1.59) has the following weak formulation [Eva10]: find a function

u ∈ L2
(
0, T ;H1

0 (Ω)
)

such that
∂u

∂t
∈ L2

(
0, T ;L2(Ω)

)
,

∂2u

∂t2
∈ L2

(
0, T ;H−1(Ω)

)
, with given f ∈ L2(0, T ;L2(Ω)),

u0 ∈ H1
0 (Ω), v0 ∈ L2(Ω) (1.61)

and 〈
∂2u

∂t2
, ϕ

〉
+ (∇u,∇ϕ) = (f, ϕ) , ∀ϕ ∈ H1

0 (Ω), (1.62)

where 〈·, ·〉 denotes the duality pairing between H−1(Ω) and H1
0 (Ω) and the paren-

theses (·, ·) stand for the inner product in L2(Ω). Moreover, the following regularity
result is proved in Chap. 7, Sect. 2, Theorem 5 of [Eva10]

Theorem 10. Assume that function u (1.61) is the solution of problem (1.62). Then in fact

u ∈ C0
(
0, T ;H1

0 (Ω)
)
,
∂u

∂t
∈ C0

(
0, T ;L2(Ω)

)
,
∂2u

∂t2
∈ C0

(
0, T ;H−1(Ω)

)
.

Let us now discretize (1.59) or, equivalently, (1.60) in space using the finite ele-
ment method. We use the standard finite element space Vh ⊂ H1

0 (Ω) defined in (1.2).
Then, the finite element discretization of (1.62) is to find uh ∈ H2(0, T ;Vh) such that∫

Ω

∂2uh

∂t2
ϕh +

∫
Ω
∇uh · ∇ϕh =

∫
Ω
fϕh, ∀ϕh ∈ Vh, (1.63)

and uh(0) = Îhu0,
∂uh

∂t
(0) = Îhv0 where Îh is some interpolant.

In the sequel we shall work with several time discretizations that will be spec-
ified later: the backward Euler scheme [BS05], the Cosine-type scheme [Geo+16]
and the Newmark scheme with the particular choice for the parameters, namely
β = 1/4, γ = 1/2 [BW76].
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1.3.1 Time adaptivity for the wave equation discretized by the backward
Euler scheme

The aim of this section is to present a posteriori error estimates for the wave equa-
tion discretized by the backward Euler scheme in time [BS05]. At first we give the
main idea of obtaining error estimates in time on the example of ordinary differ-
ential equation of second order in time. At the second stage we present the main
result of the work [BS05] for the fully discrete problem discretized in space by the
finite element method. For the sake of brevity, we restrict the presentation to the
case of non-changeable meshes. We finish the subsection by presenting two new
alternative error estimates in space and time. The first error estimate is comparable
with Bernardi-Süli error estimator and based on the same technique with some slight
modification, meanwhile the second error estimator is of optimal order in space.

A posteriori error estimate for a second order ordinary differential equation

Let us consider first the following ordinary differential equation
d2u(t)

dt2
+Au(t) = f(t), t ∈ [0;T ] ,

u(0) = u0,

du

dt
(0) = v0,

(1.64)

with a constant A > 0. Like in [BS05], we restrict ourselves to zero right-hand side
function f = 0. This problem serves as simplification of the wave equation in which
we get rid of the space variable.

Note that if we introduce the auxiliary unknown v =
du

dt
then (1.64) can be rewrit-

ten as the first order system. Indeed, using the vector notation U(t) =

(
u(t)
v(t)

)
we

obtain 
d

dt
U +

(
0 −1

A 0

)
U = 0, t ∈ ]0;T ] ,

U(0) =

(
u0

v0

)
.

(1.65)

Applying Euler’s backward scheme to system (1.65) with Un =

(
un

vn

)
where vn =

un − un−1

τn
for n = 1, . . . , N we obtain the following discrete problem


Un+1 −Un

τn
+

(
0 −1

A 0

)
Un+1 = 0, n = 1, . . . , N − 1,

U0 =

(
u0

v0

)
.

(1.66)
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Note that Euler’s backward scheme for system (1.64) consists of finding a family
(un)0≤n≤N such that

un+1 − un

τn
− un − un−1

τn−1
+Aτnu

n+1 = 0, n = 1, . . . , N − 1,

u1 − u0

τ0
= Aτ0u

1 + v0,

u0 = u0.

(1.67)

It is easy to show that this system coincides with problem (1.66).
We shall measure the error in the following norm

e = max
0≤n≤N

(
1

A

∣∣vn − u′(tn)
∣∣2 + |un − u(tn)|2

)1/2

.

We start from a priori error estimate that follows from stability properties of Eu-
ler’s backward scheme (1.67).

Lemma 11. The following a priori estimate holds between the solution u of problem (1.64)
and the solution (un)0≤n≤N of problem (1.67), for all tn+1, n = 0, . . . , N − 1:

1

A

∣∣vn+1 − u′(tn+1)
∣∣2 +

∣∣un+1 − u(tn+1)
∣∣2

≤ 2|τ2|

(∫ tn+1

0

(
1

A

∣∣v′′(t)∣∣+
∣∣u′′(t)∣∣))2

. (1.68)

where |τ | is the maximum of the τn, n = 0, . . . , N − 1.

Proof. We first note that on taking the inner product of the first line of system (1.66)

with the vector

 un+1

1

A
vn+1

 leads to the stability estimate:

1

A

∣∣vn+1
∣∣2 +

∣∣un+1
∣∣2 ≤ 2

(
1

A

∣∣v1
∣∣2 +

∣∣u1
∣∣2) . (1.69)

The a priori error estimate relies on (1.69). Indeed, the same technique allows us to
obtain easily the following estimate:

1

A

∣∣vn+1 − u′(tn+1)
∣∣2 +

∣∣un+1 − u(tn+1)
∣∣2

≤ 2

(
1

A

∣∣v1 − u′(t1)
∣∣2 +

∣∣u1 − u(t1)
∣∣2)

+ 2
( n∑
m=1

( 1

A

∣∣∣∣∣v(tn+1)− v(tn)

τn
− v′(tn+1)

∣∣∣∣∣
+

∣∣∣∣∣u(tn+1)− u(tn)

τn
− u′(tn+1)

∣∣∣∣∣))2
. (1.70)
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Using Taylor’s formula we obtain

u(tn+1)− u(tn)

τn
− u′(tn+1) = −

1

τn

∫ tn+1

tn

u′′(s)(s− tn)ds. (1.71)

A similar argument is used to evaluate the other terms on the right-hand side of the
inequality (1.70). This leads to the desired estimate.

The next step is to derive a posteriori bound on the error.

Lemma 12. The following a posteriori error estimate holds between the solution u of problem
(1.64) and the solution (un)0≤n≤N of problem (1.67), for all tn+1, n = 0, . . . , N − 1:

1

A

∣∣vn+1 − u′(tn+1)
∣∣+
∣∣un+1 − u(tn+1)

∣∣ ≤ 1

2

n∑
m=0

ηm

+
1

A

∣∣v0 − u′(t0)
∣∣+
∣∣u0 − u(t0)

∣∣ , (1.72)

where for each n, n = 1, . . . , N − 1, the refinement indicator ηn is defined by

ηn = τnA
1/2
∣∣un+1 − un

∣∣+ τn

∣∣∣∣∣un+1 − un

τn
−
un − un−1

τn−1

∣∣∣∣∣ . (1.73)

Proof. At first we introduce continuous piecewise linear reconstruction in time for
t ∈ [tn, tn+1] for n = 0, . . . , N − 1 by

uτ (t) = un+1 + (t− tn+1)
un+1 − un

τn
. (1.74)

Similarly, we introduce piecewise linear reconstruction in time vτ (t) based on vn,
n = 0, . . . , N .

The a posteriori analysis relies on an appropriate residual equation for the linear

reconstruction Uτ =

(
uτ
vτ

)
. We have


d

dt
Uτ +

(
0 −1

A 0

)
Uτ =

(
Ru

Rv

)
, t ∈ ]0;T ] ,

E(0) = 0.

(1.75)

where the residual quantities Ru and Rv for t ∈ [tn; tn+1] and n = 0, . . . , N − 1 are
defined by

Ru(t) = vτ − vn+1,

Rv(t) = A(un+1 − uτ ).

Thus, introducing the error between reconstruction Uτ and solution U to prob-
lem (1.65) :

E = U −Uτ =

(
Eu
Ev

)
=

(
u− uτ
v − vτ

)
, (1.76)
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denoting

Z(t) =

(
1

A
|Ev|2 + |Eu|2

)1/2

and taking the inner product of (1.75) with

 Eu
1

A
Ev

we obtain

1

2

dZ2

dt
= RuEu +

1

A
RvEv ≤

(
|Ru|2 +

1

A
|Rv|2

)1/2

Z,

whence
dZ

dt
≤

(
|Ru|2 +

1

A
|Rv|2

)1/2

≤ |Ru|+
1

A1/2
|Rv| .

We integrate the last inequality from t1 to tn+1 and obtain

Z(tn+1) ≤ Z(t1) +

∫ tn+1

0

(
|Ru|+

1

A1/2
|Rv|

)
ds. (1.77)

Next, to bound the first integral above we observe that

1

A1/2

∫ tm+1

tm

|Rv|ds = A1/2

∫ tm+1

tm

|um+1 − uτ |

= A1/2|um+1 − um|
∫ tm+1

tm

tm+1 − s
τm

ds

=
τm

2
A1/2|um+1 − um|, t ∈ [tm, tm+1] , m = 1, . . . , n.

Similar argument is used to evaluate the second integral in (1.77)∫ tm+1

tm

|Ru|ds =

∫ tm+1

tm

|vm+1 − vτ | = |vm+1 − vm|
∫ tm+1

tm

tm+1 − s
τm

ds

=
τm

2

∣∣∣∣∣um+1 − um

τm
−
um − um−1

τm−1

∣∣∣∣∣ , t ∈ [tm, tm+1] , m = 1, . . . , n.

Combining these bounds leads to the desired result.

Remark 4. Comparing the a priori error estimate (1.68) with the a posteriori one (1.72) one
sees that the error estimator is essentially the same in both cases. Indeed, the a priori error
estimate contains the second and the third derivatives from the solution of problem (1.64).
Their discrete counterparts in the a posteriori error estimate (1.72) are the second and the
third discrete derivatives respectively.

Remark 5. To the best of our knowledge, there is no known upper bound for the refinement
error estimator

∑N−1
n=0 ηn from Lemma 12. Indeed, the upper bound from ([BS05]) is derived
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when the error is measured in absolutely different norm, namely

ê =

N−1∑
n=0

(
1

A

∣∣vn − u′(tn)
∣∣2 + |un − u(tn)|2 +A1/2

∣∣∣∣∣
∫ tn+1

tn
(u− uτ )(s)ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ tn+1

tn
(v − vτ )(s)ds

∣∣∣∣∣
)1/2

. (1.78)

A posteriori error estimates in space and time

We start from the fully discretized problem of initial boundary-value problem for
the wave equation (1.59). The Euler backward method consist in seeking unh ∈ Vh for
n = 1, . . . , N such that

(
un+1
h − unh
τn

−
unh − u

n−1
h

τn−1
, ϕh

)
+ τn

(
∇un+1

h ,∇ϕh
)

= 0,

∀ϕh ∈ Vh, n = 1, . . . , N − 1,(
u1
h − u0

h

τ0
, ϕh

)
= τ0

(
∇u0

h,∇ϕh
)

+ (v0
h, ϕh), ∀ϕh ∈ Vh,

(1.79)

and u0
h, v

0
h are some approximations to u0, v0.

We now present the a posteriori bound for the fully discretized problem (1.79)
following [BS05]. The a posteriori error estimate admits the decoupling of the error
committed in the temporal and spatial discretization.

We suppose that the time discretization is such that the time regularity parameter

στ = max
1≤m≤N−1

τm

τm−1
,

is bounded. The a posteriori error estimate in time is based on the technique pre-
sented above.

Local error indicator associated with the spatial discretization defined by

ηn,K = hK

∥∥∥∥∥un+1
h − unh
τn

−
unh − u

n−1
h

τn−1

∥∥∥∥∥
L2(K)

+
τn

2

∑
E∈EK

h
1/2
E ‖

[
n · ∇un+1

h

]
‖L2(E). (1.80)

Note that the space error estimator is similar to the standard residual-based bound
for elliptic equation, see Proposition 2.

Lemma 13. Let u be the solution of problem (1.59) and (unh)0≤n≤N be the discrete solution
given by backward Euler scheme (1.79). Then the following a posteriori error estimate holds
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for all tn+1, n = 1, . . . , N − 1:∥∥∥∥∥vn+1
h −

∂u

∂t
(tn+1)

∥∥∥∥∥
H−1(Ω)

+
∥∥un+1

h − u(tn+1)
∥∥
L2(Ω)

(1.81)

≤ c

 n∑
m=1

ηm + (1 + στ )(n−m)

∑
K∈Th

η2
m,K

1/2
+ (1 + στ )nDτh

 ,

where the term Dτh, given by

Dτh = τ0 ‖∇u0‖L2(Ω) + τ2
0 ‖∇v0‖L2(Ω) +

∥∥u0 − u0
h

∥∥
L2(Ω)

+ τ0

∥∥v0 − v0
h

∥∥
L2(Ω)

+
∥∥v0 − v0

h

∥∥
H−1(Ω)

,

only depends on the data.

Remark 6. From the estimate (1.81) it is clear that there is a loss of optimality with respect
to τ : the loss grows linearly with n, where n is the counter of the time level tn. Moreover,
it’s certainly not optimal with respect to space. Indeed, the error

e =

∥∥∥∥∥vn+1
h −

∂u

∂t
(tn)

∥∥∥∥∥
H−1(Ω)

+
∥∥un+1

h − u(tn+1)
∥∥
L2(Ω)

,

is of order h2 while the estimator (1.81) gives only order h.

Remark 7. In Chapter 2 we shall present a posteriori error estimates for the wave equation
discretized in time by the Newmark method for the error measured in the alternative norm

u 7→ max
t∈[0,T ]

∥∥∥∥∥∂u∂t(t)
∥∥∥∥∥

2

L2(Ω)

+ |u(t)|2H1(Ω)

1/2

.

The motivation of our choice is to avoid in practice the computation ofH−1-norm of the error.
Nevertheless, the a posteriori error analysis from Chapters 2 can be easily extended for the
error measured in the Bernardi-Süli norm

u 7→ max
t∈[0,T ]

∥∥∥∥∥∂u∂t(t)
∥∥∥∥∥

2

H−1(Ω)

+ |u(t)|2L2(Ω)

1/2

.

Alternative a posteriori error estimates

We present two alternative space-time error estimates using the approach that was
developed for the Newmark time discretization (see Chapters 2, 3).
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Theorem 14. Let u be the solution of problem (1.59) and (unh)0≤n≤N be the discrete solution
given by backward Euler scheme (1.79). Then the following a posteriori error estimate holds

∥∥∥∥∥vnh − ∂u

∂t
(tn)

∥∥∥∥∥
2

H−1(Ω)

+ ||unh − u(tn)||2L2(Ω)

1/2

≤
(
‖v0
h − v0‖2L2(Ω) + |u0

h − u0|2H1(Ω)

)1/2

+ ηS(tN ) +
N−1∑
k=0

τkηT (tk), (1.82)

where the space indicator is defined by

ηS(tN ) = C1

N∑
n=0

τn

(∑
K∈Th

h2
K‖∂n+1/2vh‖2L2(K)

+
∑
E∈Eh

hE

(
‖[n · ∇unh]‖2L2(E) + ‖[n · ∇un+1

h ]‖2L2(E)

)) 1
2

, (1.83)

and the time error indicator is

ηT (tn) =
τn
2

(
C2|∂n+1/2uh|2H1(Ω) + ‖∂n+1/2vh‖L2(Ω)

)1/2
. (1.84)

Here C1, C2 are constants depending only on the mesh regularity.

Proof. In the following, we adopt the vector notation U(t, x) =

(
u(t, x)
v(t, x)

)
where

v = ∂u/∂t. Then, assuming f = 0, we have(
∂U

∂t
,Φ

)
+ (AU ,Φ) = 0, ∀Φ ∈ (H1

0 (Ω))2, (1.85)

where A =

(
0 −1
A 0

)
, A = −∆, i.e. (Au, v) = (∇u,∇v) and

(U ,Φ) =

((
u
v

)
,

(
ϕ
ψ

))
:= (u, ϕ) + (v, ψ).

Similarly, Euler scheme can be rewritten as(
Un+1
h −Un

h

τn
,Φh

)
+
(
AhUn+1

h ,Φh

)
= 0, ∀Φh ∈ V 2

h , (1.86)

where Un
h =

(
unh
vnh

)
, Ah =

(
0 −1
Ah 0

)
with (Ahuh, vh) = (∇uh,∇vh).
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The a posteriori analysis relies on an appropriate residual equation for the linear

reconstruction Uhτ =

(
uhτ
vhτ

)
. We define it for t ∈ [tn, tn+1], n = 1, . . . , N − 1 as

Uhτ (t) = Un+1
h + (t− tn+1)∂n+1/2Uh, (1.87)

so that we have the following differential equation(
∂Uhτ
∂t

,Φh

)
+ (AhUhτ ,Φh)

=
(
Ah
(
Uhτ −Un+1

h

)
,Φh

)
=
(
(t− tn+1)Ah∂n+1/2Uh,Φh

)
. (1.88)

Introduce the error between reconstructionUhτ and solutionU to problem (1.85)
:

E = Uhτ −U , (1.89)

or, component-wise

E =

(
Eu
Ev

)
=

(
uhτ − u
vhτ − v

)
.

Taking the difference between (1.86) and (1.85) we obtain the residual differential
equation for the error valid for t ∈ [tn, tn+1], n = 1, . . . , N − 1

(∂tE,Φ) + (AE,Φ) =

(
∂Uhτ

∂t
,Φ−Φh

)
+ (AUhτ ,Φ−Φh)

+

(
∂Uhτ

∂t
,Φh

)
+ (AhUhτ ,Φh) =

(
∂Uhτ

∂t
,Φ−Φh

)
+ (AUhτ ,Φ−Φh)

+
(
(t− tn+1)Ah∂n+1/2Uh,Φh

)
, ∀Φh ∈ V 2

h . (1.90)

Now we take Φ =

(
Eu

A−1Ev

)
, Φh =

(
PhEu

IhA
−1Ev

)
where Ph is defined in (1.3)

and Ih is a Scott-Zhang interpolation operator as before. Noting that (AE,Φ) = 0
and (

∂uhτ

∂t
− vhτ , Eu − PhEu

)
= 0,

we get(
Eu,

∂Eu

∂t

)
+

(
∂Ev

∂t
, A−1Ev

)
=

(
∂vhτ

∂t
, (I − Ih)A−1Ev

)
+
(
∇uhτ ,∇

(
(I − Ih)A−1Ev

))
+
(
(t− tn+1)∇∂n+1/2uh,∇IhA−1Ev

)
−
(
(t− tn+1)∂n+1/2vh, Eu

)
.
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Integrating in time from 0 to some t∗ ≥ 0 yields

1

2

(
||Eu||2L2(Ω) + ‖Ev‖2H−1(Ω)

)
(t∗) =

1

2

(
||Eu||2L2(Ω) + ‖Ev‖H−1(Ω)

)
(0)

+

∫ t∗

0

(
∂vhτ

∂t
, (I − Ih)A−1Ev

)
dt+

∫ t∗

0

(
∇uhτ ,∇

(
(I − Ih)A−1Ev

))
dt

+

N∑
n=0

∫ tn+1∧t∗

tn

(t− tn+1)
[(
∇∂n+1/2uh,∇IhA−1Ev

)
−
(
∂n+1/2vh, Eu

)]
dt

:= I + II + III. (1.91)

Let
Z(t) =

√
||Eu||2L2(Ω)

+ ‖Ev‖2H−1(Ω)
,

and assume that t∗ is the point in time where Z attains its maximum and t∗ ∈
(tn, tn+1] for some n.

We thus get for the first and second terms in (1.91) by integration by parts

I + II 6
∫ t∗

0

∑
K∈Th

∥∥∥∥∥∂vhτ∂t
+ ∆uhτ

∥∥∥∥∥
L2(K)

∥∥(I − Ih)A−1Ev
∥∥
L2(K)

dt

+
1

2

∫ t∗

0

∑
K∈Th

‖[n · ∇uhτ ]‖L2(∂K)

∥∥(I − Ih)A−1Ev
∥∥
L2(∂K)

dt.

By interpolation bounds∥∥(I − Ih)A−1Ev
∥∥
L2(K)

+ hK
1/2
∥∥(I − Ih)A−1Ev

∥∥
L2(∂K)

6 ChK
∣∣A−1Ev

∣∣
H1(ωK)

,

and Cauchy-Schwarz inequality we have

I + II 6 C

∫ t∗

0

(∑
K∈Th

h2
K

∥∥∥∥∥∂vτh∂t
+ ∆uhτ

∥∥∥∥∥
2

L2(K)

+
∑
E∈Eh

hE ‖[n · ∇uhτ ]‖2L2(E)

)1/2 ∣∣A−1Ev
∣∣
H1(Ω)

dt

6 C

N∑
n=0

τn

(∑
K∈Th

h2
K‖∂n+1/2vh‖2L2(K)

+
∑
E∈Eh

hE

(
‖[n · ∇unh]‖2L2(E) + ‖[n · ∇un+1

h ]‖2L2(E)

))1/2

Z(t∗). (1.92)

Indeed, at any time t∣∣A−1Ev
∣∣
H1(Ω)

≤ ‖Ev‖H−1(Ω) ≤ Z(t) ≤ Z(t∗).
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We turn now to the third term in (1.91)

III 6
N∑
n=0

τ2
n

2

[
|∂n+1/2uh|H1(Ω) max

t∈[tn,tn+1]

∣∣IhA−1Ev
∣∣
H1(Ω)

+ ‖∂n+1/2vh‖L2(Ω) max
t∈[tn,tn+1]

‖Eu‖L2(Ω)

]
≤

N∑
n=0

τ2
n

2

[
C|∂n+1/2uh|2H1(Ω) + ‖∂n+1/2vh‖2L2(Ω)

]1/2
Z(t∗). (1.93)

We have used here the bounds
∣∣IhA−1Ev

∣∣
H1(Ω)

≤ C
∣∣A−1Ev

∣∣
H1(Ω)

≤ ‖Ev‖H−1(Ω).
Inserting the estimates for integrals I + II and III into (1.91) we obtain (1.82).

Remark 8. The obtained error estimator is sharper then Bernardi-Süli estimator (1.81) in
the sense that its space estimator doesn’t depend on the counter of the time level n. However
it’s still not optimal with respect to the error in space.

Theorem 15. Let u be the solution of problem (1.59) and (unh)0≤n≤N be the discrete solution
given by backward Euler scheme (1.79). Then the following a posteriori error estimate holds

∣∣∣∣∣vnh − ∂u

∂t
(tn)

∣∣∣∣∣
2

H−1(Ω)

+ ||unh − u(tn)||2L2(Ω)

1/2

≤ (‖v0
h − v0‖2L2(Ω) + |u0

h − u0|2H1(Ω))
1/2

+ η̂S(tN ) +

N−1∑
k=0

τkηT (tk), (1.94)

where the time error indicator ηT is given by (1.84) and the space indicator is

η̂S(tN ) = C1 max
06n6N

[ ∑
K∈Th

h4
K‖∂n+1/2vh‖2L2(K)

+
∑
E∈Eh

h3
E

(
‖[n · ∇unh]‖2L2(E) + ‖[n · ∇un+1

h ]‖2L2(E)

)]1/2

+ C2

N−1∑
n=0

τn

∑
E∈Eh

h3
E |[n · ∇∂n+1/2uh]|2L2(E)

1/2

+ C3

N∑
n=1

τn + τn−1

2

 ∑
K∈Th

h4
K ||∂2

nvh||2L2(K)

1/2

. (1.95)

Here C1, C2, C3 are constants depending only on the mesh regularity.

Proof. We follow the proof of the first theorem until (1.91). We treat term III here as
before but propose new bounds for I + II . For this, we observe

Ev(t) = ∂tEu(t) + (t− tn+1)∂n+1/2vh, (1.96)
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for t ∈ [tn, tn+1]. Thus, the sum I + II in (1.91) can be rewritten as

I + II =

∫ t∗

0

(
∂vτh

∂t
, (I − Ih)A−1∂tEu

)
dt

+

∫ t∗

0

(
∇uhτ ,∇

(
(I − Ih)A−1∂tEu

))
dt

+
N∑
n=0

∫ tn+1∧t∗

tn

(t− tn+1)

[(
∂vhτ

∂t
, (I − Ih)A−1∂n+1/2vh

)
dt

+ (∇uhτ ,∇((I − Ih)A−1∂n+1/2vh))dt

]
= I1 + II1 + III1. (1.97)

We now integrate by parts with respect to time in the terms I1 + II1. Let us do it for
the first term:

I1 =
N∑
n=0

∫ tn+1∧t∗

tn

(
∂vhτ

∂t
,
∂

∂t
(Eu − IhEu)

)
dt

=

(
∂vhτ

∂t
, (I − Ih)A−1Eu

)
(t∗)−

(
∂vτh

∂t
, (I − Ih)A−1Eu

)
(0)

−
N∑
n=1

([
∂vhτ

∂t

]
tn

, (I − Ih)A−1Eu(tn)

)

−
N∑
n=0

∫ tn+1∧t∗

tn

(
∂2vhτ

∂t2
, (I − Ih)A−1Eu

)
dt. (1.98)

Here [·]tn denotes the jump with respect to time, i.e.

[w]tn = lim
t→t+n

w(t)− lim
t→t−n

w(t).

Using the same trick in the other terms we can finally write

I1 + II1 =

(
∂vhτ

∂t
, (I − Ih)A−1Eu

)
(t∗) +

(
∇uhτ ,∇(I − Ih)A−1Eu

)
(t∗)

−

(
∂vhτ

∂t
, (I − Ih)A−1Eu

)
(0)−

(
∇uhτ ,∇(I − Ih)A−1Eu

)
(0)

−
N∑
n=1

(
τ∗n∂

2
nvh, (I − Ih)A−1Eu(tn)

)
−

N∑
n=0

∫ tn+1∧t∗

tn

(
∇
∂uhτ

∂t
,∇(I − Ih)A−1Eu

)
dt.
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We have used here a simple expression for the jump of time of ∂vhτ/∂t[
∂vhτ

∂t

]
tn

= τn−1/2∂
2
nvh, (1.99)

and noted that uhτ is continuous in time and
∂2vhτ

∂t2
= 0 on (tn, tn+1).

Integration by parts element by element over Ω and interpolation estimates yield

I1 + II1

≤ C

 ∑
K∈Th

h4
K

∣∣∣∣∣
∣∣∣∣∣∂vhτ∂t

∣∣∣∣∣
∣∣∣∣∣
2

L2(K)

+
∑
E∈Eh

h3
E |[n · ∇uhτ ]|2L2(E)

1/2

(t∗)
∣∣A−1Eu

∣∣
H2(Ω)

(t∗)

+

 ∑
K∈Th

h4
K

∣∣∣∣∣
∣∣∣∣∣∂vhτ∂t

∣∣∣∣∣
∣∣∣∣∣
2

L2(K)

+
∑
E∈Eh

h3
E |[n · ∇uhτ ]|2L2(E)

1/2

(0)
∣∣A−1Eu

∣∣
H2(Ω)

(0)

+ C
N∑
n=1

τ∗n

 ∑
K∈Th

h4
K ||∂2

nvh||2L2(K)

1/2 ∣∣A−1Eu
∣∣
H2(Ω)

(tn)

+ C
N∑
n=0

τn

∑
E∈Eh

h3
E ||[n · ∇∂n+1/2uh]||L2(E)

1/2

max
t∈(tn,tn+1)

∣∣A−1Eu
∣∣
H2(Ω)

(t)

≤ Cη̂S(tN+1)Z(t∗),

We have used here the bounds∣∣A−1Eu
∣∣
H2(Ω)

(t) 6 C||Eu||L2(Ω)(t) 6 Z(t) 6 Z(t∗)

for all t ∈ [0, t∗].
We turn now to the third term in (1.97). Integration by parts element by element

gives

III1 6
N∑
n=0

∫ tn+1∧t∗

tn

(tn+1 − t)

[ ∑
K∈Th

h4
K

∣∣∣∣∣
∣∣∣∣∣∂vhτ∂t

∣∣∣∣∣
∣∣∣∣∣
2

L2(K)

+
∑
E∈Eh

h3
E ||[n · ∇uhτ ]||2L2(E)

]1/2 ∣∣A−1∂n+1/2vh
∣∣
H2(Ω)

dt

≤ Cη̂S(tN+1)

N∑
n=0

τ2
n

2
‖∂n+1/2vh‖L2(Ω) ≤ Cη̂S(tN+1)

N∑
n=0

tnηT (tn).
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We have thus obtained

Z(t∗)2 6 C

(
Z(0) + η̂S(tN+1) +

N∑
n=0

tnηT (tn)

)
Z(t∗)

+ Cη̂S(tN+1)

N∑
n=0

tnηT (tn).

This entails

Z(t∗) 6 C

(
Z(0) + η̂S(tN+1) +

N∑
n=0

tnηT (tn)

)
.

Remark 9. The obtained error estimator has a more complex structure than the original
Bernardi-Süli estimator (1.81), but it is of optimal second order with respect to the error in
space. Moreover, it doesn’t depend on the counter of the time level n.

1.3.2 A posteriori error estimates for the leap-frog method

It is well known that the Euler discretization is diffusive and thus rarely used for the
wave equation. In this subsection we show optimal order a posteriori error estimates
for general cosine-type second order methods [BDS85], [BD89] controlling the time
discretization error from [Geo+16]. However this error estimate derived only for the
case of constant time step and the possibility of extending this approach to the case
of non-constant time step remains yet to be seen.

The a posteriori error bound is derived for the error in L∞-in-time-energy-in-
space norm. It is possible to derive it for problem (1.64) with non-zero right-hand
side f(t) and positive definite, self-adjoint, linear operator A instead of a constant A
as in [Geo+16] ; nevertheless for the sake of brevity we formulate the error bound
for zero right-hand side and constant A ≥ 0. Following [Geo+16], in two-step cosine
method, for n = 1, . . . , N − 1, we seek approximations un+1 such that

∂2
nu+A

[
q1u

n+1 − 2p1u
n + q1u

n−1
]

= 0, (1.100)

and we set p1 = q1 − 1/2 for second order accuracy. The time step τ is supposed
to be constant. The approach is based on the rewriting the scheme as the one-step
system on staggered time grids and the using of the appropriate time reconstruction
adapted from [AMN06]. Indeed, the cosine methods (1.100) can be reformulated as
a system in two staggered grids. We introduce the auxiliary variable

vn+1/2 = ∂nu, n = 0, . . . , N − 1 (1.101)

and we set v−1/2 = 2v0 − v1/2. We define u−1 = u0 − τv−1/2 and introduce the
notation

∂n+1/2v = vn+1/2 − vn−1/2, n = 0, . . . , N − 1. (1.102)

We shall need the piecewise linear interpolant u : [0, T ] → R of the sequence
(un+1/2)−1≤n≤N−1, the piecewise linear interpolant ũ : [−τ, T ] → R of the sequence
(un)−1≤n≤N , the piecewise linear interpolant u : [0, tN−1] → R of the sequence



1.3. The wave equation 35

(vn)0≤n≤N−1 and the piecewise linear interpolant ṽ : [τ/2, tN−1/2] → R of the se-
quence (vn+1/2)−1≤n≤N−1. In what follows we use the notation

un+1/2 = u(tn+1/2),

vn = v(tn), n = 0, . . . , N − 1. (1.103)

We also define a piecewise constant midpoint interpolator Ĩ0 on (tn−1/2, tn+1/2) for
n = 0, . . . , N − 1 and a piecewise constant midpoint interpolator I0 on (tn−1, tn) for
n = 1, . . . , N − 1. Therefore we are ready to rewrite (1.100) as

dũ

dt
− I0v = Rv,

dṽ

dt
−AĨ0u = Ru, (1.104)

where

Ru(t) |(tn−1/2,tn+1/2] =
1− 4q1

4
A(un+1 − 2un + un+1),

Rv(t) |(tn,tn+1] = −
1

4
(vn+3/2 − 2vn+1/2 + vn−1/2). (1.105)

We introduce on each interval
(
tn−1/2, tn+1/2

]
, for n = 0, . . . , N − 1, the recon-

struction v̂ of ṽ by

v̂(t) := vn−1/2 +

∫ t

tn−1/2

(−Au+Ru)dt, (1.106)

and the reconstruction û of ũ by

û(t) := un−1 +

∫ t

tn−1

(v +Rv)dt, (1.107)

Lemma 16. Let u be the solution of (1.64). Then the following a posteriori error estimate
holds

max
t∈[0,tN ]

A |u− û|2 +

∣∣∣∣∣dudt − v̂
∣∣∣∣∣
2
 ≤ 2

A |u− û|2 +

∣∣∣∣∣dudt − v̂
∣∣∣∣∣
2
 (0)

+ 4

∫ tN

0

(
A |R2|2 + |R1|2

)
dt, (1.108)

with

R1 = −A(û− u)−Ru, (1.109)
R2 = v̂ − v −Rv. (1.110)

Remark 10. In Chapter 4 we present a numerical comparison between the time error esti-
mator (1.108) and the new alternative time error estimators proposed in Chapters 2, 3 in the
case of the Newmark time discretization with two choices of coefficients: β = 1/4, γ = 1/2
and β = 0, γ = 1/2.
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1.3.3 A posteriori error estimator for the finite element discretization of
the wave equation

We now present the space isotropic error estimates in the L2(0, T ;H1(Ω)) norm for
the semi discretized wave equation (1.63) from [Pic10]. The approach is based on
the elliptic reconstruction technique introduced in [MN03] for parabolic problems.
More precisely, given uh solution of (1.63) we introduce the elliptic reconstruction
U ∈ L2(0, T ;H1

0 (Ω)) defined by∫
Ω

∂2uh

∂t2
ϕ+

∫
Ω
∇U · ∇ϕ =

∫
Ω
fϕ ∀ϕ ∈ H1

0 (Ω), (1.111)

Then, the error u − uh can be estimated by controlling u − U and U − uh. Next the
approach to isotropic finite elements as above is used (see Lemma 1).

Lemma 17. Let u be the solution of the wave equation (1.62) and uh be the solution of the
semi discretized problem (1.63). There exist some constants C1, C2 such that

∫ T

0

∫
Ω
|∇(u− uh)|2 ≤ C1

∫ T

0

∑
K∈Th

η2
K,1 +

∑
K∈Th

η2
K,3


+ C2

∫ T

0

∑
K∈Th

η2
K,2 +

∑
K∈Th

η2
K,4

 . (1.112)

where η2
K,1 is defined by

η2
K,1 = h4

K

∥∥∥∥∥f − ∂2uh

∂t2

∥∥∥∥∥
2

L2(K)

+ h3
K ‖[n · ∇uh]‖2L2(∂K) , (1.113)

η2
K,2 is defined by

η2
K,2 = h4

K

∥∥∥∥∥∂2f

∂t2
−
∂4uh

∂t4

∥∥∥∥∥
2

L2(K)

+ h3
k

∥∥∥∥∥
[
n · ∇

∂2uh

∂t2

]∥∥∥∥∥
2

L2(∂K)

, (1.114)

η2
K,3 is defined by

η2
K,3 = h4

K

∥∥∥∥∥f(0)−
∂2uh

∂t2
(0)

∥∥∥∥∥
2

L2(K)

+ h3
K ‖[n · ∇uh(0)]‖2L2(∂K) +

h4
K

ρ2
K

|uh(0)|2H2(K) ,

(1.115)

and η2
K,4 is defined by

η2
K,4 = h4

K

∥∥∥∥∥∂f∂t (0)−
∂3uh

∂t3
(0)

∥∥∥∥∥
2

L2(K)

+ h3
k

∥∥∥∥∥
[
n · ∇

∂uh

∂t
(0)

]∥∥∥∥∥
2

L2(∂K)

+
h4
K

ρ2
K

|vh(0)|2H2(K) . (1.116)
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We now recall briefly from [Pic10] the main ideas of deriving the a posteriori error
bound from above. The proof is based on the fact that u− uh = u− U + U − uh and
thus the error u− uh cab be estimated by controlling u− U and U − uh. We have∫ T

0

∫
Ω
|∇(u− uh)|2 ≤ 2

∫ T

0

∫
Ω
|∇(u− U)|2

+ 2

∫ T

0

∫
Ω
|∇(U − uh)|2 = I + II. (1.117)

For the second term in (1.117) from the definition of the elliptic reconstruction (1.111)
and from the scheme (1.63) we have

∫
Ω
|∇(U − uh)|2 =

∫
Ω

(
f −

∂2uh

∂t2

)
(U − uh − ϕh)

−
∫

Ω
∇uh · ∇(U − uh − ϕh), ∀ϕh ∈ Vh.

Thus, using the standard techniques of integration by parts over each triangleK and
the interpolation estimates of Proposition 2 it’s easy to show that∫ T

0

∫
Ω
|∇(U − uh)|2 ≤ C1

∫ T

0

∑
K∈Th

η2
K,1.

The first term in (1.117) can be estimated as

∫ T

0

∫
Ω
|∇(u− U)|2 ≤ 2T

∫
Ω

∣∣∣∣∣ ∂∂t(u− U)(0)

∣∣∣∣∣
2

+ 2T

∫
Ω
|∇(u− U)(0)|2

+ T 2

∫ T

0

∫
Ω

∣∣∣∣∣ ∂2

∂t2
(U − uh)

∣∣∣∣∣
2

. (1.118)

It follows from the definition of the elliptic reconstruction (1.111) derivated twice
with respect to time. Next the technique from [MN03] and isotropic interpolation
results are used and thus the constants C1, C2 in the estimate (1.112) depend on the
aspect ratio.

Remark 11. We present also analogous anisotropic error estimate based on the interpolation
estimates of Proposition 3.

Lemma 18. Let u be the solution of the wave equation (1.62) and uh be the solution of the
semi discretized problem (1.63). There exists a constant C1 independent of the mesh size and
aspect ratio and a constant C2 such that

∫ T

0

∫
Ω
|∇(u− uh)|2 ≤ C1

∫ T

0

∑
K∈Th

η2
K,1 +

∑
K∈Th

η2
K,3


+ C2

∫ T

0

∑
K∈Th

η2
K,2 +

∑
K∈Th

η2
K,4

 . (1.119)



38 Chapter 1. State of the art

where η2
K,1 is defined by

η2
K,1 =

∥∥∥∥∥f − ∂2uh

∂t2

∥∥∥∥∥
L2(K)

+
1

2λ
1/2
2,K

‖ [n · ∇uh] ‖L2(∂K)

 × ωK(U − uh), (1.120)

η2
K,2, η2

K,4 are defined by (1.114) and (1.116) respectively. And η2
K,3 is defined by

η2
K,3 =

(∥∥∥∥∥f(0)−
∂2uh

∂t2
(0)

∥∥∥∥∥
L2(K)

+
1

2λ
1/2
2,K

‖ [n · ∇uh(0)] ‖L2(∂K)

)
× ωK((u− U) (0))

+
λ4

1,K

λ2
2,K

∫
K

(rT1,KH(u0)r1,K)2 + 2λ2
1,K

∫
K

(rT1,KH(u0)r2,K)2

+ λ2
2,K

∫
K

(rT2,KH(u0)r2,K)2, (1.121)

Herein above H(v) is the Hessian matrix

H(v) =


∂2v

∂x2
1

∂2v

∂x1∂x2

∂2v

∂x1∂x2

∂2v

∂x2
2

 . (1.122)

Remark 12. In practice in [Pic10] only the first term from the right-hand side in (1.112)∫ T

0

∑
K∈Th

η2
K,1

is used as error indicator. The terms∫ T

0

∑
K∈Th

η2
K,2 +

∑
K∈Th

η2
K,4

are of higher order and the term ∑
K∈Th

η2
K,3

is neglected due to the incorrect behavior at the numerical tests.
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Chapter 2

Time and space a posteriori error
estimators for the wave equation
discretized in time by a second
order scheme

The motivation of this chapter is to obtain a posteriori error estimates of optimal or-
der in time and space for the fully discrete wave equation in energy norm discretized
with the Newmark scheme in time (equivalent to a cosine method as presented in
[Geo+16]) and with finite elements in space. We adopt the particular choice for the
parameters in the Newmark scheme, namely β = 1/4, γ = 1/2 [BW76]. This choice
of parameters is popular since it provides a conservative method with respect to
the energy norm. Another interesting feature of this variant of the method, which
is in fact essential for our analysis, is the fact that the method can be reinterpreted
as the Crank-Nicolson discretization of the reformulation of the governing equation
in the first-order system, as in [Bak76]. We are thus able to use the techniques stem-
ming from a posteriori error analysis for the Crank-Nicolson discretization of the heat
equation in [LPP09], based on a piecewise quadratic polynomial in time reconstruc-
tion of the numerical solution. This leads to optimal a posteriori error estimate in
time and also allows us to easily recover the estimates in space. The resulting esti-
mates are referred to as the 3-point estimator since our quadratic reconstruction is
drawn through the values of the discrete solution at 3 points in time. The reliability
of 3-point estimator is proved theoretically for general regular meshes in space and
non-uniform meshes in time. It is also illustrated by numerical experiments.

We do not provide a proof of the optimality (efficiency) of our error estimators in
space and time. However, we are able to prove that the time estimator is of optimal
order at least on sufficiently smooth solutions, quasi-uniform meshes in space and
uniform meshes in time. The most interesting finding of this analysis is the crucial
importance of the way in which the initial conditions are discretized (elliptic pro-
jections): a straightforward discretization, such as the nodal interpolation, may ruin
the error estimators while providing quite acceptable numerical solution. Numer-
ical experiments confirm these theoretical findings and demonstrate that our error
estimators are of optimal order in space and time, even in situation not accessible
to the current theory (non quasi-uniform meshes, not constant time steps). Thus the
estimators can be used to construct an adaptive algorithm both in time and in space.
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Chapter 2. Time and space a posteriori error estimators for the wave equation
discretized in time by a second order scheme

The outline of the chapter is as follows. We present the governing equations, the
discretization and a priori error estimates in Section 2.1. In Section 2.2, a posteriori
error estimate is derived and some considerations concerning the optimality of time
estimators are given. Numerical results are analyzed in Section 2.4.
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2.1 The Newmark scheme for the wave equation and a priori error

analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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2.1 The Newmark scheme for the wave equation and a priori
error analysis

We consider initial boundary-value problem for the wave equation (1.59) and its
weak formulation (1.62). We discretize (1.62) in space using the finite element method
and in time using an appropriate marching scheme. As was already mentioned in
Section 1, the finite element discretization of (1.62) is to find uh ∈ H2(0, t;Vh) such
that ∫

Ω

∂2uh

∂t2
ϕh +

∫
Ω
∇uh · ∇ϕh =

∫
Ω
fϕh, ∀ϕh ∈ Vh, (2.1)

and uh(0) = Îhu0,
∂uh

∂t
(0) = Îhv0 where Îh is some interpolant. Let us introduce a

subdivision of the time interval [0, T ]

0 = t0 < t1 < · · · < tN = T,

with time steps τn = tn+1 − tn for n = 0, . . . , N − 1 and τ = max
0≤n≤N−1

τn . Following

[Bak76], by applying Crank-Nicolson discretization to both equations in (1.60) we
get a second order in time scheme. The fully discretized method is as follows: taking
u0
h, v

0
h ∈ Vh as some approximations to u0, v0 compute unh, v

n
h ∈ Vh for n = 0, . . . , N−1

from the system

un+1
h − unh
τn

−
vn+1
h + vnh

2
= 0, (2.2)(

vn+1
h − vnh
τn

, ϕh

)
+

(
∇
un+1
h + unh

2
,∇ϕh

)
=

(
fn+1 + fn

2
, ϕh

)
, ∀ϕh ∈ Vh. (2.3)
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As before, fn is an abbreviation for f(·, tn), but not for unh or vnh .
Note that we can eliminate vnh from (2.2)-(2.3) and rewrite the scheme (2.2)-(2.3)

in terms of unh only. This results in the following method: given approximations
u0
h, v

0
h ∈ Vh of u0, v0 compute u1

h ∈ Vh from(
u1
h − u0

h

τ0
, ϕh

)
+

(
∇
τ0(u1

h + u0
h)

4
,∇ϕh

)
=
(
v0
h +

τ0

4
(f1 + f0), ϕh

)
,

∀ϕh ∈ Vh, (2.4)

and then compute un+1
h ∈ Vh for n = 1, . . . , N − 1 from equation(

un+1
h − unh
τn

−
unh − u

n−1
h

τn−1
, ϕh

)
+

(
∇
τn(un+1

h + unh) + τn−1(unh + un−1
h )

4
,∇ϕh

)

=

(
τn(fn+1 + fn) + τn−1(fn + fn−1)

4
, ϕh

)
, ∀ϕh ∈ Vh.

(2.5)

This equation is derived by multiplying (2.3) by τn/2, doing the same at the previous
time step, taking the sum of the two results and observing

vn+1
h − vn−1

h

2
=
vn+1
h − vnh

2
+
vnh − v

n−1
h

2
=
un+1
h − unh
τn

−
unh − u

n−1
h

τn−1
,

by (2.2).
We have thus recovered the Newmark scheme [New59a; RT83] with coefficients

β =
1

4
, γ =

1

2
as applied to the wave equation (1.59). Note that the presentation of this

scheme in [New59a] and in the subsequent literature on applications in structural
mechanics is a little bit different, but the present form (2.4)-(2.5) can be found, for
example, in [RT83]. It is easy to see that for any u0

h, v
0
h ∈ Vh, both schemes (2.2)-(2.3)

and (2.4)-(2.5) provide the same unique solution unh, v
n
h ∈ Vh for n = 1, . . . , N . In

the case of scheme (2.4)-(2.5), vnh can be reconstructed from unh recursively with the
formula

vn+1
h = 2

un+1
h − unh
τn

− vnh . (2.6)

In this chapter we shall use the following notations

u
n+1/2
h :=

un+1
h + unh

2
, ∂n+1/2uh :=

un+1
h − unh
τn

, ∂nuh :=
un+1
h − un−1

h

τn + τn−1
, (2.7)

∂2
nuh :=

1

τn−1/2

(
un+1
h − unh
τn

−
unh − u

n−1
h

τn−1

)
with τn−1/2 :=

τn + τn−1

2
.

We apply this notations to all quantities indexed by a superscript, so that, for exam-
ple, fn+1/2 = (fn+1 + fn)/2. We also denote u(x, tn), v(x, tn) by un, vn so that, for
example, un+1/2 =

(
un+1 + un

)
/2 = (u(x, tn+1) + u(x, tn)) /2.
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We turn now to a priori error analysis for the scheme (2.2)-(2.3). We shall measure
the error in the following norm

u 7→ max
t∈[0,T ]

∥∥∥∥∥∂u∂t(t)
∥∥∥∥∥

2

L2(Ω)

+ |u(t)|2H1(Ω)

1/2

. (2.8)

Here and in what follows, we use the notations u(t) and
∂u

∂t
(t) as a shorthand for,

respectively, u(·, t) and
∂u

∂t
(·, t). The norms and semi-norms in Sobolev spacesHk(Ω)

are denoted, respectively, by ‖ · ‖Hk(Ω) and | · |Hk(Ω). We call (2.8) the energy norm
referring to the underlying physics of the studied phenomenon. Indeed, the first
term in (2.8) may be assimilated to the kinetic energy and the second one to the
potential energy.

Note that a priori error estimates for scheme (2.2)-(2.3) can be found in [Bak76;
Dup73; RT83]. We are going to construct a priori error estimates following the ideas
of [Bak76] but we measure the error in a different norm, namely the energy norm
(2.8), and present the estimate in a slightly different manner, foreshadowing the up-
coming a posteriori estimates.

Theorem 19. Let u be a smooth solution of the wave equation (1.59) and unh, vnh be the
discrete solution of the scheme (2.2)-(2.3). If u0 ∈ H2(Ω), v0 ∈ H1(Ω) and the approxi-
mations to the initial conditions are chosen such that ‖v0

h − v0‖L2(Ω) ≤ Ch|v0|H1(Ω) and
|u0
h − u0|H1(Ω) ≤ Ch|u0|H2(Ω), then the following a priori error estimate holds

max
0≤n≤N

∥∥∥∥∥vnh − ∂u

∂t
(tn)

∥∥∥∥∥
2

L2(Ω)

+ |unh − u(tn)|2H1(Ω)

1/2

≤ Ch
(
|v0|H1(Ω) + |u0|H2(Ω)

)
+ C

N−1∑
n=0

τ2
n

(∫ tn+1

tn

∣∣∣∣∣∂3u

∂t3

∣∣∣∣∣
H1(Ω)

dt

+

∫ tn+1

tn

∥∥∥∥∥∂4u

∂t4

∥∥∥∥∥
L2(Ω)

dt

)
+ Ch

(∫ tN

t0

∣∣∣∣∣∂2u

∂t2

∣∣∣∣∣
H1(Ω)

dt+
N∑
n=0

τ ′n

∣∣∣∣∣∂u∂t(tn)

∣∣∣∣∣
H2(Ω)

+

∣∣∣∣∣∂u∂t(tN )

∣∣∣∣∣
H1(Ω)

+ |u(tN )|H2(Ω)

)
, (2.9)

with a constant C > 0 depending only on the regularity of the mesh Th. We have set here
τ ′n = τn−1/2 for 1 < n < N − 1 and τ ′0 = τ0, τ ′N = τN .

Proof. Let us introduce enu = unh − Πhu
n and env = vnh − Ihv

n where Πh is the H1
0 -

orthogonal projection operator defined in (1.3) and Ih is the Scott-Zhang interpola-
tion operator as before.
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Observe that for ϕh, ψh ∈ Vh the following equations hold(
∇∂n+1/2eu,∇ϕh

)
−
(
∇en+1/2

v ,∇ϕh
)

= −
(
∇
(
∂n+1/2u− Ihvn+1/2

)
,∇ϕh

)
, (2.10)

(
∂n+1/2ev, ψh

)
+
(
∇en+1/2

u ,∇ψh
)

=

((
∂2u

∂t2

)n+1/2

− Ih
(
∂n+1/2v

)
, ψh

)
. (2.11)

The last equation is a direct consequence of (2.3) together with the governing equa-
tion (1.59) evaluated at times tn and tn+1. In accordance with the conventions above,
we have denoted here(

∂2u

∂t2

)n+1/2

:=
1

2

(
∂2u

∂t2
(tn) +

∂2u

∂t2
(tn+1)

)
.

Equation (2.10) is obtained from (2.2) taking the gradient of both sides, multiplying
by ∇ϕh and integrating over Ω.

Putting ϕh = e
n+1/2
u and ψh = e

n+1/2
v and taking the sum of (2.10)–(2.11) yields

|en+1
u |2H1(Ω) − |e

n
u|2H1(Ω) + ‖en+1

v ‖2L2(Ω) − ‖e
n
v‖2L2(Ω)

2τn
=−

(
∇Rn1 ,∇en+1/2

u

)
(2.12)

+
(
Rn2 , e

n+1/2
v

)
,

with

Rn1 = ∂n+1/2u− Ihvn+1/2 and Rn2 =

(
∂2u

∂t2

)n+1/2

− Ih
(
∂n+1/2v

)
.

Set
En =

(
|enu|

2
H1(Ω) + ‖env‖

2
L2(Ω)

)1/2
,

so that equality (2.12) with Cauchy-Schwarz inequality entails

(En+1)2 − (En)2

2τn
≤
(
|Rn1 |2H1(Ω) + ‖Rn2‖2L2(Ω)

)1/2 En+1 + En

2
,

which implies
En+1 − En ≤ τn

(
|Rn1 |H1(Ω) + ‖Rn2‖L2(Ω)

)
.

Summing this over n from 0 to N − 1 gives

(|eNu |2H1(Ω) + ‖eNv ‖2L2(Ω))
1/2 ≤ (|e0

u|2H1(Ω) + ‖e0
v‖2L2(Ω))

1/2 (2.13)

+

N−1∑
n=0

τn(|Rn1 |H1(Ω) + ‖Rn2‖L2(Ω)).
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We have the following estimates for Rn1 and Rn2

|Rn1 |H1(Ω) ≤ Cτn
∫ tn+1

tn

∣∣∣∣∣∂3u

∂t3

∣∣∣∣∣
H1(Ω)

dt (2.14)

+ Ch

∣∣∣∣∣∂u∂t (tn)

∣∣∣∣∣
H2(Ω)

+

∣∣∣∣∣∂u∂t (tn+1
)∣∣∣∣∣
H2(Ω)

 ,

‖Rn2‖L2(Ω) ≤ Cτn
∫ tn+1

tn

∥∥∥∥∥∂4u

∂t4

∥∥∥∥∥
L2(Ω)

dt+ C
h

τn

∫ tn+1

tn

∣∣∣∣∣∂2u

∂t2

∣∣∣∣∣
H1(Ω)

dt. (2.15)

The proof of (2.14)–(2.15) is quite standard, but tedious. For brevity, we provide
here only the proof of estimate (2.15): we rewrite the definition of Rn2 recalling that
v = ∂u/∂t and using the Taylor expansion around t = tn+1/2 as follows

Rn2 =
1

2

(
∂2u

∂t2
(tn+1) +

∂2u

∂t2
(tn)

)
− 1

τn

(
∂u

∂t
(tn+1)−

∂u

∂t
(tn)

)

+
1

τn
(I − Ih)

(
∂u

∂t
(tn+1)−

∂u

∂t
(tn)

)
=

∫ tn+1

tn+1/2

(
tn+1 − t

2
− (tn+1 − t)2

2τn

)
∂4u

∂t4
dt

−
∫ tn+1/2

tn

(
tn − t

2
+

(tn − t)2

2τn

)
∂4u

∂t4
dt+

1

τn
(I − Ih)

∫ tn+1

tn

∂2u

∂t2
dt.

Taking the L2(Ω) norm on both sides and applying the projection error estimates
(1.5) we obtain (2.15).

Substituting (2.14)–(2.15) into (2.13) yields(∣∣eNu ∣∣2H1(Ω)
+
∥∥eNv ∥∥2

L2(Ω)

)
1/2 ≤

(∣∣e0
u

∣∣2
H1(Ω)

+
∥∥e0

v

∥∥2

L2(Ω)

)1/2

+ C
N−1∑
n=0

τ2
n

∫ tn+1

tn

∣∣∣∣∣∂3u

∂t3

∣∣∣∣∣
H1(Ω)

dt+

∫ tn+1

tn

∥∥∥∥∥∂4u

∂t4

∥∥∥∥∥
L2(Ω)

dt


+ Ch

∫ tN

0

∣∣∣∣∣∂2u

∂t2

∣∣∣∣∣
H1(Ω)

dt+ Ch
N∑
n=0

τ ′n

∣∣∣∣∣∂u∂t(tn)

∣∣∣∣∣
H2(Ω)

.

Applying the triangle inequality and estimate (1.5) in the above inequality we get∥∥∥∥∥vNh − ∂u

∂t
(tN )

∥∥∥∥∥
2

L2(Ω)

+
∣∣uNh − u(tN )

∣∣2
H1(Ω)

1/2

≤
(∣∣eNu ∣∣2H1(Ω)

+
∥∥eNv ∥∥2

L2(Ω)

)1/2

+

(∥∥∥∥(I − Ih)
∂u

∂t
(tN )

∥∥∥∥2

L2(Ω)

+ |(I −Πh)u(tN )|2H1(Ω)

)1/2

. (2.16)

which implies (2.9) since we can safely assume that the maximum of the error in
(2.9) is attained at the final time tN (if not, it suffices to redeclare the time where the
maximum is attained as tN ).

Remark 13. Estimate (2.9) is of order h in space which is due to the the presence ofH1 term
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in the norm in which we measure the error. One sees easily that essentially the proof above
gives the estimate of order h2, multiplied by the norms of the exact solution in more regular
spaces, if the target norm is changed to

max
0≤n≤N

∥∥∥∥∥vnh − ∂u

∂t
(tn)

∥∥∥∥∥
L2(Ω)

.

One would rely then on the estimate

‖v −Πhv‖L2(Ω) ≤ Ch
2|v|H2(Ω),

for the orthogonal projection error and one would obtain∥∥∥∥∥vNh − ∂u

∂t
(tN )

∥∥∥∥∥
L2(Ω)

≤
∥∥v0

h − v0

∥∥2

L2(Ω)
+ Ch2 |v0|H2(Ω) (2.17)

+
N−1∑
n=0

τ2
n

(∫ tn+1

tn

∣∣∣∣∂3u

∂t3

∣∣∣∣
H1(Ω)

dt+

∫ tn+1

tn

∥∥∥∥∂4u

∂t4

∥∥∥∥
L2(Ω)

dt

)

+ Ch2

(∫ tN

t0

∣∣∣∣∂2u

∂t2

∣∣∣∣
H2(Ω)

dt+

∣∣∣∣∂u∂t (tN )

∣∣∣∣
H2(Ω)

)
.

2.2 A posteriori error estimates for the wave equation in the
“energy” norm

Our aim here is to derive a posteriori bounds in time and space for the error measured
in the norm (2.8) and discuss some considerations about upper bound for a posteriori
error estimator in time.

2.2.1 The 3-point a posteriori error estimator: upper bound for the error

The basic technical tool in deriving time error estimator is the piecewise quadratic
(in time) reconstruction of the discrete solution, already used in [LPP09] in a similar
context, see Section 1.

Definition 2.2.1. Let unh be the discrete solution given by the scheme (2.5). Then, the piece-
wise quadratic reconstruction ũhτ (t) : [0, T ]→ Vh is constructed as the continuous in time
function that is equal on [tn, tn+1], n ≥ 1, to the quadratic polynomial in t that coincides
with un+1

h (respectively unh, un−1
h ) at time tn+1 (respectively tn, tn−1). Moreover, ũhτ (t) is

defined on [t0, t1] as the quadratic polynomial in t that coincides with u2
h (respectively u1

h,
u0
h) at time t2 (respectively t1, t0). Similarly, we introduce piecewise quadratic reconstruc-

tion ṽhτ (t) : [0, T ] → Vh based on vnh defined by (2.6) and f̃τ (t) : [0, T ] → L2(Ω) based on
f(tn, ·).

Our quadratic reconstructions ũhτ , ṽhτ are thus based on three points in time
(normally looking backwards in time, with the exemption of the initial time slab
[t0, t1]). This is why the error estimator derived in the following theorem using Def-
inition 2.2.1 will be referred to as the 3-point estimator.
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Theorem 20. The following a posteriori error estimate holds between the solution u of the
wave equation (1.59), or equivalently (1.60), and the discrete solution unh given by (2.4),
(2.5) for all tn, 0 ≤ n ≤ N with vnh given by (2.6):

∥∥∥∥∥vnh − ∂u

∂t
(tn)

∥∥∥∥∥
2

L2(Ω)

+ |unh − u(tn)|2H1(Ω)

1/2

≤
(∥∥v0

h − v0

∥∥2

L2(Ω)
+
∣∣u0
h − u0

∣∣2
H1(Ω)

)1/2

+ ηS(tn) +

n∑
k=1

τk−1ηT (tk−1) +

∫ tn

0
‖f − f̃τ‖L2(Ω)dt. (2.18)

The error indicator in time for k = 1, . . . , N − 1 is

ηT (tk) =

(
1

12
τ2
k +

1

8
τk−1τk

)(∣∣∂2
kvh
∣∣
H1(Ω)

+
∥∥∥∂2

kfh − zkh
∥∥∥2

L2(Ω)

)1/2

, (2.19)

where zkh is such that (
zkh, ϕh

)
= (∇∂2

kuh,∇ϕh), ∀ϕh ∈ Vh, (2.20)

and

ηT (t0) =

(
5

12
τ2

0 +
1

2
τ1τ0

)(∣∣∂2
1vh
∣∣
H1(Ω)

+
∥∥∂2

1fh − z1
h

∥∥2

L2(Ω)

)1/2
. (2.21)

The space indicator is defined by

ηS(tn) = C1 max
06t6tn

[ ∑
K∈Th

h2
K

∥∥∥∥∂ṽhτ∂t
−∆ũhτ − f

∥∥∥∥2

L2(K)

+
∑
E∈Eh

hE |[n · ∇ũhτ ]|2L2(E)

]1/2

+C2

n−1∑
m=0

∫ tm+1

tm

[ ∑
K∈Th

h2
K

∥∥∥∥∂2ṽhτ
∂t2

−∆
∂ũhτ
∂t
− ∂f

∂t

∥∥∥∥2

L2(K)

+
∑
E∈Eh

hE

∥∥∥∥[n · ∇∂ũhτ∂t

]∥∥∥∥2

L2(E)

]1/2

dt

+C3

n−1∑
m=1

τm−1

 ∑
K∈Th

h2
K

∥∥∂2
mvh − ∂2

m−1vh
∥∥2

L2(K)

1/2

. (2.22)

here C1, C2, C3 are constants depending only on the mesh regularity, [·] stands for a jump
on an edge E ∈ Eh, and ũhτ , ṽhτ are given by Definition 2.2.1.

Proof. In the following, we adopt the vector notation

U(t, x) =

(
u(t, x)
v(t, x)

)
,
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where v = ∂u/∂t. Note that the first equation in (1.60) implies that(
∇
∂u

∂t
,∇ϕ

)
− (∇v,∇ϕ) = 0, ∀ϕ ∈ H1

0 (Ω),

by taking its gradient, multiplying it by ∇ϕ and integrating over Ω. Thus, system
(1.60) can be rewritten in the vector notations as

b

(
∂U

∂t
,Φ

)
+ (A∇U,∇Φ) = b(F,Φ), ∀Φ ∈ (H1

0 (Ω))2, (2.23)

where A =

(
0 −1
1 0

)
, F =

(
0
f

)
and

b(U,Φ) = b

((
u
v

)
,

(
ϕ
ψ

))
:= (∇u,∇ϕ) + (v, ψ).

Similarly, Newmark scheme (2.2)–(2.3) can be rewritten as

b

(
Un+1
h − Unh
τn

,Φh

)
+

(
A∇

Un+1
h + Unh

2
,∇Φh

)
= b

(
Fn+1/2,Φh

)
, ∀Φh ∈ V 2

h ,

(2.24)

where Unh =

(
unh
vnh

)
and Fn+1/2 =

(
0

fn+1/2

)
.

The a posteriori analysis relies on an appropriate residual equation for the quadra-

tic reconstruction Ũhτ =

(
ũhτ
ṽhτ

)
. From the definition of the quadratic reconstruction

Ũhτ we have for t ∈ [tn, tn+1], n = 1, . . . , N − 1

Ũhτ (t) = Un+1
h + (t− tn+1)∂n+1/2Uh +

1

2
(t− tn+1)(t− tn)∂2

nUh, (2.25)

so that, after some simplifications,

b

(
∂Ũhτ
∂t

,Φh

)
+ (A∇Ũhτ ,∇Φh) = b

(
(t− tn+1/2)∂2

nUh + Fn+1/2,Φh

)
+

(
(t− tn+1/2)A∇∂n+1/2Uh +

1

2
(t− tn+1)(t− tn)A∇∂2

nUh,∇Φh

)
. (2.26)

Consider now (2.24) at time steps n and n − 1. Subtracting one from another and
dividing by τn−1/2 yields

b
(
∂2
nUh,Φh

)
+ (A∇∂nUh,∇Φh) = b (∂nF,Φh) ,

or
b
(
∂2
nUh,Φh

)
+
(
A∇

(
∂n+1/2Uh −

τn−1

2
∂2
nUh

)
,∇Φh

)
= b (∂nF,Φh) ,
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so that (2.26) simplifies to

b

(
∂Ũhτ
∂t

,Φh

)
+
(
A∇Ũhτ ,Φh

)
=
(
pnA∇∂2

nUh,∇Φh

)
+ b

((
t− tn+1/2

)
∂nF + Fn+1/2,Φh

)
=
(
pnA∇∂2

nUh,∇Φh

)
+ b

(
F̃τ − pn∂2

nF,Φh

)
, (2.27)

where

pn =
τn−1

2
(t− tn+1/2) +

1

2
(t− tn+1)(t− tn), (2.28)

F̃τ (t) = Fn+1
h + (t− tn+1)∂n+1/2F +

1

2
(t− tn+1)(t− tn)∂2

nF.

Introduce the error between reconstruction Ũhτ and solution U to problem (2.23)
:

E = Ũhτ − U, (2.29)

or, component-wise

E =

(
Eu
Ev

)
=

(
ũhτ − u
ṽhτ − v

)
.

Taking the difference between (2.27) and (2.23) we obtain the residual differential
equation for the error valid for t ∈ [tn, tn+1] with n = 1, . . . , N − 1

b(∂tE,Φ) + (A∇E,∇Φ) = b

(
∂Ũτh

∂t
− F,Φ− Φh

)
+
(
A∇Ũτh,∇(Φ− Φh)

)
+
(
pnA∇∂2

nUh,∇Φh

)
+ b

(
F̃τ − F − pn∂2

nF,Φh

)
, ∀Φh ∈ V 2

h . (2.30)

Now we take Φ = E, Φh =

(
ΠhEu
IhEv

)
where Πh is the H1

0 -orthogonal projection

operator defined in (1.4) and Ih is a Scott-Zhang interpolation operator. Noting that
(A∇E,∇E) = 0 and(

∇
∂ũhτ

∂t
,∇(Eu −ΠhEu)

)
= (∇ṽhτ ,∇ (Eu −ΠhEu)) = 0.

Introducing operator Ah : Vh → Vh such that

(Ahwh, ϕh) = (∇wh,∇ϕh), ∀ϕh ∈ Vh, (2.31)

we get(
∂Ev

∂t
, Ev

)
+

(
∇Eu,∇

∂Eu

∂t

)
=

(
∂ṽτh

∂t
− f,Ev −ΠhEv

)
+ (∇ũτh,∇ (Ev − IhEv))

+
(
pn
(
Ah∂

2
nuh − ∂2

nfh
)
, IhEv

)
−
(
pn∇∂2

nvh,∇Eu
)

+
(
f̃τ − f, IhEv

)
.
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Note that equation similar to (3.21) also holds for t ∈ [t0, t1]

b(∂tE,Φ) + (A∇E,∇Φ) = b

(
∂Ũτh

∂t
− F,Φ− Φh

)
+
(
A∇Ũτh,∇(Φ− Φh)

)
+
(
p1A∇∂2

1Uh,∇Φh

)
+ b

(
F̃τ − F − p1∂

2
1F,Φh

)
. (2.32)

That follows from the definition of the piecewise quadratic reconstruction ũhτ (t) for
t ∈ [t0, t1]. Integrating (3.21) and (2.32) in time from 0 to some t∗ ≥ t1 yields

1

2

(
|Eu|2H1(Ω) + ‖Ev‖2L2(Ω)

)
(t∗) =

1

2

(
|Eu|2H1(Ω) + ‖Ev‖2L2(Ω)

)
(0)

+

∫ t∗

0

(
∂ṽτh

∂t
− f,Ev − IhEv

)
dt+

∫ t∗

0
(∇ũτh,∇(Ev − IhEv)) dt

+

∫ t∗

t1

[(
pn
(
Ah∂

2
nuh − ∂2

nfh
)
, IhEv

)
−
(
pn∇∂2

nvh,∇Eu
)

+
(
f̃τ − f, IhEv

)]
dt

+

∫ t1

0

[(
p1

(
Ah∂

2
1uh − ∂2

1fh
)
,hEv

)
−
(
p1∇∂2

1vh,∇Eu
)

+
(
f̃τ − f, IhEv

)]
dt

:= I + II + III + IV. (2.33)

Let
Z(t) =

√
|Eu|2H1(Ω)

+ ‖Ev‖2L2(Ω)
,

and assume that t∗ is the point in time where Z attains its maximum and t∗ ∈
(tn, tn+1] for some n. Observe

(I − Ĩh)Ev = (I − Ĩh)(ṽhτ − v) = (I − Ĩh)

(
∂ũhτ

∂t
−
∂u

∂t

)
=

∂

∂t
(I − Ĩh)Eu,

since (I − Ĩh)ϕh = 0 for any ϕh ∈ Vh. We thus get for the first and second terms in
(3.24)

I + II =

∫ t∗

0

(
∂ṽτh

∂t
− f,

∂

∂t
(Eu − IhEu)

)
dt+

∫ t∗

0

(
∇ũτh,

∂

∂t
∇(Eu −h Eu)

)
dt.
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We now integrate by parts with respect to time in the two integrals above. Let us do
it for the first term:∫ t∗

0

(
∂ṽτh

∂t
− f,

∂

∂t
(Eu − IhEu)

)
dt

=

n∑
m=0

∫ min(tm+1,t∗)

tm

(
∂ṽτh

∂t
− f,

∂

∂t
(Eu − IhEu)

)
dt

=

(
∂ṽτh

∂t
− f,Eu − ĨhEu

)
(t∗)−

n∑
m=1

([
∂ṽτh

∂t

]
tm

, (Eu − ĨhEu)(tn)

)

−
n∑

m=0

∫ min(tm+1,t∗)

tm

(
∂2ṽτh

∂t2
−
∂f

∂t
, Eu − ĨhEu

)
dt.

Here [·]tn denotes the jump with respect to time, i.e.

[w]tn = lim
t→t+n

w(t)− lim
t→t−n

w(t).

Using the same trick in the other term we can finally write

I + II =

(
∂ṽτh

∂t
− f,Eu − ĨhEu

)
(t∗) + (∇ũτh,∇(Eu − IhEu)) (t∗)

−
n∑

m=1

([
∂ṽτh

∂t

]
tm

, (Eu − ĨhEu)(tn)

)

−
n∑

m=0

∫ min(tm+1,t∗)

tm

(
∂2ṽτh

∂t2
−
∂f

∂t
, Eu − ĨhEu

)
dt

−
n∑

m=0

∫ min(tm+1,t∗)

tm

(
∇
∂ũτh

∂t
,∇(Eu − IhEu)

)
dt. (2.34)

We have used here a simple expression for the jump of time of ∂ṽhτ/∂t[
∂ṽhτ

∂t

]
tn

= τn−12(∂2
nvh − ∂2

n−1vh), (2.35)

and noted that ũhτ is continuous in time.
Integration by parts element by element over Ω and interpolation estimates (1.8)

yield
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I + II ≤ C1

[ ∑
K∈Th

h2
K

∥∥∥∥∥∂ṽhτ∂t
−∆ũhτ − f

∥∥∥∥∥
2

L2(K)

+
∑
E∈Eh

hE ‖[n·∇ũhτ ]‖2L2(E)

]1/2

(t∗)|Eu|H1(Ω)(t
∗)

+ C1

[ ∑
K∈Th

h2
K

∥∥∥∥∥∂ṽhτ∂t
−∆ũhτ − f

∥∥∥∥∥
2

L2(K)

+
∑
E∈Eh

hE ‖[n·∇ũhτ ]‖2L2(E)

]1/2

(0)|Eu|H1(Ω)(0)

+ C2

n∑
m=1

τm−1

2

 ∑
K∈Th

h2
K

∥∥∂2
mvh − ∂2

m−1vh
∥∥2

L2(K)

1/2

|Eu|H1(Ω)(tm)

+ C3

n∑
m=0

∫ min(tm+1,t∗)

tm

[ ∑
K∈Th

h2
K

∥∥∥∥∥∂2ṽhτ

∂t2
−∆

∂ũτh

∂t
−
∂f

∂t

∥∥∥∥∥
2

L2(K)

+
∑
E∈Eh

hE

∥∥∥∥∥
[
n·∇

∂ũτh

∂t

]∥∥∥∥∥
2

L2(E)

]1/2

(t)|Eu|H1(Ω)(t)dt.

We turn now to the third term in (3.24)

III =

∫ t∗

t1

{(pn(Ah∂
2
nuh − ∂2

nfh), IhEv)−
(
pn∇∂2

nvh,∇Eu
)

+ (f̃τ − f, IhEv)}dt

≤ C
n∑

m=1

[(∫ tm+1

tm

|pm|dt
)(∥∥∂2

mfh −Ah∂2
muh

∥∥
L2(Ω)

+
∣∣∂2
mvh

∣∣
H1(Ω)

)
+

∫ tm+1

tm

∥∥∥f − f̃τ∥∥∥
L2(Ω)

dt

]
Z(t

∗
),

with ∫ tm+1

tm

|pm|dt ≤
1

12
τ3
m +

1

8
τm−1τ

2
m.

We have used here the bounds |Eu|H1(Ω)(t) 6 Z(t) 6 Z(t∗) and ‖Ev‖L2(Ω) 6 Z(t) 6
Z(t∗) for all t ∈ [0, t∗]. Similar reasoning for the fourth term in (3.24) give us

IV =

∫ t1

t0

{(p1(Ah∂
2
1uh − ∂2

1fh), IhEv)−
(
p1∇∂2

1vh,∇Eu
)

+ (f̃τ − f, IhEv)}dt

≤ C

[(∫ t1

t0

|p1|dt
)(∥∥∂2

1fh −Ah∂2
1uh
∥∥
L2(Ω)

+
∣∣∂2

1vh
∣∣
H1(Ω)

)
+

∫ t1

t0

∥∥∥f − f̃τ∥∥∥
L2(Ω)

dt

]
Z(t

∗
),
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where ∫ t1

t0

|p1|dt ≤
5

12
τ3

0 +
1

2
τ1τ

2
0 .

Applying the same bounds for |Eu|H1(Ω)(t) and ‖Ev‖L2(Ω) 6 Z(t) to the estimates for
integrals I + II , inserting them into (3.24) and noting that Ah∂2

kuh = zkh we obtain
(2.18).

Remark 14. Comparing the a priori estimate (2.9) with the a posteriori one (2.18) one sees
that the time error indicator is essentially the same in both cases. Indeed, the term∫ tn+1

tn

∥∥∥∥∥∂4u

∂t4

∥∥∥∥∥
L2(Ω)

dt

can be rewritten as ∫ tn+1

tn

∥∥∥∥∥∂2f

∂t2
+ ∆

∂2u

∂t2

∥∥∥∥∥
L2(Ω)

dt

and it’s discrete counterpart is in 2.19 and 2.21. Note also that the last term in (2.18) is
negligible, at least if f the sufficiently smooth in time, since ‖f − f̃τ‖L2(Ω) = O(τ3

n) for
t ∈ (tn, tn+1).

Moreover, in view of a posteriori estimate some of the terms are of the higher order τh2,
so that neglecting the higher order terms, a posteriori space error estimator can be reduced to
the two first lines in (2.22), i.e.

η
(1)
S (tk) = C1 max

06t6tk

[ ∑
K∈Th

h2
K

∥∥∥∥∂ṽhτ∂t
−∆ũhτ − f

∥∥∥∥2

L2(K)

(2.36)

+
∑
E∈Eh

hE‖[n · ∇ũhτ ]‖2L2(E)

]1/2

(t),

η
(2)
S (tk) = C2

k∑
m=0

∫ tm+1

tm

[ ∑
K∈Th

h2
K

∥∥∥∥∂2ṽhτ
∂t2

−∆
∂ũhτ
∂t
− ∂f

∂t

∥∥∥∥2

L2(K)

(2.37)

+
∑
E∈Eh

hE

∥∥∥∥[n · ∇∂ũhτ∂t

]∥∥∥∥2

L2(E)

]1/2

(t)dt.

2.2.2 Optimal rate of the 3-point error estimator

We do not have a lower bound for our error estimators in space and time. Note
that such a bound is not available even in a simpler setting of Euler discretization
in time, cf. [BS05]. We are going to prove a partial result in the direction of opti-
mality, namely that the indicator of error in time provides the estimate of order τ2 at
least on sufficiently smooth solutions. For this, we should examine if the quantities
∂2
nfh − Ah∂

2
nuh and ∂2

nvh remain bounded in L2 and H1 norms respectively. This
will be achieved in Lemma 23 assuming that the initial conditions are discretized in
a specific way, via the H1

0 -orthogonal projection.
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We restrict ourselves to the constant time steps τn = τ and introduce the nota-
tions

∂0
nuh = un+1

h , ∂j+1
n uh =

∂jnuh − ∂jn−1u

τ
, j = 0, 1, . . ., n ≥ j − 1,

∂̄0
nuh =

un+1
h + unh

2
, ∂̄j+1

n uh =
∂̄jnuh − ∂̄jn−1uh

τ
, j = 0, 1, . . ., n ≥ j.

The Crank-Nicolson scheme for first-order system (2.2), (2.3) for n ≥ 0 is written
with these notations as

∂1
nuh − ∂̄0

nvh = 0, (2.38)(
∂1
nvh, ϕh

)
+
(
∇∂̄0

nuh,∇ϕh
)

=
(
∂̄0
nfh, ϕh

)
, ∀ϕh ∈ Vh (2.39)

where fnh , n ≥ 0, are the L2-orthogonal projection of f(tn, ·) on Vh. The following
lemma provides a higher regularity result on the discrete level, i.e. the boundedness
of terms ∂2

nfh −Ah∂2
nuh and ∂2

nvh for any j ∈ N0.

Lemma 21. Let unh and vnh be the solution to (2.2), (2.3) for n ≥ 0. One has then for all
j ∈ N0, N ∈ N, N ≥ j(∥∥∥∂jNfh −Ah∂jNuh∥∥∥2

L2(Ω)
+
∣∣∣∂jNvh∣∣∣2

H1(Ω)

)1/2

≤
(∥∥∥∂jjfh −Ah∂jjuh∥∥∥2

L2(Ω)
+
∣∣∣∂jjvh∣∣∣2

H1(Ω)

)1/2

+ τ
N∑

n=j+1

∥∥∂j+1
n f

∥∥
L2(Ω)

. (2.40)

Proof. Starting from (2.38), (2.39), taking the differences between steps n and n − 1
and then making an induction on j = 0, 1, . . . one arrives at

∂j+1
n uh = ∂̄jnvh, (2.41)

∂j+1
n vh = ∂̄jnfh −Ah∂̄jnuh. (2.42)

One can also prove that ∀wnh ∈ Vh and j = 0, 1, . . .

∂̄jnwh =
∂jnwh + ∂jn−1wh

2
. (2.43)

Indeed, this is obvious for j = 0 and then it follows for any j by induction.
Taking the inner product of (2.42) with τAh∂

j+1
n uh − τ∂j+1

n fh, using (2.43) and
definition of ∂j+1

n we obtain(
∂j+1
n vh, τAh∂

j+1
n uh − τ∂j+1

n fh

)
=

(
∂̄jnfh −Ah∂̄jnuh, τAh∂j+1

n uh − τ∂j+1
n fh

)

= −

∥∥∥∂jnfh −Ah∂jnuh∥∥∥2

L2(Ω)

2
+

∥∥∥∂jn−1fh −Ah∂
j
n−1uh

∥∥∥2

L2(Ω)

2
.
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Now we apply (2.43) and (2.41) to the left-hand side above(
∂j+1
n vh, τAh∂

j+1
n uh − τ∂j+1

n fh

)
=
(
∂jnvh − ∂

j
n−1vh, Ah∂

j+1
n uh

)
−
(
∂j+1
n vh, τ∂

j+1
n fh

)
=

∣∣∣∂jnvh∣∣∣2
H1(Ω)

−
∣∣∣∂jn−1vh

∣∣∣2
H1(Ω)

2
−
(
∂j+1
n vh, τ∂

j+1
n fh

)
.

Thus∣∣∣∂jnvh∣∣∣2
H1(Ω)

−
∣∣∣∂jn−1vh

∣∣∣2
H1(Ω)

2
−
(
∂j+1
n vh, τ∂

j+1
n fh

)
= −

∥∥∥∂jnfh −Ah∂jnuh∥∥∥2

L2(Ω)

2

+

∥∥∥∂jn−1fh −Ah∂
j
n−1uh

∥∥∥2

L2(Ω)

2
.

We recall by (2.42)

τ∂j+1
n vh = τ

(
∂̄jnfh −Ah∂̄jnuh

)
=
τ

2

(
∂jnfh + ∂jn−1fh −Ah∂

j
n−1uh −Ah∂

j
n−1uh

)
,

and hence∥∥∂jnfh −Ah∂jnuh∥∥2

L2(Ω)
+
∣∣∂jnvh∣∣2H1(Ω)

−
∥∥∥∂jn−1fh −Ah∂

j
n−1uh

∥∥∥2

L2(Ω)
−
∣∣∣∂jn−1vh

∣∣∣2
H1(Ω)

≤ τ
∥∥∂j+1

n fh
∥∥
L2(Ω)

(∥∥∂jnfh −Ah∂jnuh∥∥L2(Ω)
+
∥∥∥∂jn−1fh −Ah∂

j
n−1uh

∥∥∥
L2(Ω)

)
.

Denoting

Zn =
(∥∥∂jnfh −Ah∂jnuh∥∥2

L2(Ω)
+
∣∣∂jnvh∣∣2H1(Ω)

)1/2
,

the last inequality can be rewritten as

Z2
n − Z2

n−1 ≤ τ
∥∥∂j+1

n fh
∥∥
L2(Ω)

(∥∥∂jnfh −Ah∂jnuh∥∥L2(Ω)

+
∥∥∥∂jn−1fh −Ah∂

j
n−1uh

∥∥∥
L2(Ω)

)
≤ τ

∥∥∂j+1
n fh

∥∥
L2(Ω)

(Zn + Zn−1),

so that
Zn − Zn−1 ≤ τ

∥∥∂j+1
n fh

∥∥
L2(Ω)

.

Summing this over n we get (2.40).

In order to take into account the initial conditions, we shall need the following
auxiliary result about stability properties of operator Ah defined by (2.31) and the
L2-orthogonal projection Ph : L2(Ω)→ Vh defined by (1.3).
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Lemma 22. Assuming the mesh Th to be quasi-uniform, there exist C > 0 depending only
on the regularity of Th such that

∀v ∈ H1
0 (Ω) : |Phv|H1(Ω) ≤ C|v|H1(Ω), (2.44)

∀v ∈ H2(Ω) ∩H1
0 (Ω) : ‖AhPhv‖L2(Ω) ≤ C|v|H2(Ω). (2.45)

Proof. Let v ∈ H1
0 (Ω). Using a Scott-Zhang interpolant Ih : H1

0 (Ω) → Vh, an inverse
inequality and the stability properties of Ih, we observe

|Phv|H1(Ω) ≤ |Phv − Ihv|H1(Ω) + |Ihv|H1(Ω) ≤
C

h
‖Phv − Ihv‖L2(Ω) + |v|H1(Ω).

Then, from approximation properties of the Scott-Zhang operator (2) we have

‖Phv − v‖L2(Ω) ≤ ‖Ihv − v‖L2(Ω) ≤ Ch|v|H1(Ω) ≤ Ch|v|H1(Ω),

which entails (2.44). We assume now v ∈ H2(Ω) ∩ H1
0 (Ω) and use a similar idea to

prove (2.45)

(AhPhv, ϕh) = (∇ (Ph − Ih) v,∇ϕh) + (∇Ihv,∇ϕh) . (2.46)

We can bound the first term in the right-hand side of (2.46) using the inverse inequal-
ity and the approximation properties of Ih

(∇ (Ph − Ih) v,∇ϕh) ≤
C

h2
‖Phv − Ihv‖L2(Ω)‖ϕh‖L2(Ω) ≤ C|v|H2(Ω)‖ϕh‖L2(Ω).

To deal with the second term in the right-hand side of (2.46), we integrate by parts
over all the triangles of the mesh and recall that ∆ϕh = 0 on any triangle, so that

(∇Ihv,∇ϕh) =
∑
E∈Eh

∫
E

[
∂Ihv

∂n

]
ϕh ≤

∑
E∈Eh

∥∥∥∥∥
[
∂Ihv

∂n

]∥∥∥∥∥
L2(E)

‖ϕh‖L2(E) .

Using the standard estimate

‖ϕh‖L2(E) ≤
C
√
h
‖ϕh‖L2(ωE) ,

the property of Scott-Zhang interpolant combining with scaling∥∥∥∥∥
[
∂Ihv

∂n

]∥∥∥∥∥
L2(E)

≤ C
√
h|v|H2(ωE),

for all E ∈ Eh and substituting it to (2.46) leads to

(AhPhv, ϕh) ≤ C|v|H2(Ω)‖ϕh‖L2(Ω).

Taking here ϕh = AhPhv, we obtain desired result (2.45).

Remark 15. Our proof of Lemma 22 uses inverse inequalities and is thus restricted to the
quasi-uniform meshes Th. The first estimate (2.44) is actually established in ([BPS02]) under
much milder hypotheses on the mesh compatible with usual mesh refinement techniques.
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We conjecture that the second estimate (2.45) also holds under similar assumptions. Some
numerical examples in this direction are given at the end of Subsection 2.4.2.

We are now able to complete the estimate of Lemma 21 in the case j = 2 which
is pertinent to our a posteriori analysis.

Lemma 23. Let unh be the solution to (2.4), (2.5) on a quasi-uniform mesh with

u0
h = Πhu

0, v0
h = Πhv

0, (2.47)

where Πh is the H1
0 -orthogonal projection on Vh. One has for all N ≥ 1

(∥∥∂2
Nfh −Ah∂2

Nuh
∥∥2

L2(Ω)
+
∣∣∂2
Nvh

∣∣2
H1(Ω)

)1/2

≤ C

∣∣∣∣∣∂3u

∂t3
(0)

∣∣∣∣∣
H1(Ω)

+

∣∣∣∣∣∂2u

∂t2
(0)

∣∣∣∣∣
H2(Ω)

+ max
t∈[0,2τ ]

∥∥∥∥∥∂2f

∂t2
(t)

∥∥∥∥∥
L2(Ω)


+

∫ tN

0

∥∥∥∥∥∂3f

∂t3

∥∥∥∥∥
L2(Ω)

dt, (2.48)

with a constant C > 0 independent of h, τ , N .

Proof. Set

Z = 2

(
I +

τ2

4
Ah

)−1(
I − τ2

4
Ah

)
.

Then scheme (2.5) for n ≥ 1 can be rewritten as

un+1
h = Zunh − un−1

h + τ2

(
I +

τ2

4
Ah

)−1

f̄nh .

Moreover, the initial step (2.4) can be written as

u1
h − u0

h − τv0
h

τ2
+Ah

u1
h + u0

h

4
= f̄0

h :=
f1
h + f0

h

4
.

This gives the following expressions for u1
h, u

2
h:

u1
h = τ2

(
I +

τ2

4
Ah

)−1(
f̄0
h +

1

τ
v0
h

)
+

1

2
Zu0

h,

u2
h = τ2

(
I +

τ2

4
Ah

)−1(
Z

(
f̄0
h +

1

τ
v0
h

)
+ f̄1

h

)
+

(
1

2
Z2 − I

)
u0
h.

Thus,

∂2
1fh −Ah∂2

1uh = ∂2
1fh −

A2
hZ

2
(
I + τ2

4 Ah

)u0
h

−Ah
(
I +

τ2

4
Ah

)−1(
(Z − 2I)

(
f̄0
h +

1

τ
v0
h

)
+ f̄1

h

)
,
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and

∂2
1vh =−Ah

u2
h − u0

h

2τ
+
f2
h − f0

h

2τ
= −Ah

2τ

(
1

2
Z2 − 2I

)
u0
h

− Ah
2τ
τ2

(
I +

τ2

4
Ah

)−1(
Z

(
f̄0
h +

1

τ
v0
h

)
+ f̄1

h

)
+
f2
h − f0

h

2τ
.

After some tedious calculations, this can be rewritten as

∂2
1fh −Ah∂2

1uh = −1

2

Z(
I + τ2

4 Ah

)2

(
A2
hu

0
h −Ahf0

h

)
+

τAh(
I + τ2

4 Ah

)2

(
Ahv

0
h − ∂1

0fh
)

+

(
I +

τ2

4
Ah

)−1

∂2
1fh, (2.49)

and

∂2
1vh = − τ(

I + τ2

4 Ah

)2

(
A2
hu

0
h −Ahf0

h

)
+

Z

2
(
I + τ2

4 Ah

) (Ahv0
h − ∂1

0fh
)

− τ

2
(
I + τ2

4 Ah

)∂2
1fh. (2.50)

Since Ah is a symmetric positive definite operator, we have

‖R(τ2Ah)vh‖L2(Ω) ≤ C‖vh‖L2(Ω),

for any vh ∈ Vh and any rational function R with the degree of nominator less that
or equal to that of the denominator and a constant C depending only on R.

Similarly, using the fact

|vh|H1(Ω) = (Ahvh, vh)
1
2 =

∥∥∥A1/2
h vh

∥∥∥
L2(Ω)

,

for any vh ∈ Vh, one can observe

‖τAhR(τ2Ah)vh‖L2(Ω) ≤ C‖A
1/2
h vh‖L2(Ω) = C|vh|H1(Ω).

for any rational function R with the degree of nominator less than that of the de-
nominator and a constant C depending only on R.

Applying these estimates to (2.50) yields

‖∂2
1fh −Ah∂2

1uh‖L2(Ω) ≤ C

(
‖A2

hu
0
h −Ahf0

h‖L2(Ω) +

∣∣∣∣Ahv0
h −

∂fh
∂t

(0)

∣∣∣∣
H1(Ω)

+

∥∥∥∥∥∥∥
τAh(

I + τ2

4 Ah

)2

(
∂fh
∂t

(0)− ∂1
0fh

)∥∥∥∥∥∥∥
L2(Ω)

+ ‖∂2
1fh‖L2(Ω)

 .
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Since

∂1
0fh =

∂fh
∂t

(0) +
1

τ

∫ τ

0
(τ − s)∂

2f

∂t2
(s)ds,

we have∥∥∥∥∥∥∥
τAh(

I + τ2

4 Ah

)2

(
∂fh
∂t

(0)− ∂1
0fh

)∥∥∥∥∥∥∥
L2(Ω)

≤ max
t∈[0,τ ]

∥∥∥∥∥∥∥
τ2Ah(

I + τ2

4 Ah

)2

∂2fh
∂t2

(t)

∥∥∥∥∥∥∥
L2(Ω)

≤ C max
t∈[0,τ ]

∥∥∥∥∂2fh
∂t2

(t)

∥∥∥∥
L2(Ω)

.

Noting finally that ‖∂2
1fh‖L2(Ω) can be bounded by the maximum of

∥∥∥∥∥∂2f

∂t2
(t)

∥∥∥∥∥
L2(Ω)

over time interval [0, 2τ ], we arrive at

‖∂2
1fh −Ah∂2

1uh‖L2(Ω) ≤ C

(∥∥A2
hu

0
h −Ahf0

h

∥∥
L2(Ω)

+

∣∣∣∣Ahv0
h −

∂fh
∂t

(0)

∣∣∣∣
H1(Ω)

+ max
t∈[0,2τ ]

∥∥∥∥∂2f

∂t2
(t)

∥∥∥∥
L2(Ω)

)
.

By a similar reasoning we can also bound
∣∣∂2

1vh
∣∣
H1(Ω)

by the same quantity as in
the right-hand side of the equation above. For this, we take the H1 norm on both
sides of (2.50) and observe for the first term on the right hand side∣∣∣∣∣∣∣

τ(
I + τ2

4 Ah

)2

(
A2
hu

0
h −Ahf0

h

)∣∣∣∣∣∣∣
H1(Ω)

=

∥∥∥∥∥∥∥
τA

1/2
h(

I + τ2

4 Ah

)2

(
A2
hu

0
h −Ahf0

h

)∥∥∥∥∥∥∥
L2(Ω)

≤ C
∥∥A2

hu
0
h −Ahf0

h

∥∥
L2(Ω)

.

The other terms can be treated similarly so that, skipping some details, we obtain

(∥∥∂2
1fh −Ah∂2

1uh
∥∥2

L2(Ω)
+
∣∣∂2

1vh
∣∣2
H1(Ω)

)1/2
≤ C

(∥∥A2
hu

0
h −Ahf0

h

∥∥
L2(Ω)

+

∣∣∣∣Ahv0
h −

∂fh
∂t

(0)

∣∣∣∣
H1(Ω)

+ max
t∈[0,2τ ]

∥∥∥∥∂2f

∂t2
(t)

∥∥∥∥
L2(Ω)

)
. (2.51)
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We can now invoke the estimate of Lemma 21 with j = 2 and combine it with
(2.51). This gives

(∥∥∂2
Nfh −Ah∂2

Nuh
∥∥2

L2(Ω)
+
∣∣∂2
Nvh

∣∣2
H1(Ω)

)1/2
≤

N∑
n=3

τ
∥∥∂3

nf
∥∥
L2(Ω)

+ C

(∥∥A2
hu

0
h −Ahf0

h

∥∥
L2(Ω)

+

∣∣∣∣Ahv0
h −

∂fh
∂t

(0)

∣∣∣∣
H1(Ω)

+ max
t∈[0,τ ]

∥∥∥∥∂2f

∂t2
(t)

∥∥∥∥
L2(Ω)

)
. (2.52)

The first term in right-hand side in (2.52) can be easily bounded by
∫ tN

0

∥∥∥∥∥∂3f

∂t3

∥∥∥∥∥
L2(Ω)

dt.

The remaining terms in the middle line of (2.52) are bounded using Lemma 22 and
the relation AhΠh = −Ph∆ as follows∥∥A2

hu
0
h −Ahf0

h

∥∥
L2(Ω)

=
∥∥AhPh(−∆u0 − f0)

∥∥
L2(Ω)

=

∥∥∥∥∥AhPh∂2u

∂t2
(0)

∥∥∥∥∥
L2(Ω)

≤ C

∣∣∣∣∣∂2u

∂t2
(0)

∣∣∣∣∣
H2(Ω)

,

and∣∣∣∣Ahv0
h −

∂fh
∂t

(0)

∣∣∣∣
H1(Ω)

=

∣∣∣∣Ph(−∆v0 − ∂f

∂t
(0)

)∣∣∣∣
H1(Ω)

≤

∣∣∣∣∣Ph∂3u

∂t3
(0)

∣∣∣∣∣
H1(Ω)

≤ C

∣∣∣∣∣∂3u

∂t3
(0)

∣∣∣∣∣
H1(Ω)

.

This gives (2.48).

Remark 16. Note that in Lemma 23 the approximation of initial conditions and right-hand-
side function is crucial for boundedness of higher order discrete derivatives and consequently
to optimality of our time and space error estimators. We illustrate this fact with some nu-
merical examples in Subsection 2.4.2.

Corollary 24. Let u be the solution of wave equation (1.59) and

∂3u

∂t3
(0) ∈ H1(Ω),

∂2u

∂t2
(0) ∈ H2(Ω),

∂2f

∂t2
(t) ∈ L∞(0, T ;L2(Ω)) ,

∂3f

∂t3
(t) ∈ L2(0, T ;L2(Ω)).

Suppose that mesh Th is quasi-uniform and the mesh in time is uniform (tk = kτ ). Then,
the 3-point time error estimator ηT (tk) defined by (2.19), (2.21) is of order τ2, i.e.

ηT (tk) ≤ Cτ2. (2.53)

with a positive constant C depending only on u, f , and the mesh regularity.

Proof. Follows immediately from Lemma 23.
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2.3 Anisotropic estimate

The estimate of Theorem 20 can be rewritten for anisotropic case using usual tech-
nique from [FP01], [FP03].

Theorem 25. There exists constant c independent of the mesh size and aspect ratio such that
the following a posteriori error estimate holds between the solution u of the wave equation
(1.59), or equivalently (1.60), and the discrete solution unh given by (2.4)–(2.5) for all tn, 0 ≤
n ≤ N with vnh given by (2.6):∥∥∥∥∥vnh − ∂u

∂t
(tn)

∥∥∥∥∥
2

L2(Ω)

+ |unh − u(tn)|2H1(Ω)

≤
∥∥v0

h − v0

∥∥2

L2(Ω)
+
∣∣u0
h − u0

∣∣2
H1(Ω)

+ η2
AN (tn) +

(
n∑
k=1

τk−1ηT (tk−1)

)2

+

(∫ tn

0
‖f − f̃τ‖L2(Ω)dt

)2

. (2.54)

The error indicator in time ηT (tk) is defined by (2.21) for k = 0 and by (2.19) for k =
1, . . . , N − 1. The anisotropic space error estimator is defined by

η2
AN (tn) = c

(
max

06t6tn

[ ∑
K∈Th

(∥∥∥∥∂ṽhτ∂t
−∆ũhτ − f

∥∥∥∥
L2(K)

+
1

2λ
1/2
2,K

‖[n · ∇ũhτ ]‖L2(∂K)

)
×ωK(Eu)

]

+

n−1∑
m=0

∫ tm+1

tm

[ ∑
K∈Th

(∥∥∥∥∂2ṽhτ
∂t2

−∆
∂ũhτ
∂t
− ∂f

∂t

∥∥∥∥
L2(K)

+
1

2λ
1/2
2,K

∥∥∥∥[n · ∇∂ũhτ∂t

]∥∥∥∥
L2(∂K)

)
× ωK(Eu)

]
dt

+
n−1∑
m=1

τm−1

∑
K∈Th

(∥∥∂2
mvh − ∂2

m−1vh
∥∥
L2(K)

× ωK (Eu(tm))
))

. (2.55)

Proof. We start by reproducing the proof of Theorem 20 up to equation (3.24).
The first two terms in (3.24) are responsible for the space estimator and can be

dealt with the anisotropic estimates from [FP01], [FP03]. Indeed, using Proposition
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3 and Cauchy-Schwarz inequality we obtain

I + II =

(
∂ṽτh

∂t
− f,Eu − ĨhEu

)
(t∗) + (∇ũτh,∇(Eu − IhEu)) (t∗)

−
n∑

m=1

([
∂ṽτh

∂t

]
tm

, (Eu − ĨhEu)(tn)

)

−
n∑

m=0

∫ min(tm+1,t∗)

tm

(
∂2ṽτh

∂t2
−
∂f

∂t
, Eu − ĨhEu

)
dt

−
n∑

m=0

∫ min(tm+1,t∗)

tm

(
∇
∂ũτh

∂t
,∇(Eu − IhEu)

)
dt ≤ η2

AN (tn).

The third and the fourth term in (2.34) are responsible for the time estimator. We
have

III =

∫ t∗

t1

[(
pn(Ah∂

2
nuh − ∂2

nfh), IhEv
)
−
(
pn∇∂2

nvh,∇Eu
)

+ (f̃τ − f, IhEv)
]
dt

≤ C
n∑

m=1

[(∫ tm+1

tm

|pm|dt
)(∥∥∂2

mfh −Ah∂2
muh

∥∥
L2(Ω)

+
∣∣∂2
mvh

∣∣
H1(Ω)

)

+

∫ tm+1

tm

∥∥∥f − f̃τ∥∥∥
L2(Ω)

dt

]
Z(t

∗
) ≤

C

2p

((
n∑
k=1

τk−1ηT (tk−1)

)2

+

(∫ tn

0
‖f − f̃τ‖L2(Ω)dt

)2
)

+ pZ2(t
∗
).

with pm is given by (2.28) and thus∫ tm+1

tm

|pm|dt ≤
1

12
τ3
m +

1

8
τm−1τ

2
m.

We have used here the stability properties of the Scott-Zhang interpolation opera-
tors, see Proposition 4, and the bounds |Eu|H1(Ω)(t) 6 Z(t) 6 Z(t∗) and ‖Ev‖L2(Ω) 6
Z(t) 6 Z(t∗) for all t ∈ [0, t∗]. Using similar reasoning for the fourth term in (3.24)
and choosing appropriate p we obtain (2.54).

The estimate of Theorem 25 is not a traditional a posteriori error estimate since
it involves ωK(Eu) and hence the gradient of the exact solution. We have already
explained in Chapter 1 a way to approximate the gradient of u by a computable
quantity. Note, however, that a slight change in the proof of the preceding theorem
could produce an alternative estimate so that Eu no longer appears in the right hand
side although it is hidden in the error distribution hypothesis 2.56:

Theorem 26. Let the mesh Th be such that there exists a constant c independent of the mesh
size and aspect ratio such that

λ2
1,K

(
rT1,KGK(Eu)r1,K

)
≤ cλ2

2,K

(
rT2,KGK(Eu)r2,K

)
. (2.56)

Here λi,K , ri,K and GK are defined in Subsection 1.0.2. Then there exists constant C inde-
pendent of the mesh size and aspect ratio such that the a posteriori error estimate (2.54) holds
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between the solution u of the wave equation (1.59), or equivalently (1.60), and the discrete
solution unh given by (2.4)–(2.5) for all tn, 0 ≤ n ≤ N with vnh given by (2.6). The error
indicator in time ηT (tk) is defined by (2.21) for k = 0 and by (2.19) for k = 1, . . . , N − 1.
The anisotropic space error estimator is defined by

η2
AN (tn) = C

(
max

06t6tn

[ ∑
K∈Th

(
λ2

2,K

∥∥∥∥∂ṽhτ∂t
−∆ũhτ − f

∥∥∥∥2

L2(K)

+ λ2,K ‖[n · ∇ũhτ ]‖2L2(∂K)

)]

+

n−1∑
m=0

∫ tm+1

tm

[ ∑
K∈Th

(
λ2

2,K

∥∥∥∥∂2ṽhτ
∂t2

−∆
∂ũhτ
∂t
− ∂f

∂t

∥∥∥∥2

L2(K)

+ λ2,K

∥∥∥∥[n · ∇∂ũhτ∂t

]∥∥∥∥2

L2(∂K)

)]
dt

+
n−1∑
m=1

τm−1

∑
K∈Th

λ2
2,K

∥∥∂2
mvh − ∂2

m−1vh
∥∥2

L2(K)

)
. (2.57)

Proof. Considering the inequality (2.56) implies that

ωK(Eu) ≤ C̃λ2,K ‖∇Eu‖L2(K) ∀K ∈ Th, (2.58)

where C̃ is independent of the mesh size and aspect ratio. Using (2.58) in (2.55) leads
to the final result.

2.4 Numerical results

2.4.1 The 3-point error estimator on structured mesh

We now report numerical results for initial boundary-value problem for wave equa-
tion with uniform time steps when using 3-point time error estimator (2.19), (2.21).
We compute space estimators (2.36) and (2.37) in practice as follows:

η
(1)
S (tN ) = max

1≤n≤N−1

 ∑
K∈Th

h2
K ‖∂nvh − fnh ‖

2
L2(K) +

∑
E∈Eh

hE‖[n · ∇unh]‖2L2(E)

1/2

,

η
(2)
S (tN ) =

N−1∑
n=1

τn

 ∑
K∈Th

h2
K

∥∥∂2
nvh − ∂nfh

∥∥2

L2(K)

+
∑
E∈Eh

hE ‖[n · ∇∂nuh]‖2L2(E)

]1/2
. (2.59)

The quality of our error estimators in space and time is determined by following
effectivity index:

ei =
ηT + ηS

e
.
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h τ ei ηT ηS η
(1)
S η

(2)
S N0 e

1/160
√
h 13.74 0.114 0.37 0.12 0.24 97.79 0.035

1/320
√
h 13.58 0.054 0.18 0.061 0.12 97.59 0.017

1/640
√
h 13.42 0.026 0.092 0.031 0.062 97.5 0.0088

1/160 h 16.98 0.00062 0.37 0.12 0.24 97.79 0.021
1/320 h 16.97 0.00015 0.18 0.062 0.12 97.59 0.011
1/640 h 16.97 3.82e-05 0.092 0.031 0.062 97.5 0.005

TABLE 2.1: Results for case (a). The quantity N0 is defined in (2.63)
and provided here for future reference.

h τ ei ηT ηS η
(1)
S η

(2)
S e

1/320 1/20 13.05 2.03 12.15 6.13 6.02 1.09
1/320 1/40 12.11 0.92 12.27 6.15 6.11 1.09
1/320 1/80 11.62 0.37 12.29 6.16 6.13 1.09

1/640 1/20 12.14 0.51 6.09 3.07 3.02 0.54
1/640 1/40 11.68 0.23 6.13 3.08 3.05 0.54
1/640 1/80 11.64 0.096 6.15 3.08 3.07 0.54

TABLE 2.2: Results for case (b).

The true error is

e = max
06n6N

∥∥∥∥∥vnh − ∂u

∂t
(tn)

∥∥∥∥∥
2

L2(Ω)

+ |unh − u(tn)|2H1(Ω)

1/2

. (2.60)

Consider the problem (1.59) with Ω = (0, 1)× (0, 1), T = 1 and the exact solution u
given by

case (a) u(x, y, t) = cos(πt) sin(πx) sin(πy),

case (b) u(x, y, t) = cos(0.5πt) sin(10πx) sin(10πy),

case (c) u(x, y, t) = cos(15πt) sin(πx) sin(πy).

We interpolate initial conditions and right-hand-side function with nodal interpola-
tion. Structured meshes in space (see Fig. 2.1) are used in all the experiments of this
section. Numerical results are reported in Tables 2.1–2.3. Note that these cases and
the meshes in space in time in the following numerical experiments are chosen so
that the error in case (a) should be due to both time and space discretization, that in
case (b) comes mainly from the space discretization, and that in case (c) mainly from
the time discretization.

Referring to Table 2.1, we observe from first three rows that setting h = τ2 the
error is divided by 2 each time h is divided by 2, consistent with e ∼ O(τ2 + h). The
space error estimator and the time error estimator behave similarly and thus provide
a good representation of the true error. The effectivity index tends to a constant
value. In rows 4-6, we choose h = τ in order to insure that the discretization in time
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h τ ei ηT ηS η
(1)
S η

(2)
S e

1/160 1/80 73.98 55.92 4.17 0.75 3.41 0.81
1/320 1/80 71.42 55.92 2.08 0.38 1.71 0.81
1/640 1/80 70.13 55.93 1.04 0.19 0.85 0.81

1/160 1/160 87.44 14.15 3.78 0.15 3.63 0.21
1/320 1/160 78.22 14.15 1.89 0.076 1.82 0.21
1/640 1/160 73.61 14.15 0.95 0.038 0.91 0.21

TABLE 2.3: Results for case (c).

gives an error of higher order than that in space, i.e. O(h2) vs. O(h), respectively.
Our estimators capture well this behavior of the two parts of the error.

In Table 2.2, in order to illustrate the sharpness of the space estimator, we take
case (b) where the error is mainly due to the space discretization. We can see from
this table that the space error estimator ηS behaves as the true error. Indeed, for a
given space step, ηS does not depend on the time step τ , and for constant τ , ηS is
divided by two when the space step h is divided by two.

Finally, we consider case (c), Table 2.3. We observe that the time error estimator
ηT behaves as the true error, when the error is mainly due to the time discretization.

We therefore conclude that our time and space error estimators are sharp in the
regime of constant time steps and structured space meshes. They separate well the
two sources of the error and can be thus used for the mesh adaptation in space and
time.

Remark 17. As said already, the space estimator ηS behaves as O(h) in the numerical ex-
periments reported in Tables 2.1-2.2. The situation is slightly different in Table 2.3. Indeed,
the first part of space error estimator η(1)

S behaves here as O(τ2h). This can be explained by
the fact that, as seen from the definitions (2.36), (2.37), both η(1)

S and η(2)
S are also influenced

by discretization in time. In general, in the leading order in h and τ , one can conjecture
η

(1,2)
S = Ah+Bhτ2 with case dependentA andB. The second termBhτ2 is asymptotically

negligible but it can become visible in some situations where the solution is highly oscillating
in time and the mesh in time is not sufficiently refined, as indeed observed with η(1)

S in Table
2.3. Fortunately, its value is small compared to the time error estimator and thus we can
hope that this effect is not essential for mesh refinement.

2.4.2 The 3-point error estimator on unstructured mesh

We turn now to the numerical experiments on unstructured Delaunay meshes, cf.
Fig. 2.1 (right). These experiments will reveal the dependence of the error estimators
on approximation of initial conditions and of the right-hand side f . Indeed, as noted
in Subsection 2.2.2, these approximations should be chosen carefully to ensure the
optimality of our error estimators.

We consider the test case from the previous subsection with the exact solution u
given by case (a). We test two different ways to approximate the initial conditions
and the right-hand side: nodal interpolation

u0
h = Ihu

0, v0
h = Ihv

0, fnh = Ihf
n, 0 ≤ n ≤ N, (2.61)
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FIGURE 2.1: Structured (on the left) and unstructured (on the right) a
10× 10 meshes of the unit square.

h τ ei êi ηT η̂T ηS η
(1)
S η

(2)
S N0 e

1/160
√
h 75 29 2.1 .61 .33 .094 .23 934718 .033

1/320
√
h 120.74 43.83 1.76 .53 .17 .047 .13 3.31e+06 .016

1/640
√
h 244.56 85.93 1.89 .59 .11 .023 .082 1.44e+07 .0082

1/160 h 196.92 156.38 1.61 .93 1.73 .096 1.63 934718 .017
1/320 h 353.63 281.47 1.43 .83 1.49 .047 1.45 3.31e+06 .088
1/640 h 751.43 598.9 1.54 .9 1.59 .023 1.56 1.44e+07 .0042

TABLE 2.4: Results for case (a), constant time steps, unstructured De-
launay meshes, nodal interpolation of the initial conditions and f as

in (2.61).

and orthogonal projections as in Lemma 23

u0
h = Πhu

0, v0
h = Πhv

0, fnh = Phf
n, 0 ≤ n ≤ N. (2.62)

The results are reported in Tables 2.4 and 2.5. The meshes, the time steps and other
details of the numerical algorithm, are exactly the same in these two tables. We ob-
serve that the errors are very similar as well and conclude therefore that the accuracy
of the method does not depend on the manner in which the initial conditions and f
are approximated, either (2.61) or (2.62).

On the contrary, the behavior of error estimators is quite different in the two

h τ ei êi ηT η̂T ηS η
(1)
S η

(2)
S N0 e

1/160
√
h 12.29 11.44 .115 .087 .28 .094 .19 98.48 .032

1/320
√
h 12.13 11.56 .054 .045 .14 .047 .094 98.18 .016

1/640
√
h 12. 11.62 .027 .023 .071 .024 .047 98.27 .0081

1/160 h 17.4 17.4 .00062 .00061 .29 .095 .19 98.48 .017
1/320 h 17.25 17.25 .00015 .00015 .14 .047 .094 98.18 .082
1/640 h 17.28 17.28 3.83e-05 3.81e-05 .071 .023 .047 98.27 .0041

TABLE 2.5: Results for case (a), constant time steps, unstructured De-
launay meshes, orthogonal projection of the initial conditions and f

as in (2.62).
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FIGURE 2.2: ∂4
4uh for different discretization of the initial conditions:

on the left (see Table 2.4) we take u0
h as the nodal interpolation of u0

while on the right (see Table 2.5) u0
h = Πhu0 , h = 0.125, τ = 0.025.

cases. From Table 2.4 (nodal interpolation), we see that both time error estimators
ηT , η̂T blow up with mesh refinement, while the second part of the space estimator
η

(2)
S behaves (non optimally) like O(τ + h). Only the first part of the space estimator
η

(1)
S behaves as the true error. Such a strange behavior of our estimators indicates the

unboundedness of higher order discrete derivatives in time. Indeed, the estimators
ηT , η̂T and η

(2)
S contain high order discrete derivatives ∂2

nfh − Ah∂
2
nuh, ∂4

nuh and
∂2
nvh respectively. These error estimators can be of the optimal order only if all these

derivatives are uniformly bounded. We recall that this property was examined in
Lemma 23 and its proof hinges on the boundedness of

N0 =
∥∥A2

hu
0
h −Ahf0

h

∥∥
L2(Ω)

. (2.63)

However, as reported in Table 2.4, N0 also blows up under the nodal interpolation
of initial conditions and of the right-hand side. This is not surprising given that
the boundedness of N0 in Lemma 23 is a consequence of Lemma 22 and thus it is
not guaranteed if one replaces projections (2.62) by nodal interpolation (2.61). On
the other hand, the results in Table 2.5 corresponding to interpolation by projection
(2.62) confirm the order O(τ2 + h) for our error estimators, consistently with the
theory developed in Lemmas 23 and 22.

The huge difference between the two data approximations can be also seen by
looking directly at ∂4

4uh. We report this quantity in Fig. 2.2 for the case (a) on a mesh
with h = 0.0125 and time step τ = 0.025 at t = t4 = 0.1. On the left picture (nodal in-
terpolation) we see that ∂4

4uh contains a lot of severe spurious oscillations, while the
right picture (projection of initial conditions) contains a reasonable and quite smooth
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Mesh τ ei êi M1 M2 N0 e

case (1) 1/10 17.15 16.98 10.39 2.25 102.59 .37
case (2) 1/20 17.15 17.05 9.99 2.22 98.62 .099
case (3) 1/40 17.15 17.12 9.97 2.22 98.45 .025

TABLE 2.6: Results for case (a), constant time step, unstructured De-
launay mesh, orthogonal projection of the initial conditions and f as

in (2.62), M1 = ‖AhPhu
0‖L2(Ω), M2 = ‖Phu

0‖H1(Ω).

approximation of
∂4u

∂t4
. This is another manifestation of the critical importance of the

choice of an approximation of initial conditions and of the right-hand side for our
error estimators. We note that such a phenomenon was not observed for the heat
equation [LPP09]. We also recall from Table 2.1 that space and time error estimators
provide a good representation of the true error on a structured mesh even under the
nodal interpolation. Note that the quantity defined by (2.63) remains also bounded
on the structured mesh.

We recall that the theory of Subsection 2.2.2, in particular Lemma 22, are estab-
lished under the quasi-uniform mesh assumption. We conclude this article by a
numerical test on non quasi-uniform meshes in order to asses the stability of oper-
ators Ah and Ph. We apply our numerical method to (1.59) with the exact solution
u from case (a) on meshes from Fig. 2.3. The results are given in Table 2.6. We see
that space and time error estimators provide a good representation of the true error,
like in examples from Tables 2.1 and 2.5 with quasi-uniform meshes. Moreover, we
observe stability for terms ‖AhPhu0‖L2(Ω), ‖Phu0‖H1(Ω), and consequently N0. This
indicates that our error indicators may be useful for time and space adaptivity on
rather general meshes.
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case (1), 486 triangles

case (2), 7535 triangles

case (3), 121299 triangles

FIGURE 2.3: non quasi-uniform meshes (see Table 2.6).
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Chapter 3

An easily computable error
estimator in space and time for the
wave equation

In this chapter, we are interested in easily computable error estimator in space and
time for the wave equation. The 3-point time error estimator proposed in previous
chapter contains the Laplacian of the discrete solution which should be computed
via auxiliary finite element problems at each time step. This requires thus a non-
negligible extra work in comparison with computing the discrete solution itself. In
the present chapter, we propose an alternative time error estimator that avoids these
additional computations.

In deriving our a posteriori estimates, we follow first the approach of previous
chapter. First of all, we use the fact that the Newmark method can be reinterpreted
as the Crank-Nicolson discretization of the reformulation of the governing equation
as the first-order system, as in [Bak76]. We then use the techniques stemming from
a posteriori error analysis for the Crank-Nicolson discretization of the heat equation
in [LPP09], based on a piecewise quadratic polynomial in time reconstruction of the
numerical solution. Finally, in a departure from Theorem 20, we replace the second
derivatives in space (Laplacian of the discrete solution) in the error estimate with
the forth derivatives in time by reusing the governing equation. This leads to the
new a posteriori error estimate in time and also allows us to easily recover the error
estimates in space that turn out to be the same as those of Theorem 20. The resulting
estimate is referred to as the 5-point estimator since it contains the fourth order finite
differences in time and thus involves the discrete solution at 5 points in time at each
time step.

Like in the case of the 3-point estimator, we are able to prove that the new 5-point
estimator is reliable on general regular meshes in space and non-uniform meshes
in time (with constants depending on the regularity of meshes in both space and
time). Moreover, the 5-point estimator is proved to be of optimal order at least on
sufficiently smooth solutions, quasi-uniform meshes in space and uniform meshes
in time, again reproducing the results known for the 3-point estimator. Numerical
experiments demonstrate that the 3-point and the 5-point error estimators produce
very similar results in the majority of test cases. Both turn out to be of optimal order
in space and time, even in situations not accessible to the current theory (non quasi-
uniform meshes, not constant time steps). It should be therefore possible to use the
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new estimator for mesh adaptation in space and time. In fact, the best strategy in
practice may be to combine both estimators to take benefit from the strengths of
each of them: the relative cheapness of the 5-point one, and the better numerical
behavior of the 3-point estimator under abrupt changes of the mesh.

The outline of the chapter is as follows. In Section 3.1, the 5-point a posteriori error
estimator for the fully discrete wave problem is derived. Numerical experiments for
the 3-point and the 5-point error estimators on several test cases are presented in
Section 3.2.

Chapter contents
3.1 The 5-point a posteriori error estimator . . . . . . . . . . . . . . . . 70
3.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2.1 The 5-point error estimator for a second order ordinary dif-
ferential equation . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2.2 The 5-point error estimator for the wave equation on un-
structured mesh . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.1 The 5-point a posteriori error estimator

As it is already mentioned, the time error estimator from Theorem (20) contains a
finite element approximation to the Laplacian of ukh, i.e. zkh given by (2.20). This is
unfortunate because zkh should be computed by solving an additional finite element
problem that implies additional computational effort. Keeping in mind that the term
∂2
nfh−znh in (2.19) is a discretization of ∂2f/∂t2+∆u = ∂4u/∂t4 at the time tn our goal

now is to avoid the second derivatives in space in the error estimates and replace
them with the forth derivatives in time.

We introduce a “fourth order finite difference in time” ∂4
n defined by

∂4
nwh =

8

τn + τn−1 + τn−2 + τn−3

(
∂2
nwh − ∂2

n−1wh

τn + τn−2
−
∂2
n−1wh − ∂2

n−2wh

τn−1 + τn−3

)
, (3.1)

on any sequence {wnh}n=0,1,... ∈ Vh. This can be rewritten as a composition of two
second order finite difference operators

∂4
nwh = ∂̂2

n∂
2wh, (3.2)

where ∂2wh is the standard finite difference applied to wh, and ∂̂2
n is a modified

second order finite difference defined by

∂̂2
nwh =

2

(t̂n − t̂n−2)

(
wnh − w

n−1
h

t̂n − t̂n−1

−
wn−1
h − wn−2

h

t̂n−1 − t̂n−2

)
, (3.3)

t̂n =
tn+1 + tn−1

2
,

on any sequence {wnh}n=0,1,... ∈ Vh. Note that a lower subscript “n” is lacking
from ∂2wh in (3.2) consistent with the fact that ∂̂2

n is applied there to the sequence
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{∂2
nwh}n=0,1,... rather than to a single instance of ∂2

nwh. In full detail, (3.2) should be
interpreted as ∂4

nwh = ∂̂2
nwh with wnh = ∂2

nwh.

Remark 18. In the case of constant time steps τn = τ , (3.1) is reduced to

∂4
nwh =

wn+1
h − 4wnh + 6wn−1

h − 4wn−2
h + wn−3

h

τ4
.

It is thus indeed a standard finite difference approximation to the fourth derivative. In par-
ticular, it is exact on polynomials (in time) of degree up to 4. However, a standard fourth
order finite difference in the general case of non constant time steps would be given by the
divided differences

∂̃4
nwh = 4![wn−3

h , . . . , wn+1
h ]

=
12

τn + τn−1 + τn−2 + τn−3

(
∂2
nwh − ∂2

n−1wh

τn + τn−1 + τn−2
−

∂2
n−1wh − ∂2

n−2wh

τn−1 + τn−2 + τn−3

)
.

Clearly, the formulas ∂4
nwh and ∂̃4

nwh, although similar, do not coincide in general, and
consequently ∂4

nwh is not necessarily consistent with the fourth derivative in time of wh.
Definition (3.1) may seem thus artificial and counter-intuitive. We shall see however that it
arises naturally in the analysis of Newmark scheme, cf. forthcoming Lemma 27. Indeed, in
order to “differentiate” in time the averaged quantities w̄nh defined by (3.4) and present the
scheme (2.5), cf. also (3.12), one needs to employ the modified second order finite difference
∂̂2
n, which shall be composed further with ∂2

n to give rise ∂4
n.

For any sequence {wnh}n=0,1,... ∈ Vh, we denote

w̄nh =
τn(wn+1

h + wnh) + τn−1(wnh + wn−1
h )

4τn−1/2
. (3.4)

Consistently with the conventions above, w̄h will stand for any sequence {w̄nh}n=0,1,....
The following technical lemma establish a connection between second order discrete
derivatives ∂̂2

n and ∂2
n.

Lemma 27. For all integer n = 3, . . . N − 1 there exist coefficients αk, k = n− 2, n− 1, n
such that for all {wnh}

∂̂2
nw̄h =

n∑
k=n−2

αk∂
2
kwh. (3.5)

Moreover

|αk| ≤ c, for k = n− 2, n− 1, n, and
n∑

k=n−2

αk ≥ C,

where c and C are positive constants depending only on the mesh regularity in time, i.e. on
maxk≥0

(
τk+1

τk
+ τk

τk+1

)
.

Proof. We first note that relation (3.5) does not contain any derivatives in space and
thus it should hold at any point x ∈ Ω. Consequently, it is sufficient to prove this
lemma assuming that wnh , ∂2

nwh, etc. are real numbers, i.e. replacing Vh by R. This is
the assumption adopted in this proof. We shall thus drop the sub-indexes h every-
where. Furthermore, it will be convenient to reinterpret wn in (3.2), (3.3) and (3.4) as
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the values of a real valued function w(t) at t = tn. We shall also use the notations
like w̄n, ∂2

nw, and so on, where w is a continuous function on R, always assuming
wn = w(tn).

Observe that ∂̂2
nw̄ is a linear combination of 5 numbers {wn−3, . . . , wn+1}. Thus,

it is enough to check equality (3.5) on any 5 continuous functions φ(k)(t), k = n −
3, . . . , n+1, such that the vector of values of φ(k) at times tl, l = n−3, . . . , n+1, form
a basis of R5. For fixed n, let us choose these functions as

φ(k)(t) =


t− tk−1

τk−1
, if t < tk,

tk+1 − t
τk

, if t ≥ tk,
k = n− 3, . . . , n+ 1. (3.6)

First we notice that for every linear function u(t) on [tn−3, tn+1] we have

∂̂2
nū = ∂2

nu = 0.

Thus, we get immediately

∂̂2
nφ̄(n−3) = ∂2

nφ(n−3) = 0,

and
∂̂2
nφ̄(n+1) = ∂2

nφ(n+1) = 0,

so that (3.5) is fulfilled on functions φ(n−3), φ(n+1) with any coefficients αk, k = n −
2, n−1, n. Now we want to provide coefficients αk, k = n−2, n−1, n for which (3.5)
is fulfilled on functions φ(n−2), φ(n−1) and φ(n). For brevity, we demonstrate the idea
only for function φ(n)(t). Function φ(n)(t) is linear on [tn−3, tn] and thus

∂2
n−2φ(n) = 0, ∂2

n−1φ(n) = 0.

From direct computations it is easy to show that

∂2
nφ(n) ∼

1

τ2
n

, φ̄(n) ∼ 1, ∂̂2
nφ̄(n) ∼

1

τ2
n

where ∼ hides some factors that can be bounded by constants depending only on
the mesh regularity. Thus we are able to establish expression for coefficient

αn =
∂̂2
nφ̄(n)

∂2
nφ(n)

≤ C.

Similar reasoning for function φ(n−1) and φ(n−2) shows that

αn−1 =
∂̂2
nφ̄(n−1)

∂2
n−1φ(n−1)

≤ C and αn−2 =
∂̂2
nφ̄(n−2)

∂2
n−2φ(n−2)

≤ C.

The next step is to show boundedness from below of
n∑

k=n−2

αk. We will show it

by applying equality (3.5) to the second order polynomial function s(t) =
t2

2
. Using
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a Taylor expansion of s(t) around t̂n in the definition of s̄n gives

s̄n =
τn(t̂2n + t̂nτn−1 +

1

4
(τ2
n + τ2

n−1)) + τn−1(t̂2n − t̂nτn +
1

4
(τ2
n + τ2

n−1))

2(τn + τn−1)

=
t̂2n
2

+
1

8

(
τ2
n + τ2

n−1

)
.

Substituting this into the definition of ∂̂2
ns̄ we obtain

∂̂2
ns̄ =

s̄n − s̄n−1

t̂n − t̂n−1

− s̄n−1 − s̄n−2

t̂n−1 − t̂n−2(
t̂n − t̂n−2

)
/2

= 1 +
1

8

2
τ2
n − τ2

n−2

τn + τn−2
− 2

τ2
n−1 − τ2

n−3

τn−1 + τn−3
1
4(τn + τn−1 + τn−2 + τn−3)


= 1 +

τn − τn−1 − τn−2 + τn−3

τn + τn−1 + τn−2 + τn−3
.

Using (3.5) and the fact that ∂2
ks = 1 for k = n− 2, n− 1, n we note that

1 +
τn − τn−1 − τn−2 + τn−3

τn + τn−1 + τn−2 + τn−3
=

n∑
k=n−2

αk.

This implies
n∑

k=n−2

αk ≥ C.

Lemma 28. Let wnh , s
n
h ∈ Vh be such that

wn+1
h − wnh
τn

−
snh + sn+1

h

2
= 0, ∀n ≥ 0. (3.7)

For all n ≥ 3 there exist coefficients βk, k = n− 2, n− 1, n such that

n∑
k=n−2

αk∂
2
kwh =

(
n∑

k=n−2

αk

)
∂2
nwh − τn

n∑
k=n−2

βk∂
2
ksh, (3.8)

where coefficients αk, k = n− 2, n− 1, n are introduced in Lemma 27. Moreover

|βk| ≤ C, k = n− 2, n− 1, n,

where C is a positive constant depending only on the mesh regularity in time, i.e. on
maxk≥0

(
τk+1

τk
+ τk

τk+1

)
.

Proof. Like in the proof of Lemma 27, we assume Vh = R, drop the sub-indexes h and
interpret wn, sn as the values of continuous real valued functions w(t), s(t) at t = tn.
Using (3.7) and notations (2.7) implies ∂2

kw = ∂ks. Now, we are able to rewrite (3.8)
in terms of sn only

n∑
k=n−2

αk∂ks =

(
n∑

k=n−2

αk

)
∂ns− τn

n∑
k=n−2

βk∂
2
ks. (3.9)
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As in the proof of Lemma 27 we take into account the fact that equation (3.9) should
hold for every 5 numbers {sn−3, . . . , sn+1} and therefore it’s enough to check equal-
ity (3.9) on 5 linearly independent piecewise linear functions φ(k) introduced by (3.6).
Using the reasoning as in Lemma 27 leads to desired result (3.8).

We can now prove an a posteriori error estimate involving ∂4
nuh. Since the latter is

computed through 5 points in time {tn−3, . . . , tn+1}, we shall refer to this approach
as the 5-point estimator. For the same reason, this estimator is only applicable from
the time t4. The error at first 3 time steps should be thus measured differently, for
example using the 3-point estimator from Theorem 20. The deriving of 5-point time
error estimator is based on main ideas from the proof of Theorem 20 using Lemma
27.

Theorem 29. The following a posteriori error estimate holds between the solution u of the
wave equation (1.59) and the discrete solution unh given by (2.4)–(2.5) for all tn, 4 ≤ n ≤ N
with vnh given by (2.6):

∥∥∥∥∥vnh − ∂u

∂t
(tn)

∥∥∥∥∥
2

L2(Ω)

+ |unh − u(tn)|2H1(Ω)

1/2

≤

∥∥∥∥∥v3
h −

∂u

∂t
(t3)

∥∥∥∥∥
2

L2(Ω)

+
∣∣u3
h − u(t3)

∣∣2
H1(Ω)

1/2

+ ηS(tN ) + C

N−1∑
k=3

τkη̂T (tk) + C

N−1∑
k=3

τkη̂
h.o.t.
T (tk) +

∫ tn

t3

‖f − f̃τ‖L2()Ωdt, (3.10)

where the space indicator is defined by (2.22) and the time error indicator is

η̂T (tk) =

(
1

12
τ2
k +

1

8
τk−1τk

)(∣∣∂2
kvh
∣∣
H1(Ω)

+
∥∥∂4

kuh
∥∥
L2(Ω)

)
, (3.11)

with additional higher order terms

η̂h.o.t.T (tk) = τ3
k

∥∥∥∂2
k ḟh −Ah∂2

kvh

∥∥∥
L2(Ω)

,

where ḟnh satisfy
fn+1
h − fnh
τn

=
ḟnh + ḟn+1

h

2
.

The constant C > 0 depends only on the mesh regularity in time, i.e. on
maxk≥0

(
τk+1

τk
+ τk

τk+1

)
.

Proof. We note first of all that it is sufficient to prove the Theorem for the final time,
i.e. n = N because the statement for the general case n ≤ N will follow by resetting
the final time N to n. We can rewrite scheme (2.5) as

∂2
nuh +Ahū

n
h = f̄nh , (3.12)

for n = 0, . . . , N − 1 where fnh = Phf(tn, ·) and operator Ah defined in (3.22). Taking
a linear combination of instances of (3.12) at steps n, n − 1, n − 2 with appropriate
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coefficients gives
∂4
nuh +Ah∂̂

2
nūh = ∂̂2

nf̄h. (3.13)

Using the definition of operator ∂̂2
n and re-introducing vnh by (2.2) leads to

∂̂2
nūh =

n∑
k=n−2

αk∂
2
kuh =

(
n∑

k=n−2

αk

)
∂2
nuh − τn

n∑
k=n−2

βk∂
2
kvh.

with coefficientsαk, βk introduced in Lemma 27 and Lemma 28. Moreover, by Lemma
27 γ =

(∑n
k=n−2 αk

)−1 is positive and bounded so that

∂2
nuh = γ∂̂2

nūh + τn

n∑
k=n−2

γk∂
2
kvh,

with γk = γβk that are all uniformly bounded on regular meshes in time. Similarly,

∂2
nfh = ∂̂2

nf̄h + τn

n∑
k=n−2

γk∂
2
k ḟh.

Thus,

∂2
nfh −Ah∂2

nuh = ∂̂2
nf̄h −Ah∂̂2

nūh + τn

n∑
k=n−2

γk

(
∂2
k ḟh −Ah∂2

kvh

)
= ∂4

nuh + τn

n∑
k=n−2

γk

(
∂2
k ḟh −Ah∂2

kvh

)
. (3.14)

We can now reproduce the proof of Theorem 20. In the following, we adopt the
vector notation

U(t, x) =

(
u(t, x)
v(t, x)

)
,

where v = ∂u/∂t. Note that the first equation in (1.60) implies that(
∇
∂u

∂t
,∇ϕ

)
− (∇v,∇ϕ) = 0, ∀ϕ ∈ H1

0 (Ω),

by taking its gradient, multiplying it by ∇ϕ and integrating over Ω. Thus, system
(1.60) can be rewritten in the vector notations as

b

(
∂U

∂t
,Φ

)
+ (A∇U,∇Φ) = b(F,Φ), ∀Φ ∈ (H1

0 (Ω))2, (3.15)

where A =

(
0 −1
1 0

)
, F =

(
0
f

)
and

b(U,Φ) = b

((
u
v

)
,

(
ϕ
ψ

))
:= (∇u,∇ϕ) + (v, ψ).
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Similarly, Newmark scheme (2.2)–(2.3) can be rewritten as

b

(
Un+1
h − Unh
τn

,Φh

)
+

(
A∇

Un+1
h + Unh

2
,∇Φh

)
= b

(
Fn+1/2,Φh

)
, ∀Φh ∈ V 2

h , (3.16)

where Unh =

(
unh
vnh

)
and Fn+1/2 =

(
0

fn+1/2

)
.

The a posteriori analysis relies on an appropriate residual equation for the quad-
ratic reconstruction

Ũhτ =

(
ũhτ
ṽhτ

)
.

We have thus for t ∈ [tn, tn+1], n = 1, . . . , N − 1

Ũhτ (t) = Un+1
h + (t− tn+1)∂n+1/2Uh +

1

2
(t− tn+1)(t− tn)∂2

nUh. (3.17)

so that, after some simplifications,

b

(
∂Ũhτ
∂t

,Φh

)
+ (A∇Ũhτ ,∇Φh) = b

(
(t− tn+1/2)∂2

nUh + Fn+1/2,Φh

)
+

(
(t− tn+1/2)A∇∂n+1/2Uh +

1

2
(t− tn+1)(t− tn)A∇∂2

nUh,∇Φh

)
. (3.18)

Consider now (3.16) at the time steps n and n− 1. Subtracting one from another and
dividing by τn−1/2 yields

b
(
∂2
nUh,Φh

)
+ (A∇∂nUh,∇Φh) = b (∂nF,Φh) ,

or
b
(
∂2
nUh,Φh

)
+
(
A∇

(
∂n+1/2Uh −

τn−1

2
∂2
nUh

)
,∇Φh

)
= b (∂nF,Φh) ,

so that (3.18) simplifies to

b

(
∂Ũhτ
∂t

,Φh

)
+
(
A∇Ũhτ ,Φh

)
=
(
pnA∇∂2

nUh,∇Φh

)
+ b

((
t− tn+1/2

)
∂nF + Fn+1/2,Φh

)
=
(
pnA∇∂2

nUh,∇Φh

)
+ b

(
F̃τ − pn∂2

nF,Φh

)
, (3.19)

where

pn =
τn−1

2
(t− tn+1/2) +

1

2
(t− tn+1)(t− tn),

F̃τ (t) = Fn+1
h + (t− tn+1)∂n+1/2F +

1

2
(t− tn+1)(t− tn)∂2

nF.
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Introduce the error between reconstruction Ũhτ and solution U to problem (3.15)
:

E = Ũhτ − U, (3.20)

or, component-wise

E =

(
Eu
Ev

)
=

(
ũhτ − u
ṽhτ − v

)
.

Taking the difference between (3.19) and (3.15) we obtain the residual differential
equation for the error valid for t ∈ [tn, tn+1], n = 1, . . . , N − 1

b(∂tE,Φ) + (A∇E,∇Φ) = b

(
∂Ũτh

∂t
− F,Φ− Φh

)
+
(
A∇Ũτh,∇(Φ− Φh)

)
+
(
pnA∇∂2

nUh,∇Φh

)
+ b

(
F̃τ − F − pn∂2

nF,Φh

)
, ∀Φh ∈ V 2

h . (3.21)

Now we take Φ = E, Φh =

(
ΠhEu
ĨhEv

)
, note that (A∇E,∇E) = 0 and

(
∇
∂ũhτ

∂t
,∇(Eu −ΠhEu)

)
= (∇ṽhτ ,∇ (Eu −ΠhEu)) = 0.

Introducing operator Ah : Vh → Vh such that

(Ahwh, ϕh) = (∇wh,∇ϕh), ∀ϕh ∈ Vh, (3.22)

we get(
∂Ev

∂t
, Ev

)
+

(
∇Eu,∇

∂Eu

∂t

)
=

(
∂ṽτh

∂t
− f,Ev −ΠhEv

)
+
(
∇ũτh,∇

(
Ev − ĨhEv

))
+
(
pn
(
Ah∂

2
nuh − ∂2

nfh
)
, ĨhEv

)
−
(
pn∇∂2

nvh,∇Eu
)

+
(
f̃τ − f, ĨhEv

)
.

Note that equation similar to (3.21) also holds for t ∈ [t0, t1]

b(∂tE,Φ) + (A∇E,∇Φ) = b

(
∂Ũτh

∂t
− F,Φ− Φh

)
+
(
A∇Ũτh,∇(Φ− Φh)

)
+
(
p1A∇∂2

1Uh,∇Φh

)
+ b

(
F̃τ − F − p1∂

2
1F,Φh

)
. (3.23)
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That follows from the definition of the piecewise quadratic reconstruction ũhτ (t) for
t ∈ [t0, t1]. Integrating (3.21) and (3.23) in time from 0 to some t∗ ≥ t3 yields

1

2

(
|Eu|2H1(Ω) + ‖Ev‖2L2(Ω)

)
(t∗) =

1

2

(
|Eu|2H1(Ω) + ‖Ev‖2L2(Ω)

)
(0)

+

∫ t∗

0

(
∂ṽτh

∂t
− f,Ev − ĨhEv

)
dt︸ ︷︷ ︸

I

+

∫ t∗

0

(
∇ũτh,∇(Ev − ĨhEv)

)
dt︸ ︷︷ ︸

II

+

∫ t1

0

[(
p1

(
Ah∂

2
1uh − ∂2

1fh
)
, ĨhEv

)
−
(
p1∇∂2

1vh,∇Eu
)

+
(
f̃τ − f, ĨhEv

)]
dt︸ ︷︷ ︸

III

.

(3.24)

We set
Z(t) =

√
|Eu|2H1(Ω)

+ ‖Ev‖2L2(Ω)
,

and assume that t∗ ∈ [t3, tN ] is the point in time where Z attains its maximum and
t∗ ∈ (tn, tn+1] for some n. For the first and second terms in (3.24) we have

I + II ≤ C1

[ ∑
K∈Th

h2
K

∥∥∥∥∥∂ṽhτ∂t
−∆ũhτ − f

∥∥∥∥∥
2

L2(K)

+
∑
E∈Eh

hE ‖[n·∇ũhτ ]‖2L2(E)

]1/2

(t∗)|Eu|H1(Ω)(t
∗)

+ C1

[ ∑
K∈Th

h2
K

∥∥∥∥∥∂ṽhτ∂t
−∆ũhτ − f

∥∥∥∥∥
2

L2(K)

+
∑
E∈Eh

hE ‖[n·∇ũhτ ]‖2L2(E)

]1/2

(0)|Eu|H1(Ω)(0)

+ C2

n∑
m=1

τm−1

2

 ∑
K∈Th

h2
K

∥∥∂2
mvh − ∂2

m−1vh
∥∥2

L2(K)

1/2

|Eu|H1(Ω)(tm)

+ C3

n∑
m=0

∫ min(tm+1,t∗)

tm

[ ∑
K∈Th

h2
K

∥∥∥∥∥∂2ṽhτ

∂t2
−∆

∂ũτh

∂t
−
∂f

∂t

∥∥∥∥∥
2

L2(K)

+
∑
E∈Eh

hE

∥∥∥∥∥
[
n·∇

∂ũτh

∂t

]∥∥∥∥∥
2

L2(E)

]1/2

(t)|Eu|H1(Ω)(t)dt.

Indeed, it follows from integration by parts with respect to time, see the proof of
Theorem 3.2. The third term in (3.24) is responsible for the time estimator. It can be
written as
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III =
N−1∑
n=3

∫ min(tm+1,t∗)

tm

[(
pm

(
∂4
muh + τm

m∑
k=m−2

γk

(
∂2
k ḟh −Ah∂2

kvh

))
, ĨhEv

)

− (pm∇∂2
mvh,∇Eu) + (f̃τ − f, ĨhEv)

]
dt. (3.25)

Recalling thatZ(t∗) is the maximum ofZ(t) and using the estimate ‖ĨhEv‖L2(Ω) ≤
C‖Ev‖L2(Ω) we continue as

III ≤ Z(t∗)

∫ min(tm+1,t∗)

tm

n−1∑
m=3

|pm|dt

(
C‖∂4

muh‖L2(Ω) + |∇∂2
mvh|H1(Ω)

+ Cτm

m∑
k=m−2

γk‖∂2
k ḟh −Ah∂2

kvh‖L2(Ω)

)
+ Z(t∗)

∫ tn

t3

‖f − f̃τ‖L2(Ω).

Noting ∫ tm+1

tm

|pm|dt ≤
1

12
τ3
m +

1

8
τm−1τ

2
m,

we can finally bound III as

III ≤

(
C
N−1∑
k=3

τkη̂T (tk) + C
N−1∑
k=3

τkη̂
h.o.t.
T (tk) +

∫ tn

t3

‖f − f̃τ‖L2()Ωdt

)
Z(t∗)

Summing together the estimates on the terms I, II, III, and recalling Z(t∗) ≥
Z(tN ) yields (29) at the final time tN .

Remark 19. The terms η̂h.o.t.T (tk) in (29) are of higher order than η̂T (tk). We propose
therefore to ignore η̂h.o.t.T (tk) in practice together with the integral of f−f̃τ , and to use η̂T (tk)
as the indicator of error due to the discretization in time. The following Theorem shows that
that the latter is indeed of optimal order τ2, at least for sufficiently smooth solutions, on
quasi-uniform meshes in space and uniform meshes in time.

Theorem 30. Let u be the solution of wave equation (1.59) and

∂3u

∂t3
(0) ∈ H1(Ω) ,

∂2u

∂t2
(0) ∈ H2(Ω),

∂2f

∂t2
(t) ∈ L∞(0, T ;L2(Ω)) ,

∂3f

∂t3
(t) ∈ L2(0, T ;L2(Ω)).

Suppose that mesh Th is quasi-uniform and the mesh in time is uniform (tk = kτ ). Then,
the 5-point time error estimator η̂T (tk) defined by (29) is of order τ2, i.e.

η̂T (tk) ≤ Cτ2.

with a positive constant C depending only on u, f , and the mesh regularity.
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Proof. The result follows from Theorem 2.2.2 by using (3.13) and Lemma 27

∥∥∂4
nuh
∥∥
L2(Ω)

=
∥∥∥∂̂2

nf̄h −Ah∂̂2
nūh

∥∥∥
L2(Ω)

=

∥∥∥∥∥
n∑

k=n−2

αk
(
∂2
kfh −Ah∂2

kuh
)∥∥∥∥∥
L2(Ω)

.

Remark 20. Note, that as in the case of the 3-point error estimator, the approximation of
initial conditions and right-hand-side function is crucial for optimality of our time and space
error estimators.

3.2 Numerical results

3.2.1 The 5-point error estimator for a second order ordinary differential
equation

We first present numerical comparison of the 3-point error estimator and the 5-point
error estimator at the case of ordinary differential equation of second order (1.64).
The Newmark scheme reduces in this case to

un+1 − un

τn
− un − un−1

τn−1
+A

τn(un+1 + un) + τn−1(un + un−1)

4
=

=
τn(fn+1 + fn) + τn−1(fn + fn−1)

4
, 1 ≤ n ≤ N − 1,

u1 − u0

τ0
= v0 −

τ0

4
A(u1 + u0) +

τ0

4
(f1 + f0),

u0 = u0.

and the error becomes

e = max
0≤n≤N

(∣∣vn − u′(tn)
∣∣2 +A |un − u(tn)|2

)1/2
.

The 3-point a posteriori error estimate simplifies to this form:

e ≤
n−1∑
k=0

τkηT (tk) = τ0

(
5

12
τ2

0 +
1

2
τ0τ1

)√
A(∂2

1v)2 + (∂2
1f −A∂2

1u)2

+
n−1∑
k=1

τk

(
1

12
τ2
k +

1

8
τk−1τk

)√
A(∂2

kv)2 + (∂2
kf −A∂2

ku)2,

∀n : 0 ≤ n ≤ N . Similarly the 5-point a posteriori error estimate simplifies to this
form:

e ≤
n−1∑
k=3

η̂T (tk) =

n−1∑
k=3

τk

(
1

12
τ2
k +

1

8
τk−1τk

)√
A(∂2

kv)2 + (∂4
ku)2,

∀n : 4 ≤ n ≤ N .
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A N ηT η̂T e eiT êiT

100 100 .21 .203 .085 2.47 2.39
100 1000 .0021 .0021 8.34e-04 2.5 2.49
100 10000 2.08e-05 2.08e-05 8.35e-06 2.5 2.5

1000 100 20.51 19.47 8.35 2.46 2.33
1000 1000 .209 .208 .084 2.5 2.49
1000 10000 .0021 .0021 8.33e-04 2.5 2.5

10000 100 1.68e+03 1.4e+03 200 8.38 6.98
10000 1000 20.8 20.7 8.34 2.5 2.49
10000 10000 .208 .208 .083 2.5 2.5

TABLE 3.1: Effective indices for constant time steps and f = 0.

We define the following effectivity indices in order to measure the quality of our
estimators ηT and η̂T

eiT =
ηT
e
, êiT =

η̂T
e
.

We present in Table 3.1 the results for equation (1.64) setting f = 0, the exact
solution u = cos(

√
At), final time T = 1, and using constant time steps τ = T/N . We

observe that the 3-point and the 5-point estimators are divided by about 100 when
the time step τ is divided by 10. The true error e also behaves as O(τ2) and hence
both time error estimators behave as the true error.

In order to check behavior of time error estimators for variable time step (see
Table 3.2) we take the previous example with time step ∀n : 0 ≤ n ≤ N

τn =

{
0.1τ∗, if mod(n, 2) = 0,

τ∗, if mod(n, 2) = 1,
(3.26)

where τ∗ is a given fixed value. As in the case of constant time step we have the
equivalence between the true error and both estimated errors. We have plotted on
Fig 3.1 evolution in time of the values

∑n−1
k=0 ηT (tk) and

∑n−1
k=3 η̂T (tk) compared to e.

Table 3.3 contains the results for even more non-uniform time step ∀n : 0 ≤ n ≤
N

τn =

{
0.01τ∗, if mod(n, 2) = 0,

τ∗, if mod(n, 2) = 1,
(3.27)

on otherwise the same test case. Note that in the case when A = 100 and N = 19800
the 5-points error estimator η̂T blows up, while the 3-point estimator behaves as the
true error. This effect is consistent with Theorem 20. Indeed, the constants in the
bounds of this Theorem may depend on the meshes regularity in time.

Our conclusion is thus that for toy model classic and alternative a posteriori error
estimators are sharp on both constant and variable time grids.
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FIGURE 3.1: Evolution in time of the 3-point and the 5-point time
estimators for variable time step (3.26), A = 100, N = 180, T = 1.

A N ηT η̂T e eiT êiT

100 180 .09 .087 .077 1.17 1.13
100 1816 8.85e-04 8.82 e-04 7.59e-04 1.17 1.16
100 18180 8.83e-06 8.83e-06 7.6e-06 1.16 1.16

1000 180 8.91 8.52 7.6 1.17 1.13
1000 1816 .089 .088 .076 1.17 1.16
1000 18180 8.84e-04 8.83e-04 7.59e-04 1.16 1.16

10000 180 802.84 725.1 200 4.01 3.63
10000 1816 8.84 8.8 7.58 1.17 1.16
10000 18180 .088 .088 .076 1.16 1.16

TABLE 3.2: Effective indices for variable time step (3.26) and f = 0.

3.2.2 The 5-point error estimator for the wave equation on unstructured
mesh

We now report numerical results for initial boundary-value problem for the wave
equation with non-uniform time steps when using the 3-point time error estimator
(2.19, 2.21) and the 5-point time error estimator (29).

We compute two parts of the space estimator (2.22) in practice by (2.59). The
quality of our error estimators in space and time is determined by following effec-
tivity indices:

ei =
ηT + ηS

e
, êi =

η̂T + ηS
e

,
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A N ηT η̂T e eiT êiT

100 196 .086 .083 .084 1.02 0.98
100 1978 8.39e-04 8.36 e-04 8.26e-04 1.02 1.01
100 19800 8.38e-06 1.82e-05 8.1e-06 1.03 2.24

1000 196 8.47 8.1 8.26 1.02 0.98
1000 1978 .083 .084 .0827 1.02 1.01
1000 19800 8.37e-04 8.37e-04 8.26e-04 1.01 1.01

10000 196 764.2 691.7 200 3.82 3.46
10000 1978 8.39 8.35 8.25 1.02 1.01
10000 19800 .084 .084 .083 1.01 1.01

TABLE 3.3: Effective indices for variable time step (3.27) and f = 0.

where the first index contains the 3-point time error estimator and space estimator,
while the last measures the grade of the 5-point time error estimator and space esti-
mator. The true error is defined in (2.60).

Consider the problem (1.59) with Ω = (0, 1)× (0, 1), T = 1 and the exact solution
u given by

u(x, y, t) = e−100r2(x,y,t), (3.28)

where
r2(x, y, t) = (x− 0.3− 0.4t2)2 + (y − 0.3− 0.4t2)2. (3.29)

Thus, u is a Gaussian function, whose center moves from point (0.3, 0.3) at t = 0 to
point (0.7, 0.7) at t = 1. The transport velocity 0.8t(1, 1)T is peaking at t = 1. We
choose non-uniform time step as

τn =
τ0√
tn
,

for n = 1, . . . , N−1. We interpolate initial conditions withH1
0 -orthogonal projection

u0
h = Πhu

0, v0
h = Πhv

0,

and right-hand-side function with L2-orthogonal projection as it noted in previous
chapter

fnh = Phf
n, 0 ≤ n ≤ N.

Unstructured Delaunay meshes in space are used in all the experiments. Numerical
results are reported in Table 3.4. Note that this case is chosen so that the non-uniform
time step is required, see Fig.3.2.

Referring to Table 3.4, we observe that when setting initial time step as τ2 ∼ O(h)
the error is divided by 2 each time h is divided by 2, consistent with e ∼ O(τ2 + h).
The space error estimator and the two time error estimators behave similarly and
thus provide a good representation of the true error. Both effectivity indices tend to
a constant value.

We therefore conclude that our space and time error estimators are sharp in the
regime of non-uniform time steps and Delaunay space meshes. They separate well
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FIGURE 3.2: Solution (3.28). From up to down: time t = 0, 0.5, 1.
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h τ0 ei êi ηT η̂T ηS τF Nts e

.05 .01 4.85 4.83 .096 .088 2.55 .0063 105 .58

.025 .0071 5.39 5.38 .054 .051 1.39 .0045 149 .27

.0125 .005 5.94 5.93 .028 .026 .72 .0032 210 .13

.00625 .0035 5.94 5.94 .014 .013 .36 .0022 297 .065

.003125 .0025 5.94 5.94 .0067 .0065 .18 .0016 421 .032

TABLE 3.4: Results for case (3.28), non-uniform time step.

the two sources of the error and can be thus used for the mesh adaptation in space
and time. In particularly, the 3-point and the 5-point time estimators become more
and more close to each other when h and τ tend to 0.
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Chapter 4

Numerical study and comparisons
for a general second order
Newmark scheme

The goal of this section is to extend results our a posteriori error analysis to general
second order Newmark schemes. For the sake of brevity we work only with the
case of second order ordinary differential equation, not taking into account the space
discretization. We derive a a posteriori error estimator for a general Newmark scheme
of second order (γ = 1/2, β arbitrary), generalizing Theorem 32. This is the main
result of this section. Numerical experiments confirm that the convergence rate of
the time error estimator is similar to that of the true error, taking explicit (β = 0) and
implicit conservative (β = 1/4) second order Newmark schemes as examples.

Another time error estimator for a general Newmark scheme has been already
proposed in [Geo+16]. This estimator is based on a reformulation of the scheme as a
discretization of the first order system on staggered grids, while our estimator uses
rather the analogy with Crank-Nicolson discretization. The estimator from [Geo+16]
is thus limited to uniform meshes in time, while our 3-point time error estimator
is derived for non constant time steps and can thus be used for mesh adaptation
in time. We present numerical comparison between our time error estimator and
that of [Geo+16] in the case of constant time step. We conclude that both two time
estimators are sharp and reliable.

The outline of the chapter is as follows. We present the general 3-point time error
estimator and its derivation in the first section. In the second section we give an
explicit formula to compute the staggered grids time error estimator from [Geo+16].
Numerical experiments for several test cases are given in the last section.

Chapter contents
4.1 The 3-point error estimator . . . . . . . . . . . . . . . . . . . . . . . 87

4.1.1 A priori error estimate . . . . . . . . . . . . . . . . . . . . . . 89
4.1.2 A posteriori error estimate . . . . . . . . . . . . . . . . . . . . 91

4.2 The staggered grids error estimator . . . . . . . . . . . . . . . . . . 93
4.3 Numerical study of the 3-point error estimator . . . . . . . . . . . 95
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4.1 The 3-point error estimator

We turn back to the second order ordinary differential equation, cf. (1.64)
d2u(t)

dt2
+Au(t) = f(t), t ∈ [0;T ] ,

u(0) = u0,

u′(0) = v0,

(4.1)

with a constant A > 0.
The general Newmark scheme [New59b] for it can be written as follows: given

u0, v0 compute un+1, vn+1 for n = 0, . . . , N − 1 from

un+1 = un + τnv
n + τ2

n

1− 2β

2
wn + τ2

nβw
n+1, (4.2)

vn+1 = vn + (1− γ)τnw
n + γτnw

n+1, (4.3)

where un is an approximation for u(tn), vn is an approximation for u′(tn), τn =
tn+1 − tn is the time step, wn is a shorthand for fn − Aun with fn = f(tn), β and γ

are some coefficients such that 0 ≤ γ ≤ 1 and 0 ≤ β ≤
1

2
.

In order to obtain the second order method, we adopt the particular choice for

the parameter γ =
1

2
in (4.3). Thus we have

un+1 = un + τnv
n + τ2

n

1− 2β

2
wn + τ2

nβw
n+1, (4.4)

vn+1 = vn + τn
wn + wn+1

2
, (4.5)

for n = 0, . . . , N −1. Hereafter we call the scheme (4.4), (4.5) as general second order
Newmark scheme. Setting β to various values gives a wide range of schemes. The

popular choices are β = 0 that gives an explicit scheme and β =
1

4
that gives an

implicit conservative scheme with respect to the energy norm.
Further we show that a general second order Newmark scheme (4.4)–(4.5) for

equation 4.1 can be rewritten with two different ways: as a cosine-type second order
method or as a perturbed Crank-Nicolson scheme.

First reformulation - cosine scheme

Dividing (4.4) by τn, doing the same at the previous time step and subtracting one
from another, yields to

un+1 − un

τn
− un − un−1

τn−1
= vn − vn−1 + τn

1− 2β

2
wn + τnβw

n+1

− τn−1

1− 2β

2
wn−1 − τn−1βw

n.
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Using (4.5) at the previous time step to eliminate vn and recalling that w
n

=fn−Aun,
we get

un+1 − un

τn
− un − un−1

τn−1
+A

(
τn−1βu

n−1 + (τn−1 + τn)
1− 2β

2
un + τnβu

n+1

)
= τn−1βf

n−1 + (τn−1 + τn)
1− 2β

2
fn + τnβf

n+1, (4.6)

for n = 0, . . . , N − 1. This is the cosine method, cf. [Geo+16] with q1 = β. When
β = 0 the above method is called the leap-frog method.

Second reformulation - Crank-Nicolson scheme

We are now going to rearrange the equations (4.4)–(4.5) so that they look like a dis-
cretization of the first order system for u(t) and v(t) = u′(t). The resulting scheme
turns out to be a perturbation of Crank-Nicolson scheme, which will be useful in
the subsequent analysis.

We start from rewriting (4.5) as

vn =
vn+1 + vn

2
− τn

wn + wn+1

4
,

and substitute this into (4.4) to get

un+1 − un

τn
=
vn+1 + vn

2
+ τn

(
β − 1

4

)
(wn+1 − wn).

Thus, the original scheme can be also written as

un+1 − un

τn
− vn+1 + vn

2
= δn, (4.7)

vn+1 − vn

τn
+A

un+1 + un

2
=
fn+1 + fn

2
, (4.8)

for n = 0, . . . , N − 1 with

δn = τn

(
β − 1

4

)
(fn+1 −Aun+1 − fn +Aun).

Remark 21. The fact that for wave equation (4.1) the Newmark method (4.4), (4.5) can be
rewritten as the Crank-Nicolson scheme for the first-order system (4.7), (4.8) plays the key
role in a posteriori error analysis for the second order methods for the wave equation. Indeed,
we already saw that the derivation of the 3-point and the 5-point error estimators in sections
2, 3 is based on the scheme (4.7), (4.8).
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4.1.1 A priori error estimate

We turn now to a priori error analysis for the scheme (4.4)-(4.5). In this chapter we
use the following notations

un+ 1
2 =

un+1 + un

2
, ∂nu =

un+1 − un−1

τn + τn−1
,

∂2
nu =

(
τn−1 + τn

2

)−1(un+1 − un

τn
− un − un−1

τn−1

)
,

∂n+ 1
2
u =

un+1 − un

τn
, τn− 1

2
=
τn + τn−1

2
, fn+ 1

2 =
fn+1 + fn

2
.

which we shall apply to any quantities numbered with a superscript n.

As we already mentioned the schemes above with γ =
1

2
are of 2nd order in time

for both un and vn. This is not particularly evident if one looks at the reformulation
(4.6), but it is clear from the original form (4.4)–(4.5) or (4.7)–(4.8). The precise state-
ment is given in the following theorem. We shall need there a CFL-type condition
on the time step

τ2
n

(
1

4
− β

)
<

1

A
. (4.9)

This restriction is of course automatically satisfied for β ≥
1

4
.

Theorem 31. Let u be a smooth solution of the ordinary differential equation (4.1) and un,
vn be the discrete solution of the scheme (2.2)-(2.3). Assume that (4.9) holds for all the time
steps τn. Then, the following a priori error estimate holds

max
0≤n≤N

(∣∣vn − u′(tn)
∣∣2 + |un − u(tn)|2

)1/2

≤ C
N−1∑
n=0

τ2
n

(∫ tn+1

tn

√
A
∣∣u′′′(t)∣∣ dt+

∫ tn+1

tn

∣∣u′′′′(t)∣∣ dt) (4.10)

with a constant C which does not depend on the mesh or on the final time.

Proof. We follow the proof of a priori error estimate from Section 2. Let us introduce
enu = un − u(tn) and env = vn − v(tn). We also introduce the notation

B = 1 +Aτ2
n

(
β −

1

4

)
,

and note B > 0 thanks to (4.9).



90
Chapter 4. Numerical study and comparisons for a general second order New-
mark scheme

Observe that the following equations hold

B∂n+1/2eu − en+1/2
v = τ2

n

(
β −

1

4

)
f(tn+1)− f(tn)

τn

−B
u(tn+1)− u(tn)

τn
+
v(tn+1) + v(tn)

2
, (4.11)

∂n+1/2ev +Aen+1/2
u =

u′′(tn+1) + u′′(tn)

2
−
v(tn+1)− v(tn)

τn
. (4.12)

The first equation above is a direct consequence of (4.7). The last equation is a direct
consequence of (4.8) together with the governing equation (4.1) evaluated at times
tn and tn+1.

Multiplying (4.11) by Aen+1/2
u and (4.12) by en+1/2

v and taking the sum of (4.11)
and (4.12) yields

AB|en+1
u |2 −AB|enu|2 + |en+1

v |2 − |env |2

2τn
= ARn1e

n+1/2
u +Rn2e

n+1/2
v , (4.13)

with

Rn1 =

(
τ2
n

(
β −

1

4

)
u′′(tn+1)− u′′(tn)

τn
−
u(tn+1)− u(tn)

τn
+
v(tn+1) + v(tn)

2

)
,

Rn2 =

(
u′′(tn+1) + u′′(tn)

2
−
v(tn+1)− v(tn)

τn

)
.

Set
En =

(
AB |enu|

2 + |env |
2
)1/2

,

so that equality (4.13) with Cauchy-Schwarz inequality entails

(En+1)2 − (En)2

2τn
≤
(
A|Rn1 |2 + |Rn2 |2

)1/2 En+1 + En

2
,

which implies
En+1 − En ≤ τn

(√
A|Rn1 |+ |Rn2 |

)
.

Summing this over n from 0 to N − 1 gives

(AB|eNu |2 + |eNv |2)1/2 ≤
N−1∑
n=0

τn(
√
A|Rn1 |+ |Rn2 |).

or

(A|eNu |2 + |eNv |2)1/2 ≤ c
N−1∑
n=0

τn(
√
A|Rn1 |+ |Rn2 |) (4.14)

with c = max(1, 1/B).
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We have the following estimates for Rn1 and Rn2

|Rn1 | ≤ Cτn
∫ tn+1

tn

∣∣u′′′(t)∣∣ dt, (4.15)

|Rn2 | ≤ Cτn
∫ tn+1

tn

∣∣u′′′′(t)∣∣ dt, (4.16)

which can be proved by Taylor expansion similarly to analogous estimates for (2.14)–
(2.15) in a priori estimates from Chapter 2. Substituting (4.15)–(4.16) into (4.14) yields
(4.10).

4.1.2 A posteriori error estimate

Let us adopt the vector notations

Un =

(
un

vn

)
, Fn =

(
δn

fn+1+fn

2

,

)

so that the scheme (4.7)–(4.8) can be written as

∂n+ 1
2
U +AUn+ 1

2 = Fn, (4.17)

Let us introduce the piecewise quadratic reconstruction Ũτ of Un such that Ũτ (t)
is a continuous function that is equal on [tn, tn+1], n ≥ 1 to the quadratic polynomial
that coincides with Un+1 (resp. Un, Un−1) at time tn+1 (resp. tn, tn−1). We have thus
for t ∈ [tn, tn+1], n ≥ 1

Ũτ (t) = Un+ 1
2 + (t− tn+ 1

2
)∂n+ 1

2
U +

1

2
(t− tn+1)(t− tn)∂2

nU. (4.18)

Moreover, Ũτ (t) is defined on [t0, t1] as the quadratic polynomial that coincides with
U2 (resp. U1, U0) at time t2 (resp. t1, t0). Similarly we introduce piecewise quadratic
reconstruction f̃τ (t) based on fn.

We are now ready to derive time a posteriori error estimate for general Newmark
scheme of second order.

Theorem 32. The following a posteriori error estimate holds between the solution u of prob-
lem (4.1) and the solution un provided by the scheme (4.6) or, equivalently, by (4.7)–(4.8)

(
∣∣vn − u′(tn)

∣∣2 +A|un − u(tn)|2)
1
2 ≤

n−1∑
k=0

τkηT (tk), (4.19)

where the error indicator for k = 1, . . . , N − 1 is

ηT (tk) =

(
1

12
τk +

1

8
τk−1

)
τk

√
A(∂2

kv)2 + (∂2
kf −A∂2

ku)2

+

∫ tk+1

tk

∣∣∣f − f̃τ ∣∣∣+

∫ tk+1

tk

√
A |Rδk | , (4.20)
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and

ηT (t0) =

(
5

12
τ0 +

1

2
τ1

)
τ0

√
A(∂2

1v)2 + (∂2
1f −A∂2

1u)2

+

∫ t1

t0

∣∣∣f − f̃τ ∣∣∣+

∫ t1

t0

√
A |Rδ1 | , (4.21)

where

Rδn = δn + (t− tn+ 1
2
)
δn − δn−1

τn− 1
2

. (4.22)

Proof. We use the scheme (4.17) to derive the differential equation for the reconstruc-
tion Ũτ for t ∈ [tn, tn+1], n ≥ 1

dŨτ
dt

+AŨτ = (t− tn+ 1
2
)
[
∂2
nU +A∂n+ 1

2
U
]

+
1

2
(t− tn+1)(t− tn)A∂2

nU + Fn.

Now, reusing the scheme on two time slabs, we get

∂2
nU +A∂nU =

Fn − Fn−1

τn− 1
2

,

or

∂2
nU +A

(
∂n+ 1

2
U − τn−1

2
∂2
nU
)

=
Fn − Fn−1

τn− 1
2

,

so that the differential equation can be rewritten as

dŨτ
dt

+AŨτ =

(
τn−1

2
(t− tn+ 1

2
) +

1

2
(t− tn+1)(t− tn)

)
A∂2

nU

+ (t− tn+ 1
2
)
Fn − Fn−1

τn− 1
2

+ Fn.

Let us introduce the vectorial error

E(t) = Ũτ (t)− U(t) =

(
Eu(t)
Ev(t)

)
, (4.23)

where

U(t) =

(
u(t)
u′(t)

)
. (4.24)

Then, for t ∈ (tn, tn+1]

dE

dt
+AE = pn(t)A∂2

nU + Fn + (t− tn+ 1
2
)
Fn − Fn−1

τn− 1
2

− F (t), (4.25)

where
pn(t) =

τn−1

2
(t− tn+ 1

2
) +

1

2
(t− tn+1)(t− tn).
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We take the scalar product of previous equality with
(
AEu
Ev

)
to obtain

1

2

d(A(Eu)2 + (Ev)
2)

dt
= pn(t)

(
−∂2

nv
A∂2

nu− ∂2
nf

)
·
(
AEu
Ev

)
+

(
δn + (t− tn+ 1

2
) δ

n−δn−1

τ
n− 1

2

f̃τ − f

)
·
(
AEu
Ev

)
.

Denoting
Z(t) =

√
A(Eu(t))2 + (Ev(t))2,

we get by Cauchy-Schwartz inequality for t ∈ [tn, tn+1], n ≥ 1

Z
dZ

dt
≤
[
A

(
−pn(t)∂2

nv + δn + (t− tn+ 1
2
)
δn − δn−1

τn− 1
2

)2

+ (pn(t)(A∂2
nu− ∂2

nf) + f̃τ − f)2
] 1

2
Z.

From the definition of the piecewise quadratic reconstruction Ũτ (t) for t ∈ [t0, t1]
follows that a similar inequality holds for t ∈ [t0, t1]

Z
dZ

dt
≤
[
A

(
−p1(t)∂2

1v + δ1 + (t− t 3
2
)
δ1 − δ0

τ 1
2

)2

+ (p1(t)(A∂2
1u− ∂2

1f) + f̃τ − f)2
] 1

2
Z.

Simplify two previous inequalities by Z on both sides and integrate to get (4.19).

Remark 22. The potentially dangerous feature in the estimate (4.19) is in the terms with δk.
Indeed, they contain A

3
2un which is

√
A times more than other terms. Note that this terms

are not present in the case β = 1
4 . In Section 4.3 we numerically compare the cases β = 1

4
and β = 0 in terms of the accuracy of the estimator and the accuracy of the scheme itself if A
is big.

4.2 The staggered grids error estimator

In this subsection we give the explicit formula to compute the staggered grids a
posteriori error estimator from (1.108)

ηSGT = 2
(
A |u− ũ|2 +

∣∣u′ − ṽ∣∣2)1/2
(0) + 4

∫ tN

0

(
A |R2|2 + |R1|2

)1/2
dt. (4.26)

Taking into account the fact that the reconstruction û(t) is defined on (tn−1, tn] for
n = 1, . . . , N−1 while u(t) andRu are defined on (tn−1/2, tn+1/2] for n = 0, . . . , N−1
(respectively, the reconstruction v̂(t) is defined on (tn−1/2, tn+1/2] for n = 0, . . . , N −
1 while v(t) and Rv are defined on (tn−1, tn] for n = 1, . . . , N − 1) we compute a
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posteriori error estimator as follows:

ηSGT |(tn−1,tn]=

∫ tn−1/2

tn−1

(
A |R2|2 + |R1|2

)1/2
dt

+

∫ tn

tn−1/2

(
A |R2|2 + |R1|2

)1/2
dt, (4.27)

for n = 1, . . . , N − 1. We compute (1.109) using linear reconstructions ũ and ṽ:

R1 = −A(û− ũ)−A(ũ− u)−Ru,
R2 = v̂ − ṽ + ṽ − v −Rv, (4.28)

where

u |(tn−1/2,tn+1/2] (t) = un−1/2 + (t− tn−1/2)
un+1/2 − un−1/2

τ
,

v |(tn−1,tn] (t) = vn−1 + (t− tn−1)
vn − vn−1

τ
,

ũ |(tn−1,tn] (t) = un−1 + (t− tn−1)
un − un−1

τ
,

ṽ |(tn−1/2,tn+1/2] (t) = vn−1/2 + (t− tn−1/2)
vn+1/2 − vn−1/2

τ
. (4.29)

Thus from (4.29), (1.106) and (1.107) we have:

v̂ |(tn−1/2,tn+1/2] (t) = vn−1/2 −A
(

(t− tn−1/2)un−1/2

+ (t− tn−1/2)2u
n+1/2 − un−1/2

2τ

)
+Ru(t− tn−1/2), (4.30)

û |(tn−1,tn] (t) = un−1 + (t− tn−1)vn−1 + (t− tn−1)2 v
n − vn−1

2τ
+Rv(t− tn−1). (4.31)

Combining (4.31), (4.30), (4.29) and (4.28) we obtain:

R1 |(tn−1,tn−1/2] (t) = −A
(

(t− tn−1)2 v
n − vn−1

2τ
+Rv(t− tn−1)

−
un − 2un−1 + un−2

4

)
−Ru,

R1 |(tn−1/2,tn] (t) = −A
(

(t− tn−1)2u
n+1 − un − un−1 + un−2

4τ2
+Rv(t− tn−1)

+
un+1 − 2un + un−1

4

)
−Ru,
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R2 |(tn−1,tn−1/2] (t) = −A(t− tn−3/2)2u
n−1/2 − un−3/2

2τ

+ (t− tn−3/2)
un − 2un−1 + un−2

4
+A(t− tn−3/2)

un−1 − un−2

2

− (t− tn−1)
vn+1/2 − 2vn−1/2 + vn−3/2

2τ
−Rv,

R2 |(tn−1/2,tn] (t) = −A(t− tn−1/2)2u
n+1/2 − un−1/2

2τ
+A(t− tn−1/2)

un − un−1

2

+ (t− tn−1/2)
un+1 − 2un + un−1

4
−
vn+1/2 − 2vn−1/2 + vn−3/2

2

+ (t− tn−1)
vn+1/2 − 2vn−1/2 + vn−3/2

2τ
−Rv.

Remark 23. Note thatA
3
2un are also presented in the staggered grids estimator (4.26), even

if β = 1
4 . Indeed, we see that the reconstruction v̂(t) contains Au. Then, v̂(t) is used in the

error estimate inside the term
∥∥∥√AR2

∥∥∥ with R2 = v̂ − v − Rv so that the error estimate

has a contribution of the type A
3
2u.

The 3-point time error estimator is different from (1.108). An advantage of our approach
is that it is readily applied to the case of non constant τn, while the estimator from [Geo+16] is
constructed only for constant time steps. Furthermore, we remind that the 3-point estimator
does not involve the terms like A

3
2un in the important special case β = 1

4 which may lead to
sharper estimates in the case of the full discretization of the wave equation in space and time.

A numerical comparison between the staggered grids error estimator and the 3-point
error estimator is provided in the next section.

4.3 Numerical study of the 3-point error estimator

The objective of this section is to study the performance of the 3-point a posteriori
error estimator (4.19) and to compare it with the staggered grids error estimator
(4.26). We introduce the notation:

e = max
0≤n≤N

(∣∣vn − u′(tn)
∣∣2 +A |un − u(tn)|2

)1/2
.

We restrict ourselves with constant time step τ and right-hand side function f = 0
(4.1). In this case from Theorem 32 the 3-point a posteriori error estimate has the
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following form:

e ≤ ηT = τ

(
11

12
τ2
√
A(∂2

1v)2 + (∂2
1f −A∂2

1u)2

+
1

τ

∫ t1

t0

√
A

∣∣∣∣δ1 + (t− t 3
2
)
δ1 − δ0

τ

∣∣∣∣ dt
)

+

N−1∑
k=1

τ

(
5

24
τ2
√
A(∂2

kv)2 + (∂2
kf −A∂2

ku)2

+
1

τ

∫ tk+1

tk

√
A

∣∣∣∣δk + (t− tk+ 1
2
)
δk − δk−1

τ

∣∣∣∣ dt
)
, (4.32)

FIGURE 4.1: Evolution in time of the 3-point, the 5-point and the
staggered grids time error estimators in comparison with true error,

β = 1/4, A = 100, N = 1000, T = 1.

In order to measure the quality of the 3-point error estimator ηT and the stag-
gered grids error estimator ηSGT , we define the following effectivity indeces

eiT =
ηT
e
, eiSGT =

ηSGT
e
.

We study the test case when the exact solution is given by

u = cos(
√
At),

we take the final time T = 1. In Table 4.1 we present the convergence results for im-

plicit Newmark scheme when β =
1

4
. We observe that the 3-point and the staggered

grids estimators are divided by about 100 when the time step τ is divided by 10. The
true error e also behaves as O(τ2) and hence both time error estimators behave as
the true error.
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FIGURE 4.2: Evolution in time of the 3-point, the 5-point and the
staggered grids time error estimators in comparison with true error,

β = 1/4, A = 10000, N = 10000, T = 1.

We have plotted on Fig. 4.1 and on Fig. 4.2 the evolution in time of the values ηT
and ηSGT compared to the actual error e.

A N ηT η̂T ηSGT e eiT êiT eiSGT

100 100 .21 .203 1.22 .085 2.47 2.39 14.33
100 1000 .0021 .0021 .012 8.34e-04 2.5 2.49 14.7
100 10000 2.08e-05 2.08e-05 1.22e-04 8.35e-06 2.5 2.5 14.7

1000 100 20.51 19.47 119.15 8.35 2.46 2.33 14.27
1000 1000 .209 .208 1.23 .084 2.5 2.49 14.77
1000 10000 .0021 .0021 0.0123 8.33e-04 2.5 2.5 14.81

10000 100 1.68e+03 1.4e+03 9.25e+04 200 8.38 6.98 46.25
10000 1000 20.8 20.7 123.28 8.34 2.5 2.49 14.79
10000 10000 .208 .208 1.23 .083 2.5 2.5 14.84

TABLE 4.1: Convergence results and effective indices, f = 0, β = 1/4.

We now investigate the sharpness of the 3-point time error estimator by perform-
ing numerical experiments for explicit Newmark scheme of second order β = 0.
From Table 4.2 we note the equivalence between the true error and both estimated
errors. We have plotted on Fig. 4.3 and on Fig. 4.4 the evolution in time of the values
ηT and ηSGT compared to the actual error e.

Our conclusion is thus that for toy model the 3-point and the staggered grids a
posteriori error estimators are sharp on constant time grids. The appreciable differ-
ence between the estimators is that the 3-point time error estimator is derived for
non constant time step and thus it can be used for mesh adaptation in time.
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FIGURE 4.3: Evolution in time of the 3-point and the staggered grids
time error estimators in comparison with true error, β = 0, A = 100,

N = 1000, T = 1.

FIGURE 4.4: Evolution in time of the 3-point and the staggered grids
time error estimators in comparison with true error, β = 0,A = 10000,

N = 1000, T = 1.
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A N ηT ηSGT e eiT eiSGT

100 100 .36 .805 .086 4.25 9.31
100 1000 .0036 .0079 8.36 e-04 4.34 9.48
100 10000 3.62e-05 7.92e-05 5.35 e-06 4.34 9.48

1000 100 37.22 85.18 8.59 4.33 9.91
1000 1000 .37 .81 .084 4.38 9.69
1000 10000 .0037 .0081 8.33 e-04 4.4 9.7

10000 100 3.58 e+03 7.59 e+03 208.72 17.19 36.39
10000 1000 36.85 82.55 8.35 4.41 9.88
10000 10000 .37 0.81 .0834 4.41 9.77

TABLE 4.2: Convergence results and effective indices, f = 0 and β =
0.



100

Chapter 5

An adaptive algorithm in space and
in time

The automatic construction of adaptive meshes requires the a posteriori error esti-
mates which are now classical in the case of elliptic and parabolic problems dis-
cretized in space by the finite elements. a posteriori error estimates of optimal order
in time and space for the fully discrete wave equation in energy norm discretized
with the Newmark scheme in time and with finite elements in space are presented
in previous chapters. Using a posteriori bounds from there we have implemented an
efficient adaptive algorithm.

Time error estimator contains high order discrete derivatives and thus depends
from their boundedness. Numerical experiments show that an adaptation of nu-
merical solution from mesh to mesh in general case leads to an interpolation error
which cannot be neglected. Indeed, the Newmark scheme in itself produces optimal
results, but higher order discrete derivatives in the time a posteriori error estimates
can blow up with interpolation from mesh to mesh. Thus the question of choosing
the interpolation from mesh to mesh is crucially important. Such behavior of time
error estimator is not surprising. We have already demonstrated in Chapter 2 the
sensibility of our time estimator even to approximation of the initial conditions and
the right-hand-side function in the case of non-adapted mesh. This was not the case
for elliptic and parabolic problems [Pic03], [LPP09], but the fact that the interpola-
tion error between meshes cannot be neglected for the wave equation was already
mentioned in [Pic10]. In this work we present the interpolation from mesh to mesh
based on the orthogonal projection which allows to neglect the influence of interpo-
lation on the time error estimator.

The outline of the chapter is as follows. In Section 5.1, we give the description
of an adaptive algorithm in space and time. We also present two different ways
of choosing new mesh size according to the value of a posteriori error estimate in
space. Numerical experiments for several test cases are reported in Section 5.2. They
confirm the efficiency of our adaptive algorithm. We also discuss the question of
choosing an interpolation between meshes.

Chapter contents
5.1 Time and space adaptivity for the wave equation descretized by

the Newmark scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1.1 Time mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
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5.1.2 Space mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Numerical study of the adaptive algorithm . . . . . . . . . . . . . 106

5.1 Time and space adaptivity for the wave equation descretized
by the Newmark scheme

Although the a posteriori error analysis in previous chapters is restricted to the single
mesh Th, we now present an adaptive space-time algorithm which involves several
meshes. From now on, for the sake of simplicity we will work only with the first
part of the space error estimator :

max
06tk6tn

[ ∑
K∈Th

h2
K

∥∥∥∥∂ṽhτ∂t
−∆ũhτ − f

∥∥∥∥2

L2(K)

+
∑
E∈Eh

hE |[n · ∇ũhτ ]|2L2(E)

]1/2

= max
06tk6tn

η1
S(t), (5.1)

for n = 0, . . . , N . Thus the a posteriori error estimate (20) for n = 0, . . . , N takes on
the following from:

max
06n6N

∥∥∥∥∥vnh − ∂u

∂t
(tn)

∥∥∥∥∥
2

L2(Ω)

+ |unh − u(tn)|2H1(Ω)

1/2

≤ C1 max
06tk6tn

η1
S(t) +

n∑
k=1

τk−1ηT (tk−1), (5.2)

where the error estimator in time ηT is defined by (2.19) and (2.21). Let set C1 equal
to 1. The goal of our adaptive algorithm is to build meshes in space and in time such
that the relative estimated error at time tn ∈ [0, . . . , tN ] is close to a preset tolerance
TOL

(1− α)TOL ≤

max
06tk6tn

η1
S(t) +

n−1∑
k=1

τk−1ηT (tk−1)

max
06k6n

(∥∥∥vkh∥∥∥2

L2(Ω)
+
∣∣∣ukh∣∣∣2

H1(Ω)

)1/2
≤ (1 + α)TOL, (5.3)

where 0 < α < 1 is a parameter affecting the number of remeshings, further we set
α = 0.25.
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5.1.1 Time mesh

In order to satisfy (5.3) we should construct a mesh such that the error indicator in
time ∀n : 1 ≤ n ≤ N satisfies

0.5(1− α)TOL ≤

n∑
k=1

τk−1ηT (tk−1)

max
06k6n

(∥∥∥vkh∥∥∥2

L2(Ω)
+
∣∣∣ukh∣∣∣2

H1(Ω)

)1/2
≤ 0.5(1 + α)TOL. (5.4)

A sufficient condition to obtain this at final time step tN is to check that for every
time step n, 1 ≤ n ≤ N we have

n∑
k=1

τk−1ηT (tk−1) ∼ tn
T

0.5TOL max
06k6n

(∥∥∥vkh∥∥∥2

L2(Ω)
+
∣∣∣ukh∣∣∣2

H1(Ω)

)1/2

. (5.5)

Thus, at every time tn, 1 ≤ n ≤ N we want the time estimator be such that

0.5

T
(1− α)TOL ≤ ηT (tn−1)

max
06k6n

(∥∥∥vkh∥∥∥2

L2(Ω)
+
∣∣∣ukh∣∣∣2

H1(Ω)

)1/2
≤ 0.5

T
(1 + α). (5.6)

If (5.6) is not satisfied we compute new time step τnewn based on the time error esti-
mator ηT (tn−1) and old time step τn. We know that ηT (tn−1) ∼ (τn)2 and we want
a new time step τnewn such that the new time error indicator ηnewT (tn−1) ∼ (τnewn )2

satisfies

ηnewT (tn−1) =
0.5

T
max

06k6n

(∥∥∥vkh∥∥∥2

L2(Ω)
+
∣∣∣ukh∣∣∣2

H1(Ω)

)1/2

.

Thus the explicit formula for time step τn is

τnewn = min

τn


0.5TOL max
06k6n

(∥∥∥vkh∥∥∥2

L2(Ω)
+
∣∣∣ukh∣∣∣2

H1(Ω)

)1/2

TηT (tn−1)


1/2

, T − tn

 . (5.7)

5.1.2 Space mesh

At every time step n we want triangulation T nh such that

0.5(1− α)TOL ≤
max

06tk6tn
η1
S(t)

max
06k6n

(∥∥∥vkh∥∥∥2

L2(Ω)
+
∣∣∣ukh∣∣∣2

H1(Ω)

)1/2
≤ 0.5(1 + α)TOL. (5.8)

Let say for now that for each time tn, 1 ≤ n ≤ N we want space estimator to be:

0.5(1− α)TOL ≤ η1
S(tn)

max
06k6n

(∥∥∥vkh∥∥∥2

L2(Ω)
+
∣∣∣ukh∣∣∣2

H1(Ω)

)1/2
≤ 0.5(1 + α)TOL. (5.9)
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If (5.9) is not satisfied we construct another mesh based on the space error in-
dicator η1

S(t). The question is how to build new mesh size using our space error
estimator.

The approach that we shall use is to build mesh size distribution using an anal-
ogy between a priori and a posteriori error estimates. Now we talk only about space
adaptivity and suppose that at the current time tn, 1 ≤ n ≤ N we already have
a time step such that (5.6) is satisfied. Thus we are interested only in the space a
posteriori error estimator.(
|u− uhτ |21,Ω + |v − vhτ |22,Ω

)
(t)

∼

 ∑
K∈Th

h2
K

∥∥∥∥∂ṽhτ∂t
−∆ũhτ − f

∥∥∥∥2

L2(K)

+
∑
E∈Eh

hE‖[n · ∇ũhτ ]‖2L2(E)

 (t).

Let us introduce the mesh size distribution h(x) such that h(x) at a point x inside a
triangle K ∈ Th is approximately equal to hK and the function η(x) such that∫

Ω
h2(x)η2(x)dx

=
∑
K∈Th

h2
K

∥∥∥∥∂ṽhτ∂t
−∆ũhτ − f

∥∥∥∥2

L2(K)

+
∑
E∈Eh

hE‖[n · ∇ũhτ ]‖2L2(E).

Of course, the choice of η(x) is not unique. But it is reasonable to require that the
equality above hold locally in some sense. For example, this can be achieved by a
partition of unity: let Φi(x) be the P1 finite element basis function (hat function)
associated to the node number i (denoted xi) and require for all nodes xi∫

Ω
h2(x)η2(x)Φi(x)dx =

∑
K∈Th

h2
K

∫
K

(
∂ṽhτ
∂t
−∆ũhτ − f

)2

(x)Φi(x)dx

+
∑
E∈Eh

hE

∫
E

[n · ∇ũhτ ]2(x)Φi(x)dx.

Approximating η(x) with η(xi) over the support of Φi(x) yields

η(xi) =

[
1∫

Ω h
2(x)Φi(x)dx

( ∑
K∈Th

h2
K

∫
K

(
∂ṽhτ
∂t
−∆ũhτ − f

)2

(x)Φi(x)dx

+
∑
E∈Eh

hE

∫
E

[n · ∇ũhτ ]2(x)Φi(x)dx

)]1/2

. (5.10)

Now, we can approximate η(x) everywhere as the P1 FE function taking the values
at the nodes given by the formula above. The number of degrees of freedom, i.e. the
number of internal vertexes in T nh , is given approximately in 2D case by

NDOF ∼
∫

Ω

dx

h2(x)
,

since a triangle of size h(x) occupies the area of order h2(x). On each time step we
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want to construct an optimal mesh with the minimal possible NDOF to achieve a
given error tolerance, i.e.

|u− uh|21,Ω + |v − vh|22,Ω = ˜TOL
2

= 0.25TOL2

∫
Ω

(|∇uhτ |2 + |vhτ |2).

This is essentially a minimization problem for the mesh size distribution h(x):

min
h ∈ L2(Ω)∫

Ω h
2(x)η2(x)dx = ˜TOL

2

∫
Ω

dx

h2(x)
.

The minimum is achieved on a stationary point of the Lagrangian

L(h, λ) =

∫
Ω

dx

h2(x)
+ λ

(∫
Ω
h2(x)η2(x)dx− ˜TOL

2
)
,

with h ∈ L2(Ω) and λ ∈ R. Taking the variations yields

−
∫

Ω

2δh(x)dx

h3(x)
+ λ

∫
Ω

2h(x)δh(x)η2(x)dx = 0,

so that the optimal mesh size distribution is

hopt(x) =
α√
η(x)

,

with some α ∈ R. Finally, recalling the constraint, we get

hopt(x) =
˜TOL√∫

Ω η(x)dx

1√
η(x)

. (5.11)

In practice we compute the new mesh size as

hnew(x) = min

(
3hold(x),max

(
1

3
hold(x), hopt(x)

))
, (5.12)

in order to avoid too abruptly changing meshes. Here hold(x) is a current mesh size.
Our Adaptive algorithm is summarized in Table 5.1.

Remark 24. The alternative approach to choosing the mesh size is based on the technique
explained in [Pic03]. Using (5.10) we rewrite (5.9) for every Pi node of the mesh:

0.5(1− α)

√
3

NV
TOL ≤ η(xi)

max
06k6n

(∥∥∥vkh∥∥∥2

L2(Ω)
+
∣∣∣ukh∣∣∣2

H1(Ω)

)1/2

≤ 0.5(1 + α)

√
3

NV
TOL, (5.13)

where NV is the number of mesh vertices. Then if the upper bound of (5.9) is not satisfied
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Set T 0
h , u

0
h, n = 0, t = 0 Initialization

Set T 1
h = T 0

h First time step
Compute u1

h, n = 1, t = τ0

Set n = 2, τ1 = τ0

Do while t < T Time loop
t := t+ τn Increment the current

time step
Calculate unh on mesh T n−1

h

Calculate η1
S(t) Space error estimator

If (5.9) is not satisfied Mesh adaptation
Calculate η(xi) at all nodes xi of T n−1

h by (5.10)
Calculate hnew(xi) at all nodes xi of T n−1

h by (5.12) New mesh size
at the mesh vertices

Give hnew to the mesh generator and obtain T nh Build new mesh
t := t− τn

Else If (5.6) is not satisfied Time adaptation
Compute new τnewn from (5.7)
t := t− τn
τn := τnewn

Else Go to the next step
T nh := T n−1

h Same mesh
τn+1 = τn Same time step
n := n+ 1

End If
End If

End Do

TABLE 5.1: Adaptive algorithm.
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the we set h corresponding to the node to
2

3
h. Analogously if the lower bound of (5.9) is

not satisfied the we set h corresponding to the node to
3

2
h. We give an example of using the

approach in the following section.

5.2 Numerical study of the adaptive algorithm

In this section we discuss the question of interpolation between meshes and present
numerical study of our adaptive space-time algorithm described in Fig. 5.1 for sev-
eral test cases.

We take the approximation of initial conditions and of the right-side function as
orthogonal projections as in Lemma 23:

u0
h = Πhu

0, v0
h = Πhv

0, fnh = Phf
n, 0 ≤ n ≤ N.

By analogy with initial conditions, after each remeshing in space we use time es-
timator given by (2.21). In other words after we generate a new mesh we have to
wait 2 time steps in order to understand if current time step is sufficient. If it’s not
the case then we compute new time step and go back for 2 time steps. We do time
adaptation only once per each 2 time steps.

Like in the case of heat equation [LPP09], we do the space mesh adaptation only
once per each 2 time steps. We denote by T nh and T n+1

h two meshes at time tn and
tn+1 respectively and by V n

h , V n+1
h the associated finite elements spaces. We shall

use interpolation operators

In,uh : V n
h → V n+1

h , In,u
∗

h : V n
h → V n+1

h , In,vh : V n
h → V n+1

h ,

which can be different one from another. Several variants of interpolation will be
considered and these operators above will be specified for each variant. In general,
if a new mesh has to be build going from tn to tn+1, we compute un+1

h ∈ V n+1
h and

vn+1
h ∈ V n+1

h such that(
un+1
h − In,uh unh

τn
, ϕn+1

h

)
−

(
vn+1
h + In,vh vnh

2
, ϕn+1

h

)
= 0, (5.14)(

vn+1
h − In,vh vnh

τn
, ϕn+1

h

)
+

(
∇
un+1
h + In,u

∗

h unh
2

,∇ϕn+1
h

)
=

(
fn+1 + fn

2
, ϕn+1

h

)
.

for all ϕn+1
h ∈ V n+1

h .
We consider 4 different interpolation strategies:

1. Motivating ourselves with Lemma 23, we introduce the following interpola-
tion Πn

h such that for any vnh ∈ V n
h , Πn

hv
n
h belongs to V n+1

h and satisfies :

(wnh , ϕ
n
h) = (∇vnh ,∇ϕnh), ∀ϕnh ∈ V n

h(
∇ (Πn

hv
n
h) ,∇ϕn+1

h

)
= (rnh(wnh), ϕn+1

h ), ∀ϕn+1
h ∈ V n+1

h ,

where rnh is the Lagrange interpolant operator on T n+1
h . We choose in (5.14)

In,uh = In,u∗h = In,vh = Πn
h.
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2. We introduce the following interpolation Pnh such that for any vnh ∈ V n
h , Pnh vnh

belongs to V n+1
h and satisfies :(
Pnh vnh , ϕn+1

h

)
= (rnh(wnh), ϕn+1

h ), ∀ϕn+1
h ∈ V n+1

h .

We choose in (5.14)
In,uh = In,u∗h = Πn

h, I
n,v
h = Pnh .

3. Like in [Pic10], we choose in (5.14)

In,uh = In,vh = In,u
∗

h = rnh ,

4. Like in [LPP09], we choose in (5.14)

In,uh = In,vh = rnh ,(
∇In,u

∗

h unh,∇ϕn+1
h

)
=
(
rnh(P̃h(unh)),∇ϕn+1

h

)
, ∀ϕn+1

h ∈ V n+1
h .

Here P̃h is Zienkiewicz-Zhu recovery projection defined in Subsection 1.1.3.

Remark 25. The motivation of strategy 2 is the following. Using the exact H1
0 orthogonal

projection as In,uh , In,u
∗

h and the exact L2-orthogonal projection as In,vh in (5.14) and repro-
ducing proof of the a priori error estimate from Chapter 2 we are able to prove the a priori
error estimate (2.9). But those operators are difficult to implement in practice since they in-
volve the integrals from functions defined on T nh and T n+1

h . However this variant is close to
strategy 2 above.

The first and the second interpolation strategies in practice behave equivalently
and for the sake of brevity further we present the numerical results only for the first
interpolation strategy. The third and the fourth strategies leads to non optimal be-
havior of the time error estimator, namely ηT is not a second order in time anymore,
due to the unboundedness of the higher order derivatives. This fact is illustrated nu-
merically bellow. Thus throughout this section we use the first interpolation strategy
unless otherwise is explicitly mentioned.

The true error is

e = max
06n6N

∥∥∥∥∥vnh − ∂u

∂t
(tn)

∥∥∥∥∥
2

L2(Ω)

+ |unh − u(tn)|2H1(Ω)

1/2

.

Denote as
ηS = η

(1)
S (tN ),

ηT =
N−1∑
k=0

τkηT (tk).

The quality of our error estimators in space and in time is determined by following
effectivity indices:

eiS =
ηS
e
, eiT =

ηT
e
.
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FIGURE 5.1: Changing in time of length of time step for the test case
(5.16). TOL = 0.125, the mesh size is chosen like in Remark 24.

Consider the problem (1.59) with Ω = (0, 1)× (0, 1), T = 1 and the exact solution
u given by

u(x, y, t) = cos(πt) sin(πx) sin(πy), (5.15)

The study of the time and space error estimators when using uniform time steps and
mesh size can be found in Chapter 2. We now use the adaptive algorithm described
in Table 5.1. Results in Table 5.2 are reported when using several values of TOL
where τ0 - initial time step, NVfinal - number of vertices in final mesh, NVmax -
maximal number of vertices, Nremesh - number of space remeshings and Nretime -
number of time remeshings. We observe that that the error divided by 2 each time
the tolerance TOL is divided by 2 and both the time error indicator eiT and the space
error indicator eiS seem to be a good representation for the true error. The number of
nodes NVfinal and NVmaxis approximatively multiplied by 4 when TOL is divided
by 2.

Tol eiS eiT NVfinal NVmax Nremesh Nretime τ0 e

0.5 3.99 1.49 479 643 3 1 0.05 0.23
0.25 3.85 1.47 1127 2437 3 2 0.05 0.114
0.125 4.17 1.4 4735 9838 4 2 0.05 0.063
0.0625 3.98 1.43 20151 36955 5 2 0.05 0.037

TABLE 5.2: SPACE adaptation and TIME adaptation, elliptic projec-
tion of the initial conditions, new interpolation, solution is given by

(5.15), hstartx = hstarty = 0.05, mesh construction (5.12).
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FIGURE 5.2: Example (5.16). Adapted meshes obtained with TOL =
0.125, the mesh size is chosen like in Remark 24. From left to right:

time t = 0, 0.025, 0.499, 1

FIGURE 5.3: Changing in time of length of time step for the test case
(5.16). TOL = 0.125, mesh construction (5.12).

We now consider the case when Ω = (0, 1)× (0, 1), T = 1 and the exact solution
u given by

u = e−100∗((x−0.3−0.4t2)2+(y−0.3−0.4t2)2), (5.16)
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thus u is a Gaussian function, whose center moves from point (0.3, 0.3) at t = 0 to
point (0.7,0.7) at t = 1. The transport velocity 0.8t is peaking at t = 1. We consider
two ways of choosing the mesh size: from the Remark 24 and from the formula
(5.12). Results are reported in Tables 5.3 and 5.4 correspondingly. We investigate the
number of vertices, number of remeshings in space and in time for several values
of tolerance TOL. In both cases we observe that the time error indicator eiT and
the space error indicator eiS seem to be a good representation for the true error.
The difference between two approaches to choosing the mesh size is only in number
of space remeshings and in number of nodes: the approach from the Remark 24
requires more space remeshings but generate the meshes with less nodes then the
approach from formula (5.12). We have reported in Figure 5.2 the meshes obtained
with the approach from the Remark 24 when the tolerance TOL = 0.125. On Figures
5.1 and 5.3 we have also plotted the time step evolution with respect to the number
of time steps for both approaches to choosing the mesh size. We observe that in both
cases the time step fits the transport velocity.

FIGURE 5.4: Changing in time of length of time step for the test case
(5.16). TOL = 0.125, mesh construction (5.12). Top: intepolation
strategy 3 from page 106 is used. Bottom: intepolation strategy 4 from

page 106 is used.

We want to highlight the non optimal behavior of time error estimator ηT when
the interpolation strategies 3 and 4 from page 106 are used. On Figure 5.4 we have
plotted the evolution of the time step during first 20 time steps of adaptive algorithm
from Table 5.1. We observe that in both cases the time step evolution is completely
different from to that presented on Figures 5.1 and 5.3. The time step n = 20 in both
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Tol eiS eiT NVfinal NVmax Nremesh Nretime τ0 e

0.5 5.63 3.19 664 1008 84 12 0.025 0.17
0.25 5.68 3.0 2318 3844 99 12 0.025 0.086
0.125 5.66 3.0 8919 15628 135 19 0.025 0.044
0.0625 5.65 2.97 34994 60062 189 20 0.025 0.022
0.03125 5.68 3.1 138268 237109 273 21 0.025 0.011

TABLE 5.3: SPACE adaptation and TIME adaptation, elliptic projec-
tion of the initial conditions, new interpolation, solution is given by

(5.16), hstartx = hstarty = 0.05, mesh construction like in Remark 24.

Tol eiS eiT NVfinal NVmax Nremesh Nretime τ0 e

0.5 2.17 1.69 911 1156 18 8 0.025 0.61
0.25 5.66 3.08 2815 4606 22 11 0.025 0.12
0.125 5.73 3.08 10731 18490 31 14 0.025 0.059
0.0625 5.71 3.02 44015 74663 34 16 0.025 0.03
0.03125 5.72 3.04 166872 295784 37 18 0.025 0.014

TABLE 5.4: SPACE adaptation and TIME adaptation, elliptic projec-
tion of the initial conditions, new interpolation, solution is given by

(5.16), hstartx = hstarty = 0.05, mesh construction (5.12).

cases is around 2e-06. This significant difference shows that ηT tends to dramati-
cally over-predict the true error. We suspect that this behavior due to the interpola-
tion error after each remeshing that leads to the unboundedness of the higher order
derivatives in time. We conclude that the order of convergence for the interpolation
strategies 3 and 4 from page 106 is not recovered.

The next solution is given by

u = e−100∗r2(x,y,t)), (5.17)

where
r2(x, y, t) = ((x− 0.3− 0.4β(t))2 + (y − 0.3− 0.4β(t))2),

and

β(t) = 0.5 + 0.5 tanh

(
t− 0.5

0.2

)
.

with homogeneous boundary conditions apply on the whole boundary of Ω. As be-
fore we take Ω = ]0, 1[2and T = 1. Results are reported in Table 5.5. We observe
that the error at final time is approximatively divided by 2 when TOL is divided by
2. We plot in Figure 5.5 the time step evolution with respect to the number of time
steps. We observe that the time step mostly decreases till n = 75 and increases until
the final time step. Thus the time error indicator eiT seems to be a good representa-
tion for the true error. The total number of vertices at final time is multiplied by 4 as
the tolerance is divided by two.
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FIGURE 5.5: Changing in time the length of time step for the test case
(5.17). TOL = 0.125, mesh construction (5.12).

Tol ηS ηT NVfinal NVmax Nremesh Nretime τ0 e

0.5 1.32 0.34 645 1198 28 12 0.025 0.24
0.25 0.65 0.19 2266 4610 32 20 0.025 0.125
0.125 0.33 0.1 9181 18592 35 22 0.025 0.064
0.0625 0.17 0.05 36399 75180 38 22 0.025 0.036
0.03125 0.09 0.03 12453 24673 41 24 0.025 0.018

TABLE 5.5: SPACE adaptation and TIME adaptation, elliptic projec-
tion of the initial conditions, new interpolation, solution is given by

(5.17), hstartx = hstarty = 0.05, mesh construction (5.12).
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Chapter 6

CEMRACS project: Parallel in time
algorithms for nonlinear iterative
methods

This chapter has no connection with the rest of the thesis. It presents the results and
accompanying discussion of the project PANLIM realized during CEMRACS 2016
in collaboration with Mustafa Gaja and François-Xavier Roux.

The simulation of complex nonlinear structures via the finite element method
is generally based on quasi-static incremental loading procedure leading to suc-
cessive nonlinear problems solved by Newton-like methods [Ogd97; ZT00] which
themselves entail solving multiple ill-conditioned large linear systems. For complex
structures, the total number of steps may be very large and, since the procedure is re-
cursive, the computational cost is very large. Reducing the time for such simulations
is of great interest for numerical engineering in industry. A recently developed par-
allel in time method for time dependent problems is the Parareal algorithm [Lio01;
MT05] that allows the parallelization of the computation in the temporal domain
making use of HPC facilities.

The objective of this work is to present a proposal for the application of the
Parareal algorithm for quasi-static nonlinear processes in order to perform these
quasi-static steps in parallel by analogy with the Parareal method for time-dependent
systems of ordinary or partial differential equations. In this work we describe how
this proposal has been realized on a common example of a beam undergoing non-
linear elastic deformation with additional boundary nonlinearity. Numerical results
demonstrate the possibility of using the Parareal algorithm on elementary quasi-
static problems, although more conclusive numerical tests are needed to provide a
substantial evidence for the efficiency of the approach.

The outline of the chapter is as follows. We present the model problem, its spacial
discretization and linearization in Section 6.1. Basic idea and precise description of
the Parareal algorithm for the case of quasi-static nonlinear problems are laid out in
Section 6.2. Numerical experiments for several test cases are reported in Section 6.3.
We discuss some reoccurring themes and questions that faced us during this work
in Section 6.4. Finally, we draw some concluding remarks in Section 6.5.

Chapter contents
6.1 Nonlinear structures and incremental loading . . . . . . . . . . . . 114
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6.1 Nonlinear structures and incremental loading

We treat the boundary value problem for the equations of nonlinear elasticity [Ant05;
Sto68] as a minimization problem. For a domain Ω = [0, 1] × [0, 1] ⊂ R2 we want to
find the displacement field (u1, u2) : Ω → R2 that minimizes the functional of total
potential energy J(u1, u2):

min
(u1,u2)∈V

J(u1, u2), (6.1)

where V is a suitable function space that satisfies some Dirichlet boundary condi-
tions:

(u1, u2)(x1, x2) = (ū1, ū2), (x1, x2) ∈ Γv, (6.2)

where ū1 and ū2 are some given constants, Γv denotes the part of the boundary
on which the displacements are given. The total potential energy is given by the
following formula:

J(u1, u2) =

∫
Ω
f(F (u1, u2))−

∫
ΓP

Pαu2, (6.3)

where F (u1, u2) = A(E[u1, u2], E[u1, u2]), A(X,Y ) is a bilinear symmetric positive
form with respect to matricesX and Y , f is a givenC2 function corresponding to hy-
perelastic constitutive law, Pα is some external force which we apply on the bound-
ary surface ΓP ⊂ ∂Ω (for the sake of simplicity we suppose that the force act in the
x2-direction) and

E[u1, u2] = (Eij)i=1,2,j=1,2 , Eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xi

∂uk
∂xj

)
, (6.4)

is the Green-Saint-Venant strain tensor.
The finite element method is the standard modeling approach to simulate and

analyze the behavior of solids [Bra07]. Let us approximate the space V by the finite
element space Vh. We thus introduce a regular mesh Th on Ω, a triangle K of the
mesh Th and a standard P1 finite element space on it Vh ⊂ V :

Vh = {vh ∈ C(Ω̄) : vh|K ∈ P1 ∀K ∈ Th},

Thus we obtain the finite element problem of finding the field (uh, vh) that satisfy
(6.2) and

min
(uh,vh)∈(Vh,Vh)

J(uh, vh). (6.5)
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The solution of the large strain nonlinear problem will require an iterative process
and Newton’s method forms the basis of practical schemes [ZT00]. We start with
an initial guess (u0, v0) which is reasonably close to the true correct solution. Let us
suppose that we already know the solution (un−1, vn−1) from the step n− 1 then we
attempt to correct this guess to bring it closer to the proper solution by setting

un = un−1 + du, vn = vn−1 + dv,

where the correction term (du, dv) is given by

D2J(un−1, vn−1)((w, s), (du, dv))

= DJ(un−1, vn−1)(w, s) ∀(w, s) ∈ (Vh, Vh), (6.6)

where DJ(u, v) and D2J(u, v) are the Jacobian and the Hessian of J(u, v) respec-
tively. Then we check if the magnitude of the correction (du, dv) is small enough,
and if not, we go to the next iteration n+ 1 and compute the new correction term
(d̃u, d̃v).

6.1.1 Incremental loading

There is no guarantee that Newton’s method will converge. It will converge quadrat-
ically to the exact solution only if the initial guess is sufficiently close to the correct
solution. A common way to avoid this problem is to apply the load in a series of in-
crements instead of all at once [ZT00; Ogd97]. For example, we would like to solve
our problem for some certain boundary force F , but numerical test shows us that
Newton’s method does not converge. We can divide the force into 2 loads: at the
beginning we solve our problem with force F/2 and after we solve the problem once
more but with force F using the solution at the end of the preceding increment as the
initial guess. The quality of this guess could be improved by reducing the increment
once more. In general, small load increments are essential for a better accuracy of
the solution.

In Table 6.1 we show the case of a cantilever rubber beam loaded with a uni-
formly distributed force F = 200 Pa and a contact surface. In the case of applying
the force all at once, we can’t achieve the convergence of Newton’s method. The
situation is persistent when using 2 and 3 loading steps, whereas we achieve con-
vergence when we start using 4 loading steps and so on. Moreover, this example
demonstrates that the number of incremental loads can affect the number of itera-
tions required by Newton’s method to achieve the convergence. Indeed, when the
force is divided into 7 loading steps we only need 3 Newton iterations to achieve the
same tolerance like in the case of 4 loading steps with 4 Newton iterations. This ex-
ample shows that the incremental loading procedure is required in the case when the
initial guess for Newton’s method is too far from the exact solution. Note that with
incremental loads we obtain essentially a quasi-static nonlinear problem instead of a
static one; from now on we have a so-called "pseudo-time" direction which is in fact
an additional dimension where it is possible to apply the idea of Parareal method.
But before discussing this topic we will introduce a boundary nonlinearity to our
problem.
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Number of loads NI NIC

1,2,3 no convergence . . .
4 4 11
5 4 9
6 4 8
7 3 29
8 3 11

TABLE 6.1: Convergence of Newton’s method depending on the
number of loading steps. Cantilever rubber beam loaded at the upper
bound with a uniformly distributed vertical force F = 200 Pa with a
contact surface, mesh 60 × 20 points, NI - average number of New-
ton iterations, NIC - number of Newton iterations at the loading step

when the contact appears for the first time.

6.1.2 Boundary nonlinearity

The incremental loading procedure allows us to insert a different form of nonlinear-
ity in our model: a contact problem [Lac13]. Let us consider the cantilever beam:

u1(0, x2) = 0, u2(0, x2) = 0, x1 ∈ [0, 1], x2 ∈ [0, 1],

under a vertical load Pα and in one moment the beam touches a solid surface X2 =
Xsf with border ΓS where Xsf and (X1, X2) are the Eulerian coordinates. We model
the appearance of the contact surface with the following algorithm: at every incre-
mental loading step we look for the nodes of our mesh at the border of the beam
and check if the vertical displacements of those nodes are equal to or greater than
the vertical coordinate of the surface Xsf (See Figure 6.1 a), in what follows we call
them violated nodes [Kim14]. On the next incremental loading step for every vi-
olated node we set the sliding contact boundary condition (a vertex of the finite
element mesh can slide over the surface, but cannot move away from it), in other
words we take the vertical displacement equal to the displacement corresponding to
the contact surface with Dirichlet boundary conditions (See Figure 6.1 b):

u2(x1, 0) = Xsf , ∀x1 ∈ ΓS .

The number of incremental loadings is very important for detecting the contact
surface. From Table 6.1 we see that for the cantilever beam configuration loaded
with an uniformly distributed force we achieve the maximum number of the New-
ton iterations in the load when the contact appears, because we are converging in
presence of such strong nonlinear effect like a contact. Thus the accuracy of the so-
lution depends on the nonlinearity involved in the model and the number of taken
load increments.
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Body 2

Body 1

Violated nodesContact candidates

a) Load increment n,

Dirichlet boundary conditions

b) Load increment n+ 1.

FIGURE 6.1: Contact surface modulation: we detecte the violated
nodes at displacements corresponding to load increment n, then we
impose Dirichlet boundary conditions for the violated nodes before

the start of load increment n+ 1 .

6.2 Parareal method

6.2.1 Parareal method for ODEs

In order to understand the mechanism of the parallelization in time we will briefly
explain the basic idea of the parareal method with a simple first order ordinary dif-
ferential equation [Lio01]:

u′(t) = −au(t) on [0, T ], u(0) = u0, (6.7)

where a is a constant. Let us introduce the temporal mesh on the time interval [0, T ]:

0 = T 0 < T 1 < · · · < TN = T,

with time steps ∆T = T/N . The Parareal algorithm utilizes a coarse solver G to
quickly step through time by computing relatively cheap approximate solutions
for all time intervals of interest, and then simultaneously refines all of these ap-
proximate solutions using an accurate fine solver F . Let G∆T (un−1, T

n−1) for all
n = 1, . . . , N be a rough approximation of u(Tn) with an initial condition u(Tn−1) =
un−1, F∆T (un−1, T

n−1) is a more accurate approximation of the solution u(Tn) with
an initial condition u(Tn−1) = un−1. Then starting with a coarse approximation U0

n

at the time points T 1, T 2, . . . TN , Parareal performs for k = 0, 1, . . . the correction
iteration:

Uk+1
n+1 = F∆T (Ukn , T

n) +G∆T (Uk+1
n , Tn)−G∆T (Ukn , T

n). (6.8)

The application of the fine solver to each time interval [Tn, Tn+1] is independent
of the other time intervals, and thus parallelizable. From (6.8) we see that the refined



118
Chapter 6. CEMRACS project: Parallel in time algorithms for nonlinear itera-
tive methods

solutions are then fed back to the coarse solver, and the iterative cycle continues
until all time intervals are converged. The dependencies between the time intervals
are carried through the coarse solver which involves stepping sequentially through
time. This, of course, represents a sequential process, but it leads to a more rapid
solution, assuming that the coarse solver is much faster than the fine solver, and
hence, computationally negligible.

In the simple numerical example for equation (6.7) we set T = 10 and perform
5 coarse steps each parareal iteration, thus the coarse solution is obtained by the
implicit Euler scheme with step ∆T = 2. After that, we introduce a finer mesh with
a smaller time step ∆t = 0.02 on each interval [Tn, Tn−1], thus we have 100 fine time
steps on each interval [Tn, Tn−1]. We use the same implicit Euler scheme as a fine
solver.

We present the error in log scale between the parareal solution and the analytical
solution of equation (6.7) for each of the 5 parareal iterations in Figure 6.2. In order
to show the convergence of the parareal method at each parareal iteration we also
present the error between the solution of Euler’s method with 500 time steps and the
analytical solution of equation (6.7).

The solution of the first coarse time step is processed by the fine solver using the
exact initial state u(0). For every further parareal iteration, the converged accurate
solution is computed with initial conditions from the previous iteration, thus the
second iteration will give us convergence at least for the first two steps, the third
iteration for the first three steps, and so on. Thus the algorithm is guaranteed to
converge in at mostK = N iterations (see Figure 6.2), though in practice it is possible
to achieve much faster convergence with judicious choice of the coarse propagator.
The computational complexity of the parareal algorithm is given by the following
formula:

KNCC + (K − 1)N
∆T

∆t
CF , (6.9)

where CC is the cost to perform the coarse propagator over one time step, CF is the
complexity of one time step for the fine propagator, K is the number of iterations
required to achieve the required convergence of the parareal algorithm and N is the
number of coarse steps (and the number of processors as well).

Looking at the Parareal algorithm from a different perspective, it is reasonable to
presume that the idea of parallelizing the time domain for time-dependent problems
can be used for the case of quasi-static problems in order to reduce the computation
time.

6.2.2 Parareal method for nonlinear structures

In what follows we shall propose a "time" parallel iterative method for solving the
minimization problem (6.5). At first, we introduce NM load increment steps and
assume that we compute the coarse solution at points 0,M, 2M, . . . , NM and the
fine solution at points 0, 1, 2, . . . , NM . Thus we introduce a pseudo-time parameter
t̃ ∈ [0, t̃1, t̃2, . . . , t̃NM ] which is used to describe our algorithm via an analogy with a
time-dependent problem. For the sake of simplicity we assume that all increments
are the same and denote points for the coarse solution as [0, T̃1, T̃2, . . . , T̃N ], in other
words t̃M = T̃1, t̃2M = T̃2, . . . , t̃MN = T̃MN . At every point [0, t̃1, t̃2, . . . , t̃NM ] we
introduce the exact solution of problem (6.5) (u(t̃n), v(t̃n)) for n ∈ [0, 1, . . . , NM ]. We
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FIGURE 6.2: The error between analytical solution of equation (6.7)
and parareal solution (6.8) during 5 iterations of parareal method.
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want to find approximate solution

(Ukn , V
k
n ) = (Uk(t̃n), V k(t̃n)),

where index k is the number of parareal iterations. Like in the case of a partial differ-
ential equation, let G(UknM , V

k
nM ) for all n = 0, . . . , N − 1 be a rough approximation

of (u(T̃n+1), v(T̃n+1)) which we compute starting from initial guess (UknM , V
k
nM ) by

using the coarse propagator that is described below. Let F (UknM , V
k
nM ) be a more

accurate approximation of the solution (u(T̃n+1), v(T̃n+1)) which we compute start-
ing from displacements (UknM , V

k
nM ) by using the fine propagator that is described

below.
We start from the initial guess (U0

0 , V
0

0 ) = (u0, v0) for Newton’s method at the
first increment step and obtain an initial coarse solution via(

U0
nM , V

0
nM

)
= G

(
U0

(n−1)M , V
0

(n−1)M

)
,

for n ∈ [1, . . . N ]. That is we obtained Parareal solution of iteration k = 0. Here-
after on every Parareal iteration k ≥ 1 we determine our numerical solution by the
formula:

(UknM , V
k
nM ) = G

(
Uk(n−1)M , V

k
(n−1)M

)
+ F

(
Uk−1

(n−1)M , V
k−1

(n−1)M

)
−G

(
Uk−1

(n−1)M , V
k−1

(n−1)M

)
. (6.10)

The coarse propagator

Once the solution is known at iteration k − 1, the coarse problem at iteration k + 1
is Newton’s method for N incremental loads. For all coarse increment steps n =
1, . . . , N starting with the initial guess for Newton’s method as displacements from
the previous parareal iteration

G0(UknM , V
k
nM ) = (Uk−1

nM , V k−1
nM ),

we compute the coarse solution at the Newton iteration j as:

Gj
(
UknM , V

k
nM

)
= Gj−1

(
UknM , V

k
nM

)
+ (dujn, dv

j
n), (6.11)

where the correction term (dujn, dv
j
n) by analogy with (6.6) follows from

D2J
(
Gj−1

(
UknM , V

k
nM

)) (
(w, s), (dujn, dv

j
n)
)

= DJ
(
Gj−1

(
UknM , V

k
nM

))
(w, s) ∀(w, s) ∈ (Vh, Vh). (6.12)

Let’s assume that at the Newton iteration number j∗ we achieved the required
accuracy for approximate solution, then the coarse propagator is

G(UknM , V
k
nM ) = Gj

∗
(UknM , V

k
nM ).
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The fine propagator

We use a procedure similar to (6.11) and (6.12) to obtain the fine solutionF (UknM , V
k
nM )

on parareal iteration k. Inside every "coarse" pseudo-time interval [T̃n, T̃n+1] we in-
troduce a local fine solver on fine mesh F̃ (UknM+m, V

k
nM+m) to emphasize the fact that

this solver propagates the solution on fine increment steps. We compute the solution
with the same Newton’s method for M incremental loads using the displacements
from the previous Parareal iteration as an initial guess for the first incremental load

F̃ 0
(
UknM , V

k
nM

)
= F̃

(
Uk−1
nM , V k−1

nM

)
.

For all the next fine increment steps m = 1, . . . ,M − 1 we use displacements from
the previous increment step as an initial guess for Newton’s method, in other words,
we start by setting the initial guess as

F̃ 0
(
UknM+m, V

k
nM+m

)
= F̃

(
UknM+m−1, V

k
nM+m−1

)
.

If we already know the fine solution F̃ j−1
(
UknM+m, V

k
nM+m

)
of the Newton iteration

j − 1 then the solution of iteration j is:

F̃ j
(
UknM+m, V

k
nM+m

)
= F̃ j−1

(
UknM+m, V

k
nM+m

)
+ (dujm, dv

j
m), (6.13)

where the correction term (dujm, dv
j
m) like in the case of the coarse solver (6.12) is

defined by

D2J
(
F̃ j−1

(
UknM+m, V

k
nM+m

)) (
(w, s), (dujm, dv

j
m)
)

= DJ
(
F̃ j−1

(
UknM+m, V

k
nM+m

))
(w, s) ∀(w, s) ∈ (Vh, Vh). (6.14)

Let’s imagine that at the Newton iteration number j∗ we achieve the required
tolerance then we determine the fine propagator as

F̃
(
UknM+m, V

k
nM+m

)
= F̃ j

∗
(
UknM+m, V

k
nM+m

)
,

for all fine increment stepsm = 1, . . . ,M−1. Thus we determine the fine propagator
at coarse time points as

F
(
UknM , V

k
nM

)
= F̃

(
Uk(n+1)M−1, V

k
(n+1)M−1

)
.

Our algorithm is summarized in Table 6.2.

6.3 Numerical study of the Parareal algorithm for a nonlinear
beam

We now turn to numerical examples for our algorithm. What we report here are
preliminary results that have to be extended to more complex cases. We run our
experiments for four different cases with different boundary conditions: a beam an-
chored at one or two ends, with and without a contact; see Figure 1.3. However, here
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Set N Number of coarse steps
Set M Number of fine steps inside

every coarse step
Set K Number of parareal iterations
Set (U0

0 , V
0

0 ) = (u0, v0)
For n = 1 to N

Compute (U0
n, V

0
n ) = G(U0

n−1, V
0
n−1) Initial coarse propagation

End for
For k = 1 to K do Iterative loop

For n = 0 to N − 1 do Parallelizable part
For m = 0 to M − 1 do

Compute F̃ (Uk−1
nM+m, V

k−1
nM+m) Local fine propagator

End for
Compute F (Uk−1

nM , V k−1
nM ) Fine propagation

End for
For n = 0 to N − 1 do Sequential part

Compute G(Uk−1
n , V k−1

n ) Coarse propagation
Compute (Ukn , V

k
n ) from (6.10) Correction

End for
End for

TABLE 6.2: Parareal algorithm for nonlinear quasi-static structure.
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a) b) c) d)

FIGURE 6.3: Beam configuration: a) beam fixed at two ends without
a contact, b) beam fixed at two ends with a contact, c) beam fixed at
one end without a contact, d) beam fixed at one end with a contact.

we report numerical results only for the case of a one-end fixed beam with a contact,
see Figure 1.3 d, since it is an interesting configuration in the sense of the degree of
nonlinearity involved. All the results reported hereafter correspond to a vertically
uniform distributed external load applied to upper bound of a rubber beam. In the
numerical experiments, FreeFem++ is used for the finite element formulation and
the linear algebra implementation, the fine solver is parallelized using MPI.

The first experiment considered here is the Parareal algorithm parallelized on 4
cores, 6 coarse steps and 6 fine steps are used, see Table 6.3. In order to measure the
quality of the solution we are looking for L∞ and L2 norms of displacements. The
first line of Table 6.3 corresponds to displacements obtained by applying 36 loading
steps for Newton’s method. We observe that we have a convergence from the first
Parareal iteration, which is reasonable since our numerical example is performed
with a sufficiently fine mesh. Indeed, the coarse solver converges and it means that
6 loading steps are enough to reach an accurate solution under the final load and
since our process is quasi-static we do not care about the solution at every "time"
point. We would like to underline that our aim here is to demonstrate the possibility
of using Parareal algorithm on elementary quasi-static problems in order to inspire
ourselves for further more realistic and strongly nonlinear models.

The problem formulation for the second experiment is the same as that of the
previous experiment except that here we have used a different space mesh size for
the coarse and fine propagation. Due to the sequential nature of the coarse propaga-
tor we would like it to be as fast and cheap as possible. Since the coarse propagator
will be corrected with the fine propagator we can use rough space mesh coarse steps.
Results with different coarse and fine mesh sizes are summarized in Table 6.4. First
line of Table 6.4 corresponds to displacements obtained with loading steps for direct
Newton’s method. Note that as in the previous example we have a convergence
from the first Parareal iteration.

6.4 Discussion

The results presented in Section 6.3 support the proposal for the feasibility of ap-
plying the parareal method for nonlinear structural analysis problems. That said,
there is a crucial point that needs to be clarified; the pseudo time stepping is only
there in order to ensure the convergence of Newton’s method. It is thus more like a
stability problem: once we have a converged result then it is the good one. Thus a
legitimate question is why bother with several parareal iterations in the first place?
For instance, one can think of taking as an initial guess the coarse solution and then
apply a fine solver in order to achieve an accurate solution at the last loading step.
This line of thought is interesting, but one would be losing the guaranteed theo-
retical convergence proof laid out in theory [Lio01], as we are unaware of a theory
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Parareal iteration ‖u‖L∞ ‖u‖L2 ‖v‖L2 AbsError

direct method 0.027394 0.0480169 0.161934

1 0.0278855 0.0512589 0.168256 4.9e-4
2 0.0280801 0.0521499 0.170242 6.8e-4
3 0.0265591 0.0443302 0.15321 8.3e-4
4 0.0265591 0.0443302 0.15321 8.3e-4
5 0.0265599 0.0443482 0.152963 8.4e-4

TABLE 6.3: Nonlinear beam with one fixed end and a contact. Con-
vergence for fixed mesh 60 × 20 , F = 120 Pa, 6 coarse steps, 6 fine
steps. The absolute error is calculated between the parareal solution

and the direct method in L∞ norm .

Coarse Fine Parareal Number ‖u‖L∞ Abs Error
mesh mesh iteration of loads

60× 20 60× 20 direct method 20 0.0278

60× 20 90× 30 1 12 0.0272 6e-4
60× 20 90× 30 2 12 0.0272 6e-4
60× 20 60× 20 1 12 0.0269 9e-4
60× 20 60× 20 2 12 0.0271 7e-4

TABLE 6.4: Nonlinear beam with one fixed end and a contact, dif-
ferent mesh sizes for coarse and fine propagation, F = 100 Pa, 12
coarse steps, 12 fine steps. The absolute error is calculated between

the parareal solution and the direct method in L∞ norm .
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supporting the aforementioned line of thought.

We don’t present results comparing the wall clock time for the regular sequential
loading versus the parareal implementation because for the purposes of this work,
we had to write files as an output for the coarse and fine solvers and in turn, read
them as an initial guess, calculating and propagating the differences and so forth.
This process of reading and writing files is naturally computationally expensive, in
comparison to the direct sequential case within FreeFem++ as the data points are
passed directly from one loading step to another. This comes as a result of not find-
ing a way to go around passing the data points directly without writing them in
FreeFem++ for the parareal case between the fine and coarse solver, and we chose
to focus on tackling the question of feasibility of the idea. Further implementations
would naturally require optimization to avoid this computational bottle-neck. Fi-
nally, an interesting recurring question is about the required number of parareal
iterations. We think that this point would depend on the model and boundary con-
ditions at hand. Not only, but also on the requirement posed by the application and
what is the required level of convergence.

6.5 Concluding remarks

We presented some preliminary numerical results as a proposal to show the feasi-
bility of applying the Parareal algorithm for nonlinear structural analysis problems.
The subject of the forthcoming work is to perform more extensive numerical tests
to provide a more comprehensive evidence for the feasibility study and then to ex-
tend this algorithm to industrial 3D problems and more realistic models using the
software package NUMEA provided by Hutchinson.
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