N
N

N

HAL

open science

Music across music: towards a corpus-based, interactive
computer-aided composition
Daniele Ghisi

» To cite this version:

Daniele Ghisi. Music across music: towards a corpus-based, interactive computer-aided composition.
Acoustics [physics.class-ph]. Université Pierre et Marie Curie - Paris VI, 2017. English. NNT:

2017PA066561 . tel-01880061

HAL Id: tel-01880061
https://theses.hal.science/tel-01880061

Submitted on 24 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-01880061
https://hal.archives-ouvertes.fr

uuuuuuuuuu “UNIVERSITES

Music Across Music: Towards a
Corpus-Based, Interactive
Computer-Aided Composition

A thesis presented by
Daniele GHISI

UNIVERSITE PIERRE ET MARIE CURIE
UNIVERSITE PARIS-SORBONNE
SORBONNE UNIVERSITES
Ecole doctorale Informatique, Télécommunications et Electronique
Institut de Recherche et Coordination Acoustique/Musique
UMR STMS 9912

To obtain the title of Doctor of Philosophy
Specialty: MUSIC RESEARCH AND COMPOSITION

Thesis Supervisor: Carlos Augusto AGON Amado

Defended on December 19th, 2017

Jury:
Reviewers: Georg HAJDU - HEMT (Hamburg)

Pierre Alexandre TREMBLAY - University of Huddersfield
Supervisor: Carlos Augusto AGON Amado - UPMC (Paris)
Co-supervisor: Pierre COUPRIE - Université Paris-Sorbonne
Ezaminators: Jean-Pierre BRIOT - UPMC (Paris)

Myriam DESAINTE-CATHERINE - LaBRI (Bordeaux)

Miller Smith PUCKETTE - University of California San Diego
Inuvited: Jean-Baptiste BARRIERE

Yannis KYRIAKIDES

Abstract

The reworking of existing music in order to build new one is a quintessential char-
acteristic of the Western musical tradition. This thesis proposes and discusses my
personal approach to the subject: the borrowing of music fragments from large-scale
corpora (containing audio samples as well as symbolic scores) in order to build a
low-level, descriptor-based palette of grains. A fundamental meaning of composing
is hence embodied in the acts of filtering, ordering, organizing and querying, whose
parameters are handled via digital hybrid scores, in order to equip corpus-based
composition with the control of notational practices. Some personal techniques are
presented, along with the aesthetic choices that motivated them and the musical
works to which they relate. Most of these techniques can be subsumed under a
larger exploratory attitude towards music: composition is an interactive, intuitive
discovery—more than an ‘invention’.

This thesis also introduces the dada library, designed and developed with these
considerations in mind, providing Max [Puckette, 2002] with the ability to organize,
select and generate musical content via a set of graphical interfaces manifesting the
aforementioned exploratory approach. Its modules address a range of scenarios,
including, but not limited to, database visualization, score segmentation and analy-
sis, concatenative synthesis, music generation via physical or geometrical modelling,
wave terrain synthesis, graph exploration, cellular automata, swarm intelligence, and
videogames. The library is open-source and extendable; similarly to bach [Agostini
and Ghisi, 2013], it fosters a performative approach to computer-aided composition
(as opposed to traditional off-line techniques): the outcome of all its interfaces can
be easily recorded in scores, or used in real time to drive, among other things, digital
signal processes, score transformations, video treatments, or physical actuators.

Finally, this thesis addresses the issue of whether classical representation of mu-
sic, disentangled in the standard set of traditional parameters, is optimal. Two
possible alternatives to orthogonal decompositions are presented: grain-based score
representations, inheriting techniques from corpus-based composition, and unsu-
pervised machine learning models, providing entangled, ‘agnostic’ representations
of music. As a lateral yet related subject, the thesis details my first experience of
collaborative writing within the /nu/thing collective, in open contrast with the com-
mon image of the composer as a Cartesian ‘solitary self’: although in very different
ways, corpus-based composition, generative neural networks and collective practices
all cause into question the scope of musical authorship.

Keywords: computer-aided composition, corpus-based composition, music rep-
resentation, real time, Max, bach, dada, neural networks, machine learning, collec-
tive writing

Acknowledgments

First and foremost I want to thank my supervisor, Carlos Agon, for his guidance
throughout this research study, and my co-supervisor, Pierre Couprie, for his sup-
port.

Secondly, I am not so sure this thesis would have even existed had I not met,
some ten years ago, Andrea Agostini, with whom I share a large portion of musical
research—and yes, I might have ‘borrowed’ from him a couple of ideas along the
way: I hope I returned them with due credit and with at least some minimal added
value. I would like to thank Eric Maestri, whose insights have often been cause
for reflection, and the other members of the /nu/thing collective (Andrea Sarto,
Raffaele Grimaldi), which is probably the most purposeful experience I have recently
undertook. I would like to thank Marco Momi, Giovanni Bertelli, Carmine Cella for
their keen observations that have shed some light on my doubts more than once.
I would also like to thank Boris Labbé: the collaboration with him has shaped a
portion of the ideas proposed in this thesis.

Importantly, I would like to thank the entire Ircam community (not just re-
searchers, but production, pedagogy and RIMs as well) for making me feel always
at home. I am particularly grateful to Moreno Andreatta, Gérard Assayag, Julia
Blondeau, Eric Daubresse, Jean Louis Giavitto, Marco Liuni and Yan Maresz for
their support and their suggestions on my researches; to Mattia G. Bergomi and
Philippe Esling for their assistance and their fascinating intuitions; to Robin Meier
for his aid and support on the project La fabrique des monstres; and to Léopold
Crestel, for helping me tweak recurrent neural networks models.

I am grateful to Fabien Lévy and Mikhail Malt for their observations on my
mid-term summary report.

I am especially grateful to Georg Hajdu and Pierre Alexandre Tremblay for their
thorough review of this thesis.

Additional credits

Sections 2.3.1, 2.3.2 and 2.3.3 have been previously published, in a slightly different
form, in

e Ghisi, D. and Bergomi, M. (2016). Concatenative synthesis via chord-based
segmentation for An Experiment with Time. In Proceedings of the Interna-
tional Computer Music Conference, Utrecht, Nederlands.

Some portions of sections 3.1 and 3.2.4, as well as the the entirety of sections 3.2.2
and 3.5 have been previously published, in a slightly different form, in

e Ghisi, D. and Agostini, A. (2017). Extending bach: A Family of Libraries
for Real-time Computer-assisted Composition in Max. Journal of New Music
Research, 46(1):34-53.

Some portions of section 3.3.2 have been previously published in

e Ghisi, D. and Agon, C. (2016). Real-time corpus-based concatenative synthesis
for symbolic notation. In Proceedings of the TENOR Conference, Cambridge,
United Kingdom.

Sections 3.4.1, 3.4.2 and 3.4.3 have been previously published, in a slightly different
form, in

e Ghisi, D., Agostini, A., and Maestri, E. (2016). Recreating Gérard Grisey’s
Vortex Temporum with cage. In Proceedings of the International Computer
Music Conference, Utrecht, Nederlands.

Section 4.4.2 expands and elaborates some ideas developed by the whole /nu/thing
group while writing the dossier for I mille fuochi dell’universo.

In addition, some examples were presented in the following talks:

o Interfaces reactives pour la composition assistée par ordinateur en temps réel,
Collegium Musicae, Ircam, Paris (13/05/2016)

e Tabula plena: un tentativo di orientamento alla composizione attraverso le
basi di dati, Budrio, Dialoghi sul comporre (28/12/2016)

e Music and the Digital, Biennale Digital, Venezia (03/02/2017)

e Synthese par RNNs pour “La fabrique des monstres”, Meridién Ircam, Paris

(05,/09/2017)

e Corpus-Based Composition and Interactive Computer Interfaces, Institute for
Computer Music and Sound Technology, Zurich (02/10/2017)

Contents

1 Introduction

1.1 Music across music 1
1.2 Outline 11
1.3 Adisclaimer 12
2 Towards a Corpus-Based Composition 13
2.1 Corpus-based composition 13
2.1.1 Musical borrowing in Western musical tradition 13

2.1.2 A new kind of authorship 15
2.1.3 Exploring the tabula plena 17
2.1.4 The Discography of Babel 21
2.1.5 Personal references L. 22
2.1.6 Comparison with other compositional researches 23

2.2 Describing and organizing content 25
2.2.1 Music descriptors 25
2.2.2 Micromontage, granular synthesis, concatenation, musaicing . 27

2.3 Chord-based concatenations 29
2.3.1 An Experiment with Time 29
2.3.2 Database and segmentation 32
2.3.3 Compositional framework 34
2.3.4 Usage in I mille fuochi dell’universo 37

2.4 A poetic of concatenation L. 38
2.4.1 Concatenations as trajectories 39
2.4.2 Music across music: Flectronic Studies 40

2.5 Speech and corpus-based composition 42
2.5.1 The utopia of a bridge between speech and music 42
2.5.2 MFCC-based musaicing in Mon corps parle tout seul 43
2.5.3 Concatenation of spoken words for Any Road 45

2.6 A query-based approach to musical samples 48
2.6.1 The Well Tempered Sampler 53

2.7 Concatenation of sung words L. 54
2.8 A symbolic approach: a database of scores 56
3 Towards a Real-Time Computer-Aided Composition 59
3.1 Real-time computer-aided composition 59
3.2 Previous work: the bach paradigm 62
3.2.1 bach: automated composer’s helper 62
3.2.2 Comparison with other software 65
3.2.3 Extending bach oL 66

3.2.4 The cage library 68

viii Contents
3.3 dada: non-standard user interfaces for computer-aided composition . 72
3.3.1 The scope of dada L 72
3.3.2 Tools for corpus-based composition 74
3.3.3 Tools for physical or geometrical modelling of music. 84
3.3.4 Rule-based systems, graphs, and music as a game 94
3.3.5 Comparison with other software 106
3.36 Futurework 107

3.4 Meta-scores 110
3.4.1 Hybrid scores as instruments L. 110
3.4.2 Meta-scores in bach and cage 111
3.4.3 An analysis case study: Vortex temporum 114
3.4.4 Applications to composition L 117

3.5 Perspectives on the bach family 124

4 Towards a Parameter Entangled Computer-Aided Composition 127

4.1 An entanglement of parameters 127
4.1.1 Traditional notation as a Cartesian model 127

4.1.2 Why we need some degree of entanglement 130

4.2 Grain-based score representations 133
4.3 Artificial neural networks: a composer’s take. 135
4.3.1 Sample-based generative networks for La fabrique des monstres136

4.3.2 Recurrent network models 139

4.3.3 Using visual representations of sound 141

4.3.4 Conclusions and perspectives 151

4.4 An experiment in collective writing oL 157
4.4.1 /nu/thing and I mille fuochi dell’universo 157

4.4.2 'Towards a collective writing of music 158

5 Conclusion 161
5.1 Main contributions o 161
5.2 Open problems and future work 164

A Catalogue of works 169
B List of articles 173

Bibliography 175

CHAPTER 1

Introduction

1.1 Music across music

One of the recurring questions in philosophy of science is whether mathematics and
physics are discovered or invented. By extension, one might wonder whether music,
and art in general, are discovered or invented [Kivy, 1987].

The artistic dispute is usually tackled by counterposition to the scientific one.
A popular quote, credited to a multiplicity of sources and cited in a variety of
alternative forms, says that “if Einstein hadn’t formulated the Theory of Relativity,
then someone else would, while if Beethoven hadn’t composed the Moonlight Sonata,
no one else would”. This sentence represents a widespread opinion: science is a
laborious yet somehow foreseeable exploration, while art is a pure act of creation.
Connected to this idea is another common belief: a scientist can only understand
the world from an outside point of view, whereas an artist has somehow within his
grasp the sum of all human experience. ‘Conscience’—whatever it may mean—is
the seal of ‘invention’. Artists are unique, scientists are interchangeable cogs.

This point of view entails, incidentally, a certain number of curious corollaries,
such as: “Science is not an occupation for a person who wants to make a mark
as an individual, accomplishing something only that individual can do” [Lightman,
2005]. In other words: science would be collective, insofar as it needs to tackle issues
efficiently (sometimes even ‘mechanically’), while art would be individual, insofar as
it needs to be expression of a ‘conscience’. Similar assertions are common for other
fields of study; for instance, composer John Luther Adams writes: “I decided that
someone else could take my place in politics; and no one could make the music I
imagined but me” [Adams, 2016].

Notwithstanding some elements of good sense, I cannot approve a similar
paradigm. On one hand, science being a far from linear process, I am not persuaded
that we would have General Relativity today if Einstein hadn’t worked on it—but
this is a personal, almost irrelevant detail. (And I do believe, incidentally, that great
politicians are hardly replaceable, if not with detrimental consequences.) On the
other hand, I’'m convinced that if John Cage hadn’t written his well known 4’33"
someone else would have written an analogous piece eventually. In addition, there is
a certain consensus on the fact that a number of ‘fashionable’ contemporary music
pieces sound so alike, even for well-trained ears; I would be temped to conclude that
had their authors not written them, someone else probably would have—if not with
the exact same notes, at least in a roughly equivalent form. Sometimes individual
artists are interchangeable too.

2 Chapter 1. Introduction

Vice versa, essentially all mathematicians recognize that creativity is an indis-
pensable stage of their scientific enquiry, starting with the the choice of research
subject and the angle of approach. As Alain Connes puts it:

There are several phases in the process leading to ‘find’ new math,
and while the ‘checking’ phase is scary and involves just rationality and
concentration, the ‘creative’ first phase is of a totally different nature. In
some sense it requires a kind of protection of one’s ignorance since there
are always billions of rational reasons not to look at a problem which
has been unsuccessfully looked at by generations of mathematicians.
[Connes, 2005]

The description of the creative process isn’t that far off from what a composer
may experience while writing the first notes of a new piece. For instance, tackling
the incipit of a string quartet also requires ‘a kind of protection of one’s ignorance’: if
composers had to ponder the whole amount of existing music literature while starting
to write, they probably wouldn’t settle on any note. And, of course, writing a string
quartet has also tedious ‘checking’ phases, requiring rationality and concentration
only—such as verifying playability for double stops, writing string positions for
sequences of harmonics, adding cautionary accidentals, and so on.

If one really believes in an opposition between acts of research and acts of creativ-
ity, one should at least be prepared to admit that the two paradigms are embraced
by both science and art—in different proportions, depending on the situation.

In his speculative story Melancholy Elephants (1984), Spider Robinson goes one
step further:

Artists have been deluding themselves for centuries with the notion
that they create. In fact they do nothing of the sort. They discover.
Inherent in the nature of reality are a number of combinations of musical
tones that will be perceived as pleasing by a human central nervous
system. For millennia we have been discovering them, implicit in the
universe, and telling ourselves that we ‘created’ them. To create implies
infinite possibility, to discover implies finite possibility. As a species I
think we will react poorly to having our noses rubbed in the fact that
we are discoverers and not creators. [Robinson, 1984, p. 16]

The science fiction bottomline is fascinating—although to discover does not nec-
essarily imply a finite number of possibilities: for instance, one can search for (and
discover) new couples of twin primes even they are conjectured to be infinitely many.

I am tempted to suggest that, in the case of music, the words ‘creation’ and
‘discovery’ are labels—perhaps referencing the same core principle?’—that we put as
placeholders on two different operative paradigms, for lack of better understanding.

The ‘inventive’ paradigm, usually encouraged in Western music schools and con-
servatories, is connected to the idea that introspection and reasoning help determin-
ing, at each step of the composition process, which elements should be introduced.

1.1. Music across music 3

The composer, in front of a piece of paper, or even in front of a computer screen,
introduces notes and figures one by one, taking the time to introspectively deter-
mine what he or she considers, for a given context, interesting, relevant, beautiful.
One might speculate that one of the keys to go beyond the white page (a tabula
rasa) is the very act of ‘protection of one’s ignorance’ that Connes mentioned: the
music literature is so stifling that at some point composers need to obliterate it. I
recall that one particular friend, several years ago, had an extreme position on the
subject, confessing candidly that he didn’t like going to any concert, because it was
a distraction from his own music.

The ‘exploratory’ paradigm, by contrast, requires external events to provoke
ideas. Such events can be either passively received, or actively searched. The
composer is ‘listening’ (a [’écoute), ready to create connections, identify interesting
patterns, and work on them. Collages and quotations relate to this paradigm,
but the discovery is not necessarily bound to browsing from existing music: one
might devise combinatorial strategies where a large quantity of sounds or scores
is generated (a tabula plena), and specific portions of the generated material are
explored later on. The literature is still stifling, but the composer chooses to work
on a portion of it, from a certain angle.

One might be tempted to read in the two paradigms some symptoms of the
opposition between modernism and postmodernism:

Influence was a critical issue for modernists. Postmodernists, how-
ever, [...| have passed beyond their Oedipal conflicts with their modernist
parents, although they may still have an uneasy relationship with them.
|[Kramer, 2016, p. 15]

Yet both categories are hard to define—postmodernism, especially, being a “slippery,
contentious beast”, to cite Linda Hutcheon. As a matter of fact, the two paradigms
are not in conflict: the ‘discovery’ paradigm still requires an ‘inner self’ to resonate
with external events—usually via acts of ‘surprise’ or ‘shock’; and conversely, one
might well envisage that, when ‘scanning’ introspectively for ideas, a certain modi-
fied combination of the concept we have learned, of the music we have loved, of the
scores we have cherished, emerges to mind (and to pencil). Isn’t our choice of ‘in-
teresting content’ an indirect consequence of our aesthetic preferences, our training,
our ‘base of knowledge’? Our mind is in itself a tabula plena [Antiseri, 2005, p. 21].

I imagine myself one day, sitting at my table, taking a pencil in my hand,
determined to start writing a string quartet, note by note; and then imagine myself,
the following day, collecting the scores of all the string quartets I can find, trying to
isolate short figures that impress me, using them to construct meaningful elements,
and, modification after modification, eventually transcribing them on paper. These
are two operatively different processes—but are they fundamentally different? Don’t
‘point blank invention’ and ‘processed musical borrowing’ eventually reverberate
into a similar reservoir—past knowledge, education, inclination, preferences—, only
the latter bearing a more explicit tone? What are the boundaries between the two
operations? Is their distance worth exploring?

4 Chapter 1. Introduction

The concept of musical borrowing, in particular, echoes controversies dating at
least as back as the mid-eighties, when the term ‘plunderphonics’ was coined by
John Oswald as a category for music made by playing and altering existing audio
recordings. The process of using existing music to build new one dates back at
least to tropes, paraphrase masses and quodlibets; nowadays, genres such as jazz or
hip hop heavily rely on borrowing in order to produce new works. The advent of
recording techniques, during the 20th century, has made it easier to cite, reproduce
or remix previous works, opening the way for electronics experimentations, sampling,
‘turntablism’, and the plunderphonic movement itself. In his 1985 manifesto, Oswald
declares that:

Musical instruments produce sounds. Composers produce music.
Musical instruments reproduce music. Tape recorders, radios, disc play-
ers, etc., reproduce sound. A device such as a wind-up music box pro-
duces sound and reproduces music. A phonograph in the hands of a hip
hop /scratch artist who plays a record like an electronic washboard with
a phonographic needle as a plectrum, produces sounds which are unique
and not reproduced - the record player becomes a musical instrument.
A sampler, in essence a recording, transforming instrument, is simulta-
neously a documenting device and a creative device, in effect reducing a
distinction manifested by copyright. [Oswald, 1985]

Oswald continues, by stating that “the distinction between sound producers and
sound reproducers is easily blurred, and has been a conceivable area of musical
pursuit at least since John Cage’s use of radios in the Forties”.

The digital revolution democratized music production and reproduction
[Lehmann, 2017], making editing faster and cheaper: today, virtually all composers
can achieve on their own laptop in a few minutes operations that would have required
many hours of delicate work on magnetic tapes. More importantly, in our digital
era, the interest has shifted from recording supports to encoding types; all digital
media are fundamentally stored as binary code: what distinguishes a recording from
a photograph, or even a recording from a score, is the way in which information is in-
terpreted. This fact has certainly contributed to bridging the gaps between different
disciplines: it is not uncommon that the same physical tools, such as controllers, or
algorithmic tools, such as machine learning techniques, may be indifferently applied
to music, images, videos or texts.

* %k %

My interest in musical borrowing first appeared during my adolescence. I had
just discovered Berio’s Sinfonia and I was amazed: I had the feeling that its quo-
tations were a manner to assign some kind of shared ‘meaning’ to notes, something
as close to a word as I could find in music. I started using quotations in my elec-
troacustic pieces, rather naively at the beginning, then more and more consciously.
I decided to tackle the question from the electronic side essentially because I needed

1.1. Music across music 5

to keep an eye on the possibilities opened by algorithmic tools—and it seemed much
easier to deal algorithmically with audio montages than with score montages. It was
a first attempt to combine my long-time interest for computer-aided composition
with the emerging interest for corpus-based composition. Soon, the number of quo-
tations increased, and I started collecting audio files inside folders on my laptop, one
folder for each project. Then, for some projects, one folder was no longer enough: as
the amount of data increased, so did the need for a smarter access to searching por-
tions of sound files, according to labels, properties, or harmonic configurations. The
audio files had already stopped being quotations by that time—they were simple
raw material, ‘colors’ on a palette.

The present thesis describes the research lines that stemmed from this approach
and that I have pursued in the last three years, along with the musical works to
which they have lead. I have mainly focused on a digital, interactive, exploratory
approach to music, based on a large-scale computer-aided systematization of musical
borrowing.

The principal project in which I was able to coordinate an important portion of
these ideas is An Experiment with Time, an audio-visual installation, also available
in concert form with a live amplified ensemble, inspired to the eponymous book
by John W. Dunne. In An Ezperiment with Time, I organized large quantities of
audio content, sampled across the Western history of music, to be used as a compo-
sitional palette: each folder clustered audio fragments matching a given harmonic
configuration; composition was also based on the analysis of some of their features
(‘descriptors’). After the experience with An Experiment with Time, it was clear
to me that I had to extend the approach to actual databases and to implement an
intuitive access to samples—a ‘digital pencil’.

Using musical corpora as a palette is deeply inspiring; personally, it is also a
way to acknowledge how we all, although in different ways, write ‘on the skin of the
world’. The range of applications of this concept is wide; after An Experiment with
Time, two paths seemed to be most promising to me: small-grain concatenations,
where the boundary between musical borrowing and usage of primary components
(notes, figures, samples, frames) is extremely blurred; and large-grain concatena-
tions, where each component in the montage is well recognizable, and the borrowing
is somehow declared. Some of the latter have been temporarily and disorderly col-
lected under the title FElectronic Studies, and are to me a sort of reminder of how
composing can revert to its original meaning of ‘putting together’.

With few exceptions, my musical production of the last three years, as well as
a certain number of currently ongoing projects, stems from these ideas: The Well
Tempered Sampler is a work in progress directly related to the chord organization
of An Experiment with Time; Any Road applies concatenations to the detection
of speech patterns; An Urban Dictionary of Popular Music applies similar ideas in
order to build a dictionary of sung words; Mon corps parle tout seul turns a mouth,
formed by water droplets, into a sound-spitting oracle by means of corpus-based
speech reconstruction techniques (‘musaicing’); 269 Steps Away From you (269 Steps
Away From Me) is essentially a sequence of concatenated borrowed elements. Also

6 Chapter 1. Introduction

while working with audiovisual projects, I have tried to take advantage of corpus-
based tools: Orogenesis brings choir chants into regions of extreme aliasing; Chute
is constructed starting from a large number of recordings of string quartets.

Dealing with large music datasets is technically challenging for a variety of rea-
sons: for one thing, more often than not, music software is simply unfit to handle
big amounts of data, resulting in memory or performance issues that often render
computer-aided composition impractical, when not impossible. For another thing, I
had to use lossy compression formats in my large datasets—calibrating the quality
of the compression to be high enough so that the difference between compressed and
original audio was negligible for my own purposes. But it was just a preamble: the
real issues with audio quality came as soon as I got interested in machine learning
techniques.

Given my passion for large music corpora, machine learning seemed a natural
and perspectively promising set of techniques. The project La fabrique des monstres
stems from a simple curiosity: how could we design an artificial neural network that
only takes as input a sequence of digital audio samples (it ‘listens’), and is able to
learn and reproduce patterns from it? Sample-by-sample learning techniques on raw
audio data currently require large amounts of memory and computing time; virtually
all state-of-the-art models work best with low sample rates (16kHz being extremely
common) and low output bit depths (usually 8). Composers are then faced with a
dilemma: should they wait for the technology to improve, or should they engage in a
research process, with the risk of ending up producing low-quality audio outcomes,
that in ten years’ time might sound connotated, or even laughable? There is no
right answer, of course. I personally consider this kind of engagement essential, and
I live it both as a pioneering experience and as an avant-garde gesture. In ten years’
time we will surely have better tools—but they have to stem from somewhere. For
La fabrique des monstres 1 chose to assume the low-fidelity electronic outcome, and
I tried to handle the music composition accordingly. Sometimes quality is simply
not the point.

Artificial creativity is especially inspiring because it questions authoriality to a
very large extent. Via relatively simple recurrent network models one can already
produce rather convincing samples mimicking the style of a given training set. Cu-
riously enough, if one hears the generated music without paying much attention,
one might easily mistake it for the original corpus, even though when one listens
more closely, the difference is well apparent. What is at stake is not just an enter-
taining generator of airport music: as soon as our computers will be able to handle
longer memories—which will happen in a very near future—it would probably be
hard, if not impossible, to distinguish between ‘originals’ and ‘copies’. Who would
be the author, then? How would our copyright framework adapt to the brand new
revolution? Perspectives look both scary and exciting.

As 1 was working on neural networks, some writings by David Cope came to
mind. Cope proposed the idea of ‘virtual music’ [Cope, 2004] as a category of
compositions attempting to replicate a style (such as figured basses, or musical dice
games, or his own Ezperiments in Musical Intelligence). The neural network models

1.1. Music across music 7

with which I was experimenting fitted perfectly in the category. Nonetheless, I was
at least as much interested in the differences between the style and the outcomes
as I was in replicating patterns. Especially exciting were the moments when a
vocal vibrato got too exaggerated, when a high soprano note morphed into an oboe
sound, when a noise burst came to break a pastoral situation, when the harmony
was suddenly yet coherently ‘off’. The latter was indeed one of the most unsettling
experiences: at times the harmony was both off and pertinent at the same time,
generating a strikingly unique and ineffable feeling.

As I was reading Cope’s writings again, it was nice to rediscover a certain number
of points in common with Spider Robinson’s novel and with my own combinatorial
attitude:

Much of what happens in the universe results from recombination.
[...] Music is no different. The recombinations of pitches and durations
represent the basic building blocks of music. Recombination of larger
groupings of pitches and durations, I believe, form the basis for musical
composition and help establish the essence of both personal and cultural
musical styles. [Cope, 2004, p. 1]

And with an exploratory, trial-and-error approach:

I think that most composers would appreciate hearing possible solu-
tions to problems, fresh perspectives on a just-composed or just-about-
completed passage, or experimental extensions to a new phrase. These
composers will always make the ultimate decision as to whether or not
to use such music. Even if all the output proposed by [a] program fails
to please, it might still inspire, if only by its failure to persuade. [Cope,
2004, p. 344|

I found a third point of contact with Cope’s ideas: the belief that a composer
may attempt to go beyond his or her being a ‘solitary self’. Collective work is a
common habit in most contemporary fields, including science, visual arts, cinema,
pop and rock music: in all these cases, collective practices have revolutionized the
production mechanisms as well as the way of thinking. For several reasons, the mi-
lieu of contemporary music has been virtually immune to this revolution: although
co-signed works are not new in the history of Western music, they mostly refer to
works in which each of the signatories is in charge of a particular section, or an
author completes a previously unfinished project, or each of the signatories assumes
a specific role. Some attempts to go beyond this situation have mostly been made
through technological tools: the Edison Studio collective uses audio technologies as
key to creatively combine ideas; David Cope himself added collaborative opportu-
nities to his Experiments in Musical Intelligence in a software named Alice. Even
so, the topic of multi-author composition seems to be absent from the collective
agenda—the vast majority of today’s composers simply not considering it a priority.

In 2010 I have formed, together with five other Italian composers, a collective
named /nu/thing, initially gathered around a blog. In the last two years, we have

8 Chapter 1. Introduction

engaged in a more ambitious project: truly collective writing, a process where both
the signature and the way of working were to be inherently shared. The result is the
piece I mille fuochi dell’universo, which I found compelling for many reasons, but
mostly because I personally do not believe that individuality will be the signature
of future generations of composers. [mille fuochi dell’universo is both our first
attempt to write together and a sort of manifesto, a statement of direction.

All these experimentations are described throughout this thesis, along with the
dedicated digital tools developed to support them. I had to refine an approach
to audio and to scores which would use live interfaces as pencils, descriptors as
rulers and databases as paper sheets. I started developing a certain number of
modules, mostly two-dimensional interfaces, now organized and distributed in a
library named dada, for the Max environment [Puckette, 2002|. The dada library,
in turn, is based on bach: automated composer’s helper, an independent project
bringing interactive scores inside Max, on which I have been working since 2010
with composer and friend Andrea Agostini [Agostini and Ghisi, 2013]. The dada
library is open source and provides Max with a set of non-standard user interfaces for
music generation, all sharing a performative, explorative approach to composition.
A subset of modules explicitly deals with database representations. Most of the
communication paradigms, as well as the data representation, is inherited from
bach. The choice of Max as working environment was prompted by its simplicity of
integration with a multitude of processes and devices, a flexibility from which any
addition to the system would directly benefit.

The result is a digital lutherie that tends to employ computer interfaces similarly
to how a 19th century composer could have used a piano: both as a discovery
‘playground’ and as a validation environment. Digital tools allow to explore paths,
to be surprised by their outcomes, and to ponder, choose, organize, formalize and
validate their results. Importantly, interactivity is a choice, not an obligation: in
most cases, the ‘off-line’ portion of the musical process is at least as important as the
exploratory playground. Nonetheless, I believe that via interactive representations
of music composers can take advantage not just of scores to play (as a means of
communication), but of scores to play with (as ‘instruments’ proper).

* % %k

Music critic Ivan Hewett claims that “the era of intense formal exploration, when
composers sit at their desk, or more likely at their laptops, and explore ever more
arcane forms of self-creating grammars for music are coming to an end” [Hewett,
2014|. T can understand why similar postures have found ground to thrive: the
twentieth century, in particular, has witnessed an impressive sequence of formal
approaches and techniques, some of which have dwelled in a sort of hyperuranion
where abstract processes, in some way, both disregarded and justified the sound
phenomena—as Grisey [1987] stated, composers have sometimes mistaken the map
with the territory.

Yet holding formalization or technology responsible for such mistakes is dan-
gerous. The history of music is also a history of both music formalism and music

1.1. Music across music 9

technologies, from Pythagorean experiments on intervals to Xenakis’s constructions,
from the invention of notation to the advent of synthesizers. Are the “intense formal
explorations” of 15th century Franco-Flemish school so impenetrable? Are the “self
creating grammars” of 20th century spectralism so arcane?

Incidentally, in the contemporary music milieu, I have often heard that com-
posers should be careful not to get ‘pushed around’ by technology. Sometimes it is
said to encourage them to keep reflecting both on the tools and on their outcomes—
which I find, of course, compelling and important. At times, however, it is said
to proclaim some sort of independence (or even superiority), which puzzles me to
a large extent. Throughout the history of music, composers have constantly been
influenced (and sometimes even ‘pushed around’) by technological discoveries, with
excellent results. Technology provides new possibilities to express and convey mu-
sical ideas, be they in the form of a 17th century violin or an Arduino-controlled
vinyl turning table. In the 15th and 16th centuries, printing technologies allowed the
spreading of polyphonic music and encouraged experimentation; nowadays, the dig-
ital technologies allow for unprecedented treatments in audio and score processing.
Developments in technologies invariably foster new ways of thinking.

Since composing also means ‘reflecting upon music’ [Lachenmann, 2004|, formal-
ism is one of the pillars of our Western musical approach. Technology and formalism
are simply the canvas on which we operate. One may, of course, put the canvas itself
into question—with the awareness that such process is not about expunging the last
few decades of arcane contemporary music, but rather about challenging the whole
history of Western musical thinking.

Personally, I cannot renounce formalism. What I like in a formal approach
is the moment when pieces of a random-like puzzle fall into place in a seemingly
natural way, and meaningful structures emerge: the instant in a retrograde canon
when certain notes ‘miraculously’ make sense; the moment when one perceives an
appearing monstrosity in a certain accumulation of objects; the discovery of a well
known landscape from a collage of small portraits; the constant variation of causal
relationships in a polyrhythmic structure.

There’s an adrenaline discharge in these discoveries; there is a certain kind of
ineluctability leading to the keen perception, for an instant, that some things are un-
equivocally bigger than us, which makes us wonder what is our place in the universe
or how it is possible that time seems to flow. In my opinion, those are questions
music should attempt to address, and formal approaches are a very good way to pro-
voke those feelings, by making tangible humanity and abstract mathematics collide,
and therefore putting them both in perspective. After all, humans use formalism
and technology also as means to go beyond themselves. In Guillaume de Machaut’s
Ma fin est mon commencement, formalism is essential to express a contrast between
finiteness and infinity; in Heinz Holliger’s Scardanelli Zyklus, formalism is a way to
attain a monumental level of writing, connecting our space and time with different,
higher ones.

Significantly, some aspects of a technological, formal approach have also merged
into the composite, ambiguous melting pot often called ‘postmodernism’, encom-

10 Chapter 1. Introduction

passing other disciplines, and sometimes even edging to a ‘pop culture’ approach,
ranging from Luciano Berio’s orchestral works to modern TV series. There is also a
ludic side: as Lewis Carroll indicates, symmetries carry with themselves the playful
and yet diabolical taste of spontaneous multiplications of elements. Most times, the
game evaporates quickly, and has no aftertaste; but in some situations, it spirals
into a vertiginous mechanism that hints to deep questions and high archetypes, and
the aftertaste is bitter and indelible. Machaut’s interest in retrogradation is well
recognizable in Michel Gondry’s video for the song Sugar Water or in the reversal of
Elvis’s Suspicious Mind that has originated Ignudi fra i nudisti, by the Italian rock
group ‘Elio e le storie tese’; Bach’s interest for canonical forms converges into Nor-
man McLaren’s Canon; Ligeti’s polyrhythms will influence a large number of works
of art, including Zbigniew Rybczyniski’s Tango, portraying life as a superposition of
cycles.

As for this thesis, in honest contrast with Hewett’s portrayal, it will represent
the wandering of the mind of a solitary composer, sitting at his desk, or more
likely at his laptop—exploring. And yet the exploration will increasingly attempt
to reduce solipsism by taking advantage of collective music practices; to mitigate
egocentrism by assuming that we all stand on the shoulders of thousand giants;
to shift the meaning of the word ‘invention’, by mediating exploration through
surprise; to use computer-aided composition software as interactively as a piano, by
developing reactive paradigms for score generation and handling; to use scores not
just as means of prescriptive notation, but as instruments to play with, by exploiting
interactive hybrid scores; to cause into question the nature itself of musical notation,
by looking for less ‘Cartesian’ and more parameter entangled representations of
music.

I believe that all these activities should contribute to replacing Hewett’s sketchy
portrayal of a modernist composer with an actually modern one.

1.2. Outline 11

1.2 Outline

The main body of the thesis is structured around three areas of enquiry.

Chapter 2 examines and discusses my personal views on a corpus-based approach
to music composition, analyzing the implications of the different exploration-driven
paradigms I have used in my recent works (such as concatenations of audio frag-
ments, database querying and muzaicing), and transferring some of them to the
symbolic domain. The chapter also presents my techniques to handle music datasets,
along with both the aesthetic principles that motivate them and the description of
my recent works that were based on them.

Chapter 3 is devoted to the description of the reactive computer music tools I
developed to support my workflow. It explains why a reactive model is important
for my research and how real-time computer assisted-composition helps bridging
the gap between a ‘performative’ and a ‘speculative’ approach. I briefly describe
the bach and cage libraries, which Andrea Agostini and I have been developing
and supporting since 2010 and 2013 respectively; then I introduce and detail the
dada library, which I designed within the framework of this thesis and used in my
recent works: its focus is on non-standard real-time interfaces to control analysis,
organization and generation of music. Finally, the chapter introduces and discusses
reactive hybrid scores (meta-scores), a key tool, in my recent line of work, combining
the properties of both prescriptive scores and interactive instruments.

Chapter 4 raises the question whether our representation of music is optimal.
The main issue is that notation, especially in a computer-aided composition context,
is extremely ‘Cartesian’, in that it separates musical parameters in an orthogonal
way. [will explain why, in my opinion, parameter entangled representations of music
might fit better in certain scenarios. In order to start addressing the issue, two paths
are explored: on one hand, a grain-based score representation is proposed (based on
the ideas exposed in chapter 2 and the tools developed in chapter 3); on the other
hand, some machine learning models are discussed, especially in connection with
the usage of recurrent neural networks in my most recent works, as a way to obtain
abstract, entangled representations of music. As a lateral, and yet very connected,
topic, the chapter also motivates my interest in collective writing practices, causing
into question the view of a composer as a ‘solitary self’, as well as the role of
authorship.

12 Chapter 1. Introduction

1.3 A disclaimer

Although this thesis may contain pieces of information pertaining to the fields of
study of musicology and computer science, it is neither a musicological nor a scientific
thesis. While writing it, I have often felt as an acrobat trying to balance himself on
a narrow rope, exposed to the winds from both sides.

Above all, I had the feeling that a certain number of concepts I touched would
contain in themselves the potential to open much broader discussions. And yet, such
discussions fundamentally belong in a musicological context and are well beyond the
scope of the thesis: the respective concepts are illustrated and examined only insofar
as they help conveying my view on music, and positioning myself inside the existing
panorama of contemporary composition. Ultimately, the aim of this work is not to
methodically investigate the intricacies of a musical posture, but rather to express
my choices and motivate the beliefs which led me to make them.

As for the scientific side, I have tried to pair in the text technical considerations
with the musical reasons that motivate them—or with musical usages that exem-
plify them. I will provide careful descriptions for all the developed tools and their
algorithms, whenever meaningful, but only with the goal to assess their influence in
a musical context—and primarily in my own work.

In this regard, another possible misunderstanding might concern the scope and
the target of the development. All the tools, techniques and patches presented in
this thesis, including the dada library, were developed for my own, very personal,
purposes, and do not aspire to universality. Any consideration about them is, hence,
strictly personal, and pertains to my own aesthetic and usage. This principle has
one important exception: the bach and cage libraries although stemming from the
musical background of Andrea Agostini and me, are targeted to a much more general
community of composers, a fact that will be kept under consideration during the
discussion in Chapter 3. Both libraries, however, predate this thesis by several years,
and are briefly presented and discussed only in order to introduce dada accurately,
and to detail my current work with them.

Finally, this thesis is an attempt to organize my (musical, aesthethic, techni-
cal, scientific, methodological) ideas to outline a world view, related to a specific
posture—an explorative, corpus-based approach to music—which I find fascinating,
for a number of reasons. My curiosity, however, extends beyond it; a posture is not a
cage, but rather a (temporarily) privileged viewpoint: there are compelling reasons
for enforcing it, but there is no necessity, and other paths might be, of course, just
as valid. This thesis discusses explorative paradigms and corpus-based composition
because I find compelling aesthetic points in them; however, this does not imply
that I systematically refrain from taking any other compositional approach, if more
convenient: more often than not, techniques are borrowed across different postures.
Ultimately, I hope that my world view is better conveyed by the music itself—which
is why I have taken care of adding, whenever possible, audio and video excerpts to
illustrate the subjects.

CHAPTER 2
Towards a Corpus-Based
Composition

2.1 Corpus-based composition

2.1.1 Musical borrowing in Western musical tradition

The reworking of existing music in order to build new one is a quintessential charac-
teristic of the Western musical tradition [Burkholder, 1994; Boyle and Jenkins, 2017|:
late medieval tropes added new lines to pre-existing chants; Renaissance masses were
often composed starting from a cantus firmus, typically borrowed from plainchant,
or even from secular sources; quodlibets combined different popular melodies in or-
der to construct coherent counterpoints, the most notable examples probably being
Bach’s 30th Goldberg Variation and the extraordinary polytonal combination of folk
tunes in the 2nd movement of Biber’s Battalia. An attempt to provide a chronology
of uses of existing music can be found in [Burkholder, 1994, appendix 2|. Romantic
and post-romantic composers often borrowed music in order to symbolize something
(such as the Dies Irae in Berlioz’s Symphonie Fantastique). More recent examples
of citationism include Ives’s Central Park in the Dark, Zimmermann’s Requiem fiir
einen jungen Dichter, Clarence Barlow’s Piano Trio [Barlow, 2011] and the third
movement of Berio’s Sinfonia. This latter is so remarkable, in that it transcend the
idea of mere collage, “in order to give an understanding of the affinities between
stylistically distant musical ideas, [thus creating] an extremely convincing unity of
sound, based of the amplest heterogeneity.” [Roubet, 2013]

Berio’s work has very much in common with Umberto Eco’s belief that quotation
is a specific trait of postmodernism:

The avant-garde destroys the past, it disfigures it. [...] But there
comes a moment when the avant-garde can go no further, because it
has already produced a metalanguage to talk about its own impossible
texts (for example, conceptual art and body art). [...] The postmodern
response to the modern consists instead of recognizing that the past—
since it may not be destroyed, for its destruction results in silence—must
be revisited ironically, in a way which is not innocent. [Eco, 1984|

Leeman [2004] argues that Eco’s words reveal a caricatural view of avant-garde;
modernist approaches often revisit past models precisely while disfiguring them. It
is however true that postmodernism gives to borrowing unprecedented scale and

14 Chapter 2. Towards a Corpus-Based Composition

intensity [Beylot, 2004]. Today the boundaries between postmodernism, modernism
and avant-gardes are extremely blurred, or even overlap extensively. An analysis
of the nature of such postures as well as of their mutual relationships lies well
beyond the scope of this thesis. As a consequence, I will refrain from delving into
the intricacies of determining if and how the contemporary usage of quotations
emanate from a postmodernist approach—indeed, I will refrain from speaking of
postmodernism altogether: even though the category is relevant, “it is hard to reach
a consensus on what a definitive genre of postmodern contemporary music might
even sound like” [Trapani, 2017|. For an extensive analysis of the characteristics of
postmodernism in music, as well as the intricacies of its relationships with avant-
gardism and modernism, one might read Kramer [2016].

All the aforementioned examples are an indication that, throughout time, com-
posers have held somewhat different approaches to the reusage of existing scores.
Burkholder [2004, p. 4] drafts the following comprehensive list of procedures!: mod-
elling, variation, paraphrasing, setting, cantus firmus, medley, quodlibet, stylistic
allusion, transcription, programmatic quotation, cumulative setting, collage, patch-
work and extended patchwork. Ruviaro [2007] engages in a similar task: “To borrow.
To quote. To parody. To paraphrase. To model. To make a collage or a mash-up.
To allude or refer to. To steal. To arrange. To remix. To transcribe.” Investigating
the boundaries between these categories is a difficult exercise, which lies beyond the
scope of this work.

With the advent of recording techniques, and especially with their widespread
diffusion, borrowing and processing music became also a performative, physical ac-
tivity. Movements such as the plunderphonic group made a manifesto out of this
idea, questioning the boundaries of esthetics as well as the ones of copyright. The
modern view of DJs as ‘creative’ seems to be, after all, mutatis mutandis, a rever-
beration of the historical elements mentioned above.

With the appearance of digital technology, music is not just recorded, but also
encoded. Compared to cassettes or vinyl recordings, longer recordings could fit in
smaller supports—even more so when compressed encodings, such as MP3, reached
their popularity in the nineties. Roughly at the same time, the interest of the com-
puter music community has shifted from notes (or MIDI) to audio (signal process-
ing), which finally was easier to handle in real-time scenarios. Nowadays, musicians
have at their disposal large amounts of music that they can access with virtually
no effort whatsoever, and that they can easily modify or process in real-time. The
transformation happened so quickly that copyright laws have not managed to keep
up, and we, as composers, have been trying to unveil its true potential only in the
last few years. In a very real sense, we are still searching for a digital lutherie that
would take advantage of the available collections of data for artistic purposes.

!The list is compiled with respect to Ives’s works, but I believe it also has a more general
validity.

2.1. Corpus-based composition 15

2.1.2 A new kind of authorship

Drawing a precise line between legit quotations and plagiarism is especially compli-
cated in music, since, to quote Oswald:

Musical language has an extensive repertoire of punctuation devices but
nothing equivalent to literature’s quotation marks. Jazz musicians
do not wiggle two fingers of each hand in the air, as lecturers often do,

[T

when cross referencing during their extemporizations, because on most
instruments this would present some technical difficulties—plummeting
trumpets and such.

Without a quotation system, well-intended correspondences cannot be
distinguished from plagiarism and fraud. [Oswald, 1985]

A legal discussion on the boundaries of copyright is both outside the scope of
this work and, most importantly, out of my competence—nonetheless, I believe that
the topic should somehow engage, to a certain extent, all contemporary artists.

Musical borrowing is inextricably connected to the matters of copyright, ques-
tioning the very nature of legal rights on music production and notation. It is
therefore not surprising that artists, groups and theorists who use or encourage re-
working of existing music, foster at the same time some degree of remodulation of
the legal boundaries of musical ownership. It is deeply problematic that “traditional
borrowing practices, long regarded as a composer’s liberty, increasingly have be-
come circumscribed by threatened litigation. In the age of digitally recorded music,
a composer’s use of even a short sequence from a prior recording is likely to draw
a lawsuit.” [Carroll, 2005, p. 957]. Christian Marclay has a personal theory on the
subject: “If you make something good and interesting and not ridiculing someone
or being offensive, the creators of the original material will like it” [Zalewski, 2012].
But one should not rely on beauty and interest as judgment criteria (artist still have
a right to fail...), nor on owners of the original material liking the new work, putting
creators in a continuous state of jeopardy.

As Arewa points out:

In contrast to areas such as musicology [...], copyright doctrine does not
adequately contemplate the entire range of ways in which cultural texts
may be interrelated. Consequently, copyright doctrine is typically based
on notions of creation that do not take full account of the ways in which
creation of cultural texts actually occurs. |...| Copyright discourse, thus,
often fails to consider sufficiently the ways in which cultural production
is in many cases collaborative, as well as the ways in which cultural texts
may interrelate. [Arewa, 2012, p. 33|

An author-based musical copyright focusing on originality and autonomy has
much to share with a romantic vision of composers:

The widespread presence and importance of borrowing in music is often
obscured in legal commentary by the pervasiveness of the contemporary

16 Chapter 2. Towards a Corpus-Based Composition

vision of authorship and originality. [...| Looking at actual classical
music practices underscores the fact that borrowing can be a source
of innovation, which raises serious questions about legal discussions of
copyright that assume a dichotomy between copying and originality and
that copying may be antithetical to innovation. |Arewa, 2012, pp. 36-37|

Some countries, such as the United States of America, have ‘fair use’ exceptions
to copyright infringement. Claiming and defending ‘fair use’ is however delicate and
problematic, and different US courts seem to disagree on the subject; in Bridgeport
Music v. Dimension Films (2005), the judge famously said: “Get a licence or do
not sample’—in other words: borrowing is always piracy, and the law bans piracy.
To make things worse, Europe has no ‘fair use’ doctrine, although unsuccessful
attempts have been made in this direction; in my own homeland, Italy, there is
no equivalent at all to fair use or fair dealing, and exceptions to authors’ rights are
generally interpreted restrictively by the courts [Sica and D’Antonio, 2010]. As Boyle
and Jenkins point out, at some point we have to say that some level of borrowing
is just too small to bother about: it is ironic that, while illegal downloading of
recorded music is rampant, “the artistic practice of making music has never been so
tangled in cumbersome permissions and fees, licenses and collecting societies. |...|
The law should serve creativity, not hinder it.” [Boyle and Jenkins, 2017, p. 252|.
This perspective is not uncommon among composers of my generation; for instance,
Johannes Kreidler’s 33-seconds piece product placement highlights the absurdity of
modern copyright doctrine by dumping 70200 forms (one for each sample he used
in the piece) in front of the Germany’s licensing agency GEMA.

The problem is that, in a very real sense, art is mostly ‘collectively owned’. In
Art and Agency, Gell argues that all cultural production constructs relations not
only between art objects, but between objects and persons:

The anthropological theory of art cannot afford to have as its primary
theoretical term a category or taxon of objects which are ‘exclusively’
art objects because the whole tendency of this theory, as I have been
suggesting, is to explore a domain in which ‘objects’ merge with ‘people’
by virtue of the existence of social relations between persons and things,
and persons and persons via things. [Gell, 1998, p. 12]

According to Gell, these relations extend both in space and in time, creating
a network of ‘retentions’ and ‘protentions’. Hence, to a large extent, artistic ideas
are spread in tree-like, or even graph-like ramified structures—for which the cur-
rent framework of copyright does not account at all. These considerations should
suggest moving, to some degree, towards a stronger form of ‘collective ownership’,
even though this brings up other socio-economic questions. I subscribe to Bruno
Ruviaro’s view on the subject:

I would like to suggest a possible expansion, or even distortion, of
the concept of borrowing; one based, in fact, in the elimination (or min-
imization) of the idea of individual ownership as it was discussed above.

2.1. Corpus-based composition 17

Instead, if a notion of collective ownership is put at work, the very mean-
ing of borrowing undergoes a significant transformation. [...| As a re-
sult, the potential centralization of power by individuals or small groups
would be minimized, if not eliminated. The borrower has as much right
to borrow than any other member of the collective. [Ruviaro, 2007|

This is even more true today:

It is important that the many new uses enabled by digital technology
and the radically changed economics of music production and distribu-
tion mark the current moment as unprecedented in many ways. Conse-
quently, we should give little weight to historically grounded arguments
claiming that continuous expansion of the subject matter, scope, and
duration of rights under copyright has always been, and will continue to
be, socially beneficial. [Carroll, 2005, p. 958]

Incidentally, I find it quite emblematic that an epigram as famous as “Good
artists borrow; great artists steal” is in itself borrowed by a large number of artists,
scientists, entrepreneurs (including David Cope, Douglas Hofstadter, Pierre Boulez
and Steve Jobs, only to name a few) and is credited not just to Pablo Picasso, but,
although in slightly different forms, also to T.S. Eliot (“Immature poets imitate;
mature poets steal” [Eliot, 1997]) and to Igor Stravinsky (“A good composer does
not imitate; he steals” [Boyle and Jenkins, 2017, p.52|).

2.1.3 Exploring the tabula plena

The act of composing surely takes as many forms as the number of composers.
However, for the sake of discussion, I will roughly outline two basic categories of
approaches to which I will often refer: an ‘inventive’ one, where the composer faces
a ‘white paper’ or any of its equivalents (a tabula rasa) and introduces musical
elements via introspection; and an ‘exploratory’ one, where the composer comes in
contact with sets of existing music (a tabula plena) and by selecting and modifying
their elements creates new works. One might say that the former is an ‘additive’
approach, while the latter depend on a ‘subtractive’ operation.

Traditional academic teaching as well as improvisation practices usually rely
on some sort of ‘inventive’ paradigm—although in very different forms. A certain
number of composers after World War II stressed the necessity of starting from a
clean slate. As Pierre Boulez put it:

The ‘tabula rasa’ was something of my generation. |...] It was not
‘tabula rasa’ for pleasure. It was necessity, because |previous generations]
had, for us, failed to find something important. We did not want to
prolong this kind of failure. We were radical in the sense that we tried
to establish a new way of thinking. We did not succeed all the time—but
it was important for us to begin from scratch. [Duchen, 2012]

18 Chapter 2. Towards a Corpus-Based Composition

When Boulez speaks of a tabula rasa, he intends it, first and foremost, as an
avant-garde gesture, a rupture with the burdens of the past. In contrast, montages,
citationism and musical borrowing mainly refer to postures stemming from the op-
posite necessity: writing with the past, exploring it. This is not only an avantgardist
idea, but also as an operational paradigm, a concrete recipe for daily work.

Differently from the ‘inventive’ approach, the ‘exploratory’ approach requires the
presence of external events (discoveries, surprises...) to trigger or foster creativity.
Of course, the line between the two is blurred: invention often requires selecting
within a range of possibilities (e.g., choosing notes from the ones playable on a piano
keyboard), and exploration still requires a critical amount of introspection to develop
personal choices and associations (and hence a view of the world). In addition, more
often than not, the two approaches are actually mingled: be-bop improvisations
constantly build upon quotations; French spectral composers often rely on sound
analysis to choose pitches; some compositional postures are based on a ‘translated’
recombination of extramusical experiences; and so on. One might also notice that
formalization often amounts to bridging the gap between invention and exploration,
or be tempted to suggest, as Spider Robinson did in his Melancholy Elephants, that
invention is exploration in disguise. The picture is hence complex and blurred,
and can hardly be compartmentalized. Notwithstanding these important caveats, I
believe we can still use the two categories of ‘invention’ and ‘exploration’ as rough
operational standpoints.

As far as the exploratory approach is concerned, there are multiple ways in
which a composer may experience the contact with existing music: the ‘external’
content can be experienced (e.g., while attending a concert), searched (e.g., while
browsing through a discography or a set of scores), or even programmatically con-
structed (e.g., while generating large amounts of random chords in order to browse
through them, later on). I will focus on the two latter cases, and especially on the
consequences of enlarging the ‘discography’ or the ‘set of scores’ so to include large
amounts of music literature. The important side effect in this enlargement is that
elements stop being ‘quotations’ or ‘samples’, and become more akin to colors on
a palette: one can browse them and search for the right one as one would do with
Pantone cards. The operation of searching through music dataset and modifying
or combining results goes under the generic name of ‘corpus-based composition’ (or
‘corpus-based synthesis’), which should probably constitute a separate category in
Burkholder’s and Ruviaro’s lists. In the context of this thesis, a ‘corpus’ is simply
a collection of scores or samples (possibly to be, in some way, analyzed).

Corpus-based composition is compelling, to me, for a number or reasons. First
of all, I find it poetic and meaningful: composing is, in a very concrete sense,
writing with the world, on the world, or even “in the flesh of the world”? [Mériaux,
2012]. In an exploratory approach, writing music is a declination of listening to
music; and composing is a declination of analysing, sorting, matching, searching,
exploring—there is a great amount of creativity in each of these tasks. Besides, an

2Translated from the original French: “Dans la chair du monde”.

2.1. Corpus-based composition 19

exploratory-driven paradigm is also a way to limit or at least to put into question
a certain egotism or centralism of the contemporary composer: it is an explicit and
honest way to acknowledge that, in a very real sense, we always write on others:
not unlike scientists, we too stand on the shoulders of giants.

From a technical point of view, using large musical corpora is challenging: be-
yond a certain amount of data, it is hard to uniquely rely on human activity to
collect, tag, analyze and assemble pieces of audio or scores. Computer systems may
be of help in handling musical corpora and proposing matches or combinations.
However, with few exceptions, computer music software is currently unfit to han-
dle ‘big data’ scenarios: developing dedicated tools and accepting compromises are
parts of a standard practice. As a simple example of compromise, due to the size of
audio databases, I was often obliged to work with lossy compressed audio formats—
which is something I have never regretted; on the contrary, I believe that breaking
an electronic music ‘taboo’ let me focus on the core of my work more purposely.

Some of my personal ‘postures’ towards corpus-based composition are described
below—these are, however, by no means exclusive, and most of my compositional
practices belong to more than one category.

Programmatic posture. Composers search datasets for very specific matches,
and programmatically handle them, for instance via mixing or concatenation.
Constraints are set on the overall form of the result.

Most of my work on the FElectronic Studies and An Urban Dictionary of Pop-
ular Music belongs to this category, as well as the discussion in sections 2.4
and 2.6; pieces taking advantage of automatic combination of samples, such
as Mon corps parle tout seul, also display features of this posture (see section
2.5.2).

Generative posture. Composers produce large amounts of sound files or scores,
from which they may later choose specific portions. Content is typically
computer-generated, according to patterns or parameter configurations. One
the crucial benefits of such approach is that it leaves room for elements of
surprise: while listening to the generated results, composer may find unex-
pected clues that enhance or enrich their poetics—an important feature of a
human-machine dialogue.

I have widely used the generative approach throughout most of my works (see
for instance An Ezxperiment with Time or La fabrique des monstres), and it
has largely influenced the discussion of sections 2.3 and 4.3.1, as well as the
development of the dada library (see section 3.3).

Filter-and-discover posture. Composers filter datasets and explore interactively
the results. The selection of samples or scores happens usually in a non-
programmatic way, so that the posture is not dissimilar to the aforementioned,
more traditional ‘inventive’ paradigm, except for the fact that the material is

20 Chapter 2. Towards a Corpus-Based Composition

browsed instead of conceived. The approach is akin to browsing a dictio-
nary for inspiration, while writing a poem. Intuitive computer interfaces are
essential to smooth the creative process.

Projects like I mille fuochi dell’universo or The Well Tempered Sampler share
this perspective, which has also informed the development of some of the dada
modules (see section 3.3.2).

Notational posture. Composers use scores or meta-scores in order to notate the
features results must have; automated, semi-automated or even manual pro-
cesses are set in place to accomplish the goal. In this case, a ‘note’ (or any
other elementary symbol) represents a general class of entries in a dataset,
such as the class of sounds sharing the same fundamental frequency (revert-
ing to the traditional sense of ‘note’), but also—more generally—the class of
sounds sharing some other significant property (e.g., a specific value of a cer-
tain descriptor). In addition, datasets can contain symbolic scores, which can
be analyzed and processed with techniques borrowed from the audio domain
(such as score granulation or concatenation).

Notation is an essential aspect of my musical practice, and I have taken ad-
vantage of it not only in my acoustic or mixed works, but also in most of my
electronics works. It might seem unusual to praise notation after having sub-
scribed to an exploratory, interactive view of corpus-based composition; yet I
do not think that interaction and notation are in contradiction (the contrary
being exactly the prerequisite on which the bach project has been carried on,
as discussed in chapter 3). Not only is notation an essential technology to
develop a ‘grammar of ideas’: notational models, and, more generally, rep-
resentations of music, also become true instruments for exploration, exactly
as a piano might have been an instrument of exploration for a 19th century
composer (see section 3.4).

A large part of my recent work variously relates to a twofold contribution of
notation: on one side, it enables control over sound-based exploratory mod-
els; on the other hand, it can constitute the object of analysis in itself: score
database can be created, searched, queried, filtered, opening the way to new
symbolic practices, such as score granulation or symbolic concatenative syn-
thesis (also see sections 2.2.2 and 2.8).

Morphological posture. Composers focus on how sounds are shaped through
time, and operate accordingly. For instance, retrieving similarities between
sound fragments (see section 4.3.3.4), or clustering datasets into families of
sounds ‘of the same kind’, both stem from a similar perspective—influenced,
to some extent, by Denis Smalley’s spectromorphology and by the study of
‘temporal semiotic units’ [Favory, 2007].

As Smalley points out:

In the confusing, wide-open sound-world, composers need criteria

2.1. Corpus-based composition 21

0

Vasec Yasec 1sec 2sec 5sec 1min

Figure 2.1: Screenshot of Music (or The Discotheque of Babel). The interface is minimalistic:
by pressing the space bar, ‘all’ music is played; by zooming and clicking on the line one can, in
principle, browse the ‘discotheque’. The current played buffer is shown at bottom.

for selecting sound materials and understanding structural relation-
ships. So descriptive and conceptual tools which classify and relate
sounds and structures can be valuable compositional aids. [Smalley,
1997, p. 107]

2.1.4 The Discography of Babel

In the previous section, I mentioned a fuzzy, operative opposition between ‘invention’
and ‘exploration’; yet both paradigms have access to the same ‘creative horizon’.
If one is actually prepared to wait ‘long enough’, all music can be discovered—a
concept that highly resonates with Spider Robinson’s Melancholy Elephants.

As an elementary proof of concept, I designed a simple device, named Music
(or The Discotheque of Babel), where the listener can theoretically play the entire
catalogue of possible digital mono music simply by pressing a spacebar, or can
browse such catalogue by clicking on a line (see fig. 2.1). The device, inspired by
Robinson’s quote as much as by Borges’s seminal novel The Library of Babel, is
nothing more than an elementary combinatorial game, where all audio buffers up
to a certain level of quantization in time (sample rate) and amplitude (bit depth)
are organized on the line. If b is the bit depth, the line will display, as series of
dots, the 2% buffers composed by a single sample, then the 22° buffers composed
by two samples, then the 230 buffers composed by three samples, and so on, in
lexicographical order. Unfortunately, the interface is hardly usable to actually detect
any interesting pattern, given that, even while zooming, one has virtually zero chance
of clicking on something different than a white noise buffer (except for some quasi-
cyclic buffers that show up as Moiré-like patterns when the zoom factor is a power
of two).

The system is embedded in the dada.music~ module, as part of the dada library
(see section 3.3). The object supports multiple sample rates and bit depths.

Listening to all buffers up to 1 second, at 44100Hz, 16bit, would require approx-

22 Chapter 2. Towards a Corpus-Based Composition

Figure 2.2: Zoom in at the beginning of the dada.music line, in a 4-bit scenario. The continuous
grey line is actually subdivided into regions with different lengths (in samples), which in turns are
subdivided in points, each representing a unique buffer configuration.

0212399 years, a number that is not even comparable to the age of

imatively 1.84 - 1
the universe. Lowering sample rate and bit depth changes the order of magnitude
dramatically, but, of course, not the nature of the combinatorial problem. A 4-bit,
1kHz run through all short impulses (up to a tenth of a second) would still require
slightly less than 102 years. Nonetheless, Music (or The Discotheque of Babel) is a
mental experiment, and it is fascinating to grasp the possibility in a click to discover
some exact recording of a given Beethoven symphony.

Of course one could manually write each sample of the buffer, as one writes
notes on paper, and such operation is actually not more complex than zooming in

properly and selecting some specific sample on the line.

2.1.5 Personal references

Working with composite datasets requires acknowledgment of a tension between
unity and heterogeneity. I recall how my first encounter with Berio’s Sinfonia and
its ‘unity out of heterogeneity’ had a profound impact on my adolescence. I was
struck by the very idea that invention could find his path through the usage of
existing material; I was fascinated by the idea that composition was imposing a
form on objects that already had one. I started working with collages, especially
in electronics music, where the technique was easier to handle. I felt that, in a
way, citationism was a manner to assign some kind of shared ‘meaning’ to music
content: after all, we probably all share similar references when we hear the first
notes of Beethoven’s fifth Symphony, or the incipit of Schoenberg’s Pierrot Lunaire,
or Wagner’s Tristan chord. A quotation was something as close to a word as I could
find in music: it was a way to provoke connections, to create levels of interpretation.

My interests have partially shifted since then, but my admiration for Sinfonia
remains intact, along with the enthusiasm for using existing music to create new
music. A certain number of other works have opened the way to profound reflections.

The sequence of automatic orchestrations of a mantra in Jonathan Harvey’s
Speakings had me thinking on how a prototypal way of composing is simply ordering
elements in a certain collection. Composing, in this sense, means finding interesting
path across patterns—with some assonances to what beautiful scientific theories
often are. Lists are often themselves ‘poetic’, a concept which resonated with my
love for many other important ‘catalogues’—an incomplete list of which includes:

2.1. Corpus-based composition 23

Aby Warburg’s Bilderatlas Mnemosyne, Buckminster Fuller’s Dymaxion Chronofile,
Luis Borges’s Book of Imaginary Beings, Luigi Serafini’s Codex Seraphinianus, and
John Koenig’s Dictionary of Obscure Sorrows?.

Christian Marclay also had a profound influence on my thoughts; partly for his
turntablist and plunderphonic experiments (such as his Record without a cover),
but mostly for the simplicity of some of his latest digital works, such as the 24-
hours video collage The Clock, combining the interest for pure editing of Bruce
Conner’s A movie with the monumentality of Machaut’s Messe de Nostre Dame. 1
realized, through Marclay’s works, that masterpieces can be based on concepts “as
straightfoward as a recipe.” [Zalewski, 2012]

Marclay also embodies the fact that a corpus-based approach is not a prerogative
of a single art; on the contrary, digital techniques ease the communication between
different languages. Image mosaics are almost ubiquitous nowadays, and have lost
some of their initial fascination; I am however deeply intrigued, for instance, by
textual experiments stemming from the GTR Language Workbench?, by the essential
poetry of Ken Murphy’s A History of the Sky, by the refined arrangements in Lev
Manovich’s multimedia works (such as Phototrails or The exceptional and everyday).

2.1.6 Comparison with other compositional researches

Virtually all contemporary composers use quotations in their works, prominent fig-
ures in this respect being the aforementioned Charles Ives, Luciano Berio, Bernd
Alois Zimmermann and Clarence Barlow. A few composers also have some degree
of interest in using organized datasets for specific purposes (such as Mauro Lanza’s
combinatorial dataset of multiphonics, or Yan Maresz’s orchestration tools). Among
the latter, some composers, mostly of my own generation, share the more specific
interest of tackling composition, and especially computer-aided composition, from
a corpus-based point of view. This is a relatively new phenomenon, recently inves-
tigated by Malt [2017].

As I have already mentioned, there is a certain overlap of the ideas I have exposed
with Johannes Kreidler’s work; moreover, some of the compositional ideas I have
outlined might be called ‘conceptual’ from Kreidler’s perspective.

Aaron Einbond is interested in combining the paradigm of corpus-based concate-
native synthesis with symbolic control [Einbond et al., 2014] and with computer-
assisted improvisation techniques [Einbond et al., 2016|, with a specific focus on
using timbral descriptors to transcribe audio recordings for live instrumental en-
semble and electronics |Einbond, 2016]. Christopher Trapani, who has often collab-
orated with Einbond, also shares similar interests in concatenative synthesis con-
trol; his artistic work is however more focused on sonorities and stylistic gestures
that carry some specific connotation, working on associations with periods or gen-
res, without borrowing literally from the sources |Trapani, 2017]. Marco Antonio
Suérez-Cifuentes was probably one of the first composers to take advantage of real-

Shttp://www.dictionaryofobscuresorrows.com/
‘https://web.njit.edu/ newrev/3.0/workbench/Workbench.html

http://www.dictionaryofobscuresorrows.com/
https://web.njit.edu/~newrev/3.0/workbench/Workbench.html

24 Chapter 2. Towards a Corpus-Based Composition

time musaicing techniques in order to reconstruct vocal and instrumental sounds via
MFCC nearest neighbours. Ben Hackbart, also working on concatenative synthesis
and musaicing, has incorporated in his software AudioGuide the ability to account
for sounds’ morphology (time-varying descriptors) and the definition of ‘similarity
contexts’; most importantly, in AudioGuide the samples can be selected simultane-
ously, so that the nearest neighbour approach is replaced by a search for the ‘best’
combination of samples matching a given target [Hackbarth et al., 2011]. Hack-
bart’s approach has much in common with the developments of the Orchids project
[Antoine and Miranda, 2015|, where target samples can be orchestrated with combi-
nations of elementary instrumental or user-defined samples. Frederic Le Bel applies
classification techniques to large collections of audio files and computes pairwise
distances with respect to a set of reference descriptors, in order to draw and explore
a ‘map’ of the sound collection.

As far as symbolic corpus-based composition is concerned, to the best of my
knowledge, I believe that very few composer consistently use the technique in their
scores, a prominent example being Bruno Ruviaro’s research. Ruviaro’s engagement
in the practice is inspiring, and portrays him as a sort of ‘plungerphonic notationist’:
he takes care of citing source material in his scores, and mostly releases his works
under Creative Commons licences.

2.2. Describing and organizing content 25

2.2 Describing and organizing content

2.2.1 Music descriptors

The characterization of musical data by extracting meaningful information and or-
ganizing it according to the resulting description is far from being a recent subject.
Traditional labeling of musical pieces as ‘studies’, ‘sonatas’ and ‘symphonies’ was
(and is), of course, a first crude way to assign (high-level) tags in order to provide a
better way to organize—and hence, to a certain extent, understand—scores. Indu-
bitably, especially in the signal domain, the problem has become more compelling in
the last few decades, when the advent of digital media has presented the possibility
to convert archives and labels into digital form, allowing a finer and more thorough
description. Since then, description and retrieval tasks have become crucial in a
wide range of application such as audio editing, music composition, sound effects
selection, live mixing, music classification, automatic playlist generation, or sound
signaturing for copyright protection [Herrera et al., 1999]. Therefore, unsurprisingly,
they have strongly influenced the birth of a relatively new field of research: music
information retrieval (MIR) [Downie, 2003].

The problem is two-fold: (a) finding a way to automatically or semi-
automatically extract perceptually relevant features from music; (b) organizing the
extracted features in a structure which should be, in principle, as versatile and
convenient as possible.

As far as the first point is concerned, describing music content by means of
features involves procedures and techniques that have been developed in different
research areas. Feature extraction can be managed by different non-exclusive means
that can range from manual labelling to standard digital signal processing techniques
[Wold et al., 1996], computational auditory scene analysis techniques [Wyse and
Smoliar, 1995] and statistical techniques [Foote, 1997].

A wide variety of tools have been developed during the last few decades. Many
of them are currently available as open-source or freeware projects, including C++
libraries such as Essentia |[Bogdanov et al., 2013]; Python modules such as Li-
bROSA |McFee et al., 2015, Yaafe [Mathieu et al., 2010], aubio |Brossier, 2006],
and Madmom [Bock et al., 2016]; Max libraries such as the Zsa.descriptors [Malt
and Jourdan, 2008]|, the AHarker Externals [Harker, 2014] and MuBu/PiPo [Schnell
et al., 2009]; Java applications such as jMIR [McKay, 2010]; command-line tools
such as ircamdescriptors |Peeters, 2004]; standalone frameworks such as Marsyas
[Tzanetakis and Cook, 2000]; Vamp plugins for SonicVisualizer |[Cannam et al.,
2010]. Many of these projects have multiple bindings; for instance there is a Max
ircamdescriptors~ external, the Fssentia and Madmom modules ship with default
command-line applications, and Marsyas and Essentia are also available as Vamp
Plugins. A comparative overview of the majority of the available tools is presented
in Page et al. [2012]. A survey on MIR systems can be found in Typke et al. [2005]
and Lew et al. [2006].

26 Chapter 2. Towards a Corpus-Based Composition

One can roughly organize sound-based descriptors® into three categories:

e low-level features, describing basic yet powerful computational properties of
the sound (e.g., centroid, flux, zero-crossing rate). Low-level features do not
carry musical information sensu stricto, but they still bear relevant primary
information on the sound characteristics. Low level features can be as simple
as statistical properties (such as the skewness) or can require a larger amount
of computations (such as the Mel-frequency cepstral coefficients or MFCCs).
In any case, there is large consensus on their definition and implementation,
which makes low-level features the most reliable descriptors, as well as the less
implementation-dependent;

e mid-level features, containing information ‘cooked’ into a musically relevant
form (e.g., fundamental frequency estimation, partial tracking, chroma vector
extraction, rhythmic density). Mid-level features carry meaningful informa-
tion for musically trained individuals. Several algorithms have been proposed
to estimate them. In most cases there is some consensus on what these fea-
tures should represent, however there is usually no agreed ‘best’ way to im-
plement them; as a consequence, mid-level features are often considered to be
implementation-dependent. For some of these features, there is little consensus
on what they should describe or represent, which makes their very definition
somehow problematic (e.g., the ‘danceability’ estimator [Streich and Herrera,
2005] implemented in Essentia);

e high-level features, describing the audio in a chiefly symbolical way (e.g.,
chord recognition, score transcription, melody extraction, rhythm transcrip-
tion). High-level features are essentially score-based representations of sound,
although one may also consider textual representations (e.g., lyrics) as high-
level descriptors. Moreover, to a large extent, processes such as mood or
emotion detection provide high-level descriptors of sound.

This categorization is partly based on [McKay and Fujinaga, 2006] and [Kitahara,
2010], but it must be noted that there is no general agreement on the subdivision,
especially between mid- and high-level features. For instance, information such as
genre or musical form, is often considered as high-level information, although not
symbolical. The same is true for other type of metadata, such as rehearsal marks,
comments or formal indicators.

Descriptors can also be divided, in an orthogonal way, into a set of global descrip-
tors, whose meaning concerns the signal as a whole (e.g., attack duration, tonality
recognition), and instantaneous descriptors, computed for each time frame (e.g.,
centroid, or chord detection) [Peeters, 2004].

As for the organization of extracted features, some very popular file formats
provide users with the possibility to include metadata and descriptions as part of

®Information that is not related to the audio signal (such as author, year or other similar
metadata) is not included in the categorization.

2.2. Describing and organizing content 27

the file itself, such as MP3 ID3 and ID3v2 tags containing metadata and lyrics; other
important frameworks have been proposed, with the intent to provide tools for a
better description, editing, tagging and searching of audio content [Herrera et al.,
1999]. Visual programming languages, such as Max [Puckette, 2002] or PureData
[Puckette et al., 1996], also provide some form of organization, paired with user
interface capabilities; as an example, the aforementioned MuBu library features
containers tailored to represent and query both specific and generic analysis data,
in matrix form.

Compared to the relative richness of MIR implementations in the audio domain,
the panorama of user-friendly tools for symbolic score analysis is rather scarce.
In addition, the wide majority of the symbolic-based tools rely entirely on MIDI
files, which are not hierarchical representations of scores and hence might entail
quantization issues. In the class of symbolic tools, jSymbolic is probably one of
the most complete ones [McKay and Fujinaga, 2006], computing a wide set of low-
and mid-level features ranging from statistical analysis of pitches to harmonic and
rhythmic analysis.

One part of my current research is focused in transferring descriptor-related
concepts and techniques to the symbolic domain. Section 2.8 describes some of the
results.

2.2.2 Micromontage, granular synthesis, concatenation, musaicing

During the last forty years, and especially with the advent of the digital era, a
number of different but related techniques to work on sequences of varyingly small
samples have been developed.

Micromontage is probably the earliest. As its name suggests, it is a convenient
category for sound collages whose constituents only last for up to a tenths of a second
(‘microsounds’) [Roads, 2004; Vaggione, 1996]. The idea is that when microsounds
line up in rapid succession, they induce the illusion of tone continuity that we
call ‘pitch’. Sometimes, by extension, the term ‘micromontage’ is used even if the
constituents are slighly longer than actual microsounds (e.g., up a few tenths of a
second), and hence they retain their own pitch quality.

Among the techniques that have been devised to automate some parts of this
montage, granular synthesis is probably the most influential [Roads, 1978|. The
microsounds, now called ‘grains’, are programmatically extracted from the original
sound files, layered on top of each other, and played at different speeds and volumes.
The parameters for the extraction of grains (region, jitter...) as well as for their
concatenation (grain size, density...) can be usually controlled by the user. No size
limit is imposed to each grain, nor on the distance between grains: when grains are
longer and when their temporal interval is in the order of the tenths of a second
or above, the pitch of the original sound is preserved, and the boundaries between
‘synthesis’ and ‘sampling’ become blurred. As a personal note, I prefer to speak
of ‘granular sampling’ whenever the morphology of the sampled sounds is still well
hearable in the final result.

28 Chapter 2. Towards a Corpus-Based Composition

Corpus-based concatenative synthesis [Schwarz, 2007| directly derives from gran-
ular synthesis, and provides mechanisms for sequencing of ‘grains’ according to their
proximity in some descriptor space. It is based on sound analysis, and differs from
micromontage in that the descriptor space is formalized and programmatically ex-
plorable. Grains are usually extracted from a corpus of segmented and descriptor-
analyzed sounds. Exactly as in the case of granular synthesis, one might argue that
whenever the morphology of the sampled sounds is still present in the result this
technique should be more aptly named ‘concatenative sampling’.

Among the existing tools dealing with corpus-based concatenative synthesis or
sampling, CataRT [Schwarz et al., 2006] is probably the most widely used. Taking
advantage of the features in the FTM [Schnell et al., 2005] and (more recently)
MuBu [Schnell et al., 2009] libraries, it provides tools for sound segmentation and
analysis, as well as for the exploration of the generated corpus via an interactive
two-dimensional display, both inside the Max environment and as a standalone
application.

When the choice of grains to be concatenated depends on constraint solving tech-
niques, one might also speak of ‘musaicing’ |Zils and Pachet, 2001] (or ‘music mo-
saicing’): similarly to what happen with mosaics, a large sequence of microsounds is
created, such that the sequence as a whole satisfies various high-level properties. De
facto, the term ‘musaicing’ is also used to identify concatenative synthesis techniques
based on similarity measures with respect to a target sound, which is reconstructed
replacing each original ‘grain’ of sound with a similar one [Malt, 2017].

Since the boundaries between different terminologies are blurred, I will often use
the generic term ‘concatenation’ to refer to any sequence of musical grains selected
according to their features.

2.3. Chord-based concatenations 29

2.3 Chord-based concatenations

Sections 2.3.1, 2.3.2 and 2.3.3 have been previously published, in a slightly different
form, in the article Ghisi, D. and Bergomi, M. (2016). Concatenative synthesis
via chord-based segmentation for An Experiment with Time. In Proceedings of the
International Computer Music Conference, Utrecht, Nederlands.

2.3.1 An FEzxzperiment with Time

An Ezxperiment with Time is a 46-minutes looping audio and visual installation,
inspired by John W. Dunne’s essay [Dunne, 1927|. As a second step of the project,
part of the electroacoustic tape has been orchestrated in order to obtain a (non-
looping) live version of the work, for amplified ensemble, live electronics and video
(An Ezperiment with Time (reloaded), 48 min, 2016). The installation version of
the project was premiered in Paris, festival Manifeste 2015; the live version was
premiered in Milan, festival Rondo 2016, by Divertimento Ensemble.

John William Dunne, aeronautics engineer, soldier, philosopher, and fly-fishing
lover, wrote An Experiment with Time in 1927, discussing an experiment he per-
formed on his own dreams. While comparing the dream images he duly annotated
with the occurrences in his daily life, Dunne discovered that oneiric images were
connected with events happening both in the past and in the future: premonitions
and memories, in roughly the same proportion. This lead him to a develop a theory
of time he later called ‘serialism’. The direct consequence of his experiment was that
linearity of time is a collateral event of consciousness: while dreaming, all moments
happen at once.

Taking inspiration from these ideas, and bringing them even further, the video in
An Ezxperiment with Time shows the writing of an animated diary, during a full year
(from January to December). The writer performs Dunne’s experiment during the
first months (winter); evaluates the results and looks for confirmations from others
(spring); realizes that most of his oneiric images are to be found neither is his past
nor in his future (summer); which brings him to imagine the existence of thinner
imperceptible times and frame rates, and to build a ‘supersampling-antialiasing’
machine to dilate time (autumn). As a counterpoint, two alter-egos write similar
diaries on the side screens, living in temporal cycles with different granularities: a
day (left screen) and a life (right screen).

The starting point for the musical writing is a straightforward association be-
tween months and major chords, so that the whole year loop is handled like a se-
quence of perfect cadences in the tempered cycle of fifths (January being B major,
February being E major, and so on, till December being F# major, and hence loop-
ing). Although the internal handling of the musical material becomes more complex
(different chord types are explored and a few secondary dominants are used occa-
sionally to underline specific passages), everything in the piece is conceived with
respect to this simple sequence, which thus represents the skeleton of the whole
musical loop.

30 Chapter 2. Towards a Corpus-Based Composition

I have put a certain effort in developing a system relying on a musically notated
score driving a large set of audio files (picked from a wide database spanning the
history of Western music), segmented and tagged by chord. The notated score is
actually a meta-score where each note stands for an abstract chord; the score can
be then rendered via concatenative synthesis of chord-labeled samples, as described
in the following sections.

H_LOOKS FLAT TO

Figure 2.3: A frame from An Experiment with Time (three screens, displayed horizontally).

Incidentally, the technical and artistic stakes in An Ezxperiment with Time ex-
tend well beyond the fundamental corpus-based framework, including: the quest for
a grey area between writing and reading; synchronized sonification of events as defin-
ing feature of the passage of time (as if an ‘instant’ were the byproduct of a visual
and audio synchronicity), inspired both by ‘Mickey Mousing’ techniques and by some
of Yannis Kyriakides’s works (such as Mnemonist S); the usage of cellular automata
to reinforce the impression of a discrete time; stop-motion animation and aliasing
effects; polyrhythmic structures; Eadweard Muybridge’s chronophotography and its
relationship to stop motion techniques; generative, animated dictionaries (Fig. 2.4);
Risset-like ‘eternal’ accelerando or rallentando rhythms, following Stowell [2011],
both for audio and for scores (Fig. 2.5); morphing of time into space (Fig. 2.6) and
viceversa; study of the action of algebraic groups yielding quasi-canonic behaviors;
and more. These topics are not necessarily connected with corpus-based compo-
sition, and will not be discussed here (although figures are provided to exemplify
some of them).

Related works
e An Experiment with Time, audio-visual installation, 46 min (loop), 2015.
— Project website and full credits: http://www.anexperimentwithtime.com

— Trailer: https://www.youtube.com/watch?v=a81idHK8-CA

e An Experiment with Time (reloaded), for amplified ensemble, video and electronics, 48 min,
2016 (Ricordi).

http://www.anexperimentwithtime.com
https://www.youtube.com/watch?v=a81idHK8-CA

2.3. Chord-based concatenations

31

Figure 2.4:

Click

FLB.

CLB.

Pf.

Vn.

Vla.

EL

Figure 2.5: A portion

TTTD
e, T Tee ettt Tttt — Teeett et
Trptr Tut T+ Tott it TH4 a tuutt
et § Tat u By, ¢ uttotfutuut it
FTHMHm tttm) e o gawd Ted
Tt Tae At 7 e
e T et Tae e o
 un burg $Trorf Tt F Tut wuwet
Tt Ttk Tui it e T £ Tt
et Tt Tee it T

TTTD (totd . Ettti $OT. e ut,
AS. tatiet taugt; t wkiou wiguf Tt
Tuttote'] Ttet. Aty ott 1 tutetttt spicit tt
ttthttts tetttite t e gettt Teft ind wlut

Fi

ttra it wose ot tht it Buftnive. | |

Ttits tte gettttltt tHttetrttt it teeir et

celt (At (e bretting i, tt (i tiek |

tie wittt Mott t tht sptttes btrrow bittith
the tatth tt tt ttttt tnd ttme tttt to titd
tt ottt at teeed Ttee tieds tite a ttuttf
UL e 1 whilt tee ttts thit trt 1t atte
et Totd Tt tttot ttet (Tttt vettarit}
ant tie utttact et Tetpten weee

1072

A

Tittim ttttm) (A gatte Ty
Tt Tttt T ¢ bttt it o
att T it T e
it it brttttgd $Ttotd Tuft + Tut wttt]
Tty Tuek Treee vt e Toeweed Tue
et 7ot Tee et Teeed§

TOTD (totdf n Fttef FOT. et e,
AS. tattet tattgt; 1t mktott triget Tti
Tuttofet] Ttot. Aty oft tt tuteftt spicitt tt
tuttthies tetttttt t t gettt Ttft tnd e

+Tun

Tdt totnt Tutittt wit $TF ettt s
ot 1t Tuttet tad ut ts te ity ot
S T CEREET Cectng Tt o Jeeeeet Tt
e, TeA# Tue et Trtdt — Tead wiet
Tpt# Tt Tt Tott ittt e a tutt
ted F Tut e By, ¢ ttotfuut ute

Fate,

T d=is0 =D (J‘:75)

e P S S R S P S B

tittra it ttose of tht fiilt Biftnitae.
Ttats tte getttlit uttutrit it teeir tut
tecett titttt tte bretting tttttn, tet et ttek
e Wttt Mott tt tht spites birrow bittith
the tatth tt ttt ittt tnd ttme ittt to titd
U tntete at e Tut wds tte a tutt

,ado; me, her; mine ; nole ; tine ; moon.

TOTD

e e 1 whitt tte s thit trt 1 aut
fiteetTos T wttot e (Tut vivtarit
ant tt wttttact tte teetltee Tteepttn eetteeef
Tt tottet Teetittt e FTF teeeeeeeetees ts
e ue Tttt wad ut ts ety ut
S it gttt tittng ittt te leeeeeet Treeeeeeeee

e, T Tee it Teeesteelt — Teeeet teeet
Tpt# Tuk Tt Tott it TrALF a
wied F Tut e B, ¢ ttotfiuut uut
FTeetetttm teetetm) teeeete o ttee etateet Tef
Tuetd T W Ze L uetwa

073 TOTD

T
e T e Tat e 2
e it brutttgt ot Teer+ + Tt tutties
Trftt Tut T s wie Tt Tat
g Tt T e T

TOTD (totdf n Euti FOT. tuef tatt,
AS. tatie? tatigt; mkiott trightt Tt
Tuttote] Tt Aty ottt tutetttt spicitt tt
ttthtts tetuitt t ut geut Teft tnd wlut
tittrat it ttose ot tht fitilt Btfmite.
Thats tte gettiltt ettt it teir e
tteett ittt tte bretting tittn, it it tek
tte wittt Mott t tht spittes btrrow bittith
the tatth tt Ut ettt ind wme (it 1o tid
ft tottttt at et Tet tds tite a wuttd
ettt 1 whitt tie ttts thit ittt t ateie
fittt+Totts Tt tittot titt (THE vittarit
ant t ittact te (e Tapun Qe
T totttt Tutit e T ettt ts
et 1wt Tttt tadf e s ety o
S UL A g Lt o Lttt Tuute
e et Tt e Teeted — T e
Te#ty Tt Tue. + Tott et 74+ a ittt
turd F Tt e By, ¢ ottt it
FTULHtm (etm) W 1 datt T
Tute § Tut e 707+ Cuefiwie e
e T e § Tud e 7

Fale, far, ado ; me, her ; mine ; note ; tine ; moon.

(reloaded) (b. 784)

of a Risset-like ‘eternal’ accelerando

x x x x x
gL [S S o N r [_r
x x x x x x e x x x %
P, SR o o o o o o o o o o o o o 5 O
== = = —
) '.,’::';“}.;”,,Z"‘P(-[-m. quattro gesti / always loop 8
W5 = == B SR EEEa—— =
o = = =
o
pan b in w mdpliimiei meey
g\.‘ —_— = =
- op
0 V—-—' V’_—‘ ® ? ? ? 9
Giom 1 & mor 2 kmoy 3 =y dm g fm g B4 ®
o = = = = = =
Y —
0 P P
— — —
& & EE==—== -t

Two pages of one of the generative dictionaries used for An Experiment with Time

used in An Experiment with Time

32 Chapter 2. Towards a Corpus-Based Composition

2.3.2 Database and segmentation

The database I selected for An Experiment with Time was composed by about 3000
tracks of classic, contemporary, rock, pop and jazz music, sampled from the whole
history of Western music. This corpus has been chosen so that time is a parameter
of the corpus itself. The relationship between the historical time and the musical
time creates interesting diffraction patterns. As an example, during June, a radio
broadcasts a sort of ‘history of C major’®, composed by C major samples ordered
with respect to their composition year. Similar processes, relating to time as well
as to other descriptors, are used diffusely throughout the work.

Excerpts
From An Experiment with Time:

e G major and G minor concatenations while supersampling the ‘blue’ letter (19'38"):
data.danieleghisi.com/phd/vid/AEWT_supersampling.mp4

e A brief ‘history of C major’ (26'58"):
data.danieleghisi.com/phd/snd/AEWT_history_of_C.aif |mp3

e Leaves and samples (35'38"):
data.danieleghisi.com/phd/vid/AEWT _unperceived.mp4

With the help of Mattia Bergomi and NaMi Lab, the harmonic transcription of
each song has been computed using the algorithm presented by Mauch [2010]. This
effective algorithm allows to set a specific dictionary, in order to select a certain
number of chord classes. Fach element of the dictionary is indicated by specifying
both the bass and chord relative pitch classes; as a consequence, it is possible, for
instance, to associate to a major chord only its root form or to identify it with its
inversions. In the case of An Experiment with Time the chord dictionary was defined
in order to detect the classes listed in table 2.1.

This particular choice of chord classes has been motivated by the desire to include
the four standard tonal trichords (major, minor, augmented and diminished) and a
few of their basic variants.

chord class pitch class structure

N.C. no chord
maj (0,4, 7)
maj/3 (0, 3, 8)
maj/5 0, 5,9)
aug (0, 4, 8)
min 0,3, 7)
dim 0, 3, 6)

6 0, 4,7, 9)
7 0, 4, 7, 10)

Table 2.1: Chord classes in An Experiment with Time.

5An officer named Major C. is also a supporting character in the video, hence the word play.

http://data.danieleghisi.com/phd/vid/AEWT_supersampling.mp4
http://data.danieleghisi.com/phd/snd/AEWT_history_of_C.aif
http://data.danieleghisi.com/phd/snd/AEWT_history_of_C.mp3
http://data.danieleghisi.com/phd/vid/AEWT_unperceived.mp4

2.3. Chord-based concatenations 33

Figure 2.6: All the 69000 frames of the An Experiment with Time loop (middle screen), resized to
tiny proportions and disposed in space (left to right, top to bottom), as they appear on the screen
near the end of the loop.

Thereafter, each audio track has been associated to a file specifying both the
onset of the chord in seconds and its class as follows

{"chords": [

{"position":0,
"chordname":"N.C.",
"avbpm":139},
{"position":230574.149659,
"chordname" : "B\ /F#",
"avbpm":139}, ...

1}

Finally, each audio file has been segmented into harmonic grains according to
these features. This procedure allowed us to create a new database organized in
folders named with a specific pair (root, class) and containing harmonic grains la-
belled as chordname n_path_title. The file path has been preserved in order to
facilitate queries involving the names of the folders containing specific files. The
natural number n represents the position of the chord with respect to the entire
harmonic sequence of the audio track.

34 Chapter 2. Towards a Corpus-Based Composition

2.3.3 Compositional framework
2.3.3.1 Chord-wise module

The choice of the segmentation was motivated by the desire to compose with chords
instead of notes.

I have set up a proportionally notated meta-score (see fig. 2.7) where each
note stands for the fundamental of a chord, whose type is specified in the first slot
(the bach library organizes note metadata inside generic containers named ‘slots’).
This representation is handier than having to specify all the voices of the chord,
as it allows to separately control the two orthogonal and pertinent parameters:
fundamental and chord type.

For each note, additional slots carry the information needed for the concatenative
rendering: the duration of each unit (or grain), the inter-unit distance (the tempo-
ral distance between the onsets of two consecutive grains), the descriptor (if any)
according to which the units should be sorted, and the sorting direction. Another
slot narrows the choice of units so that a certain descriptor lies within a given range;
furthermore, additional slots provide amplitude envelopes (both for each unit and
for the whole sequence of units). Finally, a slot is dedicated to filtering the database
according to words or parts of words appearing in the file name or path; this is
an extremely quick and effective way (via the Unix ‘find’ command) to narrow the
search to a tag or a combination of tags (e.g., ‘Mozart’, or ‘Symphony’, ...). All
slots and their usages are shown in Table 2.2.

The score is by default rendered in off-line mode: notes are processed one by
one. For each note, three rendering stages are necessary: the random retrieval
of the sound files satisfying the input criteria (chord, descriptor range, tags); the
sorting of such sound files depending on the value of the specific descriptor (if any);
the montage of random portions (units) of the sound files into a single sequence,
associated with the note. The process can be aborted at any time. Once the score is
rendered, the corresponding waveform appears below the score, and stays graphically
synchronized with it. The score can be then played, saved, or rendered anew.

This concatenative process can also be accomplished in a real-time fashion, al-

Score: Saved presets:

LA A A A J
‘ LA A A A J
L J ®e ¢
il o @ o @

0 1
f Spread R L A
—-—— B 806-8606 "%ﬂmm @ @ o @

Z
150.000ms 75.000ms log_centroid Ascending Normalize On ve

I
000" 001"

i e

----v-«um,«wl,.-wmm-wumuﬂmuu-urfh'm--ﬂullw‘l“mnu1]w\uﬂlhlulllmpl'

[1]] 52dB

[Render J[Play)(Save file J [m

Handling note 2/2 — Collecting samples: 84%

Figure 2.7: Interface of the off-line composition module.

2.3. Chord-based concatenations 35

slot number slot content

chord class

grain duration

grain distance

grain amplitude envelope
global note amplitude envelope
filter by descriptor ranges

sort by descriptor

sorting direction

grain normalization

© 00 1 O U = W N =

Table 2.2: Slots setup for the offline composition module.

though the retrieval of sound files can take a non-negligible time when switching
chords, depending on the number of segmented files per chord. During the writing
of An Experiment with Time, I mostly used real-time capabilities as an exploratory
tool, before turning to the off-line module for actual symbolic writing.

2.3.3.2 Chord 2-grams

The module described above randomly concatenates units of sound files for each
note. The inner coherence for the sequence somehow relies on the fact that all units
share the same harmonic content, and on the fact that units are sorted according
to a specific descriptor. However, no particular continuity is guaranteed when notes

Chord sequence: Presets: (0 0000000000000 0000 0)
sel odd
sel even

Va
L 4 V- L g @ V@ a4
o

Filename must contain: []

Accidental preferences [Auto [v]

Single chord duration (ms): 300

Neighbor samples crossfade time (ms):

Sequential samples crossfade exponent:
Maximum number of random picks per chord couple |+ 2000

Figure 2.8: A tremolo-like alternation between major and minor chords. During rendering, only
transitions between E flat major and minor chords (and vice versa) are retained from the database;
for each couple of notes, a transition is chosen and then the sequence of transitions is created via
crossfades.

36 Chapter 2. Towards a Corpus-Based Composition

change.

Chord sequence: Presets: (0 0000000000000 0OOOO)
sel odd
sel even

H
@ ™ 7 — P— i T
J e - fe fe L4 L4

/o

Filename must contain: [CIassicaEContemporanea]

Accidental preferences [Auto] v]

Single chord duration (ms): 400

Neighbor samples crossfade time (ms): 50

Sequential samples crossfade exponent:
Maximum number of random picks per chord couple |/ 2000

(Render]
(_ Auto-harmonize)

[Play] [Save file J edun

Figure 2.9: Interface of the chord-sequence module.

A specific module has been developed to allow chord sequences to be rendered
more smoothly (see fig. 2.9): the user defines a chord sequence in a similar manner as
of section 2.3.3.1 (notes represent chord fundamentals and carry meta-information).
In this case, however, couples of contiguous chords (2-grams) are rendered at once.
For each couple of chords, the algorithm searches for a sound file where such chords
show up exactly in the correct order, without discontinuity; this is made possible by
the fact that the segmentation process retains in the output name a chord index. All
the overlapping couples of chords are then crossfaded in order to create the complete
sequence. In this case, a note does not represent a sequence of units, rather a single
unit, which on the other hand is guaranteed to join seamlessly with the previous
and following one.

A set of basic synthesis parameters can be customized; an auto-harmonize but-
ton is set in place to automatically detect chord types depending on the notes of
the sequence (this is especially useful when harmonizing scales). Moreover, I have
often used this chord-sequence module to programmatically generate and render
chord sequences undergoing extremely simple rules, such as a tremolo-like alterna-
tions between major and minor chords (fig. 2.8), or sequences of fast, continuous
deceptive cadences (fig. 2.9). The latter, towards the end of the work, flows into a

2.3. Chord-based concatenations 37

continuous Risset-like glissando composed by a micromontage of small fragments of
vocal glissandi (see section 2.4.1).

Excerpts

e A tremolo-like chord alternation (fig. 2.8), from An Experiment with Time:
data.danieleghisi.com/phd/snd/AEWT_Eb_tremolo.aif |mp3

e A sequence of fast deceptive cadences (fig. 2.9), from An Experiment with Time:
data.danieleghisi.com/phd/snd/AEWT_inganni.aif |mp3

2.3.4 Usage in I mille fuocht dell’universo

A large section of I mille fuochi dell’universo, a collective composition that will be
presented in section 4.4, was set to be a kaleidoscopic 8-minutes long descent; for
such section I developed a modified version of the previously presented modules.
The main difference with the original patch is that the pitch of every note will

force a retuning factor for the corresponding samples, so that the overall result is
a microtonal and seamless descent. Different versions of this descent were mixed in
the final result (Figure 2.10 shows a portion of the descent in a bach.roll object).

Figure 2.10: Portion of the score for one layer of the seamless descent in 1 mille fuochi dell’universo.

Excerpts

e A portion of one layer of the descent in | mille fuochi dell’universo:
data.danieleghisi.com/phd/snd/IMFDU_descent.aif |mp3

http://data.danieleghisi.com/phd/snd/AEWT_Eb_tremolo.aif
http://data.danieleghisi.com/phd/snd/AEWT_Eb_tremolo.mp3
http://data.danieleghisi.com/phd/snd/AEWT_inganni.aif
http://data.danieleghisi.com/phd/snd/AEWT_inganni.mp3
http://data.danieleghisi.com/phd/snd/IMFDU_descent.aif
http://data.danieleghisi.com/phd/snd/IMFDU_descent.mp3

38 Chapter 2. Towards a Corpus-Based Composition

2.4 A poetic of concatenation

When 1 first started writing electronic music, I had the impression that montage
could be the easiest access to it. My first electroacoustic piece was essentially a
montage of heterogeneous recordings. Once I delved into the intricacies of more ad-
vanced techniques, I started to consider pure montage as a naive approach; and yet
I could not completely get rid of the fascination of sampling, mixing and concate-
nating complex sounds. To sidestep the issue, I started using montage on extremely
small scales. This didn’t have much in common with a ‘microsound’-oriented ap-
proach (see section 2.2.2): I was not trying to compose pitch and timbre starting
from extremely small windows of sound; my aim was rather to gradually reduce the
length of the source region, in order to achieve a coherent and yet either zapping-like
or loop-like effect. I started to refine each fragment in the micromontage via digital
signal processing (DSP); I developed a certain number of notation tools accordingly
(the bach library was born around that period); I started using organized datasets
and musical corpora. I was getting little by little at ease with the framework I
was meanwhile constructing: imposing a form onto musical elements that already
had one was becoming an interactive and somehow rewarding process. Sometimes
the original content was a mere pretext, a loose starting point which I knew would
undergo extensive processing before being used in the actual composition.

If I had to trace a path of my musical interest from that point onwards, it would
affect three separate factors: since then, the grain size gradually increased (from a
scale of tenths of seconds to a scale of seconds), the amount of DSP treatment applied
on each grain gradually decreased, the size of the datasets markedly increased (from
a handful of sound files to several hundred gigabytes of compressed files). These
transitions are noticeable in my latest works. Somehow, the focus has shifted from
the control over the grain treatments to the control over the grain sequence.

Today, I tend to think of corpus-based montage as a pure act of composition,
in a similar way in which a certain number of composers are interested in additive
synthesis as pure act of writing sounds. The duality between the two scenarios is
to me quite striking: on the synthesis side, the focus is on absolute control of the
parameters; on the corpus-based montage side, the control is deliberately lost, in
favour of a degree of unpredictability and surprise. Changing a pitch, a dynamic
marking, or an envelope, is a trivial operation while composing for an instrument
or for a synthesizer, but it is a non-trivial challenge when dealing with corpus-based
montage. One could of course perform corresponding DSP operations with some
pitch shifter or gain modifier, but one also has the intriguing possibility of choosing
some other sample altogether, matching the new pitch, dynamics or envelope to a
greater degree. Modifying a certain query in the dataset is also a way to perform
a (highly non-linear and rather unpredictable) pitch shift. And this way, although
more complicate, has a number of advantages, first and foremost the aforementioned
degree of surprise (see section 2.1.3): the effort of discovering, listening, analyzing,
makes of every fragment a truly selected and more abstract object—a ‘note’, indeed.

2.4. A poetic of concatenation 39

2.4.1 Concatenations as trajectories

In this sense, An Experiment with Time has been a crucial project in my musical
path: it was the first work where I exponentially enlarged the size of the datasets
and, in a parallel way, markedly decreased the amount of DSP treatment on musical
grains. Nonetheless concatenations generated for An Experiment with Time were
rarely used as ‘foreground’, macroscopic objects, and were often employed rather
as compound textures, as ‘material’ to compose with—be it just via an additional
layer of amplitude modulation and montage.

But An Ezperiment with Time also featured two notable exceptions to this pat-
tern, two cases where the concatenation was not only than a technique, but also the
foreground object itself: the aforementioned ‘history of C major’ and the vocal glis-
sando appearing at the end of the work. This latter is probably the sharpest sample:
it is a concatenation of vocal glissandi, so that the resulting musical trajectory is a
continuous glissando throughout four octaves.

Excerpts

e A glissandi-glissando, from An Experiment with Time:
data.danieleghisi.com/phd/snd/AEWT_glissando.aif |mp3

e A glissandi-glissando, in Risset-like fashion, from An Experiment with Time:
data.danieleghisi.com/phd/snd/AEWT_glissando_risset.aif |mp3

The concatenation, as well as the glissando detection, was carried out mostly by
hand—the attempts to set in place an (albeit rough) detection mechanism for vocal
glissandi having proven unsuccessful. To gather the considerable amount of glissandi
for the montage, I have both consulted a certain number of musician friends and
used the Internet as a sort of ‘human-based MIR system’ [Downie and Cunningham,
2002].

After An Ezperiment with Time, 1 have been questioning for some time the
meaning of concatenations: the ideas that regularly informed my perspective were
the ones of belonging, of collective music, of questioning authorship, of ‘writing on
the skin of the world’. Whenever I imagined to bring this approach to the utmost
consequences, I invariably came back to the most radical concept of pure montage.

What I liked in the composite glissando from An Fzperiment with Time was
its simplicity, and at the same time its meaningfulness. It was, figuratively, the
passing of the torch of all the singers who ever sang a glissando, even if just for a
few seconds. It was a hommage, of course, but it was well beyond that, the overall
shape being so significant; to me, it was music across music.

The key seemed to be the unity of the gesture—as the material composing it was
complex enough. And I could try to model such simplicity as the varying of a single
parameter in some space. A development of this approach has generated a number
of graphical tools to handle geometrical representations of databases (see section
3.3.2); yet even with no visual tools, it is easy to interpret a similar concatenation
as the positioning of different ‘grains’ on a given trajectory, moving with respect to
a single, perceptually relevant parameter—in the glissando example: the pitch.

http://data.danieleghisi.com/phd/snd/AEWT_glissando.aif
http://data.danieleghisi.com/phd/snd/AEWT_glissando.mp3
http://data.danieleghisi.com/phd/snd/AEWT_glissando_risset.aif
http://data.danieleghisi.com/phd/snd/AEWT_glissando_risset.mp3

40 Chapter 2. Towards a Corpus-Based Composition

2.4.2 Music across music: FElectronic Studies

After An Fxperiment with Time, 1 decided to continue exploring concatenations,
trying to keep a single characteristic for a grain to be accounted for, and a single
criterion to sort grains. The result is a crude and unfinished collection of short
sound files, temporarily and disorderly collected under the title Electronic Studies;
in addition to the aforementioned glissando, here are some other excerpts:

Excerpts

e A concatenation of hand clapping figures, sorted by decreasing tempo:
data.danieleghisi.com/phd/snd/Concat_handclaps.aif |mp3

e A concatenation of ‘money notes'”, sorted by increasing pitch:
data.danieleghisi.com/phd/snd/Concat_moneynotes.aif |mp3

e A concatenation of words ‘kiss’ sung by different singers, sorted by increasing length:
data.danieleghisi.com/phd/snd/Concat_kiss.aif |mp3

e A concatenation of words ‘tomorrow’ sung by different singers, organized via composite criteria
(some sections are sorted by increasing main pitch):
data.danieleghisi.com/phd/snd/Concat_tomorrow.aif |mp3

e A concatenation of words ‘know’, spoken by different people, sorted randomly:
data.danieleghisi.com/phd/snd/Concat_know.aif |mp3

There is a sort of emergence phenomenon taking place as we listen to these
excerpts: we do recognize the unicity of each fragment in the sequence, however
we also clearly hear that the combination of the fragments represents much more
than a random juxtaposition of them: we hear a trajectory in a space. This has
very much in common with Christian Marclay’s video montages and Lev Manovich’s
visual interactive spaces.

This also brings to mind a certain number of considerations, which pertain to
the way in which concatenations are perceived.

1. Grains usually share a common feature, a sort of recognizable ‘aura’ (not
unrelated to the concept of ‘aura’ proposed by Lachenmann [2004]); this aura
can be immediately spotted, and sometimes it is even harder to describe than
to recognize (as in the case of ‘money notes’).

2. Each concatenation is a path on a map for a certain territory. The listener
should have the feeling of following that path curve with a finger.

3. Transitions between grains convey much of the information: a large part of
the compositional work lies in crafting them. Transitions reveal and hide at
the same time. In most circumstances, my instinct was to make transition as
seamless as possible, or to find significant quasi-causal connections on which
to base them.

A ‘money note’ is a slang term of the pop music industry, referring to high, emotionally
dramatic notes frequently spotted at a song climax, and usually held for a long time with clear
pitch and expressive vibrato.

http://data.danieleghisi.com/phd/snd/Concat_handclaps.aif
http://data.danieleghisi.com/phd/snd/Concat_handclaps.mp3
http://data.danieleghisi.com/phd/snd/Concat_moneynotes.aif
http://data.danieleghisi.com/phd/snd/Concat_moneynotes.mp3
http://data.danieleghisi.com/phd/snd/Concat_kiss.aif
http://data.danieleghisi.com/phd/snd/Concat_kiss.mp3
http://data.danieleghisi.com/phd/snd/Concat_tomorrow.aif
http://data.danieleghisi.com/phd/snd/Concat_tomorrow.mp3
http://data.danieleghisi.com/phd/snd/Concat_know.aif
http://data.danieleghisi.com/phd/snd/Concat_know.mp3

2.4.

A poetic of concatenation 41

. The status of each one of these concatenations remains, to me, a vexata quaes-

tio: on one side, I do consider some of them as true miniatures, as self-standing
studies (most notably, the vocal glissando); others are well far from being suf-
ficiently sharp, and cannot be considered autonomous studies (most notably,
the concatenations of spoken words, which were indeed used as part of a larger
project, as described in section 2.5.3). I am planning to organize some of these
concatenations, as well as additional ones, in a future larger and more coherent
container, a project fully based upon similar techniques.

. In almost all of these concatenations there is a somehow humorous facet: an

angle, a point of view, for which they are, by some means, funny or ironic
|[Kramer, 2016, p. 9]. I do not live this as a problem; on the contrary, I find
amusement to be an important side of engagement to listening. However,
the goal is to prevent the amusement from turning into joke or laughter, and
essentially to let the deeper meaning emerge from it.

. Another way to look at these concatenations is to see them as games or chal-

lenges: listeners are sometimes brought to ask themselves how much longer the
corresponding process could last. Each of these montages is going somewhere,
but the ending point is never declared nor shown, and it might be postponed
indefinitely.

As a corollary of the previous point, the length of these concatenations is a
highly delicate subject; it seems to me that in almost all cases they should be as
long as musically possible—compatibly with the amount of raw material found
and with the possibility to keep the process interesting. In the excerpts above,
this idea is pursued in very different manners: in the case of the continuous
glissando, temporality is essentially determined from the material itself (only
glissandi with approximatively a certain slope were selected, and changing
temporality would simply imply to change the target slope, or to stretch the
result); in the case of ‘money notes’, the process is developed so to exploit all
the grain found for the lower notes, and then gradually sieving the material as
the pitch went up, in order to give a feeling of accelerando along the ascent;
the case of the concatenations of sung words is still different—potentially, the
concatenation of ‘tomorrow’ should be disproportionately longer than the two
minutes it currently lasts (also see section 2.7).

42 Chapter 2. Towards a Corpus-Based Composition

2.5 Speech and corpus-based composition

2.5.1 The utopia of a bridge between speech and music

Having musical instruments talk is a shared dream among the community of com-
posers, and not a recent one. In the 17th century, Jean-Baptiste Lully imitated the
speech melodies and dramatic emphasis used by actors [Ranum, 2001], influencing
a certain number of 19th and 20th century composers. Among these, Leos Janacek
deserves a special mention: not only did he integrate pitch contours as well as the
inflections of Moravian dialect in his operas (such as Jendfa), but since 1879 he
carefully kept a collection of transcribed speech intonations [Prochézkova, 2006].

With the diffusion of recording technologies, and even more rapidly in the dig-
ital era, the relationship between music and speech has also been explored from a
computational angle, especially in electronic music (Bossis [2005] provides a detailed
overview on the subject). Nonetheless, the search for affinities between voice and
acoustic instrument has never paused.

Among the numerous examples, some works had a certain influence on my re-
search: Jonathan Harvey’s voice orchestral transcriptions in Speakings, Fabio Ci-
fariello Ciardi’s studies on lip-synced music (such as Tre piccoli studi sul potere
or Voci vicine), Peter Eo6tvos quartets (such as Korrespondenz and Siren Cycle),
Steve Reich’s Different Trains and The Cave, Peter Ablinger’s talking piano (such
in A Letter from Schoenberg or Deus Cantando), PerMagnus Lindborg’s Tree Torika,
Clarence Barlow’s works on speech recordings (such as Orchideae Ordinariae). Each
of these composers finds his own peculiar bridge between audio and spoken word (or
between sound and meaning): Ablinger focuses on the threshold of intelligibility of
the texts, so that listeners are encouraged to imagine phonemes for the sounds they
hear; Harvey and E6tvos both take a much more concert-driven approach, analyzing
voice inflections and turning them into chiefly musical gestures; Barlow is interested
in sound synthesis through instrumentation (or synthrumentation |Barlow, 2011]);
Reich employs repetition as a way to turn speech into chant, an effect later studied
by Deutsch [1975]; finally in Cifariello Ciardi’s case, the synchronization between
the image and the sound seems to be a key aspect of the process, partially relying
on the McGurk effect [McGurk and MacDonald, 1976].

These works all seem to share a common utopia. It is not a coincidence that so
many postures have florished in the last few decades, when technology have allowed
composers to take advantage of different tools to transcribe voices into music—
including computer-aided composition tools such as OpenMusic (Cifariello Ciardi
and PerMagnus Lindborg [Lindborg, 2008|) or bach (E6tvos [Sirens Cycle, 2017]).
This is, to me, a clear example of how composer aesthetics influence and, at the
same time, are influenced by technological advances, in a positive feedback loop.

It is striking to see how transversal the topic appears to be, clustering composers
who would have otherwise very little in common. Even more intriguing, rock music
has been sharing the very same utopia for a long time: as a notable case, Steve
Vai’s mimicking of his sister’s voice in So Happy (in the album Flez-Able, 1984) is a

2.5. Speech and corpus-based composition 43

precursor for many of the previously cited works and for a multitude of speech-based
instrumental videos that have populated Youtube in the last few years.

Links to examples (verified on 28th April, 2017)

e Peter Ablinger, A Letter from Schoenberg:
https://youtu.be/BBsXovEWBGo

e Peter Ablinger, Deus Cantando:
https://youtu.be/BzcBusxDThM

e Jonathan Harvey, Speakings:
https://www.youtube.com/watch?v=6UJ2RXIEXa4d

e Fabio Cifariello Ciardi, Voci Vicine (estratto):
https://www.youtube.com/watch?v=5NeyMhtR3xk

e Steve Vai, So Happy:
https://www.youtube.com/watch?v=Z7Asi870JpI

e Donald Trump Says "China" - Bass Cover by Iggy Jackson Cohen:
https://www.youtube.com/watch?v=VHtKx2jk40U

e Donald Trump speech-to-guitar translation:
https://www.youtube.com/watch?v=RD87K5xY-r0

2.5.2 MFCC-based musaicing in Mon corps parle tout seul

Influenced and fascinated by these examples, I have been exploring myself the bridge
between words and sounds in Mon corps parle tout seul, from a corpus-based per-
spective, where the ensemble or orchestra in charge of imitating a voice is replaced
by a collection of recordings of acoustic material.

Mon corps parle tout seul, a joint project with director Daniel Jeanneteau and
writer Yoann Thommerel, is an installation where inside a dark room a giant mouth
appears in front of the visitors as an oracle, formed by nebulized droplets of water
retroilluminated by the light of a projector (see fig. 2.11). Visitors are invited to
position themselves on a precise spot in front of the mouth, where the sound, via
wave field synthesis techniques, is localized, as if coming precisely from the mouth
itself. The acoustic illusion and the scattering of water droplets convey a sensation
of ‘presence’ and create a both intimate and physical relationship with the giant
mouth-shaped oracle.

The installation runs as a 12 minutes loop, corresponding to the duration of
Thommerel’s text read by actress Emmanuelle Lafon. During the 12 minutes, the
sounds emitted from the mouth gradually shift from plain voice (beginning), to
musically reconstructed voice, till they stop being recognized as phonemens and
become concrete sounds, fragment of music, audio synthesis, explosions. The pivotal
condition is the following axiom: even inside these mutations, the articulation of
sound must always agree with the lip movements, by preserving synchronicities and
by matching articulations and envelopes: the oracle is a composite object, and
the visual and acoustic parts should never drift. In a nutshell: the mouth shifts
from uttering a monologue to spitting out pure sounds: speech becomes sensation,

https://youtu.be/BBsXovEWBGo
https://youtu.be/BzcBusxDThM
https://www.youtube.com/watch?v=6UJ2RXIEXa4
https://www.youtube.com/watch?v=5NeyMhtR3xk
https://www.youtube.com/watch?v=Z7Asi870JpI
https://www.youtube.com/watch?v=VHtKx2jk40U
https://www.youtube.com/watch?v=RD87K5xY-r0

44 Chapter 2. Towards a Corpus-Based Composition

Figure 2.11: Two visitors at the Mon corps parle tout seul exhibition, the leftmost visitor is standing
on the ‘sweet spot’ for the wave field synthesis acoustic illusion.

droplets, raw material, a sonorous incarnation. At very precise points during the
loop, wind blasts are created from behind the mouth by a person with a simple
plastic pad, invisible to visitors, following a score delivered via an ear monitor: the
oracle becomes even more touchable, treading on the invisible boundary between
installation and live performance.

The smoothness of the transition from voice to sounds is obtained also thanks to
a ‘voice reconstruction’ stage, where mel-frequency cepstral coefficents (MFCCs) are
computed for small overlapping windows of Emmanuelle Lafon’s voice, and are then
matched, via a k-nearest neighbours search, to the closest ones in a set of corpora,
taking advantage of the MuBu library [Schnell et al., 2009]. Some examples of such
matching follow.

Excerpts

e Original extract of Emmanuelle Lafon's voice:
data.danieleghisi.com/phd/snd/MCPTS _muzaiking_orig.aif |mp3

e Mixed with MFCC reconstruction based on Luciano Berio's Sinfonia:
data.danieleghisi.com/phd/snd/MCPTS_muzaiking_berio_mix.aif |mp3

o Mixed with MFCC reconstruction based on Edgar Varese's Poéme électronique:
data.danieleghisi.com/phd/snd/MCPTS_muzaiking varese_mix.aif |mp3

o Mixed with MFCC reconstruction based on Franz Schubert's Nacht und Trdume:
data.danieleghisi.com/phd/snd/MCPTS_muzaiking_schubert_mix.aif |[mp3

e A mixing of the previous techniques as used in the installation:
data.danieleghisi.com/phd/snd/MCPTS_muzaiking_ex.aif |mp3

http://data.danieleghisi.com/phd/snd/MCPTS_muzaiking_orig.aif
http://data.danieleghisi.com/phd/snd/MCPTS_muzaiking_orig.mp3
http://data.danieleghisi.com/phd/snd/MCPTS_muzaiking_berio_mix.aif
http://data.danieleghisi.com/phd/snd/MCPTS_muzaiking_berio_mix.mp3
http://data.danieleghisi.com/phd/snd/MCPTS_muzaiking_varese_mix.aif
http://data.danieleghisi.com/phd/snd/MCPTS_muzaiking_varese_mix.mp3
http://data.danieleghisi.com/phd/snd/MCPTS_muzaiking_schubert_mix.aif
http://data.danieleghisi.com/phd/snd/MCPTS_muzaiking_schubert_mix.mp3
http://data.danieleghisi.com/phd/snd/MCPTS_muzaiking_ex.aif
http://data.danieleghisi.com/phd/snd/MCPTS_muzaiking_ex.mp3

2.5. Speech and corpus-based composition 45

In a later stage, these reconstruction techniques leave the pace to more concrete
sounds, meticulously aligned with the speech articulation: a recorded sound of water
droplets is lip-synchronized to ‘eau qui coule sur lui’, typewriters to ‘que ca n’a pa
de sens de travailler comme ¢a tous les jours’, and so on. This ‘word painting’ layer
is however rather discrete, and from there, the sound base also widens, including
various music fragments, synthesis sounds, and explosions.

Related works

e Mon corps parle tout seul, installation, 12 min (loop), 2015.
Premiered in Paris, juin 2015 (new version premiered in Gennevilliers, september 2017)

— Teaser: http://medias.ircam.fr/x724cal

2.5.3 Concatenation of spoken words for Any Road

Speech datasets can also be the starting point for concatenation techniques: this
was one of my interests while working on Any Road.

Figure 2.12: A frame from Any Road.

Any Road is a piece for orchestra, electronics and video, commissioned by the
French Ministry of Culture, and premiéred in Lyon at the Biennale Musiques en
Scene (2016).

The original project was to develop a videogame to be played live, alongside the
orchestral music, by two players located respectively at the left and at the right side
of the orchestra, each associated with a loudspeaker; in the videogame, the position-
ing of elements and targets constituted a true score for each of the players, having
its own interactive audio track being diffused via the corresponding loudspeaker.
Due to contingent production issues, the project could not be achieved in this form,

http://medias.ircam.fr/x724ca0

46 Chapter 2. Towards a Corpus-Based Composition

and a fixed-media video by Boris Labbé was featured instead. Incidentally, the fact
that a videogame can be an true interactive score has inspired the development of
the dada.platform module (see 3.3.4.4).

Even though the project had shifted from live gaming to fixed media, the basic
idea did not change: two loudspeakers represented two gamers, who (taking inspi-
ration from the old Pong arcade game) engaged in a tennis match of sounds and
words. Tennis of course has a long tradition of influence on Western composers, hav-
ing inspired, among others, Claude Debussy (Jeux, 1913), Satie (Le Tennis, 1914)
and Mauricio Kagel (Match, 1964). Even more curiously, Arnold Schonberg devel-
oped a specific system of music notation, based on a transcription of the events in a
tennis match [Bateman and Bale, 2008; Sauer, 2009]. Any Road was an attempt to
represent a Pong match in a widely-panned electroacoustic scenario, the orchestra
being the trait d’union between the players.

Related works

e Any Road, for orchestra, electronics and video, 12 min, 2016.

— Project website and full credits: http://www.anexperimentwithtime.com

— Trailer: https://www.youtube.com/watch?v=a81idHK8-CA

e Any Road (version for ensemble), for large ensemble, electronics and video, 12 min, 2017.

e Any Road (electroacoustic version), for electronics and video, 12 min, 2017.

— Link: https://wuw.seditionart.com/boris-labbe-and-daniele-ghisi/any-road

The speech dataset I used for Any Road is composed by a big number of record-
ings of Alice In The Wonderland and Through The Looking Glass, selected from the
public domain recordings of the website LibriVox®.

I used the open-source speech recognition system PocketSphinx [Huggins-daines
et al., 2006] to locate throughout these recordings instances of specific words. A
higher level interface was developed in Max to facilitate the process (see fig. 2.13).

The quality of the PocketSphinx detection algorithm sensibly depends on the
size of the dictionary of words used as baseline (the ‘dictionary width’). I chose
to keep such dictionary rather small (around 1500 words), in order to purposely
increase the number of false positives. The identified chunks containing the target
word were then collected in a folder and randomly concatenated. Below are two
examples of such concatenations (false positives being well noticeable in both of
them).

Excerpts

e 'If', from Any Road:
data.danieleghisi.com/phd/snd/concat_if.aif |mp3

e ‘Know', from Any Road:
data.danieleghisi.com/phd/snd/concat_know.aif |mp3

Shttps://www.librivox.org

http://www.anexperimentwithtime.com
https://www.youtube.com/watch?v=a81idHK8-CA
https://www.seditionart.com/boris-labbe-and-daniele-ghisi/any-road
http://data.danieleghisi.com/phd/snd/concat_if.aif
http://data.danieleghisi.com/phd/snd/concat_if.mp3
http://data.danieleghisi.com/phd/snd/concat_know.aif
http://data.danieleghisi.com/phd/snd/concat_know.mp3
https://www.librivox.org

2.5. Speech and corpus-based composition 47

The Word Cutter
T

Words to be searched: [R7ITNGl

Dictionary width: yN
25.0%

/Users/danieleghisi/Desktop/MusicaMia/_IN_LAVORAZIONE/mie_patch/Se
gmentWords/sourcefolder/

drop source folder here

/Users/danieleghisi/Desktop/MusicaMia/_IN_LAVORAZIONE/mie_patch/Se
gmentWords/chunks/

drop output folder here

@ Also clear output directory Start file indexing from
Cutting pad for matches: FR[IB ms

Skip chunk .

Figure 2.13: Screenshot of the Max interface used to detect occurrences of specific words for Any
Road.

Concatenations were used to build, little by little, the sentence ‘If you don’t
know where you are going, any road will get you there’, a classic Lewis Carroll’s
(mis)quote—actually a paraphrase of an exchange in Chapter 6 of Alice’s Adventures
in Wonderland. Video images, also quotations, are themselves ‘panned’ in the left
and right sides of the video, and become more and more concrete, while maintaining
perfect synchronization with the audio events (be they word utterances or sounds).

Excerpts

e From Any Road (with video):
data.danieleghisi.com/phd/vid/AR_extr2.mp4

http://data.danieleghisi.com/phd/vid/AR_extr2.mp4

48 Chapter 2. Towards a Corpus-Based Composition

2.6 A query-based approach to musical samples

An Ezperiment with Time represented my first attempt to increase the amount
of samples in my datasets; however, I was still working with simple collections of
folders, each containing a collection of files; all queryable characteristics (such as
tags or labels) had to be hard coded in the file name, in order to take advantage
of Unix ‘find” command to sieve the collections. This was far from being handy
or easily extensible: for instance, a descriptor-based search in An Experiment with
Time had to randomly pick and test several files in order to verify whether they
matched the specified criteria.

Clearly, the following step had to be integrating a proper SQL database inside
Max, so that previously analyzed or tagged samples could be quickly queried. Hence,
I provided the dada library with the necessary tools: a SQLite database module
(named dada.base) and its user interfaces (dada.catart and dada.distances). These
modules are described more thoroughly in section 3.3.

Project after project, I fine-tuned the following workflow to deal with corpus-
based concatenations. It does not in any way constitute a frame of rules, but rather
provides a general setting for some frequently used operations.

query select * from frags where instrumentation IS ‘Piano’ AND collection NOT LIKi chord IS 'C' AND numbeats > 2 AND dur > 1AND VYN FRAGS
bpm >= 175 AND bpm <= 185 AND gain < -15 AND centroid < 900 LIMIT 300
bpm range: 0 samples 40787 fragments

one entry per file, the one having (R

Play fragments [send query resut
Then sort by: Beat Extraction Policy P... | start Play from full file
Alignment Tempo (BPM) I Deter play
number of voices Fade In Time Fade In Slope _
Max number of fragments per voice Fade Out Time Fade Out Slope Do]
avoid repeating fragments across voices Full File Mode m fadepolicy 1: Allow Trim
recompute rewrite show explorer
ron 0cat |Beat |Beat "WTeat |Beat |Beat "9Teat |Beat |[Beat "eat |[Beat |Beat “3Teat |Beat |Beat "ITeat |Beseat writetxt bounce tracks .
N ! | | Il ! 1 | 11
0
% Monitor What to monitor:
9

year
instrumentation
epoque
collection
tuningfreq
numbeats

beats
beats_pad
startbeatalign

o " ‘outgain
} uniform gain to dB _A=

42dB

Figure 2.14: A Max patch used as a workspace to generate corpus-based concatenations. Queries are
written in SQLite syntax; their results are then sorted by some descriptor, and then concatenated
into a sequence of (possibly beat-aligned) fragments, over a certain number of voices. The query
results can also be explored via the interface shown in fig. 2.15 and fig. 2.16.

Choosing a corpus. As a very first step, I usually set up a folder or a collection of
folders containing the audio files in the corpus. The choice of such folders is,
of course, a key compositional choice. Size and audio formats also vary from
project to project.

2.6. A query-based approach to musical samples 49

m 0: Cartesian
-
convexcombp m

ucid
ufid
idx L % 9

chord ()
start
end

dur -
start_raw s?
end_raw
composer ‘

year '
instrumentation o\

epoque
collection [}
tuningfreq ok
numbeats
ot

[TTTTTTTTTITTTTITT]

®
live.gain~ ® “ v
——————— J J
(4

0.0dB 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 19

Figure 2.15: A Cartesian explorer for the query results of the patch shown in fig. 2.14. FEach circle
represents a fragment; according to the choice of features mapped on x and y axes, size and color,
the circle is represented in a given position on the plane, with a given radius and color.

Tagging the corpus. Sometimes it is handy to work on ID3-tagged mp3 files. In
this case it might be important to verify, fix or add the audio file tags properly.
In order to do so, I usually take advantage of the library id3lib°.

Segmenting the corpus. Each file in the collection is segmented according to a
given principle, and fragment files are produced. Given the size of the corpus,
I usually perform this step via parallelized Unix shell scripts. The open-source
command-line tool Sox [2017] often helps, offering easy access to basic audio
editing features. I have used, over time, several segmentation principles:

o fixed-window segmentation: fragments are cut via sliding of a fixed-size
window on the corpus sound files, with a given overlapping factor;

e chord-based segmentation: cuts happen when chords change—for this
purpose, I tend to refer to the algorithm [Mauch, 2010], which was also
used in An Ezperiment with Time, as explained in section 2.3.2;

e beat-based segmentation: cuts happen at detected beats—for this pur-
pose, I tend to use the Madmom library [Bock et al., 2016], namely its
madmom. features.beats function.

e no segmentation: each sample in the corpus is already the smallest mu-
sical unit to be considered—this might be the case for impulses, single

%http://id31lib.sourceforge.net/

http://id3lib.sourceforge.net/

50 Chapter 2. Towards a Corpus-Based Composition

%ngridstrengthiir
[N

|

|

|

\ .

I L §

‘ ~

~
~
| ~
! ~
’ \
|- convexcombp 06 _| ! T N

I ® ~
Gam — H @ S0 ~
centroid -] v\ 7] ;‘;ubgﬂﬁmgrﬁzr_’
spread ¢

dissonance
onsetrate
danceability
subgridstrength2r
subgridstrength3r
subgridstrength4r
subgridstrength5r
subgridstrength8r
temporalcentroid -
temporalcentroidnorn
temporaldecrease
temporaldecreasenor
strongdecay

e — @ 406 —
@
@
&
L7
L)
-
\
o
\
\
\
\
\
\

-

-
-

-
subgridstrength4r

LTI T T T T XXX T T 11T

——

live.gain~

0.0dB

Figure 2.16: A convex-combination explorer for the query results of the patch shown in fig. 2.14.
Similarly to fig. 2.15, each grain is mapped onto a circle in the Cartesian plane; however, the
position of each circle is not determined by two x and y features, but rather from the relative
strength of a given selection of features. Such features label the vertices of a regular polygon (a
triangle, in this case), and circles leaning towards one of the vertices will have higher values for the
corresponding feature with respect to the other ones. In this case, the displayed features are named
subgridstrength2r, subgridstrength3r and subgridstrengthr, describing how well the energy
pattern inside each beat matches equal 2-, 3- and 4-subdivisions; in other words, if we consider
beats to be quarter notes, subgridstrength2r accounts for how well the rhythm matches eighth
notes, subgridstrength3r accounts for how well the rhythm matches a triplet of eight notes, and
subgridstrengthir accounts for how well the rhythm matches sixteenth notes.

notes or attacks.

Sometimes keeping a disk version of all the segmented audio files might be
cumbersome, or might consume too much space on disk. In these cases, this
step and the following one (analysis) can be interleaved and performed together
for each file, creating temporary fragments which will be then analyzed and,
later, removed by the script.

Analyzing each fragment. The audio fragments created by the previous step are
analyzed, and a certain number of features are extracted, often via a combi-
nation of python and Unix scripts. The choice of analysis modules and of
their parameters of course highly depends on the specific compositional needs.
Some of my common choices are:

e straightforward labelling—such as file name, fragment duration or frag-
ment index/onset (so that the grain could be later relocated in the orig-
inal file). Generally I also define some identifiers for each fragment: an

2.6. A query-based approach to musical samples 51

ufid field (unique file identifier, an integer number unambiguously identi-
fying the original file), an idx field (the 0-based index of the chunk inside
the original file), and an ucid field (unique chunk identifier: an incre-
mental integer unambiguously identifying the fragment, usually defined,
for my own purposes, as ucid = ufid * 10% + idx);

e ID3 tags contained in the file—such as author, title, or any used-defined
tag added at point 2;

e standard low-level audio analysis—such as centroid, spread, loudness,
and so on. I usually take advantage of the Essentia library [Bogdanov
et al., 2013] to perform them;

e higher level audio feature—such as HFCs, MFCCs, spectral complexity,
dissonance, and so on (all included in Essentia);

e beat or chord detection—for which I usually rely on the aforementioned
Madmom library;

e custom coded features—as an example, based on the Essentia library,
I developed a pattern-matching algorithm in order to estimate how well
the sample matches a given beat-based rhythmical pattern (see fig. 2.16).
Via this system, one can estimate for instance how ‘ternary’ (or ‘swing’-
like) the beats are.

I usually prefer to store analyses in a human-readable text file, formatted in
as a bach llll (each feature wrapped in a level of parentheses, and in turns
each fragment wrapped in a level of parentheses). An example could be:

(

filename "000001.mp3")
duration 1.260998)

chord "C6")

idx 100)

title "Rhapsody In Blue")
artist "George Gershwin")
year 1924)

samplerate 44100)

bitrate 128000)

gain -30.82905960083)
centroid 1206.59716797)
spread 3438790.5)
zerocrossingrate 0.0548473000526)
dissonance 0.452602744102)

A AN A A~AAAA~AA~AA~AAANAANAA

~

filename "000002.mp3")
duration 1.758005)

-~

Importing the database in dada. The file created at the previous step contains
all the database information, and can be imported into dada.base via the
appendfromfile command. At each startup, dada.base can either reload a

52 Chapter 2. Towards a Corpus-Based Composition

database from a textual file, or attach to a native SQLite3 file (which is much
faster, although the file itself is less human-readable).

Performing queries. Any standard SQLite query can then be performed on
dada.base, in order to only select a specific subset of the fragments. Assuming
that frags is the name of the table containing the analyzed fragments, here

are some examples:

SELECT * FROM frags WHERE
instrumentation IS ’Piano’
AND chord IS °C’ AND ABS(bpm -
120) < 5

Select all C major piano fragments
with a tempo of approximately 120
bpm

SELECT * FROM frags WHERE
instrumentation IS ’Piano’

AND chord IS ’C’ AND numbeats >
2 AND ABS(bpm - 120) < 5 ORDER
BY RANDOM() LIMIT 100

Select at most 100 C major piano
fragments, randomly ordered, with at
least 2 beats, having approximately
120 bpm

SELECT * FROM frags WHERE where
instrumentation IS ’0Orchestra’
AND ABS(dur - 2) <= 0.2 AND
centroid > 2000 AND gain < -45

Select orchestral fragments lasting
about 2 seconds, having centroid
higher than 2000Hz and having inten-
sity less than -45 dB.

SELECT * FROM frags WHERE
where instrumentation IS
’Orchestra’ AND dur >= 4 AND
temporalcentroidnorm < 0.5 AND
onsetrate < 0.3

Select orchestral fragments lasting at
least 4 seconds, having temporal cen-
troid in the first half of the file, and
having an onset rate (amount of de-
tected onsets per second) below 0.3

SELECT f1.%, f2.% FROM frags
AS f1 INNER JOIN frags AS
£f2 ON f1.ufid == f2.ufid
AND f1.ucid == f2.ucid -

1 WHERE f1.instrumentation
IS ’Piano’ AND f1.chord

IS ’C’ AND f2.chord IS
’Gm’> AND f1.numbeats >= 2
AND f2.numbeats >= 2 AND
f1.endbeatalign 1 AND
ABS(f1.bpm - 60) < 10

Select couples of consecutive piano
fragments inside a certain file, with
approximately 60 bpm, where the first
fragment is in C major and the sec-
ond one is in G minor, provided that
both fragments have at least 2 beats,
and there is a beat at the very end
of the first fragment (in other words:
search for C major to G minor ca-
dences across the dataset).

Organizing results into concatenations. The Max patch shown in fig. 2.14 is
my current way to perform queries and arrange database results into a con-
catenation of fragments, represented by notes in a bach.roll. The explorer

displayed in figure fig. 2.15 and fig. 2.16 shows how query results are scat-

tered with respect to some of the features (also see section 3.3.2 for more

information).

2.6. A query-based approach to musical samples 53

Concatenations can be either aligned to the native fragments’ beat grid, or
to an imposed beat grid (useful for regular concatenations), to which each
fragments may adapt. Options are provided for sorting, removing duplicates
within the same file, normalizing to a nominal RMS loudness, crossfading and
trimming. The final score can be saved, recorded or bounced in off-line mode.

2.6.1 The Well Tempered Sampler

The method outlined above is a general framework which I am planning to explore,
modify and extend while working on a larger collection of 24 pieces, named The Well
Tempered Sampler, each uniquely composed starting from audio extracts roughly
matching a given major or minor chord. It is a long-term project, and I am still in
an exploratory phase; some of the pieces will feature live musicians, in which case
either a symbolic database will be used (see section 2.8), or the electronic result will
be partially orchestrated—as was the case for An Ezperiment with Time (reloaded).

As I was testing for the first sketches of the project, two possible paths emerged.
The first one is connected with an ‘installation’-like situation, where, in a sense,
the temporality of the piece emerges from the musical material, and where the
compositional practices mostly relate to sorting, ordering and montage. In a sense,
in this approach, the dataset is both the material and the main character. The
second path, conversely, pertains to a ‘concert’-like situation, to which I am probably
more used: I would forge the content and form to a much greater extent, using the
datasets as a mere palette.

I have tried to sketch the two possibilities with In C major (exploring the
‘installation’-like format) and In C minor (exploring the ‘concert’-like format). As
a matter of fact, I started the project with the idea that all major chords would
relate to installation-like situations and all minor chords would relate to concert-like
situations; however, quite honestly, I am not convinced by this assumption and I
am still exploring the middle ground between the two points of view—I would not
be disappointed if by the end of the collection they had merged into a unique one.

Excerpts
In C major, from The Well Tempered Sampler:

e Excerpt from the beginning:
data.danieleghisi.com/phd/snd/WTS1_extrl.aif |mp3

e Excerpt around 2":
data.danieleghisi.com/phd/snd/WTS1_extr2.aif |mp3

In C minor, from The Well Tempered Sampler:

e Excerpt from the beginning:
data.danieleghisi.com/phd/snd/WTS2_extrl.aif [mp3

e Excerpt around 2':
data.danieleghisi.com/phd/snd/WTS2_extr2.aif |mp3

http://data.danieleghisi.com/phd/snd/WTS1_extr1.aif
http://data.danieleghisi.com/phd/snd/WTS1_extr1.mp3
http://data.danieleghisi.com/phd/snd/WTS1_extr2.aif
http://data.danieleghisi.com/phd/snd/WTS1_extr2.mp3
http://data.danieleghisi.com/phd/snd/WTS2_extr1.aif
http://data.danieleghisi.com/phd/snd/WTS2_extr1.mp3
http://data.danieleghisi.com/phd/snd/WTS2_extr2.aif
http://data.danieleghisi.com/phd/snd/WTS2_extr2.mp3

54 Chapter 2. Towards a Corpus-Based Composition

2.7 Concatenation of sung words for An Urban Dictio-
nary of Popular Music

In order to explore the conceptual side of the installation-like behavior even further,
I have started to work on another project, currently in a preliminary phase, named
An Urban Dictionary of Popular Music.

A database of rock, jazz and pop music with synchronised lyrics will be analyzed;
the 5000 more common words or sentences will be retrieved (from ‘a’, ‘able’, ‘about’,
‘above’... to ‘zero’, ‘zombie’, ‘zone’, ‘zulu’). The corresponding audio files will be
then segmented and concatenated in order to create a database of sounds where such
words or sentences are sung. For each word or sentence a montage will be carried
out, concatenating a choice of its various repetitions in a musically meaningful way.
These word-montages will in turn be sequenced in order to achieve an unique and
continuous run through the whole dictionary, in alphabetical order. The dictionary
will also feature multi-word phrases (e.g., ‘close’, ‘close my’, ‘close my eyes’, ‘close
to’, ‘close your’, ‘close your eyes’, ‘closed’, ‘closer’...), provided that they show up in
the list of the 5000 most common expressions. The duration of the portion dedicated
to each word or sentence will reflect its relative importance (according to the number
of its occurrences in the database). In synchrony with the audio track, the word or
phrase being sung will be projected very simply and rather discretely in a corner of
the venue.

Ideally, the whole dictionary would span 24 hours or more; it must be in any
case disproportionately long, as if any instance would only be a tiny portion of the
whole project. The installation can be proposed either once (from A to Z) or in a
looped form. An alternative form of presentation for the same content might be an
actual interactive dictionary, maybe in a web-based context.

Excerpts

e ‘Kiss', preliminary study for An Urban Dictionary of Popular Music:
data.danieleghisi.com/phd/snd/Concat_kiss.aif |mp3

e ‘Love’, preliminary study for An Urban Dictionary of Popular Music:
data.danieleghisi.com/phd/snd/Concat_love.aif |mp3

e ‘Tomorrow’, preliminary study for An Urban Dictionary of Popular Music:
data.danieleghisi.com/phd/snd/Concat_tomorrow.aif |mp3

The whole project embodies an extreme dilation of a linear sequence of sung
words. It will convey a feeling of traumatic obstinacy that we experience in front of
something that encompasses us. Each concatenation of a single word will be rather
long in itself, as a sort of ‘black hole’ where perception indefinitely lingers before
moving to the next one, as a sort of 24-hours long progress bar, one ‘pixel’ at a
time. Each passage from one word to the following one is already a radical change.
Across this stretched time, words will cluster: fragments we recognise will interleave
with others we don’t know, repeating the same words over and over. Through these
different repetitions, a web of similarities and connections emerges. In a sense, the
project embodies a sort of non-linear view on popular music, chopping the standard

http://data.danieleghisi.com/phd/snd/Concat_kiss.aif
http://data.danieleghisi.com/phd/snd/Concat_kiss.mp3
http://data.danieleghisi.com/phd/snd/Concat_love.aif
http://data.danieleghisi.com/phd/snd/Concat_love.mp3
http://data.danieleghisi.com/phd/snd/Concat_tomorrow.aif
http://data.danieleghisi.com/phd/snd/Concat_tomorrow.mp3

2.7. Concatenation of sung words 55

flow of time in same-word chunks, forcing us to hear the fragments differently. The
project also relates both to Jorge Luis Borges’s The Library of Babel and to Jean-
Paul Sartre’s La Nausée, namely to the character of ‘the Autodidact’, who passes
his time reading every book in the local library in alphabetical order.

On a technical side, a database of lyrics, containing their time annotations, will
be queried to find in which song and roughly at which time onset a given word
combination shows up. From these results, if the audio file is available, each region
can be fine-tuned and exported. It is important to stress that differently from all
previous projects, An Urban Dictionary of Popular Music would only work if the
chosen database contains a large portion of the most famous pop, rock and jazz
songs. This underlines a distinct conceptual signature, but also raises questions
about copyright: although each fragment would be at most 1 or 2 seconds long,
this might still constitute a problem, and a proper way to handle copyright in this
context should be inspected before the work being publicly presented. However, as
I have already stated in section 2.1.2, I am convinced that similar practices should
lie well within the boundaries of a ‘fair use’ of music material.

56 Chapter 2. Towards a Corpus-Based Composition

2.8 A symbolic approach: a database of scores

An important portion of my current research is targeted at finding equivalences be-
tween audio-based and score-based musical paradigms: using hybrid score notation
for electronics, on one side, and applying exploratory-driven audio techniques to
symbolic notation, on the other one. In particular, the dataset-based approach to
montages and concatenations is transferrable to the symbolic domain, extending the
concept of score granulation (introduced by Agostini and Ghisi [2012]| and then later
implemented in the cage.granulate module [Agostini et al., 2014]), allowing a finer
control on the concatenation of grains, according to some relationships between the
grain features extracted during the analysis process.

A4ID 58spread 788.97, centroid 4786.67, numnotes 11, idx 58
e
n|6000
t - -
r e by e
45700 2 © -
|
v ’ ' ‘ 3 e
sa00 ©F 5%
" ";‘ .>.'.p - o
_®9 y -
5100 L]
° °% 2
4800 O
J=72
4500 , ﬂ,ﬂ-

4200

3900

100 200 300 400 500 600 700 800 900 1000

Figure 2.17: Each point represents a measure of Johann Sebastian Bach’s first cello suite, organized
by average pitch (vertical azis) and average register extension (horizontal azis). The size of a grain
represents the number of notes in the measure, while the color represents the measure number (red
to wviolet).

The basic idea is that a dataset of scores can be segmented into ‘grains’, which
are then analyzed. The feature extraction is based on the bach lambda loop visual
programming pattern [Agostini and Ghisi, 2015], hence making analysis fully cus-
tomizable: one can extract standard features (such as the average pitch, akin to the
‘centroid’ descriptor, or the average MIDI velocity, akin to the ‘loudness’ descrip-
tor) as well as more exotic ones (essentially anything one could program in a Max
patch). All information about grains is stored in a database, which can be explored,
filtered or navigated via graphical user interfaces. The structure of the system is
described more in detail in section 3.3.2. It is worth noting that the interfaces are
abstract views on SQL databases, and can hence be used to represent a wide range
of items—primarily sounds and scores (in proportional or traditional notation), but
also, potentially, any other type of digital data, including images, videos, and text.

2.8. A symbolic approach: a database of scores 57

220 fragments n database Show:

’ Duration:
0.00s - 30.00s.

Num instruments:
0-7

Instr: By
X F AA
e X c % AS

X Pr X DG
o XVn XEMm
1000 e Xl via X RrG B
] vel —
1800 2400, 3000 3600 4200® oo 00 ool b e Pty ®uo 1g%0 Ch (e
average pitch -2 =
RG BEl © used) B
joad souncs
e e et N vt B
AAFICI o RG FI CI P{ Vin [witetxt [read]
r 21 500.000mc ASFICI o AS FICIPIVI
ot 1 display while
RG Via Vi, [4r ; (T i laying
73 5 R T playing

W ceferviay
spacingtype | showrests
2: Proportional - | 1: Not In ...

[show 4 parts per instrument

expon as xml

record:
AARS DG EM RG! m

Attack:

ev1000-atk005_bounce-... ¥

Attack gain
————
e

Figure 2.18: Screenshot of the patch used to perform the montage of atomic scores for the last event
of 1 mille fuochi dell’universo.

As a usage example, one might consider the final portion of I mille fuochi
dell’universo, a collective composition that will be presented in section 4.4, signed
by /nu/thing, a group of five Italian composers to which I belong. The foundation
of the last five minutes of the piece, corresponding to the final ‘event’, is a rough
montage, subsequently refined and reworked by hand, of a certain number of ‘atomic
scores’. The montage is based on a corpus of about 250 acoustic, electroacoustic
and mixed ‘score grains’, created by collecting 50 fragments by each composer of the
group, explicitly written for such montage, all complying with a set of rather loose
harmonic constraints, and with the additional requests that very few instruments
should be used inside each fragment, and that pitches should be kept somewhat
localized in the instrumental registers. The requests were set to ease harmonic
coherence and to facilitate superpositions of fragments.

In order to carry out the montage, the Max interface shown in fig. 2.18 has been
created. The top-left view shows the score grains, organized by average pitch and
width of their register; circles represent acoustic scores, diamonds represent elec-
tronics scores, triangles represent mixed scores. When hovering with the mouse on
a grain, the corresponding score is shown and played (via sample-based simulations).
The set of displayed scores can be filtered according to type, duration, number of
instruments and author.

The middle, proportionally-notated score with no clef displays the actual mon-
tage. Each note represents one of the grains: its length correspond to the actual
grain length (so that grains could be trimmed if needed); its MIDI velocity, dis-
played as duration line width, accounts for modification in the score dynamics; its

58 Chapter 2. Towards a Corpus-Based Composition

2 B
A |G = = 2 n |6 =
d” o
P s o
Bl IL% s 2 F T T Voo ° Bl ‘:';"
- v
72 Uol =. R
g 5 P
Pro. Pro. _
= = —
|2 ——
5 —
T
726 o ﬁ kA
Vie. |y S i3 = Vi (.? = 2 L i =
— P -’ — P — L g— —
e |8 i 5o : w [T —
== Kl ° Te fo § D= Ep — ;j =
e p — > - —— o »
S e e — e — — 3 S ¥ — .
Ve —_——— ———— —_— Ve 7 i LS ° ¥
— —_— — P e P
o | oo [=
- . ——— . r— —

Figure 2.19: Portion of a score draft for the final event of 1 mille fuochi dell’universo (measures
726-733). One can notice the similarity with the score in fig. 2.18.

slots contain information about stretch and transposition factors, as well as the list
of instruments to be accounted for. The rendering of the montage is displayed in
the score at bottom, with an aptly chosen quantization, and is always kept aligned
with the proportional view. It can be played, or exported as MusicXML file.

In the specific case of I mille fuochi dell’universo, the technique presented a
certain number of shortcomings; first and foremost: the database was too small to
be used as a creative palette. And, yet, we were attached to the idea of writing
‘atomic’ elements ourselves, both as a compositional and as a ‘political’ gesture:
the final event had to be, in a way, our collective signature. Increasing the dataset
size by some orders of magnitudes was virtually impossible, as it would require too
much individual work. The small dataset size also worsened all coherence problems:
very different musical figures appeared in the base, but not enough of them to build
a grammar. We ended up, at first, with rather inconclusive montages, prompting
memories of a certain twentieth century avant-gardism.

Progressively, as we accorded more freedom to modifying the grains, the tech-
nique yielded a valuable starting point for a draft score, which had to be then heavily
reworked. Some crude portions of montages are still visible in the final version (see,
for instance, fig. 2.19), but most of them have been modified with new ideas and
adaptations.

CHAPTER 3
Towards a Real-Time
Computer-Aided Composition

Sections 3.2.2 and 3.5, as well as some portions of sections 3.1 and 3.2.4, have been
previously published, in a slightly different form, in the article Ghisi, D. and Agostini,
A. (2017). Extending bach: A Family of Libraries for Real-time Computer-assisted
Composition in Maz. Journal of New Music Research, 46(1):34-53.

3.1 Real-time computer-aided composition

A key to interpreting the history of Western music is, arguably, the relationship be-
tween composition and computation, embracing otherwise very different experiences
and phenomena, including: Greek’s theory of musical proportions; the ‘harmony of
the spheres’ and the musica universalis; the inclusion of music in the Quadrivium
(along with arithmethic, geometry and astronomy) during the Middle Ages; the
notational complexity of the Ars Subtilior; the highly refined, quasi-algorithmic
systems developed by the Franco-Flemish school; Bach’s interest in canonic forms;
Mozart’s palindromes and dice games; the combinatorial complexity of dodecaphonic
and serial music; the Fourier analysis of sound as a basis for the works of French
spectralism. The catalog is necessarily incomplete; most notably, the advent of com-
puters, in the twentieth century, has generated considerable interest on how to take
advantage of the enhanced precision and speed of computation when dealing with
music: computer music was born.

The vast domain of computer music research and applications can be roughly
divided into two sectors: on the one hand, tools for generating and transforming
audio samples; on the other hand, systems for dealing with symbolic data—‘notes’
rather than ‘sounds’. In the latter area, a further distinction can be made between
tools for computer-assisted music engraving (Finale, Sibelius, LilyPond...) and tools
for computer-aided composition (CAC for short), allowing generation and transfor-
mation of symbolic musical data, like OpenMusic [Assayag and al., 1999; Agon,
1998, PWGL [Laurson and Kuuskankare, 2002], or Common Music [Taube, 1991].
Historical surveys of CAC techniques are provided, among others, by Roads [1996],
Assayag [1998] and Miranda [2001].

Of course, the boundaries dividing these areas are blurred: for example, some
audio sequencers also provide high-quality graphical representation of musical scores
and sound treatment, and virtually all of them have the ability of representing and
treating MIDI data; modern CAC environments include tools for sound synthesis

60 Chapter 3. Towards a Real-Time Computer-Aided Composition

and transformation; at least two graphical programming environments, the closely
related Max and PureData, have MIDI control and sound generation and transfor-
mation among their main focuses, but are at the same time capable to deal with
arbitrary set of data, input/output devices and video. Nevertheless, gaps between
all these categories still exist, and it is difficult to find tools suitable to work in
scenarios combining the peculiarities of several categories. For instance, it is es-
sentially impossible in most environments to drive sound synthesis via a symbolic
score, representing not only pitches and MIDI velocity, but also data that are too
numerous and complex to be efficaciously represented via MIDI—with the obvious
exception of Csound; but the Csound score representation, although rich, clean and
coherent, is rather counterintuitive, and it is virtually impossible for composers to
‘think’ directly within its formalism in the way they would do with paper and pencil,
or even with typesetting software.

In order to produce tools capable of bridging these gaps, some years ago, I under-
took with composer Andrea Agostini a freelance research project which ultimately
led to the development of a library for Max called bach: automated composer’s
helper, primarily meant to provide Max with the ability to treat and display musi-
cal scores. The bach library is directly inspired by traditional Lisp-based systems
(in particular, OpenMusic and PWGL), and shares with projects such as MaxScore
[Didkovsky and Hajdu, 2008] and InScore |Fober et al., 2012| the ability to oper-
ate with symbolic musical representation in real time. More recently OpenMusic
has implemented a ‘reactive’ mode too [Bresson, 2014|, which mimics the notifica-
tion system of event-driven paradigms. This seems to be a good example of how
the whole CAC community is making a conjoint effort to narrow the gap between
event-driven (‘reactive’) and demand-driven (‘off-line’) paradigms.

The issue is crucial, since real-time properties of a digital environment deeply
affect the nature of the very act of composing. As an example, electroacoustic com-
posers expect digital sequencers, synthesizers or graphic programming environments
to react as quickly as possible to any interface change (in a sort of musical ‘what
you see is what you get’ approach); the same holds true for traditional composers
who typeset a score in a piece of software like Finale or Sibelius.

Traditionally, CAC environments have endorsed a different paradigm, conceiving
the creation and the modification of a score as an out-of-time activity: a graph of
operations can be edited (for instance, via visual programming) but has no effect
whatsoever until a certain refresh operation is performed, which renders the graph
and outputs the result (e.g., a score). Yet, there is no deep reason why symbolic pro-
cessing should only be performed in out-of-time mode; on the contrary, interactivity
might be an added value to the musical exploration.

Similar ideas have already been formulated by Puckette [2004] and Cont [2008b];
Andrea Agostini and I have ourselves tackled these arguments in [Agostini and Ghisi,
2013], mentioning a divide between a ‘performative’ and a ‘speculative’ approach.!

! According to Hagan [2014], ‘speculative’ should be replaced with ‘notional’, since the former
“would suggest that that composers working with CAC do not know what their results will be with
each program”, whereas “most seasoned composers have some idea of their algorithm’s output,

3.1. Real-time computer-aided composition 61

An overview of the questions raised by the real-time/off-line dichotomy can be found
in [Seleborg, 2004].

Among the examples of processes easily achievable within bach, but hardly pro-
grammable in off-line CAC environments, one might cite: live recording of notes into
a proportionally notated score; interactive symbolic granulation of an original score
into a new one, filled in real time; customizable sequencing, for instance implement-
ing mechanisms of perturbation of the flow of time; reactive meta-score scenarios,
where modifying a given note immediately affects the rendering of a certain process,
such as the creation of certain sequences of notes. We will encounter these and other
examples during the continuation of this thesis.

In traditional CAC environments, there is no relationship whatsoever between
the physical time (the time it takes for a composer to obtain results via the computer
music tools), and the musical time (the time of the output score). On the contrary,
in a reactive environment, a flexible degree of connection can be established: for in-
stance, some portions of physical time could match with the time of some generated
score raw material (to be further refined); or the two concepts can coincide, envis-
aging a symbolic computer-aided improvisation system, whose running outcome is
indeed a growing score.

This was the motivation at the core of the development of bach. At the time of
writing, Andrea Agostini and I have been working on the library for almost seven
years; although a few of our desiderata have not been tackled yet, we feel that the
library has reached a certain level of maturity. It is currently used as the basis for
numerous high-profile artistic and research projects, and we estimate that its current
active user base amounts to about 1500 people. Since 2015, we have started to widen
the scope of bach via a series of extension libraries (the ‘bach family’, [Ghisi and
Agostini, 2017]), each of which shares with bach the core philosophy and the basic
programming principles, but at the same time proposes a different point of view on
computer-aided composition. The first extension of bach is named cage [Agostini
et al., 2014]; dada, the library developed within the framework of this thesis, is the
second one.

Section 3.2 briefly describes the scope and the characteristics of bach and cage;
section 3.3 introduces the dada library—designed to deal with non-standard inter-
active interfaces handleing music generation and composition—, and offers some
usage examples in my recent works; section 3.4 addresses the issue of bridging the
gap between scores and instruments, discussing the concepts of ‘hybrid scores’ and
‘meta-scores’, and exhibiting examples of meta-scores used in my recent composi-
tions; finally, section 3.5 outlines the perspectives and future work on real-time CAC
within Max.

with only occasional surprises”. However, we never intended to state that composers have no
idea of their algorithms’ output; on the contrary, the puzzling word ‘speculative’ (a replacement
for Puckette’s even more equivocal word ‘compositional’) was meant to pertain to the semantic
areas of ‘contemplation’ and ‘abstract reasoning’, and did not have, in our view, a ‘conjectural’ or
‘theoretical’ nuance.

62 Chapter 3. Towards a Real-Time Computer-Aided Composition

3.2 Previous work: the bach paradigm

3.2.1 bach: automated composer’s helper

Since 2010, the library bach: automated composer’s helper provides Max with the
ability to handle and display musical scores [Agostini and Ghisi, 2013, 2015]. One
of its defining features is its seamless integration with the Max environment, which
allows it to communicate easily with any other process implemented in Max, or any
device connected to it: bach is meant to address a wide array of usage scenarios,
including traditional computer-aided composition (by means of its data processing
capabilities), management of electronic scores, and novel artistic practices taking
advantage of the real-time opportunities offered by the system.

The choice of Max as the host environment for bach was prompted by several
considerations, the most important being the ease of integration with a multitude
of processes and devices, including DSP, MIDI, visuals, and virtually any hardware
system. Another important consideration was the maturity and stability of the Max
graphical user interface and of its graphical API.

At the forefront of bach are two interface objects, bach.score and bach.roll, pro-
viding graphical interfaces for musical notation. The difference between the two is
that bach.score represents time in terms of traditional musical units (hence including
notions such as rests, measures, time signatures and tempi), wheras bach.roll im-
plements a proportional representation of time, in terms of absolute temporal units
(namely milliseconds). While bach.score is useful to represent traditionally notated
music (including more advanced scenarios, such as polymetric and polytemporal no-
tation), one should take advantage of bach.roll in order to represent non-measured
music, and also to provide a simple way to deal with pitch material whose temporal
information is unknown or irrelevant.

The two notation modules share a wide palette of common features. They can
be edited by both mouse and keyboard interface, and by Max messages; they sup-
port microtonality with arbitrary resolution; they have sequencing capabilities with
variable-speed playback; their notes can carry metadata (such as text, numbers,
breakpoint functions, filters, files, spatialization trajectories) inside dedicated con-
tainers called slots; the metadata can be retrieved during playback, and can be used
to control synthesizers and other physical or virtual devices (see fig. 3.1).

The bach library also provides Max with two new data types: rational numbers
and a nested list structure called /lll, an acronym for ‘Lisp-like linked list’. Rational
numbers are extremely important in order to express temporal units such as 1/2, 3/8
or 1/12 (that is, a triplet eight note) as well as harmonic ratios. Lisp-like linked lists,
strongly inspired by the tree structure typical of the Lisp programming language
(indeed, the whole conception of bach has been heavily influenced by existing Lisp-
based environments, such as OpenMusic), are essentially lists capable of containing
lists within themselves. In its simplest form, an [lll is equivalent to a generic Max
message, but [llls are meant to contain hierarchically arranged data: thus, they lend
themselves to representing complex collections of information, such as whole musical

3.2. Previous work: the bach paradigm 63

play [stop
—

—1 A /
/._ — e ML/ \

ec‘*‘o
[

Figure 8.1: A simple implementation of a basic synthesizer controlled by a bach.roll. Fach note
contains in its first slot, displayed as a breakpoint function, its amplitude envelope.

scores, but also sets of musical parameters isolated from the rest of the score (e.g.,
the pitches of all the notes in the score, with their temporal information removed).
Each score in a bach.roll or bach.score is indeed transparently handled as an [ll]
(see figs. 3.2 and 3.3), essentially representing voices, measure, chords and notes
via levels of hierarchy, and containing all their parameters [Agostini and Ghisi,
2012|. Beside dedicated messages and user interface operations, one can modify
existing scores also by simply altering the corresponding [lll, or build new scores by
creating an ([l with the correct syntax from scratch, as displayed in fig. 3.4 (c). As
a consequence, strictly musical operations such as rhythmic quantization are just
extremely specialized operations upon [llls (which of course can be performed only
if the [l itself is structured properly, and if its content is consistent from the point
of view of musical notation).

Most bach objects are designed to exchange [llls with each other, following the
usual Max metaphor of messages traversing patch cords, and consistently with the
overall philosophy of Max, which, from a formal point of view, mixes aspects typical
of functional languages, such as the dataflow paradigm, with other typical of object-
oriented programming and, more generally, state machines (most objects actually
maintain states, and taking this into account is essential to building virtually any
non trivial Max patch). The interaction of [llls with the Max ecosystem has some
slight intricacies the user has to be aware of; for instance, any bach object can output
lllls in two different formats, called native and text, according to the setting of the
out attribute. Each format has its advantages and drawbacks: essentially, the native

64 Chapter 3. Towards a Real-Time Computer-Aided Composition

|
e |
— :

ANS 74 1| I
) T

P

L
bach.keys roll
T~

482.86 (.) () O 205143 (.) O 12286 (..) () O 109143 (.) O

7200. 405. 100 O 7900. 405. 100 0 7600. 1105. 100 O 5900. 405. 100 O 6600. 405. 100 0 7400.905.1000

ach.portal @out t
&

((482.857143 (7200. 405. 100 0) (7900. 405. 100 0) 0) (2051.428571 (7600. 1105. 100 0) 0) 0) ((122.857143 (5900. 405.

100 0) (6600. 405. 100 0) 0) (1091.428571 (7400. 905. 100 0)0) 0)

Figure 3.2: The content of a simple bach.roll displayed in tree form (middle) and in textual 1111
form (bottom). There is one parenthesis level for each voice, one for each chord and one for each
note. Metadata such as clefs or keys are not displayed.

format, which is the default, is more efficient and poses no limitation to the amount
of data contained in each [lll, but its contents cannot be accessed by standard Max
objects; the text format, on the contrary, allows seamless communication with all
the standard Max objects, but has a ‘hard’ length limitation and is less efficient.
On the other hand, all bach objects can indifferently understand both native- and
text-format [llls. A thorough description of these low-level aspects can be found in
[Agostini and Ghisi, 2015].

In addition to the two main editors, the bach library contains a few other graphic
interfaces (among which a clock diagram, a Tonnetz diagram, and a floating slot
window) and a large number of modules operating upon [llls, both as generic data
structures (e.g., tools for reversing an llll or enumerating the elements it contains)
and as containers of musical data (e.g., tools for operating on musical scores accord-
ing to pitch-set theory principles, or for quantizing rhythmically a non-measured
score). A complete overview of the modules is proposed in fig. 3.5.

3.2. Previous work: the bach paradigm 65

dump body saveleveltypes E

TR
HA-H ™
TR

I
bach.keys score

() () 0 () () 0

) () () () (Q 0 () () 0 () (.

{))\() %% hm () () Sm ()) (.‘“))\(...) ()
IR S S ST NN

44 (/)\ 7900. 100 0 0 4 4 7200. 100 0 O 7600. 100 0 0 3 4 KDOO. 100 002 4 18 (&K&@
1/4 64 1/4 40 7400.100007200.100007500.10000

I

ch.portal @out t

(1/464)))(-1/20)(1/2 (7900.10000) 1/2 (7200.10000) 0) (1/2 (7600. 10000)0)0) 0
(

400. 10000)0) (1/8 (7200. 100 0 0) (7500. 100 O

)))
((1/440)))(3/4(7200.10000)0)0)
0)0

1/40))0)0)

Figure 3.3: The content of a simple bach.score displayed in tree form (middle) and in textual 1111
form (bottom). Levels correspond to voices, measures, chords, notes; intermediary levels corre-
sponding to beams (or, in principle, to any rhythmic grouping) are also present. Metadata such as
clefs or keys or level types are not displayed.

3.2.2 Comparison with other software

As stated above, the design of bach has been explicitly inspired by the PatchWork
family of Lisp-based CAC software: PatchWork itself [Laurson and Duthen, 1989,
OpenMusic [Assayag and al., 1999] and PWGL |Laurson and Kuuskankare, 2002|.
Besides the already discussed similarity between the Lisp tree and the [lll, there
is a correspondence between the ‘reductionistic’ operational and representational
paradigm of bach and the aforementioned software tools, based upon the hierarchi-
cal arrangement of the different parameters of a score and their individual manip-

ulation?.

Of course, the real-time nature of bach, and its ease of interoperability
with the larger infrastructure of Max, give it a distinct area of application of its
own. On the other hand, in computationally demanding tasks, such as combinato-
rial processes, and inherently non-realtime operations, such as batch processing or
generation of sound files, traditional CAC environments largely outperform bach.

The relation of bach to other software tools for dealing with musical representa-

2For an instance of a deeply different approach to the treatment of symbolic musical data,
focusing on the intertwinement among the score parameters rather than their orthogonality, see
the Strasheela system [Anders et al., 2005], and the discussion in chapter 4.

66 Chapter 3. Towards a Real-Time Computer-Aided Composition

bach.arithmser 0 12

bach.arithmser 6000 7200 100

tb clear

clear, addchord 1 (0

bach.arithmser 0 12
(6000 500 100)), sel all,

) | all
bach.iter @out t copy, unsel ai

o

* 500 expr $i1 * 100 + 6000

L !

@
% bach.wrap 1 sel all, cents = 6000+(chordindex-1)*100,
addchord 1 ($1 ($2 500 100)) @ $1($2500100)) | orcol ai ()
! 1
—4 0 4 0 4 0 4
bt b Gt G

(a) () (c) (d)

Figure 3.4: Four equivalent ways of generating a portion of chromatic scale in a bach.roll: (a)
adding notes one by one via addchord messages; (b) setting the values of each parameter indepen-
dently; (c) building the 11 containing the whole score information; (d) using scripting to create
a middle C, copy it twelve more times, and assigning the proper pitch to each note. (A fifth way
would be introducing the notes one by one via the graphic user interface.)

tion, or other complex data structures, in real time (such as MaxScore [Didkovsky
and Hajdu, 2008|, InScore [Fober et al., 2012], FTM [Schnell et al., 2005] and MuBu
[Schnell et al., 2009]) should also be remarked. To some extent, bach also shares
with projects such as Antescofo [Cont, 2008a| and NoteAbility [Hamel, 1997] the
goal of providing advanced sequencing capabilities. Each of these tools has its own
strengths that distinguish it from all the others, such as the graphical quality of
musical typesetting, or the richness of the data representation. The idea at the
basis of bach is that all its modules form a coherent computer-assisted composition
environment, and its very goal is to make live computer-assisted composition, in a
responsive, interactive world.

3.2.3 Extending bach

In the early stages of the development of bach, the scope of the project grew quite
rapidly, along with the number of modules included in the library; within a few
months, bach was provided with a large set of basic tools. After about three years
of development, there was a compromise to strike between sustainability and growth
of the library. Since many of the ideas we had in our personal wish list had little
to do with the scope of the modules inside bach, we started organizing the new
modules, as organically as we could, in a series of different libraries, each inheriting
from bach the basic principles of real-time computer aided composition, as well as
some datatypes (rationals, lllls) and programming patterns (such as the lambda
loop).?

The simplest way to build Max modules based on bach functionalities is to create

3This does not mean that the number of modules in bach is by now fixed (almost every recent
release of bach has included some new modules, and this trend is likely to continue), but that the
scope of bach will not change: handling symbolic data for traditional music representation, display
and editing.

3.2. Previous work: the bach paradigm 67

‘o ‘o‘baCh

automated compo: s helpel

r .
@ | Basics: reg, length, depth, print, post, portal, args
‘; Basic llll operations: join, prepend, postpend, wrap, flat, rev, rot, insert, subs, replace, prepend, repeat
@ | More operations: lace, delace, change, funnel, period, reduce, reshape, scramble, slice,
5 split, stream, swap, thin, group, pad, resample
§ Elements: filter, filternull, is, contains, sieve, nth, pick, lookup, pack, keys
= Comparisons: |=, <, <=, ==, >, >= tree
@ | Sets: intersection, union, diff, symdiff, belong, cartesianprod ™) o O
Ordering and organizing: sort, dsort, poset, nearest, keychain, classify |
Searching: find, locate Qe w0 D
Data sharing: read, write, readsdif, writesdif, shelf, value, pv Joho tngo ;J;;W IR
Threading: defer, deferlow
Constraint programming: constraints
§ Arithmetics: +, -, *, /, -, I/, %, expr, abs, clip, pow, round, prod, sum, minimum, maximum, minmax
7| Integers: convertbase, dlwsors, coprime, prime, fact, factorize, gcd, lcm, partition
Combinatorial: perm, comb, bin
Series: arithmser, geomser, primeser, coprimeser ratnum
Calculus: derive, integrate, dx2x, x2dx, reducefunction
Statistics: histo, ean, stdev, variance, median, mode, skewness, kurtosis, quantiles
Interpolation: interp, weights, scale, autoscale,
Miscellanea: counter, bitdecode, fft graph
& | idmatrix, idvector, diag, minfo |
é’- cross, norm, normalize °
g | det, rank, trace, im, inv, ker cartopol, poltocar, r2mc, mc2r)
§ getrow, getcol, submatrix f2me, mc2f, float2rat H
£ | trans, mtimes, mpow 3,
gausselim, linearsolve m2jitcellblock % mod"
adj, eig, extractbasis, wellshape m2matrixctrl, matrixctri2m mod+
mrandom mod-
8| iter, collect dict2Illl, lli2dict
%- step random, urn path2llll
2| mapelem wrandom, wurn
g pipe| drip |randomdrip %
<
z mapchord bacht_reeZomtree, omtree2bachtree pc2mce circle
g quantize, score2roll mcp2c
] transcribe be:athox,zbeatunbox posetinfo
chordrey, tierev meen, Neme, meapprox primeform
chordrot, restrot @[| dizcurve, di2line, ezmidiplay zsearch
combinevoices g slot2curve, slot2line compl
fromear, toc&r, mono 3| | slot2function, slot2filtercoeft ifunc
g‘ istruct
playkeys ivec
g tonnetz
3 score roll slot S S 0 S S W
8 N B @ Q) M
° .)& e Mo |2
3 <
Miscellanea: wordcloud, hypercomment

Figure 8.5: Overview of the bach library (the bach. prefix has been omitted from all module names).

68 Chapter 3. Towards a Real-Time Computer-Aided Composition

‘abstractions’, which is: named patcher saved to disk and reusable as a subpatchers.
The bach library contains two modules, bach.args and bach.portal, designed to equip
abstractions with essentially the same functionalities that Max externals have.

Another possible way of extending bach is to take advantage of its public API,
which provides the ability of handling lllls and rational numbers just like bach
objects do, and can be freely downloaded from the bach website. The API is mostly
written in C, because C is the language of the Max SDK upon which it is based,
even though it contains some C++ modules for specific purposes. The API can be
roughly divided into two major sections:

e Tools for manipulating /llls and rational numbers. With the exception of
some basic, low-level operations, most of these tools have a one-to-one corre-
spondance with bach objects: for example, there are functions called /Il rev(),
1L rot() and Ul flat(), directly matching the bach.rev, bach.rot and bach.flat
objects. All these functions provide a large toolbox for building more com-
plex operations upon [llls, and are widely used within bach itself, in the more
complex objects that manipulate musical data.

e Tools for helping the exchange of lllls between Max objects: these tools essen-
tially provide an abstraction layer built upon the plain Max object types, and
some functions for facilitating the interaction of Max inlets and outlets with
the lifecycle of lllls. All the objects that manipulate [llls should make use of
these tools.

It should be added that the API is thoroughly documented, and includes the source
code for some example objects: so any C or C++ programmer with a good under-
standing of the Max API and the basic principles of the bach library should be able
to build his or her own bach-compatible Max objects. On the other hand, the API
does not expose currently any feature for working with the internal score represen-
tations that are specific to the bach.roll and bach.score objects, nor for accessing
the musical typesetting engine, but this situation might change in the future.

3.2.4 The cage library

The first project that was built starting from bach is the cage library [Agostini
et al., 2014|, designed to perform a set of standard computer-aided composition
tasks (such as, among the others, generation of scales and arpeggios, or computation
of symbolic frequency modulation), as well as a number of convenience operations
(such as parsing of SDIF files, or audio rendering of a score).

Whereas bach features a wide majority of modules accomplishing low-level tasks
(such as [lll processing or formatting) and a certain number of more advanced mod-
ules, still performing conceptually basic operations (such as rhythmic quantization
or constraint solving), all the modules in cage are designed to accomplish higher-
level musical tasks. For instance, whereas bach.rev performs a reversal on a given
I1ll, its counterpart cage.rev performs a score retrogradation (see fig. 3.6).

3.2. Previous work: the bach paradigm 69

D

start end
2 3 4 5 6 7
% T o S E——— I —t 1
% e e o e o o o S e i S B 1 o s
=S L M ! + ¥ 4
cage.rev
end start|
2 3 4 5 6 7
% I + I — = T —
% —— —— I:?‘lll’ll‘\l'l‘?ll"l'l.} 'II
3 3 #° 49 7 T JI &

Figure 3.6: The simplest way to perform a score retrogradation is by using cage.rev. All the
temporal meta-information, including markers, temporal slots and pitch breakpoints, is handled
properly.

All the cage modules are abstractions containing bach modules, along with reg-
ular Max objects: hence, they are intrinsically open-source. This was a deliberate
design choice: cage, supported by the Haute Ecole de Musique in Geneva, has a
pronounced pedagogical connotation. By double clicking on any module, users can
learn how standard computer-aided composition techniques can be programmed in
Max; also, they can easily copy and paste snippets of patches, or modify any process
in order to tailor it more tightly to their needs.

However, in the simplest case, users do not need to perform any of these advanced
operations: most of the tools in the cage library are capable of operating directly
on the syntax of the [lll representation of a score, making patching easier and more
readable. Most of the time, in order to accomplish a given task, one can simply copy
and paste a portion of a module’s help file, or even directly experiment with the help
file itself. Due to this facility of usage, Andrea Agostini and I have often suggested
cage as a first approach to bach: users can get accustomed to cage processes, before
delving into the intricacies of [/l handling or score representation.

As shown in fig. 3.7, cage addresses a certain number of standard CAC scenarios,
including:

e Generation of pitches according to different deterministic or stochastic crite-
ria: e.g., arranged into scales, arpeggios or harmonic series, or according to
probability weights or random walks.

e Management of melodic profiles, similarly to the Profile library in OpenMusic
and PatchWork. Melodic profiles can be generated according to various prin-
ciples, or extracted from preexisting sequences of pitches, and subsequently
manipulated through compression, inversion, stretching, reversal, approxima-

70 Chapter 3. Towards a Real-Time Computer-Aided Composition
.%o ‘ cege
o] > 7]
[scale, arpeggio, harmser | profile.gen chain, life c E chroma.fromcentroid | §
2 » lumbricus) g E’ chroma.tocentroid %
&| [noterandom, notewalk g markov.synthesis |2 & | |chroma.frompeset | @
- chroma.topcset S
weightbuilder profile.perturb markov.analysis ®
tonnetz.rot
tonnetz.flip
profile.filter, profile.mirror -
profile.rectify 3
profile.snap, profile.stretch %”
L2
7]
8 | Basics: mix, join, rev, rot, slice, extract, spacer, wedge fm, rm %
ﬁ Time and pitch: timestretch, timewarp, transp,|fregshift cascade~, pitchfilter 2
Voices: remapvoices, explodevoices looper, granulate 3
Interpolation: rhythminterp, chordinterp, agogics, rollinterp | ezptrack, virtfund B3
Meta-scores: meta.engine, meta.header dynamics 2
Miscellanea: closer, envelopes B
Audio rendering: ezsynth~, ezsampler~
Fundamental frequency: sdif.fzero.toroll | sdif.fzero.pack, sdif.fzero.unpack ‘é’
m
Markers: sdif.markers.fromroll sdif.markers.pack, sdif.markers.unpack =
sdif.markers.toroll]
Peaks: sdif.peaks.toroll sdif.peaks.pack, sdif.peaks.unpack
Partial tracking: sdif.ptrack.toroll sdif.ptrack.pack, sdif.ptrack.unpack,

sdif.ptrack.assemble, sdif.ptrack.resolve

Figure 3.7: Overview of the cage library (the cage. prefix has been omitted from all module names).

tion to a harmonic grid, perturbation, filtering, and more.
Helper tools for stochastic processes.

Score handling, that is, various operations for performing high-level treatments
of whole musical scores, including circular rotation, concatenation, transpo-
sition, retrogrades, slicing, and mixing; formalization of rallentando and ac-
celerando, and generic temporal distortion of a score; harmonic and rhythmic
interpolation; partial tracking (that is, assigning to individual voices notes
from a given sequence of chords). This category also features two modules for
meta-score handling, where a meta-score is a concept akin to that of maquette
[Agon and Assayag, 2002, as implemented in OpenMusic, but aiming to be
fully integrated with bach and Max on the one hand, and more general on
the other hand (for a thorough description of the concept of meta-score and
its implementation, see section 3.4). Finally, two tools for audio rendering
of scores, respectively through sampling and synthesis also fall in this broad
category.

Processes inspired by electroacoustic practices, or emulating operations typi-
cally performed on sound: these include pitch and frequency shifting, ring and
frequency modulation, virtual fundamental estimation, filtering, looping and
granulation.

3.2. Previous work: the bach paradigm 71

e Cellular automata and L-systems. These tools allow generating one- and two-
dimensional automata (including John Conway’s ‘Game of Life’), as well as
fractals by substitution, with completely customizable rules. On the other
hand, they do not provide any graphical interface for such processes. Modules
for creating Markov chains also belong to this category.

e High-level tools for musical set theory. This category includes modules per-
forming conversions among pitch class sets, chroma vectors and spectral cen-
troids [Harte et al., 2006, and performing geometrical operations on a Tonnetz
representation. Notice that the bach library includes a number of low-level
and graphical tools for musical set theory, such as a clock diagram, a Tonnetz
graphical editor and interface, and a module calculating the interval vector of
a chord.

e Management of SDIF files: bach includes two objects for reading and writing
raw SDIF files, which are complemented by cage tools for high-level conver-
sions (e.g., importing into a bach.roll object partial tracking, chord sequence
or marker analyses a SDIF files, and vice-versa).

On the other hand, since cage implements a number of widely used CAC pro-
cesses, a certain number of modules are explicitly inspired by libraries already ex-
isting in other environments, such as the Profile [Malt and Schilingi, 1995| and
FEsquisse |[Fineberg, 1993; Hirs and editors, 2009] libraries for Patchwork [Laurson
and Duthen, 1989], which have been subsequently ported to OpenMusic.

A comprehensive description of the cage library can be found in [Agostini et al.,
2014].

72 Chapter 3. Towards a Real-Time Computer-Aided Composition

3.3 dada: non-standard user interfaces for computer-
aided composition

The bach and cage libraries date back, respectively, to 2010 and 2013. This thesis
introduces a new library, dada—the third library of the bach family. The dada
library, based on the bach public API, collects, documents and organizes most of
the tools I have developed for this thesis, namely non-standard musical interfaces for
interactive computer-aided composition and music generation. This section outlines
the rationale behind the dada library, and provides an overview of its modules,
detailing, whenever meaningful, if and how I have used them in a musical project.

3.3.1 The scope of dada

Although bach features a certain number of interactive, graphical objects, all of
them essentially implement established representations of music, be they traditional
scores or alternative but widespread representations such as the clock diagram or
the Tonnetz. This is both a strength and a limitation: it is a strength, inasmuch
as it allows bach to be a general-purpose, highly adaptable tool; it is a limitation,
inasmuch as it limits the scope of bach as a toolbox for experimental, non-standard
musical practices and research.

The dada library is meant to fill this gap, focusing on real-time, non-standard
graphical user interfaces for computer-aided composition. Hence, most of dada’s
modules are interactive user interface modules; nonetheless the library also features
a small number of non-Ul modules designed to complement the operation of some
of the interfaces in the library.

The philosophy behind dada is profoundly different from the one which informed
bach or cage: dada is to bach what a laboratory is to a library. Under the umbrella of
non-standard, strictly two-dimensional graphic user interfaces, it is somehow hetero-
geneous by design. All of its components participate of a graphical, ludic, explorative
approach to music; most of its components also refer to the fields of plane geometry,
physical modeling or recreational mathematics.

4. A preliminary alpha version (dada 0.1) is

The dada library is open-source
planned to be released at the end of 2017; nonetheless, dada is by design an open
box, and additional modules might be added in future releases.

Fig. 3.8 shows the collection of all dada modules at the time of writing. The
modules included in the dada library can be roughly divided into three categories:
tools for corpus-based composition, tools for physical or geometrical modelling of
music, and tools to handle rule-based systems and games. All interfaces in dada
share a palette of common messages. Differently from bach, all dada interfaces
also share a palette of reserved keys for particular interface actions (such as ‘z’ for
zooming, ‘s’ for scaling, ‘n’ for changing the pitch of a note, and so on): keyboard

letters are hence used as ‘editing tool’ switches.

‘https://github.com/bachfamily/dada, www.bachproject.net/dada

https://github.com/bachfamily/dada
www.bachproject.net/dada

3.3. dada: non-standard user interfaces for CAC 73

@@‘-]O'a[ln

» i -
g | base Ierra!n‘segtment
@ | segment errain.rect~
@ terrain.ellipse~
g- § analysis.centroid terrain.spiral~
g < | analysis.chroma
2 % analysis.count gg
g analysis.duration catart bounce kaleido terrain~ o
5 analysis.loudness ; EEEE - — S
= ysis-loL i S S aane) r = - “;:‘
o analysis.minmax ; NADu \]
8 lysis.rhythmdistrib \ \ == M= 2"
2 analysis.r ythmdistri 5852 A - |2
analysis.spread s == - |@
////:J > c
Sma ' T —
- . - o)
distances bodies life platform g
< = T T H
o unll ®
' §
H
= : 3 HY
| || B aa"
<
graph machines
1
A {3
I &= \,, stage
[2] - ¥ = L
9 [= P i :)r j
S [== g Tl mA
& 2lF]
7 b 2anlle
music~
Vasec Visec 1sec 2sec Ssec 1min m m’- ”‘
. v o 1o
E multibrot
°
S
3
Z
=

boids

swoaysAs paseq-ainy

sj93lqo asepayu|

life.info

Figure 8.8: Overview of the dada library (the dada. prefiz has been omitted from all module names).

74 Chapter 3. Towards a Real-Time Computer-Aided Composition

dada.segment @segmentsize beat/2
bach.pick 1234 5

J | I 1 I

G

Figure 3.9: Segmentation of a bach.score into grains having length equal to half of the beat (i.e.
an eighth note). The first five grains are displayed in the bottom part of the patch.

Most modules are designed to be easily used in combination with
bach.ezmidiplay, to obtain a quick MIDI rendering of the musical outcome, or with
bach.transcribe, to record the result of the process in symbolic form in a bach.roll.

3.3.2 Tools for corpus-based composition

The tools in this category are designed to handle the usage scenarios as illustrated
in chapter 2.

The overall system relies on four different modules: dada.segment, performing
segmentation and feature extraction; dada.base, implementing the actual database
engine; dada.catart and dada.distances, two-dimensional graphic user interfaces ca-
pable of organizing and interacting with the extracted grains.

3.3.2.1 Segmentation

The dada.segment module performs the segmentation of a score, contained either
in a bach.roll (as proportionally notated musical data) or bach.score (as classically
notated musical data), in one of the following manners:

e Via markers: each marker in the original bach.roll is considered as a cutting
point at which the score is sliced. All the slices (grains) are then collected.

e Via equations: a single value (in milliseconds for bach.roll, or as a fraction of
the bar or beat duration, for bach.score) or more generally an equation can
be used to establish the size of each grain. In bach.roll this equation can take
as variable the grain onset, and is especially useful when segmentation needs
to be performed roughly independently from the musical content itself. In
bach.score, voices are pre-segmented into chunks of measures (according to a
pattern established via the ‘presegment’ attribute), and each chunk is in turn

3.3. dada: non-standard user interfaces for CAC 75

dump body labelfamilies

I ————
AUl — —
DA] L LA O = s s = A
o ! —
1 1 | T F
)

dada.segment

]
n n u

gm T gm
W‘_—LE'J = Igm: B —

.8

Figure 3.10: Segmentation of a bach.roll according to label families. Labeled items are automatically
enclosed in colored contours in the original bach.roll. Notice how families can overlap (in the
example above, one note is labeled twice, and hence assigned to two families at the same time).
The first three grains (corresponding to the first three label families) are displayed in the bottom
part of the patch.

segmented into grains whose duration is determined by the aforementioned
equation—possibly having as variables the measure number, the measure di-
vision (beat), and the measure overall symbolic duration (see for instance fig.

3.9).

e Via label families: differently from sound files, scores easily allow non-vertical
segmentations, where only a portion of the musical content happening in a
given time span is accounted for (see fig. 3.10). If labels are assigned to notes
or chords in the original score, a grain is created for each label, containing all
the elements tagged with such label.

The segmentation can be performed with overlapping windows, both on pro-
portional and classically notated scores, and standard windowing techniques can be
applied to MIDI velocities, if desired (see for instance fig. 4.3).

3.3.2.2 Analysis

Grain analysis is performed during the segmentation process. On one side,
dada.segment is capable of adding some straightforward metadata to the segmented

76 Chapter 3. Towards a Real-Time Computer-Aided Composition

module name ‘ description

dada.analysis. duration Get total duration (in milliseconds)

dada.analysis.count Get item count (for notes, chords, mea-
sures, voices)

dada.analysis. minmax Get minimum and maximum for a given
parameter (cents, onsets, durations, MIDI
velocities)

dada.analysis. centroid Get average pitch (also account for note
durations)

dada.analysis.spread Get standard deviation for pitches (also
account for note durations)

dada.analysis.loudness Get average MIDI velocity (also account
for note durations and rests)

dada.analysis.chroma Get chroma vector (also account for note
durations and MIDI velocities)

dada.analysis.rhythmdistrib Get rhythmic energy distribution, in

equally divided temporal bins (also ac-
count for note MIDI velocities)

Table 3.1: Score analysis modules in dada.

grains, such as their duration, onset, index, label (if segmentation is carried out
via label families) and notation object type (either ‘roll’ for bach.roll or ‘score’ for
bach.score); in case the grain comes from a bach.score, tempo, beat phase, symbolic
duration and bar number can also be added.

On the other hand, dada.segment allows the definition of custom features via a
loopback patching configuration named ‘lambda loop’ [Einbond et al., 2014]: grains
to be analyzed are output one by one from the rightmost (lambda) outlet, pre-
ceded by the custom feature name; the user should provide a subpatch to extract
the requested feature, and then plug the result back into dada.segment’s rightmost
(lambda) inlet. Feature names, defined in an attribute, are hence empty skele-
tons which will be ‘filled’ by the analysis implementation, via patching. This pro-
gramming pattern is widely used throughout the bach library (one can compare the
described mechanism, for instance, with bach.constraints’s way of implementing cus-
tom constraints [Agostini and Ghisi, 2015]), and allows users to implement virtually
any type of analysis on the incoming data.

Some ready-to-use abstractions are provided for quick prototyping (see fig.
3.12), a comprehensive list of the currently provided modules is found in Ta-
ble 3.1. Terminologies are mostly borrowed from the audio domain, even if they
are applied to symbolic data; hence dada.analysis.centroid will output an aver-
age pitch, dada.analysis.spread will output the standard deviation of the pitches,
dada.analysis.loudness will output the average normalized MIDI velocity, and so
on. The reason behind this choice is to underline the duality between this symbolic
framework and the digital signal processing approach. Moreover, since analysis

3.3. dada: non-standard user interfaces for CAC 77

- -

0 0 b

e S

lada.analysis.rhythmdistrib 48 @out t

10 5
dada.analysis.rhythmdistrib 48 @out t

bach.
L
bach.cartopol

bach.slice 1

bach.normalize @p inf @out t
bach.expr ($f1 > 0.8)

i}

bach.minmax @out t

L

bach.!/ 1

dada.analysis.rhythmdistrib 48 @out t

bach.fft

bach.cartopol

n/i”

II

bach.cartopol
|

bach.slice 1 bach.slice 1

@m
b=
-

—.

e omaia Gt o

bach.normalize @p inf @out t bach.normalize @p inf @out t

bach.expr ($f1 > 0.8)
I

L

i
bach.expr ($f1 > 0.8)

bach.minmax @out t
bach.!/ 1 W

most salient most salient most salient
subdivision: subdivision: subdivision:
temporal distribution: frequential distribution: temporal distribution: frequential distribution: temporal distribution: ‘ frequential distribution:

salience salience salience
mmmsnm mmmmﬁ m -

Figure 8.11: Computing most salient subdivisions via dada.analysis.rhythmdistrib and FFT. The
dada.analysis.rhythmdistrib module quantizes the temporal energy inside 48 temporal bins; bach.fft
converts them into their frequential (or spectral) representation, whose amplitudes are retained and
normalized so that the mazimum will be always 1. FEach bin in the spectral representation accounts
for a specific regularity in the temporal data. The first amplitude above a given ‘salience threshold’
(in our case, 0.8) will hence correspond to the most salient subdivision.

modules are standard Max patchers, it is extremely easy for users to inspect and
adapt them to different behaviors. Analyzed features are collected for each grain,
and output as metadata from the middle outlet of dada.segment. Analysis modules
can also be used outside this database creation scenario; as a simple example, see
fig. 3.11, where a ‘most salient subdivision’ is computed for some scores starting
from the dada.analysis.rhythmdistrib module, via FFT.

3.3.2.3 Database

Once the score grains have been produced and analyzed, they are stored in a SQLite
database, whose engine is implemented by the dada.base object. Data coming
from dada.segment are properly formatted and fed to dada.base, on which standard
SQLite queries can be performed (see figure 3.12).

Some higher-level messages are provided to perform basic operation and to han-
dle distance tables (i.e. tables containing distances between elements in another
table, useful, for instance, in conjunction with the dada.distances module, as ex-
plained below). Databases can be saved to disk and loaded from disk.

3.3.2.4 Interfaces

The two interfaces for dada.base are dada.catart and dada.distances.
The dada.catart module provides a Cartesian two-dimensional graphic interface
for the database content. Its name is an explicit acknowledgment to the piece of

78 Chapter 3. Towards a Real-Time Computer-Aided Composition

dump body
I

ada.segment @segmentsize 1000
@hopsize 500 @ftonset 1 @ftcustom
centroid loudness spread

bach.keys feature @maxdepth 1
I
"format for entry" bach.keys centroid spread loudness @maxdepth 1

. i) I =

dada.analysis.centroid dada.analysis.loudness

\dada.analysis.spread

addtable scores (content) (onset f) (centroid f) (loudness f) (spread f),
adddistancetable dists scores

dada.base corpus
bach.print

Figure 8.12: Example of segmentation using dada. When the patch opens, a table named ‘scores’
is created in the database named ‘corpus’, collecting all the grains. This table has five columns:
the content of the grain (a bach Lisp-like linked list representing the score), the onset the grain
originally had, its centroid, loudness and spread (all floating point numbers). When the ‘dump
body’ message is clicked, the score contained in the bach.roll is segmented and analyzed by centroid,
loudness and spread (respectively computed via the dada.analysis.centroid, dada.analysis.spread and
dada.analysis.loudness modules inside the lambda loop). The database is then filled, and standard
SQLite queries can be performed on it.

3.3. dada: non-standard user interfaces for CAC 79

xfield spread colorfield

]/ M

10400

10000

9600

9200 e

8800 , Gy N
. . . at
8400 s § &Y 4
i 0 e W -
Aol »
o' %o, .o
8000 ® @ of
o',: 4

7600

7200

6800

6400

6098 200 400 600 800 1000 1200 1400 1600 1800 = 2000 = 2200 = 2400 = 2600 = 2800

Figure 3.13: The dada.catart object displaying the database built in figure 3.12. Fach element of
the database (grain) is represented by a circle. On the horizontal axis grains are sorted according
to the spread, while on the vertical axis grains are organized according to their centroid. The colors
scale is mapped on the grain onsets, while the circle size represents the grain loudness.

software which inspired it. Grains are by default represented by small circles in a
two dimensional plane. Two features can be assigned to the horizontal and vertical
axis respectively; two more features can be mapped on the color and size of the
circles. Finally, one additional integer valued feature can be mapped on the grain
shape (circle, triangle, square, pentagon, and so forth), adding up to a total number
of five features being displayable at once (see fig. 3.13).

The dada.distances module provides a distance-based representation of the
database content. Points are the entries of a table, characterized via their mu-
tual distances, contained in a different table. They are represented in a two-
dimensional plane via the multidimensional scaling algorithm provided by Wang
and Boyer [2013|. Edges are drawn only if the corresponding distance is below a
certain threshold (see fig. 3.14). The resulting graph is navigable in a Markov-chain
fashion, where distances are interpreted as inverse probabilities. As for dada.catart,
features can be mapped to colors, sizes and shapes.

Both in dada.catart and in dada.distances each grain is associated with a ‘con-

80 Chapter 3. Towards a Real-Time Computer-Aided Composition

colorfield

sizefield

maxdistedge

Figure 3.14: The dada.distances object displaying a portion of the database built in figure 3.12.
As for the dada.catart case (fig. 8.13), each element is represented by a circle. Grains are only
positioned only according to a certain defined distance function (in this case, the distance of their
centroids, spreads and loudnesses, as tridimensional vectors), the positioning in the Cartesian plane
is carried out via the multidimensional scaling algorithm provided by Wang and Boyer [2015].

tent’ field, which is output either on mouse hovering or on mouse clicking. The
content is usually assigned to the bach [lll representing the score. The sequencing
can also be beat-synchronous, provided that a tempo and a beat phase fields are
assigned: in this case the sequencing of each grain is postponed in order for it to
align with the following beat, according to the current tempo (obtained from the
previously played grains).

A knn message allows to retrieve the k nearest samples for any given (z,y)
position. A system of messages inspired by turtle graphics is also implemented, in
order to be able to move programmatically across the grains: the setturtle message
sets the turtle on the nearest grain with respect to a given (x,y) position; then the
turtle message moves the turtle of some (Az, Ay), choosing the nearest grain with
respect to the new position (disregarding the original grain). The turtle is always

3.3. dada: non-standard user interfaces for CAC 81

displayed in dada.catart with an hexagon.

The database elements can be sieved by setting a where attribute, implementing
a standard SQLite ‘WHERE’ clause. The vast majority of the display features
can be customized, such as colors, text fonts, zoom and so on. In combination
with standard patching techniques, these features also allow the real-time display,
sequencing and recording of grains (see section 3.3.2.5 for an example).

3.3.2.5 Usage examples

The following paragraphs provide a few usage examples for the previously described
system. Some of them were implemented for my own compositions; others were
simple exploratory tools which did not lead to any musical piece as outcome.

Corpus-based score and audio montages. The usage scenario which shaped
the creation of most modules is corpus-based montage, both in symbolic and audio
form. The contents of a bach.roll or a bach.score object, or the audio contained in
a file, are split into grains, according to a variety of highly customizable criteria
and approaches. Then, the grains are analyzed, collected in a SQLite database and
represented in a two-dimensional graphical visual interface according to a choice of
descriptors attached to each grain: in this way, ‘similar’ grains (according to pairs
of descriptors) are placed near each other in the graphical interface. The user can
subsequently build a new score, constituted of a montage of the grains, by navigating
the interface via mouse or message interaction (see figure 3.13). This system was
used to organize and concatenate scores and samples for the last event of I mille
fuochi dell’universo (see section 2.8). Similar tools are used to navigate through
generated audio for La fabrique des monstres, as explained in section 3.4.4.

An interactive tonal centroid palette. The patch displayed in figure 3.16 seg-
ments (in grains of 1 second each) and then analyzes the first eight Lieder from
Schubert’s Winterreise. During the analysis process we take advantage of the tonal
centroid transform proposed by Harte et al. [2006], and implemented in the cage
library. The horizontal axis displays the phase of the tonal centroid with respect to
the plane of fifths, while the vertical axis displays the phase referred to the plane
of minor thirds (both range from -180 to 180 degrees). The analysis subpatch com-
puting the phase of the projection of the tonal centroid on the plane of fifths is
displayed in fig. 3.15 (the one for minor thirds is analogous). Both colors and
shapes are mapped on the Lied number.

One can use this representation as a sort of ‘interactive tonal centroid palette’:
each vertical line refers to a note in the circle of fifths, each horizontal line refers
to an augmented chord in the circle of minor thirds. If we focus especially on the
horizontal axis, we notice for instance that red circles (belonging to the first Lied,
Gute Nacht, in D minor) are mostly scattered around the vertical line referring to
the D, or that orange triangles (belonging to the second Lied, Die Wetterfahne, in
A minor) are mostly scattered in the region around A.

82 Chapter 3. Towards a Real-Time Computer-Aided Composition

A record mechanism is implemented, and the collected notes are displayed at
the bottom of the image. The score can then be saved, quantized or exported.

dump velocities, dump cents

N B

{ S

L S
bach.flat 3
T bach.flat

bach.mc2pc /’
[4

ge.chroma.frompcset

cage.chroma.tocentroid

bach.pick 1 2 @out t
- 7

atan2

bach.* 57.29583
(radiants to degrees)

-

Figure 8.15: The subpatch computing the phase of the projection of the tonal centroid of a bach.roll
grain on the plain of fifths. All the pitches, converted into pitch classes, are weighted with their own
MIDI velocity and gathered in a chroma vector, whose tonal centroid is computed via the algorithm
proposed by Harte et al. [2006]. The first two components of the tonal centroid (referring to the
plane of fifths) are picked, and the angle formed by the vector is computed.

Path between chords. Starting from a certain number of base chords, a dataset
of chords is generated by iterated application of simple operations (addition of a
note, deletion of a note, pitch shift of a note within a certain range); the obtained
dataset is then sieved with respect to some basic conditions (e.g., absence of octaves).
A chord distance is then computed, based on the formula

dist(4, B) = % (max(|Al,|B|) — |AN B|)+(max(|pc(A)], [pe(B)])—[pe(A)Npe(B)])

where A and B are two sets of pitches, and ‘pc’ is a function mapping each pitch (and
by extension each set) to its corresponding pitch class. This function is designed to
work as a sort of ‘edit distance’ between the sets, yielding 0 if and only if A = B,
and penalizing modification of pitches different from octave jumps. Indeed, the left
term adds a 1/12 penalty for each note belonging to one set but not to the other,
while the right term adds a full penalty for each pitch class present in one set but
not in the other.

Chords are hence represented in a dada.distances interface, and a Markov path
between them, starting from the base chord, is generated (transition probabilities

3.3. dada: non-standard user interfaces for CAC 83

Fifths:
£ = -
Thirds: = - = = = = = = = =
E 1D 418, tonalcentroid5th 127.37, t@nalcentroidmifi8rgl -22.58,46 s8 ”‘inteﬂ)lmid, title' winter02.mid
e q° ® o @ @
e ° ® [} (]
o @) (] J ° °
. o ¢ o R o 08 § .0 ° p
L] * [
o 0 & O L
. * ® .o ' ® o .' Ay ° * ‘ A ’
o® . o PYPE R ° o,

° ‘gC d e

E ! by S Oo.g?;a ..CO. .#.
)

Figure 3.16: A patch displaying the database build from the first eight Lieder of Schubert’s Winter-
reise, organized by tonal centroids (the phase of the projection on the plane of fifths is on horizontal
azis, the phase of the projection on the plane of minor thirds is on the vertical axis). Both colors
and shapes identify the Lieder number (1 being the circle, 2 being the triangle, 3 being the square,
and so on). When the recording mechanism is turned on, grains can be played via mouse hovering,
and the bottommost bach.roll contains the recorded result.

84 Chapter 3. Towards a Real-Time Computer-Aided Composition

being proportional to the inverse of the distance). A set of features is extracted from
each chord, such as its mean pitch (‘centroid’), number of notes, extension, density,
virtual fundamental, tonal centroid (see previous example), relative triadicity (ac-
counting for how many major and minor triads are in the chord, normalized by
the number of notes).A dada.catart object displays the same database with respect
to a Cartesian choice of these features. The database can be sieved with respect
to these parameters. Figure 3.17 shows the overall interface for the tool, which
was designed to explore harmonic progressions in I mille fuochi dell’universo—and
eventually abandoned, in favor of a constraint-based approach.

1D 114, numnotes 5, number 114 |8

open collection
save collection

Chord filters
Notes: 2to 11

Extension: 0.00 t0 7.00 octaves
Relative Triadicity: 0.00 to 1.00

Uniformity: 0.00 to 1.00

3 o MIDI port

Py Driver IAC Bus 1 -

8%
Bpo EX .o
e . ¢ P
L]
-
0 100 800 s 1000 100 100 00 100 1500 1690 1700 1800 s900 2000 21

Figure 3.17: Interface for a chord exploration. FEach point represents a chord: the left diagram
shows chord connections according to a defined distance function (a sort of ‘edit distance’), the
right diagram shows chord positioning in a Cartesian feature space.

Rearranging beats. As a final example, consider figure 3.18, the first Bach in-
vention (BWV 772) has been segmented by beat. The measure number is displayed
on the horizontal axis; the position of the beginning of the grain inside the measure
(phase) is displayed on the vertical axis. One can send turtle messages in order
to navigate through the grains, so that one can read the complete score as it was
(patch mechanism at top left corner of the image), or only read the last beats of
each measure from last to first measure (top-middle part of the image), or move in
random walks across the beats (top-right part of the image).

3.3.3 Tools for physical or geometrical modelling of music.

The interfaces in this group share the idea that objects in space can lead to music
generation by means of geometry and motion.

3.3.3.1 Pinball-like bouncing

The dada.bounce module suggests a pinball-like scenario, where a certain number
of balls move inside a space delimited by a user defined graph, called ‘room’. The

3.3. dada: non-standard user interfaces for CAC 85

Read only last beats, Start from the middle, and
Read score normally from last measure to first | | follow a random walk inside
measure measures and beats

metro 1000

£
sel0123
Start from measure 1,

first beat setturtle (22 0) Start from measure 22,

\ N beat 1

y Start from measure 22,
Start from measure 1, il (e beat 4

last beat

setturtle (1 3)

setturtle (10 2) Start from measure 10,

beat 3
turtle (-1 0) Move left turtle (0 1) Move up
/ turtle (10 Move right Move down
v

® 0o TOo
0]
[
[
[
[
[
[
)
[
[
[
[
[
[
[
[
[
[
[
[
[
@

oo oo oo oo oo o o8|

measures

y
Rebar in 4/4 bach.keys turtle
()
3,
bach.replace score addmeasures

Figure 3.18: An example showing the manipulation of the first Bach invention (BWV 772), seg-
mented by beat, and rearranged so to play and record the last beats of each measure (starting from
last measure, and ending with first one). Notice how ties are preserved during the segmentation
process (e.g., between measure 6 and 7) of the upper bach.score, rebarred in measure 2 of the lower
one.

86 Chapter 3. Towards a Real-Time Computer-Aided Composition

B :

| | Y |
[

3 Selected ltems 5_ Selected Items —

0

4 g :

& = . g‘-—

b g —F =

' JE . E_E
— ' —

4 —_— 5 i — i —

e—r = & = 7 =

- — -— - 3 . ‘._RE—- &> F_

S—F— =

Figure 8.19: Two dada.bounce objects producing respectively a polyrhythm (left) and a more com-
plex pattern (right). Fach edge is mapped on a note which can be played or recorded as soon as the
the edge is hit.

ball movement is uniform (constant speed®, no gravity), except when a ball bounces
off an edge. Each edge contains metadata either as a couple of MIDI pitch and
velocity, or as a complex score; such metadata will be output whenever a ball hits
the corresponding edge. Information about the collision (identifying the point, the
edge and the ball) can be retrieved. Ball and room properties and metadata can be
changed dynamically.

Simple room configurations may lead to loops or polyrhythmic patterns; more
complex results are achievable by modifying the geometry of the room and the
number of balls (see fig. 3.19), or by using feedback loops as programming patterns—
e.g., by adding edges at each hit.

As a simple example of usage, consider bars 569 through 580 of I mille fuochi
dell’universo (described in section 4.4), corresponding to its 995th ‘event’, where a
pattern of string pizzicati is obtained as a retrogradation of the bouncing movement
displayed in fig. 3.21. The output score is shown in fig. 3.20.

5In order to avoid confusion with MIDI velocities, the term ‘speed’ is used in this context also
to refer to the velocity vector, and not just to its scalar intensity.

3.3. dada: non-standard user interfaces for CAC 87

aggrssivo e marcao, er guanto psibie
571 . —— >
. . .] 24 . -§ b = 3 ﬁr . "
o iz f J . Vin 4 % 3
w. [= L u-[7} TSRS T L 3 7;&
Y = Pl == r dm pogressiamate S
PP v sempr; ove possbile evitare e orde vuote per i pizzicatl. cresc. semp aggresiv e marca, per quanigpossbile
I aa 2 P2 hes P obe e o N - jlararal
Vi | Yy = o5 ——% ¥ — = == v |G § = i
3 I Ea IR = D ———
. Ll Myl =
. EE, S .5
¥, it it A= RS0l T f L Py .\ ¥ — - by
L == be, ve. |2F i P4
P L. s ovo sl v I corde vt er pizzet —
= > ba ' be -
o e e e e e e s) ==
= = G [R L o [9y i e ¥y T e ég Y ¥
e sempre .
TR R—— s A
sn :
> >
- iy 5 b e
vméqﬁ‘l | (2R '7 Xr / .7;7'1 Vin
= v g
s .
5 £ b —_ b
il £ i =T 3 — — Ve
v s —F— i
L
g T o T P -
P === == I D W 5 Iy S | ¥ Ve
i v bel vy Ed = K
. be
b b . . b, J W - s s
o [= S EE EESESHT] 0_9_'7_3777 = v;«.;av-/' P
din sonpre
,57; be —i— he — A— o be > 2 : be
Vin. |Gy - T b Vi |t = : X =8t %
5 3 a——— - > S £ 7 ==
O i o ot _ = S S B S
Py : b 5] 5 ve x 5 be
Via |y 57 =% 7 T 3 —1 L] vie |52 Fia] b T 7 g1 e i
© =t =] & g 4 1
H B F E -
B s e e e e o =
be £
Ve / ve [M e v PR B LBy
8 T TR =
be.
L - _ 5 L 3 .
Cb. |2 o Cb. Vil . ¥ ¥ 3 £ & b & %
3 o, 5
—— — »

Figure 3.20: 1 mille fuochi dell’'universo, event 995, strings excerpt, bb.569-580, displaying the
quantized version of the bouncing movements of fig. 3.21

Excerpts

e | mille fuochi dell’universo, event 995, bb. 569-580 (ensemble only):
data.danieleghisi.com/phd/snd/IMFDU_ev995_ensemble.aif |mp3.
Original patch is displayed in fig. 3.21, string parts are displayed in fig. 3.20.

o | mille fuochi dell’'universo, event 995, bb. 569-580 (with electronics):
data.danieleghisi.com/phd/snd/IMFDU_ev995.aif |mp3.

3.3.3.2 Gravitation

A different paradigm is enforced by the dada.bodies module, modelling a two-
dimensional universe with gravity, containing two types of objects: ‘stars’, fixed
circles, from which a certain number of radii stand out, each representing a note
(see fig. 3.22); and ‘planets’, which orbit around the stars, according to a customiz-
able gravitational law, and trigger the playback of radial notes whenever they orbit
‘close enough’ to a star. The MIDI velocities of the notes are scaled according to

http://data.danieleghisi.com/phd/snd/IMFDU_ev995_ensemble.aif
http://data.danieleghisi.com/phd/snd/IMFDU_ev995_ensemble.mp3
http://data.danieleghisi.com/phd/snd/IMFDU_ev995.aif
http://data.danieleghisi.com/phd/snd/IMFDU_ev995.mp3

88 Chapter 3. Towards a Real-Time Computer-Aided Composition

TURN MODIFICATIONS
ON/OFF

TURN BOUNCING AND
RECORDING ON/OFF
modify

ball]
velocities _/

\ _

\

\

\

ri1e|ru 500

X /” b4 modify inner shapes
]

_ scale component $1 1.1

rotate ball $1 ($1 deg), scale ball $1 1.01

he———
— \ ;,_"F:: —
Q - E—
. ;
\ ER T] E

L g : : , i
| . — _ i = 5 == 3 ' = E—
&

o e be—— —] —h— . - — L FE
vmgI === : = = ?

¢ e [be— — — #E— be—o Fhe—
= = i— = v 3 +— - - i3
Ve ; T = T f
i e 3 3 i3 373 0 3 5333
$F= T 3P st = L :3: L: s =

3 ~
e B o ii | - E 2
3 S ——— -
==
g 1 ERE ERRER = BES L 3 . C— : a g
o 3 E 27 7 s — EF — E N LF—
— ' i

[

Figure 3.21: 1 mille fuochi dell’universo (bb. 569-580): patch used to obtain, retrograde and quantize
the bouncing movement originated from a dada.bounce object, displaying four balls (one for each
string player), each confined in a similar octagon (but each octagon has edges triggering different
notes). Each octagon contains inside itself a smaller shape, which, when the rightmost toggle is
on, progressively grows in size, so that steady patterns gradually turn into a more chaotic motion.

After the retrogradation, the opposite effect is obtained, the four players gradually synchronizing
their pizzicati.

3.3. dada: non-standard user interfaces for CAC 89

=% e - \
s L
Figure 3.22: Configuration of dada.bodies gradually distorting the loops of Gerard Grisey’s Vortex

temporum, used in the sizth episode of Itaca (also see fig. 3.24). At right: a zoomed version of
one of the stars (corresponding to the flute’s notes).

the distances between planets and stars. As a metaphor, one could imagine ‘stars’
as being ‘radial aeolian harps’ played by the planets while circling around them.

This model is a convenient representation to handle continuous modification of
loops. In a situation with a single star and a single planet, one could set the distances
and speeds so that the planet motion around the star is circularly uniform (conve-
nience methods are provided), resulting in a perfectly looping pattern. Modifying
the planet position or speed, ever so slightly, results in a time warping operation
on the loop. Adding more stars will trigger complex scenarios. Chaotic loops and
attractor-like situations can be achieved via this system.

I had already used a crude prototype of dada.bodies when I was writing the sixth
episode (‘Dei tempi’) of the collection Itaca (2012), for groups of children, ensemble
and electronics, which also had a pedagogical overtone; the starting point for the
episode were the arpeggi of the flute, clarinet and piano, at the very beginning of
Gerard Grisey’s Vortex temporum. Each arpeggio was assigned to a star; a planet
was positioned near each one of the stars in circular motion, so to obtain, initially,
a simple reiteration of each arpeggio (hence reproducing the beginning of Vortex
temporum). However, each planet being also subject to the gravitational pull of the
other stars, the loops are gradually distorted (see fig. 3.24 and fig. 3.22). Episode
four (‘Intermezzo’) of the same collection was written using the same technique,
with pitches taken from portions of Brahms’s ‘Intermezzi’ (see fig. 3.23).

Figure 3.23: A wiola pattern in fourth episode of Itaca (b.126).

Excerpts

e [taca, section 6 (‘Dei tempi’), b.171:
data.danieleghisi.com/phd/snd/Itaca_DeiTempi.aif |mp3

http://data.danieleghisi.com/phd/snd/Itaca_DeiTempi.aif
http://data.danieleghisi.com/phd/snd/Itaca_DeiTempi.mp3

90 Chapter 3. Towards a Real-Time Computer-Aided Composition

oo e te *F 2 T2 o —, e el = T, ey e fe ’F g fe o e F:FF’\:!" _
Fl. L —— = i P e — 7 — £ t I ——— =
s S s s 5 s G
(dim.) e POresc_ o _
o do im oo P i} e 2o e - e do i2 o e oo o
CLP. [30 T | [T | = P e e T r h; ie | = T ¥ P o
& L = = + e ¥ ﬁ —
(@)~ bperese. oo
|
Pf.

Figure 8.24: Temporal distortion, via dada.bodies, of the initial loops of Gerard Grisey’s Vortex
temporum, used in Itaca (b.179).

3.3.3.3 Kaleidoscopes

The dada.kaleido module traces the disposition and movement of a certain number
of polygons in a kaleidoscope-like container. A certain number of shapes (polygon
or ellipses) are positioned inside a 2- or 3-mirror chamber. The 2-mirror chamber
has a couple of mirrors of equal length hinged at the origin, producing circular
‘snowflake’-like patterns. The angle between the mirrors is set by the user via the
count attribute, an integer number n > 2 relating to the mirror angle « in the
following way: o = 7/n: for n = 2 mirrors are at right angles, for n = 3 they are
two sides of an equilateral triangle, and so on (see fig. 3.25). For n = 2 and n = 3,
a third mirror can be introduced [Gay, 1997, p. 210], closing the triangle formed by
the other two, hence extending the tiling to the whole plane.

The shapes inside the chamber can be modified either via the interface or via
a set of messages, such as ‘move’, ‘rotate’, ‘scale’ and ‘shake’. A combination of
rotation with a certain amount of shaking will result in an elementary yet effective
modelling of a hand rotating the body of a kaleidoscope.

Users can assign test points on the plane, so that the object may report whenever
any of the polygons, during a movement, hits a point (i.e. when the point enters a
polygon or any of its kaleidoscopic reflections) or releases a point (i.e. when the point
is no longer on the polygon, or on any of its kaleidoscopic reflections). Information
about the distances between test points and polygons can also be retrieved, and can
be used as control for symbolic or DSP processes.

I have extensively used these features while working on the music for Orogenesis
(video by Boris Labbé, see fig. 3.26). Each shape is associated with a portion of
audio file, which, like a vinyl, is only read, with variable speed, when a certain test
point (the ‘stylus’) is positioned over the shape. The speed, as well as the gain, can
be independently coupled with the distance between the test point and the polygons
(fig. 3.27). My usage of the patch aimed to exaggerate the speed mapping, in order
to enter the territory of digital noise and extreme aliasing.

3.3. dada: non-standard user interfaces for CAC 91

Figure 3.25: Same shapes reflected into different chambers of a dada.kaleido object, for increasing
values of the count attributes. Last row shows the 8-mirror version of the patterns, only available
form=2 and n = 3.

Excerpts
Some loops obtained for Orogenesis via the dada.kaleido-based interface:

e data.danieleghisi.com/phd/snd/orog_loopl.aif |mp3

e data.danieleghisi.com/phd/snd/orog_loop2.aif |mp3

3.3.3.4 Wave terrain synthesis

The dada.terrain~ module implements wave terrain synthesis [Roads, 1996, pp. 163—
167]: a function z = f(x,y) yields the ‘height’ of the terrain for each point of a
plane. Evaluating the function f on a specific path p : = = z(t),y = y(t) pro-
duces a one-dimensional function z = g(t) = f o p(t), which represents the wave
terrain synthesis along the path p. Wave terrain synthesis essentially constitutes an
extension of the ordinary wavetable synthesis to bidimensional lookup tables, and
it is traditionally implemented in this way, in order to lower computational costs.
A typical scenario is when the surface f is a direct product of sinusoids, such as
f(x,y) = sin(nmx)cos(mmy): in this case, by sampling the terrain on circular or
elliptic orbits p, one obtains FM-like timbres.

In the dada.terrain~ module, the function f(x,y) is however not defined via a
wave table, and is set via an explicit portion of C code compiled on-the-fly (see fig.
3.28). The wave terrain is displayed so that black corresponds to z = —1, white
corresponds to z = 1, and 50% grey corresponds to z = 0.

http://data.danieleghisi.com/phd/snd/orog_loop1.aif
http://data.danieleghisi.com/phd/snd/orog_loop1.mp3
http://data.danieleghisi.com/phd/snd/orog_loop2.aif
http://data.danieleghisi.com/phd/snd/orog_loop2.mp3

92 Chapter 3. Towards a Real-Time Computer-Aided Composition

Figure 3.26: A video frame from Orogenesis.

040590

highpass

Link to distance from shape v Link to distance from s|
0.31 1.21

0.00 0.99 0.00 0.00
1.00 1.01 1.00 1.00

787 ms

loop time 'shake amount

2.40 sA : .

by . automatically each m

- .
=2 Record: I record and rotate

record

0.0dB

Recall snapshot: Delete Snapshot
Create New Snapshot [EINEIE
Delete All Snapshots Save Snapshots § Open Snapshots

oo 10

Figure 3.27: Main patch to create the sound material from Orogenesis.

3.3. dada: non-standard user interfaces for CAC 93

staticfunction "double a = 1., temp = 1; for (long
i=1;i<16; i++, temp*=(i+1)) a += 1./temp;
return cos(35*(floor(3*a*x) + (3-a)*y*y));"

staticfunction "return sin(2*PI*x)*cos(2*PI*y);" staticfunction "return cos(30*PI*x*x*y);"

\

- _»

()

Figure 3.28: Example of the different wave terrains displayed in dada.terrain~.

Four auxiliary modules help producing the paths p: dada.terrain.segment~,
dada.terrain.rect~, dada.terrain.ellipse~ and dada.terrain.spiral~, respectively gen-
erating cartesian or polar coordinates for segments, rectangular orbits, ellipsoidal
orbits and spirals. These coordinates, produced at sample rate, are designed to be
used as input for the wave terrain module (see fig. 3.29).

As an example of application, the dada.terrain~ module was occasionally used
in I mille fuochi dell’universo in order to produce high aliased patterns, taking ad-
vantage of the inaccuracies of floating point numeric representation and arithmetics.
A radial function is defined as terrain, as in fig. 3.29, and then sampled via radial
segments starting at the origin. As the function outcome becomes more and more
sensitive to accuracy in input position, which is the case for subfigure (d), glitchy
effects appear. Patterns vary largely as the parameters of the segment (such as
length or angle) are modified ever so slightly.

Excerpts
A collection of 2-second patterns obtained via the wave terrain synthesis of fig. 3.29 (d), by slightly
varying one of the parameters of the driving segment (always starting at the origin):
e fixed angle a = 0.833, varying segment length (from L =1 to L = 33, steps by 1):
data.danieleghisi.com/phd/snd/wtglitch_len.aif |mp3
e fixed length L = 1000, varying segment angle (from o = 0.833 to a = 0.860, steps by 0.001):
data.danieleghisi.com/phd/snd/wtglitch_angle.aif |mp3

The dada.terrain~ module also supports the a ‘buffer wheel’ mode, where the
terrain is not set via an explicit equation, but is obtained as result of a morphing
between radially arranged buffers. Such morphing could be additive (result being a
simple crossfade) or multiplicative; the equation for the contribution of each buffer
can be set as a portion of C code compiled on-the-fly. As an example, consider fig.
3.30, where four instruments playing the same notes are arranged radially, and a
spiral path samples the wave terrain, yielding a morphing between the four sounds.

http://data.danieleghisi.com/phd/snd/wtglitch_len.aif
http://data.danieleghisi.com/phd/snd/wtglitch_len.mp3
http://data.danieleghisi.com/phd/snd/wtglitch_angle.aif
http://data.danieleghisi.com/phd/snd/wtglitch_angle.mp3

94 Chapter 3. Towards a Real-Time Computer-Aided Composition

phasor~ 0.5
ada.terrain,segmenl- polar 0 0 1000 2.6

0 3
P
——d

staticfunction "return staticfunction "return staticfunction "return
cos(sqrt(3.1416+theta) * 10);" cos(sqrt(3.1416+theta) * 100);" cos(sqrt(3.1416+theta) * 10000000);"

(a) ®) (c) (d)

Figure 3.29: Example of wave terrains getting more and more sensitive to the accuracy in input
position. The first three terrains provide no audio output (except for DC offsets); however, the
floating point arithmetics inaccuracies result in glitches when the terrain (d) is sampled through
radial lines.

Excerpts

e Morphing obtained by sampling the wave terrain with the four instruments of fig. 3.30 playing
an A3, via a spiral path:
data.danieleghisi.com/phd/snd/wtbuffers.aif |mp3

3.3.3.5 Miscellanea

For the sake of completeness, I shall also mention two other modules:

e the dada.stage module is an elementary editor and display for spatial disposi-
tion of elements, useful as a simple controller for multi-source two-dimensional
panning and mixing.

e the dada.nodes module performs interpolations (via inverse distance weight-
ing) among a set of notes disposed on the two-dimensional plane (fig. 3.31);

3.3.4 Rule-based systems, graphs, and music as a game

A certain number of tools explore the relationship between music, mathematics and
games, and how this relationship ramifies towards combinatorics, algebra, topology
and computer science (the link between canonical processes and topology being of
course well known [Hofstadter, 1999], as well as the link between art and games
[Huizinga, 1949], further interesting examples can be found in tools such as origami
[Andersen, 2012] or juggling patterns [Johnson, 2012; Macauley et al., 2003]).

The modules in this family share two important ideas. The first one is that
interesting emergent behaviors may arise from dynamical systems even when their
agents adhere to sets of extremely simple rules; this is well known, for instance, in

http://data.danieleghisi.com/phd/snd/wtbuffers.aif
http://data.danieleghisi.com/phd/snd/wtbuffers.mp3

3.3. dada: non-standard user interfaces for CAC 95

phasor~ 0.2

1
dada.terrain.spiral~ 0 397.88 2 0 0 i

\, trurnpet

live.gain~

Figure 3.30: Four buffers, each containing an instrument playing an A3 in pianissimo, are arranged
radially on a dada.terrain~. The terrain is then sampled via a spiral path, yielding a morphing
between the four sounds.

the study of cellular automata, swarm intelligence and in Chaos Theory. The second
idea is that digital scores may somehow indicate a form of ‘gamification’, i.e. the
usage of game design elements in non-game scenarios. As Paul Turowski points out,
there are fundamental similarities between musical scores (in any form) and digital
games:

Musical scores do not constitute the totality of a musical work; they
necessarily require human performance, even if only conceptually. To
perform music from a score is to actively take part in processes that
reify the musical work. [...] Similarly, digital games are an action-based
medium; though they exist objectively (at least partially) on some phys-
ical medium like a disc, the intended experience is the active interpretive
performance of the player. |Turowski, 2016, p. 2|

After all, playing videogames often resolves in following a (graphically notated)

96 Chapter 3. Towards a Real-Time Computer-Aided Composition

!

1 1

T
p synthesize

)

— S
A

e

©

Figure 8.81: A Max patch with a dada.nodes module, interpolating between a collection of notes,
and rendering the result with a sinusoidal wave.

rhythmical score, not dissimilar to a percussionist playing his or her own part in an
orchestra: in both cases, the ability to stay within an acceptable level of precision
will affect the outcome. If the score is hard-coded, gamers can progressively learn
the precise timing for their actions; if the score is open, gamers are obliged to
play a prima vista. This idea was, incidentally, at the basis of the original (and
later abandoned) concept for Any Road: two live gamers follow a (hard-coded)
digital score—an actual videogame—to trigger audiovisual events, with the goal
to match their timing precisely, so that they fit with an orchestral layer (also see
section 2.5.3). Turowski [2016] provides a more in-depth analysis of the relationships
between notation and digital games.

There is one last striking connection between games and computer-aided com-
position, and it involves the concept of ‘surprise’: Jesse Schell underlines the
importance of surprise in games, asserting that “surprise is a crucial part of all
entertainment—it is at the root of humor, strategy, and problem solving. Our
brains are hardwired to enjoy surprises” [Schell, 2014, p. 37|. Similarly, surprise
represents in my workflow the most important feature of computer-aided compo-
sition: having outcomes that valuably differ from my expectations is a source of
confrontation and inventiveness; in this respect, composing is also, partly, a game,
in which, as a composer, I try to find stimuli for my own brain.

3.3.4.1 Cellular automata

The first module in this family is dada.life: a graphical interface for two-dimensional
cellular automata, on square or triangular grids. Cellular automata are rule-based
systems, consisting of a regular grid of cells, each in one of a finite number of states
(such as ‘alive’ and ‘dead’). A set of cells called ‘neighborhood’ is defined relative to
each specific cell. Given a configuration of states, a new generation can be created

3.3. dada: non-standard user interfaces for CAC 97

oA ROROROROROR
%@@Q@ﬂ&ﬁﬁﬁﬁ
a@@@@@@@@@@a
@@@W@W@W@%@
%ﬂﬂﬂﬂﬂﬂﬂﬂﬁ@

d@@ﬁ@@@@@@%
5006660666

Figure 3.32: A Tonnetz is a two-dimensional pitch lattice with a central point, from which pitches
are then obtained by adding two base intervals; in this case fifths (horizontal axis) and thirds
(diagonal azes).

according to a given rule, usually a mathematical function, determining the new
state of a cell depending on the current states of the cells in its neighborhood. The
most famous cellular automaton is arguably Conway’s Game of Life. Extremely
complex patterns can arise in cellular automata, even from simple rules. One might
identify some primary types of configurations:

Still lifes: configurations that do not evolve, i.e. configurations for which each new
generation coincide with the previous one;

Oscillators: patterns that after a certain number of steps N end up coinciding
with the original configuration (the minimal N satisfying this property being
called the ‘period’);

Spaceships: oscillators that move in space, i.e. patterns that after N steps end up
coinciding with a translation of the original configuration;

Gardens of Eden: configurations that cannot be reached from any other configu-
ration.

A Max module handling two-dimensional cellular automata was already included
in cage; nevertheless the dada.life object improves the approach, by making it inter-
active, more customizable and faster. The customization possibilities are not limited
to colors and sizes: rules themselves can be defined either via attribute combinations
(for simple scenarios similar to Conway’s Game of Life) or via a portion of C code,
compiled on-the-fly—a more agile approach than cage.life’s Max patchers.5.

I have extensively experimented with dada.life’s automata, especially with tri-
angular grids. This choice is motivated by my interest in the Tonnetz structure. A

5The fact that cage.life is an abstraction is consistent with the design of the whole cage project,
as explained in section 3.2.4.

98 Chapter 3. Towards a Real-Time Computer-Aided Composition

Tonnetz is a bidimensional lattice designed to represent neo-Riemannian transforma-
tions [Cohn, 1998|. The traditional Tonnetz is generated by repeatedly transposing
a central pitch via perfect fifths (horizontal axis) and major thirds (diagonal axis,
or vertical axis in square lattice representations); more generally, a Tonnetz can be
generated by any choice of base intervals, or can even be modelled upon diatonic
scales |Bigo et al., 2015]. Representing a Tonnetz via a triangular grid, as shown in
fig. 3.32, is a clever choice, since it connects each note with all and only its closely
related ones (the roots of its closely related keys).

One can imagine to use the triangular grid as basis for a two-states cellular
automaton, having as cells the Tonnetz elements: cells can be ‘on’ (playing) or ‘off’
(silent). Studying the automaton patterns will result in musical sequences. Most
importantly for me, studying the automaton oscillators will result in harmonic and
melodic loops.

As an application example, consider Come un lasciapassare, a piece for orchestra
and electronics, subdivided in five small movements. The middle movement is a pas-
sacaglia based on an harmonic loop determined by an oscillator in a two-dimensional
cellular automata, as shown in fig. 3.33.

1: Triangular loadbang

stayalive 3, born 2
4

E2 B2 F#3 C#4 Ab4 Eb5 BbDS F6 c7

F#2 C#3 Ab3 Eb4 Bb4 F5 Cc6 G6

C#2 Ab2 Eb3 Bb3 F4 C5 G5 D6 A6

Eb2 Bb2 F3 ca4 G4 D5 A5 E6

Bb1 F2 c3 G3 D4 A4 = BS F#6

c2 G2 D3 A3 E4 B4 F#5 C#6

G1 D2 A2 E3 B3 F#4 C#5 Ab5 EbS|

Al E2 B2 F#3 C#4 Ab4 Eb5 BbS

E1 B1 F#2 C#3 Ab3 Eb4 Bb4 F5 C6

| [~
bach.transcribe bach.ezmidiplay
i

Figure 3.33: The harmonic cycle for the third movement in Come un lasciapassare, as an oscillator
of a two-dimensional cellular automata played on the Tonnetz.

The harmonic loop is sustained by the vibraphone, and then transferred to a
synthesizer towards the end of the movement. Two pianos, one within the orchestra
and a recorded one, play the exact same loop respectively in rallentando (from four
times to a quarter of the standard speed) and accelerando (from a quarter to four

3.3. dada: non-standard user interfaces for CAC 99

times the standard speed), also removing some of the chords (the process is depicted

in fig. 3.34).
_Q'- bcl“:- 1y ‘Jg‘
Loop: *ﬁ%%mhi
E rﬂr Cad *i g_:‘

1x (J=65) Vibr. >Synth.
0.25x Pf.2 \ Pf.1

Figure 3.34: Scheme of the harmonic loop arrangement for the third movement of Come un lasci-
apassare.

The two pianos are widely panned, so that a stereophonic rallen-
tando/accelerando effect is obtained, all across the movement, resulting in a strange
palindrome form. To break the symmetry, three equally spaced interventions of a
recorded voice recite fragments from Shakespeare’s Sonnet No. 123 (‘No, Time,
thou shalt not boast that I do change’). Last intervention is truncated (‘the pyra-’),
and only completed at the very beginning of the piece (-mids’), suggesting that the
entire movement should be conceived as if to be played in a circular, looping fashion.

It should be remarked that several composers have shared and share my interest
in the application of cellular automata to music; among these, I shall mention Mauro
Lanza’s John Conway in Gondola (where they are played on structures similar to
step-sequencers), and Andrea Agostini’s Conway Boogie- Woogie.

VIBRAFONO
‘motore acceso, velocia lentissima /
T tor on, speed: very siow

- .

-l ss = s / T3 Jx]
Pere. III | P — 3 i ; (5 L
o E3 " Ead ie = F
N —
7] giey de o o
f

-

Figure 3.85: Beginning of the 3rd movement of Come un lasciapassare (0.8): the Vibraphone
sustains the harmonic loop; the piano plays the same loop in rallentando, starting at four times the
Vibraphone speed, with some chords removed.

Excerpts

e Come un lasciapassare, beginning of 3rd movement (b.98):
data.danieleghisi.com/phd/snd/CULP3.aif |mp3.

3.3.4.2 Swarm intelligence

The dada.boids module investigates swarm intelligence models. The object contains
a certain number of ‘swarms’ or ‘flocks’, each containing a certain number of ‘birds’

http://data.danieleghisi.com/phd/snd/CULP3.aif
http://data.danieleghisi.com/phd/snd/CULP3.mp3

100 Chapter 3. Towards a Real-Time Computer-Aided Composition

or ‘particles’, singularly represented on the screen as points or arrows. The move-
ment of each particle is dictated by a sequence of higher-level rules, usually in the
form of differential equations, accounting for the global behavior of the flock. Parti-
cles are traditionally called ‘boids’ [Reynolds, 1987], a shortened version of ‘bird-oid
objects’.

In the traditional boids scenario, three rules apply:

Separation: particles steer to avoid crowding local flockmates;
Alignment: particles steer towards the average heading of local flockmates;
Cohesion: particles steer to move toward the average position of local flockmates.

The dada.boids module is able to account for such rules, as well as a for the
presence of external barriers (obstacle avoidance) and winds. Moreover, each user
can define his or her own set of rules, by compiling on-the-fly a portion of C code.
Rules can have parameters, defining their position (such as the location of an obsta-
cle), their orientation (such as the wind direction), their intensity (such as the wind
speed, or the strength of a barrier), or, more generally, their behavior (such as a
threshold for particle separation). Some of these parameters can also be associated
to editable graphical user interface elements, such as points, vectors or lines—for
instance, users can modify the direction of the wind by dragging the tip of the corre-
sponding arrow, or the position of a barrier by dragging the corresponding horizontal
or vertical line.

In addition to their position and speed, particles can have a scalar intensity
value, and custom rules can be set to modify intensities along with speeds.

In practice, both built-in and user-defined rules are compiled functions that,
for each particle, take as input its state, together with the state of the entire flock
(coordinates, speeds and intensities of each particle), and yield as output, according
to the current value of their parameters, a speed vector, to be added to the current
particle speed (a ‘steering’ vector), and possibly a value to be added to its intensity.
By summing the contributions of all rules, one gets the discrete derivative of the
particle speed (and intensity).

Fig. 3.36 shows a screenshot of one of the patches that Andrea Agostini and
I developed for the pedagogical project Ariane#7, carried out at the Montbéliard
conservatory. The patch takes advantage of dada.boids, with a predefined set of rules,
as a controller to generate additive synthesis glissandi. Each particle is linked with
a sinusoid, whose frequency is mapped on the vertical coordinate. By modifying the
rule parameters, complex swarm behaviors appear, and interesting musical patterns
emerge.

3.3.4.3 Graphs

The dada.graph module is a simple graph interface and editor, also featuring two
automatic node placement algorithms provided by the Boost library [Siek et al.,

"http://numericariane.net

http://numericariane.net

3.3. dada: non-standard user interfaces for CAC 101

Number of Birds birds

fockof
ay flock of

Change
10
flock

Avoid Neighbours N
2 behavior

80
Steer Towards Barycenter

0.00 %
Align Bird Directions

100 %
Horizontal Barriers Repulsion

10.0%
‘Eni 4 Vertical Barriers Repulsion
me
100 %
Max Bird Speed

200
Exampies: [N Try some

|
Audio Output Settings gissets!
Show Help

T —— e
ERECC [| AT R S E——r—

Drag to move the barriers or modify the wind

Figure 8.86: A screenshot of the interface of Ignorance is Gliss, one of the patches developed for
the Ariane# project, making use of dada.boids in order to generate additive synthesis glissands.

2001]: the Fruchterman-Reingold force-directed layout Fruchterman and Reingold
[1991] and the Kamada-Kawai spring layout [Kamada and Kawai, 1989|. Similarly to
dada.distances, the graph can be also navigated in a Markov-chain fashion, starting
at a given point, and then choosing each following steps according to the edge
probability distribution (weights) and to a desired memory length.

A variation on dada.graph is the dada.machines module, essentially a graph
where each node represents some ‘machine’; i.e. a simple, prototypal operation to
be performed on one or more inputs. By default these operations are elementary
symbolic score transformations, such as transposition, retrogradation, circular shift,
splitting, merging, and so on; user-defined operations are also supported. In a way,
dada.machines represents a patch inside a patch, taking a score as input, processing
it via the transformation graph, and outputting the result; however its spirit is
more peculiar, and it was designed to be used with randomly generated graphs
(the ‘random’ message produces graphs where the number of machines of each type
matches a desired distribution). Via dada.machines one can apply a performative,
exploratory paradigm to music, somehow reversing the functional and ergonomic
relationship between algorithm and data.

We are used to operate on data via carefully designed functions, and to modify
them if the output result on a certain input is different from what we desire. As an
example, to create a symbolic distorted granulation of a given Mozart sonata, one
would spend quite some time designing the way the symbolic granulation should
be achieved and the type of distorsion modelling needed. Nonetheless, one might
reverse the principle, taking a random algorithm for granted, and carefully exploring

102 Chapter 3. Towards a Real-Time Computer-Aided Composition

L~ ———
bach.expr $i2 % $i1 == 0
(-

bach.mapelem

'\gﬁ
ach.pack vertices edges
bach.prepend graph

T

Figure 3.37: A simple patch displaying, via dada.graph, the lattice of divisors for an incoming
natural number.

input data in order to see if the results are interesting. If the algorithm is ‘complex
enough’, one might attempt to detect simple patterns (such as scales or counting-like
patterns) along with more complex ones.

Of course, operatively, it makes little sense to search for a counting ma-
chine by tweaking inputs of a complex, random algorithm—which would categorize
dada.machines module more as a mental experiment than a practical tool. I have
often stated that music to me is an exploration—yet usually, I am aware of the
global landscape features; with dada.machines, on the other hand, I was attempt-
ing to produce an exploratory tool where even the landscape itself was somehow
unknown.

3.3.4.4 Videogames

Developing a game engine in Max might seem awkward; and indeed there is a large

number of environments specifically dedicated to the task (Unity probably being one

of the most popular®). Max is neither designed nor optimized for such scenarios.
It can however be interesting to have a (crude, primitive) game engine natively

Shttps://unity3d.com

https://unity3d.com

3.3. dada: non-standard user interfaces for CAC 103

dump body

|
Onset 0.900s Cents 6500.0 ...

random 100 ((transposeup 50) (transposedown 10)
(circularshiftleft 10) (circularshiftright 20) (split 20) (join 20))

5
-
b

T8

NP RS

Onset 5.471s Cents 9880.0
]

Figure 3.38: A patch featuring a dada.machines interface, generating network graphs containing
100 machines according to a distribution of some ‘atomic’ score operations (transposition, circular
shift, splitting and joining). The incoming score is processed via the randomly generated graph, and
the result is output.

coded in a Max external, since Max is a general purpose environment, and its
visual paradigm can be applied to a large number of scenarios® (digital audio, video,
lighting, actuators...), making it easier to communicate between different media and
techniques.

The dada.platform module, allowing the design of graphical interactions inspired
by platform videogames, has been imagined and developed with these considerations
in mind. Due to the complexity of designing a usable game engine, the module is
currently in a prototypal phase, slightly more than a ‘proof of concept’. Nevertheless
dada.platform already supports four categories of objects:

Blocks: fixed objects which can possibly be broken;

Coins: fixed objects which can possibly be taken;

9With one very notable, and unfortunate, exception: due to limitations with the Max ‘symbol’
structure, it is cumbersome, as of today, develop powerful and coherent tools in Max for generative
text.

104 Chapter 3. Towards a Real-Time Computer-Aided Composition

(XoK) bach inspector

Juan 3 VP l?q:[éT Coin 6 (Coin) |

Position coord 17.9.
Width width 0.75
Height height 1.
Name name Coin
Sprite sprite coin
Takeable takeable X
Taken taken O
Points Given pointsgiven 10.
Victory Points ... vpgiven 0
Music music roll ((0 (7900 100 100)) (.
Prototype prototype none

.

Figure 8.89: A screenshot of a dada.platform editor, where the properties of the selected coin are
displayed in the overlayed inspector.

Game characters: moving elements which can interact with any other element in
a more complex way. Game characters’ motion is governed by a crude phys-
ical modelling: characters may possess the ability to jump, run, fly, swim,
fire, glide, break elements, kill other characters, be killed by other characters.
Game characters, in turns, belong to one of the following categories: ‘usercon-
trol’ (currently at most one character can be controlled by the user, also called
‘hero’); ‘idle’ (do-nothing characters); ‘food’ (characters feeding the hero); ‘en-
emy’ (characters with the ability to harm or kill the hero); ‘bullet’ (projectiles
potentially killing the hero);

Portals: objects which can dislocate the ‘hero’ to a new position in the same level,
or to a brand new level (possibly saved as text or [l file).

All the properties of each object (such as its position, dimension, speed, abilities,
image or sequence of images used to display it, and so on) can be set or fine-tuned
via a dedicated inspector (see, for instance, fig. 3.39).

Linking game actions to musical events can be done in two ways. On one side,
some of the objects’ properties are musical scores (in bach.roll or bach.score syntax),
output from a dedicated outlet whenever coins are taken, blocks are broken, and
so on. More powerfully, any user action and any game interaction is notified via a
dedicated outlet, so that any musical process can be triggered from them, such as
sound synthesis, score production, video generation, and so on.

As it is not infrequent for objects in each level to share the same properties (just
like identical blocks, coins or enemies), prototypes can be created, in order to easily
handle multiple instances of indistinguishable objects.

Even more interestingly, some of the properties of an object can be sequences of
instructions, wrapped in levels of parentheses, written in a dedicated scripting lan-
guage, designed to modify the configuration of the object itself, or of other objects.
Instruction sequences are provided whenever a character dies, a block is hit, or a
portal is entered, and so on. Script commands allows a wide range of actions, in-
cluding: breaking blocks, assigning points or victory points, generating new objects,

3.3. dada: non-standard user interfaces for CAC 105

adding or removing abilities to characters, changing the state of objects, notifying
some action, changing level or position in the level, pausing the game, preventing
the hero from dying, winning, losing (‘game over’).

As a simple example, the script

(add hero ability fly) (goto level mynewlevel.txt at PipeRev
with (keephero 1)),

assigned to a given portal, provides the current hero with the ability to fly, and then
loads the level contained in the file mynewlevel.txt, at the position of the portal
named PipeRev, keeping the current hero state (including its properties, points and
victory points).

Each game character has a script sequence for its death (the ‘death sequence’);
as another example, among many others, if one needs to turn a character named
‘Juan’, whenever he eats a certain fruit, into a character named ‘SuperJuan’, who,
in turn, when killed returns to be a simple ‘Juan’ (like for the Mario/SuperMario
classic Nintendo duality), one might want to assign to the fruit a death sequence
along these lines:

(change hero (name SuperJuan) (idlesprite superjuanidle)
(walksprite superjuanwalk) (jumpsprite superjuanjump)
(flysprite superjuanswim) (height 1.625) (ext 0.35 0.35
0.825 0.825) (deathseq (dontdie) (remove hero ability die
during 2000) (change hero (name Juan) (idlesprite juanidle)
(walksprite juanwalk) (jumpsprite juanjump) (height 1) (ext
0.4 0.4 0.5 0.5) (deathseq)) (remove hero ability break)))
(add hero ability break).

Specific information about keywords and syntax can be found in the
dada.platform’s help file and reference sheet. I shall just underline, in particular,
how the last example is based on the fact that the fruit’s death sequence changes
the hero’s death sequence, which in turns contain an instruction to clear its own
death sequence, when triggered.

3.3.4.5 Miscellanea

For the sake of completeness, I shall also mention two other modules:

e the dada.multibrot module provides information about convergence or diver-
gence of generalized Mandelbrot sequences of the type z,11 = 2%4c on specific
input points z € C;

e the dada.music~ module, upon which Music (or The Discotheque of Babel)
is based (see section 2.1.4), provides a one-dimensional interface for all the
possible configurations of buffers, organized by size in samples. In other words,
it virtually provides a way to explore all the mono digital music. In practice,

106 Chapter 3. Towards a Real-Time Computer-Aided Composition

(coord 0.687405 0.030029) (belong 0') (numiter 57)

Figure 3.40: A dada.multibrot interface, displaying the information about the clicked point ¢ =
(0.687405,0.030029), for which the generalized Mandelbrot sequence zn+1 = 255" 4+ ¢ does not
converge (i.e. the point does not belong to the corresponding multibrot set), and the divergence is
detected after 57 iterations.

it is essentially impossible not to pick a white noise buffer, except for a few
quasi-cyclic Moiré-like patterns showing up when the zoom factor is a power
of two). The module relies on the GMP and MPFR libraries for arbitrary
precision arithmethic [Granlund et al., 1991; Fousse et al., 2007|, and supports
multiple sample rates and bit depths.

3.3.5 Comparison with other software

There is some correspondance between dada’s geometric approach and graphical
sequencers such as lannix [Coduys and Ferry, 2004] (as a matter of fact, a partial,
two-dimensional porting of Tannix into dada might be a good addition to the library).
On the other hand, the sequencing capabilities of lannix largely outperform dada’s,
whose purpose is not sequencing per se, but rather a seamless integration with the
bach and Max environment, allowing, among many other things, live recording of
scores.

The dada library shares with InScore [Fober et al., 2012] the interest in design-
ing interactive non-standard symbolic representation. The idea of using games to
interactively structure musical content resonates with Paul Turowski’s researches
and works, such as Frontier |[Turowski, 2016].

Some dada modules have been explicitly inspired by, or have correspondances
with, specific pieces of software. As stated above, the portion of dada dealing with
corpus-based composition has borrowed CataRT’s representation of audio grains
[Schwarz et al., 2006]. The dada.life module shares with Louis Bigo’s HexaChord
[Bigo et al., 2015] the possibility of visualizing trajectories on musical lattices such
as the Tonnetz—although the former focuses on the generation of cellular automata,
while the latter is tailored for analysis purposes. The dada.terrain~ module shares

3.3. dada: non-standard user interfaces for CAC 107

with WAVE! and with Stuart James’s work [James, 2005] the ability to perform
wave terrain synthesis inside Max.

One should also remark the relationship of dada with music applications such
as Bjork’s Biophilia, or Brian Eno’s generative apps, or with interactive web tools
11 or of the ‘A.I. Experiments’? (e.g.,
‘The Infinite Drum Machine’); all these cases share with dada an interest for a tight,

such as some of the ‘Chrome Experiments

creative connection between visuals, gestures and music, and for exploring the grey
area between interfaces and musical objects—however, if at least in Bjork’s case
the musical apps are themselves art objects, dada modules are designed as simple
instruments for composition (with possibly one notable exception: dada.music~).

3.3.6 Future work

The dada library is still in its infancy, and a certain number of additions and im-
provements are needed to complete it and to make it more usable.

First of all, thorough testing and optimization are necessary to make the library
more stable and the user experience more comfortable. Besides, a Windows porting
is also needed (currently the library only works on Macintosh).

One of the most important lines of development would be porting the inter-
faces on mobile operative systems (tablets, smartphones), where they might take
advantage of multitouch support. The most convenient way would be to exploit
the Miraweb package'®, developed by Cycling ’74, which allows mirroring on web
browsers specific interface elements contained in a patch; the possibility to add
Miraweb support to third party externals should be explored.

As far as the documentation is concerned, comprehensive help files and complete
reference sheets are already provided for each module. However, some video tutorials
would be a valuable addition for users who need to get used to the dada environment.

The set of tools for corpus-based composition can be improved in a number of
ways.

e The number of ready-made analysis modules should be increased, by attempt-
ing to bring into the symbolic domain important audio descriptors such as
roughness, inharmonicity, temporal centroid, and so on. The relationships be-
tween audio and symbolic descriptors could be in itself an interesting topic for
further investigation.

e The dada.segment module is currently able to perform score segmentation
based on markers, equations or labels; however it is not able to infer such
markers or labels. One of the interesting topics of future research might the
integration of a system for semi-automatic segmentation of scores, and a mod-
ule for pattern retrieval.

10http ://www.noisemaker.academy/wave-an-introduction-to-waveshaping-and-wave-
terrain-synthesis/

"https://www.chromeexperiments . com/

2https://aiexperiments.withgoogle.com/drum-machine

Bhttps://cycling74.com/articles/content-you-need-miraweb

http://www.noisemaker.academy/wave-an-introduction-to-waveshaping-and-wave-terrain-synthesis/
http://www.noisemaker.academy/wave-an-introduction-to-waveshaping-and-wave-terrain-synthesis/
https://www.chromeexperiments.com/
https://aiexperiments.withgoogle.com/drum-machine
https://cycling74.com/articles/content-you-need-miraweb

108 Chapter 3. Towards a Real-Time Computer-Aided Composition

e dada.catart and dada.distances are currently able to filter and display a cer-
tain table of a given database, but they are not able to interact with it, for
instance by adding or deleting entries, or by modifying column values (while
dragging the corresponding points on the display). One might imagine an
editing mode, where these tools also become capable of performing the afore-
mentioned operations.

e Better communication between dada.distances and dada.graph should be de-
vised; for instance: dada.distance should be able to output the database con-
tent in graph form.

The tools for physical or geometrical modelling are probably the modules in
dada whose development is most advanced; nonetheless:

e One could imagine trajectories in a dada.bounce interface to be potentially
also affected by a certain gravity field.

e The dada.terrain~ module should be provided with anti-aliasing capabilities—
which were not needed for my particular usage, but which should be a reason-
able feature to add for more general applications.

e More generally, one might desire more graphical sequencing tools; for instance,
an interface inspired by a two-dimensional version of Tannix [Coduys and Ferry,
2004] might be envisaged.

Finally, a certain number of improvements can affect the subset of tools dealing
with rule-based systems and graphs:

e dada.graph is already capable of displaying graphs where the vertices are notes;
it might also be provided with the possibility of displaying vertices as complex
scores, which would open the way for potentially interesting applications.

e Currently, dada.graph features two automatic node placement algorithms:
the Kamada-Kawai layout, supporting connected, undirected graphs, and
the Fruchterman-Reingold layout, supporting (potentially disconnected) undi-
rected graphs. The module employs such algorithms even for directed graphs,
however a dedicated algorithm should be provided for this case, deploying the
graph direction unambiguously, for instance, as left-to-right or top-to-bottom.
Some special graph types, such as trees or partially ordered sets, also require
different dedicated algorithms; trees might be displayed via the Reingold-
Tilford algorithm |[Reingold and Tilford, 1981], while lattice diagrams, such
as Hasse diagrams, might be displayed via the algorithm proposed by Freese
[2004]. Automatic graph type detection, triggering the corresponding place-
ment algorithm, might be a nice feature to have.

e Another nice feature to have in dada.graph would be the computation of min-
imum spanning trees and shortest paths.

3.3. dada: non-standard user interfaces for CAC 109

e The dada.machine module should support multiple inputs and outputs, and
should take advantage of dada.graph’s algorithms for automatically placing
machines on the canvas.

e The dada.platform object is currently little more than a ‘proof of concept’. It
would be interesting to issue something akin to a ‘call for scores’ for pieces
of interactive music based on it; this would probably also help detecting the
bugs and the flaws of the system.

110 Chapter 3. Towards a Real-Time Computer-Aided Composition

3.4 Meta-scores

Sections 3.4.1, 3.4.2 and 3.4.3 have been previously published, in a slightly different
form, in the article Ghisi, D., Agostini, A., and Maestri, E. (2016). Recreating
Gérard Grisey’s Vortex Temporum with cage. In Proceedings of the International
Computer Music Conference, Utrecht, Nederlands.

3.4.1 Hybrid scores as instruments

Since the 1950s, the role of musical notation has undergone a number of general-
izations (including graphical scores, gestural scores, morphological scores in elec-
troacoustic music). This evolution has been caused, in part, by the development
of electronic music. Schaeffer [1966] defined two kinds of score: a descriptive one
and an operational one; Seeger [1948] proposed the opposition between prescriptive
and descriptive scores. This differentiation is reinforced by the development of com-
puter music: as a matter of fact, both computer programming and composing are
mediated through notation [Nash, 2015].

Composers use scores to sketch musical ideas, formalize them into a script
and communicate them to performers; computer programmers, on the other hand,
mostly use symbol-based formal languages to convey instructions to a computer. In
both cases, notation is prescription. Both musical notation and programming are
systems of prescription of actions, specifically in the case of musicians that must
activate a vibrating body, and tasks, in the case of computers, that activate the
vibrating body of the loudspeaker mediating the intentionality of the musician: the
combination between the two defines a hybrid dimension of musical scores as par-
tially suggested by Emmerson [2009] and Sorensen and Gardner [2010].

Hybrid scores have a twofold meaning: on the one hand, they are targeted at
performers, to whom they prescribe actions which are typically, although not exclu-
sively, aimed at producing sound; on the other hand, they are targeted at computers
(‘digital performers’ [Mathews, 1963]), to which, through information encoded in a
programming language, they prescribe the production of sound or symbols, or even
more complex tasks [Maestri and Antoniadis, 2015]. In particular, hybrid scores are
capable of prescribing (and hence embedding) other hybrid scores within themselves,
which makes them very suitable to represent and process abstract, nested musical
structures.

Within this conceptual framework, the term meta-score will define a hybrid
score whose components are not elementary notational items (typically, single notes
or chords), but rather processes which can be further prescribed and described as
scores in their own terms. So to speak, we might say that a meta-score is a score
of scores (i.e., a score containing other scores), or a score for scores (i.e., a score
containing instructions to build other scores), or a score about scores (i.e., a score
containing descriptions of other scores), hence expanding the fundamental ideas
described by Mathews et al. [1974].

Importantly, in a real-time scenario, interactive hybrid scores are not simply

3.4. Meta-scores 111

objects to play, but rather objects to play with: in this sense, they contribute to
narrowing the gap between scores and instruments. Incidentally, the dada library
(see section 3.3) addresses a closely related issue, insofar as most dada modules are
interactive digital instruments capable of generating symbolic scores. This attitude
is dual to the concept of ‘instruments as inherent scores’ [Tomaés, 2016].

3.4.2 Meta-scores in bach and cage

Although software systems for computer-aided composition usually focus on the
manipulation of basic musical elements, such as notes and chords, or small-scale
phenomena, such as melodic profiles, some of these systems provide tools for dealing
with higher-level musical objects, treated as containers or generators of lower-level
elements, one notable example being OpenMusic’s maquette [Agon and Assayag,
2002].

When Andrea Agostini and I had the opportunity to develop the cage library
[Agostini et al., 2014], we decided to include in it two modules devoted to facilitate
the construction of meta-scores, and constituting one of the various subsets of the
library itself, namely the cage.meta subset. After careful consideration, we came to
the conclusion that we would not want to implement a dedicated graphical editor and
paradigm (which is what the maquette is, within the OpenMusic environment), but
rather to devise a design pattern allowing the usual bach notation editors/sequencers
(the bach.roll and bach.score objects) to be used for representing meta-scores, rather
than scores proper.

The choice of extending to meta-scores the concepts and tools used for repre-
senting traditional scores is motivated by the observation that, somehow, there is
no clear boundary between traditional scores and meta-scores. In fact, more of-
ten than not, symbols in any traditional score refer to extremely complex processes
and activities, be it the skillful control of the friction of a bow on a string, or the
triggering of complex sets of envelopes to be applied to the inputs and outputs of
a bank of oscillators. Moreover, in historical musical practices, there exist specific
synthetic notations representing complex musical figures, such as trills, mordents,
arpeggi, gruppetti and other ornamentation marks, or—even more specifically—the
numbers and symbols of figured bass. By not striking a dividing line between scores
and meta-scores we aim to focus on the similarities, and the continuum, between
the two, rather than on the differences. At the same time, we feel that a graphical
interface based upon the traditional notational paradigm can be perceived as more
‘neutral’ than a custom one, and as such is less likely to suggest specific compo-
sitional approaches or practices, and more inviting to be bent to each composer’s
creative needs.

The basic idea behind cage.meta relies upon the fact that scores contained in
bach.roll or bach.score objects are hybrid scores, as each of their notes can be seen
as a container of various, heterogeneous parameters: a small, standard set of basic,
required data which define the note itself in traditional terms (position in time,
expressed in milliseconds in bach.roll, in bars and beats in bach.score; duration,

112 Chapter 3. Towards a Real-Time Computer-Aided Composition

expressed in the same respective units; pitch; and MIDI velocity), and an optional,
user-definable combination of other associated data belonging to a wide array of
types (numbers, text, breakpoint functions, lists of file names, and more), contained
in slots.

Most importantly, in the cage.meta system, each note is associated to a certain
process, implemented in a Max patcher file whose name is assigned to the note’s
first slot. At initialization time, the patchers referred to by all the notes of the
score are loaded and individually initialized. At play time, when a note is met,
all its parameters and slot data are passed to the patcher it refers to. Although
this is not enforced in any way, the idea is that the patcher itself will activate its
intended behavior according to these parameters when they are received. Because
the duration of a note is passed as one of its parameters, it is possible for the
activated process to regulate its own duration according to it—but, once again,
this is not enforced by any means, and it is possible to implement processes whose
duration is fixed, or depends on other parameters. The same goes for the pitches
and the MIDI velocities: the fact that they are passed to the process does not mean
that the process itself must use them in any traditional, literal way—in fact, it can
as well ignore them altogether.

A cage-based meta-score is built in two distinct phases, taking advantage of the
modules named cage.meta.engine and cage.meta.header. The first phase is creating
the patchers implementing the processes that will be associated with the meta-score
events. Each patcher must contain one cage.meta.header module: at play time,
parameters from the referring note will not be passed to these patchers through
inlets, but through the third or fourth outlet of cage.meta.header, according to the
rendering mode explained below.

The second phase is setting up the meta-score system, constituted by a bach.roll
or bach.score object (which we shall refer to as the ‘score’ object from now on)
connected to a cage.meta.engine object in a ‘loopback’ configuration, such that the
two inlets of cage.meta.engine are connected respectively to the leftmost outlet of the
score object, from which all the score data can be output as one possibly large [lll,
and its one-but-rightmost outlet, from which the data of each note are output as the
note itself is encountered at play time. Also, the first outlet of cage.meta.engine must
be connected to the leftmost inlet of the score object: in this way, cage.meta.engine
can perform queries on it and set some of its parameters if required. Finally, a
different bach.roll or bach.score object (according to the type of the meta-score
object) can optionally be connected to the second outlet of cage.meta.engine, so as
to collect a rendered score, according to a different usage paradigm which will be
discussed below.

Now it is possible to write the actual meta-score, by introducing the notes, along
with their associated patches and slot parameters.

After the meta-score has been written, generated or loaded from disk, the load
message can be sent to cage.meta.engine: this causes the score to be queried for all
its file names and instance numbers, and loads each referred patch as many times
as required by the different instance numbers found in the score. Immediately after

3.4. Meta-scores 113

having being loaded, each patch is initialized, that is, it is sent three identifiers:
the engine name, the patcher’s own file name, and its instance number. These
three identifiers will be used at play time to route the parameters of each note to
the correct instance of its referred patch only, while avoiding conflicts with other
possible cage.meta systems running at the same time, in the same Max session. The
instance number handles the polyphonic behavior, in case the same process must be
triggered by overlapping notes; it can be either manually or automatically assigned.
Furthermore, depending on bach.roll’s or bach.score’s attributes, markers and tempi
can also be sent to all the patches at play time. Receiving notifications for markers
can be useful if, for instance, one needs to adapt the behavior of a process to different
sections of the score. As a convenient debug tool, selecting a note in the score editor
and pressing the ‘0’ key causes the corresponding referred patch to be opened.

In principle, the outcome of a run of the meta-score is just data, which can be
collected in any possible data structure, directed to any possible device or process,
and to which any possible meaning can be assigned. Each process, as implemented
in the corresponding patcher, receives data from cage.meta.header and produces a
result which can be routed, for instance, to a MIDI device, or an audio output: but
also, according to a less inherently real-time paradigm, to an audio buffer collecting
algorithmically-generated audio samples; or to a new score object which will contain
the ‘rendering’ of the meta-score. In particular, we deemed this last scenario to
be so typical and peculiar that it deserved some kind of special treatment. More
specifically, we expect most musical processes that users may want to implement
with the cage.meta system to produce either a real-time audio, MIDI or OSC result,
or a symbolic result (i.e., a score) to be built incrementally note by note, or chord by
chord. As an example of the former case, each cage.meta.header patch could contain
a synthesizer, generating a complex audio stream depending on the parameters of
the associated note; in the latter case, each patch could produce a complex musical
figure (e.g., an arpeggio) built according to the parameters of the associated notes,
and meant to be transcribed into a final score resulting from the run of the whole
meta-score. The latter case can be seen as a special case of the general one, but the
complexity of setting up a system for the very basic purpose of generating a score
starting from a meta-score prompted us to implement a specific mechanism allowing
a process patcher to return to cage.meta.header one or more chords in response to
a message coming from cage.meta.header itself.

More specifically, when the ‘playback’ attribute of cage.meta.engine is set to 1,
events coming from the score object are passed to each process patch through the
third outlet of cage.meta.header, and can be routed to any generic destination (real-
time audio, MIDI, OSC, or anything else): for example, the synthesizer implemented
in the process patch would set its own parameters according to the data received
from the meta-score, activate itself and produce an audio signal to be directly fed
to the audio output of Max.

On the other hand, when the ‘render’ attribute of cage.meta.engine is set to 1,
events from the score object are passed to each process patch through the fourth
and rightmost outlet of cage.meta.header, and one or more chords (that is, lllls

114 Chapter 3. Towards a Real-Time Computer-Aided Composition

featuring all the chords and note parameters, formatted in the bach syntax) can be
returned to the second and rightmost inlet of the same cage.meta.header module,
in a loopback configuration (‘lambda loop’). The cage.meta.header module then
returns the received chords to its master cage.meta.engine, which formats them in
such a way to allow an instance of the appropriate object, connected to its second
outlet, to be populated with the score being rendered. All this is preceded by a
sequence of formatting instructions sent to the destination bach.roll or bach.score,
and generated only if the render attribute is on. At the end of the rendering process,
the whole rendered score will be contained in the notation object connected to
cage.meta.engine’s second outlet. So, for example, a patch building an arpeggio
receives the parameters of note of the meta-score referring to it (and containing
the parameters of the arpeggio, such as starting pitch, range and speed) from the
fourth outlet of cage.meta.header, and returns the rendered arpeggio, as a sequence
of notes, to the rightmost inlet of cage.meta.header. The notes of arpeggio are then
sent by cage.meta.header to the master cage.meta.engine, which in turn formats
them as messages for the bach.roll or bach.score object connected to its second outlet.
Through this mechanism, this destination bach.roll or bach.score is incrementally
filled and eventually will contain the result of the whole rendering process.

When the ‘play’ message is sent to the score object, the playback and/or render-
ing of the meta-score begins: the score object starts outputting the notes it contains
according to their very temporality, and cage.meta.engine and cage.meta.header co-
operate to route the data associated to each note to the correct instance of the
patcher the note itself refers to. Another possibility is sending the score object the
‘play offline’ message: in this case, the score object starts outputting the notes it
contains in strict temporal order, but with the shortest possible delay between them,
without respecting their actual onsets and duration. This is somehow analogous to
the ‘offline render’ or ‘bounce’ commands that can be found in virtually any audio
and MIDI sequencer. As hinted above, this is useful to trigger non-realtime render-
ing processes, such as, typically, the rendering of a score through the ‘lambda loop’
of cage.meta.header, but also, for instance, the direct writing of samples in an audio
buffer, or any other kind of batch operation.

3.4.3 An analysis case study: Vortex temporum

As an interesting case study on the subject, Andrea Agostini, Eric Maestri and I
have recreated the first 81 measures (corresponding to numbers 1 to 20, according
to the numbered sections marked in the score) of Gérard Grisey’s Vortex temporum
in bach and cage, basing our work upon the analysis by Hervé [2001].

The basic idea behind our exercise is abstraction: we aim at building and ma-
nipulating a meta-score featuring operative compositional elements, rather than
pre-rendered symbolic processes. For instance, since the pitch choices in Vortex
temporum are strictly based upon a spectral paradigm, our meta-score will be solely
composed of spectral fundamentals.'* Every note in our meta-score is hence a fun-

1Tt might be worth pointing out that all harmonic series used by Grisey in the part of Vortex

3.4. Meta-scores 115

damental for some process, and the indices of harmonics that are built upon it and
used by the process are contained in the third slot of each note. We implemented
both an off-line score rendering and a real-time rendition, the latter through an
extremely simple synthesis process: for this reason, each note carries in a dedicated
slot an amplitude envelope information, in the form of a breakpoint function.

Each note of the meta-score triggers one of three different processes: an arpeggio,
an accented chord, or a long note. We shall now describe them in detail.

The first process is designed to generate all the arpeggio-like figures which char-
acterize and identify Vortex temporum from its very beginning. More specifically,
the arpeggiator renders all the 16th-notes figures, with the notable exception of the
accented piano and string chords at the beginning of each numbered section: these
figures have a different musical role (akin to attack transients), and will be rendered
by a different module, which will be discussed further.

Besides the fundamental note and the list of harmonic indices, the arpeggiator
also receives some additional content, contained in further slots of our meta-score:
the duration of each rendered note in the arpeggio (it is, in our case, constantly
1/16); the number N of notes composing a single arpeggio period (for instance, for
flute and clarinet at measure 1 we get N = 8, since the arpeggio loops after 8 notes);
and the profile for the arpeggio period, as a breakpoint function representing time
on the z axis, and the elements in the harmonics list on the y axis. The final point
of this function should always coincide with the starting one (to comply with the
looping).

Inside the arpeggiator patch, the arpeggio profile is sampled at N uniformly
distributed points, each of which is then approximated to the nearest element in
the list of the harmonics, which are uniformly distributed on the y axis, indepen-
dently of their actual value, and subsequently converted into the pitch derived from
the stretched harmonic series (see fig. 3.41). All pitches are approximated to the
quarter-tone grid, with the exception of piano notes, which are approximated to the
semitonal grid.!?

During real-time playback, harmonics are then output by bach.drip, with the
appropriate (uniform) time delay between them, depending on the current tempo
and the duration of each rendered note. The audio rendering is performed by basic
oscillators: the flute is rendered via a slightly overdriven sine tone; the clarinet via
a triangular wave; the piano via a rectangular wave. These are of course completely
arbitrary choices, only aimed at clearly illustrating the rendering mechanism.

Two accessory processes also need to be described. Firstly, during each of the
numbered sections, Grisey gradually filters out some notes from the arpeggi, replac-
ing more and more of them with rests. This deletion only takes place in the flute

temporum that we reimplemented are stretched linearly in the pitch domain by a factor of 7/3.
This observation does not appear in [Hervé, 2001], but it seems pertinent in our implementation.

50n occasion, the flute part contains 12-TET tempered notes instead of 24-TET tempered
notes. This is the case at measure 19, for instance: the natural C ‘should’ be a quarter-sharp
C according to the harmonic series rendering. Grisey probably adjusted these notes to ease and
respect the instrumental technique, but we did not account for these ‘manual’ adjustments in our
work.

116 Chapter 3. Towards a Real-Time Computer-Aided Composition

fundamental:

harmonic indices: 9, 12, 14, 17

arpeggio profile:
7 <} Q
14 o o o}
12 o Po)
‘o

rendered indices sequence: 9, 12, 14, 17, 14, 17, 14, 12

rendered pitches:

, batetZiei®ie s

o

Figure 3.41: The conversion of the arpeggio profile for the flute (measure 1) into actual pitches. The
harmonic indices, relative to the defined fundamental, are uniformly distributed on the y axis, and
the profile is uniformly sampled on the x axis. The result is then snapped to the nearest harmonic
index. The sequence is rendered by retrieving the individual harmonics of the stretched harmonic
series built upon the fundamental.

and clarinet parts (also enabling the players to breathe between phrases), and it
is roughly anticorrelated to dynamics. Since we do not have a model of the exact
process employed by Grisey for performing these deletions, we decided to imple-
ment it probabilistically, by adding an ‘existence probability’ for each note, directly
correlated to the instantaneous decibel value of the amplitude envelope: at 0dB,
the existence probability will be 100%, while at -22dB the probability drops down
to 50%. Secondly, starting from number 11, some bichords show up in the piano
arpeggi. Bichords are always composed by neighbour harmonics in the harmonics
list, thus preserving the arpeggio profile; hence it made sense for us to map a bichord
to a half-integer snapping on the y axis of fig. 3.41.

The second rendering module deals with the previously mentioned accented
chords at the beginning of each section. The off-line rendering is trivial: each
note is rendered as a chord whose pitches are the specified partials; no additional
parameters are required. During playback, each note is rendered as a white noise
attack, fed into a narrow-band resonant filter centered around the frequency of the
note itself, and subsequently artificially reverberated.

The third rendering module generates the long viola and cello notes (first ap-
pearing at number 3). The viola is rendered via a sawtooth oscillator, the cello via
a rectangle wave oscillator.

In our line of work, the meta-score, that is, all the notes with all their parameters,
is completely written ‘by hand’ in a bach.score object.'6 All the slot values are kept

1By manipulating the schemes given by Herve [2001] one might build the meta-score content

3.4. Meta-scores 117

Fl l: H Iy vi _arpeqgiatormaxpat /76
R 4 =Arpeqgy ¥
] hal T 91214178

Figure 8.42: The first measure of the flute part in the meta-score. The low CY (fundamental) and
its 9th, 12th, 14th and 17th stretched harmonics are rendered via the arpeggiator (1st instance).
The arpeggio loop has 8 notes (each lasting 1/16th) and follows the ‘mountain’-like profile shown
in light blue. The amplitude envelope is the descending orange line.

visible for each note; tied notes by default share the same slot value and are output
as a single longer note. The first measure of the flute part is displayed in fig. 3.42,
with all metadata visible next to the notehead, as text or breakpoint functions.
Depending on our desired operating mode, at any time, we can play or render
symbolically in real-time any portion of score. We can also render the whole meta-
score off-line, in order to have it all output form cage.meta.engine’s right outlet. A
screenshot of the main patch is displayed in fig. 3.43.

Although our meta-score might appear bizarre at first (all instruments are no-
tated in F clef, transposed one octave lower), it turns out to be extremely pertinent.
For one thing, it is immediately clear that all instruments are somehow playing
‘meta-unisons’ (except for the right hand of the piano), correspondingly to the fact
that all instruments are confined within the same harmonic series. When, at number
10, all fundamentals switch to G, such important change is immediately readable
in our meta-score, while it would take a larger effort of analysis to grab the same
information from the score proper. Our meta-score also reveals very clearly the
diminished seventh tetrachord (Ct, E, G, Bb)'” underlying the whole construction,
and abstracts the complexity of the arpeggi to a profile shape and a few indices
(leaving most of the score made of long tied sequences of 4/4 notes).

3.4.4 Applications to composition

The previous section showed that meta-scores are valuable analysis tools, allowing
significant properties of the musical content to emerge (in the specific case, harmonic
relationships and profiles), in a manner loosely reminiscent of how Schenkerian anal-
ysis shows hierarchical relationships among notes. Each instance of a process is sym-
bolized by a note (or a chord), making possible possible to represent pitch-based
operations intuitively, via their ‘most meaningful’ pitch (or set of pitches).

These very properties also confer to meta-scores a value in musical writing:
not only do higher properties emerge, but they can also be handled rapidly and
efficiently. In Grisey’s example, one can, for instance, change the duration unit of

itself with bach via standard algorithmic techniques.
17Tt should be pointed out that the E does not appear in the portion of score upon which we
focused.

118 Chapter 3. Towards a Real-Time Computer-Aided Composition

Go to specific number Play 4
When "Render Symbolically” mode is on, .
this renders the whole meta-score off-line
R——
v
J =l130 number-1 number-2
2 3 4 5
Fl. %ﬁ = T Ji i ameggiat
O O O %)3
Cl. — —- I Si_Arpeggiaic
)4 - - - - -
Vin. Pk
= k= 3
Via. C".: ‘:, - - - - -
b i 3
Vel. = = = =
VE =
g ===ror——— = = = i
T bo—¢
1
Pf.2 %ﬁ = T e
O O O %)I

1. Load the patches
(and send initialization)

Whenever you close/save/modify patches referred
by some notes, you should send a "reload"

der Symbolically ~ Choose working mode 3
1

age.meta.engine @cleflsGGGFGG
J // /ﬁ Play rendered score | 5

2

Turn audio on

L
bach.ezmidiplay 4

Figure 3.48: A screenshot of the patch containing the meta-score that models the beginning of
Vortex temporum.

3.4.

Meta-scores

2600

240

2080

1820

fragment_id: 1274
filename: sample_e5_i40823_t24.00_tr2.9728_v3.0050_best _2....
filepath: /Users/danieleghisi/LibrariesAndstuff/sampleRNN_ICL...
quality: 0

loudness: 22.355879

Loudness range

Epoch ran?e

centroid: 2520.722869
spread: 1772.337163
duration: 5000.

x
x|
X
x|
Xl
x
Xl
x|
x|
x|
X

corpus: samples_schubertsymph_3t/

Corpus

samples_beethoven_2/
samples_berioorch_3¢
samples_bonnaffe/
samples_low1_3t_gru/
samples_noirdeletoile_3t/
samples plancjezz 3t_biggerfra
samples

samples_r rock 3y
samples_schubertlieder_3t/
samples_schubertsymph_3t/
samples_stimmung/

epoch: 5

e
1300 | n |t drop folder here
ey clear fragments
s D
= Montage score @ [P aLdiobook001.txt m Notehead Center
" 0 025" 030"

=20 . 000"

i =

3T 7m0 M0 1480 1850 72220 250 2060 3330 310 4om

centroid

Figure 3.44: Interface used to realize audio montages for La fabrique des monstres, starting from
a database of audio files generated by a sample-by-sample recurrent neural network.

all the notes in the arpeggi from 1/16 to 1/32, or transpose all the clarinet notes
down a tritone, with simple Max messags; one can alternatively apply standard
computer-aided composition techniques on higher-level structures (for instance, it
would be fairly easy in our case to retrograde or stretch all the arpeggio profiles).
Meta-scores are therefore powerful tools for prototyping, exploring and composing.

Most of the Max patch I have been developing for my own music are, to some
extent, influenced by these ideas. Some of them make explicit use of the cage.meta
system, especially the most recent ones, while others implement different, yet anal-
ogous, meta-score mechanisms.

Notation for chord-based concatenations. Most of the electronics concatena-
tions for An Fxperiment with Time were carried out via a meta-score system where
each note stands for a random concatenation of samples, chosen according to a given
chord, having the note as fundamental and the chord type assigned in a slot, ac-
cording to a number of settings introduced in additional slots. I have described this

meta-score usage in section 2.3.3.

Audio montage. A simpler example is constituted by a score where each note
represents a portion of an audio sample, similar to a region of a standard modern
digital audio workstation. The pitch is either ignored or mapped to a transposition
factor; all rendering parameters, such as amplitude envelopes or pan position, are
contained in dedicated slots.

I frequently take advantage of this symbolic representation of montages, which
turns bach.roll and bach.score into scriptable sequencers. One of the recent exam-
ples is its usage in La fabrique des monstres (also see section 4.3.1), where collages
of audio files, generated by a sample-by-sample recurrent neural network, are repre-
sented in bach.rolls. As shown in fig. 3.44, samples can be browsed via a dada.catart
interface and can be assigned to notes in the score simply by clicking on the corre-
sponding circles while notes are selected. Offsets in audio files can be modified by

120 Chapter 3. Towards a Real-Time Computer-Aided Composition

(NS NSNS NSNS NSNS SNNSNNSNNNENNSNNSNNSSEESEESEESEE s REicopal

writetxt
Iy L . oD@
etet— b fe
= =
= =%
=z ¥ — batch change "
= >, ¥>- = -’ L= num notes bkl
7 3 5 o
(o L 3 oy) - batch change
> 118 - L - start partial
E% 5 a a 12 "i L4 s
N 4 N . — . force refresh
i SIS J4 829 == -
L) o T6 YOS
— 16 L autorefresh
¢ E . ro T
28 *26

Figure 8.45: Real-time rendering of portions of harmonic series from a traditionally notated score
for Any Road (top). The rendered score, always synchronized in realtime, is displayed at bottom.

trimming note heads, or by manually changing slot values.

Excerpts

e data.danieleghisi.com/phd/snd/LFDM_montagel.aif |mp3
N R T .

| v
000" oos” 010" 015" 020"

025" 030" 035" 040"
PRl wa = sacian, 1ienados g ™
gﬁm t F e i T Lims £ s o
; t t . T =
t "
3 .000ms 0.900ms 500.C00mC e 1200, e Wb
465549 ms/~1 . mc

Harmonic pencil. An example of purely symbolic meta-score is the high-level
writing system I developed for Any Road, enabling to reactively write and render
superposed portions of harmonic series (see fig. 3.45). Each note represents the
fundamental of an harmonic series, and carries information on the number of har-
monics and the index of the first partial; a rendered score is obtained by replacing
each note with the corresponding portion of harmonic series.

As hinted at during the case study of Vortexr temporum, the ability to handle
significant higher-level object makes the compositional workflow more intuitive.

Excerpts

e From Any Road (with video):
data.danieleghisi.com/phd/vid/AR_extrl.mp4

http://data.danieleghisi.com/phd/snd/LFDM_montage1.aif
http://data.danieleghisi.com/phd/snd/LFDM_montage1.mp3
http://data.danieleghisi.com/phd/vid/AR_extr1.mp4

3.4. Meta-scores

121

46
cisk (- J J J - - - J |
£ e PRI L T S ey
‘:'é [g ===] e et O
— — 7 —_— -
. —
B P e e e e - —_— v B et
== . o e : LR = i Cratese ol o E
o A# O —_— = . T
e — s
; S S ——
e = . o m = fe e
=== f — e
6= LEREg g
S —
. A ————
Y P — e orirl F
i 7E=. - :
r— ———

" - — g -
B - 2- : s =: : = .
oe— _'7_/
. e
9 = - % 5 . oo B o =
— v — — e — — s — e
w | [BE=] x Py =
e r
—_— —
P —
= - : 1 I =
"’K'_/LJ 3 i 4o —_—
_(an!hmuy . - — Lo
. {%: te —f —— T _
() : I g
pere. (Glockensplel) s
prs — — .
e i EER - =
&] ——— - :w«wunr.' e P A
. —— "
?9* = = &
h,\b |§>
S = - =
(e
Amal) D>Dx CH DB FEGE AR BE
(= = = -
;
S - -
Apall / o0 PR CFDF S FE G AR
e - e e I S—
i
PR— B
Viat [a— T
S : R N e TR
= : - = = 5 PrEEaL :
— o g — —
— L . e be B . -
B : e o b e Tw s % P e
Y A Y O P S — = Lot oh g L i
w || ; ——— & ; e ——
. o - A
— e e de 1 . P [: a—r
E ——
Ig’: ks :’_§: J :‘ =
: =
Vie. — — s
vz
Vel 9<-_ s L
avaT . o w — -
. i =
— o —

Figure 3.46: A page of the orchestral score for Any Road, displaying the rendering of the portions
of harmonic series (the second half of b. 47 corresponds to the beginning of fig. 3.45).

122 Chapter 3. Towards a Real-Time Computer-Aided Composition

Score collage. A meta-score system was designed for the last section of I mille
fuochi dell’universo to explore combinations of ‘grains’ into complex score objects.
In a very literal sense, the systems enables the fabrication of scores of scores. The
underlying score database is constituted by symbolic scores in MusicXML format,
electronic scores as audio files, and mixed scores (combining a symbolic component
and an audio file). I have described this collage technique in section 2.8.

Notating movements and actions, perturbing time flow. A more complex
meta-score scenario has been designed for Bug (quatuor a corps).

Bug (quatuor a corps) is a theatre piece by Ingrid von Wantoch Rekowski, who
asked four composers to apply the musical principles of a string quartet writing
to theatrical sensibility. Inspired by pioneering works in video art such as Norman
McLaren’s Canon (1964) and Zbigniew Rybczynski’s Tango (1980), my attempt was
to design a certain number of situations, or fragments, strongly based on canonic
processes, where actions and words would assume different meanings while per-
formed in canon by different actors. In some situations, the canonic principle would
be strictly kept throughout the entire fragment; in other situations, actions and
words would at some point diverge into a more chaotic and less formalized writing.

A montage of piano scales constitutes a sort of ‘basso continuo’, a background
framework on which the canonic actions take place. In addition, on the top of this
structure, higher-level ‘bugs’ appear from time to time, looping certain portions of
actions, sounds and words, for a certain number of times.

The musical substance being composed by sounds, words, movements, actions,
words, I designed a score where each note may represent a sound (an audio file,
also possibly including a label to be displayed), a sentence (audio files and text),
a movement (timewise interpolation of positions in a bidimensional space), or an
action (described using labels). A crude rendering of the actors’ position and phrases
is presented in real time when the score is played (see fig. 3.47). Scripting tools

RITDY eam

1->2 | 1->2clear
reparse]clear
R LI
sel all, merge 0 0, clearselection
Press shift+R to | RN and 10 selected notes I input

nd a
with filename: ([71]

Drop file to assign

Background slot font size
7y

10
Fils keep files in background

open
& separate-track-record
]
pen
— — s g
‘ 6 Output S TracksRecord
scales_testt aif /- n T
B T ——— (%) H <
Extemal ——o——""—guuamesialt
mal 2ee < m
B 000002050 75 100 150 200 300 400 600 800 1200 1600) .
ugs T7x(+1) Standard
Onset 7m 49.471s Cents 8466.7 o5 0ods 0048

Figure 3.47: Screenshot of the Max patch used to experiment for Bug (quatuor a corps).

3.4. Meta-scores 123

Per —sRerete—teatte i eReret shotal 3t
e o E - - - e =

- ki e T

nange pere| mange.aif

e 44
- N
Mere et

Fils

Elle

External

00000255075 100 150 200 300 400 500 600 700 §00 900 1000 1100 12
* 2x(+1) Palindrome 21x(+1) Standard

Bugs

Figure 3.48: A portion of score for one of the situations of Bug (quatuor a corps), con-
taining ‘bugs’. The audio file containing the corresponding simulation can be found here:
data.dantieleghisi.com/phd/snd/BUG_exl.aif/mp3.

to automate the creation of canonic voices, by copying and pasting a portion of a
given voice, are also set in place.

The score includes a separate ‘External’ track, containing the ‘basso continuo’-
like piano scales, and, most significantly, a ‘Bug’ track, whose notes represent higher-
level interventions, looping the portion of score they span, from their onset to their
note tail, for a certain number of times. ‘Bugs’ are timed elements in the scores which
affect the time flow itself; they can trigger either standard loops or palindrome loops
(sounds and actions going back and forth repeatedly). In addition, the duration of
each repetition can be modified individually, in order to obtain, for instance, loops
of increasing or decreasing length. During playback, plain ‘bugs’ trigger standard
stop/play messages in order to loop a given portion of score, whereas palindrome
‘bugs’ require more sophisticated mechanisms of recording and playback. The crude
display of actor movements is achieved by dynamically representing the content of
a slot of type ‘3dfunction’ into a Max lcd editor. The most interesting feature of
this score representation, to me, was the possibility to experiment interactively and
to search for the most significant positions and parameters of each perturbation,
simply by varying the position, duration and slot content of notes in the ‘Bug’
track—a process that I could not have achieved in any currently available digital
audio workstation, due to the combination of sequencing features with programming
mechanisms.

Excerpts

e ‘Bugs’ (audio simulation, see score in fig. 3.48):
data.danieleghisi.com/phd/snd/BUG_ex2.aif |mp3

http://data.danieleghisi.com/phd/snd/BUG_ex1.aif
http://data.danieleghisi.com/phd/snd/BUG_ex1.mp3
http://data.danieleghisi.com/phd/snd/BUG_ex2.aif
http://data.danieleghisi.com/phd/snd/BUG_ex2.mp3

124 Chapter 3. Towards a Real-Time Computer-Aided Composition

3.5 Perspectives on the bach family

For the time being, bach, cage and dada are the only representatives of the bach
family, and together they constitute not only a massive development project, but
also a research one, with a main focus on integration and usability, touching deeply
conceptual topics such as the role of interactivity in musical composition. The set
of examples provided in |Ghisi and Agostini, 2017] shows the variety of approaches
that can take advantage of the fact that the bach family has been designed with
this kind of considerations in mind, and at the same time can be seen as a proof
of concept of the validity and importance of the research attitude underlying the
development of this whole system.

Imagining other libraries to continue the series (and hence the alphabet that
bach started with ‘b’) is a thrilling task; Andrea Agostini and I actually have ideas
about some categories of modules which might constitute valuable additions to it.

One of these would explore the possibility of linking symbolic representations
with audio. Specifically, this might include modules for further narrowing the gap
between instrumental and electroacoustic scores through a variety of approaches and
tools, such as an audio sequencer completely scriptable via Max messages (just like
bach.score can be seen as a scriptable score editor) and conceived to be linked to
and controlled by bach'®; or a system for converting the contents of a bach.score or
bach.roll object into a Csound score. Another part of this library might be aimed
at representing symbolically synthesis processes, possibly reimplementing concepts
from Marco Stroppa’s Chroma system [Stroppa, 2000]. Moreover, tools for manip-
ulating sound samples through a variety of operations can be easily imagined: after
all, the only Max data structure explicitly meant to handle sound files, i.e. the
buffer~ object, is not as flexible as one might wish, and several simple operations
prove cumbersome to implement. Some progress has recently been made, and Max
now allows users to write JavaScript code to create buffers or modify their content.
The fact that JavaScript in Max only runs in the low-priority thread is probably
a minor issue given the amount of data and CPU time required by such processes.
Nevertheless, we believe that simple operations such as reversing, padding, mixing
or applying fades to an audio buffer should be achievable with ready-made mod-
ules (and not only via JavaScript code), in an straightforward and consistent way.
Overall, such a system, which would somehow relate to bach like the audio tools in
OpenMusic relate to the global library [Bresson, 2006], might allow users to take
advantage of the Max graphical programming capabilities to design algorithmic au-
dio machines—something that modern audio sequencers and editors are generally
not tailored to do.

Another possible area of research and implementation might involve constraint
solving, optimization, machine learning, data mining, and programming paradigms

18 Although it is true that bach.roll can easily represent audio samples and automations through
file names and functions attached to notes as slot data, it is by no means a real audio sequencer,
because it would be difficult, if not impossible, to add a waveform representation to notes, and
because at playtime all the temporal information attached to each note is output at once.

3.5. Perspectives on the bach family 125

related to artificial intelligence. Although such approaches have been widely used
by computer music researchers since decades, very few tools exist that do not re-
quire specialized programming skills. Among those, we should mention Bill Vorn’s
LifeTools™ and the bios library for Max??, all implementing genetic algorithms; the
RLKit?', a set of external bringing reinforcement learning into Max and PureData;
the OMax system for machine improvisation [Assayag et al., 2006]; and a few sys-
tems for solving musical constraints, including PMC [Anders and Miranda, 2011]
for PWGL, subsequently ported to OpenMusic as OMCS??; Situation [Rueda and
Bonnet, 1998] and OMClouds |Truchet et al., 2003] for OpenMusic; the Strasheela
system; and the bach.constraints object in bach, which indeed is a very crude and
limited constraint solver, but has already proven useful for tackling several real-life
musical problems, including generation of harmonic and rhythmic sequences, finger-
ing for string instruments, and automatic audio montage based on audio descriptors.
In the future, it might be interesting to investigate the feasibility of a comprehen-
sive system, implementing both generic and specialized tools (e.g., tools for audio
segmentation, or rhythmic and harmonic analysis, and so on) meant to be adopted
not only by researchers, but by musicians as well.

¥http://billvorn. concordia.ca/research/software/lifetools.html
2Onttp://bioslib.blogspot.it
2'nttp://alab.hexagram.ca/rlkit/index.html
nttp://repmus.ircam.fr/openmusic/libraries

http://billvorn.concordia.ca/research/software/lifetools.html
http://bioslib.blogspot.it
http://alab.hexagram.ca/rlkit/index.html
http://repmus.ircam.fr/openmusic/libraries

CHAPTER 4
Towards a Parameter Entangled
Computer-Aided Composition

4.1 An entanglement of parameters

4.1.1 Traditional notation as a Cartesian model

A composer who writes a certain note for flute is probably used to think at the
note as disentangled into a certain number of parameters, notated on the staff via
independent graphic elements—the pitch mapped on the vertical position of the note
head, the duration mapped on the type of flag and head, the intensity mapped on
dynamic markings. However, for the flutist that will play that note, pitch, duration
and intensity are not exactly independent parameters: depending on the registers,
some intensity level might be completely unattainable, or, inversely, notes played
fortissimo will only be playable for small periods of time. This is indeed well taught
in classes about instrumentation and on books about instrumental techniques. As
far as notation is concerned, a note is essentially a point in a Cartesian n-dimensional
spac<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>