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Summary 
Skeletal muscle development mostly relies on intrinsic capacities of muscle progenitors to 

proliferate and differentiate. However, extrinsic signals arising from non-myogenic cells also 

contribute to the establishment of functional skeletal muscles. The aim of this PhD project 

was to investigate the role of connective-tissue (CT) on the development of skeletal muscle, 

using the chick embryonic limb as a model. We particularly investigated the influence of the 

two chemokines CXCL12 and CXCL14, which have been previously shown as expressed in 

limb mesenchyme giving rise to the different types of CTs during development. The 

involvement of CXCL12 and CXCL14 in limb CT differentiation was studied, as well as the 

role of these chemokines in skeletal muscle development mediated by CT. 

We first showed that CXCL12 and CXCL14 display distinct restricted expression patterns in 

limb CT of chick embryos and demonstrated that CXCL12 promotes the expression of OSR1, 

OSR2 and COL3A1 genes, three markers of irregular CT, while CXCL14 enhances the 

expression of a regular CT gene, SCX. In addition, the expression of CXCL12, CXCL14 and 

their putative CT target genes were all negatively regulated by the anti-fibrotic BMP 

signalling, but also in the absence of musculoskeletal mechanical forces. These results show 

for the first time the involvement of CXCL12 and CXCL14 chemokines in the differentiation 

of CTs.  

The putative role of both chemokines on CT-mediated myogenesis was then analysed. We 

observed that CXCR7, one CXCL12 receptor, was expressed both in muscle progenitors and 

differentiated muscle cells in embryonic chick limbs. Using gain- and loss-of-function 

approaches in primary cultures of chick limb myoblasts, we revealed that CXCR7 promoted 

myogenesis by regulating muscle cell fusion, while CXCL12 did not influence muscle 

differentiation. CXCL14 dramatically inhibits in vitro myogenesis. Functional assays 

performed in chick embryonic forelimbs in vivo demonstrate that overexpression of CXCL12, 

CXCR7 or a dominant-negative form of CXCR7 all resulted in abnormal and mispatterned 

muscles in chick limbs. Similarly, CXCL14 overexpression in chick limb in vivo led to 

profound anomalies in muscle differentiation. All together, our results demonstrate an 

essential contribution of CXCL12 and CXCL14 chemokines in CT differentiation and in CT- 

mediated muscle development in embryonic limb. 
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Résumé 
Les muscles se forment au cours du développement embryonnaire, principalement grâce aux 

capacités de prolifération et différenciation des cellules souches musculaires, néanmoins ces 

capacités sont insuffisantes pour le développement correct des muscles. La formation des 

muscles est aussi régulée par des signaux provenant de tissus adjacents, parmi lesquels le tissu 

conjonctif (TC). Plusieurs facteurs de transcription spécifiquement exprimés dans le TC ont 

été identifiés comme étant impliqués dans la myogenèse caractérisant ainsi le TC comme une 

source importante de signaux dans le mécanisme de morphogénèse musculaire. Ces 

observations soulignent l’importance du rôle du TC dans la formation des muscles, cependant 

la nature moléculaire des mécanismes médiés par le TC reste à ce jour inconnue.  

L’objectif de ce travail de thèse a été d’établir le rôle des chimiokines CXCL12 et CXCL14 

dans l’intéraction entre le TC et le développement musculaire, en utilisant l’embryon de 

poulet comme modèle. Dans un premier temps, nous avons défini le patron d’expression de 

CXCL12 et CXCL14 au cours du développement embryonnaire, et avons mis en évidence une 

corrélation entre la localisation de ces chimiokines et l’expression de gènes spécifiques à 

différentes sous populations du TC. Afin d’évaluer le rôle potentiel de ces chimiokines dans 

la différentiation du TC nous avons utilisé des approches de gain de fonction in vitro et in 

vivo et avons montré que CXCL12 et CXCL14 activent les facteurs de transcription 

spécifiques à différentes sous population du TC, démontrant ainsi que CXCL12 et CXCL14 

régulent la différentiation du TC au cours du développement du membre. De plus, nous avons 

établit que la voie de signalisation BMP et les forces mécaniques régulent négativement 

l’expression des chimiokines CXCL12 et CXCL14. Ces résultats caractérisent pour la 

première fois l’implication de CXCL12 et CXCL14 dans la différentiation du TC.La 

deuxième partie de ce travail de thèse a visé à caractériser le rôle paracrine de CXCL12 et 

CXCL14 sur le développement musculaire. Nous avons pu observé que l’un des récepteur de 

CXCL12, CXCR7, est exprimé dans les cellules musculaires souches et différenciées, dans 

les ailes d’embryons de poulets. En utilisant des approches de gains et pertes de fonctions, 

d’une part in vitro dans des cultures primaires de myoblastes de poulets, nous avons montrés 

que CXCR7 favorise la myogénèse, notamment en régulant la myogénèse, tandis que 

CXCL12 n’a pas d’impact sur la différentiation musculaire in vitro. De plus nous avons pu 

constater que CXCL14 inhibe la myogénèse in vitro. Finalement, in vivo, nous avons observé 

que la surexpression des chimiokines entraîne un développement anormal des muscles tandis 

que l’expression du récepteur CXCR7 tronqué favorise le développement musculaire, 
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soulignant l’importance de la signalisation CXCL12/14 dans le processus de morphogénèse 

musculaire medié par le TC. Ces résultats constituent la première démonstration d’une 

fonction paracrine du TC dans la morphogénèse musculaire via les chimiokines CXCL12 et 

CXCL14. 
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Zusammenfassung 
Die Entwicklung der Skelettmuskulatur beruht auf den Fähigkeiten von myogenen 

Progenitorzellen. Im Laufe der Entwicklung proliferieren diese, differenzieren zu Myoblasten, 

die schließlich zu Muskelfasern fusionieren. Zur Bildung der embryonalen Muskulatur 

werden jedoch darüber hinaus extrinsische Signale von nicht-myogenen Zellen, vor allem 

Zellen des Bindegewebes, benötigt. Das Ziel dieser Arbeit war, die Rolle des Bindegewebes 

in der embryonalen Muskelentwicklung der Extremitäten des Hühnerembryos als Modell 

genauer zu untersuchen. Speziell wurde hier der Einfluss zweier Chemokine untersucht, 

CXCL12 und CXCL14, von denen bereits vorher gezeigt wurde, dass sie im Mesenchym der 

sich entwickelnden Extremität exprimiert sind. In dieser Arbeit wurde die Rolle dieser 

Chemokine sowohl für die Differenzierung des Bindegewebes selbst, wie auch deren Einfluss 

auf die Muskeldifferenzierung analysiert.  

Es konnte gezeigt werden, dass sowohl CXCL12 als auch CXCL14 distinkte regionale 

Expressionsmuster im Bindegewebe der Extremität aufweisen. Funktionell erhöht CXCL12 

die Expression von OSR1, OSR2 und COL3A1, dreier Marker für irreguläres Bindegewebe, 

während CXCL14 die Expression  eines Schlüsselmarkers für reguläres Bindegewebe 

(Sehne), SCX, erhöht. Die Expression von CXCL12 und CXCL14 selbst, wie auch die 

Expression ihrer putativen Zielgene, wurden demgegenüber durch Stimulation des anti-

fibrotisch wirkenden BMP Signalweges negativ reguliert. Zudem bewirkte eine experimentell 

induzierte Muskelparalyse im Hühnerembryo eine Herunterregulation von CXCL12 und 

CXCL14, was bedeutet, dass die Expression beider Gene abhängig von mechanischen 

Signalen ist. Diese Ergebnisse involvieren zu ersten Mal die Chemokine CXCL12 und 

CXCL14 in die Differenzierung des Bindegewebes.  

Im Folgenden wurde die mögliche Rolle beider Chemokine in der Muskelentwicklung 

analysiert. Es wurde zunächst gezeigt, dass CXCR7, ein Rezeptor für CXCL12, in 

Muskelvorläufern wie auch differenzierten Muskelzellen in der Extremität des 

Hühnerembryos exprimiert wird. Durch Funktionsgewinn und –verlust Versuche in primären 

Myoblasten aus Hühnerembryos konnte gezeigt werden, dass CXCR7 die Muskelbildung 

durch die Beeinflussung der Zellfusion fördert, während CXCL12 keinen Einfluss hatte. 

Demgegenüber zeigte CXCL14 eine starke Inhibition des Myogenese in vitro. Die 

Misexpression von CXCL12, CXCR7 sowie dominant-negative Versionen von CXCR7 in 

vivo bewirkten eine abnormale Musterbildung der Extremitäten-Muskulatur. Genauso 

bewirkte die Misexpression von CXCL14 deutliche Veränderungen der 
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Muskeldifferenzierung. Zusammenfassend konnte eine Funktion der Chemokine CXCL12 

und CXCL14 in der Differenzierung des Bindegewebes sowie im nicht-Zell autonomen 

Einfluss des Bindegewebes auf die Muskelentwicklung gezeigt werden.  
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Abbreviations 

CT(s): Connective tissue(s) 

EOMs: Extraocular muscles 

MRF(s): Myogenic regulatory factor(s) 

bHLH: Basic Helix-Loop-Helix 

PAX: Paired homeobox transcription factors 

SIX: Sine oculis homeobox 

EYA: Eyes absent homologue 

Shh: Sonic hedgehog 

BMP: Bone morphogenetic protein 

NCC(s): Neural crest cell(s) 

FGF: Fibroblast growth factor 

FC(s): Muscle founder cell(s) 

FCM(s): Fusion competent myoblast(s) 

CAM(s): Cell adhesion molecule(s) 

HGF/SF: Hepatocyte growth factor / scatter factor 

LBX1: Ladybird homeobox 1 

Msx1: Msh homeobox one 

Sim: Single-minded homolog 

ZPA: zone of polarising activity 

Ihh: indian hedgehog 

TGFß: transforming growth factor ß 

Mmp(s): metalloprotease(s) 

CDH: congenital diaphragmatic hernia 

NF-κB: nuclear factor kappa B 
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NG2: Neural/glial antigen 2 

PIC(s): PW1-positive interstitial cell(s) 

PDGFrα: Platelet-derived growth factor receptor 

FAP(s): fibro/adipogenic progenitor(s) 

GPCR(s): G-protein-coupled receptor(s) 

ACKR(s): atypical chemokine receptor(s) 

SDF-1: stromal-derived factor 1 

WAT: white adipose tissue 

MAPK: mitogen-activated protein kinase 

ERK: extracellular signal regulated kinase 

GKR(s): G-protein-coupled receptor kinase(s) 

PKC: protein kinase C 
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Introduction 

During embryonic development, skeletal muscle formation is an important step in the 

establishment of a functional musculoskeletal system. Muscle development corresponds to 

sequential waves of myogenesis, which at the end give rise to adult muscles. Myogenesis  

occurs mainly through the intrinsic proliferation and differentiation capacities of muscle 

progenitor cells, however it has been shown that signals coming from adjacent tissues also 

contribute to muscle morphogenesis (Kieny, 1982) among which connective tissues (CTs). 

The CT-derivatives correspond to bones, cartilage, tendons, ligaments and irregular 

connective tissue (CT) and constitute with the muscles the musculoskeletal system. CTs 

exhibit physical interactions with muscles, but more importantly CTs and muscles cooperate 

together to ensure their own development. Previous works have started to decipher the 

importance of the different CTs in the establishment of muscles during both embryonic 

development and adulthood. During embryonic development, defects in the interplay between 

CTs and muscles trigger severe damages that can lead to critical human pathology such as the 

Bethlem myopathy (Bönnemann, 2011; Hicks et al., 2014) a congenital muscular dystrophy, 

or the Holt-Oram syndrome (Hasson et al., 2010) associated to congenital heart and skeletal 

abnormalities. It is therefore important to elucidate the molecular mechanisms that govern the 

relations between CTs and muscle morphogenesis during development. 

 

I.  Muscle development 

Skeletal muscles form a highly complex and heterogeneous tissue that is part of the 

musculoskeletal system. During development, the correct formation of skeletal muscle is an 

important step to provide proper functions of the musculoskeletal system, which allows 

essential functions such as body motion, or more importantly breath ability. The process of 

generating muscles is defined as “myogenesis”, and occurs mainly during embryonic 

development.  

 

A. The embryonic origins of skeletal muscles 

In vertebrates, all skeletal muscles derive from mesodermal cells (Noden and Francis-West, 

2006). However, it has been established that muscles present different embryonic origins 

depending on their final position in the adult (Figure 1). Lineage tracing experiments 

performed in the avian model system, such as Di-I labelling and chick-quail grafting, highly 
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contribute to the establishment of the specific embryonic origins of the different skeletal 

muscles  (Selleck & Stern 1991; Ordahl & Le Douarin 1992; Couly et al. 1992). 

 

Body skeletal muscles 

Body skeletal muscles correspond to skeletal muscles of limbs and trunk region. They 

originate from transient mesodermal structures that arise from segmentation of the paraxial 

mesoderm, the somites (Chevallier et al. 1976; 1977; Christ et al. 1974; 1977). Somites form 

sequentially, in a periodic way, along the antero-posterior axis of the embryo. They are 

disposed by pair on each side of the neural tube and form a layer of epithelial cells. Such 

simple structures are going to give rise to different cell types, among which the axial muscle 

cells. Under signals coming from their environment, somites are segmented in two main 

compartments: the sclerotome and the dermomyotome (Figure 2). Two different domains can 

be distinguished in the dermomyotome: the dorsomedial and the ventrolateral regions (Figure 

Figure 1: The embryonic origins of skeletal muscles. Skeletal muscles have distinct 

origins depending on their location in the body. Head muscles derive from the cranial 

paraxial mesoderm (green), except the tongue and posterior neck muscles, which have the 

same embryonic origin than axial muscles: the somites. In the trunk, muscles from the 

back originate from the epaxial lip of the dermomyotome (dark blue), and limb muscles 

and diaphragm derive from the hypaxial lip of the dermomyotome (light blue). (Adapted 

from Nassari et al., 2017) 
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2). Both domains contribute differentially to axial muscle formation. Indeed, the medial part 

of the dermomyotome gives rise to the epaxial musculature, corresponding to the back and 

intercostal muscles, while the lateral part of the dermomyotome gives rise to the hypaxial 

musculature, corresponding to the diaphragm, abdominal and limb muscles. 

 

Craniofacial skeletal muscles 

Muscles of the head and the neck form the so-called craniofacial muscles. Whereas trunk and 

limb muscles originate from axial somitic mesoderm, craniofacial muscles present distinct 

embryonic origins (Figure 3). Based on these different embryonic origins, head muscles are 

classified into three distinct groups: 1) the tongue and posterior neck muscles, deriving from 

anterior somites; 2) the extraocular muscles (EOMs), originating from the prechordal 

mesoderm and 3) the branchiomeric muscles including muscles of the jaw, anterior neck and 

Figure 2: Differentiation of somites. Somites are formed from segmented paraxial 

mesoderm. Upon different signals, somites undergo a dorso-ventral organization leading to 

the formation of the sclerotome in the ventral part and the dermomyotome in the dorsal part. 

Subsequently, the dermomyotome is subdivided in hypaxial and epaxial compartments that 

will contribute to the formation of the myotome. Finally, a last compartment arising from the 

sclerotome is formed: the syndetome. The sclerotome compartment give rise to bones, 

cartilage and irregular connective tissues of the trunk, and syndetome will lead to trunk 

tendons. 
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face, arising from the paraxial mesoderm (Couly et al., 1992; Hacker and Guthrie, 1998; 

Noden, 1983; Trainor et al., 1994), (Figure 3). In vertebrates, the occipital lateral plate 

mesoderm is an additional source for the formation of a restricted population of neck muscles 

(Theis et al., 2010). 

 

B. Muscle specification 

 

The genetic cascade regulating skeletal muscle specification 

Despite heterogeneity in the embryonic origins of skeletal muscles, the specification 

processes of skeletal muscle formation from a founder stem cell in the embryo exhibit 

common features to all skeletal muscles.  Through complex and various cascades of 

signalling, an undifferentiated cell corresponding to a stem cell (fate is not acquired) switches 

to a progenitor state (fate being acquired), then to a precursor state (fate acquired), and finally 

ends up with a differentiated state (functional entity). The transition from an undifferentiated 

Figure 3: The embryonic origins of craniofacial muscles. Branchiomeric muscles 

originate from the cranial paraxial mesoderm (green), while extraocular muscles derive 

from the prechordal mesoderm (purple). Posterior neck muscles and tongue arise from 

somites (pink), and a few anterior neck muscles from the occipital lateral plate (orange). 

(Adapted from Buckingham et al., 2012) 
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cell to a fully differentiated muscle cell is intrinsically regulated by the activation of a group 

of transcription factors called the Myogenic Regulatory Factors (MRFs), (Figure 4). The 

Myogenic Regulatory Factor (MRF) family includes four different genes: MyoD, Myf5, Mrf4 

as determination factors and Myogenin as differentiation factor (Ott et al., 1991; Pownall and 

Emerson, 1992; Sassoon et al., 1989). They all code for transcription factors that belong to the 

superfamily of basic Helix-Loop-Helix (bHLH) transcription factors. In vivo genetic 

manipulations of the MRFs demonstrate the hierarchical relationship and functional 

redundancy existing between these factors. In mutant mouse for MyoD, Myf5 expression 

level is increased and muscles are unaffected (Rudnicki et al., 1992), suggesting that Myf5 

and MyoD have redundancy roles in myogenesis. In the absence of both MyoD and Myf5, 

skeletal muscles are absent (Rudnicki et al. 1993). Myod, Myf5 and Mrf4 are characterized as 

major effectors for early myogenic specification (Rudnicki et al. 1992; 1993; Kassar-

Duchossoy et al. 2004). In the absence of Myogenin, a deficit in skeletal muscle 

differentiation is observed, highlighting an essential role of Myogenin in terminal muscle 

differentiation (Nabeshima et al., 1993). In fibroblast cells, MRFs have the ability to trigger 

skeletal muscle specification (Weintraub et al. 1991; Delfini & Duprez 2004), demonstrating 

that MRFs are crucial actors for the development of muscles. However, the activation of the 

myogenic program relying on MRF expression requires the activation of upstream specific 

key regulatory factors that actually differs depending on the anatomical region where the 

muscles will be formed. 

 

Figure 4: The myogenic regulatory factors (MRFs) regulate myogenic determination 

and differentiation. Activation of the MRFs in mesodermal progenitors controls 

myogenic lineage progression. The transcription factors MYOD and MYF5 are crucial for 

muscle cell determination, while MYOG and MRF4 are required for later differentiating 

steps of myogenesis. 
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• Axial muscle formation depends on PAX3- and PAX7-expressing progenitors 

The PAX genes that belongs to the Paired homeobox transcription factor family, highly 

contribute to the formation of different tissues during embryonic development ( Wang et al. 

2008). During axial skeletal muscle development, PAX3 and PAX7 have been shown to be 

important upstream regulators coordinating muscle lineage specification. In Pax3/Pax7 

deficient mice, all trunk and limb muscles are missing (Kassar-Duchossoy et al., 2005). 

During embryonic development, both PAX3 and PAX7 are expressed in muscle progenitors 

cells, however, conversely to MRFs, their expression is not restricted to muscle cells 

(Buckingham et al., 2003). Initially, PAX3 expression is present in the non-segmented 

paraxial mesoderm, then in the epithelial somite, and finally restricted first to the 

dermomyotome compartment, and secondly to its ventrolateral part (Daston et al., 1996; 

Williams and Ordahl, 1994). Later on, when cells undergo myogenic specification, PAX3 

expression is downregulated (Daston et al., 1996; Williams and Ordahl, 1994). The first 

detection of PAX7 in muscle progenitors is observed in the central domain of the 

dermomyotome (Relaix et al., 2004). In this domain, both PAX7 and PAX3 are coexpressed. 

Following activation of the MRFs, PAX7 expression is downregulated. Although PAX3 and 

PAX7 have redundant functions, they also contribute individually to different steps of 

myogenesis. PAX3 expression is associated to the primary phase of myogenesis, while PAX7 

is mostly related to subsequent step of myogenesis (fetal myogenesis, post-natal growth and 

muscle homeostasis/regeneration). The first experiments revealing the important role of 

Figure 5: Specific genetic regulatory networks control myogenesis. Distinct gene 

networks regulate epaxial (dark blue), hypaxial (light blue), extraocular (purple) and 

branchiomeric (green) muscles. In epaxial and hypaxial myogenesis, activation of MRFs is 

dependent on the PAX3 transcription factor while PAX3 is absent in craniofacial muscles, 

in which PITX2 and TBX1 are responsible for activation of the MRFs. (Adapted from 

Buckingham et al., 2012) 
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PAX3 for muscle specification have been performed in chick embryos (Maroto et al., 1997). 

Gain-of- 

 

function assays showed that ectopic expression of PAX3 in nascent mesoderm leads to the 

induction of MyoD and Myf5 (Maroto et al., 1997). In the epaxial domain of the 

dermomyotome, PAX3 directly regulates MyoD, independently of Myf5 and Mrf4 

(Tajbakhsh et al., 1997). In the hypaxial compartment, PAX3 does induce MyoD, but also 

activates Myf5 (Bajard et al., 2006). In Pax3 mutant, Myf5 expression is lost in the hypaxial 

compartment while epaxial expression of Myf5 is unchanged, thus demonstrating that PAX3 

expression activates Myf5 expression in the hypaxial compartment, but not in the epaxial 

compartment (Figure 5), (Bajard et al., 2006). The sine oculis homeobox (SIX) transcription 

factors and their cofactors Eyes absent homologue (EYA) proteins have been identified to act 

upstream PAX3 (Heanue et al., 1999). In chick embryo, gain-of-function experiments have 

demonstrated that Six1 and EYA activate PAX3 expression (Heanue et al., 1999). In addition, 

mouse carrying mutations for either Six1 and Six4 or Eya1 and Eya2 display loss of PAX3 

expression in the hypaxial lip of the dermomyotome (Grifone et al. 2005; 2007). Finally, 

MRF4 expression in the epaxial domain of the dermomyotome is lost in Six1/Six4 double 

mutant (Grifone et al. 2005). Altogether, these data show that SIX transcription factors and 

their cofactors EYA proteins are important regulators in the process of axial muscle 

specification, inducing MRF expression either directly or indirectly through PAX3 activation 

(Figure 5). 

 

• Craniofacial muscles formation depends on TBX1- and PITX2-expressing 

progenitors 

Consistent with the distinct embryological origin of craniofacial muscles, distinct regulatory 

cascades from that described for limb and trunk myogenesis control muscle formation in the 

head (Dong et al., 2006; Kelly et al., 2004). Although the genetic cascade of the MRFs, Myf5, 

MyoD and Myogenin is comparable with the one described in axial muscles (Rudnicki et al. 

1993; Hacker & Guthrie 1998), the main factors regulating MRF genes expression in 

craniofacial muscles (branchiomeric muscles and EOMs) are different. In head muscles, 

PAX3 is not detected (Relaix et al., 2004), suggesting the involvement of distinct activators 

for the myogenic regulatory cascade than those identified in somites.  Indeed, during mouse 

embryonic development, both Myf5 and Pax3 inactivation leads to a complete lack of muscles 

in the trunk and limbs, but no defects in branchiomeric muscles and EOMs (Tajbakhsh et al., 
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1997), clearly demonstrating that Pax3 is not required for head myogenesis. The T-box-

containing transcriptional activator Tbx1 and the pituitary homeobox gene Pitx2 have been 

shown to activate MyoD and Myf5 in the head (Dastjerdi et al., 2007; Diehl et al., 2006; 

Dong et al., 2006; Grifone et al., 2008; Kelly et al., 2004), (Figure 5). Inactivation of Tbx1 or 

Pitx2 leads to a similar phenotype resulting in a severe reduction of specific groups of head 

muscles (Diehl et al., 2006; Gage et al., 1999; Kelly et al., 2004; Kitamura et al., 1999; 

Zacharias et al., 2011). Indeed, a genetic diversity exists among branchiomeric muscles and 

EOMs, as only Pitx2 is required to induce EOM myogenesis, while both Tbx1 and Pitx2, 

acting in parallel, activate MRFs to induce branchiomeric myogenesis (Figure 5). Pitx2 is 

expressed in both axial and craniofacial muscles (Shih et al. 2007), however, it is not required 

for axial myogenesis (Kitamura et al., 1999), in which Pitx2 is acting downstream of PAX3 to 

induces MyoD expression (L’Honore et al., 2010). In pharyngeal muscles, Pitx2 is necessary 

to induce Myf5 expression (Shih et al. 2007), through direct binding on its promoters 

(Zacharias et al., 2011). Pitx2 and Tbx1 regulate each other (Nowotschin 2006; Shih et al. 

2007) and both induce branchiomeric myogenesis specification by activating Myf5 and 

MyoD (Kelly et al., 2004; L’Honore et al., 2010; Nowotschin, 2006; Zacharias et al., 2011). 

Furthermore, two additional upstream regulators of branchiomeric myogenesis have been 

identified: MyoR (musculin) and Capsulin (Tcf21), (Lu et al., 2002). In mutant mice for 

Capsulin and MyoR, MRF genes are not activated in branchial arch-derived muscles and cell 

death is observed in branchial arch mesenchyme (Lu et al., 2002), (Figure 5). Such results 

show that both MyoR and Capsulin are involved in pharyngeal arch-derived muscles, but not 

in the formation of EOMs. The role of the SIX transcription factors and EYA proteins during 

craniofacial development remains to be explored. Although it has been demonstrated that 

mutant embryos for Six1 and double mutants for Six1 and Six4 present craniofacial muscle 

defects (Laclef et al. 2003; Grifone et al. 2005; Grifone et al. 2007), it is not clear at which 

level Six factors act in the myogenic regulatory network for head myogenesis. 

 

The extrinsic signals regulating skeletal muscle specification 

Extrinsic signals emerging from adjacent tissues highly contribute to the regulation of both 

axial and head skeletal muscle specification. Axial myogenesis relies on the formation of the 

dermomyotomal compartment, which arises from the dorso-ventral patterning of somites. The 

process of somite patterning, which is mediated through signals originating mainly from the 

neural tube, the notochord and the ectoderm (Brand-Saberi et al., 1993; Buffinger and 

Stockdale, 1995; Pourquie et al., 1993; Spence et al., 1996), finally leads to the formation of 
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the sclerotome ventrally and of the dermomyotome dorsally. Sonic Hedgehog (Shh) secreted 

from the notochord participates in the ventralization of the somite (Chiang et al., 1996; 

Johnson et al., 1994), while Wnt signalling from the dorsal part of the neural tube and the 

ectoderm promotes dorsalization of the somite by repressing sclerotomal markers (Capdevila 

et al., 1998; Fan et al., 1997). Gain-of-function experiments performed in chick embryos have 

shown that ectopic Shh induces an increase in the expression of the sclerotomal marker Pax1 

(Johnson et al., 1994). In addition, mutant mouse for Wnt1 presents a loss of the 

dermomyotome (Ikeya and Takada, 1998). Subsequent to its specification, the 

dermomyotome is then subdivided in two different domains (Figure 2), which are the epaxial 

and hypaxial compartments. Again, extrinsic signals orchestrate specification of the two 

different domains (Figure 6). Classical surgical experiments in chick have shown that the 

epaxial compartment is specified through signals coming from the neighbouring structures 

(Rong et al., 1992). In the context of notochord ablation, epaxial myogenesis is prevented 

Figure 6: Extrinsic signals specify dermomyotome compartments. BMP and Wnt 

signallings emanating from the lateral plate and the ectoderm induces formation of the 

hypaxial region of the dermomyotome (pink), while Sonic Hedgehog (Shh) and Wnt 

signallings, arising from the neural tube and the notochord, govern specification of the 

epaxial dermomyotome (blue). 
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(Borycki et al., 1999; Munsterberg et al., 1995). Shh, which is released from the notochord, is 

involved in dermomyotome maturation (Figure 6). Indeed, in the epaxial dermomyotome, it 

has been demonstrated that Shh activates Myf5 expression (Borycki et al., 1999). 

Additionnaly, canonical Wnt signalling from the neural tube also participate in the induction 

of the epaxial compartment (Marcelle et al., 1997), (Figure 6). Finally, formation of the 

hypaxial compartment is mediated through Wnt and BMP signalling pathways, delivering 

from the ectoderm and the lateral plate mesoderm (Dietrich et al., 1998; Pourquié et al., 1996; 

Reshef et al., 1998; Tajbakhsh et al., 1998), (Figure 6).  

Extrinsic signals regulating head myogenesis are identical to those acting during axial 

myogenesis, but display opposite effects. Wnt pathway coming from the dorsal part of the 

neural tube and the ectoderm acts as a repressor of myogenic specification in the cranial 

paraxial mesoderm (Tzahor et al. 2003; Tirosh-Finkel et al. 2006; von Scheven et al. 2006). 

Figure 7: Successive waves of myogenesis contribute to muscle development. Embryonic 

myogenesis initiates muscle development. This first wave of myogenesis is dependent on the 

presence of PAX3-positive progenitors. Embryonic progenitors give rise to embryonic 

myoblasts that build embryonic fibres and establish the pool of foetal progenitors expressing 

PAX7. During foetal myogenesis, which is the second wave of myogenesis, PAX7-positive 

foetal progenitors give rise to foetal myoblasts that form foetal fibres and produce the pool of 

satellite cells expressing PAX7. At adulthood, satellite cells can be activated under specific 

signals, thus contributing to the formation of new adult myoblasts and new satellite cells 

through self-renewal.  
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Ectopic activation of Wnt signalling in cranial paraxial mesoderm inhibits myogenesis both in 

vitro and in vivo (Tzahor et al., 2003). A similar result has been observed in the context of 

BMP ectopic activation, thus demonstrating that BMP pathway also regulates negatively 

craniofacial myogenesis (Tzahor et al. 2003; Tirosh-Finkel 2006; von Scheven et al. 2006). In 

the contrary, antagonists of WNT and BMP signallings enhance head muscles formation 

(Tzahor et al., 2003). Ectopic expression of Noggin or Gremlin, two BMP antagonists and of 

Frizzled, a WNT antogonist, lead to the activation of myogenic markers (Tzahor et al., 2003). 

During head myogenesis, Noggin, Gremlin and Frizzled signals arise from tissues 

surrounding cranial muscles, among which cranial neural crest cells (NCCs). Cranial NCCs 

give rise to all bones, tendons, and connective tissues in the head (Couly et al., 1993; Le 

Douarin and Ziller, 1993). Cranial NCCs deliver signals that are essential to the establishment 

of craniofacial muscles (Couly et al., 1992; Noden, 1983; Rinon et al., 2007; Tzahor et al., 

2003), however, cranial NCC ablation does not induce a complete loss of head muscles 

(Tzahor et al. 2003; von Scheven et al. 2006), demonstrating that other signals are involved in 

craniofacial muscle specification. FGF signalling also participates in the regulation of head 

myogenesis. It has been shown that FGF pathway arising from branchial arches activates the 

expression of MyoR, while it induces a decrease in the expression of Myf5 (von Scheven et al. 

2006). All together, WNT, BMP and FGF signallings prevent premature head muscle 

differentiation, while inhibiting WNT and BMP pathways promotes head muscle specification. 

 

C. The different waves of myogenesis rely on different populations of progenitors 

The formation of muscles is driven through successive and overlapping phases of myogenesis 

(Figure 7). The first wave of myogenesis corresponds to the embryonic myogenic phase, 

during which the basic muscle pattern is established. During embryonic myogenesis, muscle 

embryonic progenitors express PAX3 and establish the pool of embryonic myoblasts, which 

generate primary muscle fibres (Figure 7). Primary fibres constitute the scaffold for further 

muscle development. Embryonic myogenesis is then followed by a second wave, which is 

called foetal myogenesis, which corresponds to the growth and maturation of scaffold 

muscles. During this phase, foetal progenitors expressing PAX7 fuse between themselves, and 

with primary fibres to form secondary fibres, which finally contribute to muscle growth 

(Messina and Cossu, 2009), (Figure 7). In the limb of mouse and chick embryos, embryonic 

myogenesis occurs from E11.5 to E14.5 and E2.5 to E6, respectively, and foetal myogenesis 

is established from E14.5 and E6, respectively (Biressi et al., 2007; Duprez, 2002). Finally, a 
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third phase of myogenesis, which is called perinatal myogenesis, takes place at the end of 

embryonic development (Figure 7). During this last myogenic wave, the pool of adult  

muscle stem cells, the satellite cells expressing PAX7, is established. Satellite cells are 

essential for subsequent perinatal muscle growth, adult homeostasis and regeneration 

(Messina and Cossu, 2009), (Figure 7). Although these populations of muscle progenitors 

exhibit different features (Hutcheson et al., 2009), it has been established that they all derive 

from the same pool of progenitors. Genetic lineage tracing and ablation experiments 

performed in mouse embryo shows that a common pool of PAX3-positive progenitors 

contributes to the establishment of both primary and foetal progenitors (Hutcheson et al., 

2009). PAX7-positive cells derive from PAX3-positive cells and downregulate Pax3 to 

constitute the pool of foetal progenitors (Hutcheson et al., 2009), (Figure 7). Therefore, PAX7 

is crucial for foetal myogenesis, but not embryonic one, while PAX3 is essential for 

embryonic myogenesis, but not foetal one.  

 

D. Muscle cell fusion: an important step for muscle differentiation 

Muscle differentiation requires the formation of muscle fibres, which are multinucleated cells 

resulting from muscle cell fusion events. This mechanism can occur between two myoblasts, 

between a myoblast and a myotube, as well as between two myotubes. Myoblast fusion takes 

place during both embryonic and foetal myogenesis, however, it seems that this event is more 

important during the second phase of myogenesis (Biressi et al., 2007), suggesting that foetal 

myoblasts display more efficient fusion ability than embryonic myoblasts. In addition, it has 

been demonstrated that fusion potential of muscle cells differ between different regions in the 

embryo (Sieiro-Mosti et al., 2014). Although all axial muscle progenitors derive from 

somites, muscle cell fusion in the limbs arise faster than in the trunk (Sieiro-Mosti et al., 

2014). The process of muscle cell fusion is associated to successive cellular mechanisms: 

migration/recognition between the cells, cellular adhesion, lipid bilayer destabilization of 

cellular membranes, fusion pore formation and finally cell fusion. Most of the data obtained 

on the mechanism of muscle cell fusion come from studies performed on muscle cells in vitro 

(Abmayr and Pavlath, 2012; Pavlath, 2010). However, more recently, molecular actors in 

muscle fusion processes have been identified in vivo in the drosophila model. In drosophila, 

two different populations of muscle cell progenitors can be distinguished: the muscle founder 

cells (FCs), and the fusion competent myoblasts (FCMs). FCs attract FCMs and both cell 

types fuse together to form multinucleated cells. The first event for fusion mechanism is the 

recognition of the two partner cells and the adhesion of membranes that ultimately trigger 
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fusion. In drosophila, different immunoglobulin-domain-containing cell adhesion molecules 

(CAMs) have been identified as mediating recognition and adhesion steps between FCs and 

FCMs (Kim et al., 2015). The different CAMs shown to be involved in muscle cell fusion in 

drosophila are conserved in mammals (Figure 8). During embryonic development, loss-of-

function of Nephrin, the vertebrate homolog of the Sns drosophila CAM, leads to 

incompletely fused myoblasts in both zebrafish and mouse (Sohn et al., 2009). In vitro, 

primary myoblasts from Nephrin mutant mice show a severe decrease in their ability to fuse 

(Sohn et al., 2009). In zebrafish, Jamb and Jamc, two Ig domain-containing transmembrane 

proteins interacting together, have been identified to be expressed in the myotome (Powell 

and Wright, 2011). Jamb or Jamc loss-of-function leads to a defect in myoblast fusion 

characterized by the abnormal high number of mononucleated cells (Powell and Wright, 

2011). Kirrel, the zebrafish homolog of the drosophila CAM Duf has also been identified to 

control fusion ability in muscle cells (Srinivas et al., 2007).  

Recently, a new membrane-associated factor has been characterized for its contribution to 

muscle cell fusion: Myomaker (Tmem8c), (Millay et al., 2013), (Figure 8). Myomaker is the 

Figure 8: Different fusion partners contribute to muscle fusion steps. Myogenic 

differentiation relies in part on fusion events occurring between muscle cells. Such events 

require the expression of specific fusion partners in muscle cells. Some of them are 

described on the scheme. (Adapted from Kim et al., 2015) 
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first molecule involved in the process of muscle fusion that is specifically expressed in muscle 

cells during development (Millay et al., 2013). Mutant mice for Myomaker display a strong 

defect in myoblast fusion. Indeed, skeletal muscles deficient for Myomaker contain only 

mononucleated cells. Furthermore, the expression of Myomaker in fibroblasts (fusion 

incompetent cell) induces fusion between fibroblasts and myoblasts (Millay et al. 2013; 

2016). 

Finally, the extracellular matrix receptor ß1 integrin also regulates myoblast fusion. Loss of 

ß1 integrins in mouse embryos leads to shortened muscle fibres, with an accumulation of 

mononucleated cells (Schwander et al., 2003). Similarly, in vitro, ß1 integrin-deficient muscle 

cells fail to fuse (Schwander et al., 2003). The integrin-associated tetraspanin CD9 interacts 

with ß1 integrin to regulate muscle fusion and in ß1 integrin-deficient myoblasts, CD9 is no 

longer expressed at the cell surface (Schwander et al., 2003). Consistent with these results, it 

has been shown that CD9 tetraspanin has a promoting effect on muscle cell fusion (Tachibana 

and Hemler, 1999).  

 

E. Limb muscle development 

The different limb muscles all originate from somites localized at the axial levels of limb 

buds. In the chick embryo, somites 16 to 21 and 26 to 33 give rise to forelimb and hindlimb 

muscles, respectively (Chevallier et al. 1977; Christ et al. 1977; Zhi et al. 1996; Lance-Jones 

1988). Only the hypaxial compartment of the dermomyotome contributes to limb muscle 

formation. Muscle progenitors first delaminate from the epithelium of the hypaxial 

dermomyotome, and then migrate toward the limb bud. Once they reached their final position, 

muscle progenitors enter the myogenic program and start to proliferate. At this time, muscle 

cells aggregate into two distinct ventral and dorsal muscles masses (Chevallier et al., 1976; 

Schramm and Solursh, 1990). Finally, muscle masses undergo a splitting process to form the 

individual limb muscles (Tozer et al., 2007). In chick embryo, twelve and fifteen main 

muscles can be distinguished in forelimbs and hindlimbs, respectively (Murray and Wilson, 

1997; Robson et al., 1994; Zhi et al., 1996), (Figure 9).  

 

Delamination and migration 

In contrast to the trunk muscles, muscle cells originating from the hypaxial region of the 

dermomyotome require migration ability to reach their final destination. The transcription 

factor PAX3 has an important role in the establishment of limb muscles. PAX3 is highly 

expressed in the hypaxial lip of the dermomyotome at the limb levels. Furthermore, deficient  
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mice for PAX3 presents a loss of all limb muscles, demonstrating that cell delamination from 

the hypaxial lip of the dermomyotome is impaired (Tajbakhsh et al., 1997). Similarly to 

PAX3 mutant, mutant mouse for the c-met tyrosine kinase gene or its ligand, the Hepatocyte 

Growth Factor (HGF) also named Scatter Factor (SF), leads to a complete absence of limb 

muscles (Bladt et al., 1995; Dietrich et al., 1999). PAX3 expression induces c-met expression 

in muscle cell progenitors. In turn, c-met expression regulates delamination of PAX3-positive 

cells from the hypaxial dermomyotome that undergo an epithelial to mesenchymal transition 

and migrate into the limb mesenchyme (Buckingham et al., 2003).  

Oriented migration of muscle progenitors expressing c-met depends on the interaction 

between the tyrosine kinase receptor and its ligand HGF/SF (Bladt et al., 1995). HGF/SF is 

expressed in the limb mesenchyme and provides a signal highlighting the migratory route for 

myogenic progenitors into the limb bud. LBX1 that belongs to the homeobox gene family 

related to drosophila Lady Bird genes, is also detected in the hypaxial lip of the 

dermomyotome at the limb level and in migrating muscle precursor cells (Brohmann et al., 

2000; Jagla et al., 1995). Mutant mouse for LBX1 presents a defect in muscle precursor cell 

migration. Although muscle progenitors delaminate normally, they do not migrate correctly, 

leading to a complete lack of dorsal muscles and reduced ventral muscles in the forelimbs 

(Brohmann et al., 2000). These data show that in the absence of LBX1, muscle progenitor cell 

migration is less efficient, demonstrating that LBX1 is essential for muscle precursors to 

Figure 9: Limb myogenesis during chick embryonic development. In chick embryos, limb 

myogenesis start at E2. At this stage, muscle progenitors delaminate from the hypaxial lip of 

the dermomyotome and migrate toward the limb bud. From E3, muscle progenitors undergo 

proliferation and aggregate to form the dorsal and ventral muscle masses. At this stage, 

activation of the MRFs is achieved. At E4.5, the first differentiation events occur. Finally, 

from E6 to E8, ventral and dorsal muscles masses split to form the different limb muscles. 
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correctly integrate the different guidance cues and maintain their migratory potential. 

Expression profiling analysis in LBX1-positive muscle progenitor cells evidenced CXCR4 as 

a novel actor regulating muscle cell migration (Vasyutina et al., 2005). CXCR4 is expressed 

in limb migrating muscle cells, while its ligand CXCL12 is expressed in limb mesenchyme. 

Deficient mice for CXCR4 present a reduced number of muscle progenitors reaching the 

distal part of the limbs (Vasyutina et al., 2005). In addition, an ectopic source of CXCL12 

attracts migrating CXCR4-positive muscle progenitors, and thus impairs their correct 

migration route (Vasyutina et al., 2005), demonstrating that CXCR4/CXCL12 axis 

contributes to the regulation of muscle cell migration during limb muscle formation. In 

addition to attractive guidance mechanisms, it has also been shown that repulsive guidance 

processes occur during muscle cell migration. During migration of limb muscle precursors, 

the tyrosine kinase receptor EphA4 is expressed in muscle progenitors, while its ligand 

ephrinA5 is expressed limb mesenchyme (Swartz, 2001). In chick embryos, gain-and-loss of 

function experiments of EphA4/ephrinA5 signalling demonstrate that ephrinA5 acts as a 

repulsive signal on EphA4-positive muscle progenitors, thus preventing their aberrant 

migration in inappropriate locations (Swartz, 2001). Taken together, these results show that 

the combination of different signals, mainly emanating from the limb mesenchyme, allows the 

guidance of migrating muscle progenitor cells to their correct position in limbs (Figure 10). 

 

Dorsal and ventral muscle masse formation 

In migrating muscle precursor cells, the myogenic program is not active. The first activation 

of MRFs takes place after muscle cells have reached their final destination (Figure 10). They 

start to express first Myf5 and then MyoD (Delfini and Duprez, 2000; Ontell et al., 1995). In 

the limb the homeobox transcription factor Mox2 is involved in the activation of Myf5. 

Indeed, in Mox2 deficient mice, Myf5 expression is downregulated, while MyoD is still 

present (Mankoo et al., 1999). Furthermore, expression of MRFs in limbs is associated with a 

decrease in PAX3 expression (Mankoo et al., 1999), as well as that of the Msx1 homeobox 

factor. Msx1 expression is observed in migrating muscle cells and has been shown to prevent 

muscle differentiation through maintenance of migrating progenitor cells in a proliferative 

state (Houzelstein, 1999; Odelberg et al., 2000). Similarly, the bHLH transcription factor 

Sim2 prevents limb myogenic differentiation by repressing MyoD through direct binding on 

MyoD promoter (Havis et al., 2012). Finally, proliferative limb muscle precursors activating 

the myogenic program undergo differentiation into myotubes to progressively form dorsal and 

ventral limb muscle masses. In the chick embryo, dorsal and ventral muscle masses are 
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formed at E3. Shh, which is expressed in the zone of polarizing activity (ZPA) of the 

developing limb bud, also regulates the correct development of dorsal and ventral muscle 

masses as an ectopic expression of Shh induces the transformation of anterior muscles into 

muscles with a posterior identity (Duprez et al., 1999).  

 

Muscle masses splitting 

Ultimately, the dorsal and ventral muscle masses undergo splitting. They progressively cleave 

into different muscle masses to finally form all individual limb muscles (Figure 10). The 

process of muscle splitting arises from E6 to E8 in the chick embryo (Robson et al., 1994). 

The limb vasculature plays an important role in this process (Tozer et al. 2007). Blocking 

blood vessel formation leads to a defect in muscle splitting. Instead of being splitted, muscles 

are fused in domains where blood vessels did not develop. Conversely, ectopic formation of 

blood vessels induces ectopic muscle cleavage or inhibits muscle formation (Tozer et al. 

2007). The limb vasculature actually delineates the cleavage pattern of muscles (Figure 10). 

The role of the innervation during limb muscle splitting has also been assessed (Edom-

Vovard et al., 2002; Rong et al., 1992; Shellswell, 1977), but neural tube ablation in the chick 

embryo has been shown to give rise to normal limb muscle patterning (Edom-Vovard et al., 

2002; Rong et al., 1992), indicating that innervation is not implicated in limb muscle splitting. 

However, nerves are important for further maintenance and development of muscles. 

Figure 10: The different mechanisms controlling limb muscle formation. Limb muscle 

formation is mediated through successive steps that require specific orchestration of many 

different actors. Schematic representation of the different players intervening during the 

distinct phases of limb muscle development. NT, neural tube; NC, notochord. (Adapted 

from Buckingham et al., 2003) 
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II. Connective tissue development  

In the body, connective tissue (CT) function is to support and connect organs together. CT is 

composed of fibroblasts and extracellular matrix, forming an amorphous gel-like and matrix 

fibers. The amorphous gel-like contains mainly glycoproteins and proteoglycans, while the 

fibrous network is made of collagen and elastic fibers (Omelyanenko and Slutsky, 2013). Two 

main types of supportive CTs can be distinguished: the specialized CT and the dense CT. The 

specialized CT comprises bones and cartilage elements. The dense CT can be divided into 

two subtypes: the dense regular CT and the dense irregular CT, which refer respectively to 

tendon/ligament structures and to CT embedding organs (Table 1). The different CTs mainly 

differ by the composition and organization of the extracellular matrix. In dense regular CT, 

collagen produced by fibroblasts is organized in fibers with the same orientation, while in the 

dense irregular CT, fibroblasts produce collagen fibers without specific organization. 

 

During embryonic development, the different forms of CT (bones, cartilage, tendons, 

ligaments and irregular CT) differentiate from mesenchymal cells derived from mesodermal 

and mesectodermal (neural crest cells) origins (Wachtler et al., 1981). Neural crest cells give 

rise to head CTs, while CTs of the body originate from paraxial or lateral plate mesoderm 

(Figure 11). Specific key transcription factors or signalling molecules control the specification 

and differentiation processes of the different types of CTs, irrespective to their embryological 

origins (Figure 12).  

 

Table 1: Classification of the different type of connective tissues 

 



 43 

A. Specialized connective tissue (bone and cartilage) 

The embryonic origins of cartilage and bone are multiple. Indeed, three distinct embryonic 

structures, somites, neural crest cells and lateral plate mesoderm are at the origin of the 

elements of the trunk, head and limb skeleton (Christ and Wilting, 1992; Noden and Trainor, 

2005; Wachtler et al., 1981) (Figure 11). The development of cartilage and bone elements, 

which form the skeleton, starts by the condensation of mesenchymal cells at the future sites of 

bones. Following condensation, mesenchymal precursors differentiate in chondrocyte or 

osteoblast, forming respectively cartilage or bone. The process of ossification is named 

osteogenesis and occurs through two different mechanisms. Intramembranous ossification 

corresponds to a direct transition from condensed mesenchymal cells into osteoblasts (as 

described above) while the second step of bone formation is called endochondral ossification, 

characterized by the replacement of cartilage by bone. In this case, chondrogenesis is the first 

step of a mechanism that ultimately gives rise to bones. Intramembranous ossification occurs 

in bones of the skull, while endochondral ossification forms the other bones (reviewed in 

Karsenty & Wagner, 2002). 

Molecular mechanisms leading to cartilage and bone specification are well understood 

Figure 11: The embryonic origins of connective tissues. Connective tissues (CTs) have 

distinct embryonic origins depending of the anatomical regions. CTs from the head arise 

from the neural crest cells (green), while CTs in the trunk derive from the somites (orange) 

and limb CTs originate from the lateral plate mesoderm (purple). (Adapted from Nassari et 

al., 2017) 
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(Figure 12). Cartilage specification has been shown to involve the members of the SOX 

(SRY-related HMG-box) transcription factor family (Lefebvre et al., 1998). During mouse 

embryonic development, Sox9 exhibits a similar expression pattern to Col2a1, the main 

collagen forming the cartilage extracellular matrix (Zhao et al., 1997). In mouse mutant 

embryos for Sox9, cartilage elements are missing, demonstrating the major  role for Sox9 in 

mesenchymal cell condensation and differentiation towards a cartilage fate (Akiyama et al. 

2002; Bi et al. 1999). It has also been shown that Sox9 is required for the expression of two 

other Sox genes, Sox5 and Sox6 that are co-expressed with Sox9 in chondrocytes (committed 

cartilage cells), (Lefebvre et al., 1998). Both Sox5 and Sox6 mutant mice show skeletal 

abnormalities, but Sox9 expression remains unchanged, showing that Sox9 acts upstream of 

Sox5 and Sox6 (Smits et al., 2001). Runx2 (Runt-related transcription factor 2) is specific to 

bone progenitor cell lineage and appears as an important actor for osteogenesis as 

osteogenesis does not occur in mutant mice for Runx2 (Ducy et al., 1999; Komori et al., 1997). 

Cartilage elements are present in Runx2 
-/- mouse, but all bones are missing, demonstrating 

the major role of Runx2 in bone specification (Komori et al., 1997). Conversely to Sox9, 

which is required for cartilage specification and differentiation (Akiyama et al. 2002), Runx2 

is not required for bone differentiation (Takarada et al., 2013). Runx2 expression has to be 

downregulated after osteogenic cell commitment to allow committed bone cells to mature and 

differentiate (Adhami et al., 2014; Takarada et al., 2013; Yoshida et al., 2004). Osterix (Osx) 

is also a key transcription factor in the formation of bones (Nakashima et al., 2002). It is 

specifically expressed in all bones (Nakashima et al., 2002) and required for the 

differentiation of bone progenitors. No bone is observed in mutant mouse for Osx, however 

Runx2 expression is maintained (Nakashima et al., 2002). Conversely, Osx is not expressed in 

Runx2 mutant mice (Nakashima et al., 2002), indicating that Runx2 and Osx are involved in 

bone specification and differentiation, respectively. 

Beside the specific transcription factors required for skeletal development, signalling 

pathways have also been demonstrated to be involved in this process. Wnt signalling controls 

skeleton differentiation in a cell-autonomous manner, which favors osteoblast differentiation 

at the expense of chondrocytes (Day et al., 2005; Hill et al., 2005). Conditional inactivation of 

ß-catenin in mesenchyme leads to the formation of ectopic chondrocytes while osteoblast 

differentiation is blocked (Day et al., 2005). In vitro, the expression of Sox9 and Runx2 is 

controlled by ß-catenin (Day et al., 2005). FgfR3 and FgfR1 inactivation in mouse leads to 

achondroplasia and hypochondroplasia, demonstrating the role of FGF signalling in skeletal 
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development (Deng et al., 1996; Jacob et al., 2006). Both mutant mice exhibit an expansion of 

the hypertrophic chondrocyte zone, suggesting that FGF signalling is a negative regulator of 

chondrocyte proliferation (Deng et al., 1996; Jacob et al., 2006). Inactivation of Ihh (Indian 

Hedgehog), one member of the Hedgehog family decreases chondrocyte proliferation, leading 

to a defect in osteoblast formation (Vortkamp et al. 1996). Ihh interacts with the Parathyroid 

hormone, which controls the balance between cell proliferation and differentiation 

Figure 12: The key regulators driving connective tissue specification. Upon the 

expression of specific transcription factors, a mesenchymal cell is able to specify and give 

rise to the different types of connective tissues (CTs) including bone, cartilage, tendon and 

irregular CT. The activation of Sox5/6/9, Runx2/Osx, Scx/Mkx/Egr1 and Tcf4/Tbx5/Osr1 

genes promotes cartilage, bone, tendon and irregular CT, respectively. (Adapted from 

Nassari et al., 2017) 
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(Kronenberg, 2006). In addition, RUNX2 induces Ihh expression which in turn inhibits Runx2 

expression by a feedback loop mechanism (Yoshida et al., 2004). Finally, BMPs (Bone 

Morphogenetic Proteins) regulate IHH expression in chick embryos (Zhang et al., 2003) and 

have been shown to regulate chondrocyte differentiation (Kobayashi et al. 2005; reviewed in 

Li & X. Cao 2006).  

 

B. Dense regular connective tissue (tendon) 

As specialized CTs (bone and cartilage), tendons emerge from distinct embryological origins 

depending on their location in the body (Figure 11). Tendons of the trunk originate from the 

somites, from a subregion of the sclerotome named the syndetome (Brent et al., 2003), while 

tendons of the craniofacial region derive from neural crest cells (Crane & Trainor 2006; 

Grenier et al. 2009) and limb tendons are formed from the lateral plate mesoderm (Kieny and 

Chevallier, 1979). Tendons attach muscles to bones by connecting muscle at the 

myotendinous junction and bone at the enthesis, while ligaments connect bone to bone. The 

role of tendons is to transmit forces generated by muscle contractions to bones, in order to 

allow joint movements and maintain articular stability. The extracellular matrix of the tendon 

is characterized by type I collagen fibers, organized in parallel to the tendon axis. This 

organization allows the mechanical properties of the tendons (Benjamin and Ralphs, 2000). 

Ligaments are essential components of the skeletal joints. Ligament elasticity defines the 

range of motion of the joints, supports joint stability and protects joints and bones by their 

stretching capacities. Collagen organization is similar in tendons and ligaments (Benjamin 

and Ralphs, 2000) but it has been shown  that both cell types in adult differ in the level of 

expression of individual genes (Richard et al., 2009). However, development mechanisms 

have been more studied in tendon than in ligament (Tozer and Duprez, 2005). It is noteworthy 

that tendon and ligament exhibit the same gene expression profile during embryogenesis 

(Richard et al., 2009). 

Conversely to cartilage and bone, the master gene(s) involved in tendon specification during 

development is(are) still unknown. To date, the unique early tendon marker known in 

vertebrates is Scx (Scleraxis). Scx is specifically expressed in tendon progenitors and 

differentiated cells (Schweitzer et al. 2001). Mutant mice for Scx exhibit tendon defects, 

leading to a severe impairment of limb and tail force-transmitting tendons, while anchoring 

tendons are less affected (Murchison et al., 2007). However, tendon progenitors are still 

present in Scx
 mutant, indicating that Scx is not the only gene implicated in tendon formation 

during development. Two additional transcription factors are involved in tendon formation, 
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the homeobox transcription factor Mkx (Mohawk), (Ito et al. 2010; Liu et al. 2010) and the 

zinc finger transcription factor Egr1 (Early Growth Response 1), (Lejard et al., 2011), (Figure 

12). Both Mkx and Egr1 mutant mice exhibit tendon defects associated with a decrease in 

Col1a1 expression and in the number of type I collagen fibers in tendons (Ito et al. 2010; Liu 

et al. 2010; Lejard et al. 2011; Guerquin et al. 2013). However, both Mkx and Egr1 are 

expressed later than Scx during development and are also expressed in many other lineages 

(Anderson et al., 2006; Rackley et al., 1995).  

TGFß (Transforming growth factor) and FGF (Fibroblast growth factor) signalling pathways 

have been shown to regulate tendon specification and differentiation at various body locations 

(recently reviewed in Gaut & Duprez, 2016). As mentioned above, axial tendon progenitors 

arise from the syndetome, a subcompartment of the sclerotome. The syndetome is localized at 

the interface between the sclerotome and the myotome and formed by Scx-expressing cells. In 

chick embryos, dermomyotome removal leads to the absence of tendons, showing that axial 

tendons do not develop in the absence of axial muscles (Brent et al., 2003). SCX expression at 

the axial level is induced in response to FGF signalling coming from the myotome, which 

concomitantly downregulates PAX1 expression in the sclerotome (Brent et al., 2003). In 

contrast to axial tendons, head and limb tendons form independently from muscle. 

Scxa/SCX/Scx expression is induced in limb and head of zebrafish, chick and mouse embryos 

in the absence of limb or craniofacial muscles (Schweitzer et al. 2001; Edom-Vovard et al. 

2002; Grenier et al. 2009; Chen & Galloway 2014). Ectoderm removal in chick limbs results 

in the absence of SCX expression, demonstrating that SCX induction is mediated via 

ectodermal signals (Schweitzer et al. 2001). In the limb mesenchyme, BMP signalling 

represses SCX expression and overexpression of the BMP antagonist NOGGIN induces 

ectopic SCX expression. These results suggest that tendon specification in chick limbs results 

from a balance between an unidentified factor coming from the ectoderm and BMP signalling 

from the mesenchyme (Schweitzer et al. 2001). In addition, TGFß signalling is required and 

sufficient for Scx/SCX expression in chick and mouse embryos (Pryce et al. 2009; Havis et al. 

2014; 2016), while FGF signalling is required and sufficient for SCX expression in chick limb 

cells but not in mouse limb cells (Pryce et al. 2009; Havis et al. 2014; 2016).  

Although muscles are dispensable for specification of head and limb tendons, they are 

required for Scxa/SCX/Scx late expression in tendons and for full tendon differentiation. In the 

absence of muscles, tendons degenerate in chick, mouse and zebrafish embryos (Kardon 

1998; Edom-Vovard et al. 2002; Grenier et al. 2009; Chen & Galloway 2014). Moreover, 

ectopic expression of tendon-associated genes in chick limbs is observed after overexpression 



 48 

of FGF4, which is normally expressed at the tips of muscle fibers (Edom-Vovard et al., 2002; 

Eloy-Trinquet et al., 2009). Finally, chick embryo paralysis decreases SCX expression in limb 

tendons, an effect that can be prevented by application of FGF4 or TGFβ ligands, 

demonstrating that FGF and TGFβ signalling pathways act downstream of mechanical forces 

to regulate tendon differentiation (Havis et al. 2016) . 

 

C. Dense irregular connective tissue 

The irregular CT forms the scaffold of organs, with scattered cells embedded in high 

extracellular matrix content. It is present all around and inside organs. First studies on the 

differentiation of irregular CT have focused on the extracellular matrix composition. During 

development, Type I and type III collagen are both expressed in dense regular and irregular 

CTs, however type I collagen tends to replace type III collagen in adult tendons, while both 

type III and type VI collagen are expressed in mature irregular CT (Gara et al., 2011; Kieny 

and Mauger, 1984; Stricker et al., 2012; Zhang et al., 2005). The mechanisms driving 

irregular CT specification have been poorly investigated for a long time due to the lack of 

specific early molecular markers. More recently, the identification of transcription factors 

expressed in irregular CT has allowed to progress in the understanding of irregular CT 

formation and function (Figure 12).  

TCF4, belonging to the TCF/LEF family, is the first transcription factor that has been 

identified in irregular CT fibroblasts. In limbs of both mouse and chick embryos, Tcf4-

expressing cells discriminate the lateral plate-derived mesodermal population from myogenic 

cells (Kardon et al. 2003; Mathew et al. 2011). During muscle differentiation in chick limbs, 

TCF4 expression is progressively restricted to muscle CT (Kardon et al., 2003) and 

colocalizes with type I collagen. This expression is maintained in the adult (Mathew et al. 

2011). TCF4 expression is repressed by BMP signalling (Bonafede et al., 2006) and activated 

by Wnt pathway (Kardon et al., 2003) in developing chick limbs. TCF4 is also expressed in 

avian jaw muscle CT and its expression has been shown to be controlled by the mesenchymal 

neural crest (Lin et al. 2014).  

Fibroblasts constituting the irregular CT also express the T-box transcription factor Tbx5. At 

early stage of limb development in mouse (E11.5), Tbx5 is broadly expressed in lateral plate 

mesodermal cells in domains overlapping with bone, tendon and muscle progenitors (Hasson 

et al. 2007). Mutant mice for Tbx5 leads to the disorganization of muscle CT during 

embryonic development (Hasson et al., 2010), a phenotype that could be related to alterations 

of muscle CT markers, as Tcf4 and Osr genes (see below), (Hasson et al., 2010). Tbx5 
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increases the expression of N-cadherin and ß-Catenin in muscle CT. It seems noteworthy that 

Tbx5 mainly affects cell adhesion mechanisms independently of Tcf4, as the expression of 

Wnt signalling targets are not modified in Tbx5 mutant. 

 Two orthologs of the Odd-Skipped genes, Osr1 and Osr2, have been described in the 

irregular CT in chick and mouse embryos (Stricker et al. 2006; 2012). Both genes are 

expressed in different organs such as kidney, eye, branchial arches and dermis (Lan et al., 

2001; So and Danielian, 1999; Stricker et al., 2006). In the developing limb of mouse and 

chick embryos, Osr1 is expressed in irregular CT, exhibiting a partial overlap with Tcf4 

expression (Stricker et al., 2006). Osr2 is also widely expressed in irregular CT, but with a 

stronger expression in muscle CT (Stricker et al. 2006; 2012). Both genes are also observed in 

the mesenchyme of branchial arches in chick (Stricker et al., 2006) and mouse (Liu et al., 

2013) embryos. Overexpression of OSR1 or OSR2 in chick mesenchymal limb cells induces 

the expression of irregular CT markers such as COL3A1 and COL6A1 and down-regulates the 

expression of cartilage (specialized CT) and tendon (dense regular CT) markers, (Stricker et 

al., 2012). Conversely, OSR1 or OSR2 inactivation down-regulates COL3A1 and COL6A1 

expression, while increasing cartilage formation in chick limb mesenchymal cells (Stricker et 

al., 2012). Similarly, conditional inactivation of Osr1 in cranial neural crest cells results in the 

formation of an ectopic cartilage in the developing mouse tongue (Liu et al., 2013). OSR1 has 

been shown to bind Sox9 promoter and repress Sox9 expression, demonstrating that OSR1 

inhibits chondrogenesis in the mammalian tongue through Sox9 repression (Liu et al., 2013). 

 

D. Fibrosis: dense irregular CT formation out of control 

Proper formation of the irregular CT is a crucial step in development that is characterized by 

an activated state of fibroblastic cells. The term “fibroblast” corresponds to a population of 

cells capable to secrete non-rigid collagenous extracellular matrix. During embryonic 

development, activated fibroblasts, also named mesenchymal or stromal cells, greatly 

contribute to tissue/organ remodelling. Their activated state is characterized by their ability to 

proliferate and migrate, secrete growth factors and produce extracellular matrix (Table 2). 

Conversely, inactivated fibroblasts correspond to quiescent/resting fibroblasts (Table 2). In 

Table 2: Specific features characterizing inactive and active fibroblasts 
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the embryo, only few inactivated fibroblasts are present and it has been proposed that they 

constitute the pool of adult tissue resident mesenchymal stem cells (Yusuf et al., 2013).  

In the adult, resident fibroblasts are present in their inactivated form. Following acute or 

chronic stimuli such as infection, allergic/autoimmune reaction or mechanical injury, 

fibroblasts are activated and participate to different fibrotic responses that can be beneficial or 

pathological. During the wound healing process that takes place after mechanical injury, 

activated fibroblasts contribute to the maintenance of the structural integrity of the irregular 

CT, as well as the replacement of certain damaged cells (Kendall and Feghali-Bostwick, 

2014; Wynn, 2007). Indeed, it has been demonstrated that activated fibroblasts are able to 

give rise to other mesenchymal lineages (chondrogenic, adipogenic, osteogenic, myogenic 

and endothelial cells), (Kalluri, 2016) (Figure 13). Under stimuli, activated fibroblasts move 

to the wound region and undergo massive proliferation associated with myofibroblastic 

Figure 13: The plasticity of activated fibroblasts. Active fibroblasts are able to give rise 

to different mesodermal-derived cell types including pericytes, endothelial cells, 

myoblasts, chondrocytes and adipocytes. 
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differentiation to contribute to the wound healing response (Bochaton-Piallat et al., 2016). 

The main characteristic of myofibroblast differentiation is the acquisition of contractile 

properties, partly mediated through the de novo expression of the alpha-smooth muscle actin 

(αSMA) gene (Bochaton-Piallat et al., 2016; Strutz and Zeisberg, 2006). Although most 

myofibroblasts originate from fibroblasts, other cell types can also contribute to the formation 

of the myofibroblast pool, among which endothelial and epithelial cells, pericytes and 

fibrocytes, a specialized inflammatory cell type derived from the bone marrow (Kendall and 

Feghali-Bostwick, 2014) (Figure 14). At the end of the scarring mechanism, myofibroblasts 

undergo cell death but misregulation of their survival can result in a dramatic excess of 

collagen deposition, associated with a loss of collagen degradation, thus leading to the 

development of a hypertrophic scar. This phenomenon is called fibrosis, and can ultimately 

lead to organ/tissue dysfunction. Fibrosis is associated with many pathologies, affecting 

different organs, such as skin (systemic sclerosis), heart (aortic stenosis, hypertension), liver 

(alcohol-induced and non-alcoholic steatohepatitis) and lung (idiopathic pulmonary fibrosis, 

cystic fibrosis) (Bonnans et al., 2014; Clarke et al., 2013; Wynn, 2007). In skeletal muscles, 

fibrosis is associated to muscular dystrophies, corresponding to a heterogenous group of 

muscle diseases characterized by tissue inflammation and wasting of skeletal muscles. 

Furthermore, all metastatic cancers are associated with fibrosis. Myofibroblasts are activated 

through secreted factors released from the tumor, leading to the reorganisation of the stromal 

environment, which allows the migration of tumor cells (Kalluri, 2016). 

Different signals have been shown to play a key role in the development of fibrosis. TGFβ is 

characterized as the most important profibrotic factor (Meng et al., 2016). Activation of TGFβ 

triggers proliferation and activation of fibroblasts (Meng et al., 2016). It has been shown in 

dermal fibroblasts that TGFβ signalling induces the expression of extracellular matrix-related 

genes Col1a1, Col1a2, Col3a1, Col5a2, Col6a1 and Col6a3 (Verrecchia et al., 2001). 

Conversely, BMP pathway has an anti-fibrotic effect. BMP treatment inhibits TGFβ-induced 

fibrosis and triggers a decrease in the expression of αSMA (Yang et al., 2011). In addition to 

classical signalling pathways, mechanical forces are also important regulators of fibrosis. 

They enhance TGFβ activation and myofibroblast differentiation, thus promoting a pro-

fibrotic response. 
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Cytokines have also been characterized to promote fibrosis (Borthwick et al., 2013). For 

instance, it has been shown that IL-13 is increased in fibrotic intestinal muscle of Crohn’s 

disease patients and mediates inhibition of metalloprotease synthesis, leading to an increase in 

extracellular matrix deposition that ultimately promotes fibrosis (Bailey et al., 2012). 

Profibrotic effects of IL-13 have been also shown in pulmonary fibrosis (Murray et al., 2008). 

Furthermore, it has been demonstrated that IL-13 enhances myofibroblastic differentiation 

and TGFβ signalling (Bonnans et al., 2014). Similarly, the CXCL12 chemokine promotes 

myofibroblast differentiation in gut fibrosis, demonstrating the fibrotic effect of this 

chemokine (Gharaee-Kermani et al. 2012; Rodriguez-Nieves et al. 2016; Olsen et al. 2016). 

However, this mechanism is independent of TGFβ signalling (Gharaee-Kermani et al. 2012; 

Rodriguez-Nieves et al. 2016). CXCL12 positively regulates the expression of Ctgf 

Figure 14: Various cell types contribute to myofibroblast formation. Myofibroblasts 

are specific cells characterizing fibrotic tissues. They arise from the transdifferentiation of 

different cell types including active fibroblasts, circulating fibrocytes, epithelial cells or 

endothelial cells. Active fibroblasts originate from local resident fibroblasts, while 

fibrocytes arise from the bone marrow, and endothelial and epithelial cells derive from 

blood vessels and epithelia, respectively. 
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(Connective tissue growth factor) in lung fibroblasts, a main actor in the fibrosis process (Lin 

et al. 2014). CXCL12 additionally contributes to the recruitment of bone marrow-derived 

fibrocytes to the site of inflammation, participating to the formation of the myofibroblast pool. 

Finally, both Cxcl12 and Cxcl14 expression is increased in pulmonary fibroblasts of patients 

with idiopathic pulmonary fibrosis (Emblom-Callahan et al., 2010; Jia et al., 2017).  
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III. Connective-tissue-mediated muscle morphogenesis 

Classical experiments in avian embryos have demonstrated that muscle differentiation and 

patterning partly derived from surrounding tissues (Lance-Jones, 1988; Ordahl & Le Douarin, 

1992; Kardon, 1998). Over the last years, the identification of specific molecular markers for 

the different types of CT allowed to progress in the identification of the molecular 

mechanisms underlying the interactions between CT and muscle development. It has been 

shown that, depending on their embryological origin and their location in the body, the 

different types of CT influence spatially and temporally muscle morphogenesis.  

 

A. Specialized-connective-tissue-mediated myogenesis (bone and cartilage)  

In the limb, muscles and specialized CTs (bone and cartilage) do not exhibit direct physical 

interactions, as they are linked together via tendons. During limb development, mechanisms 

that regulate skeleton and muscle formation can be dissociated (Hasson et al., 2010; Li et al., 

2010). Indeed, mutation in the LIM-homeodomain transcription factor Lmx1b in skeletal 

progenitors using the Sox9-Cre, which leads to skeletogenesis defects, has no effect on 

muscle development (Li et al., 2010). Similarly, profound skeletal defects are observed after 

inactivation of the BMP antagonist, Noggin, which is expressed in condensing cartilage and 

immature chondrocytes, but the early stages of myogenic differentiation are not affected 

(Tylzanowski et al., 2006). However, skeleton-derived signals are required for proper 

myogenesis. Indeed, terminal muscle differentiation is impaired in Noggin null-mutant mice 

although no defect at the onset of myogenesis is observed (Tylzanowski et al., 2006; 

(Costamagna et al., 2016). The Indian hedgehog (Ihh) secreted factor, which belongs to the 

Hedgehog family, is released by developing chondrocytes (Vortkamp et al. 1996)  and 

muscles are affected in the absence of Ihh (Bren-Mattison et al., 2011). As for Noggin null-

mutant, muscle impairment is observed during late myogenesis, resulting in reduced muscle 

masses. Finally, in vitro experiments show that C2C12 myoblasts can be converted towards 

the osteogenic lineage when exposed to BMPs (Precursor et al., 2000).  

Axial muscles arise from the myotomal compartment of the somite, which is formed by cell 

delamination occurring first at the dorsomedial lip of the dermomyotome and later at its 

caudal and rostral lips. This process is partly controlled by the sclerotome, another somitic 

compartment. During chick embryonic development, the medial part of the somites contains 

the pioneer myoblasts, which express the ROBO2 receptor, while its ligand SLIT1 is 

expressed in the caudal domain of the nascent sclerotome (Halperin-Barlev & Kalcheim, 
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2011). Loss-of-function of ROBO2 or SLIT1 lead to the disruption of the caudo/rostral 

migration of pioneer myoblasts and of myofibre formation, showing that myotome 

morphogenesis is controlled by sclerotome (skeletal precursors)-derived signals (Halperin-

Barlev & Kalcheim, 2011). However, since the sclerotome give rise to both skeleton and 

tendon progenitors (syndetome), these data cannot discriminate between the effects of bone or 

tendon progenitors on muscle morphogenesis. 

Skeletal elements in the head derive from the cranial neural crest cells (Couly et al., 1992). In 

the HoxA1/HoxB1 double-mutant mouse, cranial neural crest cells fail to form and migrate 

into the second branchial arch. In these conditions, cranial myogenesis was initiated although 

neural crest cells at the origin of skeletal progenitors were missing. However, muscle 

patterning was affected, as shown by the expansion in Tcf21 (Capsulin) and Tbx1 expression. 

Similarly, in chick embryo, early steps of head myogenesis are not impaired by ablation of 

cranial neural crest cells at the origin of skeletal progenitors but expression of myogenic 

genes is expanded to the entire arch mesenchyme, suggesting that the molecular interactions 

between cranial skeleton and muscles are conserved between chick and mouse embryos 

(Tzahor et al., 2003; Rinon et al., 2007). Such interactions are mediated at least by BMP and 

Wnt signalling (Tzahor et al., 2003; Rinon et al., 2007). However, neural crest cells give rise 

to skeleton, tendon and CT progenitors in the head. Again, as for axial myogenesis, these 

experiments are not able to discriminate between prospective bone, tendon or muscle CT in 

the control of cranial myogenesis. 

 

B. Dense regular connective tissue (tendon) as an important source of signals during 

muscle development 

Muscle and dense regular CT (tendon) displays interactions during their development. In 

chick, mouse and zebrafish embryos, tendon requires muscle to fully develop (reviewed in 

Gaut & Duprez, 2016). Conversely, the influence of tendon on muscle development is less 

clear in vertebrates.  During limb muscle development, muscle masses differentiate between 

tendon primordia. In chick embryo, ectopic muscles form in the absence of tendons at the 

place where the latest normally develop, demonstrating the role of tendon in delinating 

regions of muscle growth and differentiation (Kardon 1998). In Drosophila, the role of tendon 

cells on muscle development has been studied more extensively. Tendon precursor cells in 

Drosophila are ectodermal cells, that constitute the apodeme and express the Early growth 

response (EGR)-like transcription factor Stripe (Frommer et al., 1996). The localization of 

myoblasts is altered when apodeme formation is disrupted during the early steps of leg 
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development (Soler et al., 2016). A correct migration of myogenic cells toward tendon cells is 

required for the myotendinous junctions to form. This migration step is mediated through 

guidance cues delivered by tendon cells. In tendons, Stripe activates the expression of the Slit 

gene (Volohonsky et al., 2007), coding for a secreted protein involved in axonal guidance. 

Tendon cells express Slit, while its receptor Robo (Roundabout) is expressed in muscle 

(Kramer et al., 2001). Slit mutants exhibit defects in muscle patterning (Ordan et al., 2015), 

showing that proper muscle development requires signals coming from  tendon. Tendon and 

muscle interactions via Slit/Robo is necessary for the migration arrest of muscle progenitors in 

Drosophila (Wayburn and Volk, 2009). The formation of the myotendinous junction in 

Drosophila also requires the transmembrane protein KON-TIKI, enriched at the tips of 

myotubes. This protein directs muscle progenitor migration and the subsequent recognition 

between muscle and tendon cells (Schnorrer et al., 2007). These results show that signals 

coming from tendon cells are required for muscle morphogenesis. Such signals remain to be 

elucidated during development of the vertebrate musculoskeletal system. In zebrafish, Tsp4b 

(thrombospondin-4) appears critical to orchestrate the assembly of tendon extracellular matrix 

necessary for muscle attachment at the myotendinous junction (Subramanian and Schilling, 

2014). The vertebrate orthologs of Stripe, Egr1/2 have been shown to be involved in 

vertebrate tendon differentiation (Lejard et al., 2011; Guerquin et al., 2013), but no obvious 

defect in muscle formation is observed in  Egr1 mutant mouse. Inactivation of Tsp4 in mice 

shows that thrombospondin-4 controls the formation of extracellular matrix in both tendons 

and muscles and is necessary for the correct organization of collagen fibrils in tendon 

(Frolova et al., 2014). However, the absence of Tps4 also directly affects skeletal muscle 

structure, by controlling the expression of heparan-sulfate proteoglycans in muscle (Frolova et 

al., 2014). Finally, some late events of vertebrate muscle morphogenesis also require tendons. 

Myofibre translocation necessary to give the final position of the flexor digitorum 

superficialis muscle in the mouse forelimb is largely impaired in Scx mutant, showing that 

tendon is involved in the patterning and final position of embryonic muscles (Huang et al., 

2013). 

 

C. Dense irregular connective tissue establish a pre-pattern for muscle 

differentiation 

Most of our knowledge concerning the relationships between irregular CT and muscle during 

development comes from the limb model. As previously described, the different steps of limb 

myogenesis are the following. Somitic-PAX3-positive cells migrate towards the limb bud 
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through limb mesenchyme, proliferate and form dorsal and ventral muscle masses. Muscle 

differentiation is then initiated, followed by muscle mass growth and splitting (reviewed in 

Duprez, 2002; Deries & Thorsteinsdóttir, 2016).  

 

Delamination and migration of muscle progenitors 

Delamination and migration of muscle progenitor cells from the ventrolateral lip of the 

dermomyotome are mediated via the tyrosine kinase receptor c-Met and its ligand, the Scatter 

Factor/Hepatocyte Growth Factor (SF/HGF), (Heymann et al., 1996; Brand-Saberi et al., 

1996; Dietrich et al., 1999). Cells from the ventrolateral dermomyotome express c-Met, while 

SF/HGF is released by irregular CT progenitors in the limb mesenchyme. In Hgf or c-Met 

mutant mice, limb muscles are missing (Bladt et al. 1995). Dermomyotome development 

proceeds normally and myogenic precursors are specified but they remain aggregated and fail 

to migrate towards the limb buds (Dietrich et al., 1999). Migration of myogenic progenitors 

from occipital and cervical somites, giving rise to the tongue, diaphragm and shoulder 

muscles is also controlled by SF/HGF (Dietrich et al., 1999). SF/HGF is not the only factor 

expressed in irregular CT and involved in the guidance of muscle progenitors to reach the 

limb target. The CXCL12 chemokine is expressed in restricted regions of irregular CT in the 

limb bud and attracts muscle progenitors, which express the CXCR4 chemokine receptor 

(Vasyutina et al., 2005). Ectopic expression of CXCL12 in limb mesenchyme of chick 

embryos, or inactivation of Cxcr4 in mouse embryos both give rise to aberrant migration of 

muscle progenitors (Vasyutina et al., 2005), demonstrating a chemoattractive role of CXCL12 

positive-CT cells for Cxcr4 expressing muscle precursors. During their migration towards the 

limb, muscle progenitors also express the EPHA4 receptor, while its ligand EPHRINA5 is 

expressed in limb irregular CT (Swartz, 2001). EPHRINA5 acts as a repulsive signal for 

muscle cells expressing EPHA4 (Swartz, 2001), demonstrating that both chemoattractive and 

repulsive signals from irregular CT act on muscle progenitors to restrict and define their 

migration pathways. Finally, during their migration, muscle progenitor cells stay in an 

undifferentiated state and this step is regulated through secreted signals produced by the limb 

mesenchyme. Previous studies suggest that BMPs and FGFs secreted by limb irregular CT 

might be important to prevent differentiation of migrating cells by respectively inhibiting and 

promoting the expression of SF/HGF (Pourquié et al., 1996; Heymann et al., 1996; Scaal et al., 

1999). In chick embryo, the timing of Myod1 and Myf5 expression in myogenic cells is 

controlled by FGF18 and retinoic acid, secreted by the limb mesenchyme (Mok et al., 2014). 
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 Muscle differentiation and patterning 

During the whole processes of limb muscle morphogenesis, irregular CT and muscles 

(progenitors or differentiated cells) are in close association. TCF4 has been identified as a 

putative actor in the process of irregular CT-mediated muscle morphogenesis (Kardon et al., 

2003). TCF4 is expressed in the limb mesenchyme in close association with muscles during 

their differentiation and patterning. In the absence of limb muscles, TCF4 expression pattern 

is unchanged, suggesting that TCF4 expression may serve as a pre-pattern for limb 

musculature. Gain- and loss-of-functions of TCF4 performed in lateral plate-derived limb 

mesodermal cells leads to muscle mispatterning, demonstrating that TCF4 in irregular CT is 

important to establish the correct location of limb muscles (Kardon et al., 2003). Tcf4 deletion 

in mice also resulted in aponeurosis defects (Mathew et al. 2011). However, TCF4 is also 

expressed at a low level in myogenic cells and is involved in the intrinsic regulation of muscle 

fiber type differentiation in mice (Mathew et al. 2011). 

Recently, irregular CT has been shown to be involved in a common and often lethal muscle 

diaphragm defect, called congenital diaphragmatic hernia (CDH). The pleuroperitoneal folds, 

which are transient embryonic structures, give rise to the irregular CT of the diaphragm 

(Merrell et al. 2015). Muscle progenitor cells migrating from the cervical somites invade the 

Tcf4-positive pleuroperitoneal cells, which guide muscle cells to organize the diaphragm 

morphogenesis. Tcf4-positive CT cells also express Gata4, known to be mutated in CDH, and 

Gata4 inactivation in diaphragm CT leads to hernias similar to those observed in CDH, 

demonstrating that this congenital muscular disease is related to a defect in muscle irregular 

CT (Merrell et al., 2015). 

Human Holt-Oram syndrome is characterized by limb and heart musculoskeletal defects and 

irregular CT disorganization. This syndrome is attributed to a mutation in the TBX5 gene, 

which is expressed in irregular CT during limb development (Hasson et al., 2010). In Tbx5 

mutants, a defect in the organization of irregular CT is observed during embryonic 

development (Hasson et al., 2010). In these mutants, ectopic splitting of nascent muscle 

bundles is observed, while the early steps of limb myogenesis are not affected. Tbx5 

inactivation also affects muscle irregular CT and induces a decrease in Tcf4 expression, but 

also in ß-catenin and N-cadherin in muscle irregular CT cells (Hasson et al., 2010). ß-catenin 

deletion in the limb mesenchyme also leads to ectopic muscle splitting, demonstrating that the 

N-cadherin/ß-catenin complex in muscle CT is critical for muscle patterning (Hasson et al., 

2010). Finally, Tbx5 deletion also downregulates the expression of CXCL12 and SF/HGF, 

two factors secreted by the mesenchyme and important for limb myogenesis (Hasson et al., 
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2010). It is noteworthy that Cxcl12 is a target of Tbx5 in human synovial fibroblasts 

(Karouzakis et al., 2014). Recently, it has been shown that the conditional deletion of Tbx3, 

another T-box gene, in the lateral plate mesoderm leads to defects in myofiber formation in a 

subset of limb muscles in mice (Colasanto et al., 2016). These muscle defects are correlated 

with Tbx3 expression in a subset of limb bones, tendons and muscle CT. Similar muscle 

defects are observed in the human Ulnar-mammary syndrome in which TBX3 mutations have 

been identified (Colasanto et al., 2016). Hoxa11 gene is not only expressed in limb skeletal 

elements, but also in mouse muscle CT and in addition to the skeleton defect, Hoxa11 

inactivation disrupts limb muscle and tendon patterning (Swinehart et al., 2013). Abnormal 

tendon and muscle formation are observed in heterozygous Hoxa11 mutants but normal 

skeleton, demonstrating that the effects on tendon and muscle are independent of the skeleton 

(Swinehart et al., 2013). However, it cannot be excluded that, in this case, muscle 

mispatterning could be related to tendon abnormalities rather than to the muscle CT defect. 

Recently, Gu et al. (2016) have shown that in neonatal muscles, muscle interstitial cells 

activate NF-κB, which regulates EPHRINA5 to stimulate myoblast migration towards the end 

of  growing muscle fibers, where they fused to contribute to muscle growth. These results 

show that muscle CT also contributes to the process of muscle maturation during neonatal 

development. However, these interstitial cells are characterized by NG2 expression, a 

neural/glial antigen 2 expressed in pericytes and it cannot be excluded that these cells are of 

vascular origin (Gu et al., 2016). 

Finally, differentiated muscle fibers also control muscle CT formation. In mice deleted for 

Lox (Lysyl-oxidase), an enzyme regulating collagen organization and secreted from the 

myofibers, TGFβ signalling is decreased and promotes muscle CT differentiation at the 

expense of muscle tissue (Kutchuk et al., 2015). 

 

D. Connective tissue cell involvement in adult muscle homeostasis  

In adult, a loss in skeletal muscles is observed in neuromuscular diseases, but also during 

aging, inactivity and chronic systemic disorders (i.e., diabetes, cancer, rheumatoid arthritis). 

The regenerative potential of skeletal muscle provides a compensatory response against such 

pathological muscle loss. The regenerative capacity of skeletal muscle depends on muscle 

stem cells (the satellite cells), which proliferate in response to exercise to facilitate muscle 

growth and remodeling, or following myotrauma to repair the injured muscle. Satellite cells 

are PAX3/7-positive progenitor cells located under the basal lamina that forms around muscle 

fibers of postnatal skeletal muscle. Satellite cells remain quiescent until the muscle is injured, 
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when the lamina breaks down and activated satellite cells begin to proliferate before forming 

new muscle fibers (Relaix et al., 2005). Myf5 is expressed in most quiescent satellite cells 

(Cornelison & Wold, 1997; Beauchamp et al., 2000) and activation of satellite cells is 

characterized by Myod1 expression and higher levels of Myf5, leading to the downregulation 

of Pax7, the activation of Myogenin, and the formation of new muscle fibers (Relaix et al., 

2006), reviewed in (Motohashi and Asakura, 2014). In the absence of Pax7-positive cells, the 

process of muscle regeneration failed and fibrotic and fatty infiltration are observed, 

demonstrating the major contribution of satellite cells in the formation of new muscle fibers. 

In response to muscle damage, non myogenic cells can also participate to skeletal muscle 

regeneration, some of them by giving rise to myogenic stem cells, the others by stimulating 

the activation of resident muscle satellite cells.  The first identification of a non-satellite cell 

population with myogenic capacity comes from the demonstration that bone-marrow-derived 

cells can participate directly to muscle regeneration (Ferrari et al., 1998). These cells, which 

normally reconstitute the hematopoietic lineage, can give rise to new satellite cells and 

myofibers during the muscle regeneration process (Asakura, 2012) and their transplantation 

into mdx mice (a model for Duchenne muscular dystrophy) improves muscle function 

(Sampaolesi et al., 2006). A vascular progenitor population, isolated from postnatal muscle, 

can also participate in muscle repair following arterial delivery in mice (Sampaolesi et al., 

2003). Interestingly, pre-treatment of both mesenchymal bone-marrow stromal cells (Galvez 

et al., 2014) or vascular progenitors (Brzoska et al., 2012) with the CXCL12 chemokine 

improved the regeneration of injured muscle. In the adult muscle, CXCL12 is expressed by 

the endomysium, i.e. the CT surrounding each muscle fiber (Hunger et al., 2012). Following 

muscle injury, CXCL12 secreted by muscle CT rapidly increases (Griffin et al., 2010) and 

attracts both satellite cells and bone-marrow-derived cells to participate to the regeneration 

process (Ratajczak et al., 2003). CXCL12 not only chemoattracts stem cells towards the 

injury site, but also increases their fusion capacity with native muscle fibers (Griffin et al., 

2010). These results demonstrate that signals provided by muscle irregular CT are not only 

crucial for muscle morphogenesis during development but also for muscle regeneration in the 

adult. More recently, a population of interstitial muscle cells with myogenic potential has 

been identified (Mitchell et al., 2010).  These cells are characterized by the expression of the 

PW1/Peg3 gene and named PICs (PW1-positive interstitial cells). They have been shown to 

contribute to the satellite cell pool during muscle regeneration (Mitchell et al., 2010), 

although they do not express Pax3 or Pax7 genes (Pannerec et al., 2013). PICs can be divided 

into two different populations: cells that express PW1 and are negative for PDGFrα and cells 
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that express both PW1and PDGFrα. PW1+ PDGFrα- PICs exhibit a myogenic potential, while 

PW1+ PDGFrα+ cells have been shown to give rise to adipocytes (Pannerec et al., 2013). 

Interestingly, PW1+ PDGFrα+ PICs express the pericyte marker NG2, suggesting a possible 

overlap between this cell population and muscle pericytes (Pannerec et al., 2013). Pericytes 

represent perivascular cells located in the muscle interstitium and associated with capillaries. 

They can be separated into two different populations: type-1 pericytes (NG2+ NESTIN- 

PDGFrα-) and type-2 pericytes (NG2+ NESTIN+ PDGFrα+), (Birbrair et al., 2013). As 

observed for PICs, the two different pericyte populations have distinct cell fate potential: 

type-1 cells contribute to adipose tissue and type-2 cells to myogenesis (reviewed in Birbrair 

et al. 2014). Type-2 pericytes do not express Pax7, Myf5 and Myod1, but activate these genes 

in regenerative conditions (Cappellari and Cossu, 2013). 

The participation of mesenchymal progenitors without myogenic capacity has also been 

reported during muscle regeneration. In injured muscles, if the regeneration process fails, 

irregular CT, adipose tissue and even heterotopic bones can develop into skeletal muscle. 

These CT derivatives all arise from mesenchymal progenitors resident in the adult muscle 

interstitium (Joe et al. 2010; Uezumi et al. 2010). These mesenchymal progenitors have been 

isolated from the muscle interstitium, based on the expression of PDGFRα, and it has ben 

shown that they can differentiate in vitro into fibroblasts, adipocytes or osteoblasts, but never 

into muscle cells (Uezumi et al., 2010). Simultaneously, Rossi’s group also identified a cell 

population with fibroblastic and adipogenic potential, but without myogenic potential (Joe et 

al. 2010). This population was isolated on the basis of SCA1 and CD34 expression, and 

named Fibro/Adipogenic progenitors (FAPs), (Joe et al. 2010). Interestingly, mesenchymal 

PDGFRα+ progenitors express SCA1 (Joe et al. 2010; Uezumi et al. 2010) FAPs express 

PDGFRα, suggesting that mesenchymal progenitors and FAPs could actually represent a 

unique progenitor population. FAPs/mesenchymal progenitors are activated upon muscle 

injury and promote myoblast differentiation in co-cultures (Joe et al., 2010) , but also exhibit 

a strong adipogenic and fibrogenic potential in vitro, indicating a potential contribution of 

FAPs to fibrosis and adipose accumulation in diseased muscles (Uezumi et al., 2010). The 

proposed model is that a balance exist between satellite cell-dependent myogenesis and FAPs-

dependent adipogenesis/fibrogenesis to control muscle homeostasis and regeneration. After 

muscle injury, FAPs/mesenchymal progenitors start to proliferate before satellite cells and 

invade the space between regenerating muscle fibers, where they generate factors promoting 

myogenesis. When regeneration proceeds efficiently, FAPs/mesenchymal progenitors are 

excluded through apoptotic signals emanating from satellite cells. If regeneration fails, 
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FAPs/mesenchymal progenitors persist and differentiate into adipocytes and fibroblasts, 

leading to fatty and fibrotic degeneration (Judson et al., 2013). Depending on the surrounding 

environment, FAPs/mesenchymal progenitors will preferentially give rise to fibroblasts or 

adipocytes. Addition of TGFß to FAPs/mesenchymal progenitors in vitro induces the 

expression of fibrosis markers leading to fibroblastic differentiation at the expense of 

adipocyte differentiation (Uezumi et al., 2011). Interestingly, PDGFRα+ expressing 

FAPs/mesenchymal progenitors accumulate preferentially into fibrotic regions, suggesting a 

specific role for PDGFRα in muscle fibrosis (Uezumi et al., 2014). This hypothesis is 

supported by the observation that, in embryonic and adult mouse, an elevated level of 

PDGFRα leads to an increase in CT differentiation (Olson and Soriano, 2009). It has also 

been shown that CT fibroblasts identified by Tcf4 expression proliferate close to muscle 

satellite cells following injury. Conditional ablation of Tcf4-positive cells prior to muscle 

lesion leads to premature satellite cell differentiation, depletion of the early pool of satellite 

cells, and small regenerated fibers, indicating that Tcf4-positive fibroblasts participate in 

muscle regeneration (Murphy et al. 2011). It remains unclear whether a direct relationship 

exists between FAPs/mesenchymal progenitors and TCF4-positive cells. However, Tcf4-

positive cells express PDGFRα (Murphy et al. 2011) and accumulating evidence suggests that 

FAPs/mesenchymal and irregular CT progenitors share common features (Sudo et al., 2007); 

(Haniffa et al., 2009). Extracellular matrix components also contribute directly to the 

regenerative potential of muscle. It has been shown that a fibronectin-rich fibrosis is essential 

during the initial step of regeneration to activate the proliferation of muscle satellite cells 

(Bentzinger et al., 2013). Irregular CT progenitors, FAPs and PICs could be potential sources 

of fibronectin and might contribute to the transient fibronectin-rich promyogenic fibrosis 

during muscle regeneration. However,  activated satellite myogenic cells themselves release 

fibronectin into their microenvironment and inactivation of fibronectin using a Myf5-Cre 

reporter impairs the regenerative potential of muscle, suggesting that this effect could be also 

related to a cell-autonomous role of satellite cell derived-fibronectin (Bentzinger et al., 2013). 

The importance of muscle CT has been also evidenced in muscle disorders. Mutations in 

COL6A1, COL6A2 and COL6A3 genes, the main collagens expressed in muscle CT, have 

been observed in congenital Ulrich muscular dystrophy and in Bethlem myopathy. Mutant 

mice for Col6a1 exhibit alterations of muscle sarcoplasmic reticulum and mitochondria (Pan 

et al., 2014) and similar myopathic and connective tissue phenotypes are observed in Col6a3 

mutant mice (Pan et al., 2013), demonstrating that collagen VI mutations result in defects 
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involving both muscle and CT. In addition, Col6a1 mutant mice showed delayed muscle 

regeneration and reduced satellite cell self-renewal. Transplantation of wild-type fibroblasts 

in muscles of Col6a1 mutant mice rescues muscle satellite cells, indicating that COL6A1 in 

the muscle environment can modulate satellite cell behavior (Urciuolo et al., 2013).  Finally, 

during muscle hypertrophic activity, satellite cells regulate collagen expression in fibroblasts 

via exosome secretion, showing that muscle cell progenitors can also act with their 

surrounding environment to facilitate tissue plasticity. Similarly, (Abou-Khalil et al., 2015) 

have shown that Pax7-positive muscle satellite cells are involved in bone repair, providing a 

direct evidence of a muscle contribution to specialized CT (bone and cartilage) formation.  

Taken together, these data evidence interactions between different cell populations promoting 

muscle progenitor activation during regeneration, with a central role of muscle irregular CT in 

this process. Changes in CT local environment may contribute to muscle pathologies and age-

related loss of muscle stem cell competence through signalling pathways and genes similar to 

those described to mediate the CT-dependent muscle morphogenesis during development.  
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IV.   The Chemokines CXCL12 and CXCL14 

 

A. Chemokines and their receptors 

 

Chemokines: structure and classification  

Chemokines, also known as chemotactic cytokines, represent a group of vertebrate specific 

molecules that belong to the family of cytokines, which have been first characterized for their 

role in immune cell trafficking (Baggiolini and Dahinden, 1994; Baggiolini et al., 1994). 

During evolution, chemokines have highly expanded in higher vertebrates, explaining the 

differences observed in the list of chemokines between closely related species (DeVries et al., 

2006; Nomiyama et al., 2013).  These small proteins (6 to 14 kDa) have the capacity to induce 

chemotaxis in many different cell types, mostly related to the immune response (lymphocytes, 

monocytes, etc), but also to many other migratory mechanisms (germ cells, neurons, neural 

crest cells, etc). The chemokine family is subdivided into four sub-groups depending on the 

presence and the position of conserved cysteine residues located in the N-terminal region of 

the protein (Zlotnik and Yoshie, 2000). Indeed, chemokines have conserved amino acids that 

are important for their correct conformation. Four cysteine amino acids, spread into the 

chemokine peptidic sequence, interact together, thanks to disulphide bonds, to confer the 

typical Greek tridimensional shape, which is characteristic of chemokines (Berry et al., 2000). 

The N-terminal part is an important region in the chemokine structure, as it contains the 

binding domain allowing the physical interaction between the protein and its associated 

Figure 15: Structural classification of chemokines. Chemokines are classified in four 

different groups, depending on the distance between the two first conserved cysteines. C 

chemokines, CC chemokines, CXC chemokines and CX3C chemokines can be 

distinguished on the basis of this criterion. 

 



 65 

receptor. Structural classification of chemokines is based on the distance existing between the 

two first cysteine residues. Therefore, in the chemokine family, we can distinguish the C 

chemokines, the CC chemokines, the CXC chemokines and the CX3C chemokines (Figure 

15).  

Additionally, chemotactic cytokines are functionally classified into inflammatory and 

homeostatic chemokines. Inflammatory chemokines are produced specifically in an 

inflammatory context, in order to contribute actively to the inflammation response through 

recruitment of immune cells to the site of inflammation. Conversely, homeostatic chemokines 

are constitutively produced. They can also manage immune cell trafficking in inflammed 

tissues, but they additionnaly contribute to major mechanisms during embryonic development, 

for instance in the vascular network formation (Harrison et al., 2015; Ivins et al., 2015; Ojeda 

et al., 2017), in neuron migration in the central nervous system (Belmadani, 2005; Stumm and 

Höllt, 2007; Zhu et al., 2002), in germ cell trafficking (Doitsidou et al., 2002; Niu et al., 2016; 

Stebler et al., 2004) or during limb myogenesis (Vasyutina et al. 2005; Ödemis et al. 2005; 

2007; Hunger et al. 2012; Masyuk et al. 2014).  

 

Chemokine receptors: structure and classification 

Chemokine receptors belong to the superfamily of seven-transmembrane G-protein-coupled 

receptors (GPCRs), which are commonly associated with heterotrimeric G-proteins. Such 

receptors are composed of a small N-terminal part located in the extracellular region, 

Figure 16: Structure of the chemokine receptors. Chemokine receptors present seven 

transmembrane domains. The N-terminal region is localized in the extracellular domain, 

while the C-terminal is localized intracellularly. Chemokine receptors are of two types: 

classical and atypical receptors. Classical chemokine receptors are G protein-coupled 

receptors and contain the highly conserved DRY motif in their second intracellular loop, 

allowing G protein activation. Atypical chemokine receptors do not have the complete 

DRY motif; hence they cannot activate G protein and the associated downstream 

signallings. 
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corresponding to the domain interacting with the ligand. This domain is associated with 3 

extra- and intracellular loops. A typical GPCR motif DRY is present in the second 

intracellular loop. Finally, the C-terminal part of chemokine receptors is located 

intracellularly and contains a high number of serine and threonine amino acids, which are 

primordial for the regulation of signal transduction (Figure 16).  

Chemokine receptor family can be subdivided into four different groups, depending on the 

type of chemokines they interact with: the CRs, the CCRs, the CXCRs, the CX3CRs interact 

respectively with C, CC, CXC and CX3C chemokines. Despite this well-established 

classification, a fifth class has been added to the superfamily of chemokine receptors, named 

the atypical chemokine receptors (Bonecchi and Graham, 2016; Zlotnik and Yoshie, 2012). 

So far, the atypical chemokine receptor (ACKR) subgroup contains 5 receptors: ACKR1 

(Duffy Antigen Receptor for Chemokines-DARC), ACKR2 (D6 or CCBP2), ACKR3 

(CXCR7 or RDC1), ACKR4 (Chemokine Receptor like 1-CCRL1, or CCX CKR and CCRl1) 

and ACKR5 (Chemokine Receptor like 2-CCRL2 or HCR), (Sozzani et al., 2015; Ulvmar et 

al., 2011). Although ACKRs are structurally similar to classical chemokine receptors, they 

cannot transduce GPCR signalling, as they are unable to bind G-proteins (Ulvmar et al., 2011; 

Zlotnik and Yoshie, 2012).  

Interestingly, different chemokines bind the same receptor and one chemokine can bind 

multiple receptors (Figure 17). This redundancy highlights a putative overlap in between 

chemokine and chemokine receptor functions. Nevertheless, it has been demonstrated that a 

few chemokine could bind to only one receptor, and conversely a small number of chemokine 

receptors only interact with one chemokine (Zlotnik and Yoshie, 2012). 

 

Chemokine signalling 

Chemokines exert their biological effect through their binding to specific seven-

transmembrane G-protein-coupled receptors, therefore chemokine receptor transduce signals 

as classical GPCRs. Chemokine receptors are associated with a heterotrimeric G-protein that 

is composed of three different units Gα , Gβ and Gγ linked together in a non-covalent way. The 

Gα  subunit has a GTPase activity. In an inactive state, Gα  subunit binds to GDP and possesses 

high affinity for Gβ/γ complex. The interaction with the chemokine leads to a structural 

rearrangement of the receptor, triggering activation of the Gα subunit that is mediated by GDP 

to GTP exchange. This activation results in the dissociation of the heterotrimeric G-protein 

into an active GTP-bound Gα  subunit and a Gβ/γ dimer. Both induce independently second 

messengers that activate effector proteins leading to different intracellular signalling events 
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(Bennett et al., 2011; Lodowski and Palczewski, 2009). On one hand, the Gβ/γ complex 

triggers intracellular calcium release, as well as the activation of the Erk and Akt pathways. 

While on the other hand, the Gα subunit activates G-protein coupled receptor kinase that 

phosphorylates the numerous serine and threonine amino acids from the cytoplasmic tail of 

the receptor. Phosphorylation of the chemokine receptor tail allows the interaction of the 

receptor with the ß-Arrestin molecule to finally induces permanent or transient receptor 

inactivation/desensitization. Indeed, ß-arrestin blocks G-protein- mediated signalling and 

targets receptor internalization either for degradation or recycling at the membrane (Bennett et 

Figure 17: The superfamily of chemokines and their receptors. Schematic 

representation of chemokines and their associated receptors. CXCR4 chemokine receptor 

only binds CXCL12 chemokine, however CXCL12 chemokine also binds CXCR7. 

CXCR5 chemokine receptor and its associated CXCL13 chemokine are specific to each 

other. Finally, the receptors for CXCL14 and CCL18 have not been identified yet. 

(Adapted from Lazennec et al., 2010) 
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al., 2011; Lodowski and Palczewski, 2009; Pierce and Lefkowitz, 2001), (Figure 18). 

However, it has also been shown that ß-arrestin activation can induce downstream signalling 

pathways (Pierce and Lefkowitz, 2001).  

ACKR signalling differs from pathways induced by classical chemokine receptors. As 

mentioned above, ACKRs are unable to bind G-proteins. Although ACKRs share a high 

homology with typical chemokine receptors, they are missing the typical “DRY” motif 

required for direct interaction of the receptor with G-protein (Zlotnik and Yoshie, 2012), 

(Figure 16). At first, ACKRs were described only as decoy or scavenger receptors for 

chemokines, without any signalling ability.  However, over the past years, different studies 

have demonstrated that ACKRs are actually able to activate ß-arrestin (Bonecchi and Graham, 

2016; Sozzani et al., 2015; Ulvmar et al., 2011) which acts as an adaptor protein to induce 

activation of downstream signalling cascades (Ma and Pei, 2006; Pierce and Lefkowitz, 

2001), (Figure 18). 

 

B. The CXCL12 chemokine  

 

Biological functions of CXCL12 

CXCL12, also known as Stromal cell-Derived Factor 1 (SDF1), has been first isolated in a 

murine bone marrow stromal cell line (Nagasawa et al., 1994; Tashiro et al., 1993). Three 

CXCL12 isoforms have been reported in mouse: CXCL12 α, ß and γ (Gleichmann et al., 

2000; Shirozu et al., 1995; Tashiro et al., 1993; Yu et al., 2006), encoding polypeptides of 89, 

93 and 119 amino acids, respectively. All isoforms are generated from the same gene, but 

undergo alternative splicing (Shirozu et al., 1995). They differ only in their C-terminal part, 

which length varies depending on the isoform. Differences in the C-terminal part of CXCL12 

isoforms might play a role on their ability to interact with some proteins of the extracellular 

matrix. In agreement with this hypothesis, it has been shown that CXCL12 γ possesses four 

heparan-sulfate binding motifs in its C-terminal part (Gleichmann et al., 2000; Yu et al., 

2006). However, no real functional differences have been demonstrated in between CXCL12 

isoforms. Importantly, all isoforms share an identical core, in which is included the N-

terminal part, holding the binding site that allows the interaction between the chemokine and 

its receptor. Therefore, CXCL12 isoforms are expected to have the same signalling 

transduction potential. Among vertebrates, Cxcl12 possesses a high degree of conservation 

compared to other chemokines (DeVries et al., 2006; Knöchel et al., 2002; Read et al., 2004; 
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Shirozu et al., 1995; Tashiro et al., 1993), revealing its significant role. Expression of Cxcl12 

has been detected in human, mouse, chick, frog and zebfrafish, both in embryos and adults, 

classifying CXCL12 as a homeostatic chemokine. During development, Cxcl12 is present in 

limb mesenchyme, retina, ectoderm, vessels, heart, kidney and craniofacial regions (García-

Andreś and Torres, 2010; McGrath et al., 1999; Ojeda et al., 2013; Read et al., 2004; Rehimi 

et al., 2008). In adult, CXCL12 has been described in many different organs: skin, kidney, 

brain and heart ((Abbott et al., 2004; Fedyk et al., 2001; Lotan et al., 2008; Pablos et al., 

1999; Tham et al., 2001). This broad spectrum of Cxcl12 expression, both during embryonic 

development and at adult stage, suggests a wide range of important functions. 

 Mutant mice carrying a deletion for Cxcl12 are non viable and lethal at perinatal stages 

(Nagasawa et al., 1996), demonstrating an important role for Cxcl12 during development. 

Consistent with Cxcl12 sites of expression during embryonic development, Cxcl12
-/- mutants 

present severe defects in heart, nervous system, hematopoietic system and gonad development 

(Nagasawa et al. 1996; Zou et al. 1998; Tachibana et al. 1998; Ma et al. 1998; Ara et al. 

2003). CXCL12 has been initially described for its stimulating effect on B lymphocyte 

precursors and on bone marrow myelopoieisis (Nagasawa et al. 1994; 1996; Ma et al. 1998). 

First studies investigating CXCL12 functions mainly focused on its role on hematopoiesis. 

CXCL12 guides migration of primitive hematopoietic cells from fetal liver to the bone 

marrow (Zou et al. 1998; Tachibana et al. 1998; McGrath et al. 1999; Jo et al. 2000). In 

addition to its classical chemoattractant role on hematopoietic cells, CXCL12 has been 

characterized as a promoting factor for survival and proliferation of circulating primitive 

hematopoietic cells (Lataillade et al., 2002), by inhibiting apoptosis and promoting G0 to G1 

transition, respectively. Those data nicely demonstrate the important role of CXCL12 in 

homing of hematopoietic stem cells. Over the past years, numerous studies demonstrated the 

role of CXCL12 in various biological processes including angiogenesis (Salcedo et al. 1999; 

Salcedo et al. 2003; Salvucci et al. 2002; 2004), cardiogenesis (Escot et al. 2013; Cavallero et 

al. 2015; Ivins et al. 2015), neurogenesis (Liapi et al., 2007; Lopez-Bendito et al., 2008; 

Lysko et al., 2011) or primordial germ cell migration (Stebler et al., 2004), mainly through its 

chemotactic guidance properties. It has been shown for instance that CXCL12 produced by 

the nerves contribute to vessel branching in developing skin through its chemotactic effect on 

endothelial cells (Li et al., 2013). Similarly, CXCL12 expressed in the outflow tract of the 

heart is important to guide peritruncal endothelial cells that contribute to the formation of 

coronary arteries (Ivins et al., 2015). In the absence of CXCL12, peritruncal endothelial cells 

are mislocalized and coronary arteries are mispatterned, demonstrating the essential role of 
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CXCL12 in tissue morphogenesis. Beside its homeostatic functions, CXCL12 also plays a 

role in tumorigenesis. Indeed, CXCL12 has been established as a key molecule for tumor 

growth and survival and metastasis formation in many types of cancers (Domanska et al., 

2013; Maksym et al., 2009; Teicher and Fricker, 2010). Finally, in adult, CXCL12 displays a 

classic chemokine activity in immune cell attraction to inflammation sites (Karin, 2010). 

 

 

Figure 18: Chemokine signalling. Chemokine binding to its associated receptors triggers 

activation of downstream signalling pathways. Signal transduction differs between 

classical chemokine receptors and atypical chemokine receptors. Classical receptors 

activate G protein-mediated signalling, while atypical chemokine receptor promotes β-

arrestin-mediated signalling. Subsequently to their activation, both classical and atypical 

chemokine receptors induce their internalization and recycling/degradation through β-

arrestin recruitement. 
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CXCL12 signalling 

CXCL12 signalling depends on its binding to specific chemokine receptors. So far, two 

chemokine receptors have been characterized as interacting with CXCL12: CXCR4 and 

CXCR7.  

 

• CXCR4/CXCL12 signalling 

Cxcr4 has been isolated in 1993 from a human blood monocyte cDNA library (Loetscher et 

al., 1994; Nomura et al., 1993) and was first characterized for its high expression level in 

lymphocytes. At that time, the receptor has been named LESTR for Leukocytes-derived 

seven-transmembrane domain receptor. To date, only CXCL12 is known to bind CXCR4. It 

has been demonstrated that CXCR4 receptor can undergo different posttranslational 

modifications (Farzan et al., 2002). CXCR4 is present in various vertebrate species (Chong et 

al., 2001; DeVries et al., 2006; Jazin et al., 1997; Yusuf et al., 2005), and has been reported in 

many different cell types during development and at adult stages as hematopoietic cells, 

endothelial cells and neuronal cells (Pozzobon et al., 2016). 

CXCR4 has been first mainly investigated for its role in HIV infection. The receptor has been 

identified as a co-factor allowing HIV entry in CD4+ T cells (Doranz et al., 1996; Feng et al., 

1996). Then, it has been demonstrated that CXCR4 plays essential functions in hematopoiesis, 

neurogenesis, heart and vascular formation (Zou et al. 1998; Sainz & Sata 2007; Agarwal et al. 

2010; Cui et al. 2013). Deficient mice for Cxcr4 are non-viable and die in utero, exhibiting 

similar phenotypes than Cxcl12 mutants, from hematopoietic to cerebellar and heart defects 

(Nagasawa et al. 1996; Ma et al. 1998; Tachibana et al. 1998; Zou et al. 1998).  

CXCR4 interaction with CXCL12 leads to classical G-protein-related intracellular signals. 

Binding of the chemokine to the receptor leads to the activation of the G-protein heterotrimer. 

The Gα subunit inhibits adenylate-cyclase and triggers activation of MAPK and PI3K 

signalling pathways, participating both to cell cycle progression and cell migration (Pozzobon 

et al., 2016; Ward, 2006). In addition, the Gα subunit is able to recruit G-protein-coupled-

receptor kinases (GRKs) that phosphorylate serine and threonine residues of CXCR4 C-

terminal part. The phosphorylated tail of the receptor is then associated with the ß-arrestin 

protein, which can induce CXCR4 scavenging (Cheng et al., 2000; Orsini et al., 1999), but 

also promotes ß-arrestin-related MAPK signalling pathways (P38, ERK1/2) (Cheng et al., 

2000; Sun et al., 2002), contributing to cell migration. On the other hand, the Gβ/γ  dimer 



 72 

triggers activation of the phospholipase C, which promotes intracellular Ca2+ mobilization and 

activates PKC and MAPK pathways (Pozzobon et al., 2016). Furthermore, Gβ/γ is also able to 

enhance PI3K-induced cell migration (Figure 19). 

 

• CXCL12/CXCR7 signalling 

Cxcr7 has been isolated from a dog thyroid cDNA library (Libert et al., 1989) and was named 

RDC1. For a long time, CXCR7 has been considered as an orphan chemokine receptor, until 

CXCL12 has been identified to bind CXCR7 (Balabanian et al., 2005). Finally, in mammals, 

a second chemokine has been demonstrated to interact with CXCR7, which is CXCL11 

(Burns et al., 2006). Both chemokines are able to bind other receptors. As previously 

mentioned, CXCL12 can bind CXCR4, and CXCL11 is able to interact with CXCR3. CXCR7 

has been classified as an atypical receptor. Indeed, it possesses a modified DRY motif, which 

does not allow recruitment and activation of G-proteins (Naumann et al., 2010; Thelen and 

Thelen, 2008). Interestingly, it has been demonstrated that replacement of the non-functional 

DRY motif of CXCR7 with a classical DRY motif does not induce calcium release upon 

CXCL12 stimulation (Naumann et al., 2010). 

CXCR7 is expressed in many different cell types in both human and mouse (Burns et al., 

2006; Gerrits et al., 2008; Libert et al., 1989; Sierro et al., 2007). In the embryo, CXCR7 

expression is detected in muscle cells, kidney, heart and brain (Haege et al., 2012; Hunger et 

al., 2012; Schönemeier et al., 2008; Wang et al., 2011). At adult stages, CXCR7 expression is 

present in endothelial cells of heart and lung vessels, bone osteocytes, cerebral cortex, heart 

myocytes, kidney and testis (Burns et al., 2006; Gerrits et al., 2008; Sierro et al., 2007). In the 

immune system, CXCR7 is only expressed in a subset of B lymphocytes (Sierro et al., 2007).  

Deficient mice for Cxcr7 are lethal at perinatal/postnatal stages. Mutant mice display severe 

heart defects associated with myocardial degeneration and fibrosis. In addition, lung 

vasculature is impaired (Gerrits et al., 2008; Sierro et al., 2007). Despite CXCR7 expression 

in bone osteocytes, Cxcr7 mutant mice do not present obvious bone defects (Gerrits et al., 

2008). Conversely to Cxcr4 and Cxcl12 mutant mice, impaired hematopoiesis is not observed 

in Cxcr7 deficient mice (Sierro et al., 2007). During embryonic development, CXCR7 has 

been mainly involved in migration processes associated to important morphogenic events 

(Puchert and Engele, 2014). During zebrafish development, knockout of Cxcr7 leads to 

aberrant migration of the primordial germ cells (PGCs), highlighting a crucial role for 

CXCR7 in the proper migration of PGCs (Dambly-Chaudière et al., 2007). Similarly, CXCR7 

is essential to  



 73 

 

A 

B 



 74 

regulate the correct migration of gonadotropin-releasing hormone neurons during mouse 

embryonic development (Memi et al., 2013). Finally, in cancer, CXCR7 is described as a 

positive regulator for tumour growth (Shi et al. 2017; Wang et al. 2008; Gu et al. 2017; Miao 

et al. 2007).  

 CXCL12 binding to CXCR7 affects different cellular mechanisms: cell adhesion, cell 

survival and cell proliferation (Burns et al. 2006; Miao et al. 2007; Wang et al. 2008). These 

effects are mediated through ß-arrestin-dependent activation of signalling pathways. CXCR7 

recruits ß-arrestin, which activates downstream extracellular signal-regulated kinase (ERK) or 

protein-kinase B (Akt) (Figure 19), (Miao et al. 2007; Wang et al. 2008; Rajagopal et al. 

2010). Besides its signalling receptor activity, CXCR7 has also been described as a non-

signalling decoy receptor (Boldajipour et al., 2008; Naumann et al., 2010). In this context, 

CXCR7 scavenges CXCL12 to finally induce degradation of the ligand (Figure 19). CXCR7 

scavenging activity is essential to regulate the gradient of CXCL12 (Boldajipour et al., 2008; 

Puchert and Engele, 2014). During development, in zebrafish, it has been shown that CXCR7 

promotes CXCL12 internalization in order to regulate CXCL12 gradient, and thus affect the 

migration path of primordial germ cells (Boldajipour et al., 2008; Dambly-Chaudière et al., 

2007; Valentin et al., 2007). Similarly, it was also shown that during cortical neuron 

migration, CXCR7 acts as scavenger receptor, in order to negatively regulate CXCL12 

concentration in the extracellular domain and avoid excessive-CXCL12 mediated CXCR4 

activation and degradation (Abe et al., 2014). Those data show an important and indirect role 

of CXCR7 in cell migration, through the regulation of CXCL12 gradient.  

 

• CXCL12/CXCR4/CXCR7 signalling 

It has been demonstrated that CXCR7 is able to heterodimerize with CXCR4 (Décaillot et al., 

2011; Levoye et al., 2009; Puchert and Engele, 2014; Sierro et al., 2007). Such an interaction 

can either inhibit or enhance CXCR4/CXCL12 axis to modulate signal efficiency upon 

CXCL12 stimulation (Figure 19), (Décaillot et al., 2011; Levoye et al., 2009). In this context, 

Figure 19: CXCL12/CXCR7/CXCR4 axis. CXCL12 is able to bind to CXCR7, CXCR4 and 

CXCR7/CXCR4 heterodimer. (A) CXCL12/CXCR7 interaction initiates two different type of 

response. CXCR7 acts as a decoy receptor without downstream signal transduction, or CXCR7 

promotes signal activation, mediated through β-arrestin. (B) CXCL12/CXCR4 interaction 

triggers activation of G protein-related signals. CXCR4 only acts as a signalling receptor. (C) 

Finally, CXCL12 can binds to CXCR4/CXCR7. In this context, the heterodimer formed by the 

two chemokine receptors induces β-arrestin-mediated signals. 
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CXCR4/CXCR7 heterodimer preferentially triggers the activation of the ß-arrestin-related 

signalling pathways (Puchert and Engele, 2014). Its has been proposed that CXCR4/CXCR7 

interaction could also triggers internalization of the receptor heterodimer, which would lead to 

the decrease of CXCR4 receptor at the membrane, in order to avoid CXCL12/CXCR4 binding 

and thus to inhibit CXCL12/CXCR4 axis (Figure 19), (Puchert and Engele, 2014). 

 

Regulation of CXCL12 

Various signalling pathways regulate the CXCL12 chemokine. In mouse stromal cells 

expressing CXCL12, it has been demonstrated that an overexpression of Wnt3a leads to a 

decrease in CXCL12 expression and reduces the migration capacity of stromal cells (Tamura 

et al., 2011). In hematopoietic cells, inhibition of BMP signalling using its antagonist Noggin 

increases CXCL12 expression. Conversely, an overexpression of BMP ligand leads to a 

decrease in CXCL12 expression (Khurana et al., 2014). Interestingly, it has been 

demonstrated that SMAD binding elements are present in CXCL12 promoter. Furthermore, 

using a chromatin immunoprecipitation assay, Khurana et al. have shown that SMAD4 binds 

to the CXCL12 promoter, highlighting a direct interaction between CXCL12 and BMP 

signalling. Moreover, TGFß signalling has been shown as a negative regulator of both Cxcl12 

mRNA and protein in a bone marrow stromal cell line (Wright et al. 2003). However, such 

regulations seem to be cell specific. For instance, in tumor-associated fibroblasts, BMP 

signalling positively regulates CXCL12 expression, while TGFß has no effect (Yang et al., 

2008).  

 

C. The CXCL14 chemokine  

 

Biological functions of CXCL14 

CXCL14 is a small cytokine that belongs to the CXC-motif chemokine subfamily. It has been 

first isolated from human cell lines (Frederick et al., 2000; Hromas et al., 1999). The 

chemokine was first named BRAK, due to its isolation from breast and kidney cell lines. 

CXCL14 presents specific characteristics that differs from the other chemotactic cytokines 

such as an unusual short N-terminal part of only two amino acids upstream the first conserved 

cysteine residue and five consecutive additional amino acids (Hromas et al., 1999; Peterson et 

al., 2007). CXCL14 chemokine is highly conserved among vertebrate species (DeVries et al., 

2006; Park et al., 2009). CXCL14 expression pattern has been established in different species 

during embryonic development and at adult stages, showing a broad expression pattern of this 
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chemokine. During development, it is detected in paraxial mesoderm, ectoderm, 

mesonephros, limb, inner ear, optic vesicle, upper eyelid and hindbrain in human, mouse, 

chick, zebrafish and frog (García-Andreś and Torres, 2010; Gordon et al., 2011; Long et al., 

2000; Ojeda et al., 2013; Park et al., 2009), suggesting that CXCL14 might be involved in 

different developmental processes. At adult stage, CXCL14 is observed in skin, brain, 

intestine, kidney, white adipose tissue (WAT), immune cells and some tumour cells (Hromas 

et al., 1999; Nara et al., 2007), highlighting CXCL14 as a likely pleiotropic chemokine. The 

expression of CXCL14 reveals a homeostatic rather than inflammatory role, during 

development and at adult stages. 

At first, CXCL14 has been mainly investigated for its putative contribution to tumorigenesis 

(Frederick et al., 2000; Hromas et al., 1999). It has been observed that CXCL14 expression is 

decreased in many cancer cell lines, compared to normal cell lines (Frederick et al., 2000; 

Hromas et al., 1999; Tessema et al., 2010). However, further investigations have 

demonstrated that some tumours exhibit an increase in CXCL14 expression level (Allinen et 

al., 2004; Frederick et al., 2000; Shellenberger et al., 2004). CXCL14 can act either as a 

tumour suppressor or as a tumour promotor depending on the type of cancer (Hare et al., 

2012). In addition to its role in cancer, CXCL14 is involved in the regulation of glucose 

uptake and insulin resistance, in the control of body weight, in the regulation of neural control 

of feeding behavior and during development in neurovascular patterning of the eye (Cao et 

al., 2013; Nara et al., 2007; Ojeda et al., 2017; Tanegashima et al., 2010). Finally, CXCL14 

also displays classical chemokine chemoattractant activity, mostly on immune cells (Cao et 

al., 2013). 

 

CXCL14 signalling 

To date, CXCL14 signalling is poorly understood. This is mainly due to the fact that CXCL14 

receptor is not identified yet. However, CXCL14 has been recently characterized as a 

chemokine ligand for CXCR4 (Tanegashima et al. 2013). So far, CXCL12 was the only 

chemokine known to bind CXCR4. Tanegashima et al. have shown that CXCL14 is able to 

inhibit CXCL12/CXCR4 mediated-chemotaxis through its binding to CXCR4 (Tanegashima 

et al. 2013). Interestingly, CXCL14 binding site on CXCR4 is different from CXCL12 

binding site (Figure 20), (Tanegashima et al. 2013). However, these results are controversial 

as a recent survey has demonstrated that CXCL14 does not affect CXCL12-induced CXCR4 

phosphorylation, ERK signalling activation or CXCR4 internalization, in different CXCR4-

transfected cell lines (Otte et al., 2014). These data strongly support the fact that CXCL12-
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mediated CXCR4 signalling is insensitive to CXCL14 and suggest that CXCL14-mediated 

signalling is not directly related to CXCR4 binding. Although no receptor has been identified 

to transduce CXCL14 signalling, it has been clearly shown that the chemokine induces 

signalling activation (Figure 20). For instance, in monocytes, CXCL14 mediates an increase 

in intracellular calcium (Kurth et al., 2001). Identification of CXCL14 receptor(s) is essential 

for further investigation on this chemokine, as it would bring new insights on intracellular 

signalling induced by CXCL14, and hence, on its specific functions. 

 

Regulation of CXCL14 

The different mechanisms regulating CXCL14 expression have been poorly investigated. 

However, some signalling pathways have been already identified for their potential regulation 

on CXCL14 (Lu et al., 2016). The atypical Rho GTPase RhoBTB2 has been shown to 

positively regulate CXCL14 expression (McKinnon et al., 2008). Targeting RhoBTB2 by 

shRNA in primary human epithelial cells leads to a decrease in CXCL14 expression. In head 

and neck squamous cell carcinoma cell lines, in which loss of RhoBTB2 is also associated 

with loss of CXCL14, overexpression of RhoBTB2 is sufficient to induce CXCL14 

expression (McKinnon et al., 2008). The active phosphorylated form of P38, a member of the 

Figure 20: CXCL14 signalling. (A) CXCL14 is able to induce G protein-related cellular 

response, however its receptor is not identified yet. (B) CXCL14 binds to CXCR4, 

nevertheless CXCL14/CXCR4 interaction does not mediate signal transduction. Such 

interaction leads to CXCR4 internalization, thus inhibiting CXCL12/CXCR4 interaction. 
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mitogen-activated protein kinase (MAPK) family enhances CXCL14 expression (Ozawa et al., 

2010). In addition, transcription factors have been identified to regulate CXCL14 expression. 

The Iroquois homeobox 1 (IRX1) is activated in metastatic osteosarcoma cell lines. Silencing 

IRX1 expression using specific shRNA in osteosarcoma cells induces a decrease in CXCL14 

expression (Lu et al., 2016). Interestingly, CXCL14 has been defined as a marker of the 

Middle Zone (MZ) of the growing articular cartilage (Lui et al., 2015) and IRX1 is expressed 

in joint during limb development in both mouse and chick embryos (McDonald et al., 2010; 

Zülch et al., 2001). These data suggest that CXCL14 regulation by IRX1 is not restricted to 

osteosarcoma cells and could be enlarged to developmental processes such as articular 

cartilage formation. In Xenopus, PAX3 expression is necessary and sufficient to induce 

CXCL14 expression in the hatching gland and Noggin (BMP signalling inhibitor) and Wnt 

signalling are able to increase CXCL14 expression (Park et al., 2009). Finally, in agreement 

with these data, CXCL14 expression is inhibited under overexpression of BMP4 in human 

fibroblasts (Fessing et al., 2010). 

 

D. The role of the chemokines CXCL12 and CXCL14 during myogenesis and repair 

 

Interleukins were the first cytokines to be characterized for their involvement in myogenesis. 

The absence of Interleukin-4 (IL-4) causes reduced muscle size (Horsley et al., 2003).  IL-4 is 

expressed in a subpopulation of myogenic cells and it has been demonstrated that IL-4 

expressed in myotubes recruits myoblasts expressing IL-4 receptor to enhance muscle fusion, 

and ultimately promotes muscle growth. Interleukin-6 (IL-6) is also involved in myogenesis 

(Serrano et al., 2008; Tritarelli et al., 2004). Gain- and loss-of-function assays for IL-6 in 

C2C12 muscle cell line reveal an autonomous promyogenic effect of this cytokine (Tritarelli 

et al., 2004). More recently, studies conducted on C2C12 muscle cell line or primary muscle 

cell cultures revealed that numerous cytokines, including TNF-related factors and chemokines 

are expressed in skeletal muscle cells (Ge et al., 2013; Griffin et al., 2010). Different 

combinations of cytokine expression are observed during the different phases of myogenesis 

in vitro but also during muscle regeneration (Table 3), (Griffin et al., 2010), suggesting the 

importance of these factors in the cell-autonomous regulation of muscle differentiation (Ge et 

al., 2013; Griffin et al., 2010). 

 

The involvement of CXCL12 during myogenesis 

Most informations on the putative role of CXCL12 during myogenesis come from in vitro 
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studies mainly conducted on the C2C12 cell line. In these cells, CXCL12, CXCR4 and 

CXCR7 expression is detected on proliferating myoblasts but the expression of ligand and 

receptors decreased with muscle differentiation (Melchionna et al., 2010). However, another 

study showed that C2C12 proliferating cells are characterized by the expression of CXCR4 

while differentiating muscle cells expressed both CXCR4 and CXCR7 receptors (Hunger et 

al., 2012). Contradictory results are also observed in the different experiments that have been 

conducted in vitro on the role of CXCL12 during myogenesis. Indeed, CXCL12 has been 

shown to induce proliferation of C2C12 cells but to exert a negative effect on myogenic 

differentiation (Hunger et al., 2012). Phospho-ERK and PKC-related signalling pathways are 

activated by addition of CXCL12 on C2C12 proliferating myoblasts but not on differentiated 

muscle cells (Hunger et al., 2012). Moreover, inhibition of CXCR4, using its specific 

pharmacological antagonist AMD3100, increases myogenic differentiation, showing that 

CXCL12 inhibits muscle differentiation through CXCR4 activation (Hunger et al., 2012). 

During muscle differentiation, CXCR7 acts to inhibit CXCL12/CXCR4-mediated signalling, 

by its scavenger function, which traps CXCL12, then preventing CXCL12/CXCR4 binding 

(Hunger et al., 2012). However, CXCL12 has been also shown to favour myogenic 

differentiation by promoting cell cycle withdrawal, an effect mediated through both CXCR4 

and CXCR7 (Melchionna et al., 2010; Odemis et al., 2007). In vitro studies also demonstrated 

the chemoattractive effect of CXCL12 on muscle cells (Griffin et al., 2010; Odemis et al., 

2007). Finally, blockade of the CXCR4 receptor, using shRNA or the AMD3100 inhibitor, 

leads to a decrease in muscle fusion. These results suggest that impairment of 

CXCL12/CXCR4 axis in muscle cells would impact myoblast migration, which could affect 

muscle fusion or differentiation (Ge et al., 2013; Griffin et al., 2010). 

First evidences for a possible implication of CXCL12 in myogenesis in vivo came from the 

analysis of CXCL12 and CXCR4 expression patterns. It has been shown that CXCR4 receptor 

is expressed in migrating muscle progenitors invading the limb bud, both in chick and mouse 

embryos, while CXCL12 is expressed in the surrounding mesenchyme (Vasyutina et al., 

2005). During perinatal and postnatal muscle development in mouse, CXCR4 expression 

characterizes perinatal muscles while CXCR7 is expressed in postnatal and adult muscles 

(Hunger et al., 2012). In Cxcr4 mutant mouse, the number of muscle progenitors that colonize 

the limb is reduced and limb muscles are impaired, demonstrating the role for the 

CXCL12/CXCR4 axis in the control of limb myogenesis (Ödemis et al., 2005; Vasyutina et 

al., 2005). Functional experiments performed in vivo in chick and zebrafish also show that an 

ectopic source of CXCL12 during somite (Chong et al., 2007), pectoral (Masyuk et al., 2014) 
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or cloacal (Rehimi et al., 2010) muscles development induces abnormal migration of muscle 

progenitor cells expressing CXCR4, leading to defects in muscle morphogenesis. To date, 

there are no data investigating the role of CXCL12/CXCR7 axis during in vivo myogenesis 

and no defect in muscle development has been reported in the Cxcr7 mutant mouse (Sierro et 

al., 2007; Yu et al., 2011). 

 

 

The role of CXCL14 during myogenesis 

The putative role of CXCL14 in muscle development has been poorly investigated. Silencing 

Cxcl14 expression in C2C12 muscle cells leads to an increase in myoblast fusion and 

differentiation, demonstrating the inhibitory effect of CXCL14 on myogenesis (Ge et al., 

2013). More recently, it has been shown that C2C12 cells express CXCL14 chemokine and 

that CXCL14 inhibition induces a decrease in myoblast proliferation and an increase in the 

expression level of the myotube markers, demonstrating again that CXCL14 is an inhibitor of 

in vitro myogenesis (Waldemer-Streyer et al., 2017). Interestingly, this study shows that, 

although ERK phosphorylation is decreased in CXCL14 inhibition conditions, CXCL14 

negative effect on myogenesis is not mediated through CXCL12 antagonism. All together, 

these data demonstrate that CXCL14 inhibits cell cycle exit in undifferentiated muscle cells, 

thereby preventing myoblast differentiation. So far, no data concerning the involvement of 

CXCL14 in muscle development in vivo has been reported and no muscle defects have been 

mentioned in Cxcl14 deficient mice (Nara et al., 2007). 

 

The contribution of both CXCL12 and CXCL14 during muscle repair 

A role for CXCL12 and their receptors during regeneration has been also described. During 

muscle regeneration transplanted CXCL12-treated primary myoblasts highly contribute to the 

formation of new myofibers compare to transplanted non CXCL12-treated muscle cells, thus 

demonstrating that CXCL12 participates and promotes muscle regeneration (Kowalski et al., 

2016). In vitro studies have demonstrated that CXCL12 enhances migration potential of 

satellite cells, but also embryonic stem cells and bone marrow mesenchymal cells (Kowalski 

et al., 2016) characterizing cell types that have been shown to contribute to the formation of 

new muscle fibres during muscle regeneration (Brzoska et al., 2015). Furthermore, CXCL12 

promotes the ability of those different cell populations to fuse with myoblasts, and finally to 

contribute to myotubes formation (Kowalski et al., 2016). During muscle regeneration, 

CXCL12 and their receptors are expressed in skeletal muscles (Ratajczak et al. 2003; Brzoska 



 81 

et al. 2015; Hunger et al. 2012). Both receptors have been described to be expressed in 

satellite cells (Ratajczak et al. 2003; Brzoska et al. 2012; Hunger et al. 2012; Kowalski et al. 

2016), while CXCL12 is expressed in satellite cells and muscle-associated fibroblasts 

(Brzoska et al., 2015; Hunger et al., 2012; Ratajczak et al., 2003). All studies assessing the 

effect of CXCL12 during muscle regeneration showed a positive effect of the chemokine for 

muscle regeneration. In vivo in mouse, and in vitro in murine satellite cell lines C2C12 and 

G7 cells, CXCL12 improves skeletal muscle regeneration (Ratajczak et al. 2003; Brzoska et 

al. 2015; Bobadilla et al. 2014; Kowalski et al. 2016). The beneficial effect of CXCL12 is in 

part mediated through its capacity to enhance migration of satellite cell-derived myoblasts 

(Ratajczak et al. 2003; Galvez et al. 2014; Brzoska et al. 2012; Brzoska et al. 2015; Kowalski 

et al. 2016). This effect is mediated through CXCR4 receptor (Brzoska et al., 2012; 2015; 

Kowalski et al., 2016) . Cxcr7 silencing does not disturb the CXCL12-induced migration 

effect (Brzoska et al., 2015). Myoblasts expressing CXCR4 promotes cell engraftment and 

finally enhances muscle regeneration efficiency (Pérez-Pomares et al., 2009). During muscle 

regeneration, CXCL12/CXCR4 induces the expression of the tetraspanine CD9, which 

ultimately increase stem cell migration and fusion ability, hence promoting efficient 

regeneration (Brzoska et al., 2015). Furthermore, CXCL12/CXCR4 axis requires the activity 

of the extracellular matrix metalloprotease MMP10 to mediate its beneficial effect on muscle 

repair (Bobadilla et al., 2014). In deficient mice for Mmp10, both CXCL12 and CXCR4 

expression is decreased (Bobadilla et al., 2014). In the absence of Mmp10, CXCL12 treatment 

does not induces an increase in regeneration efficiency. The metalloproteases MMP2 and 

MMP9 are also associated to CXCL12 effects during muscle regeneration (Brzoska et al. 

2012). MMP activity is increased in cultures of satellite cells under CXCL12 treatment 

(Brzoska et al. 2012). Besides its chemoattractant effect, CXCL12 also positively regulates 

proliferation of satellite cells, as well as their fusion potential (Bobadilla et al., 2014). In co-

cultures of CXCL12-expressing COS-1 cells and satellite cells, the number of PAX7/MyoD-

positive cells is increased, while PAX7-negative/MyoD-positive cells are less abundant 

(Bobadilla et al., 2014). Additionally, fusion index was also increased in this context. 

However, another study showed that CXCL12 does not influence the proliferation of satellite 

cells-derived myoblasts (Brzoska et al. 2012). So far, the role for CXCR7 during muscle 

regeneration is poorly understood. Although it has been shown CXCL12/CXCR7 axis 

regulates the expression of 113 transcripts in the context of muscle repair, it is not clear what 

is the function of CXCR7 in this process (Kowalski et al., 2016). 
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A role for CXCL14 during muscle repair has been recently observed (Waldemer-Streyer et 

al., 2017). Conversely to CXCL12, CXCL14 has a negative effect on muscle regeneration. 

Indeed, inhibition of CXCL14 expression improves muscle regeneration (Waldemer-Streyer 

et al., 2017). This effect is associated with a decrease in the proliferation rate of satellite cells 

(Waldemer-Streyer et al., 2017). 

 

To sump up, the effect of CXCL12 on myogenesis is not clearly established, as it has been 

demonstrated that the chemokine either promotes or inhibits myogenic differentiation, in 

vitro. In the contrary it is well characterized that CXCL12 possesses a beneficial effect during 

muscle repair. The role of CXCR7 has been poorly investigated during developmental and 

regenerative myogenesis therefore less is know about it. Finally CXCL14 chemokine has 

been characterized as a negative regulator in in vitro myogenesis and muscle repair. 
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Aims and Objectives of the thesis 

 

Due to the lack of molecular markers, the mechanisms underlying the interplay between 

irregular CT and muscle, during development and adulthood, have been only recently 

investigated. Different transcription factors such as TCF4, TBX5, OSR1 an OSR2 have been 

characterized to be specifically expressed in irregular CT (Kardon et al. 2003; Hasson et al.  

2011; Stricker et al. 2006). It has been shown that misregulation of these transcription factors 

impaired muscle development (Kardon et al. 2003; Hasson et al. 2011; Stricker et al. 2006; 

Mathew et al. 2011), highlighting an intimate link between irregular CTs and the formation of 

skeletal muscles. However, to date, no secreted signal has been involved in the process of 

irregular CT-mediated muscle morphogenesis.  

Many cytokines have been described for their contribution in myogenesis, among which the 

two chemokines CXCL12 and CXCL14, although contradictory results concerning their 

involvement to muscle development emerged from these studies (Ge et al., 2013; Griffin et 

al., 2010; Hunger et al., 2012; Odemis et al., 2007; Vasyutina et al., 2005; Waldemer-Streyer 

et al., 2017). Both chemokines have been shown to be expressed in CTs (García-Andreś and 

Torres, 2010; Gordon et al., 2011; Ojeda et al., 2013; Rehimi et al., 2008). Consequently, 

CXCL12 and CXCL14 constitute good candidates for driving non-cell autonomous signals 

coming from the CT to orchestrate myogenesis. 

Therefore, the main goal of my PhD project has been to study the involvement of CXCL12 

and CXCL14 chemokines in irregular CT-mediated muscle morphogenesis. However, given 

the previous data emphasizing the expression of CXCL12 and CXCL14 in dense CTs, we also 

attempted to characterize the putative function of both chemokines in the differentiation of 

dense CTs. Defects in muscle regenerative ability are often characterized by a progressive 

substitution of skeletal muscle by an excessive formation of dense CTs constituting a fibrotic 

tissue. Then, it seems essential to identify the mechanisms driving dense CTs development in 

order to better understand the specific role of irregular CT during muscle formation. The aims 

and objectives of my PhD work are detailed below. 

 

Aim 1 – Characterization of CXCL12 and CXCL14 functions in dense CT differentiation 

• Establish the precise expression pattern of the CXCL12 and CXCL14 chemokines and 

their receptors CXCR4 and CXCR7 in CTs of chick embryo forelimbs. 
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• Define whether CXCL12 and CXCL14 are able to activate the expression of specific 

dense CT markers in order to promote dense CT differentiation. 

• Identify upstream signals that are able to control the expression of CXCL12 and 

CXCL14 in CTs, in order to better decipher the molecular network involved in the regulation 

of dense CT differentiation. 

 

Aim 2 – Characterization of CXCL12 and CXCL14 functions in the process of irregular 

CT-mediated muscle morphogenesis 

• Analyse the expression pattern of the CXCL12 and CXCL14 chemokines and their 

receptors CXCR4 and CXCR7 in relation to limb myogenesis in chick embryos. 

• Assess the function of CXCL12 and CXCL14 signallings in the process of irregular 

CT-mediated muscle morphogenesis in vitro and in vivo, using functional approaches 

targeting CXCL12, CXCL14 and CXCR7. 
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I. CXCL12 and CXCL14 chemokines differentially regulate connective 

tissue markers during limb development 

 

Connective tissues (CTs) form a large family of tissues, which main roles are to support and 

connect organs together. Different groups can be distinguished in this family, among which, 

the dense CT subfamily that is subdivided into regular and irregular CT groups, 

corresponding to tendon/ligament structures and CT surrounding organs, respectively. Dense 

CTs are mainly composed of fibroblasts and extracellular matrix (Nassari et al., 2017). During 

adulthood, fibroblasts constituting CTs are quiescent but their deficient regulation can lead to 

a pathological phenomenon, called fibrosis (Wynn, 2007).  Fibrosis is assimilated to an 

excessive formation of dense CT, which results from the activation of fibroblasts leading to 

their proliferation and to the secretion of extracellular matrix components (Kendall and 

Feghali-Bostwick, 2014; Wynn, 2007). It is commonly admitted that during development, 

dense CT-fibroblasts are constantly activated to form CT during the different steps of 

morphogenesis (Yusuf et al., 2013).  Consequently, it is important to decipher the different 

mechanisms underlying dense CT development, in order to better characterize processes 

associated to the pathological fibrosis in adult tissues. The CXCL12 and CXCL14 

chemokines have been shown as implicated in fibrosis (Emblom-Callahan et al., 2010; Ishii et 

al., 2013; Jia et al., 2017). Nonetheless, although CXCL12 and CXCL14 have been described 

as expressed in dense CT sub-regions during embryonic development (García-Andreś and 

Torres, 2010), their role during dense CT development has never been assessed. Therefore, 

the first aim of my PhD project was to identify the functions of both CXCL12 and CXCL14 

chemokines in the establishment of dense CTs during development, using chick limb embryo 

as model. For this purpose, the specific expression patterns of CXCL12 and CXCL14 in dense 

CTs were first assessed in the limb of chick embryos. Then we characterized the putative 

involvement of CXCL12 and CXCL14 on the regulation of the expression of specific dense 

CT markers by using gain-of-function approaches in vitro and in vivo. Finally, we 

investigated the possible upstream mechanisms regulating dense CT-associated expression of 

CXCL12 and CXCL14.  
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Introduction 
 
CTs are primarily composed of extracellular matrix and fibroblasts that derive from 

mesenchymal cells, giving rise to the different types of CT. Among the supportive CT, the 

specialized CT refers to bone and cartilage elements, while dense CT is divided into regular 

and irregular CT, which correspond to tendon/ligament and CT embedding organs, 

respectively (Omelyanenko and Slutsky, 2013). Understanding the specification and 

differentiation processes of the different types of CT from undifferentiated mesenchymal cells 

is an important issue as CT deregulation leads to fibrosis, a process attributed to excess 

deposition of extracellular matrix in response to injury, inflammation or aging (Wynn, 2007). 

Fibrosis is also a major pathological feature of chronic autoimmune diseases, tumour invasion 

and many progressive myopathies (Wynn and Ramalingam, 2012). 

 Until a few years ago, studying the specification of CT types during embryogenesis 

was still challenging, due to the absence of specific markers to distinguish the different forms 

of CT. Most studies designed to identify CT-specific genes during development have been 

conducted on vertebrate limb musculoskeletal system as a model. Indeed, this 

multicomponent structure formed by muscle, muscle CT (MCT), irregular CT (ICT), tendon, 

ligament and bone/cartilage is particularly suitable to investigate CT differentiation in the 

embryo. During limb development, lateral plate mesoderm forms skeleton, tendons, ligaments 

and other CT (Chevallier et al., 1977; Wachtler et al., 1981), while somites give rise to 

myogenic cells, which delaminate from the dermomyotome to migrate towards limb buds 

(Chevallier et al. 1977; Ordahl & Le Douarin 1992). Classical embryological approaches have 

shown that limb lateral plate mesoderm contains positional information cues for limb 

formation (Grim and Wachtler, 1991; Michaud et al., 1997).  Limb mesenchyme influences 

muscle patterning (Chevallier and Kieny, 1982), highlighting the importance of CT 

derivatives for limb musculoskeletal morphogenesis. In the developing limb, studies on CT 

differentiation first focused on collagen, the major component of the extracellular matrix and 

showed that type I and type III collagens are both expressed in dense regular and irregular CT 

(Kieny and Mauger, 1984). In adult tendons, type I collagen tends to replace type III collagen, 

while mature ICT and MCT are characterized by the expression of both type III and type VI 

collagens (Gara et al., 2011; Kieny and Mauger, 1984; Zhang et al., 2005). 

More recently, the identification of specific molecular markers and genetic tools allowing the 

labelling and manipulation of CT fibroblasts has largely contributed to a better understanding 

of the role of CT types during limb development. The Scleraxis (Scx) gene, encoding a bHLH 
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transcription factor, is expressed in tendon and ligament cells (Schweitzer et al. 2001) and 

Scx-/- mice showed severe defects in force-transmitting tendons (Murchison et al., 2007). Scx 

consequently characterizes dense regular CT (tendon and ligament). In contrast to tendon and 

ligament, the characterization of ICT and MCT remains challenging. Tcf4, a member of the 

Tcf/Lef family of transcription factors, is highly expressed in MCT during chick and mouse 

limb development (Kardon et al., 2003; Mathew et al., 2011). TCF4 gain- and loss-of-

function experiments demonstrated that TCF4-expressing cells contribute to limb muscle 

patterning in chick embryos (Kardon et al., 2003). Similarly, mispatterning and missplitting of 

limb muscles and tendons are observed after ablation of the T-box transcription factor Tbx5 in 

mouse lateral plate-derived cells (Hasson et al., 2010). Interestingly, Scx and Tcf4 genes have 

been shown to be critical regulators of fibrosis in different adult organs (Bagchi et al., 2016; 

Contreras et al., 2016). However, although Tcf4 and Tbx5 are considered as MCT-associated 

markers, Tcf4 is also expressed in myogenic cells (Mathew et al., 2011) and Tbx5 is also 

observed in cartilage, tendon and muscle progenitors of mouse limbs ( Hasson et al. 2007), 

showing that both transcription factors are not specific to ICT and MCT. More recently, the 

zinc finger Odd Skipped-related factors Osr1 and Osr2 have been identified as being 

expressed in ICT during limb development, with a prevalence of Osr2 expression in MCT 

(Stricker et al., 2006). Osr1 and Osr2 genes are not expressed in cartilage, tendon and 

ligament (Stricker et al., 2006). Both Osr1 and Osr2 drive ICT differentiation at the expense 

of cartilage and tendon and are required for the differentiation of ICT fibroblasts (Stricker et 

al., 2012). Overexpression of OSR1 or OSR2 in chick limb mesenchymal cells induces the 

expression of ICT markers such as COL3A1 and COL6A1, while downregulating the 

expression of cartilage and tendon markers. Conversely, OSR1 or OSR2 inactivation 

downregulates COL3A1 and COL6A1 expression, while increasing cartilage formation in 

chick limb cells (Stricker et al., 2012).  

These CT-associated transcription factors are regulated by signalling pathways during limb 

development. BMP4 represses Tcf4 (Bonafede et al., 2006) and Scx expression (Schweitzer et 

al. 2001), while SCX expression is positively regulated by FGF4 (Edom-Vovard et al., 2002; 

Lejard et al., 2011). It is important to note that both BMP and FGF signalling pathways are 

involved in the regulation of tissue fibrosis in adult (Jenkins and Fraser, 2011; Kim et al., 

2016). Chemokines are also important regulators of fibrosis (Wynn, 2008) and interestingly, 

CXCL12 and CXCL14 have been shown to delineate some CT subpopulations in embryonic 

limbs (García-Andreś and Torres, 2010; Gordon et al., 2011; Vasyutina et al., 2005). 

Identified CXCL12 functions during embryogenesis include essential roles in the migration 
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process of hematopoietic stem cells (Nagasawa et al. 1996; Zou et al. 1998), neurons (Bagri et 

al., 2002; Klein et al., 2001), germ cells (Molyneaux et al. 2003; Boldajipour et al. 2008) and 

limb skeletal muscle cells (Vasyutina et al., 2005). These functions are mediated by two 

chemokine receptors, CXCR4 and CXCR7 that signal individually in different cells or act in a 

cooperative manner in the same cell (Puchert and Engele, 2014).  The role of CXCL14 during 

development remains more elusive but CXCL14 possesses chemoattractive activity for 

activated macrophages, immature dendritic cells and natural killer cells (Hara and 

Tanegashima, 2012) and it has been shown that CXCL14-forced expression suppresses 

tumour growth in mice (Izukuri et al., 2010; Tessema et al., 2010). Specific receptors for 

CXCL14 have not yet been identified but it is proposed that CXCL14 is a natural inhibitor of 

the CXCL12–CXCR4 axis (Tanegashima et al. 2013). 

In this study, we show that CXCL12 and CXCL14 chemokines display distinct expression 

pattern in limb CT and regulate the expression of specific CT markers. We provide evidence 

that CXCL12 positively regulates the expression of OSR1 and COL3A1, a major collagen 

subtype of the ICT, in chick embryonic limb and fibroblasts, while CXCL14 activates the 

expression of the tendon marker SCX in chick fibroblasts. Moreover, the expression of 

CXCL12, CXCL14 and OSR genes is negatively regulated by BPM4, while the blockade of 

BMP activity is sufficient for CXCL12, CXCL14 and OSR1 expression. Lastly, the expression 

of CXCL12, CXCL14 and CT markers is decreased in the absence of muscle contraction.  
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Results 

 

CXCL12 and CXCL14 chemokines display distinct expression pattern in limb CT during 

chick development 

We analysed CXCL12 and CXCL14 expression pattern in chick limb at different 

developmental stages. Comparison was made with OSR1, OSR2 and PDGFRα, three ICT-

associated markers and with SCX for tendon CT. Limb muscles were visualized by myosin 

expression (MF20 antibody), which reveals differentiated muscle cells. At E5 of 

development, CXCL12 displayed a diffuse expression in limb CT, with a strong expression in 

ICT between cartilage elements, overlapping with OSR2 expression (Fig. 1A, C). CXCL12 is 

also expressed in MCT (Fig. 1D), overlapping with OSR1 and OSR2 expression (Fig. 1D-F). 

CXCL12 also colocalised with PDGFRα, which appeared widely expressed in the forelimb 

ICT and at a lower level in MCT (Fig. 1G-I), as previously describe (Orr-Urtreger et al. 1992; 

Tozer et al. 2007). At E5, CXCL14 was expressed in forelimb ectoderm and faintly in 

proximal CT (Fig. 1J, arrow), in a region where CXCL12 was also expressed (Fig. 1K, arrow). 

CXCL14 exhibited a partial overlap with OSR1 and SCX expression but not with that of OSR2 

in proximal limb regions (Fig. 1J, L-N, arrows). From E6, in addition to ectoderm expression, 

CXCL14 was expressed in a subpopulation of ICT mostly located in limb ventral regions (Fig. 

1O-Q). At E7, CXCL12 expression was still observed in ICT and MCT, overlapping with 

OSR1 expression in ICT and both OSR1 and OSR2 expression in MCT (Fig. 2A-F). At this 

stage, CXCL12 expression partially overlaps with COL1A1 but not with SCX (Fig. 2G-I). At 

E10, CXCL12 expression was reminiscent of that of PDGFRα in ICT and MCT (Fig. 2J-L). 

In addition to ectodermal expression, CXCL14 was observed in ICT surrounding cartilage 

(Fig. 2M), but also in MCT of a subgroup of ventral muscles (Fig. 2M, P) and in ICT at the 

vicinity of SCX expression (Fig. 2R, S). At this stage, CXCL14 and CXCL12 expression was 

not obviously overlapping in ICT, but partially colocalised around cartilage and in MCT (Fig. 

2M, N). We then analysed the expression of CXCL12 receptors in chick embryonic limb. At 

E5, CXCR7 receptor was observed in limb CT, with a strong expression in CT surrounding 

cartilage elements, while CXCR4 was expressed in endothelial cells labelled with MEP21 

(Fig. 3A-C), as already described in chick embryos (Escot et al., 2013; Escot et al., 2016). At 

E10, CXCR7 appeared strongly expressed in ICT around muscles while CXCR4 was still 

expressed in endothelial cells (Fig. 3D-F).  
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Taken together, our results show that CXCL12 and CXCL14 chemokines exhibit distinct and 

Figure 1: Chemokine expression in relation to CT markers in forelimb of E5 and E6 

chick embryo. In situ hybridizations for CXCL12 (A, D, K), CXCL14 (J, O, P, Q), OSR1 
(B, E, L), OSR2 (C, F, M) and immunohistochemical detections for PDGFRa (G, I), MF20 
(A-F, H, I, P, Q) on serial transverse (A-I, Q) or longitudinal (J-P) sections. CXCL12 is 
expressed in CT and MCT partially overlapping with OSR1, OSR2 and PDGFRa 
expression. CXCL14 exhibits a restricted expression in CT (J, O-Q), partially overlapping 
with CXCL12, OSR1 and SCX expression (arrows in J, K, L, N). D, E, F, I represent high 
magnifications of the squared regions respectively in A, B, C and G, H. D: dorsal, V: 
ventral, a: anterior, p: posterior, r: radius, u: ulna. Bars: 200 µm in A-C, G, H, J-O, Q; 100 
µm in D-F, P.  
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Figure 2: Chemokine expression in relation to CT markers in forelimb of chick 

embryo from E7 to E10. In situ hybridizations for CXCL12 (A, D, G, J, N), CXCL14 (M, 
P, R, Q), OSR1 (B, E), OSR2 (C, F), COL1A1 (H), SCX (I, O, S) and 
immunohistochemical detections for PDGFRa (K, L), MF20 (A-F, J-L, P-S) on serial 
transverse (A-L, P, Q) or longitudinal (M-O, R, S) sections. CXCL12 is expressed in CT 
and MCT partially overlapping with OSR1, OSR2 and PDGFRa expression but with no 
evident colocalisation with COL1A1 or SCX expression. CXCL14 expression partially 
overlaps with CXCL12 expression in CT and MCT and is observed in the vicinity of SCX 
expression in CT giving rise to tendon. D, E, F, L, R, S represent high magnifications of 
the squared regions respectively in A, B, C, K, N, O. D: dorsal, V: ventral, a: anterior, p: 
posterior, r: radius, u: ulna. Bars: 200 µm in A-C, G-I, M-P; 100 µm in D-F, J, K; 50 µm in 
Q-S.  
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dynamic expression patterns during chick limb development in ICT and MCT, as previously 

described (García-Andreś and Torres, 2010). CXCL12 expression is widespread in limb ICT 

including MCT, while CXCL14 is expressed in the vicinity of a subset of tendons and 

restricted to MCT of specific muscles, mostly located ventrally in limbs. The comparison of 

CXCL12 and CXCL14 expression with that of limb CT-markers shows a good correlation 

between the expression of CXCL12 and OSR transcription factors, while CXCL14 expression 

appears complementary in some limb regions to the tendon CT-marker SCX, suggesting a 

differential role for the two chemokines in limb CT regulation.  

 

CXCL12 and CXCL14 regulate the expression of different CT markers during chick 

limb development 

To test the involvement of CXCL12 and CXCL14 in limb CT differentiation, we performed 

CXCL12 and CXCL14 gain-of-function experiments in vitro and in vivo. We first 

overexpressed CXCL12 and CXCL14 chemokines in primary cultures of chick embryonic 

fibroblasts using the replication-competent RCAS retrovirus system. Chick embryonic 

fibroblasts were transfected with recombinant retroviruses that spread in dividing cells, 

allowing a general expression of the gene of interest after 4 days of culture (Fig. 4A). 

CXCL12 overexpression in chick embryonic fibroblasts led to a significant increase in the  

Figure 3: Expression of chemokine receptors during development of the chick forelimb. 

In situ hybridizations for CXCR7 (A, D) and immunohistochemical detections for CXCR4 (B, 
F), MEP21 (C) and MF20 (E) on serial transverse sections from E5 (A-C) and E10 (D-F) 
chick forelimbs. CXCR7 is expressed in CT surrounding cartilage and muscles, while CXCR4 
is expressed in a sub-population of endothelial cells, as already described (Escot et al., 2013, 
2016). D: dorsal, V: ventral, a: anterior, p: posterior, r: radius, u: ulna. Bars: 200 µm in A-C, 
100 µm in D-F. 
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mRNA levels of OSR1, OSR2 and COL3A1 genes, while the expression of COL1A2, 

COL6A1, PDGFRA and SCX was not significantly modified (Fig. 4B). CXCL14 

overexpression significantly increased the mRNA levels of the tendon marker SCX, but did 

not change the expression levels of the other CT-associated markers (Fig. 4C). We next 

overexpressed CXCL12 and CXCL14 in ovo, by grafting RCAS-CXCL12 or RCAS-CXCL14 

producing fibroblasts into limb buds of E4 chick embryos (Fig. 5A). The replication-

competent retrovirus RCAS spread in chick dividing cells over development and this led to 

ectopic gene expression in limb regions (Edom-Vovard et al., 2002). Embryos were collected 

at E10 and the expression of CT markers was analysed by in situ hybridization to transverse 

limb sections (Fig. 5A). Ectopic CXCL12 expression (Fig. 5Bb, h) resulted in an increase of 

OSR1 and COL3A1 expression in the infected limb regions (Fig. 5Bd, f, j, l) compared to 

control limbs (Fig. 5B). Interestingly, while ectopic COL3A1 expression corresponds to 

ectopic CXCL12 expression (Fig. 5Bh, j), OSR1 expression upon ectopic CXCL12 was 

stronger in ICT surrounding muscles than in MCT (Fig. 5Bb, d, f). We did not observe any  

Figure 4: Overexpression of CXCL12 and CXCL14 chemokines increases the 

expression of CT markers in vitro. A: Experimental scheme of in vitro transfection of 
chicken embryonic fibroblasts (CEF) by RCAS viruses expressing chick CXCL12 or 
CXCL14 constructs. B, C: RT-qPCR analyses of the expression level of CT markers in 
CEF overexpressing CXCL12 (B, n=6) or CXCL14 (C, n=6) showing that CXCL12 
upregulates significantly OSR1, OSR2 and COL3A1, while CXCL14 increases SCX. For 
each gene, the mRNA levels of control cultures (n=6) were normalised to 1. P values were 
analysed by two-tail and unpaired Student’s t-test using Microsoft Excel. **P<0.01; 
***P<0.001; Error bars indicate s.d. 
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Figure 5: Overexpression of CXCL12 and CXCL14 chemokines in vivo increases the 

expression of CT markers in the chick embryonic forelimb. A: Experimental scheme of 
the grafting procedure of CEF pellets expressing chick CXCL12 or CXCL14 constructs in 
the chick embryonic forelimb. B: Ectopic expression of CXCL12 upregulates OSR1 and 
COL3A1 expression (n=6). In situ hybridizations for CXCL12 (a, b, g, h), OSR1 (c-f) and 
COL3A1 (i-l) on serial transverse sections of control (a, c, e, g, i, k) and grafted (b, d, f, h, 
j, l) E10 chick forelimbs. e, f, k, l represent high magnifications of the squared regions 
respectively in c, d, i, j. C: Ectopic expression of CXCL14 does not modify SCX expression 
(n=6). In situ hybridizations for CXCL14 (a, b) and SCX (c, d) on serial transverse sections 
of control (a, c) and grafted (b, d) E10 chick forelimbs. D: dorsal, V: ventral, a: anterior, p: 
posterior, r: radius, u: ulna. Bars: 200 µm in B (a-d, g-j), C (a-d); 100 µm in B (e, f, k, l).  
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obvious change of OSR2 expression by in situ hybridization in the RCAS-CXCL12-infected 

regions (data not shown). CXCL14 overexpression did not induce ectopic SCX expression in 

chick forelimbs when compared to control limbs (Fig. 5C), although we cannot exclude an 

increase of SCX expression in tendons.  

Altogether, these results show that CXCL12 and CXCL14 chemokines regulate differentially 

CT-associated transcription factors in vivo and in vitro. CXCL12 positively regulates the 

expression of OSR1 and COL3A, two ICT markers, while CXCL14 regulates SCX, a CT-

tendon marker.  

 

CXCL12 and CXCL14 expression is not regulated by FGF4  

During development, FGF4 positively regulates SCX expression (Edom-Vovard et al., 2002; 

Havis et al., 2016) and the expression of ICT collagens, including COL1A1, COL3A1 and 

COL6A1 (Lejard et al., 2011) in chick limbs. Interestingly, FGF has been shown as one of the 

signalling pathways implicated in fibrosis regulation in different pathological situations (Kim 

and Braun, 2015). We then analysed the effects of FGF4 overexpression on CXCL12 and 

CXCL14 expression in chick limbs. FGF4 beads were implanted into limbs of E4.5 chick 

embryos and fixed 48 hours later (Fig. 6A). As previously shown (Edom-Vovard et al., 2002; 

Havis et al., 2016; Lejard et al., 2011), SCX expression was strongly induced at the vicinity of 

FGF4 beads in grafted limbs compared to normal SCX expression in control limbs (Fig. 6Ba, 

b, g, h). However, no ectopic expression of CXCL12 and CXCL14 was observed in ectopic 

SCX expression domains (Fig. 6Ba-f). In addition, we did not observed any OSR1 and OSR2 

activation around FGF4 beads (Fig. 6Bg-l) Moreover, an inhibition of both OSR1 and OSR2 

expression was observed in the vicinity of FGF4 beads (Fig. 6Bh, j, l) compared to OSR 

endogenous expression in control limbs (Fig. 6Bg, i, k). Overexpression of FGF4 did not 

induces CXCL12 and CXCL14 expression but leads to the inactivation of both OSR1 and 

OSR2 genes in chick limbs, while increasing SCX expression, as previously described (Edom-

Vovard et al., 2002; Havis et al., 2016; Lejard et al., 2011). It is likely that OSR gene 

downregulation observed after FGF4 bead graft is independent of CXCL12 and CXCL14 

chemokines, but, as OSR1 and OSR2 overexpression inhibits SCX expression in chick limb 

cells (Stricker et al., 2012), these results suggest that SCX and OSR genes mutually repress 

each other in mesenchymal cells during chick limb development. 

These results show that ectopic expression of FGF4 does not modify CXCL12 and CXCL14. 
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 The anti-fibrotic BMP signalling pathway negatively regulates the expression of 

CXCL12 and CXCL14 

BMP signalling has been demonstrated as an antagonist of fibrosis in various organs  

(Weiskirchen et al. 2009) but very few studies have investigated its potential role in the 

regulation of CT types during development. Conversely to FGF4, BMP4 inhibits SCX 

expression in chick embryonic limbs ( Schweitzer et al. 2001; 2010). 

Figure 6: FGF signalling regulates the expression of CT markers independently of 

chemokines in the chick embryonic forelimb. A: Experimental scheme of the grafting 
procedure of heparine beads coated with mouse FGF4 recombinant protein in the chick 
embryonic forelimb. B: 48h after the graft (n=6). FGF signalling activates SCX expression 
and represses OSR1 and OSR2 expression without affecting CXCL12 and CXCL14 
expression in the chick embryonic forelimb. In situ hybridizations for SCX (a, b, g, h), 
CXCL12 (c, d), CXCL14 (e, f), OSR1 (i, j) and OSR2 (k, l) on serial transverse sections of 
control (a, c, e, g, j, k) and grafted (b, d, f, h, j, l) E6.5 chick forelimbs. Asterisks indicate 
the grafted bead. D: dorsal, V: ventral, a: anterior, p: posterior, h: humerus, r: radius, u: 
ulna. Bars: 250 µm in C (a-l). 
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Figure 7: BMP signaling pathway down-regulates the expression of chick CT markers in vivo 
and in vitro. BMP signalling represses CXCL12, CXCL14, OSR1, and OSR2 expression in the chick 
forelimb CT and MCT (n=5). A: Experimental scheme of the grafting procedure of CEF pellets 
expressing mouse Bmp4 construct in the chick embryonic forelimb. B: In situ hybridizations for 
CXCL12 (b, e), CXCL14 (c, f), OSR1 (h, k), OSR2 (i, l), mBmp4 (d, j) and immunohistochemical 
detection for MF20 (a, d, g, j) on serial transverse sections of control (a-c, g-i) and grafted (d-f, j-l) E8 
chick forelimbs. The squared regions in a, d, g, j delineate the high-magnified parts of the adjacent 
sections revealed for chemokines or CT markers. D: dorsal, V: ventral, a: anterior, p: posterior, r: 
radius, u: ulna. Bars: 200 µm in B (a, d, g, j), 100 µm in B (b, c, e, f, h, k, i, l). C: RT-qPCR analyses 
of expression level of readout targets of BMP4 signalling and of CT markers in CEF expressing 
RCAS-mBmp4 construct, showing that BMP4 expression significantly decreases CXCL12, CXCL14, 

OSR1 and OSR2 expression (n=6). For each gene, the mRNA levels of control cultures (n=6) were 
normalised to 1. P values were analysed by two-tail and unpaired Student’s t-test using Microsoft 
Excel. ***P<0.001; Error bars indicate s.d. 
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 We then looked at the possible BMP effect on CXCL12 and CXCL14 expression in vivo by 

overexpressing BMP4 in chick limbs. Pellets of transfected RCAS-mBmp4 fibroblasts were 

grafted into limbs of E4 embryos, which were collected at E8 to analyse the expression of 

chemokines and CT markers (Fig. 7A). Bmp4 overexpression resulted in a downregulation of 

CXCL12 and CXCL14 expression (Fig. 7Bd-f) and a concomitant decrease in both OSR1 and 

OSR2 expression in limb mesenchyme (Fig. 7Bj-l), compared to control limbs (Fig. 7Ba-c, g-

i). These results were supported in vitro by the analysis of mRNA levels of chemokines and 

CT markers in embryonic fibroblasts overexpressing Bmp4, which showed downregulation of 

CXCL12, CXCL14, OSR1 and OSR2 expression (Fig. 7C). These results evidence that BMP4 

gain-of-function experiments lead to a decrease of chemokine and CT marker expression in 

chick limb cells. In order to test if BMP loss-of-function experiments would provoke the 

opposite result, BMP signalling pathway was inhibited in vivo by overexpressing the BMP 

antagonist Noggin in chick limbs (Wang et al., 2010). Pellets of transfected RCAS-cNOGGIN 

producing fibroblasts were grafted into limbs of E4 embryos, which were collected at E9 to 

analyse the consequences for the expression of chemokines and CT markers (Fig. 8A). 

NOGGIN overexpression led to an upregulation of CXCL12 and CXCL14 expression in both 

ICT and MCT (Fig. 8Ba, b, f, g) and a concomitant increase in OSR1 expression (Fig. 8Bh), 

compared to control limbs (Fig. 8Bc-e). In this experimental design, OSR2 and SCX 

expression was not obviously modified (data not shown).  

Taken together, these data show that the anti-fibrotic factor BMP4 negatively regulates the 

expression of CXCL12 and CXCL14 chemokines and OSR1 and OSR2 transcription factors, 

while the inhibition of BMP signalling pathway is sufficient to induce the expression of 

CXCL12, CXCL14 and OSR1 in chick limbs. 

 

Mechanical forces act upstream CXCL12 and CXCL14 to regulate CT markers  

The musculoskeletal system is sensitive to mechanical loads exerted by muscle contractions. 

Mechanical forces generated by muscle activity have been shown to be crucial for the 

formation of components of the musculoskeletal system during development (Esteves de 

Lima et al. 2016; Havis et al. 2016).  In the adult, studies indicate that mechanical forces 

contributes to fibrosis by regulating CT fibroblasts in bone, cartilage and interstitial tissues of 

most organs (Carver and Goldsmith, 2013). During development, SCX expression is sensitive 

to mechanical forces in tendons of mouse and chick limbs (Huang et al. 2015; Havis et al. 

2016) but no investigation has been conducted concerning the role of mechanical 
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Figure 8: Inhibition of BMP signalling activates the expression of chick CT markers 

in vivo. 
BMP inhibition increases CXCL12, CXCL14 and OSR1 expression in the chick forelimb 
CT and MCT (n=4). A: Experimental scheme of the grafting procedure of CEF pellets 
expressing chick NOGGIN construct in the chick embryonic forelimb. B: In situ 
hybridizations for NOGGIN (a, b), CXCL12 (c, f), CXCL14 (d, g), OSR1 (e, h) and 
immunohistochemical detection for MF20 (c, f) on serial transverse sections of control (c-
e) and grafted (f-h) E9 chick forelimbs. The squared regions in a delineate the high-
magnified region of the adjacent sections revealed for NOGGIN, chemokines or CT 
markers. Arrows indicate the expression in CT and MCT. Arrowheads indicate the 
expression in perichondrium. D: dorsal, V: ventral, a: anterior, p: posterior, r: radius, u: 
ulna. Bars: 200 µm in A (b-h), 100 µm in A (a). 
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signals on ICT and MCT during development. To assess the effect of mechanical forces in 

this context, chick embryos were immobilised using the decamethonium-bromide (DMB) 

pharmacological agent, an acetylcholine agonist leading to rigid muscle paralysis and 

immobilisation of the embryo (Nowlan et al., 2010). DMB or control solutions were applied 

in E4.5 embryos and limbs were collected 2 or 3 days later to analyse the consequences for 

the expression of chemokines and CT marker by in situ hybridization and RT-qPCR. DMB 

has been shown to bind motor endplates and block muscle contraction (Pitsillides, 2006). As 

neuromuscular contractions in chick embryonic limbs are effective from E5.5 (Landmesser 

and Pilar, 1974), limb muscles were not grossly affected at E6.5 after two days of 

immobilisation (Fig. 9Ah, l), while paralysis leads to muscle degeneration later during 

development, as previously described (Fredette and Landmesser, 1991). CXCL12 and 

CXCL14 expression was reduced in MCT and ICT surrounding muscles in paralysed limbs 

(Fig. 9Ab, d). However, CXCL12 expression was maintained in CT surrounding bones, while 

CXCL14 was still expressed in the ectoderm in immobilised conditions (Fig. 9Ab, d). The 

expression of OSR1 and OSR2 was also decreased in the absence of mechanical activity 

compared to control limbs (Fig. 9Ae-j). RT-qPCR analyses confirmed the downregulation of 

the mRNA levels of CXCL12, CXCL14, OSR1 and OSR2 in paralysed limbs (Fig. 9B). RT-

qPCR analyses also showed that the mRNA levels of COL1A2, COL3A1 and COL6A1 genes 

were significantly reduced in immobilised conditions. The general decrease of CT marker 

expression cannot be attributed to a loss of CT cells, since TCF4-positive cells were still 

observed in limbs of immobilised and control embryos (Fig. 9Ah, l). taken together, these 

results show that the expression of CXCL12 and CXCL14 and that of CT markers is sensitive 

to mechanical forces during limb development.  
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Figure 9: Mechanical forces act upstream CXCL12 and CXCL14 chemokines to 

regulate the expression of CT markers in the chick embryonic forelimb. A: 
Immobilisation of the chick embryonic forelimb downregulates the expression of CXCL12 
and CXCL14 and of the CT markers (n=3). In situ hybridizations for CXCL12 (a, b), 
CXCL14 (c, d), OSR1 (e, i), OSR2 (f, j) and immunodetection of MF20 (g, k) and TCF4 (h, 
l) on serial transverse sections of control (a, c, e-h) and DMB-treated (b, d, i-l) E6.5 chick 
forelimbs. D: dorsal, V: ventral, a: anterior, p: posterior, r: radius, u: ulna. B: RT-qPCR 
analyses of CXCL12, CXCL14 and CT markers in E7.5 immobilized chick forelimbs (n=4) 
showing that both chemokine and CT marker expressions are reduced in immobilisation 
conditions. For each gene, the mRNA levels of control limbs (n=4) were normalized to 1. 
P values were analyzed by two-tail and unpaired Student’s t-test using Microsoft Excel. 
**P<0.01; ***P<0.001; Error bars indicate s.d. 
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Results 
 

II. The contribution of connective tissue cells to muscle morphogenesis: an 

unexpected role for CXCL12 and CXCL14 signalling pathways   
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II.  The contribution of connective tissue cells to muscle morphogenesis: an 

unexpected role for CXCL12 and CXCL14 signalling pathways 

 

Muscle morphogenesis process is mediated by consecutive waves of embryonic and foetal 

myogenesis, which participate in the establishment of muscle scaffold and growth, 

respectively. The intrinsic capacities of muscle progenitors highly contribute to muscle 

development, however, they are not sufficient to build proper muscles with a correct shape, 

size and location in the body. Besides the intrinsic capacities of muscle progenitors, it 

emerges years ago that signals emanating from adjacent tissues might be important for the 

correct development of muscles (Chevallier and Kieny, 1982). The connective tissue (CT), 

corresponding to a broad family of tissues that maintain and connect organs together, recently 

became a source of interest in the field of muscle morphogenesis. For a long time, due to the 

lack of specific markers, the role of CT in muscle formation has been poorly investigated, but 

recently the identification of specific molecular markers has contributed to renewed interest in 

the field of CT-contribution to muscle development (Kardon 1998; Kardon et al. 2003; 

Hasson et al. 2010). Although different transcription factors specific to CT cells have been 

implicated in the formation of muscle, the molecular signallings involved in CT- muscle 

interactions during development remains to be elucidated. Chemokines have been shown as 

important actors involved in CT regulation in adult organ homeostasis and we have 

previously shown that CXCL12 and CXCL14 chemokines, expressed in the ICT of 

embryonic chick limb, positively regulate the expression of different CT-associated markers 

in embryonic fibroblasts (Nassari et al., 2017 submitted). 

Consequently, the second part of my PhD project was to study whether CXCL12 and 

CXCL14 chemokines were involved in muscle development in a non-cell autonomous 

manner as signals secreted from limb CT.  

We first investigated the expression pattern of CXCR4 and CXCR7 receptors during limb 

muscle morphogenesis in chick embryo. Then, the putative involvement of CXCL12 and 

CXCL14 in CT-mediated muscle morphogenesis was assessed using gain- and loss-of-

function approaches of chemokines and their receptors, both during myogenesis in vitro and 

limb muscle morphogenesis in vivo. Finally, we tried to decipher the molecular mechanisms 

underlying CT-derived CXCL12 or CXCL14 mediated muscle development. 
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Introduction 

During development, muscle morphogenesis is an important step in the formation of the 

musculoskeletal system. This process is mainly driven by the intrinsic proliferation and 

differentiation capacities of muscle progenitor cells that are orchestrated through the 

expression of the paired-homeobox transcription factors PAX3/PAX7 and Myogenic 

Regulatory transcription Factors (MFRs) MYOD, MYF5, MRF4 and MYOG (Buckingham 

and Rigby, 2014). During embryonic development, PAX3 and PAX7 are expressed 

respectively in embryonic and foetal muscle progenitors, in which they promote the 

expression of the MRFs that promote activation of the myogenic program (Relaix et al. 2004; 

2005; Buckingham & Rigby 2014). PAX3-positive muscle progenitors constitute the pool of 

embryonic myoblasts forming the primary fibres that are necessary to constitute the scaffold 

of muscles (Relaix et al. 2004; 2005). Subsequently, a second wave of myogenesis defined as 

foetal myogenesis occurs, during which PAX7-expressing muscle progenitors participate in 

the formation of secondary fibres, contributing to muscle growth and maturation (Relaix et al. 

2004; 2005). Although intrinsic capacities of muscle progenitors are critical for the proper 

formation of muscles, it emerged years ago that signals arising from adjacent tissues, among 

which blood vessels, nerves and connective tissues (CTs) might contribute in the process of 

muscle development (Tozer et al. 2007; Ashby et al. 1993; Merrifield and Konigsberg 1987; 

Robson and Hughes 1999; Chevallier and Kieny 1982; Kardon 1998).  

CTs refer to a broad family of tissues, which connect and support organs together (Nassari et 

al., 2017). The specialized CT corresponds to bone and cartilage while the dense CT is 

subdivided in regular and irregular CT, referring respectively to tendon/ligament and CT 

embedding organs. At the muscle level, the irregular CT (ICT) correspond to the ICT 

surrounding muscles and to the muscle irregular CT (MCT) present inside the muscle 

(Nassari et al., 2017). Importance of dense CTs on muscle morphogenesis has been 

highlighted a long time ago using classical embryological approaches, which have shown that 

CT contributes to initial limb muscle patterning (Chevallier and Kieny, 1982) and that 

disruption of tendons elements leads to muscle mispatterning (Kardon 1998). More recently, 

the identification of CT-specific transcription factors has contributed to precisely investigate 

the role of ICT and MCT in muscle morphogenesis. The TCF4 transcription factor that 

belongs to the Tcf/Lef family is the first molecular marker that has been identified to be 

expressed in irregular CT fibroblasts (Kardon et al., 2003). During chick limb development, 

the TCF4 transcription factor is restricted to MCT (Kardon et al., 2003) and gain- and loss-of-
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function experiments in chick and mouse embryos have demonstrated that TCF4 established a 

pre-pattern for muscle differentiation (Kardon et al., 2003; Mathew et al., 2011). TBX5, a T-

box transcription factor has also been identified as a specific MCT marker (Hasson et al. 

2007; Hasson et al. 2010) and deletion of Tbx5 in forelimbs of mouse embryos leads to defect 

in muscle and tendon patterning (Hasson, 2011). However Tcf4 and Tbx5 are not restricted to 

ICT as Tbx5 is also expressed in specialized and regular CT (Hasson et al. 2007) and Tcf4 is 

detected at low level in myogenic cells (Mathew et al., 2011).  

Embryonic limb ICT also expresses the two Odd-skipped orthologs, Osr1 and Osr2 (Stricker 

et al., 2006), which promotes the expression of ICT markers such as COL3A1 and COL6A1 

(Stricker et al., 2012). Overexpression of OSR1 or OSR2 in muscle cells in vitro or in chick 

embryonic limbs in vivo leads to a decrease in myogenic differentiation (Stricker et al., 2012). 

Furthermore, in adult, non-myogenic cells presenting a dense CT identity have been shown as 

implicated in muscle regeneration (Joe et al. 2010; Uezumi et al. 2010; Judson et al. 2013). 

Two different groups have characterized adult muscle resident non-myogenic progenitor cells 

named Fibro/Adipogenic Progenitors (FAPs) (Joe et al. 2010) and mesenchymal progenitors 

(MPs) (Uezumi et al., 2010) presenting both fibrogenic and adipogenic differentiation 

potentials. Upon muscle injury, FAPs/MPs are activated and favor muscle regeneration (Joe et 

al. 2010; Uezumi et al. 2010; Judson et al. 2013), but their prolonged activation can induce a 

dramatic excess of collagen deposition, leading to fibrosis and ultimately to muscle 

dysfunction (Joe et al. 2010). These data show that non-myogenic dense CT cells define a 

myogenic niche that regulates developmental and regenerative myogenesis. However, the 

molecular pathways underlying the crosstalk between dense CT and myogenic cells are not 

yet identified. 

In adult organs, fibrosis is induced by secreted factors resulting from the inflammation 

process, among which chemokines appear as important players (Wynn, 2008). Both CXCL12 

and CXCL14 have been shown as implicated in inflammatory and cancer-related fibrosis 

(Rodriguez-Nieves et al. 2016; Östman and Augsten 2009; Lin et al. 2014). Following muscle 

injury, CXCL12, secreted by the MCT, has been shown to actively participate and promote 

the regeneration process (Brzoska et al., 2015; Griffin et al., 2010; Kowalski et al., 2016), 

while conversely, CXCL14 inhibits muscle regeneration (Waldemer-Streyer et al., 2017). 

During embryonic development, the pleiotropic effect of CXCL12, mostly conducted via its 

chemotactic guidance properties, has been demonstrated in hematopoiesis (Nagasawa et al. 

1996; Zou et al. 1998), angiogenesis (Salcedo et al., 1999; Salvucci et al., 2002) and neural 

crest cell (Escot et al. 2013; 2016), neuron (Liapi et al., 2007; Lysko et al., 2011) or 
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primordial germ cell migration (Stebler et al., 2004). Biological functions of CXCL14 during 

development remain more elusive but it is involved in the patterning of the neurovascular 

network in the eye of chick embryos (Ojeda et al., 2017) and it has been shown to possess 

chemoattractant capacities, mostly on immune cells (Cao et al., 2013). CXCL12 can signal 

through the classical CXCR4 and atypical CXCR7 G-protein coupled receptors (Puchert and 

Engele, 2014). While CXCR4 mediates classical G-protein-related intracellular signals 

(Pozzobon et al., 2016), CXCR7 transduces ß-arrestin-dependent signallings (Miao et al. 

2007; Wang et al. 2008). To date, no signalling receptor has been identified for CXCL14, 

however it is known that CXCL14 is able to bind to CXCR4 in order to modulate 

CXCL12/CXCR4 axis (Tanegashima et al. 2013). 

Both CXCL12 and CXCL14 have been shown to be involved in myogenesis. CXCL12, 

emanating from the limb mesenchyme, is implicated in the oriented migration of muscle 

progenitors expressing CXCR4 (Vasyutina et al., 2005). Contradictory results emanate from 

in vitro studies, which have shown that CXCL12 can inhibit (Hunger et al., 2012) or enhance 

myogenic differentiation (Melchionna et al., 2010; Odemis et al., 2007) acting on CXCR4. An 

vitro study has demonstrated the benefic effect of CXCL12/CXCR7 axis on myogenic 

differentiation (Hunger et al., 2012). The role of CXCL14 during myogenesis has been poorly 

investigated but previous studies performed in vitro characterized CXCL14 as an inhibitor of 

myogenic differentiation (Ge et al., 2013; Waldemer-Streyer et al., 2017). During chick and 

mouse embryonic development, CXCL12 and CXCL14 have been shown also to be expressed 

in limb ICT and MCT (García-Andreś and Torres, 2010; Gordon et al., 2011; Rehimi et al., 

2008; Vasyutina et al., 2005). Furthermore, we have previously demonstrated that the distinct 

expression of CXCL12 and CXCL14 chemokines in limb CT regulates the expression of 

specific CT markers. CXCL12 enhances the expression of OSR genes and COL3A1, a major 

collagen subtype of the ICT, while CXCL14 regulates the expression of the tendon marker 

SCX (Nassari et al., under review). Taken together, these observations suggest that CXCL12 

and CXCL14 might be secreted signals emanating from the dense CT, which contribute to 

limb muscle morphogenesis. 

In this study, we have investigated the role of CXCL12 and CXCL14 as non-cell autonomous 

signals arising from the dense CT cells and acting on myogenic cells. We show that, during 

chick limb myogenesis, CXCR7 receptor progressively replaces CXCR4 expression in muscle 

progenitors to be finally restricted to the tips of muscle fibers. Overexpression of CXCL12 

leads to defect in muscle morphogenesis via the activation of ß1integrins at the myotendinous 

junction, while overexpression of CXCR7 results in enhanced myogenesis and muscle cell 
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fusion. We propose a mechanism by which a balance between CXCL12 and CXCR7 

signalling regulates the differentiation of ICT and muscle during chick limb myogenesis. 

Finally, we provide evidence that CXCL14 is a paracrine signal emanating from dense CT 

that negatively regulates myogenic differentiation. 
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B. Results 

 

 CXCR7, a receptor for CXCL12 chemokine, is expressed in myogenic cells 

The expression pattern of the CXCL12 chemokine and its receptors, CXCR4 and CXCR7, 

was analysed during limb muscle development of chick embryos by in situ hybridization and 

immunostaining. PAX7 and MF20 antibodies were used to visualize progenitor and 

differentiated muscle cells, respectively. At E4, CXCR4 was strongly expressed in the 

vicinity of the mesenchymal CXCL12 expressing region (Fig. 1A, B), in scattered cells which 

delineate the nascent limb vasculature and at a lower level in the forming dorsal and ventral 

muscle masses of the limb (Fig. 1B), as already described (Vasyutina et al., 2005). At this 

stage, CXCR7 also exhibited a complementary expression pattern with CXCL12, the receptor 

being expressed in developing cartilage elements and in restricted regions of the limb, 

corresponding to muscle masses (Fig. 1C). Simultaneous detection of both receptors in this 

region revealed that some muscle cells coexpressed CXCR4 and CXCR7 receptors (Fig. 1D-

F), highlighting a putative switch between the two CXCL12 receptors in muscle cells. 

Simultaneous detection of CXCR7 with PAX7 and MF20 antibodies at E5 revealed that 

CXCR7 is expressed in muscle cells, both in PAX7-positive progenitors and MF20 muscle 

differentiated cells (Fig. 1G-L). Revelation of MEP21 antibody, which specifically stained 

endothelial cells, underlined the strong expression of CXCR4 in limb vessels (Fig. 1M-O), 

while CXCR4 expression was progressively downregulated in muscle cells, as assessed by the 

simultaneous revelation of MF20 antibody (Fig. 1N-P). At E10, CXCL12 expression was 

detected in irregular connective tissue (ICT) both surrounding and into the muscles (Fig. 1Q, 

S), while CXCR7 expression was similar to what was observed at earlier stages, overlapping 

with MF20 staining (Fig. 1R, T, U). However, CXCR7 expression was restricted to muscle 

fibre tips (Fig. 1T, U). At this stage, CXCR4 expression only delineated endothelial cells 

(data not shown). These results show that CXCR7 is expressed in myogenic cells during limb 

development in chick embryos, while CXCL12 is detected in ICT. CXCR7 expression is first 

widespread in muscles, being expressed in progenitor and differentiated muscle cells, to be 

gradually restricted during later stages of development at the tips of muscle fibres. CXCR4 

receptor, first expressed in dorsal and ventral limb muscle masses, is progressively 

downregulated in muscle cells to be only maintained in limb vessels. All together, these data 

suggest that CXCL12/CXCR7 axis may be involved in limb foetal myogenesis and more 

specifically in the process of ICT-mediated muscle development.  
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Figure 1: CXCR7 is expressed in myogenic cells during limb muscle morphogenesis in chick 

embryos. In situ hybridization for CXCL12 (A, Q, S) and CXCR7 (C, D, F, G, H, K, L, R, T, U), 

and immunostaining for CXCR4 (B, E, F, M, N), PAX7 (I, J), MEP21 (O) and MF20 (K, L, P, Q-

U) on transverse (A-F, K-T) and longitudinal (G-J, U) sections of E4 (A-F), E5 (G-P) and E10 (Q-

U) chick embryonic limbs. At E4, CXCL12 is observed in connective tissue and dorsal and ventral 

muscle masses expressed CXCR4. CXCR7 began to be expressed in muscle cells with some of 

them coexpressing both CXCL12 receptors (A-F). From E5, CXCR4 expression is progressively 

downregulated in muscle masses and reminiscent with MEP21 staining, corresponding to 

endothelial cells, while CXCR7 is expressed in PAX7 and MF20-positive cells (G-P). At E10, 

CXCL12 expression delineated irregular and muscle connective tissue and CXCR7 became 

restricted to muscle fibre tips, while CXCR4 is only detected in endothelial cells. Bars correspond 

to 100 µm in A-G, I, K-U; 50 µm in H, J. D, dorsal; V, ventral; p, posterior; v, ventral; p, proximal; 

d, distal. 
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The CXCR7 receptor controls myogenesis in chick foetal myoblasts 

We first investigated the putative function of CXCR7 on myogenesis in vitro, using primary 

cell culture of foetal myoblasts derived from forelimbs of E10 chick embryos. After 5 days of 

culture, in situ hybridization for CXCR7 and immunostaining for MF20 revealed that CXCR7 

was expressed in MF20-positive myotubes (white arrows) and MF20-negative muscle cells 

(black arrows) (Supp. Fig.1). In these in vitro conditions, CXCR7 expression did not appeared 

restricted at the tips of myotubes, as observed in vivo (Fig.1U). Functional assays were 

performed by overexpressing CXCR7 or a dominant-negative form of CXCR7 (dnCXCR7) 

using the avian RCAS retrovirus system. The dnCXCR7 construct lacked the carboxy-

terminus part of the receptor, impairing CXCR7 internalization and signalling, without 

affecting its binding to CXCL12 ligand (Ray et al., 2012). Foetal myoblasts were transfected 

with RCAS/CXCR7, RCAS/dnCXCR7 or empty RCAS as a control and grown into 

proliferation medium. At around 70-80% of confluence, muscle cells were cultured into 

differentiation medium for 5 days  (Fig. 2A, 3A). Overexpression of the dnCXCR7 form in 

chick foetal myoblasts led to a significant decrease in the number of both muscle progenitors 

and myotubes, assessed respectively by PAX7 and MF20 immuno staining (Fig. 2Ba-d). 

Myoblast fusion was also reduced in dn-CXCR7 transfected muscle cell cultures, as shown by 

the quantification of myotubes proportion based on the number of nuclei/myotube and the 

expression of the MYOMAKER gene, known to be required for the process of muscle fusion 

(Landemaine et al., 2014; Luo et al., 2015; Millay et al., 2013) which was decreased in 

muscle cultures overexpressing the dn-CXCR7 construct (Fig. 2Ca-c). These results were 

confirmed by RT-qPCR analysis for expression levels of PAX7, MYOD, MYOG and 

MYOMAKER genes, which were all reduced in muscle cells expressing the dn-CXCR7 

construct (Fig. 2Da). Finally, muscle cell proliferation, visualized by immunostaining of 

Phospho-histoneH3, was not modified in dn-CXCR7 expressing muscle cells (Supp. Fig. 2A). 

When CXCR7 was overexpressed in chick foetal myoblasts, a significant increase in the 

number of myotubes was observed (Fig. 3Ba-c), while the number of PAX7-positive cells 

was not significantly modified (Fig. 3Bd). Conversely to dn-CXCR7 overexpression, 

myoblast fusion quantification and MYOMAKER expression were both increased in CXCR7 

transfected muscle cell cultures (Fig. 3Ca-c), while muscle cell proliferation was not changed 

(Supp. Fig. 2B). In addition, myotubes overexpressing CXCR7 appeared slightly larger than in 

control cultures (Fig. 3Ba, b). RT-qPCR analysis showed that the expression levels of PAX7, 

MYOD, MYOG and MYOMAKER were increased in CXCR7 expressing muscle cells (Fig. 

3Da).  
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Figure 2: Overexpression of a dominant negative form of CXCR7 inhibits myogenic 

differentiation in vitro. (A) Chicken foetal myoblasts (CFM) were transfected with 

RCAS/dnCXCR7 or empty RCAS as a control. Transfected CFM were cultured for 5 days under 

differentiation conditions and analysed. (B) Immunostaining for MF20 (a, b) and quantification of 

myotubes (c) and PAX7-positive cells (d), showing a decrease in both muscle progenitors and 

myotubes upon dnCXCR7 overexpression compared to controls (n=6). (C) In situ hybridization for 

MYOMAKER (a, b) and quantification myotube proportion based on nuclei number per myotube (c) 

illustrating that dnCXCR7 overexpression led to a decrease in muscle cell fusion (n=6). (D) RT-qPCR 

analysis of expression levels of myogenic (a) and connective tissue markers (b) and CXCR4 receptor 

(c) showing that forced expression of dnCXCR7 in muscle cells led to a decrease in the expression of 

PAX7, MYOD, MYOG and MYOMAKER genes (a), while CXCR4 is increased (b) (n=3). 

Quantification and mRNA levels of controls were normalized to 1. P values were analysed by 

unpaired Student’s t-test using Microsoft Excel. *p-value<0.05, **p-value<0.01, ***p-value<0.001. 

Error bars indicate the standard deviation. 
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Figure 3: CXCR7 overexpression promotes myogenic differentiation in vitro. (A) Chicken 

foetal myoblasts (CFM) were transfected with RCAS/CXCR7 or empty RCAS as a control. 

Transfected CFM were cultured for 5 days under differentiation conditions and analysed. (B) 

Immunostaining for MF20 (a, b) and quantification of myotubes (c) showing an increase in 

myotubes upon CXCR7 overexpression compared to controls (n=6). Pax7-positive cells are not 

significantly modified in these conditions (d), (n=6). (C) In situ hybridization for MYOMAKER 

(a, b) and quantification myotube proportion based on nuclei number per myotube (c) illustrating 

that CXCR7 overexpression led to an increase in muscle cell fusion (n=6). (D) RT-qPCR analysis 

of expression levels of myogenic (a) and connective tissue markers (b) and CXCR4 receptor (c) 

showing that forced expression of CXCR7 in muscle cells led to an increase in the expression of 

PAX7, MYOD, MYOG and MYOMAKER genes (a), while CXCR4  expression is decreased (b) 

(n=6). Quantification and mRNA levels of controls were normalized to 1. P values were analysed 

by unpaired Student’s t-test using Microsoft Excel. *p-value<0.05, **p-value<0.01, ***p-

value<0.001. Error bars indicate the standard deviation. 
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As primary cultures of myoblasts are known to contain a small population of fibroblasts and 

that we have previously shown that CXCL12 favors the differentiation of limb irregular 

connective tissue (Nassari et al., submitted), we looked at the expression of connective tissue 

markers in muscle primary cultures transfected by CXCR7 or dn-CXCR7 constructs. 

Overexpression of CXCR7 induced a significant decrease in the expression level of TCF4 and 

Figure 4: CXCL12 does not impact myogenic differentiation in vitro. (A) Chicken 

embryonic fibroblasts (CEF) were transfected with RCAS/CXCL12 or empty RCAS as a 

control and grown for 2 days to produce CXCL12/control concentrated medium, which was 

added to chick myoblasts cultured under differentiation conditions for 5 days. 

Immunostaining for MF20 (Ba, b), quantification of PAX7-positive cells and myotubes (Bc, 

d) and RT-qPCR analysis for myogenic markers and CXCL12 receptors (C) illustrated that 

CXCL12 overexpression did not impact in vitro myogenesis (n=12). Quantification and 

mRNA levels of controls were normalized to 1. P values were analysed by unpaired 

Student’s t-test using Microsoft Excel. *p-value<0.05, **p-value<0.01, ***p-value<0.001. 

Error bars indicate the standard deviation. 
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OSR1 genes (Fig. 3Db), while expression of dn-CXCR7 resulted in a slight increase of the 

expression level of CTGF and OSR1 genes (Fig. 2Db). In addition, muscle cell cultures 

overexpressing dn-CXCR7 also exhibited an increase tendency in the expression of ACTA2 

gene, coding for α-SMA, a well-known marker of activated fibroblasts, although samples 

were quite variable for this gene level (Fig. 2Db). Taken together, these results indicate that 

CXCR7 promotes in vitro myogenesis. Finally, since CXCR4 receptor was expressed in limb 

muscle progenitors (Vasyutina et al., 2005); Fig. 1), we looked at its expression in muscle cell 

cultures overexpressing dn-CXCR7 and CXCR7 constructs. Although we did not detected 

CXCR4 expression in muscle cell culture by immunostaining (data not shown), RT-qPCR 

analysis showed that CXCR4 expression level was increased in muscle cells transfected by 

dn-CXCR7 (Fig. 2Dc) and decreased in muscle cells overexpressing CXCR7 (Fig. 3Dc), 

suggesting that interactions, at least at the RNA level, may exist between expression of both 

receptors during limb development.  

 

CXCL12 chemokine has no effect on in vitro myogenesis 

CXCL12/CXCR4 signalling has been previously shown as implicated in muscle development 

and regeneration (Griffin et al., 2010; Hunger et al., 2012; Melchionna et al., 2010; Odemis et 

al., 2007; Vasyutina et al., 2005). To investigate whether CXCL12 chemokine was involved 

in the effect of CXCR7 on in vitro myogenesis, CXCL12 overexpression was performed in 

muscle cell cultures. Primary cell culture of chick embryonic fibroblasts were transfected with 

RCAS/CXCL12 or empty RCAS as a control, cultured for 2 days and the culture medium was 

collected to prepare CXCL12-concentrated supernatant which was mixed to differentiation 

medium and added to chick foetal myoblasts grown at 70-80% confluency. Primary muscle 

cells were cultured in the presence of CXCL12 for 5 days (Fig. 4A). MF20 and PAX7 

immunostaining did not revealed differences in the number of myotubes and muscle 

progenitors in the presence of CXCL12, compared to controls (Fig. 4Ba-d). These results 

were confirmed by the RT-qPCR analysis of PAX7, MYOD and MYOG expression levels 

which were not modified in myoblasts incubated with CXCL12 supernatant (Fig. 4Ca). 

Additionally, the expression level of connective tissue markers were not grossly modified 

(Fig. 4Cb). Similarly, both CXCR4 and CXCR7 expression remained unchanged (Fig. 4Cc). 

These data show that CXCL12 is not able to directly regulate myogenesis in vitro and suggest 

that the role of CXCR7 on in vitro myogenesis is independent of CXCL12. 
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Figure 5: Impairment of CXCL12/CXCR7 signalling in chick embryonic limb induces 
muscle morphogenesis defects. (A) Pellets of CEF transfected with RCAS/CXCR7, 

RCAS/dnCXCR7 or RCAS/CXCL12 were grafted in the forelimb of E4 chick embryos. 

Infected and control limbs were collected and analysed at E10. 3D reconstructions of whole 

limb muscles (Ba, f; Fa, d) or individual muscles (Bb-e, g-i; C; Fb, c, e, f) immunostained 

with MF20 in dnCXCR7 (B, n=3), CXCR7 (C, n=1) and CXCL12 (F, n=4) infected limbs, 

revealing in all cases differences in muscle patterning and morphogenesis of infected limbs 

compared to controls. Analysis of limb muscle volume upon overexpression of dnCXCR7 (D), 

CXCR7 (E) and CXCL12 (Fg, h), showing a decrease in muscle volume in all cases. Color 

codes in volume data refer to color codes in individual 3D reconstructed muscles.  

 

RCAS/CXCL12, or 

RCAS/CXCR7, or 

RCAS/dnCXCR7 
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CXCL12 chemokine and CXCR7 receptor are involved in limb muscle development of 

chick embryos  

In order to elucidate the possible discrepancy between CXCL12 and CXCR7 myogenic 

phenotypes obtained with gain-and loss-of-function approaches in vitro, the role of CXCL12 

and CXCR7 was investigated in vivo by overexpressing CXCL12, CXCR7 or dn-CXCR7 in 

the forelimbs of chick embryos. Pellets of RCAS/CXCL12, RCAS/CXCR7 or 

RCAS/dnCXCR7 producing chick fibroblasts were grafted into E4 limb buds to allow virus 

spread into dividing cells and induced massive gene overexpression (Fig. 5A; (Esteves de 

Lima et al., 2016; Havis et al., 2016). Embryos were collected 6 days later and muscles from 

grafted and control limbs were first analysed by performing 3D-reconstruction of MF20 

whole-mount immunofluorescence, which allowed to investigate the size, shape and volume 

of limb muscles. Overexpression of RCAS/dn-CXCR7, RCAS/CXCR7 and RCAS/CXCL12 

all resulted in changes in muscle morphogenesis with shorter, smaller or abnormally fused 

forelimb muscles associated with changes in muscle shapes, when compared to controls (Fig. 

5B, C, F). These results were confirmed by analysis of transverse sections of infected and 

control limbs. MF20 immunostaining revealed that overexpression of dnCXCR7 or CXCR7 

led to various phenotypes in infected muscles, which appeared smaller or abnormally cleaved 

when compared to controls (Fig. 6B, C). Measurements of MF20-positive surface areas 

showed that 40% of limb muscles were affected by CXCR7 gain- or loss-of-function. When 

dn-CXCR7 was overexpressed, 80% of affected muscles presented a decrease in surface area 

around 40% while conversely, when CXCR7 was overexpressed, 70% of affected muscles 

presented an increase in their surface area around 40% (Fig. 6Da, b; 6Ea, b). Analysis of 

PAX7-positive progenitors in these experimental conditions showed that 30% of muscles also 

presented changes in the density of PAX7-positive cells after CXCR7 misexpression, with 

90% of dn-CXCR7-expressing muscles presenting an increase in the density of PAX7-positive 

cells of around 30% while 80% of CXCR7-expressing muscles exhibited a decrease in the  

density of PAX7-positive cells of around 40% (Fig. 6Dc, d; 6Ec, d). Taken together, 

theseresults in vivo confirmed those obtained in vitro and revealed that blocking CXCR7 

receptor signalling in muscle cells led to a delay in limb muscle differentiation, as shown by 

the increase in the density of PAX7 progenitor cells and the decrease in MF20-expressing 

muscle area, while increasing the expression of CXCR7 in vivo enhanced limb muscle 

differentiation, assessed by the decrease in the density of PAX7 progenitor cells and the 

increase in MF20-expressing muscle area. 
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 We also investigated the role of CXCR7 associated chemokine CXCL12 on limb myogenesis 

in vivo. Chick embryonic forelimbs were grafted with pellets of RCAS/CXCL12-producing 

fibroblasts at E4 and analysed 6 days later (Fig. 7A). Conversely to what we observed in vitro 

where CXCL12 has no effect on myogenesis, MF20 immunostaining on sections of control 
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and grafted limbs revealed that some muscles were missing, while others were misshaped and 

mispatterned (Fig. 7B). In order to assess specifically the role of CXCL12 as a non-

autonomous signal regulating limb myogenesis, a stable vector containing the chicken 

CXCL12 sequence and the TOMATO gene as a reporter (Bourgeois et al., 2015) was 

electroporated in the forelimb lateral plate, to overexpress CXCL12 specifically in limb CTs. 

Electroporation was performed at E2.5 and electroporated and control limbs were analyzed at 

E8.5 (Fig. 7Ca, b). CXCL12 overexpression was assessed by TOMATO fluorescence (Fig. 

7Cc). MF20 immunostaining on transverse sections of electroporated and control limbs 

revealed that CXCL12 overexpression in limb CT induced changes in size, shape, and 

patterning of 40% of limb muscles (Fig. 7D, E), among which 70% presented a decrease in 

surface area around 30% (Fig. 7Ea; 7Fa). Analysis of PAX7 progenitors showed that 50% of 

muscles in limbs in which CXCL12 was overexpressed in CTs exhibited differences in 

progenitor density with a majority of them presenting a decrease in PAX7-positive cells of 

around 30% (Fig. 7Fb; 7Fb). These data in vivo clearly show that CXCL12, secreted from the 

CT, negatively impacts limb muscle differentiation. Taken together, our results demonstrate 

that CXCL12 and CXCR7 are involved in the process of muscle differentiation and patterning 

during chick limb development.  

 

The chemokine receptor CXCR7 regulates muscle fusion during chick limb myogenesis 

Our in vitro data showed that CXCR7 gain- and loss-of –function in muscle cells led to 

changes in myoblast fusion. In vivo, we observed that modifying CXCR7 activity in chick 

limb deregulated the balance between PAX7-positive muscle progenitors and differentiated 

MF20-positive myotubes. We consequently investigated whether CXCR7 could control 

muscle fusion in vivo by looking at MYOMAKER expression in limb muscles submitted to 

Figure 6: CXCR7 misexpression impacts muscle size, and the number of muscle 
progenitors during chick limb muscle morphogenesis. (A) Scheme illustrating the graft 

experiment of RCAS/dnCXCR7 and RCAS/CXCR7-transfected CEF in forelimbs of chick 

embryos. In situ hybridization for CXCR7 (Ba, b; Ca, b) and immunostaining for MF20 (Bc, 

d; Cc, d) and PAX7 (Be, f; Ce, f) on transverse sections of dnCXCR7 (B) and CXCR7 (C) 

infected and control limbs, showing that CXCR7 misexpression led to defects in limb muscle 

morphogenesis. (D) Distribution of muscle surface areas (a) and PAX7-positive cell density 

(b) in infected muscles upon CXCR7 misexpression. (E) Ratio of muscle surface area (a) and 

PAX7-positive cell number (b) between infected and control muscles. Muscle surface areas 

and proportion of PAX7-positive cells were evaluated on 4 successive sections of 3 different 

muscles at 2 different levels of the limb in 4 embryos in dnCXCR7 and CXCR7-infected 

limbs and compared to their respective control limbs. D, dorsal; V, ventral; p, posterior; v, 

ventral. 
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CXCR7 loss-of-function conditions. In situ hybridization on transverse sections of E5 chick 

limbs showed that MYOMAKER expression delineated dorsal and ventral muscle masses 

expressing PAX7 (Fig.  8Aa-d), while at E10, MYOMAKER is expressed both in PAX7-

positive progenitors and MF20-positive myotubes (Fig. 8Ae-h). Overexpression of RCAS/dn-
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CXCR7 from E4 of development resulted 6 days later in a decrease in the expression of 

MYOMAKER in infected limb (Fig. 8Ba) when compared to control (Fig. 8Bc). These results 

show that CXCR7 receptor, as we observed in vitro, regulates muscle cell fusion during chick 

limb myogenesis. 

 

CXCL12 expression induces the ß1 integrin activation at the myotendinous junction  

Previous studies have shown that binding of CXCL12 to CXCR4 receptor promotes 

chemotaxis and motility via integrin clustering and integrin activation in many cell types 

(Hartmann et al., 2005; Kokovay et al., 2010; Peled et al., 2000; Shimonaka et al., 2004). 

More recently, it has been shown that CXCL12/CXCR4 activation by cancer-associated 

fibroblasts promotes ß1integrin clustering and invasiveness (Izumi et al., 2015). In addition, 

CXCR7 has also been shown to contribute to CXCL12-triggered integrin activation in human 

T lymphocytes (Hartmann et al., 2008). Studies in avian indicate that ß1 integrins are 

involved in myoblast migration (Jaffredo et al., 1988), myoblast fusion and sarcomere 

assembly (Schwander et al., 2003). Skeletal muscle fibers express many integrin subunits in 

developmentally regulated patterns, including ß1 and its partners α1, α3, α4, α5, α6, α7 and 

αv (Gullberg et al., 1998) and genetic studies in mice have shown that α7ß1 is required to 

maintain myotendinous junctions (Mayer et al., 1997). We investigated whether CXCL12 was 

able to regulate integrin activation by overexpressing CXCL12 specifically in limb CTs thanks 

to electroporation of the forelimb lateral plate. Immunostaining for TASC antibody, which 

Figure 7: CXCL12 act as a paracrine signal from the connective tissue acting on 
muscle morphogenesis in limb of chick embryos. (A) RCAS/CXCL12 producing CEF 

were grafted in forelimbs of E4 chick embryos and grafted limbs were analyzed at E10. (B) 

CXCL12 in situ hybridization (a, b, d, e) and MF20 immunostaining (a-f) showing that 

CXCL12 overexpression led to defects in muscle formation. Arrowheads in c, f show 

reduced muscles and arrows show absent muscles in infected limbs. (C) Schematic 

representation of lateral plate electroporation of PT2AL-CMV/CXCL12 performed at E2.5. 

Electroporated limbs, expressing TOMATO, were collected and analysed at E8.5. (D) 

Immunostaining for MF20 (a, b, d, e) and PAX7 (c, f) in electroporated (d-f) and control (a-

c) limbs, showing a muscle mispatterning after CXCL12 overexpression in connective tissue 

(arrows in b, e). (E) Distribution of muscle surface areas (a) and PAX7-positive cell density 

(b) in muscles of PT2AL-CMV/CXCL12 electroporated limbs. (F) Ratio of muscle surface 

area (a) and PAX7-positive cell number (b) between electroporated and control muscles. 

Muscle surface areas and proportion of PAX7-positive cells were evaluated on 4 successive 

sections of 3 different muscles at 2 different levels of the limb in 4 embryos in 

electroporated limbs and compared to their respective control limbs. D, dorsal; V, ventral; p, 

posterior; v, ventral. 
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specifically recognized the activated form of ß1 integrin, on transverse sections of control 

limbs revealed that activated ß1 integrins are mostly expressed at the myotendinous junctions 

(Fig. 9A, E, H, K). CXCL12 overexpression in limb CTs induced an increase in ß1 integrin 

activation in electroporated limbs (Fig. 9C, F, I, L) when compared to controls (Fig. 9A, E, H, 

K). These results demonstrate that CXCL12 positively regulates limb myogenesis via ß1 

integrin activation at the myotendinous junction and suggest that CXCL12 action on muscle 

morphogenesis might mediated via activation of  ß1 integrin. 

 

Inactive form of CXCR7 enhances CXCL12 in connective tissue 

We have previously demonstrated the existence of a cross-regulation between CXCL12 and 

CXCR4 expression during neural crest migration in chick embryo (Escot et al., 2013; Escot et 

al., 2016). For this reason, we investigated whether such a cross-talk between CXCL12 and 

CXCR7 expression could be evidenced during chick limb development. While overexpression 

Figure 8: CXCL12/CXCR7 signalling regulates MYOMAKER expression in vivo. (A) 

Expression pattern of MYOMAKER during limb development of chick embryos. In situ 

hybridization for MYOMAKER (a, b, d-h) and immunostaining for PAX7 (c, d, g) and MF20 

(h) on transverse sections of E5 (a-d) and E10 (e-h) chick forelimbs. (B) Effect of CXCR7 

and on MYOMAKER expression. In situ hybridization for CXCR7 (a, b), MYOMAKER (c, d) 

and MF20 immunostaining (c, d) on transverse sections of CXCR7 (a, b, d) infected limbs. 

MYOMAKER expression is decreased in RCAS/dnCXCR7 infected limbs when compared to 

controls. Bars correspond to 100 µm. D, dorsal; V, ventral; p, posterior; v, ventral. 
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of CXCL12 and CXCR7 did not induced changes in the expression of CXCR7 and CXCL12, 

respectively, overexpression of the dn-CXCR7 construct led to a significant increase in the 

expression of CXCL12 in infected limb when compared to control (Fig. 10Bc, f). 

Interestingly, CXCL12 expression was mostly increased in the ICT surrounding muscles (Fig. 

10Cf). This result shows that CXCR7 contributes to the regulation of CXCL12 transcripts, 

especially in ICT surrounding muscles and suggest that CXCR7 regulates CXCL12 

expression level in ICT, likely to establish the correct balance between limb ICT and muscle 

formation.  

Figure 9: CXCL12 increases ß1 integrin activation at the myotendinous junctions. 

Immunostaining for TASC (A, C, E, F, H, I, K, L) and MF20 (B, D, E, F, H, I, K, L) on 

transverse sections of  PT2AL-CMV/CXCL12 electroporated (C, D, G, I, L, J, M) and 

control (A, B, E, H, K) limbs. Simultaneous detection of TOMATO and DAPI on transverse 

sections of electroporated limbs (G, J, M). ß1 integrin activation is increased at the 

myotendinous junctions near the connective tissue cells overexpressing CXCL12. Bars 

correspond to 100 µm. D, dorsal; V, ventral; p, posterior; v, ventral. 
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CXCL14 inhibits myogenic differentiation in vitro 

CXCL14 chemokine has been previously shown to be expressed in ICT mostly in muscles 

during chick limb development (García-Andreś & Torres 2010; Nassari et al., unpublished 

data) and to positively regulate the expression of the regular CT marker SCX (Nassari et al., 

unpublished data). Although CXCL14 receptor has not been yet identified, it has been 

previously shown that CXCL14 might interact with CXCR4 to modulate CXCL12/CXCR4 

axis (Collins et al., 2017; Tanegashima et al., 2013a). We then hypothesized that similarly 

CXCL14 could bind to the second receptor of CXCL12, CXCR7, to modulate CXCR7 

signalling. Thereby we decided to investigate the possible role of CXCL14 on CT mediated-

limb myogenesis, both in vitro and in vivo. Cultures of primary foetal myoblasts from 

embryonic chick forelimbs were incubated with CXCL14-concentrated supernatant produced 

by chick primary fibroblasts transfected with a RCAS/CXCL14 vector. At around 70-80% of 

confluence, muscle cells were cultured into differentiation medium for 5 days (Fig. 11A). 

MF20 immunostaining showed that CXCL14 dramatically inhibits in vitro myogenesis. 

Figure 10: CXCR7 dominant negative form enhances CXCL12 expression in 

connective tissue surrounding muscles. (A) RCAS/dnCXCR7 producing CEF were 

grafted in limbs of E4 chick embryos and grafted and control limbs were analysed at E10. 

(B) In situ hybridization for CXCR7 (a, b, d, e) and CXCL12 (c, f) and MF20 

immunostaining (a, b, d, e) on transverse sections of RCAS/dnCXCR7 infected (d-f) and 

control limbs (a-c). Overexpression of dn-CXCR7 induced an increase in CXCL12 

expression in muscle surrounding connective tissue. Bars: 100 µm in Ba-f. D, dorsal; V, 

ventral; p, posterior; v, ventral. 
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Muscle cell cultures incubated with CXCL14-concentrated supernatant presented around 40% 

less myotubes than control cultures (Fig. 11Ba-c). In addition, a 60% decrease in the number 

of PAX7-positive progenitors was observed in CXCL14-treated cultures when compared to 

controls (Fig. 11Bd). These data were confirmed by the analysis of the RNA levels of PAX7, 

MYOD and MYOG myogenic markers, which were significantly decreased in the presence of 

CXCL14 (Fig. 11Ca). Conversely, analysis of muscle fusion index did not show any 
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differences between CXCL14-treated myoblasts and controls (data not shown). Although 

myogenic differentiation was severely decreased immunostaining for Phospho-histoneH3 and 

Caspase3 revealed no changes in myoblast proliferation (Supp. Fig. 2D) and cell death (data 

not shown). As we have previously observed that CXCL14 positively regulates the expression 

of CT markers (Nassari et al., unpublished data), we analysed by RT-qPCR CT markers 

expression in muscle cell cultures incubated with CXCL14-concentrated supernatant, which 

revealed no change in SCX expression level (data not shown) and a significant increase in the 

expression level of TCF4 and ACTA2, two markers of activated fibroblasts (Fig. 11Da). 

Analysis of CXCR4 and CXCR7 expression level in muscle cells treated with CXCL14 

showed that CXCR4 level was decreased, while CXCR7 expression was not changed (Fig. 

11Db). These results show that in vitro CXCL14 inhibits muscle cell differentiation and 

suggest that the chemokine favour phenoconversion of myogenic cells into CT cells, and 

probably other cell types. 

 

CXCL14 controls muscle morphogenesis in embryonic chick limb  

We next analysed the role of CXCL14 on limb muscle morphogenesis in vivo, by 

electroporating a stable vector containing the chicken sequence of CXCL14 in forelimb 

mesodermal lateral plate, in order to specifically overexpress CXCL14 in limb CTs. Chick 

embryos were electroporated at E2.5 and collected 6 days later. CXCL14 expression was 

visualized by TOMATO fluorescence. Whole-mount MF20 immunostaining of electroporated 

and control limbs revealed that CXCL14 overexpression led to abnormal limb muscle 

morphogenesis with extra muscles (arrows) or shorter/smaller muscles (arroheads) (Fig. 12A). 

Figure 11: CXCL14 inhibits myogenic differentiation in vitro. (A) Chicken CEF 

producing RCAS/CXCL14 or empty RCAS as a control were cultured for 2 days to produce 

CXCL14/control-concentrated medium, which was added to chick myoblasts cultured under 

differentiation conditions for 5 days. (B) MF20 immunostaining (a, b) and quantification of 

myotubes (c) and PAX7-positive cells (d) revealed that CXCL14 inhibits in vitro 

myogenesis. (C) RT-qPCR analysis for myogenic markers (a) revealed that CXCL14 

overexpression induced a decrease in the expression of PAX7, MYOD and MYOG, while 

quantification of muscle fusion index did not show any change (b). (D) RT-qPCR analysis 

for connective tissue markers (a) and CXCR4 and CXCR7 receptors (b) indicated an 

increase in the expression level of TCF4 and ACTA2 genes and a decrease in the expression 

of CXCR4 upon CXCL14 overexpression. Quantification and mRNA levels of controls were 

normalized to 1. P values were analysed by unpaired Student’s t-test using Microsoft Excel. 

*p-value<0.05, **p-value<0.01, ***p-value<0.001. Error bars indicate the standard 

deviation. 
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Analysis of transverse sections of electroporated limbs showed a profound muscle 

mispatterning, with some muscles missplitted or misshaped (Fig. 12B). Quantitative analysis 

of muscle surface areas revealed that 75% of muscles were affected by CXCL14 

overexpression, among which 70% presented a decreased surface area of almost 50% (Fig. 

12Ca; 12Da). Immunostaining for PAX7 showed that muscle progenitor density was affected 

in 70% of muscles, among which 70% exhibited a decrease in PAX7-positive cell density of 
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around 40% (Fig. 12Cb; 12Db). Taken together, these results demonstrate that CXCL14, 

secreted from the limb ICT negatively regulates muscle morphogenesis, revealing a paracrine 

function for CXCL14 during limb foetal myogenesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: CXCL14 regulates muscle morphogenesis in chick embryonic limbs. (A) 

Whole-mount MF20 immunostaining in PT2AL-CMV/CXCL14 electroporated (b, d) and 

control (a, c) limbs, showing the mispatterning of limb muscles after CXCL14 

overexpression in the connective tissue. Arrowheads show reduced muscles and arrows 

show additional muscles. (B) MF20 immunostaining on transverse sections of PT2AL-

CMV/CXCL14 electroporated (d-f) and control (a-c) limbs. Some limb muscles appeared 

fused and mispatterned (arrows in b, e). (C) Distribution of muscle surface areas (a) and 

PAX7-positive cell density (b) in muscles of PT2AL-CMV/CXCL14 electroporated limbs. 

(D) Ratio of muscle surface area (a) and PAX7-positive cell number (b) between 

electroporated and control muscles. A decrease in muscle size and progenitors numbers is 

observed in electroporated limbs. Muscle surface areas and proportion of PAX7-positive 

cells were evaluated on 4 successive sections of 3 different muscles at 2 different levels of 

the limb in 4 embryos in electroporated limbs and compared to their respective control 

limbs. Bars: 100 µm in Aa-d, Ba-f. D, dorsal; V, ventral; p, posterior; v, ventral. 
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Supplementary figures 

 

 

 

 

 

 

 

 

Supplementary figure 1: CXCR7 is expressed in primary chick foetal myoblast 

cultures. In situ hybridization for CXCR7 (A, C), and immunostaining for MF20 (B, C), 

showing that CXCR7 is expressed in muscle cells. 

 

Supplementary figure 2: Cell proliferation is not altered in primary cultures of chick 

muscle cells overexpressing dnCXCR7 or CXCR7, or incubated with CXCL12 or 

CXCL14 concentrated supernatant. (A, B, C, D) Quantification of Phosphohistone3-

positive cells in chick foetal myoblasts transfected with RCAS/dnCXCR7 (A), 

RCAS/CXCR7 (B), or incubated with CXCL12- (C) or CXCL14-concentrated (D) 

supernatant, showing that misregulation of CXCL12 or CXCL14 signalling did not induce 

changes in myoblast proliferation. Error bars indicate the standard deviation. 
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Supplemental results  
III. Odd-Skipped-related gene 2 is expressed in myogenic cells during chick 

development 
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Odd-Skipped-related gene 2 is expressed in myogenic cells during chick 

development 

 

A. Introduction 

The Odd-Skipped genes were first described in Drosophila. They were identified as pair-rule 

genes in a screen for gene mutations affecting body segmentation (Coulter and Wieschaus, 

1988; Nüsslein-Volhard and Wieschaus, 1980). In mammalian, two Odd-Skipped related 

genes have been characterized: Osr1 and Osr2, which both encode zinc fingers transcription 

factors (Lan et al., 2001; So and Danielian, 1999).  

During mouse embryonic development, the mammalian homolog Odd-Skipped related 2 

(Osr2) is not detected during development until embryonic day (E9.25), (Lan et al., 2001). In 

situ hybridization assays in mouse embryos showed that Osr2 expression is first observed in 

the mesonephros, the embryonic structure giving rise to the kidney (Lan et al., 2001) and then 

detected in the mesenchyme surrounding mesonephros ducts (Lan et al., 2001). At E10, Osr2 

expression is also observed in the mesenchyme of some specific mandibular regions, as well 

as in the mesenchyme of forelimbs and hindlimbs (Lan et al., 2001). Finally, Osr2 expression 

is also detected in tissues surrounding the developing eyes (Lan et al., 2001). Such Osr2 

expression pattern during mouse embryonic development allowed to define Osr2 as a specific 

marker for mesenchymal tissues. Additionally, RT-qPCR analysis performed in mouse 

embryos allowed characterization of tissue distribution of Osr2, highlighting a high 

expression level in the uterus and at lower level in the testes, small intestine and prostate. 

Osr2 expression was also found in eyes, placenta, lung, thymus, lymph node, and stomach at 

all embryonic stages from E7.5 to E17.5 (Kawai et al., 2013).  

In chick embryos, OSR2 expression is quite similar to what has been observed in mouse 

embryos, mostly detected in mesenchymal cells. OSR2 appears to be expressed in the 

developing mesonephros, in the branchial arches giving rise to the mandibular craniofacial 

regions and in the mesenchyme of developing limbs (Stricker et al., 2006; Stricker et al., 

2012). During embryonic development, mesenchymal progenitors give rise to different cell 

linages among which the connective tissue (CT). During development, different types of 

connective tissue are formed: the irregular connective tissue (ICT) and the specialized 

connective tissue. The ICT corresponds to unspecialized loose CT while the specialized CT 

characterizes dense regular CT corresponding to tendons, ligaments, cartilage and bones. 

Interestingly, it has been demonstrated that OSR2 favours the differentiation of mesenchymal 
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progenitor cells towards an ICT fate at the expense of other cell types such as muscle or 

specialized CT (Stricker et al., 2012). Mutant mice carrying a deletion of the Osr2 coding 

region are lethal at perinatal stages (Lan et al., 2004), demonstrating an important role for 

Osr2 during development. Consistent with the regions of Osr2 expression in mouse embryos, 

Osr2
-/- mutants present severe defects in craniofacial development, resulting in open eyelid, 

cleft palate and thickened tympanic ring (Lan et al., 2004). A reduction in cell proliferation in 

the regions of palate and eyelid formation was observed in Osr2
-/- mice, indicating a main 

function for Osr2 in growth regulation of these structures (Gao et al., 2009; Lan et al., 2004). 

Accordingly, microarray assays revealed Osr2 as a positive regulator of cell cycle progression 

and cell proliferation during mouse development (Kawai et al., 2010). Targeting deletion of 

Osr2 in mice did not affect the development of other tissues that normally express Osr2, 

including the developing kidney, the proximal mandible or the limbs (Gao et al., 2009; Lan et 

al., 2004; Tena et al., 2007), probably as a consequence of the functional redundancy between 

Osr1 and Osr2 genes in these structures (Gao et al., 2009; Gao et al., 2011).  

In this study, we report the expression pattern of OSR2 during chick limb and head 

development. We show, as previously described, that OSR2 is specifically expressed in 

muscle ICT during limb and head development, but demonstrate that OSR2 is also expressed 

in differentiated muscle cells in limb and head muscles during chick development. We 

confirm the expression of OSR2 in muscle cells differentiated in vitro from myoblasts isolated 

from chick limbs. This study highlights a new site of OSR2 expression in developing chick 

embryos that has never been observed before (Lan et al., 2001; Lan et al., 2004; Stricker et 

al., 2006; Stricker et al., 2012) and could bring new insight for Osr2 function during 

development. 
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B. Results and discussion 
 
OSR2 has been described as being expressed in developing limbs of chick and mouse 

embryos (Lan et al., 2001; Lan et al., 2004; Stricker et al., 2006; Stricker et al., 2012). It has 

been reported that OSR2 is expressed in a subpopulation of CT in the developing chick limbs, 

while being excluded from myogenic cells (Stricker et al., 2006; Stricker et al., 2012). In 

order to better characterize the sites of OSR2 expression during chick limb development, we 

performed in situ hybridisation to limb sections at different developmental stages. Limb 

myogenic cells originate from the somites and muscle progenitors migrate from from the 

Figure 1: OSR2 is expressed in 

differentiated muscle cells in chick 

limbs. (A,B) In situ hybridization on 

adjacent longitudinal limb sections 

of E3 chick embryos with OSR2 (A) 

and MYOR (B) probes. OSR2 was 

not detected in migrating myogenic 

cells labelled with MYOR but was 

observed in mesonephros (arrow in 

A). Transverse limb sections of E5 

(C,D), E7 (E,F) and E10 (G,H) chick 

embryos hybridized with OSR2 

probe (purple staining) and 

immunostained for myosins using 

the MF20 antibody (brown staining). 

(D,F,H) represent high 

magnifications of muscle regions of 

(C,E,G), respectively. (D,F,H) 

Arrows indicate OSR2 expression in 

MF20-positive cells, while 

arrowheads point OSR2-positive 

cells in MF20-negative cells. OSR2 

is mainly expressed in ICT and 

muscle ICT but also in differentiated 

muscle fibers. r, radius, u, ulna. 
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hypaxial lips of the somites towards the limb buds from embryonic day 2.5 (E2.5), 

(Chevallier et al., 1977).  Migrating muscle progenitors assessed by MYOR expression did not 

expressed OSR2 (Fig. 1A, B). At E3, no expression of OSR2 was observed in chick limb buds 

(Fig. 1A) but OSR2 was expressed in mesonephros as previously described (Stricker et al., 

2006); Fig. 1A). This shows that OSR2 is neither expressed in muscle progenitors nor in limb 

ICT at E4 and consistent with the previous study showing that OSR2 is not expressed in 

Figure 2: OSR2 is expressed in differentiated muscle cells in chick head. (A-D) In situ 

hybridization on adjacent transversal head sections of E4 chick embryos with OSR2 (A, C) and MYOR 

(B, D) probes. (C-D) represent high magnifications of branchial arch region of (A-B), respectively. 

OSR2 was not detected in myogenic cells labelled with MYOR but was observed in the ICT of the third 

branchial arch (ba3). Sagittal head sections of E7 chick embryos (E-M) were hybridized with OSR2 

probe (purple staining) (E, G, H, J, L, M), and then immunostained for myosins using the MF20 

antibody (red staining) (F, G, I, J, L, M). (H-M) represent high magnifications of mandibular muscle 

regions in (E-G). (E-M) Arrows indicate OSR2 expression in MF20-positive cells, while arrowheads 

point OSR2-positive cells in MF20-negative cells. OSR2 was detected in both ICT and differentiated 

muscle cells. nt, neural tube, ba3, 3rd branchial arch, hb, hind brain, v, vertebra. 
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developing chick limb bud before E4 (Stricker et al., 2006). From E5, OSR2 was strongly 

expressed in dorsal and ventral limb muscle masses, revealed by MYOD expression (Fig. 2C, 

D), in the ICT localized between the two cartilage elements, ulna and radius, in the zeugopod 

limb regions and in the ICT close to the dermis (Fig. 1E). This pattern of expression is 

consistent with the sites of Osr2 expression previously described (Lan et al., 2001; Stricker et 

al., 2006; Stricker et al., 2012). At the level of muscle masses at E6, OSR2 expression was not 

only detected in muscle ICT (Fig. 1F, arrowheads), but also in Myosin-positive cells (Fig. 1F, 

arrows). At later stages of limb development, OSR2 expression was mostly expressed in 

muscle areas (Fig. 1G-J), but also in dermis at E10 (Fig. 1I, arrow). Within muscles, OSR2 

was expressed in muscle ICT, characterized by the absence of myosin expression (Fig. 1H, J, 

arrowheads) but also, as previously observed at E6, in muscle fibres (Fig. 1H, J, arrows). The 

same pattern of expression was observed during hindlimb development (data not shown). 

Taken together, these results show that while OSR2 expression is widely spread in the ICT at 

early stages of chick limb development, it progressively becomes restricted to muscle ICT at 

later stages and is additionnally expressed in differentiated muscle fibres. Such an expression 

in chick muscle cells has never been observed (Stricker et al., 2012). During craniofacial 

development of mouse embryo, Osr2 expression is restricted to specific mesenchymal tissues, 

Figure 3: OSR2 is expressed in differentiated muscle cells in vitro. (A-F) Chick foetal 

myoblasts cultured in differentiation conditions were hybridized with OSR2 probe (black 

staining) and immunostained for myosin using the MF20 antibody (green staining). 

(D,E,F) represent high magnifications of the squared regions in (A,B,C) respectively. 

Arrows indicate OSR2 expression in MF20-positive cells. 
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including the mesenchyme of the developing palatal shelves and the tongue (Lan et al., 2001) 

and a key role for OSR2 in the development of specific craniofacial regions has been 

demonstrated (Lan et al., 2004). In chick embryo, OSR2 has been described to be restricted to 

mesenchymal cells of branchial arches from E3 (Stricker et al., 2006). In order to assess 

whether OSR2 was also expressed in cranial muscles during chick craniofacial development, 

we performed in situ hybridisation to head sections of chick embryos at different 

developmental stages. At E4, OSR2 was detected in mesenchymal cells of branchial arches 

(Fig. 2A, C), as already described (Stricker et al., 2006). At this stage, OSR2 expression did 

not overlapped with MYOR expression revealing muscle progenitor cells, showing that OSR2 

expression is restricted to ICT-derived mesenchymal cells (Fig. 2A-D). At E7, OSR2 was 

barely expressed in the ICT surrounding muscles, while it was strongly expressed in the 

muscle regions (Fig. 2E-G). As previously described ((Lan et al., 2001; Stricker et al., 2006)), 

OSR2 expression was observed in the muscle ICT at the level of head muscle masses (Fig. 

2H, J, K, M, arrowheads), but also in Myosin-positive cells of muscles (Fig. 2H-M, arrows). 

Consequently, our results demonstrate that OSR2 expression in differentiated muscle cells is 

not restricted to limb muscles but is also observed in developing chick craniofacial muscles, 

an expression pattern not described previously (Stricker et al., 2006). Finally, to confirm 

OSR2 expression in muscle fibres, we analyzed OSR2 expression in primary cell cultures of 

chick limb foetal myoblasts. Chicken foetal myoblasts cultures were maintained in 

differentiation conditions for 2 days, and OSR2 expression was evaluated by in situ 

hybridization (Fig. 2B, E). MF20 immunostaining for MF20 (Fig. 2A, D) demonstrated that 

in in vitro conditions, OSR2 was expressed in differentiated muscle fibers (Fig. 2B-F). These 

data confirmed that OSR2 is indeed expressed in chick differentiated muscle cells. 

 

Previous studies highlighted OSR2 expression as being restricted to the ICT of developing 

limb and head of chick embryos (Stricker et al., 2006; Stricker et al., 2012). In this study, we 

report a new location of OSR2 expression during chick limb and craniofacial development, 

demonstrating that OSR2 is expressed in muscle fibres, in addition to its expression in ICT 

and muscle ICT during chick limb and craniofacial development. 
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I. CXCL12 and CXCL14 chemokines differentially regulate connective 

tissue markers during limb development 

 

During embryonic development, CT that is primarily composed of fibroblasts, contribute to 

tissue remodelling (Yusuf et al., 2013). The formation of CT results from the proliferation of 

fibroblasts, which produce an important amount of ECM. It is then considered that fibroblasts 

at the origin of CT during embryonic morphogenesis are constantly activated (Yusuf et al., 

2013). Conversely, in adult, CT fibroblasts are mostly quiescent but can be activated under 

specific stimuli, mostly pathological, which lead to the restoration of proliferation, production 

of extracellular matrix and growth factors, and migration capacity. This uncontrolled 

activation of fibroblasts in adult results in fibrosis. Therefore, understanding fibroblast 

peculiarities and their regulation during embryonic CT formation is an important issue to 

decipher the mechanisms underlying the fibrosis process. Interestingly, chemokines have been 

shown to be central mediators of fibrosis initiation and progression, among which CXCL12 

and CXCL14 have been shown to promote fibrosis (Emblom-Callahan et al., 2010; Ishii et al., 

2013; Jia et al., 2017; Lin et al., 2014b).  

One part of my PhD work has been to investigate the role of CXCL12 and CXCL14 

chemokines in the formation of CT during chick limb development. Our results show that 

both chemokines are expressed in dense CT during chick limb development and positively 

regulate the expression of different CT-associated markers in chick limb fibroblasts. In 

addition, we reveal that the BMP anti-fibrotic factor inhibits CXCL12 and CXCL14 

expression in limb CT during development and that mechanical forces, which are essential for 

the progression of fibrosis (Carver and Goldsmith, 2013), positively regulate the expression of 

CXCL12, CXCL14 and CT-associated genes. 

 

A. The CXCL12 and CXCL14 expression domains define distinct subpopulations of dense 

CT. 

Although, the expression of CXCL12 and CXCL14 has been previously studied in limbs 

(García-Andreś and Torres, 2010; Gordon et al., 2011; Rehimi et al., 2008; Vasyutina et al., 

2005), we show that both chemokines are restricted to specific subpopulations of chick limb 

dense CT, as evidenced by their overlapping expression with that of specific CT-

subpopulation markers. We reveal that CXCL12 displays expression in non-muscle and 

muscle CT, colocalizing with OSR1 and OSR2 expression, respectively. CXCL14 expression 
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is detected in SCX expression domains, which delineate tendon CT, but also in regions 

surrounding cartilage elements, which likely correspond to ligaments. In addition, CXCL14 

expression is also observed in muscle irregular CT of specific muscles, mostly ventrally. The 

different expression patterns of both chemokines suggest that CXCL12 and CXCL14 are 

involved in the formation of distinct dense CT subpopulations (Nassari et al., 2017 

submitted). 

 

B. CXCL12 promotes irregular CT formation during chick limb development  

Our results show that CXCL12 chemokine activates the expression of irregular CT markers 

OSR1 and COL3A1 in chick limb fibroblasts in vitro and in vivo, thus characterizing CXCL12 

as a factor contributing to the differentiation of irregular CT during chick limb development. 

These results are coherent with the effect of CXCL12 in the progression of fibrosis in adult 

(Emblom-Callahan et al., 2010; Ishii et al., 2013; Jia et al., 2017; Lin et al., 2014b). Indeed, 

CXCL12 expression is increased in different human fibrotic pathological situations, such as 

idiopathic pulmonary fibrosis (Tan et al., 2017) and chronic pancreatitis (Neesse and 

Ellenrieder, 2016). Furthermore, in organizing pneumonia lesions, characteristic of fibrotic 

pulmonary diseases, Cxcl12 upregulation is associated with an increase of Col3a1, in both 

human and mouse transgenic models of this pathology (Izykowski et al., 2016). 

In the context of fibrosis, CXCL12 effect is mediated through its CXCR4 receptor. In human 

lung and prostate fibroblasts, CXCL12 has been shown to induce, via CXCR4, the expression 

of α-SMA, the key marker of activated fibroblasts (Lin et al., 2014b; Rodriguez-Nieves et al., 

2016). From E6, CXCR4 expression is mainly detected in endothelial cells of developing 

chick limbs, therefore suggesting that the CXCL12 effect on irregular CT differentiation is 

not mediated through CXCR4, but through its second receptor CXCR7. 

We demonstrate that CXCL12 expression induces the expression of irregular CT markers 

however it is not clear whether this activation is mediated via direct interaction. Stricker et al. 

(2012) have previously demonstrated that OSR1 overexpression in mesenchymal progenitors 

led to an increase in the expression of COL3A1 (Stricker et al., 2012), indicating that 

CXCL12 might activate COL3A1, through the induction of OSR1. However, COL3A1 appears 

to be ectopically expressed both in muscle and non-muscle irregular CT after CXCL12 

overexpression, while the increase in OSR1 expression is mostly observed in non-muscle 

irregular CT. One putative intermediate candidate for COL3A1 regulation by CXCL12 could 

be the fibrotic factor PDGFB, since CXCL12 increases PDGFB transcription in human bone 

marrow cells (Hamdan et al., 2011) and PDGFB is known to activate collagen transcription in 
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chick limbs (Tozer et al., 2007).  

Finally, our data reveal that CXCL12 activates the irregular CT marker OSR2 in vitro. 

However, no increase in OSR2 expression is observed after overexpression of CXCL12 in 

vivo. Since we demonstrate that OSR2 is also strongly expressed in myogenic cells in chick 

limb embryos (supplemental data), in addition to be present in ICT, we cannot exclude that it 

might hide a putative increase of OSR2 in muscle irregular CT expression after CXCL12 

overexpression in vivo. 

 

C. CXCL14 is involved in regular CT differentiation during chick limb development  

Previous works have shown that CXCL14 is involved in fibrosis. CXCL14 expression is 

upregulated in idiopathic pulmonary fibrosis (Jia et al., 2017) and chronic inflammatory 

arthritis (Marinova et al., 2014) and has been shown to stimulate prostate fibroblast 

proliferation and migration (Östman and Augsten, 2009), illustrating a putative role for 

CXCL14 in fibroblast activation. Our data illustrate a role for CXCL14 in the differentiation 

of regular dense CT, as it induces the expression of the regular CT marker SCX in chick 

embryonic fibroblasts, without affecting the expression of irregular CT markers. Interestingly, 

it has been shown recently that SCX controls fibroblast activation in heart and could be a 

potent regulator in fibrotic diseases in the cardiovascular system (Bagchi et al., 2016). In 

addition, SCX is activated by the TGF-ß fibrotic factor during chick or mouse limb 

development (Havis et al., 2014; Havis et al., 2016). Those results indicate that CXCL14 

might enhance myofibroblast differentiation rather than dense regular CT differentiation. 

Although in vitro experiments indicate a role for CXCL14 in the regulation of SCX 

expression, in vivo CXCL14 overexpression does not induce an obvious increase in SCX 

expression at tendon and ligament levels. During chick limb development, SCX expression is 

first initiated at E3-3.5 (Edom-Vovard and Duprez, 2004). As ectopic CXCL14 expression in 

limb mesenchyme has been performed at E4, one possibility could be that CXCL14 is only 

required for SCX induction and not involved at later stages of development. In agreement with 

this hypothesis, previous experiments have shown that SCX expression in limb mesenchyme 

is induced at E3.5 by an unidentified factor coming from the limb ectoderm, but that after 

E4.5 this factor is not required for SCX expression (Schweitzer et al., 2001). As CXCL14 is 

expressed in limb ectoderm (our results), one hypothesis is that ectoderm-derived CXCL14 

induces SCX expression in limb mesenchymal cells.  
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D. The BMP anti-fibrotic factor regulates the expression of CXCL12 and CXCL14 

chemokines during chick limb development 

Numerous previous studies have demonstrated the anti-fibrotic effect of BMP signalling 

pathway (Yang et al., 2011). Activation of the BMP signalling pathway antagonizes the 

TGFβ-induced fibrosis and represses the expression of Acta2 gene, coding for α-SMA, as 

well as the expression of the Ctgf gene, coding for a fibrotic factor (Weiskirchen, 2009; Yang 

et al., 2011). During chick limb development, previous data have shown that BMP4 inhibits 

the expression of the irregular CT gene TCF4 (Bonafede et al., 2006). We show here that 

BMP4 forced-expression induces a decrease in CXCL12 and CXCL14 expression, associated 

with inhibition of both OSR1 and OSR2 genes. Conversely, inhibition of BMP signalling by 

overexpression of its antagonist NOGGIN increases CXCL12, CXCL14 and OSR1 expression. 

As we also show that CXCL12 positively regulates OSR1, one hypothesis is that changes in 

OSR1 expression is a consequence of CXCL12 down-regulation. We also show that CXCL14 

induces SCX expression. It has been previously demonstrated that SCX expression is inhibited 

by BMP and induced by NOGGIN in chick limbs (Schweitzer et al., 2001). Consequently, we 

can hypothesized that SCX down-regulation in the context of BMP4 overexpression results 

from changes in CXCL14 expression. These results are in agreement with the anti-fibrotic 

effect of BMP pathway in adult and reveal that BMP signalling inhibits CT differentiation 

during development. This also indicates a pivotal role for CXCL12 and CXCL14 chemokines 

as downstream targets of BMP4 signalling pathway to regulate CT markers during chick limb 

development. In bone marrow stromal cell lines, SMAD-binding elements have been 

identified in the Cxcl12 promoter and BMP4 has been shown to regulate Cxcl12 expression, 

as treatment of stromal cells with the BMP antagonist Noggin significantly increased Cxcl12 

levels (Khurana et al., 2014). These data show that BMP signalling elements interact directly 

with CXCL12, favoring a central role of CXCL12 as a downstream target of the BMP4 

pathway in fibroblastic cells. In chick embryonic limbs, localized BMP signalling restricts the 

ectodermal signal which induces SCX expression (Schweitzer et al., 2001). As previously 

hypothesized, CXCL14 is a good candidate for the ectodermal signal inducing SCX 

expression in chick limbs. SCX expression might be restricted in limb mesenchyme via the 

inhibiting effect of BMP signalling on CXCL14. In Xenopus, it has been demonstrated that 

CXCL14 ectodermal expression is partially regulated by BMP signalling. Indeed, Noggin 

overexpression associated with Wnt pathway induction led to an increase of Cxcl14 

expression in the ectoderm (Park et al., 2009). Interestingly, it has been shown that 

ectodermal Wnts contribute to distal tendon induction (Zhu et al., 2012). Moreover, the Wnt 
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cascade is also involved in fibroblast activation during fibrosis (Castellone and Laukkanen, 

2017). Therefore, it would be then interesting to test the potential role of Wnt signalling 

pathway in the regulation of CXCL14 expression during chick limb development.  

FGF pathway, as BMP signalling, has been described as being implicated in fibrosis (Kim et 

al., 2016; Shimbori et al., 2016). However, depending on FGF members and responding cells 

involved, FGF effect led to activation or inhibition of the fibrosis process (Kim et al., 2016). 

During embryonic development, FGF positively regulates the expression of different CT 

markers, including SCX and COL3A1 (Edom-Vovard et al., 2002; Havis et al., 2016; Lejard et 

al., 2011). Although we observe that FGF inhibits OSR1 and OSR2 expression during chick 

limb development, the expression levels of CXCL14 and CXCL12 are not modified. Then, it is 

likely that OSR genes downregulation observed after FGF4 bead grafts is independent of 

CXCL12 and CXCL14 chemokines. However, since OSR1 and OSR2 overexpression inhibits 

SCX expression in chick limb cells (Stricker et al., 2012), these results suggest that SCX and 

OSR genes mutually repress each other in mesenchymal cells during chick limb development. 

 

E. The expression of CXCL12 and CXCL14 chemokines and CT genes is controlled by 

mechanical forces in chick limbs 

Recently, mechanical forces emerged as principal actor in different morphogenesis events 

during embryonic development (Hamada, 2015; Happe and Engler, 2016; Sokol, 2016). In 

chick, muscleless or aneural limbs deprived of muscle activity exhibit reduced SCX 

expression (Edom-Vovard et al., 2002) and embryo immobilisation results in a FGF4-

dependent downregulation of SCX in limbs (Havis et al., 2016). In addition, mechanical 

activity has been also shown to modulate Scx expression and promote the differentiation of 

mesenchymal cells towards tendon CT (Chen et al., 2012; Scott et al., 2011). Similarly, 

mechanical forces have been shown to play a major role in fibrosis progression (Duscher et 

al., 2014). Under mechanical tension, the TGF-β fibrotic signalling is activated (Wells and 

Discher, 2008). Moreover, mechanical tension results in α-SMA expression and increase in 

matrix deposition in multiple tissues (Wells, 2013). Our results provide evidence that 

inhibition of mechanical forces induces decrease in the expression of CXCL12, CXCL14 and 

the associated CT markers OSR1, OSR2, COL3A1, COL1A2, COL6A1 and SCX. Interestingly, 

inhibition of CXCL12 and CXCL14 after immobilization mainly occurrs in muscle CT and 

irregular CT surrounding muscles, while not affecting chemokine expression in cartilage  

(CXCL12) and ectoderm (CXCL14), thus demonstrating that mechanical forces positively 

impact the expression of both chemokines specifically in dense CT. 
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Among the mechanisms involved in the adaptative response of adult muscle to exercise is the 

activation of the fibrotic TGF-ß signalling pathway, which leads to an increase in the 

expression of CTGF and collagen genes in muscle irregular CT (Heinemeier et al., 2007). 

TGF-ß has been shown to control dense regular CT differentiation during limb development 

(Pryce et al., 2009), a mechanism regulated by mechanical activity (Havis et al. 2016). In 

human fibroblasts, CXCL12 induces CTGF expression (Lin et al., 2014b) and TGF-ß has 

been shown to cooperate with CXCL12 in carcinoma-associated fibroblasts to induce α-SMA 

expression (Kojima et al., 2010). Therefore one possibility could be that, downstream of 

mechanical signals, TGF-ß interacts with CXCL12 to regulate irregular CT-associated genes, 

among which CTGF and OSRs, during limb development.  

 

This work demonstrates for the first time that CXCL12 and CXCL14 chemokines 

differentially regulate the expression of specific CT genes (Fig. 1), participating to the 

orchestration of regular and irregular CT differentiation during chick limb development. A 

role for CXCL12 and CXCL14 chemokines in CT differentiation during development is 

completely consistent with their recognised functions in adult fibrosis processes, such as 

chronic fibrotic pathologies (Jia et al., 2017; Marinova et al., 2014; Neesse and Ellenrieder, 

2016; Tan et al., 2017) and cancer-induced fibrosis (Allinen et al., 2004). CXCL12 and 

CXCL14 regulate the expression of CT-associated transcription factors in chick limbs and are 

controlled by the BMP anti-fibrotic factor and muscle mechanical forces (Fig. 1). 

Identification of the unexpected role of CXCL12 and CXCL14 during CT differentiation 

contributes to a better understanding of the fibrosis mechanisms in adult pathological 

conditions. To an extent, study of limb CT development could be used as a new model to 

investigate mechanisms underlying fibrosis formation. 
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Figure 1: CXCL12 and CXCL14 enhance dense CT 

markers expression, and are negatively regulated by BMP4 

while positively regulated by mechanical forces during chick 

limb development. 
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II. The contribution of connective tissue cells to muscle morphogenesis: an 

unexpected role for CXCL12 and CXCL14 signalling pathways  

 

During myogenesis, the intrinsic capacities of muscle progenitors to proliferate and 

differentiate are essential (Buckingham and Rigby, 2014), but adjacent tissues also participate 

in the proper formation of muscles (Ashby et al., 1993; Chevallier and Kieny, 1982; Kardon, 

1998a; Merrifield and Konigsberg, 1987; Robson and Hughes, 1999; Tozer et al., 2007). In 

the past decades, irregular connective tissue (ICT) has been highlighted as an important 

source of signals for muscle development (Chevallier and Kieny, 1982; Kardon, 1998a), 

thanks to the identification of ICT-associated transcription factors (Hasson et al., 2010; 

Kardon et al., 2003; Stricker et al., 2012). However, the molecular mechanisms responsible 

for the dialogue between ICT and muscle are not completely elucidated.  

My PhD work aimed to assess the role of CT-derived CXCL12 and CXCL14 in the process of 

muscle morphogenesis. We provide evidence that both chemokines affect limb myogenesis, 

and that one receptor of CXCL12, CXCR7, is expressed in myogenic cells and positively 

affects myogenesis putatively through beneficial effect on muscle cell fusion.  

 

A. CXCR7 is expressed in muscle progenitor and differentiated cells during chick limb 

myogenesis 

CXCR7 starts to be expressed in limbs of E5 chick embryos, when CXCR4 expression is 

progressively down-regulated in muscle progenitors, with some cells co-expressing CXCR4 

and CXCR7. Such CXCR4-CXCR7 co-expression has been already observed in C2C12 

muscle cells in vitro (Hunger et al., 2012). Myogenic cells co-expressing both receptors might 

reveal a possible switch from CXCR4 to CXCR7 expression. Interestingly, it has been shown 

that C2C12 cells preferentially express CXCR4 under proliferation conditions, while they 

mostly express CXCR7 in differentiated state (Hunger et al., 2012). Therefore, one hypothesis 

is that the switch from CXCR4 to CXCR7 indicates a transition from a muscle progenitor to a 

differentiated state.  

Another hypothesis is that CXCR4 to CXCR7 transition at E5 stabilizes the myogenic fate. In 

the vertebrate limb, both endothelial and muscle cells originate from the somites (Chevallier 

et al., 1977; Christ et al., 1977; Pardanaud et al., 1996) and common bipotent progenitors 

contribute to both limb muscle and endothelial cell lineages (Kardon et al., 2002). During 

chick limb development, CXCR4 is expressed in endothelial cells and myogenic precursors 
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entering the limb (Yusuf et al., 2006). We show that at E5, CXCR4 is expressed both in limb 

muscle masses and in endothelial cells, but progressively decreases in muscle cells 

concomitantly with the appearance of CXCR7 transcripts. At later stages of limb 

development, CXCR4 and CXCR7 are present in endothelial and myogenic cells, respectively. 

As it has been shown that modulating CXCR4 activity perturbs the formation of limb muscles 

and vasculature (Yusuf et al., 2006), we suggest that a transition from CXCR4 to CXCR7 

expression in myogenic progenitors is important to maintain a myogenic fate and avoid a 

transition towards an endothelial differentiation at E5. In this context, CXCR7 would act as a 

lock for the myogenic fate.  

Coherent with this hypothesis we reveal that CXCR7 overexpression down-regulates the 

expression of CXCR4 receptor in myoblast cultures, while dn-CXCR7 overexpression 

increases the expression of CXCR4 receptor. Such mechanism at the transcriptional level 

could account for the transition from CXCR4 to CXCR7 expression in muscle cells. 

Alternatively, CXCR4 to CXCR7 transition might be mediated via a downregulation of 

CXCR4 that could occur through heterodimerization of both receptors. It has been previously 

shown that CXCR4·CXCR7 complex activate the recruitment of β-arrestin and impair the 

CXCR4-G-protein-mediated signalling via internalization of CXCR4 (Décaillot et al., 2011). 

 

B. Do CXCL12 and CXCR7 act together in muscle morphogenesis? 

During limb muscle formation, CXCL12/CXCR4 axis has been shown to play a role in the 

migration of muscle progenitors from the ventro-lateral lip of the dermomyotome towards the 

limb mesenchyme (Vasyutina et al., 2005). However, the role of CXCL12/CXCR7 has not 

been investigated yet during limb muscle morphogenesis. Previous works have described that 

CXCR7 is expressed in E18 mouse limb muscle cells and differentiating C2C12 muscle cells 

(Melchionna et al., 2010; Hunger et al., 2012). In agreement with these data, our results show 

that CXCR7 is expressed in myogenic cells during chick limb muscle development. In 

addition we show that CXCL12 is expressed in ICT, therefore suggesting that CXCL12 

produced by ICT interacts with myogenic cells expressing CXCR7. Using CXCR7 gain- and 

loss-of-function approaches in vivo and in vitro, we observe that increasing CXCR7 

expression enhances muscle differentiation, while expressing the dn-CXCR7 construct results 

in a decrease in myogenic differentiation. However we observe that CXCL12 has no effect on 

myogenic differentiation in vitro but induces defects in muscle morphogenesis in vivo.  

Althought these data appear contradictory, different hypothesis can be proposed for the role of 

CXCL12/CXCR7 axis in the regulation of muscle morphogenesis. A previous study of 
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Hunger et al. (2012) has shown that CXCL12 positively regulates myoblasts proliferation via 

CXCR4 and inhibits differentiation via CXCR7 in C2C12 muscle cells. They demonstrated 

that CXCR7 acted as a scavenger for CXCL12 to abrogate CXCL12/CXCR4 signalling 

(Hunger et al., 2012). Such a mechanism could account for (1) the transition from CXCR4 to 

CXCR7 receptor during chick limb muscle differentiation, (2) the positive effect of CXCR7 

overexpression on limb muscle differentiation and (3) the defects in limb morphogenesis 

observed after CXCL12 overexpression in vivo. However, we observe that increasing 

CXCL12 concentration in the medium of primary muscle cultures does not affect myogenesis. 

This discrepancy can be explained by a possible saturation of CXCR7 receptors by CXCL12 

in the culture conditions. Indeed we use a serum-complemented medium to trigger muscle 

differentiation, which is an important source of secreted factors among which chemokines, 

while in the in vitro experiments of Hunger et al. (2012), muscle cells were differentiated in 

serum free medium.  

Based on those published data and our work we can hypothesized that CXCL12 secreted by 

the ICT negatively regulate muscle differentiation. However this effect would be counteracted 

by the scavenger function of CXCR7 receptor expressed in muscle cells, allowing a balance 

between ICT and muscle differentiation. Interestingly, we show that dnCXCR7 

overexpression in developing limbs results in an increase in CXCL12 expression specifically 

in the ICT. Such a cross-regulation at the transcriptional level between CXCL12 and CXCR4 

has been already described during migration of neural crest cells in chick embryo (Escot et al. 

2013; Escot et al. 2016) and although it is not clear what mechanisms is involved in the 

crosstalk between CXCL12 and CXCR7, it is noteworthy that such a transcriptional regulation 

of CXCL12 expression by CXCR7 could also participate in the balance between muscle and 

ICT differentiation during chick limb development.  

 

C. Does CXCL12 act on muscle morphogenesis via its effect on ICT? 

As CXCL12 increases the expression of ICT markers and collagen genes in developing chick 

limbs (Nassari et al., 2017 submitted), one possibility could be that the CXCL12 effect on 

muscle morphogenesis is mediated through its positive action on ICT differentiation and not 

directly via its binding on myogenic cells expressing CXCR7. It has been previously shown 

that binding of CXCL12 to CXCR4 induces PDGFB transcription in human bone marrow 

cells (Gonzalez et al., 2014). In chick limbs, PDGFB, expressed in endothelial cells of the 

vessels, promotes the expression of collagen genes and the production of extracellular matrix, 

allowing separation of the muscle masses during the splitting process (Tozer et al., 2007). As 
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CXCR4 is expressed in endothelial cells during chick limb development, CXCL12 could act 

on ICT differentiation via CXCR4 and induces PDGFB secretion, which in turn would favour 

the differentiation of ICT at the expense of muscle differentiation, independently of CXCL12 

binding to CXCR7 receptor (Fig. 2). 

During chick embryonic development, ß1 integrin activation is particularly intense at the 

myotendinous junction. Furthermore, we provide evidence that CXCL12 overexpression in 

ICT induces changes in the composition of the extracellular matrix which in turn induces an 

increase in β1 integrin activation at the myotendinous junction. It is noteworthy that 

modifying fibronectin by LoxL3 enzyme, located at muscle fibre tips, induces an increase of 

Figure 2: Model illustrating the role of CXCL12 and CXCR7 in the interaction between 

ICT and muscle development. CXCL12 secreted from the ICT signals through CXCR4 

present a the surface of endothelial cells and enhances expression of PDGFB (1) which in turn 

induces increase in collagens and ICT markers expression in ICT (2). Collagens activate β1 

integrins at the myotendinous junctions (3), which leads   to an increase in the expression of 

CXCR7 at muscle fibre tips (4). Finally CXCR7 would promote muscle development likely 

through its effect on myoblast fusion and would negatively regulate CXCL12 expression in ICT 

possibly through degradation of the chemokine.  
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integrin activation at the myotendinous junction (Kraft-Sheleg et al., 2016). Among the 

different integrin subunits, α7ß1 integrin is specifically enriched at the myotendinous junction 

(Bao et al., 1993), which is closely associated to the localization of CXCR7 expression at the 

tips of muscle fibers. Gain- and loss-of-function approaches in mice have demonstrated that 

α7ß1 integrin is a major receptor connecting muscle cells to tendons, which participate to 

organize the myotendinous junction (Burkin and Kaufman, 1999). Moreover, increasing α7ß1 

integrin promotes myogenesis (Liu et al., 2009) and mutations affecting α7β1 caused 

muscular dystrophy (Mayer, 2003). However, these results seem to be contradictory with the 

CXCL12 effect, which increases ß1 integrin activation and inhibits muscle morphogenesis. 

One hypothesis could rely on the observation that activation of ß1 integrins by extracellular 

matrix increases CXCR7 expression in invasive prostate cancer cells (Kiss et al., 2013). As 

we show that CXCR7 overexpression in muscle cells favour limb myogenesis in vivo and in 

vitro, one possible model would be that the increase in ß1 integrin activation at the 

myotendinous junction would be responsible for an increase in CXCR7 expression at the tips 

of muscle fibers, which in turn would increase myoblast fusion and myotube differentiation to 

balance the negative effect of CXCL12 on muscle morphogenesis (Fig. 2).  

 

D. The chemokine receptor CXCR7 is important for proper muscle formation 

Our results show that overexpressing CXCR7 or dn-CXCR7 in vivo lead to a misregulation of 

the balance between muscle cells proliferation and differentiation. Indeed, overexpression of 

CXCR7 induces a decrease in the number of PAX7-positive cells and an increase in the 

surface area of MF20-positive myotubes, while dn-CXCR7 overexpression induces an 

increase in PAX7-positive cells and a decrease in the surface area of MF20-positive 

myotubes, in chick limbs. This suggests that CXCR7 enhances myoblast fusion, a result 

which is coherent with the observation that myoblast fusion preferentially occurs at the tips of 

muscle fibers (Gu et al., 2016; Williams and Goldspink, 1971), where CXCR7 is 

preferentially located. Recently, Myomaker emerged as a specific marker involved in 

myoblast fusion (Landemaine et al., 2014; Luo et al., 2015; Millay et al., 2013). We show, 

both in vitro and in vivo, that CXCR7 gain- and loss-of-function induces an increase and a 

decrease in MYOMAKER expression, respectively. In addition, overexpressing CXCR7 in 

vitro increases myoblast fusion, while overexpressing dn-CXCR7 decreases it.  

KLFs (Krüppel-Like Factors) transcription factors have been shown to be involved in muscle 

cell fusion, via Nephronectin, one of their transcriptional downstream targets (Sunadome et 

al., 2011). Interestingly, it was shown that CXCR7 is co-expressed with KLF4 in a 
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subpopulation of glioblastoma cells (Flüh et al., 2016). Additionally, the database STRING, 

highlighting known and predicted protein-protein interactions, describes a putative 

physical/functional interaction between CXCR7 and Nephronectin (Yamazaki et al., 2004), 

suggesting that CXCR7 could act on muscle fusion through interaction with Nephronectin. 

Finally, we cannot exclude that CXCR7 acts independently of ligand binding on limb 

myogenesis. Interestingly, ligand-independent role of CXCR7 has been evidenced in prostate 

and breast cancer cells (Salazar et al., 2014; Singh and Lokeshwar, 2011) and CXCR7 has 

been shown to interact with EGFR in breast cancer cells (Salazar et al., 2014). In human 

muscle cell cultures, EGFR activity is down-regulated during early myoblast differentiation 

and this event is required for normal differentiation to take place (Leroy et al., 2013). 

Furthermore, EGFR silencing in proliferation conditions triggers muscle differentiation 

(Leroy et al., 2013). In addition, β-arrestin proteins have been shown to be essential for cell 

cycle exit and differentiation through the transactivation of EGFR in human myoblasts 

(Santos-Zas et al., 2016). One possibility could be that binding of CXCR7 to EGFR or 

CXCR7 ß-arrestin controls down-regulation of EGFR receptor necessary for muscle 

differentiation. It is noteworthy that EGF has been shown to inhibit myogenesis during chick 

limb development (Dealy et al., 1998). 

 

E. CXCL14 acts as a non-cell autonomous signal regulating myogenic differentiation and 

muscle patterning  

In agreement with previous studies assessing the role of CXCL14 during myogenesis (Ge et 

al., 2013; Waldemer-Streyer et al., 2017), our results demonstrate that CXCL14 negatively 

regulates myogenic differentiation both in vitro and in vivo. Our results clearly illustrate a 

non-cell autonomous effect of CXCL14 on myogenesis in vitro and in vivo. CXCL14 

drastically decreases the number of muscle progenitors and myotubes in primary cultures of 

chick myoblasts, although cell proliferation and cell fusion are not affected in these 

conditions. Our data illustrate a likely direct effect of CXCL14 on myogenic cells, suggesting 

that a CXCL14 receptor is present at the surface of muscle cells. To date, signalling receptor 

for CXCL14 has not been clearly identified, nevertheless it has been shown that CXCL14 

binds to CXCR4 in order to inhibit CXCL12/CXCR4 interactions and associated-signalling 

(Tanegashima et al., 2013a; Tanegashima et al., 2013b). We observe that CXCL14 decreases 

CXCR4 expression in primary cultures of myoblasts, however, as CXCR4 expression was not 

detected in muscle cells in vivo, it seems unlikely that CXCR4 is involved in CXCL14 effect 

on myogenesis. Recently, the atypical chemokine receptor ACKR2 (D6 or CCBP2) has been 



 170 

proposed as CXCL14-signalling receptor (Sjöberg et al., unpublished data). ACKR2 has been 

shown to signal through ß-arrestin as CXCR7 and although its expression has not been 

reported in adult muscle (Bonavita et al., 2017), it could be a putative candidate for CXCL14 

receptor during development. 

We demonstrate that while muscle differentiation is severely affected in CXCL14 gain-of-

function conditions in vitro (Fig. 11), cell death and proliferation are not affected, suggesting 

that CXCL14 induces phenoconversion of myogenic cells. Using RT-qPCR analysis we 

observe an increase in the expression of myofibroblastic cell markers TCF4 and ACTA2, 

which support the hypothesis that CXCL14 promotes transdifferentiation of primary 

myoblasts to myofibroblasts. Previous experiments have reported such mechanism in muscle 

cell cultures: acid retinoic treatment induces myoblast transdifferentiation into premeiotic 

sperm-like cells in C2C12 muscle cells (Jia et al., 2011), and exposure to vitamin D, long 

chain-fatty acids and thiazolidinetiones triggers transdifferentiation of C2C12 cells into 

adipocytes (Grimaldi et al., 1997; Ryan et al., 2013).  Similarly, treatment of porcine satellite 

cells with ciglitizone promotes adipogenic transdifferentiation (Singh et al., 2007). These data 

support the idea that transdifferentiation mechanisms occur in muscle cells and suggest that 

CXCL14 might represent an ICT-secreted factor, which negatively regulates limb myogenesis 

via its transdifferentiation action on myogenic cells. 

In addition, analysis of Cxcl14 deficient mice revealed a role for CXCL14 in the regulation of 

glucose metabolism in skeletal muscle. Upon CXCL14 exposure, glucose uptake is decreased 

in C2C12 cells (Nara et al., 2007). Previous works have demonstrated the involvement of 

glucose metabolism during muscle development (Viñals et al., 1997), suggesting that 

CXCL14 regulates myogenesis via regulation of glucose metabolism in muscle cells. 

Finally, we demonstrate that CXCL14 is involved in the regulation of SCX expression in 

vitro. Therefore we cannot exclude that CXCL14, in addition to directly regulating 

myogenesis, also contributes indirectly to limb muscle development through its implication in 

regular CT development. Regular CT corresponds to tendons and ligaments, and during limb 

muscle development, interactions between dense CT and myogenic cells are essential for 

correct muscle morphogenesis (Chevallier and Kieny, 1982; Huang et al., 2013; Kardon, 

1998).   

 

Our results provide evidence for the involvement of CXCL12 and CXCL14 chemokines in 

the process of CT-mediated muscle morphogenesis. In addition, we reveal for the first time an 

important role for CXCR7 in the control of foetal myogenesis. In adult muscle, several studies 
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have already underlined the importance of ICT (FAPs/Mesenchymal progenitors) during the 

process of muscle regeneration. Our findings provide new tools to investigate the interactions 

between adult CT and muscle cells, thus enabling new perspectives for therapeutic 

approaches in muscle aging and muscle pathologies associated with deregulation of the 

CT/muscle cell balance. 
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Conclusion and future prospects 
 
The first part of my work show that secreted factors involved in the regulation of CT 

homeostasis in adult organs are also involved in the regulation of CT differentiation during 

development. Using the chick embryonic limb as a model, we demonstrate that CXCL12 and 

CXCL14 chemokines regulate the expression of specific CT transcription factors and collagen 

genes in limb ICT and MCT. Furthermore we characterize BMP4, known as an anti-fibrotic 

factor, and mechanical forces as negative and positive regulators of both chemokines, 

respectively.  

Our proposed model for CXCL12 effect on the differentiation of limb ICT relies on the 

possibility that it signals through CXCR4 receptor expressed on endothelial cells of limb 

vessels and activates the secretion of PDGFB which increases the expression of CT markers 

and collagen genes. Different experiments can be conducted to test this hypothesis. We 

propose first to study vessel morphogenesis after CXCL12 overexpression in embryonic 

limbs by black ink injection in the circulation and/or 3D reconstructions of limbs after 

endothelial immunostaining. CXCR4 involvement in this process could be evaluated by using 

specific CXCR4 inhibitors in CXCL12 overexpression conditions in vivo. Such inhibitors 

have been shown to have no effect on CXCR7 receptor (Van Hout et al., 2017). The 

expression of PDGFB and its receptor will be investigated after CXCR4 blockade. Finally, 

using inhibitors of PDGF signalling (Makino et al., 2017) combined with CXCL12 

overexpression could help to decipher whether PDGF signalling is implicated in the positive 

effect of CXCL12 on ICT differentiation during chick limb development.   

The role of CXCL14 on CT differentiation remains more elusive. We show that CXCL14 

overexpression in vitro induces an increase in SCX expression, known to be a specific tendon 

marker during limb development. However, Scx has also been shown to be co-expressed with 

FSP1, a specific marker of activated myofibroblasts, in adult MCT and a dramatic increase in 

the number of Scx/FSP1 positive cells has been observed following muscle injury, indicating 

that this population could participate to the fibrosis mechanism during muscle regeneration 

(Shallal-Ayzin et al., 2010). In order to better understand the role of CXCL14 in limb CT 

differentiation, it will be interesting to test whether FSP1 is expressed during chick limb 

development and also regulated by CXCL14 in vitro and in vivo. 

 

In the second part of my PhD, devoted to investigate the role of CXCL12 and CXCL14 in the 

CT-mediated muscle morphogenesis in chick limb, we show that CXCR4 and CXCR7 are 
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sequentially expressed in embryonic muscles, CXCR7 replacing progressively CXCR4 

expressed in muscle progenitors during foetal myogenesis. We propose two hypothesis related 

to explain these observations. First, CXCR7 expression could be important to initiate 

myogenic differentiation and abrogate a CXCR4-positive muscle progenitor state and second, 

the CXCR4/CXCR7 switch could putatively preserve a myogenic fate to prevent a shift to  an 

endothelial fate, CXCR4 expression being maintained only in endothelial cells of limb 

vessels. During myogenesis, PAX3 characterizes the embryonic progenitors, while PAX7 is 

expressed in the foetal ones and PAX3 and PAX7 are negative regulators of each other (Galy 

et al., 2008). Therefore, we propose to test the first possibility by studying CXCR4 and 

CXCR7 expression in PAX3 and PAX7-positive progenitors and investigating the regulation 

of CXCL12 receptors by PAX genes, by electroporating the brachial somites with PAX3 or 

PAX7 constructs. The second hypothesis could be tested by electroporating CXCR7 and dn-

CXCR7 constructs in chick somites and look at the morphogenesis of muscles and vessels in 

these experimental conditions. This approach could also allowed us to better understand the 

role of CXCR7 restriction at the tips of muscle fibers during muscle development. Indeed, 

using a construct in which CXCR7 is under the control of the Myosin-light-chain promoter to 

target specifically CXCR7 expression in differentiated muscle cells, would allow us to better 

understand this restricted expression and its function during myogenesis. 

Our results show that CXCR7 favors myogenesis in vitro and in vivo, by enhancing myoblast 

differentiation and muscle fusion. These observations suggest that CXCL12 and CXCR7 

could not act independently to each other during the process of CT-mediated muscle 

morphogenesis, as CXCL12 promotes CT differentiation at the expense of muscle 

development. We also show that CXCL12 enhances the activation of β1 integrin at the 

myotendinous junction. Our hypothesis is that the remodelling of extracellular matrix 

consecutive to the increase in collagens after CXCL12 overexpression enhances β1 integrin 

activation which, in turn, increases CXCR7 expression at the tips of muscle fibers, i.e. at the 

myotendinous junction. As α7ß1 integrin is enriched at the myotendinous junction (Bao et al., 

1993), it will be interesting to look at the expression of α7 subunit after CXCL12 

overexpression. In addition, laminin being the main ligand of α7ß1 integrin at the muscle 

membrane and a reduction in α7integrin being observed in muscular dystrophies linked to 

laminin mutations (Mayer, 2003), laminin expression should also be investigated after 

CXCL12 overexpression. Finally, CXCR7 expression should be analysed after CXCL12 

overexpression in CT to see if, as hypothesized, its expression increases after ß1 activation. 
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The positive regulation of CXCR7 on myogenesis is likely mediated through its beneficial 

effect on muscle cell fusion and muscle differentiation. How CXCR7 regulate myogenesis 

remains to be elucidated. One possibility would be that CXCR7 acts via its scavenger 

function to internalize CXCL12, then decreasing CXCL12 effect on CT differentiation to 

enhance myogenesis. Inhibiting ß arrestin via specific inhibitors or siRNA strategy in vitro 

(Décaillot et al., 2011) could help to answer this question. Another possibility would be that 

CXCR7 participates to myoblast differentiation and fusion at the tips of muscle fibers where 

its expression is progressively restricted. Indeed, BMP produced by the tendons has been 

shown to regulate the differentiation of a subpopulation of muscle progenitors located at the 

tips of muscle (Wang et al., 2010). As we have also shown that BMP acts as an anti-fibrotic 

factor in chick embryonic limb, it would be interesting to test whether BMP signalling at the 

tips of muscle fibres is regulated by CXCR7 activity. Finally, we would like to analyze limb 

muscles and blood vessels in Cxcr7 mutant mouse embryos to see whether those structures 

are affected in the absence of CXCR7.  

Overexpression of CXCL14 drastically inhibits myogenesis in vivo and in vitro. Trying to 

identify the receptor through which CXCL14 acts is an important step to understand this 

effect. As the atypical ACKR2 is described as the putative G-protein linked receptor that 

binds CXCL14, it would be of interest to analyse its expression pattern during chick 

embryonic limb development. Recent work has demonstrated that RCAS-mediated 

knockdown of CXCL14 causes severe neural defects in the eye including precocious and 

excessive innervation of the cornea and iris and that recombinant CXCL14 diminishes 

CXCL12-induced axon growth in vitro (Ojeda et al. 2017). Hence, it would be interesting to 

look at nerve patterning in chick embryonic limb overexpressing CXCL14. Preliminary data 

show defect in the patterning of axonal network, which might be related to CXCL14 effect on 

muscle morphogenesis. 

To test these interactions, we propose to use the classical chemotactic Boyden test to submit 

myoblasts expressing CXCR7 or dn-CXCR7 constructs to CXCL12, CXCL14 or both 

chemokines, in order to try to decipher the molecular mechanisms implicated in the effect of 

CXCL12 and CXCL14 in the dialogue between CT and muscle during limb development. 

This work provide new cues about the mechanisms regulating the crosstalk between CT and 

muscle formation and will be helpfull to further decipher the molecular mechanisms 

underlying skeletal muscle/connective tissue interactions in adults. Finally our data constitute 

promising therapeutic targets to treat fibrosis and muscular disease associated with abnormal 

development of ICT. 
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Constructs 

The chicken CXCL12, CXCL14, dnCXCR7 and CXCR7 coding regions were amplified by 

PCR from an RT-PCR-derived cDNA library made from E5 chick limb, using primers 

containing ClaI restriction site. CXCL12, CXCL14 and dnCXCR7 amplified sequences were 

then inserted into pCR-II TOPO vector using TOPO-TA cloning kit (Invitrogen). CXCR7 

sequence was inserted into pGEM vector using pGEM-T easy vector system kit (Promega). 

Inserted sequences were excised by digestion with ClaI and inserted into the ClaI site of 

replication-competent retroviral vector RCASBP(A) previously digested with ClaI enzyme 

(Hughes et al., 1987). Clones containing the CXCL12, CXCL14, CXCR7 or dnCXCR7 coding 

region in the sense orientation were selected. Mouse RCAS-mBmp4 and chick RCAS-

cNOGGIN constructs were described previously (Duprez et al., 1996; Edom-vovard et al., 

2001). 

The pT2AL-CMV/Tomato-T2A-CXCL12 and pT2AL-CMV/Tomato-T2A-CXCL14 were 

achieved as followed. The chicken CXCL12 and CXCL14 coding sequences were amplified 

by PCR from a RT-PCR-derived cDNA library made from E5 chick limb, using a forward 

primer containing the BstbI enzyme restriction site and a reverse primer comprising the PmlI 

enzyme restriction site. Purified PCR products were included into the PCR-II TOPO vector 

using TOPO-TA cloning kit (InVitrogen), and clones containing CXCL12 and CXCL14 

sequences with BstbI and PmlI restriction sites respectively in 5’ and 3’ ends of the coding 

sequences were selected. The TOPO/BstbI-CXCL12-PmlI and TOPO/BstbI-CXCL14-PmlI 

were then digested with BstbI and PmlI enzymes. Purified digested products were finally 

inserted into the PT2AL-CMV/Tomato-T2A-GFP plasmid, from which GFP was previously 

extracted by BstbI and PmlI enzymatic digestion. Clones containing CXCL12 and CXCL14 

coding sequences were selected and generated plasmids were named PT2AL-CMV-CXCL12 

and PT2AL-CMV-CXCL14. 

 

Production and grafting of recombinant/RCAS-expressing or control RCAS-expressing 

cells  

Cells expressing RCAS/cCXCL12, RCAS/cCXCL14, RCAS/mBmp4, RCAS/cNOGGIN 

RCAS/cCXCR7, RCAS/dnCXCR7 and empty RCAS were prepared for grafting as previously 

described (Delfini and Duprez, 2000; Wang et al., 2010). Pellets of approximately 50 µm in 

diameter were grafted into the right wing bud of E4 chick embryos. Embryos were harvested 

at various times after grafting and processed for in situ hybridization or 

immunohistochemistry to tissue sections. The left wing was used as an internal control. 
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Owing to certain variability in the virus spread among embryos, the expression of the ectopic 

gene was systematically checked by in situ hybridization.  

 

Bead implantation in chick limb buds 

 Heparin beads (Sigma) were soaked in 1 mg/ml of recombinant human FGF4 (R&D 

Systems) for 30 min on ice.  FGF4 beads were grafted into the right wings of chick embryos 

at E4.5 and embryos were harvested 24 or 48 hours after grafting. Grafted right and 

contralateral left limbs were processed for in situ hybridization to sections. 

 

Lateral plate mesoderm electroporations 

E2.5 chick embryos were electroporated as previously described (Bourgeois et al., 2015). 

PT2AL-CMV-CXCL12 or PT2AL-CMV-CXCL14 (1,5-2 µg/µl) constructs were mixed with 

the transposase vector CMV-T2TP (molar ratio 1/3) to allow stable integration of genes in the 

chick genome, in a solution containing 0.33% carboxymethyl cellulose, 1% Fast green, 1mM 

MgCl2 in PBS. DNA mix was injected with a glass capillary in the coelomic cavity between 

somatopleural and splanchnopleural mesoderm, at the level of the forelimb territory. 

Homemade platinum electrodes were placed above and bellow the embryo, with the negative 

electrode inserted into the yolk and the positive electrode localized above the presumptive 

forelimb region. Electroporation was delivered using a Nepagene NEPA21 electroporator 

with the following parameters: 2 pulses of 70V, 1ms duration with 100 ms interpulse interval 

followed by 5 pulses of 40V, 2ms duration with 500 ms interpulse interval. Those settings 

were delivered using Nepagen electroporator. 

 

Drug administration in ovo  

The stock solution for decamethonium bromide (DMB, Sigma D1260) was prepared at 10% 

dilution in Hank’s solution (Sigma H9269). The DMB solution was freshly prepared before 

each experiment at 0.5% in Hank’s solution with 1% of Penicillin-Streptomycin (Gibco, 

15140). 100µl of the DMB or control solution (Hank’s solution with 1% of Penicillin-

Streptomycin) were administrated in ovo at E4 of development. Embryos were harvested 48 

to 72 hours after and processed for in situ hybridization or quantitative real-time PCR. 

 

In situ hybridization and immunostaining to tissue sections  

For hybridization and immunostaining on sections, embryos were fixed in a 4% 

paraformaldehyde solution in PBS supplemented with 4% sucrose and 0.1 mM CaCl2, rinsed 
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in PBS, embedded in a 15% sucrose solution, frozen in chilled isopentane before cryostat 

sectioning at 10-20 µm. Sections were collected on Superfrost/Plus slides (CML, France) and 

processed for immunolabelling or in situ hybridization as described previously (Escot et al. 

2013). For grafted embryos, grafted and control limbs from the same experimental embryo 

were positioned in the same orientation for transverse sectioning to allow comparison.  

For in situ hybridization, the following digoxigenin-labeled mRNA probes were used: chick 

OSR1 and OSR2 (Stricker et al., 2012), chick CXCR7 (Escot et al., 2013), chick CXCL12 

(Escot et al. 2013), chick SCX (Bonnin et al., 2005), chick COL1a1, COL3a1 (produced from 

EST clones from ARK Genomics), chick MYOR (Grenier et al., 2009) and mouse Bmp4 

(Wang et al., 2010). Chick CXCL14 probe was produced from an RT-PCR-derived cDNA 

library made from E5 chick limb, using primers previously described (Gordon et al., 2011). 

The chick MYOMAKER probe was produced from a RT-PCR-derived cDNA library made 

from chick primary muscle cell cultures.  

For immunostaining, the following primary antibodies were used: mouse monoclonal anti-

MF20 (Developmental Studies Hybridoma Bank, non-diluted supernatant), rabbit polyclonal 

anti-PDGFRα (Santa Cruz, sc-338, 1/500 dilution), rabbit polyclonal anti-TCF4 (2569, Cell 

signalling, 1/100 dilution), mouse anti-CXCR4 (1:1000, Escot et al., 2013), mouse anti-

MEP21 (1:200, generous gift from T. Jaffredo), mouse anti-PAX7 (1:200, Developmental 

Studies Hybridoma Bank), rabbit anti-activated ß1 integrin TASC (1:100, Millipore), rabbit 

anti-phospho-histone-3 (1:200, Cell Signalling), rabbit anti-cleaved caspase-3 (1 :100, Cell 

Signalling). Immunolabelings were performed using secondary antibodies conjugated to 

Alexa Fluor 488 and 555 (1:200, InVitrogen). Nuclei were stained using DAPI (1/1000, 

Sigma). Stained tissue sections were observed with a Nikon microscope, images were 

collected with the QCapture Pro software (QImaging) and processed using Adobe Photoshop 

software. 

 

Primary muscle cell cultures 

Primary muscle cell cultures were prepared from skeletal muscles of forelimbs from E10 

chick embryos. Limb muscles were cut in small pieces in Minimal Essential Medium (MEM) 

followed by mechanical dissociation. Homogenate was then centrifuged and the supernatant 

was filtered into a 40µm filter to collect muscle cells. Centrifugation and filtration steps were 

repeated several times. Chick myoblasts were seeded on a 0,1% gelatin coated plastic dish. 

Myoblast primary cultures were first incubated in a proliferation medium (2/3 Minimimum 

Essential Eagle Medium (MEM), 1/3 Hanks’ salts medium 199, 10% fetal calf serum, 1% 
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penicillin streptomycin and 1% glutamine). At 80% of confluence, differentiation was 

induced using a differentiation medium (2/3 Minimimum Essential Eagle Medium (MEM), 

1/3 Hanks’ salts medium 199, 2% fetal calf serum, 1% penicillin streptomycin and 1% 

glutamine).  Chick primary myoblasts were transfected at around 30-40% confluence with the 

Calcium Phosphate transfection kit (Invitrogen). 

 

RNA isolation, reverse transcription and quantitative real-time PCR  

Total RNAs were extracted from chick limbs. 500ng to 1µg RNAs were reverse-transcribed 

using the High Capacity Retrotranscription kit (Applied Biosystems). RT-qPCR was 

performed using SYBR Green PCR Master Mix (Applied Biosystems). Primer sequences 

used for RT-qPCR are listed in Table S1. The relative mRNA levels were calculated using the 

2^-ΔΔCt method (Livak et al., 2001). The ΔCts were obtained from Ct normalized with chick 

GAPDH or S17 levels in each sample. For in vitro experiments, six cultures were used as 

independent RNA samples. For in vivo experiments, four forelimbs were used as independent 

RNA samples. Each sample was analysed in duplicate. Results were expressed as Standard 

Deviation (SD). Data were analysed by paired student t-test.  

 

3D reconstructions of muscles 

Grafted and control forelimbs were immunostainned in toto for MF20. Whole-mount 

immunostained forelimbs were imaged with a Zeiss biphoton microscope and generated files 

were analysed with the software IMARIS (Bitplane) to perform 3D muscle reconstructions. 

Reconstructed images were then processed using Adobe Photoshop software. 

 

Quantification of muscle progenitors and myotubes in vivo 

Quantification in vivo was realized on transverse sections of control, grafted and 

electroporated limbs immunostained with PAX7 or MF20 antibodies.  Muscle area 

measurement and determination of the number of PAX7-positive cells were performed on 

three to four successive sections of three different muscles at two different levels of the limb 

in four different embryos. The density of PAX7-positive cells was established by doing the 

ratio between the number of PAX7-positive cells and the surface of the muscle. In vitro, 

snapshots of muscle cell cultures stained with PAX7, MF20, phospho-histone-3 or caspase-3 

antibodies were used for quantifications which were performed on nine biological samples 

arising from three independent experiments. Quantification analysis was realized with the 

Cell Counter plug-in of the free software ImageJ and statistical analyses were done using the 
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two-tails unpaired Student's t test in the Excel Microsoft software. Controls were 

normalized to one.  

 

Quantification of the proportion of myotubes depending on nuclei number 

Quantification was realized on chick foetal myoblast cultures transfected with 

RCAS/dnCXCR7, RCAS/CXCR7 and emplty RCAS immunostained with MF20 antibodies 

and counterstained using DAPI to label nuclei. The proportion of myotubes, corresponding to 

the number of myotubes containing 5 to10, 10 to 15, 15 to 20 and more than 20 nuclei 

compare to the total number of myotubes, was established on triplicate samples from 3 

independent experiments.  

 

Image capturing 

Images of labelled sections and culture cells were obtained using a Leica DMI6000 B 

microscope or a Nikon microscope equipped for epifluorescence. Images were processed 

using Adobe Photoshop software.  

 

List of qPCR primers 

Chick qPCR 

primers 
Forward Reverse 

PAX7 AGAAGAAGGCCAAGCACAGCATAG ATTCGACATCGGAGCCTTCATCCA 

MYOD CGACAGCAGCTACTACACGGAAT CTCTTCCCATGCTTTGGGTC 

MYOG AGGCTGAAGAAGGTGAACGAAG CAGAGTGCTGCGTTTCAGAGC 

MYOMAKER  

(Luo et al., 2015) 
TGGGTGTCCCTGATGGC CCCGATGGGTCCTGAGTAG 

TCF4 TCCGATTACAGACCTGAGCG TGTTGATCAAGGCCAAAGCG 

ACTA2 TGCTCCAAGAGCAGTTTTCC CCCATACCAACCATCACACC 

CTGF AAGACACTTACGGCCCAGAC AGTAGTCTGCACCAGGCAAT 

OSR1 GTGCTGAATCTCCGACTTCTATGA GTGTAAAATCTGAAGGGCAGGAA 

CXCR4 CAGAAGCCCTTGCGTTCTTC CACCCAGGAAGGCGTAAAGA 

CXCR7 TCTGTTGTGGTGTGGGTCAA CGAGGGAGACAACCCAAACA 

RPS17 ACCTGGTTCCTGCACAGGGCTT TGCCTGAGCGGAGGAGCAAACA 
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CXCL12 CAAAATCCTTTCCACTCCCAACT CCATTTGTCTCTTGCCTTACTTGTT 

CXCL14 ACCCATTTTGTGTGGAGGAGA TGCTCACCTCTCACTTTCGT 

OSR1 GTGCTGAATCTCCGACTTCTATGA GTGTAAAATCTGAAGGGCAGGAA 

OSR2 CTTGCCTTGCAGGTACATCCA TCCTGGCACTTGAAGGGTTT 

COL1A2 GCAGTAACTTCATACCTAGCAACAAGC TGCAGATGCCTCACTCACATG 

COL3A1 GCGTCCTGTTGTGCCAAAA GTTCATTCTTGCCGTGTTTCAA 

COL6A1 GCATGCCTAAACAAGCGATGT GGAACAACCCAAACCCAGATC 

PDGFR α GCTAGTGCTTGGTCGAATCC TGTCCCTTCCACCACTTTTC 

SCX CACCAACAGCGTCAACACC CGTCTCGATCTTGGACAGC 

ID1 CCGGAGGGTCTCTAAAGTGG GCAGGTCCCAGATGTAGTCG 

ID2 GAAGAACGGCCTTTCGGAG TCATGTTGTACAGCAGGCTCA 

ID3 GCTGGAGGAACCCATGAATCT TCCCGCAATTTGGAGTAGCA 
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