
HAL Id: tel-01880397
https://theses.hal.science/tel-01880397

Submitted on 24 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Connected cars : a networking challenge and a
computing resource for smart cities

Giulio Grassi

To cite this version:
Giulio Grassi. Connected cars : a networking challenge and a computing resource for smart cities. Em-
bedded Systems. Université Pierre et Marie Curie - Paris VI, 2017. English. �NNT : 2017PA066554�.
�tel-01880397�

https://theses.hal.science/tel-01880397
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE
l’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité

Informatique
École doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par
Giulio GRASSI

Pour obtenir le grade de

DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE

Sujet de la thèse :

Connected cars: a networking challenge and a computing
resource for Smart cities

soutenue le 31 Octobre 2017

devant le jury composé de :

M. Giovanni Pau Directeur de thèse
M. Mario Gerla Rapporteur
M. Alexander Afanasyev Rapporteur
M. Serge Fdida Examinateur
M. Jérôme Härri Examinateur
Mme. Giovanna Carofiglio Examinatrice
M. Giovanni Pau Examinateur
M. Mario Gerla Examinateur
M. Alexander Afanasyev Examinateur

Acknowledgments

After almost 4 years working at my PhD it is quite difficult to find the words to
properly thank everybody. For sure I must thank my family for their support in
all these years, before and during the PhD. My parents, my sister Erica and my
little nephew Ian.

Of course I also have to thank Giovanni, my advisor, who has been not only a
boss, but also a guide and a friend. We started working together in 2010, it
seems ages ago. It won’t be easy to get used to work with someone else.

Right after Giovanni comes Davide. We have been working together for four-five
years, across different continents. It really feels weird knowing that I won’t be
working with you and Giovanni anymore. A lot of days and nights spent
working, so many coffee breaks, a lot of nice memories, not only at work, but
also outside the office.

Finishing with the Italian colony, thank to all the visitors who stopped by my
office in these years, Andrea, Davide (or should I say Steve), and Edoardo. You
didn’t spend much time here, but it was fun hanging out with you guys.

Of course I can’t forget the NPA team. All the PhD students, with some we
started this adventure together, Benjamin, Alexandre, Quentin, others instead
joined after of were there already, Matteo, Salah, Amr, Mustapha, Narcisse,
Antonella, Florent. And of course the thanks don’t stop to the students. Also all
the professors, Serge, Marcelo, Prométhé, the list is quite long. Thank you
everybody, it’s was a great pleasure working here at NPA.

I can’t forget the One-Lab crew, Pauline, Émilie, Radomir, Amira, Loic,
Frederic, and Camille. You were there when the “Little Italy” in my office
disappeared. A special thanks needs to be reserved to Émilie and Pauline, who
helped me in fixing the French part of the thesis! In particular Pauline, who had
to go through the entire introduction (twice).

iii

iv

During those years I’ve been collaborating with several people, each of them took
some time from their busy schedule to teach me something. Lixia, Victor, Kyle, I
learned a lot from you, thank you.

A PhD without paperwork and the help of the administration is not possible, so
a big thanks to Sabine and Marguerite for all the assistance.

Finally, a big thanks to the rapporteurs, Mario Gerla and Alexander Afanasyev,
who took their time to read my thesis and provided me with important feedbacks
and suggestions, and to all the other members of the jury, Serge Fdida, Jérôme
Härri and Giovanna Carofiglio.

After a long period it is never easy to thank everybody, there is always the risk
of forgetting someone, especially in these frenetic moments, when 4 years of work
and life have to be wrapped up. Hopefully I didn’t forget too many person. It
has been a great experience, not always easy, a PhD is never easy, but these 4
years have been great. I’m happy to finally be at the end of my PhD, but part of
me is sad. I’ll miss spending my days here at NPA.

Abstract

In the recent years we have seen a continuous integration of technology with the
urban environment. This fusion aims to improve the efficiency and the quality of
living in big urban agglomerates, while reducing the costs for their management.
Cities are getting “smarter and smarter”, with a plethora of IoT devices and
sensors deployed all over the urban areas. Among those intelligent objects, an
important role may be played by cars. Modern vehicles are (or will be) indeed
equipped with multiple network interfaces, they have (or will have)
computational capabilities and devices able to sense the environment.

However, smart and connected cars do not represent only an opportunity, but
also a challenge. Computation capabilities are limited, mobility and the diversity
of network interfaces are obstacles when providing connectivity to the Internet
and to other vehicles. When addressing the networking aspect, we believe that a
shift in the Internet model is needed, from a host oriented architecture (IP) to a
more content focused paradigm, the Information Centric Networking (ICN)
architectures. This thesis thus analyzes the benefits and the challenges of the
ICN paradigm, in particular of Named Data Networking (NDN), in the VANET
domain, presenting the first implementation running on real cars of NDN for
VANET (V-NDN). It then proposes Navigo, an NDN based forwarding
mechanism for content retrieval over V2V and V2I communications, with the
goal of efficiently discovering and retrieving data while reducing the network
overhead.

Networking mobility is not only a challenge for vehicles, but for any connected
mobile device. For this reason, this thesis extends its initial area of interest —
VANET — and addresses the network mobility problem for generic mobile
nodes, proposing a NDN-based solution, dubbed MAP–Me. MAP-Me tackles the
intra-AS content provider mobility problem without relying on any fixed node in
the network. It exploits notifications messages at the time of a handover and the
forwarding plane to maintain the data provider “always” reachable.

v

vi

Finally, the “connected car” concept is not the only novel element in modern
vehicles. Cars indeed won’t be only connected, but also smart, able to locally
process data produced by in-car sensors. Vehicles are the perfect candidates to
play an important role in the recently proposed Fog Computing architecture.
Such an architecture moves computational tasks typical of the cloud away from
it and brings them to the edge, closer to where the data is produced. To prove
that such a model, with the car as computing edge node, is already feasible with
the current technology and not only a vision for the future, this thesis presents
ParkMaster. Parkmaster is a fully deployed edge-based system that combines
vision and machine learning techniques, the edge (driver’s smartphone) and the
cloud to sense the environment and tackle the parking availability problem.

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

2 State of the Art 21
2.1 Named Data Networking: NDN . 21

2.1.1 Introduction . 21
2.1.2 Design . 23
2.1.3 NDN project current status 26

2.2 Vehicular Networks . 27
2.2.1 IP-based solutions . 27
2.2.2 NDN-based solutions . 30

2.3 Producer’s mobility . 31
2.4 Fog Computing . 34

2.4.1 Use cases . 36
2.4.2 Related work . 37

3 V-NDN: NDN in Vehicular Networks 39
3.1 V-NDN: A proof of concept . 39
3.2 Design and Implementation . 40

3.2.1 Implementation . 41
3.2.2 Enhancing WiFi Broadcast for V2V communications 43

3.3 Demonstration . 44
3.3.1 Field Experiments . 45

3.3.1.1 Hardware/Software Setup 46
3.3.2 Preliminary Results . 46

3.3.2.1 V2V experiments 46
3.3.2.2 Robust Data Availability 48

3.3.3 V2X Scenarios and the role of the Infrastructure 48
3.4 V-NDN: V2V communication at scale 49

3.4.1 Results . 50
3.5 Discussion . 51

4 Navigo: Interest Forwarding by Geolocations in V-NDN 53

vii

viii CONTENTS

4.1 Introduction . 53
4.2 Navigo Design Overview . 54

4.2.1 Naming geographic areas . 54
4.2.2 Mapping data names to geo-areas 55
4.2.3 Hiding geographic forwarding from basic NDN framework . . 55
4.2.4 Design assumptions . 56

4.3 GeoLocation-based Interest Forwarding 57
4.4 FIB Management . 58

4.4.1 Binding content location to the right name 58
4.4.2 FIB size . 58

4.5 Link Adaptation Layer . 59
4.5.1 LAL and GeoFaces . 59
4.5.2 Calculating the shortest path 59
4.5.3 Forwarding process . 60
4.5.4 Forwarding based on forwarding points 61

4.6 Simulation . 63
4.6.1 Scenario . 63
4.6.2 Music streaming over NDN 65
4.6.3 Simulation results . 66

4.6.3.1 Success rate . 66
4.6.3.2 User satisfaction 67
4.6.3.3 V2V channel access (protocol overhead) 67
4.6.3.4 Load on the infrastructure 67
4.6.3.5 Infrastructure offload 68

4.6.4 Handling mobility of data providers 69
4.6.5 Simulations with higher car density 70

4.7 Discussion and final remarks . 72

5 Producer Mobility: MAP–ME 73
5.1 Introduction . 73
5.2 Design . 75

5.2.1 MAP-Me description . 76
5.2.2 MAP-Me Update protocol 77

5.2.2.1 Rationale . 77
5.2.2.2 Updates propagation 77
5.2.2.3 Concurrent updates 78

5.2.3 Map-Me Notification/Discovery protocol 79
5.2.3.1 Interest notification 80
5.2.3.2 Discovery . 80

5.2.4 Full MAP-Me approach . 81
5.3 Implementation . 82

5.3.1 MAP-Me introduction in a NDN network 82
5.3.1.1 MAP-Me Messages 82
5.3.1.2 MAP-Me additional Network Information 82

5.3.2 Algorithm description . 83
5.3.2.1 IU/IN transmission at producer 83

CONTENTS ix

5.3.2.2 IU/IN processing at network routers 83
5.3.2.3 Hop-by-hop IU/IN acknowledgement 84
5.3.2.4 Face removal at producer/network nodes 84
5.3.2.5 Consumer request forwarding in case of producer

discovery . 84
5.3.3 Security considerations . 85

5.4 Analysis . 86
5.4.1 Correctness and stability of IU mechanism 86
5.4.2 Numerical Evaluation of path stretch 88

5.5 Evaluation . 89
5.5.1 Simulation setup . 89
5.5.2 Baseline scenario description 90
5.5.3 Results for baseline scenario: Fat-Tree + RWP + CBR . . . 91

5.5.3.1 User performance 91
5.5.3.2 Network cost . 93

5.5.4 Impact of mobility pattern, radio conditions and topology . 93
5.5.4.1 Impact of mobility pattern and radio conditions . . 94
5.5.4.2 Impact of topology 94

5.5.5 Impact of notifications on path stretch 95
5.5.6 Trace-driven urban mobility 96

5.5.6.1 User Performance 97
5.5.6.2 Network Cost . 98
5.5.6.3 Network topology and Mobility 99

5.6 MAP-Me and routing . 99
5.6.1 Proposed solution . 99
5.6.2 Correctness . 100
5.6.3 Evaluation . 100

5.7 Conclusions . 101

6 ParkMaster: visual analytics at the edge 103
6.1 Introduction . 103
6.2 Design . 107

6.2.1 Detecting parked cars . 109
6.2.2 Localizing parked cars . 110

6.2.2.1 Camera calibration 111
6.2.2.2 Car localization . 113
6.2.2.3 Smartphone localization 113

6.2.3 Counting parked cars . 114
6.2.3.1 Heuristics . 115

6.3 Implementation . 116
6.4 Evaluation . 117

6.4.1 Road-based experiments . 117
6.4.1.1 Car detection accuracy 118
6.4.1.2 End-to-end accuracy 119
6.4.1.3 Processing rate . 122
6.4.1.4 Data usage . 123

x CONTENTS

6.4.1.5 Fusion of parked cars analytics 123
6.4.2 Data pertinence to the parking search 124
6.4.3 Tuning car detection . 124

6.4.3.1 Tuning video parameters for accuracy 124
6.4.3.2 Tuning video parameters for performance 125

6.4.4 Measuring car localization error 126
6.5 Related Work . 127
6.6 Conclusion . 128

7 Conclusion 131

List of Figures

1.1 Smart city: Use cases . 2
1.2 Smart cities in the world. 3
1.3 Connected cars shipments forecast. 3
1.4 Fog computing in smart city. 7
1.5 Smart city: cas d’utilisation . 12
1.6 Smart cities dans le monde. 13
1.7 Prévisions des ventes de voitures connectées. 13
1.8 Fog computing dans le smart city. 17

2.1 Forwarding Process in an NDN node 22
2.2 NDN Interest and Data packets . 23
2.3 NDN testbed . 27
2.4 IoT devices categorization in the Fog 35
2.5 Cloud, fog and edge computation domains 37

3.1 V-NDN implementation framework 41
3.2 V-NDN: Testbed network configuration. 44
3.3 Mobility Patterns . 45
3.4 RTT Analysis . 47
3.5 V2X experiment: picture transfer 49
3.6 V-NDN Simulation Results . 50

4.1 Navigo: geo-areas and GeoFaces . 55
4.2 NDN and GeoFaces . 56
4.3 Intersection as forwarding points. 61
4.4 Navigo transmission time example 64
4.5 Performance with different music library size 66
4.6 Load on the infrastructure with different music library size 68
4.7 Infrastructure offload varying music library size 68
4.8 Navigo simulation results: mobile nodes as data provider. 69
4.9 Transmission queue length with different car density 71

5.1 MAP-Me-IU illustration. 78
5.2 Notifications/Discovery process example. 81
5.3 MAP-Me FIB/TFIB description. 82
5.4 Path stretch evolution . 88
5.5 Network with link capacity C=10Mb/s. 90
5.6 User performance: packet loss, delay, hop cont and hand-off latency. 91

xi

xii LIST OF FIGURES

5.7 Network cost: overhead, link utilization and sensitivity. 92
5.8 Path stretch and handoff latency for simulated network topologies . 94
5.9 Effectiveness of Tu timer . 96
5.10 User performance: packet loss, playout failures and network costs. . 97
5.11 Effects of routing update frequency on performance 101

6.1 ParkMaster deployed in a car’s windshield. 105
6.2 ParkMaster architecture. 108
6.3 Parked car detection – some examples 110
6.4 Coordinate systems used in ParkMaster’s design 111
6.5 From the 2D bounding box to the 3D car’s location 114
6.6 Car parked on the opposite side of the street. 116
6.7 Maps of the experiments on the road 118
6.8 On the road experiments . 120
6.9 ParkMaster end-to-end counting accuracy 121
6.10 Tuning parameters of a computationally-unconstrained car classifier 125
6.11 Impact of processing limits on detection accuracy 126
6.12 Localization error . 127

List of Tables

3.1 Cache vs Forwarding among Consumers and Mules 47

4.1 Traffic Application: Success Rate with 10% of producers 70

6.1 Experiments on the road – covered distance 118
6.2 Confusion matrix for accuracy evaluation. 119
6.3 On-road experiments: Error analysis. 122
6.4 Sensitivity analysis of video parameters on phone performance . . . 126

xiii

Publications

G. Grassi, P. Bahl, K. Jamieson, G. Pau. ParkMaster: An in-vehicle, edge-based
video analytics service for detecting open parking spaces in urban
environments. ACM-IEEE Symposium on Edge Computing (SEC). 2017

J.Auge, G. Carofiglio, G. Grassi, L. Muscariello, G. Pau, X. Zeng. MAP-Me:
Managing Anchor-less Producer Mobility in Information-Centric Networks.
Under submission at IEEE Transactions on Network and Service Management;
arXiv preprint arXiv:1611.06785

J.Auge, G. Carofiglio, G. Grassi, L. Muscariello, G. Pau, X.Zeng. Anchor–less
Producer Mobility in ICN. ACM ICN Poster. 2015

G. Grassi, M. Sammarco, P. Bahl, K. Jamieson, G. Pau. ParkMaster: Leveraging
Edge Computing in Visual Analytics. Mobicom Poster. 2015

D. Pesavento, G. Grassi, G. Pau, P. Bahl, S. Fdida. Car-Fi: Opportunistic V2I
by Exploiting Dual-Access Wi-Fi Networks. Mobicom Demo. 2015

G. Grassi, D Pesavento, G Pau, L Zhang, S Fdida. Navigo: Interest Forwarding
by Geolocations in Vehicular Named Data Networking. WoWMoM 2015

G. Grassi, D Pesavento, G Pau, R Vuyyuru, R Wakikawa, L Zhang. VANET via
Named Data Networking. IEEE INFOCOMM NOM Workshop. 2014

NFD developer’s Guide. Technical Report NDN-0021, NDN

xv

Introduction

The world population is moving to cities: as reported by the United
Nations [170], while in the year 2014 54% of the population was urban, the
estimations for 2050 say that two-thirds of the entire world’s population will be
living in cities. This constant growth and the complexity of city management is
driving local governments towards the integration of technology with the city
environment, to provide higher urban-life quality, better transportation and
public services, while reducing the costs. For those reasons, the concept of smart
city has gain popularity in the recent years. Frost and Sullivan [49] forecast that
by the year 2025 more than thirty cities around the world will become smart
cities or will have implemented some of the smart city’s features (Figure 1.2).
While there is no universally accepted definition for “smart city” and plenty of
variations are present in the literature [12], a good definition is provided by [26],
which defines “smart cities” as a technological intensive and advanced city that
connects everything and everyone, people, information, urban objects etc. in
order to create a more efficient, green and sustainable urban environment and
thus providing a higher quality of city-life (Figure 1.1 shows some examples). A
key role in such integration between city’s infrastructure and intelligent devices
is played by the Internet of Things. An urban IoT deployment is indeed able to
help monitoring and controlling the status and the efficiency of public areas,
parking, public transport systems, traffic, garbage collection etc., making the city
not only smart, but also connected.

One of the aspects that the design of smarter cities takes into consideration is
the private and public transportation, from increasing the travel efficiency to
decreasing accidents and costs and making the transportation experience more
conformable. At the same time, cars industry is investing large amount of money
on the concept of smart and connected car, designing vehicles with networking
and computation capabilities. [159] forecasts that the connected and smart car
market (including the related services) will be worth more than $150 billion by
2022, while BI Intelligence estimates that by the year 2020 the yearly production
of connected cars will be over 50 million (Figure 1.3). These two aspects together

1

2 Introduction

Figure 1.1: Smart city: Use cases

lead to a clear and natural conclusion: vehicles will play a key role in the smart
city of the future.

Cars will become at the same time information provider, service consumer,
sensors and actuators. This integration will lead to the next technological
transformation that will enable a wide range of new personal services in which
cars will play different roles: vehicles will be able to collect a large and valuable
quantity of information about the world that surrounds them, consume data
locally produced or available on the Internet, and finally, they will be the way
this information will be propagated, sharing data they collect but also helping
propagating the information other vehicles are collecting, being the carrier and
the forwarder of the data. Such scenario enables new use cases and new
possibilities for applications, but it also brings new challenges to the table, such
as high node mobility, communication disruptions etc.

Finally, an additional role may be played by cars. With the advancements in
computation and the reduction of its costs, a new concept has gained popularity
in the past few years: Fog computing. Instead of always relying on far away
nodes like the cloud, this concept places applications, data and processing at the
logical extremes of a network. By placing data and data-intensive applications at
the edge instead of some central node, the amount of data that needs to be

Introduction 3

Figure 1.2: Smart cities in the world.

Figure 1.3: Connected cars shipments forecast.

moved across the network and the traveled distance are reduced. Thus, with cars
already in posses of networking and computation capabilities, they are a natural
candidate to become edge nodes and process data in loco, without the constant
need of the cloud, spreading computation capabilities all over the city.

Summarizing, in the smart city of the future cars will be able to produce data
and sample the surrounding environment, consume local and global data, help

4 Introduction

others reaching their content and locally process large amount of data.

Challenges Even though smart cities are not far in the future and the
connected and intelligent car is almost a reality, there are still several challenges
to be addressed before we can see a fully operable smart city with vehicles
playing all the aforementioned roles.

First of all, the “connected car” concept presents several challenges, due to a
highly mobile environment and a heterogeneity of wireless technologies. Recently
manufactured vehicles are indeed equipped with a variety of wireless
communication interfaces such as 3G/LTE, WiMAX, WiFi, IEEE1901 (Power
Line Communication), and 802.11p (DSRC/WAVE). Ideally a car should be able
to utilize any and all of these interfaces to communicate with either
infrastructure servers or other vehicles as needed by applications. Whenever more
than one interface is available, the vehicle should be able to pick and choose the
best one or use multiple in parallel. However, the increasing number of vehicles
that are connected to Internet today, are mainly connected via cellular networks
only. The concept of connecting vehicles through Road-Side-Units (RSUs) has
long existed, but only certain regions or countries deployed them. Standards
have been developed for direct Vehicle-to-Vehicle (V2V) communication, however
the usage is limited to one-hop communication for collision prevention only.
There have been numerous publications exploring the use of V2V to support a
much broader range of applications, unfortunately those results are isolated point
solutions using various patches to overcome the limitations of TCP/IP, hence
lacking a basic framework to prove their utility. We believe indeed that the root
cause of this insoluble problem in vehicles networking that all those solutions face
resides in IP’s communication model. In IP’s paradigm indeed, the endpoints,
with their addresses, are the center of the communication. Data packets are
encapsulated into IP datagrams carrying the addresses of the endpoints, without
any connection to the data itself, which is hidden inside the datagram’s payload.
Even though what is relevant to the users is the data exchanged, the IP’s model
ignores this and focuses on the endpoints of the communication itself. Due to
this host centric characteristic of IP, the communication becomes susceptible to
any change of the endpoint’s network interface. A car moving and changing the
WiFI access point is associated with, or a momentarily switch from WiFi to 3G,
breaks (or at least deteriorate) the connection.

While this seems an insoluble problems with IP-based approaches (without any
patch), a new network paradigm may bring the solution within its design: the
Information Centric Networking paradigm (ICN). This recent network
architecture family moves from the host-centric paradigm of IP to a

Introduction 5

“information-based” paradigm, where each piece of information users want to
exchange is named. The focal point of the communication model is not the
endpoint nor the connection among two hosts, but is the exchanged content itself
and its name. The latter identifies the information exchanged and detached it
from the bit exchanged: data survives in the network after it has been transferred
and can be retrieved thanks to its name — the network is not anymore a pipe
that transfers anonymous series of bits, but a system of forwarding nodes able to
cache data and make it available afterwards by name, transparently, as if it is
produced by the node. In this architecture data becomes an independent object.
It does not depend on locations, applications and means of transportation. The
connectivity may be intermittent, mobility and multi access are the norm,
anycast, multicast and broadcast are natively supported. Finally, security is
embedded within the data itself. Data integrity and authenticity don’t depend
on the channel used, but can be verified by any node in the network given the
data packet and some public information (i.e. public key) of the producer.

Those factors lead us to believe that a shift in the Internet paradigm from the
IP’s host-centric model to the ICN information-centric model can be the
definitive solution for the diffusion of vehicular network in smart cities (and in
general can bring great benefits to the rest of Internet). Thus, we apply the
Named Data Networking paradigm, one of the ICN family architecture, to the
vehicular network, demonstrate its feasibility and efficacy on the field, evaluate
the challenges and address some of the unresolved questions, like how to
efficiently enable data retrieval through multi-hop V2V communication and how
to exploit NDN characteristics like caching and data naming to reach the desired
data.

The information-centric’s benefits however don’t stop at vehicular networks. The
natural support for mobility offered by ICN indeed makes it a good candidate to
define a radically new solution for the more generic mobility-management
problem and to provide a native integration into 5G networks, overcoming
limitations of the traditional IP-based approaches. If consumer mobility is
supported in ICN by design, in virtue of its connectionless pull-based
communication model, producer mobility is still an open challenge. We thus
extended our work to the more general network mobility problem and designed a
NDN based solution to maintain data reachability when the node producing the
content is a mobile node (thus not only car, but also other mobile devices as
smartphone, tablet etc.).

Computing at the edge: As previously mentioned, networking is not the only
aspect involved in the role of vehicles in the smart city of the future. Indeed,

6 Introduction

connectivity, together with computing capabilities, enable vehicles to not only
produce or consume data, but also to process it locally, becoming at all effects
mobile computing nodes, acting as edge nodes in a Fog architecture. This recent
paradigm proposes to exploit computing capabilities of nodes closer to user,
closer to where data is produced and consumed — the edge of the network — to
process data, instead of always relying on the cloud. The goals of such a
paradigm are reducing the connectivity/bandwidth requirements for the nodes —
less data needs to be transfered to the cloud and permanent connectivity to the
Internet may not be required — scalability, smaller delays (data transfer delay is
zero). Services, applications and computing tasks are pushed from far away
centralized point — the cloud — to nodes closer to the user — the edge. As
shown by Figure 1.4, typical examples where the edge computing approach can
be successful might be video surveillance data stream processing (e.g. vision
algorithms running at the edge to analyze video streams and upload to the cloud
only small summary to the cloud); user’s device support (e.g. smart-glasses or
smartphones may produce large quantity of video-data for augmented reality
tasks that needs to be processed in timely manner); traffic control (e.g. edges
close to the intersection collect real-time information about the traffic status and
promptly react to handle traffic more efficiently or to avoid accidents); etc.

Within the transportation domain, cars can play an important role in the edge
computing architecture. In-car devices and sensors and driver’s devices (i.e.
smartphone) can indeed produce a huge amount of data while sensing the
environment (i.e. information about location, telemetry, images and videos etc.)
and, even if the car is well connected, it’s unfeasible (or too expensive) to
completely rely on the cloud and upload everything. With in-loco computing
capabilities, thanks to car’s on-board smart unit (OBU) or user’s devices, a new
opportunity presents: local data can be processed and consumed locally, and
then, when needed, a (optionally smaller) version of it can be shared with other
vehicles or smart objects in the area with direct communication (i.e. V2V) or
uploaded to the cloud to make the information available to everyone.

With the progress in the computation capabilities of small mobile devices like
smartphones, the edge running within a car is not only a vision for the smart
city of the future, but a reality for the city of today. We believe indeed that,
while in the future in-cars devices will keep evolving and getting more efficient,
we already have all the components to start exploiting such a model — the
current technology is ready to bring computation capabilities close to the city
and to its habitants. For instance, we believe that with the plethora of different
sensors available inside a car, is already possible to sense the environment and
capture valuable information in loco — at the edge — without the need of

Introduction 7

Figure 1.4: Fog computing in smart city.

remote “super computers”, but simply relying on local devices’ computing
capabilities, like, for instance, user’s devices as smartphones. Being able to sense
the environments can indeed enable an enormous number of applications, from
safety (i.e. avoid cars or pedestrian accidents), real-time information about
traffic, roads status, parking availability etc. Especially considering the
advancements in vision algorithms and vision processing, one would expect to be
able to exploit the ubiquitous cameras (vehicles, video surveillance systems,
smartphones etc.) to make the next step in the urban environment sensing and
integrate traditional sensors systems with more rich vision-based approach. This
however, with cloud-based solutions, in particular when dealing with mobile
nodes, encounters several limitations because it requires continuous connectivity
to the Internet and an enormous bandwidth to upload data to the cloud to
process it. In contrast, in the fog-based architecture we envision, current local
devices’ computing capabilities (as the user’s smartphone has) allow to remove
those obstacles and make video-based on-car urban sensing available with the
current technology, as work presented in this thesis demonstrates.

8 Introduction

Contributions This thesis collects personal and collaborative work done during
my PhD program (the full list of co-authors is available in the “Publications”
section), resulting in the following contributions:

• The design and implementation of the first “NDN forwarder for vehicular
networks” running on real hardware (Chapter 3).

• The proof by on-the-field experimentations of the feasibility and the
benefits of NDN for VANET and the identification of the remaining
challenges (Chapter 3).

• The design of a mapping system between data names and data location to
facilitate the utilization of geographic forwarding techniques to the data
retrieval problem in VANET (Chapter 4).

• A road-topology based geographic forwarding mechanism for V2V (over
NDN) (Chapter 4).

• The design of an adaptive discovery and selection mechanism able to
identify the available data sources across multiple geographic areas and
quickly react to sudden changes in vehicle networks (Chapter 4).

• The proposal of a mobility-management mechanism that addresses the
micro (e.g. intra Autonomous Systems) producer mobility problem in
NDN, completely distributed and without relying on global routing updates
or on the assistance of some external network components (Chapter 5).

• The running proof that the current technology is ready for running
image-based machine learning techniques in the in-car edge, on today’s
smartphones, to capture valuable information about the surrounding
environment in real-time: the design, implementation and deployment of a
complete and running edge-based system that tackles the available
on-the-road parking location problem (Chapter 6).

• A novel lightweight tracking algorithm for car detection that uses location
estimates to “de-duplicate” multiple detections of the same parked vehicle
in a drive (Chapter 6).

• A new localization algorithm to estimate parked car location with a single
frame, without users interventions nor stereo vision (Chapter 6).

Thesis Outline In Chapter 2 a brief overview of Named Data Networking is
presented, followed by the state of the art description of Vehicular networks (in
particular routing and forwarding mechanism), node mobility solutions and Fog

Introduction 9

Computing. Later, Chapter 3 presents the description of the first attempt of
running NDN for VANET (dubbed V-NDN), while the evolution of its
forwarding scheme is presented in Chapter 4. Afterwards, MapMe, an
NDN-based approach to the producer mobility problem (Chapter 5) is presented.
Finally, Chapter 6 describes the design and evaluation of ParkMaster, a
visual-analytics based edge-system for the available parking spot search problem.

Introduction en Français

La population mondiale se déplace vers les villes: comme rapporté par les
Nations Unies [170], alors qu’en 2014, 54% de la population était urbaine, les
estimations pour 2050 indiquent que les deux tiers de la population mondiale
vivront dans les villes. Cette croissance constante et la complexité de la gestion
de la ville poussent les gouvernements locaux à l’intégration de la technologie
avec l’environnement de la ville, dans le but de fournir une meilleure qualité de
vie urbaine, de meilleurs transports et services publics, tout en réduisant leurs
coûts. Pour toutes ces raisons, le concept de ville intelligente (smart city) a
gagné en popularité ces dernières années. Les prévisions pour l’année 2025
indiquent que plus de trente villes dans le monde atteindront alors leur
transformation en villes intelligentes ou auront mis en place certaines
fonctionnalités de la ville intelligente (Figure 1.6). Bien qu’il n’y ait pas de
définition officielle de la ville intelligente et que de nombreuses variantes soient
présentes dans la littérature [12], une définition est donnée par [26], qui définit la
“smart citiy” comme une ville à la technologie avancée connectant l’ensemble des
gens, des informations et des objets urbains dans le but de créer un
environnement urbain plus efficace, écologique et durable et de fournir ainsi une
meilleure qualité de vie citadine (quelques exemples Figure 1.5).

L’Internet of Things joue un rôle clé dans l’intégration de dispositifs intelligents
au sein de l’infrastructure d’une ville. Un déploiement urbain de l’IoT a la
capacité d’aider à surveiller et à contrôler l’état et l’efficacité des espaces publics,
du stationnement, des systèmes de transport public, de la circulation, de la
collecte des ordures, etc. Des aménagements qui rendent la ville non seulement
intelligente, mais aussi connectée.

La conception de villes plus intelligentes passe par le transport, qu’il soit privé
ou public: depuis une plus grande efficacité du voyage à la diminution des
accidents et des coûts en passant par une expérience de transport plus agréable,
celui-ci est un paramètre essentiel. Dans le même temps, l’industrie automobile

11

12 Introduction

Figure 1.5: Smart city: cas d’utilisation

investit massivement dans le concept de voiture intelligente et connectée, en
concevant des véhicules aux capacités de réseautage et de calcul importants. En
2022 [159] prévoit une valorisation du marché des voitures intelligentes et
connectées à 150 milliards de dollars, alors que en 2020 il y aura une production
annuelle de plus de 50 millions voitures selon BI Intelligence (Figure 1.7) Ces
chiffres nous amènent à une conclusion évidente: les véhicules joueront un rôle
clé dans la ville intelligente du futur.

Les voitures seront à la fois fournisseur et consommateur d’information, capteurs
et actionneurs. La prochaine transformation technologique, annoncée par cette
intégration des voitures dans la ville, permettra le lancement d’une large gamme
de nouveaux services dans lesquels les automobiles joueront différents rôles. Les
véhicules pourront collecter une quantité importante d’informations sur le monde
qui les entoure et consommer ces données. Qu’elles soient produites localement
ou disponibles sur Internet, ces données seront donc propagées par les véhicules
eux-mêmes qui pourront les collecter depuis un autre véhicule, les transporter,
les partager. Un tel scénario ouvre de nouveaux champs d’utilisation et de
nouvelles possibilités pour les applications. Mais ces bouleversements nous
amènent également à faire face à de nouveaux défis, comme l’intense mobilité des
nœuds ou les perturbations de la communication.

Introduction 13

Figure 1.6: Smart cities dans le monde.

Figure 1.7: Prévisions des ventes de voitures connectées.

Enfin, un dernier rôle peut être joué par les voitures. Avec les progrès effectués
dans les calculs et la réduction de leurs coûts, un nouveau concept a gagné en
popularité au cours des dernières années: le Fog-computing. Les applications, les
données et leur traitement sont placés aux extrêmes logiques d’un réseau

14 Introduction

contrairement à une utilisation du cloud qui se base sur des nœuds distants. En
plaçant des données et des applications à forte intensité de données dans l’edge
et non dans un nœud central, la quantité de données qui doit être déplacée sur le
réseau ainsi que la distance parcourue sont réduites. Les voitures connectées et
possédant de fortes capacités de calcul, sont des candidats idéals pour devenir
des edge-node. Elles peuvent traiter des données en local, sans un besoin
constant de cloud, et diffuser leurs capacités de calcul dans toute la ville.

En résumé, dans la ville intelligente du futur, les voitures serviront à capturer
des échantillons d’information provenant de leur environnement, produire et
consommer des données locales et distantes, à aider d’autres véhicules à recevoir
le contenu souhaité et à traiter localement une grande quantité de données.

Défis Bien que les villes intelligentes soient aux portes de demain et que la
voiture connectée soit déjà bientôt une réalité, il reste plusieurs défis à relever
avant qu’une ville intelligente soit entièrement opérationnelle et dans laquelle les
véhicules joueraient un rôle prépondérant.

En raison d’un environnement hautement mobile et d’une hétérogénéité des
technologies sans fil, le concept de voiture connectée présente plusieurs défis. Les
véhicules récents sont en effet équipés d’une variété d’interfaces de
communication sans fil telles que 3G/LTE, WiMAX, WiFi, IEEE1901 (Power
Line Communication) et 802.11p (DSRC / WAVE). Selon les besoins des
applications, une voiture devrait pouvoir utiliser toutes ces interfaces pour
communiquer avec des nœuds sur Internet ou avec d’autres véhicules. Lorsque
plus d’une interface est disponible, le véhicule devrait pouvoir choisir le meilleur
ou en utiliser plusieurs en parallèle. Cependant, le nombre croissant de véhicules
qui sont actuellement connectés à Internet sont la plupart du temps uniquement
connectés via des réseaux cellulaires. Le concept de connexion des véhicules par
les unités de route (RSU) existe depuis longtemps, mais seules certaines régions
ou pays les ont déployés. Les standards ont été développées pour la
communication directe véhicule-véhicule (V2V), mais l’utilisation est limitée à
un “single-hop communication” pour parer à d’éventuelles collisions. De
nombreuses publications ont exploré l’utilisation de V2V pour supporter une
gamme beaucoup plus large d’applications. Malheureusement les résultats n’ont
apporté que des solutions isolées qui utilisent différents correctifs pour surmonter
les limitations de TCP/IP, sans solution générique. Nous croyons en effet que la
cause de ce probléme soit le modèle de communication IP: dans le paradigme de
l’IP, les points d’extrémité et leurs adresses, sont le centre de la communication.
Les paquets de données sont encapsulés dans les datagrammes IP portant les
adresses des points d’extrémité, sans aucune connexion aux données elles-mêmes,

Introduction 15

cachées à l’intérieur du datagramme. L’IP ne tient pas compte de la donnée
échangée, même si celle-ci est essentielle pour l’utilisateur, et se concentre sur les
points d’extrémités de la communication elle-même. A cause de cette
caractéristique centrée sur l’hôte, la communication est sensible à toute
modification de l’interface de réseau du point d’extrémité. En se déplaçant, une
voiture qui change le point d’accès WiFi auquel elle est associée ou passe
momentan du WiFi à la 3G casse, ou du moins détériore, la connexion.

Alors que les approches basées sur l’IP (sans aucun hack) semblent difficilement
exploitables, un nouveau paradigme de réseau apporte une solution dans son
design: le paradigme Centric Networking Information (ICN). Contrairement au
concept centré sur l’hôte (IP), cette récente famille de protocole de réseau est
basée sur l’information. Cette dernière, que l’utilisateur souhaite échanger, est
nommée. L’élément principal de ce modèle de communication n’est pas le point
d’extrémité ni la connexion entre deux hôtes, mais le contenu échangé lui-même
et son nom. Celui-ci identifie les informations échangées et les détache du bit
échangé: les données persistent dans le réseau après leur transfert et peuvent être
récupérées grâce à leur nom — le réseau n’est plus un tuyau qui transfère des
séries de bits anonymes, mais un système de relais de nœuds capables de stocker
temporairement en cache des données et de les rendre disponibles par la suite, de
manière transparente, comme si elles étaient produites par le nœud. Dans cette
architecture, les données deviennent un objet indépendant qui ne dépend plus de
l’emplacement, des applications ou des moyens de transport. La connectivité
peut être intermittente, la mobilité et les accès multiples sont la norme. Enfin,
anycast, multicast et broadcast sont supportées de façon native.

Ces facteurs nous amènent à croire que le passage d’un modèle IP centré sur
l’hôte à un modèle ICN centré sur l’information semble être la meilleure solution
à la diffusion d’un réseau de véhicules dans les villes intelligentes, et peut, de
façon plus générale, apporter d’excellents avantages au reste d’Internet. Ainsi, en
appliquant le paradigme Named Data Networking, l’un des protocoles de la
famille ICN, au réseau de véhicules, nous avons démontré sa faisabilité et son
efficacité sur le terrain, évalué les défis et abordé certaines des questions non
résolues, comme la façon d’activer efficacement la récupération de données avec
la communication multi-hop V2V et la façon d’exploiter les caractéristiques
types du NDN comme le caching et le nom de la donnée pour obtenir les
informations souhaitées.

Cependant, les avantages de l’ICN ne s’arrêtent pas au réseau de véhicules.
L’ICN supporte nativement la mobilité des nœuds, ce qui en fait un candidat
idéal pour définir une solution radicalement nouvelle pour le problème de gestion
de la mobilité. Il permet également de fournir une intégration native dans les

16 Introduction

réseaux 5G, en surmontant les limites des approches traditionnelles basées sur
l’IP. Si la conception même du protocole ICN supporte la mobilité des
consommateurs, en raison de son modèle de communication sans connexion, la
mobilité des producteurs reste un défi à relever. Nous avons donc élargi nos
recherches au problème plus général de la mobilité du réseau et conçu une
solution basée sur NDN pour maintenir l’accessibilité des données lorsque le
nœud produisant le contenu est un nœud mobile. Et pas seulement une voiture,
mais aussi d’autres appareils mobiles tels qu’un smartphone ou une tablette.

Calcul dans l’edge: Comme mentionné précédemment, le réseautage n’est pas
le seul aspect impliqué dans le rôle des véhicules dans la ville intelligente du
futur. En effet, la connectivité et la capacité de calcul permet aux véhicules non
seulement de produire ou de consommer des données, mais aussi de les traiter
localement. Ils deviennent ainsi des nœuds de calcul mobiles, agissant comme des
edge-node dans une architecture de Fog-computing. Contrairement à un modèle
basé sur le cloud, ce récent paradigme propose d’exploiter les capacités de calcul
des nœuds les plus proches à la fois de l’utilisateur, de l’origine des informations
et d’où elles sont consommées — le edge du réseau — pour traiter les données.
Les objectifs d’un tel paradigme réduisent les exigences de
connectivité/bandwidth pour les nœuds: une quantité moindre de données doit
être transférée sur le cloud et une connectivité continue à Internet n’est plus un
prérequis, ce qui induit une scalabilité et un délais inférieur (le délai de transfert
de données est null). Les services, les applications et les tâches du calcul sont
poussés du point centralisé distants — le cloud — aux nœuds les plus proches de
l’utilisateur — l’edge. Qu’il s’agisse du traitement de flux de données de
vidéosurveillance, avec l’exécution des algorithmes de computer-vision dans
l’edge pour analyser les flux vidéo et télécharger uniquement sur le cloud un
résumé des données; du support de l’appareil de l’utilisateur, avec la grande
quantité de données vidéo générée par les smart-glasses ou les smartphones pour
les tâches de réalité augmentée et qui doivent être traitées en temps réel; du
contrôle de la circulation, avec un edge proche de l’intersection qui recueille des
informations en temps réel sur l’état de la circulation et doit réagir rapidement
pour traiter le trafic plus efficacement ou pour éviter des accidents, ces différents
exemples démontrent le succès de l’approche du edge-computing (Figure 1.8).

Dans le domaine des transports, les voitures peuvent jouer un rôle prépondérant
dans l’edge computing. Les périphériques et les capteurs dans la voiture et les
périphériques du conducteur, comme son smartphone, peuvent effectivement
produire une grande quantité de données tout en détectant l’environnement
(informations sur l’emplacement, télémétrie, images, vidéos etc.). Et même si la

Introduction 17

Figure 1.8: Fog computing dans le smart city.

voiture est correctement connectée, il est impossible, ou trop coûteux, de
dépendre entièrement du cloud et de télécharger l’intégralité des données. Avec
les capacités de calcul in loco obtenues grâce à l’unité intelligente embarquée de
la voiture (OBU) ou aux périphériques de l’utilisateur, une nouvelle opportunité
se présente: les données locales peuvent être traitées et consommées localement,
puis, le cas échéant, une version, éventuellement plus légère, peut être partagée
avec d’autres véhicules ou avec des objets intelligents proches grâce à une
communication directe (i.e. V2V) ou téléchargés sur le cloud pour rendre
l’information à la portée de tous.

Avec le progrès des capacités de calcul des petits appareils mobiles comme les
smartphones, faire de l’edge-computing dans une voiture n’est pas seulement une
vision pour la ville intelligente du futur, mais une réalité pour la ville
d’aujourd’hui. En effet, alors que dans le futur les appareils automobiles
continueront d’évoluer et de devenir toujours plus efficaces, nous avons
aujourd’hui tous les composants pour commencer à exploiter un tel modèle: la
technologie actuelle est prête à apporter des capacités de calcul proches de la
ville et de ses habitants. Par exemple, avec la quantité de différents capteurs
disponibles à l’intérieur d’une voiture, il est à présent possible de détecter

18 Introduction

l’environnement et de capturer des informations précieuses in loco — sur l’edge
— sans avoir besoin d’un “super ordinateur” à distance, mais simplement en
s’appuyant sur les capacités de calcul des périphériques locaux, tel que le
smartphone d’un utilisateur. Avec l’analyse des environnements urbains, un
grand nombre d’applications est possible dans tous les domaines : la sécurité (i.e.
éviter les accidents de voitures et de piétons), les informations en temps réel sur
la circulation, l’état des routes, la disponibilité du stationnement, etc. Et L’edge
est essentiel pour permettre le développement de ces services.

Concernant les progrès des algorithmes de computer-vision, on s’attend
principalement à exploiter l’omniprésence des caméras (véhicules, systèmes de
vidéosurveillance, smartphones etc.) et ainsi passer à la prochaine étape de
l’analyse de l’environnement urbain: l’intégration des systèmes de capteurs
traditionnels vers des systèmes basées sur le computer-vision. Les solutions
basées sur le cloud, en particulier lorsqu’il s’agit de nœuds mobiles, sont soumises
à plusieurs contraintes dû à la nécessité d’une connectivité continue à Internet et
d’une immense bandwidth pour télécharger des données sur le cloud afin de les
traiter. Dans une architecture basée sur le fog-computing et comme cette thèse
tentera de le démontrer, la technologie et les capacités de calculs actuelles des
périphériques locaux permettent de supprimer ces obstacles et de réaliser une
détection sensorielle urbaine basée sur le video-processing dans les voitures.

Contributions Les contributions de cette thèse sont les suivantes :

• La conception et la mise en œuvre du premier “NDN forwarder pour les
réseaux de véhicules” fonctionnant sur des réel voitures (Chapitre 3).

• La preuve par les expérimentations sur le terrain de la faisabilité et les
avantages de NDN pour VANET et l’identification des défis restants
(Chapitre 3).

• La conception d’un système de mappage entre les noms et l’emplacement
des données pour faciliter l’utilisation des techniques de forwarding
géographique pour résoudre le problème de récupération de données dans le
VANET (Chapitre 4).

• Un mécanisme de forwarding géographique basé sur la topologie routière
pour V2V (sur NDN) (Chapitre 4).

• La conception d’un mécanisme de découverte et de sélection capable
d’identifier les sources de données disponibles dans de nombreuses régions
géographiques et de réagir rapidement aux changements dans les réseaux de
véhicules (Chapitre 4).

Introduction 19

• La proposition d’un mécanisme de gestion de la mobilité traitant du
problème de micro-mobilité (par exemple intra-autonome) des producteurs
dans NDN, entièrement distribué et sans compter sur les mises à jour de
routage global ou sur l’assistance de composants externes (Chapitre 5).

• La preuve que la technologie actuelle est prête à utiliser des techniques de
machine learning basées sur video-processing dans les voitures et les
smartphones, afin de recueillir des informations essentielles et en temps réel
sur l’environnement. La conception, la mise en œuvre et le déploiement
d’un système complet de localisation de stationnement disponible pour
voitures, dont le fonctionnement est basé sur edge-computing (Chapitre 6).

• Un nouvel algorithme basé sur l’image-processing qui utilise des estimations
de localisation afin d’effectuer une déduplication de les détections d’un
même véhicule stationné (Chapitre 6).

• Un nouvel algorithme de localisation pour estimer l’emplacement d’une
voiture garée grâce à une image unique, sans intervention ni de l’homme ni
de mesure stéréoscopique (Chapitre 6).

Résumé de la thèse Dans le chapitre 2, un bref aperçu de Named Data
Networking est présenté, suivi de la description de l’état de l’art des réseaux
véhiculaire, en particulier le mécanisme de routage et de forwarding, des
solutions de mobilité des nœuds et du paradigme du Fog-computing . Puis, le
chapitre 3 présente la description de la première tentative d’exécution de NDN
pour VANET (nommé V-NDN), tandis que l’évolution de son système de
forwarding est présentée dans le chapitre 4. A suivre, la description de MapMe,
une approche sans ancrage au problème de mobilité du producteur (chapitre 5).
Enfin, le chapitre 6 décrit la conception et l’évaluation de ParkMaster, un
système basé sur le video-processing dans l’edge pour le problème de la recherche
de stationnement disponible.

Chapter 2

State of the Art

In this chapter first a description of the Named Data Networking paradigm is
presented. Afterwards, the state of the art of VANET is discussed (focusing on
routing and forwarding techniques), starting from the IP-based solutions and
then continuing to the NDN approaches, more related to the techniques proposed
in the rest of this thesis. Remaining withing the ICN domain, the next section
discusses the literature about nodes network mobility. Finally, we conclude with
the description of Fog Computing.

2.1 Named Data Networking: NDN

2.1.1 Introduction

The Named Data Networking (NDN) architecture, introduced in [71], has its
roots in the Content-Centric Networking (CCN) project, publicly presented in
2006 by Van Jacobson. These proposals belong to the family of Information
Centric Network architectures, where we can also find the Data Oriented Network
Architecture (DONA) [80] and Network of Information (NetInf) [44] solutions.

In the NDN network, each application names the data it wants to fetch, and the
network uses these application data names directly to steer packets. Three actors
play fundamental roles in this architecture: data producers, consumers, and
router/forwarders; they communicate by using application data names directly
via two types of packets, Interest and Data (Figure 2.2). A producer names its
own data, a consumer sends an Interest packet to request a specific piece of
named data, routers forward Interests toward data producers based on the name
carried by the Interest and keep track of all the pending Interests. Each NDN
node maintains three major data structures: Content Store (CS), Pending

21

22 Chapter 2 State of the Art

Interest Table (PIT), and Forwarding Information Base (FIB). The CS caches
data packets received, which can be potentially useful to satisfy future Interest
packets. The PIT stores Interests that have been forwarded and waiting for
matching Data packets to return. The FIB is similar to IP router’s forwarding
table and is maintained by a name-based routing protocol. There is also a
strategy module that consults FIB in making Interest forwarding decisions. This
module is the core part of the forwarder, as it implements the different policies
for Interest transmission, for instance in case of multiple next-hop available, in
case of failures of previous Interest transmission etc.

When an Interest reaches a node (producer or router cache) with a matching
Data packet — the Data carries the same name of the Interest, plus some
optional name components appended e.g. data name “/home/temperature/13:00”
matches the Interest for “/home/temperature/” —, the Data packet follows the
PIT entries left by the Interest to get back to the consumer. For each arriving
Data packet, a router finds the entry in the PIT that matches the data name and
forwards the data to all downstream interfaces listed in the PIT entry. It then
removes that PIT entry, and caches the Data in the CS (see Figure 2.1). Note

Content
Store

Pending Interest
Table (PIT)

FIB
Interest ✗ ✓ ✗

forward
✓ Data ✓

add incoming
interface

✗

drop or
NACK

Content
Store

Pending Interest
Table (PIT)

✗

Data ✓ forward

discard Data

cache

Downstream Upstream

✗ lookup miss ✓ lookup hit

Figure 2.1: Forwarding Process in an NDN node

that neither Interest nor Data packets carry IP addresses; Interests are forwarded
toward data sources based on the names they carry; Data packets return based
on the PIT information set up by the Interests at each hop. The names used in
communication are independent from which interface one wants to use, or from
whichever nodes the data may come from. Data security and authenticity is
embedded by design in the architecture: a producer can encrypt the data if
needed and can append a cryptographic signature to the Data packet, binding
the name with the content. Consumers (or forwarding node) can verify the

Chapter 2 State of the Art 23

Figure 2.2: NDN Interest and Data packets [71]

authenticity of a Data packet by checking its signature, no matter from where
the packet is coming from, the original producer or a cache in the network.

2.1.2 Design

Naming The entire NDN architecture is based on naming data and fetching it
only based on its name. Thus, the names — or prefixes — play a fundamental
role in NDN. By design, names have a hierarchical structure, they are made of
multiple components (whose boundaries are indicated by “/” in the text
representation). Such a structure allows to define a relation between parts of the
same hierarchy and enables prefix aggregation, which facilitates routing
scalability. For instance, the prefix “/ndn/NewYorkTimes/” stored in a router
may allow the node to properly forward all the Interest for the New York Times
newspaper i.e. “/ndn/NewYorkTimes/01May2017/Sport/” for the Sport page
published the first of May 2017, and
“/ndn/NewYorkTimes/02April2017/Economy/” for the Economy section
published in April 2017 etc.

In addition to routing scalability, name hierarchy, together with conventions
between producer and consumer, allow the definition of relations among parts of
the same data at the application level. For instance, in the case of a video with
multiple versions, composed by several chunks (or segments), a name component
may be used to specify the version, while the segment may be indicated by the
next component. For example, in order to get the second segment of the version
one of video A on Youtube a consumer would have to issue Interests for
“/Youtube/videoA/1/2”, followed by “/Youtube/videoA/1/3”,
“/Youtube/videoA/1/4” etc. for the next segments of the video.

It must be noticed that such a convention is known by the applications only.
Routers in the network are not aware and don’t need to be. These nodes only
know how to separate components of the same prefix and apply prefix matching
(string matching) to process and forward packets.

24 Chapter 2 State of the Art

As already stated, a piece of information is identified by a name, which is used
by the network to retrieve the correspondent Data packet. However, this doesn’t
mean prefixes must uniquely identify a Data packet in the entire network.
Indeed, while this may be true for all the content available globally, for local
data the uniqueness of the prefix is only local, and depends on the context i.e. if
I’m in my house and I’m broadcasting an Interest for “/livingroom/temperature”,
the request refers to the temperature of my living room. The same prefix in a
different house refers to the temperature of a different living room.

While guidelines for data-naming have been set in place already, several
questions are still unanswered and the name design can be still considered an
open research problem. Testbeds, pilot experiments on the fields and the design
of new NDN-based applications drive the efforts of the entire NDN community
towards a better naming design.

Security In contrast with IP, where security is a function of where or how the
data is obtained, NDN takes a different approach and secures the data itself. By
design, trust and protection become properties of the content instead of being
related to the channel over which the data travels. Applications are indeed
forced to sign each piece of data, together with its name, creating a secure bound
between them. Thanks to this bound, given a data packet and producer’s public
key, any node in the network can (1) verify its integrity (is the content intact and
complete?); (2) verify its pertinence, which is explicit in the name, and, (3)
validate data provenance (based on the key and the “signed info” packet field –
Figure 2.2). Embodying security in content reduces the trust requirements on
the network and, in contrast with IP, allows the applications to retrieve “trusted”
data also from nodes different from the original source. Keys are content in
NDN, thus, as for normal content, producers name keys and use those names to
indicate which public key is needed to verify the signature of the produced data
packet. As for normal data packet then, consumers, in addition to use the
signature to verify and authenticate the packet, match data and key names to
verify whether the key is authorized or not to sign that packet. In order for
producers and consumers to select and retrieve the proper key to use for a specific
data packet, a set of trust rules and schemas have been introduced in [175].

Finally, in case of private information, content (or even names) may be
encrypted. Such an encryption is completely transparent to the network, and the
decryption keys are distributed as standard data packets.

Chapter 2 State of the Art 25

Forwarding and Routing Interest are forwarded based on names, applying
longest prefix matching against FIB. Using the previous New York Time example
for instance, the “/ndn/NewYorkTimes/” rule indicates the next hop where to
forward Interest for any content published under the “/ndn/NewYorkTimes/”
name e.g. Interests for “/ndn/NewYorkTimes/02April2017/Economy/page1” or
“/ndn/NewYorkTimes/01May2017/Sport/” would match the aforementioned
entry in the FIB. However, in case of a FIB storing also a rule for
“/ndn/NewYorkTimes/02April2017/Economy/”, the first Interest
(“/ndn/NewYorkTimes/02April2017/Economy/page1”) would now be forwarded
based on the second rule, due to longest prefix match.

Using names to forward and route packets eliminates some of the well-known
issues of IP. First of all, names are independent of the network interface used for
the communication, thus multi-homing and network mobility don’t represent an
unsurmountable issue anymore — changing the IP address in use doesn’t break
the communication, the names are still the same and the Data packet simply
follow the reverse path taken by the Interest.

In addition, in contrast with the IP addresses, the names domain is virtually
unbounded, thus the address exhaustion problem is no longer present in NDN.
Furthermore, since packet forwarding is prefix-based, the addresses of the
endpoints don’t need to be exposed — NAT traversal doesn’t constitute a
problem.

While at the forwarding level NDN routers do longest prefix match against the
FIB to forward Interest, at the routing level several NDN-based routing
protocols have been designed. In particular, NLSR [65] (a Link State Routing
protocol) and Hyperpolic routing [91].

Data Plane While the Interests are forwarded based on FIB, Data packets
follow the inverse-path of the request — they are forwarded based on the content
of PIT. Whenever a node forwards an Interest, it records its prefix, a nonce (a
random number carried by the Interest) and the incoming face in the Pending
Interest Table (PIT). Such an entry is removed only when a timeout occurs or
when a matching Data packet is received. In the latter case, the packet is
forwarded on all the incoming faces specified by the PIT entries matching the
data name — all the faces where the Interests that requested the Data packet
are coming from.

In addition to Data packet forwarding, the PIT serves to avoid loops in the
network: whenever a node receives an Interest already present in its PIT (same
nonce), it drops the packet, stopping the loop. This loop-free nature of NDN

26 Chapter 2 State of the Art

relieves the forwarding strategy and the routing from any burden in loop
avoidance i.e. the PIT will stop the loop, thus the node is free to send Interests
over any or all available links. Furthermore, in case of PIT’s timeout, the PIT
can be used to detect requests’ failures (which can be caused by congestion,
packet loss, issues with the producer etc.) at the packet level, with a
round-trip-time delay. Finally, by recording the incoming faces of the Interests,
the PIT naturally supports multicast delivery: in case of multiple requests for
the same data (with different nonce — different requester), the Data packet is
forwarded over all the faces listed by the PIT entry.

Caching In the NDN architecture each node has a Content Store, a cache to
store Data packet in the event that they may be useful again to satisfy other
Interests. Whenever a node receives a request, it checks the CS and in case of
prefix match, satisfies the request by sending the Data packet to the consumer
using the incoming face of the Interest. In contrast with IP-based solutions,
which can also have in-network caches, in NDN a Data packet is identified by its
name and thus can be re-used multiple times to satisfy different Interests at
different moments — the Data packet is not bound to the specific
consumer-producer communication that caused its transmission, but it is an
independent entity, with its own meaning, given by its name. Furthermore, as
already discussed in the security section, each data packet is signed by the
producer, which allows, even in case of content coming from CS, verification of
data integrity and provenance by any node in the network.

2.1.3 NDN project current status

The efforts of the entire NDN community has been directed towards the design
and development of an open platform available to researcher for the design,
testing and deployment of new NDN-based solutions at large scale. The core
component of such a platform is the NDN Forwarding Daemon (NFD),
developed by a joint effort of several institutions and developers [8]. Such a
daemon runs on the NDN testbed shown in Figure 2.3, which currently1 includes
34 nodes across four continents.

1June 2017.

Chapter 2 State of the Art 27

Figure 2.3: NDN testbed

2.2 Vehicular Networks

2.2.1 IP-based solutions

VANETs have been studied for decades and plenty of works have been done, in
particular on routing and forwarding. Reusing the classification of [94], it’s
possible to categorize the state of the art in Ad Hoc, position-based,
cluster-based, broadcast and geocast routing approaches.

The first protocols that need to be mentioned in the Ad hoc routing category
are AODV (Ad hoc On-demand Distance Vector) [123] and DSR (Dynamic
Source Routing) [75]. While these two protocols have been designed specifically
for MANET and it has been proven that they have limitations in highly dynamic
scenarios (like VANET), some modifications to address those scenarios have been
proposed in the literature. For instance, PRAODV and PRAODVM [111] are
both modifications to AODV that use mobility predictions in the routing decision
process. The first predicts links duration based on cars speed and location and
tries to find new alternative paths before the estimated link duration is over —
thus before the link actually breaks. PRAODVM’s approach is similar, with the
only difference in the route selection policy: instead of picking the shortest path,
PRAODVM selects the more stable, the one with the maximum predicted
lifetime. The main limitation with both approaches consists in the mobility
prediction, whose accuracy highly affects the performance of these routing
protocols. Another modification of AODV is proposed in [117], where an
approach similar to LAR [79] is used: a zone of relevance (ZOR) is specified, and
the route requests defined in AODV are forwarded only within the desired ZOR.

In the cluster-based category fall all the protocols proposing a virtual network
built by clusters of nodes. Typically, nodes within a cluster communicate among

28 Chapter 2 State of the Art

themselves with direct links while for inter-cluster communications and cluster
coordination a head-node for each cluster is selected. Similarly to the Ad Hoc
routing case, also for the cluster-based category the protocols designed for
MANET encounters limitations, due to the high dynamism of the VANET,
different user behavior and different mobility characteristics (i.e. cars’
movements are constrained by roads). Among the cluster-based protocols
designed specifically for VANET, we have COIN [30], which selects the head of
each cluster taking into considerations vehicular dynamics and drivers behavior.
LORA_CBF [130] instead defines different roles for each cluster: the cluster
head, the gateway (a vehicle connected to multiple clusters) and cluster
members. A greedy routing approach is used to route a packet towards its
destination. However, if the latter is unknown, the head of the cluster and the
gateways take care of finding its location, by sending location requests. Finally,
[96] proposed a cluster-based approach for data dissemination in VANET. In
contrast with Ad Hoc routing protocols, cluster-based approaches usually have
good scalability for large networks. However, maintaining a cluster may become
an issue when cars come and go.

In the broadcast category we can find protocols used for data-dissemination
that requires multi-hop communication, like, for instance, the delivery of road
condition messages, advertisements, traffic condition etc. In this category, in
addition to the simple flooding approach, we have BROADCOMM [45], designed
specifically for highways, that divides the road in virtual cells and, based on cars’
positions, assigns the role of cell reflector to some specific vehicles. Each reflector
handles the forwarding of packets coming from different cells, reducing therefore
the overhead. UMB [81] implements a forwarding node selection process based
on distance to the sender and a “request-to-broadcast clear-to-broadcast” process
similar to RTS/CTS. Finally, V-TRADE and HV-TRADE [143] divides
neighbors in different forwarding groups (based on position and movements). For
each group, only a subset of nodes are enabled to forward packets.

The Position-based category includes the protocols that uses information like
road topology and traffic status in the routing process. In this category, although
not IP-based, we can found the protocol discussed in chapter 4. Among the
IP-based routing protocols instead, we can find GPSR (Greedy Perimeter
Stateless Routing) [76], one of the most known position based routing, which
mixes greedy routing with face routing when the first fails to deliver the packet
to the destination. GSR (Geographic Source Routing) [99] integrates streets map
with the routing process: given the location of the destination, the paper
proposes to use Dijkstra’s shortest path to find the list of road-intersections that
need to be crossed to reach the destination. GPCR (Greedy Perimeter

Chapter 2 State of the Art 29

Coordinator Routing) [100] picks cars at the road intersections as “coordinator”.
In order to deliver a packet, the protocol uses a greedy approach, where only the
coordinators can forward the packets. Whenever the greedy approach fails, a
repair strategy is put in place in order to exit the local minimum. Similarly to
GSR, A-STAR [97] computes the list of intersection that a packet should cross to
reach its destination. In order to compute such a path, A-STAR takes into
consideration the traffic level on each street. In addition, whenever a local
minimum occurs, the area is momentarily marked as unavailable in order to
avoid other packets to fall in the same local minimum. GpsrJ+ (Gpsr
Junction+) [88] aims at improving GPCR performance by using a digital street
map in order to identify vehicles at a junction and by using information about
the next hop after the coordinator to predict forwarding directions (whenever the
direction doesn’t change, the packet can be forwarded directly by the next hop
without passing by the coordinator). Position-based Directional Vehicular
Routing(PDVR) [147] tries to maintain a stable route based on vehicles’ position
and direction, and the position of the destination: the next hop should be
traveling in the same direction as the source vehicle and lie in the direction of the
destination. In the improved greedy traffic aware routing protocol (GyTAR) [72]
the selection of the roads a packet should traverse takes into consideration the
distance to the destination and the traffic density. In order to obtain the latter,
each road is divided into small cells, with one group leader, which takes care of
gathering and exchanging traffic level information. Topology-assisted
Geo-Opportunistic Routing (TO-GO) [90] improves GpsrJ+ with opportunistic
forwarding. TO-GO identifies a forwarding set between sender and anchor node,
and the nodes compute a waiting time before forwarding a packet based on their
distance to the anchor. GeoDTN+Nav [41] combines different approaches, such
as greedy, perimeter and DTN: packets are first forwarded in greedy mode, and
pass to recovery mode if a local maximum is reached. Whenever the recovery
mode fails, the third, final mode, is entered, the DTN mode. Finally, Landmark
Overlays for Urban Vehicular Routing Environments (LOUVRE) [89] defines an
overlay network on top of the urban topology, where junctions are nodes of the
network and a link exists only if the estimated traffic density on the
corresponding road can guarantee multi-hop network connectivity among the two
intersections. The resulting network is used to computes routes.

The geocast includes all the position-based approaches whose goal is to deliver
messages to all the nodes in a specific area. In this category we have [35], that
addresses the broadcast storm problem by introducing a distance to the previous
hop based waiting time before forwarding a packet: longer is the distance
between a node and the sender, smaller is the waiting time before forwarding the
packet. [23] takes a similar approach in order to propagate alarm messages in

30 Chapter 2 State of the Art

case of emergency. The use of caching is instead proposed by [103], where a small
cache is added to the routing layer, allowing packets that cannot be delivered
instantly to be momentarily cached.

2.2.2 NDN-based solutions

The literature on VANET doesn’t stop at IP-based solutions, but it extends also
to the Information Centric Network family of architectures.

First, in 2010, [25] proposed a generic network framework dubbed “Information
Centric Networking on Wheel” with an overlay network to guarantee the
coexistence with IP protocols. The paper argues that in-network and
decentralized data replication would be beneficial for vehicular applications and
focuses on the spatial and temporal scope of the carried data in such an
environment.

In the same year [162] explored the naming scheme for vehicular application and
has a first and preliminary discussion about the benefits of the ICN (specifically,
NDN) approach in VANET. The paper designs a data collection system to
collect information from cars i.e. for monitoring or alert purpose, where RSUs
are used to broadcast Interests and retrieve information produced by vehicles.

Afterwards, in 2011, [20] applied the CCN framework to evaluate safety data
dissemination in VANET, when cars are equipped with multiple radio interfaces.
The paper introduces a new type of unsolicited packet for emergency messages
and a prioritization mechanism to speed-up the transmission of certain type of
packets.

In 2012 [17] presented CRoWN, a content centric approach implemented on top
of the IEEE 802.11p protocol. The paper proposes a two-phase data recovery:
first flooding is used to retrieve the first chunk and “discover” the path to the
producer. Later on, Interests for the next chunks are forwarded only along this
path — by cars that have seen the first chunk — implementing a hop-based
distance to the producer mechanism to decide which nodes should forward the
requests. [165] evaluates the V2V direct communication, use cases and
requirements and analyze the naming design from an application point of view.
[163] shows that when applications use location-based data, encoding
geolocations into names may be beneficial for the Interest forwarding process. It
also proposes to randomize packet forwarding based on distance from previous
hop to avoid collision and utilize implicit acknowledgment to abort transmission
(nearby car forwarding the same packet), focusing on the highway scenario. [16]
presents a preliminary evaluation of the Content Centric approach to VANET

Chapter 2 State of the Art 31

(CCVN), showing its advantages over TCP/IP based solutions. [145] applies
network coding techniques to improve content delivery and dissemination,
exploiting redundant path. [177] uses bloom filters (BFR) to pro-actively
advertise the name prefixes to facilitate the retrieval of popular content. The
network is divided in a hierarchy of clusters and bloom filters are advertised by
the heads of the clusters.

In 2013, with [61] started my work on NDN: we sketched the first
implementation of NDN for VANET on real hardware, including both V2V and
V2I aspects in its (preliminary) evaluation. [19] enhance authors’ previous work
about CCVN [16]. The paper proposes deferring transmission timer to exploit
broadcast communication while limiting the broadcast storm problem. In [176]
cars exchange encounter information and the Interest is flooded only when the
location of the content is unknown. Otherwise, geo-routing techniques are used
to retrieve the data. Finally, [18] addresses two different problematics in
VANET, packet segmentation and reliability. Authors evaluate the best chunk
size for Data packets and propose a consumer-driven retransmission policy
whenever an Interest remain unsatisfied.

In 2014, the paper “VANET via named data networking” [59] extended [61]’s
designs, implementation and evaluation of NDN for V2V and V2I urban
scenarios. This paper constitutes the beginning of my work on NDN for VANET
during my PhD and it is discussed in chapter 3.

Later on, [11] proposes a periodic exchange of information among neighboring
nodes, the list of Interest satisfied by the node (RLS), in order to built a list of
Interest satisfied by neighbors (NSL). This list is then used to decide which node
should forward the Interests. [178] extends previous work [177] and proposes a
distributed bloom filter aggregation reliving the heads of the clusters from the
need to advertise prefixes bloom filters.

The routing and forwarding problem in content centric based VANET has been
the focus of plenty of other works. Among the works which propose geo-based
strategies, we can find [98] that support geo-tagged name based information, [28]
and [29].

2.3 Producer’s mobility

Many efforts have been made to define mobility-management models for IP
networks in the last two decades, resulting in a variety of complex, often not
implemented, proposals. A good survey of these approaches is RFC 6301 [183].

32 Chapter 2 State of the Art

Likewise, within the ICN family, different approaches to mobility–management
have been presented [155]. In DONA [80] mobile publishers unregister and
re–register their information at each handoff to the hierarchy of resolution
handlers. Such an update process, however, may incur in a non-negligible
messaging overhead to eliminate stale registration across the network [171].
Similarly, NetInf [10] and JUNO [153] report network mobility events to a
resolution service, which may incur in network load in case of high
mobility [154]. PURSUIT [50] instead uses a rendezvous system to handle
network mobility, which requires notification to the topology manager at each
handoff and, in some cases, the re-computation of the forwarding identifier used
to compute the path to the producer, affecting the handoff delay [171, 154].
Finally MobilityFirst [135] uses a global name resolution service (GNRS), which
is updated when a node changes point of attachment. When facing
high-frequency mobility, those so-called Resolution-Based (RB) approaches
present a similar trade-off: for every packet the consumer has to resolve the
producer’s location or use stale information and run the risk to reach an old
position, incurring in timeout, or Nack, etc.

Specifically for the CCN/NDN solutions, several surveys of mobility-management
approaches can be found [180, 48]. In [180] for instance, the authors distinguish
three categories of solutions – routing, mapping, and tracing-based – depending
on the type of indirection point (also called Rendez-Vous, RV). We build on such
classification and extend it to distinguish a fifth class of approaches not relying
upon the existence of any fixed anchor point as the RV (Local Routing):

a) Routing-based (RT) solutions rely on intra-domain routing, and require
updating all routing in the AS after a mobile’s movement. Scalability of these
solutions is widely recognized as a concern which explains why they are usually
ruled out, in particular for CCN/NDN where the name space is even larger than
IP.

b) Resolution-based (RB) solutions rely on dedicated RV nodes (similar to
DNS) which map content names into routable location identifiers. To maintain
this mapping updated, the producer signals every movement to the RV
node [64, 74, 93, 77, 9, 78]. Once the resolution is performed, packets can be
correctly routed from the consumer along the shortest path, with unitary path
stretch (defined as the ratio between the realized path length over the shortest
path). Requiring explicit resolution, together with a strict separation of names
and locators, RB solutions involve a scalable CCN/NDN routing infrastructure
able to leverage forwarding hints [64, 74]; however, scalability is achieved at the
cost of a large hand-off delay as evaluated e.g. in [77, 48] due to RV update and
name resolution. To summarize, RB solutions show good scalability properties

Chapter 2 State of the Art 33

and low stretch in terms of consumer to producer routing path, but result to be
unsuitable for frequent mobility and for reactive rerouting of latency-sensitive
traffic.

c) Anchor-based (AB) proposals are inspired by Mobile IP, and maintain a
mapping at network-layer by using a stable home address advertised by a RV
node, or anchor. This acts as a relay, forwarding through tunneling both
interests to the producer, and data packets coming back. This is for instance the
case in [87], where the producer changes its prefix after each movement and then
sends an update message to its anchor to notify it of the change. In such context,
anchor’s placement is critical for the performance of the approach.
MobiCCN [166] uses distributed anchors and selects the closest in a hyperbolic
space.

Advantages of this approach are that the consumer does not need to be aware of
producer mobility and that it has low signaling overhead because only the anchor
has to be updated. It however inherits the drawbacks of Mobile IP – e.g.
triangular routing and single point of failure – and others more specific to the
CCN/NDN context: potential degradation of caching efficiency, bad integrity
verification due to the renaming of content during movement. It also hinders
multipath capabilities and limits the robustness to failure and congestion initially
offered by the architecture.

c) Tracing-based (TB) solutions allow the mobile node to create a hop-by-hop
forwarding reverse path from its RV back to itself by propagating and keeping
alive traces stored by all involved routers. Forwarding to the new location is
enabled without tunneling. Like AB though, this approach assumes that the
data is published under a stable RV prefix. Kite [181] introduced this approach
and proposed storing traces in the PIT to build a breadcrumb trail which could
be followed by crossing consumer interests and thus provide a shortcut towards
the producer. While it exploits CCN/NDN data plane features without requiring
a separate control infrastructure, Kite involves a large signaling due to keep-alive
messages to maintain active traces stored in PITs. The idea of creating a reverse
path to a stable home router is also expressed in [62], where the authors propose
a similar tracing-based approach, leveraging updates in FIB, rather than in PIT,
and sending updates to both RV and previous PoA.

e) Local Routing (LR) approaches allow the mobile nodes to advertise their
mobility to part of the network without requiring any specific node to act as a
RV. In case of handoff, only a small part of the network is aware of the
movements and acts to maintain producer reachability. Typically the region of
updated nodes is determined based on the current location of the producer,

34 Chapter 2 State of the Art

without the need of predefining nodes in the network to act as RV point between
consumer and producer.

These approaches are less common and introduced in CCN/NDN to enhance the
reactivity with respect to AB solutions by leveraging CCN/NDN name-based
routing. [124] exploits multicast and directs the same Interest to the nearby
PoAs of the producer. In [173] and in the Interest Forwarding scheme proposed
in [77], the mobile producer sends a notification to its current PoA before
moving. The PoA starts buffering incoming Interests for the mobile producer
until a forwarding update is completed and a new route is built to reach the
current location of the producer. Enhancement of such solutions considers
handover prediction. Besides the potentially improved delay performance w.r.t.
other categories of approaches, some drawbacks can be recognized: buffering of
Interests may lead to timeouts for latency-sensitive applications and handover
prediction is hard to perform in many cases. [115] instead introduces proxy
nodes at the edge of 3G/4G architectures and uses tunnels to forward Interest
from the former PoA to the current edge. The solution, however, is specific to
cellular network.

Finally, in-network caching and name-based routing techniques also enable a
routing-to-replica approach abstracting consumers from producer movements
(referred to as data depot in [180]). However, such an approach is not suitable
for realtime applications or targeted to unpopular content, which may be
replaced in cache due to memory limitations. A study of the advantages for
popular items can be found in [74].

2.4 Fog Computing

In 2012 Cisco introduced the term “Fog computing” [32]. This approach extends
the concept of cloud and pushes some of the network and computing tasks from
the cloud to devices closer to the end-user, towards the “edge of the network”.

The initial definition of Fog computing can be synthesized as a network
architecture that uses a multitude of end-users’ devices or close to the users
edge-devices to perform some of the tasks that traditionally the cloud performs,
from storage (instead of rely entirely on remote data centers), communication
(instead of sending everything to the cloud), sensor management, control and
configuration.

However, the term Fog computing doesn’t identify one single specific
architecture, but a more generic approach of pushing the intelligence closer to

Chapter 2 State of the Art 35

Figure 2.4: Fog architecture: Categorizations of IoT devices based on their compu-
tational capabilities [120].

the end-user, promoting to use leaf nodes (close to the user) as much as possible,
in a collaborative manner if needed, and of course taking into consideration the
limitations of those devices (power, computation etc.). [157] tried to make some
clarity and expanded the Fog computing concept is such a way: “Fog computing
is a scenario where a huge number of heterogeneous (wireless and sometimes
autonomous) ubiquitous and decentralized devices communicate and potentially
cooperate among them and with the network to perform storage and processing
tasks without the intervention of third parties. These tasks can be for supporting
basic network functions or new services and applications that run in a sandboxed
environment. Users leasing part of their devices to host these services get
incentives for doing so”.

Instead of sending all the collected data to the cloud, Fog (or Edge [119])
computing suggests to process (at least partially) the data in-loco — closer to
where it has been produced — at leaf nodes or at the edges (the so called “edge
analytics” approach). Pre-processing data at the edge allows to address some of
the weakness of the cloud, to reduce delays and bandwidth requirements, to
bring context-awareness to the computation etc.

While there is no strict definition, usually as fog (edge) nodes are considered
those devices with some (limited) capabilities to process or store data and to
move it across the network. Figure 2.4 shows the classification of edge nodes
adopted by [120], which includes small low-end sensor nodes, devices as
Raspberry and Arduino boards, and more sophisticated and powerful — but still
limited — devices as smartphones and tablet. All of those devices (smart plugs,
smart fridge, smart-watch, smart-phone etc.) can become a leaf node and
perform “edge analytics”.

36 Chapter 2 State of the Art

2.4.1 Use cases

With the proliferation of IoT and smart devices and the diffusion of smart cities,
plenty of applications can be found for the Fog architecture. Anywhere large
amount of data is produced and needs to be processed (at least partially) locally,
the Fog can play an important role and improve efficiency, reactivity, privacy or
security. Briefly, here are listed few use cases already described in literature [120]:

• Smart Agriculture: projects like Phenonet [132] have already presented
case studies about the smart agriculture concept, where sensors are used to
constantly monitor and control all the agricultural activities. In such a
scenario, context information is crucial and data has to be collected in a
timely and location-sensitive manner in order to optimize both agricultural
activities and data collection (i.e. data collection frequency based on
weather, temperature etc.) [121].

• Smart Transportation: this use case may include for instance pollution
sensors deployed in public buses, taxis etc., but also infotainment, safety,
traffic support, and analytics services for the connected car [32].

• Smart Health and Well-Being: this is the case of wearable devices
designed to monitor the health status of the user (i.e. hearth rate, blood
pressure etc.), where the edge that process the raw data and that can take
the immediate decisions may become, for instance, the user’s phone. An
example of such a case can be found in [179]. The authors propose to use
the fog computing architecture to develop a brain computer interaction
application and pre-process EEG data at the edge.

• Smart Waste Management: sensors can be deployed to optimize
garbage collection strategies (i.e. on the garbage bin) or to monitor the
waste management process without human intervention. In this case the
edge can play the role of data collector and aggregator and upload to the
cloud only a smaller version of the data set.

• In addition, other uses cases are represented by Smart Retail Store
Automation (i.e. advertisement); Smart Power Grid (i.e. optimization,
fast recovery after disruptions); Smart Greenhouse Gases Control;
Smart Water Management etc.

Chapter 2 State of the Art 37

Figure 2.5: Computation domain of Cloud, Fog, Edge,Mobile Cloud and Mobile Edge
computing [102].

2.4.2 Related work

Similar concepts to the Fog computing are present in the literature [102, 128].
Here the most relevant are briefly discussed (Figure 2.5).

Edge Computing The term “Edge computing” has been proposed by [54]. The
main concept is, as for Fog computing, to bring computation tasks closer to the
source of the data. This architecture enables data processing at the edge of the
network [158], on devices like end-devices (i.e. smartphones, IoT devices), edge
devices (i.e. border routers, base stations, wireless access points etc.) and edge
server. A federation of edge-centric distributed services is deployed across small
“data centers” at the edge of the network, which may collaborate with each other
in a peer-to-peer fashion to complete the task. By handling the computation at
the edge — closer to the source of data — delays for computational services are
usually lower. In contrast with Fog computing, however, generally Edge
computing focuses only at the edge of the network, without including cloud
services [138].

38 Chapter 2 State of the Art

Mobile Edge Computing The concept of Mobile Edge Computing (MEC) was
initially introduced in 2013 by IBM and Nokia [110], as a platform to run
applications and services within a mobile base station. Afterwards, in 2014,
ETSI started the Industry Specification Group (ISG) for Mobile-Edge
Computing [109], and extended the Mobile Edge Computing concept to an
architecture that provides cloud-computing capabilities at the edge of the mobile
network, including thus aspects like application migration, interoperability, etc.,
which were not present in the definition of 2013. Similarly to the aforementioned
architectures, the benefits of performing cloud-tasks at the edge of the networks
are low delays, bandwidth savings and local awareness.

Mobile Cloud Computing The Mobile Cloud Computing (MCC), in contrast
with the previous approaches, has its main characteristics in “delegating” the
tasks pertinent to the mobile device to the more resourceful cloud. In the first
definition of MCC, introduced in 2009 by [13], the only place for computation
was the centralized clouds. However, later versions included devices located at
the edge as suitable places for performing the mobile device’s tasks [24]. The
edge provides an execution platform located close to the mobile devices to
perform several type of tasks, with, as in the previous cases, the benefits of lower
latency and access to context information.

Within this category falls the concept of Cloudlet [131], which refers to a
smaller version of the cloud architecture, located close to the mobile user (for
instance inside shops, buildings, cars etc.), that allows to load small Virtual
Machine overlay to perform the requested tasks.

Chapter 3

V-NDN: NDN in Vehicular
Networks

3.1 V-NDN: A proof of concept

In the near future, a car will be equipped with a variety of wireless interfaces
such as 3G/LTE, WiMAX, WiFi, or DSRC/WAVE (for instance the US DOT is
proposing wireless V2V technology as mandatory in newly manufactured
cars [4]). Our vision is to enable vehicles to communicate with each other and
with the infrastructure over any and all physical communication channels, as
soon as any channel comes into existence and as long as it is available. Although
over the years many research papers have been published for automotive
research, in reality today’s vehicles are mainly connected through cellular
networks to centralized servers only. Automotive research such as Ad Hoc
networking and delay tolerant networking are still far from completion and less
likely to deploy. We believe the root cause of this insoluble problem in
networking vehicles is IP’s communication model, where IP creates its own name
space, the IP address space, assigns IP addresses to every communicating end
point, and then encapsulates each piece of application data into an IP packet.
This whole process insulates applications from data delivery layer.

In this chapter we apply the design of Named Data Networking (NDN) to
address VANET challenges. We show that naming data decouples
communication from specific interfaces and endpoints, enabling a car to utilize
any available interfaces and fetch data from any other nodes as soon as physical
connectivity comes into existence. As a proof of concept, we designed and

39

40 Chapter 3 V-NDN: NDN in Vehicular Networks

implemented a prototype of Vehicular NDN, V-NDN [59]1, and demonstrated its
utility through real experimentation. We also used simulations to explore
V-NDN feasibility at large scale. The contributions of this chapter can be
summarized as follows: (1) we articulated the new NDN functional requirements
for VANET and sketched out initial solutions (Section 3.1); (2) we developed a
prototype V-NDN implementation (Section 3.2.1); (3) we conducted
experimentation via both demonstration (Section 3.3) and simulation (Section
3.4); and (4) we identified remaining challenges in rolling out V-NDN (Section
3.5). Those challenges will then be addresses in chapter 4.

3.2 Design and Implementation

Vehicular networking possesses two fundamental characteristics: ad hoc,
intermittent connectivity, and the ability to physically transport data. In a
V-NDN network, a car may play any of the four roles: data consumer, data
producer, forwarder when it is connected to either infrastructure or other
vehicles, and “data mule” when it carries data across distance while having no
connectivity to anyone else. Different from other types of mobile devices, vehicles
have limited concern with computation/storage capacity or power supply.

NDN is a great enabler to vehicle networking by removing the constraints in
TCP/IP protocol stack, however several modifications to the baseline NDN
operations are necessary for VANET environment. First, since all
communications are over wireless channels, one should take full advantage from
wireless broadcast nature. Instead of only accepting data with matching entries
in PIT, a vehicle may want to cache all received data regardless of whether it has
a matching PIT entry or whether it needs the data itself. Since a car can have
much bigger data storage than mobile phones, this opportunistic caching
strategy can be advantageous in facilitating rapid data dissemination in highly
dynamic environment.

Second, Data packets can be carried by running cars even when they have no
network connectivity. Indeed data can move away from the producer’s location
either by requests or by car movements. When a car responds to an Interest with
data, this data reply, via wireless broadcast channel, can spread to neighboring
cars and be cached by all the receivers. When these cars physically move around,
they serve as data mules carrying the content to wider area. Having large
number of mules enlarges data spreading areas and increases rendezvous

1The work on V-NDN has begun before starting the Ph.D. program, while being a visiting researcher
at UCLA, and has been concluded later on while being a Ph.D. candidate at UPMC.

Chapter 3 V-NDN: NDN in Vehicular Networks 41

opportunity between consumers looking for a specific piece of data and mules
carrying a copy of it.

Finally, the high dynamics of connectivity among moving vehicles makes it
difficult, if not completely infeasible, to run a routing protocol to build the FIB.
Therefore V-NDN must develop other means to guide Interest packet forwarding.

In this section we describe the V-NDN implementation and the modifications to
NDN needed to accommodate VANET specific features.

3.2.1 Implementation

We developed a V-NDN prototype under linux Ubuntu 12.042. The
implementation overview is depicted in Fig. 3.1.

Figure 3.1: V-NDN implementation framework

NDN Daemon It provides the core NDN capabilities by maintaining the key
data structures of CS, PIT and FIB and taking care of name prefix-matching
and packet forwarding decisions. If the node is equipped with multiple network
interfaces, the current implementation takes a simple approach of forwarding
each Interest to all the interfaces that are available at the time, therefore the FIB
is not used in Interest forwarding at this time. The exploration of forwarding

2The source code is available at https://github.com/named-data/vndn. There are no kernel depen-
dencies and the software is expected to run smoothly under any Linux distribution.

42 Chapter 3 V-NDN: NDN in Vehicular Networks

strategy design [172] for VANET is part of our next work. Finally, the CS caches
all Data packets overheard on the wireless channel (solicited or not)3.

NDN Local Faces These are interfaces between the Applications and the NDN
daemon. They support application registration (an application registers with the
local FIB the name prefix of the data it produces), Interest request, and content
delivery.

NDN Network Faces These Faces provide the specific adaptation functions
coupled with the technology used in the communication. We use IEEE802.11
wireless technology in Ad Hoc mode for V2V and provide the interface with the
Link Adaptation Layer which supports WiFi broadcast (see below). We use
several wireless technologies for V2I including WiMax, 3G, and WiFi mesh
networks. For 3G connectivity, the NDN Network Face provides the adaptation
to an IP tunnel between the mobile and some NDN node in the core network.

Link Adaptation Layer (LAL) LAL is conceptually layer 2.5, designed to
efficiently take advantage of specific layer 2 technologies. LAL sends all packets
as L2 broadcast, using IEEE802.114 frame to carry NDN packets directly.
However IEEE802.11 broadcast support is practically nonexistent, leaving a
number of tasks to be surrogated by LAL [67][66]. We discuss our solution to
this problem below.

Location Service It provides reverse-geocoding capabilities, as well as high
level functions on distance and heading, to the LAL. The Link Adaptation Layer
uses them to geographically scope the communication. Furthermore, some
applications may choose to encode location information in data names when the
content concerns a specific area, as traffic or parking information. The location
might be used to facilitate NDN Interest forwarding [163].

Compared with the current implementation of the NDN Forwarding Daemon
(NFD) [8] (realized after V-NDN), the NDN daemon shown in Figure 3.1
corresponds to the “forwarding” module of NFD, while faces, PIT, CS and FIB in
V-NDN match the corresponding NFD version.

3The current implementation keeps CS in main memory with a size limit of 10GB; cached items have
no expiration time other than being swapped out. The next version will employ disk-based CS and
support smart caching policies.

4We intentionally refer to the entire 802.11 family instead of the specific protocol because the differ-
ences between the various versions don’t affect LAL.

Chapter 3 V-NDN: NDN in Vehicular Networks 43

3.2.2 Enhancing WiFi Broadcast for V2V communications

We use IEEE802.11 broadcast for all V2V communications, which requires
additional support to provide reliability. Indeed, the current IEEE802.11
standards provide neither collision prevention for broadcast transmission, nor
collision detection/recovery mechanism. Furthermore, WiFi broadcast can suffer
high losses due to collision, which can be further exacerbated by the nature of
vehicular networks that feature relatively short link durations and fast changing
topologies [129].

Thus, to enable efficient and resilient broadcast transmission, which in turn
enables opportunistic forwarding and caching in V-NDN, we developed a simple
set of mechanisms to provide WiFi broadcast support in VANET
communications. Our WiFi broadcast support is directly coupled with our
packet forwarding algorithm, as described below. We assume that each vehicle is
equipped with GPS and a digital map. We use a simple greedy forwarding
strategy to spread NDN Interest packets in all directions in the following way.
Each Interest packet I carries the location information of its sender S. When I is
received by multiple surrounding vehicles, the one that is furthest from S should
forward I; the other receivers simply do nothing. Furthermore, S needs to know
whether I is being received and further forwarded, otherwise S needs to
retransmit I.

We implemented the above mechanisms in the Link Adaptation Layer. Equipped
with GPS data, LAL at each node N computes the distance between the sender
and itself, then sets a random wait timer, the Forwarding Timer, based on this
distance value: the shorter the distance, the longer the wait. During this wait
time, if N hears the forwarding of I by another node F , N uses reverse
geocoding techniques to locate F on the map and identify the road segment
where F resides. This transmission is considered by N as an implicit (partial)
acknowledgment. If N hears implicit (partial) acknowledgment from each of the
streets stemming from where N is located (except the street where I was initially
coming from, i.e. the location of S), it considers the packet as completely
acknowledged and cancels its own Forwarding Timer; otherwise when the timer
expires, N will forward the packet. Similarly, the forwarded packet can also be
heard by sender S, and if S doesn’t hear implicit acknowledgment from all the
streets stemming from its location, it will retransmit the packet. All retries are
upper-bounded by a preset limit n, the packet is dropped after n unsuccessful
attempts.

This weighted random wait scheme statistically allows the node furthest away
from a packet sender to forward the packet, resulting in fast packet propagation.

44 Chapter 3 V-NDN: NDN in Vehicular Networks

Figure 3.2: V-NDN: Testbed network configuration.

LAL combines two different components to compute the timer: a deterministic
component, 1

D(sender,receiver)
, where D distance is computed using the location

service, and a small random component used to randomize the transmission
time. The first component favors cars further away the last sender, the second
one reduces the collision probability among the nodes with same distance from
the last-hop.

To limit the excessive spreading of Interests on the vehicular network, we add a
hop-counter to the LAL header which is decreased at each hop. An Interest is
dropped when its hop count exceeds a preset limit (the experimentations
described below use a limit of 5 hops).

3.3 Demonstration

We implemented a prototype of V-NDN as proof of concept and tested it using
the UCLA Vehicular Testbed. The experiments involved multiple vehicles (up to
10 cars). We implemented two simple vehicle applications over NDN:
Info-Traffic and Road-Photo. The first application emulates traffic
information requests for a specific area; the area is encoded in the name carried
in Interest packets. Instead of coordinates, we name intersections and streets
stemming from that intersections, e.g. /traffic/westwood-at-strathmore/ refers to
traffic information from the area surrounding the Westwood-Strathmore
intersection. A car that has been or is currently in the location will respond to
the Interest with the proper traffic information. The road-photo application
emulates photo requests for a specific area, and any vehicle that has been in that
area recently and has taken a photo may respond.

Chapter 3 V-NDN: NDN in Vehicular Networks 45

The experiments were designed to investigate V-NDN behavior in the following
communication scenarios typical for the vehicular applications domain
(Figure 3.2):

• V2V: Vehicles exchange Interests and Data packets over WiFi (Ad Hoc),
the requested data is relatively local (e.g. a few hops away).

• I2V: The consumer node resides on the wired network (e.g. traffic control
center server) and data producer nodes are the vehicles that are close to, or
have been recently close to, a point of interest and have information about
the traffic.

• V2I: The consumer is on the vehicle while the producer is connected to the
Internet through wired or wireless network, e.g. a vehicle wants to retrieve
data about the traffic of an area from a centralized server.

• Network disruption: Vehicular networks are prone to disruption, the link
duration is relatively short and the topology is continuously changing,
resulting in dynamic network partitions [129].

• In-network storage: One of the NDN advantages is enabling caching in
the network. This feature turns out to be essential for communication in
VANETs.

(a) V-NDN Driving Route, Clock Wise
one block around Parking Lot 8

(b) V-NDN Driving Route, Clock Wise
two blocks around Parking Lot 8

Figure 3.3: Mobility Patterns

3.3.1 Field Experiments

We performed a number of field experiments for both applications varying
mobility patterns and the communication types involved (i.e. V2V, V2I/I2V,
V2V2I).

Still These experiments were performed on the rooftop of UCLA parking
structure P8 (265m by 76m) with no mobility and cars in line.

46 Chapter 3 V-NDN: NDN in Vehicular Networks

Platooning These experiments were performed on the rooftop of P8 with very
basic slow urban platooning.

Moving around campus These experiments were performed by driving around
P8. The pool of 10 vehicles was divided in two groups of 6 and 4 cars each. The
smaller group of vehicle ran clockwise around P8 as shown in Fig. 3.3(a); the
larger group ran counterclockwise and covered a larger road block which also
includes P8 (see Fig. 3.3(b)). Car speeds ranged from 6.3m/s to 21.2m/s (i.e. ∼14
to 47mph). This mobility pattern allows vehicles traveling in opposite direction
to meet, but prevents continuos connectivities between the two groups. Traffic
lights and pedestrians created dynamic partitioning in each group, as well as
voids as they happen during regular course of campus traffic [129].

3.3.1.1 Hardware/Software Setup

V-NDN was installed in low-cost netbooks the Asus EeePc 1011CX powered by
an Intel Atom N80 at 1.6GHz; each node was retro-fitted by us with a
MIMO-capable WiFi Card, the Unex DNXA-92, based on the Atheros AR9280.
All the experiments were performed using the 2.4GHz band (Channel 1). Two
nodes out of the 10 were equipped with a second WiFi interface operating in
Infrastructure mode (we used an Ubiquity Networks SR71USB); two other nodes
were equipped with a WiMax usb based interface. We used an off-the-shelf
Ubuntu Desktop 12.04 as operating system and V-NDN was installed in user
space, no kernel hacks are required. V-NDN transmits broadcast packets in the
WiFi Interfaces operating in Ad Hoc mode, and tunnels NDN traffic over IP for
the other interfaces (see Fig.3.2). A V-NDN hub is connected at the other tunnel
endpoint and performs the appropriate forwarding tasks.

3.3.2 Preliminary Results

3.3.2.1 V2V experiments

Here we focus on the effectiveness and cost of our LAL design as described in
Section 3.2.2. More specifically, we measured the number of retransmissions
needed to forward a packet by 1 hop WiFi broadcast, the response time at
application level, and the effectiveness of caching. Fig. 3.4(a) shows the CDF for
the number of retransmissions for the Info-Traffic application in all the 3 types of
mobility aforementioned. For the static case, about 75% of the packets need no
more than one retransmission. In the mobility scenario this number goes down to

Chapter 3 V-NDN: NDN in Vehicular Networks 47

(a) V-NDN Info-Traffic application CDF number of
Link Adaptation Layer retransmission

(b) V-NDN Info-Traffic application: CDF Response
time - from the first Interest to the corresponding
data

Figure 3.4: RTT Analysis

about 65%, however the type of mobility (either on the P8 roof or on the roads)
has a negligible impact on the number of retransmissions. 95% of the packets are
acknowledged within 5 retransmissions or less (the max-retransmission was set to
7), which is also confirmed by simulation results in Fig.3.6(b). Also note that
15% of packets in the static case were acknowledged before being actually
transmitted (therefore they never went on the air), because neighboring cars
(presumably in better positions) already forwarded packet (see Section 3.2.2).

The response time CDF for the Info-Traffic application is shown in Fig.3.4(b). In
the static case, about 75% of the Info-Traffic Interests retrieved data back in less
than 1 second. For the mobility case, experiments with looping around on the
roof of P8 performed worse than the experiments on the roads around campus.
We believe this is due to the effect of traffic lights, which lumped multiple cars
together with relatively long breaks in mobility, thus facilitating data
propagation between cars. In addition, P8 is in a midst of WiFi access points
and our measurement detected a high noise background.

Static Around P8 Around
(#Times) (#Times) Campus (#Times)

Use of Cache 96 3054 1840
Interest Forward 715 4685 13195

Table 3.1: Cache vs Forwarding among Consumers and Mules

To better understand the impact of in-network cache, we excluded the data
producers from the dataset and analyzed the cache/forward statistics for
consumer and mules. Results are shown in Table 3.1. The data shows that
caching is more effective during mobility and particularly when mobility happens
in a relatively restricted area (rooftop of P8). Observing mules only (i.e. no
Interests nor data packets are generated by these nodes), the benefit of caching
becomes even more evident: in this case about 66% of the Interests found the

48 Chapter 3 V-NDN: NDN in Vehicular Networks

requested data from local cache, thanks to the aggressive caching strategy we
proposed in Section 3.1.

We also experimented with the Road-Photo application by letting one of the cars
issue an Interest for a photo of a given area. The Interest carries a name
“/picture/westwood-strathmore”, requesting a picture from a camera that is on
board of any vehicles close to Westwood-Strathmore intersection. A vehicle in
that area, if any, will turn on the camera, take a snapshot, and send it back.
While our design is plain and simple, we were able to retrieve 51 camera shoots.
Photos had an average size of 6.3KB resulting on average 5 data packets. A
photo is received when all the data chunks arrive at the consumer. The
Road-Photo application experienced an average response time of 81 seconds for
the mobile case (Fig. 3.3), and 28 seconds in the static case; the median point
was 55.6 seconds and 1 second, respectively. We believe that the sparse nature of
the cars in the mobile tests affected the response time, as the multi-packet
delivery suffered connectivity disruption much more than the Info-Traffic
application whose response is made of a single data packet.

3.3.2.2 Robust Data Availability

Once a piece of data has been spread in the network, its availability becomes
independent from the connectivity to its producer. Indeed the decoupling of data
from its container (its producer) and data caching enable every node that got the
data to use it and pass it around to any other consumers who issues an Interest
for the data. The following experiment shows a proof of concept: a consumer
asks for a content that can only be produced by one car. As soon as the
consumer receives the content, the producer is switched off. After that, another
consumer issues the same Interest. As expected, the second consumer is able to
get the desired content even after the original producer is gone. Furthermore, the
response time does not seem to be negatively affected by the absence of the
producer thanks to the broadcast nature of the wireless communication that
easily allows the spreading of all contents.

3.3.3 V2X Scenarios and the role of the Infrastructure

Because one fetches data by name, V-NDN possesses the innate ability of
utilizing node multihoming to communicate with other cars via Ad Hoc WiFi
and with servers on the Internet via 3G/4G/WiFi connectivity simultaneously.
The current V-NDN implementation simply forwards an Interest through all the
interfaces that are available at the time. To observe V-NDN operations in a

Chapter 3 V-NDN: NDN in Vehicular Networks 49

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50 60 70

Ph
ot

o
nu

m
be

r

Chunk number

WiFi Ad-Hoc
WiFi Managed

Figure 3.5: V2X experiment: communication channels used in receiving photo chunks

multihomed scenario, we performed an experiment of having two cars, one
consumer and one producer, running around Parking Lot 32 (P32) in a clockwise
fashion. At one corner of P32 we set up a WiFi access point which is connected
to the campus network. The consumer was equipped with 2 WiFi interfaces, one
operating in Ad Hoc mode and the other operating in Infrastructure mode. The
producer was equipped with 1 WiFi interface configured in Ad Hoc mode and 1
WiMax interface connected to the campus network. We ran Road-Photo
application: the consumer requests a photo to be taken by the producer. Interest
and data packets were transmitted via all available interfaces. Photos were taken
in realtime upon receiving an Interest, their sizes are between 68KB and 100KB.
Each photo was split into several data packets of 1300 bytes each. Fig. 3.5 shows
on which interfaces the consumer got the contents. The consumer was able to
seamlessly receive consecutive chunks of the same pictures from different
interfaces via different communication channels.

3.4 V-NDN: V2V communication at scale

Since our experiments with real cars are limited in scale, we explored the
scalability of V-NDN approach for Ad Hoc communication through simulations.
We selected a dense scenario for V2V communication for simulation: an urban
area with high vehicular traffic, where cars run in every direction allowed by the
roads with different speed, and both traffic jams and empty streets can happen.

We implemented V-NDN forwarding strategy and LAL in ndnSIM, a ns3-based
NDN simulator [7]. The simulation consists of 695 cars moving in a residential
area of 2100 meters by 2100 meters in the city of Los Angeles, CA
(34.040569,-118.463308). The cars mobility is generated using SUMO [83]. To
make the simulated scenario as close to reality as possible, the traffic volume is

50 Chapter 3 V-NDN: NDN in Vehicular Networks

(a) V-NDN traffic interest satisfaction time

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 1 2 3 4 5

C
D

F

Number of transmission

Max number of
transmisson

1
2
3
4
6

(b) V-NDN ack distribution per transmission at 2.5
level

(c) V-NDN overhead: number of interest sent in the
air for each interest issued by an application

Figure 3.6: V-NDN Simulation Results

shaped according to the importance and size of each street. The radio
propagation is modeled using CORNER [55], an high fidelity propagation model
for urban scenarios that accounts for the presence of buildings as well as fast
fading effects. We ran 300 seconds simulated time. All the cars are equipped
with a WiFi Ad Hoc interface (802.11a), but only in a subset of them runs the
Info-Traffic application as either consumers or producers; the others play the
role of packet forwarders and/or data mules. We configured 14% of the cars as
producers, and changed the number of consumer cars.

3.4.1 Results

Since the V-NDN forwarding strategy design is part of our next work, the
simulation uses the rudimentary scheme of greedy packet dissemination along all
direction as we mentioned earlier. Thus the current simulation results can only
serve as a quick examination to understand V-NDN’s feasibility at scale.

Fig. 3.6(c) shows how many Interest are sent on the network every time the
application consumer issues an Interest. Fig. 3.6(a) shows how long it takes for a

Chapter 3 V-NDN: NDN in Vehicular Networks 51

consumer to get the desired content. Both graphs reveal that, when the number
of cars interested in the same information increases, the performance of the
entire system improves substantially as measured by satisfaction time and
overhead. Indeed by letting all cars cache overheard information, they become
data mules. Not only a car can help forward a content that it has just received,
but it can also carry the content and answer Interests for the same content in the
future. As we described in Section 3.2.2, the LAL performs retransmissions when
a packet is not ACKed. Fig. 3.6(b) shows the percentage of packets considered
ACKed (the car has heard an implicit ACK from every possible direction - road
stems) as a function of the maximum allowed transmissions for an Interest before
giving up. 35% of Interests are ACKed before being transmitted, because the
cars already have cached the requested data earlier when they overheard it from
other cars. Moreover, after the second transmission, further transmissions do not
seem to bring much improvement - after the second transmission, if a packet is
still not ACKed, it is unlikely to be ACKed with further retries. We speculate
that the reason for this could be due to the lack of connectivity at the time.

3.5 Discussion

While cellular networks have been viewed as the only global wireless
infrastructure, in reality they suffer from spectrum scarcity and coverage
limitations. At the same time vehicles are being equipped with computation
power, storage, and multiple communication interfaces via various
communication technologies that can be exploited to take advantage of
opportunistic connectivity with other vehicles and physically transporting data
over distance.

V-NDN, by naming data rather than hosts and decoupling data from IP
addresses, can bring substantial benefits to vehicular communication: it removes
the isolation between applications and network transport, allowing forwarding
nodes to handle data based on application needs. The communication can start
spontaneously — the infrastructure for the IP addresses assignment is no longer
required. Naming data also enable mules to cache and reuse the content and
makes V-NDN resilient to connectivity disruptions that characterize vehicular
networks: even when the communication between consumer and producer is
interrupted, mules can bring the required data to the consumer over time.
Furthermore locally produced data and data with local meaning, as traffic
information, no longer need to be transferred to remote servers before being
available to neighbor nodes; data that is produced and consumed in loco can
remain in loco and be delivered to the consumers along shortest physical paths.

52 Chapter 3 V-NDN: NDN in Vehicular Networks

Remaining Challenges

V-NDN is only the first step in exploring NDN for VANET on the field, it shows
the benefits of NDN in vehicular networks but it is far from making the
“connected car” concept a reality. A number of challenges highlighted by V-NDN
experimentations remains to be addressed. For instance, focusing on the V2V
communication, a smarter way to forward Interest without flooding the network
in all the directions needs to be implemented to make V-NDN scalable and more
efficient. Another challenge is data naming. [163] shows that encoding
geolocation into names can help direct Interest forwarding for applications using
location-based data, however other types of applications, e.g. fetching today’s
news, are unable to make use of geolocation. Furthermore, more work is needed
to address the security and privacy considerations. Finally, in the case of
multi-homing, a more detailed study of possible forwarding strategy may be
needed to make the best use of multiple network interfaces.

Chapter 4

Navigo: Interest Forwarding by
Geolocations in V-NDN

4.1 Introduction

As discussed in Section 3.5, although V-NDN proves the feasibility and benefits
of adopting the NDN paradigm for vehicular communication, it highlights some
challenges that still need to be addressed to make NDN for VANET a reality. In
particular, V-NDN lacks a way to make smart forwarding decisions, but blindly
floods the Interest looking for the Content. Such approach is not sustainable in a
real deployment. Thus, we design Navigo [60] to steer Interest forwarding
towards the data in order to build a viable V2V network and, whenever possible,
exploit application’s knowledge in localizing the data.

Contributions First, we developed effective solutions to the problem of
mapping data names to data locations and forwarding Interest packets along the
best path. Second, we designed an adaptive discovery and selection mechanism
that can identify the available data sources across multiple geographic areas and
can quickly react to sudden changes in vehicle networks. Third, our solution
demonstrates the power of NDN architecture applied to vehicular networking
and its ability to cope with Ad Hoc mobility and frequent network connectivity
disruptions.

53

54 Chapter 4 Navigo: Interest Forwarding by Geolocations in V-NDN

4.2 Navigo Design Overview

A fundamental challenge in Navigo design is how to steer Interest towards where
data resides. As previously discussed, the highly dynamic connectivity in
VANET renders running a routing protocol infeasible. For traffic applications
that intrinsically contain location information in data names, [163] demonstrated
that one can simply forward Interests toward the geographic location stated in
the names, without the need for a routing protocol. Indeed a broad class of
automotive applications is intrinsically location-dependent, i.e. the data
produced and consumed by them is tied to specific locations. Examples of such
applications range from obtaining road traffic updates on a given street to the
search for an available parking space. However, [163] requires the forwarding
strategy in each node to understand the semantic of the names to be able to
extract the destination information. Such assumption ties the name design with
a specific convention, and most important, is not feasible in the current NDN
framework, where the forwarding strategy is unaware of the name semantic. A
mean of letting consumers suggest where the data may reside is still missing.
Furthermore, other types of applications, such as music sharing or data fetching
in general, are not associated with any specific locations.

To effectively forward Interests for all types of applications without a routing
protocol, our solution is to couple their data names with the locations of where
the data resides. While for the first type of application we can bound names
with the location the consumer is interested in, for the second type our solution
is to bind them with the location of the data provider: either the content
producer or a vehicle which is carrying the data in its cache (mule) or an
Internet access point (i.e. RSU). This will allow us to do geo forwarding to
support all types of applications.

There are a number of specific issues to address to make the above idea work.
First, one must define a namespace for geo locations; this is addressed below.
Second, one must provide effective means to map data names to locations, which
is discussed in Section 4.2.2. Third, we would like to support geo forwarding
without modification to the existing NDN forwarding framework; this is
addressed in Section 4.2.3.

4.2.1 Naming geographic areas

We divide the world into regions according to the Military Grid Reference
System (MGRS). This system is derived from the Universal Transverse Mercator

Chapter 4 Navigo: Interest Forwarding by Geolocations in V-NDN 55

(UTM) and from the Universal Polar Stereographic (UPS) grid systems, where
each region is identified by a label (Figure 4.1(a)).

(a) Example of MGRS map (b) Mapping GeoFaces to geographic areas

Figure 4.1: Navigo: geo-areas and GeoFaces

In the current implementation geo-areas have a fixed size (200x200 meters) but
the MGRS scheme easily allows names with different precision levels, by adding
or removing digits from the name (or building areas with multiple “MGRS
blocks”), e.g. 4QFJ 12 67 defines a 1Km precision, while 4QFJ 123 678 has a
100 meter precision. Further analysis regarding more flexible areas is left for
future research.

4.2.2 Mapping data names to geo-areas

When a node has an Interest in hand for data without any geographic meaning
and has no knowledge about the prefix of the data name (not in its FIB), the
node simply sends the Interest out in all directions. If any of these flooded
Interests hits a copy of the matching data, the responder attaches its geo-area
MGRS name (e.g. 4QFJ 123 678) to the returned Data packet. As the Data
packet follows the breadcrumb trace of the Interest, all the nodes along the way
learn the binding between the data name prefix and the corresponding geo-area.
This information allows them to forward future Interests for the same name
prefix towards geo-areas bound with that prefix only. For location-dependent
data, the consumer can avoid the initial Interest flooding procedure by binding
the Data name with the geo-area the consumer is interested in before sending the
Interest.

4.2.3 Hiding geographic forwarding from basic NDN framework

The current NDN forwarding daemon has no concept about geo-areas. Indeed its
FIB contains 〈prefix, face〉 pairs only. To exploit the binding among names and

56 Chapter 4 Navigo: Interest Forwarding by Geolocations in V-NDN

Figure 4.2: NDN and GeoFaces

geo-areas while using the current NDN architecture Navigo introduces the
concept of “Geographic Faces” (GeoFaces), and implements the binding of name
prefixes to geo-areas through a two-step process. It first binds a geo-area to a
GeoFace, and then lets the FIB store the mapping from the name prefix to the
GeoFace as in the current NDN architecture. The same prefix can be mapped to
different faces, enabling Navigo to exploit multiple data sources whenever the
same content can be retrieved from different areas, by binding multiple GeoFaces
to the same prefix in the FIB (section 4.3 describes the geoFace selection
process).

One (i.e. the consumer) can now simply register a new rule in the FIB to bind a
prefix with a specific geo-area.

An extended version of the LAL, introduced by [59], stores the GeoFace to
geo-area mapping. Such GeoFaces are an abstraction of the WiFi ad hoc
interfaces the car is equipped with. Navigo extends the LAL by implementing a
forwarding mechanism which, given a GeoFace FX bound to a geo-area X, steers
the Interest over the V2V channel along the best path to X, according to
Section 4.5. Furthermore, the LAL sorts incoming Data packets and redirects
them to the correct GeoFace based on the Data provider’s location.

4.2.4 Design assumptions

This chapter is focused on urban scenarios. We assume all vehicles are equipped
with a GPS sensor and a digital map, therefore able to identify their own
location (and thus its MGRS name). Each vehicle is also equipped with a WiFi
network interface (set up in Ad Hoc mode) and with enough storage and
computational capabilities; we leave the study of the performance under
constrained caching to a future work. Furthermore, we assume the presence of

Chapter 4 Navigo: Interest Forwarding by Geolocations in V-NDN 57

RSUs along some roads which provide Internet connectivity to all the cars and
which are running an NDN stack and Navigo.

4.3 GeoLocation-based Interest Forwarding

The main idea behind the forwarding strategy adopted by Navigo is to explore
the area surrounding the node looking for producer, mules or RSUs and then, as
soon as the first Data packet comes back, forwarding future Interests for the
same prefix towards the geo-area where the data is coming from.

Forwarding algorithm When forwarding an Interest, Navigo tries to exploit
the presence of multiple data providers to balance traffic and make
communication more resilient to the high dynamism of VANET, which limits the
validity in time of a single rule. To forward an Interest I for a Content named N
Navigo adopts the following forwarding strategy:

• If I does not match any entries in the FIB (there is no information about
the Data location), the Interest is sent using a flooding technique (see 4.5)
without specifying any destination area—the node is in a so-called
exploration phase.

• Instead, if several GeoFaces are bound to N, the forwarding strategy selects
one face in a round-robin way.

• If only one face is available, with probability p (0.95 in our experiments)
the GeoFace in the FIB is used, while with probability 1− p the node acts
as in the exploration phase, flooding the Interest. Navigo adopts this
additional exploration phase to avoid focusing on a single destination area
for a long time while some other opportunities may come with mobility to
balance the traffic.

• After sending an Interest, if the node does not receive the requested data
before a deadline T (300ms in our experiments), the binding in the FIB
among the face and N is removed. If N is bound with this face only, the
node is back in the exploration phase for N.

• If multiple Interests with the same prefix N are sent in pipeline on the
same GeoFace FX , whenever one of them is satisfied, the deadline is
removed for all the pending Interest for N : receiving a Data packet indeed
means the information is still available in that geo-area, although some of
the Interests may fail.

58 Chapter 4 Navigo: Interest Forwarding by Geolocations in V-NDN

An evaluation of using more sophisticated criteria, such as round trip time or
success rate, to select the best face is left for future works.

4.4 FIB Management

4.4.1 Binding content location to the right name

Names in NDN are hierarchical: a Content named /N may be divided in several
chunks i.e. /N/c1 ; /N/c2. To correctly forward Interest for all these pieces (and
only them), one must have a FIB entry with the prefix /N (FIB lookup is done
by longest prefix match). Consumer and producer know the name semantic and
thus can identify which prefix aggregates all the pieces of a Content. But
forwarders, which may not be running the application, are unaware of the
semantic and thus cannot correctly fill the FIB1. To address this issue, the
consumer’s LAL attaches to each Interest (into a 2.5 layer header defined by
LAL) the prefix which aggregates all the pieces of the requested content. This
information is then spread by the forwarders, allowing every LAL to register the
correct rule in the FIB whenever the Interest is satisfied.

4.4.2 FIB size

A FIB entry stores prefix and a list of faces that can be used to retrieve such
Content. Associating geographic areas with faces, the geo-area dimension may
affect the size of the FIB: smaller areas means higher probability to receives
Data from different regions, especially when the data provider is a moving car,
which increases the number of faces bound with the same prefix. At the same
time, however, if the region is too large, the FIB is smaller but the portion of
area where cars flood the Interest increases, leading to a larger overhead.

With 200×200 meter areas our experiments show that the number of faces
bound with the same prefix never reaches values higher than 9. Indeed, removing
the binding among a GeoFace and a prefix as soon as an Interest fails stops the
node from having too many faces bound to the same prefix.

1Assuming that by removing the last component of the name one gets the correct prefix to aggregate
all the Interests for the Data may not always be true.

Chapter 4 Navigo: Interest Forwarding by Geolocations in V-NDN 59

4.5 Link Adaptation Layer

Navigo extends the original version of the LAL presented in [59] exploiting the
knowledge of the destination area. It takes care of the GeoFaces to geo-areas
binding, it steers Interest along the shortest path to the destination region and it
copes with urban scenario characteristics by taking into account the presence of
obstructions in contrast to more suitable places for wireless propagation.

4.5.1 LAL and GeoFaces

The LAL creates and destroys GeoFaces and keeps the mapping between
GeoFaces and geo-areas in the Face-to-Area table (F2A). Whenever a node
receives a Data packet, the LAL extracts the geo-areas information attached by
the data provider. If this area is not associated with any faces, the LAL creates a
new GeoFace and binds it to the geo-area (adding the relation to the F2A).
Whenever a GeoFace is unused for a certain amount of time (i.e. order of tens
of seconds), the LAL removes the face and any references to it from the F2A and
the FIB.

4.5.2 Calculating the shortest path

The shortest path to the destination area is calculated applying a specialized
Dijkstra algorithm with the street topology as underneath graph: streets are
edges and intersections are nodes of the graph. Conceptually Navigo deliberately
substitutes the more stable road-topology to the network topology which in
VANETs is dynamically partitioned and features short lived links lasting only
few seconds on average [129]. In computing the shortest path, LAL is unaware of
neighbors locations. Indeed, to avoid the overhead of periodic exchanges of 1-hop
neighbor position[56], Navigo doesn’t use any neighboring protocol. It relies on a
probabilistic approach to minimize the chances of hitting an empty road. Navigo
assigns costs to edges that are inversely proportional to the number of lanes2. In
this way the algorithm tends to prefers paths with larger roads and more likely
to have running cars at any moment thus leading to a more stable path.
Furthermore, the algorithm takes into account the presence of obstructions of
wireless communication and merges roads that are in line of sight while splits
paths that require a turn. Indeed turns mean additional hops in the
transmission, which increases overhead and delay.

2After preliminary simulation, we adopted the following costs: 1 for 2-lanes road, 0.7 for 4-lane street
and 0.25 for 6-lanes roads. Analysis of other factors, such as amount of data traffic or cars to determinate
the weights of a road are left for future works.

60 Chapter 4 Navigo: Interest Forwarding by Geolocations in V-NDN

4.5.3 Forwarding process

Whenever the NDN daemon sends an Interest through a GeoFace, the face
passes the packet to the LAL, which performs a lookup on the F2A to determine
the destination area name. This information is then encoded within the L2.5
header that encapsulates the Interest, together with the position of the node,
spreading the information to all the neighbors in the transmission range. Once a
car receives an Interest, the LAL extracts and stores the information about the
destination area, the position of the previous node and the nonce of the Interest
and then it passes the packet to the forwarding strategy (see algorithm 1). If the
NDN daemon decides to forward the Interest on the V2V network, it passes the
packet back to the LAL, either by using the GeoFace specified in the FIB3 or by
using the exploration phase procedure (see the following paragraph on Flooding).
The LAL, based on the nonce of the Interest, recovers the position of the
previous hop and the destination area specified by the original consumer, which
is used as Interest destination. LAL overrides any local decision about the
destination area with the consumer’s will. The analysis of benefits and challenges
of overriding the consumer’s will with local information is left for future works.

Given the destination area, LAL computes the shortest path algorithm and
forwards the Interest only if it’s closer (path is cheaper) to the destination area
than the previous hop. Once the Interest reaches the destination area Navigo
uses the protocol described in [59] to perform a local Interest dissemination,
flooding the Interest in all the available directions. Cars outside the destination
area may reply with the Data, but they don’t forward the Interest anymore,
constraining its dissemination to the destination area only. Whenever the
Interest hits a data provider, the node replies with the Data, attaching its
location MGRS name X to the 2.5 layer header. As defined by the NDN
protocol, Data will follow the breadcrumbs left by the Interest in the PIT of
every nodes it passed through. In this way back to the consumer, LAL updates
the FIB, binding the Content prefix with the GeoFace associated with X and
forwards the Data only if it is closer than the previous hop to the node from
which it received the Interest.

To increase the communication reliability, during the packet forwarding process
LAL utilizes the implicit acknowledgment concept as in [59], requiring an
implicit ACK from the street indicated by the shortest path as next hop.

3If necessary, Navigo allows the outgoing and incoming faces to be the same.

Chapter 4 Navigo: Interest Forwarding by Geolocations in V-NDN 61

Figure 4.3: Intersection as forwarding points.

Flooding

When the forwarding strategy is in exploration phase, it selects the v2vFace as
outgoing face for the Interest. Such v2vFace, introduced by [59], is used to
spread the Interest over the V2V channel in all the directions. The destination
area is not specified and the LAL adopts the packet suppression techniques
defined in [59] to flood the network.

4.5.4 Forwarding based on forwarding points

As adopted in [52], due to the presence of buildings that obstruct wireless
communication, the best strategy to cover a large area with the smallest number
of hops is selecting forwarders at the intersections. Navigo capitalizes this
observation and uses the junctions as preferred forwarding points, by
speeding-up the transmission of cars within an intersection. As [52], Navigo
splits every junction into two parts: the core, so-called FP1, and the external
area, so-called FP2 (see figure 4.3). Among vehicles inside the same junction,
LAL privileges cars within FP1, which have a more central position, increasing
the chances to reach more cars in one shot.
When forwarding a packet, to maximize the progress at each hop the LAL in [59]
assigned higher priority to nodes far from the sender by speeding up their
transmissions. Navigo extends this approach, by taking into account not only the
distance by the previous hop, but also the presence of forwarding points and the
type of packet:

• Vehicles inside a Forwarding Point (FP1 or FP2) wait less. A random
component is added to the waiting timer to avoid collisions among packets
transmitted by cars at the same junction. Furthermore, cars inside FP1
wait less than vehicles in FP2.

• Among cars located in different Forwarding Points, the shorter the distance
to the previous hop, the longer the wait: the road among the current and

62 Chapter 4 Navigo: Interest Forwarding by Geolocations in V-NDN

Algorithm 1: LAL – Interest Forwarding
/* LAL receives an Interest */
Data: Interest I.
Nonce←− ExtractNonce(I);
Extract PHPos (previous hop position) from 2.5 header;
Extract DA (destination area) from 2.5 header;
GeoFace←− Lookup(F2A,DA);
/* Create GeoFace for DA if needed */
Store Nonce, PHPos,DA in InterestFromNetwork;
Pass I to forwarding strategy using GeoFace;
/* If DA is not specified by the consumer (exploration phase), use v2vFace */

/* LAL receives an Interest from the forwarding strategy */
Data: Interest I ; my position MyPos; face used F.
Nonce←− ExtractNonce(I);
if Nonce ∈ InterestFromNetwork then

Distance←− CalculateDistance(MyPos, PHPos);
if DA defined for I then

/* Calculate path cost */
PrevHopCost←− Dijkstra(PHPos,DA);
〈NextHop,Cost〉 ←− Dijkstra(MyPos,DA);
if Cost < PrevHopCost then

CalculateWaitingTimer(Distance,MyPos);
AttachToPacket(I,MyPos,DA);
Send(I);
WaitForAckFrom(NextHop);

else
Stop processing I ;

end
else

/* No DA specified in I */
CalculateWaitingTimer(Distance,MyPos);
Send(I);
WaitForAckFrom(AllPossibleDirections);

end
else

/* I generated locally */
if F ∈ GeoFaces then

DA←− GetCoordinates(F);
〈NextHop,_〉 ←− Dijkstra(MyPos,DA);
CalculateWaitingTimer(Distance,MyPos); AttachToPacket(I,MyPos,DA);
Send(I);
WaitForAckFrom(NextHop);

else
/* Exploration phase on v2vFace */
Send(I);
WaitForAckFrom(AllPossibleDirections);

end
end

Chapter 4 Navigo: Interest Forwarding by Geolocations in V-NDN 63

the previous hop is divided in 100 meters sections. Cars in the Forwarding
Point within the furthest sector from the previous hop (distance greater
than 500 meters) wait for the minimum waiting timer. Getting closer to the
previous hop, each 100 meters segment adds a constant value (4 ms for
Data, 1.5 ms for Interest) to the waiting timer.

• The waiting timer for cars at an edge is inversely proportional to the
distance to the previous hop (as in V-NDN).

• The maximum waiting timer for a Data packet is smaller than the minimum
waiting timer for an Interest. Speeding up the transmission of Data stops
the data provider’s neighbors to propagate the Interest any further.

The entire process of calculating the waiting timer is self-deterministic: each car
calculates its own waiting timer based on its position and the distance to the
previous hop, without requiring any knowledge about neighbors position.

Figure 4.4 shows how much a car waits before forwarding a packet4. It must be
noted that even though it might take at most 50 ms to make a one-hop progress
for a packet, the delays sensitively reduce when a Data packet has to be
forwarded or when the car trying to forward an Interest is either at an
intersection or far from the previous hop. Furthermore, based on the implicit
acknowledgement policy already discussed, as soon as one car forwards a packet,
all the vehicles with larger waiting timers suppress their transmission.

4.6 Simulation

4.6.1 Scenario

For the initial evaluation of our design we considered an urban road network
with both residential streets and major arteries. The map we chose for the
simulations spans a 2.1× 2.1 km area in the city of Los Angeles, CA. The
vehicular micro-mobility traces were generated with SUMO [83]. In order to
make the simulated scenario as close to reality as possible, the traffic volume is
shaped according to the importance and number of lanes of each street: out of
812 cars, 48% of them were on 6-lane roads, 37% on 4-lane roads, and the
remaining 15% was on 2-lane residential streets. The average time a vehicle
spends inside the simulated area is 3 minutes.

4The values shown in Figure 4.4 correspond to the values used in the experiments. While for simplicity
these values are constant, adapting the waiting timer based on the environment (e.g. car density, data
traffic, . . .) may improve the performance.

64 Chapter 4 Navigo: Interest Forwarding by Geolocations in V-NDN

Figure 4.4: Navigo speeds up Data transmission and prioritizes packet forwarding at
the intersections. Cars close to the previous hop and cars not located within a forward-
ing point that are waiting to send the same packet will suppress their transmission.

For simplicity, cars enter the map with an empty Content Store, even though
this configuration penalizes Navigo, which heavily relies on nodes’ caches.
Moreover, similarly to [59], we observed that deploying large storage devices in
cars should not be a problem nowadays, and therefore we set the Content Store
size limit to 10 GB on each car, which means the car can keep the received data
in the cache for the entire duration of its trip.

To evaluate the effectiveness of the content discovery process, cars enter the map
with an empty FIB.

All vehicles are equipped with an IEEE 802.11a wireless network interface
operating at 24 Mbit/s, configured in ad hoc (IBSS) mode on the same fixed
channel used by the roadside units (RSUs), thus allowing cars to communicate
with both other vehicles and RSUs via the same interface.

The roadside units are positioned to mimic the location of the actual access
points deployed by Time Warner Cable in the same area. We selected only a
subset of 4 out of the 21 access points currently deployed in that area [148]. In
our model RSUs are assumed to be fully functional NDN nodes; furthermore, we
assume that no MAC-layer authentication or link setup process is needed.
Although this does not reflect current WiFi practices, emerging standards such
as the vehicular-specific IEEE 802.11p and the proposed IEEE 802.11ai either do
not require link-layer connection establishment, or they reduce the link setup
time to less than 100 milliseconds.

Chapter 4 Navigo: Interest Forwarding by Geolocations in V-NDN 65

We implemented Navigo in ndnSIM [7], starting from the implementation of
V-NDN (for ndnSIM) described in Chapter 3. Navigo implementation extends
the V-NDN LAL and forwarding strategy with the additional elements described
in this chapter, adding a new type of face — the GeoFace —, extending the LAL
with new timer and level-2 forwarding policies, and implementing a new
forwarding strategy. The radio signal propagation was modeled with
CORNER [55], a high-fidelity propagation model for urban scenarios that
accounts for the presence of buildings as well as fast-fading effects.

4.6.2 Music streaming over NDN

In order to evaluate Navigo performances, we devised a “music streaming”
application: a hypothetical Internet music streaming provider that can be
reached by any of the 4 RSUs deployed on the map via a 100 Mbit/s wired
channel. The client application (consumer) runs on a subset of all the cars; we
varied the cardinality of the subset from 2% to 100% across our simulations.

Each song has an average length of 3 minutes, yielding about 1700 chunks of
data per song, if we assume an average encoding bit rate that is common among
current commercial music streaming services such as Spotify. Requests for songs
are generated according to a Zipf distribution with an α parameter obtained
from [84], where Kreitz et al. found that the top 12% most popular songs in the
library are requested 88% of the time. When a song is chosen, the consumer
starts issuing Interest packets progressively for every chunk of which the song is
composed. To improve the performance we implemented a simple mechanism for
request pipelining, with a hard limit of 20 pending Interests (i.e. expressed but
not satisfied) at any given time.

The application tries to provide the best possible user experience, thus its main
goal is to successfully retrieve a chunk before the playback reaches that point of
the song. In order to do so, and since Data packets can arrive out-of-order, the
streaming client maintains a buffer of song fragments that have already been
fetched but have not yet been played. When this buffer underflows, the
application has to pause the playback and wait for the missing chunk before
playback can be resumed. This event is highly undesirable since it leads to a
poor user experience. In our simulations we recorded whether an underflow
occurred during the playback of a song. We believe this metric provides an
important tool to evaluate the success of our solution.

66 Chapter 4 Navigo: Interest Forwarding by Geolocations in V-NDN

(a) Success rate (b) User satisfaction

(c) Protocol overhead

Figure 4.5: Performance with different music library size

4.6.3 Simulation results

We compared Navigo to GPSR [76], a well-known routing protocol for mobile
wireless networks that uses the geographic positions of nodes to make packet
forwarding decisions. GPSR typically requires a location service to discover the
data source position: in our experiment we provided GPSR with a cost free
oracle able to locate the closest node (server or consumer) with the requested
chunk of the song. In this section we present the results obtained from the
simulations and we analyze them.

4.6.3.1 Success rate

Defined as the ratio between the number of satisfied Interests and the number of
Interests issued by all consumers. The results for this metric are shown in
Figure 4.5(a). Navigo is able to satisfy a much higher percentage of Interests
compared to GPSR, and although the margin of improvement shrinks with 70%
and 100% of consumers, Navigo can still satisfy 10% more Interests than GPSR.

Chapter 4 Navigo: Interest Forwarding by Geolocations in V-NDN 67

4.6.3.2 User satisfaction

As explained in 4.6.2, this metric is expressed as the percentage of songs played
without any interruptions caused by a playback buffer underrun. During our
simulations the maximum buffer size was set to 30 seconds. Figure 4.5(b) shows
that Navigo substantially outperforms GPSR, especially with 50% consumers or
less.

4.6.3.3 V2V channel access (protocol overhead)

Represents the intrinsic “cost” of the V2V protocol in terms of number of
accesses to the WiFi channel needed to satisfy an Interest, defined as the ratio
among the number of packets sent on the V2V channel and the number of
Interest satisfied. For Navigo this means the average number of Interest (satisfied
and not) and Data packets that were sent on the air for each satisfied Interest.
For GPSR we counted also ARP, ICMP, and Hello packets, which are required to
run the protocol and therefore part of its overhead. We can see in Figure 4.5(c)
that GPSR requires a much higher number of accesses to the V2V channel
compared to our solution. In particular, while GPSR always needs to send more
than 30 packets for each satisfied Interest, Navigo requires less than 20 packets in
most cases, increasing the overall network efficiency, and only becomes slightly
worse with more than 50% of consumers.

4.6.3.4 Load on the infrastructure

Expressed as the number of requests received by the streaming server (located on
the Internet behind the RSUs) divided by the total number of Interest satisfied.
This metric is particularly interesting as it illustrates a major limitation of IP’s
approach. Indeed, with IP-based protocols, it sometimes happens that the
request reaches the content provider but the response fails to travel back to the
consumer. In this case the consumer has to re-request the data from the content
provider, because there are no caches along the path and, from the point of view
of IP, the two requests are completely different and unrelated, even if they refer
to the same content. This of course does not happen with NDN: Interests
re-issued after a timeout can be satisfied by any other node that cached the
desired Data packet during the previous failed attempt(s). The effect is evident
from Figure 4.6. The inability of GPSR to exploit in-network caching results in a
load ratio around 1.2 or higher in all scenarios. On the other hand Navigo never
goes above 1, and in most cases the load is around 0.8. Moreover, as the number

68 Chapter 4 Navigo: Interest Forwarding by Geolocations in V-NDN

Figure 4.6: Load on the infrastructure with different music library size

Figure 4.7: Infrastructure offload varying music library size

of consumers grows, our solution is able to take advantage of the increased
caching opportunities, thus lowering the load on the infrastructure even more,
contrary to GPSR where the load slightly increases.

4.6.3.5 Infrastructure offload

Measures the effectiveness of in-network caching for reducing the load on the
infrastructure. Concretely, this is defined as the percentage of Interests satisfied
by a Data packet coming from the cache of a node (either car or RSU). In the
GPSR case only those nodes where the streaming application is running are able
to act as caches. The results are reported in Figure 4.7, with an additional pair
of lines, labelled “mules only” in the legend, where we considered only other cars
as potential caches (i.e. RSU caches were excluded). As expected, Navigo leads
to a substantially higher cache utilization, even when only mules are considered,
while GPSR does not go beyond 20% of Interests satisfied by caches. Note that
to avoid skewing the results to our advantage, the effect of caches on re-issued
Interests described for the previous metric is not considered here.

Chapter 4 Navigo: Interest Forwarding by Geolocations in V-NDN 69

(a) Success Rate sending Interest towards geo-areas
with and without RSUs

(b) Consumers opportunistically retrieve a song from
different mules

Figure 4.8: Navigo simulation results: mobile nodes as data provider.

4.6.4 Handling mobility of data providers

When data is provided by moving mules, the binding between names and
geographic areas may have a short life. Navigo partially copes with this problem
by specifying an entire geographic area as destination, instead of an exact point
in space, and then by flooding the Interest within the destination area. More
importantly, as shown in Figure 4.8(b), a consumer is able to opportunistically
retrieve chunks of the same song from different moving mules. On one hand,
enabling every receiver to cache a Data packet allows the content to spread to a
large number of cars; on the other hand, NDN, focusing on content rather than
nodes, makes the identity of the data provider irrelevant. These two factors
combined allow the consumer to retrieve the data in an opportunistic way from
nearby nodes without having to “follow” a specific node.

Moreover, to validate the effectiveness of Navigo approach to the mobility of
data providers, figure 4.8(a) shows the Interest success rate when a consumer
sends a request towards an area which includes a RSU and when the Interest is
sent towards a geo-area without RSUs, thus towards one or more mules. In this
evaluation, the success rate of the exploration phase (Interest sent in all the
directions) is not taken into account. The success rate when Interests are sent
towards areas with RSUs is clearly higher, mainly because (1) the RSU doesn’t
move while mules do; (2) the RSU is connected to the music producer, thus has
access to any content, while mules can answer only for Data packets they store in
the CS. Nevertheless, with a small penetration rate of the application as 8%, the
success rate of Interests sent towards geo-areas with only mules goes from 40% to
60% and, most important, is higher than the success rate of GPSR (which
includes both Interest sent towards RSU and towards other consumers).

70 Chapter 4 Navigo: Interest Forwarding by Geolocations in V-NDN

Traffic Application

To analyze how Navigo takes advantage of the location information when they
are intrinsically attached to contents, we implemented a “traffic-update”
application: producers (cars) autonomously collect information about the traffic
on the road they are traveling on (i.e. vehicle speed), while consumers (cars)
request traffic status updates specifying in the Interest name the location (i.e. a
portion of a road) they are interested in. Such data has an intrinsic geographical
meaning, thus the exploration phase can be avoided by letting the consumer bind
in the FIB the content prefix with the geo-area including the location of interest.
Table 4.1 shows the success rate of the traffic application when 10% of the cars
running on the map are producers. The success rate is defined as the ratio
among the number of Interest satisfied and the number of satisfiable Interest. An
Interest is considered as “satisfiable” whenever, at the moment the consumer
issues the request, there is at least one producer somewhere in the map (it
doesn’t matter where) that can satisfy the request (Interest for data that has not
been produced or for data that has been produced by cars which have already
left the map are not considered in this statistic).

% of consumer 1% 10% 30% 50%
Succes Rate 19% 36% 54% 63%

Table 4.1: Traffic Application: Success Rate with 10% of producers

While this is just a toy scenario and the way the data is produced is far from the
reality, these results indicate that, even with a small penetration rate of the
application (10% of producers), a reasonable success rate (over 50%) is reachable
without any support from the infrastructure and without any exploration phase.
Whenever data is tied with the location where it is generated and can be
produced by multiple nodes, steering the requests towards the location of interest
can be enough to reach a producer or a mule and retrieve the content.

4.6.5 Simulations with higher car density

We performed the same set of simulations for the music application described
in 4.6.3 using a denser car mobility. This time the total number of cars on the
map was 1048, arranged as follows: 56% on 6-lane roads, 30% on 4-lane roads,
and the remaining 14% on 2-lane roads. The rest of the parameters were left
untouched.

Chapter 4 Navigo: Interest Forwarding by Geolocations in V-NDN 71

Figure 4.9: Transmission queue length with different car density

The results relative to the success rate and user satisfaction, although decreased
compared to the previous mobility, clearly showed that Navigo can perform
substantially better than GPSR even with a larger number of nodes. The
percentage of infrastructure offload raised even more, due to the fact that Navigo
can take advantage of the improved caching opportunities offered by the denser
car traffic. However, Navigo’s overhead, measured in terms of number of V2V
channel accesses, also increased, and reached the same level of GPSR in the
scenarios with more than 32% of consumers.

We speculated that this performance degradation was to be ascribed to a rapid
worsening of the wireless channel conditions: as more and more nodes try to
transmit, the network becomes congested, the chance of collisions increases and
more packets are dropped due to queues filling up.

To confirm this intuition we measured the length of the transmission queues at
the MAC layer on each node. Indeed, as Figure 4.9 shows, starting with 32% of
consumers the queue length increases by two orders of magnitude in the heavy
vehicular traffic scenario. By comparison, the increase is much slower with the
previous mobility. We believe that these findings satisfactorily explain the
reduced protocol efficiency observed in the high density simulations. We intend
to address this limitation of Navigo in a future work, by investigating congestion
avoidance and congestion control techniques.

Moreover it should be noted that, while GPSR packets always follow a single
path, Navigo may experience cases of multipath, because forwarding decisions
are taken at the receiver side. For instance, cars on different roads might decide
to forward the same packet if they cannot hear each other, because both of them
are closer to the destination than the previous hop. This event can increase the
overhead, but at the same time it makes the protocol more reliable, thus
increasing the chances of retrieving the desired content.

72 Chapter 4 Navigo: Interest Forwarding by Geolocations in V-NDN

4.7 Discussion and final remarks

Previous work V-NDN showed the feasibility of NDN in VANETs and evaluated
benefits and challenges of the named-data approach in those highly dynamic
environments. However, it failed to address some of the issues typical of the V2V
and V2I communication, as, for instance, data discovery, scalable forwarding
strategies, etc. which prevents the deployment of V-NDN at large scale. Navigo
started from there and addressed some of the limitations of V-NDN, with the
goal of improving the efficiency of the communication and make V-NDN more
scalable, primary requirements for the realization of the “connected car” concept.

With Navigo we developed a self-learning scheme to enable effective data
delivery in highly dynamic vehicular environments. Navigo strategy is to learn
where the Content resides and then steer Interests towards such an area. In
contrast with IP-based geo-routing, which attempts to deliver packets to a
specific end node, Navigo forwards Interests towards the area content resides in,
enabling fetching from any available data carrier within the region, either
producers, mules, or RSUs. Navigo automatically learns content’s geographical
location and requires no location service or oracle which are typically required by
traditional Geo-routing. Furthermore, while IP-based geo-routing is
connectivity-dependent and uses a one-hop hello protocol to maintain the local
topology, all Navigo traffic is related to Interest–Data transactions, i.e. if there
is no request for content, there would be no packet in the network. Lastly, we
observed that the NDN’s basic breadcrumbs mechanism is resilient to mobility:
the 95th RTT percentile for an Interest-Data transaction is less than 300ms.
Vehicles do not move far in the time elapsed between an Interest and the
corresponding data thus ensuring the validity of the Interest breadcrumbs in the
PIT and the effective retrieval of Data packets.

Navigo has been extensively evaluated through simulations and features low
overhead and high performances for both V2V and V2I scenarios. Our
simulation setting assumes that all RSUs can listen to the packets within their
vicinity of WiFi signal reachability. We understand that the situation can be
different in real WiFi deployment today, where RSUs may not be in the same
SSID domain as vehicles and thus may not be able to receive/send packets with
cars. However we believe this issue is simply the artifact of today’s protocol
implementation, while our goal in this work is to explore what is achievable by
NDN based V2V, without the constraints of today’s implementation.

Chapter 5

Producer Mobility: MAP–ME

5.1 Introduction

With the phenomenal spread of portable user devices, mobility has become a
basic requirement for almost any communication network (not only VANET) as
well as a compelling feature to integrate in the next generation networks (5G).
The need for a mobility-management paradigm to apply within IP networks has
striven a lot of efforts in research and standardization bodies (IETF, 3GPP
among others), all resulting in a complex access-dependent set of mechanisms
implemented via a dedicated control infrastructure. The complexity and lack of
flexibility of such approaches (e.g. Mobile IP) calls for a radically new solution
dismantling traditional assumptions like tunneling and anchoring of all mobile
communications into the network core. We thus extends our work on NDN and
VANETs to address network mobility for more generic nodes, as smatphones,
tablets etc.

As already demonstrated before, the Named Data Networking paradigm brings
native support for mobility, security, and storage within the network architecture,
hence emerging as a promising 5G technology candidate. Specifically on mobility
management, NDN has the potential to relieve limitations of the existing
approaches by leveraging its primary feature, the redefinition of packet
forwarding based on names rather than on network addresses. We believe that
removing the dependence on location identifiers is a first step in the direction of
removing the need for any anchoring of communications into fixed network
nodes, which may considerably simplify and improve mobility management.

As a direct result of NDN design principles, consumer mobility is natively
supported: a change in physical location for the consumer does not translate into
a change in the data plane like for IP. The retransmissions of requests for not yet

73

74 Chapter 5 Producer Mobility: MAP–ME

received data by the consumers take place without involving any signaling to the
network. Producer mobility and realtime group communications present more
challenges, depending on the frequency of movements, latency requirements, and
content lifetime. The topology does not reflect the naming structure, and we
have to preserve key functionalities such as multipath, caching, etc. In all cases,
beyond providing connectivity guarantees, additional transport-level mechanisms
might be required to protect the flow performance, which are beyond the scope
of this work (see [39] for instance).

Tackling such problems, in a simple and effective way by exploiting NDN key
characteristics is at the core of this chapter. Previous attempts to address global
and local mobility have been made in NDN (and ICN in general) literature to go
beyond the traditional IP approaches, by using the existing NDN request/data
packet structures to trace producer movements and to dynamically build a
reverse-forwarding path (see [180] for a survey). While most of them support not
only local, but also global producer mobility, they still rely on a stable home
address to inform about producer movements (e.g. [181]) or on buffering of
incoming requests at the producer’s previous point of attachment – PoA – (e.g.
[77]), which prevents support for latency-sensitive streaming applications. We
look at local mobility and focus on this class of applications (e.g. live streaming
or videoconferencing) as they have the most stringent performance requirements:
negligible per-packet loss-rate and delays. In addition, they typically originate
from a single producer and don’t allow for the use of caching. Good performance
for other classes such as adaptive or elastic flows is simpler to guarantee as they
only require a high-enough average throughput [127, 137]

In this chapter, we aim to take one step forward in the definition of a
name-based mechanism operating in the forwarding plane and completely
removing any fixed and predetermined anchoring nodes in the network, while
aiming at latency minimization.

The main contribution of this work is a proposal for a mobility-management
mechanism, named MAP-Me, with the following characteristics:

• MAP-Me addresses micro (e.g. intra Autonomous Systems) producer
mobility. Addressing macro-mobility is a non-goal of this work, left for
future work. We are focusing here on complementary mechanisms able to
provide a fast and lightweight handover, preserving the performance of
flows in progress.

• MAP-Me does not rely on local or global routing updates, which would be
too slow and too costly, but rather works at a faster timescale propagating

Chapter 5 Producer Mobility: MAP–ME 75

forwarding updates and leveraging real-time notifications left as
breadcrumbs by the producer to enable live tracking of its position1. The
objective being the support of high-speed mobility and real-time group
applications like Periscope [122]. MAP-Me leverages core NDN features like
stateful forwarding, dynamic and distributed Interest load balancing to
update the forwarding state at routers, and relaying former and current
producer locations.

• MAP-Me is designed to be access-agnostic, to cope with highly
heterogeneous wireless access and multi-homed/mobile users.

• Low overhead in terms of signaling, additional state at routers, and
computational complexity are also targeted in the design to provide a
solution able to scale to large and dynamic mobile networks.

To evaluate this proposal, we first contribute an analysis of protocol correctness
and guarantees; then, we provide a realistic simulation environment in NDNSim
2.1 [106], where we compare it against an ideal Global Routing, which can
instantly and optimally update all FIBs, anchor-based and tracing-based
solutions over a set of random waypoint and trace-driven mobility patterns
representing V2I scenarios based on 802.11 radio access. Results show that
MAP-Me satisfies its objectives while equalling or outperforming the existing
alternatives both in terms of user performance (e.g. loss, delays) and network
cost (e.g. signaling overhead, link utilization) metrics. We also show wide
applicability of results across different topologies radio and mobility patterns.

The rest of the chapter is organized as follows: In Sec. 5.2, we introduce the
design principles and details of MAP-Me operations, before analyzing its
correctness and path-stretch guarantees in Sec. 5.4. A comprehensive evaluation
of the benefits of our proposal is then performed in Sec. 5.5. Finally, Sec. 5.6
investigates the interaction and possible cooperation between MAP-Me and an
existing routing protocol, before concluding with the final remarks in Sec. 5.7.

5.2 Design

In this section, we introduce MAP-Me, a micro-mobility management
architecture for NDN networks. Based on the classification and discussion made
in the previous section, we detail here the design principles inspiring MAP-Me.

1For simplicity, we use the word producer in place of the more correct expression producer name
prefixes

76 Chapter 5 Producer Mobility: MAP–ME

• Transparent: MAP-Me does not involve any name nor modifications to
basic request/reply operations to be compatible with standard NDN design
and to avoid issues caused by name modifications like triangular routing,
caching degradation, or security vulnerabilities.

• Distributed: MAP-Me is designed to be fully distributed, to enhance
robustness w.r.t. centralized mobility management proposals subject to
single point-of-passage problem.

• Localised: MAP-Me updates affect the minimum number of routers at the
edge of the network to restore connectivity. The goal is to realize effective
traffic off-load close to the end-users.

• Lightweight: MAP-Me mobility updates are issued at prefix granularity,
rather than content or chunk/packet granularity, to minimize signaling
overhead and temporary state kept by in-network nodes.

• Reactive: MAP-Me works at forwarding layer to enable updates in FIBs at
network latency, i.e. round-trip time scale. Specific mechanisms are defined,
referred to as network notifications and discovery, to maximise reactivity in
mobility management in case of real-time producer tracking and of
latency-sensitive communications.

• Robust to network conditions (e.g. routing failure, wireless or congestion
losses, and delays), by leveraging hop-by-hop retransmissions of mobility
updates.

5.2.1 MAP-Me description

As a data plane protocol, MAP-Me handles producer mobility events by means
of dynamic FIB updates with the objective of minimizing unreachability of the
producer. It relies on the existence of a routing protocol responsible for
creating/updating the FIB of all routers, possibly with multipath routes, and for
managing network failures (eg. [164, 65]). MAP-Me is composed of:
- an Update protocol (MAP-Me-IU) (Sec.5.2.2), which is the central component
of our proposal;
- a Notification/Discovery protocol (Sec.5.2.3), to be coupled with the Update
protocol (the full approach is referred to as MAP-Me) to enhance reactivity in
mobility management for realtime/latency-sensitive application.

In this section, we describe the protocols independently of the routing protocol,
and dedicate Sec. 5.6 at their integration. Routing will be in charge of handing
the long-term impact of mobility (node relocation), and reoptimizing paths. We

Chapter 5 Producer Mobility: MAP–ME 77

assume a single producer of content, and no prefix reaggregation at intermediary
ISPs.

5.2.2 MAP-Me Update protocol

5.2.2.1 Rationale

The rationale behind MAP-Me-IU is that the producer announces its movements
to the network by sending a special Interest Packet, named Interest Update (IU)
to “itself” after it reattaches to the network. Such a message looks like a regular
Interest packet named with the prefix advertised by the producer. As such, it is
forwarded according to the information stored in the FIBs of traversed routers
towards previous locations of the producer known by router FIBs. A special flag
carried in the header of the IU enables all routers on the path to identify the
Interest as a mobility update and to process it accordingly to update their FIBs
(a detailed description of the IU processing is provided in Sec.5.3.2).

The key aspect of the proposal is that it removes the need for a stable home
address (present in Tracing-Based approaches for instance) by directly leveraging
name-based forwarding state created by NDN routing protocols or left by
previous mobility updates. FIB updates are triggered by the reception of
mobility updates in a fully distributed way and allow a modification on-the-fly to
point to the latest known location of the producer.

5.2.2.2 Updates propagation

MAP-Me-IU aims at quickly restoring global reachability of mobile prefixes with
low signaling overhead, while introducing a bounded maximum path stretch (i.e.
ratio between the selected and the shortest path in terms of hops). Let us
illustrate its behavior through the example in Fig. 5.1, where a single producer
serving prefix p moves from position P0 to P1 and so on. Fig. 5.1(a) shows the
tree formed by the forwarding paths to the name prefix p where IU initiated by
the producer propagates.

Network FIBs are assumed to be populated with routes toward P0 by a
name-based routing protocol (yellow cloud) After the relocation of the producer
from P0 to P1, once the layer-2 attachment is completed, the producer issues an
IU carrying the prefix p and this is forwarded by the network toward P0 (in
general, toward one of its previous locations according to the FIB state of the
traversed routers).

78 Chapter 5 Producer Mobility: MAP–ME

Figure 5.1: MAP-Me-IU illustration.

Fig. 5.1(b) shows the propagation of the IU. As the IU progresses, FIBs at
intermediate hops are updated with the ingress face of the IU (Fig 5.1(c, d)). IU
propagation stops when the IU reaches P0 and there is no next hop to forward it.
The result is that the original tree rooted in P0 becomes re-rooted in P1

(Fig. 5.1(e)). Looking at the different connected regions, we see that IU
propagation and consequent FIB updates have the effect of extending the newly
connected subtree (represented as a red cloud) : at every step, an additional
router and its predecessors are included in the connected subtree. We will
analyze the properties of the update propagation process in terms of bounded
lenght and stretch in Sec.5.4.

5.2.2.3 Concurrent updates

Frequent mobility of the producer may lead to the propagation of concurrent
updates. To prevent inconsistencies in FIB updates, MAP-Me-IU maintains a
sequence number at the producer end that increases at each handover and
identifies every IU packet. Network routers also keep track of such sequence
number in FIB to verify IU freshness. Without detailing the specific operations
in MAP-Me to guarantee update consistency (whose description is provided in
Sec.5.3.2), we can say that modification of FIB entries is only triggered when the
received IU carries a higher sequence number than the one locally stored, while
the reception of a less recent update determines a propagation of a more recent
update through the not-yet-updated path. An example of reconciliation of

Chapter 5 Producer Mobility: MAP–ME 79

concurrent updates is illustrated in Figure 5.1(f), when the producer has moved
successively to P1 and then to P2 before the first update is completed.

Both updates propagate concurrently until the update with sequence number 1
(IU1) crosses a router that has been updated with fresher information – that has
received IU with higher sequence number (IU2) as in Fig. 5.1(g). In this case, the
router stops the propagation of IU1 and sends back along its path a new IU with
an updated sequence number (Fig. 5.1(h)). The update proceeds until ultimately
the whole network has converged towards P2 (Fig. 5.1(i)).

MAP-Me-IU protocol reacts at a faster timescale than routing – allowing more
frequent and numerous mobility events – and over a localized portion of the
network edge between current and previous producer locations. We thus expect
MAP-Me-IU respectively to minimize disconnectivity time and to reduce the link
load, which are the main factors affecting user flow performance, as later shown
by our evaluation in Section 5.5.

5.2.3 Map-Me Notification/Discovery protocol

IU propagation in the data plane accelerates forwarding state re-convergence
w.r.t. routing-based (RT) or resolution-based (RB) approaches operating at
control plane, and w.r.t. anchor-based (AB) approaches requiring traffic
tunneling through the anchor. Still, network latency makes IU completion not
instantaneous and before an update completes, it may happen that a portion of
the traffic is forwarded to the previous PoA and dropped because of the absence
of a valid output face leading to the producer.

Previous work in the Local Routing category has suggested the buffering of
Interests at previous producer location [77] to prevent such losses by increasing
network reactivity. However, such a solution is not suitable for applications with
stringent latency requirements (e.g. real-time) and may be incompatible with IU
completion times. Moreover, the negative effects on latency performance might
be further exacerbated by IU losses and consequent retransmissions in case of
wireless medium. To alleviate such issues, we introduce two separate
enhancements to MAP-Me-IU protocol, namely (i) an Interest Notification
mechanism for frequent, yet lightweight, signaling of producer movements to the
network and (ii) a scoped Producer Discovery mechanism for consumer
requests to proactively search for the producer’s recently visited locations.

80 Chapter 5 Producer Mobility: MAP–ME

5.2.3.1 Interest notification

An Interest Notification (IN) is a breadcrumb left by producers at every
encountered PoA. It looks like a normal Interest packet carrying a special
identification flag and a sequence number, like IUs. Both IU and IN share the
same sequence number (producers indistinctly increase it for every sent message)
and follow the same FIB lookup and update processes. However, unlike IU
packets, the trace left by INs at the first hop router does not propagate further.
It is rather used by the discovery process to route consumer requests to the
producer even before an update process is completed.

It is worth observing that updates and notifications serve the same purpose of
informing the network of a producer movement. The IU process restores
connectivity and as such has higher latency/signaling cost than the IN process,
due to message propagation. The IN process provides information to track
producer movements before update completion when coupled with a scoped
discovery. The combination of both IU and IN allows to control the trade-off
between protocol reactivity and stability of forwarding re-convergence.

5.2.3.2 Discovery

The extension of MAP-Me with notifications relies on a local discovery phase:
when a consumer Interest reaches a PoA with no valid output face in the
corresponding entry, the Interest is tagged with a “discovery” flag and labeled
with the latest sequence number stored in FIB (to avoid loops). From that point
on, it is broadcasted with hop limit equal to one to all neighbors and discarded
unless it finds the breadcrumbs left by the producer to track him (notifications).
The notifications can either allow to forward consumer Interests directly to the
producer or give rise to a repeated broadcast in case of no valid output face. The
latter is the case of a breadcrumb left by the producer without any associated
forwarding information because the producer has already left that PoA as well.
A detailed description of the process is reported in Sec.5.3.2.

As further shown in Sec. 5.5, the notification/discovery mechanism is important
to preserve the performance of flows in progress, especially when
latency-sensitive.

Chapter 5 Producer Mobility: MAP–ME 81

Figure 5.2: Notifications/Discovery process example.

5.2.4 Full MAP-Me approach

In the rest of the chapter, we evaluate a combined update and
notification/discovery approach consisting of sending a IN immediately after an
attachment and a IU at most every TU seconds, referred to as MAP-Me, to
reduce signaling overhead especially in case of high mobility. The update-only
proposal, denoted as MAP-Me-IU, is also evaluated separately.

Figure 5.2 illustrates the combined use of notifications and discovery in a mobile
access network where the different PoAs form the leaves of a fat tree.

The producer, initially in position P0 moves to P1 and later to P2, sending each
time an Interest Notification (respectively IN 1 and IN 2. Consumer interests are
forwarded using FIB information synchronized with the initial state of the
producer and thus reach the initial PoA, P0. Once the producer moves and the
face is destroyed, no valid next-hop face information can be found into the FIB
and consumer Interests reaching P0 enter in discovery mode: they are tagged
with the sequence number 0 found in the FIB, and broadcasted to one-hop
neighbors, which may either forward them directly to the producer (this is the
case for the current PoA of the producer) or broadcast them one hop further if
they have been notified of producer attachment by means of INs, but there is no
valid forwarding information. Other network nodes reached by a Discovery
Interest just discard the packet since they have no fresher information about the
position of the producer. The discovery process is iterated until the producer is
reached.

82 Chapter 5 Producer Mobility: MAP–ME

Figure 5.3: MAP-Me FIB/TFIB description.

5.3 Implementation

5.3.1 MAP-Me introduction in a NDN network

In this section we describe the changes to a regular NDN architecture required to
implement MAP-Me and detail the above-described algorithms. This requires to
specify a special Interest message, additional temporary information associated
to the FIB entry and additional operations to update such entry.

5.3.1.1 MAP-Me Messages

Two new optional fields are introduced in a NDN Interest header:

• a special Interest Type (T) to specify four types of messages: Interest
Updates (IU), Interest Notifications (IN), as well as their associated
acknowledgment (Ack) messages (IUack and INack). Those flags are
recognized by the forwarding pipeline to trigger special treatment.

• a sequence number : used to handle concurrent updates and prevent
forwarding loops during signaling, and to control discovery interests during
consumer interest propagation;

5.3.1.2 MAP-Me additional Network Information

FIB entries are enriched with a sequence number, set to 0 say, by routing protocol
updates and updated by MAP-Me upon reception of IU/IN messages. The Data
about not-yet-acknowledged messages are temporarily stored in what we denote as
Temporary FIB buffer, TFIB, to ensure the reliability and robustness of the
process, and removed upon reception of the corresponding acknowledgement. As
sketched in Fig.5.3, each TFIB entry is composed of an associative array (F → T)

mapping a face F on which IU has been sent with the associated retransmission
timer T (possibly null, denoted ⊥).

Observe that the update mechanism is a constant delay operation at each router/hop
and is performed at line rate.

Chapter 5 Producer Mobility: MAP–ME 83

5.3.2 Algorithm description

5.3.2.1 IU/IN transmission at producer

MAP-Me operations are triggered by producer mobility, i.e. after detaching from a
network node and reattaching to a new one. At the producer end, a mobility event
is followed by a layer-2 attachment and, at network layer, a change in the FIB. More
precisely, a new face is created and activated upon attachment to a new base station.
This signal triggers the increase of MAP-Me sequence number and the transmission of
an IU (or IN message depending on the selected MAP-Me mechanism) for every served
prefix carrying the computed sequence number.

To ensure reliable delivery of IUs, a timer is setup in the temporary section of the FIB
entry (TFIB). If an acknowledgement of the IU/IN reception is not received within τ

seconds since the packet transmission, a retransmission of IU is rescheduled.

We define the SendReliably(F, type, ε) function for sending Special Interests of type
type on faces F based on name and sequence number found in local FIB entry ε. It
schedules their retransmission through a timer T stored in TFIB: ε.TFIB = ε.TFIB ∪
(F → T), and removed on Ack.

5.3.2.2 IU/IN processing at network routers

At the reception of IU/IN packets, each router performs a name-based Longest Prefix
Match lookup in FIB to compare IU/IN carried and FIB stored sequence number. Ac-
cording to the result of the comparison:
- if the IU/IN packet carries a higher sequence number, the existing next hops associated
to the lower sequence number in FIB are used to forward further the IU (INs are not
propagated) and temporarily copied into TFIB to avoid loss of such information before
completion of the IU/IN acknowledgement process (in case of IN, such entries in TFIB
are set with a ⊥ timer to maintain a trace of the producer recent attachment). Also, the
originating face of the IU/IN is added to FIB to route consumer requests to the latest
known location of the producer.
- If the IU/IN packet carries the same sequence number as in the FIB, the originating
face of the IU/IN is added to the existing ones in FIB without additional packet pro-
cessing or propagation. This may occur in presence of multiple forwarding paths.
- If the IU/IN packet carries a lower sequence number than the one in the FIB, FIB
entry is not updated as it already stores “fresher information”. To advertise the latest
update through the path followed by the IU/IN packet, this one is re-sent through the
originating face after having updated its sequence number with the value stored in FIB.

84 Chapter 5 Producer Mobility: MAP–ME

5.3.2.3 Hop-by-hop IU/IN acknowledgement

The operations in the forwarding pipeline for IU/IN processing are reported in Algo-
rithm 2.

Algorithm 2: ForwardSpecialInterest(SpecialInterest SI, Ingress face F)
CheckValidity()
.Retrieve the FIB entry associated to the prefix
ε, T ← FIB.LongestPrefixMatch(SI.name)
if SI.seq ≥ ε.seq then

.Acknowledge reception
s ← ε.seq
ε.seq ← SI.seq
SendReliably(F , SI.type + Ack, ε)
.Process special interest
if F ∈ ε.TFIB then

.Remove outdated TFIB entry (eventually cancelling timer)
ε.TFIB = ε.TFIB \ F

if SI.seq > s then
if SI.type = IU then

.Forward the IU following FIB entry
SendReliably(ε.NextHops, SI.type, ε)

else
.Create breadcrumb and preserve forwarding structure
ε.TFIB = ε.TFIB ∪ {(f → ⊥) : ∀f ∈ ε.NextHops}

ε.NextHops = ∅
ε.NextHops = ε.NextHops ∪ F

else
.Send updated IU backwards
SI.seq = ε.seq
SendReliably(F , SI.type, ε)

5.3.2.4 Face removal at producer/network nodes

Upon producer departure from a base station, the corresponding face is destroyed. If
this leads to the removal of the last next hop, then faces in TFIB with ⊥ timer (entries
generated by notifications) are restored in FIB to preserve the original forwarding tree
and thus global connectivity.

5.3.2.5 Consumer request forwarding in case of producer discovery

The forwarding of regular Interests is mostly unaffected in MAP-Me, except in the case
of discovery Interests that we detail in Algorithm 3). The function SendToNeighbors(I)

is responsible for broadcasting the Interest I to all neighboring PoAs.

When an Interest arrives to a PoA which has no valid next hop for it (because the
producer left and the face got destroyed), it enters a discovery phase where the Interest
is flagged as a Discovery Interest and with the local sequence number, then broadcasted
to neighboring PoAs to track the producer.

Chapter 5 Producer Mobility: MAP–ME 85

Upon reception of a Discovery Interest, the PoA forwards it direcly to the producer if
still attached, otherwise it repeats the one-hop brodcast discovery to neighboring PoAs
if it stores a recent notification of the producer presence, i.e. an entry in TFIB with ⊥
timer and higher sequence number than the one in the Discovery Interest. Otherwise,
the Discovery Interest is simply discarded.

It is worth observing that the discovery process is initiated only in the case of no valid
forwarding next hop and not every time a notification is found in a traversed router.
This is important to guarantee that the notification/discovery process does not affect IU
propagation and IU process completion.

5.3.3 Security considerations

As all mobility solutions, MAP-Me affects the forwarding of user traffic and its updates
have to be secured. An in-depth study will be the subject of future work, and we restrict
our ambition here to demonstrate how the existing solutions from the literature can
provide an equivalent security as the current approaches used today in operational net-
works. It is indeed worth noticing that although our approach seems disruptive, it shares
many similarities with the existing macro or micro-mobility solutions. In Anchor-Based
approaches for instance (say M-IPv6), it is also up to the producer to issue registration
requests to an agent to update the binding between the foreign and the care-of-address
(tunnels), which also affects end-to-end forwarding.

The general approach is to distinguish a boostrap procedure when a node enters the
domain, in which we typically use PKI-based schemes to do comprehensive vetting of

Algorithm 3: InterestForward(Interest I, Origin face F)
.Regular CS and PIT lookup
ε ← FIB.LongestPrefixMatch(I.name)
if ε = ø then

return
if I.seq = ø then

.Regular interest
if hasValidFace(ε.NextHops) or DiscoveryDisabled then

ForwardingStrategy.process(I, ε)
else

.Enter discovery mode
I.seq ← ε.seq
SendToNeighbors(I)

else
.Discovery interest: forward if producer is connected. . .
if hasProducerFace(ε.NextHops) then

ForwardingStrategy.process(I, ε)
.. . . otherwise iterate iif higher seq and breadcrumb
else if ε.seq ≥ I.seq ∧ ∃f |(f → ⊥) ∈ ε.TFIB then

I.seq ← ε.seq
SendToNeighbors(I)

86 Chapter 5 Producer Mobility: MAP–ME

the users’ authorizations. It is then possible to use a secure token to quickly authorize
subsequent calls from a user, e.g. by using an HMAC function.

Among the many variations that can be found in the literature, one such example is given
by the authors of Cellular IP [36] in a distributed context that is close enough to MAP-
Me to be readily applicable. We limit our description here to the bare mechanism, which
can be further secured through the use of random identifiers in HMAC computation.

Assume that all infrastructure nodes share a symmetric key κ. Upon bootstrap, a pro-
ducer willing to announce prefix p will receive a derived key κU = HMACκ(p) along with
random number r.

While all network nodes can compute such a key from the information given by the
producer, it won’t allow the user to retrieve the network key. Signaling message can
then be augmented with a registration token R = HMACκU (p‖seq), where ‖ means
concatenation. R can be verified by all nodes to prove that the user had indeed been
authorized during a previous bootstrap. Indeed, all nodes can compute KU then R based
on the information provided by the producer in the special interest (while the producer
cannot of course get back the network key).

5.4 Analysis

In this section, we investigate MAP-Me guarantees of forwarding update correctness and
path stretch stability and we support them by numerical evaluation over known ISP
network topologies. For the sake of clarity, the analysis reports the formal proofs only
in case of single-path routing.
The extension to multipath routing is straightforward by using directed acyclic graphs
instead of trees.

5.4.1 Correctness and stability of IU mechanism

We considerm consecutive movements of the producer in network positions {P0, P1, ..., Pm}
and focus on forwarding state variations determined by MAP-Me at the time instants
corresponding to either producer movements or Interest Update processing. We observe
that at any such instant, as illustrated in Fig.5.1, the network is partitioned into a set
of islands, whose number varies in [1,m+ 1] as a function of producer movements and,
hence, of the number of ongoing update processes. We assume that global routing guar-
antees the existence of a spanning tree (SP) rooted in the original location P0 at the
beginning of the mobility process. The tree is not required to be a minimum SP or a
shortest-path tree. About the completion of the update process after a given movement
k, we can state that:

Chapter 5 Producer Mobility: MAP–ME 87

Proposition 5.1. MAP-Me update mechanism guarantees finite completion time of up-
date k, ∀k ∈ [1,m] in a bounded number of hops equal to 2 (max0≤j<k(|Pk − Pj | − 1));

Proof. Assuming that IU losses are handled by the retransmission mechanism described
in Sec.5.2, the hop-by-hop propagation of an IU has two possible outcomes: either (i)
the next router has a sequence number, which is inferior to the IU carried sequence
number; in this case, IU continues its propagation towards the root of the latest routed
tree, decreased by 1 hop; or (ii) the router has a more recent sequence number, hence the
IU is sent back with the encountered higher sequence number towards the originating
routed position of the producer. Since the maximum sequence number is bounded by m,
the maximum number of hops traversed by IU with sequence number k is finite.

More precisely, the maximum number of hops traversed by IU with sequence number k,
IUk is bounded by twice the maximum distance between the originating router Pk and
the farthest previous location Pj , j < k minus one, i.e. 2 (max0≤j<k(|Pk − Pj | − 1)).
Indeed, the worst case occurs when IUk encounters a more recent update k′ > k at the
hop before reaching the latest routed previous location, which can also coincide with the
farthest one in terms of distance. In such a case, IUk propagates back to Pk carrying k′

sequence number before stopping.

After IUk propagation, the router Pk and all its predecessors traversed by IUk to reach
the last routed location are connected to the island of highest encountered sequence
number, and thus the number of distinct islands is reduced by one unit. By iterating the
same process on all IUs, it is straightforward to see that at IUm completion m+1 islands
associated to sequence number 0, 1, ...,m− 1 will have merged into the island created by
IUm. With regard to the properties of an island, we can state the following.

Proposition 5.2. Given a sequence of m consecutive movements of producer position
on the routing tree rooted in P0, producer movement m induces a new tree rooted in Pm.

Proof. The initial spanning tree is a rooted directed tree in P0 giving the routes to
reach all nodes in the network. MAP-Me update mechanism after movement m flips all
directed links from Pm to the latest routed position Pj , j < m, so that they point to Pm.
In the presence of multiple concurrent updates, the most recent one, i.e. the one with
the highest sequence number, also propagates back along the routes of the encountered
previous updates. Thus, update completion results in fully merging different rooted trees
into the one of highest sequence number, m, rooted in Pm.

Corollary 5.3. MAP-Me is loop-free under loop-free global routing.

Proof. Starting from the spanning tree given by global routing, Prop.5.2 states that
MAP-Me induces a new tree, as it only flips all edges over the unique path from the

88 Chapter 5 Producer Mobility: MAP–ME

(a) AS 1221 stretch evolution (b) Stretch comparison

Figure 5.4: Path stretch evolution (a) and comparison (b) over Rocketfuel topologies.

original position to the new one. Indeed, given the unchanged number of links/nodes,
the result is still a directed tree rooted in the new position. Hence, it is loop-free.

Proposition 5.4. MAP-Me path stretch for node i over the tree rooted in Pm, created af-
ter producer’s m-th movement, is upper bounded by the ratio (|i−P0|P0+|P0−Pm|P0)/|i−
Pm|Pm as m → ∞, which corresponds to the path stretch of the anchor-based approach
with anchor in P0.

Proof. We can distinguish two cases according to whether P0 is on the path between i
and Pm on the Pm-rooted tree or not. If it is, then the path between i and Pm may be
split into the paths i to P0 and P0 to Pm. The second component is equal to the path
length between Pm and P0 on the initial tree (only directions have been flipped).

The first one corresponds to the same path on the initial tree even in terms of directions.
Therefore, the path stretch in this case is exactly equal to (|i−P0|P0 + |P0−Pm|P0)/|i−
Pm|Pm . Otherwise, if P0 is not on the path between i and Pm, the path between i and
Pm is, by definition of MAP-Me update process (that utilizes the shortest path routing
for IUs), shorter than the one including the detour via P0 on the initial P0-rooted tree.
The bound remains true as m → ∞, because it is intrinsically related to the properties
of the initial tree.

5.4.2 Numerical Evaluation of path stretch

We compute now the average path stretch obtained by AB, TB, and MAP-Me-IU (MAP-
Me requires geographical mobility and will be later considered in Section 5.5), on the

Chapter 5 Producer Mobility: MAP–ME 89

topologies obtained from the Rocketfuel project2. The initial position on the consumer,
producer, and eventual anchor are chosen randomly, and two mobility models are imple-
mented: (i) uniform – like in the related work – where the producer can jump towards
any other node from the graph, and (ii) random waypoint (RWP), where the producer
chooses a waypoint like in the previous approach, but advances hop-by-hop on the short-
est path towards that waypoint, and then starts again. We average over 1000 runs to
compute ensemble average for the path stretch after k movements of the producer with
small confidence intervals. Figure 5.4(a) represents the evolution of average MAP-Me
path stretch over AS 1221 topology under RWP (other patterns show similar trends).
We observe that path stretch stabilizes beyond 10 movements, because MAP-Me pre-
serves the initial structure of the forwarding tree (it only modifies links direction). Other
Rocketfuel topologies show quantitatively the same results. A comparison of the differ-
ent approaches over the all 10 Rocketfuel topologies is in Fig.5.4(b) and 5.4(b). Under
both uniform and RWP mobility, MAP-Me outperforms AB, achieving up to 55% stretch
reduction, as well as TB.

5.5 Evaluation

5.5.1 Simulation setup

The section gathers simulation assessment of MAP-Me over different mobility pattern, ra-
dio conditions and network topologies. We implemented both MAP-Me and MAP-Me-IU,
anchor-based (AB), tracing-based (TB) – based on Kite ([181]) – and routing-based Glob-
alRouting (GR) – an idealized routing plane instantly updating all routers – approaches
in NFD within the NDNSim 2.1 framework. We don’t consider here resolution-based
(RB) or other LR solutions as they are not appropriate for latency-sensitive applications
(see discussion in Sec. 2.3)

We first evaluate all mobility protocols in a baseline scenario, before varying parameters
such as radio conditions, mobility model and network topology in order to gain insight
into their sensitivity. All plot data is averaged over many runs, or a large number of
handover(at least 250 per mobile node per run) depending on the context; although, for
clarity, we chose not to display confidence intervals. The full set of results is available
in [21].

2http://research.cs.washington.edu/networking/rocketfuel/. We extract the undirected graph
corresponding to the largest connected component as in [166, 181]. We remark that the authors either
did not use the same data, or processed the graph in an undocumented way, which prevents us to
reproduce their results. We still obtain similar qualitative conclusions.

http://research.cs.washington.edu/networking/rocketfuel/

90 Chapter 5 Producer Mobility: MAP–ME

Figure 5.5: Network with link capacity C=10Mb/s.

5.5.2 Baseline scenario description

Topology: In the baseline scenario, we use 802.11n access network composed of a 4-by-4
grid of base stations (BS) with square-shaped cell of side s = 80m. They are connected
to a fat-tree backhaul network represented in Fig. 5.5. This choice is motivated by the
similarity in terms of redundancy and meshing found in real ISP access network. Wired
links have a capacity of C=10Mb/s and 5ms delay. We complement it by a wide range of
well-known topology models or Rocketfuel topologies to cover all types of graph metrics
in the variant of baseline of scenario in section 5.5.4.

Radio and Mobility: We use IEEE 802.11n WiFi on 5GHz frequencies, with Minstrel
rate adaptation [108] and log distance propagation model plus Rayleigh-fading model
for wireless channel. Mobile nodes move in the 4x4 cells under full radio coverage. We
choose random waypoint mobility model for user mobility. We also vary mobile’s moving
speed from 1m/s to 15m/s (i.e, pedestrian to vehicular speed). A range of other radio
propagation models and mobility models are also used in the variant scenario in section
5.5.4.

Application: We assume N disjoint pairs of mobile consumers and producers. In par-
ticular, we choose N=5 for baseline scenario and also its variants. To highlight MAP-Me
benefits in the support of latency-sensitive traffic, we consider a streaming audio/video
application, characterized by a CBR rate of 1Mbps without retransmission in the base-
line scenario, and further extend it with an adaptive protocol inspired by the Periscope
streaming application in Sec. 5.5.6. While, the CBR application has the nice property of
reflecting network performance, the adaptive one has a closed-loop behavior that is more
realistic but might be affected by wireless and mobility losses. More in-depth study of
these interactions is out of scope for this work.

Chapter 5 Producer Mobility: MAP–ME 91

5.5.3 Results for baseline scenario: Fat-Tree + RWP + CBR

(a) (b)

(c) (d)

Figure 5.6: User performance: packet loss (a), delay (b), and hop count (c); CDF L3
hand-off latency (d).

5.5.3.1 User performance

In Fig.5.6(a)-5.6(b), we show two performance indicators for latency-sensitive traffic, av-
erage packet loss and delay, in case of N = 5 consumer/producer pairs as a function of
mobile speed (from pedestrian, i.e. 1m/s or 3km/h to vehicular, i.e. 15m/s or 54km/h).
We can distinguish two kinds of losses: due to the wireless medium, occurring irrespec-
tive of the mobility management approach, and those due to mobility. The fraction of
mobility losses is consistently reduced by MAP-Me, especially in the presence of the
notification/discovery mechanism, as a result of in-fly re-routing of Interests towards the
new location of the producer, which prevents Interest timeouts. MAP-Me-IU like TB (or
alternative LR solutions) enables re-routing of Interests only after the interval of time
required for an update to complete. A longer time is required for a global routing update,
but the resulting path is the shortest possible, which explains the equivalent performance
w.r.t. MAP-Me-IU/TB. AB under performs because of worse update completion time
and path stretch. The experienced average packet delay in Fig.5.6(b) is a consequence of

92 Chapter 5 Producer Mobility: MAP–ME

(a) (b)

(c) (d)

Figure 5.7: Network cost: Signaling overhead vs mobile speed (a), overhead (b), and
link utilization (c) per router class. Map-Me sensitivity analysis (d).

the path stretch of different approaches: high for AB, medium for TB or MAP-Me-IU,
low for GR. MAP-Me achieves better performance especially at high speed when the
discovery/notification mechanism is mostly used in virtue of the shorter 1-hop forward-
ing between APs at the access that does not involve upper links in the topology (at the
edge level). As explained, packet losses and delay result from the different average path
lengths associated to each mobility update process, see Fig.5.6(c), and from the L3 hand-
off latency, i.e. the time required for L3 reconnection after a handover, see Fig.5.6(d).
The L3 hand-off latency illustrates the reactivity of the mobility-management protocol
and highlights the significant improvement brought by MAP-Me, which reduces latency
to zero. It is interesting to observe that AB shows a constant latency value of around
30ms due to update propagation up to the anchor, while for GR, TB, and MAP-Me-IU,
such latency varies according to the number of routers to be updated, as a function of
producer movement in the considered topology. Latency variations can be visualized at
the inflection points in the corresponding CDFs in Fig.5.6(d).

Chapter 5 Producer Mobility: MAP–ME 93

5.5.3.2 Network cost

If user performance is critical to drive mobility-management choice, network cost anal-
ysis is equally important for the selection of a cost-effective solution. To this aim, we
compare signaling overhead, meaning the total number of control messages triggered
by a handover, in Fig.5.7(a), and the volume of signaling messages per handover to be
processed by routers at different positions in the network, in Fig.5.7(b). More precisely,
in the latter case, we visualize the distribution over the network of signaling load by
distinguishing the average number of messages per handover received by different classes
of routers, based on their position in the network: access, edge, backhaul, core as indi-
cated in Fig.5.5. As expected, the overall number of signaling messages as a function
of mobile speed is constant for AB, equal to the number of hops from mobile nodes to
the anchor (4). Instead, it varies for MAP-Me and MAP-Me-IU according to the also
varying average hop count (i.e. path stretch), as already observed in Fig.5.6(c). TB
approaches involve a much higher signaling overhead due to “keep-alive” messages peri-
odically sent to refresh update information. By reporting the way traffic is spread across
the network and where signaling traffic goes, we can draw some key observations. Ev-
ery mobility protocol relies on the control plane that enforces a routing state across the
network (shortest-path routing in this chapter), which corresponds to the initialization
state for mobility. All protocols relying on a fixed anchor have routing pointing to the
anchor’s location, whereas for LR mechanisms, it points to the producer’s position at
the routing update time. Thus, LR approaches are able to offload mobile backhaul and
core networks from all local traffic, seamlessly (Fig.5.7(c)3).

Finally, we report about MAP-Me sensitivity to parametrization, i.e. the impact of TU
settings. In Fig.5.7(d), we observe that MAP-Me has robust parametrization as long as
TU is not too small (signaling overhead and path stretch quickly converges to the best
settings) or too high (load on access).

5.5.4 Impact of mobility pattern, radio conditions and topology

We have performed extensive simulations to evaluate the sensitivity of MAP-Me and
other solutions, by varying several parameters in our baseline scenario [21]. We report
here our most significant results and confirm the wide applicability of conclusions from
the previous section.

3For clarity, utilization of access link only represents traffic between base stations, excluding upstream
from mobiles.

94 Chapter 5 Producer Mobility: MAP–ME

Figure 5.8: Path stretch and handoff latency for simulated network topologies (r.1755,
r.3257, r.6461 are Rocketfuel topologies).

5.5.4.1 Impact of mobility pattern and radio conditions

For mobility patterns, we have included the previous jump models across base-stations
and classical models available in NS-3 (Random Direction 2D, Gauss-Markov and Random-
Walk 2D models). For radio conditions, we have considered an ideal wireless channel
(no loss nor interference at layer 2) by dynamically switching wired links up and down
to emulate mobile handover across base stations, and the two radio models from ITU
specifications [70], namely urban environment without line of sight (LoS), and suburban
with LoS.

The impact of both radio and mobility patterns are negligible, and the plots show no
significant difference between performance metrics. Comparative simulations with the
ideal wireless channel (not represented here) show that the loss rate is not only due to the
wireless channel, but also impacted by the mobility scheme in place, and more specifically
the time to reestablish connectivity at L3 (denoted L3 handover time). Moreover, with
ideal wireless channel where we can extract out the impact of only L3, we see the relative
order of performance of protocols are the same as those in Fig 5.6(a), confirming MAP-
Me’s superior performance in reducing mobility losses.

5.5.4.2 Impact of topology

We cover a wide range of network characteristics through the use of deterministic and
stochastic graphs drawn from well-known models [21], as well as previously described
Rocketfuel topologies. While not being representative of access networks, they provide
insights into the performance of MAP-Me-IU in non-local mobility (e.g. jumps fromWiFi
to LTE networks). Edges nodes are randomly picked from graph nodes (or Rocketfuel
leaves) to be connected to the previously described grid, while others form the backhaul.

Chapter 5 Producer Mobility: MAP–ME 95

As expected, topology is the most impacting parameter for absolute performance, being
the direct consequence of the forwarding trees built atop. Figure 5.8 shows path stretch
and L3 handoff latency. As hinted in Sec. 5.4.2 and shown in previous simulations, we see
that MAP-Me-IU and TB both offer lower stretch than AB – sometimes close to optimum
(GR) – with a slight advantage to MAP-Me-IU in almost all cases. Those variations can
be interpreted as the ability for the spanning tree (shortest path tree rooted in anchor for
TB, and first producer location for MAP-Me-IU) to offer short paths between consumer
and producer, and thus offload traffic at the edge.

Available path lengths are reflected in the CDF of Layer 3 handover latency, and we see
that MAP-Me-IU is able to find shorter paths for close-by nodes (effectively offloading
traffic), while those towards remote nodes are less optimal than if we were going through
the anchor like in TB (hence the crossing of both curves). The reason is we had to
enable all optional extensions in TB as in the default setting some situations could lead
to unreachability of the producer. One consists in duplicating interests both on the trace
and towards the anchor, which had the side effect on selecting the shortest of the two
paths. This simple alternative is the reason of the much lower delays observed in TB.

In all cases, we see the extremely low handoff delay ensured by MAP-Me, which confirms
the benefits of notification to reduce the time the producer is disconnected, and thus
support latency-sensitive applications during mobility.

Beyond confirming our previous observations, these simulations open the way to further
extensions of MAP-Me by considering how an alternative routing might lead to better
performance – for instance using more efficient spanning trees (ST) such as minimum
diameter ST (see Prop.3 in Sec. 5.4.1) – and how more appropriate graph spanners and
random strategies could allow the exploration of more than one path.

5.5.5 Impact of notifications on path stretch

As we have seen, the use of notifications improves performance during fast mobility
by using inter-PoA links with the risk of increasing path stretch. We show here that
the use of TU as per the selected mechanism (Sec. 5.2.4) changes the root of the IN’s
breadcrumb chain and thus limits its length. We thus evaluate the trade-off offered by
MAP-Me through the adjustment of this TU parameter by slightly modifying our baseline
scenario. Instead of a grid, the PoA are arranged on a line. The producer now moves
back and forth across them at a constant speed parameter, while the consumer is now
static at the root of the fat tree.

Fig. 5.9(a) shows the average path stretch of MAP-Me as function of Tu. The dashed
line indicates the path stretch limit reached when no IU is sent. In general path stretch
slowly increases with TU at any given speed and remains well below the no-IU threshold.

96 Chapter 5 Producer Mobility: MAP–ME

(a) (b)

Figure 5.9: Effectiveness of Tu timer: a) Path stretch b) Network overhead (No. of
updated routers per handover).

At low speed, stretch remains constant up to higher TU values (as an IU is sent for every
handover).

If we now consider network overhead depicted in Fig. 5.9(b), we notice that a slight
increase of path stretch allows for a significant reduction of network overhead (which
peaks here at 50% for a speed of 15m/s). This confirms the interest of notifications in
absorbing high-frequency mobility while preserving appropriate flow performance. The
TU threshold thus appears a useful setting to allow a network to cope with challenging
mobile workloads.

5.5.6 Trace-driven urban mobility

Topology: To evaluate our approach under more realistic mobility patterns, we consider
an urban residential environment spanning a 2.1× 2.1 km2 area in Los Angeles, with a
WiFi Hot Spot deployment similar to what Time Warner Cable [148] has in the area, i.e.
we dislocate 729 WiFi APs, with the same wireless settings as in the previous (baseline)
experiments, connected to the Internet through the fat-tree topology in Fig.5.5.

Mobility: We generate realistic vehicular mobility patterns using SUMO [83], with
maximum car speed set according to road speed limits4. We place mobile producers in
moving cars and analyze system dynamics on a given time interval (4 minutes, roughly
corresponding to 33 handovers), so that all monitored cars are in the map at the same
time. In such a scenario, we consider a group communication between one mobile pro-
ducer and two non mobile consumers requesting different data. Consumers are connected
to two APs that are picked at random, uniformly across the network coverage.

4In the selected area we have three different road categories characterized by different speed limits:
40, 70 and 55 km/h.

Chapter 5 Producer Mobility: MAP–ME 97

Applications: Two types of applications are considered: in the first set of simulations,
the previously detailed streaming application is characterized by a rate of 1Mbit/s. In
the second set, a pseudo real-time video streaming application, reproducing the popular
application Periscope [122] is used. The mobile producer generates two different video
streams, each one downloaded and played by one consumer, using a 5 s play-out delay
buffer. If the video play-out stops because the consumer has no Data available, we
consider this as a failure and momentarily stop the consumer: after a short period of time
(few seconds), the consumer restarts downloading new data and to play-out the video.
The video data rate is 1Mbit/sec, corresponding to a 480p video resolution. Traffic is
scaled up by increasing the number of groups, identified by the producer serving data.

5.5.6.1 User Performance

To quantify user experience, we analyze the following metrics: the average packet loss
and user satisfaction, while varying the number of mobile producers in the area (from 1
to 50, each one serving two consumers).

(a) (b)

(c) (d)

Figure 5.10: User performance: CBR average packet loss (a), Periscope playout
failures (b). Network Cost: CBR overhead (c) and Periscope link utilization (d).

98 Chapter 5 Producer Mobility: MAP–ME

Packet loss: We evaluate the distribution of packet losses per second for the CBR
application. Fig. 5.10(a) shows the average packet loss for MAP-Me and other protocols,
while increasing the number of mobile producers in the system. As expected, increasing
the number of active users in the network has a negative effect on the performance,
because links are getting congested and routers start to lose packets. However, as shown
in Fig. 5.10(a), the performance of MAP-Me and MAP-Me-IU is close to the ideal GR,
while TB leads to higher loss rate and with AB, we observe an even more rapid increase
in packet loss. Indeed, the distributed nature of MAP-Me allows the proposed solution
to better cope with an increasing number of mobile producers.

User Satisfaction: We evaluate user satisfaction by analyzing the number of failures
in the play-out of the video stream for the pseudo real-time video streaming (Periscope-
like). Fig. 5.10(b) shows the number of failures in the video play-out that each consumer
encounters in 4min. As in the CBR case, when the number of mobile producers increases,
the performance of the system degrades. Similar to what is observed in CBR case before,
AB concentrates all traffic on a single node, the anchor, thus giving rise to congestion. In
contrast, distributed protocols such as MAP-Me are able to better distribute traffic over
the network and thus better cope with larger number of users. For the same reason, TB
performs better than AB, but worse than MAP-Me/GR. Indeed, sending traces to the
anchor forces traffic towards upper layers in the network, preventing substantial traffic
offload at the edge. It is worth noticing that the application runs a classic window-based
congestion control without video rate adaptation and no specific mobility loss recovery
mechanisms (all packet losses are recovered based on timer expiration at the consumer).
The design of such schemes and the analysis of the interaction with mobility-management
protocols is out of the scope of this work and left for future work.

These simulations clearly show the effectiveness of MAP-Me in dealing with high loads
as it spreads traffic over a more diverse set of paths.

5.5.6.2 Network Cost

Beyond user performance, we evaluate MAP-Me in terms of network cost, by computing
the overhead and comparing it with all other considered solutions. Fig.5.10(c) reports
the overhead computed as the number of messages exchanged in the network at each
handoff, whereas Fig.5.10(d) displays link load distribution across the network (in the
case of 10 mobile producers in the map). The figures prove that MAP-Me successfully
offloads the core from local traffic with light overhead, in virtue of the absence of fixed
anchor deep in the network.

Chapter 5 Producer Mobility: MAP–ME 99

5.5.6.3 Network topology and Mobility

Trace-based simulation have been run with pedestrian mobility and a tree-like network
topology [21]. Results show the same behavior for vehicular and pedestrian mobility,
while in the case of tree topology TB and MAP-Me have similar packet loss (due to
higher chances of congestion at the core of the network).

5.6 MAP-Me and routing

While MAP-Me can efficiently manage producer mobility by updating FIB entries, it
might however interfere with routing protocol as both can update FIB concurrently. In
this section, we discuss their coexistence and show that minimal requirements on the
routing and minor modification to MAP-Me can allow for both to perform correctly and
asynchronously. We conclude by preliminary insights into their joint performance.

5.6.1 Proposed solution

Our proposal makes minimum assumptions on properties of the routing protocol: (i)
the routing protocol is link-state — so that every node gets a sense of routing con-
vergence state —; (ii) every router maintains a counter Rseq, incremented each time a
non-duplicated routing message (LSA) is received – Rseq is expected to be either avail-
able or easily deducible from routing; and (iii) a routing instance is also running on the
producer so that the producer is informed of network changes. We assume the router
generating a new prefix advertisement or detecting a link failure will also increment this
counter for global consistency.

On MAP-Me side, the idea is to delay MAP-Me’s operation on a node until routing seems
to converge locally (by checking Rseq). We achieve this through a minor modification
to the original design: upon sending a special interest, the sequence number field is
augmented with the local Rseq information. When IU/IN is received, additional checks
are performed before standard MAP-Me operation: by comparing Rseq in IU/IN (RIU

seq)
and the local one from routing (Rloc

seq). Case (i) if RIU
seq =Rloc

seq, the producer and
the nodes might be synchronized, and standard operations can proceed; case (ii) if
RIU
seq >R

loc
seq, the node has not received all routing updates and the IU is queued until

Rloc
seq gets incremented by routing, and eventually the IU pass through the node; case

(iii) if RIU
seq <R

loc
seq, the IU is discarded as all downstream nodes does not receive all

routing updates.

Finally, to ensure correctness, we require the producer to issue a new IU each time it
receives new routing messages (i.e, Rseq incremented). This IU corrects the route if

100 Chapter 5 Producer Mobility: MAP–ME

routing recomputes route towards producer’s old location due to network changes and
unawareness of producer’s new location.

5.6.2 Correctness

This scheme ensures full producer reachability upon global convergence. Considering a
single producer update during routing convergence, it is easy to see that the correspond-
ing IU will traverse all routers that have seen the same number of routing updates as the
producer. It is otherwise either delayed by case (ii) or dropped (iii). The last IU sent by
the producer is guaranteed to complete (as there are no routers with higher Rseq, and
that the forwarding tree is consistent as all routers have then the latest routing state.

During routing instabilities, there is no guarantee of connectivity and the forwarding
state might not be loop-free either. It seems natural that we cannot require MAP-Me
to improve on that situation. The design of a joint routing and mobility management
protocol, following the same principle as MAP-Me, is an interesting direction left for
future work.

5.6.3 Evaluation

We now illustrate the behavior of the modified algorithms, and analyze the effect of
routing updates frequency on system performance. We consider the previous baseline
scenario with 1 pair of mobile nodes, and a speed of 10m/s. The producer triggers a new
routing update with varying frequency.

Routing convergence time obviously impact performance significantly. It is generally con-
sidered that link-state IGP convergence time is in the order of several seconds. while [51]
demonstrates the possibility for sub-second convergence time for large ISP networks by
leveraging techniques like fast flooding and incremental FIB updates, it is not widely
deployed. We thus reasonably assume the routing convergence time lies in the order of
sub-second to several seconds. In the evaluation we choose between 600ms and 6s.

Figure 5.11 illustrates the trade-off in setting the routing update frequency. Obvi-
ously, more frequent updates allow for shorter paths as they are re-optimized more often
(Fig. 5.11(a)). However, instabilities due to routing at global scale lead to long-lasting un-
reachability of the producer after he moves, and thus a high packet loss rate (Fig 5.11(b)).
Routing updates should thus be limited or triggered carefully, for instance in periods of
producer stability (e.g based on mobility prediction).

Chapter 5 Producer Mobility: MAP–ME 101

(a) (b)

Figure 5.11: MAP-Me and routing. Effects of routing update frequency on perfor-
mance: (a) Packet loss rate. (b) Path stretch.

5.7 Conclusions

Native support for mobility management at network layer is a recognized strength of
NDN, and appears to be a key feature to exploit the design of 5G networks. However,
a comprehensive solution for mobility management in NDN (and ICN in general) still
lacks: previous attempts so far have either tried to apply Mobile IP concepts to ICN
or looked at partial aspects of the problem, without providing a thorough evaluation of
the initial solutions sketched in ICN context. The contribution of this work is twofold.
First, we define MAP-Me, an NDN-based Local Routing approach for managing intra-AS
producer mobility even in the presence of latency-sensitive traffic. By design, MAP-Me
is simple as it only leverages NDN forwarding plane and reactive notifications to the
network, is lightweight in terms of required signaling messages and, to our knowledge,
the first one with proven guarantees of bounded stretch and overall correctness for the
forwarding update process. Second, we open-sourced a simulation framework on top of
NDNSim 2.1 using model-based and trace-driven consumer/producer mobility patterns
over many topologies, and integrating anchor-based and tracing-based approaches, a
reference implementation for MAP-Me, as well as a global routing approach useful for
comparison. Evaluation takes 802.11n access in small cell outdoor settings and proves
WiFi can support mobility using NDN in general settings.

The reported results confirm our initial objectives and show that MAP-Me optimally
offloads the infrastructure from communications that are local. All other approaches
making use of a fixed anchor, which in practice is also the network gateway, can be opti-
mized only if traffic is non local. Instead, the current propositions in 3GPP to offload the
mobile network core stem from the observation that, on the contrary, communications

102 Chapter 5 Producer Mobility: MAP–ME

are most likely local. On the other hand, MAP-Me would serve non-local communica-
tions through one or multiple gateways without binding mobility feature to any specific
location.

Chapter 6

ParkMaster: visual analytics at the
edge

6.1 Introduction

The previous chapters demonstrated how the concept of “connected car” can be achieved
thanks to NDN. V-NDN, Navigo and MAP-Me showed that, even in a highly mobile
environment as VANETs, connectivity between cars and to the Internet can be provided,
and that vehicles are not only the end points of the communication, but also forwarding
nodes and mobile caches. Starting from this point — cars are connected — we now extend
the role of vehicles to mobile computing nodes and show, with a practical use case, the
potential of having mobile computing resources with Internet connectivity (cars) spread
all over a city.

Urban driving can be challenging and stressful, with the task of searching for parking
spaces one of the key reasons. For example, a 2007 study in San Francisco [139] shows
that in one of that city’s commercial districts a driver spends on average 6.5 minutes
to find a parking spot after reaching the destination, adding about 3.3 km to the trip.
The same study shows that every day in one Los Angeles commercial district alone, cars
searching for a parking space generate more than 3,500 vehicle-miles of travel (VMT)—
more than a coast-to-coast US journey. Hence simply steering drivers to the closest
available parking spot would address a significant portion of the traffic congestion and
pollution present in big cities, with the added benefits for drivers of increased convenience
and saved time.

This chapter presents the design and implementation of ParkMaster [58], a Fog-based
computing system that leverages the ubiquitous smartphone to help drivers find parking
spaces in the urban environment.

103

104 Chapter 6 ParkMaster: visual analytics at the edge

While there are several systems that let drivers see parking garage availability [142],
providing such information for road-side parking spots is more challenging because they
are often not clearly delineated with road markings. Recently Google announced that
Google Maps started providing drivers with statistical information about how difficult
parking is at the destination area [5], information that however is based on historical
patterns and has a coarse granularity (the probability of finding a spot is deemed Easy,
Medium or Limited). Focusing on real–time data instead, some cities, such as San
Francisco [136], are currently installing sensors on parking meters to detect cars’ presence.
These solutions however entail significant infrastructure deployment, with an associated
cost. Other prototype systems use image recognition techniques to detect cars’ presence
in parking lots by using cameras placed on top of buildings or poles [47, 161, 150].
While feasible for single parking lot, these systems suffer the same infrastructure costs.
[113, 101, 141, 112] instead exploit user’s smartphone in order to track the owner’s
actions (parking the car or leaving the spot). However, those system are unaware of
other drivers (who may not use these systems) and thus require a high penetration rate
to maintain a reasonable accuracy. [112] tries to overcome such a limitation by designing
a non-user’s actions prediction model to estimates the effects of nonusers to parking
availability. However, such a model focuses on large parking lots and not on the more
challenging on-street parking scenario. The ParkNet System [107] takes a complementary
approach, adding ultrasonic sensors on cars to flag empty roadside parking bays. While
ParkNet achieves high accuracy using mobile sensors, it again requires the installation
of additional hardware on cars, posing deployment and cost issues. Nonetheless, the
core idea of the vehicles themselves operating as a sensor network to collect data about
parking availability remains promising. Such a collection system would indeed facilitate
coverage over a large geographical area, without the burden associated with adding
roadside infrastructure.

There are three key technology trends also changing the problem space:

1. Image processing has made significant accuracy advances in accuracy and speed.

2. Mobile devices’ processing capacity and camera quality have both been steadily
increasing over recent years, making now feasible to run more advanced image–
based machine learning algorithm on smartphones.

3. Cloud services are being restructured to push latency-critical parts of their func-
tionality out to the edge (Fog computing).

Viewed together, these three trends suggest a new design point: a system that leverages
users’ smartphones as sensors to capture parking information at the network’s edge in
real-time, reducing the cost for cities to only that required for the cloud service.

In this chapter, we demonstrate that such an edge-based sensor system is feasible with
nowadays hardware: we present the design and implementation of ParkMaster, a system

Chapter 6 ParkMaster: visual analytics at the edge 105

Figure 6.1: ParkMaster deployed in a car’s windshield.

that estimates parking space availability using video gleaned from drivers’ dash-mounted
smartphones on the network’s edge, uploading analytics about the street to the cloud
in real time as participants drive. Novel lightweight parked-car localization algorithms
enable the system to estimate each parked car’s approximate location by fusing infor-
mation from phone’s camera, GPS, and inertial sensors, tracking and counting parked
cars as they move through the driving car’s camera frame of view. To visually calibrate
the system, ParkMaster relies only on the size of well-known objects in the urban en-
vironment for on-the-go calibration. We implement and deploy ParkMaster on Android
smartphones, uploading parking analytics to the Azure cloud. While we believe that
future cars will be equipped with computing power that could substitute smartphone’s
CPU in ParkMaster’s computation, in this chapter we look at the phone in order to
have a deployable system with nowadays vehicles. It must be noticed, however, that
the problematics addressed by ParkMaster remains the same in the in-car computation
scenario — computing resources are still limited and needs to be used with parsimony.

ParkMaster uses the cameras on drivers’ phones to sample the presence of cars at road-
side parking spots from the driver’s vehicle itself. It features two main components.
Firstly, the ParkMaster app, which runs on the in-car edge — the driver’s smartphone
— performs real-time visual analytics. Secondly, the ParkMaster cloud service maintains
a real-time database summarizing the number of available parking spaces on each road
and provides client support for location services. While the user is driving, with the
smartphone placed on the windshield as shown in Figure 6.1, ParkMaster captures video
with the phone’s camera and, locally processing frames in real-time, looks at the road-side
parking spaces.

The most natural approach to parking-space detection may seem to be searching for
empty spaces, as humans do. Hence we have investigated edge detection [37] algorithms
on the smartphone to detect and measure free parking spaces themselves. However,
while feasible in controlled environments when the background is uniform, this approach
quickly becomes more challenging in real cities where road and background scene have
an arbitrary appearance. Furthermore, there are no guarantees that an empty stretch of

106 Chapter 6 ParkMaster: visual analytics at the edge

shoulder is a legal parking spot, and detailed maps with exact parking space coordinates
(with meter–level accuracy) are unavailable in most locations. Also, smartphone absolute
localization accuracy is too imprecise to reliably identify parking spots. We further
contrast ParkMaster with this approach in Section 6.2.1.

We therefore take the approach where the smartphone detects the parked cars themselves.
The smartphone then estimates the location of each detected vehicle, streaming this
information to the cloud over Wi-Fi or the cellular interface. In order to detect the
presence of a parked car at the roadside, ParkMaster needs to recognize and track the
parked car as it moves across the frame of the driving car’s camera. Existing motion
tracking algorithms [43, 86, 156, 169] excel at this when the camera is still or almost still
and objects are moving against background, but to the best of our knowledge, do not
focus on our scenario where both background and object are moving across the frame
together.

Having made the above design choice of detecting parked cars, in order to estimate
free parking space, ParkMaster’s cloud service relies on an additional information feed:
the number of parking slots per road. This data is nowadays available in many cities,
for example the cities of Seattle and Paris maintain this data online. At a high level,
ParkMaster estimates the parking availability of each road segment (the smallest piece of
street connecting two intersections) as the difference between its parking capacity and the
number of parked vehicles that the cloud estimates by aggregating the parking analytic
data that the smartphones upload. Finally, ParkMaster’s cloud assists the smartphones
in their own localization process by providing GPS data correction. Since the only
hardware ParkMaster requires is users’ off-the-shelf smartphones, ParkMaster benefits
from the individual deployment of each user’s smartphone.

Contributions.

1. We demonstrate the feasibility of running image–based machine learning techniques
at the edge, on today’s smartphones, to capture valuable information about the
surrounding environment in real time without any human intervention, when bat-
tery power is not a concern. In order to do so we tackle the available parking
location problem designing, building, and deploying a complete system.

2. We propose a novel, lightweight tracking algorithm for car detection that fuses
speed estimates of the car with vision processing of the video stream to “de-
duplicate” multiple detections of the same parked car in a drive, while the back-
ground scene moves with the parked car (unlike most object tracking algorithms).

3. We design and implement a localization algorithm to estimate the location of a
parked car in a single frame, without requiring stereo vision or any input from the
user, instead relying on camera calibration against well-known objects in the driving

Chapter 6 ParkMaster: visual analytics at the edge 107

environment. Our localization algorithm is lightweight and thus can efficiently run
on a smartphone.

Roadmap. The rest of this chapter is organized as follows. Section 6.2 describes the
design of ParkMaster, while Section 6.3 summarizes its implementation. A performance
evaluation containing microbenchmarks and a real-world evaluation of ParkMaster on the
streets of two major cities (Los Angeles and Paris) and an Italian village (Sant’Angelo
in Vado) follows in Section 6.4. ParkMaster achieves a 90% average end-to-end accu-
racy, the result of meter-level video based localization of cars from the phone’s camera.
A sensitivity analysis of ParkMaster’s design parameters explores optimal camera and
video parameters to use given the smartphone’s available processing power, and shows a
tradeoff between false positive car detections and missed cars. Section 6.5 surveys related
work, and we conclude in Section 6.6.

6.2 Design

This section describes the ParkMaster design in detail. Starting with functionality on the
edge, we first explain how ParkMaster recognizes (§6.2.1) and localizes (§6.2.2) vehicles
parked on the road. Continuing with functionality located in the cloud, we then describe
how ParkMaster counts parked cars and free spots on a road (§6.2.3). We begin with
the main goals of our design, followed by a high-level design summary to place each part
into context.

Design goals. ParkMaster has the following goals:

1. Since computation at the edge is limited, we avoid overly-expensive computation
on the mobile.

2. Since real-world conditions and camera limitations may obscure line of vision or
create visual ambiguities, we aim to design a system that can identify a car given
a limited number of frames in which the car is visible.

3. Operating within the constraints of the first design goal, since smartphone-cloud
data constitutes a cost for the users, we design a system that leverages edge pro-
cessing to limit the amount of data uploaded.

Non goals. Phone power management: Here we assume that user powers the smart-
phone from the car’s electrical system.

108 Chapter 6 ParkMaster: visual analytics at the edge

Smartphone
Data producer

ParkMaestro Cloud

Map Service
GPS data Correction
Road Identification

Smartphone
Data consumer

Query: (Lat/Lng)

Answer:
(road; parking spots)

Parking availability
upload:

(Car/Camera position;
 Road id; Timestamp)

Data
Aggregation

Data Storage

GPS raw data

GPS corrected data;
Road id

Image Processing

Localization

Sign
classifier

Car
classifier

Car
detection

Android Camera API

Calibration

EDGE CLOUD

Figure 6.2: ParkMaster architecture.

Design summary. We present ParkMaster’s overall architecture in Figure 6.2. Edge-
side software running on the smartphone begins with the camera calibration phase, pro-
cessing the video stream looking for road signs. For each frame containing a road sign
of known height and size, ParkMaster computes its real-world coordinates (relative to
the camera) and records the relationship between these relative real-world coordinates
and the sign’s coordinates in the smartphone’s two-dimensional camera field of view. As
soon as ParkMaster collects enough samples, it runs the calibration algorithm described
in Section 6.2.2, to derive a rotation and translation vector that captures the phone’s
three-dimensional orientation. Once calibration concludes, ParkMaster loads a car clas-
sifier and starts searching for cars parked on the right side of the road, parallel to the
street (Section 6.2.1). On detecting a parked car, ParkMaster extracts its frame coor-
dinates, computes the parked car’s real-world coordinates (relative to the camera) and
stores both sets of coordinates and the time of detection on the phone: we refer to these
data together as the parked car analytics (Section 6.2.2). Simultaneously, ParkMaster
records data from the phone’s GPS, accelerometer, magnetometer and gyroscope sensors,
leveraging Google Maps’ “snap to road” functionality [57] to obtain even better phone
localization accuracy. Whenever the user enters a new road ParkMaster retrieves the
samples collected from the previous road segment and computes the camera’s position
(in real-world coordinates) at each detection time. This estimate, together with the rel-
ative real-world coordinates of each parked car, yields latitude-longitude coordinates of
the vehicles. If the sample is deemed valid, ParkMaster uploads the parked car analytics
stored at the edge to the cloud, adding the car’s real-world latitude and longitude, a road
identifier, and the time each sample was detected. When the cloud receives a phone’s
update it runs the DBSCAN [46] clustering algorithm in order to count the number of

Chapter 6 ParkMaster: visual analytics at the edge 109

parked cars on the road segment. Finally, ParkMaster subtracts this estimate from the
number of parking spots to compute the number of free parking spaces.

In the future, as new data arrives about road conditions, the cloud discards old data
in favor of more recent information provided by other users. When a driver queries
the ParkMaster cloud looking for a parking spot, the latter provides the computed per
road-segment parking availability of the area, together with its timestamp, which allows
drivers to evaluate the freshness of ParkMaster’s information.

In contrast with [113, 101, 141, 112], ParkMaster collects data about the surrounding
parked cars — not about users actions — thus it doesn’t need to run in every vehicles
nor to make additional efforts in guessing non-users’ behavior.

It must be noticed, furthermore, that by only uploading the parked car analytics instead
of the full video stream, the privacy of “third-persons” in the area is preserved: ParkMas-
ter doesn’t store or move across the network any frame or information about pedestrian
or cars (i.e. no plate, model, color etc.). The only information exchanged between edge
and cloud is the estimated coordinates of anonymous parked cars.

6.2.1 Detecting parked cars

Works like [82] have shown the feasibility of running image–based basic techniques like
color filtering and edge detection on smartphones to detect particular events while driv-
ing, like traffic light status. ParkMaster takes a step further and applies machine learning
techniques, the Viola-Jones feature-based cascade classifier [160, 95], to detect complex
objects — cars — in the phone camera’s video stream, in real time.

During one-time offline training, the classifier learns about the object’s features through
sets of positive and negative examples of the object of interest. Once the training ter-
minates, the classifier’s online detection (on the smartphone) analyzes the video stream
looking for the features listed by the classifier in a multi-stage process. For each object
that reaches the final stage, the classifier provides the frame coordinates of a bounding
box containing the object, as shown in Figure 6.3.

To search for larger or smaller examples of the object of interest, at each stage the
features of interest are scaled, based on a scaling parameter. To reduce the number of
spurious object detections, a candidate part of the image is considered detected only if
there are at least k adjacent detections in its immediate vicinity (i.e., one to two pixels):
k is referred to as the minimum neighbors threshold.

ParkMaster must operate in a variety of light levels, i.e. sunny days v. cloudy days;
time of the day i.e. mornings, afternoons, evenings; and direction of the light. Ideally
ParkMaster could use a specialized classifier and/or different detection settings for each
situation. However, to reduce system complexity, we chose to use a single classifier

110 Chapter 6 ParkMaster: visual analytics at the edge

Figure 6.3: Parked car detection: frame samples indicating bounding box of detected
cars.

trained in for a wide range of conditions. As shown in Section 6.4, we have obtained
good results running ParkMaster in three different countries across a wide variety of
ambient conditions.

Discussion. In order to find empty parking spots the most natural approach is to look
for empty spaces. However, such approach has two limitations: first, a map with the
coordinates of each parking spot (with meter–level accuracy) is required to determine if
the empty stretch of shoulder is a legal parking spot, information that is rarely available.
Second, smartphone localization accuracy doesn’t allow to properly identify a spot (a
few meters error in the localization may translate in referring to the wrong stretch of
shoulder in a hypothetical parking coordinates database). In contrast ParkMaster relies
in a coarser and easier to get knowledge, the number of parking spots per road, which
is already available online for instance for cities like Seattle and Paris1, and doesn’t
need a precise object localization; instead it simply requires that estimated locations
of neighboring cars don’t completely overlap — they don’t need to match any specific
location in the map.

6.2.2 Localizing parked cars

It is likely that the same vehicle is detected multiple times in subsequent frames. Thus,
to accurately count the number of parked cars, ParkMaster has to determine when a
vehicle has been already detected in previous frames, and count it only once. Analyz-
ing subsequent frames, for instance computing pixel–based image difference, to track a
vehicle, is highly CPU intensive and doesn’t easily handle differences among subsequent
detections of the same car (while the driver is approaching the parked vehicle, the view
of the car and the background changes). Thus, with its primary design goals in mind,
ParkMaster aims to estimate each detected cars’ latitude-longitude position in the real
world, and then decide whether two detected cars are in fact the same car based on their
computed coordinates.

As described in the previous section, the detection algorithm only provides the position
of the parked car in the coordinates of the camera’s frame. In the remainder, we refer to

1See web6.seattle.gov/sdot/seattleparkingmap/ or opendata.paris.fr.

Chapter 6 ParkMaster: visual analytics at the edge 111

f
Lens

z

y

x

X

Z

Y

Road

Figure 6.4: Coordinate systems used in ParkMaster’s design: the calibration pro-
cess maps objects in the camera coordinate system to the real-world road coordinate

system through the lens coordinate system.

a car’s position in the camera’s two-dimensional coordinate system (u, v) with camera
coordinates (u0, v0). In order to compute the corresponding latitude-longitude in the
real world ParkMaster must map from camera coordinates to a three-dimensional road
coordinate system (X,Y, Z), whose X-Z plane is parallel with the road and whose origin
is located on the road under the camera as shown in Figure 6.4. This is the classic camera
calibration problem, which we now describe.

6.2.2.1 Camera calibration

Camera calibration uses the classical pinhole camera model, which treats the camera’s
aperture as a point in space. Although this model does not account for various factors
such as lens distortion, coordinate discretization, and blurring, it does provide a good
first-order approximation to the camera’s projection. Camera calibration amounts to
estimate two types of parameters. The first type, intrinsic camera parameters, charac-
terizes unchanging optical properties of the camera: focal length f , the distance between
the pinhole and the film, and offsets of the axes from the origin in the film cx and cy.
The second type, extrinsic parameters, describes camera’s location in the world via a
translation vector t and the direction in which the camera points via a rotation matrix
R. In contrast with the intrinsic parameters, the extrinsic parameters R and t change
as the camera points in different directions.

In order to separate the effects of the intrinsic and extrinsic parameters, we introduce a
new coordinate system (x, y, z), dubbed lens coordinate system, whose z-axis is aligned
with the camera lens. Now the mapping from lens to camera coordinate systems captures
the intrinsic camera properties, while the mapping from road to lens coordinate systems
captures all extrinsic camera properties (camera tilt, rotation, and elevation) except the

112 Chapter 6 ParkMaster: visual analytics at the edge

GPS coordinates of the camera: these we process as part of smartphone localization
(§6.2.2.3).

Intrinsic parameter calibration. To find the focal length f and image center (cx, cy)
parameters simply queries the Android camera API. Then, it can translate between the
lens and camera coordinate systems with the following relationships of the pinhole camera
model:

x = (u− cx) · z/f and y = (v − cy) · z/f. (6.1)

Extrinsic parameter calibration. To find the rotation matrix R and translation
vector t, ParkMaster calibrates the camera while driving—without user input—using
objects of well-known sizes that can be easily found on the road. In both the United
States and Europe, road signs have a consistent height hroadsign (measured in road coordi-
nates) and elevation from the road Y road

sign mandated by the highway code.

ParkMaster uses a separate cascade classifier trained on a sign of interest to search for
road signs during a “start-up phase”. Every time the sign classifier detects a sign, it
returns the camera coordinates of the detected sign (u0, v0), as well as the height of
the detected sign in camera coordinates hcamera

sign . These, along with the intrinsic camera
parameters described above, allow us to compute the camera’s range to the sign Z0 as a
function of the sign’s height in camera coordinates:

Z0 = hroadsign · f/hcamera
sign (6.2)

To avoid using the results of calibration before the calibration itself is over, we approxi-
mate X0 ≈ x0, and take Y0 = Y road

sign . This gives us a pair of (camera, road) coordinates
for the single sign detection. After L detections, the list

[((u0, v0) , (X0, Y0, Z0)) , . . . , ((uL−1, vL−1) , (XL−1, YL−1, ZL−1))] (6.3)

of (camera, road) coordinate pairs can be passed to OpenCV [118], a computer vision
library, which calculates the extrinsic parameters R and t based on a global Levenberg-
Marquardt optimization algorithm that minimizes projection error [33, 182].

Notice that in order to estimate Z0 and X0, we have assumed that the X and Y axes
of the road and the lens coordinate systems are aligned. Not having this requirements
satisfied, which is most likely to happen in a realistic scenario (as drawn in Figure 6.4),
introduces error in the calibration. The misalignment is unlikely to be large in realistic
driving settings as the driver wants to see the phone’s display, and thus can be tolerate.
In order to verify this empirically, we intentionally placed the smartphone not always
perfectly aligned with the road axis in our experimental evaluation (§6.4.1).

Chapter 6 ParkMaster: visual analytics at the edge 113

Once R and t are computed, they are valid till the smartphone remains in its original
position. Currently ParkMaster assumes the driver won’t remove the phone from its
holder while driving. However, if this happens, it is straightforward to pause the car
detection, reset R and t and start again the calibration phase once the phone is back
in place (this event could be triggered manually by the driver or automatically by the
phone’s sensors). Minor changes in the phone’s position, due for instance to car vibration,
have instead a negligible and usually temporary effect on R and t (the phone holder
stabilizes the device) and thus ParkMaster doesn’t try to compensate for such events.
In the experimental evaluation (§6.4.1) we used a standard phone holder without any
additional actions to improve phone’s stability, thus the results reported include the
effects of vibrations, potholes etc.

6.2.2.2 Car localization

After calibration, ParkMaster is ready to localize parked cars. However, camera param-
eters do not suffice to find a unique position in road coordinates given a set of camera
coordinates, since a coordinate in the camera frame corresponds to multiple points in the
road frame. In order to find a unique road coordinate, we exploit a natural constraint of
our scenario: cars elevation from the ground is always zero, i.e., Y = 0. Thus, supposing
car detection has just detected a parked car at camera coordinates (uc, vc), our task is
to determine Xc and Zc, the two dimensional location of the car in the road coordinate
system. To this end, consider the relationship between the road and lens coordinate
systems: XY

Z

 = R−1 ·


xy
z

− t

 . (6.4)

With Equations in 6.1 we can compute (xc, yc), the (x, y) position of the car in the lens
coordinate system. Subsituting in (x← xc, y ← yc, Y ← 0) and the calibrated values of
R and t into Equation 6.4 yields a linear system of three equations in three unknowns
(X,Z, z), which has a unique solution (Xc, Zc) for the car’s road-coordinate location.

6.2.2.3 Smartphone localization

Now that we have a mean of mapping car locations between camera and road coordinate
systems, for each frame where a car is detected, ParkMaster extracts the lower-middle
point of the bounding box (Figure 6.5) and computes its road coordinates. This mea-
sure, together with the coordinates of the smartphone, allows ParkMaster to estimate
the absolute position of the detected vehicle and compare it with the coordinates of
subsequently-detected cars.

114 Chapter 6 ParkMaster: visual analytics at the edge

Figure 6.5: Extracting the lower-middle point of a detected car’s bounding box in
the camera coordinate system for processing in the road coordinate system, to yield a

final GPS location estimate of the parked car.

Nowadays, every smartphone is equipped with a GPS sensor. To improve its accuracy,
ParkMaster periodically sends raw GPS data to Google Maps (“snap-to-road”) API ser-
vice, which supports filtering and correction of the GPS traces: it removes or corrects
points out of the road, interpolates coordinates based on street layout and identifies the
road segment on which the user is driving. This information flows into the next stage of
ParkMaster’s processing, counting parked cars.

6.2.3 Counting parked cars

Now that it has an approximate GPS location for each parked car detection, ParkMaster
relies on car’s approximated coordinates to track its location between successive frames
and estimate the number of parked cars. Since the localization process is prone to error,
we can’t do a mere coordinate comparison, because (1) the detection algorithm doesn’t
always pick the same point of a car; (2) the localization process is affected by inaccuracy,
due to calibration imperfection and camera distortion; and (3) the smartphone location
given by GPS and snap-to-road is not always accurate.

Most likely, whenever ParkMaster detects a car multiple times, it gets a set of coordinates
close to each other (a couple of meters). Thus, in order to distinguish among different
cars, ParkMaster runs a Density Based Spatial Clustering of Applications with Noise
(DBSCAN[46]) algorithm on all the coordinates collected on a segment of road, clustering
nearby points into estimates of a single car’s location. Knowing the maximum number
of cars that a given road can accommodate and the number of estimated cars on that
road, ParkMaster estimates the parking availability.

Preliminary studies have been done in order to choose the proper clustering algorithm:
among the approaches which don’t require prior knowledge of the total number of clus-
ters, we evaluated Affinity Propagation [53], Mean Shift [42] and DBSCAN. In the
counting cars problem these techniques seem equivalent, with DBSCAN that slightly
outperforms the others in CPU time. It must be noticed, however, that due to the small

Chapter 6 ParkMaster: visual analytics at the edge 115

number of samples (few points per car), in most of the cases the difference in performance
is negligible.

Discussion. The estimate of the maximum number of parking spaces a road can host
may affect the accuracy of ParkMaster. Indeed, while sometimes road-side parking is
marked with bays, in others they are left unmarked, making the maximum number of
parked vehicles on the road merely an estimate. At the moment ParkMaster does not
take any additional action to cope with the uncertainty of unslotted areas, but we are
confident that with more sophisticated techniques (i.e., measuring space between parked
cars) we will be able to improve accuracy in free parking scenarios.

6.2.3.1 Heuristics

In order to increase accuracy ParkMaster applies the following heuristics during the
clustering phase:

Sample distance. Increasing the camera-vehicle distance generally increases the error
of the parked car’s localization, which may lead to unreliable estimation (§6.4.4). Thus
ParkMaster discards samples estimated to lie further than a certain threshold distance,
determined empirically in §6.4.1.1.

Single-element cluster. Today’s smartphones can’t process every video frames in
real-time (§6.4.1.3). Furthermore, cars are not always detected, even when clearly visible.
As a result, some vehicles are detected only once. To decrease the number of misses,
ParkMaster conservatively considers elements that don’t belong to any DBSCAN cluster
as individual parked vehicles. We note here that while this approach will rarely result
in spurious parked vehicle detections, our experimental evaluation shows that it has an
overall benefit to accuracy.

Cluster size. Consecutive cars may be merged into the same cluster if the points in
the overall dataset are dispersed and the clustering process fails to discriminate between
them. In this case ParkMaster relies on the “size” of the cluster to evaluate the number of
vehicles. If the maximum distance dmax among two points in the same cluster is bigger
than a certain threshold maxClusterSize, ParkMaster splits the cluster into n smaller
clusters, where n = dmax/maxClusterSize.

Driving cars. Even though the detection algorithm is trained with pictures of vehicles
capturing the back and part of the side of a car, it may happen that the classifier detects
vehicles that are driving in the opposite direction (only the front is visible) or that are

116 Chapter 6 ParkMaster: visual analytics at the edge

Figure 6.6: Car parked on the opposite side of the street.

driving in front of the camera (only the back is visible). To mitigate these cases, the
classifier focuses only on the lower-right part of the video, where cars parked on the right
side of the road usually appear. Reducing the area of interest also allows the classifier
to process only a portion of the frame, which reduces the per-frame processing time.

A special case is represented by multi-lane roads, where vehicles on the right may be
moving cars. In this case, car detection must be enabled only when the user is driving on
the rightmost lane. While at the moment ParkMaster assumes the user is always doing
so, we believe vision-based [125] or sensors-based [31, 134, 14, 15, 40] solutions for lane
detection can be easily integrated with ParkMaster to trigger the detection only when
the user is driving on the right lane.

Samples while turning. A vehicle parked on the left side of the road may fell in
the lower-right part of the video, resulting in false detections (Figure 6.6). Since GPS
sometimes fails to discern these cases, ParkMaster also samples phone’s magnetometer,
accelerometer and gyroscope, and, when approaching an intersection, discards the sample
if the user is turning i.e. the current orientation of the phone differs from the average
orientation the phone had on that road.

6.3 Implementation

Edge. We have implemented ParkMaster on three mid-range to high-end Android
phones: a Samsung Galaxy S4 GT-19505 running Android 4.4.2, a Samsung Galaxy S6
edge+ running Android 5.1.1, and an LG Nexus 5 with Android 6.0.1. The Galaxy S4
and the Nexus 5 are equipped with a Quad Core CPU and 2 Gbytes RAM, while the
Galaxy S6 is equipped with two Quad Core CPUs and 4 Gbytes RAM. All smartphones
are equipped with at least an eight megapixel main camera as per the “full” specifica-
tions [1, 2, 3].

For cascade classifier-based car detection on the phone, we use OpenCV 2.4, an open-
source library for image processing available for Android. The classifier has been trained

Chapter 6 ParkMaster: visual analytics at the edge 117

with 1,202 positive samples and 719 negative samples, resulting in 20 stages. Currently,
ParkMaster focuses on parallel parking only, thus we train the classifier using pictures
capturing the back and the side of the vehicle as positive examples.2

Cloud. We have implemented ParkMaster cloud services in Azure, using Azure Mobile
Service for cloud backend functionality and Azure mobile app client and Node.js SDK
for authentication and interaction between clients and the in-cloud database (MongoDB)
used for data collection. For GPS data correction and road identification instead the
Google Snap Road API has been used. The API is available on Android as part of the
Java Client library for Google Maps.

6.4 Evaluation

In this section we present a comprehensive performance evaluation of ParkMaster. We
begin with single-driver, real-world experiments that exercise ParkMaster entire process-
ing pipeline in “on the road” scenarios in metropolitan and rural environment (§6.4.1).We
then discuss data coverage and freshness (§6.4.2). Finally, we drill down into ParkMaster
design, explaining how we have tuned parameters in the car detection algorithm (§6.4.3)
and car localization algorithm (§6.4.4).

6.4.1 Road-based experiments

We experiment in both metropolitan (Los Angeles and Paris) and rural environments
(Sant’Angelo in Vado, a small village in Italy). In Paris cars are typically parked 30–
40 cm. from each other, while in Los Angeles they are usually separated by larger space
and in the European village they are typically spaced by a half-meter or more, and
sometimes isolated (i.e., a few solitary parking spots on a long road). In addition, we
experiment in different weather conditions: our tests span a period of ten days between
December 2015 and March 2016, between 11 a.m. and 6 p.m. Typical weather includes
a clear sky, dawn, partly cloudy conditions, and cloudy with light rain. In total, as
Table 6.1 shows, we drove for 97 km. on roads that have at least one parking spot,
covering a 30.5 km. path. We report a total of 5,896 parked cars and 2,280 available
parking spaces3. Figure 6.7(a) shows these roads in a map view all three environments.

We experiment using the three phones described in Section 6.3 and drive three different
cars (with different dashboard heights from the ground). In Paris we used the Galaxy S4

2It is possible to build a classifier for each type of parking (i.e., angled or head-in parking) and then,
knowing the type of parking spot on a given road, use the appropriate classifier.

3The amount of parking slots each road–segment can host has been computed manually, by on-the-
field observations.

118 Chapter 6 ParkMaster: visual analytics at the edge

Place Distance Unique dist. Slots Parked cars

EU-village 17.9 km. 3.3 km. 1,381 710 cars
EU-city 38.4 7.9 3,527 2,892
USA-city 41.0 19.3 3,268 2,294

Totals 97.3 30.5 8,176 5,896

Table 6.1: Experiments on the road – covered distance (only roads with at least one
parking spot have been accounted).

(a) EU-city. Paris (France). (b) EU-village. Sant’Angelo In
Vado (Italy).

(c) US-city. Los Angeles (USA).

Figure 6.7: Experiments on the road. Red points indicate streets with parking spaces,
blue points indicate roads without legal parking.

and S6 respectively for 41% and 59% of the time, while we used the Nexus 5 for all
in-village experiments and we equally used the Galaxy S6 and Nexus 5 in Los Angeles.

On each run, we place the smartphone as shown in Figure 6.1, slightly changing its
position (i.e. few tens of cm) and orientation each time (i.e. few degrees). We run
the calibration phase on a traffic sign, and then begin driving (on the rightmost lane),
respecting local speed limits: 30 kph (Paris), 30 kph and 50 kph (Sant’Angelo in Vado),
40 kph and 48 kph (Los Angeles). On average, during each run we drive for 30 minutes.
GPS sampling frequency is one sample per second.

6.4.1.1 Car detection accuracy

Before looking at ParkMaster entire pipeline, we begin with the detection phase in isola-
tion, analyzing the effects of the heuristics described in Section 6.2.3.1. We empirically
set the threshold of the above heuristics after preliminary experiments: we set the max-
imum sample distance to 7 m. (ParkMaster discards samples at larger distances) and
the maximum cluster size to 6 m. (ParkMaster splits larger clusters into smaller groups).
These values maximize detection accuracy which, however, was largely insensitive to
their exact settings, varying less than 10% with a ±1 m. difference.

Chapter 6 ParkMaster: visual analytics at the edge 119

Ground truth

P
ar
kM

as
te
r Car No car

Car Correct detection (TPR) Spurious detection (FPR)

No car Missed car (FNR) Correct non-detection (TNR)

Table 6.2: Confusion matrix for accuracy evaluation.

Accuracy metrics. In order to ascertain ground truth (the number of parked cars and
empty parking spots) an additional camera records each experiment and we visually tally
these quantities after the drive. We evaluate in terms of the true positive rate (TPR) and
false positive rate (FPR), as shown in Table 6.2. TPR is the ratio of the number of cars
that ParkMaster detects in at least one frame to the ground-truth number of parked cars,
while FPR is the ratio of the number of spuriously-detected cars ParkMaster reports to
the sum of spurious detection and correct empty parking space detection. If the same
car is detected multiple times, we count it once. Note that whenever ParkMaster detects
a car which is not parked or which is parked on the left side of the road, we count the
sample as a spurious detection (false positive).

Results. Figure 6.8(a) shows the results. The heuristics of §6.2.3.1 slightly decrease
the true positive rate. Indeed they sometimes fail discarding samples that are correct. In
contrast they are strongly beneficial for the false positive rate. Manual data inspection
shows that the heuristics are able to discard a good fraction of (1) running cars (based
on road coordinates); (2) cars parked on the other side of the road when the user is
turning (based on GPS and azimuth); (3) cars crossing intersections (based on GPS)
and (4) non-vehicle object misclassified as cars that don’t lay on the ground (based on
their higher estimated distance to the camera).

6.4.1.2 End-to-end accuracy

We now measure end-to-end accuracy, from detection on the smartphone to clustering
and counting in the cloud.

Metrics. In order to evaluate end-to-end, we extend the above concepts in order to
take into account the counting process. We consider true positive when a car parked
on the right side of the road appears among the vehicles ParkMaster counted, while we
consider as false positive all the non-cars, vehicles parked on the left side of the road and
driving cars that ParkMaster counts as parked cars. Furthermore, whenever ParkMaster
counts the same parked vehicle multiple times, we consider the first sample as true
positive and all the others as false positives. In addition, we introduce the accuracy with
compensation metric: the final outcome of ParkMaster is an estimation of the number of
parked cars, which includes both correct samples and counting error—spurious detections

120 Chapter 6 ParkMaster: visual analytics at the edge

USA−city EU−city EU−village

10
20
30
40
50
60
70
80
90

100

Locations

%

TPR PRE
HEURISTICS

FPR PRE
HEURISTICS

TPR AFTER
HEURISTICS

FPR AFTER
HEURISTICS

(a) Detection on the road: True and False Positive
rates before and after applying the §6.2.3.1 detection
heuristics.

USA−city EU−city EU−village

10
20
30
40
50
60
70
80
90

100

Locations

%

TPR

FPR

ACCURACY

(b) ParkMaster end-to-end accuracy in real-world
driving experiments on the road.

USA−city EU−city EU−village

10
20
30
40
50
60
70
80
90

100

Locations

%

POSITIVE
PREDICITON

NEGATIVE
PREDICTION

(c) Can we park there? Positive (there is at least
one spot) and negative (road is full) prediction
accuracy.

Figure 6.8: On the road experiments

“compensate” misses in the count for a specific road. Thus, for each road i, we compute
error i as the difference among the number of parked cars (ground-truth) and the number
of vehicles ParkMaster considers as parked. We define the accuracy with compensation
as:

accuracy = 1−
∑#roads

i=0 |errori|
parked cars

. (6.5)

During a single experiment, it may happen that we drive several times on the same road;
nevertheless, we consider each pass independent from the others—the error from one
pass is not mitigated by later pass on the same road.

Finally, we evaluate ParkMaster accuracy when determining if there is space to park
on a road in terms of Positive and Negative Predictive Value. Defining positive samples
as occurrences of roads with at least one available parking spot and negative samples
as occurrences of roads without free space, the Positive Predictive Value is the ratio of
correct positive estimation (ParkMaster correctly estimates there is enough space) to the
number of positive samples. Similarly, Negative Predictive Value is the ratio of correct
negative estimations (ParkMaster correctly estimates the road is full) to the total number
of negative samples.

Chapter 6 ParkMaster: visual analytics at the edge 121

● ● ●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
● ● ●

10
20
30
40
50
60
70
80
90

100

−40 −20 0 20 40
Error per road

with compensation

C
D

F

● ERROR
ABS(ERROR) ● ● ● ● ●●●●●

● ●●
●●

●●●●●

●●●●●
●●

●
●●●

●●
●●●
●

●●
●●
●●●
●

●●●
●●
●
●●●
●●●
●

●
●●
●●
●

●●

●
●●

●

●●●
●●●
●
●●
●●
●
●●
●●●
●●●●

● ●●●
●●
●
●
●
●●
●●
●●
●●
●●●

●
●●

●●

●●●

●●
●
●

●

●●
●

●
●
●

●●●
● ●

● ● ● ● ● ●

10
20
30
40
50
60
70
80
90

100

−100−50 0 50 100 150
Error per road with
compensation[%]

C
D

F

● ERROR
ABS(ERROR)

Figure 6.9: ParkMaster end-to-end counting accuracy in real-world driving experi-
ments on the road.

Results. Figure 6.8(b) shows true and false positive rates and accuracy with compensa-
tion. In general, in rural environments ParkMaster shows better performance compared
to urban scenarios. Indeed, in the first we usually have cars parked at larger distance,
which overcomes eventual inaccuracies in the car localization estimates. In contrast, in
Paris spaces among vehicles are limited and the counting process can tolerate a smaller
error in the localization. Intermediate performance characterizes the experiments in
USA, which indeed presents a higher density of cars than rural environments but a less
chaotic parking displacement than the European city. Nevertheless, with its almost free
of costs approach, ParkMaster always shows a satisfactory close to 90% accuracy (no-
tice that the city of San Francisco considers their sensors-on-parking-meter deployment
effective and starts paying for the service when accuracy is higher than 70% [6]).

Figure 6.8(c) shows Positive and Negative Prediction values. Similarly to Figure 6.8(b),
rural environments show the highest accuracy. Anyhow in most of the cases (from 87% to
98%) ParkMaster successfully classifies roads with empty parking spots. Lower accuracy
is reported for negative prediction. Indeed when a street is full or almost full, a single
error may lead to a misclassification of the road status.

Figure 6.9 shows the effect of the error compensation on the accuracy of car counts. In
particular, Figure 6.9(a) shows the error per road while Figure 6.9(b) shows the same
error in percentage points (on the number of parking spots on the road). In both cases,
the error is reported as absolute value and with a sign (a negative error means missing
cars, while positive values mean ParkMaster overestimates the number of parked cars).

Error analysis. Inaccuracies can be caused by several factors. In particular, we define
the following type of errors:

1. Classifier: the classifier detects something that does not correspond to a car,

122 Chapter 6 ParkMaster: visual analytics at the edge

Classifier B. B. GPS Loc. F. P.

EU-city 24.3% 29.2% 26.3% 8.0% 12.2%
EU-village 29.6 29.8 14.4 7.0 19.2
US-city 24.5 27.8 25.1 17.1 5.6

Table 6.3: On-road experiments: Error analysis.

2. B. B.: Inaccurate bounding box—the classifier captures only the upper part of
the vehicle,

3. GPS: ParkMaster fails to properly count cars due to GPS inaccuracies i.e. phone’s
GPS doesn’t report any movement while car is moving (or the opposite), or GPS
reports large distance among two consecutive samples (5-10 meters) while it’s clear
from the recorded video that user’s movement is considerably smaller (1 meter or
less),

4. Loc.: ParkMaster miscounts vehicles because the clustering process is not able to
associate samples with the corresponding car i.e. a car has been counted more than
once or multiple cars are merged into the same cluster,

5. F. P.: ParkMaster has failed to discard driving vehicles or cars parked on the left
side of the road (false positive).

Table 6.3 shows the frequency of those errors during the experiments on–the–road. With
the help of logs and videos we manually evaluate each erroneous sample and pick the
best fitting error category. Table 6.3 confirms the remarkable impact that inaccuracy of
bounding box and phone’s GPS have on the car counting process. In particular, between
the three scenarios, it shows a major impact of GPS error in the two cities. The difference
is mainly due to higher buildings elevation (especially in the European case) and a more
frequent stop-and-go car mobility caused by traffic lights and stops which characterize
urban scenarios [38].

6.4.1.3 Processing rate

On todays phones ParkMaster doesn’t keep up with video speed but drops frames: on
average during the experiments Samsung Galaxy S4, S6 and Nexus 5 processed respec-
tively 5.75, 10,3 and 6.75 frames per second. Despite the large gap between the two
Galaxy phones, if we compare ParkMaster performance with the two phones in similar
conditions (we run few experiments with both phones at the same time), the gap reduces:
in those experiments the TPRs are 83.4% in the Galaxy S6 and 76.8% in the S4, while
the FPRs are 34.4% and 27.8% respectively.

Chapter 6 ParkMaster: visual analytics at the edge 123

6.4.1.4 Data usage

By design, ParkMaster concentrates most of the computation at the edge and relies
on the cloud only for data aggregation. The amount of information exchanged by the
two parts is therefore negligible. During all the on-road experiments (about 8 hours
driving), the phones exchanged 6.1 megabytes4 with cloud and Google’s snap-to-road
service, divided as follows: (1) 67 bytes for each sample uploaded by the phone; (2) 16
bytes for each GPS coordinate sent to Google’s snap-to-road service; (3) 47 bytes for
each GPS coordinate corrected by Google’s snap-to-road Service.

6.4.1.5 Fusion of parked cars analytics

One of ParkMaster’s strength resides in being able to run in COTS smartphones, which
potentially enables every driver to participate in data collection. As a consequence, the
cloud may receives information about the same road from multiple drivers. While an
extended study of multi–user data fusion is out of the scope of this work, we evaluate
through preliminary experiments how an extended version of ParkMaster may reduce the
error when users sample the same road in a short period of time (ParkMaster’s outcome
is likely to vary each time because of different user’s speed, camera’s properties, phone’s
characteristics etc.). In particular, we look into the single-element cluster case (object
detected only once), which constitutes a considerable portion of false positives.

In this extended version of ParkMaster, the cloud, after receiving new data, instead of
overriding older samples, assigns weights to each parked car detection, indicating its
confidence. Whenever data from different users matches the same spot, samples are
merged and their resulting weight is increased. In order to take into consideration time,
the cloud periodically decreases these weights. Whenever a single-element cluster is
uploaded, the cloud accepts it only if other users have recently reported a car at the
same location — only if the resulting weight is higher than a certain threshold. To cope
with GPS inaccuracy, the cloud may adjust traces of different users in order to match
the position of the parked cars analytics.

In order to give a preliminary assessment of this approach, we place two smartphones
(Samsung Galaxy S4 and S6) in the same car and we repetitively drive along the same
path (950 m. path for a total of 11.4 km. in the Paris) to emulate multiple-users’
activities in a short period of time.

Although such a data fusion approach is quite rudimental, it shows a reduction of 9.1%
of false positives, with a small price in terms of true positive rate reduction (1.8%), which
would further increase the accuracy of ParkMaster reported in Figure 6.8 (which have
been obtained without data fusion).

4The negligible HTTP/TCP overhead has not been accounted.

124 Chapter 6 ParkMaster: visual analytics at the edge

We leave for future works a more extensive study of data fusion. For instance, external
information like traffic reports i.e. Waze, or historical parking data, might be used to
evaluate parked-cars-analytics validity over time.

6.4.2 Data pertinence to the parking search

As for any crowd-based system, the number of users collecting data is a crucial factor
for the success of ParkMaster. Data coverage and freshness are indeed vitals to make
ParkMaster information of any pertinence to the drivers looking for parking and strongly
depend on the number of data collectors. In order to evaluate this, we utilizes results
reported by [107]. Such a work, as previously mentioned, addresses the parking problem
by installing additional hardware on cars. While the mean is different, the data collection
model is similar: running cars collect data about parking availability in the area.

[107] analyzes taxis’ traces collected over a month in the city of San Francisco [146] and
estimates that with the only 536 cabs reported in the traces, in the downtown area of San
Francisco, 80% of the road (dubbed cells in [107]) is on average visited with an inter-visit
interval of under 10 minutes. Such a result shows that with a small subset of vehicles
collecting data a significant data freshness can be achieved.

Moreover, it provides insights on how ParkMaster could be initially deployed: the system
could run on taxis or other public vehicles, which has been shown to guarantee adequate
data freshness, and then, given the low cost for the users (in contrast with [107]), expand
to other drivers, for instance with the incentive of more parking queries for non-free-
loaders.

6.4.3 Tuning car detection

We now drill down into ParkMaster design, explaining how we have tuned parameters
in the car detection algorithm.

We record a five-minute video using a phone while driving. Afterwards, we run the
detection algorithm on a server, at first processing every frame of the video (30 fps), and
then artificially skipping frames to emulate the edge limitations.

6.4.3.1 Tuning video parameters for accuracy

We first measure car-detection true and false positive rates at 30 fps while varying input
resolution and the classifier parameters.

Chapter 6 ParkMaster: visual analytics at the edge 125

 NEIGHBOURS = 1
 NEIGHBOURS = 2

 NEIGHBOURS = 3

 NEIGHBOURS = 4

 NEIGHBOURS = 5

 NEIGHBOURS = 6

 NEIGHBOURS = 8
NEIGHBOURS = 100

25

50

75

100

0 25 50 75 100
FPR

T
P

R

(a) neighbors threshold (scale = 1.05).

SCALING = 1.02
 SCALING = 1.05

SCALING = 1.1

SCALING = 1.2

SCALING = 1.5

0

25

50

75

100

0 25 50 75 100
FPR

T
P

R

(b) scale parameter (neighbors = 2).

Figure 6.10: Tuning parameters of a computationally-unconstrained car classifier
(1920× 1080 resolution).

Viola-Jones classifier parameters. Figure 6.10(a) shows the impact of varying the
neighbors threshold with a 1920× 1080 resolution video and a scale = 1.05 (i.e., scaling
in steps of 5%) when the Jones-Viola classifier processes the video at full 30 fps rate. The
ROC curve shows the tradeoff between fewer spurious car detections but more missed
cars with a high neighbors (high detection confidence) and more detections (true and
false) with low neighbors. Based on this data, ParkMaster sets neighors = 2.

Figure 6.10(b) shows the impact of varying the scaling parameter with the same resolution
video and neighbors = 2. We see a similar tradeoff, with the classifier missing cars when
its scaling search step is coarse (scaling = 1.5). Based on this data, ParkMaster sets
scaling = 1.05 to make a reasonable tradeoff between misses and spurious detections.

Video resolution. Decreasing the video resolution reduces the FPR, but, at the same
time, leads to lower TPR. While with resolutions higher than 720× 480 the variation in
TPR is relatively small, decreasing further the resolution causes a more consistent drop
in the number of TP. Thus ParkMaster runs at 720× 480.

6.4.3.2 Tuning video parameters for performance

Computational power at the edge is increasing, but still limited. We thus consider what
performance level (as measured in frames per second the phone processes) we require.
Figure 6.11 shows many missed cars at 2 fps and diminishing gains past 10–15 fps,
because the classifier already has enough frames in which it may detect the car.

Table 6.4 summarizes a sensitivity analysis on performance, measured in frames per
second the Samsung Galaxy S4 and S6 can process when only car detection is active.

126 Chapter 6 ParkMaster: visual analytics at the edge

FPS = 2

FPS = 5

FPS = 10

 FPS = 15

 FPS = 20 − FPS = 25

 FPS = 30

●

●

●
●
●●●

0

25

50

75

100

0 25 50 75 100
FPR

T
P

R

Figure 6.11: Detection with smartphone limitations: Impact of processing rate with
video resolution 720× 480, classifier parameters scale = 1.05 and neighbors = 2.

Cropping Processing rate
Resolution Scale l ↔ S4 S6

720× 480 1.05 1⁄2 1⁄2 5.78 fps 10.4 fps F
720× 480 1.05 full full 1.18 4.11
720× 480 1.02 1⁄2 1⁄2 2.30 5.22
1280× 720 1.05 1⁄2 1⁄2 2.08 5.90
1920× 1080 1.05 1⁄2 1⁄2 0.90 3.45

Table 6.4: Sensitivity analysis of video parameters on phone performance (processing
rate) measured in frames per second. F indicates the parameters ParkMaster uses.

Since ParkMaster aims to detect only vehicles parked on the right side of the road, it
can focus on a smaller part of the image, the bottom-right part of the frame (1⁄2 cropping
in both horizontal and vertical directions). We see that scale factors smaller than 1.05
significantly reduce the frames per second the smartphone can process. The data shows
that with parameters chosen for ParkMaster (denoted by theF symbol), the Samsung S6
can process 10.4 fps, i.e., one frame every 40 cm at 15 kph or one frame every 1.3 m. at
50 kph, removing frame rate as a limiting factor for car detection.

6.4.4 Measuring car localization error

In this section we probe the causes of inaccuracy in the localization process. Firstly, we
evaluate the effects of camera distortion and calibration: we place an easily-recognizable
object (a box with a high contrast color and well defined edges) at the end of a corridor,
calibrating the smartphone with a copy of a road sign. Then, we place the phone at
well-known positions in the corridor and we let it compute the relative position of the
object to the camera. Due to the simplicity of the object, bounding box inaccuracies are
close to zero.

Afterwards we measure the effects of bounding box misplacements — a classifier recog-
nizing only parts of an object. We run a second, similar experiment in a parking garage
detecting and localizing a real car.

Chapter 6 ParkMaster: visual analytics at the edge 127

0.0

0.5

1.0

1.5

2.0

3.0 5.0 7.5 10.0
Camera−object distance [m]D

is
ta

nc
e

fr
om

 c
en

tr
oi

d
[m

]

OBJECT
BOX
CAR

Figure 6.12: Localization error versus ground-truth distance from the object of in-
terest, for an easily-recognized object indoors, and real cars in a parking lot.

In both experiments as the camera changes range to the object of interest, we compute
the estimated location of the object (as camera-object distance plus camera position).
Afterwards we compute the centroid of the set of samples collected at different locations
and we measure the average distance between each sampled coordinate and the centroid:
this essentially measures dispersion in the location estimate, which we refer to below as
localization error. If the points are too dispersed, ParkMaster won’t be able to track a
car among subsequent frames because points belonging to cars close to each other will
overlap.

Figure 6.12 shows the resulting localization error for both experiments. As expected,
getting farther from the box increases the localization error, because a miscalculation in
the estimation of the camera extrinsic parameters (i.e. wrong orientation) increases its
effects at large distance. Similarly for the car experiment, which however presents a peak
in the error at small distance, due to bounding box error: the classifier detected only
part of the vehicle (e.g. only the upper part of the car), which translates in a further
away estimated location in street coordinates.

6.5 Related Work

Car detection. Advanced Driver Assistance Systems use computer vision, among
other techniques, to alert drivers of potential dangers in the surrounding area [144].
Several mechanisms have been developed to detect and track cars from a moving vehicle
using an in-vehicle camera [27, 116, 63]. ParkMaster uses Viola and Jones classifier for
its simplicity and computational speed.

Object tracking. Object tracking methods can be used in order to count cars. In
[43, 86, 156, 169] the authors use background subtraction techniques to facilitate object
tracking. This approach is however impractical in ParkMaster scenario, where the camera

128 Chapter 6 ParkMaster: visual analytics at the edge

is moving. [22, 43, 85, 92, 140] apply multi-object tracking-by-detection algorithms,
which rely on large temporal video windows to discern among subsequent objects. In
contrast in our scenario the same vehicle may be detected in few frames only. Finally [68,
133] combine particle filters with object detector for Markovian tracking-by-detection,
which [34] uses to track pedestrians. The tracker initialization however requires the same
object to be detected few times in subsequent frames, which again is not always feasible
in ParkMaster scenario. Furthermore, the processing time of [34] is not negligible.

Object/obstacle localization. Stereo vision is commonly used to detect obstacles
and estimate their relative location in the scene using simple triangulation [168, 114, 149].
Stereo vision comes at the cost of two cameras facing a scene at the same time, not
available in the majority of COTS smartphone. In [105] authors use different pictures of
the same scene taken by one camera in different locations to emulate two virtual cameras
and reconstruct a 3D model of the scene. This approach however is very CPU intensive.
Similarly Wedel et al. [167] propose the use of multiple pictures taken by a single camera
to estimate the distance of a vehicle from a moving car. In order to be accurate the
algorithm needs several samples, which may not be always available in ParkMaster case.
Furthermore, both [105, 167] require an accurate localization of the camera, which may
be hard to achieve with smartphone’s sensors while moving on a car.

Camera calibration and coordinate system mapping. Another class of single-
camera based methods for object localization consists in mapping camera’s two-dimen-
sional coordinate system to the three-dimensional road coordinate system. [151] intro-
duces a pattern-based camera calibration, which has been used by [69] for obstacle avoid-
ance on smartphones (through chessboard camera calibration). However, to calibrate
the phone, the driver has to stand in front on the car with a chessboard every time the
phone is placed on the dashboard. In contrast in ParkMaster, given the triggering action
— the phone has been placed — calibration runs on–the–go without user intervention.
[152, 126, 73] exploit Inverse Perspective Mapping (IPM) to remove perspective effects.
Such techniques however require to know the height of the camera and it’s angle to the
road [104], which may change at each run. Similar assumptions are made by [174], which
needs camera’s height to compute car-camera distance.

6.6 Conclusion

This chapter has described ParkMaster, the first system to combine advanced vision algo-
rithms, Fog computing on mobile devices, and the cloud to build a zero-overhead parking
space availability solution for dense, vibrant urban environments that costs drivers and
the city next to nothing. On–the–road experiments run in uncontrolled environments

Chapter 6 ParkMaster: visual analytics at the edge 129

(city of Paris, Los Angeles and a small Italian village) validate ParkMaster approach,
whose accuracy in estimating parking availability reaches 90%. We believe ParkMaster
and similar technologies will push the envelope of what is possible in the smart cities of
tomorrow, with a key-role played by the edge in extracting vital information about the
urban environment.

Chapter 7

Conclusion

In the recent years the concept of smart city — a fully integration between urban envi-
ronment and technology — has gain popularity. The city of the future will be invaded
by IoT devices and sensors connected to the Internet which will participate in our lives
and in every urban activities. Among those smart and connected devices, cars will play
a fundamental role. With their networking, computation and sensing capabilities in-
deed, newly manufactured vehicles can become data provider, consumer, forwarder and
processor.

In-car sensors indeed can produce data by reporting the vehicle’s status or by sensing
the environment. This information, as well as other data produced by IoT devices
deployed around the city or data published on the Internet, can be consumed by other cars
and passed by from one vehicle to another through multi-hop communication. Finally,
before being shared or utilized, data produced in-loco by cars can be processed (at least
partially) by in-loco smart devices instead of relying only on remote servers (i.e. the
cloud), limiting the dependency to external and remote entities.

Even though the connected car in the urban environment is a well-known concept, it still
presents unresolved challenges, mainly due to the highly mobile nature of vehicles, which
makes paths more unreliable and the data more troublesome to reach, and the difficulties
in exploiting at the same time the diverse network interfaces the car may be equipped
with. In the literature plenty of works based on IP have been proposed over the year,
but still no final solution has been found. Indeed, we believe the main problem resides
in the IP design, which focuses on the endpoints of the communication instead of its
content, making the data exchange susceptible to any change in location or of network
interfaces of any of the two endpoints. We thus believe that to achieve the final solution
to the connected car problem, a shift in the network model is needed, towards a paradigm
that focuses on the content of the communication rather than its endpoints. Therefore,
we adopt the Named Data Networking architecture and with V-NDN (Chapter 3) we
demonstrate, for the first time, the feasibility, benefits and challenges of such approach

131

132 Chapter 7 Conclusion

in urban vehicular networks with real experimentations on the field. With V-NDN, the
first implementation of NDN for VANET running on real hardware, we propose some
adaptations of the NDN paradigm to cope with the challenges of vehicular networks
(e.g. mobility and multihoming) and to exploit their potentials (e.g. caching capabilities,
broadcast nature of the communication, mobility i.e. moving data around without any
transmission). V-NDN demonstrates that (1) NDN supports multihoming by design, by
decoupling the communication from its endpoints, from the network interfaces in use;
(2) naming data and caching enable the content to survive the producer — once the data
is out and has been cached by some cars in the network, others can retrieve it simply
by name. There is no need anymore for the producer, the actors of the exchange may
not have been part of the initial communication and it’s not required for data mules
to know anything about the semantic of the data name and the nature of the carried
information. V-NDN’s goal was not only demonstrating the benefits of NDN, but also
highlighting its unresolved challenges. V-NDN indeed shows that, while NDN paradigm
is beneficial for the disruptive nature of the vehicular networks, it’s not ready to a real
deployment at scale. By on-the-field experiments and simulations, V-NDN shows that
(1) to obtain scalability a way to steer Interest towards the data without flooding the
network is needed; (2) similarly, a smart forwarding strategy able to select the best
network interface to use is necessary, (3) NDN still misses a transparent way to exploit
the locality of some of the VANET typical data — information produced in a specific
area (i.e. traffic information) are likely to be found in that area — which can bring great
benefits to the communication performance; (4) finally, security and data validation (i.e.
can the information produced by a car be trusted?) are still an open research problem.

Navigo (Chapter 4) addresses some of those challenges and proposes a location based
packet forwarding mechanism for V-NDN. Navigo takes a radically new approach to
address the challenges of frequent connectivity disruptions and sudden network changes
in a vehicle network. Instead of forwarding packets to a specific moving car, Navigo
aims to fetch specific pieces of content from multiple potential carriers of the data. It
automatically learns content’s geographical location, without the need of any location
service or oracle which are typically required by traditional Geo-routing. The design
provides (1) a mechanism to bind NDN data names to the producers’ geographic area(s):
Navigo allows the consumer to register location-based names with the area where such a
content can be found and provides automatic mechanism to create this binding when the
consumer is unaware of the data location; (2) it provides an algorithm to guide Interests
towards data producers using a specialized shortest path over the road topology; and (3)
provides an adaptive discovery and selection mechanism that can identify the best data
source across multiple geographic areas, as well as quickly react to changes in the V2X
network. Navigo has been extensively evaluated through simulations and features low
overhead and high performances for both V2V and V2I scenarios. Those studies also
confirmed that NDN’s basic breadcrumbs mechanism is resilient to mobility: the 95th

RTT percentile for an Interest-Data transaction is less than 300ms, which ensures the

Chapter 7 Conclusion 133

validity of the Interest breadcrumbs in the PIT — vehicles do not move far in the time
elapsed between an Interest and the corresponding data.

NDN design choice of decoupling the communication from its endpoints and addresses
and of focusing on the information exchanged instead, makes it the perfect candidate
to support mobility management at network layer and be a key factor to exploit the
design of 5G networks, thus not only for vehicular networks, but in general for any
mobile connected device. However, while consumer mobility is natively supported by
NDN (a consumer simply needs to issue again an Interest in case of handover), the
producer mobility is still an open problem. With MAP–Me (Chapter 5) we present
an NDN-based model for managing intra-AS producer mobility events in the presence
of latency-sensitive traffic. MAP-Me leverages NDN forwarding plane and notifications
to the network after a handoff to make data reachable after each producer’s movement,
while remaining lightweight in terms of required signaling messages. This work presents a
theoretical evaluation of MAP-Me, proving the guarantees of bounded stretch and overall
correctness for the forwarding update process, and evaluates MAP-Me performance by
simulation. The results show that, whenever the communications are local, MAP-Me
optimally offloads the infrastructure from the traffic, in contrast with other anchor-
based approaches, which concentrates all the traffic towards a single node in the network.
When instead traffic in not local, the results show that MAP-Me is still able to serve
the communications without binding mobility feature to any specific location, while
preserving the communication performance.

The role of cars in the smart city of the future doesn’t stop to the networking aspect.
Once the “connected car” concept is achieved, indeed, new opportunities (and challenges)
arrive at the horizon. The in-car computation and sensing capabilities and the large dif-
fusion of vehicles all across the urban environment make the car the perfect candidate to
play the role of edge node in the Fog architecture. With ParkMaster (Chapter 6) we
demonstrates that this is not just a vision for the future, but that the current technology
and the current diffusion of smart devices already enables vehicles to sense the local
environment, locally process the collected data and make the resulting view available to
the rest of the world. In particular, with ParkMaster we present the first system that, by
combining vision and machine learning algorithms, the Fog computing model on mobile
devices and the cloud, enables car to provide a zero-overhead parking space availability
solution for urban environments that costs drivers and the city next to nothing. Park-
Master uses cameras of drivers’ smartphones to capture images of the road and to process
the pictures looking for parked vehicles, using a Viola-Jones classifier. The resulting in-
formation about parked cars locations is then uploaded to the cloud, which aggregates
the data and makes it available to other drivers looking for a parking spot. To cope with
the computational limitation of smartphones, ParkMaster introduces a novel lightweight
tracking algorithm for car detection based on the location estimates of each sample in
order to “de-duplicate” multiple detections of the same vehicle. Finally, it proposes a new

134 Chapter 7 Conclusion

localization algorithm to estimate parked car location with a single frame. On–the–road
experiments run in uncontrolled environments (city of Paris, Los Angeles and a small
Italian village) have shown that ParkMaster’s accuracy in estimating parking availabil-
ity reaches 90%, which demonstrates that vision-based sensing of the environment at the
edge is now possible with the current technology.

Bibliography

[1] http://www.gsmarena.com/samsung_i9505_galaxy_s4-5371.php.

[2] http://www.gsmarena.com/samsung_galaxy_s6_edge+-7467.php.

[3] http://www.gsmarena.com/lg_nexus_5-5705.php.

[4] DOT proposes mandatory V2V.
https://www.transportation.gov/briefing-room/

us-dot-advances-deployment-connected-vehicle-technology-prevent

-hundreds-thousands.

[5] Google maps now makes it easier to find parking. https://techcrunch.com/
2017/08/29/google-maps-now-makes-it-easier-to-find-parking/.

[6] Parking sensor performance standards and measurement. http://sfpark.org/
wp-content/uploads/2011/09/SFpark_SensorPerformance_v01.pdf.

[7] A. Afanasyev, I. Moiseenko, L. Zhang. ndnSIM: NDN simulator for NS-3. Tech.
Rep. NDN-0005, NDN Project, 2012.

[8] A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moiseenko, Y. Yu, W. Shang,
Y. Huang, J. P. Abraham, S. DiBenedetto, G. Grassi, et al. Nfd developer’s
guide. Tech. rep., Technical Report NDN-0021, NDN, 2014.

[9] A. Afanasyev, C. Yi, L. Wang, B. Zhang, L. Zhang. SNAMP: Secure namespace
mapping to scale NDN forwarding. 281–286, 2015.

[10] B. Ahlgren, M. D’Ambrosio, M. Marchisio, I. Marsh, C. Dannewitz, B. Ohlman,
K. Pentikousis, O. Strandberg, R. Rembarz, V. Vercellone. Design considerations
for a network of information. 66, 2008.

[11] S. H. Ahmed, S. H. Bouk, D. Kim. Rufs: Robust forwarder selection in vehicular
content-centric networks. IEEE Communications Letters, 19(9), 1616–1619, 2015.

[12] V. Albino, U. Berardi, R. M. Dangelico. Smart cities: Definitions, dimensions,
performance, and initiatives. Journal of Urban Technology, 22(1), 3–21, 2015.

135

http://www.gsmarena.com/samsung_i9505_galaxy_s4-5371.php
http://www.gsmarena.com/samsung_galaxy_s6_edge+-7467.php
http://www.gsmarena.com/lg_nexus_5-5705.php
https://www.transportation.gov/briefing-room/us-dot-advances-deployment-connected-vehicle-technology-prevent
https://www.transportation.gov/briefing-room/us-dot-advances-deployment-connected-vehicle-technology-prevent
-hundreds-thousands
https://techcrunch.com/2017/08/29/google-maps-now-makes-it-easier-to-find-parking/
https://techcrunch.com/2017/08/29/google-maps-now-makes-it-easier-to-find-parking/
http://sfpark.org/wp-content/uploads/2011/09/SFpark_SensorPerformance_v01.pdf
http://sfpark.org/wp-content/uploads/2011/09/SFpark_SensorPerformance_v01.pdf

136 BIBLIOGRAPHY

[13] M. Ali. Green Cloud on the Horizon, 451–459. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009. ISBN 978-3-642-10665-1. doi:10.1007/978-3-642-10665-1_41.

[14] H. Aly, A. Basalamah, M. Youssef. Lanequest: An accurate and energy-efficient
lane detection system. Pervasive Computing and Communications (PerCom),
2015 IEEE International Conference on, 163–171. IEEE, 2015.

[15] H. Aly, A. Basalamah, M. Youssef. Robust and ubiquitous smartphone-based
lane detection. Pervasive and Mobile Computing, 26, 35–56, 2016.

[16] M. Amadeo, C. Campolo, A. Molinaro. Content-centric networking: is that a
solution for upcoming vehicular networks? Proceedings of the ninth ACM
international workshop on Vehicular inter-networking, systems, and applications,
99–102. ACM, 2012.

[17] M. Amadeo, C. Campolo, A. Molinaro. Crown: Content-centric networking in
vehicular ad hoc networks. IEEE Communications Letters, 16(9), 1380–1383,
2012.

[18] M. Amadeo, C. Campolo, A. Molinaro. Design and analysis of a transport-level
solution for content-centric vanets. Communications Workshops (ICC), 2013
IEEE International Conference on, 532–537. IEEE, 2013.

[19] M. Amadeo, C. Campolo, A. Molinaro. Enhancing content-centric networking for
vehicular environments. Computer Networks, 57(16), 3222–3234, 2013.

[20] G. Arnould, D. Khadraoui, Z. Habbas. A self-organizing content centric network
model for hybrid vehicular ad-hoc networks. Proceedings of the first ACM
international symposium on Design and analysis of intelligent vehicular networks
and applications, 15–22. ACM, 2011.

[21] J. Augé, G. Carofiglio, G. Grassi, L. Muscariello, G. Pau, X. Zeng. MAP-Me:
Managing Anchor-less Producer Mobility in Content-Centric Networks. Technical
report, https://mapme-tnsm17.github.io/, 2016.

[22] S. Avidan. Ensemble tracking. IEEE TPAMI, 29(2), 261–271, 2007.

[23] A. Bachir, A. Benslimane. A multicast protocol in ad hoc networks inter-vehicle
geocast. Vehicular Technology Conference, 2003. VTC 2003-Spring. The 57th
IEEE Semiannual, vol. 4, 2456–2460. IEEE, 2003.

[24] P. Bahl, R. Y. Han, L. E. Li, M. Satyanarayanan. Advancing the state of mobile
cloud computing. Proceedings of the third ACM workshop on Mobile cloud
computing and services, 21–28. ACM, 2012.

[25] F. Bai, B. Krishnamachari. Exploiting the wisdom of the crowd: localized,
distributed information-centric vanets [topics in automotive networking]. IEEE
Communications Magazine, 48(5), 2010.

https://mapme-tnsm17.github.io/

BIBLIOGRAPHY 137

[26] T. Bakıcı, E. Almirall, J. Wareham. A smart city initiative: the case of
barcelona. Journal of the Knowledge Economy, 4(2), 135–148, 2013.

[27] M. Betke, E. Haritaoglu, L. S. Davis. Multiple vehicle detection and tracking in
hard real-time. Proc. of IEEE Intelligent Vehicles Symposium, 351–356, 1996.

[28] C. Bian, T. Zhao, X. Li, W. Yan. Boosting named data networking for data
dissemination in urban vanet scenarios. Vehicular Communications, 2(4),
195–207, 2015.

[29] C. Bian, T. Zhao, X. Li, W. Yan. Boosting named data networking for efficient
packet forwarding in urban vanet scenarios. Local and Metropolitan Area
Networks (LANMAN), 2015 IEEE International Workshop on, 1–6. IEEE, 2015.

[30] J. Blum, A. Eskandarian, L. Hoffman. Mobility management in ivc networks.
Intelligent Vehicles Symposium, 2003. Proceedings. IEEE, 150–155. IEEE, 2003.

[31] C. Bo, X.-Y. Li, T. Jung, X. Mao, Y. Tao, L. Yao. Smartloc: Push the limit of
the inertial sensor based metropolitan localization using smartphone. Proceedings
of the 19th annual international conference on Mobile computing & networking,
195–198. ACM, 2013.

[32] F. Bonomi, R. Milito, J. Zhu, S. Addepalli. Fog computing and its role in the
internet of things. Proceedings of the first edition of the MCC workshop on Mobile
cloud computing, 13–16. ACM, 2012.

[33] J. Bouguet. MATLAB calibration tool:
http~://www.vision.caltech.edu/bouguetj/calib_doc/.

[34] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, L. Van Gool. Robust
tracking-by-detection using a detector confidence particle filter. IEEE Conf. on
Computer Vision, 1515–1522, 2009.

[35] L. Briesemeister, L. Schafers, G. Hommel. Disseminating messages among highly
mobile hosts based on inter-vehicle communication. Intelligent Vehicles
Symposium, 2000. IV 2000. Proceedings of the IEEE, 522–527. IEEE, 2000.

[36] A. T. Campbell, J. Gomez, S. Kim, A. G. Valkó, C.-Y. Wan, Z. R. Turányi.
Design, implementation, and evaluation of cellular ip. IEEE personal
communications, 7(4), 42–49, 2000.

[37] J. Canny. A computational approach to edge detection. IEEE TPAMI, (6),
679–698, 1986.

[38] R. Carisi, E. Giordano, G. Pau, M. Gerla. Enhancing in vehicle digital maps via
gps crowdsourcing. WONS, 27–34. IEEE, 2011.

http~://www.vision.caltech.edu/bouguetj/calib_doc/

138 BIBLIOGRAPHY

[39] G. Carofiglio, L. Muscariello, ichele Papalini, N. Rozhnova, X. Zeng. Leveraging
icn in-network control for loss detection and recovery in wireless mobile networks.
ACM SIGCOMM ICN’2016. Kyoto, Japan, 2016.

[40] D. Chen, K.-T. Cho, S. Han, Z. Jin, K. G. Shin. Invisible sensing of vehicle
steering with smartphones. Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and Services, 1–13. ACM, 2015.

[41] P.-C. Cheng, K. C. Lee, M. Gerla, J. Härri. Geodtn+ nav: geographic dtn
routing with navigator prediction for urban vehicular environments. Mobile
Networks and Applications, 15(1), 61–82, 2010.

[42] D. Comaniciu, P. Meer. Mean shift: A robust approach toward feature space
analysis. IEEE TPAMI, 24(5), 603–619, 2002.

[43] N. Dalal, B. Triggs. Histograms of oriented gradients for human detection. IEEE
conf. CVPR, vol. 1, 886–893, 2005.

[44] C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren, H. Karl. Network
of information (netinf)–an information-centric networking architecture. Computer
Communications, 36(7), 721–735, 2013.

[45] M. Durresi, A. Durresi, L. Barolli. Emergency broadcast protocol for inter-vehicle
communications. Parallel and Distributed Systems, 2005. Proceedings. 11th
International Conference on, vol. 2, 402–406. IEEE, 2005.

[46] M. Ester, H. Kriegel, J. Sander, X. Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. KDD, 1996.

[47] T. Fabian. An algorithm for parking lot occupation detection. CISIM, 165–170.
IEEE, 2008.

[48] B. Feng, H. Zhou, Q. Xu. Mobility support in named data networking: a survey.
EURASIP Journal on Wireless Communications and Networking, 2016(1), 220,
2016.

[49] Strategic Opportunity Analysis of the Global Smart City Market. 2013. Frost and
Sullivan.

[50] N. Fotiou, P. Nikander, D. Trossen, G. C. Polyzos, et al. Developing information
networking further: From psirp to pursuit. Broadnets, 1–13, 2010.

[51] P. Francois, C. Filsfils, J. Evans, O. Bonaventure. Achieving sub-second igp
convergence in large ip networks. ACM SIGCOMM Computer Communication
Review, 35(3), 35–44, 2005.

BIBLIOGRAPHY 139

[52] R. Frank, E. Giordano, P. Cataldi, M. Gerla. Trafroute: A different approach to
routing in vehicular networks. Wireless and Mobile Computing, Networking and
Communications (WiMob), 2010 IEEE 6th International Conference on, 521–528.
IEEE, 2010.

[53] B. J. Frey, D. Dueck. Clustering by passing messages between data points.
Science, 315(5814), 972–976, 2007.

[54] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi,
M. Barcellos, P. Felber, E. Riviere. Edge-centric computing: Vision and
challenges. ACM SIGCOMM Computer Communication Review, 45(5), 37–42,
2015.

[55] E. Giordano, R. Frank, G. Pau, M. Gerla. Corner: a realistic urban propagation
model for vanet. Wireless On-demand Network Systems and Services (WONS),
2010 Seventh International Conference on, 57–60. IEEE, 2010.

[56] V. Giruka, M. Singhal. Hello protocols for ad-hoc networks: overhead and
accuracy tradeoffs. World of Wireless Mobile and Multimedia Networks, 2005.
WoWMoM 2005. Sixth IEEE International Symposium on a, 354–361, 2005.
doi:10.1109/WOWMOM.2005.50.

[57] Google snap to road.
https://developers.google.com/maps/documentation/roads/snap.

[58] G. Grassi, P. Bahl, K. Jamieson, G. Pau. Parkmaster: An in-vehicle, edge-based
video analytics service for detecting open parking spaces in urban environments.
Symposium on Edge Computing (SEC), 2017. ACM/IEEE, 2017.

[59] G. Grassi, D. Pesavento, G. Pau, R. Vuyyuru, R. Wakikawa, L. Zhang. Vanet via
named data networking. Computer Communications Workshops (INFOCOM
WKSHPS), 2014 IEEE Conference on, 410–415. IEEE, 2014.

[60] G. Grassi, D. Pesavento, G. Pau, L. Zhang, S. Fdida. Navigo: Interest forwarding
by geolocations in vehicular named data networking. World of Wireless, Mobile
and Multimedia Networks (WoWMoM), 2015 IEEE 16th International
Symposium on a, 1–10. IEEE, 2015.

[61] G. Grassi, D. Pesavento, L. Wang, G. Pau, R. Vuyyuru, R. Wakikawa, L. Zhang.
Acm hotmobile 2013 poster: vehicular inter-networking via named data. ACM
SIGMOBILE Mobile Computing and Communications Review, 17(3), 23–24,
2013.

[62] D. Han, M. Lee, K. Cho, T. Kwon, Y. Choi. Publisher mobility support in
content centric networks. Proc. of ICOIN, 2014.

https://developers.google.com/maps/documentation/roads/snap

140 BIBLIOGRAPHY

[63] U. Handmann, T. Kalinke, C. Tzomakas, M. Werner, W. Seelen. An image
processing system for driver assistance. Image and Vision Computing, 18(5),
367–376, 2000.

[64] F. Hermans, E. Ngai, P. Gunningberg. Global source mobility in the
content-centric networking architecture. Proc. of ACM NoM Workshop, 2012.

[65] A. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, L. Wang. Nlsr:
named-data link state routing protocol. Proceedings of the 3rd ACM SIGCOMM
workshop on Information-centric networking, 15–20. ACM, 2013.

[66] IEEE P802.11p TM/D3.0 Draft Standard for Information Technology -
Amendment 7: Wireless Access in Vehicular Environments. ANSI/IEEE Std
802.11, 1999 Edition (R2007). IEEE 802.11 working group, July 2007.

[67] IEEE802-WG. IEEE 802.11, part 11: Wireless LAN medium access control
(MAC) and physical layer (PHY) specifications. ANSI/IEEE Std 802.11, 1999
Edition (R2007), 2007.

[68] S. Ioffe, D. Forsyth. Human tracking with mixtures of trees. Proc. IEEE Conf.
ICCV, vol. 1, 690–695, 2001.

[69] R. Itu, R. Danescu. An efficient obstacle awareness application for android
mobile devices. IEEE Conf. ICCP, 157–163, 2014.

[70] ITU-R. Propagation data and prediction methods for the planning of short-range
outdoor radiocommunication systems and radio local area networks in the
frequency range 300 mhz to 100 ghz. Recommendation p.1441-9, International
Telecommunication Union, Geneva, 2017.

[71] V. Jacobson, et al. Networking named content. Proc. of CoNEXT, 2009.

[72] M. Jerbi, S.-M. Senouci, T. Rasheed, Y. Ghamri-Doudane. Towards efficient
geographic routing in urban vehicular networks. IEEE Transactions on Vehicular
Technology, 58(9), 5048–5059, 2009.

[73] R. Jiang, R. Klette, T. Vaudrey, S. Wang. New lane model and distance
transform for lane detection and tracking. CAIP, 1044–1052. Springer, 2009.

[74] X. Jiang, J. Bi, Y. Wang. What benefits does NDN have in supporting mobility.
Proc. of IEEE ISCC, 2014.

[75] D. B. Johnson, D. A. Maltz. Dynamic source routing in ad hoc wireless networks.
Mobile computing, 153–181, 1996.

[76] B. Karp, H.-T. Kung. Gpsr: Greedy perimeter stateless routing for wireless
networks. Proceedings of the 6th annual international conference on Mobile
computing and networking, 243–254. ACM, 2000.

BIBLIOGRAPHY 141

[77] D.-h. Kim, J.-h. Kim, Y.-s. Kim, H.-s. Yoon, I. Yeom. Mobility support in
content centric networks. Proc. of ACM ICN 2012.

[78] D.-h. Kim, J.-h. Kim, Y.-s. Kim, H.-s. Yoon, I. Yeom. End-to-end mobility
support in content centric networks. International Journal of Communication
Systems, 28(6), 1151–1167, 2015.

[79] Y.-B. Ko, N. H. Vaidya. Location-aided routing (lar) in mobile ad hoc networks.
Wireless networks, 6(4), 307–321, 2000.

[80] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker,
I. Stoica. A data-oriented (and beyond) network architecture. ACM SIGCOMM
Computer Communication Review, vol. 37, 181–192. ACM, 2007.

[81] G. Korkmaz, E. Ekici, F. Özgüner, Ü. Özgüner. Urban multi-hop broadcast
protocol for inter-vehicle communication systems. Proceedings of the 1st ACM
international workshop on Vehicular ad hoc networks, 76–85. ACM, 2004.

[82] E. Koukoumidis, L.-S. Peh, M. R. Martonosi. Signalguru: leveraging mobile
phones for collaborative traffic signal schedule advisory. Proceedings of the 9th
international conference on Mobile systems, applications, and services, 127–140.
ACM, 2011.

[83] D. Krajzewicz, J. Erdmann, M. Behrisch, L. Bieker. Recent development and
applications of SUMO - Simulation of Urban MObility. International Journal On
Advances in Systems and Measurements, 5(3&4), 128–138, 2012.

[84] G. Kreitz, F. Niemela. Spotify–large scale, low latency, p2p music-on-demand
streaming. Peer-to-Peer Computing (P2P), 2010 IEEE Tenth International
Conference on, 1–10. IEEE, 2010.

[85] X. Lan, D. P. Huttenlocher. Beyond trees: Common-factor models for 2d human
pose recovery. IEEE Conf. ICCV, vol. 1, 470–477, 2005.

[86] N. D. Lawrence, A. J. Moore. Hierarchical gaussian process latent variable
models. Proc. of conf. on Machine learning, 481–488. ACM, 2007.

[87] J. Lee, S. Cho, D. Kim. Device mobility management in content-centric
networking. Communications Magazine, IEEE, 50(12), 28–34, 2012. ISSN
0163-6804. doi:10.1109/MCOM.2012.6384448.

[88] K. C. Lee, J. Härri, U. Lee, M. Gerla. Enhanced perimeter routing for geographic
forwarding protocols in urban vehicular scenarios. Globecom Workshops, 2007
IEEE, 1–10. IEEE, 2007.

[89] K. C. Lee, M. Le, J. Harri, M. Gerla. Louvre: Landmark overlays for urban
vehicular routing environments. Vehicular Technology Conference, 2008. VTC
2008-Fall. IEEE 68th, 1–5. IEEE, 2008.

142 BIBLIOGRAPHY

[90] K. C. Lee, U. Lee, M. Gerla. To-go: Topology-assist geo-opportunistic routing in
urban vehicular grids. Wireless On-Demand Network Systems and Services, 2009.
WONS 2009. Sixth International Conference on, 11–18. IEEE, 2009.

[91] V. Lehman, A. Gawande, B. Zhang, L. Zhang, R. Aldecoa, D. Krioukov,
L. Wang. An experimental investigation of hyperbolic routing with a smart
forwarding plane in ndn. Quality of Service (IWQoS), 2016 IEEE/ACM 24th
International Symposium on, 1–10. IEEE, 2016.

[92] B. Leibe, E. Seemann, B. Schiele. Pedestrian detection in crowded scenes. IEEE
Conf. CVPR, vol. 1, 878–885, 2005.

[93] D. Li, M. C. Chuah. SCOM: A Scalable Content Centric Network Architecture
with Mobility Support. Proc. of IEEE MSN, 2013.

[94] F. Li, Y. Wang. Routing in vehicular ad hoc networks: A survey. IEEE Vehicular
technology magazine, 2(2), 2007.

[95] R. Lienhart, J. Maydt. An extended set of haar-like features for rapid object
detection. Proc. Conf. on Image Processing, vol. 1, I–900. IEEE, 2002.

[96] T. D. Little, A. Agarwal, et al. An information propagation scheme for vanets.
Proc. IEEE Intelligent Transportation Systems, 155–160, 2005.

[97] G. Liu, B.-S. Lee, B.-C. Seet, C.-H. Foh, K.-J. Wong, K.-K. Lee. A routing
strategy for metropolis vehicular communications. Information networking.
networking technologies for broadband and mobile networks, 134–143, 2004.

[98] X. Liu, M. J. Nicolau, A. Costa, J. Macedo, A. Santos. A geographic
opportunistic forwarding strategy for vehicular named data networking.
Intelligent Distributed Computing IX, 509–521. Springer, 2016.

[99] C. Lochert, H. Hartenstein, J. Tian, H. Fussler, D. Hermann, M. Mauve. A
routing strategy for vehicular ad hoc networks in city environments. Intelligent
Vehicles Symposium, 2003. Proceedings. IEEE, 156–161. IEEE, 2003.

[100] C. Lochert, M. Mauve, H. Füßler, H. Hartenstein. Geographic routing in city
scenarios. ACM SIGMOBILE mobile computing and communications review,
9(1), 69–72, 2005.

[101] S. Ma, O. Wolfson, B. Xu. Updetector: Sensing parking/unparking activities
using smartphones. Proceedings of the 7th ACM SIGSPATIAL International
Workshop on Computational Transportation Science, 76–85. ACM, 2014.

[102] R. Mahmud, R. Buyya. Fog computing: A taxonomy, survey and future
directions. arXiv preprint arXiv:1611.05539, 2016.

BIBLIOGRAPHY 143

[103] C. Maihofer, R. Eberhardt. Geocast in vehicular environments: caching and
transmission range control for improved efficiency. Intelligent Vehicles
Symposium, 2004 IEEE, 951–956. IEEE, 2004.

[104] H. A. Mallot, H. H. Bülthoff, J. Little, S. Bohrer. Inverse perspective mapping
simplifies optical flow computation and obstacle detection. Biological cybernetics,
64(3), 177–185, 1991.

[105] J. G. Manweiler, P. Jain, R. Roy Choudhury. Satellites in our pockets: an object
positioning system using smartphones. MobiSys, 211–224. ACM, 2012.

[106] S. Mastorakis, A. Afanasyev, I. Moiseenko, L. Zhang. ndnSIM 2: An updated
NDN simulator for NS-3. Technical Report NDN-0028, Revision 2, NDN, 2016.

[107] S. Mathur, T. Jin, N. Kasturirangan, J. Chandrasekaran, W. Xue, M. Gruteser,
W. Trappe. Parknet: drive-by sensing of road-side parking statistics. MobiSys,
123–136. ACM, 2010.

[108] A. Mcgregor, D. Smithies. Rate adaptation for 802.11 wireless networks:
Minstrel. Submitted to ACM SIGCOMM 2010,
http://blog.cerowrt.org/papers/minstrel-sigcomm-final.pdf.

[109] ETSI, Mobile-Edge Computing Introductory Technical White Paper.
http://www.etsi.org/technologies-clusters/technologies/

mobile-edge-computing.

[110] IBM News Releases, “IBM and Nokia Siemens Networks announce world first
mobile edge computing platform”.
http://www-03.ibm.com/press/us/en/pressrelease/40490.wss.

[111] V. Namboodiri, M. Agarwal, L. Gao. A study on the feasibility of mobile
gateways for vehicular ad-hoc networks. Proceedings of the 1st ACM international
workshop on Vehicular ad hoc networks, 66–75. ACM, 2004.

[112] A. Nandugudi, T. Ki, C. Nuessle, G. Challen. Pocketparker: Pocketsourcing
parking lot availability. Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, 963–973. ACM, 2014.

[113] S. Nawaz, C. Efstratiou, C. Mascolo. Parksense: A smartphone based sensing
system for on-street parking. Proceedings of the 19th annual international
conference on Mobile computing & networking, 75–86. ACM, 2013.

[114] V. D. Nguyen, T. T. Nguyen, D. D. Nguyen, J. W. Jeon. Toward real-time
vehicle detection using stereo vision and an evolutionary algorithm. VTC Spring,
1–5. IEEE, 2012.

http://www.etsi. org/technologies-clusters/technologies/ mobile-edge-computing
http://www.etsi. org/technologies-clusters/technologies/ mobile-edge-computing
http://www-03.ibm.com/press/us/ en/pressrelease/40490.wss

144 BIBLIOGRAPHY

[115] Y. Nishiyama, M. Ishino, Y. Koizumi, T. Hasegawa, K. Sugiyama, A. Tagami.
Proposal on routing-based mobility architecture for icn-based cellular networks.
Computer Communications Workshops (INFOCOM WKSHPS), 2016 IEEE
Conference on, 467–472. IEEE, 2016.

[116] D. Noll, M. Werner, W. Von Seelen. Real-time vehicle tracking and classification.
Proc. of the Intelligent Vehicles Symposium, 101–106. IEEE, 1995.

[117] C.-C. Ooi, N. Fisal. Implementation of geocast-enhanced aodv-bis routing
protocol in manet. TENCON 2004. 2004 IEEE Region 10 Conference, 660–663.
IEEE, 2004.

[118] OpenCV: http~://opencv.org/.

[119] OpenFog Architecture Overview. Open Fog Consortium. February 2016.
https://www.openfogconsortium.org/wp-content/uploads/

OpenFog-Architecture-Overview-WP-2-2016.pdf.

[120] C. Perera, Y. Qin, J. C. Estrella, S. Reiff-Marganiec, A. V. Vasilakos. Fog
computing for sustainable smart cities: A survey. arXiv preprint
arXiv:1703.07079, 2017.

[121] C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos. Sensing as a service
model for smart cities supported by internet of things. Transactions on Emerging
Telecommunications Technologies, 25(1), 81–93, 2014.

[122] Periscope. Video Streaming, https://www.periscope.tv/.

[123] C. Perkins, E. Belding-Royer, S. Das. Ad hoc on-demand distance vector (aodv)
routing. Tech. rep., 2003.

[124] R. Ravindran, S. Lo, X. Zhang, G. Wang. Supporting seamless mobility in named
data networking. Proc. of IEEE ICC, 2012.

[125] F. Ren, J. Huang, M. Terauchi, R. Jiang, R. Klette. Lane detection on the iphone.
International Conference on Arts and Technology, 198–205. Springer, 2009.

[126] M. Rezaei, M. Terauchi, R. Klette. Robust vehicle detection and distance
estimation under challenging lighting conditions. Transactions on Intelligent
Transportation Systems, 2015.

[127] J. W. Roberts. Realizing quality of service guarantees in multiservice networks.
Performance and Management of Complex Communication Networks, 277–293.
Springer, 1998.

[128] R. Roman, J. Lopez, M. Mambo. Mobile edge computing, fog et al.: A survey
and analysis of security threats and challenges. Future Generation Computer
Systems, 2016.

http~:// opencv.org/
https://www.openfogconsortium.org/wp-content/uploads/OpenFog-Architecture-Overview-WP-2-2016.pdf
https://www.openfogconsortium.org/wp-content/uploads/OpenFog-Architecture-Overview-WP-2-2016.pdf

BIBLIOGRAPHY 145

[129] A. Rowstron, G. Pau. Characteristics of a vehicular network. University of
California Los Angeles, Computer Science Department, Tech. Rep, 09–0017, 2009.

[130] R. A. Santos, A. Edwards, R. Edwards, N. L. Seed. Performance evaluation of
routing protocols in vehicular ad-hoc networks. International Journal of Ad Hoc
and Ubiquitous Computing, 1(1-2), 80–91, 2005.

[131] M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies. The case for vm-based
cloudlets in mobile computing. IEEE pervasive Computing, 8(4), 2009.

[132] C. Scientific, I. R. O. (CSIRO). Phenonet: Dis- tributed sensor network for
phenomics supported by high resolution plant phenomics centre. CSIRO ICT
Centre, and CSIRO Sensor and Sensor Networks TCP, 2011.

[133] E. Seemann, B. Schiele. Cross-articulation learning for robust detection of
pedestrians. Pattern Recognition, 242–252. Springer, 2006.

[134] Y. Sekimoto, Y. Matsubayashi, H. Yamada, R. Imai, T. Usui, H. Kanasugi.
Lightweight lane positioning of vehicles using a smartphone gps by monitoring
the distance from the center line. Intelligent Transportation Systems (ITSC),
2012 15th International IEEE Conference on, 1561–1565. IEEE, 2012.

[135] I. Seskar, K. Nagaraja, S. Nelson, D. Raychaudhuri. Mobilityfirst future internet
architecture project. 1–3, 2011.

[136] SFPark: http~://sfpark.org/.

[137] S. Shenker. Fundamental design issues for the future internet. Selected Areas in
Communications, IEEE Journal on, 13(7), 1176–1188, 1995.

[138] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu. Edge computing: Vision and challenges.
IEEE Internet of Things Journal, 3(5), 637–646, 2016.

[139] D. C. Shoup. Cruising for parking. Transport Policy, 13(6), 479–486, 2006.

[140] L. Sigal, M. J. Black. Measure locally, reason globally: Occlusion-sensitive
articulated pose estimation. IEEE Conf. CVPR, vol. 2, 2041–2048, 2006.

[141] S. Soubam, D. Banerjee, V. Naik, D. Chakraborty. Bluepark: tracking parking
and un-parking events in indoor garages. Proceedings of the 17th International
Conference on Distributed Computing and Networking, 33. ACM, 2016.

[142] Streetline Networks: http~://www.streetlinenetworks.com/.

[143] M.-T. Sun, W.-C. Feng, T.-H. Lai, K. Yamada, H. Okada, K. Fujimura.
Gps-based message broadcasting for inter-vehicle communication. Parallel
Processing, 2000. Proceedings. 2000 International Conference on, 279–286. IEEE,
2000.

http~://sfpark.org/
http~://www .streetlinenetworks.com/

146 BIBLIOGRAPHY

[144] Z. Sun, G. Bebis, R. Miller. On-road vehicle detection: A review. IEEE TPAMI,
28(5), 694–711, 2006.

[145] P. TalebiFard, V. Leung. A content centric approach to dissemination of
information in vehicular networks. Proceedings of the second ACM international
symposium on Design and analysis of intelligent vehicular networks and
applications, 17–24. ACM, 2012.

[146] Yellow cab of san francisco, location dataset. http://cabspotting.org/.

[147] D. Tian, K. Shafiee, V. C. Leung. Position-based directional vehicular routing.
Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE, 1–6.
IEEE, 2009.

[148] Time Warner Cable. TWC WiFi coverage map, http://coverage.twcwifi.com/.

[149] G. Toulminet, M. Bertozzi, S. Mousset, A. Bensrhair, A. Broggi. Vehicle
detection by means of stereo vision-based obstacles features extraction and
monocular pattern analysis. IEEE Transactions on Image Processing, 15(8),
2364–2375, 2006.

[150] N. True. Vacant parking space detection in static images. University of
California, San Diego, 2007.

[151] R. Y. Tsai. A versatile camera calibration technique for high-accuracy 3d
machine vision metrology using off-the-shelf tv cameras and lenses. IEEE Journal
of Robotics and Automation, 3(4), 323–344, 1987.

[152] S. Tuohy, D. O’Cualain, E. Jones, M. Glavin. Distance determination for an
automobile environment using inverse perspective mapping in opencv. Proc.
ISSC, 2010.

[153] G. Tyson, A. Mauthe, S. Kaune, P. Grace, T. Plagemann. Juno: An adaptive
delivery-centric middleware. 587–591, 2012.

[154] G. Tyson, N. Sastry, R. Cuevas, I. Rimac, A. Mauthe. A survey of mobility in
information-centric networks. Commun. ACM, 56(12), 90–98, 2013.

[155] G. Tyson, N. Sastry, I. Rimac, R. Cuevas, A. Mauthe. A survey of mobility in
information-centric networks: challenges and research directions. Proceedings of
the 1st ACM workshop on Emerging Name-Oriented Mobile Networking
Design-Architecture, Algorithms, and Applications, 1–6. ACM, 2012.

[156] R. Urtasun, D. J. Fleet, P. Fua. 3d people tracking with gaussian process
dynamical models. IEEE Conf. CVPR, vol. 1, 238–245, 2006.

http://cabspotting.org/

BIBLIOGRAPHY 147

[157] L. M. Vaquero, L. Rodero-Merino. Finding your way in the fog: Towards a
comprehensive definition of fog computing. ACM SIGCOMM Computer
Communication Review, 44(5), 27–32, 2014.

[158] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, D. S. Nikolopoulos.
Challenges and opportunities in edge computing. Smart Cloud (SmartCloud),
IEEE International Conference on, 20–26. IEEE, 2016.

[159] R. Viereckl, D. Ahlemann, A. Koster, et al. Connected car report 2016:
Opportunities, risk, and turmoil on the road to autonomous vehicles., 2016.

[160] P. Viola, M. Jones. Rapid object detection using a boosted cascade of simple
features. Proc. of IEEE Conf. CVPR, vol. 1, I–511. IEEE, 2001.

[161] C. Wah. Parking space vacancy monitoring. Projects in Vision and Learning,
2009.

[162] J. Wang, R. Wakikawa, L. Zhang. Dmnd: Collecting data from mobiles using
named data. Vehicular Networking Conference (VNC), 2010 IEEE, 49–56. IEEE,
2010.

[163] L. Wang, A. Afanasyev, R. Kuntz, R. Vuyyuru, R. Wakikawa, L. Zhang. Rapid
traffic information dissemination using named data. Proceedings of the 1st ACM
workshop on Emerging Name-Oriented Mobile Networking Design-Architecture,
Algorithms, and Applications, 7–12. ACM, 2012.

[164] L. Wang, A. Hoque, C. Yi, A. Alyyan, B. Zhang. Ospfn: An ospf based routing
protocol for named data networking, 2012.

[165] L. Wang, R. Wakikawa, R. Kuntz, R. Vuyyuru, L. Zhang. Data naming in
vehicle-to-vehicle communications. Computer Communications Workshops
(INFOCOM WKSHPS), 2012 IEEE Conference on, 328–333. IEEE, 2012.

[166] L. Wang, O. Waltari, J. Kangasharju. Mobiccn: Mobility support with greedy
routing in content-centric networks. Proc. of IEEE GLOBECOM, 2013.

[167] A. Wedel, U. Franke, J. Klappstein, T. Brox, D. Cremers. Realtime depth
estimation and obstacle detection from monocular video. Pattern Recognition,
475–484. Springer, 2006.

[168] T. A. Williamson. A high-performance stereo vision system for obstacle detection.
Ph.D. thesis, Carnegie Mellon, 1998.

[169] B. Wu, R. Nevatia. Detection and tracking of multiple, partially occluded
humans by bayesian combination of edgelet based part detectors. International
Journal of Computer Vision, 75(2), 247–266, 2007.

148 BIBLIOGRAPHY

[170] United Nations. World Urbanization Prospects, 2014 Revision. https:
//esa.un.org/unpd/wup/Publications/Files/WUP2014-Highlights.pdf.

[171] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos,
X. Vasilakos, K. V. Katsaros, G. C. Polyzos. A survey of information-centric
networking research. IEEE Communications Surveys & Tutorials, 16(2),
1024–1049, 2014.

[172] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, L. Zhang. A Case for
Stateful Forwarding Plane. Computer Communications: ICN Special Issue, 36(7),
779–791, 2013.

[173] R. Ying, L. Hongbin, G. Deyun, Z. Huachun, Z. Hongke. Lbma: A novel locator
based mobility support approach in named data networking. China
Communications, 11(4), 111–120, 2014.

[174] C.-W. You, N. D. Lane, et al. Carsafe app: alerting drowsy and distracted drivers
using dual cameras on smartphones. MobySys, 13–26. ACM, 2013.

[175] Y. Yu, A. Afanasyev, D. Clark, V. Jacobson, L. Zhang, et al. Schematizing trust
in named data networking. Proceedings of the 2nd International Conference on
Information-Centric Networking, 177–186. ACM, 2015.

[176] Y.-T. Yu, Y. Li, X. Ma, W. Shang, M. Sanadidi, M. Gerla. Scalable opportunistic
vanet content routing with encounter information. Network Protocols (ICNP),
2013 21st IEEE International Conference on, 1–6. IEEE, 2013.

[177] Y.-T. Yu, T. Punihaole, M. Gerla, M. Sanadidi. Content routing in the vehicle
cloud. Military Communications Conference, 2012-milcom 2012, 1–6. IEEE, 2012.

[178] Y. Yu-Ting, C. Tandiono, X. Li, Y. Lu, M. Sanadidi, M. Gerla. Ican:
Information-centric context-aware ad-hoc network. Computing, Networking and
Communications (ICNC), 2014 International Conference on, 578–582. IEEE,
2014.

[179] J. K. Zao, T. T. Gan, C. K. You, S. J. R. Méndez, C. E. Chung, Y. Te Wang,
T. Mullen, T. P. Jung. Augmented brain computer interaction based on fog
computing and linked data. Intelligent Environments (IE), 2014 International
Conference on, 374–377. IEEE, 2014.

[180] Y. Zhang, A. Afanasyev, J. Burke, L. Zhang. A survey of mobility support in
named data networking. Proc. of IEEE INFOCOM NOM, 2016.

[181] Y. Zhang, H. Zhang, L. Zhang. Kite: A mobility support scheme for ndn. Proc.
of ACM ICN Poster, 2014.

[182] Z. Zhang. A flexible new technique for camera calibration. IEEE TPAMI, 22(11),
1330–1334, 2000.

https://esa.un.org/unpd/wup/Publications/Files/WUP2014-Highlights.pdf
https://esa.un.org/unpd/wup/Publications/Files/WUP2014-Highlights.pdf

BIBLIOGRAPHY 149

[183] Z. Zhu, R. Wakikawa, L. Zhang. A survey of mobility support in the internet.
RFC 6301, 2011.

	List of Figures
	List of Tables
	1 Introduction
	2 State of the Art
	2.1 Named Data Networking: NDN
	2.1.1 Introduction
	2.1.2 Design
	2.1.3 NDN project current status

	2.2 Vehicular Networks
	2.2.1 IP-based solutions
	2.2.2 NDN-based solutions

	2.3 Producer's mobility
	2.4 Fog Computing
	2.4.1 Use cases
	2.4.2 Related work

	3 V-NDN: NDN in Vehicular Networks
	3.1 V-NDN: A proof of concept
	3.2 Design and Implementation
	3.2.1 Implementation
	3.2.2 Enhancing WiFi Broadcast for V2V communications

	3.3 Demonstration
	3.3.1 Field Experiments
	3.3.1.1 Hardware/Software Setup

	3.3.2 Preliminary Results
	3.3.2.1 V2V experiments
	3.3.2.2 Robust Data Availability

	3.3.3 V2X Scenarios and the role of the Infrastructure

	3.4 V-NDN: V2V communication at scale
	3.4.1 Results

	3.5 Discussion

	4 Navigo: Interest Forwarding by Geolocations in V-NDN
	4.1 Introduction
	4.2 Navigo Design Overview
	4.2.1 Naming geographic areas
	4.2.2 Mapping data names to geo-areas
	4.2.3 Hiding geographic forwarding from basic NDN framework
	4.2.4 Design assumptions

	4.3 GeoLocation-based Interest Forwarding
	4.4 FIB Management
	4.4.1 Binding content location to the right name
	4.4.2 FIB size

	4.5 Link Adaptation Layer
	4.5.1 LAL and GeoFaces
	4.5.2 Calculating the shortest path
	4.5.3 Forwarding process
	4.5.4 Forwarding based on forwarding points

	4.6 Simulation
	4.6.1 Scenario
	4.6.2 Music streaming over NDN
	4.6.3 Simulation results
	4.6.3.1 Success rate
	4.6.3.2 User satisfaction
	4.6.3.3 V2V channel access (protocol overhead)
	4.6.3.4 Load on the infrastructure
	4.6.3.5 Infrastructure offload

	4.6.4 Handling mobility of data providers
	4.6.5 Simulations with higher car density

	4.7 Discussion and final remarks

	5 Producer Mobility: MAP–ME
	5.1 Introduction
	5.2 Design
	5.2.1 MAP-Me description
	5.2.2 MAP-Me Update protocol
	5.2.2.1 Rationale
	5.2.2.2 Updates propagation
	5.2.2.3 Concurrent updates

	5.2.3 Map-Me Notification/Discovery protocol
	5.2.3.1 Interest notification
	5.2.3.2 Discovery

	5.2.4 Full MAP-Me approach

	5.3 Implementation
	5.3.1 MAP-Me introduction in a NDN network
	5.3.1.1 MAP-Me Messages
	5.3.1.2 MAP-Me additional Network Information

	5.3.2 Algorithm description
	5.3.2.1 IU/IN transmission at producer
	5.3.2.2 IU/IN processing at network routers
	5.3.2.3 Hop-by-hop IU/IN acknowledgement
	5.3.2.4 Face removal at producer/network nodes
	5.3.2.5 Consumer request forwarding in case of producer discovery

	5.3.3 Security considerations

	5.4 Analysis
	5.4.1 Correctness and stability of IU mechanism
	5.4.2 Numerical Evaluation of path stretch

	5.5 Evaluation
	5.5.1 Simulation setup
	5.5.2 Baseline scenario description
	5.5.3 Results for baseline scenario: Fat-Tree + RWP + CBR
	5.5.3.1 User performance
	5.5.3.2 Network cost

	5.5.4 Impact of mobility pattern, radio conditions and topology
	5.5.4.1 Impact of mobility pattern and radio conditions
	5.5.4.2 Impact of topology

	5.5.5 Impact of notifications on path stretch
	5.5.6 Trace-driven urban mobility
	5.5.6.1 User Performance
	5.5.6.2 Network Cost
	5.5.6.3 Network topology and Mobility

	5.6 MAP-Me and routing
	5.6.1 Proposed solution
	5.6.2 Correctness
	5.6.3 Evaluation

	5.7 Conclusions

	6 ParkMaster: visual analytics at the edge
	6.1 Introduction
	6.2 Design
	6.2.1 Detecting parked cars
	6.2.2 Localizing parked cars
	6.2.2.1 Camera calibration
	6.2.2.2 Car localization
	6.2.2.3 Smartphone localization

	6.2.3 Counting parked cars
	6.2.3.1 Heuristics

	6.3 Implementation
	6.4 Evaluation
	6.4.1 Road-based experiments
	6.4.1.1 Car detection accuracy
	6.4.1.2 End-to-end accuracy
	6.4.1.3 Processing rate
	6.4.1.4 Data usage
	6.4.1.5 Fusion of parked cars analytics

	6.4.2 Data pertinence to the parking search
	6.4.3 Tuning car detection
	6.4.3.1 Tuning video parameters for accuracy
	6.4.3.2 Tuning video parameters for performance

	6.4.4 Measuring car localization error

	6.5 Related Work
	6.6 Conclusion

	7 Conclusion

