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Abstract 
 
Molecular mechanisms of vascular smooth muscle cell trans-differentiation 

and calcification in atherosclerosis 
 

Vascular calcification (VC) is a hallmark of atherosclerosis plaques. Calcification 

(formation of apatite) of advanced lesions share common features with endochondral 

ossification of long bones and appears to stabilize plaques. This process is associated with 

trans-differentiation of vascular smooth muscle cells (VSMCs) into chondrocyte-like cells. 

On the other hand, microcalcification of early plaques, which is poorly understood, is thought 

to be harmful. The two proteins necessary for physiological mineralization are 

tissue-nonspecific alkaline phosphatase (TNAP) and collagen. Under pathological conditions, 

TNAP is activated by inflammatory cytokines in VSMCs, whereas collagen is produced 

constantly. The activation of TNAP appears to induce calcification of these cells. 

Therefore, the objective of this PhD thesis was to study the role of TNAP and generated 

apatite crystals in the VSMC trans-differentiation and determine underlying molecular 

mechanisms. Based on the obtained results, we propose that activation of BMP-2, 

a strong inducer of ectopic calcification, and formation of apatite crystals generated by TNAP 

represents a likely mechanism responsible for stimulation of VSMC trans-differentiation. 

Moreover, we were interested in localization and function of mineralization markers 

such as TNAP and annexins in mineralization process mediated by trans-differentiated VSMCs 

and VSMC-derived matrix vesicles (MVs). We observed that, similarly as in the case of typical 

mineralizing cells, increased TNAP activity in VSMC-derived MVs and association 

with collagen were important for their ability to mineralize. 

 
Keywords: vascular smooth muscle cell, tissue-nonspecific alkaline phosphatase, vascular 

calcification, chondrocyte. 
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Substantial French Summary 
 

Mécanismes moléculaires de la trans-différenciation des cellules 

musculaires lisses et calcification dans l'athérosclérose 
 

En conditions physiologiques, la formation de cristaux de phosphate de calcium 

est restreinte au squelette. D’autre part, plusieurs conditions pathologiques, en particulier 

associées au vieillissement, sont associées à des calcifications ectopiques, qui peuvent affecter 

les tissus vasculaires. Les calcifications vasculaires ont un fort impact sur la structure et les 

propriétés des artères affectées. Chez les patients atteints d’athérosclérose, les calcifications 

vasculaires sont une caractéristique des plaques d’athérome. La calcification de la plaque 

d’athérosclérose varie de microcalcifications diffuses à des macrocalcifications formées par 

un processus ressemblant à une ossification endochondrale, qui fait intervenir un tissu 

intermédiaire cartilagineux. Très probablement, ces macrocalcifications résultent de la trans-

différenciation des cellules musculaires lisses (CMLs) en cellules de type ostéoblastique et/ou 

chondrocytaire. Alors que les macrocalcifications semblent stabiliser la plaque, 

les microcalcifications sont très probablement nuisibles. Le fait que les microcalcifications 

précoces ont été rapportées comme étant des structures particulièrement dangereuses pour 

la stabilité de la plaque, la résolution des méchanismes responsables de leur formation nécessite 

une attention particulière. 

En outre, il n’existe pas aujourd’hui de thérapie permettant de freiner significativement 

le développement des calcifications vasculaires. Nous nous intéressons particulièrement au rôle 

de la phosphatase alcaline non spécifique du tissu (TNAP) dans la calcification vasculaire, 

puisqu’il s’agit de la seule enzyme connue à ce jour pour être absolument nécessaire 

à la minéralisation physiologique. L’absence d’origine génétique d’activité TNAP cause 

l’hypophosphatasie, qui dans les cas sévères, se manifeste en effet par la mort in utero de fœtus 

complètement dépourvus de cristaux osseux. Il a été montré que la TNAP induit 

la minéralisation tissulaire en hydrolysant un inhibiteur constitutif de la minéralisation, 

le pyrophosphate inorganique (PPi). Il est probable que la phosphatase alcaline doive être ancrée 

à la membrane plasmique par son ancre glycosylphosphatidylinositol (GPI) pour être 

pleinement active. 

Des découvertes récentes suggèrent que la TNAP peut être activée dans les CMLs par 

les cytokines pro-inflammatoires, le facteur de nécrose tumorale (TNF-α) et l’interleukine 

1 bêta (IL-1β). Des travaux précédents de l’équipe ont montré que l’ajout 
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de phosphatase alcaline ou la surexpression de TNAP dans les CMLs suffit à stimuler 

l’accumulation de calcium de façon significative. A la lumière de ces résultats, nous avons émis 

l’hypothèse que la TNAP induite dans les CMLs en conditions inflammatoires, suffit à induire 

la minéralisation et la trans-différenciation des CMLs. Nos objectifs étaient donc de déterminer 

l’effet de la TNAP dans la trans-différenciation des CMLs, et d’étudier les mécanismes 

impliqués dans son induction. 

Nous avons observé par PCR quantitative que l’ajout de phosphatase alcaline purifiée 

dans les CMLs de souris MOVAS, en l’absence de donneurs de phosphate, augmente 

les niveaux de transcrits de marqueurs chondrocytaires et ostéoblastiques, tels que l’agrécane 

et l’ostéocalcine, mais aussi de la protéine morphogénétique osseuse BMP-2. L’agrécane est 

le protéoglycane le plus abondant dans le cartilage et un marqueur précoce de la différenciation 

des chondrocytes. L’ostéocalcine est une protéine carboxylée abondante associée aux cristaux 

osseux, et est un marqueur de la différenciation des ostéoblastes et des chondrocytes 

hypertrophiques. Puisque l’ostéocalcine peut être exprimée par les ostéoblastes et les 

chondrocytes, nous avons mesuré l’expression du facteur de transcription plus spécifique 

des ostéoblastes, osterix, qui n’augmentait pas mais diminuait en présence de phosphatase 

alcaline exogène, suggérant que les CMLs ont trans-differencié en chondrocytes et non 

en ostéoblastes. 

Cependant, notre résultat le plus intéressant est probablement que le traitement des 

CMLs par des cristaux seuls ou associés à une matrice collagénique a reproduit les effets 

de la TNAP. La culture de cellules MOVAS en présence de cristaux de phosphate de calcium, 

ou sur une matrice de collagène de type I, a en effet permis de mesurer une augmentation 

significative de l’expression de l’aggrécane et de BMP-2, qui est un facteur de croissance 

ostéogénique puissant. 

Nous suspectons que la TNAP agit en hydrolysant le pyrophosphate inorganique (PPi) 

et en générant des cristaux d’apatite. Ces cristaux ensuite induisent l’expression du facteur 

ostéogénique BMP-2 qui stimule la trans-différenciation des CMLs. Nous avons en effet 

observé que et l’inhibition des effets de la BMP-2 par ajout de Noggin annule les effets 

de la TNAP. Ces résultats suggèrent que l’induction de la TNAP en conditions inflammatoires 

pourrait suffire à induire des microcalcifications.  

L’inflammation et l’IL-1β en particulier jouent des rôles importants dans 

le développement de l’athérosclérose. L’IL-1β est sécrétée par les cellules par un mécanisme 

qui nécessite l’activation de l’inflammasome NLRP3. Plusieurs structures cristallines sont 

connues pour activer l’inflammasome. Il est donc possible que les cristaux d’apatite puissent 
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produire leurs effets par activation de l’inflammasome NLRP-3 et sécrétion de l’IL-1β. 

Ce mécanisme est au centre des derniers travaux du laboratoire. 

De plus, nous étions intéressés par les mécanismes gouvernant la localisation 

et la fonction de la TNAP avec un intérêt particulier pour les annexines. Nous avons tout 

d’abord localisé la TNAP à la membrane des CMLs cultivées dans les conditions 

de minéralisation. Nous avons ensuite observé que l’activité TNAP des CMLs induit 

la minéralisation sans doute en grande partie quand la TNAP est associée aux vésicules 

matricielles et aux fibres de collagène. Donc, de la même manière que dans le cas des cellules 

minéralisantes classiques, l’association avec le collagène semble importante pour l’activité 

de TNAP dans les vésicules matricielles des CMLs et la minéralisation. 

Dans les plaques d’athérosclerose, la localisation précise des microcalcifications et leur 

association possible avec le collagène sont des questions qui sont encore discutées. Cependant, 

il semble que la quantité de collagène est un facteur critique pour la stabilité de la plaque. Les 

lésions athérosclérotiques vulnérables contiennent généralement un bouchon fibreux mince 

et pauvre en collagène. Certains résultats suggèrent que les microcalcifications sont 

particulièrement dangereuses lorsqu’elles sont situées dans un tel bouchon fibreux. 

Sur la base de nos observations, nous proposons un mécanisme de stimulation par 

la TNAP de la calcification des plaques d’athérosclérose. Nos resultats sont cohérents avec 

le modèle récemment proposé pas Chatrou et ses collaborateurs (Chatrou et al., Plos One, 

2015). Ils ont observé que des microcalcifications étaient présentes avant les 

“ostéochondrocytes” dans les plaques athéroscléreuses humaines et ont émis l’hypothèse qu’ils 

sont la cause et non la conséquence de la trans-différenciation des CMLs. En outre, nous 

proposons que l’activation de la TNAP par des cytokines inflammatoires telles que le TNF-  

et l’IL-1  dans les CMLs, l’hydrolyse subséquente de PPi et la génération de cristaux d’apatite 

est un mécanisme central lors de la formation de microcalcifications. Nos résultats suggèrent 

que les cristaux stimulent la BMP-2 qui peut initier la trans-différenciation des CMLs. 

En résumé, nos expériences déjà effectuées, et celles en cours, permettront de mieux 

comprendre les mécanismes moléculaires qui gouvernent l’expression et la fonction 

de la TNAP dans les artères affectées. D’un point de vue thérapeutique, ces études font de 

la TNAP une cible prometteuse pour inhiber la formation de microcalcifications. 

 
Mots-clé: cellule musculaire lisse, phosphatase alcaline, calcification vasculaire, chondrocyte. 
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Substantial Polish Summary 
 

Molekularne mechanizmy procesów transdyferencjacji komórek mięśni 

gładkich oraz zwapnienia ścian naczyń krwionośnych towarzyszących 

miażdżycy 
 

W organizmie człowieka w warunkach fizjologicznych minerał jest wytwarzany 

w tkance kostnej, jednak starzenie organizmu wiąże się z występowaniem patologicznego 

zwapnienia ścian naczyń krwionośnych. Zwapnienie (tworzenie apatytu) naczyń towarzyszy 

procesowi odkładania się blaszki miażdżycowej już we wstępnych etapach rozwoju 

arteriosklerozy. Liczne zwapnienia znacząco wpływają na strukturę i właściwości tętnic 

wieńcowych oraz głównych arterii organizmu. W tętnicach pacjentów z zaawansowaną 

arteriosklerozą występują tzw. „makrozwapnienia”, będące konsekwencją zachodzenia w 

naczyniach krwionośnych procesu analogicznego do kostnienia śródchrzęstnego. 

Za molekularne podłoże zwapnienia naczyń uważa się obecnie tzw. proces „transdyferencjacji” 

komórek mięśni gładkich naczyń (ang. vascular smooth muscle cells, VSMC) w komórki 

o fenotypie chondrocytów. Najnowsze doniesienia literaturowe wskazują również na obecność 

w naczyniach krwionośnych tzw. „mikrozwapnień”, które zagrażają stabilności złogów 

miażdżycowych, jednakże przyczyna ich powstawania nie została dotychczas poznana. 

Z uwagi na fakt, iż mikrozwapnienia uważa się za struktury szczególnie zagrażające stabilności 

blaszki miażdżycowej, zbadanie mechanizmów odpowiedzialnych za ich występowanie 

wymaga szczególnej uwagi. 

Tkankowo niespecyficzna alkaliczna fosfataza (ang. tissue-nonspecific alkaline 

phosphatase, TNAP) oraz kolagen to dwa białka konieczne do zajścia procesu fizjologicznej 

mineralizacji. W komórkach VSMC, które wydzielają kolagen, aktywność TNAP może być 

indukowana przez cytokiny prozapalne, prowadząc do zapoczątkowania procesu patologicznej 

mineralizacji. Do tej pory nie została opracowana skuteczna terapia zapobiegająca rozwojowi 

zwapnienia naczyń. W naszych badaniach skupiliśmy się nad rolą białka TNAP w tym procesie. 

Mutacje genów kodujących TNAP mogą skutkować występowaniem rzadkiej choroby zwanej 

hipofosfatazją. Perinatalna odmiana tej choroby dotyczy płodów, które są całkowicie 

pozbawione szkieletu kostnego. TNAP zapoczątkowuje proces mineralizacji poprzez hydrolizę 

głównego konstytutywnego inhibitora mineralizacji, nieorganicznego pirofosforanu (PPi). 

Najprawdopodobniej, dla pełnej aktywności, białko TNAP występuje w komórce głównie 
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w formie zakotwiczonej w błonie plazmatycznej za pomocą glikozylofosfatydyloinozytolu 

(GPI). 

Jak już wspomniano, białko TNAP może być aktywowane w komórkach VSMC przez 

cytokiny prozapalne, takie jak czynnik martwicy nowotworów (ang. tumor necrosis factor 

alpha, TNF-α) oraz interleukina 1β (ang. interleukin 1β, IL-1β). Zaobserwowano również, 

że nadekspresja genu kodującego TNAP w szczurzych komórkach VSMC, A7R5, 

spowodowała znaczącą stymulację mineralizacji. Wysunęliśmy więc hipotezę, że białko TNAP 

odgrywa także ważną rolę w procesie transdyferencjacji komórek VSMC. W związku z tym 

celem niniejszej pracy doktorskiej było zbadanie wpływu TNAP oraz wytworzonych 

kryształów apatytu na proces transdyferencjacji komórek VSMC w komórki zdolne 

do mineralizacji. 

Dodanie egzogennej alkalicznej fosfatazy do hodowli mysich komórek VSMC, 

MOVAS, podwyższyło ekspresję genów kodujących znaczniki mineralizacji, takich jak 

agrekan oraz osteokalcyna, jak również białka morfogenetycznego kości BMP-2 (ang. bone 

morphogenetic protein 2). Agrekan jest jednym z głównych składników tkanki chrzęstnej, zaś 

gen kodujący to białko jest znacznikiem różnicowania się komórek w kierunku chondrocytów. 

Osteokalcyna to białko mogące wiązać się z kryształami apatytu, będące znacznikiem 

różnicowania komórek w kierunku osteoblastów i chondrocytów. Ponieważ osteokalcyna może 

być syntetyzowana zarówno przez osteoblasty, jak i chondrocyty, zbadaliśmy ekspresję 

znacznika specyficznego wyłącznie dla osteoblastów - genu kodującego czynnik 

transkrypcyjny osterix, którego ekspresja w odpowiedzi na obecność egzogennej alkalicznej 

fosfatazy w hodowli komórek MOVAS nie wzrosła, lecz uległa obniżeniu, świadcząc 

o różnicowaniu komórek MOVAS w komórki przypominające chondrocyty. 

Co ciekawe, hodowla komórek MOVAS w obecności kryształów apatytu zawieszonych 

w pożywce hodowlanej lub związanych z powierzchnią pokrytą kolagenem typu I wpłynęła 

znacząco na wzrost poziomu mRNA genów kodujących agrekan oraz BMP-2. BMP-2 jest 

czynnikiem zdolnym do indukcji procesu ektopowej mineralizacji. W niniejszej pracy 

doktorskiej dowiedziono zatem, że kryształy apatytu wpływają na ekspresję znaczników 

mineralizacji w komórkach VSMC w sposób analogiczny do działania TNAP. 

Ponadto opisano lokalizacje oraz funkcje białek będących znacznikami mineralizacji, 

takich jak TNAP oraz aneksyny w komórkach VSMC stymulowanych do mineralizacji oraz 

w wydzielonych przez nie pęcherzykach macierzy pozakomórkowej (ang. matrix vesicles, 

MVs). Zaobserwowano podwyższoną aktywność TNAP w pęcherzykach związanych 

z kolagenem, co sugeruje ważną rolę tego białka w procesie mineralizacji komórek VSMC. 
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Prawdopodobny mechanizm odpowiedzialny za stymulację procesu transdyferencjacji 

komórek VSMC przez białko TNAP zachodzi poprzez hydrolizę PPi oraz wytworzenie 

kryształów apatytu odpowiedzialnych za indukcję ekspresji czynnika BMP-2. Co więcej, 

indukcja TNAP w komórkach VSMC może stanowić mechanizm odpowiedzialny za tworzenie 

mikrozwapnień. Otrzymane wyniki są zgodne z modelem zaproponowanym przez Chatrou 

i współpracowników, którzy ostatnio zaobserwowali, że mikrozwapnienia były obecne przed 

"osteochondrocytami" w blaszkach miażdżycowych człowieka i postawili hipotezę, że są one 

przyczyną, a nie konsekwencją procesu transdyferencjacji. 

Podsumowując, otrzymane wyniki przyczyniają się do częściowego wyjaśnienia 

mechanizmów molekularnych procesu transdyferencjacji komórek VSMC w komórki zdolne 

do mineralizacji. Na podstawie uzyskanych wyników można stwierdzić, że białko TNAP jest 

obiecującym celem terapeutycznym dla terapii zmierzających do zahamowania procesu 

tworzenia mikrozwapnień. 

 
Słowa kluczowe: komórka mięśni gładkich naczyń krwionośnych, tkankowo niespecyficzna 

alkaliczna fosfataza, zwapnienie ścian naczyń krwionośnych, chondrocyt. 
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Chapter 1. Introduction 
 
1.1. Atherosclerosis 
 

Nowadays, cardiovascular system diseases are classified among the most important 

clinical issues worldwide. Vascular calcification (VC) is a complication that occurs in human 

arteries and accompanies age-related diseases, such as atherosclerosis. In the 19th century, 

the pathologist Rudolph Virchow was the first who described VC associated with 

atherosclerosis as a passive, degenerative process. Later, medial calcific sclerosis 

was characterized by Johann Georg Mönckeberg. In 1990’s, VC was no longer concerned 

as a passive process of mineral precipitation. Currently, VC is recognized as a pathobiological 

process sharing many features with normal bone formation (Demer and Tintut, 2008). In this 

work, we particularly focused on VC associated to atherosclerosis. 

 
1.1.1. Atherosclerosis - a main cause of cardiovascular system diseases 
 

Atherosclerosis underlies the majority of pathologies affecting circulatory system. 

It is a progressive chronic inflammatory disease initiated by the accumulation of lipids 

and fibrous elements in subendothelial (intimal) layers of artery walls. Atherosclerosis 

progression may lead to stenosis, characterized by limited blood flow, and resulting 

in the insufficient oxygen and nutrition supply to the tissues and organs (Hahn and Schwartz, 

2009). However, the most severe clinical events are due to atherosclerotic vulnerable plaque 

rupture, resulting in the exposure of the plaque content to the artery lumen, where thrombotic 

occlusions are formed. In the heart, atherosclerosis may lead to heart failure (referred 

as myocardial infarction), whereas in brain, it may cause cerebral infarction (ischemic stroke). 

Atherosclerosis may concern also peripheral tissues, leading to hypertension, aneurysms and 

limb ischemia. 

Although clinical complications of atherosclerosis usually occur in the population 

of middle aged to elderly patients, it was demonstrated that initiation of atherosclerotic lesion 

development begins much earlier, during childhood (Doherty et al., 2004). Thus, it is possible 

that atherosclerosis remains asymptomatic for many years. Epidemiological studies revealed 

numerous environmental risk factors of this pathology, such as age, hyperlipidemia, 

hypertension, diabetes mellitus, obesity, smoking, stress, physical inactivity and infections 

(Criqui et al., 2014). As far as the aging population is concerned, calcification of the aortic arch 

was reported to occur in more than 25% of population at the age of 60 and above. However, 
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an interesting study of ancient Egyptian mummies performed by Clarke and collaborators 

revealed that atherosclerosis concerned humans long before modern civilization and current 

risk factors have appeared (Clarke et al., 2014). Moreover, according to Murphy and 

collaborators, it was estimated that arterial calcification accompanies human population 

for at least 5 millenia, as demonstrated by computed tomographic imaging of “ice mummy” 

discovered in the Tyrolean Alps (Murphy et al., 2003). 

Cardiovascular diseases are the major cause of death in Europe, claiming around 

2 million European Union inhabitants per year. Ischemic heart disease (IHD) and cerebral 

infarction (ischemic stroke) are the most common causes of death among wide spectrum of 

cardiovascular diseases. According to Global Burden of Disease Study carried out for the year 

of 2013, IHD and stroke were the world’s first and third causes of death, representing nearly 

30% of all-cause mortality. Nevertheless, over twenty three years, between 1990 and 2013, 

cardiovascular mortality dropped globally by 20% (GBD 2013 Mortality and Causes of Death 

Collaborators, 2015). However, although this mortality rate decreased on a global scale, the 

prevalence of severe atherosclerosis is still increasing, in part due to aging of population, as 

well as due to changing lifestyle and diet (Barquera et al., 2015). Unfortunately, it is likely that 

in the coming decades it will reach epidemic proportions. 

Interestingly, there are significant differences in mortality rates between nationalities. 

Circulatory system disorders and cancer are currently two leading causes of death 

in the European Union (EU) (Fig. 1A) and United States of America (USA) (Fig. 1B). 

For instance, ischemic heart disease and lung cancer were on the top of the list of most common 

causes of death in countries such as the USA, France and Poland, however, in the case of Poland 

it is a cerebral infarction (ischemic stroke), which occupies a high second position, between 

IHD and lung cancer. Also, there are differences in mortality rates over developed 

and developing countries. The major cause of death among citizens of developed countries 

is IHD, whereas in developing countries on the leading causes of death are lower respiratory 

infections (GBD 2013 Mortality and Causes of Death Collaborators, 2015). 
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Figure 1. Cardiovascular diseases and cancer are two major causes of death. Mortality 
rates in the EU (A) (according to Eurostat data, 2014) and in the USA (B) (according to US 
National Institutes of Health, 2010) were presented.  

A 

B 
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1.1.2. Atherosclerotic plaque progression 
 

Lipid accumulation provokes various consequences leading to activation of adaptive 

processes in the organism preventing the cytotoxic effect of the excessive material. Lipoprotein 

uptake by macrophages and vascular smooth muscle cells represents a kind of physiological 

response to this unfavorable process. Nevertheless, the cellular response mechanism finally 

converts into a pathology that contributes to atherosclerotic plaque formation. According 

to the response-to-retention model proposed by Williams and Tabas, the key event that initiates 

atherogenesis is subendothelial retention of lipoproteins within the artery wall (Williams 

and Tabas, 1995). 

Atherosclerotic plaque formation begins with the formation of fatty streak lesions in the 

arterial intima, a thin layer of endothelial cells (Okura et al., 2000; Uchida et al., 2013). This 

process is initiated by accumulation of apolipoprotein B (apoB)-containing lipoproteins, which 

bind to proteoglycans of the extracellular matrix (ECM) through ionic interactions and activate 

endothelium (Skålén et al., 2002). Activated endothelial cells secrete pro-inflammatory agents 

such as chemokines and adhesion molecules, particularly vascular cell adhesion molecule 

(VCAM-1), to attract monocytes from the circulation and promote their entry 

to the subendothelial space. Recruited monocytes differentiate into macrophages driven 

by a macrophage-colony stimulating factor (M-CSF) (Lusis, 2000). Next, monocyte-derived 

macrophages phagocyte retained lipoproteins, forming foam cells enriched in cytoplasmic lipid 

droplets. Interestingly, native LDLs are not taken up by macrophages, rather oxidatively 

modified particles (oxLDLs) are highly atherogenic (Linton et al., 2000). Foam cells contribute 

to the development of fatty streak lesions by initiating and amplifying the inflammatory 

response. In addition, some reports indicate that, similarly to macrophages, smooth muscle cells 

may also accumulate cholesterol and become foam cells (Glass and Witztum, 2001). 

There are two major factors that contribute to atherosclerotic plaque progression 

– first one is the domination of cell death mechanisms within the plaque, most probably 

due to prolonged endoplasmic reticulum (ER) stress induced by various stimuli (Tabas, 2010). 

The second reason is the deficiency of functional macrophages. In consequence, apoptotic cells 

cannot be efficiently cleared, and instead, they undergo secondary necrosis (Moore and Tabas, 

2011). Therefore, there is a formation of lipid-rich necrotic core, being a hallmark of advanced 

lesions, referred as atheroma. Also, in response to cytokines and growth factors secreted 

by macrophages and T cells, smooth muscle cells migrate from the medial to the intimal layer 

of a blood vessel wall. Vascular smooth muscle cells (VSMCs) are responsible for fibrous cap 
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formation, which is a layer of collagen rich ECM that covers both fatty streak and necrotic core 

(Lusis, 2000). At this stage of atherosclerosis, referred as fibroatheroma, the early symptoms 

of VC may occur. 

In consequence of fibrous cap disruption within vulnerable plaque, the plaque content 

is exposed to the bloodstream allowing platelet aggregation as well as subsequent thrombus 

formation at the site of the rupture (Fig. 2). Complicated lesions contribute to occlusion 

of narrowed arteries which may lead to acute coronary syndromes such as myocardial 

and cerebral infarction, due to insufficient oxygen supply to the heart and the brain (Virmani 

et al., 2002). 

 
Figure 2. Stages of atherosclerosis progression (adapted from Stary et al, 1995). 

 
Regarding early events of atherosclerosis, they may occur before the age of ten 

of citizens living in industrialized societies. Even in the first decade of life, proteoglycan-rich 

susceptible areas were detected within the blood vessel walls (Doherty et al., 2004). Also, 

the early lipoprotein retention is possible to take place during this period. In the teens, responses 

to lipoprotein retention are likely to begin, as well as monocyte entry into the endothelium. 

The age of twenty and above, is characterized by the appearance of advanced responses, 

including maladaptive inflammation and cell death (Tabas et al., 2007). 

Under normal conditions, the arterial intima maintains vessel wall homeostasis 

by production of anti-inflammatory and cytostatic agents, thus, it protects the arteries from 
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the unfavourable processes of leukocyte, platelet and VSMC adhesion and proliferation. 

Atherosclerosis begins as a result of increased permeability of endothelium to biologically 

active lipoproteins, leading monocyte recruitment and foam cell formation. Moreover, another 

pathological process which may proceed simultaneously is endothelial dysfunction, being 

the consequence of an increase in reactive oxygen species and a decreased level of a free radical, 

nitric oxide. 

 
1.1.3. The role of lipids, lipoproteins and fatty acids in atherosclerosis 
 

Cholesterol metabolism is precisely controlled, however, disruption of its homeostasis 

by different factors may result in various disorders. It is known for almost a century that 

accumulation of lipids in the intimal layer of a vessel wall, especially excess cholesterol, 

is a hallmark of atherosclerosis (Steinberg, 2005). Cholesterol is a principal sterol synthesized 

by all animals. It is a major structural component of cell membranes, is essential to keep their 

integrity and fluidity, and is derived either from nutrition or endogenous synthesis (McNamara, 

2000). A key function of this lipid is the assembly and maintanance of lipid raft microdomains 

(Simons and Ikonen, 2000). Moreover, it serves as a precursor for biosynthesis of steroid 

hormones, bile acid and vitamin D. 

Because of its hydrophobic nature, free cholesterol is practically insoluble in aqueous 

environments, that is why lipoproteins are particles which are the most appropriate 

for cholesterol transport via bloodstream. Lipoproteins are assemblies consisting 

of hydrophobic core of cholesteryl esters and triglicerides surrounded by hydrophilic monolayer 

of phospholipids, free cholesterol and apolipoproteins. Apolipoproteins can be recognized 

and bound by specific receptors on cell membranes in order to carry their lipid cargo specifically 

towards its destination. Thus, apolipoproteins are kind of molecular addresses which 

are necessary for the distribution and delivery of fats around the body (Getz and Reardon, 2009). 

There are different classes of circulating lipoproteins such as chylomicrons, very low-density 

lipoproteins (VLDL), low-density lipoproteins (LDL) and high-density lipoproteins (HDL). 

LDL is a major atherogenic lipoprotein and together with apolipoprotein B100 

(ApoB100), the main structural protein of LDL, is directly associated with the initiation of 

early atherogenesis. In consequence of subendothelial retention, aggregated LDLs are prone 

to oxidative modifications. The precise mechanisms responsible for lipoprotein modification 

are not completely understood, however, two secretory enzymes, phospholipase A2 

and sphingomyelinase, were shown to be responsible for lipoprotein oxidation and hydrolysis 

(Moore and Tabas, 2011). Also, several other enzymes, such as lipoxygenase and nicotinamide 
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adenine dinucleotide phosphate hydrogen (NADPH) oxidase for instance, produce strong 

oxidants able to easily oxidize lipoproteins (Przybylska et al., 2016). In contrary, dietary 

antioxidants appear to protect from LDL oxidation. 

Four main fatty acids: palmitic acid, stearic acid, oleic acid and arachidonic acid 

constitute the majority of the total fatty acid pool in atherosclerotic plaques of apoE-/- mice 

(Freigang et al., 2013). According to observations of Pilz and collaborators, increased level 

of free saturated fatty acids in the circulation exert a negative effect on cardiovascular system 

and is associated with a risk of atherosclerosis (Pilz et al., 2006). Studies conducted in healthy 

subjects provided the evidence that free saturated fatty acids may directly induce oxidative 

stress and activate the immune response (Tripathy et al., 2003). Palmitate was shown to activate 

the nucleotide-binding domain, leucine-rich repeat and pyrin domain 3 (NLRP3) 

inflammasome, resulting in increased interleukin (IL)-1β secretion (Wen et al., 2011). Several 

fatty acids, especially oleic acid, have been recently identified as potent inducers of vascular 

inflammation by selective stimulation of the release of IL-1α, providing a link between 

metabolic stress and innate inflammatory response in atherosclerosis (Freigang et al., 2013). 

On the other hand, increased intake of unsaturated fatty acids, such as eicosapentaenoic acid 

(EPA) and docosahexaenoic acid (DHA), was shown to act beneficially on cardiovascular 

system by reducing the outcomes related to coronary heart disease (Wang et al., 2006). 

This is the reason why the consumption of an appropriate amount of dietary unsaturated fatty 

acids is important for the prevention of cardiovascular complications. 

 
1.1.4. The role of cholesterol crystals in atherosclerosis 
 

Around thirty years ago, Small and collaborators characterized physical properties 

of cholesterol accumulated in the arteries. Interestingly, they detected extracellular cholesterol 

in a crystal form in advanced atherosclerotic lesions (Small, 1988). Later, Abela and colleagues 

demonstrated that crystal formation is responsible for increased volume of lipid-rich necrotic 

cores in vivo (Abela and Aziz, 2005). Also, they observed that cholesterol crystallization 

in vitro results in the formation of large sharp-edged crystals with a potential to damage 

biological membranes. 

Although these crystals were firstly detected in advanced plaques, further observations 

in human and mice revealed their presence in early lesions as well, where they may contribute 

to plaque vulnerability and rupture (Grebe and Latz, 2013). Indeed, scanning electron 

microscopy analysis of human coronary arteries confirmed this hypothesis, providing 
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the evidence that cholesterol crystals perforated the fibrous cap only in patients who died from 

acute coronary syndrome (Abela et al., 2009). 

At the cellular level, it seems that the presence of crystalline cholesterol inside the cells 

may result either from accumulation and saturation of free cholesterol (Tangirala et al., 1994) 

or phagocytosis of crystals by macrophages (Duewell et al., 2010; Rajamäki et al., 2010). 

Moreover, saturation of free cholesterol in macrophages was shown to have a cytotoxic effect 

(Kellner-Weibel et al., 1999). 

Interestingly, crystalline cholesterol has been shown to exert an immunostimulatory 

effect during the development of atherosclerosis. Cholesterol crystals were observed 

to colocalize with inflammatory cells in a vessel wall, were they activate the immune response 

resulting in secretion of cytokines from the IL-1 family, mainly IL-1β (Duewell et al., 2010). 

Furthermore, a recent study suggest that HDL particles may reduce cholesterol crystal-induced 

inflammation by inhibiting inflammasome activation (Thacker et al., 2016). 

 
1.2. Vascular calcification in atherosclerosis 
 

The aorta is the main and the largest artery in the human body, originating from the left 

ventricle of the heart and extending down to the abdomen, where it splits into two smaller 

arteries. The aorta distributes oxygenated blood to all parts of the body through the systemic 

circulation. Arterial wall is composed of three distinct layers: the tunica intima (endothelium), 

tunica media (the layer of VSMCs along with elastic fibers) and adventitia (myofibroblasts 

and blood vessels) (Fig. 3). Moreover, coronary arteries are the arteries of the coronary 

circulation that transport blood into and out of the cardiac muscle. They are mainly composed 

of the left and right coronary branched arteries. Atherosclerosis may affect both large 

and coronary arteries, however, coronary arteries or their branches often become seriously 

blocked. 

 

Figure 3. Artery physiology (Servier Medical Art database, modified). 
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1.2.1. Macrocalcification in atherosclerosis 
 

It is known for decades that advanced human atherosclerotic plaques frequently become 

calcified. In the case of atherosclerosis, calcification occurs exclusively in the intimal 

(endothelial) layer of an artery wall (Stary, 2000). It was shown that the composition of calcified 

atherosclerotic plaque is like that of bone, consisted of carbonated apatite and the predominance 

of glycosaminoglycans (GAGs) (Duer et al., 2008). It has been estimated that over 70% 

of atherosclerotic plaques observed in the aging population are calcified (Mintz et al., 1995). 

From the histological point of view, calcifications with the size of 5 mm and above were defined 

as macrocalcifications (Pugliese et al., 2015). In advanced lesions of apoE-/- mice, cells 

resembling chondrocytes as well as collagen type II were detected together with apatite crystal 

deposits (Rosenfeld et al., 2000; Rattazzi et al, 2005) (Fig. 4). Therefore, macrocalcifications 

may be formed as a result of a process analogical to physiological endochondral ossification 

(Fitzpatrick et al., 1994). 

 

 

Figure 4. Chondrocyte-like cells found in advanced atherosclerotic lesions of apoE-/-mice. 
Chondrocyte-like cells within small areas of calcification in the innominate arteries from 
apoE-/- mouse between 45 and 75 weeks of age; von Kossa stain for apatite (A); Immunostain 
with anti–type II collagen antibody (B) (Rattazzi, et al., 2005). Chondrocyte-like cells detected 
in the artery of a 42-week old apoE-/- mouse (C, thick black arrow) and in the artery of a 
60-week old apoE-/- mouse (D, thick black arrow) (Rosenfeld et al., 2000). 

 

A B 

C D 
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Increased biomechanical stresses in the fibrous cap of atherosclerotic plaques contribute 

to plaque rupture and, consequently, to thrombosis and myocardial infarction. Although 

coronary calcification is thought to be a predictor of cardiovascular events, the relationship 

between atheroma calcification and biomechanical stress is not well established. Interestingly, 

according to studies of Huang and collaborators, macrocalcifications do not increase fibrous 

cap stress in typical ruptured or stable human coronary atherosclerotic lesions. Thus, 

macrocalcifications do not seem to decrease the mechanical stability of the atherosclerotic 

plaques of coronary arteries (Huang et al., 2001). Conversely, it was proposed 

that macrocalcifications prevent the immune response by serving as a barrier against further 

accumulation of inflammatory cells (Pugliese et al., 2015). 

 
1.2.2. Microcalcification in atherosclerosis 
 

Recent findings suggest that not all calcifications are equivalent with determination 

of plaque stability. Intravascular ultrasound analysis revealed that it is the size and the extent 

of calcium deposits which influence plaque stability (Ehara, 2004). High-resolution micro-

computed tomography (μCT) analysis revealed distinct morphology of atherosclerotic plaque 

calcifications (Fig. 5). Minor calcifications were discovered at the early stages 

of atherosclerosis, which were not detectable before by techniques characterized by a lower 

resolution. Those calcifications with a diameter less than 10 μm were classified 

as microcalcifications (Pugliese et al., 2015). Spotty microcalcifications have been observed in 

early atherosclerotic lesions, before chondrocytes or osteoblasts can be detected 

in the plaques (Roijers et al., 2011). It is likely that microcalcifications are characterized 

by a sheet-like morphology, whereas macrocalcifications correspond to osteoid metaplasia 

(Herisson et al., 2011). 

Based on an interesting in silico analysis, it was proposed that microcalcifications 

are particularly dangerous when located in a fibrous cap (Vengrenyuk et al., 2010). Indeed, 

a histology and μCT analysis of 22 non-ruptured human atherosclerotic plaques revealed that 

almost all fibrous caps contained microcalcifications with a size between 0.5 and 5 μm, and, 

those growing above 5 μm were identified as particularly harmful (Kelly-Arnold et al., 2013). 

The presence of microcalcifications (> 5 μm) within the cap of human fibroatheroma has been 

shown to produce a 200-700% increase in local biomechanical stress, being the cause 

of transformation of a stable plaque into a vulnerable one (Maldonado et al., 2015). 
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Figure 5. Distinct morphology of atherosclerotic calcifications. Apical views from a μCT 
scan of: a coronary artery with large calcification (A, dashed arrow); a carotid artery with large 
calcification (B, dashed arrow) and microcalcifications (B, yellow arrow). 3D reconstruction 
of μCT sections of a carotid artery with large (C, dashed arrow) and small (C, yellow arrow) 
calcifications (Hutcheson et al., 2016). 

 

These observations suggest that microcalcifications are much more dangerous 

for human health than macrocalcifications of advanced plaques (Hutcheson et al., 2014). Thus, 

the presence of microcalcifications within early atherosclerotic lesions may serve as a predictor 

of vulnerable plaque rupture. The identification microcalcifications by new imaging methods 

may allow early identification and prevention of acute cardiovascular events. Therefore, 

it is crucial to understand how microcalcifications are formed, for future efficient prediction 

of acute coronary complications. 

 
1.2.3. Therapeutic strategies against atherosclerosis and vascular 
calcification 
 
Prevention 
 

As already mentioned, cardiovascular diseases are the leading cause of death 

worldwide. What is worrying is that at least 25% of patients experiencing nonfatal acute 

myocardial infarction or sudden death had no previous symptoms (Greenland et al., 2001). The 

identification of such asymptomatic individuals is crucial for the introduction of preventive 

strategies. The coronary artery calcium score (CAC) plays an important role in cardiovascular 

risk assessment, showing a significant association with the medium- or long-term occurrence 

of major cardiovascular events (Neves et al., 2017). CAC volume is positively and 

independently associated with the risk of incident cardiovascular disease and incident heart 

disease (Criqui et al., 2014). It seems that CAC is a better method to predict coronary 
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complication than measurement of cholesterol level in the blood. The characterization 

of coronary-artery calcification by μCT reflects the total coronary atherosclerosis load 

and the risk of future cardiovascular events. 

Positron emission tomography and X-ray computed tomography (PET/CT) imaging 

of atherosclerosis using 18F-sodium fluoride (18F-NaF) has the potential to identify 

pathologically high-risk microcalcification (Irkle et al., 2015). 18F-NaF PET/CT imaging can 

distinguish between areas of macro- and microcalcification. This is the first and only currently 

available clinical imaging platform that can non-invasively detect culprit and non-culprit 

coronary plaques in patients with atherosclerosis (Joshi et al., 2014; Dweck et al., 2016). 

 
Therapeutic strategies 
 

Several therapies exist to treat one of the diseases underlying VC, which 

is atherosclerosis. The most common strategy is the use of statins, which are inhibitors of 

3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. In order to understand 

the therapeutic effect of these lipid-lowering agents, it is necessary to know the principles 

of cholesterol metabolism in a human body. The cellular level of cholesterol is regulated 

by distinct mechanisms, such as, LDL receptor-mediated endocytosis, HDL-mediated reverse 

transport and regulation of HMG-CoA activity. Cholesterol synthesis, similarly to other sterols, 

begins from the conversion of acetyl-CoA units, that are subsequently converted into HMG-

CoA, which in turn is transformed into mevalonate by HMG-CoA reductase, a rate-controlling 

enzyme of mevalonate pathway. 

Recent data suggest that statins, in addition to their lipid-lowering ability, can also 

reduce the production of reactive oxygen species and increase the resistance of LDL 

to oxidation (Rosenson, 2004). While the introduction of statins was a milestone in prevention 

of cardiovascular complications, they are not able to eliminate atherosclerotic cardiovascular 

disease (Ladeiras-Lopes et al., 2015). Also, they may cause some side effects, such as muscle 

pain and increased risk of diabetes mellitus. 

Apart from lowering LDL cholesterol, it is very important to apply some 

immunomodulatory strategies targeting chronic inflammation during atherosclerosis. 

Therefore, several anti-inflammatory pharmacotherapies have been elaborated, for example 

targeting IL-1β (Khan et al., 2015; Yamashita et al., 2015). Besides, the inhibitors of ECM 

enzymes, such as MMPs and cathepsins were shown as possible targets for the prevention 

of plaque rupture (Rader and Daugherty, 2008). 
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However, no efficient therapy is currently available to reverse or prevent VC 

in atherosclerosis. Efficient therapeutic strategies are necessary to elaborate based on the correct 

understanding of the underlying mechanisms driving the process of VC. One of the obstacles 

is the similarity of pathological arterial calcification and physiological bone mineralization. 

PPi, is a molecule which was shown to decrease not only physiological mineralization, 

but also VC (Towler, 2005). Indeed, O’Neill and collaborators have shown a negative 

correlation between plasma PPi and VC in end-stage renal disease (O'Neill et al., 2010). PPi 

administration in uremic rodents strongly decreased VC (O'Neill et al., 2011; Riser et al., 2011). 

However, PPi usage is not suitable for long-term treatment for humans, because it cannot 

be administered orally and its half-life in circulation is very short, around 30 min (Persy and 

McKee, 2011). 

Bisphosphonates are analogues of PPi. It was shown that administering bisphosphonates 

prevented atherosclerotic plaque formation in rabbits and monkeys by inhibition of calcification 

(Kramsch et al., 1981). Many of bone disease treatments, such as bisphosphonates, calcitriol 

and estradiol may interfere with VC. 

Another emerging strategy against VC is the inhibition of tissue-nonspecific alkaline 

phosphatase (TNAP)  activity. TNAP is considered as a druggable target for the treatment 

and/or prevention of VC associated with chronic kidney disease. Until recently, levamisole was 

the most potent TNAP inhibitor available commercially, however, it cannot be used in vivo, 

since 1 mM levamisole is necessary to block calcification in cultures of aortas from uremic rats, 

a level which cannot be achieved in vivo (Debray et al., 2013). Indeed, levamisole is not entirely 

specific for TNAP isozyme, has low affinity and is not particularly effective in inhibiting the 

pyrophosphatase activity of TNAP (Sergienko et al., 2009). In this context, two laboratories 

have developed novel TNAP inhibitors. Jose Luis Millan’s group in USA has developed TNAP 

inhibitors with higher potency and selectivity than levamisole (Narisawa et al., 2007; Sergienko 

et al., 2009; Sidique et al., 2009). Also, in the MEM2 laboratory (ICBMS, Lyon University) 

a family of inhibitors more potent than levamisole has been patented (Debray et al., 2013). 

 
1.3. Molecular mechanisms of physiological mineralization 
 

Physiological mineralization is a process necessary for the formation of mineralized 

skeleton during fetal development. However, it concerns also remodeling processes which are 

constantly continued during ontogenesis, in order to adapt to changing biomechanical 

environment by the removal of older, microdamaged bone and replacement with new, 
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mechanically stronger bone, preserving bone strength. At a first glance, bone seems to be 

a static tissue, but in fact, it is a dynamic system that plays multiple functions within the body. 

Mineralized skeleton permits the movement and locomotion of the body by serving 

as an attachment for muscles, it provides also a scaffold that protects internal organs as well 

as comprises the environment for hematopoiesis. Moreover, it serves as a repository of calcium 

and phosphate ions. Bone morphogenetic proteins (BMPs), Wnts, fibroblast growth factors 

(FGFs), hedgehog proteins, insulin-like growth factors and retinoids are molecules being 

essential for normal bone formation. These locally produced factors undergo regulation 

by systemic factors such as growth hormone, parathyroid hormone (PTH), estrogen, androgen, 

vitamin D and glucocorticoids that control bone growth (Kronenberg, 2003). 

Interestingly, it has been shown that bone may function as an endocrine organ being 

in charge of producing hormones, such as osteocalcin (OCN) and fibroblast growth factor-23 

(FGF-23) (Lee et al., 2007; Fukumoto and Martin, 2009). Osteoblasts secrete OCN which 

stimulates insulin production by pancreatic β-cells, but also activates peripheral tissues 

to increased glucose uptake (Lee et al., 2007). FGF-23 is produced by osteocytes and acts 

on kidney as an inhibitor of vitamin D hydroxylation as well as a promoter of phosphorus 

excretion. Vitamin D has a well-known beneficial effect on bone homeostasis, being required 

for normal bone formation. Interestingly, recent findings suggest that this vitamin plays a dual 

role in mineralization. On the one hand, in case of sufficient calcium supply, vitamin D and its 

metabolites improve the calcium balance and facilitate mineral deposition in bone matrix. On 

the other hand, in case of calcium deficiency, biologically active form of vitamin D enhances 

bone resorption, thus, it has an inhibitory effect on mineralization (Eisman and Bouillon, 2014). 

There are two subtypes of bone tissue: cortical (compact) bone and cancellous 

(trabecular or spongy) bone. Cortical (compact) bone is harder, stronger and stiffer than 

trabecular bone. Interestingly, cortical bone takes up 80% of the total weight of a human 

skeleton. Cancellous (trabecular) bone is softer and weaker than compact bone. It is highly 

vascularized and frequently contains red bone marrow. Trabecular bone occupies the inner part 

of long bone, whereas the outer region is built by a thick layer of cortical bone that contains 

Haversian canals that allows contact of bone tissue with nerves as well as blood and lymphatic 

vessels (Fig. 6A). 
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Figure 6. Bone and cartilage histology. The specimens were stained with Masson's Trichrome 
which stains cartilage in violet and mineralized bone in blue. Images of long bone morphology 
(A), intramembranous ossification (B), endochondral ossification (C), chondrocyte growth 
sequence (D) were presented (http://medcell.med.yale.edu/histology/bone_lab). 

 
Regarding the initiation of human ossification, long bone formation begins during the 

third month of fetal development. During the fourth month, most primary ossification centers 

appears in the bone diaphysis. Secondary ossification mostly occurs after birth. While 

the period between birth to the age of five, secondary ossification centers appear 

in the epiphysis. Over time, ossification is spreading rapidly from the ossification centers and 

various bones are becoming ossified. Between the age of twenty-three and twenty-five, 

the sternum, clavicles, and vertebrae become completely ossified. By the age of twenty-five, 

nearly all bones are completely ossified, and the growth plate disappears. 

Bone is a metabolically active tissue composed of cells such as osteocytes, osteoblasts 

and osteoclasts. Osteoblasts mediate the process of bone formation by increased TNAP activity 

and the ability to release matrix vesicles (MVs). Besides, osteocyte is the most abundant cell 

type in bone. Osteocytes are kind of mechanotransducers that respond to mechanical forces 

in order to regulate bone homeostasis (Bonewald, 2011). These cells are in charge of keeping 

a balance between the processes of bone formation and bone resorption. Mineralized ECM 

is not convenient for diffusive transport of metabolites, that is why nutrients are transmitted 

by osteocyte cytoplasmic flagella, by which osteocytes are in direct contact with blood vessels. 
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Bone resorption is mediated by osteoclasts. Osteoclast formation, activation, and 

resorption is regulated by the ratio between receptor activator of nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-κB) ligand (RANKL) and osteoprotegrin (OPG) 

(Clarke, 2008; Walsh and Choi, 2014). Activated osteoclasts secrete hydrogen ions causing 

local acidification. In consequence, inorganic ECM components undergo dissolution. 

In parallel, organic phase of ECM is degraded by lysosomal enzymes, followed by phagocytosis 

and intracellular digestion of fragmented organic structures. 

 
1.3.1. Osteoblast differentiation and intramembranous ossification 
 

Bone develops by two distinct processes, either through direct conversion of connective 

tissue into bone, known as intramembranous ossification, or indirectly through the replacement 

of an initially formed cartilage by bone tissue during the process called endochondral 

ossification. In general, flat bones form by membranous bone formation, whereas long bones 

are formed by a combination of endochondral and membranous ossification. 

Intramembranous ossification is a process of direct conversion of embryological 

mesenchymal tissue into bone, without the intermediate stage of cartilage formation. 

The process begins when mesenchymal cells differentiate into osteoblasts, having the ability 

to secrete osteoid (Fig. 6B), principally composed of fibrillar collagen type I, being a scaffold 

for subsequent mineral deposition. At the end of membranous ossification, approximately 

50 to 70% of osteoblasts undergo apoptosis, while the other cells become inactive bone-lining 

cells or osteocytes (Clarke, 2008). For instance, craniofacial bones and clavicles are formed 

by this process. 

Osteoblasts originate from local mesenchymal stem cells (MSCs) called osteoprogenitor 

cells, whereas osteoclasts derive from macrophages, differentiating from bone marrow 

hematopoietic stem cells. Runt-related transcription factor 2 (Runx2) is the major transcription 

factor of MSC to osteoblast differentiation, however, there are several other transcription 

factors (ex. β-catenin, osterix, ATF4) and growth factors, such as members of Wnt and bone 

morphogenic protein families, contributing to this process (Fakhry, 2013). MSCs expressing 

Runx2 differentiate into immature osteoblasts, which are characterized by the expression 

of proteins such as collagen type I, TNAP and osteopontin (OPN). Subsequently, these cells 

further maturate, mineralize their ECM and begin to express OCN. 
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1.3.2. Chondrocyte differentiation and endochondral ossification 

Long bones are generally formed through endochondral ossification, a process being 

essential also during long bone elongation and the natural healing of bone fractures. Bone 

is synthesized over a hyaline cartilage template within a growth plate located just below 

the epiphysis of long bone and comprises a region in which cartilage proliferates and undergoes 

mineralization (Fig. 6C). In other words, during endochondral ossification, hyaline cartilage 

is formed as a precursor of bone formation. 

 

 
Figure 7. Control of chondrogenesis during the development of long bones (Goldring et al., 
2006). 
 

Endochondral ossification begins when MSCs form condensations (Fig. 7). Cells of 

condensations become chondrocytes, which are called pre-hypertrophic chondrocytes. These 

cells produce a matrix rich in collagen type II in the primary ossification center, where they 

begin to undergo hypertrophy. Hypertrophic chondrocytes secrete collagen type X being 

a protein necessary for the process of hematopoiesis (Sweeney et al., 2010). Hypertrophic 

chondrocytes perform multiple tasks during ossification. They direct the mineralization 

of the surrounding matrix and attract blood vessels from the perichondrium through 

the production of vascular endothelial growth factor (VEGF). Hypertrophic chondrocytes direct 

neighboring perichondrial cells to become osteoblasts, which in turn secrete a characteristic 

matrix, forming a bone collar. Finally, hypertrophic chondrocytes undergo apoptosis. 

Osteoblasts of primary spongiosa are precursors of eventual trabecular bone, whereas 
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osteoblasts of bone collar become cortical bone. At the bone ends, the secondary ossification 

center forms through cycles of chondrocyte hypertrophy, vascular invasion and osteoblast 

activity. The growth plate below the secondary center of ossification forms the columns 

of proliferating chondrocytes, being in charge of lengthening the bone. Finally, hematopoietic 

marrow expands in marrow space along with stromal cells (Kronenberg, 2003). 

During chondrogenesis, the environment becomes hypoxic, and hypoxia inducible 

factor (HIF-1α) is necessary for chondrocyte survival during hypoxia (Magne et al., 2005, 

Duval et al., 2009). HIF-1α induces VEGF expression, which in turn activates angiogenesis 

required for the replacement of cartilage by bone. It is controversial whether programmed cell 

death of hypertrophic chondrocytes plays an active or passive role in cartilage mineralization 

(Cheung et al., 2003). What is known is that chondrocyte terminal differentiation, apoptosis, 

and type X collagen expression are downregulated by PTH (Harrington et al., 2004). The ECM 

becomes mineralized in part by hypertrophic chondrocytes (Fig. 6D), and later, definitive bone 

matrix is formed through the coordinated action of mineralizing osteoblasts and bone resorbing 

osteoclasts which erode cartilage and build bone. 

Chondrogenesis is subjected to complex regulation by an interaction of various signals 

(Fig. 7). It is initiated by MSC condensations under the control of TGF-β which induces 

the expression of Sox9 transcription factor that belongs to the SOX protein family, known 

for being responsible for regulation of the development of various organs. MSCs in the presence 

of Sox9 become pre-hypertrophic chondrocytes. Then, TGF-β and BMP-2 activate Wnt/β-

catenin signaling pathway that mediates chondrocyte hypertrophic differentiation through 

the activation of Runx2 transcription factor (Dong et al., 2006). Runx2 controls 

the hypertrophic phase of chondrocyte differentiation (Yoshida et al., 2004). In hypertrophic 

chondrocytes, forced expression of Runx2 was shown to induce the expression 

of collagen type X and matrix metalloprotease-13 (MMP-13) as well as TNAP activity 

(Goldring et al., 2006). MMP13 is responsible for the degradation of cartilaginous collagens 

(especially collagen type II) and proteoglycans (mainly aggrecan), contributing to the process 

of cartilage replacement by bone (Little et al., 2002). Therefore, Runx2, MMP-13, collagen 

type X and TNAP are specific markers of chondrocyte hypertrophy. 

BMP signaling is important for the formation of mesenchymal condensations (Li and 

Cao, 2006) and subsequent differentiation towards chondrocytes (Pizette and Niswander, 

2000). BMP-2, -3, -4, -5 and -7 are expressed in perichondrium, BMP-2 and -6 are expressed 

in hypertrophic chondrocytes, while BMP-7 is expressed in proliferating chondrocytes 

(Kronenberg, 2003). Interestingly, BMP-2 and BMP-7 display opposite actions on chondrocyte 
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differentiation. Differentiation of MSCs towards chondrocytes may be stimulated by BMP-2, 

whereas it may be suppressed by BMP-7 (Caron et al., 2013). 

Terminal endochondral ossification is controlled by growth factors, mainly BMPs and 

FGFs, but also PTH, estrogen, androgen, vitamin D and canonical Wnt signaling pathway. Bone 

morphogenetic proteins (BMPs) are members of transforming growth factor-β (TGF-β) 

superfamily, characterized by a strong ability to induce bone formation. More than 30 BMP-

related proteins have been identified. They play a crucial role at different stages 

of embryogenesis, such as suppression of epithelial growth and stimulation of neural 

differentiation, being a necessary step during embryonal development. When injected 

subcutaneously in mice, these growth factors are able to induce endochondral bone formation 

(Urist and Strates, 1971). Also, they may induce the process of marrow stromal cell 

differentiation towards osteoblasts, chondrocytes or adipocytes. BMPs stimulate osteoblast 

differentiation by enhancing the expression of osteogenesis-driving transcription factors such 

as Runx2 and osterix, as well as osteoblast-related genes encoding TNAP, OCN, 

collagen type I and OPN. In consequence, differentiated bone cells begin to produce BMPs, 

which mediate skeletogenesis as well as the maintenance of bone mass within mature skeleton. 

BMPs act through cell surface serine/threonine kinase BMP type-I and type-II receptors, 

which in turn activate intracellular signaling pathways. Smad is the major pathway activated 

by BMPs, which requires formation of phosphorylated Smad1/5/8 heterocomplexes with 

Smad 4 to induce translocation into the nucleus. Then, nuclear Smad complexes regulate 

transcription of BMP target genes through binding to sequence motifs in the promoter regions 

of BMP-responsive genes, and via interaction with transcription factors. Moreover, 

Wnt/β-catenin signaling has been shown to be involved in bone biology. It was demonstrated 

that Wnt autocrine loop mediates the induction of alkaline phosphatase expression and 

mineralization by BMP-2 in pre-osteoblastic cells (Rawadi, 2003). 

BMP activity may be modulated by different antagonists, which are small peptides 

characterized by a high affinity to BMPs and the ability to prevent their interaction with specific 

receptors. Noggin is one of BMP antagonists, expressed in Spemann’s organizer, being 

the structure that mediates gastrulation process in the vertebrate embryo. Thus, at the certain 

stage of development, the embryo secretes noggin to promote neural differentiation 

and suppress epithelial growth. Regarding the distribution of noggin, it is expressed, as many 

BMPs, in condensing cartilage and immature chondrocytes as demonstrated in a murine model 

(Brunet et al., 1998). An important role for BMP signaling during chondrocyte differentiation 

was supported by the observation of oversized growth plate in noggin–/– mice (Brunet et al., 
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1998). Furthermore, addition of BMP-2 delayed terminal differentiation of hypertrophic 

chondrocytes, whereas noggin accelerated terminal hypertrophic differentiation (Minina et al., 

2002). In the case of osteoblasts, noggin expression is limited, however, its transcript levels 

undergo upregulation by BMP-2, 4 and 6, as a mechanism protective against excessive exposure 

of skeletal cells to BMPs (Gazzerro et al., 1998). 

Cartilage is more elastic than bone. It is because cartilage is mainly consisted of collagen 

type II that forms fibrous network with collagens type XI and type IX and by abundant 

proteoglycans that ensure elastic properties of the tissue. It contains chondrocytes, being 

a unique cell type present within the tissue. Depending on mechanical and structural properties, 

there are three subtypes of cartilage distinguished: hyaline, fibrocartilage and elastic cartilage 

(Naumann et al., 2002). They are diversified according to different cellular content as well as 

distinct ECM composition. 

Among all cartilage types, hyaline cartilage is the most abundant in the body. Hyaline 

cartilage formation governs the generation of long bones, ribs and vertebrae during 

embryogenesis and development. During ontogenesis, its main function is the reduction 

of friction within joints, long bone elongation and support. In this type of cartilage, 

chondrocytes often form clusters. In vertebrate skeleton, hyaline cartilage is present mainly 

in articular cartilage at the ends of bone where it occurs as a part of a joint. Hyaline cartilage is 

characterized by a high content of proteoglycans which represent approximately 15% 

of the wet mass of the tissue. Interestingly, articular cartilage is avascular and devoid of nerves 

and lymphatic vessels. Chondrocytes are nourished by synovial fluid diffusion through 

the matrix by mechanical forces. 

Fibrous cartilage (fibrocartilage) is also associated with the skeletal system. It is present 

mainly in knee and spine intervertebral discs. It has been reported that this cartilage subtype 

occurs temporarily at fracture sites upon healing. Fibrocartilage is a tough form of cartilage that 

consists of chondrocytes settled among bundles of collagen fibers within the matrix. 

The principal function of this tissue is dealing with the mechanical stress that occurs between 

neighboring vertebrae of the spine. Elastic cartilage is present in small organs such as 

the external ear pinna and eustachian tube, where it ensures flexibility. In this cartilage type, 

chondrocytes are located within a network of elastic fibers located in the cartilage matrix. 



 38 
 

 
Figure 8. Aggrecan structure (Pearle et al., 2005). 

 
Cartilage, especially hyaline cartilage, is enriched in ECM proteoglycans. 

Approximately 20% of cartilage weight consists of ECM containing mainly proteoglycans 

and collagens and, in less quantity, noncollagenous proteins, glycoproteins, lipids 

and phospholipids. Proteoglycans are large molecules comprising a protein core, serine residues 

and several GAGs, which in case of aggrecans are chondroitin sulfate and keratin sulfate. GAGs 

are linked by covalent bonds to the protein core. The sulfate groups ensure a negative charge 

of macromolecule that attract cations, resulting in swelling and elasticity. Proteoglycans create 

a network by interactions with hyaluronic acid and collagens. The elastic properties of cartilage 

are provided by hydrophilic proteoglycans, macromolecules containing side chains of GAGs. 

Also, compact nature of proteoglycans of articular cartilage reduces pressure and liquid phase 

movements during compression within a joint (Carter and Wong, 2003). 

Aggrecan is the most abundant proteoglycan in cartilage. It contains three globular 

domains and it forms proteoglycan aggregates composed of a central filament of hyaluronic 

acid with up to one hundred molecules of aggrecan which interacts with a protein part (Kiani 

et al., 2002) (Fig. 8). Other less abundant and smaller proteoglycans like perlecan, versican, 

lumican, biglycan and decorin are also present in cartilage (Knudson and Knudson, 2001). 
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1.3.3. Matrix vesicles (MVs) as sites of mineral nucleation 
 

Matrix vesicles are extracellular organelles discovered by Anderson in 1970’s 

(Anderson, 1967). A broad range of MVs originating from mineralizing cells have been 

identified, with a diameter ranging from 100 nm to 300 nm (Anderson et al., 2010). These 

nanostructures are thought to be involved in the initiation of ECM mineralization 

by accumulation of Ca2+ and Pi and subsequent apatite formation. Membranous ion channels 

and transporters are suspected of being in charge of the supply of Ca2+ and Pi ions inside 

the vesicles. Pi transport into MVs may be mediated by Pi transporters (PiT), whereas annexins 

(Anx) are putative transporters of Ca2+ ions. 

In consequence of mineral nucleation, it is hypothesized that growing crystals cause the 

disruption of MV membrane, leading to the release of apatite crystals into the ECM, where 

mineralization process is continued. During ECM mineralization, crystal expansion is regulated 

by different molecules and those interactions are necessary to regulate apatite crystal growth. 

On the other hand, inorganic pyrophosphate (PPi) is a strong mineralization inhibitor with 

the crystal binding properties (Addison et al., 2007). One of the ECM protein is OPN, 

glycoprotein known as an inhibitor of mineralization with strong mineral binding properties 

(Addison et al., 2007; Yuan et al., 2014). Collagens and proteoglycans interact with the surface 

of MVs and they rather stimulate mineralization (Kim and Kirsch, 2008). Annexins associated 

with the surface of MV may interact with those ECM molecules. It was demonstrated that 

AnxA2 and AnxA6 bind chondroitin sulfate of proteoglycans in a Ca2+-dependent manner 

(Takagi et al., 2002). 

Annexins are calcium and lipid binding proteins that are ubiquitous in all eukaryotic 

organisms (excluding yeasts), from Arabidopsis thaliana to Homo sapiens (Bandorowicz-

Pikula, 2007). Annexins are involved maintenance of Ca2+ homeostasis in bone cells and 

in extracellular MVs, where they are putative ion transporters mediating Ca2+ influx (Balcerzak 

et al., 2003). Kirsch and collaborators demonstrated that MVs isolated from non-mineralizing 

hypertrophic chondrocytes showed no significant Ca2+ uptake, however, the addition 

of exogenous AnxA2, AnxA5 and AnxA6 restored their ability to take up Ca2+ (Kirsch et al., 

2000). However, annexin structure does not resemble the structure of typical ion channels 

and probably it rather facilitates calcium binding than transports Ca2+ itself (Gerke and Moss, 

2002). 

Annexins may be associated either with outer or inner leaflet of MV membrane (Fig. 

9). Annexins associated with the inner leaflet of MV may be a part of a structure known 
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as nucleation core, consisting of three key components: amorphous calcium phosphate (ACP), 

phosphatidylserine-calcium-phosphate complex (PS-CPLX) and AnxA5 (Wu et al., 1993). 

In vitro studies of synthetic nucleation cores revealed that ACP mediates only 20% of mineral 

formation. The internal layer of MVs is enriched in phosphatidylserine (PS), a lipid that has 

a high affinity to Ca2+ ions and is able to bind both calcium and phosphate (Kirsch et al., 1994). 

Incorporation of PS was shown to significantly retard the induction time of mineral formation. 

Interestingly, AnxA5 is able to catalyze the mineral nucleation of CPLX by 10-20 fold 

by transforming the weakly nucleating binary PS-CPLX into a ternary complex (PS-CPLX-

AnxA5) with a powerful nucleation activity (Genge et al., 2007). 

 

 
 
Figure 9. Schematic diagram of proteins involved in MV-mediated mineralization 
(according to Millán, 2013). 
 

Beside AnxA5, it was demonstrated, by Gillette and collaborators, that AnxA2 

is a protein involved in osteoblastic mineralization. AnxA2 overexpression resulted in 

an increase of TNAP activity associated with lipid microdomains in a cholesterol-dependent 

manner (Gillette, 2003). Conversely, AnxA2 and AnxA5-deficient osteoblasts exhibited 

decreased TNAP activity (Genetos et al., 2014). 

Nevertheless, the fact that mice deficient in annexins develop normal skeleton raises 

the question about a direct effect of annexins on mineralization process (Brachvogel et al., 

2003; Belluoccio et al., 2010; Grskovic et al., 2012). It was demonstrated that mineralizing 

MVs are enriched in multiple annexins: AnxA1, AnxA2, AnxA4-A7 and AnxA11 (Cmoch 
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et al., 2011). Therefore, a substitution of AnxA5 and AnxA6 function in MVs by other 

annexins, AnxA2 for instance, is a possible explanation of the effects observed in knockout 

animals (Sekrecka et al., 2007). 

Various hypotheses were proposed to explain the mechanisms of MV biogenesis, such 

as budding from cellular membranes, extrusion of preformed structures, cellular degeneration 

and subunit secretion followed by extracellular assembly (Rabinovitch and Anderson, 1976). 

Accumulating data and the previous results of our laboratory supports the hypothesis stating 

that MVs originate from microvilli of cellular plasma membrane (Hale and Wuthier, 1987; 

Thouverey et al., 2009). 

Numerous proteomic analysis of MVs secreted by different mineralizing cells revealed 

a variety of MV proteins (Balcerzak et al., 2008; Xiao et al., 2009; Thouverey et al., 2011). 

Among many protein types, TNAP, ectonucleotide pyrophosphatase phosphodiesterase 1 

(NPP1) as well as phosphatase orphan 1 (Phospho-1) were identified (Fig. 9). NPP1 and TNAP 

have antagonistic effects on mineral formation due to their opposing functions, either 

production of PPi, the constitutive mineralization inhibitor, by NPP1 or its hydrolysis by TNAP 

(Hessle et al., 2002). Interestingly, double ablation of Phospho1 (encoding Phospho-1) and Alpl 

(encoding TNAP), completely abolishes mineralization of osteoblast-derived MVs, leading 

to the complete absence of skeletal mineralization (Yadav et al., 2011). This strongly suggests 

that the Pi needed for initiation of MV-mediated mineralization is produced inside the vesicles 

by Phospho-1 which cleaves membrane phospholipids, such as phosphatidylcholine (PC) and 

phosphatidylethanolamine (PEA) (Millán, 2013). 

 
1.3.4. Key proteins involved in mineralization process 
 
Tissue-nonspecific alkaline phosphatase (TNAP) 
 

Alkaline phosphatases are ubiquitous among organisms, from bacteria to human. Three 

human isoforms are tissue specific, present in intestine, placenta and germ cells, which are 

90–98% homologous. TNAP, encoded by Alpl gene, occurs in bone, liver and kidney and 

is 50% identical to other three isozymes. Moreover, it may be expressed in the central nervous 

system, fibroblasts and endothelial cells (Millán and Whyte, 2016). During synthesis of 

the enzyme, monomeric precursors dimerize and each monomer binds one magnesium, two 

zinc, and one calcium ion as cofactors (Millán, 2006). 

The difference between bone, liver and kidney isoforms of TNAP consists of their 

posttranslational glycosylation which influence and determine their catalytic activities. 
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For instance, TNAP is O-glycosylated in bone, but not in the liver (Halling Linder et al., 2009). 

Interestingly, a structure referred as crown domain is present exclusively in mammalian alkaline 

phosphatases (Fig. 10). In the case of TNAP, this domain stabilizes the binding 

of uncompetitive TNAP inhibitors as well as determines isozyme-specific properties, such as 

heat stability and association to collagen (Le Du and Millan, 2002). 

 

 
Figure 10. Three-dimensional structure of alkaline phosphatase (A). Modeled structure 
of the GPI anchor attached to the 3D structure of PLAP (B) (Buchet et al., 2013a). 
 

Regarding catalytic properties, alkaline phosphatases catalyze hydrolysis of phosphoric 

acid monoesters with release of inorganic phosphate (Pi). For instance, TNAP has the ability 

to hydrolyze nucleotides such as adenosine triphosphate (ATP) and its metabolites. However, 

the known physiological substrates of TNAP include PPi, and pyridoxal-5′-phosphate, being 

a predominant form of vitamin B6 (Buchet et al., 2013a). 

Mammalian alkaline phosphatases, unlike these of bacteria, are cell surface-bound 

proteins that attach to the membrane via a glycosylphosphatidylinositol (GPI) anchor. Bone 

TNAP is a GPI-anchored protein localized on the plasma membrane of osteoblasts and 

hypertrophic chondrocytes. Whether TNAP anchorage is necessary for mineralization 

is debatable. Nevertheless, GPI anchor may be cleaved by the enzymatic action 

of phospholipases found in plasma membranes, and may be released into the circulation and 

other biological fluids. 

Mutations in Alpl, the human gene encoding TNAP cause hypophosphatasia, a rare 

metabolic bone disease, characterized by skeletal hypomineralization due to TNAP deficiency 

and extracellular accumulation of PPi (Millán and Whyte, 2016) A mild form of this disease 

 

A B 
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is characterized by poorly mineralized bones, rickets and teeth loss in children as well as 

osteomalacia and dental problems in adults. A severe form of hypophosphatasia results in death 

of fetuses due to profound skeletal hypomineralization or death of infants as a consequence of 

rib fractures and respiratory dysfunction. 

Similarly, deletion of the gene encoding TNAP, Akp2, in mice, caused symptoms similar 

to those of hypophosphatasia (Fedde et al., 1999) and abnormal craniofacial bone development 

(Liu et al., 2014). Conversely, in vivo overexpression of murine TNAP increased skeletal 

mineralization (Narisawa et al., 2013). This effect may be explained by the fact that TNAP may 

function not only as a major pyrophosphatase during mineralization, but also as an enzyme that 

modifies phosphorylation status of OPN. It is known that OPN requires post-translational 

phosphorylation in order to act as mineralization inhibitor (Gericke et al., 2005; Yuan et al., 

2014). 

As already mentioned, TNAP and Phospho-1 are two phosphatases regulating 

the process of mineral nucleation. It is hypothesized that Phospho-1 is responsible for initiating 

crystal formation by Pi generation in the MV interior, supported by Pi influx mediated by PiTs. 

Interestingly, at the level of MVs, NPP1 acts more as an ATPase and pyrophosphatase than as 

an enzyme generating PPi (Ciancaglini et al., 2009). Thus, TNAP and NPP1 are in charge 

of PPi hydrolysis in the perivesicular space and the extravesicular progression of mineralization 

(Millán, 2013) (Fig. 9). 

 
Collagens 
 

Collagens are the most abundant proteins in mammals, comprising up to 30% of all 

proteins present in the body. They belong to the protein family consisted of 28 members, 

ordered from I to XXVIII. Biosynthesized collagens are deposited in the ECM where most 

of them form supramolecular assemblies, such as fibrils, formed by collagens type I-III, 

hexagonal networks or transmembrane collagenous domains (Shoulders and Raines, 2009). The 

fibrillar collagen structure comprises a region consisting of three polypeptide chains (α-chains) 

which form a triple helix stabilizing the matrix. The polypeptide chains are constituted mainly 

with glycine and proline residues. The hydroxyprolines ensure the stability via hydrogen bonds 

along the length of the molecule (Ricard-Blum, 2011). 

Fibrillar collagens are major collagens in vertebrates where they play a structural role 

by contributing to the molecular architecture, shape, and mechanical properties of tissues and 

organs, such as skin and ligaments. Moreover, they interact with cells via several receptor 

families and regulate their proliferation, migration, and differentiation. 
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Certain collagen types with a restricted tissue distribution have specific biological 

functions. Collagens are the ECM components which contribute to elastic properties of bone 

and cartilage. In bone, the main protein from collagen family is collagen type I. For instance, 

collagen type I may attach to osteoblast cell membranes through the arginine-glycine-aspartate 

(RGD) motif and stimulate osteoblast proliferation (Harada et al., 1991). 

Osteoblasts deficient in ATF4, a transcription factor required during cell differentiation 

towards osteoblasts, had impaired collagen type I synthesis and exhibited reduced 

mineralization compared to wild type cells (Murshed, 2005). Furthermore, collagen type XXIV 

was described as another marker of osteoblast differentiation and bone formation (Matsuo 

et al., 2008). 

In cartilage, the most abundant is collagen type II, which represents approximately 90% 

of all collagens present in the tissue (Shoulders and Raines, 2009). Apart from collagen type II, 

there are other cartilage collagens, which are less expressed, however, they may also play a role 

in mineralization process. As already mentioned, collagen type X is major hypertrophic 

cartilage matrix protein and is necessary for the process of hematopoiesis (Sweeney et al., 

2010). The four collagens, types III, VI, IX and XI, also play a roles during cartilage 

mineralization, stabilizing the fibril network mainly composed of collagen type II. Another 

transmembrane protein is collagen type XIII which affects bone and cartilage formation 

by mediating the adjustment of bone mass to mechanical stress (Ylönen et al., 2005), while 

collagen type XXVII is involved in the transition of cartilage to bone during skeletogenesis 

(Hjorten et al., 2007). 

The physical interaction of MVs with collagen may facilitate the deposition of mineral 

between the fibrils. Specific binding of MVs allows insertion of crystal among fibrillar 

structures (Golub, 2009). It was shown in vitro that the interaction of collagen type II and 

collagen type X with AnxA5 stimulates the uptake of Ca2+ ions by MVs and subsequent 

mineralization (Kirsch et al., 2000). Moreover, selective removal of collagens from MV surface 

significantly reduced their ability to take up Ca2+. Therefore, collagens type I and type II serve 

as a scaffold for the subsequent deposition of apatite crystals generated by MVs in bone and 

cartilage, respectively (Genge et al., 2008). 

 
1.4. Molecular mechanisms of pathological calcification 
 

In the past, VC was concerned as a passive, degenerative, inevitable process of aging 

(Demer and Tintut, 2006). However, the development of murine models contributed 
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to significant progress in the field of studies concerning the origin of VC in atherosclerosis. 

Regarding the fact that normal mice do not develop atherosclerotic plaques, elaboration 

of a useful model required modulation of genes encoding important proteins involved 

in cholesterol metabolism. Apolipoprotein E (ApoE) is one of the major ligands of the LDL 

receptor (LDLR) which is responsible for the cellular LDL uptake. Thus, the absence of LDLR 

ligand, ApoE, prevents the purification of chylomicron, VLDL and LDL remnants, resulting 

in increased level of cholesterol in the blood (Ma et al., 2012). 

The ApoE-deficient (apoE-/-) mouse has become a major model of atherosclerosis 

thanks to its disposition to quickly develop atherosclerotic lesions, being fed with a high fat diet 

(Nakashima et al., 1994). In comparison, LDLR knockout (ldlr-/-) mice require a cholesterol-

rich diet for the induction of hypercholesterolemia. It is possible to observe fatty streaks in the 

proximal aorta of a 3-month-old apoE−/− mouse and at 10 weeks, foam cell lesions may be seen 

by light microscopy. Intermediate lesions containing foam cells and VSMCs may be seen 

at 15 weeks, and fibrous plaques appear at 20 weeks of age (Tamminen et al., 1999; Meir, 

2004). Advanced atherosclerotic lesions become highly calcified with 100% frequency 

by 75 weeks of age (Rattazzi, 2005). 

Atherosclerosis is a relatively slow chronic inflammatory disorder that develops during 

decades, that is why apoE-/- mice are widely used models of this disease, since they allow the 

analysis of atherosclerotic lesions after several months. Although not all aspects of murine 

atherosclerosis are identical to humans, a recent study revealed a significant overlap of mouse 

and human genes associated with coronary artery disease (von Scheidt et al., 2017). Therefore, 

observations from mouse models may provide useful information which are relevant 

for understanding the processes underlying human atherosclerosis. 

Interestingly, it was demonstrated that the mere increase in Ca and P in vivo was not 

sufficient to induce any calcification in mice (Murshed et al., 2005). The current hypothesis 

of the origin of artery calcification indicates that it is formed, at least in part, as a result of trans-

differentiation of VSMCs into cells similar to growth plate chondrocytes (Sun et al., 2012). 

Under physiological conditions, the endothelial layer is very thin. During atherosclerosis 

progression, VSMCs migrate from the media towards the intima where they proliferate and 

produce a fibrous tissue to stabilize the plaques by covering both fatty streak and necrotic core 

(Ross, 1993; Lusis, 2000). Possibly, trans-differentiated VSMCs may also contribute 

to formation of artery calcification. 

In vitro studies of human VSMCs revealed that those cells cultured in media containing 

normal physiological levels of inorganic phosphate (1.4 mmol/L) did not mineralize. 
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Interestingly, it was observed that those cells cultured in media containing phosphate levels 

comparable to those seen in hyperphosphatemic individuals (>1.4 mmol/L) showed dose-

dependent increase in mineral deposition. Moreover, elevated phosphate treatment also 

enhanced the expression of the osteoblastic differentiation markers, Ocn and Runx2. 

In the light of those findings, better understanding of the processes leading to formation 

of artery calcification appears crucial. In the next chapters, different hypothesis concerning 

the origin of micro- and macrocalcifications will be presented and discussed. 

 
1.4.1. Formation of artery microcalcification – possible mechanisms 
 
Extracellular vesicles 
 

As already mentioned, early stages of physiological mineralization are mediated 

by nanostructures called matrix vesicles that are released by mineralizing cells and serve 

as nucleation sites for apatite synthesis. Furthermore, there are plenty of reports showing that 

VSMC-derived MVs are necessary for the progression of smooth muscle cell calcification 

(Bobryshev et al., 2008; Chen et al., 2008; Kapustin et al., 2011). There is also a single evidence 

suggesting that macrophages may release exosomes similar to MVs with a capacity of apatite 

nucleation (New et al., 2013). 

Sortilin is a protein that has been recently characterized as a key regulator of vascular 

cell calcification due to its capacity to load TNAP to MVs. Interestingly, mice deficient 

in a gene encoding this protein, Sort1, had decreased arterial calcification, while normal bone 

formation was not affected (Goettsch et al., 2016). 

 
Cell apoptosis/necrosis 
 

Atherosclerotic lesions are composed of lipids and connective tissue elements, but 

contain also multiple types of cells, including endothelial cells, VSMCs and immune cells. 

Those cells, especially VSMCs and macrophages, may undergo cell death within the plaque 

(Geng and Libby, 1995; Clarke and Bennett, 2006). It was shown that apoptosis may precede 

VSMC calcification and that VSMC-derived apoptotic bodies may act as nucleating structures 

for calcium crystal formation (Proudfoot et al., 2000). In addition, macrophages may undergo 

apoptosis in response to cholesterol-induced cytotoxicity and endoplasmic reticulum (ER) 

stress (Feng et al., 2003). Interestingly, necrotic death of macrophages was shown to contribute 

to atherosclerosis development (Lin et al., 2013). 
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Generally, calcium exerts a toxic effect on cells, that is why its cellular content is very 

low, between 10 and 100 nM. Mitochondria contain small amounts of calcium, however, 

the majority of cellular Ca is stored in the ER, while phosphate ions are mainly located in the 

cytoplasm. In certain pathological conditions, like atherosclerosis, as a result of cell apoptosis 

or necrosis, a passive precipitation of calcium phosphate crystals may occur. It is possible when 

the product Pi x Ca concentration exceeds 6 mM, which does not occur under physiological 

conditions. 

 
Loss of MGP 
 

Matrix Gla protein (MGP) is a secretory protein expressed in cartilage, bone matrix, 

arterial vessel wall, and other tissues. MGP was shown to be secreted by chondrocytes, VSMCs, 

endothelial cells and fibroblasts. It is a potent inhibitor of VC (Khavandgar et al., 2014). MGP‐

deficient (Mgp–/–) mice exhibited progressive deposition of apatite minerals in the arterial walls 

and died within two months of age due to plaque rupture (Luo et al., 1997). However, 

the principle of the inhibitory effect of MGP on VC is not fully understood. What is known 

is that MGP activity depends on carboxylation of glutamate residues, a process that requires 

vitamin K as a cofactor, and may be inhibited by warfarin (Price et al., 1998; Schurgers et al., 

2013). 

At least two mechanisms have been proposed to explain MGP inhibitory effect on VC. 

The first one is a direct inhibition of crystal growth by MGP binding to apatite crystals (Chatrou 

et al., 2015). Therefore, it is possible that loss of inhibitors such as MGP is correlated with 

initiation of atherosclerosis (Chatrou et al., 2015). The second mechanism relies on the MGP 

capacity to inhibit BMP signal transduction (Malhotra et al., 2015). 

 
1.4.2. Formation of artery macrocalcification – possible mechanisms 
 
Inflammatory cytokines: TNF-α and IL-1β 
 

Atherosclerosis accompanies age-related diseases that are associated with a low grade 

pro-inflammatory state, which may be defined as “inflammaging”. This chronic inflammatory 

process is characterized by increased levels of C-reactive protein (CRP) and cytokines, such as 

tumor necrosis factor (TNF)-α and interleukin (IL)-6 in the circulation (Bessueille and Magne, 

2015). 

TNF-α is one of the most potent pro-inflammatory cytokines and is produced 

by macrophages present in atherosclerotic plaque. Activated T cells release TNF-α as well as 
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Th1 cytokines, that in turn activate other immune cells to secrete IL-6. IL-6 subsequently 

stimulates production of the proteins of acute-phase, including CRP (Hansson, 2005). ApoE-/- 

mice deficient in TNF-α exhibited a significant reduction in lesion volume, suggesting a crucial 

role of TNF-α during development of atherosclerosis (Brånén et al., 2004). Interestingly, 

TNF-α may directly stimulate TNAP (Fig. 11A, B). Several studies indicated that TNF-α may 

activate VSMCs to form calcium deposits (Tintut et al., 2000; Shioi, 2002; Lee et al., 2010; 

Lencel et al., 2011). Interestingly, TNF-α may exert its effects by stimulating the release of 

BMP-2, a potent bone anabolic factor (Ikeda et al., 2012). 

Another important pro-inflammatory cytokine involved in atherosclerosis progression 

is IL-1β. In mice lacking IL-1β, a decrease in atherosclerotic plaque formation was observed 

(Kirii et al., 2003). Also, the anti-atherogenic effect of IL-1β blockade was observed in several 

mouse models (Devlin et al., 2002; Isoda et al., 2004; Chamberlain et al., 2009). Similarly to 

TNF-α, IL-1β may stimulate TNAP activity and calcification in VSMCs (Lencel et al., 2011). 

IL-1β is secreted by immune cells by the mechanism that requires inflammasome 

activation. The NLRP3 inflammasome protein complex was shown to be involved both 

in response to pathogenic infections as well as in chronic inflammation. This oligomer 

is consisted of multiple proteins: nucleotide-binding domain, leucine-rich repeat and pyrin 

domain (NLRP3), as well as ASC adaptor protein together with pro-caspase 1. 

 
Figure 11. TNF-α stimulates TNAP in human VSMCs. In human VSMCs, TNF-α at 1 ng/ml 
increased the levels of TNAP at 48 h, as measured by quantitative PCR (A) and TNAP activity 
after 7 days (B) (Lencel et al., 2011). 
 

NLRP3 inflammasome activation has been shown recently to be required for vascular 

cell calcification (Wen et al., 2013). Its activation requires two signals (Fig. 12) - the first 
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pathway includes activation of NF-κB transcription factor which after translocation 

to the nucleus triggers nlrp3 and il1b gene transcription, leading to production of NLRP3 and 

pro-IL-1β proteins (Church et al., 2008). In the non-infectious context, this process may be 

stimulated by TNF-α by its interaction with TNFR I or TNFR II receptors. Then, NLRP3 protein 

together with ASC and pro-caspase 1 assemble to form the NLRP3 inflammasome complex. 

The second signal may be activated by crystalline structures inducing caspase 1 maturation, 

which subsequently cleaves pro-IL-1β, resulting in IL-1β secretion. 

Various crystalline structures were linked to inflammasome activation that underlie 

the progression of several diseases. For instance, monosodium urate crystals were shown 

to activate NLRP3 in gout disease (Martinon et al., 2006), calcium pyrophosphate dihydrate 

crystals in pseudogout, silica crystals in silicosis (Hornung et al., 2008) as well as cholesterol 

crystals during atherosclerosis (see section 1.1.4). 

 

 

Figure 12. The mechanisms of inflammasome activation. 
(http://www.invivogen.com/review-inflammasome). 
 

Endochondral or intramembranous ossification 

 
As described in section 1.1.2, in advanced lesions of apoE-/- mice, cells resembling 

chondrocytes as well as collagen type II were detected in a vicinity of apatite crystals (Rosenfeld 
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et al., 2000; Rattazzi, 2005). Therefore, it is likely that macrocalcifications are formed by 

a process similar to endochondral ossification. However, in the case of human atherosclerosis, 

it is not yet clear whether VC results from endochondral or intramembranous ossification. Bone 

marrow, osteoblast-like cells, chondrocyte-like cells, osteoclast-like cells, and even osteocytes 

may be found in human atherosclerotic plaques (Doherty et al., 2004; Pugliese et al., 2015). 

Besides, synthesis of collagen type I appears to be upregulated in atherosclerotic lesions 

(Rekhter et al., 1993). The expression of some chondrocyte-specific markers, but not all, was 

detected in both calcified and non-calcified human lesions, that is why the exact mechanism 

by which human macrocalcifications are formed remains controversial (Aigner et al., 2008). 

Therefore, in our laboratories we are currently interested in mechanisms leading 

to trans-differentiation of VSMCs into mineralization-competent cells. In particular, Maya 

Fakhry, a PhD student in MEM2 laboratory, investigated the role of TNAP in VSMC 

trans-differentiation. In her PhD thesis, she demonstrated that overexpression of TNAP in A7R5 

rat VSMCs, which in our hands failed to mineralize, resulted in a dramatic increase (by over 

15-fold) in the expression of Acan, being an early marker of chondrocyte differentiation 

(Fig. 13A). Moreover, upon TNAP overexpression, she observed a significant stimulation of 

calcium accumulation in the matrix (Fig. 13B). 

 

 
Figure 13. Alkaline phosphatase activity stimulated MOVAS mineralization (Fakhry et al., 
2017). 
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Chapter 2. Aims 
 

Recent findings suggest that TNAP may be activated in VSMCs by TNF-α and IL-1β, 

two inflammatory cytokines stimulating the progression of atherosclerosis (Fig. 12A, B). 

In parallel, it was demonstrated that TNAP overexpression, specifically in VSMCs, was 

sufficient to induce artery calcification in mice (Sheen et al., 2015). Moreover, our recent results 

revealed that TNAP overexpression in VSMCs was sufficient to induce mineralization 

(Fig. 13B). 

Therefore, our hypothesis is that TNAP is involved in trans-differentiation of VSMCs 

into mineralization-competent cells and subsequent calcification. The objective of our work 

was to understand TNAP effect on VSMC trans-differentiation and investigate underlying 

molecular mechanisms.  

 
In our work, we applied two complementary approaches: 

 
 to investigate a possible role of apatite crystals generated by TNAP in the stimulation 

of VSMC trans-differentiation. MOVAS cells were cultured on either mineralized 

or non-mineralized collagen followed by gene expression analysis of osteochondrocyte 

differentiation markers. Identical analysis were performed after culturing MOVAS 

with different doses of apatite crystals present in a culture medium. 

 
 to study localization and function of mineralization markers such as TNAP and annexins 

in mineralization process mediated by trans-differentiated VSMCs and VSMC-derived 

MVs. TNAP and annexin distribution and TNAP activity was analyzed in MOVAS cells 

as well as in two fractions of extracellular vesicles produced by VSMCs: collagen-free and 

collagen-attached MVs. 
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Chapter 3. Materials and methods 
 
3.1. Cell culture and treatment 
 
3.1.1. Murine VSMC cell culture 
 

Murine VSMC MOVAS cell line was purchased from ATCC (Molsheim, France). 

The cells were routinely cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 

4.5 g/l glucose and supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin, 

100 μg/ml streptomycin, 20 mmol/l HEPES and 2 mmol/l L-glutamine. The cells were cultured 

in the presence of 50 μg/ml ascorbic acid (AA, Sigma) in order to allow collagen secretion. 

Only where indicated, trans-differentiation was stimulated by the addition 

of 10 mM β-glycerophosphate (β-GP, Sigma) (Chung et al., 1992). 

 
3.1.2. Murine primary chondrocyte cell culture 
 

Murine primary chondrocytes were extracted from articular cartilage (knee-joints and 

femoral head capsules) from 4- to 6-day old newborn litters of SWISS mice (Janvier labs) after 

decapitation and dissection, as already published (Gosset et al., 2008). Animal procedures were 

performed according to guidelines from the Directive 2010/63/EU of the European Parliament 

concerning the use of animals for scientific purposes (approval numbers A 69266 0501 

and BH2012-63). 

Extracted tissues were collected in phosphate-buffered saline (137 mM NaCl, 2.7 mM 

KCl, 8 mM Na2HPO4, 1.5 mM KH2PO4, pH 7.4, PBS) supplemented with antibiotics, 100 U/ml 

penicillin and 100 μg/ml streptomycin. Extraction of chondrocytes was performed after several 

steps of enzymatic digestion by Liberase (Roche), a mixture of enzymes including collagenase 

I, collagenase II and trypsin, necessary to degrade components of the ECM. Extracted cells 

were seeded in DMEM containing 1 g/l glucose and supplemented with 10% FBS, 100 U/ml 

penicillin, 100 μg/ml streptomycin, 20 mmol/l HEPES and 2 mmol/l L-glutamine until 

confluence and not subcultured, to avoid the process of chondrocyte dedifferentiation into 

fibroblasts. Primary chondrocytes were then cultured in DMEM containing 4.5 g/l glucose 

and supplemented with 10% FBS, 100 U/ml penicillin, 100 μg/ml streptomycin, 20 mmol/l 

HEPES and 2 mmol/l L-glutamine. Mineralization was stimulated by the addition of 50 μg/ml 

AA and 10 mM β-GP. 
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3.1.3. Cell treatments 
 

To determine the effect of alkaline phosphatase on MOVAS trans-differentiation, 

the cells were treated with 8 U/ml of intestinal alkaline phosphatase (IAP, Sigma), after 17 days 

of culture in mineralizing conditions in the presence of 50 μg/ml AA and 10 mM β-GP. Day 17 

is a period preceding the onset of TNAP activity on day 21 (Bessueille et al., 2015). Treatment 

with exogenous alkaline phosphatase was followed by gene expression analysis of different 

chondrocyte markers by quantitative PCR (qPCR). TNAP inhibitor, levamisole (Sigma), was 

applied at the concentration of 100 μM to inhibit TNAP activity and check its effect on gene 

expression in primary chondrocytes. 100 ng/ml of noggin (Immunotools), an antagonist 

of proteins from BMP-2 family, was used in MOVAS to study the involvement of BMP-2 

in the stimulation of trans-differentiation. For the investigation of the role of inflammasome 

in trans-differentiation, MOVAS cells were treated with 10 ng/ml TNF-α (R&D Systems) and 

0.1 ng/ml IL-1β (R&D Systems). 

 
3.2. Biochemical and analytical methods 
 
3.2.1. Alizarin Red staining 
 

The cells were rinsed with PBS and stained with 2% solution of Alizarin Red S (Sigma), 

pH 4.2, for 10 minutes. After several washings with H2O, extraction of the stain was performed 

by incubation of the cells with 100 mM cetylpyridinium chloride (CPC, Sigma) for 2 h at room 

temperature (RT). Calcium deposition was determined by measurement of the absorbance 

at 570 nm. The results were expressed as μmol AR-S per culture condition. 

 
3.2.2. Measurement of protein concentration 
 

For the determination of protein concentration in the samples, Bi-Cinchoninic Acid 

(BCA) Protein Assay (Thermo Scientific) was applied, according to manufacturer’s 

instructions. Absorbance was measured at 562 nm and protein concentration was calculated 

relative to the standard curve of bovine serum albumin (BSA). 

 
3.2.3. Measurement of TNAP activity 
 

To determine TNAP activity based on the amount of p-nitrophenol (pNP) released after 

dephosphorylation of p-nitrophenyl phosphate (pNPP, Sigma), the cells were collected in 

0.2% Nonidet P-40 and disrupted by sonication. Then, cell lysates were centrifuged (800g, 5 
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min, 4°C) and each supernatant was moved to separate well of 96-well plate. pNPP reagent (10 

mM pNPP, 0.56 M 2-amino-2-methyl-1-propanol (AMP), 1 mM MgCl2, pH 10.3) was added 

to each well. The absorbance was measured at 405 nm in a plate reader at 37°C. TNAP specific 

activity was expressed as nmol of p-nitrophenol (pNP) formed per min per mg of protein. 

 
3.2.4. NBT-BCIP 
 

5-bromo-4-chloro-3-indolyl phosphate (BCIP) is hydrolyzed by alkaline phosphatase 

to form an intermediate that undergoes dimerization to produce an indigo dye. The nitroblue 

tetrazolium (NBT) is reduced to the NBT-formazan by the two reducing equivalents generated 

by the dimerization (Fig. 14). This reaction proceeds at a steady rate, allowing accurate control 

of the relative sensitivity and control of the development of the reaction. 

 
Figure 14. Chemical reaction of NBT and BCIP substrates with alkaline phosphatase. 

 
The samples were prepared in mild denaturing conditions, in a buffer containing 60 mM 

Tris-HCl pH 6.8 and 2% SDS. Samples containing 10 μg protein were loaded onto 

7.5% polyacrylamide gels with 0.1% SDS. After electrophoresis, the gels were incubated 

in a buffer composed of 100 mM Tris-HCl pH 9.0, 150 mM NaCl, 1 mM MgCl2, 33 μg/ml 

(NBT, Promega) and 16.5 μg/ml (BCIP, Promega) at 37ºC until the bands became clearly 

visible. The gels were photographed using InGenius LHR Gel Imaging System (Syngene). 
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3.2.5. MTT assay 
 

Cell viability assay after treatment of MOVAS with different concentrations of apatite 

crystals (ACs) was performed. MTT test was performed in 400 μl of cell culture medium. 

10 μl of the 5 mg/ml MTT stock solution was added to each well to reach final MTT 

concentration of 0.125 mg/ml. Afterwards, the plates were incubated for 4 h at 37°C. Then, 

the medium was discarded followed by the addition of 400 μl of DMSO to each well 

and absorbance was measured at 570 nm. 

 
3.2.6. LDH assay 
 

Pierce LDH Cytotoxicity Assay Kit (Thermo Scientific) was applied according to 

the manufacturer’s instructions. Lactate dehydrogenase (LDH) is a cytosolic enzyme which 

upon disruption of a plasma membrane is released into cell culture medium. The amount of the 

LDH released can be quantified by the reaction in which LDH catalyzes the conversion 

of lactate to pyruvate via nicotinamide adenine dinucleotide (NAD+) reduction to nicotinamide 

adenine dinucleotide hydrogen (NADH). Diaphorase then uses NADH to reduce a tetrazolium 

salt (INT) to a red formazan product that can be measured at 490 nm. The level of formazan 

formation directly reflects the amount of LDH released into the medium, providing 

an information about the cytotoxicity. 

Cytotoxicity of apatite crystals (ACs) was determined after treatment of MOVAS with 

30 and 300 μg/ml ACs. 50 μl of supernatants were collected at each time point and moved into 

a 96-well plate for the LDH assay. 

 
3.3. Apatite crystal preparation 
 
3.3.1. Apatite collagen complexes (ACCs) preparation 

 
Each step of ACC preparation was performed under sterile conditions, as described 

earlier (Perrier et al., 2010). Briefly, 35 mm dishes were coated with 0.1 mg/ml calf skin type I 

collagen (Sigma) solution in 0.1 M acetic acid and dried overnight. The next day, the dishes 

were rinsed with PBS and left once again to dry overnight. The day after, the dishes were either 

incubated with 0.4 mg/ml IAP and 0.4 mg/ml phosvitin (Sigma) for 3 h in 37°C, or left 

unmineralized. Next, the dishes were rinsed with H2O, followed by overnight incubation in the 

presence of 6 mM solution of calcium β-GP (Sigma) at 37°C. The dishes were subsequently 

washed with H2O, sterilized under the UV light for 30 min and left to dry overnight. Dry dishes 

were stored at 4°C until use. Calcium deposition on mineralized matrices was verified 
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by AR-S (Fig. 20). The presence of apatite on mineralized matrices was analyzed with Fourier 

transform infrared spectroscopy (FTIR), using a Nicolet iS10 spectrometer (64 scans at 4 cm−1 

resolution Fig. 20). 

 
3.3.2. Apatite crystals (ACs) synthesis 
 

Each step of ACs preparation was performed under sterile conditions. ACs were 

prepared by addition of sodium phosphate (0.4 M, pH = 7.2), to DMEM 4.5 g/l glucose 

supplemented with 0.5% FBS, to reach a final concentration of 10 mM inorganic phosphate. 

The solution was incubated for 24 h at 37°C. Precipitated crystals were collected after series 

of centrifugations at 5000 g for 5 min and washing steps with fresh medium. Next, crystals were 

resuspended in 10 ml of medium, disrupted in an ultrasonic bath for 10 minutes, centrifuged 

at 5000 g and dried overnight. 

 
3.4. Gene expression analysis 
 
3.4.1. RNA extraction and reverse 
transcription 
 

Total RNA was extracted using the 

NucleoSpin RNA II kit (Macherey-Nagel) 

following the manufacturer’s protocol (Fig. 15).  

1 μg of RNA was retro-transcribed into 

cDNA with 0.5 μl of Superscript II reverse 

transcriptase (Life Technologies). Each RNA 

sample was incubated for 75°C for 5 min (for 

denaturation of the double strand), followed by the 

addition of the PCR mix consisted of 0.5 mM 

dNTP, 5 μM random hexamers, 5 mM DTT and 

reverse transcriptase in 5xRT buffer, to reach the 

final reaction volume of 20 μl. 

 

 

 
Figure 15. Schematic diagram of RNA isolation 
(Macherey-Nagel). 
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Reverse transcription PCR program: 

- 42°C, 30 min 

- 99°C, 5 min 

As a last step, each cDNA product was diluted 5x with H2O. 

 
3.4.2. Quantitative polymerase chain reaction (real time PCR) 
 

Real time PCR was performed in CFX96-2 Light Cycler (Bio-Rad) and relative 

quantification of gene expression was determined by CFX Manager Software using the 2-∆∆cq 

method. Cq represents the number of cycles needed to exceed the base line signal during 

amplification. Gapdh (glyceraldehyde-3-phosphate dehydrogenase) gene was used as reference 

gene. 

5 μl of iTaq Universal SYBR green supermix (Bio-Rad), 1 μl of 3 μM forward primer, 

1 μl of 3 μM reverse primer and 0.5 μl of PCR-grade H2O was added to 2.5 μl of cDNA 

to reach the final reaction volume of 10 μl. Each sample was amplified in duplicate. Primers 

for real time PCR were summarized in Tab. 1. 

 
Real time PCR program: 

- 95°C, 30 s 

- 95°C, 6 s 

- 60°C, 15 s              45 cycles 

- 72°C, 25 s 

- 65°C → 95°C (melt curve with an increment of 0.5ºC/5 s) 
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Table 1. Summary of primers used. m – mouse, For – forward primer, Rev – reverse primer, 
Acan – aggrecan, Bmp-2 – bone morphogenic protein-2, Id1 – inhibitor of DNA binding 1, 
Gapdh – glyceraldehyde 3-phosphate dehydrogenase, Runx2 - Runt-related transcription factor 
2, Col2a1 – collagen type II, Col10a1 – collagen type X, Ocn – osteocalcin, Osx – osterix. 
 

Gene GenBank accession 
number 

Sequences 5’-3’ 

mRunx2 NM_009820.5 
For: GCCGGGAATGATGAGAACTA′ 

Rev: GGACCGTCCACTGTCACTTT 

mCol2a1 NM_031163.3 
For: GGCAACAGCAGGTTCACAT 

Rev: ATGGGTGCGATGTCAATAA 

mCol10a1 NM_009925.4 
For: CAAACGGCCTCTACTCCTCTGA 

Rev: CGATGGAATTGGGTGGAAAG 

mOcn NM_001037939.2 
For: AAGCAGGAGGGCAATAAGGT 

Rev: CGTTTGTAGGCGGTCTTCA 

mOsx NM_130458.3 
For: AGGCACAAAGAAGCCATACG 

Rev: GCCCAGGAAATGAGTGAGG 

mAcan NM_007424.2 
For: GTGCGGTACCAGTGCACTGA 

Rev: GGGTCTGTGCAGGTGATTCG 

mBmp2 NM_007553 
For: TGGAAGTGGCCCATTTAGAG 

Rev: TGACGCTTTTCTCGTTTGTG 

mId1 NM_010495.3 
For: GCGAGATCAGTGCCTTGG 

Rev: GAGTCCATCTGGTCCCTCAG 

mGapdh NM_001289726.1 
For: GGCATTGCTCTCAATGACAA 

Rev: TGTGAGGGAGATGCTCAGTG 

 
3.5. Cellular fractionation 
 
3.5.1. Isolation of total membranes 
 

The fractions of total membranes were isolated according to Briolay and collaborators 

(Briolay et al., 2013). Briefly, MOVAS cells (25 x 106 cells) were disrupted in a Potter 

homogenizer (40 strokes) on ice in a TNE buffer consisted of 25 mM Tris-HCl, 150 mM NaCl 

5 mM ethylenediaminetetraacetic acid (EDTA) (pH 7.5) and supplemented with 10 μg/ml 

protease inhibitor cocktail (PIC, Sigma). The homogenate was then centrifuged at 900 g for 

10 min at 4°C. The supernatant was collected and then ultracentrifuged at 100,000 g for 45 min 

at 4°C in an Optima LE-80K ultracentrifuge (Beckman Coulter). Afterwards, the pellet of total 
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membranes (plasma membrane and cytoplasmic vesicular structures) was resuspended  

in 200 μl of TNE buffer. 

 
3.5.2. Isolation of collagen-free MVs 
 

Isolation of MVs was performed according to the procedures described earlier  

(Wuthier et al., 1985; Chen et al., 2008). 1 x 108 of MOVAS cells were seeded on 100 mm 

culture dishes. At confluence, the cells were cultured for 21 days in the presence or absence  

of 50 μg/ml AA and 10 mM β-GP. Afterwards, the culture medium was collected, centrifuged 

(1,000 x g, 30 min, 4°C, to remove apoptotic bodies) in a MPW 350R centrifuge (MPW Medical 

Instruments) and subjected to ultracentrifugation (100,000 x g, 30 min, 4°C) in an Optima 

L-100 XP ultracentrifuge (Beckman Coulter), as indicated in Fig. 16. The pellet of collagen-

free MVs was resuspended in 100 μl of “synthetic cartilage lymph” solution (SCL), composed 

of 100 mM NaCl, 12.7 mM KCl, 1.42 mM NaH2PO4, 1.83 mM NaHCO3, 0.57 mM MgCl2, 

0.57 mM Na2SO4, 5.55 mM D-glucose, 63.5 mM sucrose, and 16.5 mM HEPES (pH 7.4) 

and stored in -20°C (Buchet et al., 2013b). 

 
3.5.3. Isolation of collagen-attached MVs 

 
To obtain the fraction of collagen-attached MVs, the cells were rinsed with PBS and 

incubated in digestion buffer containing 200 U/ml collagenase from Clostridium histolyticum 

(Sigma), 120 mM NaCl, 10 mM KCl, 250 mM sucrose and 20 mM Tris-HCl pH 7.4 for 3 h 

at 37°C. The cells were scraped, centrifuged (800 x g, 30 min, 4°C, to remove cell debris) and 

subjected to ultracentrifugation (30,000 x g, 30 min, 4°C, to separate basolateral membranes 

and microsomes). The supernatant was ultracentrifuged in an Optima L-100 XP ultracentrifuge 

(250,000 x g, 30 min, 4°C) to collect the vesicles (Fig. 16). The pellet of collagen-attached 

MVs was resuspended in SCL and stored at -20ºC. 
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Figure 16. Schematic diagram of MV isolation (according to Wuthier et al., 1985;  
Chen et al., 2008). 
 
3.6. Lipid analysis 
 
3.6.1. Measurement of cholesterol content 
 

Cholesterol (Chol) content in cellular fractions was determined by the Amplex Red 

Cholesterol Assay Kit (Invitrogen) according to the manufacturer’s instructions. By this 

method, both free and esterified Chol were detected, since cholesteryl esters are hydrolyzed 

into Chol by cholesterol esterase present in working solution. The principle of the assay is Chol 

oxidation by cholesterol oxidase, giving a side product of the reaction, H2O2. Amplex Red 

reagent is a probe highly sensitive for the detection of H2O2. In the presence of horseradish 

peroxidase (HRP), Amplex Red reagent reacts with H2O2, producing highly fluorescent 

resorufin. 
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Analyzed samples as well as Chol standards (0–8 μg/ml), were incubated for 30 min 

at 37°C in the presence of working solution 0.5 M K3PO4, 0.25 M NaCl, 25 mM cholic acid, 

0.5% Triton X-100, 300 μM Amplex Red, 2 U/ml HRP, 2 U/ml cholesterol oxidase and 0.2 

U/ml cholesterol esterase (pH 7.4). The reaction was stopped after 30 min and afterwards 

fluorescence was measured in a plate reader with the excitation at 550 nm and emission 

at 585 nm. Chol content in the samples was calculated relative to the standard curve 

of cholesterol and normalized by the amount of protein. 

 
3.7. Protein analysis 
 
3.7.1. SDS-PAGE and Western Blot 
 

Whole cell lysates (WCLs) were prepared by scratching and harvesting of the cells 

in a buffer containing 0.1% Triton X-100, 50 mM Tris-HCl, 80 mM NaCl and 10 μg/ml PIC 

(pH 7.4) and disrupted by sonication on ice (2 x 10 sec, 20% power) using a S-250D digital 

sonifier (Branson Ultrasonic). Cell lysates and fractions of vesicles (25 μg) were prepared 

for SDS-PAGE analysis by addition of the Laemmli 5x sample buffer and boiling at 95°C for 

5 min. Proteins were separated by SDS-PAGE on 10% acrylamide gels (1.5 h, 190 V) and then 

transferred onto nitrocellulose membranes (BioRad) for 1 h at 500 mA. Immunoblots were 

washed with Tris-buffered saline (10 mM Tris-HCl, 140 mM NaCl, pH 7.4, TBS) and then 

incubated in blocking solution (5% skimmed milk solution in TBS) for 1 h. Afterwards, 

the membranes were incubated overnight at 4°C with one of primary antibodies (summarized 

in Tab. 2) prepared in 2.5% skimmed milk in TBS supplemented with 0.05% Tween 20 

(TBST). After several washings with TBST, the membranes were incubated for 1.5 h at RT 

with anti-rabbit or anti-mouse IgG–HRP-linked antibody (Cell Signaling) prepared in 5% 

skimmed milk in TBST. β-actin immunostained with monoclonal β-actin-HRP Conjugate 

antibody (Sigma) was presented as a control. After washing, the protein bands were visualized 

using Enchanced chemiluminescence (ECL) reagent (Millipore). Band optical density was 

measured by use of InGenius laser densitometer (Syngene BioImaging Co.). 
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Table 2. List of antibodies used for Western Blot analysis. 

 
Antigen Detected band 

molecular 
weight (kDa) 

Host Supplier I° antibody 
dilution 

II° antibody 
dilution 

anti-TNAP 60 Rabbit Abcam 1:500 1:1000 

anti-AnxA2 36 Mouse 
BD 
Transduction 
Laboratories 

1:2500 1:5000 

anti-AnxA6 70 Mouse 
BD 
Transduction 
Laboratories 

1:2500 1:5000 

anti-β-actin 42 Mouse Sigma 1:25000 - 

 
3.7.2. Protein staining 
 

WCLs were prepared by scratching and harvesting of the cells in a buffer containing 

0.1% Triton X-100, 10 mM Tris-HCl, 140 mM NaCl and 10 μg/ml PIC (pH 7.4) and disrupted 

by sonication. Cell lysates and fractions of vesicles (25 μg) were prepared by addition 

of the Laemmli 5x sample buffer and boiling at 95°C for 5 min. Afterwards, proteins were 

separated on 10% acrylamide gels. To visualize protein profiles of different fractions 

of MOVAS, the gels were washed with demineralized water (3 x, 5 min). Then, the gels were 

incubated with AMRESCO Blue Bandit Protein Stain (VWR) for 1h. After incubation, they 

were washed several times with demineralized water and photographed. 

 
3.7.3. Immunofluorescence 
 

To analyze TNAP, AnxA2 and AnxA6 location in MOVAS, the cells were seeded 

at low density (1000 cells/cm2) on coverslips coated with 30 μg/ml Collagen Type I from rat 

tail (Sigma) and cultured in the presence of 50 μg/ml AA and 10 mM β-GP for 1-4 days. 

The cells were washed with PBS and fixed with 3% paraformaldehyde for 20 min at RT. After 

washing with PBS, the cells were incubated with 50 mM NH4Cl in PBS for 10 min at RT. 

In case of AnxA2 and AnxA6, permeabilization step was included using 0.1% TX-100 in PBS 

for 5 min on ice. Afterwards, the cells were washed with TBS and subjected to blocking (5% 

FBS in TBS) for 1 h. The samples were incubated for 1.5 h at RT with anti-TNAP, anti-AnxA2 

or anti-AnxA6 antibody prepared in 0.5% FBS in TBST (Tab. 3.). Then, the cells were washed 

several times with TBST and incubated for 1 h at RT with anti-Rabbit or anti-Mouse Alexa 
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Fluor 488 or Alexa Fluor 594 secondary antibody prepared in 0.5% FBS in TBST. After 

extensive washing several times with TBS and once with H2O, coverslips were mounted with 

Mowiol 4-88 (Calbiochem), supplemented with 1,4-diazabicyclo[2.2.2]octane (DABCO, 

Sigma) on microscope slides. Images were taken by Zeiss AxioObserver Z.1 fluorescence 

microscope at the 630 x magnification with DIC contrast and appropriate fluorescent filters. 

To observe AnxA6 distribution in living cells, MOVAS cells were transfected with 

AnxA6-EGFP-N3 plasmid (BD Biosciences Clontech) using Effectene Transfection Reagent 

(QIAGEN) according to manufacturer’s instructions. Effectene Reagent was used 

in conjunction with the Enhancer and the DNA-condensation buffer (Buffer EC). In the first 

step of Effectene–DNA complex formation, the DNA was condensed by interaction with the 

Enhancer in a defined buffer system. Effectene Reagent was then added to the condensed DNA 

to produce condensed Effectene–DNA complexes. 

More precisely, DNA dissolved in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 7.4) 

was diluted to a final concentration of 0.3 μg/μl with an EC buffer. Then, enhancer was added, 

the samples were vortexed for 1 s and incubated for 5 min at RT. Then, Effectene reagent was 

added, the samples were vortexed and incubated for 10 min at RT. The Effectene–DNA 

complexes were mixed with the culture medium and added drop by drop to the cells. After 

overnight incubation at 37°C, the cells were washed with fresh culture medium and incubated 

in the presence or absence of 50 μg/ml AA and 10 mM β-GP for 4 days. Images were taken 

by Zeiss AxioObserver Z.1 fluorescence microscope at the 630 x magnification using 

appropriate fluorescent filter. 

 
Table 3. List of antibodies used for immunofluorescence analysis. 
 
Antigen Host Supplier I° antibody 

dilution 
II° antibody II° antibody 

dilution 

anti-TNAP Rabbit Abcam 1:50 Alexa Fluor 
594 1:100 

anti-AnxA2 Mouse BD Transduction 
Laboratories 1:200 Alexa Fluor 

488 1:400 

anti-AnxA6 Mouse BD Transduction 
Laboratories 1:200 Alexa Fluor 

488 1:400 
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3.8. Transmission electron microscopy (TEM) and energy dispersive X-ray 
microanalysis (TEM-EDX) 
 
3.8.1. Sample preparation 
 

Cell cultures were washed with PBS and fixed with 5 ml of 3% paraformaldehyde/1% 

glutaraldehyde mixture in 100 mM sodium phosphate buffer pH 7.2 for 1 h at RT. After 

washing, samples were postfixed with 2 ml of 1% osmium tetroxide in 100 mM sodium 

phosphate buffer pH 7.2 for 20 min at RT in the dark. Then, probes were dehydrated in a graded 

ethanol solution series at RT (25% for 5 min, 50% for 10 min, 75% for 15 min, 90% for 20 min, 

twice 100% for 30 min and 12 h). The cells were mechanically scraped and centrifuged 

at 132 x g for 1 min ((MPW-350R centrifuge, MPW Medical Instrument). Pellets were 

suspended and incubated in mixtures of the LR White resin (Polysciences Inc.)/100% ethanol 

at volume ratios of 1:2 and 1:1 (30 min each at RT). Finally, samples were infiltrated twice with 

100% LR White resin for 1 h at RT, moved to Snap Fit gelatin capsules (Agar Scientific Ltd.) 

and polymerized at 56°C for 48 h. Sections (700Å) were cut using ultra 45º diamond knife 

(Diatome) on a NOVA ultramicrotome (LKB) and placed on formvar-covered and carbon-

labelled 300 Mesh Ni grids (Agar Scientific Ltd.). 

10 μl of MV suspension was dropped on Formvar/Carbon 300 Mesh Ni grids (Agar 

Scientific Ltd.) placed in a porcelain multi-well plate. Then, the sample-covered grids were 

dried for 30 min at RT. Afterwards, they were counterstained with 2.5% uranyl acetate solution 

in ethanol for 20 min at RT, protected from light. Finally, the grids were rinsed with 50% 

ethanol, deionized water and dried for 24 h. 

 
3.8.2. TEM 

 

Cell slices and MVs were observed by JEM-1400 transmission electron microscope 

(TEM, JEOL Co.) equipped with energy-dispersive full range X-ray microanalysis system 

(EDS INCA Energy TEM, Oxford Instruments), tomographic holder and 11 Megapixel TEM 

Camera MORADA G2 (EMSIS GmbH). Images were taken at magnifications between 50 000 

and 150 000 x. 

 
3.8.3. TEM-EDX and mapping 
 

Point measurements of MV chemical composition by X-ray microanalysis were also 

performed. The content of analyzed elements: C, O Ca and P was expressed as atomic % 
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of summarized atomic weights of all known elements of a Periodic Table present in the sample. 

After performing spectral and compositional analysis, Ca/P ratio was calculated per each point 

measurement. Mapping of Ca and P distribution in MVs was performed by use of EDX INCA 

Software (Oxford Instruments). 

 
3.9. Statistical analysis 
 

All experiments were repeated independently, at least three times. Results were 

expressed as mean ± standard error of the mean (SEM). Statistical analysis were performed 

according to two tailed un-paired student t-test. Results were considered significant with 

* at p < 0.05, ** at p < 0.01 and *** at p < 0.001. 

  



 68 
 

 

 

 

 

 

 

Chapter IV 
Results  



 69 
 

Chapter 4. Results 
 
4.1. Mineralization abilities of a cellular model 
 
4.1.1. Characterization of MOVAS 
 

As a research model of vascular cell calcification we selected a cell line of murine 

VSMCs, MOVAS, whereas murine primary chondrocytes served as a model of physiological 

mineralization. Regarding the morphology of MOVAS VSMCs, they are rhomboid and rather 

similar in size (Fig. 17B), in contrast to cuboid chondrocytes which exhibit different sizes 

(Fig.17A). Both cell types had the ability to quickly reach confluence. At day 7 of culture, 

the first symptoms of calcium deposition were observed in both cell types (Fig. 17C, 17D). 

Primary chondrocytes, characterized by TNAP activity exceeding by 100-fold the activity 

of TNAP in MOVAS, needed 10 days of culture in mineralizing conditions to efficiently 

mineralize (Fig. 17E), whereas MOVAS VSMCs, with lower mineralization abilities, deposited 

mineral after 21 days (Fig. 17F). Based on previous studies, it is known that MOVAS cell line 

is characterized by the ability to mineralize in vitro as well as by increased expression of genes 

encoding proteins typical for bone tissue, such as TNAP, OCN and PiT-1 upon treatment with 

typical stimulators of mineralization, AA and β-GP (Mackenzie, 2011). Another study 

by Idelevich and collaborators revealed that MOVAS cell line may serve as a model 

of pathological mineralization (Idelevich et al., 2011). Moreover, this cell line has been recently 

used for interesting studies on the effect of saturated fatty acid lipotoxicity on VC (Masuda 

et al., 2015). 

Firstly, we checked if, in our hands, MOVAS cells have the ability to mineralize. 

According to Mackenzie and collaborators, MOVAS cells exhibited increased TNAP activity 

and prominent mineralization at day 21 of osteogenic stimulation. Indeed, after 21 days 

of trans-differentiation in the presence of AA and β-GP, we observed calcium deposition 

in trans-differentiated cells stained with Alizarin Red (Fig. 18A right panel, 18B right panel). 

Quantitative analysis revealed an increase in calcium deposition by approximately 2-fold 

in trans-differentiated MOVAS compared to resting cells (Fig. 18C) and a significant increase 

in TNAP activity (Fig. 18D). Thus, we confirmed that MOVAS cells are able to mineralize 

in a typical osteogenic medium. 
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Figure 17. Morphology of murine primary chondrocytes and MOVAS. Microscopic view 
of murine primary chondrocytes (A, C, E) and MOVAS VSMCs (B, D, F) at different time 
points of osteogenic stimulation in the presence of AA and β-GP. Photos taken by Zeiss 
Axiovert light microscope. Representative photos were shown. Magnification 100 x, scale bar 
- 100 μm. 
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Figure 18. Mineralization by MOVAS. (A) Calcium deposits stained with Alizarin Red after 
21 days of treatment in the presence (+) or absence (-) of 50 μg/ml AA and 10 mM β-GP. (B) 
Calcium deposits visualized by the Zeiss Axiovert light microscope. Representative photos 
were shown. Magnification 100 x, scale bar – 100 μm. (C) Quantitative analysis of Alizarin 
Red staining after extraction of the stain with 100 mM CPC. (D) TNAP specific activity 
of MOVAS WCLs after 21 days of treatment in the presence (+) or absence (-) of 50 μg/ml AA 
and 10 mM β-GP. 
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4.1.2. Characterization of murine primary chondrocytes 
 

In our studies, murine primary chondrocytes served as a model of physiological 

mineralization. Their mineralization abilities in vitro have been characterized. These 

chondrocytes had increased TNAP activity after 10 days when cultured with 50 μg/ml AA, 

independently of the addition of β-GP (Fig. 19A), but the presence of 10 mM β-GP significantly 

increased mineralization (Fig. 19B). Conversely, the addition of levamisole, a well-known 

inhibitor of TNAP activity, significantly decreased mineralization by those cells (Fig. 19C). 

 

 
Figure 19. Characterization of murine primary chondrocytes. (A) TNAP activity measured 
in WCLs of primary chondrocytes in the presence (+) or absence (-) of β-GP. (B) Calcium 
deposition by primary chondrocytes cultured in the presence (+) or absence (-) of β-GP or 
100 μM levamisole (C) determined by Alizarin Red staining. 
 
4.2. The role of TNAP in MOVAS trans-differentiation and mineralization 

 
4.2.1. MOVAS trans-differentiation into chondrocyte-like cells 

 
At day 17 of culture in mineralizing conditions, MOVAS were treated with exogenous 

alkaline phosphatase for 7 days in the absence of β-GP to avoid a non-physiological rise of Pi 

levels due to β-GP hydrolysis. When cells were cultured under these conditions, we observed 

an up-regulation of the mRNA encoding the early chondrocyte marker, Acan, and one of 

the late ones - Ocn. 

Since Ocn is also expressed by osteoblasts, we sought to investigate whether VSMCs 

also trans-differentiate in osteoblasts after treatment with exogenous alkaline phosphatase. 
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mRNA levels of the osteoblast-specific transcription factor osterix were measured, which did 

not increase but instead they decreased in the presence of exogenous alkaline phosphatase, 

suggesting that VSMCs trans-differentiated into chondrocytes and not osteoblasts (Fig. 20). 

 

 
Figure 20. Alkaline phosphatase activity stimulated MOVAS trans-differentiation 
towards chondrocytes. MOVAS cells were cultured from confluence to day 17 with AA and 
β-GP. On day 17, β-GP was removed and 8 U/ml of alkaline phosphatase were added. mRNA 
levels were quantified by RT-qPCR after 4 and 7 days of treatment, and normalized with Gapdh 
mRNA levels. 
 
4.2.2. The effect of ACs generated by TNAP on Acan gene expression 
 

Moving further, the major question that we asked was whether TNAP stimulates this 

process through PPi hydrolysis and the generation of ACs. Firstly, we prepared dishes coated 

with collagen, either left unmineralized or mineralized by addition of alkaline phosphatase and 

phosvitin as a source of phosphate (Fig. 21A). FTIR analysis revealed that the crystals obtained 

on mineralized collagen consisted of a carbonated apatite (Fig. 21B), similar in organization 

and composition to carbonated apatite that forms in the cartilage growth plate 

and atherosclerotic plaques (Duer et al., 2008). 

Then, we cultured VSMCs on these unmineralized or mineralized synthetic collagen 

matrices. Interestingly, we observed a significant increase of Acan levels when VSMCs were 

cultured on mineralized collagen as compared to unmineralized collagen (Fig. 22A). Moreover, 

MOVAS cells were treated with different concentrations (3-300 μg/ml) of ACs suspended 

in a culture medium after 17 days of culture in mineralizing conditions in the presence of 

50 μg/ml AA and 10 mM β-GP, being a period preceding the onset of TNAP activity on day 21 
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(Bessueille et al., 2015). Similarly, VSMCs treated with ACs in suspension, in the absence of 

collagen, also showed the same 2-fold increase in Acan levels (Fig. 22B). 

 

 

Figure 21. Detection of calcium deposited on apatite collagen complexes (ACCs) after 
induction of mineralization. Detection of calcium on mineralized collagen matrices by AR-S 
(A); FTIR analysis of obtained mineral (B). 
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Figure 22. The effect of apatite collagen complexes (ACCs) and apatite crystals 
in suspension (ACs) on Acan gene expression in MOVAS determined by quantitative PCR 
(qPCR). MOVAS cells were cultured on either mineralized ACCs (Mineralized collagen) 
or non-mineralized ACCs (Collagen) for 7 days (A), MOVAS cultured in the presence 
of different concentrations of ACs in suspension for 7 days at day 17 of stimulation (B). 
 
4.2.3. The effect of ACs generated by TNAP on Bmp-2 gene expression 
 

In order to begin identifying factors involved in the effects of TNAP and crystals on 

chondrocyte gene expression, we focused on bone morphogenetic protein-2 (BMP-2), one of 

the most potent anabolic growth factors (Biver et al., 2013). BMP-2 was shown to be expressed 

in human atherosclerotic plaques after calcification has been initiated (Chatrou et al., 2015). 

In cultured VSMCs, its expression was induced by apatite crystals (Sage et al., 2011). 

Experiments were performed at day 17 of osteogenic treatment in the presence  

of 50 μg/ml AA and 10 mM β-GP, just before the period of maximum TNAP activity on day 

21. We observed that Bmp-2 expression was increased by approximately 2-fold when VSMCs 

were cultured on mineralized collagen as compared with unmineralized collagen, and that ACs 

alone were also able to significantly stimulate Bmp-2 expression by 4-fold (Fig. 23A, B).  

In addition, we observed an increase in Bmp-2 levels in response to addition of exogenous 

alkaline phosphatase by 3-fold (Fig. 23C). Furthermore, hypertrophic chondrocytes treated 

with levamisole had decreased levels of Bmp-2 as well as its transcriptional target Id1 

by approximately 2-fold, suggesting a loss of BMP-2 activity upon inhibition of TNAP  

(Fig. 24A). 

 



 76 

Figure 23. The effect of ACs and exogenous alkaline phosphatase on Bmp-2 gene 
expression in MOVAS. Bmp-2 mRNA levels were quantified after MOVAS cell culture on 
either mineralized or non-mineralized ACCs for 7 days (A); after MOVAS cell culture in the 
presence of different concentrations of ACs in suspension for 7 days at day 17 of stimulation 
(B), after MOVAS cell culture in the presence or absence of exogenous alkaline phosphatase 
for 7 days at day 17 of stimulation (C). 
 

 
Figure 24. Stimulation of Acan in MOVAS by BMP-2 activation mediated by TNAP. 
Primary chondrocytes were stimulated for mineralization in the presence of 50 μg/ml AA and 
10 mM β-GP for 10 days with or without 100 μM levamisole, followed by quantification 
of Bmp-2 and Id1 mRNA levels (A). MOVAS at day 17 of stimulation were treated with or 
without exogenous alkaline phosphatase for 7 days, in the presence or absence of the BMP-2 
antagonist noggin (B). 
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Finally, we used noggin, an antagonist of BMP-2 activity to demonstrate that alkaline 

phosphatase activity stimulates aggrecan expression by stimulating BMP-2 (Fig. 24B). 

 
4.2.4. Study of ACs cytotoxicity 
 

Then, we were interested how crystals generated by TNAP may affect gene expression 

by the cells. One of the possible mechanisms is activation of inflammasome complex leading 

to caspase-1 maturation which mediates the secretion of IL-1β (Martinon et al., 2009). 

As already mentioned, NLRP3 inflammasome was shown to be required for atherogenesis and 

could be activated by crystalline structures (Duewell et al., 2010; Rajamäki et al., 2010). 

Interestingly, IL-1β has been shown recently to induce BMP-2 expression in human VSMCs 

(Ikeda et al., 2012). Moreover, several reports indicate that this activation may involve cell 

death mechanisms caused by crystals (Ewence et al., 2008; Cullen et al., 2015). 

In order to study the cytotoxic effect of ACs on non-differentiated and trans-

differentiated MOVAS, we treated both at confluence with different concentrations of crystals 

and with or without TNF-α. 
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Figure 25. Study of the effect of apatite ACs on MOVAS proliferation. Cell proliferation 
quantified by MTT test in non-differentiated MOVAS (A) or cells trans-differentiated during 
17 days (B) and cultured in the presence (+) or absence (-) of TNF-α and ACs at different 
concentrations. 
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Figure 26. Study of the cytotoxic effect of ACs on MOVAS. Cytotoxicity of ACs measured 
by LDH assay in non-differentiated MOVAS (A) or cells trans-differentiated during 17 days 
(B) and cultured in the presence (+) or absence (-) of TNF-α and ACs at different concentrations. 
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Interestingly, we observed a dose-dependent decrease of non-differentiated MOVAS 

viability after 24 h of treatment with ACs (Fig. 25A) as well as the cytotoxic effect of ACs 

at the dose of 300 μg/ml after 48 h of treatment (Fig. 26A). In the case of trans-differentiated 

cells, apatite crystals did not affect cell viability and did not exert any cytotoxic effect  

(Fig. 25B, Fig. 26B). 

 
4.3. TNAP and annexin localization and function in MV-mediated 
mineralization of MOVAS 
 
4.3.1. TNAP localization in MOVAS 
 

Previously, several studies have been performed to visualize TNAP in human and 

murine bone tissues (Hoshi et al., 1997; Morris et al., 1992; Lencel et al., 2011). In mineralizing 

cells, TNAP is anchored to the plasma membrane and to the outer layer of the matrix vesicle 

membrane via glycosylphosphatidylinositol (GPI). However, TNAP subcellular distribution 

in smooth muscle cells is poorly characterized, that is why we were interested in TNAP 

localization in MOVAS. After labelling TNAP with specific fluorescent antibody, we obtained 

a specific signal on the cell membrane in cells stimulated for mineralization and cultured on the 

surface of collagen (Fig. 27). Thus, we observed that TNAP localization in MOVAS is similar 

to that observed in human osteoblasts (Morris et al., 1992). In resting cells, TNAP distribution 

on plasma membrane was regular (Fig. 27C, arrows), whereas in MOVAS stimulated 

for mineralization, we observed TNAP-enriched clusters seen in the apical region (Fig. 27D, 

arrows), being possible sites of MV biogenesis. 
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Figure 27. TNAP localization in MOVAS. MOVAS cells were visualized after 4 days 
of culture on collagen-coated coverslips in the presence (B, D) or absence (A, C) of 50 μg/ml 
AA and 10 mM β-GP. TNAP was immunostained with anti-TNAP primary antibody followed 
by labelling with Alexa Fluor 594 secondary antibody (arrows). Representative photos were 
shown. Magnification 630 x, scale bar – 10 μm. 
 
4.3.2. Morphology of MOVAS and released MVs 
 

TEM analysis of MOVAS VSMC morphology revealed that 4 days of culture 

in mineralizing conditions were sufficient to stimulate MOVAS cells to release exosomes. More 

precisely, we observed vesicular structures, most probably MVs, budding from the plasma 

membrane of MOVAS stimulated for mineralization (Fig. 28B), in contrast to resting 

conditions where some vesicular structures are visible in the cytosol (Fig. 28A). 

To study mineralization abilities of VSMC-derived MVs, collagen-free and collagen-

attached, we applied two different strategies of MV isolation (described in Materials 

and methods section). Collagen-free MVs is a fraction of vesicles released by the cells to the 

culture medium, whereas collagen-attached MVs were isolated after collagenase digestion 

ECM produced by cell culture. 

Concerning vesicle diameter, both fractions contained vesicles with the size between 

30 and 100 nm (Fig. 29E, F) i.e., dimensions close to those released from growth plate 

chondrocytes whose minimum diameter is 30 nm and the average one is 200 nm (Zhang et al., 
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2005). Moreover, it seems that our observations concerning murine MVs fit quite well with the 

findings of Reynolds and collaborators who determined that human VSMC-derived MVs had 

the diameter of less than 150 nm (Reynolds, 2004). Moreover, looking at TEM images, 

it is noticeable that the fractions of collagen-attached MVs (Fig. 29D) are enriched in electron 

dense material, in contrast to collagen-free MVs collected from the culture medium, which 

seem to be empty (Fig. 29C). 

 

 
Figure 28. Ultrastructure of MOVAS. MOVAS cells were cultured in the presence (B) 
or absence (A) of 50 μg/ml AA and 10 mM β-GP for 4 days. Intracellular vesicles (A, yellow 
arrows) and extracellular vesicles (B, yellow arrows) were detected. Representative photos 
were shown. TEM images taken at 15,000 x magnification, scale bar – 2 μm. 



 83 

 

 

Figure 29. Ultrastructure of collagen-free and collagen-attached MVs produced by trans-
differentiated MOVAS. MVs were isolated after culture of MOVAS in the presence of 
50 μg/ml AA and 10 mM β-GP for 21 days. Representative photos were shown. TEM images 
taken at: 50,000 x magnification, scale bar – 500 nm (A, B), 150,000 x magnification, scale bar 
– 200 nm (C, D), and 300,000 x magnification – scale bar – 100 nm (E, F). 
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4.3.3. The role of TNAP in MV-mediated mineralization 
 

Different fractions of MOVAS cells and released MVs exhibited distinct protein 

patterns (Fig. 30). It is noticeable that whole cell lysates (WCLs) contain a broader range 

of protein sizes than both MV fractions. Also, after comparison of collagen-attached VSMC-

derived MVs with bone collagenase-released MVs (Bechkoff et al., 2008), their protein profiles 

are also quite different. 

 

 

Figure 30. Protein profiles of whole cell lysates (WCLs) and MVs of MOVAS. Protein 
patterns were visualized after electrophoresis and staining of the gel with AMRESCO Protein 
Stain of WCLs as well as fractions of collagen-free and collagen-attached MVs of MOVAS 
cultured in the presence (+) or absence (-) of 50 μg/ml AA and 10 mM β-GP for 21 days. 
Representative gel was shown. 

 

The presence of the active form of TNAP in different fractions of MOVAS was 

confirmed by the NBT/BCIP method (Fig. 31). Then, after measuring TNAP specific activity 

in WCLs and in the two different fractions of MVs, we observed that treatment in mineralizing 

conditions significantly stimulated TNAP activity in MVs that were attached to collagen 

by 2.5-fold and in WCLs, but not in collagen-free MVs (Fig. 32). Moreover, analysis of the 

protein content revealed that TNAP protein expression was increased  by approximately 3-fold 

only in collagen-attached MVs after stimulation for mineralization (Fig. 33). Thus, our 

observations are analogous to the results of Chen and collaborators obtained in MVs originating 

from bovine VSMCs (Chen et al., 2008) and with the previous studies showing that association 
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of MVs released by mineralizing cells with collagen is an important step in mineral expansion 

(Genge et al., 2008; Kim and Kirsch, 2008). 

 

 
Figure 31. The presence of the active form of TNAP in WCLs and MVs of trans-
differentiated MOVAS stained by NBT/BCIP method. Colorimetric analysis were performed 
after gel electrophoresis of WCLs as well as fractions of collagen-free and collagen-attached 
MVs of MOVAS cultured in the presence (+) or absence (-) of 50 μg/ml AA and 10 mM β-GP 
for 21 days. Representative gel was shown. 

 

 
Figure 32. Comparison of TNAP specific activity in different fractions of MOVAS and 
released MVs. TNAP specific activity was measured in WCLs as well as in fractions of total 
membranes, collagen-free and collagen-attached MVs of MOVAS cultured in the presence (+) 
or absence (-) of 50 μg/ml AA and 10 mM β-GP for 21 days. 
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Figure 33. The effect of trans-differentiation on TNAP protein content in WCLs of 
MOVAS and released MVs. Western Blot analysis were performed after 21 days of MOVAS 
stimulation in the presence (+) or absence (-) of 50 μg/ml AA and 10 mM β-GP. Quantitative 
analysis of band optical density normalized to the β-actin were presented. 
 
4.3.4. Study of the role of cholesterol (Chol) in mineralization 
 

Regarding a well-known role of Chol in the initiation of atherosclerosis, we were 

interested if there is any correlation between Chol content in VSMC-derived MVs and 

mineralization. An interesting study by Geng and collaborators revealed that Chol metabolism 

is implicated in mineralization by vascular cells (Geng et al., 2011). It is known from 

the previous studies on physiological mineralization, that MVs originating from chondrocytes 

are enriched in Chol and several phospholipids, such as phosphatidylcholine (PC), PEA and PS 

(Damek-Poprawa et al., 2006; Abdallah et al., 2014). In general, vesicles released 

by mineralizing cells have similar lipid composition to the composition of plasma membrane, 

but in different proportions (Golub, 2009). Thus, we measured also Chol content in analyzed 

fractions of MOVAS and observed increased amount of Chol in the fraction of total membranes, 

but not in MVs. The level of Chol in total membranes exceeded significantly, by approximately 

5-fold, its amount in WCLs and MVs (Fig. 34). 
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Figure 34. Comparison of cholesterol (Chol) content in different fractions of MOVAS and 
released MVs. Chol content was measured after 21 days of MOVAS stimulation in the presence 
(+) or absence (-) of 50 μg/ml AA and 10 mM β-GP. Chol content was measured by Amplex 
Red Cholesterol Assay and normalized to protein concentration. 
 
4.3.5. Localization of lipid rafts in MOVAS 
 

Biological membranes are not homogeneous, but they are rather composed of highly 

organized lipid and protein complexes called lipid rafts. These membrane microdomains were 

shown to be enriched in Chol, PS and ganglioside 1 (GM1) (Moreno-Altamirano et al., 2007). 

Gangliosides are a group of glycosphingolipids that have at least one sialic acid residue. The 

main function of membrane lipid raft microdomains is to organize signaling molecules into 

functional complexes for targeted transport of transmembrane and GPI-anchored proteins, that 

is why their protein composition is highly fluctuating. However, in mineralizing cells GPI-

anchored TNAP was shown to associate with these domains. It is not clear whether lipid rafts 

and the process of MV budding from plasma membrane microvilli are related. As a next step, 

we considered GM1 and Chol as markers of lipid rafts and studied their intracellular distribution 

in VSMCs (Fig. 35). For better visualization of Chol and GM1 co-localization, filipin regular 

blue staining was replaced by red pseudocolor, indicating an area of co-localization 

by providing a yellow signal in combination with green staining of GM1. Interestingly, in 

resting cells we observed co-localization of Chol and GM1 on the plasma membrane (Fig. 35G, 

arrows), whereas in cells stimulated for mineralization there was a co-localization of lipid raft 

markers in the apical region of the cell (Fig. 35H, arrows), similarly to TNAP localization 

in MOVAS stimulated for mineralization, presented in Fig. 27D. 
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Figure 35. Co-localization of Chol and GM1, markers of lipid rafts in MOVAS. Chol was 
visualized by staining with filipin (regular blue color replaced by red pseudocolor), whereas 
GM1 was visualized by staining with Cholera toxin subunit B with FITC conjugate (green). 
MOVAS cells in resting conditions (A, C, E, G) and after 24 h of stimulation for mineralization 
(B, D, F, H) were presented. Representative photos were shown. Magnification – 630 x; scale 
bar – 10 μm. 
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4.3.6. Localization and function of annexins 
 

Cellular annexins are normally present in the cytosol, however, in response to a rise 

in extracellular calcium, they may translocate to the plasma membrane (Monastyrskaya et al., 

2007). Indeed, both TNAP and annexin A2 (AnxA2) were shown to associate with lipid raft 

microdomains within plasma membrane of osteoblast-like cells (Gillette, 2003). After 

fluorescent staining of AnxA2 (Fig. 36) and AnxA6 (Fig. 37), in both cases we observed 

accumulation of annexin-enriched vesicular structures in a perinuclear region of trans-

differentiated cells (Fig. 36B and 37B, arrows). Moreover, visualization of AnxA6 after 

overexpression of AnxA6 in living cells (Fig. 38) confirmed our observation of AnxA6 

subcellular distribution by immunofluorescence.  

 

Figure 36. Subcellular distribution of AnxA2 in MOVAS. AnxA2 was visualized by 
immunofluorescence using an anti-AnxA2 primary antibody labelled with Alexa Fluor 488 
secondary antibody after 24 h of stimulation in the presence (A) or absence (B) of AA and 
β-GP. GFP fluorescent filter was applied to image AnxA2 locations (B, arrows). Representative 
photos were shown. Magnification 630 x, scale bar – 10 μm. 
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Figure 37. Subcellular distribution of AnxA6 in MOVAS. AnxA6 was visualized by 
immunofluorescence using anti-AnxA6 primary antibody labelled with Alexa Fluor 488 
secondary antibody in cells cultured for 24 h in the presence (B) or absence of 50 μg/ml AA 
and 10 mM β-GP (A). Fluorescent filter was applied to image AnxA6 locations (A, B, arrows). 
Representative photos were shown. Magnification 630x, scale bar – 10 μm. 

 

Figure 38. Overexpression of AnxA6 in MOVAS. MOVAS cells were transfected with 
a EGFP-N3 vector containing AnxA6 insert in resting conditions (A) and after 7 days of 
stimulation for mineralization in the presence of 50 μg/ml AA and 10 mM β-GP (B). AnxA6 
subcellular distribution was observed in living cells (A, B, arrows). Representative photos were 
shown. Magnification 630 x, scale bar – 10 μm. 
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Apart from studying subcellular distribution of annexins, we compared also their protein 

content in MOVAS upon stimulation for mineralization (Fig. 39). Interestingly, we observed 

increased expression of AnxA2 in WCLs of trans-differentiated MOVAS, while the expression 

of AnxA6 was not changed in trans-differentiated cells in comparison to non-differentiated cells 

(Fig. 39B). Western Blot analysis revealed also the presence of AnxA2 in collagen-free and 

collagen-attached MVs and AnxA6 only in collagen-attached MVs of MOVAS (results not 

shown due to insufficient number of repetitions). 

 
Figure 39. The effect of trans-differentiation on AnxA2 and AnxA6 protein content in 
MOVAS WCLs. Western Blot analysis were performed after 21 days of MOVAS stimulation 
in the presence (+) or absence (-) of 50 μg/ml AA and 10 mM β-GP. The representative blots 
of three independent experiments were shown (A). Quantitative analysis of band optical density 
normalized to the β-actin were presented (B). 
 
4.3.7. MV chemical composition 
 

As a next step, to study chemical composition of the vesicles, we carried out mapping 

of chemical elements and TEM X-ray microanalysis of collagen-free MVs (Fig. 40) 

and collagen-attached MVs (Fig. 41). 
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Figure 40. Maps of collagen-free MV chemical composition. TEM view of MV clusters  
(A, D). The maps of calcium (Ca) (B, E) and phosphate (P) (C, F) distribution in MVs were 
presented. MVs of non-differentiated MOVAS (A-C) and MVs of MOVAS trans-differentiated 
for 21 days were shown (D-F). Magnification 15,000 x, scale bar – 500 nm. 

Figure 41. Maps of collagen-attached MV chemical composition. TEM view of MV clusters 
(A, D). The maps of calcium (Ca) (B, E) and phosphate (P) (C, F) were presented. MVs of 
non-differentiated MOVAS (A-C) and MVs of MOVAS trans-differentiated for 21 days were 
shown (D-F). Magnification 15,000 x, scale bar – 500 nm. 
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Interestingly, we detected Ca and P in both types of MVs. However, only in collagen-

attached MVs released by trans-differentiated MOVAS, those elements perfectly co-localized 

with MV clusters (Fig. 41 E, F), in contrast to resting conditions, where both Ca and P were 

dispersed (Fig. 41B, C). 

 

 

Figure 42. Chemical composition of mineral produced by MVs derived from MOVAS. 
Representative spectra obtained by TEM-EDX from collagen-free (A, C) and collagen-attached 
MVs (B, D). Both fractions of vesicles were isolated from MOVAS by differential 
ultracentrifugation after 21 days of treatment in the presence (+) or absence (-) of 50 μg/ml AA 
and 10 mM β-GP. Increased levels of calcium (Ca) and phosphate (P) were indicated (D, 
arrows). Ca/P ratios of MVs were summarized in the table (E). 

 
As a result of point measurements, we obtained peaks of P at the level of 2 keV and 

peaks of Ca between 3.5 and 4 keV. The spectrum between 3 and 3.5 keV represent uranium 

in the samples, which was used as a counterstain (Fig. 42A-D). Interestingly, we observed 
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increased levels of calcium (Ca) and phosphate (P) resulting in a Ca/P ratio close to 1 only 

in the case of collagen-attached MVs derived after stimulation for mineralization and 

collagenase digestion (Fig. 42D, arrows, 42E), whereas this ratio was lower in their collagen-

free counterparts. This probably reflects an increased rate of calcium entry in MVs since 

intracellular calcium levels are normally much lower than the levels of Pi. 

The Ca/P ratio of 1.67, calculated according to the formula of synthetic hydroxyapatite 

(HA) - Ca10(PO4)6(OH)2 - does not specify the nature of biological apatite, which comprises 

several substitutions, with for instance CO3
2- residues replacing either PO4

3- or OH- ions 

in apatite crystals. Moreover, biological apatites are calcium-deficient apatites in which calcium 

can be replaced by several other cations, such as fluorine or chlorine (Strzelecka-Kiliszek et al., 

2017). Our results indicate that the presence of collagen scaffold may be necessary for efficient 

mineral nucleation mediated by VSMC-derived MVs. Moreover, we would like to underline 

that collagenase digestion is an important step to obtain calcifying vesicles from 

trans-differentiated VSMCs. 
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Chapter 5. Discussion 
 

Murshed and collaborators proposed the explanation of the phenomenon that 

physiological mineralization occurs exclusively in bone tissue. They indicated that 

co-expression of genes encoding two indispensable proteins, TNAP and collagen, is a specific 

feature of bone (Murshed, 2005). As a result of our collaboration with University of Lyon, we 

have shown recently that TNAP is necessary for differentiation of MSCs, the chondrocyte 

precursors, towards chondrocytes as well as for normal chondrocyte differentiation (Fakhry 

et al., 2017). The fact that TNAP-deficient mice have disorganized growth plate is consistent 

with our observations (Narisawa et al., 1997; Liu et al., 2014). 

Due to the clinical importance of VC, it is important to determine whether the proposed 

model may also relate to ectopic calcification. Accumulating data suggest that the type and 

location of calcifications rather than their extent are crucial for determination of atherosclerotic 

plaque stability (Ehara, 2004; Vengrenyuk et al., 2010; Kelly-Arnold et al., 2013). 

Microcalcifications are now considered as key determinants of acute cardiovascular 

complications. Those small but dangerous crystals seem to be particularly harmful when they 

are located in a fibrous cap (Vengrenyuk et al., 2010; Kelly-Arnold et al., 2013), where they 

may cause plaque rupture, even at the early stages of atherosclerosis. However, molecular 

mechanisms responsible for their formation are not yet elucidated. 

 
Origin of microcalcification 

 
Several explanations were proposed to explain the origin of artery microcalcifications. 

Firstly, extracellular vesicles released by the cells during atherosclerosis have received 

particular attention. Interestingly, sortilin is a protein being recently characterized as a key 

regulator of VC, by the capacity to load TNAP to VSMC-derived MVs (Goettsch et al., 2016). 

What is interesting is that smooth muscle cell calcification requires sortilin phosphorylation 

(Goettsch et al., 2016). Thus, phosphorylation of sortilin is a potential therapeutic target for 

the formation of microcalcifications in the arteries. 

Also, macrophages were proposed as cells able to release extracellular vesicles 

mediating crystal formation, similarly to MVs released by chondrocytes (New et al., 2013). 

However, macrophages where shown to give rise to osteoclasts, but not to differentiate towards 

mineralizing cells. That is why this hypothesis requires further verification. 

Another possibility is that microcalcification may form due to macrophage or VSMC 

apoptosis and/or necrosis. Indeed, the clearance of apoptotic bodies during atherogenesis 
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is impaired (Schrijvers, 2005), and they are abundantly present in atherosclerotic lesions. Thus, 

apoptotic bodies released by dying cells may serve as a nidus for calcification (Proudfoot et al., 

2000). However, this mechanism would be a difficult target for clinical treatment. 

 
Involvement of TNAP in formation of microcalcification 

 
Based on the results presented above as well as on the reports of other groups, we 

hypothesize, that TNAP may be involved in formation of microcalcifications. We have recently 

demonstrated that overexpression of TNAP was sufficient to induce mineralization in VSMCs 

(Fig. 13). Interestingly, this effect was not dependent on VSMCs trans-differentiation, since 

it occurred in A7R5 rat VSMCs which in our hands did not express any markers of osteoblast 

or chondrocyte differentiation. 

TNAP-mediated induction of mineralization which we observed in VSMCs was very 

likely due to the hydrolysis of PPi, as it is during in vivo mineralization (Hessle et al., 2002). 

Moreover, it has been demonstrated that TNAP overexpression, specifically in VSMCs, was 

sufficient to induce artery calcification in mice (Sheen et al., 2015). In addition, a very recent 

study revealed that TNAP overexpression accelerated coronary artery disease in mice 

(Romanelli et al., 2017). 

 
VSMC trans-differentiation and plasticity 
 

VSMCs of the artery walls are not terminally differentiated, but they are able to 

modulate their phenotype in response to changing environment. In a mature blood vessel, 

VSMCs exhibit a “contractile” or differentiated (synthetic) phenotype characterized by the 

expression of contractile markers specific to smooth muscle, such as smooth muscle myosin 

heavy chain, smooth muscle α-actin, h-caldesmon, and calponin, which are important for 

the regulation of the contraction (Rzucidlo et al., 2007). Upon injury, VSMCs dedifferentiate 

and re-enter the cell cycle. Synthetic VSMCs demonstrate an increased rate of proliferation, 

migration, and synthesis of ECM. On the other hand, they are characterized by decreased 

expression of smooth muscle-specific contractile markers. 

It was proposed that VSMC phenotypic plasticity may allow VSMC 

trans-differentiation towards osteoblasts or chondrocytes. Trans-differentiation is defined as 

the irreversible switch of one type of somatic cell to another. Natural trans-differentiation 

occurs in two steps: firstly, the cell dedifferentiates; and secondly, the natural developmental 
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programme is activated, allowing the cell to differentiate into a new lineage (Jopling et al., 

2011). 

VSMCs, osteoblasts and chondrocytes derive from a common progenitor – 

mesenchymal stem cell. Commitment of MSCs towards VSMCs, osteoblasts or chondrocytes 

may be regulated by different factors. For instance, TGF-β may stimulate both VSMC and 

chondrogenic differentiation of MSCs (Magne et al., 2005). Remarkably, VSMCs were shown 

to lose their lineage markers, such as smooth muscle α-actin, within 10 days of culture 

in mineralizing conditions. Conversely, the cells gained simultaneously an osteogenic 

phenotype as indicated by an increase in expression and DNA-binding activity of the Runx2 

transcription factor (Steitz et al., 2001). 

 
Origin of macrocalcification 
 

It is difficult to decide whether macrocalcification forms through the processes similar 

to endochondral or intramembranous ossification. Studies performed in apoE-/- mice indicated 

the presence of chondrocyte-like cells and collagen type II within atherosclerotic plaques, 

suggesting the role of endochondral ossification (Rosenfeld et al., 2000; Rattazzi, 2005). 

However, some reports, (Herisson et al., 2011), but not all (Aigner et al., 2008), indicate 

the features of endochondral ossification in human lesions. Moreover, collagens type I and III, 

characteristic for intramembranous ossification, represent 90% of the total collagens present 

in human atherosclerotic plaques (Rekhter et al., 1993) That is why in the literature those 

processes are defined as the consequence of trans-differentiation of VSMCs into 

osteochondrocyte-like cells. Nevertheless, in our hands, it is likely that TNAP activity 

stimulated MOVAS cells to trans-differentiate towards chondrocytes, not osteoblasts (Fig. 20). 

 

Important role of apatite crystals generated by TNAP in regulation of trans-differentiation 

 
In our opinion, the most important result of this PhD thesis is the effect of apatite crystals 

on VSMC gene expression. Indeed, we observed that treatment of those cells with alkaline 

phosphatase or apatite crystals, associated (ACCs) or not (ACs) to collagen, induced 

the expression of Bmp-2 and Acan. To our knowledge, stimulation of BMP-2 by apatite crystals 

in VSMCs has been already reported by two research groups (Sage et al., 2011; Nahar-Gohad 

et al., 2015). 

BMP-2 is a strong inducer of ectopic calcification (Biver et al., 2013). Therefore, 

crystals may stimulate VSMC trans-differentiation into chondrocyte-like cells in a large part 
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through a BMP-2 autocrine loop, analogically to differentiation of MSCs towards osteoblasts. 

Rawadi and collaborators proposed the mechanism regulating TNAP expression in MSCs 

(Rawadi et al., 2003). Briefly, BMPs may act through cell surface receptors, activating Smad 

translocation to the nucleus, resulting in transcription of target genes. In parallel, Smads may 

activate Wnt/β-catenin cascade that stimulates the expression of TNAP. Indeed, we observed 

that noggin, BMP antagonist, blocked Acan expression induced by alkaline phosphatase  

(Fig. 23). 

Stimulation of Acan indicated that MOVAS cells trans-differentiated into cells 

resembling chondrocytes upon treatment with apatite crystals. Aggrecan is the predominant 

proteoglycan expressed in growth plate cartilage, and mutations in the human Acan gene result 

in chondrodysplasias (Lauing et al., 2014). The absence of functional aggrecan in mice also 

leads to chondrodysplasia with chondrocytes failing to differentiate properly towards 

hypertrophic cells (Lauing et al., 2014). Importantly, in human atherosclerotic plaques, it was 

recently reported that crystals are mainly covered by GAGs (Duer et al., 2008). 

Nevertheless, our studies have one limitation - not all chondrocyte markers were 

increased in response to cell treatment with exogenous alkaline phosphatase and apatite 

crystals. Therefore, it is possible that in response to TNAP and crystals, VSMCs differentiate 

into cells with an intermediate phenotype between VSMCs and chondrocytes. This is much 

probable, since TNAP inhibition in primary chondrocytes reduced the expression of all 

chondrocyte markers that we have investigated. 

 
TNAP induction and inflammation – cause or consequence 

 
As already mentioned, induction of mineralization after TNAP overexpression was not 

dependent on VSMCs trans-differentiation (Fig. 13). Therefore, it is likely that TNAP 

activation in VSMCs, in response to inflammatory cytokines, is sufficient to induce 

microcalcification. Indeed, TNAP induction in the fibrous cap would not require VSMC trans-

differentiation into osteoblasts or chondrocytes (Lencel et al., 2011). This model is coherent 

with the fact that TNAP activity and calcification associate with inflammation in early 

atherosclerosis of apoE-/- mice (Aikawa et al., 2007). In atherosclerotic patients, inflammation 

was shown to precede calcification at the same location (Abdelbaky et al., 2013). Therefore, 

TNAP activation by inflammatory cytokines within a fibrous cap may represent a crucial event 

during atherogenesis. 
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In addition, we observed the apatite crystals generated by TNAP may induce cell 

necrosis. Besides, this effect was more pronounced in non-differentiated than differentiated 

MOVAS. Moreover, ACCs seemed to exert a cytotoxic effect as well, since we observed that 

cells cultured on their surface were able to survive no longer than 7 days. These findings are 

consistent with a dramatic increase of Acan gene expression in response to TNAP 

overexpression in non-differentiated A7R5 rat VSMCs (Fakhry et al., 2017). Moreover, 

our results are in agreement with the previous observation that apatite crystals induced vascular 

smooth muscle cell death (Ewence et al., 2008). It was shown before that crystalline structures 

may activate NLRP3 inflammasome and promote IL-1β secretion by triggering necrosis (Cullen 

et al., 2015). However, further investigation is necessary to elucidate whether necrosis caused 

by apatite crystals stimulate the release of inflammatory cytokines by VSMCs. Nevertheless, 

inflammation may be both the cause and the consequence of VC in the context of 

atherosclerosis. Inflammatory cytokines may induce VC by the activation of TNAP, whereas 

subsequent generation of apatite crystals may result in increased secretion of IL-1β, stimulating 

the inflammatory response. 

 
Possible association of microcalcifications with collagen 

 
In atherosclerotic plaques, the precise location of microcalcifications and their possible 

association with collagen are issues that are still debatable. However, it seems that the amount 

of collagen is a critical factor for atherosclerotic plaque stability. Vulnerable atherosclerotic 

lesions usually contain a thin and collagen-poor fibrous cap (Fukumoto, 2004). Interestingly, 

it was shown that calcium phosphate crystals taken up by fibroblasts may cause various 

consequences, such as for example increased production of matrix metalloproteinases (MMPs) 

(Morgan and McCarthy, 2002). MMPs are enzymes released also by macrophages within 

the plaque that decrease its thickness by collagen degradation. On the other hand, advanced 

lesions contain macrocalcifications together with a thick fibrous cap rich in collagen type I 

produced by VSMCs (Rekhter et al., 1993). Macrocalcifications are thought to be responsible 

for advanced plaque stabilization and to serve as a barrier towards further inflammation 

(Pugliese et al., 2015). 

As mentioned above, VSMC-derived MVs enriched in TNAP may be implicated 

in formation of microcalcifications. As a result of our work, membrane-bound TNAP was 

visualized for the first time on the surface of VSMCs in mineralizing conditions.  

Also, we observed crystalline and vesicle structures that pinched off from plasma membrane 
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of MOVAS, suggesting membranous origin of VSMC-derived MVs. Moreover, we 

demonstrated that VSMC-derived MVs deposited in the vicinity of collagen fibrils exhibited 

increased TNAP activity and had the ability to produce minerals with Ca/P ratio close to that 

of biological apatite. According to previous findings, vesicle binding to collagen is an important 

step during normal bone formation. Our results suggest that, similarly as in the case of typical 

mineralizing cells, increased TNAP activity and association of VSMC-derived MVs with 

collagen are required for their ability to mineralize. Therefore, our results indicate that the dual 

requirement of TNAP and collagen may refer also to VC. 

In MOVAS VSMCs, we observed vesicular structures enriched in annexins, most 

probably transport vesicles being in charge of annexin translocation towards plasma membrane 

during early mineralization, necessary for MV biogenesis (Cmoch et al., 2011).  

This translocation may proceed in response to elevation of intracellular calcium, as 

demonstrated by the group of Shanahan in human aortic VSMCs (Kapustin et al., 2011). 

Unfortunately, we did not detect annexins in the proximity of cellular plasma membrane, most 

probably due to the lack of additional stimulation by 2.7 mM Ca (Kapustin et al., 2011). We do 

not apply additional stimulation by calcium to avoid its non-physiological effect on the cells. 

Nevertheless, our results suggest an important role of AnxA2 in early mineralization. Possibly, 

the role of AnxA2 is more pronounced at the cellular level, before MV formation, whereas 

AnxA6 is mostly implicated in MV-mediated mineralization, as indicated by Kapustin and 

collaborators (Kapustin et al., 2011). 

 
The role of cholesterol in vascular calcification 

 
The mechanism through which Chol stimulates mineralization remains unknown. 

Excess Chol may provoke lipotoxicity that leads to ER stress, similarly to saturated fatty acids 

(Freigang et al., 2013). In VSMCs, excess saturated fatty acids accumulate in the ER, triggering 

ER stress, leading to activation of ATF4 transcription factor, VSMC trans-differentiation 

and subsequent calcification (Masuda et al., 2015). Another possibility is that Chol may 

modulate membrane dynamics leading to MV release. It was shown that Chol stimulates TNAP 

and mineralization in a dose-dependent manner in VSMCs (Liu et al., 2016). Conversely, 

stimulation of Chol efflux, inhibition of HMG-CoA reductase and the lack of LDL receptor, 

alone or in combination, appear to decrease VSMC differentiation and calcification. 

An interesting study by Geng and collaborators revealed that Chol metabolism 

is implicated in mineralization by vascular cells (Geng et al., 2011). They observed that VSMCs 
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isolated from LDL receptor null (Ldlr-/-) mice, characterized by impaired Chol uptake, had 

lower levels of intracellular Chol and less osteogenic differentiation compared to WT cells 

(Geng et al., 2011). However, based on our analysis of Chol content in trans-differentiated 

MOVAS and released MVs, it is difficult to draw conclusions concerning the effect of Chol 

on VSMC mineralization. We observed increased level of Chol in the membranous fractions, 

but not in MVs, in contrast to cholesterol-enriched chondrocyte MVs. Nevertheless, similar 

localization of lipid raft markers, Chol and GM1, as well as TNAP in the apical region 

of mineralizing cells, indicates a possible role of lipid rafts in MV biogenesis. Therefore, further 

investigation is necessary for better understanding of the stimulatory effect of Chol on VC. 

  



 103 
 

Concluding remarks 

 
Atherosclerotic plaque calcification ranges from early, diffuse microcalcifications  

to a bone-like tissue formed in a process resembling endochondral ossification. Regarding  

the fact that early plaque microcalcifications were reported as structures being particularly 

harmful for plaque stability, solving the mechanisms responsible for their formation appears 

crucial. 

 
 Based on our observations, we proposed a mechanism of TNAP-mediated stimulation of 

vascular calcification. Our findings are coherent with the model recently proposed 

by Chatrou and collaborators (Chatrou et al., 2015). They observed that microcalcifications 

were present before “osteochondrocytes” in human atherosclerotic plaques and 

hypothesized that they may be the cause and not the consequence of VSMC trans-

differentiation. In addition, we propose that TNAP activation by inflammatory cytokines 

in VSMCs, subsequent PPi hydrolysis and generation of apatite crystals, represents 

a particularly important mechanism responsible for the formation of microcalcifications. 

Our findings indicated that apatite crystals stimulate chondrogenesis through an activation 

of BMP-2 that may initiate trans-differentiation of VSMCs. 

 
 We detected membrane-bound TNAP on the surface of VSMCs cultured in mineralizing 

conditions. We have also demonstrated that collagen-attached VSMC-derived MVs had 

higher TNAP activity and produced more apatite crystals than their collagen-free 

counterparts. Therefore, our results suggest that, similarly as in the case of typical 

mineralizing cells, increased TNAP activity and association of VSMC-derived MVs with 

collagen are required for their ability to mineralize.  
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Atherosclerotic plaque calcification varies from early, diffuse microcalcifications to a bone-like tissue formed by
endochondral ossification. Recently, a paradigmhas emerged suggesting that if the bonemetaplasia stabilizes the
plaques, microcalcifications are harmful. Tissue-nonspecific alkaline phosphatase (TNAP), an ectoenzyme neces-
sary formineralization by its ability to hydrolyze inorganic pyrophosphate (PPi), is stimulated by inflammation in
vascular smooth muscle cells (VSMCs). Our objective was to determine the role of TNAP in trans-differentiation
of VSMCs and calcification. In rodent MOVAS and A7R5 VSMCs, addition of exogenous alkaline phosphatase (AP)
or TNAP overexpression was sufficient to stimulate the expression of several chondrocyte markers and induce
mineralization. Addition of exogenous AP to human mesenchymal stem cells cultured in pellets also stimulated
chondrogenesis. Moreover, TNAP inhibition with levamisole in mouse primary chondrocytes dropped minerali-
zation as well as the expression of chondrocyte markers. VSMCs trans-differentiated into chondrocyte-like cells,
as well as primary chondrocytes, used TNAP to hydrolyze PPi, and PPi provoked the same effects as TNAP inhibi-
tion in primary chondrocytes. Interestingly, apatite crystals, associated or not to collagen, mimicked the effects of
TNAP on VSMC trans-differentiation. AP and apatite crystals increased the expression of BMP-2 in VSMCs, and
TNAP inhibition reduced BMP-2 levels in chondrocytes. Finally, the BMP-2 inhibitor noggin blocked the rise in
aggrecan induced by AP in VSMCs, suggesting that TNAP induction in VSMCs triggers calcification, which stimu-
lates chondrogenesis through BMP-2. Endochondral ossification in atherosclerotic plaques may therefore be in-
duced by crystals, probably to confer stability to plaques with microcalcifications.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The majority of deaths in western countries are due to cardiovascu-
lar events, mainly caused by atherosclerosis. The most dangerous com-
plication of atherosclerosis is the rupture of a vulnerable plaque [1],
however it is not yet understood what characterizes the unstable
plaque. Since a single culprit lesion among many arterial segments af-
fected by atherosclerosis can cause an acute syndrome, deciphering
what renders a plaque unstable is essential. In this regard, the presence

of calcium is probably one of the most important factors affecting
plaque stability. Clinically, calcium accumulationmeasured as a calcium
score, has indeed emerged a strong independent predictor of acute car-
diovascular events [2].

We have known for a long time that human atherosclerotic plaques
are progressively ossified by a tissuewhich histologically appears nearly
undistinguishable from bone, with the presence of osteocytes and bone
marrow (reviewed in [3]). In atheroscleroticApolipoprotein (Apo)E-defi-
cientmice, calciumaccumulates in plaques by a process similar to endo-
chondral ossification, as revealed by the presence of chondrocyte-like
cells and the expression of a type II collagen-rich matrix [4,5]. In this
mousemodel of atherosclerosis, VSMCs are the cells responsible for cal-
cification, after their trans-differentiation into chondrocyte- and osteo-
blast-like cells [6]. In human atherosclerosis, it remains controversial
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whether plaque calcification also occurs through endochondral ossifica-
tion, since some findings [7], but not all [8], indicated features of growth
plate cartilage in human plaques. Although the calcium score identifies
a patient at risk [2], it is increasingly recognized that bonemetaplasia is
an adaptive process triggered to stabilize a plaque [9]. This apparent
paradox is nowexplained by the fact that an individualwith heavily cal-
cified plaques is also likely to have other poorly calcified, unstable
plaques [3].

Unfortunately, recently published data have complicated this simple
model. Intravascular ultrasound analysis in particular, revealed that it is
notmerely the presence of calcium per se that determines plaque stabil-
ity, but rather the size and the extent of the calcium deposits [10]. The
culprit segments of acute myocardial infarction patients generally con-
tain numerous small calcium deposits, whereas those of stable angina
pectoris patients contain fewer, but larger ones [10]. In this regard, dif-
fuse microcalcifications, with the size less than 10 μm, have been ob-
served in type I lesions, before chondrocytes or osteoblasts can be
detected in the plaques [11,12]. It is suggested that these
microcalcifications aremuchmore dangerous than is the bonemetapla-
sia in advanced plaques. An interesting in silico analysis proposed that
microcalcifications are particularly dangerous when they are located
in the fibrous cap [13]. More recently, a histology and 2.1-μm high-res-
olution μCT analysis of 22 nonruptured human atherosclerotic plaques
revealed that nearly all fibrous caps contain microcalcifications with a
size between 0.5 and 5 μm, and that those that will grow above 5 μm
will be particularly harmful [14]. In light of these recent data, under-
standing how microcalcifications form and determining their impact
appears crucial.

We recently formulated the hypothesis that tissue-nonspecific alka-
line phosphatase (TNAP) activation in VSMCs is sufficient to induce vas-
cular calcification [15]. TNAP is an ectoenzyme necessary for bone
mineralization, by its capacity to hydrolyze the constitutive mineraliza-
tion inhibitor inorganic pyrophosphate (PPi) (reviewed in [16]). TNAP is
activated in VSMCs by the inflammatory cytokines tumor necrosis fac-
tor-α and interleukin-1β, which are major players in atherosclerotic
plaquedevelopment [17–21]. Very recently, the group ofMillan demon-
strated that TNAP overexpression, specifically in VSMCs, was sufficient
to induce arterial calcification [22]. It remains however unknown
whether calcification induced by TNAP in VSMCs is dependent or not
on VSMC trans-differentiation, and what the cellular effects of crystals
are. In this regard, our objectives were to determine the effects of
TNAP activation in VSMCs, from calcification to chondrocyte trans-dif-
ferentiation, and to investigate the involved molecular mechanisms.

2. Materials and methods

2.1. Cell cultures

Mouse MOVAS VSMCs were purchased from ATCC (Molsheim,
France). Rat A7R5 VSMCs were provided from PRASE-EDST, Beirut, Leb-
anon. Human primarymesenchymal stem cells (MSCs) were purchased
from Lonza (Walkersville, USA).Murine primary chondrocyteswere ex-
tracted from newborn mice as already published in details [23]. Animal
experimentations were conducted according to French and European
laws and approved by our local ethic committee (approval numbers A
69266 0501 and BH2012-63). Cell experiments were made on primary
chondrocytes extracted from 4- to 6-day old newborn litters from
SWISS mice (Janvier labs), after decapitation. The animal procedures
were performed conform to the guidelines from Directive 2010/63/EU
of the European Parliament on the protection of animals used for scien-
tific purposes. Cells were routinely cultured in DMEM medium (4.5 g/L
glucose) supplemented with 10% (v/v) fetal bovine serum (FBS), peni-
cillin (100 U/mL), streptomycin (100 μg/mL), 20 mmol/L Hepes, and
2 mmol/L L-glutamine. To support the growth of MSCs, fibroblast
growth factor-2 (2 ng/mL) was added to their culture medium. All
cells were cultured in the presence of 50 μg/mL ascorbic acid to

accelerate collagen secretion. MOVAS trans-differentiation was acceler-
ated with 10 μg/mL insulin with transferrin and sodium selenite
(Sigma) as previously published [24,25]. Onlywhere indicated,mineral-
ization was stimulated with 10 mM of β-glycerophosphate (β-GP) in
MOVAS and chondrocytes, and with 3 mM inorganic phosphate (Pi) in
A7R5. MSCs were induced to differentiate into chondrocytes in pellet
cultures (500,000 cells per tube in 1 mL) with FBS-free DMEM in the
presence of bovine insulin (10 μg/mL) and TGF-β1 (10 ng/mL) as previ-
ously published [18].

2.2. Alkaline phosphatase (AP) addition and TNAP overexpression

Bovine intestinal alkaline phosphatase from Sigmawas used. In par-
allel, TNAP expressing plasmid or the corresponding empty vector
(pIRES2-EGFP) have been prepared as described previously [26]. A7R5
cells were transfected at 80% confluence using lipofectamine reagent
(Life Technologies), and transfected cells were selected within 7 addi-
tional days with G418 (800 μg/mL).

2.3. RNA extraction, reverse transcription, and quantitative polymerase
chain reaction (RT-qPCR)

Total RNAwas extracted using theNucleoSpin RNA II kit (Macherey-
Nagel) following the manufacturer's protocol. 1 μg of RNA was retro-
transcribed into cDNA with Superscript II (Life Technologies) and
quantitative PCR was performed using a LightCycler system (Roche
Diagnostics). Primers and PCR conditions are given in Table 1. The ob-
tained products were verified by sequencing. Relative quantification
was performed using the 2−ΔΔcq method by RelQuant LightCycler soft-
ware 4.1 (Roche Diagnostics, Meylan, France). Gapdh (glyceraldehyde-
3-phosphate dehydrogenase) gene was used as reference gene.

2.4. Measurement of ATP- and PPi hydrolysis

At confluence, MOVAS and chondrocytes were differentiated in the
presence of 50 μg/mL ascorbic acid and 10 mM β-GP. Cultures were
stopped on day 21 for VSMCs and on day 7 for primary chondrocytes
and cells were fixed with 4% formaldehyde and incubated in HEPES
buffer (pH = 7.0) containing MgCl2 (1 mM) and the substrate (10 μM
ATP or 20 μMPPi) at room temperature. Aliquotswere taken at different
time points and the Pi releasewas determined byMalachite Green assay
as described elsewhere [27]. The results were expressed as μM Pi by
comparing to a standard curve of Pi and initial reaction rateswere deter-
mined from the curves representing Pi concentrations versus time.

2.5. Preparation of mineralized collagen, apatite crystals and calcium pyro-
phosphate dihydrate (CPPD) crystals

MOVAS cells were seeded at their confluence density on collagen
type I matrices, either unmineralized or mineralized with apatite as de-
scribed earlier, and cultured in DMEM with ascorbic acid [28]. Briefly,
0.1mg/mL calf skin type I collagenwas coated in 6-well plates and incu-
bated or not with intestinal AP, phosvitin (0.13 mg/mL) and calcium β-
GP (6 mM). Calcification was determined with alizarin red staining and
crystals were analyzed with Fourier transform infrared (FTIR) spectros-
copy, using a Thermo Scientific Nicolet iS10 spectrometer (64 scans at
4 cm−1 resolution). In parallel, apatite crystals were prepared starting
from a solution of sodium phosphate (0.4 M, pH = 7.2), which was
added to DMEMto reach afinal concentration of 10mMinorganic phos-
phate. The solutionwas incubated for 24 h at 37 °C. Crystals that formed
in these conditionswere collected after series of centrifugation at 3000g
and washing steps in fresh medium. Crystals were then sonicated for
10 min in 10 mL, centrifuged at 3000g and dried. Calcium pyrophos-
phate dihydrate (CPPD) crystals were prepared similarly by mixing a
solution of PPi at 100 μM with DMEM (1.8 mM calcium). MOVAS
VSMCs and primary chondrocytes were treated respectively with
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apatite crystals after 17 days of differentiation and CPPD after 10 days of
differentiation, as described above.

2.6. Analytical methods

For the determination of TNAP activity using p-nitrophenyl phos-
phate (pNPP) as substrate [29], cells were harvested in 0.2% Nonidet
P-40 and disrupted by sonication. TNAP specific activity was expressed
as nmol of p-nitrophenol formed/min/mg of protein. Calcium deposi-
tion was determined by alizarin red staining (2% solution at pH 4.2)
for 5 min and quantified at 570 nm after extracting the stain with
100mM cetylpyridinium chloride for 2 h. For alcian blue staining of sul-
fated glycosaminoglycans (GAGs), cells were rinsed with PBS followed
by fixation in methanol at −20 °C for 5 min. Staining was performed
with 0.1% alcian blue solution in 0.1 M HCl overnight at room tempera-
ture. For quantification, after washing, the bound stain was extracted
with 6 M guanidine HCl for 8 h, and absorbance was measured at
620 nm.

2.7. Statistical analysis

Experiments were performed in triplicates and repeated indepen-
dently at least three times. Results are expressed as mean ± the stan-
dard error of the mean (SEM). For statistical analysis, depending on
the nature of distribution, a two tailed un-paired Student t-test or
Mann-Whitney test was performed (Instat program, version 3.10.0.0).
According to this rule, all tests were performed with Student t-test ex-
cept the test concerning Fig. 2A, which was realized with Mann-Whit-
ney. The differences between groups were considered significant with
* at p b 0.05, ** at p b 0.01 and *** at p b 0.001.

3. Results

3.1. TNAP stimulates VSMC trans-differentiation into chondrocytes

The role of TNAP during VSMC trans-differentiation was first inves-
tigated using murine MOVAS VSMCs, which had been shown to trans-
differentiate into chondrocytes and mineralize their extracellular

matrix (ECM) upon being cultured with ascorbic acid and β-GP [25].
In our hands,MOVAS cells expressed the chondrocytemarkers aggrecan
and type II collagen after 14 days of culture, and the hypertrophic
markers type X collagen and osteocalcin after 21 days, when they also
showed increased TNAP activity and mineralization ([25] and data not
shown). Hence, we chose to treat these VSMCs with high levels of puri-
fied alkaline phosphatase (AP, 8 units per mL) on day 17, which is a few
days before the onset of endogenous TNAP activity on day 21. Cells were
treated with AP for 7 days in the absence of β-GP to avoid a non-phys-
iological rise of Pi levels due to β-GP hydrolysis. When cells were cul-
tured under these conditions, we observed an up-regulation of the
mRNA encoding the early chondrocyte marker aggrecan, and of the
late ones - type X collagen and osteocalcin after AP treatment (Fig.
1A). Aggrecan is a proteoglycan in which chondroitin sulfate and
keratan sulfate GAG chains are attached to a protein core, creating a
highly negatively-charged molecule that enables hydration of the carti-
lage tissue as well as binding of growth factors [30]. Type X collagen is
widely used as a marker of hypertrophic chondrocytes, although its
physiological role is not yet elucidated [31]. Osteocalcin is a abundant
carboxylated protein associated with bone crystals, and after its release
in the blood during bone resorption, a hormone that regulates glucose
homeostasis [32]. Since osteocalcin is also expressed by osteoblasts,
we sought to investigate whether VSMCs also trans-differentiate in os-
teoblasts after AP treatment. We measured the levels of the osteo-
blast-specific transcription factor osterix, which did not increase but
instead decreased in the presence of AP, suggesting that VSMCs trans-
differentiated into chondrocytes and not osteoblasts (Fig. 1A). To
strengthen these results obtained with MOVAS VSMCs, we used A7R5
VSMCs, which in our hands were unable to trans-differentiate into
chondrocytes in the presence of ascorbic acid and either β-GP or Pi
(data not shown). Interestingly, overexpression of TNAP in these cells
resulted in a dramatic increase in Acan levels (Fig. 1B) and in a signifi-
cant stimulation of calcium accumulation in the matrix (Fig. 1C).

3.2. TNAP is necessary for normal chondrocyte differentiation

We next explored the involvement of alkaline phosphatase in nor-
mal chondrocyte differentiation. To address this issue, we first used

Table 1
Summary of primers used. Shown are the primer sequences (F: forward; R: reverse), annealing temperatures (Ta), base pair (bp) lengths of the corresponding PCR products, and GenBank
accession numbers (Acan: aggrecan; Bmp-2: bone morphogenetic protein-2; Col2a1: collagen type II, α1 chain; Col10a1: collagen type X, α1 chain; Gapdh: glyceraldehyde phosphate
dehydrogenase; Id1: inhibitor or DNA binding 1; Ocn: osteocalcin; Opn: osteopontin; Osx: osterix).

Gene GenBank Ta (°C) Sequences Lengths (bp)

mAcan NM_007424.2 60 F: 5′-GTGCGGTACCAGTGCACTGA-3′ 104
R: 5′-GGGTCTGTGCAGGTGATTCG-3′

mBmp-2 NM_007553 60 F: 5′-TGGAAGTGGCCCATTTAGAG-3′ 165
F: 5′-TGACGCTTTTCTCGTTTGTG-3′

mCol2a1 NM_031163.3 60 F: 5′-GGCAACAGCAGGTTCACAT-3′ 131
R: 5′-ATGGGTGCGATGTCAATAA-3′

mCol10a1 NM_009925.4 60 F: 5′-CAAACGGCCTCTACTCCTCTGA-3′ 129
R: 5′-CGATGGAATTGGGTGGAAAG-3′

mGapdh NM_001289726.1 60 F: 5′-GGCATTGCTCTCAATGACAA-3′ 200
R: 5′-TGTGAGGGAGATGCTCAGTG-3′

mId1 NM_010495.3 60 F: 5′-GCGAGATCAGTGCCTTGG-3′ 97
R: 5′-GAGTCCATCTGGTCCCTCAG-3′

mOcn NM_001037939.2 60 F: 5′-AAGCAGGAGGGCAATAAGGT-3′ 364
R: 5′-CGTTTGTAGGCGGTCTTCA-3′

mOpn NM_001204203.1 60 F: 5′-CTTTCACTCCAATCGTCCCTA-3′ 305
R: 5′-GCTCTCTTTGGAATGCTCAAGT-3′

mOsx NM_130458.3 60 F: 5′-AGGCACAAAGAAGCCATACG-3′ 170
R: 5′-GCCCAGGAAATGAGTGAGG-3′

mRunx2 NM_009820.5 62 F: 5′-GCCGGGAATGATGAGAACTA-3′ 200
R: 5′-GGACCGTCCACTGTCACTTT-3′

rAcan NM_022190.1 60 F: 5′-CTCTGCCTCCCGTGAAAC-3′ 157
R: 5′-TGAAGTGCCTGCATCTATGT-3′

rCol10a1 XM_008773017.1 60 F: 5′-TTCACAAAGAGCGGACAGAGA-3′ 143
R: 5′-TCAAATGGGATGGGAGCA-3′

rGapdh NM_017008.4 60 F: 5′-GCAAGTTCAACGGCACAG-3′ 140
R: 5′-GCCAGTAGACTCCACGACA-3′
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human MSCs as a model of chondrocyte precursors, and allowed them
to commit towards chondrocytes in pellets in the presence of insulin
and TGF-β1 [18], with orwithout exogenous AP. As shown in Fig. 2A, ex-
ogenous APwas sufficient to significantly increase the deposition of sul-
fated GAGs during chondrocyte differentiation ofMSCs.We next sought
to investigate whether inhibition of endogenous TNAP in hypertrophic
chondrocytes impacts chondrocyte differentiation. To address this as-
sumption, we isolated murine primary chondrocytes and differentiated
them to hypertrophy by culturing from confluence for 10 days in the
presence ascorbic acid. In these conditions, hypertrophic differentiation
was demonstrated by a 30-fold increase in TNAP activity as compared to
freshly isolated primary articular chondrocytes (Fig. 2B). In these cells,
inhibiting TNAP activity with the well-known TNAP inhibitor levami-
sole significantly reduced the deposition of sulfated GAGs and dropped
the mRNA levels of Acan as well as those of the hypertrophic markers
Col10a1 and Ocn (Fig. 2B).

3.3. Trans-differentiated VSMCs and chondrocytes use TNAP to hydrolyze
PPi

We then suspected that TNAP stimulates chondrogenesis through
hydrolysis of ATP and/or that of PPi. Indeed, TNAP has been shown to
dephosphorylate ATP to accelerate axonal growth in neuron cultures
[26], and genetic depletion of PPi in mouse promotes chondrogenesis
in arteries in addition to vascular calcification [33]. VSMCs induced to
trans-differentiate into chondrocytes for 21 dayswere able to hydrolyze
exogenously added ATP and PPi (Fig. 3A). In these cells, levamisole dra-
matically dropped the release of Pi fromexogenously added PPiwhereas
it showed no effect on ATP hydrolysis (Fig. 3A). Similarly, hypertrophic
chondrocytes were also able to hydrolyze exogenously added ATP and
PPi and levamisole inhibited the hydrolysis of PPi but not that of ATP
(Fig. 3B). These results indicate that trans-differentiated VSMCs as
well as primary chondrocytes used TNAP to hydrolyze exogenous PPi.
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Fig. 1. Alkaline phosphatase activity stimulates chondrocyte differentiation andmineralization from VSMCs. MOVAS cells were cultured from confluence to day 17with ascorbic acid and
β-GP. Onday 17,β-GPwas removed and 8U/mL of APwere added. (A)mRNA levelswere quantified by RT-qPCR after 4 and 7 days of treatment, and normalizedwithGapdhmRNA levels.
(B and C) A7R5 cells stably overexpressing TNAPwere cultured for 7 and 14 days. The levels of Acan and Col10a1weremeasured by RT-qPCR (B) and alizarin red staining was performed
and quantified (C). * indicates a statistical difference with p b 0.05 and ** indicates a statistical difference with p b 0.01.
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In contrast, both cell types probably used other enzymes than TNAP to
hydrolyze ATP.

3.4. PPi inhibits chondrocyte differentiation and calcification

To investigate a possible role of PPi hydrolysis in the stimulation of
chondrocyte differentiation by TNAP, we treated primary chondrocytes
with doses of PPi increasing from 2 to 100 μM. Interestingly, treatment
of primary chondrocytes with PPi mimicked the inhibitory effects of le-
vamisole on gene expression (as shown in Fig. 2B), with a pronounced
dose-dependent decrease in the mRNA levels of early chondrocyte
markers Acan and Col2a1, and a decrease in hypertrophic chondrocyte
markers Col10a1 (Fig. 4A) and TNAP (Fig. 4B). We next questioned
whether this inhibitory effect of exogenous PPi on chondrocyte differen-
tiation was direct or secondary to the well-known role of PPi in the in-
hibition of mineralization. In chondrocytes allowed to mineralize their
extracellular matrix by addition of β-GP, we checked that treatment
with PPi reduced calcium deposition (Fig. 4C). Surprisingly, inhibition
by 100 μM of PPi appeared less pronounced than that by 20 μM, al-
though the differencewas not significant (Fig. 4C). FTIR analysis of crys-
tals formed in cultures treatedwith 100 μMPPi revealed the presence of
a mixture of apatite crystals and crystals of calcium pyrophosphate
dihydrate (CPPD) (Fig. 4D) [34]. In contrast, cultures untreated and
those treated with 20 μM PPi only revealed the presence of apatite
(data not shown). This means that the lower inhibition of calcium accu-
mulation in cultures treatedwith 100 μMof PPi as comparedwith 20 μM
PPi was due to the precipitation of CPPD crystals.

In these conditions, to be sure that the decrease in chondrocyte
markers (Fig. 4A) was indeed due to PPi and was not due to CPPD crys-
tals, we investigated the effects of synthetic CPPD crystals on
chondrocytes. Fig. 4E clearly indicates that in contrast to PPi, CPPD crys-
tals had no effect on the levels of aggrecanmRNA (Fig. 4E). As a positive
control of genes regulated by high PPi levels [35] and calcium phosphate
crystals [36,37], we investigated the expression of the calcification in-
hibitor osteopontin. We observed that Opn mRNA levels were strongly
increased when PPi was added at the dose of 100 μM, the same dose
that induces CPPD crystal formation, but were not changed at the dose
of 20 μM (Fig. 4F). Moreover, CPPD crystals also increased Opn levels
to the same extent than that achieved with 100 μM PPi, the dose that

induces CPPD formation (Fig. 4G). This demonstrates that CPPD crystals
but not PPi were involved in upregulation of Opn levels. Collectively, the
results of Figs. 3 and 4 strongly suggest that TNAP stimulates chondro-
cyte differentiation through PPi hydrolysis.

3.5. TNAP stimulates VSMC trans-differentiation through PPi hydrolysis, the
subsequent crystal formation, and the induction of BMP-2

We then questionedwhether TNAP stimulates VSMC trans-differen-
tiation into chondrocyte-like cells through the generation of apatite
crystals induced by PPi hydrolysis. To answer this question, we first pre-
pared dishes coatedwith collagen, either left unmineralized ormineral-
ized by addition of alkaline phosphatase (Fig. 5A). FTIR analysis of the
ν1ν3PO4 domain between 1200 and 900 cm−1 and of the ν1CO3 domain
at 870 cm−1 revealed that the crystals inmineralized collagen consisted
of a carbonated apatite (Fig. 5A), virtually identical in organization and
composition to the carbonated apatite that forms in the cartilage
growth plate [38] and atherosclerotic plaques [39]. We then cultured
VSMCs on these unmineralized ormineralized synthetic collagenmatri-
ces for 7 days. Interestingly, we observed a significant increase of Acan
levels when VSMCswere cultured onmineralized collagen as compared
to unmineralized collagen (Fig. 5B). Similarly, VSMCs treated with apa-
tite crystals in suspension, without collagen, also showed the same 2-
fold increase in Acan levels (Fig. 5C).

In order to begin in identifying the factors involved in the effects of
TNAP and crystals on chondrocyte gene expression, we focused on
bonemorphogenetic protein-2 (BMP-2), one of themost potent anabol-
ic growth factor known so far [40]. BMP-2 is expressed in human ath-
erosclerotic plaques after calcification has been initiated [12] and its
expression is induced by hydroxyapatite crystals in cultured VSMCs
[37]. We observed that Bmp-2 expression was increased when VSMCs
were cultured onmineralized collagen as comparedwith unmineralized
collagen, and that apatite crystals were also able to stimulate Bmp-2 ex-
pression (Fig. 6A). In addition, we observed an increase in Bmp-2 levels
in response to exogenous AP (Fig. 6A). Furthermore, we observed that
hypertrophic chondrocytes treated with levamisole had decreased
levels of Bmp-2 and of its transcriptional target Id1, suggesting a loss
of BMP-2 activity upon inhibition of TNAP (Fig. 6B). Finally, we used
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the BMP-2 inhibitor Noggin to demonstrate that alkaline phosphatase
activity stimulates aggrecan expression by stimulating BMP-2 (Fig. 6D).

4. Discussion

It is increasingly recognized today that the type and location rather
than the extent of calcifications are important to determine atheroscle-
rotic plaque stability [10,13,14], and several reports indicate that
microcalcifications,measuring less than a singe cell size, seem to be par-
ticularly harmfulwhen they are located in the fibrous cap [13,14]. These
microcalcifications are formed early in human plaque development,
probably as soon as in type I lesions, before chondrocyte-like cells or os-
teoblast-like cells can be detected [11,12]. Therefore, the process similar
to endochondral ossification that occurs in atherosclerotic plaques [4,5]
is probably not the mechanism leading to the nucleation of the first
crystals in the plaques. The fact that these early microcalcifications
that form before chondrocyte differentiation have not been reported
in a number of studies is probably due to their small size, that renders
them hardly detectable by von Kossa and alizarin red stainings [12,41].

Despite the fact that microcalcifications are now considered as cru-
cial determinants of plaque stability and future cardiovascular compli-
cations [3,10,13,14], the molecular mechanisms responsible for their
formation as well as their effects on VSMCs remain quite obscure. It
has been proposed that macrophages release exosomes, which induce
crystal formation in a similar manner as matrix vesicles released from
chondrocytes [42]. This has however to be confirmed, since it would
probably be a unique case where calcification is triggered by macro-
phages, which in skeletal tissues give rise to bone-resorbing osteoclasts,
but not mineralizing cells. Alternatively, it is possible that
microcalcification occurs in association with macrophage or VSMC apo-
ptosis and/or necrosis. Indeed, the clearance of apoptotic bodies is im-
paired in atherosclerosis [43], where cells undergo secondary necrosis
[44]. Dying cells may release apoptotic bodies, which in the absence of
clearancemechanisms, may undergo necrosis and eventually constitute
a nidus for calcification [45]. If this mechanism is indeed themain cause
of microcalcification in atherosclerosis, it will probably be quite difficult
to impact clinically.

On the other hand, different results from our laboratory and other
groups suggest that a single enzyme, TNAP, is likely to play a significant

Levamisole +-

F
o
ld

 c
h
a
n
g
e
 
 i
n
 
P

i
r
e
le

a
s
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

*

0

0.2

0.4

0.6

0.8

1

1.2

1.4

***

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A

B

0

5

10

15

20

25

30

0 10 20 30

0

5

10

15

20

25

30

0 10 20 30 40

P
i
r
e
le

a
s
e
 
fr

o
m

 s
u
b
s
tr

a
te

 
(
µ

M
)

Time (min)

P
i
r
e
le

a
s
e
 
fr

o
m

 s
u
b
s
tr

a
te

 
(
µ

M
)

Time (min)

Levamisole +-

Levamisole +- Levamisole +-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

From ATP

F
o
ld

 c
h
a

n
g

e
 
 i
n
 
P

i
r
e
le

a
s
e

F
o
ld

 c
h
a
n
g
e
 
 i
n
 
P

i
r
e
le

a
s
e

F
o
ld

 c
h
a

n
g

e
 
 i
n
 
P

i
r
e
le

a
s
e

From PP
i

From ATP From PP
i

Chondrocytes

VSMCs

Fig. 3.VSMCs trans-differentiated into chondrocyte-like cells and primary chondrocytes use TNAP to hydrolyze PPi. MOVAS cells or chondrocyteswere cultured as detailed in theMaterials
andmethods section, and after fixation, PPi or ATP hydrolysis into Pi wasmeasured at different time points in VSMCs (A) and primary chondrocytes (B) by theMalachite green assay in the
presence or absence of 100 μM levamisole (left panels, one representative experiment is shown). The ratio between the initial reaction rates measured in the presence versus in the
absence of levamisole is represented in the right panels (mean of three independent experiments). * indicates a statistical difference with p b 0.05; *** indicates a statistical difference
with p b 0.001.

648 M. Fakhry et al. / Biochimica et Biophysica Acta 1863 (2017) 643–653



role in microcalcification. As its name indicates, tissue-nonspecific AP
expression is not restricted to bone-forming cells, and TNAP plays
other functions than mineralization [16]. Interestingly enough, TNAP
is constitutively expressed at low levels in mesenchymal progenitors
from many tissues [46,47], and is activated in VSMCs by TNF-α and IL-

1β [18–21]. If the pathophysiological aim of TNAP activation in VSMCs
is not known, one of its consequences in vivo is induction of calcification
[22]. In the present in vitro study, overexpression of TNAP in VSMCswas
also sufficient to induce calcification. This induction of calcification by
TNAP was not dependent on VSMCs trans-differentiation since it
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occurred not only in MOVAS VSMCs that trans-differentiate into
chondrocytes in culture, but also in A7R5 VSMCs, which in our hands
did not express any marker of osteoblasts or chondrocytes. This induc-
tion of mineralization by TNAP in the absence of bone cell differentia-
tion is not really surprising since the group of Karsenty demonstrated
that mineralization in vivo and in vitromerely requires the coexpression
of TNAP and a fibrillar collagen [48]. Up to thirteen types of collagen are
present in the normal vascular wall, with type I collagen accounting for
about 65% of the total collagen content [49]. Moreover, the amount of
type I collagen secreted by VSMCs increases in atherosclerotic plaques,
in particular in the fibrous cap [49]. Therefore, activation of TNAP in
VSMCs by inflammation is likely sufficient to induce microcalcification,
especially in the fibrous cap, with no requirement of VSMC trans-differ-
entiation into osteoblasts or chondrocytes [15,22,48]. This model is co-
herent with the fact that TNAP activity and calcification associate with
inflammation in early atherosclerosis of ApoE-deficient mice [41]. In
atherosclerotic patients also, inflammation was shown to precede calci-
fication at the same location [50]. Since inflammation and ongoing cal-
cification appear to co-localize at sites of plaque rupture [51], TNAP
activation may represent a dramatic event in atherosclerotic progres-
sion. The recent development of TNAP inhibitors [52,53] will be pre-
cious to investigate the impact of TNAP inhibition on atherosclerosis
development. Alternatively, proteins involved in TNAP activation may
also represent attractive targets. In this regard, sortilin was recently de-
scribed as an important inducer of TNAP activation in extracellular ves-
icles, which is likely to play a dramatic role in calcification of

atherosclerotic plaques [54]. TNAP induction of calcification in our
hands was very likely due to the hydrolysis of PPi, as it is during in
vivo mineralization [48,55]. Interestingly, PPi deficiency due to muta-
tions in the gene encoding the PPi-producing enzyme ectonucleotide
pyrophosphatase/phosphodiesterase-1 (NPP1) leads to severe, lethal
arterial calcification [56], and PPi supplementation has been tested
with success to prevent vascular calcification associated with chronic
kidney disease [57,58]. It will therefore also be interesting to determine
the impact of PPi administration on microcalcification and the progres-
sion of atherosclerosis in comparison to the effects of TNAP inhibitors.

In our opinion, themost interesting result in the present study is the
effect of apatite crystals on VSMCs. Indeed, we observed that treatment
of these cells with alkaline phosphatase or apatite crystals induced the
expression of BMP-2 and several chondrocyte markers. To our knowl-
edge, stimulation of BMP-2 by apatite crystals in VSMCs has already
been reported by two groups [37,59]. BMP-2 is probably the most po-
tent inducer of ectopic bone formation [40], being able to induce ectopic
bone formation when implanted intramuscularly or subcutaneously
into rodents [60,61]. It can therefore be reasonably hypothesized that
crystals stimulate VSMC trans-differentiation in chondrocyte-like cells
in a large part through a BMP-2 autocrine loop. This is supported by
our observation that the BMP-2 inhibitor noggin blocked aggrecan ex-
pression induced by alkaline phosphatase. Aggrecan is a proteoglycan
abundant in sulfated GAGs produced by chondrocytes. Interestingly, in
mice deficient in the mineralization inhibitor matrix Gla protein, vascu-
lar calcification precedes chondrocyte differentiation, and aggrecan is
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the first matrix protein to be detected, 5 days after crystal deposition
[62]. In human atherosclerotic plaques, it was recently reported that
crystals are mainly covered by GAGs [39], suggesting that the produc-
tion of aggrecan and GAGs represent an adaptive mechanism used by
VSMCs in response to microcalcification in the plaques. Yet the aim of
such an adaptive GAG deposition is obscure. Proteoglycans including
aggrecan are up-regulated at sites of intimal hyperplasia in atheroscle-
rotic plaques [63], where they may bind and retain apolipoprotein-B
containing lipoproteins, and stimulate chronic inflammation and the ac-
cumulation of macrophages. Because of its large size and large number
of GAG modification sites, aggrecan has been hypothesized to have the
greatest affinity for lipoproteins of all of the intimal proteoglycans
[63]. Alternatively, since aggrecan expression is stimulated by apatite
crystals, we speculate that it may also play a role in VSMC trans-

differentiation into chondrocytes in atherosclerosis [4,5]. Aggrecan is in-
deed the predominant chondroitin sulfate proteoglycan expressed in
growth plate cartilage, and mutations in the Acan gene are the cause
of chondrodysplasias [30]. The absence of functional aggrecan in mice
also leads to chondrodysplasiawith chondrocytes failing to differentiate
properly andmature towards hypertrophic cells [30]. In our opinion, the
role of aggrecan in atherosclerotic plaque development merits particu-
lar attention.

Our study has nevertheless one limitation. Not all chondrocyte
markers were increased in response to TNAP and crystals. If Acan and
Ocn were significantly up-regulated by TNAP for instance, the expres-
sion of Col10a1was increased but did not reach significance, and the ex-
pression of Col2a1 encoding type II collagen was not changed. It is
therefore possible that in response to TNAP and crystals, VSMCs
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differentiate into cells with an intermediate phenotype between VSMCs
and chondrocytes. Such an intermediate differentiationmay also be due
to the nature of the two VSMC lineswe used that do not perfectlymimic
primary cells. This is plausible since TNAP inhibition in primary
chondrocytes reduced the expression of all chondrocyte markers we
have investigated. Moreover, the fact that TNAP-deficient mice have
disorganized growth plates [64,65] strengthens the notion that TNAP
is required for chondrocyte differentiation.

In conclusion, our results and interpretation fit quite well with the
model recently built by Chatrou and collaborators [12]. They observed
that microcalcifications were present before “osteochondrocytes” in
human atherosclerotic plaques and hypothesized that they may be the
cause and not the consequence of VSMC trans-differentiation [12].
They proposed that a loss of functional matrix Gla protein may be in-
volved in triggering microcalcification. Alternatively, or additionally,
we propose that TNAP activation by inflammatory cytokines in VSMCs
[18–21], and the subsequent hydrolysis of PPi, also represents a particu-
larly important factor inducing plaque calcification.
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A B S T R A C T

Vascular calcification (VC) is a hallmark of atherosclerotic plaques. Calcification of advanced plaques shares
common features with endochondral ossification of long bones and appears to be protective. On the other hand,
microcalcification of early plaques, which is poorly understood, is thought to be harmful. Tissue-nonspecific
alkaline phosphatase (TNAP) and collagen are the two proteins necessary for physiological mineralization. Here,
we demonstrate the presence of membrane-bound TNAP, detected by immunofluorescence, that seems to form
clusters on the plasma membrane of vascular smooth muscle cells (VSMCs) cultured in mineralizing conditions.
We observed that TNAP activity and mineralization were increased when VSMCs were cultured in the presence
of ascorbic acid (AA) and β-glycerophosphate (β-GP). Increased TNAP activity was observed in whole cell ly-
sates, total membrane fractions and, more particularly, in matrix vesicles (MVs). We have shown that TNAP-
enriched MVs released from VSMCs subjected to collagenase contained more apatite-like mineral than the less
TNAP-rich/TNAP-enriched vesicles isolated without collagenase treatment. These results suggest a role for
collagen in promoting calcification induced by TNAP in atherosclerotic plaques.

1. Introduction

It has been known for decades that advanced atherosclerotic pla-
ques undergo endochondral-like ossification resulting in formation of
macrocalcifications, which in advance lesions strongly resemble bone
tissue. Ossified plaques consist of carbonated apatite associated with
collagen, very similar in organization and composition to the crystals
formed by cartilage growth plate [1]. More recently, microcalcifica-
tions, measuring<10 μm in diameter, have been observed within the
fibrous caps of early lesions, before the appearance of chondrocyte or
osteoblast phenotypes in vascular smooth muscle cells (VSMCs) within
the plaque [2]. An interesting study revealed that nearly all fibrous caps
contain microcalcifications, and that those with a diameter above 5 μm
are particularly harmful [3]. Moreover, based on in silico analysis, it
was proposed that microcalcifications are particularly harmful when
located in a thin fibrous cap [4]. Finally, the culprit segments of vessels
of acute myocardial infarction patients generally contain such micro-
calcifications, whereas those of stable angina pectoris patients contain
macrocalcifications [5].

Deciphering when and where microcalcification begins in athero-
sclerotic plaques is therefore crucial. Two proteins appear to be

necessary for normal mineralization: a fibrillar collagen and TNAP [6].
VSMCs normally secrete type I collagen. Tissue-nonspecific alkaline
phosphatase (TNAP) overexpression in VSMCs in vitro and in vivo trig-
gers vascular calcification [7–9]. We therefore aimed at determining
the molecular mechanisms of VSMC mediated mineralization, with a
particular focus on collagen and TNAP.

TNAP is an enzyme playing a key role during physiological miner-
alization mediated by chondrocytes and osteoblasts that deposit cal-
cium phosphate crystals in the extracellular matrix (ECM) [10–12].
TNAP regulates mineralization by hydrolyzing a constitutive miner-
alization inhibitor - inorganic pyrophosphate (PPi) [13]. PPi is a small
molecule that binds to the arising calcium phosphate crystals and
prevents further incorporation of phosphate [14]. Early stages of mi-
neralization take place in nanostructures called matrix vesicles (MVs)
that are released by mineralizing cells and serve as nucleation sites for
apatite synthesis [15].

Besides TNAP, other proteins may play an important role in calci-
fication. For instance, annexins, the calcium- and phospholipid-binding
proteins, are engaged in calcium homeostasis of mineralizing cells and
in the influx of Ca2+ to MVs [16]. The large variety of annexins present
in MVs and their ability to bind to different sides of biological
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membranes suggest that they serve different functions during the mi-
neralization process [17]. Initiation of mineralization during en-
dochondral ossification is a multistep process that correlates with spe-
cific interactions of Annexin A5 (AnxA5) and collagens [18]. In
addition, lack of AnxA6 in MVs, which initiate the mineralization
process in growth plate cartilage, resulted in reduced TNAP activity and
Ca2+ and Pi content and in an inability to form apatite-like crystals in
vitro [19].

Sortilin is a protein that has been recently characterized as a key
regulator of vascular cell calcification due to its capacity to load TNAP
into extracellular vesicles [20,21]. Interestingly, mice deficient in the
gene encoding this protein, Sort1, have decreased arterial calcification
while normal bone formation is not affected.

There are several reports indicating that MVs are necessary for the
progression of smooth muscle cell calcification [22–25]. Here we fur-
ther delineate the localization of TNAP activity in VSMCs and in MVs
and determine the requirement of collagen for the ability of MVs to
calcify.

2. Materials and methods

2.1. Cell culture and treatment

Murine MOVAS VSMC cell line was purchased from ATCC
(Molsheim, France). The cells were routinely cultured in Dulbecco's
Modified Eagle Medium (DMEM) containing 4.5 gL−1 glucose and
supplemented with 10% fetal bovine serum (FBS), 100 UmL−1 peni-
cillin, 100 μg/mL streptomycin, 20mM 4-(2-hydroxyethyl)-1-piper-
azineethanesulfonic acid (HEPES) and 2mM L-glutamine at 37 °C in a
humidified atmosphere containing 5% CO2. MOVAS cells were seeded
at a density of 4000 cells cm−2. At confluence, trans-differentiation into
mineralization-competent cells was induced by cell treatment with
50 μgmL−1 ascorbic acid (AA, Sigma) and 10mM β-glycerophosphate
(β-GP, Sigma).

2.2. Immunofluorescence

To analyze TNAP, AnxA2, AnxA6 and cholesterol localization in

MOVAS, the cells were seeded at low concentration (1000 cells cm−2)
on coverslips coated with 30 μg/mL Collagen Type I from rat tail
(Sigma) and cultured in the presence of AA and β-GP for 1–4 days to
initiate trans-differentiation. The cells were washed with PBS and fixed
with 3% paraformaldehyde for 20min at room temperature (RT). After
washing with PBS, the cells were incubated with 50mM NH4Cl in PBS
for 10min at RT. In the case of AnxA2 and AnxA6, permeabilization
step was included using 0.1% Triton X-100 in PBS for 5min on ice.
Afterwards, the cells were washed with TBS and subjected to blocking
stage (5% FBS in TBS) for 1 h. The samples were incubated for 1.5 h at
RT with rabbit anti-TNAP, mouse anti-AnxA2 or mouse anti-AnxA6
primary antibody (Abcam) prepared in 0.5% FBS in TBS supplemented
with 0.05% Tween (TBST). Then, the cells were washed several times
with TBST and incubated for 1 h at RT with anti-mouse Alexa Fluor 488
or anti-rabbit Alexa Fluor 594 secondary antibody prepared in 0.5%
FBS in TBST. For visualization of cholesterol, the cells were incubated
with filipin (Sigma) at the concentration of 25 μgmL−1. After extensive
washing several times with TBST and once in TBS, coverslips were
mounted with Mowiol 4–88 (Calbiochem), supplemented with 1,4-
diazabicyclo[2.2.2]octane (DABCO, Sigma) on microscope slides.
Images were taken by Zeiss AxioObserver Z.1 fluorescence microscope
at the 630× magnification with appropriate fluorescent filter.

2.3. Isolation of total membranes and MVs

Membrane fractions were isolated according to Briolay and colla-
borators [26]. Briefly, MOVAS cells (25×106 cells) were disrupted in a
Potter homogenizer (40 strokes) on ice in a TNE buffer consisting of
25mM Tris-HCl, 150mM NaCl and 5mM EDTA (pH 7.5), supplemented
with 10 μgmL−1 of protease inhibitor cocktail (Sigma). The homo-
genate was then centrifuged at 900g for 10min at 4 °C. The supernatant
was collected and then centrifuged at 100,000g for 45min at 4 °C in an
Optima L-100 XP ultracentrifuge (Beckman Coulter). After ultra-
centrifugation, the pellet containing crude membrane fraction (plasma
membrane and cytoplasmic vesicular structures) was resuspended in
200 μL of TNE buffer.

Isolation of VSMC-derived vesicles was performed according to the
procedures described earlier [22,27]. The vesicles isolated from culture

Fig. 1. Mineralization of MOVAS. A) Total calcium
concentration measured by calcium colorimetric
assay in MOVAS cells after 21 days of osteogenic
stimulation in the presence of 50 μgmL−1 AA and
10mM β-GP, n=4 ± SEM. B) Calcium deposits
produced by MOVAS stained with Alizarin Red S
after 21 days of stimulation for mineralization in the
presence of 50 μgmL−1 AA and 10mM β-GP, C) mi-
croscopic view of calcium deposits produced by
trans-differentiated MOVAS taken by Zeiss Axiovert
light microscope at 100× magnification, scale bar -
100 μm. * indicates a statistical difference with
p < 0.05.
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Fig. 2. TNAP, cholesterol and annexin localization in MOVAS. TNAP localization in MOVAS in MOVAS grown on collagen-coated coverslips (A, B, arrows). TNAP was
immunostained with anti-TNAP primary antibody conjugated with Alexa Fluor 594 secondary antibody. Cholesterol was visualized by staining with filipin (C, D
arrows) whereas AnxA2 (F, arrows) and AnxA6 (G, H, arrows) were immunostained with anti-AnxA2 and anti-AnxA6 primary antibodies, respectively, both con-
jugated with Alexa Fluor 488 secondary antibody. Cells were cultured in the presence (B, D, F, H) or absence (A, C, E, G) of 50 μgmL−1 AA and 10mM β-GP for
1–4 days. Magnification 630×, scale bar – 10 μm.
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medium without collagenase digestion were referred to as ‘collagen-
free vesicles’, whereas collagen-attached vesicles obtained after col-
lagenase digestion were called ‘MVs’. 1× 108 of MOVAS cells were
seeded on 100mm culture dishes. At confluence, the cells were cultured
for 21 days in the presence or absence of osteogenic factors, AA and β-
GP. Afterwards, the culture medium was collected, centrifuged
(1000×g, 30min, 4 °C, to remove apoptotic bodies) and subjected to
ultracentrifugation (100,000×g, 30min, 4 °C). The pellet containing
vesicles was resuspended in synthetic cartilage lymph (SCL, pH 7.4),
composed of 100mM NaCl, 12.7 mM KCl, 1.42mM NaH2PO4, 1.83mM
NaHCO3, 0.57mM MgCl2, 0.57mM Na2SO4, 5.55mM D-glucose,
63.5 mM sucrose, and 16.5mM HEPES and stored at −20 °C [28].

To obtain the fraction of collagen-attached vesicles, so-called MVs,
the cells were rinsed with PBS and incubated in digestion buffer con-
taining 0.5mgmL−1 collagenase from Clostridium histolyticum (Sigma),
120mM NaCl, 10mM KCl, 250mM sucrose and 20mM Tris-HCl pH 7.4
for 3 h at 37 °C. The cells were scraped, centrifuged (800×g, 30 min,
4 °C, to remove cell debris) and subjected to ultracentrifugation
(30,000×g, 30min, 4 °C, to separate basolateral membranes and mi-
crosomes). The supernatant was ultracentrifuged (250,000×g, 30 min,
4 °C) to collect the vesicles. The pellet containing MVs was resuspended
in SCL and stored at −20 °C.

2.4. Analytical methods

Calcium deposition was determined by alizarin red staining. Briefly,
cells were washed with PBS and incubated with 2% Alizarin Red S (AR-
S, pH 4.2, Sigma) for 5min at RT. After several washes, the photos were
taken with a Zeiss Axiovert 40C light microscope.

Total calcium concentration was measured by a colorimetric cal-
cium assay. The cells were washed with PBS and incubated overnight in
0.6 M HCl at RT. Then, the supernatants were collected. After dec-
alcification, cells were washed three times with PBS, solubilized with
0.1 N NaOH/0.1% SDS and the collected supernatants were incubated
for 5min with 2-amino-2-methyl-1-propanol and o-cresolphthalein
complexone reagent. Absorbance was measured at 570 nm. The protein
content was determined by a Bi-Cinchoninic Acid (BCA) Protein Assay
(Thermo Scientific). The calcium content in the cell layer was nor-
malized to protein content.

For determination of TNAP activity based on the amount of p-ni-
trophenol (pNP) released after dephosphorylation of p-nitrophenyl phos-
phate (pNPP), the cells were collected in 0.1% Triton X-100 and disrupted
by sonication (2×10 s, 20% power) using a S-250D digital sonifier
(Branson Ultrasonic). Then, cell lysates were centrifuged (500×g, 5min,
4 °C). Each supernatant was incubated with Alkaline Phosphatase Yellow
(pNPP) Liquid Substrate (Sigma) at 37 °C and the absorbance was measured
at 450nm in a Spectra Max M5e multi-detection reader (Molecular De-
vices). TNAP specific activity was expressed as nmoles of p-nitrophenol
(pNP) formed per min and normalized relative to protein amount assessed
by the BCA Protein Assay (Thermo Scientific).

2.5. Nitroblue tetrazolium and bromo-chloro-indolyl phosphate (NBT/
BCIP) method

The samples were prepared in mild denaturing conditions, in a
buffer containing 60mM Tris-HCl pH 6.8 and 2% SDS. Samples con-
taining 10 μg protein were loaded onto 7.5% SDS–polyacrylamide gels.
After electrophoresis, the gels were incubated in a buffer composed of
100mM Tris-HCl pH 9.0, 150mM NaCl, 1 mM MgCl2, 33 μgmL−1 ni-
troblue tetrazolium (NBT, Promega) and 16.5 μgmL−1 bromo-chloro-
indolyl phosphate (BCIP, Promega) at 37 °C until the bands became
clearly visible. The gels were photographed using InGenius LHR Gel
Imaging System (Syngene).

2.6. Transmission electron microscopy (TEM) and X-ray microanalysis
(TEM-EDX)

Cell cultures were washed in PBS and fixed with 5mL of 3% par-
aformaldehyde/1% glutaraldehyde mixture in 100mM sodium phos-
phate buffer pH 7.2 for 1 h at RT. After washing, samples were postfixed
with 2mL of 1% osmium tetroxide in 100mM sodium phosphate buffer,
pH 7.2, for 20min at RT in the dark. Then, the samples were dehy-
drated in a graded ethanol solution series at RT: 25% for 5min, 50% for
10min, 75% for 15min, 90% for 20min and finally in absolute ethanol
once for 30min and then for 12 h. The cells were mechanically scraped
and centrifuged at 130 g for 1min. Pellets were suspended and in-
cubated for 30min at RT in mixtures of the LR White resin
(Polysciences Inc.)/absolute ethanol at volume ratios of 1: 2 and 1: 1.
Finally, samples were infiltrated twice with pure LR White resin for 1 h
at RT, moved to gelatin capsules and polymerized at 56 °C for 48 h.
Sections (700 Å) were cut using an LKB Nova ultramicrotome and
placed on formvar coated and carbon-labelled 300 Mesh nickel grids
(Agar Scientific Ltd.).

Suspensions of collagen-free vesicles or MVs were dropped on nickel
grids. The sample-covered grids were dried for 30min at RT. Both ve-
sicle fractions and cell slices were negatively stained with 2.5% uranyl
acetate solution in ethanol for 15min at RT, protected from light.
Finally, the grids were rinsed with 50% ethanol, deionized H2O and
dried for 24 h. Prepared fractions were observed under a JEM-1400

Fig. 3. TNAP activity in different fractions of MOVAS cells and extracellular
vesicles. (A) TNAP activity in whole cell lysates (WCLs), total membrane frac-
tions as well as vesicles and MVs of non-differentiated (−AA/β-GP) or trans-
differentiated (+AA/β-GP) MOVAS was assessed on the gel after electrophor-
esis using the NBT/BCIP method. (B) TNAP specific activity was measured
based on p-nitrophenol hydrolysis in different fractions of MOVAS and in col-
lagen-attached and collagen-free extracellular vesicles, n=3 ± SEM.* in-
dicates a statistical difference with p < 0.05; ** indicates a statistical differ-
ence with p < 0.01.
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transmission electron microscope (TEM, JEOL Co.) equipped with an
energy-dispersive full range X-ray microanalysis system (EDS INCA
Energy TEM, Oxford Instruments), tomographic holder and 11 Mega-
pixel TEM Camera MORADA G2 (EMSIS GmbH). Images were taken at
magnifications between 40,000× and 150,000×. Point measurements
of MV chemical components were performed using X-ray microanalysis
based on the amount of elements: carbon (C), oxygen (O), calcium (Ca)
and phosphorus (P) expressed as atomic % of the sum of all elements of
the Periodic Table detected in the sample (expressed as 100%). After
performing spectral and compositional analysis, Ca/P ratio was calcu-
lated for each point measurement. Mapping of Ca and P distribution in
collagen-free or MVs was performed by use of EDX INCA Software.

2.7. Statistical analysis

For statistical analysis, a two tailed un-paired Student t-test was
applied using Origin Software.

3. Results

3.1. Ability of MOVAS cells to mineralize

We checked if, in our hands, MOVAS cells had the ability to

mineralize, as previously published [29]. After 21 days of trans-differ-
entiation we observed extensive calcium deposition in trans-differ-
entiated cells (Fig. 1B, C). Moreover, calcium content determined by
colorimetric assay was significantly increased in trans-differentiated
cells (Fig. 1A). Thus, we confirmed that MOVAS cells are able to mi-
neralize in a typical osteogenic medium.

3.2. Localization of TNAP

In cells, TNAP is anchored to the plasma membrane and to the outer
layer of the matrix vesicle membrane via glycosylphosphatidylinositol
(GPI) [10]. There were several findings on localization of TNAP in
murine and human bone tissue [30–32]. However, TNAP subcellular
localization in smooth muscle cells, especially with respect to the apical
side of cells and to collagen, is poorly characterized. According to our
observations, subcellular location of TNAP in MOVAS is similar as in
the case of typical mineralizing cells. After staining TNAP with fluor-
escent antibody we observed a specific signal on the cell membrane in
cells stimulated for mineralization and cultured on the surface of col-
lagen (Fig. 2A, B). TNAP-enriched clusters seen in the apical region
(Fig. 2B) of trans-differentiated MOVAS are possible sites of MV bio-
genesis. We observed accumulation of cholesterol in similar localiza-
tion, suggesting a possible role of cholesterol-enriched lipid rafts in the

Fig. 4. Ultrastructure of MOVAS and extracellular vesicles. MOVAS morphology analyzed after 4 days of stimulation in the presence (B) or absence (A) of 50 μg/ml
AA and 10mM β-GP. Collagen-free MVs (C, E) and collagen-attached MVs obtained after collagenase digestion (D, F). Both fractions of vesicles were isolated from
MOVAS by differential ultracentrifugation after 21 days of stimulation in the presence of 50 μgmL−1 AA and 10mM β-GP. TEM images were taken after negative
staining. (A, B) magnification 15,000×, scale bar – 2 μm; (C, D) magnification 50,000×, scale bar - 500 nm; (E, F) magnification 300,000×, scale bar - 100 nm.
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process of MV sorting and release (Fig. 2D) [33]. Moreover, we detected
annexins, AnxA2 (Fig. 2F) and AnxA6 (Fig. 2H), in a perinuclear region
of trans-differentiated MOVAS. However, we did not detect annexins in
the proximity of the plasma membrane, most probably due to the lack
of additional stimulation by calcium.

3.3. Specific activity of TNAP in membrane fractions, vesicles and MVs

Collagen-free MVs are vesicles released by cells to the culture
medium, whereas collagen-attached MVs can be isolated only after
collagenase digestion of cells and ECM produced by them.

Using the NBT/BCIP method, we observed that TNAP was active in
MOVAS whole cell lysates (WCLs) and both in released vesicles and in
MVs (Fig. 3A). TNAP activity was increased in all fractions of MOVAS
subjected to osteogenic treatment (addition of 50 μgmL−1 AA and

10mM β-GP) as compared to non-treated cells (Fig. 3A). Using pNPP as
substrate, we observed significant increase in TNAP specific activity in
WCLs, total membranes and in MVs (by 2.5-fold) in treated MOVAS as
compared to untreated cells, in contrast to vesicles in which TNAP
activity remained low (Fig. 3B). Thus, our observations are analogous
to the results of Chen and collaborators reporting that VSMC-derived
MVs had significantly increased ability to calcify on collagen compared
with other secreted vesicles [22] and with the previous findings on MVs
isolated from growth plate cartilage showing that association of MVs
released by mineralizing cells with collagen is an important step in
mineral expansion [18,34].

3.4. Vesicle formation from MOVAS cells

MOVAS cells produced vesicular structures both in the absence and

Fig. 5. Maps of vesicle and MV chemical composition. TEM view of vesicle (A, D) and MV clusters (G, J). The maps of calcium (Ca) (B, E, H, K) and phosphate (P) (C,
F, I, L) distribution in MVs of non-differentiated (−AA/β-GP) or trans-differentiated MOVAS (+AA/β-GP). Magnification 15,000×, scale bar – 500 nm.
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presence of 50 μg/mL AA and 10mM β-GP (Fig. 4A and B). We ob-
served vesicles budding from the plasma membrane of MOVAS stimu-
lated for mineralization (Fig. 4B, arrows). Concerning vesicle size, both
fractions contained vesicles between 30 and 100 nm in diameter i.e.,
smaller than MVs isolated from growth plate chondrocytes or from
osteoblast-like Saos-2 cells that are around 100–300 nm in diameter
[15]. Our observations concerning murine vesicles fit quite well with
the findings of Reynolds and collaborators who determined that human
VSMC-derived vesicles were<150 nm in diameter [35]. Moreover,
looking at TEM images, it is noticeable that the fractions of collagen-
attached vesicles, so-called MVs (Fig. 4D, F) are enriched in the dark
phase of mineral, in contrast to collagen-free vesicles collected from the
culture medium (Fig. 4C, E).

3.5. Chemical composition of vesicles

We carried out mapping of chemical elements and TEM X-ray mi-
croanalysis of vesicle fractions. We detected Ca and P in both types of
vesicles, collagen-free and MVs, however, those elements perfectly co-
localized only in MVs isolated after collagenase treatment (Fig. 5 K, L).

We obtained peaks of P at the level of 2 keV and peaks of Ca be-
tween 3.5 and 4 keV. The spectrum between 3 and 3.5 keV represent
uranium in the samples, which was used as a counterstain. Quantitative
analysis revealed increased Ca and P levels resulting in a Ca/P ratio
close to 1 only in the case of MVs of trans-differentiated MOVAS
(Fig. 6D), whereas this ratio was lower in collagen-free vesicles. This
probably reflects an increased rate of calcium entry into mineralizing

MVs since intracellular calcium levels are normally much lower than
the levels of Pi. The Ca/P ratio of 1.67, calculated according to the
formula of synthetic HA - Ca10(PO4)6(OH)2 - does not specify the nature
of biological apatite, which comprises several substitutions with, for
instance, CO3

2– residues replacing either PO4
3− or OH– ions in apatite

crystals. Moreover, biological apatites are calcium-deficient apatites in
which calcium can be replaced by several other cations. Finally, the
composition and organization of crystals in mineralized tissues change
profoundly during tissue aging, rendering the Ca/P ratios variable
during crystal formation and maturation [36,37]. Our results confirm
that the presence of collagen scaffold is necessary for efficient mineral
nucleation mediated by VSMC-derived MVs. Moreover, we would like
to underline that collagenase digestion is a necessary step to obtain
calcifying vesicles from trans-differentiated VSMCs.

4. Discussion

Physiological mineralization in flat bones is a direct consequence of
a process called intramembranous ossification. Conversely, long bones
are formed through endochondral ossification, in which a cartilage
template is being replaced by bone over time. These processes are
maintained by mineralization-competent cells, such as osteoblasts and
hypertrophic chondrocytes, respectively.

According to Murshed and collaborators [6] the mineralization
process occurs exclusively in bone tissue due to co-expression of genes
encoding two indispensable proteins - TNAP and collagen. Given the
clinical importance of vascular calcification it is important to determine

Fig. 6. Chemical composition of crystals produced by vesicles and MVs derived from MOVAS. Representative spectra obtained by TEM X-ray microanalysis of vesicles
(A, C) and MVs (B, D). Vesicles and MVs were isolated from non-differentiated (−AA/β-GP) or trans-differentiated MOVAS (+AA/β-GP). Increased levels of calcium
and phosphate are indicated (D, arrows). Ca/P ratios of vesicles and MVs are summarized in the table (E); n=3.± SEM.
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whether this dual requirement is also true in vascular pathological
calcification. In atherosclerotic plaques in particular, the precise loca-
tion of microcalcifications and their possible association with collagen
is still debated.

Vascular mineralization strongly resembles the process of en-
dochondral ossification mediated by growth plate chondrocytes. Both
processes are characterized by an increase in TNAP activity, ability to
mineralize and to release MVs. Besides, chondrocyte- and VSMC-de-
rived MVs share several common features such as enrichment in TNAP,
ability to accumulate calcium and phosphate, annexins and collagen
binding properties. This is indicative of analogies between the early
events regulating VC and endochondral ossification [15].

Association of VSMC-derived MVs with collagen revealed that these
vesicles were able to mineralize, in contrast to collagen-free vesicles,
which do not induce mineralization. TNAP can bind to collagen [38],
enabling the hydrolysis of PPi at the site of mineralization. It was shown
that the interaction of collagen type II and collagen type X with annexin
A5 in vitro stimulates the uptake of Ca2+ ions by MVs and subsequent
mineralization [18]. Moreover, selective removal of collagens from MV
surface significantly reduced their ability to take up Ca2+ [34]. Col-
lagen serves as a scaffold for the subsequent deposition of apatite
crystals generated by MVs.

The amount of collagen is also a critical factor for atherosclerotic
plaque stability. Vulnerable atherosclerotic lesions usually contain a
thin and collagen-poor fibrous cap [39]. Matrix metalloproteinases,
including collagenases, are enzymes released by macrophages within
the plaque that decrease its thickness by collagen degradation. On the
other hand, advanced plaques contain macrocalcifications together
with a thick fibrous cap that stabilize the plaque and serve as a barrier
towards further inflammation [40]. In this context, it will be important
to investigate whether collagen is associated or not with micro-
calcifications, which are harmful for plaque stability.

In summary, we demonstrated that VSMC-derived MVs deposited in
the vicinity of collagen fibrils exhibited increased TNAP activity and
had the ability to accumulate calcium and phosphorus with an in-
creased Ca/P ratio as compared to non-mineralizing vesicles, suggesting
the deposition of apatite-like mineral.
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Background:Members of Rho-associated coiled-coil kinases (ROCKs) are effectors of Rho family of small GTPases.
ROCKs have multiple functions that include regulation of cellular contraction and polarity, adhesion, motility,
proliferation, apoptosis, differentiation, maturation and remodeling of the extracellular matrix (ECM).
Scope of the review:Here,we focus on the action of RhoA and RhoA effectors, ROCK1 and ROCK2, in cells related to
tissue mineralization: mesenchymal stem cells, chondrocytes, preosteoblasts, osteoblasts, osteocytes, lining cells
and osteoclasts.
Major conclusions: The activation of the RhoA/ROCK pathway promotes stress fiber formation and reduces chon-
drocyte and osteogenic differentiations, in contrast to that in mesenchymal stem cells which stimulated the os-
teogenic and the chondrogenic differentiation. The effects of Rac1 and Cdc42 in promoting chondrocyte
hypertrophy and of Rac1, Rac2 and Cdc42 in osteoclast are discussed. In addition, members of the Rho family
of GTPases such Rac1, Rac2, Rac3 and Cdc42, acting upstream of ROCK and/or other protein effectors, may com-
pensate the actions of RhoA, affecting directly or indirectly the actions of ROCKs aswell as other protein effectors.
General significance:ROCK activity can trigger cartilage degradation and affect bone formation, therefore these ki-
nases may represent a possible therapeutic target to treat osteoarthritis and osseous diseases. Inhibition of Rho/
ROCK activity in chondrocytes prevents cartilage degradation, stimulate mineralization of osteoblasts and facili-
tate bone formation around implantedmetals. Treatmentwith osteoprotegerin results in a significant decrease in
the expression of Rho GTPases, ROCK1 and ROCK2, reducing bone resorption. Inhibition of ROCK signaling in-
creases osteoblast differentiation in a topography-dependent manner.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

The mineralization process that occurs during bone ossification is a
tightly regulated cascade of molecular events leading to the formation
of a correct skeleton in adults [1]. The cells responsible for mineraliza-

tion are osteoblasts, odontoblasts, and hypertrophic chondrocytes.Min-
eralization-competent cells produce extracellular matrix (ECM)
principally composed of fibrillar collagen, in which they subsequently
deposit hydroxyapatite (HA) [2]. Mineralization-competent cells are
enriched in tissue-nonspecific alkaline phosphatase (TNAP) [3,4].
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Pathological mineralization gives rise to a large group of diseases, af-
fecting not only skeletal (bones and joints) but also non-skeletal tissues
[5,6]. They are manifested by HA crystal deposition, often mediated by
matrix vesicles (MVs) [3], in the soft tissues of tendons and/or ligaments
(calcific tendinitis and ankylosing spondylitis) [7], in articular cartilage
(some cases of osteoarthritis) [8], in arterial media (vascular calcifica-
tion induced by chronic kidney disease (CKD) [9–11] or by type 2
non-insulin-dependent diabetesmellitus [12,13]) and in atherosclerosis
[14,15]. Recent discoveries in the field of bone, growth plates and peri-
odontal biology indicate participation of theRho family of small GTPases
and Rho-associated, coiled-coil containing protein kinases (ROCK) in
cytoskeletal reorganization and differentiation towards osteogenic
cells as well as in cell growth and cell death that may affect matrix re-
modeling [16,17].

The review is divided into three main parts. The first chapter is fo-
cused on bone cell biology; the second is centered on functions of Rho
family of small GTPases and Rho-associated kinases and the third con-
cerns the function of RhoA and Rho-associated kinases ROCK1 and
ROCK2 during bone formation.

2. Bone cell biology

Bone-forming cells (osteoblasts) and chondrocytes originate from
mesenchymal stem cells [18,19] while hematopoietic stem cells give
rise to bone-resorbing cells (osteoclasts) [20] (Fig. 1). Bone tissue is con-
tinuously renewed due to concerted action of osteoblasts that build the
bone and by osteoclasts (OCs) that resorb it. In young adults, the re-
sorbed bone material is precisely replaced in both location and mass
by a newly formed tissue.With aging, the coupling becomes unbalanced
with increasing bone resorption resulting in a net loss of the bone tissue,
as in osteoporosis [21–23] or aberrant accumulation calcification as in
the case of osteopetrosis. The cells communicatewith each other to reg-
ulate bone repair and adaptation to changes.

2.1. Mesenchymal stem cells

Mesenchymal stem cells (MSCs) have the capacity to differentiate
into fibroblasts, myoblasts, chondrocytes, osteoblasts or adipocytes
[18,19] (Fig. 1). Flattened and spread human MSCs undergo osteogene-
sis, while unspread, round cells become adipocytes. Wnt/β-catenin/TCF
signaling stimulates bone formation and suppresses adipogenesis. The

propensity of bone marrow MSCs to differentiate into adipocytes at
the expense of osteoblasts is a critical factor leading to bone loss and os-
teoporosis [24].

2.2. Intramembranous (osteoblasts) and endochondral ossification
(chondrocytes)

During intramembranous ossification, which is the mechanism re-
sponsible for the embryonic development of flat bones and for natural
healing of bone fractures, mature osteoblasts synthesize and secrete
large amounts of type I collagen, noncollagenous proteins, enzymes
and growth factors, which comprisemajor components of the bonema-
trix that later becomes mineralized [23].

Approximately 60 to 80% of osteoblasts die via apoptosis [25,26]. The
remaining osteoblasts become either lining cells or osteocytes [23] (Fig.
1). In contrast to bone forming osteoblasts and bone resorbing osteo-
clasts, chondrocytes have multiple functions, for example, formation
and removal of cartilaginous tissues (hyaline articular cartilage). Chon-
drogenesis may progress in two different directions in the developing
bone. One route leads to the formation of long bone via endochondral
ossification, (at the primary and secondary centers of ossification, and
in the growth plate) and the second route leads to stable hyaline artic-
ular cartilage and provides a frictionless surface facilitating load transfer
[27]. MSCs, primary chondrocytes and chondrocyte cell lines may serve
as tools for in vitro experiments in cartilage research and repair [27]. Co-
ordinated proliferation and differentiation of growth plate cells is re-
quired for normal growth and development of the skeleton [28].
Chondrocytes participate in the synthesis of extracellular matrix pro-
teins, production and activation of matrix degrading proteins and, in
some cases, matrix calcification. Chondrocytes are responsible for the
growth and maintenance of the growth plate [28].

Disruption of chondrocyte proliferation and/or differentiation by
genemutations commonly results in chondrodysplasias that are charac-
terized by skeletal deformities and reduced growth [29–31].

2.3. Osteocytes

Osteocytes represent 95% of all bone cells. Osteocyte life span is 1–
50 years while for osteoblasts it is only around 1–200 days. The life
span of lining cells is 1–10 years, whereas for osteoclasts it is merely
1–25 days [32]. Osteocytes, which sense mechanical signals or micro-

Fig. 1. Origin of osteoblasts, osteoclasts and chondrocytes. Mesenchymal stem cells are the source of adipocytes, chondrocytes and preosteoblasts. Osteoblasts and hypertrophic
chondrocytes are able to mineralize. Hypertrophic chondrocytes and a population of osteoblasts die during apoptosis. A part of osteoblasts become osteocytes and lining cells.
Hematopoietic stem cells are the source of mononuclear osteoclasts. They mature as multinucleated osteoclasts and can resorb bone once activated by RANKL.
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damages in bone, regulate bone metabolism by communicating with
other bone cells [33,34]. This function is served by dendrites that main-
tain communication by gap junctions, forming an interconnected sig-
naling network in bone canaliculi. Osteocytes are generally considered
to inhibit bone resorption [35]. They not only affect bone remodeling
by controlling osteoclast formation via production of the receptor acti-
vator of nuclear factor-kB ligand (RANKL), but also regulate osteoblast
formation via production of sclerostin [36]. Osteocytes are the main
source of the RANKL required for osteoclast formation [37]. The signals
produced by mechanical forces are transmitted by integrins and a
signalosome comprising actin filaments, microtubules, the focal adhe-
sion kinase FAK, and Src kinases. Osteocytes interact with the extracel-
lular matrix through integrins [38,39], which tether them to the
canalicular wall [40].

2.4. Osteoclasts

During osteoclastogenesis, osteoclasts (OCs) derived from hemato-
poietic stem cells (Fig. 1) become multinucleated and stimulated by
macrophage colony-stimulating factor (M-CSF) and RANKL [20]. OCs
grown on non-mineralized support undergo extensive morphological
changes to form podosome clusters and, subsequently, podosome
rings, which fuse into a podosome belt [41,42]. Differentiated OCs
grown onmineralized support polarize and reorganize their membrane
into four regions: the sealing zone (SZ), the ruffled border (RB), the
basolateral domain (BD) or free membrane domain (FM) and the func-
tional secretory domain (FSD) [23,43]. Multinucleated OCs, when at-
tached to calcified tissues, become polarized and resorb the bone by
forming a resorption lacuna, wherein HA is dissolved due to the acidic
environment in the sealed zone. Furthermore, the extracellular bone
matrix is degraded by acidic proteases, such as cathepsin K, matrix me-
talloproteinases, such as MMP-9, conjointly with tartrate resistant acid
phosphatase, which also contributes to bone resorption. Multinucleated
OCs migrate along the surface of the bones to continue bone resorption,
until they die by apoptosis [20].

2.5. Cell adhesion to extracellular matrix

Bone mineralization induced by mineral competent cells requires not
onlyHAdeposition but also formation of ECM. Cell adhesion to ECM is ini-
tiated through direct interaction of integrin extracellular domains with
the extracellular matrix, which leads to clustering of integrins, their re-
cruitment to the focal adhesion complexes, and tyrosine phosphorylation
of FAK [44–46]. Focal complexes at the leading edge direct cellmovement.

3. Bone ossification

Endochondral ossification is induced by chondrocyte maturation in
the growth plate, vascular expansion in the surrounding tissues, osteo-
blast differentiation and osteogenesis in the perichondrium and the de-
veloping bone center [47]. During bone ossification, cells in the growth
plate undergo a cascade of events that lead to terminal differentiation
and mineralization [48,49]. The mineralization process is accompanied
by rapid matrix remodeling and expression of mineralization-related
genes, including these encoding TNAP, Ca2+ and phospholipid binding
proteins belonging to the annexin family – AnxA (AnxA1, AnxA2,
AnxA4, AnxA5, AnxA6 and AnxA11), extracellular matrix metallopro-
teinase degrading enzymes – MMPs (MMP-2, MMP-3, MMP-9, MMP-
13), collagens (types I, II and X) [49–54]. The level of inorganic phos-
phate (Pi)-phospholipid complexes also increases. The mineralization
process occurs by a series of biochemical processes facilitating the depo-
sition of a solid phase composed ofHA. Although calciumandphosphate
ions can reach sufficient concentrations in extracellularfluids to become
metastable, it is not always sufficient to form HA. Therefore, nucleation
may be necessary to accelerate HA formation. The nucleation step oc-
curs in the extracellular medium and/or in MVs [3,55,56]. In addition,

small-sized MVs can diffuse better than large cells through the collagen
fibers to sustain and spread the mineralization process.

3.1. Initial steps of mineralization occur in matrix vesicles

MVs are extracellular organelles produced by chondrocytes, osteo-
blasts and odontoblasts. Isolation of MVs from osteoblasts and
chondrocytes as well as their main characteristics were reported [57–
63]. MVs originate from microvilli-like protrusions of mineralization-
competent cells such as chondrocytes [64] and osteoblasts [65]. The
MVmembrane is enriched in acidic phospholipids and certain proteins,
particularly TNAP, nucleotide pyrophosphatase phosphodiesterase 1
(NPP1) and progressive ankylosis protein (ANK) [66–68]. TNAP, acting
as a phosphomonoesterase, hydrolyzes free phosphate esters such as
pyrophosphate, an inhibitor of HA formation. NPP1, by hydrolyzing
ATP, produces PPi while ANK transports PPi from the intracellular (or
from the lumen of MVs) to extracellular medium [69]. NPP1 and ANK
are considered as enzymes antagonistic to TNAP since they contribute
to an increase in extracellular PPi, while TNAP hydrolyzes PPi.

3.2. Molecular mechanisms of mineralization

Physiological mineralization occurs in the ECM of skeletal tissues
and its strict regulation is necessary for the formation, development
and function (rearrangement and repair) of the skeleton. There are
only few data in the literature concerning mechanisms that regulate
MV release (as reviewed earlier [67–69]). The presence of vesicular traf-
fickingmolecules (e.g. Rab proteins) suggests that apical targeting is re-
quired for incorporation of specific lipids and proteins at the site of MV
formation [66]. MV release from microvilli-like membranes may be
driven by actions of actin-severing proteins (gelsolin, cofilin 1) and con-
tractile motor proteins (myosins) [64,66]. However, questions
concerning regulation and mechanisms of MV release, incorporation
of proteins into MVmembrane and influence of ECM factors onmineral
formation still remain without answer.

The currently held mineralization mechanism postulates that ANK
and NPP1 suppress mineralization by increasing the extracellular con-
centration of the calcification inhibitor, PPi, while TNAP promotes min-
eralization by decreasing the concentration of PPi [70–72]. Extracellular
PPi is formed from extracellular nucleoside triphosphates (NTP) by
NPP1 in cells and in MVs or exported from cells and MVs through
ANK; it is hydrolyzed to Pi by TNAP anchored to the cell plasma mem-
brane and to the membrane of MVs.

Pathological mineralization such as vascular calcification resembles
physiologicalmineralization [5,6]. Indeed, smoothmuscle cells involved
in vascular calcification behave as mineral competent cells — they are
able to release MVs, are characterized by increased TNAP activity and
produce collagen [5,73,74].

4. ROCKkinases as key enzymes participating in actomyosin skeletal
reorganization

4.1. Members of Rho family of small GTPases

Actomyosin cytoskeletal reorganization is essential for various cell
activities, including changes in morphology, cell motility, adhesion
and cytokinesis. Various extracellular stimuli induce changes in actin or-
ganization through signaling pathways that link the external stimuli to
the machinery controlling actin polymerization and organization. Rho-
family of small GTPases regulates cytoskeleton during cell migration,
adhesion and cytokinesis [75]. The mammalian Rho-family of small
GTPases is composed of 23 intracellular signaling molecules [75], the
best documented of which are: Ras homolog gene family member A
(RhoA), its two homologs, RhoB and RhoC, Ras-related C3 botulinum
toxin substrate 1 (Rac; existing in three isoforms - Rac1, Rac2, and
Rac3) and cell division control protein 42 (Cdc42). The Rho GTPases
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act through downstream effectors such as Citron, mDia, ROCKs,
rhophilin, rhotekin and PKN [75]. One Rho GTPase can target several
downstream effector proteins [76]. Active RhoA can bind to ROCK,
rhophilin and rhotekin triggering their activity, while Rac1 acts on
Pak1 [77]. Several Rho-family GTPases can target the same effector,
which may obscure knockout mouse phenotypes. For example, during
vascular muscle contractility, RhoA, RhoB and RhoC can interact with
the same effectors i.e., ROCKs [78]. To determine the function of RhoA,
botulinum C3 exoenzyme, a specific inhibitor of Rho, is often used
[76]. Rho GTPases are regulated through their expression level, stability
and post-translationalmodifications. Prenylation at their C-terminus fa-
cilitates their association with the intracellular leaflet of cell mem-
branes. The GTPases switch from an active GTP-bound state to an
inactive GDP-bound state [78,79]. Guanine-nucleotide exchange factor
(GEF) promotes the release of GDP in exchange of GTP,while GTPase ac-
tivating protein (GAP) increases the intrinsic hydrolytic GTPase activity,
which leads to GDP generation fromGTP, whereby the GTPase becomes
inactivated. GEFs fall into two families: Dbl andDock proteins. There are
eleven Dock1-related proteins in mammals [80–82] characterized by a
unique DHR-2 (or CZH-2) domain that catalyzes nucleotide exchange
on Rac1 or Cdc42 and a DHR-1 domain that tethers the GEFs to phos-
phatidylinositol(3,4,5) triphosphate-enriched membranes.

4.2. Structures of ROCKs

ROCKs (i.e. Rho-associated coiled-coil kinases) are kinases activated
by RhoA, RhoB and RhoC [83–86]. They belong to the AGC (the protein ki-
nase A, G, and C families (PKA, PKC, PKG) of cytoplasmic serine/threonine
kinases) super family of human kinome. The AGC super family comprises
DMPK (dystrophica myotonin protein kinase) family of kinases to which
ROCKs belong [86,87]. ROCKs trigger actin reorganization, formation of
stress fibers, focal adhesion, smoothmuscle contraction, increase cell mo-
tility, and induce changes in proliferation cell survival and tumor cell inva-
sion [88–92]. There are two highly homologous isoforms of ROCK: ROCK1
(p160ROCK or ROKβ) and ROCK2 (p164ROCK, ROKα,). ROCK1 and ROCK2
are collectively called ROCK or ROCK1/2. They have 65% of amino acids
in common and more than 90% identity within their kinase domains
[93,94]. Human ROCK1 consists of 1354 amino acid residues whereas
ROCK-2 has 1388 amino acid residues [85]. ROCKs have anN-terminal ki-
nase domain (KD), a coiled-coiled region, Rho-binding domain (RBD), a
pleckstrin homology domain (PHD) and a cysteine-rich domain (CRD)
at the C-terminal [95]. An autoinhibitory mechanism has been proposed
for ROCKs. This mechanism involves an intramolecular interaction be-
tween KD and PHD in the absence of Rho binding [95]. Thus, the kinase
activity is off when ROCKs are intramoleculary folded and switched on
when Rho-GTP binds to RBD and disrupts the autoinhibitory interaction
within ROCKs [96].

4.3. Tissue expression and subcellular localization of ROCKs

The tissue distribution of the two ROCK enzymes differs: ROCK2 is
preferentially expressed in brain and in muscles whereas ROCK1 is pri-
marily expressed in the non-neuronal organs like liver, lung, kidneys,
spleen and testis [93–97]. The PHD of ROCK2 binds to phos-
phatidylinositol (3,4,5) triphosphate and to phosphatidylinositol (4,5)
biphosphate, while the PHD of ROCK1 does not [98], suggesting distinct
subcellular distribution of ROCK1 and ROCK2. ROCK2 resides in the cy-
toplasm, is associated with the centrosome, co-localizes with actin and
vimentin, and is present at the intercalated disk and Z-disk of striated
cells [88,99–105]. ROCK1 co-localize with the centrosomes, plasma
membrane, cell-cell contacts, cell adhesion sites and vesicles [105–108].

4.4. Substrates and functions of ROCKs

ROCKs phosphorylate more than thirty substrates, among them,
myosin phosphatase target subunit 1 (MYPT-1) [109–111], insulin

receptor substrate 1 (IRS-1) [112], myosin light chain 2 (MLC2)
[109,113], LIM kinases (LIMK1, LIMK2) [114–118], ezrin/radixin/
moesin (ERM) [119], adducin [120] and enzymes of the PI3-K/
AKT pathway [121,122]. One of the most established function of
ROCK is exemplified during activation of the RhoA/ROCK/MYPT1/
MLC2 pathway in smooth muscle cells (Fig. 2). The contraction of
smooth muscle and interaction of actin and myosin in non-muscle
cells is triggered by RhoA effector, mostly ROCK2 [123] that directly
phosphorylates MLC2 andMYPT-1. The phosphorylation of MYPT-1
at Thr697 and Thr855 inactivates the myosin light chain (MLC)
phosphatase [110,122] (Fig. 2). Both phosphorylation of MLC2
and inhibition of MLC phosphatase by ROCK contribute to the accu-
mulation of phosphorylated MLC2 (MLC2-P) and to the stimulation
of actomyosin contractility (Fig. 2). During detachment of mouse
embryonic fibroblasts, ROCK1 mediated destabilization of actin cy-
toskeleton through MLC2 phosphorylation while, in contrast,
ROCK2 stabilized actin cytoskeleton via cofilin phosphorylation
by activating LIMK [124] (Fig. 2). This illustrates that ROCK2 acts
differently during contraction of smooth muscle cells, i.e., by stim-
ulating actin contractility [123], and during regulation of stress-in-
duced fiber disassembly and cell detachment [124], in the course of
which it stabilizes the actin cytoskeleton. Differences in the activity
[123–126] and therapeutic implications [83–85,127–134] between
the two isoforms (ROCK1 and ROCK2) were reported. As reviewed
in [126], functional differences between ROCK1 and ROCK2 were
observed in adipocytes [135], cancer cells [136,137], endothelial
cells [138–142], fibroblasts [98,135,143,144], smooth muscle cells
[123,145], keratinocytes [146–148] and neurons [144]. Such differ-
ences in ROCK functions originate from their distinct localizations,
distinct modes of activation by upstream GTPases, different regula-
tory mechanisms and different downstream targets [134,135]. The
cell type, its maturation and differentiation state can also favor one
specific ROCK-dependent signaling pathway over others.

4.5. Mouse models of Rock1 or Rock2 deletions

The majority of homozygous deletions of Rock1 or Rock2 lead to
high rates of embryonic and perinatal mortality [134]. The homo-
zygous deletion of Rock1 in mice (C57B1/6 background) produced
newborns with open eyes. Around 90% of ROCK1−/− C57B1/6-
mice later die from omphalocele (an abdominal wall muscle defect
in which organs remain in a sac outside the abdomen), while the
remaining mice develop normally except for eye defects [149].
The ROCK2−/− mice (mixed 129/SvJ-and-C57BL/6 background)
die in utero due to placental dysfunction, intrauterine growth and
fetal retardation [150], while newborn ROCK2−/− mice (C57BL/6
background) have open eyes and 99% die later due to omphalocele
[151]. The survival rate of mutant mice depends of their origin, ge-
netics and the extent to which one ROCK can substitute the other
[134]. Rock2 knockout in mice (C57B1/6 background) indicated
that ROCK2 limits axonal growth after CNS trauma [152]. ROCK1
knockout in mice (C57BL/6–129/SvJ mixed background) causes in-
sulin resistance [153]. Also, ROCK1 contributes to the development
of cardiac fibrosis and induction of fibrogenic cytokines in
cardiomyocytes in response to pathological stimuli [154]. A re-
duced neointima formation was found in Rock1± mice (C57BL/6
background) compared with that of WT or Rock2± mice [155], indi-
cating that ROCK1 mediates leukocyte recruitment and neointima
formation following vascular injury [155]. Increased recruitment
and migration of macrophages and neutrophils were observed in
ROCK1−/− mice (FVB background), showing that ROCK1 is nega-
tively regulating macrophage and neutrophil function [156]. Sev-
eral distinct and non-redundant functions of ROCK1 and ROCK2
were evidenced in knockout mouse models [134,149–156], rein-
forcing the view that each type of ROCK may orchestrate distinct
downstream processes.
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4.6. Inhibitors of ROCK and their therapeutic applications

The research effort on inhibitors of ROCKs is powered by the
awareness that ROCKs are involved in angiogenesis [157] cancer
cell migration [132,133,157–159], erectile dysfunction [160], glau-
coma [161], idiopathic pulmonary pathway [162], neurological dis-
orders [163–165], spinal muscular atrophy [166] and vascular
diseases [126,131]. Development of more selective ROCK inhibitors
is highly encouraged by their beneficial effects at clinical levels and
the prospect of curing a large variety of diseases [83,134,167,168].
The two most widely used inhibitors, fasudil (HA-1077, 5-(1,4-
diazepane-1-sulfonyl) isoquinoline) and Y-27632 ((+)-(R)-
trans-4-(1-aminoethy)-N-(4-pyridyl)cyclohexane carboxamide)
inhibit both ROCKs, and at higher concentrations inhibit also pro-
tein kinase C-related kinase 1, cAMP-activated protein kinase and
AMP-activated kinase [126,134]. Both fasudil and Y-27632 (RKI-
983 or SNJ-1656) are competitive with respect to ATP [169,170].
Y-27632 is a cell-permeable ROCK 1 inhibitor (Ki = 140 nM), how-
ever, it also inhibits ROCK 2 with similar potency [169]. Fasudil has
a Ki = 330 nM [170], and its metabolite hydroxyfasudil is equally
effective. As reviewed in [171], fasudil has been approved for
human use in Japan to treat cerebral vasospasm since 1995 [172],
while ripasudil (a close fasudil analog, also called K-115) entered
clinical application in Japan to treat glaucoma in 2014 [173]. As
reviewed in [171], AR-13324, a ROCK inhibitor, reached Phase 3
trial for treating glaucoma [174], while AMA 0076 [3-[2-
(aminomethyl)-5-[pyridine-4-yl)carbamoyl]phenyl]benzoate]
[175] and AR-12286 [2-(dimethylamino)-N(1-oxo-2H-
isoquinolin-6-yl)-2-thiophen-3ylacetamide] reached Phase 2 trial
[171]. Among the very few selective inhibitors, KD-025 (or SLx-
2119) [2-(3-(4-((1H-indazol-5-yl)amino)quinazolin-2-yl)ph
enoxy)-N-isopropylacetamide is selective for ROCK2 with IC50

value of 0.195 mM versus IC50 value of 24 mM for ROCK1 [176–
178].

Simvastatin (1S,3R,7S,8S,8aR)-8{2-[(2R,4R)-4-hydroxy-6-oxotetra
hydro-2H-pyran-2-yl] ethyl}-3,7-dimethyl-1,2,3,7,8,8a-hexahydronap
htalen-1yl-2,2-dimethylbutanoate) exerts cardioprotective effects and
improves insulin resistance (IR). Its beneficial action can be attributed,
at least in part, to inhibition of ROCKs and activation of PI3-K/Akt
[121]. Other ROCK inhibitors such as GSK2699962A [N-3-{[2-(4-
amino-1,2,5-oxadiazol-3-yl)-1-ethyl-1H-imidazo[4,5-c]pyridine-6-
yl]oxy]phenyl)4-{[2-(4-mor-pholinyl)ethyl]-oxy}benzamide] limit
ROCK activity in the nM range [DOE]. Wf-536, a derivative of fasudil
H1152 [(S)-(+)-2-methyl-1-[(4-methyl-5-isoquinolinyl)sulfonyl]-
hexahydro-1H-1,4-diazepine] and RKI-1447 reduced progression of he-
patocellular cancer, lung cancers, melanoma and breast cancers [179–
182]. ROCK inhibitors, due to multiple therapeutic targets, have the po-
tential to act synergistically on distinct pathways triggering the risk of
side effects. So far, fasudil has been approved for clinical use since
1995, despite its lack of selectivity.

5. ROCKs action in bone

5.1. ROCKs and mesenchymal stem cells

A pioneer work on ROCKs involvement in human mesenchymal
stem cell (hMSCs) differentiation was published 12 years ago [18]. The
shape of hMSCs regulates their differentiation to adipocyte or osteoblast
lineage, when RhoA signaling and cytoskeletal tension are intact. Inter-
ference with cell shape, RhoA signaling, ROCK activity, or cytoskeletal
tension alters the fate of hMSCs [18].

RhoA-stimulated osteogenesis was conditional on the shape, while
constitutive activation of ROCK induced osteogenesis independently of
the cell shape [18]. The mechanism of cell shape acting as a mechanical
cue to induce osteogenesis was substantiated by results of hMSCs treat-
mentwith bonemorphogenetic protein 2 (BMP-2) [183]. BMP-2 is a cy-
tokine that promotes osteogenesis [184,185]. The treatment of hMSCs
with BMP-2 induces Rho/ROCK-mediated cell tension and nuclear

Fig. 2. Rho/ROCK/MLCK/MLC-P and Rho/ROCK/LIMK/Cofilin-P pathways. Rho GTPases are regulated through their expression level, stability and post-translational modifications. The Rho
GTPases switch between an active GTP bound state and an inactive GDP bound state. Guanine-nucleotide exchange factor (GEF) promotes the release of GDP in exchange of GTP, while
GTPase activating protein (GAP) increases the intrinsic hydrolytic activity that converts GTP into GDP, inactivating the GTPase. ROCK leads to an increase of myosin light chain (MLC)
phosphorylation (MLC-P), activating myosin light chain kinase (MLCK) and inhibiting MLC phosphatase, and thereby inducing actomyosin-based contractility. ROCK directly
phosphorylates and activates LIMK, which results in downstream phosphorylation and inactivation of the actin depolymerizing factor, cofilin leading to filament stabilization.
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translocation of SMAD 1, which is responsible for BMP-2 induced oste-
ogenesis [183]. Restricting cell spreading, reducing ROCK signaling, or
inhibiting the cytoskeletal tension prevented the BMP-2 induced
SMAD 1 phosphorylation, SMAD 1 dimerization with SMAD4, and
SMAD 1 translocation into the nucleus [183] (Fig. 3).

The anabolic growth factor, Wnt5a, stimulates osteoblast differenti-
ation of human progenitors through ROCK activity [186] (Fig. 3). Osteo-
genic differentiation of hMSCs increases matrix stiffness as evidenced
by the level of type I collagen and osteocalcin (OCN), increase in
ROCK, FAK and ERK 1/2 activities and inmineralization [187]. Inhibition
of FAK, amediator of osteogenic differentiation, and of ROCK, resulted in
decreased expression of osteogenicmarkers during osteogenic induction.
In addition, FAK affects osteogenic differentiation through ERK 1/2, while
ROCK regulates both FAK and ERK 1/2. Furthermore, alpha2 integrin was
upregulated on matrix stiffness during osteogenic induction and its
knockdown by siRNA down-regulated osteogenic phenotype through
activation of ROCK, FAK and ERK 1/2 [187].

These findings are consistent with the hypothesis that matrix rigid-
ity affects intracellular signaling through ROCK-dependent
mechanotransduction events mediated by integrins and is decisive for
the fate of hMSCs. Alternatively, ROCKs may also be involved in induc-
tion of chondrogenesis in MSCs. In hMSCs stimulated by transforming
growth factor-β1 (TGF-β1) to undergo chondrocyte differentiation
(Fig. 3), inhibition of ROCKs with Y27632 blocked expression of the
chondrogenic transcription factor Sox9, type I collagen, type II collagen
and aggrecan together with inhibition of SMAD2/3 phosphorylation
[188]. Thus, inhibition of ROCK in hMSCs prevented osteogenic [183]
aswell as chondrogenic [188] differentiation. Adherent andwell-spread
hMSCs stimulated with TGFβ3 exhibited increased smooth muscle cell
(SMC)-specific gene expression pattern. Cells cultured onto
micropatterned substrates, which prevented cell spreading and flatten-
ing, were characterized by increased expression of chondrogenic genes
[189]. Cells undergoing SMC differentiation have shown little change in
RhoA but higher Rac1 activity than that of chondrogenic cells [189].
Rac1 activation prevented chondrogenesis, and was necessary and suf-
ficient to promote SMC differentiation [189].

5.2. ROCKs and osteoblasts

Mesenchymal-to-epithelial transition (MET) in cultured osteosarco-
ma Saos-2 cells is induced by Pax 3 transcription factor and by alteration
of signal transduction pathways that regulate cytoskeleton remodeling.
Actomyosin contractility induced via RhoA/ROCK signaling is required
for the formation of circumferential actin bundles, epithelial discoid
cell shape and regulation of membrane protrusions in Saos-2 cells

[190]. An AMPK activator, 5-aminoimidazole-4-carboxamide1-β-D-ri-
bonucleoside (AICAR), and fasudil hydrochloride stimulated endothelial
nitric oxide synthase (eNOS), BMP-2, and OCN mRNA expression, and
mineralization in osteoblastic MC3T3-E1 cells. Also, measurement of
ROCKs activities revealed that addition of both AICAR and fasudil signif-
icantly suppressed phosphorylation of the myosin-binding subunit of
myosin phosphatase, a ROCK substrate [191]. These findings indicate
that both the AMPK activator and the ROCK inhibitor stimulatemineral-
ization of osteoblasts which is consistent with other reports. Indeed, ex-
pression of a dominant-negative ROCK mutant in mouse stromal ST2
cells induced osteoblastic differentiation, whereas expression of a con-
stitutively active ROCK mutant attenuated osteoblastic differentiation.
The function of BMPs is modulated by RhoA and ROCK [192,193]. Addi-
tion of Y-27632 enhanced ectopic bone formation induced by BMP-2.
RhoA/ROCK signaling negatively regulates BMP-induced osteoblastic
differentiation (Fig. 4). The function of RhoA is also regulated by
neogenin, a receptor for BMPs and an activator of RhoA. Knockdown
of neogenin in mouse C2C12 myoblasts stimulated BMP-2-induced os-
teoblastic differentiation, whereas overexpression suppressed it [193].
Inhibition of Rac1 activated BMP-2-induced osteoblastic differentiation
in C2C12myoblasts [194]. It is not clearwhich effectorswere affected by
Rac1 [191–193]. In addition the RhoA/ROCK pathway is regulated by
parathyroid hormone (PTH). PTH regulates hypoxia-inducible factor
driven signaling through RhoA/ROCK in osteoblasts (Fig. 4), by
disrupting the actin cytoskeleton and reducing stress fibers through a
cAMP-dependent mechanism [195].Taken together, these findings
tend to suggest that inhibition of the RhoA/ROCK pathway stimulates
osteoblastic differentiation (Fig. 4).

In bone, osteoblasts can sense and respond to mechanical loads to
maintain and regenerate bone tissue. Osteoblasts can regulate their
mechanosensitivity to continued load through P2Y2R-mediated activa-
tion of the RhoA signaling cascade, leading to actin stressfiber formation
and increased cell stiffness [196]. P2X7R action induces NFATc1, PI3K/
AKT, ROCK and VEGF pathways in osteoblasts promoting either primary
tumor development or osteoblastic lesions [197]. Deletion of P2Y13R af-
fects both osteoblasts and osteoclasts and leads to less trabecular bone
in mice. Down-regulation of RhoA/ROCK signaling and a reduced ratio
of RANKL/OPG may be the possible molecular mechanisms behind
these alternations. Thesemay affect the downstreamERK-MAPK signal-
ing and leads to dysfunction and impaired differentiation of bone cells,
particularly osteoblasts [198].

Rho levels are considerably higher in cells embedded in immobilized
collagen gels compared to those in floating collagen gels that have not
been subjected to mechanical stress [199]. Addition of Y-27632 to oste-
oblast-like MG-63 cells embedded in stress–relaxed collagen gels pro-
duced a dose-dependent inhibition of contraction [200]. The high

Fig. 3. Functions of Rho-associated coiled-coil kinases in human mesenchymal stem cells
(hMSCs). The hMSCs stimulated by transforming growth factor-β1 (TGF-β1) undergo
chondrocyte differentiation. Wnt5a, stimulates osteoblast differentiation of human
progenitors through ROCK activity. The treatment of hMSCs with BMP-2 induces a Rho/
ROCK-mediated cell tension which is responsible for BMP-2 induced osteogenesis.

Fig. 4. Functions of Rho family of small GTPases and Rho-associated coiled-coil kinases in
osteoblasts. ROCK upregulates the activity of phosphatase and tensin homolog (PTEN) and
actomyosin contractility in osteoblasts. ROCK inhibitors (fasudil) stimulate mineralization
of osteoblasts. The function of BMPs is modulated by RhoA and ROCK. RhoA/ROCK
signaling negatively regulates BMP-induced osteoblastic differentiation. Inhibition of
Rac1 activates BMP-2-induced osteoblastic differentiation in C2C12 myoblasts.
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RhoA activity in cells poorly attached to substrates caused an increase in
the activity of ROCK, that upregulated the activity of phosphatase and
tensin homolog (PTEN) [201]. As a result, activated PTEN down regulat-
ed the activity and phosphorylation of PI3K/Akt, which are essential for
cell proliferation. The RhoA-ROCK-PTEN pathway (Fig. 4) acts as a mo-
lecular switch to control cell proliferation and determine anchorage de-
pendence. In cells that are poorly attached to substrates, its inhibition is
sufficient to restore cell proliferation without the need for physico-
chemical modification of the material surface [201]. Moreover, upregu-
lation of PTEN may attenuate adhesion, migration and invasion
capabilities of osteosarcoma cells [202].

Numerous miRNAs that regulate ROCK1 expression and activity
have been identified in cancer tissues [203]. ROCK1 is a target of miR-
145 [204], miR-335 [205] and miR-340 [206,207] in osteosarcoma. De-
creased expression of miRNAs in cancer tissues leads to increased
ROCK expression/activity and increasedmigration, invasion, or prolifer-
ation. This cell phenotype can be rescued by overexpression of miRNAs,
inhibition of ROCK1 by Y27632 or ROCK1 siRNA [204,207].

5.3. ROCKs and chondrocytes

Rho GTPases in chondrocytes transduce the signals from extracellu-
larmatrix to the actin skeleton and control cellular activities such as cell
cycle, gene expression and apoptosis [208]. Specific inhibitors such as
ML141 for Cdc42, NSC23766 for Rac1, toxin C3 for RhoA and Y-27632
for ROCK are often employed to differentiate the activities of various
members of Rho GTPases and ROCK. Rac1, Cdc42, and RhoA are present
in chondrocytes and levels of active Rac1 and Cdc42 increase withmat-
uration [209]. Mature chondrocytes are rounded or polygonal and dis-
play characteristic cortical actin organization, while the organization
of actin stress fibers, at least in vitro, has been associatedwith de-differ-
entiation of chondrocytes to a fibroblast-like phenotype [17,18]. Very
often RhoA promotes stress fiber formation and inhibits chondrocyte
differentiation [210,211] while, in contrast, Rac1 and Cdc42 promote
chondrocyte hypertrophy [212–214] (Fig. 5). miRNAs may regulate
Rho GTPase activities at least in part through regulating RhoA and
RhoA/Rac1 cross-talk [215]. For example, miR-34a is upregulated by
chondro-inhibition, whereas miR-34a knockdown stimulates transition
of cells from a fibroblastoidmorphology to a rounded or polygonalmor-
phology. Rac1 regulates chondrocyte proliferation through Rac1-medi-
ated ERK1/2 pathway [216–218]. Early and late chondrocyte
proliferation can be initiated via Rac1-mediated p38 MAP kinases
[219–221]. Rac1 and, to a lesser extent, Cdc42, transactivate MEKK1,
which is, in turn, responsible for activation ofmitogen-activated protein
kinase 7 [222]. Rac1 accelerates osteoarthritis (OA) development [223]

and can promote cartilage matrix destruction by stimulating MMP-13
production [224], while inhibition of Rac1 by NSC23766 protects carti-
lage from OA in C57L/6 mice models of OA. β-Catenin might partially
function downstream of activated Rac1 in modulating pathological
changes in chondrocytes [223]. This is consistentwith the previousfind-
ing that Rac1 can increase β-catenin activation and that Wnt/β-catenin
and Rac1 signaling cross-talk in chondrocytes [209]. Furthermore,
ofloxacin, was found to induce the juvenile rabbit joint chondrocyte ap-
optosis in three dimensional culture system, activating the EGFR-Vav2-
Rac1 pathway [225].

The association of Cdc42 with actin cytoskeleton architecture and
phenotypic expression is supported by the evidence from articular
chondrocytes stimulation of which by either the catabolic cytokines,
IL-1 or tumor necrosis factor, or by sheer stress, activates MAP kinase
subgroups JNK, p38, and ERK, which is consistent with signaling
through Cdc42 [226–229]. Cdc42 is essential for chondrogenesis and
interdigital programmed cell death during limb development [230] as
well as for cartilage development during endochondral bone formation
[231]. Treatment of chondrocytes from horse femoropatellar joints with
insulin-like growth factor (IGF-I) induced a decrease in GTP-bound
Cdc42 suggesting a link between the IGF-I and Cdc42 signaling path-
ways [232,233]. Mutation in Fgd1 which encodes a guanine nucleotide
exchange factor results in faciogenital dysplasia. A loss of FGD1 activity
disrupted Cdc42 signaling [234]. TGF-beta/ Cdc42 signaling pathways
were enhanced in small mother against decapentaplegic 3 (Smad3)
gene knockout (Smad3(ex8/ex8)) mice, which display a phenotype
similar to human OA [235].

RhoA promotes fibroblastoid cell shape and the formation of actin
stress fibers. Overexpression of RhoA inhibited both early chondrogen-
esis and hypertrophic chondrocyte differentiation [17] (Fig. 5). Both in-
hibition of Rho by toxin C3 (a RhoA inhibitor) and inhibition of ROCKs
by Y27632 in primary mouse chondrocytes increased cell spreading
on a bone sialoprotein (BSP)-coated surface [236]. However, ROCK inhi-
bition was not able to mimic all effects of Rho GTPase inhibition [236].
Rho inhibition by toxin C3, disturbed the actin cytoskeleton in
chondrocytes leading to the loss of intracellular actin fibers and promi-
nent filamentous actin structures at the cell periphery. This was not ob-
served with ROCK inhibition in chondrocytes [236]. RhoA
overexpression increased proliferation and delayed hypertrophic differ-
entiation, as evidenced by decreased TNAP activity, mineralization, and
expression of the hypertrophic markers: collagen X, BSP, and MMP-13
[237]. In contrast, inhibition of ROCKs by Y27632 diminished chondro-
cyte proliferation, accelerated hypertrophic differentiation and partially
rescued the effects of RhoA overexpression in chondrogenic ATDC5 cells
[237]. Expression of ROCK 1 was significantly increased in

Fig. 5. Functions of Rho family of small GTPases and Rho-associated coiled-coil kinases in chondrocytes. RhoA activates the formation of stress fibers, which has been associated with
differentiation of chondrocytes. Inhibition of ROCK by Y-27632 induces chondrocyte differentiation and prevents cartilage degradation. Rac-1 accelerates osteoarthritis (OA) and
through ERK 1/2 pathway activates chondrocyte proliferation through ERK 1/2 pathway. Cdc42 favors chondrogenesis.
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developmental dysplasia of the hip acetabulumchondrocytes compared
to normal cells [238]. Inhibition of ROCK signaling by Y-27632 in ATDC5
cells produced spherical cells (a hallmark of differentiated
chondrocytes), increased transcription of Sox9, and glycosaminoglycan
accumulation [239]. RhoA overexpression inhibited the expression of
collagen II, aggrecan, chondrogenic transcription factors L-Sox5 and
Sox6 in these cells. ROCK inhibition by Y-27632 in ATDC5 cells resulted
in an increase in all the above markers [239]. The RhoA/ROCK pathway
suppresses glycosaminoglycan synthesis, a marker of early
chondrogenic differentiation [239]. It was proposed that the RhoA/
ROCK pathway repressed chondrogenic gene expression in general,
likely through down-regulation of Sox9 levels [240]. ROCK inhibition
in ATDC5 cells and primary chondrocytes in monolayer culture as well
as in mesenchymal limb buds cells cultured in three-dimensional
micromass cultures, all resulted in an increased level of Sox9 mRNA.
However, chondrocytes inmicromass cultures, in contrast tomonolayer
cultures, exhibited reduced expression of Sox9 target genes despite in-
creased levels of Sox9mRNA,which indicates that RhoA/ROCK signaling
effects are dependent of the type of cells and type of culture [240]. Upon
repeated passage, primary caudal sternal chondrocytes (isolated from
14-day-old chicken embryos) change their round shape to a fibroblast
morphology [241]. The expression of collagen II, aggrecan, Sox9, Sox5,
and Sox6 genes was lost between the P1 and P4 passage. This was cor-
related with an increase in total RhoA protein and active GTP-bound
RhoA. There is an inverse correlation between the levels of active
RhoA protein in a cell and the expression of both chondrogenic tran-
scription factors and differentiation markers [241] (Fig. 5). Indeed, cul-
ture of dedifferentiated chondrocytes in alginate gel induces a
precipitous loss of RhoA protein and a loss of stress fibers concomitant
with re-expression of the chondrocyte differentiation program. ROCKs
were shown tophosphorylate Ser181 of Sox9 confirming a link between
ROCK and Sox-9 [242,243].

Recentfindings suggest that inhibition of Rho/ROCK activity can pre-
vent cartilage degradation (Fig. 5). Y-27632 prevents dedifferentiation
of monolayer-cultured chondrocytes, and may help to maintain the
chondrocytic phenotype in vitro for chondrocyte-based regeneration
therapy [244]. Transforming growth factor-α (TGFα) levels are in-
creased in the synovium and synovial fluid of patients with OA or rheu-
matoid arthritis (RA) [245,246]. Upregulation of the catabolic activity of
TGF-α, a strong stimulator of cartilage degradation, is prevented by
ROCK inhibition by Y27632, RhoA inhibition by C3, p38MAPK (mitogen
activated protein kinase) inhibition by SB202190 and PI3K (phos-
phatidylinositol-4,5-bisphosphate 3-kinase) inhibition by LY294002
but not by MEK (MAPK/ERK kinase)/ERK (extracellular-signal-regulat-
ed kinase) inhibition by U0126 in rat chondrocytes and in
osteochondral explants. The inhibition prevents excess type II collagen
and aggrecan degradation byMMP-13 in response to TGF-α [247]. Stim-
ulation of EGFR signaling in articular chondrocytes by TGF-α results in
the activation of Rho/ROCK, MEK/ERK, PI3K and p38 MAPK pathways
[247]. Disruption of chondrocyte proliferation and/or differentiation
by gene mutations commonly results in chondrodysplasias [29–31].

Excessivemechanical stress on the cartilage can causematrix degra-
dation leading to OA [248]. Cyclic compression caused Rho activation,
p38MAPK phosphorylation andMMP-13 expression that were blocked
by Y-27632 or SB202190 in bovinemetacarpal phalangeal articular car-
tilage explants [248]. AS182802, a selective ROCK inhibitor, prevented
cartilage damage induced by monoiodoacetate in rat model of OA, sug-
gesting a possible clinical application for the treatment of OA [249].
Treatment with Y-27632 suppressed MMP-3 expression and increased
that of aggrecan, indicating that ROCKs inhibition affected the balance
between degradation and synthesis of cartilaginous extracellularmatrix
[250].

There is some experimental evidence of ROCKs action during cyto-
skeletal reorganization in chondrocytes. Ultrasound stimulation
disrupted actin stress fibers of bovine chondrocytes seeded on 3D chito-
san matrix in a ROCK dependent manner since this effect was sensitive

to Y-27632 [251]. Chondrocytes stimulated with leptin exhibited an ep-
ithelioidmorphology with increased cellular spreading. Leptin activates
the RhoA/ROCK/LIMK/cofilin pathway, resulting in cytoskeletal reorga-
nization in chondrocytes [252]. As alreadymentioned [236], both the in-
hibition of RhoA by toxin C3 or ROCKs inhibition by Y-27632 in primary
chondrocytes from mice increase cell spreading on BSP-coated surface,
while only ROCK inhibition increase cell spreading on fibronectin.
RhoA inhibition did not increase cell spreading on fibronectin indicating
that Rho action is dependent on the surface type.

5.4. ROCKs and osteocytes and lining cells

So far, there is no direct experimental evidence of Rho-associated
coiled-coil containing kinase activities in osteocytes. As hypothesized,
proteins which may be regulated by Rho kinases in osteocytes are
focal adhesion kinases (FAK) and integrins [253]. Among FAK related
proteins in osteocytes, there is proline-rich tyrosine kinase 2 (Pyk2)
that induces reorganization of the cytoskeleton, cell detachment and
apoptosis and may serve as an “off switch” to suppress the anabolic re-
sponse of a bone subjected to mechanical load [254].

5.5. ROCKs and osteoclasts

DifferentGTPases of the Rho family act at the subsequent steps of os-
teoclastogenesis i.e., during the fusion of mononuclear cells into multi-
nucleated OCs, podosome organization, migration and polarization,
consistent with the model that separates differentiation and podosome
dynamics from osteoclast adhesion [255,256]. Activated Rac mediated
lamellipodia formation and cytoskeletal reorganization in OCs [204–
206,257–259] while Cdc42 stimulated filopodia formation and Rho
GTPases-mediated retraction fiber assembly [260]. RhoA stimulated
actin cable assembly and cell contraction while the Rho inhibitor, C3
transferase, induced the loss of actin cables. Bac1macrophages have ad-
hesion sites containing beta1 integrin, pp125FAK, paxillin, vinculin, and
tyrosine phosphorylated proteins. The focal complexes were
disassembled in cells injected with Cdc42 or Rac1 mutants [260].
Cdc42, Rac and RhoA regulate the formation of distinct actin filament-
based structures. Cdc42 and Rac are also required for the attachment
of adhesion sites to the extracellular matrix. As reviewed [41,42], Rac1
and Rac2 are essential for the formation of the podosome belt (PB)
and for bone resorption [261–264] (Fig. 6). Deletion of both Rac1 and
Rac2 in mature osteoclasts causes petrosis, an age-dependent change
in osteoclast number, and a reduced number of osteoblasts in vivo,
which indicates that Rac1 and Rac2 are indispensable in skeletalmetab-
olism [265]. Rac1, Rac2, Cdc42, RhoA and RhoU act duringmigration and
fusion ofmononuclear cells intomultinucleated cells. In addition to Arf6
and Rab7, the same Rho GTPases (Rac1, Rac2, Cdc42, RhoA and RhoU)
act during the formation of PB and the sealing zone (SZ) (Fig. 6). In con-
trast, only Cdc42, Rac1 and Rab7 are involved in polarization and bone
resorption, while Cdc42 and Rac1 prevent osteoclast apoptosis [41,42].
Several mechanisms trigger the activation of Rho GTPases via RANKL,
or via effectors such as Dock5, Par3, PIP2, etc. Dock5, is of particular in-
terest since it is a target for intervention in osteoporosis treatment. Cy-
toskeleton has a complex relationship to vesicle trafficking regulated by
Rab and Arf (ADP-ribosylation factor) GTPases. Dock proteins regulate
actin cytoskeleton, cell adhesion and migration [266]. Dock family pro-
teins, comprising 11 members in mammals, named Dock1 to Dock11,
are exchange factors (GEF) for the Rho GTPases Rac and Cdc42 [266].
GEF Dock5 is essential for the formation of SZ in vitro and in vivo. Indeed,
inhibition of Rac1 activation by Dock5 can reduce bone resorption by
OCs. The expression of Dock5 is restrictedmainly to OCs, and it is absent
from osteoblasts. Therefore, development of Dock5 inhibitors appears
to be an alternative approach to generate antiresorptive molecules
that would target OC activity with reduced side effects [267]. Treatment
with osteoprotegerin reduced bone resorption and caused a significant
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decrease in the expression of Dock5, MMP-9, Rho GTPases, ROCK1 and
ROCK2 [268,269].

Primary RhoE-deficient OCs delivered evidence that RhoE stimulates
OCmigration and bone resorption bymaintaining fast actin turnover in
podosomes. Moreover, RhoE activated cofilin, a podosome component,
by inhibiting its ROCK-mediated phosphorylation. In conclusion, the
RhoE-ROCK-cofilin pathway promotes podosome dynamics and pat-
terning, inducing OC migration, SZ formation, and bone resorption
[270]. Bone metastasis in breast cancers is often accelerated by TGF-β
signalling that activates Rho and enhances the parathyroid hormone–
like hormone (PTHLH) [271,272]. Such activation affects the osteo-
blast/osteoclast balance, resulting in an osteolytic vicinity of tumour
cells [271]. Inhibition of Rho-ROCK, either by C3 treatment to inhibit
RhoA or by Y27632 or fasudil treatments to inhibit ROCK, reduced
PTHLH production and breast cancer bone metastasis in vitro and in
vivo [271–273]. In osteoclasts, ADP is a powerful osteolytic agent acting
via the P2Y1 receptor [198,274]. Deletion of the P2Y13 receptor leads to
less trabecular bone in P2Y13R−/− mice, by affecting both osteoblasts
and osteoclasts and by decreasing RhoA [274]. It was suggested that
the decrease in RhoA/ROCK signaling reduces ERK activity, diminish
runt-related transcription factor 2 activity, and alters TNAP activity in
osteoblasts [275]. Decrease in ERK action via RhoA/ROCK signaling im-
pairs survival and induces apoptosis in osteoclasts by affecting the for-
mation of a ruffled border and the maintenance of cell polarity [276,
277].

5.6. ROCKs and cell adhesion to extracellular matrix

Cell adhesion to ECM results in clustering of integrins in focal adhe-
sions, which are sites of signal transduction and integration where sig-
naling cascades are initiated [44]. Changes in osteoblast adhesion and
reorganization of the F-actin cytoskeleton in response to altered topog-
raphy occur prior to osteoblast differentiation and are regulated by Rac
and RhoA (through ROCKs). During osteogenic differentiation matrix
stiffness is regulated by integrin-mediated mechanotransduction and
the ROCK-MAPK-ERK pathway [187]. Inhibition of RhoA and ROCKs in
MC3T3-E1 cells cultured on collagen-functionalized poly(ethylene gly-
col) hydrogels decreased ERK activity, while active RhoA increased it.
Inhibition of RhoA by C3 toxin and inhibition of ROCK by Y27632 to-
gether with downregulation of theMAPK pathway slowed down osteo-
genesis as evidenced by altered OCN and BSP gene expression, TNAP
activity, and mineralization [275]. These findings suggest that ECM ri-
gidity regulates osteogenic differentiation through MAPK activation
downstream of the RhoA/ROCK signaling pathway [275]. When activat-
ed by kindlin-2, Rac induces cell adhesion, spreading and proliferation
of osteoblasts [278]. Indeed, its inhibition reduced osteoblast-like
MC3T3-E1 cell adhesion, spreading, and proliferation. Rac negatively

regulates TGF-β-stimulated VEGF synthesis via inhibition of p38 MAP
kinase in MC3T3-E1 cells [279]. Very often, focal contact formation
and polymerization of actin at the cell periphery is regulated by Rac,
while activation of RhoA/ROCK is linked to the formation of F-actin
stress fibers and development of focal contacts into focal adhesions by
modulating MLC phosphorylation. ROCK inhibitors stimulate migration
of human cultured osteoblastic cells (HOb and Saos-2 cells) by regulat-
ing actomyosin activity [280]. Inhibition of ROCK signaling could im-
prove bone formation around implanted metals [281]. ROCK inhibitors
decrease MLC phosphorylation, and then induce actin reorganization
and focal contact disassembly, as well as upregulation of MLCK levels.
MLCK is active during stimulation of cell migration. As a consequence,
osteoblasts change their shape andmigrate more rapidly after ROCK in-
hibitor treatment. Other proteins and kinases such as focal adhesion ki-
nase (FAK), Src, and/or paxillin may also be involved in the ROCK
signaling pathway [280]. The RhoA/ROCK pathway is activated during
mesenchymal stem cell and osteoblast orientation on nanometric sur-
faces. The RhoA/ROCK pathway regulates contact guidance of bone-re-
lated cells on metallic substrates to a varying extent depending on the
cell type and dimensions of the substrate pattern [282].

6. Perspectives

The RhoA/ROCK pathway is the most investigated pathway [109–
118] involving the Rho family of GTPases and their downstream effec-
tors. Generally, the RhoA/ROCK pathway, as exemplified in Fig. 2, acti-
vates formation of stress fibers and actomyosin contraction in
chondrocytes [17,18,210,211,251] and in osteoblasts [190,196]. Phar-
macological inhibition of ROCK by Y27632 or by fasudil has been
employed in hMSCs [188], chondrocytes [17,218,236,239,240,244,247,
251] osteoblasts [192,193,200,204,207], and in osteoclasts [271–273].
However, it does not allow to differentiate between the often distinct
activities [98,128,135–148] of ROCK1 and ROCK2 [169,170]. The RhoA/
ROCK pathway has been shown to decrease the expression of
chondrogenic genes in chondrocytes [240], osteoblastic markers in
MC3T3-E1 [191] and impair osteoblastic differentiation [191,193]. This
is in contrast to hMSCs where inhibition of ROCK prevented the osteo-
genic [183] and chondrogenic [188] differentiation. These findings indi-
cate that at an earlier stage of lineage commitment, as in the case of
hMSCs, the RhoA/ROCK pathway is osteogenic or chondrogenic, while
in differentiated osteoblasts and in chondrocytes, the RhoA/ROCK path-
way acts to suppress osteoblastic and chondrogenic markers. Inhibitors
of ROCKs in differentiated cells are expected to stimulate osteogenic
markers and to restrict cell invasion. In this respect the proof of concept
that inhibition of the ROCK by Y27632 or fasudil prevents cartilage deg-
radation [244,248–250] and restricts cancer cell migration and invasion
[204,207,271–273] have been reported. Treatment with

Fig. 6. Functions of Rho family of small GTPases in osteoclasts. Rac1, Rac2, Cdc42, RhoA, RhoU act during fusion of mononuclear cells into multinucleated cells and duringmigration. Rac1
and Cdc42 can induce polarization and bone resorption. Rac1 and Rac2 act during formation of podosome belt and sealing zone.
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osteoprotegerin, which reduces bone resorption and causes a decrease
in the level and activity of Rho GTPases, ROCK1 and ROCK2, suggests
that inhibition of ROCKmay also prevent osteoporosis [268,269]. There-
fore, a local delivery of ROCK inhibitor delivery targeting ROCK needs to
be elaborated to bypass the systemic side effects of ROCK inhibitors. The
RhoE/ROCK/cofilin pathway, which promotes podosome dynamics and
patterning, stimulates OCmigration, SZ formation, and bone resorption,
[270] is in the focus of attention as a possible target of intervention in
bone resorption, in the context of osteoporosis.

In addition, members of the Rho family of GTPases such Rac1, Rac2,
Rac3 and Cdc42, which act upstream of ROCK and/or other protein ef-
fectors, regulate morphology, motility and adhesion of chondrocytes
[209,212–214,216–221,230–232] and osseous cells [41,42,194,204–
206,257–265]. They may compensate for the actions of RhoA, affecting
directly or indirectly the actions of ROCKs and other protein effectors.

From a perspective point of view, there are still many unanswered
questions concerning the possible effects of the RhoA/ROCK pathway
activity in osseous and cartilage tissues, especially during bone forma-
tion. Of particular interest are the possible actions of RhoA/ROCK path-
way during matrix vesicle release. We speculate that proteins of the
submembranous cytoskeletal system, which are substrates for these ki-
nases, such as non-muscle myosin II, may be considered as vesicular
transport platforms that control different steps of receptor transport
and sorting to different cellular organelles [237]. Also proteins and ki-
nases of the cellular adhesion system such as FAK, vinculin, or paxillin
may be involved in the ROCK signaling pathway and be responsible
for the association of plasma membrane integrins with the actin cyto-
skeleton in cell-cell as well as cell-extracellular matrix contact sites
[217,283]. Oncogenic perturbation (suppression) of the ROCK pathway
via p120-dependentmechanisms ultimately resulted in constitutive ac-
tivation of the actin severing protein, cofilin, whose activity was neces-
sary but not sufficient to permit the transition to anchorage
independence and, presumably, tumorigenicity. Regulation of mem-
brane remodeling is also mediated in part by Arf GAPs (GTPase-activat-
ing proteins) that act as upstream regulators of the Rho family proteins
and provide a scaffold for Rho effectors and exchange factors.Withmul-
tiple functional elements, the Arf GAPs could integrate signals and bio-
chemical activities that result in coordinated changes in actin and
membranes necessary for a wide range of cellular functions [284]. The
occurrence of vesicular trafficking molecules and of the on-site protein
synthetic machinery suggests that cell polarization and apical targeting
are required for the incorporation of specific lipids and proteins at the
site ofMV formation.MV release fromSaos-2 cellswas stimulated by in-
hibition of filament polymerization by cytochalasin D [65]. Probably the
detachment of actin filaments leads to a drop in membrane tension, in-
dispensable toMV formation.Moreover,MV release frommicrovilli-like
membranes may be driven by actin-severing proteins (gelsolin, cofilin
1) and contractile motor proteins (myosins) [66].

7. Conclusions

Mineralization is amultifactorial and complex process that results in
the deposition of mineral crystals in the extracellular matrix of various
tissues. Ectopic calcification, occurring inmany soft tissues including ar-
ticular cartilage, cardiovascular tissues, kidney, ligaments, and tendons
is a process that shares similarities with physiological formation of
bones, teeth and certain areas of cartilage [285]. Therefore, understand-
ing of factors and mechanisms of the Rho GTPase pathway that regu-
lates the mineralization process is essential for the development of
alternative therapeutic strategies to prevent or inhibit pathologicalmin-
eralization and cartilage degradation.
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Membranes and pathophysiological mineralization

ABSTRACT
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