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Abstract 

 

In mice, serotonin (5-HT) midbrain neurons are born from embryonic day 10 to 12, and start 

extending axons, shortly after neurogenesis, both rostrally to the telencephalon and caudally to the 

brainstem. These projections are highly collateralized but with some degree of topographic 

organization. In the telencephalon, the pattern of 5-HT innervation arising from the dorsal (B7, B6) 

or the medial (B5-B8) nuclei differs. However, there are no systematic detailed developmental 

studies in mice, which are the most extensively used model, in particular for genetic studies. Such 

data are important to gather in order to analyze the effects of mouse mutations on defined molecular 

pathway of serotonin neurons. Moreover the guidance molecules that direct these 5-HT raphe 

neurons to different targets are not known. We performed several studies of 5-HT innervation aimed 

at detecting how the dorsal and median raphe nuclei are targeted to different forebrain regions during 

development. 

 

We investigated the role of ephrinA-EphA signalling in selective targeting. Our results demonstrate 

that EphA5 mRNA is selectively expressed in distinct subpopulation of serotonin raphe neurons. 

Particularly, EphA5 exhibited the highest level in dorsal raphe serotonin neurons (B7). The results of 

in vitro explant cultures and in vivo electroporation analyses indicated that the ligands of EphA5 

(ephrinA5 and ephrinA3) act as repellent factors for the serotonergic axon growth cones. 

Anterograde tracing in the ephrinA5 -/- mice showed mistargeting of dorsal raphe neurons 

projections, including the serotonergic projection. Particularly, our analysis of tracing studies shows 

that targeting of the dorsal and median raphe axons to different layers of the olfactory bulb is altered 

in the ephrinA5 KO. However we do not know at what developmental stage these alterations occur, 

in particular whether this reflects an alteration in the orientation of ascending fibre tracts, or whether 

this reflects late developmental maturation when raphe axons collateralize and branch in specific 

target regions. 

 

We have taken advantage a new morphological method, which allows analysing 

immunocytochemical labelling in 3D. 5-HT immunolabeling, in whole brain serotonergic projection 

in 3D. Our findings show that serotonergic fibres projecting to olfactory bulb require a special timing 

to enter the target. The expression pattern of ephrinA5 suggests that ephrinA5 can be one of the 

factors that modulate this timing.  

 

Overall, our results show for the first time the implication of a guidance molecule for the 

region-specific and time-specific targeting of serotonin raphe neurons and have implications for the 

anatomo-functional parsing of raphe cell groups. 

 

 

 
 
 
 
 
 
 
 



 5 

Abbreviation list: 

 

5-HT  5-hydroxytryptamine, serotonin 

AAV  adeno-associated virus 

Arc   arcuate nucleus 

BLA  basolateral amygdala nucleus  

BNST  bed nucleus of stria terminals 

DR   dorsal raphe nucleus 

DRD  dorsal raphe nucleus, dorsal part 

DRV  dorsal raphe nucleus, ventral part 

DRL       dorsal raphe nucleus, lateral part 

EPL  external plexiform layer 

GCL  granular cell layer 

GL   glomerular cell layer 

GPI  Glycosylphosphatidylinisotol 

ML   mitral cell layer 

MnR  median raphe nucleus 

RMS  rostral migratory stream 

SCN  superchiasmatic nucleus 

SERT  serotonin transporter  

VMH  ventromedial hypothalamic nucleus 

VMHDM ventromedial hypothalamic nucleus, dorsomedial part 

VMHVL  ventromedial hypothalamic nucleus, ventrolateral part 
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Part 1: Serotonin raphe neurons and topographic mapping of 

serotonergic projections 

Serotonin (5-hydroxytryptamine, 5-HT) neurotransmission is implicated in a large number of 

physiological functions from the most elemental such as feeding, sleep, and biological rhythms, to 

more elaborate such as mood, and learning (Lucki, 1998; Fernandez and Gaspar, 2012). As a 

consequence, 5-HT dysfunction has been implicated in a large number of neurological and 

psychiatric disorders such as depression, anxiety, autism, and attention deficit disorder. Furthermore, 

5‐ HT modulators are indispensable therapeutic tools in depression and anxiety disorder (Hussain, 

2016). 

1. History 

Serotonin was initially isolated from beef serum extracts as an extract that produced 

peripheral vasoconstriction; because of this vasoconstriction function this substance was named 

serum vasoconstrictor, serotonin (a serum factor that affected blood vessel tonus) (Rapport et al., 

1948). A year later, he identified the chemical composition of this extract as 5-hydroxytryptamine, 

5-HT. At about the same time Vially and Erspamer had identified « enteramine » in the 

enterochromaffin cells of the gastrointestinal mucosa that was increasing gut motility. In 1952, enter 

amine was identified to be the same substance as serotonin (Erspamer and Asero, 1952). Shortly after 

that, serotonin was detected for the first time in the mammalian CNS by biochemical analyses of 

brain tissue extracts initially in dogs. (Amin et al., 1954) Their study indicated that the central 

nervous system of mammals as well as certain ganglia and peripheral nerves of invertebrates contain 

detectable quantities of serotonin and that some of the richest areas containing serotonin were in the 

diencephalon and midbrain. Further studies extended this analysis to a wide range of species from 

mammals, to birds, reptiles and fish (Correale, 1956). The first visualization of serotonin neurons was 

achieved with fluorescence histochemistry methods that were based on the endogenous yellow 

fluorescence of indoleamines when these are fixed with aldehydes. The studies of Kjelle Fuxe and 

Annita G_Dahlstrom in rat in 1964 described for the first time the localization and the distribution of 

the neurons containing serotonin in the brain stem, as the B1-B9 cell groups; that were named as such 

to oppose them to the A1-A15 catecholamine-containing neurons.(Dahlstroem and Fuxe, 1964) 
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The studies of Dahlström and Fuxe attracted the interest of neuroscientists to the structure of 

the “raphe” nuclei in the brainstem. Raphe nuclei are an anatomical term for brain nuclei located in 

the midline of the hindbrain. Raphe nuclei were in particular described by Santiago Ramon y Cajal 

using the Golgi method. (Figure1) The silver chromate-impregnation method was in these early days 

the most important method to describe the cellular composition and organization of the nervous 

system, Ramon y Cajal studied the brains of newborn rabbit and kitten; he designated the raphe 

nuclei as “intermediate or unpaired nucleus” and “median subaqueductal nucleus of the raphe” which 

approximates the location of the rostral raphe group. He also mentioned that, in the magnocellular 

central nucleus of the raphe, a “thin cellular trail extends ventrally penetrating between both 

longitudinal fascicles”. This description resembles the localization of the interfascicular DRN and, 

possibly, rostral parts of the MRN. Cajal also observed that the DRN contained four types of neurons, 

which he described as being voluminous, fusiform, triangular and stellate. (Ramón Cajal, 1906) 

 
Figure1. Cajal's drawing of a transverse section through the caudal region of the superior colliculus of a 
few-days-old kitten. A, cells of the trochlear nerve nucleus; B, collaterals within the same nucleus; C, 
medial longitudinal fasciculus; D, fibers of the superior cerebellar peduncles; E, cells of the 
“subaqueductal nucleus of the raphe”, which probably resembles the DRN. F, ventral cells of the raphe; G, 
radicular fibers of the trochlear nerve. Image source: the annotated and edited translation of Cajal's 
“Texture of the Nervous System of Man and the Vertebrates” by Pedro Pasik and Tauba Pasik (Ramón 
Cajal, 1906), used by permission. 
 
 

In the early sixties, Elizabeth Taber described the detailed anatomical structure of raphe in the 

cat brain stem. She described the raphe nucleus as two linear nuclei (nucleus linearis intermedius and 
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nucleus linearis rostralis), which are approximately the location of rostral raphe group and caudal 

group, and subdivided these nuclei into 8 groups (Taber et al., 1960). Later on, as mentioned above, 

this was described more precisely by Dahlström and Fuxe in 1964. They used the 

formaldehyde-induced fluorescence (FIF) method to study the rat raphe nuclei; this technique had 

been developed by Falck & Torp, (1962) to visualize monoamines and soon became the most popular 

tool for visualizing serotonergic neurons. Based on this technique, the morphology and the 

organization of the raphe nuclei neurons were described in many different species, such as cat (Taber 

et al., 1960), human (Braak, 1970; Nobin and Bjorklund, 1973; Hornung and Fritschy, 1988), frog 

(Parent, 1973), rabbit (Felten and Cummings, 1979) and rat (Steinbusch and Nieuwenhuys, 1981) and 

fish (Pierre et al., 1992). The total number of raphe serotonin neurons differs between species, for 

instance, in rodents the population of serotonin raphe neurons was estimated to be 17000 (Ishimura et 

al., 1988), 20000 in rats (Jacobs and Azmitia, 1992), in cat this number increased to 60000 (Jacobs 

and Azmitia, 1992) and in human approximate 300 000 (Baker et al., 1991). The serotonin raphe 

neurons are well organized and topographically distributed along the caudal to rostral axis of the 

hindbrain as different raphe subnuclei. Indeed, Dahlstrom and Fuxe identified 9 serotonin subgroups 

in the rat hindbrain, from B1caudally to B9. (Dahlstroem and Fuxe, 1964) These cell groups compose 

2 main clusters: a rostral raphe group comprising the B9-B4 groups and the caudal raphe group that 

comprise the B3-B1 cell groups. The rostral raphe group is the 

largest cluster of serotonin neurons; it contains approximately 

70% of the total serotonin population. This rostral cluster also 

corresponds to defined cytoarchitectonic entities that are named as 

follows: caudal linear nucleus (CLi) corresponding to the rostral 

B7, the supralemniscal cell group, that corresponds to the B9 

group, the dorsal raphe nuclei which corresponds to the B7-B6 

groups and the median raphe nuclei, which corresponds to the 

B5-B8 cell groups. The caudal raphe clusters comprises the raphe 

obscurus, the raphe pallidus and the raphe magnus. (Steinbusch 

and Nieuwenhuys, 1981; Jacobs and Azmitia, 1992; Michelsen et 

al., 2007; Hale and Lowry, 2011) 

2. Biochemistry of serotonin system 

Serotonin neurons share a common neurochemical 

phenotype. The biosynthetic pathway for serotonin includes 
Figure2. The synthesis and 
metabolism of serotonin. (From 
NEUROtiker) 



 10 

tryptophan hydroxylase (TPH), the key enzymes for producing serotonin from amino acid, 

tryptophan (Grahame-Smith, 1964; Sato et al., 1967) and decarboxylase of aromatic l-amino acids. 

TPH carries out the first step and is the rate-limiting enzyme in 5-HT biosynthesis. Moreover, it is the 

only specific enzyme in serotonin metabolism. In contrast, the decarboxylase of l-aromatic amino 

acids is a widespread non-specific enzyme.  

Once 5-HT is produced it is concentrated into synaptic vesicles by the vesicular monoamine 

transporter, VMAT2, which is required for calcium dependent vesicular release. Once released 5-HT 

is rapidly cleared away from the extracellular space by the serotonin transporter SERT (Scl6a3) 

either to be recycled or to be degraded. In addition to the high affinity transporter 5-HT uptake is 

removed by high affinity amine transporters, OCT3.  

After reuptake, 5-HT is degraded essentially by 2 enzymes: monoamine oxidase-A which has 

the highest affinity for 5-HT, and MAOB which has a lower affinity for 5-HT (Levitt et al., 1982); 

(Figure2). 

TPH 

The enzyme TPH belongs to a small family of structurally and functionally related aromatic 

aminoacid hydroxylases that utilize tetrahydropterins as cofactor. In eukaryotes, these enzymes are 

composed of a homologous catalytic domain with a highly conserved C-terminal tetramerization 

regions and sequence-specific N-terminal regulatory domains are attached (Fitzpatrick, 1999). About 

15 years ago, the first TPH gene in rat, mouse and human (Darmon et al., 1988; Boularand et al., 

1990; Stoll et al., 1990) was described and, most of this time, this gene has been thought to be the 

only TPH gene in the genome. Later, evidence accumulated indicating different biochemical 

properties of the TPH enzymes depending on the analyzed tissue. However, efforts undertaken to 

identify another TPH gene isoforms were unsuccessful until Diego Walther with colleagues 

generated a TPH knockout mice (Walther and Bader, 2003). They found that these mice lacked 5-HT 

in the blood, in the periphery tissues and in the pineal gland. However, there was only a minor 5-HT 

decrease in the brain structures. These surprising results, suggested the existence of another gene not 

affected by the gene targeting. This lead Diego Walther and colleagues to discover a second TPH 

gene in the genome of mice, rats and humans, called Tph2. It has been shown that Tph2 is 

predominantly expressed in the brainstem and located on human chromosome 12 and mouse 

chromosome 10 (Walther and Bader, 2003; Walther et al., 2003). TPH1 and TPH2 enzymes are 
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highly homologous proteins exhibiting 71% of amino acid identity in humans; however, the 

N-terminals containing the regulatory domain are quite different. (Walther and Bader, 2003) 

MAO 

MAO catalyzes oxidative deamination of monoaminergic neurotransmitters, 5-HT, 

noradrenaline and dopamine. There are two forms of MAO (A and B) that are involved in 5-HT 

metabolism. MAO A and MAO B enzymes are encoded by different genes (Bach AW, 1988) 

localized on the X-chromosome (Lan et al., 1989; Sims et al., 1989). MAO A has a higher affinity to 

5-HT than MAO B and is considered as the principal enzyme of 5-HT degradation. 

Co-neurotransmission 

There is evidence that serotonin can be associated with other neurotransmitters. This was first 

discovered for neuropeptides. Substance-P was found in the Nucleus Raphe Magnus (Chan-Palay, 

1981; Magoul et al., 1986; Halliday et al., 1988; Arvidsson et al., 1994). Glutamate, an excitatory 

neurotransmitter, is also co-localized with serotonin and substance-P in raphe neurons (Nicolas et al., 

1992). Other peptides described within the serotonergic neurons are calretinin (Acsady et al., 1993), 

galanin (Arvidsson et al., 1991), enkephalin (Millhorn et al., 1989; Henry and Manaker, 1998), 

N-acetyl-aspartyl-glutamate (Forloni et al., 1987), neuropeptide-Y (Halliday et al., 1988; Krukoff et 

al., 1992), angiotensin II (Krukoff et al., 1992), and thyrotropin releasing hormone (Ulfhake et al., 

1987; Sharif, 1989; Arvidsson et al., 1994). It has been suggested that serotonin is localized to the 

small clear vesicles and peptides are concentrated in the dense core vesicles (Pelletier and Laflamme, 

1977; Johansson et al., 1980; Van Bockstaele and Chan, 1997). There is evidence for the 

co-localization of peptides and serotonin in the dense core vesicles (Pelletier et al., 1981). It would be 

interesting to know if glutamate exists within both the small and dense core vesicles with serotonin. 

3. Serotonin neuroanatomy - Anatomical organization of the raphe nuclei and 

serotonergic raphe neurons 

Serotonin neuroanatomy is difficult for the neuroscientists to concretize, since its 

decentralized structure and complex cell morphological constitution. The serotonergic raphe nucleus 

forms an inhomogeneous reticular group of neurons. This reticular group is located approximately 

from the spinal cord caudally to the interpeduncular nucleus rostrally. (Jacobs and Azmitia, 1992) 

The distribution of the serotonin raphe neurons is irregular, for instance, in the dorsal raphe (DR) and 
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caudal linear nucleus (CLi), the nuclear boundaries of the serotonin neurons shows the classical 

assignation, whereas the serotonin neurons in the lateral wing (LW) and B9 group are scattered in 

unconventional locations. (Detail describe see followed part)  

3.1 Serotonin neurons morphology 

Histochemical studies of the raphe nucleus showed that the neurons, that contain the serotonin 

have different morphologies, overall, 4 types were identified, large, small, multipolar and fusiform 

perikarya. In electron microscopic studies, the nucleus is seen as being invoginated and the 

cytoplasm has a well-defined Golgi apparatus and abundant microcanuculi.  

Moreover, electron microscopic analysis showed that serotonin terminals contained 2 types of 

vesicles: small clear vesicles and large dense core vesicles (Leger and Descarries, 1978; Wiklund et 

al., 1981; Johnson and Yee, 1995) 

Serotonin raphe neurons have different morphologies, this determined the variability of their 

size, generally, and the diameter of serotonin neurons is varies from 15 to 60 um. However this can 

also depend on the hormonal status of the animal: in adrenalectomized animals, lacking circulating 

adrenal glucocorticoids, the serotonergic neurons in all the raphe groups appear small with thin 

processes extending from the soma (Whitaker-Azmitia et al., 1993). If dexamethasone are added to 

the drinking water, the size of the soma and the processes increases, within an approximately 80% 

Figure3. An electron microscopic photograph taken of the Dorsal Raphe Nucleus of the 
adult rat. (Azmitia, 1999) 
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increase within 24–72 hours in the volume of the tryptophan hydroxylase immunoreactive neurons 

(Azmitia, 1999).  

3.2 Serotonin dendrites and axons morphology 

Cajal (1911) described the serotonergic neurons as large neurons with extensive but 

untraceable axonal projections. He indicated that they were equipped with “several divergent and 

strongly spiny dendrites”. Using 3H-proline as a marker, at least five separate tracts were found 

ascending from the superior group of raphe nuclei (Azmitia and Segal, 1978). Some serotonergic 

fibers are myelinated, whereas others are unmyelinated, and a variety of fiber diameters can exist 

within many brain regions (Kohler et al., 1980; Cropper et al., 1984). Some serotonergic neurons 

form synapses while others engage in non-synaptic interactions (Azmitia and Segal, 1978; Herve et 

al., 1987; Hornung et al., 1990). 

Some researchers described morphological differences between the serotonergic fibers, and 

divided serotonin neurons into two groups depending on fiber morphology. One fiber type, which is 

thick, relatively straight and non-varicose, was described as originating from the Median Raphe 

Nucleus while the other, formed by thin, highly branched and varicose fibers was described as arising 

from the Dorsal Raphe Nucleus (Kosofsky and Molliver, 1987; Hornung et al., 1990). However, this 

is controversial, as other researchers reported that the morphology of the fibers may depend on the 

target region innervated (Azmitia and Segal, 1978). For instance one study showed that the origin 

morphology of fibers was changed after they arrived the target. In another study it was shown that 

serotonergic projection tract from raphe to lateral ventricles, the fibers are initially thick, straight, and 

non-varicose at the first postnatal week in the rat. However, the same fibers become thin, highly 

branched, and varicose by the third postnatal week (Dinopoulos and Dori, 1995). 

3.3 Anatomical organization of the raphe nuclei 

To understand function in the central nervous system it is a good idea to start from the 

anatomy studies which can let you have a spatial overview. Neurons in different region are not 

scattered or randomly, distributed, they have a very precise cytoarchitectonic organization that 

corresponds to their developmental origin, and to their particular connectivity patterns that are 

informative of function. The composition /organization of the different raphe nuclei are listed below. 

(Figure 4) 
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Dorsal raphe nucleus (DR) c = B7+ B6 

The DR is considered as the one of the most important nucleus in the raphe complex since it 

contains the largest population of serotonergic neurons and is the focus of the vast majority of the 

serotonin research. The DR is located in the caudal midbrain and rostral pons, in a part of the 

brainstem called the tegmentum, just below the cerebral aqueduct. The DR has been further 

subdivided into several components based of the spatial location and density of cells.as the rostral 

extension, rostral, dorsal, ventral, ventrolateral, interfascicular, and caudal parts. There are four 

morphological cell types of neurons located in the DR: round, ovoid, fusiform and triangular 

(Steinbusch and Nieuwenhuys, 1981; Baker et al., 1991). However these cell morphologies have not 

been related to any functional characteristics. On the other hand, as will be discussed later there are 

neurochemical and connectivity differences among the DR subdivisions. 

The following DR subdivisions are considered: 

DR-Caudal linear nucleus (CLi) 

The caudal linear nucleus is located in the midbrain just dorsal to the decussating fibers of the 

superior cerebellar peduncle and merges caudally and dorsally with the DR; it can be considered as 

the rostral extension of DR. There are two main types of neurons in the CLi: serotonergic neurons 

and dopaminergic neurons that are intermixed (Steinbusch and Nieuwenhuys, 1981). The 

morphology of the serotonergic neurons in the CLi is small and spherical with fewer dendrites that 

are oriented along the rostral-caudal axis (Tork, 1990). The morphology of dopaminergic neurons is 

small and fusiform which are extends caudally into the ventromedial portion of the rostral DR 

(Wiklund et al., 1981; Minami et al., 1999). Serotonin neurons in the CLi are considered as the 

smallest population in the raphe complex, in cats, the CLi contains 2,000 serotonergic neurons, 

approximately one tenth the number of total DR nucleus (Wiklund et al., 1981). 

DR, Rostral part (DRr) 

The rostral part of dorsal raphe located on the cerebral aqueduct – CLi axis dorsal-ventrally. 

Caudally, the rostral DR is bordered by the DRD and the DRV. The specificity of neurons in the 

rostral DR is like the CLi included both serotonergic neurons and dopaminergic neurons (Descarries 

et al., 1986; Stratford and Wirtshafter, 1990). 
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DR, dorsal part (DRD) 

The DRD is bordered dorsally by the cerebral aqueduct, ventrally by the DRV, and laterally 

by the DRVL/VLPAG. The central midline region of the DRD contains the medium size, fusiform or 

bipolar cells which could be characterized as glutamatergic neurons, serotonergic neurons and 

GABAergic neurons. The distribution of serotonergic neurons can be grouped into two clusters, 

which are referred to as the DRD “core” and “shell” depends on the dense or scattered distributed 

serotonergic neurons respectively (Abrams et al., 2005; Clark et al., 2007; Hioki et al., 2010). 

DR ventral part (DRV) 

The DRV is bordered dorsally by the DRD, more precisely, a border of glutamatergic neurons 

which between DRD and DRV, ventrally and laterally by the dorsal tegmental nucleus. The DRV 

contains small, round serotonin neurons but also a population of glutamatergic neurons that are 

labeled by Vglut3. (Fremeau et al., 2002) (Gras et al., 2002; Schafer et al., 2002; Takamori et al., 

2002) Serotonergic neurons in the DRV are densely packed, and as a consequence, this region shows 

the highest expression of Tph2, SERT and some 5-HT receptors mRNA raphe complex (Clark et al., 

2006). 

DR ventrolateral part (DRVL) 

The DRVL group also called the lateral wings of raphe. Serotonergic neurons in this region 

are notable for their large size, relative to other subpopulations of serotonergic neurons, and their 

multipolar morphology, which is easily discernable with immunostaining for serotonin or tryptophan 

hydroxylase. The lateral wings do not include the glutamatergic neurons anymore but a large amount 

of GABAergic neurons (Jolas and Aghajanian, 1997; Day et al., 2004), which appear to play a role in 

local inhibitory control of serotonergic neurons within the dorsal raphe nucleus (Jolas and 

Aghajanian, 1997). 
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Median raphe nucleus (MnR) 

The MnR is a midline structure ventral to the DR. The MnR and the DR have different 

developmental origins. Serotonergic neurons in the DR derive entirely from rhombomere 1 of the 

developing mouse brain, whereas serotonergic neurons of the MnR derive predominantly from 

rhombomere1, 2 and 3. (Jensen et al., 2008; Bang et al., 2012). 

The B9 serotonergic cell group/supralemniscal serotonergic cell group (B9) 

B9 serotonergic neurons extend throughout the rostral and mid-pons and are located within 

and dorsal to the medial lemniscus. Although it has received considerably less attention than other 

midbrain and pontine serotonergic cell groups, it contains a substantial number of serotonergic 

neurons (estimated to be 4,571 cells in the rat brain, roughly equivalent to the number in the MnR 

(Vertes and Crane, 1997). Substantial numbers of B9 serotonergic neurons also have been described 

in primates, including humans (Azmitia and Gannon, 1986). Steinbusch (1984) described a high 
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concentration of serotonergic neurons dorsal to the medial lemniscus and ventral to the nucleus 

rubber, particularly its lateral parts. A few cells were located in the nucleus rubber itself. 

3.4 Serotonin raphe neurons axonal projections: from past to the present  

There is hardly no region in the central nervous system that does not receive 5-HT 

innervation; all this innervation derives from the brain stem raphe nucleus, which are in relatively 

low numbers compared to the vast amount of neurons that they innervate. This indicates a high 

degree of collateralization; however anatomical evidence has also shown that there is also a fair 

amount of topographic organization of the serotonin projections arising from the raphe. 

Cajal recognized that the fibers emerging from the raphe nuclei tended to “concentrate into 

ascending and descending dorsoventral bundles”. However, he was not able to determine how far the 

fibers continued, because these fibers were not labeled with the Golgi method. The first specific 

description of raphe nucleus axonal projections was described by Dahlstrom and Fuxe using 

Formaldehyde induced Fluorescence (FIF) which could visualize the monoamines, this allowed the 

first description of the distribution pattern of serotonin projections. However, this technique has a big 

weakness which is the rapid fading of fluorescence (Dahlstroem and Fuxe, 1964). Later in the 70s to 

80s, two crucial techniques were developed for serotonin projection histological analysis: specific 

antibody for immunohistochemistry analysis and anterograde/retrograde tracing. The first specific 

antibody against serotonin was developed and used by Steinbusch (Steinbusch and Nieuwenhuys, 

1981); this allowed a much more precise and detailed analysis of the serotonin axon terminals in 

different targets. At the same time period axon tracing methods made tremendous progress. 

Horseradish peroxidase (HRP) was found to be very efficient for tracing fiber pathway as a 

retrograde tracer and was used for studying serotonin projection since 1975. (Miller et al., 1975) In 

parallel, anterograde tracing methods were developed such as the autoradiographic detection of 

[3H]-serotonin uptake and [3H]-labeled reserpine that were used for anterograde tracing analysis of 

serotonin system. (Calas et al., 1974; Richards, 1979) More precise anterograde tracing were 

developed such as Biolytic, which allowed a fine cellular of anterogradely labeled dorsal and medial 

raphe neurons, identifying their full axon projections (Vertes, 1991; Vertes et al., 1999). However 

these tracing methods are not selective of a defined cell type, thus identification of the serotonin 

projections relied on a combination of fluorescent retrograde tracers (fast blue, fluoroglo) with 

immunocytochemistry. More recently, genetic tools are available for selective serotonin tracing as 

there are many transgenic mouse lines expressing the “Cre” recombinase under the control of specific 

promoters. For instance, in serotonin system the common promoters are: Pet1, Sert and Tph2     
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Based on the improvement of tracing methodology; the initial map of raphe serotonin neuron 

has been extended and refined over the years; Initially serotonin pathways were described as 

emerging from two cluster bases on the specificity of projection targets- a rostral group (B5-B9) 

which mainly projects to the forebrain targets whereas the caudal group (B1-B4) mainly project to 

the brainstem and spinal cord. Serotonin neurons from the rostral group are the essential neurons that 

release serotonin into the forebrain targets and furthermore play the key role in the modulation of 

CNS functions. And this is also why researchers who study the serotonin system are more interested 

in rostral raphe neurons. The rostral raphe group contains the majority or most the population of 

serotonin neurons and innervated the whole forebrain, it’s not difficult to imagine the complexity of 

their ascending pathways.  

In the beginning of 21st century, neuroanatomists initially clarify the different pathway from 

rostral raphe which were described characteristic as followed: (a) the dorsal raphe forebrain bundle 

tract, travelling within the ventrolateral part of the medial forebrain bundle to the basal ganglia, 

amygdala and piriform cortex; (b) the medial raphe forebrain bundle tract, travelling within the 

ventromedial part of the medial forebrain bundle to the prefrontal cortex, cingulate cortex, medial 

septum and hippocampus. Four additional fiber tracts are located outside the medial forebrain bundle; 

(c) dorsal raphe cortical tract, travelling ventrolateral to the medial longitudinal fasciculus to the 

caudate putamen and parieto-temporal cortex; (d) dorsal raphe periventricular tract, travelling 

immediately below the midbrain aqueduct to the periventricular thalamus and hypothalamus; (e) 

dorsal raphe arcuate tract, travelling through the ventrolateral edge of the midbrain to the 

ventrolateral geniculate body nuclei and the suprachiasmatic nuclei; (f) raphe medial tract, travelling 

from the dorsal and median raphe nuclei ventrally between the fasciculi retroflexus to the 

interpeduncular nucleus and midline mammillary nuclei. 

All these pathways can be simplified into three pathways: dorsal ascending pathway, median 

ascending pathway and ventral ascending pathway.  
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Dorsal ascending pathway 

The dorsal ascending pathway rises from the medial and rostral DRN and innervates the 

striatum and globus pallidus (GP). The striatum is the most important target for DRN innervation and 

one of the first to be extensively studied. The earliest anatomical indications for DRN projections to 

caudate-putamen (CP) of the dorsal striatum (Anden, 1965) were subsequently supported by lesion 

studies, which showed a drop in striatal tryptophan hydroxylase (TPH) activity (Geyer et al., 1976) as 

well as a decrease in [3H]5-HT uptake (Kellar et al., 1977) after DRN lesions. Approximately a third 

of all serotonergic DRN neurons project to the CP. This is, however, region-specific: in a cluster in 

the dorsomedial DRN, 80–90% of serotonergic neurons were found to project to the CP (Steinbusch 

and Nieuwenhuys, 1981). Twenty percent of DRN neurons that project to the CP are 

non-serotonergic. Nucleus accumbens of the ventral striatum, and particularly its core, are also 

extensively innervated by DRN fibers (Van Bockstaele and Pickel, 1993; Van Bockstaele and Chan, 

1997; Brown and Molliver, 2000). DRN efferent target the striatum at caudal to midlevels (Vertes, 

1991). Approximately half of the neurons are located in the rostral third of the DRN, fewer in the 

middle third and very few in the caudal third (Steinbusch and Nieuwenhuys, 1981; Waselus et al., 

2006). Pallidal afferents from the DRN have been demonstrated by tracing studies (DeVito et al., 

1980; Vertes, 1991). The innervation of the GP is mainly serotonergic, as confirmed by 

micro-dialysis studies in the rat (McQuade and Sharp, 1997) 

  

Figure5. Ascending pathways from raphe nuclei. (Lowry, 2002) 
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Medial ascending pathway 

The main target of the medial ascending pathway is the substantia nigra (SN). The projections 

seem to arise from the rostral DRN (Miller et al., 1975; Imai et al., 1986a) and they target the pars 

compact division in particular (Fibiger and Miller, 1977; Bobillier et al., 1976). However, a study 

using the retrograde tracer PHA-L failed to demonstrate DRN innervation of the pars reticulate 

(Vertes, 1991). To a lesser extent, the pathway also innervates the CP. Some of the fibers branch, and 

target both the SN and CP (van der Kooy and Hattori, 1980; Imai et al., 1986a). Thus, single DRN 

neurons exert control over both the SN and the CP. 

Ventral ascending pathway 

Via the ventral ascending pathway, the DRN innervates many areas. The bilateral pathway 

ascends ventrolateral and then turns rostral to enter the medial forebrain bundle. The pathway also 

contains fibres from other raphe nuclei, especially median raphe. The main targets are thalamic and 

hypothalamic nuclei, habenula, septum, amygdala, cortex, the olfactory bulb, interpeduncular nucleus 

and geniculate body. 

Indeed 5-HT neurons are generally intermingled with larger populations of non 5-HT neurons 

in each raphe subnuclei. An example of this is the DR cell group, which contains the highest 

proportion of 5-HT producing neurons, and yet comprises twice as much non-5-HT neurons 

(Descarries et al., 1982). So in order to identify 5-HT projections from the raphe relied on tracing 

techniques coupled to the histochemical revelation of 5-HT or combined with lesions. However, 

although these studies allowed to describe the projections of the raphe cell groups, many limitations 

effect the reliability of the studies, such as the variability of the injection site, variability of the uptake 

by passing fibres, the background from histochemical methods and the difference of the morphology 

after labelled by specific antibodies. Moreover, most of the studies generally focused on a particular 

target brain region or at most on a combination of few targets (van der Kooy and Hattori, 1980; 

Kohler et al., 1982; Kohler and Steinbusch, 1982; Waterhouse et al., 1986; Jones and Cuello, 1989; 

Van Bockstaele and Pickel, 1993; Vasudeva et al., 2011). Summarizing these studies is difficult 

because they relied on different experimental protocols and different animal models. 

This is why, nowadays, neuroanatomists prefer to use genetic tools to study connectivity. 

Recent genetic studies defined the rhombomeric origin of the different raphe nuclei (Jensen et al., 

2008) and provided a useful description of the 5-HT axon projections arising from the different 
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rhombomeres (Bang et al., 2012). In these studies, they performed multi genetic tools, which cross 

different recombinase marks promoted Cre recombinase to detect the connectivity relationships 

characterizing three serotonergic neuron subpopulations. These subpopulations were characterized by 

developmental gene expression associated with different rhombomeric (r) segments of the embryonic 

hindbrain. Subpopulation of serotonin neurons from r1 was derived from the combined expression of 

Pet1 (as a serotonin marker) and En1 as a marker of rhombomeric origin (r1). Likewise, r2 

serotonergic neurons were characterized by the combined expression of Pet1 and Hoxa2 (as a marker 

of r2), while Egr2 was used for identifying the serotonin neurons from r3 and r5. The mature 

serotonin neurons of these three subgroups are located in the dorsal raphe (DR), median raphe (MR), 

B9 group and the rostral portion of raphe magnus (RMg) (Jensen et al., 2008). The same 

intersectional and subtractive genetic approach was used to visualize and selectively map the axon 

projections associated with each of these three different subpopulations of serotonin neurons. The 

multi genetic approach of Jensen is a set of Cre recombinase transgenic – En1::cre, Rse2::cre or 

Egr2::cre – each separately partnered with an ePet1::Flpe transgene, based on that they develop the 

approach which is with the indicator allele RC::FrePe to selectively identify the intersection neurons 

with enhanced green fluorescent protein (eGFP) expression. With this approach they separately 

mapped target brain regions served by each of these three subpopulations. Additionally, they 

examined how each of these eGFP-containing subgroups of serotonin neurons provided recurrent 

innervation to the remaining serotonin neurons that lacked eGFP, as a means to explore potential 

inter-system feedback inhibition. This could greatly enhance the dynamic and differential changes in 

extracellular serotonin concentrations across brain regions. 

Their results suggest that rhombomeric origin is a contributor to organizing not only the 

location of serotonin cell bodies (Jensen et al., 2008), but also the organization of their projections, 

and thus genetic and developmental process may provide key insights into resolving aspects of the 

functional heterogeneity within the serotonin system. However, these approaches do not allow a 

specific delimitation of the topographic organization of raphe neurons originating from the same 

rhombomere. 

In 2016, Muzerelle et al used conditional tracing methods (AAV, lox-stop-lox-GFP) in mice 

expressing the Cre-recombinase in 5-HT raphe neurons to obtain a selective anterograde tracing of 

these neurons. Using this method, they labeled small groups of 5-HT neurons within the different 

raphe sub-nuclei allowing a comprehensive mapping of their terminal axon fields in the brain. With 

these studies they provided a description of the main projecting areas of 5-HT axons arising from 
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different raphe sub-nuclei as well as a systematic semi-quantitative analysis of correlations between 

the origin of 5-HT axons (raphe sub-nuclei) and their targeted brain regions(Muzerelle et al., 2016). 

DR projections (B7) 

As I described above, dorsal raphe contain the biggest population of serotonin neurons and 

spatially divided into several subregions. Aude et al. showed that even in these sub-regions, the 

targets are different from each serotonin neurons.  

Dorsal component of the dorsal raphe, DRD (B7d) 

Ascending projections from the DRD were detected as ventrally and bilaterally towards the 

mlf, then serotonin fibers are spreading laterally to innervate the substantia nigra pars compacta 

(SNC) and ventral tegmental area (VTA). The most abundant terminal innervation was localized in 

the hypothalamus, followed by the lateral geniculate nuclei of the thalamus, SNC and parts of the 

basal ganglia, namely the nucleus accumbens, and caudal parts of the caudate-putamen and pallidum. 

These projections were mainly but not exclusively ipsilateral.  

In the brainstem, DRD axons terminal innervation was dense in the superior colliculus and the 

periaqueductal gray (PAG). More ventrally it was essentially concentrated in the superior Oliver 

complex, 7N, and dorsal and ventral cochlear nuclei (DC, VC) 

Ventral component of dorsal raphe, DRV (B7v)  

Amygdala was strongly innervated by DRV serotonin fibers, where a strong accumulation of 

axon varicosities was observed with a particularly dense distribution in the central and basolateral 

components of the amygdala. A somewhat similar dense innervation was visible within the extended 

amygdala, such as the bed nucleus of the stria terminalis (BST). In contrast, despite the presence of 

ascending fiber tracts in the medial septum, no terminal innervation was visible in the lateral septal 

(LS) nuclei. 

A dense innervation also reached the cerebral cortex, with a particular concentration in its 

rostral and ventrolateral parts including the orbital cortex and olfactory-related brain areas, in 

particular the piriform cortex, the anterior olfactory nuclei (AON) and the mitral and granular layers 

of the olfactory bulb. In the medial prefrontal cortex, varicose fibers were visible mainly in the 

infralimbic cortex, whereas the dorsal part and the cingulate cortex were more sparingly innervated. 
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In the thalamus, innervation was essentially concentrated in the midline thalamic nuclei. The 

habenula was only moderately innervated, with terminal fibers mainly in the lateral habenula (LHb). 

Strikingly, and contrasting with the heavy ascending fiber tract in the mfb, the hypothalamic nuclei 

received hardly no innervation. Similarly the hippocampus contained only few fibers that were 

essentially localized in the stratum lacunosum-moleculare of both the dorsal and ventral 

hippocampus. However, hardly any innervation was noted in the dentate gyrus. In the 

mesencephalon, innervation was particularly conspicuous in the substantia nigra pars reticulata with 

moderate innervation of the ventral periaqueductal gray (PAG) and the superior colliculus. 

Lateral wings of the dorsal raphe, LW (B7l) 

Ascending 5-HT innervation to the forebrain in this case was essentially concentrated in the 

thalamus, predominating in its more lateral components throughout its rostrocaudal extent. Bilaterally 

in the parasubthalamic nucleus and the LHb. Projections were also visible in the hypothalamus 

mainly in the ipsilateral mammillary/supramammillary components, and in the lateral hypothalamic 

cell groups. In the brainstem, terminal axons were essentially found in the superior and inferior 

colliculi, in the cochlear, motor trigeminal, and facial nerve nuclei. 

Dorsal raphe caudal part, DRc (B6)  

The common projections in these cases were projections to the dorsal and ventral 

hippocampus, the septal nuclei, and the preoptic cell groups. Projections to the amygdala were 

limited to the medial amygdala nuclei. Only few projections were found in the brainstem. 

Interestingly, however, in all the cases in which the B6 5-HT neurons were targeted, there was a 

substantial innervation of the subventricular 5-HT terminal network as well as in the SVZ. 

Median raphe (B8) 

Ascending projections from B8 collected in the most medial part of the mfb and  
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provided a bilateral terminal innervation to a number of midline brain structures from the 

mesencephalon to the forebrain. Innervation was particularly dense in the interpeduncular nucleus, 

mammillary nuclei and in their lateral parts, and in anterior hypothalamic areas, including the 

preoptic area. Very dense terminal axons were noted in the suprachiasmatic nucleus. In the dorsal 

thalamus, the B8 5-HT innervation was particularly concentrated in the paraventricular thalamic 

nuclei (PV), whereas moderate innervation was visible in the reuniens and in midline non-specific 

thalamic nuclei, as well as in the medial habenula cell groups. More rostral, B8 axons provided a 

very dense innervation to both the medial and lateral septal nuclei. The B8 group provided a massive 

innervation to all components of the septum and hippocampus. A distinctive terminal-like innervation 

was also noted all along the subgranular cell zone (SGZ) of the dentate gyrus (DG), where adult 

neurogenesis is found. In the cerebral cortex, B8 innervation was generally scattered and essentially 

concentrated in the dorsomedial components of the cortex: in the medial prefrontal cortex, the 

Figure6. A summary scheme of 
the principal targets of the main 
B5–B9 subgroups in sagittal brain 
diagrams. (Muzrelle et al. 2016) 
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anterior cingulate and in the primary motor cortex. In contrast, in the olfactory bulb, a strong and 

selective B8 axon projection was found in the periglomerular cell layer In addition, few fibers were 

detected in the rostral migratory stream (RMS), at the OB. In the brainstem, the most remarkable 

concentration of 5-HT-labeled axons was found in the dorsolateral tegmental nucleus (DTg) also 

known as the tegmental nucleus of Gudden. This dense 5-HT innervation was visible in the 

mesopontine tegmental nuclei and the anterior tegmental nucleus (ATg), which are components of 

the DTg. 

Supralemniscal (B9) 

Ascending projections from the B9 were relatively sparse, in comparison with the DR and 

MR groups: they occupied a medial and dorsal position in the mfb providing terminal innervation 

essentially to parts of the septum and basal ganglia. Terminal-like innervation was observed in the 

medial septum, and fine terminal innervation of variable abundance according to cases was noted in 

the caudate-putamen, nucleus accumbens and pallidum. Sparse innervation was also noted in the 

cerebral cortex and hippocampus, but with no systematic distribution. In the hypothalamus, axon 

terminal innervation was mainly targeting the anterior and preoptic cell groups and the 

supramammillary area. Thalamic innervation was scarce and oriented toward midline structures. In 

the midbrain, terminal-like fibers were visible in the SNC and the VTA. Moreover B9 5-HT axons 

were the presence of descending projections towards the hindbrain. 

Base on those studies of serotonin projections mapping, one can conclude that different 

subgroups of serotonin raphe neurons have their specific target and similar to other brain circuits, a 

combination of axon guidance molecules both attractive and repulsive is involved, to guide 5-HT 

raphe neuron axons to their proper brain targets. 

3.5 Afferent connections to the raphe 

In addition to sending broad projections to many brain areas, the raphe receives connectivity 

from many functional regions in the forebrain and brainstem. The following areas have been reported 

to provide innervation to the raphe nucleus: the medial prefrontal cortex, hypothalamus, 

hippocampus, habenula, dorsal tegmental nucleus and spinal cord. (Wang and Aghajanian, 1977; 

Behzadi et al., 1990; Hermann et al., 1997) These innervations determined that the serotonergic 

neurons itself can receive signals from both serotonin and non-serotonin axons. Moreover, many 

publications showed amount of neuropeptides could been detected in axonal terminals in the raphe 
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nucleus: serotonin (Dong and Shen, 1986); norepinephrine (Baraban and Aghajanian, 1981; Takagi et 

al., 1981; Dong and Shen, 1986; Lee et al., 1987); dopamine (Ferre et al., 1994); acetylcholine (Chen 

et al., 1992; Honda and Semba, 1994); GABA (Hayashi et al., 1997), substance-P (Magoul et al., 

1986); CLIP/ACTH (Leger and Descarries, 1978); or neurotensin (Uhl et al., 1979) Serotonergic 

dendrites extend into the axonal bundles of the medial longitudinal fasciculus, medial lemniscus, 

trapezoid body, cerebral peduncles, the superior cerebellar peduncles and other fibre bundles which 

traverse the brainstem carrying both ascending and descending fibres (Azmitia and Segal, 1978). The 

spectrum of inputs from numerous anatomical sources having diverse chemical neurotransmitters and 

neuropeptides is not atypical for a large reticular neuron. But given the number of afferents and 

efferents of this single chemical system, it can transmit the varied signals to both neuronal and 

non-neuronal targets. 

4. The development of serotonin neurons in raphe nuclei 

During development, the serotonin neurons are divided into two groups based on their spatial 

difference as inferior group and superior group. The two groups of serotonin neurons have different 

migration patterns (Lidov and Molliver, 1982b; Wallace and Lauder, 1983), and within the superior 

group, there is evidence the 5-HT neurons form different subsets of cells. (Azmitia and Gannon, 

1986) 

In many studies, the neuroanatomical development and neuronal organization of 5-HT 

neurons has been analyzed in many different species, such as rats, primates and zebrafish (Steinbusch 

and Nieuwenhuys, 1981; Lidov and Molliver, 1982b; Wallace and Lauder, 1983; Azmitia and 

Gannon, 1986; Lauder, 1990; Lillesaar et al., 2007), and more recently in mice with genetic-based 

fate mapping (Jensen et al., 2008). Moreover, during embryogenesis, the hindbrain is transiently 

subdivided into several components called rhombomeres, which correspond to different 

subpopulations of serotonin neurons (Figure 7). Jensen et al. demonstrated that the raphe rostral 

group derive entirely from r1-r3, whereas the caudal from r5-r8. Among the rostral group, the DR 

nucleus (B7, B6) origioned from r1 whereas the median raphe nucleus (B8, B5) from entire r1-r3. 

(Jensen et al., 2008) 

Mouse serotonin neurons are specified and appear initially in the ventral rhombencephalon 

during a brief period of neurogenesis, embryonic days 9.5–12. The initial contributing of the raphe 

nuclei is based on the ultimately cluster of newborn serotonin neurons in different disparate regions 
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of the midbrain, pons and medulla. The 5-HT neuron generation consists in several developmentally 

recognizable stages.  

During the first stage, serotonergic progenitors in the ventral hindbrain are specified in a 

spatial organization along the dorsoventral and anterior-posterior axes, which are modulated by 

signaling molecules sonic hedgehog and fibroblast growth factors 4 and 8 respectively (Goridis and 

Rohrer, 2002; Vitalis et al., 2003; Cordes, 2005). The initial serotonin neurons are generated by 

progenitors from about E9.5 to E10.5 in rhombomere 1 (r1) co(Pattyn et al., 2003). Then a second 

wave of serotonin neurons are born about a day later in r2 and r3, as progenitors at these longitudinal 

levels initially generate visceromotor neurons (VMN) before becoming competent to generate 

serotonin neurons (Pattyn et al., 2003). Progenitor fate of caudal serotonin groups occurs with similar 

temporal characteristics in r5–r8, such that caudal serotonin neurons are born virtually 

simultaneously with those in the rostral domain. Interestingly, the synthesis of 5-HT in these 

newborn caudal serotonin neurons is delayed for 1–2 days (Lidov and Molliver, 1982a). Moreover, 

the serotonergic neurogenesis is never launched under normal circumstances in r4 (Pattyn et al., 

2003).  

During the second stage, progenitors do not exhibit serotonergic characteristic as yet. 

Serotonergic identity is then acquired through coordinated expression of serotonergic-type gene 

battery. The newborn serotonin neurons are phenotypically immature and have not been integrated 

into neural circuitry. Thus, beginning immediately after the birth of the 5-HT neurons and extending 

to at least the end of the third postnatal week, mouse 5-HT neurons undergo a series of complex 

maturation events (Lidov and Molliver, 1982b, a; Pattyn et al., 2003). These events include cell 

migration, dendric growth, expression of serotonin autoregulatory pathways, formation of highly 

collateralized axonal pathways and synaptogenesis. 
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Development of serotonergic projections 

Lidov and Molliver provided a detailed immunohistochemical study on the development of 

serotonergic projection in rat. (Lidov and Molliver, 1982b) In their study, the first time described the 

serotonin containing processes in the immature rodent CNS, but only ascendings were described but 

not descending. They described the ontogeny of the serotonergic axonal projections in three steps: At 

E13-E16, the initial axon elongation; E15-E19, the development of selective pathways; E19 to P21, 

the terminal field development. 

Initially, serotonergic ascending axons are fasciculated and enter several well-defined fiber 

tracts starting from the medial forebrain bundle: specifically, the fasciculus retroflexus, stria 

medullaris, external capsule, fornix, and supracallosal stria. Depending on the different pathways, the 

serotonergic axons start to form the terminal arborizations in the thalamus, hypothalamus, basal and 

limbic forebrain, and cerebral cortex. In reaching the serotonergic terminal innervation targets, Lidov 

and Molliver observed that serotonergic fibers seem to be guided by some “pre-existing 

non-serotonergic tracts” which could be guidance cues. In particular, they described the terminal 

development in the cerebral cortex. From E19 to P21, the serotonergic fibers were starting and 

terminating the innervation in the cerebral cortex. Axons enter directly into the marginal and 

intermediate zones of the immature cortex, at the medial, frontal and lateral edges of the hemisphere, 

and subsequently spread tangentially to cover the hemispheres. Terminal ramifications then arise 

from the bilaminar axons and fill in the middle cortical layers.  

Figure7. Rhombomeric specify of serotonergic subpopulations (Okaty et al. 2015) 
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During the first postnatal weeks the growth of serotonin axons across the forebrain appeared 

to be continuing. Interestingly, the development of terminal innervation is highly heterogeneous, 

occurring at different times and at different rates from region to region, which implies a possible role 

of chemical gradients produced in the targets to trigger the innervation. 

These observations showed that serotonergic axons do not innervate immature, primarily 

proliferative neuronal populations and the formation of serotonin axon terminals is dependent on 

maturation of other elements in local neuronal circuitry. Evidences to surport this hypothesis are their 

findings of the delay in serotonin innervation of the suprachiasmatic nucleus, striatum, and middle 

cortical layers long after the axons have reached these structures. 
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Part 2: Molecular pathway of serotonin system and Eph family 

1. From growth cone to axon guidance 

Growing axons have a specialized structural differentiation at their tip known as the growth 

cone, which plays a crucial role in integrating the many signals that direct axons to their proper 

targets. The first detailed described of a growth cone was done by Cajal on spinal commissural 

axons, on three day old chick embryos. Morphologically, the growth cone is a fan-shaped structure 

with many long, thin spikes that radiate outward much like fingers on a glove. The prediction of 

Cajal that this might be a structure permitting the growing neuron to receive and integrate the variety 

of physico-chemical signals present along its pathway has now been validated by numerous cell 

biology experiments in vitro, but also with the improved visualizing techniques, in vivo. The signals 

that are sensed by the growth cones are produced by intermediate targets and the surrounding tissue 

and involve both chemical and biophysical cues. Such cues guide axons to their final target, where 

they establish synapses with one or more neurons (Mueller, 1999; Song and Poo, 1999). As predicted 

by Cajal, the growth cones are also highly motile structures. Video microscopic studies have shown 

that growth cones undergo continuous expansion and retraction before they reach their final targets. 

This was initially demonstrated in vitro on cell cultures (Harrison, 1959) and more recently in vivo 

(Tashiro et al., 2003). 

We can explain the growth cone navigation system as driving. This system is similar to an 

experienced driver who can grasp different environmental changes, such as the traffic lights, street 

signs or bad road conditions in order to guarantee the right destination. Definitely, as the multiple 

environmental variables, the navigation system needs a series of molecules to form a signaling 

pathway in order to introduce spatial bias for steering the growth cone to the right targets. 

To study the complex effects on the growth cone cytoskeletal machinery, recently, as 

interdisciplinary development, biophysical techniques became more and more popular to be used for 

cell biology assay. By performing the microfluidic devices has allowed the production of stable, 

precisely controlled gradients in various combinations of both diffusible and substrate-bound factors 

(Lang et al., 2008; Wang et al., 2008). These types of combined cues can more faithfully recapitulate 

the complexity of the in vivo environment, and thus, future experiments utilizing this method, in 
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combination with high-resolution cytoskeletal imaging, hold considerable potential for refining our 

understanding of the growth cone guidance mechanism. 

 

  

Besides the growth cone and axon themselves, the extracellular effectors that functionally 

steer extending neuronal processes are also important. There are probably both mechanical and 

chemical factors that orient the growing. However only molecular guidance cues will be discussed 

here. These can be subdivided into two types: long-range and short-range. Adhesion and guidance 

molecules are also important for the fasciculation of fibres into nerves and brain fascicles that 

connect one brain area to the other, such as the corpus callosum, or the corticospinal tract. Moreover, 

molecular signals can mediate interactions between axons and the substrates on which they extend. 

This is illustrated by the fact that some guidance molecules (such as entrain for instance) can be 

either chemo-attractive or chemo-repulsive, according to the substratum on which they are presented, 

which is thought to involve interactions of downstream signalling cascades. In particular, 

Figure1. Photomicrographs taken from some of Cajal's original preparations 
impregnated with the Golgi method. (A) Pyramidal cells in the Ammon horn of the 
adult rabbit (10×). (B) Pericellular nest formed around a Purkinje cell (empty) by a 

climbing fiber in the newborn kitten cerebellum (20×) 
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intermediate or final targets provide information essential for selective guidance of distinct neuronal 

populations. 

Main class of Molecular guidance cues 

Molecular guidance cues play a key role in neuronal signalling to establish proper neuronal 

connectivity during CNS development and in adulthood. And the function of the guidance cue is 

critically on identifying the molecules and signalling events of neuronal guidance. Three 

experimental approaches over the past two decades have identified a wide variety of guidance 

molecules and their receptors: (1) pairing biochemistry and in vitro tissue culture assays to detect 

proteins with either attractive or repellent properties; (2) using forward genetics to identify mutations 

that affect axon trajectories in vivo; or (3) using genetic and tissue culture approaches to characterize 

the functions of molecules with distributions or molecular structures that make them attractive 

candidate guidance cues. (Kolodkin and Tessier-Lavigne, 2011) Using these different approaches, 

four major families of guidance cues with well-established roles in neuronal guidance have been 

identified: the Netrins, the Slits, the Semaphorins, and the Ephrins.  

Other classes of molecules best known in different contexts are also now recognized to 

function as neuronal guidance cues; this includes certain morphogens and growth factors. For 

instance, cell-adhesion molecules (CAMs) of various classes have been implicated in neuronal 

guidance, and members of the immunoglobulin (Ig) and cadherin super-families play key roles in 

regulating distinct aspects of neuronal wiring. The identification and characterization of these cues 

and their receptors have led to several important generalizations about guidance mechanisms, 

including the existence of short- and long-range guidance cues, the multifunctional nature of several 

cues, and the evolutionary conservation of many guidance molecules and the roles they perform in 

neuronal guidance (Tessier-Lavigne and Goodman, 1996; Dickson, 2002). It is possible that 

additional classes of guidance cues remain to be discovered. However, the known guidance-cue 

families illustrate major principles of neuronal wiring mechanisms; it is likely that the combinatorial 

assembly of these signals ensure the precise encoding of specific neural targeting. 
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2. Molecular mechanism of serotonin raphe neuronal wiring.  

As described in part 1, serotonin raphe neurons provide a massive and diffuse axonal 

projections to almost all the forebrain, brainstem and spinal cord. Moreover, as the studies of 

serotonin axonal projections become more complete and more detailed, the question that now arises 

is to identify the specific signals that allow this specific targeting. 

Here I remind the three step of the development of serotonergic projections in rat, for helping 

to understand the relation of axon guidance in each period. First neurons migrate from their original 

site of production in the ventricles both ventrally and toward the midline. They initially form 2 bands 

on either side of the midline, and eventually fuse on the midline. The initial organization and 

orientation of serotonergic raphe neurons, can influence the spatial orientation of axon growth and 

the direction in which they grow; Secondly long-range guidance cue can guide serotonin axons grow 

along the main tracts toward their main targets; Finally . The short-rang effect, which is the terminal 

innervation of the specific targets of the axons. The molecular mechanisms of these steps during 

serotonin projection development were unknown until recent years- the genetic tools were developed, 

many genetic mouse lines were used to study these mechanisms. 

Figure2. The diversity of neuronal guidance mechanisms. Neuronal processes are 
guided by cues that can function at long and short distances to mediate either 

attractive or repulsive guidance. (Alex L. Kolodkin, 2011) 
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Wnt—the anterior–posterior (A–P) organizer of serotonin axons in the hindbrain 

The A–P projections of 5-HT neurons located in the hindbrain are established during 

midgestation and are essential for appropriate serotonergic circuit formation during subsequent 

developmental stages. Wnt family proteins are evolutionary conserved A–P guidance cues (Zou, 

2006; Zou and Lyuksyutova, 2007). One of the Wnt signalling pathways, the planar cell polarity 

(PCP) pathway, is involved in tissue morphogenesis and directed cell migration (Wang and Nathans, 

2007; Zallen, 2007; Goodrich, 2008; Simons and Mlodzik, 2008). Core PCP components include 

Frizzled, Flamingo (Celsrs in vertebrates), Van Gogh, Disheveled, Prickle, and Diego. Some of these 

factors were presented in serotonin neuron and axons at embryonic day 12, such as Frizzled3 (Fzd3), 

Celsr3, and Vangl2 (Fenstermaker et al., 2010). Interesting phenotypes were detected in the 

Frizzled3-/-, Celsr-/- and Vangl2-/- mice. At E12.5, ascending 5-HT neurons were detected with 

misprojections of R4 descending or lateral projection. In particular, the Frizzled3-/- and Vangl2-/- 

mice exhibit aberrant anteriorly projects 5-HT projections in the descending population and a marked 

reduction of proper descending axons. Additionally, the serotonin neuron cell body showed a 

different orientation in Frizzled3-/- and Vangl2-/- mice. 

Slit—long projection pathways modulator of serotonin axon in the forebrain 

Slit proteins have been implicated in axon guidance in both vertebrates and invertebrates. In 

mammals, the three Slit genes are expressed in, floor plate and roof plate of the spinal cord, and the 

septum area, hypothalamus, and hippocampus (Metin and Godement, 1996; Brose et al., 1999; Yuan 

et al., 1999). The expression patterns and in vitro observations suggest that Slit proteins are also 

likely to play important roles as repulsive guidance cues for multiple populations of migrating axons 

and cells, likely using Robo receptors for their functions as well (Brose et al., 1999; Hu, 1999; 

Nguyen Ba-Charvet et al., 1999; Piper et al., 2000; Ringstedt et al., 2000; Shu and Richards, 2001). A 

mammalian Slit protein was also independently identified as a positive regulator of branching and 

elongation of sensory axons.  

Bagri et al. in 2002 studied on the long projection pathways of serotonin in forebrain in 

Slit1-/-, Slit2-/- and the double knockout mice. Their results indicated that in contrast to control mice 

serotonin fibers in the medial forebrain bundle of Slit2 mutants were displaced ventrally as they 

coursed through the diencephalon. In Slit1/Slit2 double mutants the medial forebrain bundle was 

commonly split in two components and numerous fibers descended ventrally into the hypothalamus, 
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approaching the midline a significant percentage abnormally crossed the midline in the basal 

telencephalon. 

Pdcha— the forbrain terminal innervation effector of serotonergic neurons 

The largest family in the cadherin superfamily is the clustered protocadherins, which are 

mainly expressed in neurons and localized to axons and synapses (Obata et al., 1995; Kohmura et al., 

1998; Phillips et al., 2003; Junghans et al., 2008). Katori et al (Deneris and Wyler, 2012). In 2009, 

they detected a high level expression of pdcha in mouse raphe nuclei, particularly in rostral raphe. 

The maximum expression is from embryonic stage to the second postnatal week. Moreover, they 

analyse the serotonergic innervation in their forebrain targets of the pdcha-/- mice. In pdcha-/- mice, 

the abnormal distributed serotonergic fibers were detected in the hippocampus, substantia nigra and 

olfactory bulb at the endpoint of the third postnatal week in contrast to the wild type mice. Moreover, 

the globus pallidus and substantia nigra, in the mutants, exhibited as dense at the periphery of each 

region, but sparse in the center. In the stratum lacunosum-moleculare of the hippocampus, the 

mutants showed denser serotonergic innervation than in wild-type, and in the dentate gyrus of the 

hippocampus and the caudateputamen, the innervation was sparser. Their findings in the pdcha-/- 

mice indicated the pdcha is required for the terminal organization of serotonergic fibers. 

Overall these studies have provided new clues on molecules that modulate   serotonin raphe 

neurons outgrowth, and are starting to explain the different routes followed by axons from the 

rostral/caudal serotonin raphe neurons. However, we are still far from understanding what molecules 

guide the different subpopulation of serotonin neurons from the DR or MnR to their specific targets. 

A first step towards identification of these molecular cues is provided by gene expression screen in 

the raphe. A first screen was obtained by the team of Deneris and colleagues. Using the Pet1 

promoter that is exclusively expressed in serotonin raphe neurons, they generated a transgenic mouse 

line, which expresses a fluorescent reporter (enhanced green fluorescent protein, eGFP) selectively in 

the serotonin neurons of the hindbrain. Using this transgenic mouse line, they sorted GFP+/GFP- 

neurons from microdissected raphe tissue of rostral and caudal hindbrain at embryonic day 12. 

Whole-genome screen was then done with microarrays comparing serotonin/non serotonin neurons, 

and rostral versus the caudal raphe cell groups. This first set of data identified hundreds of genes that 

are expressed specifically in serotonin neurons. Not surprisingly, in this gene list, axon guidance 

related genes were detected such as ephrins and Ephs, semaphorins and plexins, cadherins and 

protocadherins. A further analysis of the difference between rostral raphe and caudal raphe showed 

differential expression of several classes of molecules, suggesting that these factors could be 
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involved in the different targeting of the rostral and caudal serotonin cell groups. In a more recent 

study, the team of Susan Dymecki provided a detailed description of the differential genetic 

expression related to the subgroups difference. They used intersectional genetics combining a Pet1 

driver to select for serotonin neurons and rhombomere specific drivers to identify the developmental 

origin of the serotonin neurons. With their animal models, serotonergic neurons arising from a given 

rhombomere (R)—R1, R2, R3, R5, or R6 and posterior could be distinguished in the fourth postnatal 

week, as a GFP-labeled 5HT neuron sublineage, and mRNA expression studies were performed both 

as population analysis and at the level of single cells. This provides a very valuable data set to 

compare gene expression patterns of serotonin neurons originating from different subgroup of 

serotonin neurons. 

Based on these genome studies, we now have better evidence for selective expression of 

different guidance molecules in different subgroup of serotonin neurons. Based on the suspected role 

of different molecular guidance families, as described above, Eph receptors and their ligands were 

interesting candidates as potentially involved in the targeting of subpopulation of serotonin neurons 

since: i) they are one of the most prominent family of short-rang contact mediated guidance 

molecules; ii) According to the genome analyzing data, Ephs and their ligands showed a big 

difference between rostral-caudal (table 1) (Deneris and Wyler, 2012) and dorsal-medial (table 2) 

(Okaty et al., 2015) subnucleus. 

 
Table 1 
 

Deneris micro-array data (E12) 

Gene Symbol Av R+C+ Av R+ Av C+ 
Epha3 894 371 1417 
Epha4 836 1006 666 
Epha5 1535 1974 1097 
Epha7 631 669 593 

 
Table 2 

Dymecki RNA seq data (P21) 

Gene Symbol R1(DR)pooled R1(MnR)pooled R2 pooled R3 pooled 
Epha2 0 0 2 0 
Epha3 54 9 125 9 
Epha4 4 248 1290 40 
Epha5 634 676 4386 1272 
Epha6 344 469 2110 388 
Epha7 163 174 677 139 
Epha8 16 48 140 24 

Epha10 191 65 203 57 
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3. Eph receptors and their ligands ephrins 

Receptor tyrosine kinases are key components in the transduction of certain extracellular 

signals across the cell membrane, as such they play critical roles in cell growth, differentiation, 

survival, and migration (van der Geer et al., 1994). These receptors regulate various aspects of 

embryonic development, such as tissue morphogenesis and formation of neuronal circuits.  

The Eph family is the largest among all of the known receptor families, which includes at 

least 14 distinct members and can be considered as the largest subfamily among all of the receptor 

tyrosine kinases (RTKs). The Eph receptors are divided into two sub-families according to sequence 

homology: a A-subclass, which in mammals contains nine members (EphA1–EphA8 and EphA10), 

and a B-subclass with five members (EphB1–EphB4 and EphB6). EphAs and EphBs have a similar 

general structure: the extracellular domains of the Eph receptors are characterized by the presence of 

an IgG-like domain, a cysteine-rich region, and two fibronectin type III domains. (Zhou, 1998) 

However they differ in amino acid sequences and binding affinities to their ephrin ligands. (Egea and 

Klein, 2007) 

Initial studies on the functional roles of Eph receptors were lacking the identifiable ligands. 

Foreseeably, after the isolation of at least eight distinct ligands, this provided a large progress of the 

studies of functional roles of the Eph receptors in many developmental processes and in adult life. 

Because of the large number of ligands and receptors in the Eph family, research in the field covered 

a large time span; this resulted in initial confusion in the nomenclature, as each different gene in the 

family was given a different name by independent investigators (Tuzi and Gullick, 1994). A unified 

nomenclature was proposed in 1997 to clarify the field (Eph Nomenclature Committee, 1997) and is 

at present the one currently utilized. In this nomenclature, the ligands are now named as ephrins, 

which is the abbreviation for Eph family receptor interacting proteins. The name is also related to the 

Greek word “ephoros,” meaning overseer or controller, which is implying a function in guidance. 

Similarly to Eph receptors, these ligands are also divided into two families: an A-subclass 

(ephrinA1–ephrinA5), which are tethered to the plasma membrane by a glycosylphosphatidylinositol 

(GPI) anchor, and the B-subclass (ephrinB1– ephrinB3) which have a transmembrane domain and an 

intracytoplasmic tail lacking endogenous catalytic activity. The receptors and ligands are numbered 

according to their date of initial publication (Eph Nomenclature Committee, 1997). There is an 

intra-class selectivity of the ligands for their receptors, as the A-type receptors typically will bind to 
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most A-type ligands; similarly, EphBs bind to most B-type ligands. A few exceptions exist; in 

particular, EphA4 and EphB2 were found to bind to both ephrinAs and ephrinBs 

 

 

 

 

 
 

Althrough Eph-receptos belong to the subfamily of tyrosine kinases receptors, they have 

several unique features which distinguish them from other RTKs. 1). Ephs require the cell to cell 

interaction or communication which limits the action of this system to short-range distances, since 

the ligands require membrane attachment, whereas all other RTKs bind to soluble ligands; 2) Eph–

ephrin signaling requires higher order clusters for signaling (Vearing and Lackmann, 2005), whereas 

receptor dimers  are sufficient to activate the classical RTK; 3) Ephrins can act both as ligands  and 

as receptors with their own signaling potential. Following ephrin binding to its receptor, besides the 

stimulating signaling cascades within the Eph-bearing cell, ephrins can induce the signals within the 

ephrin-bearing cell. Both signaling events can happen simultaneously, and the relative contributions 

of Eph forward and ephrin reverse signaling is variable, depending on cell to cell communication. 4) 

Ephs and ephrins, are both membrane-bound, and have an extracellular domain that can interact 

in‘cis’ when Ephs and Ephrins are co-localized in the same cell. Signaling events activated by Eph 

forward and ephrin reverse signaling are characterized, and seem to be different from classical RTK 

signaling. Classical RTKs signaling largely involves Ras–MAPK (mitogen-activated protein kinase) 

and phosphatidylinositol (PtdIns) 3-kinase (PI3K)–Akt pathways (Eswarakumar et al., 2005). In 

Figure4. Ephrins and their Eph 
receptors.  The key defines 
distinct molecular domains 
found in these proteins. (Alex 
L. Kolodkin, 2011) 
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contrast, Ephs -signaling is generally limited to the activation of Ras–MAPK and PI3K–Akt 

pathways and, instead, recruit phosphotyrosine-binding adaptor proteins to activate Rho GTPases and 

remodel the actin cytoskeleton (Noren and Pasquale, 2004). EphrinB reverse signaling also activates 

Rho GTPases and uses phosphotyrosine-independent docking mechanisms. (Klein, 2004)  

4. Eph/ephrin signalling mechanisms 

The expression of Eph and ephrin genes has been described in many different species, such as 

mouse, rat, zebrafish and chick (Boyd and Lackmann, 2001). These genes are widely expressed 

during development, in contrast with the vascular endothelium and specialized epithelia where Eph 

and ephrin are rarely expressed, expression is maximal in the central nervous system. To avoid the 

excursive ligand–receptor interactions, both spatial and temporal regulations of expression are 

important. The presence of multiple family members in the same place and time is nevertheless 

observed and may account for the lack of strong phenotypes in most single-molecule knockouts. 

Since Eph–ephrin interactions induce repulsive bi-directional signals, ligands and receptors are often 

expressed in adjacent but non-overlapping cell groups, thus defining and maintaining developmental 

tissue boundaries, an example being the formation of hindbrain rhombomeres (Boyd and Lackmann, 

2001). In a similar way, ephrinB2 and EphB3 are expressed in developing arteries and veins, 

respectively, thus preventing the intermixing of these two cell types (Dodelet and Pasquale, 2000) 

As I mentioned, Eph/ephrin signaling involves formation of higher order Eph/ephrin clusters 

(Himanen et al., 2010; Seiradake et al., 2010). Generally, the fist connection between Ephs and 

ephrins from different cells (called in ‘trans’), because of the spatial limitation, can guide the Ephs 

and ephrins forming the heterotetramers (two Ephs and two ephrins) at the connection site. However, 

the functional forward and reverse signaling demand a large signally cluster formed by the 

aggregation of Ephs and their ligands. To carry out this, Eph clusters can incorporate additional Eph 

receptors in an ephrinin-dependent fashion by lateral recruitment. 
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Forward signaling 

In recent years, many researchers studied the Eph-ephrin signaling pathways in a variety of 

different model organisms and cellular systems (Pasquale, 2008; Jorgensen et al., 2009; Bashaw and 

Klein, 2010; Bush and Soriano, 2012; Hruska and Dalva, 2012; Miao and Wang, 2012). Here I will 

discuss only results obtained in the mouse model. Eph forward signaling involves activation of a 

tyrosine kinase activity and down-stream tyrosine phosphorylation of intracellular effector proteins. 

These signaling pathways in turn modulate the activity of molecules of the small Rho family 

GTPases such as Rac1, Cdc42 and RhoA, thus modulating cytoskeletal dynamics. For instance, mice 

lacking EphA4 2-chimerin showed a rabbit-like hopping gait (Beg et al., 2007; Iwasato et al., 2007; 

Wegmeyer et al., 2007). This is because interaction between EphA4 and the RacGAP 2-chimerin is 

important for axon repulsion in the spinal circuits that control locomotion. Coincidentally, the 

SH2-adaptor proteins Nck1 and Nck2/Grb4 have been implicated in the same pathway (Fawcett et 

al., 2007). Furthermore, it has been shown that the Vav family of RhoGEFs directly interacts with 

EphA4 and EphB2, and promotes EphA endocytosis, which leads to growth cone collapse. (Murai 

and Pasquale, 2005). 

Figure 5. Bidirectional signals mediated by Eph/ephrin in both presynaptic axon 
terminals and postsynaptic dendrites. Eph receptors are divided into two separate 
subfamilies, termed EphA and EphB. (Xu et al., 2012) 
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Another family of RhoGEFs, the Ephexins, have been found to bind to Eph receptors. 

Ephexins are activated by tyrosine phosphorylation upon ephori binding and activates RhoA. 

Ephexin 1-mediated RhoA activation had similar effects as Vav (Sahin et al., 2005). However, 

ephexin activity can be inhibited by EphB signaling. One example is the EphB-mediated tyrosine 

phosphorylation that can inhibit synapse formation induced by ephexin 5. Additionally EphB can 

subsequently be involved in the degradation of ephexin 5 (Margolis et al., 2010). Other signaling 

pathways have been found outside the brain; In the intestine, EphB2-dependent migration of 

progenitor cells involves PI-3 kinase activity, while proliferation is promoted by Abl kinase and 

cyclin D (Pitulescu and Adams, 2010). 

Reverse signaling 

In contrast to the Eph forward signaling, less is known about ephrin reverse signaling. Recent 

studies indicated that ephrinAs reverse signaling, involves the Ret tyrosine kinase receptor; in motor 

axons this interactions promotes axon attraction (Bonanomi et al., 2012); similarly the interaction 

between ephrinA and the TrkB neurotrophin receptor promotes axon branching and synaptogenesis 

(Marler et al., 2008). On the other hand, ephrin B reverse signaling typically involves tyrosine 

phosphorylation of its intracellular domain and recruitment of PDZ domain-containing proteins (Xu 

and Henkemeyer, 2012). In the absence of ephrin B proteins, stimulated VEGF receptors are retained 

in the plasma membrane and fail to signal properly, leading to reduced endothelial sprouting. 

Activation of B-class ephrin signaling in neurons induces phosphorylation of Dab1 (possibly by 

activation of Src family kinases), the major effector of the reelin pathway (Doeppner et al., 2011). 

Loss of ephrin B3 proteins causes neuronal migration defects similar to the realer mouse. 

Cis versus trans interactions 

So far, I have summarized the condition where Eph and ephrin are expressed in opposing 

cells. However, in a majority of regions of the developing mouse brain, Ephs and ephrins are 

co-localized in the same cell. This condition raised the question of whether Ephs can interact with 

ephrins in cis and whether cis interactions change the responsiveness to ephrins presented in trans? 

Do Ephs and ephrins share the same membrane microdomains (Gauthier and Robbins, 2003) and 

downstream signaling molecules, or are they isolated into different microdomains and have unique 

signaling outputs? 
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To answer these questions, we should start from the very basic behavior of the axonal 

connection patterns in the central and peripheral nervous system, this means the organization into 

topographic maps in which the spatial order of neurons is mapped smoothly onto their axon terminals 

in the targets. The visual system has offered an ideal system to study axonal topographic mapping, as 

this organization is very well-known. In the visual system, the spatial order of neurons in the retina is 

transferred to higher visual centers of the brain, the superior colliculus and the lateral geniculate 

nucleus. Ephs and ephrins are well-accepted molecular cues involved in this retinotopic mapping 

(Lemke and Reber, 2005; McLaughlin and O'Leary, 2005; Flanagan, 2006). In the target region of 

retinal axons, a high expression of ephrinAs was detected, and these ephrinAs acted as a repulsive 

guidance cues, which can interact with their receptors EphAs in trans (Flanagan, 2006). Furthermore, 

researchers found that the EphAs functions are also modulated by the co-expressing ephrinA5. They 

found that in axons co-expressing EphAs and ephrinAs, EphA responsiveness is down regulated. 

This can be explained by EphA-ephrinAs interaction in cis. The consequence is that axons with 

higher ephrinA and EphA ratios are less responsive to the repulsive effect of ephrinAs in the target 

tissue (Hornberger et al., 1999; Yin et al., 2004). In further studies, two types of cis interactions were 

distinguished: interactions through the ligand binding domain (LBD) of Ephs (the normal cis 

interaction) and non-LBD-dependent interactions (Carvalho et al., 2006). Previous study showed that 

the LBD is necessary for the interaction between EphAs and ephrinAs in trans (Labrador et al., 

1997). To detect the non-LBD-dependent interactions, researchers used an ephrinA5 mutant, which 

cannot bind to the LBD of EphAs. Comparing the native and mutated ephrinA5, they found that 

ephrinA5 mutants still interacted with EphAs through a non-LBD interface. Functionally, cis 

interactions reduced tyrosine phosphorylation levels of EphAs and the sensitivity of retinal axons 

towards ephrinA5 applied in trans. This suggested that cis interactions reduced the repulsive forward 

signaling and thereby, had a role in modulating retinotectal mapping. Such a mechanism could 

transform a uniform expression pattern of Ephs into a gradient of ‘active’ receptors (mediating 

stronger repulsive signals the less ephrinAs were co-expressed). How cis-interacting ephrins reduce 

Eph signaling is currently unknown. Ephrins might antagonize Eph receptor clustering by steric 

interference or they might sequester them into other membrane microdomains, preventing access to 

essential downstream signaling molecules. 

5. EphA5 and ephrinA5 from past to present 

EphA5 also named as REK7, Ehk-1 and Bsk was originally identified as a 

nervous-system-specific orphan tyrosine kinase receptor expressed at high levels in embryonic rat 
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brain and at lower levels in the adult brain, mainly in the cortex, hippocampus, and olfactory bulb 

(Maisonpierre et al., 1993; Zhou et al., 1994; Winslow et al., 1995).  

Ephrin-A5, is the ligand for EphA5a; it is a GPI-linked cell-surface protein like the other 

ephrinA ligands. EphrinA5 was initially isolated from a human breast carcinoma cell line (Winslow 

et al., 1995) and it is expressed both in the nervous system and in a number of non-neuronal tissues. 

In late 20th century, researchers found that cultured cell transfected with membrane-bound 

ephrin-A5, could activate the EphA5 receptors present on cortical neurons. On the other hand, the 

soluble ephrin-A5 could not (Winslow et al., 1995). Soon after, Meima et al tried to explain this 

phenomenon. They produced an ephrin-A5-IgG, which is a dimeric form of the molecule containing 

the extracellular domain of Ephrin-A5 but not the GPI-signal, this dimer fused to an IgG Fc-domain 

has comparable activity to membrane-bound Ephrin-A5. This indicates that Ephrins need to act as a 

complex, while the monomeric soluble ephrin-A5 failed to induce the receptor oligomerization 

(Meima et al., 1997b). Not surprisingly, a similar requirement for membrane attachment has been 

found for other members of the Eph-ligand family (Gale et al., 1996). However, soon after that, 

Meima et al. showed that dimerized soluble ligands are also unable to achieve receptor activation and 

therefore that additional crosslinking is required (Sakano et al., 1996; Meima et al., 1997a). The 

immunocytochemistry studies of embryonic cortical neurons with an anti-EphA5 antibody have 

suggested that heterogeneity exists in the population with respect to the level of EphA5 expression.  

EphA5 expressing growth cones respond to Ephrin-A5-IgG with a collapse and retraction 

response, whereas growth cones with no EphA5 expression remain unresponsive. (Ingrid 1997) This 

indicated that EphA5 is the receptor mediating these effects. The fact is, as mentioned earlier, that 

Eph receptors and their ligand do not have strict selectivity and specificity in their binding properties 

(Brambilla and Klein, 1995; Gale et al., 1996). So it is interesting to know whether the other Eph 

receptors which can bind to ephrinA5 also present this effect. Embryonic cortical neurons have been 

shown to express at least two receptors besides EphA5, in particular; EphA3 (Hek) and EphA4 

(Sek1) (Ingrid 1997). 

Binding affinity measures showed that Ephrin-A5 activates EphA4 approximately 10-fold less 

efficiently than EphA5 or EphA3 (Gao et al., 1998), suggesting that its physiological effects are more 

likely to be mediated by the latter two receptors. In considering the interactions of cortical neurons 

with each other and with astrocytes, the situation is further complicated by the presence of multiple 

ligands. Astrocytes express both Ephrin-A3 (Ehk1L/Lerk3) and Ephrin-A5, while cortical neurons 
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express both Ephrin-A2 (Elf-1) and Ephrin-A3. Ephrin-A3 and EphrinA5 both induce the collapse of 

cortical growth cones. (Ingrid 1997) Receptor binding and activation experiments suggest that 

Ephrin-A5 and Ephrin-A3 are equally good at activating EphA5. On the other hand, Ephrin-A5 is 

much better than Ephrin-A3 at activating EphA3 (J.W.Winslow 1998). One possible interpretation of 

this paradoxical finding is that cortical axons express different amounts and different ratios of EphA5 

and EphA3, and that both receptors contribute to growth cone collapse/guidance. The contributions 

of the different receptors might be additive until a certain threshold level is reached that activates a 

downstream signaling pathway. According to this hypothesis, Ephrin-A5 triggers a response in a 

large subset of cortical axons, because it can activate both receptors; Ephrin-A3 induces a response in 

a more limited subset (those that express sufficient levels of EphA5), because it can only effectively 

activate EphA5. Such a scheme would presumably allow for greater flexibility and a wider range of 

responses than could be achieved by using a single receptor-ligand interaction. With regard to 

fasciculation, the presence of Eph ligands such as Ephrin-A3 on cortical axons and on astrocytes 

poses an additional problem. It is possible that repulsive forces between axons (in this case, axons 

expressing sufficient levels of EphA5) are involved in modulating fasciculation and may contribute 

selectively to induce defasciculation. 

5.1 The mechanism of EphA5 modulated growth cone collapse 

The spatial organization and the morphology of the growth cones are modulated by the 

cytoskeleton. The actin filaments and microtubules which are the link between the guidance cues and 

the cytoskeleton, are not only related to the rearrangements of the cytoskeleton but also drive both 

neuritis elongation and steering in response to guidance cues (the extracellular environment) (Tanaka 

and Sabry, 1995). In growing axons, filamentous actin (F-actin) is concentrated at the leading edges 

of the growth cone (see part 2-1). Treatment with Ephrin-A5 induces a rapid rearward translocation 

of this F-actin away from the leading edges into the center of the growth cone. This happens within 

5-10 min after the addition of Ephrin-A5, concurrent with retraction of the lamellipodia, and may be 

the driving force for growth cone collapse (Meima et al. 1997a).  

Because these effects resemble those of cytochalasin D, a fungal toxin known to inhibit the 

polymerization of actin (Sampath and Pollard, 1991), it has been speculated that Ephrin-A5-induced 

growth cone collapse might be caused by a perturbation of actin polymerization. Measurement of the 

relative F-actin concentrations in cortical neurons revealed that prolonged treatment with Ephrin-A5 

(longer than 60 min) leads to a net loss of F-actin from the cells, consistent with the hypothesis that 

Ephrin-A5 affects actin polymerization (Meima et al. 1997b). In contrast to its dramatic effects on 
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actin cytoskeleton, Ephrin-A5 does not appear to affect microtubules. Since a major role of EphA5 

seems to be the regulation of axonal behavior with regard to axon fasciculation. EphA5 is expressed 

on both the axons and dendrites of cortical neurons.(Caceres et al., 1986; Dotti and Banker, 1987; 

Winslow et al., 1995) Double immunofluorescent staining with these antibodies together with an 

antibody against EphA5 has shown that EphA5 is present on the dendrites and on the axons of 

differentiated cortical neurons. These observations open up the possibility that, in addition to 

influencing the decisions that axons make, these molecules may also influence the patterning of 

dendritic arbors. 

5.2 The role of EphA5-ephrinA5 interaction within the hypothalamus from glutamine system to 

aggressive behavior 

EphA5-ephrinA5 interaction influence glutamine system 

In recent years, researchers have focused on the functional role of EphA and ephrinA 

interactions in the glutamatergic system. This led to emergence of new ideas on the functional role of 

EphA-ephrinA interaction in synaptic maturation and synaptic plasticity. 

EphA receptors were found to be localized in glutamatergic synapses in both the presynaptic 

(axon terminal), postsynaptic (dendritic spines) elements in neurons (Murai et al., 2003; Tremblay et 

al., 2007; Bouvier et al., 2008). EphA receptors were reported there to serve to regulate synaptic 

plasticity by acting as a binding partner for ephrins. Nestor et al. (Nestor et al., 2007) indicated that 

the interaction between EphA receptors and ephrinA influences the release of glutamate. Moreover, 

Filosa et al. (Filosa et al., 2009) found an upregulation of astroglial glutamate transporters in 

ephrinA3 and in EphA4 knockout mice, raising the possibility that EphA-ephrinA interactions may 

modulate glutamate/glutamine cycling and synaptic function. 

Most recently, studies of Szepietowska et al. showed that EphA5-EphrinA5 interactions 

within the ventromedial hypothalamus (VMH) modulate local glutamine/glutamate balance in a 

hypoglycemia model. Their study indicated that similar activation of EphA5 receptors using VMH 

delivery of an exogenous ligand or local overexpression of ephrinA5 increases counter regulatory 

hormone responses to hypoglycemia. Conversely, local VMH knockdown of ephrinA5 gene 

expression suppressed counter regulatory hormone responses. Thus, EphA/ephrinA signaling within 

the islet and VMH could potentially act in concert in these two glucose-sensing centers to defend 

against hypoglycemia and contribute to defective counter regulation after intensive insulin treatment. 
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Previous studies have shown that glutamatergic neurotransmission in the VMH influences the 

magnitude of counter regulatory responses to hypoglycemia. Mice with impaired glutamatergic 

neurotransmission secondary to the loss the glutamate transporter, VGLUT2, selectively in SF1 

VMH neurons exhibit a modest reduction in fasting glucose levels, marked suppression of glucagon 

secretion, and diminished catecholamine responses during insulin-induced hypoglycemia (Tong et 

al., 2007). 

The study of Szepietowska et al., which is on a hypoglycemia mouse model, showed that 

targeted overexpression of ephrinA5 caused an increase in glucagon and epinephrine secretion that 

was maximal at the same time than an increase in glutamate levels occurred in VMH interstitial fluid 

during hypoglycemia. However, downregulation of ephrinA5 within the VMH produced a sustained 

reduction in glucagon and epinephrine release that occurred in conjunction with a profound and 

sustained decrease in the levels of glutamine in VMH interstitial fluid. These observations are 

consistent with the possibility that Eph5A/ephrin5A interaction influences glutamate 

neurotransmission. (Szepietowska et al., 2013) 

EphA5 and ephrinA5 play a key role in aggressive behavior 

To study the functional impacts of Eph and their ligands in neural circuit formation and 

consequences in behavior, the EphA and ephrinA5-/- mouse models have been analyzed extensively. 

The ephrinA5-/- mouse line was first used to study the function of ephrinA in the topographic 

mapping of the visual system; this showed the key role of ephrinA5 in retinol topic making in the 

rostral to caudal organization of retinal axons arising from the temporal or nasal parts of the retina 

(see part2-5). More recently, Michal et al. studied the aggressive behavior in the ephrinA5-/- mice. 

They examined effects of its inactivation on male mouse aggression. In their studies, a series of 

behavioral test were performed with the male ephrinA5-/- mice. Found that the offensive aggression 

is severely reduced, however, this reduction of offensive aggression was not induced by the inability 

to attack the presence of the intruder, since the ephrin-A5−/−mice exhibited increased target biting 

and testosterone levels and general olfaction were normal. Moreover in the previous studies of the 

same team demonstrated that lacking of EphA5 also leads to the decrease in aggressive behavior in 

mice. (Sheleg et al., 2015) Interestingly, in previous studies of Ping Chao Mamiyaa et al. in 2008, 

similar data were detected in the EphA5-/- mice and moreover, they indicated that in the EphA5-/- 

mice brains, the serotonin level significantly reduced in the hypothalamus (Mamiya et al., 2008). 
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Part 1：EphAs-EphrinAs signaling is required for the 

distinctive targeting of raphe 5-HT neurons in the 

telencephalon. 

All serotonin (5-HT) innervation in the brain derives from the raphe nuclei in the hindbrain 

(the B1-B9 cell groups). These projections are highly collateralized but with some degree of 

topographic organization. In the telencephalon, the pattern of 5-HT innervation arising from the 

dorsal (B7, B6) or the medial (B5-B8) nuclei differs. However, the guidance molecules that direct 

these 5-HT raphe neurons to different targets are not known. 

In the first, we investigated the role of ephrinA-EphA signaling in this selective targeting. In 

our results, we demonstrated that the EphA5 selectively expressed in distinct subpopulation of 

serotonin raphe neurons. Particularly, EphA5 exhibited the highest level in dorsal raphe serotonin 

neurons (B7). The results of in vitro explants culture and in vivo electroporation analysis indicated 

that the ligands of EphA5 (ephrinA5 and ephrinA3) act as a repellent factor to the serotonergic 

axonal growth cones. 

Furthermore, the anterograde tracing analysis in the ephrinA5 -/- mice showed mistargeting of 

dorsal raphe neurons projections, which included the serotonergic projection. 

Overall, our results shows for the first time the implication a guidance molecule for the 

region-specific targeting of serotonin raphe neurons and has implications for understanding the 

anatomofunctional parsing of the raphe cell groups. 
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Abstract (240 words) 

Serotonin (5-HT) neurotransmission in the brain relies on a widespread axonal network 

originating from the hindbrain raphe nuclei. Raphe 5-HT projections are topographically 

organized: the caudal, dorsal (DR), and median raphe (MnR) nuclei have different brain 

targets and physiological functions. However, the guidance molecules involved in the 

selective targeting of raphe axons are unknown. Here, we show the implication of ephrinA 

signaling for organizing DR projections during development. EphA5 is selectively expressed 

in a subset of 5-HT neurons during embryonic and postnatal development. Highest 

co-expression of EphA5 and the 5-HT marker Tph2 was found in the medial DR while there 

was lower co-expression in the MnR, and caudal raphe nuclei. Accordingly, ephrinA induced 

a dose-dependent collapse response of the 5-HT growth cones cultured from rostral but not 

caudal raphe. Ectopic expression of ephrinA3 in the amygdala and piriform cortex repelled 

normal 5-HT raphe fiber ingrowth. Conversely, in eprhinA5 KO mice, anterograde tracing 

showed mispositioned DR axons in brain regions that are normally targeted only by the MnR. 

In particular, the overall density of 5-HT innervation was increased in the ventromedial 

hypothalamus, the suprachiasmatic nucleus and the outer layers of the olfactory bulb. All 

these brain areas have high expression of ephrinAs at the time of 5-HT fiber ingrowth. These 

results show for the first time the role of a guidance molecule for the region-specific targeting 

of raphe neurons and has implications to understand the functional parsing of central 5-HT 

neurons. 

  

Keywords: Dorsal raphe nuclei, serotonin, Axon guidance, ephrinA, hypothalamus, 

olfactory bulb, primary culture 
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Significance statement: Our results demonstrate a new role of ephrinA signaling 

for the selective targeting of 5-HT raphe nuclei. The tyrosine kinase EphA5 is 

differentially expressed across 5-HT neurons from the different raphe nuclei, correlating 

with a different repulsive action of ephrinA on 5-HT axon growth. Ephrin-A5 loss of 

function causes a mis-targeting of dorsal raphe 5-HT axons, whereas over-expression of 

ephrin-A3 inhibits the ingrowth of 5-HT raphe axons in the amygdala and piriform cortex 

that are main targets of the dorsal raphe 5-HT neurons. Thus Eph-Ephrin signaling acts 

as a repulsive signal to differentially target 5-HT axons originating from different raphe 

nuclei.  
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Introduction 

Serotonin (5-Hydroxytryptamine, 5-HT) neurotransmission is implicated in a large 

number of physiological functions raising the question of a division of labor among the 

different hindbrain nuclei that synthesize 5-HT (Calizo et al., 2011; Hale and Lowry, 2011; 

Kiyasova and Gaspar, 2011; Brust et al., 2014; Teissier et al., 2015). The 5-HT synthesizing 

neurons are distributed into several raphe nuclei in the hindbrain that have been parsed 

according to anatomical and physiological criteria. Different raphe nuclei target different 

brain regions and, consequently, have different functional roles. For instance the caudal 

5-HT raphe nuclei (the B1-B3 cell groups) that are located in the medulla, project to 

brainstem and spinal cord and have been implicated in motor control and in neurovegetative 

functions (Schmidt and Jordan, 2000; Pflieger et al., 2002; Brust et al., 2014). Conversely, 

5-HT neurons in the rostral raphe are located in the pons (the B5-B9 cell groups) and project 

to the telencephalon; these cell groups have been involved in diverse higher brain functions, 

such as mood, learning and different types of social behaviors, such as aggression or 

maternal behavior (Deakin and Graeff, 1991; Lucki, 1998; Fernandez and Gaspar, 2012).  

Further anatomo-functional distinctions can be made within the rostral 5-HT cluster where 

neurons of the dorsal raphe (DR =B6+B7) and the medial raphe (MnR= B5+B8) groups 

innervate different brain areas; and have consequently been implicated in different functions 

(Jacobs and Azmitia, 1992; Fernandez et al., 2015; Teissier et al., 2015). This organization 

suggests that specific axon guidance molecules orient the 5-HT neurons from different raphe 

nuclei to different targets, although the molecular mechanisms involved are largely unknown 

(Kiyasova and Gaspar, 2011).  

 Previous transcriptome profiling of developing 5-HT raphe neurons identified distinct 

expression profiles between the rostral pontine and the caudal medullary raphe cell groups 

(Wylie et al., 2010).  Among these genes a list of axon guidance molecular candidates were 

available. We focused on the Eph receptors, several of which showed differential expression 

between the rostral and caudal raphe 5-HT neurons. Moreover the known properties of Ephs 

as short-range guidance factors make them attractive candidates for selective axon 

targeting. The Ephs are tyrosine kinase receptors activated by Ephrin ligands that comprise 

two main classes: class A Ephrins which are GPI-linked and interact at various degrees of 

selectivity with class A Eph receptors (EphA1-A10), and class B Ephrins which are 

transmembrane receptors interacting with class B Eph receptors (O'Leary and Wilkinson, 

1999; Klein and Kania, 2014). EphrinA signaling has been involved in many functions, one of 
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the best known being it’s role for establishing topographic maps (Prakash et al., 2000; Miko 

et al., 2007). Interestingly Eph-EphrinA have also been involved in the development of 

dopaminergic neurons based on expression studies and effects of EphrinA5 on axon growth 

and fasciculation (Deschamps et al., 2010;Prestoz et al., 2012). 

 In the present study we establish that the EphA5 receptor is selectively expressed in 

developing 5-HT raphe neurons of the rostral raphe cluster and that ephrinA5 exerts a 

repellent effect on 5-HT axon growth. We find that there is a differential EphA5 expression 

amongst the different 5-HT raphe neurons and that this explains several distinctive features 

of the DR 5-HT projections, in particular regarding the exquisite differential targeting of the 

DR and MR axons to specific laminae of the olfactory bulb and to specific hypothalamic 

neuronal sub-nuclei. 

Material and methods 

Animals 

Gene expression analyses during development were performed on mice of the Swiss 

background (RjOrl:SWISS) purchased from a commercial breeder (Centre d'Elevage R. 

Janvier). E0.5 was defined as the plug date and P0 as the date of birth. 

 

The Pet1-Cre::RCE-GFP mouse line was used for RT-qPCR analyses. ePet1-Cre mice 

(Scott et al., 2005)  in which the serotonergic specific promoter of the Pet1 gene controls 

Cre expression were crossed to the RCE-GFP mouse line where enhanced green 

fluorescent protein is conditionally expressed under the Rosa-26 promoter (Sousa et al., 

2009). Pet1-Cre::RCE-GFP mice were bred in our local facility and brains collected from P5, 

P15 and adult mice. 

 

The ephrinA5-KO mouse line was a gift of the Frisen lab (Frisen et al., 1998) to Dr 

Afsaneh Gaillard and maintained on a C57Black6 background (Deschamps et al., 2009). 

Briefly, these mice have a PGK-neo cassette replacing the 5’ acceptor splice site and the 

sequences encoding amino acid residues 42–129. The PCR primers for genotype are as 

follows: primer 1 (TCCAGCTGTGCAGTTCTCCAAAACA) and primer 2 

(ATTCCAGAGGGGTGACTACCACATT) for wild-type sequences (397bp) and primers 1 and 

primer 3 (AGCCCAGAAAGCGAAGGAGCAAAGC) for mutant sequences (513bp). 
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All experiments were performed in compliance with the standard ethical guidelines 

(European Community Guidelines and French Agriculture and Forestry Ministry Guidelines 

for Handling Animals decree 87849). All efforts were made to reduce the number of animals 

used and their suffering.  

 

Male and female mice were used indiscriminately in all experiments. 

 

Histology 

Section preparation Brains were collected at embryonic days 12(E12), E14, E16, E17, 

E18, at postnatal days 0(P0), P5, P10, P15 and from adult aged over 8 weeks.  

Mice aged P5 or younger were anesthetized on ice. Mice older than P5 were 

anesthetized with pentobarbital, 25 mg/kg and xylazine, 5 mg/kg. Fixation was either with 

immersion (E14, E16) or perfusion (>E16) with 4% PFA (4% paraformaldehyde in 0.12 M 

phosphate buffer, pH 7.4). Dissected brains were post-fixed 2 hours (embryonic ages) or 

overnight (all postnatal ages) before cryoprotection in 10% sucrose and freezing in 

isopentane cooled with dry ice at -45° to -55°C. In some in situ hybridization (ISH) protocols 

no post-fixation was performed. Frozen brains were then cut with a cryostat to either coronal 

or sagittal 20μm thick sections and collected as series of 6. Sections were stored at -80°C 

before immunohistochemistry or in situ hybridization. Some brains were processed as 

floating sections and sectioned with a freezing microtome sectioning. In this case, the brains 

were cryoprotected in 30% sucrose and frozen directly on the platform of the cryotome at 

-40°C; serial 40um thick coronal sections were collected in 1X PBS with 0.01% sodium 

azide. Sections were stored at 4°C before immunohistochemistry or ISH processing 

In situ hybridization was used to analyze EphARs and ephrinAs expression. 

Digoxigenin-labelled mRNA probes were transcribed from mouse EphA3, EphA4, EphA5, 

EphA7, ephrinA2, ephrinA3 and ephrinA5 cDNAs. Sense and antisense digest enzymes and 

polymerases of these probes are listed in Table 1. Sections were air-dried for at least two 

hours under a hood. Specific antisense RNA probes (0.1-1ug/ml) were mixed with 

hybridization buffer (50% formamide, 10% dextran sulfate, 1X Denhardt's, 5X SSC and 250 

ug/ml tRNA) and incubated at 52°C, 58°C or 65°C for 10mins. 350ul of mixed hybridization 

buffer was added to each section, covered with a cover-slip, and incubated overnight at the 

same temperature. The sections were washed with PBS and PBS Triton 0.1% and incubated 

with anti-Digoxigenin (1/1000) 4° overnight. Sections were washed with 1X PBS and NTMT 
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(Tween 10%; Tris-HCL, pH 9.5, 1M; MgCl2, 1M; NaCl, 5M; H2O) buffer and incubated with 

NBT+BCIP or fast red (TR/Naphthol AS-MX Tablets, SIGMA F4523-50 SET) to reveal the 

reaction at 37°. Duration or the revelation (from 2 to 24 hours) was determined empirically 

according to the sensitivity of the probes and the concentration of the anti-Dig solution. The 

signal was checked with bright field and fluorescence microscopy and the sections were 

washed with 1X PBS. Sections were mounted in mowiol-Dabco (25 mg/ml) or processed 

with Immunohistochemistry.  

Immunohistochemistry was performed either on alternate series of sections or in 

combination with ISH. Sections were washed in PBS, then in PGT (PBS with 0.2% gelatin 

and 0.25% Triton X-100) 4 X 15mins. Sections were incubated overnight at 4°C with the 

following primary antibodies: anti-Tph2 (mouse monoclonal, 1/1000, Sigma), anti-5-HT 

(rabbit polyclonal, 1/1000 Sigma), anti-SERT (rabbit polyclonal, 1/1000, Calbiochem). For 

fluorescence microscopy, sections were then incubated for 2 h at room temperature with the 

following secondary anti-body: donkey anti-rabbit 488 (1/200, Jackson), donkey anti-rabbit 

Cy3 (1/200, Jackson), donkey anti-mouse 488 (1/200, Jackson), donkey anti-mouse Cy3 

(1/200, Jackson), or with the phalloidin 594 (1/40 Invitrogen). Then sections were rinsed in 

PB, mounted in mowiol-Dabco (25 mg/ml) and stored at +4°C. 

RT-qPCR  

Brains of Pet1-Cre RCE mice were collected at postnatal day 5, 15 and adult (6 weeks). 

Brains were kept in 1X PBS on ice and sectioned in the coronal plane with a tissue chopper to 

300 um-thick sections. The dorsal and medial raphe nuclei were micro dissected under a 

fluorescent macroscope (Zeiss-MV10) and collected into 5ml tubes, which contained 2ml of 

cold 1X PBS, a cortical hemisphere was collected as a positive control. To obtain enough 

tissue for RNA isolation from the raphe, four cases were pooled together for each sample 

analyzed. Tissue was either directly processed for RNA isolation or fast frozen at -80°C.  

RNA isolation from tissue was done with Trizol Reagent (Sigma). Samples were weighed 

(≤ 50mg) before homogenization, PBS was removed extensively and 1ml of trizol was added. 

Tissue was homogenized with a motor-driven tissue grinder until no visible pieces were left; 

the tip of the grinder was washed with 70% ethanol and milli-Q water between each tissue 

sample. Homogenates were transferred to 2ml eppendorf tubes with 0.2ml of chloroform and 

gently mixed for 15 seconds, and centrifuged 12000g, for 15mins at 4°C. The upper phase 

was collected and RNA was precipitated by mixing with isopropyl alcohol, 0.5ml, incubating at 

room temperature (5mins), centrifuged at 12000g for 10mins at 4°C. After removal of the 
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supernatant the RNA pellet was air-dried and dissolved in 100ul Milli-Q water and stored at 

-80°C. 

Possible DNA contamination was cleared using DNase I (Thermo) and RT-PCR was 

done with the SuperScriptII kit (Invitrogen). Quantitative-PCR was performed with the 

Thermo SYBR Green Mix kit according to the manufacturers’ instruction. Primers are listed 

in Table 2. 

Raphe culture and collapse assay 

E12 embryos were collected from Swiss timed-pregnant dams. Embryonic hindbrains 

were rapidly dissected as an ‘open book’ in ice cold 1X PBS. The rostral and caudal raphe 

were dissected separated based on fiducial marks. The dissected raphe was further cut into 

200um explants with a tissue chopper or with a scalpel. Explants were placed onto 

polylysine/laminin-coated glass coverslips (Marlenfield, 0111540) in 4-well culture boxes 

(Nunclon, 176740) in DMEM F-12 medium to which BSA (1%), Peni/strep, Glutamine 

(200mM), and Glucose (50%) were added. Explants were cultured for 3 or 4 days at 37°C, in 

5% CO2. For the collapse assay EphrinA5 (R&D System, 374-EA) was added at different 

concentrations (50mM, 250mM, 500mM) for 1hour. Explants were then quickly washed in 

PBS, fixed in buffered 4% PFA for 30mins, and washed extensively before 5-HT 

immunocytochemistry (anti-5-HT rabbit polyclonal, 1/1000 from Sigma) and phalloidin 594 

(1/40 Invitrogen) staining. 

 

Quantification of the collapse assay. Explants were imaged with a fluorescence 

microscope. Only round-shaped explants which contained 5-HT neurons were quantified, 5 

explants and > 100 growth cones per condition were counted using a 63X/1.25 objective. The 

number of collapsed/non collapsed growth cones was counted for both 5-HT axons and 

non-5-HT axons, comparing the 5-HT immunostaining with the phalloidin staining. Counts 

were done on 5 different explants per condition from 3 independent experiments. These 

counts were used to calculate the mean ratio ± SEM per condition.  

 

Anterograde Tracing  

We used an adeno-associated virus (AAV1.CAG.tdtomato.WPRE.SV40 ref: 

AV-1-PV3365, Penn Vector) to express td-tomato fluorescence in the DR neurons and 

projections. A single injection (20ul of the virus non diluted) was done in the DR using a 10ul 

pulled glass capillaries. Dorsal raphe stereotaxic injections were performed as previously 
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described (Muzerelle et al., 2016). Adult ephrinA5 KO mice and littermate WT mice were 

anesthetized with ketamine (150 mg/kg) / xylazine (10 mg/kg). Animals were positioned on a 

foam board horizontally, the head was fixed and kept horizontal, and Bregma coordinates 

measured to calculate the position of the injection site and the angle of stereotaxic arm. To 

target the DR the following coordinates were used: antero-posterior: 0.5 to lamda; 

medio-lateral: 1; dorsoventral: 3.2. The animals were kept for 3 weeks and were perfused by 

4% PFA. Brains were processed as described above, collecting serial 50um coronal sections 

throughout the brain. 

 

In utero electroporation of EphrinA construct  

GFP-ephrinA3 (kind gift of Dr. Michel Reber) was subcloned into the vector 

pCIG-Td-tomato and the pCIG-Td-tomato vector without the insert was used for the control 

condition. Both of the plasmids were purified by Qiagen EndoFree Plasmid Maxi kit. Stored at 

a final concentration of 2.5μg/μl.  

To target gene expression in the amygdala, we followed a previously described in utero 

electroporation protocol (Remedios et al., 2004; Huang et al., 2014). The plasmids (1μg/μl) 

were mixed with 1% Fast Green (F7252, Sigma-Aldrich) and injected into one of the lateral 

ventricles of E12.5 embryos with 10ul glass-pulled micropipettes (5-000-1001-X10, 

Drummond; puller model 720, KOPF with a heat of 14,5 and solenoid 2). Then A P3 (3 mm 

diameter) electrode (LF650P3, BEX) was placed toward the caudal and ventral part of the 

telencephalon. Six electric pulses (30V, 50ms pulse length) with 950-ms intervals were 

applied using an electroporator (CUY21, BEX). After delivery, foster mothers delivering at the 

same time as the experimental subjects adopted the newborn pups. The electroporated pups 

were perfused at P5 and processed for immunocytochemistry as described above.  

 

Image acquisition: For bright field microscopy, histological sections were imaged using 

a slide scanner (Nanozoomer 2.0-HT C9600, Hamamatsu, Japan) objective X20 or captured 

with a Cool SNAP camera mounted on a provis microscope (Olympus, France). For 

illustration purposes, images from the nanozoomer were exported in Tiff format using the 

NDP View2 software (Hamamatsu, Japan).  

For fluorescence microscopy, images were acquired with a Leica DM 6000B system 

using a 40x/0.70 oil objective (tissue cultures), or acquired on a Leica SP5 confocal system 

(co-localization and fiber density analyses), equipped with an Argon laser (for the 488nm 

excitation), a Diode 561 nm and HeNe 633nm. Z-series stacks of confocal images were 
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acquired at 1024 x 1024 pixel resolution, with a pinhole set to one Airy unit and optimal 

settings for gain and offset. Characteristics of the images are described below for each 

procedure. 

Image analyses 

Co-localization:  EphA5-Tph2 co-localization studies were done on P5 brains 

processed from 3 independent experiments. 20um-thick sections through the brainstem were 

collected as 6 series, one series wad processed for combined EphA5 HIS, Tph2 

immunohistochemistry and DAPI and imaged with the confocal microscope. Sequential 

confocal images were acquired with a 40X/1.25 N.A Plan-apochromat at 3 different 

rostrocaudal levels through the raphe (Bregma -4.36mm, -4.60mm and -4.96). 5 confocal 

images spaced by 2um were taken over a 10 um depth. The wholes area containing TPH2+ 

neurons was acquired including the different subdivisions of the DR in the dorsal part (DRD), 

the ventral part (DRV) the lateral wings (DR-LW), and the caudal part (DR-C, B6). 

Acquisitions were done in the MnR in the B8 and B5 cell groups, and in the B9 cell groups. 

Confocal stacks were analyzed with image J. A 150um X 150um square mask was used for 

random selection of counting areas. Three random selections were positioned on each 

distinct 5-HT sub-nucleus. A cell counter plugin was used to count the Tph2 positive cells, 

EphA5 positive cells and the co-localized neurons. 

 

Fiber density To quantify the anterograde tracing and the IUE data, fiber density were 

analyzed in two different ways. In the olfactory bulb and amygdala, confocal images were 

acquired at 4um intervals within an entire thickness of 20um. A maximum Z-projection of the 

image stacks was performed with image J. Then, a circular mask of 20um diameter was used 

for random sample selection. All labeled fibers that crossed the edge of the mask were 

counted with a cell counter to compute linear densities. 

In the other brain target (VMH, SVZ, SCN and BNST), confocal images were copied to 

Image J with an 8-bit format. Subtraction of the background was done with a 20 pixels 

rollerball and a binary image was obtained after applying a fixed range of threshold for all the 

images. A circular mask of 100um diameter was used for random sample selection was to 

measure the area occupied by the fibers on the binary images as described in (Kiyasova et 

al., 2011). 

Statistical analyses 

All the statistical analyses applied were performed with GraphPad Prism6. One-way 

ANOVA was performed in the analyses of Q-PCR, co-localization and collapse assay. Tukey’s 
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multiple comparisons were performed to show the difference between any of the two samples 

within the group. Student t-test was performed for intergroup comparisons in the fiber density 

analyses. Unpaired t-test was used for comparison of independent samples and paired t-test 

was done for analyses comparing, ipsi and contralateral innervation in the same case. Data 

are expressed as Means +/- SEM, P<0.05 was considered as significant. 

 

Results 

Expression of EphA receptors in the raphe nuclei. 

5-HT neurons of the hindbrain start extending axons by E12, and reach most of their 

forebrain targets between E15 and P0 while the development of a full terminal 

arborization extends over the first 2-3 weeks of postnatal life (Lidov and Molliver, 1982; 

Kiyasova and Gaspar, 2011).  

We began by screening the expression of the EphA receptors at P5, a time when the 

DR and the MnR can be well individualized and are still actively growing. Q-PCR 

analyses were performed on micro-dissected DR. The areas containing 5-HT neurons 

were identified by using mice in which the GFP reporter was expressed selectively under 

the control of Pet1, a transcription factor selective of 5-HT neurons (Scott et al., 2005). 

Q-PCR analyses of the EphA3, A4, A5, A6, A7, and EphA8 mRNAs were performed and 

GAPDH was used as a housekeeping gene. This analysis showed that EphA4 and 

EphA5 are the main EphA receptors detectable in the dorsal raphe at P5, with lower 

expression of EphA3, EphA6, EphA7 and EphA8. (Figure 1A). To determine more 

precisely the cellular localization of the Eph genes, in situ hybridization (ISH) was 

performed on serial coronal sections through the raphe, using specific mRNA probes to 

EphA3, EphA4, EphA5 and EphA7 (Table 1). This showed that among the Ephs genes 

examined, only EphA5 was localized in the DR and the MnR; no expression was visible 

in the raphe magnus, obscurus and pallidus that correspond to the caudal B1-3 raphe 

cell groups in th medulla (Figure 1B). The other EphA genes, EphA3, EphA4 and EphA7 

that were detected with QPCR, appeared to be essentially localized to nuclei that are in 

the close vicinity of the raphe, such as the dorsal lateral tegmental nuclei and superior 

olive, but not in the DR or the MnR (Figure 1B) 

Overall, these results indicated a selective expression of EPhA5 in the developing 

rostral raphe nuclei (dorsal and medial raphe).  
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EphA5 expression is dynamically regulated during raphe development 

To evaluate the possible developmental impact of EphA5 at different stages of raphe 

development, we analyzed its expression timeline. Serial sagittal (embryo) and coronal 

(postnatal and adult) sections were processed for EphA5 ISH at E14 (n= 4), P0 (n>5), P5 

(n>5), P10 (n>5), P15 (n>5) and adult (n= 2). These experiments showed that EphA5 

expression is detectable in the rostral raphe at E14 and that this expression is 

maintained at a high level over the first week following birth. Expression subsequently 

declines by P15 (Figure 1C) to adulthood where an only low level of expression is 

detectable (not shown). To obtain a quantitative evaluation of the time course of 

expression EphA5 mRNA was measured with Q-PCR on micodissected raphe at P5 

(0.37±0.09, n=3), P15 (0.06±0.005, n=3) and in adult (0.09±0.02, n=3) (P5 vs. P15, 

P=0.0189; P5 vs. Adult, P=0.416; P15 vs. adult, P=0.787) brains, that showed a 

significant decrease between P5 and P15, consistent with the ISH result. 

 

Serotonergic raphe nuclei differ in EphA5 expression pattern 

Hindbrain raphe nuclei contain a heterogeneous neuronal population that includes in 

addition to 5-HT neurons, glutamate, GABAergic, and peptide-containing neurons. To 

determine whether EphA5 is expressed in the serotoninergic neurons we combined 

fluorescent EphA5 ISH and tryptophan hydroxylase (TPH2) immunocytochemistry on 

serial sections of E14 and P5 brains (Figure 2). At E14, EphA5 was broadly expressed in 

the alar plate of the isthmus and of rhombomeres 1-3 (R1-R3) in the area defined as the 

periventricular stratum of the mantle zone (Allen Brain Atlas, 

http://developingmouse.brain-map.org/static/atlas). At this embryonic stage 5-HT 

neurons have not yet achieved their full migration, making it difficult to distinguish the 

individual raphe cell groups other than the 2 main rostral and caudal clusters. The rostral 

hindbrain cluster comprises 5-HT neurons derived from the isthmus and from 

rhombomeres 1-3 while the caudal medullary cluster corresponds to rhombomeres 5-8 

(Jensen et al., 2008; Alonso et al., 2013); Tph2+ neurons of the rostral hindbrain cluster 

overlapped with the EphA5 positive area in the alar plate (Figure 2A) and at higher 

magnifications a large number of EphA5-Tph2+ neurons were found in the dorsal region 

but not in the ventral part (Figure 2A’), that corresponds to respectively to the 

prospective DR and MnR. In the caudal cluster, Tph2+ raphe neurons which derived 

from rhombomeres 5-8 (Alonso et al., 2013) appeared to be entirely segregated from the 

EphA expressing neurons. 

http://developingmouse.brain-map.org/static/atlas
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At P5, the B1-B9 cell group of raphe neurons can be well outlined with 

Tph2-immunostaining (Figure 2B-D), and EphA5-Tph2 co-localization could be 

evaluated quantitatively in the different sub-nuclei (Figure 3, tables 3-4). The highest 

co-localization index was found in the DR-B7 group where more than 50% 5-HT neurons 

expressed EphA5 (50.2% ± 2.2%, n= 3, Figure 3AD); while the lowest co-localization 

ratio was noted in the caudal raphe cell group (B1-B3) (Figure 3C, D). In the MnR (the B5 

and B8 groups), although a strong expression of EphA5 was visible, only 14-22 % of the 

5-HT neurons expressed EphA5 (Figure 3 B, D). Further heterogeneous expression was 

observed within the DR (B7) cell group where co-localization was compared from counts 

performed at 3 different levels (B7rostral, B7intermediate, B7caudal) and from the 

different DR subdivisions (DRD/B7dorsal, DRV/B7ventral, DRL/B7lateral) (Figure 3E 

and Table 4); these DR/B7 sub-divisions are based on differences in cytoarchitecture, 

connectivity or electrophysiological profiles(Crawford et al., 2010; Hale and Lowry, 2011; 

Fernandez et al., 2015; Muzerelle et al., 2016) . Thus the medially located neurons (B7d 

and B7v) showed higher co-expression than the lateral wings (B7lateral); and along the 

rostral to caudal axis, the middle levels of B7, B7i showed a higher % co-localization than 

the rostral or caudal B7 (Figure 3E, table 4). Overall, these results stressed the fact that 

EphA5 is topographically distributed in the 5-HT raphe subgroups with a rostral to caudal 

and a medial to caudal decreasing gradient of expression. These expression gradients 

suggest a possible role of EphA5 in differential targeting of 5-HT neurons from different 

raphe regions. 

 

Collapse response of 5-HT raphe neurons after the ephrinA application.  

EphA receptors can mediate repulsive or attractive signals according to whether they 

mediate forward or reverse signaling. To examine the functional role of ephA5 

expression on 5-HT axon outgrowth, we analyzed the collapse response of raphe 

neurons. We took advantage of the clear-cut differential expression of EphA5 between 

the rostral and caudal clusters of 5-HT neurons at embryonic ages to compare their 

response to application of the ligand EphrinA5. Raphe explants from E12 hindbrains, 

were separated into rostral and caudal raphe based on fiducial marks (Figure 4A). 

Explants were grown 48 hrs on glass coverslips and EphrinA5-FC was applied to the 

cultures at different concentrations. In explants from the rostral raphe, the 5-HT labeled 

growth cones had a characteristic fan-shaped morphology (Figure 4 B3); EphrinA5-FC 

induced the collapse of a large fraction of 5-HT growth cones, some of which had a long 
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trailing process and an actin rich retraction bulb (Figure 4-B5), while others had a short 

trailing process and many filopodia (Figure 4-B4); A dose dependent effect was noted as 

71.3% ± 4.5% of the 5-HT growth cones were collapsed at the highest concentration 

tested (500ng/ml), 45-50% at intermediate concentrations (50-250 ng/ml) and 20% at the 

lowest concentration (5ng/ml),which is similar to controls (Figure 4D). In caudal raphe 

explants, EphrinA5 application did not induce a significant collapse response compared 

to controls at any of the doses tested (Figure 4C); growth cones showed a normal 

morphology (Figure 4-B2). Because EphA5 is also expressed in a large number of 

non-HT neurons in both the rostral and caudal raphe areas (table 3), we also evaluated 

the collapse responses of the non-5-HT axons. The non-5-HT growth cones showed a 

significant dose-dependent collapse response in both rostral and caudal explants (Figure 

4 E, F), thus showing less regional selectivity than the 5-HT growth cones. 

Overall, these experiments demonstrated that EphA5 expression in 5-HT raphe 

neurons correlates with a repulsive response to the application of ephrinA5-FC. 

Interestingly there was a dose response effect suggesting that differences in the 

ligand/receptor ratio could contribute to a differential targeting of raphe neurons. 

 

5-HT innervation is reduced by ectopic ephrinA expression in the amygdala 

and piriform cortex. 

Next, we investigated the effects of ephrinA ligands for in vivo 5-HT axon targeting 

using an over-expression strategy. We focused on the amygdala and piriform cortex 

which express only very low levels of ephrinA2, ephrinA3 and ephrinA5 (Allen Brain 

Atlas, http://developingmouse.brain-map.org/gene/show/13415, 13416, 13418) 

(Deschamps et al., 2010), which are the preferential ligands of EphA5. Thus, the 

amygdala and piriform codices could be permissive for the ingrowth of DR axons which 

express high level of EphA5 receptors. To examine this possibility, we used an in utero 

electroporation strategy.  

An ephrinA3 cDNA fragment was sub-cloned into a pCIG-Tdtomato vector; the 

plasmid with or without the ephrinA3 insert was electroporated into the amygdala and 

piriform cortex at E12.5. Electroporated cells were visible in the basolateral amygdaloid 

nucleus (BLA), basolateral amygdaloid nucleus ventral part (BLV) and basomedial 

amygdaloid nucleus anterior part (BMA), and the piriform cortex in brains on the 

elecroporated side (Figure 5A, C, D). Measures of 5-HT fiber density showed a 

significant decrease of innervation on the electroporated side (0.07±0.01/ μm) compared 

http://developingmouse.brain-map.org/gene/show/13415
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to the contralateral control side (0.21±0.03 / μm)(Figure 5B, 7C,). In contrast in cases 

electroporated with the control vector, the density of 5-HT fibers was unchanged 

compared to the non-elecroporated side (0.19±0.02/ μm). This result indicated that 

EphA5-ephrinA3 interaction can specifically reduce the 5-HT raphe-amygdala 

innervation during development. (n=5, p < 0.01). 

EphrinA5 is required for the differential forebrain targeting of B7/B8 raphe 

neurons. 

To investigate the role of endogenous ephrins in 5-HT axon targeting we turned to 

EphrinA5 -KO mice. EphrinA5-KO mice showed no major structural alterations in the 

morphology of the raphe nuclei. Anterograde tracing with AAV viral vectors expressing 

Td-tomato combined 5-HT immunohistochemistry allowed to determine the extent of 

transfection of the 5-HT neurons (Figure 6A) and to select cases in which transfection 

was limited to the DR with a similar extension in control and mutant mice (Figure 6B). 

Anterogradely labeled axons were further characterized as serotonergic (or not), using 

5-HT transporter (SERT) immunocytochemistry (Figure 6 D’, E’).  

To identify target areas in which DR-5-HT innervation might be altered we relied on 

previous immunocytochemical (Deschamps et al., 2010) and ISH observations (Cooper 

et al., 2009)(http://developingmouse.brain-map.org/gene/show/13418) correlating areas 

of high ephrinA5 expression with areas in which a differential 5-HT innervation from the 

DR and MnR have been demonstrated (Muzerelle et al., 2016).  A remarkable target in 

this respect is the olfactory bulb (OB) where DR and MnR 5-HT axons target different 

layers (Figure 6C), namely the granule cell layer for the DR and the Glomerular layer 

(GL) for the MnR where EphrinA5 expression is high (Figure 6C’). Anterogradely labeled 

axons from the DR in WT mice had a characteristic distribution similar to previous 

reports: Td-tomato labeled axons, all of which were SERT+, were restricted to the 

granular cell layer (GCL) and appeared to be arrested at the edge of the mitral cell layer 

(ML) with only a few fibers entering into the external plexiform layer (EPL) (Figure 

5D-D’). In the EphrinA5 KO mice, anterogradely labeled axons from the DR were also 

abundant in the CGL but did not seem to be arrested by the ML, which they crossed, 

arborizing into the EPL (Figure 6E-E’). To obtain quantitative measures normalized to 

the number of anterogradely labeled axons, we estimated the density of td tomato 

labeled fibers in the CGL and the EPL, and calculated the EPL/CGL ratio. This ratio was 

significantly increased in ephrinA5 KO mice compared to WT mice (Figure 6F). To 

http://developingmouse.brain-map.org/gene/show/13418
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determine whether the overall density of 5-HT labeled axons was modified, we 

measured the density of SERT-labeled axons in the CGL and the EPL which indicated 

an overall increase in the density of 5-HT axons in the EPL but not in the CGL (Figure 6 

G, H). 

 

Next, we analyzed, in the same cases, DR anterograde labeling and global 5-HT 

innervation in two hypothalamic areas that show high ephrinA5 expression. Two areas 

appeared to be of particular interest in this respect, the ventromedial hypothalamic 

(VMH) (Figure 7A) and the suprachiasmatic nuclei (Figure 7F). Both nuclei show a high 

level of ephrinA5 at P5 (Figure 7A, F). In WT mice, anterograde labeling from the DR 

shows that both the VMH and the suprachiasmatic are not targeted by DR axons (Figure 

7B’, G’) confirming previous observations. However, these areas contain a very high 

density of SERT+ labeled terminals that originate from the MR (for the suprachiasmatic 

nucleus) or from both the MR and DRD for the VMH. In the EphrinA5 KO mice, the 

density of DR anterograde projection was substantially increased in both the VMH 

(Figure 7C’, E) and the suprachiasmatic nuclei (Figure 7H’, J). Double labeling showed 

that both 5-HT and non 5-HT DR axons contributed to this increase (Figure 7C”, H”). 

Comparison of the density of SERT+ labelled fibers was also showed a significant 

difference in the total density of SERT fibers was noted in these hypothalamic areas 

(Figure 7E, I).  

Discussion (1513 words) 

Our results demonstrate for the first time a role of ephrin A signaling for the selective 

targeting of serotoninergic raphe nuclei. We show that EphA5 is differentially expressed 

across the different hindbrain raphe nuclei, and that this correlates with a different 

repulsive action of ephrinA on 5-HT axon growth. Ectopic expression of ephrin-A inhibits 

the ingrowth of 5-HT raphe axons in main targets of the dorsal raphe 5-HT neurons and 

Ephrin-A5 loss of function causes a mis-targeting of dorsal raphe 5-HT axons resulting in 

localized increases in 5-HT innervation. 

 

The development of raphe neurons has been well outlined by classical 

morphological studies (Lidov and Molliver, 1982; Wallace and Lauder, 1983), however, 

only few insights have been obtained to date into the molecular control of axon guidance 

in this system. Wnt signals have been implicated in the polarity of 5-HT neurons 
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(Fenstermaker et al., 2010) and Slit/Robo signaling influences 5-HT axon tract 

organization in the medial forebrain bundle (Bagri et al., 2002), but hardly anything is 

known about the molecular control of selective 5-HT axon targeting. This knowledge gap 

is likely due to a prevailing view of 5-HT neurons as a diffuse highly collateralized system 

with limited specificity (Agnati et al., 2006). However, increasing evidence showed that 

raphe 5-HT neurons are in fact heterogeneous in their molecular identities (Wylie et al., 

2010; Fernandez et al., 2015; Okaty et al., 2015), their physiology (Calizo et al., 2011; 

Fernandez and Gaspar, 2012) , their genetic determinants (Kiyasova et al., 2011), and 

their connectivity (Azmitia and Segal, 1978; Commons, 2015; Muzerelle et al., 2016). In 

addition to the established di- vergence of axons arising from the rostral and caudal 5-HT 

neuron clusters (directed toward the forebrain and the spinal cord respectively), there is 

a distinct topographic organization within the ascending forebrain projections. 5-HT 

axons originating from the DR and MnR occupy complementary terminal territories in the 

forebrain (Bobillier et al., 1976; 18 Azmitia and Segal, 1978; Jacobs et al., 1978; Vertes 

et al., 1999; Muzerelle et al., 2016). Coinciding with this topographic anatomical 

organization, our study revealed a gradient of EphA5 gene expression with higher EphA 

expression in the DR than in the MnR, and in addition a clear rostral to caudal and 

medial to lateral expression gradient. Thus, high EphA5 expression in DR neuronal 

subsets could explain why DR 5-HT neurons do not innervate brain areas that have high 

expression of ephrinA, which are instead innervated by 5-HT neurons from the MnR. 

This is particularly clear in the case of the olfactory bulb (OB), where DR and MnR 5-HT 

neurons are located respectively in the central (GCL) or outer (EPL, GL) layers of the OB 

(Steinfeld et al 2015; Muzerelle et al., 2016). The EphrinA3/5 expressing mitral cell layer 

might then act as a barrier to prevent DR 5-HT axons from crossing into the outer OB 

layers. Similarly, hypothalamic nuclei that normally receive all (suprachiasmatic) or a 

majority (VMH) of their 5-HT innervation from the MnR (Bang et al., 2012; Muzerelle et 

al., 2016) show high levels of ephrin A expresion during development. The implication of 

ephrin A was supported by altered distribution of DR axons. In both the OB and the 

hypothalamus, serotonin innervation was increased and anterogradely labeled axons 

from the DR were mispositioned as though an inhibitory barrier was removed. 

Conversely, when ephrinA ligand was ectopically expressed in a structure such as the 

amygdala, which is a preferential target of the DR 5-HT innervation (Muzerelle et al., 

2016), the ingrowth of 5-HT raphe axons was significantly reduced. Thus, our results 

indicate that ephrinA5 signaling contributes to the selective of targeting of 5- HT axons in 
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the forebrain by repelling the ingrowth of 5-HT axons originating from the DR, in brain 

regions that are normally targeted by the MnR. 

 

Other aspects of the topography of DR may also be influenced by EphrinA signaling; 

this is suggested by our observation of a medial to lateral gradient of EphA5 expression 

in the DR which coincides with differential anatomical projections. For instance, 5-HT 

neurons in the lateral wings of the DR show a low level of EphA expression and project 

to regions with high ephrinA5 expression such as the lateral geniculate nucleus 

(Muzerelle et al. 2016, Wilks et al. 2010). It will also be interesting to determine in the 

future how the combination of axon guidance molecules in raphe targets contribute to 

attracting subsets of 5-HT axons to defined brain areas/layers. In particular we do not 

know what factors attract the MnR axons to the areas that are avoided by the DR. 

Intriguingly 5-HT itself could contribute to this growth-promoting effects, as a defective 

innervation of the SCN was observed in Tph2-KO mice (Migliarini et al., 2013). The 

mis-targeting of DR axons in the hypothalamus of EphrinA5 KO mice concerned both 

5-HT and non 5-HT neurons of the DR, indeed as noted in the present study, both cell 

types express EphA5. These common axon guidance cues are consistent with shared 

connectivity profiles; indeed, previous anatomical tracing studies showed that DR 

afferents frequently contain a mix of 5-HT and non 5-HT neurons (Steinbusch and 

Nieuwenhuys, 1981; Kiyasova et al., 2011), the latter could include glutamatergic 

Vglut3+ (Hioki et al., 2010) and GABAergic neurons (Bang et al., 2012). Thus DR 

neurons could share similar axon guidance mechanisms, independent of their 

neurotransmitter content. 

 

EphA-EphrinA signaling has been implicated in several neuronal developmental 

processes from cell migration to synaptic maturation, (Cramer and Miko, 2016; Kania 

and Klein, 2016) although its best known implication in neural development is for axon 

guidance, where both repulsive and attractive interactions have been described. Our 

current studies indicated a main inhibitory effect of the ephrinA ligands on 5-HT axon 

growth: in vitro, ephrin5 induced a collapse of the growth cones and in vivo ectopic 

expression of EphrinA3 inhibited 5-HT axon ingrowth. This corresponds to the classic 

repulsive forward signaling of EphA receptor activation (Kania and Klein, 2016), and is 

most likely due to the EphA5 receptor according to the present localization studies. 

However we cannot exclude the implication of other EphAs since transcriptional profiling 
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of raphe neurons in embryonic and postnatal brains reported also the presence of other 

EphA (Wylie et al., 2010; Okaty et al., 2015), but likely expression is at levels too low for 

our ISH detection. Moreover, the loose specificity of the EphA5 receptors for ephrinA 

ligands and the redundancy of ephrinA expression in several brain targets (such as the 

mitral cells in the OB) suggest that the defects of 5-HT axon targeting observed in the 

ephrinA5 KO might be more pronounced in double or triple ephrinA KO mice. Such 

redundancy has previously been observed in the visual system (Feldheim et al., 2000). 

 

In the visual and auditory sensory maps Eph-ephrinA signaling acts to build a 

continuous topographic map (Cramer and Miko, 2016) however this does not appear to 

be the case in the 5-HT raphe system where topography is much looser. EphrinA 

signaling would here rather appear to act in a target selection process, by generating 

non permissive boundaries for the ingrowth of DR 5-HT raphe subtypes. This effect is 

reminiscent of that observed for the motor neurons when choosing a dorsal/ventral 

muscle targets during development (Eberhart et al., 2004). 

 

EphA5 expression in 5-HT raphe neurons was dynamically expressed, being 

maximal during axon growth and target reaching and showing decreased expression, as 

reported for EphrinA5 expression (Deschamps et al., 2010). Given the potential of 5-HT 

neurons to regenerate and grow, it will be interesting to know whether the present 

developmental mechanisms are reactivated after a lesion, and whether the propensity of 

serotonin axons to regrow (Mullner et al., 2008) could be linked to their EphA content. 

 

What could be the pathophysiological consequences of targeting defects of raphe 

neurons in the olfactory bulb or the hypothalamus? Our observations in ephrinA5 KO 

showed that mis-targeting of the DR axons was correlated with a general increase of 

5-HT innervation in these regions, suggesting that excitatory/inhibitory balance is 

compromised in these brain nuclei. Interestingly, behavioral observations conducted in 

the EphrinA5 and EphA5 KO mice showed some common phenotypes that could relate 

to our observations. Both studies report a reduction in inter-male aggression (Mamiya et 

al., 2008; Sheleg et al., 2015) and increase of 5-HT levels in the hypothalamus was 

shown in the EphA5 KO (Mamiya et al., 2008) consistent with our observations of 

increased 5-HT innervation in this brain region.. Interestingly the increased 5-HT 

innervation that we observed in the EphrinA5 KO was concentrated in the ventrolateral 
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part (VMHVL) which has specifically been implicated in modulating aggression (Martinez 

et al 2008; Silva et al. 2016). Clearly the possible pathophysiological consequences of 

SCN hyper- innervation calls for further studies on the circadian rhythms of these 

mutants, given the implication of 5-HT innervation to the SCN in entraining circadian 

rhythmicity (Versteeg et al., 2015) 

 

Given the implication of 5-HT in a wide range of behaviors, and psychiatric disorders, 

our study point to new gene targets that may indirectly affect 5-HT functions by changing 

the targeting of raphe neurons and inducing modifications of 5-HT inputs in selected 

brain regions. 
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Figure 1 

 

Figure 1 - EphA receptor gene expression in the developing mouse raphe.  

A, Q-PCR of EphA3, EphA4, EphA5, EphA6, EphA7 and EphA8 mRNAs in DR extracts from 

P5 mice (n=4 mice /experiment, 3 experiments) Relative mRNA expression was calculated 

as 2-∆Ct. Data are presented as mean ± SEM, one-way anova, *p<0.05.  

B, In situ hybridization of EphA3, EphA4, EphA5 and EphA7 mRNAs on coronal sections 

through the rostral raphe groups, including the DR (B7) and MnR (B8) cell groups, and 

through the caudal raphe cell groups, including raphe pallidus (B1), obscurus (B2), and 

magnus (B3), that are outlined with dashed lines. EphA5 labeling is visible in the DR and 

MnR, whereas other EphA are only detected in areas neighboring the raphe cell groups 
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such ad the dorsal lateral tegmental nucleus (dltg) or the inferior olive (io). Scale bar= 

250um  

C, Time course of EphA5 expression in the developing raphe was analyzed on sagittal (E14) 

and coronal (P0, P5, P10, P15) sections through the raphe nuclei. Note the decrease in 

EphA5 expression by P15. Scale bar=500um 
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Figure 2 

 

Figure 2- EphA5 is expressed in serotonergic neurons during embryonic and 

postnatal development.   

Co-localization was visualized on confocal images after Tph2-immunostaining (green) and 

EphA5 ISH (red).  

A, Sagittal section of E14 mouse brain through the rostral (R) and caudal (C) raphe clusters 

that are indicated with arrows. Note that the dorsal part of the rostral cluster in the alar plate 

overlaps with EphA5 labeling, whereas the ventral part does not.  A’, shows a higher 

power image of the boxed area in 2A. Arrows indicate co-localized neurons, and the 

asterisk shows Tph2 + neuron with no EphA5 expression. Scale bar=1000um (A), 100um 

(A’) 

B, C, D, Coronal sections of a P5 mouse hindbrain at 3 a rostral (B), intermediate (C) and 

caudal (C) levels of the raphe. Sections were counter-stained with DAPI. Scale bar=500um 
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Figure3

 

Figure 3- Quantification of co-localization in distinct raphe nucleus.  

A-C, High power confocal images in B7, B8 and B2. These examples to show the difference in 

co-localization in different raphe nuclei. White arrows point to Tph2+EphA5 co-localized 

neurons whereas the arrowheads show neuron containing only EphA5.  Scale bar=50um 

D, E, Histograms summarizing the % co-localization among the different raphe B1-B9 raphe 

nuclei (D) and within the different sub-nuclei of B7 (E). Data are presented as mean ± SEM 

(n=3), one-way anova, **p< 0.01, ***p<0.005 and ****p<0.001. 
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Figure 4 

 

Figure 4- EphrinA5 induces collapse of rostral raphe serotonin axons in vitro.  

A, Explant preparation: hindbrain was dissected as an ‘open book’ from E12 embryos; the 
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rostral and caudal raphe were dissected as depicted on a whole mount E12 hindbrain 

stained for 5-HT. Scale bar=2mm. 

 B; Raphe explants (3DIV) were stained for 5-HT (green) and phalloidin (red). B1- shows 

5-HT+ axons emerging from the explant; B2-B3, 5-HT+ growth cones displaying a normal 

fan-like morphology. B4, Collapsed growth cone has a short trailing process which a 

branch-like morphology. B5, collapsed axon with a long trailing process and an actin rich 

retraction bulb. Scale bar=100um (B1), 10um (B2-B5) 

 C, D, E, F, Histograms show the % of collapsed growth cones when explants are exposed 

to different concentrations of EphrinA5.  C-D) 5-HT-labeled axons from caudal (C) and 

rostral (D) explants; E-F) non-5-HT axons from caudal (E) and rostral (F) explants.  (> 5 

explants and >100 growth cones per condition). Data are presented as mean ± SEM, 

one-way anova, *p<0.05, **p<0.01, ***p<0.005 and ****p<0.001. 
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Figure 5 

 

Figure 5- Overexpression of ephrinA3 down regulates serotonergic innervation in the amygdala.  

A, Target of electroporation (td-tomato) on a coronal section of P5 mouse brain at the level of amygdala. 

Arrows show electroporated Am and Pir. Scale bar=1000um 

B, Scattergram shows serotonergic fiber density per µm in the electroporated (red) versus non 
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electroporated (black) amygdala, using either the ephrinA3  (pCIG-ephrinA3-tdT) or the control  

(pCIG-tdT) plasmid. Overexpression of ephrinA3 resulted in a significant decrease of 5-HT fiber density 

compared to the control groups. (n=5) Data are presented as mean ± SEM, unpaired t test was used for 

pCIG-ephrinA3-tdT vs. pCIG-tdT and paired t test was used for ipsi vs. contra, **p<0.01.  

C-C”, D-D”, Electroporated neurons were revealed by td-tomato in cases with the ephrinA3 (C1) and 

control (D) plasmid.  Corresponding 5-HT immunocytochemistry from the elecotrporated (C’, D’) and non 

electroporated (C”, D”) sides. Note the decrease of 5-HT fibers in the outlined area compared to the 

control side. Scale bar=50um 
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Figure 6 

 

Figure 6- Anterograde tracing from dorsal raphe to olfactory bulb in ephrinA5-/-mice.  

A, AAV-tdtomato virus was injected in the DR.  Injection sites were checked with 5-HT 

immunohistochemistry on the coronal raphe sections, neurons co-labeled by 5-HT and td-tomato were 
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detected only in the DR and not in the MnR (A). Scale bar=500um (A left), 50um (A right) 

B, The scheme shows the extent of transfection in the WT and EphrinA5 cases; injection occupied regions 

were drawn manually on coronal raphe sections (Bregma: -4.60mm) 

C, Sagittal mouse brain scheme showing the projections from DR and MnR to GCL and GL respectively.  

C', Coronal section of the OB, In situ hybridization of ephrinA5 mRNA shows the expression of ephrinA5 

mainly in the ML and GL. Scale bar=250um 

D-E’, Anterogradely labeled axons (td-tomato) and SERT+ fibers in the OB of WT (D, D') and EphrinA5 

KO mice (E,E'). Most of the td-tomato were co-labeled with SERT.  More co-labeled fibers were 

detected in the EPL of ephrinA5-/- mice, compared to WT. Scale bar=50um. 

F-H, Histograms show the fiber densities anterogradely labeled and 5-HT axons. (F) The density of td 

tomato fibers was normalized by calculating the of EPL/GCL fiber density ratio. The density of 5-HT 

axons was measured as linear density in the EPL (G) and CGL (H) (***p<0.005) 
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Figure 7 
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Figure 7- EphrinA5 expression modulates the DR innervation in forebrain target.  

A, F, Expression of ephrinA5 in VMH (A), SCN (F) in coronal brain section of P5 mice. High level of 

ephrinA5 were detected in the VL and DM part of VMH. Scale bar=500um 

B-B”, C-C”, G-G”, H-H’, immunofluorescence images show SERT labeling and anterograde labeling of DR 

in adult in control (B-B”, G-G”) and EphrinA5 KO mice (C-C”, H-H”). Arrows show few fibers were 

detected in VMH and SCN in the control cases whereas labelled fibers were detected in larger amounts 

in the VMH and SCN of the EphrinA5 KO. Scale bar=100um (B-C”), 50um (G-H”). 

D, E, I, J, Histograms show the fiber densities anterogradely labeled and 5-HT axons. Fiber density was 

calculated by pixel per um2 and data are presented as mean ± SEM, unpaired t test, *p<0.05, **p<0.01 

and ***p<0.005. 
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Table 1. Enzymes for mRNA probe synthesization 
 

 Restriction enzyme Polymerase 

 Sense Anti-sense Sense Anti-sense 

EphA3 HindIII EcoRI T7 T3 

EphA4 SacI/SacII XhoI/BamHI T7 T3 

EphA5 XbaI BamHI T3 T7 

EphA7 BamHI XhoI T7 SP6 

ephrinA2 HindIII EcoRV SP6 T7 

ephrinA3 XhoI BamhI T7 SP6 

ephrinA5 HindIII XbaI T3 T7 

 
Table 1. Enzymes for mRNA probe synthesization 

 

Table lists enzymes that were used for mRNA probe synthesization. Expressions of different EphA receptors and ephrinA ligands were examined by 

performing an ISH. mRNA probes were synthesized by using specific restriction enzymes and polymerase on the selected restriction site and 

polymerase active site which were listed in table1. Sense and anti-sense means the different direction of the synthesization which are 5’-3’ (anti-sense) 

and 3’-5’ (sense). 

 
 
 
 
 
 
 
 
 
 
 
 
 



 85 

Table 2. RT-QPCR primers 

 

   mRNA variant   Primer info Forward primer Reverse primer 

EPHA3 NM_010140 Product length 116 TGCGGGACTGTAACAGCATT CGTGAACTGATGCTCTCGGA 

EPHA4 NM_007936 Product length 90 GAGGCTCCTGTGTCAACAACT AGTTGCCAATGGGTACCAGC 

EPHA5 NM_007937 Product length 98 TTGGCTGTTGACCAGTTGGA GTCCTCCAGGAAGGCTGTTG 

EPHA6 NM_007938 Product length 90 ACTGAAATCCGTGAGGTGGG GACTGAGACCAGAGCGATGC 

EPHA7 NM_010141 Product length 98 TCCTCCTTAGTCGAGGTCCG GCCACTCTCCTTCTGCACTG 

EPHA8 NM_007939 Product length 95 CATTGCTTTCCGCACGTTCT TCCAGTAGGGTCGTTCACCA 

 
Table 2. RT-QPCR primers 

 

Table shows several informations refer to the primers that were used for Q-PCR analysis. Primer sequences of different EphA receptors were kindly 

provided by Dr. Micheal Rober. References of mRNA variant refers to the mRNA sequence in NCBI (http://www.ncbi.nlm.nih.gov/). Forward and reverse 

primers for Q-PCR were orderd from Eurofins Genomics with the sequences listed in table2. Primers were synthesized with a ‘salt free’ purification and 

final concentration of 50pmol/ul in H2O. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.ncbi.nlm.nih.gov/


 86 

 
Table 3. Expressions of Tph2 and EphA5 in distinct subpopulation of raphe neurons (n=3, mean ± SEM) 
 

     B1   B2   B3   B5 

1 Tph2+ EphA5+ 
4±0,6 0 0,3±0,3 4,3±0,3 

2 Tph2+ EphA5- 
21,3±2,8 8,3±0,3 22±2,6 26±0,9 

3 Tph2- EphA5+ 
54±9,9 10±5 8,4±4,4 53,3±1,2 

4 CO/Tph2  
16,3%±1% 0 1,8%±1,9% 14,3%±0,7% 

  
B6 B7 B8 B9 

Tph2+ EphA5+ 
69±3,8 187±13,2 10±1 28,6±4,4 

Tph2+ EphA5- 
115±11,6 184±30,6 35±3,6 100±11,5 

Tph2- EphA5+ 
178±17,3 582,3±73,8 160,3±14,8 26,4±15,8 

CO/Tph2  
37,6%±1,6% 50,5%±1,2% 22,3%±0,2% 22,3±2,8 

 
Table 3. Expressions of Tph2 and EphA5 in distinct subpopulation of raphe neurons (n=3, mean ± SEM) 

 

Table exhibits the different cell numbers in subnuclei of raphe neurons which correspond to the expression of Tph2 and EphA5. Cells were counted with 

cell counter plugin of image J. A 150um X 150um squared mask was used for region selection. Cells (validated by DAPI staining) that located within the 

mask and on the upper and right edges of the mask were counted. Cell numbers were listed in the table and exhibited as mean ± SEM. 

Remarks: 

1: Cell numbers of both Tph2+ and EphA5+. 

2: Cell numbers of Tph2+ cells only. 

3. Cell numbers of EphA5+ cells only. 

4. Percentage of co-localization cells in total 5-HT neurons. 
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Table 4. Expressions of Tph2 and EphA5 in distinct sub-nuclei within B7 (n=3, mean ± SEM) 
 

     LW    B7c    B7m    B7r    B7d    B7v 

Tph2+ EphA5+ 
10,3±1,7 44,3±6,4 98,3±8,7 34±2,1 66,7±8,1 76±7 

Tph2+ EphA5- 
71,3±8,2 62,3±13,8 22,7±9,5 29±6 53,6±12,6 31,3±10,7 

Tph2- EphA5+ 
349,7±22,2 79,3±21,7 131,7±26 21,6±9,3 129,9±21,1 81±26,8 

CO/Tph2  
12,6%±1,5% 41,5±1,2 81,1% ± 1% 44,4%±7,7% 55,2%±1,4% 70,9%±0,6% 

 
Table 4. Expressions of Tph2 and EphA5 in distinct sub-nuclei within B7 (n=3, mean ± SEM) 

 

Table exhibits the different cell numbers of different subnuclei within B7. The way of analysis was as same as described in table3. 

 
 
 
 



Part 2: Study of serotonin raphe neurons projections 

during development with an IDISCO method 

In mice, serotonin midbrain neurons are born from embryonic day 10 to 12, 

and start extending axons, shortly after neurogenesis, both rostrally to the 

telencephalon and caudally to the brainstem. The development of these 5-HT 

midbrain neurons has been studied in a number of invertebrates. Early studies focused 

on the development 5-HT neurons in the rats and more recent studies analyzed 

development in the zebrafish. However there are no systematic detailed 

developmental studies in mice, which are the most extensively used model, in 

particular for genetic studies. Such data are important to gather in order to analyze the 

effects of mouse mutations on defined molecular pathway of serotonin neurons.  

Another reason for performing a developmental study of 5-HT innervation is 

that we wanted to know how the dorsal and median raphe nuclei target to different 

forebrain regions during development. Indeed our analysis of the role of ephrinA 

signalling in raphe neurons showed that targeting of the dorsal and medial raphe 

axons to different layers of the olfactory bulb is altered in ephrinA5 KO mice. 

However we do not know at what developmental stage these alterations occur, in 

particularly, whether this reflects an alteration in the orientation of ascending fibre 

tracts, or whether this reflects late developmental maturation when raphe axons 

collateralize and branch in specific target regions. 

In order to analyse embryonic development of the 5-HT innervation, we have 

taken advantage a new morphological method, which allows analysing 

immunocytochemical labelling in whole brain. This involves a transparization method 

after in total immunocytochemistry (whole embryos, whole heads or dissected mouse 

brains. 

I have first optimized a published method for in total immunocytochemistry to 

test optimal antibody labelling of the serotonin neurons at the different developmental 

stages. I have then compared 5-HT immunolabelling in the brains of control and 

ephrinA5 KO mice 
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Materials and methods 

Animals: 

Developmental analyses were all performed on mice of the Swiss background 

(RjOrl:SWISS) purchased from a commercial breeder (Centre d'Elevage R. Janvier). 

E0.5 was defined as the plug date, and P0 as the date of birth. 

The ephrinA5-KO mouse line was a gift of the Frisen lab  to Dr Afsaneh 

Gaillard and maintained on a C57Black6 background. Briefly these mice have a 

PGK-neo cassette replacing the 5’ acceptor splicing site and the sequences encoding 

amino acid residues 42–129. The PCR primers for genotype are as follows: primer 1 

(TCCAGCTGTGCAGTTCTCCAAAACA) and primer 2 

(ATTCCAGAGGGGTGACTACCACATT) for wild-type sequences (397 bp) and 

primers 1 and primer 3 (AGCCCAGAAAGCGAAGGAGCAAAGC) for mutant 

sequences (513 bp). 

All experiments were performed were in compliance with the standard ethical 

guidelines (European Community Guidelines and French Agriculture and Forestry 

Ministry Guidelines for Handling Animals decree 87849). All efforts were made to 

reduce the number of animals used and their suffering.  

Idisco (adapted from the protocol of Nicolas Renier et al., 2014): 

Sample collection 

The day of vaginal plug was defined as E 0. Embryos were collected at E12, 

E14, E16 and E18 were collected in ice-cold PBS 1X. To better preserve the skin and 

avoid air bubble formation, embryos were manipulated with extra care, and contact 

with tweezers tip avoided. The umbilical cord was regularly trimmed to help drain as 

much blood as possible from embryos. 

Sample pre-treatment with methanol 

Embryos were washed in PBS for 1h (or 4°C overnight), then in 25% 

methanol (in PBS) for 1h, in 50% methanol (in PBS) for 1h, 75% methanol for 1h, 
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100% methanol for 1h twice. Samples were then bleached with 5% H2O2 in 

20%DMSO/methanol (1 volume 30%H2O2/1 volume DMSO/4 volume methanol, ice 

cold) at 4°C overnight. After bleaching, samples were washed in 100% methanol for 

1h twice, then in 20%DMSO/methanol for 1h twice, then in 75% methanol for 1h, 

50% methanol for 1h, 25% methanol for 1h, PBS for 1h, and finally in PBS/0.2% 

TritonX-100 for 1h twice before further staining procedures. 

Immunolabeling protocol 

Pre-treated samples were incubated in PBS/0.2% TritonX-100/20% 

DMSO/0.3M glycine at 37°C overnight, and then blocked in PBS/0.2% 

TritonX-100/10% DMSO/6% horse Serum at 37°C for indicated time (Table 3). After 

blocking, samples were washed in PBS/0.2% TritonX-100 for 1h twice, then 

incubated in 5-HT anti (1/1000) in PBS/0.2% TritonX-100/10% DMSO/3% horse 

Serum at 37°C for indicated time (Table 3). After primary antibody, samples were 

washed in PBS/0.2% TritonX-100 for 1h twice, two hour twice and lasting for 1d, 

then incubated in secondary antibody Donkey anti-rabbit Alexa 488 (1/400) in 

PBS/0.2% TritonX-100/10% DMSO/3% horse Serum at 37°C for indicated time 

(Table 3). After secondary antibody, samples were finally washed in PBS 1X for 2d 

before clearing and imaging. 

5-HT, SERT and Tph2 antibodies were used to label serotonergic neurons. 

Tests were made to verify the best antibody to label the serotonergic projection at the 

prenatal ages. Antibodies that are used for immunocytochemistry were list in the table 

3. 

Tissue clearing, and precautions with solvents 

Immunolabeled tissues were cleared with a simplified version of the 3DISCO 

method (Ertürk et al., 2012a). Samples were incubated in a 5ml glass container with a 

silicon-coated cap overnight in 3ml of 50% Tetrahydrofuran/H2O (THF, 

Sigma 186562-12X100ML) on an agitator at room temperature. Samples were then 

incubated for 1h in 3ml of 80% THF/H2O and twice 1h in 100% THF. Samples were 

then incubated in Dichloromethane (DCM, Sigma 270997-12X100ML) until they 

sank the bottom of the vial for 5-10 mins. Finally, samples were incubated in 3ml of 
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DiBenzyl Ether (DBE, Sigma 108014-1KG) until clear (about 2h) and stored in DBE 

at room temperature. Organic solvents, in particular dichloromethane (DCM), were 

handled under a chemical hood with care, and disposed according to local health and 

safety regulations. DBE, which is used for storage and imaging (below) is a skin 

irritant exhibiting Toxicity Class II (moderate toxicity) according to the MSDS sheets, 

and should be handled with care, including wearing gloves, but with those precautions 

it can be used on an open bench for slide mounting and for microscopy. 

 
Table3 
 

TIMING OF PRE-IMMUNOSTAINING 

AGES BLOCKING 1ST AB RINSE 2ND AB 
E12-E14 2 DAYS 1 WEEK 1 DAY 1 WEEK 
E16-E18 4 DAYS 2 WEEKS 2 DAYS 2 WEEKS 

 

ANTIBODIES FOR IDISCO 

NAME DILUTION MeOH 
5-HT (RABBIT) 1/1000 YES 
SERT (GOAT) 1/1000 YES 
TPH2 (MOUSE) 1/500 NO 
TPH2 (RABBIT) 1/500 YES 
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Results   

In mice, the serotonergic neurons are born in two waves. The rostral cluster 

arises one day earlier then the caudal raphe neurons, and these waves during relatively 

brief period between embryonic day E9.5 and E11.5 (Briscoe et al. 1999; Pattyn et al. 

2003). 

To study the projection of serotonin raphe neurons, we performed a time 

course from embryo day 12 to 18, to analyze the developing topographic serotonin 

projections in the forebrain.  

1. Development of serotonergic projection pattern  

Embryonic day 12 

At E12, we observed two distinct groups of labeled neurons in the rostral 

hindbrain, and the other in the medulla, with a gap in between. The caudal raphe 

group contains two clusters, one lateral, the B3 group that shows descending fiber 

tracts into the spinal cord bilaterally while the B1 and B2 group form 2 contiguous 

groups along the midline of the hindbrain. The rostral serotonergic cluster at E12 

form 2 continuous band distributed on either side of the midline with no clear 

subdivision. There is a clear gap between rostral group and caudal group. The 

ascending projection from rostral cluster is still in the initial status, most of the 

ascending fibers are fasciculate passing oculomotor nucleus and arrives at the 

mid-hind brain boundary, whereas a small population of fibers which are not 

fasciculate course dorsally to the ascending fiber tract and reach the oculomotor 

nucleus at the level of the ventral tegmental area (VTA) (Figure 1). 

Embryonic day 14 

48 hours later, the rostral group starts to be subdivided into subgroups such as 

the dorsal and median raphe. This partition is due to the migration of the median 

raphe neurons. At the same time, both the dorsal and median raphe neurons starting to 

form connections with the caudal group brainstem – the periolivary nucleus at this 

stage. Moreover median raphe serotonergic descending fibers exhibit denser 

innervation in contrast to the dorsal. At this stage, the ascending 5-HT fibers cross the 
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midbrain and enter the forebrain. As the ascending 5-HT fibers reach the midbrain, 

they start to defasciculate from lateral-ventral to dorsal-median. They densely 

innervate the substantial nigra and ventral tegmental area. However serotonin axons 

do not cross the midline and remain on either side. The scattered fibers passing 

through the edge of the mammillotegmental tract innervate the subthalamic nucleus. 

Serotonergic fibers are also detected in the lateral hypothalamic area, medial forebrain 

bundle and lateral preoptic area (Figure 2). 

Embryonic day 16 

At E16, the ascending serotonin fiber that has already reached most of the 

baso-ventral forebrain targets. At this stage, serotonergic fibers densely innervate the 

optic tract and suprachiasmatic nucleus just above the optic chiasm but no fibers are 

detected in the optic chiasm. In the hypothalamus, 5-HT fibers were detected in the 

anterior hypothalamic nucleus and the ventrolateral part of ventromedial 

hypothalamic nucleus. A large fiber bundle extended along the medial forebrain 

bundle. Most of the regions of the amygdala are innervated by sparse fibers, in 

particular the basolateral, basomedial, lateral, central, anterior and cortical amygdala. 

Dense fibers were also detected in the lateral olfactory tract. More rostral, massive 

innervation is found in the olfactory tubercle and following the ventral hippocampal 

commissure and lateral septal nucleus. The most rostral, 5-HT fibers arrive close to 

the OB but instead of entering the OB, serotonergic fibers change direction, heading 

toward the frontal cortex. Most of the thalamic nuclei are dense innervated. In the 

frontal cortex, fibers seemed to branch in two directions: 1. Fibers were following the 

cortical plate, pass through the cingulate cortex and the motor cortex, and enter the 

somatosensory cortex. 2. Fibers that descend forward the hippocampal formation, 

following the dentate gyrus and fimbria, end in ventricular and subventricular zones. 

The cerebellum is also innervated densely at E16. (Figure 3)  

Embryonic day 18 

Embryonic day 18 ends the mouse embryonic stage (depending on the 

background of the mouse). At this stage, the serotonin fibers have reached all their 

targets and fibers are becoming denser in regions such as the amygdala and 

hypothalamus, the optic tract, olfactory tract, septal areas, thalamus nucleus, 
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hypothalamus and cerebellum. Additionally, a dense innervation begins to be detected 

in the lateral and medial habenular nucleus, and most of cortical regions: in the 

somatosensory cortex, piriform cortex and visual cortex. (Figure 4) 

2. The development of serotonin projection to OB 

It has been published that 5-HT plays a key role in the olfactory function. 

(Dugue & Mainen, 2009) Moreover, the dorsal raphe neuron and median raphe 

neurons innervate different layers of the OB (Muzerelle et al., 2016). Therefore, the 

timing of serotonin projection arrive to OB is important to know. 

We performed histochemical analysis combining 5-HT immunocytochemistry 

(to label the serotonergic fibers) with DAPI staining (to label the rostral migratory 

steam, RMS) on embryo and postnatal mice brain sections, to analyze the 

development of serotonergic innervation in the OB. Our observations of the trajectory 

of the serotonergic projections at E16 showed an interesting phenotype: when 

serotonergic fibers reach the basoventral targets and start turning in the direction of 

the frontal cortex, the olfactory bulb is avoided. 

At E16, serotonin fibers that arrive close to the OB changed their direction 

toward the frontal cortex, instead of entering the OB. This change in direction is 

correlated with the position of the rostral migratory steam (Figure 5A, A’). 24 hours 

later, a few serotonin fibers were found in the OB. 5-HT fibers which enter the OB at 

E17 can be divided into three groups depending on the distribution: one fascicle 

enters the OB along the basal plate that extend to the region of the forming glomeruli 

layer; the second group passes along the RMS; the remaining fibers are scattered in 

the rest part of the OB region (Figure 5B, B’).  

At P5, when all the different components (layers) of OB are mature, 

serotonergic fibers showed different morphology depending on the distribution in OB: 

fibers from the dorsal raphe were scattered in the granular cell layer (GCL), whereas 

punctate median raphe fibers distribute in the glomerular layer (GL). Serotonergic 

fibers enter the OB and distribute homogeneously in the GCL instead of surrounding 

the central region, which correlated to a retraction of the RMS (Figure 5 C, C’). By 



 95 

the second postnatal week at P10, the innervation exhibits a mature aspect similar to 

adult.        

3. Role of ephrinA5 in serotonin innervation organization in the RMS-OB 

region. 

Our observations at E16 suggested that there could be a repellent signal 

produced by RMS that prevents 5-HT axons from entering the OB. We performed 

ISH of ephrinA5 mRNA probe and found a high level of eprhinA5 expression in the 

RMS, extending from the SVZ to the GCL in the OB. This expression pattern 

includes the region that repels the serotonin projections. At E17, when RMS 

undergoes shrinkage, the area of ephrinA5 expression region in the GCL is also 

reduced, which would then become permissive for the growth of 5-HT axons. At P5, 

there is no expression of ephrinA5 in the GCL but ML and GL, which resemble the 

pattern observed in the adult OB.  

Overall ephrinA5 expression and the timing of serotonin innervation in the OB 

suggested that ephrinA5 plays a role during these developmental events. To test this 

hypothesis we analyzed serotonin innervation in ephrinA5-/- embryos. 

In E16 EphrinA5 KO, a large population of serotonergic fibers was found 

altering pathway in the RMS and arrived at VZ and SVZ, whereas in WT serotonergic 

fiber avoid the RMS. Moreover few of the fibers were starting to enter the OB and on 

the coronal sections serotonin fibers were detected in the GCL whereas in the WT no 

fiber was detected in the OB (Figure 6). 

Overall, ephrinA5 expression in the RMS and OB in the embryonic stage is 

involved in the guidance of ser otonin projections. 
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Figure 1. Serotonergic neurons and projections at E12.  



 97 

 

Figure 2. Serotonergic neurons and projections at E14.  
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Figure 3. Serotonergic neurons and projections at E16.  
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Figure 4. Serotonergic neurons and projections at E18.  
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Figure 5. Development of the serotonergic innervation in OB.  
 
A-A’, E16 OB sagittal sections showed the 5-HT axons were repelled by      
RMS, ephrinA5 expressed within the RMS. 
 
B-B’, E17 OB sagittal sections showed the 5-HT axons start to enter the OB. 
 
C-C’, P5 OB sagittal sections showed the distribution of 5-HT axons in OB 
different layers and the change of ephrinA5 expression pattern  
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Figure 6. Lacking of ephrinA5 altered serotonergic innervation in OB and RMS 
 
A-A’, 5-HT axons were detected in OB of ephrinA5-/- in contrast to WT. 
 
B-B’, 5-HT axons were crossing the RMS in ephrinA5-/- in contrast to WT. 
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Discussion 

A large body of literature has indicated that serotonin plays a key role in the 

control of mood, fear, appetite, sleep, pain, vascular function, reproduction, feeding 

and aggressiveness. (Jacobs, 1992; Lucki, 1998; Fernandez & Gaspar. 2012)  It has 

also been suggested that alterations of serotonin metabolism or of serotonergic 

projections, either during development or in adulthood, can lead to pathologies, such 

as depression, anxiety, autism, schizophrenia, sudden infant death syndrome and 

obsessive compulsive. (Gross and Han 2004;Scott and Deneris, 2005; Murphy, 2008; 

enoch, 2010; Takahashi, 2011; Waider, 2011) Thus, serotonin systems are an 

important target of pharmacological agents developed to treat these disorders. 

Moreover, serotonergic neurons are topographically organized, with anatomically 

distinct groups of serotonergic neurons that give rise to specific efferent to forebrain 

and brainstem structures. The patterns of afferent and efferent projections of these 

nuclei is highly organized, suggesting that there is precision in both the control of 

neuronal activity of subpopulations of serotonergic neurons and their output to 

forebrain and brainstem circuits. (Lowry, 2002; Michelsen, 2007; Hale and Lowry, 

2011; Muzrelle el al. 2016). Over all, it is of great importance to understand how 

serotonergic projections develop and what are the molecular mechanisms of the 

specific serotonergic pathfinding that results in their distinct topographic 

organization. 

In the first part of my thesis, I analyzed which guidance molecules are 

implicated in the serotonin signaling pathways. A previous genomic screen study in a 

transgenic mouse line provided us a list of candidate genes (Wylie et al. 2010). After 

validation of expression patterns of several Eph genes in the P5 mouse raphe nuclei, 

the EphA5 gene was selected as a gene of interest. Indeed, this tyrosine kinase 

receptor of the ephrinA subfamily, and was validated selectively as co-expressed in 

subpopulations of serotonergic neurons, mainly in the dorsal raphe complex. In vitro 

and in vivo experiments indicated that the EphA5 expressing serotonergic axonal 

growth cones responded by a retraction to the application of different doses of 

ephrinA5-FC. Moreover, ectopic expression of the ephrinA3 gene inhibited the 

ingrowth of serotonin innervation into the basolateral amygdala. The analysis of 



 106 

anterograde racing in the ephrinA5-/- mice demonstrated that deletion of ephrinA5 led 

to the mistargetting of dorsal raphe serotonin projections to several forebrain targets, 

for instance, the ventromedial hypothalamus, suprachiasmatic nucleus, the bed 

nucleus of stria terminals, the subventricular zone and the olfactory bulb. 

In the second part of our studies, we wanted to map the development of 

serotonin projections from embryonic day 12 to 18 and we found that serotonin 

projections passing though the midbrain to the forebrain bilaterally are already visible 

at E12-E14 and have reached most of their midbrain and basal forebrain targets at 

E16. Interestingly, at E16, the banner serotonin fibers have arrived in the OB but are 

repelled by the RMS and move towards the frontal cortex, instead of entering the OB. 

At E18, the serotonin projections have arrived to most of their targets in the forebrain. 

Regarding the special phenotype in the RMS-OB region at E16, we focused on the 

development of serotoninergic OB projections. We found that ephrinA5 was strongly 

expressed throughout the RMS and that, as expression became reduced, 5-HT axons 

invaded the RMS. This suggested that ephrinA5 could be the factor that repels the 

serotonin projections from the RMS and that this helps directing the serotoninergic 

projection to the OB. 

1. Other EphA receptors expression in serotonin raphe neurons 

Our results showed a specific expression pattern of EphA5 in the developing 

raphe continuing over the period of axonal maturation. ISH and Q-PCR experiments 

showed that in the P5 dorsal raphe, only EphA5 was expressed, EphA4 and EphA6 

were also detected. On the other hand, EphA3 and EphA7 were not detected in the 

dorsal raphe. Whereas all these three receptors were detected in the median raphe.  

The genom-wide expression analysis of Wylie et al. pointed out a list of 

guidance molecules expressed in the serotonin raphe neurons, among which the 

EphA3, EphA4, EphA5 and EphA7 are listed. In a more recent study, Okaty et al. 

using mRNA sequencing identify a number of EphA receptors genes in P21 serotonin 

neurons: EphA3, EphA4, EphA5, EphA6, EphA7, EphA8 and EhpA10. However, the 

level of expression is often very low. Using ISH data from the Allen brain atlas, we 

can group them in different ways. 1. Depending on the time of expression, EphA3 is 
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the only Eph expressed during embryonic development; EphA4, EphA5 and EphA7 

are expressed both during embryonic development and the maturation of serotonin 

projection the early postnatal development EphA6, EphA8 and EphA10 only become 

expressed in the mature postnatal serotonin neurons. 2. Depending on the location, 

EphA3 is only expressed in the caudal raphe nuclei; EphA5 is mainly expressed in the 

DR, as well as EphA4 and EphA6, whereas the rest of the receptors exhibit a high 

level of expression in the MnR.  

In conclusion, these expression patterns could imply specific roles of these 

receptors in the serotonin axon development and the targeting maturation. For 

instance, the EphA6, EphA8 and EphA10 might play an important role not for the 

development of the projection but for adult synaptic functions.  

Functional topographic mapping alteration of dorsal raphe neuronal 

projections induced by the interaction of EphA5 and its ligands 

Our findings using anterograde tracing analyses of the ephrinA5-/- mice 

showed an increase of DR innervation in certain targets. Immunostaining of the 

serotonin transporter (SERT) showed that this increase includes the serotonin 

innervation arising from the DR. These results suggest that the alteration of serotonin 

innervation in the ephrinA5-/- mice may be responsible for some of the behavioral 

changes observed in these mice.  

2.1 Ventromedial hypothalamus could be a key structure explaining 

the aggression in ephrinA5-/- mice 

In our results, one of the areas where DR 5-HT innervation is increased is the 

ventromedial hypothalamic nucleus (VMH), in particular, the ventrolateral part of the 

VMH.  Interestingly, this region is a key structure in the control of inter male 

aggressive behavior. Furthermore, the possible molecular mechanism involved in this 

behavior, involve the serotonin transporter and the serotonin receptors. We thus 

hypothesize that increased DR innervation of the VMH of EphrinA5-/- mice could 

underlie a change in the aggressive behaviors of these mice. 
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The main evidence, which suggests this is provided by a study of inter-male 

mouse aggression in the ephrinA5-/- mouse line (Michal Sheleg et al., 2015). In their 

studies, the authors performed a series of behavioral test in male ephrinA5-/- mice 

and found that offensive aggression was severely reduced. This reduction of offensive 

aggression was not due to an inability to attack or to a lack of recognition of the 

presence of the intruder, since the ephrin-A5−/−mice exhibited increased target biting 

and testosterone levels and general olfaction were normal. A previous study of the 

same team demonstrated converging evidence showing that lack of EphA5 also leads 

to a decrease in male aggressive behavior in mice. (Pingchao et al., 2008) Overall, 

these 2 studies suggest that the EphA5 and ephrinA5 interaction plays a key role in 

regulating male mouse aggression.  

Multiple previous studies showed aggressive behaviors are controlled by 

different regions of the mouse brain: the hypothalamus, the medial amygdala (MEA), 

the lateral septum (LAS), the periaqueductal gray (PAG) and the bed nucleus of the 

stria terminal (BNST), (Numan M.2014; Nelson RJ, 2007; Siegel A, 1999). All these 

regions are densely innervated by serotonin from different subpopulations of raphe 

serotonin neurons. (Hale and Lowry, 2011; Muzrelle and Scotto, 2016) Interestingly, 

our findings in the ephrinA5-/- mice show that DR innervation is increased in both the 

hypothalamus and the bed nucleus of the stria terminals. This increase involves both 

serotonin and non-serotonergic neurons. Within these targets, serotonergic ascending 

innervation arising from the DR was strongly increased in the ventomedial 

hypothalamic nucleus ventrolateral part (VL-VMH). Recent studies indicated that the 

VL-VMH region corresponds to the hypothalamic attack area (HAA) of the rat (Lin 

D, 2011), from which electrical and pharmacological stimulation elicited attacks and 

lesions reduced it.  

2.1.1 How could increased serotonin innervation modulate male aggressive 

behavior? 

Serotonin is considered as the most important neurotransmitter implicated in 

the neural control of aggressive behavior. It is generally thought to act as an inhibitor 

of aggression (Miczek et al., 1995; Carrillo, Ricci, Coppersmith, & Melloni, 2009). 

Numerous pharmacological and neurochemical investigations have provided evidence 

that the brain serotonin system is involved in controlling various types of aggressive 
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behaviors (Vishnivetskaya 2001; Popova 2004; Popova 1999) and clinical data have 

linked impulsivity, aggression, and self-harm attempts, regarded as self-directed 

aggression (J. Peddeer 1992), with reduced brain serotonin system activity (V. M. 

Linnoila and M. Virkkunen 1992; V. Arango 2003). Recently, the understanding of 

the mechanisms underlying the genetic regulation of aggressive behavior has attracted 

the view of researchers. In particular, the link between serotonin activity and 

aggression found strong support from mouse genetics, in mutations of specific genes 

that either directly or indirectly affect serotonin function. In humans and non human 

primates, impulsivity and high aggressiveness were correlated with low cerebrospinal 

fluid concentrations of HIAA, a 5-HT metabolite (Lesch, K.P. and Merschdorf, U. 

2000). Pharmacological strategies increasing 5-HT levels, such as the use of 5-HT 

precursors, 5-HT reuptake inhibitors, or 5-HT1A and 5-HT1B receptor agonists are 

all able to reduce aggressive behavior in rodents (Olivier, B. et al. 1999; Miczek, K.A. 

et al. 1998; Fish, E.W. et al. 1999; Lyons, W.E. et al. 1999; Chiavegatto, S. et al. 

2001) 

2.1.2 The 5-HT1A/1B receptors are possible targets to study the mechanism of 

the aggression alteration in ephrinA5-/- mice 

Previous studies indicated that the 5-HT1A receptor activation, with 5-HT1A 

agonist (eltoprazine and other agonists), decreases aggressive behavior (Olivier, B. et 

al. 1995; Miczek, K.A. et al. 1998). Interestingly, a finding consistent with the 

observation of increased postsynaptic 5-HT1A receptor availability in limbic and 

cortical regions of highly aggressive mice (Korte, S.M. et al. 1996). However 

5-HT1A KO mice did not show modifications of aggressive behavior. Conversely, 

male mice that lack functional expression of the 5-HT1B receptor gene (5-HT1B−/−) 

are more aggressive than wild-type controls (Saudou, F. et al. 1994). Lactating female 

5-HT1B−/− mice also attack unfamiliar male mice more rapidly and violently 

(Ramboz, S. et al.1996). Although both 5-HT1A and 5-HT1B receptors control the 

5-HT tone, these two receptors probably have different contributions in particular 

brain areas that modulate the postsynaptic 5-HT inhibitory effects on aggression. 

Indeed, aggression evoked by electrical stimulation of the hypothalamus of rat is not 

affected by 5-HT1A agonist but reduced in a dose dependent manner by a treatment 

with 5-HT1B receptor agonist (Olivier B, 2005).  
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All these previous studies support the hypothesis that a reduction of inter-male 

aggression in the ephrinA5-/- mice may be caused by an increased in dorsal raphe 

innervation to the ventromedial hypothalamic nucleus. 

2.2 Possible alteration of circadian rhythms in ephrinA5-/- mice induced by the 

role of EphA5-ephrinA5 interaction in serotonergic projections to the SCN 

Another key target that could be interesting to investigate further is the SCN. 

Our findings showed a dense innervation from DR serotonin neurons in the SCN of 

the ephrinA5-/- mice in contract to wild type SCN. Although there is no related 

behavioral test performed in ephrinA5-/- mouse model as yet, such a strong increase 

of serotonergic innervation could increase the serotonin release in the SCN in 

ephrinA5-/- mice, which could in turn result in alterations of circadian rhythms. 

The suprachiasmatic nucleus (SCN), is a main regulator of the circadian clock, 

it receives its major afferents from the median raphe nucleus (MRN) but not DR 

(Muzrelle et al. 2016). Serotonergic projections to the SCN are thought to be involved 

in non-photic phase shifting. Multiple previous studies indicated that increased 5-HT 

release in the SCN can influence circadian rhythms. For instance, the exposure to 

non-photic stimuli such as midday access to a novel running wheel, sleep deprivation 

or dark pulses all phase advance circadian rhythms of wheel running and elicit a large 

increase of 5-HT release in the SCN (Dudley et al., 1998; Grossman et al., 2000; 

Mendoza et al., 2008). Electrical stimulation of the MRN or DRN at midday induces 

5-HT release at the SCN and results in phase advances of circadian locomotor 

rhythms (Meyer- Bernstein & Morin, 1999; Glass et al., 2000, 2003). Midday 

application of 5-HT or the 5-HT1A agonist 8-OH-DPAT to rat or mouse SCN slices 

results in phase advances of electrical firing (Prosser et al., 1990, 1993; Medanic & 

Gillette, 1992; Shibata et al., 1992; Prosser, 2003). Application of 8-OH-DPAT to the 

SCN in vivo in animals made supersensitive to 5-HT by constant light (Knoch et al., 

2004) or by pretreatment with the 5-HT biosynthesis inhibitor p-CPA (Ehlen et al., 

2001) elicits larger phase shifts than vehicle alone.  
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3. Independent or associate? The role of non-serotonergic dorsal 

raphe neurons in ephrinA5-/- 

3.1 Dopaminergic raphe neurons  

Dopaminergic neurons have an extension in the DR, essentially in the caudal 

linear nucleus (Hale and Lowry 2011). Interestingly, the dopaminergic raphe neurons 

project also to the BNST. In our study of Ephrin A5-/- mice, we detected an increase 

of DR fibers that included both serotonergic and non serotoninergic axons that may 

comprise dopaminergic axons. The BNST is a structure that is also involved in the 

aggressive circuit, which could suggest that dopaminergic raphe neurons projections 

also modulated the aggression in the ephrinA5-/-. 

Dopamine’s role in aggressive behavior is not yet precisely known. Growing 

evidence suggests the dopamine plays a role in aggressive behavior through the D1 

and D2 receptors. One well-known example of such an inhibitory capacity is the D2 

receptor antagonist risperidone, which is commonly used to reduce aggressive 

behavior associated with arousal and stress (Nelson & Trainor, 2007). Thus, it seems 

that dopamine modulates aggressive behavior but independently from serotonin. 

3.2 GABAergic raphe neurons 

GABAergic neurons are mainly located bilaterally to the dorsal raphe 

serotonin neurons, particularly, in the lateral wing. (Brandon, 2014) Our findings 

showed that, EphA5 is highly expressed in the LW where is overlaps with the location 

of GABAergic neurons, which means, GABAergic raphe neurons could also have a 

high rate of EphA5 co-expression. This could lead to more connectivity from 

GABAergic raphe neurons to the serotonergic raphe neurons in the ephrinA5-/- mice. 

GABA is well known as the main inhibitory neurotransmitter in the mammalian brain. 

Moreover GABA’s involvement in aggressive behavior is mostly associated with its 

inhibitory action, Takahashi et al. (2010a) showed that pharmacological activation of 

GABAB receptors in the DRN plays an important role in the escalation of aggressive 

behavior.  This is most likely related to the inhibition of presynaptic 5-HT1A 

autoreceptor on the serotonin raphe neurons, which could increase serotonin release. 
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GABA is well known to regulate serotonin levels because of high receptor 

expression in the DRN (Takahashi et al., 2010a, 2010b). Both GABAA and GABAB 

receptors are involved in the regulation of serotonin levels. The activation of 

GABAergic receptors on serotonergic neurons can lead to higher serotonin levels in 

the mPFC and, therefore, can decrease aggression. Notably, however, GABA 

receptors in the medial raphe nuclei (MRN) have no escalating effect on aggressive 

behavior, showing that serotonin neurons in the MRN and DRN play differential roles 

in aggressive behavior. (Mokler, 2009) Our finding suggesting the possibility in the 

increased GABA dorsal raphe projections in the ephrinA5-/- mice 

Based on the available literature, GABA and serotonin thus appear to show a 

team work to regulate aggressive behaviors. This can suggest another way to figure 

out the decreased aggressive alteration in the ephrinA5-/- mice. 

3.3 Glutamatergic raphe neurons 

Glutamatergic neurons are densely distributed in the DR and median raphe, 

and previous observation showed that a majority of central 5-HT neurons express the 

vesicular glutamate transporter VGLUT3 (Fremeau et al., 2002; Gras et al., 2002; 

Scha¨fer et al., 2002; Takamori et al., 2002). VGLUT3 clearly fulfils the function of a 

vesicular glutamatergic transporter; its expression confers to neurons the ability to 

release glutamate. In addition to this expected function, VGLUT3 enhances striatal 

cholinergic neurotransmission at the presynaptic level (Gras et al., 2008) So far, 

whether glutamate plays a role in aggressive behavior, by itself or its transporters, is 

still unclear. Interestingly, a recent study of Amilhon et al. in 2010 indicated that 1. 

VGLUT3 deletion caused a significant decrease of 5-HT1A-mediated 

neurotransmission in the raphe nuclei; 2. VGLUT3 positively modulated 5-HT 

transmission of a specific subset of 5-HT terminals from the hippocampus and the 

cerebral cortex. These results unravel the existence of a novel subset of 5-HT 

terminals in limbic areas that might play a crucial role in anxiety-like behaviors. 

Moreover, 5-HT axon varicosities that contain the VGLUT3 were larger, in 

congruence with the previously reported data that larger 5-HT axon varicosities 

establish more synapses raising the hypothesis of higher synaptic incidence for 5-HT 

varicosities that contain the VGLUT3 (Smiley JF, 1996). These results suggest that 

glutamate may play a role in aggressive alteration, via VGLUT3, to regulate the 5-HT 
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tone or axonal synapses in projection areas or to decrease 5-HT1A 

autoreceptors-mediated transmission in the raphe. It seems the role of glutamatergic 

raphe neurons in the alteration of aggression may be associated with serotonin and 

non-serotonin raphe neurons. 

4. Changes of ephrinA5 expression pattern modulate the 

development of serotonergic projections from raphe to olfactory bulb 

In our results, we demonstrated that, during embryonic development of 

serotonergic projections, the ascending serotonergic fiber fascicles were repelled by 

the RMS and that this may be due to the expression of ephrinA5. The area occupied 

by the RMS changes during development, which could lead to a change of ephrinA5 

expression patterns, and consequently lead the serotonergic fibers started to innervate 

distinct layer of OB. 

We ask here 2 questions raised by these observations. 

1. Why does the RMS show a change in the expression of ephrinA5 during 

development? 

Neurogenesis occurs in the mouse subventricular zone (SVZ) throughout life 

and is a source of new interneurons for the olfactory bulb (OB) (Doetsch et al., 1997; 

Lledo and Saghatelyan, 2005; Lledo et al., 2008; Whitman and Greer, 2009). The 

pathway in which neuroblasts migrate tangentially to the OB is called the rostral 

migratory stream (RMS). (Loisand Alvarez-Buylla, 1994; Whitman et al., 2009)  

In rat, the first cells of the RMS start to differentiate at about E14 in the LGE 

(equivalent to E11 in mouse), the initial differentiation of the RMS precedes the 

bulging of the OB at the anterior tip of the cerebral hemispheres. In addition, the 

emergence of the RMS occurs in advance of the formation of the olfactory ventricles, 

as an extension of the lateral ventricle into the OB. Furthermore, at E15-E17 as the 

OB and ventricle begin to form, the developing RMS lies laterally to the olfactory 

ventricle. E18 is the stage of the initial formation of the RMS, which means that 

neuroblasts start their migration from the SVZ to the OB. (Pencea, 2003) Neuroblasts 

from the SVZ migrate radially to the OB granule (GCL) and to the glomerular layers 
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(GL); they then differentiate, and become integrated into synaptic circuits (Carleton et 

al., 2003; Kelsch et al., 2010; Whitman and Greer, 2007b). Most of the surviving 

neurons differentiate into granule cells, although approximately 5% become 

periglomerular (PG) cells (Lemasson et al., 2005). 

From the developing of RMS we can surmise that the RMS occupies the 

whole OB region, before the formation of the OB layers. Which means that from E11 

to E16, in mouse, the OB is filled with RMS cell which express ephrinA5. As the 

differentiation proceeds, granule cells that do not express ephrinA5, begin replacing 

the RMS cells and thus reduce the zone of ephrinA5 expression. 

2. What is the signaling mechanism that guide serotonin fibers into the 

different components? Indeed, EphrinA5 seems to modulate serotonergic projections 

to distinct layers but the mechanism is unclear. 

Tracing studies showed that the serotonergic projections from the DR 

specifically target the granule cell layer of the OB whereas the median raphe 

serotonergic projections target the glomerular layer of the OB.  Combined with our 

findings of the specific signaling pathway via EphA5-ephrinA5 interaction, we 

hypothesize that, during development, DR serotonergic fibers arrive to the OB earlier 

than median raphe and that they are initially repelled by ephrinA5 expression in the 

RMS, at E17; then as  ephrinA5 regional expression is reduced, DR axons start to 

innervate the GCL of the OB avoiding the RMS, whereas the just arrived median 

raphe fibers enter the OB directly along the basal tract into the forming GL. The 

initial evidence for this hypothesis is our finding in the ephrinA5-/- mice that the front 

most serotonergic fibers enter the OB at E16 and do not seem repelled by the RMS. 
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