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Abstract

Networking monitoring is a growing trend in the field of network manage-
ment and computing. It consists in analyzing and performing tasks on the
incoming traffic on a given link. This can have several purposes: obtain-
ing statistics about the network in order to improve its Quality of Service
(QoS), prioritizing types of packets that require low latency at the expense
of others that do not, or detecting and mitigating malicious traffic. As a re-
sult, processing architectures targeting network monitoring have to be able
to support a wide variety of applications, and thus need to be flexible.

Also the sizes and throughputs of current networks tend to grow drasti-
cally over the years, with no signs of slowing down. As of today, it is quite
common for a single link to support throughputs up to a few hundreds of
gigabits per seconds (Gbps).

This means that architectures deployed for network monitoring need
to support high throughputs as well. As a result, using purely software
architectures is not suited for these applications because, while they can
offer an unmatched level of flexibility, their maximum achievable rates are
not enough. On the other hand, hardware architectures can manage high
througputs, as they are optimized for a specific applications. However this
optimization often comes at the cost of a really poor flexibility.

This led us to investigate the use of programmable hardware, such as
Field Programmable Gate Arrays (FPGAs), as these architectures are usu-
ally seen as a good compromise between performance and flexibility, thanks
to a trending technique called Dynamic Partial Reconfiguration (DPR). This
technique allows to modify the behavior of a given region of the device dur-
ing run-time, which in our case can be useful as it means we can adapt the
data processing based on the nature of the incoming traffic. However, when
used extensively, this technique presents several drawbacks, such as a big
memory footprint for storing all the configuration files. This major draw-
back can be addressed using bitstream relocation. This technique allows to
use a configuration file (bitstream) to configure a functional unit in another
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region than the one for which it was implemented, provided that the origin
and destination region share the same layout. It is thus possible to have a
single partial bitstream for each functional unit that can be used in every
predefined region instead of having one bitstream per region, hence dras-
tically decreasing the memory space required to store all the configuration
files.

However, designing for FPGAs, and particularly using DPR is quite te-
dious, and is often out of the skill set of network engineers, which is even
more true when using bitstream relocation. Our goal here is to provide a
framework that is easy to use by people not familiar with hardware develop-
ment. This is based on combining the reconfigurable properties of FPGAs
with Network-on-Chips (NoCs, which are interconnect structures that offer
both high throughput and high flexibility at the cost of a heavy resource
usage.

In order to ease the use of bitstream relocation, a fully automated de-
sign flow has been developed. This design flow requires inputs such as the
number of reconfigurable regions to be placed on the fabric, the dynamic
functional units to consider, as well as usual FPGA design inputs, and fully
automates all the steps from synthesis to bitstreams generation. It is based
on techniques already available in the literature, the ISE Design Suite from
Xilinx, and new techniques and algorithms that were previously missing
features for a fully automated flow to be possible. Particularly, no previous
work concerning bitstream relocation addressed the automation of the floor-
planning step, which consists in selecting which parts of the fabric will be
used as reconfigurable regions. Our proposed approach for this step takes
advantage of the fact that using relocation requires homogeneous regions,
which drastically limits the exploration space. Thus our algorithm is divided
into two steps. The first one is the identification of a pattern, i.e. the shape,
size and resource arrangement which will be used for all of our reconfigurable
regions, based on criteria such as size and resource waste. The second uses
a heuristic to select which occurrences of the previously identified pattern
will be used as reconfigurable. The criteria for the heuristic is that regions
should be placed the closest possible to each other, in order to diminish the
length of potential communication wires between regions, while still respect-
ing a threshold under which the static part (i.e. the part of the design that
will not be reconfigured during run-time) would encounter congestion prob-
lems. Finally, we also propose a timing constraining technique in order to
ensure that timing constraints will be respected among all regions. This flow
has been tested and validated on simple reconfigurable modules, and adds
negligible computing time compared to a traditional FPGA design flow.
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The proposed design flow gives us flexibility regarding where we can
place our reconfigurable units on the design. However, these units still
have to be able to exchange data efficiently. For this, we need a flexible
interconnect structure that can handle high throughputs. However, the
most common interconnect paradigms, point-to-point and bus, are both
not suited for this, as the former lacks flexibility and the latter is often
seen as a bottleneck, limiting the throughput. As a result, we decided to
investigate the use of Network-on-Chips for our framework. While NoCs
have been a very active field of research in the last decade, it has still
not been used in conjunction with bitstream relocation yet. As NoCs can
come in many forms, we decided to identify and characterize suitable NoCs
for relocation. This led us to use Hermes NoCs, as it supports both the
topology (2D full mesh) and switching type (packet switching) that are the
most suited to both relocation and network monitoring. However, while the
functional units are traditionally responsible for providing the destination
to which it has to send a data packet, this is tricky when using bitstream
relocation, as the destination unit can be placed anywhere on the NoC. Also,
bitstream relocation benefits from having regions as small as possible (as it
increases the number of candidate regions). For these reasons, we decided
to remove the destination specification mechanism from the functional units
and developed a dedicated router/unit interface. This interface allows to use
a new scheme where the whole sequence of functional units that a packet
has to go through is located inside the packet itself. This also allows us to
include parameterization information inside the packets as well as stacking
together packets that must go through the same sequence of treatments.

Finally, we tested our whole framework on a test case. This test case is
based on an existing traffic generator that uses a skeleton/modifier paradigm.
A skeleton (i.e. a base IP packet) goes through a set of modifiers (i.e. treat-
ment units) in order to generate synthetic traffic that can be used to test
new equipment or provide statistics about a network reliability. While the
original version of this generator needed a whole reimplementation when the
modifiers had to be changed (which can take up to a few hours), our ap-
proach would only require partial reconfigurations (which typically require
a few milliseconds). Using our approach would allow network engineers to
save some valuable time when unexpected test scenarios would have to be
generated on the fly. However, while both the NoC and relocation parts
have been validated separately, some unexpected issues remain unresolved
when using both bitstream relocation and the optical links management IP
provided by the board’s vendor.

While the scope of this specific work is network monitoring, it is worth
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noting that the framework proposed in this thesis can be useful for any
application that require both high throughput and high flexibility.
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Résumé

Introduction

La surveillance de trafic est devenue une part incontournable de la gestion de
réseaux. En effet, l’augmentation perpétuelle de la taille des réseaux et de la
diversité des applications transitant dessus nécessitent un suivi grandissant.
Cette surveillance peut avoir plusieurs buts: obtenir des statistiques concer-
nant le réseau afin d’en améliorer la qualité de service, pouvoir prioritariser
certains types de paquets au détriment d’autres pouvant tolérer une plus
forte latence, ou également détecter et mitiger de potentielles attaques, de
plus en plus fréquentes sur les réseaux modernes. Les architectures destinées
à la surveillance de trafic nécessitent donc un haut degré de flexibilité étant
donné la diversité des applications concernées.

Cependant, les réseaux actuels nécessitent de supporter des débits de
plus en plus élevés (allant actuellement jusqu’à plusieurs centaines de giga-
bits par secondes par lien), et les estimations et analyses montrent que cette
tendance ne semble pas ralentir. Cette double contrainte flexibilité/débit
fait que la plupart des architectures usuelles ne sont pas adaptées à ce
genre d’applications. En effet, les architectures purement logicielles, bien
qu’offrant un niveau de flexibilité pour l’instant inégalé, ne permettent pas
d’atteindre des débits suffisants, alors que les solutions purement matérielles
garantissent quant à elles des débits optimisés en échange d’une flexibilité
quasi non existante.

Ces limitations des solutions traditionnelles nous ont amenés à nous
tourner vers des architectures de type électronique programmable, en par-
ticulier les Field Programmable Gate Arrays (FPGAs). En effet, ces ar-
chitectures sont généralement perçues comme un compromis entre débit et
flexibilité. Cette flexibilité est notamment rendue possible par la technique
de reconfiguration dynamique partielle, qui permet de modifier une fraction
du circuit pendant que le reste demeure opérationnel. Cette propriété est
particulièrement intéressante dans le cas de la surveillance puisqu’il est pos-
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sible d’adapter les unités de calcul présentes sur la carte au trafic observé en
entrée de la plateforme. En combinant cette propriété au degré important
de parallélisme offert par les FPGAs, il devient alors possible d’atteindre des
débits satisfaisants tout en offrant un certain degré de flexibilité. Cependant,
l’utilisation extensive de cette technique pose problème quant au stockage
des fichiers de configuration. Pour palier ce problème, l’utilisation de la
relocation de bitstreams est envisagée.

L’inconvénient du développement sur des architectures matérielles con-
figurables est qu’elles requièrent des compétences qui ne font généralement
pas partie de la formation d’un ingénieur réseau. Ainsi, les acteurs du do-
maine des réseaux ont jusqu’à présent délaissé ces solutions.

L’objectif de cette thèse est de fournir une structure “gros grain” basée
sur les architectures reconfigurables qui pourrait être utilisée par des néo-
phytes sans qu’ils aient à déployer les mécanismes inhérents à ces archi-
tectures. Pour ce faire une structure de communication flexible et perme-
ttant des débits élevés sera également nécessaire pour connecter les unités
reconfigurables, ce qui nous a amené à envisager l’utilisation de Network-
on-Chips (NoCs). Un état de l’art concernant la reconfiguration dynamique
partielle, la relocation de bitstreams et les structures de communication
de type Réseau-sur-Puce sera présenté. Un flot de conception entièrement
automatisé dédié à la relocation de bitstreams sera détaillé permettant de
mettre simplement en oeuvre des mécanismes reconfigurables. Une étude et
caractèrisation des réseaux sur puce sera effectuée en prenant en compte les
problématiques liées à la fois à la relocation de bitstreams et à la surveillance
de trafic. Enfin, une étude de cas sera éffectuée en utilisant notre structure
pour développer un générateur de trafic flexible.

Etat de l’art sur la flexibilité sur FPGA

Un FPGA est un circuit électronique composé de deux couches. La pre-
mière, dite couche fonctionnelle, est composé de cellules élémentaires con-
figurables, notamment des Look-Up Tables (LUTs), des Block Random Ac-
cess Memories (BRAMs) et des Digital Signal Processor (DSPs). Ces cel-
lules sont reliés à un réseau, configurable lui aussi. Ainsi, la configura-
tion des cellules et leurs connexions permettent d’obtenir un circuit plus
complexes permettant de réaliser quasiment n’importe quelle application
numérique. La deuxième couche, dit couche de configuration, est comme sin
nom l’indique directement responsable de la configuration des cellules et du
réseau d’interconnexion de la couche fonctionnelle. Ainsi, l’état de la couche
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de configuration est donc directement responsable de l’application réalisée
par la couche fonctionnelle. La couche de configuration étant basée sur une
SRAM, il est alors possible de ne modifier qu’une partie de cette couche
tout en laissant le reste intact. Cette propriété a amené une technique in-
téressante: la reconfiguration dynamique partielle. En effet, puisqu’on peut
modifier une partie de la couche de configuration en pleine exécution, on
peut donc modifier le comportement d’une partie de la couche fonctionnelle
pendant que le reste continue d’opérer. Pour ce faire, des fichiers, appelés
bitstreams partiels, représentant le contenu de la zone de la couche de con-
figuration à modifier sont utiliser. Ce qui veut dire qu’il faut un bitstream
partiel par fonctionnalité et par zone dans laquelle on veut pouvoir implé-
menter cette fonctionnalité.

En utilisant extensivement cette technique, on peut alors rencontrer des
difficultés à stocker tous les bitstreams partiels. Pour palier ce problème, on
peut utiliser la relocation de bitstreams. Cette technique permet d’utiliser
un bitstream partiel pour configurer une fonctionnalité mais dans une zone
différente que celle initialement prévue, à condition que les zones initiales et
finales soient homogènes. Ainsi, on ne nécessite plus qu’un bitstream partiel
par fonctionnalité quelque soit le nombre de régions dans lesquelles elle doit
pouvoir être implémentée. Cependant, bien que cette technique présente des
avantages non négligeables, elle est délicate à mettre en oeuvre et requièrent
des connaissances particulières en termes de technologies FPGA. Bien que
des efforts aient étés faits dans la littérature pour faciliter ce processus,
aucun flot de conception ne l’automatise complètement. Son utilisation reste
donc pour l’instant marginale et réservée aux experts.

L’utilisation extensive de la reconfiguration dynamique partielle amène
également un problème de connectivité entre les différentes unités de calcul
reconfigurables. En effet, avoir un grand nombre de possibilités quant au
placement de ces unités implique également qu’il y a un grand de connexions
potentielles entre les différentes zones reconfigurables du FPGA. Ainsi, il
est nécessaire de déployer une structure de communication qui soit à la
fois flexible et performante en termes de débit pour connecter les unités de
calculs. Nous nous sommes pour cela intéressés aux NoCs. Bien que les NoCs
aient étés un sujet de recherche très actif au cours de la dernière décennie,
aucune implémentation n’a été réalisée conjointement à de la relocation de
bitstreams. Ces réseaux ayant beaucoup de caractèristiques paramétrables,
il faudra alors les caractériser de manière adéquate aux problématiques de
relocation et de surveillance de réseau.

Ainsi, les trois prochaines parties de cette thèse concerneront:
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• un flot de conception complèment automatisé dédié à la relocation de
bitstreams;

• la caractérisation et le dimensionnement d’un NoC adapté à la reloca-
tion et à la surveillance de trafic;

• le développement d’un cas d’étude permettant de valider notre ap-
proche sur un exemple concret.

Flot de conception automatisé pour la relocation de

bitstreams sur FPGAs Xilinx

Afin de pouvoir efficacement utiliser la relocation de bitstreams, et ainsi
pouvoir éviter des problèmes de stockage des bitstreams partiels dans le
cas d’une utilisation extensive de la reconfiguration dynamique partielle, il
paraît nécessaire de développer un flot de conception permettant d’automatiser
ce processus. En effet, les étapes de conception liées à cette technique sont
longues, fastidieuses et propices aux erreurs. Certaines de ces étapes ont
déjà été détaillées dans la littérature, bien que non scriptées. Cependant,
d’autres étapes restes manquantes dans l’état de l’art, notamment un algo-
rithme de floorplanning dédié à la relocation, et une méthode pour assurer
le respect des contraintes temporelles aux interfaces des zones relogeables.

Le flot ainsi développé se base sur des éléments détaillés au préalable
dans l’état de l’art, la suite ISE Design Suite de Xilinx, et des nouveaux
algorithmes traitant les étapes jusqu’alors manquantes. Ce flot entièrement
automatisé demande en entrée le nombre de régions relogeables souhaitée
par le concepteur, la bibliothèque des unités reconfigurables à implémenter
ainsi que les paramètres de flot de conception classique sur FPGA. Une fois
ces entrées fourniés, aucune intervention n’est nécessaire à l’exécution du
flot entièrement articulé à l’aide de scripts, qui produit automatiquement
tous les bitstreams nécessaires à l’exécution de l’application.

L’algorithme de floorplanning (i.e. la sélection des zones reconfigurables
sur la cible FPGA) prend avantage du fait que les régions doivent être ho-
mogènes (en termes de taille, de forme, et d’agencement des ressources), ce
qui limite grandement l’espace des solutions potentielles. Ainsi, cet algo-
rithme se divise en deux étapes. La première consiste à identifier un pattern
(i.e. (taille, forme, agencement des ressources) qui sera commun à toutes
les régions relogeables du design. La deuxième étape consiste à sélectionner,
grâce à une heuristique, quelles occurrences de ce pattern sur la carte seront
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effectivement utilisées en temps que régions reconfigurables. Cette heuris-
tique, plus précisément un recuit simulé, cherche à minimiser la distance
entre les régions retenues (afin de diminuer les délais entre deux zones) tout
en s’assurant que ces distances reste supérieures à un seuil (afin d’éviter tout
problème de congestion pour les ressources devant être placées ou routées
entre ces zones).

Le flot complet a été testé et validé sur des exemples simples et produit
des circuits fonctionnels, tout en rajoutant des temps de calculs liés aux
étapes de relocation négligeables comparés au temps d’implémentation d’un
flot de conception traditionnel.

Utilisation des Network-on-Chips pour la surveil-

lance de trafic

Bien que le flot de conception présenté dans la section précédente offre de la
flexbilité au niveau du placement des unités de calculs sur le FPGA, il est
également nécessaire pour ces unités de pouvoir communiquer entre elles.
Il faut pour cela choisir une structure d’interconnexions adaptée. La struc-
ture choisie devra évidemment pouvoir gérer des débits élevés tels que le
requièrent les applications de surveillance de trafic. Ainsi, les structures
de type bus sont à proscrire car elles représentent généralement un goulot
en terme de débit. Egalement, l’utilisation massive de reconfiguration dy-
namique partielle implique que les unités peuvent être placées n’importe où
sur la cible. Ainsi, il est nécessaire d’avoir une infrastructure de communi-
cation flexible. Pour cette raison, les connexions de type point à point sont
également à proscrire.

Nous nous sommes donc intéressés à l’utilisation de structures de type
NoC pour interconnecter les unités de calcul. Les NoCs sont en effet des
structures de communication flexibles permettant des débits élevés, au prix
d’un coût élevé en termes de ressources électroniques. Les NoCs étant des
structures pouvant varier selon diverses caractéristiques, il a fallu carac-
tériser et dimensionner un NoC en adéquation avec les problématiques de
relocation et de surveillance de trafic, ce qui nous poussé à retenir des NoCs
de type Hermes.

Cependant, bien que l’usage classique des NoCs requièrent que ce soit
les unités connectées qui décident de la destination des paquets qu’elles en-
voient, l’utilisation de relocation de bitstreams rend ce mécanisme difficile.
En effet, l’unité de destination pouvant alors être connectée n’importe où sur
le NoC, il devient compliqué pour l’unité d’émission de connaître les adresses
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des autres unités. Ainsi, une interface dédiée routeur/unité de calcul a été
développée afin de décharger les unités de ce mécanisme. Cette interface
étend le protocole des NoCs Hermes pour intégrer plusieurs fonctionnalités
simplifiant l’utilisation de relocation avec les NoCs, notamment la possi-
bilité d’indiquer la suite des unités à traverser par un paquet à l’intérieur
même de ce paquet, l’ajout de données de paramètrisation au sein de en-
têtes des paquets, et la possibilités d’empiler plusieurs paquets ayant des
caractéristiques communes.

Ainsi, nous avons mis au point une structure d’interconnexion dédiée à
la relocation de bitstreams à la fois flexibles et haut débit.

Cas d’étude: générateur de trafic

Afin de valider notre approche complète, un cas d’étude a été mené. Nous
nous sommes intéressés à un générateur de trafic pour plusieurs raisons. La
première raison est que ce type d’application ne requière pas de s’adapter aux
trafic entrant puique celui-ci est inexistant. Ainsi, il est possible de valider les
mécanismes proposés dans un contexte simplifié, sans avoir à tenir compte de
problèmes tels que la gestion des temps de reconfiguration, souvent critique
dans les circuits reconfigurables. Egalement, le développement d’une telle
application nous permettrait également par la suite de la réutiliser pour
tester d’autres circuits plus complexes.

Le générateur ainsi réalisé se base sur un modèle pré-existant reposant
sur une structure squelette/modificateurs. Un squelette (i.e. un paquet IP
de base) est émis à une série de modificateurs (i.e. des unités de calcul)
agissant sur le squelette pour obtenir un trafic réaliste. L’inconvénient de
l’implémentation initiale de ce modèle est qu’elle n’utilisait pas de reconfig-
uration, ainsi, lorsqu’un modificateur devait être changé, une réimplémenta-
tion complète était nécessaire, ce qui peut prendre jusqu’à plusieurs heures.
En utilisant notre approche, le changement de la série de modificateurs à
utiliser ne requière que des reconfiguration partielles, ce qui prend en général
quelques millisecondes.

Lors du développement de ce cas d’étude, les parties NoC et reloca-
tion de notre approche ont chacune été validées séparément. Cependant
des problèmes restent non résolus lorsqu’on utilise notre flot de conception
conjointement au module gérant les interfaces optiques fourni par le con-
structeur du FPGA. Ainsi, le générateur n’a pas pu être entièrement validé,
bien chaque partie de notre approche le soit.
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Conclusion

Cette thèse propose une approche “gros grain” visant à simplifier l’utilisation
de circuits reconfigurables pour des personnes extérieures à ce domaine.
Cette approche utilise conjointement la relocation de bitstreams et les Network-
on-Chips pour offrir une architectures flexible supportant de hauts débits.
Pour mettre en place cette architecture, un flot de conception entièrement
automatisé dédié à le relocation de bitstreams a été développé. Egalement,
une étude des NoCs en adéquation aux problématiques de relocation et de
surveillance de trafic a été menée. Cette approche a été partiellement validée
grâce à un cas d’étude sur le développement d’un générateur de trafic.

Bien que cette approche ait été détaillée spécifiquement dans le cadre de
la surveillance de trafic, il pourrait être intéressant de l’adapter à des do-
maines d’application présentant des contraintes similaires, à savoir flexibilité
et haut débit.
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Chapter 1

Introduction

1.1 Context

The growing nature of current networks comes with the need for measuring
or analyzing various characteristics on a given network. This can be done
to fulfill different goals. Having detailed information on the traffic going
through a network at a given time can be used in order to improve the
Quality of Service (QoS) of the network. Critical packets can for example
be tagged with a high priority while packets that do not have strong latency
constraints can be postponed. Another objective of network monitoring is
to detect and mitigate attacks, as networks are often key targets for always
more complex attacks.

However, up-to-date networks are often required to be able to support
very high rates that can sometimes go up to a few hundreds of Gigabytes per
second. This makes using purely software solutions for network monitoring
rather impractical. Indeed, while software architectures (such as Global Pur-
pose Processors (GPPs) or Network Processing Units (NPUs)) benefit from
unmatched flexibility as well as easier and quicker developments, these come
with a major drawback in terms of achievable rates. Their sequential nature
means that only one instruction can be run at a time, making it impossible
to target networks whose rates are above a few Gigabytes per second. On the
other hand, hardware solutions can achieve really high throughputs thanks
to the ability to massively parallelize computations. Purely hardware archi-
tectures (such as Application Specific Integrated Circuit (ASICs)) are often
designed in a way that optimizes every inner part for the targeted applica-
tion. This usually allows to achieve high performance at the cost of 1) long
development times, 2) close to no flexibility, as no modification can be done
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once the design has been implemented and 3) really high development and
production costs. However, networking applications usually require short
development times, as the network landscape is in constant evolution. Also,
as monitoring applications can depend on the nature of the monitored traf-
fic, architectures that target these applications either have to support every
application at once or be able to give enough flexibility to adapt to the
traffic. As the number of different applications makes it impractical to im-
plement all of them on a single chip, architectures considered for network
monitoring should offer enough flexibility to adapt to the incoming traffic.
Thus, hardware-only solutions are not well suited to network monitoring
because of both development times and lack of flexibility.

As software and hardware solutions both have strong limitations in re-
gards to network monitoring, it could be interesting to explore the use of
firmwares such as Field Programmable Gate Arrays (FPGAs) for such ap-
plications. Indeed, these types of solutions are often regarded as a good
compromise between hardware and software architectures. FPGAs can be
seen as matrices of elementary cells called Look Up Tables (LUTs), which
can all independently be configured to perform any basic logic operation.
Other cells are also usually available on an FPGA fabric, such as Block
RAMs (BRAMs) used to store information and Digital Signal Processing
(DSP) units that can perform complex arithmetic computations. All these
cells are connected to a configurable routing structure, allowing them to be
combined in order to perform complex applications. While these architec-
tures can not achieve such a high level of optimization as a purely hardware
solution, they can still benefit from massive parallelism properties, allow-
ing them to achieve much higher rates than software solutions. Also, the
fact that FPGAs can not be as much optimized as ASICs also means that
development times are typically smaller for the former, but it still can not
compete with software solutions in that regard. Their configurable nature
also makes it possible to reset the fabric’s behavior even after a design has
already been implemented, while such a feat is not possible for ASICs. A rel-
atively recent feature called Dynamic Partial Reconfiguration (DPR) takes
it even further by making it possible to reconfigure only a portion of the
fabric while the rest is still operating. This seems particularly interesting in
the case of network monitoring for two reasons: 1) it makes it possible to
add new features to an existing system without having to reset the whole
device, which is well suited for applications that are likely to need updates
and 2) it also allows the fabric to modify its behavior depending on the
traffic being monitored. So FPGAs, while not benefiting from a level of
flexibility as high as software solutions, as well as not being able to achieve
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such high levels of performance as purely hardware architectures, seem to
be well suited for network monitoring, where data has to be processed at
high throughput and in a flexible way

1.2 Objectives

One of the primary objectives of this thesis is to find dedicated architectures
for network monitoring using FPGAs. These architectures have to be able
to meet the strong throughput constraints required by up-to-date networks,
while providing enough flexibility to be able to host different processing units
based on the traffic being monitored, as well as to be able to be updated
without having to stop the whole system.

In order to achieve this, Dynamic Partial Reconfiguration of FPGAs will
be explored as it offers great possibilities for implementing flexible designs
on a platform that is likely to support high rate processing. However, when
dealing with highly flexible designs, DPR often comes at the cost of increased
compilation times and memory usage. Usually, reconfigurable designs are
divided into two distinct parts: 1) the static part, which comprises all the
parts of the design that will always have the same functionality throughout
the course of execution of the application, and 2) dynamic regions, which
can host precompiled units and swap between them during the execution
using configuration files called partial bitstreams. When a reconfigurable
module has to be implemented in several reconfigurable regions, one partial
bitstream is needed per region. So, in case of a design where many differ-
ent modules have to be implemented in a lot of regions, the compilation
times and memory space needed to store each partial bitstream can greatly
increase. For example, if 20 modules all have to be implemented in 20 re-
gions, 400 (20 × 20) partial bitstreams will have to be compiled and stored
in memory. While memory storage is usually critical in embedded systems,
where the available memory space is limited, it can seem to be irrelevant
in the case of network monitoring devices that are likely to be placed in
servers where memory space is not a problem. However, some critical ap-
plications may need a really low latency for a reconfiguration. For example,
we can consider an application where a platform is hosting algorithms for
detecting and mitigating network attacks. While the detection part of these
algorithms would have to be implemented in the static part of a design, the
mitigation part would more likely be inactive most of the time, thus allow-
ing the designer to implement that part as a reconfigurable module. So, in
this scenario, when an attack is detected, a reconfiguration request would
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be triggered to implement the mitigation part, which obviously should be
done as quickly as possible. Storing the partial bitstreams in a fast memory
placed close to the FPGA fabric is then needed to decrease the time between
a reconfiguration request and the availability of the module on chip. How-
ever, fast memories are often really expensive, so decreasing the memory
footprint of partial bitstreams becomes crucial. Thus, we have investigated
bitstream relocation in order to reduce the memory space required to store
our partial bitstreams. This technique allows a partial bitstream to be used
to configure a dynamic module in a region it was not implemented for. With
bitstream relocation, only one partial bitstream is needed per dynamic mod-
ule whatever the number of regions in which it has to be implemented is.
Taking back the previous example with 20 modules and 20 regions, only 20
partial bitstream are now required instead of 400, resulting in shorter com-
pilation times and smaller memory space. However, bitstream relocation
comes with very strong constraints which makes it a long and error-prone
process. Unfortunately, no effort that we are aware of has been made to
automate this process. Another problem with bitstream relocation is that
it requires extensive knowledge of the considered FPGA fabric which would
not be needed otherwise when working with non-relocatable designs. As a
result, bitstream relocation is still a very rarely used technique due to the
fact that it is quite difficult to perform. Developing an automated design
flow dedicated to bitstream relocation while keeping the steps related to
relocation entirely transparent to the user is thus another key objective of
this thesis.

While Dynamic Partial Reconfiguration offers flexibility in terms of the
available algorithms on the FPGA fabric at a given time, it seems unlikely
that every packet on a 100 Gbps stream would have to be applied the same
treatments. Instead, network monitoring applications usually start with a
classification step whose results can be used to identify which algorithm
should be applied to each packet. This means that each packet is likely
to only need to go through a subset of all algorithms implemented on the
fabric. Hence, point-to-point connections between treatment units is not
suited for such applications, as these routing architectures force a unique
path for all packets. As a result, we also need a flexible routing structure.
However, this is impractical using DPR. Indeed, the latency introduced by a
reconfiguration implies that this technique is not suited for applications that
require a lot of connection switching. For that reason, using DPR on routing
structures is usually considered bad practice. Among existing techniques for
flexible routing, the most common are bus interconnections and Network-
on-Chips (NoCs). While bus interconnects are usually well-documented and
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easy to use, they suffer from the fact that only one connection between two
elements is allowed at any given time, greatly impeding the massive paral-
lelism offered by FPGA fabrics and, as a result, creating a bottleneck that
makes it unlikely to meet the throughput requirements of network monitor-
ing applications. On the other hand, NoCs seem well-suited to fully exploit
the massive parallelism of hardware architectures. Indeed, a NoC consists
in a group of routers, each interfaced with its neighbors, and that all have a
local connection, typically interfaced with a computational unit. This struc-
ture allows for multiple connections to be active simultaneously. NoCs have
been a very active field of research in the past decade, and many topolo-
gies and routing algorithms have already been proposed. Finding suitable
topologies and routing techniques that allows to meet both flexibility and
throughput criteria will be a challenge to investigate in this thesis.

Also, while in NoCs the computational units that are interfaced with
the routers are usually responsible for determining which router they should
send their packets to, relocatable designs usually require the dynamic re-
gions to be as small as possible in order to limit the area waste introduced
by relocation. Moreover, relocation constraints usually makes it so that the
regions need to be small for a relocation to be performed in a high number
of regions. To simplify, the smaller the regions are, the higher the number of
possible relocations is. As smaller regions are tied with less complex mod-
ules, this means that reconfigurable modules would really benefit from being
as less complex as possible. As a result, it would be unoptimal to include a
mechanism responsible for determining the next router in the reconfigurable
units. As this information has to be given to the routers interfaced with
the computational units, this means that we need to insert mechanisms to
handle this between the routers and the computational units. Finding and
implementing such mechanisms is essential to ensure enough flexibility in
our architectures.

Finally, network monitoring architectures have to be tested before be-
ing deployed. In this regard, a realistic and configurable traffic generator is
needed in order to ensure the validity of our approach. Fortunately, some
traffic generation models have already been developed, that are based on
elementary modifiers that are applied to a common packet. However, cur-
rent implementation of such models are highly static, in the sense that once
a behavior has been set, changing it needs a complete recompilation of the
design, which can take up to several hours. Our approach is particularly well
suited for this kind of model, as we can compile every elementary modifier
as a reconfigurable module. Changing the behavior of the generator would
then only require a few reconfigurations (which typically take a few millisec-
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onds) instead of a complete recompilation. Implementing these generation
models using our architectures would then not only validate our approach,
but also be used to test more complex future applications that would use
these architectures.

1.3 Thesis structure

This document is structured as follows.
Chapter 2 will provide a background on network monitoring applica-

tions and architectures to identify the constraints we will have to meet in
our designs. It also presents a state-of-the-art on reconfigurable designs
and Dynamic Partial Reconfiguration on FPGAs, as well as an introduction
to bitstream relocation and the constraints that have to be respected for
this technique to work. An overview of Network-on-Chips and their vari-
ous characteristics on which we will base our design choices will finally be
presented.

Chapter 3 will present a new fully automated design flow dedicated to
bitstream relocation on Xilinx FPGAs. This design flow is based on existing
design flows, techniques already described on the literature, and new algo-
rithms specifically developed to address steps that were previously missing
in order for a relocation automated design flow to work. Specifically, the
lack of a floorplanning algorithm dedicated to relocation as well as a timing
constraining technique for relocatable modules have been addressed. This
tool aims at being user-friendly, as no prior knowledge of the design target
is needed by the designer, and no intervention is required once all sources
and parameters have been provided. This tool provides successful imple-
mentations in only a few additional minutes over a whole traditional FPGA
design flow.

In chapter 4, the use of Network-on-Chip architectures for network mon-
itoring applications will be investigated. The choice of an Hermes NoC and
its characteristics will be justified according to constraints induced by net-
work monitoring requirements and the FPGA available for this project. This
chapter will also present an extension to the protocol used in the Hermes
NoC in order to ease and optimize the use of bitstream relocation on this
architecture. A generic interface between routers and relocatable modules
will also be presented, which makes all the new mechanisms induced by our
protocol extension transparent to both the NoC and the relocatable mod-
ules. This interface also moves heavy mechanisms such as buffering away
from the relocatable modules, in order to decrease the complexity of the
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reconfigurable parts of our designs.
Chapter 5 will present a case study for our architecture that combines

both bitstream relocation and Network-on-Chip. This case study is a traf-
fic generator based on an existing generation model that was previously
lacking in terms of flexibility. While the original implementation of that
generator required a full reimplementation as soon as the model needed to
be changed, using our architecture could potentially only require a few re-
configurations, which can drastically reduce the time required to generate
a new traffic model. However, issues are still unresolved when using both
bitstream relocation and the AXI 10G Ethernet Interface [1] Intellectual
Property (IP) from Xilinx, which is required for our application. In that
regard, we thus provided simpler test cases to validate our NoC architecture
and our bitstream relocation design flow separately.

Finally, chapter 6 will summarize our contributions and give conclusions
based on the results obtained with our architecture. It will also present the
perspectives about the future work and improvement that can be considered
based on this thesis.
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Chapter 2

Background and state of the
art on flexible designs on
FPGAs

2.1 Network monitoring

Network monitoring is becoming a necessary task for network managers, as
the more and more extensive use of IP networks brings the need to both
gather and interpret information about the state of a network as well as to
detect and possibly mitigate some potentially malicious packets on a that
network.

Network monitoring applications can cover various purposes. Network
engineering can be done through the gathering of information that can be
used in order to improve the Quality of Service (QoS) of a given network
based on the incoming traffic. A big part of those applications usually in-
volves a traffic classification step. Traffic classification consists in sorting
the incoming traffic following predefined criteria. One goal of classification
can be to get information on which applications the incoming traffic is made
of in order to get statistics about a network’s usage. Another goal can be
to filter the traffic in order to apply treatments to some packets if they cor-
respond to a specific set of characteristics. Also, using traffic classification,
it is possible to prioritize some critical parts of the traffic in order to reduce
their latency, which usually comes at the cost of delaying other parts of the
traffic. For example, some applications types such as streaming can require
to have very low latency, while it is acceptable to delay the sending of a
webpage, in which case delaying the latter to send the former earlier can
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improve the global QoS of a network.
Another important part of network monitoring is to improve the security

of a network. More and more attacks are being observed over the internet.
For example, the number of Distribute Denial Of Service (DDoS) attacks has
seen a 140% growth between 2015 and 2016 [2]. While most recent trends
indicate that this number has started decreasing in early 2017, their average
volume continues to increase [3]. Providing solutions to detect and mitigate
these attacks is thus a task that is becoming more and more important for
network providers.

This leads to two major requirements for architectures supporting net-
work monitoring applications. First, the architecture must be able to sup-
port high throughputs, as traffic volumes on IP networks are constantly
increasing. Second, the architecture has to be flexible enough to support a
wide variety of applications. Indeed, the diversity that can be observed on
a single link makes that architectures would greatly benefit from being able
to adapt the the currently incoming traffic.

However, existing solutions for network monitoring usually focus on only
one of these aspects. Indeed, most available flexible solutions are usually
based on software systems, which offer really poor throughput performances.
For example, [63] provides an highly flexible traffic measurement platform,
however it can only achieve about 12Gbps using 8 Intel Xeon CPUs. [28]
presents a framework for real-time monitoring capable to adapt to any type
of incoming traffic, but is only able to reach 762Mbps for minimal size
packets (64 bytes) on a single core Intel Centrino CPU. On the other hand,
solutions based on Field Programmable Gate Arrays (FPGAs) are usually
able to sustain higher data rates. For example, [24] is able to implement a
Network Intrusion Detection System (NIDS) able to reach 23.76Gbps on a
VirtexII-Pro (which should increase with up-to-date technologies). [27] is
able to implement a packet classifier that is able to sustain a rate of 100Gbps
on a Virtex5 vsx240t. [39] implements an NIDS based on the Snort [50] rule
set at 10Gbps on an Altera DE2-70 development board. However, all these
implementations are very rigid, as no adaptation of the designs can be made
at run-time.

As a result, it can be interesting to investigate the use of flexible archi-
tectures on FPGA so that network monitoring applications can benefit from
both high throughputs and high flexibility. In this chapter, we will present
existing methods for implementing flexible designs on FPGAs. Section 2.2
will present a background and state-of-the-art on Dynamic Partial Reconfig-
uration (DPR) and bitstream relocation (section 2.3, while section 2.4 will
present an overview on Network-on-Chips (NoCs), a flexible communication
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architecture for digital systems.

2.2 Reconfigurable designs on FPGAs

Network monitoring applications are likely to need flexibility in terms of the
different treatments that can have to be performed on the incoming traf-
fic. Indeed, supporting all possible treatments at once on a same hardware
target is highly unlikely, especially considering the ever-growing diversity of
network applications or attacks. Moreover, designing applications that are
likely to have to be updated during its lifetime means that architectures that
support them can not conceivably be unadaptable. Fortunately, FPGAs of-
fer a mechanism, called Dynamic Partial Reconfiguration, that allows for
only a part of a design to be modified during run-time while the rest of the
fabric is still operating. This makes FPGAs a prime target for applications
that require high levels of both flexibility and throughput, such as network
monitoring.

2.2.1 Structure of FPGAs

An FPGA is a configurable electronic structure that is divided into two
interconnected layers: the functional layer and the configuration layer.

The functional can be seen as a matrix of configurable elements that
are all connected to a routing structure that is configurable as well. These
configurable elements can either be Look Up Tables (LUTs), i.e. logical cells
that can perform any logical computation for a fixed number of inputs, that
can be paired with flip-flops, Block Random Access Memories (BRAMs)
or Digital Signal Processors (DSPs) that are used for complex arithmetic
computations and provide dedicated logic for accelerating additions. Other
components can be found depending on the target, which usually consists in
interfaces supporting various communication standards. As all these cells,
as well as the routing structure that connects them, are configurable, they
can be combined to achieve complex digital designs.

The configuration layer, as its name suggests, is responsible for the con-
figuration of the functional layer, i.e. the way the cells of the functional
layer are configured and interconnected. This layer is based on a Static
Random Access Memory (SRAM), which is arranged in a way so that a
contiguous space of that memory is used to configure a configurable cell of
the functional layer (see figure 2.1).
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Figure 2.1 – Simplified intern FPGA two-layer structure

2.2.2 Typical design flow for FPGAs

RTL description

The first step to implement a design on an FPGA is for the designer to
provide a Register Transfer Level (RTL) description of the design. RTL lan-
guages aim at describing the behavior of the logic signals of a design between
its registers. Common RTL languages are Verilog or VHDL. Both of them
allow the designer to organize its design in a hierarchical and behavioral
description. Every hierarchical unit is called a component and consists in a
list of ports (input-outputs (IOs)) paired with a behavioral description, and
can contain other components inside them. They can also be parameterized
in order to be reused with a different behavior without having to be rede-
veloped. The highest component in a design’s hierarchy is usually referred
to as the top module of the design.

Synthesis

The goal of the synthesis step is to translate the RTL description into ele-
mentary logic operations, e.g. identifying adders and multipliers, extracting
Finite State Machines (FSMs) or memory units such as RAMs. This step is
usually fully automated by Electronic Design Automation (EDA) tools. In
theory, this step is independent of the FPGA target considered for the de-
sign, however, modern synthesis tools take the target into account in order
to operate pre-treatments or target-dependant optimizations and provide
timing and resource usage estimations. The result of this step is called a
logical netlist.
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Implementation

The goal of the implementation step is to translate the logical netlist(s)
previously obtained during the synthesis step into a functioning design on a
specific FPGA fabric. This step is usually divided into 3 sub-steps. While
there is standard denomination for these sub-steps, there goals differ very
little among available design flows. Thus, while the names of the sub-steps
we will present here are only specific to the Xilinx ISE design suite (as this
is the design flow we will base our work upon), similar tasks can be observed
on other EDA tools.

Translate This task merges all the input logical netlists and constraints
into a Xilinx design file called Native Generic Database (NGD) . The con-
straint file(s) (in this design flow the User Constraint File(s) (UCF)) is a
user-defined target dependant file that can contain:

• bindings between the ports of the top module of the design and the
physical pins of the FPGA target

• timings information or constraints on the IOs or intern signals of the
design

• various constraints allowing the designer to lock some signals to specific
resources, allocate some regions for hierarchical instances of the design,
etc...

Map This task maps the logical elements and signals of the NGD file ob-
tained during the translate step to actual resources available on the consid-
ered target. During this process, only the type of resource for each element
is given, not their actual location on the fabric.

Place and Route The Place and Route (PaR) finally places every element
of the design on a specific location of the design, and determines the state
of the routing structure in order for each signal to be correctly routed. The
result of this process is thus a full description of the functional layer of the
FPGA for the design.

Configuration

Usually, when loading a new design on the FPGA fabric, the whole config-
uration layer is modified by loading a file, called bitstream, into its SRAM.
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The bitstream contains, besides a small header mainly used to ensure data
integrity, all the words that have to be stored in the SRAM for the func-
tional layer to perform the desired design. However, the fact that SRAMs’
contents can be independently accessed has led to an interesting opportu-
nity, which is to modify only a part of the configuration without changing
the rest of the fabric.

2.2.3 Dynamic Partial Reconfiguration

Dynamic partial reconfiguration of FPGAs is a technique that allows a pre-
defined portion the fabric to be reconfigured during run-time while the rest
is still under execution. This process is made possible thanks to the inner
structure of FPGAs, as the configuration layer is based on an SRAM. In-
deed, it is possible to modify only a portion of the SRAM without affecting
the rest, which equals to modifying only a portion of the functional layer
without affecting the rest.

In order to modify the behavior of the fabric, files that describe the new
configurations have to be loaded in the configuration SRAM. These files are
called partial bitstreams, and, similarly to the usual bitstreams, contain the
information that has to be loaded in the SRAM, but only relative to the
portions that have to be reconfigured, thanks to an addressing mechanism
that allows the information to be written in the desired location.

Early reconfigurable designs on FPGAs used an approach called differ-
ence based partial reconfiguration. With this approach, the designer had to
fully implement a first design, then had to manually modify the functional
layer (using for example tools like FPGA Editor in the case of Xilinx FP-
GAs) and generate the new resulting bitstream. The original and modified
bitstreams would then be compared and a partial bitstream containing only
the differences between the two was generated. While this approach is well
suited for punctual modifications, such as for example changing the logical
equation of a single or a few LUTs, it is inadequate to use this method
for more reconfiguration-heavy designs. Moreover, manually modifying the
functional layer is a long and tedious task that can not take advantage of
common designing methods, such as using RTL languages. Difference-based
reconfiguration has thus become obsolete.

The now commonly adopted approach for partial reconfiguration is called
module based (or sometimes slot based) reconfiguration. With this approach,
the functional layer is usually divided into two distinct parts: the static part,
and the dynamic part. The dynamic part consists in predefined regions that
can be subject to reconfiguration while the static part is every the part of
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Figure 2.2 – Use case example for module based reconfiguration

the design which behavior will not be modified throughout the execution.
A classic example that illustrates the benefits of module based reconfigu-

ration is the use case of a network device that has several interfaces that can
all implement different communication protocols. In this case, each interface
will be connected to a reconfigurable region in which each communication
protocol can be implemented. If at any time one of the interfaces has to
change its communication protocol, not using partial reconfiguration would
likely have required one of these two solutions: 1) have every protocol be
implemented simultaneously for each interface and have a multiplexer con-
trol which protocol to use, resulting in a huge area waste (as each would
need its own logical resources to be implemented) or 2) stop the FPGA and
reconfigure the whole fabric, which means that all the other interfaces will
be stopped as well. However, with module based partial reconfiguration,
the communication protocol of every interface can be changed without hav-
ing to stop the others nor having to have every protocol be implemented
simultaneously (see 2.2).

With this method, a designer has to first determine which part(s) of his
design will have to be able to be reconfigured. The RTL description of the
static contains empty components for which only the ports are defined. A
“black box” attribute is given to these components so that EDA tools can
treat them as parts of the design that will be filled later on. By synthe-
sizing reconfigurable modules apart from the static part, it is then possible
to switch between these modules inside the black boxes. As the layouts
of FPGAs are usually non-homogeneous, the designer has to select regions
on the fabric according to the number of each type of resources required
by the reconfigurable modules. This step is called floorplanning. Usually,
EDA tools will automatically place interfaces (called partition pins) to en-
sure communication between the static part and these regions based on the
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number of IOs required by the reconfigurable modules. The place and route
step of the dynamic regions is then done based on the selected regions and
their interfaces and on the timing identified on the previously implemented
static part.

After the place and route process of each dynamic part of the design,
a full bitstream is generated that contains the static part and an initial
configuration, as well as a partial bitstream for each dynamic module per
reconfigurable region in which it is implemented. These partial bitstream
have the same structure as a full bitstream, except that the start address is
set to the address of the considered reconfigurable region in the SRAM, as
well as a decreased size field.

2.3 Bitstream relocation on Xilinx FPGAs

While partial reconfiguration offers huge advantages in terms of flexibility,
using it extensively can come with several inconvenients. Indeed, when a
design requires that a lot of reconfigurable modules have to be able to be
implemented in a lot of reconfigurable regions, the number of partial bit-
streams that have to be generated and stored can drastically increase. For
example, if 20 reconfigurable modules all have to be able to be implemented
in 20 reconfigurable regions, 400 (20× 20) partial bitstreams will have to be
generated and stored in a remote memory accessible by the FPGA fabric.
While bitstream generation time is not seen as a problem for a final design, it
can become problematic when prototyping. Indeed, implementing a module
in one region can take up to a few hours. Reiterating this in 20 regions be-
comes unacceptable just to verify the module functionality in every region,
even more so when this has to be done for several modules. Also, while mem-
ory space is usually seen as a problem for embedded systems, it is not the
case for network applications, where the FPGA target is likely to be hosted
in servers where memory is abundant. However, reconfiguration latency can
be highly critical for several treatments. For example, in a case where an
attack is detected, the functional module that reacts to that attack has to
reconfigurable with as little latency as possible, else it is possible that many
fraudulous packets would be able not to be treated. Reconfiguration latency
can also be an issue due to the high throughput involved: for example, on a
100Gbps link, having to wait 1ms for a module to be configured means that
potentially 100Mb of data have to be buffered before the module can start
treating it. This means that partial bitstreams have to ideally be stored in
fast on-chip memories in order to reduce reconfiguration latency. As fast
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Figure 2.3 – Bitstream relocation principle

memories are usually really expensive, reducing the memory space needed
to store partial bitstreams can be highly advantageous. So, decreasing the
number of partial bitstreams required in a design is highly encouraged.

Bitstream relocation [62] is a technique that allows to use a partial bit-
stream that was generated for a specific region to implement the same func-
tionality in a region it was not generated for (see figure 2.3).

Using this technique can limit the number of partial bitstreams required
for a reconfigurable module to one whatever the number of regions it has to
be implemented in. Looking back at our previous example, only 20 partial
bitstreams would then be needed instead of 400, drastically reducing both
the generation time and the memory space that are required.

While early works on relocation showed promising results [21] [41] thanks
to the homogeneous structure of FPGAs at that time, the trend towards
more and more heterogeneous FPGAs makes this technique more compli-
cated to use. Indeed, relocating a partial module on an homogeneous struc-
ture only requires the start address to be modified for the module to be
successfully implemented anywhere on the fabric. However, this is not the
case for heterogeneous fabrics, as the configuration data of the partial bit-
stream of the origin region will not necessarily match the resources inside
the destination region.

This means that regions have to fulfill requirements in order to perform a
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relocation. These constraints have been described in [25] and [26]. The first
one is that the origin and destination regions must be identical in terms
of size and resource arrangements in order for the configuration data of
the partial bitstream to match the resources inside the destination region.
Though some techniques focus on bitstream relocation between non-identical
regions [15], doing so often requires specific information about the fabric
and bitstream encoding that is usually not provided by the manufacturers.
Identifying compatible regions for bitstream relocation is thus a key step
when using this technique, which is made tougher and tougher by the always
increasing heterogeneity of FPGA fabrics.

The second requirement is that all the interfaces between the static part
and the relocatable regions (i.e. partition pins) must be placed at the same
relative locations among all regions. This is pretty straightforward since de-
signers can use location constraints that are provided by the manufacturers’
EDA tools.

Finally, the static part must use any resources inside the relocatable re-
gions in the same manner regardless of the region, may them be logic or
routing resources, which is not the case in traditional reconfigurable design
flows. Indeed, current design flows allows the static part to borrow resources
inside the relocatable, primarily in order to ease up the routing of the static
part. When not relocating, this is not a problem as the partial bitstreams
of a region will contain the information about the portion of the static part
inside that region. However, when relocating, that information will not
match the static part around the new region, potentially causing dysfunc-
tions (see figure 2.4). As it can be really tedious to constrain the routing of
the static part, the adopted solution usually consists in preventing the static
part from using any resources inside the relocatable regions altogether. By
making sure that the static part can not use resources inside reconfigurable
regions, we in fact make sure that no information can potentially be written
at the wrong place, or overwrite critical other information.

Once all these constraints have been applied to the relocatable regions,
each reconfigurable module has to be implemented in only one region. Only
one partial bitstream per module will then be generated, which can be used
to configure that module in every region, provided a modification of the
Frame Address Register (FAR) in the partial bitstream header, which cor-
responds to the starting address at which the bitstream will be written in
the fabric SRAM, i.e. the region of the functional layer that will be recon-
figured. While this modification can be done easily, as the new addresses
can be computed offline, modifying the bitstream on the fly can be crucial
in the case of applications where reconfiguration time is critical. Hardware
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Figure 2.4 – Potential dysfunctions caused by static resources inside relo-
catable regions

versions of this modification have been proposed in [35] and [36], however,
as at that time the reconfigurable regions on FPGAs had to span the entire
height of the fabric, these versions only manage horizontal relocations.

However, while relocation can provide interesting advantages in terms
of both compilation times and memory space required for partial bitstream,
this technique has not been automated yet. As relocation can be long and
error-prone to do manually, it can be quite interesting to develop a design
flow that would entirely automate this process. The lack of automated
tools for bitstream relocation has been a serious impediment to its adoption
by designers, especially considering the diversity and complexity of modern
FPGAs, as relocation requires a deep knowledge of the considered fabric.

2.4 Network-On-Chips

While flexibility in terms of what applications can be run at any time is re-
quired, flexibility in terms of what treatment each packet has to be applied
is also needed. Indeed, the traffic diversity on a 100Gbps link can be huge,
so it is very unlikely that all the packets will need the same treatment. In-
stead, almost all network monitoring systems have a classification process at
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Figure 2.5 – Example of a point-to-point interconnection scheme

the start of the chain that decides what treatment has to be applied to each
single packet. For example, classification results might indicate that packet
1 must go to processing module A, packet 2 to module B, and packet 3 to
both modules A and B. This means that network monitoring applications
require a communication structure that allows for flexible module-to-module
interconnections while supporting high data rates and concurrent commu-
nications.

Among existing communication structures in digital systems, three main
types can be distinguished. The first one is point-to-point (see figure 2.5),
which connects each component’s interface to another one. While this type
of connection is fairly straightforward to implement as well as resource effi-
cient, it severely lacks flexibility, as every component can only communicate
to the one it is directly connected.

Another common type of communication architecture is the bus mecha-
nism (see figure 2.6). In this architecture, each component is connected to
the same communication medium, called bus, and has a unique address in
order to identify itself on the bus. When a component has to transmit data
to another, it has to specify to which address (i.e. component) the data has
to be sent. The receiving component accepts the incoming data as the ad-
dress field matches its own, and all other will not perform any task as their
own address will mismatch the one specified on the bus. This architecture
offers great flexibility, as all components can potentially communicate with
each other, and is the most commonly found in processor-based systems.
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Figure 2.6 – Example of a bus interconnection mechanism

However, this architecture is not well-suited for applications where exten-
sive communications are required. Indeed, this architecture only allows one
module-to-module connection at any given time, as the bus is shared by all
components. This means that buses are usually bottlenecks for applications
where a lot of data has to be exchanged between several modules.

Network-on-Chips [33, 38, 17] provide both flexibility and high rate pos-
sibilities. These architectures consist in a set of interconnected routers.
Each router is connected to a single functional unit, and vice-versa, and to
a subset of the other routers of the NoC (see figure 2.7). Each component
connected to the NoC also gets a unique address on the network, which also
corresponds to the router to which it is connected. When a component has
to transmit data to another one, it releases that data to its router, along
with the address of the destination router, i.e. the address of the destination
component. The data packets are then transmitted from router to router
until they reach their destination. The way the routers are interconnected
(topology 2.4.1) and the way the packets are transmitted from router to
router (routing algorithm 2.4.2) can vary depending on the NoC. NoCs can
also vary in the way their routers implement more advanced functionalities,
which are beyond the scope of this document.

This architecture can often sustain higher data rates than a bus mecha-
nism, as several paths can be active at the same time, i.e. several pairs of
component can simultaneously exchange data without losing any flexibility,
as all components can still communicate with each other. This means that
NoCs offer a much better scalability than its bus counterpart. However, it
has several drawbacks, such as an increased resource cost (as the number of
wires is duplicated several times compared to a bus), as well as a slightly
increased latency for an active connection, as each packet is likely to have
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Figure 2.7 – Overview of interconnections between routers and functional
units in Network-on-Chips

to go through several routers before achieving its destination.

2.4.1 Topologies

The topology of a Network-on-Chip is the way the routers are intercon-
nected.

One of the most popular and generic topology is the 2D mesh topology
(see figure 2.8). In this case, the topology can be seen as a regular discrete
orthogonal grid on which each node is a router. Each router is then in-
terconnected with each of his neighbours. Thanks to its regular structure,
addresses of routers on such a topology are really straightforward, as they
usually correspond to the abscissas and ordinates of routers on the grid.
This topology is well suited for applications where high flexibility is needed,
as the high number of paths on that topology leads to very unlikely con-
gestion problems for any communication between any pair of routers. Its
regular structure also allows relatively simple routing algorithms to be used
(see section 2.4.2). However, this topology is quite heavy in terms of hard-
ware resources, leading to large wastes for applications where certain pairs
of routers are unlikely to exchange data. Though the most popular mesh
type is a square grid (meaning that each router has 4 neighbours), some
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Figure 2.8 – Example of the router interconnection of a 2D Mesh 3 × 3
Network-on-Chip

other versions exists where the number of neighbours for each router differs.
For example, the honeycomb-mesh consists in an hexagonal structure where
each router has 3 neighbours.

Extensions of the 2D mesh topology include the torus [23] and the 3D
mesh topologies [42, 32, 12] (see figure 2.9). The torus architecture as the
same router positions as a 2D mesh except that routers that are on the
borders of the structure are also interconnected. While further improving
the flexibility of the 2D mesh architecture, the torus structure has the huge
drawback of having long delays on these new interconnections. As its name
implies, the 3D mesh adds a new dimension to the 2D mesh, meaning that
most routers (i.e routers that are not on the borders) now have 6 neigh-
bours instead of 4. However, these routers can be hard to implement on
2-dimensional fabrics such as FPGAs.

Another relatively common topology is a tree-based Network-on-Chip
(see figure 2.10). While these structures can have great performances if
well designed, finding a well suited layout for a given application is a quite
tedious task. Also, these structures have to be used with great care, and
are not suited for every type of application, since the root of the tree is very
much likely to create a bottleneck. Examples of tree-based NoCs can be
found in [31] and [48].

Even though common topologies are the most frequently used structures,
coming up with a topology specifically designed for a given application can
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(a) 3 × 3 torus (b) 3 × 3 × 2 3D mesh

Figure 2.9 – Examples of torus (a) and 3D mesh (b) NoCs

Figure 2.10 – Example of the router interconnection of a tree based Network-
on-Chip
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Figure 2.11 – Example of an irregular structure mixing mesh and tree based
NoC

be advantageous in order to optimize both the potential throughput a the
NoC as well as its resource footprint. In that regard, irregular structures can
be used for some designs. Those structures are usually a mix up between
subsets of existing topologies. As a result, finding an adequate addressing
scheme, as well as a optimal routing algorithm for the topologies can be very
tricky. An example of such an ad hoc topology mixing mesh and tree based
NoCs is provided in figure 2.11.

2.4.2 Routing algorithms

In Network-on-Chips, the routing algorithm corresponds to the way data
is transmitted from its origin router to its destination router. The most
common characteristics for routing algorithms are explained below.

Switching type

Two main types of switching on NoCs can be distinguished: circuit switch-
ing and packet switching. In the circuit switching case, the whole path from
the origin to the destination router is reserved beforehand. All router in-
terconnections involved in this path remain closed to other communication
until the origin is done sending data. An example of a NoC based on circuit
switching is the Æthernal NoC [29]. On the other hand, algorithms that
implement a packet switching (for example the Hermes NoC [46]) strategy
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require the routing information to be provided for each data packet. The
routing scheme is then re-evaluated on a per-router basis. Circuit switch-
ing can be quite advantageous when large chunks of data often have to be
transferred from one router to another, as the routing path is set only once
whatever the data size is instead of updating it for each packet in the case of
packet switching. However, the fact that many paths are closed during the
whole transactions means that it can potentially lead to congestion prob-
lems. In the case where most packets do not have the same destination, a
packet switching approach is thus preferred.

Deterministic or adaptive routing

In the case of a deterministic approach, the path that a packet will follow is
only determined by its origin and destination routers. This means that two
packets that have to be transmitted from the same origin router to the the
same destination router will necessarily have the same routing, regardless of
if that path is currently overloaded. Two popular methods for a deterministic
routing are the source routing (for example the Source Routing for NoC
algorithm [37]) and the X-Y algorithm [20]. In the case of source routing,
the origin router specifies the path that a packet must follow from one end
to another. For a X-Y algorithm in the case of a 2D mesh topology, all
routers addresses are specified as their X-Y coordinates on the grid. Each
router that a packet reaches compares its own address to the destination
address of the packet. If its X coordinate is less (resp. more) than the one
of the destination of the packet, it sends the packet to the router to its right
(resp. left). If both X coordinates are equal, the same test is ran on the
Y coordinate (i.e. sends the packet to the router above (resp. below) if
its Y coordinate is smaller (resp. greater) than the one of the destination
router). If both Y coordinates are also equal, that means the packet has
reached its destination and is thus sent to the local interface of the router
(i.e usually the functional unit connected to that router). This algorithm
is really straightforward to implement, as well as resource friendly, as only
two comparators are needed for each router.

On the other hand, adaptive algorithms route the packets based on the
current state of the Network-on-Chip. For example, an adaptive routing
algorithm can be based on the congestion of the links in the NoC [40, 22].
In that case, a packet can be sent on a longer path (in terms of nodes) if
the shorter one is saturated, reducing its latency, and also decreasing the
global congestion of the NoC. Other adaptive algorithms can be used in or-
der to take broken links into account in circuits where faults or failures are
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likely to occur [52, 34]. These algorithms are typically more complex than
the deterministic ones, and also usually require some heavy mechanisms to
monitor the state of the NoC.

Finding a suitable Network-on-Chip architecture for network monitoring
applications, as well as dimensionning it to allow enough functional units and
high enough data rates considering our flexibility and throughput constraints
will be a key part in conceiving our architectures.

2.5 Conclusion

In this section we presented the background and state-of-the-art on flexible
designs on FPGAs. This led us to experiment with bitstream relocation to
add flexibility for architectures supporting network monitoring applications.
However, bitstream relocation remains a very rarely used technique because
of the difficulty of performing this task. As a result, providing an automated
design flow dedicated to this technique will be one the key challenges of this
thesis, as making this technique transparent to a designer would allow for
the use of its potential.

In order to be able to efficiently host network monitoring applications,
which have both high flexibility and throughput requirements, a suitable
communication structure is needed. As a result, Network-on-Chips will be
investigated for network monitoring. As NoCs have not been used in the
past for network monitoring applications, the dimensionning and choosing
the characteristics of our NoC accordingly to characteristics of these applica-
tions will have to be done. Also, to our knowledge, no existing architecture
combines bitstream relocation with Network-on-Chips. As bitstream re-
location involves strong constraints regarding the reconfigurable modules,
adapting the NoC architecture in order to ease up the use of relocation will
be required.
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Chapter 3

Automated design flow for
bitstream relocation on
Xilinx FPGAs

As seen in 2.3, bitstream relocation is a promising technique for highly flex-
ible reconfigurable designs on FPGAs, as it can drastically decrease the
bitstream footprint, both in terms of generation time and memory space
required. In application domains such as network monitoring, both genera-
tion time and memory space can become critical. Indeed, generation time
can greatly impact development and prototyping time, which is not accept-
able for network applications that are always evolving. Memory space can
impact reconfiguration latency, as many partial bitstreams to store results
in bigger memories yet usually further away from the target. As network
monitoring covers critical applications such as attack mitigation, keeping
the reconfiguration latency low is required. Integrating bitstream reloca-
tion in architectures dedicated to network monitoring can thus be highly
advantageous.

3.1 Motivation

While bitstream relocation is a promising technique to enhance flexibility
on highly reconfigurable designs, strong constraints are required for it to be
performed. Meeting these requirements is a long and error prone task and
often requires a deep knowledge of reconfigurable systems and the specific
FPGA target. Moreover, it is very likely that this task would have to be
performed again when a modification is made to a reconfigurable module,
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or when a new module is added, as changing the resources requirements of
the modules can make the former results of this task obsolete. This means
that manually fulfilling the constraints related to relocation is highly dis-
couraged, which in our case is further emphasized by the fact that designs
targeting network monitoring applications are likely to be updated quite
often. Relocation is thus still a very underused technique because of its de-
ployment difficulty. Making this process transparent to a designer then feels
mandatory in order to make efficient use of bitstream relocation. However,
this has still not been automated yet. Providing a fully automated design
flow that supports bitstream relocation could thus be highly interesting in
order to be able to fully take advantage of the benefits that this technique
can offer.

In this chapter, we will present a new fully automated design flow ded-
icated to bitstream relocation on Xilinx FPGAs. As relocation involves
many steps that are technology reliant, it is possible that the flow would not
be compliant with other manufacturers FPGAs or even with future Xilinx
technologies. This design flow is based on the Xilinx ISE Design Suite (as
more recent tools from this vendor are missing some key tools in order for
relocating to work), scripted versions of techniques already available in the
literature, and new algorithms and techniques for steps that still haven’t
been addressed yet. The general overview is described in section 3.2, our
new techniques that address previously unresolved steps specific to reloca-
tion are presented in section 3.3, while tests and results are provided in
section 3.4.

3.2 General overview of the proposed design flow

In order for bitstream relocation to become a viable technique, an automated
design flow that makes it transparent to the user is required. Our design flow
aims at being user friendly, as no prior knowledge of relocation is needed,
and it requires even less skills than a traditional DPR design flow. It is also
worth noting that once all inputs have been provided and a configuration
has been run, no user intervention is required, a simple building command
based on the standard make is enough to provide all the needed outputs to
run the design on the target.

3.2.1 Inputs

In order to use our design flow, a designer has to provide several specific
files.
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An RTL description of the static part , in which all reconfigurable in-
stances must be instantiated as black boxes is required. In order for the syn-
thesis tool not to trim these instances, this attribute has to be specified (in
VHDL in this example): attribute box_type of reconfigurable_module :

component is "black_box"; In order to be able to constrain the locations
of the interfaces with the relocatable regions, this black_box attribute must
also be specified to the added_LUTs component (see section 3.2.2) as well as
a lock_pins attribute: attribute lock_pins of added_luts_8_v7 :

component is "true";

An RTL description of every dynamic module also has to be pro-
vided. The port list of that description must be identical to the reconfig-
urable component previously declared as a black box in the static part. As
a consequence, all reconfigurable modules must have the same ports. This
means that if a reconfigurable module requires less inputs (or outputs) than
another one, useless ones would still have to be declared.

A User Constraint File (UCF) is required, that only contains the same
information as a traditional non-reconfigurable design flow, i.e. physical-
logical ports bindings and timing constraints. It is important to note that,
while UCFs usually allow the designer to use location constraints in order
to fix instances of the design into specific locations, it is highly discouraged
to do this while using our design flow, as our floorplanning algorithm (see
section 3.3.1) will add location constraints of its own without taking these
ones into consideration, potentially leading to conflicts. It is also worth not-
ing that, while traditional DPR design flows require the designer to provide
floorplanning information in the constraint file, this is not required with our
design flow, as the floorplanning will be automated.

Finally, a configuration file has to be filled with several parameters.
Those parameters include:

• the name of the top module of the static part;

• the names of the reconfigurable component and their instances as
stated in the static part;

• the number of relocatable regions in the design;

• the name of the UCF of the design;
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• the part, package and speed grade of the targeted FPGA;

• the clock period of the design (as explained in section 3.3.1, only single
clock designs are supported for now);

• the name of the hard macro used at the static/dynamic interfaces, as
well as its required number for both inputs and outputs;

• finally, the list of every reconfigurable module on which a relocation
will have to be performed.

3.2.2 Automated design flow

Once all inputs have been provided, a configuration script has to be run in
order to set every parameter in all other scripts according to the ones given
by the designer in the configuration file. Then, a simple make command is
enough to launch the design flow. The general overview of the design flow
can be found in figure 3.1. In that figure, the steps that are integrated in
the traditional Xilinx DPR flow are highlighted in blue. The steps that are
available in the literature and that we have scripted are highlighted in green
with dashed lines. Finally, the steps that have not been addressed before
are highlighted in red with thick lines.

First, the static and dynamic parts are synthesized separately ,
similarly to a usual DPR flow. In our case, the tool we use for that step is
Xilinx Synthesis Tool XST [4].

A floorplanning algorithm then uses the information located both in
the synthesis reports of the dynamic modules and in the configuration file in
order to find a valid floorplan for the design. The main goal of a floorplan-
ning algorithm is to find a decent placement of the reconfiguration regions on
the targeted fabric. Although many algorithms (see [16, 53, 54, 55, 45, 18,
60, 47, 59]) exist for floorplanning in the case of traditional reconfigurable
designs, two specificities of relocatable designs prevent us from using them
for relocation. First, these algorithms do not have the constraint of identi-
fying identical regions, which means that the output of these floorplanning
algorithms will not likely be suitable for relocation. Second, most of these
floorplanning algorithms tend to limit the fragmentation of the static part in
order to provide a decreased resource waste. This leads to floorplans where
reconfigurable regions are located right next to each other. However, as
relocation forces us to apply the PRIVATE constraint on relocatable regions
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Figure 3.1 – General view of the proposed design flow
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(see further), the static part will not be able to use any resource inside them.
This can be problematic in the case where regions are adjacent, as it can
cause severe congestion problem to the static part if some of its elements
have to be placed between the relocatable regions.

Thus, we decided to develop a new floorplanning algorithm specially
thought for bitstream relocation. More details about that algorithm can be
found in section 3.3.1.

A constraints generation script then sets all constraints relative to the
relocatable regions accordingly to the method detailed in [25]. According to
this paper, these requirements are:

• (1) origin and destination must have the same shape, size, and ar-
rangement in terms of resources;

• (2) the partition pins between the static part and the dynamic regions
must be placed at the same place relatively to the relocatable regions;

• (3) the static part must use the same resources (routing and logic)
among all relocatable regions.

The constraint (1) is taken care of by our floorplanning algorithm, as
fulfilling it is actually its purpose.

The constraint (2) can be solved by using location constraints for both
inputs and outputs. In our case we decided to put all inputs on the left
border of the regions, and all outputs on the right border. As we prevent
all non-reconfigurable resources from being inside a relocatable region (see
constraint (3)), we are sure that all resources are homogeneous among a sin-
gle column, which means that we can make sure that both the left and right
borders of a region are entirely made of slices. For inputs, the script looks for
the starting slice of the region written by the floorplanning algorithm in the
UCF, and the ending slice for outputs (reconfigurable regions are described
as follows: "AREA_GROUP "partial_region_$region_index" RANGE=SLICE

_X$starting_abscissaY$starting_ordinate:SLICE_X$ending_abscissa

Y$ending_ordinate;").
Each pin can be set to a specific location using the following constraint:

PIN "$instance_name.$pin_name" LOC=SLICE_X$slice_abscissaY$slice

_ordinate; . However, as each slice contains 4 LUTS that can be used as
partition pins, specifying which one will be used is also mandatory, which can
be done as follows: PIN "$instance_name.pin_name" BEL=$bel_name;.
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This also means that we can stack up to 4 partition pins per slice. Thus,
the following is run for all regions:

$ # current_x and current_y are s e t to the s t a r t i n g
$ # a b s c i s s a and s t a r t i n g ord ina t e o f the curren t reg ion
$ # i i s the index o f the current reg ion
$ while [ $placed_inputs − l t $number_inputs ]
$ do
$ f r e e_ lu t s=4
$ while [ $ f r e e_ lu t s −gt 0 ] && [ $placed_inputs − l t

$number_inputs ]
$ do
$ echo "PIN␣\ " rp_inst_$i . module_in<$placed_inputs>\"

LOC=SLICE_X${current_x}Y${current_y } ; " >> $UCF
$ case $ f r e e_ lu t s in
$ 4) BEL=A6LUT ; ;
$ 3) BEL=B6LUT ; ;
$ 2) BEL=C6LUT ; ;
$ 1) BEL=D6LUT ; ;
$ ∗) echo " i n v a l i d ␣number␣ o f ␣ f r e e ␣ l u t s " ; ;
$ esac
$ echo "PIN␣\ " rp_inst_$i . module\_in<$placed_inputs>\"

BEL=${BEL} ; " >> $UCF
$ f r e e_ lu t s =‘expr $ f r e e_ lu t s − 1 ‘
$ placed_inputs=‘expr $placed_inputs + 1 ‘
$ done
$ current_y=‘expr $current_x + 1 ‘
$ done

It is worth noting that the clock input of the reconfigurable part does not
need to be constrained, as clock signals use a dedicated routing structure.

The constraint (3) is caused by the fact that, when reconfiguring a re-
gion, every previous part will be overwritten. In the case of a traditional
reconfiguration, this is not a problem, as the resources inside the region
that belong to the static part will just be reconfigured the same way they
were. However, when relocating a bitstream, the resources that belong to
the static part but located inside the relocatable region will be overwritten
by resources that belong to the static part but in the origin region, poten-
tially causing a mismatch. In order to prevent this from happening, we have
to make sure that if the static uses resources inside the relocatable regions,
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it will use the same resources the same way among all relocatable regions.
However, this can be really tricky, as designers usually do not have that
much control over the placement and routing of the static part. So, it is far
more convenient to prevent the static from using any resources inside the
relocatable regions altogether. This can be achieved by using the PRIVATE

constraint from the PlanAhead tool available in the ISE design suite (figure
3.2 shows how the PRIVATE constraint acts on the routing of the static
part). This is actually the sole reason why our design flow is not compliant
with the more recent tools from Xilinx Vivado, as this constraint still does
not have an equivalent in this design suite.

However, this can not prevent some signals to cross the static/dynamic
boundary. Indeed, the signals that form the interface between the static part
and the dynamic regions (i.e. the inputs of the input partition pins, and the
outputs of the output partition pins) have to cross that border, and belong
to the static part. The solution proposed to this in [25] is to add LUTs
in the signals path right next to the partition pins. As the part of these
signals that will be in the dynamic regions will always have to be routed
to a LUT right next to them, they will be routed the same way across all
relocatable regions. In our design flow, this is done by using a hard macro
(see figure 3.3) next to each partition pin. These hard macros will have
to be instantiated in the static part, and the interfaces signals will be split
so that the output (resp. input) of the hard macros are connected to the
input (resp. output) partition pins, and the signals that were previously
connected to the reconfigurable region will now be connected to the hard
macros instead. The macros locations are constrained using scripts similar
to the ones we used to constrain the locations of the partition pins.

The static part is then implemented by taking into account the con-
straints previously identified, using the Xilinx ISE design suite implementa-
tion tools.

A timing constraining step is then done in order to ensure that the
timing constraints for the regions interfaces will be respected for all regions.
More details about this are provided in 3.3.2.

The dynamic modules are then implemented in only one region us-
ing Xilinx ISE design suite implementation tools, and taking into account
the new timing constraints.
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(a) usual static part routing

(b) using the PRIVATE constraint

Figure 3.2 – Routing of the static part (a) without using the PRIVATE
constraint vs (b) using the PRIVATE constraint
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Figure 3.3 – Short connections between the added LUTs and partition pins

Outputs

Finally, the needed bitstreams are generated, i.e. the bitstream of the static
part, and only one partial bitstream per module, which can be used directly
in the region in which they were implemented. However, as modifications
will have to be performed on them when a relocation is required, the CRC
part of the partial bitstreams has been disabled.

A relocation algorithm is provided, which only changes the FAR(s) in
the partial bitstream in order for it to match the one(s) of the destination
region. While this algorithm is only available in a software version for now,
its code can easily be translated into a hardware streaming module that can
be interface with the Internal Configuration Access Port (ICAP) which could
potentially offer a relocation mechanism with only 1 clock cycle latency.

3.3 New algorithms and techniques for previously
missing steps

While existing work allow for a relocation to be possible, there are still some
tasks that have not been yet addressed in terms of automation. This means
that, while designers can use this technique, it is still quite tedious and
require some long efforts, especially since its most difficult part, i.e. the
floorplanning, has still not been automated.
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3.3.1 Floorplanning algorithm dedicated to bitstream relo-
cation

As no algorithm is currently available for floorplanning dedicated to bit-
stream relocation, we had to develop a new one. As all regions must be
identical, we can divide our algorithm into two steps: pattern (i.e. shape
and resources arrangement) choice, and regions selection (i.e. selection of
occurrences of the selected pattern will be used as relocatable regions).

Pattern Choice

General pattern requirements In order for a pattern to allow bitstream
relocation, it has to fulfill several requirements due to limitations on the
current FPGA fabrics. On Xilinx FPGAs, the reconfigurable fabric is di-
vided into clock regions. Clock regions are groups of resources that are all
connected to the same dedicated clock network. This means that all the
synchronous resources that are located in a same clock region will have to
share the same clock. This is also the reason that our design flow only
supports single clock designs, as our floorplanning algorithm still does not
allow for specific clock regions not to be selected to implement relocatable
regions, preventing the designer from having any control on clock domains.
It is also important to note that every clock region has the same height.

On these FPGAs, the smallest reconfigurable element is called a frame,
which is one clock region high (see figure 3.4). A frame actually corresponds
to a single word in the configuration SRAM. Since frames are the smallest
reconfigurable elements, this means that if a part of a frame is located in
a reconfigurable region, the whole frame will have to be reconfigured (see
figure 3.5). In traditional reconfigurable designs, only adding parts of frames
inside a reconfigurable region would not be a problem since the part of the
frame that does not belong to the region would be reconfigured the same way
it already was (assuming the reconfiguration is glitch-free, and that involved
LUTs are not used in a carry state). However, in case of a relocation, the
part of frames that does not belong to the relocatable region would then be
reconfigured in another way than it was, likely causing dysfunctions in the
design. By forcing each frame to belong entirely either to the static part or
to reconfigurable regions, we can then ensure that relocation will not alter
the state of static resources. As a result, relocation oriented design flows
should always consider only regions that span entire clock regions.

Also, on fairly recent FPGA technologies, such as 7 series, interconnect
tiles are added between slices in an horizontal manner, in order for the clock
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Figure 3.4 – Clock regions and frames on FPGAs

Figure 3.5 – Region actually reconfigured when using only parts of frames
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network to be more easily routed. These interconnect tiles come as pairs
that can not be in two distinct partitions of the fabric. This means that if
one end of a tile is located in a reconfigurable region, the other end must be
as well. As a result, each slice column is either on the left side or the right
side of a interconnect tile, and thus each slice column is only compatible
with a left or right border of a relocatable region (of course, this issue only
concerns columns that are located on the border of a region). Thus, for
these FPGA technologies, the layout description that we use for our pattern
selection must contain information about the compatibility for each slice
column with a left or right border. As a result, our pattern finder must only
consider patterns where the borders are compatible with the interconnect
tiles.

Also, as we decided to place our partition pins on the left and right
borders of the relocatable regions, our pattern must have slice columns on
their borders.

The last requirement is that each region must be rectangular. This
requirement is only induced by our region selection algorithm, and future
work could potentially add the possibility of non-rectangular regions, as
there is no technology barrier to it.

Identifying potential patterns The only data required for pattern iden-
tification is the resource footprint of all relocatable modules in the design.
These footprints can be found in the synthesis reports of most synthesis
tools. In order for all modules to have enough resources to be implemented
in the relocatable regions, only the maximum number estimated for each re-
source type (LUTs, BRAMs and DSPs) is needed. We also add a 10 percent
overhead for LUTs, as modules that needs the maximum number of LUTs
in a reconfigurable region will most likely not be able to be successfully
routed. That percentage is based on experimental results, as we so far have
not seen unsuccessfull implementations of reconfigurable modules using this
overhead.

Few pattern identification algorithms based on resource estimations have
already been proposed in the literature. The solution presented in [13] looks
for all possible patterns that are one clock region high only, and then elimi-
nates the ones that are included in another one. Another solution proposed
in [14] consists in expanding a region that is one clock region high until it
has enough of each resource type, then shrinks it while it still has enough
resources. However, both solutions only consider regions that are only one
clock region high. While the latter stops as soon as one valid pattern is
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found (regardless of if enough occurrences of the pattern are present on the
fabric), we still decided to base our method on this one, as it is easily im-
proved, simple and efficient, and as the former involves many unnecessary
steps and is rather complex. Also, this method does not take into account
the left/right border compatibility.

An example of our method is presented in figure 3.6. We start on the top
left column (one clock region high) of the layout of the FPGA, and shift it
to the right until we find a slice column that can be placed on a left border
(step a), and we extend the region to the right until it meets all the required
resources constraints (step b). We re-extend it until we meet a slice column
that can be placed on a right border (step c). We then shrink the obtained
region from the left until one resource type is not sufficient enough anymore
(step d), and we re-extend it to the left until the next slice column that can
be placed on a left border (step e). By shrinking the pattern from the left
until one resource is missing, we can make sure that this obtained pattern
will not include any other one. This also means that we can search for the
next potential pattern starting from the slice column after the left border of
the previous pattern (step f).

This process is iterated until we meet the right border of the fabric.
Every time a pattern is identical to a previously identified one, it is discarded.
This is then iterated again on each row (a row is one clock region high) of the
fabric. At that point we are sure that we identified every potential pattern
that is one clock region high. This whole process is then reiterated each
time by increasing the height by one clock region until we span the whole
height of the fabric.

Finally, for each pattern identified, we count its number of occurrences
on the target, and the ones that does not appear at least a number of times
equal to the number of relocatable regions specified by the designer are
discarded.

Choosing the final pattern Once all potential patterns have been iden-
tified, we have to choose the one that will eventually be used for relocatable
regions. Since there is no available standard metric for evaluating which pat-
tern will provide the best results, we had to come up with empiric criteria
to eliminate patterns that could possibly lead to implementation problems.

The first problem we noticed is that a lot of patterns only use a few
columns but span a lot of clock regions, resulting in very narrow regions,
especially in cases where one resource type is unused. Since narrow regions
are likely to lead to congestion problems during implementations, we decided
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Figure 3.6 – Example of iterative identification of fitting patterns: needs 8
slice columns, 1 BRAM column and 1 DSP column
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to first eliminate patterns that do not span the minimum number of clock
regions among all patterns.

Another problem that we found is that if the number of occurrences of
a pattern on the fabric is low, it is likely that most of these occurrences will
be located on the same columns of the FPGA but on different clock regions.
This means that the regions that will be selected for relocation will likely be
adjacent to each other, causing congestion problems to the static part since
it can not be placed nor routed between the regions. Thus, we only retain
the patterns that provide the largest number of occurrences on the fabric.

We finally keep the remaining pattern that offers the least wasted re-
sources. In the unlikely scenario where several of the remaining patterns
have the same wasted resources, one of them is randomly chosen.

While these criteria have led to successful implementations so far, finding
a way to weight all these accordingly to the design’s requirements or giving a
designer control over the pattern choice could potentially improve the design
flow.

Regions selection

Once a pattern has been chosen for our relocatable regions, we have to select,
among all occurrences of that pattern on the fabric, which ones will be used
as relocatable regions.

Floorplan criteria The selected configuration must respect two criteria.
First, regions must not be placed too close from each other, once again to
prevent any congestion problems from happening to the static part. Indeed,
as the static part has to respect the PRIVATE constraint, it is likely that con-
figurations where regions are too close to each other would not give enough
space for the static part to be successfully placed and routed. Second, while
it is ideal to give a lot of space to the static part, placing regions too far away
from each other could also increase delays for signals that must potentially
connect two regions together. Placing the regions close to each other would
likely improve performances. As a result, our floorplanning algorithm has to
find floorplans where relocatable regions are fairly close to each other while
still giving enough space for the static part to be implemented. However,
the notion of “close” and “far away” in this case is highly dependant on both
the FPGA technology and the complexity of the static part. This means
that for now, the metrics we present in the next paragraphs are based on
experimental results, and that improvements such as taking into account
the static part complexity can be made.
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Figure 3.7 – Example of distances computation for one region (pattern is
slice-slice-BRAM-slice-slice × one clock region)

Evaluating configurations In order for us to select which configuration
will be used for our design, we have to find a way to compare them efficiently.
For this purpose, we decided to find a function that we need to minimize.
Our goal is that each distance between a region and its closest neighbours are
as close as possible to a value that would let the static part be routed. For
each region that belongs to the configuration being estimated, we compute
the minimal euclidean distance between each border of that region (4, as
reconfigurable regions have to be rectangular) and the closest region (or
target border) inside a quarter plan located between two rays starting from
the border ends and inclined by +/- 45◦from an horizontal line (see an
example on figure 3.7).

We then run two tests for each distance that we thus obtained. First, if
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the distance is less than an empirically defined threshold, a penalty equal
to (distance − threshold)2 is added. This way it is unlikely that a design
where two regions are too close to each other will minimize the objective
function. Second, if the considered distance is the distance between a region
and the fabric’s border, and if it is greater than the threshold, it is discarded.
Indeed, while it is not advantageous to have long distances between regions,
there is no drawback for having a lot of space between a region and a fabric’s
border, as that would greatly ease the routing of the static part.

The function we decided to minimize is the sum of the mean of all kept
distances and their standard deviation. Using the mean of the distances
ensures that floorplans where distances are too long will be discarded. How-
ever, it is still possible to have floorplan where most distances are short, but
one or few distance(s) are critically long, hence the addition of the standard
deviation.

The threshold we used has been empirically set to the number of slices
in a slice column (one clock region high). Indeed, any greater threshold
would cause any vertically aligned regions to have at least two clock region
heights between them (as relocatable regions are aligned on clock regions).
One possible improvement could be to estimate the complexity of the static
part so that the threshold could be decreased for designs where the static
part is likely to be easily routed.

More penalty functions could also be investigated, because while the
square function provides satisfying results, other functions could be more
adapted to this approach.

Reducing the computing time Since the number of different configura-
tions to be evaluated can be really high (N regions amongst M occurrences,
which has a O(M !) complexity), doing an exhausting search can take up
to a few days. Hence, we decided to perform a simulated annealing in or-
der for our floorplanner to find a valid placement in a decent computation
time. At each iteration of the algorithm, one region is randomly swapped
with another one which did not belong to the previous configuration, and
the temperature follows a geometric progression. Of course, configurations
where some regions overlap are immediately discarded, as resources on the
fabric can not belong to more than one region. In that case the swap is
randomly done on one of the regions that overlap.

We have thus obtained a new floorplanning algorithm dedicated to bit-
stream relocation which, while still being based on empirically defined met-
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Figure 3.8 – Example of timing differences for two relocatable regions

rics, is able to provide valid floorplans in a quite respectable time.

3.3.2 New timing constraining technique

When performing a relocation without taking any precaution, it is possible
to encounter timing problems at the static/dynamic interfaces. It is, as a
matter of fact, possible that the timing constraints, that are valid for the
origin region, will not be satisfied in the destination region. Indeed, while we
can be sure that the delays inside the relocatable regions will be the same for
both the origin and the destination region (since both regions are identical
and will be configured the same way as the bitstream is the same), there
is no guarantee that the delays from the static part to the reconfigurable
region, or vice-versa, will be the same across all regions, as the designer does
not have control over the placement and routing of the static part (see figure
3.8).

One simple solution to this problem would be to use synchronous inter-
faces between the static part and relocatable regions, but this would prevent
the user from using asynchronous communication protocols (such as a simple
req/ack protocol) between the static and dynamic parts.

Instead we propose a new technique that ensures that all the interface
delays (i.e. from input partition pin to first register, of from last register
to output partition pin) inside the reconfigurable regions would be small
enough to allow each reconfigurable module to be successfully implemented
in any relocatable region of the design.

Once the static part has been implemented using Xilinx PaR, the tool
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uses FPGA Editor in order to get all the delays in the design. Then, for
each pin that belongs to the interface between a relocatable region and the
static part, the tool finds the maximum delay for that pin among all the
reconfigurable regions. The maximum delay found is then used to constrain
delays for the dynamic modules implementation using the UCF constraints:

PIN "rp_inst_region_number.module_out<pin_number>" TP-
SYNC = regions_output_pin_number;

TIMESPEC TS_from_RM_to_PP_output_pin_number = TO
"regions_output_pin_number" (clock_period - max_delay) ns;

PIN "rp_inst_region_number.module_in<pin_number>" TP-
SYNC = regions_input_pin_number;

TIMESPEC TS_from_PP_input_to_RM_pin_number = TO
"regions_input_pin_number" (clock_period - max_delay) ns;

As the actual implementation of each relocatable module will now take
into account the worst delays for all partition pins, we can be sure that
a relocated module will respect the timing constraints in each relocatable
region.

3.4 Tests and implementation status

This design flow has been fully implemented, and tested on several Xilinx
FPGA targets.

3.4.1 Floorplanning results

As our pattern finder does an exhaustive search of all potential patterns
for a given number of resources, we were able to use it in order to find the
maximum number of relocatable regions that a design can achieve depending
of the resources needed for reconfigurable modules, or, on the other hand,
the typical number of resources allowed for reconfigurable modules for a set
number of regions. Table 3.1 gives an example of the maximum number of
relocatable regions allowed for a design given various resources constraints.
It can be worth noting that bigger or more homogeneous targets allow for
more relocatable regions, as the probability for a pattern to appear more
times on the fabric increases. It is also fairly obvious that smaller modules
lead to more potential relocatable regions.
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#Slices #BRAMs #DSPs Max #Regions

1000
10

10 30
40 20

40
10 10
40 10

2000
10

10 14
40 14

40
10 10
40 10

3500
10

10 8
40 8

40
10 6
40 6

8000 [0-100] [0-100] 4

9000 [0-100] [0-100] 1

Table 3.1 – Maximum number of placeable regions based on needed resources
on a Virtex7 690t

An example result of our floorplanner is given in figure 3.9 for a design
on a Virtex7 690t, on which the reconfigurable modules need a maximum of
1000 slices, 8 BRAMs and 6 DSPs on 8 relocatable regions. We can see on
this example that our floorplanner outputs a fairly regular floorplan, with
regions being relatively close while still giving decent space for the static
part to be routed.

We finally ran some tests regarding computation time of our floorplan-
ning algorithm. It took 58 seconds to find a pattern and place 15 times on
a Virtex7 690t for a resources need of 1000 slices, 10 BRAMs and 10 DSPs
(out of 30 possible locations for each region) using an Intel Core I5-2500
CPU @3.3GHz. This computation time is highly acceptable compared to
both the time it would have taken to do it manually (typically a few hours)
and to the whole design flow time (from synthesis to bitstream generation).

3.4.2 Layout description and supported targets

In order for our floorplanning algorithm to work, we need a description of the
layout of the considered target to find patterns and place them on the FPGA.
We first considered to use the databases provided by the Torc framework
[56]. However these databases do not make the difference between slices M
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Figure 3.9 – Example of the result of our floorplanning algorithm (8 regions,
1000 slices, 8 BRAMs, 6 DSPs) on a Virtex7 690t
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and slices L, which can lead to non-functional relocated modules, nor do
they include the distinction as to whether a slice column can be placed on
a left or right border of a region.

Many Xilinx FPGAs (for example the xc5vlx110t or the xc5vlx330) have
a vertically homogeneous structure (if we only consider reconfigurable re-
sources), which means that for these targets, only the description of one line
(one clock region high) and the number of lines are needed (along of course
with parameters that depend on the targeted series, such as the number of
each resource in one column). Thus, for those targets, only the horizontal
arrangement of resources has to be fully described, as we can consider all
non-reconfigurable resources to belong to one type, which can not be in-
cluded in a reconfigurable region. This presents the main advantage that a
new layout can quickly be described and added to the supported targets.

However, some other Xilinx FPGAs (for example the xc7690t) present
exceptions on their layouts (i.e. one line can be different from the others).
For these targets, the layout must contain the structure of each row.

This layout description has already been included in the flow and tested
on three targets, which are the Virtex5 xc5vlx110t and xc5vlx330, and the
Virtex7 xc7vx690t.

3.5 Conclusion

In this chapter we presented a fully automated design flow dedicated to bit-
stream relocation on Xilinx FPGAs. This design flow is based on techniques
already available in the literature, on the Xilinx ISE Design Suite, and new
algorithms specially developed for answering issues that had not been ad-
dressed yet, which are a floorplanner and a timing constraining step both
dedicated to relocation. This design flow aims at being user friendly, as no
prior knowledge of the FPGA target nor of bitstream relocation is required
from the designer. Also, no user intervention is required once all inputs have
been provided. The additional time induced by the whole flow does not go
above a few minutes, which is negligible compared to both the traditional
design flow time (synthesis and implementation), which can usually take up
to a few hours, and the time it would require to use relocation manually,
which we claim can take up to a few days. This flow has been tested and
validated on three FPGA targets, which are the xc5vlx110t, the xc5vlx330
from the Virtex5 series, and the xc7vx690t from the virtex7 series.

However, while our design flow provides functioning results, it is still
in a early development stage, meaning that a lot of improvements can still
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be made. First, a lot of parameters in our floorplanning are set empirically.
Using complexity analysis on our designs could help adapt 1) the 10% LUTs
overhead used in our pattern finder to the dynamic modules complexity and
2) the threshold used to estimate the ideal distance between relocatable
regions in our region selection step to the complexity of the static part.
Investigating other penalty functions in our distance computation function
could also potentially provide better floorplanning results. Second, our de-
sign flow enforces several constraints that may not be acceptable depending
on the application. Indeed, our design flow is not compliant with multi-clock
designs. Adapting it so that it is not reserved for single clock designs could
greatly increase its number of potential applications. Also, our flow can
only output floorplans with rectangular regions, which can sometimes in-
duce large resource wastes. Supporting non-rectangular relocatable regions
could potentially result in designs that offer a better area efficiency. Long
terms improvements include compliancy with newer Xilinx tools, such as the
Vivado Design Suite, as well as with FPGAs from other manufacturers.

Finally, this design flow has been the subject of an accepted paper pre-
sented in the 19th Euromicro Conference on Digital System Design (DSD
2016), entitled “Autoreloc: An Automated Design Flow for Bitstream Re-
location on Xilinx FPGAs”.

71



Chapter 4

Using Network-on-Chips for
network monitoring

As seen in section 2.4, Network-on-Chips seem to be an interesting commu-
nication architecture in network monitoring applications, as those applica-
tions need communication structures that can support both high through-
puts and high flexibility. Other common architectures lack either flexibility
or throughput capacity. Indeed, while being able to support really high
data rates, point-to-point solutions are by nature inflexible, and therefore
not suitable for network monitoring applications. Bus architectures, while
being very flexible, can not provide an high enough throughput, as only
one communication is allowed at any given time, which is likely to create a
bottleneck in the case of network monitoring, especially when the number
of components connected to it increases. For example, the AXI interconnect
bus from Xilinx has a maximum theoretical throughput of 3.2Gbps [5].

Since both point-to-point and bus solutions are unable to provide both
the flexibility or throughput required for flexible network monitoring archi-
tectures, Network-on-Chips seems like an ideal solutions for these architec-
tures. However, this interconnection structure has not yet been used in the
case of network monitoring, as existing network monitoring architectures
did not focus on both flexibility and high performance at the same time.
This means that the choice of a NoC topology, algorithms and dimensions
will have to be investigated specifically for network monitoring applications.
These NoC characteristics must be able to sustain several (depending on the
number of links available on the targeted board) 10Gbps links.

Our NoC architecture must also be compliant with bitstream relocation.
Particularly, bitstream relocation greatly benefits from having relocatable
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modules as simple as possible. Also, using bitstreams relocation means that
it can be difficult for a module to know where the other modules are located
on the NoC. Adding mechanisms that decides where a module has to send its
output packets in the relocatable units would then add significant complex-
ity to them, decreasing the effectiveness of relocation, as more complex units
lead to less compatible regions. This means that such mechanisms should
not be included in the relocatable modules. As a result, using bitstream
relocation with NoCs would be eased by having a mechanism that provide
the sequence of what relocatable modules a packet has to go through inside
that packet. Moreover, in order to achieve an high flexibility, it is likely
that our functional units will have to be parameterable. While partial re-
configuration can be used to change the functionality of a given region, some
easier changes (for example, changing the offset at which an operation is per-
formed) does not require such an heavy mechanism. Furthermore, having a
dedicated structure in parallel of the NoC for parameterization information
would unnecessarily increase the complexity of the design. This means that
both the sequence of modules a packet has to go through as well as the
parameters of these modules should be provided in the packets.

Also, the fact the bitstream relocation benefits from using simple mod-
ules means that any operation that is common to all our functional units
(for example, communication with routers or data buffering) should rather
be placed outside the reconfigurable regions.

In this chapter we will investigate Network-on-Chips as a potential com-
munication architecture for network monitoring applications. The choice of
the topology, algorithms and NoC dimensions that we will use (related to
the FPGA target of our project) will be presented in section 4.1. A protocol
overlay that is able to both provide the whole sequence of treatments that a
packet must go through as well as to parameterize those treatments will be
presented in section 4.2. Finally, a generic router to functional unit interface
that takes care of all operations that are common to all modules, thus easing
their design, will be presented in section 4.3.

4.1 Choosing the NoC characteristics and dimen-
sions

4.1.1 Overview of the project board

Dimensionning our NoC and choosing its characteristics can vastly depend
on the targeted board. For this project, we have at our disposal a NetFPGA-
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SUME board [6] [64]. This board is part of the NetFPGA project, which
is a collaboration between industrial companies (most notably Xilinx and
Digilent) and academics, which aims at providing an open platform for re-
search in network applications on FPGAs. This board is equipped with a
Xilinx Virtex7 690t (package 1761, speed grade -3) FPGA interfaced with
4 10Gbps SFP+ interfaces, with additional extensions able to support up
to ten 10Gbps SFP+ interfaces. As our version of the board uses 4 10Gbps
SFP+ transceivers, our goal is to provide an architecture able to sustain a
40Gbps throughput, while potentially being able to be scaled to 100Gbps.
This FPGA is made up of:

• 693120 logic cells;

• 52920 Kbit of BRAM;

• 3600 DSPs;

• 30 GTH transceivers;

• Other features of this board are not relevant in the scope of this work.

The NetFPGA project also provides scripts to easily implement the in-
terfaces with the transceivers, using the Xilinx AXI 10G Ethernet IP [1].

4.1.2 NoC characteristics

Topology

Due to the large variety in incoming traffic, it is likely that each pair of
functional units can have to exchange data, which is further emphasized by
bitstream relocation (as a specific functional unit can be placed anywhere
on the NoC). As a result, an high interconnection density is required. This
means that tree-based or irregular topologies are not suited for our case.
Indeed, the tree-based topologies are by nature unable to efficiently manage
a traffic distribution that can potentially go massively between leaves that
are far away from each others [49]. In this case, it is likely that the root of
the tree would create a bottleneck.

On the other hand, mesh topologies provide an higher density in terms
of interconnections between routers. This makes that topology well suited
for our case, which needs to be able to ease the routing between any pair of
routers.
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Switching type

The fact that it is likely that most packets incoming from one input of the
board will not have to go through the same functional units (i.e. will not
go to the same routers) implies that a packet switching approach is more
suitable than a circuit switching one. Indeed, circuit switching approaches
are advantageous when a lot of consecutive packets have to be routed to the
same router. However, the time required to set the communication channel
has a negative impact when that setting has to be done for every packet,
which is likely to happen in network monitoring applications. On the other
hand, while packet switching approaches are not optimal when routing a
lot of consecutive packets to the same destination (as routing information
has to be provided for each packet), it provides better results than circuit
switching when consecutive packets have different destinations. As a result,
Network-on-Chips for network monitoring should use packet switching.

4.1.3 Generation tool

In order to easily generate a NoC for our design, we decided to use the
Atlas NoC generation environment [7] [43]. Atlas is an open-source tool
that can generate mesh NoCs that has been validated on FPGAs. Among
other things, the user can configure the dimensions of the NoC, the routing
algorithm, and the width of the data channels.

The Atlas generation tool has been chosen mainly because it is an open-
source tool, and supports both mesh topologies and packet switching. While
doing a brand new NoC from scratch would have been possible, using a
tool that has already been validated on FPGAs allowed us to quickly get a
functioning Network-on-Chip.

The Hermes NoC [46] has been chosen because it supports both the
topology and switching type required for our application, and is available
in the Atlas generation tool. It is a 2D mesh topology that uses five bi-
directional links per router (four communicating to the neighbor routers,
and one local port that will be use to connect our functional units). Each
port of the routers has a buffer that can temporarily store data in order to
minimize the risks of congestion on a router. The Hermes NoC also claims
to have a low area overhead, which can be advantageous in order to give the
functional units enough resources to perform more complex tasks.
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Routing algorithm

The Hermes NoC in Atlas supports two routing algorithms: XY and West-
first. As stated in [44], the XY algorithm is faster than the West-first algo-
rithm to route packets on an Hermes NoC, as well as being less complex (in
terms of resources used). As a result, we decided to choose to use an XY
routing algorithm on our Network-on-Chips.

4.1.4 Dimensionning the NoC

While choosing the number of routers in our Hermes NoC is dependant on
the considered application, and on the parts of the design that are not part
of the NoC (as the size of the NoC is limited by the resources available for the
NoC), choosing a data width mostly depends on the board on which we want
to implement our designs. The first thing we have to consider in order to
choose our data width is that we should be able to saturate the optical links
that are connected to the board. The 10Gbps transceivers IP is set to be
driven by a clock at 156.25MHz. As stated in section 3.3.1, using our design
flow for bitstream relocation makes it hard to use different clocks inside a
same design. This means that we should use the same clock for our Network-
on-Chip and for our transceivers IPs. Fortunately, synthesis estimations
(from XST) indicate that using a 156.25MHz should not be an issue, as
the estimated maximum operating frequency for the Hermes NoC is about
190MHz. These synthesis estimations are independent from the number of
routers, provided that the NoC’s dimensions are over 3 by 3, because then
every type of router (middle (4 neighbours), side (3 neighbours) or corner
(2 neighbours)) is already represented (see figure 4.1). It also appeared that
these estimations are independent of the data width, which is to be expected
as these are synthesis estimations.

This means that in order to saturate an interface from the output of a
router (or vice-versa, that the input of a router can sustain the traffic incom-
ing from an interface), we need a data width of 10Gbps/156.25MHz = 64
bits. However, the Hermes NoC in Atlas uses credit based transactions (it
also supports handshake transactions, but the Atlas documentation recom-
mends the use of credit-based), which require 2 cycles to transmit a flit
(packets are divided into flits, which are chunks of data_width bits). This
means that we actually need a data width of 128 bits instead of 64.
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Figure 4.1 – Types of routers in a 2D-mesh Network-on-Chip

4.2 Protocol overlay

4.2.1 Motivation

As bitstream relocation benefits from having modules as small as possible
(as it increases the number of compatible relocatable regions), any opera-
tion that is not directly related to the specific task of a module should be
separated from that module. This means that we want our functional units
to be as simple as possible, thus the decision concerning the next functional
unit it has to send a particular packet should not be included in them.
Moreover, the use of bitstream relocation can make it complicated for each
module to know where the other ones are located on the NoC, whereas it
can be more practical to provide that information to a single control unit
outside of the NoC. As a result, our architectures would greatly benefit from
having a mechanism where the list of treatments a packet has to go through
is contained inside the packet.

Also, while partial reconfiguration can be useful in order to modify the
whole functionality of a functional unit, minor modifications such as chang-
ing a parameter of a functional unit does not require such an heavy mech-
anism. Indeed, waiting a few milliseconds (which is the typical time of a
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partial reconfiguration) to make a modification that would require only a
few clock cycles such as for example modify a value stored in a register would
be highly inefficient in terms of timings. Furthermore, having to reconfig-
ure a functional unit in order to change one of its parameters would need
a bitstream for each possible combination of its parameters, which would
result in unnecessarily big storage space and long implementation times for
that functional unit. Moreover, using the NoC structure to transmit pa-
rameter information instead of a dedicated structure means that no other
hardware resource is required. Being able to provide the parameter of a
functional unit in the packet it has to treat would then greatly reduce the
reparameterization times as well as not require unnecessary mechanisms.

Finally, adding the sequence of functional unit a packet has to go through
as well as their parameters inside a packet can drastically increase the head-
er/data ratio. This means that an increasing part of the available bandwidth
would then be used by the header transmission on the NoC. For example,
in packets in which there are as many header flits as data flits, half the
bandwidth would be used by the header. In these cases, we would only be
able to use 5Gbps on our 10G optical links instead of 10Gbps.

In this section, we will describe a new protocol overlay for the Hermes
NoC. This protocol is able to provide the sequence of functional units each
packet has to go through. It can also include the parameterization informa-
tion required by the functional unit. Finally, a solution to limit the header
over data ratio will be presented.

4.2.2 Providing the sequence of treatments to packets

Initial header

On the Hermes NoC implementation from Atlas, the actual data packet is
preceded by a two-flits header that contains the destination router as well
as the size of the packet (see figure 4.2).

This header has to be recomputed after each functional unit.

Adding sequence information in the packets

In order to provide additional information without having to modify the
NoC, the added information should be taken into account in the existing
header. This means that the first flit should still indicate the next router
to which a packet has to be sent, and the number of new information flits
should be added to the packet size flit.
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Figure 4.2 – Organization of a packet in the Hermes NoC (Nd = number of
data flits)
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In order to provide the sequence of functional units a packet has to be
sent to, we obviously need the list of the addresses of routers connected to
these functional units. However, we also need to provide the information
about the number of flits that we added, as only the data flits must be sent
to the functional units. For that reason, we add a flit containing the number
of routers after the packet size one, so that we can know how many flits to
skip before sending the data to the modules.

This new packet organization is shown in figure 4.3.
This sequence has to be updated after each functional unit (see an ex-

ample in figure 4.4). In this example, the source module, which is connected
to the router 0x0000, sends a packet consisting of 4 data flits (0xD100,
0xD200, 0xD300 and 0xD400) that must go through the functional units F
(connected to the router 0x0100) and G (router 0x0101) before being sent
to the sink connected to the router 0x0001. The source must thus forge the
packet (packet A) as follows:

• The next router addresses:0x0100;

• The packet size: 7 (4 data flits plus 3 additional header flits);

• The number of remaining routers addresses: 3;

• The two additional routers addresses: 0x0101 and 0x0001;

• The four data flits.

When the functional unit F receives that packet, it removes the first
flit (as it represents its own router), replace it by the first remaining router
address in the sequence (0x0101) which is the next functional unit to send
the packet to (G). It also decrements the packet size and the number of
remaining routers by 1, and performs its treatment on the data flits before
sending the packet (packet B) to the next functional unit.

Similarly, when G receives the new packet, it replaces the first flit by
the next router address (0x0001) and decrements the packet size and the
number of remaining router addresses. After having treated the data flits,
it finally sends the new packet (packet C) to the sink module.

4.2.3 Parameterization information

While using partial reconfiguration to change the functionality of a region
on the NoC, this technique requires mechanisms that are too heavy for it
to be advantageous in the case of small modifications on a component. For
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Figure 4.3 – Providing the sequence of treatments in packets
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(a) Path of the example packet

(b) Initial
packet (A)

(c) Packet
after first
treatment
(B)

(d) Packet
after second
treatment
(C)

Figure 4.4 – Example of the sequence update on a packet going through 2
functional units

82



Figure 4.5 – Description of the parameterization flit

example, changing the value of a single parameter on a component would
not only involve a reconfiguration time, which can typically take up to a
few milliseconds, but also to generate a whole new partial bitstream with
the new parameter value. On the other hand, using just a simple register to
store and change the value of that parameter would only require a few clock
cycles and no additional partial bitstream.

Providing parameter information in the packets would allow to use the
same hardware resources for both data and parameters, meaning that no
dedicated structure is required for transmitting parameters, thus not in-
creasing the complexity of the design.

Similarly to the router information, each flit containing parameterization
information has to be taken into account in the packet size flit. Also, as not
every module will necessarily have to be reparameterized as each packet
goes through it, we need a way to indicate to which module is a particular
parameter flit supposed to be sent. For this purpose, an additional flit has
been added in which individual bits are used to indicate which next routers in
the packet have to be reparameterized, starting with the most significant bit.
A logical ’1’ means that that component will have to be reparameterized,
a ’0’ means the component keeps its current parameterization. The least
significant bits are also used to indicate the number of parameter flits. The
description of that parameterization fit is given in figure 4.5.

The new header with the parameterization part is described in figure
4.6.

4.2.4 Multipackets

As we increased the header size of our packets on the NoC, we also de-
creased the throughput of actual data that can be transferred on the NoC.
Indeed, the protocol overlay that we added is seen by the NoC as actual
data. For example, if the header is the same size as the data part, only
half the theoretical throughput of the interfaces can be achieved, and even
more so as the ratio header/data can be even higher. Indeed, the minimum
size of an Internet Protocol (IP) packet is 64 bytes, which is equivalent to 4
data flits on the NoC as our data width is 128. Cases where the incoming
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Figure 4.6 – Providing the parameterization information in packets
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traffic consists in a lot of small packets could then results in unacceptable
throughputs.

Hence, we need a mechanism in order to limit the header/data ratio in
our packets. On a network monitoring application, it is highly unlikely that
a single packet would be the only one to have to go through a particular
set of treatments. Indeed, in network monitoring applications, packets are
usually grouped up in flows. Flows are a sets of packets that share common
characteristics. For example, all packets that have the same source, desti-
nation, source port, destination port, and protocol could be grouped in a
flow. As they share common characteristics, it is likely that packets from a
same flow would have to go through the same functional units. For exam-
ple, in the case of a DDOS attack detection system, the malicious packets
are usually sent massively. All suspicious packets going through this system
would then follow the same treatment sequence.

This means that the header of all these packets would be the same.
Grouping data of all these packets would then be possible and would greatly
decrease the header over data ratio, actually increasing the throughput of
the NoC. This would however require a mechanism that stacks and delays
packets in the case where packets from different flows can be interleaved.

However, when actually transmitted to the functional units, the whole
data chunk has to be resegmented into the original packets. This means
that the size of every packet has to be provided in the header. As the
flit containing the number of routers is very unlikely to use more than one
byte (as the maximum value is then 255, and 255 routers is unreasonable to
expect on an FPGA), this leaves 15 bytes unused inside that flit. Also, IP
packets have a maximum size of 1500 bytes (which is 96 flits), so one byte is
enough to store the size of a single packet. As a result, we decided to store
the size of each packet on a remaining byte of that flit.

This allows to group up to 15 IP sub-packets inside a single NoC packet.
Experimental results (see chapter 5) have shown that, with packets of mini-
mal size, grouping 15 packets together allows us to use 85% of the maximal
theoretical bandwidth of the 10G optical links.

The final organization of a packet is given in figure 4.7. It is noteworthy
that only the number of data of the first packet (Nd1) must not be equal to
0, as it is not mandatory to group up packets that way.
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Figure 4.7 – Final organization of packets on the NoC
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4.3 NoC/Functional units interface

Similarly to how bitstream relocation benefits from not having decision tasks
about routing inside the relocatable modules, the communication mecha-
nisms at the interface of the relocatable modules should be as simple as
possible. Also, if any packet buffering has to be done, doing it inside the
relocatable modules would require additional BRAMs and thus complexify
the modules. Finally, the protocol overlay we described in section 4.2 in-
volves implementing additional steps (as the header has to be reorganized
after each functional unit) which do not have to be located inside relocatable
modules.

For these reasons, a generic interface between the NoC and the relocat-
able regions has been developed. This interface provides all the mechanisms
that are required in order to make our protocol overlay transparent to both
the routers and the functional units. This means that the interface must be
responsible for reforging the header of the packets so that it is ready to send
to the next router address of each packet, and for transmitting data flits
from the router to the functional unit and vice-versa. It is also in charge
of reparameterizing the functional unit accordingly to the information pro-
vided in the header. It must also include buffering mechanisms so that a new
packet can be accepted while the functional unit is still treating a previous
one, in order to limit potential congestion issues on the NoC.

4.3.1 Interface overview

The general overview of our interface is given in figure 4.8.
This interface is made of buffers (see section 4.3.2) and 3 modules. The

acquisition module (see 4.3.3) is responsible for managing packets incoming
from the routers and storing them into the input buffers. It also modifies
the headers according to the protocol described in section 4.2, as well as to
reparameterize the functional unit if needed. The unit management module
(see 4.3.4) is responsible for transmitting data flits from the input buffers
to the output buffers. Finally, the release module (see 4.3.5) transmits the
header (previously modified by the acquisition module) and the new data
from the output buffers back to the router.

4.3.2 Buffers

In order to limit congestion on the NoC, we decided to add buffers between
the routers and the functional units, both ways. This way, the router can
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Figure 4.8 – Overview of our router to functional unit interface

still free its load towards the interface even when the functional unit is
treating another one. Similarly, the functional unit can start working on a
next packet even when the router is already busy. As only the data has to be
transmitted to the functional unit, headers and data have different buffers.
These buffers are implemented as First-In-First-Out (FIFOs). Each data
buffer has been dimensionned so it is able to store the maximum number of
data flits in a NoC packet (which is 15×96 flits), so that if a packet is being
accepted by the interface, we make sure that it can be fully transmitted.

We also decided to double those buffers so that while one buffer channel
(0 or 1) is currently being treated, another one can start being filled. As
when the router first starts requesting to send a new packet, no information
about the packet size is given, using only one buffer could potentially lead to
situations where the router starts sending a packet while there is not enough
space in the buffers. In that case, the router would be blocked until enough
space has been freed in the buffers. During that time, all packets that must
go through that router (but not to that interface) would be blocked as well.
Using two buffers and denying the router from beginning to send a packet
would then allow the router to route another packet while enough space is
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Figure 4.9 – Port description of our FIFOs

made, limiting congestion problems.
The port description of the FIFOs is provided in figure 4.9.

Data_in buffers connections

Both of our data_in buffers have their data_in inputs connected to the
data_out of the acquisition module.

The selection of which buffer to write in is made thanks to the write
enable signals (wr_en) also coming from the acquisition module. The empty
signal is used both for the acquisition module to know when an input buffer
is free to store a new packet, and for the unit management module to verify
that all data of a packet has been sent to the functional unit.

Both data_out signals are connected to a 2:1 multiplexer. Which buffer
output is selected is controlled by the unit management module, which also
sends a read enable (rd_en) to the corresponding FIFO. The selected output
is also connected to another multiplexer controlled by the acquisition module
that can bypass the data flow to send parameterization flits to the functional
unit.

The full signal is used as a security for the acquisition module not to write
any more data if the FIFO is full (which should not happen as our buffer
have been dimensionned so that they can store a packet of the maximum
size).

Data_out buffers connections

The data_out buffers both have their data_in inputs connected to the out-
put data from the functional unit. The unit management module uses write
enable (wr_en) signals to select to which buffer the data will actually be
sent. The empty signal communicates to the unit management module
whether or not a buffer can store a new packet.
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Figure 4.10 – Connections of the acquisition module

Data_out signals are sent to a multiplexer controlled by the release mod-
ule, that can select in which buffer to read using the read enable rd_en
signals. The output of that multiplexer is also multiplexed with the output
of the header buffers in order for the release to choose which part (header
or data) of a packet has to be sent to the router.

Similarly to the data_in buffers, the full signal is used as a security to
not overwrite useful data.

Header buffers connections

The header buffers are used to store the headers, previously rearranged by
the acquisition module, and release them once the packet has been treated
by the functional unit. The write signals and input data are provided by the
acquisition module, while the read signals and output data are controlled
by the release module.

4.3.3 Acquisition module

The connections of the acquisition module are provided in figure 4.10.
The acquisition module has three main purposes. The first one is to

manage incoming packets from the router and store them in the buffers.
The second one is to prepare the header so that it is ready once the packet is
done being treated by the functional unit. The last one is to reparameterize
the functional unit if needed.
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As information about the actual content of packets is given flits by flits,
the implementation of this module is based on an Finite State Machine
(FSM). This FSM will not be fully described here, as it has 18 states, how-
ever its main steps will be covered.

Incoming flits management

Flits are transmitted using a credit-based protocol, which means that the
router activates its tx_router signal and waits for the credit signal from the
interface to be activated to transmit the current flit. This is done for each
flit until the packet is fully transmitted. As our buffers are dimensionned so
that they can store a full packet, the credit value is set to 1 until the whole
packet is received. When the router requests sending a new packet, the
acquisition module checks if one of the two buffer channels is free (meaning
that all three buffers of that channel, data_in, data_out and header, are
empty). If no channel is free, the credit value is set to 0 and reactivated
once a channel has been emptied. Once a channel has been selected, it will
be used until the whole packet has been received.

Header management

The first flit to enter the interface is the router address. This flit is discarded,
as it will not be part of the header of the packet that will be released on the
NoC.

The second flit is the packet size flit (the packet size will be noted Ps).
This one will also not be sent to the header buffers, as the size will have to
be recomputed after it has been treated by the functional unit. However,
this flit has to be stored in a register, as it is used in order to know when
the packet has been fully received.

The third flit contains both the number of routers (Nr) and the size
of each sub-packet (Ndi), which are to be stored as well in registers. Nr
should in this case not be equal to 1, as this would mean that we are in the
last router of sequence, in that case the packet should be sent to an output
of the NoC and not to a functional unit.

The next router address is then received. As this will be the first flit of
the output packet, we can now start filling the header buffer. If Nr = 2, no
other router will be next in the header, which means that we can skip to
the parameterization description flit step.

Else we go to a state that gets all next routers. This state uses a down-
counter that is first set to Nr − 2, and that is decremented every time a

91



new flit is received. During the first iteration, Nr − 1 is sent to the header
buffer, as it will be the number of router addresses in the output packet.
After that first iteration, the router address received in the previous itera-
tion is sent to the header buffer. Once that downcounter reaches 0, the FSM
then transitions into the parameterization description flit step.

Parameterization management

When receiving the parameterization description flit, regardless of if the
previous state has been reached by the FSM, there is still one previously
obtained flit that has not been stored if the header buffer yet. If Nr = 2
(meaning that the previous state was getting the next router), the flit that
has to be sent is the new number of routers (Nr − 1). Else the last router
of the sequence has to be sent. During this the last byte of the incoming
flit is stored, as it represents the number of parameterization flits (Np). If
it is null, the FSM transitions directly into the data flits reception. At this
point, we can also compute the number of data flits (Nd) in our packets:

Nd = Ps − (Nr − 1) − Nd

While this could have been computed earlier with the information contained
in the third flit (by adding all the Ndi), this way only requires 3 subtractions
instead of up to 15 adders. The way our parameterization description flit
is build, we have to check its most significant bit. If it is equal to 1, that
means that the functional unit has to be reparameterized, in which case we
go to a reparameterization state. Also, if it is equal to 1, this means that
one parameter flit will not be in the output header. In that case, the number
of parameterization flits Np is decremented by one. If the most significant
bit is equal to 0, but Np is not null, this means that some of the following
functional units will have to be reparameterized. We thus go to a state that
stores all the parameter flits. In any case, all the bits except the ones from
the last byte have to be shifted to the left to update the parameterization
description flit for the output packet. During that step, a flit containing all
the sizes of the sub-packets is sent to the unit management module. The
number of header flits is also sent to the release module.

During the reparameterization state, the module uses the reparam signal
both to force the functional unit to reparameterize itself, and to switch the
input of the functional to the current incoming flit. An important thing
to note is that reparameterizing a functional unit requires that all previous
packets that had to go through that unit with the former parameterization
must be done being treated. As these packets can come from different paths,
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it is possible that a packet that has been sent before the one containing the
new parameters can reach the router after the new one. As we have not
come up with a mechanism that can control this yet, the solution we have
temporarily adopted is to prevent the sources from sending packets to that
interface during an idle time (for now set to 1000 clock cycles) before sending
a new parameterization. This way it is very likely that all packets that had
to use the former parameterization would be done being treated. The FSM
then transitions to a state that manages all other parameter flits (if Np > 1)
or start managing the data flits.

Similarly to the state that manages the remaining routers, the one that
manages the remaining parameter flits uses a downcounter set to Np − 1.
Every time a new flit is received, the downcounter is decremented by 1, until
it reaches 0, at which point the FSM transitions to managing data flits. At
the first iteration, the previously updated parameterization description flit
is sent to the header buffers. After that iteration, the parameter flit received
at the previous iteration is sent.

Data flits management

During that step a downcounter is first set to Nd. Each time a new flit
is received, the downcounter is decreased by 1. At the first iteration, one
header flit still remains to be sent. If Np was greater than 1, that flit is the
last parameter flit, else it is the parameterization description flit. For the
other iterations, the flit previously received is sent to the data buffer, until
the downcounter reaches 0, at which point the FSM transitions back to the
initial state (first router reception) while sending the last remaining data
flit.

4.3.4 Unit management module

The unit management module is pretty straightforward. It uses the flit
containing the sizes of the sub-packets in order to send each packet from the
data_in buffers to the functional unit, using Start and End flags to outline
each sub-packet. Every flit is then modified and sent to the data_out buffers
by the functional unit, that also transmits Start and End flags to the unit
management module. Using these flags, the unit management module can
then compute the new size of each sub-packet and send it to the release
module so that it can insert them in the new header.

Once all sub-packets have been treated, it also triggers the release module
that it can start sending the buffer channel to the router.
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Figure 4.11 – Connections of the unit management module

The connections of the unit management module are provided in figure
4.11.

4.3.5 Release module

Once the unit management module triggers the release module that all data
flits are available in the buffers, it first sends the first flit in the header buffer
(the first router flit) to the router. It then uses the sizes it received from
both the acquisition module and the unit management module to compute
the new packet size and send it as the second flit. It then combines the
next flit in the header buffer and the sizes of the sub-packets from the
unit management module to form the third flit of the packet. The rest is
straightforward as it only needs to empty the header buffer then the data
buffer to send the whole packet.

The connections of the release module are provided in figure 4.12.

4.4 Conclusion

In this chapter we investigated the use of Network-on-Chips for network
monitoring applications. We chose to use the Atlas tool for Hermes NoCs
generation, as it an open source tool that can generate NoCs that have al-
ready been used and validated on FPGAs, as well as having characteristics
that are well-suited for our design choices for network monitoring applica-
tions, such as mesh topologies and packet switching. We gave an example on
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Figure 4.12 – Connections of the unit management module

how to dimension the NoC for a specific board (in this case the NetFPGA-
SUME).

As bitstream relocation is still in its infancy, existing NoC architectures
and protocols involve mechanisms that are not suited for the use of relocat-
able regions. We thus extended the original Hermes NoC protocol in order
for it to solve issues that are raised by bitstream relocation constraints. The
protocol overlay that has been developed is able to provide the whole se-
quence of functional units that a specific packet has to go through on the
NoC, by giving the whole sequence of router addresses to which those func-
tional units are connected. This protocol also allows to provide parameter
flits in the packet, so that small modifications of functional units do not
require a whole reconfiguration. Also, as the increase of the header size
induced by that overlay can be detrimental in terms of achievable through-
put on the NoC, we add a mechanism that allows to provide multiple data
packets in a single NoC packet, provided that all those packets must be
applied the same sequence of treatments. However, this overlay has several
limits. It requires a control mechanism that is able to provide the whole
sequence of functional units each packet has to go through. Also, the use
of the multipackets functionality is conditioned by whether packets can be
grouped up together, which depends on the application.

Finally, we provided a generic interface between routers and functional
units. This interface provides buffers in order to decrease the local conges-
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tion of the router to which it is connected. It also handles all the new mech-
anism involved in our protocol overlay. This interface is particularly useful
when combining NoCs and bitstream relocation, as it moves the communi-
cations from the relocatable units to the interface and makes all the mech-
anisms introduced by the protocol overlay transparent to both the router
and the functional unit. Both these characteristics allow for much smaller
relocatable units, which increases the possibilities of relocations on the de-
sign.
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Chapter 5

Test case: traffic generator

In order to test, calibrate or validate new equipment for network monitoring,
it is mandatory to provide some realistic traffic to it in order to verify its
behavior. However, it is obviously unacceptable to insert some untested
equipment into a real network, as it can jeopardize that network if the
equipment is faulty. One easy solution to test an equipment would be to
record some traces of real traffic and then reinject it in the equipment under
validation. However, this method has two main drawbacks. The first is
that if a specific scenario has to be tested, it needs to be present in the
trace that is provided to the application under test. For example, testing an
application that mitigates a specific type of network attack would require
the trace to contain that type of attack. This method would thus require to
store a lot of different traces, which can lead to huge storage requirements
(for example, storing traces on a 10Gbps for one hour can require up to
36Tb of storage). The traces would then need to be analyzed, which leads
to the second drawback of this method: ethics. With net neutrality being
a central topic in today’s networks practices, storing and analyzing traces
of real internet traffic can become problematic. Obtaining real traces can
thus be difficult for legal purposes, and network providers are unlikely to
transmit traces to third-parties. In order to be able to provide realistic
test conditions for newly developed network monitoring applications, traffic
generators have been introduced.

Traffic generators usually rely on a model that aims at being realistic,
or specifically tailored to test a specific feature (synthetic traffic). These
generators can be used for example to validate the functionality of an ap-
plication, test the maximum throughput that it can sustain or calibrate it if
parameterizations are needed. This allows developers to test their network
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monitoring applications without requiring real traffic traces. Also, not using
traces gives the advantage to easily test the application’s reaction to more
specific traffic scenarios, depending on the degree to which the generator
can be parameterized.

However, commercial traffic generators tend to be highly expensive, and
while they usually provide the ability to parameterize the traffic they gen-
erate, the fact that they are not open-source make that they can not be
adapted to more recent traffic trends, generate a model for newer attacks,
or be expended to generate a new kind of traffic they were not intended for.

Software generators usually focus on providing realistic traffic models,
as the flexibility offered by software solutions allows them to handle var-
ious statistical features to generate models. For example, [57] provides a
framework to generate models based on probabilistic features. Swing [61]
extracts probabilistic distributions from existing traffic by observation con-
struct generation models. However, both do not support traffic generation
for throughputs that are greater than 1Gbps. [19] provides realistic mod-
els that can go up to 10Gbps, however that throughput is only achieved if
packets are big enough (the throughput for minimum size packets (64 bytes)
drops to 6Gbps), meaning that this solution is not suitable for testing sce-
narios involving a lot of small packets.

On the other hand, FPGA-based generators usually focus on providing
higher data rates. FPGEN [51] can achieve 5Gbps, however it has some
really poor configuration capabilities, as primary features such as IP address
or transport layer ports can not be specified. Another interesting approach
is presented in [30]. It is an open-source traffic generator implemented on
a previous board of the NetFPGA project. The model implemented in this
project is based on a skeleton/modifiers structure. Packet skeletons, which
are base IP packets, are sent to the generator which then sends them to a
sequence of parameterizable modifiers that modify the skeleton to achieve
a specific synthetic traffic. For example, if a designer wants to test the
reaction of its design to a port scan (which is a technique used by pirates to
find security flaws that consists in sending request to every port to identify
the ones that are open), he can set the skeleton to a request packet with
the port number set to 0, and then use a modifier that increments the
port number field each time the skeleton is resent. Similarly to FPGEN,
this traffic generator can achieve 10Gbps throughputs for large packets, but
observe a drop when packets get too small.

One particular flaw of this generator is that each time the number or
the sequence of modifiers needs to be changed, a whole reimplementation is
needed, which is very time consuming. This means that if a new equipment
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is under test, the tester either has to plan for all test cases in advance, or
wait for a few hours between each test. Adding flexibility to this approach
could thus improve the time required to start a new test.

In this chapter, we will present an extension to the work done in [30].
The goal is to apply our architecture combining bitstream relocation and
Network-on-Chips to improve both the flexibility and the throughput of
that approach. Using our architectures, if a new traffic has to be gener-
ated, we would then only need to reconfigure the modifiers according to new
model instead of requiring a full reimplementation, which would reduce the
time between each test from a few hours to a few milliseconds. Also, no
reimplementation would then be required if the connectivity between modi-
fiers has to be changed, as it is natively supported by our NoC architecture.
This is also an interesting use case to provide a proof of concept for our
architectures. Indeed, this test case does not involve complex problematics
such as reconfiguration timings, allowing us to validate the functionality of
our mechanisms on a rather simple test case.

5.1 Model presentation

The model that we base our test case upon is made of a set of streams. Each
stream consists in a skeleton, which is the base raw packet that includes
both the Ethernet and IP header, which goes through a list of modifiers.
The modifiers provided in the open-source project [8] are:

• a signed incrementer (the increment value, start and end values, offset
(which byte to increment in the packet), and a skip n packets field can
be parameterized);

• an IP checksum computer;

• an Ethernet checksum computer;

• a rate modifier (the rate value is parameterizable).

This model allows for very specific scenarios to be generated. Figure 5.1
shows an example of the generation of a stream that performs a port scan
on two machines (which IP addresses are 192.168.0.3 and 192.168.0.1) using
this model. In this stream, we need a skeleton whose base destination IP
address is 192.168.0.3 (the address of the first machine on which want to
execute the port scan). The base destination port number is set to 0. IP
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and Ethernet checksum modifiers are included. In order to execute the port
scan, we need two increment modifiers.

The first one manages the least significant byte of the destination port
field (which is coded on two bytes).

• start value = 0;

• end value = 255;

• increment value = 1;

• offset = 40 (least significant byte of the destination port field);

• skip packets = 0;

The second one manages the most significant byte of the destination port
field.

• start value = 0;

• end value = 255;

• increment value = 1;

• offset = 39 (most significant byte of the destination port field);

• skip packets = 256 (one increment every time the first increment’s
loop is done);

A third increment is also required to modify the IP address once the
first machine has been scanned to set the IP address of the second machine.
This increment is parameterized as follows:

• start value = 0;

• end value = -2;

• increment value = -2;

• offset = 33 (least significant byte of the destination IP address);

• skip packets = 65536 (one increment every time the second increment’s
loop is done);

100



Figure 5.1 – Port scan stream generation example
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5.2 Design presentation

The original implementation of this model does include any mechanism that
allows to modify the streams once it has been implemented, except for the
parameterization of the modifiers. This means that every time any mod-
ification has to be made on the streams, may it be adding a new stream,
changing a modifier or inserting a modifier in an existing stream, the whole
design has to be reimplemented. This is very impractical, as waiting a few
hours to be able to test a new scenario on a network monitoring applica-
tions can drastically increase the development and validation time of that
application.

Using our architecture that uses both NoCs and bitstream relocation for
this traffic generation model can greatly enhance the flexibility of the design.
Indeed, using reconfigurable regions to host the modifiers would allow a
designer to change modifiers on the fly. The Network-on-Chip architecture
also improves the point-to-point connections in the original implementation,
as inserting a modifier in a stream then does not require to change the
interconnections, as it is already supported by the NoC. Only adding the
router address to which the new modifier is connected in the packet header
is now required, as well as configuring the new modifier in a previously
empty reconfigurable region (this means that there must be regions that
are still unused to add a modifier). This means that modifying the streams
in the traffic generator would then only require a few reconfigurations and
reparameterizations, which typically takes up to a few milliseconds.

Figure 5.2 shows an example of modifying the same streams using the
original implementation and using our architecture. This figure only focuses
on the modifications on the streams’ elements, as such no parameterization
is shown.

While using bitstream relocation instead of traditional reconfiguration
is not crucial in this test case, as storing the bitstreams should not be an
issue since this generator does not aims at being embedded, and no critical
reconfiguration times have to be met, this is a good way to validate the
mechanisms introduced in our design flow on a real test case, before imple-
menting them on more complex designs. The fact that there is no constraint
on the reconfiguration times also allows us to only focus on the mechanisms.
For these reasons, we decided to use bitstream relocations instead of simple
reconfigurations in this design.
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(a) Using the original implementation

(b) Using our architecture

Figure 5.2 – Example of modifying the streams in the traffic generator using
a) the original implementation and b) our architecture
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5.3 Implementation

5.3.1 Overview

In order to implement our traffic generator on the NetFPGA SUME board
[6], we need to integrate it with the NetFPGA design flow, and to make some
adaptations because of our NoC architecture overlay. Figure 5.3 shows the
global architecture of our generator.

As 4 output 10G optical links are provided on the board, we decided to
use 4 columns of routers on our NoC. Each 10G optical output is connected
to the local port of one router of the top row. More details about our outputs
are provided in section 5.3.3. The number of rows will depend on synthesis
and implementation results, that will indicate how many relocatable regions
our design can afford.

As our NoC architecture requires the sequence of all modifiers a packet
has to go through to be in the header of the packet, the skeleton sender
provided in the original implementation is not suited for our architecture.
Instead, we developed a new sender that also manages the parameterization
of the modifiers. As the data width of our links on the NoC has been
dimensionned to reach 10Gbps (which is the throughput of the 10G optical
links), 4 senders are enough to saturate the 4 outputs. More details about
our senders are provided in section 5.3.2.

5.3.2 Senders

The senders in our test case are responsible for transmitting both the base
packets and the parameterizations to the modifiers. As parameterization
does not require a high throughput, it is unnecessary to parallelize the send-
ing of parameterization. As a result, only one sender is responsible for the
parameterization of all modifiers. Each sender is connected to two data
RAMs (and 2 parameter RAMs for the first sender). This is done so that
a future traffic model can be preloaded onto the FPGA while the previous
one is still generated.

When the first traffic model has to be generated, all data (and param-
eters) are sent to the first ram of each sender, preceded by the number of
data to be sent. Once all data has been sent to the RAMs, a signal is sent to
the first sender (the one that also handles the parameterization). Once that
signal has been received, the sender releases the content of the parameter
RAM on the NoC. A timer (which is for now set to 1000 clock cycles) is then
used to let enough time for all modifiers to receive their parameter packets.
At the end of that timer, the first sender sends a signal to all other senders,
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Figure 5.3 – Overview of our traffic generator
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which let all senders start releasing the content of its ram to the NoC. When
a sender reaches the end of its data RAM, it loops back to the beginning of
the RAM. This enables the same behavior as the skeleton generator of the
original implementation, which sends the same packet over and over.

When a new traffic model has to be generated, a signal is sent to all
senders to make them stop releasing data once they reach the end of their
data RAM content. Meanwhile, the new data and parameters can be sent
to the RAMs that were previously free. Once all the remaining data have
gone through the NoC, the modifiers can be reconfigured. In the current
version of the generator, the reconfiguration still has to be done manually by
the use, which means that waiting for all packets to be done going through
the NoC should not be an issue. However, mechanisms that allows to auto-
matically know when a modifier do not longer have data to treat (and thus
can be reconfigured) should be implemented is the reconfiguration has to be
automated. Once all modifiers have been configured according to the new
model, a signal is sent to the senders, and the generation be start using the
same steps as for the first generation.

5.3.3 Outputs

Once the packets have gone through all the functional units they had to, they
are sent to one of the output to_10G_optical_link modules (which is indi-
cate by the last router address in the packet header). The to_10G_optical_link
are responsible for removing the headers of the packets so that the NoC in-
formation is not sent to the 10G optical links. It also has to resegment the
packets according the third flit of the header, which contains the size of each
sub-packet (see 4.2.4).

The optical links are managed using the AXI 10G Ethernet IP [1] pro-
vided by Xilinx, with a wrapper provided by the NetFPGA flow. The pack-
ets have to be sent to the wrapper using the AXI4-stream protocol, using a
256 bits data width. This means that besides removing the header, the out-
put component also has to group flits 2 by 2 (unless the end of a sub-packet
is reached) as our NoC uses a 128 bits data width.

5.4 Results

To the day of writing this version of this document, we still have not managed
to make our bitstream relocation design flow work with designs that also use
the AXI 10G Ethernet IP. This means that our architecture still has not
been fully validated with the traffic generator. For this reason, a version
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#Resource type Used Available % Util.

LUTs 141186 433200 32.59

Registers 74708 866400 8.62

BRAM36k 340 1470 23.12

BRAM18k 44 2940 1.49

Table 5.1 – Resources used by the 5 by 4 traffic generator using increments
only

using static functional units has been developed in order to validate the
NoC part of our architecture. This implementation results of this version
will be presented in section 5.4.1. Section 5.4.2 will present the issues that
we encountered while using our bitstream relocation design flow in a design
that uses the AXI 10G Ethernet IPs. Since we were not able to make our
design flow work in this particular case, we decided to run tests on this
design flow using simpler test cases. These tests will be presented in section
5.4.3.

5.4.1 Static version

The static version of our traffic generator has been developed in order to
validate the NoC part of our architecture. This static version uses increment
modules as all of the functional units. It also implements the reconfiguration
mechanism which, while we don’t use reconfiguration on this design, allows
to reparameterize the modules on the generator.

The first test we ran was to identify the number of routers that we
could afford to use on the Virtex7 690t (which is the FPGA included in the
NetFPGA SUME board). Considering our constraints of a design clock at
156.25MHz, a data width of 128 bits, we obtained successful implementa-
tions for NoC sizes up to 5 by 4 with the Xilinx Vivado design suite. The
resources utilization after placement and routing is provided in table 5.1.
This design meets all timing requirements and output packets accordingly
to the way the increment modules are parameterized. However, we only
achieved successful implementation for NoC sizes up to 3 by 4 using the ISE
design suite. This further emphasizes the fact that our design flow would
greatly benefit from being compliant with the Vivado design suite if we want
to use it for more complex designs, as the Place & Route algorithm from
the ISE design suite has troubles meeting timing requirements that Vivado
does not.
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We also tested the maximum achievable throughputs of our NoC when
only considering packets whose sizes are the minimal size of an IP packet
(64 bytes). The results provided here are for a NoC which size is 5 by 4.
For this test, 4 streams are generated, all going through each router that
is located between the sender and the output module in the same router
column. This means that each packet goes through 3 increment modules
before being released on the 10G optical links. When only providing one
64 bytes packet in each NoC packets (i.e. without using the multipacket
functionality of our NoC protocol overlay), we reach a throughput of only
about 3 Gbps, which is expected considering that in this case the ratio
useful_data/NoC_packet_size is one third (4 useful data flits for 8 header
flits). Using our multipackets functionality, providing 4 IP packets in each
NoC packet is enough to obtain throughput similar to the ones of the orig-
inal implementation (about 6 Gbps for minimum size packets). Using this
functionality to its maximal potential (grouping up to 15 IP packets in each
NoC packet) we obtained a throughput of 8.5Gbps, which is close to max-
imal theoretical throughput, which is equal to 8.82Gbps (the number of
useful data flits in each packet is 15 × 4 while the header size is still 8 flits,
which gives a ratio of 60/68 = 0.882). This means that, besides improving
the flexibility of the original model implementation, our NoC architecture
can also increase its throughput in the worst case scenario.

Of course, these are only maximum throughputs that have been obtained
using a favorable scenario (only one stream goes through each modifier).
Using a modifier for several streams (i.e. having a router routing several
streams) heavily decreases the throughput of the design, for example, having
two streams going through one router would cut their throughputs by half.
This means that placement of modifiers on the NoC can have a big impact
on its overall performances.

5.4.2 Issues with relocation

While using our bitstream relocation design flow on our traffic generator, we
encounter some issues that seem to come from the way the AXI Ethernet
10G IP from Xilinx is implemented. As stated in section 5.4.1, using the ISE
design suite (upon which our bitstream relocation design flow is based) only
allows for a 3 by 4 NoC to be implemented. As a result, only 4 relocatable
regions will be used in the current relocation version of the generator.
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Prohibiting clock regions for relocation

As stated in chapter 3, our bitstream relocation design flow does not support
designs that use several different clocks. This is because our floorplanning
algorithm does not know where the different clock domains will be located
on the final design. As a result, it can place relocatable regions, which are
in one clock domain, in clock regions that are allocated to another clock
domain. However, our traffic generator has two distinct clock domains, one
at 322.5MHz that is used by the interfaces with the 10G optical links, and
one at 156.25MHz for the rest of the design. This means that we have to find
a way to prevent our floorplanner from placing regions in clock regions used
by the interfaces. Fortunately, the 322.5MHz clock domain only uses one
clock region, which has been identified by using the implementation results
of the static version. In order to be sure that our floorplanner does not use
that clock region, we decided to declare that region as non reconfigurable
in the layout description of the FPGA target. As our floorplanner can not
place any region at places where non reconfigurable resources are present,
we thus make sure that we can use both clock domains in our design.

However, the layout modification is dependant on that particular design,
needs a recompilation of the layout libraries, and has to be done manually.
This means that while it is possible to prevent some clock regions from
hosting relocatable regions, this process has not been automated, and as
such, is not natively supported by our design flow.

Placement conflicts with the Xilinx IP

When trying to implement our traffic generator, errors were occurring during
the MAP process. These errors seem to indicate a conflict between the
placement constraints of the interfaces and our relocatable regions. Indeed,
the Xilinx IP uses Relatively Placed Macros (RPMs) [9]. RPMs are used
by the Xilinx tools to define relative placement of elements, in order to
ensure placements and timings of critical parts of the design. While trying
to implement our design, the RPMs are unable to be respected, which led
us to think that some of our relocatable regions placements were conflicting
with the placement induced by these RPMs. As a result, we identified the
locations of all the parts of the IP by using the implementation results of
the static version (see figure 5.4). On this figure, all resources of the AXI
Ethernet 10G IPs are highlighted in green.

As the IPs use the same RPMs in the static version and in the relocation
one, we manually placed our relocatable regions in locations where no part
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Figure 5.4 – Screenshot of the placement of the AXI Ethernet 10G IPs
(highlighted in green)
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IP #Slices #BRAMs #DSPs Max frequency
(Mhz)

DFT_8 1048 4 8 542.505

DFT_16 1470 5 12 542.505

Cordic_r_8_8_8 272 0 0 775.964

Cordic_v_8_8_8 305 0 0 475.884

Uniform_Generator 129 0 0 1402.328

Table 5.2 – Resources requirements and maximum achievable frequency of
the tested reconfigurable modules

of the IP are placed. The resulting floorplan is presented in figure 5.5. On
this figure, our relocatable are the rectangles encircled in purple.

This led to the same RPM placement errors. We then tried to remove
the PRIVATE constraint from our reconfigurable regions, as this could po-
tentially have prevented some long wires to be connected in the interface,
however, this did not solve the issue. This means that even reconfigurable
designs that do not use relocation would not be successfully implemented
when using that IP.

While no solution to this issue has been found yet, it is still under heavy
investigation as it prevents us from validating the relocation version of our
traffic generator.

5.4.3 Validation of relocation on other designs

As we did not manage to make our bitstream relocation design flow work
with our traffic generation application, we ran tests on simpler designs in
order to validate our approach. For these tests, we use the same FPGA
as for the traffic generator (the Xilinx Virtex7 690T). On this design, we
use 4 relocatable regions. For each tested module, we use its partial bit-
stream to configure it in the first region, and relocate it in the other 3. The
tested modules are: two Spiral DFTs (8 and 16 bits) [10], two cordic opera-
tors from OpenCores [11] and a 128-bits uniform operator described in [58].
Their resource footprint, as well as the maximum frequency estimated by
the synthesis tool are summarized in table 5.2. For each module tested, a
static version is also implemented, and the same inputs are provided from a
RAM to all relocatable and static modules. The output of all modules are
then compared using XOR gates, and an output signal is activated once a
single difference has been observed.

Using our design flow, all these modules have been successfully relocated
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Figure 5.5 – Placement of our relocatable regions in regions not occupied by
the AXI Ethernet 10G IPs
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and validated using our test method. The clock frequency of the system is
set to the board’s 156.25MHz clock, however, timing analysis indicate that
this design would be able to run successfully with clock frequencies up to
450MHz, which is really close to the maximum estimated frequency of our
slowest module (the vectorial mode cordic (cordic_v_8_8_8)).

5.5 Conclusion

In this chapter we investigated the use of our architecture, that combines
Network-on-Chips and bitstream relocation, in the case of a traffic generator.
This generator is based on a traffic generation model that uses static base IP
packets (skeletons) that go through a sequence of parameterizable modifiers
to generate a precise test case. The reconfiguration part of our architecture
allows to change the modifiers that are in that sequence on the fly, while the
NoC natively supports the resequencing of the modifiers. While the initial
implementation of this model lacked flexibility, our architecture would allows
the generated model to be modified within a few milliseconds.

However, despite having validated a static version of this generator, the
use of our bitstream relocation design flow with the AXI Ethernet IP from
Xilinx, which is used by the 10G Ethernet optical interfaces of the board on
which our generator is implemented, rose issues during the implementation
process. These issues are still under heavy investigation.

Additional tests have thus been provided in order to validate our bit-
stream relocation design flow on simpler designs This means that while our
traffic generator has not been yet successfully implemented, all mechanisms
introduced in this thesis have been validated.
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Chapter 6

Conclusion

In this thesis we investigated flexible architectures for high performance data
processing. As up-to-date data processing applications require always more
computation power, fitting all functionalities of a specific application into a
single chip is becoming challenging. As a result, architectures that have to
support high throughputs must also be flexible enough so that their resource
footprints stay reasonable. Network monitoring applications are a perfect
example of this kind of application, as they need to be able to sustain high
data rates while their functionalities highly depend on the incoming traffic.
Studying the use of FPGAs has been done as these platforms are ideal to
address both the flexibility and throughput requirements of network mon-
itoring applications. However, existing solutions were not able to sustain
both these requirements. The architecture presented in this thesis is based
on bitstream relocation, which highly increases the flexibility of FPGA de-
signs, and Network-on-Chips, which are an interconnection structure that
can provide flexibility while being able to sustain high data rates.

6.1 Automated design flow for bitstream reloca-
tion

Bitstream relocation is a technique that allows to use a single partial bit-
stream to configure a functional unit in several regions on an FPGA. This
means that designs that use relocation instead of simple partial reconfigu-
ration see their memory usage and generation times for partial bitstreams
greatly reduced, particularly in designs that use both many reconfigurable
modules and reconfigurable regions.

However, while experimenting with bitstream relocation, we realized that
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using that technique is fairly challenging. Indeed, it requires a deep knowl-
edge of the targeted FPGA, as it involves low level constraining of the re-
locatable regions. Identifying compatible regions for relocation and con-
straining them is also a long and error-prone process. For these reasons,
bitstream relocation is still a very scarcely used technique. Automating it
would then largely improve its accessibility. However, no automated design
flow dedicated to bitstream relocation was available yet.

As a result, we developed a new fully automated design flow for bitstream
relocation. This design flow is based on the Xilinx ISE Design Suite, meth-
ods already described in the state-of-the-art, and new algorithms for steps
that had not been addressed yet. Indeed, in order to automate bitstream
relocation, a floorplanner that is specifically tailored for it has been devel-
oped, as well as a technique to ensure that timings at the interfaces of all
regions will be met when a relocation is performed. This design flow aims at
being user friendly, as no prior knowledge of the specific target or relocation
specific constraints is required from the designer. All the steps are scripted,
which means that once all the inputs and parameters of a design have been
provided, no intervention is needed for our design flow to generate all files
required to run that design and perform the relocations. This makes any
relocation specific step entirely transparent to the user. The time required
by our design flow to perform its relocation specific tasks is also negligible
compared to the time needed by the necessary steps of traditional FPGA
design flow.

This design flow has been the subject of a publication in the 19th Euromi-
cro Conference on Digital System Design (DSD 2016), entitled “Autoreloc:
An Automated Design Flow for Bitstream Relocation on Xilinx FPGAs”.

6.2 Network-on-Chips architectures for

network monitoring

In order to support network monitoring applications, a communication ar-
chitecture that can fulfill both the flexibility and throughput requirements
of those applications is needed. However most common communication ar-
chitectures are usually lacking in one of these requirements. Indeed, while
offering high throughputs, point-to-point structures do not offer any flex-
ibility regarding interconnections. On the other hand, bus architectures
provide high levels of flexibility, however, as only one pair of modules can
communicate at any given time.

We thus decided to investigate the use of Network-on-Chips as a commu-
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nication architecture for network monitoring applications in order to provide
flexibility while still being able to offer high data rates. Based on network
monitoring requirements, the choice of a particular NoC has been made.
The chosen Network-on-Chip is a 2D-mesh Hermes NoC generated using
the Atlas generation tool, which uses a packet switching strategy and an
XY routing algorithm. The data width has been dimensionned so that the
throughput of each router can saturate a 10Gbps Ethernet link, which is
used on the NetFPGA-SUME board available for this project.

A protocol overlay has been added to the Hermes NoC protocol so that
the functional units on the NoC that will be subject to bitstream relocation
can be as simple as possible. This overlay is able to provide information
about the whole sequence a packet has to go through inside that packet.
It is also able to add parameterization flits to bring small modifications
to the functional units. Since both these additions can be detrimental to
the achievable throughput on the NoC, as more bandwidth is then used to
transmit the packet headers, the possibility to group up packets that have to
go through the same functional units has been added. This results in smaller
header over data ratio and thus reduces the throughput drop introduced by
our overlay.

Finally, as bitstream relocation benefits from having relocatable units as
simple as possible, a generic interface between routers and functional units
has been developed. This interface handles all mechanisms introduced by
our protocol overlay, as well as buffering packets so that a router can still
transmit a new packet while its functional unit is still treating a previous
one. This interface thus makes all these tasks entirely transparent to both
the routers and the functional units.

6.3 Traffic generator test case

A test case was required in order to validate our architecture on a real case
application. The choice of a traffic generator for this test case has been made,
as implementing a flexible high throughput traffic generator is required to
test and validate future applications that will use this architecture. It would
also allow us to provide a proof of concept of the mechanisms we have
introduced in this thesis without having to focus on more critical points of
reconfigurable designs, especially reconfiguration times.

This traffic generator is based on an existing open-source project that
generates traffic models based on a skeleton/modifiers template. It sends
a skeleton, which is a base IP packet, to a sequence of modifiers in or-
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der to generate test scenarios. However, the original implementation uses
static modifiers with point-to-point connections, meaning that any time a
modifier or an interconnection between modifiers must be changed, a whole
reimplementation has to done, which can take up to a few hours. Using our
architecture would then allow to make these types of changes in only a few
milliseconds, as changing a modifier would only require a relocation, and
changing an interconnection is natively supported by our NoC communica-
tion structure.

However, while implementing this test case, we encountered some issues
related to using relocation in a design that uses the AXI 10G Ethernet IP
from Xilinx, which is required to manage the 10G Ethernet optical links of
the NetFPGA-SUME board we use for this project. This means that this
test case has not been successfully implemented yet.

While these issues are still under investigation, we used simpler test cases
in order to validate both our bitstream relocation design flow and our NoC
architecture separately. Relocations have been performed on designs that
do not use the troublesome IP from Xilinx. On the other hand, the NoC
architecture has been validated on a static version of the traffic generator.
This means that while we still have issues with the implementation of our
test case, all mechanisms introduced in this thesis have been validated.

6.4 Perspectives and future work

This thesis presented a flexible architecture based on bitstream relocation
and Network-on-Chip that is able to sustain multiple 10Gbps links. How-
ever, this architecture has still not been successfully implemented due to
conflicts happening when using both bitstream relocation and the AXI 10G
Ethernet IP used to handle the 10G optical links. In that regard, short
term improvements must involve the solving of these conflicts in order to
fully validate our architecture on our traffic generator test case.

Once the traffic generator is validated, this architecture will be able to
be used to host various network monitoring applications. This means that
more use cases could be validated, and providing a framework that can han-
dle most network monitoring basic functionalities would be highly beneficial
for the community. While our NoC architecture has been validated using
4 10G interfaces, it is likely that future applications will require more than
40Gbps throughputs. This means that increasing the parallelism in our ar-
chitecture will be required to achieve those increased throughputs. Also,
while this architecture has been dimensionned accordingly to network mon-
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itoring requirements, we believe that combining NoCs and bitstream reloca-
tion can be used in other fields where flexible computing architectures that
can sustain high data rates are required, prime example being Software De-
fined Radio or Cloud-RAN, as they both have strong requirements in terms
of data rates and flexibility. Investigating the adaptation of our architecture
to those fields is thus another possibility for mid-term improvement.

Finally, as our bitstream relocation is based on a design flow that is not
supported anymore, working towards the compliancy with newer tools for
FPGA designs (especially the Vivado design suite from Xilinx) should be
part of the long-term perspectives of this work, as should be the compliancy
with tools from other FPGA vendors.
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Glossary

ASIC Application Specific Integrated Circuit, integrated circuit specifically
optimized for one specific application. 9, 10

AXI Advanced eXtensible Interface, interconnect bus for ARM based sys-
tems. 59, 61, 93–96, 100, 104

BRAM Block Random Access Memory, basic memory element on FPGAs.
10, 18, 47, 55, 61, 74

DDoS Distributed Denial of Service, attack consisting of using multiple
sources to saturate its victim, making it unable to respond. 17

DPR Dynamic Partial Reconfiguration, mechanism that allows to modify
a portion of an FPGA during run-time. 10–12, 17, 36–38

DSP Digital Signal Processing, arithmetic processor. 10, 18, 47, 55, 61

EDA Electronic Design Automation. 19, 20, 22, 25

FAR Frame Address Register, starting position of a partial bitstream in
the FPGA SRAM. 25

FIFO First In First Out, buffering mechanism where data is released in the
same order it was received. 75, 76

FPGA Field Programmable Gate Array, integrated circuit that can be con-
figured at a very low level, using configurable hardware resources. 3,
10–14, 17–26, 30, 34, 35, 38, 45, 47, 48, 50, 54, 55, 57, 58, 60–62, 72,
81, 85, 91, 94, 96, 98, 101, 102, 105

FSM Finite State Machine, behavioral description of an automaton using
states and transitions. 19
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GPP Global Purpose Processor, highly fexible, sequencement based pro-
cessor. 9

ICAP Internal Configuration Access Port, FPGA reconfiguration port lo-
cated on the fabric itself, allowing for self-reconfiguration. 44

IO Input Output. 19, 20, 23

IP Intellectual Property, hardware component provided by a third party.
7, 15, 61, 63, 93–96, 98–100, 104

IP Internet Protocol. 70, 72, 85–87, 95, 100, 103

LUT Look Up Table, configurable logic element able to implement any
n-entry logic equation. 10, 18, 21, 40, 42, 45, 47, 58

NGD Native Generic Database, Xilinx specific file describing a design using
elementary cells. 20

NIDS Network Intrusion Detection System. 17

NoC Network-on-Chip, communication infrastructure made of intercon-
nected routers. 4, 6, 12–15, 17, 28, 30–34, 59–65, 67, 70, 72, 74,
75, 78, 81–83, 86, 89, 91, 93–95, 100, 103–105

NPU Network Processing Unit. 9

PaR Place and Route, process that places and routes the elements of a
design on an FPGA. 20, 53

QoS Quality of Service, measurement of the overall performance of a ser-
vice. 9

RAM Random Access Memory. 91, 93, 98

RPM Relatively Placed Macro, constraint allowing for placed elements
based on the location of others on an FPGA. 96, 98

RTL Register Transfer Level, behavioral, register and cycle accurate de-
scription of an hardware design. 19, 21, 22

SFP Small Form-factor Pluggable. 61
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SRAM Static Random Access Memory. 18, 20, 21, 23, 25

UCF User Constraint File, file provided by a designer to constrain signals
and entities on FPGA designs. 20, 37, 40, 54

XST Xilinx Synthesis Tool. 38
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Résumé 

L’augmentation de la taille des réseaux actuels ainsi que de la diversité 

des applications qui les utilisent font que les architectures de calcul 

traditionnelles deviennent limitées. En effet, les architectures purement 

logicielles ne permettent pas de tenir les débits en jeu, tandis que 

celles purement matérielles n’offrent pas assez de flexibilité pour 

répondre à la diversité des applications. 

 

Ainsi, l’utilisation de solutions de type matériel programmable, en 

particulier les Field Programmable Gate Arrays (FPGAs), a été 

envisagée. En effet, ces architectures sont souvent considérées 

comme un bon compromis entre performances et flexibilité, notamment 

grâce à la technique de Reconfiguration Dynamique Partielle (RDP), 

qui permet de modifier le comportement d’une partie du circuit pendant 

l’exécution. 

 

Cependant, cette technique peut présenter des inconvénients 

lorsqu’elle est utilisée de manière intensive, en particulier au niveau du 

stockage des fichiers de configuration, appelés bitstreams. Pour palier 

ce problème, il est possible d’utiliser la relocation de bitstreams, 

permettant de réduire le nombre de fichiers de configuration. 

Cependant cette technique est fastidieuse et exige des connaissances 

pointues dans les FPGAs. Un flot de conception entièrement 

automatisé a donc été développé dans le but de simplifier son 

utilisation. 

 

Pour permettre une flexibilité sur l’enchaînement des traitements 

effectués, une architecture de communication flexible supportant des 

hauts débits est également nécessaire. Ainsi, l’étude de Network-on-

Chips dédiés aux circuits reconfigurables et au traitements réseaux à 

haut débit. 

 

Enfin, un cas d’étude a été mené pour valider notre approche. 
 
 
 

Mots-clés : FPGAs, Reconfiguration Dynamique Partielle, Calcul 

reconfigurable, Relocation de bitstreams, Traitement de données haut-

débit, Réseaux sur puce 

 

 

Abstract 

The increase in both size and diversity of applications regarding 

modern networks is making traditional computing architectures limited. 

Indeed, purely software architectures can not sustain typical 

throughputs, while purely hardware ones severely lack the flexibility 

needed to adapt to the diversity of applications. 

 

Thus, the investigation of programmable hardware, such as Field 

Programmable Gate Arrays (FPGAs), has been done. These 

architectures are indeed usually considered as a good tradeoff 

between performance and flexibility, mainly thanks to the Dynamic 

Partial Reconfiguration (DPR), which allows to reconfigure a part of the 

design during run-time. 

 

However, this technique can have several drawbacks, especially 

regarding the storing of the configuration files, called bitstreams. To 

solve this issue, bitstream relocation can be deployed, which allows to 

decrease the number of configuration files required. However, this 

technique is long, error-prone, and requires specific knowledge in 

FPGAs. A fully automated design flow has been developped to ease 

the use of this technique. 

 

In order to provide flexibility regarding the sequence of treatments to be 

done on our architecture, a flexible and high-throughput communication 

structure is required. Thus, a Network-on-Chips study and 

characterization has been done accordingly to network processing and 

bitstream relocation properties. 

 

Finally, a case study has been developed in order to validate our 

approach. 
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