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Abstract

Networking monitoring is a growing trend in the field of network manage-
ment and computing. It consists in analyzing and performing tasks on the
incoming traffic on a given link. This can have several purposes: obtain-
ing statistics about the network in order to improve its Quality of Service
(QoS), prioritizing types of packets that require low latency at the expense
of others that do not, or detecting and mitigating malicious traffic. As a re-
sult, processing architectures targeting network monitoring have to be able
to support a wide variety of applications, and thus need to be flexible.

Also the sizes and throughputs of current networks tend to grow drasti-
cally over the years, with no signs of slowing down. As of today, it is quite
common for a single link to support throughputs up to a few hundreds of
gigabits per seconds (Gbps).

This means that architectures deployed for network monitoring need
to support high throughputs as well. As a result, using purely software
architectures is not suited for these applications because, while they can
offer an unmatched level of flexibility, their maximum achievable rates are
not enough. On the other hand, hardware architectures can manage high
througputs, as they are optimized for a specific applications. However this
optimization often comes at the cost of a really poor flexibility.

This led us to investigate the use of programmable hardware, such as
Field Programmable Gate Arrays (FPGAs), as these architectures are usu-
ally seen as a good compromise between performance and flexibility, thanks
to a trending technique called Dynamic Partial Reconfiguration (DPR). This
technique allows to modify the behavior of a given region of the device dur-
ing run-time, which in our case can be useful as it means we can adapt the
data processing based on the nature of the incoming traffic. However, when
used extensively, this technique presents several drawbacks, such as a big
memory footprint for storing all the configuration files. This major draw-
back can be addressed using bitstream relocation. This technique allows to
use a configuration file (bitstream) to configure a functional unit in another
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region than the one for which it was implemented, provided that the origin
and destination region share the same layout. It is thus possible to have a
single partial bitstream for each functional unit that can be used in every
predefined region instead of having one bitstream per region, hence dras-
tically decreasing the memory space required to store all the configuration
files.

However, designing for FPGAs, and particularly using DPR is quite te-
dious, and is often out of the skill set of network engineers, which is even
more true when using bitstream relocation. Our goal here is to provide a
framework that is easy to use by people not familiar with hardware develop-
ment. This is based on combining the reconfigurable properties of FPGAs
with Network-on-Chips (NoCs, which are interconnect structures that offer
both high throughput and high flexibility at the cost of a heavy resource
usage.

In order to ease the use of bitstream relocation, a fully automated de-
sign flow has been developed. This design flow requires inputs such as the
number of reconfigurable regions to be placed on the fabric, the dynamic
functional units to consider, as well as usual FPGA design inputs, and fully
automates all the steps from synthesis to bitstreams generation. It is based
on techniques already available in the literature, the ISE Design Suite from
Xilinx, and new techniques and algorithms that were previously missing
features for a fully automated flow to be possible. Particularly, no previous
work concerning bitstream relocation addressed the automation of the floor-
planning step, which consists in selecting which parts of the fabric will be
used as reconfigurable regions. Our proposed approach for this step takes
advantage of the fact that using relocation requires homogeneous regions,
which drastically limits the exploration space. Thus our algorithm is divided
into two steps. The first one is the identification of a pattern, i.e. the shape,
size and resource arrangement which will be used for all of our reconfigurable
regions, based on criteria such as size and resource waste. The second uses
a heuristic to select which occurrences of the previously identified pattern
will be used as reconfigurable. The criteria for the heuristic is that regions
should be placed the closest possible to each other, in order to diminish the
length of potential communication wires between regions, while still respect-
ing a threshold under which the static part (i.e. the part of the design that
will not be reconfigured during run-time) would encounter congestion prob-
lems. Finally, we also propose a timing constraining technique in order to
ensure that timing constraints will be respected among all regions. This flow
has been tested and validated on simple reconfigurable modules, and adds
negligible computing time compared to a traditional FPGA design flow.
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The proposed design flow gives us flexibility regarding where we can
place our reconfigurable units on the design. However, these units still
have to be able to exchange data efficiently. For this, we need a flexible
interconnect structure that can handle high throughputs. However, the
most common interconnect paradigms, point-to-point and bus, are both
not suited for this, as the former lacks flexibility and the latter is often
seen as a bottleneck, limiting the throughput. As a result, we decided to
investigate the use of Network-on-Chips for our framework. While NoCs
have been a very active field of research in the last decade, it has still
not been used in conjunction with bitstream relocation yet. As NoCs can
come in many forms, we decided to identify and characterize suitable NoCs
for relocation. This led us to use Hermes NoCs, as it supports both the
topology (2D full mesh) and switching type (packet switching) that are the
most suited to both relocation and network monitoring. However, while the
functional units are traditionally responsible for providing the destination
to which it has to send a data packet, this is tricky when using bitstream
relocation, as the destination unit can be placed anywhere on the NoC. Also,
bitstream relocation benefits from having regions as small as possible (as it
increases the number of candidate regions). For these reasons, we decided
to remove the destination specification mechanism from the functional units
and developed a dedicated router/unit interface. This interface allows to use
a new scheme where the whole sequence of functional units that a packet
has to go through is located inside the packet itself. This also allows us to
include parameterization information inside the packets as well as stacking
together packets that must go through the same sequence of treatments.

Finally, we tested our whole framework on a test case. This test case is
based on an existing traffic generator that uses a skeleton /modifier paradigm.
A skeleton (i.e. a base IP packet) goes through a set of modifiers (i.e. treat-
ment units) in order to generate synthetic traffic that can be used to test
new equipment or provide statistics about a network reliability. While the
original version of this generator needed a whole reimplementation when the
modifiers had to be changed (which can take up to a few hours), our ap-
proach would only require partial reconfigurations (which typically require
a few milliseconds). Using our approach would allow network engineers to
save some valuable time when unexpected test scenarios would have to be
generated on the fly. However, while both the NoC and relocation parts
have been validated separately, some unexpected issues remain unresolved
when using both bitstream relocation and the optical links management TP
provided by the board’s vendor.

While the scope of this specific work is network monitoring, it is worth
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noting that the framework proposed in this thesis can be useful for any
application that require both high throughput and high flexibility.
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Résumé

Introduction

La surveillance de trafic est devenue une part incontournable de la gestion de
réseaux. En effet, 'augmentation perpétuelle de la taille des réseaux et de la
diversité des applications transitant dessus nécessitent un suivi grandissant.
Cette surveillance peut avoir plusieurs buts: obtenir des statistiques concer-
nant le réseau afin d’en améliorer la qualité de service, pouvoir prioritariser
certains types de paquets au détriment d’autres pouvant tolérer une plus
forte latence, ou également détecter et mitiger de potentielles attaques, de
plus en plus fréquentes sur les réseaux modernes. Les architectures destinées
a la surveillance de trafic nécessitent donc un haut degré de flexibilité étant
donné la diversité des applications concernées.

Cependant, les réseaux actuels nécessitent de supporter des débits de
plus en plus élevés (allant actuellement jusqu’a plusieurs centaines de giga-
bits par secondes par lien), et les estimations et analyses montrent que cette
tendance ne semble pas ralentir. Cette double contrainte flexibilité/débit
fait que la plupart des architectures usuelles ne sont pas adaptées a ce
genre d’applications. En effet, les architectures purement logicielles, bien
qu’offrant un niveau de flexibilité pour 'instant inégalé, ne permettent pas
d’atteindre des débits suffisants, alors que les solutions purement matérielles
garantissent quant a elles des débits optimisés en échange d’une flexibilité
quasi non existante.

Ces limitations des solutions traditionnelles nous ont amenés a nous
tourner vers des architectures de type électronique programmable, en par-
ticulier les Field Programmable Gate Arrays (FPGAs). En effet, ces ar-
chitectures sont généralement pergues comme un compromis entre débit et
flexibilité. Cette flexibilité est notamment rendue possible par la technique
de reconfiguration dynamique partielle, qui permet de modifier une fraction
du circuit pendant que le reste demeure opérationnel. Cette propriété est
particulierement intéressante dans le cas de la surveillance puisqu’il est pos-
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sible d’adapter les unités de calcul présentes sur la carte au trafic observé en
entrée de la plateforme. En combinant cette propriété au degré important
de parallélisme offert par les FPGAs, il devient alors possible d’atteindre des
débits satisfaisants tout en offrant un certain degré de flexibilité. Cependant,
I'utilisation extensive de cette technique pose probléme quant au stockage
des fichiers de configuration. Pour palier ce probléme, 1'utilisation de la
relocation de bitstreams est envisagée.

L’inconvénient du développement sur des architectures matérielles con-
figurables est qu’elles requierent des compétences qui ne font généralement
pas partie de la formation d’un ingénieur réseau. Ainsi, les acteurs du do-
maine des réseaux ont jusqu’a présent délaissé ces solutions.

L’objectif de cette these est de fournir une structure “gros grain” basée
sur les architectures reconfigurables qui pourrait étre utilisée par des néo-
phytes sans qu’ils aient a déployer les mécanismes inhérents a ces archi-
tectures. Pour ce faire une structure de communication flexible et perme-
ttant des débits élevés sera également nécessaire pour connecter les unités
reconfigurables, ce qui nous a amené a envisager 1'utilisation de Network-
on-Chips (NoCs). Un état de 'art concernant la reconfiguration dynamique
partielle, la relocation de bitstreams et les structures de communication
de type Réseau-sur-Puce sera présenté. Un flot de conception entierement
automatisé dédié a la relocation de bitstreams sera détaillé permettant de
mettre simplement en oeuvre des mécanismes reconfigurables. Une étude et
caracterisation des réseaux sur puce sera effectuée en prenant en compte les
problématiques liées a la fois a la relocation de bitstreams et a la surveillance
de trafic. Enfin, une étude de cas sera éffectuée en utilisant notre structure
pour développer un générateur de trafic flexible.

Etat de ’art sur la flexibilité sur FPGA

Un FPGA est un circuit électronique composé de deux couches. La pre-
miere, dite couche fonctionnelle, est composé de cellules élémentaires con-
figurables, notamment des Look-Up Tables (LUTs), des Block Random Ac-
cess Memories (BRAMSs) et des Digital Signal Processor (DSPs). Ces cel-
lules sont reliés a un réseau, configurable lui aussi. Ainsi, la configura-
tion des cellules et leurs connexions permettent d’obtenir un circuit plus
complexes permettant de réaliser quasiment n’importe quelle application
numérique. La deuxieme couche, dit couche de configuration, est comme sin
nom l'indique directement responsable de la configuration des cellules et du
réseau d’interconnexion de la couche fonctionnelle. Ainsi, I’état de la couche
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de configuration est donc directement responsable de I'application réalisée
par la couche fonctionnelle. La couche de configuration étant basée sur une
SRAM, il est alors possible de ne modifier qu'une partie de cette couche
tout en laissant le reste intact. Cette propriété a amené une technique in-
téressante: la reconfiguration dynamique partielle. En effet, puisqu’on peut
modifier une partie de la couche de configuration en pleine exécution, on
peut donc modifier le comportement d’une partie de la couche fonctionnelle
pendant que le reste continue d’opérer. Pour ce faire, des fichiers, appelés
bitstreams partiels, représentant le contenu de la zone de la couche de con-
figuration & modifier sont utiliser. Ce qui veut dire qu’il faut un bitstream
partiel par fonctionnalité et par zone dans laquelle on veut pouvoir implé-
menter cette fonctionnalité.

En utilisant extensivement cette technique, on peut alors rencontrer des
difficultés a stocker tous les bitstreams partiels. Pour palier ce probleme, on
peut utiliser la relocation de bitstreams. Cette technique permet d’utiliser
un bitstream partiel pour configurer une fonctionnalité mais dans une zone
différente que celle initialement prévue, a condition que les zones initiales et
finales soient homogeénes. Ainsi, on ne nécessite plus qu’un bitstream partiel
par fonctionnalité quelque soit le nombre de régions dans lesquelles elle doit
pouvoir étre implémentée. Cependant, bien que cette technique présente des
avantages non négligeables, elle est délicate a mettre en oeuvre et requierent
des connaissances particulieres en termes de technologies FPGA. Bien que
des efforts aient étés faits dans la littérature pour faciliter ce processus,
aucun flot de conception ne 'automatise completement. Son utilisation reste
donc pour l'instant marginale et réservée aux experts.

L’utilisation extensive de la reconfiguration dynamique partielle améne
également un probléme de connectivité entre les différentes unités de calcul
reconfigurables. En effet, avoir un grand nombre de possibilités quant au
placement de ces unités implique également qu’il y a un grand de connexions
potentielles entre les différentes zones reconfigurables du FPGA. Ainsi, il
est nécessaire de déployer une structure de communication qui soit a la
fois flexible et performante en termes de débit pour connecter les unités de
calculs. Nous nous sommes pour cela intéressés aux NoCs. Bien que les NoCs
aient étés un sujet de recherche tres actif au cours de la derniére décennie,
aucune implémentation n’a été réalisée conjointement & de la relocation de
bitstreams. Ces réseaux ayant beaucoup de caractéristiques paramétrables,
il faudra alors les caractériser de maniere adéquate aux problématiques de
relocation et de surveillance de réseau.

Ainsi, les trois prochaines parties de cette thése concerneront:
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e un flot de conception complément automatisé dédié a la relocation de
bitstreams;

e la caractérisation et le dimensionnement d’un NoC adapté a la reloca-
tion et a la surveillance de trafic;

e le développement d'un cas d’étude permettant de valider notre ap-
proche sur un exemple concret.

Flot de conception automatisé pour la relocation de
bitstreams sur FPGAs Xilinx

Afin de pouvoir efficacement utiliser la relocation de bitstreams, et ainsi
pouvoir éviter des problemes de stockage des bitstreams partiels dans le
cas d’une utilisation extensive de la reconfiguration dynamique partielle, il
parailt nécessaire de développer un flot de conception permettant d’automatiser
ce processus. En effet, les étapes de conception liées & cette technique sont
longues, fastidieuses et propices aux erreurs. Certaines de ces étapes ont
déja été détaillées dans la littérature, bien que non scriptées. Cependant,
d’autres étapes restes manquantes dans I'état de I’art, notamment un algo-
rithme de floorplanning dédié a la relocation, et une méthode pour assurer
le respect des contraintes temporelles aux interfaces des zones relogeables.

Le flot ainsi développé se base sur des éléments détaillés au préalable
dans I’état de 'art, la suite ISE Design Suite de Xilinx, et des nouveaux
algorithmes traitant les étapes jusqu’alors manquantes. Ce flot entiérement
automatisé demande en entrée le nombre de régions relogeables souhaitée
par le concepteur, la bibliotheque des unités reconfigurables a implémenter
ainsi que les parametres de flot de conception classique sur FPGA. Une fois
ces entrées fourniés, aucune intervention n’est nécessaire a l’exécution du
flot entiérement articulé a l’aide de scripts, qui produit automatiquement
tous les bitstreams nécessaires a I’exécution de I'application.

L’algorithme de floorplanning (i.e. la sélection des zones reconfigurables
sur la cible FPGA) prend avantage du fait que les régions doivent étre ho-
mogenes (en termes de taille, de forme, et d’agencement des ressources), ce
qui limite grandement ’espace des solutions potentielles. Ainsi, cet algo-
rithme se divise en deux étapes. La premiere consiste a identifier un pattern
(i.e. (taille, forme, agencement des ressources) qui sera commun a toutes
les régions relogeables du design. La deuxieme étape consiste a sélectionner,
grace & une heuristique, quelles occurrences de ce pattern sur la carte seront
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effectivement utilisées en temps que régions reconfigurables. Cette heuris-
tique, plus précisément un recuit simulé, cherche & minimiser la distance
entre les régions retenues (afin de diminuer les délais entre deux zones) tout
en s’assurant que ces distances reste supérieures a un seuil (afin d’éviter tout
probleme de congestion pour les ressources devant étre placées ou routées
entre ces zones).

Le flot complet a été testé et validé sur des exemples simples et produit
des circuits fonctionnels, tout en rajoutant des temps de calculs liés aux
étapes de relocation négligeables comparés au temps d’implémentation d’un
flot de conception traditionnel.

Utilisation des Network-on-Chips pour la surveil-
lance de trafic

Bien que le flot de conception présenté dans la section précédente offre de la
flexbilité au niveau du placement des unités de calculs sur le FPGA, il est
également nécessaire pour ces unités de pouvoir communiquer entre elles.
Il faut pour cela choisir une structure d’interconnexions adaptée. La struc-
ture choisie devra évidemment pouvoir gérer des débits élevés tels que le
requierent les applications de surveillance de trafic. Ainsi, les structures
de type bus sont a proscrire car elles représentent généralement un goulot
en terme de débit. Egalement, I'utilisation massive de reconfiguration dy-
namique partielle implique que les unités peuvent étre placées n’importe ou
sur la cible. Ainsi, il est nécessaire d’avoir une infrastructure de communi-
cation flexible. Pour cette raison, les connexions de type point a point sont
également a proscrire.

Nous nous sommes donc intéressés a 1'utilisation de structures de type
NoC pour interconnecter les unités de calcul. Les NoCs sont en effet des
structures de communication flexibles permettant des débits élevés, au prix
d’un cofit élevé en termes de ressources électroniques. Les NoCs étant des
structures pouvant varier selon diverses caractéristiques, il a fallu carac-
tériser et dimensionner un NoC en adéquation avec les problématiques de
relocation et de surveillance de trafic, ce qui nous poussé a retenir des NoCs
de type Hermes.

Cependant, bien que l'usage classique des NoCs requierent que ce soit
les unités connectées qui décident de la destination des paquets qu’elles en-
voient, 'utilisation de relocation de bitstreams rend ce mécanisme difficile.
En effet, 'unité de destination pouvant alors étre connectée n’importe ot sur
le NoC, il devient compliqué pour 'unité d’émission de connaitre les adresses
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des autres unités. Ainsi, une interface dédiée routeur/unité de calcul a été
développée afin de décharger les unités de ce mécanisme. Cette interface
étend le protocole des NoCs Hermes pour intégrer plusieurs fonctionnalités
simplifiant 'utilisation de relocation avec les NoCs, notamment la possi-
bilité d’indiquer la suite des unités a traverser par un paquet a l'intérieur
méme de ce paquet, I'ajout de données de parametrisation au sein de en-
tétes des paquets, et la possibilités d’empiler plusieurs paquets ayant des
caractéristiques communes.

Ainsi, nous avons mis au point une structure d’interconnexion dédiée a
la relocation de bitstreams a la fois flexibles et haut débit.

Cas d’étude: générateur de trafic

Afin de valider notre approche complete, un cas d’étude a été mené. Nous
nous sommes intéressés a un générateur de trafic pour plusieurs raisons. La
premiere raison est que ce type d’application ne requiere pas de s’adapter aux
trafic entrant puique celui-ci est inexistant. Ainsi, il est possible de valider les
mécanismes proposés dans un contexte simplifié, sans avoir a tenir compte de
problémes tels que la gestion des temps de reconfiguration, souvent critique
dans les circuits reconfigurables. Egalement, le développement d’une telle
application nous permettrait également par la suite de la réutiliser pour
tester d’autres circuits plus complexes.

Le générateur ainsi réalisé se base sur un modele pré-existant reposant
sur une structure squelette/modificateurs. Un squelette (i.e. un paquet IP
de base) est émis a une série de modificateurs (i.e. des unités de calcul)
agissant sur le squelette pour obtenir un trafic réaliste. L’inconvénient de
I'implémentation initiale de ce modele est qu’elle n’utilisait pas de reconfig-
uration, ainsi, lorsqu’un modificateur devait étre changé, une réimplémenta-
tion complete était nécessaire, ce qui peut prendre jusqu’a plusieurs heures.
En utilisant notre approche, le changement de la série de modificateurs a
utiliser ne requiere que des reconfiguration partielles, ce qui prend en général
quelques millisecondes.

Lors du développement de ce cas d’étude, les parties NoC et reloca-
tion de notre approche ont chacune été validées séparément. Cependant
des problémes restent non résolus lorsqu’on utilise notre flot de conception
conjointement au module gérant les interfaces optiques fourni par le con-
structeur du FPGA. Ainsi, le générateur n’a pas pu étre entiérement validé,
bien chaque partie de notre approche le soit.
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Conclusion

Cette these propose une approche “gros grain” visant a simplifier 'utilisation
de circuits reconfigurables pour des personnes extérieures a ce domaine.
Cette approche utilise conjointement la relocation de bitstreams et les Network-
on-Chips pour offrir une architectures flexible supportant de hauts débits.
Pour mettre en place cette architecture, un flot de conception entierement
automatisé dédié a le relocation de bitstreams a été développé. Egalement,
une étude des NoCs en adéquation aux problématiques de relocation et de
surveillance de trafic a été menée. Cette approche a été partiellement validée
grace a un cas d’étude sur le développement d’un générateur de trafic.

Bien que cette approche ait été détaillée spécifiquement dans le cadre de
la surveillance de trafic, il pourrait étre intéressant de I’adapter a des do-
maines d’application présentant des contraintes similaires, a savoir flexibilité
et haut débit.
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Chapter 1

Introduction

1.1 Context

The growing nature of current networks comes with the need for measuring
or analyzing various characteristics on a given network. This can be done
to fulfill different goals. Having detailed information on the traffic going
through a network at a given time can be used in order to improve the
Quality of Service (QoS) of the network. Critical packets can for example
be tagged with a high priority while packets that do not have strong latency
constraints can be postponed. Another objective of network monitoring is
to detect and mitigate attacks, as networks are often key targets for always
more complex attacks.

However, up-to-date networks are often required to be able to support
very high rates that can sometimes go up to a few hundreds of Gigabytes per
second. This makes using purely software solutions for network monitoring
rather impractical. Indeed, while software architectures (such as Global Pur-
pose Processors (GPPs) or Network Processing Units (NPUs)) benefit from
unmatched flexibility as well as easier and quicker developments, these come
with a major drawback in terms of achievable rates. Their sequential nature
means that only one instruction can be run at a time, making it impossible
to target networks whose rates are above a few Gigabytes per second. On the
other hand, hardware solutions can achieve really high throughputs thanks
to the ability to massively parallelize computations. Purely hardware archi-
tectures (such as Application Specific Integrated Circuit (ASICs)) are often
designed in a way that optimizes every inner part for the targeted applica-
tion. This usually allows to achieve high performance at the cost of 1) long
development times, 2) close to no flexibility, as no modification can be done
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once the design has been implemented and 3) really high development and
production costs. However, networking applications usually require short
development times, as the network landscape is in constant evolution. Also,
as monitoring applications can depend on the nature of the monitored traf-
fic, architectures that target these applications either have to support every
application at once or be able to give enough flexibility to adapt to the
traffic. As the number of different applications makes it impractical to im-
plement all of them on a single chip, architectures considered for network
monitoring should offer enough flexibility to adapt to the incoming traffic.
Thus, hardware-only solutions are not well suited to network monitoring
because of both development times and lack of flexibility.

As software and hardware solutions both have strong limitations in re-
gards to network monitoring, it could be interesting to explore the use of
firmwares such as Field Programmable Gate Arrays (FPGAs) for such ap-
plications. Indeed, these types of solutions are often regarded as a good
compromise between hardware and software architectures. FPGAs can be
seen as matrices of elementary cells called Look Up Tables (LUTSs), which
can all independently be configured to perform any basic logic operation.
Other cells are also usually available on an FPGA fabric, such as Block
RAMs (BRAMS) used to store information and Digital Signal Processing
(DSP) units that can perform complex arithmetic computations. All these
cells are connected to a configurable routing structure, allowing them to be
combined in order to perform complex applications. While these architec-
tures can not achieve such a high level of optimization as a purely hardware
solution, they can still benefit from massive parallelism properties, allow-
ing them to achieve much higher rates than software solutions. Also, the
fact that FPGAs can not be as much optimized as ASICs also means that
development times are typically smaller for the former, but it still can not
compete with software solutions in that regard. Their configurable nature
also makes it possible to reset the fabric’s behavior even after a design has
already been implemented, while such a feat is not possible for ASICs. A rel-
atively recent feature called Dynamic Partial Reconfiguration (DPR) takes
it even further by making it possible to reconfigure only a portion of the
fabric while the rest is still operating. This seems particularly interesting in
the case of network monitoring for two reasons: 1) it makes it possible to
add new features to an existing system without having to reset the whole
device, which is well suited for applications that are likely to need updates
and 2) it also allows the fabric to modify its behavior depending on the
traffic being monitored. So FPGAs, while not benefiting from a level of
flexibility as high as software solutions, as well as not being able to achieve
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such high levels of performance as purely hardware architectures, seem to
be well suited for network monitoring, where data has to be processed at
high throughput and in a flexible way

1.2 Objectives

One of the primary objectives of this thesis is to find dedicated architectures
for network monitoring using FPGAs. These architectures have to be able
to meet the strong throughput constraints required by up-to-date networks,
while providing enough flexibility to be able to host different processing units
based on the traffic being monitored, as well as to be able to be updated
without having to stop the whole system.

In order to achieve this, Dynamic Partial Reconfiguration of FPGAs will
be explored as it offers great possibilities for implementing flexible designs
on a platform that is likely to support high rate processing. However, when
dealing with highly flexible designs, DPR often comes at the cost of increased
compilation times and memory usage. Usually, reconfigurable designs are
divided into two distinct parts: 1) the static part, which comprises all the
parts of the design that will always have the same functionality throughout
the course of execution of the application, and 2) dynamic regions, which
can host precompiled units and swap between them during the execution
using configuration files called partial bitstreams. When a reconfigurable
module has to be implemented in several reconfigurable regions, one partial
bitstream is needed per region. So, in case of a design where many differ-
ent modules have to be implemented in a lot of regions, the compilation
times and memory space needed to store each partial bitstream can greatly
increase. For example, if 20 modules all have to be implemented in 20 re-
gions, 400 (20 x 20) partial bitstreams will have to be compiled and stored
in memory. While memory storage is usually critical in embedded systems,
where the available memory space is limited, it can seem to be irrelevant
in the case of network monitoring devices that are likely to be placed in
servers where memory space is not a problem. However, some critical ap-
plications may need a really low latency for a reconfiguration. For example,
we can consider an application where a platform is hosting algorithms for
detecting and mitigating network attacks. While the detection part of these
algorithms would have to be implemented in the static part of a design, the
mitigation part would more likely be inactive most of the time, thus allow-
ing the designer to implement that part as a reconfigurable module. So, in
this scenario, when an attack is detected, a reconfiguration request would

24



be triggered to implement the mitigation part, which obviously should be
done as quickly as possible. Storing the partial bitstreams in a fast memory
placed close to the FPGA fabric is then needed to decrease the time between
a reconfiguration request and the availability of the module on chip. How-
ever, fast memories are often really expensive, so decreasing the memory
footprint of partial bitstreams becomes crucial. Thus, we have investigated
bitstream relocation in order to reduce the memory space required to store
our partial bitstreams. This technique allows a partial bitstream to be used
to configure a dynamic module in a region it was not implemented for. With
bitstream relocation, only one partial bitstream is needed per dynamic mod-
ule whatever the number of regions in which it has to be implemented is.
Taking back the previous example with 20 modules and 20 regions, only 20
partial bitstream are now required instead of 400, resulting in shorter com-
pilation times and smaller memory space. However, bitstream relocation
comes with very strong constraints which makes it a long and error-prone
process. Unfortunately, no effort that we are aware of has been made to
automate this process. Another problem with bitstream relocation is that
it requires extensive knowledge of the considered FPGA fabric which would
not be needed otherwise when working with non-relocatable designs. As a
result, bitstream relocation is still a very rarely used technique due to the
fact that it is quite difficult to perform. Developing an automated design
flow dedicated to bitstream relocation while keeping the steps related to
relocation entirely transparent to the user is thus another key objective of
this thesis.

While Dynamic Partial Reconfiguration offers flexibility in terms of the
available algorithms on the FPGA fabric at a given time, it seems unlikely
that every packet on a 100 Gbps stream would have to be applied the same
treatments. Instead, network monitoring applications usually start with a
classification step whose results can be used to identify which algorithm
should be applied to each packet. This means that each packet is likely
to only need to go through a subset of all algorithms implemented on the
fabric. Hence, point-to-point connections between treatment units is not
suited for such applications, as these routing architectures force a unique
path for all packets. As a result, we also need a flexible routing structure.
However, this is impractical using DPR. Indeed, the latency introduced by a
reconfiguration implies that this technique is not suited for applications that
require a lot of connection switching. For that reason, using DPR on routing
structures is usually considered bad practice. Among existing techniques for
flexible routing, the most common are bus interconnections and Network-
on-Chips (NoCs). While bus interconnects are usually well-documented and
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easy to use, they suffer from the fact that only one connection between two
elements is allowed at any given time, greatly impeding the massive paral-
lelism offered by FPGA fabrics and, as a result, creating a bottleneck that
makes it unlikely to meet the throughput requirements of network monitor-
ing applications. On the other hand, NoCs seem well-suited to fully exploit
the massive parallelism of hardware architectures. Indeed, a NoC consists
in a group of routers, each interfaced with its neighbors, and that all have a
local connection, typically interfaced with a computational unit. This struc-
ture allows for multiple connections to be active simultaneously. NoCs have
been a very active field of research in the past decade, and many topolo-
gies and routing algorithms have already been proposed. Finding suitable
topologies and routing techniques that allows to meet both flexibility and
throughput criteria will be a challenge to investigate in this thesis.

Also, while in NoCs the computational units that are interfaced with
the routers are usually responsible for determining which router they should
send their packets to, relocatable designs usually require the dynamic re-
gions to be as small as possible in order to limit the area waste introduced
by relocation. Moreover, relocation constraints usually makes it so that the
regions need to be small for a relocation to be performed in a high number
of regions. To simplify, the smaller the regions are, the higher the number of
possible relocations is. As smaller regions are tied with less complex mod-
ules, this means that reconfigurable modules would really benefit from being
as less complex as possible. As a result, it would be unoptimal to include a
mechanism responsible for determining the next router in the reconfigurable
units. As this information has to be given to the routers interfaced with
the computational units, this means that we need to insert mechanisms to
handle this between the routers and the computational units. Finding and
implementing such mechanisms is essential to ensure enough flexibility in
our architectures.

Finally, network monitoring architectures have to be tested before be-
ing deployed. In this regard, a realistic and configurable traffic generator is
needed in order to ensure the validity of our approach. Fortunately, some
traffic generation models have already been developed, that are based on
elementary modifiers that are applied to a common packet. However, cur-
rent implementation of such models are highly static, in the sense that once
a behavior has been set, changing it needs a complete recompilation of the
design, which can take up to several hours. Our approach is particularly well
suited for this kind of model, as we can compile every elementary modifier
as a reconfigurable module. Changing the behavior of the generator would
then only require a few reconfigurations (which typically take a few millisec-
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onds) instead of a complete recompilation. Implementing these generation
models using our architectures would then not only validate our approach,
but also be used to test more complex future applications that would use
these architectures.

1.3 Thesis structure

This document is structured as follows.

Chapter 2 will provide a background on network monitoring applica-
tions and architectures to identify the constraints we will have to meet in
our designs. It also presents a state-of-the-art on reconfigurable designs
and Dynamic Partial Reconfiguration on FPGAs, as well as an introduction
to bitstream relocation and the constraints that have to be respected for
this technique to work. An overview of Network-on-Chips and their vari-
ous characteristics on which we will base our design choices will finally be
presented.

Chapter 3 will present a new fully automated design flow dedicated to
bitstream relocation on Xilinx FPGAs. This design flow is based on existing
design flows, techniques already described on the literature, and new algo-
rithms specifically developed to address steps that were previously missing
in order for a relocation automated design flow to work. Specifically, the
lack of a floorplanning algorithm dedicated to relocation as well as a timing
constraining technique for relocatable modules have been addressed. This
tool aims at being user-friendly, as no prior knowledge of the design target
is needed by the designer, and no intervention is required once all sources
and parameters have been provided. This tool provides successful imple-
mentations in only a few additional minutes over a whole traditional FPGA
design flow.

In chapter 4, the use of Network-on-Chip architectures for network mon-
itoring applications will be investigated. The choice of an Hermes NoC and
its characteristics will be justified according to constraints induced by net-
work monitoring requirements and the FPGA available for this project. This
chapter will also present an extension to the protocol used in the Hermes
NoC in order to ease and optimize the use of bitstream relocation on this
architecture. A generic interface between routers and relocatable modules
will also be presented, which makes all the new mechanisms induced by our
protocol extension transparent to both the NoC and the relocatable mod-
ules. This interface also moves heavy mechanisms such as buffering away
from the relocatable modules, in order to decrease the complexity of the
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reconfigurable parts of our designs.

Chapter 5 will present a case study for our architecture that combines
both bitstream relocation and Network-on-Chip. This case study is a traf-
fic generator based on an existing generation model that was previously
lacking in terms of flexibility. While the original implementation of that
generator required a full reimplementation as soon as the model needed to
be changed, using our architecture could potentially only require a few re-
configurations, which can drastically reduce the time required to generate
a new traffic model. However, issues are still unresolved when using both
bitstream relocation and the AXI 10G Ethernet Interface [1] Intellectual
Property (IP) from Xilinx, which is required for our application. In that
regard, we thus provided simpler test cases to validate our NoC architecture
and our bitstream relocation design flow separately.

Finally, chapter 6 will summarize our contributions and give conclusions
based on the results obtained with our architecture. It will also present the
perspectives about the future work and improvement that can be considered
based on this thesis.
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Chapter 2

Background and state of the

art on flexible designs on
FPGAs

2.1 Network monitoring

Network monitoring is becoming a necessary task for network managers, as
the more and more extensive use of IP networks brings the need to both
gather and interpret information about the state of a network as well as to
detect and possibly mitigate some potentially malicious packets on a that
network.

Network monitoring applications can cover various purposes. Network
engineering can be done through the gathering of information that can be
used in order to improve the Quality of Service (QoS) of a given network
based on the incoming traffic. A big part of those applications usually in-
volves a traffic classification step. Traffic classification consists in sorting
the incoming traffic following predefined criteria. One goal of classification
can be to get information on which applications the incoming traffic is made
of in order to get statistics about a network’s usage. Another goal can be
to filter the traffic in order to apply treatments to some packets if they cor-
respond to a specific set of characteristics. Also, using traffic classification,
it is possible to prioritize some critical parts of the traffic in order to reduce
their latency, which usually comes at the cost of delaying other parts of the
traffic. For example, some applications types such as streaming can require
to have very low latency, while it is acceptable to delay the sending of a
webpage, in which case delaying the latter to send the former earlier can
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improve the global QoS of a network.

Another important part of network monitoring is to improve the security
of a network. More and more attacks are being observed over the internet.
For example, the number of Distribute Denial Of Service (DDoS) attacks has
seen a 140% growth between 2015 and 2016 [2]. While most recent trends
indicate that this number has started decreasing in early 2017, their average
volume continues to increase [3]. Providing solutions to detect and mitigate
these attacks is thus a task that is becoming more and more important for
network providers.

This leads to two major requirements for architectures supporting net-
work monitoring applications. First, the architecture must be able to sup-
port high throughputs, as traffic volumes on IP networks are constantly
increasing. Second, the architecture has to be flexible enough to support a
wide variety of applications. Indeed, the diversity that can be observed on
a single link makes that architectures would greatly benefit from being able
to adapt the the currently incoming traffic.

However, existing solutions for network monitoring usually focus on only
one of these aspects. Indeed, most available flexible solutions are usually
based on software systems, which offer really poor throughput performances.
For example, [63] provides an highly flexible traffic measurement platform,
however it can only achieve about 12Gbps using 8 Intel Xeon CPUs. [2§]
presents a framework for real-time monitoring capable to adapt to any type
of incoming traffic, but is only able to reach 762Mbps for minimal size
packets (64 bytes) on a single core Intel Centrino CPU. On the other hand,
solutions based on Field Programmable Gate Arrays (FPGAs) are usually
able to sustain higher data rates. For example, [24] is able to implement a
Network Intrusion Detection System (NIDS) able to reach 23.76Gbps on a
VirtexII-Pro (which should increase with up-to-date technologies). [27] is
able to implement a packet classifier that is able to sustain a rate of 100Gbps
on a Virtexb vsx240t. [39] implements an NIDS based on the Snort [50] rule
set at 10Gbps on an Altera DE2-70 development board. However, all these
implementations are very rigid, as no adaptation of the designs can be made
at run-time.

As a result, it can be interesting to investigate the use of flexible archi-
tectures on FPGA so that network monitoring applications can benefit from
both high throughputs and high flexibility. In this chapter, we will present
existing methods for implementing flexible designs on FPGAs. Section 2.2
will present a background and state-of-the-art on Dynamic Partial Reconfig-
uration (DPR) and bitstream relocation (section 2.3, while section 2.4 will
present an overview on Network-on-Chips (NoCs), a flexible communication
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architecture for digital systems.

2.2 Reconfigurable designs on FPGAs

Network monitoring applications are likely to need flexibility in terms of the
different treatments that can have to be performed on the incoming traf-
fic. Indeed, supporting all possible treatments at once on a same hardware
target is highly unlikely, especially considering the ever-growing diversity of
network applications or attacks. Moreover, designing applications that are
likely to have to be updated during its lifetime means that architectures that
support them can not conceivably be unadaptable. Fortunately, FPGAs of-
fer a mechanism, called Dynamic Partial Reconfiguration, that allows for
only a part of a design to be modified during run-time while the rest of the
fabric is still operating. This makes FPGAs a prime target for applications
that require high levels of both flexibility and throughput, such as network
monitoring.

2.2.1 Structure of FPGAs

An FPGA is a configurable electronic structure that is divided into two
interconnected layers: the functional layer and the configuration layer.

The functional can be seen as a matrix of configurable elements that
are all connected to a routing structure that is configurable as well. These
configurable elements can either be Look Up Tables (LUTSs), i.e. logical cells
that can perform any logical computation for a fixed number of inputs, that
can be paired with flip-flops, Block Random Access Memories (BRAMs)
or Digital Signal Processors (DSPs) that are used for complex arithmetic
computations and provide dedicated logic for accelerating additions. Other
components can be found depending on the target, which usually consists in
interfaces supporting various communication standards. As all these cells,
as well as the routing structure that connects them, are configurable, they
can be combined to achieve complex digital designs.

The configuration layer, as its name suggests, is responsible for the con-
figuration of the functional layer, i.e. the way the cells of the functional
layer are configured and interconnected. This layer is based on a Static
Random Access Memory (SRAM), which is arranged in a way so that a
contiguous space of that memory is used to configure a configurable cell of
the functional layer (see figure 2.1).
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Figure 2.1 — Simplified intern FPGA two-layer structure

2.2.2 Typical design flow for FPGAs
RTL description

The first step to implement a design on an FPGA is for the designer to
provide a Register Transfer Level (RTL) description of the design. RTL lan-
guages aim at describing the behavior of the logic signals of a design between
its registers. Common RTL languages are Verilog or VHDL. Both of them
allow the designer to organize its design in a hierarchical and behavioral
description. Every hierarchical unit is called a component and consists in a
list of ports (input-outputs (10s)) paired with a behavioral description, and
can contain other components inside them. They can also be parameterized
in order to be reused with a different behavior without having to be rede-
veloped. The highest component in a design’s hierarchy is usually referred
to as the top module of the design.

Synthesis

The goal of the synthesis step is to translate the RTL description into ele-
mentary logic operations, e.g. identifying adders and multipliers, extracting
Finite State Machines (FSMs) or memory units such as RAMs. This step is
usually fully automated by FElectronic Design Automation (EDA) tools. In
theory, this step is independent of the FPGA target considered for the de-
sign, however, modern synthesis tools take the target into account in order
to operate pre-treatments or target-dependant optimizations and provide
timing and resource usage estimations. The result of this step is called a
logical netlist.
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Implementation

The goal of the implementation step is to translate the logical netlist(s)
previously obtained during the synthesis step into a functioning design on a
specific FPGA fabric. This step is usually divided into 3 sub-steps. While
there is standard denomination for these sub-steps, there goals differ very
little among available design flows. Thus, while the names of the sub-steps
we will present here are only specific to the Xilinx ISE design suite (as this
is the design flow we will base our work upon), similar tasks can be observed
on other EDA tools.

Translate This task merges all the input logical netlists and constraints
into a Xilinx design file called Native Generic Database (NGD) . The con-
straint file(s) (in this design flow the User Constraint File(s) (UCF)) is a
user-defined target dependant file that can contain:

e bindings between the ports of the top module of the design and the
physical pins of the FPGA target

e timings information or constraints on the IOs or intern signals of the
design

e various constraints allowing the designer to lock some signals to specific
resources, allocate some regions for hierarchical instances of the design,
etc...

Map This task maps the logical elements and signals of the NGD file ob-
tained during the translate step to actual resources available on the consid-
ered target. During this process, only the type of resource for each element
is given, not their actual location on the fabric.

Place and Route The Place and Route (PaR) finally places every element
of the design on a specific location of the design, and determines the state
of the routing structure in order for each signal to be correctly routed. The
result of this process is thus a full description of the functional layer of the
FPGA for the design.

Configuration

Usually, when loading a new design on the FPGA fabric, the whole config-
uration layer is modified by loading a file, called bitstream, into its SRAM.
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The bitstream contains, besides a small header mainly used to ensure data
integrity, all the words that have to be stored in the SRAM for the func-
tional layer to perform the desired design. However, the fact that SRAMSs’
contents can be independently accessed has led to an interesting opportu-
nity, which is to modify only a part of the configuration without changing
the rest of the fabric.

2.2.3 Dynamic Partial Reconfiguration

Dynamic partial reconfiguration of FPGAs is a technique that allows a pre-
defined portion the fabric to be reconfigured during run-time while the rest
is still under execution. This process is made possible thanks to the inner
structure of FPGAs, as the configuration layer is based on an SRAM. In-
deed, it is possible to modify only a portion of the SRAM without affecting
the rest, which equals to modifying only a portion of the functional layer
without affecting the rest.

In order to modify the behavior of the fabric, files that describe the new
configurations have to be loaded in the configuration SRAM. These files are
called partial bitstreams, and, similarly to the usual bitstreams, contain the
information that has to be loaded in the SRAM, but only relative to the
portions that have to be reconfigured, thanks to an addressing mechanism
that allows the information to be written in the desired location.

Early reconfigurable designs on FPGAs used an approach called differ-
ence based partial reconfiguration. With this approach, the designer had to
fully implement a first design, then had to manually modify the functional
layer (using for example tools like FPGA Editor in the case of Xilinx FP-
GAs) and generate the new resulting bitstream. The original and modified
bitstreams would then be compared and a partial bitstream containing only
the differences between the two was generated. While this approach is well
suited for punctual modifications, such as for example changing the logical
equation of a single or a few LUTs, it is inadequate to use this method
for more reconfiguration-heavy designs. Moreover, manually modifying the
functional layer is a long and tedious task that can not take advantage of
common designing methods, such as using RTL languages. Difference-based
reconfiguration has thus become obsolete.

The now commonly adopted approach for partial reconfiguration is called
module based (or sometimes slot based) reconfiguration. With this approach,
the functional layer is usually divided into two distinct parts: the static part,
and the dynamic part. The dynamic part consists in predefined regions that
can be subject to reconfiguration while the static part is every the part of
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Figure 2.2 — Use case example for module based reconfiguration

the design which behavior will not be modified throughout the execution.

A classic example that illustrates the benefits of module based reconfigu-
ration is the use case of a network device that has several interfaces that can
all implement different communication protocols. In this case, each interface
will be connected to a reconfigurable region in which each communication
protocol can be implemented. If at any time one of the interfaces has to
change its communication protocol, not using partial reconfiguration would
likely have required one of these two solutions: 1) have every protocol be
implemented simultaneously for each interface and have a multiplexer con-
trol which protocol to use, resulting in a huge area waste (as each would
need its own logical resources to be implemented) or 2) stop the FPGA and
reconfigure the whole fabric, which means that all the other interfaces will
be stopped as well. However, with module based partial reconfiguration,
the communication protocol of every interface can be changed without hav-
ing to stop the others nor having to have every protocol be implemented
simultaneously (see 2.2).

With this method, a designer has to first determine which part(s) of his
design will have to be able to be reconfigured. The RTL description of the
static contains empty components for which only the ports are defined. A
“black box” attribute is given to these components so that EDA tools can
treat them as parts of the design that will be filled later on. By synthe-
sizing reconfigurable modules apart from the static part, it is then possible
to switch between these modules inside the black boxes. As the layouts
of FPGAs are usually non-homogeneous, the designer has to select regions
on the fabric according to the number of each type of resources required
by the reconfigurable modules. This step is called floorplanning. Usually,
EDA tools will automatically place interfaces (called partition pins) to en-
sure communication between the static part and these regions based on the
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number of 10s required by the reconfigurable modules. The place and route
step of the dynamic regions is then done based on the selected regions and
their interfaces and on the timing identified on the previously implemented
static part.

After the place and route process of each dynamic part of the design,
a full bitstream is generated that contains the static part and an initial
configuration, as well as a partial bitstream for each dynamic module per
reconfigurable region in which it is implemented. These partial bitstream
have the same structure as a full bitstream, except that the start address is
set to the address of the considered reconfigurable region in the SRAM, as
well as a decreased size field.

2.3 Bitstream relocation on Xilinx FPGAs

While partial reconfiguration offers huge advantages in terms of flexibility,
using it extensively can come with several inconvenients. Indeed, when a
design requires that a lot of reconfigurable modules have to be able to be
implemented in a lot of reconfigurable regions, the number of partial bit-
streams that have to be generated and stored can drastically increase. For
example, if 20 reconfigurable modules all have to be able to be implemented
in 20 reconfigurable regions, 400 (20 x 20) partial bitstreams will have to be
generated and stored in a remote memory accessible by the FPGA fabric.
While bitstream generation time is not seen as a problem for a final design, it
can become problematic when prototyping. Indeed, implementing a module
in one region can take up to a few hours. Reiterating this in 20 regions be-
comes unacceptable just to verify the module functionality in every region,
even more so when this has to be done for several modules. Also, while mem-
ory space is usually seen as a problem for embedded systems, it is not the
case for network applications, where the FPGA target is likely to be hosted
in servers where memory is abundant. However, reconfiguration latency can
be highly critical for several treatments. For example, in a case where an
attack is detected, the functional module that reacts to that attack has to
reconfigurable with as little latency as possible, else it is possible that many
fraudulous packets would be able not to be treated. Reconfiguration latency
can also be an issue due to the high throughput involved: for example, on a
100Gbps link, having to wait 1ms for a module to be configured means that
potentially 100Mb of data have to be buffered before the module can start
treating it. This means that partial bitstreams have to ideally be stored in
fast on-chip memories in order to reduce reconfiguration latency. As fast
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memories are usually really expensive, reducing the memory space needed
to store partial bitstreams can be highly advantageous. So, decreasing the
number of partial bitstreams required in a design is highly encouraged.

Bitstream relocation [62] is a technique that allows to use a partial bit-
stream that was generated for a specific region to implement the same func-
tionality in a region it was not generated for (see figure 2.3).

Using this technique can limit the number of partial bitstreams required
for a reconfigurable module to one whatever the number of regions it has to
be implemented in. Looking back at our previous example, only 20 partial
bitstreams would then be needed instead of 400, drastically reducing both
the generation time and the memory space that are required.

While early works on relocation showed promising results [21] [41] thanks
to the homogeneous structure of FPGAs at that time, the trend towards
more and more heterogeneous FPGAs makes this technique more compli-
cated to use. Indeed, relocating a partial module on an homogeneous struc-
ture only requires the start address to be modified for the module to be
successfully implemented anywhere on the fabric. However, this is not the
case for heterogeneous fabrics, as the configuration data of the partial bit-
stream of the origin region will not necessarily match the resources inside
the destination region.

This means that regions have to fulfill requirements in order to perform a
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relocation. These constraints have been described in [25] and [26]. The first
one is that the origin and destination regions must be identical in terms
of size and resource arrangements in order for the configuration data of
the partial bitstream to match the resources inside the destination region.
Though some techniques focus on bitstream relocation between non-identical
regions [15], doing so often requires specific information about the fabric
and bitstream encoding that is usually not provided by the manufacturers.
Identifying compatible regions for bitstream relocation is thus a key step
when using this technique, which is made tougher and tougher by the always
increasing heterogeneity of FPGA fabrics.

The second requirement is that all the interfaces between the static part
and the relocatable regions (i.e. partition pins) must be placed at the same
relative locations among all regions. This is pretty straightforward since de-
signers can use location constraints that are provided by the manufacturers’
EDA tools.

Finally, the static part must use any resources inside the relocatable re-
gions in the same manner regardless of the region, may them be logic or
routing resources, which is not the case in traditional reconfigurable design
flows. Indeed, current design flows allows the static part to borrow resources
inside the relocatable, primarily in order to ease up the routing of the static
part. When not relocating, this is not a problem as the partial bitstreams
of a region will contain the information about the portion of the static part
inside that region. However, when relocating, that information will not
match the static part around the new region, potentially causing dysfunc-
tions (see figure 2.4). As it can be really tedious to constrain the routing of
the static part, the adopted solution usually consists in preventing the static
part from using any resources inside the relocatable regions altogether. By
making sure that the static part can not use resources inside reconfigurable
regions, we in fact make sure that no information can potentially be written
at the wrong place, or overwrite critical other information.

Once all these constraints have been applied to the relocatable regions,
each reconfigurable module has to be implemented in only one region. Only
one partial bitstream per module will then be generated, which can be used
to configure that module in every region, provided a modification of the
Frame Address Register (FAR) in the partial bitstream header, which cor-
responds to the starting address at which the bitstream will be written in
the fabric SRAM, i.e. the region of the functional layer that will be recon-
figured. While this modification can be done easily, as the new addresses
can be computed offline, modifying the bitstream on the fly can be crucial
in the case of applications where reconfiguration time is critical. Hardware
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Figure 2.4 — Potential dysfunctions caused by static resources inside relo-
catable regions

versions of this modification have been proposed in [35] and [36], however,
as at that time the reconfigurable regions on FPGAs had to span the entire
height of the fabric, these versions only manage horizontal relocations.

However, while relocation can provide interesting advantages in terms
of both compilation times and memory space required for partial bitstream,
this technique has not been automated yet. As relocation can be long and
error-prone to do manually, it can be quite interesting to develop a design
flow that would entirely automate this process. The lack of automated
tools for bitstream relocation has been a serious impediment to its adoption
by designers, especially considering the diversity and complexity of modern
FPGAs, as relocation requires a deep knowledge of the considered fabric.

2.4 Network-On-Chips

While flexibility in terms of what applications can be run at any time is re-
quired, flexibility in terms of what treatment each packet has to be applied
is also needed. Indeed, the traffic diversity on a 100Gbps link can be huge,
so it is very unlikely that all the packets will need the same treatment. In-
stead, almost all network monitoring systems have a classification process at
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the start of the chain that decides what treatment has to be applied to each
single packet. For example, classification results might indicate that packet
1 must go to processing module A, packet 2 to module B, and packet 3 to
both modules A and B. This means that network monitoring applications
require a communication structure that allows for flexible module-to-module
interconnections while supporting high data rates and concurrent commu-
nications.

Among existing communication structures in digital systems, three main
types can be distinguished. The first one is point-to-point (see figure 2.5),
which connects each component’s interface to another one. While this type
of connection is fairly straightforward to implement as well as resource effi-
cient, it severely lacks flexibility, as every component can only communicate
to the one it is directly connected.

Another common type of communication architecture is the bus mecha-
nism (see figure 2.6). In this architecture, each component is connected to
the same communication medium, called bus, and has a unique address in
order to identify itself on the bus. When a component has to transmit data
to another, it has to specify to which address (i.e. component) the data has
to be sent. The receiving component accepts the incoming data as the ad-
dress field matches its own, and all other will not perform any task as their
own address will mismatch the one specified on the bus. This architecture
offers great flexibility, as all components can potentially communicate with
each other, and is the most commonly found in processor-based systems.
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However, this architecture is not well-suited for applications where exten-
sive communications are required. Indeed, this architecture only allows one
module-to-module connection at any given time, as the bus is shared by all
components. This means that buses are usually bottlenecks for applications
where a lot of data has to be exchanged between several modules.

Network-on-Chips [33, 38, 17] provide both flexibility and high rate pos-
sibilities. These architectures consist in a set of interconnected routers.
Each router is connected to a single functional unit, and vice-versa, and to
a subset of the other routers of the NoC (see figure 2.7). Each component
connected to the NoC also gets a unique address on the network, which also
corresponds to the router to which it is connected. When a component has
to transmit data to another one, it releases that data to its router, along
with the address of the destination router, 7.e. the address of the destination
component. The data packets are then transmitted from router to router
until they reach their destination. The way the routers are interconnected
(topology 2.4.1) and the way the packets are transmitted from router to
router (routing algorithm 2.4.2) can vary depending on the NoC. NoCs can
also vary in the way their routers implement more advanced functionalities,
which are beyond the scope of this document.

This architecture can often sustain higher data rates than a bus mecha-
nism, as several paths can be active at the same time, i.e. several pairs of
component can simultaneously exchange data without losing any flexibility,
as all components can still communicate with each other. This means that
NoCs offer a much better scalability than its bus counterpart. However, it
has several drawbacks, such as an increased resource cost (as the number of
wires is duplicated several times compared to a bus), as well as a slightly
increased latency for an active connection, as each packet is likely to have
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Figure 2.7 — Overview of interconnections between routers and functional
units in Network-on-Chips

to go through several routers before achieving its destination.

2.4.1 Topologies

The topology of a Network-on-Chip is the way the routers are intercon-
nected.

One of the most popular and generic topology is the 2D mesh topology
(see figure 2.8). In this case, the topology can be seen as a regular discrete
orthogonal grid on which each node is a router. Each router is then in-
terconnected with each of his neighbours. Thanks to its regular structure,
addresses of routers on such a topology are really straightforward, as they
usually correspond to the abscissas and ordinates of routers on the grid.
This topology is well suited for applications where high flexibility is needed,
as the high number of paths on that topology leads to very unlikely con-
gestion problems for any communication between any pair of routers. Its
regular structure also allows relatively simple routing algorithms to be used
(see section 2.4.2). However, this topology is quite heavy in terms of hard-
ware resources, leading to large wastes for applications where certain pairs
of routers are unlikely to exchange data. Though the most popular mesh
type is a square grid (meaning that each router has 4 neighbours), some
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other versions exists where the number of neighbours for each router differs.
For example, the honeycomb-mesh consists in an hexagonal structure where
each router has 3 neighbours.

Extensions of the 2D mesh topology include the torus [23] and the 3D
mesh topologies [42, 32, 12] (see figure 2.9). The torus architecture as the
same router positions as a 2D mesh except that routers that are on the
borders of the structure are also interconnected. While further improving
the flexibility of the 2D mesh architecture, the torus structure has the huge
drawback of having long delays on these new interconnections. As its name
implies, the 3D mesh adds a new dimension to the 2D mesh, meaning that
most routers (i.e routers that are not on the borders) now have 6 neigh-
bours instead of 4. However, these routers can be hard to implement on
2-dimensional fabrics such as FPGAs.

Another relatively common topology is a tree-based Network-on-Chip
(see figure 2.10). While these structures can have great performances if
well designed, finding a well suited layout for a given application is a quite
tedious task. Also, these structures have to be used with great care, and
are not suited for every type of application, since the root of the tree is very
much likely to create a bottleneck. Examples of tree-based NoCs can be
found in [31] and [48].

Even though common topologies are the most frequently used structures,
coming up with a topology specifically designed for a given application can
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be advantageous in order to optimize both the potential throughput a the
NoC as well as its resource footprint. In that regard, irregular structures can
be used for some designs. Those structures are usually a mix up between
subsets of existing topologies. As a result, finding an adequate addressing
scheme, as well as a optimal routing algorithm for the topologies can be very
tricky. An example of such an ad hoc topology mixing mesh and tree based
NoCs is provided in figure 2.11.

2.4.2 Routing algorithms

In Network-on-Chips, the routing algorithm corresponds to the way data
is transmitted from its origin router to its destination router. The most
common characteristics for routing algorithms are explained below.

Switching type

Two main types of switching on NoCs can be distinguished: circuit switch-
ing and packet switching. In the circuit switching case, the whole path from
the origin to the destination router is reserved beforehand. All router in-
terconnections involved in this path remain closed to other communication
until the origin is done sending data. An example of a NoC based on circuit
switching is the Athernal NoC [29]. On the other hand, algorithms that
implement a packet switching (for example the Hermes NoC [46]) strategy
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require the routing information to be provided for each data packet. The
routing scheme is then re-evaluated on a per-router basis. Circuit switch-
ing can be quite advantageous when large chunks of data often have to be
transferred from one router to another, as the routing path is set only once
whatever the data size is instead of updating it for each packet in the case of
packet switching. However, the fact that many paths are closed during the
whole transactions means that it can potentially lead to congestion prob-
lems. In the case where most packets do not have the same destination, a
packet switching approach is thus preferred.

Deterministic or adaptive routing

In the case of a deterministic approach, the path that a packet will follow is
only determined by its origin and destination routers. This means that two
packets that have to be transmitted from the same origin router to the the
same destination router will necessarily have the same routing, regardless of
if that path is currently overloaded. Two popular methods for a deterministic
routing are the source routing (for example the Source Routing for NoC
algorithm [37]) and the X-Y algorithm [20]. In the case of source routing,
the origin router specifies the path that a packet must follow from one end
to another. For a X-Y algorithm in the case of a 2D mesh topology, all
routers addresses are specified as their X-Y coordinates on the grid. Each
router that a packet reaches compares its own address to the destination
address of the packet. If its X coordinate is less (resp. more) than the one
of the destination of the packet, it sends the packet to the router to its right
(resp. left). If both X coordinates are equal, the same test is ran on the
Y coordinate (i.e. sends the packet to the router above (resp. below) if
its Y coordinate is smaller (resp. greater) than the one of the destination
router). If both Y coordinates are also equal, that means the packet has
reached its destination and is thus sent to the local interface of the router
(i.e usually the functional unit connected to that router). This algorithm
is really straightforward to implement, as well as resource friendly, as only
two comparators are needed for each router.

On the other hand, adaptive algorithms route the packets based on the
current state of the Network-on-Chip. For example, an adaptive routing
algorithm can be based on the congestion of the links in the NoC [40, 22].
In that case, a packet can be sent on a longer path (in terms of nodes) if
the shorter one is saturated, reducing its latency, and also decreasing the
global congestion of the NoC. Other adaptive algorithms can be used in or-
der to take broken links into account in circuits where faults or failures are
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likely to occur [52, 34]. These algorithms are typically more complex than
the deterministic ones, and also usually require some heavy mechanisms to
monitor the state of the NoC.

Finding a suitable Network-on-Chip architecture for network monitoring
applications, as well as dimensionning it to allow enough functional units and
high enough data rates considering our flexibility and throughput constraints
will be a key part in conceiving our architectures.

2.5 Conclusion

In this section we presented the background and state-of-the-art on flexible
designs on FPGAs. This led us to experiment with bitstream relocation to
add flexibility for architectures supporting network monitoring applications.
However, bitstream relocation remains a very rarely used technique because
of the difficulty of performing this task. As a result, providing an automated
design flow dedicated to this technique will be one the key challenges of this
thesis, as making this technique transparent to a designer would allow for
the use of its potential.

In order to be able to efficiently host network monitoring applications,
which have both high flexibility and throughput requirements, a suitable
communication structure is needed. As a result, Network-on-Chips will be
investigated for network monitoring. As NoCs have not been used in the
past for network monitoring applications, the dimensionning and choosing
the characteristics of our NoC accordingly to characteristics of these applica-
tions will have to be done. Also, to our knowledge, no existing architecture
combines bitstream relocation with Network-on-Chips. As bitstream re-
location involves strong constraints regarding the reconfigurable modules,
adapting the NoC architecture in order to ease up the use of relocation will
be required.
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Chapter 3

Automated design flow for

bitstream relocation on
Xilinx FPGAs

As seen in 2.3, bitstream relocation is a promising technique for highly flex-
ible reconfigurable designs on FPGAs, as it can drastically decrease the
bitstream footprint, both in terms of generation time and memory space
required. In application domains such as network monitoring, both genera-
tion time and memory space can become critical. Indeed, generation time
can greatly impact development and prototyping time, which is not accept-
able for network applications that are always evolving. Memory space can
impact reconfiguration latency, as many partial bitstreams to store results
in bigger memories yet usually further away from the target. As network
monitoring covers critical applications such as attack mitigation, keeping
the reconfiguration latency low is required. Integrating bitstream reloca-
tion in architectures dedicated to network monitoring can thus be highly
advantageous.

3.1 Motivation

While bitstream relocation is a promising technique to enhance flexibility
on highly reconfigurable designs, strong constraints are required for it to be
performed. Meeting these requirements is a long and error prone task and
often requires a deep knowledge of reconfigurable systems and the specific
FPGA target. Moreover, it is very likely that this task would have to be
performed again when a modification is made to a reconfigurable module,
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or when a new module is added, as changing the resources requirements of
the modules can make the former results of this task obsolete. This means
that manually fulfilling the constraints related to relocation is highly dis-
couraged, which in our case is further emphasized by the fact that designs
targeting network monitoring applications are likely to be updated quite
often. Relocation is thus still a very underused technique because of its de-
ployment difficulty. Making this process transparent to a designer then feels
mandatory in order to make efficient use of bitstream relocation. However,
this has still not been automated yet. Providing a fully automated design
flow that supports bitstream relocation could thus be highly interesting in
order to be able to fully take advantage of the benefits that this technique
can offer.

In this chapter, we will present a new fully automated design flow ded-
icated to bitstream relocation on Xilinx FPGAs. As relocation involves
many steps that are technology reliant, it is possible that the flow would not
be compliant with other manufacturers FPGAs or even with future Xilinx
technologies. This design flow is based on the Xilinx ISE Design Suite (as
more recent tools from this vendor are missing some key tools in order for
relocating to work), scripted versions of techniques already available in the
literature, and new algorithms and techniques for steps that still haven’t
been addressed yet. The general overview is described in section 3.2, our
new techniques that address previously unresolved steps specific to reloca-
tion are presented in section 3.3, while tests and results are provided in
section 3.4.

3.2 General overview of the proposed design flow

In order for bitstream relocation to become a viable technique, an automated
design flow that makes it transparent to the user is required. Our design flow
aims at being user friendly, as no prior knowledge of relocation is needed,
and it requires even less skills than a traditional DPR design flow. It is also
worth noting that once all inputs have been provided and a configuration
has been run, no user intervention is required, a simple building command
based on the standard make is enough to provide all the needed outputs to
run the design on the target.

3.2.1 Inputs

In order to use our design flow, a designer has to provide several specific
files.
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An RTL description of the static part ,in which all reconfigurable in-
stances must be instantiated as black boxes is required. In order for the syn-
thesis tool not to trim these instances, this attribute has to be specified (in
VHDL in this example): attribute box_type of reconfigurable_module :
component is "black_box"; In order to be able to constrain the locations
of the interfaces with the relocatable regions, this black_box attribute must
also be specified to the added_LUTs component (see section 3.2.2) as well as
a lock pins attribute: attribute lock_pins of added_luts_8_v7 :
component is "true";

An RTL description of every dynamic module also has to be pro-
vided. The port list of that description must be identical to the reconfig-
urable component previously declared as a black box in the static part. As
a consequence, all reconfigurable modules must have the same ports. This
means that if a reconfigurable module requires less inputs (or outputs) than
another one, useless ones would still have to be declared.

A User Constraint File (UCF) isrequired, that only contains the same
information as a traditional non-reconfigurable design flow, i.e. physical-
logical ports bindings and timing constraints. It is important to note that,
while UCFs usually allow the designer to use location constraints in order
to fix instances of the design into specific locations, it is highly discouraged
to do this while using our design flow, as our floorplanning algorithm (see
section 3.3.1) will add location constraints of its own without taking these
ones into consideration, potentially leading to conflicts. It is also worth not-
ing that, while traditional DPR design flows require the designer to provide
floorplanning information in the constraint file, this is not required with our
design flow, as the floorplanning will be automated.

Finally, a configuration file has to be filled with several parameters.
Those parameters include:

e the name of the top module of the static part;

e the names of the reconfigurable component and their instances as
stated in the static part;

e the number of relocatable regions in the design;

e the name of the UCF of the design;
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e the part, package and speed grade of the targeted FPGA;

e the clock period of the design (as explained in section 3.3.1, only single
clock designs are supported for now);

e the name of the hard macro used at the static/dynamic interfaces, as
well as its required number for both inputs and outputs;

e finally, the list of every reconfigurable module on which a relocation
will have to be performed.

3.2.2 Automated design flow

Once all inputs have been provided, a configuration script has to be run in
order to set every parameter in all other scripts according to the ones given
by the designer in the configuration file. Then, a simple make command is
enough to launch the design flow. The general overview of the design flow
can be found in figure 3.1. In that figure, the steps that are integrated in
the traditional Xilinx DPR flow are highlighted in blue. The steps that are
available in the literature and that we have scripted are highlighted in green
with dashed lines. Finally, the steps that have not been addressed before
are highlighted in red with thick lines.

First, the static and dynamic parts are synthesized separately |,
similarly to a usual DPR flow. In our case, the tool we use for that step is
Xilinx Synthesis Tool XST [4].

A floorplanning algorithm then uses the information located both in
the synthesis reports of the dynamic modules and in the configuration file in
order to find a valid floorplan for the design. The main goal of a floorplan-
ning algorithm is to find a decent placement of the reconfiguration regions on
the targeted fabric. Although many algorithms (see [16, 53, 54, 55, 45, 18,
60, 47, 59]) exist for floorplanning in the case of traditional reconfigurable
designs, two specificities of relocatable designs prevent us from using them
for relocation. First, these algorithms do not have the constraint of identi-
fying identical regions, which means that the output of these floorplanning
algorithms will not likely be suitable for relocation. Second, most of these
floorplanning algorithms tend to limit the fragmentation of the static part in
order to provide a decreased resource waste. This leads to floorplans where
reconfigurable regions are located right next to each other. However, as
relocation forces us to apply the PRIVATE constraint on relocatable regions
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(see further), the static part will not be able to use any resource inside them.
This can be problematic in the case where regions are adjacent, as it can
cause severe congestion problem to the static part if some of its elements
have to be placed between the relocatable regions.

Thus, we decided to develop a new floorplanning algorithm specially
thought for bitstream relocation. More details about that algorithm can be
found in section 3.3.1.

A constraints generation script then sets all constraints relative to the
relocatable regions accordingly to the method detailed in [25]. According to
this paper, these requirements are:

e (1) origin and destination must have the same shape, size, and ar-
rangement in terms of resources;

e (2) the partition pins between the static part and the dynamic regions
must be placed at the same place relatively to the relocatable regions;

e (3) the static part must use the same resources (routing and logic)
among all relocatable regions.

The constraint (1) is taken care of by our floorplanning algorithm, as
fulfilling it is actually its purpose.

The constraint (2) can be solved by using location constraints for both
inputs and outputs. In our case we decided to put all inputs on the left
border of the regions, and all outputs on the right border. As we prevent
all non-reconfigurable resources from being inside a relocatable region (see
constraint (3)), we are sure that all resources are homogeneous among a sin-
gle column, which means that we can make sure that both the left and right
borders of a region are entirely made of slices. For inputs, the script looks for
the starting slice of the region written by the floorplanning algorithm in the
UCF, and the ending slice for outputs (reconfigurable regions are described
as follows: "AREA_GROUP "partial_region_$region_index" RANGE=SLICE
_X$starting_abscissa¥Y$starting_ordinate:SLICE_X$ending_abscissa
Y$ending_ordinate;").

Fach pin can be set to a specific location using the following constraint:
PIN "$instance_name.$pin_name" LOC=SLICE_X$slice_abscissa¥$slice
_ordinate; . However, as each slice contains 4 LUTS that can be used as
partition pins, specifying which one will be used is also mandatory, which can
be done as follows: PIN "$instance_name.pin_name" BEL=$bel_name;.
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This also means that we can stack up to 4 partition pins per slice. Thus,
the following is run for all regions:

$ # current_x and current_y are set to the starting

$ # abscissa and starting ordinate of the current region

$ # i is the index of the current region

$ while [ $placed_inputs —1t $number_inputs |

$ do

$ free luts=4

$ while [ $free_luts —gt 0 ] && [ $p