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Introduction (English)

The core problem in the theory of optimal transport can be described in simple terms: given two
distributions of mass µ and ν on some spaces X and Y , and the knowledge of the cost c(x,y)∈R

for moving a unit of mass located at x ∈ X to y ∈Y , find among all plans that describe a method
to move the mass from µ to ν , the one that minimizes the total cost of transport. Obviously, this
question is meaningful only if µ and ν are distributions with identical total mass. The object

of this thesis is to define, study and numerically solve similar problems that remain meaningful

when the distributions have unequal masses— namely unbalanced distributions—and preserve

some essential properties of the original optimal transport problem.

Origin of optimal transport theory and essential facts

The first formalization of the optimal transport problem generally could be traced back to a
treatise of Monge [115] dating from 1781. Motivated by the problem of land leveling, he studied
the case of a distance cost c(x,y) = |y− x| on a Euclidean space which led him to the discovery
of rich geometrical objects [171]. This problem was rekindled in the 1940s by Kantorovich [91],
who stated it in its modern form as a linear programming problem on probability measures:

Cc(µ ,ν) := min

{∫

X×Y
c(x,y)dγ(x,y) ; γ ∈P(X×Y ), (πx

#γ ,πy
#γ) = (µ ,ν)

}
(1)

where πx
# and πy

# are operators that return the marginals of a measure on the product space
X ×Y . X and Y are typically compact metric or Polish1 spaces and µ ∈P(X) and ν ∈P(Y )
are probability measures.

Kantorovich and his co-authors have established many of the essential facts: existence of op-
timal plans γ , dual formulation in terms of prices and optimality conditions. They also realized
that the optimal cost Cc(µ ,ν) is a relevant quantity to compare probability measures. In par-
ticular, if d is a distance on X = Y and p ≥ 1, then Wp(µ ,ν) := Cdp(µ ,ν)1/p defines (modulo
conditions on moments) a distance on P(X), nowadays known as the p-Wasserstein distance.
This distance has the nice property to reproduce the structure of X on P(X): if (X ,d) is a Polish
or a geodesic space, so is (P(X),Wp).

The fact that many operations behave naturally on (P(X),Wp)—interpolation of probability
measures, differentiation of a path, barycenters of a family, to name a few—partly explains
the success of the theory, along with the striking connections to well established problems that
are discovered every now and then, such as Euler flows [26] or evolution PDEs as gradient
flows [120].

A final noteworthy feature is the variational characterizations of optimal transport interpola-
tions, known as the Benamou-Brenier formula [12], or the dynamic formulation. If the cost is of
the form c(x,y) = L(y− x) for a strictly convex nonnegative function L on Rd , one has

Cc(µ ,ν) = min

{∫ 1

0

∫

Rd
L(vt)dρtdt : ∂tρt +∇ · (vtρt) = 0, (ρ0,ρ1) = (µ ,ν)

}
(2)

1a topological space is Polish when it is separable and completely metrizable
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where (ρt)t∈[0,1] is a weakly continuous family of probability measures interpolating between µ

and ν , advected by the velocity field vt : Rd →Rd at all time [89].

This thesis was greatly influenced by the monographs [161, 162, 142, 5] and we suggest
readers to refer to these monographs to taste the beauty of the optimal transport theory, beyond
the basic facts that we have just reviewed.

Use in applied fields and (sometimes) undesirable mass constraint

Because it enables to lift a metric between points on a space, to a metric between distributions of
mass on that space, optimal transport appears as a natural tool in many domains where objects
like histograms, probabilities, distributions of mass or densities are manipulated. In particu-
lar, optimal transport is becoming increasingly popular in applied fields, a popularity fueled by
regular improvements in the numerical methods in various contexts. In the domain of shape pro-
cessing, it has been used as a tool for registration [82], segmentation [146] or restoration [18].
Popular applications in image processing are color manipulation [132, 54, 131], reflectance in-
terpolation [19] and denoising [97]. In statistical learning, it has proved to be efficient as a metric
between histograms [125, 51], in image retrieval in computer vision [140], in semi-supervised
learning [153] or in domain adaptation [49].

In most of these applications, the fact that optimal transport requires equality of mass between
the two distributions is a drawback rather than a feature, and a more desirable behavior would be
obtained by mixing displacement as well as local adjustments of mass. It is thus not surprising
that many authors in applied fields have considered extensions of the optimal transport problem
that allow for variation of mass. In the following few paragraphs we will see specific applications
where it is meaningful to consider other models than pure transport.

Shapes and image processing Variational methods are common for shapes processing [167,
141, 168]. Among them, optimal transport stands out by being convex. It has however some
flaws on the modelization side. For instance, transport maps have no regard for the topology of
the shapes. Moreover, when manipulated with optimal transport, shapes or images are generally
represented as densities on R2 or R3 and a normalization leading to unit mass is required before
using optimal transport. A more flexible model, which is similar to the popular method of
metamorphosis in the field of diffeomorphic registration [157], is to explain variations of mass
by local growth or shrinkage. This idea led to the introduction of specific unbalanced optimal
transport models [106, 105] and was the original motivation of our own work.

Histogram processing For image color manipulation, optimal transport is used as a tool to
define deformation maps in the color space. Even though here the global mass constraint is
naturally satisfied, it has been observed that better results where obtained when this constraint
was relaxed [68]. The rationale, that can be generalized to other applications, is that when
working with histograms on geometric domains, it is more desirable to preserve the modes
(local density maxima) rather than the mass.

v



Contents

Statistical learning In statistical learning, optimal transport has been used as a metric be-
tween features and it has been observed that relaxing the marginal constraints improves the
accuracy of label prediction [74]. In this context, relaxing the mass constraint is understood as a
regularization that can be tuned with a parameter.

Gradient flows A popular use of optimal transport is to study evolution partial differential
equations (PDE). Prominent examples of evolution PDEs can be recovered as gradient flows
of some functionals for the Wasserstein metric W2. For instance, the heat equation is the gra-
dient flow of the entropy [90], but non-linear PDEs can also be considered [122] as well as
highly non-smooth functionals [110]. This approach is both of theoretical interest for studying
existence, uniqueness and convergence of solutions, and of practical one for the computations
of degenerate flows [28]. So far, this method was only available for mass preserving evolution
PDEs, due to the constraint inherent to optimal transport (except when specific boundary con-
ditions are chosen [70]). A theory of unbalanced optimal transport metric paves the way for
further applications to evolution PDEs with mass variation (see Chapter 6).

Unbalanced optimal transport: state-of-the-art

The term unbalanced seems to appear first in [11]—where it is suggested to relax the marginal
constraints with a L2 penalization—but the idea has been around long before. Kantorovitch
already proposed to throw mass away, out of the (compact) domain (see [80]), an idea that was
deepened to study evolution PDEs with Dirichlet boundary conditions [70]. More generally, it
has been a common trick in applications to add a dummy point that acts as an infinite source
or sink of mass, that can be reached at some cost. If the cost for reaching that dummy point
is constant, one recovers the optimal partial transport problem, studied theoretically in [32]
and [69]. This problem consists in transferring a fixed amount of mass m > 0 between two
measures while minimizing the transport cost. It is shown in [32] that the mass constraint admits
a dual formulation as a maximum transport cost.

Independently, a class of optimal transport distances, where the marginal constraint is relaxed
with a total variation penalization2 has been studied [129, 130]. Many properties are proved
or recovered, such as the duality between bounded Lipschitz and the unbalanced Kantorovich-
Rubinstein norms [83] and also one dynamic formulation. In Chapter 2, we show that these
models are equivalent to the optimal partial transport problem and they are recovered as a limit
case of our general framework.

When I started the preparation of this thesis, the theoretical study of unbalanced optimal
transport was centered around the optimal partial transport problem. As this approach was not
always satisfying for practitioners, other models, tailored for specific applications, have been
introduced. The relationships between the various approaches were not known and a systematic
study to define the range of available tools was lacking.

2In this thesis, total variation refers to the total variation of measures which boils down to the L1 norm for functions;
not to the L1 norm of the gradient.
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Parallel work

Except when explicitly stated, the material of this thesis is my own work or is work produced
with collaborators: Simone Di Marino, Gabriel Peyré, Bernhard Schmitzer, Justin Solomon and
François-Xavier Vialard. During the preparation of this thesis, other teams of researchers have
worked on related subjects. In the following paragraph, I would like to state how these external
contributions have influenced this thesis.

The metric corresponding to the quadratic case studied in Chapter 2 has been introduced
independantly by several teams (including ours) over a surprisingly short time period [103, 104,
94, 40, 44, 43]. It has been called Hellinger-Kantorovich in [103, 104] and Wasserstein-Fisher-

Rao in our papers [44, 43]. In this thesis, it is simply denoted by Ŵ2 and introduced as part of
a larger family of metrics Ŵp. Many extremely valuable aspects developed in these other works
have been deliberately left aside from this thesis, which focuses on my personal contributions.

I would like to mention that the metric properties (completeness, metrization of weak conver-
gence) of Ŵ2 were not present in our communicated work but were treated in [94, 103]. Still, I
found relevant to consider similar results for the larger class of metrics Ŵp in this thesis.

In [43], we introduced semi-coupling formulations for unbalanced optimal transport. Two
closely related, alternative, formulations were proposed in [103]. In Chapter 1, these formula-
tions are introduced (with some variants) and their relationships proved. Moreover, large parts
of this thesis (in particular Chapters 3 and 6), make an intensive use of the optimal entropy-
transport problem, which is a contribution of [103].

Part I: Models for Unbalanced Optimal Transport

In the first part of this thesis, we introduce various models of unbalanced optimal transport, study
their main properties and establish the relationships between them.

Chapter 1: Formulations and Equivalences

The first approach, considered in Section 1.1, is a dynamic formulation that mirrors (2). It
consists in looking for time dependent interpolations (ρt)t∈[0,1] between two measures µ ,ν ∈
M+(Ω), Ω ⊂Rd , that minimize an action functional. As suggested previously [106, 129], we
consider the continuity equation with source (also called “with reaction”)

∂tρt +∇ · (vtρt) = gtρt , (ρ0,ρ1) = (µ ,ν). (3)

This equation allows two degrees of freedom for the modification of mass, through the velocity
fields vt : Ω → Rd and the rate of growth fields gt : Ω → R. Keeping in mind that the key
property in optimal transport is homogeneity with respect to mass, we introduce a new general
class of problems

CL(µ ,ν) := min

{∫ 1

0

∫

Ω

L(vt(x),gt(x))dρt(x)dt ; (ρt) solves (3)

}
(4)

where L : Rd ×R → R is a Lagrangian function which is convex, continuous and minimal at
L(0,0) = 0. In order to gain generality and simplify the analysis, we rephrase this problem

vii



Contents

in terms of the perspective function ψL, but its essence remains the same. We show that this
problem admits minimizers with a finite cost and derive the dual problem which maximizes a
linear cost over sub-solutions to a Hamilton-Jacobi equation with a zeroth-order term. Just as
the optimal transport cost (1), we show that CL entertains close links with weak convergence of
measures and that for a p-homogeneous Lagrangian, p ≥ 1, C

1/p
L defines a geodesic metric on

the space of nonnegative measures. In the limit case p = 1, we show that the time variable is
superfluous and CL can be written as an unbalanced Beckmann’s minimal flow problem.

In Section 1.2, we suggest a second approach to unbalanced optimal transport. We extend the
notion of coupling to overcome the fact that nonnegative measures cannot be coupled in general.
Instead of one coupling, we consider a pair ( f1γ , f2γ) that we call a pair of semi-couplings,
because each of fiγ is a measure on X ×Y that satisfies only one marginal constraint. We then
choose a function hx,y(u,v) that gives the cost of moving the atom uδx to vδy which should be
sublinear (convex and 1-homogeneous) in (u,v) ∈ R2

+. It is used to define the semi-coupling
formulation between two measures (µ ,ν) ∈M+(X)×M+(Y ) on compact metric spaces X ,Y
as

Ch(µ ,ν) := min

{∫

X×Y
hx,y( f1(x,y), f2(x,y))dγ(x,y) ; (πx

#( f1γ),πy
#( f2γ)) = (µ ,ν)

}

where the minimum runs over f1, f2 : X ×Y → R+ and γ ∈P(X ×Y ). Properties of Ch are
quite similar to those of the Kantorovich problem (1): the minimum is attained, there is a dual
problem in terms of continuous functions and, for suitable choices of sublinear cost h, Ch is
continuous under weak convergence of measures. Another nice feature is that if X = Y and
h1/p defines a metric on the cone of X—namely the space X ×R+ where the points X ×{0}
are identified to one point—then C

1/p
h defines a metric on M+(Ω). We also introduce the

formulations from [103] and make the connection with ours. In particular, we consider a variant
of their optimal lift formulation,

Ch
c (µ ,ν) := min{Cc(µ̄ , ν̄) ; (hµ̄ ,hν̄) = (µ ,ν)}

where c is a cost on (X ×R+)× (Y ×R+) and h is a partial expectation operator, informally
hµ̄(dx) =

∫
R+

udµ(dx,du). We show that when c is continuous, C
h
c is equivalent to a semi-

coupling problem Ch if hx,y is defined as the sublinear regularization of c((x, ·), (y, ·)) for all
(x,y) ∈ X ×Y . There is a last formulation, that is not our contribution but that plays an es-
sential role in this thesis, the optimal-entropy transport formulation [103]. It is similar to the
Kantorovich formulation but with a relaxed marginal constraint. Informally, it is defined as

Cc, f (µ ,ν) := min
γ∈M+(X×Y )

{∫

X×Y
cdγ +

∫

X
f

(
d(πx

#γ)

dµ

)
dµ +

∫

Y
f

(
d(πy

#γ)

dν

)
dν

}
(5)

where c : X×Y →R∪{∞} is a cost function and f is an entropy function, i.e. a convex function
on R+ minimal at 1, used to measure how much the marginals of the plan γ deviate from µ and
ν . The terms depending on the marginals of γ are so-called f -divergence functionals.

In Section 1.3, we study the relationship between the dynamic and coupling formulation and
show a counterpart of the Benamou-Brenier formula (2) in the unbalanced setting. Indeed, if one
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defines hx,y(a,b) as the l.s.c. sublinear regularization of the minimal path cost that is required
to join the points (x,a) to (y,b) by an absolutely continuous path in Ω×R+, as measured by
the Lagrangian L, then it holds CL(µ ,ν) =Ch(µ ,ν) for all pairs of nonnegative measures. This
completes the web of relationships between all the formulations of unbalanced optimal transport.

Chapter 2: Unbalanced Optimal Transport Metrics

The second chapter is devoted to the study of specific models. We consider the family of p-
homogeneous Lagrangians

Lp,α(v,g) =
(

1
α |v|

)p

+
(

1
p
|g|

)p

with p ≥ 1 and α > 0. The quantities Ŵp,α = C
1/p
Lp,α

define a new family of metrics that turn
M+(Ω) into a complete geodesic space, with the topology of weak convergence. This family
form the natural counterpart of the p-Wasserstein metrics to the unbalanced setting. We show
that α is a scale parameter, in the sense that, if s# the pushforward map by the linear rescaling
s : x 7→ αx, then s# : (M+(Ω),Ŵp,1)→ (M+(αΩ),Ŵp,α) is an isometry. We then study the
limits of the Ŵp,α geodesics when α goes to 0 and ∞. We show that when α ↓ 0, we recover

the geodesics for a class of pure growth metrics whose expression
(∫

X |µ1/p−ν1/p|p
)1/p

is
a homogenized version of the Lp metrics. They contain the total variation and the Hellinger
metrics as particular cases. In the opposite limit α ↑ ∞, we recover the classical Wp geodesics if
µ(Ω) = ν(Ω) and a generalized version of those otherwise.

The next section considers the quadratic case Ŵ2 for which an explicit formula for the min-
imal path cost is available. It follows, letting α = 1, an explicit semi-coupling formulation
Ŵ 2

2 (µ ,ν) =Ch(µ ,ν) with the sublinear cost

hx,y(a,b) = a+ b−2
√

abcos(min{dist(x,y),π/2}).
This static reformulation enables the use of efficient numerical methods as considered later in
Chapter 3. For the case p = 1, we recover the traditional Bounded Lipschitz metric. Finally,
we consider Lagrangians of the form L(v,g) = (|v|/α)p + 1

2 |g| which are reminiscent of the
problems considered in [129, 130]. We prove that these models are equivalent to the optimal
partial transport problem [69, 32], with a dual parametrization.

Part II: Numerical Methods

The second part of this thesis focuses on numerical schemes for solving unbalanced optimal
transport and related variational problems. Incidentally, our analysis suggests frameworks and
improvements for solving other problems related to optimal transport.

Chapter 3 : Scaling Algorithms for Optimal Couplings

This chapter is devoted to the definition and study of a class of scaling algorithms to solve
problems of the form

min

{∫

X×Y
c ·dγ +F1(π

x
#γ)+F2(π

y
#γ) ; γ ∈M+(X×Y )n

}
(6)
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that we refer to as the generic formulation. In this problem, the unknown is a family of n

couplings (possibly n > 1), c : X ×Y → R̄n is a family of cost functions and F1, F2 are convex,
l.s.c, simple functionals, typically “local functionals”.

In Section 3.1, we underline the generality of (6) by showing that it covers many known
problems, as well as new ones: computation of optimal transport plans, barycenters, gradient
flows, and their respective unbalanced counterparts. We also prove well-posedness and existence
of minimizers for typical cases of this generic formulation (6).

In Section 3.2, we introduce the structure of the numerical scheme. It involves (i) adding
a regularization term to (6) in the form of a Bregman divergence, and (ii) performing alternate
bloc maximization on the dual problem. We prove a primal-dual relationship for Bregman diver-
gences which, combined to a result of Beck [10], implies that the algorithm produces a sequence
of iterates (γ (ℓ))ℓ∈N that converges to the optimal regularized plan at a O(1/ℓ) rate as measured
in Bregman distance.

In Section 3.3, we consider more specifically the entropic regularization as initially considered
by Cuturi [51]. This corresponds to adding, to the objective functional (6), the term εH(γ|γ (0))
which is the relative entropy (also called Kullback-Leibler divergence) of the unknown plan γ

w.r.t. a reference plan γ (0). This leads to a new class of simple scaling algorithms. In the discrete
setting, with an initialization b(0) ∈RY

++, it produces the sequence of iterates

a(ℓ+1) =
proxH

F1/ε(K(b(ℓ)))

K(b(ℓ))
, b(ℓ+1) =

proxH
F2/ε(K

T (a(ℓ+1)))

KT (a(ℓ+1))
(7)

where K := exp(−c/ε)γ (0) acts on a and b as a matrix vector product. This algorithm is practical
whenever the proximal operator with respect to the relative entropy

proxH
F1/ε : s̄ ∈RX

+ 7→ argmin
s

F1(s)/ε +H(s|s̄)

is explicit or simple to compute for F1 and F2. We suggest a stabilization method that allows
for the first time to reach small regularization parameters without sacrificing speed and make
informal comments on efficient implementation as well as possible generalizations.

In Section 3.4, we propose to use a method to accelerate convergence, known as the successive

over-relaxation method which, given an acceleration parameter θ ∈ [1,2[, modifies the iterates
as

a(ℓ+1) = (a(ℓ))(1−θ )

(
proxH

F1/ε(K(b(ℓ)))

K(b(ℓ))

)θ

and similarly for b(ℓ). This idea is new in the context of optimal transport, and in numerical
experiments we observed that it improves convergence speed by up to orders of magnitude. We
give a detailed local convergence analysis that exhibits the best choice of θ and predicts the
acceleration factor (these results are well known in the context of resolution of linear systems).

Finally, in Section 3.5, we consider scaling algorithms (7) in the continuous setting. Our main
contribution is a proof that the fixed point mapping underlying the iterations (7) is non-expansive
in L∞

++(X) and L∞
++(Y ) for the Thompson metric, a metric originating from non-linear Perron-

Frobenius theory. In some particular cases of practical importance (computation of barycenters,
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gradient flows, optimal plans for Ŵ2), we prove that the global convergence rate is linear for this
metric, in the infinite dimensional setting.

Chapter 4: Solving Dynamic Formulation

In this short chapter, we propose a numerical method for solving dynamic formulations of the
form (4), or more generally, after the change of variables (ωt ,ζt) = (vtρt ,gtρt), problems of the
form

min

{∫ 1

0

∫

Ω

f (ρt(x),ωt(x),ζt(x))dxdt ; ∂tρt +∇ ·ζt = ωt and boundary conditions

}

where f is a l.s.c. convex function whose L2-proximal operator z̄ 7→ argminz{ f (z)+ |z− z̄|2} is
easy to compute. We adopt the approach described in [123] that deals with the balanced case,
extend it to the unbalanced setting and make new comments. After discretization on staggered
grids, we obtain a non-smooth convex minimization problem that can be tackled with operator
splitting methods, such as Douglas-Rachford’s algorithm.

In Section 4.2 we derive the method for fast computation of the projection maps in the spectral
domain, considering various boundary conditions, and the discretized proximal maps for various
action functionals. In Section 4.3, we display numerical geodesics for models introduced in
Chapter 2 as well as other models of unbalanced optimal transport considered in the literature
on 1-D and 2-D domains. This illustrates the various behaviors that can be expected from those
models.

Part III: Applications

Chapter 5: Illustrations for Scaling Algorithms

This chapter is the applied and illustrative counterpart of Chapter 3. We review several prob-
lems that fit in the framework of the scaling algorithms, derive the explicit form of the iterates
and display illustrations. In Section 5.1, we solve optimal entropy-transport problems (5) with
four choices of f -divergences: exact marginal constraints, relative entropy, total variation, and
range constraint. We display 1-D and 2-D experiments as well as a color transfer experiment
where the unbalanced framework comes naturally. In Section 5.2, we consider unbalanced op-
timal transport barycenter problems with the same choices of f -divergences. This is applied
to the computation of geodesics for Ŵ2 and to a comparison between balanced and unbalanced
barycenters in 1-D and 2-D domains. In Section 5.3, we explain how to use scaling algorithms
for computing time discretized gradient flows w.r.t. optimal transport or unbalanced optimal
transport metrics. In particular, we derive an algorithm for solving the challenging Wasserstein
gradient flow of the functional “total variation of the gradient”.

Chapter 6: Gradient Flow of Hele-Shaw Type

The chapter evolves around an evolution partial differential equation (PDE) of Hele-Shaw type,
that has been studied in mathematical biology as a mechanical model for tumor growth. This
PDE models the evolution of a positive density of, say, malignant cells (ρt)t∈[0,T ] on a domain
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Ω ⊂ Rd that multiply under a maximum density constraint. When the constraint is saturated,
this generates a positive pressure pt(x) that diminishes the rate of growth and advects the density
through Darcy’s law. Formally, a solution is a weakly continuous paths (ρt)t∈[0,T ] starting form
ρ0 ∈ L1

+(Ω) with ρ0 ≤ 1, that weakly solves




∂tρt −∇ · (ρt∇pt) = Φ(pt)ρt

pt(1−ρt) = 0

0≤ ρt ≤ 1

(8)

where Φ(p) is the rate of growth, which is a decreasing function of the pressure p. Focusing on
the case Φ(p) = 4(λ − p)+ with λ > 0 we show existence and uniqueness of solutions to (8)
by showing that this system characterizes gradient flows of the function

G(ρ) =

{
−λρ(Ω) if ρ ≪L d and dρ

dL d ≤ 1,

+∞ otherwise
(9)

for the metric Ŵ2 introduced in Chapter 2. More precisely, we show that any minimizing move-
ment is a solution to (8) and that if Ω is convex, solutions to (8) are, in turn, EVI(−2λ ) solutions
of gradient flow. The latter is a characterization of gradient flows in metric spaces that guarantees
in particular uniqueness [5].

This approach has the following advantages: (i) it suggests a simple interpretation of solutions
to (8) as the most efficient way for a density to gain mass under a maximum density constraint,
where efficiency is measured by the metric Ŵ2, (ii) it allows to improve over the existing theo-
retical results (contrary to [113], we make no regularity assumption on the initial data) and (iii)
it leads up to a numerical scheme thanks to the time discretized gradient flow.

In Section 6.3, we proceed with the spatial discretization and derive the scaling algorithm for
solving the gradient flow time steps. We show that the numerical scheme is consistent through-
out, in that it recovers a solution to (8) when all parameters tend to their limit, successively.
We then derive explicit spherical solutions, that we use to assess the precision of the numerical
method as well as the convergence of the scheme, in Section 6.4. We conclude with numerical
illustrations in 1-D and 2-D.

Chapter 7 : Algorithmic Approach for Matrices

In this last chapter, we consider an extension of the entropy-transport problem to allow optimal
transport of measures whose values are positive semidefinite (PSD) matrices. Our objective is to
find a compromise between geometrical faithfulness and algorithmic efficiency, relying on the
ideas of Chapter 3.

We propose to solve an entropy-transport-like problem

min
∫

X×Y
c(x,y) ·dγ(x,y)+

∫

X
Hq(π

x
#γ|µ)+

∫

Y
Hq(π

y
#γ|ν)

where γ is now a measure on a product space X×Y that takes PSD values, and the cost function c

is matrix valued. The Von-Neumann quantum entropy Hq(P|Q) is a sublinear function that cap-
tures the dissimilarity between two PSD matrices P,Q ∈ Sd

+ (the integral of a sublinear function
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of measures is defined in the section Notation). We propose a quantum-entropic regularization
of this convex optimization problem, which can be solved efficiently in the discrete case with an
iterative scaling algorithm. This algorithm boils down to a specific version of (7) in the scalar
case.

The crux of this approach lies in the algebraic properties of the quantum relative entropy, that
allows to painlessly derive a scaling algorithm even in this non-commutative setting. We detail
a simple adaptation of the model to add a “fixed trace” constraint, which is alike a conservation
of mass constraint and also extend this formulation and the algorithm to compute barycenters of
a collection of input tensor fields.
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Introduction (Français)

Le problème qui est au cœur de la théorie du transport optimal peut se formuler en ces termes
simples : étant données deux distributions de masse µ et ν sur des espaces X et Y , et étant donné
un coût c(x,y) ∈ R pour déplacer une unité de masse située au point x ∈ X vers le point y ∈ Y ,
déterminer parmi tous les plans de transport qui décrivent une manière de déplacer toute la masse
de µ vers celle de ν , celui qui minimise le coût total de transport. Il apparaît immédiatement que
cette question n’a de sens que si µ et ν sont des distributions dont la masse totale est identique.
L’objet de cette thèse est de définir, étudier, et résoudre numériquement des problèmes similaires

qui sont restent bien définis quand les masses totales diffèrent et qui préservent les propriétés

caractéristiques du transport optimal classique.

Théorie du transport optimal

La première formalisation du problème du transport optimal remonte à un mémoire de Gas-
pard Monge [115] en 1781. Motivé par des questions pratiques de déplacement de déblais, il a
étudié le cas d’un coût de transport de la forme c(x,y) = |y− x| dans un espace Euclidien, ce
qui l’a mené à la découverte de structures géométriques riches [171]. Ce problème connu un
regain d’intérêt dans les années 1940 sous l’impulsion de Kantorovich [91] qui lui a donné sa
forme moderne, en tant que problème de programmation linéaire sur l’espace des mesures de
probabilité :

Cc(µ ,ν) := min

{∫

X×Y
c(x,y)dγ(x,y) ; γ ∈P(X×Y ), (πx

#γ ,πy
#γ) = (µ ,ν)

}
(10)

où πx
# et πy

# sont des opérateurs qui associent à chaque mesure sur l’espace produit X ×Y ses
marginales. X et Y sont typiquement des espaces métriques compacts ou Polonais3 et µ ∈P(X)
et ν ∈P(Y ) sont des mesures de probabilité.

Kantorovich et ses coauteurs ont établi un certain nombre de résultats fondamentaux : exis-
tence de plans γ optimaux, formulation duale en termes de prix et conditions d’optimalité. Ils
ont aussi remarqué que le coût de transport optimal Cc(µ ,ν) est une quantité pertinente pour
comparer des mesures de probabilité. En particulier, si d est une distance sur X = Y et p ≥ 1,
alors Wp(µ ,ν) := Cdp(µ ,ν)1/p définit (modulo des conditions sur les moments) une distance
sur P(X), aujourd’hui connue sous le nom de distance de p-Wasserstein. Cette distance a la
propriété agréable de reproduire la structure de X sur P(X) : si (X ,d) est un espace Polonais
ou géodésique, alors (P(X),Wp) l’est aussi.

Le succès de la théorie du transport optimal s’explique en partie par le fait que de nombreuses
opérations, telles que l’interpolation de mesures de probabilité, la différentiation d’un chemin,
la définition de barycentres, se comportent bien dans (P(X),Wp). On peut aussi l’attribuer aux
connections surprenantes qui existent entre le transport optimal et des problèmes bien établis
tels que l’équation d’Euler [26] ou encore les équations au dérivées partielles (EDP) d’évolu-
tion [120].

3un espace topologique est Polonais s’il est séparable et complètement métrisable
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Nous nous contenterons de mentionner une dernière caractéristique du transport optimal :
la formulation variationnelle des interpolations, connue sous le nom de formule de Benamou-

Brenier [12], ou formulation dynamique. Lorsque la fonction de coût est de la forme c(x,y) =
L(y− x) pour une fonction L positive et strictement convexe sur Rd , on a

Cc(µ ,ν) = min

{∫ 1

0

∫

Rd
L(vt)dρtdt : ∂tρt +∇ · (vtρt) = 0, (ρ0,ρ1) = (µ ,ν)

}
(11)

où (ρt)t∈[0,1] est une famille faiblement continue de mesures de probabilité qui interpole entre µ

et ν , sous l’action d’un champ de vitesses vt : Rd →Rd dépendant du temps [89].
Nous nous limiterons à ces quelques fait basiques et orientons le lecteur intéressé par la théorie

générale du transport optimal vers les ouvrages de référence [161, 162, 142, 5].

Utilisation dans les application et contrainte de masse

Le transport optimal permet de construire, à partir d’une métrique sur un espace donné, une
métrique entre les mesures de probabilité sur cet espace. Cela en fait un outil de choix dans
beaucoup d’applications où des objets tels que des histogrammes, des distributions de masse ou
des densités sont manipulées. En conséquence, et sous l’impulsion des progrès récurrents appor-
tés aux méthodes numériques, le transport optimal est de plus en plus utilisé dans des domaines
appliqués. En traitement de formes, il sert d’outil pour le recalage [82], la segmentation [146]
ou la restauration [18]. En traitement d’images, il est couramment utilisé pour la manipulation
de couleurs [132, 54, 131], l’ajustement de réflectances [19] et le débruitage [97]. En appren-
tissage statistique, son efficacité a été observée comme métrique entre histogrammes [125, 51],
en classification d’images [140], en apprentissage semi-supervisé [153] et pour l’adaptation de
domaine [49].

Dans la plupart de ces applications, la contrainte d’égalité des masses apparaît comme une
limite plutôt qu’un avantage et une formulation du transport optimal autorisant un dosage de
déplacement ainsi que d’ajustement de la masse peut sembler plus attrayante. C’est donc sans
surprise que de nombreux auteurs ont proposé des extensions du transport optimal autorisant des
variations de masse. Dans les paragraphes qui suivent, nous passons en revue quelques applica-
tions où ces extensions sont pertinentes.

Traitement d’images et de formes Dans la jungle de méthodes variationnelles utilisées
pour le traitement de formes [167, 141, 168], le transport optimal a l’avantage d’être convexe
mais a des défauts d’un point de vue modélisation. Par example, les applications de transport
n’attachent aucune importance à la topologie des formes. De plus, les images ou formes sont
généralement représentées par des densités sur R2 ou R3 et une étape de normalisation est né-
cessaire avant d’utiliser le transport optimal. Un modèle plus flexible, partageant des similarités
avec la méthode des métamorphoses pour le recalage difféomorphique [157], est d’expliquer les
variations globales de masse par des ajustements locaux. Cette idée a motivé l’introduction de
modèles de transport non-équilibré spécifiques [106, 105] et est la motivation d’origine de notre
travail.
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Traitement d’histogrammes Dans le cadre de la manipulation des couleurs d’images, le
transport optimal permet de définir des déformations dans l’espace des couleurs qui minimisent
la distorsion globale. Dans ce contexte de meilleurs résultats ont été obtenus en relâchant la
contrainte de masse [68]. L’idée, qui se généralise à d’autres applications, est que lorsque l’on
traite d’histogrammes sur des domaines géométriques, il est parfois plus pertinent de préserver
les modes (maxima locaux de densité) plutôt que la masse.

Apprentissage statistique En apprentissage statistique, lorsque le transport optimal est uti-
lisé comme une métrique entre descripteurs, il a été observé que relâcher les contraintes de
marginales améliore la précision de la prédiction d’étiquettes [74]. Dans ce contexte, cette re-
laxation peut s’interprététer comme une régularisation, dont l’importance peut se régler avec un
paramètre.

Flots de gradient Le transport optimal est aussi utilisé pour étudier des EDP d’évolution :
certaines de ces équations admettent en effet une caractérisation comme flot de gradient pour
la métrique de Wasserstein W2. Par exemple, l’équation de la chaleur est le flot du gradient
de l’entropie [90], mais des EDP non linéaires peuvent aussi être vues sous ce prisme [122]
ainsi que des gradients de fonctions dégénérées [110]. Cette approche comporte un intérêt à
la fois théorique pour étudier l’existence, l’unicité et la convergence de solutions et un intérêt
pratique pour le calcul numérique des solutions d’EDP dégénérées [28]. Cette méthode n’était
jusqu’à présent possible que pour des EDP qui conservent la masse, à cause de la contrainte
associée au transport optimal (à l’exception des cas où des conditions aux bords spécifiques sont
choisies [70]). Une théorie du transport entre mesures positives permet de l’étendre à certaines
EDP qui ne conservent pas la masse (voir chapitre 6).

Transport optimal non-équilibré : état de l’art

Le terme anglais unbalanced (que nous traduisons par non-équilibré) semble apparaître pour la
première fois dans [11], où une relaxation du problème du transport optimal avec une pénalisa-
tion L2 est étudiée, mais l’idée date de bien avant. Kantorovich proposait déjà de considérer le
transport entre mesures de masse arbitraire et de rejeter une portion de masse hors du domaine
(compact) [80], une idée qui a été approfondie pour étudier des EDP avec des conditions aux
bords de Dirichlet [70]. Plus généralement, une astuce répandue dans les applications est d’ajou-
ter un point fictif qui joue le rôle d’une source (ou puit) de masse infinie, qui peut être atteint
à un coût donné. Si le coût pour rejoindre ce point fictif est constant sur tout le domaine, alors
on retrouve le problème du transport partiel optimal, étudié théoriquement dans [70] et [69]. Ce
problème consiste en la recherche du transfert d’une quantité m> 0 de masse entre deux mesures
qui minimise le coût de transport. Il est montré dans [32] que cette contrainte de masse admet
une formulation duale sous la forme d’un problème de transport optimal modifié où apparaît un
coût maximum au delà duquel tout transport est interdit.

Indépendamment, une classe de distances de transport optimal, où les contraintes de margi-
nales sont relaxées avec une pénalisation Variation Totale4 a été étudiée par [129, 130]. De nom-

4dans cette thèse, la Variation Totale fait référence la Variation Totale des mesures, qui s’identifie à la norme L1 des
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breuses propriétés sont prouvées ou retrouvées, telles que la dualité entre la norme Bounded
Lipschitz et les normes de Kantorovich-Rubinstein [83] ainsi qu’une formulation dynamique.
Dans le chapitre 2, nous retrouvons ces modèles comme cas limite de notre cadre général et
montrons qu’ils sont équivalents au problème du transport partiel optimal.

Lorsque j’ai commencé la préparation de ma thèse, l’étude théorique du transport entre me-
sures positives était ainsi limité au problème de transport partiel. Cette approche n’était pas tou-
jours satisfaisante en pratique et donc d’autres modèles, ajustés à des applications spécifiques,
avaient vu le jour. Les relations entre les différents points de vue n’étaient pas connues et une
analyse systématique de ces modèles manquait.

Travaux parallèles

Sauf mention explicite du contraire, le contenu de cette thèse est issu de mon propre travail ou
de mon travail avec mes collaborateurs : Simone Di Marino, Gabriel Peyré, Bernhard Schmit-
zer, Justin Solomon et François-Xavier Vialard. Pendant la préparation de cette thèse, d’autres
équipes ont travaillé sur des sujets similaires et je souhaite clarifier dans quelle mesure ces
contributions extérieures ont influencé ce manuscrit.

La métrique de transport non-équilibré correspondant au cas quadratique étudiée au cha-
pitre 2 a été introduite indépendamment par différentes équipes (dont la notre) dans un laps
de temps étonnamment court [103, 104, 94, 40, 44, 43]. Cette métrique a reçu le nom Hellinger-

Kantorovich dans [103, 104] et Wasserstein-Fisher-Rao dans [44, 43]. Dans cette thèse, elle est
simplement notée Ŵ2 et introduite comme un cas particulier d’une famille de métriques Ŵp.
De nombreuses contributions importantes apportées par ces autres équipes ont été délibérément
mises de côté dans cette thèse pour mettre l’accent sur mes propres contributions.

Je souligne le fait que les propriétés métriques (complétude, métrisation de la convergence
faible) de Ŵ2 n’étaient pas présentes dans nos travaux précédemment communiqués mais avaient
été traités dans [94, 103]. Néanmoins, il m’a semblé pertinent de traiter ces propriétés pour la
classe plus large de métriques Ŵp.

Dans [43], nous avons introduit une formulation du transport non-équilibré sous forme de
“semi-couplages”. Deux formulations alternatives ont été proposées dans [103]. Dans le cha-
pitre 1, ces formulations sont introduites (avec quelques variantes) et des équivalences mon-
trées. Par ailleurs, nous faisons une utilisation intensive de la formulation de transport-entropie,
en particulier dans les chapitres 3 et 6 : il s’agit d’une contribution de [103].

Partie I : Modèles de transport optimal entre mesures positives

Dans la première partie de cette thèse, nous introduisons différents modèles de transport optimal
non-équilibré, étudions leurs principales propriétés et établissons des équivalences entre des
modèles.

fonctions, et non la norme L1 du gradient.
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Chapitre 1 : Formulations et équivalences

La première approche considérée dans la section 1.1 est une formulation dynamique qui s’ins-
pire de (11). Elle consiste en la recherche d’une interpolation (ρt)t∈[0,1] dépendant du temps
entre deux mesures µ ,ν ∈M+(Ω), Ω ⊂Rd qui minimise une fonctionnelle d’action. Comme
suggéré précédemment [106, 129], nous considérons l’équation de continuité avec source (aussi
dite “avec réaction")

∂tρt +∇ · (vtρt) = gtρt , (ρ0,ρ1) = (µ ,ν). (12)

Cette équation autorise deux degrés de liberté pour la modification de la masse, à travers les
champs de vitesse vt : Ω→Rd et de croissance gt : Ω→R. En se rappelant que l’homogénéité
par rapport à la masse est une propriété essentielle du transport optimal, on définit une nouvelle
classe de problèmes

CL(µ ,ν) := min

{∫ 1

0

∫

Ω

L(vt(x),gt(x))dρt(x)dt ; (ρt) solves (3)

}
(13)

où L : Rd×R→R est un Lagrangien convexe, continu et minimal en L(0,0) = 0. Afin de gagner
en généralité et de simplifier l’analyse, on reformule ce problème à l’aide de la fonction perspec-
tive ψL, mais l’essence du problème est inchangée. Nous montrons que ce problème admet des
minimiseurs avec un coût fini et formulons le problème dual, qui consiste en la maximisation
d’un coût linéaire sur l’espace des sous-solutions d’une équation de Hamilton-Jacobi avec un
terme d’ordre zero. De façon similaire au coût de transport optimal classique (10), nous mon-
trons que CL est lié à la convergence faible des mesures et que pour un Lagrangien p-homogène,
p ≥ 1, C

1/p
L définit une métrique géodésique sur l’espace des mesures positives. Dans le cas

limite où p = 1, on montre que la variable temporelle est superflue et que CL peut se ré-écrire
comme un problème de flot minimal de Beckmann.

Dans la section 1.2, nous suggérons une deuxième approche pour le transport de mesures
positives. Nous étendons la notion de couplage pour contourner le fait que le couplage entre
deux mesures positives n’existe pas en général. Au lieu d’un unique couplage, on considère une
paire ( f1γ , f2γ) que nous appelons une paire de semi-couplages, parce que l’on impose à chaque
fiγ , qui est une mesure sur X ×Y , de satisfaire une seule contrainte de marginale. On choisit
ensuite une fonction hx,y(u,v) qui définit le coût pour déplacer un atome uδx vers vδy, qui doit
être sous-linéaire (c’est-à-dire convexe et 1-homogène) en (u,v) ∈ R2

+. Cette fonction permet
de définir une formulation semi-couplage du transport optimal entre deux mesures (µ ,ν) ∈
M+(X)×M+(Y ) sur des espaces métriques compacts X ,Y :

Ch(µ ,ν) := min

{∫

X×Y
hx,y( f1(x,y), f2(x,y))dγ(x,y) ; (πx

#( f1γ),πy
#( f2γ)) = (µ ,ν)

}

où le minimum est recherché sur l’ensemble des fonctions f1, f2 : X ×Y → R+ et mesures
γ ∈P(X ×Y ). Les propriétés de Ch sont similaires à celles du problème de Kantorovich (10) :
le minimum est atteint, on peut formuler un problème dual sur l’espace des fonctions continues
et, pour certains choix de coûts sous-linéaires h, Ch est continu pour la convergence faible des
mesures. Une autre propriété séduisante est que si X = Y et h1/p définit une métrique sur le
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cône de X (l’espace X ×R+ où les points X ×{0} sont identifiés à un seul point), alors C
1/p
h

définit une métrique sur M+(Ω). On introduit également les formulations proposées par [103]
et faisons la connexion avec les nôtres. En particulier, nous considérons une variante de leur
formulation où l’on recherche un relèvement optimal

Ch
c (µ ,ν) := min{Cc(µ̄ , ν̄) ; (hµ̄ ,hν̄) = (µ ,ν)}

où le coût c est un coût sur (X ×R+)× (Y ×R+) et h est un opérateur d’espérance condi-
tionnelle, informellement hµ̄(dx) =

∫
R+

udµ(dx,du). On montre que si c est continu, alors C
h
c

est équivalent à un problème de semi-couplage Ch où hx,y est défini comme la régularisation
sous-linéaire de c((x, ·), (y, ·)) pour tous (x,y) ∈ X ×Y . Une dernière formulation, qui n’est pas
une contribution personnelle, joue un rôle essentiel dans la suite de cette thèse : la formula-
tion de transport-entropie [103], qui est similaire à la formulation de Kantorovich mais où les
contraintes de marginales sont relâchées. Informellement, elle est définie par

Cc, f (µ ,ν) := min
γ∈M+(X×Y )

{∫

X×Y
cdγ +

∫

X
f

(
d(πx

#γ)

dµ

)
dµ +

∫

Y
f

(
d(πy

#γ)

dν

)
dν

}
(14)

où c : X ×Y → R∪{∞} est une fonction de coût et f est une fonction d’entropie, c’est-à-dire
une fonction convexe sur R+ minimale en 1, qui sert à quantifier l’écart entre les marginales du
plan γ et µ et ν . Les termes dépendant des marginales de γ sont appelés des f -divergences.

Dans la section 1.3, nous étudions la relation entre les formulations dynamiques et de cou-
plage, et nous montrons un analogue de la formule de Benamou-Brenier (11) dans le cadre
non-équilibré. Plus précisément, si l’on définit hx,y(a,b) comme la régularisation sous-linéaire
et semi-continue inférieure du coût de chemin minimal que l’on obtient en cherchant à joindre
(x,a) à (y,b) par des chemins absolument continus dans Ω×R+, alors on a CL(µ ,ν) =Ch(µ ,ν)
pour toute paire de mesures positives. Ce résultat parachève la description des différents modèles
de transport optimal de mesures positives et des liens qui les unissent.

Chapitre 2 : Métriques de transport optimal non-équilibré

Le deuxième chapitre est dédié à l’étude de modèles spécifiques. On considère une famille de
Lagrangiens p-homogènes

Lp,α(v,g) =
(

1
α |v|

)p

+
(

1
p
|g|

)p

avec p ≥ 1 et α > 0. Les quantités Ŵp,α = C
1/p
Lp,α

définissent une nouvelle famille de métrique
qui font de M+(Ω) un espace géodésique complet, muni de la topologie faible. Cette famille
est le pendant naturel des métriques de p-Wasserstein au cadre non-équilibré. Nous montrons
que α est un paramètre d’échelle, dans la mesure où si s# est l’application qui à une mesure
associe la mesure image par la transformation linéaire s : x 7→ αx, alors s# : (M+(Ω),Ŵp,1)→
(M+(αΩ),Ŵp,α) est une isométrie. Nous étudions ensuite la limite des géodésiques de Ŵp,α

quand α tend vers 0 et ∞. On montre que quand α ↓ 0, on retrouve les géodésiques d’une classe

de métrique de pure “croissance” dont l’expression
(∫

X |µ1/p−ν1/p|p
)1/p

est une version ho-
mogénéisée des métriques Lp. Les métriques de Hellinger et de Variation Totale font notamment
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partie de cette famille. Pour l’autre limite α ↑ ∞, on obtient les géodésiques de Wp classique si
µ(Ω) = ν(Ω), et une généralisation de celles-ci sinon.

La section suivante s’intéresse au cas quadratique Ŵ2 pour lequel le coût de chemin minimal
est explicite. Il s’ensuit une formulation “semi-couplages” explicite, c’est à dire Ŵ 2

2 (µ ,ν) =
Ch(µ ,ν) avec α = 1 et le coût sous-linéaire

hx,y(a,b) = a+ b−2
√

abcos(min{dist(x,y),π/2}).

C’est formulation statique ouvre la voie à des méthodes numériques efficaces telles que celles
considérées au chapitre 3. Pour le cas p = 1, on retrouve le cas bien connu de la métrique
Bounded Lipschitz. Finalement, on considère des Lagrangiens de la forme L(v,g) = (|v|/α)p+
1
2 |g| qui rappellent les problèmes considérés dans [129, 130]. On montre que ces modèles sont
équivalents au problème du transport partiel optimal [69, 32] avec une paramétrisation duale.

Partie II : Méthodes numériques

Dans la deuxième partie de cette thèse, nous nous intéressons aux schémas numériques pour
résoudre les problèmes de transport non-équilibrés et des problèmes variationnels liés. Inci-
demment, notre analyse suggère un cadre d’étude et des améliorations pour résoudre d’autres
problèmes liés au transport optimal classique.

Chapitre 3 : Algorithmes de scaling pour les couplages optimaux

Ce chapitre est dédié à la définition et l’étude d’une classe d’algorithmes de scaling pour ré-
soudre des problèmes de la forme

min

{∫

X×Y
c ·dγ +F1(π

x
#γ)+F2(π

y
#γ) ; γ ∈M+(X×Y )n

}
(15)

que nous appelons la formulation générique. Dans ce problème, l’inconnue est une famille de
n couplages (potentiellement n > 1), c : X ×Y → R̄n est une famille de fonctions de coût et
F1,F2 sont des fonctionnelles convexes, semi-continues inférieurement et simples, typiquement
des fonctionnelles “locales".

Dans la section 3.1, nous mettons en avant la généralité de (15) en montrant que cette formula-
tion couvre de nombreux problèmes connus ou nouveaux : calcul de plans de transport optimaux,
de barycentres, de flots de gradient, et leurs équivalents non-équilibrés. On prouve aussi que pour
les cas typiques, la formulation générique (15) est bien posées et admet un minimiseur.

Dans la section 3.2, on introduit la structure du schéma numérique. Il implique (i) d’ajouter
un terme de régularisation à (6) sous la forme d’une divergence de Bregman, et (ii) de réaliser
une méthode de maximisation alternée par blocs sur le problème dual. On prouve une relation
primal-duale pour les divergence de Bregman qui, une fois combinée aux résultats de Beck [10],
implique que l’algorithme génère une séquence d’itérées (γ (ℓ))ℓ∈N qui converge vers le transport
optimal régularisé à un taux O(1/ℓ), mesuré en terme de divergence de Bregman.

Dans la section 3.3, on considère le cas de la régularisation entropique, tel que proposé par Cu-
turi [51]. Cette régularisation se traduit par l’ajout, à la fonctionnelle (15), du terme εH(γ|γ (0))
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qui est l’entropie relative (aussi appellée divergence de Kullback-Leibler) du plan γ par rapport à
un mesure de référence γ (0). Cela conduit à une nouvelle classe d’algorithmes de scaling. Dans
le cas discret, avec une initialisation b(0) ∈RY

++, on obtient la séquence

a(ℓ+1) =
proxH

F1/ε(K(b(ℓ)))

K(b(ℓ))
, b(ℓ+1) =

proxH
F2/ε(K

T (a(ℓ+1)))

KT (a(ℓ+1))
(16)

où K := exp(−c/ε)γ (0) agit sur a et b comme un produit matrice-vecteur. Cet algorithme est
intéressant en pratique du moment que l’opérateur proximal par rapport à l’entropie relative

proxH
F1/ε : s̄ ∈RX

+ 7→ argmin
s

F1(s)/ε +H(s|s̄)

est explicite ou calculable facilement pour F1 et F2. On suggère une méthode de stabilisation qui
permet d’atteindre des petits paramètres de régularisation sans sacrifier la faible complexité des
itérations et faisons des commentaires informels pour une implémentation efficace ainsi que sur
des généralisations possibles.

Dans la section 3.4, on propose d’utiliser une méthode de surrelaxation successive pour accé-
lérer la convergence de l’algorithme. Étant donné un paramètre d’accélération θ ∈ [1,2[, cette
méthode produit les itérées

a(ℓ+1) = (a(ℓ))(1−θ )

(
proxH

F1/ε(K(b(ℓ)))

K(b(ℓ))

)θ

et de même pour b(ℓ). Cette idée est nouvelle dans le contexte du transport optimal et permet,
dans les expériences numériques, une convergence bien plus rapide dans certains cas. Nous
faisons l’analyse détaillée de la convergence locale de ce nouvel algorithme, qui nous révèle le
meilleur choix de θ et prédit le facteur d’accélération (ces résultats sont bien connus pour la
résolution de systèmes linéaires).

Finalement, dans la section 3.5, on considère des algorithmes de scaling (16) dans le cadre
continu. Notre principale contribution est une preuve que l’itération de point fixe sous-jacente
à l’algorithme (16) est non-expansive dans L∞

+(X) et L∞
+(Y ) pour la métrique de Thompson,

une métrique issue de la théorie de Perron-Frobenius non linéaire. Dans certains cas particulier
importants (calcul de barycentres, flots de gradient, plans optimaux pour Ŵ2), on montre que la
convergence globale est linéaire pour cette métrique, en dimension infinie.

Chapitre 4 : Résoudre la formulation dynamique

Dans ce court chapitre, on propose une méthode numérique pour résoudre des problèmes de la
forme (13), ou plus généralement, après le changement de variables (ωt ,ζt) = (vtρt ,gtρt), des
problèmes de la forme

min

{∫ 1

0

∫

Ω

f (ρt(x),ωt(x),ζt(x))dxdt ; ∂tρt +∇ ·ζt = ωt et conditions aux bords

}

où f est une fonction convexe semi-continue inférieurement dont l’opérateur L2-proximal z̄ 7→
argminz{ f (z) + |z− z̄|2} se calcule facilement. On adopte l’approche décrite dans [123] qui
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traite du cas du transport équilibré et l’étend au cadre non-équilibré. Après discrétisation du
problème sur des grilles en quinconce, on obtient un problème de minimisation convexe non-
lisse qui peut se résoudre avec des méthodes d’éclatement d’opérateurs, telles que l’algorithme
de Douglas-Rachford.

Dans la section 4.2, on détaille comment calculer les opérateurs de projection de manière
efficace dans le domaine spectral, pour différentes conditions aux bords. On exhibe aussi les
opérateurs proximaux pour certains choix de fonctionnelles d’action. Dans la section 4.3, on
représente des résultats numériques pour le calcul de géodésiques pour certains modèles traités
dans le chapitre 2 ou bien introduits par ailleurs dans la littérature, sur des domaines 1-D et 2-D.
Ces résultats illustrent les différents comportement qui sont associés aux différents modèles de
transport non-équilibré.

Partie III : Applications

Chapitre 5 : : Illustrations des algorithmes de scaling

Ce chapitre est le pendant appliqué et illustré du chapitre 3. On passe en revue quelques pro-
blèmes qui entrent dans le cadre des algorithmes de scaling, on construit la forme explicite des
itérées et on propose des illustrations. Dans la section 5.1, on résout des problèmes d’entropie-
transport (14) pour quatre choix de f -divergences : contraintes de marginales exactes, entro-
pie relative, Variation Totale et contrainte d’intervalle. On représente en particulier une expé-
rience de transfert de couleurs où le cadre non-équilibré se révèle utile. Dans la section 5.2, on
considère le calcul de barycentres avec les mêmes choix de f -divergences. On applique l’algo-
rithme au calcul de géodésiques pour Ŵ2 et à la comparaison entre les barycentres classiques et
non-équilibrés. Dans la section 5.3, on détaille comment les algorithmes de scaling permettent
de résoudre des flots de gradient pour des métriques de transport optimal classiques ou non-
équilibrées. En particulier, on propose une résolution du problème de flot de gradient pour la
fonctionnelle “Variation Totale du gradient”.

Chapitre 6 : Flot de gradients de type Hele-Shaw

Ce chapitre évolue autour d’une EDP d’évolution de type Hele-Shaw qui a été étudiée en biolo-
gie mathématique en tant que modèle mécanique de croissance de tumeur. Cette EDP modélise
l’évolution d’une densité positive (ρt)t∈[0,T ] de cellules malignes sur un domaine Ω ⊂ Rd qui
se démultiplient sous une contrainte de densité maximale. Quand la contrainte est saturée, une
pression pt(x) strictement positive apparaît, fait diminuer le taux de croissance et provoque un
déplacement des cellules suivant la loi de Darcy. Formellement, une solution est un chemin ab-
solument continu (ρt)t∈[0,T ] dans l’espace des mesures qui part de ρ0 ∈ L1

+(Ω) avec ρ0 ≤ 1 et
est une solution faible de 




∂tρt −∇ · (ρt∇pt) = Φ(pt)ρt

pt(1−ρt) = 0

0≤ ρt ≤ 1

(17)

où Φ(p) est le taux de croissance, qui est une fonction décroissante de la pression p. Nous nous
concentrons sur le cas Φ(p) = 4(λ − p)+ avec λ > 0 et montrons l’existence et l’unicité de
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solutions de (17) en montrant que ce système caractérise les flots de gradient de la fonction

G(ρ) =

{
−λρ(Ω) if ρ ≪L d and dρ

dL d ≤ 1,

+∞ otherwise
(18)

pour la métrique Ŵ2 introduite au chapitre 2. Plus précisément, on montre que tout mouvement
minimisant est une solution de (17) et que si Ω est convexe, alors les solutions de (17) sont à
leur tour des solutions EVI(−2λ ) du flot de gradient (l’acronyme EVI désigne une caractérisation
exigeante des flots de gradient dans un espace métrique qui garantit en particulier l’unicité des
solutions [5]).

Cette approche pour étudier (17) possède les avantages suivants : (i) elle suggère une interpré-
tation simple des solutions de (17) comme la façon la plus efficace pour une densité pour gagner

de la masse sous une contrainte de densité maximale, où la notion d’efficacité est déterminée par
la métrique Ŵ2, (ii) elle permet d’améliorer les résultats théoriques (au contraire de [113], nous
ne faisons pas d’hypothèse de régularité sur la donnée initiale) et (iii) elle mène à un schéma
numérique pour simuler l’EDP, à l’aide du flot de gradient discrétisé en temps.

Dans la section 6.3, on procède à la discrétisation spatiale et déterminons l’algorithme de sca-

ling qui permet de résoudre les étapes temporelles du flot de gradient. On montre que le schéma
numérique est consistent dans son ensemble, dans le sens où une solution continue de (17) est
obtenue quand tous les paramètres tendent vers leur limite successivement. On construit ensuite
les solutions sphériques explicites qui nous servent de référence pour évaluer la précision de la
méthode numérique ainsi que la convergence du schéma dans la section 6.4. On conclue avec
des illustrations numériques en 1-D et 2-D.

Chapitre 7 : Approche algorithmique pour les matrices

Dans ce dernier chapitre, on considère une extension du problème de transport-entropie qui per-
met de considérer le transport optimal de mesures dont le co-domaine est l’espace des matrices
semi-définies positives (SDP). Notre objectif est de trouver un compromis entre bon comporte-
ment conforme à la géométrie du problème et efficacité algorithmique, en s’inspirant des idées
développées dans le chapitre 3.

On propose de résoudre un problème similaire aux problèmes d’entropie-transport

min
∫

X×Y
c(x,y) ·dγ(x,y)+

∫

X
Hq(π

x
#γ|µ)+

∫

Y
Hq(π

y
#γ|ν)

où γ est maintenant une mesure sur l’espace produit X ×Y qui prend des valeurs SDP et la
fonction de coût c est à valeurs matricielles. L’entropie quantique de Von-Neumann Hq(P|Q)
est une fonction sous-linéaire qui quantifie la dissimilarité entre deux matrices SDP P,Q ∈ Sd

+

(l’intégrale d’une fonction sous-linéaire de mesures est définie dans la section Notation). On
propose une régularisation de ce problème de minimisation convexe à l’aide de l’entropie quan-
tique. Ce nouveau problème se résout de manière efficace à l’aide d’un algorithme de scaling.
Cet algorithme se ramène à une version spécifique de (16) dans le cas scalaire.

Le point crucial de cette approche repose dans les propriétés algébriques de l’entropie relative
quantique qui permet de définir un algorithme de scaling même dans ce cadre non-commutatif.
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On propose une adaptation simple du modèle où l’on ajoute une contrainte de trace qui peut
s’interpréter comme une contrainte de conservation de masse. Finalement, on propose un algo-
rithme pour calculer le barycentre d’une collection de champs de tenseurs.
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Notation

Abstract ambient spaces. X ,Y ,Z denote abstract ambient spaces (typically topologi-
cal spaces or compact metric spaces). Measurability is always understood w.r.t. the Borel σ -
algebra. For a product space X ×Y × Z× . . . , we denote πx,πy, . . . the marginalization maps
πx(x,y,z, . . . ) = x. Sometimes, more complex marginalizations are used, but the notation re-
mains consistent. For instance π (x,z)(x,y,z, . . . ) = (x,z). We denote by id the identity map.

Domains We denote Ω the closure of a Lipschitz, connected, bounded domain of Rd , ∂ Ω

its boundary and Ω
ε := Ω + B(0,ε) where Bd(x,ε) is the closed ball of radius ε centered at

x in Rd . The geodesic distance between two points (x0,x1) ∈ Ω is denoted dist(x0,x1) (and
equals |x1− x0| if Ω is convex). For a function f : ]a,b[×Ω → R, we denote ∂t f its partial
derivative w.r.t. the first variable, by ∇ f its gradient w.r.t. the variable in Ω and if f is valued
in Rd , then ∇ · f denotes the divergence operator w.r.t. the variable in Ω. These operator are,
generally understood in the sense of distribution and act on measures as well.

Spaces of measures. M (X ;E) is the set of finite Radon measures on a topological space
taking their values in E (E is typically R+ or a subset of a finite dimensional vector space).
For conciseness, we write M (X) = M (X ;R) and M+(X) = M (X ;R+). For a measure µ ∈
M (X ;Rn) and a norm | · | on Rn, we denote |µ| ∈M+(X) its variation and dµ/dν its density
w.r.t. another measure ν ∈ M+(X). The pushforward map associated to a Borel map T is
written T#. For a measure µ ∈M+(X ×Rn), the partial expectation operator is denoted h and
defined as hµ(dx) =

∫
Rn u · µ(dx,du). The notation ⊗ is used for product of measures and for

measures generated by disintegration as well. We tried to keep consistent notations for the
optimal transport costs and their generalizations throughout the thesis:

• Cc is a standard optimal transport cost with the ground cost c;

• CL is a dynamic unbalanced optimal transport cost with Lagrangian L;

• C
h
c is a optimal lift transport cost with a cost on the lifted space c;

• Cc, f is an optimal entropy-transport cost, with cost c and entropy function f .

Spaces of functions. We denote by C (X ;E) the set of continuous and bounded func-
tions on a set X and by C k(Ω;E) the set of k times continuously differentiable functions on
Ω (more rigorously, restrictions to Ω of C k functions on Rd endowed with the norm ‖ f‖ =
inf{‖ f̃‖C k ; f̃ extends f}). For p ∈ [1,∞], we denote by Lp(X) or Lp(µ) the usual spaces of
(equivalence classes of) measurable functions on a measured space (X , µ). Also, L

p
+(X) and

L
p
++(X) denote the subset of Lp(X) of functions which are nonnegative and positive, respec-

tively. The Sobolev subspace of L2(Rd) of functions with L2 distributional gradient is denoted
H1(Rd).
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Convex analysis. For a function f : V →R∪{∞}, dom f is the domain of a function (the
set of points where it is finite), im f its range, ∂ f is its (convex) subdifferential. Its convex
conjugate is f ∗. We use also A∗ for the adjoint of a linear operator. For a convex set C, we
denote ιC its convex indicator, that is the function worth 0 on C and ∞ outside. The brackets 〈·, ·〉
denotes a duality pairing between paired spaces. The pairings that are considered in this thesis
are, with E a Euclidean space (and X compact for the first case):

C (X ;E), sup norm topology↔M (X ,E), weak topology

L∞(X ;R), ess-sup norm topology↔ L1(X), weak* topology.

The notation “·” is reserved for multiplication or the standard inner product on Rn. Appendix A
is devoted to the essential facts of convex analysis used in this thesis.

Families, discrete notations Families index by a set I are denoted (xi)i∈I or, if the set I is
clear from context, simply (xi). For two vectors a,b ∈Rn, we denote by a⊙b their elementwise
product and by a⊘ b their elementwise division with the convention 0/0 = 0. For (x,y) ∈
Rn×Rm, we define (u⊕ v)i, j = ui + v j for i = 1, . . . ,n and j = 1, . . . ,m.

Perspective functions We denote by ψ f (a|b) the perspective of a function f : Rd →
R∪{∞} (Definition A.0.11). This notation with a vertical bar allows to distinguish the “depth
parameter” which is always a real, from to the other arguments which can be vectors. This
notation is consistent with the standard notation for f -divergences (a.k.a. Csiszár divergences),
a concept recovered in the case when f is an entropy function.

Homogeneous functions of measures In this thesis, homogeneous functions of mea-
sures are ubiquitous and in order to maintain consistent and lightweight notation throughout, we
decided to adopt a somehow unusual (but not new [56]) notation. For a positively homogeneous
function ψ : E→F between Euclidean spaces and a measure µ ∈M (Ω;E), we denote by ψ(µ)
the measure in M (Ω;F) defined by

ψ(µ)(dx) := ψ

(
dµ

dλ
(x)

)
λ (dx).

where λ ∈M+(Ω) is any measure that dominates µ . This definition does not depend on the
choice of λ . In the case where ψ = ψL(·|·) : E×R → R∪{∞} is the perspective function of
a convex function L : E → R∪{∞}, then using the Lebesgue decomposition µ = σ ρ + µ⊥, it
follows

ψL(µ|ρ) = L(σ)ρ +L′∞(µ
⊥)

where L′∞ is the recession function of f , itself a sublinear functional.
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Chapter 1.

Formulations and Equivalences

In this chapter, we propose a unified theory of unbalanced optimal transport,
based on models that fall into two categories: the dynamic formulations and
the coupling formulations.
In Section 1.1, we introduce a new general framework for dynamic formu-
lations of unbalanced optimal transport problems. The two basic concepts
are (i) the continuity equation with source and (ii) an action functional based
on the choice of a convex Lagrangian. A variational problem allows then to
define interpolations between nonnegative measures with a mixture of mass
displacement and mass growth. We study standard properties of this varia-
tional problem, show that it can be used to define geodesic metrics, and that
the minimum enjoys continuity properties w.r.t. weak convergence.
In Section 1.2, we propose another class of formulations based on the new
concept of semi-couplings. It enters in the definition of a transport cost be-
tween nonnegative measures, which can be used to generate metrics that
metrize weak convergence. We also mention two formulations due to [103]
and show their connexions to the semi-coupling problem: on the one hand,
every optimal entropy-transport problems can be recast as a semi-coupling
problem (this is implicit from the results in [103]), on the other hand, we
prove that their optimal lift formulation can be also recast as a semi-coupling
problem involving the sublinear regularization of the cost function.
In Section 1.3, we prove that any dynamic problem admits a semi-coupling
formulation, thus completing the web of relationships between these models
and unifying the theory of unbalanced optimal transport.
The content of this chapter is based on a submitted paper [43]. Many results
have been added or improved specifically for this thesis.
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Chapter 1. Formulations and Equivalences

1.1. Dynamic formulations

1.1.1. Introduction

Motivation In this section, we describe a first approach to unbalanced optimal transport. In-
spired by the dynamic formulation of classical optimal transport, we look for the interpolation

(or path) between two measures µ ∈M+(Ω) and ν ∈M+(Ω) that minimizes an action func-
tional. What is meant by interpolation, is a family of measures (ρt)t∈[0,1] indexed by a parameter
t akin to time, which satisfies ρ0 = µ and ρ1 = ν . An action functional is an integral functional
summing up the “effort” required to generate the path (ρt).

Setting The technical setting in that chapter is that of measures on a domain Ω ⊂ Rd which
is the closure of an open bounded and connected set with Lipschitz boundary. These regularity
conditions allow us to join every pair of points by an absolutely continuous path of finite length,
and also to have for any pair of points (x,y) ∈Ω

2, continuity as ε ↓ 0 of the distance in Ω
ε .

The original motivation of this work was to build interpolations between shapes or images
(represented as measures) through convex variational problems. This explains the choice of a
compact setting as well as the differences that can be found in our choices of definitions or
interpretations, compared to a “PDE” approach. For instance, we do not assume a priori that
solutions to the continuity equation are weakly continuous.

1.1.2. Continuity equation with source

In the theory of standard optimal transport, time variations of the interpolation ∂tρt are exclu-
sively explained by displacement, and are thus generated by the flux (minus the divergence) of
some momentum ωt ∈M (Ω;Rd). This implies that only the flux of mass through the boundary
of Ω can explain variations of the total mass ρt(Ω)—in particular, ρt(Ω) is constant if no-flux
boundary conditions are enforced. In a general model of unbalanced optimal transport, it is de-
sirable to take into account local variations of mass, described by a source ζt ∈M (Ω). The
continuity equation with source defined hereafter enforces the mass balance of this dynamic: at
any point in time and space, the variation of mass equals the (signed) source of mass minus the
divergence of the flux:

∂tρ +∇ ·ω = ζ . (1.1.1)

This definition makes sense for smooth fields, but we typically assume much less regularity.
We do not even assume a priori that the time marginals admit a density with respect to Lebesgue
and thus consider triplets of finite measures (ρ ,ω ,ζ ) with ρ ∈M+([0,T ]×Ω), ω ∈M ([0,T ]×
Ω;Rd) and ζ ∈M ([0,T ]×Ω). The rigorous definition, with no-flux boundary conditions, is
as follows.

Definition 1.1.1 (Continuity equation with source). For (µ ,ν)∈M+(Ω)2, a triplet of measures

(ρ ,ω ,ζ ) is said to satisfy the continuity equation between µ and ν in the sense of distributions

on [0,T ] and we write (ρ ,ω ,ζ ) ∈ CET
0 (µ ,ν) if

∫ T

0

∫

Ω

∂tϕ dρ +
∫ T

0

∫

Ω

∇ϕ ·dω +
∫ T

0

∫

Ω

ϕ dζ =
∫

Ω

ϕT dν−
∫

Ω

ϕ0 dµ , (1.1.2)
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1.1. Dynamic formulations

for all ϕ ∈ C 1([0,T ]×Ω) with the notation ϕt := ϕ(t, ·). One can remove the time boundary

constraints by testing against ϕ ∈ C 1
c (]0,T [×Ω).

With this continuity equation, taking a “time slice” of ρ is permitted and variations of the total
mass ρt(Ω) are described by the time marginals of ζ , as formalized in the next lemma.

Lemma 1.1.2 (Variation of total mass). If (ρ ,ω ,ζ ) solves the continuity equation, then ρ admits

a disintegration with respect to the Lebesgue measure in time ρ = ρt ⊗ dt and t → ρt(Ω) is of

bounded variation, with distributional derivative π t
#ζ ∈M ([0,T ]).

Proof. Testing (1.1.2) against functions ϕ which are constant in space, one finds that

∫ T

0
ϕ ′(t)d(π t

#ρ)+
∫ T

0
ϕ(t)d(π t

#ζ ) = ϕ(T )ν(Ω)−ϕ(0)µ(Ω),

where π t : (t,x) 7→ t. Since π t
#ζ ∈ M ([0,T ]) is a finite measure, one has π t

#ρ = mdt for a
function m : [0,T ]→ R+ of bounded variation. By the disintegration theorem [5, Thm. 5.3.1],
one can always write ρ = ρ̃t ⊗π t

#ρ with ρ̃t ∈P(Ω) for all t, so the claim follows by posing
ρt = m(t)ρ̃t which satisfies ρt(Ω) = m(t).

When the momentum and source variables are disintegrable w.r.t. Lebesgue in time, a finer
result is possible: the interpolation (ρt) is weakly continuous and solves a weak formulation of
the continuity equation. The following is adapted from [142, 5].

Proposition 1.1.3 (Weak formulation). Assume that the time marginal of ω and ζ admit densi-

ties w.r.t. Lebesgue, so that one can disintegrate them as ω = ωt⊗dt and ζ = ζt⊗dt. Then every

distributional solution of the continuity equation (1.1.2) is dt-a.e. equal to a weakly continuous

curve (ρ̃t) that satisfies dt-a.e.

d

dt

(∫

Ω

ψ dρ̃t

)
=

∫

Ω

∇ψ ·dωt +
∫

Ω

ψdζt (1.1.3)

for all ψ ∈ C 1(Ω). Reciprocally, any weakly continuous curve which solves (1.1.3) and such

that (ρ̃0, ρ̃T ) = (µ ,ν) solves (1.1.2).

Proof. Let (ρ ,ω ,ζ ) be a distributional solution of which the time marginals are absolutely con-
tinuous w.r.t. Lebesgue and let us test it against functions ϕ of the form ϕ(t,x) = a(t)ψ(x) with
ψ ∈ C 1(Ω) and a ∈ C 1

c (]0,T [). We get

∫ T

0
a′(t)

∫

Ω

ψ(x)dρtdt +
∫ T

0
a(t)

(∫

Ω

∇ψ(x) ·dωt +
∫

Ω

ψ(x)dζt

)
dt = 0

so the map ρt(ψ) : t 7→ ∫
Ω

ψ dρt admits a distributional derivative in L1(]0,T [) as written in
(1.1.3). Now we argue as in [5, Lem. 8.1.2]: let Z be a dense countable subset of C 1(Ω) and
let LZ := ∩ψ∈ZLψ be the intersection of the sets Lψ of Lebesgue points of t 7→ ρt(ψ). As a
countable union of zero measure sets, ]0,T [\LZ is of zero Lebesgue measure. The restriction of
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the curve (ρt) to LZ provides a uniformly continuous family of bounded functionals on C 1(Ω)
since

|ρt(ψ)−ρs(ψ)| ≤ ‖ψ‖C 1(Ω)

∫ t

s
(|ωr|(Ω)+ |ζr|(Ω))dr, ∀s, t ∈ LZ , ∀ψ ∈ C

1(Ω).

Therefore, it admits a unique extension to a continuous curve (ρ̃t)t∈[0,T ] in C 1(Ω)∗. Yet, the
set {ρt}t∈LZ

is weakly sequentially compact in M+(Ω) because {ρt(Ω)}t∈LZ
is bounded by

Lemma 1.1.2 and Ω is compact. So the extension curve ρ̃t actually belongs to M+(Ω) for all
t ∈ [0,T ].

For the reciprocal statement, remark as in [142] that weak solutions satisfy (1.1.2) for any ϕ

of the form ϕ(t,x) = a(t)ψ(x) and the linear space generated by such separable functions is
dense in C 1([0,T ]×Ω).

Example 1.1.4. There exists weak solutions to the continuity equation between any pair µ ,ν ∈
M+(Ω). For instance, with T = 1, one can easily verify that (1.1.3) holds for the following

triplets:

• linear interpolation: ρt = (1− t)µ + tν , ω = 0 and ζt = ν−µ;

• coupling-based interpolation: if µ(Ω) = ν(Ω), choose a family of differentiable paths

t 7→ et(x,y) of uniformly bounded velocity linking any pair of points (x,y) ∈Ω
2, then let

γ ∈Π(µ ,ν) be a coupling and define ρt = (et)#γ , ωt = (et)#(γ∂tet) and ζ = 0.

• displacement interpolation: same as above, but choosing γ as an optimal coupling for the

cost c(x,y) = |y− x|p, with p≥ 1 and t 7→ et(x,y) a constant speed parametrization of a

geodesic in Ω;

One sees that “deformations” of the form (0,ζt) correspond to the Banach space structure (in

this case ζt is called the weak* differential of the path) and those of the form (ωt ,0) are those

appearing in classical optimal transport. In the dynamic formulation of unbalanced optimal

transport, we combine these two types of deformations.

When the momentum and the source are generated by specified velocity and growth fields
that have some regularity, the initial value problem has a unique solution in the form of a flow.
This result is taken from [108, Prop. 3.6] and adapted to our compact setting.

Theorem 1.1.5 (Uniqueness). Let vt : Ω → Rd be a velocity field that is Lipschitz continuous

in x, uniformly in t, and satisfies Neumann boundary conditions on ∂ Ω and consider its flow

Yt on [0,T ]. Let gt : Ω → R be a rate of growth field that is Lipschitz continuous in x and

bounded, uniformly in t, and consider the total growth Gt(x) = exp(
∫ t

0 gs(Ys(x))ds). Then ρt =
(Yt)#(Gtρ0) is the unique weakly continuous solution to the continuity equation starting from

ρ0 ∈M+(Ω) and such that (ωt ,ζt) = (vtρt ,gtρt).

In the context of Theorem 1.1.5, the continuity equation can be rewritten with the more stan-
dard variables of speed and rate of growth:

∂tρt +∇ · (vtρt) = gtρt (1.1.4)

Let us prove some additional results that are used in the proofs of this chapter. We first study
the stability of solutions of the continuity equation under linear time or space rescaling.
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1.1. Dynamic formulations

Proposition 1.1.6 (Linear scaling). Let (ρ ,ω ,ζ ) solve the continuity equation on [0,T ]×Ω

between µ ,ν ∈ M+(Ω) and let s : [0,T ]×Ω → [0,αT ]× β Ω be a time and space scaling

s(t,x) = (αt,βx) with α ,β > 0. Then s#(αρ ,βω ,ζ ) solves the continuity equation between

s̄#µ and s̄#ν on [0,αT ], where s̄(x) = βx.

Proof. Let ψ ∈ C 1([0,αT ]×β Ω) and define ϕ := ψ ◦ s so that ∂tϕ = α(∂tψ) ◦ s and ∇ϕ =
β (∇ψ) ◦ s. Since (1.1.2) holds for (ρ ,ω ,ζ ), it follows

∫

β Ω

ψαT d(s̄#ν)−
∫

β Ω

ψ0 d(s̄#µ) =
∫

Ω

ϕT dν−
∫

Ω

ϕ0 dµ

=
∫ T

0

∫

Ω

∂tϕ dρ +
∫ T

0

∫

Ω

∇ϕ ·dω +
∫ T

0

∫

Ω

ϕ dζ

=
∫ T

0

∫

Ω

α∂tψ ◦ sdρ +
∫ T

0

∫

Ω

β (∇ψ) ◦ s ·dω +
∫ T

0

∫

Ω

ϕ dζ

and thus s#(αρ ,βω ,ζ ) satisfies (1.1.2) with the boundary conditions announced.

In the more specific case when the time marginals admit a density, a time reparametrization
is possible. The proof is a direct adaptation of [5, Lem. 8.1.3] since in this case the weak
formulation of Proposition 1.1.3 holds (it also follows by adapting the previous proof).

Proposition 1.1.7 (Time rescaling). Let t : [0,T ′]→ [0,T ] be a strictly increasing absolutely

continuous map with absolutely continuous inverse. Then (ρt ,ωt ,ζt)t∈[0,T ] is a weak solution of

the continuity equation if and only if (ρt ◦ t, t′(ωt ◦ t), t′(ωt ◦ t)) also is, on [0,T ′].

The following proposition explains how to extend the time range of solutions. Combined with
the linearity property of the continuous equation, this allows to concatenate solutions in time, a
result known as the glueing lemma.

Proposition 1.1.8 (Extension). Let (ρ ,ω ,ζ ) be a solution to the continuity equation (1.1.2) on

[0,T ]×Ω between µ and ν , and extend these measures by 0 on R \ [0,T ]. Then (ρ ,ω ,ζ + µ⊗
δ0−ν⊗δT ) solves the continuity equation on any interval ]a,b[ ⊃ [0,T ].

Proof. It is direct by plugging into (1.1.2).

The last proposition is classical for distributional solutions of PDEs.

Proposition 1.1.9 (Smoothing). Let (ρ ,ω ,ζ ) be a distributional solution to the continuity equa-

tion (1.1.2) on ]0,T [×Ω, and let rε : R×Rd →R be a mollifier supported on B(0, ε
2 )×Bd(0, ε

2 ).
Then (rε ∗ρ ,rε ∗ω ,rε ∗ζ ) is a classical solution of (1.1.1) on ] ε

2 ,T − ε
2 [×Rd .

1.1.3. Action minimizing problems on M+(Ω)

Definitions

In order to select an interpolation among all the solutions we choose the interpolation that min-
imizes an action. We pose an action that is the integral over time and space of a convex La-
grangian function L(v,g) which is a function of the instantaneous “deformation” (v,g) (speed
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and rate of growth) applied to a particle of unit mass1. This leads to a functional of the form
∫ 1

0

∫

Ω

L(vt(x),gt(x))dρt(x)dt.

However, defining the variational problem directly in terms of the Lagrangian has drawbacks:
(i) in the variables (v,g), the continuity equation (1.1.4) is not linear so this leads to a non-
convex problem (ii) sometimes, the velocity and growth fields are not well defined because the
momentum ω and the source ζ have a singular part w.r.t. ρ (this is allowed by Lagrangians
which are not superlinear).

These two concerns are fixed if one considers the change of variables (ω ,ζ ) := (vρ ,gρ). In
physical terms, this corresponds to switching from intensive to extensive variables. Notice that
one has (for v,g,ρ positive real numbers)

L(v,g)ρ = ρL(ω/ρ ,ζ /ρ) = ψL(ω ,ζ |ρ)
where ψL is the so-called perspective function of L. This construction, detailed in Appendix A,
has the property that if L is convex in (v,g), then ψL is sublinear jointly in all variables, see
Definition A.0.11.

Assumption 1.1.10. The Lagrangian L : Rd ×R is convex, continuous and admits the unique

minimum L(0,0) = 0. We denote by ψL its perspective function.

The proof of the following is in Appendix A, Proposition A.0.13.

Proposition 1.1.11 (Conjugate of ψL). The functions ψL and ιQL
, the convex indicator of the set

QL := {(a,b,c) ∈R×Rd×R ; a+L∗(b,c) ≤ 0}
form a pair of convex conjugate functions.

Note that it is natural to consider Lagrangians which are separable in v and g, i.e. of the form
L1(v)+L2(g) in which case one has L∗(b,c) = L∗1(b)+L∗2(c). The action functional is defined
as the integral of ψL over time and space.

Definition 1.1.12 (Action functional). The action functional is defined as

A(ρ ,ω ,ζ ) :=
∫ 1

0

∫

Ω

ψL(ω ,ζ |ρ)

where we use the notation described in the section Notation for the image of a measure by a

homogeneous function. When L is superlinear in all directions, i.e. L′∞ = ∞, this reduces to

A(ρ ,ω ,ζ ) =

{∫ 1
0

∫
Ω

L(v,g)dρ if ω ,ζ ≪ ρ and (ω ,ζ ) = (vρ ,gρ),

∞ otherwise.

The dynamic formulation of unbalanced optimal transport is defined as a minimization of the
action over the solutions to the continuity equation between two endpoints µ ,ν ∈M+(Ω).

Definition 1.1.13 (Dynamic formulation). For µ ,ν two measures in M+(Ω), define

CL(µ ,ν) := inf
{

A(ρ ,ω ,ζ ) ; (ρ ,ω ,ζ ) ∈ CE1
0(µ ,ν)

}
.

1A continuous, multiplicative dependency in (t,x) is also practicable but we do not consider it here for ease of
reading. The dependance in x is treated in our article [43].
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1.1. Dynamic formulations

Variational properties

In most cases, we can guarantee a finite cost CL(µ ,ν).

Proposition 1.1.14 (Finite cost). Let µ ,ν ∈M+(Ω).

• if L(0, ·) has at most a polynomial growth then CL(µ ,ν) < ∞.

• If µ and ν are different from 0 then CL(µ ,ν) < ∞;

Proof. For the first case, consider a family (ρt ,0,ωt)t∈[0,1] with ρt = tα µ and ωt = αtα−1µ

where α > 0 is such that L(0,g) = o(gα) (using Landau o notation). One has

A(ρ ,0,ω) =
∫ 1

0

∫

Ω

L(0,
α

t
)tα dµ dt < µ(Ω)

∫ 1

0
L(0,

α

t
)tα dt < ∞

so CL(0, µ)<∞. For any µ ,ν ∈M+(Ω), one builds similarly an interpolation that goes through
0 at t = 1

2 and the conclusion is the same.
For the second case, first assume that µ(Ω) = ν(Ω). Take the coupling-based interpolation

from Example 1.1.4: let γ = µ⊗ν be the product coupling and let (ρt ,ωt ,ζt) = ((et)#γ , (et)#(γ∂tet),0)
for t ∈ [0,1], where (t 7→ et(x,y)) is a family of constant speed absolutely continuous paths of
finite length between pairs of points (x,y) ∈ Ω

2. There is a uniform bound on the velocities
|∂tet | < M and since a uniform bound on a relative density is preserved by pushforward (the
pushforward operator is order preserving), one has |dωt/dρt |< M. Thus the action is finite:

A(ρ ,ω ,ζ ) =
∫ 1

0

∫

Ω

L

(
dωt

dρt

,0

)
d((et)#γ) < L(M,0) µ(Ω) < ∞.

Finally if α := ν(Ω)/µ(Ω) 6= 1 then we define an admissible interpolation in two phases:
during time [0, 1

2 ] define a uniform growth ρt = α2t µ and ωt = ∂tρt and during time [ 1
2 ,1] define

an interpolation as above (using ēt = e2t−1). The associated action is finite because the rate of
growth 2logα is constant in the first phase, and |∂t ēt |< 2M in the second.

The dynamic problem admits a dual formulation which domain are the set of subsolutions to
a Hamilton-Jacobi equation. In contrast to classical optimal transport, this equation involves a
zeroth order term.

Theorem 1.1.15 (Duality). If CL(µ ,ν) < ∞, there exists a minimizing triplet (ρ ,ω ,ζ ) and

CL(µ ,ν) = sup
ϕ∈C 1([0,1]×Ω)

{∫

Ω

ϕ1dν−
∫

Ω

ϕ0 dµ ; ∂tϕ +L∗(∇ϕ ,ϕ) ≤ 0

}
(1.1.5)

where the constraint (with an abuse of notations) stands for all (t,x) ∈ [0,1]×Ω.

Proof. The right-hand side of (1.1.5) can be written as

− inf
ϕ∈C 1([0,1]×Ω)

F(Aϕ)+G(ϕ)

9
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where A : ϕ 7→ (∂tϕ ,∇ϕ ,ϕ), is a bounded linear operator from C 1([0,1]×Ω) to C ([0,1]×
Ω)d+2, F is the convex indicator of the closed set of triplets of continuous functions (a,b,c)
such that a+ L∗(b,c) ≤ 0 everywhere and G : ϕ 7→ ∫

Ω
ϕ(0, ·)dρ0−

∫
Ω

ϕ(1, ·)dρ1 is linear. F

and G are convex, proper and l.s.c. functionals.
Besides, the assumption that L attains its unique minimum at L(0,0) = 0 implies that L∗(0,0) =

0 and L∗ is differentiable at (0,0) of differential (0,0). It follows that |L∗(0,c)|/c → 0 when
c → 0, so there exists ε > 0 such that L∗(0,θε/2) < ε for θ ∈ [−1,1] and thus the function
ϕ : (t,x) 7→ −εt + ε/2 is such that F(Aϕ)+G(ϕ) <+∞ and F is continuous at Aϕ . Then, by
Fenchel-Rockafellar duality (Appendix A), (1.1.5) is equal to

min
µ∈M ([0,1]×Ω)1+d+1

G∗(−A∗µ)+F∗(µ) .

By Theorem A.0.14 (Appendix A) we have F∗ = A, and by direct computations, G∗ ◦ (−A∗) is
the convex indicator of CE1

0(µ ,ν).

A first interesting property, which is true but trivial with standard optimal transport, is that the
dynamic cost is itself a sublinear function jointly in both its arguments.

Corollary 1.1.16 (Sublinearity of CL). For α > 0 and µ ,ν , µ̄ , ν̄ ∈M+(Ω), it holds

CL(αµ ,αν) = α CL(µ ,ν) and CL(µ + µ̄ ,ν + ν̄) ≤CL(µ ,ν)+CL(µ̄ , ν̄).

Proof. The 1-homogeneity of CL is a consequence of the homogeneity of ψL and the stability of
the continuity equation under multiplication by a scalar. The subadditivity is also inherited from
the subadditivity of ψL and the stability of the continuity equation by sum of solutions. Alterna-
tively, one may notice that by Theorem 1.1.15, CL is the conjugate function of the indicator of a
convex set and, as such, sublinear.

Sufficient optimality and uniqueness conditions

We now leverage tools from convex analysis in order to provide a useful condition ensuring
uniqueness of geodesics. We used these optimality conditions in [44] to prove the form of the
geodesics of Ŵ2 (see Chapter 2) between certain kinds of atomic measures. Although this result
might have its own interest since we exhibited the explicit form of the dual variables, I chose to
not reproduce it here because the proof is quite lengthy and the result less instructive than the
ones in Section 1.3.

Lemma 1.1.17 (Subdifferential). Let (ρ ,ω ,ζ ) be a triplet of finite action and write the Lebesgue

decompositions ω = vρ +ω⊥ and ζ = gρ +ω⊥. The subdifferential of A at (ρ ,ω ,ζ ) is the set

of triplets (a,b,c) ∈ C ([0,1]×Ω) satisfying

• a+L∗(b,c) ≤ 0 everywhere

• a+L∗(b,c) = 0 and (b,c) ∈ ∂L(v,g) ρ-a.e.

• (b,c) = ∂L′∞(
ω⊥
λ , ζ⊥

λ ) λ -a.e. where λ = |ω⊥|+ |ζ⊥|.
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Proof. Write µ = (ρ ,ω ,ζ ) and let µ̄ be another triplet. Let m = ρ + |ω|+ |ζ | and let m⊥ ∈
M+([0,1]×Ω) be singular to m and such that µ̄ ≪ m+m⊥. For φ = (a,b,c) ∈ ∂A(µ), it
holds

A(µ̄)−A(µ) =
∫ (

ψL(
dµ̄

dm
)−ψL(

dµ

dm
)

)
dm+

∫
ψL(

dµ̄

dm⊥
)dm⊥

≥ 〈φ , (
dµ̄

dm
− dµ

dm
)m〉+ 〈φ , (

dµ̄

dm⊥
)m⊥〉

= 〈φ , µ̄−µ〉

where the inequality holds for any µ̄ if and only if φ (t,x) is in the subdifferential of ψL(
dµ
dm
(t,x))

for m almost every (t,x) (for the first term) and φ (t,x) is in the set dom(ψ∗L) everywhere (for
the second term). The expression for ∂ψL is proved, e.g. in [46].

Theorem 1.1.18 (Sufficient optimality and uniqueness condition). If (ρ ,ω ,ζ ) solves the conti-

nuity equation between µ ,ν ∈M+(Ω) and there exists ϕ ∈ C 1([0,T ]×Ω) such that

(∂tϕ ,∇ϕ ,ϕ) ∈ ∂A(ρ ,ω ,ζ )

then (ρ ,ω ,ζ ) is a minimizer for CL(µ ,ν). If moreover L is strictly convex and superlinear and

(ω ,ζ ) = (vρ ,gρ) for some velocity/growth fields (v,g) satisfying the regularity assumptions of

Theorem 1.1.5, then it is the unique minimizer.

Proof. With the notations of the proof of Theorem 1.1.15 and writing σ = (ρ ,ω ,ζ ), Fenchel-
Rockafellar duality theorem (see Appendix A) also gives the following result: (σ ,ϕ) is a pair of
optimizers for the primal and dual problems if and only if Aϕ ∈ ∂F∗(σ) and −A∗σ ∈ ∂G(ϕ).
The first condition is our hypothesis and the second is satisfied since for all ψ ∈ C 1([0,1]×Ω),

〈−A∗σ ,ψ−ϕ〉= 〈σ ,Aφ〉−〈σ ,Aψ〉= G(ψ)−G(φ )

as σ solves the continuity equation. This shows that σ is a minimizer for CL(µ ,ν).
For uniqueness, consider another minimizer σ̃ = (ρ̃ , ω̃ , ζ̃ ) solving the continuity equation

between µ ,ν . It holds

A(σ̃) ≥
∫ 1

0

∫

Ω

∂tϕ dρ̃ +
∫ 1

0

∫

Ω

∇ϕ ·dω̃ +
∫ 1

0

∫

Ω

ϕ dζ̃

=
∫

Ω

ϕ1 dν−
∫

Ω

ϕ0 dµ = A(σ̃)

where we used successively: the fact that A is the conjugate of the indicator of a set to which
(∂ϕ ,∇ϕ ,ϕ) belongs, the fact that σ̃ solves the continuity equation and the optimality of ϕ in
the dual problem. So, the first inequality is an equality, and hence λ a.e., (∂tϕ ,∇ϕ ,ϕ)(t,x) ∈
∂A

(
dσ̃
dλ (t,x)

)
for λ such that σ̃ ≪ λ . Since L is assumed superlinear, ω = vρ and ζ = gρ for

some (v,g) and the strict convexity of L implies that (∂L)−1 = ∂L∗ is at most single valued so
(v,g) is the unique element in ∂L∗(∇ϕ ,ϕ). It follows from the characterization of ∂A that

σ̃ = (ρ̃ ,vρ̃ ,gρ̃).

Thus, ρ and ρ̃ are both solutions of ∂tρ +∇ · (vρ) = gρ with initial condition µ . This equation
has a unique solution if the assumptions of Theorem 1.1.5 are satisfied.
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Time reparametrizations

The following result shows that if the Lagrangian is (positively) p-homogeneous, i.e. if for all
λ ≥ 0 it holds L(λv,λg) = λ pL(v,g) for all (v,g) ∈Rd×R, then the minimizing interpolation
has a constant “deformation rate” in [0,1] as measured by the action. The case p > 1 is classical
but the case p = 1 requires more care.

Proposition 1.1.19 (Constant speed minimizers). If L is p-homogeneous for p > 1, then mini-

mizers (ρ ,ω ,ζ ) of (1.1.13) can be disintegrated in time w.r.t. Lebesgue and satisfy

CL(ρs,ρt) = |t− s|pCL(µ ,ν). (1.1.6)

and the same holds true for some minimizers if p = 1. Moreover, for p ≥ 1, one has for any

T > 0,

CL(µ ,ν)
1
p = inf

{∫ T

0

(∫

Ω

ψL(ωt ,ζt |ρt)

) 1
p

dt

}
(1.1.7)

where the infimum runs over solutions to the continuity equation between µ ,ν on [0,T ].

Proof. We first treat the case p > 1. By Proposition 1.1.14, we know that C(µ ,ν) is finite.
Moreover, since L is superlinear, any feasible (ρ ,ω ,ζ ) satisfy ω ,ζ ≪ ρ and satisfies the weak
formulation of Proposition 1.1.3. Let us denote C̄ the infimum in (1.1.7) taken with T = 1
(the fact that this value does not change with T is a consequence of Proposition 1.1.6). One
may argue exactly as in [61, Thm. 5.4] to show the inequality CL ≤ C̄. The reverse inequality
follows from Hölder inequality and is exact if and only if ψL(ρt ,ωt ,ζt) = CL(µ ,ν) dt-a.e. for
any minimizer (ρt ,ωt ,ζt). This constant speed property, combined with the fact that (ρ ,ω ,ζ ),
after time rescaling, remains minimizing between any pair of intermediate times 0 ≤ s < t ≤ 1
(otherwise one could improve the action on [0,1] by glueing), leads to (1.1.6).

If p = 1, let (ρ ,ω ,ζ ) be a minimizer of (1.1.13). Extend it in time by (µ ,0,0) for t < 0 et
(ν ,0,0) for t > 1 as explained in Proposition 1.1.8 and smooth it by convolution with a mollifier
rε which only depend on time and supported on ]− ε

2 , ε
2 [. We call (ρε ,ωε ,ζ ε) the result, which

solves the continuity equation between µ and ν on [− ε
2 ,1+ ε

2 ] (Proposition 1.1.9) and satisfies

∫ 1+ ε
2

− ε
2

∫

Ω

ψL(ω
ε ,ζ ε |ρε) ≤

∫ 1

0

∫

Ω

ψL(ω ,ζ |ρ) =CL(µ ,ν)

according to Lemma 1.1.23. Posing s : (t,x) 7→ ((t + ε
2 )/(1+ ε),x), one also has

CL(µ ,ν) ≤
∫ 1

0

∫

Ω

ψL(s#ωε ,s#ζ ε |s#ρε /(1+ ε))

=
∫ 1

0

∫

Ω

ψL(s#ωε ,s#ζ ε |s#ρε)

=
∫ 1+ ε

2

− ε
2

∫

Ω

ψL(ω
ε ,ζ ε |ρε) ≤CL(µ ,ν)

So there exists minimizers which can be disintegrated with respect to dt and the rest of the proof
goes through as for the case p > 1, except that the equality case in Hölder inequality is no longer
relevant.
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1.1. Dynamic formulations

We used in the previous proof that fact that the action with a 1-homogeneous Lagrangian
is invariant by time reparametrization, and the associated action is independent of ρ . From
these properties, it follows that time can completely by removed from the variational problem
in that case. This gives a steady state problem that provides a generalization of Beckmann’s
problems [142, Chap. 4].

Proposition 1.1.20 (Static formulation for 1-homogeneous Lagrangians). If L is 1-homogeneous

(and thus sublinear), then one has

CL(µ ,ν) = min

{∫

Ω

L(ω ,ζ ) ; ν−µ = ζ −∇ ·ω , (ω ,ζ ) ∈M (Ω;Rd)×M (Ω)

}

= sup

{∫

Ω

ϕ d(ν−µ) ; L∗(∇ϕ ,ϕ) < ∞, ϕ ∈ C
1(Ω)

}
.

where the equation ν − µ = ζ −∇ ·ω is understood in the distributional sense, with no-flux

boundary conditions on ∂ Ω.

Proof. In order to show that the infimum and the supremum problems are equal, we may apply
Fenchel-Rockafellar duality. We do not give all the details (see the proof of Theorem 1.1.15)
but we may emphasize that the bounded linear operator appearing in the duality is A : C 1(Ω)→
C (Ω)d×C (Ω) and the qualification constraint is satisfied because A(ϕ) is in the interior of L∗

for ϕ = 0. This additionally shows that the minimum, let us write it CS(µ ,ν), is attained. In
order to show CS(µ ,ν) =CL(µ ,ν), first take a feasible couple for the static problem (ω̄ , ζ̄ ) and
define (ρt ,ωt ,ζt) = ((1− t)µ + tν , ω̄ , ζ̄ ) for t ∈ [0,1], which satisfies the continuity equation
between µ and ν . One has

CL(µ ,ν) ≤
∫ 1

0

∫

Ω

ψL(ωt ,ζt |ρt) =
∫ 1

0

∫

Ω

L(ωt ,ζt) =
∫

Ω

L(ω̄ , ζ̄ )

and it follows CL(µ ,ν) ≤CS(µ ,ν). Conversely, let ϕ̄ ∈ C 1(Ω) be feasible in the static supre-
mum problem and let ϕ : (t,x) 7→ ϕ̄(x). Since L is sublinear, L∗ is the indicator of a (convex) set
so ϕ satisfies the constraint from the dual formulation in Theorem 1.1.15 and

∫

Ω

ϕ̄ d(ν−µ) =
∫

Ω

ϕ1 dν−
∫

Ω

ϕ0 dµ ≤CL(µ ,ν).

By taking the supremum, it follows CS(µ ,ν) ≤CL(µ ,ν).

The situation where the Lagrangian is 1-homogeneous only w.r.t. the velocity has been studied
in detail in the recent work [147] where static formulations are derived and connected to a
general framework of “unbalanced W1” models [148]. This provides a rich development of
the theory considered in this part of the thesis and the associated models are computationally
advantageous in some cases.

Other technical results

We finish this subsection on action minimizing problems with technical results. We begin with
deriving a bound of the total variation of triplets (ρ ,ω ,ζ ) with bounded action. Such bounds

13



Chapter 1. Formulations and Equivalences

can be easily derived for a quadratic Lagrangian (see our article [44]) but the framework here is
more general so we rely on an application of Grönwall’s lemma.

Proposition 1.1.21 (Bounded mass). Let S ⊂M+(Ω) be a bounded set, M > 0 be a constant

and A the set of all (ρ ,ω ,ζ ) solutions to the continuity equation between µ ∈ S and ν ∈
M+(Ω) on [0,1], such that

∫ 1
0

∫
Ω

ψL(ω ,ζ |ρ) < M. Then

ν(Ω), ρ([0,1]×Ω), |ω|([0,1]×Ω) and |ζ |([0,1]×Ω)

are uniformly bounded in A .

Proof. Consider the “reduced” Lagrangians Lv and Lg on R, defined as the convex regulariza-
tions of a 7→ inf|v|=|a|,g∈R L(v,g) and a 7→ inf|g|=|a|,v∈Rd L(v,g), respectively (they are equal to
L(v,0) and L(0,g) in the examples of the next chapter). These functions are also nonnegative,
continuous, convex, and admit a unique minimizer at 0. Let (ρ ,ω ,ζ ) ∈A and consider f : t 7→
ρt(Ω). The distributional derivative of f is bounded by σ := π t

#|ζ | ∈M+([0,1]), by Lemma
1.1.2 and one can write the Lebesgue decomposition σ = g f dt +σ⊥ with σ⊥ ∈M ([0,1]) and
(g f ) ∈ L1([0,1]). We want to show that there is a bound on the maximum value of f . To this
end, let b ∈ [0,1], if it exists, be such that f (b) > f (0) and let a := supt∈[0,b] f (t) ≤ f (0). One
has, thanks to the sublinearity of ψL,

M >

∫ 1

0

∫

Ω

ψLg
(|ζ | | ρ) ≥

∫ 1

0
ψLg

(σ | f dt) ≥ f (0)
∫ b

a
Lg(g)dt +(L′g)∞σ⊥([a,b]).

Thus, taking any affine lower bound y = α ·g+β of Lg with α > 0 and β < 0, it follows

∫ b

a
gdt ≤ (M/ f (0)−β (b−a))/α and σ⊥([a,b]) ≤M/(Lg)

′
∞.

We conclude by Grönwall’s lemma that since for all t ∈ [a,b]

f (t) ≤ f (0)+σ([a, t]) ≤ ( f (0)+σ⊥([a,b]))+
∫ t

a
g(t) f (t)dt,

then

f (b) ≤ ( f (0)+σ([a,b]))e
∫ b

a g(t)dt ≤ (µ(Ω)+
M

(Lg)′∞
)e

( M
µ(Ω)

−β )/α .

so the mass ρt(Ω) is uniformly bounded, and so is ρ([0,1]×Ω). It follows easily

M > Lg(|ζ |([0,1]×Ω)/ρ([0,1]×Ω)) and M > Lv(|ω|([0,1]×Ω)/ρ([0,1]×Ω))

from which we deduce the uniform bound on the total variations of ζ and ω .

Let us state clearly in which situations it can be guaranteed that the velocity and growth fields
are well-defined.

Lemma 1.1.22 (Finite superlinear cost). If L is superlinear, then any feasible (ρ ,ω ,ζ ) for

(1.1.13) satisfies ω = (vtρt)⊗dt and ζ = (gtρt)⊗dt with vt ∈ L1
ρt
(Ω;Rd) and gt ∈ L1

ρt
(Ω;R)

where (ρt) is the time disintegration of ρ w.r.t. Lebesgue.

14



1.1. Dynamic formulations

Proof. By the very definition of ψL, a superlinear Lagrangian and a finite action implies that
the singular parts of ω and ζ w.r.t. ρ vanish. We know also by Lemma 1.1.2 that ρ can be
disintegrated in time w.r.t. Lebesgue.

Finally, the monotony of sublinear functionals with respect to smoothing is a convenient tech-
nical tool.

Lemma 1.1.23. Let f : Rd → R∪{∞} be a l.s.c. sublinear function. Then, for any measure

µ ∈M (Rd ;E) with compact support and mollifier rε : Rd →R+, it holds

∫

Rd
f (rε ∗µ) ≤

∫

Rd
f (µ).

Proof. Let Q ⊂ Rd be the domain of f ∗ which is convex and closed and let K be the set of
continuous functions on Rd taking their values in Q. For any φ ∈ K, it holds

∫
φd(rε ∗µ) =

∫
(rε ∗φ )dµ ≤

∫
f (µ)

because
∫

f (µ) = supφ∈K

∫
φdµ (see Theorem A.0.14), and the convexity of K implies that

rε ∗φ ∈ K. Since this holds for any φ ∈ K, the inequality follows.

1.1.4. Geometric and topological properties

The following two results are inspired from [61] where another extension of optimal transport
is considered. We recall that a sequence of (signed) measures µn on a metric space converges
weakly to µ if for all real valued, continuous and bounded function ϕ on X , it holds

∫
X ϕdµn →∫

X ϕdµ .

Proposition 1.1.24 (Lower semicontinuity). Let (µn), (νn), n ∈ N be sequences in M+(Ω)
that converge weakly to µ ,ν and let (Ln) be a sequence of Lagrangian functions that converge

pointwise and increasingly to L, also an admissible Lagrangian. Then

CL(µ ,ν) ≤ lim inf
n→∞

CLn
(µn,νn).

Proof. Similarly as in [61], let us choose a sequence (ρn,ωn,ζn) of minimizers for CLn
(µn,νn).

By Proposition 1.1.21, their mass is bounded so let us extract a subsequence that attains the lim
inf (again indexed by n), weakly converges to (ρ ,ω ,ζ ), and belongs to CE1

0(µ ,ν). For any
m < n, it holds

∫ 1

0

∫

Ω

ψLm
(ωn,ζn|ρn) ≤

∫ 1

0

∫

Ω

ψLn
(ωn,ζn|ρn) =CLn

(µn,νn).

Taking the limit n→ ∞, one has, by lower-semicontinuity that for all m ∈N,

∫ 1

0

∫

Ω

ψLm
(ω ,ζ |ρ) ≤ lim inf

n→∞
CLn(µn,νn).

The result follows by passing to the limit m→ ∞.
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Chapter 1. Formulations and Equivalences

We are now in position to prove that dynamic formulations with p-homogeneous Lagrangians
give a geodesic space structure to M+(Ω). A metric space (X ,d) is said geodesic if any pair
of points (x0,x1) ∈ X2 can be connected by a path t ∈ [0,1] → xt ∈ X such that d(xt ,xs) =
|t−s|d(x0,x1) called a minimal, constant speed geodesic. Remember that it is one of the striking
features of standard optimal transport to give a geodesic structure to the space of probability
measures, other than the classical linear structure. We show here an analogue of this property
for the space of nonnegative measures.

Theorem 1.1.25 (Metric property). If L is (positively) p-homogeneous and symmetric with re-

spect to the origin then C
1/p
L is a metric and (M+(Ω),C1/p

L ) is a complete geodesic metric

space.

Proof. Let µ ,ν ∈ M+(Ω). It is clear that C
1/p
L (µ ,ν) is finite by Proposition 1.1.14. The

symmetry property comes from the symmetry of L and the fact that (ρ ,ω ,ζ ) ∈ CE1
0(µ ,ν)⇔

(ρ ,−ω ,−ζ ) ∈ CE1
0(ν , µ). It is clear that CL(µ , µ) = 0 and conversely, if CL(µ ,ν) = 0, then

ω = ζ = 0 which implies µ = ν . Finally, the triangle inequality follows from the character-
ization (1.1.7), which also proves that any pair of points can be joined by a constant speed
minimizing geodesic. For the completeness property, consider a sequence µn ∈M+(Ω) that
satisfies the Cauchy property. By Lemma 1.1.21, µn is bounded, so it admits a subsequence µnk

that weakly converges to µ ∈M+(Ω). By the lower-semicontinuity property of Proposition
1.1.24, one has for all m ∈N that C

1/p
L (µm, µ)≤ liminf C

1/p
L (µm, µnk

) and it follows, using the

Cauchy property, limsupm→∞C
1/p
L (µm, µ)≤ limsupn,m→∞C

1/p
L (µm, µn) = 0 so µn converges to

µ for the metric C
1/p
L .

Finally, we study the relationship that CL shares with the weak topology.

Theorem 1.1.26 (Weak convergence). If (µn) and (νn), n ∈ N converge weakly to µ and ν

respectively, then CL(µ ,ν) ≤ liminfCL(µn,νn). Moreover, if L has a polynomial growth in the

second argument g, then

µn converges weakly to µ ⇔ CL(µn, µ)→ 0.

Proof of the l.s.c. property. It can be seen from the duality formula (1.1.5): CL is the supremum
of a nonempty family of continuous linear functionals. It is thus weakly l.s.c.

Proof of⇐. If CL(µn, µ)→ 0, by Proposition 1.1.21, µn(Ω) is a bounded sequence. Let µ̄ be a
weak cluster point. Taking the suitable subsequence, one has CL(µ̄ , µ) ≤ limCL(µn, µ) = 0 so
µ̄ = µ . Since this holds for any cluster point, µn ⇀ µ .

Proof of⇒. Let ε > 0 and let (Wk)k∈I be a finite Borel partition of Ω of diameter smaller than ε

and such that µ(∂Wk) = 0 for all k ∈ I. The fact that such a partition exists is called the mosaic
lemma ( it relies on the fact that given a fixed center, the set of balls whose boundaries have a
nonzero mass is at most countable). By the Portmanteau lemma, µn(Wk)→ µ(Wk) for all k ∈ I.
Let us now build a triplet (ρ ,ω ,ζ ) which has a vanishing action, by defining it on each Wk.
If µ(Wk) = 0, let ω|Wk

= 0 and ζt |Wk
= (1− t)α µ|Wt

where α is the exponent that appears in
the proof of Proposition 1.1.14. The associated cost is proportional to µn(Wk). Otherwise, if
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1.1. Dynamic formulations

µ(Wk) > 0, assume that µn(Wk) > 0 too since this is eventually the case and define the same
interpolation as the second part of Proposition 1.1.14 : adjustment of mass by uniform growth on
[0, 1

2 ] and interpolation with the product coupling on [ 1
2 ,1]. The associated cost is proportional

to µ(Wk) · L(2ε ,0) for the transport part and L(0,2 log[µ(Ω)/µn(Ω)]) for the growth part.
Summing all these local contributions, one obtains a bound on the action

A(ρ ,ω ,ζ ) ≤ cst×
(

∑
k∈I0

µn(Wk)+ ∑
k∈I\I0

µ(Wk).

(
L(2ε ,0))+L(0,2 log

µ(Ω)

µn(Ω)
)

))

where I0 := {k ∈ I ; µ(Wk) = 0}. This upper bounds tends to cst×L(2ε ,0).µ(Ω) as n → ∞.
Since ε > 0 is arbitrary, it follows CL(µn, µ)→ 0. Note that a similar proof can be used to show
the weak continuity of Wasserstein metrics in the compact setting.
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Chapter 1. Formulations and Equivalences

1.2. Coupling formulations

In this section, we describe the second approach to unbalanced optimal transport, inspired by the
coupling formulation of optimal transport introduced by Kantorovich. In this formulation, the
notion of time dynamic disappears: one directly looks for a pairwise matching of infinitesimal
particles of mass. Among all the admissible pairings, we select the one that minimizes an integral
cost. In the case of unbalanced optimal transport, there are several ways to formalize this idea
and we review three variants of coupling formulations: the semi-coupling formulation, that we
introduced in [43] and that will be our guideline in this section, and the optimal lifting and
optimal entropy-transport problems, both introduced in [103].

1.2.1. Definition and first properties

Let X and Y be compact metric spaces2 and consider µ ∈ M+(X), ν ∈ M+(Y ). Whenever
µ(X) 6= ν(Y ), the set of couplings {γ ∈M+(X ×Y ) ; (πx,πy)#γ = (µ ,ν)} is empty, because
pushforward operators preserve the total mass of nonnegative measures. To overcome this dif-
ficulty, one possibility is to describe an unbalanced optimal transport with two couplings: this
is the semi-coupling formulation that we introduced in [43]. The first coupling describes where
the mass goes as it leaves from µ and the other describes from where it comes as it arrives at ν .
In standard optimal transport one imposes that these two couplings match exactly. Here, instead,
we take into account the discrepancy between the mass that leaves µ and the mass that arrives at
ν in the cost function. One thus chooses a function hx1,x2(u1,u2) which gives the cost of associ-
ating a mass u1 located at x1 to a mass u2 at x2. It is natural to require this cost to be sublinear
in (u1,u2): 1-homogeneous because the amount of effort should be proportional to the amount
of mass transported (as in optimal transport) and subbaditive so that it is never more efficient to
divide mass into smaller chunks for transporting it between the same endpoints. This property
will also appear clearly from the link to the lifted formulation in Section 1.2.3.

Assumption 1.2.1 (Sublinear cost). The cost function (hx1,x2)(x1,x2)∈X×Y is a family of proper

sublinear functions hx1,x2 : R2
+→ [0,+∞] which is l.s.c. jointly in all variables (x1,x2,u1,u2).

For instance, standard optimal transport problems with a l.s.c. cost c : X ×Y → [0,∞] corre-
spond to the sublinear costs whose domain is the positive diagonal:

hx1,x2(u1,u2) =

{
u1c(x1,x2) if u1 = u2 ≥ 0

+∞ otherwise.
(1.2.1)

Note that each function hx1,x2 is, after the change of variables (t,s) = (u1 + u2,u1− u2), the
perspective of the function θ 7→ hx1,x2(1− θ ,θ ) which thus entirely characterizes h (actually
such a remark could be made for any l.s.c. sublinear function of two real variables that is infinite
on a linear half-space).

2the differentiable structure of Rd (or manifolds) is no longer needed for static formulations. The compactness
assumption is here for technical convenience.
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1.2. Coupling formulations

Definition 1.2.2 (Semi-coupling formulation). For (µ ,ν) ∈M+(X)×M+(Y ), we define

Ch(µ ,ν) := inf
γ1,γ2∈M+(X×Y )

{∫

X×Y
hx1,x2(γ1,γ2) ; (π1

# γ1,π2
# γ2) = (µ ,ν)

}
. (1.2.2)

See the section Notation for the definition of homogeneous functions of measures (the same
convention is use throughout the thesis). Decomposing w.r.t. a dominating measure, this problem
can be rewritten in the less compact way

inf
f1, f2,γ

{∫

X×Y
hx1,x2( f1(x1,x2), f2(x1,x2))dγ(x1,x2) ; (π1

# ( f1γ),π2
# ( f2γ)) = (µ ,ν)

}

where the infimum is over probabilities γ ∈P(X×Y ) and densities f1, f2 ∈ L1
γ (X×Y ). I might

help for the intuition to see how standard optimal transport is recovered by plugging the sublinear
cost (1.2.1) in (1.2.2).

Proposition 1.2.3 (Minimizers). For any µ ∈M+(X) and ν ∈M+(Y ), (1.2.2) admits a mini-

mizer.

Proof. By Theorem A.0.14, the objective functional is weakly l.s.c. on M+(X ×Y )2. Since X

and Y are compact and the marginals µ ,ν have finite mass, the (closed) constraint set is weakly
sequentially compact. It follows that any minimizing sequence admits a cluster point which is a
minimizer (the minimum is not necessarily finite).

The following result mirrors the celebrated Kantorovich duality theorem, and extends it to the
unbalanced case. In Kantorovich duality, the constraint set on the dual variables is a half-space,
which is here replaced by a more general convex set.

Theorem 1.2.4 (Duality). Let (hx1,x2) be a sublinear cost and let Qh(x1,x2) be the family of

closed convex sets such that h∗x1,x2
= ιQh(x1,x2) for all (x1,x2) ∈ X×Y . Then it holds

Ch(µ ,ν) = sup
φ∈C (X)
ψ∈C (Y )

{∫

X
φ dµ +

∫

Y
ψ dν ; (φ (x),ψ(y)) ∈ Qh(x,y), ∀(x,y) ∈ X×Y

}
.

Proof. We rewrite the supremum problem as sup−F(ξ1,ξ2)−G(ξ1,ξ2) for (ξ1,ξ2) ∈ C (X ×
Y )2 where

G : (ξ1,ξ2) 7→
{
−∫

X φ dµ− ∫
Y ψ dν if ξ1(x,y) = φ (x) and ξ2(x,y) = ψ(y)

+∞ otherwise,

and F is the indicator of {(ξ1,ξ2)∈C (X×Y )2 : (ξ1,ξ2)(x,y)∈Qh(x,y), ∀(x,y)∈ X×Y}. Note
that F and G are convex and proper. Also, given our assumptions, there is a pair of functions
(ξ1,ξ2) at which F is continuous (for the sup norm topology) and F and G are finite since for
all (x,y) ∈ X ×Y , Qh(x,y) contains the negative orthant R−×R−. Then Fenchel-Rockafellar
duality (Appendix A) states that

sup
(ξ1,ξ2)∈C (X×Y )2

−F(ξ1,ξ2)−G(ξ1,ξ2) = min
(γ1,γ2)∈M (X×Y )2

F∗(γ1,γ2)+G∗(−γ1,−γ2). (1.2.3)
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Let us compute the conjugate functions. For G, we obtain

G∗(−γ1,−γ2) = sup
φ∈C (X)
ψ∈C (Y )

−
∫

X×Y
φ (x)dγ1−

∫

X×Y
ψ(x)dγ2 +

∫

X
φ (x)dµ +

∫

Y
ψ(y)dν

=

{
0 if (π1

# γ1,π2
# γ2) = (µ ,ν)

+∞ otherwise.

On the other hand, F∗ is given by Theorem A.0.14 (Appendix A) which states that

F∗(γ1,γ2) =
∫

X×Y
hx1,x2(γ1,γ2).

Finally, as F∗ includes the nonnegativity constraint, the right hand side of (1.2.3) is equal to
Ch(µ ,ν).

Proposition 1.2.5 (Lower semicontinuity). Assume that (h(n)) is a sequence of admissible sub-

linear costs that converge pointwise and increasingly to an admissible sublinear cost h and let

µn ⇀ µ in M+(X) and νn ⇀ ν in M+(Y ). Then

Ch(µ ,ν) ≤ lim inf
n→∞

Ch(n)(µn,νn).

Proof. We follow a similar line of reasoning than in [61, Thm. 5.6]. Let us choose a sequence

of minimizers (γ (n)1 ,γ (n)2 ). Each member of these pairs satisfies one coupling constraint, so their
mass is bounded and any subsequence (in particular those which attains the liminf) admit a weak
limit (γ1,γ2), which itself satisfies the semi-coupling constraints (π1

# γ1,π2
# γ2) = (µ ,ν). For any

m < n, it holds
∫

X×Y
h
(m)
x1,x2(γ

(n)
1 ,γ (n)2 ) ≤

∫

X×Y
h
(n)
x1,x2(γ

(n)
1 ,γ (n)2 ) =Ch(n)(µn,νn).

Taking the limit n→ ∞, one has, by the lower semicontinuity of the functional, for all m ∈N,
∫

X×Y
h
(m)
x1,x2(γ1,γ2) ≤ lim inf

n→∞
Ch(n)(µn,νn).

The result follows by passing to the limit m→ ∞.

1.2.2. Geometric and topological properties

As stated in the introduction of this thesis, an essential property of optimal transport is that it can
be used to lift a metric from the base space X to the space of probability measures over X [162,
Chapter 6]). This property has an analogue in the unbalanced framework, if one takes care of
the fact that two particles of zero mass are considered equal, whatever their location in X . The
cone of a space, a standard construction in topology, accounts for this trait.

Definition 1.2.6 (Cone). The space C(X), called the cone of X is defined as the space X ×R+

where all the points with zero mass X×{0} collapse to one point, called the apex, endowed with

the quotient topology.
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1.2. Coupling formulations

In the non-compact setting, it is noted in [103] that the quotient topology is not the relevant
choice anymore, but a weakened version of it.

Theorem 1.2.7 (Metric). Assume that X = Y and let h be a cost function such that, for some

p≥ 1 it holds

(x1,u1), (x2,u2) 7→ hx1,x2(u1,u2)
1/p (1.2.4)

is a metric for C(X). Then C
1/p
h defines a metric on M+(X).

Remark 1.2.8. Compatibility with the cone topology implies in particular: (i) for all x2 ∈ Ω,

u≥ 0, hx1,x2(0,u) is independent of x1 ∈Ω and (ii) hx1,x2(0,0) = 0.

Remark 1.2.9. We can replace the word “metric” by “extended metric” (i.e. allowing the value

+∞) and the proof goes through. By considering the cost in (1.2.1), a corollary is that C
1/p
h

defines a proper metric on each equivalence class for the relation µ ∼ ν ⇔ µ(X) = ν(X). The

metric property of the Wasserstein distance is thus recovered as a particular case.

Proof. Symmetry and non-negativity are inherited from h. Also, if Ch(γ1,γ2) = 0, there exists a
coupling γ ∈M+(X2) such that (π1

# γ ,π2
# γ) = (µ ,ν) and x = y γ-a.e. so µ = ν . It remains to

show the triangle inequality. Fix µa, µb, µc ∈M+(X). Take two pairs of minimizers (γab
1 ,γab

2 )
and (γbc

1 ,γbc
2 ) for (1.2.2). They satisfy the constraints

(π1
# γab

1 ,π2
# γab

2 ) = (µa, µb), (π1
# γbc

1 ,π2
# γbc

2 ) = (µb, µc).

Let λ ∈M+(X) be a reference measure dominating all the marginals on the second factor i.e.
such that π2

# γab
1 , π2

# γab
2 , π1

# γbc
1 , π1

# γbc
2 ≪ λ and denote by γab

i (dx|y) the disintegration of γab
i along

the second factor w.r.t. λ . This means that for all y ∈ X , γab
i (dx|y) ∈M+(X) and it holds, for

any measurable f : X2 →R,
∫

X2
f dγab

i =
∫

X

(∫

X
f (x,y) γab

i (dx|y)
)

λ (dy).

We define analogously γbc
i (dz|y) the disintegration w.r.t. λ along the first factor and write σb =

dµb

dλ ∈ L1(λ ) the density of µb w.r.t. λ . Let us combine the optimal semi-couplings in a suitable
way to define γ1, γ2, γ̂ ∈M (X3) via their disintegration w.r.t. λ along the second factor:

γ1(dx,dz|y) :=

{
γab

1 (dx|y)⊗ [γbc
1 (dz|y)/σb(y)] if σb(y) > 0,

γab
1 (dx|y)⊗δy(dz) otherwise,

γ2(dx,dz|y) :=

{
[γab

2 (dx|y)/σb(y)]⊗ γbc
2 (dz|y) if σb(y) > 0,

δy(dx)⊗ γbc
2 (dz|y) otherwise,

γ̂(dx,dz|y) :=

{
γab

2 (dx|y)⊗ γbc
1 (dz|y)/σb(y) if σb(y) > 0,

0 otherwise.

The interpretation of γ1 is that all mass that leaves x towards y, according to γab
1 (dx,dy), is

distributed over the third factor according to γbc
1 (dy,dz). In case the mass disappears at y, it is
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simply dropped at y on the third factor. Then γ2 is built analogously for the incoming masses
and γ̂ is a combination of incoming and outgoing masses. For i = 1,2 let γac

i := π1,3
# γi and note

that, by construction, (π1
# γac

1 ,π2
# γac

2 ) = (µa, µc). One has

∫

X3
hx,y(γ1, γ̂) =

∫

σb>0

(∫

X2
hx,y(γ

ab
1 (dx|y),γab

2 (dx|y))⊗ [γbc
1 (dz|y)/σb(y)]

)
λ (dy)

+
∫

σb=0

(∫

X2
hx,y(γ

ab
1 (dx|y),0)⊗δy(dz)

)
λ (dy)

=
∫

X2
hx,y(γ

ab
1 ,γab

2 ) =Ch(µa, µb).

Analogously, one finds
∫

X3 hyz(γ̂ ,γ2) =Ch(µb, µc). The main calculation can now be carried out:

Ch(µa, µc)
1
p ≤

(∫

X2
hx,z(γ

ac
1 ,γac

2 )

) 1
p (1)
≤

(∫

X3
hx,z(γ1,γ2)

) 1
p

(2)
≤

(∫

X3

[
hx,y(γ1, γ̂)

1
p + hy,z(γ̂ ,γ2)

1
p

]p
) 1

p

(3)
≤

(∫

X3
hx,y(γ1, γ̂)

) 1
p

+

(∫

X3
hy,z(γ̂ ,γ2)

) 1
p

(4)
≤ Ch(µa, µb)

1
p +Ch(µb, µc)

1
p

where we successively invoked (1) the subadditivity of h, (2) the fact that h1/p satisfies the
triangle inequality, (3) Minkowski’s inequality and (4) the computations above. Thus Ch(·, ·)1/p

satisfies the triangle inequality, and is a metric.

Theorem 1.2.10 (Weak convergence). Assume that X = Y , that (x,y) 7→ hx,y(1,1) tends to 0 as

dist(x,y)→ 0 and that there exists α > 0 such that hx,x(1,0)+hx,x(0,1)< α for all x ∈ X, then

(µn ⇀ µ)⇒ (Ch(µn, µ)→ 0).

If moreover h satisfies the hypothesis of Theorem 1.2.7, then the converse implication is true and

C
1/p
h metrizes the weak convergence on M+(X).

Proof of⇒. By the continuity near the diagonal (and thus uniform continuity by compactness
of X) of h·,·(1,1), for all ε > 0, there exists η > 0 such that dist(x,y)< η implies hx,y(1,1)< ε .
Similarly to the proof of the weak continuity of CL (see Theorem 1.1.26), we choose a partition
(Wi)i∈I of X of diameter smaller than η such that µ(∂Wi) = 0 for all i ∈ I (the mosaic lemma
is valid in separable metric spaces). Since µn weakly converges to µ , one has µn(Wi)→ µ(Wi)

for all i ∈ I, by the Portmanteau lemma. Let us build a pair of semi-couplings (γ
(n)
1 ,γ (n)2 ) for

all n ∈ N as follows. First, γ
(n)
i |Wi×Wj

= 0 if i 6= j or if µn(Wi) = µ(Wj) = 0. Otherwise, if
µn(Wi) > µ(Wi) define

{
γ
(n)
1 |Wi×Wi

= (µn|Wi
⊗µ|Wi

)/µn(Wi)+ (1−µ(Wi)/µn(Wi))diag#µn

γ
(n)
2 |Wi×Wi

= (µn|Wi
⊗µ|Wi

)/µn(Wi).
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where diag(x) = (x,x) maps X to the diagonal of X2. If µ(Wi)≥ µn(Wi) use the same definition

but with the role of µ and µn exchanged. By construction, γ
(n)
1 and γ

(n)
2 satisfy the semi-coupling

constraint and one can now control Ch(µn, µ) as follows

Ch(µn, µ) ≤
∫

X2
hx,y(γ

(n)
1 ,γ (n)2 ) ≤∑

i∈I

ε max(µn(Wi), µ(Wi))+α|µn(Wi)−µ(Wi)|

and the last term tends to εµ(Ω) as n→∞. Since ε > 0 is arbitrary, it follows that Ch(µn, µ)→
0.

Proof of⇐. Under the additional hypothesis of Theorem 1.2.7, we have that µn ⇀ µ and νn ⇀ ν

implies Ch(µn,νn)→C(µ ,ν) as a consequence of the triangular inequality. Let us choose a se-
quence (µn) that does not converge weakly to µ ∈M+(Ω). Either (µn(Ω)) is not bounded
and then, clearly, Ch(µn, µ) does not converge to 0. Let us make it rigorous: in this case

there must exist a subsequence of minimizers such that γ
(n)
1 (S(n))→ ∞, with S(n) := {(x,y) ∈

X2 ; dγ
(n)
1 /dγ

(n)
2 > 2}. So

Ch(µn, µ) ≥
∫

S(n)
hx,y(γ

(n)
1 ,γ (n)2 ) ≥ γ

(n)
1 (S(n)) inf

(x1,x2)∈X2,α∈[0, 1
2 ]

hx1,x2(1,α)→ ∞

since by the lower-semicontinuity of h the infimum is strictly positive. Otherwise, if (µn(Ω))
is bounded, then µn admits a subsequence which weakly converges to µ̄ 6= µ . In this case, by
lower-semicontinuity (Proposition 1.2.5), all limit points of Ch(µn, µ) are greater than Ch(µ̄ , µ) 6=
0.

We conclude this section with a useful approximation lemma that we use several times in the
following of this chapter.

Lemma 1.2.11 (Atomic approximation of semi-couplings). Let µ ∈M+(X) and ν ∈M+(Y ).

If h is a continuous sublinear cost, then there exists a sequence of finite atomic measures (γ
(n)
1 )

and (γ
(n)
2 ) that weakly converge to an optimal pair of semi-couplings for Ch(µ ,ν) and such that

limn→∞

∫
X×Y hx,y(γ

(n)
1 ,γ (n)2 ) =Ch(µ ,ν).

Proof. Let ( f γ ,gγ) be an optimal pair of semi-couplings for Ch(µ ,ν), where γ ∈P(X ×Y )

and f ,g ∈ L1(γ). Let (B(n)
i , (xi,yi)(n))i∈I be sequence of finite pointed partitions of X ×Y such

that limn→∞ maxi∈I diam B
(n)
i = 0. We define the discrete approximations γ̄

(n)
1 := T

(n)
# ( f γ) and

γ̄
(n)
2 := T

(n)
# (gγ) where T (n) : Ω

2 → Ω
2 maps all points in B

(n)
i to (xi,yi)(n). Also, denote

(π1
# γ̄

(n)
1 ,π2

# γ̄
(n)
2 ) = (µn,νn). It is clear that the discretized semi-couplings weakly converge to

( f γ ,gγ). Moreover, for ε > 0, there exists n ∈N such that for all i ∈ I, by Jensen inequality,
and since h is continuous, uniformly on (X× [0,1])× (Y × [0,1]),

h(xi,yi)(n)
(γ̄

(n)
1 (B

(n)
i ), γ̄ (n)2 (B

(n)
i )) ≤ ε max{γ̄ (n)1 (B

(n)
i ), γ̄ (n)2 (B

(n)
i )}+

∫

B
(n)
i

hx,y( f γ ,gγ)

By integrating on the whole domain, one has
∫

X×Y
h(x,y)(γ̂

(n)
1 , γ̂ (n)2 ) ≤ ε · (µ(X)+ν(Y ))+Ch(µ ,ν)

and the result follows because ε can be arbitrarily small.
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1.2.3. Optimal lift and optimal entropy-transport problems

We now make apparent the link between the semi-coupling formulation and the other formula-
tions introduced in [103].

Optimal lift formulation

The optimal lift formulation3, introduced in [103] recasts the problem of unbalanced optimal
transport as a standard optimal transport problem between lifted marginals. This formulation
comes from the remark that the linear map h : M+(X×R+)→M (X) defined by

h(µ̄)(B) =
∫

B

∫

R
u µ̄(dx,du) ∀ Borel B⊂ X (1.2.5)

which takes the “partial expectation” w.r.t. the real variable (interpreted as “mass”) is a surjec-
tion. In particular, every measure µ ∈M+(Ω) admits pre-images that we refer to as lifts. This
remark leads to the following definition.

Definition 1.2.12 (Optimal lift). Let c : (X×R+)× (Y ×R+)→ [0,∞] be a l.s.c. cost function

and (µ ,ν) ∈M+(X)×M+(Y ). The optimal lift formulation of unbalanced optimal transport

is defined as

Ch
c (µ ,ν) := inf

γ

{∫
cdγ ; (h(π1

# γ),h(π2
# γ)) = (µ ,ν)

}
. (1.2.6)

where γ ∈M+((X×R+)× (Y ×R+)).

Equivalently, one may use the classical optimal transport cost Cc associated to c and write the
problem as

Ch
c (µ ,ν) := inf

µ̄∈M+(X×R+)
ν̄∈M+(Y×R+)

{Cc(µ̄ , ν̄) ; (h(µ̄),h(ν̄)) = (µ ,ν)} .

This definition differs from the definition in [103] in some ways: we stick to the 1-homogeneous
definition of h, do not necessarily consider homogeneous costs, and allow general measures (not
just probabilities) as couplings. This problem does not necessarily admit a minimizer under
these assumptions, but it turns out that for a general (but continuous) cost function c, this prob-
lem boils down to a semi-coupling problem with a regularized cost. This is a new result that
sheds light on the interplay between the various formulations: informally, the optimal lift for-
mulation uses the additional degree of freedom to regularize the cost. The intuitive explanation
is as follows. Consider the transfer of mass between two elements of volume dx and dy. In the
optimal lift formulation, the mass of µ(dx) and ν(dy) can be decomposed in smaller chunks.
In particular, the minimization problem seeks to lower the cost using these decompositions.
Taking the infimum over all decompositions corresponds to the sublinear (i.e. convex and homo-
geneous) regularization of the cost at the point (x,y), by Lemma 1.2.14. Note that if c is already
assumed homogeneous, the optimal lift formulation can be equivalently restricted to probability

3this problem is called “homogeneous formulation” in [103] but here this name could lead to confusion as many
objects in this thesis are “homogeneous”.
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1.2. Coupling formulations

measures. Also, there is less freedom in the semi-coupling formulation because it does not al-
low such decompositions. This explains why we have to make the assumption that h is sublinear
beforehand.

For completeness, we also prove a similar result when c is already sublinear in (u1,u2), but
this result is almost included in [103] (it is just not expressed in terms of semi-couplings).

Theorem 1.2.13 (Reduction to semi-coupling). Let c : (X×R+)×(Y×R+)→ [0,∞] be a l.s.c.

cost function and let (µ ,ν) ∈M+(X)×M+(Y ). If c is continuous then

Ch
c (µ ,ν) =Ch(µ ,ν),

where h is the sublinear cost function such that for all (x,y) ∈ X ×Y , hx,y is the sublinear

relaxation of c(x, ·,y, ·) and Ch is the associated optimal semi-coupling cost. Equality also holds

if c(x, ·,y, ·) is l.s.c. and sublinear for all (x,y) ∈ X×Y .

Proof. We first prove the inequality Ch ≤ C
h
c which holds in general. The reverse inequality

which seems intuitive from Lemma 1.2.14 would require, in general, to make a selection of
minimizers whose measurability is not evident. Thus we adopt different proof strategies to prove
it: it is easy when c = h and it involves an approximation argument if c is merely continuous.

Step 1 (Ch ≤C
h
c ). Let γ ∈P((X ×R+)× (Y ×R+)) be a feasible coupling for (1.2.6) and

disintegrate it w.r.t. πx1,x2 : (x1,u1,x2,u2) 7→ (x1,x2) so that it writes

γ(dx1,du1,dx2,du2) = σx1,x2(du1,du2)γ̄(dx1,dx2).

where (σx1,x2) is a family of measures in P(R2
+) and γ̄ = πx1,x2

# γ ∈P(X ×Y ). We moreover
define the functions in L1(γ̄)

fi : (x1,x2) 7→ h(πui

# (σx1,x2)) for i ∈ {1,2}.

One has, by Lemma 1.2.14 (in particular (1.2.8)),

∫
cdγ =

∫

X×Y

(∫

R2
+

c(x1,u1,x2,u2)σx1,x2(du1,du2)

)
dγ̄(dx1,dx2)

≥
∫

X×Y
hx1,x2( f1(x1,x2), f2(x1,x2))γ̄(dx1,dx2) ≥Ch(µ ,ν).

where the last inequality holds because ( f1γ̄ , f2γ̄) forms an admissible pair of semi-couplings
between (µ ,ν). Taking the infimum over γ proves the first claim.

Step 2 (Ch ≥C
h
c when c = h). If c is already sublinear w.r.t. (u1,u2), i.e. c = h, let ( f1γ̄ , f2γ̄)

be an optimal semi-coupling between (µ ,ν), where γ̄ ∈P(X×Y ) and f1, f2 ∈ L1(γ̄). We build
a probability γ ∈P((X ×R+)× (Y ×R+)) that satisfies (h(πx1,u1

# γ),h(πx2,u2
# γ)) = (µ ,ν) by

posing T : (x,y) 7→ (x1, f1(x1,x2),x2, f2(x1,x2)) and γ := T#γ̄ . One has

Ch(µ ,ν) =
∫

X×Y
hx1,x2( f1(x1,x2), f2(x1,x2))γ(dx1,dx2) =

∫
cdγ ≥Ch

c .
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Step 3 (Ch ≥C
h
c when c continuous). Consider a sequence of finite atomic semi-couplings

for n ∈N

γ̂
(n)
1 := ∑

i∈I

f
(n)
i δ(xi,yi)(n)

, (γ̂
(n)
2 ) := ∑

i∈I

g
(n)
i δ(xi,yi)(n)

given by Lemma 1.2.11 which is such that the sequences (µn) := (πx
# γ̂

(n)
1 ) and (νn) := (πy

#γ
(n)
2 )

weakly converge to µ and ν , and such that limn→∞

∫
X×Y hx,y(γ̂

(n)
1 , γ̂ (n2 )) = Ch(µ ,ν). Note that

this lemma applies because since c is continuous, h is continuous, as can be seen from the
characterizations of Lemma 1.2.14.

Choose an arbitrarily small ε > 0. There exists an η > 0 such that for any n∈N and (xi,yi)(n),

one can choose a measure σ
(n)
i ∈M+([η ,∞[2) which is such that

∫
c(xi,yi)(n)

(u1,u2)σ
(n)
i (du1,du2) = h(xi,yi)(n)

( f
(n)
i ,g(n)i )+ ε

and (hπ1
# σ

(n)
i ,hπ2

# σ
(n)
i ) = ( f

(n)
i ,g(n)i ) ∈ R2

+. This is made possible by Lemma 1.2.14 and the
security distance from zero is possible because we allow a small error ε and h is uniformly
continuous. Finally, let γ (n) ∈M+((X×R+)× (Y ×R+)) be defined as

γ (n) := ∑
i

δ(xi,yi)(n)
(dx,dy)⊗σ

(n)
i (du1,du2).

If we prove that γ (n) admits a weakly convergent subsequence γ (n) ⇀ γ , then we would have
∫

cdγ ≤ lim inf
n→∞

∫
cdγ (n) ≤ ε + lim inf

n→∞

∫

X×Y
hx,y(γ̂

(n)
1 , γ̂ (n)2 ) = ε +Ch(µ ,ν)

and, combined with the fact that, by construction,

h(πx,u1
# (γ (n))) = µn ⇀ µ and h(πy,u2

# (γ (n))) = νn ⇀ ν

then we would have built a feasible lifted plan, so C
h
c (µ ,ν)≤Ch(µ ,ν)+ ε and the result would

follow. As a consequence, it only remains to prove the compactness of {γ (n)}n∈N. The mass is
uniformly upper bounded because, using the “partial expectation” constraints satisfied by γ (n),
for all n ∈N,

1
η

µn(X) ≥
∫

X

∫

[η ,∞[
d(πx,u1

# γ (n)) = γ (n)((X×R+)× (Y ×R+)).

and (µn(X)) is bounded by some constant M > 0. As for the tightness, one may use a similar ar-
gument: let ε > 0, then posing Kε := (X× [0,M/ε ])×(Y× [0,M/ε ]) and Kc

ε its complementary
set in (X×R+)× (Y ×R+), one has for all n ∈N,

M ≥ µn(X) ≥ γ(Kc
ε ) ·M/ε

and it follows γ(Kc
ε )< ε . As a consequence, by Prokorov’s theorem, {γ (n)}n∈N is pre-compact,

and the proof is complete.
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Lemma 1.2.14 (Sublinear regularization). Let f : Rn → [0,∞] be a l.s.c. function and let f̃ be

its sublinear regularization. One has the characterizations, for x ∈Rn \{0},

f̃ (x) = inf
(λi,xi)n

i=1∈(R+×Rn)n

{
n

∑
i=1

λi f (xi) ;
n

∑
i=1

λixi = x

}
(1.2.7)

= inf
σ∈M+(Rn)

{∫

Rn
f (r)dσ(r) ; (h(π1

# σ), . . . ,h(πn
# σ)) = x

}
(1.2.8)

= sup
y∈Rn

{y · x ; y · r ≤ f (r), ∀r ∈Rn} . (1.2.9)

Proof. We will prove f̃ = (1.2.7)≥ (1.2.8)≥ (1.2.9)≥ f̃ . The first characterization is a corollary
of Caratheodory’s theorem [134, Cor. 17.1.6]. The second is clearly smaller since given an
admissible point (λi,xi)n

i=1 for (1.2.7), one builds an admissible measure ∑λiδxi
for (1.2.8) of

same value. The inequality (1.2.8) ≥ (1.2.9) is a convex weak duality result or in other words,
an inequality of type infsup ≥ supinf, for which one only needs the expression of the convex
conjugate of σ 7→ ∫

f dσ when f l.s.c., which is classical in optimal transport theory, and of
the adjoint (h ◦π i)∗(yi) = u where yi ∈ R and u ∈ C (Rn) is u(r1, . . . ,rn) = yiri. One cannot
directly claim that strong duality holds because there is no always a strictly feasible y ∈ Rn

for the dual problem. Finally, denoting T ( f ) the function defined by formula (1.2.9), one has
easily T ( f ) ≥ T ( f̃ ) since f ≥ f̃ , and T ( f̃ ) = f̃ because f̃ ∗ is the indicator of a convex set. So
T ( f ) ≥ f̃ .

Optimal entropy-transport problems

Another class of unbalanced optimal transport problems was introduced in [103], the optimal

entropy-transport problems. They correspond to relaxing the marginal constraints in the Kan-
torovich formulation, i.e. replacing the equality constraint on the marginals of the couplings by
divergence functionals that quantify how much these marginals deviate from the desired mea-
sures. For measuring this deviation, a class of functionals with good properties is given by the
f -divergences, also known as Csiszár divergences, which are built from entropy functions. The
results in this paragraph are not our contribution but will be extremely useful in other chap-
ters of this thesis and they complete the general picture of unbalanced optimal transport. This
formulation is also central for the numerical schemes developed in Chapter 3.

Divergences between measures The following definition is more restrictive than the one
adopted in [103] but covers most of the interesting cases.

Definition 1.2.15 (entropy function). An entropy function is a convex l.s.c. function f : R →
R∪{∞} such that dom f ⊂R+ and f (1) = 0 is a minimum.

Definition 1.2.16 ( f -divergence). A f -divergence is an integral functional associated to the

perspective of an entropy function. Given an entropy function f , it is defined for (µ ,ν)∈M (X)2

with the Lebesgue decomposition µ = σν + µ⊥ as

∫

X
ψ f (µ|ν) =

∫

X
f (σ)dν + f ′∞(1) ·µ⊥(X).
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The convention for the last term is ∞ ·0 = 0. Notice that this divergence is worth 0 if µ = ν ,
increases as µ deviates from ν and is ∞ if either µ or ν is not nonnegative. These functionals are
a particular case of integral functionals of sublinear functions and enjoy consequently the same
duality, convexity and lower-semicontinuity properties (see Appendix A).

Remark 1.2.17. This perspective function is a bit peculiar because the two variables of ψ f

belong to R+. As a consequence, one can select any line in R2 tangent to the unit circle in

the positive quadrant R2
+ and ψ f is the perspective function of its own restriction to this line,

modulo a change of coordinate. In particular, taking the line R×{1}, one has

ψ f (µ|ν) = ψg(ν |µ)

where g(y) = ψ f (1|y). This second description is called the reverse entropy and is used in [103]

to give alternative descriptions of the optimal entropy-transport problem.

Optimal entropy-transport problems We only introduce the most useful case with one
entropy function.

Definition 1.2.18 (Optimal entropy-transport). Let c : X ×Y → [0,∞] be a l.s.c. cost function

and f be an entropy function. For (µ ,ν) ∈M+(X)×M+(Y ), the optimal entropy transport

cost is defined as

Cc, f (µ ,ν) := min

{∫

X×Y
cdγ +

∫

X
ψ f (π

1
# γ|µ)+

∫

Y
ψ f (π

2
# γ|ν) ; γ ∈M+(X×Y )

}
. (1.2.10)

The following duality result is another analogue of Kantorovich duality for unbalanced op-
timal transport, and just like Kantorovich duality, it involves the operator ⊕, defined as (ψ ⊕
ψ)(x,y) = ψ(x) + φ (y). Note that after a change of variables, it can be re-written under the
form of Theorem 1.2.4.

Theorem 1.2.19 (Existence, duality [103]). If (µ(X) ·dom f )∩ (ν(Y ) ·dom f ) 6= /0, then prob-

lem (1.2.10) admits a least a minimizer and moreover

Cc, f (µ ,ν) = sup
(φ ,ψ)∈C (X)×C (Y )

{
−

∫

X
f ∗(−φ )dµ−

∫

X
f ∗(−ψ)dν ; φ ⊕ψ ≤ c

}

where in the case when f is not superlinear, one also impose ψ(x),φ (y) ∈ dom f ∗ for all x ∈ X

and y ∈ Y .

Proof. This result is proved in a much broader setting in [103] (where also existence of dual
maximizers is proved in several contexts). In the present case, this can also be seen as a conse-
quence of Fenchel-Rockafellar duality theorem, using the duality results on integral functionals
of measures (see Appendix A).

It is insightful, as remarked in [103], to fix a pair of points (x,y) ∈ X ×Y and solve the min-
imization problem “restricted” to these points. The resulting minimal value defines a sublinear
cost function that can be used in a optimal lift or an optimal semi-coupling problem.
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1.2. Coupling formulations

Definition 1.2.20 (Marginal perspective [103]). Given an entropy function f and c ∈ [0,∞] the

marginal perspective function is defined, with the convention 0 ·∞ = 0, as

hc(a,b) := inf
θ≥0

ψ f (θ |a)+ψ f (θ |b)+θc.

Given a cost c : X×Y → [0,∞] and an entropy function f , define the induced cost

hx,y(a,b) := hc(x,y)(a,b) for x,y ∈ X×Y and a,b≥ 0.

This construction allows to obtain equivalence with the previously introduced formulations.
This result is applied several times in Chapter 2 to specific examples of unbalanced optimal
transport models.

Theorem 1.2.21 (from entropy-transport to semi-coupling). Let h be the marginal perspective

cost associated to a pair (c, f ) of cost function/entropy function. One has for all (µ ,ν) ∈
M+(X)×M+(Y ) and writing c̃ = h

Cc, f (µ ,ν) =C
h
c̃ (µ ,ν) =Ch(µ ,ν).

Proof. This is a particular case of [103, thm. 5.8], combined with the equivalence of Theorem
1.2.13 which is exact since the marginal perspective cost is l.s.c. sublinear.

It should be noted that, in contrast, semi-coupling problems do not admit in general an optimal
entropy-transport formulation unless they have a very specific structure.
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Chapter 1. Formulations and Equivalences

1.3. From dynamic to coupling problems

In the previous sections, we have introduced and studied basic properties of two categories of
unbalanced optimal transport problems: dynamic formulations, and coupling formulations. In
this section, we prove that any dynamic problem is equivalent to a coupling problem. This result
which the link between the two approaches developed independently in Sections 1.1 and 1.2.

We adopt the setting of Section 1.1 : Ω⊂Rd is the closure of a bounded, Lipschitz, connected
open domain and we recall that C(Ω) denotes the cone of Ω (Definition 1.2.6). The function
L : Rd×R → R is a Lagrangian that satisfies Assumption 1.1.10: it is convex, continuous and
admits the unique minimum L(0,0) = 0. We also assume the following:

there exists p > 0 such that lim
|g|→∞

L(0,g)/|g|p = 0,

that we simply state as “L has polynomial growth”.

Minimal path cost and convexification

Any Lagrangian defines a cost function on Ω×R+ obtained by minimizing over absolutely
continuous trajectories linking pairs of points.

Definition 1.3.1 (minimal path cost). The minimal path cost associated to the Lagrangian L is,

for (xi,ui) ∈ (Ω×R+)2,

cL((x1,u1), (x2,u2)) := inf
x(t),u(t)

∫ 1

0
ψL(u(t)x

′(t),u′(t) | u(t))dt

where the infimum is taken over (xt ,ut)t∈[0,1] such that u is absolutely continuous in R+ and x

is piecewise absolutely continuous in Ω, (x(i),u(i)) = (xi,ui) for i ∈ {0,1} and with a finite

number of discontinuity points for x at (ti)k
i=1 such that u(ti) = 0.

Allowing for discontinuities in x when the mass u vanishes expresses the fact that we are
rather interested in absolutely continuous paths in the cone and intuitively, it simply means
that a path that reaches the apex at some xa ∈ Ω can instantaneously escape the apex from
another point xb ∈ Ω. The definition without this property would be sufficient for us (because
we will regularize cL anyways) but the construction of minimizing sequences would be more
tedious. More generally, the proof of Theorem 1.3.3 only requires the definition of cL to have
the following properties :

• each path (x(t),u(t)) in the minimizing space is such that

(u(t)δx(t),x
′(t)u(t)δx(t),u

′(t)δx(t)) ∈ CE1
0(u0δx0 ,u1δx1);

• the space of minimization contains C 1 paths between pairs of points with positive mass;

• cL is continuous.
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1.3. From dynamic to coupling problems

Since the Lagrangian is continuous, one has that cL is continuous on its domain (one can perturb
a path and reach nearby points with a perturbed cost). The behavior at the apex of the cone is
less clear but if we assume that L has a polynomial growth, an absolutely continuous path can
be constructed as in Proposition 1.1.14 and cL is continuous on Ω×R+. In general, cL does not
define a sublinear cost function, but its convex regularization does so.

Proposition 1.3.2 (convexification of cL). Assume that L has a polynomial growth and let h
(cL)
x1,x2

be the convex regularization of cL for all (x1,x2) ∈ Ω
2. Then h(cL) is an admissible sublinear

cost function, is continuous and is characterized by

h
(cL)
x1,x2(r1,r2) := min

ra
1+rb

1=r1

ra
2+rb

2=r2

c((x1,ra
1), (x2,ra

2))+ c((x1,rb
1), (x2,rb

2)). (1.3.1)

Proof. It is clear that h(cL) takes its values in [0,∞] and that it inherits 1-homogeneity from ψL,
so hx1,x2 is sublinear for all (x1,x2). Also, by Lemma 1.2.14, and the fact that cL is homogeneous,
one has the characterization (1.3.1) (one has to check directly that it is also valid for (r1,r2) =
(0,0)). The infimum is attained because cL is continuous and the minimization set is compact.
The continuity of h(cL) is clear from this characterization and the continuity of cL.

This convexification of the Lagrangian cost, which does not appear in the classical optimal
transport theory, is an essential step that explains differences between the cut-locus distance of
minimal path associated to a Lagrangian and the minimal measure valued interpolations (see
examples in Chapter 2).

Main theorem

The following theorem, reminiscent of the Benamou-Brenier theorem [12], shows that any dy-
namic optimal transport problem is equivalent to a coupling problem. It is a key step to relate
many apparently independent approaches for defining unbalanced optimal transport models. In
Chapter 2, we apply this result on several explicit models. Note also that a similar result is ob-
tained in [103] for the quadratic case considered in Chapter 2, with a different proof technique
based on a representation formula for the dual problem.

Theorem 1.3.3 (Dynamic to static). Let L be an admissible Lagrangian of polynomial growth

and h(cL) be the associated sublinear cost as defined in Proposition 1.3.2. Then the dynamic and

semi-coupling problems are equivalent, i.e.

C
h(cL)(µ ,ν) =CL(µ ,ν) ∀(µ ,ν) ∈M+(Ω)2.

Proof. For ease of reading, we shall denote h(cL) by simply h. This proof is divided into three
steps: in Step 1, we show by a discrete approximation of semi-couplings that it holds Ch ≥CL.
In Step 2, we show that a converse inequality holds in a smooth setting, a result used in Step 3
to show that Ch ≤CL, via a regularization argument.
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Chapter 1. Formulations and Equivalences

Step 1. Let (µ ,ν) ∈ M+(Ω)2 and let (γ̂ (n)1 ), let (γ̂ (n)2 ) be the atomic measures on X ×Y

given by Lemma 1.2.11 (the continuity of h follows from Proposition 1.3.2): they are such

that limn→∞

∫
X×Y hx,y(γ̂

(n)
1 , γ̂ (n)2 ) = Ch(µ ,ν). Also denote by (µn,νn) := (π1

# γ̄
(n)
1 ,π2

# γ̄
(n)
2 ) the

corresponding marginals, that satisfy µn ⇀ µ and νn ⇀ ν .
By the definition of h, and in particular by the characterization (1.3.1), one has CL(u1δx,u2δy)≤

hx,y(u1,u2) because to any absolutely continuous path in the cone (x(t),u(t))t∈[0,1], corresponds
an admissible dynamic interpolation between atoms of the form (u(t)δx(t))t∈[0,1] which action is
∫ 1

0 ψL(u(t)x′(t),u′(t)|u(t))dt. It follows
∫

Ω2
hx,y(γ̄

(n)
1 , γ̄ (n)2 ) = ∑

i∈I

h(xi,yi)( f
(n)
i ,g(n)i )γ

(n)
i

≥∑
i∈I

CL( f
(n)
i γ

(n)
i δxi

,g(n)i γ
(n)
i δyi

) ≥CL(µn,νn).

Since CL is weakly l.s.c., CL(µ ,ν) ≤ liminfCL(µn,νn), and it follows CL(µ ,ν) ≤Ch(µ ,ν).

Step 2. Let µ ∈M+(Ω) be an absolutely continuous measure of strictly positive mass, let
(v,g) ∈ C 1([0,1]×Ω;Rd ×R) be velocity and growth field (assume no-flux boundary condi-
tions for v) and let (ρt)t∈[0,1] the unique classical solution of ∂tρt +∇ · (vtρt) = gtρt such that
ρ0 = µ . This solution can be written as a flow ρt = (Yt)#(Gt µ) where Yt and Gt are, as in
Theorem 1.1.5, the unique solutions to

{
∂tYt(x) = vt(Yt(x))

Y0(x) = x
and

{
∂tGt(x) = gt(Yt(x))Gt(x)

G0(x) = 1
.

One has
∫ 1

0

∫

Ω

ψL(ω ,ζ |ρ) =
∫ 1

0

∫

Ω

L(vt(x),gt(x))d(Yt)#(Gt µ)(x)dt

=
∫

Ω

(∫ 1

0
L(∂tYt(x),∂tGt(x)/Gt(x))Gt(x)dt

)
dµ(x)

(1)
≥

∫

Ω

hx,Y1(x)(1,G1(x))dµ(x)
(2)
≥ Ch(µ ,ν)

where (1) is a consequence of h≤ cL and (2) comes from the fact that (id,Y1)#µ and (id,Y1)#(G1ρ0)
satisfy the semi-coupling constraints of (1.2.2).

Step 3. We now show with the help of Step 2, that for µ ,ν ∈M+(Ω), it holds Ch(µ ,ν) ≤
CL(µ ,ν). Let (ρ ,ω ,ζ ) be a solution to the continuity equation between µ and ν and for α ∈
]0,1[, let

ρ̃α = (1−α)ρ +α (dt⊗dx)|S, ω̃α = (1−α)ω , ζ̃ α = (1−α)ζ

where S ⊂ Rd is a bounded set containing Ω+Bd(0,1) and Bd(a,r) denotes the open ball of
radius r centered at point a in Rd . The new triplet (ρ̃α , ω̃α , ζ̃ α) is a solution to the continuity
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1.3. From dynamic to coupling problems

equation between its endpoints (ρ̃α
0 , ρ̃α

1 ) which weakly converge to (µ ,ν) as α → 0. Since by
Proposition 1.2.5, Ch is weakly l.s.c. one has

Ch(µ ,ν) ≤ lim inf
α→0

Ch(ρ̃
α
0 , ρ̃α

1 )

and, by convexity of ψL,

∫ 1

0

∫

S
ψL(ω̃

α , ζ̃ α |ρ̃α) ≤
∫ 1

0

∫

Ω

ψL(ω ,ζ |ρ),

so is is sufficient to prove Ch(ρ̃
α
0 , ρ̃α

1 )≤
∫ 1

0

∫
S ψL(ω̃α , ζ̃ α |ρ̃α) for proving Ch(µ ,ν)≤CL(µ ,ν).

In order to alleviate notations we shall denote ρ̃δ , ω̃δ , ζ̃ δ by just ρ ,ω ,ζ and the new marginals
ρ̃δ

0 , ρ̃δ
1 by ρ0,ρ1 (now supported on S ⊃ Ω) and extend the definition of (ρ ,ω ,ζ ) for t < 0 by

(ρ0⊗dt,0,0) and for t > 1 by (ρ1⊗dt,0,0).
Let rε ∈C∞

c (R
d ;R+) be a mollifier of the form rε(t,x) = 1

εd r1
(

x
ε

)
1
ε r2

(
t
ε

)
where r1 ∈C∞

c (B
d(0, 1

2 )),
r2 ∈C∞

c (B
1(0, 1

2 )), ri ≥ 0,
∫

ri = 1, ri even (i = 1,2). Define (ρε ,ωε ,ζ ε) the regularized triplet
(ρ ∗ rε ,ω ∗ rε ,ζ∗ε) which, by Proposition 1.1.9 solves the continuity equation on [− ε

2 ,1+ ε
2 ]×

Ω
ε where Ω

ε := Ω + Bd(0,ε) between (µε ,νε) that weakly converge to µ and ν as ε → 0.
Moreover, the vector fields vε

t := ωε
t /ρε

t and gε
t := ζ ε

t /ρε
t are well defined on S, smooth and

bounded in particular because ρ is uniformly bounded from below on S ⊃Ω
ε as long as ε < 1.

Besides, vε satisfies no-flux boundary conditions on Ω
ε . Let cε be the minimal path cost related

to the Lagrangian L on Ω
ε and the time range [ ε

2 ,1+ ε
2 ], and let hcε be its sublinear regularization

as in Proposition 1.3.2. One has by step 2 and by sublinearity of ψL (Lemma 1.1.23)

Chcε (ρε
0 ,ρε

1 ) ≤
∫ 1+ε/2

−ε/2

∫

Ωε
ψL(ω

ε ,ζ ε |ρε) ≤
∫ 1

0

∫

Ω

ψL(ω ,ζ |ρ)

Since Ω
ε shrinks as ε → 0, hcε converges pointwise and increasingly to h (we may define hε and

h as +∞ outside of Ω
ε and Ω, respectively, and use characterization (1.3.1) to see this), so by

Proposition 1.2.5, one has

Ch(µ ,ν) ≤ lim inf
ε→0

Chcε (ρε
0 ,ρε

1 ) ≤
∫ 1

0

∫

Ω

ψL(ρ ,ω ,ζ ).

This allows to conclude that Ch(µ ,ν) ≤CL(µ ,ν).
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Chapter 2.

Unbalanced Optimal Transport Metrics

In this chapter we study specific cases of the framework developed in Chap-
ter 1. Starting from the dynamic formulation of unbalanced optimal transport,
we define a new family of metrics, denoted Ŵp. We prove that, just as the Wp

optimal transport metrics, the Ŵp optimal transport-growth metrics make the
space of nonnegative measure a geodesic space and the convergence in Ŵp is
equivalent to weak convergence.
We study in Section 2.1 the limit geodesics obtained when a scale parameter
goes to 0 or ∞. In one case, we obtain the geodesics for a class of pure growth
metrics, that contains in particular the Hellinger and the Total Variation met-
rics. In the other we obtain generalized transport geodesics, that can be built
from pure Wp optimal transport geodesics by rescaling and reparametrization.
In Section 2.2, we consider the quadratic case for which the minimal path

cost is explicit. It follows explicit form of the optimal lift, semi-coupling
and optimal entropy-transport formulations by the results of Section 1.3. We
also show that a non-trivial variant of Ŵ2 with weights remains a metric for a
certain range of parameters (Proposition 2.2.5).
In the third Section, we consider the limit case p = 1 and show that it cor-
responds to the Bounded Lipschitz metric. We also consider more general
Lagrangians which are 1-homogeneous w.r.t. the growth variable: the so-
called “generalized Wasserstein distances” [129] are recovered and we prove
that they are equivalent to the problem of optimal partial transport, with a
dual parametrization.
The material of this chapter is partially based on the published work [44]
and the submitted article [43]. The first section is, at this level of generality,
entirely new.
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Chapter 2. Unbalanced Optimal Transport Metrics

2.1. Unbalanced Ŵp metrics

2.1.1. A class of geodesic metrics

In this chapter, we consider Ω ⊂ Rd which is a domain with our standard assumptions (see
section Notation). Let us consider the p-homogeneous Lagrangian L : Rd×R→R defined by

Lp,α(v,g) :=
(

1
α |v|

)p

+
(

1
p
|g|

)p

. (2.1.1)

Definition 2.1.1 (Metric Ŵp). For µ ,ν ∈M+(Ω), α > 0 a scale parameter and p≥ 1 a homo-

geneity parameter, the unbalanced Ŵp,α metric between µ and ν is defined by

Ŵp,α(µ ,ν) :=CLp,α (µ ,ν)1/p

where CLp,α is the optimal dynamic cost associated to the Lagrangian Lp,α (Definition 1.1.13).

For α = 1, we simply write Ŵp.

Let us gather a few results from the previous parts (see Theorems 1.1.25 and 1.1.26 and
Proposition 1.1.16).

Theorem 2.1.2. The space (M+(Ω),Ŵp,α) is a complete geodesic metric space that metrizes

weak convergence. Moreover, for β > 0 and µ , µ̄ ,ν , ν̄ ∈ M+(Ω), it holds Ŵp,α(β µ ,βν) =

β
1
p Ŵp,α(µ ,ν) and

Ŵp,α(µ + µ̄ ,ν + ν̄) ≤
(

Ŵp,α(µ ,ν)p +Ŵp,α(µ̄ , ν̄)p
) 1

p
.

Proposition 2.1.3 (α is a scale parameter). Let s : x 7→ αx be a linear rescaling of parameter

α > 0 and s# the associated pushforward map, then

s# : (M+(Ω),Ŵp,1)→ (M+(αΩ),Ŵp,α)

is an isometry.

Proof. Given any solution (ρ ,ω ,ζ ) of the continuity equation between µ and ν on [0,1], one
has by Proposition 1.1.6 that (s#ρ ,αs#ω ,s#ζ ) solves the continuity equation between s#µ and
s#ν . Moreover, thanks to Lemma 2.1.4 below, it holds

∫ 1

0

∫

αΩ

ψLp,α (αs#ω ,s#ζ |s#ρ) =
∫ 1

0

∫

Ω

ψLp,α (αω ,ζ |ρ) =
∫ 1

0

∫

Ω

ψLp,1(ω ,ζ |ρ)

and the result follows.

In the proof we used the next lemma (see also the related Lemma 1.1.23).

Lemma 2.1.4 (Image measure and pushforward). If f : Rn→R∪{∞} is (positively) 1-homogeneous

measurable and T : X → Y is a measurable bijective map of measurable inverse on measurable

spaces X ,Y , then f (T#µ) = T#( f (µ)) for all µ ∈M (X ;Rn). If T is only measurable but f is

sublinear and X ,Y are Radon spaces, one has f (T#µ) ≤ T#( f (µ)).
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2.1. Unbalanced Ŵp metrics

Proof. Let λ ∈M+(X) be a measure that dominates µ and denote σ := dµ/dλ . In the first
case one has, for all measurable B⊂ Y

T#µ(B) = µ(T−1(B)) =
∫

T−1(B)
σdλ =

∫

B
(σ ◦T−1)d(T#λ )

so one has T#µ = (σ ◦T−1)T#λ . It follows

f (T#µ)(B) =
∫

B
f ◦σ ◦T−1dT#λ =

∫

T−1(B)
f ◦σdλ = f (µ)(T−1(B)) = (T# f (µ))(B).

In the other case, one may apply the disintegration theorem [5, Thm. 5.3.1] to λ w.r.t. T#λ to
obtain that for all Borel function φ : Y →R,

∫

Y
φT#µ =

∫

Y

∫

T−1(y)
(φ ◦T )(x)σ(x)λy(dx)T#λ (dy) =

∫

Y
φ (y)

[∫

T−1(y)
σdλy

]
T#λ (dy)

so one has σ̃(y) :=
∫

T−1(y) σdλy = d(T#µ)/d(T#λ ). If follows, using Jensen inequality that for
all Borel function φ : Y →R,

∫

Y
φdT# f (µ)=

∫

Y
φ

[∫

T−1(y)
f ◦σdλy

]
dT#λ ≥

∫

Y
φ (y) f (σ̃)dT#λ =

∫

Y
φd f (T#µ).

This behavior w.r.t. the spatial scale can also be stated as a contraction property.

Proposition 2.1.5 (Contraction property). Let s : x 7→ αx be a linear rescaling of parameter

0 < α < 1 and s# the associated pushforward map, then, assuming αΩ⊂Ω, s# is a contraction

for Ŵp. If moreover a minimizer for CLp
between µ and ν has nonzero momentum ω , then this

contraction is strict.

Proof. The proof is similar to Proposition 2.1.3, using additionally the fact that Lp(v,g) is
strictly increasing with respect to v.

Remark 2.1.6 (Convention and path cost). The factor 1/p in the definition of the Lagrangian

is motivated by the following remark (consider α = 1). Remember that by Theorem 1.3.3, the

metric Ŵp admits a coupling formulation, for a cost which is derived from the minimal path cost

associated to the Lagrangian (Definition 1.3.1). In this case, the cost of an absolutely continuous

path (x,u) in Ω×R+ is ∫ 1

0

(
|ẋ(t)|p +

(
u̇(t)

pu(t)

)p)
u(t)dt.

which, after the change of variable r := u1/p, rewrites

∫ 1

0
((r(t)|ẋ(t)|)p + |ṙ(t)|p)dt.

One may then interpret (r,x) as polar coordinates and remark that this energy is the integral of

the p-th norm of the velocity vector, in the local reference frame. In general, we do not know an

explicit expression for the minimal path cost for this Lagrangian, except in the situation of the

next lemma. The case p = 2 is however simpler because the 2-norm is invariant by orthonormal

change of basis so—in the 1-D case—one writes the path in a fixed basis by posing (z1,z2) :=
(r cosx,r sinx) and minimal path are just straight lines in these coordinates (see Section 2.2).
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Chapter 2. Unbalanced Optimal Transport Metrics

Lemma 2.1.7 (Pure growth cost). The minimal path cost (Definition 1.3.1) between two points

in the cone (x,a) and (x,b) sharing the same spatial location x ∈ Ω associated to the La-

grangian Lp,α is hp(a,b) := |a1/p − b1/p|p and is reached for the unique minimizing path

(xt ,ut) = (x, ((1− t)a1/p + tb1/p)p). The function hp is continuous and sublinear on its do-

main R2
+.

Proof. It is clear that the path (xt ,ut) has a minimal cost only if xt = x for all t ∈ [0,1]. After the
change of variable rt = u

1/p
t which preserves absolute continuity, the problem is equivalent to

minimizing
∫ 1

0 |ṙ(t)|pdt subject to r0 = a1/p and r1 = b1/p. By Jensen inequality,
∫ 1

0 |ṙ(t)|pdt ≥
|∫ 1

0 ṙ(t)dt|p so this problem has a unique solution, satisfying ṙt constant. It corresponds to
the linear interpolation rt = (1− t)r0 + tr1 and the associated cost is |r1 − r0|p. Given this
formula, hp is clearly continuous and positively 1-homogeneous. For the subadditivity, consider
(a1,a2,b1,b2) ∈R4

+. The pure growth path energy
∫ 1

0 (u̇t/ut)putdt is sublinear in (ut , u̇t) and in
particular, taking (u(i))t the two minimal paths between the couples (ai,bi) and (ut) their sum,
one has ∫ 1

0
(u̇t/ut)

putdt ≤
∫ 1

0
(u̇

(1)
t /u

(1)
t )pu

(1)
t dt +

∫ 1

0
(u̇

(2)
t /u

(2)
t )pu

(2)
t dt

which implies hp(a1 + a2,b1 + b2) ≤ hp(a1,b1)+ hp(a2,b2) and hp is sublinear.

We deduce the following explicit geodesics which correspond to the case when the most
efficient interpolation has no transport component.

Proposition 2.1.8 (Pure growth geodesics). Let µ ∈ M+(Ω), β ∈ R+ and p > 1. One has

Ŵp,α(µ ,β µ) = |1−β 1/p|µ(Ω)1/p and ρt = (1− t + tβ 1/p)pµ is the unique geodesic.

Proof. We denote Lg : u ∈R+ 7→ (u/p)p. For (ρ ,ω ,ζ ) ∈ CE1
0(µ ,αµ), using Lemma 2.1.4 and

the fact that Lp,α only depends on the norm of its arguments, one has, recalling Lemma 2.1.7,

∫ 1

0

∫

Ω

ψLp,α (ω ,ζ |ρ) ≥
∫ 1

0
ψLg

(|ζt |(Ω)|ρt(Ω)) ≥ |1−β 1/p|pµ(Ω)

with equality if and only if ω = 0 and gt = dζt/dρt is constant ρt a.e. in Ω for the first inequality
and ρt(Ω) = ((1− t)µ(Ω)1/p + tβ 1/pµ(Ω)1/p)p for the second inequality, by Lemma 2.1.7.

2.1.2. Convergence to limit models

In this section, we study the behavior of Ŵp and its geodesics when the scale parameter α tends
to 0 or ∞, using the notion of Γ-convergence [24].

Some Γ-convergence results

Let us first define Γ-convergence and recall classical results that are used several times in this
thesis. Since we are interested in the weak convergence, which is metrizable on M+(Ω) (the
metrics Ŵp are an example), we do not need to distinguish between convergence and sequential
convergence.
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2.1. Unbalanced Ŵp metrics

Definition 2.1.9. Let (X ,d) be a complete metric space and (Fn)n∈N, F be functionals X →
R∪{∞}. The sequence (Fn) Γ-converges to F if, for any x ∈ X, it holds:

Γ-liminf. For all (xn) converging to x, one has liminfFn(xn) ≥ F(x);

Γ-limsup. There exists (xn) converging to x such that limsupFn(xn) ≤ F(x).

The central result motivating this notion of Γ-convergence is that from the convergence of
functionals, one may deduce the convergence of minimums and of minimizers.

Theorem 2.1.10 (Convergence of minimizers). Let (Fn)n∈N be a sequence of functions X →
R∪{∞} such that Fn Γ-converges to F and assume that there exists a compact K ⊂ X such that

infX Fn = infK Fn, for all n ∈ N. Then F admits a minimum on X and (infX Fn) converges to

minF. Moreover, if (xn) is a sequence in X such that

lim
n

Fn(xn) = lim
n
(inf

X
Fn)

then any limit point x of (xn) satisfies F(x) = infX F.

Before dealing with our particular case, let us examine prototypical Γ-convergence results for
families of the form that we consider (these are classical results, but we will use them several
times).

Lemma 2.1.11 (Zeroth order Γ-convergence). Assume that f ,g are functionals X →R+∪{∞}
and that g is lower bounded. As α ↓ 0, the family of functionals Fα := f +αg admits the Γ-limit

F : x 7→ inf{liminf f (xn) ; xn → x and xn ∈ domg}. In particular, F(x) = f (x) if f is l.s.c. and

x ∈ domg and f (x) = ∞ if x /∈ domg.

Proof. Let x ∈ X and (αn) ↓ 0. For the Γ-limsup, either F(x) = ∞ and there is nothing to prove,
or one needs to show that the inf defining F is reached for a sequence (xn). To see this, let
Sx ⊂R be the set of which the infimum is taken. For all n∈N, there exists xn ∈ domg satisfying
f (xn)≤ infSx +1/n and d(xn,x)< 1/n. One has xn → x and lim f (xn) = F(x). Moreover, one
can always duplicate some indexes to slow down the possible blow up of g(xn), and obtain a
new sequence sequence (xkn

) such that αng(xkn
)→ 0. So limFn(xkn

) = F(x). For the Γ-liminf,
let (xn) be a sequence converging to x. Either liminfFn(xn) = ∞ and there is nothing to prove,
otherwise liminfFn(xn) is not changed by replacing (xn) by (x̃n) the sequence where terms not
in domg are replaced by the next term in domg. Since g is lower-bounded, liminfαng(x̃n) ≥ 0,
so liminfFn(xn) ≥ liminf f (x̃n) ≥ F(x).

We deduce in particular that limit points of minimizers of Fα are minimizers of F , but it
will turn out that in the cases we are interested by, this result is not very insightful because
F has a huge set of minimizers. In particular, in this Γ-limit, g only intervenes through its
domain. For the same class of problems, finer results are obtained by considering properly
rescaled functionals which have exactly the same minimizers as Fα for all α > 0.
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Lemma 2.1.12 (First order Γ-convergence). Assume that f ,g are l.s.c. functionals X 7→R∪{∞}
such that inf f > −∞. As α ↓ 0, the family of functionals defined for α > 0 by Fα := ( f −
inf f )/α + g admits the Γ-limit

F : x 7→
{

g(x) if x ∈ argminX f

∞ otherwise.

Proof. Let x ∈ X and (αn) ↓ 0. For the Γ-limsup, either F(x) = ∞ and there is nothing to prove,
or x ∈ argmin f . In this case, the constant sequence xn = x satisfies limsupFn(xn) = g(x) =
F(x). For the Γ-liminf, let xn → x. If x /∈ argmin f then liminf f (xn) ≥ f (x) > inf f since f is
l.s.c. so liminfFn(xn) = ∞. Otherwise, one has Fn(xn) ≥ g(xn) so liminfFn(xn) ≥ g(x) because
g is l.s.c.

Application to the convergence of geodesics

Let us consider two Lagrangians defined on Rd and R respectively

Lv : v 7→ |v|p, Lg : g 7→
(

1
p
|g|

)p

and the associated functionals, depending implicitly on a pair (µ ,ν) ∈M+(Ω)2 of marginals

fv : (ρ ,ω ,ζ ) 7→ ιCE +
∫ 1

0

∫

Ω

ψLv
(ω|ρ), fg : (ρ ,ω ,ζ ) 7→ ιCE +

∫ 1

0

∫

Ω

ψLg
(ζ |ρ)

where ιCE is the convex indicator of the set CE1
0(µ ,ν) of solutions (ρ ,ω ,ζ ) to the continuity

equation between µ and ν . With these notations, the functional associated to the computation of
Ŵp,α is

Fα := fv/α p + fg.

Considering the result of Lemma 2.1.12, it is natural to introduce the following variational prob-
lems, which are studied in the next sections:

Cg/v(µ ,ν) := min{ fg(ρ ,ω ,ζ ) ; (ρ ,ω ,ζ ) ∈ argmin fv} . (2.1.2)

Cv/g(µ ,ν) := min{ fv(ρ ,ω ,ζ ) ; (ρ ,ω ,ζ ) ∈ argmin fg} . (2.1.3)

Lemma 2.1.13 (Equicoercivity). Let µ ,ν ∈M+(Ω) and consider the set

A := {(ρ ,ω ,ζ ) ∈ argminFα ; α ∈ ]0,∞[} .

One has, for all (ρ ,ω ,ζ ) ∈A ,

fv(ρ ,ω ,ζ ) ≤Cv/g(µ ,ν), fg(ρ ,ω ,ζ ) ≤Cg/v(µ ,ν).

Moreover, A is uniformly bounded and thus weakly pre-compact.
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2.1. Unbalanced Ŵp metrics

Proof. It is simple to see that if those bounds do not hold, this contradicts the optimality of an
element in A . Since Cv/g(µ ,ν) and Cg/v(µ ,ν) are always finite (see Proposition 2.1.17 and
the proof of Theorem 2.1.21), it follows that the total variations are uniformly bounded by (a
simplified version of) Proposition 1.1.21.

Theorem 2.1.14 (Convergence of Ŵp geodesics). Let (µ ,ν) ∈M+(Ω)2, p≥ 1 and (ρα
t )t∈[0,1]

be the geodesic for Ŵp,α for α ∈ ]0,∞[.

• as α → 0, ρα weakly converges to the unique minimizer of (2.1.2);

• as α → ∞, ρα weakly converges (up to subsequences) to minimizers of (2.1.3).

In other words, the geodesics for Ŵp,α interpolate between pure growth geodesics and general-

ized optimal transport interpolations. These interpolations are studied in the next sections.

Proof. For all α > 0, the dynamic minimization problem defining CLp,α (µ ,ν) has the same
minimizers as

F̃α := ( fv− inf fv)/α p + fg.

By Lemma 2.1.12, this family of functionals Γ-converges (relatively to the weak topology) as
α ↓ 0 to F := fg + ιargmin fv

. Moreover, the closure K of the set of minimizers from Lemma
2.1.13 is a compact such that infFα = infK Fα for all α > 0. So by Theorem 2.1.10, minimizers
for Fα weakly converge to minimizers of F which is precisely (2.1.2). For the other result, define
instead F̃α := fv+α p( fg− inf fg) which Γ converges as α ↑∞ to F := fv+ ιargmin fg

and the same
reasonning goes through.

In the two next sections, we study in more depth these limit geodesics. The interpretation that
will emerge is that Ŵp behaves as optimal transport —up to rescaling and time reparametrization—
at small scales and as a pure growth model at large scales.

2.1.3. Pure growth metrics

In this section, we introduce and characterize a class of pure growth metrics, that can be thought
of as a 1-homogenization of the Lp metrics. These growth metrics contain the total variation
norm and the Hellinger metric as special cases, for p = 1 and p = 2.

Definition 2.1.15 (Gp metrics). Consider the function hp : (a,b) 7→ |a1/p− b1/p|p defined on

R2
+. The pure growth Gp metrics are defined for p≥ 1 by

Gp(µ ,ν) :=

(∫

Ω

hp(µ ,ν)

)1/p

“=”

(∫

Ω

|µ1/p−ν1/p|p
)1/p

.

The formula after the sign “=” is an abuse of notation but is easier to parse than the formula
with an underlying dummy reference measure. One should keep in mind that these kind of
expressions only make sense when the function being integrated is 1-homogeneous.
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Chapter 2. Unbalanced Optimal Transport Metrics

Theorem 2.1.16. For p ≥ 1, the space (M+(Ω),Gp) is a complete geodesic metric space,

which metrizes strong convergence. A geodesic (ρt)t∈[0,1] between two measures µ and ν is

given by the p-th power of the linear interpolation between the p-th roots:

ρt = hp((1− t)pµ , t pν) “=” ((1− t)µ1/p + tν1/p)p.

It is the unique geodesic if p > 1.

Proof. The case p = 1 corresponds to the total variation metric restricted to the (closed) set of
nonnegative measures and these results are well known so we may assume p > 1 in the rest of
the proof. It is clear that Gp is symmetric, nonnegative and that Gp(µ ,ν) = 0 implies µ = ν .
Moreover, for any third measure σ ∈M+(Ω), by Minkowski’s inequality (and with the abuse
of notation mentioned above)

Gp(µ ,ν) =

(∫

Ω

|µ1/p−σ1/p +σ1/p−ν1/p|p
)1/p

≤
(∫

Ω

|µ1/p−σ1/p|p
)1/p

+

(∫

Ω

|ν1/p−σ1/p|p
)1/p

= Gp(µ ,σ)+Gp(σ ,ν)

so the triangle inequality holds and Gp is a metric. Consider now the equality case. Denoting
t := Gp(µ ,σ)/Gp(µ ,ν) and assuming that t ∈ ]0,1[ is well defined, equality holds if and only if
(t−1)(µ1/p−σ1/p)+ t(σ1/p−ν1/p) = 0 (we identify µ ,ν to their density w.r.t. a dominating
reference measure). This implies that σ = ρt with the definition of (ρt) given in the theorem so
geodesics are uniquely characterized.

For the completeness property, let µn be a Cauchy sequence. In particular, its mass is bounded
and has a subsequence that converges to µ ∈M+(Ω). Since hp is l.s.c. and sublinear by Lemma
2.1.7, general theorems on integral functionals (Appendix A) state that Gp is weakly l.s.c. so it
follows that for all m ∈N, Gp(µm, µ) ≤ liminfn→∞ Gp(µn, µm). Taking the limit as m→ 0 and
using the Cauchy property, one has limm→∞ Gp(µm, µ) ≤ limsupm,n→∞ Gp(µm, µn) = 0 so (µn)
converges for the metric Gp.

To show that convergence in Gp is equivalent to strong convergence, it is sufficient to remark
that hp(an,a)→ 0 if and only if an → a. From this we deduce that Gp(µn, µ)→ 0 if and only if
µn(A)→ µ(A) for all Borel sets A⊂Ω.

The following proposition shows that Gp corresponds indeed to the dynamic problem that is
obtained in the Γ-limit of α ↓ 0.

Proposition 2.1.17 (Dynamic formulation of Gp). One has for all (µ ,ν) ∈M+(Ω) and p > 1,

Gp(µ ,ν)p =Cg/v(µ ,ν).

and for the unique minimizer (ρt ,0,ζt) of (2.1.2) it holds that ρt is the geodesic between (µ ,ν)
for Gp.
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2.1. Unbalanced Ŵp metrics

Proof. Consider µ ,ν ∈ M+(Ω) of positive mass (the other cases are treated in Proposition
2.1.8), (ρ ,ζ ) and remark that a minimizer for Cg/v exists by standard compactness and lower-
semicontinuity arguments (bounds on the mass can be obtained as in Proposition 1.1.21). Re-
membering Lemma 1.1.23, we known that for any ε > 0, it holds

∫ 1+ε/2
−ε/2

∫
Ωε ψLg

(ζ ε |ρε) ≤
Cg/v(µ ,ν) , where ρε ,ζ ε are the convolutions of ρ ,ζ with a mollifier supported on ]− ε/2,ε/2[×
Bd(0,ε).

Now remark that ∂tρ
ε = ζ ε so, identifying ρε to its density and making the change of variable

rε
t = (ρε

t )
1/p, we get (refer to Remark 2.1.6 for more details):

Cg/v(µ ,ν) ≥
∫ 1+ε/2

−ε/2

∫

Ωε
|∂ rε

t (x)|pdxdt≥ (1+ ε)p−1Gp(µ
ε ,νε)p

by convexity and time rescaling. Passing to the limit ε → 0 and using the lower-semicontinuity
of Gp, we get Cg/v(µ ,ν)≥Gp(µ ,ν)p. For the other bound, it is direct because the geodesic for
Gp given in Theorem 2.1.16, when plugged as a candidate in the functional of the minimization
problem (2.1.2) with ζ its weak* derivative, gives exactly Gp(µ ,ν)p. Uniqueness of geodesics
for Gp implies uniqueness for the minimizers of Cg/v(µ ,ν) too since minimizers of the latter
are constant speed geodesics (it is proved just as in Proposition 1.1.19).

Remark 2.1.18 (Continuity equation with zero transport and Banach derivative). If (ρt)t∈[0,1]

is a weakly continuous solution to the continuity equation with source with zero momentum

(ρt ,0,ζt)t∈[0,1] then the path (ρt) is absolutely continuous for the total variation metric and ζt

corresponds to its weak* differential [5, Rmk. 1.1.3].

Remark 2.1.19 (Special cases).

Total variation For p = 1, the distance G1 is the total variation distance, which is the distance

associated to the dual Banach space norm on M (Ω).

Hellinger/Fisher-Rao For p = 2, the distance G2 is the Hellinger (a.k.a. Kakutani) distance

on M+(Ω). In that case, the dynamic action of a path (ρt)t∈[0,1] is the integral in time of

∫

Ω

(
dρ̇t

dρt

)2

dρt =
∫

Ω

(∂t logρt)
2dρt ,

assuming that ρ̇t ≪ ρt and that ρt is a positively lower bounded density. The action

can thus be formally interpreted as a Riemannian length associated to the metric tensor

〈µ̇1, µ̇2〉µ =
∫ (

dµ̇1
dµ

)(
dµ̇2
dµ

)
dµ . This metric tensor is known as the Fisher-Rao metric

when restricted to tangent vectors µi of zero total mass. In the setting of parametric

probabilities, i.e. when the densities are constrained to lie in a finite dimensional subspace

of probability measures, this metric tensor, written in coordinates, is called the Fisher
information matrix.

Limit case Taking the limit p→ ∞ one has for all (µ ,ν) ∈M+(Ω)

G∞(µ ,ν) := lim
p→∞

Gp(µ ,ν)p = µ⊥ν (Ω)+ν⊥µ (Ω)
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where µ⊥ν and ν⊥µ are the singular parts appearing in the Lebesgue decomposition of µ

w.r.t. ν and of ν w.r.t. µ , respectively. This follows from the fact that |1−β 1/p|p → 0 if

β > 0 or 1 if β = 0. In general, G∞ is not a metric, but it boils down to the symmetric
difference pseudo-metric when restricted to measures which are indicators of Borel sets

(w.r.t. to a reference measure).

2.1.4. Generalized Wp optimal transport interpolation

In the opposite limit, we do not recover a metric, but a generalized notion of optimal transport
interpolation with a prescribed , constant in space, growth field.

Definition 2.1.20 (generalized Wp interpolation). Let µ ,ν ∈M+(Ω). We define the generalized

Wp interpolation (ρt)t∈[0,1] as follows.

• if µ(Ω) or ν(Ω) = 0 then (ρt) is the Gp-pure growth geodesic between µ ,ν;

• if µ(Ω) = ν(Ω) 6= 0 then (ρt) is a Wp-optimal transport geodesic between µ ,ν;

• otherwise, it is defined as ρt = βt ρ̂s(t) where (ρ̂t)t∈[0,1] is a Wp-geodesic between µ and
µ(Ω
ν(Ω

ν , the scalar function βt := [(1− t)+ t(ν(Ω)/µ(Ω))1/p]p is a time dependent mass

rescaling and s : [0,1] → [0,1] is the time reparametrization satisfying (s(0),s(1)) =

(0,1) and s′(t) = cst ·β 1/(p−1)
t .

This definition is reminiscent of the models studied in [105] where optimal transport interpo-
lations with prescribed rates of growth are considered for image interpolation. The next theorem
concludes the characterization of the limit geodesics, treating the case α ↑ ∞.

Theorem 2.1.21. The minimizers to (2.1.3) are exactly the set of triplets (ρt ,ωt ,gtρt) where ρt

is a generalized Wp interpolation and gt a growth field which is constant in space.

Proof. The case when both measures or one of the measures is zero is treated in Proposition
2.1.8. Also when µ(Ω) = ν(Ω), minimizers of fg are characterized by ζ = 0, so (2.1.3) boils
down to a standard Wp-optimal transport problem. For the remaining cases, we assume 0 <

µ(Ω),ν(Ω). Our first step is to characterize minimizers of fg, the second one is to characterize
the minimizers of fv in this subset.

Step 1. Let (ρ ,ω ,ζ ) ∈ CE1
0(µ ,ν). One has, similarly as in Proposition 2.1.8

fg(ρ ,ω ,ζ ) =
∫ 1

0

∫

Ω

ψLg
(ζ |ρ) ≥

∫ 1

0
ψLg

(ζ (Ω)|ρ(Ω)) ≥ |ν(Ω)1/p−µ(Ω)1/p|p

with equality if and only if ω = 0 and gt = dζt/dρt is constant ρt a.e. in Ω for the first one
and ρt(Ω) = ((1− t)µ(Ω)1/p + tν(Ω)1/p)p for the second one, by Lemma 2.1.7. So the
minimizers of Lg are characterized by ζt = gtρt where gt ∈ R is determined by the initial and
final total masses.
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2.1. Unbalanced Ŵp metrics

Step 2. Let βt := µ(Ω)/ρt(Ω) and let s : [0,1]→ [0,1] be such that (s(0), s(1)) = (0,1) and
κ · (s′(t))p−1· = βt for some constant κ > 0. We define, on argmin fg∩ dom fv (on this set the
measures admit a disintegration in time w.r.t. Lebesgue), the mass rescaling

R : (ρt ,ωt ,ζt)t∈[0,1] 7→ (βt ·ρt ,βt , ·ωt)t∈[0,1].

It is such that R(ρt ,ωt ,gtρt) solves the continuity equation without source between µ and µ(Ω
ν(Ω

ν .

We also define the time reparametrization t := s−1 and

T : (ρt ,ζt)t∈[0,1] 7→ (ρ ◦ t(s), t′(s)ω ◦ t(s))s∈[0,1]

which preserves solutions to the continuity equation (Proposition 1.1.7). One has, for (ρ ,ω ,ζ ) :=
(ρt ,ωt ,gtρt)t∈[0,1] ∈ argmin fg

fv(T ◦R(ρ ,ω ,ζ )) =
∫ 1

0

(∫

Ω

ψLv
(t′(s) ·βt(s)ωt(s)|βt(s)ρt(s))

)
ds

=
∫ 1

0
t′(s)p

(∫

Ω

ψLv
(βt(s)ωt(s)|βt(s)ρt(s))

)
ds

=
∫ 1

0

1
s′(t)p−1

(∫

Ω

ψLv
(βtωt |βtρt , )

)
dt

= κ

∫ 1

0

∫

Ω

ψLv
(ωt |ρt)dt = κ · fv(ρ ,ω ,ζ ).

If follows that T ◦R maps argmin fg to solutions of the continuity equation without source while
preserving (up to a factor) the value of fv. Thus (ρ ,ω ,ζ ) minimizes (2.1.3) if and only if
T ◦R(ρ ,ω ,ζ ) is a Wp-optimal transport minimizer. Equivalently, if (ρ ,ω) is a Wp geodesic,
then

R−1 ◦T−1(ρ ,ω) = (ρs(t)/βt , s
′(t)ωs(t)/βt)t∈[0,1]

is a minimizer for (2.1.3) and we recover the expression for the generalized optimal transport
interpolation from Definition 2.1.20.
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2.2. Quadratic case

2.2.1. Dynamic and coupling formulations

Within the previous class of metrics, let us consider now the quadratic case p = 2. As the effect
of the scale parameter has been studied in the previous section, we now fix α = 1. In this case
the Lagrangian is, as a function of the velocity and the growth,

L2(v,g) = |v|2 + 1
4

g2.

Since the Lagrangian is superlinear, one can equivalently write the definition of CL2 from Defi-
nition 1.1.13 in terms of velocity and growth fields, for µ ,ν ∈M+(Ω),

CL2(µ ,ν) = min

{∫ 1

0

∫

Ω

(
|vt(x)|2 +

1
4

gt(x)
2
)

dρtdt ; ∂tρt +∇ · (vtρt) = gtρt

}

where the minimum is over weakly continuous paths (ρt)t∈[0,1] such that (ρ0,ρ1) = (µ ,ν) and
such that the continuity equation with vt ∈ L2(ρt ;Rd), gt ∈ L2(ρt ;R) is satisfied in the weak
sense. Let us specialize Definition 2.1.1 to this case.

Definition 2.2.1. For µ ,ν ∈M +(Ω), we define Ŵ2(µ ,ν) :=CL2(µ ,ν)1/2. By Theorem 2.1.2,

the space (M+(Ω),Ŵ2) is a complete geodesic metric space where convergence is equivalent

to weak convergence.

This metric has been introduced several times in the literature during the time span of the
preparation of this thesis [103, 104, 94, 40] and independently by us [44, 43]. It was attributed
the name Hellinger-Kantorovich in [103, 104] and Wasserstein-Fisher-Rao in [44]. In both cases,
the two terms refer to the limit models (see Section 2.1.2), or the two “metric tensors” of pure
growth1 and pure transport2, that are inf-convoluted to generate Ŵ2. One of the great advantages
of this case is that the minimal path cost (Definition 1.3.1) has an explicit expression, which
leads to an explicit optimal coupling formulation.

Theorem 2.2.2 (Ŵ2 as a semi-coupling). One has the alternative semi-coupling formulation and

its dual

Ŵ 2
2 (µ ,ν) = min

γ1,γ2∈M+(Ω2)

{∫

Ω2
h

cL2
x,y (γ1,γ2) ; (π1

# γ1,π2
# γ2) = (µ ,ν)

}
,

= sup
φ ,ψ∈C (Ω)

φ ,ψ≤1

{∫

Ω

φ dµ +
∫

Ω

ψ dν ; (1−φ (x))(1−ψ(y)) ≥ cos2
+(dist(x,y))

}

where the sublinear cost function h
cL2
x,y is defined in Lemma 2.2.3 and the meaning of a sub-

linear function of measures is in the section Notation. Also, the notation cos+ stands for

d 7→ cos(min{d,π/2})) and the constraint in the dual problem is understood for all (x,y)∈Ω
2.

1The Hellinger distance is the distance induced by the Fisher-Rao metric tensor with the probability constraint
removed, see Remark 2.1.19.

2Wasserstein or Monge-Kantorovich are two alternative names for the quadratic optimal transport distance. The
latter is historically more accurate but less used.
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Proof. This is an application of Theorem 1.3.3 on the equivalence between dynamic and cou-
pling problems. The derivation of the minimal path cost and its convex regularization is per-
formed in Lemma 2.2.3, while the dual to the sublinear cost is obtained by direct computations
and the dual formulation follows from 1.2.4.

Lemma 2.2.3 (Quadratic path based cost). The minimal path cost for the Lagrangian L2 is

cL2((x1,u1), (x2,u2)) = u1 + u2−2
√

u1
√

u2 cos(min{dist(x1,x2),π}).
and its convex regularization is, for each (x1,x2) ∈Ω

2,

h
cL2
x1,x2(u1,u2) = u1 + u2−2

√
u1
√

u2 cos+(dist(x1,x2)).

where cos+(d) = cos(min{d,π/2}).
Proof. Consider (xi,ui) ∈Ω×R+, for i ∈ {0,1} and an absolutely continuous path (x(t),u(t))
joining those points. The associated cost is

∫ 1

0

(
|ẋ(t)|2 + 1

4

∣∣∣∣
u̇(t)

u(t)

∣∣∣∣
)

u(t)dt =
∫ 1

0

(
r(t)2|ẋ(t)|2 + |ṙ(t)|2

)
dt

after the change of variables r(t) =
√

u(t), which preserves absolute continuity. First, remark
that the path is minimizing only if x(t) is a parametrization of a geodesic between x0 and x1

(otherwise, the cost could be improved by “reproducing” the same mass variations r(t) on a
geodesic, with a lesser cost) so we may as well write x(t) = eθ (t)(x0,x1) where t 7→ et(x,y)
is the unit speed parametrization of a geodesic in Ω and θ (t) ∈ R our new unknown, that
satisfies |ẋ(t)| = |θ̇ (t)|. Also, it is judicious to interpret (r,θ ) as polar coordinates since the
integrand is equal to the norm of the velocity vector in this case. As long as θ (t) ∈ [0,2π [,
we may define z(t) := r(t)exp(iθ (t)) and there is a unique minimizing path in this basis
which is a straight line z(t) = (1− t)z(0) + tz(1) with the associated cost |z(1)− z(0)|2 and
(z(0),z(1)) = (

√
u0 exp iθ0,

√
u1 exp iθ1). This trajectory is not valid when θ1− θ0 > π since

then, argz(t) /∈ [θ0,θ1]. Otherwise, noticing that (θ1−θ0) = dist(x0,x1) (the distance dist is the
geodesic distance in Ω), this gives the cost

|
√

u1 exp(idist(x0,x1))−
√

u0|2 = u1 + u0−2
√

u0
√

u1 cos(dist(x0,x1)).

But remember that in the definition of the minimum-path cost, “teleporting” through the apex is
admissible. The shortest path doing so is defined by

(x(t),u(t)) =

{
(x0, (1−2t)2u0) if t ∈ [0,1/2]

(x1, (2t−1)2u1) if t ∈ [1/2,1]

with a corresponding cost (
√

u0+
√

u1)
2 which is the limit of the previous formula as dist(x0,x1)→

π . For the convex regularization of cL, when the argument of the cosine is smaller or equal
than π/2, the function cL2(x1, ·,x2, ·) is already sublinear (it is obviously 1-homogeneous, and
(u1,u2) 7→

√
u1u2 is jointly concave). Otherwise, one may use the characterization of Propo-

sition 1.3.1 and decompose the masses as u1 + 0 and 0+ u2 which gives the cost u1 + u2 and
that can be shown to be the unique optimal decomposition for dist(x1,x2) > π/2. The case
dist(x1,x2) = π/2 gives the cost u1+u2 but can be obtained by any decomposition of the masses
in an arbitrary number of chunks.
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Chapter 2. Unbalanced Optimal Transport Metrics

2.2.2. Optimal entropy-transport formulations

Following the alternative formulations introduced by [103] (see Section 1.2.3) one has also an
optimal lift, and an optimal entropy-transport formulations for Ŵ2. The optimal lift formulation
holds for any cost on Ω×R+ which sublinear regularization is hcL2 and, in particular, for cL2

(see Theorem 1.2.13). For the optimal entropy-transport formulation, it can be obtained by a
change of variables to linearize the constraints in Theorem 2.2.2.

Theorem 2.2.4 (Ŵ2 as an entropy-transport problem [103]).

Ŵ 2
2 (µ ,ν) = min

γ∈M+(Ω2)

{∫

Ω2
cℓdγ +H(π1

# γ|µ)+H(π2
# γ|ν)

}
,

= sup
α ,β∈C (Ω)

{∫

Ω

(1− eα)dµ +
∫

Ω

(1− eβ )dν ; α(x)+β (y) ≤ cℓ(x,y)

}

where cℓ(x,y) = − logcos2
+(dist(x,y)) and H(σ |µ) = ∫

ψ f (σ |µ) is the relative entropy, the

f -divergence associated to the entropy f (s) = s logs− s+ 1 (see Definition 3.5.1).

Proof. This theorem, as well as optimality conditions, is stated and proved in a very general
setting in [103] so we will only give a sketch of a simple proof. In the dual of the semi-coupling
formulation of Theorem 2.2.2, make the change of variables (α ,β ) = (− log(1−φ ),− log(1−
ψ)). This gives the supremum problem of the present theorem. Then one may apply Fenchel-
Rockafellar duality (Theorem A.0.7) to obtain the optimal entropy transport formulation, with
the qualification constraint easily checked since cℓ is nonnegative and the dual objective is con-
tinuous. One may also notice as in [103] that the marginal perspective cost (Definition 1.2.20)
with respect to cℓ and the relative entropy is hcL2 . In other words, for (x,y) ∈ Ω

2 and a,b ≥ 0,
one has by direct computations

h
cL2
x,y (a,b) = min

θ≥0
θ · cℓ(x,y)+ψ f (θ |a)+ψ f (θ |b).

We then apply Theorem 1.2.21 (taken from [103]).

In the entropy-transport formulation, the differentiable structure of Rd plays no role so it
can as well be defined on more general metric spaces. It is shown in [103] that if X is a
geodesic space, then Ŵ2 is also geodesic. It is also shown that one may replace the cost cℓ
by the quadratic cost and the optimal entropy transport problem still defines a distance, that they
call the Gaussian-Hellinger-Kantorovich distance and the corresponding geodesic distance is
Ŵ2. In the same line, we can propose the following generalization which allows weights on the
relative entropy terms.

Proposition 2.2.5 (A variant with weights). If (X ,d) is a compact metric space, the following

variant of Ŵ2 defined by

Ŵ 2
2,λ (µ ,ν) := min

γ∈M+(X2)

{∫

X2
cℓdγ +λH(π1

# γ|µ)+λH(π2
# γ|ν)

}

defines a distance if 0 < λ ≤ 1 and generally not if λ > 1.
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2.2. Quadratic case

Proof. The case λ = 0 is trivial (the “distance” is equally null). If λ > 0, when dividing the
objective functional by λ , one obtains the new cost −2log(cos1/λ

+ (dist(x,y))). But the function

f : d 7→ arccos(cos
1
λ (d)) defined on [0,π/2] is increasing, positive, satisfies {0}= f−1(0) and

for x ∈]0,π/2[ it holds

f ′′ =
1
λ

cos
1
λ −2

(1− cos
2
λ )2

(
1− 1

λ
sin2−cos

2
λ

)
.

From the convexity inequality sign[(1−X)
1
λ −1+ 1

λ X ] = sign( 1
λ −1) it follows that f is strictly

concave on [0,π/2] if λ < 1 and strictly convex if λ > 1. Thus if λ ≤ 1, f ◦ d still defines a
distance on X and consequently Ŵ 2

2,λ (µ ,ν) too. The strict convexity if λ > 1 implies that the
distance property is generally not true in that case (it is always false if X is a geodesic space of
diameter greater than π/2 as we proved in [45]).

Other useful properties of the optimal entropy-transport problems in general and of the metric
Ŵ2 in particular, are proved in Chapter 6 following our specific needs.

49



Chapter 2. Unbalanced Optimal Transport Metrics

2.3. Bounded Lipschitz and optimal partial transport

The last section of this chapter focuses on the case p = 1 and, more generally, when the La-
grangian is 1-homogeneous w.r.t. the growth variable. We recover in particular the “general-
ized Wasserstein distances” introduced in [129, 130] and the optimal partial transport prob-
lem [32, 69], which we prove to be equivalent.

2.3.1. Recovering the Bounded Lipschitz metric

In the case p = 1, one has the Lagrangian

L1(v,g) = |v|+ |g|.

Since this Lagrangian is already sublinear, its perspective function does not depend on the per-
spective parameter. It follows that the definition of CL1 can be adapted from Definition 1.1.13
as

CL1(µ ,ν) = min
{
(|ω|+ |ζ |)([0,1]×Ω) ; (ρ ,ω ,ζ ) ∈ CE1

0(µ ,ν)
}

where CE1
0(µ ,ν) is the set of distributional solutions to the continuity equation with source

(Definition 1.1.1).

Definition 2.3.1. For µ ,ν ∈M+(Ω), we define Ŵ1(µ ,ν) := CL1(µ ,ν). By Theorem 2.1.2, the

space (M+(Ω),Ŵ1) is a complete geodesic metric space, and Ŵ1 metrizes weak convergence.

One also may recall Proposition 1.1.20 from Chapter 1 and give an alternative static formula-
tion for Ŵ1.

Proposition 2.3.2 (Static formulation of Ŵ1). One has alternatively, for (µ ,ν) ∈M +(Ω),

Ŵ1(µ ,ν) = min
ω∈M+(Ω;Rd)
ζ∈M+(Ω;R)

{(|ω|+ |ζ |)(Ω) ; ν−µ = ζ −∇ ·ω}

= sup
ϕ∈C 1(Ω)

{∫
ϕ d(ν−µ) ; ‖∇ϕ‖∞ ≤ 1, ‖ϕ‖∞ ≤ 1

}
.

where the equation ν − µ = ζ −∇ ·ω is understood in the distributional sense, with no-flux

boundary conditions on ∂ Ω for ω . In particular, Ŵ1 is the well-known Bounded-Lipschitz dis-

tance on M+(Ω).

Proof. It is just an application of Proposition 1.1.20 with the explicit formulae for the conjugate
of L, L∗(v∗,g∗) = 0 if |v∗| ≤ 1 and |g∗| ≤ 1 and ∞ otherwise.

The static problem we recover is the Bounded Lipschitz metric, a classical object that is
known, for instance, to extend as a norm on the whole space of signed measures [83, 80].
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2.3. Bounded Lipschitz and optimal partial transport

2.3.2. Optimal partial transport

In this section, we consider Lagrangians which are 1-homogeneous w.r.t. to the growth variable
and p-homogeneous w.r.t. the velocity, for some p > 1 and α > 0:

L(v,g) = |v/α|p + 1
2
|g|. (2.3.1)

This is a different Lagrangian than that of Section 2.1, but the parameters p,α have similar
interpretations. The factor 1

2 is introduced to equalize the cut locus distance to α whatever the
value of p. Let us compute the minimal path cost as defined in Definition (1.3.1).

Proposition 2.3.3 (Minimal path cost). Let (x0,u0) and (x1,u1) be points in Ω×R+. The

minimal path cost associated to the Lagrangian (2.3.1) is

cL((x0,u0), (x1,u1)) = |u1−u0|/2+min{u0,u1} ·min{dist(x0,x1)/α ,1}p. (2.3.2)

This cost is already l.s.c. and sublinear in (u0,u1) for all (x0,x1) ∈ Ω
2, meaning that hcL

x0,x1
=

cL((x0, ·), (x1, ·)).

Proof. For any absolutely continuous path (x(t),u(t))t∈[0,1], its action is

∫ 1

0
|x′(t)/α|pu(t)dt +

1
2

∫ 1

0
|u′(t)|dt ≥ ū

∫ 1

0
|x′(t)/α|pdt +

1
2
(|u0− ū|+ |u1− ū|)

where ū denotes the minimum mass ū := mint∈[0,1] u(t). Denoting d := dist(x0,x1) so that
∫ 1

0 |x′(t)|dt ≥ dp, we may minimize the right hand side and obtain, using first order condi-
tions, that at optimality ū = min{u0,u1} if d < α and ū = 0 if d > α (any ū in the interval is a
minimizer for d = α). The corresponding lower bound for the path cost is the right hand side
of (2.3.2). It remains to show that this cost can be approached arbitrarily close by absolutely
continuous paths as in Definition (1.3.1). If d ≥ α , any path joining the apex without transport
works and exactly reaches c. For instance, let (x(t),u(t)) = (x0, (1− 2t)u0) for t ∈ [0,1/2]
and (x(t),u(t)) = (x1, (1− 2t)u1) for t ∈ [1/2,1]. If d < α , let t 7→ et(x,y) be the constant
speed parametrization of a geodesic joining (x0,x1) and assume that u0 ≤ u1. Then define
(x(t),u(t)) = (et/(1−ε)(x0,x1),u0) for t ∈ [0,1− ε ] and (x(t),u(t)) = (x1,u0 +(u1−u0) · (t +
ε−1)/ε). The cost associated to this absolutely continuous path is u0 · (d/α)p/(1− ε)1−p +
(u1−u0)/2 which can be made arbitrarily close to c.

From this explicit minimal path cost, we obtain a coupling formulation for CL. We will then
prove that it corresponds to the problem of optimal partial transport.

Theorem 2.3.4 (Recovering optimal partial transport). For (µ ,ν) ∈M+(Ω), and considering

the Lagrangian L from (2.3.1), one has

CL(µ ,ν) =
1
2
(µ(Ω)+ν(Ω))+min

{∫

Ω2
(cp,α(x,y)−1)dγ(x,y) ; γ ∈Π≤(µ ,ν)

}

where cp,α(x,y) = (dist(x,y)/α)p and Π≤(µ ,ν) = {γ ∈M+(Ω2) ; (π1
# γ ,π2

# γ) ≤ (µ ,ν)}.
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Chapter 2. Unbalanced Optimal Transport Metrics

Proof. Just for this proof, let us denote by C̃ the right hand side term. By Theorem 1.3.3, CL

admits a semi-coupling formulation involving the sublinear cost from Proposition 2.3.2. Let
us consider optimal semi-couplings ( f1γ , f2γ) where γ ∈P(Ω2) and f1, f2 ∈ L1(γ). Let γ̄ :=
min{ f1, f2}γ̄|D where D := {(x,y) ∈Ω

2 ; dist(x,y) ≤ α}. It holds γ̄ ∈Π≤(µ ,ν) and

CL(µ ,ν) =
∫

Ω2
hx1,x2( f1(x1,x2), f2(x1,x2))dγ(x1,x2)

=
∫

Ω

cp,α(x,y)dγ̄(x,y)+ |γ1− γ̄|(Ω2)/2+ |γ2− γ̄|(Ω2)/2

=
1
2

µ(Ω)+
1
2

ν(Ω)+
∫

Ω2
(cp,α(x,y)−1)dγ̄(x,y) ≥ C̃(µ ,ν).

For the opposite inequality, remark that the infimum defining C̃ is unchanged by adding the con-
straint that the sub-coupling γ ∈Π≤(µ ,ν) is concentrated on the set {(x,y) ∈Ω

2 ; (cp,α(x,y)−
1) ≤ 0}. For such a plan, let ρ1 = µ − π1

# γ and ρ2 = ν − π2
# γ and define the pair of semi-

couplings

γi = γ + diag#(ρ0∧ρ1)+ diag#(ρi−ρ0∧ρ1), i ∈ {0,1}

where diag : x 7→ (x,x) lifts Ω to the diagonal in Ω
2. One has

∫

Ω2
hx1,x2(γ1,γ2) = µ(Ω)+ν(Ω)+

∫

Ω2
(cα ,p(x,y)−1)dγ

and it follows CL(µ ,ν) ≤ C̃(µ ,ν).

The problem introduced in Theorem 2.3.4 has, after removing the constant terms and multi-
plying by α p, the same minimizers as

min

{∫

Ω2
(|y− x|p−α p)dγ(x,y) ; γ ∈Π≤(µ ,ν)

}
. (2.3.3)

The latter is a formulation of the optimal partial transport problem, a variant of optimal transport
studied in [32, 69]. It is proved in [32] that for any choice of α > 0 corresponds the choice of
m(α) such that 0 ≤ m(α) ≤ min{µ(Ω),ν(Ω)} for which the minimizers of (2.3.3) and the
minimizers of

min

{∫

Ω2
|y− x|pdγ(x,y) ; γ ∈Π≤(µ ,ν), γ(Ω2) = m(α)

}

are the same. The variable α is the Lagrange multiplier for the constraint of total mass and
corresponds to the maximum distance over which transport can occur (of course, this does not
mean that optimal plans for (2.3.3) are obtained by simply restricting optimal transport plans to
the set of points distant by α at most). The function m(α) cannot be inverted in general (think
of atomic measures) but it is proved in [32, Corollary 2.11] that it can be inverted if µ or ν is
absolutely continuous.

Let us finally show that CL, and thus optimal partial transport (in the parametrization “max-
imum distance” α), admits an optimal entropy transport formulation. A similar equivalence
result was proved in [130], with slightly different definitions and for the case p = 2.
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2.3. Bounded Lipschitz and optimal partial transport

Proposition 2.3.5 (Optimal entropy-transport formulation). For µ ,ν ∈M+(Ω), one has

CL(µ ,ν) = min
γ∈M+(Ω2)

{∫

Ω2
cα ,p(x,y)dγ(x,y)+ |µ−π1

# γ|(Ω)/2+ |ν−π2
# γ|(Ω)/2

}
.

This formulation is indeed an optimal entropy-transport problem since the total variation is
the f -divergence corresponding to the entropy function f (s) = |s−1| if s≥ 0 and +∞ otherwise,
i.e. |µ−ν |= ∫

ψ f (ν |µ) =
∫

ψ f (µ|ν) for µ ,ν ∈M+(Ω).

Proof. In this proof, we denote by C̃(µ ,ν) the infimum on the right-hand side which is a
minimum by Theorem 1.2.19. If we show that any minimizer also satisfies the constraint
γ ∈ Π≤(µ ,ν) then the problem exactly rewrites as the formula of Theorem 2.3.4 and the con-
clusion follows. To show that the marginals of minimizers are indeed smaller than µ and ν , take
any γ ∈M +(Ω) and build γ̄ such that γ̄ ≤ γ and π1

# γ̄ = µ ∧π1
# γ . By construction, one has

(|µ−π1
# γ|− |µ−π1

# γ̄|)(Ω) = |π1
# γ−π1

# γ̄|(Ω) = |γ− γ̄|(Ω) ,

and

(|ν−π2
# γ|− |ν−π2

# γ̄|)(Ω) ≥−|π2
# γ−π2

# γ̄|(Ω) = −|γ− γ̄|(Ω).

By denoting F the functional minimized to define C̃(µ ,ν), it holds

F(γ)−F(γ̄) ≥
∫

Ω2
cp,αd(γ− γ̄) ≥ 0.

A similar truncation procedure for the other marginal leads to the result.
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Numerical Methods
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Chapter 3.

Scaling Algorithms for Optimal Couplings

In this chapter we introduce a class of algorithms for the numerical resolu-
tion of optimal coupling problems and study convergence with various ap-
proaches.
In Section 3.1, we make the simple yet powerful remark that many varia-
tional problems involving optimal transport including barycenters, gradient
flows and their unbalanced counterparts can all be cast as a generic prob-

lem. We prove well-posedness and existence of minimizers for this generic
formulation.
In Section 3.2, we propose to generalize the approach popularized by Cu-
turi for computing optimal transport distances by retaining two features (i) a
strictly convex regularization and (ii) alternate maximization on the dual. We
show a global convergence rate of the primal iterates in the discrete setting
for a general Bregman regularization.
In Section 3.3, we derive the explicit form of the iterates for the specific case
of entropic regularization which leads to a new class of simple scaling al-
gorithms. We suggest a stabilization method to reach small regularization
parameters without sacrificing speed and make informal comments on im-
plementation as well as possible generalizations.
In Section 3.4, we suggest to use a method to accelerate convergence known
as the successive over-relaxation method. This idea seems to be new in the
context of optimal transport and we show that it can greatly improve con-
vergence speed in practice. We complement this section with a detailed lo-
cal convergence analysis which gives the optimal acceleration parameter and
factor (these results are well known in the context of resolution of linear sys-
tems).
Finally, in Section 3.5, we consider scaling algorithms in the continuous set-
ting. We show that the iterates for separable marginal functions are nonex-
pansive for the Thompson metric, a metric issued from non-linear Perron-
Frobenius theory. In some particular cases of practical importance (compu-
tation of barycenters, gradient flows, optimal plans for Ŵ2), we prove that the
global convergence rate is linear for this metric.
The material of this chapter is partly based on the published article [45] and
a number of new results have been added.
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3.1. Generic formulation for scaling algorithms

In this section, we show that many instances of optimal transport like problems, including
Wasserstein barycenters, gradient flows, and their unbalanced counterparts, can be phrased in
a common formulation which can serve as a basis for a numerical scheme. This simple remark
allows to unify the treatment of several algorithms that can be found in the literature, and to deal
painlessly with their generalization to the unbalanced setting. This section gives also the oppor-
tunity to define a few variational problems where unbalanced optimal transport can be plugged
in place of classical optimal transport and to state existence theorems.

The generic formulation we refer to is the following variational problem

min

{∫

X×Y
c(x,y) ·dγ(x,y)+F1(π

x
#γ)+F2(π

y
#γ) ; γ ∈M+(X×Y )n

}
(3.1.1)

where n ≥ 1 is the number of couplings involved—which can be more than one for solving
barycenter or multispecies gradient flows—and

(i) X and Y are the spaces where the marginals are defined, which have to be finite discrete
spaces for the numerical method we propose, but merely assumed compact metric in this
section;

(ii) c : X×Y → R̄n is a l.s.c. cost function and “·” the usual scalar product on Rn;

(iii) F1 : M+(X)n → R∪{∞} and F2 : M+(Y )n → R∪{∞} are convex funtionnals acting on
the marginals, which, for the effective numerical resolution, need to be simple, in a sense
made precise later on.

Although it is slightly improper, we still use the word “coupling” to refer to γ because at optimal-
ity, γ is an optimal transport coupling between its marginals, although they are not necessarily
fixed ahead.

3.1.1. Classical optimal transport

The classical optimal optimal transport problem can be formulated in the form (3.1.1). For
(µ ,ν) ∈P(X)×P(Y ), it is recovered by posing

F1(σ) =

{
0 if σ = µ

∞ otherwise
, F2(σ) =

{
0 if σ = ν

∞ otherwise
.

We may also use the notation F1 = ι{µ} and F2 = ι{ν} where “ι” is the usual (convex) indicator
function of a convex set. Since a singleton is weakly closed and convex, these functions are
proper, convex, and weakly l.s.c.
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3.1. Generic formulation for scaling algorithms

3.1.2. Unbalanced optimal transport

The suitable formulation of unbalanced optimal transport that can fit in the framework of (3.1.1)
is the optimal entropy-transport problem of [103], defined in Section 1.2.3. Fixing two marginals
(µ ,ν) ∈ M+(X)×M+(Y ) and f1, f2 entropy functions as in Definition 1.2.15 (ψ f denotes
their perspective function, see Appendix A), optimal entropy-transport problems are recovered
by posing

F1(σ) =
∫

X
ψ f1(σ |µ), F2(σ) =

∫

Y
ψ f2(σ |ν).

We recall that by the results of Chapter 1, problems of this form are equivalent to semi-coupling
problems but the latter are less suitable for the numerical approach of this chapter. Let us briefly
recall for the convenience of the reader that when f1 = f2 = ι{1}, this problem boils down
to classical optimal transport. Otherwise, optimal entropy-transport problems can be viewed
as a relaxation of classical optimal transport where the marginal constraints are slackened and
replaced by terms in the objective functional penalizing the deviation of the marginals of γ from
µ and ν .

Important cases for this class of problems are:

• for f (s) = s logs− s+ 1, and c(x,y) = − logcos2(min{dist(x,y),π/2) on X = Y , this
problem defines (the square of) the metric Ŵ2 considered in Chapter 2. Variants with a
quadratic cost cost c(x,y) = dist(x,y)2 or with weighted relative entropies are also possi-
ble, see Section 2.2.2;

• for f (s) = α|s−1|/2, the f -divergence corresponds to the total variation distance and one
recovers the optimal partial transport problem. The parameter α stands for the maximum
cost of transport, it is the Lagrange multiplier of the parameter “total transported mass”,
see Section 2.3.2;

• another choice is f (s) = ι[α ,β ](s) where 0 < α ≤ 1 ≤ β < ∞. This corresponds to an
optimal transport problem where, instead of imposing marginal constraints, one imposes
a density range constraint.

3.1.3. Optimal transport barycenters

It is well known that the Euclidean barycenter vb of a family (ui)n
i=1 of points in a Euclidean

space E with positive weights (wi)n
i=1 admit the variational characterization

vb ∈ argmin
v∈E

n

∑
i=1

wi|v−ui|2.

This characterization only involves metric quantities, and thus can be generalized to define
barycenters on metric spaces (the name Fréchet mean or Karcher mean is sometimes used in
this context): one then replace each term |v− ui|2 by d(v,ui)2 where d is the metric. On the
space of probability measures, the problem of Wasserstein barycenters, first studied by [1] and
has found applications in image processing [133] or machine learning [154].
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The Wasserstein distance (squared) is an instance of an optimal transport cost Cc(µ ,ν) com-
puted between two probability measures µ ∈P(X) and ν ∈P(Y ) with the ground cost c(x,y) =
dist(x,y)2. A general problem of interest is thus to define the optimal transport barycenter of a fi-
nite family (µi)i ∈P(X)n of probability measures with positive weights (wi)n

i=1 as a minimizer
to the problem

inf

{
n

∑
i=1

wiCci
(µi,ν) ; ν ∈P(Y )

}

if such a minimizer exists, where Cci
is the optimal transport cost associated to a ground cost

ci : X ×Y → R∪{∞}. Since each Cci
is itself defined by the variational problem (1) (in the

introduction), the previous problem rewrites

inf

{
n

∑
i=1

wi

∫

X×Y
c(x,y)dγi(x,y) ; ∀i ∈ {1, . . . ,n}, γi ∈Π(µi,ν) for some ν ∈P(Y )

}

where Π(µ ,ν) denotes the set of (exact) couplings between two probability measures µ and ν .
This problem falls into the framework of the generic formulation by posing the vector valued
cost c(x,y) := (wi ci(x,y))n

i=1 and the functions

F1(σ) =

{
0 if σi = µi for all i

∞ otherwise
, F2(σ) =

{
0 if σi = σ j for all (i, j)

∞ otherwise.

3.1.4. Unbalanced barycenters

This definition of barycenters can be extended to the unbalanced case. Similarly as above, one
fixes finite families of measures (µi)n

i=1 ∈M+(X)n and positive weights (wi)n
i=1 and searches

for a measure ν ∈M+(Y ) that minimizes

inf
{
∑wiCci, fi

(ν , µi) ; ν ∈M+(Y )
}

(3.1.2)

where now Cci, fi
is an optimal entropy-transport cost associated to the ground cost ci and the en-

tropy function fi (Definition 1.2.18). Again, such a cost admits equivalent formulations in some
cases as studied in Chapter 1, but the optimal entropy-transport form is the most suitable for
the numerical approach of this section. Plugging the definition of Cci, fi

in the previous formula
one finds that this problem can be reduced to the form (3.1.1) by posing the vector valued cost
c(x,y) := (wi ci(x,y))n

i=1 and the functions

F1(σ) =
n

∑
i=1

wi ψ fi
(σi|µi), F2(σ) = inf

{
n

∑
i=1

wi ψ fi
(σi|ν) ; ν ∈M+(Y )

}
.

One may object that the unknown of interest is not so much the family of couplings (γi) but the
minimizer ν . Fortunately, the algorithm studied later returns ν as a byproduct (see Section 5.2,
the reason is that it is required to compute the proximal operator).

It should be noted that, since W2 and Ŵ2 are geodesic metrics, computing the barycenters
between two measures with various weights is a way to compute geodesics.
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3.1. Generic formulation for scaling algorithms

3.1.5. Implicit scheme for gradient flows

It is well known that a handful of evolutional partial differential equations (PDEs) are charac-
terized as gradient flows of certain functionals in the Wasserstein space (see Chapter 6 for more
details). The implicit Euler scheme, known as JKO in this context—a particular case of De
Giorgi minimizing movements—is of theoretical interest since it allows to prove the existence
of solutions to certain PDEs. It is also of numerical interest because it provides with a variational
characterization of a time-discretized flow. Choosing a time step τ > 0 and an initial condition
µ , the implicit scheme for the Wasserstein gradient flow of a functional G : P(X)→ R∪{∞}
consists in defining a sequence (µτ

k )k∈N via

µτ
0 := µ , µτ

k+1 ∈ argmin

{
G(ν)+

1
2τ

W 2
2 (µ

τ
k ,ν) ; ν ∈P(X)

}
,

where W 2
2 is the Wasserstein squared distance. Replacing it by an optimal transport cost Cc

associated to a ground cost c : X2 →R∪{∞}, each time step involves to solve

inf

{∫

X2
c(x,y)dγ(x,y)+ 2τ G(π2

# γ) ; γ ∈P(X2), π1
# γ = µτ

k

}
.

Other numerical advantages are due to the fact that implicit schemes tend to be more stable for
large time steps and are applicable for non-smooth functionals. This problem can be cast in the
framework of (3.1.1) by posing

F1(σ) =

{
0 if σ = µτ

k

∞ otherwise
, F2(σ) = 2τ G(σ).

An interesting remark is that the variational problem defining an implicit step of a gradient flow
can also be interpreted as a regularized inverse problem where G is a regularization term and
optimal transport is used as a fidelity term [72, 92]. The time variable translates then into an
“amount of regularization” parameter.

3.1.6. Unbalanced gradient flows

The introduction of unbalanced optimal transport metrics (Chapter 2) paves the way for further
applications of gradient flows in the space of nonnegative measures. Choosing an unbalanced
optimal transport cost Cc, f in the form of an optimal entropy-transport problem with cost func-
tion c and entropy function f , the computation of one step involves the resolution of

inf

{∫

X2
cdγ +

∫

X
ψ f (π

1
# γ|µτ

k )+
∫

X
ψ f (π

2
# γ|ν)+ 2τ G(ν) ; γ ∈P(X2), ν ∈M+(X)

}

which falls in the framework of (3.1.1) by posing

F1(σ) =
∫

X
ψ f (σ |µτ

k ), F2(σ) = inf

{
2τ G(ν)+

∫

X
ψ f (σ |ν) ; ν ∈M+(X)

}
.
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3.1.7. General case of simple functionals

Before turning in the next section to the method for solving (3.1.1) numerically, let us briefly
clarify what is meant by simple functionals in the definition of (3.1.1). Without going into to
much details at this point, the method we introduce is iterative and has a complexity per iteration
which is of the order of that of finding, given σ̄ ∈M+(X), an element in

argmin{H(σ |σ̄)+Fi(σ) ; σ ∈M+(X)} (3.1.3)

where H is the relative entropy functional (defined further in Definition 3.5.1). A simple func-
tional Fi is a functional such that this minimum can be computed quickly. This is the case when
X is discrete and Fi is separable, since then (3.1.3) rewrites as a family of 1 dimensional prob-
lems that can be solved in parallel. Separability is however not strictly necessary and we study
and solve in Section 5.3 a problem where Fi is not separable.

In the examples reviewed above, the functions Fi are sometimes defined through auxiliary
variational problems. This fact is not an issue in itself for the algorithms as long as (3.1.3) can
be solved efficiently. For instance, functions of the form

F(σ) = min

{
n

∑
i=1

∫

X
ψ fi

(σi|νi)+G(ν) ; ν ∈M+(X)I

}
(3.1.4)

where G is convex and ( fi)n
i=1 is a finite family of entropy functions can model a great variety of

problems and in particular all the problem introduced in this section. A graphical interpretation
of these problems is suggested in Figure 3.1 along with some examples.

The following proposition shows that such a function has all the required properties. It applies
to all cases reviewed above in this section.

Proposition 3.1.1 (Convexity). If X is a compact metric space, G is proper, weakly l.s.c. convex

and lower bounded and ( fi)n
i=1 is a family of entropy functions such that fi(0)> 0 for all i, then

(3.1.4) defines a proper, l.s.c. convex function and the minimum defining F is attained.

Proof. In order to simplify notations assume that n = 1 (the proof for n > 1 is the same) and let
us denote by Jσ (ν) =

∫
X ψ f (σ |ν)+G(ν) the functional minimized in (3.1.4) which is jointly

convex and l.s.c. Since G is proper and f (1) = 0, F is proper.
Let us now fix σ ∈ domF and show that the minimum is attained: since Jσ is weakly l.s.c.

and X compact, one just need to show that any minimizing sequence (νn) is bounded, which is
guaranteed by Lemma 3.1.3.

For the convexity property, let σa,σb ∈M+(X) and θ ∈ ]0,1[. Denoting νa,νb corresponding
minimizers in (3.1.4) one has by using the joint convexity of J:

F(θσa +(1−θ )σb) ≤ Jθσa+(1−θ )σb
(θνa +(1−θ )νb)

≤ θJσa
(νa)+ (1−θ )Jσb

(νb) = θF(σa)+ (1−θ )F(σb).

Finally for the weak lower semicontinuity, let (σn)n∈N be a sequence weakly converging to
σ ∈M+(X) and let νn be a corresponding sequence of minimizers of (3.1.4). If limJσn

(νn) = ∞

there is nothing to prove, otherwise, up to a subsequence, (Jσn
(νn))n∈N is bounded and this
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implies by Lemma 3.1.3 that (νn) is bounded and thus converges to some ν̄ ∈M+(X), up to a
subsequence. We conclude by using the joint lower semicontinuity of J in (σ ,ν):

F(σ) ≤ Jσ (ν̄) ≤ liminf Jσn
(νn) = liminf F(σn).

The next theorem contains as special cases the well known existence of optimal transport
plans, the existence of minimizers for the optimal entropy-transport problems, the existence
of optimal transport barycenters (possibly unbalanced) and the fact that gradient flow dicrete
steps (possibly unbalanced) are well defined. However, it is only stated in the simple setting of
compact spaces. Just for this result, we denote FX and FY the marginals functional in order to
avoid ambiguities.

Theorem 3.1.2 (Existence of minimizer). Assume that X and Y are compact metric spaces, that

FX ,FY are of the form (3.1.4) satisfying the assumptions of Proposition 3.1.1. Assume moreover

that FX is such that GX has compact sublevel sets and f X
i (x)→ ∞ as x→ ∞ (or the same for

FY ). Then a minimizer for (3.1.1) exists and so do the corresponding minimizers involved in the

definition of FX and FY in (3.1.4).

Proof. Once again, let us use the direct method of the calculus of variations. By Proposition
3.1.1 and since ci is assumed l.s.c., the minimized functional is weakly l.s.c. Assume that (3.1.1)
is feasible (otherwise the claim is void). This implies by our assumption that any minimizing
sequence γn is bounded because the sequences (π i

#γn) are bounded, by Lemma 3.1.3.

Lemma 3.1.3. Assume that f is an entropy function and µn,νn ∈M+(X) are two sequences of

nonnegative measures on a topological space X such that
∫

ψ f (µn|νn) is bounded. Then

(i) if (µn) is bounded and f (0) > 0 then (νn) is bounded;

(ii) if (νn) is bounded and f (∞) > 0 then (µn) is bounded.

Proof. (i) Since f (0)> 0, f (1) = 0 and f is l.s.c., there exists r > 0 such that f (x)≥ η > 0 for
all x≤ r. This implies that νn({dµn/dνn ≤ r}), and thus νn, are bounded.

(ii) This is equivalent to (i) by exchanging the role of µn and νn and taking the reverse entropy
of f , see Remark 1.2.17.

Beyond the set of problems reviewed in this section, an interesting illustration for (3.1.4) is
the problem of Wasserstein propagation introduced in [153]. Given a graph with edges E and
vertices V , assign a probability measure µv ∈P(X) to all leaves v ∈ V0 and find a minimizer to

min

{

∑
(u,v)∈E

Cc(µu, µv) ; µv ∈P(X) for all v ∈ V \V0

}
.

Up to duplicating some edges (and link them with an equality constraint) until the graph admits a
2-colorization, this problem can be formulated, also in an unbalanced variant, in the framework
of (3.1.1).
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Figure 3.1.: Representation of some problems of the form (3.1.1). Each circle represents a mea-
sure (fixed in black, variables in white); the terms in the variational problem are rep-
resented by arrows for transport terms, dotted lines for divergence functional terms
and rectangles for the G terms. (a) With Fi of the form (3.1.4) (b) classical optimal
transport barycenter (c) unbalanced optimal transport (d) unbalanced gradient flow
of 2 species with interaction.

3.1.8. Bibliographical comments

Before we head into our first numerical method, a few bibliographical comments are in order:
optimal transport has been, indeed, a subject of active research in optimization for years.

The Kantorovich formulation as a linear program (see introduction, eq. (1)), when restricted
to discrete measures, can be directly tackled using simplex or interior point methods. For the
special case of optimal linear assignment (i.e. for sums of the same number of uniform-mass
Diracs) one can also use dedicated algorithms such as the Hungarian method [30] or the auction
algorithm [17]. The time complexity of these algorithms is roughly cubic in the number of
atoms, and hence they do not scale to very large problems. In [144] a multi-scale algorithm is
developed that consistently leverages the structure of geometric transport problems to accelerate
linear program solvers. In the specific case of costs that derive from a Lagrangian, first order
non-smooth optimization schemes can be used to solve the dynamic formulation [12, 123] (this
is an approach we study in Chapter 4). A related, but dual, method for the computation of
optimal partial transport problem has been suggested in [87].

A last class of approaches deals with semi-discrete problems, when one measure has a den-
sity and the second one is discrete. This problem, introduced by Alexandrov and Pogorelov
as a theoretical object, can be solved numerically with geometric tools when using the squared
Euclidean cost [6]. This methods further enhanced by the use of advanced computational geom-
etry [114, 100] can be considered the state of the art for finding optimal transport maps for the
quadratic cost in 2-D or 3-D domains, but are very specific to this context and this problem. In
the same framework, another approach consists in solving the Monge-Ampere equation [15].

Entropic regularization. In order to cope with large scale problems with arbitrary trans-
portation costs, a recent class of approaches, initiated and revitalized by the paper of Marco
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Cuturi [51], proposes to compute an approximate transport plan coupling using entropic regu-
larization. This idea has its origins in many different fields, most notably it is connected with
Schrödinger’s problem in statistical physics [149, 99] and with the iterative scaling algorithm by
Sinkhorn [151] a.k.a. IPFP [57]. Several follow-up articles [52, 14] have shown that the same
strategy can also be used to tackle the computation of barycenters for the Wasserstein distance
(as initially formulated by [1]), and for solving OT problems on geometric domains (such as reg-
ular grids or triangulated meshes) using convolution and the heat diffusion kernel [152]. Some
theoretical properties of this regularization are studied in [34], including the Γ-convergence of
the regularized problem toward classical transport when regularization vanishes.

Optimization with Bregman divergences. The success of this entropic regularization
scheme is tightly linked with use of the relative entropy, a.k.a. Kullback-Leibler divergence, as a
natural Bregman divergence [25] for optimization with a positivity constraint. The most simple
algorithm, which is actually at the heart of Sinkhorn’s iterations, is the iterative projection on
affine subspaces for the relative entropy. A refined version of these iterations, which works for
arbitrary convex sets (not just affine spaces) is the so-called Dykstra’s algorithm [64], which
can be interpreted as an iterative block-coordinates maximization on a dual problem. Dykstra’s
algorithm is known to converge when used in conjunction with Bregman divergences [9, 38].
Many other first order proximal methods for Bregman divergences exists. The most simple
one is the proximal point algorithm [65], but most proximal splitting schemes have been ex-
tended to this setting, such as for instance ADMM [165], primal-dual schemes [39] and forward-
backward [159].

The algorithm we propose in this chapter extends Sinkhorn’s iterations to more complex prob-
lems. Its simple structure is due to the fact that the non-linear part of the functional only involves
the marginals of the couplings that are being optimized. Note that the resolution of an opti-
mal entropy-transport formulation, in conjunction with entropic smoothing has been introduced,
without proof of convergence, in [74] for application in machine learning.
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3.2. Regularized algorithm in discrete setting

In this section, we propose a numerical method for finding approximate solutions to (3.1.1) in
the discrete setting, i.e. when X = (xi)i∈I and Y = (y j) j∈J where I and J are finite sets of indices.
In this setting, we may identify the set of measures and sets of functions to finite families of real
numbers (indexed by I or J). Given a cost c = (ci, j) with ci, j ∈R∪{∞} and two convex, l.s.c.,
proper functions F1 : RI

+→R∪{∞} and F2 : RJ
+→R∪{∞}, the problem (3.1.1) rewrites as

min

{
c · γ +F1

(
∑
j∈J

γi, j

)
+F2

(
∑
i∈I

γi, j

)
; γ ∈RI×J

+

}
. (3.2.1)

where c · γ = ∑ci, jγi, j. Without loss of generality and for simplicity, this section considers only
one unknown plan (i.e. n = 1 in (3.1.1)). The case n ∈N can be reduced to the case n = 1 by
considering an unknown coupling γ on the disjoint union of n replica of X ×Y (in Section 3.5,
the case n > 1 reappears because, there, separability matters). We also explain in section 3.3.3
how to adapt the algorithm to this case.

3.2.1. Regularization

The variational problem (3.2.1) is a non-smooth and (non-strongly) convex minimization prob-
lem of typically large dimension (γ lives on the product space RI×J). In this section, generalizing
the approach of [51] and [14], we show that simple algorithms can be derived by studying the
structure of this problem and accepting to solve it only approximately. Our analysis starts with
the dual of (3.2.1).

Proposition 3.2.1 (Duality). The minimum to (3.2.1) is attained and equals

sup
{
−F∗1 (−u)−F∗2 (−v) ; (u,v) ∈RI×RJ and ui + v j ≤ ci, j ∀(i, j) ∈ I× J

}
. (3.2.2)

Proof. This is an application of Fenchel-Rockafellar duality theorem (Appendix A). The qual-
ification constraint is satisfied because F∗1 and F∗2 are proper and Lemma 3.2.2 below implies
that there exists a feasible couple (u,v) such that ui + v j < ci, j for all (i, j).

Lemma 3.2.2. Let f : Rn → R∪{∞} be a function with a nonempty domain included in Rn
+.

Then f ∗ is increasing w.r.t. the usual partial ordering in Rn (x� y)⇔ (xi ≤ yi ∀i). In particular,

y ∈ dom f ∗ whenever y� x for some x ∈ dom f ∗.

Proof. It follows from the definition of the conjugate and the fact that the scalar product x 7→ x ·z
is nondecreasing for the same partial order whenever z ∈Rn

+.

The structure of this problem is appealing: for instance one can explicitly maximize with
respect to one variable, the other being fixed. The monotonicity of −F∗(−·) implies that, max-
imizing w.r.t. u with v̄ fixed and subsequently maximizing with respect to v leads to a pair of
so-called c-conjugate functions (u,v) satisfying

ui = min
j∈J

ci, j− v j, v j = min
i∈I

ci, j−ui.
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3.2. Regularized algorithm in discrete setting

However, it is clear that this process remains stuck after these two operations, and the resulting
(u,v) is not a pair of maximizers (it does not even depend on Fi). It is a well-known fact
that alternate maximization does not generally converge to a maximizer when the term in the
functional that involves the two variables is not differentiable. However, since some guarantees
exist when that term is smooth, we introduce a regularization in the dual problem (3.2.2) to
make the coupling term smooth. This regularization can in general take the form of a Bregman
divergence, which is the setting in which we will prove the general convergence result. The
interest of Bregman divergences lies in Lemma 3.2.11 below, which allows to obtain a speed of
convergence of the primal iterates. We specialize then to (the conjugate of) the relative entropy,
which has particularly nice algebraic properties in this context.

Bregman divergences

Bregman divergences are generally defined using functions of Legendre type.

Definition 3.2.3 (Legendre type). A convex, l.s.c. proper function h : Rn → R∪{∞} (n ∈N∗)
is said of Legendre type if h and h∗ are strictly convex on their respective domains, or on any

convex set included in the domain of their subdifferential.

This definition (equivalent to other found in the literature [134]) implies in particular that h

and h∗ are continuously differentiable on the interior of their domain—which have nonempty
interior—and that ∇h and ∇h∗ are inverse bijections on their domain. The Bregman divergence
Dh(x|z) is the evaluation at x of the difference between h and its linear approximation at z.

Definition 3.2.4 (Bregman divergence). The Bregman divergence associated to a function of

Legendre type h is defined for (x,z) ∈ ( ˚domh)2 as

Dh(x|z) := h(x)−h(z)−∇h(z) · (x− z).

Clearly, Dh is convex w.r.t. the first argument, but it is not jointly convex in general.

Remark 3.2.5. The relative entropy functional on R2
+ is both a f -divergence ψh and a Bregman

divergence Dh, by posing h(x) = x logx− x+ 1, x ∈R+. Actually it is essentially the only such

function! Indeed, for convex functions h, f (with h ∈ C1(]0,∞[) the fact that Dh = ψ f implies

that for all x,z > 0 it holds

h(x)−h(z)−∇h(z) · (x− z) = z f (x/z)⇒ ∇h(x)−∇h(z) = ∇ f (x/z)

so, modulo a constant ∇h = ∇ f = α log for α > 0. An interesting stronger result is proved

in [8]: if ˚domh = ]0,∞[ and h is of class C3 then Dh is jointly convex if and only if h is the

entropy, modulo linear terms. So f -divergences and Bregman divergences are almost disjoint

concepts, only the relative entropy endorses sometimes one role or the other. If we remove the

restriction to the domain, other examples exist, such as the Hellinger divergence.

The following properties are classical and the strict convexity estimate (iii) will be useful.
We denote by D∗,i the conjugate of the function D with respect to the i-th variable in order to
distinguish it from the joint conjugate w.r.t. all variables.
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Lemma 3.2.6 (Strict Bregman convexity).

(i) For z ∈ ˚domh, the function Dh(·|z) is convex and its conjugate is

D∗,1h (u|z) = h∗(u+∇h(z))+ h(z)− z ·∇h(z),

whose graph, for fixed z, is simply a translation of that of h∗.

(ii) By denoting (u,v) = (∇h(x),∇h(z)) for u,v ∈ ˚domh, one has

Dh(x|z) = h(x)+ h∗(v)− v · x = Dh∗(v|u).

(iii) For (u, ū) ∈ ( ˚domh∗)2, it holds

D∗,1h (u|z)−D∗,1h (ū|z)−∇1D∗,1h (ū|z) · (u− ū) = Dh∗(u+∇h(z)|ū+∇h(z))

= Dh(r̄|r)

where r := ∇h∗(u+∇h(z)) and r̄ is defined likewise from ū.

Proof. These formula are obtained by simple manipulations. For (i) combine

D∗,1h (u|z) = u · x̄−h(x̄)+ h(z)+∇h(z) · (x̄− z) where x̄ = ∇h∗(u+∇h(z))

with h∗(w) = w · x̃−h(x̃) where x̃ = ∇h∗(w). For (ii), observe the symmetries in

Dh(x|z) = h(x)+ h∗(v)− v · z− v · (x− z) = h(x)+ h∗(v)− v · x = Dh∗(v|u).

For (iii), first use (i), then apply (ii).

Bregman regularization

Instead, of solving (3.2.1), we propose to solve a regularized problem. Let h : RI×J → R ∪
{∞} be a convex function of Legendre type of domain RI×J

+ and Dh the associated Bregman
divergence (Definitions 3.2.3 and 3.2.4), let γ (0) ∈ RI×J

+ be a (discrete) reference measure and
let ε > 0 be a small parameter. The regularized problem is

min
γ∈RI×J

Eε(γ) where Eε(γ) := F1

(
∑
j∈J

γi, j

)
+F2

(
∑
i∈I

γi, j

)
+ εDh(γ|K). (3.2.3)

where we define the kernel (which implicitly depends on ε and the cost and ε)

K := ∇h∗
(

∇h(γ (0))− c/ε
)

.

If c is finite, which we assume, one can always choose γ (0) such that K ∈ ˚domh. As detailed
in the next proposition, solving (3.2.3) amounts to minimizing (3.2.1) with a regularizing term
εDh(γ|γ (0)) added.
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Proposition 3.2.7. Denoting E(γ) the functional in (3.2.1) and Eε(γ) the functional in (3.2.3),
one has

E(γ)+ εDh(γ|γ (0)) = Eε(γ)+ εDh(K|γ (0))+ c ·K
so that the left hand side and Eε(γ) only differ by a constant and minimizing one amounts to

minimizing the other.

Proof. Using the property (∇h∗)−1 = ∇h and the definition of Dh, one finds

εDh(γ|γ (0))+ c · γ = εDh(γ|K)+ εDh(K|γ (0))+ c ·K.

Remark 3.2.8 (Interpretation). This regularization can be interpreted in several ways:

1. as the first step of a proximal point algorithm. By denoting γ (1) the solution to (3.2.3), one

has γ (1) = proxDh

E0/ε(γ
(0)). It is possible to iterate this relation and define

γ (ℓ+1) := proxDh

E0/ε(γ
(ℓ)).

which is the so-called proximal point algorithm [65], known to converge to a solution to

(3.2.1). By looking at the optimality conditions, one may notice that, in the particular

case of entropy regularized optimal transport, γ (ℓ) can as well be obtained by performing

a single proximal step with parameter ε/ℓ, but this relation is not true in general.

2. as a regularization. In inverse problems or statistical learning tasks, when the data is in-

complete, one generally introduce some prior information through a divergence function,

which additionally makes the problem strictly convex. Here, γ (0) favors diffuse minimiz-

ers while solutions to the unregularized problem are typically sparse because solutions

are optimal plans between their marginals. This improves the performance for statistical

learning tasks [51].

3. as a model in its own right. In the specific case of optimal transport with quadratic

cost with Dh = H the relative entropy (defined in Section 3.3), this problem appears as

a stochastic version of optimal transport. For instance, it is obtained by considering an

optimal matching problem where there is (a specific model of) unknown heterogeneity

in the preferences within each class [75]. It also corresponds to the Shrödinger bridge
problem, which aims at computing the law of motion of the (indistinguishable) particules

of a gaz which follow a Brownian motion, conditionally to the observation of its density

at times t = 0 and t = 1 [99].

As intended, this primal regularization corresponds to a dual problem where the term coupling
(u,v) is smoothed.

Proposition 3.2.9 (Regularized dual). The minimum in (3.2.3) is attained at a unique point and

is equal to

sup
u∈RI ,v∈RJ

Ēε(u,v) where Ēε(u,v) := −F∗1 (−u)−F∗2 (−v)− εD∗,1h ((u⊕ v)/ε|K)

where (u⊕v)i, j = ui+v j for (i, j) ∈ I×J and D∗,1h is the conjugate of Dh w.r.t. the first variable.
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Proof. This is again an application of Fenchel-Rockafellar duality (Theorem A.0.7). The quali-
fication constraint is satisfied because we see in the expression of D∗,1h given in Lemma 3.2.6 (i)
that its domain is a translation of that of h∗. One then deduces from Lemma 3.2.2 that there exists
a strictly feasible couple (u,v). Uniqueness of the minimizer comes from the strict convexity of
h.

Proposition 3.2.10 (Convergence of regularized minimizers). Assume that h is superlinear (in

all directions) and let γε be the minimizer to (3.2.3) for each ε > 0. Then, as ε → 0, γε tends to

γ0 ∈RI×J
+ characterized by

{γ0}= argmin
{

Dh(γ|γ (0)) ; γ ∈ argminE
}

.

where E is the unregularized functional in (3.2.1). In the limit ε → ∞, one has that γε tends to

γ∞ that is characterized by

{γ∞}= argmin
{

Dh(γ|γ (0)) ; γ ∈ domE
}

.

Proof. Direct proofs are possible, but we will use Γ-convergence results for conciseness. Ap-
plying Lemma 2.1.12 (first order Γ-convergence), one has by denoting E(γ) that

Fε : γ 7→ 1
ε
(E(γ)− infE)+Dh(γ|γ (0))

Γ-converges to F := Dh(γ|γ (0))+ ιargminE as ε ↓ 0 and this functional has the same minimizers
as Eε (see Proposition 3.2.7). Similarly, by using this time Lemma 2.1.11 (zeroth order Γ-
convergence), one has that

F̃ε : γ 7→ 1
ε

E(γ)+Dh(γ|γ (0))

Γ-converges to F̃ := Dh(γ|γ (0))+ ιdomE as ε ↑∞, because domE ⊂ domDh(·|γ (0)) and the latter
is l.s.c. It remains to show the equicoercivity to have the convergence of minimizers. But for all
ε > 0, minimizers γε of Fε (or equivalently F̃ε ) satisfy

Dh(γε |γ (0)) ≤ Dh(γ0|γ (0)) < ∞

which is enough because Dh(·|γ (0)) is coercive. Note that this proof is very specific to the
discrete setting: in the infinite dimensional setting, the Γ-limit is in general degenerate because
optimal couplings have typically infinite relative entropy.

3.2.2. Convergence of dual alternate maximization

In this section we introduce the minimization algorithm and prove its convergence. Before
that, let us make a small digression and derive a general primal-dual relationship for a class of
minimization problems involving Bregman divergences. In this digression, we prove a bound
that is crucial for obtaining the convergence of our algorithm.
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3.2. Regularized algorithm in discrete setting

Primal-dual relationship with Bregman divergence

Consider a linear operator A : Rn → Rm, a function of Legendre type h : Rn → R∪{∞} and a
proper l.s.c. convex function F on Rm such that domF ∩A( ˚domh) 6= /0. Given z ∈ ˚domh, we
define a minimal divergence problem as follows

min
x∈Rn

F(Ax)+Dh(x|z) . (3.2.4)

This problem is feasible and strictly convex. If it is moreover coercive, it admits a unique
minimizer that we denote x̄. The regularized transport problems belong to this class of problems.
The dual problem reads (minus)

inf
y∈Rm

F∗(−y)+D∗,1h (A∗y|z) . (3.2.5)

If one assumes the qualification constraint for (3.2.5) holds, i.e. ( ˚domh∗−∇h(z)) ∩A∗(domF∗) 6=
/0 then strong duality holds and a pair of optimizers (x̄, ȳ) ∈ Rn×Rm exists and satisfies the
primal-dual relationships

Ax̄ ∈ ∂F∗(−ȳ) and A∗ȳ = ∇h(x̄)−∇h(z)⇔ x̄ = ∇h∗(A∗ȳ+∇h(z))

The purpose of this paragraph is the following result which gives a general method to build
convergent primal iterates from dual iterates that converge to the dual maximum in value. We
state it in a general abstract form, but it is an idea that has already been used in the literature [67,
Thm. 1] for specific divergences.

Lemma 3.2.11. Let Ē denote the dual functional (3.2.5) and assume that the constraint qualifi-

cation holds. If x̄ is the minimizer of (3.2.4) and ȳ minimizes (3.2.5) then for all y ∈Rm

Dh(x̄|xy) ≤ E(y)−E(ȳ) where xy := ∇h∗(A∗y+∇h(z)).

Proof. Writing Lemma 3.2.6 with (u, ū) = (A∗y,A∗ȳ), one has for all y ∈Rm

D∗,1h (A∗y|z)−D∗,1h (A∗ȳ|z) = ∇1D∗,1h (A∗ȳ|z) ·A∗(y− ȳ)+Dh(x̄|xy).

Moreover, by convexity, one has for any m ∈ −∂F∗(−ȳ)

F∗(−y)−F∗(−ȳ) ≥ m · (y− ȳ).

Summing the two leads to

E(y)−E(ȳ) ≥ (m+A∇D∗h(A
∗ȳ|z)) · (y− ȳ)+Dh(x̄|xy).

But as ȳ minimizes (3.2.5) it holds 0 ∈ ∂E(ȳ). This implies (also because the qualification
constraint is assumed) that one can chose m such that m+A(∇D∗h(A

∗ȳ|z)) = 0 and the result
follows.
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Main discrete convergence result

Consider alternate maximization on the dual problem, which consists in sequences (u(ℓ),v(ℓ))
defined by v(0) ∈RJ given and for ℓ ∈N∗,

u(ℓ+1) = argmax
u

Ēε(u,v(ℓ)) v(ℓ+1) = argmax
v

Ēε(u
(ℓ+1),v). (3.2.6)

The main result of this section is the following theorem, that gives convergence of the dual
objective and the primal iterates at a sublinear rate. We insist on the fact this rate is worse than
what is observed in practice; it is just the only rate available to us at this level of generality. The
notation ⊕ is defined as (u⊕ v)i, j = (ui + v j).

Theorem 3.2.12. Assume that the regularized dual problem in Proposition 3.2.9 admits a max-

imizer and that the iterates (3.2.6) are well defined. Then, letting (u(ℓ),v(ℓ)) be the sequence

generated by alternate maximization and posing γ (ℓ) := ∇h∗((u(ℓ)⊕ v(ℓ))/ε +∇h(K)) the cor-

responding primal sequence, it holds for ℓ≥ 3,

εDh(γε |γ (ℓ)) ≤ (supEε)−Eε(u
(ℓ),v(ℓ)) ≤ O(1/ℓ).

The constant in the notation O(·) is given in Theorem 3.2.13. For the proof, we mainly use
Lemma 3.2.11 and the following result from [10] of which we need a slightly stronger version
to fit our framework.

Theorem 3.2.13. Let F(u,v) := f (u,v)+ g1(u)+ g2(v) be a convex, proper, l.s.c. function on

RI ×RJ with f continuously differentiable on domg1× domg2, of partial gradients ∇u f and

∇v f respectively L1 and L2 Lipschitz. If the set of minimizers A of F is nonempty, then the

sequence generated by alternate minimization on F starting from (v(0)) ∈ RJ , if well-defined,

satisfies for ℓ≥ 3,

F(u(ℓ),v(ℓ))−minF ≤max

{(
1
2

) ℓ−2
2

(F(u(1),v(0))−minF),
8min{L1,L2}R2

ℓ−2

}

where R2 := max(u,v)

{
min(u∗,v∗)∈A ‖(u,v)− (u∗,v∗)‖2 ; F(u,v) ≤ F(u(1),v(0))

}
.

Proof. This is [10, Thm. 3.9] where the assumption on the compactness of the set of minimizers
is removed with the following remark (see the cited article for reference): [10, Lem. 3.4]
holds for any minimizer x∗ so one may as well choose x∗ as the projection of xk on the set of
minimizers. It follows that one may replace the definition of R in [10, eq. (3.8)] by the maximum
distance to the set of minimizers and the proof of [10, Lem. 3.5] goes through.

Proof of theorem 3.2.12. The function Eε satisfies the hypothesis of Theorem 3.2.13 so we de-
duce the second inequality. The first inequality is given by Lemma 3.2.11.
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3.3. Discrete scaling algorithm

3.3. Discrete scaling algorithm

3.3.1. Entropic regularization: discrete case

In the previous section, we have shown that by adding a small regularization term, one could find
an approximate minimizer of the generic formulation of coupling problems, by performing an
alternate maximization algorithm on the dual problem. Yet, this procedure takes all its strength
when the Bregman regularization is chosen precisely as the relative entropy. In this case, one
obtains simple iterates that have a low per-iteration complexity for many cases of interest.

Additionally, the framework of entropic regularization admits a natural definition in the con-
tinuous setting where one recovers (a generalization of) the well studied minimal entropy prob-
lems. In particular and important cases, some dimension free convergence rates can be obtained.
These infinite dimensional questions are treated separately in Section 3.5 and here we focus on
practical implementation.

Let us instantiate the previous formula in the case of entropic regularization. Consider the
separable entropy function on Rn

h(x) := ∑ h̄(xi) where h̄(xi) :=





xi logxi− xi + 1 if xi > 0

1 if xi = 0

∞ otherwise.

(3.3.1)

It is of Legendre type since it is strictly convex on the (convex) domain of its subdifferential
]0,∞[n and its convex conjugate h∗ : y 7→∑(eyi−1) is strictly convex on Rn. As a side note, one
has that (∇h,∇h∗) = (∑ log,∑exp) form a pair of inverse homeomorphisms, as expected.

Definition 3.3.1 (Discrete relative entropy). The relative entropy H := Dh is the Bregman diver-

gence associated to the Legendre function defined in (3.3.1). Its explicit expression for x,y ∈Rn

is H(x|y) = ∑ H̄(xi|yi) where

H̄(xi|yi) :=





xi log(xi/yi)− xi + yi if xi > 0 and yi > 0

yi if xi = 0 and yi ≥ 0

∞ otherwise,

and the value for xi = yi = 0 is obtained by l.s.c. extension.

As explained in Remark 3.2.5, H is both the Bregman divergence, and the f -divergence asso-
ciated to h (see Definition 3.5.1: for the f -divergence interpretation, one may see (xi) and (yi)
as the list of masses of atomic measures). Now choose a reference γ (0) ∈ ]0,∞[I×J and define
the kernel Kε ∈RI×J

+ by

(Kε)i, j = exp(−ci, j/ε)γ
(0)
i, j .

for (i, j) ∈ I× J. The entropic regularization of the generic formulation is an instantiation of
(3.2.3) that writes minγ∈RI×J Eε(γ) where

Eε(γ) = F1(∑
j∈J

γi, j)+F2(∑
i∈I

γi, j)+ εH(γ|Kε) (3.3.2)
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Chapter 3. Scaling Algorithms for Optimal Couplings

and its dual is sup(u,v)∈RI×RJ Ēε(u,v) where

Ēε(u,v) = −F∗1 (−u)−F∗2 (−v)− ε ∑
i, j

(exp((ui + v j− ci, j)/ε)−1)γ (0)i, j . (3.3.3)

3.3.2. Scaling algorithm

An alternate maximization step on u given v(ℓ) amounts to finding a maximizer u(ℓ+1) of

max
u∈RI

−F∗1 (−u)− ε ∑
i

(eui/ε −1)∑
j

Ki, je
v
(ℓ)
j /ε

or equivalently, solve the dual (the qualification constraint are easily checked):

min
s∈RI

F1(s)+ εH(s|(∑
j

Ki, je
v
(ℓ)
j /ε)i)

which is a proximal step with respect to the relative entropy. The primal-dual relationship are, at

optimality, si = eu
(ℓ+1)
i /ε(∑ j Ki, je

v
(ℓ)
j /ε). Making the change of variables (a,b) := ((eui/ε)i, (ev j/ε) j)

we remark that the primal-dual relationship can be written si = a(ℓ+1)⊘K(b(ℓ)) where K(·) is
a matrix/vector product and ⊘ is a pointwise (or elementwise) division with the convention
0/0 = 0. Thus, in these new variables, the maximization step amounts to setting

a(ℓ+1) = proxH
F1/ε(K(b(ℓ)))⊘K(b(ℓ))

where we denote proxH
F (s̄) = argmins{F(s)+H(s|s̄)}. Similar computations for the other par-

tial maximization lead to the definition of the following sequence.

Definition 3.3.2 (Discrete scaling iterations). Given a generic problem (i.e. functions F1, F2 and

a cost c) and a regularization parameter ε > 0, the discrete scaling iterations are the sequence

(a(ℓ),b(ℓ))ℓ∈N∗ defined as b(0) = 1J ∈RJ and

a(ℓ) = proxH
F1/ε(K(b(ℓ−1)))⊘ (K(b(ℓ−1))),

b(ℓ+1) = proxH
F2/ε(K

T (a(ℓ)))⊘ (KT (a(ℓ))).

The corresponding primal sequence (see Theorem 3.2.13) is (γ (ℓ)) defined for all ℓ ∈N∗ as

γ
(ℓ)
i, j = a

(ℓ)
i Ki, jb

(ℓ)
j .

Remark 3.3.3.

(i) note that the scaling variables are of dimensions I and J while the dimension of the original

unknown was I× J. Now, the only object of dimensions I× J is K and it only appears

through a matrix/vector product, which is fast operation in modern software. It can even

be replaced by faster operations in some cases, see Section 3.3.3;

(ii) the operator s 7→ proxH
Fi/ε(s)⊘ s has closed form or is easy to compute in many important

cases that we review later in Chapter 5;
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3.3. Discrete scaling algorithm

(iii) in the case of regularized optimal transport, the functions Fi are the indicator of the

marginal constraints and one recovers the standard Sinkhorn iterations a.k.a. IPFP or it-

erative matrix scaling. We choose to maintain the name scaling because the primal iterates

γ (ℓ) are obtained from K by scaling the rows and columns with two scaling vectors.

The following result is an instantiation of Theorem 3.2.13. It gives a very general convergence
result but the provided sublinear convergence rate is much slower than what observed in practice.
Linear convergence rate will be proven for specific cases in Section 3.5.

Theorem 3.3.4 (Convergence of the scaling iterations). Let γ (ℓ) be the primal iterate from Def-

inition 3.3.2. If the dual problem (3.3.3) admits a maximizer then, denoting γε the minimizer of

(3.3.2) and Ēε the dual objective functional (3.3.3), it holds

H(γε |γ (ℓ)) ≤ (max Ēε)− Ēε(ε loga(ℓ),ε logb(ℓ)) = O(1/ℓ).

3.3.3. Stability and practical implementation

Stabilization

For small values of ε the entries of the matrix K, a(ℓ) and b(ℓ) may become both very small and
very large, leading to numerically imprecise values of their mutual products and overflow of the
numerical range. An easy fix would be to execute the algorithm in the log domain and using
stabilized versions of the operations. However, this is not entirely satisfying because then the
computation of K(b(ℓ)) and K(a(ℓ)) are not simple matrix/vector product anymore but so-called
“log∑exp” operations, and the algorithm is considerably slowed down. We suggest a middle
way, using a redundant parametrization of the iterates as follows:

a(ℓ) = ã(ℓ)⊙ exp(ũ(ℓ)/ε), b(ℓ) = b̃(ℓ)⊙ exp(ṽ(ℓ)/ε). (3.3.4)

The idea is to keep ã(ℓ) and b̃(ℓ) close to 1 and to absorb the extreme values of a(ℓ) and b(ℓ) into
the log-domain via ũ(ℓ) and ṽ(ℓ) from time to time.

Consider the stabilized kernels K̃(ℓ) whose entries are given by

K̃
(ℓ)
i, j = exp((ũ(ℓ)i + ṽ

(ℓ)
j − ci, j)/ε)

and remark that it holds, by direct computations,

K(b(ℓ)) = e−ũ(ℓ)/ε ⊙ K̃(ℓ)(b̃(ℓ)), KT (a(ℓ)) = e−ṽ(ℓ)/ε ⊙ (K̃(ℓ))T (ã(ℓ)).

The scaling iterates of Definition 3.3.2 then read

ã(ℓ+1) = proxH
F1/ε(e

−ũ(ℓ)/ε ⊙ s)⊘ s where s := K̃(ℓ)(b̃(ℓ))

with a similar formula for b̃(ℓ+1). For computing these iterates, all the information we need about
F1 and F2 can be condensed by the specification of functions proxdivF1

: RI ×RI ×R+ → RI

and proxdivF2
: RJ×RJ×R+→RJ defined as

proxdivFi
: (s,u,ε) 7→ proxH

Fi/ε(e
−u/ε ⊙ s)⊘ s . (3.3.5)
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Chapter 3. Scaling Algorithms for Optimal Couplings

which have closed form, or are simple to estimate in many important cases (reviewed in Chapter
5). The variable u is an offset (in logarithm domain) that appears because of the stabilization
procedure, but can be set to 0 for the basic version of the algorithm. The main numerical algo-
rithm in pseudo code is displayed in Algorithm 1 for the basic version and Algorithm 2 for the
stabilized version.

Remark 3.3.5. We may summarize the properties of the stabilization as follows:

• let aside the updates of the kernel K̃(ℓ) which are only performed a few times, the stabilized

scaling updates on ã(ℓ) and b̃(ℓ) have the same complexity as the original scaling updates;

• the operator proxdiv is guaranteed to be stable whenever the algorithm converges. More

precisely, for any M > 1, there exists ℓ0 ∈N such that if an absorption step is performed

at iterate ℓ0 by setting (ũ(ℓ), ṽ(ℓ)) = (ε loga(ℓ),ε logb(ℓ)), then for all ℓ > ℓ0, one has

1/M < ã
(ℓ)
i , b̃(ℓ)j < M for all components i, j, as a consequence of the convergence of the

algorithm.

Algorithm 1 Basic scaling algorithm. The function “proxdiv” is defined in (3.3.5).

1. initialize the kernel K = (e−ci, j/εγ
(0)
i, j )i, j and the iterates (a,b) = (1I ,1J)

2. while stopping criterion not satisfied repeat:

a) a← proxdivF1
(K(b),0I ,ε)

b) b← proxdivF2
(KT (a),0J ,ε)

3. return γ = (aiKi, jb j)i, j

Computing matrix multiplications

The size of the matrix K is I× J so the matrix-vector multiplication step or even merely storing
K in memory can quickly become intractable as the sizes of X and Y increase. For special
problems it is possible to avoid dense matrix multiplication (and storage). For instance, when
c(x,y) = |x−y|2 is the squared Euclidean distance on uniform Cartesian grids (xii′), (y j j′) in R2

(or more generally Rd) with step size h > 0, then K is the separable Gaussian kernel

Kii′ j j′ = exp((|i′− i|2 + | j′− j|2)h2/ε) = K
(1)
ii′ K

(2)
j j′ .

Then, multiplying by K can be done by successive 1-D convolutions. For more general geo-
metric surfaces, K can also be approximated by the heat kernel [152]. These methods however
cannot be directly combined with the stabilization procedure that we propose since the “stabi-
lized kernels” K̃ lose that separable structure.
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3.3. Discrete scaling algorithm

Algorithm 2 Scaling algorithm with stabilization

1. initialize kernel K̃ = (e−ci, j/εγ
(0)
i, j )i, j

2. initialize the iterates (ã, b̃) = (1I ,1J), (u,v) = (0I ,0J)

3. while stopping criterion not satisfied repeat:

a) ã← proxdivF1
(K̃(b̃),u,ε)

b) b̃← proxdivF2
(K̃T (ã),v,ε)

c) if max{‖ log ã‖∞,‖ log b̃‖∞}> threshold, then absorption step:

i. (u,v)← (u+ ε log ã,v+ ε log b̃)

ii. (optionally decrease ε)

iii. K̃i, j ← exp((ui + v j− ci, j)/ε) · γ (0)i, j

iv. b̃← 1J

4. return γ = (ãiK̃i, jb̃ j)i, j

Gradually decreasing ε and other tricks

When running Algorithms 1 or 2 for a very small regularization ε , most of the entries of
K = (e−ci, j/ε)i, j are below machine precision at initialization. A simple workaround it to first
“estimate” the dual variables (u,v) by performing several iterations with higher values of ε . Re-
duction of ε should be performed at step 3(c)ii in Algorithm 2. Indeed, before that step, (ũ, ṽ)
are approximations of the optimal dual variable of the regularized problem so one can change ε

and start solving the new problem with (u,v) as a clever starting point using the stabilized kernel
K̃ = (e(ũi+ṽ j−ci, j)/ε)i, j. When ε decreases, many entries of K̃ are below numerical precision but
we may expect that this is not the case for the entries where the optimal regularized plan takes
high values. Besides, this sparsity property suggests tricks for solving efficiently large prob-
lems, such as (i) to transfer the sparsity pattern of K̃ from high values of ε to smaller ones, and
(ii) when the problem has some structure (defined on a regular grid, with a regular cost c), to
“approximate” the dual variables on coarser grids and then transfer the resulting sparsity pattern
to the original, finer, grid. These tricks are useful in practice, but one should keep in mind that
they yield instabilities for small ε because

(i) the optimal dual potentials change with ε and so does the sparsity pattern;

(ii) when interpolating the potentials (ũ, ṽ) on the finer grid, the error might be sufficient to
deduce a wrong sparsity pattern, especially where the cost c varies rapidly.

The heuristic we followed in our numerical experiments in Chapter 5, when mentioned, is as
follows: starting from ε = 1, after every 100 iterations we perform an absorption step and divide
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ε by a factor chosen so that the final value ε is reached after 10 divisions. Once the final value
of ε is reached, Algorithm 2 is run normally until the desired convergence criterion is met.

While our purpose when doing this gradual decreasing of ε is merely to find a smart ini-
tialization of the dual variables, this idea has been proposed several times in relation to stan-
dard optimal transport problems. It has been shown that, with a sufficiently slow decrease, this
asymptotically solves the unregularized optimal transport problem in [150] (but ε should be of
the order 1/ log(ℓ) which is too slow to be of practical interest). Heuristically, it has been pro-
posed to accelerate the convergence of Sinkhorn’s iterations, in the same fashion as for interior
point methods, but theoretical justification is an open problem [95, 145]. Numerical tricks to
decrease the complexity of Algorithm 2 are developped further in [145]. See also [144, 119] for
multiscale methods on the linear programming approach for optimal transport.

Multiple couplings

The general optimization problem (3.1.1) involved n couplings, with potentially n > 1. For
simplicity, throughout Section 3.2, we focussed on the case n = 1. However, the extension to
n> 1 is rather simple. In this case, the variables a,b,u,v of the algorithm lie in Rn×I or Rn×J , the
kernel K is a family of n matrices of size I×J , the entrywise operations (multiplication, division)
are still performed entrywise and the matrix vector multiplications are performed “coupling by
coupling”, e.g. for k ∈ {1, . . . ,n} and j ∈ {1, . . . ,J}:

(K(b))k,i = ∑
j

Kk,i, j bk, j .

3.3.4. Generalization to pushforward operators

Scaling algorithms similar to Algorithm 1 can be formulated for solving problems of more gen-
eral form than the entropic regularization of the discrete “generic problem” (3.3.2). This form
has been chosen because it encompasses all the cases of interest in this thesis and allows for
a unified treatment. But in general, there can be more than 2 functionals, more than 2 spaces
involved and the projection operators πx

# and πy
# can be replaced by pushforwards of functions t

which are not necessarily projections (i.e. not of the form t(x,y) = x).
Several examples of such extensions can be found in [14] for the special case of classical op-

timal transport. Let us sketch this extension in the discrete setting and for the case of n = 1 (i.e.
one unknown coupling) and give the scaling form of the alternate maximization on the dual and
an example, without proof. It should be noted that, while our convergence proof extends verba-
tim to general pushforward operators (we only use the fact that they are linear), the behavior of
alternate maximization for more than 2 blocs is more intricate than the case of 2 blocs (a good
reference is [158]).

Let (Xk)N
k=1 and Z be finite discrete spaces of cardinalities (Ik)k and L, respectively and let

tk : Z→ Xk be a family of N surjective maps (that act on the indices, in our notations). The space
Z plays the role of X×Y in the previous discussions, but in this generalization the structure of a
product space is lost. Given k ∈ {1, . . . ,N}, γ ∈RL and u ∈RIk the pushforward operator tk

# and
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its adjoint (tk
#)
∗ read

[tk
#γ ]i = ∑

l∈(tk)−1(i)

γl and [(tk
#)
∗u]l = utk(l).

Given a vector K ∈ RL
+ corresponding to the kernel, and N convex, proper, l.s.c. functions

Fk : RIk →R∪{∞}, the regularized primal (generalizing (3.3.2)) is

min
γ∈RL

N

∑
k=1

Fk(t
k
#γ)+ εH(γ|K) (3.3.6)

and the dual reads, up to a constant,

sup
(uk)N

k=1∈R∑k Ik

−
N

∑
k=1

F∗k (−uk)− ε
L

∑
l=1

exp
(

1
ε ∑

N
k=1 uk

tk(l)

)
·Kl (3.3.7)

Now for (an)N
n=1 ∈R

∑n In

+ and k ∈ {1, . . . ,N}, define the operator K k as

[K k((an)n6=k)]i := ∑
l∈(tk)−1(i)

(∏
n6=k

an
tn(l)) ·Kl (3.3.8)

These operators allow to compute the rightmost term of (3.3.7) in a “marginalized” way, using
the relation

〈ak , K k((an)n6=k)〉=
L

∑
l=1

(
N

∏
n=1

an
tn(l)) ·Kl

valid for k ∈ {1, . . . ,N}. The key feature for obtaining this relation, and the reason why scaling
algorithms generalizes naturally to linear operators which are pushforward maps, is the fact that
for each k, the pre-images of tk, namely ((tk)−1(i))Ik

i=1, form a partition of Z. We can now define
the generalized scaling algorithm displayed in Algorithm 3. As Algorithm 1, it corresponds to
alternate maximization on the dual problem written in dual form. Instead of rescaling the rows
and columns of the kernel K, it rescales the entries of K corresponding to the pre-images of the
maps tk.

Algorithm 3 Generalized scaling algorithm (K is defined in (3.3.8))

1. initialize (a1, . . . ,aN) = (1I1 , . . . ,1IN
)

2. while stopping criterion not satisfied, repeat:

a) for k = 1, . . . ,N, do:

i. ak ← proxdiv(K k((an)n 6=k),0,ε)

3. return the primal minimizer (Kl ·∏N
k=1 ak

tk(l)
)L

l=1
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As a simple illustration, consider, in the setting of a product space Z = X×Y , an extension of
the generic problem where is added a function of the total mass

min
γ∈RI×J

F1(∑
j∈J

γi, j)+F2(∑
i∈I

γi, j)+F3(∑
i, j

γi, j)+ εH(γ|K)

where the pushforwards involved are the marginal projections and the total mass and F3 : R →
R∪{∞} is a proper, l.s.c. and convex function. Applying the reasoning above, and after some
rearrangement (here Z is still a product space and thus it is convenient to interpret γ as a matrix),
one obtains Algorithm 4. If, for instance, F3 is chosen as indicator of equality with a positive
real number, this algorithm solves the optimal partial transport problem (in the “total mass”
parametrization, see Section 2.3.2).

Algorithm 4 Scaling algorithm with a function on the total mass

1. initialize kernel K and variables b = 1J and z = 1 ∈R

2. while stopping criterion not satisfied, repeat:

a) a← proxdivF1
(z ·K(b)))

b) b← proxdivF2
(z ·KT (a))

c) z← proxdivF3
(aT K(b))

3. return the primal minimizer z · (aiKi, jb j)i, j
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3.4. Acceleration of convergence rate

In this section, we propose to apply an acceleration method with a strong practical impact. We
show that a minor modification of alternate minimization procedure with the same per-iteration
complexity, known as successive over-relaxation, allows to improve the local convergence rate.
We also perform numerical experiments that show that the global convergence rate is greatly
improved in the case of Sinkhorn’s iterations (which are a particular case of the scaling algo-
rithms). This is in contrast to other local acceleration methods that typically fail to converge
globally. However, proving a practically useful global convergence guarantee is left as an open
question.

3.4.1. Successive over-relaxation

Let us consider the following modification of the alternate minimization algorithm, for minimiz-
ing a function F : Rn×Rm →R.

Definition 3.4.1 (Successive over-relaxation). Let θ ∈ R be an extrapolation parameter. The

successive over-relaxation method (SOR) defines the sequence (u(ℓ),v(ℓ))ℓ∈N defined by (u(0),v(0))∈
Rn×Rm and for ℓ ∈N∗

ũ(ℓ) = argmin
u∈Rn

F(u,v(ℓ−1))

u(ℓ) = u(ℓ−1)+θ
(

ũ(ℓ)−u(ℓ−1)
)

ṽ(ℓ) = argmin
v∈Rm

F(u(ℓ),v)

v(ℓ) = v(ℓ−1)+θ
(

ṽ(ℓ)− v(ℓ−1)
)

.

So at each (half) step, one moves to a new point which is a linear combination of the previous
partial coordinate and the new partial minimizer. One can readily check the following result.

Lemma 3.4.2 (Fixed-points). If θ 6= 0, the fixed points of the successive over-relaxation (Defi-

nition 3.4.1) are the same as the fixed points of the alternate minimization, recovered for θ = 1.

Relaxations of this kind are common for the acceleration of fixed points. The very algorithm
of Definition 3.4.1 is presented for convex minimization in [7] and in [169], an extensive analysis
of this method for solving linear systems is proposed. While this acceleration is well known for
numerical linear algebra, it seems that this method has not been proposed yet to accelerate the
computation of entropy regularized optimal transport. Applied to the scaling algorithms, this
gives updates where the additive extrapolation transforms into a multiplicative one due to the
exponential change of variables, as diplayed in Algorithm 5. We also display a specialized
version for entropy regularized optimal transport in Algorithm 6, it defines a variant of Sinkhorn
algorithm which is very simple to implement and that can be order of magnitude faster (see
Table 3.1).
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Algorithm 5 Extrapolated scaling algorithm (acceleration parameter θ ∈ [1,2[)

1. initialize the kernel K and the iterates (a,b) = (1I ,1J)

2. while stopping criterion not satisfied repeat:

a) a← a1−θ ⊙
[
proxdivF1

(K(b),0,ε)
]θ

b) b← b1−θ ⊙
[
proxdivF2

(KT (a),0,ε)
]θ

3. return γ = (aiKi, jb j)i, j

Algorithm 6 Extrapolated Sinkhorn’s algorithm (acceleration parameter θ ∈ [1,2[)

1. initialize the kernel K and the iterates (a,b) = (1I ,1J)

2. while stopping criterion not satisfied repeat:

a) a← a1−θ ⊙ [µ⊘K(b)]θ

b) b← b1−θ ⊙
[
ν⊘KT (a)

]θ

3. return γ = (aiKi, jb j)i, j

3.4.2. Acceleration of local convergence

Let us first consider the minimization of a quadratic function, with A ∈ Rn×n, B ∈ Rm×m and
C ∈Rn×m

FQ(u,v) =
1
2

uT Au+
1
2

vT Bv+ vTCu (3.4.1)

which is positive definite, i.e. the block matrix H =

(
A CT

C B

)
is a positive definite symmetric

matrix H ≻ 0.

Lemma 3.4.3 (Local linear convergence of alternate minimization). The alternate minimization

on FQ (also known as Gauss-Seidel algorithm) starting from u(0) ∈Rn corresponds to iteratively

applying the operator T := A−1CT B−1C, i.e. u(ℓ) = T ℓ(u(0)). The matrix T ∈ Rn×n is diago-

nalizable in R and all its eigenvalues belong to [0,1[. In particular, alternate minimization

converges linearly with the rate ‖T‖ℓ∞ < 1, the spectral norm of T .

Proof. By the first order optimality conditions, one has Au(ℓ)+CT v(ℓ−1) = 0 and Bv(ℓ)+Cu(ℓ) =
0, which gives u(ℓ) = T (u(ℓ−1)). Now let B̃ := CT B−1C. Since B−1 ≻ 0, one has xT B̃x =
‖Cx‖2

B−1 ≥ 0 for all x ∈ Rn so B̃ is a symmetric, positive semi-definite matrix. Also, since H

is positive definite, the Schur complement A−CT B−1C = A− B̃ is symmetric positive definite
so we deduce B̃ ≺ A. It follows that T = A−1B̃ = A−1/2(A−1/2B̃A−1/2)A1/2 is diagonalizable
in R because it is similar to A−1/2B̃A−1/2 which is symmetric. To conclude, let µ ∈ R be an
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3.4. Acceleration of convergence rate

eigenvalue of T = A−1B̃ and x ∈Rn such that A−1B̃x = µ x. Computing the scalar product with
Ax yields xT B̃x = µ xT Ax. It follows, by the inequality 0� B̃≺ A, that 0≤ µ < 1.

The spectral analysis on this quadratic case shows an acceleration of the order of the optimal
methods. Such analysis is standard for the SOR method [169], but I include it in this thesis for
the sake of completeness and because I was unable to find a reference for the specific case of
convex minimization.

Theorem 3.4.4. Denote 1−η the maximal eigenvalue of T (by Lemma 3.4.3, 0 < η < 1). Then,

for the optimal choice of parameter θ = 2/(1+
√

η), the asymptotical linear convergence rate

of the extrapolated alternate minimization (Definition 3.4.1) on the quadratic function (3.4.1) is

r =
1−√η

1+
√

η
.

This means that asymptotically, ‖(u(ℓ),v(ℓ))‖= O(rℓ).

Remark 3.4.5. For η close to 0, an optimal solution with precision ε > 0 is found after an

order of − logε/η iterations with the alternate minimization, and − logε/
√

η iterations for

the accelerated version with the optimal parameter.

Proof. By writing the first order optimality conditions of the partial minimization, one finds the
explicit form of the updates

u(ℓ+1) = (1−θ )u(ℓ)−θA−1CT v(ℓ)

v(ℓ+1) = (1−θ )v(ℓ)−θB−1CT u(ℓ+1).

One iteration is equivalent to applying an endomorphism Mθ : Rn×Rm to (u(ℓ),v(ℓ))∈Rn×Rm:
let us study the spectral properties of Mθ . Let (u,v) be (if it exists) a complex eigenvector of Mθ

with eigenvalue λ ∈ C. Replacing in the iteration above, we see that (u,v) satisfies

(λ +θ −1)u = −θA−1CT v (λ +θ −1)v = −λθB−1Cu

and combining these two equalities, it holds in particular that u is an eigenvector of T =

A−1CT B−1C (the matrix from Lemma 3.4.3) with eigenvalue µ = (λ+θ−1)2

λθ 2 , i.e. λ solves the
equation

X2−2(
1
2

θ 2µ + 1−θ )X +(θ −1)2 = 0. (3.4.2)

of unknown X ∈ C. The solutions to (3.4.2) are of the form

λ = b+ δ 1/2 where

{
b = 1

2 θ 2µ + 1−θ

δ = θ 2µ(1−θ + 1
4 θ 2µ).

and where δ 1/2 is a (positive, negative or purely imaginary) square root of δ .
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A careful treatment of the several cases depending on the signs of b and δ leads to the fol-
lowing expression, denoted f (θ , µ), for the maximum modulus of the eigenvalue associated to
µ and acceleration parameter θ

f (θ , µ) =

{
θ −1 if θ 2µ−4(θ −1) ≤ 0
1
2 θ 2µ− (θ −1)+ 1

2

√
µθ 2(θ 2µ−4(θ −1)) otherwise.

This function is plotted on Figure 3.2. For a fixed µ , it reaches a minimum for δ = 0 and for
fixed θ , it is an increasing function of µ , so, if µmax is the maximum eigenvalue of T , then
f (θ , µmax) is the maximum modulus of the eigenvalues of Mθ and it is minimized for δ = 0 i.e.
(taking the only solution smaller than 2):

θ̄ =
2

µmax
(1−

√
1−µmax) =

2
1+

√
η

where we have introduced η = 1− µmax which is typically small. With this choice of θ , we
thus guarantee that all the eigenvalues of Mθ are smaller than θ −1 = (1−√η)/(1+

√
η), so

θ − 1 is the spectral radius of Mθ . The asymptotical rate is then given by Gelfand’s formula,
stating that the spectral radius equals limk→∞ ‖Mk

θ‖1/k (for any choice of consistent norm on
matrices).

For completeness, let us show that this analysis on a quadratic form corresponds indeed to
the local acceleration behavior in general. For simplicity, we assume a positive Hessian at the
minimum, an assumption that does not cover directly the case of Sinkhorn’s iterations. An
interesting direction would be to study the case of functions with separable non-smooth terms.

Theorem 3.4.6. Let F : Rn×Rm→R be a convex function of class C 2 which admits a minimum

where the Hessian is positive definite. Then, if it is well-defined and converges, alternate mini-

mization starting from u(0) ∈Rn converges locally linearly at a rate 1−η with 0 < η < 1. For

the choice of parameter θ = 2/(1+
√

η), the extrapolated alternate minimization converges

locally at a rate (1−√η)/(1+
√

η).

Proof. Consider the fixed point map Φθ : Rn+m→Rn+m, defined as (u(ℓ+1),v(ℓ+1)) =Φθ (u
(ℓ),v(ℓ))

and let (ū, v̄) be a minimizer of F . By the implicit function theorem applied on the partial
gradients of F , there exists an open neighborhood U ×V ⊂ Rn+m of (ū, v̄) and continuously
differentiable functions G1,G2 such that whenever (u,v) ∈U ×V , it holds

Φθ (u,v) = ((1−θ )u+θG1(v), (1−θ )v+θG2((1−θ )u+θG1(v))) .

It follows that Φθ is continuously differentiable on U ×V , and its differential at the fixed point
(ū, v̄) is the endomorphism Mθ from the proof of Theorem 3.4.4 associated to the quadratic
Taylor approximation of F around (ū, v̄). The local convergence rate follows with classical
arguments and Theorem 3.4.4.
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3.4. Acceleration of convergence rate

Figure 3.2.: Modulus of the transformed eigenvalues of the extrapolated algorithm f (θ , µ) as
a function of θ the extrapolation parameter and µ the original eigenvalue. (plain
curve) the original eigenvalue is recovered for θ = 1. (dashed curve) optimal value
θ̄ for the acceleration parameter, as a function of µmax. Below that line, the eigen-
values are real, and complex above, with modulus θ −1.

3.4.3. Numerical experiments on Sinkhorn’s iterations

In order to compare the previous result to our specific problem of scaling iterations, we per-
form the following numerical experiment, focused on the specific case of standard Sinkhorn’s
iterations, to solve the entropy regularized optimal transport problem. Note that we observed a
similar behavior for other scaling iterations.

Linear regime We compare the predicted local convergence behavior with practical experi-
ments as follows. We set I = J = 100 and let µ ,ν ∈ RI be two random vectors, with entries
independently uniformly distributed in [1,2], and subsequently normalized to total mass 1. The
entries of the cost matrix are independent, uniformly distributed on [0,1]. The problem we solve
has thus no particular structure.

We execute the following steps: we chose ε > 0 and run a reference computation to compute
the optimal potential uref. We then run standard and extrapolated Sinkhorn’s iterations and mea-
sure their local linear convergence rates using a linear regression on ‖u(ℓ)− uref‖∞ on the last
third iterations1, with a stopping criterion being ‖uℓ− uref‖∞ < 10−6. Note that in these exper-
iments, we observed that the linear convergence regime started after just a few iterations (this
is not true anymore for smaller values of the regularization ε). The theoretical and numerical
convergence rates are compared on Figure 3.2. For the theoretical convergence rates, we use the
formula in the proof of Theorem 3.4.4 (also displayed on Figure 3.2) which requires to measure
Sinkhorn’s numerical linear convergence rate.

Global convergence We do not have theoretical guarantees for global convergence. In prac-
tice, the algorithm may even fail to converge when the acceleration parameter θ is close to 2
outside of the local, linearly convergent, regime. In order to avoid this issue and still enjoy the

1the optimal uref is unique only up to a translation, so one should recenter u(ℓ) and uref before computing their
distance, for instance by subtracting the mean.
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(a) ε = 0.1 and µ = 0.6 (b) ε = 0.01 and µ = 0.984 (c) ε = 0.001 and µ = 0.9978

Figure 3.3.: Comparison of the theoretical local linear convergence rates of the extrapolated scal-
ing iterations (orange lines) and the numerical results (blue crosses). The three plots
correspond to the resolution of the same optimal transport problem with various reg-
ularization parameters ε and µ corresponds to the experimental linear convergence
rate of Sinkhorn’s iterations.

same per-iteration complexity, we propose a heuristic for the evolution of θ that turns out quite
robust and very efficient. At each iteration, of index ℓ, set

θ (ℓ) = min{θopt,1+
ℓ

κ + ℓ
}

where θopt is ideally computed from the linear convergence rate of Sinkhorn’s iterations on the
same problem with the formula of Theorem 3.4.4, or in practice, estimated from the resolution
of similar problems and κ ≥ 1 a parameter. The informal idea behind this heuristic is to attribute
a weight (1− λ )κ to each eigenvalue in [0,λmax] of the linearized iteration and to see which
one has the strongest magnitude at iteration ℓ, i.e. λ (ℓ) = argmaxλ ℓ(1− λ )κ . Our heuristic
corresponds to setting θ (ℓ) = 1+λ (ℓ) (as is the proof of Theorem 3.4.4). In practice, it performs
well outside of the linear convergence regime too.

We display on Table 3.1 the number of iterations before convergence of the extrapolated it-
erations in comparison to the standard Sinkhorn’s iterations, for solving the same random OT
problem as in the previous paragraph, with κ = 1. For highly regularized problems, the run-
ning time is divided by 2 to 10. For small regularization parameters, the gain is of orders of
magnitude.
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ε # iter Sinkhorn # iter extrapolated ratio θopt

10−1 16 8 2.0 1.25

10−2 316 46 6.9 1.70

10−3 7×103 189 37.4 1.93

10−4 4.1×104 709 57.5 1.96

10−5 8.2×104 985 82.8 1.97

Table 3.1.: Comparison of the number of iterations before convergence for Sinkhorn’s iterations
and the extrapolated version for several values of ε and with the optimal acceleration
parameter θopt computed from the linear convergence rate of Sinkhorn’s iterations.
Stopping criterion is ‖u(ℓ)− uopt‖∞ < 2× 10−6 (except for the last line where the
tolerance is 10−8). The iterates are initialized with v(0) = 0, except for the 2 last lines,
where we use the optimal solution of the previous line in order to avoid numerical
overflow. Complexity per iteration is the same for both algorithms so the ratio of
number of iterations is also the running time ratio.
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3.5. Scaling algorithms in continuous setting

In the context of standard optimal transport, the entropic regularization has been well studied
in the continuous setting 2. It corresponds to the Schrödinger bridge problem [99], and to the
infinite dimensional extension of the so-called DAD problem [21, 118]. We refer to [86] for an
up to date review on the DAD problem and its generalization to the scaling of linear operators in
the finite dimensional setting. As regards the present thesis, a journey in the continuous setting
is worthwhile since we obtain, for specific cases of the scaling algorithm, linear and dimension
free convergence rates of the primal iterates.

3.5.1. Continuous entropic regularization

Regularization and Γ-convergence

Assume that (X ,dx) and (Y ,dy) are two Polish spaces endowed with reference probability mea-
sures and consider minimizing the entropic regularization of the generic formulation (3.1.1):

Eε(γ) :=
∫

X×Y
c ·dγ +F1(π

x
#γ)+F2(π

y
#γ)+ εH(γ|dx⊗dy). (3.5.1)

where dx⊗dy is the product measure on X ×Y , γ ∈M+(X ×Y )n and H is defined as follows.
Note that in this section we come back to the setting of n couplings as in Section 3.1 because it
allows to treat the case of barycenters (balanced and unbalanced) while preserving the pointwise
separability of the functions F1 and F2. It is also interesting to see how the non-expansiveness
property (shown below) extends to the case n > 1 in a non-trivial way.

Definition 3.5.1 (Relative entropy). The relative entropy (a.k.a. Kullback-Leibler divergence) is

defined as the f -divergence associated to f (s) = s log(s)−s+1 and has the explicit expression,

for µ ,ν ∈M +(X)

H(µ|ν) =
∫

ψ f (µ|ν) =
{∫ dµ

dν log( dµ
dν )dν− ∫

µ +
∫

ν if µ ≪ ν

∞ otherwise.

This definition is consistent with the discrete Definition 3.3.1 and we use therefore the same

notation. For vector valued measures, H is the sum of the relative entropies on each component

(with possibly positive weights).

The following proposition gives conditions for the minimizer of the regularized problem to
converge to a true regularizer, under an abstract assumption (this is a basic result and the as-
sumption is for instance too strong to deal with unbalanced optimal transport with entropies
with linear growth).

Assumption 3.5.2 (Density of finite entropy plans). Any feasible plan for E0 can be approxi-

mated (weakly) by a sequence of plans with finite entropy and same marginals.

2by continuous, we mean spaces which are not necessarily discrete. The setting in this section is, after the first
paragraph, that of measurable spaces.
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Proposition 3.5.3 (Minimizers and their convergence). Assume that c is a (family of) l.s.c., lower

bounded cost and that F1, F2 are convex, l.s.c. functionals. If Eε is feasible for some ε > 0, then

it is feasible and admits a unique minimizer γε for all ε > 0. If furthermore c is continuous and

Assumption 3.5.2 is satisfied, then Eε Γ-converges to E0. In particular, if F1 or F2 have compact

sublevel sets, then γε converges weakly to a minimizer of E0 as ε ↓ 0.

Proof. It is clear that a feasible coupling for some ε > 0 is feasible for all ε > 0. Moreover,
thanks to our assumptions on c, Eε is weakly l.s.c. and also the sublevel sets of H(·|dx⊗dy) are
compact [103, prop. 2.10], so there exists a minimizer for all ε > 0 by the direct method of the
calculus of variations. Moreover, the relative entropy is strictly convex w.r.t. its first argument so
the minimizer is unique. The second result is a result of Γ-convergence of Eε to E0 (see Section
2.1.2). For any γ0 ∈ domE0, the sequence given by Assumption 3.5.2 is, up to a reindexing to
slow down the possible blow up of the entropy, a recovery sequence, in particular because since
c is continuous,

∫
cdγ is weakly continuous. This proves the Γ-limsup. The Γ-liminf, is obvious

because the relative entropy is nonnegative and the other terms are weakly l.s.c.

Remark 3.5.4.

(i) Theorem 3.1.2 gives some conditions for F1 or F2 to have compact sublevel sets.

(ii) Assumption 3.5.2 holds when X = Y is a bounded subset of Rd , dx = dy is the (rescaled)

Lebesgue measure and the domain of F1 and F2 is included in the set of measures with finite

entropy, as shown in [34] (where the Γ-convergence of entropic regularization of standard

OT is studied). It also holds in the discrete case if γ (0) has full support, when one recovers

Proposition 3.2.10.

(iii) the previous result does not inform on which minimizer of E0 is chosen in the limit. This is

an intricate question that is studied in [59] for standard OT with distance cost on R.

Choice of reference measure

The previous result shows that the choice of dx and dy is critical for obtaining the weak con-
vergence to a solution of (3.1.1) when ε → 0. A necessary condition is that the support of
dx⊗dy should contain the support of an optimizer of the unregularized problem. For an optimal
entropy-transport problems between two measures (µ ,ν), in contrast to standard OT, the choice
dx = µ/µ(X) and dy = ν/ν(Y ) is not always suitable. If one of the entropy function is not
superlinear, the marginals of the minimizer are not necessarily dominated by µ or ν . In this
case, the support of the reference measure dxdy should contain the sets

{(x, argmin
y

c(x,y));x ∈ X), and {(argmin
x

c(x,y),y);y ∈ Y} .

where the singular part of minimizers is optimally located. In our numerical experiments, X and
Y are discrete spaces and the choice of dx and dy goes in hand with the choice of a discretization
grid on which we find approximate solutions to the original problem.

89



Chapter 3. Scaling Algorithms for Optimal Couplings

Variational problem on densities and duality

From the very definition of the entropy H (Definition 3.5.1), any feasible γ of the entropy reg-
ularized problem (3.5.1) admits an L1 density with respect to the reference measure dx⊗ dy.
Accordingly, it is natural to reformulate the problem as a variational entropy regularized prob-
lem on measurable functions:

min
{

F1(π
x
#r)+F2(π

y
#r)+ εH(r|K) ; r ∈ L1(X×Y )n

}
(Pε )

where F1(s)↔ F1(sdx), F2(s)↔ F2(sdy) and K ∈ L∞
+(X×Y )n is defined componentwise by

Kk(x,y) := exp (−ck(x,y)/ε) k ∈ {1, . . . ,n} (3.5.2)

with the convention exp(−∞) = 0, the projection operator acts on each component of r and H is
the sum of the relative entropy on each component (possibly with positive weights). Throughout
this section, we only make the following general assumptions on the objects involved in (Pε ):

Assumption 3.5.5.

(i) (X ,dx) and (Y ,dy) are probability spaces (i.e. measured spaces with unit total mass). The

product space X×Y is equipped with the product measure dxdy := dx⊗dy;

(ii) F1 : L1(X)n → R∪{∞} and F2 : L1(Y )n → R∪{∞} are weakly l.s.c., convex and proper

functionals;

(iii) K ∈ L∞
+(X×Y )n and ε > 0.

We begin with a general duality result, similar to duality results that can be found in the
literature on entropy minimization [20].

Proposition 3.5.6 (Duality). The dual problem of (Pε ) is

sup
{
−F∗1 (−u)−F∗2 (−v)− ε〈e(u⊕v)/ε −1,K〉 ; (u,v) ∈ L∞(X)n×L∞(Y )n

}
(Dε )

where u⊕ v : (x,y) 7→ u(x) + v(y) and one has min(Pε ) = sup(Dε ). If (Pε ) is feasible then it

admits a unique minimum r = (rk)k ∈ L1(X×Y )n and (u,v) maximize (Dε ) if and only if

{
−u ∈ ∂F1(πx

#r)

−v ∈ ∂F2(π
y
#r)

and rk(x,y) = e
uk(x)

ε Kk(x,y)e
vk(x)

ε for k = 1, . . . ,n. (3.5.3)

Proof. In this proof, the spaces L∞ and (L∞)∗ are endowed with the strong and the weak*
topology respectively. As L1(X ×Y )n can be identified with a subset of the topological dual
of L∞(X ×Y )n, the function H(·|K) can be extended on (L∞(X ×Y )n)∗ as G(r) = H(r|K) if
r ∈ L1(X×Y )n and ∞ otherwise. Its convex conjugate G∗ : L∞(X×Y )n →R is

G∗(w) =
n

∑
k=1

∫

X×Y
(ewk(x,y)−1)Kk(x,y)dxdy = 〈ew−1,K〉 .
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and is everywhere continuous for the strong topology [135, Theorem 4] (this property relies on
the finiteness of dxdy and the boundedness of K). The linear operator A : L∞(X)n×L∞(Y )n →
L∞(X ×Y )n defined by A(u,v) : (x,y) 7→ u(x) + v(y) is continuous and its adjoint is defined
on (L∞(X ×Y )n)∗ (identified with a subset of M (X ×Y )n) by A∗(r) = (πx

#r,πy
#r). Since F1

and F2 are convex, l.s.c., proper and since G∗ is everywhere continuous on L∞(X ×Y )n, strong
duality and the existence of a minimizer for (Pε ) is given by Fenchel-Rockafellar theorem (see
Appendix A). More explicitly, this theorem states that

sup
(u,v)∈L∞(X)n×L∞(Y )n

−F∗1 (−u)−F∗2 (−v)− εG∗(A(u,v)/ε)

and
min

r∈(L∞(X×Y )n)∗
F1(P

X
# r)+F2(P

Y
# r)+ εG(r)

are equal, the latter being exactly (Pε ) since G is infinite outside of L1(X ×Y )n. It states also
that if (u,v) maximizes (Dε ), then any minimizer of (Pε ) satisfies r ∈ ∂G∗(A(u,v)/ε) and the
expression for the subdifferential of G∗ is a particular case of Lemma 3.5.12 below. Finally,
uniqueness of the minimizer for (Pε ) comes from the strict convexity of G.

3.5.2. Continuous scaling iterations

In this section, we recover the continuous scaling iterations from the alternate maximization on
the dual problem. The derivation are similar (and contain as a particular case) those of Section
3.3, but more care is needed in the proofs. Let K and K T be the linear operators defined, for
a : X → [0,∞[n and b : Y → [0,∞[n measurable, for k = 1, . . . ,n as

[K b]k(x) :=
∫

Y
Kk(x,y)bk(y)dy and [K T a]k(y) :=

∫

X
Kk(x,y)ak(x)dx . (3.5.4)

Given v(0) ∈ L∞(Y )n, the alternate maximization procedure applied to the dual problem (Dε )
defines, for ℓ ∈N∗, the iterates





u(ℓ+1) = arg max
u∈L∞(X)n

−F∗1 (−u)− ε〈eu/ε ,K ev(ℓ)/ε〉X ,

v(ℓ+1) = arg max
v∈L∞(Y )n

−F∗2 (−v)− ε〈ev/ε ,K T eu(ℓ+1)/ε〉Y ,
(3.5.5)

where we used the fact that, by Fubini-Tonelli, one has

〈e(u⊕v)/ε ,K〉X×Y = 〈e u
ε ,K e

v
ε 〉X = 〈e v

ε ,K T e
u
ε 〉Y . (3.5.6)

Conditions which ensure the existence of these iterates are postponed to Theorem 3.5.14. For
the moment, remark that by strict convexity, they are uniquely defined when they exist. The
continuous scaling iterations are defined as follows.

Definition 3.5.7 (Continuous scaling iterations). The continuous scaling iterations is the se-

quence (a(ℓ),b(ℓ))ℓ∈N∗ defined by b(0) ∈ L∞
+(Y ) and, for ℓ ∈N∗,

a(ℓ+1) :=
proxH

F1/ε(K b(ℓ))

K b(ℓ)
, b(ℓ+1) :=

proxH
F2/ε(K

T a(ℓ+1))

K T a(ℓ+1)
(3.5.7)
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In this definition, the division is performed pointwise with the convention 0/0 = 0 (this has
to be thought of as computing a relative density). The proximal operator for the relative entropy
H is defined for F1 (and similarly for F2) as

proxH
F1/ε(z) := argmin{F1(s)+ εH(s|z) ; s : X →Rn measurable} .

The following proposition shows that, as long as they are well defined, these iterates are related
to the alternate dual maximization iterates by a change of variables.

Proposition 3.5.8. Define a(0) := exp(v(0)/ε), let (a(ℓ),b(ℓ)) be the scaling iterates (3.5.7) and

(u(ℓ),v(ℓ)) the alternate dual maximization iterates defined in (3.5.5). If for all ℓ ∈ N, either

loga(ℓ) ∈ L∞(X)n and logb(ℓ) ∈ L∞(Y )n, or u(ℓ) ∈ L∞(X)n and v(ℓ) ∈ L∞(Y )n then

(a(ℓ),b(ℓ)) = (eu(ℓ)/ε ,ev(ℓ)/ε).

The proof of this proposition uses the following lemma.

Lemma 3.5.9. Let (T ,dt) be a measured space and v ∈ L1
+(T ). For any u : T →R measurable,

if H(u|v) < ∞ then u ∈ L1
+(T ).

Proof. Without loss of generality, one can assume v positive since for dt-a.e. t, if v(t) = 0 then
u(t) = 0. The subgradient inequality at exp(1) gives, for all s ∈ R, s ≤ h(s) + e1− 1, where
h(s) = s log(s)− s+ 1. Consequently,

∫

T
udt =

∫

T
(u(t)/v(t))v(t)dt ≤

∫

T

(
h(u(t)/v(t))+ e1−1

)
v(t)dt < ∞.

Proof of Proposition 3.5.8. Suppose that v(ℓ) ∈ L∞(Y )n and that b(ℓ) = ev(ℓ)/ε . One has K b(ℓ) ∈
L1(X)n and from Lemma 3.5.9, one can compute proxH

F1/ε(K b(ℓ)) in L1(X)n. Fenchel-Rockafellar
duality gives (see the proof of Proposition 3.5.6 for a more detailed application in a similar set-
ting):

sup
u∈L∞(X)n

−F∗1 (−u)− ε〈e u
ε ,K e

v(ℓ)

ε 〉= min
s∈L1(X)n

F1(s)+ εH(s|K e
v(ℓ)

ε )

and the optimality conditions state that u⋆ maximizes the problem on the right if and only if the

minimizer s⋆ := proxH
F1/ε(K e

v(ℓ)

ε ) of the problem on the left belongs to the subdifferential of

u 7→ 〈e u
ε ,K e

v(ℓ)

ε 〉 at the point u⋆. That is (as a consequence of Lemma 3.5.12 below) if and only
if for dx almost every x ∈ X ,

s⋆(x) = eu⋆(x)/ε · (K ev(ℓ)/ε)(x)

Thus if ε loga(ℓ+1) belongs to L∞(X)n or if u⋆ ∈ L∞(X)n exists, then u⋆ = ε loga(ℓ+1). The result
follows by induction.
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3.5. Scaling algorithms in continuous setting

3.5.3. Existence of iterates for integral functionals

Our next step is to give conditions on F1 and F2 that guarantee the existence of the scaling iterates
(3.5.7) and an equivalence with alternate maximization on the dual (3.5.5). The main condition
involves the notions of normal integrands and integral functionals.

Definition 3.5.10 (Normal integrands and integral functionals [139]). A function f : X ×Rn →
R∪{∞} is called a normal integrand if its epigraphical mapping X ∋ x 7→ epi f (x, ·) is closed-

valued and measurable. A convex integral functional is a function F : L1(X)n →R∪{∞} of the

form

F(s) = I f (s) :=
∫

X
f (x,s(x))dx

where f is a normal integrand and f (x, ·) is convex for all x ∈ X. In this Section, we say that F

is an admissible integral functional if moreover for all x ∈ X, f (x, ·) takes nonnegative values,

has a domain which is a subset of [0,∞[n and if there exists s ∈ L1(X)n such that I f (s) < ∞.

Example 3.5.11.

(i) for finite dimensional problems (when X and Y have a finite number of points), integral

functionals are simply sums of pointwise l.s.c. functions;

(ii) the f -divergence between two densities (u,v)∈L1
+(X)2, which is defined as

∫
X ψ f (u(x)|v(x))dx

for an entropy function f as in Definition 1.2.15 is an admissible integral functional, as a

function on (u,v) jointly as well as a function of u or v separately [139, Prop. 14.45].

(iii) consider a function of the general form (3.1.4) between densities, i.e. for u ∈ L1(X)n

F(u) = inf
v∈L1(X)n

{
∑

∫

X
ψ f (ui(x)|vi(x))dx+

∫

X
g(v(x))dx

}
.

where f an entropy function and g : Rn →R+∪{∞} convex, proper, l.s.c. Then minimiza-

tion can be performed pointwise in v and F is a convex integral functional ([139, Prop.

14.47] and Proposition 3.1.1).

In general, this concept allows to deal conveniently with measurability issues: conjugation (as
well as subdifferentiation) can be performed pointwise.

Lemma 3.5.12. If F is an admissible integral functional associated to the convex normal in-

tegrand f , then F is convex and weakly l.s.c., f ∗ is also a normal convex integrand, F∗ = I f ∗ ,

where conjugation is computed w.r.t. the second variable.

Proof. This property can be found in [138] under the assumption of existence of a feasible point
s⋆ ∈ L1(X)n for I f and a feasible point u⋆ ∈ L∞(X)n for I f ∗ . Our admissibility criterion requires
the existence of s⋆ and one has

I f ∗(0) =
∫

X
f ∗(x,0)dx = −

∫

X
inf

s∈Rn
f (x,s)dx < ∞

since infs f (x,s) ∈ [0, f (x,s⋆(x))].
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It follows also from general results on normal integrand that the operator proxH is separable.

Proposition 3.5.13. Let s : X →Rn be measurable. If F = I f is an admissible integral functional

then for almost all x ∈ X,

(
proxH

F/ε(s)
)
(x) = proxH

f (x,·)/ε(s(x)) .

Remark that in this proposition, we used the same notation H for the relative entropy between
two functions and between two vectors. In both cases, it is the sum—discrete or continuous—of
the pointwise relative entropy.

Proof. The problem which defines the proximal operator is that of minimizing I f (z)+H(z|s) :=
Ig(z) over measurable functions z : X →Rn with

g : (x,z) ∈ X×Rn 7→ f (x,z)+H(z|s(x)) .

The function (x,z) 7→H(z|s(x)) is a convex normal integrand by [139, Prop. 14.30 and 14.45c].
Thus g is itself a normal convex integrand, as the sum of normal convex integrands [139, Prop.
14.44]. Then a minimization interchange result [139, Thm. 14.60]] states that minimizing Ig is
the same as minimizing g pointwise.

By Lemma 3.5.12, if F1 and F2 are admissible integral functionals then F∗1 and F∗2 are also
integral functionals. So the alternating optimization on (Dε ) can be relaxed to the space of
measurable functions and still be well defined:





u(ℓ+1) = argmax
u:X→Rn

−I f ∗1 (−u)− ε〈e u
ε ,K e

v(ℓ)

ε 〉X

v(ℓ+1) = argmax
v:Y→Rn

−I f ∗2 (−v)− ε〈e v
ε ,K T e

u(ℓ+1)
ε 〉Y .

(3.5.8)

The following theorem gives existence, uniqueness of this iterates and a precise relation with the
scaling iterates (3.5.7).

Theorem 3.5.14. Let F1 and F2 be admissible integral functionals associated to the normal

integrands f1 and f2 as in Definition (3.5.10). Assume that for all x ∈ X and y ∈ Y , there exists

points s1 and s2 with strictly positive coordinates such that f1(x,s1) < ∞ and f2(y,s2) < ∞ and

that K takes positive values. Define a(0) = 1 and let (a(ℓ),b(ℓ)) be the scaling iterates (3.5.7).
Then, with initialization v(0) = 0, the iterates (u(ℓ),v(ℓ)) in (3.5.8) are well defined, unique, and

for all ℓ ∈N one has (a(ℓ),b(ℓ)) = (e
u(ℓ)

ε ,e
v(ℓ)

ε ).

Proof. Suppose that v(ℓ) : Y →Rn is a well-defined measurable function and that b(ℓ) = ev(ℓ)/ε .
As K is positive, K b(ℓ) is positive dx a.e. Let a(ℓ+1) be computed with (3.5.7). Thanks to
Proposition 3.5.13, the proximal operator can be decomposed as pointwise optimization prob-
lems and our assumptions allows to apply Fenchel-Rockafellar duality (Appendix A) in the case
where both problems reach their optima

max
u∈Rn

− f ∗1 (x,−u)− ε〈eu/ε ,K b(ℓ)〉= min
s∈Rn

f1(x,s)+ εH(s|K b(ℓ)(x))
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3.5. Scaling algorithms in continuous setting

with the relation between optimizers: eu/ε = s/K b(ℓ). The minimized function is a strictly
convex normal integrand because H(·|K b(ℓ)(x)) is a normal integrand and sum of normal in-
tegrands are normal [139, Prop. 14.44]. It follows that the function of pointwise minimizers
x 7→ s(x) is uniquely well-defined and measurable by [139, Thm. 14.37], so the function of

pointwise maximizers x 7→ u(x) is also measurable. This shows that a(ℓ+1) = eu(ℓ+1)/ε and one
concludes by induction.

3.5.4. Global linear convergence in continuous setting

After these technical preliminaries, we are ready to state a nonexpansiveness result and a con-
vergence result that hold in the infinite dimensional case. We start by making sure that fixed
points of the scaling iterations are minimizers.

Proposition 3.5.15 (Fixed point). Under the assumptions of Theorem 3.5.14, if the scaling it-

erations (3.5.7) admit a fixed point (a,b) such that loga ∈ L∞(X)n and logb ∈ L∞(Y )n then

(ε loga,ε logb) is a solution of (Dε ) and the function r defined for each k = 1, . . . ,n by rk(x,y) =
ak(x)Kk(x,y)bk(y) is the unique solution of (Pε ).

Proof. As a consequence of Proposition 3.5.13, we can write the optimality condition of a fixed
point of (3.5.8) for almost every x ∈ X as

uk(x) = ε log

(
ak(x)K bk(x)

K bk(x)

)

for some u(x)∈−∂ f1(x,a(x)K b(x)). Thus−ε log(a)∈ ∂ I f1(π
x
#r) because (πx

#r)(x) = a(x)K b(x)
for a.e. x. Similar derivations for b show that the couple (ε loga,ε logb) and r satisfies the opti-
mality conditions (3.5.3).

Metrics from non-linear Perron-Frobenius theory

The specific form of the scaling iterations make them suitable for tools from non-linear Perron-
Frobenius theory [98] which studies the convergence and fixed points of iterated maps satisfying
some homogeneity or positivity properties. It is well known that Sinkhorn’s iterations—a special
case of the scaling iterations (3.5.7)—converges linearly for the so-called Hilbert projective

metric [73, 21]. This metric is defined as follows (we use Birkhoff’s definition, specialize it to
the cone L∞

+(X)n and denote � the associated partial order).

Definition 3.5.16 (Hilbert’s projective metric). Let∼ be the equivalence relationship on L∞
+(X)n

defined as u∼ v if and only if there exists α ,β > 0 such that u�αv� βu. For x,y∈ L∞
+(X)n\{0}

define the maximum and minimum ratios as

M(u/v) := inf{α > 0 ; u� αv}, m(u/v) := sup{β > 0 ; βv� u}.

The Hilbert’s projective metric is defined as

dH(u,v) :=





log(M(u/v)/m(u/v)) if u∼ v and u,v 6= 0,

0 if u = v = 0,

∞ otherwise.
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This defines an extended metric on the spaces of rays of L∞
+(X)n. It has the property that

maps which are order preserving and p-homogeneous are p-Lipschitz and linear maps which
have a finite projective diameter are also Lipschitz contractions [31]. It follows in particular that
when the operators K and K T have finite projective diameter (which is true if c is bounded)
then Sinkhorn’s iterations are contractive. For the general case of scaling iterations, there is a
variant of the Hilbert metric whose properties are slightly more convenient, called the Thompson

metric [155].

Definition 3.5.17 (Thompson’s metric). Using the notations of Definition 3.5.16, the Thomp-

son’s metric is defined as

dT (u,v) :=





max{logM(u/v), logM(v/u)} if u∼ v and u,v 6= 0

0 if u = v = 0

∞ otherwise.

Each part of L∞
+(X)n for the equivalence relationship “∼” endowed with the metric dT is a

complete metric space (for instance the set
{

s ∈ L∞
+(X)n ; logs ∈ L∞(X)n

}
is a part of L∞

+(X)n).
Moreover, an order preserving mapping T : L∞

+(X)n → L∞
+(Y )

n is non-expansive under Thomp-
son’s metric if and only if f is subhomogeneous, i.e., λT (u) � T (λu) for all u ∈ L∞

+(X)n and
0≤ λ ≤ 1.

Contraction properties of scaling iterates

In this section, we avoid subtleties by working with strictly positive functions. While not all
positive functions belong to the same part, if a part intersects L∞

++(X) then it is entirely included
in L∞

++(X). Let us first isolate cases that we will refer to frequently.

Assumption 3.5.18. The function F is an admissible integral functional and proxH
F (s) preserves

strict positivity.

For proxH
F to preserve (strict) positivity, it is necessary and sufficient that almost everywhere,

f (x, ·) has a positive feasible point, where F = I f . Indeed, in that case, the qualification con-
straint is satisfied for the proximal problem and Fenchel-Rockafellar theorem guarantees that
the entropy is subdifferentiable at the minimum.

Assumption 3.5.19. The function F is the relative entropy with respect to a family of densities

p ∈ L1
++(X)n, i.e. for s ∈ L∞

++(X)n one has F1(s) = λ ∑
n
k=1 H(sk|pk) with λ > 0 (in particular,

it satisfies Assumption 3.5.18.

The next lemma shows why it is relevant to introduce the Thompson metric in the context of
scaling iterations.

Lemma 3.5.20 (Contraction properties). If F satisfies Assumption 3.5.18, then the operator s 7→
proxH

F (s)/s is nonexpansive for the Thompson’s metric on L∞
++(X)n. If F satisfies, Assumption

3.5.19, then this operator is Lipschitz contractive of contracting ratio (1+λ−1)−1 on L∞
++(X)n.
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Proof. According to Proposition 3.5.13, the operator proxH
F can be computed pointwisely so we

can work directly with the operator T : Rn
+→Rn

+ defined as T (a) := P(a)⊘a where P(a) :=
proxH

f (a). Let a,b≻ 0 and let us first show that P is order preserving. Combining the optimality
conditions of the proximal step, we get

log(T (a)) ∈ −∂ f (P(a)), log(T (b)) ∈ −∂ f (P(b)). (3.5.9)

where the logarithm acts componentwise. But the subdifferential of f is a monotone set so it
follows,

(log(T (a))− log(T (b))) · (P(a)−P(b)) ≤ 0.

Rearranging the terms yields

(loga− logb) · (P(a)−P(b)) ≥ (logP(a)− logP(b)) · (P(a)−P(b))

where the last term is nonnegative because log is the gradient of the entropy and, as such, is
monotone. It follows that P is order preserving and, coming back to (3.5.9) again, that T is order
reversing. For subhomogeneity, let 0 < λ ≤ 1 and notice that, since λa� a, it holds

T (λa) = P(λa)⊘ (λa) � P(a)⊘ (λa) = λ−1T (a).

Combining these properties, it follows that the operator a 7→ 1⊘T (a) is order preserving and
subhomogeneous so it is nonexpansive for dT and since dT is invariant by inversion, so is T .
For the case F = λ ∑

n
k=1 H(sk|pk), the optimality conditions give the explicit formula [T (u)]k =

(uk/pk)
λ /(λ+1) and one can directly check the claim from the definition of dT .

Since the operator from Lemma 3.5.20 is at the core of the scaling iterations, the next non-
expansiveness result follows easily. We need an assumption on K which is always satisfied, for
instance, if K is derived from a finite valued transport cost.

Theorem 3.5.21 (Scaling iterations are nonexpansive). If F1 and F2 satisfy Assumption 3.5.18

and K preserves strict positivity, then the scaling iterations are nonexpansive for the Thompson

metric on L∞
++(X) and L∞

++(Y ). They are (1+ ε
λ )
−1-Lipschitz contractive if F1 or F2 satisfies

Assumption 3.5.19.

Proof. Nonexpansiveness follows from Lemma 3.5.20 and the fact that K is an order preserving
linear operator, and so is nonnexpansive for the Thompson metric. Under Assumption 3.5.19, it
holds, writing α = (1+ ε/λ )−1,

dT (a
(ℓ+1),a(ℓ)) ≤ α dT (K b(ℓ),K b(ℓ−1)) ≤ α dT (b

(ℓ),b(ℓ−1)) ≤ α dT (a
(ℓ),a(ℓ−1)).

We deduce in particular a convergence result when a part of L∞
++ is stable under the action

of the scaling iterates (for instance, when their logarithms remain in L∞). This condition is easy
to check in the discrete setting because then, parts are characterized by the pattern of zeros.
This corollary contains thus, in the discrete case, the linear convergence for the computation of
optimal entropy-transport problems and unbalanced barycenters with the relative entropy diver-
gence, or gradient flows for the metric Ŵ2.
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Corollary 3.5.22. If F1 satisfies Assumption 3.5.18 and F2 satisfies Assumption 3.5.19, and

moreover dT (b(ℓ0+1),b(ℓ0)) is finite for some ℓ0 ∈N, then the scaling iterates (a(ℓ),b(ℓ)) starting

from b(0) = 1 converge to (a,b) ∈ L∞
++(X)n×L∞

++(Y )
n at a linear rate. For instance, for (a(ℓ))ℓ

and ℓ0 = 0, it holds:

dT (a
(ℓ),a) ≤ (1+ ε/λ )−ℓ dT (a

(0),a) < ∞.

In particular, if (u,v) := (ε loga,ε logb) ∈ L∞(X)n× L∞(Y )n, then (u,v) maximizes the dual

problem (Dε ).

Proof. The additional assumption guarantees that the iterates (b(ℓ))ℓ and (a(ℓ))ℓ are in the same
part of L+(X) or L+(Y ) for ℓ ≥ ℓ0 which are complete metric spaces with the metric dT . The
conclusion follows by Theorem 3.5.21 and Banach fixed point theorem. The optimality of (u,v)
is given by Proposition 3.5.15.
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Chapter 4.

Proximal Splitting for Dynamic

Formulations

In this short chapter, we propose a numerical method for solving the dynamic
formulations of unbalanced optimal transport introduced in Chapter 1. We
adopt and adapt the approach described in [123] (that deals with the balanced
case) and give more details on certain aspects.
In Section 4.1, we describe the splitting algorithm and the staggered grid
discretization. In Section 4.2 we derive the method to compute quickly the
projection maps in the spectral domain, considering various boundary condi-
tions, and the discretized proximal maps for various action functionals. We
conclude in Section 4.3 with numerical computations for various unbalanced
optimal transport models, on 1-D and 2-D domains.
This chapter is an augmented version of a section of the published arti-
cle [44].
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Chapter 4. Solving Dynamic Formulation

4.1. Discretization and optimization algorithm

The general problem we propose to solve is of the following:

min
∫ T

0

∫

Ω

f (ρt(x),ωt(x),ζt(x))dxdt (4.1.1)

where (ρ ,ω ,ζ ) are densities on [0,T ]×Ω that satisfy the continuity equation between two
densities (µ ,ν) on Ω ⊂Rd , i.e.

∂tρ +∇ ·ω = ζ , (ρ0,ρT ) = (µ ,ν).

and f : R+×Rd ×R → R∪{∞} is a simple proper, l.s.c. and jointly convex function. The
approach that we describe is an extension of [123]. See also the related [85] where other ex-
tensions are considered, such as Riemannian costs and the introduction of additional physical
constraints.

4.1.1. Discretization

For clarity of the presentation, we consider a domain Ω = [0,L] which is a line segment: the
extension to bounded domains in higher dimension is just a matter of notations (if the domain is
not a hypercube, one may enclose it in a hypercube and extend f1 as being ∞ if ρ 6= 0 outside
of Ω). Likewise, the extension to functions f with a dependency in (t,x) is just a matter of
notations.

The time and space domain [0,T ]× [0,L] is discretized into Nt×Nx rectangular cells denoted
Wi, j, the center of which form the so-called centered grid, denoted Gc. The grids steps are
denoted (ht ,hx) = (T /Nt ,L/Nx). We consider moreover staggered grids which describe the
boundaries of the cells: the samples of the time-staggered grid Gt are located at the center of the
time boundaries and the space-staggered grid Gx is defined similarly. These grids (Gc,Gt ,Gx)
are shown on Figure 4.1 and defined in mathematical terms as

Gc = {((i−1/2)ht , ( j−1/2)hx) : 1≤ i≤ Nt , 1≤ j ≤ Nx} ,

Gx = {((i−1/2)ht , ( j−1)hx) : 1≤ i≤ Nt , 1≤ j ≤ Nx + 1} ,

Gt = {((i−1)ht , ( j−1/2)hx) : 1≤ i≤ Nt + 1, 1≤ j ≤ Nx} .

The unknown we consider are pairs of centered variables (ρ̂ , ω̂ , ζ̂ ) ∈ Vc×Vc×Vc and stag-
gered variables (ρ ,ω ,ζ ) ∈ Vt ×Vx×Vc, where Vc,Vt and Vx denote the real valued functions
supported on Gc,Gt and Gx, respectively.

Continuity equation

The continuity equation constraint is enforced on the staggered variables by asserting the mass
conservation in each cell. Interpreting ρi, j as the averaged density on the left time boundary of
the cell and ωi, j the averaged momentum on the bottom space boundary, and ζi, j as the averaged
source over the whole cell, this amounts to the conservation of mass equation

hx(ρi+1, j−ρi, j)+ ht(ωi, j+1−ωi, j) = hx htζi, j.
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With the operator A : Vt ×Vx×Vc →Vc defined as

(A(ρ ,ω ,ζ ))i j :=
1
h t
(ρi+1, j−ρi, j)+

1
hx

(ωi, j+1− ω̃i, j)−ζi, j, (4.1.2)

the continuity equation constraint is A(ρ ,ω ,ζ ) = 0. Notice that imposing boundary conditions
amounts to replacing the staggered variables on a boundary by fixed values, but it is convenient
to still include the fixed values in the indexation. Then, the operator A—which is linear when no
boundary constraints are enforced—becomes an affine operator.

Solutions to this discrete continuity equation, can be associated to a continuous solution with
densities (ρ̃ , ω̃ , ζ̃ ) defined on [0,T ]× [0,L] through piecewise constant or affine interpolation.
These continuous solutions are defined on each cell Wi, j by: ρ̃(t,x) is constant in space and
linearly interpolate in time between ρi, j and ρi+1, j, ω̃(t,x) is constant in time and linearly in-
terpolate in space between ωi, j and ωi, j+1, and ζ̃ (t,x) is constant in space and time equal to
ζi, j.

Functional discretization and interpolation constraint

Ideally, one would exactly solve the dynamic problem among piecewise constant or affine den-
sities (ρ̃ , ω̃ , ζ̃ ) as described above, but the integral

∫ T
0

∫ L
0 f (ρ̃ , ω̃ , ζ̃ )dxdt is generally hard to

evaluate and not convenient to minimize. Instead, we replace, on each cell Wi, j, the integral of f

by f applied to the averaged densities. Notice that by Jensen inequality, it holds

f (
∮

Wi, j

ρ̃ ,
∮

Wi, j

ω̃ ,
∮

Wi, j

ζ̃ ) ≤
∮

Wi, j

f1(ρ̃ , ω̃ , ζ̃ )

with equality if ρ̃ , ω̃ are constant on the cell (here
∮

denote the average, or normalized integral).
We then consider an auxiliary triplet of variables, the centered variables (ρ̂ , ω̂ , ζ̂ ) ∈ Vc ×

Vc×Vc which are related to the staggered variables by the interpolation constraint: ρ̂ = Qt(ρ),
ω̂ = Qx(ω), ζ̂ = ζ where Qt : Vt →Vc and Qx : Vx →Vc are interpolation operators

Qt(ρ)i, j =
1
2
(ρi, j +ρi+1, j), Qx(ω)i, j =

1
2
(ωi, j +ωi, j+1) (4.1.3)

which are linear if no boundary conditions are given, affine otherwise. This constraints states ex-
actly that the centered variables should be the cell averages of the continuous densities (ρ̃ , ω̃ , ζ̃ )

� ×
•

×
•

� ×
•

×
•

� ×
•

×
•

� ×
•

×
•

� ×
•

×
•

� ×
•

×
•

x = 0

x = L

t = 0 t = T

Figure 4.1.: (�) centered Gc, (×) staggered in time Gt and (•) staggered in space Gx grids. The
grey rectangle is the space-time domain and here Nt = 3, Nx = 2.
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Chapter 4. Solving Dynamic Formulation

built by interpolation from the discrete staggered variables (ρ ,ω ,ζ ) as explained above. The
action functional is then approximated by (we drop the hthx factor which do not change the
minimizers):

F(ρ̂ , ω̂ , ζ̂ ) := ∑
i, j

f (ρ̂i, j, ω̂i, j, ζ̂i, j)

Discrete minimization problem

This discretization scheme leads to replacing (4.1.1) by finite dimensional convex variational
problem

min
{

F(ρ̂ , ω̂ , ζ̂ )+ ι{0}(A(ρ ,ω ,ζ ))+ ι{(ρ̂ ,ω̂ ,ζ̂ )}(Qt(ρ),Qx(ω),ζ )
}

(4.1.4)

where the variables are (ρ ,ω ,ζ ) ∈ Vt ×Vx×Vc and (ρ̂ , ω̂ , ζ̂ ) ∈ Vc×Vc×Vc. The source of
inaccuracies with respect to the continuous problem (4.1.1) are (i) restriction of the to a certain
finite dimensional class of densities which are piecewise constant or affine and (ii) averaging on
each cell to compute the action.

4.1.2. Operator splitting algorithm

The structure of the problem, as a sum of non differentiable “simple” convex functions, makes
it amenable to operator splitting algorithms. There are several algorithms known to solve such
problems with comparable convergence properties (see [123] for a benchmark for solving the
dynamic formulation of optimal transport). In this chapter, we focus on an implementation of
the Douglas Rachford algorithm [48, 124] (equivalent to the alternating direction method of

multipliers). This algorithm allows to solve problems of the form

min
x∈RN

g1(x)+ g2(x)

when g1 and g2 are proper, l.s.c. convex functions that are “simple” in the sense that their
(squared-Euclidean) proximal mapping

proxgi
(x̄) = arg min

x∈RN
gi(x)+

1
2
‖x− x̄‖2

is easy to compute numerically. This algorithm builds a sequence (z(ℓ))ℓ∈N as follows. Let
z(0) ∈RN and define for ℓ≥ 0:

x(ℓ) = proxγg1
(z(ℓ)),

y(ℓ) = proxγg2
(2x(ℓ)− z(ℓ)),

z(ℓ+1) = z(ℓ)+ 2α(y(ℓ)− x(ℓ)).

where 0<α < 1 and γ > 0 are parameters (corresponding, respectively, to an operator averaging
and a step size). If there exists x such that 0 ∈ ∂g1 + ∂g2, then z(ℓ) converges to a minimizer of
g1 + g2.
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4.2. Computing proximal maps

Coming back to our problem (4.1.4), one may for instance pose

g1(ρ ,ω ,ζ , ρ̂ , ω̂ , ζ̂ ) = F(ρ̂ , ω̂ , ζ̂ )+ ι{0}(A(ρ ,ω ,ζ ))

g2(ρ ,ω ,ζ , ρ̂ , ω̂ , ζ̂ ) = ι{(ρ̂ ,ω̂ ,ζ̂ )}(Qt(ρ),Qx(ω),ζ ),

which is the splitting that we have implemented. The remaining task before practical implemen-
tation is to compute the associated proximal maps.

4.2. Computing proximal maps

4.2.1. Projection maps

In case the function g is the indicator of a set, the proximal operator proxγg becomes the projec-
tion operator on that set. The algorithm involves thus to compute the projections on:

• the continuity constraint, i.e. {(ρ ,ω ,ζ ) ∈Vt ×Vs×Vc ; A(ρ ,ω ,ζ ) = 0} ;

• the interpolation constraints, i.e. {(ρ , ρ̂) ∈Vt ×Vc ; ρ̂ = Qt(ρ)} (and similarly for (ω , ω̂)).

One also has the projection on the equality constraint ζ̂ = ζ which is trivially obtained as ((ζ̂ +
ζ )/2, (ζ̂ + ζ )/2).

General projection formula

Let us start with the general, classical, projection formula on affine subspaces.

Proposition 4.2.1. Given x̄ ∈RN , a matrix A : RN×M and b ∈ imA, the solution to

x ∈ argmin
{
|x− x̄|2 ; Ax = b

}

is unique and given by x = x̄−A∗λ where λ = (AA∗)−1(Ax̄−b) is a Lagrange multiplier (not

unique if AA∗ is not invertible).

Proof. The dual problem reads minλ
1
2 |A∗λ |2− 〈λ ,Ax̄− b〉 and the qualification constraint is

satisfied. Any λ satisfying (AA∗)λ = Ax̄−b is optimal and the primal dual relationship yields
x = x̄−A∗λ at optimality.

With a similar proof, we obtain the following proposition.

Proposition 4.2.2. Given x̄ ∈RN , ȳ ∈RM and a matrix Q ∈RN×M, the solution to

x ∈ argmin{|x− x̄|2 + |y− ȳ|2 ; Qx = y}

is unique and given by (x,y) = (x̄−Q∗λ , ȳ+λ ) where λ = (QQ∗+ I)−1(Ax̄− ȳ).
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Chapter 4. Solving Dynamic Formulation

Solving in frequency domain

According to these formula, the computation of projections involves finding a pre-image of a
symmetric matrix S ∈ RN×N , i.e. given u ∈ RN find λ ∈ RN such that Sλ = u. If there exists
an extension operator u ∈RN 7→ u(e) ∈RN and a time invariant linear filter L : RN →RN such
that for some M ≥ N,

u(e) is M-periodic and u
(e)
i = ui, (Su)i = (Lu(e))i for all i ∈ {1, . . . ,N}. (4.2.1)

then this can be solved efficiently in O(N logN) operations by pointwise multiplication in the
frequency domain, because the discrete Fourier basis {n 7→ e2iπ(k+1)n/N}N

k=1 diagonalizes L [107].
In other words, one looks for a periodic extension of u where Su appears as the result of a con-
volution, which is then easy to invert in the Fourier domain.

Proposition 4.2.3 (Inversion in spectral domain). Let λ ,u ∈Rn be such that

wkλ̂
(e)
k = û

(e)
k for all k ∈ {1, . . . ,m}

where (w1, . . . ,wm) are the transfer coefficients of L, and ·̂ denote the discrete Fourier transform.

Then it holds Lλ (e) = u(e) and thus Sλ = u.

Proof. The first claim is classical in linear filter theory [107]. For the second, it holds (Sλ )i =

(Lλ (e))i = u
(e)
i = ui, for i ∈ {1, . . . ,n}.

The choice of the periodic extension depends on the boundary conditions and on the filter: let
us discuss our cases of interest.

Continuity constraint

The operator A defined in (4.1.2), its adjoint A∗ and AA∗ can be written as

A =
(

Dt Dx −I
)

, A∗ =




D∗t
D∗x
I


 and AA∗ = DtD

∗
t +DxD∗x + I.

where Dt and Dx are finite-difference operator with respect to the axis t and x, respectively, with
some specific boundary conditions. Let us focus on a single difference operator D to precisely
study the boundary conditions.

Fixed boundary constraints For fixed boundary constraints, one has1

D =
1
h




0 1
−1 1

−1 0


 and DD∗ =

1
h2




1 −1
−1 2 −1

−1 1


 .

The corresponding filter is (minus) the Laplacian L(u)i = −ui−1 + 2ui−ui+1 and the extension

is of period M = 2N and satisfies u
(e)
1−i = ui (even extension w.r.t. 1

2 and N + 1
2 ). In this case, û(e)

might be directly obtained with the DCT-II transform (inverted by the DCT-III divided by m).

1it is implicit in our notation that the middle row is repeated diagonally as many times as necessary.
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4.2. Computing proximal maps

Proposition 4.2.4. The transfer coefficients of DD∗ are w1 = 0 and wk =
1
h2 (2− 2cos(π(k−

1)/N)) for k ∈ {2, . . . ,N}.

In the higher dimensional case, one simpler filters independently along each dimension. Note
that w1 = 0 implies that the linear filter is sometimes not invertible: this correspond to cases
where one imposes inconsistent boundary conditions (e.g. a continuity equation without source
but marginals with unequal masses).

Free boundary constraints For free boundary conditions, one has

D̄ =
1
h



−1 1

−1 1
−1 1


 and D̄D̄∗ =

1
h2




2 −1
−1 2 −1

−1 2


 .

Again, D̄D̄∗ corresponds to (minus) the Laplacian on an infinite grid with the extension being as
follows (and corresponds to DST-I transform): M = 2(N + 1) and

u
(e)
0 = 0 and u

(e)
−i = u

(e)
i .

Proposition 4.2.5. The transfer coefficients of D̄D̄∗ are obtained, for k ∈ {1, . . . ,N}, as wk =
1
h2 (2−2cos(kπ/(N + 1))).

Projection on continuity constraint with source term With the source term, as can
be seen from the expression of AA∗, we simply add 1 to the transfer coefficients. Given the
previous results, it is easy to combine various filters along each axis: one successively compute
the transform associated to the boundary constraint along each axis and sum all the transfer
coefficients. To fix ideas, the projection of (ρ0,ω0,ζ0) on the continuity equation with fixed
boundary constraints is obtained as follows:

1. replace the boundary values by the boundary constraints;

2. define u = A(ρ0,ω0,ζ0) ∈Vc (since the fixed values are part of (ρ0,ω0), b does not appear
explicitly);

3. define û ∈Vc by applying the DCT-II transform along axis t and x;

4. define λ̂ ∈Vc by solving, in the frequency domain

[
1
h2 (2−2cos(π(k−1)/N))+ 1

]
λ̂k = ûk.

(the source term adds 1 to the transfer coefficients so they never vanish).

5. invert the transform to obtain λ and the projection is (ρ ,ω ,ζ ) = (ρ0,ω0)−A∗λ .

105



Chapter 4. Solving Dynamic Formulation

(a) Time boundaries (b) Projected ρ (c) Projected ω (d) Projected ζ

Figure 4.2.: Projection of 0 on the continuity equation with source constraint with time boundary
conditions shown on (a) and no flux boundary conditions on ω . For (b)-(d) time is
horizontal and space vertical as in Figure 4.1. For ρ the colormap ranges from 0
(blue) to 1 (yellow) and for ω ,ζ it ranges form −1 (blue) to 0 (yellow) to 1 (red).

Interpolation constraint

The projection formula that is relevant for the interpolation constraint is in Proposition 4.2.2
with the operator Q defined in (4.1.3).

Fixed boundary conditions For fixed boundary conditions, one has

Q =
1
2




0 1
1 1

1 0


 and QQ∗ =

1
4




1 1
1 2 1

1 1


 .

The matrix (QQ∗+ I) corresponds to the filter ui 7→ 1
4 (ui−1 + 6ui + ui+1) if one assumes odd

extension with respect to the indices 1
2 and N + 1

2 . This corresponds to DST-II, invertible with
DST-III (and division by 2N).

Proposition 4.2.6. The transfer coefficients of (QQ∗+ I) are wN = 1 and wk =
3
2 +

1
2 cos(kπ/N)

for k ∈ {1, . . . ,N−1}.

Free boundary conditions In this case, one has,

Q̄ =
1
2




1 1
1 1

1 1


 and Q̄Q̄∗ =

1
4




2 1
1 2 1

1 2


 .

The matrix (Q̄Q̄∗+ I) corresponds to the filter ui 7→ 1
4 (ui−1 +6ui +ui+1) if one assumes odd

extension with respect to the indices 0 and N + 1. This corresponds to DST-I, invertible with
itself (and division by 2(N + 1)).

Proposition 4.2.7. The transfer coefficients of (Q̄Q̄∗+ I) are wk =
3
2 +

1
2 cos(kπ/(N + 1)) for

k ∈ {1, . . . ,N}.
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4.2. Computing proximal maps

Figure 4.3.: Projection on the interpolation constraints in 1d computed numerically. Blue stands
for staggered and orange for centered values. (lines) initial values. (•) projection
with fixed boundary values (∗) projections with free boundary values.

4.2.2. Computing proximal maps

It remains to give explicit formula for proxγF . Since F is separable, one has for (ρ̂ , ω̂ , ζ̂ ) ∈
Vc×V d

c ×Vc

proxγF(ρ̂ , ω̂ , ζ̂ ) =
(

proxγ f (ρ̂i, j, ω̂i, j, ζ̂i, j

)
i, j

so knowing how to compute proxγ f (x,y,z) for (x,y,z) ∈R×Rd×R is sufficient for computing
proxγF . Moreover, if f is of the form f1(x,y) + f2(z) or f1(y) + f2(x,z) then one may again
compute the proximal maps separately. Some interesting cases are

(i) given a differentiable, superlinear and convex Lagrangian L : Rn×R → R, the function
f (x,y,z) = ψL(y,z|x). This corresponds to the general class of problems introduced in
Chapter 1. The case where the Lagrangian is L(v,g) = |v|2 + g2/4 corresponds to the key
case of the Ŵ2 metric.

(ii) the functions f (x,y,z) = f1(x,y) + |z|p for p ≥ 1 where f1 sublinear penalize the source
term independently. The case p = 1, which corresponds to optimal partial transport (see
Chapter 2). The case p = 2 has been proposed by [106].

(iii) the functions f (x,y,z) = |y|+ f2(x,z) correspond to a class of problems studied in [147]
where minimal flow methods are proposed.

Let us derive the proximal maps of these “building block” functions.

Power functions

For power functions, the proximal map is easy to compute using the optimality conditions.

Perspective of Lagrangians

In the models introduced in Chapter 1 we consider a function f (x,y,z) = ψL(y,z|x) which is the
perspective function (see Appendix A) of a convex, continuous Lagrangian L : Rd×R→R.
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Chapter 4. Solving Dynamic Formulation

f (y) proxγ f (y)

|y| sign(y)(|y|− γ)+

|y|2 y/(1+ 2γ)

|y|p, p≥ 1 sign(y)u,
where u≥ 0 and u+ pγup−1 = |y|

Table 4.1.: Proximal operator associated to convex power functions.

General case The following result is proved in [47].

Proposition 4.2.8 (Proximal of a perspective). Let L be a convex, superlinear, and differentiable

Lagrangian on RN , then

proxγψL
(x,y) =

{
(0,0) if x+ γL∗(y/γ) ≤ 0

(x+ γL∗(u),y− γu) otherwise,

where u is uniquely characterized by y = γu+(x+ γL∗(u))∇L∗(u).

Quadratic Lagrangian The most important case is L(v) = |v|2/2. Specializing Proposition
4.2.8 to this case leads to the formula

proxγψL
(x,y) =





(0,0) if x+ |y|2/(2γ) ≤ 0,

(x,0) if y = 0 and x≥ 0,(
x+ γ

2
|y|2
α2 ,y(1− γ

α )
)

otherwise,

where α is the unique real solution to the third order polynomial equation in X

X3−X2(γ + x)− γ|y|2/2 = 0.

We may then use the fact that we know that this root is the unique real one to reduce the amount

of computations for finding the root. After the change of variable x∗ = x+ γ
2
|y|2
α2 , one has the

equivalent characterization which was proposed in [123]

proxγψL
(x,y) =

{
(x∗, x∗y

x∗+γ ) if x∗ > 0

(0,0) otherwise,

where x∗ is the largest real root of the third order polynomial equation in X

(X− x)(X + γ)2− γ|y|2/2.
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4.3. Numerical results

Quadratic Lagrangian with weights Note that for computing Ŵ2 interpolations, one gen-
erally has a quadratic Lagrangian with a weight

f (x,y,z) = ψL(ω|ρ)+α2ψL(ζ |ρ).

We suggest to take advantage of the rescaling property proved in Proposition 2.1.3 to deal with
this case without effort using the previous formula: first pushforward (µ ,ν) with the spatial
rescaling x 7→ x/α , solve the problem between these new marginals with α = 1 (which is sim-
pler) and pushforward the solution (with a rescaled momentum) (ρ ,αω ,ζ ) with the inverse map
x 7→ αx to obtain the solution to the original problem. Numerically, applying this pushforward
is as simple as changing the lengths of the domain and multiplying the density by a scalar. This
trick applies more generally to power Lagrangians.

Power Lagrangians For other Lagrangians of the form L(v) = |v|p with p > 1 (the case
p= 1 is covered by the paragraph on power functions), one has a similar characterization, posing
q = p/(p−1) the conjugate exponent:

proxγψL
(x,y) =





(0,0) if x+ |y|q/(qγq−1) ≤ 0,

(x,0) if y = 0 and x≥ 0,(
x+ γ

q

|y|q
αq ,y(1− γ

α )
)

otherwise,

where α is the unique real solution to

X2q−1− γX2q−2− (xXq + γ|y|q/q)|y|q−2 = 0.

a good approximation of which can be found by Newton’s method in a few iterations using the
fact that 0 < α < γ .

4.3. Numerical results

Transport of Gaussian bumps. We first consider the interpolation between two measures
(µ ,ν) which have the same mass on Ω = [0,1] with Neumann boundary conditions. The result
is shown on Figure 4.4. The initial and the final measures are both composed of two Gaussian
densities of mass 1 and 2 centered at, from left to right, x = 0.2, 0.3, 0.65 and 0.9. The problem
is discretized into Nt ×Nx = 11× 256 samples. We observe that the behavior of geodesics is
highly dependent on the choice of action and of “cut-locus” parameter cl . The action functionals
considered are, with L(v) = |v|2 and ψL its perspective function (see Appendix A):

classical W2: f (ρ ,ω ,ζ ) = ψL(ω|ρ)+ ι{0}(ζ );

metamorphosis W2: f (ρ ,ω ,ζ ) = ψL(ω|ρ)+ |ζ |2;

partial W2: f (ρ ,ω ,ζ ) = ψL(ω|ρ)+ (cl/2)|ζ |;

transport growth Ŵ2: f (ρ ,ω ,ζ ) = ψL(ω|ρ)+ (8cl/π)ψL(ζ |ρ).
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(a) classical W2 (b) metamorphosis W2

(c) partial W2 with cl = 0.3 (d) partial W2 with cl = 0.15

(e) transport-growth Ŵ2 with cl = 0.3 (f) transport-growth Ŵ2 with cl = 0.15

Figure 4.4.: Interpolations between two densities (µ ,ν) of equal mass on the segment [0,1].
(gray) µ , (blue) ν , (red) ρt=1/2, (black) ωt=1/2, (yellow) ζt=1/2. We indicate by cl

the theoretical maximum distance a Dirac can travel (if relevant).

For the classical W2 interpolation on Figure 4.4a, conservation of mass enforces the bumps to
split, yielding a somehow unnatural interpolation. The effect of a non-homogeneous functional
is visible on Figure 4.4b. The non-homogeneity of the action requires to choose of a reference
measure (here the discrete Lebesgue measure) and spread densities. Consider now the partial
W2 interpolations on Figure 4.4c. The domain Ω = [0,1] is split in an active set where mass is
transported and an inactive set where the source is nonzero. Note that interpolations in that case
are not unique on the inactive set and the result depends on the initialization of the optimization
algorithm. Finally, Figures 4.4e and 4.4f display the interpolation at t = 1/2 for the Ŵ2 with
different values of cut-loci. In the first case, we obtain a geodesic consisting of two traveling
bumps which inflate or deflate while in the second case, only one bump travels as cl is now
smaller than the distance between the two bumps on the right.

Synthetic 2D experiments. We now interpolate between two densities (µ ,ν) of equal mass
on the domain Ω = [0,1]2. The initial density µ is the indicator of the ring centered at ( 1

2 , 1
2 ),

internal diameter 0.5 and external diameter 0.7. The final density ν is obtained from µ by a ran-
dom smooth deformation. The domain is discretized in Nt ×Nx1 ×Nx2 = 12×64×64 samples.
We compare on Figure 4.5 the interpolations for the Hellinger metric (defined in Remark 2.1.19
and 3 different actions (as defined in the previous paragraph): classical W2, partial W2 (with
cl = 0.2) and Ŵ2 (with cl = 0.4). Notice that the two first rows thus show the limit geodesics for
Ŵ2 when cl tends to 0 or ∞ (see Section 2.1.2).

Figure 4.6 helps to better understand how the mass moves during interpolations. On the
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•
t = 0 t = 1t = 0.5

ρ0 ρ1

Figure 4.5.: Interpolation between µ and ν for four metrics: Hellinger (1st row), W2 (2nd row),
partial W2 (3rd row), Ŵ2 (4th row).

top row, the velocity field shows that the classical W2 interpolation transports a lot of mass
to the bottom left protuberance in order to balance mass. On the contrary, actions allowing
local variations of mass attenuate the component of the velocity field which is tangential to the
ring. Finally, by looking at the source maps in the bottom row, we see the inactive sets of partial
optimal transport with well defined boundaries and how this strongly differs to the smooth source
related to Ŵ2 interpolation.

Figure 4.7 displays another experiment intended to again illustrate the behavior of geodesics.
The measures µ and ν have same total mass, the domain Ω = [0,1]2 is discretized into Nt ×
Nx1 ×Nx2 = 12× 44× 44 cells. We show the interpolation for classical W2, partial W2 (with
cl = 0.5) and for the transport-growth Ŵ2 (with cl = 0.5).

Biological images interpolation. Interpolating between shapes with varying masses was
our original motivation for introducing the dynamic formulation of unbalanced optimal trans-
port. This is the object of our last numerical experiment. The initial and final densities µ ,ν
represent a segmented brain taken at different times. This example is rather challenging for
image matching algorithms: matter is creased, folded and grows unevenly. The spatial domain
is Ω = [0,0.82]× [0,1] and the time/space domain is discretized into 12× 89× 73 cells. We
display the interpolation for classical W2 and for the transport-growth metric Ŵ2 with cl = 0.2.
Figure 4.8 displays the interpolations and Figure 4.9 displays the velocity and rate of growth
fields at time t = 1/2.

Most of the tissue growth is located at the bottom of the domain. Consequently, the velocity
field associated to the W2 geodesic is dominated by top to bottom components as observed on
Figure 4.9a. To the contrary, the interpolation for Ŵ2 locally adapts the rate of growth, and the
velocity field is arguably more consistent to the underlying true evolution. However, several
artifacts inherent to optimal transport models are retained: some matter is teared off the brain
lining and brought somewhere else to fill a need of mass. This behavior is clearly observed on
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(a) classical W2 (b) partial W2 (c) transport-growth Ŵ2

(d) partial W2 (e) transport-growth Ŵ2

Figure 4.6.: First row: velocity field vt = ωt/ρt at time t = 1/2. The higher the density ρt , the
darker the arrow. Second row: source ζt at time t = 1/2. Blue stands for negative
density and red for positive.

Figure 4.8 near the bulges that appear on the right and left sides of the brain. As a final remark,
it is proved in [94, 103] that the optimality conditions for Ŵ2 imply that the velocity field is the
gradient of the rate of growth: this fact is observed numerically by comparing 4.9b and Figure
4.9c.
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•
t = 0 t = 1t = 0.5

ρ0 ρ1

Figure 4.7.: Geodesics between µ and ν for various actions. (1st row) classical W2, (2nd row)
partial W2 and (3rd row) transport-growth Ŵ2 . Notice that the mass µ is concen-
trated at the bottom left that of ν is concentrated at top right.

•
t = 0 t = 1t = 0.5

ρ0 ρ1

Figure 4.8.: Interpolation between µ and ν for two metrics. (top row) classical W2 between the
rescaled densities and (bottom row) transport-growth Ŵ2 with cl = 0.2.
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(a) v0.5 for W2 (b) v0.5 for WFκ (c) g0.5 for WFκ

Figure 4.9.: (a) and (b): velocity field vt = ωt/ρt of the interpolation at time t = 1/2 (the higher
the density of ρ0.5, the darker the arrow). (c) rate of growth gt = ζt/ρt at time
t = 1/2. Blue stands for negative density and red for positive and gt is set to zero
when ρt ≈ 0.
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Chapter 5.

Illustrations for Scaling Algorithms

This chapter is the numerical and applied counterpart of Chapter 3. We re-
view several problems that fit in the framework of generic formulations, de-
rive the explicit form of the scaling iterates and display illustrations.
In Section 5.1, we compute optimal entropy-transport couplings for 4 choices
of f -divergences: exact marginal constraints, relative entropy, total variation,
and range constraint. We display 1-D and 2-D experiments as well as a color
transfer experiment where the unbalanced framework comes naturally.
In Section 5.2, we derive the explicit form of the scaling algorithm for var-
ious unbalanced optimal transport barycenter problems. This is applied to
the computation of geodesics for Ŵ2, to barycenters in 1-D as well a as a
comparison between balanced and unbalanced barycenters in 2-D.
In Section 5.3, we explain how to use scaling algorithms for computing time
discretized gradient flows w.r.t. the optimal transport of unbalanced optimal
transport. This is applied to the challenging problem of computing Wasser-
stein gradient flow of the functional “total variation of the gradient”.
The content of this chapter was published in [45], except the gradient flow
experiment which is new.
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Foreword: discrete densities

In this chapter, we consider the discretization of problems which have a continuous nature. In
this situation, it is natural to work with dimensionless quantities which do not overly depend
on the discretization: this suggests to deal with densities instead of measures. This leads to a
change of variable which induces a minor modification of Algorithm 1. Consider (X ,dx) and
(Y ,dy) the discretization of two domains, endowed with their discretized reference measures.
We define the reference measure on the product space γ (0) = dx⊗ dy and we parametrize the
density of the unknown coupling as (aiKi, jb j). This gives the scaling algorithm in “density”
variables displayed in Algorithm 7.

In this variant, we do not use the “proxdiv” operator of the functions that act on measures Fi,
but that of the functions that act on densities F̄i, with the correspondence

F̄1(s) = F1(sdx) for s ∈RX and F̄2(s) = F2(sdy) for s ∈RY

In the next paragraphs, we give explicit formula for the operators

proxH
F̄/ε : s̄ ∈ (RI)n 7→ argmin

{
F̄(s)+ εH(s|s̄) ; s ∈ (RI)n

}

and the associated “proxdiv” operators (3.3.5). We recall that the operator “proxdiv” is the
building block of the scaling iterations and is defined, for a marginal function F , a regularization
parameter ε and variables (s,u) ∈ (RI

+)
n× (RI)n as

proxdivF(s,u,ε) := proxH
F/ε(e

−u/ε ⊙ s)⊘ s.

The variable u is an offset that is only used in the stabilized version of the algorithm and the
standard version is recovered by setting u = 0.

Discretization adopted In all the numerical experiments, we consider a domain [0,1]d for
d = 1,2 or 3, that is divided into cubic cells, the discrete space X = Y is the grids of cell centers
and the cost matrix is the evaluation of the cost function between pairs of cell centers.

Algorithm 7 Scaling algorithm in discrete density variables

1. define the discretized reference measures (dx,dy) ∈RI×RJ

2. initialize the kernel K = (e−ci, j/ε)i, j and the iterates (a,b) = (1I ,1J)

3. while stopping criterion not satisfied repeat:

a) a← proxdivF̄1
(K(b⊙dy),0I ,ε)

b) b← proxdivF̄2
(KT (a⊙dx),0J ,ε)

4. return γ = (aiKi, jb j)i, j, the density of the optimal plan w.r.t. dx⊗dy
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5.1. Unbalanced optimal transport

5.1.1. Derivation of the algorithm

Let p ∈ RI
+ be the discretized density of a measure µ . Recalling Sections 3.1.1 and 3.1.2,

the functions F̄1 and F̄2 involved in the definition of optimal transport and unbalanced optimal
transport are of the form

F̄(s) :=
I

∑
i=1

ψ f (si|pi) (5.1.1)

where f : R → R ∪ {∞} is an entropy function (Definition 1.2.15) and ψ f is the associated
perspective function (see Appendix A). The first order optimality conditions for the operator
proxH

F are given in the next proposition.

Proposition 5.1.1. Let s̄ ∈ RI
+ and consider F̄ defined in (5.1.1) for some p ∈ RI

+. If it holds

0 ∈ dom f or s̄i = 0⇒ pi = 0, then proxH
F/ε(s̄) = (si)i where for each i ∈ {1, . . . , I} one has





si = 0 if s̄i = 0,

si = s̄i exp(− f ′∞/ε) if pi = 0 and s̄i > 0,

0 ∈ ε log(si/s̄i)+ ∂ f (si/pi) otherwise.

This formula allows to explicitly compute the “proxdiv” operators of the examples introduced
in Section 3.1, as listed in Table 5.1. The names used in the leftmost column stand for the
following cases:

OT: standard optimal transport, i.e. f (s) = ι{1}(s);

Hλ : relative entropy with weight λ > 0, i.e. f (s) = λ (s logs− s+ 1);

TVλ : total variation with weight λ > 0, i.e. f (s) = |s−1|+ ιR+(s);

RG[α ,β ]: range constraint with 0≤ α ≤ β ≤ ∞, i.e. f (s) = ι[α ,β ](s).

These entropy functions as well as the associated proxdiv operators are displayed on Figure
5.1. Remark that the slopes of proxdiv in log domain are smaller than 1: this corresponds to the
non-expansiveness property proved in Lemma 3.5.20. In Table 5.1 the first line corresponds to
standard Sinkhorn’s iterations which are also recovered in the second and third line by letting
λ →+∞ and by setting α = β = 1 in the fourth line.

5.1.2. Numerical example in 1-D.

Consider the domain [0,1] discretized into I = 1000 cells and consider the marginals displayed
on Figures 5.2a-5.2b of discrete densities p,q ∈RI

+. We run Algorithm 2 for marginal functions
Fi of the form (5.1.1) with the choices of entropy functions listed above and for the cost functions
cquad(x,y) = |y−x|2 or cℓ,α(x,y) =− logcos2

+(|y−x| ·2/(απ)) which corresponds to the static
cost in the definition of Ŵ2 with maximum distance of transport α .
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proxH
F/ε(s) proxdivF(s,u,ε)

OT p p/s

Hλ s
ε

ε+λ · p λ
ε+λ (p/s)

λ
λ+ε · e−u/(λ+ε)

TVλ min
{

s · e λ
ε ,max

{
s · e− λ

ε , p
}}

min
{

e
λ−u

ε ,max
{

e−
λ+u

ε , p/s
}}

RG[α ,β ] min{β p,max{α p,s}} min
{

β p/s,max
{

α p/s,e−u/ε
}}

Table 5.1.: Some divergence functionals and the associated prox and proxdiv operators for s, p∈
RI

+ and u ∈RI (all operators act pointwise).

(a) Graphs of the entropy functions f (more pre-
cisely: boundaries of the epigraphs).

(b) Operator proxdivF for p = 1, u = 0 and varying
s ∈R+ (in log scale)

Figure 5.1.: f -divergences and proxdiv operators for the examples of Table 5.1

On Figure 5.2, we display the marginals (∑ j γi, jw j)i and (∑i γi, jwi) j of the density (γi, j) out-
put by the algorithm, with a color scheme that illustrates how mass is transported. Figure 5.3
displays the entries of γ which are greater than 10−5. This can be interpreted as the approxi-
mate support of the optimal discrete plan. The stabilization procedure of Algorithm 2 allows to
choose a small parameter ε = 10−6 and to return a quasi-deterministic plan. Remark that for the
TV case (orange support), the straight segments correspond to a unit density on the diagonal:
this is the plan with minimal entropy among all the optimal plans as expected from Proposition
3.5.3.

Figure 5.4 displays the primal-dual gap (Pε )− (Dε ) as a function of the iteration number ℓ
when running Algorithm 1 with ε = 0.01. More precisely, we display

P̃ε(r
(ℓ))− D̃ε(u

(ℓ),v(ℓ))

where P̃ε and D̃ε are defined from the primal (3.3.2) and dual (3.3.3) functionals by replacing the
indicator of constraints by the exponential of the distance to the set, and where r(ℓ), (u(ℓ),v(ℓ))
are the primal and dual iterates as in Theorem 3.3.4. The marginals are the same as shown on
Figures 5.2a-5.2b, the cost is cquad and the number of discretization points is I = 200.
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5.1. Unbalanced optimal transport

(a) Marginal p (b) Marginal q

(c) OT, cquad (d) TV0.05, cquad

(e) H0.5, cquad (f) H0.1, cquad

(g) RG[0.7,1.2], cquad (h) H1, cℓ,0.2 (corresponds to Ŵ2,α with α = 0.4/π)

Figure 5.2.: (a)-(b) Input marginals. (c)-(h) Marginals of the optimal plan γ displayed together
for the functions F and cost functions as introduced in the text body (specified in
the caption). The color shows the location of the same subset of mass before and
after transportation.
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Chapter 5. Illustrations for Scaling Algorithms

Figure 5.3.: Colored areas are such that γi, j > 10−8 for all the examples displayed on Figure 5.2
(the legend Ŵ2 corresponds to (h) and (e) is not represented). The first marginal is
horizontal, the second vertical. Orange and black superimposed at the top.

Figure 5.4.: Primal dual gap as a function of the iterations for Algorithm 1 applied to unbalanced
optimal transport problems (indicator of sets replaced by exponential functions).
Note that convergence can be accelerated (see Section 3.4).

122



5.1. Unbalanced optimal transport

(a) p and q (b) H0.1 (c) RG[0.7,1.2] (d) TV0.05

Figure 5.5.: Marginals of the optimal plan γ for several choices of f -divergences.

(a) OT (b) H0.1 (c) RG[0.7,1.2] (d) TV0.05

Figure 5.6.: Representation of the transport plans for the experiments of Figure 5.5.

5.1.3. Numerical examples in 2-D.

Consider the domain [0,1]2 discretized into I = 200× 200 cells, the marginals p, q displayed
together on Figure 5.5a and the quadratic cost cquad(x,y) = |y− x|2. We run Algorithm 1 for
several choices of f -divergences and use the separability of the matrix K to decrease the com-
plexity of each iteration (see Section 3.3.3). The regularization parameter ε has been fixed to
10−4. Figure 5.5 shows the marginals of the optimal coupling γ and Figure 5.6 illustrates the
resulting transport plan: points with the same color correspond to the same mass particle before
and after transport.

5.1.4. Color transfer

Color transfer is a classical task in image processing where the goal is to impose the color his-
togram of one image onto another image. Optimal transport between histograms has proven
useful for problems of this sort such as contrast adjustment [54] and color transfer via 1-D op-
timal transport [131]. Indeed, optimal transport produces a correspondence between histograms
which minimizes the total amount of color distortion, where the notion of distortion is specified
by the cost function. It thus maintains visual consistency.

In our experiments we represent colors in the three-dimensional “CIE-Lab” space (one coordi-
nate for luminance and two for chrominance), resized to fit into a cuboid [0,1]3, discretized into
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(a) Image gX (b) Image gY

(c) OT (d) H0.03 (e) RG[0,5] (f) TV0.2

Figure 5.7.: A challenging color transfer experiment where the colors of the image gY are trans-
ferred to the image gX (histograms of colors are schematically displayed next to
them). In all cases F1 is a hard marginal constraint (of type “OT”) and F2 is the
divergence with respect to q specified in the caption. Note that in (f) some colors
“stay on place” due to the fact that the entropy function used is not superlinear.

64×32×32 regular cells and we choose the quadratic cost c2(x,y) = |x− y|2. The anisotropic
discretization of the domain accounts for the fact that the eye is more sensitive to variations in
luminance than variations in chrominance.

Let Ω ⊂ R2 be the image domain. An image is described by a function g : Ω → X and
its color histogram is the pushforward of the Lebesgue measure on Ω by g. Let gX : Ω → X

and gY : Ω → Y (= X) be two images and p, q be the discretized densities of the associated
color histograms. We run Algorithm 1 using the separability of K (see Section 3.3.3) to obtain
an (unbalanced) optimal transport plan γ . An approximate transport map T : X → Y is then
computed according to the map of pointwise conditional expectations, know as the barycentric
projection map. This transformation is common in applications when one needs to produce a
map from a diffuse plan [152]. The modified image is finally obtained as T ◦gX .

On Figure 5.7, we display a color transfer between very dissimilar images, computed with
the parameter ε = 0.002. This intentionally challenging example is insightful as it exhibits the
strong effect of the choice of the divergence. Unbalanced optimal transport tend to adapt the
amount of each color of target histogram so as to match the modes of the initial histogram and
yields meaningful results.
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5.2. Unbalanced optimal transport barycenters

The computation of entropy regularized Wasserstein barycenters has been considered in [52,
133] (see also [35] for other approaches). With the scaling algorithms, it is possible to compute
balanced as well as unbalanced barycenters, within the same framework.

5.2.1. Derivation of the algorithm

The coupling formulation of (unbalanced) optimal transport barycenters has been introduced
in Sections 3.1.3 and 5.1. In the present section, we consider the numerical resolution of the
discretization of problems of the form

min
ν

∑αkC f ,c(µ
(k),ν) (5.2.1)

where C f ,c is an optimal entropy transport cost defined with the entropy function f and the
transport cost c, (µ (k))k is a family of measures and ν the unknown barycenter. We are going to
generalize this slightly and consider possibility different entropies f1 and f2 for each marginal.

Let us chose a family of n discretized densities (pk)n
k=1 ∈ (RI)n and (α (k)) ∈Rn

+ a family of
positive weights. In order to obtain closed forms expressions, for this section only, we consider
an entropic regularization with a different weight on each component

H(α)(r|s) := ∑
k

α H(r(k)|s(k)).

This does not impact the theoretical properties of the regularization, but the definition of the
kernel K has to be adapted as, for each component K(k) := e−c/(α (k)ε), for Proposition 3.2.7 to
still hold. The problem of solving (5.2.1) corresponds to defining

F̄1(s) =
n

∑
k=1

α (k)
I

∑
i=1

ψ f1(s
(k)
i |p

(k)
i ), F̄2(s) = inf

r∈RI
+

n

∑
k=1

α (k)
I

∑
i=1

ψ f1(s
(k)
i |ri).

Computing the proximal operator for F1 with respect to the weighted entropy H(α) can be done
component wise

proxH(α)

F1
(s) = (proxH

ψ f1 (·|p(1))
(r(1)), . . . ,proxH

ψ f1 (·|p(n))
(r(n)) (5.2.2)

(remark that the weights α do not appear anymore as they cancel) and this case has been treated
in Section 5.1. Let us turn our attention to F2. Computing the prox and proxdiv operators
requires to solve, for each index i ∈ {1, . . . , I}, a problem of the form

min
(s̃,r)∈Rn×R

n

∑
k=1

αk (ε H(s̃k|sk)+ψ f (s̃k|r)) . (5.2.3)

where f is an entropy function. If ψ f is smooth, first order optimality conditions for (5.2.3) are
simple to obtain. The next proposition deals with the general case where more care is needed.
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Proposition 5.2.1. Let (si)n
i=1 ∈Rn

+ be such that there exists feasible points (s̃0,r0) for (5.2.3)
such that (si > 0)⇒ (s̃0

i > 0). Then (s̃,r) solves (5.2.3) if and only if

• (si = 0)⇔ (s̃i = 0) and

• there exists b ∈Rn such that ∑
n
k=1 αkbk = 0 and, for all k ∈ {1, . . . ,n}:

{
(ε log(sk/s̃k),bk) ∈ ∂ψ f (s̃k|r) if sk > 0,

bk ∈ ∂2ψ f (0,r) otherwise.

Proof. First assume that si > 0 for all i ∈ {1, . . . ,n}. The positivity assumption on the feasible
point implies that the sum of the subdifferential is the subdifferential of the sum by continuity of
the relative entropy on the positive orthant. In this case, a minimizer necessarily satisfies s̃i > 0
for all i. Consequently, the subdifferential of the function in (5.2.3) at ((s̃i)n,r) is the set of
vectors in Rn+1 of the form 



...
εαi log(s̃i/si)+αiai

...
λ ∑k αkbk




with (ai,bi)∈ ∂ψ f (s̃i|r). Writing the first order optimality condition yields the second condition
of the proposition. Now for all i such that si is null, set s̃i = 0 (this is required for feasibility)
and repeat the reasoning above by withdrawing the variables s̃i which have been fixed.

Once the optimal barycenter density r ∈ RI
+ is found with the help of Proposition 5.2.1,

determining the optimal values for s̃ can be done componentwise as in (5.2.2) with the help of
Proposition 5.1.1. In Table 5.2 we provide formulae for the optimal r for choices of entropy
function. For the subsequent computation of s̃k (and the proxdiv step) we refer to Table 5.1,
where one must replace the marginal density p by the barycenter density r.

Proof of the formulas in Table 5.2. For (si)n
i=1 ∈ Rn ≥ 0, we derive the expression for r given

in Table 5.2, by applying Proposition 5.2.1.

Case OT. This case boils down to solving minr ∑α (k)H(r|sk) and first order optimality con-
ditions allow to conclude.

Case Hλ . First remark that the assumption of Proposition 5.2.1 is satisfied and that r = 0 if and
only if for all k, sk = 0 (otherwise, the joint subdifferential is empty). As f is smooth, its joint
subdifferential is the singleton ∂H(s̃|r) = {(log(s̃/r),1− s̃/r)} if s̃,r > 0. Also, since H(0|r) =
r+ ι[0,∞[(r), one has ∂2H(0,r) = {1} if r > 0. Thus, optimality conditions in Proposition 5.2.1
yields the system 




log s̃k

r
= ε

λ log sk

s̃k
if sk > 0,

s̃k = 0 if sk = 0,

∑αk(1− s̃k

r
) = 0.
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f Formula for r as a function of s ∈Rn

OT r =
(
∏k s

αk

k

) 1
∑k αk

Hλ r =

(
∑k αks

ε
ε+λ
k

∑k αk

) ε+λ
ε

TVλ if ∑k/∈I+ αk ≥ ∑k∈I+ αk then r = 0 otherwise solve:

∑k/∈I+ αk +∑k∈I+ αk max
(
−1,min

(
1, ε

λ log r
si

))
= 0

RG[β1,β2] if sk = 0 for some k then r = 0 otherwise solve:

∑k αk

[
β2 min

(
log β2 r

sk
,0
)
+β1 max

(
log β1 r

sk
,0
)]

= 0

Table 5.2.: Expression for the minimizer r of (5.2.3) as a function of s∈Rn
+ where I+ = {k ; sk >

0}. For the implicit equations of cases TV and RG, an exact solution can be given
quickly because computing logr consists in finding the root of a piecewise linear
non-decreasing function (with at most 2n pieces), which is guaranteed to change its
sign.

Case TVλ . As seen in Appendix A, one has ψ f (s̃|r) = sup(a,b)∈B a · s̃+b ·r with B = {(a,b)∈
R2 ; a≤ 1, b≤ 1, a+b≤ 0}. The set of points in B at which this supremum is attained is the set
∂ψ f (s̃|r). With the notations of Proposition 5.2.1, one has with ak =

ε
λ log sk

s̃k
,

(1) s̃k > r > 0⇔−bk = ak = 1 (2) r > s̃k > 0⇔−bk = ak = −1

(3) s̃k = r > 0⇔−bk = ak ∈ [−1,1] (4) r > s̃k = 0⇔ bk = 1

(5) s̃k > r = 0⇔ ak = 1 and bk ≤−1 (6) s̃k = r = 0⇔ bk ≤ 1.

Let us first deal with the case r = 0 (cases (5) and (6)). By condition ∑αkbk = 0 in Proposition
5.2.1, it is possible if and only if ∑k/∈I+ αk ≥ ∑k∈I+ αk. Now assume that r > 0. If s̃k > 0 (cases
(1), (2) and (3)) then bk can be expressed as max{−1,min{1, ε

λ log r
sk
}}. Otherwise, bk = 1. The

implicit expression given for r is thus just the condition ∑αkbk = 0.

Case RG[β1,β2]. In this case, ψ f is the support function of B = {(a,b) ∈R2 ; for i∈ {1,2},b≤
−βi ·a}. With the notations of Proposition 5.2.1, one has with ak =

ε
λ log sk

s̃k
,

(1) 0 < β1r < s̃k < β2h⇔ ak = bk = 0 (2) 0 < β1r = s̃k ⇔ bk = −β1ak

(3) 0 < β2r = s̃k ⇔ bk = −β2ak (4) 0 = r = s̃k ⇔ (bk,ak) ∈ B .

If sk = 0 for some k ∈ {1, . . . ,n} then r = 0 (this is the only feasible point). Otherwise, r > 0
and the condition ∑αkbk = 0 gives the implicit equation.
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Figure 5.8.: Top: Geodesics in W2 distance (dmax = ∞) and Ŵ2 distance (dmax gives the cut-locus
distance) as weighted (unbalanced) barycenters between endpoints. For dmax = ∞

the mass difference between left and right blocks must be compensated by transport.
As dmax is reduced, the mass difference is increasingly compensated by growth and
shrinkage. In all experiments ε = 10−6. Bottom: Midpoint of W2 geodesic for
various regularization ε .

5.2.2. Numerical experiments

Geodesics for the Wasserstein W2 metric and unbalanced optimal transport Ŵ2 (Section 2.2) met-
rics can be computed as weighted barycenters between their endpoints. In Figure 5.8 geodesics
for the Ŵ2 distance on X = [0,1] for different cut-loci dmax and the W2 distance (corresponding
to dmax = ∞) are compared and the influence of entropy regularization is illustrated. The interval
[0,1] was discretized into 512 cells.

In Figure 5.9, we display Fréchet means-like experiments for a family of 4 given marginals
where X is the segment [0,1] discretized as above. The discretized densities of the marginals
(p(k))4

k=1 consist each of the sum of three bumps (centered near the points x = 0.1, x = 0.5 and
x = 0.9). These computations where performed with Algorithm 2 with ε = 10−5. Unbalanced
variants (Figures 5.9c-5.9f) tend to preserve more the structure in three bumps in contrast to
classical optimal transport (Figure 5.9b).

Figure 5.10 displays barycenters with the quadratic cost cquad and the marginal penalization
OT/OT (classical optimal transport) and H/H (this corresponds to the “Gaussian-Hellinger-
Kantorovich” metric defined in Section 2.2) respectively. The densities considered on [0,3]2

are discretized into 200×200 samples. Computations where performed using Algorithm 2 with
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5.2. Unbalanced optimal transport barycenters

(a) Marginals (p(k))4
k=1 (b) OT

(c) H0.07 (d) TV0.02

(e) RG[0.65,1.35] (f) Ŵ2 (cut locus at 0.2)

Figure 5.9.: Barycenter-like problems on X = [0,1]. Except for (f), the first entropy f1 is ι{1}
which corresponds to equality constraints w.r.t. the densities (p(k))4

k=1, the cost is
cquad(x,y) = |y−x|2, the weights are (1,1,1,1)/4 and the function f2 is of the type
specified in the legend (using the same notations as in the previous section). Figure
(f) represents the Fréchet mean for the Ŵ2 metric. The dotted lines represent the
marginal of the optimal plans w.r.t. the second factor.

ε = 10−6. The barycenter coefficients are the following:

(0,1,0)

(1,3,0)/4 (0,3,1)/4

(2,2,0)/4 (1,2,1)/4 (0,2,2)/4

(3,1,0)/4 (2,1,1)/4 (1,1,2)/4 (0,1,3)/4

(1,0,0) (3,0,1)/4 (2,0,2)/4 (1,0,3)/4 (0,0,1)

The input densities have been specifically designed to showcase the difference between the
balanced and unbalanced models. The input densities have a similar global structure but mass
is unevenly distributed globally. This leads optimal transport to scatter mass over the domain as
it has to compromise between many locations for the superfluous mass, while the unbalanced
model simply adjusts the mass locally.

129



Chapter 5. Illustrations for Scaling Algorithms

Figure 5.10.: Top: barycenters with quadratic cost and exact marginal constraints (Wasser-
stein barycenters). Bottom: barycenters with quadratic cost and entropies f (s) =
s logs− s+1 (Gaussian-Hellinger-Kantorovich barycenters). The three input den-
sities are at the corners and the colormap is linear from 0 (white) to 1 (black).
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5.3. Time discretized gradient flows

The basic framework of gradient flows has been briefly laid out in Section 3.1. A large vari-
ety of dedicated numerical schemes has been proposed for spatial discretization and solving of
these time-discrete flows, such as for instance finite differences [27], finite volumes [37] and
Lagrangian schemes [13]. A bottleneck of these schemes is the high computational complexity
due to the resolution of an OT-like problem at each time step. The use of entropic regularization
has been proposed recently in [127] and studied theoretically in [34] for Wasserstein gradient
flow.

In this section, we consider the numerical resolution of time discretized gradient flows for W2

or Ŵ2. The framework of scaling algorithm is versatile, simple, extends to the case of unbalanced
gradient flow and can be stabilized and accelerated to reach higher precisions, faster. We derive
the “proxdiv” operator for a few cases and showcase the method on the computation of the
Wasserstein gradient flow of the functional “total variation of the gradient”. In the next chapter,
we separately and in more details the numerical behavior for a Ŵ2 gradient flow.

Computing “proxdiv” maps for separable gradient flows

W2 gradient flows The JKO scheme for time discretized Wasserstein W2 gradient flows of a
functional G involves a function of the form

F̄(s) = 2τḠ(s)

where Ḡ is the functional expressed in terms of density.

Example 5.3.1 (“proxdiv” for W2 discretized gradient flow of G).

• If G is the relative entropy w.r.t. a reference measure, i.e. Ḡ(s) = H(s|p) for p ∈RI
+ then

one has for each index i

[proxdivF(s,u,ε)]i = (pi/si)
2τ/(2τ+ε) · e−ui/(ε+2τ)

• some “splitting schemes” for crowd motion [110, 112] or dentritic growth [111] involve

the Wasserstein projection on a set of bounded densities. This can be solved with scaling

algorithms by posing G the convex indicator of a maximum density constraint, i.e. G(s) =
0 if si ≤ pi for all i ∈ {1, . . . , I}, ∞ otherwise, then

[proxdivF(s,u,ε)]i = min{e−ui/ε , pi/si}

Ŵ2 gradient flows In the next chapter, we consider in details a gradient flow for the unbal-
anced metric Ŵ2 introduced in Chapter 2.2. In this case, one has a marginal function of the
form

F̄(s) = inf
p∈RI

+

H(s|p)+ 2τḠ(p)
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Chapter 5. Illustrations for Scaling Algorithms

If G is a sum of pointwise functionals G(p) = ∑
I
i=1 gi(pi) then the operator proxH

F̄/ε is given by
the pointwise minimization problem

inf
(s̃,p)∈R2

εH(s̃|s)+H(s̃|p)+ 2τ gi(p)

for which the first order optimality conditions read
{

0 = ε log(s̃/s)+ log(s̃/p)

(s̃/p−1)/(2τ) ∈ ∂gi(p)

and s̃ = 0 if s = 0 or p = 0. We leave the study of a specific example for the next chapter.

Wasserstein gradient flow of “total variation of the gradient”

We conclude with the challenging case of the Wasserstein gradient flow of the functional ρ 7→
‖∇ρ‖1, the total variation of the gradient. This flow has been studied in [36] where is it shown
to converge (in some cases) to a fourth order and non-linear evolution PDE that reads

∂tρt +∇ · (ρt∇pt) = 0 with pt = ∇ · (∇ρt/|∇ρt |)

Dedicated numerical schemes have been studied in [63, 29, 16] to solve this PDE and it can be
seen there that it is challenging to obtain efficient and precise numerical schemes already in the
1-D case.

For a discretized 1-D domain of grid step h, the marginal function is

F̄(s) =
2τ

h

I−1

∑
i=1

|si+1− si|.

It is not separable, so we suggest to split it in two parts

F̄e =
2τ

h
∑

i even
g(si+1,si) F̄o =

2τ

h
∑

i odd

g(si+1,si) (5.3.1)

where g(a,b) = |a− b|. The operator “proxdiv” of Fe and Fo can be deduced from that for g

which has the following expression when evaluated at (a,b), (u,v):




(0,0) if a = b = 0

(e−(u+τ/h)/ε ,e−(v−τ/h)/ε) if b = 0 or a/b > e(u−v+2τ/h)/ε

(e−(u−τ/h)/ε ,e−(v+τ/h)/ε) if b = 0 or a/b < e(u−v−2τ/h)/ε

(
√

b/a)e−(u+v)/(2ε), (
√

a/b)e−(u+v)/(2ε)) otherwise.

Since we do not have an explicit expression for proxdivF̄ , we need to depart from the exact
setting of scaling algorithms. We propose to use Algorithm 3 with three “proxdiv” operators
(in practice it is more efficient to apply the “proxdiv” associated to the fixed marginal constraint
less often). We display on Figure 5.11 the flow computed using this method, starting from
a piecewise constant density. It is known that in that case, the evolution remains piecewise
constant, as observed in [36].
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5.3. Time discretized gradient flows

Figure 5.11.: Time discretized Wasserstein gradient flow of the functional G(s) = ‖∇s‖1 start-
ing from piecewise constant density. The time steps shown are t = 10−3 ×
(0;2.5;7.3;17;37) (from green to red) and the time resolution of the computed
flow is twice higher. ε = 2×10−6.
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Chapter 6.

Gradient Flow of Hele-Shaw Type

In this chapter, we show that the solutions of an evolution PDE of Hele-
Shaw type, studied in mathematical biology as a tumor growth model, can be
recovered as the gradient flow of a degenerate functional for the unbalanced
metric Ŵ 2

2 .
We prove that the key ingredients of the theory of gradient flows in metric
spaces apply. On the one hand, any minimizing movement is a solution of the
PDE: this implies the existence of solutions without regularity assumptions
on the initial density. On the other, when the domain is convex, every solution
of the PDE is a EVI solution of gradient flow, which implies uniqueness.
In Section 6.1, we introduce the PDE of interest, motivate its study and state
the main result as well as an informal justification. The whole of Section 6.2
is devoted to the proofs of existence and uniqueness.
In Section 6.3, starting from the time discretized minimizing movement
scheme, we proceed with the spatial discretization and derive the scaling
algorithm for solving the discrete step. We show that the numerical scheme
is consistent throughout, in that is recovers a solution to the PDE when all
parameters tend to their limit successively.
In Section 6.4, we compare the numerical results with explicit spherical so-
lutions in order to assess the precision of the numerical method as well as
the convergence of the scheme. We conclude in Section 6.5 with numerical
illustrations in 1-D and 2-D.
This chapter is a joint work with Simone Di Marino.
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Chapter 6. Gradient Flow of Hele-Shaw Type

6.1. Background and main results

6.1.1. A Hele-Shaw growth model as a gradient flow

Modeling tumor growth is a longstanding activity in applied mathematics that has become a
valuable tool for understanding cancer development. At the macroscopic and continuous level,
there are two main categories of models: the cell density models – which describe the tumor
as a density of cells which evolve in time – and the free boundary models – which describe
the evolution of the domain conquered by the tumor by specifying the geometric motion of its
boundary. Perthame et al. [126, 113] have exhibited a connection between these two approaches:
by taking the incompressible limit of a standard density model of growth/diffusion, one recovers
a free boundary model of Hele-Shaw type.

More precisely, they consider a mono-phasic density of cells ρ(x, t) (with x ∈ Rd the space
variable and t ≥ 0 the time) whose motion is driven by a scalar pressure field p(x, t) through
Darcy’s law and which grows according to the rate of growth which is modeled as a function
of the pressure Φ(p(x, t)) where Φ is continuously decreasing and null for p greater than a
so-called “homeostatic” pressure. The equation of evolution for ρ is then





∂tρ−∇ · (ρ∇p) = Φ(p)ρ , for t > 0

p = ρm, with m≥ 1,

ρ(0, ·) = ρ0 ∈ L1
+(Ω)

(6.1.1)

where the relation p = ρm accounts for a slow-diffusive motion. For suitable initial conditions,
they show that when m tends to infinity – the so-called stiff or incompressible or hard congestion

limit – the sequence of solutions (ρm, pm) of (6.1.1) tends to a limit (ρ∞, p∞) satisfying a system
of the form (6.1.1) where the relation between ρ and p is replaced by the “Hele-Shaw graph”
constraint p(1−ρ) = 0.

We propose to study directly this stiff limit system from a novel mathematical viewpoint,
focusing on the case of a rate of growth depending linearly on the pressure Φ(p) = 4(λ − p)+,
with a homeostatic pressure λ > 0. In a nutshell, we show that the stiff limit system





∂tρ−∇ · (ρ∇p) = 4(λ − p)+ρ

p(1−ρ) = 0

0≤ ρ ≤ 1

ρ(0, ·) = ρ0

(6.1.2)

characterizes gradient flows of the functional G : M+(Ω)→ R∪{∞} defined as, with L d the
Lebesgue measure on Rd ,

G(ρ) =

{
−λρ(Ω) if ρ ≪L d and dρ

dL d ≤ 1,

+∞ otherwise
(6.1.3)

in the space of nonnegative measures M+(Ω) endowed with the metric Ŵ2 (see Chapter 2.2).
This approach has the following advantages:
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6.1. Background and main results

• on a qualitative level, it gives a simple interpretation of the Hele-Shaw tumor growth
model. Namely, (6.1.2) describes the most efficient way for a tumor to gain mass under a

maximum density constraint, where efficiency translates as small displacement and small
rate of growth.

• on a theoretical level, we show existence of solutions to (6.1.2) with minimal regularity
assumptions on the initial condition (weaker than in [113]) and uniqueness on compact
convex domains. Besides, we believe the main interest is to give another application of
the theory of gradient flows in non-Hilbertian metric spaces, beyond Wasserstein spaces.

• on a numerical level, relying on recent advances on algorithms for unbalanced optimal
transport problems [45], the gradient flow approach allows for a simple numerical scheme
for computing solutions to (6.1.2).

6.1.2. Main result

In order to make precise statements, let us define what is meant by gradient flow. In Rd , the
gradient flow of a function G : Rd →{+∞} is a continuous curve x : R+→Rd which is solution
to the Cauchy problem {

d
dt

x(t) = −∇G(x(t)), for t > 0

x(0) = x0 ∈Rd .
(6.1.4)

However, in a (non-Riemannian) metric space (X ,d), the gradient ∇G of a functional G : X →
R∪{+∞} is not clearly defined anymore. Yet, several extensions of the notion of gradient flow
exist, relying on the variational structure of (6.1.4), see [5] for a general theory. One approach is
that of minimizing movements introduced by De Giorgi, that originates from the discretization in
time of (6.1.4) through the implicit Euler scheme : starting from x̃τ

0 = x0 ∈ X define a sequence
of points (x̃τ

k)k∈N as follows

x̃k+1 ∈ argmin
x∈X

{
G(x)+ 1

2τ d(x, x̃τ
k)

2} . (6.1.5)

By suitably interpolating this discrete sequence, and making the time step τ tend to 0, we re-
cover a curve which, in a Euclidean setting, is a solution to (6.1.4). This leads to the following
definition.

Definition 6.1.1 (Uniform minimizing movements). Let (X ,d) be a metric space, G : X →
R∪{+∞} be a functional and x0 ∈ X. A curve x : R+→ X is a uniform minimizing movement if

it is the pointwise limit as of a sequence of curves xτi defined as xτi(t) = x̃
τi

k for t ∈ [kτi, (k+1)τi[
for some sequence generated by (6.1.5), with τi → 0.

When the metric space is the space of probability measures endowed with an optimal transport
metric (P(Ω),W2), this time discretization is known as the JKO scheme. It is named after the
authors of the seminal paper [90] where it is used to recover (in particular) the heat equation by
taking the uniform minimizing movement of the entropy functional. A more precise and more
restrictive notion of gradient flow is given by the evolutional variational inequality (EVI).
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Chapter 6. Gradient Flow of Hele-Shaw Type

Definition 6.1.2 (EVI gradient flow). An absolutely continuous curve (x(t))t∈[0,T ] in a metric

space (X ,d) is said to be an EVIα (for α ∈R) solution of gradient flow of G : X →R∪{∞} if

for all y ∈ domG and a.e. t ∈ ]0,T [ it holds

1
2

d

dt
d(x(t),y)2 ≤ F(y)−F(x(t))− α

2
d(x(t),y)2.

The main result of this chapter, proved in Section 6.2, makes a link between the tumor growth
model (6.1.2), the metric Ŵ2 and the functional (6.1.3). Note that in this chapter, we assume a
definition of the distance Ŵ2 that is based on the Euclidean metric on Rd and not the geodesic
distance of Ω (they differ when Ω is not convex).

Theorem 6.1.3. Let Ω be an open bounded H1-extension domain of Rd , let ρ0 ∈ L1
+(Ω) such

that ρ0 ≤ 1 and T > 0. Then any minimizing movement is a solution of (6.1.2) on [0,T ] starting

from ρ0 with some p ∈ L2([0,T ],H1(Ω)). Moreover if Ω is convex we have that every solution

of (6.1.2) is an EVI(−2λ ) solution of gradient flow of G in the metric space (M+(Ω),Ŵ2); in

particular in this case we have uniqueness for (6.1.2).

Proof. The existence result is in Proposition 6.2.14 and the EVI characterization, with unique-
ness, in Proposition 6.2.17.

Remark 6.1.4. The concept of solutions to the system (6.1.2) is understood in the weak sense

as in Proposition 1.1.3, i.e. we say that the family of triplets (ρt ,vt ,gt)t≥0 is a solution to

∂tρt −∇ · (ρtvt) = gtρt

if for all φ ∈C∞
c (Ω̄), the function t 7→ ∫

Ω
φ (x)dρt(x) is well defined, absolutely continuous on

[0,+∞[ and for a.e. t ≥ 0 we have

d

dt

∫

Ω

φdρt =
∫

Ω

(∇φ · vt +φgt)dρt .

This property implies that t 7→ ρt is weakly continuous, that the PDE is satisfied in the distribu-

tional sense, and imposes no-flux boundary conditions for vt . Equation (6.1.2) is a specialization

of this equation with vt = −∇pt and gt = 4(λ − pt)+.

6.1.3. Short informal derivation

Before proving the result rigorously, let us present an informal discussion, inspired by [143], in
order to grasp the intuition behind the result. Stuying the optimality conditions in the dynamic
formulation of Ŵ2 given in Theorem 1.1.18, one sees that the velocity and the growth fields
are derived from a dual potential (proofs of this fact can be found in [94, 103]) as (vt ,gt) =
(∇φt ,4φt) and one has

Ŵ 2
2 (µ ,ν) = inf

φ

{∫ 1

0

∫

Ω

(|∇φt |2 + 4|φt |2)dρtdt ; ∂tρt = −∇ · (∇φtρt)

}
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where (ρt)t∈[0,1] is a path that interpolates between µ and ν . This suggest to interpret Ŵ2 as a
Riemannian metric with tangent vectors at a point ρ ∈M+(Ω) of the form ∂tρ =−∇ ·(∇φρ)+
4φρ and the metric tensor

〈∂tρ1,∂tρ2〉ρ =
∫

Ω

(∇φ1 ·∇φ2 + 4φ1 ·φ2)dρ .

Now consider a smooth functional by F : M+(Ω)→ R and denote F ′ the unique function
such that d

dε F(ρ + εχ)|ε=0 =
∫

Ω
F ′(ρ)dχ for all admissible perturbations χ ∈ M (Ω). Its

gradient at a point ρ satisfies, for a tangent vector ∂tρ = −∇ · (ρ∇φ )+ 4φρ , by integration by
part,

〈gradρ F ,∂tρ〉ρ =
∫

Ω

F ′(ρ)∂tρ =
∫

Ω

(∇F ′(ρ) ·∇φ + 4F ′(ρ) ·φ )ρ

which shows that, by identification, one has

gradρ F = −∇ · (ρ∇F ′(ρ))+ 4ρF ′(ρ).

In particular, taking the functional Fm(ρ) = −λρ(Ω) + 1
m+1 ρm+1 (ρ is identified with its

Lebesgue density) the associated gradient flow is the diffusion-reaction system (6.1.1) because
F ′m(ρ) =−λ +ρm. The functional G introduced in (6.1.3) can be understood as the “stiff” limit
as m → ∞ of the sequence of functionals Fm. Theorem 6.1.3 expresses, with different tools,
that the gradient flow structure is preserved in the limit m → ∞ where one recovers the hard
congestion model (6.1.2).

6.1.4. Related works

In the context of Wasserstein gradient flows — or so called JKO flows, free boundary models
have already been modeled in [121, 79] where a thin plate model of Hele-Shaw type is recovered
by minimizing the interace energy. More recently, crowd motions have been modeled with these
tools in [110, 112] in a series of work pioneering the study of Wasserstein gradient flows with a
hard congestion constraint.

The success of the gradient flow approach in the field of PDEs has naturally led to gener-
alizations of optimal transport metrics in order to deal with a wider class of evolution PDEs,
such as the heat flow with Dirichlet boundary conditions [70], and diffusion-reaction systems
[101]. The specific metric Ŵ2, has recently been used to study population dynamics [93], and
gradient flows structure for more generic smooth functionals have been explored in [77] where
the authors consider splitting strategy, i.e. they deal with the transport and the growth term in a
alternative, desynchronized manner.

Our work was pursued simultaneously and independently of [76] where this very class of
tumor growth model are studied using tools from optimal transport. These two works use differ-
ent approaches and are complementary: our focus is on the stiff models (6.1.1) and we directly
study the incompressible system with specific tools while [76] focuses primary on the diffusive
models (6.1.1), and recover the stiff system by taking a double limit. Their approach is thus not
directly based on a gradient flows, but is more flexible and allows to deal with nutrient systems.
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6.2. Proof of the main theorem

6.2.1. Entropy-transport problems

In this section we consider the optimal entropy-transport problems (as in Section 1.2.3) associ-
ated to cost functions c : Ω

2 →R∪{∞} and the entropy function f (s) = s logs− s+1, defined
as

Cc, f (µ1, µ2) := inf
γ∈M+(Ω×Ω)

{∫
c(x,y)dγ(x,y)+H(π1

# γ|µ1)+H(π2
# γ|µ2)

}
(6.2.1)

where H is the relative entropy functional (defined e.g. in Definition 3.5.1). In this whole chapter,

the entropy function f is the same, but the cost varies. The main role is played by the cost

cℓ(x,y) = − logcos2(min{|y− x|,π/2})

for which one recovers the definition of Ŵ2 in Theorem 2.2.4 (with the important distinction that
we consider the Euclidean distance, so imagine we have enclosed Ω in a bigger, convex set on
which we define Ŵ2). A family of Lipschitz costs cn approximating cℓ is also used. These costs
are constructed from the following approximation argument for the function gℓ : [0,∞)→ [0,∞]
defined by

gℓ(t) := − logcos2(min{t,π/2}). (6.2.2)

Lemma 6.2.1. The function gℓ is a convex and satisfies g′2
ℓ
= 4(egℓ − 1) in [0,π/2). It can

be approximated by an increasing sequence of strictly convex Lipschitz functions gn : [0,∞)→
[0,∞) such that

(i) 0≤ gn ≤ gm ≤ gℓ for every n≤m and gn(t) ↑ g(t) pointwise for every t; moreover gn(t) =
g(t) for t ∈ [0,1].

(ii) For all n we have that g′2n ≤ 4(egn −1) in [0,∞) and egn(t)−1≥ t2.

Proof. It is easy to compute the first and second derivative of gℓ to deduce that we have also
g′′
ℓ
(t) = 2egℓ ≥ 2. Now we consider and increasing sequence of points tn ≤ π/2 such that tn > 1

and tn ↑ π/2; then we define functions gn such that gn(0) = 0, g′n(0) = 0 and

g′′n(t) =

{
2egℓ(t) if t ≤ tn

e−t otherwise.
(6.2.3)

Since g′′n > 0 uniformly on bounded sets we have that gn is strictly convex; moreover it is Lips-
chitz since

g′n(t) = g′n(t)−g′n(0) =
∫ t

0
g′′n(s)ds

≤
∫ ∞

0
g′′n(s)ds =

∫ tn

0
g′′ℓ (s)ds+

∫ ∞

tn

e−s ds

≤ g′ℓ(tn)+ 1.
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Furthermore clearly since tn is increasing we have that g′′n is an increasing sequence of func-
tions, in fact g′′

ℓ
(t)> e−t . Moreover it is clear that gn(t) = gℓ(t) for t ∈ [0, tn] (and in particular in

[0,1]), and so we have gn ↑ gℓ in [0,π/2) but, since gn are increasing functions in t, we conclude
also that gn(t)→+∞ for every t ≥ π/2.

As for (ii) we denote F(t) = g′n(t)
2 and G(t) = 4(egn(t)−1). First we notice that F(t) = G(t)

for t ∈ [0, tn], since here gn agrees with gℓ, that satisfies the differential equation; then, for t > tn,
we can apply the Cauchy’s mean value theorem to F and G, that are both strictly increasing and
differentiable in (tn,∞). In particular there exists tn < s < t such that

F(t)−F(tn)

G(t)−G(tn)
=

F ′(s)
G′(s)

=
2g′n(s)g

′′
n(s)

4g′n(s)egn(s)
=

g′′n(s)

2egn(s)
≤ e−s ≤ 1;

knowing that F(tn) = G(tn) and that G(t) > G(tn) we get immediately that F(t) ≤ G(t).
For the second inequality we will use that et − 1 ≥ t and et − 1 ≥ t2/2. We choose tn big

enough such that gℓ(tn)/tn ≥
√

2: this is always possible since gℓ(t)/t → ∞ as t ↑ π/2. Then
from (6.2.3) we have g′′n(t)≥ 2 for t ≤ tn and in particular gn(t)≥ t2 in that region and so we get

egn(t)−1≥ et2 −1≥ t2 ∀t ≤ tn,

while if t ≥ tn by convexity we have gn(t) ≥ gn(tn)
tn

t ≥
√

2t and so

egn(t)−1≥ e
√

2t −1≥ 1
2
(
√

2t)2 = t2 ∀t ≥ tn.

Let us clarify and introduce the notations used in this chapter.

• one has cℓ(x,y) = gℓ(|y− x|) and the associated optimal entropy-transport cost is Cℓ =
Ccℓ, f = Ŵ 2

2 ;

• for the approximating costs we denote cn(x,y) = gn(|y− x|) and Cn =Ccn, f ;

We begin proving two lemmas.

Lemma 6.2.2. Let us consider µ1, µ2 two measures in Ω and a Borel cost c≥ 0. It holds

Cc, f (µ1, µ2) ≥
(√

µ1(Ω)−
√

µ2(Ω)
)2

.

Proof. In the sequel, we denote µi(Ω) = mi. It is clear that we can suppose c = 0 (in fact
Cc′, f ≤Cc, f whenever c′ ≤ c) and write our problem as

C0, f (µ1, µ2) = min
γ∈M+(Ω×Ω)

{
H(π1

# γ|µ1)+H(π2
# γ|µ2)

}

= min
M≥0

min
γ∈M+(Ω×Ω)

{
H(π1

# γ|µ1)+H(π2
# γ|µ2) : m(γ) = M

}
.

We can restrict ourselves to the case π i
#γ ≪ µi, where we have π i

#γ = σiµi and using Jensen
inequality applied to f (t) := t log t− t + 1 it holds

H(π i
#γi|µi) = mi

∫

Rd
f (σi)d

µi

mi

≥ mi f

(∫

Rd
σid

µi

mi

)

= mi f

(
M

mi

)
= M log (M/mi)−M+mi,
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with equality if we choose γ = M
m1

µ1⊗ M
m2

µ2. In particular, we have

C0, f (µ1, µ2) = min
M≥0

{
M log

(
M2

m1m2

)
+m1 +m2−2M

}
,

the minimizer is M =
√

m1m2, so Cc, f (µ1, µ2) ≥C0, f (µ1, µ2) = (
√

m1−
√

m2)2.

The following characterization is proved in [103, Thm. 4.14] and Corollaries.

Theorem 6.2.3. Let us consider an L-Lipschitz cost c≥ 0. Then we have

Cc, f (µ1, µ2) = max
α ,β∈LipL(Ω)

{∫
(1− e−α)dµ1 +

∫
(1− e−β )dµ2 : α +β ≤ c

}
.

Here and in the following, the constraint has to be understood as α(x)+β (y) ≤ c(x,y), for all

(x,y) ∈ Ω
2. Moreover, if γ denotes a minimizer in the primal problem and α ,β maximizers in

the dual, we have the following compatibility conditions:

(i) π1
# γ = e−α µ1;

(ii) π2
# γ = e−β µ2;

(iii) α(x)+ β (y) = c(x,y) for γ-a.e. (x,y). In particular if µ1 is absolutely continuous with

respect to the Lebesgue measure one has ∇α(x) = ∂xc(x,y) for γ-a.e. (x,y).

(iv) Cc, f (µ1, µ2) = µ1(Rd)+µ2(Rd)−2γ(Rd×Rd). In particular we have that π1
# γ and π2

# γ

are unique and α and β are uniquely defined in the support of µ1 and µ2, respectively.

Some stability properties follow, both in term of the measures and of the costs.

Proposition 6.2.4. Let us consider an L-Lipschitz cost c≥ 0. Then if µn,i ⇀ µi for i = 1,2 and

all the measures are supported on a bounded domain Ω then, denoting by αn,βn the maximizers

in the dual problem, we have that αn → α and βn → β locally uniformly where β and α are

maximizers in the dual problem for µ1 and µ2. Moreover Cc, f (µn,1, µn,2)→Cc, f (µ1, µ2).

Proof. First we show that limn→∞Cc, f (µn,1, µn,2) = Cc, f (µ1, µ2). Let us consider {γn} the set
of optimal plans in (6.2.1) which forms a precompact set because the associated marginals do
[103, Prop. 2.10]. Thus, from a subsequence of indices that achieves liminfn→∞Cc, f (µn,1, µn,2),
one can again extract a subsequence for which the optimal plans weakly converge, to an a priori

suboptimal plan. Using the joint semicontinuity of the entropy and the continuity of the cost we
deduce

liminf
n→∞

Cc, f (µn,1, µn,2) ≥Cc, f (µ1, µ2).

Similarly, the sequence of optimal dual variables αn,βn form a precompact set since it is a
sequence of bounded L-Lipschitz functions (see [103, Lem. 4.9]). Any weak cluster point
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α0,β0 satisfies α0 + β0 ≤ c and in particular, taking again a subsequence of indices achieving
the limsup and α0,β0 a cluster point of it, we have

limsup
n→∞

Cc, f (µn,1, µn,2) = limsup
n→∞

∫

Ω

(1− e−αn)dµn,1 +
∫

Ω

(1− e−βn)dµn,2

=
∫

Ω

(1− e−α0)dµ1 +
∫

Ω

(1− e−β0)dµ2 ≤Cc, f (µ1, µ2).

Therefore, the limit of the costs is the cost of the limits and the inequalities are equalities. We
deduce that every weak limit of {γn} is an optimal plan, and also that α0 and β0 are the unique
maximizers for the dual problem of µ1 and µ2, proving the claim.

Proposition 6.2.5. Let us consider a increasing sequence of lower semi-continuous costs cn(x,y)
and let us denote by c(x,y) = limn cn(x,y), Cn := Ccn, f and C := Cc, f . Then for every µ1, µ2 ∈
M (Rd) we have Cn(µ1, µ2) ↑C(µ1, µ2). Moreover

(i) any weak limit of optimal plans γn for Cn(µ1, µ2) is optimal for C(µ1, µ2);

(ii) if φn,ψn are optimal potentials for Cn(µ1, µ2), we have φn → φ in L1(µ1) and ψn → ψ in

L1(µ2), where φ and ψ are optimal potentials for C;

(iii) in the case c = cℓ and cn = gn(|x−y|) (as in Lemma 6.2.1) we have also that (φn,∇φn)→
(φ ,∇φ ) in L2(µ1) and similarly for ψn.

Proof. As in the previous proof we take γn as minimizers for the primal problem of Cn(µ1, µ2).
They form a pre compact set and so up to subsequences they converge to γ , which is a priori a
suboptimal plan for C(µ1, µ2). Let us fix m > 0 and then we know that for any n ≥ m we have
cn ≥ cm and so

Cn(µ1, µ2) ≥ H(π1
# γn|µ1)+H(π2

# γn|µ2)+
∫

cm dγn.

Now, using the semicontinuity of the entropy and the semicontinuity of cm we get

liminf
n→∞

Cn(µ1, µ2) ≥ H(π1
# γ|µ1)+H(π2

# γ|µ2)+
∫

cm dγ .

Taking the supremum in m and then the definition of C we get

liminf
n→∞

Cn(µ1, µ2) ≥ H(π1
# γ|µ1)+H(π2

# γ|µ2)+
∫

cdγ ≥C(µ1, µ2). (6.2.4)

Noticing that C(µ1, µ2) ≥Cn(µ1, µ2) we can conclude. In particular γ is optimal since we have
equality in all inequalities of (6.2.4).

In order to prove (ii) notice that, since in every inequality we had equality, in particular we
have H(π1

# γn|µ1)→ H(π1
# γ|µ1). Since γn ⇀ γ and π1

# γn = (1−φn)µ1 and π1
# γ = (1−φ )µ1 we

conclude by Lemma 6.2.6.
In the case we are in the hypotheses of (iii), we have that

γn = (id,hn(∇φ ))#(1−φn)µ1 ⇀ (id,h(∇φ ))#(1−φ )µ1,
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where hn is converges pointwise to h. Then by Lemma 6.2.6 below, we deduce that ∇φn → ∇φ

in measure with respect to µ1. Using Proposition 6.2.7 we have
∫
(4φ 2

n + |∇φn|2)dµ1 ≤ 4Cn(µ1, µ2) ≤ 4C(µ1, µ2) =
∫
(4φ 2 + |∇φ |2)dµ1,

where the last inequality can be proven as the first part of Proposition 6.2.7 in the case c = cℓ.
Now, let vn = (2φn,∇φn) and v = (2φ ,∇φ ). Since limsupn

∫ |vn|2 dµ1 ≤
∫ |v|2 dµ1, we have

vn ⇀ w in L2(µ1), up to subsequences: however since vn → v in measure we conclude vn ⇀ v in
L2(µ1) but then using ‖v‖2

2 ≥ limn→∞ ‖vn‖2
2 we finally conclude vn → v in L2(µ1).

Lemma 6.2.6. Let (X ,d, µ̄) be a metric measure space with finite measure. Let µn = fnµ̄

and µ = f µ̄ where f , fn are densities. Let us suppose that µn ⇀ µ and H(µn|µ̄)→ H(µ|µ̄).
Moreover let us assume there exists maps Tn : X → Rd such that (id,Tn)#µn ⇀ (id,T )#µ , with

T bounded. Then we have, up to a subsequence,

(i) fn → f in L1(µ̄);

(ii) Tn(x)→ T (x) for µ-a.e. x ∈ X.

Proof. The first point is a well known consequence of the strict convexity of t log t (see for
example [163, Theorem 3]) and the fact that since fn are uniformly µ integrable we have fn ⇀ f

in L1(µ̄). For the second point it is sufficient to notice that thanks to the first point we have
(id,Tn)#µ ⇀ (id,T )#µ and then we can apply [5, Lemma 5.4.1] and then pass to a subsequence.

The following estimate allows to capture the infinitesimal behavior of the entropy-transport
metrics.

Proposition 6.2.7. Let µ1 ∈M+(Ω) be an absolutely continuous measure and let φ := 1−e−α

where α is the potential relative to µ1 in the minimization problem Cn(µ1, µ2). Then we have

that ∫

Rd
(|∇φ |2 + 4φ 2)dµ1 ≤ 4Cn(µ1, µ2);

moreover for every f ∈ C 2
c (R

d) we have
∣∣∣∣
∫

Rd
f d(µ2−µ1)+

1
2

∫

Rd
∇ f ·∇φ dµ1 + 2

∫

Rd
f φ dµ1

∣∣∣∣≤ 5‖ f‖C 2Cn(µ1, µ2),

where ‖ f‖C2 = ‖ f‖∞ + ‖∇ f‖∞ + ‖D2 f‖∞.

Proof. In the sequel we will work always γ-a.e., where γ is the optimal plan for Cn(µ1, µ2).
We have α(x)+β (y) = c(x,y) = gn(|y− x|) and |∇α(x)|= g′n(|y− x|). We first find an upper
bound for the gradient term, using an inequality from Lemma 6.2.1:

∫

Rd
|∇φ |2 dµ1 =

∫

Rd
|∇α|2e−2α dµ1 =

∫

R2d
|g′n(|y− x|)|2e−α dγ

≤
∫

R2d
4(ec−1)e−α dγ =

∫

R2d
4eα+β e−α dγ−4

∫

R2d
e−α dγ

= 4
∫

eβ dγ−4
∫

e−α dγ = 4 µ2(R
d)−4

∫
e−2α dµ1 .
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Adding the term 4
∫ |φ |2 dµ1 allows to prove the first inequality:

∫

Rd
(|∇φ |2 + 4|φ |2)dµ1 ≤ 4µ2(R

d)+ 4
∫ [

(1− e−α)2− e−2α
]

dµ1

= 4
(

µ2(R
d)+ µ1(R

d)−2(e−α µ1)(R
d)
)

= 4Cn(µ1, µ2) .

As a byproduct, we have also shown:
∫

R2d
(ec−1)e−α dγ ≤Cn(µ1, µ2). (6.2.5)

For the second part we will split the estimate in several parts:

∫

Rd
f dµ2−

∫

Rd
f dµ1 +

1
2

∫

Rd
∇ f ·∇φ dµ1 + 2

∫

Rd
f φ dµ1 =

=
∫

R2d

(
f (y)eβ − f (x)eα +

1
2

∇ f (x) ·∇α + 2 f (x)(1− e−α)eα

)
dγ =

∫

R2d

(
f (y)− f (x)−∇ f (x) · (y− x)

)
e−α dγ

+
∫

R2d
∇ f (x) ·

(
∇α(x)

2
+(y− x)e−α

)
dγ

+
∫

R2d
f (y)(eβ − e−α)dγ +

∫

R2d
f (x)(1− e−α)2eα dγ

= (I)+ (II)+ (III)+ (IV )

Now for (I) we use the Lagrange formula for the remainder in Taylor expansion and then,
using (6.2.5) and Lemma 6.2.1 (ii), namely ec−1≥ |x− y|2, we get

(I) ≤ 1
2
‖D2 f‖∞

∫

R2d
|y− x|2e−α dγ

≤ 1
2
‖D2 f‖∞

∫

R2d
(ec−1)e−α dγ

≤ 1
2
‖D2 f‖∞Cn(µ1, µ2).

For the second term:

(II) =
∫

R2d
∇ f ·

(
∇α(x)

2
+(y− x)

)
e−αdγ +

1
2

∫

R2d
∇ f ·∇α(x) · (1− e−α)dγ

≤ ‖∇ f‖∞

(∫

R2d

∣∣∣∣
∇α(x)

2
+(y− x)

∣∣∣∣e−α dγ +
1
2

∫

R2d
|∇α| · |1− e−α |dγ

)

= (IIa)+ (IIb)
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Now we have ∇α(x) = (x−y)
|x−y| g

′
n(|x− y|) and in particular we have

2

∣∣∣∣
∇α(x)

2
+(y− x)

∣∣∣∣= |g
′
n(z)−2z|,

where z = |x− y| and we can verify that |g′n(z)−2z| ≤ 4(egn(z)−1) independently of n. In fact
if g′n(z) ≥ 1 or z≥ 1 this is obvious since we have

|g′n(z)−2z| ≤max{g′n(z),2z} ≤max{g′n(z),2z}2 ≤ 4(egn −1),

where in the last inequality we used Lemma 6.2.1 (ii). In the case z ≤ 1 instead we have
that g′n(z) = g′(z) = 2tan(z) (by Lemma 6.2.1 (i)), and so, calling t = tan(z), and using that
|arctan′′(t)| ≤ 1 for every t we have

|g′n(z)−2z|= 2| tan(z)− z|= 2|t− arctan(t)| ≤ t2 =
1
4

g′n(z)
2 ≤ egn(z)−1.

In particular we obtain

(IIa) =
‖∇ f‖∞

2

∫

R2d
|g′n(z)−2z|e−αdγ

≤ ‖∇ f‖∞

∫

R2d
4(ec−1)e−αdγ ≤ 4‖∇ f‖∞ ·Cn(µ1, µ2).

Then we use the inequality ab ≤ a2

4c
+ cb2 with a = |∇α|, b = |1− e−α | and c = eα in order to

get

(IIb) =
‖∇ f‖∞

2

∫

Rd
|∇α| · |1− e−α |e−α dµ1

≤ ‖∇ f‖∞

2

∫

Rd

(1
4
|∇α|2e−2α +(1− e−α)2)dµ1

=
‖∇ f‖∞

8

∫

Rd
(|∇φ |2 + 4φ 2)dµ1 ≤

‖∇ f‖∞

2
Cn(µ1, µ2).

Then we have

(III) ≤
∫

R2d
| f |(eβ+α −1)e−α dγ

≤ ‖ f‖∞

∫

R2d
(ec−1)e−α dγ ≤ ‖ f‖∞Cn(µ1, µ2)

and in the end we conclude with

(IV ) ≤
∫

Rd
| f ||1− e−α |2 dµ1 ≤ ‖ f‖∞

∫

Rd
|φ |2 dµ1 ≤ ‖ f‖∞Cn(µ1, µ2).
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6.2. Proof of the main theorem

6.2.2. One step of the scheme

For a measure µ ∈M+(Ω) which is absolutely continuous of density bounded by 1 and a cost
function c, consider the problem

proxc
τG(µ) := argmin

{
−λ

∫

Ω

ρ +
Cc, f (µ ,ρ)

2τ
: ρ ∈M+(Ω), ρ ≤ 1

}
(6.2.6)

which corresponds to an implicit Euler step as introduced in (6.1.5): notice however that for a
general cost c, the optimal entropy-transport cost Cc, f is not always the square of a distance. We
first show that this proximal operator is well defined.

Proposition 6.2.8 (Existence and uniqueness). If 2τλ < 1 and c : Ω
2 → [0,∞] is a strictly

convex, l.s.c., increasing function of the distance, then proxc
τG is a well defined map on {µ ∈

L1
+(Ω) : µ ≤ 1}, that is, the minimization problem admits a unique minimizer. Denoting ρ :=

proxc
τG(µ), it holds

(i)
√

ρ(Ω) ≤ 1+2λτ
1−2λτ

√
µ(Ω);

(ii) Cc, f (µ ,ρ) ≤ 2τλ (ρ(Ω)−µ(Ω)) ≤ (4λτ)2

(1−2λτ)2 µ(Ω).

Proof. The definition of the proximal operator requires to solve a problem of the form

min
γ∈M+(Ω×Ω)

I(γ) where I(γ) :=
∫

Ω×Ω

cdγ +F1(π
1
# γ)+F2(π

2
# γ)

where F1(σ) = H(σ |µ) and F2(σ) = infρ≤1{H(σ |ρ)−2τλρ(Ω)} are both convex functions
of the marginals of γ (note that the optimal ρ in the definition of F2 is explicit using the pointwise
first order optimality conditions : ρ(x) = min{1,σ(x)/(1−2τλ )}, for a.e. x ∈Ω. In order to
prove the existence of a minimizer, one could apply Theorem 3.1.2 directly, but let us give a
proof which do not assume compactness of Ω (although this is assumed), since we need the
mass estimates anyways.

Remark that γ = µ⊗µ is feasible and I is weakly l.s.c. so we only have to show that the closed
sublevel set S = {γ ∈M+(Ω2) : I(γ)≤ I(µ⊗µ)} is tight, and thus compact, in order to prove
the existence of a minimizer. Let us consider γ ∈ S and ρ(x) = min{1,π2

# (x)/(1−2τλ )}: then
we have

−λ µ(Ω) ≥ I(µ⊗µ) ≥ I(γ) ≥−λρ(Ω)+
Cc, f (µ ,ρ)

2τ
.

Then, using Lemma 6.2.2 we obtain

−λ µ(Ω) ≥−λρ(Ω)+
1

2τ

(√
µ(Ω)−

√
ρ(Ω)

)2

;

by rearranging the term, it follows
√

ρ(Ω) ≤ 1+2λτ
1−2λτ

√
µ(Ω), so we have a bounded mass as

long as 2λτ < 1. Thanks to the positivity of H, this implies that F2(π2
# γ) is lower bounded for
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γ ∈ S and thus both F1(π1
# γ) and

∫
cdγ are upper bounded (since nonnegative). Incidentally, we

obtained also (ii), an estimate for the dissipated energy

Cc, f (µ ,ρ) ≤ 2τλ (ρ(Ω)−µ(Ω)) ≤ (4λτ)2

(1−2λτ)2 µ(Ω). (6.2.7)

The upper bound on F1(π1
# γ) and the superlinear growth at infinity of the entropy implies that

S is bounded and {γ1 := π1
# γ : γ ∈ S} is tight (see [103, Prop. 2.10]). Let ε > 0 and K1 be a

compact set such that γ1(Ω \K1) < ε/2 for all γ ∈ S. The assumptions on c guarantee that the
set Kλ := {(x,y) ∈ K1×Ω : c(x,y) ≤ λ} is compact for λ ∈R, and by the Markov inequality,∫

K1×Ω
cdγ ≥ λγ((K1×Ω) \Kλ ). Consequently, for λ big enough, it holds for all γ ∈ S:

γ(Ω2 \Kλ ) = γ1(Ω \K1)+ γ((K1×Ω) \Kλ ) ≤ ε/2+ ε/2≤ ε

which proves the tightness of S and shows the existence of a minimizer.
For uniqueness, observe that if γ is a minimizer, then it is a deterministic coupling. Indeed, γ

is an optimal coupling for the cost c between its marginals, which are absolutely continuous. But
c satisfies the twist condition which guarantees that any optimal plan is actually a map, because
c is a strictly convex function of the distance.

Now take two minimizers γa and γb and define γ̃ = 1
2 γa + 1

2 γb which is also a minimizer, by
convexity. Note that γ̃ must be a deterministic coupling too, which is possible only if the maps
associated to γa and γb agree almost everywhere on (spt(π1

# γa)∩ spt(π1
# γb))×Ω. Finally, since

all the terms in the functional are convex, it must hold F1(π1
# γ̃) = 1

2 F1(π1
# γa)+ 1

2 F1(π1
# γb). But

F1 is strictly convex so π1
# γa = π1

# γb and thus γa = γb. This, of course, implies the uniqueness
of ρ which is explicitly determined from the optimal γ .

We now use the dual formulation in order to get information on the minimizer.

Proposition 6.2.9. Let us consider ρ = proxc
τG(µ). Then there exists a Lipschitz optimal poten-

tial φ relative to ρ for the problem Cc, f (ρ , µ) such that φ ≤ 2τλ and

ρ(x) =

{
1 if φ < 2τλ ,

[0,1] if φ = 2τλ .

Proof. In the problem (6.2.6), let us consider a competitor ρ̄ ≤ 1 and define ρε = ρ + ε(ρ̄−ρ).
Since ρε is still admissible as a competitor we have that

−λ

∫

Ω

ρ +
Cc, f (µ ,ρ)

2τ
≤−λ

∫

Ω

ρε +
Cc, f (µ ,ρε)

2τ
.

We can now use the fact that, if φε and ψε are the maximizing potentials in the dual formulation
for Cc, f (µ ,ρε), we have

Cc, f (µ ,ρε) =
∫

φε dρε +
∫

ψε dµ and Cc, f (µ ,ρ) ≥
∫

φε dρ +
∫

ψε dµ ,

because φε ,ψε are admissible potentials also for µ and ρ . In particular we deduce that

−λ

∫

Ω

ρ +
1

2τ

∫
φε dρ ≤−λ

∫

Ω

ρε +
1

2τ

∫
φε dρε ;

148



6.2. Proof of the main theorem

0≤−λ

∫

Ω

εd(ρ̄−ρ)+ ε
1

2τ

∫
φε d(ρ̄−ρ).

Dividing this inequality by ε and then let ε → 0, using that φε → φ0 locally uniformly by Propo-
sition 6.2.4, we get

∫

Ω

(φ0−2λτ)dρ ≤
∫

Ω

(φ0−2λτ)dρ̄ ∀0≤ ρ̄ ≤ 1,

where φ0 is an optimal (Lipschitz) potential relative to ρ . This readily implies

ρ(x) =





1 if φ0 < 2τλ

[0,1] if φ0 = 2τλ

0 if φ0 > 2τλ .

.

Now it is sufficient to take φ = inf{2τλ ,φ0} and we have that φ is still an admissible potential
since (1−φ )(1−ψ) ≥ (1−φ0)(1−ψ) ≥ e−c and moreover we have

∫
φ dρ =

∫
φ0 dρ and so

φ also is optimal.

Lemma 6.2.10 (Stability of prox). Let (cn)n∈N be an increasing sequence of Lipschitz cost

functions, each satisfying the hypotheses of Proposition 6.2.8 and let c be the limit cost. Then

ρn = proxcn

τG(µ) converges weakly to ρ = proxc
τG(µ).

Proof. By Proposition 6.2.8 we know that {ρn} have equi-bounded mass and in particular, up to
subsequences, ρn ⇀ ρ̄ which is such that ρ̄ ≤ 1. Fix m ∈N and n≥ m; by the minimality of ρn

we know that for every ν we have

Ccm, f (ρn, µ)

2τ
−λ

∫

Ω

ρn ≤
Ccn, f (ρn, µ)

2τ
−λ

∫

Ω

ρn

≤ Ccn, f (ν , µ)

2τ
−λ

∫

Ω

ν ≤ Cc, f (ν , µ)

2τ
−λ

∫

Ω

ν .

Taking now the limit as n→ ∞, using the continuity of Ccm, f (Proposition 6.2.4), we get

−λ

∫

Ω

ρ̄ +
Ccm, f (ρ̄ , µ)

2τ
≤−λ

∫

Ω

ν +
Cc, f (ν , µ)

2τ
.

Finally, we can take the limit m→ ∞ and use that Ccm, f ↑Cc, f (Proposition 6.2.5) in order to get

−λ

∫

Ω

ρ̄ +
Cc, f (ρ̄ , µ)

2τ
≤−λ

∫

Ω

ν +
Cc, f (ν , µ)

2τ
,

that is, ρ̄ is a minimizer for the limit problem and so by the uniqueness ρ̄ = ρ .

Lemma 6.2.11. Let us consider ρ = proxcℓ
τG(µ) = proxŴ2

τG(µ). If Ω is a regular domain1 then

there exists p ∈ H1(Ω) that verifies p≥ 0, p(1−ρ) = 0 and such that

∫

Ω

(|∇p|2 + 4(p−λ )2)dρ ≤ Ŵ 2
2 (ρ , µ)

τ2

1we need that Ω is an H1 extension domain, that is, there exists C > 0 such that for every f ∈ H1(Ω) there exists
f̃ with f̃ |Ω = f and ‖ f̃‖H1(Rd) ≤C‖ f‖H1(Ω).
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and such that for all f ∈ C 2(Ω),

∣∣∣∣
∫

Ω

f d(µ−ρ)− τ

∫

Ω

(∇p ·∇ f + 4(p−λ ) f )dρ

∣∣∣∣≤ cst · ‖ f‖C 2Ŵ 2
2 (ρ , µ).

Proof. We first use the approximated problem ρn = proxcn

τG(µ). By Lemma 6.2.10 we know that
ρn ⇀ ρ . Using Proposition 6.2.9 we know there exist optimal potentials φn such that, calling
pn =

1
2τ (2τλ − φn), we have pn ∈ H1(Ω), pn ≥ 0 and pn(1− ρn) = 0. Moreover, thanks to

Proposition 6.2.7 we also know that

τ2
∫

Ω

(
|∇pn|2 + 4(λ − pn)

2)dx =
1
4

∫ (
|∇φn|2 + 4|φn|2

)
dρn ≤Cn(ρn, µ) (6.2.8)

∣∣∣∣
∫

Ω

f dµ−
∫

Ω

f dρn + τ

∫

Ω

(−∇pn ·∇ f + 4(λ − pn) f )dx

∣∣∣∣≤ 5‖ f‖C2Cn(ρn, µ) (6.2.9)

In particular, using Equations (6.2.7) and (6.2.8), we get that pn is equibounded in H1(Ω).
Thanks to the hypothesis on Ω, there exist a sequence p̃n equibounded in H1(Rd) such that
p̃n|Ω = pn; in particular there is a subsequence of p̃n that is weakly converging in H1(Rd) and
strongly in L2 to some p ∈ H1, p ≥ 0. Since we have ρn ⇀ ρ in duality with C and so also in
duality with L1, thanks to the L∞ bound, we get that

∫
Ω

pn(1−ρn)→
∫

Ω
p(1−ρ) and so we have∫

Ω
p(1−ρ)dx = 0 that implies p(1−ρ) = 0 almost everywhere in Ω, since ρ ≤ 1 and p ≥ 0.

Now we can pass to the limit both Equation (6.2.8) and (6.2.9) getting the conclusion.

6.2.3. Convergence of minimizing movement

We consider an initial density ρ0 ∈ L1
+(Ω) and define the discrete gradient flow scheme as

introduced in (6.1.5) which depends on a time step τ > 0

{
ρτ

0 = ρ0 ∈ L1
+(Ω)

ρτ
n+1 = proxŴ2

τG(ρn) for n≥ 1,
(6.2.10)

define pτ
n+1 as the pressure relative to the couple ρτ

n ,ρτ
n+1 (provided by Lemma 6.2.11) and

extend all these quantities in a piecewise constant fashion as in Definition 6.1.1 in order to
obtain a family of time dependant curves (ρτ , pτ):

{
ρτ(t) = ρτ

n+1

pτ(t) = pτ
n+1

for t ∈]τn,τ(n+ 1)]. (6.2.11)

The next lemmas exhibit the regularity in time of ρτ , which improves as τ diminishes.

Lemma 6.2.12. There exists a constant cst > 0 such that for any τ > 0, the sequence of mini-

mizers satisfies

∑
k

Ŵ 2
2 (ρ

τ
k ,ρτ

k+1) ≤ cst · τ .
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Proof. By optimality, ρτ
k+1 satisfies Ŵ 2

2 (ρ
τ
k ,ρτ

k+1)≤ 2τ
(
G(ρτ

k )−G(ρτ
k+1)

)
. By summing over

k, one obtains a telescopic sum which is upper bounded by 2τ(G(ρ0)− infG) and infG=−λ |Ω|
is finite because Ω has a finite Lebesgue measure |Ω|.

The consequence of this bound is a Hölder property, a standard result for gradient flows.

Lemma 6.2.13 (Discrete Hölder property). Let ρ0≤ 1 and T > 0. There exists a constant cst> 0
such that for all τ > 0 and s, t ≥ 0, it holds

Ŵ2(ρ
τ
t ,ρτ

s ) ≤ cst · (τ + |t− s|)1/2 .

In particular, if (τn)n∈N converges to 0, then, up to a subsequence, (ρτn) weakly converges to a

(1/2)-Hölder curve (ρt)t∈[0,T ].

Proof. The first result is direct if s and t are in the same time interval ]τk,τ(k + 1)] so we
suppose that s− t ≥ τ and let k, l be such that t ∈]τ(k− 1),τk] and s ∈]τ(l− 1),τl]. By the
triangle inequality and the Cauchy-Schwarz inequality, one has

Ŵ2(ρ
τ(t),ρτ(s)) ≤

l−1

∑
i=k

Ŵ2(ρ
τ
i ,ρτ

i+1) ≤
(

l−1

∑
i=k

Ŵ2(ρ
τ
i ,ρτ

i+1)
2

) 1
2

(l− k)
1
2 .

By using Lemma 6.2.12 and the fact that |l− k| ≤ 1+ |s− t|/τ , the first claim follows.
As for the second claim, let us adapt the proof of Arzelà-Ascoli theorem to this discontinuous

setting. Let (qi)i∈N be a enumeration of Q∩ [0,T ] and let τk → 0. Since {ρτk(q1)} is bounded
in L∞∩L1(Ω), it is weakly pre-compact and thus there is a subsequence τk(1) such that ρτ

k(1) (q1)
converges. By induction, for any i ∈N, one can extract a subsequence τk(i) from τk(i−1) so that
ρτ

k(i) (qi) converges.
Now, we form the diagonal subsequence (ρm)m∈N whose m-th term is the m-th term in the

m-th subsequence ρτ
k(m) . By construction, for every rational qi ∈ [0,T ], ρm(qi) converges. More-

over, for every t ∈ [0,T ] and for q ∈ [0,T ]∩Q

Ŵ2(ρn(t),ρm(t)) ≤C(τk(n) + |t−q|) 1
2 +Ŵ2(ρn(q),ρm(q))+C(τk(m) + |t−q|) 1

2

by the triangle inequality and the discrete Hölder property. As q cana be arbitrarily close to t, one
sees that (ρm(t))m∈N is Cauchy and thus converges. Let us denote ρ the limit. For 0≤ s≤ t ≤ T ,
and m ∈N, it holds

Ŵ2(ρ(t),ρ(s)) ≤ Ŵ2(ρ(t),ρm(t))+Ŵ2(ρm(t),ρm(s))+Ŵ2(ρm(s),ρ(s)) .

In the right-hand side, the middle term is upper bounded by C(τk(m)+ |s−t|) 1
2 →C|s−t| 1

2 and the
other terms tend to 0 so by taking the limit m→ ∞, one obtains the (1/2)-Hölder property.

Collecting all the estimates established so far, we obtain an existence result.

Proposition 6.2.14 (Existence of solutions). The family (ρτ , pτ) defined in (6.2.11) admits weak

cluster points (ρ , p) as τ ↓ 0 which are solutions to the evolution PDE (6.1.2) on [0,T ], for all

T > 0.
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Proof. Define the sequences of momentum Eτ
n = −ρτ

n ∇pτ
n and source term Dτ

n = 4ρτ
n (λ − pτ

n)
and extend these quantities in a piecewise constant fashion as in (6.2.11) on the time interval
[0,T ] for some T > 0. Gathering the results, let us first show that there exists a constant C =
C(T ,ρ0) such that

(i) ρτ
t pτ

t = pτ
t and pτ

t ≥ 0;

(ii)
∫ T

0

∫
Ω
(|∇pτ |2 + |pτ |2)dxdt ≤ ∫ T

0

∫
Ω
(|Eτ

t |2 + |Dτ
t |2)dxdt ≤C;

(iii)
∣∣∫

Ω
φ dρτ

t −
∫

Ω
φ dρτ

s −
∫ t

s

∫
Ω
(Eτ

r ·∇φ +Dτ
r φ )dxdr

∣∣ ≤ C‖φ‖C 2 max{τ ,
√

τ}, for all φ ∈
C 2(Ω);

(iv)
∫ T

0

∫
Ω
|∇pτ |dxdt <C.

Property (i) is a direct from Lemma 6.2.11 and the definition of the curves pτ and ρτ . One
then proves (ii) and (iv) by using Lemma 6.2.11 and property (i). Indeed, one has

∫

Ω

(|Eτ
n |2 + |Dτ

n|2)dx≤
∫

Ω

(|∇pτ
n|2 + 4(λ − pn)

2)dρn ≤
1
τ2Ŵ 2

2 (ρ
τ
n−1,ρτ

n ).

Integrating now the interpolated quantities it follows, by Lemma 6.2.12,

∫ T

0

∫

Ω

(|Eτ
t |2 + |Dτ

t |2)dxdt ≤
⌈ T

τ ⌉

∑
n=1

τ

∫

Ω

(|Eτ
n |2 + |Dτ

n|2)dx≤ 1
τ ∑

n

Ŵ 2
2 (ρ

τ
n−1,ρτ

n ) ≤C .

Property (iii) is obtained from Lemma 6.2.11 in a similar way. Indeed, for all φ ∈ C 2(Ω), by
denoting Ib

a =
∫ b

a

∫
Ω
(Eτ

r ∇φ +Dτ
r φ )dxdr,

∣∣∣∣
∫

Ω

φ (ρτ
t −ρτ

s )dx− It
s

∣∣∣∣=
∣∣Ikτ

s − Ilτ
t +

l−1

∑
i=k

(∫

Ω

φ (ρτ
i+1−ρτ

i )dx− τ

∫

Ω

(Eτ
i+1∇φ +Dτ

i+1φ )dx

)∣∣∣∣∣

≤ |Ikτ
s |+ |It

kl|+C‖φ‖C 2

l−1

∑
i=k

Ŵ 2
2 (ρ

τ
i ,ρτ

i+1)

where k = ⌈ s
τ ⌉ and l = ⌈ t

τ ⌉. By Lemma 6.2.12, the last term is bounded by Cτ and by Lemma
6.2.11, |Ikτ

s | and |Ilτ
t | are controlled by C

√
τ :

|Ikτ
s | ≤ τ|

∫

Ω

(Eτ
k ∇φ +Dτ

kφ )dx| ≤ ‖φ‖H1(Ω)Ŵ2(ρk−1,ρk) ≤C‖φ‖H1(Ω)

√
τ .

So property (iii) is shown.
Let us now take a sequence τk → 0 and pass those relations to the limit. Recall that from the

discrete Hölder property (Lemma 6.2.13), up to a subsequence, (ρτk) admits a weakly continu-
ous limit (ρt)t∈[0,T ]. Moreover, thanks to the L2-norm bound (ii) we have, up to a subsequence
(Eτk ,Dτk)⇀ (E,D). In particular, looking at relation (iii), we obtain, for all φ ∈ C 2(Ω),

∫

Ω

φdρt −
∫

Ω

φdρs =
∫ t

s

∫

Ω

(Er ·∇φ +Drφ )dxdr .
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which means that (ρ ,E,D) is a weak solution of ∂tρt +∇ ·Et = Dt .
In order to conclude it remains to prove that D = 4(λ − p)ρ and E =−ρ∇p for some admis-

sible pressure field p. As pτ is a bounded family in the Hilbert space L2([0,1],H1(Ω)), there
exist weak limits p when τ → 0. The property p ≥ 0 is obvious but the Hele-Shaw comple-
mentary relation p(1−ρ) = 0 is more subtle. We obtain it by combining the spatial regularity
of pτ with the time regularity of ρτ as was done for the Wasserstein case in [110]. Using the
complementary relation pτ(1−ρτ) = 0, one has for all 0 < a < b < T :

0 =
1

b−a

∫ b

a

∫

Ω

pτ
t (x)(1−ρτ

a (x))dxdt +
1

b−a

∫ b

a

∫

Ω

pτ
t (x)(ρ

τ
a (x)−ρτ

t (x))dxdt .

Denoting p[a,b] :=
∫ b

a ptdt, the first term converges to
∫

Ω
p[a,b](x)(1−ρa(x))dx because (pτ

[a,b])τ

converges to p[a,b] — weakly in H1(Ω) and thus strongly in L2
loc(Ω) since Ω bounded — and

(ρτ
a )τ converges weakly to ρa in duality with L1(Ω). Additionally, for every Lebesgue point a

of t 7→ pt (seen as a map in the separable Hilbert space L2(Ω)) we have
∫

Ω

p[a,b](x)(1−ρa(x))dxdt −−→
b→a

∫

Ω

pa(x)(1−ρa(x))dx .

For the second term, we use Lemma 6.2.15 (stated below) and obtain
∫ b

a

∫

Ω

pτ
t (x)(ρ

τ
a (x)−ρτ

t (x))dxdt ≤ 2
∫ b

a
‖pτ

t ‖H1(Rd)Ŵ2(ρ
τ
a ,ρτ

t )dt

≤C

√
τ +(b−a)

(∫ b

a
‖pτ

t ‖2
H1(Rd)dt

) 1
2
(∫ b

a
dt

) 1
2

≤C(b−a)
√

1+ τ/(b−a)

(∫ b

a
‖pτ

t ‖2
H1(Rd)dt

) 1
2

.

Notice that since the geodesics used in Lemma 6.2.15 may exit the domain Ω we have to use the
H1 norm of pτ(t,·) on the whole Rd , in the sense that we extend it, and thanks to the regularity of
Ω we have ‖pτ(t, ·)‖H1(Rd) ≤C‖pτ(t, ·)‖H1(Ω). In this way the functions t 7→ ‖pτ(t, ·)‖2

H1(Rd)

are τ-uniformly bounded in L1([0,1]) and so admit a weak cluster point σ ∈ M+([0,T ]) as
τ → 0. Thus, for a.e. a ∈ [0,T ],

lim
τ→0

1
b−a

∫ b

a

∫

Ω

pτ
t (x)(ρ

τ
a (x)−ρτ

t (x))dxdt ≤C

√
σ([a,b]) −−→

b→a
0.

As a consequence, for a.e. a,
∫

Ω
pa(x)(1−ρa(x))dx = 0, and since p≥ 0 and ρ ≤ 1, this implies

p(1−ρ) = 0 a.e.
We are finally ready to recover the expressions for E and D by writing these quantities as

linear functions of p and ρ which are preserved under weak convergence and then plugging the
nonlinearities back using p(1−ρ) = 0. For Dτ ⇀ D one has

Dτ = 4(λ − pτ)ρτ = 4(λρτ − pτ) ⇀
τ→0

4(λρ− p) = 4(λ − p)ρ = D,

while for Eτ ⇀ E one has

Eτ = −ρτ∇pτ = −∇pτ
⇀

τ→0
−∇p = −ρ∇p = E .
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In the proof, we used the following lemma which is well-known for the case of Wasserstein
distances, and illustrates a link between Ŵ2 and H−1 norms. Its proof is a simple adaptation
of the Wasserstein case, given the geodesic convexity result of Theorem 6.2.16. Notice that,
as in the Wasserstein case, this lemma can be generalized to the case where Lp bounds on the
measures imply a comparison between Ŵ2 and the W−1,q norm, where 1

p
+ 2

q
= 1.

Lemma 6.2.15. Let (µ ,ν)∈M+(Rd) be absolutely continuous measures with density bounded

by a constant C. Then, for all φ ∈ H1(Rd), it holds

∫

Rd
φd(µ−ν) ≤ 2

√
C‖φ‖H1(Rd)Ŵ2(µ ,ν) .

Proof. Consider a minimizing geodesic (ρt)t∈[0,1] between µ and ν for the distance Ŵ2 and
(v,α) ∈ L2([0,1],L2(ρt)) the associated velocity and growth fields. These quantities satisfy
the constant speed property ‖vt‖2

L2(ρt )
+ ‖αt‖2/4 = Ŵ 2

2 (µ ,ν) for a.e. t ∈ [0,1] (see Proposition

1.1.19 or [94, 104] for the Rd setting). Moreover, by Theorem 6.2.16, L∞ bounds are preserved
along geodesics. Let us take φ ∈H1(Rd) and notice that by approximation we can suppose that
its support is bounded; then it holds

∫

Rd
φd(µ−ν) =

∫ 1

0

d

dt

(∫

Rd
φρt

)
dt =

∫ 1

0

∫

Rd
(∇φ · vt +φαt)ρtdxdt

≤

√∫ 1

0

∫

Rd
(|∇φ |2 + 4|φ |2)ρtdxdt

√∫ 1

0

∫

Rd
(|vt |2 +

1
4
|αt |2)ρtdxdt

≤ 2
√

C‖φ‖H1(Rd)Ŵ2(µ ,ν) .

This lemma relies on an announced result of geodesic convexity for Ŵ2 [102]. We also heavily
rely on this result for proving uniqueness next.

Theorem 6.2.16. Let us consider µt be a geodesic of absolutely continuous measures connecting

the two absolutely continuous measures µ0 and µ1. Then, for every m > 1 we have that t 7→∫ ( dµt

dL d

)m
dx is convex. In particular if µ1, µ0 ≤ML d , we have µt ≤ML d too.

6.2.4. Proof of uniqueness

Proposition 6.2.17 (Uniqueness). If Ω is convex, every solution of (6.1.2) is an EVI(−2λ ) solu-

tion of gradient flow of G in the metric space (M+(Ω),Ŵ2) and we have uniqueness for (6.1.2).

Proof. We follow the same lines as [60], using the announced geodesic convexity results from
Theorem 6.2.16. Let us consider two solutions (ρ1

t , p1
t ) and (ρ2

t , p2
t ) and assume that we can

prove that we have (distributionally)

d

dt
Ŵ 2

2 (ρ
1
t ,ρ2

t ) =
∫

Ω

(
−∇φt ·∇p1

t + 4φt(λ − p1
t )
)

dρ1
t

+
∫

Ω

(
−∇ψt ·∇p2

t + 4ψt(λ − p2
t )
)

dρ2
t , (6.2.12)
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where φt ,ψt is a couple of optimal potentials for ρ1
t ,ρ2

t . Then using Lemma 6.6.1 we get

d

dt
Ŵ 2

2 (ρ
1
t ,ρ2

t ) ≤ 4λ

∫
φt dρ1

t + 4λ

∫
ψt dρ2

t = 4λŴ 2
2 (ρ

1
t ,ρ2

t ),

and so by Grönwall’s lemma it follows Ŵ 2
2 (ρ

1
t ,ρ2

t ) ≤ e2λ tŴ 2
2 (ρ

1
t ,ρ2

t ). So we are left to prove
(6.2.12) in the distributional sense. Notice that (6.2.12) is true if we can prove that for every
0 < s < r < T we have

Ŵ 2
2 (ρ

1
r ,ρ2

r )−Ŵ 2
2 (ρ

1
s ,ρ2

s )=
∫ r

s

(∫

Ω

(∇φt · v1
t +φtr

1
t )dρ1

t +
∫

Ω

(∇ψt · v2
t +ψtr

2
t )dρ2

t

)
dt

where we can suppose ∂tρ
1
t +∇ · (v1

t ρ1
t ) = r1

t ρ1
t with

∫∫
(|v1

t |2 +(r1
t )

2)dρ1
t dt < ∞ and similarly

for ρ2
t . Let us fix n and consider Cn(ρ1

t ,ρ2
t ) and a couple of optimal potentials φn,ψn. In

particular for every s we have

Cn(ρ
1
s ,ρ2

s ) ≥
∫

φn dρ2
s +

∫
ψndρ2

s ,

with equality for s = t. Now with a slight modification of [60, Lemma 2.3], we can prove that
there exists a full measure set where we can differentiate both sides an the derivatives are equal.
In particular, using that t 7→Cn(ρ1

t ,ρ2
t ) is absolutely continuous, we get

Cn(ρ
1
r ,ρ2

r )−Cn(ρ
1
s ,ρ2

s ) =
∫ r

s

(∫

Ω

(∇φn,t · v1
t +φn,tr

1
t )dρ1

t +
∫

Ω

(∇ψn,t · v2
t +ψn,tr

2
t )dρ2

t

)
dt

and then letting n → ∞ we conclude, using that (φn,t ,∇φn,t)→ (φt ,∇φt) in L2(ρ1
t ) thanks to

Proposition 6.2.5 (iii).
The EVI characterization is easily deduced from those previous computations. Taking a so-

lution (ρt , pt)t∈[0,T ] and any µ ∈M+(Ω) such that µ ≤ 1, we have, by denoting (φt ,ψt) the
optimal potentials for (ρt , µ),

1
2

Ŵ 2
2 (ρt , µ) =

∫

Ω

(∇φt · vt +φtrt)dρt ≤ 2λ

∫

Ω

φtdρt

by Lemma 6.6.1 and we conclude using Theorem 6.2.3 (i) and (iv), which proves that one has

2λ

∫

Ω

φtdρt ≤ G(µ)−G(ρt)+λŴ 2
2 (ρt , µ).
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6.3. Numerical scheme

The characterization of the tumor growth model (6.1.2) as a gradient flow suggests a constructive
method for computing solutions through the time discretized scheme (6.1.5). In this section we
build on the numerical method established in Chapter 3 to numerically compute solutions.

First, let us recall that the resolution of one step of the scheme involves, for a given time step
τ > 0 and previous step µ ∈ L1

+(Ω), such that µ ≤L d to compute

ν ∈ argmin
{

2τG(ν)+Ŵ 2
2 (ν , µ)2

}
(6.3.1)

According to Proposition 6.2.8, by using the optimal entropy-transport problem and exchanging
the infima, this problem can be written in terms of one variable γ which stands for the unknown
coupling

min
γ∈M+(Ω2)

{∫

Ω2
c(x,y)dγ +H(π1

# γ|µ)+ inf
ν∈M+(Ω)

{
H(π2

# γ|ν)+ 2τG(ν)
}}

, (6.3.2)

which admits a unique minimizer γ∗ and the optimal ν∗ can be recovered from γ∗ through the
first order pointwise optimality conditions as

ν∗ = min{1,π2
# γ∗/(1−2τλ )}.

The subject addressed in this Section is the numerical resolution of (6.3.2). Since λ is redundant
with τ , we fix λ = 1 for the rest of this chapter.

6.3.1. Spatial discretization

Let W = (Wi,xi)N
i=1 be a pointed partition of a compact domain Ω ⊂ Rd where xi is a point

which belongs to the interior of the set Wi for all i (in our experiments, Wi will always be a d-
dimensional cube and xi its center). We denote by diamW the quantity maxi diamWi. An atomic
approximation of µ ∈M+(Ω) is given by the measure

µW =
N

∑
i=1

αiwiδxi

where wi := L d(Wi) is the (positive) Lebesgue measure of Wi, αi := µ(Wi)/wi are the locally
averaged densities and δxi

is the Dirac measure of mass 1 concentrated at the point xi. This is
a proper approximation since for a sequence of partitions (Wk)k∈N such that diamWk → 0 then
µWk

converges weakly to µ (indeed, µWk
is the pushforward of µ by the map Wk,i ∋ x 7→ xk,i

which converges uniformly to the identity map as k→ ∞).
Now assume that we are given a vector α ∈RN

+. For a discrete coupling γ ∈RN×N seen as a
square matrix, let J be the convex functional defined as

J(γ) := 〈c,γ〉+F1(γw)+F2(γ
T w) (6.3.3)
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where γw, γT w are matrix/vector products, 〈c,γ〉 := ∑i, j c(xi,y j)γi, jwiw j and

F1 : RN ∋ β 7→ H(β |α)

F2 : RN ∋ β 7→ min
s∈[0,1]N

{
H(β |s)−2λτ ∑

i

siwi

}

and, for α ,β ∈ RN
+, the discrete relative entropy (Definition 3.3.1). With these definitions,

solving the finite dimensional convex optimization problem

γ∗ ∈ arg min
γ∈RN×N

+

J(γ) (6.3.4)

is nothing but solving a discrete approximation of (6.3.2) where the maximum density constraint
is not with respect to the Lebesgue measure anymore, but with respect to its discretized version.
This is formalized in the following simple proposition.

Proposition 6.3.1. Let W be a partition of Ω as above and let γ∗ be obtained through (6.3.4).
Then the measure ν := ∑i βiwiδwi

where β = min{1, ((γ∗)T w)/(1−2λτ)} does not depend on

the choice of γ∗ and is a minimizer of

min
ν∈M+(Ω)

Ŵ 2
2 (µW ,ν)−2τν(Ω)+ ιC(ν)

where ιC is the convex indicator of the set C of measures which are upper bounded by the

discretized Lebesgue measure ∑i wiδxi
.

Proof. This result essentially follows by construction. Let us denote by (P) the minimization
problem in the proposition: (P) can be written as a minimization problem over couplings γ ∈
M+(Ω×Ω) as in (6.3.2). But in this case, any feasible γ is discrete because both marginals must
be discrete in order to have finite relative entropies. Thus (P) reduces to the finite dimensional
problem (6.3.4) and the expression for β is obtained by first order conditions. Finally, (P) is
strictly convex as a function of ν , hence the uniqueness.

The following proposition guarantees that the discrete measure νk built in Proposition 6.3.1
properly approximates the continuous solution.

Proposition 6.3.2 (Consistency of discretization). Let (Wk)k∈N be a sequence of partitions of

Ω such that diamWk → 0 and for all k compute νk as in Proposition 6.3.1. Then the sequence

(νk) converges weakly to the continuous minimizer of (6.3.1).

Proof. As a sequence of bounded measures on a compact domain, (νk) admits weak cluster
points. Let ν̄ be one of them. The fact that for all k, νk is upper bounded by the discretized
Lebesgue measure ∑i wiδxi

implies that ν̄ is upper bounded by the Lebesgue measure in Rd ,
since the discretized Lebesgue measure weakly converges to the Lebesgue measure. Now let
σ ∈M+(Ω) be any measure of density bounded by 1. By Proposition 6.3.1, one has for all
k ∈N,

Ŵ 2
2 (µWk

,νk)−2τνk(Ω) ≤ Ŵ 2
2 (µWk

,σWk
)−2τσWk

(Ω) .
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Since the distance Ŵ2 and the total mass are continuous functions under weak convergence one
obtains, in the limit k→ ∞,

Ŵ 2
2 (µ , ν̄)−2τν̄(Ω) ≤ Ŵ 2

2 (µ ,σ)−2τσ(Ω)

which proves that ν̄ minimizes (6.3.1). By Proposition 6.2.8, this minimizer is unique.

6.3.2. Scaling algorithm

After this thorough discretization, we can apply scaling algorithms (see Algorithm 1) to solve
the entropic regularized discrete problem, with a regularization parameter ε > 0, see Chapter 3.
The explicit form of the “proxdiv operator (3.3.5) is given in the next proposition.

Proposition 6.3.3. One has proxdivF1
(s,u,ε) = (α⊘ s)

1
1+ε ⊙ e

−u
1+ε and

proxdivF2
(s,u,ε) =




((1−2τλ )eu)

−1
ε if s≤ (1−2τλ )

1+ε
ε e

u
ε

(s⊙ eu)
−1

1+ε otherwise.

The linear convergence rate of Theorem 3.5.21 applies in this case because F1 is a relative
entropy functional. The next proposition is a direct consequence of it (in the statement, we
ignore points xk of zero mass µ(Wk) = 0 since the corresponding entries for a(ℓ) are always 0).

Proposition 6.3.4. The sequence of dual variables v(ℓ) := ε logb(ℓ) converges linearly in ℓ∞-

norm to the optimal (regularized) dual variable vε , more precisely

‖v(ℓ)− vε‖∞ ≤
‖v(1)− vε‖∞

(1+ ε)ℓ
.

and the same holds true for u(ℓ) := ε loga(ℓ). Moreover, the matrix γ (ℓ) := (a
(ℓ)
i Ki, jb

(ℓ)
j ) con-

verges to the minimizer of the entropy regularized problem.

Proof. The “proxdiv” operator (the one from Proposition 6.3.3 and the one from Table 5.1,
line 2) preserve positivity as can be seen from their explicit expression. So Corollary 3.5.22
applies.

Finally, recall that by Proposition 6.3.1, given the optimal regularized coupling γε one recovers
the regularized discrete new step through

(νε)i = min

{
1,

∑ j(γε)i jw j

1−2λτ

}
.

In what follows, we take pε := (2τ−1+ e−vε )/(2τ) as the expression for the regularized pres-
sure since in the regularized version of (6.3.1), it is the term in the subgradient of the upper
bound constraint at optimality. However, we do not attempt to establish a rigorous convergence
result of pε to the true pressure field.The algorithm for the computation of one step is recalled
in Algorithm 8 for the reader’s convenience. Note also that for very small values of the param-
eter ε > 0, it is advised to use the acceleration method described in Section 3.4 which allows to
converge orders of magnitude faster in practice.
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Algorithm 8 Compute one step of the flow

1. input ρ (0) the initial density, w the discretized Lebesgue measure and τ the time step and
λ the growth “strength” in the model;

2. for time step k = 1, . . . ,n do

a) compute γ from ρ (k−1) using Algorithm 1 (or its stabilized, accelerated version);

b) define ρ (k) = (min{1, (∑ j γi, jw j)/(1−2λτ)})i the new density

c) define p(k) = (2τ−1+ evi)/(2τ)i the new pressure

Some remarks on convergence of the scheme

Gathering results from the previous Sections, we have proved that the scheme solves the tumor
growth model (6.1.2) when

• the number of iterations ℓ→ ∞ (Prop. 6.3.4);

• the entropic regularization ε → 0 (Prop. 3.2.10);

• the spatial discretization diamW → 0 (Prop. 6.3.2);

• the time step τ → 0 (Prop. 6.2.14).

successively, in this order. In practice, one has to fix a value for these parameters. We did not
provide explicit error bounds for all these approximations, but it is worth highlighting that a bad
choice leads to a bad output. As already known for Wasserstein gradient flows [109, Remark 4],
there is for instance a locking effect when the discretization diamW is too coarse compared to
the time step τ . In this case, the cost of moving mass from one discretization cell to another is
indeed big compared to the gain it results in the functional.

Let us perform some numerical experiments for one step of the flow (the study of the effect
of τ is postponed to the next section). We fix a time step τ = 0.005, a domain Ω = [0,1],
an initial density ρ0 which is the indicator of the segment [0.1,0.9] and use a uniform spatial
discretization (Wi,xi) = ([ i−1

N
, i

N
[, 2i−1

2N
) for i ∈ {1, . . . ,N}. The scaling iterations are stopped as

soon as | loga(ℓ+1)− loga(ℓ)|∞ < 10−6.
We first run a reference computation, with very fine parameters (N = 8192 and ε = 2×10−7)

and then compare this with what is obtained with degraded parameters, as shown on Figure 6.1.
On Figure 6.1(a)-(b), the error on the radius of the new step r = (∑i βi)/2N and the ℓ∞ error on
the pressure (with respect to the reference computation) are displayed. Since the initial density
is the indicator of a segment, the new step is expected to be also the indicator of a segment, see
Section 6.4. On Figure 6.1(c), we display the left frontier of the new density and observe how it
is smoothed when ε increases (the horizontal scale is strongly zoomed).
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(a) Error on radius (b) Error on pressure (c) Smoothing effect

Figure 6.1.: Effect of discretization and entropic regularization
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6.4. Test case: spherical solutions

In this section, we show that when the initial condition ρ0 has unit density on a sphere and
vanishes outside, then the solution of (6.1.2) are explicit, using Bessel functions. Knowing this
exact solutions allows to assess the quality of the numerical algorithm.

6.4.1. Explicit solution

Let us construct the explicit solution for ρ0(x) = χB(0,r). For α > −1, we define the modified
Bessel function of the first kind:

Iα(x) :=
∞

∑
m=0

1
m!Γ(m+α + 1)

( x

2

)2m+α

and
Hα(x) := x−α Iα(x) and Kα(x) := xα Iα(x) .

The following mini-lemma states properties of these functions that are relevant here.

Lemma 6.4.1. With the definitions as above, we have the following properties:

(i) y = Iα(x) satisfies the equation x2y′′+ xy′− (x2−α2)y = 0;

(ii) y = Hα(βx) satisfies the equation x2y′′+(2α +1)xy′−β 2x2y = 0 and, up to constants is

the unique locally bounded at 0;

(iii) H ′
α(x) = xHα+1(x) and K′α+1(x) = xKα(x).

Proof. The proof that Iα satisfies the equation is trivial and can be done coefficient by coefficient
since everything is converging absolutely. Moreover it is known that all the other independent
functions explode like log(x) near zero. Also the equation for Hα is easy to derive and it is clear
that it is the unique regular one. As for (ii) it can be deduced straightly deriving their formulas
(using Γ(x+ 1) = xΓ(x) where required) from the definition of Iα

With the help of these Bessel functions, one can give the explicit solution when the initial
condition is the indicator of a ball. Some properties of these solutions are displayed on Figure
6.2.

Proposition 6.4.2. Consider the initial condition ρ0 = χBr0
for some r0 > 0. Then there is a

unique solution for (6.1.2) which is the indicator of an expanding ball ρt = χBr(t)
, where the

radius evolves as

r(t) =
1
2

K−1
d/2

[
e4λ tKd/2(2r0)

]
.

Moreover, the pressure is radial and given by pt(x) = λ
(

1− Hd/2−1(2|x|)
Hd/2−1(2r(t))

)
+

.
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(a) Radius vs time (b) Pressure at origin vs time (c) Pressure vs distance from ori-
gin (fixed radius).

Figure 6.2.: Some properties of the spherical solutions, computed with the explicit formulae of
Proposition 6.4.2 in dimensions 1, 2 and 3. In all cases, λ = 1, for (a)-(b) the initial
condition is r0 = 0.1 and for (c) the density radius is r = 1.5.

Proof. Taking β > 0, let us solve the evolution for the equation

∂ρt −∇ · (∇ptρt) = β 2(λ − pt)ρt and pt(1−ρt) = 0,

where the statement of the proposition corresponds to β = 2. In this case we suppose everything
is radial, in particular we guess that ρt = χBr(t)

and also the pressure is radial. The pressure pt

will depend only on r(t) and it is the only function that satisfies

{
−∆p = β 2(λ − p) in Br(t)

p = 0 on ∂Br(t).

Again, by symmetry we can suppose that pt(x) = ft(|x|) where ft : R+→R satisfies, with the
expression of the Laplacian in spherical coordinates,

{
f ′′t (s)+

d−1
s

f ′t (s)−β 2( ft(s)−λ ) = 0 if s ∈ [0,r(t)[,

ft(s) = 0 if s≥ r(t).

When we impose that f ′t (0) = 0, if we consider g = f − λ then we can see that the solution,
assuming its smoothness and using Lemma 6.4.1, is

gt(s) =CtHα(β s),

for some Ct and α = d
2 −1. Then the condition ft(r(t)) = 0 implies that gt(r(t)) =−λ and this

fixes Ct =−λ /Hα(β r(t)). Now we have that r′(t) = ∂ pt

∂n
= | f ′t (r(t))| and in particular we get:

r′ = |g′t(r)|= −CtβH ′
α(β r) = λβ

β rHα+1(β r)

Hα(β r)

= λβ
Iα+1(β r)

Iα(β r)
= λβ

Kα+1(β r)

β rKα(β r)
= λβ 2 Kα+1(β r)

βK′α+1(β r)
,
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6.4. Test case: spherical solutions

and so we deduce that
d

dt
log(K d

2
(β r(t)) = λβ 2

and thus
K d

2
(β r(t)) = eλβ 2tK d

2
(β r(0)).

Since for α > 0, Kα is strictly increasing and defines a bijection on [0,+∞[, we have a well
defined solution for (6.1.2). Uniqueness follows by Theorem 6.1.3 or [126] (since the initial
density is of bounded variation).

6.4.2. Numerical results and comparison

We now use the explicit spherical solution to assess the convergence of the numerical scheme
when τ tends to zero. We fix an initial condition ρ0 which is the indicator of a ball of radius
0.4, we fix a final time t f = 0.05, and we observe the convergence towards the true solution
of the continuous PDE (6.1.2) when more and more intermediate time steps are taken (ie. as
τ decreases). We perform the experiments in the 1-D and the 2-D cases and the results are
displayed on Figure 6.3 with the following formulae:

rel. error on radius :
|rnum− rth|

rth
and rel. error on pressure :

‖pnum− pth‖∞

‖pth‖∞

where the subscripts “th” and “num” refer to the theoretical and numerical computations. The
theoretical pressure is compared to the numerical one on the points of the grid.

Dimension 1. In the 1-D case, Ω = [0,1] is uniformly discretized into N = 4096 cells
(Wi,xi) = ([(i−1)/N, i/N], (2i−1)/(2N)) and ε = 10−6. The results are displayed on Figure
6.3(a)-(b), where the numerical radius is computed through rnum = (∑i βi)/2N.

Dimension 2. In the 2-D case, Ω = [0,1]2 is uniformly discretized into N2 sets Wi, j = [(i−
1)/N, i/N]× [( j− 1)/N, j/N] and xi, j = ((2i− 1)/(2N), (2 j− 1)/(2N)) with N = 256 and
ε = 2×10−5. Compared to the 1-D case, those parameters are less fine so that the computation
can run in a few hours. The numerical radius is computed as rnum =

√
∑i βi/(πN2).

Comments We clearly observe the rate of convergence in O(τ) of the discretized scheme to
the true solution. However, the locking effect (mentioned in Section 6.3.2) starts being non-
negligible for small values of τ in 2-d. This effect is even more visible on the 2-d pressure
because the discretization is coarser. The pressure variables at t = t f for 2 different values of τ

are displayed on Figure 6.4: the solution is more sensitive to the non-isotropy of the mesh when
the time step τ is small. The use of random meshes could be useful to reduce this effect.
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(a) Density (1d) (b) Pressure (1d) (c) Density (2d) (d) Pressure (2d)

Figure 6.3.: For a fixed initial radius r0 = 0.4 and final time t f = 0.05, we assess the convergence
of the scheme as the time discretization τ tends to 0 by comparing the computed ρt f

and pt f
with the theoretical ones (see text body). Experiments performed on the

interval [0,1] discretized into 1024 samples with ε = 10−6 and on the square [0,1]2

discretized into 2562 samples and ε = 5.10−6.

(a) theoretical (exact) (b) τ = 2.5×10−2 (c) τ = 6.25×10−3

Figure 6.4.: Pressure field at t = t f , theoretical and numerical values for an initial density which
is a ball in [0,1]2. The pressure is a decreasing function of the distance to the center:
here the colormap puts emphasis on the level sets so that the anisotropy due to the
discretization is apparent.
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6.5. Illustrations

We conclude this chapter with a series of flows computed numerically.

6.5.1. On a 1-D domain

We consider a measure ρ0 of density bounded by 1 on the domain [0,1] discretized into 1024
cells (Figure 6.5-(a), darkest shade of blue) and compute the evolution of the flow with param-
eters τ = 10−2 and ε = 10−6. The density at every fourth step is shown with colors ranging
from blue to yellow as time increases. Each density is displayed behind the previous ones, with-
out loss of information since density is non-decreasing with time. The numerical pressure is
displayed on Figure 6.5-(b).

Splitting scheme We also compare this evolution with a splitting scheme, inspired by [77],
that allows for a greater freedom in the choice of the function Φ that relates the pressure to the
rate of growth in (6.1.1). This scheme alternates implicit steps w.r.t. the Wasserstein metric and
the Hellinger metric and is as follows. Let ρ0 ∈M+(Ω) be such that ρ0 ≤ 1 and define, for
n ∈N, {

ρτ
2n+1 = PW2(ρτ

2n)

ρτ
2n+2(x) = ρτ

2n+1(x)/(1− τΦ(pτ
2n+1(x))) for all x ∈Ω,

where PW2 is the projection on the set of densities bounded by 1 for the Wasserstein distance
and pn is the pressure corresponding the projection of ρn (as in [53]). The degenerate functional
we consider is outside the domain of validity of the results of [77] and we do not know how to
prove the true convergence of this scheme for non linear Φ. It is thus introduced here merely for
informal comparison with the case Φ linear.

It is rather simple to adapt Algorithm 1 to compute Wasserstein projections on the set of
measures of density bounded by 1.On Figure 6.6, we display such flows for rates of growth
of the form Φ(p) = 4(1− p)κ , for three different values of κ . For these computations, the
segment [0,1] is divided into 1024 cells, τ = 10−2, ε = 10−6 and we display the density after
the projection step, at the same times than on Figure 6.5. With κ = 1, we should recover the same
evolution than on Figure 6.5. As κ increases, the rate of growth is smaller when the pressure is
positive, as can be observed on Figures 6.6-(a-c).

6.5.2. On a 2-D non-convex domain

Our last illustration is performed on the square [0,1]2 discretized into 2562 samples. The initial
density ρ0 is the indicator of a set and the parameters are τ = 0.015 and ε = 5.10−6. The first
row of Figure 6.7 shows the flow at every 10th step (equivalent to a time interval of 0.15). Except
at its frontier (because of discretization), the density remains the indicator of a set at all time.
The bottom row of Figure 6.7 displays the pressure field, with a colormap that puts emphasis on
the level sets. Notice how its level sets are orthogonal to the boundaries.
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(a) Density

(b) Pressure

Figure 6.5.: A flow on [0,1] and the associated pressure. Time shown are t =
0, 0.04, 0.08, . . . , 0.24. Colors range from blue to yellow as time increases

(a) κ = 0.01 (b) κ = 1 (c) κ = 10

Figure 6.6.: Flow on the line with the implicit splitting scheme, with rate of growth of the form
Φ(p) = 4(1− p)κ .

t

Figure 6.7.: Evolution on a non convex 2-d domain (obstacles in black). (top row) evolution of
the density, the colormap is linear from white to blue as the density goes from 0 to
1. (bottom row) pressure represented with a striped colormap to make the level sets
apparent. White area corresponds to p = ρ = 0.
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6.6. Appendix of Chapter 6

This appendix gathers technical results that are used in the proof of uniqueness.

Lemma 6.6.1. Let µ0, µ1 be two absolutely continuous measures on Ω convex such that µ0, µ1≤
1 and let us consider p ∈H1(Ω), such that p≥ 0 and p(1−µ0) = 0. Then, if we consider φ an

optimal potential between µ0 and µ1, we have

∫

Rd
(2pφ +

1
2

∇p ·∇φ )dµ0 ≥ 0.

Proof. Let us consider µt the geodesic between µ0 and µ1. We know that µt ≤ 1 by Theorem
6.2.16 and µt will be supported on Ω as well. In particular we have

∫
Ω

pdµt ≤
∫

Ω
p =

∫
Ω

pdµ0.
But then using Lemma 6.6.3 it is easy to conclude

∫

Rd
(2pφ +

1
2

∇p ·∇φ )dµ0 = −
d

dt

∣∣∣∣∣
t=0

∫
p(x)dµt ≥ 0.

Theorem 6.6.2. Let us consider two absolutely continuous measures µ0 and µ1. Then, given φ

an optimal potential for Ŵ 2
2 (µ0, µ1) relative to µ0, we consider the quantities

{
αt(x) = (1−φ (x)t)2 + t2|∇φ (x)|2

4

Xt(x) = x− arctan
( t|∇φ (x)|

2−2tφ (x)

) ∇φ (x)
|∇φ (x)| .

Then we have that µt = (Xt)#(αt µ0) is the geodesic for Ŵ 2
2 between µ0 and µ1.

Proof. Let us consider Yt(x,r) = (r
√

αt(x),Xt(x)): then Yt are geodesics in the cone C(Ω).
By the cone construction in [103] to have that if µ0, µ1 are two measures on Rd and φ is an
optimal potential for Ŵ2(µ0, µ1) we have that φ (x)r2 is an optimal potential for ν0(x,r) =
µ0(x) f (r),ν1 = (Y1)#(ν0) for any f such that

∫
f (r)r2dr = 1. Notice that hν0 = µ0, hν1 = µ1

and moreover W2(ν0,ν1) = Ŵ2(µ0, µ1). In particular since νt = (Yt)#ν0 is a geodesic for W2 on
the cone, we will have that µt = hνt is the geodesic for Ŵ2.

Lemma 6.6.3. Let µ0, µ1 be two absolutely continuous measures on Rd such that µ0, µ1 ≤ 1 and

let us consider f ∈H1(Rd). Then, if we consider µt the geodesic for Ŵ2 between µ0 and µ1, we

have

d

dt

∣∣∣∣∣
t=0

∫

Rd
f dµt = −

∫

Rd
(2 f φ +

1
2

∇ f ·∇φ )dµ0

Proof. Using Theorem 6.6.2 we can write explicitly
∫

f dµt =
∫

f (Xt(x))αt(x)dµt .

Now we can use that d
dt

Xt = −∇φ (x)/2αt in order to get

d

dt

∣∣∣∣∣
t=0

∫
f dµt = −

1
2

∫

Rd
∇ f (Xt) ·∇φ dµ0 +

∫

Rd
f (Xt)

( t|∇φ |2
2

−2(1− tφ )φ
)

dµ0.
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While this calculation is clear when f ∈ C ∞
c in order to make sense for f ∈ H1 we have to

consider the finite difference and integrate this inequality:

∫
f (x)dµt −

∫
f (x)dµ0

t
=

1
t

∫

Rd

∫ t

0

d

dt
f (Xt(x))αt(x)|t=s dsdµ0

=
1
t

∫

Rd

∫ t

0

[
−1

2
∇ f (Xs)∇φ (x)

+ f (Xs)
(s|∇φ |2

2
−2(1− sφ )φ

)]
dsdµ0

=
∫

Rd

[
−1

2
At(∇ f ) ·∇φ +Ct( f )|∇φ |−2Bt( f )φ

]
dµ0,

where we denoted by At ,Bt ,Ct three linear operator which we will show that are acting con-
tinuously from L2(Rd) to L2(µ0), thus proving the formula for f ∈ H1(Rd). Explicitly we
have

At(g)(x) =
1
t

∫ t

0
g(Xs(x))ds Bt(g)(x) =

1
t

∫ t

0
g(Xs(x))(1− sφ (x))ds

Ct(g)(x) =
1
t

∫ t

0
g(Xs(x))

s|∇φ (x)|
2

dt.

Notice that for 0 < s ≤ t < 1 we have always 1− sφ ≥ 1− t. Now using Jensen and then
Fubini we get:

∫
|At(g)(x)|2 dµ0 ≤

1
t

∫ t

0

∫
g(Xs)

2 dµ0 ds

≤ 1
(1− t)2 ·

1
t

∫ t

0

∫
g(Xs)

2αs dµ0 ds

=
1

(1− t)2 ·
1
t

∫ t

0

∫
g(x)2 dµs ds

∫
|Bt(g)(x)|2 + |Ct(g)(x)|2 dµ0 ≤

1
t

∫ t

0

∫
g(Xs)

2
(
(1− sφ (x))2+

s2|∇φ (x)|2
4

)
dµ0ds

=
1
t

∫ t

0

∫
g(Xs)

2αs dµ0 ds

=
1
t

∫ t

0

∫
g(x)2 dµs ds.

We can thus conclude thanks to the fact that µs ≤ 1, by Theorem 6.2.16. In particular we have
‖At‖ ≤ 1/(1− t) and ‖Bt‖,‖Ct‖ ≤ 1. Now we only need to show that Atg → g, Btg →
g, Ctg → 0, where all these convergences are to be considered strongly in L2. Thanks to the
fact that these operators are bounded it is sufficient to show that this is true for a dense set of
functions. But for g ∈ C ∞

c for s < 1/2 we have |g(Xs)− g(x)| ≤ L · arctan(s|∇φ (x)|) where L
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is the Lipschitz constant of g. Then we have (using that φ ,∇φ ∈ L2(µ0))
∫
|At(g)(x)−g(x)|2 dµ0 ≤ L2

∫
arctan(t|∇φ |)2 dµ0 → 0,

∫
|Bt(g)(x)−At(g)(X)|2 dµ0 ≤

‖g‖∞

4

∫
t2φ 2 dµ0 → 0,

∫
|Ct(g)(x)|2 dµ0 ≤

‖g‖∞

16

∫
t2|∇φ |2 dµ0 → 0.

In particular we proved that, for every f ∈ H1(Rd) we have

d

dt

∫

Rd
f dµt |t=0 = −

∫

Rd
(

1
2

∇ f ·∇φ + 2 f φ )dµ0.
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Chapter 7.

Algorithmic Approach for Matrices

In this chapter, we consider an extension of the entropy-transport problem
to allow optimal transport of measures whose values are positive semidefi-
nite (PSD) matrices. The fidelity between the input PSD-valued measures is
captured using the Von-Neumann quantum entropy. We propose a quantum-
entropic regularization of the resulting convex optimization problem, which
can be solved efficiently using an iterative scaling algorithm. The crux of
this approach lies in the special algebraic properties of the quantum relative
entropy, that allow to painlessly derive scaling algorithms even in this non-
commutative setting. We detail a simple adaptation of the model to add a
“fixed trace” constraint, which can be better suited for some applications.
We also extend this formulation and the algorithm to compute barycenters of
a collection of input tensor fields.
This chapter is a partial reproduction with minor modifications of [128],
where additional applications to procedural noise generation, anisotropic
meshing, diffusion tensor imaging and spectral texture synthesis can be
found.
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7.1. Motivation and previous work

In this chapter, we consider the optimal transport between measures that take values in the space
of positive semi-definite (PSD) matrices. Our aim is to define a model that is more faithful to
the geometry of PSD matrices than simply using an input dependent cost [156, 71], and that can
still be solved efficiently.

Our approach is algorithmic: we consider the state of the art numerical methods for solving
optimal transport and derive a model that can be solved in a similar way. This leads to a model,
that turns out to be almost as easy to solve than a standard entropy regularized optimal transport
(for PSD matrices of small size) but is able to take into account the additive structure of the cone
of PSD matrices. In the rest of this section, we review motivations for defining optimal transport
between fields of PSD matrices and previous work.

Tensor field processing

Tensor-valued data are ubiquitous in various areas of imaging science, computer graphics and
vision. In medical imaging, diffusion tensor imaging (DTI) [164] directly maps observed data
to fields of tensors, and specific processing methods have been developed for this class of data
(see e.g. [62, 58]). Tensor fields are also at the heart of anisotropic diffusion techniques in image
processing [166], anisotropic meshing [4, 55, 23], and anisotropic texture generation [96]; they
also find application in line drawing [160] and data visualization [84].

OT and Sinkhorn on pairs of tensors

Although this is not the topic of this paper, we note that several notions of optimal transport have
been defined between two tensors without any spatial displacement. Gurvits introduced in [81]
a Sinkhorn-like algorithm to couple two tensors by an endomorphism that preserves positivity.
This algorithm, however, is only known to converge in the case where the two involved tensors
are the identity matrices; see [78] for a detailed analysis. In contrast to this “static” formulation
that seeks for a joint coupling between the tensors, a geodesic dynamic formulation is proposed
in [33]; see also [42, 41] for a related approach.

OT on tensor fields

The simplest way to define optimal transport-like distances between arbitrary vector-valued mea-
sures is to use dual norms [116], which correspond to generalizations of W1 optimal transport for
which transport cost equals ground distance. The corresponding metrics, however, have degen-
erate behavior in interpolation and barycenter problems (much like the L1 norm on functions)
and only use the linear structure of matrices rather than their multiplicative structure. More
satisfying notions of optimal transport have recently been proposed in a dynamical (geodesic)
way [88].A static formulation of a tensor-valued optimal transport is proposed in [117], but it
differs significantly from ours. It is initially motivated using a lifting that squares the number of
variables, but a particular choice of cost reduces the computation to the optimization of a pair of
couplings, just like a semi-coupling problem (Chapter 1).
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t = 0 t = 1/8 t = 1/4 t = 3/8 t = 1/2 t = 5/8 t = 3/4 t = 7/8 t = 1

Figure 7.1.: Given two input fields of PSD matrices (displayed at times t ∈ {0,1} using ellipses)
on some domain (here, a 2-D planar square and a surface mesh), our Quantum Opti-
mal Transport (Q-OT) method defines a continuous interpolating path for t ∈ [0,1].
Unlike linear interpolation schemes, Q-OT transports the “mass” of the tensors (size
of the ellipses) as well as their anisotropy and orientation. This interpolation, and
its extension to finding the barycenter of several input fields, is computed using a
fast extension of the well-known Sinkhorn algorithm.

7.1.1. Notation specific to this chapter

In the following, we denote Sd ⊂ Rd×d the space of symmetric matrices, Sd
+ the closed convex

cone of positive semidefinite matrices, and Sd
++ the open cone of positive definite matrices. We

denote exp : Sd → Sd
++ the matrix exponential, which is defined as exp(P) = U diags(e

σs)U⊤

where P =U diags(σs)U⊤ is an eigendecomposition of P. We denote log : Sd
++→ Sd the matrix

logarithm log(P) = U diags(logσs)U⊤, which is the inverse of exp on Sd
++. We adopt some

conventions in order to deal conveniently with singular matrices. We extend (P,Q) 7→ P log(Q)
by lower semicontinuity on (Sd

+)
2, i.e. writing Q =U diags(σs)U⊤ and P̃ =U⊤PU ,

P logQ :=





P logQ if kerQ = /0,

U [P̃diags(logσs)]U⊤ if kerQ⊂ kerP,

+∞ otherwise,

with the convention 0log0 = 0 when computing the matrix product in square brackets. More-
over, for (P, (Qi)i∈I) ∈ Sd× (Sd

+)
I , the matrix exp(P+∑i logQi) is by convention the matrix in

Sd
+ which kernel is ∑i kerQi, and is unambiguously defined on the orthogonal of this space.
A tensor-valued measure µ defined on some space X is a vector-valued measure, where the

“mass” µ(A) ∈ Sd
+ associated to a measurable set A ⊂ X is a PSD matrix. In this chapter, in

order to derive computational schemes, we focus on discrete measures. Such a measure µ is
a sum of Dirac masses µ = ∑i∈I µiδxi

where (xi)i ⊂ X , and (µi)i ∈ Sd
+ is a collection of PSD

matrices. In this case, µ(A) = ∑xi∈A µi. Figure 7.2 shows graphically some examples of tensor-
valued measures; we use this type of visualization through the chapter. In the following, since
the sampling points (xi)i are assumed to be fixed and clear from the context, to ease readability,
we do not make the distinction between the measure µ and the collection of matrices (µi)i. This
is an abuse of notation, but it is always clear from context whether we are referring to a measure
or a collection of matrices.
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X = [0,1], d = 2

X = [0,1], d = 3

X = [0,1]2 X =surface

Figure 7.2.: Displays of various types of tensor-valued measures µ . The principal directions of
an ellipse at some xi ∈ X are the eigenvectors of µi ∈ Sd

+, while the principal widths
are given by its eigenvalues.

The quantum entropy (also called von Neumann entropy) of a tensor-valued measure is (mi-
nus)

Hq(µ) := ∑
i

Hq(µi) where (7.1.1)

∀P ∈ Sd , Hq(P) := tr(P log(P)−P+ Idd×d)+ ιSd
+
(P), (7.1.2)

where ιC is the indicator function of a closed convex set C. Note that Hq is a convex func-
tion. The quantum relative entropy (a.k.a quantum Kullback-Leibler divergence) is the Bregman
divergence associated to Hq. For a collection of PSD matrices µ = (µi)i,ξ = (ξi)i in Sd

+ corre-
sponding to measures defined on the same grid, it is defined as

Hq(µ|ξ ) := ∑
i

Hq(µi|ξi), (7.1.3)

where for all (P,Q) ∈ Sd
+×Sd

+, we denote

Hq(P|Q) := tr(P log(P)−P log(Q)−P+Q)+ ιSd
++
(P)

which is convex with respect to both arguments. The inner product between collections of
matrices µ = (µi)i,ξ = (ξi)i is

〈µ ,ξ 〉 := ∑
i

〈µi,ξi〉 := ∑
i

tr(µiξ
⊤
i ).

Given a collection of matrices γ = (γi, j)i∈I, j∈J the marginalization operators read

γ1J :=
(
∑

j

γi, j

)
i

and γ⊤1I :=
(
∑

i

γi, j

)
j
.
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7.2. Quantum entropy-transport problem

We consider two atomic measures

µ = ∑
i∈I

µiδxi
and ν = ∑

j∈J

ν jδy j
(7.2.1)

where (xi)i ⊂ X and (y j) j ⊂ Y , and (µi)i ∈ Sd
+ and (ν j) j ∈ Sd

+ are collections of PSD matrices.

7.2.1. Transportation of matrices

We define a coupling γ = ∑i, j γi, jδ(xi,y j) as a measure over the product X ×Y that encodes the

transport of mass between µ and ν . In the matrix case, γi, j ∈ Sd
+ is now a PSD matrix, describ-

ing the exchange between µi and ν j. Exact (balanced) transport would mean that the marginals
(γ1J ,γ⊤1I) must be equal to the input measures (µ ,ν). But as remarked by Ning et al. [117],
in contrast to the scalar case, in the matrix case (dimension d > 1), this constraint is in gen-
eral too strong, and there might exist no coupling satisfying these marginal constraints. Follow-
ing [103], we propose to use a relaxed formulation where the discrepancy between the marginals
(γ1J ,γ⊤1I) and the input measures (µ ,ν) is quantified according to some divergence between
measures.

In the scalar case, the most natural divergence is the relative entropy (see Chapter 2). We
propose here to use its quantum counterpart (7.1.3) via the following convex program

Cq(µ ,ν) := min
γ
〈γ ,c〉+ρ1Hq(γ1J|µ)+ρ2Hq(γ

⊤
1I|ν) (7.2.2)

subject to the constraint ∀(i, j),γi, j ∈ Sd
+. Here ρ1,ρ2 > 0 are constants balancing the transport

cost versus the cost of modifying the matrices.
The matrix ci, j ∈ Rd×d measures the cost of displacing an amount of (matrix) mass γi, j be-

tween xi and y j as tr(γi, jci, j). A typical cost, assuming X = Y is a metric space endowed with a
distance dist, is

ci, j = dist(xi,y j)
α Idd×d ,

for some α > 0. In this case, one should interpret the trace as the global mass of a tensor, and
the total transportation cost is simply

〈γ ,c〉= ∑
i, j

dist(xi,y j)
α tr(γi, j).

Remark 7.2.1 (Classical OT). In the scalar case d = 1, (7.2.2) recovers exactly an optimal

entropy-transport problem (see Chapter 1). For isotropic tensors, i.e., all µi and ν j are scalar

multiples of the identity Idd×d , the computation also collapses to the scalar case (the γi, j are also

isotropic). More generally, if all the (µi,ν j)i, j commute, they diagonalize in the same orthogonal

basis, and (7.2.2) reduces to defining d independent optimal entropy-transport problems along

each eigendirection.
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Remark 7.2.2 (Cost between Dirac masses). When µ = Pδx and ν = Qδx are two Dirac masses

at the same location x and associated tensors (P,Q) ∈ (Sd
+)

2, one obtains the following “dis-

tance” between tensors (assuming ρ1 = ρ2 = 1 for simplicity)

Wq(P,Q) :=
√

Cq(Pδx,Qδx) = tr (P+Q−2M(P,Q))
1
2 (7.2.3)

where M(P,Q) := exp(log(P)/2+ log(Q)/2). When (P,Q) commute, we obtain Wq(P,Q) =
‖
√

P−
√

Q‖2 which is a distance. In the general case, we do not know whether Wq is a distance

(basic numerical tests do not exclude this property).

Remark 7.2.3 (Quantum transport on curved geometries). If (µ ,ν) are defined on a non-

Euclidean space Y = X, like a smooth manifold, then formulation (7.2.2) should be handled

with care, since it assumes all the tensors (µi,ν j)i, j are defined in some common basis. For

smooth manifolds, the simplest workaround is to assume that these tensors are defined with re-

spect to carefully selected orthogonal bases of the tangent planes, so that the field of bases is

itself smooth. Unless the manifold is parallelizable, in particular if it has a trivial topology, it is

not possible to obtain a globally smooth orthonormal basis; in general, any such field necessar-

ily has a few singular points. In the following, we compute smoothly-varying orthogonal bases

of the tangent planes (away from singular points) following the method of Crane et al. [50]. In

this setting, the cost is usually chosen to be ci, j = dist(xi,x j)α Idd×d where dist is the geodesic

distance on X.

Remark 7.2.4 (Measure lifting). As mentioned in the previous chapter, an alternative to compute

optimal transport between tensor fields would be to rather lift the input measure µ to a measures

µ̄ := ∑i∈I δ(µi,xi) defined over the space X × Sd
+ (and similarly for the lifting ν̄ of ν) and then

use traditional scalar optimal transport over this lifted space (using a ground cost taking into

account both space and matrix variations). This naive approach do not take into account the

additive structure of the PSD matrices, and results in very different interpolations. For example,

a sum of two nearby Diracs on X = R

µ = Pδ0 +Qδs where P :=

(
1 0
0 0

)
and Q :=

(
0 0
0 1

)

is treated by our method as being very close to Id2×2δ0 (which is the correct behaviour of a

measure), whereas it would be lifted to µ̄ = δ(0,P) + δ(s,Q) over R× S+2 , which is in contrast

very far from δ(0,Id2×2). Yet, the discussion in the previous chapter makes it clear that Cq cannot

be continuous under weak convergence, a default shared by all static formulations for vector

valued measures.

7.2.2. Quantum transport interpolation

Given two input measures (µ ,ν), we denote by γ a solution of (7.2.2) or, in practice, its regu-
larized version (see (7.3.1) below). The coupling γ defines a (fuzzy) correspondence between
the tensor fields. A typical use of this correspondence is to compute a continuous interpola-
tion between these fields. Section 7.3.4 shows some numerical illustrations of this interpolation.
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Note also that Section 7.4 proposes a generalization of this idea to compute an interpolation
(barycenter) between more than two input fields.

Mimicking the definition of the optimal transport interpolation (the so-called McCann dis-
placement interpolation; see for instance [142]), we propose to use γ to define a path t ∈
[0,1] 7→ µt interpolating between (µ ,ν). For simplicity, we assume the cost has the form
ci, j = dist(xi,y j)α Idd×d for some ground metric dist on X =Y . We also suppose we can compute
efficiently the interpolation between two points (xi,y j) ∈ X2 as

xt
i, j := argmin

x∈X
(1− t)dist2(xi,x)+ t dist2(y j,x).

For instance, over Euclidean spaces, gt is simply a linear interpolation, and over more general
manifold, it is a geodesic segment. We also denote

µ̄i := µi

(
∑

j

γi, j

)−1
and ν̄ j := ν j

(
∑

i

γi, j

)−1

the adjustment factors which account for the imperfect match of the marginal associated to a
solution of (7.3.1); the adjusted coupling is

γ t
i, j := [(1− t)µ̄i + tν̄ j]γi, j.

Finally, the interpolating measure is defined as

∀t ∈ [0,1], µt := ∑
i, j

γ t
i, jδxt

i, j
. (7.2.4)

One easily verifies that this measure indeed interpolates the two input measures, i.e. (µt=0, µt=1) =
(µ ,ν). This formula (7.2.4) generates the interpolation by creating an atom γ t

i, jδxt
i, j

for each cou-
pling entry γi, j, and this atom travels between µiδxi

(at t = 0) and ν jδy j
(at t = 1).

Remark 7.2.5 (Computational cost). We observed numerically that, similarly to the scalar case,

the optimal coupling γ is sparse, meaning that only of the order of O(|I|) non-zero terms are

involved in the interpolating measure (7.2.4). Note that the entropic regularization algorithm

detailed in Section 7.3 destroys this exact sparsity, but we found numerically that thresholding

to zero the small entries of γ generates accurate approximations.
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7.3. Quantum Sinkhorn

The convex program (7.2.2) defining quantum OT is computationally challenging because it
can be very large scale (problem size is |I|× |J|) for imaging applications, and it involves ma-
trix exponential and logarithm. In this section, leveraging recent advances in computational
OT initiated by Cuturi [51], we propose to use a similar entropy regularized strategy (see also
section 7.1), but this time with the quantum entropy (7.1.1).

7.3.1. Quantum entropic regularization

We define an entropic regularized version of (7.2.2)

Cq,ε(µ ,ν) := min
γ
〈γ ,c〉+ρ1Hq(γ1J|µ)+ρ2Hq(γ

⊤
1I|ν)+ εHq(γ). (7.3.1)

Note that when ε = 0, one recovers the original problem (7.2.2). This is a strongly convex
program, with a unique solution. The crux of this approach, just as in the scalar case (see
Chapter 3), is that its convex dual has a particularly simple structure, which is amenable to a
simple alternating maximization strategy.

Proposition 7.3.1. The dual problem associated to (7.3.1) reads

Cq,ε(µ ,ν) = max
u,v
−tr

[
ρ1 ∑

i

(eui+log(µi)−µi)

+ρ2 ∑
j

(ev j+log(ν j)−ν j)+ ε ∑
i, j

eK (u,v)i, j

]
, (7.3.2)

where u = (ui)i∈I ,v = (v j) j∈J are collections of arbitrary symmetric (not necessarily in Sd
+)

matrices ui,v j ∈ Sd and where we define

K (u,v)i, j := −ci, j +ρ1ui +ρ2v j

ε
. (7.3.3)

Furthermore, the following primal-dual relationships hold at optimality:

∀(i, j), γi, j = exp (K (u,v)i, j) . (7.3.4)

Proof. First note that γ = 0 is always feasible. Applying Fenchel–Rockafellar duality (Appendix
A) to (7.3.1) leads to the dual program

max
u,v
−εHq

∗(K0(u,v)|ξ )−ρ1Hq
∗(u|µ)−ρ2Hq

∗(v|ν) (7.3.5)

where here Hq
∗(·|µ) corresponds to the Legendre transform with respect to the first argument

of the quantum relative entropy, K0(u,v)i, j := −ρ1ui+ρ2v j

ε and, for all i, j, ξi, j := exp(−ci, j/ε).
The Legendre formula

Hq
∗(u|µ) = ∑i tr(exp(ui + log(µi))−µi)

shows that the qualification constraint is satisfied and leads to the desired result.
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7.3.2. Quantum Sinkhorn algorithm

The following proposition states that the maximization with respect to either u or v leads to
two fixed-point equations. These fixed points are conveniently written using the log-sum-exp
operator,

LSE j(K) :=
(

log∑
j

exp(Ki, j)
)

i
, (7.3.6)

where the sum on j is replaced by a sum on i for LSEi.

Proposition 7.3.2. For v fixed (resp. u fixed), the minimizer u (resp. v) of (7.3.2) satisfies

∀i, ui = LSE j(K (u,v))i− log(µi), (7.3.7)

∀ j, v j = LSEi(K (u,v)) j− log(ν j), (7.3.8)

where K (u,v) is defined in (7.3.3).

Proof. Writing the first order condition of (7.3.2) with respect to each ui leads to

ρ1eui+log(µi)−ρ1 ∑
j

eK (u,v)i, j = 0

which gives the desired expression. A similar expression holds for the first order conditions with
respect to v j.

A simple fixed point algorithm is then obtained by replacing the explicit alternating minimiza-
tion with respect to u and v with just one step of fixed point iteration (7.3.7) and (7.3.8). To make
the resulting fixed point contractive and ensure linear convergence, one introduces parameters
(τ1,τ2), that are akin to the over-relaxation parameter of the acceleration method detailed in
Section 3.4.

The quantum Sinkhorn algorithm is detailed in Algorithm 9. It alternates between the updates
of u and v, using relaxed fixed point iterations associated to (7.3.7) and (7.3.8). We use the
following τ-relaxed assignment notation

a
τ← b means that a← (1− τ)a+ τb. (7.3.9)

The algorithm outputs the scaled kernel γi, j = exp(Ki, j).

Remark 7.3.3 (Choice of τk). In the scalar case, i.e. d = 1 (and also for isotropic input tensors),

when using τk =
ε

ρk+ε for k = 1,2, one retrieves exactly the scaling iterations for unbalanced

transport as described in Chapter 5, and each update of u (resp. v) exactly solves the fixed

point (7.3.7) (resp. (7.3.8)). Moreover, it is simple to check that these iterates are contractant

whenever

τk ∈ ]0, 2ε
ε+ρk

[ for k = 1,2.

and this property has been observed experimentally for higher dimensions d = 2,3. Using higher

values for τk is akin to the acceleration method of Section 3.4 and generally improves the (linear)

convergence rate. Figure 7.3 displays a typical example of convergence, and exemplifies the

usefulness of using large values of τk, which leads to a speed-up of a factor 6 with respect to the

usual Sinkhorn’s choice τk =
ε

ε+ρk
.
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Figure 7.3.: Display of convergence of Algorithm 9 for the example displayed on the first row
of Figure 7.1. Denoting v(t) the value of the variable v at iteration t, the left
plot shows the fixed point residual error for increasing values of τ1 = τ2 = αε

ε+ρ

with α ∈ [0.5,2] (blue to red). The algorithm exhibits a linear convergence rate,
log10 ‖v(t+1) − v(t)‖∞ ∼ −κt for some κ > 0, and the right plot displays κ as a
function of α (this plot should be compared to Figure 3.3).

Remark 7.3.4 (Stability). In contrast to the usual implementation of Sinkhorn’s algorithm,

which is numerically unstable for small ε because it requires to compute eu/ε and ev/ε , the

proposed iterations using the LSE operator are stable. The algorithm can thus be run for arbi-

trary small ε , although the linear speed of convergence is of course impacted.

Remark 7.3.5 (log and exp computations). A major computational workload of the Q-Sinkhorn

Algorithm 9 is the repetitive computation of matrix exp and log. For d ∈ {2,3} it is possi-

ble to use closed-form expressions to diagonalize the tensors, so that the overall complexity is

comparable with the usual scalar case d = 1. While the illustrations we display only consist

of low-dimensional settings, high dimensional problems are of interest, typically for machine

learning applications. In these cases, one has to resort to iterative procedures, such as rapidly

converging squaring schemes [2, 3].

Remark 7.3.6 (Computational complexity). For low-dimensional problems, the Q-Sinkhorn Al-

gorithm 9 scales to grid sizes of roughly 5k points (with machine-precision solutions computed

in a few minutes on a standard laptop). For large scale grids, even storing the full coupling γ

becomes prohibitive. We however observed numerically that, similarly to the usual scalar case,

the optimal γ solving (7.3.1) is highly sparse (up to machine precision for small enough ε). We

thus found that the use of the multi-scale refinement strategy introduced in [145] is able to make

the Q-Sinkhorn scale to high resolution grids.

Remark 7.3.7 (Gurvits’ non-commutative Sinkhorn). Let us insist on the fact that the proposed

Q-Sinkhorn Algorithm 9 is unrelated to Gurvits’ Sinkhorn algorithm [81]. While Gurvits’ itera-

tions compute a coupling between a pair of input tensors, our method rather couples two fields
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Algorithm 9 Quantum-Sinkhorn iterations to compute the optimal coupling γ of the regularized
transport problem (7.3.1). The operator K is defined in (7.3.3).

1. ∀k = 1,2, τk ∈ ]0, 2ε
ε+ρk

[

2. ∀(i, j) ∈ I× J, (ui,v j)← (0d×d ,0d×d)

3. for s = 1,2,3, . . ., do

4. a) K ←K (u,v)

b) ∀i ∈ I, ui
τ1← LSE j(Ki, j)− log(µi)

c) K ←K (u,v)

d) ∀ j ∈ J, v j
τ2← LSEi(Ki, j)− log(ν j)

5. return (γi, j = exp(Ki, j))i, j

of tensors (viewed as tensor-valued measures). Our usage of the wording “quantum” refers to

the notion of quantum entropy (7.1.1) and is not inspired by quantum physics.

7.3.3. Trace constrained extension

The quantum optimal transport problem (7.2.2) does not impose that the marginals of the cou-
pling γ match exactly the inputs (µ ,ν). It is only in the limit (ρ1,ρ2)→ (+∞,+∞) that an exact
match is obtained, but as explained in Section 7.2.1, this might leads to an empty constraint set.

To address this potential issue, we propose to rather only impose the trace of the marginals to
match the trace of the input measures, in order to guarantee conservation of mass (as measured
by the trace of the tensors). We thus propose to solve the entropy regularized problem (7.3.1)
with the extra constraint

∀i ∈ I, ∑
j

tr(γi, j) = tr(µi) and ∀ j ∈ J, ∑
i

tr(γi, j) = tr(ν j).

The feasibility conditions for this problem are more strict: one should first require ∑ tr(µi) =

∑ tr(νi) but even this is not sufficient since a finite relative entropy implies ker µi ⊂ ker∑ j γi, j

(and similarly for the other marginal).
The two extra trace constraints introduce two dual Lagrange multipliers (α ,β ) ∈RI×RJ and

the optimal coupling relation (7.3.4) is replaced by

∀(i, j), γi, j = exp (K (u,v,α ,β )i, j) (7.3.10)

where K (u,v,α ,β )i, j := −ci, j +ρ1ui +ρ2v j +αi +β j

ε
.
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Q-Sinkhorn algorithm (Algorithm 9) is extended to handle these two extra variables (α ,β ) by
simply adding two steps to update these variables

∀i ∈ I, αi ← αi + ε LSTE j(K)i where K := K (u,v,α ,β ),

∀ j ∈ J, β j ← β j + ε LSTEi(K) j where K := K (u,v,α ,β ).

where we introduced the log-sum-trace-exp operator

LSTE j(K) :=
(

log∑
j

tr(exp(Ki, j))
)

i

(and similarly for LSTEi). Note that in this expression, the exp is matrix-valued, whereas the
log is real-valued.

7.3.4. Numerical illustrations

Figures 7.1, 7.4 and 7.5 illustrate on synthetic examples of input tensor fields (µ ,ν) the Q-OT
interpolation method. We recall that it is obtained in two steps:

(i) One first computes the optimal γ solving (7.3.1) using Q-Sinkhorn iterations (Algorithm 9).

(ii) Then, for t ∈ [0,1], one computes µt using this optimal γ with formula (7.2.4).

Figure 7.4 shows examples of interpolations on a 1-D domain X = Y = [0,1] with tensors of
dimension d = 2 and d = 3, and a ground cost ci, j = |xi− y j|2Idd×d . It compares the optimal
transport interpolation, which achieves a “mass displacement,” to the usual linear interpolation
(1− t)µ + tν , which only performs a pointwise interpolation of the tensors.

Figure 7.5 shows the effect of taking into account the anisotropy of tensors into the definition
of optimal transport. In the case of isotropic tensors (see Remark 7.2.1), the method reduces
to the (unbalanced) scalar optimal transport, and in 1-D it corresponds to the monotone re-
arrangement [142]. In contrast, the quantum optimal transport of anisotropic tensors is forced
to reverse the ordering of the transport map in order for tensors with similar orientations to
be matched together. This example illustrates that the behaviour of our tensor interpolation is
radically different from only applying classical scalar-valued optimal transport to the trace of
the tensor (which would result in the same coupling as the one obtained with isotropic tensors,
Figure 7.5, left).

Figure 7.1 shows larger scale examples. The first row corresponds to X = Y = [0,1]2 and
d = 2, with cost ci, j = ‖xi−y j‖2Id2×2, which is a typical setup for image processing. The second
row corresponds to X = Y being a triangulated mesh of a surface, with a cost proportional to the
squared geodesic distance ci, j = dist(xi,y j)2Id2×2.
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Linear interpolation Quantum optimal transport

Figure 7.4.: Comparison of linear and quantum-optimal transport interpolation (using for-
mula (7.2.4)). Each row shows a tensor field µt (top d = 2, bottom d = 3) along a
linear segment from t = 0 to t = 1 (t axis is vertical).

Classical optimal transport Quantum optimal transport

Figure 7.5.: Comparison of classical optimal transport (i.e. between isotropic tensors) and
quantum optimal transport (between anisotropic tensors) interpolation (using for-
mula (7.2.4)), using the same display as Figure 7.4.
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7.4. Quantum barycenters

Following Agueh and Carlier [1], we now propose a generalization of the quantum optimal
transport problem, where, instead of coupling only two input measures, one tries to couple an
arbitrary set of inputs, and compute their Fréchet mean.

7.4.1. Barycenter optimization problem

Given some input measures (µℓ)ℓ, the quantum barycenter problem reads

min
ν

∑
ℓ

wℓCq,ε(µ
ℓ,ν), (7.4.1)

where (wℓ)ℓ is a set of positive weights normalized so that ∑ℓ wℓ = 1. In the following, for
simplicity, we set

ρ1 = ρ and ρ2 = +∞

in the definition (7.2.2) of Wε . Note that the choice ρ2 = +∞ corresponds to imposing the exact
marginal constraint γ⊤1J = ν .

Remark 7.4.1 (Barycenters between single Dirac masses). If all the input measures are concen-

trated on single Diracs µℓ = Pℓδxℓ , then the single Dirac barycenter (unregularized, i.e., ε = 0)

for a cost dist(x,y)α Idd×d is Pδ ⋆
x where x⋆ ∈ X is the usual barycenter for the distance dist,

solving

x⋆ ∈ argmin
x

E (x) = ∑
ℓ

wℓ distα(xℓ,x)

and the barycentric matrix is

P = e
− E (x⋆)

ρ exp
(
∑
ℓ

wℓ log(Pℓ)
)

. (7.4.2)

Figure 7.6 illustrates the effect of a pointwise interpolation (i.e. at the same location xℓ for all

ℓ) between tensors.

Problem (7.4.1) is convex, and similarly to (7.3.2), it can be rewritten in dual form.

Proposition 7.4.2. The optimal ν solving (7.4.1) is the solution of

max
(uℓ,vℓ)

min
ν
−∑

ℓ

wℓ tr
[
ρ ∑

i

euℓi +log(µℓ
i ) + ∑

j

ν jv
ℓ
j + ε ∑

i, j

eK (uℓ,vℓ)i, j

]
, (7.4.3)

Figure 7.6.: Two examples of pointwise (without transportation) interpolations, using for-
mula (7.4.2). Here P1 and P2 are represented using the blue/red ellipses on the
left/right, and weights are (w1,w2) = (1− t, t) for t ∈ [0,1] from left to right.
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7.4. Quantum barycenters

Figure 7.7.: 5×5 barycenters of four input measures (displayed in the four corners). The weighs
w ∈R4 correspond to bilinear interpolation weights (7.4.8) inside the square.

where here we define K as

K (u,v)i, j := −ci, j +ρui + v j

ε
. (7.4.4)

7.4.2. Quantum barycenter Sinkhorn

Similarly to Proposition 7.3.2, the dual solutions of (7.4.3) satisfy a set of coupled fixed point
equations.

Proposition 7.4.3. Optimal (uℓ,vℓ)ℓ for (7.4.3) satisfy

∀(i,ℓ), LSE j(K (uℓ,vℓ)i, j)− log(µℓ
i ), = uℓi (7.4.5)

∀( j,ℓ), LSEi(K (uℓ,vℓ)i, j) = log(ν j) (7.4.6)

∑ℓ wℓv
ℓ = 0. (7.4.7)

Proof. The proof of (7.4.5) and (7.4.6) is the same as the one of Proposition 7.3.2. Minimization
of (7.4.3) on ν leads to (7.4.7).

The extension of the Q-Sinkhorn algorithm to solve the barycenter problem (10) is detailed in
Algorithm 10. It alternates between the updates of u, ν and v, using the relaxed version of the
fixed point equations (7.4.5), (7.4.6) and (7.4.7). The notation

τ← refers to a relaxed assignment
as defined in (7.3.9).

Remark 7.4.4 (Choice of τ). Remark 7.3.3 also applies for this Sinkhorn-like scheme, and

setting (τ1,τ2) = ( ε
ρ+ε ,1) leads, in the scalar case d = 1, to the algorithm for barycenters in
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Chapter 7. Algorithmic Approach for Matrices

Algorithm 10 Quantum-Barycenter iterations to compute the barycenter measure ν solv-
ing (7.4.1). The operator K is defined in (7.4.4).

1. Choose τ1 ∈ ]0, 2ε
ε+ρ [, τ2 ∈ ]0,2[.

2. ∀(i, j) ∈ I× J, (ui,v j)← (0d×d ,0d×d)

3. for s = 1,2,3, . . . do

a) for ℓ= 1, . . . ,L do

i. Kℓ←K (uℓ,vℓ)

ii. ∀i ∈ I, uℓi
τ1← LSE j(Kℓ

i, j)− log(µℓ
i ),

iii. Kℓ←K (uℓ,vℓ)

b) ∀ j ∈ J, log(ν j)← ∑ℓ wℓ(LSEi(Kℓ
i, j)+ vℓj/ε).

c) for ℓ= 1, . . . ,L

i. ∀ j ∈ J, vℓj
τ2← ε LSEi(Kℓ

i, j)+ vℓj− ε log(ν j).

4. return ν

Chapter 5. We found experimentally that this choice leads to contracting (and hence linearly

converging) iterations, and that higher values of τ usually accelerate the convergence rate (as

expected from Section 3.4).

Remark 7.4.5 (Scalar and isotropic cases). Note that in the scalar case d = 1 and for isotropic

input tensors (multiples of the identity), one retrieves the provably convergent unbalanced barycen-

ter algorithm of Chapter 5.

7.4.3. Numerical illustrations

Figure 7.7 shows examples of barycenters ν solving (7.4.1) between four input measures (µℓ)4
ℓ=1.

The horizontal/vertical axes of the figures are indexed by (t1, t2) ∈ [0,1]2 (on a 5× 5 grid) and
parameterize the weights (wℓ)

4
ℓ=1 appearing in (7.4.1) as

(w1,w2,w3,w4) := ((1− t1)(1− t2), (1− t1)t2, t1(1− t2), t1, t2). (7.4.8)

The left part of Figure 7.7 corresponds to measures on X = Y = [0,1]2 with d = 2 and ground
cost ci, j = ‖xi−x j‖2Id2×2. The right part of Figure 7.7 corresponds to measures on X =Y being
a surface mesh with d = 2 (the tensors are defined on the tangent planes) and a ground cost is
ci, j = dist(xi,x j)2Id2×2 where dX is the geodesic distance on the mesh.
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Conclusion

There was a burning need in applications of optimal transport to extend the theory to deal with
unnormalized measures. The purpose of this thesis was to study these extensions in a systematic
way, both from the theoretical and the numerical point of views.

In the first part, we have developed a consistent framework for unbalanced optimal transport.
Various formulations are possible, based on different directions of generalization of optimal
transport. We have explored them and shown how to switch from one to another. We have also
studied generalizations of the p-Wasserstein distances to the space of nonnegative measures,
that interpolate between pure growth and pure transport distances. Our approach allows to define
new models, such as the Ŵ2 distance, and also recovers known extensions such as optimal partial
transport.

In the second part, we have developed numerical methods to deal with these extensions. We
have shown that the approach based on entropy regularization and Sinkhorn’s algorithm extends
naturally to a class of scaling algorithms in this new setting. We have studied their convergence
properties with various techniques (convex analysis, local analysis, Thompson metric). We also
proposed an extension of the existing numerical methods to deal with the dynamic formulations.

In the third part, we have dealt with more specific applications. We have illustrated the behav-
ior of unbalanced optimal transport and shown its relevance in some tasks such as shapes pro-
cessing or color transfer. We have studied in depth an evolution PDE for tumor growth which is
shown to characterize some gradient flows for the metric Ŵ2. Finally, we have seen that scaling
algorithms can be extended to compute optimal transport-like interpolations and barycenters of
measures that take PSD matrix values.

These contributions open the way for a better handling of mass variations in applications of
optimal transport. They also give insight for other extensions such as the case of vector valued
measures. This is an interesting direction of future research with tools already developed for
signal processing [71, 156] or PDEs [170]. In this thesis, we have considered the case of SDP
matrices with algorithmic efficiency in mind. A salient open question is how to combine the
geometry of the domain and that of the codomain of these measures in an optimal transport-
like metric with reasonable properties such as existence of geodesics and continuity under weak
convergence.

187





Appendix A.

Convex Functions

Main concepts

Dual descriptions The description of convex sets as intersections of half-spaces is the princi-
ple underlying the theory of convex duality. This relationship is clear if V is a topological vector
space with a Hausdorff and locally convex topology, since then

• an arbitrary intersection of closed half-spaces is a closed convex set;

• any closed convex set is the intersection of the closed half-spaces containing it.

The first statement is a direct consequence of the stability of convexity and closedness by ar-
bitrary intersections, while the second statement is a corollary of the Hahn-Banach theorem,
which uses the strong axiom of choice at this level of generality (the material of this appendix is
adapted from [66, 137] that should be consulted for more details).

With appropriate definitions, a similar relationship can be established between convex func-
tions and families of affine forms. A function f : V →R∪{∞} is said

• convex if its epigraph epi f := {(u,α) ∈V×R ; f (u)≤ α} is a convex set, or equivalently
if for all (u0,u1) ∈V 2 and θ ∈]0,1[, it holds

f (θu0 +(1−θ )u1) ≤ θ f (u0)+ (1−θ ) f (u1),

• proper if epi f is not empty or equivalently if f is not identically +∞,

• lower-semicontinuous if epi f is closed or equivalently (when the topology is first count-
able), if f (u) ≤ liminfun→u f (un) for all u ∈V .

Definition A.0.1. The set of functions f : V →R which are convex, proper and lower-semicontinuous

is denoted by Γ0(V ) in this appendix.

The next result is at the basis of convex duality (see [66, prop. 3.1] with other definitions and
pathological cases removed).

Proposition A.0.2. The set Γ0(V ) is precisely the set of proper functions which are pointwise

supremum of a nonempty family of continuous affine functions.
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Appendix A. Convex Functions

Conjugacy If follows that the knowledge of the continuous affine minorants of f ∈ Γ0(V )

{(u∗,α) ∈V ∗×R ; 〈u,u∗〉−α ≤ f (u), ∀u ∈V} (A.0.1)

where V ∗ is the topological dual of V —the set of continuous linear forms on V —is enough
to characterize f . One can even restrict ourselves to the maximal affine minorant, that is only
taking the supremum over all α satisfying the inequality in (A.0.1). This lead us to the definition
of the conjugate function of f .

Definition A.0.3. For a function f : V → R ∪ {∞}, its conjugate is the function f ∗ : V ∗ →
R∪{∞} defined for all u∗ ∈V ∗ as

f ∗(u∗) := sup
u∈V

{〈u,u∗〉− f (u)}.

The dissymmetry between the sets V and V ∗ is only apparent and can be removed with suitable
choices topologies. Two Hausdorff, locally convex, topological vector spaces are said topologi-

cally paired if all continuous linear functionals on one space can be identified with the elements
of the other, and vice-versa1. This pairing comes with a bilinear form 〈·, ·〉 : V ×V ∗→R. In this
framework, it follows almost by construction and by Proposition A.0.2 that

• if f is proper then f ∗ ∈ Γ0(V ∗);

• if f ∈ Γ0(V ) then ( f ∗)∗ = f : there is a bijection between Γ0(V ) and Γ0(V ∗);

Subdifferentiability Finally, one can wonder what are the exact affine minorants of f at some
point u∈V . These are the couples (u∗,α) that reach equality in (A.0.1) or, in geometrical terms,
the hyperplans that touch the epigraph of f at u.

Definition A.0.4. The slope of an affine minorant which is exact at a point u ∈ V is called a

subgradient of f at u. The set of sugradients is called the subdifferential of f at u and is denoted

∂ f (u).

Proposition A.0.5. If f : V →R∪{∞} and u ∈V , one has u∗ ∈ ∂ f (u) if and only if

• 〈v−u,u∗〉+ f (u) ≤ f (v) for all v ∈V , or equivalently

• f (u)+ f ∗(u∗) = 〈u,u∗〉.

It follows from the last characterization and from the definition of f ∗ that ∂ f (u) = {u∗ ∈
V ∗ ; f ∗(u∗) ≤ 〈u,u∗〉 − f (u)} so ∂ f (u) is convex and closed. Also, if f ∈ Γ0 one deduces
u∗ ∈ ∂ f (u)⇔ u ∈ ∂ f ∗(u∗). As for the first characterization, it implies a fundamental result in
convex variational analysis:

f reaches a global minimum at u ∈V ⇔ 0 ∈ ∂ f (u).

1A Euclidean space is paired with itself. A Banach space (equipped with the strong or weak topology) and its
topological dual equipped with the weak* topology is another example.
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Examples of duality

Adjoint of a linear map While the adjoint of a linear map may be defined under rather weak
assumptions, only the simple definition for linear operators which are continuous and of full
domain is used in this thesis.

Definition A.0.6. Let (U ,U∗) and (V ,V ∗) be two pairs of topologically paired spaces and

A : U → V be a continuous linear operator. For all v∗ ∈ V ∗, the application u→ 〈Au,v∗〉 is a

continuous linear form on U and thus admits a representer in U∗ that we denote A∗v∗. This

uniquely defines a linear operator A∗ : V ∗→U∗ called the adjoint of A.

For instance, the continuity equation (Definition 1.1.1) and its variants are affine constraints
w.r.t. a linear map that is only defined implicitly through its adjoint map. This fact is convenient
when deriving duality results.

Fenchel-Rockafellar A duality result that is intensively used in this thesis is the Fenchel-
Rockafellar theorem. See [137, Thm. 19-20] for a rigorous proofs and a more general statement.
By convention, when an infimum is attained, we replace the sign “inf” by “min”.

Theorem A.0.7 (Fenchel-Rockafellar). Let (U ,U∗) and (V ,V ∗) be two couples of topologically

paired spaces. Let f ∈ Γ0(U), g ∈ Γ0(V ) and A : U → V be a continuous linear operator

of adjoint A∗ : V ∗ → U∗. The so-called qualification constraint is the property: there exists

x ∈ dom f such that g is continuous at Ax. If the qualification constraint holds, then

sup
u∈U

− f (−u)−g(Au) = min
v∗∈V ∗

f ∗(A∗v∗)+ g∗(v∗)

and the min is attained. Moreover, if the minimum is finite, (u,v∗) ∈ U ×V ∗ is a couple of

optimizers if and only if Au ∈ ∂g∗(v∗) and A∗v∗ ∈ ∂ f (−u).

Elements of proof. The following is a mnemonic way to recover the result rather than the proof
since the difficult part of min/sup inversion is skipped. For any y ∈ E, it holds

sup
u∈U

− f (−u)−g(Au) = sup
u∈U

{− f (−u)− sup
v∗∈V ∗

〈Au,v∗〉−g∗(v∗)}

= sup
u∈U

inf
v∗∈V ∗

{g∗(v∗)+ 〈−u,A∗v∗〉− f (−u)}

= inf
v∗∈V ∗

{g∗(v∗)+ sup
u∈U

〈u,A∗v∗〉− f (u)}

= inf
v∗∈V ∗

{g∗(v∗)+ f ∗(A∗v∗)}.

The subdifferential inclusions can be recovered by looking at the optimality conditions in the
second line.

Sublinear and perspective functions

Sublinear functions

Definition A.0.8. Let f : V →R∪{∞} be a function on a linear space. It is said :
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Appendix A. Convex Functions

• subadditive if for all (x,y) ∈V 2, it holds f (x+ y) ≤ f (x)+ f (y).

• positively p-homogeneous if for all x ∈V and λ ∈ [0,+∞[, it holds

f (λx) = λ p f (x).

In general we will just say “p-homogeneous”, or even just “homogeneous” if p = 1. Let
us introduce the class of sublinear functions, that are natural in variational problems involving
measures.

Definition/Proposition A.0.9. A function f : V →R∪{∞} that satisfies any two of the following

properties satisfies all three and is called a sublinear function.

(i) f is subadditive and f (0) ≤ 0;

(ii) f is convex;

(iii) f is positively 1-homogeneous.

Proof. • (i)&(ii)⇒(iii). For λ ∈]0,1[ and x ∈ V , convexity and f (0) ≤ 0 imply f (λx) ≤
λ f (x) and f ((1−λ )x) ≤ (1−λ ) f (x). The subadditivity in turns gives

f (x) ≤ f (λx)+ f ((1−λ )x) ≤ f (x)

so all inequalities are equalities and f (λx) = λ f (x). If λ > 1, simply exchange the role
of x and λx above and pose λ̃ = 1/λ . Finally, for λ = 0, remark that for a subadditive
function, f (0) ≤ 2 f (0) so f (0) = 0. Note that if f (0) ≤ 0 was not specified in (i) then a
counter-example in a normed space is f (x) = 1+ ‖x‖ which is subadditive, convex, but
not homogeneous.

• (i)&(iii)⇒(ii). Let (x,y) ∈V 2 and θ ∈]0,1[, it holds

f (θx+(1−θ )y) ≤ f (θx)+ f ((1−θ )y) = θ f (x)+ (1−θ ) f (y) .

Note that the property f (0) ≤ 0 is redundant here.

• (ii)&(iii)⇒(i). For (x,y) ∈V 2 one has

f (x+ y) = 2 f (x/2+ y/2) ≤ 2( f (x)/2+ f (y)/2) = f (x)+ f (y) .

Proposition A.0.10. If f : V → R∪{∞} is sublinear then f ∗ = ιA for some convex, closed,

nonempty set A . Reciprocally, if A is a nonempty set then ι∗
A

is sublinear.

Proof. If f is sublinear, then f ∗(v∗) = supv∈V{〈v,v∗〉− f (v)} is nonnegative because f (0) = 0.
Moreover, if f ∗(v∗) > 0 then there exists (v,α) ∈ V × ]0,∞[ such that 〈v,v∗〉− f (v) ≥ α . It
follows

f ∗(v∗) ≥ sup
λ≥0
{〈λv,v∗〉− f (λv)} ≥ sup

λ≥0
λα = ∞.

Thus f ∗ is the indicator of a set, whose properties can be deduced from the fact that f ∗ ∈ Γ0(V ∗).
For the second claim, one only has to check that ι∗

A
is positively 1-homogeneous, which is

easy.
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Perspective functions

Due to their homogeneity properties, sublinear functions are entirely determined by specifying
their values on a set that intersect all rays (half-lines of origin 0). If this set is taken as {1}×V ⊂
R×V and the values specified by a function f : V →R∪{∞}, the associated sublinear function
is called the perspective of f . Detailed analytical properties of these functions can be found in
[46].

Definition A.0.11. Let f : V →R∪{∞} be function on a linear space. Its perspective function

ψ : R×V →R∪{∞} is defined as

ψ f (t,x) :=





t f
(

x
t

)
if t > 0,

f ′∞(x) if t = 0,

∞ if t < 0.

In the previous definition, the values of ψ for t = 0 are defined in a way to preserve lower-
semicontinuity.

Definition A.0.12. The function f ′∞ := ψ f (0,x) is called the recession or horizon function of f .

Taking any z ∈ dom f , it is defined for x ∈V as

f ′∞(x) := ι∗dom f ∗(x).

Alternative expressions for the recession function are, if f ∈ Γ0(V ):

f ′∞(x) = sup{ f (x+ y)− f (y) ; y ∈ dom f}= lim
λ→∞

( f (λx+ y)− f (y))/λ .

Proposition A.0.13. One has ψ∗f = ι{(s,y) ∈R×E∗ : s+ f ∗(y) ≤ 0}. Also, ψ f ∈ Γ0(R×V )
if and only if f ∈ Γ0(V ). By noting u = x/t, if V = Rn and f is differentiable, then it holds for

t > 0:

∇ψ f (t,x) = ( f (u)−u ·∇ f (u),∇ f (u))

and with H f the Hessian of f (if f is twice differentiable):

Hψ f
(t,x) =

1
t

(
u ·H f (u)u −(H f (u)u)∗

−H f (u)u H f (u)

)

Proof. If f ∈ Γ0(V ), the expression suggested for ψ∗f defines a function in Γ0(R×V ∗) and one
find by direct computation that (ψ∗f )

∗ = ψ f . The differential formula also come from direct
computations.

Duality for sublinear functions of measures

The following is a rephrasing of [136, Thm 6], with simplified assumptions thanks to [22, Lem.
A.2]. We use the notation introduced the section Notation for the sublinear function of a mea-
sure.
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Theorem A.0.14. Let X be compact metric space and f : X ×Rn → R∪{∞} a l.s.c. function

such that for all x ∈ X, fx(·) is sublinear and proper. Then I f : M (X ;Rn)→ R ∪ {∞} and

I f ∗ : C (X ;Rn)→R∪{∞} defined as

I f (µ) :=
∫

X
fx(µ) and I f ∗(φ ) :=

{
0 if φ (x) ∈ dom f (x, ·)∗, ∀x ∈Ω,

∞ otherwise.

form a pair of convex, proper, l.s.c. conjugates functions, where the topology considered are the

strong topology for C (X ;Rn) and the weak topology for M (X ;Rn).
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Résumé 

Mots Clés 

Abstract 

Keywords 

L'objet de cette thèse est d'étendre le cadre
théorique et les méthodes numériques du
transport optimal à des objets plus généraux que
des mesures de probabilité. En premier lieu,
nous définissons des modèles de transport
optimal entre mesures positives suivant deux
approches, interpolation et couplage de
mesures, dont nous montrons l'équivalence. De
ces modèles découle une généralisation des
métriques de Wasserstein. Dans une seconde
partie, nous développons des méthodes
numériques pour résoudre les deux formulations
et étudions en particulier une nouvelle famille
d'algorithmes de "scaling", s'appliquant à une
grande variété de problèmes. La troisième partie
contient des illustrations ainsi que l'étude
théorique et numérique, d'un flot de gradient de
type Hele-Shaw dans l'espace des mesures.
Pour les mesures à valeurs matricielles, nous
proposons aussi un modèle de transport optimal
qui permet un bon arbitrage entre fidélité
géométrique et efficacité algorithmique.

Optimal transport, convex analysis, optimization,
nonnegative measures, information geometry,
Sinkhorn's algorithm, image processing, gradient
flows, weak convergence, tensor field
processing, barycentres, relative entropy,
geodesic metric space

Transport optimal, analyse convexe,
optimisation, mesures positives, géométrie de
l'information, algorithme de Sinkhorn, traitement
d'image, flots de gradient, convergence faible,
traitement de champs de tenseurs, barycentres,
entropie relative, espace métrique géodésique

This thesis generalizes optimal transport
beyond the classical ``balanced" setting of
probability distributions. We define unbalanced
optimal transport models between nonnegative
measures, based either on the notion of
interpolation or the notion of coupling of
measures. We show relationships between
these approaches. One of the outcomes of this
framework is a generalization of the
p-Wasserstein metrics. Secondly, we build
numerical methods to solve interpolation and
coupling-based models. We study, in particular,
a new family of scaling algorithms that
generalize Sinkhorn's algorithm. The third part
deals with applications. It contains a theoretical
and numerical study of a Hele-Shaw type
gradient flow in the space of nonnegative
measures. It also adresses the case of
measures taking values in the cone of positive
semi-definite matrices, for which we introduce a
model that achieves a balance between
geometrical accuracy and algorithmic efficiency.


