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Introduction générale

Contexte des valeurs extrémes

La théorie des valeurs extrémes (TVE) a été d’abord introduite durant les an-

nées 1920 par Fisher and Tippett (1928). Elle a été développée plus tard dans le
livre Statistics of Ezxtremes de Gumbel (1958) connu aussi pour sa citation: I est
impossible que l’improbable n’arrive jamais. Ce n’est qu’a partir de I'inondation
catastrophique qui a frappé les Pays-Bas en 1953 et qui a causé la mort de plus de
1800 personnes que la TVE a connu son vrai développement. En effet, le gouverne-
ment était confronté a la question: Quelle doit étre la hauteur des digues construites
de maniere a avoir un compromis entre le colit de construction et la protection con-
tre les inondations. La TVE était un atofit statistique puissant pour répondre a
cette question (de Haan and Ferreira (2006)).
Comme son nom lindique, la TVE s’intéresse donc aux événements extrémes ou
rares qui ont une faible probabilité d’occurrence mais qui une fois réalisés peuvent
avoir des conséquences désastreuses. La théorie est largement utilisée dans plusieurs
domaines d’application notamment en finance pour ’estimation de la Value at Risk
(VaR) (Singh et al. (2013), Kluppelberg and Zhang (2015)), en hydrologie pour
la protection contre les inondations (Buishand et al. (2008), Butler et al. (2007)),
en météorologie pour la prédiction des vitesses de vent extrémes (Walshaw (2000),
Coles and Pericchi (2003)) etc. Un des problémes rencontrés en TVE est que les
évenements extrémes sont rares et la théorie doit donc établir des prédictions sur
des périodes beaucoup plus longues que celle des données disponibles. En d’autres
termes, on pourra s’intéresser a l’estimation des niveaux de retour pour 100 ou 500
ans partant d’un jeu de données sur 50 ans par exemple. Cela nécessite donc une
extrapolation des périodes observées a des périodes non observées. La TVE as-
sure cette extrapolation en imposant des hypotheses de régularité de la queue de
distribution des observations.

Les premiers travaux en théorie de valeurs extrémes traitent le cas d’une seule
variable aléatoire dont les observations sont supposées indépendamment et iden-
tiquement distribuées (i.i.d.). La premiére généralisation au cas non i.i.d. a été
réalisée par Leadbetter et al. (1983) dans leur livre ou ils considérent le cas sta-
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tionnaire ou le cas de dépendance a court terme. Des études supplémentaires sur
la stationnarité ont été aussi faites par Hsing (1991). Le cas hétéroscédastique, i.e.
le cas ou les observations sont indépendantes mais non identiquement distribuées,
a été lui aussi traité notamment par Davison and Smith (1990), Coles (2001) et
récemment par de Haan et al. (2015) et Einmahl et al. (2016). Quant au cadre
multivarié, il consiste a étudier des processus extrémes simultanément afin de tester
par exemple la dépendance entre plusieurs variables aléatoires. La TVE multivariées
est plus compliquée a traiter et une premiere difficulté réside dans le fait de définir
qu’est-ce qu’un éveénement extréme multivarié. Parmi les travaux faits sur le cadre
multivarié citons par exemple ceux de de Haan and Resnick (1977), Pickands (1975)
et Buishand (1984).

Contributions personnelles

La these est composée de cing chapitres. Le premier chapitre est une intro-
duction générale a la TVE univariée. Les chapitres deux et trois constituent mes
contributions personnelles qui ont été soumises dans des journaux scientifiques. Le
chapitre quatre est un Data challenge pour I'estimation de quantiles extrémes dont
les résultats sont présentés durant la conférence EVA 2017 au Delft. Le chapitre
cinq fait 'objet d'un travail d’application sur de vraies données au Liban. Nous
présenterons brievement dans ce qui suit les chapitres deux a cing.

Chapitre 2: Bootstrap par permutation et méthode des max-
ima par blocs

Dans le second chapitre, nous proposons la méthode de Bootstrap par permu-
tation pour améliorer 'estimation des parametres de la loi des extrémes généralisés
(GEV) et par conséquent des quantiles extrémes. Nous appliquons cette méthode
aux blocs maxima (BM) dans un cadre particulier afin de réduire la variance des
estimations. Si on dispose de n observations i.i.d. Xj,..., X, divisées en k blocs de
taille m (n = k x m), nous allons extraire les BM

M; = max X;, j=1,--- k.

(J—Dm<i<jm

Dans le cas ou n = k x m + r, les r dernieres observations ne seront pas incluses
dans les BM. Il est vrai qu'un changement dans 'ordre des observations Xi,..., X,
entrainera un changement dans I’échantillon des BM et par suite dans les parametres
estimés. Nous proposons ainsi une méthode de Bootstrap par permutation partic-
uliere basée sur les rangs des BM et les statistiques d’ordre qui évite de permuter
les observations, les diviser en des blocs puis d’extraire les maxima permettant ainsi
de réduire le temps des calculs. Les statistiques d’ordre des observations X1, ..., X,
sont notées par Xy, < --- < X, ,. D’'une maniere similaire, les statistiques d’ordre
des BM M, ..., M}, sont notées par My, < --- < My . Nous définissons alors les

10



rangs des BM Ry, ..., R, par la relation suivante:
Miy1—jr = Xgpyms, J=1,... k.

Notons ici qu'on a bien n > Ry > Ry > ... > R > 1 et que Xp, ., est le maximum
de tous les blocs, en particulier R; = n si n = k x m. La distribution des rangs des
BM est exprimée en fonction d’une distribution G définie comme suit.

Définition. Soient 1 < ny; < ng des entiers naturels. On définit par G(ni,ny) la
distribution d’une variable aléatoire N telle que

P(N = i) = <(m)) — <(£>> i=0,...,n9 — .

Dans le cas ot nqy = ngy, on définit G(ny,n2) par la masse de dirac en 0,
i.e P(N =0)=1.

Ainsi, la distribution des rangs des BM (Ry, . .., Ry) sera donnée par la proposi-
tion suivante.

Proposition. Soit n = k xm+r, r € {0,m — 1}. La distribution des rangs des
BM (Ry, .., Ry) d’un vecteur aléatoire échangeable X = (X, .., X,) est donnée par
les relations sutvantes:

L(n—Ry) =Gk xm,n)
E(Rj,1 —1- Rj|R1, ~-7Rj71) = g((]{] +1 —]) X m, Rj,1 — 1), j = 2, ,k

La distribution des rangs des BM est alors introduite dans les simulations afin
de tester la performance de la méthode. L’effet du Bootstrap par permutation est
étudié dans un premier temps par une analyse numérique. On simule n = 1000
observations de loi Pareto de parametre de forme vy = % On fait varier la taille
des blocs (m = 1,...,30) et pour chaque valeur de m on estime les parametres de
la GEV ainsi que le quantile extréme en effectuant B = 100 rééchantillonnages de
I'ordre des observations par notre méthode proposée. Nous illustrons la variabilité
des estimations de v et des quantiles par des boites a moustaches dans la figure

suivante.
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Boites & moustaches de 4 (& gauche) et du quantile extréme estimé (& droite) en
fonction de la taille des blocs.

Les boites a moustaches montrent la variabilité des estimations vis a vis de I'ordre
des observations. En plus, nous remarquons la présence de valeurs aberrantes dans
les estimations ce qui nous pousse a penser a utiliser la médiane Bootstrap (valeur
estimée égale a la médiane des B estimations) en plus que la moyenne Bootstrap
(valeur estimée égale a la moyenne des B estimations). En effet, la figure montre
bien que la médiane Bootstrap (ligne gras dans la boite) est toujours plus proche
de la vraie valeur (ligne horizontale) que la moyenne Bootstrap (triangle). Pour
calculer l'erreur quadratique moyenne des estimations, on répete la simulation N’
fois. Les résultats montrent que la méthode de Bootstrap par permutation proposée
aboutit bien a une réduction de 'erreur quadratique moyenne, cette réduction étant
plus remarquable avec la médiane-Bootstrap qu’avec la moyenne-Bootstrap. Nous
discutons enfin le nombre de Bootstrap par permutation B afin de réaliser un com-
promis entre le temps de simulation et la réduction de ’erreur quadratique moyenne.

Chapitre 3: Détection de la tendance en extréme
hétéroscédastique

Le troisieme chapitre est une généralisation de la TVE classique au cas non i.i.d.
particulierement au cas ou les observations sont indépendantes mais non identique-
ment distribuées. Les queues des distributions varient en fonction du temps et sont
asymptotiquement liées par une fonction ¢ dite skedasis function qui représente la
fréquence des extrémes. Ainsi le fait de tester la tendance de ¢ nous informe sur la
variation des évenements extrémes. Par exemple, dans le cadre du réchauffement
climatique il est toujours question de savoir si les évenements météorologiques ex-
trémes deviennent plus ou moins fréquents au cours du temps. Cette étude a pour
but de développer un cadre théorique permettant de répondre a cette question en
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testant la tendance de ¢ au cours du temps.

Le modele hétéroscédastique a été d’abord introduit par Einmahl et al. (2016) dans
le papier Statistics of heteroscedastic extremes comme suit. Supposons qu’on dis-
pose de n observations indépendantes X7, ..., X, ou X a une distribution continue
F,;,n>1,1<14<n. On suppose en plus que toutes les distributions possedent le
méme point terminal

¥ =sup{z: F,;(z) <1} € (—o00, x]

et qu’il existe une fonction de répartition F' ayant aussi £* comme point terminal et
une fonction positive ¢ définie sur [0,1] qui caractérise la variation des extrémes de
maniere a ce que les queues des distributions soient asymptotiquement proportion-
nelles, i.e.

1-F,;
lim ni(?)

M Tr ) =c(i/n), uniformément surn >1,1<i<n.

La relation précédente décrit un modele de queues proportionnelles déterminé par la
fonction ¢ ou l'indice i/n est interprété comme étant le temps de I'observation X
Elle explicite le fait que ¢ représente la fréquence des extrémes. Par exemple, si ¢
a une tendance croissante les fonctions de survie 1 — F}, ; seront aussi croissantes et
cela veut dire que la fréquence des extrémes augmente en fonction du temps. Notons
que le cas ¢ = 1 correspond a ’homoscédasticité et donc au cas i.i.d..

Dans le but de garder le modele dans le cadre de la TVE, on considere que F est
dans le domaine d’attraction d’'une GEV de parametre de forme v (en particulier
d’une Fréchet avec v > 0 pour la simplicité du modele). Par conséquent, toutes les
distributions F;,; auront le méme parametre de forme . Einmahl et al. proposent
une estimation non paramétrique de l'intégrale de la fonction skedasis

C(s):/osc(t)dt, seo1],

donnée par
R 1 [ns]
C (s Z 17> X, )

Les valeurs Xi., < --- < X,,.,, sont les Statlsthues d’ordre de X7, ..., X et Xn kn
est un seuil bien choisi en fonction de k = k(n) tels que lim k= oo et hm n = 0.

Des conditions supplémentaires sont 1mp0sees au modele afin d’obtenir le theoreme
suivant sur ’estimateur non paramétrique C et lestimateur de Hill 4 Ay défini par

fA)/H - Zlog Xn i+1:n IOg Xn—k:n-

=1

Théoréme. Sous les conditions proposées par Einmahl et al. (2016) nous avons:

sup [V (C(s) = C(s)) = B(C(s)| =20 ps,

0<s<1 n—oo

ot B est un pont Brownien standard.
En plus, sous des hypotheses de régqularité de F', l'estimateur de Hill 4y satisfait

Vi =) == N(0,7°),
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et est asymptotiquement indépendant de C.

Le but de notre travail est de partir du modele de Einmahl et al. (2016) et de
considérer des modeles paramétriques de ¢ afin de tester la présence d’une tendance.
Nous introduisons d’abord la variable 7} qui aura un réle primordial dans 1’étude.

Définition. Pour 1 < [ < n, on note par T]* le ‘temps’ de la 1°™¢ plus grande
observation. En d’autre terme nous avons X;}Tln = Xni1-imn-

Nous montrons dans un premier temps la convergence du modele d’un point de
vue heuristique. Pour cela nous présentons d’abord la proposition suivante qui a été
demontrée par Resnick (1987) pour le cas i.i.d.. Nous I'introduisons et la prouvons
pour le cas hétéroscédastique.

Proposition. On suppose n observations positives {X*, n > 1,1 < i < n} qui
satisfont le modele de queues proportionnelles avec F' dans le domaine d’attraction
d’une a-Fréchet, oo > 0. On considére la constante de normalisation a, = F*< (1 —
1/n), n > 1, avec F* la fonction quantile associée a F et on définit le processus
ponctuel normalisé

n’ an

Hn:iz:;aS(ixlﬁ), n>1,

ou € représente la mesure de dirac. Alors, quandn — oo, Il,, converge en distribution
dans M, vers un processus de poisson I1 d’intensité de mesure ¢(s)dsax=* 'dz sur
[0,1] x (0,00] ot M, représente l’espace de mesures ponctuelles ™ = ;51 €, .-

Partant de la proposition précédente, on prouve le corollaire suivant qui montre
la convergence du modele pour un seuil fixé.

Corollaire. Pour un k fixé k > 1, nous avons la convergence en distribution des
temps et des valeurs des excés au dessus de X, _jp.n:

Xn+17l'n d =~
(TZn, T — (T}, Xps1-1:6)1<i<ks  quand n — oo,
1<I<k

ank:n
ol j(vl:k < - <L Xvk:k sont les statistiques d’ordre d’observations Hg j(vl,;. ) ,Xvk
de loi a-Pareto, i.e. P(X; > x) =x~% x> 1, et, indépendamment, Ty, ..., Ty sont

des variables aléatoires indépendantes de densité c.

Nous étudions ensuite les modeles paramétriques ¢ = ¢y, 0 € ©, de la forme
log-linéaire, linéaire et log-linéaire discret ainsi que les résultats de consistance et
de normalité asymptotique du parametre 6 représentant la tendance. On se limite
dans ce chapitre introductif au modele log-linéaire défini par

ct)=co(t) =" ou feR,

h(6) = log (/01 e"tdt> —log (699_ 1) |

Nous obtenons les résultats suivants.

avec
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Proposition. Considérons le modéle log-linéaire {co(t),0 € R} et T une variable
aléatoire de densité cy. On a,

Pe? —e? +1 .
oh RZE A
Ey(T) = —7(0) =
06 1
5 s1 60 = O,
et
(69—1)2—«9269 0 0
o g gy 70
Varg(T) = ﬁ<0) = X
En plus, linformation de Fisher en 0 est
1(0) = Vary(T).
oh s ,
A noter que ek (—00,00) — (—1,1) est un difféomorphisme.

Par conséquent, I'estimateur par maximum de vraisemblance de 6 sera
-1 k
A oh _ — 1
O = | = Ty) avec T, = —» T".
= (5) et 2o
Les résultats de consistance et de normalité asymptotique de 0, sont donnés dans le

théoreme suivant.

Théoréme. Supposons le modele log-linéaire ¢y, de c. Alors sous les conditions de
Einmahl et al. (2016), lestimateur de mazximum vraisemblance 0y de 0y satisfait

ék LN Oy quand n — oo

VE (0 = 00) = N (0,1(65)7") -

Puisque le but est de tester la tendance de ¢, nous proposons alors le test
paramétrique
Hy:0,<0 contre H,: 0y >0,

défini plus formellement par:

0 si 91{: S Zl—a%a

Pr =
1 sinon,

ol 0y? = 1(91:0) = VareiO(T) = 12. Le test paramétrique ¢ est consistant sous

I’hypotheése de monotonicité de c.
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Proposition. Supposons la fonction skedasis ¢ comme monotone et le test
Hy : ¢ est décroissante contre Hjp : ¢ est croissante non constante.
Le test oy, satisfait

lim P(pr =0) > 1 —« sic est décroissante,

lim P(pr =1) =1 sic est croissante non constante,
n—oo

avec « le seuil de signification.

Nous passons ensuite aux simulations afin de discuter deux idées principales:
le choix du seuil et la puissance des tests pour la détection de la tendance. Nous
proposons en premier temps la méthode de Lepski présentée par Boucheron and
Thomas (2015) pour le choix du seuil et nous comparons dans un deuxiéme temps
la puissance du test paramétrique Ty: Hy : 6 = 0 contre Hy : 6 # 0 (présenté
dans le modele log-linéaire) a la puissance du test non paramétrique de Kolmogorov-
Smirnov T5. Dans le but de réaliser cette comparaison, nous simulons un échantillon
de n = 1000 observations qui vérifient le modele de queues proportionnelles telle que
la fonction ¢ est monotone mais n’est pas issue du modele paramétrique log-linéaire
définie par

c(s)=1—0dcos(ms), se€]0,1],
avec 0 = (0,0.2,0.4,0.6). Le cas 6 = 0 correspond a I’homoscédasticité. Nous faisons
ensuite varier la valeur de k (k = 100,200, 300). Pour chaque valeur de k et § nous
testons I'hypothese d’homoscédasticité pour les deux tests T et Ty de niveaux 5%.
Nous répétons la simulation N = 1000 fois et nous comptons le nombre de fois qu’on
accepte Hy. Les résultats sont donnés dans le tableau suivant:

k=100 | k=200 | k=300

5—0 Ty | 0.963 0.975 0.982
To | 0.972 0.988 0.988

5=09 Ty | 0.697 0.479 0.285
T | 0.755 0.601 0.428

5—04 Ty | 0.159 0.005 0.000
T | 0.238 0.017 0.000

5=06 Ty | 0.004 0.000 0.000
’ T, | 0.014 0.000 0.000

Probabilité estimée d’accepter Hy pour le test paramétrique T} et non paramétrique
T, pour détecter la tendance.

Les résultats montrent que c’est bien le test paramétrique 77 qui rejette le plus
I’hypothese nulle d’homoscédasticité dans le cas ou elle est fausse. Ainsi, le test
paramétrique est plus puissant que le test non paramétrique d’ou l'importance de
considérer des modeles paramétriques de la tendance.

Finalement, nous appliquons la méthodologie aux données de températures mini-
males et maximales dans la région de Fort Collins Colorado durant le 20°™¢ siecle
pour détecter la présence d'une tendance dans les extrémes sur cette période.
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Chapitre 4: Modeles GEV avec covariables pour
les maxima annuels et sélection de modeles pour
la prédiction des quantiles extrémes

Dans ce chapitre nous présentons nos résultats obtenus au Data challenge proposé
par le comité d’organisation de la conférence internationale EVA 2017. On dispose
d’un jeu de données de précipitations journalieres maximales sur 24 ans dans 40
stations. On réalise une prédiction spatio-temporelle des quantiles correspondants a
un niveau de retour de 20 ans pour les précipitations mensuelles dans chaque station.
Nous utilisons des modeles de GEV en introduisant les covariables mois, latitude et
longitude des stations dans les parametres u et o de la loi GEV (7 = cte pour la
simplicité). Nous proposons trois grands modeles pour décrire les interactions entre
les covariables:

o Le modele additif Add;, ou
= month + fi(latitude) 4+ fo(longitude),
o = month + g (latitude) + gs(longitude),
avec f1, fa, g1 et go des splines cubiques naturelles de degré de liberté df = h.
e Le modele mixte Mix;, ou:
p = month + fi(latitude) x fo(longitude),
o = month + g (latitude) x gs(longitude).
e Le modele multiplicatif Mult, ou:
= month x fi(latitude) x fa(longitude),
o = month x g;(latitude) x gs(longitude).

Le meilleur modele est choisi en terme d’Akaike information criterion (AIC) et par la
méthode de validation croisée. Par exemple, les modeles proposés dans un premier
temps avec leur critere AIC sont les suivants:

Model K AIC

Addy 41 3917.797
Addg 49 2286.818
Mizo 41 2723.934
Mixy 73 2189.872
Mixg 121 2594.673
Multy 601 4290.686

AIC des 6 modeéles

Le modele choisi est celui qui a la plus petite valeur AIC et donc le modele Mixy.
Dans un deuxieme temps, nous proposons d’autres modeles et appliquons la méthode
de validation croisée pour le choix du meilleur modele. Les modeéles proposés avec
leur nombre de parametre K ainsi que leur score (fonction score proposée par le
challenge) sont présentés ci-dessous:
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Model | K Score
Add; | 29 1018.448
Adds 33 1018.415
Adds 37 1017.906
Addy 41 1016.575
Adds 45 1073.358
Addg 49 1053.673
Mixq 31 1018.573
Mixo | 41 1100.853
Mizxs 55 1052.124
Mixy 73 1052.265
Mixs | 95 1067.313
Mixg 121 1089.812
Multy | 97 1014.848
Multy | 217 1025.043
Mults | 385 1028.709

Score obtenu par validation croisée (k =4)

Le modele choisi est celui qui assure un compromis entre le nombre de parametres
et la plus petite valeur du score. Nous choisissons donc le modele Add,.
Pour chacun des deux modeles choisis, nous estimons les quantiles extrémes. En
utilisant les scores de prédiction calculés grace a I’échantillon test, nous déduisons
qu’il est plus favorable de choisir le meilleur modele par validation croisée que par
AIC puisque la premiere méthode réduit le score du benchmark plus que la deuxieme
et donne donc de meilleures estimations des quantiles extrémes.

Chapitre 5: Protection de la plateforme pétroliere
contre les vents et les vagues extrémes au Liban

Le dernier chapitre est une application de la TVE unvariée et bivariée sur la
vitesse du vent et la hauteur des vagues hivernales dans la région de Beddawi au
nord du Liban en vue de protéger la plateforme pétroliere qui y sera installée de ces
risques environnementaux. En effet la plateforme pétroliere doit étre concue pour
résister aux risques environnementaux notamment la vitesse du vent et la hauteur
des vagues. Ses composantes sont construites pour faire face a des niveaux de retour
associés a des périodes de retour de 1" = 50, 100 voire 500 ans. Notons dans cette
partie le vecteur de valeurs extrémes par X* dans le but de simplifier les notations.
On entend par niveau de retour de 7" ans noté gx« r dans le cas de maxima annuels
la valeur qui sera dépassée en moyenne une fois tous les T ans avec une probabilité
de 1/T. Ce niveau de retour correspond donc au quantile d’ordre p =1—1/T de la
loi GEV des maxima et est donné par:

_ o ute[(—logp) T 1] siy#0
dx~1 = .
p — olog (—logp) sivy =0

On commence d’abord par compléter les données manquantes des hauteurs des
vagues par 'algorithme de forét aléatoire disponible dans le package missForest
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du logiciel R. Nous choisissons cet algorithme puisqu’il utilise la méthode de forét
aléatoire appropriée aux cas ou les données peuvent présenter des interactions non
linéaires et quand nous ne connaissons pas leur distribution a priori. En plus, cet
algorithme a été comparé a d’autres méthodes utilisées pour compléter les données
manquantes et les a surpassées. Une fois les données complétées, on applique d’abord
la théorie univariée sur la vitesse du vent et la hauteur des vagues séparément en
utilisant la méthode des BM pour estimer les parametres de la GEV et les niveaux
de retour des maxima associés a des périodes de retour de 50, 100 et 500 années.
Dans notre cas, nous appliquons la méthode des BM aux données journalieres et
nous choisissons des blocs de taille m = 15 jours. En effet, on étudie les données
hivernales disponibles pour les années 2000 a 2015. Le nombre total des observa-
tions est donc n = 1353 et le choix de la taille des blocs doit étre un compromis
biais-variance. Avec le choix de m = 15 nous obtenons 90 maxima avec { = 6
maxima par an. Ainsi, le niveau de retour de T ans correspondra a un quantile
d’ordre p =1 — GX% et présentera la valeur qui sera dépassée en moyenne une fois
tous les 6 x T blocs. Les résultats des niveaux de retour estimés pour la vitesse du
vent extréme (X*) et la hauteur des vagues extréme (Y*) ainsi que leur intervalle
de confiance sont donnés dans les tableaux suivants:

T (ans) Gx+r (m/s) Gy~ (cm)
50 43.570 284.839
100 47.530 298.510
500 57.197 327.238

Niveauz de retour pour X* et Y*.

T (ans) Intervalle de confi- | Intervalle de confi-
ance de gy« 1 ance de gy« 1

50 [32.014,55.126] [237.160,332.517]

100 [32.831,62.228] [240.854,356.166]

500 [33.271,81.123] [244.034,410.442]

Intervalle de confiance des niveauz de retour

Le premier tableau montre par exemple que la vitesse du vent extréme qu’on
s'attend a étre dépassée une fois toutes les 50 années ou 50 x 6 blocs est 43.570
m/s. En plus, la valeur 298.510 cm est la hauteur des vagues qui sera dépassée en
moyenne une fois toutes les 100 années ou 600 blocs avec une probabilité de 1/600.
Nous passons ensuite a ’application de la théorie bivariée en utilisant aussi la méth-
ode des BM qui utilise les vecteurs des maxima par composante. Soit (X1, Y7), (X2, Y2), ..
une séquence de vecteurs indépendants de loi F'(xz,y) avec Fy et F; les distributions
marginales respectives de X et Y. On définit alors

X* = max X; et Y* = max Y.

1=1,..,m i=1,...m
Ainsi,

M, = (X*,Y™)
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est le vecteur de maxima par composante obtenu en combinant X* and Y”* et dont
les composantes ne sont pas nécessairement une vraie réalisation. On suppose qu’il
existe des constantes de normalisation a,, = (a1,m,a2.m) € R3? €t by, = (b1, baym) €
R? ainsi qu'une distribution non dégénérée G tel que

— G(2),

m—0o0

M,, —b
P (mm < z) = F™(amnz + by)

a

Y*—bam

o M,,—b [ X*=by,
aVGCZ—(x7y)7< m m)—( o e

dite dans le domaine d’attraction de G. Il est vrai que G ne présente pas une
forme bien paramétrique mais en transformant les marginales F; et F, en Fréchet
standard nous pouvons simplifier la représentation de G. Nous nous ramenons enfin
a des modeles paramétriques de G notamment le modele logistique ou la distribution
G est définie comme suit:

-~ , ) et a2z = (a1 m, a2my). F est alors

G(z,y) = exp{—(z > +y ")}, >0,y >0, a €[0,1],

avec « le parametre de dépendance entre X* et Y™*:

- a— 1, alors G(x,y) — exp (—(% + i)) ce qui correspond a une indépendence.

- a — 0, alors G(x,y) — exp (— max(%, i)) ce qui correspond a une dépendance
totale.

A noter que G peut aussi étre aussi exprimée en fonction de copules qui sont des

fonctions C(.,.) : [0,1] x [0,1] — [0, 1], qui vérifient les conditions suivantes:
e C(u,0)=C(0,v) =0, C(u,1) = uet C(1,v) = v, Yu,v € [0, 1],

o C(ug,v9) — C(ug,v1) — Clug,va) + C(ug,v1) > 0, Y uy, ug, v, vy € [0,1] tels
que u; < ug et v; < .

Nous estimons donc la dépendance entre les vents et les vagues extrémes et les
probabilités jointes de dépassement des niveaux de retour univariés:

P(X™* > gx+r, Y > Gy+1) =1 —G1(Gx+7) — G2(Gv+ 1) + G(dx+ 1, Gy 17)

ou Gy et Gy les distributions marginales des maxima univariés. Les résultats de
I’estimation des probabilités précédentes sont présentés ci-dessous:

Niveaux de retour

QY*,5O - 284839

(jY*,IOO - 298510

qu*’500 = 327238

dx+ 50 = 43.570 0.00106 0.00071 0.00019
dx+100 = 47.530 0.00071 0.00053 0.00018
dx* 500 = 07.197 0.00019 0.00018 0.00011

P(X* > Gx+7, Y™ > Gy+1v)

Nous associons ces probabilités jointes de dépassement a des périodes de retour
jointes par la relation suivante: P(X* > gx«7,Y* > Gy« 1) = m ot T%.y. est
la période de retour jointe associée a I'évenement (X* > Gx«1 et Y* > Gy« 1) et ¢
le nombre de blocs par an. Les résultats sont donnés dans le tableau suivant:
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Niveaux de retour | Gy« s0 = 284.839 | Gy+100 = 208.510 | Gy~ 500 = 327.238
Gx+ 50 = 43570 157.273 236.309 868.057

Gx-100 = 47530 | 236.300 315.498 947.920

Gx+500 = 57.197 | 868.057 947.920 1581.323

/ . . . /
Période de retour jointe Ty .y«

Ce tableau montre que la période de retour jointe correspondante a 1’évenement
que la vitesse du vent extréme X* dépasse le niveau de retour gx«r et la hauteur
des vagues extréme dépasse le niveau de retour gy~ est supérieure au maximum
entre les périodes de retour marginales T et T”. Par exemple la période de retour
jointe de 157.273 ans correspond a la probabilité que la vitesse du vent et la hauteur
de vague extréme dépassent simultanément les niveaux de retour de période 50 ans.
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Fundamental of extreme value theory

Abstract

We present in this chapter a short introduction to univariate extreme value the-
ory. We start by introducing the asymptotic distribution of the maxima. We then
present the two main methods used to extract an extreme sample given a series of
i.i.d. observations: the block maxima and the peak over threshold methods. The
block maxima are approximated by a generalized extreme value distribution and the
threshold excesses by a generalized Pareto distribution. Once the parameters distri-
bution are estimated by either the maximum likelihood or the probability weighted
moments, we can obtain an estimation of the return levels.
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1.1 Block maxima model

1.1.1 Generalized Extreme Value distribution GEV

Suppose we have a sample of m i.i.d. random variables Xy, ..., X, with con-
tinuous distribution function F. In EVT we are interested in the behavior of
M,, = max(Xy,...,X,,), i.e. in the probability P(M,, < z). In fact, we have

P(M, <z)=P(X; <z,Xo<z,..., X, <x)
P(X; <z)xP(Xy <zx)x...xPX, <z

Unfortunately, since the function F' is unknown it is the same for I and hence for
the distribution of M,,. One can think of estimating F' but even this can’t solve
the problem because a little discrepancy for F' results in a significant discrepancy
for F™ (Coles (2001)). The idea is to directly find the asymptotic behavior of F™.
Since F™(x) — 0 for every z < 2% = sup{z : F,;(x) < 1}, an alternative is to
normalize the maximum M, in order to get a non degenerate asymptotic distribution
for the normalized maxima. This is solved by Gnedenko-Fisher-Tippett theorem, a
fundamental in EVT (Gnedenko (1943); Fisher and Tippett (1928)).

Theorem 1.1 (Gnedenko-Fisher-Tippett). Consider a sequence of i.i.d. random
variables (r.v.) X = Xy, Xo, ... with distribution function F(x) = P(X <=x) and
let M, = max(Xy,.., X,,). If there exist normalizing constants a,, > 0 and by, such
that

M., — by, :
lim P ( < x) = lim F™(anx + by) := G(x)

m—00 a m—00

with G a non-degenerate distribution function, then G must be of one of the following
types:

o Gumbel: G(x) = exp(—exp(—x)) for all x € R;

exp(—z~%) if x >0

0 Ffo<o @70

o [réchet: G(x) = {

exp(—(—z)¥) if <0

1 if m>0’a>0'

o Weibull: G(z) = {

The variable X is said to be in the domain of attraction of G. The strength of this
theorem is that regardless of the distribution F', the normalized maxima will have
necessary one of the three previous distributions. Jenkinson (1969) combined them
in a single parametric form called the generalized extreme value (GEV) distribution
of the form:

exp{—[1+7 (52)]77}, 1+952 > 0,7 #0,
Glon (z) =
€xXp (_ exp(_m;i)) ) T e ery - 07
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where 1 € R is the location parameter, ¢ > 0 the scale parameter and v € R the
extreme value index. Based on the sign of the extreme value index 7, we could
identify to which type of the three families does the GEV belong.

o If v > 0, the GEV is a Fréchet which is the domain of attraction of the
heavy-tailed distributions such as the Pareto distribution.

e If v = 0, the GEV is a Gumbel which is the domain of attraction of the
light-tailed distributions such as the Normal distribution.

o If v <0, the GEV is a Weibull which is the domain of attraction of the short
tailed distributions with finite upper bounds such as the Uniform distribution.

Now that the asymptotic behavior of the normalized maxima M”;i;bm is known, it
remains to identify the normalizing constants a,, and b,,. In fact, we can get around
the problem of identifying these constants in the following way: Theorem 1.1 states
that as m — oo, P (M’Zi;bm < :(;) ~ ((z). Hence,

B0 < 1) = Gy () = Gt () = G0

where G* is a GEV distribution with parameters a,, 1+b,,, a,,0 and . Consequently,
the maxima M, follow also approximately a GEV distribution whose parameters
should be estimated.

1.1.2 The Block maxima method

In practice, the method used to extract the maxima sample from a series of

i.i.d. observations is the block maxima (BM) method. It consists in dividing the
observations into blocks and to extract the maximum within each block. Suppose
we have a sequence of n i.i.d. observations Xi,..., X, with distribution F' divided
in k blocks of size m. The set of the k¥ maxima can be denoted by X7, ..., X} for
the sake of simplicity and will follow approximately a GEV distribution.
The BM method has its pros and cons: in fact, the method can be useful to ensure
the assumption of i.i.d. maxima. For example in the case of seasonality in the obser-
vations, by choosing a block size of one year, the yearly maxima can be considered
as identically distributed. On the other hand, the BM method leads to a loss of
information: by choosing only the maximum value in a block, it may ignore other
existing extreme values in the same block. These ignored values can even be more
extreme than the maxima of other blocks.

1.1.3 Parameters estimation

The GEV parameters can be estimated by either the maximum likelihood (ML)
method or the probability weighted moments (PWM) method.
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Maximum likelihood estimation

Suppose the ii.d. r.v. X7,..., X} following a GEV distribution and whose
realizations are x},...,2%. The log-likelihood function is given by (see Beirlant

et al. (2004))
_ * -1/
M>_2<1+7$ZO—M> :

i=1

1 k
Up,0,7) = —klogo — ( + 1) > log (1 +
v i=1

1f77é0and1+7 > (. In the case v =0,

E(M,U,O)——kloga—zexp( ) ix*

=1 =1
The ML estimator (fi,5,%) is then the solution of the following score equations:
0l(p,0,7) _ 7 0w, 07) _ o anq 2HH7)
ou do 0y

More computational details on the ML estimation of the GEV parameters date back
to Prescott and Walden (1980, 1983).

=0.

Probability weighted moments estimation

The PWM method was first introduced by Greenwood et al. (1979). In a general
framework, the PWM of a r.v. X with distribution function F' are defined by

My s = E[XP{F(X)} {1 = F(X)}’]

with p,r and s € R and can be used to estimate the parameter of a distribution.
For the GEV distribution, the PWM with p = 1, » = 0,1,2 and s = 0 are used:
they are well defined for v < 1 and given by

r+1

(see Beirlant et al. (2004)). These three PWM allow to retrieve the three GEV
parameters thanks to the relations

%—u—ju—ru—wL

201 — Po = 7(1—7)(27—1%

30s— 0y 37 —1
260 — B 27 —1
In practice, the PWM are estimated by

4 = EX{F(X)}] = — @—ju—u+mwu—w@,r:aLz

L G-HG -2
b ; 1)(k—2)..(k—r)Xj:k’

where X1 < Xoy < ...Xj are the order statistics of Xi,..., X (see Caeiro and
Gomes (2011)). Plugging-in these estimates for 3,, r = 0,1, 2, in the three equations
above, we obtain the so-called PWM estimators %, i and &.
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1.1.4 Quantile estimation

Extreme quantile estimation is central in EVT. Based on BM method, the quan-
tile gx+, of order p of the vector of maxima X* = X7, ..., X} is given by

x*p = G:L_,a,’y (p) ;b€ <O7 1)

The relation G = F™ implies that the quantile of order p of X corresponds to
the quantile of order p™ of X*. Hence an estimator of ¢x , is given by the following
formula where i, o and v have to be replaced by their estimated values (see Beirlant
et al. (2004)):

o = dyoom = 4 T 51(=mlogp) T 1] if oy £ 0
Xp T 3K p — olog (—mlog p) ify=0 "

Recall that m is the block size in the BM method.

1.2 Threshold models

We have already presented the first method to extract an extreme sample from
a series of observations which is the BM method. As we have said, its main disad-
vantage is that it may lead to a loss of information. We present here an alternative
method which takes into consideration all the values that exceed a high threshold
known as the peak over threshold (POT) method.

1.2.1 Generalized Pareto Distribution GPD

Suppose again that we have a sequence X = Xy, X, ..., X, of i.i.d. r.v. with
distribution F'. For a high threshold u, we are interested in the asymptotic behavior
of the conditional probability

F(u+vy)—F(u)
1—F (u)

Foly) =P(X —u<y|X >u)= (1.1)

which is given in the following theorem.

Theorem 1.2 (Balkema and de Haan (1974)). Let X = X1, X5,... be a sequence
of i.i.d. r.v. with distribution F'. For large u, the conditional excess distribution F,
defined in (1.1) satisfies

Fu(y) = Hp (y)

where Hg ., is the generalized Pareto distribution (GPD) defined by

-1/~
1—(14+~% ify#0
Hﬁ,v (?/) = { ( é) . )
L—exp (=) =0
The GPD distribution can be obtained from the GEV distribution in the fol-
lowing way (Coles (2001)). Recall the maximum M, = max(Xy,...,X,,). We

have
P(M,, <z)=F"(z) ~G(z)
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with G (z) = exp{—[1+ (%5#)]7"/7}, for p,0 > 0 and v € R.
Consequently,

mlog F(z) = ~[1 -+ (“-2)) 70

It follows from the Taylor approximation for large z, log (F(x)) ~ — (1 — F(x)),
that y

RS B V!
[1 + 7(?“)}

- :

1—F(r) ~
Consequently for y > 0 and 1+ ~4% > 0,
Fu+y)— F(u)
1—F(u)
) Il s e
) 14050

—1/y
=1- (1 + 7%) ,

with § = o+ v(u — ). The result for v = 0 is directly obtained by taking the limit
v — 0. Hence, we can conclude that if the maxima are approximated by a GEV
distribution then the threshold excesses are approximated by a GPD distribution.
Moreover, the two distributions share the same parameter v called the extreme value
index.

P(X —u<ylX >u)=

1/~

1.2.2 Parameters estimation

Similarly to the GEV distribution, the GPD parameters can be estimated by the
ML or the PWM method.
Maximum likelihood estimation

Consider n ii.d. r.v. Xy,..., X, with distribution F. The threshold excesses
Yi=X,—u,i=1,... k follow approximately a GPD distribution of the form:

y -1/

The density is then

1 -5
h(Z/):B (1‘1‘7;) ;

and the log-likelihood function equation given that 1 4 7% > (is

1 k ¥
((B,v) = —klog 3 — <7 + 1) > log <1 + Byz) 7

=1
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with y;, ¢ = 1,...,k the realizations of Y;. If 1 + ”y% <0, ¢(B,7) = —oco (Coles
(2001)). The log-likelihood function in the case v = 0 is equal to

k

U(B) = —klog(B8) — B~ X i

i=1
The estimated parameter B and 4 are then derived from the score equations:

0BY) _ g ana 248 _ ¢

op 0

Further details on this method can be found in Smith (1987), Coles (2001) and
Embrechts et al. (1997).

Probability weighted moments estimation

The starting point for the estimation of the GPD parameters with the PWM
method is the quantity

wr = BV (Foo(V)] = = 7= 01

with Y a random variable following the GPD distribution Hpg . and Hz,=1—H 8,y
the survival function. The parameters § and 7 are obtained via the relations:

2
6:& and VZQ—L-
wo — 2w wo — 2w

By replacing wy and wy by the empirical moment estimators we obtain the estima-
tions £ and 4 (Embrechts et al. (1997)).

1.2.3 Return level estimation

We now move to the aim of the EVT which is the return level estimation. More
precisely, we want to find the t-observation return level x; that is exceeded on average
once every t observations. Hence, x; is the solution of the equation

1

We have for v # 0 and = > u,

PX >z X >u)=1—-P(X <z|X >u)
<1+ x_u>—1/7
B

—1
P(X > 2) = &, <1+7H> N

Thus,

s
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where &, = P(X > u). Finally, the t-observation return level z; is given by

B

Ty =u+ —
g

((t6)" = 1). (1.2)

The estimated return level Z; is then obtained by replacing the parameters 5 and y

. N,

by their estimations with £, = — where N, is the number of exceedances above u
n

and n the number of observations (Coles (2001)). If v =0,

xy = u+ Blog (t&,) .

In application, we are generally interested in the T-year return level. In this case,
if we have n, observations per year the parameter ¢ in (1.2) is equal to 7" X n,,.

1.3 Point process approach

We expose in this section the behavior of extremes using a point process ap-
proach. This approach unifies the BM and threshold excesses models used to char-
acterize the behavior of extremes and deals more naturally with non stationarity in
threshold excesses due to the derived likelihood function (Coles (2001)).

1.3.1 Some basics of point process

By definition, a point process on a set A is a stochastic or random process for
the occurrence and position of point events. When A represents a period of time,
the point process is used to model the occurrence of a given event in this period. Let
N(A) denotes the set of non negative integer-valued random variables representing
the number of points in A C A. N(A) characterizes statistically a point process
whose intensity measure A is given by the expected number of points in any subset
ACA:

A(A) =E(N(A)).

Assuming the existence of the derivative function of A(A) for A = [ay, 2] X ... X
lar, 7] C R* we obtain the intensity or density function of the process

DA (A)

Alw) = Oxy...0xy

Homogeneous point process

A one-dimensional homogeneous point process on A C R with parameter A > 0
is a process that satisfies

e N(A) ~ Poisson(A(ta — t1)), for all A = [ty,2] C A,

e N(A) and N(B) are independent random variables where A and B are non-
overlapping subsets of A.
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Hence, the number of points in the interval [¢,%5] follows a Poisson distribution
whose mean is proportional to the interval length (t5—%;) and the number of points in
separate intervals are mutually independent (Coles (2001)). Consequently, the set of
points occurring at rate A in a given period of time [¢1, t5] can be statistically modeled
by a Poisson process with parameter )\, intensity measure A([t1,t2]) = A(t2 —t1) and
density function A(t) = A.

Non-homogeneous Poisson process

A non-homogeneous Poisson process is a generalized version of the homogeneous
type where the rate A(t) varies with time. Hence, the only difference with the homo-
geneous type is in the first characterization. More precisely, the non-homogeneous
Poisson process satisfies

e N(A) ~ Poisson(A(A)), for all A = [t;,ts] C A, with
Ay = [ " @)t
t1

e N(A) and N(B) are independent random variables where A and B are non-
overlapping subsets of A.

Its intensity measure and density function are A(.) and A(.) respectively.

More generally, a k-dimensional non-homogeneous Poisson process with intensity
measure \(.) on A C R* satisfies the property of independent non-overlapping ran-
dom variables N(A) and N(B) and for all A C A,

N(A) ~ Poisson(A(A)),

with
A(A) :/A/\(x)dx.

Definition 1.1. A sequence of point processes Ny, Na, ... on A converges in distri-
bution to N, i.e

N, % N,

if the joint distribution of (N, (A1), ..., Nim(Ae)) converges in distribution to (N (4,), ...

for all £ and all bounded sets Ay, ..., A; such that P{N(0A4,) =0} =1,j=1,...,¢
with A the boundary of A (Coles (2001)).

1.3.2 Poisson process and extremes

Suppose again a sequence of i.i.d. r.v. Xi,...,X,, with distribution F' and
denote by M,, = max(Xy,...,X,,). We have already seen that if there exist nor-
malizing constants a,, > 0 and b, such that

lim P (.M,n—bm < x) = G(x),

m—o0 am
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then

exp{—[1+7 (52)]77}, 14952 > 0,7 #0,
G(2) = Guoy (7) =
exp (— exp(—%)) : reR,y=0.

Nm:{< ! >,<X"_bm> ;¢:1,...,m}
m—+1 Am

be the sequence of point processes defined on R?. The component (mil) can be

interpreted as the time of occurrence defined on (0,1) and the second component
(M) represents the asymptotic stabilized behavior of extremes (Coles (2001)).

Let

am,
The asymptotic convergence of the sequence N, is given in the following fundamen-

tal theorem (Coles (2001)).

Theorem 1.3. Let X1, Xo,... be a sequence of i.i.d. random variables such that

M,, = max(Xy,...,X,,). Suppose there exist sequences of constants {a,, > 0} and
{bm} such that

M,, —b
lim P (mm < x) = G(x),
m—00 A,

with

Gla) = exp{=[1+7 (“H)))

whose lower and upper endpoints are denoted by x_ and x respectively i.e G(x_) =0
and G(zy) = 1. Let

Yo () (B i ]
m+1 Am

be the sequence of point processes defined on R?, then for uw > x_, N,, converges in
distribution on (0,1) X [u,00) to a Poisson process with intensity measure

AA) = (ts — 1) {1 oy (‘” - “)}W

on A = [ty,ta] X [z, xy) with [t1,ts] C (0,1).

Link with block maxima and threshold excesses models

Using Theorem 1.3, we can obtain the result stating that the BM follow approx-
imately a GEV distribution as it follows. Suppose the sequence X;, X,, ... of i.i.d.
r.v. such that M,, = max(Xj,...,X,,) and recall the sequence of point process

Nm:{< ! ),(Xi_bm> :izl,...,m}.
m—+1 Am
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If we consider the region A = (0,1) x (z,00) then the event {W < x} corre-

sponds to no points in the interval (x,00) and consequently in A. Hence, this event
is equivalent to the event {/N(A) = 0} and consequently

Am

P(Mm_bm < x) — P(N,,(A) = 0).
It follows from Theorem 1.3 that
P(jwma_bm < ;1:) —P(N(A) =0)
= exp{—A(4)}
—e(- 14 (8]

which means that the normalized maxima follow approximately a GEV distribution.
As for the threshold model, the result stated in Theorem 1.2 can also be derived from
Theorem 1.3. We first proceed to the factorization of A(A,) with A, = [t1, t2] X (z, 00)
such that [t1,t5] C (0, 1):

A(A,) = Ay ([tr, ta]) X Ag(z, 00),

g

where A ([t1,t2]) = (t2 — t1) and Ay(z,00) = [1 + (Z_ >}—1/7. It follows that

: r—u\]"Y
=11
e (5]

with 8 = o 4+ v(u — ). By setting y = z — u we have

X, —b X, —b i
IP’( Ly <y m>u>—1—ll+7<y>]
U, A, B

which is the result obtained in Theorem 1.2 once the constants a,, and b,, are

absorbed.

33






Permutation Bootstrap and the block maxima
method

The chapter consists of an article submitted for publication to the journal Com-
munications in Statistics - Simulation and Computation.

Abstract

We present a permutation bootstrap method for reducing the variance of estima-
tion in the so-called block maxima (BM) method in extreme value theory. In the
case of independent and identically distributed observations, it is sensible to use the
permutation bootstrap to reduce the variance of the parameter and quantile estima-
tors. The method is analyzed and we propose an implementation of the permutation
bootstrap based on a particular sampling from the data based on the BM-ranks
whose distribution is derived and easy to simulate. The performance of the method
is discussed in a numerical study on simulated and then real data.
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2.1 Introduction

Extreme value theory is widely used in many fields such as finance for the compu-
tation of value at risk (Singh et al. (2013), Kliippelberg and Zhang (2015)), hydrol-
ogy for the protection against flood (Buishand et al. (2008), Butler et al. (2007)),
meteorology for assessing extreme wind risks (Walshaw (2000), Coles and Pericchi
(2003)). A fundamental problem is the estimation of extreme quantiles, beyond
the observed data, so that empirical quantiles cannot be used. The estimation re-
lies on an extrapolation of the tail of the distribution based on a regular variation
assumption. In the so-called block maxima (BM) method, it is assumed that the
BM are well approximated by a generalized extreme value (GEV) distribution. Es-
timating the GEV parameters allows for tail extrapolation and extreme quantile
estimation. The confidence intervals associated to large quantiles are typically large
and enhancing their accuracy is an important issue.

The problem of estimator accuracy is a common issue in statistics. Trying to
deal with this problem, Efron (1979) introduced a technique called Bootstrap which
consists in resampling the original data in order to assess the variability of the esti-
mation procedures (Efron and Tibshirani (1986)). Bootstrap aggregating or bagging
is commonly used to reduce the variance of an estimator (Kitagawa and Konishi
(2010)). In extreme value theory though, bootstrap has to be applied carefully
because only the extreme observations are important, bootstrapping heavy tailed
phenomena is difficult and the bootstrap sample size must be chosen carefully (see
Resnick (2007)).

We propose here a version of the bootstrap, called permutation bootstrap, that
fits well with the BM method from univariate extreme value theory. The ultimate
goal is to reduce the variance or mean square error (MSE) of estimators of the GEV
parameters or of extreme quantiles. In Section 2.1, we introduce the framework of
extreme value theory: we expose the BM and peaks over threshold (POT) methods
as well as the maximum likelihood (ML) method for parameters and extreme quan-
tile estimation. In Section 2.2, we discuss the permutation bootstrap in a general
framework and then show that in the framework of the BM method, it is naturally
associated with the BM-ranks that will be later introduced in Definition 2.3, an-
alyzed and used to implement the permutation bootstrap. Finally in Section 2.3,
we discuss in a numerical study the performance of the method and compare the
MSE for various implementations of the permutation bootstrap. The effect of the
permutation bootstrap sample size is also discussed in order to reduce computation
time.

2.1.1 Basic notions on univariate extreme value theory

The BM and POT are fundamental methods in univariate extreme value theory.
They are used to extract an extreme sample from a series of observations. The BM
method consists in dividing the series of observations into blocks and keeping only
the largest observation within each block. The POT method uses a high threshold
and selects the observations that are above the threshold.

The BM method relies on the assumption that the maxima of independent and
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identically distributed (i.i.d.) observations is well approximated by a GEV distribu-
tion. The choice of the GEV distribution is justified by the Gnedenko-Fisher-Tippett
theorem (Gnedenko (1943); Fisher and Tippett (1928)): if X, Xs, ... is a sequence of
i.i.d. random variables (r.v.) with distribution function F'(x) = P (X < x), then the
only possible limit in distribution for the rescaled maximum X, ,, = max(Xy, .., X,,)
is a GEV distribution. More precisely, if

lim P < < a:) = lim F"(apx + b,) == G(x)

n—o0 a

exists and is non-degenerate (with a,, > 0 and b,, an existing normalizing constants),
then G’ must be of one of the following types (see Embrechts et al. (1997)):

e Gumbel: G(z) = exp(—exp(—z)) for all x € R;

e Fréchet: G(x) = { SXP(_:C_ ) ii 28 , o> 0;
(=) ifp <
e Weibull: G(z) = { TXP( (=2)%) gxx_>00 , o> 0.

From a statistical point of view, the parametrization due to Jenkinson (1969) of
the three families into a single three parameters family is fundamental. The GEV
distribution is defined as follows:

exp{—[1+7 (54)]7V7}, 147952 > 0,7 #£0,
Guoq (T) ==
exp (— exp(—%)) , re€R,v=0,

where 1 € R is the location parameter, ¢ > 0 the scale parameter and v € R the
extreme value index.

The POT method relies on the assumption that the exceedances over high thresh-
old u are well approximated by a generalized Pareto distribution (GPD). The dis-
tribution function of the conditional exceedances X — u|X > u is

Fu+y)—F(u)
1—F(u)

Fu(y) =P(X —u<ylX >u)=

Balkema and de Haan (1974) and Pickands (1975) proved that if the rescaled ex-
ceedances converge in distribution to a non-degenerate limit, then the limit is a

GPD defined by

Y

(1) iy 0
Fuos (y) = { L—oxp(~L)  ify=0

where ¢ > 0 is the scale parameter and v € R is the extreme value index.

It must be noticed here that the POT method is invariant under permutation of
the observations. If 7 is a permutation of {1,--- ,n}, the exceedances above thresh-
old w in the original sample X, ..., X, and in the permuted sample Xr(1),..., Xzn)
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are the same. On the other hand, the BM method is not invariant under permu-
tation of the observations. For instance, if the first two largest observations are in
different blocks, they are both kept, while only the largest is kept if they are in
the same block. That is why the permutation bootstrap can be useful in the BM
method.

2.1.2 Estimation of the GEV parameters

Two main methods are used for estimating the parameters of a GEV distribution:
ML and probability weighted moments (PWM) introduced in Greenwood et al.
(1979). We apply in this paper only the ML method which is presented as follows.
Assuming i.i.d. observations Y7, ...,Y,, from a GEV distribution, the log-likelihood
function is given by (see Beirlant et al. (2004))

1 m Y;_ m Y*l_ -1/
ﬁ(u,a,’y):—mloga—<7+1>Zlog<1+fy U“)_ (1+'y u) 7
i=1

i—1 o

if v # 0 and 1+7%>0. In the case v =0,

Yrﬂ) Y-

l(p,0,0) = —mlogo — > exp (—
o

i=1 =1

The ML estimator (fi,4,4) solves the score equations:

Ol(p, 0,7) 0w, 0,7) _ o anq 2UH:97)

ou do Oy =0

=0,
More computational details on the ML estimation of the GEV parameters date back
to Prescott and Walden (1980, 1983). Many studies have been made on the existence
and consistency of the estimators used in the ML method for the BM. Smith (1985)
proved the asymptotic normality of the ML estimations for v > —% and consistency
for v > —1. Moreover, Zhou (2009) proved the existence of the ML estimator for
v > —1 and Dombry and Ferreira (2017) provided asymptotic theory for the ML
estimators based on the BM method. One important advantage of the ML method
is that it can be extended to more complicated models by doing small changes in
the basic method (see chapter 6, Embrechts et al. (1997)).

2.1.3 Quantile estimation

Extreme quantile estimation is central in extreme value theory. Based on the BM
method, extreme quantiles can be estimated as follows. Given a sample X, ..., X,
of i.i.d. observations with distribution function F', one divides the sample into k
blocks of size m, n = k x m, and compute BM M, ..., M. The distribution of
the M; is approximatively GEV and its parameters pu, o,y are estimated by ML or
PWM methods. The quantile gas,, of order p of M is given by

—

qM,p — Gu,o’,’y (p) ) p E (OJ 1)
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The relation G = F™ implies that the quantile of order p of X corresponds to
the quantile of order p™ of M. Hence an estimator of ¢y, is given by the following
formula where i, o and v have to be replaced by their estimated values (see Beirlant
et al. (2004)):

p+2[(=mlogp)™ = 1] ifv#0

. 2.1
p — olog (—mlog p) ify=0 (21)

dxp = M pm = {

Recall that m is the block size in the BM method.

2.2 Permutation Bootstrap

2.2.1 Preliminaries

The permutation bootstrap is a general statistical methodology to reduce the
variance of estimators based on i.i.d. observations, or more generally on exchange-
able observations. We denote by S, the set of permutations 7 = (my,..,m,) of

{1,..,n}.

Definition 2.1. A random vector X = (Xy,...,X,) is called ezchangeable if, for
all permutations ™ € S,,, X = (X4, .., Xi,) has the same distribution as X.

Obviously a random vector X = (Xi,...,X,) with i.i.d. components is ex-
changeable. The idea of the permutation bootstrap is to exploit the invariance of
the distribution of X under permutation of its components to reduce the variance
of statistics based on X.

Definition 2.2. Let X = (Xi,..,X,) be a random vector and 6 = A(X) be a
statistic based on X. The permutation bootstrapped statistic 677 is defined by

ors = 71' S 0(X,), (2.2)

: 7T€Sn
where X = (X,,, .., X, )-

The next proposition shows the effect of the permutation bootstrap on the mean
and variance of the estimator 6.

Proposition 2.1. Assume that the random vector (X, .., X,,) is exchangeable and
that the statistic 6 = 0(X) has finite variance. Then

E(67P) = E(0) (2.3)

and

Var(07P) < Var (). (2.4)

Furthermore, equality holds in (2.4) if and only zfé s permutation invariant, i.e
0(X,)=0(X) as. foralmes,.
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Proof. Equation (2.3) is a simple consequence of the linearity of expectation and
exchangeability of X:

E(0") = 3 E(I(X))

*wESH

nl_ A A
= E(B(X)) = E()).
It follows that the variance of the permutation bootstrapped statistics is equal to

Var(§7P) = E (1 > (9<Xn) —E<9))>

Cauchy-Schwartz inequality implies

with equality if and only if (X, ) does not depend on 7 € S,,. Taking the expectation
and using the exchangeability of X, we obtain

Var(7F) < ;, S E {(é(xﬂ) - E(é)ﬂ

: 7T€Sn

_ Z:E {(é(X) — ]E(é))z} = Var(f)

with equality if and only if A(X,) = 0(X) a.s. for all 7 € S,,. O

Remark 2.1. The permutation bootstrap reduces the variance and thus the esti-
mation error while maintaining the mean constant so that it has no effect on the
bias.

Remark 2.2. In practice, it is not possible to compute 6rB exactly because the
cardinality n! of S, explodes. Instead, one uses the Monte-Carlo estimation 2 based
on B independent random permutations 7V, .., 78 with uniform distribution on

S, and defined by
. 1 & .
0F = =3 0(X,m).
Bi=

The choice of B will be discussed later in the numerical part in section 2.3 .

2.2.2 Permutation bootstrap and block maxima: a rank
method

For applying the BM method, we consider a sample X7, ..., X, of size n divided
into k blocks of size m each and consider the BM

Mj = max Xz j == 1, ,k

(j—Dym<i<jm
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We suppose that n = k x m + r, with » € {0,...,m — 1} and note that when
r > 1, the last r observations are not included in the BM. This can be done since
the observations ignored at a given permutation can be included in the BM at a
different permutation whence we will not have a loss of information. Clearly, the
order of the observations has a strong impact on the BM which are not invariant
under permutation of the observations Xy, ..., X,,.

A statistic § = é(Xl, ..., X)) built on BM, i.e. of the form § = (M, ..., M)
is generally not permutation invariant and the permutation bootstrap can be used
in order to reduce its variance. Since repeatedly permuting the random vector X,
forming blocks and computing BM is expensive from a numerical point of view, we
propose a method based on ranks and order statistics that directly selects a sample
of the order statistics with suitable rank distribution. This results in the following
definition of the BM ranks that can be used for a more efficient implementation of the
permutation bootstrap that avoids permutation and BM computation. The order
statistics associated to X,..., X, are denoted by Xy, <--- < X,,.,,. Similarly, the
order statistics for the BM M, ..., M, are My, < --- < My.p.

Definition 2.3. The BM-rank, (Ry, ..., Ry), is defined by the relations
Mk+1—j:k :XRj:na ] = 17---ak'

Note that n > Ry > ... > Ry > 1 and that Xg,., is the maximum within the &
blocks, i.e. max;<j<gm X;. In particular, if n = k£ X m, maxj<;<, X; = X,,.np, so that

Rlzn.

Example 2.1. We illustrate the definition with a simple example. Suppose n = 10,
k = m = 3 and the observations are

1.18 2.05 4.31 1.13 1.64 3.03 1.19 2.55 9.40 1.87.
We compute the ranks and the BM

2 6 9 1 4 8 3 7 10 5.
—_— —m— —
Mi=Xg:10 M2=Xs:10 M3=X10:10

It follows that the BM-ranks are R; = 10, R, = 9 and R3 = 8. For the sorted
sample

1.13 1.17 1.19 1.64 1.87 2.05 2.55 3.03 4.31 9.40,

we obtain similarly the ranks and BM

1 2 3 45 6 7 8 9 10
S —_—— —_———
Mi=X3.10 M2=Xe:10 M3z=Xo:10

and the BM-ranks are now Ry =9, Ry = 6 and R3 = 3.

Our goal is to compute the distribution of the BM-ranks and to explain how this
relates to the permutation bootstrap and the BM method.
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Definition 2.4. Let 1 < ny < ny be integers and define G(n1, ns) as the distribution
of a random variable N such that

P(N = i) = ((n)> -~ ((f)) i=0,.

In the case ny = ng, we define G(n1, ny) as the dirac mass at 0 so that P(N = 0) = 1.

..,y —Nj.

Remark 2.3. In the case 1 < ny < ng, the distribution G(ny,ny) appears naturally
in the following urn problem. Consider an urn that contains n; white balls and
no—ny black balls from which we extract balls sequentially and without replacement.
A black ball is considered as a failure and a white ball as a success. Define the random
variable N as the number of failures until the first success. For i = 0,...,ny — nq,
the event {IN > i} corresponds to the situation where the first ¢ balls are black
so that P(N > i) = ("2;”1) / ("f) The formula in the definition follows from the
relation P(N =i) =P(N > i) —P(N > i+ 1).

In the following proposition, we express the distribution of the BM-ranks (R, ..., Ry)
in terms of the distribution G(nq,ns).

Proposition 2.2. Letn=kxm+r, r € {0,m —1}. For an exchangeable random
vector X = (Xy,..,X,,), the distribution of the BM ranks (R1, .., Ry) is given by the
relations:

L(n — Ry) = Gk x m,n)
;C(Rj_l —-1- Rj|R1, ..,Rj_l) = Q((k +1 —]) X m, Rj—l - 1) , j = 2, ,l{

Proof. The relative ranks of the vector X = (Xy,...,X,) define a random permu-
tation m = (7y,...,m,) € S,. Since X is exchangeable, the distribution of the ranks
7 is uniform on S,,. One can think that the random permutation = = (my,...,m,) is
obtained by first choosing the place of the integer n randomly among n places, then
the place of the integer n — 1 randomly among n — 1 remaining places and so on.
In the context of Example 2.1, think that the relative ranks are random and that
one places the integers 10,9,8... in the ten places. The BM rank R; corresponds
to the largest relative rank in the k x m first places among n. One can see that
n — Ry corresponds to the number of places chosen in the last r places (failures)
until one of the first k& x m places is chosen (success), whence the distribution of
n — Ry is G(k x m,n) (see Remark 2.3 above). Then, for the second BM rank
R5, one proceeds with choosing a place for Ry — 1, Ry — 2,... until a new block is
met, that is one of the (k — 1) x m places within new blocks is chosen among the
Ry — 1 remaining places. We deduce that, conditionally on R;, the distribution of
Ry —1— Ry is G((k — 1) x m, Ry — 1). This reasoning is easily generalized so as
to prove that conditionally on Ri,..., R;_i, the distribution of R; 1 — 1 — R; is
G(k+1—j)xm,Rj_y —1). O

The following proposition relates the BM rank and the permutation bootstrap
in the framework of the BM method.
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Proposition 2.3. Consider a statistic § = é(Xl, ooy X)) built on BM,
0=0(M,... M,).

Assume that 0 is invariant by permutation, i.e

O(M,...,M)=0(M,,,....M,), €S

Then the permutation bootstrap estimator 6PB s equal to

oFB — 3 P(Ry=71,..., R =7%) 0 (Xprons -+, Xopom) - (2.5)

n>ry > >rp>1

Remark 2.4. Note that the sum (2.5) involves (Z) terms which is of smaller order
than n!, the number of terms in the sum (2.2). Similarly as in Remark 2.2 | we use
in practice a Monte Carlo estimation of the permutation bootstrap based on BM-
ranks. Using B independent copies of the BM-ranks denoted by (RY, ..., RY)1<p<p,
we consider

A 1 B -
B —
0" = b§::1 0 (Xpp - Xppn) -
Proof. Recall that the permutation bootstrapped statistics is defined by

A 1 A
GPB - E Z Q(Xﬂ—)

: 7T€Sn

We can interpret 075 as the expectation of § (X,) where X is fixed and 7 is a random
permutation with uniform distribution on S,,. Then the random variable X, (with
randomness on ) is exchangeable and Proposition 2.2 provides the distribution of
the BM-rank of X . Furthermore, using the facts that 6 is built on BM and that 6
is invariant by permutation, we have

O(Xn) = 0(MT, ..., MF) = 0(M7y, ..., M) = 0( X, - - Xnpn)-
We use the superscript 7 to recall that the randomness is now on 7. Finally, noting
E, the expectation with respect to 7, we get
0" = EL[0(X,)]
= E:[0(Xggm, .- Xrpa)]
= Z ]P)(Rl:Tl,...,Rk:Tk>é(Xrl;n,...,er;n)

n>r1>>rp>1

where the distribution of the BM-ranks Ry, ..., Ry is given by Proposition 2.2 . [

2.2.3 Median permutation bootstrap

The effect of permuting observations in the BM method is illustrated in Fig-
ure 2.1. For a fixed sample of n = 1000 observations following a Pareto distribution
with v = 1/2, we compute different estimators of the extreme value index and of
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an extreme quantile. The estimators are obtained by letting the block size vary
(m = 1,...,30), and for each block size by resampling the order of observations
using B = 100 random permutations. For different block sizes m, a boxplot repre-
sents the variability of the estimator with respect to the observation order. As usual
for boxplot, the box represents the first and third quartiles, the bold line within
the box represents the median and the mean of the estimations is presented by a
triangle. The figure evidences a large variability of the estimators, both with respect
to the block size and the observation order. Furthermore, we can note the presence
of outliers, that lie far away from the box. This suggests that the median can be a
better estimate than the mean, because it is more robust to outliers. Indeed, we can
see that the permutation bootstrap median is closer to the target value (horizontal
line) than the permutation bootstrap mean. In the next section, we will assess the
performance of both the permutation bootstrap mean and median. Note however,
that we have no guarantee that the median based permutation bootstrap reduces the
variance of estimation, as it is the case for the mean-based permutation bootstrap
(see Proposition 2.1).

On the other hand, the variance reduction is not the only advantage of the permuta-
tion bootstrap. Figure 2.1 suggests that some (unlikely) orderings of the observations
yield outliers for the v estimates. The permutation bootstrap provides a way to get
rid of these outliers and results in more robust estimates.

140

120

EVI

123456789 11 138 15 17 19 21 28 25 27 29 123456789 11 138 15 17 19 21 28 25 27 29

Figure 2.1 — Boxplot (with respect to the observation order) for 4 (left) and §x,
(right) in function of the block size.

2.2.4 Simulation algorithms

We provide here simple algorithms in order to obtain simulation for the distribu-
tion G(ny,ng) and the distribution of the BM-ranks (Ry, ..., Rg). The first function
called SIMULATIONG(nq,n2) is explained in the context of the urn problem (see
Remark 2.3).
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1: function SIMULATIONG (ny, ng)
ny = ne —ny (number of black balls in the urn)

2: initial state: { ny =0 (number of failures)
s=F (state is either failure F or success S)
3: while s = F' do
4: sample U ~ Unif([0, 1])
5: if U < .t (probability of drawing a black ball) then
6: ny=mnp — 1
7 ng=mnys +1
8: else
9: s=25
10: end if
11: end while
12: return ny

13: end function

To simulate a random vector of BM-ranks associated with n observations divided
into blocks of size m each, we use the following function RANK(n,m). We use a
R-like syntax for vectors.

1: function RANK(n,m)

2 set (k,r) the quotient and the remainder in the division n =m X k +r

3 set RllI]=mxk,p=m—1landg=kxm—m

4 for i=2 to k do

5: Y = SIMULATIONG(q, p + q)

6 Rli]=R[i—1]-Y,qg=kxm—ixm,p=R[i|]—1—¢q

7 end for

8 if r =0 then

9 return R

10: else

11: set I a random sample of size r from {1,...,n} (without replacement)
12: V = (1:n)[—I] ( V is the vector of numbers 1 to n without numbers in I)
13: R =VI[R]

14: end if

15: end function

2.3 Numerical analysis

2.3.1 Experimental design

We perform in this section a simulation study. We generate a sample of size
n = 1000 of r.v. Xy,.., X,, with a Pareto distribution, that is

1\ /7
F(a:)zl—() a1
X
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with v = 0.2,0.5,0.8. We then apply the BM method by considering k blocks of size
m each and extract the maximum from each block based on the BM-ranks using the
algorithms presented in Section 2.2.4. First, we estimate the GEV parameters and
the quantile gx , of order p =1 — % using the ML method since this method ensures
consistency and asymptotic normality of the estimator when v > —1 and v > —%
respectively. In a second step, we apply the permutation bootstrap with B = 100
permutations (using both method based on the mean and the median) to estimate
the parameters and the quantile. Note that the quantile can be estimated in two
ways using the Bootstrap:

I. We estimate the parameters p, o and « by the permutation bootstrap and
then replace their values directly in (2.1);

II. We calculate the quantile (2.1) for each permutation and then apply the per-
mutation bootstrap on the different estimations of the quantile.

We obtain estimates of v and ¢x, with or without bootstrap, the bootstrap can be
performed with mean or median, and in the case of quantile estimation, methods I
and IT can be used. This leads us to 3 estimators of the extreme value index v and
5 estimators of the extreme quantile gy ,. Based on N’ = 1000 repetitions of the
experiment, we compute the MSE of the different estimators when the block size
m=1,---,30 varies.

2.3.2 The performance of the permutation bootstrap

The MSE of 4 and ¢x , as a function of the block size m are presented respectively
in Figures 2.2 and 2.3 below.

— ML = \ —_— s
~-- ML Bootstap (mean) s \ — W —Mm
- ML Bootstap (mean)
ML Bootsrap (mediar)

=== ML Bootstap (mean)
ML Bootstap (median)

ML Boofstap (median)

Figure 2.2 — Mean squarred error for 4 as a function of the block size m.
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Figure 2.3 — Mean squarred error for ¢x, as a function of the block size m.

In both figures the MSE is high when m = 1, because with this block size the
bias is very high and the variance is low leading to a large MSE. The MSE decreases
strongly when m ~ 5 and then continues to fluctuate. For 4, we can observe in
Figure 2.2 a reduction of the MSE when using the permutation bootstrap. This
reduction is modest, and more effective for larger block size and larger 7. The
mean- and median-based bootstrap are essentially equivalent, the median bootstrap
being slightly better. As for §x,, we observe in Figure 2.3 that bootstrap reduces
the MSE and the best combination is often (median,I), that is median-bootstrap
performed on the GEV parameters before computing the quantile. The reduction
of the MSE becomes more remarkable as 7 increases for both estimators.

2.3.3 Discussion on the choice of B in the bootstrap

We consider the effect of the choice of B, the number of random permutation used
in the bootstrap. We propose to fix the block size (here we choose m = 5 which shows
almost the lowest MSE) and consider different values of B = 2,5, 10, 20, 50, 100, 200.
The results are shown in Figures 2.4 , 2.5 below. Here, the reduction of the MSE is
clear. We also remark that the median-bootstrap is better than the mean-bootstrap
with no preferences between method I and II for §x,. Moreover, we can see that
the MSE decreases from B = 2 to B = 20, after that the MSE is slightly reduced
or almost constant.

—M . — M
- p— H ~--- ML Boolstap (mezn) H 2 ML Bootstap (mean)
" WL Booste (meds S ML Bootstrap (medfan) s ML Bootstrap (median)

ML Bootstrap (median) S p (median) p )

S N S
0 50 100 150 0 50 100 150 0 50 100 150 200

(a) y=0.2 (b) v=10.5 (c)y=0.8

Figure 2.4 — Mean squarred error for 4 as a function of B.
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Figure 2.5 — Mean squarred error for ¢x, as a function of B.

This suggests that using small values of B can reduce the computational cost
while still providing an effective MSE reduction. In Figure 2.6 and 2.7 below, smaller
values of B are tested (B = 1,2,4,6,8,12). We observe that a choice of B = 6 is
acceptable since the MSE decreases insignificantly after that.

° °
3 |
T © — M © — M
N <=+ ML Bootstrap (mean) N ~-=- ML Bootstrap (mean) 3 ~--- ML Bootstrap (mean)
3 ML Bootstrap (median) g ML Bootstrap (median) 31 ML Bootstrap (median)
S S
9 & K
g g N
g >
§ o 5 N— R
____ N s S e
s 5 - .
. B L] S H
8 S
S °
8 8
N 3
S
§ § §
S S N
2 4 6 8 10 2 4 6 8 10 2 4 6 8 0 1

Figure 2.6 — Mean squarred error for 4 as a function of B.
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Figure 2.7 — Mean squarred error for ¢x, as a function of B.

2.4 Application

In order to apply the study on real data, we use the one of integer valued daily
maximum temperature (degrees Fahrenheit) from Fort Collins, Colorado, USA on
the period from 1900 to 1999 provided by the ext Remes package of R. As in the sim-
ulations, we divide the data into blocks of size m = 365 (one year) and get our BM-
ranks using the algorithms of Section 2.2.4. Then we estimate the extremal index ~
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and the quantile gx , of order p = 1— m><1100 (return level of 100 years) using the best

combination found in the simulation study i.e median-bootstrap and method I for
the quantile estimation with B taking values in {1,2,3,4,5,10, 50, 100, 500, 1000}.
The aim is to repeat the same procedure N’ = 100 times in order to check how the
choice of B affects the variance reduction. We present in Figure 2.8 the boxplot of
4 and §x, in function of B in order to have graphical interpretations.
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Figure 2.8 — Boxplot (with respect to the observation order) for 4 (left) and §x,
(right) in function of B.

One can first note here, that in the BM method, the order of the data influences
significantly the value of the estimator. For some specific order of the data, the
estimator can be far away from the true value. The use of the bootstrap procedure is
a solution to face this problem. We remark also how the variance of the estimations
is reduced with the increase of B for 4 and §x, especially for large values of B:
we can see through the boxplots of B = 500 and B = 1000 how the variance is
very small especially with B = 1000 where the estimations become very close to
each other. Here we can conclude that in application, one can get a very accurate
estimation if he applies the Bootstrap method with large B. On the other hand, if
it costs him long computation time, he can proceed to the use of smaller values of
B which ensure a less accurate but nevertheless a very good estimation.

2.5 Conclusion

In extreme value theory, the use of the Bootstrap technique based on ranks
and order statistics helps us save time in the algorithm and reduces the MSE of
the estimations. The median Bootstrap method seems to be better than the mean
Bootstrap. Increasing the number of resampled data B doesn’t necessarily guaran-
tee a more important reduction of the MSE. This is why detecting the optimal B
allows us to make a trade-off between the fastest algorithm and the best estimation.
Moreover, the permutation bootstrap provides a way to deal with unlucky ordering
of observations and results in more robust estimates.
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Trend detection for heteroscedastic extremes

The chapter consists of an extended version of an article submitted for publica-
tion to the journal Scandinavian Journal of Statistics.

Abstract

Extreme weather events are known to be more frequent due to global warming.
From a statistical point of view, this raises the question of trend detection in the
extremes of a series of observations. We build upon the heteroscedastic extremes
framework by Einmahl et al. (2016) where the observations are assumed independent
but not identically distributed and the variation in their tail distributions is modeled
by the so-called skedasis function. While the original paper focuses on non parametric
estimation of the skedasis function, we consider here parametric models and prove the
consistency and asymptotic normality of the parameter estimators. A parametric test
for trend detection in the case where the skedasis function is monotone is introduced.
A short simulation study shows that the parametric test can be more powerful than
the non parametric Kolmogorov-Smirnov type test, even for misspecified models. We
also discuss the choice of threshold based on Lepski’s method. The methodology
is finally illustrated on a dataset of minimal/maximal daily temperatures in Fort
Collins, Colorado, during the 20th century.
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3.1 Heteroscedastic extremes

In the framework of global warming, there are some suggestions that extreme
weather events (e.g. heat waves, flood, hurricanes) are becoming more frequent and
with larger magnitude (Tank and Kénnen (2003), Groisman et al. (2005), Zolina
et al. (2009)). This paper addresses the question of detecting a temporal trend for
such extreme events.

Classical extreme value theory is based on independent and identically dis-
tributed (i.i.d.) random variables. However, in many practical situations, the vari-
ables may deviate from this assumption by being either dependent or non identically
distributed. A nice treatment of extreme value theory for dependent observations
can be found in the monograph by Leadbetter et al. (1983). More recent contribu-
tions in the domain of dependent extremes include Hsing (1991) where tail index
estimation is considered and Drees and Rootzén (2010) where empirical limit theory
for clusters of extremes in stationary sequences is discussed.

Despite its importance in practice, theoretical results for independent but non
identically distributed extremes are quite sparse. Davison and Smith (1990) describe
models for exceedances over high thresholds where they impose a linear trend on
the shape and scale parameters of the generalized Pareto distributions (GPD). Coles
(2001) considers a log-linear trend for the scale parameter of the GPD. de Haan et al.
(2015) consider tail trend detection in a discrete time model with groups of obser-
vations at several different times. Recently, Einmahl et al. (2016) have introduced
a theoretical framework called "heteroscedastic extremes" where the distribution of
the observations evolves in continuous time in such a way that a proportional tail
condition is satisfied. They propose a non parametric estimation of the so-called
skedasis function as well as for the extreme value index and discuss their asymptotic
properties.

Since our work elaborates on this heteroscedastic extremes framework, we first
recall more precisely the model and results from Einmahl et al. (2016). We consider a
triangular array of independent observations X7, ..., X, where X" has a continuous
distribution function F,;, n > 1, 1 <17 < n. We assume all the distributions share
the same right endpoint

¥ =sup{z: F,;(z) <1} € (—o0, x]
and satisfy the proportional tail condition

1-F,;
lim 77”@)

A TR =c(i/n), uniformlyinn>11<i<n, (3.1)

where F' is a baseline continuous distribution function with right endpoint #* and
the skedasis function ¢ : [0,1] — (0,00) is a continuous function characterizing the
evolution of extremes over time. The normalization condition

/01 c(s)ds=1 (3.2)

ensures uniqueness of the skedasis function c¢. The case ¢ = 1 is called homoscedastic
extremes. To develop a theory for extremes, the baseline distribution F' is supposed
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to belong to the domain of attraction of a generalized extreme value (GEV) dis-
tribution with extreme value index 7 > 0 (only positive extreme value index are
considered in Einmahl et al. (2016), mainly for simplicity). Note that the propor-
tional tail condition (3.1) implies that all the F,,; belong to the same domain of
attraction and have the same extreme value index ~.

In this framework, Einmahl et al. (2016) propose to estimate the integrated
skedasis function C (s) = [y c(t)dt, s € [0, 1] by

R 1 [ns]
C(s)= T > Lixrsx, gn}s (3.3)

i=1
where X;.,, < --- < X, denote the order statistics of X7, ..., X]". The estimator
C uses the first k largest order statistics. As usual for the purpose of asymptotic in
extreme value theory , the sequence k = k (n) is an intermediate sequence satisfying

lim k=00 and lim k_ 0. (3.4)

n—oo n—oo n
The growth rate of k must also be balanced with the rate of convergence in (3.1) and
the oscillations of the skedasis function ¢. Assume there exists a positive decreasing
function A; such that Jim Ai(t) =0 and

1= Fui(a) 0 ( 4 (1_;(@)) asz o0 (35)

SUp X | T ) /M)

It is also required that

VEAi(n/k) — 0 (3.6)
and
lim Vk e le(u) — c(v)| = 0. (3.7)

Finally, v is estimated thanks to the Hill estimator defined by
1 k
:)\/H = % Z 10g Xn—i+1:n - log Xn—k:n‘ (38)
i=1
The asymtptotic theory for the estimators is given in the following theorem.

Theorem 3.1 (Einmahl et al. (2016)). Under conditions (3.2),(3.4),(3.5),(3.6) and
(3.7) we have

sup [V (C(s) = C(s)) = B(C(s))| — 0 as, (3.9)

0<s<1 n—00

where B is a standard Brownian bridge.
Furthermore, under some second order regular variation conditions for F, Ay satis-

fies
\/E(?H —7) — YNy a.s, (3.10)

(where Ny is a standard normal variable) and is asymptotically independent of C.
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Section 3.2 is devoted to a point process analysis of the heteroscedastic extremes
framework. We prove in Proposition 3.1 that the empirical point measure converges
to a Poisson point process. We deduce in Corollary 3.1 that the times of exceedances
and the values of exceedances are asymptotically independent with distributions re-
spectively equal to the skedasis density function and the Pareto distribution. This
shades some new light on Theorem 3.1 and explains why the estimators of the in-
tegrated skedasis function and the Hill estimator are asymptotically independent.
Section 3.4 is devoted to the study of the log-linear trend model where the ML esti-
mator of the trend parameter is shown to be consistent and asymptotically normal in
Theorem 3.2. A parametric test for trend detection is deduced and Proposition 3.4
states its consistency under a monotonicity assumption of the skedasis function.
Section 3.5 and 3.6 are dedicated respectively to the linear trend model and the
discrete log-linear trend model introduced in de Haan et al. (2015). In Section 3.7,
we propose a simulation study emphasizing two main issues: threshold selection and
test power. We introduce and illustrate Lepski’s method for threshold selection and
then compare the power of parametric and non parametric tests. We finally present
in Section 3.8 an application of the methodology to a dataset of minimal/maximal
daily temperatures in Fort Collins, Colorado, during the 20th century.

3.2 A point process approach

The connection between extremes and point process is well-known and is an
important conceptual tool in extreme value theory, see e.g. the monograph by
Resnick (1987). A standard result available for i.i.d. observations X, Xs, ... is the
following: if max;<;<,(X; — by)/a, converges to the extreme value distribution G,
with the normalizing constants a,, > 0 and b,, then the empirical point measure
> i1 E(i/n,(Xi—bn)/an) CONverges in distribution to a Poisson random measure. See
Theorem 7.1 in Coles (2001) or Proposition 3.21 in Resnick (1987) for a precise
statement.

We provide a similar result in the framework of the heteroscedastic model (3.1),
that is for independent but not identically distributed observations. For the sake
of simplicity, we focus on non-negative heavy-tailed observations. We denote by
M, = M, ([0,1] x (0, 00]) the space of point measures ™ = 3,51 €1, o) With finitely
many points in compact sets. We equip M,, with the topology of vague convergence,
that is the smallest topology that makes the applications m — [ fd7 continuous for
all compactly supported continuous function f : [0,1] x (0,00]. A random point
measure (or point process) is a measurable application from a probability space into
M,, equipped with the Borel o-algebra. Recall that M, is a Polish space (separable
completely metrizable topological space).

Proposition 3.1. Assume {X', n > 1,1 < i < n} are non-negative and sat-
isfy the proportional tail condition (3.1) with F in the domain of attraction of
the Fréchet distribution with tail index o« > 0. Consider the normalizing constant
a, = F=(1 —1/n), n > 1, with F*< the quantile function associated with F and
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define the normalized sample point measure

with € the dirac measure. Then, as n — oo, II,, converges in distribution in M, to a
Poisson random measure 11 with intensity measure c¢(s)dsaz=*"1dz on [0, 1] x (0, oo].

Proof. The proof is mostly an adaptation of the proof of Proposition 3.21 in Resnick
(1987) and relies on the convergence of Laplace functional. We need to prove that

2 o (1) P (G e )

—>// 1 - e_f(s’z)> c(s)dsax™* tdr, asn — oo,
0,1]x Ooo]

for all f:]0,1] x (0, 00] continuous with compact support. This is equivalent to the
vague convergence T, — m, where

n Xn
n(ds, dz) Z ek ( (k € dx)

n

and
m(ds,dx) = c(s)dsax™* 'dx

are the intensity measures of II,, and II respectively. For s € [0,1] and x > 0, we

have
[ns]

([0, 8] X (z,00]) = Z Fox(ayx),

k=1

where F, ;. (a,2) = 1 — E,; (a,7). Equation (3.1) implies that for all € > 0, there is
A > 0 such that

k() —e(k/n
) (k/n)

with F (y) = 1 — F (y), whence we deduce, for n large enough,

<e y>A

5~ o ) = /)P ()| < 3 | B — el fn)| (a0
fns]

< enk (apz). (3.11)

The assumption that F' belongs to the domain of attraction of the Fréchet distri-
bution implies that the sequence nF (a,x) converges to z~* and is hence bounded.

26



Since € > 0 is arbitrary, the right hand side in (3.11) is arbitrary small so that

3
L,

([0, s] X (z, 00])

Il
s
Bl
—

S
3

&
~

= X
S i
= =

c(k/n)F (a,x) + o(1)

>
Il
—_

[ns]

) x i S e(k/n) + of1). (3.12)

k=1

I
3
S
=
3
8

We have already seen nF (apx) — x~%, and the Riemann sum associated to the
function t € [0,1] — ()1, satisfies

=Y clhfn) = /O T e(t)dt + o(1). (3.13)
Equations (3.12) and (3.13) together imply
([0, 8] X (z, 00]) — /08 c(t)z=dt, asn — oo.
On the other hand,

7 ([0, s] x (x,00]) :/ c(t)dt arx* " 'dzx

[0,8] % (x,00]
:/ c(t)z™dt.
0

This proves m,([0, s] X (z,00]) = ([0, s] x (x,00]) for all s € [0,1] and = > 0. The
required vague convergence m, — 7 follows. O]

In the following, we explain how Proposition 3.1 sheds some light on Theorem 3.1,
at least on a heuristic level. We need to introduce the random variable 7" that will
play a central role in the present paper.

Definition 3.1. For 1 <[ < n, denote by 7}* the 'time’ at which we observe the [th
highest observation, that is 7} is defined by X;LTZH = Xpt1-tm-

Note that the random variables 17, ... T} represent the times of the exceedances
above threshold X, ., so that the estimator C(s) defined by (3.3) can be rewritten
as

R 1 [ns] 1 k
Cls) = 2 2 Txpsx o) = 7 22 Loy (3.14)
i=1 =1
Hence C is the empirical distribution function associated with the sample v, ... I7

of exceedance times.

Based on Proposition 3.1 and the point process approach, the next corollary
proves that the exceedance times distribution is approximately c(s)ds, providing
some intuition why Cisa good estimator of the distribution function C'. Further-
more, we also obtain the asymptotic independence of the exceedance times and
values, explaining the asymptotic independence of C and 4 in Theorem 3.1.
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Corollary 3.1. For all fired k > 1, we have the convergence in distribution of the
times and values of the exceedances above X, .-

Xn —in = X
(7}”, 7X—H l ) i> (ﬂ, XkJrl,l;k)lSlSk, as n — o9, (315)
n—k:n 1§l§k}

where )?1:1@ < -0 < Xvk:k are the order statistics of independent and identically
distributed random variables )?h . ,Yk with a-Pareto distribution, i.e. IP’()N(Z >
xr) =2z~ x> 1, and, independently, ﬁ, e ,fk are independent random variables
with density c.

Equation (3.9) in Theorem 3.1 states that the empirical process C' associated
via (3.14) with the sample 77", ..., T}’ of exceedance times has the same asymptotic
behavior as the empirical process of i.i.d. random variables with density c. Note
that k = k(n) — oo there whereas k remains fixed in Corollary 3.1.

Proof. Consider M,, the space of point measures on £ = [0,1] x (0,00]. Let 7 =
>_1<i<N E(t;,z;) be a point measure with N points, possibly N = 400, and assume
that the k£ + 1 largest values within (z;)1<;<n are reached uniquely and hence can
be reordered as z;; > --- > x;_,. We consider the mapping I’ that associates to
any such 7 the vector F(r) € E**! defined by

F(r) = (t "”) .
Ligr1 ) 1<i<k+1
For any sequence m, — 7 in M, it is easy to prove that F(m,) — F(7) because the
points of , converge to those of 7 , see Proposition 3.13 in Resnick (1987) for a
more precise statement. This proves the continuity of F' at .

The definition of F' is meant so that the left hand side of Equation (3.15) is
equal to F'(I1,,), with II,, the sample point process defined in Proposition 3.1. By the

continuous mapping theorem, the convergence of 11, —%5 I stated in Proposition 3.1
together with the fact that F' is continuous at IT almost surely imply F(II,) SN
F(II).

It remains to prove that the distribution of F'(II) is equal to the distribution of
(T1, Xk+1-1:6)1<i<k as in the right hand side of (3.15). The Poisson point measure II
with intensity c(s)dsaz=* 'dx can be represented as

=D &g ryim
i>1
where I'y < T’y < --- are the points of a homogeneous point process on (0, c0) and,
independently, T}, T3, ... are i.i.d. with distribution ¢(¢)d¢. Then,

T -1/
P = (1. () |
|y} <tk

The result follows since for the homogeneous Point process on (0, 00), the random
variables I'y /T'x11, ..., 'k /Tks1 have the same joint distribution as the order statis-
tics Upy < -++ < Upy of i.i.d. random variables with uniform distribution on [0, 1]
(see Theorem 1 in Seshadri et al. (1969)) and furthermore U~'/* is a-Pareto dis-
tributed for U uniform on [0, 1] . O
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3.3 Useful propositions

We present in this section two standard results in the theory of empirical process
that will be useful in the rest of the paper together with their proof. The first lemma
links the empirical distribution of 77',...,I}" and the empirical process C' defined

by (3.14).

Lemma 3.1. For all continuously differentiable function g :[0,1] = R, we have

L 30T =90 - [ Ctg Wy

k 1
;gg@m - ,12 (gu) -/ g'(t)dt)
= g(1) - ;1 . g ()i

]

The second lemma provides a simple expression for the variance of some integral
of the Brownian bridge.

Proposition 3.2. Let X be a [0, 1]- valued random variable with distribution func-
tion F' and B be a Brownian-Bridge on [0,1]. Then

1
Var (/ B(F(s))ds) — Var(X).
0
Proof. The Brownian bridge and hence its integral have zero mean, so that

Var (/OlB(F(s))ds) _E [(/Ole(s))dsﬂ

/{O,WE(B(F 1)B(F(s2))) ds1ds2
/[0’1]2 cov(B
Jon

(s
(F(s1)), B(F(s2)))dsidss
2 <min(F(51), F(sy)) — F(sl)F(32)>dsld32

2
=2 151<52F(81)d81d82 — (/[ F(Sl)d81> .

[0,1]2 0,1]
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We have
2 151<52F(81)d81d82 = 2/ 181<82/ 1 dF(l')dslng
[0,1]2 0

[0,1]2

= 2 /[0 1}3 1sl<821x<sldF(x)d81dS2

=2 f (], ) dsntr
— /01(1 — 2)2dF(x)

On the other hand,

/ F(s1)ds; = / /81 dF(x)ds;
[0,1] 0,11 Jo

= ] oc<s1dF( )dsl

Finally,

V([ BE@)s) = [0 apare - ([ (- nare)

_/ 22dF(z (/ xdF(x))2

= E(X?) — E(X)?
= Var(X).

3.4 Trend detection in the log-linear case

3.4.1 The log-linear trend model

We consider in this section the case of a log-linear trend model, corresponding
to a skedasis function defined on [0, 1] of the form

c(t) =co(t) =" where 6eR, (3.16)

h(0) = log (/01 eetdt) = log <696_ 1) .

The value h(f) ensures that the skedasis function has integral 1 as in (3.2). An
important feature of this model is that the density family (3.16) forms an exponential
family (Barndorff-Nielsen (1978)) making inference relatively easy.

with
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Proposition 3.3. Consider the statistical model {cy(t),0 € R} given by (3.16) and
T a random variable with density cg. We have,

fe? —e? +1
Eo(T) = 55(0) = 1 (3.17)

and
(e —1)% — 62ef

o gy 1070
Varg(T) = w(&) = .
Furthermore, the Fisher information matriz at 6 is
1(0) = Vary(T) (3.18)

and 20 (—o00,00) — (—=1,1) is a diffeomorphism (i.e. a continuously differen-

tiable bijection with continuously differentiable inverse function).

Proof. We compute with the definition (3.16),

1 1
Eo(T) = / teg(t)dt = / te? =10t
0 0
On the other hand,

fe? —e? +1
fel —0

oh Jo te™dt b oi-n(o)
O R

Similarly,
OPh(0) [y t2e%dt [y ePdt — ([, te®dt)?
002 (Ji eftdt)?
1 1 2
_ / t2€9t_h(0) . (/ te@t—h(e)) — ]Eg(Tz) o (EQ(T))Q
0 0

(66 _ 1)2 _ 9260
(fe? —0)2

= Vary(T) =

As for 1(0), we have

1(0) = Vary <810gaceg(T)> = Vary (T — %(0))

= Val"g (T) .

It can be checked directly from Equation (3.17) that % is a diffeomorphism or this
also follows from the general theory of exponential families (see Theorem 9.13 in
Barndorff-Nielsen (1978)). O

61



3.4.2 Maximum likelihood estimator

Assume the observations X7, ..., X" follow the assumptions of the heteroscedas-
tic model (3.1) with skedasis function ¢ = ¢y from the log-linear trend model (3.16).
In view of Corollary 3.1, the times of exceedances 17, ...,T}" are approximatively
independent with distribution ¢y (t)dt so that it seems sensible to use maximum like-
lihood (ML) estimation for the inference of the parameter #. Note that the model
is misspecified since 77, ..., T} are not i.i.d. with density ¢y even if Equation (3.9)
suggests that there should be asymptotically no difference .

The ML method works indeed well as proved in Theorem 3.2 below. The log-
likelihood function is

1
1
k ¢

> (0T — h(0))
with

The ML estimator of 8 is defined as

0, = argmax L (6: T, ..., T1).

0eR

It is unique and satisfies the score equation

_ oh ~
so that )
~ oh\ = -
d = (89) () (3.19)

where (gg) is the inverse function of % and is continuously differentiable according

to Proposition 3.3.

Theorem 3.2. In the log-linear trend model (3.16) and under assumptions (3.4),(3.5),(5.6)
and (3.7), the ML estimator (3.19) satisfies

0r -5 0 asn— oo (3.20)

and

A d _
VE (0 — 00) = N (0,1(60)7"), (3.21)
with 1(6) the Fisher information given by (5.18).
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Proof. We start by proving (3.20). By Lemma 3.1, we have

_ 1,
T, =1 —/0 C(s)ds.

On the other hand )
Eg, (1) =1 —/0 Co,(s)ds

with Cjy, the distribution function associated with the density cg,. We deduce

‘Tk_EQO(T ‘ = ’/1090 S dS—/IC'(S>dS

0

< / ‘090 ‘dS

-o.()

where the last estimate follows from Theorem 3.1. Hence, we deduce T, —= Eq, (T).
By Equation (3.17), Eg,(T) = 22(6) and consequently thanks to the continuity of

(%) | |
i (3) 0 (8] () o

As for the proof of (3.21), let us first demonstrate the asymptotic normality for T
From (3.9) we have

A 1
Cls) = Coy(s) + = B(Cos(5)) + —men(s),

Sl-

so that
7, :/01(1—6*(3))618
:/01(1_090( ds——/ (Coy (5))ds — \/_/ek
— By, (T f/ (Coo())ds — \/_/ek 5)ds.

Equation (3.9) implies that the error term ex(s) converges to zero uniformly for all
s € [0, 1], hence

’\/E(Tk — (1)) + /013(090<s))ds — /01 ex(s)ds 5 0,

and we conclude that

Ty = By, (T) — \/1E /01 B(Cyy(s))ds + op(1).
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The integral of the Brownian bridge is a Gaussian random variable with mean 0 and
variance Varg, (T') according to Proposition 3.2. We deduce

VE (T = Ego(T)) = N (0, Varg, (7). (3.22)

. ML,
Applying the delta-method (Theorem 3.1 in van der Vaart (1998)) for ), = (;) (Tk),
we deduce from (3.22)

Vi ((g’;) - (5) <E90<T>>) (o (8%(190))2\/%90@)
062

From Proposition 3.3,
0?h (o)
00?

so that this simplifies into

V(0 — 00) = N (0,1(65)7") -

= Vary, (T') = 1(0o)

3.4.3 Testing for a log-linear trend

For the purpose of detecting an increasing log-linear trend, in the framework of
climate change for instance, one may be interested in testing

Hy:0,<0 versus Hy: 60y > 0.
Based on the asymptotic normality of 0, stated in (3.21), it is natural to accept Hy
0
if ——F < z1_q the quantile of order 1 — « of the standard normal distribution and
o) / \/El
2

o _ 1 —
00" = T=0) — Varg_o(T) 12

Interestingly, this test is still valid in the non parametric framework where the
skedasis function ¢ is monotone. Define formally the test ¢, by

0 if O < 210,

Pk = (3.23)
1 otherwise.
Proposition 3.4. Assume the skedasis function c is monotone and consider the test
Hy : ¢ is non increasing versus Hy :c # 1 is non decreasing.
The test i defined in (3.23) satisfies
Jim P(pr =0) > 1—a if ¢ is non-increasing,

nhﬁrglo P(or =1) =1 if ¢ is non decreasing; ¢ # 1,

with « the significance level.
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Remark 3.1. [t is straightforward to modify the test above to consider bilateral al-
ternatives

Hy:00=0 versus Hy:0y#0

and, in the non parametric case,

Hy:c=1 wersus Hy:c# 1 monotone

The proof of Proposition 3.4 relies on the following lemma.
Lemma 3.2. If ¢ is a monotone density function on [0, 1], then
i) ¢ =1 if and only if [, sc(s)ds = z,

i) c is non decreasing if and only if [} sc(s)ds > 2,

iii) ¢ is non increasing if and only if [y sc(s)ds < I

Proof. We start by proving the direct implication in 7). Suppose that ¢ is a non
decreasing density function. Then, the cumulative distribution function C(s) =
o c(t)dt is convex so that the conditions C'(0) = 0 and C(1) = 1 imply C(s) < s for
all s € [0,1]. We deduce [; C(s)ds < 1 and, with an integration by part,

/01 sc(s)ds =1 — /01 C(s)ds > ;

This proves the direct implication in 7). The direct implication in #i7) is proved in
a similar way. Considering the contrapositive of these direct implications, we obtain
the indirect implication in ¢7) and i) (note that since ¢ is monotone, the negation
of ¢ non increasing is ¢ non-decreasing and non constant). Finally, 7) is deduced
from 4i) and #i7) together since ¢ = 1 is the only density function which is at the
same time non increasing and non decreasing. O

Proof of proposition 3.4. From Lemma 3.2, ¢ is non-decreasing non constant if and
only if [ sc(s)ds > 1/2 and in this case T}, LN E(T) = [ sc(s)ds > 1/2, so that

iy — (Z@_l (T) - (gg) &) > (ZZ) h (;) 0

We deduce that in this case, P(¢p = 1) — 1. In a similar way we prove that for ¢ non-
increasing non constant P(¢ = 0) — 1. The last case is ¢ = 1 that corresponds to
the log-linear trend model with # = 0, whence Theorem 3.21 provides the asymptotic
normality of 0, and the test ¢y has been built so that P(¢r = 0) — 1 — « in this
case. O
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3.5 Trend detection in the linear trend model

3.5.1 The linear trend model

Considering a linear trend model is natural since this type of models is simple
and encountered in many situations. The linear skedasis function is defined as

cp(t) =02t —1)+1 with —1 <6 <1, (3.24)
so the corresponding distribution function is
Co(t) = 0t* + (1 — O)t. (3.25)

The condition —1 < 6 < 1 follows from the fact that cy must remain positive.
We obtain similar results as for the log-linear model and consider consistency and
asymptotic normality of the moment and ML estimators. Nonetheless, the analysis
of the ML estimator is more involved since there is no simple closed formula.

Proposition 3.5. Consider the statistical model {cy(t),0 € (—1,1)} defined in
(3.24) and T a random variable with density cy. We have,

0+3
Eo(T) = Jg (3.26)
1 6
Varg(T) = — — —
an(T) = 15~ 35
and -109) _ g
t - —
(o) 10)=0 4y
1(0) = (3.27)
1
Proof. The expectation and variance are computed readily:
1 1
Eo(T) = / teg(t)dt = / (206> + (1 = O)t) dt = 0+3
0 0
and
Lo 2 Lo 0+3)\°
Varg(T):/ 12¢(t)dt — (Eq(T)) :/ 2162t — 1) + 1)t — ( ——
0 0
_1_ @
1236

The information matrix is given by
dlog(ce(T)) 2T — 1 L (2t —1)?
1(0) =V ——= | =V —_— :/ 1+6(2t—1))dt.
(6) ar@( a0 W\ T ygr—1)) " (te@i-1ye LT D)
Thanks to the change of variable u = 1 4 0(2t — 1), we obtain
(tanh)~(0) — 0
03

1(0) = . if0 £0.

If & = 0 then,
1 1
1(0) :/ (2t — 1)%dt = -.
0 3
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3.5.2 Moment estimator of the linear trend parameter

The simplest estimation method is the method of moments which consists in
equating the empirical mean of a sample to the theoretical mean. From Equation
(3.26), 6y = 6Eqg,(T) + 3, whence the moment estimator 0, of f, can be expressed
explicitly as

0, = 6T, — 3. (3.28)

Proposition 3.6. Under assumptions (3.4),(3.5),(3.6) and (3.7) in the linear trend
model (3.24), the moment estimator (3.28) satisfies

O L 6y asn — oo (3.29)

and

VEO — 00) = N(0,3 - 6°).
Proof. The proof of (3.29) is straightforward. Since T} — Eq, (T) then

Or = 6T} — 3 -5 6Eq, (T) — 3 = 6.

0 ~ _
From (3.26) and (3.28) we have that Eg,(T) = — ; 5 and ) = 6T, — 3. Thanks to

(3.22) we obtain,

VE(Ox — 00) = 6VE(Ty — Ey,(T)) = N(0,36 Varg,(T)) = N(0,3 — 6°).

[]

3.5.3 Maximum likelihood estimator of the linear trend pa-
rameter

For the same reasons presented in the log-linear trend model for the use of the
ML estimation, it also makes sense to estimate the parameter 6 using this method in
the linear trend model. The log-likelihood function of  with observations 77", ..., T}
having ¢y as density function is given by:

1k
Le;1yv,....10) = Z D log (217 — 1) +1).
i=1

This defines a strictly concave function on the domain

1 1
(2min(Ti”) — 1" 2max T* — 1) '

Assuming min(7}") < 1 < max(77"), the domain contains (—1,1) and the derivative
%’; is a decreasing diffeomorphism from the domain onto (—oo0,00). Hence, there
exists a unique ML estimator 0, such that

889[, (O 7, ... T) = 0.
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Denoting by ls(t) = 2 log(cs(t)) the score function, this writes

> 1 (T = 0. (3.30)

i=1

| =

Theorem 3.3. In the linear trend model (3.24), under conditions (3.4),(3.5),(3.6)
and (3.7) the ML estimator 0y satisfying 3.30 is consistent

ék LN Oy asn — oo
and asymptotically normal
" 1
k (0, — 0y) —%
\/_( k 0) N( (90))
where 1(6y) is the Fisher information defined in (3.27) .

Proof. We start by proving the consistency. For this purpose we consider the func-
tion
0

0 — g LT T]).

For ¢ > 0 such that () —e,6y +¢) C (—1,1), an integration by part (Lemma 3.1)
yields

0 n LA
%L(HO e 17, .. Z loge(T}") = lgye(1) — /0 C(t) /Hois(t)dt'

Then, Equation (3.9) together with another integration by parts yield

)
LB £ ST ) 5 () /090 foae (£)t = By [lgy ()] (3.31)

The function § — Ey, [lg(T)] is strictly decreasing and vanishes at § = 6, so that
Ego [ZQO_E(t)] >0 and EQO [l90+5(t)] < 0.
Using the convergence (3.31), we deduce that for 6 > 0, there exists ko such that for

allk > ko, P (& L(0p — &, 17", ..., Tf") > 0) > 1= and P (5 L(0g + &, T7,..., T}) < 0) >
1 — 6. Then, for k > kg, the event

a n 8 mn mn
{aeL(HO—a,Tl,...,Tk)>O>aeL(é’o—i-e Tl,...,Tk)}

has probability at least 1 — 24, and 6y, € (6 — &, 0y + ¢) on this event (recall that oL
is a decreasing diffeomorphism). We deduce

PO € (6p —,00+¢)) > 1 — 26,
and the consistency 0, — Bo.
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We next consider the asymptotic normality of 0. The starting point is the
relations

L Oly, 1
2 (4)Cl, (¢)dt = 32
|| G OCa @ = - (3.82)
J, 5 (00w = 7 (3.33)
Equation (3.32) is obtained via the score equation
oy (dCh (¢ ' () vt = [ 2% i = 2 [ ey 0
) m®dCo(t) = [ 22 Sen e = [ e = 5 [ eottyit] =

thanks to an integration by part

/0 1 8{;{;@ (£)Caq (£)dlt = [l (1) Ci (£)]5 - /O1 Lo (1) (1)ctt = Ly (1)-

Equation (3.33) follows from (3.30)
1 . 1 A
§ 2T = |1, (5)dC(s)ds = 0

and an integration by parts. A
Multiplying Equation (3.33) by 1+ 6, and Equation (3.32) by 1+ 6y and taking
the difference of the two, we obtain

/01 ((1 +6)) aalik t)C(t)dt — (1 + 6p) 681? (t)Ca, (t))dt =0.

Expliciting the derivative %f, we obtain

1 1+ 6, A 1+ 6, -
l ((1 a0 T T e - (t)) dt=0. (3.34)

Using the consistency 0, — 6o, it is natural to introduce the Taylor expansion

1 +§k
(14 6,(2t —1))2
1+ 0 1—(6h+2)(2t —1)

:(1 + 80(2t _ 1))2 + (1 T 90<2t - 1))3 (ék - 90) + (ék - 90)€t<ék — 90)

where £;,(h) — 0 as h — 0. On the other hand, Equation (3.9) provides the asymp-

totic expansion

N o i Ek(t)
C<t) - 090 (t) + \/EB(CQO (t)) + \/E

with €x(t) — 0 as k — oo uniformly in ¢. Plugging these two asymptotic expansions
into Equation (3.34), the main term cancels out and it remains, after simplification,

(A + R)VE(By — 0) + Ay + Ry + R = 0 (3.35)
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with

1= (B +2)(2t— 1)
A= /0 (1+6p(2t —1))3 Coo (1),

1 (14 6y)
A= /0 (% o2t — 1)y 2 o0l

and

Ry — /01 e (B — 6) {Cgo(t) + B“fj%(t)) o }dt,

R = (-0 [+ D [Bcn o) + o)

o 1+ 6,
e = /0 (1+ 6o(2t — 1))26’“(t>dt‘

We will prove below that the remainder terms R;, ¢+ = 1,2, 3, are asymptotically
negligible, that is R; = op(1) as k — oo. We first proceed with the analysis of the
main terms Aj, As in (3.35). A direct computation shows that

(L4 60) (tank) "' (B0) = 60) 0y

20,3
A — 0 _ 0E00) ),
1 .
6 lf 90 = 0

On the other hand, since B(Cy,(s)) is a standard Brownian bridge , the stochastic
term A, is a centered Gaussian variable with variance

</[0 (1 +(9102r250_) 1))2B(Ceo(t))dt>

-k [/ /0 12 (14 Hi —;tfoz 1))? B(Ceo (t1)) (1+ ((gi(;gfoz 1))23(090 (t2))dtidty

Var(As) =E

B //[0 112 (1 + 6o(2t1 —(11);(0101 fo(2t, — 1))200"(3(090(’51))7 B(Cy(t2)))dt1dty
B //[o 112 (14 6o(2ty —(1))+(010)+ 0o (2t — 1))2090 (t1)(1 = Coy(t2)) L1, <rp dlrdty
" / /[o 12 (1+ 692t —(11))+ (910)j 502ty — 1) o (12) 1 = Coa (b)) Luirdidty
//o 2 (14 0p(2t; — <1))Jr(910)+ B2ty — 1) 2" (1) (1 — Coy (t2)) Lty <o dt1dty
12?)w )1 (00) — B0) it B 0
112 if 6p=0
(1 +490) 1(60).
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Using this, Equation (3.35) writes
(A1 + 0p(1)VE (0 — 60) + Az + 0p(1) = 0

so that

\/E(ék — 90) = —m = —jj + Op(l)

yielding the announced asymptotic normality

A 1
k(0 —60) < N (0, ——— .
=) £ 075
We finally prove that the remainder terms R;, i = 1,2, 3, are negligible. For the
first term R;, observe that 0y — 6y = op(1) so that €,(0; — 6y) = op(1) uniformly in
t € [0,1]. On the other hand,

B(Cu(t) | lt) _
VE VR

uniformly in ¢ € [0,1]. We deduce R; = op(1). Similarly, the term R, appears as the
product of 6, — 0y = op(1) and an integral term which is Op(1), whence Ry = op(1).
For the remainder term Rj, we observe that e4(f) = op(1) uniformly in ¢ € [0, 1]
and we deduce Rz = op(1). O

Co, (t) +

3.5.4 Comparison of the two estimators

We compare the asymptotic variance of the moment and ML estimators. Recall
the asymptotic normality results for the moment estimator

A d
\/E(Qk — Qo) 7H—O>O N(O, 3 — 002)
and for the ML estimator

A d 0o’
\/E@k - 90) = <0’ (tanh)~!(6o) — 90) '

ML theory suggests that the ML estimator is asymptotically efficient and so the
asymptotic variance of the ML estimator should be always lower. Denoting the
asymptotic variances by

09>

— _ 2 -
Vir(6o) =3 — 6" and  Vasr(o) (tanh)~—1(6y) — 6y’

we plot in Figure 3.1 the graphs of V), and V), as functions of 6y € (—1,1). Indeed,
we can check that the moment estimator has always higher asymptotic variance than
the ML estimator. The variance of the two estimators are equal when 6y = 0 and the
relative efficiency of the MLE over the moment estimators increases as |0y| increases.
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Figure 3.1 — Asymptotic variance of the moment and ML estimators.

3.6 Trend detection in the discrete log-linear trend
model

The aim of this section is to use the present methodology to study the discrete
log-linear model introduced by de Haan et al. (2015). This model corresponds to
the situation when observations arise at different times ¢; < ... < tg, with np;
observations at time ¢; € [0,1], i =1,..., K. We assume p; € (0,1) and 5, p; = 1
so that n is the total number of observations. The distribution of observations is
assumed to evolve over time according to a discrete log-linear skedasis function. As
we will see, we can exploit in this case the exponential family structure of the limiting
model and obtain a simple and more accurate estimator of the trend parameter.

3.6.1 The discrete log-linear trend model

The discrete log-linear model with parameter § € R, times t; < --- < tx and
proportions pi,...,px > 0 (such that % p; = 1) corresponds to the piecewise
constant skedasis function

€9t1—h(9) if 0<t< p1,

co(t) = ¢ €O it py <t <pi+po, (3.36)

MO i g pg g <t <1

with
K
h(0) =log > pie’.
=1
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The definition of h ensures that

1 K
/ co(t)dt = Zpieeti’h(e) =1.
0 i=1
We introduce the statistic S(t)
tl if 0 S t S P,

St)y={ t2 if p1 <t <pi+ps,

tg if pr+...+pxgg <t <1

Note that S(t) is the sufficient statistic of the underlying exponential model, that is
the skedasis function can be rewritten as

Ce(t) — 695(t)—h(9).

Proposition 3.7. Consider the statistical model {cg(t),0 € R} defined in (3.56)
and T a random variable with density co. We have

on Tt

Eo(S(T)) = 55(0) = :;79 (3.37)
bt

2 <§3 pee“‘) <§3 ptz@‘”l’) - (fﬁ p't-e"“>2
a h i= K3 = 1% = 17
Vary(S(T)) = 575 (0) = ~— = L 33)
<Z pi60t1>
=1
1(9) = Vary(S(T)) (3.39)

h
and the function 29 : (—00,00) — (—=1,1) is a diffeomorphism.
Proof. We start first by proving (3.37).

Eo(S(T) = [ s(t)eolt)dt

0
D1 €0t1 P1+...+PK eetK

— " dt+...+/ te e dt

0 a P1t+...+PK -1 a

K ot;
B i;pitie oh

K
> piedti
i=1
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As for the proof of (3.38) we have,

Var(S(1)) = | L S(1) 2 (t)dt — By(S(T))?

6ty p1+...+PK Otk
2¢ o+ 26 C dt —Ey(S(T))?
p1+-.-+PK -1

K K 2

> pit2efti > pitielt 2
— =1 ! o =1 — a h(e)

X o0t K o0t; 892

> pie > i€

i=1 i=1
Equation (3.39) is finally proved as

1(6) = Varg (W) = Vary (sm - ‘;g) — Vary(S(T)).

3.6.2 Maximum likelihood estimation

We estimate in this section the parameter of interest 6 using the ML method.
The method gives an estimator with good asymptotic properties. The log-likelihood
function of § with observations 17", ..., T} is defined as

L(o;T), ..., T} log(Hce )
= 0SS, — h(9)

with Sy the sufficient statistic defined by

1 k
Sy = EZS(T;I)
=1

The ML estimator 6 satisfies the score equation

oL

ae(ﬁk,Tf,...,Tg) =0
which is equivalent to
oh  » -
We deduce .
~ oh\ = /=
0y, = (ae) (Sk)- (3.40)

Theorem 3.4. In the discrete log-linear trend model (3.36) and under conditions
(3.4),(3.5),(3.6) and (3.7), the ML estimator (3.40) satisfies

V(b= ) N (070

where 1(0) is the Fisher information defined in (3.59).
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Proof. The proof relies on the asymptotic normality of the sufficient statistic S
together with the delta-method. More precisely, we will prove below that

VE (S = By, (S(T)) =5 N (0, Vary, (S(T))).- (3.41)

Then the delta-method entails

Vi ((gi))_ (S0 - (g:))_ (EG(S(T))) N (o, MWQO(S(T») .

80>

Thanks to Equations (3.37), (3.38), (3.39) and (3.40), this is equivalent to the an-
nounced result

Vi (8= ) 2 8 (0.7 ).

We now focus on the proof of (3.41). Since S(t) is piecewise constant, the
sufficient statistic S, can be written as

Il
St
/N

»
S
|
o
=
(=)
N
+
_|_
~
=
/N
»
S
+
+
s
<
|
o

(pr+... +pK—1))

with =0, ¢ =p1+---+pi,i=1,..., K.
Introducing the asymptotic expansion of C, we get

5= 30 (Cla) — Clan) + 2 (BIC) ~ BC(-) + o1/ VE)).
whence we obtain
51 = 30(Cla) = Clan) + et (BIC()) — BC(u1) + or(1/ VP
= By, (S(T)) + 1k f:t (B(C(a) = B(C(g:-1))) + 0p(1/VE).
It follows
VE (S — B, (S(T)) = it (B(C(a:)) = B(C(gi1))) + op(1).

In order to prove (3.41), it remains to show that

N (0, Vary, (S(T))) .

St
oun
S
~—
Q
—
=
~
S~—
S~—
|
S
—
Q
~—
R
L
N~—r
N~—
~—
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Since the left hand side is a centered Gaussian variable, it is enough to identify the
variance. Using the identities

Z:E(B(C(Qi — B(C(qi-1 ) Z: (ti = tiy1) B(C(q))

and
K— 1

—tiv1) Lr<y, + tk,
=1

we have to prove

Vary, [i (ti — tit1) B(C(Qi))] = Vary, [i (ti — tiy1) 1T<Qi] -

=0 =1

This follows from the bilinearity of the covariance and from the equality

Covg, [B(C(q:)), B(C(q;))] = Cay(qi) A Coy(5) — Coy (i) Cay ()
= COV@O [1T§qw 1T§jS|

forall1 <4, < K —1. O]

3.6.3 Variance comparison between the MLE and the esti-
mator by de Haan et al.

The discrete log-linear trend model was introduced by de Haan et al. (2015).
The authors proposed three different estimators of the trend parameter 6y and it was
found that their second estimator GA,?) was superior. Here we propose a comparison
of the asymptotic variances of HA,(f) and of our maximum likelihood estimator 67, Tt
is to be noted that the two estimators differ in the selection of the top order statistics
from the whole sample. In de Haan et al. (2015), the largest &’ observations at each
time t1,...,tx are selected so that the effective sample size is k = £’ x K. Here
we use the k largest observations of the whole sample, without stratification at the
different times.

In the case p; = -+ = pg, it is shown in de Haan et al. (2015) that 0122) is
asymptotically normal with limit variance

2
K 41 (E 1 —ePrh — Gyt Ko
( K <Z v 2

2
tﬁ)
1

K 2 K 1 _ g—foti 2
+ (Z tieao’m) + (72 + 2) (Z tiry> (3.42)
=1

=1

M=

i=1

which we compare with the asymptotic variance of OA% L given by
K 2
<Z Pie%ti>
= . (3.43)

K K K 2
>o et | [ X pitZeloti | — (3 pt;efots
=1 =1 =1
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In Figure 3.2 , we plot on the same graph the quantities (3.42) and (3.43). Following
de Haan et al. (2015), the selected parameters are K = 17, v = 1/2, t; = i/K
and p; = 1/K, i =1,..., K. We observe that the asymptotic variance of QA,]CWL is
symmetric and always lower than the one of él(f) .

— — ML Estimator

—— Dehaan Estimator
= = ML Estimator

wml
/
AN

T T T T T T T T T T
-1.0 0.5 0.0 0.5 1.0 -1.0 0.5 0.0 0.5 1.0

Figure 3.2 — Asymptotic variance comparison between QA,(f) and éﬁ” L (left) and asymp-
totic variance of ML (right) in the discrete log-linear model with K = 17, v = %

29
tk:%,pk:%,kzl,...,[(.

3.7 Simulation study

We propose simulation studies to evaluate the performances of the estimator
of the trend parameter and extreme value index in the log-linear and linear trend
models (3.16) and (3.24) respectively. Two different questions are investigated in
two different simulation studies:

i) The issue of the threshold selection is an important and recurring issue in
extreme value theory. The estimators of the trend parameter and the extreme
value index are based on the top k order statistics of the sample and the asymp-
totic properties are proved for k = k(n) an intermediate sequence satisfying
(3.4) and (3.6). However in practice, the choice of k£ has an important impact
of a finite sample estimator: selecting a larger number k of top order statistics
leads to smaller variance since the estimator uses more observations, but this
also increases the bias since the extreme value asymptotic holds only in the
tail. We propose here to base the choice of k£ on Lepski’s method that has
been justified theoretically for the Hill estimator by Boucheron and Thomas
(2015).
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ii) We investigate the finite sample properties of the trend detection test proposed
in Section 3.4.3 and compare its power with the power of nonparametric tests
of Kolmogorov-Smirnov type proposed by Einmahl et al. (2016). We show that
even if we deviate from the log-linear model, the parametric test advocated in
Section 3.4.3 can exhibit a better power.

We now describe the data generating process used in our simulation study: let
Ui, i > 1, be a sequence of i.i.d. random variables with uniform distribution on [0, 1]
and define

c(L

X = (Un)> (- p) e, (3.44)

where o > 0 is the tail index, ¢ is the skedasis function, p € (0,1) and ¢; is an i.i.d.
noise. The first term in (3.44) has a Pareto distribution with tail index o > 0 and
scale parameter c(i/n)"/®. Provided the noise distribution ¢ has a tail lighter than
a, that is lim, ,,, x*P(¢ > x) = 0, then the extremes of X are given by the first
Pareto term and the assumption (3.1) of the heteroscedastic model is satisfied with
reference distribution F' equal to the standard Pareto distribution (see Lemma 3.3
below). The term (1 — p)~'/®¢; appears as a nuisance term that does not affect the
tail asymptotics but that will come into play in finite sample study. The parameter
p controls the strength of the nuisance: the larger the value of p, the larger the
perturbation. The order of magnitude of the nuisance term (1 — p)~%/%¢; is the
p-th quantile of F' and for this reason, we expect that a sensible choice for k is
k = (1 — p)n. Heuristically, only the lower p-th fraction of the sample is affected by
the nuisance term. The results of the simulation study are quite robust with respect
to the distribution of € and for simplicity, we use here the uniform distribution.

Lemma 3.3 (Embrechts et al. (1979), Proposition 1). If X and Y are independent
and such that

P(Y
P(X > x) = $_af(x) and lim @ —

=00 P(X > o

~—

for some a > 0 and slowly varying function ¢, then

PIX+Y >z) ~ PX> ).

3.7.1 Lepski’s method for the choice of k

Recently, Boucheron and Thomas (2015) advocated the use of Lepski’s method
for threshold selection in extreme value theory and provided theoretical guarantees
for the Hill estimator of the extreme value index. The method works as follows: for
each value of k, the Hill estimator 4 is computed as well as the confidence interval

4% = 4 +1/2.11og log k;% (3.45)

where 6., = 4, is an estimator of the asymptotic variance (recall that VE®Fe—7) 7&2
N (0,~4%)) and y/2.1Toglogk is a non-standard penalty term justified theoretically

78



by Lepski’s method. The confidence intervals (3.45) shrink when £ increases and
Lepski’s method recommends to select k as the largest value such that 44 belongs to
all the previous confidence intervals (4, ,4;"), I = 1,..., k. More formally, we define

= <n:A4 ~,minvy; ] p .
k rnaX{k < n A € [max, min g ]}
In our case, we estimate simultaneously the trend parameter 6 of the skedasis
function in the log-linear model (3.16) or the linear model (3.24) and the extreme
value index, so we define furthermore the confidence intervals for 8 by

B £ /2.1 log(log(k))j%, (3.46)

where 67 is a consistent estimator of the asymptotic variance of 0, obtained by

plugging ), in the formula for the asymptotic variance o2(6) of 8),. We propose to
select the threshold &* = min(k], k3) with

k} = max{k <n:0, e [max&l,minefr]},
I<k 1<k

ky = max{k <n:jy € [r?gg(%_,r%igl'yﬂ}.

Our simulation study is run with n = 1000 observations of the data generating
process (3.44) with a = 1/2 and skedasis function ¢ = ¢p, either from the log-
linear model (3.16) or from the linear model (3.24) with 6y = 1/2 in both cases.
The value of the nuisance parameter p is set to p = 0.6 (small noise), p = 0.75
(intermediate noise) or p = 0.9 (strong noise). Lepski’s method is used to select an
adequate threshold & and the results are plotted in Figure 3.3 (log-linear model),
Figure 3.4 (linear model with moment estimator) and Figure 3.5 (linear model with
ML estimator). Each pair of plots represents as a function of k the estimated value of
0 (left) or v (right) together with the corresponding confidence interval from Lepski’s
method. The vertical line represents the value of k selected by Lepski’s method
while the horizontal line corresponds to the theoretical value of the parameter. The
main common feature for these different plots is that for higher values of p, that is
for higher levels of tail perturbation, the selected threshold gets lower. This is in
agreement with the intuition that a nicer tail behavior should correspond to a larger
number of selected extreme observations.
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Figure 3.3 — Lepski’s method for the selection of k, log-linear model.
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Figure 3.4 — Lepski’s method for the selection of k, linear model with moment
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Figure 3.5 — Lepski’s method for the selection of k, linear model with ML estimator.
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In order to study further the performance of Lepski’s method, we conduct a
simulation study that compares the distribution of the selected threshold £ and
the estimator mean square error (MSE). We expect that the selected threshold
distribution concentrates in a neighborhood where the MSE is closed to its minimum.

The simulation study consists in N = 1000 repetitions of the procedure leading to
Figures 3.3, 3.4 and 3.5. Based on these /N simulations, we assess the estimator bias,
variance and mean square error as well as the distribution of the selected threshold
k. The plots of the MSE for 6 as well as the histogram of the chosen values of
k using the Lepski’s method for the log-linear, linear (ML) and linear (moments)
models are presented in Figures 3.6, 3.7 and 3.8 respectively. The plots of the MSE
for 4 as well as the histogram of k£ using the Lepski’s method for the log-linear and
linear models are presented in Figures 3.9 and 3.10 respectively.

The plots for the MSE are quite standard: the variance dominates for small £ and
the bias for large k; the MSE reaches a minimum for a suitable bias/variance trade
off. Interestingly, the value of k£ that minimizes the MSE for the trend parameter
depends quite strongly on the parameter p measuring the noise in the tail (vertical
line in the left plots from Figures 3.6, 3.7, 3.8), while it is much more robust for the
Hill estimator (vertical line in the left plots from Figures 3.9, 3.10).

The histograms corresponding to the distribution of the selected threshold &
show a strong bi-modality. A first mode corresponds to small values of k, indicating
that quite often Lepski’s method will return a too low threshold. Interestingly, the
second mode appears to be quite close to the MSE minimizer, with a tendency to
slightly overestimating it. In any case, the distribution of k is quite spread out and
not really concentrated near the MSE minimizer.
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Figure 3.6 — MSE and histogram of k for 6 in the log-linear model.
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3.7.2 Power of tests

A natural question that can be asked is what is the benefit of considering para-
metric models in heteroscedastic extremes while a non parametric study has been
proposed by Einmahl et al. (2016). One reason is that parametric tests are generally
more powerful than non parametric tests when the model is well specified. In the
framework of trend detection in extremes, we have seen in Proposition 3.4 that the
parametric test is justified even for misspecified skedasis function, under the mere
monotonicity assumption.

We first perform a short simulation study to assess the power of the para-
metric test Ty: Hy : 6 = 0 versus Hy; : 6 # 0 in the log-linear model with
6o = (0,0.1,0.3,0.5). For different sample sizes n = (500, 1000, 5000, 10000), we
consider n observations from the data generating process with o = % and p = 0.75.
The probability of acceptance of the parametric test from Proposition 3.4 is as-
sessed thanks to NV = 1000 independent repetitions of the procedure. The number
of selected order statistics k is 10%, 5% or 1% of the sample size. The results are
summarized in Table 3.1. For 6, = 0, the probability of acceptance fluctuates at
about 95% . As expected, the acceptance probability decreases as 6 increases, that
is in the presence of a stronger trend. Note that the power of the test depends
mostly on k, the number of selected extreme observations, more than on n, the total
sample size.

p=01]0=0.1]6,=03|0,=0.5
k=50 | 0971 0.957 0.914 0.823
n = 500 k=25 | 0.948 0.950 0.906 0.874
k=5 0.898 0.906 0.905 0.894
k=100 | 0.961 0.944 0.873 0.679
n = 1000 k=50 | 0.947 0.952 0.912 0.824
k=10 | 0.941 0.940 0.924 0.911
k=500 | 0.968 0.923 0.521 0.087
n = 5000 k=250 | 0.972 0.920 0.747 0.351
k=50 | 0.946 0.940 0.899 0.822
kE =1000 | 0.975 0.850 0.216 0.002
n = 10000 | £ =500 | 0.952 0.899 0.500 0.097
k=100 | 0.936 0.929 0.866 0.699

Table 3.1 — Estimated acceptance probabilities for the parametric test for trend
detection in the case of log-linear skedasis function.

In a second simulation study, we compare the parametric test 7} with the non
parametric Kolmogorov-Smirnov test T, proposed by Einmahl et al. (2016) whose
statistical significance level is 5%. For the purpose of a fair comparison, we do not
use the log-linear trend model, but rather the skedasis function

c(s)=1—4dcos(ms), s€l0,1],
where § = (0,0.2,0.4,0.6). Note that this skedasis function is non increasing with

0 = 0 corresponding to the homoscedastic case. We use a sample of size n = 1000
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from the data generating process (3.44) with a = 0.5 and p = 0.75. The results are
summarized in Table 3.2.

k=100 | k=200 | k=300
5—=0 Ty | 0.963 0.975 0.982
T5 | 0.972 0.988 0.988
5—09 Ty | 0.697 0.479 0.285
To | 0.755 0.601 0.428
5—04 Ty | 0.159 0.005 0.000
T5 | 0.238 0.017 0.000
5=06 Ty | 0.004 0.000 0.000
T, | 0.014 0.000 0.000

Table 3.2 — Estimated acceptance probabilities for the parametric test 77 and non
parametric test 15 for trend detection. The sample is of size n = 1000 with skedasis
function ¢(s) = 1 — § cos(ms).

We remark that when § = 0 the probability of accepting Hy is larger than 95%,
so that the tests are slightly conservative. In the presence of a trend in extremes
(6 # 0), we see that the parametric test 77 has always a lower acceptance probability
than the Kolmogorov-Smirnov test 75, indicating a higher power for trend detection
in extremes. Clearly, the power is better for larger values of k, i.e. a larger effective
sample, and higher values of §, i.e. a stronger trend. We can conclude that the
probability that the parametric tests correctly reject the null hypothesis Hy when
the alternative hypothesis H; is true is higher than the one for non parametric
tests. This is why we say that the parametric test T} is more powerful than the non
parametric test T and it is important to use it in practice.

3.8 Application

We want now to apply our results on maximum and minimum daily temperatures
(measured in degrees Fahrenheit) in Fort Collins, Colorado, USA from 1900 to
1999. The data is freely available in the R package extRemes which provides
in addition the daily accumulated precipitation, snow amount and cover amount.
The total sample size of our data, the maximum and minimum daily temperatures,
is n = 36524. The aim is to test the presence of a trend in extremes for these
two variables that could be associated with a global warming effect during the 20th
century. Due to possible non positive extreme value index, we do not use here
the Hill estimator but rather the Dekkers-Einmahl-deHaan estimator (de Haan and
Ferreira (2006)) defined as the moment estimator

-1

iy

n
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where
k-1

) 1 j
My({]) = % Z(log ani:n - log Xn*km)J‘
=0

Note that asymptotic normality is satisfied

VEG —7) n_%;o N(0,var,)
with
7?41 if v >0,
YT =) =291 =7 +692)
(1=37)(1—4y)
The estimates of the trend parameter and extreme value index as functions of k are
provided in Figure 3.11 as well as the selected threshold via Lepski’s method. Note
that the particular periodic shape for the estimator of v is due to presence of many
ties in the sample. Applying Lepski’s method on the confidence intervals, we choose
the optimal size k and consequently the corresponding estimators 0, and Ak For the
maximal temperature, we obtain k£ = 110, 4;"** = —0.043 and 9,2““ = 1.314. In order
to deal with extremes of minimum daily temperature, we use the negative minimum
daily temperature and obtain k = 120, 4™ = 0.030 and é,‘fin = —1.704. The test
proposed in Proposition 3.4 is strongly significant for rejecting the null hypothesis
Hy : 0y < 0: indeed, the test statistic V12k0y is compared to the quantile of the
normal distribution 1.645 and is equal to 47.73 and 64.65 in the case of maximum
and minimum daily temperatures respectively. In both cases, the p-value of the test
is close to 0. The trend parameter gmax > () suggests that extreme (high values) of
daily maximum temperatures are getting more frequent, while the trend parameter
g™ < 0 indicates that extremes (low values) of daily minimum temperatures are
getting less frequent. Hence both trend parameters corroborate global warming in
the regime of extremes over the 20th century .

if v <0.
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Figure 3.11 — Lepski’s method for estimation of 6 (left) and v (right) related to the
maximum and minimum daily temperatures
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3.9 Conclusion

In the direction of heteroscedastic extremes, the study of the monotone skedasis
function ¢ allows us to conclude on the frequency of extreme events. In log-linear,
linear and discrete log-linear trend models of ¢, the trend parameter @ is consistent
and asymptotically normal. In the case where ¢ is monotone but not parametric,
it is possible to test the trend using a parametric test on 6 and this will give more
accurate results since parametric tests are more powerful than non parametric tests
for the trend detection.
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GEV modeling of precipitation of annual maxima
and model selection for high quantile prediction

The chapter consists of a work devoted to the EVA 2017 Data challenge.

Abstract

Based on the daily precipitations over 24 years in 40 stations in the Netherlands,
we predict the 20-year return level of precipitations for each month and station. We
use the annual maximum method from extreme value theory and model the annual
maximum precipitations by generalized extreme value distributions with scale and
location parameters depending on the longitude, latitude and month. We propose
different models and consider model selection based on the Akaike information cri-
terion and k-fold cross validation. The latter method turns out to be much more
efficient for the purpose of prediction and results in a fairly simple model with rela-
tively good predictive power.
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4.1 Introduction

Climate extremes is a long standing topic of interest, especially in the last
decades. Extreme value theory (EVT) focuses on the modeling and statistical as-
sessment of extreme events. One of the main issue in EVT is the estimation of an
extreme quantile, or equivalently, a return level associated to large return period.
The return level of T" years corresponds to the value that will be exceeded on average
once every 1" years.

This paper consists in a report of the participation to the data challenge held in
the conference EVA 2017. The data consists in daily precipitation in the Netherlands
over 40 stations over the period from 01/01/72 (with only 16 observations available in
this year) to 12/31/16: the training sample period is from 01/01/72 to 12/31/95 and
the test sample period is from 01/01/96 to 12/31/16. The aim is to estimate from the
training sample a quantile of level corresponding to extreme monthly precipitation
over the next 20 years, station by station. The general methodology that we used
consists in taking annual maxima for each month and year (one observation per
station, month and year) and to fit several generalized extreme value (GEV) models
with covariates. In these types of models, the GEV parameters depend on latitude,
longitude and month while the observations are considered as independent, that is we
ignore completely the spatial dependence among the stations. For the data challenge
participation, model selection had been performed via the simple Akaike information
criterion (AIC). Discussions with the other participating teams suggested that k-
fold cross validation should perform better as it incorporates the criterion on which
the different methods are ranked. Accordingly, we have since then performed model
selection based on k-fold cross validation and it turns out the selected model provides
better predictions on the sample test.

The estimation is performed with the extRemes package in R (Gilleland and
Katz (2016)). This package was designed to analyse extreme events and their
changes over time. It focuses on geophysics with applications for weather and cli-
mate (Gilleland and Katz (2011)). It incorporates GEV, generalized Pareto (GP)
and point process (PP) models. The functions used are fevd to estimate the model
(with covariates) and compute AIC and return.level to estimate the quantiles.

4.2 The models

We compare several models for the dependence of the GEV parameters as func-
tions of the covariates. For this purpose we use natural splines (James et al. (2013)),
which offer a simple and flexible way for response surface modeling. Splines are
piecewise polynomial functions, as presented in the following definition.

Definition 4.1. Let & < & < -+ < &y be N knots. A spline with degree m is a
function of class C™~1 whose restriction on each of the intervals (—oo, &), (&1, &),
..o, (En,+00) is a polynomial function with degree at most m.

A natural spline is a spline that is linear on the boundary intervals (—oo, ;) and

(€n, +00).
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For the sake of simplicity, we assume the shape parameter v of the GEV distribu-
tion constant (not depending on covariates); its estimation is indeed quite complex.
The location parameter p and the scale parameter o are expressed in function of
the covariates: month, latitude and longitude. We define three types of models for
the covariates of the GEV parameters. The first one is the additive model where
the two parameters p and o are expressed as follows:

= month + fi(latitude) + f2(longitude),

o = month + g (latitude) + g2(longitude),

with fi, f2, g1 and g natural cubic spline functions with df degrees of freedom. In
what follows we denote by Add), the additive model where the natural splines have
df = h.

The second model is the mixed model in which there is not interaction between

the time and space covariates, that is between month and (latitude,longitude).
However, we consider possible interactions between latitude and longitude and set:

= month + fi(latitude) x fs(longitude),

o = month + g (latitude) x gz(longitude).
Let Mixy, denote the mixed model with df = h for the natural splines.

The third model is the multiplicative model where space/time interaction appears
in the model and p and o are defined as:

w = month x fi(latitude) x fy(longitude),

o = month x gi(latitude) X go(longitude).
We denote by Mult, the multiplicative model in which natural splines have df = h.

4.3 Akaike information criterion

In this section, we present the AIC model selection which was used for our
participation to the data challenge in EVA 2017. After a brief presentation of the
method, we propose six models and compare them based on the AIC. We then
present the results of the return level prediction associated with the selected model.

4.3.1 Model selection

The AIC was first introduced by Akaike (1973). It measures the quality of a
given model by making a trade-off between its complexity and its goodness of fit.
It is defined as

AIC = 2K —2log(L),

where K is the number of estimated parameters and log(L) is the maximized log-
likelihood function of the model. The AIC as well as the number K for each of the
six proposed models are given in Table 4.1.
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Model K AIC

Addy 41 3917.797
Addg 49 2286.818
Mizo 41 2723.934
Mixy 73 2189.872
Mizeg 121 2594.673
Multy 601 4290.686

Table 4.1 — AIC for the six models

We have also tried to introduce the year’s effect in the models but we haven’t
obtained any improvements in their performance by adding this factor. The best
model among the six is the one with the lowest AIC value which is model Mix,.
Consequently, this model has been selected for the quantile estimation.

4.3.2 Results

We now predict the return levels with period 20 years using the fitted model
Miz,. Recall that this model is of the form

w = month + fi(latitude) x fs(longitude)

o = month + g (latitude) x gs(longitude)

with fi, fa2, g1 and go natural cubic spline functions with df = 4. The prediction
is done using the function return.level. The same strategy of estimation is used
for the observed sites (C} group) and the non observed sites (Cy \ Cy group) whose
estimated return levels are presented in Table 4.2 and Table 4.3 respectively. The
columns represent the months and the rows represent the stations.
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"stations' | "X1" | "X2" | "X3" | "X4" | "X5" | "X6" | "X7" | "X8" | 'X9" | "X10" | "X11" | "X12"

'2"1085 | 093] 0.84] 092 0.85| 1.18 | 1.24 1.1 1.34 1.22 1.07 1.23

‘4" 1 1.48 | 1.56 | 1.47 | 1.55 | 1.48 1.8 1.87| 1.72 | 1.97 1.85 1.7 1.86

'5" | 1.53 1.6 | 1.52 | 1.59 | 1.52 | 1.85 | 1.91 | 1.77 | 2.02 1.89 1.75 1.91

'6" | 1.45 | 1.52 | 144 | 1.52 | 1.44 | 1.77| 1.84 | 1.69 | 1.94 1.82 1.67 1.83

"11" | 1.48 | 1.55 | 1.47 | 1.55 | 1.47 1.8 1.87 | 1.72 | 1.97 1.85 1.7 1.86

"12" | 149 | 1.57 | 1.48 | 1.56 | 1.49 | 1.81 | 1.88 | 1.73 | 1.98 1.86 1.71 1.87

"13"11.04 | 1.11 | 1.03 | 1.11| 1.03 | 1.36 | 1.43 | 1.28 | 1.53 1.41 1.26 1.42

"15" 1 1.26 | 1.33 | 1.25| 1.33 | 1.25 | 1.58 | 1.64 1.5 ] 1.75 1.63 1.48 1.64

"16" | 1.38 | 1.45 | 1.36 | 1.44 | 1.37 1.7 1.76 | 1.62 | 1.86 1.74 1.59 1.75

"18" | 1.31 | 1.38 1.3 | 1.37 1.3 ] 1.63 | 1.69 | 1.55 1.8 1.68 1.53 1.69

"19" | 1.51 | 1.58 1.5 | 1.58 1.5 ] 1.83 1.9 1.75 2 1.88 1.73 1.89

20" | 1.5 157 149 | 156 | 1.49 | 1.82| 1.88 | 1.74 | 1.99 1.86 1.72 1.88

"21" | 1.53 1.6 | 1.52 1.6 | 1.52 | 1.85 | 1.92 | 1.77 | 2.02 1.9 1.75 1.91

22" 1 1.62 | 1.69 1.6 | 1.68 | 1.61 | 1.94 2| 1.86 2.1 1.98 1.83 1.99

"23" | 1.42 | 149 | 1.41 | 149 | 141 | 1.74 1.8 | 1.66 | 1.91 1.79 1.64 1.8

"24" 1 1.38 | 1.46 | 1.37 | 1.45| 1.38 1.7 177 ) 1.62 | 1.87 1.75 1.6 1.76

"25" 1094 | 1.02 | 0.93 | 1.01| 094 | 1.26 | 1.33 | 1.18 | 1.43 1.31 1.16 1.32

"26" | 1.48 | 1.55 | 1.47 | 1.55 | 1.47 1.8 1.87| 1.72 | 1.97 1.85 1.7 1.86

"28" 1 1.28 | 1.35 | 1.26 | 1.34 | 1.27 1.6 | 1.66 | 1.52 | 1.77 1.64 1.5 1.66

'29" 1064 | 0.71] 0.63 | 0.71| 0.63 | 0.96 | 1.03 | 0.88 | 1.13 1.01 0.86 1.02

'30" | 1.11 | 1.18 1.1 1.18 1.1} 143 | 1.49 | 1.35 1.6 1.48 1.33 1.49

'32" |1 0.01 | 0.08 0] 0.08 0] 033 04]025| 05| 038] 023] 0.39

33" | 1.42 | 1.49 14| 148 | 141 | 1.74 1.8 | 1.66 1.9 1.78 1.63 1.79

34" | 1.56 | 1.63 | 1.54 | 1.62 | 1.55 | 1.88 | 1.94 1.8 2.04 1.92 1.77 1.93

"35" | 1.45 | 1.53 | 1.44 | 1.52 | 145 | 1.77 | 1.84 | 1.69 | 1.94 1.82 1.67 1.83

'36" | 1.27 | 1.34 | 1.26 | 1.34| 1.26 | 1.59 | 1.66 | 1.51 | 1.76 1.64 1.49 1.65

'38" 1 1.36 | 1.43 | 1.35| 1.42| 1.35| 1.68 | 1.74 1.6 | 1.85 1.73 1.58 1.74

39" | 1.31 | 1.38 1.3 | 1.38 1.3 ] 1.63 1.7 ] 1.55 1.8 1.68 1.53 1.69

40" 1 0.97 | 1.04 | 0.95| 1.03| 0.96 | 1.29 | 1.35 | 1.21 | 1.45 1.33 1.19 1.34

Table 4.2 — Return levels for group C; (AIC method)

"stations' | "X1" | "X2" | "X3" | "X4" | "X5" | "X6" | "X7" | 'X8" | 'X9" | "X10" | "X11" | "X12"
"7 1.78 | 1.85 | 1.77 | 1.84 | 1.77 | 2.1 2.16 | 2.02 | 2.27 | 2.14 2 2.16
'8" 1.56 | 1.63 | 1.55 | 1.62 | 1.55 | 1.88 | 1.94 | 1.8 2.05 | 1.93 1.78 1.94
9" 0.97 | 1.04 | 096 | 1.04 | 0.96 | 1.29 | 1.36 | 1.21 | 1.46 | 1.34 1.19 1.35
10" 1.97 | 2.04 | 1.96 | 2.03 | 1.96 | 2.29 | 2.35 | 2.21 | 2.46 | 2.33 2.19 2.35
37" 1.17 | 1.24 | 1.16 | 1.24 | 1.16 | 1.49 | 1.56 | 1.41 | 1.66 | 1.54 1.39 1.55

Table 4.3 — Return levels for group Cs \ C; (AIC method)
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The performance of the quantile predictions ¢ are evaluated using the following
score function: .
SZ(qA) = Z ZSS,]'(QS,]'>7 1= 1727 (41)
seC; j=1
where ¢, ; is the estimated return level for station s and month j with s =1, ..., 40,
j=1,...,12.
(' is the set of stations

¢y ={2,4,5,6,11,12,13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 32, 33, 34, 35,
36,38, 39, 40}

and Cj the set of stations Cy = C1U{7,8,9,10,37}. The function S; ;(§s ;) is defined

as
Ss,j (qASJ) = Z K(Psm qAS,j)a
day t of the test period in month j

where ¢ is the quantile loss function

Uz, y) =a(r —y)lysy + (1 —a)(y — 2) 1>,

at o = 0.998 with z, y € R and P is the precipitation in station s and day ¢ of period
j. The final score is compared to the score of a benchmark predicting the quantiles
by the maxima of the training sample for the stations of C'; and by the average of
the monthly maxima of the stations in the training sample for {7,8,9,10,37}. The
performance of the predicting method is assessed by a percentage representing how
much the proposed method has reduced the score with respect to the benchmark
methods. Our predicted quantiles in Tables 4.2 and 4.3 based on model Miz, has
reduced the score with respect to the benchmarks by 43.626% for C and by 41.861%
for (.

4.4 k-fold cross validation method

Based on discussion with the other teams participating to the data challenge,
we have considered model selection based on the k-fold cross validation method.
It is indeed sensible to incorporate the score that is used to compare the different
methods into the model selection procedure.

4.4.1 Model selection

The cross validation is a method used to evaluate the predictive performance of a
given statistical model. It consists in removing a part of the data called the test set
and to use the remaining part as a training set. The model is fitted on the training set
and the prediction error for the learned model is then assessed on the test set (James
et al. (2013)). There are several approaches for cross validation: the validation set
approach, the leave-one-out cross validation and the k-fold cross validation. The
main difference between the three methods is the way of splitting the observations
into the test and training sets. We consider here k-fold cross validation: after
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dividing the data set into k folds, we calculate the error based on the observations
of the held-out fold (James et al. (2013)). We repeat the same procedure k times
and at each time a fold plays the role of a test set and k — 1 folds play the role of a
training set. Finally the global error is the sum of the & computed errors.

Here some care is needed because of the different time scales: year for the annual
maxima method, and day for the computation of the score equation (4.1). The data
set consists in 24 years, with year 1972 having only 16 observations that we disregard
here. The remaining 23 years from 1973 to 1995 are divided into 4 groups, i.e k = 4:
the first 3 groups have 6 years data and the last group has 5 years data. The group
sizes have the same magnitude and hence can be considered as approximately equal.
At each time 3 groups will be considered as the training set on which we compute
the annual maxima for each month and station from the daily precipitations and
apply the block maxima method to estimate the GEV parameters and the 20-year
return levels. The remaining group with daily precipitation data will be the test set
and the error is computed in terms of the score (4.1).

We present in Table 4.4 the scores obtained for each of the 15 proposed models
and the number of estimated parameters K. We can see that the cross validation
scores of model Addy, Adds, Adds, Addy, Miz; and Mult, are very close to each
other (all between 1014 and 1019). Because of its simplicity and interpretability, we
have selected model Add; which corresponds to a linear response surface.

Model | K Score
Add, 29 1018.448
Adds 33 1018.415
Adds 37 1017.906
Addy 41 1016.575
Adds 45 1073.358
Addg 49 1053.673
Mix, | 31 1018.573
Mizy | 41 1100.853
Mixs 55 1052.124
Mixy | 73 1052.265
Mixs | 95 1067.313
Mixg | 121 1089.812
Multy | 97 1014.848
Multy | 217 1025.043
Mults | 385 1028.709

Table 4.4 — Score with 4—fold cross validation

4.4.2 Results

Model Add; has the very simple form
f(month, station) = fumonth + fliar X latitude + o, X longitude
d(month, station) = Gpmontn + 010 X latitude + 615, X longitude.
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month ﬂmonth 6—month
January 0.208 0.264
February | 0.092 0.246
March 0.158 0.257
April 0.096 0.221
May 0.172 0.256
June 0.288 0.329
July 0.275 0.353
August 0.220 0.327
September | 0.316 0.357
October 0.256 0.350
November | 0.250 0.318
December | 0.261 0.309

Table 4.5 — fi and & for the months

Latitude gt = —0.066 O1at = 0.018
Longitude | fijon, = 0.476 O1on = —0.047

Table 4.6 — i and & for latitude and longitude

The estimated values of the parameters are given in Tables 4.5 and 4.6. The shape
parameter v is obtained as 4 = 0.202 > 0 which means that the daily precipitations
are heavy-tailed.

The estimated return levels by model Add; for the observed sites (C group) and
non observed sites (Cy \ C; group) are given in Table 4.7 and Table 4.8 respectively.
With these results, the reduction of the score of the benchmarks is 58.997% for C,
and 56.740% for Cs. This is significantly better than for the Mixs model selected
via the AIC criterion. Furthermore, the Add; model can be simply interpreted as
the surface responses are linear.

4.5 Discussion

The results of the prediction show that the basic annual maxima method from
univariate EVT can perform quite well compared to more advanced methods. The
k-fold cross validation method is better than the AIC for model selection because it
reduces more the score of the benchmarks and results in more accurate predictions.
However, the study remains quite rough so far since many models could have been
tested. The assumption 7 is a constant could have been tested more carefully. It
would be nice to have maps for the parameters and return level. Furthermore, the
data suffers from missing values and presence of zeros which were totally disregarded:
there are 4709/144413=3.3% missing daily data and 266,/4940=>5.4% zeros in annual
maxima. Finally, it would make sense to incorporate spatial dependence in the
model. The resulting spatial model for annual maxima is the max-stable process,
but the theory and estimation is much more complicated and it is not clear whether
this is useful only for univariate quantile prediction.
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"stations' | "X1" | "X2" | "X3" | "X4" | "X5" | "X6" | "X7" | "X8" | 'X9" | "X10" | "X11" | "X12"
2" 1.38 | 1.19 | 1.3 1.09 | 1.31 | 1.72 | 1.81 | 1.65 | 1.86 | 1.78 1.64 1.61
4" 1.4 121 | 1.32 | 1.11 | 1.33 | 1.74 | 1.82 | 1.66 | 1.88 | 1.8 1.66 1.63
5" 1.4 121 | 1.32 | 1.11 | 1.33 | 1.74 | 1.82 | 1.66 | 1.88 | 1.79 1.66 1.63
'6" 141 | 1.22 | 1.33 | 1.12 | 1.34 | 1.75 | 1.84 | 1.68 | 1.9 1.81 1.67 1.64
11" 142 | 123 | 1.34 | 1.13 | 1.35 | 1.76 | 1.84 | 1.68 | 1.9 1.81 1.68 1.65
12" 142 | 1.23 | 1.34 | 1.13 | 1.35 | 1.76 | 1.85 | 1.69 | 1.91 | 1.82 1.68 1.65
13" 143 | 124 | 1.35 | 1.14 | 1.36 | 1.77 | 1.85 | 1.69 | 1.91 | 1.83 1.69 1.66
"15" 143 | 1.25 | 1.36 | 1.15 | 1.37 | 1.78 | 1.86 | 1.7 1.92 | 1.83 1.7 1.67
'16" 145 | 1.26 | 1.37 | 1.16 | 1.38 | 1.79 | 1.87 | 1.71 | 1.93 | 1.85 1.71 1.68
'18" 145 | 1.26 | 1.37 | 1.17 | 1.39 | 1.8 1.88 | 1.72 | 1.94 | 1.85 1.72 1.69
'19" 145 | 1.26 | 1.37 | 1.16 | 1.38 | 1.79 | 1.88 | 1.72 | 1.94 | 1.85 1.71 1.68
20" 147 | 1.28 | 1.39 | 1.18 | 14 1.81 | 1.9 1.74 | 1.96 | 1.87 1.73 1.7
21" 147 | 1.28 | 1.39 | 1.18 | 14 1.81 | 1.9 1.74 | 1.96 | 1.87 1.73 1.71
22" 1.48 | 1.3 1.41 | 1.2 142 | 1.83 | 1.91 | 1.75 | 1.97 | 1.88 1.75 1.72
23" 1.49 | 1.3 141 | 1.2 142 | 1.83 | 1.92 | 1.76 | 1.97 | 1.89 1.75 1.72
24" 1.49 | 1.3 1.41 | 1.2 142 | 1.83 | 1.92 | 1.76 | 1.98 | 1.89 1.75 1.72
'25" 152 | 1.33 | 144 | 1.23 | 1.45 | 186 | 1.94 | 1.78 | 2 191 1.78 1.75
'26" 1.5 1.31 | 142 | 1.21 | 143 | 1.84 | 193 | 1.77 | 1.99 | 1.9 1.76 1.74
'28" 1.34 | 1.15 | 1.26 | 1.05 | 1.27 | 1.68 | 1.76 | 1.6 1.82 | 1.73 1.6 1.57
29" 1.35 | 1.16 | 1.27 | 1.06 | 1.28 | 1.69 | 1.77 | 1.61 | 1.83 | 1.75 1.61 1.58
30" 1.35 | 1.16 | 1.27 | 1.06 | 1.28 | 1.69 | 1.78 | 1.62 | 1.84 | 1.75 1.61 1.58
32" 1.36 | 1.17 | 1.28 | 1.07 | 1.29 | 1.7 1.79 | 1.63 | 1.85 | 1.76 1.62 1.6
33" 1.4 121 | 132 | 1.11 | 1.34 | 1.74 | 1.83 | 1.67 | 1.89 | 1.8 1.67 1.64
34" 141 | 1.22 | 1.33 | 1.13 | 1.35 | 1.76 | 1.84 | 1.68 | 1.9 1.81 1.68 1.65
'35" 142 | 124 | 135 | 1.14 | 1.36 | 1.77 | 1.85 | 1.69 | 1.91 | 1.82 1.69 1.66
'36" 144 | 1.25 | 1.36 | 1.15 | 1.37 | 1.78 | 1.87 | 1.71 | 1.93 | 1.84 1.7 1.68
'38" 144 | 1.25 | 1.36 | 1.15 | 1.37 | 1.78 | 1.87 | 1.71 | 1.93 | 1.84 1.7 1.67
'39' 144 | 1.25 | 1.36 | 1.16 | 1.38 | 1.79 | 1.87 | 1.71 | 1.93 | 1.84 1.71 1.68
40" 147 | 1.28 | 1.39 | 1.18 | 14 1.81 | 1.89 | 1.73 | 1.95 | 1.86 1.73 1.7
Table 4.7 — Return levels for group C; (k-fold cross validation method)

"stations' | "X1" | "X2" | "X3" | "X4" | "X5" | "X6" | "X7" | 'X8" | 'X9" | "X10" | "X11" | "X12"
"7 1.39 | 1.2 1.31 | 1.1 1.32 | 1.73 | 1.81 | 1.65 | 1.87 | 1.78 1.65 1.62
'8" 141 | 1.22 | 1.33 | 1.12 | 1.34 | 1.75 | 1.83 | 1.67 | 1.89 | 1.8 1.67 1.64
9" 143 | 1.24 | 1.35 | 1.14 | 1.36 | 1.77 | 1.85 | 1.69 | 1.91 | 1.82 1.69 1.66
10" 1.39 | 1.2 1.31 | 1.1 1.32 | 1.73 | 1.81 | 1.65 | 1.87 | 1.78 1.65 1.62
37" 144 | 1.25 | 1.36 | 1.16 | 1.38 | 1.79 | 1.87 | 1.71 | 1.93 | 1.84 1.71 1.68

Table 4.8 — Return levels for group Cs \ C; (k-fold cross validation method)

103







Oil rig protection against extreme wind and wave
in Lebanon

Abstract

The oil rigs that will be installed in the Lebanese offshore are floating rigs. This
type can be affected by environmental risks such as extreme wind speed and wave
height. We study these risks in Beddawi region in the north of Lebanon during the
winter season. We estimate the return levels associated to return periods of 50, 100
and 500 years for each risk separately using the univariate extreme value theory.
Then, by using the multivariate extreme value theory we estimate the dependence
between extreme wind speed and wave height as well as joint exceedance probabilities
and joint return levels to take into consideration the risk of these two environmental
factors simultaneously.
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5.1 Introduction

Petroleum exploration in Lebanon started in the 1930s in the Lebanese onshore
but was then stopped due to security circumstances. The offshore exploration has
then started in the 1990s and in 2013, 2D and 3D seismic surveys suggest the pres-
ence of Gas in the Lebanese offshore. Due to the high depth of the offshore region
where the drilling operation will take place, the most probably rig that will be in-
stalled is the semi-submersible rig which is a floating rig affected by environmental
risks such as wind speed and wave height *. The position of Lebanon on the Mediter-
ranean sea makes him susceptible to severe storms accompanied with extreme wind
speed and wave height. For instance, the mistral storm of February 2005 hit the
Mediterranean sea with wind speed exceeding 30 m/s and wave height reaching 14
meters (m) (Bertotti and Cavaleri (2008)). Furthermore, in the cyclone of January
1995 in the Mediterranean sea, the highest recorded wind speed was 135 km/h and
in October 1996, Mediterranean tropical cyclones caused wind speed up to 108 km/h
(Pytharoulis et al. (2000)). Hence, extreme wind speed and wave height are not far
from being recorded in the Mediterranean sea making essential the problem of pre-
dicting them especially when talking about the protection of oil rigs in the offshore.
The history has shown how dangerous and catastrophic can extreme wind speed and
wave height be to an oil rig. For example, in October 2007, a severe storm with 130
km/h wind speed and 8 m wave height moved the Usumacinta jack-up rig and caused
its collision with the Kab-101 platform during a drilling operation. The collision led
to a rupture of the platform’s production tree and leakage of the hydrocarbon which
damaged the platform and caused the death of 21 people. Moreover in November
1979, the Bohai 2 jack-up rig installed in the Golf of Bohai in China encountered
a storm with strong winds and high waves that broke a ventilator pump free. Its
falling down created a hole in the deck of the rig which was flooded. The rig sank
and 72 personnel died on board with only 2 survivals 2. Note also the sinking of the
semi-submersible Ocean Ranger rig in the Canadian waters on 15 February 1982
due to extremely high waves leading to 84 reported deaths. There exist many other
oil rig disasters that were caused mainly by storm factors and resulted in dramatic
consequences at the environmental, economical and human levels. Here arises the
importance of predicting the extreme environmental factors such as wind speed and
wave height to ensure a level of safety for the oil rig. One essential statistical tool
for these predictions is the univariate extreme value theory (EVT) which predicts
these risks separately by estimating their return levels. However, in practice the risk
arises as the result of jointly extreme events that happen together and may be de-
pendent. In fact, in offshore environment, oil rigs must be designed to face extreme
climate conditions that occur simultaneously. Thus, the study of the multivariate
EVT becomes unavoidable to find the joint distribution and the extreme dependence
between several risks. Many studies using bivariate or multivariate extreme value
distribution have been applied to environmental risks in order to calculate their joint
and conditional probabilities (Morton and Bowers (1996), Vanem (2016), Jonathan
et al. (2010), Jonathan et al. (2013), Cai et al. (2013)).

1. www.lpa.gov.1lb
2. www.oilrigdisasters.co.uk
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This chapter is an application of the univariate and bivariate EVT using the block
maxima (BM) which ensures the assumption of independence between the extracted
BM by considering them separated by a sufficient number of days. The study is done
on wind speed and wave height data registered in the winter season because extreme
values are mostly recorded in this season. Moreover, since Lebanon’s offer for drilling
operation includes blocks mainly in the north and the south of Lebanon, we have
tried to find data relative to these regions. The data we could get is the one for
Beddawi region located in the north of Lebanon. To sum up, the results of the appli-
cation are relative to extreme wind speed and wave height during the winter season
in the Beddawi northern region. The work will be divided as follows: In Section 5.2,
we give a theoretical description of the univariate and bivariate EVT. We focus on
the BM method used in our work by presenting its main results in both cases. In
Section 5.3, we first move to the application of the univariate case and estimate the
return levels of extreme wind speed and wave height separately. Secondly we apply
the bivariate EVT to study the dependence between the two risks and estimate joint
exceedances probabilities associated to joint return periods as well as joint return
levels.

5.2 Classical extreme value theory

In this section we briefly recall the basic notions of univariate EVT and provide
some fundamentals of the bivariate theory.

5.2.1 Univariate extreme value theory

The univariate EVT deals with extreme observations that are extracted from
a given sample of observations using two methods: The BM and the peak over
threshold (POT) methods. The first one divides the observations into blocks and
extract the maximum value within each block whereas the second one fixes a high
threshold and considers the values that exceed it. In our work we only use the BM
method so that the BM are separated by a number of days making possible the
assumption of independent maxima. The rescaled maxima follow approximately a
generalized extreme value (GEV) distribution thanks to the following theorem.

Theorem 5.1 (Gnedenko-Fisher-Tippett theorem, see Embrechts et al. (1997)).
Statistically, suppose that X1, Xo, ... is a sequence of independent and identically dis-
tributed (i.i.d.) random wvariables whose distribution function is F(x) = P (X < x)
such that X, m = max(Xy, .., X,,), then: if there exist normalizing constants a,, > 0
and b,, such that

M, —b
lim PP (mm < x) = lim F"™(anz + by) == G(x)

m—00 a m—00

with G a non-degenerate distribution function, then G must be of one of the following
types:

o Gumbel: G(x) = exp(—exp(—x)) for all z€R;
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exp(—z~%) ifx >0

o [réchet: G(x) :{ 0 fr<0

o Weibull: G(x) :{ iXp(_<_$)a) szff .-

Jenkinson (1969) combined the three families in a single parametric one depend-
ing on three parameters so that the GEV distribution is defined as follows:

exp{—[1+7 (52)]7/7}, 14952 > 0,9 #0,
Groy () =
exp (— exp(—%5£)) r€R,y =0,

where 1 € R is the location parameter, ¢ > 0 the scale parameter and v € R the
extremal index.

The main purpose of the univariate EVT is the estimation of extreme quantiles.
If we suppose a sample of n observations Xj,..., X, and divide it into k blocks of
size m each such that n = k£ x m and denote by X7,..., X} the BM, then as we
have seen, the X} will have approximately a GEV distribution whose parameters
are estimated by either maximum likelihood or probability weighted moments. The
quantile of order p of the vector of maxima X™* and the vector of original observations
X are given in the following lemma.

Lemma 5.1. The quantile gx«, of order p of X* is given by

4x*p = G:,aq (p> y PE (07 1)
:{ p+Sl(=logp)” —1] ify#0 (5.1)
p— olog (—logp) ify=0
Because we have G = F™ then the quantile of order p of X will correspond to
the quantile of order p™ of X*. Consequently, an estimator of qx, is given by
the following formula where p, o and v are replaced by their estimated values (see

Beirlant et al. (2004) ):

p+2[(=mlogp)™" = 1] ify#0

. 5.2
p— olog (—mlogp) ifv=0 (5:2)

dxp = gx*pm = {

5.2.2 Bivariate extreme value theory

Most of the theoretical works in multivariate EVT are done on i.i.d. observations
and very few treat the case of dependent observations. Similarly to the univariate
case, the bivariate EVT uses the BM and the POT methods. For the same rea-
son as in the univariate case, we restrict the work to the BM method that uses
componentwise maxima.
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Componentwise Maxima

Let (X1,Y7), (X2,Y), .. be a sequence of independent vectors having F'(x,y) as a
distribution function, with F; and F, the distribution function of X and Y respec-
tively. We define

X*= max X; and Y* = max Y.

i=1,...,m i=1,...,m

Hence,
M, = (X*,Y™)

is the vector of componentwise maxima obtained by combining the two vectors
X* and Y*. It is to be noted here that M, is not necessarily a realization. It
is assumed that there exist normalizing constants a,, = (a1m,02.m) € ]Rf and
b, = (b1,m, bam) € R? and a distribution with non-degenerate margins such that

M. —
P (Tnabm < z> = F™(amz + bp) — G(2), (5.3)

with z = (x,y), (Mrg;bm) = (X;Il:i’m, Y;jzm) and a,,z = (a1,m%, a2.my). Once (5.3)
is verified, F is said to be in the domain of attraction of the bivariate extreme value
distribution (BEVD) G (Capéraa and Fougeres (2000)). In the bivariate case, we
work on the marginal distributions (Coles (2001)). Generally, we can transform the
margins to a unit Fréchet to simplify the representation of the BEVD under some
parametric models or we can express it in function of extreme value copula as we

will see in the next parts.

Unit Fréchet margins

Assume that X; and Y; have unit Fréchet margins F} and F; respectively which
are GEV distributions with u = 0 = v = 1, i.e Fi(2) = exp(—1%), x > 0 and

Fy(y) = exp(—%), y > 0, and let '

M, = (M M) = (max {Xi/m, max {i}/m) . (5.4)

i=1,...m
The distribution of M}, is given by the following theorem (Coles (2001)).

Theorem 5.2. If (X;,Y;) are independent vectors having standard Fréchet marginal
distributions and My, = (M% ,,, My-,,,) the vector defined in (5.4), then if

P(M%,, <z, My, <y) LN G(z,y) as m — oo,
where G is a non-degenerate distribution function, then G can be written as
G(z,y) = exp{—V(z,9)}, >0,y >0

with
w 1 —w

Viz,y) = 2/01 max ( ) dH (w) (5.5)

Z Y
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called the exponent measure and H a distribution function defined on [0,1] called the
spectral measure which satisfies the following mean constraint

/01 wdH (w) = 1/2. (5.6)

If H is differentiable having a density h, we can replace dH (w) by h(w)dw in
(5.2). As we have seen, G(z,y) doesn’t have a parametric representation. However,
by choosing a parametric family of H on [0, 1] having a mean of 1/2 for every value
of the parameter we obtain the corresponding family of G. Many models are hence
used, the standard one being the logistic model. If we fix the density function of H

h(w) = (o™ = Dl —w)} " g (1) ey

which satisfies the mean constraint (5.6) for 0 < w < 1, then
G(z,y) = exp{—(z 7V +y7 )}, 2 >0, y >0, a €[0,1]. (5.7)

The parameter « refers to the degree of dependence (Coles (2001)):

- a — 1, then G(z,y) — exp (—(% + i)) corresponding to an independence.

- a — 0, then G(x,y) — exp (— max(%, %)) corresponding to a perfect dependence.
Many other models can also be used such as the asymmetric logistic, Husler Reiss
and negative logistic. There exists another representation of the BEVD having unit

Fréchet margins that uses the Pickands dependence function A(.) (Pickands (1975)):

oun-en{-(1+3)4(25)

where A : [0,1] — [1/2,1] is a convex function such that A(0) = A(1) =1 and

max(w,1 —w) < A(w) <1, Vw € [0,1].

The case A(w) = 1 corresponds to independence and A(w) = max(w,1 — w) to a
perfect dependence. The following relation links A to the spectral measure H:

Ay =2 [ "max(u(l — w), (1 — u)w)dH (w).

Extreme value copula

To represent the joint distribution of two variables independently of the margins,
we use a bidimensional copula defined as

C(.,.):[0,1] x [0,1] — [0,1],
such that
e C(u,0)=C(0,v) =0, C(u,1) =w and C(1,v) = v, Yu,v € [0,1],

o C(ug,vg) — Clug,v1) — Clug,vy) + C(ug,v1) >0, Vuy, ug, v1, vy € [0,1] such
that u; < uy and vy < vy (Nelsen (2006)).
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Theorem 5.3 (Sklar, 1959 (Nelsen (2006))). Let F' be a bivariate distribution with
margins Fy and Fy. Then there exists a copula C' such that

F(l‘,y) = C(Fl(x)a FQ(y))7
with ©, y € [—00, +00].
Remark 5.1. If the margins Fy and Fs are continuous, then C' is unique.

Most popular copula families include Gaussian copula, Student copula, Archimedean
copulas (Clayton and Gumbel copula) etc.

Suppose that the i.i.d. pairs (X3,Y))...(X,,,Y,) have a common copula C' and
denote by C(,,) the copula of the componentwise maxima X* and Y*. Hence we
have for u, v € [0,1] that C()(u,v) = C™(u!/™ v1/™). We give in what follows the
definition of an extreme value copula (Nelsen (2006)).

Definition 5.1. A copula C, is an extreme value copula if there exists a copula C
such that
Ci(u,v) = lim C™(ut/™ v'/™),

m— 00

with u, v € [0, 1].

Definition 5.2. A bidimensional copula C' is max-stable if it satisfies the relation-
ship
C(u,v) = C™(ut/™ vV/m),

for every integer m > 1 and (u,v) € [0, 1] x [0,1].

Remark 5.2. A copula is an extreme copula if and only if it is maz-stable (Jaworski
et al. (2010)).

If C is an extreme value copula, it can be expressed in function of A by

C(u,v) = exp llog(uv)A ( log(v) )] . (5.8)

log(uv)

Corollary 5.1. If G is a bivariate extreme value distribution with univariate mar-
gins G1 and Go, then

G(z,y) = Ca(Gi(x), Ga(y)),

with Cq an extreme copula.

Measures of extremal dependence

Many measures of extremal dependence have been presented and discussed in
theory such as Kendall’s tau 7 and Spearman’s rho p which are given under different
forms. Let (X3,Y)) and (Xy,Ys) be independent random vectors having F' as a
bivariate distribution function. Kendall’s tau is defined as the difference between
the probability of concordance or dependence and the probability of discordance or
independence (Beirlant et al. (2004)):

7= P{(X; — Xo)(Y1 — ¥2) > 0} — P{(X; — X»)(Y1 — Y2) < O}.
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As for Spearman’s rho, it is defined as

p=3(P{(Xi — Xo)(Y1 - Y3) > 0} — P{(X; — Xo)(Y; — Y3) < 0}),

where (X1,Y7), (X2, Ys), (X3, Ys) are independent copies.

Kendall’s tau and Spearman’s rho are developed in details in Kendall and Stuart
(1979), Kruskal (1958), Lehmann (1975) and Capéraa and Genest (1993). If the
margins F; and Fy of F are continuous and C' is the copula function of F' then
Kendall’s tau can be expressed in function of C' by

r=4E[C(U,V)) - 1=4 [ /W C/(u,0)dC (u,v) — 1,

with (U, V) = (F1(X), F5(Y)) has C as a distribution function. The Spearman’s rho
is given by
— 12E(UV) - 3 = 12//[ L Ol v)dudy =3,
0,1]2

Kendall’s tau and Spearman’s rho can also be expressed in function of the Pickands
dependence function A and its derivative A’ (Beirlant et al. (2004)):

L1 —t) 1 1
- dA(1), :12/ -~ _gt-3
/0 A AW S R FETOIE
Another measure of dependence is the upper tail dependence defined by
¢ = lim ¥(u),

where

C(u,u) _ 9 1 —C(u,u)

Y(u) =PU > ulV >u) = T T

u € [0,1],

and C(u,v) = P(U > u,V > v) is the survival copula of C' (Joe (1993)).

The upper tail dependence 1 takes values in [0,1]. The case ) = 0 corresponds
to asymptotic independence whereas the asymptotic dependence is obtained if and
only if ¢ > 0.

5.3 Application

We apply in this section the theory on wind speed and wave height data given by
the meteorological department of Beirut Rafic Hariri international airport using the
R program. We tend to predict extreme quantiles of the two variables separately
and jointly in order to protect oil rigs against these meteorological risks.

5.3.1 Wind speed and wave height in Lebanon

Lebanon is located on the east of the Mediterranean sea having almost 220 km of
waterfront. The north of Lebanon is characterized by a cool and wet climate whereas
the south is characterized by a dry and warm climate (Hassan (2011)). Some studies
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have shown that on average the period from February to April is the windiest period
of the year whereas the period from October to November is the least windy one
(Hassan (2011)). The wind movement over the sea generates waves whose height is
affected by the wind speed. During storm periods in Lebanon, the wind speed can
exceed 27 m/s and the wave height can exceed 8 m (Kabbara (2005)).

5.3.2 The data

We consider now the two meteorological variables of interest the wind speed
registered in Beddawi station in Lebanon located at an altitude of 5 m with latitude
of (34°,27') and longitude of (35°,53’) and the wave height registered by a maritime
station facing Beddawi station located at an altitude of 0 m with a latitude of
(34°,28") and longitude of (35°,53'). Since the extreme values of the wind speed
and wave height are registered in winter, we restrict the data to this season. Note
that the study is done on a particular region, hence the results are proper to it and
may be different for other regions or for a different time period data. The figure
below shows Lebanon’s map with white line border where Beddawi region in the
north is shown by the blue item.

Figure 5.1 — Location of Beddawi station in Lebanon.

The wind speed data is constructed from the maximum wind speed per day (in
m/s) and the wave height data is constructed from the mean of the hourly maximums
of wave height registered per day (in cm). The winter data period is from 21/12 to
20/3 starting from year 2000 to 2015 (first date: 21/12/2000, last date: 20/3/2015).
The total length of observations is n = 1353 observations. We denote by X the
wind speed and by Y the wave height. The following table shows a brief summary
of the available data.

113



Data Min | 1°¢ Quartile | Median| Mean | 3"¢ Quartile | Max | NA
X = Wind Speed | 2.00 | 5.00 8.00 8.99 | 11.00 43.00 | 0
(m/s)

Y= Wave height | 13.40| 48.30 69.10 | 78.14 | 98.25 298.80| 606
(cm)

Table 5.1 — Summary of available data.

It is to be noted here that the data has two problems: First, the Beddawi station
is not a maritime one but facing the maritime station from which the wave height
data is collected, thus the wind speed values are not registered in the sea but should
be close to the values registered in the offshore. Second the wave height data suffers
from a high percentage of missing data: we have 606 missing observations which
is a percentage of 44.79%. To complete missing data we proceed to the use of the
missForest package of R which provides an algorithm for missing values imputation
based on random forest (RF) method which presents many advantages. In fact, the
RF deals with high dimension and mixed-type data (continuous and categorical)
and is a robust and accurate method. Furthermore, it is a non parametric method
which means that it can handle data with complex interactions and non linear
relation structures. Consequently, the RF doesn’t need to make assumptions about
the distribution of the data and this leads to a better performance of the method
especially when we don’t have a prior knowledge of the data. Moreover, the RF
algorithm is able to estimate an out of bag (OOB) error rate without the need of
a test set. In what follows a brief explanation of the OOB error: The RF is a
special case of the bagging method where trees are repeatedly fit to bootstrapped
subsets of observations (James et al. (2013)). It is shown that each bagged tree
uses around two-thirds of the observations. Hence, there are one-third observations
that are not used to fit the given bagged tree. These one-third observations are
known as OOB observations. For each of the total n observations, we can predict
the response using the OOB observations leading to B/3 predictions with B the
number of bootstrapped sets. The final prediction is the mean of all predictions.
The OOB error is the mean squared OOB error of the n predictions made (James
et al. (2013)). Finally, the missForest algorithm is shown to be competitive or
outperforms other missing values imputation methods (Stekhoven and Biihlmann
(2012)). For more details on this method and package see Stekhoven and Bithlmann
(2012). To increase the accuracy of the estimated missing values, we apply the
missForest algorithm 50 times and the final estimation for each day is the mean of
the 50 estimations obtained for this day at each iteration. Similarly, the final OOB
error is the mean of the 50 OOB errors. The table below shows the summary of the
new completed data using the missForest algorithm.

Data Min | 1°¢ Quartile | Median| Mean | 3"? Quartile | Max
X (m/s) 2.00 | 5.00 8.00 8.99 11.00 43.00
Y (cm) 13.40| 51.76 71.00 78.52 | 94.55 298.80

Table 5.2 — Summary of completed data.
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The difference between the two tables is surely in the wave height data which
had missing values. A little difference is registered for the 1% quartile, the median,
the mean and the 3" quartile. The OOB error rate is 4.67%. From now on, the
application is done using the completed data.

5.3.3 Univariate extreme value theory

We start the application of the univariate EVT by considering each data sepa-
rately. We want to estimate the GEV’s parameters and the return level correspond-
ing to a return period 1" years. In the univariate case, the return period T is the
average time between two successive extreme events. According to Equation (5.2),
the return level of T" years for the maxima X* is the quantile ¢y« , where p = 1— %T
It is also equivalent to the quantile gy ,1/m with pl/m o~ 1 — ﬁ corresponding to
the return level of T years for X with ¢ is the number of extreme events per year
(or number of blocks per year) and m the block size (Fawcett and Walshaw (2012)).
We denote in this section the return level of T years for a random variable X* by

gx+r in order to make the notations more expressive.

BM method

The choice of block length is critical in EVT. It is a question of trade-off between
bias and variance. A large block size leads to high variance and a small block size
leads to bias. For this purpose, since we have a total number of observations n =
1353 we consider a block of 15 days, i.e with daily observation data we have m = 15
and ¢ = 6 (we have 6 maximums per year since we considered just the winter season
equivalent to 90 days per year). The maxima sample size is then equal to 6 x 15 = 90.
The GEV parameters are estimated using the maximum likelihood method. The
estimations (fi,5,%) follow approximately a multivariate normal distribution with
mean (u,o,7) and variance-covariance matrix equal to the inverse of the observed
information matrix evaluated at the maximum likelihood estimate (Coles (2001)).
Consequently the 95% confidence interval of say u is i & 1.96 x (/Var(f) (simlarly
for o and 7) where the variances of the estimated parameters relie on the diagonals
of the variance-covariance matrix. The estimated parameters and the confidence
intervals are presented in Tables 5.3 and 5.4 respectively.

Data il o A
X* (m/s) 15.245 4.369 0.044
Y* (cm) 135.217 33.243 -0.086

Table 5.3 — (1,6,%) for X* and Y.
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Data Confidence Confidence Confidence
interval of p interval of o interval of v

X* (m/s) [14.241,16.250] [3.639,5.099] [-0.092,0.181]

Y* (cm) [127.557,142.877] | [27.749,38.736] [-0.222,0.049]

Table 5.4 — Confidence interval of u, o and .

We remark that the extreme wind speed’s tail distribution is heavier (y > 0)
than the one of the extreme wave height (7 < 0). Also, the confidence intervals are
quite large.

The estimated return level by maximum likelihood method §x«7 (or gy« r) is ob-
tained by replacing the maximum likelihood estimators (fi,,%) in (5.1). The con-
fidence interval is then §x« 7 £ 1.96 x Var(gx«r) with

Var(Gxp) ~ V7T

qx*.T

VvV,

X*,T

where V' denotes the variance-covariance matrix of (fi,5,%) and

v? _ Oqx+r Oqx+1 Ogx=r
ou = do 7 Oy
= L=y 1=y, ), 07 (1 =y, ") — 0y 'y, " logy,|
at ({1,6,%) and y, = —log(1 — p) (Coles (2001)). The return levels gx-r and gy« r

of the maxima wind speed and wave height respectively for a return period of 50,
100 and 500 years are the following.

T (years) dx+ Qy*T

50 43.570 284.839
100 47.530 298.510
500 57.197 327.238

Table 5.5 — Return levels for X* and Y*.

The confidence interval of the return levels are given in Table 5.6.

T (years) | Confidence Confidence
interval of gx« 7 | interval of gy« r
50 (32.014,55.126] [237.160,332.517]
100 [32.831,62.228] [240.854,356.166]
500 [33.271,81.123] [244.034,410.442]

Table 5.6 — Confidence interval of the return levels for X* and Y*.

Table 5.5 shows for example that the maxima wind speed value in the winter
season in Beddawi that will be exceeded on average once every 50 years or 300 blocks
is 43.570 m/s. Similarly, the maxima wave height value in the winter season that will
be exceeded on average once every 100 years or 600 blocks is 298.510 cm. The return
levels gx r and gy, 7 of the original data for the winter season are approximately equal
to those of Table 5.5 due to the approximation G ~ F™ and given in Table 5.7.
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T (years) dx.r Jvr

50 43.579 284.870
100 47.534 298.525
500 57.198 327.241

Table 5.7 — Return levels for X and Y.

5.3.4 Bivariate extreme value theory

In this part we will treat the bivariate EVT in order to measure the dependence
between the two variables as well as the joint return levels. We restrict the applica-
tion of the bivariate EVT to the componentwise maxima method using the logistic
model and copulas because as in the univariate case we consider that maxima from
different blocks are well separated and can then be considered as independent.

Componentwise Maxima

Similarly to the univariate case, we choose for each variable a block size of 15
days. The number of maxima is then equal to 90. We start by estimating the
BEVD’s parameters using the logistic model.

Logistic model

The parameters of the BEVD estimated by the logistic model are close to those
obtained in the univariate case and given below.

Parameters | X~ Y*

it 15.029 135.990
o 4.272 33.708
A 0.106 -0.049

Table 5.8 — (fi,6,4) for X* and Y* in the logistic model.

The estimated parameter of dependence « in the logistic model (5.7) is equal to
0.767 which means that there is a little but not complete dependence between the
maxima of wind speed and wave height. Moreover, if we apply the x? test under
the null hypothesis Hy : @ = 1 we obtain a p-value of 0.017 < 0.05. Hence Hj is
rejected confirming also the dependence between the two variables.

Knowing the BEVD, we can now calculate the conditional probabilities since the

two variables X* = max X;and Y* = max Y; are dependent. For instance, since
i=1,..,m i=1,..,m

the wind speed affects the wave height we would like to calculate the probability
that Y™* exceeds its 95% quantile which is 209.425 ¢cm knowing that X™* has exceeded
itself its 95% quantile which is 29.55 m/s. Consequently,

P(Y* > y = 209.425|X* > x = 29.55)

_ 1—P(Y* <209.425) — P(X* < 29.55) + P(X* < 29.55,Y* < 209.425)
B 1 — P(X* < 29.55)

(5.9)
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such that
X* ~ Gy =GEV(pi; = 15.029, 07 = 4.272,4; = 0.106)

and

Y* ~ Gy = GEV (4 = 135.990, 65 = 33.708, 7o = —0.049).

To use the BEVD estimated by the logistic model (5.7), we consider the transformed
sequences My, and M3, having a unit Fréchet margin. Consequently, Equation
(5.9) is equivalent to

1 —P(M;,, < y*) —P(M7,, <a*) +P(My,, <%, M

) _ ) —_ ) 2’m
B0 > M > 27) = T
1m =

<N\ U

29.55 —

Tt = (1 + yl(f‘“> = 18.224,
1

200.425 — fip | /7
= (1 +fy2w> — 10.010
)
and P(My,, < a*, M3, <y*) = G(2*,y*) the distribution function defined in (5.7)
with & = 0.767.
Finally,

where

P(M;,, > y* = 10.010|M;,, > o* = 18.224)
C 1—exp(—yr) —exp(—5) + G(2*, y)
N 1— exp(—x%)

= 0.442.

Going back to the original conditional probability (5.9), the value 0.442 explains
that given a wind speed that exceeds 29.55 m/s the wave height has a chance of
44.2% to exceed 209.425 cm. This is also because the dependence is not strong
between extreme wind speed and wave height, hence the probability isn’t close to 0
(independence) nor to 1 (complete dependence).

Kendall test

Kendall’s rank correlation 7 for two samples X and Y of size n with no ties is

given by
Ne — Ng S

nin—1)/2 nn—1)/2
with n. the number of concordant pairs and ny the number of discordant pairs
(if z3 > y3 with X and Y ordered samples then the third pair is concordant and
discordant otherwise) and S = n. — ng. The number n(n — 1)/2 is the number of
possible pairs from the samples X and Y. For large samples (n > 10), under the
null hypothesis of no correlation, S has approximately a Normal distribution with
mean zero and variance

T =

Var(8) n(n — 11)2(3271 + 5).
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If there are ties, 7 will be noted 7, and is given by

S
J@ln = 1)/2 = n1) x (n(n —1)/2 = na)’

where ny = > t;(t; — 1)/2 and ny = > u;(u; — 1)/2 with ¢; and u; the number of
7 J

Ty —

tied values in the ¥ and j** group of ties for the variable X and Y respectively
(Bland (2010)). If there are no ties then 7, = 7. In the case of ties, the variance has
a complicated formula (Hipel and McLeod (1994)):

n? —n)(2n + 5) T Ty TxTy

9n2 —n)(n—2) 2(n?—n)’

Var(S) = ( —T7x =Ty +

Ty =Y (8 —t;)(t: — 2),

i

T7x = (t — t;)(2t; + 5),

2

Ty = Z(u? — uy)(u; — 2),

Ty = z:(uj2 — u;)(2u; + 5).
J
The variable
S+

\/Var(S)

has approximately a Normal distribution where

z =

5= —1if §>0,
] 1if S<O.
The correlation between the wind speed and wave height maxima given by kendall 7
is equal to 0.241. To confirm this dependence between these two variables we apply
the kendall test under the null hypothesis

Hy:7=0 versus Hy : 7 # 0.

The test gives a p-value= 0.00103 < 5% so Hj is rejected and H; is accepted. We
further need to know whether there is a positive or negative correlation. In fact, we
obtain p-value= 0.00051 for H; : 7 > 0 and a p-value of 0.99950 for H; : 7 < O.
Hence, the accepted alternative hypothesis is 7 > 0. Finally, we conclude that
there is a positive dependence between the extreme wind speed and wave height
which is not so strong. Note that the dependence between the wind speed and the
wave height (not extreme values) by kendall tau is equal to 0.486. Hence, even the
dependence between the wind speed and wave height is not complete, but still a
little bit stronger than for extreme values.
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Extreme value Copula

We start this part by recalling the general form of extreme value copula according
to Pickands given by Equation (5.8):

C(u,v) = exp [log(uv)A ( log v )] :

log uv

Table 5.9 presents the extreme value copula distributions with their Pickands de-
pendence function A(t) and their dependence parameter (Jaworski et al. (2010),
Ribatet and Sedki (2013), Tawn (1988)).

Copula A(t) C(u,v) Dependence parameter
Gumbel A(t) = [t + (1 —t)?)/? Co(u,v) = exp(—[(—=logu)’+ | 1 < 6 < co. When 6 — oo,
(—log v)?]'/?) we have a perfect dependence
and when # = 1 we have an
independence.
Galambos | A(¢) = 1 — | Co(u,v) = 1|6 > 0. The case § = 0 cor-
[0 4+ (1 - t)fﬁ]*l/(’ uv exp{[(— logu) ™ + | responds to an independence
(—logwv)~9~1/%} and 6 = oo to a perfect de-
pendence.
Husler Alt) = to(3 + Slog(i5)) + | Co(u,v) = exp(p[3 + |0 € [0,00): If & = 0 we
Reiss (1- t)<f>(% _ glog(ﬁ) glog(i;’gﬂ)] logu + ¢[% + | have an independence and if
0 log u 0 — oo we have a perfect de-
9 log(12%2)] log v)
pendence.
Tawn Alt) = [6°(1 — )% + p%t%5 + | Co(u,v) = exp{logul™® + | 1 < 0 < co. When 6 — oo
(§—p)t+1—8 withd,p € [0,1] | logv'=" — [(—6logu)? + | (with § = p = 1), we have a
(—plogv)?]#} perfect dependence and when
=1 (ord=0o0rp=0)we
have an independence.
t-EV Alt) = tTyppa(z) + (1 — | Cyplu,v) =lp € (-1,1) : If p = £1
OTp+1(z1-1), 22 = (1 + | pty'@ pt'0) 4 we have a perfect dependence
O)V2[{t/ (1 — )}V — pl(1 — S S mip[ P12 “ | and if p = 0 we have an inde-
p?) 712 where ¢ > 0, Tyiy L(5+1) (1 w/P’lw)_WQH pendence.
the distribution function of | (¥) v
the wunivariate student T-
distribution having ¢ + 1 as
a degree of freedom

Table 5.9 — Extreme value copulas

We use from now on the parameters of the univariate GEV distributions G; and
G for the extreme wind speed and wave height respectively that were estimated in
Table 5.3. Using the package evd in R we estimate the copula dependence parameter
of the couple (X*,Y™*) as well as the upper tail dependence ¥ and the conditional

probability

P(Y* > 209.425|X* > 29.55) =

where

1 — G1(29.55) — G2(209.425) + G(29.55, 209.425)

1 — G1(29.55)

G(z,y) = Ca(Gi(x), G2(y))-
The results are given in Table 5.10.
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Copula Estimated dependence parameter | 1 P(Y* > 209.425| X* > 29.55)
Gumbel 0 =1.318 0.308 0.442
Galambos 6 = 0.582 0.304 0.439
Husler Reiss 0 = 0.967 0.301 0.437
Tawn 6 = 1.582 0.316 0.447
t-EV 5 = 0.590 0.308 0.442

Table 5.10 — Estimated dependence parameter, 1) and conditional probability

The estimated dependence parameters as well as the upper tail dependence ¢ > 0
show a slight dependence between the extreme wind speed and wave height. Also,
the extreme value copulas are all comparable since their corresponding @/AJ are all
close to 0.3. Moreover, the conditional probabilities are all close to 0.4 meaning
that once the extreme wind speed exceeds its 95% quantile the extreme wave height
will exceed its 95% quantile with approximately a 40% probability.

Choice of copula

To choose the best copula among the five, we can use the Akaike information
criterion (AIC) or the Bayesian information criterion (BIC) defined as

AIC =2k —2log L,

with log L the optimized value of the log-likelihood function and k& the number of
estimated parameters and

BIC =klogn —2In L,

where n is the number of observations. The best model is the one with the lowest AIC
or BIC. Below are the results of the these two criteria for the Gumbel, Galambos,
Husler Reiss, Tawn and t-EV copula.

Extreme Gumbel Galambos | Husler Tawn cop- | t-EV Cop-
Copula Reiss ula ula

AIC -6.732 -5.648 -5.165 -8.103 -7.692

BIC -4.232 -3.148 -2.665 -5.603 -2.692

Table 5.11 — AIC and BIC for Gumbel, Galambos, Husler Reiss and t-EV copulas

As we see, the Tawn copula has the lowest AIC and BIC and hence it will be
chosen for the rest of the work.

Joint Probability, Conditional Probability and Return levels

In the bivariate case, the joint return period Tx«y+ corresponding to the event
that either x or y or both are exceeded in the case of annual maxima (i.e X* > x or
Y* >y or (X*>xzand Y* > y)) is given by (Shiau et al. (2006))

1 B 1 B 1
P(X*>zorY*>y) 1-G(xy) 1-C(Gi(x),Ga(y))

Tx*y* p—
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The joint return period corresponding to the event that both x and y are exceeded
(ie X* >z and Y* > y) denoted T%.y. is given by (Shiau et al. (2006))

1
T/* * -
XY P(X* > pand Y* > y)
1
1= Gi(z) = Galy) + G(,y)

1
= TG — Galy) + O (), Galy) (510

It is to be noted that the calculation made are based on the Tawn copula which is
the most appropriate copula. We recall the return levels for 50, 100 and 500 years
that were estimated in Section 5.3.3 and that will be used in this part:

T (years) qx+ Qv+

50 43.570 284.839
100 47.530 298.510
500 57.197 327.238

Return levels for the mazima wind speed and wave height.

Table 5.12 presents the following exceedance probability
]P)(X* > Q‘X*’T’ Y* > qAY*7T’) = 1 — Gl(@X*,T) — G2(@Y*,T’) + G(QX*,T, QY*,T’)

for the different return levels above.

Return levels

(jy*’50 — 284839

Gy 100 = 298.510

Q\Y*,500 - 327238

{x+50 = 43.570

0.00106

0.00071

0.00019

qX*,lOO — 47530

0.00071

0.00053

0.00018

qAX*,E)OO == 57197

0.00019

0.00018

0.00011

Since we have ¢ = 6 blocks per year, the probability P(X* > §x+ 1, Y™ > Gy+«1)
. The corresponding return period T%.y. are the following:

is then equal to

_1
T

Table 5.12 — P(X* > Gy, Y* > Gy+1v)

X*Yy*

Return levels

(jy* 750 — 284 839

(jy*7100 — 298510

q\y*7500 — 327238

@X*,50 - 43570

157.273

236.309

868.057

Q\X*,IOO - 47530

236.309

315.498

947.920

Gx- 500 = 57.197

868.057

947.920

1581.323

Table 5.13 — Joint return period T .y«

Table 5.13 shows that we have T%.,. > max(7,7"). In fact, this was also
given and proved in Yue and Rasmussen (2002). It is explained as follows: when
we are considering the risk of X* and Y™ jointly, the probability of exceedance

122



P(X* > gx+7,Y* > Gy« 1) is lower than the minimum of the marginal exceedance
probabilities. The table also shows that the joint return periods 7%y corresponding
to the exceedance probabilities P(X* > Gx« 7, Y™* > Gy« 1) and P(X* > §x« 7, Y* >
gy~ 1) are the same. The joint return periods Tx«y+ corresponding to the event that
either gx« 1 or gy~ or both are exceeded are presented in Table 5.14.

Return levels Gyv+50 = 284.839 | Gy~ 100 = 298.510 | Gy+ 500 = 327.238
Gx+50 = 43.570 29.725 38.807 47.966

dx+100 = 47.530 | 38.807 59.416 91.365

dx* 500 = O7.197 | 47.966 91.365 296.946

Table 5.14 — Joint return period Txy«

Table 5.14 shows that Tx«y+ < min(7,7") as shown in Yue and Rasmussen
(2002) when there is a dependence between X* and Y*.
One can also be interested in the computation of the conditional probabilities
P(Y* > Gy 1| X* > §x+ 1) whose results are given in Table 5.15.

Return levels Gy-s0 = 284839 | Gy+100 = 208.510 | G500 = 327.238
dx+50 = 43570 | 0.318 0.212 0.058
Gx+100 = 47.530 | 0.423 0.317 0.105
Gx+500 = 7197 | 0.576 0.527 0.316

Table 515 — P(Y* > Q\Y*,T’|X* > Q\X*,T>

Obviously we have P(Y™* > Gy« | X* > Gxv1) > P(X* > Gxe, Y > Gyev).
We remark that the probability increases with the increase of the return period of
X* for a fixed §y«p and decreases with the increase of the return period of Y*
for a fixed gx«7. Also in the main diagonal of the table (i.e. when 7" = T"), the
probabilities are very close to each other.

Furthermore, it is very interesting to find (z,y)|P(X* > z,Y* > y) = p = m
for a given return period T%.y.. Heuristically we have found these couples using an
algorithm and presented them in the table below for a period T%.y. of 50,100 and
500 years. The probability of exceedance for each of the presented couples (z,y)
is an approximation of p rounded to the nearest 3 x 1076, 3 x 10~7 and 9 x 1078.

We present the couple having the closest exceedance probability to W in Table
5.16. o

Ty 50 100 500

Joint return levels | (40,238) (38,283) (54,266)

Table 5.16 — Return levels for 50,100 and 500 years return period

From this table we conclude that for example the vector (z,y) corresponding to
a joint return period of 50 years is (40,238) which means that with a probability of
6;50 extreme wind speed will exceed 40 m/s and the wave height will exceed 238 cm
simultaneously once every 50 years or 600 blocks. Note that the values 40 and 238
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are lower than the univarite 50-year return levels for wind speed and wave height
respectively since the couple (43.570, 284.839) of univariate 50 years return period
corresponds to a joint return period T%.. of 157.273 years.

5.4 Conclusion & perspectives

Extreme wind speed and wave height in the winter season in the north of Lebanon
are dependent but not perfectly. The study of their jointly risk is an important issue
to protect to the oil rig that will be installed in the northern Lebanese offshore.
The joint return period corresponding to the event that extreme wind speed and
wave height exceed simultaneously their univariate return levels of periods 7" and
T" respectively is higher than max(7,7"). The joint return period corresponding to
the event that either extreme wind speed or extreme wave height or both exceed
simultaneously their univariate return levels of periods 7" and T” respectively is lower
than min(7,7"). Finally, the results were found after completing missing data by
the missForest algorithm. Hence, it is important to check the existence or not of
an imputation method that outperforms the random forest algorithm. Moreover,
given the estimation of the univariate and joint return levels with return period of
50, 100 and 500 years, it remains to decide which of these combinations is the best
for the design of the oil rig’s components. The choice should be a trade-off between
the economical cost and the desired level of safety.
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Conclusion & Perspectives

The thesis has contributed to EVT at different levels.
The second chapter has shown that the permutation Bootstrap method based on
BM ranks and the order statistics of the original observations enhances the accuracy
of the GEV parameters. The BM ranks follow a distribution that is used in their
simulation. The method saves computation time by avoiding the permutation of the
original observations, forming blocks and computing BM at each time. It also leads
to a reduction of the mean square error (MSE) of the estimators.
The third chapter allows for a trend detection of the heteroscedastic extremes. Based
on the model of Einmahl et al. (2016), we propose three parametric models (log-
linear, linear and discrete log-linear) for the skedasis function ¢ = ¢y which represents
the variation of extremes in order to test the trend of extremes through time. The
estimators # in all the models are consistent and effective. The parametric tests
Hy: 0 =0 (resp. 8 <0) versus Hy : 6 # 0 (resp. # > 0) are proposed in order to
test the trend of ¢ and consequently conclude on the frequency of extremes. The
parametric test Hy : § = 0 versus H; : # # 0 is compared to the non paramet-
ric Kolmogorov-Smirnov test. The results show that the parametric test is more
powerful than the non parametric test which explains the usefulness of considering
parametric models of c.
In the fourth chapter the univariate EVT that incorporates covariates in the GEV
parameters is used and performs quite well for the prediction of the 20-year re-
turn level of precipitations for every month and station. The k-fold cross validation
method is more appropriate than the Akaike information criterion for model selec-
tion and results in more robust estimates.
In the last chapter we apply the univariate and bivariate EVT on wind speed and
wave height winter season data in a Lebanese northern region. We predict at a first
time the return levels of 50, 100 and 500 years for each environmental factor in order
to protect the oil rig that will be installed in the northern offshore from these risks.
To increase the level of safety, we study the risks of these two factors simultaneously
by using the bivariate EVT. We estimate joint exceedance probabilities above the
marginal return levels and correspond them to joint return periods. Heuristically
we finally estimate the joint return levels associated to a joint return period of 50,
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100 and 500 years.

The different chapters give rise to many questions and perspectives that should be
studied in the future. Some were already presented at the end of the chapters but
will be recalled here.

In the second chapter, it would be interesting to check the MSE reduction or the
behavior of the estimators based on simulated data that follow a different distribu-
tion than the Pareto.

In the framework of heteroscedastic extremes, many interesting parametric models
of the skedasis function ¢ can still be studied such as the change point model. In
this type of models, the function c is defined as

L if 0<t<s,
S
Cp78<t): 1_
Pyt s<t<1
1—s

Can the maximum likelihood and the moment methods be applied here for the esti-
mation of the parameters s and p? Are the estimators consistent and asymptotically
normal? The estimation seems more complex in this case because the statistical
model is not regular since the likelihood function is not differential with respect to
s. Also, are there any additional interesting parametric models that can be studied?
Could the study be done on abstract parametric models {cy, 6 € O}7

Moreover in Chapter 4, can we consider more complex models that improve the ac-
curacy of the estimations? Should we take the spatial dependence between stations
into account and incorporate it in the models?

Finally in Chapter 5, the wave height data was completed by the random forest al-
gorithm. Is there any other method that outperforms this algorithm and gives more
accurate estimations of the missing data? Also, how does the choice of the block
size (m = 15) affect the parameters estimation and consequently the return levels
estimation? Furthermore, it would be interesting to apply the results of Chapter 3
in order to test the presence of a trend for the wind speed and wave height data.
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