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Stroke and multiple sclerosis are two of the most destructive neurological diseases of the central nervous system. Stroke is the second most common cause of death and the major cause of disability worldwide whereas multiple sclerosis is the most common non-traumatic disabling neurological disease of adulthood.

Magnetic resonance imaging is an important tool to distinguish healthy from pathological brain tissue in diagnosis, monitoring disease evolution, and decision-making in personalized treatment of patients with stroke or multiple sclerosis.

Predicting disease evolution in patients with stroke or multiple sclerosis is a challenge for clinicians that are about to decide on an appropriate individual treatment. The etiology, pathophysiology, symptoms, and evolution of stroke and multiple sclerosis are highly different. Therefore, in this thesis, the statistical methods used for the study of the two neurological diseases are different.

The first aim was the identification of the tissue at risk of infarction in patients with stroke.

For this purpose, the classification methods (including machine learning methods) have been used on voxel-based imaging data. The data measured at hospital admission is performed to predict the infarction risk at one month. Next, the performances of the classification methods in identifying the tissue at a high risk of infarction were compared.

The second aim was to cluster patients with multiple sclerosis using an unsupervised method based on individual clinical and imaging trajectories plotted over five 5 years.

iii iv Clusters of trajectories would help identifying patients who may have an important progression; thus, to treat them with more effective drugs irrespective of the clinical subtypes.

The third and final aim of this thesis was to develop a predictive model for individual evolution of patients with multiple sclerosis based on demographic, clinical, and imaging data taken at study onset. The heterogeneity of disease evolution in patients with multiple sclerosis is an important challenge for the clinicians who seek to predict the disease evolution and decide on an appropriate individual treatment. For this purpose, the latent class linear mixed model was used to predict disease evolution considering individual and unobserved subgroup' variability in multiple sclerosis.

COMPOSANTES ET DEPARTEMENTS DE SCIENCES ET TECHNOLOGIE

1.12 Figure on the left side shows the diffusion of the water in space (isotropic diffusion). On the right side, the figure shows the diffusion in brain (anisotropic diffusion). λ 1 : axial diffusivity, (λ 2 + λ 3 )/2 : radial diffusivity, (λ 1 + λ 2 + λ 3 )/3 : mean diffusivity.

1.13 Ischemic core and penumbra after stroke. While neurons in the ischemic core are considered irreversibly damaged, neurons in the penumbra are salvageable and are potential targets for therapeutic interventions [43] FA takes the highest value (marked with red color) in the control subject whereas there is less red color in patients with MS, this indicates neurodegeneration. The lesions around CC are more visible on FA and MD maps [START_REF] Ge | Applications of diffusion tensor MR imaging in multiple sclerosis[END_REF]. . . . . . . . . . . . [START_REF] Freedman | Moving toward earlier treatment of multiple sclerosis: Findings from a decade of clinical trials and implications for clinical practice[END_REF] 1.28 Serial T2-FLAIR images (top row) and spin-echo MR (bottom row) recorded from baseline to one year in acute multiple sclerosis lesion. FLAIR images show the evolution of lesion size that increases during the first 20 days and decreases afterwards.

The spectroscopic graphs show a decrease in NAA from baseline up to 20 days and then stabilization up to 1 year. An increase in Cho during the first weeks followed by a partial recovery is also observed whereas Cr stays relatively stable at all time points [START_REF] Rovira | Magnetic resonance monitoring of lesion evolution in multiple sclerosis[END_REF] 

Introduction

The main objective is the application of appropriate statistical approaches in patients with neurological diseases such as ischemic stroke and multiple sclerosis to better characterize the disease evolution on the basis of demographic, clinical, and imaging date taken at study onset.

Ischemic stroke is defined as one of the most destructive neurological diseases and is the second most common cause of death and a major cause of disability worldwide [53].

Ischemic stroke occurs when the brain blood flow stops or is limited by a clot. The brain cells close to this area begin to die as they stop getting the oxygen and nutrients they need to function. One of the risk factors is ageing. Almost 75% of all strokes occur in people over the age of 65 and the risk of having a stroke more than doubles each decade after the age of 55. Additional risk factors for ischemic stroke are hypertension, diabetes, ischemic heart disease, atrial fibrillation, valvular heart disease, and cigarette smoking.

Stroke has a negative impact on psychological and social situations such as problems with family relationships, deterioration in sex life, economic difficulties related to loss of the work, and deterioration in leisure activities [45].

Multiple sclerosis (MS) is the most frequent disabling neurological disease in young adults [START_REF] La | Multiple sclerosis: It's not the disease you thought it was[END_REF]. MS is a demyelinating inflammatory, chronic disease of the central nervous system.

While its etiology remains unknown, it has been believed that the disease is triggered by environmental factor in genetically predisposed persons [START_REF] Staff | Multiple sclerosis with predominant, severe cognitive impairment[END_REF] [START_REF] Ramagopalan | Multiple sclerosis: risk factors, prodromes, and potential causal pathways[END_REF]. There is no cure for multiple sclerosis. However, treatments can help speed recovery from clinical symptoms and modify the evolution of the disease. The evolution of disability is very different from one patient to another [START_REF] Goldenberg | Multiple sclerosis review[END_REF]. Today's neurologists' challenge is to predict individual disability evolution on the basis of clinical, biological and imaging data.

Magnetic Resonance Imaging (MRI) is an important tool for diagnosis, monitoring the disease evolution, and decision-making in the personalized treatment of patients with stroke or MS. Various MRI parameters have been developed to obtain interesting information on a patient's state. In stroke, diffusion-weighted imaging (DWI) provides a marker of irreversibly damaged areas whereas perfusion-weighted imaging (PWI) is recommended to characterize the status of brain tissue blood supply [START_REF] Sorensen | Hyperacute stroke: Simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time[END_REF] [240] [START_REF] Hjort | Ischemic injury detected by diffusion imaging 11 minutes after stroke[END_REF]. In MS, the conventional imaging parameters (T1 and T2 Weighted Imaging, and FLAIR) have a high sensitivity in detecting lesioned area. Besides, the advanced imaging parameters (Diffusion Tensor Imaging and Magnetic Resonance Spectroscopic Imaging) are highly specific in detecting structural, functional, and metabolic changes that cannot be observed with conventional imaging [62] [56].

Chapter 1 details the statistical approaches such as the classification and clustering methods as well as the predictive models, respectively, in Section 1.1, Section 1.2, and Section 1.3. The section 1.4 provides the Magnetic Resonance Imaging and withal its sequences measured with conventional and advanced imaging. Afterward, brief reviews of stroke and multiple sclerosis -including their epidemiology, physiopathology, imaging, and diseasemodifying therapies-are given in Sections 1.5 and 1.6.

The following three chapters (Chapter 2, Chapter 3, and Chapter 4) provide the three main contributions of the thesis :

(a) Identification of the tissue at high risk of infarction in patients with ischemic stroke.

Identifying the tissue at high risk of infarction at one month may help the clinician treat stroke with more appropriate drugs. For this aim, we used five classification methods : four machine learning methods (Support Vector Machine, Artificial

Neural Networks, Random Forest, and Adaptative Boosting) and one regression model (Logistic Regression). The classification methods were performed based on voxel-based imaging data measured at hospital admission. The methods used to identify the tissue at high risk of infarction on voxel-based human data were compared mainly by the area under the precision-recall curve. The area under the ROC curve, sensibility, and specificity were also given to allow comparisons with previous results. Details on the classification methods used with stroke data, their results, and a discussion are given in Chapter 2.

(b) Clustering patients with multiple sclerosis on the basis of longitudinal clinical and imaging data.

There is no cure for MS; it is a lifelong disease that lasts until death. Thus, to observe changes in disability and decide on treatment, patients with MS have to be constantly followed up from diagnosis until death. For this purpose, clustering methods were used with longitudinal multiple sclerosis data, not for a given time point. As unsupervised approach, an extension of the k-means method was used to cluster single clinical and joint clinical & imaging trajectories. The clusters may help identifying distinct clinical forms of evolution (e.g., stable, progressive, and regressive evolution). Such a classification is useful, for example, to identify the patients who may have an important progression and could benefit from early intervention with more effective drugs.

Details on the implementation of the clustering methods on data on patients with MS, the results, and a discussion are presented in Chapter 3.

(c) Develop a statistical patient-specific model that predicts the progress of disability in multiple sclerosis on the basis of demographic, clinical, and multimodal imaging variables.

Clinicians need to predict short and long-term disability evolution in both the design of treatment trials with or without harmful therapies and to provide prognostic advice to individual patients.

One of the difficulties is the heterogeneity of individual clinical evolutions. Therefore, predicting individual disability courses is extremely difficult. For this, we used the latent class linear mixed model in order to consider individual variability as well as unobserved subgroups variability in patients with multiple sclerosis.

Another difficulty of predictive modeling of disability evolution is the clinico-radiological paradox. Indeed, the changes in the imaging information measured with lesion load, white and gray matter volume, and diffusion measures are not directly reflected in the clinical disability. For example, an increase of lesion load is not always correlated with the clinical symptoms. However, many studies have found that some To conclude, we summarize the thesis by discussing the results in Chapter 5. The supplementary information and the figures are provided in the Appendix. 

Chapter 1

State of the Art

Classification methods

Classification methods, including machine learning methods, is a branch of Artificial Intelligence that focus on systems that learn from training data. Machine learning is used for many applications of pattern classification and recognition in health, computer science, and economics such as the identification of cancerous cells, prediction of financial indices as currency exchange rates, sexing of faces, and speech recognition. The global aim of machine learning methods is to compute, learn, remember, and optimize in the same way as a human brain.

Constructing a classifier requires two steps. First, the training set is used to decide how the classifiers or the observations ought to be weighted and combined in order to better separate the observations into various classes. Second, the weights determined in the training set are applied to a set of observations to predict their classes.

This section presents the classification methods that are appropriate for the binary outcome y i (i.e. -1 vs 1 or healthy vs infarcted tissue). For a given observation set {(x 1 , y 1 ) , ..., (x i , y i ), ..., (x n , y n )}, where x i denotes the ith observation and y i is the label that corresponds to the ith observation for i ∈ 1, ..., n. The classification methods predict the outcome ŷi on the basis of m independent variables x im measured for each observation i (See Equation 1.1). The training process continues until the method achieves a desired level of accuracy on the training data.

x im = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ x i1 x i2 . . . x iM ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ x 11 x 21 . . . x n1 x 12 x 22 . . . x n2 . . . . . . . . . . . . x 1M x 2M . . . x nM ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (1.1)
This section provides an overview of four machine learning methods (Support Vector Machine, SVM; Artificial Neural Networks, ANN; Random Forest, RF; and Adaptative Boosting, ADA) and one regression model, the Logistic Regression (LR). These four machine learning methods are frequently used for binary classification and LR is an easily applicable method, compared to machine learning algorithms, but that does not require parameter estimation before the fit of the method.

Support Vector Machine

SVM was developed by Cortes & Vapnik for binary classification [42]. SVM aims to find an optimal linear hyperplane to separate observations into two classes with the help of two classes' closest points (also called support vectors) (See Figure 1.1). The support vectors help choosing the best border either through maximizing the distance between the border and the support vectors or through minimizing the number of misclassified observations. This means that SVM requires the solution of the following optimization problem:

minimize 1 2 w T w + C n i=1 i (1.2) respecting y i (w T φ(x i ) + b) ≥ 1 -i , i ≥ 0.
where • w is the normal (orthogonal) vector to the border,

• C > 0 the regularization constant that controls the trade-off between the margin optimization and the number of observations incorrectly classified,

• i is the misclassification rate (the number of the misclassified observations / the number of observations),

• φ is the projection function of the observations in the higher dimensional space. When the observations cannot be separated into two dimensions by a linear hyperplane, they are projected in a higher dimensional space H where a linear separation is possible.

The observations appear only inside dot products with other observations. More precisely, when a projection φ : X -→ H is used, the dot product of two observations x i and x j is represented by a kernel function K:

K(x i , x j ) = φ(x i ) T φ(x j ) (1.3) 
There are four basic kernel functions: linear, polynomial, radial basis, and sigmoid functions. In this thesis, the radial basis function (RBF) was performed because it is the most used and recommended because of its good performance for complex data and the few number of parameters [START_REF] Wei | A practical guide to support vector classification[END_REF]. RBF is defined as below:

K(x i , x j ) = exp(-γ||x i -x j || 2 ), γ > 0 (1.4)
where γ is the kernel parameter.

The signed distance to the border provides the class of an observation. A zero distance corresponds to an observation located right on the border : a positive distance means it is located in one of the classes (for example, the sick side), whereas a negative distance means it is located in the other class (thus, healthy side). The border is defined as < w, φ(x) > +b, thus, the decision function [START_REF] Karatzoglou | Support vector machines in R[END_REF] is:

f (x) = sign(< w, φ(x) > +b) (1.5)
where b is a constant.

Artificial Neural Networks

ANN constitute a mathematical representation of natural neural networks composed of artificial neurons (See Figure 1.2) [START_REF] Jain | Artificial neural networks: A tutorial[END_REF]. In the network, artificial neurons are organized in layers. Each network is composed of several types of layers: (1) an input layer composed of all inputs, (2) an output layer gives the final outcomes ŷi , and (3) one (or more) hidden layers between the input and the output layer consist(s) of a set of neurons that process the data and are connected to the input and output layers (See Figure 1.2). Artificial neurons are interconnected by weights -corresponding to the strengths between neuronsin such a way that information propagates from one layer to the next. 

x i × w i (1.6)
where x i is the ith observation and w i is the weight associated with the ith input.

Afterward, in a two-class classification problem, the weighted sum can be dichotomized with a threshold value b in the activation function. The neuron gives the output 1 if the weighted sum is above the threshold. Otherwise, the output is equal to 0. 

: E = 1 2 × n i=1 ( ŷi -d i ) 2 (1.7)
where ŷi is the predicted output and d i is the observed value of the observation i.

ANN improve their performances by providing a better "relationship" between input and output, which means providing better weights between neurons [82] [102]. A "backpropagation" learning strategy [START_REF] Hecht-Nielsen | Theory of the backpropagation neural network[END_REF] was realized by updating the weights according to the error obtained by the network at the output. The back-propagation learning strategy is defined as :

1. the weights and threshold are initialized with small random values 2. network computes the outcome ŷi 3. the weights are updated according to

w ij (t + 1) = w ij (t) + Δw ij (1.8)
where w ij is the weight between neuron i and neuron j in two different layers, t is the iteration number, and Δw ij is a constant.

The commonly used method to find Δw ij is gradient descent which aims to minimize the cost function E. Thus, Δw ij is defined as :

Δw ij = -η ∂E ∂w ij (1.9)
where η is the learning rate defined at the beginning of network.

The learning process continues until the minimum gradient of the error function is reached.

Random Forest

RF is an ensemble model which combines several decision trees to produce a more accurate prediction than a simple decision tree [23]. In this study, the binary classification trees (Classification and Regression Trees (CART)) [24] will be presented and used to classify the observations into two groups (See Figure 1.4). The aim of a binary classification tree is to separate the observations into two classes with the variables v l at root node and splits. A subsample of variables is randomly created for each tree and its size is fixed a priori (mtry). The best variable is chosen within a subsample of variables for each split and root node according to the Gini Indice. The decision tree optimizes the homogeneity at split and root node by minimizing the Gini Indice defined as :

≥

Gini Indice = p 1 (1 -p 1 ) + p 2 (1 -p 2 ) (1.10)
where p 1 and p 2 are respectively the proportions of observations in class 1 and class 2.

Whenever one split becomes sufficiently homogeneous, the classification stops in this split.

RF builds several bootstrap samples from the original data and fits a decision tree to each sample (See Figure 1.5) [23]. The tree fitted for each sample is different from another tree due to the randomly chosen subsample of variables v l . This makes RF more flexible and powerful. For a given observation, the outcome of the random forest ŷ is the majority vote of binary decision trees results. 

Bootstrap all data in n samples

Adaptative Boosting

ADA method includes a boosting algorithm that refers to a family of algorithms which converts "weak" classifiers to "strong" classifiers by combining the predictions of different weak classifiers (See Figure 1.6) [START_REF] Schapire | A brief introduction to boosting[END_REF]. Thus, the prediction is much more accurate than any prediction by the weak classifiers.

ALL DATA ….. The ADA uses a set of decision trees h t (called the weak classifiers) for t ∈ {1, ..., T } and corrects sequentially the classification weighting the misclassified observations obtained from the previous decision tree (See Figure 1.6). The classification of the first tree is performed with the initial weights which are the same for all observations. However, the weights of misclassified observations are increased after each decision tree classification to focus on the observations that are difficult to classify (See Equation 1.12). The performance of each tree is estimated according to the misclassification error of the decision tree

Output= sign ( )

Initial
( t = P r[h t (x i ) = y i ]
) and the weights which are given to the observations (See Equation 1.11). For a given observation, the output is the result of the classification of each tree weighted by its performance (See Equation 1.13). The ADA algorithm [START_REF] Schapire | A brief introduction to boosting[END_REF] is defined as follows:

• Given (x i , y i ) = {(x 1 , y 1 ), ..., (x n , y n )} where x i ∈ X and

y i ∈ {-1, +1} • Initialize w 1 (i) = 1/n
For t = 1, ...T :

1. Train weak classifier (CART) using distribution w t

Get weak hypothesis h

t : X → {-1, +1} 3. Estimate α t = 1 2 ln( 1 -t t ) (1.11)
4. Update the weight

w t+1 (i) = w t (i) Z t × K t = w t (i)exp(-α t y i h t (x i )) Z t (1.12)
where Z t is a normalization factor chosen so that w t+1 will be a distribution and

K t = e -αt if h t (x i ) = y i , K t = e +αt if not. • The output of algorithm is ŷi = sign( T t=1 α t × h t (x)) (1.13)

Logistic Regression

LR is an appropriate and easy-to-apply regression analysis when the binary output y i is modeled by one or more than one independent variable(s) x im . In LR, the probability of being in one class π i is defined as:

π i = 1 1 + e -(β 0 + M m=1 βm×x im ) (1.14)
where β 0 is the intercept and β m the effect size of one unit change of the independent variable x im on the output. When β m is positive, it can be interpreted as a positive association. However, a negative β m means that this variable is a negative association.

β m = 0 means that the independent variable m has no effect on the output.

The probability of being in one class π i can be dichotomized then with a threshold value in order to obtain a binary output.

The parameter estimation for β m can be obtained by maximizing the likelihood function is defined as:

L(β m ) = n i=1 π(x im ) y i × (1 -π(x im )) 1-y i (1.15)
LR assumes before the application of the method such as:

1. independence of observations. This means that the observations should not come from repeated measurements or matched data, 2. uncorrelated (independent) error terms, 3. no multicollinearity among independent variables (for example, weight and body mass index are correlated, so we ca not use both in the same model).

Evaluation criteria for methods comparison

Let y i be a binary observation where y i ∈ {0, 1} (e.g. y i = 1 for sick observations and y i = 0 for healthy observations). The classification methods provide the probability of being in one class (π i ) which can be dichotomized afterward with a threshold value τ . The observation is labeled 1 when the probability of being in one class is above the threshold of the biomarker τ , and otherwise the observation is labeled 0. Sensitivity is the ability of a classification method to classify correctly "sick" observations. Thus, sensitivity is the probability of having a positive result for a sick observation and is defined as :

Se = P (T + |M +) = P (T + ∩M +) P (M +) = TP TP + FN (1.16)
Chapter 1: State of the Art Specificity is the ability of a classification method to classify correctly the "healthy" observations. Thus, specificity is the probability of having a negative result for a healthy observation and is defined as:

Sp = P (T -|M -) = P (T -∩M -) P (M -) = TN TN + FP (1.17)
Sensitivity and specificity depend on the threshold value τ . So, increasing the threshold value decreases the sensitivity and increases the specificity [213] [84].

The area under the Receiver Operating Curve (AUC roc ) plots Sensitivity as a function of 1-Specificity at different threshold points of a biomarker. Sensitivity and specificity are calculated for each threshold and the sensitivity/specificity pair creates a curve called ROC. The area under the ROC is a measure of how well a biomarker is able to distinguish between two binary responses.

AUC roc = +∞ -∞ Se(τ )d{1 -Sp(τ )} (1.18)
AUC roc is an evaluation criterion which is independent of the imbalance in the data.

AUC roc can overestimate the performance of the method, for example, for a data where there are more healthy observations than sick observations. This problem can be overcome with the area under the Precision Recall Curve and some authors have recommended the use of the AUC pr in addition of the AUC roc in studies with low prevalence values [48] [155].

The area under the Precision Recall Curve (AUC pr ) plots Precision as a function of Sensitivity at different threshold points of a biomarker whenever Precision is defined as:

Precision = P (M + |T +) = P (M + ∩T +) P (T +) = T P T P + F P (1.19)
The area under Precision Recall Curve (AUC pr ) is defined as:

AUC pr = +∞ -∞ P recision(τ )d{Se(τ )} (1.20)
Unlike sensitivity and specificity, AUC roc and AUC pr do not depend on the threshold value.

Clustering methods for longitudinal data

In data analysis, clustering is a standard procedure to explore the characteristics of groups 

y i.. = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ y i.A y i.B . . . y i.M ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ y i1A y i2A . . .
y i1M y i2M . . . y itM ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (1.21)
where each line corresponds to a single trajectory for a variable and t represents time.

Distance between two trajectories

Several distance metrics are possible to determine the distance between two single or joint trajectories. However, we will present only two distance metrics frequently used in the literature: the Euclidian distance and the Manhattan distance.

Distance between two single trajectories

The Euclidian distance between two single trajectories y i and y j of individuals i and j is defined as:

Dist(y i , y j ) = 1 t t k=1 (y ik -y jk ) 2 (1.22) 
where t represents time.

The Manhattan distance is more robust than the Euclidian distance in case of unusual values like outliers [START_REF] Kaufman | Finding Groups in Data: An Introduction to Cluster Analysis[END_REF] and is defined as:

Dist(y i , y j ) = t k=1 |y ik -y jk | (1.23)

Distance between two joint trajectories

Let y 1.. and y 2.. be the joint trajectories of individuals i = 1 and j = 2. The distance between two joint trajectories is defined as d(y i.. , y j.. ) = d(y 1.. , y 2.. ) and can be considered as the distance between two matrices. )).

The Euclidean distance between two joint trajectories y i.. and y j.. can be computed as:

Dist(y 1.. , y 2.. ) = t X (y 1tX , y 2tX ) 2 (1.25)
where t and X represent, respectively, the time and variable.

The Manhattan distance between two joint trajectories is defined as:

Dist(y i , y j ) = t X |y itX -y jtX | (1.26)

Data standardization

The variables that generate the joint trajectories are not always expressed in the same unit. The variable with the larger scale may have a heavier weight than the other variables. This is not desired in cluster analysis [START_REF] Everitt | Cluster analysis[END_REF].

The solution is to normalize the single variable trajectories with the mean y ..X and the standard deviation sd ..X of the variables calculated over all individuals and time points, not on a given individual or time point. The normalized single variable trajectory for variable X is defined as below:

y itX = y itX -y ..X sd ..X (1.27)
The normalized joint trajectory is defined as the matrix obtained with normalized single variable trajectories as shown below:

y i.. = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ y i.A y i.B . . . y i.M ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
(1.28)

Optimal number of clusters

The number of clusters should be set before the clustering is performed. The most frequently used criterion to determine the "optimal" number of clusters are the Calinski & Harabatsz criterion C(g) for a given cluster number g. Other versions have been published such as Kryszczuk C K (g) and Genolini variants C G (g) [29] [117] [START_REF] Genolini | kml and kml3d: R packages to cluster longitudinal data[END_REF] [144] [START_REF] Shim | A comparison study of cluster validity indices using a nonhierarchical clustering algorithm[END_REF].

In addition to Calinski & Harabatsz criterion and its variants, Davies & Boudin [47] and

Ray & Turi [START_REF] Ray | Determination of number of clusters in k-means clustering and application in colour segmentation[END_REF] criteria may be also used to evaluate the discrimination ability for the purpose of choosing the number of clusters.

The Calinski & Harabatsz criterion combines the within (W) and between (B) variance matrix defined as:

(W) = G g=1 ng i=1 (y gi -y g ) × (y gi -y g ) T (B) = G g=1 n g (y g -y) × (y g -y) T (1.29)
where g represents the cluster in {1, . . . G} and n g is the number of trajectories in the cluster g.

So, the Calinski & Harabatsz criteria are defined as

C(g) = Trace(B) Trace(W ) × n -g g -1 C K (g) = Trace(B) Trace(W ) × n -1 n -g C G (g) = Trace(B) Trace(W ) × n -g √ g -1 (1.30)
where Trace(B) and Trace(W ) represent, respectively, the sum of the diagonal coefficients of B and W , n is the total number of trajectories and g represents the number of clusters.

A high value of Trace(B) indicates a great distance betweence clusters while a low value of Trace(W ) indicates close trajectories in each cluster. Thus, a high value of Trace(B) and a low value of Trace(W ) mean that the number of cluster g ensures good discrimination.

The cluster number k is chosen so as to maximize the C(g),C K (g), and C G (g).

K-means for trajectories

K-means is an unsupervised learning algorithm that classifies a given data set into a certain number of clusters fixed a priori [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF]. K-means belongs to the Expectation-Maximization (EM) class and follows two steps (E-step and M-step) as below:

1. (E-step) A trajectory that corresponds to an individual is randomly assigned to a cluster and the mean of the trajectories is defined as the center of the cluster 2. (M-step) The distance between a trajectory and the center of the clusters is calculated and then each trajectory is assigned to the nearest cluster.

The EM algorithm continues until the trajectories stop to change place.

K-means algorithm can be used to cluster single and joint trajectories using software Rproject (https://www.r-project.org/) (respectively, with the kml and kml3d packages [START_REF] Genolini | kml and kml3d: R packages to cluster longitudinal data[END_REF]).

Predictive modeling for longitudinal data

In this section, we will present the linear mixed model and its extension called the latent class linear mixed model. These models are useful for longitudinal data and allow for individual differences and the correlation due to repeated measures. The advantage of the latent class linear mixed model versus the standard linear mixed model is that both the fixed effects and the distribution of random effects can be class-specific. The classspecific changes may be due to unobserved groups called latent classes. So, there are two types of heterogeneity in the latent class linear mixed models: heterogeneity between individuals and heterogeneity between latent classes.

We will present first the linear mixed model and the way parameter estimation and individual prediction are performed. The transition to the latent class linear mixed model will be more straightforward. Second, we will present the latent class mixed model, parameter estimation, the choice of the number of latent class, the posterior probability of being in the latent classes, the marginal and subject-specific predictions, and the model evolution criteria.

The linear mixed model

The linear mixed model [START_REF] Laird | Random-effects models for longitudinal data[END_REF] is a flexible approach to take into account correlated data due to repeated measures obtained at successive time points. The linear mixed model includes jointly inter-individual changes (random effects) apart from the population effect which is the same for all individuals (fixed effects). The random effect refers to the way individual measurements spread out from the common effects (with different intercepts or/and slope for each individual).

Let Y i. be the repeated outcome for individual i as Y i. = (Y i1 , ..., Y in i ) where n i represents the number of the repeated measures. The linear mixed model for subject i can be written as:

Y i = X i β + Z i u i + i (1.31)
where X i is a n i × p corresponds to the matrix for the vector of fixed effects β in length p and Z i is a n i × q design matrix for the vector of random effects u i in length q. The linear mixed models assume that the population is homogeneous and that the random effects are normally distributed as u i ∼ N (0, B). i are the measurement errors that are assumed to be normally distributed with mean zero and covariance matrix σ 2 I n i (n i is the number of repeated measures of individual i) and to be independent from the random effects u i .

Parameter Estimation

Parameter estimation in a linear mixed model is possible with the maximum likelihood (ML) method. First, we define the marginal distribution of Y i :

Y i ∼ N (X i β, V i = Z i BZ T i + σ 2 I i ) (1.32)
This notation is used for estimating a set of fixed effect parameters θ (β, B and σ 2 ). The likelihood function for the set of parameters θ is characterized as below:

L i (θ) = φ i (Y i ; θ) = N i=1 ( 1 2π 
)

n i 2 × |V i | -1/2 × exp(- 1 2 (Y i -X i β) T × V -1 i × (Y i -X i β)) (1.33)
where φ i is the density function at individual level with individual specific mean and variance μ i = X i β and V i = Z i BZ T i + σ 2 I i and N is the number of individuals.

The parameters can be estimated maximizing log-likelihood log(L i (θ)). The maximization of the log-likelihood requires an iterative algorithm. Two possible algorithms may be used:

the Expectation -Maximization (EM) algorithm and the Newton-Raphson algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the em algorithm[END_REF] [68]. The latter is generally preferred because of it convergences faster [START_REF] Lindstrom | Newton-raphson and em algorithms for linear mixed-effects models for repeated-measures data[END_REF]. For this reason, the Marquardt algorithm, a Newton-Raphson-like method was used in this work.

-Marquardt algorithm

Marquardt algorithm [START_REF] Marquardt | An algorithm for least-squares estimation of nonlinear parameters[END_REF] is an iterative method of the Newton-Raphson family that is used to find the stationary points (local maximum or minimum) of a differential function f . To find the stationary points x which provide f (x) = 0, we need to calculate the second derivate of the twice-differentiable function f . At the stationary points, the gradient is equal to zero as -∂f (x) ∂x = -∇(x).

Here, function f was defined as the log-likelihood function and we searched the convergence through 1. the gradient (first derivative) of the log-likelihood function for the θ values as

- ∂log(L i (θ)) ∂θ = -∇(θ) (1.34)
2. the second derivative of the log-likelihood function (also called Hessian)

- ∂ 2 log(L i (θ)) ∂θ 2 = H(θ) (1.35)
The Marquardt algorithm which is defined in the equation 1.36 updates the parameters θ until the convergence of the function.

θ (k+1) = θ (k) -δ × ( H-1 (θ k )) × ∇(θ (k) ) (1.36)
where δ is normally equal to 1 but may be modified to ensure the log-likelihood is improved at each iteration and H-1 is the inverse of the positive defined Hessian matrix at diagonal terms where for H = Hij , Hii =

H ii + λ × [(1 -η)|H ii | + η × tr(H)].
Initial values of λ and η are fixed as 0.01 by default, they are may be decreased when H is chosen positive and increased if not.

Convergence is reached when all three following criteria are satisfied (1) m j=1 (θ

(k) j - θ k-1 j ) 2 ≤ 10 -4 , (2) |L (k) -L (k-1) | ≤ 10 -4 , and (3) ∇(θ (k) ) T (H (k) ) -1 ∇(θ (k) ) ≤ 10 -5 .

Prediction

First, we will present the prediction of the random effects by the Empirical Bayes method, then, the marginal and individual (subject-specific) predictions.

Empirical Bayes estimates of random effects:

The marginal distribution of Y and the distribution of the random effect are respectively defined as Y i ∼ N (Xβ, V i ) and u i ∼ N (0, B). So, the covariance between Y i and u i can be written as follows:

cov(Y i , u i ) = cov(X i β + Z i u i + i , u i ) = cov(X i β, u i ) + Z i var(u i , u i ) + cov( i , u i ) = 0 + Z i B + 0 = Z i B (1.37)
The covariance between Y i and u i is used afterward to obtain the joint distribution of Y i and u i :

⎛ ⎜ ⎜ ⎝ Y i u i ⎞ ⎟ ⎟ ⎠ ∼ N ⎛ ⎝ ⎛ ⎜ ⎜ ⎝ X i β 0 ⎞ ⎟ ⎟ ⎠ , ⎛ ⎜ ⎜ ⎝ V i Z i B BZ T i B ⎞ ⎟ ⎟ ⎠ ⎞ ⎠ (1.38)
This distribution helps obtaining the esperance of random effects conditional to the response variable as defined below:

E(u i , Y i ) = E(u i ) + cov(u i , Y i )var(Y i ) -1 [Y i -E(Y i )] = 0 + BZ T i V -1 i (Y i -X i β) = BZ T i V -1 i (Y i -X i β) (1.39)
So, the Empirical Bayes estimates of the random effects u i can be written including the estimated fixed effect parameter β as

ûi = BZ T i V -1 i (Y i -X i β) (1.40)

Marginal and subject-specific predictions:

The marginal and subject-specific predictions can be calculated by replacing the fixed parameters, and Bayes estimates of the random effects by their estimated values ( β and ûi ) in the equation 1.31.

Marginal and subject-specific predictions in the linear mixed model are calculated as

Ŷ (M ) ij = X T ij β Ŷ (SS) ij = X T ij β + Z T ij ûi (1.41)
where i indicates the individual and j the time.

So, the marginal and subject-specific residuals are defined as:

R(M) ij = Y ij - Ŷ (M ) ij R(SS) ij = Y ij - Ŷ (SS) ij (1.42)

The latent class linear mixed model

Linear mixed models assume that there is a unique distribution of the population with a unique mean for all individuals. This means that the population is homogeneous among all individuals. However, Verbeke and Lesaffre [START_REF] Verbeke | A linear mixed-effects model with heterogeneity in the random-effects population[END_REF] introduced the mixture of random effects that corresponds to the unobserved variability between sub-groups which may be present in the given data. The latent class linear mixed model is an extension of the linear mixed models for a heterogeneous population divided into G unobserved subgroups (also called latent classes). So, the latent class linear mixed model provides g different distributions, so g different means for each subgroup g ∈ {1, ..., G} within the population with a common covariance matrix B.

The latent class linear mixed model can be written as

Y ij | c i =g = X 1ij β + X 2ij γ g + Z ij u ig + ij (1.43)
where X 1ij and X 2ij are the covariate matrices and associated with the vector of fixed effects, at population and latent class levels, respectively. Z ij is the class-specific covariate matrix of class g and is associated with the random effects u ig ∼ N (μ g , B g ) where u g and B g are, respectively, the class-specific mean and the covariance matrix.

The probability of belonging to latent class g can be calculated with the multinomial logistic model:

p ig = P (c i = g|X ci ) = e ξ 0g +X T ci ξ 1g G k=1 e ξ 0k +X T ci ξ 1k (1.44)
where c i represents the latent class for individual i, ξ 0g is the intercept of the latent class g, X ci represents the individual class-specific covariate matrix, ξ 1g is a class specific parameter and G is the total number of latent classes. ξ 0g and ξ 1g are equal to 0 for identifiability [START_REF] Proust-Lima | Estimation of extended mixed models using latent classes and latent processes: The R package lcmm[END_REF].

Parameter Estimation

The difference between parameter estimation in the latent class linear mixed model versus the linear mixed model is that the parameters are estimated for each latent class.

In the latent class linear mixed model, the parameter estimation is possible with the maximum likelihood method [START_REF] Verbeke | A linear mixed-effects model with heterogeneity in the random-effects population[END_REF] [149] [165] [START_REF] Komárek | A new R package for bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data[END_REF]. The likelihood function for an individual i for the set of parameters θ G (β and γ g ) is defined as:

L i (θ G ) = G g=1 p ig × φ ig (Y i |c i = g; θ G ) = G g=1 P (c i = g|X ci , θ G ) × φ ig (Y i |c i = g; X 1i , X 2i , Z i , θ G ) (1.45)
where p ig is the probability of belonging to a latent class g and φ ig is the density function of a normal distribution (marginal distribution of Y i conditional on the random effects and latent classes) with mean X 1i β + X 2i ν g + Z i μ g and variance

V i = Z i B g Z T i + σ I n i .
The parameters can be estimated by maximizing the log-likelihood l(θ G ) defined as:

l(θ G ) = N i=1 log(L i (θ G )) (1.46)
Parameter optimization may be performed with the Marquardt algorithm of the Newton-Raphson method (See Section 1.3.1).

Choice of the number of latent classes

The number of latent classes cannot be estimated and has to be known before fitting the model through evaluation criteria. In the literature, the choice of the number of latent classes is calculated by the help of the Akaike's information criterion (AIC), the Bayesian Information Criterion (BIC), or the consistent AIC (CAIC) [20] [137] [148]. However, the AIC tends to overestimate the number of classes whereas the BIC tends to underestimate this number in small sample sizes [START_REF] Mclachlan | Finite mixture models[END_REF].

The number of latent classes that minimizes the BIC value is preferred [89] [15]. The BIC criterion is defined as

BIC(G) = -2L(θ G ) + n θ log(N ) (1.47)
where G is the number of latent classes, n θ the number of estimated parameters and N the number of individuals.

Posterior probability and Classification

For a given individual, the posterior probabilities of belonging to each latent class may be calculated. The sum of these probabilities is equal to 1 ( G g=1 p g = 1).

The posterior probability for individual i of belonging to class g is defined by Bayes theorem as:

pig = p ig (c i = g|X i , Y i , θ) = P (c i = g|X ci , θ) × φ ig (Y i |c i = g, X 1i , X 2i , Z i , θ) G k=1 P (c i = k|X ci , θ) × φ ik (Y i |c i = k, X 1i , X 2i , Z i , θ) (1.48)
where θ is the set of estimated parameters with equation 1.45.

Then, each individual i is assigned to the latent class g that gives him the highest posterior probability of belonging pig . The mean of the posterior probabilities in each class may help evaluating the quality of the discrimination ability of the fitted model. For example, if all individuals are classified in a class with a posterior probability equal to 1, the mean posterior probability will be equal to 1. This means that the classification performed with the model is perfect. The ability of the discrimination performed with this model weakens as the mean of the posterior probabilities approaches zero.

Prediction

Empirical Bayes estimates of random effects:

The Empirical Bayes estimates of random effects in the latent class mixed model is transformed from the linear mixed model defined in equation 1.40. So, the class-specific empirical Bayes estimate for the latent class models is defined as:

ûig = w 2 g BZ T i V -1 ig (Y i -X 1i β -X 2i γg ) (1.49)
where w g is a proportional coefficient that allows for a class-specific intensity of individual variability (w g = 1 for identifiability).

Marginal and subject-specific predictions

In the latent class mixed model, the marginal and subject-specific predictions can be calculated by replacing the fixed and random effect parameters by their estimated ( β, γg , and ûig ) values in equation 1.43.

When G> 1, the class-specific marginal and subject-specific predictions in the latent class linear mixed model are calculated as

Ŷ (M ) ijg = X T 1ij β + X T 2ij νg Ŷ (SS) ijg = X T 1ij β + X T 2ij νg + Z T ij ûig (1.50)
The class-specific subject-specific residuals are calculated with the average of the subjectspecific predictions over all classes as:

R (M ) ij = Y ij - G g=1 pig × Ŷ (M ) ijg R (SS) ij = Y ij - G g=1 pig × Ŷ (SS) ijg (1.51)
Finally, the evolutions of the class-specific mean are calculated for each class weighting the mean of the subject-specific predictions by the class-membership probabilities as defined in equation 1.48.

Evaluation criteria

The performance of a latent class linear mixed model can be assessed with several evaluation criteria [37] such as:

1. BIC values 2. Comparison of the subject-specific predictions with the observed values 3. The mean of the posterior probabilities calculated at each class (as indicated above)

4. The proportion of individuals with a posterior probability located over a given threshold (e.g., 0.8 or 0.5 depending on the classification ambiguity).

Entropy measure as 1 -

- N i=1 G g=1 pig ×log(p ig ) N ×ln(G)
. The discrimination ability is better when the entropy is close to 1.

Imaging

Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging method that has a wide range of applications in medical fields to discriminate the healthy tissue from pathological tissue, in the diagnosis and follow-up of many diseases. Moreover, MRI has progressively gained in importance in neurosciences because of its ability to produce high quality images of brain and spinal cord tissue in any plane.

MRI can be divided mainly in two groups such as conventional and advanced imaging. As a next step for obtaining the images, a radio frequency (RF) pulse is applied to the part of the body being imaged. This is an electromagnetic wave and RF causes the protons to change their orientation (See Figure 1.8) and to gain the energy. Once the source of RF is switched off, the protons return to their previous state quickly, i.e. relaxation. In relaxation process, the protons emit an amount of energy that is translated into images. One example of RF pulses is the 90-degree RF pulse that flips the entire net magnetization vector (summation of all the magnetic moments of the individual protons) by 90 degrees to the transverse plane (See Figure 1.9). When the pulse is turned off, two processes begin simultaneously: increase of the magnetization on longitudinal plane and decrease of the magnetization on transverse plane. Most MRIs are in black/white with shades of gray : the white color refers high signal intensity, the grey color corresponds to the intermediate signal intensity, and the black color refers to low signal intensity. A hyperintensity is an area that appears brighter in color than the area we are comparing it to; a hypointensity would be darker in color.

Conventional Imaging T1-Weighted Imaging

T1-Weighted Imaging (T1WI) uses differences in the T1 relaxation times of tissues and reflects the amount of time that the protons realign with the main magnetic field B 0 in longitudinal plane after RF pulses turn off. T1WI shows a high spatial resolution and a high contrast between gray and white matter because of their different relaxation time. Chronic tissue damage is better seen in hypointense. Besides, T1-weighted images measure the volume and thickness of the cerebral cortex, which provides valuable information on neurodegenerative diseases as well as many other neurological diseases [START_REF] Jack | Medial temporal atrophy on MRI in normal aging and very mild alzheimer's disease[END_REF].

A contrast agent (called gadolinium) can be injected before the imaging process which improves the visibility of some pathologies. This imaging is called Contrast-Enhanced T1-Weighted Imaging and frequently used for Multiple Sclerosis patients to visualize the lesions clinically silent [13].

T2-Weighted Imaging

T2-Weighted Imaging (T2WI) highlights differences in the T2 relaxation time of tissues and reflects the amount of time that the protons realign with the main magnetic field in transverse plane. T2WI is used for characterizing abnormalities such as edema, tumors, inflammation, and white matter lesions [START_REF] Roebuck | Carr-Purcell-Meiboom-Gill imaging of prostate cancer: quantitative T2 values for cancer discrimination[END_REF] [79] [START_REF] Thavendiranathan | Improved detection of myocardial involvement in acute inflammatory cardiomyopathies using T2 mapping clinical perspective[END_REF].

Fluid-Attenuated Inversion Recovery

The fluid-attenuated inversion recovery (FLAIR) imaging corresponds to T2WI in hyperintension where the signal intensity of Cerebro Spinal Fluid (CSF) is suppressed. By using the FLAIR imaging, the periventricular hyperintense lesions such as multiple sclerosis lesions become more noticeable because CSF is suppressed [4]. For this reason, FLAIR is often preferred to T2WI because it better visualizes lesions in periventricular regions.

In addition, FLAIR imaging is highly used in stroke to contour the boundaries of the irreversibly damaged brain tissue in stroke patients.

The difference between T1WI, T2WI and FLAIR is shown on Figure 1.10. The CSF appears dark on T1WI and FLAIR images, but brighter in color with T2WI. Moreover, T2WI and FLAIR show White Matter (WM) in dark gray, and Gray Matter (GM) in light gray. In addition, T1WI shows white matter in gray and white matter brighter in color. 

Perfusion-Weighted Imaging

Perfusion-Weighted Imaging (PWI) allows measuring hemodynamic circulation within the cerebral parenchyma after injection of a contrast agent (gadolinium). PWI is most commonly used with T2WI because of the linear relationship between the tissue contrast agent concentration and the change in the T2 relaxation time [START_REF] Rosen | Perfusion imaging with NMR contrast agents[END_REF] [START_REF] Schaefer | Diffusion-weighted MR imaging of the brain[END_REF]. The passage of the contrast agent causes a loss of signal because T2WI is exquisitely sensitive to intravoxel linewidth changes [START_REF] Villringer | Dynamic imaging with lanthanide chelates in normal brain: Contrast due to magnetic susceptibility effects[END_REF]. The tissue signal changes caused by susceptibility of T2WI create a hemodynamic time-concentration intensity curve presented in Figure 1.11.

The arrival of the contrast agent is calculated in each voxel of the scanned tissue using a voxel-specific curve fitting to an estimated gamma variate function (See Figure 1.11) [START_REF] Østergaard | High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results[END_REF]. PWI provides measurements of cerebral blood volume for a given amount brain tissue and the temporal delays of the first pass of gadolinium circulation [START_REF] Østergaard | High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results[END_REF] [241] such as:

• the volume of blood in a given amount of brain tissue: cerebral blood volume (CBV).

In addition, the area under the concentration-time curve gives the CBV.

• the volume of blood passing through a given amount of brain tissue per unit of time: cerebral blood flow (CBF) • the mean transit time (time taken to transit through the tissues by the contrast agent, MTT= CBV/ CBF)

• the time to peak of the tissue concentration-time curve (TTP)

• the time to the peak of the residue function obtained by deconvolution (TMAX)

Diffusion-Weighted Imaging

Diffusion-Weighted Imaging (DWI) shows the random Brownian motion of water molecules within a voxel of cerebral tissue. Cerebral abnormalities leads to energy metabolism changes with the failure of the Na+/K+ and other ionic pumps [START_REF] Leiva-Salinas | Imaging of ischemic stroke[END_REF]. This causes a transfer of water from the extracellular to the intracellular part causing a cytotoxic edema [7].

The reduction of water diffusion in the extracellular compartment is detected with DWI within minutes of vessel occlusion and the magnitude of diffusion (of water molecules) can be assessed quantitatively with the apparent diffusion coefficient (ADC) [208] [171]. This assessment can be done using different acquisition parameters via changing gradient amplitude. The relationship between DWI, ADC parameters, and the acquisition parameter is given in equation 1.52:

DW I = S 0 × exp(-b × ADC) (1.52)
where b is the acquisition parameter and determines the strength and duration of the diffusion gradients and S 0 is signal intensity without diffusion weighting [START_REF] Rana | Diffusion-weighted imaging and apparent diffusion coefficient maps in a case of intracerebral abscess with ventricular extension[END_REF].

Advanced Imaging Diffusion Tensor Imaging

Diffusion Tensor Imaging (DTI) is a very sensitive method in identifying the microstructural changes in the CNS that cannot be measured with conventional imaging [START_REF] Rovaris | Diffusion MRI in multiple sclerosis[END_REF]. DTI is based on a three-dimensional measurement of water mobility in three dimensions within tissues. Water mobility is equally distributed (isotropic). However, because of the highly organized myelinated axonal fiber tracts, the diffusivity of water is not the same in all directions (anisotropic) and water mobility is higher in one dimension than in the others (See Figure 1.12). Longitudinal diffusivity reflects at diffusion parallel to the fibers(axial diffusivity λ a = λ 1 ), the mean of the two other diffusivities is called radial diffusivity

(λ r = (λ 2 + λ 3 )/2
) and the mean of all of three diffusivities is called Mean Diffusivity (MD) (MD = (λ 1 + λ 2 + λ 3 )/3) and MD is independent from the orientation of the structures. Another dimensionless index of anisotropy of DTI is the fractional anisotropy (FA). FA takes values between 0 and 1: 0 for complete isotropy and 1 for completely anisotropy. 

Overview of Stroke 1.5.1 Introduction

Stroke is considered as one of the most destructive neurological diseases and is the second most common cause of death and major cause of disability worldwide [53]. Stroke has also a negative impact on psychological and social situations such as problems with family relationships, deterioration in sex life, economic difficulties related to loss of the work, and deterioration in leisure activities [45].

Strokes are either ischemic or hemorrhagic, their managements are thus very different.

Almost 85% of strokes are ischemic resulting from deterioration of blood flow by occlusion of an artery by an embolus from the heart or from acute thrombotic occlusion within the brain [10]. when the blood flow interruption is severe or lasts a long time, death of brain tissue occurs and an irreversibly infarcted zone is formed within the brain. This zone is called ischemic core (See Figure 1.13). When the blood flow is less severe, or the interruption occurs during only a short period of time, the brain tissue may recover partially or completely. This salvageable tissue is known as ischemic penumbra and is the target of the therapeutic interventions.

Figure 1.13: Ischemic core and penumbra after stroke. While neurons in the ischemic core are considered irreversibly damaged, neurons in the penumbra are salvageable and are potential targets for therapeutic interventions [43].

The National Institutes of Health Stroke Scale (NIHSS) is an assessment tool that provides a quantitative measure of stroke-related neurologic damage. The NIHSS is widely used to evaluate disability in patients with stroke, determine the appropriate treatment, and predict patient outcome. A practitioner evaluates the patient's ability to answer questions and perform activities considering the levels of consciousness, language, neglect, visualfield loss, extraocular movement, motor strength, ataxia, dysarthria, and sensory loss.

The NIHSS ranges between 0 and 42: 0 for no stroke symptoms, 1-4 for minor stroke, 5-15 for moderate stroke, 16-20 for moderate to severe stroke, and 21-42 for severe stroke [START_REF] Spilker | Using the NIH stroke scale to assess stroke patients. the NINDS rt-PA stroke study group[END_REF].

The risk factors for ischemic stroke can be classified into two subgroups: modifiable and unmodifiable. The modifiable risk factors are hypertension, diabetes, ischemic heart disease, atrial fibrillation, valvular heart disease, cigarette smoking. The unmodifiable risk factor is age. The risk of stroke doubles every decade above age 55 [START_REF] Johnston | Global variation in stroke burden and mortality: estimates from monitoring, surveillance, and modelling[END_REF]. In developed countries, stroke affects usually people aged 70-75 years whereas stroke occurs in people less than 60 years in Sub-Saharan Africa [154] [41]. As hypertension causes at reduction in the external diameter of blood vessels; it has a powerful effect on the cerebral circulation [START_REF] Iadecola | Hypertension, angiotensin, and stroke: beyond blood pressure[END_REF]. For this reason, hypertension is the second strongest risk factor and people with hypertension are almost 3 or 4 times more likely to have a stroke [34].

Epidemiology

Stroke is the second leading cause of death worldwide with an annual mortality rate of 5.5 million people [START_REF] Lopez | Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data[END_REF]. The rate of stroke changes geographically. The highest rate is observed in Eastern Europe, North Asia, Central Africa, and the South Pacific (See Figure 1.14) [START_REF] Howard | The reasons for geographic and racial differences in stroke study: Objectives and design[END_REF]. The high rate of stroke is partly related to poverty, thus lack of knowledge about stroke risk factors and its warning signs in low-and middle-income countries [START_REF] Feigin | Atlas of the global burden of stroke (1990-2013): The GBD 2013 study[END_REF].

A recent study (in 2015) has indicated that the absolute number of people affected by stroke has substantially increased across all countries in the world over the same time period between 1990 and 2013, even in developed countries [START_REF] Feigin | Atlas of the global burden of stroke (1990-2013): The GBD 2013 study[END_REF].

Figure 1.14: Global distribution of stroke mortality rates [START_REF] Johnston | Global variation in stroke burden and mortality: estimates from monitoring, surveillance, and modelling[END_REF].

Pathophysiology

Cells of the Central Nervous System

A neuron is the basic unit of the nervous system. It mainly consists of

• a cell body that can be seen as the main part of the neuron where the nucleus is located,

• an axon surrounded by myelin sheaths and regular gaps (also called nodes of Ranvier) that helps transmitting electrical signals,

• dendrites extending from the cell body to receive the input elements to propagate to the cell body (See Figure 1.15).

The electrical signals are received by the dendrites from other neurons, pass through the cell body and then propagate by the axon to another neuron by synapses where the axon of one neuron meets the dendrite of another. This structure shows the unidirectional signaling of neuron mechanism [START_REF] Kandel | The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB[END_REF]. The myelinated axons are found in the CNS as bundles and the structure of these bundles is called the "white matter" because of the white colored fatty substance (myelin sheaths).

The other parts of the neuron such as cell bodies, dendrites, and unmyelinated axons form a structure called "gray matter" of the CNS. Due to saltatory conduction characteristic of a myelinated neuron, the white matter allows a quick transmission of signals between different areas of the gray matter within the CNS.

Pathophysiology in stroke

The future of brain cells located in the ischemic penumbra depends on changes in the blood flow. A brain cell needs about 50ml/100g/min blood flow with an oxygen metabolic rate of 3.5cc/100g/min [30] [START_REF] Dirnagl | Pathobiology of ischaemic stroke: an integrated view[END_REF]. When the blood flow decreases below 10ml/100g/min, braincell functions are severely impaired. Moreover, neurons are unable to survive longer when the blood flow is below 5ml/100g/min [30] [52]. In complete absence of blood flow, the tissue becomes infarcted in 2-3 minutes.

If the blood flow is not restored, an ischemic cascade starts with an accumulation of sodium, calcium, and water inside the damaged neurons and other cells (in 3-24 hours).

This leads to the release of excitatory neurotransmitters that cause further deterioration of the blood-brain barrier (BBB) (in 2 days -2 weeks) [52] [132]. The latter deterioration allows water to come out of the blood vessels. Thus, the net volume of water in the ischemic core increases causing vasogenic edema.

Imaging of Stroke

The first step after patient admission is distinguishing ischemic stroke from hemorrhagic stroke. This information is needed for an appropriate treatment of all patients with stroke.

The imaging tools help in diagnosis and patient follow-up. Computed tomography (CT)

and MRI are the most frequently used imaging tools for patients with stroke. However, MRI has more advantages than CT though its acquisition time is longer. One of the advantages of MRI is its better ability to distinguish hemorrhage from thrombus than CT imaging [START_REF] Warach | Imaging of acute stroke[END_REF]. Therefore, here, we will use MRI parameters.

DWI provides a marker of irreversibly damaged areas whereas PWI is recommended to characterize the status of brain tissue blood supply and to identify the reversible area in ischemia [START_REF] Sorensen | Hyperacute stroke: Simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time[END_REF] [240] [START_REF] Hjort | Ischemic injury detected by diffusion imaging 11 minutes after stroke[END_REF]. However, there is a high discrepancy between the lesions identified by DWI vs. PWI while the performances of DWI and PWI data combined has been shown superior to that of DWI data or PWI data alone in identifying the tissue at risk of infarction [205] [240]. , showing high signal intensity on the DWI and low signal intensity on the ADC parameter in a patient with ischemic stroke [START_REF] Meulman | Ischemic cardiomyopathy and cerebral infarction in a young patient associated with khat chewing[END_REF].

FLAIR imaging at one month after stroke onset is commonly used to locate the boundaries of the irreversibly damaged brain tissue in patients with stroke [21]. Figure 1.17 provides T2WI, FLAIR and DWI parameters in a patient with ischemic stroke. The T2WI and FLAIR show similar hyperintense signals. However, the infarcted core close to ventricular regions is better identified with FLAIR. DWI shows the infarcted area in hyposignal and reveals no evidence of associated ischemia.

Figure 1.17: T2, FLAIR and DWI imaging in ischemic stroke [START_REF] Guerrero | Encephalopathy, hypoglycemia, and flailing extremities: A case of bilateral chorea-ballism associated with diabetic ketoacidosis[END_REF].

Disease-modifying therapies

The ischemic penumbra can be observed as a mismatch between a large PWI lesion and a smaller DWI lesion (See Figure 1.18). Figure 1.19 shows also the mismatch observed with DWI and PWI parameters on the human brain. The images show that the infarcted core observed on DWI is smaller than the reversibly damaged area shown with PWI. The ischemic penumbra can be observed in at least 80% of patients within 3 h of stroke onset, but the number of patients with penumbra decrease with time [START_REF] Rother | Effect of intravenous thrombolysis on MRI parameters and functional outcome in acute stroke[END_REF]. The probability of penumbra' infarction is related to the severity and duration of the hypoperfusion [27]. The ischemic penumbra is the target of therapy and DWI/PWI mismatch is highly used to identify patients who are the most likely to benefit from thrombolytic treatment beyond 3 hours after an ischemic stroke [53]. Treatments to re-open the blocked blood vessel and reperfuse the brain are available. Intravenous recombinant tissue plasminogen activator (tPA) is the only licensed therapy for treatment of acute ischemic stroke and the use of this treatment within the first 3 hours after stroke onset is recommended [231] [218]. Its effectiveness is improved when applied but the benefits decrease rapidly over the first few hours after stroke onset.

The aims of tPA are arterial recanalization and recovering of the ischemic penumbra, a viable but critical region around the irreversibly damaged infarct core [START_REF] Symon | Recovery of brain function after ischaemia[END_REF]. The use of tPA is associated with tissue reperfusion and a decrease in infarct growth, presence, and magnitude of the ischemic penumbra after a certain period of time [158] [121].

Meta-analyses have indicated that tPA may be effective in a smaller portion of patients beyond 3 hours [174] [83]. Approximately 2% to 5% of patients with acute ischemic stroke receive tPA because this drug may cause intracranial hemorrhage and other troubles. For example, one of the meta-analyses has shown that symptomatic intracranial hemorrhage, major systemic hemorrhage, and angioedema have been observed in approximately 6%, 2%, and 5% of patients, respectively, of patients treated with tPA.

Overview of Multiple Sclerosis 1.6.1 Introduction

MS is a chronic inflammatory disease characterized by demyelinating plaques and neurodegeneration within the central nervous system (CNS) [32] [103]. The immune system attacks the myelin sheath that covers the nerves and then gives rise to clinical abnormalities. The etiology of MS is still unknown, but it has been believed that the disease is triggered by environmental factors in a person who is genetically predisposed [209] [167].

The active inflammatory phase in the CNS can cause relapses defined as worsening of existing symptoms or appearance of new symptoms that last more than 24 hours and happen at least 30 days after a previous relapse. Clinical worsening can be observed between the relapses but many patients recover from their relapses without worsening.

The length, severity, and number of relapses, as well as clinical disability evolution are highly heterogeneous between patients. Therefore, a powerful long-term prediction of relapses or clinical evolution is currently very difficult.

Moreover, there is no stopping disease therapy for multiple sclerosis. Disease-modifying drugs, including immunotherapies, do exist and help reducing autoimmune disorders, thus, speed recovery from relapses, reduce inflammation. These drugs may then change the course of the disease and manage symptoms.

Epidemiology

MS is the most common non-traumatic disabling neurological disease of adulthood. It occurs generally between ages 18 and 40 years [38]. The estimated global prevalence of MS is approximately 30/100 000 and there were at least 1.32 million patients with MS according to the 2008 MS Atlas [26]. Even the etiology of MS is still largely unknown but there are evidence for roles of both environmental and genetic factors (ultraviolet rays, vitamin D levels, cigarette smoking, and migrations) [START_REF] Staff | Multiple sclerosis with predominant, severe cognitive impairment[END_REF] [167].

Environmental factors

There are large differences in the reported prevalence of MS, both within and between countries (See Figure 1.20 France is in an area with a medium to high prevalence of MS. French farmers account for only 7% of the French population and the prevalence of MS changes significantly between the northeastern and the southwestern regions [START_REF] Vukusic | Regional variations in the prevalence of multiple sclerosis in French farmers[END_REF] (See Figure 1.21). Another study found no north-south gradient for MS prevalence but confirmed the high prevalence in the North-Eastern France in a large population representative of the French population [START_REF] Fromont | Geographic variations of multiple sclerosis in France[END_REF]. 

Genetic factors

The heterogeneous prevalence of MS in different regions cannot be explained by one or a few known environmental factor(s). Major differences in prevalence are observed between countries located at the same latitude. Moreover, similar prevalences occur in regions with individuals of same ethnic origin [START_REF] Sadovnick | A population-based study of multiple sclerosis in twins: Update[END_REF]. It is suspected that there is a role for susceptibility genes in the development of MS [146] [237].

The familial occurrence of MS has an effect because MS prevalence increases with the increase of kinship degree. The big concordance rate in monozygotic twins (20-30%) versus dizygotic twins (3-5%) indicates a major genetic etiologic contribution [START_REF] Suarez | Power of the affected-sib-pair method to detect disease susceptibility loci of small effect: An application to multiple sclerosis[END_REF] [55] [START_REF] Sadovnick | A population-based study of multiple sclerosis in twins: Update[END_REF].

Many genetic studies have shown the genes that encode for the major histocompatibility complex (MHC) (also known as the human leukocyte antigen (HLA) system) have the strongest effect on MS among genetic factors [1] [152] [11] [START_REF] Yeo | A second major histocompatibility complex susceptibility locus for multiple sclerosis[END_REF].

Women are also twice more affected than men in most of studies. In Europe, the ratio ranges from 1.1 to 3.4 [2] [55] [START_REF] Kurtzke | Multiple sclerosis in time and space -geographic clues to cause[END_REF].

Physiopathology

MS is an inflammatory, demyelinating, and neurodegenerative disease of the CNS [START_REF] Filippi | Association between pathological and MRI findings in multiple sclerosis[END_REF].

The disease presents first as an inflammation of the CNS provoked by T-cells, B-cells, and macrophages. Inflammatory can provoke then the neurodegeneration; demyelination and axonal loss form then lesions (also called plaques) in the white and/or the grey matter [START_REF] Noseworthy | Multiple sclerosis[END_REF] [92] [START_REF] Sã | Physiopathology of symptoms and signs in multiple sclerosis[END_REF]. The lesions are located within the brain, primarily in myelin-dense white matter regions including the corpus callosum, the spinal cord, and then optic nerves.

Further, lesions may lead to brain atrophy [START_REF] Filippi | Association between pathological and MRI findings in multiple sclerosis[END_REF] [70] [START_REF] Eshaghi | Temporal and spatial evolution of grey matter atrophy in primary progressive multiple sclerosis[END_REF]. Many white matter lesions are detected around the ventricles but lesions may also occur in the deep white matter far from the ventricles as well as in the grey matter [START_REF] Lassmann | The immunopathology of multiple sclerosis: An overview[END_REF].

Lesions in Corpus Callosum

As indicated above, MS affects especially the white matter of the brain and the lesions appear mostly around the ventricles and within the periventricular white matter. The floor of the lateral ventricles is formed by a region named Corpus Callosum (CC) (See figure 1.22), one of the most frequently affected regions: in 93% of Patients with MS, lesions were found in CC [14] [77] [START_REF] Ge | Multiple sclerosis: The role of MR imaging[END_REF]. Moreover, CC is the major myelinated bundle of the brain and provides the connection between cortical and subcortical regions of brain hemispheres. For this reason, the effects of lesions in CC are more severe versus lesions in the lobar white matter. Several studies demonstrated that callosal changes measured with Diffusion Tensor Imaging (DTI) were correlated with cognitive and physical disability [START_REF] Yaldizli | Corpus callosum index and long-term disability in multiple sclerosis patients[END_REF] [173] [198] [127]. The association between clinical scores and CC atrophy measured with conventional imaging is reported in some studies [START_REF] Schreiber | Correlations of brain MRI parameters to disability in multiple sclerosis[END_REF] [242] [START_REF] Ozturk | MRI of the corpus callosum in multiple sclerosis: association with disability[END_REF].

As a conclusion, the biophysical and biochemical changes in all the CNS -due to the lesions-may give rise to clinical symptoms or signs. As the density of these alterations and their location in the CNS differs from one patient to another, the disease evolution is also highly heterogeneous among patients with MS.

Evolution and severity of clinical disability Evolution of clinical disability

The length, severit, number of relapses, and clinical disability evolution are highly heterogeneous between patients. Thus, patients with MS do not present a homogeneous Clinically isolated syndrome (CIS) patients show the first clinical episode such as optic neuritis, brainstem syndrome, or partial myelitis. This syndrome is known as the first phase of RR and should be followed-up to determine the subsequent disease evolution.

Several studies have shown that the majority of patients shift toward RR within two or three years of follow-up [110] [143].

A relapse (also called attack) is defined as the appearance of new clinical symptoms or signs lasting at least 24 hours with a one-month interval before the next attack. Most patients (85%) initially have RR characterized by discrete relapses with full or partial recovery accompanied by little or no disability evolution. However, over time RR can progress to SP where the frequency of relapses decreases and the disability progression is observed between relapses [START_REF] Lublin | New multiple sclerosis phenotypic classification[END_REF]. Approximately 65% patients with RR develop SP within 5-15 years of symptom onset [START_REF] Runmarker | Prediction of outcome in multiple sclerosis based on multivariate models[END_REF] [187]. A minority of patients (15%) have PP where the irreversible progression has occurred from the beginning in the absence of relapses [START_REF] Thompson | Primary progressive multiple sclerosis[END_REF].

PP is considered to be a mostly noninflammatory subtype [130] [38].

The inflammation phase in the white matter is mostly observed among RR patients and the focal inflammatory event in the CNS is the main cause of relapses [START_REF] Vollmer | The natural history of relapses in multiple sclerosis[END_REF]. The inflammation may lead to axonal loss then to brain atrophy which is more frequently observed among patients with progressive evolution (PP and SP) [START_REF] Lassmann | The immunopathology of multiple sclerosis: An overview[END_REF]. Brain atrophy can be seen as the result of the transition from RR to SP patients and associated with irreversible Relapse frequency decreases giving rise to axonal loss followed by permanent disability [START_REF] Vollmer | The natural history of relapses in multiple sclerosis[END_REF].

Severity of clinical disability

The Expanded Disability Status Scale (EDSS) is the most frequently used clinical severity score to quantify disability in MS. The EDSS scores range from 0 to 10 by 0.5 unit increments where 0 indicates no disability and 10 death due to MS (See Table 1.2). EDSS scoring between 0 and 4.5 uses impairment measures in eight functional systems (FS):

1. pyramidal (motor function) -weakness or impairment moving limbs The EDSS score has been criticized for some limitations: (1) it focuses on walking as the main measure of disability because it is a mixture of impairment and disability, (2) its non-linearity because the progression between 1 and 5 is faster than between 5 and 7 [238] [START_REF] Sharrack | Clinical scales for multiple sclerosis[END_REF].

MS progression may also be scored with the multidimensional score, the Multiple Sclerosis Functional Composite (MSFC) [START_REF] Rudick | The multiple sclerosis functional composite: a new clinical outcome measure for multiple sclerosis trials[END_REF]. The MSFC combines three timed tests into a single score and includes a timed 25-foot walk (T25FW), the nine-hole peg test (9HPT), and the Paced Serial Addition Test (PASAT). T25FW is averaged over 2 consecutive walks and reported in seconds. The 9HPT measures the manual dexterity and ask participants to repeatedly place and remove nine pegs into nine holes, one at a time, as quickly as possible. The 9HPT is passed with both the dominant and non-dominant hand twice and is scored in seconds. The PASAT is a challenging task that involves working memory, attention, and arithmetic capabilities. A number is given every 3 seconds and the patient is asked to add it to the number he/she has just heard before. PASAT is scored between 0 and 60; the total number of correct answers is 60. 

Score

5.5

Disability severe enough to preclude full daily activities. Able to walk without aid or rest for 100m

6.0

Requires a walking aid -cane, crutch, etc -to walk about 100m with or without resting

6.5

Requires two walking aids -pair of canes, crutches, etc -to walk about 20m without resting

7.0

Unable to walk beyond approximately 5m even with aid. Essentially restricted to wheelchair; though wheels self in standard wheelchair and transfers alone.

Up and about in wheelchair some 12 hours a day

7.5

Unable to take more than a few steps. Restricted to a wheelchair and may need aid in transferring. Can wheel self but cannot carry on in standard wheelchair for a full day and may require a motorized wheelchair

8.0

Essentially restricted to bed or chair or pushed in a wheelchair. Maybe out of bed itself much of the day. Retains many self-care functions. Generally has effective use of arms

8.5

Essentially restricted to bed much of day. Has some effective use of arms retains some self-care functions 9.0 Confined to bed. Can still communicate and eat

9.5

Confined to bed and totally dependent. Unable to communicate effectively or eat/swallow 10.0 Death due to MS Table 1.2: The Expanded Disability Status Scale (EDSS) [START_REF] Jf | Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS)[END_REF].

Imaging in MS

MRI is an important tool and the most extensively used technique in diagnosing and monitoring MS. MRI has a high sensitivity and a high specificity in detecting white and gray matter abnormalities even in case of clinically silent lesions of the CNS. The abnormalities observed on MRI reflect the underlying pathology: inflammation and axonal degeneration [START_REF] Katz | Correlation between magnetic resonance imaging findings and lesion development in chronic, active multiple sclerosis[END_REF] [22]. Conventional imaging parameters are essential and acquired in all patients with MS: they have a high sensitivity in detecting lesions. In addition, the advanced imaging parameters are highly specific in detecting structural, functional, and metabolic changes which can not be observed with conventional imaging [START_REF] Filippi | Non-conventional MR techniques to monitor the evolution of multiple sclerosis[END_REF] [START_REF] Sbardella | DTI measurements in multiple sclerosis: Evaluation of brain damage and clinical implications[END_REF].

Conventional imaging in MS

Conventional MRI has been found very promising in MS because: The most frequently used conventional MRI techniques to assess MS evolution are T1WI, contrast-enhanced T1WI, T2WI and FLAIR [START_REF] Filippi | Magnetization transfer magnetic resonance imaging of the brain, spinal cord, and optic nerve[END_REF] [START_REF] Simon | Update on multiple sclerosis[END_REF]. T1WI and T2WI have important specificities and sensitivities in detecting tissue damage and to provide valuable predictive information on the evolution of MS [START_REF] Filippi | Non-conventional MR techniques to monitor the evolution of multiple sclerosis[END_REF] [START_REF] Fisniku | Gray matter atrophy is related to long-term disability in multiple sclerosis[END_REF].

T1-Weighted Imaging

The hypointense lesions (also called black holes) shown with T1WI were significantly correlated with disease progression and disability [START_REF] Truyen | Accumulation of hypointense lesions ("black holes") on T1 spin-echo MRI correlates with disease progression in multiple sclerosis[END_REF].

The early phase of neurodegeneration, the inflammatory edema, can be better observed in hyperintense with contrast-enhanced T1WI. Gadolinium is injected before imaging acquisition and it improves the visibility of inflammation as ringlike structure in T1WI (See Figure 1.25). Normally, gadolinium cannot pass from the bloodstream into the brain or the spinal cord because of a protection layer: the blood-brain barrier (BBB). However, the lesions may disrupt the BBB allowing gadolinium to pass through. Contrast-enhanced T1WI is thus able to detect clinically silent lesions, 5 to 10 times more frequently than clinical evaluation of relapses [13]. periventricular, juxtacortical, infratentorial, and spinal cord (See Table 1.4) [START_REF] Polman | Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria[END_REF] . Some cross-sectional studies have shown that brain atrophy observed with T2 imaging is significantly associated with physical disability [9] [8] [START_REF] Sormani | Magnetic resonance imaging as a potential surrogate for relapses in multiple sclerosis: A meta-analytic approach[END_REF]. Moreover, the baseline gray matter T2 hypointensity seems to be a strong predictor of the rate of whole brain atrophy over 2 years in RR patients who used the placebo because interferon may cause the brain atrophy [17].

FLAIR The suppression of the CSF helps to detect the lesions close to the CNS, for example, the periventricular part of the CNS. Some lesions can be detected by T1 or T2WI but can appear with FLAIR. FLAIR imaging is also the best way to identify lesions located in corpus callosum that cannot be seen by T2WI (See Figure 1.26) [4], thus, may help to differentiate MS from cerebrovascular diseases [START_REF] Ge | Multiple sclerosis: The role of MR imaging[END_REF] . However, in FLAIR imaging, the contrast between the gray and the white matter is low, thus FLAIR has a relatively low sensitivity in detecting lesions located in the brainstem or the cerebellum, and performs less well in the posterior regions [START_REF] Renard | Brain MRI findings in long-standing and disabling multiple sclerosis in 84 patients[END_REF].

Advanced imaging in MS

In MS research, advanced imaging has demonstrated higher degrees of sensitivity and specificity in detecting inflammation and neurodegeneration than conventional imaging [START_REF] Filippi | Non-conventional MR techniques to monitor the evolution of multiple sclerosis[END_REF] [56] because they provide complementary information such as diffusion alteration and metabolic information in MS [START_REF] Filippi | The role of non-conventional magnetic resonance techniques in monitoring evolution of multiple sclerosis[END_REF] [62] [START_REF] Filippi | Diffusion tensor magnetic resonance imaging in multiple sclerosis[END_REF]. DTI and MRSI are the two most frequently used advanced technique in MS. DTI is able to separate MS subtypes because the patients in different subtypes display different diffusivity patterns [START_REF] Sbardella | DTI measurements in multiple sclerosis: Evaluation of brain damage and clinical implications[END_REF]. MRSI imaging enables quantifying metabolic abnormalities and leads to a better understanding of the processes that occurring in lesion.

Diffusion Tensor Imaging DTI parameters inform about myelin and axonal loss as well as about the degree of inflammation. The measurements of λ r and λ a are significantly correlated with, respectively, myelin and axonal content [START_REF] Song | Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water[END_REF]. MD and FA are primarily influenced by the free space caused by axonal and myelin loss and there is a significant difference between myelinated and non-myelinated nerves [START_REF] Horsfield | Diffusion magnetic resonance imaging in multiple sclerosis[END_REF] [236] [START_REF] Filippi | Magnetic resonance diffusion tensor imaging and tractography of the lower spinal cord: application to diastematomyelia and tethered cord[END_REF]. The presence of demyelination causes more space in the brain that increases MD and decrease FA measurements. Moreover, MD has been found useful for distinguishing different level of MS lesions, which may be linked to various grades of clinical disability [START_REF] Scanderbeg | Demyelinating plaques in relapsing-remitting and secondary-progressive multiple sclerosis: Assessment with diffusion MR imaging[END_REF]. It has been shown that there is a significant difference in DTI parameters such as λ a , λ r , MD and FA between PP patients and control group [START_REF] Preziosa | Intrinsic damage to the major white matter tracts in patients with different clinical phenotypes of multiple sclerosis: A voxelwise diffusion-tensor MR study[END_REF] [START_REF] Sijens | Analysis of the human brain in primary progressive multiple sclerosis with mapping of the spatial distributions using 1H MR spectroscopy and diffusion tensor imaging[END_REF].

Several studies have demonstrated that callosal changes measured with DTI were correlated with cognitive and physical disability [START_REF] Yaldizli | Corpus callosum index and long-term disability in multiple sclerosis patients[END_REF] [173] [START_REF] Llufriu | Influence of corpus callosum damage on cognition and physical disability in multiple sclerosis: A multimodal study[END_REF]. FA measurements were significantly lower in rostrum, body and splenium part of CC in patients with MS versus control group where MD was significantly greater [START_REF] Hasan | Diffusion tensor fractional anisotropy of the normal-appearing seven segments of the corpus callosum in healthy adults and relapsing-remitting multiple sclerosis patients[END_REF] [START_REF] Rueda | Diffusion tensor MR imaging evaluation of the corpus callosum of patients with multiple sclerosis[END_REF]. The association between EDSS scores and CC atrophy as measured by conventional MR is indicated in some studies [START_REF] Schreiber | Correlations of brain MRI parameters to disability in multiple sclerosis[END_REF] [87] [START_REF] Warlop | Diffusion weighted callosal integrity reflects interhemispheric communication efficiency in multiple sclerosis[END_REF] [START_REF] Yaldizli | Corpus callosum index and long-term disability in multiple sclerosis patients[END_REF]. However, no significant correlation was found between disability and callosal atrophy as measured by conventional MR in RR patients [12]. These contrasts can result from insufficiency of conventional imaging of CC; the use of advanced MRI techniques such as DTI can be more suitable for CC in patients with MS (See Figure 1.27). FA takes the highest value (marked with red color) in the control subject whereas there is less red color in patients with MS, this indicates neurodegeneration. The lesions around CC are more visible on FA and MD maps [START_REF] Ge | Applications of diffusion tensor MR imaging in multiple sclerosis[END_REF].

Magnetic resonance spectroscopic imaging NAA is known as a neuronal marker of persistent neuronal/axonal damage [6] [210] [18]. The decrease in NAA indicates neuronal/axonal dysfunction or loss [5] [START_REF] Sajja | Proton magnetic resonance spectroscopy in multiple sclerosis[END_REF]. Cho, Cr, Glu, Lac, and lipids inform about the pathophysiology of the inflammatory phase and tissue repair mechanisms in MS.

Moreover, an increase in Cho:Cr ratio was found significantly related to acute lesion and inflammation which are observed in gadolinium injected T1-weighted lesions (See Figure 1.28) [START_REF] Wolinsky | Proton magnetic resonance spectroscopy in multiple sclerosis[END_REF] [START_REF] Larsson | Localized in vivo proton spectroscopy in the brain of patients with multiple sclerosis[END_REF].

In active inflammatory MS lesions, an increase in Cr and Cho and a decrease in NAA value have been observed. Also, in chronic lesions, NAA concentration decrease associated with axonal damage [31]. Changes in NAA and Cho inform about axonal damage and were found more correlated with the EDSS score than conventional MRI at an early stage of the disease [49]. Another study showed that the axonal damage assessed by NAA:Cr ratio decrease has a stronger correlation with clinical disability than T2-weighted lesion volume [START_REF] Fu | Imaging axonal damage of normal-appearing white matter in multiple sclerosis[END_REF]. The spectroscopic graphs show a decrease in NAA from baseline up to 20 days and then stabilization up to 1 year. An increase in Cho during the first weeks followed by a partial recovery is also observed whereas Cr stays relatively stable at all time points [START_REF] Rovira | Magnetic resonance monitoring of lesion evolution in multiple sclerosis[END_REF].

Diagnosis

Clinical, imaging and laboratory exams help clinician confirm the diagnosis of MS. Patients with MS present a wide variety of clinical signs and symptoms such as fatigue, pain, depression, ataxia, bladder, bowel or sexual dysfunction, spasticity, sensory, visual, and cognitive impairments [START_REF] Rao | Cognitive dysfunction in multiple sclerosis. i. frequency, patterns, and prediction[END_REF] [START_REF] Söderström | Optic neuritis: prognosis for multiple sclerosis from MRI, CSF, and HLA findings[END_REF] [145] [46] [START_REF] Opara | Quality of life in mulptiple sclerosis[END_REF].

In addition to clinical examination, MRI is effective in diagnosing and monitoring the disease and also in assessing the effect of treatments on relapses in clinical trials [START_REF] Mcdonald | Recommended diagnostic criteria for multiple sclerosis: Guidelines from the international panel on the diagnosis of multiple sclerosis[END_REF] [222] [START_REF] Filippi | MRI criteria for the diagnosis of multiple sclerosis: Magnims consensus guidelines[END_REF]. Generally, one key element in MS diagnosis is the assessment of its "dissemination in space" (DIS, the lesions are observed in more than one region of the CNS) and "dissemination over time" (DIT, disease occurrence at different times: at least 30 days between two events). The sensitivity of MRI in identifying focal white matter abnormalities and clinically silent lesions plays an important role in evaluating DIS and DIT. Together with a contrast agent, MRI allows identifying inflammatory lesions as active and non-active [START_REF] Werring | The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis: a serial diffusion MRI study[END_REF] [START_REF] Traboulsee | The role of MRI in the diagnosis of multiple sclerosis[END_REF].

In the beginning, Schumacker criteria were used for diagnosis with DIS and DTI assessments of neurological impairments in different regions of the CNS (See table 1.3) [START_REF] Schumacher | Problems of experimental trials of therapy in multiple sclerosis: Report by the panel on the evaluation of experimental trials of therapy in multiple sclerosis[END_REF].

Then, Poser criteria included CSF evaluations and paraclinical data as supplementary criteria to identify whether a person had possible, probable, or definite MS [START_REF] Poser | New diagnostic criteria for multiple sclerosis: Guidelines for research protocols[END_REF]. The criteria were revised in 2001, 2005, and 2010 and called "McDonald criteria". The latter incorporate clinical, paraclinical, and imaging data that help diagnosing MS in patients with a variety of disease presentations (See Table 1.4) [START_REF] Mcdonald | Recommended diagnostic criteria for multiple sclerosis: Guidelines from the international panel on the diagnosis of multiple sclerosis[END_REF] [162] [START_REF] Polman | Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria[END_REF]. These criteria underline the importance of MRI, especially T2-weighted lesions in spinal cord imaging, in the early diagnosis of MS [START_REF] Polman | Diagnostic criteria for multiple sclerosis: 2005 revisions to the "McDonald criteria[END_REF] [START_REF] Polman | Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria[END_REF]. The reform of the latter criteria excluded the use of a contrast agent, saving thus time and cost.

Requirements for the diagnosis of clinically-definite MS

1. Objective abnormalities on neurological examination attributable to dysfunction of the CNS.

2.

Historical or objective evidence of the involvement of two or more separate parts of the CNS.

3.

Objective signs of CNS disease should be attributable the white matter, with more than minor gray matter involvement disqualifying.

One of the following temporal patterns:

a. Two or more episodes of worsening (relapse); each lasting at least 24 h, separated by one month or more. b. Slow or step-wise progression of signs and symptoms over at least 6 months.

5.

Patients aged 10 -50 years.

6.

No better explanation for patient's signs and symptoms. Table 1.3: Schumaker criteria for the diagnosis of MS [START_REF] Schumacher | Problems of experimental trials of therapy in multiple sclerosis: Report by the panel on the evaluation of experimental trials of therapy in multiple sclerosis[END_REF].

Prognosis

Many articles have studied the prognostic values of clinical and imaging parameters measured at study onset in predicting short-term and long-term MS evolution. A poor prognosis is generally associated with old age at MS onset, male sex, the involvement of multiple systems, a great number of relapses, and a rapid increase in EDSS score during the first few years [39] [50] [187] [START_REF] Scalfari | The natural history of multiple sclerosis, a geographically based study 10: relapses and long-term disability[END_REF]. Not only the relapse frequency but also the type of relapse may be important. Patients with high rates of motor and sphincter relapses have an increased risk of developing a secondary progressive disease after a relapsing-remitting evolution [16].

Optic neuritis is the first sign in some MS patients [START_REF] Ebers | Optic neuritis and multiple sclerosis[END_REF]. Optic neuritis is the inflammation and loss of the myelin covering the optic nerve and retina. MRI measures during optic neuritis relapse give important clinical information on the risk of future MS [START_REF] Söderström | Optic neuritis: prognosis for multiple sclerosis from MRI, CSF, and HLA findings[END_REF] [START_REF] Optic | Multiple sclerosis risk after optic neuritis: Final optic neuritis treatment trial follow-up[END_REF].

Besides, pyramidal and cerebellar scores are significantly associated with the time elapsed from disease onset to EDSS 3, EDSS 6, and the transition to secondary progression [44] Number of relapses As for imaging parameters, lesion load has been found to be an important prognostic measure in CIS patients [25] [3] [START_REF] Fisniku | Gray matter atrophy is related to long-term disability in multiple sclerosis[END_REF]. A high baseline brain volume predicts better longterm clinical outcomes in RR patients whereas high baseline and greater early increase in EDSS score is significantly associated with worse outcomes [START_REF] Traboulsee | Revised recommendations of the consortium of MS centers task force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis[END_REF]. In addition to the conventional imaging parameters, the advanced imaging parameters such as fractional anisotropy (FA) measurement or mean diffusivity (MD) in Diffusion Tensor Imaging (DTI) are reported as highly predictive indicators of clinical outcome [96] [56]. Another study showed that FA and MD measurements were not significantly different between different clinical subtypes but they are highly associated with the disease evolution in RR and SP patients [33].

Lesions

Disease-modifying therapies

Although on the grounds of non-curative approaches, a number of disease-modifying therapies (DMTs) became available during the past 20 years, especially for patients experiencing relapses. These treatments reduce the relapse rate and the number of new MRI lesions. However, as the drugs act in the inflammation, rather than in the neurodegenerative mechanism of the disease, they do not stop disease progression in long-term [START_REF] Johnson | Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group[END_REF] [100] Second-line therapies such as Alemtuzumab, Natalizumab, and Mitoxantrone are also available for more progressive patients when IFN β and GA are not efficient. Mitoxantrone is an immunosuppressive agent whose effect was proven in RR and SP patients; however, its toxicity limits its use as basic treatment [141] [28]. Alemtuzumab is also effective, even in progressive MS including SP patients where the frequency of active lesions, brain and spinal cord atrophy are elevated [36] [157]. The American Academy of Neurology in 2008 showed that Alemtuzumab was more efficient than Interferon in a 3 year-follow-up, it led to 0.77 reductions in EDDS and also to a reduction of relapse rate and disability progression.

Chapter 2

Comparison of classification methods

for tissue outcome after ischemic stroke

Introduction

The five classification methods (SVM, ANN, RF, ADA, and LR) that were presented in Section 1.1 is used to predict the infarction risk in patients with stroke. The prediction of high infarction risk would help to determine the patients who are eligible for tPA treatment.

In this chapter, imaging data that has been used was voxel-based. Voxel represents a tidy cube of brain tissue in a three dimensional imaging. Each voxel can represent a million or so brain cells. We used eight MRI parameters (i.e., T2 FLAIR, ADC, CBV, CBF, TTP, MTT, TMAX, and DWI) to characterize each voxel's risk of infarction. The five classification methods predicted the infarction risk of each voxel in patients with stroke.

Let x ij be the voxel of individual i observed with MRI parameter j. LR estimates the infarction risk (π i ) of voxel i by the logit function defined in following equation

π i = 1 1 + e -(β 0 + 8 j=1 β j ×x ij ) (2.1)
where β 0 is the intercept and β j the effect size of one unit change of MRI parameter x ij on the output.

SVM separates voxels into healthy or infarcted using a linear border. The signed distance to the border can be used as the infarction risk. A positive distance represents high risk of infarction, and a negative distance low risk of infarction.

ANN involves several types of layers: an input layer composed of all data x ij , an output layer that gives the final outcome, and one (or more) hidden layers between the input and the output layer. The input layer sends first the information to the next layer with an initial weight and this weight is updated after the response of the network has reached the output layer. A weighted sum (sum i ) of the responses of the neurons for voxel i is computed defined as sum i = n i=1 x ij × w ij . The risk of infarction is obtained by applying a sigmoid function to this weighted sum:

f (x ij ) = 1 1 + exp(-sum i ) (2.2)
RF builds several bootstrap samples from the original data and fits a decision tree to each sample to classify the voxel into healthy or infarcted. The risk of infarction of a voxel is computed as the percentage of trees that classified this voxel as infarcted.

ADA corrects sequentially the classification weighting the misclassified voxels with a set of decision trees h t . According to the misclassification error of the decision tree and the weights given to the voxels, the performance α t of each tree is computed. For a given voxel, the infarction risk is the result of the classification of each tree weighted by its performance T t α t × h t .

The predicted risk of infarction of each voxel was dichotomized after by a threshold.

A voxel with an infarction risk above the threshold was considered as infarcted. The threshold was defined as the value that minimizes the difference between observed and predicted infarcted volume.

FLAIR sequence at one month after stroke onset was used to identify the voxels corresponding to contour the boundaries of the irreversibly damaged brain tissue. The voxels in boundary were labelled as infarcted and other voxels were labelled as healthy. The predictions of classification methods were compared with the voxels observed on FLAIR sequence.

The ischemic data is highly imbalanced because the infarcted voxels are much less numerous than healthy voxels. For this reason, AUC prc was used to assess the performance of the five classification methods. In addition to AUC prc , AUC roc , sensitivity, and specificity were calculated to compare our results with previous studies.

ADA, ANN, LR, and RF gave significantly higher AUC roc values in comparison with SVM. However, there was no significant difference regarding sensitivity, and specificity, and AUC prc .

67% of patients received treatment tPA after admission. Figure 2.1 shows that median of AUC prc was always higher for untreated patients than traited patients for each method. 

INTRODUCTION

Ischemic stroke is one of the major causes of death or long-term disability in most developed countries. 1 One of the current medical stroke therapies is intravenous thrombolysis which has to be administered as soon as possible after symptom onset. Besides, identifying the tissue at risk of infarction with an imaging tool would help decision-making in personalized treatment. 2 Brain imaging based on Magnetic Resonance Imaging (MRI) provides important variable related to acute cerebral ischemia. Various MRI sequences have been developed to this end. Diffusion-weighted imaging (DWI) is a marker of irreversibly damaged tissue whereas perfusion-weighted imaging (PWI) characterizes the tissue's blood supply, and particularly the ischemic penumbra, which is at risk of infarction but still salvageable by early reperfusion. 3,4 In the acute stroke setting, a marked discrepancy between the size of abnormal tissue identified by DWI vs. PWI 1 , so called DWI-PWI mismatch, is often encountered, and the performance of DWI and PWI data combined in identifying the tissue at risk of infarction has been found to be superior to that of DWI data or PWI data alone. 3,4 Identifying the tissue at risk of infarction in each patient using MRI and specific statistical methods would help to determine the subject's most appropriate treatment. 3,4 Many classification methods have been already used to provide the risk of infarction on voxelbased data. For example, in 2006, Wu et al. 5 have proposed the use of generalized linear models to estimate the probability of infarction on the basis of diffusion-and perfusionweighted imaging data from humans, but machine learning algorithms may outperform the generalized linear model in case of complex multimodal data. In 2010, Huang et al. 6 used

Image acquisition and processing

On admission, all patients underwent: i) a DWI MRI sequence FLAIR imaging at one month after stroke onset was used to contour the boundaries of the irreversibly damaged brain tissue in stroke patients.

The parameter maps of each patient were normalized using the mean and the standard deviation of the contralateral tissue (cerebrospinal fluid excluded). The means were calculated on three consecutive slices and the standard deviation on the full brain volume. The parameter values were then centred and scaled to be comparable in effect size.

All eight MRI-based parameters (i.e., T2 FLAIR, ADC, CBV, CBF, TTP, MTT, TMAX, and DWI) were used to characterize each voxel's risk of infarction.

Classification methods

Four machine learning methods (SVM, ANN, RF, and ADA) and LR were used in this study. (For more details of methods and their settings, see the Appendix). These five methods allow identifying the risk of infarction of each voxel-based observation.

The LR estimated the infarction risk of a voxel as its probability of being infarcted after certain follow-up periods using the same above-cited combination of eight MRI parameters. 11 The SVM separated the observations into healthy or infarcted using a linear border.

The closest observations to the border in each class were named support vectors. Then, the support vectors helped to choose the best border either through maximizing the distance between the border and the support vectors or through minimizing the number of misclassified observations. 12 The signed distance to the border is related to the infarction risk.

A zero distance corresponds to an observation located on the border, a positive distance to a high risk, and a negative distance to a low risk.

The ANN constitute a mathematical representation of natural neural networks. 13 Each network is composed of several types of layers: (1) an input layer composed of all data, (2) an output layer giving the final outcome, and ( 3) one (or more) hidden layers between the input and the output layer that consist(s) of a set of neurons that process the data and are connected to the input and output layers. The input layer sends first the information to the next layer with an initial weight and the weight is updated after the response of the network is reached in the output layer. The update iterations continue until there is no change. The weighted sum of the responses of the neurons in the output layer is then computed. The risk of infarction is found by applying a sigmoid function to this weighted sum.

The other classification methods, RF and ADA, are ensemble methods that combine several decision trees. RF builds several bootstrap samples from the original data and fits a decision tree to each sample to classify the observations into healthy or infarcted. 14,15 At each observation, the risk of infarction is then computed as the percentage of trees that classify this observation as infarcted. The ADA weights the misclassified observations using a set of decision trees. 15 The classification of the first tree is performed with the same weight for each observation but the weights of the misclassified observations are increased after each decision tree classification. The performance of each tree is computed using the misclassification error of the decision tree and the weights given to the observations. At each observation, the infarction risk is the result of the classification of each tree weighted by its performance.

Statistical analysis

The performance of the five classification methods tested here were mainly compared in terms of area under the precision-recall curve ( ). This criterion was selected because it summarizes the predictive ability of each method over all possible thresholds allowing for infarction prevalence. The was preferred to the area under the receiver operating curve ( ) because the ischemic stroke data were highly imbalanced; i.e., the infarcted voxels are much less numerous than non-infarcted voxels. 16 However, as many studies have already used the to compare classification methods, this criterion was also reported here to allow result comparisons.

The results from the different methods enabled classifying each voxel into healthy or infarcted using a given threshold. The threshold was defined as the value that minimizes the difference between the observed and the predicted infarcted volume; thus, a voxel with an infarction risk above the threshold was considered as infarcted. The predicted infarction volume for each patient could be calculated as the sum of the voxels classified as infarcted.

Threshold-dependent criteria such as sensitivity (Se) and specificity (Sp) were also calculated to evaluate method performances using the infarcted volume.

RESULTS

Patients

Table 1 shows the patients' characteristics. We observed that 37 out of the 55 patients were treated with intravenous thrombolysis. The numbers of women and men were similar among treated patients (49% vs 51%) whereas there were more men than women among untreated patients (22% vs 78%). The majority of patients (65%) had hypertension before the stroke. The gender and receiving treatment were significantly independent (p-value=0.11). 30% of the patients had smoked regularly before stroke. More untreated patient has been observed smoking than treated patient (21% vs 50%) but there was no significant relationship between smoking and the treatment (p-value=0.25). In terms of infarcted volume, the median of final infarction volume was higher than the DWI lesion volume. But, we observed no significant change in infarcted volume at one month for treated and untreated patients (Paired Wilcoxon test: .

whereas the Specificity values were all larger than 0.9. There was no statistically significant difference between methods in terms of Se or Sp. Logistic Regression -RF: Random Forest -SVM: Support Vector Machine.

Figure 3 shows the bar plots of the predicted and observed infarction volumes one month after stroke for three selected patients. These patients were chosen because they showed discrepant results with SVM. The SVM method underestimated final infarct volume in patient (A), overestimated it in patient (B) and performed similarly to the other methods in patient (C). However, ADA, ANN, LR, and RF performed equally well in all three patients regardless of infarct volume. 

DISCUSSION

To our knowledge, our study is the largest to compare classification methods (especially including four machine learning methods) on imaging data from stroke patients. In this study, five classification methods to identify the brain tissue at risk of infarction were compared using voxel-based multimodal MRI data. Another large study in animals with method comparison was previously reported by Bouts et al. 8 , but was not applied onto human data. Our findings suggest no significant difference in performance of the five classification methods in terms of identification of the tissue at risk of infarction on human imaging data.

Our findings are consistent with previous results obtained based on animal data. 7,8 However, contrary to our study, Winder et al. 10 found that RF performed better than ANN and GLM. This discrepancy may be due to the use by these authors of a different performance criterion, namely Dice coefficient. Dice coefficient considers the true positives and is used to evaluate the accuracy of the predicted infarction volume for a given threshold. However, the comparison metric used in our study ( ) summarizes the predictive ability over all possible thresholds.

In the present study, the performance of each method was first evaluated by values, which allowed us to summarize the identification ability of the method over all possible thresholds. On the basis of this criterion, the five classification methods performed equally well in identifying tissue at risk of infarction, in agreement with another study that used the same criterion but on animal data. 8 Regarding the criterion, there was no significant difference in performance between ADA, ANN, LR, and RF methods. However, all performed significantly better than SVM. The latter finding may be due to the fact that SVM is essentially a binary classification method that requires an additional step able to provide the infarction risk. This gives less accurate risk predictions thus lower values. 18 These results contrast with those obtained on experimental data by Huang et al. 7 (who showed that SVM outperformed ANN)

and with those obtained by Bouts et al. 8 who showed that all methods performed equally well.

In the present study, values were always higher than values with all methods. This is due to the fact that is not sensitive to the imbalance between healthy and infarcted voxels and overestimate the infarcted volume in studies performed on data with low prevalence. 16 When we compared the sensitivities and specificities of the methods, the median of Se with each method ranged between 0.4 and 0.5 while the median of Sp was over 0.9. Thus, all methods performed better in identifying healthy tissue than the tissue at risk of infarction.

Most previous studies used mainly the , the , and also the Dice coefficient to compare classification methods on human or experimental ischemic voxel-based data. 7,8,10 For this reason, we used the more often used criteria in our study: the and the . Regarding the , all previous studies concluded that there were no significant differences between methods. However, RF and SVM performed better than ANN regarding Dice coefficient and criteria in some studies whereas Bouts et al. concluded to similar performances of the methods they used.

The stroke patient data used in this study had a wide range of final infarction volumes. The ANN is a mathematical representation of natural neural networks. Each network involves several types of layers: an input layer composed of all data , an output layer that gives the final outcome , and one (or more) hidden layers between the input and the output layer that consist(s) of a set of neurons that process the data and are connected to the other layers. The input layer sends first the information to the next layer with an initial weight and this weight is updated after the response of the network has reached the output layer. The update iterations continue until there is no further change. A weighted sum of the responses of the neurons is then computed as:

, where is the intercept, the responses of the neurons of the previous layer, and the final updated weights. The risk of infarction is obtained by applying a sigmoid function to this weighted sum: f( ) = .

The RF builds several bootstrap samples from the original data and fits a decision tree to each sample to classify the observations into healthy or infarcted. For each split of a tree classification, the best parameter is chosen within a sample of parameters. This sample is created randomly and its size is fixed a priori (mtry). For a given observation, the risk of infarction is then computed as the percentage of trees that classified this observation as infarcted.

The ADA uses another strategy which corrects sequentially the classification weighting the misclassified observations with a set of decision trees . The classification of the first tree is performed with the same weight for all observations but the weights of misclassified observations are increased after each decision tree classification. According to the misclassification error of the decision tree and the weights given to the observations, the performance of each tree is computed. For a given observation, the infarction risk is the result of the classification of each tree weighted by its performance .

Settings

SVM, ANN, RF, and ADA require parameter settings before the fit of the method.

A Gaussian Radial Basis kernel function was used for SVM where is a supplementary kernel parameter and are observations. To optimize the kernel parameter as well as the trade-off constant C, a grid-searching approach based on the misclassification error rate was used where C [1,10] was incremented by steps of 1 and (0.001, 0.005, 0.01, 0.05, 0.1, 1).

For the ANN, a single hidden layer was fitted, and a grid-searching was used to optimize the number of nodes in interval [14,25] with steps of 1 and a decay parameter (0.001, 0.005, 0.01, 0.05, 0.1, 0.5 and 1). The decay parameter can be seen as a regularization parameter that avoids over-fitting.

With ANN, the optimization required finding the number of units in the hidden layer. This was searched in the interval [14,25] with increments of 1 and the optimal decay was searched among values 0.001, 0.01, 0.05, 0.1, 0. 

Introduction

Multiple sclerosis (MS) is the most frequent disabling neurological disease in young adults.

While its etiology remains unknown, MS is a demyelinating, inflammatory, and chronic disease of the central nervous system. The evolution of the disease and the risk of developing permanent disability are very different from one patient to another [START_REF] Goldenberg | Multiple sclerosis review[END_REF] However, advanced MRI such as Diffusion Tensor Imaging (DTI) and Spectroscopic Imaging (MRSI) have higher specificities in detecting microstructural damages in white matter than conventional imaging [START_REF] Sbardella | DTI measurements in multiple sclerosis: Evaluation of brain damage and clinical implications[END_REF] [76] because they provide complementary information on diffusion alteration and metabolism [START_REF] Filippi | Non-conventional MR techniques to monitor the evolution of multiple sclerosis[END_REF] [63] [START_REF] Filippi | The role of non-conventional magnetic resonance techniques in monitoring evolution of multiple sclerosis[END_REF]. DTI is more able to distinguish MS subtypes as patients with different subtypes present different diffusivity patterns [START_REF] Sbardella | DTI measurements in multiple sclerosis: Evaluation of brain damage and clinical implications[END_REF].

Therefore, we propose using DTI data together with conventional imaging in different clinical forms of MS. The FA parameter has been chosen among DTI measurements because it is more sensitive in detecting microscopic changes related to inflammation [START_REF] Hannoun | Correlation of diffusion and metabolic alterations in different clinical forms of multiple sclerosis[END_REF].

MS affects especially the white matter of the brain and the lesions appear mostly around the ventricles and periventricular white matter. The floor of the lateral ventricles forms a region called Corpus Callosum (CC). So, CC is the one of the regions the most frequently affected by lesions in MS [14] [77] [START_REF] Ge | Multiple sclerosis: The role of MR imaging[END_REF]. In 93% of MS patients, lesions were found in CC [START_REF] Gean-Marton | Abnormal corpus callosum: a sensitive and specific indicator of multiple sclerosis[END_REF]. Moreover, it is the major myelinated bundle of the brain and, provides the connection between cortical and subcortical regions between two brain hemispheres. Therefore, the effects of lesions in CC are more severe compared to the lobar white matter. For this reason, this work used imaging parameters measured in CC.

Several studies demonstrated that callosal changes measured with DTI were correlated with cognitive and physical disability [START_REF] Sigal | Diffusion tensor imaging of corpus callosum integrity in multiple sclerosis: Correlation with disease variables[END_REF] [127] [173] [START_REF] Yaldizli | Corpus callosum index and long-term disability in multiple sclerosis patients[END_REF]. FA measurements were significantly lower in rostrum, body, and splenium part of CC versus a control group [START_REF] Hasan | Diffusion tensor fractional anisotropy of the normal-appearing seven segments of the corpus callosum in healthy adults and relapsing-remitting multiple sclerosis patients[END_REF] [181] [START_REF] Warlop | Diffusion weighted callosal integrity reflects interhemispheric communication efficiency in multiple sclerosis[END_REF]. The association between EDSS scores and CC atrophy as measured with conventional MR was reported in some studies [242] [192]. However, no significant correlation was found between disability and callosal atrophy as measured by conventional MR in RR patients [12]. This can be due to the insufficiency of conventional imaging in CC, thus, DTI parameters measured in CC can be more suitable for MS patients.

Therefore, the FA parameter measured in CC was used in this study.

In previous studies, classification of MS patients into two clinical subtypes was performed with machine learning methods based on conventional and advanced imaging data at a given time point [215] [115] [97] [START_REF] Muthuraman | Structural brain network characteristics can differentiate CIS from early RRMS[END_REF]. However, clinical subtypes were also identified currently using EDSS score change over time. The originality of the present study is to cluster the patients on the basis of clinical and imaging longitudinal data (not at a given time point). The clusters might represent distinct evolution forms of MS patients. First, a clustering method was performed on EDSS score trajectories to compare the obtained clusters with actual clinical subtypes. Second, we clustered the MS patients using joint EDSS score and imaging trajectories. For this reason, the joint trajectories obtained with EDSS score and FA values were used to find out whether conventional imaging parameters could improve cluster results. Besides, one advanced imaging parameter was chosen regarding its correlation with EDSS score. The less correlated advanced imaging parameter was used to establish the joint trajectories. Finally, the results obtained with single and joint trajectories were compared to determine whether conventional and advanced parameters could improve clustering.

Moreover, cluster analyses were performed only in patients with relapses during disease progression. Thus, PP patients were excluded from the data set and the cluster analyses were performed only on CIS, RR, and SP patients.

Materials

Clinical data

Eighty patients fulfilling the Mac Donald criteria were included in a standardized clinical and MRI protocol within the frame of the AMSEP project in Lyon Neurological Hospital.

This population was divided into four groups of MS patients depending on the clinical form: CIS (n=12), RR (n=27), SP (n=16), and PP (n=25). The patients were followed 

Image Acquisition and Processing

MS patients underwent an MR examination on a 1.5T Siemens Sonata system (Siemens Medical Solution, Erlangen, Germany) using an 8-channel head-coil. The MR protocol consisted in the acquisition of a sagittal 3D-T1 sequence (1×1×1mm 3 , TE/TR = 4/2000 ms) and an axial 2D-spin-echo DTI sequence (TE/TR = 86/6900 ms; 2 × 24 directions of gradient diffusion; b = 1000 s.mm -2 , spatial resolution of 2.5 × 2.5 × 2.5 mm 3 ) oriented in the AC-PC plane.

The lesion load was measured with FLAIR sequence and the white and gray matter volumes were measured with T1 imaging without gadolinium contrast agent. Among four DTI parameters, the fractional anisotropy (FA), measured in CC was used in this study.

Methods

Packages developed by Genolini et al. kml and kml3d [START_REF] Genolini | kml and kml3d: R packages to cluster longitudinal data[END_REF] were used to cluster, respectively, single and joint trajectories according to EDSS score and imaging parameters.

kml and kml3d packages allow clustering the trajectories using k-means algorithm. Kmeans is based on the Expectation-Maximization (EM) method. First, the number of clusters is set. Second, k-means is run to assign randomly the trajectories to clusters.

Third, the mean trajectory is calculated for each cluster. The mean of each cluster is called the cluster center. The last step calculates distances between the trajectories and the cluster centers and assigns each trajectories to the nearest clusters.

kml The kml package is used to cluster single trajectories. Let S a set of n trajectories and y itX be the longitudinal outcome measured for individual i regarding variable X at different time points t. So, y i.X = (y i1X , y i2X , . . . , y itX ) is called a single trajectory (or single variable trajectory) for subject i. In kml package, distance metric by default is the Euclidian distance. The Euclidian distance between two single trajectories was calculated as below:

Dist(y i , y j ) = 1 t t k=1 (y ik -y jk ) 2 (3.1) 
where y i and y j are the single trajectories of subject i and j; t represents time.

kml3d The kml3d package clusters joint trajectories established with more than one variables. Let y i.A , y i.B , . . . , y i.M be the single trajectories relative to variables A, B, . . . ,M of subject i. We define the joint trajectory as:

y i.. = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ y i.A y i.B . . . y i.M ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ y i1A y i2A . . . y itA y i1B y i2B . . . y itB . . . . . . . . . . . . y i1M y i2M . . . y itM ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (3.2) 
where each line corresponds to the single trajectory of each variable and t represents time.

Let y 1.. and y 2.. be the joint trajectories of two individuals. The distance between these joint trajectories is defined as d(y 1.. , y 2.. ) and it can be considered as the distance between two matrices. One of the two ways to calculate d(y 1.. , y 2.. ) is to compute first t distances between m rows of each column, where m is the number of variables. So, t distances d t. (y 1t. , y 2t. ) are obtained. Then, these t distances are combined using a distance function.

The second way to calculate d(y 1.. , y 2.. ) is to calculate first the distance between m lines, where m is the number of variables. Therefore, m distances d .X (y 1.X , y 2.X ) are computed.

Finally, m distances are combined by a distance function to provide the distance between two joint trajectories.

The default distance between two joint trajectories in kml3d packages is the Euclidean distance which is calculated as:

Dist(y i.. , y j.. ) = t X (y itX , y jtX ) 2 (3.3) 
where t and X represent respectively the time and the variable. [117] [START_REF] Ray | Determination of number of clusters in k-means clustering and application in colour segmentation[END_REF].

Quality criteria

The criterion value for the kth cluster was calculated as:

C(k) = Trace(B) Trace(W ) × n -k k -1
where Trace(B) is the between-cluster covariance matrix, Trace(W ) is the within-cluster covariance matrix, n is the number of the trajectories and k is the number of clusters.

A quality criterion was used to help choosing the number of clusters k that maximizes the criterion C(k) was used to choose the best number of clusters.

Application of clustering methods

Cluster analyses were performed first with all patients to obtain a general appropriate clustering for all clinical subtypes. Then, for the purpose of studying only the patients who had relapses during disease progression, PP patients were excluded from data and the analyses were performed only with CIS, RR and SP patients.

kml and kml3d packages were respectively used to cluster first according to EDSS score alone the according to EDSS score & imaging data. Before implementation, these packages request

• the interval of cluster number

• a quality criterion

• the distance metric

• the assignment of the trajectories to clusters

• number of iterations performed by algorithm

The optimal number of clusters was searched in the interval [2; 6]. The Calinski & Harabatz criterion (defined in equation 1.30) was chosen as this was the default criterion.

randomALL method was used to assign randomly each trajectory to a cluster at the beginning of the clustering analyses. The Euclidian metric was used to calculate the distance between trajectories because it is used by default in kml and kml3d packages.

The k-means algorithm was repeated 100 times with each number of clusters.

Cluster analyses were performed first on single EDSS score trajectories. Second, one of the conventional imaging parameters was used jointly with the EDSS score to examine whether a conventional imaging parameter could enhance the clustering performed on single EDSS score trajectories. A correlation test was performed between EDSS score and conventional imaging parameters to choose the best conventional imaging parameter. The less correlated parameter was used to build the joint trajectories. Third; as a advanced imaging parameter, the FA parameter was used jointly with the EDSS score to find out whether a advanced imaging parameter could improve the clustering. Afterwards, the clustering results obtained with single and joint trajectories were compared with the

Calinski & Harabatz criterion.

The imaging parameters were normalized as defined in the Equation 1.28 before the clustering of the joint trajectories.

Statistical analyses

Because most data did not follow the normal distribution, medians, 1st, and 3rd quartiles were used to describe the data. Consequently, non-parametric statistical tests were used to find out differences in clinical and imaging parameters among the four clinical subtypes.

The Kruskal-Wallis rank sum test was performed first to compare the distributions of variable values among the four clinical subtypes. In case this test indicated that at least one median was different from the others, a Mann-Whitney U test with Bonferroni correction was performed to compare the medians two by two. Statistical significance was considered at p<0.05. The statistical analyses were performed using R software with version 3.4.0 (2017-04-21). (https://www.r-project.org/)

Results

Descriptive results

Descriptive results of clinical data

Table 3.5.1 shows the main demographic and clinical characteristics of the cohort: the total number of patients, the number of women, the median and the range of disease duration, age, EDSS, pyramidal, cerebellar, and MSFC scores as well as its three components (T25FW, 9HPT and PASAT) as observed at study onset. T25FW and 9HPT

scores were the means of two consecutive trials and 9HPT scores were observed with the dominant hand. The characteristics were given first for all patients and then for each clinical subtype.

Number of women of RR, PP and SP patients was higher than number of males. The disease durations at study onset were significantly different among the four clinical subtypes (p-value < 0.05). However, there was no significant difference between RR and PP patients' disease durations (p-value= 0.51). The age at study onset was also significantly different among the four clinical subtypes. Age was significantly higher in PP patients than in the other clinical subtypes (p-value<0.05). However, age at study onset was similar in CIS, RR, and SP (p-value=0.40).

EDSS, pyramidal, and T25FW scores at study onset were not significantly different between PP and SP patient (p-value EDSS,(P P -SP ) = 0.53, p-value pyramidal,(P P -SP ) = 0.82, p-value T 25F W,(P P -SP ) = 0.96). However, EDSS, pyramidal, and T25FW scores were significantly different between other couples of clinical subtypes (i.e., CIS vs RR, CIS vs PP, CIS vs SP, RR vs PP, and RR vs PP) (p-value < 0.05).

Cerebellar, MSFC, 9HPT and PASAT scores were similar between CIS and RR patients, and between PP and SP patients (p-value>0.05). Moreover; these four scores were significantly higher in PP and SP patients than in CIS and RR patients (p-value<0.05). 

All patients

CIS

Chapter 3: Clustering of individual trajectories in MS

The observed individual and mean EDSS trajectories that correspond to the clinical subtypes are shown in Figure 3.1. We observed that the mean EDSS trajectories were much more stable than individual EDSS trajectories. The mean trajectories of severe patients (i.e., PP and SP) were strictly above EDSS score 4 whereas the mean trajectories of CIS and RR were below EDSS score 4 which is the limit of fully ambulatory without aid. 

Descriptive analyses of imaging data

Table 3.5.1 shows the number of imaging scans and the following conventional and advanced imaging measures: gray matter volume (GMV), white matter volume (WMV), lesion load (LL) and fractional anisotropy (FA) for each clinical subtypes. The number of imaging scans were similar in RR, PP, and SP patients (≈ 7.0 scans) (p-value > 0.05) but number was relative to CIS patients was lower (p-value <0.05) because they were classified afterward as RR patients.

The imaging parameters were significantly different among the four clinical subtypes.

However, GMV and WMV did not differ significantly between PP and SP patients (pvalue > 0.05). Moreover, GMV and WMV were significantly higher in CIS and RR patients than in PP and SP patients (p-value < 0.05). The lesion load values ranged between 6 and 37 mm 3 . When the lesion load was compared between couples of clinical subtypes, there was no significant difference between RR and PP (p-value=0.86). The The observed individual and mean trajectories of imaging parameters with different colors for each clinical subtype were provided in Figure 3.2. The mean trajectories of CIS and RR patients were always above the mean trajectories of PP and SP patients regarding GMV, WMV, and FA, because, we observed higher values of GMV, WMV, and FA in the less affected MS patients. There was a slight decrease of GMV, WMV, and FA mean trajectories in RR patients. Moreover, we observed an increase of the lesion load in CIS patients after the 20th month. However, we did not observe a significant increase or decrease of the mean trajectories of any imaging parameters. There was a negative and strong correlation between FA and LL (ρ = -0.68). However, there was a positive and weak correlation between FA and GMV (ρ = 0.27). The correlation between FA and WMV was strong (ρ = 0.64). As FA was influenced by axonal and myelin loss, these results showed that, in this cohort, the lesions might br mostly located in white matter. FA, GMV, and WMV had a negative correlation with EDSS score. This means that a decrease of FA, GMV, and WMV values causes the increase of EDSS score. However, the correlation between LL and EDSS score was positive (ρ = 0.39). Thus, the highest EDSS scores were observed in the patients who had highest lesion load.

Regression analyses between conventional and advanced imaging parameters

The correlation coefficients were low between EDSS and LL (| ρ |= 0.39), and between EDSS and FA (| ρ |= 0.42). For this reason, LL and FA were separately used to establish the joint trajectories with EDSS score. 

Cluster analysis results

In this section, we will present cluster analyses results performed on single EDSS trajectories, and joint EDSS & LL and EDSS & FA trajectories.

As indicated in section 3.4, the choice of the best number of clusters was made in the [2; 6] interval. The Calinski-Harabatz criterion was the highest with 3 clusters in both single and joint trajectories and all clinical subtypes as well as in CIS, RR, and SP patients. We present thus the results obtained with 3 clusters.

Clinical subtypes

Variables used for trajectories 2 The table that corresponds to Figure 3.5 shows that CIS patients are found in one cluster (cluster B) whereas RR, PP, and SP patients are distributed over two or three clusters.

Thus, we could distinguish -for example-between PP and SP patients who may have a stable evolution around EDSS score 4 or may have an aggressive evolution that increases over time above EDSS score 4. The advantage of joint EDSS & LL trajectories cluster was its ability to distinguish patients with different lesion load evolutions even when they have similar EDSS evolution.

Clusters A and B showed similar EDSS evolutions over time. However, the lesion loads of patients in cluster A were higher than in cluster B.

Cluster 
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• • • • • • • • A A A B B B C C 1 2 3 4 5 6 7 8 -3 -2 -1 0 1 Times FA • • • • • • • • A A A B B B C C A B C : 44%
: 36% : 20% Cluster B included CIS and RR patients who had moderate disease evolution. However, 10 PP patients who had severe progression over time were located in cluster C.

These cluster results were the same with cluster analyses performed on all clinical subtypes. This means that the exclusion of PP patients did not change the clustering of CIS, RR, and PP patients. The identification of patients with high lesion load did not change when the cluster analysis was performed excluding PP patients. We also observed that 5 RR and 16 SP patients had a higher lesion load evolution when the cluster analysis was performed on all clinical subtypes.

The graph on the right side of Figure 3 
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Discussion

An extension of the k-means method was performed to cluster trajectories of MS patients using clinical and imaging data. To our knowledge, this is the first study to cluster multiple sclerosis patients using longitudinal clinical and imaging data. First, the single EDSS trajectories were clustered to identify distinct forms of individual trajectories. Then, lesion load and FA variables were added one by one jointly to the EDSS trajectories to analyze their contribution to the clustering results. We showed that the EDSS trajectory clustering performed better than joint trajectory clustering. Moreover, the clustering analysis was able to distinguish patients with severe, stable and moderate evolution.

In previous studies, patients classification was performed between two clinical subtypes with machine learning methods based on conventional and advanced imaging characteristics [215] [115] [97] [START_REF] Muthuraman | Structural brain network characteristics can differentiate CIS from early RRMS[END_REF]. Some studies classified the patients with Support Vector Machine using their diffusion features [150] [115]. Taschler et al. [START_REF] Taschler | Spatial modeling of multiple sclerosis for disease subtype prediction[END_REF] used spatially informed models and compares them with SVM method. They demonstrated that spatially informed models performed better and that MRI scans of MS lesions inform better about specific subtypes of the disease.

The classification of patients on the basis of changes over time is important because MS patients are classed regarding their clinical disability evolution over time. Moreover, the clustering analysis performed in this study helped identifying distinct evolution forms of disability trajectories. This could be useful to identify patients who may have a more important progression, so as, to change their medical treatment.

The clustering analysis performed with the single EDSS trajectories was able to identify clinical and imaging differences among the patients in the three different clusters. The clinical and imaging variables measured at study onset were significantly different among the clusters. The disease duration and LL were significantly lower in the moderate evolurion cluster whereas GMV was significantly higher. Moreover, age, 9HPT, and 25FW

were significantly higher whereas FA was significantly lower in the cluster that showed severe evolution. This means that the initial values of these variables may allow predicting which patient may have a moderate or a severe disease progression.

In single and joint trajectory clustering, CIS patients were always included in one cluster that reflects at moderate evolution. However, the trajectories of RR, PP and SP patients were partitioned into at least two clusters and this may be explained by more complex disease features related to their heavy inflammation and neurodegeneration.

The clustering is actually possible with unsupervised, supervised or model-based methods.

The most important advantage of the unsupervised clustering methods used in this study is that they do not require prior knowledge such as parameter estimations. They are also easy to implement, fast and efficient in terms of computational cost. However, the disadvantage of the unsupervised clustering methods is that there is no powerful quality criterion that allows choosing the number of clusters and assesing clustering accuracy.

Because of this, we had to use the quality criterion proposed by default in kml and kml3d packages. Moreover, the accuracy of clustering results was tested against the observed evolution of each patient.

In our work, the additional use of imaging parameters did not significantly change the clustering results obtained with single EDSS trajectories. Moreover, the Calinski & Harabatz criterion value of single EDSS trajectory was higher than Calinski & Harabatz criterion value of joint trajectories. This may be due to the use of the lesion load in the whole brain, instead of a local load and the use of the FA in a specific part of the brain (in CC).

Measuring the FA in the regions where lesions occur might be important distinguishing patient trajectories. The location and size of the lesions are also very important and play a significant role in clinical disability.

The present study shows the clustering results performed taking into account the distances between trajectories. However, these results can be extended by taking into account the variance between trajectories and the shapes of the trajectories and by introducing demographic variables such as age and gender. This type of extension may improve the results because the disease evolution was found heterogeneous between and within clinical subtypes and because clustering may be more powerful with more variables. The principal aim of this part of the thesis is to develop a generalizable predictive model of disability evolution of MS patients considering unobserved subgroups (different mean-evolution profiles). For this aim, the latent class linear mixed model was used to predict EDSS evolution over 5 years on the basis of the clinical, biological and imaging data taken at study onset. The estimates of can be obtained with vector that maximizes the log-likelihood defined as . Parameter estimation by iterative algorithm is possible with the EM family [Verbeke et Lesaffre, 1996], the Newton-Raphson family [Proust et Gadda, 2005], or the Marquardt algorithm [Marquardt, 1963]. Here, we used the Marquardt algorithm for parameter estimation because of its speed and convergence rate [START_REF] Proust-Lima C | Estimation of Extended Mixed Models Using Latent Classes and Latent Processes : The R Package lcmm[END_REF].

MATERIALS

Application of latent class linear mixed model

All statistical analyses were performed with lcmm package in R software version 3.4.0 (2017-04-21).

Function hlme in lcmm package of software R was used to implement the latent class linear mixed model. There are three main arguments of the hlme function:

1. fixed argument: contains two-sided formula including the outcome (dependent variable) and the independent variable(s) which have a common effect on all individuals overall latent classes.

2. mixture argument: indicates the variable(s) that have a specific effect on each latent class.

3. random argument: contains the variable(s) that have a specific effect at the individual level.

The EDSS score was used as the outcome in the models. together with the clinical variables into the clinical model to obtain the combined models. Finally, we compared the three clinical, imaging and combined models. Model comparison was performed mainly using the BIC criterion. A low BIC indicates a better fit of the model, however, the mean of the posterior probabilities was also reported in this study to examine the goodness of fit and allow result comparisons with previous studies.

Statistical analyses

Because most data did not follow the normal distribution, medians, 1st, and 3rd quartiles were used to describe the data. Consequently, non-parametric statistical tests were used to examine differences in clinical and imaging data among the patients of the four clinical subtypes. The Kruskal-Wallis test was used first to analyze whether the distributions of subtypes were significantly different. In case of significant difference, a Mann-Whitney U Test was used to compare subtype medians two by two. Statistical significance was considered at p<0.05.

RESULTS

The model with three latent classes with time as the variable with a specific effect on each latent class (in the mixture argument), and with a linear time function (in the fixed argument) gave the lowest BIC value (See Appendix). Therefore, the models that include time in the mixture argument and age in the random argument were built for the following sections.

Clinical model

In The patients in the three latent classes were compared in terms of age, disease duration, T25FW, 9HPT, GMV, LL, and FA. The number of patients, the median, 1st, and 3rd quartiles are given in Table 3. There was a significant difference between the three latent classes in terms of disease duration at study onset (p-value=0.023). The medians of disease duration at study onset of latent classes 1 and 2 were equal to 6.6 and 5.9 months, respectively, whereas the median of disease duration of latent class 3 was equal to 0. Figure 2 shows the predictions and observed mean trajectories obtained with the imaging model.

The predicted trajectories were similar to the trajectories obtained with the clinical model. Class 2 trajectory included the majority of patients (73%) and showed a stable evolution. Class 1 included two RR, two PP, and four SP patients. The predicted mean trajectory of these patients showed severe evolutions. However, Class 3 showed a moderate evolution with decrease over time. This cluster included the patients who have a benign evolution (CIS (n=5) and RR (n=7)). In our study, the multiple sclerosis patients were classified into three latent classes having a stable, a severe and a moderate evolution over time. Most of the patients (84%) showed no progression of disability over five years after the study onset. As MS is a long-lasting disease, the five years might be insufficient to show disability worsening. However, 12% of the patients were assigned to the class with severe disability progression and 4% to the class with moderate evolution. Assigning patients to either of these two latent classes may help treatment decision. For example, patients with a probable severe evolution would benefit from second-line therapies.

Combined model with clinical and imaging variables

EDSS score 4 is known as the threshold of limited walking disability though a patient may be able to walk more than 500m. By modeling, the predicted EDSS score values at the study onset were around EDSS score 4 in the three latent classes then each class evolved differently. Thus, our predictions were able to identify the patients who might have a severe, stable or moderate evolution after reaching the threshold of limited walking disability.

In this study, GMV had a significant effect in the imaging model. Previous studies have shown that the effect of gray matter volume was significant in increasing the risk of severe disability of MS patients [START_REF] Rovaris | Grey matter damage predicts the evolution of primary progressive multiple sclerosis at 5 years[END_REF]Fisniku et al., 2008[START_REF] Roosendaal | Grey matter volume in a large cohort of MS patients : relation to MRI parameters and disability[END_REF][START_REF] Sepulcre | Regional Gray Matter Atrophy in Early Primary Progressive Multiple Sclerosis, A Voxel-Based Morphometry Study[END_REF]].

However, the effects of the multimodal imaging variables were not statistically significant in the combined models. Enzinger et al. have performed a multivariate analysis and found that no MRI variables had a significant effect on disability evolution [Enzinger et al., 2011]. A study performed on the predictive value of the lesion load showed that the lesion load observed in the gray and white matter was a strong predictor of the 10-year EDSS in MS [Popescu et al., 2013]. However, here, the lesion load was found significant neither in the imaging and nor in the combined models.

One limitation of the present work was the use of the lesion load measured in the whole brain and, not locally. The location and size of the lesion are very important markers of the clinical disability. A future modeling work on the evolution of clinical disability may consider the focal lesion load and, gray and white matter loss.

To conclude on this issue, the latent class linear mixed model allowed building a well-fitted predictive model for disability evolution in patients with MS and this model showed high accuracy results. The model developed here is highly promising in predicting individual long-term disability evolution in all clinical subtypes of MS.

Chapter 5 Discussion

This thesis present high accuracy of statistical approaches to: i) identify brain tissue at high risk of infarction in patients with stroke; and, ii) predict disability evolution in patients with multiple sclerosis.

These statistical approaches that are performed for stroke and multiple sclerosis patients had also several clinical interests. First, identifying the tissue at high risk (at one month) on the basis of the imaging data may guide clinicians in their time-critical decision process regarding the use of the tPA treatment. Second, clustering patients with MD and the predicting the evolution of disability may help the clinician in choosing the most adapted theraphy regarding the choice of treatment.

In Chapter 2, the applicability of the machine learning methods to voxel-based multimodal MRI data was proved in identifying the tissue at high risk of infarction and also to classify tissues as healthy or infarcted in patients with stroke. We used eight advanced imaging parameters of diffusion-weighted imaging (DWI) and perfusion-weighted imaging (DWI) from 55 ischemic stroke patients. The classification methods (SVM, ANN, RF, ADA, and LR) showed high accuracies (AUC roc >0.77 for all methods). However, these classification methods were mainly compared regarding AUC pr and there was no statistically significant difference between their performances.

In Chapter 3, we used an unsupervised method to cluster the multiple sclerosis patients on the basis of clinical and imaging trajectories. The study is the fist that uses clustering of longitudinal data obtained over five years. We used the EDSS score, the lesion load, and fractional anisotropy trajectories to cluster the patients. The clusters showed three distinct forms of disease evolution: severe, stable, and moderate evolution. Moreover, the clusters which show the severe and stable evolution begin at EDSS 4, the limit of full ambulation without aid. This means that the unsupervised method was able to identify the patients who may have a critical evolution after EDSS score 4. Moreover, disease duration, GMV, and LL at study onset were significantly lower in the patients in the moderate cluster. These variables may be the prognostic factors for benign disease evolution over time. In addition, FA at study onset was significantly lower in the patients in the severe evolution cluster. Thus, a low FA value at study onset may be a prognostic factor for aggressive disease evolution.

In Chapter 4, we developed a model to predict disability evolution of multiple sclerosis patients. For this, we used the latent class linear mixed model to consider individual differences and unobserved groups among MS patients. The model used longitudinal clinical and imaging data. We established first a clinical model with clinical characteristics (age, disease duration, 25FW, and 9HPT scores). All clinical variables had significant effects on disease evolution and we obtained a high accuracy. When the gray matter volume, the lesion load, and the fractional atrophy were used to build the imaging model, the effect of the GMV was significantly different from zero. However, the clinical model had a better accuracy than the imaging model. Finally, the imaging parameters were added one by one, two by two, then three together to the clinical model in order to examine the importance of imaging data. However, the so combined models were not much better than the clinical model (as per the BIC criterion).

The latent class linear mixed model was also able to cluster the patients into three latent classes showing severe, stable and moderate evolution. However, the majority of patients were clustered in the stable class where there was no significant worsening or recovery over five years.

As a consequence, given the high accuracy results, the models developed in this study are highly promising in predicting disability evolution of multiple sclerosis.

The limitation of our studies on multiple sclerosis is that we did not have access to the imaging parameters of the lesions. For example, the local lesion load and the location of the lesions might inform more about the risk of evolution toward severe disability. A future work may thus include the locally measured imaging parameters.

We hope that the statistical methods applied in this thesis will allow better integration and evaluation of future advances in medical imaging and statistical modeling. Finally, we hope to contribute to a better identification of stroke and multiple sclerosis patients for promising early-stage treatments.
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  imaging variables were significantly related to clinical disability. For this reason, we established first a clinical model with clinical and demographic data. Second, the gray matter volume, the lesion load, and the fractional anisotrophy were used to establish the imaging model. Finally, the imaging variables were added to the clinical model to investigate their additional contribution to model the evolution of individual disability . The predictive models for disability evolution in multiple sclerosis are developed in Chapter 4. Details of the model implementation, the results and a discussion are also presented in the same chapter.
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 11 Figure 1.1: A visualization of Support Vector Machine classification, Source: [140].
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 412 Figure 1.2: A neural network with one hidden layer.
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 13 Figure 1.3: An artificial neuron.
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 14 Figure 1.4: A binary decision tree where x i is all data, Z t , K m , and L s are subsets of X i where t, m, s < i and v l are the variables performed in classification where l = 1, 2, 3, 4.
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 15 Figure 1.5: A random forest performed with n trees with corresponding n samples.
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 16 Figure 1.6: Adaptative boosting algorithm.

  Conventional imaging is the standard MRI techniques and has played an important role to observe anatomical changes in brain. Advanced imaging provides complementary physiological informations such as the detection of structural, functional and metabolic changes which are useful for early diagnosis and treatment monitoring. MRI uses the body's natural magnetic properties to produce the images from any part of the body. The human body is mostly water. Water molecules (H 2 O) contain hydrogen nuclei called proton. The protons are randomly aligned in three dimensions (on X, Y and Z planes) under normal conditions. When the body is placed in a strong magnetic field (B 0 ), such as an MRI, the protons' axes all line up like a small bar magnet on the plane parallel to B 0 (Z plane) (See Figure1.7 and 1.8).
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 17 Figure 1.7: Magnetization in a MRI. Direction of external magnetic field is in the headfoot direction in the MRI.

Figure 1 . 8 :

 18 Figure 1.8: Effect of magnetic field and radio frequency on protons in the hydrogen molecule.

Fourier

  transformation is used to convert the energy frequency from each location to corresponding intensity levels, which are then displayed as shades of gray in the images. By varying the applied and collected RF pulses, different types of images can be created. Relaxation time can be divided into two component such as the T1 and T2 relaxation time. T1 relaxation time is measured on the longitudinal (Z) plane and T2 relaxation time on the transverse (XY) plane. Relaxations time features are regularly used to show contrast between different tissues because each tissue has different T1 and T2 relaxation times.
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 19 Figure1.9: (a) When a 90-degree pulse is applied, the net magnetization vector of the protons is flipped from the longitudinal plane to the transverse plane. (b) When a 90degree pulse is turned off, the net magnetization vector of the protons is flipped from the transverse plane to the longitudinal plane.
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 1 Figure 1.10: A brain imaging obtained respectively with T1-Weighted Imaging, T2-Weighted Imaging and FLAIR.
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 111 Figure 1.11: Contrast agent concentration change over time measured with T2WI in a brain voxel.
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 112 Figure 1.12: Figure on the left side shows the diffusion of the water in space (isotropic diffusion). On the right side, the figure shows the diffusion in brain (anisotropic diffusion). λ 1 : axial diffusivity, (λ 2 + λ 3 )/2 : radial diffusivity, (λ 1 + λ 2 + λ 3 )/3 : mean diffusivity.

Figure 1 .

 1 Figure 1.15: A neuron in the Central Nervous System.

Figure 1 .

 1 Figure 1.16 shows the DWI hyperintensity and ADC hypointensity images in a patient with stroke. The areas with high signal are readily apparent and the infarcted area is more visible with DWI parameter than with ADC parameter.

Figure 1 .

 1 Figure 1.16: MRI of the brain. DWI (image at left side), and ADC map (image at right side), showing high signal intensity on the DWI and low signal intensity on the ADC parameter in a patient with ischemic stroke [139].

Figure 1 .

 1 Figure 1.18: DWI/PWI mismatch [114].

Figure 1 .

 1 Figure 1.19: MRI of the ischemic penumbra in a patient with stroke [53].

Figure 1 . 20 :

 120 Figure 1.20: The estimated number of people with MS in 2013 in each country.

Figure 1 . 21 :

 121 Figure 1.21: Estimates of the regional prevalence of multiple sclerosis on 1 January 2003, per 100 000 inhabitants, standardised by age, among French farmers [230].

Figure 1 . 22 :

 122 Figure 1.22: Figure at the left side: A brain image at sagittal plane where the green part shows the Corpus Callosum. Figure at the right side: A brain image at coronal plane indicating the lateral ventricles and corpus callosum.

  population and they are classified into four clinical subtypes according to the disease evolution: Clinically Isolated Syndrome (CIS), Relapsing-Remitting (RR), Primary Progressive (PP), and Secondary Progressive (SP) [129] (See Figure 1.23).

Figure 1 . 23 :

 123 Figure 1.23: Change in disability score over time in the four MS clinical subtypes: Relapsing-Remitting (RR), Secondary Progressive (SP), Primary Progressive (PP), Clinically Isolated Syndrome (CIS).

  disability in progressive evolution (See Figure1.24)[223] [19].

Figure 1 . 24 :

 124 Figure 1.24: Inflammation and axonal loss evolution during the transition from RR to SP.Relapse frequency decreases giving rise to axonal loss followed by permanent disability[START_REF] Vollmer | The natural history of relapses in multiple sclerosis[END_REF].

2 .

 2 cerebellar -ataxia, loss of coordination or tremor 3. brainstem -nystagmus and impairement of speech and swallowing 4The functional systems are scored between 0 and 5 or 6 : 0 indicates no disability and 5 or 6 indicate most severe disability.EDSS scores 0.5 to 2.0 refer to patients with minimal-clinical disability, 2.5 to 4.5 refer patients who are able to walk with increased limitation in walking but insufficient to constrain from normal activities of daily living or work with some impairments of FS , 4.5 to 6.0 refer to patients who need assistance for ambulation. Finally, EDSS scores 7.0 refer to patients restricted to wheelchair and EDSS score 9.0 to helpless-bed patients.

1 .

 1 they assist MS diagnosis in showing lesion dissemination over time and space 2. they exclude alternative disease probabilities (for example: Lyme disease, Lupus, Sjögren's syndrome) even at the earliest stages 3. they are high sensitive in showing CNS damage in MS in comparison with other neuroimaging techniques 4. they are able to provide objective metrics to help observe disease evolution and assess treatment efficiency 5. they help to identifying the lesions and their location

Figure 1 .

 1 Figure 1.25: T2WI (A), FLAIR (B), and contrast-enhanced T1WI in a 30-year-old woman RRMS [74].

Figure 1 .

 1 Figure 1.26: MS lesion in corpus callosum on T2WI (A), FLAIR (B) and FLAIR in sagittal plane (C) [74].

Figure 1 . 27 :

 127 Figure 1.27: Images from a control subject (top row) and a patient (bottom row): DTI raw image (left column), color-coded FA map (middle column), and MD map (right column).FA takes the highest value (marked with red color) in the control subject whereas there is less red color in patients with MS, this indicates neurodegeneration. The lesions around CC are more visible on FA and MD maps[START_REF] Ge | Applications of diffusion tensor MR imaging in multiple sclerosis[END_REF].

Figure 1 . 28 :

 128 Figure 1.28: Serial T2-FLAIR images (top row) and spin-echo MR (bottom row) recorded from baseline to one year in acute multiple sclerosis lesion. FLAIR images show the evolution of lesion size that increases during the first 20 days and decreases afterwards.The spectroscopic graphs show a decrease in NAA from baseline up to 20 days and then stabilization up to 1 year. An increase in Cho during the first weeks followed by a partial recovery is also observed whereas Cr stays relatively stable at all time points[START_REF] Rovira | Magnetic resonance monitoring of lesion evolution in multiple sclerosis[END_REF].

[ 160 ]

 160 [START_REF] Galea | Relapse in multiple sclerosis[END_REF] [START_REF] Mendes | Classical immunomodulatory therapy in multiple sclerosis: how it acts, how it works[END_REF]. Thus, today's DMT are partially efficient in CIS, RR and SP patients, but not in PP patients[START_REF] Hartung | Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial[END_REF] [START_REF] Hawker | Progressive Multiple Sclerosis: Characteristics and Management[END_REF]. The treatments in MS have two aspects: immunomodulatory drugs to reduce autoimmune disorders and drugs to relieve partially or completely worsening symptoms.The classical immunomodulators of MS are interferon beta (IFNβ) and Glatiramer Acetate (GA): two were approved for the treatment of RR and CIS patients. IFNβ has many actions such as inhibition of T-cell activation and reduction of blood-brain barrier permeability to inflammatory cells. GA acts also on the immune system by interfering with antigen presentation and induction of suppressor cells.The effects of IFNβ and GA proved to reduce disability progression in, about 0-80% of new T2 enhancing lesions, almost 30% of relapses[START_REF] Paty | Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebocontrolled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group[END_REF] [35]. Moreover, the use of these treatments over a long period by RR patients delayed the time to secondary progression[START_REF] Freedman | A phase III study evaluating the efficacy and safety of MBP8298 in secondary progressive MS[END_REF] [START_REF] Tedeholm | Time to secondary progression in patients with multiple sclerosis who were treated with first generation immunomodulating drugs[END_REF].

Figure 2 . 1 :

 21 Figure 2.1: The AUC prc values calculated separately for treated and untreated patients with tPA by each classification methods. The AUC prc values performed for treated patients indicated adding "t" at the end of the method name on the x axis..

  (3 or 12 directions, repetition time >6000 ms, field of view 24 cm, matrix 128x128, slice thickness 3 or 5mm); ii) a Fluid-Attenuated-Inversion-Recovery (FLAIR: repetition time 8690 ms, echo time 109 ms, inversion time 2500 ms, flip angle 150°, field of view 21 cm, matrix 224x256, 24 sections, section thickness 5 mm, slice gap 1 mm); iii) a PWI MRI (echo time 30-50 ms, repetition time 1500ms, field of view 24 cm, matrix 128x128, 18 slices, thickness 5 mm, gap=1 mm, gadolinium contrast at 0.1 mmol/kg, intravenous injection 5 mL/s followed by 30 mL saline).Diffusion-weighted sequence generated maps of DWI and apparent diffusion coefficient (ADC) parameters. PWI tracked the bolus of injected contrast agent to generate maps of cerebral blood volume (CBV), cerebral blood flow (CBF), and transit time map parameters such as the time to peak (TTP), the mean transit time (MTT), and the time-tomaximum (TMAX). Perfusion maps were computed by circular singular value decomposition of the tissue concentration curves with an arterial input function from the contralateral middle cerebral artery. Using a reference region from the contralateral normal white matter, temporal parameters normalized by subtracting the mean contralateral value and all further references to MTT, TMAX, and TTP refer to the relative parameters.

Figure 2

 2 Figure 2 shows the voxels of predicted infarction on illustrative examples of brain MRI

Figure 2 -

 2 Figure 2 -Voxel-wise infarction risk prediction ([0; 1] probability) obtained with the five

Figure 3 -

 3 Figure 3 -Bar plots of the predicted (gray bars) and observed infarcted volumes (black bars)

5 , and 1 .Supplementary figure 3 - 2 3 . 4 3 . 4 . 1 3 . 5 3 . 5 . 1

 51323434135351 Supplementary figure 3 shows the changes of the misclassification error in function of the decay value, the number of units being indicated by different colours. The minimum misclassification error rate ( = 0.139) was obtained with the parameter couple (size, decay) = (25, 0.1). Misclassification error rate according to the number of neurons (size) and the decay in artificial neural network analysis. Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 Clinical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 Image Acquisition and Processing . . . . . . . . . . . . . . . . 3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application of clustering methods . . . . . . . . . . . . . . . . Statistical analyses . . . . . . . . . . . . . . . . . . . . . . . . . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Descriptive results . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.2 Cluster analysis results . . . . . . . . . . . . . . . . . . . . . . 3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  up with standardized clinical and MRI examination every six months during the first three years then at one-year intervals during two years. Clinical examination included age, disease duration since onset, the Expanded Disability Status Scale (EDSS), and the Multiple Sclerosis Functional Composite (MSFC) with its three dimensions: Timed 25 Foot Walk (T25-FW), 9-Hole Peg Test (9-HPT), and Paced Auditory Serial Addition Test (PASAT). Five patients were excluded from the cohort because one or more MSFC component(s) could not be measured at study onset.

  Packages kml and kml3d allow five different non-parametric criteria: 1)Calinski & Harabatz, 2)Calinski & Harabatz with Kryszczuk variant, 3)Calinski & 3.4. APPLICATION OF CLUSTERING METHODS 123 Harabatz with Genolini variant, 4)Ray & Turi and 5)Davies & Bouldin criterion [78] [29]

Figure 3 . 1 :

 31 Figure 3.1: The horizontal axis shows the time in month and the vertical axis EDSS score. The dotted lines represent the individual EDSS trajectories and the solid lines the mean EDSS trajectories of each MS subtype.

  fractional anisotropy values ranged between 0.54 and 0.62. The highest FA values were obtained in CIS patients and were significantly different from the other subgroup' FA values (p-value < 0.05). In addition, FA values did not differ between RR and PP patients (p-values=0.38).

Figure 3 . 2 :

 32 Figure 3.2: The individual (dotted line) and mean (thick solid line) of GMV, WMV, LL, and FA trajectories observed in CIS, RR, PP, and SP patients.

Figure 3 .

 3 Figure 3.3 shows the regression analyses on FA values (advanced imaging parameter) according to the LL, GMV, and WMV (conventional imaging parameters) at study onset.

Figure 3 . 3 :Figure 3 . 4

 3334 Figure 3.3: Regression analysis between conventional and advanced imaging parameters. The correlation coefficient value was indicated on the top of each graph. The red line corresponds to the linear regression line.

55 EDSSFigure 3 . 4 :

 5534 Figure 3.4: Regression analyses between EDSS and imaging parameters.
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 3536 Figure 3.5: Clustering results with graphical representation and corresponding table for single EDSS trajectories of all clinical subtypes. The individual trajectories are presented with black lines and the mean trajectories of the clusters are presented with colored thick solid lines. The proportions of individuals assigned to each cluster are given at the top of the graph.

Figure 3 . 6 :

 36 Figure 3.6: Clustering results with graphical representations for respectively EDSS & LL trajectories (left side), and EDSS & FA trajectories (right side) with corresponding clustering tables for all clinical subtypes. The individual trajectories are represented with black lines and the mean trajectories are represented with colored thick solid lines. The proportions of individuals assigned to each cluster are given at the top of the graph.

Figure 3 . 7 :

 37 Figure 3.7: Mean trajectories of the clusters obtained with single EDSS score trajectories in CIS, RR, and SP patients.

Figure 3 . 8 :

 38 Figure 3.8: Clustering results of respectively EDSS score & LL (at left side) and EDSS score & FA (at right side) trajectories obtained with CIS, RR, and SP patients.

  the Mac Donald criteria were included in a standardized clinical and MRI protocol within the frame of the AMSEP project in Lyon Neurological Hospital. This population was divided into four groups of MS patients depending on the clinical form: CIS (n=12), RR (n=27), SP (n=16), and PP (n=25). The patients were followed up with standardized clinical and MRI examination every six months during the first three years then at one year intervals during two years. Clinical examination provided the Expanded Disability Status Scale (EDSS), Multiple Sclerosis Functional Composite (MSFC) with its three dimensions: Timed 25 Foot Walk (T25FW), 9-Hole Peg Test (9HPT) and Paced Auditory Serial Addition Test (PASAT), disease duration at study onset. Age of the patients was also provided. Five patients were excluded from the AMSEP cohort because one or more MSFC component(s) could not be measured at study onset. Image Acquisition and Processing MS patients underwent an MR examination on a 1.5T Siemens Sonata system (Siemens Medical Solution, Erlangen, Germany) using an 8-channel head-coil. The MR protocol consisted in the acquisition of a sagittal 3D-T1 sequence (1 1 1 mm 3 , TE/TR = 4/2 000 ms) and an axial 2D-spinecho DTI sequence (TE/TR = 86/6900 ms; 2 24 directions of gradient diffusion; b = 1000 s.mm -2 , spatial resolution of 2.5 2.5 2.5 mm 3 oriented in the AC-PC plane. The lesion load was measured with FLAIR sequence and white and gray matter volumes were measured with T1 imaging without gadolinium contrast agent. Each subject can belong to one latent class and the probability to be in class is defined using a multinomial logistic model as: where is the intercept of the latent class g, is the class specific parameter and represents the individual class-specific covariate matrix. Moreover, the sum of probabilities of being in various classes is equal to one ( for ). Parameter estimation Parameter estimation in the latent class linear mixed model can be performed with the maximum likelihood. Let be the vector of parameters of the model and the individual contribution to the likelihood of the model. The individual contribution to the likelihood of the latent class linear mixed model is defined as: where is the probability of belonging to class g and is the density function of a multivariate normal distribution with mean and variance .
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 1 Figure1shows the predicted points and observed mean trajectories obtained with the clinical
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 12 Figure 1. The solid lines show the observed mean trajectories and the dotted lines their 95% confidence
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 25 Figure 2. The solid lines show the observed mean trajectories and the dotted lines their 95%

Figure 3

 3 Figure 3 shows predicted and observed mean trajectories obtained with the combined model built

Figure 3 .Table 8 .

 38 Figure 3. The solid lines show the observed mean trajectories and the dotted lines their 95%
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Table 1

 1 

	.1 is 2 × 2 contingency table and shows the observations with the classification
	method results.			
		Sick Observation Healthy Observation	
		y i =1	y i =0	
	Positive result: (π i ≥ τ )	TP	FP	T+=TP+FP
	Negative result: (π i < τ)	FN	TN	T-=FN+TN
		M+=TP+FN	M-=FP+TN	
	Table 1.1: TP: True Positive, FP: False Positive, FN: False Negative, TN: True Negative,
	M+= Number of sick observations, M-= Number of healthy observations, T+= Number
	of observations with positive result, T-= Number of observations with negative result.

1.2.1 Single and joint trajectories Single trajectories

  

	of individuals. The aim is to cluster the more similar individuals in the same group and the Let S be a set of n trajectories and y t the longitudinal outcome measured at different
	more dissimilar individuals in different clusters. The clustering analysis can be categorized time points t. A single trajectory (or single-variable trajectory) for a given individual i is
	into two main groups: non-parametric and model-based. In this thesis, we will present defined as y i. = (y i1 , y i2 , . . . , y it ). For a given variable X, a single variable trajectory can
	first non-parametric clustering methods. Second, model-based clustering presented in the be written as y i.X = (y i1X , y i2X , . . . , y itX ).
	following section.
	Joint trajectories
	Clustering methods are often confused with classification methods. In classification, the
	classes to which we want to assign the individuals are already predefined whereas, in A joint trajectory is a multi-variable trajectory obtained with at least 2 variables. Let
	clustering, the clusters are established during the process. y i.A , y i.B , . . . , y i.M be single trajectories for variable A, B, . . . , M of individual i. The joint
	trajectory of the individual i is defined as :
	Clustering analyses can be performed on cross-sectional data as well as the longitudinal
	data. In health, social, or behavioral sciences, longitudinal studies are important to
	observe changes over time. Here, we clustered the individuals according to their individual
	trajectories established with longitudinal data.
	This section provides an overview of clustering algorithms for single and joint longitudinal
	data. We present first the single and joint trajectories in the section 1.2.1. Section
	1.2.2 introduces the concept of distance between trajectories, data standardization, and
	selection of the number of clusters. Finally, Section 1.2.3 describes the k-means algorithm
	for longitudinal data.

  We compute first t distances between M rows of each column where M is the number of variables. So, t distances d t. (y 1t. , y 2t. ) = (d 1. (y 11. , y 21. ), d 2. (y 12. , y 22. ), ..., d t. (y 1t. , y 2t. )) are obtained. Then, these t distances are combined using a distance function d(y 1.. , y 2.. ) = Dist(d 1. (y 11. , y 21. ), d 2. (y 12. , y 22. ), ..., d t. (y 1t. , y 2t.

		⎡		⎤		⎡		⎤	
	d(y 1.. , y 2.. ) = Dist ⎛ ⎝	⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣	y 11A y 12A . . . y 1tA y 11B y 12B . . . y 1tB . . . . . . . . . . . . y 11M y 12M . . . y 1tM	⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦	,	⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣	y 21A y 22A . . . y 2tA y 21B y 22B . . . y 2tB . . . . . . . . . . . . y 21M y 22M . . . y 2tM	⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎥ ⎥ ⎥ ⎥	⎞ ⎠
	= Dist (d 1. (y 11. , y 21. ), d 2. (y 12. , y 22. ), . . . , d t. (y 1t. , y 2t. ))		
									(1.24)

Description 1.0

  No disability, minimal signs in one FS 1.5 No disability, minimal signs in more than one FS 2.0 Minimal disability in one FS 2.5 Mild disability in one FS or minimal disability in two FS Significant disability but up and about much of the day, able to work a full day, may otherwise have some limitation of full activity or require minimal assistance. Able to walk without aid or rest for 300m Disability severe enough to impair full daily activities and ability to work a full day without special provisions. Able to walk without aid or rest for 200m

	3.0	Moderate disability in one FS, or mild disability in three or four FS. No im-pairment to walking
	3.5	Moderate disability in one FS and more than minimal disability in several others. No impairment to walking
	4.0	Significant disability but self-sufficient and up and about some 12 hours a day. Able to walk without aid or rest for 500m
	4.5	
	5.0	

Table 2 -

 2 Performance criteria of the five studied classification methods.

	Figure 1 shows the	and	values performed by LR and SVM on each
	patient data. These two methods were selected because they gave respectively the highest
	and lowest		values (Table 2). The graphs show that both	and	values
	with LR are higher than SVM values on almost all patient data.
	In the case of volumes <50 mL, both	and	values were highly variable
	whereas		values tended to have higher values than	values. In volumes > 100
	mL,	and	values were similar.

Table 3 .

 3 1: Demographic and clinical characteristics of 75 patients measured at study onset, Median (range).

	SP
	PP
	RR

Table 3 .

 3 2: Conventional and advanced imaging parameters measured in 75 patients at study onset, Median (1st quartile -3rd quartile) (GMV: Gray Matter Volume,WMV: White Matter Volume, LL: Lesion Load, FA: Fractional Anisotropy).

	826.2 (801.3-858.1) 858.3 (845.7-883.2) 841.1 (820.7-873.4) 811.2 (781.9-822.9) 822.0 (791.5-832.4)	1433 (1384-1470) 1484 (1457-1508) 1448 (1412-1477) 1420 (1346-1462) 1394 (1362-1441)	15.10 (7.17-32.97) 6.65 (4.29-8.44) 14.37 (6.54-24.32) 14.33 (11.00-27.69) 36.32 (20.32-41.52)	0.59 (0.57-0.62) 0.62 (0.60-0.64) 0.60 (0.58 -0.62) 0.59 (0.57-0.61) 0.54 (0.48-0.59)
	GMV	WMV	LL	FA

Table 3 .

 3 3: Calinski-Harabatz criterion results obtained with 2, 3, 4, 5 and 6 clusters performed on single and joint trajectories in all subtypes and for CIS, RR and SP patients.

	3	4	5	6

Table 3 .

 3 4 shows the number of patients, the median, 1st, and 3rd quartiles of clinical and imaging variables measured for each cluster obtained with the EDSS trajectory clustering.

	Age, disease duration, T25FW, and 9HPT, GMV, LL, and FA values at study onset in
	the three clusters are presented and compared. All clinical and imaging variables were
	significantly different among the three clusters (Kruskal-Wallis, p-value<0.05). When
	the variables were compared between two clusters; age, 9HPT, and 25FW values of the
	patients in cluster C were significantly higher than other clusters. However, the disease
	durations were similar between patients in clusters A and C. The GMV was significantly
	higher for the patients in cluster B and there was no significant difference between GMV
	values of cluster A and cluster C. However, the LL of the patients in cluster B was
	significantly lower and the LL values were similar in patients in sluster A and Cluster C.
	FA values were similar in clusters A and B but were significantly higher compared to the
	FA values in cluster C.		
	Variable	Class A	Class B	Class C
		N=9	N= 63	N=3
	Age	40.76 (36.00, 44.56) 29.86 (26.85, 36.58) 41.84 (40.54, 44.49 )
	Disease Duration 7.65 (4.76, 11.19)	2.15 (0.86, 4.64)	10.18 (6.83, 15.35)
	9HPT	23.40 (21.05, 24.89) 18.40 (17.48, 20.30) 34.50 (28.35, 37.39)
	25FW	5.72 (5.01, 6.53)	4.25 (4.05, 4.65)	8.30 (7.06, 13.26)
	GMV	821.1 (791.7, 835.5) 863.3 (845.6, 884.4) 816.5 (791.5, 826.4)
	LL	17.09 (8.90, 39.65)	8.83 ( 5.79, 16.21) 26.91 (15.06, 36.81)
	FA	0.45 (-0.13, 0.69)	0.47 (0.29, 0.89)	0.10 (-1.14, 0.52)

Table 3 .

 3 4: Clinical and imaging variables according to the clusters obtained with single EDSS trajectories. Median (1st, 3rd quartile). the p-value is the result of Kruskal-Wallis test which was performed to compare the medians of variable values in the three clusters.

	Cluster analysis results in CIS, RR and SP patients
	Figure 3.7 is a graphical representation of the cluster analysis performed on single EDSS
	trajectories in CIS, RR, and SP patients. The graph shows two stable mean trajectories
	(clusters A and B). Cluster A was around the EDSS score 4 and cluster C progressed
	around the EDSS score 1. However, the mean trajectory of cluster C increased over
	time. The table that corresponds to Figure 3.7 shows that CIS patients were in one
	cluster (cluster B) whereas RR and SP patients were separated into two different clusters.

  .8 shows the mean EDSS & FA trajectories performed with RR, PP and SP patients. Cluster B and C had similar EDSS evolution whereas cluster A had a lower EDSS evolution over time. The clustering table showed quite similar results to those obtained with joint EDSS & LL trajectories. In these two clusterings, there were two clusters included RR and SP patients which had severe evolutions. However, the cluster with moderate EDSS evolution included CIS and RR patients. The clustering table that corresponds to the joint EDSS & FA trajectories for CIS, RR, and SP show similar results to those obtained with all clinical subtypes. Two clusters with similar EDSS evolutions incuded 12 RR and 22 SP patients. This means that identifying RR and SP patients with clinically severe evolution did not change after excluding of PP patients. When we compares the clustering results obtained with single EDSS vs. joint trajectories, the clusters were not significantly different. However, we obtained highest Calinski & Harabatz criterion value with the cluster analysis performed with single EDSS trajectories (CH EDSS = 156). In addition, Calinski & Harabatz criterion values were much lower but similar for joint EDSS & FA and EDSS & LL trajectories (CH EDSS& LL = 79 and CH EDSS& FA = 55). The Calinski & Harabatz criterion result of the single EDSS trajectory clustering was three times higher than that obtained with joint EDSS & FA trajectory clustering. However, the number of patients in each cluster were quite similar for the cluster analysis performed with single EDSS and joint EDSS & FA trajectories. Because the patients in the clusters was different even the number of the patients were similar.
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Chapter 4 Modelling of individual disability evolution of multiple sclerosis patients using clinical and imaging data INTRODUCTION Multiple

  sclerosis (MS) is the most frequent disabling neurological disease in young adults. While its etiology remains unknown, MS is a demyelinating, inflammatory, and chronic disease of the central nervous system. The evolution of the disease and the risk of developing permanent disability are very different from one patient to another[Goldenberg, 2012]. Today's neurologists' challenge is to predict individual disability evolution on the basis of clinical, biological and imaging data. MS patients show highly different evolution profiles and this evolution profile is not unique per patient and can change over time. MS patients are currently classified into four major subtypes, on the basis of clinical evolution as measured by the Expanded Disability Status Scale (EDSS) score. The four clinical subtypes are qualified as: the clinically isolated syndrome (CIS), relapsing-remittent (RR), In addition, as the patients in different subtypes show different diffusivity patterns, DTI is able to separate the MS subtypes [Sbardella et al., 2013]. Therefore, we propose to use DTI data jointly with the conventional imaging. The fractional anisotropy (FA) measure was chosen among DTI measurements because it is more sensitive in detecting microscopic changes related to inflammation [Hannoun et al., 2012]. MS affects especially the white matter of the brain and the lesions appear mostly around the ventricles and periventricular white matter. The floor of the lateral ventricles forms a region called Corpus Callosum (CC). So, CC is the one of the regions the most frequently affected by lesions in MS [Barnard, 1974; Gean-Marton et al., 1991; Ge et al., 2006]. In 93% of MS patients, the lesions are found in CC [Gean-Marton et al., 1991]. Moreover, CC is the major myelinated bundle of the brain providing the connection between cortical and subcortical regions of the two brain hemispheres. For this reason, the impact of lesions in CC is more severe in comparison with the lesions in lobar white matter. The association between EDSS scores and CC atrophy measured with conventional MR was approved in some studies [Hasan et al., 2005; Rueda et al., 2008; Warlop et al., 2008; Schreiber et al., 2001]. Among the studies interested in MS progression, many articles have used logistic regression to predict the presence or absence of progression (at least 1 point increase in EDSS score) or ordinal logistic regression to predict the EDSS step changes in ordinal categories [Sastre-Garriga et al., 2005; Minneboo et al., 2008, Khaleeli et al., 2008]. The predictive ability of the clinical and imaging data for the disability evolution in MS is analyzed with linear regression models [Minneboo et al., 2009; Furby et al., 2010; Bodini et al., 2011; Enzinger et al., 2011; Popescu et al., 2013]. At the same time, the multilevel approach is performed to consider individual alteration during disability progression [Di Serio et al. 2009; Lawton et al., 2015]. This latter model was able to include heterogeneity among individuals. However, the evolution of disability in MS does not show a unique mean evolution profile, thus, it would be interesting to consider heterogeneity originated from different mean evolution profiles of the MS patients.

	In addition to clinical examination, Magnetic Resonance Imaging (MRI) helps the diagnosis and the
	monitoring of disease evolution. Conventional MRI (such as T1-weighted and T2-weighted imaging)
	has important specificity and sensitivity in detecting pathological tissue damage and obtaining
	valuable predictive information on disease evolution [Filippi, 2001; Fisniku et al., 2008]. In this study,
	we used the lesion load and the grey matter volume because they reflect better the levels of However, no significant correlation was found between disability and callosal atrophy measured with
	neuroaxonal loss and demyelination [Peterson et al., 2001; Minneboo et al., 2009]. However, conventional imaging in RR patients [Barkhof et al., 1998]. This contrast can be the result of
	advanced MRI (such as Diffusion Tensor Imaging (DTI) and Spectroscopic Imaging) has a higher insufficiency of conventional imaging on CC and the use of advanced MRI techniques -as DTI-can be
	specificity in detecting microstructural damages in white matter than conventional imaging [Ge et al., more suitable for CC data in MS patients. For this reason, the FA measured in CC was used in this
	study.

primary-progressive (PP), and secondary-progressive (SP). Few patients (85%) were earlier diagnosed as CIS during the clinical exam. CIS patients presents then RR. RR can shift later to SP with or without superimposed relapses

[START_REF] Lawton | A longitudinal model for disease progression was developed and applied to multiple sclerosis[END_REF]

. 15% of MS patients presents a PP, that is characterized by a continuous worsening of symptoms without relapses since diagnosis

[Lublin, 2014]

. 2004; Sbardella et al., 2013] because they provide complementary information giving the diffusion alteration and metabolic change [Filippi et al., 2001; Filippi, 2001; Filippi, 2001]. Furthermore, several studies have demonstrated that callosal changes, measured with DTI, were correlated with cognitive and physical disability [Sigal et al., 2012, Yaldizli et al., 2010; Rimkus et al., 2010; Llufriu et al., 2012]. FA measurements were significantly lower in rostrum, body, and splenium part of CC compared to control group [Hasan et al., 2005; Rueda et al., 2008; Warlop et al., 2008].

  The independent variables were clinical and imaging data such as the time, age, disease duration, T25FW, 9HPT, and grey matter volume, lesion load, and fractional anisotropy. The EDSS score and time were used as longitudinal data. The other clinical and imaging variables were entered into the model with their values at study onset.Before fitting the model, the latent class mixed model requires setting the number of latent class, the variable that determines the latent classes (in the mixture argument) and the time function (linear, quadratic, and square root). Time, age, disease duration, T25FW and 9HPT, grey matter volume, lesion load, and fractional anisotropy were tested separately in the mixture argument with the linear, quadratic, and square root of time in three and four latent classes. So, we established 48 models and these models were compared using the Bayesian information criterion (BIC). The model with the lower BIC value provided the best combination of number of latent class, variable that determines the latent classes and time function.All clinical and imaging variables were used in the fixed argument during the choice of the best combination. Besides, age at study onset was used as the variable that exerts the individual effect (in the random argument) in all models because there was a great inter-patient variability in terms of age at study onset.First, the clinical model was established with age, disease duration, T25FW, and 9HPT at study onset, and time in the fixed argument. Second, the imaging model was established with GMV, LL, and FA in the fixed argument. Third, the imaging variables were added one by one or two by two or all three

Table 1 -

 1 the clinical model, all clinical variables had significant effects on the evolution of the EDSS score The variables used in the fixed and mixture arguments of the clinical model. Coef:

	(	= 0.11,	=0.08,	=0.12, and	=0.07 where p-value < 0.05 for all
	variables). The effect of time was presented for each latent class and its effect was significant in two
	classes (	=0.05 and	=-0.09 where p-value < 0.05). These classes were the latent
	Variable	Coef	Se		Wald	p-value
	Disease Duration 0.10772	0.02392	4.504	0.00001
	Age	0.08036	0.01907	4.215	0.00003
	T25M	0.12060	0.03990	3.022	0.00251
	9HPT	0.06453	0.01708	3.779	0.00016
	Time class1	0.04715	0.00436	10.805	0.00000
	Time class2	0.00274	0.00148	1.858	0.06321
	Time class3	-0.09571	0.01254	-7.631	0.00000

classes (class 1 and 3) which contain fewer patients than the other latent classes (class 2) (12% and 4% vs 84%). However, time had no significant effect in class 2 (p-value=0.06).

Parameter coefficient, Se: Standard Error, and Wald: Statistical test value.

Table 2

 2 

shows the classification results obtained with the clinical model. Most of the patients were found in latent class 2 (84%) which had a stable mean evolution. Latent class 1 included RR, PP, and SP patients with more severe clinical evolution than CIS. Contrary to latent class 1, latent class 3 included patients with moderate evolution and there were two CIS patients and one RR patient.

Table 3 -

 3 3 months. The other clinical and imaging variables were not significantly different among the three latent classes (p-value>0.05). Clinical and imaging variables according to each latent class obtained with the clinical model. Median (1st, 3rd quartile). The p-value is the result of Kruskal-Wallis test which was performed to compare the medians of variables.

	Variable	Class 1	Class 2	Class 3	p-value
		N=9	N=63	N=3	
	Age	40.5 (32.4, 44.0)	39.1 (30.5, 42.8)	34.4 (28.5, 38.7)	0.71
	Disease Duration	6.6 (4.9, 10.5)	5.9 (3.4, 9.0)	0.3 (0.2, 0.8)	0.02
	9HPT	24.8 (20.1, 32.6)	22.0 (19.3, 26.1)	23.4 (21.2, 26.3)	0.70
	25FW	5.1 (4.1, 7.0)	5.4 (4.5, 6.6)	4.2 (3.8, 4.3)	0.08
	GMV	831.1	824.7	869.8	0.53
		(799.8, 850.7)	(800.7, 858.0)	(843.1, 875.9)	
	LL	26.5 (15.1, 35.4)	15.1 (6.1, 32.9)	7.2 (7.1, 7.4)	0.15
	FA	0.12 (-0.20, 0.73)	0.41 (0.11, 0.78)	0.43 (0.41, 0.74)	0.57

Table 4

 4 shows the result of the imaging model established with GMV, LL, and FA in the fixed argument. The effect of the GMV was significantly different than 0 (p-value<0.05). A decrease of GMV value causes an increase in the clinical disability 0.02). However, LL and FA did not show significant effects on disease evolution measured with EDSS score in the imaging model (p-value=0.26).

	Variable	Coef	Se	Wald	p-value
	GMV	-0.01625	0.00404	-4.024	0.00006
	LL	-0.00049	0.01243	-0.039	0.96880
	FA	-0.26589	0.23815	-1.116	0.26421
	9HPT	0.06453	0.01708	3.779	0.00016
	Time class1	0.00522	0.00167	3.130	0.00175
	Time class2	0.04732	0.00391	12.108	0.00000
	Time class3	-0.02096	0.00520	-4.027	0.00006

Table 4 -

 4 The variables used in fixed and mixture arguments in the combined model. Coef: Parameter coefficient, Se: Standard Error, and Wald: Statistical test value.

Table 6

 6 shows the BIC, the mean of posterior probabilities, the log-likelihood, and the AIC of the clinical, the imaging, and the combined model built with seven different combinations of imaging variables. The highest BIC was obtained with the imaging model and the lowest BIC with the clinical model. All models had mean posterior probabilities over 0.89. Most of the combined models had a greater mean posterior probability than the clinical and imaging model. The log-likelihood ranged between -542 and -505. The model with clinical, GMV and FA variables and the model with the clinical and all imaging variables showed the best likelihood values. AIC values ranged between 1047 and 1115. The model with clinical, GMV and FA variables had the lowest AIC value.

	Model	BIC	Posterior Probability	Loglik	AIC
	Clinical	1086	0.970	-508	1049
	Imaging	1149	0.949	-542	1115
	Clinical +GMV	1105	0.990	-516	1066
	Clinical +LL	1111	0.890	-519	1072
	Clinical +FA	1088	0.985	-507	1048
	Clinical +GMV+LL 1123	0.982	-522	1081
	Clinical +GMV+FA 1089	0.989	-505	1047
	Clinical + LL+FA	1092	0.985	-507	1050
	Clinical	1093	0.989	-505	1049
	+GMV+LL+FA				

Table 6 -

 6 BIC, mean of posterior probabilities, Log-likelihood, and AIC results with the clinical, the imaging and the combined models built with different combinations of imaging variables.

Table 7

 7 shows the results of the combined mode built with clinical and all three imaging parameters.The effects of the clinical variables were still significant ( =0.11, =0.06, =0.13, and 0.04 where p-value<0.05 for all). However, the effects of the imaging variables were not significantly different from zero (p-value >0.05).

	Variable	Coef	Se	Wald	p-value
	Disease duration 0.10505	0.02361	4.450	0.00001
	Age	0.05980	0.02244	2.664	0.00771
	T25FW	0.12681	0.03747	3.384	0.00071
	9HPT	0.04244	0.01900	2.233	0.02552
	GMV	-0.00751	0.00407	-1.845	0.06502
	LL	-0.00372	0.01187	-0.314	0.75381
	FA	-0.25584	0.21576	-1.186	0.23571
	Time class1	-0.09566	0.01256	-7.616	0.00000
	Time class2	0.00285	0.00140	2.045	0.04090
	Time class3	0.04754	0.00380	12.522	0.00000

Table 7 -

 7 The variables used in fixed and mixture arguments in the combined model. Coef: Parameter coefficient, Se: Standard Error, and Wald: Statistical test value.
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ABSTRACT

In acute ischemic stroke, identifying brain tissue at high risk of infarction is important for clinical decision-making. This tissue may be identified with suitable classification methods from magnetic resonance imaging (MRI) data. The aim of the present study was to assess comparatively the performance of five popular classification methods (Adaptative Boosting (ADA), Logistic Regression (LR), Artificial Neural Networks (ANN), Random Forest (RF), and Support Vector Machine (SVM)) in identifying tissue at high risk of infarction on human voxelbased brain imaging data. The classification methods were used with eight MRI parameters including diffusion-weighted imaging (DWI) and perfusion-weighted imaging (DWI) obtained in 55 patients. Sensitivity, specificity, the area under the receiver operating curve (ROC) as well as the area under the precision-recall curve criteria were used to compare the method performances. The methods performed equally in terms of sensitivity and specificity while the results of the area under the ROC were significantly better for ADA, LR, ANN and RF. However, there was no statistically significant difference between the performances of these five classification methods regarding the area under the precision-recall curve, which was the main comparison metric.

Keywords: brain ischemia, classification, diffusion-weighted imaging, Magnetic Resonance

Imaging, machine learning, perfusion-weighted imaging Artificial Neural Networks (ANN) on animal imaging data and reported promising findings regarding predicting the outcome of ischemic tissue. In 2011, another study from the same authors 7 found better results with Support Vector Machine (SVM) than with ANN on animal data. A recent extensive study by Bouts et al. 8 compared five classification methods on experimental animal data; the five methods gave similar results. However, extrapolating these findings to man may not be appropriate. 9 Thus, Winder et al. 10 compared the prediction accuracy of three classification methods (nearest-neighbor, generalized linear model, and random forest RF) using human voxel-based stroke data; RF --as a machine learning algorithm--performed significantly better than the two other methods.

The aim of the present study was to assess the performance of five popular classification methods (Adaptative Boosting -ADA, ANN, Logistic Regression -LR, RF, and SVM) in identifying the tissue at high risk of infarction from voxel-based human data.

MATERIAL AND METHODS

Patients

The study used data of patients from the I-KNOW multicentre study (http://www.i-knowstroke.eu) that included prospectively patients who underwent MRI at admission and followup to estimate voxel-based probabilistic maps of infarction risk. The inclusion criteria were: ( 1 respectively. The study was approved by the Aarhus, Hamburg, Lyon, and Girona hospitals respective regional ethics committees, and carried out after informed consent from the patients. Patients with lacunar or posterior circulation stroke, unknown time of stroke onset, unknown T2 FLAIR sequence measure or intracerebral haemorrhage on MRI were excluded.

Overall, 55 patients were used for each classification method.

The leave-one-out cross-validation approach was used to avoid overfitting and provide an accurate estimation of the prediction performances of the different methods. 17 Patients were removed one by one and the method applied to the remaining data. Afterwards, the prediction relative to the removed patient was performed using the same method.

,

, Se, and Sp were separately calculated for each of the 55 patients and the medians of these values given as evaluation criteria. 
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APPENDIX

We explain below the ways the methods used to calculate the infarction risk of a given n observation.

The LR estimates the infarction risk of an observation as its probability of being infarcted at one month. Probability is calculated using MRI parameters with the following logit function:

, where is the intercept and the multiplicative risk factor.

The SVM separates the observations into healthy or infarcted using a linear border. The closest observations to the border in each class are called "support vectors". The support vectors will help afterwards choosing the best border by maximizing the distance between the border and the support vectors and minimizing the number of misclassified observations. To find a linear border, SVM projects all observations into a higher dimensional space via a kernel function.

The SVM optimizes the solution by minimizing respecting

, where is the normal (perpendicular) vector to the border and C the trade-off constant. The signed distance to the border can be used as the infarction risk. A zero distance represent a voxel that belongs to the border line, a positive distance represents a high risk of infarction, and a negative distance a low risk of infarction.

For the RF, the number of parameters used at each node to perform the classification was set at mrty = 3, the number of trees optimized in the interval [1,[START_REF] Jacobs | Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis[END_REF] by increments of 1, and the performances of the combinations compared using the misclassification error rate.

For the ADA, the optimal number of trees was searched in the interval [1,[START_REF] Simon | Update on multiple sclerosis[END_REF] by increments of 1 and the performances of the combinations compared using also the misclassification error rate.

With ADA, RF, ANN, and LR, the threshold that minimizes the difference between the observed and the predicted infarcted volume was set between 0 and 1 with steps of 0.001. With SVM, this threshold was set between -3 and 3 with steps of 0.001.

Supplementary figures

Parameter optimization was made using a grid-searching approach that provides the misclassification error rate with ADA, ANN, RF, and SVM algorithms. The parameters which gave the lowest misclassification error rate were chosen.

With ADA, the optimal number of iterations (which is also the number of trees) is searched in the interval [0, 150] with increments of 1. Supplementary figure 1 shows that the misclassification error calculated with ADA is nearly the same when the number of trees is 1 Hospices Civils de Lyon, Service de Biostatistique-Bioinformatique, F-69003 Lyon, France.

2 Université de Lyon, F-69000, Lyon, France. 3 Université Lyon 1, F-69100, Villeurbanne, France. 4 CNRS, UMR5558, Laboratoire de Biométrie et de Biologie Évolutive, Équipe Biostatistique-Santé, F-69100, Villeurbanne, France. where is a matrix is related to the vector of fixed effects in length p, is a design matrix is related to the vector of random effects in length q . The linear mixed models assume that the population is homogeneous and that the random effects are normally distributed as .

are the measurement errors that are assumed to be normally distributed with mean zero and covariance matrix and to be independent from the random effects .

However, the latent class linear mixed model considers that the population is not homogeneous and consists of G subgroups also called latent classes. Each latent class shows different distributions with the class-specific matrix of variance-covariance. The latent class mixed model is defined as:

where and are the covariate matrices and associated with the vector of fixed effects, at population and latent class levels, respectively. is the class-specific covariate matrix of class g and is associated with the random effects where and are, respectively, the classspecific mean and the covariance matrix.

Posterior classification

After parameter estimation, the posterior probability of assigning each subject to a latent class g can be obtained using following equation:

The subject is assigned to the latent class that maximizes the posterior probability defined as: This assignment allows obtaining the posterior classification that can then refer to the goodness-of-fit of the model [START_REF] Proust-Lima C | Estimation of Extended Mixed Models Using Latent Classes and Latent Processes : The R Package lcmm[END_REF]]. The higher is the mean of the posterior probabilities obtained at each latent class, the better is the classification.

Longitudinal predictions

When the number of latent classes is higher than one, the class-specific subject-specific predictions for individual i at j a given time point can be calculated as:

where and are the estimated parameters of respectively the fixed and the class-specific fixed effects. are the empirical Bayes estimates for random effects. 
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