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Abstract

Stroke and multiple sclerosis are two of the most destructive neurological diseases of the

central nervous system. Stroke is the second most common cause of death and the major

cause of disability worldwide whereas multiple sclerosis is the most common non-traumatic

disabling neurological disease of adulthood.

Magnetic resonance imaging is an important tool to distinguish healthy from pathological

brain tissue in diagnosis, monitoring disease evolution, and decision-making in personal-

ized treatment of patients with stroke or multiple sclerosis.

Predicting disease evolution in patients with stroke or multiple sclerosis is a challenge for

clinicians that are about to decide on an appropriate individual treatment. The etiology,

pathophysiology, symptoms, and evolution of stroke and multiple sclerosis are highly

different. Therefore, in this thesis, the statistical methods used for the study of the two

neurological diseases are different.

The first aim was the identification of the tissue at risk of infarction in patients with stroke.

For this purpose, the classification methods (including machine learning methods) have

been used on voxel-based imaging data. The data measured at hospital admission is

performed to predict the infarction risk at one month. Next, the performances of the

classification methods in identifying the tissue at a high risk of infarction were compared.

The second aim was to cluster patients with multiple sclerosis using an unsupervised

method based on individual clinical and imaging trajectories plotted over five 5 years.
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Clusters of trajectories would help identifying patients who may have an important pro-

gression; thus, to treat them with more effective drugs irrespective of the clinical subtypes.

The third and final aim of this thesis was to develop a predictive model for individual

evolution of patients with multiple sclerosis based on demographic, clinical, and imaging

data taken at study onset. The heterogeneity of disease evolution in patients with mul-

tiple sclerosis is an important challenge for the clinicians who seek to predict the disease

evolution and decide on an appropriate individual treatment. For this purpose, the latent

class linear mixed model was used to predict disease evolution considering individual and

unobserved subgroup’ variability in multiple sclerosis.

Keywords: Stroke, Multiple Sclerosis, Classification Methods, Trajectory Clustering,

Predictive Modeling, Latent Class Linear Mixed Model



Résumé

L’accident vasculaire cérébral et la sclérose en plaques figurent parmi les maladies neu-

rologiques les plus destructrices du système nerveux central. L’accident vasculaire cérébral

est la deuxième cause de décès et la principale cause de handicap chez l’adulte dans le

monde alors que la sclérose en plaques est la maladie neurologique non traumatique la

plus fréquente chez l’adulte jeune.

L’imagerie par résonance magnétique est un outil important pour distinguer le tissu

cérébral sain di tissue pathologique à des fins de diagnostic, de suivi de la maladie, et

de prise de décision pour un traitement personnalisé des patients atteints d’accident vas-

culaire cérébral ou de sclérose en plaques.

La prédiction de l’évolution individuelle de la maladie chez les patients atteints d’accident

vasculaire cérébral ou de sclérose en plaques constitue un défi pour les cliniciens avant

de donner un traitement individuel approprié. Cette prédiction est possible avec des

approches statistiques appropriées basées sur des informations cliniques et d’imagerie.

Toutefois, l’étiologie, la physiopathologie, les symptômes et l’évolution dans l’accident

vasculaire cérébral et la sclérose en plaques sont très différents. Par conséquent, dans

cette thèse, les méthodes statistiques utilisées pour ces deux maladies neurologiques sont

différentes.

Le premier objectif était l’identification du tissu à risque d’infarctus chez les patients

atteints d’accident vasculaire cérébral. Pour cet objectif, les méthodes de classification

(dont les méthodes de machine learning) ont été utilisées sur des données d’imagerie
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mesurées à l’admission pour prédire le risque d’infarctus à un mois. Les performances des

méthodes de classification ont été ensuite comparées dans un contexte d’identification de

tissu à haut risque d’infarctus à partir de données humaines codées voxel par voxel.

Le deuxième objectif était de regrouper les patients atteints de sclérose en plaques avec

une méthode non supervisée basée sur des trajectoires individuelles cliniques et d’imagerie

tracées sur cinq ans. Les groupes de trajectoires aideraient à identifier les patients menacés

d’importantes progressions et donc à leur donner des médicaments plus efficaces.

Le troisième et dernier objectif de la thèse était de développer un modèle prédictif pour

l’évolution du handicap individuel des patients atteints de sclérose en plaques sur la base

de données démographiques, cliniques et d’imagerie obtenues à l’inclusion. L’hétérogénéité

des évolutions du handicap chez les patients atteints de sclérose en plaques est un impor-

tant défi pour les cliniciens qui cherchent à prévoir l’évolution individuelle du handicap.

Le modèle mixte linéaire à classes latentes a été utilisé donc pour prendre en compte

la variabilité individuelle et la variabilité inobservée entre sous-groupes de sclérose en

plaques.

Mots de clé: Accident vasculaire cérébral, Sclérose en plaques, Méthodes de classifica-

tion, Regroupement des données longitudinales, Modélisation prédictive, Modèle mixte à

classes latentes
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Introduction

The main objective is the application of appropriate statistical approaches in patients with

neurological diseases such as ischemic stroke and multiple sclerosis to better characterize

the disease evolution on the basis of demographic, clinical, and imaging date taken at

study onset.

Ischemic stroke is defined as one of the most destructive neurological diseases and is

the second most common cause of death and a major cause of disability worldwide [53].

Ischemic stroke occurs when the brain blood flow stops or is limited by a clot. The brain

cells close to this area begin to die as they stop getting the oxygen and nutrients they

need to function. One of the risk factors is ageing. Almost 75% of all strokes occur in

people over the age of 65 and the risk of having a stroke more than doubles each decade

after the age of 55. Additional risk factors for ischemic stroke are hypertension, diabetes,

ischemic heart disease, atrial fibrillation, valvular heart disease, and cigarette smoking.

Stroke has a negative impact on psychological and social situations such as problems with

family relationships, deterioration in sex life, economic difficulties related to loss of the

work, and deterioration in leisure activities [45].

Multiple sclerosis (MS) is the most frequent disabling neurological disease in young adults

[119]. MS is a demyelinating inflammatory, chronic disease of the central nervous system.

While its etiology remains unknown, it has been believed that the disease is triggered by

environmental factor in genetically predisposed persons [209] [167]. There is no cure for

multiple sclerosis. However, treatments can help speed recovery from clinical symptoms

and modify the evolution of the disease. The evolution of disability is very different

1
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from one patient to another [80]. Today’s neurologists’ challenge is to predict individual

disability evolution on the basis of clinical, biological and imaging data.

Magnetic Resonance Imaging (MRI) is an important tool for diagnosis, monitoring the dis-

ease evolution, and decision-making in the personalized treatment of patients with stroke

or MS. Various MRI parameters have been developed to obtain interesting information

on a patient’s state. In stroke, diffusion-weighted imaging (DWI) provides a marker of

irreversibly damaged areas whereas perfusion-weighted imaging (PWI) is recommended

to characterize the status of brain tissue blood supply [205] [240] [91]. In MS, the con-

ventional imaging parameters (T1 and T2 Weighted Imaging, and FLAIR) have a high

sensitivity in detecting lesioned area. Besides, the advanced imaging parameters (Diffu-

sion Tensor Imaging and Magnetic Resonance Spectroscopic Imaging) are highly specific

in detecting structural, functional, and metabolic changes that cannot be observed with

conventional imaging [62] [56].

Chapter 1 details the statistical approaches such as the classification and clustering meth-

ods as well as the predictive models, respectively, in Section 1.1, Section 1.2, and Section

1.3. The section 1.4 provides the Magnetic Resonance Imaging and withal its sequences

measured with conventional and advanced imaging. Afterward, brief reviews of stroke and

multiple sclerosis -including their epidemiology, physiopathology, imaging, and disease-

modifying therapies- are given in Sections 1.5 and 1.6.

The following three chapters (Chapter 2, Chapter 3, and Chapter 4) provide the three

main contributions of the thesis :

(a) Identification of the tissue at high risk of infarction in patients with ischemic stroke.

Identifying the tissue at high risk of infarction at one month may help the clinician

treat stroke with more appropriate drugs. For this aim, we used five classifica-

tion methods : four machine learning methods (Support Vector Machine, Artificial

Neural Networks, Random Forest, and Adaptative Boosting) and one regression
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model (Logistic Regression). The classification methods were performed based on

voxel-based imaging data measured at hospital admission. The methods used to

identify the tissue at high risk of infarction on voxel-based human data were com-

pared mainly by the area under the precision-recall curve. The area under the ROC

curve, sensibility, and specificity were also given to allow comparisons with previous

results. Details on the classification methods used with stroke data, their results,

and a discussion are given in Chapter 2.

(b) Clustering patients with multiple sclerosis on the basis of longitudinal clinical and

imaging data.

There is no cure for MS; it is a lifelong disease that lasts until death. Thus, to

observe changes in disability and decide on treatment, patients with MS have to

be constantly followed up from diagnosis until death. For this purpose, clustering

methods were used with longitudinal multiple sclerosis data, not for a given time

point. As unsupervised approach, an extension of the k-means method was used

to cluster single clinical and joint clinical & imaging trajectories. The clusters

may help identifying distinct clinical forms of evolution (e.g., stable, progressive,

and regressive evolution). Such a classification is useful, for example, to identify

the patients who may have an important progression and could benefit from early

intervention with more effective drugs.

Details on the implementation of the clustering methods on data on patients with

MS, the results, and a discussion are presented in Chapter 3.

(c) Develop a statistical patient-specific model that predicts the progress of disability

in multiple sclerosis on the basis of demographic, clinical, and multimodal imaging

variables.

Clinicians need to predict short and long-term disability evolution in both the design

of treatment trials with or without harmful therapies and to provide prognostic
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advice to individual patients.

One of the difficulties is the heterogeneity of individual clinical evolutions. There-

fore, predicting individual disability courses is extremely difficult. For this, we used

the latent class linear mixed model in order to consider individual variability as well

as unobserved subgroups variability in patients with multiple sclerosis.

Another difficulty of predictive modeling of disability evolution is the clinico-radiological

paradox. Indeed, the changes in the imaging information measured with lesion load,

white and gray matter volume, and diffusion measures are not directly reflected in

the clinical disability. For example, an increase of lesion load is not always cor-

related with the clinical symptoms. However, many studies have found that some

imaging variables were significantly related to clinical disability. For this reason,

we established first a clinical model with clinical and demographic data. Second,

the gray matter volume, the lesion load, and the fractional anisotrophy were used

to establish the imaging model. Finally, the imaging variables were added to the

clinical model to investigate their additional contribution to model the evolution of

individual disability .

The predictive models for disability evolution in multiple sclerosis are developed in

Chapter 4. Details of the model implementation, the results and a discussion are

also presented in the same chapter.

To conclude, we summarize the thesis by discussing the results in Chapter 5. The sup-

plementary information and the figures are provided in the Appendix.
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1.1 Classification methods

Classification methods, including machine learning methods, is a branch of Artificial Intel-

ligence that focus on systems that learn from training data. Machine learning is used for

many applications of pattern classification and recognition in health, computer science,

and economics such as the identification of cancerous cells, prediction of financial indices

as currency exchange rates, sexing of faces, and speech recognition. The global aim of

machine learning methods is to compute, learn, remember, and optimize in the same way

as a human brain.

Constructing a classifier requires two steps. First, the training set is used to decide how

the classifiers or the observations ought to be weighted and combined in order to better

separate the observations into various classes. Second, the weights determined in the

training set are applied to a set of observations to predict their classes.

This section presents the classification methods that are appropriate for the binary out-

come yi (i.e. -1 vs 1 or healthy vs infarcted tissue). For a given observation set {(x1, y1)

, ..., (xi, yi), ..., (xn, yn)}, where xi denotes the ith observation and yi is the label that cor-

responds to the ith observation for i ∈ 1, ..., n. The classification methods predict the

outcome ŷion the basis of m independent variables xim measured for each observation i

(See Equation 1.1). The training process continues until the method achieves a desired

level of accuracy on the training data.

xim =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xi1

xi2

...

xiM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11 x21 . . . xn1

x12 x22 . . . xn2

... ... . . . ...

x1M x2M . . . xnM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.1)

This section provides an overview of four machine learning methods (Support Vector

Machine, SVM; Artificial Neural Networks, ANN; Random Forest, RF; and Adaptative
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Boosting, ADA) and one regression model, the Logistic Regression (LR). These four

machine learning methods are frequently used for binary classification and LR is an easily

applicable method, compared to machine learning algorithms, but that does not require

parameter estimation before the fit of the method.
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1.1.1 Support Vector Machine

SVM was developed by Cortes & Vapnik for binary classification [42]. SVM aims to find

an optimal linear hyperplane to separate observations into two classes with the help of two

classes’ closest points (also called support vectors) (See Figure 1.1). The support vectors

help choosing the best border either through maximizing the distance between the border

and the support vectors or through minimizing the number of misclassified observations.

This means that SVM requires the solution of the following optimization problem:

minimize 1
2wT w + C

n∑
i=1

εi (1.2)

respecting yi(wT φ(xi) + b) ≥ 1 − εi,

εi ≥ 0.

where

• w is the normal (orthogonal) vector to the border,

• C > 0 the regularization constant that controls the trade-off between the margin

optimization and the number of observations incorrectly classified,

• εi is the misclassification rate (the number of the misclassified observations / the

number of observations),

• φ is the projection function of the observations in the higher dimensional space.
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Figure 1.1: A visualization of Support Vector Machine classification, Source: [140].

When the observations cannot be separated into two dimensions by a linear hyperplane,

they are projected in a higher dimensional space H where a linear separation is possible.

The observations appear only inside dot products with other observations. More precisely,

when a projection φ : X −→ H is used, the dot product of two observations xi and xj is

represented by a kernel function K:

K(xi, xj) = φ(xi)T φ(xj) (1.3)

There are four basic kernel functions: linear, polynomial, radial basis, and sigmoid func-

tions. In this thesis, the radial basis function (RBF) was performed because it is the most

used and recommended because of its good performance for complex data and the few

number of parameters [234]. RBF is defined as below:

K(xi, xj) = exp(−γ||xi − xj||2), γ > 0 (1.4)

where γ is the kernel parameter.

The signed distance to the border provides the class of an observation. A zero distance

corresponds to an observation located right on the border : a positive distance means it

is located in one of the classes (for example, the sick side), whereas a negative distance

means it is located in the other class (thus, healthy side). The border is defined as

< w, φ(x) > +b, thus, the decision function [111] is:
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f(x) = sign(< w, φ(x) > +b) (1.5)

where b is a constant.

1.1.2 Artificial Neural Networks

ANN constitute a mathematical representation of natural neural networks composed of

artificial neurons (See Figure 1.2) [101]. In the network, artificial neurons are organized in

layers. Each network is composed of several types of layers: (1) an input layer composed

of all inputs, (2) an output layer gives the final outcomes ŷi, and (3) one (or more) hidden

layers between the input and the output layer consist(s) of a set of neurons that process

the data and are connected to the input and output layers (See Figure 1.2). Artificial

neurons are interconnected by weights -corresponding to the strengths between neurons-

in such a way that information propagates from one layer to the next.

 
 

neuron 

neuron 

neuron 

neuron 

neuron 

neuron 

neuron 

weight 
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Input 1 

Input 2 

Input 3 

Input 4 

Y 

Figure 1.2: A neural network with one hidden layer.
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A basic feature of ANN is a single artificial neuron (See Figure 1.3). An artificial neuron

receives the observations xi (representing dendrites in a natural neuron) and multiply

them by the associated weight wi that can vary during the learning process. The artificial

neuron calculates afterward the weighted sum

sum =
n∑

i=1
xi × wi (1.6)

where xi is the ith observation and wi is the weight associated with the ith input.

Afterward, in a two-class classification problem, the weighted sum can be dichotomized

with a threshold value b in the activation function. The neuron gives the output 1 if the

weighted sum is above the threshold. Otherwise, the output is equal to 0.

 

 

 

 

 

SUM=
 

 

 

 

 

 

Activation function 
Output 

b 

Figure 1.3: An artificial neuron.

The supervised learning algorithm can be performed on Artificial Neural Networks, thus

ANN is able to learn from examples and adapt [82] [102]. The basic principle of learning

from examples is to reduce the cost function. The cost function E is defined as half of

the sum of the squared difference between the predicted outcome and the observed value

:
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E = 1
2 ×

n∑
i=1

(ŷi − di)2 (1.7)

where ŷi is the predicted output and di is the observed value of the observation i.

ANN improve their performances by providing a better "relationship" between input and

output, which means providing better weights between neurons [82] [102]. A "back-

propagation" learning strategy [90] was realized by updating the weights according to

the error obtained by the network at the output. The back-propagation learning strategy

is defined as :

1. the weights and threshold are initialized with small random values

2. network computes the outcome ŷi

3. the weights are updated according to

wij(t + 1) = wij(t) + Δwij (1.8)

where wij is the weight between neuron i and neuron j in two different layers, t is

the iteration number, and Δwij is a constant.

The commonly used method to find Δwij is gradient descent which aims to minimize the

cost function E. Thus, Δwij is defined as :

Δwij = −η
∂E

∂wij

(1.9)

where η is the learning rate defined at the beginning of network.

The learning process continues until the minimum gradient of the error function is reached.
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1.1.3 Random Forest

RF is an ensemble model which combines several decision trees to produce a more accurate

prediction than a simple decision tree [23]. In this study, the binary classification trees

(Classification and Regression Trees (CART)) [24] will be presented and used to classify

the observations into two groups (See Figure 1.4).

≥  

  Split 1 

Root 

Split 2 

Yes 
No 

 Split 3 

: Root Node 

 : Split 

: Leaf nodes 

Yes No Yes 

Yes 

No 

No 

? ? 

? 

? 

Figure 1.4: A binary decision tree where xi is all data, Zt, Km, and Ls are subsets of Xi

where t, m, s < i and vl are the variables performed in classification where l = 1, 2, 3, 4.

The aim of a binary classification tree is to separate the observations into two classes with

the variables vl at root node and splits. A subsample of variables is randomly created

for each tree and its size is fixed a priori (mtry). The best variable is chosen within a

subsample of variables for each split and root node according to the Gini Indice. The

decision tree optimizes the homogeneity at split and root node by minimizing the Gini

Indice defined as :

Gini Indice = p1(1 − p1) + p2(1 − p2) (1.10)
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where p1 and p2 are respectively the proportions of observations in class 1 and class 2.

Whenever one split becomes sufficiently homogeneous, the classification stops in this split.

RF builds several bootstrap samples from the original data and fits a decision tree to each

sample (See Figure 1.5) [23]. The tree fitted for each sample is different from another tree

due to the randomly chosen subsample of variables vl. This makes RF more flexible and

powerful. For a given observation, the outcome of the random forest ŷ is the majority

vote of binary decision trees results.

Bootstrap all data in n samples 

Sample 
1 

Sample 
2 

Sample 
n ….. 

Vote of tree 1 Vote of tree 2 

Vote of tree 3 

Majority of votes = Output of Random Forest 

Figure 1.5: A random forest performed with n trees with corresponding n samples.
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1.1.4 Adaptative Boosting

ADA method includes a boosting algorithm that refers to a family of algorithms which

converts "weak" classifiers to "strong" classifiers by combining the predictions of different

weak classifiers (See Figure 1.6) [191]. Thus, the prediction is much more accurate than

any prediction by the weak classifiers.

ALL DATA

…..

Output= sign ( )

Initial weight = 

Update the weight Update the weight

eight =

Figure 1.6: Adaptative boosting algorithm.

The ADA uses a set of decision trees ht (called the weak classifiers) for t ∈ {1, ..., T} and

corrects sequentially the classification weighting the misclassified observations obtained

from the previous decision tree (See Figure 1.6). The classification of the first tree is

performed with the initial weights which are the same for all observations. However, the

weights of misclassified observations are increased after each decision tree classification to

focus on the observations that are difficult to classify (See Equation 1.12). The perfor-

mance of each tree is estimated according to the misclassification error of the decision tree

(εt = Pr[ht(xi) �= yi]) and the weights which are given to the observations (See Equation
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1.11). For a given observation, the output is the result of the classification of each tree

weighted by its performance (See Equation 1.13). The ADA algorithm [191] is defined as

follows:

• Given (xi, yi) = {(x1, y1), ..., (xn, yn)} where xi ∈ X and yi ∈ {−1, +1}

• Initialize w1(i) = 1/n

For t = 1, ...T :

1. Train weak classifier (CART) using distribution wt

2. Get weak hypothesis ht : X → {−1, +1}

3. Estimate

αt = 1
2 ln(1 − εt

εt

) (1.11)

4. Update the weight

wt+1(i) = wt(i)
Zt

× Kt = wt(i)exp(−αtyiht(xi))
Zt

(1.12)

where Zt is a normalization factor chosen so that wt+1 will be a distribution

and Kt = e−αt if ht(xi) = yi, Kt = e+αt if not.

• The output of algorithm is

ŷi = sign(
T∑

t=1
αt × ht(x)) (1.13)
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1.1.5 Logistic Regression

LR is an appropriate and easy-to-apply regression analysis when the binary output yi is

modeled by one or more than one independent variable(s) xim. In LR, the probability of

being in one class πi is defined as:

πi = 1
1 + e−(β0+

∑M

m=1 βm×xim)
(1.14)

where β0 is the intercept and βm the effect size of one unit change of the independent

variable xim on the output. When βm is positive, it can be interpreted as a positive

association. However, a negative βm means that this variable is a negative association.

βm = 0 means that the independent variable m has no effect on the output.

The probability of being in one class πi can be dichotomized then with a threshold value

in order to obtain a binary output.

The parameter estimation for βm can be obtained by maximizing the likelihood function

is defined as:

L(βm) =
n∏

i=1
π(xim)yi × (1 − π(xim))1−yi (1.15)

LR assumes before the application of the method such as:

1. independence of observations. This means that the observations should not come

from repeated measurements or matched data,

2. uncorrelated (independent) error terms,

3. no multicollinearity among independent variables (for example, weight and body

mass index are correlated, so we ca not use both in the same model).
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1.1.6 Evaluation criteria for methods comparison

Let yi be a binary observation where yi ∈ {0, 1} (e.g. yi = 1 for sick observations and

yi = 0 for healthy observations). The classification methods provide the probability of

being in one class (πi) which can be dichotomized afterward with a threshold value τ . The

observation is labeled 1 when the probability of being in one class is above the threshold

of the biomarker τ , and otherwise the observation is labeled 0.

Table 1.1 is 2 × 2 contingency table and shows the observations with the classification

method results.

Sick Observation Healthy Observation
yi=1 yi=0

Positive result: (πi ≥ τ) TP FP T+=TP+FP
Negative result: (πi < τ) FN TN T-=FN+TN

M+=TP+FN M-=FP+TN

Table 1.1: TP: True Positive, FP: False Positive, FN: False Negative, TN: True Negative,
M+= Number of sick observations, M-= Number of healthy observations, T+= Number
of observations with positive result, T-= Number of observations with negative result.

Sensitivity is the ability of a classification method to classify correctly "sick" observations.

Thus, sensitivity is the probability of having a positive result for a sick observation and

is defined as :

Se = P (T + |M+) = P (T + ∩M+)
P (M+) = TP

TP + FN (1.16)
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Specificity is the ability of a classification method to classify correctly the "healthy"

observations. Thus, specificity is the probability of having a negative result for a healthy

observation and is defined as:

Sp = P (T − |M−) = P (T − ∩M−)
P (M−) = TN

TN + FP (1.17)

Sensitivity and specificity depend on the threshold value τ . So, increasing the threshold

value decreases the sensitivity and increases the specificity [213] [84].

The area under the Receiver Operating Curve (AUCroc) plots Sensitivity as a

function of 1-Specificity at different threshold points of a biomarker. Sensitivity and

specificity are calculated for each threshold and the sensitivity/specificity pair creates a

curve called ROC. The area under the ROC is a measure of how well a biomarker is able

to distinguish between two binary responses.

AUCroc =
∫ +∞

−∞
Se(τ)d{1 − Sp(τ)} (1.18)

AUCroc is an evaluation criterion which is independent of the imbalance in the data.

AUCroc can overestimate the performance of the method, for example, for a data where

there are more healthy observations than sick observations. This problem can be overcome

with the area under the Precision Recall Curve and some authors have recommended the

use of the AUCpr in addition of the AUCroc in studies with low prevalence values [48]

[155].
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The area under the Precision Recall Curve (AUCpr) plots Precision as a function

of Sensitivity at different threshold points of a biomarker whenever Precision is defined

as:

Precision = P (M + |T+) = P (M + ∩T+)
P (T+) = TP

TP + FP
(1.19)

The area under Precision Recall Curve (AUCpr) is defined as:

AUCpr =
∫ +∞

−∞
Precision(τ)d{Se(τ)} (1.20)

Unlike sensitivity and specificity, AUCroc and AUCpr do not depend on the threshold

value.



22 Chapter 1: State of the Art

1.2 Clustering methods for longitudinal data

In data analysis, clustering is a standard procedure to explore the characteristics of groups

of individuals. The aim is to cluster the more similar individuals in the same group and the

more dissimilar individuals in different clusters. The clustering analysis can be categorized

into two main groups: non-parametric and model-based. In this thesis, we will present

first non-parametric clustering methods. Second, model-based clustering presented in the

following section.

Clustering methods are often confused with classification methods. In classification, the

classes to which we want to assign the individuals are already predefined whereas, in

clustering, the clusters are established during the process.

Clustering analyses can be performed on cross-sectional data as well as the longitudinal

data. In health, social, or behavioral sciences, longitudinal studies are important to

observe changes over time. Here, we clustered the individuals according to their individual

trajectories established with longitudinal data.

This section provides an overview of clustering algorithms for single and joint longitudinal

data. We present first the single and joint trajectories in the section 1.2.1. Section

1.2.2 introduces the concept of distance between trajectories, data standardization, and

selection of the number of clusters. Finally, Section 1.2.3 describes the k-means algorithm

for longitudinal data.
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1.2.1 Single and joint trajectories

Single trajectories

Let S be a set of n trajectories and yt the longitudinal outcome measured at different

time points t. A single trajectory (or single-variable trajectory) for a given individual i is

defined as yi. = (yi1, yi2, . . . , yit). For a given variable X, a single variable trajectory can

be written as yi.X = (yi1X , yi2X , . . . , yitX).

Joint trajectories

A joint trajectory is a multi-variable trajectory obtained with at least 2 variables. Let

yi.A, yi.B, . . . , yi.M be single trajectories for variable A, B, . . . , M of individual i. The joint

trajectory of the individual i is defined as :

yi.. =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yi.A

yi.B

...

yi.M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yi1A yi2A . . . yitA

yi1B yi2B . . . yitB

... ... . . . ...

yi1M yi2M . . . yitM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.21)

where each line corresponds to a single trajectory for a variable and t represents time.
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1.2.2 Distance between two trajectories

Several distance metrics are possible to determine the distance between two single or joint

trajectories. However, we will present only two distance metrics frequently used in the

literature: the Euclidian distance and the Manhattan distance.

Distance between two single trajectories

The Euclidian distance between two single trajectories yi and yj of individuals i and j is

defined as:

Dist(yi, yj) =

√√√√1
t

t∑
k=1

(yik − yjk)2 (1.22)

where t represents time.

The Manhattan distance is more robust than the Euclidian distance in case of unusual

values like outliers [113] and is defined as:

Dist(yi, yj) =
t∑

k=1
|yik − yjk| (1.23)

Distance between two joint trajectories

Let y1.. and y2.. be the joint trajectories of individuals i = 1 and j = 2. The distance

between two joint trajectories is defined as d(yi.., yj..) = d(y1.., y2..) and can be considered

as the distance between two matrices.
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d(y1.., y2..) = Dist
⎛
⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y11A y12A . . . y1tA

y11B y12B . . . y1tB

... ... . . . ...

y11M y12M . . . y1tM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y21A y22A . . . y2tA

y21B y22B . . . y2tB

... ... . . . ...

y21M y22M . . . y2tM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎠

= Dist (d1.(y11., y21.), d2.(y12., y22.), . . . , dt.(y1t., y2t.))

(1.24)

We compute first t distances between M rows of each column where M is the number

of variables. So, t distances dt.(y1t., y2t.) = (d1.(y11., y21.), d2.(y12., y22.), ..., dt.(y1t., y2t.)) are

obtained. Then, these t distances are combined using a distance function d(y1.., y2..) =

Dist(d1.(y11., y21.), d2.(y12., y22.), ..., dt.(y1t., y2t.)).

The Euclidean distance between two joint trajectories yi.. and yj.. can be computed as:

Dist(y1.., y2..) =
√∑

t

∑
X

(y1tX , y2tX)2 (1.25)

where t and X represent, respectively, the time and variable.

The Manhattan distance between two joint trajectories is defined as:

Dist(yi, yj) =
∑

t

∑
X

|yitX − yjtX | (1.26)
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Data standardization

The variables that generate the joint trajectories are not always expressed in the same

unit. The variable with the larger scale may have a heavier weight than the other variables.

This is not desired in cluster analysis [58].

The solution is to normalize the single variable trajectories with the mean y..X and the

standard deviation sd..X of the variables calculated over all individuals and time points,

not on a given individual or time point. The normalized single variable trajectory for

variable X is defined as below:

y
′
itX = yitX − y..X

sd..X

(1.27)

The normalized joint trajectory is defined as the matrix obtained with normalized single

variable trajectories as shown below:

y
′
i.. =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y
′
i.A

y
′
i.B

...

y
′
i.M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.28)
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Optimal number of clusters

The number of clusters should be set before the clustering is performed. The most fre-

quently used criterion to determine the "optimal" number of clusters are the Calinski &

Harabatsz criterion C(g) for a given cluster number g. Other versions have been pub-

lished such as Kryszczuk CK(g) and Genolini variants CG(g) [29] [117] [78] [144] [197].

In addition to Calinski & Harabatsz criterion and its variants, Davies & Boudin [47] and

Ray & Turi [170] criteria may be also used to evaluate the discrimination ability for the

purpose of choosing the number of clusters.

The Calinski & Harabatsz criterion combines the within (W) and between (B) variance

matrix defined as:

(W) =
G∑

g=1

ng∑
i=1

(ygi − yg) × (ygi − yg)T

(B) =
G∑

g=1
ng(yg − y) × (yg − y)T

(1.29)

where g represents the cluster in {1, . . . G} and ng is the number of trajectories in the

cluster g.

So, the Calinski & Harabatsz criteria are defined as

C(g) = Trace(B)
Trace(W ) × n − g

g − 1

CK(g) = Trace(B)
Trace(W ) × n − 1

n − g

CG(g) = Trace(B)
Trace(W ) × n − g√

g − 1

(1.30)

where Trace(B) and Trace(W ) represent, respectively, the sum of the diagonal coefficients

of B and W , n is the total number of trajectories and g represents the number of clusters.
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A high value of Trace(B) indicates a great distance betweence clusters while a low value of

Trace(W ) indicates close trajectories in each cluster. Thus, a high value of Trace(B) and

a low value of Trace(W ) mean that the number of cluster g ensures good discrimination.

The cluster number k is chosen so as to maximize the C(g),CK(g), and CG(g).

1.2.3 K-means for trajectories

K-means is an unsupervised learning algorithm that classifies a given data set into a certain

number of clusters fixed a priori [133]. K-means belongs to the Expectation-Maximization

(EM) class and follows two steps (E-step and M-step) as below:

1. (E-step) A trajectory that corresponds to an individual is randomly assigned to a

cluster and the mean of the trajectories is defined as the center of the cluster

2. (M-step) The distance between a trajectory and the center of the clusters is calcu-

lated and then each trajectory is assigned to the nearest cluster.

The EM algorithm continues until the trajectories stop to change place.

K-means algorithm can be used to cluster single and joint trajectories using software R-

project (https://www.r-project.org/) (respectively, with the kml and kml3d pack-

ages [78]).
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1.3 Predictive modeling for longitudinal data

In this section, we will present the linear mixed model and its extension called the latent

class linear mixed model. These models are useful for longitudinal data and allow for

individual differences and the correlation due to repeated measures. The advantage of

the latent class linear mixed model versus the standard linear mixed model is that both

the fixed effects and the distribution of random effects can be class-specific. The class-

specific changes may be due to unobserved groups called latent classes. So, there are

two types of heterogeneity in the latent class linear mixed models: heterogeneity between

individuals and heterogeneity between latent classes.

We will present first the linear mixed model and the way parameter estimation and

individual prediction are performed. The transition to the latent class linear mixed model

will be more straightforward. Second, we will present the latent class mixed model,

parameter estimation, the choice of the number of latent class, the posterior probability

of being in the latent classes, the marginal and subject-specific predictions, and the model

evolution criteria.

1.3.1 The linear mixed model

The linear mixed model [120] is a flexible approach to take into account correlated data

due to repeated measures obtained at successive time points. The linear mixed model

includes jointly inter-individual changes (random effects) apart from the population effect

which is the same for all individuals (fixed effects). The random effect refers to the way

individual measurements spread out from the common effects (with different intercepts

or/and slope for each individual).

Let Yi. be the repeated outcome for individual i as Yi. = (Yi1, ..., Yini
) where ni represents

the number of the repeated measures. The linear mixed model for subject i can be written

as:
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Yi = Xiβ + Ziui + εi (1.31)

where Xi is a ni × p corresponds to the matrix for the vector of fixed effects β in length p

and Zi is a ni × q design matrix for the vector of random effects ui in length q. The linear

mixed models assume that the population is homogeneous and that the random effects

are normally distributed as ui ∼ N(0, B). εi are the measurement errors that are assumed

to be normally distributed with mean zero and covariance matrix σ2Ini
(ni is the number

of repeated measures of individual i) and to be independent from the random effects ui.

Parameter Estimation

Parameter estimation in a linear mixed model is possible with the maximum likelihood

(ML) method. First, we define the marginal distribution of Yi:

Yi ∼ N(Xiβ, Vi = ZiBZT
i + σ2Ii) (1.32)

This notation is used for estimating a set of fixed effect parameters θ (β, B and σ2). The

likelihood function for the set of parameters θ is characterized as below:

Li(θ) = φi(Yi; θ)

=
N∏

i=1
( 1
2π

)
ni
2 × |Vi|−1/2 × exp(−1

2(Yi − Xiβ)T × V −1
i × (Yi − Xiβ))

(1.33)

where φi is the density function at individual level with individual specific mean and

variance μi = Xiβ and Vi = ZiBZT
i + σ2

ε Ii and N is the number of individuals.

The parameters can be estimated maximizing log-likelihood log(Li(θ)). The maximization

of the log-likelihood requires an iterative algorithm. Two possible algorithms may be used:

the Expectation - Maximization (EM) algorithm and the Newton-Raphson algorithm [51]
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[68]. The latter is generally preferred because of it convergences faster [126]. For this

reason, the Marquardt algorithm, a Newton-Raphson-like method was used in this work.

-Marquardt algorithm

Marquardt algorithm [134] is an iterative method of the Newton-Raphson family that is

used to find the stationary points (local maximum or minimum) of a differential function

f . To find the stationary points x which provide f
′(x) = 0, we need to calculate the second

derivate of the twice-differentiable function f . At the stationary points, the gradient is

equal to zero as −∂f(x)
∂x

= −∇(x).

Here, function f was defined as the log-likelihood function and we searched the conver-

gence through

1. the gradient (first derivative) of the log-likelihood function for the θ values as

− ∂log(Li(θ))
∂θ

= −∇(θ) (1.34)

2. the second derivative of the log-likelihood function (also called Hessian)

− ∂2log(Li(θ))
∂θ2 = H(θ) (1.35)

The Marquardt algorithm which is defined in the equation 1.36 updates the parameters

θ until the convergence of the function.

θ(k+1) = θ(k) − δ × (H̃−1(θk)) × ∇(θ(k)) (1.36)

where δ is normally equal to 1 but may be modified to ensure the log-likelihood is improved

at each iteration and H̃−1 is the inverse of the positive defined Hessian matrix at diagonal

terms where for H̃ = H̃ij, H̃ii = Hii + λ × [(1 − η)|Hii| + η × tr(H)].
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Initial values of λ and η are fixed as 0.01 by default, they are may be decreased when H̃

is chosen positive and increased if not.

Convergence is reached when all three following criteria are satisfied (1) ∑m
j=1(θ

(k)
j −

θk−1
j )2 ≤ 10−4, (2) |L(k) − L(k−1)| ≤ 10−4, and (3) ∇(θ(k))T (H(k))−1∇(θ(k)) ≤ 10−5.

Prediction

First, we will present the prediction of the random effects by the Empirical Bayes method,

then, the marginal and individual (subject-specific) predictions.

Empirical Bayes estimates of random effects:

The marginal distribution of Y and the distribution of the random effect are respectively

defined as Yi ∼ N(Xβ, Vi) and ui ∼ N(0, B). So, the covariance between Yi and ui can

be written as follows:

cov(Yi, ui) = cov(Xiβ + Ziui + εi, ui)

= cov(Xiβ, ui) + Zivar(ui, ui) + cov(εi, ui)

= 0 + ZiB + 0

= ZiB

(1.37)

The covariance between Yi and ui is used afterward to obtain the joint distribution of Yi

and ui:

⎛
⎜⎜⎝Yi

ui

⎞
⎟⎟⎠ ∼ N

⎛
⎝

⎛
⎜⎜⎝Xiβ

0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝ Vi ZiB

BZT
i B

⎞
⎟⎟⎠

⎞
⎠ (1.38)

This distribution helps obtaining the esperance of random effects conditional to the re-

sponse variable as defined below:
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E(ui, Yi) = E(ui) + cov(ui, Yi)var(Yi)−1[Yi − E(Yi)]

= 0 + BZT
i V −1

i (Yi − Xiβ)

= BZT
i V −1

i (Yi − Xiβ)

(1.39)

So, the Empirical Bayes estimates of the random effects ui can be written including the

estimated fixed effect parameter β̂ as

ûi = BZT
i V −1

i (Yi − Xiβ̂) (1.40)

Marginal and subject-specific predictions:

The marginal and subject-specific predictions can be calculated by replacing the fixed

parameters, and Bayes estimates of the random effects by their estimated values (β̂ and

ûi) in the equation 1.31.

Marginal and subject-specific predictions in the linear mixed model are calculated as

Ŷ
(M)

ij = XT
ij β̂

Ŷ
(SS)

ij = XT
ij β̂ + ZT

ij ûi

(1.41)

where i indicates the individual and j the time.

So, the marginal and subject-specific residuals are defined as:

R̂
(M)
ij = Yij − Ŷ

(M)
ij

R̂
(SS)
ij = Yij − Ŷ

(SS)
ij

(1.42)
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1.3.2 The latent class linear mixed model

Linear mixed models assume that there is a unique distribution of the population with a

unique mean for all individuals. This means that the population is homogeneous among

all individuals. However, Verbeke and Lesaffre [227] introduced the mixture of random

effects that corresponds to the unobserved variability between sub-groups which may be

present in the given data. The latent class linear mixed model is an extension of the

linear mixed models for a heterogeneous population divided into G unobserved subgroups

(also called latent classes). So, the latent class linear mixed model provides g different

distributions, so g different means for each subgroup g ∈ {1, ..., G} within the population

with a common covariance matrix B.

The latent class linear mixed model can be written as

Yij|ci=g = X1ijβ + X2ijγg + Zijuig + εij (1.43)

where X1ij and X2ij are the covariate matrices and associated with the vector of fixed

effects, at population and latent class levels, respectively. Zij is the class-specific covariate

matrix of class g and is associated with the random effects uig ∼ N(μg, Bg) where ug and

Bg are, respectively, the class-specific mean and the covariance matrix.

The probability of belonging to latent class g can be calculated with the multinomial

logistic model:

pig = P (ci = g|Xci) = eξ0g+XT
ciξ1g∑G

k=1 eξ0k+XT
ciξ1k

(1.44)

where ci represents the latent class for individual i, ξ0g is the intercept of the latent

class g, Xci represents the individual class-specific covariate matrix, ξ1g is a class specific

parameter and G is the total number of latent classes. ξ0g and ξ1g are equal to 0 for

identifiability [166].
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Parameter Estimation

The difference between parameter estimation in the latent class linear mixed model versus

the linear mixed model is that the parameters are estimated for each latent class.

In the latent class linear mixed model, the parameter estimation is possible with the max-

imum likelihood method [227] [149] [165] [116]. The likelihood function for an individual

i for the set of parameters θG (β and γg) is defined as:

Li(θG) =
G∑

g=1
pig × φig(Yi|ci = g; θG)

=
G∑

g=1
P (ci = g|Xci, θG) × φig(Yi|ci = g; X1i, X2i, Zi, θG)

(1.45)

where pig is the probability of belonging to a latent class g and φig is the density function

of a normal distribution (marginal distribution of Yi conditional on the random effects

and latent classes) with mean X1iβ + X2iνg + Ziμg and variance Vi = ZiBgZT
i + σεIni

.

The parameters can be estimated by maximizing the log-likelihood l(θG) defined as:

l(θG) =
N∑

i=1
log(Li(θG)) (1.46)

Parameter optimization may be performed with the Marquardt algorithm of the Newton-

Raphson method (See Section 1.3.1).

Choice of the number of latent classes

The number of latent classes cannot be estimated and has to be known before fitting the

model through evaluation criteria. In the literature, the choice of the number of latent

classes is calculated by the help of the Akaike’s information criterion (AIC), the Bayesian

Information Criterion (BIC), or the consistent AIC (CAIC) [20] [137] [148]. However, the
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AIC tends to overestimate the number of classes whereas the BIC tends to underestimate

this number in small sample sizes [137].

The number of latent classes that minimizes the BIC value is preferred [89] [15]. The BIC

criterion is defined as

BIC(G) = −2L(θG) + nθlog(N) (1.47)

where G is the number of latent classes, nθ the number of estimated parameters and N

the number of individuals.

Posterior probability and Classification

For a given individual, the posterior probabilities of belonging to each latent class may

be calculated. The sum of these probabilities is equal to 1 (∑G
g=1 pg = 1).

The posterior probability for individual i of belonging to class g is defined by Bayes

theorem as:

p̂ig = pig(ci = g|Xi, Yi, θ̂) = P (ci = g|Xci, θ̂) × φig(Yi|ci = g, X1i, X2i, Zi, θ̂)∑G
k=1 P (ci = k|Xci, θ̂) × φik(Yi|ci = k, X1i, X2i, Zi, θ̂)

(1.48)

where θ̂ is the set of estimated parameters with equation 1.45.

Then, each individual i is assigned to the latent class g that gives him the highest posterior

probability of belonging p̂ig. The mean of the posterior probabilities in each class may

help evaluating the quality of the discrimination ability of the fitted model. For example,

if all individuals are classified in a class with a posterior probability equal to 1, the mean

posterior probability will be equal to 1. This means that the classification performed with

the model is perfect. The ability of the discrimination performed with this model weakens

as the mean of the posterior probabilities approaches zero.
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Prediction

Empirical Bayes estimates of random effects:

The Empirical Bayes estimates of random effects in the latent class mixed model is trans-

formed from the linear mixed model defined in equation 1.40. So, the class-specific em-

pirical Bayes estimate for the latent class models is defined as:

ûig = w2
gB̂ZT

i V −1
ig (Yi − X1iβ̂ − X2iγ̂g) (1.49)

where wg is a proportional coefficient that allows for a class-specific intensity of individual

variability (wg = 1 for identifiability).

Marginal and subject-specific predictions

In the latent class mixed model, the marginal and subject-specific predictions can be

calculated by replacing the fixed and random effect parameters by their estimated (β̂, γ̂g,

and ûig) values in equation 1.43.

When G> 1, the class-specific marginal and subject-specific predictions in the latent class

linear mixed model are calculated as

Ŷ
(M)

ijg = XT
1ijβ̂ + XT

2ij ν̂g

Ŷ
(SS)

ijg = XT
1ijβ̂ + XT

2ij ν̂g + ZT
ij ûig

(1.50)

The class-specific subject-specific residuals are calculated with the average of the subject-

specific predictions over all classes as:
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R
(M)
ij = Yij −

G∑
g=1

p̂ig × Ŷ
(M)

ijg

R
(SS)
ij = Yij −

G∑
g=1

p̂ig × Ŷ
(SS)

ijg

(1.51)

Finally, the evolutions of the class-specific mean are calculated for each class weighting the

mean of the subject-specific predictions by the class-membership probabilities as defined

in equation 1.48.

Evaluation criteria

The performance of a latent class linear mixed model can be assessed with several evalu-

ation criteria [37] such as:

1. BIC values

2. Comparison of the subject-specific predictions with the observed values

3. The mean of the posterior probabilities calculated at each class (as indicated above)

4. The proportion of individuals with a posterior probability located over a given

threshold (e.g., 0.8 or 0.5 depending on the classification ambiguity).

5. Entropy measure as 1 − −
∑N

i=1
∑G

g=1 p̂ig×log(p̂ig)
N×ln(G) . The discrimination ability is better

when the entropy is close to 1.
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1.4 Imaging

Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging method that has

a wide range of applications in medical fields to discriminate the healthy tissue from

pathological tissue, in the diagnosis and follow-up of many diseases. Moreover, MRI has

progressively gained in importance in neurosciences because of its ability to produce high

quality images of brain and spinal cord tissue in any plane.

MRI can be divided mainly in two groups such as conventional and advanced imaging.

Conventional imaging is the standard MRI techniques and has played an important role to

observe anatomical changes in brain. Advanced imaging provides complementary physio-

logical informations such as the detection of structural, functional and metabolic changes

which are useful for early diagnosis and treatment monitoring.

MRI uses the body’s natural magnetic properties to produce the images from any part of

the body. The human body is mostly water. Water molecules (H2O) contain hydrogen

nuclei called proton. The protons are randomly aligned in three dimensions (on X, Y and

Z planes) under normal conditions. When the body is placed in a strong magnetic field

(B0), such as an MRI, the protons’ axes all line up like a small bar magnet on the plane

parallel to B0 (Z plane) (See Figure 1.7 and 1.8).

Figure 1.7: Magnetization in a MRI. Direction of external magnetic field is in the head-
foot direction in the MRI.
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Figure 1.8: Effect of magnetic field and radio frequency on protons in the hydrogen
molecule.

As a next step for obtaining the images, a radio frequency (RF) pulse is applied to the part

of the body being imaged. This is an electromagnetic wave and RF causes the protons

to change their orientation (See Figure 1.8) and to gain the energy. Once the source of

RF is switched off, the protons return to their previous state quickly, i.e. relaxation. In

relaxation process, the protons emit an amount of energy that is translated into images.

Fourier transformation is used to convert the energy frequency from each location to

corresponding intensity levels, which are then displayed as shades of gray in the images.

By varying the applied and collected RF pulses, different types of images can be created.

Relaxation time can be divided into two component such as the T1 and T2 relaxation

time. T1 relaxation time is measured on the longitudinal (Z) plane and T2 relaxation

time on the transverse (XY) plane. Relaxations time features are regularly used to show

contrast between different tissues because each tissue has different T1 and T2 relaxation

times.

One example of RF pulses is the 90-degree RF pulse that flips the entire net magnetization

vector (summation of all the magnetic moments of the individual protons) by 90 degrees

to the transverse plane (See Figure 1.9). When the pulse is turned off, two processes

begin simultaneously: increase of the magnetization on longitudinal plane and decrease

of the magnetization on transverse plane.
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Figure 1.9: (a) When a 90-degree pulse is applied, the net magnetization vector of the
protons is flipped from the longitudinal plane to the transverse plane. (b) When a 90-
degree pulse is turned off, the net magnetization vector of the protons is flipped from the
transverse plane to the longitudinal plane.

Most MRIs are in black/white with shades of gray : the white color refers high signal

intensity, the grey color corresponds to the intermediate signal intensity, and the black

color refers to low signal intensity. A hyperintensity is an area that appears brighter in

color than the area we are comparing it to; a hypointensity would be darker in color.

1.4.1 Conventional Imaging

T1-Weighted Imaging

T1-Weighted Imaging (T1WI) uses differences in the T1 relaxation times of tissues and

reflects the amount of time that the protons realign with the main magnetic field B0 in

longitudinal plane after RF pulses turn off.

T1WI shows a high spatial resolution and a high contrast between gray and white mat-

ter because of their different relaxation time. Chronic tissue damage is better seen in

hypointense. Besides, T1-weighted images measure the volume and thickness of the cere-

bral cortex, which provides valuable information on neurodegenerative diseases as well as

many other neurological diseases [99].
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A contrast agent (called gadolinium) can be injected before the imaging process which

improves the visibility of some pathologies. This imaging is called Contrast-Enhanced

T1-Weighted Imaging and frequently used for Multiple Sclerosis patients to visualize the

lesions clinically silent [13].

T2-Weighted Imaging

T2-Weighted Imaging (T2WI) highlights differences in the T2 relaxation time of tissues

and reflects the amount of time that the protons realign with the main magnetic field in

transverse plane. T2WI is used for characterizing abnormalities such as edema, tumors,

inflammation, and white matter lesions [175] [79] [217].

Fluid-Attenuated Inversion Recovery

The fluid-attenuated inversion recovery (FLAIR) imaging corresponds to T2WI in hy-

perintension where the signal intensity of Cerebro Spinal Fluid (CSF) is suppressed. By

using the FLAIR imaging, the periventricular hyperintense lesions such as multiple sclero-

sis lesions become more noticeable because CSF is suppressed [4]. For this reason, FLAIR

is often preferred to T2WI because it better visualizes lesions in periventricular regions.

In addition, FLAIR imaging is highly used in stroke to contour the boundaries of the

irreversibly damaged brain tissue in stroke patients.

The difference between T1WI, T2WI and FLAIR is shown on Figure 1.10. The CSF

appears dark on T1WI and FLAIR images, but brighter in color with T2WI. Moreover,

T2WI and FLAIR show White Matter (WM) in dark gray, and Gray Matter (GM) in

light gray. In addition, T1WI shows white matter in gray and white matter brighter in

color.
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Figure 1.10: A brain imaging obtained respectively with T1-Weighted Imaging, T2-
Weighted Imaging and FLAIR.

Perfusion-Weighted Imaging

Perfusion-Weighted Imaging (PWI) allows measuring hemodynamic circulation within

the cerebral parenchyma after injection of a contrast agent (gadolinium). PWI is most

commonly used with T2WI because of the linear relationship between the tissue contrast

agent concentration and the change in the T2 relaxation time [176] [190]. The passage

of the contrast agent causes a loss of signal because T2WI is exquisitely sensitive to

intravoxel linewidth changes [228]. The tissue signal changes caused by susceptibility of

T2WI create a hemodynamic time-concentration intensity curve presented in Figure 1.11.

The arrival of the contrast agent is calculated in each voxel of the scanned tissue using

a voxel-specific curve fitting to an estimated gamma variate function (See Figure 1.11)

[211]. PWI provides measurements of cerebral blood volume for a given amount brain

tissue and the temporal delays of the first pass of gadolinium circulation [211] [241] such

as:

• the volume of blood in a given amount of brain tissue: cerebral blood volume (CBV).

In addition, the area under the concentration-time curve gives the CBV.

• the volume of blood passing through a given amount of brain tissue per unit of time:

cerebral blood flow (CBF)
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Figure 1.11: Contrast agent concentration change over time measured with T2WI in a
brain voxel.

• the mean transit time (time taken to transit through the tissues by the contrast

agent, MTT= CBV/ CBF)

• the time to peak of the tissue concentration-time curve (TTP)

• the time to the peak of the residue function obtained by deconvolution (TMAX)

Diffusion-Weighted Imaging

Diffusion-Weighted Imaging (DWI) shows the random Brownian motion of water molecules

within a voxel of cerebral tissue. Cerebral abnormalities leads to energy metabolism

changes with the failure of the Na+/K+ and other ionic pumps [125]. This causes a

transfer of water from the extracellular to the intracellular part causing a cytotoxic edema

[7].

The reduction of water diffusion in the extracellular compartment is detected with DWI

within minutes of vessel occlusion and the magnitude of diffusion (of water molecules) can
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be assessed quantitatively with the apparent diffusion coefficient (ADC) [208] [171]. This

assessment can be done using different acquisition parameters via changing gradient am-

plitude. The relationship between DWI, ADC parameters, and the acquisition parameter

is given in equation 1.52:

DWI = S0 × exp(−b × ADC) (1.52)

where b is the acquisition parameter and determines the strength and duration of the

diffusion gradients and S0 is signal intensity without diffusion weighting [168].

1.4.2 Advanced Imaging

Diffusion Tensor Imaging

Diffusion Tensor Imaging (DTI) is a very sensitive method in identifying the microstruc-

tural changes in the CNS that cannot be measured with conventional imaging [178]. DTI

is based on a three-dimensional measurement of water mobility in three dimensions within

tissues. Water mobility is equally distributed (isotropic). However, because of the highly

organized myelinated axonal fiber tracts, the diffusivity of water is not the same in all

directions (anisotropic) and water mobility is higher in one dimension than in the others

(See Figure 1.12). Longitudinal diffusivity reflects at diffusion parallel to the fibers(axial

diffusivity λa = λ1), the mean of the two other diffusivities is called radial diffusivity

(λr = (λ2 + λ3)/2) and the mean of all of three diffusivities is called Mean Diffusivity

(MD) (MD = (λ1 + λ2 + λ3)/3) and MD is independent from the orientation of the

structures. Another dimensionless index of anisotropy of DTI is the fractional anisotropy

(FA). FA takes values between 0 and 1: 0 for complete isotropy and 1 for completely

anisotropy.
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Figure 1.12: Figure on the left side shows the diffusion of the water in space (isotropic
diffusion). On the right side, the figure shows the diffusion in brain (anisotropic diffusion).
λ1 : axial diffusivity, (λ2 + λ3)/2 : radial diffusivity, (λ1 + λ2 + λ3)/3 : mean diffusivity.

Magnetic resonance spectroscopic imaging

Magnetic resonance spectroscopic imaging (MRSI) provides an important understanding

of the in vivo chemical–pathological changes in neurological diseases measuring in normal

appearing brain tissue [142] [179]. As MRSI can show the changes in different metabolites’,

characterizing different phases of a neurological disease is possible. The main metabolites

are N-acetylaspartate (NAA), choline (Cho), creatine (Cr), lactate (Lac), glutamate and

glutamine (Glx), and free lipids.
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1.5 Overview of Stroke

1.5.1 Introduction

Stroke is considered as one of the most destructive neurological diseases and is the second

most common cause of death and major cause of disability worldwide [53]. Stroke has

also a negative impact on psychological and social situations such as problems with family

relationships, deterioration in sex life, economic difficulties related to loss of the work, and

deterioration in leisure activities [45].

Strokes are either ischemic or hemorrhagic, their managements are thus very different.

Almost 85% of strokes are ischemic resulting from deterioration of blood flow by occlusion

of an artery by an embolus from the heart or from acute thrombotic occlusion within the

brain [10]. when the blood flow interruption is severe or lasts a long time, death of

brain tissue occurs and an irreversibly infarcted zone is formed within the brain. This

zone is called ischemic core (See Figure 1.13). When the blood flow is less severe, or

the interruption occurs during only a short period of time, the brain tissue may recover

partially or completely. This salvageable tissue is known as ischemic penumbra and is

the target of the therapeutic interventions.

Figure 1.13: Ischemic core and penumbra after stroke. While neurons in the ischemic
core are considered irreversibly damaged, neurons in the penumbra are salvageable and
are potential targets for therapeutic interventions [43].
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The National Institutes of Health Stroke Scale (NIHSS) is an assessment tool that provides

a quantitative measure of stroke-related neurologic damage. The NIHSS is widely used

to evaluate disability in patients with stroke, determine the appropriate treatment, and

predict patient outcome. A practitioner evaluates the patient’s ability to answer questions

and perform activities considering the levels of consciousness, language, neglect, visual-

field loss, extraocular movement, motor strength, ataxia, dysarthria, and sensory loss.

The NIHSS ranges between 0 and 42: 0 for no stroke symptoms, 1-4 for minor stroke,

5-15 for moderate stroke, 16-20 for moderate to severe stroke, and 21-42 for severe stroke

[207].

The risk factors for ischemic stroke can be classified into two subgroups: modifiable

and unmodifiable. The modifiable risk factors are hypertension, diabetes, ischemic heart

disease, atrial fibrillation, valvular heart disease, cigarette smoking. The unmodifiable risk

factor is age. The risk of stroke doubles every decade above age 55 [107]. In developed

countries, stroke affects usually people aged 70-75 years whereas stroke occurs in people

less than 60 years in Sub-Saharan Africa [154] [41]. As hypertension causes at reduction in

the external diameter of blood vessels; it has a powerful effect on the cerebral circulation

[95]. For this reason, hypertension is the second strongest risk factor and people with

hypertension are almost 3 or 4 times more likely to have a stroke [34].

1.5.2 Epidemiology

Stroke is the second leading cause of death worldwide with an annual mortality rate of

5.5 million people [128]. The rate of stroke changes geographically. The highest rate is

observed in Eastern Europe, North Asia, Central Africa, and the South Pacific (See Figure

1.14) [94]. The high rate of stroke is partly related to poverty, thus lack of knowledge

about stroke risk factors and its warning signs in low- and middle-income countries [59].

A recent study (in 2015) has indicated that the absolute number of people affected by

stroke has substantially increased across all countries in the world over the same time
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period between 1990 and 2013, even in developed countries [59].

Figure 1.14: Global distribution of stroke mortality rates [107].

1.5.3 Pathophysiology

Cells of the Central Nervous System

A neuron is the basic unit of the nervous system. It mainly consists of

• a cell body that can be seen as the main part of the neuron where the nucleus is

located,

• an axon surrounded by myelin sheaths and regular gaps (also called nodes of Ran-

vier) that helps transmitting electrical signals,

• dendrites extending from the cell body to receive the input elements to propagate

to the cell body (See Figure 1.15).

The electrical signals are received by the dendrites from other neurons, pass through the

cell body and then propagate by the axon to another neuron by synapses where the axon

of one neuron meets the dendrite of another. This structure shows the unidirectional

signaling of neuron mechanism [109].
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Figure 1.15: A neuron in the Central Nervous System.

The myelinated axons are found in the CNS as bundles and the structure of these bundles

is called the "white matter" because of the white colored fatty substance (myelin sheaths).

The other parts of the neuron such as cell bodies, dendrites, and unmyelinated axons form

a structure called "gray matter" of the CNS. Due to saltatory conduction characteristic

of a myelinated neuron, the white matter allows a quick transmission of signals between

different areas of the gray matter within the CNS.

Pathophysiology in stroke

The future of brain cells located in the ischemic penumbra depends on changes in the blood

flow. A brain cell needs about 50ml/100g/min blood flow with an oxygen metabolic rate

of 3.5cc/100g/min [30] [52]. When the blood flow decreases below 10ml/100g/min, brain-

cell functions are severely impaired. Moreover, neurons are unable to survive longer when

the blood flow is below 5ml/100g/min [30] [52]. In complete absence of blood flow, the

tissue becomes infarcted in 2-3 minutes.

If the blood flow is not restored, an ischemic cascade starts with an accumulation of

sodium, calcium, and water inside the damaged neurons and other cells (in 3-24 hours).
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This leads to the release of excitatory neurotransmitters that cause further deterioration

of the blood-brain barrier (BBB) (in 2 days - 2 weeks) [52] [132]. The latter deterioration

allows water to come out of the blood vessels. Thus, the net volume of water in the

ischemic core increases causing vasogenic edema.

1.5.4 Imaging of Stroke

The first step after patient admission is distinguishing ischemic stroke from hemorrhagic

stroke. This information is needed for an appropriate treatment of all patients with stroke.

The imaging tools help in diagnosis and patient follow-up. Computed tomography (CT)

and MRI are the most frequently used imaging tools for patients with stroke. However,

MRI has more advantages than CT though its acquisition time is longer. One of the

advantages of MRI is its better ability to distinguish hemorrhage from thrombus than CT

imaging [232]. Therefore, here, we will use MRI parameters.

DWI provides a marker of irreversibly damaged areas whereas PWI is recommended to

characterize the status of brain tissue blood supply and to identify the reversible area

in ischemia [205] [240] [91]. However, there is a high discrepancy between the lesions

identified by DWI vs. PWI while the performances of DWI and PWI data combined has

been shown superior to that of DWI data or PWI data alone in identifying the tissue at

risk of infarction [205] [240].
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Figure 1.16 shows the DWI hyperintensity and ADC hypointensity images in a patient

with stroke. The areas with high signal are readily apparent and the infarcted area is

more visible with DWI parameter than with ADC parameter.

Figure 1.16: MRI of the brain. DWI (image at left side), and ADC map (image at right
side), showing high signal intensity on the DWI and low signal intensity on the ADC
parameter in a patient with ischemic stroke [139].

FLAIR imaging at one month after stroke onset is commonly used to locate the boundaries

of the irreversibly damaged brain tissue in patients with stroke [21]. Figure 1.17 provides

T2WI, FLAIR and DWI parameters in a patient with ischemic stroke. The T2WI and

FLAIR show similar hyperintense signals. However, the infarcted core close to ventricular

regions is better identified with FLAIR. DWI shows the infarcted area in hyposignal and

reveals no evidence of associated ischemia.

Figure 1.17: T2, FLAIR and DWI imaging in ischemic stroke [81].
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1.5.5 Disease-modifying therapies

The ischemic penumbra can be observed as a mismatch between a large PWI lesion and

a smaller DWI lesion (See Figure 1.18). Figure 1.19 shows also the mismatch observed

with DWI and PWI parameters on the human brain. The images show that the infarcted

core observed on DWI is smaller than the reversibly damaged area shown with PWI. The

ischemic penumbra can be observed in at least 80% of patients within 3 h of stroke onset,

but the number of patients with penumbra decrease with time [177]. The probability of

penumbra’ infarction is related to the severity and duration of the hypoperfusion [27].

Figure 1.18: DWI/PWI mismatch [114].

Figure 1.19: MRI of the ischemic penumbra in a patient with stroke [53].

The ischemic penumbra is the target of therapy and DWI/PWI mismatch is highly used to

identify patients who are the most likely to benefit from thrombolytic treatment beyond

3 hours after an ischemic stroke [53]. Treatments to re-open the blocked blood vessel and
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reperfuse the brain are available. Intravenous recombinant tissue plasminogen activator

(tPA) is the only licensed therapy for treatment of acute ischemic stroke and the use of

this treatment within the first 3 hours after stroke onset is recommended [231] [218]. Its

effectiveness is improved when applied but the benefits decrease rapidly over the first few

hours after stroke onset.

The aims of tPA are arterial recanalization and recovering of the ischemic penumbra, a

viable but critical region around the irreversibly damaged infarct core [214]. The use of

tPA is associated with tissue reperfusion and a decrease in infarct growth, presence, and

magnitude of the ischemic penumbra after a certain period of time [158] [121].

Meta-analyses have indicated that tPA may be effective in a smaller portion of patients

beyond 3 hours [174] [83]. Approximately 2% to 5% of patients with acute ischemic stroke

receive tPA because this drug may cause intracranial hemorrhage and other troubles. For

example, one of the meta-analyses has shown that symptomatic intracranial hemorrhage,

major systemic hemorrhage, and angioedema have been observed in approximately 6%,

2%, and 5% of patients, respectively, of patients treated with tPA.
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1.6 Overview of Multiple Sclerosis

1.6.1 Introduction

MS is a chronic inflammatory disease characterized by demyelinating plaques and neu-

rodegeneration within the central nervous system (CNS) [32] [103]. The immune system

attacks the myelin sheath that covers the nerves and then gives rise to clinical abnormal-

ities. The etiology of MS is still unknown, but it has been believed that the disease is

triggered by environmental factors in a person who is genetically predisposed [209] [167].

The active inflammatory phase in the CNS can cause relapses defined as worsening of

existing symptoms or appearance of new symptoms that last more than 24 hours and

happen at least 30 days after a previous relapse. Clinical worsening can be observed

between the relapses but many patients recover from their relapses without worsening.

The length, severity, and number of relapses, as well as clinical disability evolution are

highly heterogeneous between patients. Therefore, a powerful long-term prediction of

relapses or clinical evolution is currently very difficult.

Moreover, there is no stopping disease therapy for multiple sclerosis. Disease-modifying

drugs, including immunotherapies, do exist and help reducing autoimmune disorders,

thus, speed recovery from relapses, reduce inflammation. These drugs may then change

the course of the disease and manage symptoms.



56 Chapter 1: State of the Art

1.6.2 Epidemiology

MS is the most common non-traumatic disabling neurological disease of adulthood. It

occurs generally between ages 18 and 40 years [38]. The estimated global prevalence of

MS is approximately 30/100 000 and there were at least 1.32 million patients with MS

according to the 2008 MS Atlas [26]. Even the etiology of MS is still largely unknown but

there are evidence for roles of both environmental and genetic factors (ultraviolet rays,

vitamin D levels, cigarette smoking, and migrations) [209] [167].

Environmental factors

There are large differences in the reported prevalence of MS, both within and between

countries (See Figure 1.20). Disease frequency changes depending on the geographical

areas, especially the latitude, consequently to low exposure to ultraviolet radiation (UVR)

and low vitamin D levels. Intensive sun exposure during childhood and early adolescence

are associated with a reduced risk of multiple sclerosis whereas the people with low vitamin

D level have higher risk of developing MS [225] [98] [108] [147] [131]. Moreover, low

vitamin D levels increase the relapse risk [203] [202] [201]. Northern Europe, Northern

United States, Southern Canada, New Zealand, and Southern Australia have the highest

risk (prevalence: 80/100 000). Southern Europe, South America, and the rest of Australia

have a medium risk (prevalence: 30-80/100 000). The lowest risks (prevalence: 30/100

000) are in Africa and Asia [104] [135].

France is in an area with a medium to high prevalence of MS. French farmers account for

only 7% of the French population and the prevalence of MS changes significantly between

the northeastern and the southwestern regions [230] (See Figure 1.21). Another study

found no north-south gradient for MS prevalence but confirmed the high prevalence in

the North-Eastern France in a large population representative of the French population

[71].
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Figure 1.20: The estimated number of people with MS in 2013 in each country.

Figure 1.21: Estimates of the regional prevalence of multiple sclerosis on 1 January 2003,
per 100 000 inhabitants, standardised by age, among French farmers [230].

Genetic factors

The heterogeneous prevalence of MS in different regions cannot be explained by one or a

few known environmental factor(s). Major differences in prevalence are observed between

countries located at the same latitude. Moreover, similar prevalences occur in regions with

individuals of same ethnic origin [184]. It is suspected that there is a role for susceptibility

genes in the development of MS [146] [237].

The familial occurrence of MS has an effect because MS prevalence increases with the

increase of kinship degree. The big concordance rate in monozygotic twins (20-30%)
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versus dizygotic twins (3-5%) indicates a major genetic etiologic contribution [212] [55]

[184].

Many genetic studies have shown the genes that encode for the major histocompatibility

complex (MHC) (also known as the human leukocyte antigen (HLA) system) have the

strongest effect on MS among genetic factors [1] [152] [11] [243].

Women are also twice more affected than men in most of studies. In Europe, the ratio

ranges from 1.1 to 3.4 [2] [55] [118].

1.6.3 Physiopathology

MS is an inflammatory, demyelinating, and neurodegenerative disease of the CNS [66].

The disease presents first as an inflammation of the CNS provoked by T-cells, B-cells, and

macrophages. Inflammatory can provoke then the neurodegeneration; demyelination and

axonal loss form then lesions (also called plaques) in the white and/or the grey matter

[151] [92] [183]. The lesions are located within the brain, primarily in myelin-dense white

matter regions including the corpus callosum, the spinal cord, and then optic nerves.

Further, lesions may lead to brain atrophy [66] [70] [57]. Many white matter lesions are

detected around the ventricles but lesions may also occur in the deep white matter far

from the ventricles as well as in the grey matter [123].

Lesions in Corpus Callosum

As indicated above, MS affects especially the white matter of the brain and the lesions

appear mostly around the ventricles and within the periventricular white matter. The

floor of the lateral ventricles is formed by a region named Corpus Callosum (CC) (See

figure 1.22), one of the most frequently affected regions: in 93% of Patients with MS,

lesions were found in CC [14] [77] [74]. Moreover, CC is the major myelinated bundle of

the brain and provides the connection between cortical and subcortical regions of brain
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hemispheres. For this reason, the effects of lesions in CC are more severe versus lesions

in the lobar white matter.

Figure 1.22: Figure at the left side: A brain image at sagittal plane where the green part
shows the Corpus Callosum. Figure at the right side: A brain image at coronal plane
indicating the lateral ventricles and corpus callosum.

Several studies demonstrated that callosal changes measured with Diffusion Tensor Imag-

ing (DTI) were correlated with cognitive and physical disability [242] [173] [198] [127]. The

association between clinical scores and CC atrophy measured with conventional imaging

is reported in some studies [192] [242] [156].

As a conclusion, the biophysical and biochemical changes in all the CNS -due to the

lesions- may give rise to clinical symptoms or signs. As the density of these alterations

and their location in the CNS differs from one patient to another, the disease evolution

is also highly heterogeneous among patients with MS.
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1.6.4 Evolution and severity of clinical disability

Evolution of clinical disability

The length, severit, number of relapses, and clinical disability evolution are highly het-

erogeneous between patients. Thus, patients with MS do not present a homogeneous

population and they are classified into four clinical subtypes according to the disease

evolution: Clinically Isolated Syndrome (CIS), Relapsing-Remitting (RR), Primary Pro-

gressive (PP), and Secondary Progressive (SP) [129] (See Figure 1.23).

Figure 1.23: Change in disability score over time in the four MS clinical subtypes:
Relapsing-Remitting (RR), Secondary Progressive (SP), Primary Progressive (PP), Clin-
ically Isolated Syndrome (CIS).

Clinically isolated syndrome (CIS) patients show the first clinical episode such as optic

neuritis, brainstem syndrome, or partial myelitis. This syndrome is known as the first

phase of RR and should be followed-up to determine the subsequent disease evolution.

Several studies have shown that the majority of patients shift toward RR within two or

three years of follow-up [110] [143].

A relapse (also called attack) is defined as the appearance of new clinical symptoms or

signs lasting at least 24 hours with a one-month interval before the next attack. Most

patients (85%) initially have RR characterized by discrete relapses with full or partial

recovery accompanied by little or no disability evolution. However, over time RR can
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progress to SP where the frequency of relapses decreases and the disability progression is

observed between relapses [129]. Approximately 65% patients with RR develop SP within

5-15 years of symptom onset [182] [187]. A minority of patients (15%) have PP where the

irreversible progression has occurred from the beginning in the absence of relapses [220].

PP is considered to be a mostly noninflammatory subtype [130] [38].

The inflammation phase in the white matter is mostly observed among RR patients and

the focal inflammatory event in the CNS is the main cause of relapses [229]. The inflam-

mation may lead to axonal loss then to brain atrophy which is more frequently observed

among patients with progressive evolution (PP and SP) [123]. Brain atrophy can be seen

as the result of the transition from RR to SP patients and associated with irreversible

disability in progressive evolution (See Figure 1.24) [223] [19].

Figure 1.24: Inflammation and axonal loss evolution during the transition from RR to SP.
Relapse frequency decreases giving rise to axonal loss followed by permanent disability
[229].

Severity of clinical disability

The Expanded Disability Status Scale (EDSS) is the most frequently used clinical severity

score to quantify disability in MS. The EDSS scores range from 0 to 10 by 0.5 unit

increments where 0 indicates no disability and 10 death due to MS (See Table 1.2). EDSS

scoring between 0 and 4.5 uses impairment measures in eight functional systems (FS):

1. pyramidal (motor function) - weakness or impairment moving limbs
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2. cerebellar - ataxia, loss of coordination or tremor

3. brainstem - nystagmus and impairement of speech and swallowing

4. sensory - loss of sensations

5. bowel and bladder function

6. visual function

7. mental functions

8. other

The functional systems are scored between 0 and 5 or 6 : 0 indicates no disability and 5

or 6 indicate most severe disability.

EDSS scores 0.5 to 2.0 refer to patients with minimal-clinical disability, 2.5 to 4.5 refer

patients who are able to walk with increased limitation in walking but insufficient to

constrain from normal activities of daily living or work with some impairments of FS ,

4.5 to 6.0 refer to patients who need assistance for ambulation. Finally, EDSS scores 7.0

refer to patients restricted to wheelchair and EDSS score 9.0 to helpless-bed patients.

The EDSS score has been criticized for some limitations: (1) it focuses on walking as the

main measure of disability because it is a mixture of impairment and disability, (2) its

non-linearity because the progression between 1 and 5 is faster than between 5 and 7 [238]

[196].

MS progression may also be scored with the multidimensional score, the Multiple Sclerosis

Functional Composite (MSFC) [180]. The MSFC combines three timed tests into a single

score and includes a timed 25-foot walk (T25FW), the nine-hole peg test (9HPT), and

the Paced Serial Addition Test (PASAT). T25FW is averaged over 2 consecutive walks

and reported in seconds. The 9HPT measures the manual dexterity and ask participants

to repeatedly place and remove nine pegs into nine holes, one at a time, as quickly as
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possible. The 9HPT is passed with both the dominant and non-dominant hand twice and

is scored in seconds. The PASAT is a challenging task that involves working memory,

attention, and arithmetic capabilities. A number is given every 3 seconds and the patient

is asked to add it to the number he/she has just heard before. PASAT is scored between

0 and 60; the total number of correct answers is 60.
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Score Description

1.0 No disability, minimal signs in one FS
1.5 No disability, minimal signs in more than one FS
2.0 Minimal disability in one FS
2.5 Mild disability in one FS or minimal disability in two FS

3.0 Moderate disability in one FS, or mild disability in three or four FS. No im-
pairment to walking

3.5 Moderate disability in one FS and more than minimal disability in several
others. No impairment to walking

4.0 Significant disability but self-sufficient and up and about some 12 hours a day.
Able to walk without aid or rest for 500m

4.5
Significant disability but up and about much of the day, able to work a full
day, may otherwise have some limitation of full activity or require minimal
assistance. Able to walk without aid or rest for 300m

5.0 Disability severe enough to impair full daily activities and ability to work a
full day without special provisions. Able to walk without aid or rest for 200m

5.5 Disability severe enough to preclude full daily activities. Able to walk without
aid or rest for 100m

6.0 Requires a walking aid - cane, crutch, etc - to walk about 100m with or without
resting

6.5 Requires two walking aids - pair of canes, crutches, etc - to walk about 20m
without resting

7.0
Unable to walk beyond approximately 5m even with aid. Essentially restricted
to wheelchair; though wheels self in standard wheelchair and transfers alone.
Up and about in wheelchair some 12 hours a day

7.5
Unable to take more than a few steps. Restricted to a wheelchair and may need
aid in transferring. Can wheel self but cannot carry on in standard wheelchair
for a full day and may require a motorized wheelchair

8.0
Essentially restricted to bed or chair or pushed in a wheelchair. Maybe out of
bed itself much of the day. Retains many self-care functions. Generally has
effective use of arms

8.5 Essentially restricted to bed much of day. Has some effective use of arms
retains some self-care functions

9.0 Confined to bed. Can still communicate and eat

9.5 Confined to bed and totally dependent. Unable to communicate effectively or
eat/swallow

10.0 Death due to MS

Table 1.2: The Expanded Disability Status Scale (EDSS) [105].
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1.6.5 Imaging in MS

MRI is an important tool and the most extensively used technique in diagnosing and

monitoring MS. MRI has a high sensitivity and a high specificity in detecting white

and gray matter abnormalities even in case of clinically silent lesions of the CNS. The

abnormalities observed on MRI reflect the underlying pathology: inflammation and axonal

degeneration [112] [22]. Conventional imaging parameters are essential and acquired in

all patients with MS: they have a high sensitivity in detecting lesions. In addition, the

advanced imaging parameters are highly specific in detecting structural, functional, and

metabolic changes which can not be observed with conventional imaging [62] [56].

Conventional imaging in MS

Conventional MRI has been found very promising in MS because:

1. they assist MS diagnosis in showing lesion dissemination over time and space

2. they exclude alternative disease probabilities (for example: Lyme disease, Lupus,

Sjögren’s syndrome) even at the earliest stages

3. they are high sensitive in showing CNS damage in MS in comparison with other

neuroimaging techniques

4. they are able to provide objective metrics to help observe disease evolution and

assess treatment efficiency

5. they help to identifying the lesions and their location

The most frequently used conventional MRI techniques to assess MS evolution are T1WI,

contrast-enhanced T1WI, T2WI and FLAIR [65] [200]. T1WI and T2WI have important

specificities and sensitivities in detecting tissue damage and to provide valuable predictive

information on the evolution of MS [62] [67].
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T1-Weighted Imaging The hypointense lesions (also called black holes) shown with

T1WI were significantly correlated with disease progression and disability [224].

The early phase of neurodegeneration, the inflammatory edema, can be better observed

in hyperintense with contrast-enhanced T1WI. Gadolinium is injected before imaging

acquisition and it improves the visibility of inflammation as ringlike structure in T1WI

(See Figure 1.25). Normally, gadolinium cannot pass from the bloodstream into the brain

or the spinal cord because of a protection layer: the blood-brain barrier (BBB). However,

the lesions may disrupt the BBB allowing gadolinium to pass through. Contrast-enhanced

T1WI is thus able to detect clinically silent lesions, 5 to 10 times more frequently than

clinical evaluation of relapses [13].

Figure 1.25: T2WI (A), FLAIR (B), and contrast-enhanced T1WI in a 30-year-old woman
RRMS [74].
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T2-Weighted Imaging In MS, T2WI has a great sensitivity in detecting lesions. The

hypointense black-holes on T1WI appear as hyperintense MS lesions on T2WI.

T2-weighted hyperintense lesions’ location has a great importance helping diagnosis and

in differentiating MS from other diseases. MS lesions are mostly observed in periventric-

ular, juxtacortical, and infratentorial regions [185]. Mc Donald criteria (2010 corrected

version) underline the importance of the use MRI, especially T2-weighted lesions. Mc

Donald criteria require a minimum of one T2 lesion in at least 2 of the following areas :

periventricular, juxtacortical, infratentorial, and spinal cord (See Table 1.4) [161] .

Some cross-sectional studies have shown that brain atrophy observed with T2 imaging is

significantly associated with physical disability [9] [8] [206]. Moreover, the baseline gray

matter T2 hypointensity seems to be a strong predictor of the rate of whole brain atrophy

over 2 years in RR patients who used the placebo because interferon may cause the brain

atrophy [17].

FLAIR The suppression of the CSF helps to detect the lesions close to the CNS, for

example, the periventricular part of the CNS. Some lesions can be detected by T1 or

T2WI but can appear with FLAIR. FLAIR imaging is also the best way to identify

lesions located in corpus callosum that cannot be seen by T2WI (See Figure 1.26) [4],

thus, may help to differentiate MS from cerebrovascular diseases [74] .

Figure 1.26: MS lesion in corpus callosum on T2WI (A), FLAIR (B) and FLAIR in
sagittal plane (C) [74].
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However, in FLAIR imaging, the contrast between the gray and the white matter is low,

thus FLAIR has a relatively low sensitivity in detecting lesions located in the brainstem

or the cerebellum, and performs less well in the posterior regions [172].



1.6. OVERVIEW OF MULTIPLE SCLEROSIS 69

Advanced imaging in MS

In MS research, advanced imaging has demonstrated higher degrees of sensitivity and

specificity in detecting inflammation and neurodegeneration than conventional imaging

[62] [56] because they provide complementary information such as diffusion alteration and

metabolic information in MS [61] [62] [63]. DTI and MRSI are the two most frequently

used advanced technique in MS. DTI is able to separate MS subtypes because the patients

in different subtypes display different diffusivity patterns [56]. MRSI imaging enables

quantifying metabolic abnormalities and leads to a better understanding of the processes

that occurring in lesion.

Diffusion Tensor Imaging DTI parameters inform about myelin and axonal loss as

well as about the degree of inflammation. The measurements of λr and λa are significantly

correlated with, respectively, myelin and axonal content [204]. MD and FA are primarily

influenced by the free space caused by axonal and myelin loss and there is a significant

difference between myelinated and non-myelinated nerves [93] [236] [60]. The presence

of demyelination causes more space in the brain that increases MD and decrease FA

measurements. Moreover, MD has been found useful for distinguishing different level of

MS lesions, which may be linked to various grades of clinical disability [189]. It has been

shown that there is a significant difference in DTI parameters such as λa, λr, MD and FA

between PP patients and control group [164] [199].

Several studies have demonstrated that callosal changes measured with DTI were cor-

related with cognitive and physical disability [242] [173] [127]. FA measurements were

significantly lower in rostrum, body and splenium part of CC in patients with MS versus

control group where MD was significantly greater [87] [181]. The association between

EDSS scores and CC atrophy as measured by conventional MR is indicated in some stud-

ies [192] [87] [233] [242]. However, no significant correlation was found between disability

and callosal atrophy as measured by conventional MR in RR patients [12]. These con-

trasts can result from insufficiency of conventional imaging of CC; the use of advanced
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MRI techniques such as DTI can be more suitable for CC in patients with MS (See Figure

1.27).

Figure 1.27: Images from a control subject (top row) and a patient (bottom row): DTI raw
image (left column), color-coded FA map (middle column), and MD map (right column).
FA takes the highest value (marked with red color) in the control subject whereas there is
less red color in patients with MS, this indicates neurodegeneration. The lesions around
CC are more visible on FA and MD maps [75].
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Magnetic resonance spectroscopic imaging NAA is known as a neuronal marker

of persistent neuronal/axonal damage [6] [210] [18]. The decrease in NAA indicates neu-

ronal/axonal dysfunction or loss [5] [186]. Cho, Cr, Glu, Lac, and lipids inform about

the pathophysiology of the inflammatory phase and tissue repair mechanisms in MS.

Moreover, an increase in Cho:Cr ratio was found significantly related to acute lesion and

inflammation which are observed in gadolinium injected T1-weighted lesions (See Figure

1.28) [239] [122].

In active inflammatory MS lesions, an increase in Cr and Cho and a decrease in NAA

value have been observed. Also, in chronic lesions, NAA concentration decrease associated

with axonal damage [31]. Changes in NAA and Cho inform about axonal damage and

were found more correlated with the EDSS score than conventional MRI at an early stage

of the disease [49]. Another study showed that the axonal damage assessed by NAA:Cr

ratio decrease has a stronger correlation with clinical disability than T2-weighted lesion

volume [72].

Figure 1.28: Serial T2-FLAIR images (top row) and spin-echo MR (bottom row) recorded
from baseline to one year in acute multiple sclerosis lesion. FLAIR images show the
evolution of lesion size that increases during the first 20 days and decreases afterwards.
The spectroscopic graphs show a decrease in NAA from baseline up to 20 days and then
stabilization up to 1 year. An increase in Cho during the first weeks followed by a partial
recovery is also observed whereas Cr stays relatively stable at all time points [179].
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1.6.6 Diagnosis

Clinical, imaging and laboratory exams help clinician confirm the diagnosis of MS. Pa-

tients with MS present a wide variety of clinical signs and symptoms such as fatigue, pain,

depression, ataxia, bladder, bowel or sexual dysfunction, spasticity, sensory, visual, and

cognitive impairments [169] [195] [145] [46] [153].

In addition to clinical examination, MRI is effective in diagnosing and monitoring the dis-

ease and also in assessing the effect of treatments on relapses in clinical trials [136] [222]

[64]. Generally, one key element in MS diagnosis is the assessment of its "dissemination in

space" (DIS, the lesions are observed in more than one region of the CNS) and "dissem-

ination over time" (DIT, disease occurrence at different times: at least 30 days between

two events). The sensitivity of MRI in identifying focal white matter abnormalities and

clinically silent lesions plays an important role in evaluating DIS and DIT. Together with

a contrast agent, MRI allows identifying inflammatory lesions as active and non-active

[235] [222].

In the beginning, Schumacker criteria were used for diagnosis with DIS and DTI assess-

ments of neurological impairments in different regions of the CNS (See table 1.3) [194].

Then, Poser criteria included CSF evaluations and paraclinical data as supplementary

criteria to identify whether a person had possible, probable, or definite MS [163]. The

criteria were revised in 2001, 2005, and 2010 and called “McDonald criteria”. The latter

incorporate clinical, paraclinical, and imaging data that help diagnosing MS in patients

with a variety of disease presentations (See Table 1.4) [136] [162] [161]. These criteria

underline the importance of MRI, especially T2-weighted lesions in spinal cord imaging,

in the early diagnosis of MS [162] [161]. The reform of the latter criteria excluded the use

of a contrast agent, saving thus time and cost.
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Requirements for the diagnosis of clinically-definite MS

1. Objective abnormalities on neurological examination attributable to dysfunction of
the CNS.
2. Historical or objective evidence of the involvement of two or more separate parts of
the CNS.
3. Objective signs of CNS disease should be attributable the white matter, with more
than minor gray matter involvement disqualifying.
4. One of the following temporal patterns:
a. Two or more episodes of worsening (relapse); each lasting at least 24 h, separated
by one month or more.
b. Slow or step-wise progression of signs and symptoms over at least 6 months.
5. Patients aged 10 – 50 years.
6. No better explanation for patient’s signs and symptoms.

Table 1.3: Schumaker criteria for the diagnosis of MS [193].

1.6.7 Prognosis

Many articles have studied the prognostic values of clinical and imaging parameters mea-

sured at study onset in predicting short-term and long-term MS evolution. A poor prog-

nosis is generally associated with old age at MS onset, male sex, the involvement of

multiple systems, a great number of relapses, and a rapid increase in EDSS score during

the first few years [39] [50] [187] [188]. Not only the relapse frequency but also the type of

relapse may be important. Patients with high rates of motor and sphincter relapses have

an increased risk of developing a secondary progressive disease after a relapsing-remitting

evolution [16].

Optic neuritis is the first sign in some MS patients [54]. Optic neuritis is the inflammation

and loss of the myelin covering the optic nerve and retina. MRI measures during optic

neuritis relapse give important clinical information on the risk of future MS [195] [219].

Besides, pyramidal and cerebellar scores are significantly associated with the time elapsed

from disease onset to EDSS 3, EDSS 6, and the transition to secondary progression [44]
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Num-
ber of
relapses

Lesions Additional criteria

two or
more

Objective clinical ev-
idence of two or more
lesions or objective
clinical evidence of
one lesion with rea-
sonable historical ev-
idence of a prior re-
lapse

None. Clinical evidence alone will suffice; addi-
tional evidence desirable but must be consistent
with MS

two or
more

Objective clinical ev-
idence of one lesion

Dissemination in space, demonstrated by
- ≥ one T2 lesion in at least two MS typical CNS
regions (periventricular, juxtacortical, infratorial,
spinal cord); OR
- Await further clinical relapse implicating a dif-
ferent CNS site

one
Objective clinical ev-
idence of two or more
lesions

Dissemination over time, demonstrated by
- Simultaneous asymptomatic contrast-enhancing
and non-enhancing lesions at any time; OR
- A new T2 and/or contrast-enhancing lesions(s)
on follow-up MRI, irrespective of its timing; OR
- Await a second clinical relapse

1 Objective clinical ev-
idence of one lesion

Dissemination in space, demonstrated by
- ≥ one T2 lesion in at least two MS typical CNS
regions (periventricular, juxtacortical, infratento-
rial, spinal cord); OR
- Await further clinical relapse implicating a dif-
ferent CNS site AND
Dissemination over time, demonstrated by
- Simultaneous asymptomatic contrast-enhancing
and non-enhancing lesions at any time; OR
- A new T2 and/or contrast-enhancing lesions(s)
on follow-up MIR, irrespective of its timing; OR
- Await a second clinical relapse

0 (progres-
sion from

onset)

One year of disease progression (retrospective or
prospective) AND at least two out of three criteria:
- Dissemination in space in the brain based on ≥
one T2 lesion in periventricular, juxtacortical or
infratentorial regions;
- Dissemination in space in the spinal cord based
on ≥ two T2 lesions; OR
- Positive CSF

Table 1.4: 2010 revised McDonald Diagnostic Criteria for MS.
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[226]. some variables such as age, sex, and symptoms are strong predictors of shift from the

disease onset to an irreversible disease phase (EDSS 4, 6, or 7); these variables became

non-significant for predicting subsequent disease progress after EDSS score 4 has been

reached [40].

As for imaging parameters, lesion load has been found to be an important prognostic

measure in CIS patients [25] [3] [67]. A high baseline brain volume predicts better long-

term clinical outcomes in RR patients whereas high baseline and greater early increase

in EDSS score is significantly associated with worse outcomes [221]. In addition to the

conventional imaging parameters, the advanced imaging parameters such as fractional

anisotropy (FA) measurement or mean diffusivity (MD) in Diffusion Tensor Imaging (DTI)

are reported as highly predictive indicators of clinical outcome [96] [56]. Another study

showed that FA and MD measurements were not significantly different between different

clinical subtypes but they are highly associated with the disease evolution in RR and SP

patients [33].
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1.6.8 Disease-modifying therapies

Although on the grounds of non-curative approaches, a number of disease-modifying ther-

apies (DMTs) became available during the past 20 years, especially for patients experi-

encing relapses. These treatments reduce the relapse rate and the number of new MRI

lesions. However, as the drugs act in the inflammation, rather than in the neurodegenera-

tive mechanism of the disease, they do not stop disease progression in long-term [106] [100]

[160] [73] [138]. Thus, today’s DMT are partially efficient in CIS, RR and SP patients,

but not in PP patients [86] [88]. The treatments in MS have two aspects: immunomodu-

latory drugs to reduce autoimmune disorders and drugs to relieve partially or completely

worsening symptoms.

The classical immunomodulators of MS are interferon beta (IFNβ) and Glatiramer Ac-

etate (GA): two were approved for the treatment of RR and CIS patients. IFNβ has

many actions such as inhibition of T-cell activation and reduction of blood-brain barrier

permeability to inflammatory cells. GA acts also on the immune system by interfering

with antigen presentation and induction of suppressor cells.

The effects of IFNβ and GA proved to reduce disability progression in, about 0-80% of

new T2 enhancing lesions, almost 30% of relapses [159] [35]. Moreover, the use of these

treatments over a long period by RR patients delayed the time to secondary progression

[69] [216].

Second-line therapies such as Alemtuzumab, Natalizumab, and Mitoxantrone are also

available for more progressive patients when IFN β and GA are not efficient. Mitoxantrone

is an immunosuppressive agent whose effect was proven in RR and SP patients; however,

its toxicity limits its use as basic treatment [141] [28]. Alemtuzumab is also effective,

even in progressive MS including SP patients where the frequency of active lesions, brain

and spinal cord atrophy are elevated [36] [157]. The American Academy of Neurology in

2008 showed that Alemtuzumab was more efficient than Interferon in a 3 year-follow-up,

it led to 0.77 reductions in EDDS and also to a reduction of relapse rate and disability

progression.
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2.1 Introduction

The five classification methods (SVM, ANN, RF, ADA, and LR) that were presented in

Section 1.1 is used to predict the infarction risk in patients with stroke. The prediction

of high infarction risk would help to determine the patients who are eligible for tPA

treatment.

In this chapter, imaging data that has been used was voxel-based. Voxel represents a tidy

cube of brain tissue in a three dimensional imaging. Each voxel can represent a million

or so brain cells. We used eight MRI parameters (i.e., T2 FLAIR, ADC, CBV, CBF,

TTP, MTT, TMAX, and DWI) to characterize each voxel’s risk of infarction. The five

classification methods predicted the infarction risk of each voxel in patients with stroke.

Let xij be the voxel of individual i observed with MRI parameter j. LR estimates the

infarction risk (πi) of voxel i by the logit function defined in following equation

πi = 1
1 + e−(β0+

∑8
j=1 βj×xij)

(2.1)

where β0 is the intercept and βj the effect size of one unit change of MRI parameter xij

on the output.

SVM separates voxels into healthy or infarcted using a linear border. The signed distance

to the border can be used as the infarction risk. A positive distance represents high risk

of infarction, and a negative distance low risk of infarction.

ANN involves several types of layers: an input layer composed of all data xij, an output

layer that gives the final outcome, and one (or more) hidden layers between the input and

the output layer. The input layer sends first the information to the next layer with an

initial weight and this weight is updated after the response of the network has reached

the output layer. A weighted sum (sumi) of the responses of the neurons for voxel i is
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computed defined as sumi = ∑n
i=1 xij ×wij. The risk of infarction is obtained by applying

a sigmoid function to this weighted sum:

f(xij) = 1
1 + exp(−sumi)

(2.2)

RF builds several bootstrap samples from the original data and fits a decision tree to each

sample to classify the voxel into healthy or infarcted. The risk of infarction of a voxel is

computed as the percentage of trees that classified this voxel as infarcted.

ADA corrects sequentially the classification weighting the misclassified voxels with a set

of decision trees ht. According to the misclassification error of the decision tree and the

weights given to the voxels, the performance αt of each tree is computed. For a given

voxel, the infarction risk is the result of the classification of each tree weighted by its

performance ∑T
t αt × ht.

The predicted risk of infarction of each voxel was dichotomized after by a threshold.

A voxel with an infarction risk above the threshold was considered as infarcted. The

threshold was defined as the value that minimizes the difference between observed and

predicted infarcted volume.

FLAIR sequence at one month after stroke onset was used to identify the voxels corre-

sponding to contour the boundaries of the irreversibly damaged brain tissue. The voxels

in boundary were labelled as infarcted and other voxels were labelled as healthy. The

predictions of classification methods were compared with the voxels observed on FLAIR

sequence.

The ischemic data is highly imbalanced because the infarcted voxels are much less numer-

ous than healthy voxels. For this reason, AUCprc was used to assess the performance of

the five classification methods. In addition to AUCprc, AUCroc, sensitivity, and specificity

were calculated to compare our results with previous studies.
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ADA, ANN, LR, and RF gave significantly higher AUCroc values in comparison with

SVM. However, there was no significant difference regarding sensitivity, and specificity,

and AUCprc.

67% of patients received treatment tPA after admission. Figure 2.1 shows that median of

AUCprc was always higher for untreated patients than traited patients for each method.

However, the interquartile range of AUCprc values were close for treated and untreated

patients. Moreover, there was no significantly difference between AUCprc values of treated

and untreated patients for all classification methods (Wilcoxon rank sum test : p-valueLR=

0.71, p-valueSV M=0.65, p-valueANN= 0.47, p-valueRF =0.53, p-valueADA=0.56.)

Figure 2.1: The AUCprc values calculated separately for treated and untreated patients
with tPA by each classification methods. The AUCprc values performed for treated pa-
tients indicated adding “t” at the end of the method name on the x axis..

Besides, we analyzed if there was a difference of absolute volume error (|Observed Vol-

ume -Predicted Volume|) between treated and untreated patients with tPA. No signifi-
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cant difference of absolute volume error was observed between treated and untreated pa-

tients (Wilcoxon rank sum test: p-valueLR= 0.47, p-valueSV M=0.99, p-valueANN= 0.81,

p-valueRF =0.31, p-valueADA=0.58).

The following article shows the details of implementation of the five methods in patients

with stroke from the I-KNOW multicentre study (http://www.i-knowstroke.eu). The

article is in preparation and will be submitted to the journal "Frontiers in Neurology".
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ABSTRACT 

In acute ischemic stroke, identifying brain tissue at high risk of infarction is important for 

clinical decision-making. This tissue may be identified with suitable classification methods from 

magnetic resonance imaging (MRI) data. The aim of the present study was to assess 

comparatively the performance of five popular classification methods (Adaptative Boosting 

(ADA), Logistic Regression (LR), Artificial Neural Networks (ANN), Random Forest (RF), and 

Support Vector Machine (SVM)) in identifying tissue at high risk of infarction on human voxel-

based brain imaging data. The classification methods were used with eight MRI parameters 

including diffusion-weighted imaging (DWI) and perfusion-weighted imaging (DWI) obtained in 

55 patients. Sensitivity, specificity, the area under the receiver operating curve (ROC) as well as 

the area under the precision-recall curve criteria were used to compare the method 

performances. The methods performed equally in terms of sensitivity and specificity while the 

results of the area under the ROC were significantly better for ADA, LR, ANN and RF. However, 

there was no statistically significant difference between the performances of these five 

classification methods regarding the area under the precision-recall curve, which was the main 

comparison metric.  

Keywords: brain ischemia, classification, diffusion-weighted imaging, Magnetic Resonance 

Imaging, machine learning, perfusion-weighted imaging 
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INTRODUCTION 

Ischemic stroke is one of the major causes of death or long-term disability in most developed 

countries.1 One of the current medical stroke therapies is intravenous thrombolysis which has 

to be administered as soon as possible after symptom onset. Besides, identifying the tissue at 

risk of infarction with an imaging tool would help decision-making in personalized treatment.2 

Brain imaging based on Magnetic Resonance Imaging (MRI) provides important 

variable related to acute cerebral ischemia. Various MRI sequences have been developed to 

this end. Diffusion-weighted imaging (DWI) is a marker of irreversibly damaged tissue whereas 

perfusion-weighted imaging (PWI) characterizes the tissue’s blood supply, and particularly the 

ischemic penumbra, which is at risk of infarction but still salvageable by early reperfusion.3,4 In 

the acute stroke setting, a marked discrepancy between the size of abnormal tissue identified 

by DWI vs. PWI1 , so called DWI-PWI mismatch, is often encountered, and the performance of 

DWI and PWI data combined in identifying the tissue at risk of infarction has been found to be 

superior to that of DWI data or PWI data alone.3,4 

Identifying the tissue at risk of infarction in each patient using MRI and specific 

statistical methods would help to determine the subject’s most appropriate treatment.3,4 

Many classification methods have been already used to provide the risk of infarction on voxel-

based data. For example, in 2006, Wu et al.5 have proposed the use of generalized linear 

models to estimate the probability of infarction on the basis of diffusion- and perfusion-

weighted imaging data from humans, but machine learning algorithms may outperform the 

generalized linear model in case of complex multimodal data. In 2010, Huang et al.6 used 
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Artificial Neural Networks (ANN) on animal imaging data and reported promising findings 

regarding predicting the outcome of ischemic tissue. In 2011, another study from the same 

authors7 found better results with Support Vector Machine (SVM) than with ANN on animal 

data. A recent extensive study by Bouts et al.8 compared five classification methods on 

experimental animal data; the five methods gave similar results. However, extrapolating these 

findings to man may not be appropriate.9 Thus, Winder et al.10 compared the prediction 

accuracy of three classification methods (nearest-neighbor, generalized linear model, and 

random forest RF) using human voxel-based stroke data; RF --as a machine learning algorithm-

- performed significantly better than the two other methods. 

The aim of the present study was to assess the performance of five popular 

classification methods (Adaptative Boosting – ADA, ANN, Logistic Regression – LR, RF, and 

SVM) in identifying the tissue at high risk of infarction from voxel-based human data. 
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MATERIAL AND METHODS 

Patients 

The study used data of patients from the I-KNOW multicentre study (http://www.i-know-

stroke.eu) that included prospectively patients who underwent MRI at admission and follow-

up to estimate voxel-based probabilistic maps of infarction risk. The inclusion criteria were: (1) 

National Institutes of Health Stroke Scale (NIHSS) ≥4; (2) DWI and PWI data consistent with an 

anterior-circulation acute ischemic stroke; (3) admission MRI carried out within 6 hours in case 

of intravenous recombinant tissue plasminogen activator (rt-PA) use or within 12 hours in case 

of conservative treatment. The I-Know study conformed with the Helsinki Declaration, the 

rules laid out by the Council of Europe Convention on Human rights and Biomedicine, Directive 

95/46/EC of the European Parliament and of the Council of 24 October 1995 on the protection 

of individuals with regard to the processing of personal data and on the free movement of 

such data, and with the legislation and regulations in Denmark, Germany, France, and Spain, 

respectively. The study was approved by the Aarhus, Hamburg, Lyon, and Girona hospitals 

respective regional ethics committees, and carried out after informed consent from the 

patients. Patients with lacunar or posterior circulation stroke, unknown time of stroke onset, 

unknown T2 FLAIR sequence measure or intracerebral haemorrhage on MRI were excluded. 

Overall, 55 patients were used for each classification method. 
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Image acquisition and processing 

On admission, all patients underwent: i) a DWI MRI sequence (3 or 12 directions, repetition 

time >6000 ms, field of view 24 cm, matrix 128x128, slice thickness 3 or 5mm); ii) a Fluid-

Attenuated-Inversion-Recovery (FLAIR: repetition time 8690 ms, echo time 109 ms, inversion 

time 2500 ms, flip angle 150°, field of view 21 cm, matrix 224x256, 24 sections, section 

thickness 5 mm, slice gap 1 mm); iii) a PWI MRI (echo time 30-50 ms, repetition time 1500ms, 

field of view 24 cm, matrix 128x128, 18 slices, thickness 5 mm, gap=1 mm, gadolinium contrast 

at 0.1 mmol/kg, intravenous injection 5 mL/s followed by 30 mL saline). 

 

Diffusion-weighted sequence generated maps of DWI and apparent diffusion 

coefficient (ADC) parameters. PWI tracked the bolus of injected contrast agent to generate 

maps of cerebral blood volume (CBV), cerebral blood flow (CBF), and transit time map 

parameters such as the time to peak (TTP), the mean transit time (MTT), and the time-to-

maximum (TMAX). Perfusion maps were computed by circular singular value decomposition of 

the tissue concentration curves with an arterial input function from the contralateral middle 

cerebral artery. Using a reference region from the contralateral normal white matter, temporal 

parameters normalized by subtracting the mean contralateral value and all further references 

to MTT, TMAX, and TTP refer to the relative parameters. 

 

FLAIR imaging at one month after stroke onset was used to contour the boundaries of 

the irreversibly damaged brain tissue in stroke patients. 
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The parameter maps of each patient were normalized using the mean and the 

standard deviation of the contralateral tissue (cerebrospinal fluid excluded). The means were 

calculated on three consecutive slices and the standard deviation on the full brain volume. The 

parameter values were then centred and scaled to be comparable in effect size. 

All eight MRI-based parameters (i.e., T2 FLAIR, ADC, CBV, CBF, TTP, MTT, TMAX, and 

DWI) were used to characterize each voxel’s risk of infarction. 

 

 

Classification methods 

Four machine learning methods (SVM, ANN, RF, and ADA) and LR were used in this study. (For 

more details of methods and their settings, see the Appendix). These five methods allow 

identifying the risk of infarction of each voxel-based observation. 

 

The LR estimated the infarction risk of a voxel as its probability of being infarcted after 

certain follow-up periods using the same above-cited combination of eight MRI parameters.11 

 

The SVM separated the observations into healthy or infarcted using a linear border. 

The closest observations to the border in each class were named support vectors. Then, the 

support vectors helped to choose the best border either through maximizing the distance 

between the border and the support vectors or through minimizing the number of 
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misclassified observations.12 The signed distance to the border is related to the infarction risk. 

A zero distance corresponds to an observation located on the border, a positive distance to a 

high risk, and a negative distance to a low risk. 

 

The ANN constitute a mathematical representation of natural neural networks.13 Each 

network is composed of several types of layers: (1) an input layer composed of all data, (2) an 

output layer giving the final outcome, and (3) one (or more) hidden layers between the input 

and the output layer that consist(s) of a set of neurons that process the data and are 

connected to the input and output layers. The input layer sends first the information to the 

next layer with an initial weight and the weight is updated after the response of the network is 

reached in the output layer. The update iterations continue until there is no change. The 

weighted sum of the responses of the neurons in the output layer is then computed. The risk 

of infarction is found by applying a sigmoid function to this weighted sum. 

 

The other classification methods, RF and ADA, are ensemble methods that combine 

several decision trees. RF builds several bootstrap samples from the original data and fits a 

decision tree to each sample to classify the observations into healthy or infarcted.14,15 At each 

observation, the risk of infarction is then computed as the percentage of trees that classify this 

observation as infarcted. The ADA weights the misclassified observations using a set of 

decision trees.15 The classification of the first tree is performed with the same weight for each 

observation but the weights of the misclassified observations are increased after each decision 
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tree classification. The performance of each tree is computed using the misclassification error 

of the decision tree and the weights given to the observations. At each observation, the 

infarction risk is the result of the classification of each tree weighted by its performance. 

 

Statistical analysis 

The performance of the five classification methods tested here were mainly compared in 

terms of area under the precision-recall curve ( ). This criterion was selected because it 

summarizes the predictive ability of each method over all possible thresholds allowing for 

infarction prevalence. The  was preferred to the area under the receiver operating curve 

( ) because the ischemic stroke data were highly imbalanced; i.e., the infarcted voxels 

are much less numerous than non-infarcted voxels.16 However, as many studies have already 

used the  to compare classification methods, this criterion was also reported here to 

allow result comparisons. 

The results from the different methods enabled classifying each voxel into healthy or 

infarcted using a given threshold. The threshold was defined as the value that minimizes the 

difference between the observed and the predicted infarcted volume; thus, a voxel with an 

infarction risk above the threshold was considered as infarcted. The predicted infarction 

volume for each patient could be calculated as the sum of the voxels classified as infarcted. 

Threshold-dependent criteria such as sensitivity (Se) and specificity (Sp) were also calculated to 

evaluate method performances using the infarcted volume. 
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The leave-one-out cross-validation approach was used to avoid overfitting and provide 

an accurate estimation of the prediction performances of the different methods.17 Patients 

were removed one by one and the method applied to the remaining data. Afterwards, the 

prediction relative to the removed patient was performed using the same method. 

, , Se, and Sp were separately calculated for each of the 55 patients and the 

medians of these values given as evaluation criteria. 

Method performances calculated with , , Se, and Sp were compared 

with the Kruskal-Wallis test. A higher value of , , Se, and Sp obtained by a 

classification method indicates a better prediction performance. The independence between 

treatment and gender, having hypertension, and cigarette smoking before the stroke was 

tested with Chi-Squared test. The age between treated and untreated patients was compared 

with Wilcoxon rank sum and signed rank test. The significance level set at p < 0.05. The free 

software R (https://www.r-project.org) was used for all statistical analyses and graphs. 
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RESULTS 

Patients 

Table 1 shows the patients' characteristics. We observed that 37 out of the 55 patients were 

treated with intravenous thrombolysis. The numbers of women and men were similar among 

treated patients (49% vs 51%) whereas there were more men than women among untreated 

patients (22% vs 78%). The majority of patients (65%) had hypertension before the stroke. The 

gender and receiving treatment were significantly independent (p-value=0.11). 30% of the 

patients had smoked regularly before stroke. More untreated patient has been observed 

smoking than treated patient (21% vs 50%) but there was no significant relationship between 

smoking and the treatment (p-value=0.25). In terms of infarcted volume, the median of final 

infarction volume was higher than the DWI lesion volume. But, we observed no significant 

change in infarcted volume at one month for treated and untreated patients (Paired Wilcoxon 

test: . 
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Treated  

(n=37) 

Untreated 

(n=18) 

All patients 

(n=55) 

Female 49% 22% 40% 

Prior hypertension 62% 72% 65% 

Smoking 21% 50% 30% 

Age (yrs) 70 [65; 77] 67.5 [60; 74,75] 68 [62; 77] 

DWI lesion volume, mL 12 [4; 27] 4 [3; 21] 11 [4; 26] 

Final infarct volume, mL 12 [3; 43] 8 [2, 24] 10 [3; 40] 

Table 1 – Patients' clinical characteristics at hospital admission and one month later. The 

patients are divided in two groups such as treated with rt-PA or untreated with rt-PA  Values 

are presented as median [first quartile; third quartile] – rt-PA: recombinant tissue plasminogen 

activator. 

 

Classification 

Table 2 presents the , , Se, and Sp values relative to the five classification 

methods. The  values ranged between 0.20 and 0.34; the highest value was obtained 

with SVM and the lowest with LR. However, there was no statistically significant difference 

between  values (p-value = 0.75). All  values were higher than 0.7. RF, ADA, 

ANN, and LR performed the same and significantly better than SVM when values 

compared with Kruskal-Wallis test (p-value <0.05). The Sensitivity values were all less than 0.5 
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whereas the Specificity values were all larger than 0.9. There was no statistically significant 

difference between methods in terms of Se or Sp. 

 

Classification method AUCprc AUCroc Sensitivity Specificity 

ADA 0.29 [0.05; 

0.53] 

0.88 [0.83; 

0.94] 

0.49 [0.29; 

0.65] 

0.97 [0.96; 

0.98] 

ANN 0.28 [0.04; 

0.49] 

0.87 [0.82; 

0.94] 

0.47 [0.29; 

0.64] 

0.97 |0.96; 

0.98] 

LR 0.20 [0.03; 

0.45] 

0.88 [0.83; 

0.92] 

0.47 [0.23; 

0.62] 

0.97 [0.95; 

0.98] 

RF 0.30 [0.04; 

0.48] 

0.86 [0.79; 

0.92] 

0.47 [0.28; 

0.67] 

0.98 [0.96; 

0.98] 

SVM 0.34 [0.03; 

0.48] 

0.77 [0.66; 

0.84] 

0.48 [0.30; 

0.67] 

0.97 [0.96; 

0.98] 

Values are expressed as median [first quartile; third quartile]. 

Table 2 – Performance criteria of the five studied classification methods. 
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Figure 1 shows the  and  values performed by LR and SVM on each 

patient data. These two methods were selected because they gave respectively the highest 

and lowest  values (Table 2). The graphs show that both  and values 

with LR are higher than SVM values on almost all patient data. 

In the case of volumes <50 mL, both  and  values were highly variable 

whereas  values tended to have higher values than  values. In volumes > 100 

mL,  and  values were similar. 
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Figure 1 – Observed infarcted volumes in 55 patients at one month after stroke as expressed by the area 

under precision-recall curve  (left panel) and the area under the receiver operating curve   

(right panel) obtained with logistic regression (LR) and Support Vector Machine (SVM). 
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Figure 2 shows the voxels of predicted infarction on illustrative examples of brain MRI 

slices. The rows show findings for two representative patients with respectivelyRegularly and 

irregularly-shaped infarction. ADA, ANN, LR, and RF performed approximately the same in the 

two patients. For the patient shown in the top row, ADA, ANN, LR, and RF overestimated 

infarct size, with numerous false positive voxels. In the bottom row patient, all methods, 

particularly SVM, underestimated final infarct size. 
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Figure 2 – Voxel-wise infarction risk prediction ([0; 1] probability) obtained with the five 

methods (left), and final infarct (red) as delineated on one-month post-stroke FLAIR on the 

right hand side, for two representative patients. Each column shows the results yielded by 

each method, projected onto the template MRI mask. The risk scale ranges from light blue (risk 

= 0) to deep red (risk = 1). ANA: Adaptative Boosting – ANN: Artificial Neural Networks – LR: 

Logistic Regression - RF: Random Forest – SVM: Support Vector Machine. 

 

Figure 3 shows the bar plots of the predicted and observed infarction volumes one 

month after stroke for three selected patients. These patients were chosen because they 

showed discrepant results with SVM. The SVM method underestimated final infarct volume in 

patient (A), overestimated it in patient (B) and performed similarly to the other methods in 

patient (C). However, ADA, ANN, LR, and RF performed equally well in all three patients 

regardless of infarct volume. 
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Figure 3 – Bar plots of the predicted (gray bars) and observed infarcted volumes (black bars) 

one month after stroke in three representative patients. ANA: Adaptative Boosting – ANN: 

Artificial Neural Networks – LR: Logistic Regression - RF: Random Forest – SVM: Support Vector 

Machine. 
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DISCUSSION 

To our knowledge, our study is the largest to compare classification methods (especially 

including four machine learning methods) on imaging data from stroke patients. In this study, 

five classification methods to identify the brain tissue at risk of infarction were compared using 

voxel-based multimodal MRI data. Another large study in animals with method comparison 

was previously reported by Bouts et al.8, but was not applied onto human data. Our findings 

suggest no significant difference in performance of the five classification methods in terms of 

identification of the tissue at risk of infarction on human imaging data. 

 

Our findings are consistent with previous results obtained based on animal data.7,8 

However, contrary to our study, Winder et al.10 found that RF performed better than ANN and 

GLM. This discrepancy may be due to the use by these authors of a different performance 

criterion, namely Dice coefficient. Dice coefficient considers the true positives and is used to 

evaluate the accuracy of the predicted infarction volume for a given threshold. However, the 

comparison metric used in our study ( ) summarizes the predictive ability over all 

possible thresholds. 

 

In the present study, the performance of each method was first evaluated by  

values, which allowed us to summarize the identification ability of the method over all possible 

thresholds. On the basis of this criterion, the five classification methods performed equally 
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well in identifying tissue at risk of infarction, in agreement with another study that used the 

same criterion but on animal data.8 

 

Regarding the  criterion, there was no significant difference in performance 

between ADA, ANN, LR, and RF methods. However, all performed significantly better than 

SVM. The latter finding may be due to the fact that SVM is essentially a binary classification 

method that requires an additional step able to provide the infarction risk. This gives less 

accurate risk predictions thus lower  values.18 These results contrast with those 

obtained on experimental data by Huang et al.7 (who showed that SVM outperformed ANN) 

and with those obtained by Bouts et al.8 who showed that all methods performed equally well. 

 

In the present study,  values were always higher than  values with all 

methods. This is due to the fact that  is not sensitive to the imbalance between healthy 

and infarcted voxels and overestimate the infarcted volume in studies performed on data with 

low prevalence.16 When we compared the sensitivities and specificities of the methods, the 

median of Se with each method ranged between 0.4 and 0.5 while the median of Sp was over 

0.9. Thus, all methods performed better in identifying healthy tissue than the tissue at risk of 

infarction.  

 

Most previous studies used mainly the  , the  , and also the Dice 

coefficient to compare classification methods on human or experimental ischemic voxel-based 
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data.7,8,10 For this reason, we used the more often used criteria in our study: the  and 

the . Regarding the , all previous studies concluded that there were no 

significant differences between methods. However, RF and SVM performed better than ANN 

regarding Dice coefficient and  criteria in some studies whereas Bouts et al. concluded 

to similar performances of the methods they used. 

 

The stroke patient data used in this study had a wide range of final infarction volumes. 

Therefore, the predicted infarcted volumes at one month obtained with different methods 

were quite different. Despite the heterogeneity of infarcted volumes, ADA, ANN, LR, and RF 

performed equally and provided homogeneous criteria values whereas SVM gave more 

heterogeneous values depending on the observed infarction volume.  

 

In terms of computer resources, LR was the fastest method; with one central 

processing unit (2.7 GHz and 26 Go RAM), the results were obtained in 30 seconds for all 55 

patients whereas SVM required approximately 30 hours. Another advantage of LR vs. other 

methods is that this method does not need a step of parameter selection to fit the model. 

 

In conclusion, the five classification methods performed equally well in terms of 

identifying the volume of brain tissue at risk of infarction. The ADA, ANN, LR, and RF methods 

showed equally good performances in term of infarcted volume prediction. The results show 

that statistical models based on multiparametric MRI can provide valuable prognostic 
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information in acute ischemic stroke, with the potential to guide physicians in their time-

critical decision process regarding choice of therapy. 
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APPENDIX 

 

We explain below the ways the methods used to calculate the infarction risk of a given n 

observation. 

 

The LR estimates the infarction risk of an observation as its probability of being infarcted at 

one month. Probability  is calculated using MRI parameters with the following logit 

function:   ( ) =  + , where  is the intercept and  the 

multiplicative risk factor. 

 

The SVM separates the observations into healthy or infarcted using a linear border. The closest 

observations to the border in each class are called “support vectors”. The support vectors will 

help afterwards choosing the best border by maximizing the distance between the border and 

the support vectors and minimizing the number of misclassified observations. To find a linear 

border, SVM projects all observations into a higher dimensional space via a kernel function. 

The SVM optimizes the solution by minimizing  respecting 

, where  is the normal (perpendicular) vector to the border and C the trade-off 

constant. The signed distance to the border can be used as the infarction risk. A zero distance 

represent a voxel that belongs to the border line, a positive distance represents a high risk of 

infarction, and a negative distance a low risk of infarction. 
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The ANN is a mathematical representation of natural neural networks. Each network involves 

several types of layers: an input layer composed of all data , an output layer that gives the 

final outcome , and one (or more) hidden layers between the input and the output layer that 

consist(s) of a set of neurons that process the data and are connected to the other layers. The 

input layer sends first the information to the next layer with an initial weight and this weight is 

updated after the response of the network has reached the output layer. The update iterations 

continue until there is no further change. A weighted sum of the responses of the neurons is 

then computed as: , where  is the intercept,  the responses 

of the neurons of the previous layer, and  the final updated weights. The risk of infarction is 

obtained by applying a sigmoid function to this weighted sum: f( ) = . 

 

The RF builds several bootstrap samples from the original data and fits a decision tree to each 

sample to classify the observations into healthy or infarcted. For each split of a tree 

classification, the best parameter is chosen within a sample of parameters. This sample is 

created randomly and its size is fixed a priori (mtry). For a given observation, the risk of 

infarction is then computed as the percentage of trees that classified this observation as 

infarcted. 

 

The ADA uses another strategy which corrects sequentially the classification weighting the 

misclassified observations with a set of decision trees . The classification of the first tree is 
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performed with the same weight for all observations but the weights of misclassified 

observations are increased after each decision tree classification. According to the 

misclassification error of the decision tree and the weights given to the observations, the 

performance  of each tree is computed. For a given observation, the infarction risk is the 

result of the classification of each tree weighted by its performance . 

 

Settings 

SVM, ANN, RF, and ADA require parameter settings before the fit of the method.  

 

A Gaussian Radial Basis kernel function  was used for 

SVM where is a supplementary kernel parameter and  are observations. To optimize 

the kernel parameter  as well as the trade-off constant C, a grid-searching approach based on 

the misclassification error rate was used where C  [1, 10] was incremented by steps of 1 and 

(0.001, 0.005, 0.01, 0.05, 0.1, 1).  

 

For the ANN, a single hidden layer was fitted, and a grid-searching was used to optimize the 

number of nodes in interval [14, 25] with steps of 1 and a decay parameter  (0.001, 0.005, 

0.01, 0.05, 0.1, 0.5 and 1). The decay parameter can be seen as a regularization parameter that 

avoids over-fitting. 
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For the RF, the number of parameters used at each node to perform the classification was set 

at mrty = 3, the number of trees optimized in the interval [1, 100] by increments of 1, and the 

performances of the combinations compared using the misclassification error rate. 

 

For the ADA, the optimal number of trees was searched in the interval [1,200] by increments 

of 1 and the performances of the combinations compared using also the misclassification error 

rate.  

 

With ADA, RF, ANN, and LR, the threshold that minimizes the difference between the observed 

and the predicted infarcted volume was set between 0 and 1 with steps of 0.001. With SVM, 

this threshold was set between -3 and 3 with steps of 0.001. 

 

Supplementary figures 

Parameter optimization was made using a grid-searching approach that provides the 

misclassification error rate with ADA, ANN, RF, and SVM algorithms. The parameters which 

gave the lowest misclassification error rate were chosen. 

 

With ADA, the optimal number of iterations (which is also the number of trees) is searched in 

the interval [0, 150] with increments of 1. Supplementary figure 1 shows that the 

misclassification error calculated with ADA is nearly the same when the number of trees is 
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between 100 and 150 and that it reached the minimum at 150 trees when the misclassification 

error rate was almost  = 0.075. 

 

 

Supplementary figure 1 – Misclassification error rate according to the number of iterations in 

adaptative boosting analysis. 

 

 

With RF, the number of variables at each node (mtry) was fixed at 3 as suggested by Breiman 

and the optimal number of trees (ntree) searched from 1 to 100 with increments of 1 (Freund 
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&, Schapire. J Japanese Soc Artif Intell 1999;14:771-780) The misclassification error rate on the 

Y-axis in Supplementary figure 2 is almost constant for a number of trees ranging between 20 

and 100 and the misclassification error rate reached the minimum value at ntree=100. So, the 

couple of parameters (ntree, mtry) = (100, 3) was used; the misclassification error dropped 

down to nearly  = 0.05. 

 

 

Supplementary figure 2 – Misclassification error rate according to the number of trees in the 

random forest analysis. 
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With ANN, the optimization required finding the number of units in the hidden layer. This was 

searched in the interval [14, 25] with increments of 1 and the optimal decay was searched 

among values 0.001, 0.01, 0.05, 0.1, 0.5, and 1. Supplementary figure 3 shows the changes of 

the misclassification error in function of the decay value, the number of units being indicated 

by different colours. The minimum misclassification error rate ( = 0.139) was obtained with 

the parameter couple (size, decay) = (25, 0.1). 

 

Supplementary figure 3 – Misclassification error rate according to the number of neurons 

(size) and the decay in artificial neural network analysis. 
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118 Chapter 3: Clustering of individual trajectories in MS

3.1 Introduction

Multiple sclerosis (MS) is the most frequent disabling neurological disease in young adults.

While its etiology remains unknown, MS is a demyelinating, inflammatory, and chronic

disease of the central nervous system. The evolution of the disease and the risk of develop-

ing permanent disability are very different from one patient to another [80]. MS patients

are actually classified into four major forms based on the clinical evolution, measured by

the Expanded Disability Status Scale (EDSS). Several patients (≈ 85%) were diagnosed

earlier as a clinically isolated syndrome (CIS) during the clinical exam. CIS patients

present then relapsing-remitting (RR) evolution. RR can shift afterward to secondary-

progressive (SP) with or without superimposed relapses [124]. 15% of MS patients present

a primary progressive (PP), which is characterized by a continuously worsening symptoms

without relapses since diagnosis [129].

Besides clinical examination, Magnetic Resonance Imaging (MRI) helps diagnosing and

monitoring disease evolution. Conventional MRI, including T1-weighted and T2-weighted

imaging, has an important specificity and sensitivity in detecting pathological tissue dam-

age and providing valuable predictive information on the evolution of the disease [62] [67].

However, advanced MRI such as Diffusion Tensor Imaging (DTI) and Spectroscopic Imag-

ing (MRSI) have higher specificities in detecting microstructural damages in white matter

than conventional imaging [56] [76] because they provide complementary information on

diffusion alteration and metabolism [62] [63] [61]. DTI is more able to distinguish MS

subtypes as patients with different subtypes present different diffusivity patterns [56].

Therefore, we propose using DTI data together with conventional imaging in different

clinical forms of MS. The FA parameter has been chosen among DTI measurements be-

cause it is more sensitive in detecting microscopic changes related to inflammation [85].

MS affects especially the white matter of the brain and the lesions appear mostly around

the ventricles and periventricular white matter. The floor of the lateral ventricles forms a

region called Corpus Callosum (CC). So, CC is the one of the regions the most frequently
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affected by lesions in MS [14] [77] [74]. In 93% of MS patients, lesions were found in CC

[77]. Moreover, it is the major myelinated bundle of the brain and, provides the connection

between cortical and subcortical regions between two brain hemispheres. Therefore, the

effects of lesions in CC are more severe compared to the lobar white matter. For this

reason, this work used imaging parameters measured in CC.

Several studies demonstrated that callosal changes measured with DTI were correlated

with cognitive and physical disability [198] [127] [173] [242]. FA measurements were

significantly lower in rostrum, body, and splenium part of CC versus a control group

[87] [181] [233]. The association between EDSS scores and CC atrophy as measured

with conventional MR was reported in some studies [242] [192]. However, no significant

correlation was found between disability and callosal atrophy as measured by conventional

MR in RR patients [12]. This can be due to the insufficiency of conventional imaging

in CC, thus, DTI parameters measured in CC can be more suitable for MS patients.

Therefore, the FA parameter measured in CC was used in this study.

In previous studies, classification of MS patients into two clinical subtypes was performed

with machine learning methods based on conventional and advanced imaging data at a

given time point [215] [115] [97] [150]. However, clinical subtypes were also identified

currently using EDSS score change over time. The originality of the present study is to

cluster the patients on the basis of clinical and imaging longitudinal data (not at a given

time point). The clusters might represent distinct evolution forms of MS patients. First,

a clustering method was performed on EDSS score trajectories to compare the obtained

clusters with actual clinical subtypes. Second, we clustered the MS patients using joint

EDSS score and imaging trajectories. For this reason, the joint trajectories obtained with

EDSS score and FA values were used to find out whether conventional imaging parame-

ters could improve cluster results. Besides, one advanced imaging parameter was chosen

regarding its correlation with EDSS score. The less correlated advanced imaging param-

eter was used to establish the joint trajectories. Finally, the results obtained with single

and joint trajectories were compared to determine whether conventional and advanced
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parameters could improve clustering.

Moreover, cluster analyses were performed only in patients with relapses during disease

progression. Thus, PP patients were excluded from the data set and the cluster analyses

were performed only on CIS, RR, and SP patients.

3.2 Materials

3.2.1 Clinical data

Eighty patients fulfilling the Mac Donald criteria were included in a standardized clinical

and MRI protocol within the frame of the AMSEP project in Lyon Neurological Hospital.

This population was divided into four groups of MS patients depending on the clinical

form: CIS (n=12), RR (n=27), SP (n=16), and PP (n=25). The patients were followed

up with standardized clinical and MRI examination every six months during the first

three years then at one-year intervals during two years. Clinical examination included

age, disease duration since onset, the Expanded Disability Status Scale (EDSS), and the

Multiple Sclerosis Functional Composite (MSFC) with its three dimensions: Timed 25

Foot Walk (T25-FW), 9-Hole Peg Test (9-HPT), and Paced Auditory Serial Addition

Test (PASAT). Five patients were excluded from the cohort because one or more MSFC

component(s) could not be measured at study onset.

3.2.2 Image Acquisition and Processing

MS patients underwent an MR examination on a 1.5T Siemens Sonata system (Siemens

Medical Solution, Erlangen, Germany) using an 8-channel head-coil. The MR protocol

consisted in the acquisition of a sagittal 3D-T1 sequence (1×1×1mm3 , TE/TR = 4/2000

ms) and an axial 2D-spin- echo DTI sequence (TE/TR = 86/6900 ms; 2 × 24 directions

of gradient diffusion; b = 1000 s.mm−2, spatial resolution of 2.5×2.5×2.5 mm3) oriented
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in the AC-PC plane.

The lesion load was measured with FLAIR sequence and the white and gray matter

volumes were measured with T1 imaging without gadolinium contrast agent. Among four

DTI parameters, the fractional anisotropy (FA), measured in CC was used in this study.

3.3 Methods

Packages developed by Genolini et al. kml and kml3d [78] were used to cluster, respec-

tively, single and joint trajectories according to EDSS score and imaging parameters.

kml and kml3d packages allow clustering the trajectories using k-means algorithm. K-

means is based on the Expectation-Maximization (EM) method. First, the number of

clusters is set. Second, k-means is run to assign randomly the trajectories to clusters.

Third, the mean trajectory is calculated for each cluster. The mean of each cluster is

called the cluster center. The last step calculates distances between the trajectories and

the cluster centers and assigns each trajectories to the nearest clusters.

kml The kml package is used to cluster single trajectories. Let S a set of n trajectories

and yitX be the longitudinal outcome measured for individual i regarding variable X at

different time points t. So, yi.X = (yi1X , yi2X , . . . , yitX) is called a single trajectory (or

single variable trajectory) for subject i. In kml package, distance metric by default is the

Euclidian distance. The Euclidian distance between two single trajectories was calculated

as below:

Dist(yi, yj) =

√√√√1
t

t∑
k=1

(yik − yjk)2 (3.1)

where yi and yj are the single trajectories of subject i and j; t represents time.
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kml3d The kml3d package clusters joint trajectories established with more than one

variables. Let yi.A, yi.B, . . . , yi.M be the single trajectories relative to variables A, B, . . . ,M

of subject i. We define the joint trajectory as:

yi.. =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yi.A

yi.B

...

yi.M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yi1A yi2A . . . yitA

yi1B yi2B . . . yitB

... ... . . . ...

yi1M yi2M . . . yitM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.2)

where each line corresponds to the single trajectory of each variable and t represents time.

Let y1.. and y2.. be the joint trajectories of two individuals. The distance between these

joint trajectories is defined as d(y1.., y2..) and it can be considered as the distance between

two matrices. One of the two ways to calculate d(y1.., y2..) is to compute first t distances

between m rows of each column, where m is the number of variables. So, t distances

dt.(y1t., y2t.) are obtained. Then, these t distances are combined using a distance function.

The second way to calculate d(y1.., y2..) is to calculate first the distance between m lines,

where m is the number of variables. Therefore, m distances d.X(y1.X , y2.X) are computed.

Finally, m distances are combined by a distance function to provide the distance between

two joint trajectories.

The default distance between two joint trajectories in kml3d packages is the Euclidean

distance which is calculated as:

Dist(yi.., yj..) =
√∑

t

∑
X

(yitX , yjtX)2 (3.3)

where t and X represent respectively the time and the variable.

Quality criteria Packages kml and kml3d allow five different non-parametric criteria:

1)Calinski & Harabatz, 2)Calinski & Harabatz with Kryszczuk variant, 3)Calinski &
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Harabatz with Genolini variant, 4)Ray & Turi and 5)Davies & Bouldin criterion [78] [29]

[117] [170].

The criterion value for the kth cluster was calculated as:

C(k) = Trace(B)
Trace(W ) × n − k

k − 1

where Trace(B) is the between-cluster covariance matrix, Trace(W ) is the within-cluster

covariance matrix, n is the number of the trajectories and k is the number of clusters.

A quality criterion was used to help choosing the number of clusters k that maximizes

the criterion C(k) was used to choose the best number of clusters.

3.4 Application of clustering methods

Cluster analyses were performed first with all patients to obtain a general appropriate

clustering for all clinical subtypes. Then, for the purpose of studying only the patients

who had relapses during disease progression, PP patients were excluded from data and

the analyses were performed only with CIS, RR and SP patients.

kml and kml3d packages were respectively used to cluster first according to EDSS score

alone the according to EDSS score & imaging data. Before implementation, these packages

request

• the interval of cluster number

• a quality criterion

• the distance metric

• the assignment of the trajectories to clusters
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• number of iterations performed by algorithm

The optimal number of clusters was searched in the interval [2; 6]. The Calinski &

Harabatz criterion (defined in equation 1.30) was chosen as this was the default criterion.

randomALL method was used to assign randomly each trajectory to a cluster at the

beginning of the clustering analyses. The Euclidian metric was used to calculate the

distance between trajectories because it is used by default in kml and kml3d packages.

The k-means algorithm was repeated 100 times with each number of clusters.

Cluster analyses were performed first on single EDSS score trajectories. Second, one of

the conventional imaging parameters was used jointly with the EDSS score to examine

whether a conventional imaging parameter could enhance the clustering performed on

single EDSS score trajectories. A correlation test was performed between EDSS score and

conventional imaging parameters to choose the best conventional imaging parameter. The

less correlated parameter was used to build the joint trajectories. Third; as a advanced

imaging parameter, the FA parameter was used jointly with the EDSS score to find

out whether a advanced imaging parameter could improve the clustering. Afterwards,

the clustering results obtained with single and joint trajectories were compared with the

Calinski & Harabatz criterion.

The imaging parameters were normalized as defined in the Equation 1.28 before the

clustering of the joint trajectories.

3.4.1 Statistical analyses

Because most data did not follow the normal distribution, medians, 1st, and 3rd quartiles

were used to describe the data. Consequently, non-parametric statistical tests were used to

find out differences in clinical and imaging parameters among the four clinical subtypes.

The Kruskal-Wallis rank sum test was performed first to compare the distributions of
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variable values among the four clinical subtypes. In case this test indicated that at

least one median was different from the others, a Mann-Whitney U test with Bonferroni

correction was performed to compare the medians two by two. Statistical significance

was considered at p<0.05. The statistical analyses were performed using R software with

version 3.4.0 (2017-04-21). (https://www.r-project.org/)
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3.5 Results

3.5.1 Descriptive results

Descriptive results of clinical data

Table 3.5.1 shows the main demographic and clinical characteristics of the cohort: the

total number of patients, the number of women, the median and the range of disease

duration, age, EDSS, pyramidal, cerebellar, and MSFC scores as well as its three com-

ponents (T25FW, 9HPT and PASAT) as observed at study onset. T25FW and 9HPT

scores were the means of two consecutive trials and 9HPT scores were observed with the

dominant hand. The characteristics were given first for all patients and then for each

clinical subtype.

Number of women of RR, PP and SP patients was higher than number of males. The

disease durations at study onset were significantly different among the four clinical sub-

types (p-value < 0.05). However, there was no significant difference between RR and PP

patients’ disease durations (p-value= 0.51). The age at study onset was also significantly

different among the four clinical subtypes. Age was significantly higher in PP patients

than in the other clinical subtypes (p-value<0.05). However, age at study onset was

similar in CIS, RR, and SP (p-value=0.40).

EDSS, pyramidal, and T25FW scores at study onset were not significantly different be-

tween PP and SP patient (p-valueEDSS,(P P −SP ) = 0.53, p-valuepyramidal,(P P −SP ) = 0.82,

p-valueT 25F W,(P P −SP ) = 0.96). However, EDSS, pyramidal, and T25FW scores were sig-

nificantly different between other couples of clinical subtypes (i.e., CIS vs RR, CIS vs PP,

CIS vs SP, RR vs PP, and RR vs PP) (p-value < 0.05).

Cerebellar, MSFC, 9HPT and PASAT scores were similar between CIS and RR patients,

and between PP and SP patients (p-value>0.05). Moreover; these four scores were sig-

nificantly higher in PP and SP patients than in CIS and RR patients (p-value<0.05).
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The observed individual and mean EDSS trajectories that correspond to the clinical sub-

types are shown in Figure 3.1. We observed that the mean EDSS trajectories were much

more stable than individual EDSS trajectories. The mean trajectories of severe patients

(i.e., PP and SP) were strictly above EDSS score 4 whereas the mean trajectories of CIS

and RR were below EDSS score 4 which is the limit of fully ambulatory without aid.

0 10 20 30 40 50 60

0
2

4
6

8

Time

ED
SS

CIS

RR

PP

SP

Figure 3.1: The horizontal axis shows the time in month and the vertical axis EDSS score.
The dotted lines represent the individual EDSS trajectories and the solid lines the mean
EDSS trajectories of each MS subtype.
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Descriptive analyses of imaging data

Table 3.5.1 shows the number of imaging scans and the following conventional and ad-

vanced imaging measures: gray matter volume (GMV), white matter volume (WMV),

lesion load (LL) and fractional anisotropy (FA) for each clinical subtypes. The number

of imaging scans were similar in RR, PP, and SP patients (≈ 7.0 scans) (p-value > 0.05)

but number was relative to CIS patients was lower (p-value <0.05) because they were

classified afterward as RR patients.

The imaging parameters were significantly different among the four clinical subtypes.

However, GMV and WMV did not differ significantly between PP and SP patients (p-

value > 0.05). Moreover, GMV and WMV were significantly higher in CIS and RR

patients than in PP and SP patients (p-value < 0.05). The lesion load values ranged

between 6 and 37 mm3. When the lesion load was compared between couples of clinical

subtypes, there was no significant difference between RR and PP (p-value=0.86). The

fractional anisotropy values ranged between 0.54 and 0.62. The highest FA values were

obtained in CIS patients and were significantly different from the other subgroup’ FA

values (p-value < 0.05). In addition, FA values did not differ between RR and PP patients

(p-values=0.38).
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The observed individual and mean trajectories of imaging parameters with different colors

for each clinical subtype were provided in Figure 3.2. The mean trajectories of CIS and

RR patients were always above the mean trajectories of PP and SP patients regarding

GMV, WMV, and FA, because, we observed higher values of GMV, WMV, and FA in

the less affected MS patients. There was a slight decrease of GMV, WMV, and FA mean

trajectories in RR patients. Moreover, we observed an increase of the lesion load in CIS

patients after the 20th month. However, we did not observe a significant increase or

decrease of the mean trajectories of any imaging parameters.

0 10 20 30 40 50 60

70
0

75
0

80
0

85
0

90
0

Time

G
ra

y 
m

at
te

r v
ol

um
e

CIS

RR

PP

SP

0 10 20 30 40 50 60

12
00

13
00

14
00

15
00

Time

W
hi

te
 m

at
te

r v
ol

um
e

CIS

RR

PP

SP

0 10 20 30 40 50 60

0
10

20
30

40
50

60

Time

Le
si

on
 lo

ad

CIS

RR

PP

SP

0 10 20 30 40 50 60

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

Time

Fr
ac

tio
na

l a
ni

so
tro

py

CIS

RR

PP

SP

Figure 3.2: The individual (dotted line) and mean (thick solid line) of GMV, WMV, LL,
and FA trajectories observed in CIS, RR, PP, and SP patients.
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Regression analyses between conventional and advanced imaging parameters

Figure 3.3 shows the regression analyses on FA values (advanced imaging parameter) ac-

cording to the LL, GMV, and WMV (conventional imaging parameters) at study onset.

There was a negative and strong correlation between FA and LL (ρ = −0.68). However,

there was a positive and weak correlation between FA and GMV (ρ = 0.27). The correla-

tion between FA and WMV was strong (ρ = 0.64). As FA was influenced by axonal and

myelin loss, these results showed that, in this cohort, the lesions might br mostly located

in white matter.
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Figure 3.3: Regression analysis between conventional and advanced imaging parameters.
The correlation coefficient value was indicated on the top of each graph. The red line
corresponds to the linear regression line.
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Regression analyses between imaging parameters and EDSS score

Figure 3.4 shows the regression analyses of imaging parameters (FA, LL, GMV, and

WMV) with EDSS score at study onset. The correlation coefficient helped choosing

the less correlated imaging parameters with EDSS score in order to establish the joint

trajectories. All imaging parameters had weak correlation with EDSS score (| ρ |≤ 0.55).

FA, GMV, and WMV had a negative correlation with EDSS score. This means that a

decrease of FA, GMV, and WMV values causes the increase of EDSS score. However, the

correlation between LL and EDSS score was positive (ρ = 0.39). Thus, the highest EDSS

scores were observed in the patients who had highest lesion load.

The correlation coefficients were low between EDSS and LL (| ρ |= 0.39), and between

EDSS and FA (| ρ |= 0.42). For this reason, LL and FA were separately used to establish

the joint trajectories with EDSS score.
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Figure 3.4: Regression analyses between EDSS and imaging parameters.
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3.5.2 Cluster analysis results

In this section, we will present cluster analyses results performed on single EDSS trajec-

tories, and joint EDSS & LL and EDSS & FA trajectories.

As indicated in section 3.4, the choice of the best number of clusters was made in the [2;

6] interval. The Calinski-Harabatz criterion was the highest with 3 clusters in both single

and joint trajectories and all clinical subtypes as well as in CIS, RR, and SP patients. We

present thus the results obtained with 3 clusters.

Clinical subtypes Variables used for trajectories 2 3 4 5 6

CIS, RR, PP, and SP EDSS 188 192 180 156 141
EDSS & LL 84 88 77 68 62
EDSS & FA 51 74 60 55 53

CIS, RR, and SP EDSS 147 156 142 120 108
EDSS & LL 72 79 62 56 51
EDSS & FA 45 55 47 44 43

Table 3.3: Calinski-Harabatz criterion results obtained with 2, 3, 4, 5 and 6 clusters
performed on single and joint trajectories in all subtypes and for CIS, RR and SP patients.
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Cluster analysis results in all clinical subtypes

Figure 3.5 shows that 43% of the patients are found in cluster A. Cluster A represents

the trajectory with stable evolution over time around EDSS score 4. Also, cluster A

contains RR (n=12), PP (n=10), and SP (n=12) patients. However, cluster B contains

CIS (n=12), RR (n=14) and PP (n=1) patients with moderate disease evolution over

time. Cluster C helped identifying the more severe progressive patients: 4 PP and 10

SP patients. Unlike clusters A and B which had a stable progression, cluster C showed a

mean trajectory that increases over time.

The table that corresponds to Figure 3.5 shows that CIS patients are found in one cluster

(cluster B) whereas RR, PP, and SP patients are distributed over two or three clusters.

Thus, we could distinguish -for example- between PP and SP patients who may have a

stable evolution around EDSS score 4 or may have an aggressive evolution that increases

over time above EDSS score 4.
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Figure 3.5: Clustering results with graphical representation and corresponding table for
single EDSS trajectories of all clinical subtypes. The individual trajectories are presented
with black lines and the mean trajectories of the clusters are presented with colored thick
solid lines. The proportions of individuals assigned to each cluster are given at the top of
the graph.
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Figure 3.6 shows the graphical representation of the cluster analyses performed on re-

spectively on the joint EDSS & LL and joint EDSS & FA trajectories. For each cluster

analysis, 2 graphs are provided: one for the EDSS score and another for the imaging pa-

rameter. Figure 3.6 shows that the mean trajectories of three clusters are stable evolutions

over time.

The results of the cluster analysis performed on EDSS & LL trajectories were slightly

different from the results obtained with single EDSS trajectories. The proportions of the

patients in the three clusters were very close (A: 34.7 %, B: 33.3 % and C: 32%). Clusters

A and B included RR, PP, and SP patients. However, cluster C included only CIS and

RR patients. The evolutions of EDSS trajectories of the cluster A and B were close but

the EDSS evolution of cluster C was lower. Cluster B had a lower lesion load evolution

than cluster A. These cluster results allowed identifying the patients with EDSS score

increases despite lower lesion loads.

The advantage of joint EDSS & LL trajectories cluster was its ability to distinguish

patients with different lesion load evolutions even when they have similar EDSS evolution.

Clusters A and B showed similar EDSS evolutions over time. However, the lesion loads

of patients in cluster A were higher than in cluster B.

Cluster results obtained with EDSS & FA trajectories showed that the proportions of

patient changed slightly in comparison with the results obtained with joint EDSS & LL

trajectories (A: 44 %, B: 36 % and C: 20%). Cluster B included patients with moderate

evolution (12 CIS and 15 RR patients) whereas cluster C included patients with severe

evolution (11 SP, 3 PP, and 1 RR patients). The graph that corresponds to the joint EDSS

& FA clustering shows that cluster A had a severe EDSS evolution despite a moderate

FA evolution.
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When these results were compared with the results obtained with single EDSS trajectories,

the classification tables were similar but the cluster analysis performed on joint EDSS &

FA trajectories helped identifying one more RR patient and one more SP patient who

may have severe progressions. The observed EDSS scores of RR patient began at EDSS

2 at study onset and reached at EDSS 5.5 after 5 years. The observed EDSS score of the

SP patient began at EDSS 5 at study onset and increase to EDSS 3 after 5 years. There

was one less PP patient in cluster C compared to the cluster analysis performed on single

EDSS trajectories. This PP patient had EDSS 6.5 at 5 years and his EDSS score did

not change over time. Thus, joint EDSS & FA trajectories performed better than single

EDSS trajectories in identifying the patients who had severe progressions.

When the clustering results were compared with the Calinski-Harabatz criterion, Calinski-

Harabatz value of single EDSS trajectory clustering was much higher than the values

obtained with joint trajectories. Moreover, the Calinski-Harabatz values of joint trajectory

clustering were close (CHEDSS = 192, CHEDSS&LL = 88, and CHEDSS&FA = 74).
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Table 3.4 shows the number of patients, the median, 1st, and 3rd quartiles of clinical and

imaging variables measured for each cluster obtained with the EDSS trajectory clustering.

Age, disease duration, T25FW, and 9HPT, GMV, LL, and FA values at study onset in

the three clusters are presented and compared. All clinical and imaging variables were

significantly different among the three clusters (Kruskal-Wallis, p-value<0.05). When

the variables were compared between two clusters; age, 9HPT, and 25FW values of the

patients in cluster C were significantly higher than other clusters. However, the disease

durations were similar between patients in clusters A and C. The GMV was significantly

higher for the patients in cluster B and there was no significant difference between GMV

values of cluster A and cluster C. However, the LL of the patients in cluster B was

significantly lower and the LL values were similar in patients in sluster A and Cluster C.

FA values were similar in clusters A and B but were significantly higher compared to the

FA values in cluster C.

Variable Class A Class B Class C
N=9 N= 63 N=3

Age 40.76 (36.00, 44.56) 29.86 (26.85, 36.58) 41.84 (40.54, 44.49 )

Disease Duration 7.65 (4.76, 11.19) 2.15 (0.86, 4.64) 10.18 (6.83, 15.35)

9HPT 23.40 (21.05, 24.89) 18.40 (17.48, 20.30) 34.50 (28.35, 37.39)

25FW 5.72 (5.01, 6.53) 4.25 (4.05, 4.65) 8.30 (7.06, 13.26)

GMV 821.1 (791.7, 835.5) 863.3 (845.6, 884.4) 816.5 (791.5, 826.4)

LL 17.09 (8.90, 39.65) 8.83 ( 5.79, 16.21) 26.91 (15.06, 36.81)

FA 0.45 (-0.13, 0.69) 0.47 (0.29, 0.89) 0.10 (-1.14, 0.52)

Table 3.4: Clinical and imaging variables according to the clusters obtained with single
EDSS trajectories. Median (1st, 3rd quartile). the p-value is the result of Kruskal-Wallis
test which was performed to compare the medians of variable values in the three clusters.
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Cluster analysis results in CIS, RR and SP patients

Figure 3.7 is a graphical representation of the cluster analysis performed on single EDSS

trajectories in CIS, RR, and SP patients. The graph shows two stable mean trajectories

(clusters A and B). Cluster A was around the EDSS score 4 and cluster C progressed

around the EDSS score 1. However, the mean trajectory of cluster C increased over

time. The table that corresponds to Figure 3.7 shows that CIS patients were in one

cluster (cluster B) whereas RR and SP patients were separated into two different clusters.

Cluster B included CIS and RR patients who had moderate disease evolution. However,

10 PP patients who had severe progression over time were located in cluster C.

These cluster results were the same with cluster analyses performed on all clinical sub-

types. This means that the exclusion of PP patients did not change the clustering of CIS,

RR, and PP patients.
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Figure 3.7: Mean trajectories of the clusters obtained with single EDSS score trajectories
in CIS, RR, and SP patients.
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The graph on the right side of Figure 3.8 shows the mean trajectories of the clusters

obtained with the joint EDSS & LL trajectories of RR, PP and SP patients. Clusters B

and C had similar EDSS evolutions and they included RR and SP patients. Cluster A

included CIS (n=12) and RR (n=11) patients, and the mean EDSS trajectory of cluster

A was lower vs. clusters B and C. However, cluster B was quite different from cluster

C in terms of lesion load. The patients in cluster B had higher lesion load. This was

confirmed by the classification table: cluster B included more severe patients (SP, n=16)

than cluster C (SP, n=6).

The identification of patients with high lesion load did not change when the cluster analysis
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was performed excluding PP patients. We also observed that 5 RR and 16 SP patients

had a higher lesion load evolution when the cluster analysis was performed on all clinical

subtypes.

The graph on the right side of Figure 3.8 shows the mean EDSS & FA trajectories per-

formed with RR, PP and SP patients. Cluster B and C had similar EDSS evolution

whereas cluster A had a lower EDSS evolution over time. The clustering table showed

quite similar results to those obtained with joint EDSS & LL trajectories. In these two

clusterings, there were two clusters included RR and SP patients which had severe evolu-

tions. However, the cluster with moderate EDSS evolution included CIS and RR patients.

The clustering table that corresponds to the joint EDSS & FA trajectories for CIS, RR,

and SP show similar results to those obtained with all clinical subtypes. Two clusters with

similar EDSS evolutions incuded 12 RR and 22 SP patients. This means that identifying

RR and SP patients with clinically severe evolution did not change after excluding of PP

patients.

When we compares the clustering results obtained with single EDSS vs. joint trajectories,

the clusters were not significantly different. However, we obtained highest Calinski &

Harabatz criterion value with the cluster analysis performed with single EDSS trajectories

(CHEDSS = 156). In addition, Calinski & Harabatz criterion values were much lower

but similar for joint EDSS & FA and EDSS & LL trajectories (CHEDSS& LL = 79 and

CHEDSS& FA = 55). The Calinski & Harabatz criterion result of the single EDSS trajectory

clustering was three times higher than that obtained with joint EDSS & FA trajectory

clustering. However, the number of patients in each cluster were quite similar for the

cluster analysis performed with single EDSS and joint EDSS & FA trajectories. Because

the patients in the clusters was different even the number of the patients were similar.
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Figure 3.8: Clustering results of respectively EDSS score & LL (at left side) and EDSS
score & FA (at right side) trajectories obtained with CIS, RR, and SP patients.
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3.6 Discussion

An extension of the k-means method was performed to cluster trajectories of MS patients

using clinical and imaging data. To our knowledge, this is the first study to cluster

multiple sclerosis patients using longitudinal clinical and imaging data. First, the single

EDSS trajectories were clustered to identify distinct forms of individual trajectories. Then,

lesion load and FA variables were added one by one jointly to the EDSS trajectories to

analyze their contribution to the clustering results. We showed that the EDSS trajectory

clustering performed better than joint trajectory clustering. Moreover, the clustering

analysis was able to distinguish patients with severe, stable and moderate evolution.

In previous studies, patients classification was performed between two clinical subtypes

with machine learning methods based on conventional and advanced imaging character-

istics [215] [115] [97] [150]. Some studies classified the patients with Support Vector

Machine using their diffusion features [150] [115]. Taschler et al. [215] used spatially in-

formed models and compares them with SVM method. They demonstrated that spatially

informed models performed better and that MRI scans of MS lesions inform better about

specific subtypes of the disease.

The classification of patients on the basis of changes over time is important because MS

patients are classed regarding their clinical disability evolution over time. Moreover, the

clustering analysis performed in this study helped identifying distinct evolution forms of

disability trajectories. This could be useful to identify patients who may have a more

important progression, so as, to change their medical treatment.

The clustering analysis performed with the single EDSS trajectories was able to identify

clinical and imaging differences among the patients in the three different clusters. The

clinical and imaging variables measured at study onset were significantly different among

the clusters. The disease duration and LL were significantly lower in the moderate evolu-

rion cluster whereas GMV was significantly higher. Moreover, age, 9HPT, and 25FW



146 Chapter 3: Clustering of individual trajectories in MS

were significantly higher whereas FA was significantly lower in the cluster that showed se-

vere evolution. This means that the initial values of these variables may allow predicting

which patient may have a moderate or a severe disease progression.

In single and joint trajectory clustering, CIS patients were always included in one cluster

that reflects at moderate evolution. However, the trajectories of RR, PP and SP patients

were partitioned into at least two clusters and this may be explained by more complex

disease features related to their heavy inflammation and neurodegeneration.

The clustering is actually possible with unsupervised, supervised or model-based methods.

The most important advantage of the unsupervised clustering methods used in this study

is that they do not require prior knowledge such as parameter estimations. They are

also easy to implement, fast and efficient in terms of computational cost. However, the

disadvantage of the unsupervised clustering methods is that there is no powerful quality

criterion that allows choosing the number of clusters and assesing clustering accuracy.

Because of this, we had to use the quality criterion proposed by default in kml and kml3d

packages. Moreover, the accuracy of clustering results was tested against the observed

evolution of each patient.

In our work, the additional use of imaging parameters did not significantly change the clus-

tering results obtained with single EDSS trajectories. Moreover, the Calinski & Harabatz

criterion value of single EDSS trajectory was higher than Calinski & Harabatz criterion

value of joint trajectories. This may be due to the use of the lesion load in the whole

brain, instead of a local load and the use of the FA in a specific part of the brain (in CC).

Measuring the FA in the regions where lesions occur might be important distinguishing

patient trajectories. The location and size of the lesions are also very important and play

a significant role in clinical disability.

The present study shows the clustering results performed taking into account the distances

between trajectories. However, these results can be extended by taking into account

the variance between trajectories and the shapes of the trajectories and by introducing
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demographic variables such as age and gender. This type of extension may improve the

results because the disease evolution was found heterogeneous between and within clinical

subtypes and because clustering may be more powerful with more variables.
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ABSTRACT  

Background: The individual disease evolution of multiple sclerosis patients is very different 

from one patient to another. Therefore, the prediction of the long-term disability evolution 

based on clinical and imaging information is actually highly difficult. Magnetic Resonance 

Imaging is an important tool to distinguish the healthy and abnormal brain tissue, to monitor 

the disease evolution, and for decision-making in personalized treatment for multiple 

sclerosis patients. 

Objective: We aimed to develop a patient-specific model to predict the individual disease 

evolution of multiple sclerosis patients based on demographics, clinical and imaging 

information at study onset.  

Methods: 75 patients (12 CIS, 26 RR, 15 PP, and 22 SP) followed within 5 years were included 

in our study. The latent class linear mixed model was used to consider the individual and 

unobserved subgroups' variability in multiple sclerosis. First, the clinical model was 

established with demographic and clinical variables to predict the disease evolution 

measured with the Expanded Disability Status Scale. Then, the multimodal imaging variables 

were added one by one, two by two, and three together to investigate their contribution on 

the clinical model. The predictive accuracies of clinical and combined models were compared 

according to the Bayesian Information Criterion (BIC).  

Results: The clinical model gave higher BIC value than the combined models. The means of 

the posterior probabilities performed by the clinical and combined models were over 0.89. 

The clinical model was able to cluster the patients into three latent classes such as stable 

evolution class (n=63, 84%), severe evolution class (n=9, 12%), and moderate evolution class 

(n=3, 4%). The disease duration at study onset was significantly different among three latent 

classes.  

Conclusion: The latent class linear mixed model was able to build a well-fitted predictive 

model for the disability evolution of multiple sclerosis patients considering the evaluation 

criteria.  

Keywords: Multiple sclerosis, predictive modeling, latent class linear mixed model, 

heterogeneity, long-term disability, individual trajectory 
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INTRODUCTION 

Multiple sclerosis (MS) is the most frequent disabling neurological disease in young adults. While its 

etiology remains unknown, MS is a demyelinating, inflammatory, and chronic disease of the central 

nervous system. The evolution of the disease and the risk of developing permanent disability are very 

different from one patient to another [Goldenberg, 2012]. Today’s neurologists' challenge is to 

predict individual disability evolution on the basis of clinical, biological and imaging data.  

 

MS patients show highly different evolution profiles and this evolution profile is not unique per 

patient and can change over time. MS patients are currently classified into four major subtypes, on 

the basis of clinical evolution as measured by the Expanded Disability Status Scale (EDSS) score. The 

four clinical subtypes are qualified as: the clinically isolated syndrome (CIS), relapsing-remittent (RR), 

primary-progressive (PP), and secondary-progressive (SP). Few patients (85%) were earlier diagnosed 

as CIS during the clinical exam. CIS patients presents then RR. RR can shift later to SP with or without 

superimposed relapses [Lawton et al., 2015]. 15% of MS patients presents a PP, that is characterized 

by a continuous worsening of symptoms without relapses since diagnosis [Lublin, 2014]. 

 

In addition to clinical examination, Magnetic Resonance Imaging (MRI) helps the diagnosis and the 

monitoring of disease evolution. Conventional MRI (such as T1-weighted and T2-weighted imaging) 

has important specificity and sensitivity in detecting pathological tissue damage and obtaining 

valuable predictive information on disease evolution [Filippi, 2001; Fisniku et al., 2008]. In this study, 

we used the lesion load and the grey matter volume because they reflect better the levels of 

neuroaxonal loss and demyelination [Peterson et al., 2001; Minneboo et al., 2009]. However, 

advanced MRI (such as Diffusion Tensor Imaging (DTI) and Spectroscopic Imaging) has a higher 

specificity in detecting microstructural damages in white matter than conventional imaging [Ge et al., 

2004; Sbardella et al., 2013] because they provide complementary information giving the diffusion 

alteration and metabolic change [Filippi et al., 2001; Filippi, 2001; Filippi, 2001]. In addition, as the 
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patients in different subtypes show different diffusivity patterns, DTI is able to separate the MS 

subtypes [Sbardella et al., 2013]. Therefore, we propose to use DTI data jointly with the conventional 

imaging. The fractional anisotropy (FA) measure was chosen among DTI measurements because it is 

more sensitive in detecting microscopic changes related to inflammation [Hannoun et al., 2012]. 

 

MS affects especially the white matter of the brain and the lesions appear mostly around the 

ventricles and periventricular white matter. The floor of the lateral ventricles forms a region called 

Corpus Callosum (CC). So, CC is the one of the regions the most frequently affected by lesions in MS 

[Barnard, 1974; Gean-Marton et al., 1991; Ge et al., 2006]. In 93% of MS patients, the lesions are 

found in CC [Gean-Marton et al., 1991]. Moreover, CC is the major myelinated bundle of the brain 

providing the connection between cortical and subcortical regions of the two brain hemispheres. For 

this reason, the impact of lesions in CC is more severe in comparison with the lesions in lobar white 

matter. 

 

Furthermore, several studies have demonstrated that callosal changes, measured with DTI, were 

correlated with cognitive and physical disability [Sigal et al., 2012, Yaldizli et al., 2010; Rimkus et al., 

2010; Llufriu et al., 2012]. FA measurements were significantly lower in rostrum, body, and splenium 

part of CC compared to control group [Hasan et al., 2005; Rueda et al., 2008; Warlop et al., 2008]. 

The association between EDSS scores and CC atrophy measured with conventional MR was approved 

in some studies [Hasan et al., 2005; Rueda et al., 2008; Warlop et al., 2008; Schreiber et al., 2001]. 

However, no significant correlation was found between disability and callosal atrophy measured with 

conventional imaging in RR patients [Barkhof et al., 1998]. This contrast can be the result of 

insufficiency of conventional imaging on CC and the use of advanced MRI techniques -as DTI- can be 

more suitable for CC data in MS patients. For this reason, the FA measured in CC was used in this 

study. 
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Among the studies interested in MS progression, many articles have used logistic regression to 

predict the presence or absence of progression (at least 1 point increase in EDSS score) or ordinal 

logistic regression to predict the EDSS step changes in ordinal categories [Sastre-Garriga et al., 2005; 

Minneboo et al., 2008, Khaleeli et al., 2008]. The predictive ability of the clinical and imaging data for 

the disability evolution in MS is analyzed with linear regression models [Minneboo et al., 2009; Furby 

et al., 2010; Bodini et al., 2011; Enzinger et al., 2011; Popescu et al., 2013]. At the same time, the 

multilevel approach is performed to consider individual alteration during disability progression [Di 

Serio et al. 2009; Lawton et al., 2015]. This latter model was able to include heterogeneity among 

individuals. However, the evolution of disability in MS does not show a unique mean evolution 

profile, thus, it would be interesting to consider heterogeneity originated from different mean 

evolution profiles of the MS patients. 

 

The principal aim of this part of the thesis is to develop a generalizable predictive model of disability 

evolution of MS patients considering unobserved subgroups (different mean-evolution profiles). For 

this aim, the latent class linear mixed model was used to predict EDSS evolution over 5 years on the 

basis of the clinical, biological and imaging data taken at study onset.  
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MATERIALS 

Clinical data 

Eighty patients fulfilling the Mac Donald criteria were included in a standardized clinical and MRI 

protocol within the frame of the AMSEP project in Lyon Neurological Hospital. This population was 

divided into four groups of MS patients depending on the clinical form: CIS (n=12), RR (n=27), SP 

(n=16), and PP (n=25). The patients were followed up with standardized clinical and MRI examination 

every six months during the first three years then at one year intervals during two years. Clinical 

examination provided the Expanded Disability Status Scale (EDSS), Multiple Sclerosis Functional 

Composite (MSFC) with its three dimensions: Timed 25 Foot Walk (T25FW), 9-Hole Peg Test (9HPT) 

and Paced Auditory Serial Addition Test (PASAT), disease duration at study onset. Age of the patients 

was also provided. Five patients were excluded from the AMSEP cohort because one or more MSFC 

component(s) could not be measured at study onset. 

 

Image Acquisition and Processing 

MS patients underwent an MR examination on a 1.5T Siemens Sonata system (Siemens Medical 

Solution, Erlangen, Germany) using an 8-channel head-coil. The MR protocol consisted in the 

acquisition of a sagittal 3D-T1 sequence (1  1 1 mm3, TE/TR = 4/2 000 ms) and an axial 2D-spin- 

echo DTI sequence (TE/TR = 86/6900 ms; 2 24 directions of gradient diffusion; b = 1000 s.mm-2, 

spatial resolution of 2.5  2.5 2.5 mm3oriented in the AC-PC plane. 

 

The lesion load was measured with FLAIR sequence and white and gray matter volumes were 

measured with T1 imaging without gadolinium contrast agent. 
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METHODS 

The latent class linear mixed model 

We used the latent class linear mixed model, an extension of the linear mixed model used for 

longitudinal outcomes. Let be the  repeated outcome measures of subject i in a 

sample of N subjects. The linear mixed model [Laird et al., 1982] is defined as: 

 

 

 

where  is a  matrix is related to the vector of fixed effects  in length p, is a design 

matrix is related to the vector of random effects  in length q . The linear mixed models assume that 

the population is homogeneous and that the random effects are normally distributed as . 

 are the measurement errors that are assumed to be normally distributed with mean zero and 

covariance matrix  and to be independent from the random effects . 

 

However, the latent class linear mixed model considers that the population is not homogeneous and 

consists of G subgroups also called latent classes. Each latent class shows different distributions with 

the class-specific matrix of variance-covariance. The latent class mixed model is defined as: 

 

  

 

where and  are the covariate matrices and associated with the vector of fixed effects, at 

population and latent class levels, respectively.  is the class-specific covariate matrix of class g and 

is associated with the random effects  where   and are, respectively, the class-

specific mean and the covariance matrix. 

 

156



 

8 

Each subject can belong to one latent class and the probability to be in class is defined using a 

multinomial logistic model as: 

 

 

where is the intercept of the latent class g, is the class specific parameter and  represents 

the individual class-specific covariate matrix. Moreover, the sum of probabilities of being in various 

classes is equal to one (  for ). 

 

 

Parameter estimation 

Parameter estimation in the latent class linear mixed model can be performed with the maximum 

likelihood. Let be the vector of parameters of the model and  the individual contribution to the 

likelihood of the model. The individual contribution to the likelihood of the latent class linear mixed 

model is defined as: 

 

 

where   is the probability of belonging to class g and  is the density function of a multivariate 

normal distribution with mean  and variance  . 

 

The estimates of can be obtained with vector that maximizes the log-likelihood defined as 

. Parameter estimation by iterative algorithm is possible with the EM family 

[Verbeke et Lesaffre, 1996], the Newton-Raphson family [Proust et Gadda, 2005], or the Marquardt 

algorithm [Marquardt, 1963]. Here, we used the Marquardt algorithm for parameter estimation 

because of its speed and convergence rate [Proust-Lima et al., 2015]. 
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Posterior classification 

After parameter estimation, the posterior probability of assigning each subject to a latent class g can 

be obtained using following equation: 

 

  

 

The subject is assigned to the latent class that maximizes the posterior probability defined 

as:   This assignment allows obtaining the posterior classification that can then 

refer to the goodness-of-fit of the model [Proust-Lima et al. 2015]. The higher is the mean of the 

posterior probabilities obtained at each latent class, the better is the classification.  

 

Longitudinal predictions 

When the number of latent classes is higher than one, the class-specific subject-specific predictions 

for individual i at j a given time point can be calculated as:  

 

 

 

where and  are the estimated parameters of respectively the fixed and the class-specific fixed 

effects.  are the empirical Bayes estimates for random effects.  
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Application of latent class linear mixed model 

All statistical analyses were performed with lcmm package in R software version 3.4.0 (2017-04-21). 

 

Function hlme in lcmm package of software R was used to implement the latent class linear mixed 

model. There are three main arguments of the hlme function: 

 

1. fixed argument: contains two-sided formula including the outcome (dependent 

variable) and the independent variable(s) which have a common effect on all 

individuals overall latent classes. 

2. mixture argument: indicates the variable(s) that have a specific effect on each latent 

class. 

3. random argument: contains the variable(s) that have a specific effect at the 

individual level. 

 

The EDSS score was used as the outcome in the models. The independent variables were clinical and 

imaging data such as the time, age, disease duration, T25FW, 9HPT, and grey matter volume, lesion 

load, and fractional anisotropy. The EDSS score and time were used as longitudinal data. The other 

clinical and imaging variables were entered into the model with their values at study onset. 

 

Before fitting the model, the latent class mixed model requires setting the number of latent class, the 

variable that determines the latent classes (in the mixture argument) and the time function (linear, 

quadratic, and square root). Time, age, disease duration, T25FW and 9HPT, grey matter volume, 

lesion load, and fractional anisotropy were tested separately in the mixture argument with the linear, 

quadratic, and square root of time in three and four latent classes. So, we established 48 models and 

these models were compared using the Bayesian information criterion (BIC). The model with the 
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lower BIC value provided the best combination of number of latent class, variable that determines 

the latent classes and time function.  

 

All clinical and imaging variables were used in the fixed argument during the choice of the best 

combination. Besides, age at study onset was used as the variable that exerts the individual effect (in 

the random argument) in all models because there was a great inter-patient variability in terms of 

age at study onset. 

 

First, the clinical model was established with age, disease duration, T25FW, and 9HPT at study onset, 

and time in the fixed argument. Second, the imaging model was established with GMV, LL, and FA in 

the fixed argument. Third, the imaging variables were added one by one or two by two or all three 

together with the clinical variables into the clinical model to obtain the combined models. Finally, we 

compared the three clinical, imaging and combined models. Model comparison was performed 

mainly using the BIC criterion. A low BIC indicates a better fit of the model, however, the mean of the 

posterior probabilities was also reported in this study to examine the goodness of fit and allow result 

comparisons with previous studies. 

 

Statistical analyses 

Because most data did not follow the normal distribution, medians, 1st, and 3rd quartiles were used 

to describe the data. Consequently, non-parametric statistical tests were used to examine 

differences in clinical and imaging data among the patients of the four clinical subtypes. The Kruskal-

Wallis test was used first to analyze whether the distributions of subtypes were significantly 

different. In case of significant difference, a Mann-Whitney U Test was used to compare subtype 

medians two by two. Statistical significance was considered at p<0.05. 
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RESULTS 

The model with three latent classes with time as the variable with a specific effect on each latent 

class (in the mixture argument), and with a linear time function (in the fixed argument) gave the 

lowest BIC value (See Appendix). Therefore, the models that include time in the mixture argument 

and age in the random argument were built for the following sections. 

 

Clinical model 

In the clinical model, all clinical variables had significant effects on the evolution of the EDSS score 

( = 0.11, =0.08, =0.12, and =0.07 where p-value < 0.05 for all 

variables). The effect of time was presented for each latent class and its effect was significant in two 

classes ( =0.05 and =-0.09 where p-value < 0.05). These classes were the latent 

classes (class 1 and 3) which contain fewer patients than the other latent classes (class 2) (12% and 

4% vs 84%). However, time had no significant effect in class 2 (p-value=0.06). 

 

Variable Coef Se Wald p-value 

Disease Duration  0.10772 0.02392 4.504 0.00001 

Age   0.08036   0.01907   4.215   0.00003 

T25M 0.12060   0.03990   3.022   0.00251 

9HPT   0.06453   0.01708   3.779   0.00016 

Time class1   0.04715   0.00436  10.805   0.00000 

Time class2   0.00274   0.00148   1.858   0.06321 

Time class3   -0.09571   0.01254   -7.631   0.00000 

 

Table 1 - The variables used in the fixed and mixture arguments of the clinical model. Coef: 

Parameter coefficient, Se: Standard Error, and Wald: Statistical test value. 
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 Figure 1 shows the predicted points and observed mean trajectories obtained with the clinical 

model. The graph shows that there is one class with stable progression (Class 2). However, Classes 1 

and 3 showed respectively severe and moderate evolutions. The predicted points were close to the 

observed mean trajectories for classes 1 and 2. Classes 1 and 2 included respectively 9 and 63 

patients. However, Class 3 contains 3 patients. The fewer number of patients in Class 3 might cause 

the greater difference between the predicted and observed mean trajectories. 

 

  

Table 2 shows the classification results obtained with the clinical model. Most of the patients were 

found in latent class 2 (84%) which had a stable mean evolution. Latent class 1 included RR, PP, and 

SP patients with more severe clinical evolution than CIS. Contrary to latent class 1, latent class 3 

included patients with moderate evolution and there were two CIS patients and one RR patient.  
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Figure 1. The solid lines show the observed mean trajectories and the dotted lines their 95% confidence 

boundaries. The points show the mean predicted evolution of each class obtained with clinical model. 

    

 Class 1 Class 2 Class 3 

CIS 0 10 2 

RR 2 23 1 

PP 2 13 0 

SP 5 17 0 

Table 2 - Classification obtained with the clinical model and all MS subtypes. 
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The patients in the three latent classes were compared in terms of age, disease duration, T25FW, 

9HPT, GMV, LL, and FA. The number of patients, the median, 1st, and 3rd quartiles are given in Table 

3.  There was a significant difference between the three latent classes in terms of disease duration at 

study onset (p-value=0.023). The medians of disease duration at study onset of latent classes 1 and 2 

were equal to 6.6 and 5.9 months, respectively, whereas the median of disease duration of latent 

class 3 was equal to 0.3 months. The other clinical and imaging variables were not significantly 

different among the three latent classes (p-value>0.05). 

 

Variable Class 1 

N=9 

Class 2 

N=63 

Class 3 

N=3 

p-value 

Age  40.5 (32.4, 44.0) 39.1 (30.5, 42.8) 34.4 (28.5, 38.7) 0.71 

Disease Duration 6.6 (4.9, 10.5) 5.9 (3.4, 9.0) 0.3 (0.2, 0.8) 0.02 

9HPT 24.8 (20.1, 32.6) 22.0 (19.3, 26.1) 23.4 (21.2, 26.3) 0.70 

25FW  5.1 (4.1, 7.0) 5.4 (4.5, 6.6) 4.2 (3.8, 4.3) 0.08 

GMV  831.1 

(799.8, 850.7) 

824.7 

(800.7, 858.0) 

869.8 

(843.1, 875.9) 

0.53 

LL 26.5 (15.1, 35.4) 15.1 (6.1, 32.9) 7.2 (7.1, 7.4) 0.15 

FA  0.12 (-0.20, 0.73) 0.41 (0.11, 0.78) 0.43 (0.41, 0.74) 0.57 

Table 3 - Clinical and imaging variables according to each latent class obtained with the clinical 

model. Median (1st, 3rd quartile). The p-value is the result of Kruskal-Wallis test which was 

performed to compare the medians of variables. 
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Imaging model 

Table 4 shows the result of the imaging model established with GMV, LL, and FA in the fixed 

argument. The effect of the GMV was significantly different than 0 (p-value<0.05). A decrease of 

GMV value causes an increase in the clinical disability 0.02). However, LL and FA did not 

show significant effects on disease evolution measured with EDSS score in the imaging model (p-

value=0.26). 

 

Variable Coef Se Wald p-value 

GMV -0.01625 0.00404 -4.024 0.00006 

LL -0.00049 0.01243 -0.039 0.96880 

FA -0.26589 0.23815 -1.116 0.26421 

9HPT 0.06453 0.01708 3.779 0.00016 

Time class1 0.00522 0.00167 3.130 0.00175 

Time class2 0.04732 0.00391 12.108 0.00000 

Time class3 -0.02096 0.00520 -4.027 0.00006 

Table 4 - The variables used in fixed and mixture arguments in the combined model. Coef: Parameter 

coefficient, Se: Standard Error, and Wald: Statistical test value. 

 

 

Figure 2 shows the predictions and observed mean trajectories obtained with the imaging model. 

The predicted trajectories were similar to the trajectories obtained with the clinical model. Class 2 

trajectory included the majority of patients (73%) and showed a stable evolution. Class 1 included 

two RR, two PP, and four SP patients. The predicted mean trajectory of these patients showed severe 

evolutions. However, Class 3 showed a moderate evolution with decrease over time. This cluster 

included the patients who have a benign evolution (CIS (n=5) and RR (n=7)). 
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Figure 2. The solid lines show the observed mean trajectories and the dotted lines their 95% 

confidence boundaries. The points show the mean predicted evolution of each class obtained with 

imaging model. 

    

 Class 1 Class 2 Class 3 

CIS 0 7 5 

RR 2 17 7 

PP 2 13 0 

SP 4 18 0 

  Table 5. Classification obtained with the imaging model with all MS subtypes. 
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Combined model with clinical and imaging variables 

Table 6 shows the BIC, the mean of posterior probabilities, the log-likelihood, and the AIC of the 

clinical, the imaging, and the combined model built with seven different combinations of imaging 

variables. The highest BIC was obtained with the imaging model and the lowest BIC with the clinical 

model. All models had mean posterior probabilities over 0.89. Most of the combined models had a 

greater mean posterior probability than the clinical and imaging model. The log-likelihood ranged 

between -542 and -505. The model with clinical, GMV and FA variables and the model with the 

clinical and all imaging variables showed the best likelihood values. AIC values ranged between 1047 

and 1115. The model with clinical, GMV and FA variables had the lowest AIC value. 

  

 

Model BIC Posterior Probability Loglik AIC 

Clinical 1086 0.970 -508 1049 

Imaging 1149   0.949 -542 1115     

Clinical +GMV 1105 

   

0.990 -516 1066     

Clinical +LL 1111  0.890 -519    1072     

Clinical +FA 1088   0.985  -507     1048   

Clinical +GMV+LL 1123   0.982  -522       1081 

Clinical +GMV+FA 1089 0.989 -505      1047 

Clinical + LL+FA 1092 0.985  -507   1050     

Clinical 

+GMV+LL+FA  

1093 

 

0.989 -505     1049 

Table 6 - BIC, mean of posterior probabilities, Log-likelihood, and AIC results with the clinical, the 

imaging and the combined models built with different combinations of imaging variables. 
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Table 7 shows the results of the combined mode built with clinical and all three imaging parameters. 

The effects of the clinical variables were still significant ( =0.11, =0.06, 

=0.13, and 0.04 where p-value<0.05 for all). However, the effects of the imaging 

variables were not significantly different from zero (p-value >0.05).  

   

   

Variable Coef Se Wald p-value 

Disease duration  0.10505 0.02361 4.450 0.00001     

Age  0.05980 0.02244 2.664 0.00771     

T25FW  0.12681 0.03747 3.384 0.00071     

9HPT  0.04244 0.01900 2.233 0.02552     

GMV  -0.00751 0.00407 -1.845 0.06502     

LL -0.00372 0.01187 -0.314 0.75381     

FA  -0.25584 0.21576 -1.186 0.23571     

Time class1  -0.09566 0.01256 -7.616 0.00000     

Time class2  0.00285 0.00140 2.045 0.04090     

Time class3  0.04754 0.00380 12.522 0.00000     

Table 7 - The variables used in fixed and mixture arguments in the combined model. Coef: Parameter 

coefficient, Se: Standard Error, and Wald: Statistical test value. 

  

 

 

 

 

 

168



 

20 

Figure 3 shows predicted and observed mean trajectories obtained with the combined model built 

with GMV, LL, and FA together. The observed mean trajectories and predicted points were almost 

similar to the result obtained with the clinical data. Moreover, the classification performed with the 

combined model (see Table 8) did not significantly change the classification obtained with the clinical 

model. There was one more patient classified in latent Class 2 (with stable evolution) instead of 

latent Class 1 (with severe evolution).  

 

As only one patient changed class with the combined model, the comparison results of the combined 

model among latent classes did not change compared to the comparison results of the clinical model. 

This means that the disease duration at study onset was significantly different among three latent 

classes (p-value=0.028). However, the three latent classes were not different considering other 

clinical and imaging variables (p-value>0.05). 
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Figure 3. The solid lines show the observed mean trajectories and the dotted lines their 95% 

confidence boundaries. The points show the mean predicted evolution of each class performed with 

combined model.   

 Class 1 Class 2 Class 3 

CIS 0 10 2 

RR 2 23 1 

PP 2 13 0 

SP 4 18 0 

Table 8. Classification obtained with the combined model  

(clinical variables with GMV, LL and FA) for all MS subtypes. 
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DISCUSSION 

The latent class linear mixed model was used to model the evolution of disability in patients with 

multiple sclerosis, thus, to predict individual disability evolution measured with EDSS score. To our 

knowledge, this is the first study that predicts long-term disability evolution considering unobserved 

subgroups of multiple sclerosis patients of all clinical subtypes. First, the clinical and imaging models 

were separately built with, respectively, clinical and imaging variables. Then, multimodal imaging 

variables were added to the clinical model to obtain combined models. As per the BIC criterion, the 

clinical model had a higher predictive accuracy in comparison with the imaging or the combined 

models considering the BIC criterion.  

 

In the clinical and combined models, all clinical variables had a significant predictive effect on disease 

evolution. Previous studies showed also age and disease duration were significant in predictive 

modeling [Confavreux et al., 2003; Scalfari et al., 2011]. In addition, 9HPT and T25FW were 

considered as two of the best measures across a wide range of indicators of MS disability [Kieseier & 

Pozzilli, 2011; Kraft et al., 2014]. However, no study was yet performed to check whether the 9HPT 

had a significant effect on disability evolution. On the other hand, an early change in T25FW had a 

predictive value on the long-term EDSS evolution in progressive patients (PP and SP) [Bosma et al., 

2012]. Our results confirm that the effects of T25FW and 9HPT are significant in all clinical subtypes. 

 

Previous studies on predictive modeling of disability evolution in patients with multiple sclerosis used 

logistic regression models, Kaplan-Meier analyses, Markov models, multilevel modeling, and, mostly, 

linear mixed models [Popescu et al., 2013; Minneboo et al., 2009; Bodini et al., 2011; Minneboo et 

al., 2007; Palace et al., 2014; Lawton et al., 2015; Confavreux et al., 2003; Confavreux et al., 2000]. A 

recent study used latent class linear mixed models in PP patients to identify unobserved classes 

[Signori et al., 2017], selected the best model with the BIC criterion, and identified three subgroups 
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of PP patients. However, our study remains the first one to use latent class mixed models, consider 

unobserved classes, and include all clinical subtypes of MS.  

 

In our study, the multiple sclerosis patients were classified into three latent classes having a stable, a 

severe and a moderate evolution over time. Most of the patients (84%) showed no progression of 

disability over five years after the study onset. As MS is a long-lasting disease, the five years might be 

insufficient to show disability worsening. However, 12% of the patients were assigned to the class 

with severe disability progression and 4% to the class with moderate evolution. Assigning patients to 

either of these two latent classes may help treatment decision. For example, patients with a 

probable severe evolution would benefit from second-line therapies.  

 

EDSS score 4 is known as the threshold of limited walking disability though a patient may be able to 

walk more than 500m. By modeling, the predicted EDSS score values at the study onset were around 

EDSS score 4 in the three latent classes then each class evolved differently. Thus, our predictions 

were able to identify the patients who might have a severe, stable or moderate evolution after 

reaching the threshold of limited walking disability. 

 

In this study, GMV had a significant effect in the imaging model. Previous studies have shown that 

the effect of gray matter volume was significant in increasing the risk of severe disability of MS 

patients [Rovaris et al., 2006; Fisniku et al., 2008, Roosendaal et al., 2011; Sepulcre et al., 2006]. 

However, the effects of the multimodal imaging variables were not statistically significant in the 

combined models. Enzinger et al. have performed a multivariate analysis and found that no MRI 

variables had a significant effect on disability evolution [Enzinger et al., 2011]. A study performed on 

the predictive value of the lesion load showed that the lesion load observed in the gray and white 

matter was a strong predictor of the 10-year EDSS in MS [Popescu et al., 2013]. However, here, the 

lesion load was found significant neither in the imaging and nor in the combined models. 
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One limitation of the present work was the use of the lesion load measured in the whole brain and, 

not locally. The location and size of the lesion are very important markers of the clinical disability. A 

future modeling work on the evolution of clinical disability may consider the focal lesion load and, 

gray and white matter loss. 

 

To conclude on this issue, the latent class linear mixed model allowed building a well-fitted predictive 

model for disability evolution in patients with MS and this model showed high accuracy results. The 

model developed here is highly promising in predicting individual long-term disability evolution in all 

clinical subtypes of MS. 
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APPENDIX 

Supplementary Table 1 shows the Bayesian Information Criterion (BIC) and Akaike Information 

Criterion (AIC) results obtained with 48 models fitted with 8 different variables (time, age, disease 

duration, 9HPT, and T25FW) in mixture argument, and 3 types of time function (linear, square root 

and polynomial) in 3 and 4 latent classes. 

 

Variable  Time function BIC AIC 

Time 3 Linear 1093  1049 

  Square Root 1097  1051 

  Polynomial 1121  1074 

 4 Linear 1100 1049 

  Square Root 1099 1052 

  Polynomial 1110 1056 

Age 3 Linear 1207  1163 

  Square Root 1212  1166 

  Polynomial 1212  1166 

 4 Linear 1220 1169 

  Square Root 1224 1171 

  Polynomial 1224 1170 

Disease Duration 3 Linear 1221  1176 

  Square Root 1207  1161 

  Polynomial 1214  1167 

 4 Linear 1217 1166 

  Square Root 1224 1171 

  Polynomial 1220 1167 

9HPT 3 Linear 1215  1171 
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  Square Root 1223  1177 

  Polynomial 1209  1163 

 4 Linear 1222 1171 

  Square Root 1224 1177 

  Polynomial 1216 1169 

T25FW 3 Linear 1207  1162 

  Square Root 1212  1166 

  Polynomial 1210  1164 

 4 Linear 1200 1149 

  Square Root 1202 1149 

  Polynomial 1218 1164 

GMV 3 Linear 1209  1165 

  Square Root 1210  1164 

  Polynomial 1206  1160 

 4 Linear 1219 1168 

  Square Root 1212 1159 

  Polynomial 1216 1163 

LL 3 Linear 1207  1163 

  Square Root 1211  1165 

  Polynomial 1205  1159 

 4 Linear 1220 1169 

  Square Root 1219 1165 

  Polynomial 1218 1164 

FA 3 Linear 1221  1177 

  Square Root 1209  1162 

  Polynomial 1213  1167 
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Supplementary Table 1- BIC and AIC values for the combination of the variable used in mixture 

argument and time function in three and four latent classes. 

 

 4 Linear 1211 1160 

  Square Root 1226 1173 

  Polynomial 1238 1184 
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Chapter 5

Discussion

This thesis present high accuracy of statistical approaches to: i) identify brain tissue

at high risk of infarction in patients with stroke; and, ii) predict disability evolution in

patients with multiple sclerosis.

These statistical approaches that are performed for stroke and multiple sclerosis patients

had also several clinical interests. First, identifying the tissue at high risk (at one month)

on the basis of the imaging data may guide clinicians in their time-critical decision process

regarding the use of the tPA treatment. Second, clustering patients with MD and the

predicting the evolution of disability may help the clinician in choosing the most adapted

theraphy regarding the choice of treatment.

In Chapter 2, the applicability of the machine learning methods to voxel-based multimodal

MRI data was proved in identifying the tissue at high risk of infarction and also to classify

tissues as healthy or infarcted in patients with stroke. We used eight advanced imaging

parameters of diffusion-weighted imaging (DWI) and perfusion-weighted imaging (DWI)

from 55 ischemic stroke patients. The classification methods (SVM, ANN, RF, ADA, and

LR) showed high accuracies (AUCroc>0.77 for all methods). However, these classification

methods were mainly compared regarding AUCpr and there was no statistically significant

difference between their performances.
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In Chapter 3, we used an unsupervised method to cluster the multiple sclerosis patients

on the basis of clinical and imaging trajectories. The study is the fist that uses clustering

of longitudinal data obtained over five years. We used the EDSS score, the lesion load,

and fractional anisotropy trajectories to cluster the patients. The clusters showed three

distinct forms of disease evolution: severe, stable, and moderate evolution. Moreover,

the clusters which show the severe and stable evolution begin at EDSS 4, the limit of

full ambulation without aid. This means that the unsupervised method was able to

identify the patients who may have a critical evolution after EDSS score 4. Moreover,

disease duration, GMV, and LL at study onset were significantly lower in the patients in

the moderate cluster. These variables may be the prognostic factors for benign disease

evolution over time. In addition, FA at study onset was significantly lower in the patients

in the severe evolution cluster. Thus, a low FA value at study onset may be a prognostic

factor for aggressive disease evolution.

In Chapter 4, we developed a model to predict disability evolution of multiple sclerosis

patients. For this, we used the latent class linear mixed model to consider individual

differences and unobserved groups among MS patients. The model used longitudinal

clinical and imaging data. We established first a clinical model with clinical characteristics

(age, disease duration, 25FW, and 9HPT scores). All clinical variables had significant

effects on disease evolution and we obtained a high accuracy. When the gray matter

volume, the lesion load, and the fractional atrophy were used to build the imaging model,

the effect of the GMV was significantly different from zero. However, the clinical model

had a better accuracy than the imaging model. Finally, the imaging parameters were

added one by one, two by two, then three together to the clinical model in order to

examine the importance of imaging data. However, the so combined models were not

much better than the clinical model (as per the BIC criterion).

The latent class linear mixed model was also able to cluster the patients into three latent

classes showing severe, stable and moderate evolution. However, the majority of patients

were clustered in the stable class where there was no significant worsening or recovery
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over five years.

As a consequence, given the high accuracy results, the models developed in this study are

highly promising in predicting disability evolution of multiple sclerosis.

The limitation of our studies on multiple sclerosis is that we did not have access to the

imaging parameters of the lesions. For example, the local lesion load and the location

of the lesions might inform more about the risk of evolution toward severe disability. A

future work may thus include the locally measured imaging parameters.

We hope that the statistical methods applied in this thesis will allow better integration

and evaluation of future advances in medical imaging and statistical modeling. Finally,

we hope to contribute to a better identification of stroke and multiple sclerosis patients

for promising early-stage treatments.
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