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Résumé : Les cellules solaires à multi-jonctions 

de type III-V possèdent des rendements de 

conversion de l'énergie très élevés (46%). 

Cependant, les méthodes de fabrication 

généralement utilisées sont complexes et 

coûteuses, notamment pour les cellules solaires 

non monolithiques associées par des techniques 

de collage et à structure inversée. Cette thèse vise 

à augmenter les rendements de conversion des 

cellules solaires monolithiques à l'aide de 

méthodes prospectives. Le travail est focalisé sur 

l'étude des défauts électroniquement actifs dans 

les matériaux constituant les cellules solaires au 

moyen de techniques photoélectriques et 

capacitives, et il peut être scindé en trois parties.  

La première partie traite des cellules solaires à 

simple jonction avec des couches absorbantes 

non dopées d'alliages InGaAsN de 1 eV de bande 

interdite de différentes épaisseurs obtenues sous 

forme de super-réseaux (InAs / GaAsN) par 

épitaxie à jets moléculaires (MBE) sur des 

substrats de GaAs. Pour des épaisseurs 

inférieures à 1200 nm, la concentration de 

défauts est négligeable et n'affecte pas fortement 

les propriétés photoélectriques, tandis que que 

pour une épaisseur de 1600 nm, la forte 

concentration de défauts détectés réduit la durée 

de vie des porteurs photogénérés, et conduit à 

une baisse significative du rendement quantique 

externe et des performances de la cellule. 

La deuxième partie du travail est consacrée à 

l'étude de cellules solaires à une et plusieurs 

jonctions avec des couches actives de 

(In)GaP(As)N obtenues par MBE sur des 

substrats respectifs de GaP et de Si. Nous avons 

trouvé que les cellules solaires de type p-i-n avec 

des couches actives de GaPAsN non dopé 

présentaient de meilleures performances que les 

cellules solaires de type p-n avec des couches 

actives de GaPAsN dopé n. De plus, les cellules 

solaires avec une couche d'absorbeur en GaPAsN 

non dopé présentent de meilleures propriétés 

photoélectriques et des concentrations de défauts 

plus faibles que celles avec un absorbeur obtenu 

à partir de super-réseaux InP / GaPN. Plusieurs 

niveaux de défauts ont été détectés dans la bande 

interdite de ces matériaux et leurs paramètres ont 

été décrits en détail. Nous avons montré qu'un 

traitement de post-croissance approprié pouvait 

améliorer la qualité électronique des couches et 

des cellules solaires. Une cellule solaire à triple 

jonction a été fabriquée avec des couches actives 

d'absorbeurs de GaPAsN et de GaPN non 

dopées. La valeur élevée de la tension de circuit 

ouvert (>2,2V) atteste du fonctionnement des 3 

sous-cellules, mais la performance globale est 

limitée par les faibles épaisseurs de couches 

d'absorbeurs.  

Enfin, la troisième partie du travail est consacrée 

à l'étude de couches de GaP obtenues sur des 

substrats de Si à des températures inférieures à 

400 ° C par une méthode originale de dépôt de 

couches atomiques assistée par plasma (PE-

ALD). En effet, celle-ci utilise un équipement de 

dépôt chimique en phase vapeur assisté par 

plasma et elle repose sur l'interaction de la 

surface avec les atomes de Ga et P provenant 

respectivement du triméthylgallium et de la 

phosphine qui sont injectés alternativement. 

Nous avons également fait croître des couches en 

utilisant un processus continu (fournissant 

simultanément les atomes P et Ga) et observé que 

leurs propriétés électriques et structurelles 

étaient moins bonnes que celles obtenues par la 

méthode PE-ALD proposée. Nous avons exploré 

l'influence des conditions de croissance sur les 

hétérostructures GaP / Si. Nous avons constaté 

qu'une faible puissance de plasma RF conduit à 

de meilleures propriétés photoélectriques, 

structurelles et à moins de défauts, grâce à une 

meilleure passivation du substrat de silicium. En 

outre, nous avons démontré que, contrairement à 

des résultats de la littérature utilisant des 

procédés MBE, la technique PE-ALD n'affecte 

pas ou très peu les propriétés électroniques des 

substrats de silicium et aucune désactivation des 

dopants n'a été observée. 
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Abstract : Multi-junction solar cells based on 

III-V compounds have reached very high power 

conversion efficiencies (46%). However, the 

fabrication methods that are generally used are 

complex and expensive for non-monolithic 

bonded and inverted solar cells. This thesis is 

devoted to the study of prospective methods to 

increase the efficiency of monolithic solar cells. 

The work is focused on the study of 

electronically active defects in the materials 

constituting the solar cells by means of 

photoelectric and capacitance techniques 

(admittance spectroscopy, DLTS,…) and it can 

be divided into three parts. 

The first part deals with single-junction solar 

cells wherein the absorber is made of i-layers of 

1 eV bandgap InGaAsN compounds with 

various thicknesses grown as sub-monolayer 

digital alloys (SDA) of InAs/GaAsN by 

molecular-beam epitaxy (MBE) on GaAs 

wafers. The cell with 900 nm thick InGaAsN 

exhibits the best photovoltaic performance and 

no defects could be evidenced from capacitance 

techniques. When the thickness is increased to 

1200 nm, defects were detected, but their 

concentration is low so it did not strongly affect 

the photoelectric properties. Further increase to 

1600 nm of the layer thickness was shown to 

lead to a higher defect concentration causing a 

change in the band diagram of the structure and 

lowering the lifetime of photogenerated carriers. 

This could explain the drastic drop of the 

external quantum efficiency, and the overall 

poor performance of the solar cell. 

The second part is devoted to the study of single- 

and multi-junction solar cells with active layers 

of (In)GaP(As)N grown by molecular beam 

epitaxy (MBE) on GaP and Si wafers, 

respectively. More precisely, the active layers 

were either quaternary alloys of GaPAsN or 

SDAs of InP/GaPN. We found that p-i-n type 

solar cells with active layers of i-GaPAsN 

showed better performance than p-n type solar 

cells with active layers of n-GaPAsN due to 

higher EQE values. Moreover, solar cells with 

an i-GaPAsN absorber layer show better 

photoelectric properties and lower defect  

concentrations, than those with an SDA 

InP/GaPN absorber layer. Different defect 

levels were detected by capacitance methods in 

these materials and their parameters were 

described in detail. We showed that a suitable 

post-growth treatment could improve the 

electronic quality of the GaPAsN layer and the 

solar cell properties. Also, a triple-junction solar 

cell was fabricated with active layers of i-

GaPAsN and i-GaPN. All subcells were found 

to be operating, leading to a large open circuit 

voltage (>2.2 V), but the overall performance is 

limited by the low value of the quantum 

efficiency due to low thicknesses of i-layers that 

should be increased for better absorption. 

Finally, the third part is devoted to the study of 

GaP layers grown on Si wafers at temperatures 

below 400 °C using an original method called 

plasma-enhanced atomic-layer deposition (PE-

ALD). Indeed, it uses a plasma-enhanced 

chemical vapor deposition equipment and it is 

based on the alternate interaction of the wafer 

surface with Ga and P atoms coming from 

injected trimethylgallium and phosphine, 

respectively. We also grew layers using a 

continuous process (providing simultaneously 

the P and Ga atoms) and observed that their 

electric and structural properties were poorer 

than that grown by the proposed PE-ALD 

method. The influence of growth conditions on 

the GaP/Si heterostructures was explored. We 

found that low RF-plasma power leads to better 

photoelectric, structural and defect-related 

properties, due to a better passivation of the 

silicon wafer. In addition, we demonstrated that, 

contrary to results reported in the literature using 

MBE processes, our growth process does not 

affect the electronic properties of phosphorous 

doped n-Si wafers, while slight changes were 

observed in boron-doped p-Si wafers containing 

Fe-related defects, however without 

deactivation of the doping nor strong 

degradation of the electronic properties. 
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Introduction 
Nowadays, most sources of electric energy have different drawbacks: security (nuclear 

power), limited reserves of fossil fuels (oil, gas, coal), negative influence on the environment 

(hydropower), etc. Photovoltaics is a clean and powerful way to provide electricity and supply the 

growing demand of all countries. Indeed, it allows one to use an infinite source of energy that is 

available to everybody -the Sun- and directly converts it into electric energy.   

Thus, my thesis is devoted to the investigation of new semiconductors for the fabrication 

of low-cost high-efficiency solar cells. The study is focused on multi-junction solar cells with 

active layers of III-V compounds grown on wafers of IV group elements. In Chapter I, the solar 

cell retrospective and modern concepts studied in the current work are presented. Then, the used 

methods of fabrication and characterization are described in Chapter II. Next three chapters are 

devoted to the study of different types of devices. Chapter III is related to the investigation of 

InGaAsN alloys grown by molecular beam epitaxy on GaAs and Ge wafers, Chapter IV concerns 

InGaPAsN grown on GaP and Si wafers by the same method, Chapter V deals with GaP grown on 

Si wafers by plasma-enhanced atomic-layer deposition. Finally, our studies are summarized in 

conclusion and some future works are suggested. 
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Chapter I  

Bibliography 
Introduction 

In this Chapter, the literature review is presented for explored topic of thesis. Background 

is shown for modern and perspective MJSCs grown with using of III-V compounds on Si and Ge 

wafers. Problems and possible methods of their solution are given for different systems of 

semiconductors for photovoltaic application. 

I.1 Retrospective 

The era of semiconductor photovoltaics had started in the 1930s with results obtained on 

sulfur-thallium solar cells (SCs) at Ioffe Institute in Leningrad1. The study was carried out under 

the supervision of the founder of the Institute, academician A. F. Ioffe who firstly introduced a 

program for solar energy use by photovoltaic roofs to the USSR government. In 1940, another 

breakthrough event occurred in semiconductor technology: the first silicon p-n junction was 

unconsciously created. This discovery opened new possibilities for fabrication of transistors, light-

emitting diodes and SCs for electricity production. On February 23, 1940, the American physicist 

Russell Ohl investigated a "strange" silicon sample whose current-voltage characteristics were 

erratic. It turned out that the sample reacted to light, and the degree of the observed photo-effect 

exceeded by one order of magnitude the photoelectric effect in traditional SCs. Consequently, Ohl 

accidentally obtained a semiconductor SC of a modern type patented in 1946. The principle of its 

operation is based on the absorption of radiation with energy close to the bandgap energy of the 

semiconductor and the formation of charge carriers creating a potential difference and a current. 

Ohl's colleague, Walter Brattain, guessed that the photoelectrical effect occurs on some invisible 

barrier between two silicon layers and the same barrier should straighten the alternating current. 

The layers were named p-type (positive, traces of boron were found in silicon) and n-type 

(negative, phosphorus was detected) by the type of doping, and the barrier area became known as 

the p-n junction. W. B. Shockley, W. Brattain and J. Bardeen in the American company Bell 

Laboratories discovered and described the field effect consisting in controlling the electrophysical 

parameters of the surface of a solid state with an electric field applied along the normal to the 

surface. On the basis of p-n junction, the same group fabricated the world's first semiconductor 
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transistor on 23th December of 1947, which is an important invention of the XXth century, since 

all modern electronics and nanoelectronics operate on the basis of field-effect transistors. On April 

25, 1954, first silicon SCs were demonstrated at Bell Laboratories with an efficiency of about 6%2. 

Despite the low value of efficiency, the silicon SCs were used for serious purposes: in 1958 the 

first satellites equipped with such SCs - the Soviet “Sputnik-3” and the American “Avangard-1” 

were launched. 

From the middle of the XXth century, the intensive development of silicon technology has 

contributed to the studies of silicon SCs around the world: it predetermined their widespread 

distribution observed today. The basis of technology for the silicon production, purification and 

processing have been developed in industry so it has been in the highest level among all 

semiconductor materials by now. However, since the 1950s new semiconductor materials called 

III-V compounds have started to be synthesized. It was initially binary and, later, multicomponent 

compounds including as a minimum one element of both III and V groups of the periodic table, 

for example, the well-known gallium arsenide (GaAs). Then, the first GaAs-based SC was 

fabricated, but it had lower performance compared to the silicon ones due to the material quality, 

since the GaAs technology had not yet been industrially worked out as for silicon. In the second 

half of the 1960s some pioneering work was carried out to obtain and study "ideal" heterojunctions 

in the AlAs-GaAs system that is used for the fabrication of wide-bandgap windows in SCs3. The 

idea relies on using a semiconductor with a larger bandgap energy (AlGaAs) than in the active 

region (GaAs) to reduce the recombination losses of charge carriers at surface states. It allowed to 

improve the SC characteristics, and their high radiation resistance have promoted the use of GaAs 

SCs in space by USSR in the “MIR” station in 19864. 

Further developments of growth technologies have led to the improvement of SCs quality 

and increase of their efficiency. Until the 1980s, the main method of material growth was liquid-

phase epitaxy (LPE) allowing to create simple SCs based on a p-n junction, but the development 

of modern epitaxial growth technologies like vapor-phase (VPE) and molecular-beam (MBE) 

epitaxy led to a strong increase in efficiency: it has become significantly higher than 20% in SCs 

based on the AlGaAs/GaAs system. On the other hand, new methods have been investigated for 

the fabrication of silicon SCs. The first one is the use of phosphorous diffusion into p-Si wafers 

for the fabrication of p-n junctions, and the other one is plasma-enhanced chemical vapor 

deposition (PECVD) of hydrogenated amorphous silicon (a-Si:H) on wafers because it allows one 

to create p-n junctions while providing outstanding passivation of the silicon surface. At present, 

the record efficiency is 28.8% and 26.7% for single-junction SCs based on GaAs (MOCVD)5 and 

Si (PECVD)6, respectively. 
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Since the 1960s, new ideas have originated: if a p-n junction of a semiconductor with a 

large bandgap is grown on another p-n junction with smaller bandgap, it would be possible to 

absorb a wider part of the solar radiation spectrum while limiting thermalization losses. Such solar 

cells are named multi-junction SCs (MJSC), and each constituent based on a p-n junction is named 

a subcell. The spectrum of solar radiation is heterogeneous as shown by Isaac Newton in an 

experiment on the light dispersion7. The single-junction SC absorbs only a part of the spectrum: 

radiation at photon energies larger than the bandgap energy of the semiconductor. According to 

the model of Shockley and Queisser8, the maximum achievable efficiency for single-junction SCs 

is slightly larger than 30%. It is due to different intrinsic loss mechanisms in semiconductors9 

(Figure I.1a). Figure I.1b visualizes two main loss mechanisms for silicon SCs10: for photons 

energy lower and higher Eg, respectively. The first one is due to the absence of absorption for 

photons with energy lower than the bandgap. On the other hand, photons with higher energy can 

produce only one electron-hole pair so the excess energy compared to the bandgap energy is lost 

in thermalization of the created hot carriers.  

 

(a) (b) 

 

Figure I.1 a- intrinsic loss processes and conversion in outcoming power are shown to be 

dependent on the bandgap, Eg
9; b- Spectral losses in a solar cell. The figure shows the maximum 

achievable energy of a silicon solar cell in relation to the sun spectrum (AM1.5)10. 

Therefore, in the end of the 1980s, many research groups concentrated their efforts on the 

development of various types of double-junction SCs. At the first stage, the best efficiencies were 

obtained in mechanically bonded SCs developed at NREL (USA).  Both single-junction SCs were 

grown on germanium wafers with an active p-n junction of GaAs and GaInP lattice- matched to 

Ge by MOCVD as bottom and top junctions, respectively. Then the two p-n junctions are 



 

8 
 

mechanically bonded, and the upper Ge wafer is "shot back" by laser processing. As epitaxial 

technologies have been developed, many scientific groups have started to grow monolithic MJSCs 

on single wafers with three and more p-n junctions in one process. Further, the GaInP/GaAs/Ge 

system proves to be the simplest in production since the lattice constant of these materials is almost 

the same, and this is the most important parameter affecting the quality of grown semiconductor 

heterostructures. The efficiency of SCs based on this system exceeded 40% in 200711. 

Furthermore, many attempts were made to increase the efficiency with the use of new inventions 

and post-growth methods in addition to the development of epitaxial technologies. Thus, in the 

1980s, it was noted that SCs based on GaAs heterojunctions can more effectively work at high 

concentration of the sun light flux (several hundreds times) and it distinguishes them from silicon 

ones. At that time first SCs were fabricated for application under concentrator illumination12.  

Nowadays, almost all record values of efficiency are obtained for MJSCs based on III-V 

compounds using concentrating lenses, and the maximum efficiency today is 46%13. SCs with 

similar III-V compounds are used in space satellites and on the International Space Station (ISS) 

for electricity production where the most important properties of SCs are high efficiency and 

radiation resistance, while the high price is the main drawback for their use in terrestrial 

applications. 

The main goal of this thesis is to study new approaches to enhance the efficiency and reduce 

the cost of MJSCs based on III-V compounds for both space and terrestrial applications. These 

approaches are based on new growth methods of III-V compounds for further application as active 

layers in MJSCs. Our work is focused on the study of electronically active defects using a set of 

complementary characterization techniques, the main emphasis being on admittance and 

capacitance techniques. 

I.2 MJSCs on Ge and GaAs wafers 

 InGaAsN on Ge 

MJSCs based on III-V compounds have the highest efficiency in the world and their record-

efficiency has almost reached the psychological barrier of 50% for concentrator photovoltaics13. 

The four-junction SC based on the GaInP/GaAs/GaInAsP/GaInAs system14 has the record 

efficiency of 46%13, but it is fabricated by bonding of two structures grown on different wafers. 

The triple-junction SC based on the system InGaP/GaAs/InGaAs was metamorphic grown on a 

GaAs wafer and then it was inverted on a Si wafer: it has 44.4% efficiency15. However, these 

methods strongly limit the transfer to industry due to complicated technological steps, so 

monolithic MJSCs grown epitaxially without any mechanical processing steps are the most 
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interesting. Efficiency of such MJSCs is almost the same and the record is 45.7% for the four-

junction SC based on the GaInP/GaAs/GaInAs/GaInAs system at a concentration of 294 suns16. 

According to previous studies two junctions based on GaInP (1.85 eV) and GaAs (1.42 eV) are 

the most common and industrially used for the SC fabrication based on III-V semiconductors17. 

Initially, the bottom p-n junction in the germanium wafer is used in combination with two other 

junctions in GaInP and GaAs to obtain triple-junction SCs. The bandgap energy of Ge is 0.67 eV17, 

so the long-wavelength spectrum of sun radiation can be effectively absorbed. Moreover, the 

lattice- mismatch between Ge and GaAs is less than 0.1%, therefore there are possibilities for high-

quality GaAs layers on Ge wafers (Figure I.2).  

 

Figure I.2 Bandgap versus lattice constant. The grey boxes indicate nitrogen-containing alloys 

that have been grown lattice-matched to Ge and Si18. 

In addition, according to theoretical estimations the substitution of a germanium subcell 

with a subcell having a bandgap energy of 1 eV could increase the 3-junction SC efficiency by a 

few percent, and the addition such a subcell to a 3-junction grown on a Ge wafer will allow to 

reach 52% under concentration19,20. InGaAsNSb with small nitrogen content is the most 

prospective semiconductor for this goal. III-V-N alloys (GaPNAs, InGaNAs etc.) with nitrogen 

content less than 5% are called dilute nitrides. It has been shown that the small addition of nitrogen 

leads to the large bowing parameter for the bandgap in GaAsN alloys: adding only few percent of 

nitrogen reduces the bandgap by hundreds of meV21. Additional content of indium in InyGa1-

yNxAs1-x alloys is necessary for lattice-matching with Ge and GaAs when y=3x: it allows to 

epitaxially grow layers of InGaAsN on these wafers, and its bandgap energy can vary in a wide 
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interval and reach 1 eV18 (Figure I.2). Such compounds like InGaAsN have been intensively 

investigated since the 1990s due to high interest in the fabrication of lasers for 1.3-1.55 μm 

wavelength on GaAs wafers22. However significant progress in the growth technology for 

photovoltaic applications has been reached only a few years ago due to the improvement in 

epitaxial equipment and methods. 44% is the record efficiency for the 3-junction SC grown by 

MBE with the bottom subcell based on the active layer of InGaAsNSb at 942 suns concentration23. 

A group from Finland obtained a value of 37-39% at 70 suns concentration for similar construction 

of 3-junction SCs grown by MBE with bottom InGaAsNSb subcell24, they also reached an 

efficiency of 29% at AM025 for 3-junction SCs, where the bottom subcell based on InGaAsN was 

grown by MBE and top subcells were grown by VPE26. Despite the result achieved using growth 

of InGaAsN layers, MJSCs are limited by low lifetimes of charge carriers in these alloys27. It 

originates from an increased defect formation due to the incorporation of nitrogen into the lattice 

of GaAs at lower growth temperatures of InGaNAs in comparison with the growth of GaAs. It 

leads to the formation of centers of non-radiative recombination with high concentrations. It is 

known that the p-i-n junction is preferable to the p-n junction for active layers of SCs with low 

lifetimes of charge carriers, since the built-in electrical field reduces the recombination in the 

active region and improves the collection of charge carriers. Atoms of carbon and hydrogen can 

incorporate during the growth of III-V compounds by VPE: it leads to the unintentional 

background doping and the formation of various defects which have negative influence on the 

lifetimes in InGaNAs layers and on the efficiency of the SC28. Therefore, the equipment of MBE 

with RF- plasma source of nitrogen is more preferable for the growth of InGaAsN since it allows 

excluding the presence of C and H in the chamber. However, even MBE-grown InGaNAs layers 

have the concentration of the background doping up to 1×1017 cm-3 29: it leads to big changes in 

the band diagram for the i-layer, so the SC efficiency can significantly decrease if the charge carrier 

lifetime is low in active layers. The post-growth annealing is one of the ways to improve the quality 

of InGaNAs dilute nitrides 30–32. Also, it has been proposed to use antimony (Sb) for the prevention 

of large defect formation and background doping during the growth because Sb is a good 

surfactant33–36. The authors showed the inhibition of the defect formation during the growth and a 

reduction of background doping concentration in the active layers of dilute nitrides. However, Sb 

has a significant disadvantage: due to deposition and accumulation on the walls inside the MBE 

chamber, it leads to undesirable background doping of layers in top subcells. Therefore, growth of 

MJSCs with Sb requires equipment with two growth chambers, but it significantly complicates the 

application of this technology in industry. Furthermore, the growth of such quinary alloys as 

InGaAsNSb is a difficult task due to the complexity of simultaneous control of material flows 

during the process. 
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In this work, the novel growth method of InGaAsN alloys by MBE without addition of 

antimony atoms is proposed to avoid the problems described above. It consists of using 

nanoheterostructures of an original design based on the InAs/GaAsN superlattice, where several 

InAs monolayers are separated by wide GaAsN barriers37. It opens the possibility of growth of 

semiconductor materials with the properties of quaternary solutions of InGaNAs with separated 

fluxes of indium and nitrogen. Thus, thick InAs layers of few monolayers compensate the elastic 

stresses arising during the growth of GaAsN on the GaAs wafer due to their lattice-mismatch. The 

semiconductor compound grown by the described method is called a sub-monolayer digital alloy 

(SDA). The method was successfully applied for the growth of III-V38–40 and II-VI41,42 compounds 

by MBE. Thus, in present work, the first task is the study of single-junction SCs with active layers 

of InGaAsN grown by SDA InAs/GaAsN on GaAs wafers. 

I.3 MJSC on Si wafers 

 GaAs on Si 

The wafer represents at least 50% of the cost of the SC so MJSCs grown on GaAs and Ge 

wafers are very expensive for terrestrial photovoltaic applications. The cost of the silicon wafer is 

the cheapest one compared to other semiconductor materials. Silicon is the second most abundant 

element on the Earth, after oxygen. Si accounts for 27.6-29.5% of the total mass of the earth's 

crust: sand is its simplest form. However, the reserves of pure silicon, suitable for nanoelectronics, 

are much smaller, and the technology requires high temperatures of 1100 °C. The silicon 

technology has been worked out much better than other ones, so about 90% of the SCs used in 

terrestrial applications are fabricated on monocrystalline silicon wafers with active layers of mono-

, micro-crystalline and amorphous silicon. The record efficiency SC based on silicon is 26.7%6 

and it almost reaches the theoretical limit for the silicon single-junction SC.  

Consequently, PV requires new approaches for high-efficiency and low-cost SCs, which 

can combine advantages of III-V MJSCs and silicon SCs. The fabrication of MJSCs with active 

layers of III-V compounds on silicon wafers is a prospective field for the photovoltaic industry. It 

is a real challenge for scientists, because this technology can also open ways for the fabrication of 

cheap optoelectronic integrated circuits with LEDs, lasers, HEMTs etc.  

Historically, GaAs was the most common and most used material in the optoelectronic 

industry therefore it was the main reason for the development of monolithic growth technologies 

for this material on monocrystalline silicon wafers. Also, it was theoretically shown that single-

junction and multi-junction GaAs-based SCs have the highest efficiency limit in the world 14. Thus, 
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the majority of works about growth of III-V compounds on Si is devoted to the study of the GaAs 

growth on silicon wafers43–59. 

In 2008, Russian authors published a comprehensive and structured review of world 

research in this topic43. The growth of polar III-V compounds on a non-polar silicon wafer can 

lead to the formation of antiphase domains, but this problem could be solved by using disoriented 

wafers by 4°-6°44. Furthermore, the main fundamental problems of the GaAs growth on Si are the 

large mismatch of lattice constant (4%) and the difference in the coefficients of thermal expansion 

which have not been completely solved yet17. Two ideologically different groups of methods have 

been proposed to solve these problems.  

The first approach provides attempts to grow GaAs directly on silicon wafers using 

different techniques: cyclic annealing45, two-step growth46,47, the use of surfactants, for example, 

hydrogen48. The most common method is the growth of a very thin nucleation layer at low 

temperature and the subsequent growth of active layers at higher temperatures. This technology 

allows one to obtain better structural properties of grown GaAs layers. The possible reason of this 

improvement is the higher mobility of the defects leading to their annihilation in the next growth 

steps.  

A classical single-junction SC based on GaAs was grown on a silicon wafer with this two-

step method. First, a buffer GaAs layer was grown by MBE at low temperature of 390 °C, then the 

sample was placed in a the VPE-chamber, where active GaAs layers were grown46. But the SC 

efficiency was only 11.17% due to the presence of a large number of defects near the edge of the 

bandgap in GaAs. In another work47 the special process of annealing was carried out at a 

temperature of 600 °C to improve the layer characteristics after the growth of the buffer layer at a 

temperature of 150-300 °C. Then the SC was grown, the part of silicon wafer was shaped as an 

array of pyramids to reduce the effect of defects on the GaAs/Si heterointerface from the rear:  it 

allowed to increase the efficiency from 8.7% to 10.6%. Previously, double-junction monolithic 

SCs based on GaAs/Si were grown in Japan by MOCVD52, where the silicon homojunction acted 

as the bottom subcell, with an efficiency of 19.9%.  

In recent years, novel methods of GaAs growth through holes in the buffer layer of 

dielectric materials covering silicon have emerged 53–55. It allows avoiding the large number of 

antiphase domains on the Si/GaAs heterointerface in the first steps of growth. Further single 

crystals of GaAs would coalesce after passing through the entire thickness of the dielectric without 

dislocations formation. A French group has developed a method for the GaAs growth through 

holes in a silicon oxide (SiO2) film with a thickness of 0.6 nm by the epitaxial lateral overgrowth 

method allowing to obtain III-V material of good quality53. Also, the improvement of structural 

properties of GaAs single crystals was obtained with an increase in the growth temperature from 
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550 to 575 °C54. SCs based on a GaAs p-i-n junction was grown in the holes of the SiO2 film (its 

thickness was 200 nm) but it had an efficiency of less than 1%55. 

The second group of methods is based on the use of different thick buffer layers consisting 

of different materials (Ge, GaInP, GaAsP etc.) giving the possibility to grow a thick GaAs layer 

with high quality49–51. The metamorphic method consists in a smooth transition from the lattice 

constant of Si to GaAs or Ge. Thus, the silicon wafer is used as a template wafer for the subsequent 

growth of active semiconductor structures of GaAs. The buffer layer quality is not important in 

this method so dislocations can introduce in it. For photovoltaic application, the silicon wafer 

should be considered as an active layer for the bottom subcell in the ideal MJSC so the GaAs/Si 

interface must have high quality for a good transport of charge carriers through it. Thus, these 

methods are less preferable since defects and dislocations lead to significant recombination losses 

of charge carriers in buffer layers. Consequently, it does not permit to use silicon for high 

photovoltaic performance SCs. 

As described above no successful approach has been found for monolithic epitaxial growth 

of GaAs on silicon wafers for optoelectronic applications like SCs. The mechanical bonding 

method was suggested to avoid direct growth of III-V compounds on the Si wafer. Two structures 

are grown on their different own wafers of GaAs and Si56, then they are mechanically connected, 

and the top GaAs wafer is removed. As a result, a double-junction SC was fabricated with an 

efficiency of 19.1%. In this approach, the main efforts are focused on the development of a bonding 

technology allowing to reduce the effect of defect levels forming at the Si/GaAs heterointerface 

during the bonding process57. Nowadays, an efficiency of 27% was achieved for the tandem 

bonding SC based on the GaInP/Si system58, and a triple-junction SC based on GaInP/GaAs/Si 

was grown59. However, the method of mechanical bonding is expensive and difficult to adapt to 

the industrial SC production. 

To summarize, the monolithic epitaxial growth of GaAs on silicon is a very difficult task 

for modern optoelectronics due to the high lattice-mismatch between Si and GaAs. It leads to 

drastic degradation of the layer quality and low SC performance. Also, the bonding technology of 

GaAs/Si MJSC is very complex and inconvenient for low-cost mass-production. This is why novel 

semiconductor materials have been explored for a lattice-matched growth in top subcells of 

monolithic MJSCs on silicon wafers in one process without any mechanical steps. 

 GaP on Si 

Gallium phosphide (GaP) is one of the best choices of III-V semiconductor to be grown on 

Si wafers. The lattice-mismatch between GaP and Si is only 0.37%17 so it opens wide perspectives 

for the pseudomorphic epitaxial growth of layers based on GaP. Nowadays, there is a large number 
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of works devoted to the development of dislocation-free growth of GaP on silicon wafers60–66. 

However, problems occurring during the growth process are similar to the ones in the growth of 

GaAs on Si. Firstly, the growth of polar GaP compounds on a nonpolar Si wafer leads to the 

formation of antiphase domains60. Secondly, the requirement of high growth temperatures and 

different coefficients of temperature expansion of GaP and Si causes the formation of threading 

dislocations61. These reasons seriously complicate the growth process. 

The methods for avoiding these problems coincide with that proposed above for the growth 

of GaAs on Si. First of all, the two-steps method is used with a nucleating layer grown at low 

temperature in a first step62–64. This growth method of the nucleation layer is called "MEE-

migration enhanced epitaxy" for MBE. It consists in an alternate interaction of the gallium and the 

phosphorus fluxes with the wafer surface at low temperatures of 350-400 °C. In the second step, 

the growth of III-V materials occurs at high temperatures of 550-600 °C with continuous fluxes of 

atoms. According to SEM measurements much lower density of threading dislocations arises in 

the sample with nucleation layer of GaP64 that positively impact the lifetime of charge carriers. 

Secondly, annealing procedures can also improve the quality of the GaP layers grown by MBE. 

For example, the multistage annealing at temperatures of 380-480 °C is preferable to the annealing 

at a constant temperature of 400 °C because crystal properties of GaP epilayers strongly 

improved65. Thirdly, the pre-epitaxial treatment of the wafer surface also can be used for 

optimizing the growth of GaP on Si. For instance, the silicon surface reconstructs in the growth 

chamber at temperatures of 700-800 °C under the gas flow of arsine (AsH3) leading to better 

quality of GaP layers66. 

Despite the difficulties of the GaP growth on Si this concept is optimal for low-cost high-

efficiency SC due to good passivation of Si by GaP and the possibility of growth of top subcells 

based on III-V alloys lattice-matched to GaP and Si as described below. Also, the efficiency of 

single-junction SCs based on the GaP/Si heterojunction should be by 1.1% higher than in a 

standard silicon diffusion homojunction, VOC will be higher by 49 mV and can reach 0.7 V 

according to the theoretical estimations67. In 1980, the first SC based on a GaP/Si heterojunction 

was fabricated with high VOC=0.66 V, but with it has low efficiency η=1.7% due to poor fill 

factor68. In 2015, similar SC with optimized contacts showed VOC=0.634 V, and the efficiency 

reached 12.4 %69.  

 InGaPAsN on Si 

Through the relative success in the GaP growth on Si, new perspectives have opened in 

last few years for the growth of unusual kinds of semiconductors for the fabrication of MJSCs 

based on the integration of III-V compounds on silicon wafers. These modern materials are alloys 
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of In-Ga-P-As-N lattice-matched to GaP and Si with small nitrogen content. However, unlike the 

dilute nitrides of InGaAsN lattice-matched to GaAs and Ge described above, alloys of InGaPNAs 

are not investigated so far and their properties are poorly known (electron and hole mobility, 

lifetimes of charge carriers, effective density of states in the valence and conduction bands, etc.).  

As known, GaP is an indirect semiconductor but the incorporation of nitrogen atoms leads 

to a significant change in the band structure of GaPN. The incorporation of just 0.43 % atomic 

fraction of nitrogen into the GaP lattice leads to the direct band transition, and the bandgap 

drastically decreases for increasing nitrogen content of few percent70,71. The theoretical description 

of the band diagram for dilute nitrides of InGaAsN and InGaPAsN will be described in detail in 

the next section, since it is a very important and extraordinary feature of these semiconductors. 

Furthermore, an addition of indium and (or) arsenic atoms allows one to vary the bandgap energy 

in a wide range of 1.5 to 2.1 eV while remaining lattice-matched to Si or GaP wafers18 (Figure 

I.2).  

The theoretical efficiency limit of double-junction SCs was simulated as a function of the 

bandgap energy of the bottom and top subcells72. According to such simulations 1.1 eV is the most 

optimal value of bandgap energy for the bottom subcell, and fortunately, it nicely corresponds to 

the value of silicon (Eg=1.12 eV)17.  Further, the bandgap energy of InGaPAsN lattice-matched to 

Si varies in a wide range so 1.7 eV-InGaPNAs layers could be grown with good quality in the 

future. Such value is optimal for the top subcell in double-junction SCs. In this case the theoretical 

limit of the InGaPAsN/Si system achieves a value of 37.4% under AM1.5G18. The theoretical limit 

for double-junction SCs of GaInP/GaAs is only 35.1% and experimental samples have almost 

reached its record-efficiency value of 31.6% for monolithic SCs73. Furthermore, triple-junction 

SCs based on the InGaPAsN(1.8eV)/InGaPAsN(1.4eV)/Si system is preferable to the 

GaInP/GaAs/Ge system. The potentially achievable efficiency of a triple-junction SC based on the 

GaPNAs/GaPNAs/Si system (bandgap energy 2.0/1.5/1.2 eV) was theoretically calculated to be 

44.5% when reaching a ~1ns minority carrier lifetime in GaPNAs74. The result of simulation 

creates promising background for the fabrication of high-efficiency MJSCs based on the 

InGaPAsN/Si system, and using cheap silicon wafers allows one to consider these SCs for future 

industrial production. 

Attempts to synthesis of alloys with mixed anions such as GaAs1-xNx and GaP1-xNx started 

in the 60s of the XXth century. The main problem was the low nitrogen incorporation in InGaPAsN 

layers for obtaining significant nitrogen content of several percent. The nitrogen content had been 

obtained only at the level of the dopant until the mid-90s, so the semiconductors could not be 

considered as classical ternary alloys. Subsequent development of VPE and MBE technologies 

helped growing compounds with N content of few percents75–77. In contrast to (In)GaAsN alloys 
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InGaPAsN ones lattice-matched to GaP have not been popular in research so these compounds are 

weakly investigated. One of the first quaternary alloys of GaP1-x-yAsyNx was grown on GaP wafers 

with contents of x=2% and y=0..19%78 and the sample with multiple quantum wells with x=2% 

and y=12%79 by MOVPE in Japan. In this article, the absence of dislocation was experimentally 

shown for compounds of GaPAsN and GaPN with different compositions and lattice-mismatch to 

GaP less than 0.3%. From this moment, properties of (In)GaPN(As) have begun to be investigated 

more deeply. 

Nevertheless, the growth of InGaPAsN on Si and GaP wafers is still a challenge for 

researchers since there are many unsolved problems similar to the growth of InGaAsN on GaAs 

and Ge ones. First of all, growth of dilute nitrides layers occurs in non-equilibrium conditions at 

low temperature required for better nitrogen incorporation. Usually, it is less than 500 °C whereas 

the optimal growth temperature of GaAs and GaP is close to 600 °C. Secondly, a higher nitrogen 

content leads to the reduction of the bandgap energy of GaPN but in the same time it leads to a 

deterioration of the GaPN quality. According to previous studies, the photoluminescence intensity 

decreases drastically with increasing nitrogen concentration in GaPN; it decreases also in the same 

layers of dilute nitrides grown on Si instead of GaP wafers71,80–82. Moreover, the incorporation of 

nitrogen in the GaP lattice leads to the appearance of elastic stresses in pseudomorphic layers and 

lattice-mismatch with GaP and Si wafers. All this contributes to the appearance and increase of 

dislocations, appearance of antiphase domains and significant concentration of point defects (being 

non-radiative recombination centers) during the growth. Consequently, it can negatively impact 

the lifetime of charge carriers, the electron and hole mobility and other electrical properties that 

are crucial for optoelectronic devices. Nowadays, the number of studies concerned with defects in 

the InGaPNAs alloys isoperiodic to GaP is very small. The method of optically detected magnetic 

resonance (ODMR) has been used to find and describe a number of defects of the Gai type in 

GaPN(As) layers83–85, but ODMR does not allow one to obtain useful information on its position 

in the band diagram, values of capture cross sections and concentration. These parameters are 

necessary for computer simulation of SC performance and defect influence on the lifetime of 

charge carriers in dilute nitrides. On the other hand, deep-level transient spectroscopy (DLTS) has 

been used to study defects in GaP:N layers (with a nitrogen concentration of (3–8)×1018 cm–3)86–

91 and GaP0.991N0.009 
92, but similar studies of InGaPAsN with higher nitrogen content have not 

been found. 

Therefore, different ways were proposed to improve the quality of GaPN dilute nitrides, 

and they are similar to the ones for InGaAsN lattice-matched to GaAs. Rapid thermal annealing is 

often a powerful method for the improvement of semiconductors properties and it led to the 

passivation of some defects in GaPN93. Furthermore, additional incorporation of arsenic and 



 

17 
 

indium leads to the significant growth of the PL amplitude81 and the inhibition of defect formation 

in dilute nitrides85,94. However, the quality of (In)GaPN(As) lattice-matched to GaP has still 

remained very poor so the fabrication of SCs with high efficiency is limited by low lifetimes in 

InGaPAsN materials. 

There are only a few studies of SCs based on InGaPAsN lattice-matched to GaP or Si. In 

the early 2000s, a group from NREL firstly fabricated SCs with an active layer of a quaternary 

alloys of GaPAsN: single-junction lattice-matched to GaP wafers95 and double-junction lattice-

matched to Si wafers96 by MOCVD. The best performance for single-junction SCs was shown in 

the sample with the undoped GaP0.83As0.14N0.03 layer 0.64 μm thick and its important parameters 

are an open-circuit voltage value VOC=1.12 V, a short-circuit current density JSC=5.8 mA/cm2 and 

a fill factor FF=60%, and the maximum of internal quantum efficiency was close to 70%. The 

double-junction SC had a low efficiency of 5.2% due to the bad quality of the GaPAsN. This can 

be caused by two reasons. The first one is a large number of threading dislocations rising during 

the growth on a silicon wafer (107 cm-2) because their concentration is lower during growth on 

GaP wafers (105 cm-2). The second one is the high nitrogen content of 4% in the quaternary alloy 

leading to a significant deterioration of its optical and electrical properties as described above.  

For a long time they have remained the only SCs based on dilute nitrides InGaPAsN lattice-

matched to GaP and Si. However, as for InGaAsN/GaAs the development of MBE opened good 

perspectives for the fabrication of SCs with active layers of InGaPAsN/GaP. In 2015, a single-

junction SC was grown with an efficiency of 7.9% by MBE with RF-plasma source of nitrogen on 

GaP wafers97. It is based on elastically stressed GaPN0.018 undoped layer 2μm thick and its 

photovoltaic parameters are VOC=1.33 V, JSC=8.53 mA/cm2, FF=69%. Maximum of external 

quantum efficiency was 95% for the sample with anti-reflection coating. It is a great result for SCs 

based on GaPN that confirms possibilities of MBE equipment. Also, a single-junction SC was 

grown with the active layer of i-GaPAsN 300nm thick by MBE in France98. Its parameters are 

VOC=0.82 V, JSC=4.08 mA/cm2, FF=52%. Recently, a Japanese group fabricated a single-junction 

SC based on a p-i-n junction of GaPAsN grown on an Si wafer by MBE but only the dark current-

voltage characteristic of SC was presented99. 

Consequently, InGaPAsN dilute nitrides lattice-matched to GaP are attractive materials for 

the fabrication of high-efficiency MJSCs on silicon wafers. The development of MBE can improve 

the quality of these materials in comparison with structures grown by VPE like it was done for 

InGaAsN on GaAs wafers. Therefore, in the present work the second task is the study of single-

junction SCs on GaP wafers and MJSCs on Si wafers with active layers of InGaPAsN grown by 

molecular-beam epitaxy. 
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 Band structure and properties of dilute nitrides 

The addition of nitrogen at only 0.43% changes the structure of the GaP from indirect to 

direct bandgap. Also, it strongly reduces the bandgap energy of GaPN and GaAsN compared with 

GaP and GaAs, respectively70,71, although the bandgap energy of GaN is higher (Eg=4.2 eV) than 

that of GaP and GaAs. It is explained by the incorporation of highly electronegative atoms of 

nitrogen in the matrix of GaAs and GaP. Nitrogen produces a localized level in the band structure 

of GaAs (above the conduction band) and GaP (below the conduction band). While its 

concentration remains low there is not a strong influence on the band diagram of GaPN alloys, but 

when it exceeds 0.4% a significant modification is observed in the band structure. The model of 

band-anticrossing (BAC-model) was explored to describe the band structure of GaAsN and GaPN 

compounds. The authors described the interaction of a localized nitrogen level with the conduction 

band of GaP and GaAs, respectively100,101. As a result, there are two conduction subbands E- and 

E+, estimated by the formula102: 

𝐸± = 0.5{[𝐸𝐶(𝑘) + 𝐸𝐿] ± [(𝐸𝐶(𝑘) − 𝐸𝐿)2 + 4𝑉2𝑥]0.5} (I.1) 

 where ЕС(k) is the conduction band dispersion of the semiconductor which atoms are replaced, EL 

is the energy of the localized states of the replacement atoms (here nitrogen), VN is the 

hybridization parameter of the localized states and conduction-band states. According to the 

literature the nitrogen level is located at EN(GaAs)=0.165eV103 above the minimum of the GaAs 

Г-valley and EN(GaP)=0.03eV102 below the minimum of the GaP X-valley.  

The energy bandgap of quaternary alloys of GaP1-x-yAsyNx can be estimated from the 

approximate equation with bowing parameter: 

𝐸𝑔(𝐺𝑎𝑃1−𝑥−𝑦𝐴𝑠𝑦𝑁𝑥) = (1 − 𝑦)𝐸𝑔(𝐺𝑎𝑃1−𝑥𝑁𝑥) + 𝑦𝐸𝑔(𝐺𝑎𝐴𝑠1−𝑥𝑁𝑥) − 𝑦(1 − 𝑦)𝑏𝐺𝑎𝑃𝐴𝑠 (I.2) 

where bGaAsP=-0.21 eV is the bowing parameter of the GaAsP ternary alloy17. The hybridization 

parameter VN of GaNAs is 2.7 eV102,104, and for GaPN a scatter of values is observed: 3.05 eV105, 

3.8 eV102 and 4.38 eV106. It means that the BAC-model should be applied to GaPN alloys more 

carefully than to GaAsN ones due to different positions relative to the conduction band. 

Comparison of the experimental PL spectra of GaAsN and GaPN partially confirms this 

suggestion107. As a result, the energy transitions were clearly observed in GaAsN layers with E- 

and E+ values estimated from the BAC-model, but for GaPN only an approximate E- value was 

detected. However, this partial discrepancy was explained by the exponential dependence of the 
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value of hybridization parameter in the BAC-model on the molar nitrogen fraction in GaP1-xNx 

compounds108. Thus, the value of VN is close to 4.38 eV and 3.05 eV for high (х>0.015) and low 

(х<0.007) nitrogen content, respectively. 

The non-parabolic behavior of a conduction subband E- can be explained by the larger 

electron effective mass (me) in dilute nitrides compared with GaAs and GaP. The value of me was 

explored in GaAsN/GaAs quantum wells with a nitrogen content of 0-2% by optically detected 

cyclotron resonance technique109. As a result, the value of me increases from 0.07m0 for GaAs up 

to 0.19m0 for GaAsN with 2% of nitrogen fraction. The BAC-model was applied for the theoretical 

estimation of an electron effective mass in InyGa1-yAs1-xNx lattice-matched to GaAs with high 

nitrogen content70. As a result, N-induced increase of me has been found in heavily n-type doped 

alloys and it reaches 0.40m0 for 3.3% of N and 8% of In. The effective mass of GaN0.012P0.988 was 

estimated as 0.38m0 in Ref.102. High value of me leads to a poor absorption in layers of dilute 

nitrides so they should be very thick to produce enough photo-generated current. It is a crucial 

issue since values of current must be matched for a bottom subcell of Si and a top subcell of 

InGaPAsN for high-efficiency MJSCs. 

Moreover, SCs require the fabrication of a wide-bandgap window on the top of the 

structure for better performance. So GaP and GaAs layers can be considered as candidates for this 

application due to their higher band gap energy of 2.26 eV and 1.42 eV than in dilute nitrides 

InGaPAsN(1.5-2.1 eV) and InGaAsSbN (0.9-1.2 eV), respectively. Thus, the exact knowledge of 

band properties of InGaPAsN/GaP and InGaAsN/GaAs heterojunctions is necessary for SC design 

and simulation, especially their band offsets. However, there are only very few works where it was 

obtained from experiments. According to literature, most part of the band offset should be in the 

conduction band for both heterojunctions110. The conduction-band offset is 280 meV for the 

GaN0.02As0.12P0.84/GaP heterojunction provided that bandgap energies are 2.34 eV and 2.0 eV for 

GaP and GaN0.02As0.12P0.84 materials, respectively79. The valence band and conduction band offset 

of GaAsN/GaAs were measured by XPS to be -0.019eV/%N and -0.175eV/%N respectively,111 

corresponding to a predicted type II of the heterojunction112. With indium incorporation the 

valence band level of InGaAsN gets up and for a content larger than 9% the heterojunction changes 

from the staggered band of II type to the straddling band of I type113. The 

In0.06Ga0.94As0.98N0.02/GaAs heterojunction is of II type with a valence band offset of 0.13 eV and 

a conduction band offset of 0.30 eV114. 

According to the BAC-model electron (μe) and hole (μh) mobility should quickly fall with 

increasing nitrogen content. However, there are no experimental data for InGaPAsN lattice-

matched to GaP as for GaPN. Electron and hole mobility was obtained from Hall measurements 

of n- and p-doped In3xGa1-3xAs1-xNx layers lattice-matched to GaAs with nitrogen fraction of 0-
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3%115. For nitrogen fraction of 3% μe and μh have values of 120 cm2/Vs and 50 cm2/Vs, 

respectively. 

As noted above, incorporation of nitrogen leads to low lifetime of charge carriers in dilute 

nitrides due to a high concentration of non-radiative recombination centers. Most of the works 

have been devoted to the study of InGaAsN alloys on GaAs rather than of InGaPAsN on GaP so 

it has allowed to improve growth conditions of InGaAsN layers and their quality. Perhaps, it 

explains why the efficiency of SCs with dilute nitrides on GaAs wafers is much higher than on 

GaP wafers. The biggest part of this work is devoted to the study of the influence of defect levels 

in both types of dilute nitrides on the performance of SCs. 

 Alternative way for growth of GaP on Si 

Nowadays, high-efficiency SCs lattice-matched to GaAs are produced on expensive wafers 

of GaAs or Ge, and SCs grown on silicon wafers have not reached high efficiencies. Modern 

methods of MBE and VPE require high temperatures of 500-800 °C for the growth of III-V 

compounds leading to unsatisfactory quality of heterointerfaces, layers deformation due to 

differences in thermal expansion coefficients, and deterioration of the bulk properties due to a 

large number of threading dislocations. In addition, the drastic drop of minority carrier lifetime 

was observed directly in the silicon wafer due to the annealing procedure of the wafer in the 

MOCVD chamber required for better growth of GaP layer116. It leads to a lower value of quantum 

efficiency in the long-wavelength region in the GaP/Si SC which can cause a significant drop in 

QE of the final MJSC in the future. Furthermore, high temperatures can lead to inter-diffusion of 

elements of the III, V and IV groups, which are doping impurities for each other, during the 

epitaxial growth process. Thus, the heterointerface is blurred, additional doping regions formed, 

and it negatively affects the photoelectric properties of structures. In addition to problems of 

scientific nature for epitaxial growth, there are economic ones due to strong requirements of ultra-

high vacuum in chamber, ultra-pure source of atoms, more complicated maintenance of equipment 

etc. leading to price increase of SC production. It seriously limits the use of epitaxial SCs in 

terrestrial photovoltaic applications. Therefore, new and cheaper methods should be investigated 

for the growth of III-V compounds on silicon wafers for applications in high-efficiency MJSCs.  

In this work, such a method, named plasma-enhanced atomic-layer deposition (PE-ALD), 

is presented for the low temperature growth of III-V GaP-based compounds using a plasma-

enhanced chemical deposition process. It is based on the growth of GaP(N) layers on silicon wafers 

in a PECVD chamber at temperatures below 400 °C without using thermal annealing at high 

temperatures during the fabrication process. A similar approach is performed for a low-

temperature growth of GaAs and GaP nucleation layers on silicon wafers in the above considered 
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two-steps MBE process. The method is also used in VPE and called atomic-layer epitaxy (ALE117). 

It consists of the alternate interaction of the wafer surface with the phosphorus and the gallium 

flows leading to atomically smooth layer-by-layer 2D-growth of GaP(N) without coalescence in 

islands for 3D- growth. Previously, the opportunity of ALE growth was demonstrated in the VPE 

chamber for GaP on Si117, but the process required high temperatures (more than 500 °C) for 

precursor’s decomposition limiting the use of low temperatures. This problem does not arise in the 

suggested method of PE-ALD since the decomposition occurs in a low-temperature plasma, and 

not on the wafer surface. On the other hand, the lack of requirement for ultra-high vacuum 

compared with MBE makes the growth by PE-ALD more attractive from the economic point of 

view; industrial mass production of SCs could thus be targeted. 

The proposed growth method of GaP on Si wafers has never been investigated before, so 

the properties of the obtained GaP layers and GaP/Si heterojunctions are unknown. Therefore, in 

the present work the third task is to explore the properties of GaP/Si structures grown by plasma- 

enhanced atomic- layer deposition at low temperatures. 

Summary 

The retrospective of semiconductor SCs was reviewed in this section. Different approaches 

were presented for the fabrication of high-efficiency MJSCs for terrestrial and space applications. 

Special attention was paid to the description of existing MJSCs grown on wafers of IV group (Si, 

Ge) and possible ways for improvement of their performance and reduction of their cost. 

Therefore, this study can be separated in three different parts investigating novel methods and 

materials for the fabrication of SCs. In the two first approaches, molecular-beam epitaxy is used 

for the growth of SCs with active layers of original alloys like dilute nitrides. These 

semiconductors are III-V-N compounds with a small content of nitrogen. In the first part, structures 

with InGaAsN layers lattice-matched to GaAs are studied for future integration in MJSCs on GaAs 

and Ge wafers. Here, InGaAsN layers are grown by a new method as nanoheterostructures of an 

original design based on the InAs/GaAsN superlattice. In the second part, single-junction SCs on 

GaP wafers and MJSCs on Si wafers with active layers of InGaPAsN will be explored. Its 

investigation allows us to complete our knowledge on properties of semiconductors for their 

application in high-efficiency MJSCs on silicon wafers. In the third part, a novel method of 

plasma-enhanced atomic-layer deposition at low temperature is studied for the growth of III-V 

compounds on Si wafers. It is considered as a prospective method for the production of low-cost 

terrestrial SCs based on III-V/Si systems. 
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Chapter II  

Experiments and methods 
Introduction 

The technological aspects of SC fabrication and methods of SC research are presented in 

this chapter. The study can be separated into four different steps: SC growth, post-growth 

processing, experimental research and theoretical simulation. SCs are grown by two methods: 

molecular-beam epitaxy and plasma-enhanced atomic-layer deposition. Then, grown structures 

are processed for fabrication of experimental samples depending on the characterization technique. 

Thereby it is a very demanding task using different methods of contact formation (vacuum 

evaporation, plasma- enhanced chemical- vapor deposition), thermal treatment (rapid thermal 

annealing, annealing on home-made heater), selective etching (wet, dry) for samples with desirable 

construction (e.g. mesa-structures). Photoelectrical properties of SCs are obtained from current-

voltage characteristics and spectral response. A substantial part of the work is devoted to 

investigation of layers properties in structures by different capacitance methods (capacitance-

voltage characteristics, admittance spectroscopy, deep-level transient spectroscopy). Also, 

different techniques (scanning and transmission electron microscopies, Raman spectroscopy) are 

used for characterization of structural properties. Finally, properties of SC are simulated by 

computer modeling. 

II.1 Growth technology 

The material growth is the most important part of SC fabrication since initial properties of 

layers directly depend on its conditions. However, this thesis is mostly devoted to post-growth and 

exploration of SCs properties so growth methods are described generally without all technological 

details. 

 Molecular-beam epitaxy 

MBE is one of the most attractive and popular method for the growth of semiconductors 

with high quality. The main advantages are the high vacuum during growth and the purity of the 

source of elemental species involved constituent or doping elements leading to low background 

unintentional doping unlike in VPE leading to carbon and hydrogen incorporation. In this study, a 
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Gen III Veeco MBE system is used for the growth of photoelectric structures with active layers of 

dilute nitrides. This equipment has solid sources of Ga, In, P, As for III-V growth and sources of 

Be and Si for p- and n-type doping of layers, respectively. The setup features a source of atomic 

nitrogen based on the discharge of N2 molecules by radio frequency (13.56 MHz) plasma for the 

creation of dilute nitrides. The schematic view of the setup is presented in Figure II.1. 

 

RF-plasma 

source of 

nitrogen 

wafer 

 

Figure II.1 The schematic view of MBE setup118 with RF-plasma source of nitrogen. 

We will present results obtained on three series of samples. 

The first series of samples consist of single- junction SCs with active layers of undoped 

InGaAsN (Eg=1.03 eV) grown on n-GaAs wafers (Figure II.2a). The layers are made of 

nanoheterostructures of an original design based on the InAs/GaAsN superlattice (SL). The SL 

can be considered as multi-quantum wells where wells are grown as sub-monolayer digital alloys 

(SDA) with thickness of a few monolayers (MLs). For example, the InGaAs SDA is a SL with 

periods of (InAs)n/(GaAs)m where n, m=1,2,3… are numbers of monolayers39. In such 

configuration, the InAs/GaAsN SL behaves as an InGaAsN quaternary alloy. Therefore, in our 

samples thin InAs layers of 1 ML (0.2-0.5 nm) should compensate the elastic stresses arising 

during the growth of GaAsN (7-12 nm) on the GaAs wafer due to lattice-mismatch. On the other 

hand, InAs has a tendency to coalesce leading to formation of 3D islands instead of the required 

2D layer. Thereby the described method is very complex since thickness and composition 

parameters of GaAsN and InAs must be chosen and controlled very precisely for optimal 

performance of SCs. In the current work, three such structures were grown with different 

thicknesses of i-InGaAsN. Here and below, InAs/GaAsN is considered as InGaAsN so both names 

will be used.  
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The second series of samples consist of single- junction SCs with active layers of 

InGaPAsN grown on identical n-GaP wafers (Figure II.2b). Increasing nitrogen incorporation in 

GaP promotes the reduction of bandgap energy and lattice constant leading to lattice-mismatch 

with the silicon wafer. Therefore, the elastic stresses arising during the growth process must be 

compensated for better quality of dilute nitrides. An additional content of indium or arsenic is 

proposed for this task since the lattice constant of alloys should increase with the introduction of 

these atoms. The first grown SC has an active layer of n-doped quaternary alloys of GaPAsN with 

As content of 15% (Eg=1.9 eV), 1000 nm thick. Such thick layer is grown for better measurements 

of optical absorption of GaPAsN. Then, two similar SCs were grown with an undoped i-GaPAsN 

with larger As content (up to 30%, leading to Eg=1.7 eV) layer, 300 nm thick, with two different 

post-growth treatments in the MBE-chamber. These structures allow us comparing photoelectric 

properties of Si-doped and undoped dilute nitrides for their utilization in top subcells of MJSC. A 

fourth SC is based on undoped InGaPN (Eg=2.04 eV), 350 nm thick, grown as a SDA of 

InP(0.3nm)/GaPN(10nm). It is grown to compare the compensation ability of In and As in GaPN 

layers, the possible influence on defects formation and the photoelectrical properties. 

 (d) (a) (b) (c) 

 

Figure II.2 Schematic view of solar cells with active layers of dilute nitrides grown by MBE. TJ 

stands for tunnel junction. 
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A third series of samples consist of MJSCs (3 double-junction (Figure II.2c) and 1 triple- 

junction (Figure II.2d) grown on p-type (concentration of acceptors 1016cm-3) Si(100) wafers with 

top subcells based on active layers of undoped III-V compounds. Bottom subcells for all MJSC 

are formed by pre-growth thermal annealing of the wafer in a phosphorous flow during 10 minutes 

at 400-500 ˚C in the chamber. It leads to the formation of a p-n homojunction in the silicon wafer 

due to P atoms incorporation in the Si lattice leading to surface n-type doping.  Then III-V layers 

are grown for the fabrication of tunnel junction (TJ) and top subcells. The first double- junction 

SC has a top subcell based on i-layer of GaP0.70As0.30, 400 nm thick. It is grown as a reference and 

to define the role of nitrogen in defect formation in III-V compounds. Then, two different 

structures are grown with active layers of undoped dilute nitrides lattice-matched to Si as the top 

subcell. As described before GaP0.98N0.02 is superlattice- matched to Si so it is a good candidate 

for an active layer in top subcells. However, problems of elastic stresses in ternary GaPN should 

be solved. Therefore, indium and arsenic are applied for the compensation of arising elastic 

stresses due to incorporation of nitrogen in the GaP lattice and for possible reduction of Eg. One 

double-junction SC has an undoped region based on an InP/GaP0.99N0.01 (10nm/0.3nm) SDA, 200 

nm thick, with bandgap energy of 2.1 eV. Another one is grown with an undoped layer of 

GaP0.882As0.10N0.018 (Eg=1.9 eV), 200 nm thick, with 10 percent of arsenic for a better incorporation 

of nitrogen and for providing a decrease of bandgap. The last sample is a triple-junction SC with 

two subcells based on active layers of undoped dilute nitrides grown on the Si wafer. Middle and 

top subcells are p-i-n junctions with active i-layers of GaP0.882As0.10N0.018, 200 nm thick, and 

GaP0.987N0.013, 150 nm thick, respectively. 

All SCs are grown without any antireflection coating. 

 Plasma-enhanced atomic-layer deposition (PE-ALD) 

Plasma-enhanced chemical vapor deposition is the second growth technology used in this 

work. It is a popular technique for the fabrication of SC based on amorphous silicon layers. Its 

main advantages are lower cost of production and lower temperature of process than in MBE. The 

technology is based on material deposition from gas phase on solid wafer. Gas flows enter into the 

PECVD- chamber and molecules decompose under the influence of plasma (nitrogen, hydrogen, 

argon etc.). Different gases are used as sources of atoms in PECVD: phosphine (PH3) for 

phosphorous (P), trimethylgallium (TMG) for gallium (Ga), silane (SiH4) for silicon (Si), 

dimethylzinc (DMZn) for zinc (Zn). In this work, GaP layers with different thicknesses (50- 

100nm) are grown using an Oxford PlasmaLab System 100 (13.56 MHz) equipment on both n-

type (phosphorus-doped, 2-7 Ω·cm) and p-type (boron-doped, 0.8-1.2 Ω·cm) silicon wafers at 380 



 

26 
 

°C. Therefore, grown samples are based on the GaP/Si heterojunction (Figure II.3). The schematic 

view of our setup is presented in Figure II.4. 

 (a) (b) 

  

Figure II.3 Schematic view of GaP/p-Si and GaP/n-Si samples grown by PECVD. 
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Figure II.4 Schematic view of PECVD setup119. 

If there are flows of TMG and PH3 in the chamber at the same time, it will be called 

continuous growth of GaP. However, there are many different parameters controlled by the 

operator, that can modify or improve the growth process. In this work, the deposition process has 

been modified. Indeed, we have introduced only one type of gas at a time in the chamber, so that 

the gas flows of different molecules have been separated in time. For example, GaP consists of 

atoms of III (Ga) and V (P) groups so their flows are separated and at any moment atoms only of 

one group occupy the chamber. For example, in the first step, only the PH3 source is opened and 

only P atoms interact with the silicon wafer. Then, its source is closed, the chamber is cleaned by 

a hydrogen plasma and P atoms migrate on the surface and try to find and stay at stable places. 

Afterwards the TMG flow enters the chamber and Ga atoms are adsorbed onto the phosphorus 

surface. They migrate, interact with P atoms and stay in position providing Ga-P bonds. Then the 

chamber is cleaned again by a H plasma and excess Ga atoms are emitted from the surface. The 

first cycle is then completed. All steps are then repeated again. Therefore, the method is called 

plasma- enhanced atomic-layer deposition. Eventually, GaP material is produced with atomic 

smooth surface and with the supposed GaP crystal lattice. The typical temperature of process is 

less than 400 ˚C. Such a process is similar to what is used in the initial step of MBE described in 
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Chapter I based on the concept of migration-enhanced epitaxy at low temperature for the growth 

of 2D smooth layers of GaP. Additional steps can be introduced for the desirable doping of GaP. 

For example, silane flow is added for n-type doping of GaP. A schematic view of typical GaP:Si 

growth is presented in Figure II.5. 

 

 

Figure II.5 Schematic view of atomic-layer deposition of GaP:Si. 

II.2 Post-growth processing 

Post-growth processing is applied for samples fabrication from as- grown structures for 

their experimental exploration. The main goal of this step is the creation of samples with good 

contact layer and desirable shape. Prepared samples can be divided into two groups: the first one 

consists in SCs for the investigation of photoelectric properties and the second one is mesa- 

structures for capacitance measurements. Therefore, there are three technological steps to this 

purpose: contact material deposition, temperature treatment and etching. All these processes 

strongly depend on the construction of grown samples and suggested experimental methods so 

many different ways are used it this work for samples fabrication. In this section, methods are 

described overall but each post-growth process will be described separately in the next chapters 

for each type of samples. 
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 Contact fabrication 

In this section, two different problems are investigated, namely the fabrication of ohmic 

contacts and of Schottky barriers to the layers. It is quite a difficult task to find the best contact 

materials and annealing temperature for each semiconductor. Usually, it takes a lot of time and 

many tests are required but electrical characterization cannot be accurate without suitable contact 

layers. So many technological approaches have been developed for the reliable formation of ohmic 

contacts to n-GaP, p-GaP, n-GaAs, p-GaAs grown by MBE, n-GaP grown by PE-ALD, n-Si and 

p-Si wafers as well as for Schottky barriers to n-GaP grown by PE-ALD, n-Si and p-Si wafers. 

Here, we describe the equipment used for this goal. 

The vacuum evaporation method is used for the deposition of contact materials  in the BOC 

Edwards Auto500 equipment. It is intended for the fabrication of metal films by thermal and 

electron beam sputtering, including high-purity films of metals with a high melting point. The 

equipment is a chamber with pressure below 10-5 mbar where sources of metal are located in the 

bottom part of the chamber while the structures are fixed to a rotated disc in the top part. Deposition 

occurs as a result of evaporator heating in two different ways, depending on the melting point of 

the metal: 

1. Resistive evaporation (Ag, Au, In, etc.). The solid metal source is put in evaporators 

made of refractory metals with a high melting point like molybdenum or tantalum. An electric 

current is passed through them and due to heating the material almost instantly evaporates and is 

deposited on the disk. The mass of evaporated material defines the thickness of the deposited layer. 

The advantage of this method is its simplicity and the speed of the process but the drawback is its- 

rather poor control. 

2. Evaporation by an electron beam (Pd, Cr, Ti, Ni, etc.). The electron beam heating method 

is used for evaporation of refractory metals: it is directed to the material in a graphite holder and 

heats the metal which evaporates at a certain rate. The thickness of the deposited layer on the 

structure is defined using an optical sensor inside the chamber.  The beam power and deposition 

time allow us to control the thickness of the deposited layer. In this work, optimal deposition 

regime is selected at a rate of 1-3 nm/min. The disk uniformly rotates during the deposition process 

to achieve uniform deposition of material. 

Our BOC Edwards Auto500 equipment allows us to deposit a few metals in one process 

for the fabrication of complex sandwich metal structures. Then, the Jipiec JetFirst 100 equipment 

is used for rapid thermal annealing (RTA) of deposited contacts. It allows to anneal semiconductor 

structures in N2, Ar, N2 + H2 (3-5%) and air flow in the temperature range from 20 °C to 1300 °C 

with an accuracy of ± 2 °C. The setup has a computer software permitting to create recipes with 
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different parameters and monitor them in real time. Vacuum evaporation and subsequent RTA are 

used for the fabrication of ohmic contacts to all the III-V compounds and Schottky barriers to all 

the structures.  

Also, we have developed low-temperature fabrication of ohmic contacts to silicon wafers. 

Hydrogenated amorphous silicon (a-Si:H) is deposited by PECVD method onto the wafer using 

an Oxford PlasmaLab System 100. Then silver is vacuum evaporated in BOC Edwards Auto500 

system and samples are annealed on a home-made heater at air atmosphere at low (less than 200 

°C) temperature. 

 Etching methods 

After contact formation, an etching step is required for the fabrication of mesa-structures 

with desirable shape. Sometimes the surface of grown structures can be inhomogeneous and shunt 

currents can appear. Also, contact layers can have low conductivity leading to problems with the 

collection of charge carriers and low reliability of measured data due to areas that are not well 

defined. Furthermore, in DLTS samples must have small capacitance values for better 

measurements. Therefore, mesa-structures should be fabricated with well defined small areas. 

Precise etching has been used to this purpose. In the current work, both types of dry and wet 

etching processes are used depending on the structures and experimental characterization 

techniques. On the other hand, etching is a chemically active process leading to possible unwanted 

interactions of the etchant with metallic contacts or resistor used in photolithography. Below, we 

describe specific optimized recipes of etching for specific metal contacts. 

II.2.2.1 Dry etching 

Dry etching is carried out at the Oxford PlasmaLab 100 ICP380 equipment of reactive-ion 

etching (RIE) and inductively coupled plasma (ICP) etching. This equipment is designed for 

etching a wide range of different semiconductor materials. The etching principle is based on the 

chemical and mechanical interaction between ions from the plasma and the structure. Our 

equipment allows us to use ICP and RIE methods simultaneously and to use different etchant gases 

(Ar, O2, CF6, BCl3, Cl2 etc.). In our case, the technology of dry etching is optimized for III-V 

compounds and for silicon with deposited metal (In, Au) contacts without their degradation during 

the process. For III-V compounds etching is carried out with optimized powers in an atmosphere 

of chlorine (Cl2) and boron trichloride (BCl3) with a ratio of 3:1 at a temperature of 20 °C with 

controlled rate of 1 μm/min. Silicon etching is carried out with optimized powers in an atmosphere 

of sulfur hexafluoride (SF6) and oxygen (O2) with a ratio of 9:1 at a temperature of -10 °C with 

controlled rate of 0.5 μm/min. These developed recipes allow us to obtain good reproducibility 
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and controllability for the fabrication of mesa-structures with the desirable shape for our 

experiments without any high degradation of metal contacts. Nevertheless, dry etching has two 

disadvantages: possible degradation of the structure due to ion bombardment leading to defect 

formation and very high etching rate of 1 μm/min. 

II.2.2.2 Wet etching 

The wet etching is more preferable for a precise control because some samples require an 

accuracy of etching depth of 20 nm. However, it is a hard task to find a suitable etchant for III-V 

compounds weakly interacting with metal contacts and resists of lithography, especially for III-V-

N alloys. A common solution based on sulfuric acid (H2SO4) of H2SO4:H2O2:H2O=5:1:1 is used 

for the etching of SCs based on InGaAsN/GaAs layers since their top and bottom gold contacts 

remain stable in it. The etching rate of InGaAsN is 50-100 nm/min. On the other hand, one of the 

resist used for lithography in post-growth processing described below is strongly etched in this 

solution. Thereby we have found a very unusual and rare solution based on potassium iodate 

(KIO3): KIO3:HCl:H2O=1:1:20 allowing us to perform the lithography for the fabrication of mesa-

structures with the geometry described below. Its solution etches GaP-based dilute nitrides with a 

rate of 70-80 nm/min. It should be noted that wet etching is a complex task due to the high number 

of parameters and ambient conditions (temperature, atmosphere) affecting the process. For this 

reason, each etching rate must be precisely calibrated for each new solution. The etching properties 

of the solution can strongly depend on time since chemical reactions lead to big changes in its 

behavior. It is an important drawback unlike for dry ICP-etching that is stable with time.  

 Post-growth processing of SC 

The grown structures and used experimental methods can impose very strong restrictions 

on the post-growth processing. The growth of good quality structures is only the first step to obtain 

adequate experimental data. Each experimental technique requires special fabrication and 

geometry of contacts. An ohmic contact grid must be created for photoelectric measurements under 

illumination, but for good capacitance measurements small dots should be formed by etching since 

the signal accuracy decreases with increasing contact area. Furthermore, bottom contacts to wafers 

must be always ohmic otherwise a potential barrier appears and leads to catastrophic deterioration 

of photoelectrical performance of solar cells.  

Unfortunately, we experienced such problems at the initial stage of this thesis for single-

junction SCs grown on GaP wafers. A wafer is normally heated by IR-radiation in the used MBE 

equipment, but GaP does not absorb at these wavelengths. Therefore, a titanium layer, 100 nm 

thick, was deposited by magnetron sputtering on one side of the n-GaP wafer to absorb IR radiation 
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in order to heat the wafer, and the other side of the wafer is used for the growth of dilute nitrides 

layers. In the first stage of our studies, it was found that titanium formed a Schottky barrier onto 

n-GaP so we found a procedure to remove the titanium layer. However, this procedure is quite 

complicated and not applicable for industrial applications so we also developed a post-growth 

technology in order to contact the n-GaP wafer from the front side, which allowed us to keep the 

titanium layer on the bottom side. So, in the proposed technology both contact electrodes, on the 

n-GaP wafer and on the p-GaP top layer, are taken on the front side of the wafer. In the future, it 

will allow to adapt the technology to the requirements of the planar industry. 

Figure II.6 illustrates the principle of the post-growth process of mesa-structures 

fabrication, for example, for the p-i-n structure with an active layer of GaP(N) grown on an n-type 

silicon substrate. Initially, the front surface of the gallium phosphide is cleaned in HF:H2O solution 

during 5 seconds to remove the oxide possibly formed on the GaP surface (Figure II.6a). Next, the 

resistive layer is applied to the front side of the sample. In this step, the lower PMGI resist is first 

applied and heated at 170 °C for 5 minutes, then the second resist AZ_MIR_701 is applied and 

baked for 90 seconds at 90 °C. Then the sample is exposed to UV light through the created mask 

with an intensity of 6 mW/cm2 for 90 seconds. After this step, the resist is developed in solution 

of AZ_MIF_726 (2.5% tetramethylammonium hydroxide solution) for 90 seconds until a double 

border is formed (Figure II.6b). Then the top contact is vacuum deposited to the front layer of p-

GaP (Figure II.6c). Then, the remaining resist is lift off by boiling in dimethylsulfoxide (DMSO) 

for 5 minutes at 170 °C to completely delete the resist from the sample surface (Figure II.6d). At 

the next stage, the resist layer AZ_1518 is applied and baked for 60 seconds at a temperature of 

100 °C. Next, the sample is exposed for 30 seconds to a UV light intensity of 6 mW/cm2 through 

a new mask with holes selected to exclude the interaction of the deposited metals with the etchant 

in the subsequent etching process. Resist is developed within 60 seconds in a solution of 

AZ_MIF_726 (Figure II.6e), afterwards the sample is etched in a wet solution of KIO3: HCl: H2O 

(Figure II.6f). The technology of the etching of diluted nitride layers of the GaP(N) type is a key 

step in the post-growth process, so it had been developed very long and scrupulously. Further 

remaining resist is removed in the DMSO under the previously described conditions (Figure II.6g). 

Then, the first step of resists application and their exposure to UV light is completely repeated 

using a new mask. The mask image was chosen to make safe cover of the formed SCs and mesa-

structures as columns to prevent shunting of the active layers (Figure II.6h) during the subsequent 

vacuum deposition of the contact to the n-GaP bottom layer (wafer) in the form of concentric rings 

(Figure II.6i). In the final step, the resist is removed in the DMSO solution under the conditions 

described above (Figure II.6j). Thus, mesa-structures are fabricated for carrying out capacitance 
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measurements on structures with both electrodes drawn to the front side. The main advantage of 

the technology is the ability to adapt the contact geometry to any future experimental research. 

For the requirements of the current work, it was necessary to fabricate mesa-structures for 

carrying out capacitance studies and SC for photoelectric measurements. Three different masks 

were created to this purpose: the first one (Figure II.7a) for the resulting lithography in Figure 

II.6b, the second one (Figure II.7b) for lithography in Figure II.6d, and the third one (Figure II.7c) 

for lithography in Figure II.6h. The fabricated sample with mesa-structures and SCs is presented 

in Figure II.8. Four dots in the form of crosses, visible in Figure II.8, are used for precision 

alignment of the mask position at different stages of the post-growth process. For convenience of 

visual perception, violet and red colors indicate the remaining resist, and the green is the surface 

of the sample in Figure II.7, all dimensions are indicated in mm. 

The diameter of the contacts to the top p-GaP layer is 0.5 mm first and third rows in Figure 

II.8, while it is 1 mm for the second row. Such diameter values are well adapted to the capacitance 

measurements. The concentric geometry of the contacts allows us to achieve better collection of 

charge carriers in the experiments. It reduces the problem of interpretation of obtained results in 

case of the presence of lateral spreading in the sample layers. A contact grid design has been 

adapted to the circular contact geometry to measure photoelectric properties (4 series of circles in 

Figure II.7a and Figure II.8). Furthermore, contacts for transfer line measurements (TLM) are 

fabricated to investigate their ohmic behavior and estimate their resistivity. TLM contacts are also 

formed during the deposition of metals to the top (Figure II.6c) and to the bottom contact (Figure 

II.6i): in the photograph of the sample they are located in the first and third rows, respectively 

(Figure II.7 and Figure II.8). 
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Figure II.7 (a, b, c). Mask for photolithography. Violet and red colors indicate the remaining 

resist after exposure, and the green is the surface of the sample. Dimensions are in mm. 

 

Figure II.8 Real fabricated sample for experimental research. 

(a) (b) 

(c) 



 

35 
 

The developed post-growth technology is a universal planar method for the fabrication of 

mesa-structures and solar cells. However, developer and etchant solutions as well as resists should 

be found based on the composition of used semiconductors and metals. In this work, the method 

was successfully tested on single-junction SC grown on GaP wafers. It opened good perspective 

for the application of this method to MJSCs.  

In double-junction SC there are two subcells and one tunnel junction (TJ). For example, 

consider our double-junction on a silicon wafer (Figure II.2c): the top subcell is a p-i-n junction 

based on InGaPNAs, the TJ is n++-GaP(N)/p++-GaP(N) and the bottom subcell is a p-n silicon 

homojunction. The problem is the direct capacitance measurement of the top subcell without 

influence of the bottom subcell. The proposed post-growth technology allows us to form metal 

contacts to the p-GaP layer and to the n-GaPN top layer allowing us to directly measure the 

photoelectric properties and the capacitance of the top subcell. 

II.3 Experimental methods 

Different techniques are developed to study SCs and dilute nitrides properties in the current 

work. First, photoelectric properties of SC are characterized by current-voltage characteristics in 

the dark and under illumination as well as spectral response measurements. Optical transmission 

and reflection are measured for the optical characterization of samples. However we will mainly 

focus on capacitance measurements that constitute the core of our characterization work. 

Capacitance techniques are used to provide a deeper study of external properties of dilute nitrides 

and GaP grown by PE-ALD. Capacitance-voltage measurements allow us to estimate the doping 

concentration in active layers of SCs. Admittance and deep-level transient spectroscopies provide 

information about defects in dilute nitrides. Furthermore, scanning electron, atomic-force, Raman, 

transmission electron microscopies are used for the characterization of structural properties of GaP 

grown by PE-ALD. Scanning electron microscopy is also used for measurements of mesa-

structures after etching and to evaluate the geometric properties of structures. 

 Current –voltage characteristics 

Current-voltage characteristics is the measurement of current between electrodes as a 

function of the applied voltage. The current-voltage characteristic of a standard p-n junction in the 

dark (Figure II.9) is described by the well-known modified Shockley law (II.1)120: 
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𝐽 = 𝐽𝑆 [exp (
𝑞𝑉

𝑛𝑘𝐵𝑇
) − 1] (II.1) 

where J is the net current flowing through the diode between the p-side and the n-side; JS 

is the "dark saturation current", e.g. the diode leakage current density under reverse bias in the 

absence of light; V is the applied voltage across the terminals of the diode; q is the absolute value 

of electron charge; kB is  Boltzmann's constant; T is the temperature (K); n is the ideality factor.  

The ideality factor is an important parameter giving information on the quality of the p-n 

junction. In ideal p-n junctions the current is driven by the diffusion of electrons and holes and n 

is equal to 1 in this case. When the current is driven by recombination of electrons and holes 

through deep centers in the space charge region of the p-n junction, n is equal to 2. 

Under light, if the photon energy is larger than the bandgap (hv≥Eg), photons are absorbed 

and create electron-hole pairs that are separated by the built-in electric field in the space charge 

region, leading to a photocurrent of opposite sign to the forward current in the dark and making 

the p-n junction an active device generating electric power. 

The process of converting solar energy into electricity can be divided into four stages: 1) 

absorption of light; 2) generation of electron-hole pairs; 3) separation of charge carriers in a p-n 

junction; 4) collection of charge carriers on electrodes. 

The total current under light is:  

𝐽 = 𝐽𝑆 [exp (
𝑞𝑉

𝑛𝑘𝐵𝑇
) − 1] − 𝐽𝑝ℎ (II.2) 

where Jph is the photogenerated current. 

In Figure II.9 the subsequent parameters of SC are shown: short-circuit current (JSC), open-

circuit voltage (VOC), voltage (VPM) and current (JPM) at maximum power point PPM= VPM JPM. To 

describe the shape of the I-V curve under illumination another parameter is used: the fill factor of 

the I-V characteristic (FF), defined as: 

𝐹𝐹 =
𝑃𝑃𝑀

𝑉𝑂𝐶𝐽𝑆𝐶
=

𝑉𝑃𝑀𝐽𝑃𝑀

𝑉𝑂𝐶𝐽𝑆𝐶
 (II.3) 

If Pin is the input power of light illumination the SC efficiency can be written as: 
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𝜂 =
𝑃𝑃𝑀

𝑃𝑖𝑛
=

𝐹𝐹𝑉𝑂𝐶𝐽𝑆𝐶

𝑃𝑖𝑛
 (II.4) 
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Figure II.9 Current –voltage curves of solar cell in the dark and under illumination. 

In this work, I-V curves are measured for all SCs in the dark and under illumination (using 

either AM1.5G light from a solar simulator or white light from a halogen lamp) in a wide 

temperature range of 80..360 K. 

 Quantum efficiency and optical measurements 

The external quantum efficiency (EQE) is the ratio of the number of carriers collected by 

the SC to the number of photons with a fixed energy that hit the SC. The EQE spectrum is the 

dependence of EQE on photon energy (or wavelength). The EQE is zero for photons with energy 

lower than Eg since they are not absorbed. If all photons at a given wavelength are absorbed and 

create one electron-hole pair, and if all photogenerated carriers are collected the EQE is unity at 

this wavelength.  

In this work, the external quantum efficiency is measured by a home-made setup called 

“Spectrum-SC”. Short-circuit regime is used for measurements of EQE for single- junction SCs. 

Illumination from a light source (halogen lamp) passes through an optomechanical modulator 

(chopper) and through a monochromator. Then, monochromatic light with fixed wavelength is 

concentrated on the sample. Light is absorbed in the sample, and the current signal is synchronized 

at the modulator's speed. We also measure the current signal of a reference SC (based on Si, GaSb) 

with known EQE. The EQE of the studied SC is then obtained by normalizing the current to that 
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of the reference SC. The wavelength is changed by the monochromator at a step of 5 nm. Finally, 

the EQE spectrum is obtained in a wide wavelength range, between 300 and 1200 nm.  

The method is successfully applied for the characterization of single- junction solar cells. 

However, in MJSC it is also necessary to measure EQE for each subcell separately since it gives 

useful information on the material quality. As described above, a MJSC is a cascade of single- 

junction SCs with different bandgap values of the active layer and each subcell is responsible for 

the absorption of part of the solar spectrum. The MJSC is considered as a series connection of the 

subcells. Thereby for measuring a single subcell the influence of the rest should be excluded, for 

example, the corresponding p-n junctions could be saturated. In this case, current through saturated 

subcells do not depend on applied monochromatic light. It means that the corresponding diodes 

can be substituted by a shunt resistor. Illumination by additional light source is a powerful method 

to reach this goal.  

In this work, double- junction SCs with bandgap energies of 1.8-2.1 eV and 1.1 eV (Si) in 

top-GaPN and bottom-Si subcells, respectively have been studied. The top subcell is not sensitive 

to infra-red (IR) illumination due to high bandgap, and the bottom one is not sensitive to ultra-

violet (UV) illumination which is absorbed by the top sub-cell. Firstly, IR LED illuminates the 

silicon subcell for EQE measurement top subcells (short- circuit regime). Secondly, an UV LED 

illuminates the GaPN-subcell for QE measurement only of silicon subcells (short- circuit regime). 

As a result, EQE is obtained for both subcells separately. In case of triple- junction SC, two of the 

three subcells are saturated and another one is explored in short- circuit regime. However, it is not 

easy to obtain good experimental data when the bandgap energy of the middle subcell is close to 

that of the top one. Furthermore, if the quality of the top subcells is low it is a very difficult task 

to distinguish a small current signal from the high current of the saturated bottom diode. 

Nevertheless, EQE is measured in this work for single-, double and triple- junction SCs. JSC can 

be estimated directly from EQE by: 

𝐽𝑆𝐶 =
𝑞

ℎ𝑐
∫ 𝐸𝑄𝐸(𝜆)𝑃(𝜆)𝜆𝑑𝜆

𝜆𝑚𝑖𝑛

𝜆𝑚𝑎𝑥

 (II.5) 

where h is Planck’s constant, c is the light velocity, λ is the wavelength, and P(λ) is the 

spectral irradiance of sunlight (AM0, AM1.5, etc.). 

Therefore, EQE directly affects the SC short circuit current and its value should reach unity 

for optimal performance. However, there are many reasons of losses in EQE. They are separated 

in two groups: optical losses and internal losses. The first one is associated with insufficient 
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absorption of incident light due to reflection, weak material absorption and transmission through 

SC. The second one is associated with insufficient collection of electron-hole pairs in the structure 

due to bulk and surface recombination, serial and parallel parasitic resistance and thermalisation 

of charge carriers. All explored SCs are grown without AR-coating so the setup was also used for 

measurements of their transmission and reflection to define their influence on EQE. It allows one 

to obtain the value of internal quantum efficiency (IQE) that characterizes the response of the SC 

to the only absorbed photons. Thus IQE can be affected only by internal losses associated with 

bad collection of charge carriers in the structure. Different capacitance methods allow us to 

understand the nature of internal losses in SCs and to provide some recommendation for the 

improvement of IQE in future experiments. 

 Capacitance-voltage method 

The capacitance- voltage (C-V) method is a simple and common way to obtain information 

on internal properties of semiconductor layers in p-n junctions. It is based on measurements of the 

p-n junction capacitance change as function of the applied voltage. The width of the space charge 

region (SCR), W, is estimated for a p-n homojunction without applied voltage by120 : 

𝑊 = √
2𝜀𝑠𝜀0

𝑞
(

𝑁𝐴 + 𝑁𝐷

𝑁𝐴𝑁𝐷
) 𝑉𝑏𝑖 (II.6) 

where ND is the donor concentration in the n-side, NA is the acceptor concentration in the 

p-side, Vbi is the built-in voltage, εs is the relative dielectric permittivity. In case of an abrupt 

asymmetric p-n junction (e.g. NA>>ND) its equation can be simplified to: 

𝑊 = √
2𝜀𝑠𝜀0𝑉𝑏𝑖

𝑞𝑁𝐷
 (II.7) 

In a more accurate estimation taking into account the contribution of majority carriers to 

the space charge density, a correction factor kBT/q has to be introduced. So Vbi should be replaced 

by Vbi-kT/q in equation: 
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𝑊 = √
2𝜀𝑠𝜀0

𝑞𝑁𝐷
(𝑉𝑏𝑖 − 𝑘𝐵𝑇/𝑞) . (II.8) 

If a reverse voltage is applied to such a p+-n junction the magnitude of the electric field in 

the SCR grows and the width of the SCR increases due to the additional charge in the SCR as: 

𝑊 = √
2𝜀𝑠𝜀0

𝑞𝑁𝐷
(𝑉𝑏𝑖 − 𝑉𝑎 − 𝑘𝐵𝑇/𝑞), (II.9) 

where Va is the applied voltage. The semiconductor charge is given by: 

𝑄𝑠 = 𝑞𝑆 ∫ 𝑁𝐷𝑑𝑥 ,
𝑊

0

 (II.10) 

where S is the surface area of the p-n junction. Therefore, the p-n junction acts as a capacitor since 

voltage variation leads to charge variation. Furthermore, we can apply both a dc voltage and an ac 

voltage with a small amplitude. As a result, the capacitance can be estimated from: 

𝐶 ≡ −
𝑑𝑄𝑠

𝑑𝑉𝑎
= −𝑞𝑆

𝑑

𝑑𝑉𝑎
∫ 𝑁𝐷𝑑𝑥

𝑊

0

= −𝑞𝑆𝑁𝐷

𝑑𝑊

𝑑𝑉𝑎
= √

𝑞𝜀𝑠𝜀0𝑆2𝑁𝐵

2(𝑉𝑏𝑖 − 𝑉𝑎 −
𝑘𝐵𝑇

𝑞 )
 , (II.11) 

where Va is the applied voltage. A typical capacitance-voltage curve is plotted for an abrupt p+-n 

junction in Figure II.10a. From Eq (II.11) we find: 

1

𝐶2
=

2

𝑞𝜀𝑠𝜀0𝑆2𝑁𝐷
(𝑉𝑏𝑖 − 𝑉𝑎 − 𝑘𝐵𝑇/𝑞) . (II.12) 

For an abrupt p+-n junction with homogeneous doping the dependence of 1/C2 on applied 

voltage V should be linear (Mott-Schottky plot). Its slope defines the donor concentration in the n-

region (ND), the extrapolation to the voltage axis (1/C2=0) gives the value of Vbi-kBT/q (Figure 

II.10b). 
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More generally, the profile of the dopant concentration in the n-region can be deduced 

from: 

𝑁𝐷(𝑊) =
2

𝑞𝜀𝑠𝜀0𝑆2
(

𝑑 (
1

𝐶2)

𝑑𝑉
)

−1

, (II.13) 

with 𝑊 =
𝜀𝑠𝜀0𝑆

𝐶
 . (II.14) 
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Figure II.10 Capacitance-voltage curve C(V)- a, and Mott-Schottky plot 1/C2(V)- b. 

In principle, all equations described in this section can be also applied to Schottky diodes 

(metal/semiconductor) and abrupt heterojunctions where space charge layers exist due to the 

energy barrier at the junction. However, we would like to emphasize that there are two main issues 

regarding the extraction of the built-in voltage Vbi from the intercept of the linear extrapolation of 

1/C2 to the voltage axis and the determination of the doping density from the slope of 1/C2.  

Firstly, for highly asymmetric p-n junctions or heterojunctions, when the band bending at 

the junction is so pronounced that a strong inversion layer builds at the surface of the lowly doped 

semiconductor, the intercept of the linear extrapolation of 1/C2 does not yield the correct value of 

the built-in voltage. Indeed, it has been shown that this intercept value corresponds to the 

equilibrium potential difference of only the depleted part of the space charge region, and does not 

integrate the part in the strong inversion layer121. This is particularly important if, in the case of 
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heterojunctions, one uses this intercept voltage as the built-in voltage to deduce band offsets at the 

heterojunction as proposed in some works122, since it can lead to significant errors123. 

Secondly, in the above equations the charge in the SCR comes from the ionized donor 

density, which is compensated by free carriers outside the SCR where charge neutrality prevails. 

The charges that actually move in response to the ac voltage are the free electrons, not the ions. 

Hence, the capacitance-voltage profiling technique should determine the free carrier density rather 

than the doping density. It has been shown in the literature that, in case of non uniform doping, 

what is actually measured is an apparent or effective carrier density, which is close to the actual 

free carrier density,  and designated by NCV 124. Another issue also related to the apparent effective 

density comes from defect levels that may be present in the semiconductor. Indeed, the energy 

levels in the bandgap related to intentional doping are generally so shallow that they can be 

considered as fully ionized above 100 K. However, levels that are not so shallow (e.g. 100 meV 

or more from the band edge) may also be partly ionized depending on the temperature, which can 

thus provide a temperature dependent contribution to NCV. So, the C-V measurements typically 

allow one to determine some effective doping or carrier density but in order to study deep defects 

other popular methods are used: admittance spectroscopy and deep-level transient spectroscopy. 

These will be recalled in the following. 

 Admittance spectroscopy 

The admittance spectroscopy (AS) consists in carrying out measurements of capacitance 

and conductance as a function of temperature and frequency. AS is widely used for the 

determination of the electronic properties of defects in the semiconductor layers of Schottky 

barriers, p-n and p-i-n junction structures. One of the first works on this subject was published in 

1975125. It provides a simple way to determine different properties of defect levels interacting with 

majority-carriers in semiconductor materials: energy position of the level ET, capture-cross section 

σ, concentration NT. 

Let us take again the example of a p+-n junction or Schottky barrier onto a n-type 

semiconductor. Under the application of the alternative small signal of applied voltage at the 

frequency f, one can describe things by considering that the position of the electron (majority 

carrier) Fermi level is oscillating in the Schottky barrier structure or abrupt p+-n junction (Figure 

II.11). If the electron Fermi level crosses some defect levels in the bandgap, this produces a 

modulation of the occupancy of these states. It results in an alternative capture and emission 

process of electrons in the states, provided the time constant of these processes is lower than the 

period of the alternating signal. This gives an additional contribution to the charge variation. 
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Consequently, compared to the defect free case, the junction capacitance is increased due to the 

additional charge variation associated with the capture and emission in the localized states. 
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Figure II.11 Schematic illustration of a p+-n junction or Schottky barrier onto an n-type 

semiconductor with a defect level at energy ET.  The arrows indicate the capture and emission of 

electrons from the defect.  

Since emission and capture frequencies are equal at the Fermi level, the charge variation at 

the defect level can occur if the angular frequency of the ac signal ω (equal to 2πf, where f is the 

frequency of the ac signal) is less than 2en, where en is the emission electron rate defined by: 

𝑒𝑛(𝑇) = 𝑐𝑛𝑁𝐶𝑒
𝐸−𝐸𝐶
𝑘𝐵𝑇  , (II.15) 

where cn is the capture coefficient of electrons and NC is the effective density of states in the 

conduction band. Thus, one can define a characteristic temperature T0 and a characteristic angular 

frequency response 0for the response of the defect state, that are linked through 

2𝑒𝑛(𝑇0) = 𝜔0 . (II.16) 

When the temperature is lower than T0 or the angular frequency is higher than ω0, there is no 

response from defect levels, and we are in the so-called freeze-out regime. Thus, the measured 

capacitance is the usual depletion capacitance described before. When the temperature increases 
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or the frequency decreases, the capacitance C(T,f) starts to increase and a capacitance step appears 

on C(T,f) graphs. A step in the capacitance curve corresponds to a peak in the conductance curve 

G(T,f) and in the capacitance derivative dC/dT(T,f)125,126. Since en is an increasing function of 

temperature, a frequency increase leads to an increase of T0 and to the shift of the capacitance step 

to higher temperatures on the C(T) curves. Similarly, on C() curves, the step shifts to higher 

frequencies with increasing temperature.  

A schematic capacitance dependence on frequency and temperature is shown in Figure 

II.12. Capacitance steps are accompanied by peaks in the conductance and in the capacitance 

derivative. In the current work both types of representations are used. According to (II.15) and 

(II.16), the dependence of T0 on is given by: 

2𝑒𝑛(𝐸𝑎) = 2𝑐𝑛𝑁𝐶𝑒
−𝐸𝑎
𝑘𝐵𝑇0 = 𝜔0 , (II.17) 

where Ea=Ec-ET will be called the activation energy of the level. The capture coefficient of 

electrons is related to the electron capture cross-section cn=σnυth where υth is thermal velocity of 

electrons. It should be noted that the position of the capacitance step depends on the capture cross-

section of defect levels while the amplitude of the step is directly dependent on the number of 

defects regardless of the capture cross-section. 

Thus, 

𝑓0 =
𝜎𝑛𝜐𝑡ℎ𝑁𝐶

𝜋
𝑒

−𝐸𝑎
𝑘𝐵𝑇0  , (II.18) 

where the effective density of states and thermal velocity generally depend on temperature as 

~𝑇3/2and ~𝑇1/2, respectively, so the equation can be rewritten as: 

𝑓0 = 𝐴𝑇0
2𝑒

−𝐸𝑎
𝑘𝐵𝑇0 , (II.19) 

where A is supposed to be independent on temperature: 

𝐴 =
𝜐300𝑁300𝜎𝑛

𝜋(300)2
 (II.20) 
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where N300 and υ300 are the effective density of states and thermal velocity at 300 K, respectively.   

As a result, a defect activation energy Ea can be extracted from the dependence of 𝑙𝑛(𝑓0/𝑇0
2) on 

inverse temperature or on 1000/T0. This graph is called an Arrhenius plot and its schematic 

representation is shown in Figure II.13. The pre-exponential factor is estimated from extrapolation 

of the curve to infinite temperature (1000/T0=0 in the graph). The capture-cross section can then 

be calculated from (II.20).  

The value of defect concentration can be estimated by the method suggested by Walter 127. 

It is based on the capacitance derivative with respect to angular frequency. The defect distributions 

in energy, or density of states (DOS) can be reconstructed by this method for both p-n and p-i-n 

junction. According to Eq (II.17), each angular frequency corresponds to a certain energy at fixed 

temperature:  

𝐸𝜔 = 𝑘𝐵𝑇𝑙𝑛
𝑐𝑛𝑁𝐶

𝜔
 . (II.21) 

Then, the DOS is estimated for a p-i-n junction by127: 

𝑁𝑇(𝐸𝜔) = −
𝑉𝑏𝑖

2

𝑊[𝑞𝑉𝑏𝑖 − (𝐸𝑓𝑛∞−𝐸𝜔)]

𝑑𝐶

𝑑𝜔

𝜔

𝑘𝐵𝑇
 , (II.22) 

where Efn∞ is the energy position of Fermi level with respect to the valence band edge in the n-

layer of the p-i-n junction. Also, for asymmetric p+-n and p-n+ junctions the energy distribution of 

defects is estimated by: 

𝑁𝑇(𝐸𝜔) = −
2𝑉

𝑏𝑖

3
2

𝑊√𝑞√𝑞𝑉𝑏𝑖 − (𝐸𝑔−𝐸𝜔)

𝑑𝐶

𝑑𝜔

𝜔

𝑘𝐵𝑇
 . (II.23) 
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T1<T2 
a b 

f1<f2 

f01 f02 T01 T02 

 

Figure II.12 a- Schematic dependence of the capacitance and conductance on frequency for two 

temperatures; b- Schematic dependence of the capacitance and conductivity on temperature for 

two frequencies.  

 

Figure II.13 Arrhenius plot of ln(f0/T0
2) as a function of characteristic temperature. 
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In this work, admittance measurements are performed in a liquid nitrogen cryostat in the 

temperature range from 80 K to 400 K and at frequencies from 20 Hz to 1 MHz using a RLC-

meter Agilent E4980A in GeePs, France and RLC-meter E7-20 in SPbAU, Russia. The dc voltage 

can be also applied and changed through the RLC-meter.  

 Deep-level transient spectroscopy 

Deep-level transient spectroscopy (DLTS) is another very powerful method for the study 

of active defects in semiconductors. DLTS was proposed in 1974 by D.V. Lang as a method to 

study deep levels in semiconductor structures having a SCR like Schottky diodes or p-n 

junctions128. It is a transient method that is based on the measurement of the junction capacitance 

versus time following a change in applied voltage, as illustrated in Figure II.14. To briefly present 

the physical background of DLTS, let us consider an abrupt p+-n junction under an applied reverse 

bias voltage V0, and assume there is a defect level lying at an energy ET above midgap.  

 

Time, t 

C0 

V0 

V1 
tpulse 

0 

ΔC(0) 

Vpulse 

exp(-ent) 

(a) 

(b) 

 

Figure II.14 a- time dependence of bias voltage, and b- typical time dependence of the junction 

capacitance for majority-carrier traps.  

Under steady-state, in the region where the level ET lays above the electron quasi-Fermi 

level, states are empty, while  in the region where the level ET lays below the electron quasi-Fermi 

level, states are occupied by electrons (Figure II.15a). Under such steady-state conditions, the 

junction capacitance is C0 and the width of the SCR is W0. A positive bias pulse with amplitude 

Vpulse and duration tpulse, called the filling pulse, is then applied so that the total bias voltage changes 

to V1. This induces a shrinking of the SCR, and electrons flow into what was previously part of 

the depletion region, so that some traps previously empty can capture electrons. If Vpulse is large 

enough so that V1>0, holes can also be introduced in this part of the SCR so that some traps may 

possibly also be filled with holes. The degree of trap filling depends on tpulse and on the capture 

coefficients cn and cp for electrons and holes, respectively, that are proportional to the capture 
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cross-section for the corresponding type of charge carriers. If the pulse width tpulse is large enough 

one may reach the steady-state at V1 and some levels are then completely filled so that nT=NT, nT 

being the concentration of traps being occupied by electrons and NT the concentration of traps 

(Figure II.15b). Following the filling pulse, the bias is changed to its initial reverse bias 𝑉0. 

Therefore, the states that were previously filled with electrons release their electrons that are 

emitted to the conduction band and swept out of the SCR by the electric field. So the occupied trap 

concentration changes with time, nT(t), which also implies a time dependence of the SCR, 

W0+ΔW(t), ΔW(t) going to zero when steady-state is reached again. 

Following Shockley and Read129, and Hall130, and since we neglect capture events during 

the transient under reverse bias, nT is given by equation: 

𝑑𝑛𝑇

𝑑𝑡
= (𝑁𝑇 − 𝑛𝑇)𝑒𝑝 − 𝑛𝑇𝑒𝑛 , (II.24) 

where en and ep are the emission frequencies for electron and holes, respectively. The steady-state 

electron occupation of a level is: 

𝑛𝑇 =
𝑒𝑝

𝑒𝑝 + 𝑒𝑛
𝑁𝑇 . (II.25) 

This allows one to define so-called electron traps if en>>ep (majority-carrier in n-type, nT=0) and 

hole traps if ep>>en (minority-carrier in n-type, nT=NT), the demarcation being roughly at midgap. 

With the initial condition nT(0)=NT the solution of (II.24) is given by: 

𝑛𝑇(𝑡) = [
𝑒𝑝

𝑒𝑝 + 𝑒𝑛
𝑁𝑇 +

𝑒𝑛

𝑒𝑝 + 𝑒𝑛
𝑁𝑇𝑒𝑥𝑝(−(𝑒𝑝 + 𝑒𝑛)𝑡)] . (II.26) 

Thus nT decreases exponentially versus time. In case of en>>ep : 

𝑛𝑇(𝑡) = 𝑁𝑇𝑒𝑥𝑝(−𝑒𝑛𝑡) . (II.27) 
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Figure II.15 Spatial distribution of full and empty traps at a given defect level ET in an abrupt p+-

n junction: a- at steady-state reverse bias V0, b- at bias V1=V0+Vpulse during the filling pulse, c- 

after the pulse when the bias has been set at V0 again. Arrows indicate trapped electrons that will 

be re-emitted to the conduction band. 
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Such a dependence directly relates the time-dependent occupied trap concentration to the electron 

emission rate and thus to the defect properties (energy level, electron capture cross section). 

However, unfortunately, it is impossible to directly measure the trapped electron concentration. 

This is why it was proposed to use the junction capacitance that is associated with the occupancy 

changes. The capacitance of a p+-n or Schottky junction is defined by Eq (II.11) so the capacitance 

relaxation to its steady-state value C0 can be defined by differences in the width of the SCR. In 

case of low defect concentration, NT<<ND, the change in capacitance referred to the steady-state 

value, C=C(t)C0, is related to the change in space charge width W(t) by: 

∆𝐶(𝑡)

𝐶0
= −

∆𝑊(𝑡)

𝑊0
 . (II.28) 

The emission of electrons from traps after they have been filled by the filling pulse leads to the 

relaxation of the SCR to its initial value of W0 due to neutralization of ionized donors by electrons 

at the edge of the SCR. The bias being kept constant, one can obtain the following equation131: 

∫ 𝑁𝐷(𝑧) ∙ 𝑧𝑑𝑧 =

𝑊0+∆𝑊(𝑡)

𝑊0

∫ 𝑛𝑇(𝑡, 𝑧) ∙ 𝑧𝑑𝑧

𝑊0−𝜆0

𝑊1−𝜆1

 . (II.29) 

If the concentrations of donor impurities and traps are constant, integration of the preceding 

equation gives: 

∆𝑊(𝑡)

𝑊0
=

𝑛𝑇(𝑡)

2𝑁𝐷

(𝑊0 − 𝜆0)2 − (𝑊1 − 𝜆1)2

𝑊0
2  . (II.30) 

Together with equation (II.28): 

∆𝐶(𝑡)

𝐶0
= −

𝑛𝑇(𝑡)

2𝑁𝐷

(𝑊0 − 𝜆0)2 − (𝑊1 − 𝜆1)2

𝑊0
2  . (II.31) 

In case of W0>>W1>>λ0,1, this simplifies into: 
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∆𝐶(𝑡)

𝐶0
≈ −

𝑛𝑇(𝑡)

2𝑁𝐷
 . (II.32) 

Together with Eq (II.27), the capacitance relaxation can be estimated by: 

Δ𝐶(𝑡)

𝐶0
= −

𝑁𝑇

2𝑁𝐷
exp(−𝑒𝑛𝑡) . (II.33) 

Thus, the capacitance C(t) at reverse bias 𝑉0 after the filling pulse is described by: 

𝐶(𝑡) = 𝐶0 [1 −
𝑁𝑇

2𝑁𝐷
exp(−𝑒𝑛𝑡)]. (II.34) 

The typical capacitance dependence is presented for majority-carrier traps in Figure II.14b. In case 

of minority-carrier traps en and −
𝑁𝑇

2𝑁𝐷
 are replaced by ep and +

𝑁𝑇

2𝑁𝐷
 , respectively128. So, during the 

transient the capacitance increases for majority-carrier traps and decreases for minority-carrier 

traps. Thus, the emission rate and trap concentration can be estimated from the dependence of the 

capacitance on time at a given temperature. However, in case of overlapping of emissions from 

different defect levels at the same temperature the analysis becomes more complicated and it can 

be difficult to distinguish between several contributions. Therefore, a method was presented by 

Lang to better separate the responses of various defects in one temperature region and to obtain 

information on the properties of detected defects in a simple way by using a temperature scan. 

When the filling pulse ends, the applied voltage returns to the initial value V0 and the experimental 

setup starts to measure the capacitance transient by a fast-response capacitance bridge. This 

procedure is repeated for each temperature with a certain temperature step. Then data are processed 

by a dedicated mathematic function to associate each temperature to an emission rate. In the 

classical DLTS analysis the spectral function S(T) is defined as the difference between capacitance 

values at two fixed times, t1 and t2. Depending on the authors, S(t) is defined as C(t1)C(t2) or 

C(t2)C(t1) with t2> t1. In this work, S(T) is defined as: 

 𝑆(𝑇) ≡ 𝐶(𝑡2) − 𝐶(𝑡1) = ∆𝐶0[exp(−𝑒𝑛𝑡1) − exp (−𝑒𝑛𝑡2] , (II.35) 
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where ∆𝐶0 is the capacitance change immediately after the end of the pulse, at time t=0. Typical 

behavior of S(T) is presented in case of a single majority-carrier trap in structure132 in Figure II.16.  

 

Time, t t1 t2 S(T)=C(t2)-C(t1) 

(a) (b) 

 

Figure II.16 Qualitative illustration of the temperature dependence of the DLTS spectrum, S(T) 

(b) calculated as the difference of capacitance at the two times t1 and t2 that define the rate 

window (a). 

As described above the electron emission rate of a deep level is strongly temperature 

dependent: 

𝑒𝑛 = 𝜎𝑛𝜐𝑡ℎ𝑁𝐶𝑒
−𝐸𝑎
𝑘𝐵𝑇 . (II.36) 

Therefore, the physical nature of the maximum in S(T) spectrum can be fairly well understood. At 

low temperature, the capacitance transient is very slow so C(t2) is almost equal to C(t1) and S is 

almost zero. When the temperature increases, C(t2) starts increase before C(t1) leading to an 

increase in S(T). At a certain temperature S has a maximum value. For higher temperature, C(t2) 

stays almost the same but C(t1) is now also increasing and approaching the steady-state value. So 

S(T) decreases and finally goes toward zero at high temperature when the transient is much faster 

than both t1 and t2. In this way, each time window t1 and t2 is associated with a certain maximum 

position of S(T). The value of emission rate en can be estimated from the derivation of (II.35) by 

equation: 
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𝑒𝑛(𝑇𝑚𝑎𝑥) =
ln 𝑡2 𝑡1⁄

𝑡2 − 𝑡1
. (II.37) 

Therefore, each time window defines the so-called DLTS rate window, i.e. the emission 

rate en at temperature position Tmax.  

Then, it is necessary to change the time window t1 and t2 and to find new pairs of emission 

rate and temperature. Finally, the dependence of 𝑙𝑛(𝑒𝑛/𝑇𝑚𝑎𝑥
2 ) on the inverse characteristic 

temperature 1000/Tmax is plotted. Like in admittance spectroscopy, from such Arrhenius plot the 

activation energy and capture cross-section can be estimated. Moreover, from Eq (II.35) the value 

of Smax is proportional to ∆𝐶0 and therefore to the defect level concentration NT. If tpulse is large 

enough to fill all defect levels and the duration of the emission phase is large enough to allow for 

all captured electrons to be emitted again, the defect concentration can be estimated from Smax (in 

case of a single defect level) by: 

𝑁𝑇 =
𝑆𝑚𝑎𝑥

𝐶0

2𝑟𝑟 (𝑟−1)⁄

𝑟 − 1
𝑁𝐷 , (II.38) 

where r=t1/t2. 

Here, we described the classical DLTS method for an abrupt p-n junction with a single 

defect level. In real experiments, many causes lead to complications in the detected signal and 

difficulties in its interpretation for instance because of non-exponential behaviors. It is due to the 

overlapping of point defect responses with close energy positions or extended defects associated 

to distributions in energy. In this case, the shape of S(T) changes and becomes broader. A more 

detailed description of extended defects nature is given in the next chapters where experimental 

results are presented. 

Sometimes, in case of overlapping of two point defect responses a modified method called 

Laplace-DLTS can help to distinguish them. It is a mathematical method of analyzing the 

capacitance transient. The Laplace-DLTS is based on the precise measurement of the capacitance 

transient at fixed temperature many times (in this work, it is measured 2000-10000 times) with 

very high resolution (frequency of sample measurement). In order to use the Laplace-DLTS 

method the capacitance transient needs to be fully completed, meaning that the capacitance reaches 

the steady-state value corresponding to the reverse bias V0. Then, the quantitative description of 
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non-exponential behavior in the capacitance transients is to assume that they are characterized by 

a spectrum of emission rates: 

𝑓(𝑡) = ∫ 𝐹(𝑠)𝑒−𝑠𝑡𝑑𝑠
∞

0

 , (II.39) 

where f(t) is the recorded transient and F(s) is the spectral density function133. To find a real 

spectrum of the emission rates in the transient it is necessary to use a unique mathematical 

algorithm estimating an inverse Laplace transform for the function f(t), yielding a spectrum of 

delta-like peaks for multi-, mono-exponential transients, or a spectrum with overlapping broad 

peaks for defects with an energy distribution. It means that the algorithm tries to approximate the 

capacitance transient C(t) by many exponential transients. As a result, Laplace-DLTS gives an 

output function of emission rates corresponding to the response from the defect levels. The 

algorithm is considered as "good" for structure analysis if peaks on F(s) are very narrow. Then, 

the spectrum F(s) should be found for a few temperature points and the Arrhenius plot can be 

obtained. Laplace-DLTS is a very powerful method to distinguish point defects if they have very 

close activation energies. However, the transient must be measured very precisely and the increase 

in defect concentration leads to the deterioration of estimated F(s). Therefore, Laplace-DLTS is 

almost not applicable for measurements of extended defects due to the very long transient and 

overlapping of many responses. In this work, commercial software “Laplace Transient Processor” 

is used for Laplace-DLTS measurements133. 

Finally, DLTS is one of the most useful methods for studying defect properties in 

semiconductor materials so it has been intensively used in the current thesis. The automated 

installation based on a Boonton-7200B capacitance bridge is used for measurements of capacitance 

transients for classical DLTS and Laplace-DLTS methods. Experiments are performed at high 

frequency (1 MHz) at temperatures from 78 to 400 K. 

 Structural methods 

Although the main goal of this work is to study photoelectric properties and defects in solar 

cells, we also used various methods to study structural properties. Basically, these methods are 

used for the study of GaP layers grown by PE-ALD on silicon wafers since this material is quite 

new and its properties have not been investigated so far. 

The first method is scanning electron microscopy (SEM). It is based on the interaction of 

a focused electron beam with the sample, giving information about the sample's surface 

topography and composition.  It is a common method for determining layer thicknesses and 
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investigating interface and surface quality in semiconductor structures. In the current work, it is 

used for characterization of surface quality of GaP grown by PE-ALD at different conditions. Also, 

it is used for the precise determination of thicknesses in single-junction and double-junction SCs 

since it is a very critical issue for controlled wet etching. Then classical and high resolution 

transmission electron microscopies (TEM and HRTEM) are performed to study properties of 

materials at the atomic scale. These methods are based on the analysis of the transmitted electrons 

beam through the sample. HRTEM allows one to improve spatial resolution of SEM images and 

to obtain maps of atoms in the lattice and at interfaces. Therefore, it is a very fruitful method to 

study structural properties at a scale of 0.1 nm. Initial information about chemical content of grown 

GaP based layers is obtained from Raman spectroscopy data. This technique consists in the 

measurement of vibrational, rotational, and other low-frequency modes in a semiconductor layer 

since these modes are fingerprints by which molecules can be identified.  

II.4 Simulation 

Computer simulation is a very powerful tool to help analyzing new experimental data, 

especially for semiconductor device physics. In the current work, software AFORS-HET (Automat 

FOR Simulation of HETero structures) 2.5 is used for the simulation of SC performance134. It is 

necessary to define the stacking of layers and enter electronic, optical and defect parameters of 

each layer. Then the program solves Poisson’s equation together with continuity equations using 

drift and diffusion currents, and we can draw band diagrams and extract carrier concentrations, 

etc. Different external conditions can be changed: applied ac or dc voltage, illumination spectrum 

at different wavelengths, etc. The program also allows us to simulate measured data curves like I-

V, C-V, C-T, EQE, etc. Furthermore, the interface of the program is very clear and simple to use.  

Summary 

In this Chapter we have given the description of the growth of materials, post-growth 

processing and experimental studies. Structures can be separated in two groups: solar cells grown 

by MBE (single-junctions on GaAs wafer, single-junctions on GaP wafer, multi-junctions on Si 

wafer) and GaP/Si heterostructures grown by PE-ALD. Different aspects of metal contact 

formation with required properties are developed. We also gave an overview of photoelectric (I-

V, EQE) and capacitance (C-V, AS, DLTS) methods used to study our samples and structures. 

Finally, we mentioned the simulation software that will be used to analyze the device physics of 

our structures. 
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Chapter III  

InGaAsN 
Introduction 

In this chapter, we describe the results obtained on single-junction solar cells grown on 

GaAs wafers by MBE with active layers of SDA i-InGaAsN with different thicknesses. 

Photoelectric and electric properties are investigated at different conditions. Moreover, different 

capacitance methods (AS, DLTS, C-V) are used to characterize the defects in the layers. Finally, 

simulations are performed to help analyzing the data. 

III.1 Samples preparation 

Single-junction SCs based on p-i-n heterostructures were grown by MBE. They consist in 

three samples with a bottom n-type GaAs layer (200 nm thick, doping density of 31018 cm-3) first 

grown onto (100) n-type GaAs wafers, followed by the growth of undoped (i) InAs/GaAsN SL 

with different thicknesses of the active i-layer (900 nm, 1200 nm, 1600 nm). Practically, the 

InAs/GaAsN SL is obtained by the growth of ternary GaAsN, 7-12 nm thick, followed by the 

growth of binary InAs, 0.2-0.5 nm thick (1 ML), and repeated in order to reach the targeted 

thickness. The top p-type layer is made of a 200 nm thick GaAs layer with a doping density of 

11019 cm-3. The schematic cross-section of the samples is presented in Figure III.1. All samples 

were grown without any antireflection coating.  

 

 

Figure III.1 Schematic view of the p-i-n structures with i-InAs/GaAsN active layers. 

Contacts were fabricated using photolithography and vacuum evaporation of metals. 

Au/Ge was used for the n-type bottom contact and Au/Zn was used for the p-type top contact135. 
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The ohmic behavior of the current- voltage characteristics for contacts was obtained after rapid 

thermal annealing using a JIPelec JetFirst 100 equipment at 380 C. For photoelectric 

measurements the top contact consisted in a grid, while for capacitance measurements circular 

contacts with diameters of 0.5 and 1 mm were used on the front side, then mesa-structures were 

formed by wet etching down to the wafer.  

III.2 Photoelectric properties 

The photoluminescence (PL) spectra of the InGaAsN samples measured at room 

temperature are displayed in Figure III.2. They were measured using an instrument from Accent 

RPM Sigma (Accent Optical Technologies) with a semiconductor laser (λ=778 nm) as the 

pumping source. The bandgap energy of InGaAsN is 1.03 eV whatever the sample thickness. 

However, we observe that the intensity of photoluminescence strongly decreases when the 

thickness increases. Perhaps, it is explained by rising of defect density in InGaAsN layers. Indeed, 

deep defects could act as non-radiative recombination centers that reduce the free carrier 

concentrations, thus also reducing the band-to-band PL signal.  
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Figure III.2 Photoluminescence spectra of the 900 nm, 1200 nm and 1600 nm thick i-InGaAsN 

samples. 

Then, the external quantum efficiency and reflection were measured at a temperature of 25 

°C to study photoelectric and optical properties of the structures (Figure III.3). Value of QE 

exceeds 50 % for 900 nm InGaAsN sample without AR coating so the quantum efficiency can 

reach 75% in case of absence of reflection losses. Obviously, when the thickness of the i-layer 

increases from 900 nm to 1200 nm, the quantum efficiency decreases slightly in the short 

wavelength range due to possible recombination losses while it slightly increases in the long 
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wavelength range because of enhanced absorption with the thickness increase. Further thickness 

increase to 1600 nm leads to a catastrophic decrease of quantum efficiency of SC in short 

wavelength region due to high recombination losses caused by centers of non-radiative 

recombination. It is important to note the specific shape of QE curve for sample with 1600 nm 

thick InGaAsN at long wavelength values remain almost the same unlike in short wavelength 

region. Possible reasons of such behavior are discussed below. 
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Figure III.3 External quantum efficiency (a) and reflection (b) of single-junction SCs with i-

InGaAsN. 

Then, current-voltage curves are presented in Figure III.4 for two cases: I-V under 

illumination of AM1.5G for SCs and dark I-V for mesa-structures. The sample with 900 nm-

InGaAsN shows the best performance with VOC=0.40 V and JSC=15.5 mA/cm2. Although these 

values are not very large they are quite promising in the perspective of transferring this p-i-n 

junction to MJSC. Making the InGaAsN layer thicker (1200 nm) leads to a decrease in VOC, 

whereas a further increase in the thickness up to 1600 nm causes a catastrophic drop in JSC. I-V 

curves in the dark have the conventional exponential dependence corresponding to semiconductor 

junction as confirmed for mesa-structures in semilogarithmic scale in Figure III.4b: straight line 

at forward bias voltage, and saturation at high voltage due to serial resistance in the sample. In 

addition, the current value is low at reverse bias voltage so samples are suitable for capacitance 

investigation.  
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Figure III.4 Current-voltage characteristics under illumination for solar cells (a) and in the dark 

for mesa-structures (b). 

Therefore, photoelectric properties of single-junction solar cells degrade with increasing 

the thickness of the active i-InGaAsN layer due to higher defect concentration. Thus, capacitance 

methods are used to explore this suggestion. 

III.3 Capacitance measurements 

 Quasi steady-state capacitance measurements 

The C-V dependence was measured at reverse bias in the interval [-1V, 0V] at 1 MHz and 

at 300 K for the three InGaAsN samples. C-V curves of 1200 and 1600 nm thick InGaAsN samples 

are presented at Figure III.5.  
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Figure III.5 Capacitance-voltage (C-V) characteristics measured for the 1.2 µm thick InGaAsN 

sample and simulated with varying doping concentration (a), C-V and Mott-Schottky plot for the 

1.6 μm thick InGaAsN sample (b).  
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The capacitance of the sample with 900 nm thick InGaAsN was found independent of 

applied voltage, meaning that the effective width of SCR, deff, probed by the capacitance 

measurement, defined as deff= ε/C, ε being the dielectric permittivity, is equal to the i-layer 

thickness. So the i-layer is fully depleted in the 900 nm thick InGaAsN sample. As can be seen 

(Figure III.5a), for the 1200 nm thick InGaAsN sample, the capacitance also tends to become 

constant at reverse bias, and only a very small increase is observed towards 0V. We note that a 

capacitance of 10 nF/cm2 corresponds to a value of deff of 1.15 µm if we take the permittivity 

𝜀=1.15×10-12 F·cm-1 of GaAs, which is indeed close to the thickness of the i-InGaAsN layer. This 

indicates that there is no strong unintentional or residual doping in the i-layer of both 900 nm and 

1200 nm thick samples. The small bias dependence on the 1200 nm thick sample does not allow 

us to determine the unintentional/residual doping concentration reliably from a Mott-Schottky plot. 

To estimate the doping concentration, we have performed electrical modeling of the sample with 

1200 nm thick InGaAsN in order to simulate the C-V curves. From the simulated C-V curves with 

varying doping concentration (p-type, see below), we can deduce that the non-intentional doping 

concentration should be less than 1.0×1015 cm-3. For the 1.6 μm thick InGaAsN sample, however, 

the capacitance is bias dependent. The experimental Mott-Schottky plot for this structure shown 

in Figure III.5b exhibits a linear behavior of 1/C² as a function of the applied voltage, as expected 

in the depletion regime of a p-n junction. According to the slope, the effective doping concentration 

value is estimated at 5.0×1015 cm-3 at 300 K. Note that a such doping concentration value would 

have been detected even in the sample with the thinnest i-layer since the depletion capacitance 

would have been much larger than the geometrical capacitance because the effective space charge 

layer thickness would have been significantly smaller than 900 nm. In conclusion of the C-V 

measurements at room temperature, the sample with a 1600 nm thick i-layer exhibits significant 

higher effective background doping than the samples with thinner i-layers. We also performed C-

V measurements at 77 K and found that the dependence of the capacitance on applied voltage was 

much less pronounced, indicating that deep defects also contribute to the effective doping at 300 

K. From computer simulations that will be presented below, it is found that this background doping 

is of acceptor type. It is worth noting that a p-type background doping is typical for i-layers of 

dilute nitrides (In)GaAsN grown by MBE28,29. Usually, it is associated with non-equilibrium 

growth conditions at low temperatures that lead to the formation of gallium vacancies and 

nitrogen-related defects of acceptor type in dilute nitrides but a complete description and 

explanation of background doping in InGaAsN layers should be investigated in further 

experiments. Nevertheless, in our InAs/GaAsN layers the background doping values are several 

times lower than those found for InGaAsN layers grown by MBE without Sb in the articles cited 

above (more than 1.0×1016 cm-3). Low background doping of the i-layer is necessary for better 
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collection and transport of charge carriers in dilute nitrides with low lifetimes34,96,136. 

Consequently, the SDA InAs/GaAsN is preferable to InGaAsN compounds grown continuously 

by MBE. This might be due to the ionization of defect levels giving an additional contribution to 

the net doping, as discussed below.  

As described above the admittance spectroscopy is based on the measurement of the 

capacitance and conductance of p-n or p-i-n junctions using a small signal alternating voltage at 

different frequencies and at various temperatures. If the Fermi level (or quasi Fermi level) crosses 

the defect level in the space charge region we may detect an additional contribution to the 

capacitance provided that ωτ < 1, τ the time response of the defect, sum of the capture and emission 

frequencies which are equal at the quasi Fermi level. Therefore, admittance spectroscopy can 

detect responses coming from the i-InAs/GaAsN layer, even if the layer is fully depleted, the high 

frequency/low temperature capacitance value being then determined by the i-layer thickness. The 

step position in C(f) and C(T), or turn-on, is defined as ω0τ=1 (Eq. (II.17)). The step in the 

capacitance is also accompanied by a maximum in the conductance, which is a simple way to 

clearly identify the turn-on angular frequency, ω0. However, the maximum in the conductance is 

often hidden by the parasitic shunt conductance or the dc conductance related to the current flow 

across the junction that increases with temperature. This is why conductance values will not be 

presented here. The turn-on position can then be determined at a given temperature in a capacitance 

vs frequency plot, by the maximum of the capacitance derivative dC/df or preferentially the 

maximum of the so-called differential capacitance dC/d(Ln[f]). The measured temperature (T) and 

frequency (f) dependences of the raw and differential capacitance are shown in Figure III.6 for 

zero bias voltage. The capacitance of the sample with the 1200 nm thick InGaAsN layer exhibits 

two steps (Figure III.6a) that are evidenced in the peaks of the differential capacitance f×dC/df 

(Figure III.6c). We can observe a first step on C(f) leading to a peak on f×dC/df at low temperatures 

100-280 K and a second one at higher temperatures 320-360 K (series of steps are indicated by 

arrows). These steps can be caused either by interface states at InGaAsN/GaAs heterojunctions or 

by bulk defect levels in the i-layer. The C(T,f) curves were measured at different applied bias 

voltages (measurements are not shown here) and the step position in C(f) curves does not change: 

it indicates that the response originates from bulk defects rather than from the interface. Further 

increase in thickness of the InGaAsN layer up to 1600 nm leads to a drastic enlargement of the 

amplitude of the first step while the second step in C(f) curves remains the same (Figure III.6b).  
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Figure III.6 Frequency dependent capacitance, C, (top) and differential capacitance, f×dC/df,  

(bottom) at various temperatures, measured on from SC with InGaAsN active layers with 

thickness of 1200 nm (a, c), and 1600 nm (b, d). 

Defect parameters, Ea and σ, in InAs/GaAsN were extracted from linear fit of f0/T0
2 in 

Arrhenius plots, where f0 and T0 being the characteristic turn-on frequency and temperature, 

respectively. Note that, while the error in the energy determination can be evaluated at 0.05 eV, 

the error in the determination of σ is quite large due to the extraction procedure (a small change in 

the slope of the linear fit induces a strong change in σ). In addition, the values of thermal velocity 

and effective density of states in the band are not well known in these new III-V compounds, but 

they are calculated from effective mass of me=0.1m0 and mh=0.47m0 for InGaAsN compounds. 

The characteristic Arrhenius plots for extraction of defect parameters in our samples are shown in 

Figure III.7.  
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Figure III.7 Characteristic Arrhenius plots for extraction of defect parameters by AS (circles) and 

DLTS (squares) for the InAs/GaAsN samples with thickness of 1200 nm (red symbols) and 1600 

nm (blue symbols). 

For the sample with i-layer thickness of 1200 nm, the defect level revealed at low 

temperature has characteristic values Ea=0.20 eV and σ=3×10-17 cm2, while the defect revealed at 

high temperature has parameters Ea=0.46 eV and σ=1.4×10-15 cm2. The observed non-linear 

behavior of Arrhenius plot for 0.20 eV defect is explained by imperfect thermal contact with 

sample at low temperature so it produced differences between real temperature of sample and 

temperature of cryostat. However, it quickly decreases with heating and at high temperatures a 

linear behavior is observed. For the sample with a 1600 nm thick i-layer we find Ea=0.18 eV and 

σ =1.4×10-16 cm2 for the low-temperature defect level, while for the high-temperature one we find 

Ea=0.54 eV and σ=3.4×10-14 cm2. The defect parameters are presented in Table III.1. Taking into 

account the above mentioned uncertainties in the extracted defect parameter values we can 

conclude that the defects detected in both 1200 nm and 1600 nm thick samples are likely to be the 

same and constitute a characteristic feature of the i-InGaAsN layer based on the InAs/GaAsN 

SDA.  

According to measured C(T, f) data we can conclude that layers of InGaAsN grown using 

InAs/GaAsN SDA do not exhibit any response from defects so their concentration is below the 

detection limit of the AS technique up to at least a thickness of 900 nm (not shown here). Further, 

when the thickness is increased to 1200 nm, conditions become more favorable for the formation 

of defects in InGaAsN but their concentration is still low, so it does not lead to a drastic change in 

the capacitance curves (Figure III.6a). However, the defect concentration drastically increases 

when the thickness is increased to 1600 nm, leading to huge changes in the capacitance-frequency 

curves (Figure III.6b). Such a behavior for defects in epitaxial multilayers which have small lattice 
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misfit with substrate was widely discussed137,138. It was shown that a misfit will be accommodated 

by uniform elastic strain until a critical film thickness is reached. Thereafter, it is energetically 

favorable for misfit to be shared between dislocations and strain. Thus we can propose that 900 

nm thick layer is strained and has low defect concentration while increase of the layer thickness to 

1200 nm leads to dislocations formation and therefore defect responses are detected.    

In the following, we estimate the concentration of detected defects in samples with i-

InGaAsN thickness of 1200 nm and 1600 nm. To this purpose, the method suggested by Walter 

was used127. It is based on the use of the capacitance derivative with respect to angular frequency. 

The density of states (DOS) can be reconstructed by this method for both p-n and p-i-n junctions. 

In Figure III.8 we present the DOS corresponding to the detected defects. The total defect 

concentration (NT) was estimated for the p-i-n junction case from the integration of the DOS over 

the defect distribution around 0.18-0.20 eV. We found NT=51014 cm-3 and NT=3.51015 cm-3 for 

samples with i-InGaAsN 1200 nm and 1600 nm thick, respectively (Table III.1). These values are 

close to that of the effective doping concentrations estimated from C-V measurements at 300 K. 

Consequently, the observed shallow defects completely ionize at temperatures above 260 K 

introducing an additional charge that can explain the observed increase of the effective doping 

concentration at 300 K in the sample with the largest thickness. A peak in the DOS is also obtained 

around 0.50 eV, as shown in Figure III.8. The estimated defect concentration is slightly lower for 

sample with InGaAsN 1200 nm thick (8.41014cm-3) than with 1600 nm (1.31015cm-3) (Table 

III.1).  
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Figure III.8 Density of states in the energy bandgap for low (circles) and high (squares) 

temperature defects detected by admittance spectroscopy for 1200 nm (a) and 1600 nm (b) thick 

i-InGaAsN layers. 
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 DLTS measurements 

The samples were also explored by the DLTS technique with the following conditions: the 

amplitude of the reverse bias voltage was Vrev=-1V, the amplitude of the filling pulse was 

Vpulse=+1V (i.e., the voltage during the filling pulse was 0V), the filling pulse duration was tpulse=40 

ms. The DLTS spectra S(T) for different rate windows is shown in Figure III.9. No peaks are 

detected in the DLTS spectrum for the used temperature range in the 900 nm thick InGaAsN 

sample (Figure III.9a). On the other hand, peaks of the capacitance are observed for the 1200 nm 

thick sample at temperatures above 360 K and high emission rates (Figure III.9b). The position of 

the peaks shifts toward higher temperatures when the rate window is increased, but their amplitude 

also substantially increases and their shape is quite broad. A series of broad peaks with a much 

larger amplitude is observed in the 1600 nm thick sample at temperatures 280-360 K. Such broad 

peaks are usually assigned to extended defects such as dislocations rather than to point defects139. 
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Figure III.9 DLTS spectra S(T) on solar cell structures made of active layers of InAs/GaAsN 

with thickness of 900 nm (a), 1200 nm (b) and 1600 nm (c) for different rate windows (in s-1). 
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The Arrhenius plots of defects obtained from the DLTS spectra are shown in Figure III.7 

in order to compare with the AS data. The defect parameters extracted from both techniques are 

presented in Table III.1. The important difference in AS and DLTS measurements is the different 

used range of emission rates, because the DLTS setup with Boonton-7200 allows to accurately 

measure capacitance transients with relatively low emission rates, e<2000 s-1, unlike AS that can 

better reveal higher emission rates. From DLTS measurement, we found an activation energy 

around Ea~0.8 eV and a cross section around σ~10-15 cm2 for defect state. We could relate this 

defect state to that deep-defect one measured using AS. However, the difference between the 

values of Ea measured by the two techniques (~0.8 eV vs ~0.5 eV using DLTS and AS 

respectively) is large and remains unclear. Using DLTS, such a high activation energy had already 

been detected in similar materials140,141, but no explanation about the large Ea value (larger than 

half of the bandgap) was given. Further research should be done to resolve why the activation 

energy evaluated from DLTS is much higher than midgap. It is an unexpected and unusual result 

which forces to consider DLTS data carefully and with a critical view. Admittance spectroscopy 

is likely to be more suitable to extract defect parameters in our layers where doping is low, 

unintentional, and related to shallow defects. Indeed, in DLTS the dopant concentration should be 

higher than the deep defect concentration for correct interpretation of the data. This may explain 

the discrepancy between the defect parameters extracted from AS and DLTS, along with the 

unexpected large activation energies from DLTS.  

Thickness, nm Еa, eV σ, cm2 NT, cm-3 Method 

 0.20 3.010-17 5.01014 AS 

1200 0.46 1.410-15 8.41014 AS 

 0.82 4.510-13 n/e DLTS 

 0.18 1.410-16 3.51015 AS 

1600 0.54 3.410-14 1.31015 AS 

 0.78 1.910-11 1.01015 DLTS 

 

Table III.1 Parameters of defects detected in i-InAs/GaAsN samples. 

The absence of responses from the low-temperature level on the DLTS spectra can be 

explained by the principle of DLTS measurement in case of fully depleted i-InAs/GaAsN in p-i-n 

junctions at low temperature for all samples. In this case, when the applied voltage returns at 

reverse value following the filling pulse, the space charge region must extend in adjacent layers in 

the structure. But the cover layer of p- and n-GaAs have very high doping concentration (11019 
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cm-3 and 31018 cm-3) so the DLTS signal should be low because  although it is proportional to the 

defect density, it is also inversely proportional to the doping density at the edge of the space charge 

layer30. This may also explain the absence of high temperature response in the sample with 1200 

nm thick i-InGaAsN layer in DLTS spectra. However, the sample with 1600 nm thick InGaAsN 

rather behaves as a p-n junction at temperatures above 240 K due to additional ionization of 

shallow defects. Nevertheless, the low activation energy of this defect (Ea=0.20 eV) does not allow 

considering it as an effective center of non-radiative recombination that could be responsible for 

low lifetimes in the layers of dilute nitrides InAs/GaAsN (see below). 

On the contrary, defects detected at high temperature (Ea=0.45-0.55 eV) are close to the 

middle of the bandgap of the InGaAsN (Eg=1.03 eV) and have large capture cross sections so they 

can have strong influence on the charge carriers lifetimes in active layers of SC. Defects with 

similar parameters were previously observed in many works29,140,142,143. Broad DLTS peaks in 

Figure III.9c mean non-exponential response compared to the classical case of DLTS spectra for 

a point defect, so the interpretation of data should be considered more carefully. Broad shape and 

increasing amplitude of peaks can be due to different causes: local fluctuations in the composition 

of the compounds144, overlap of responses from several discrete defect levels with small separation 

in energy, defects having an energy density of states (e. g. Gaussian distribution, extended defects 

with unknown energy distribution), dislocations etc. In the work139 the convenient method was 

proposed for analyzing such responses from extended defects (not point defect with discrete 

energy level) that exist with localized and band-like states. For the InGaAsN alloys grown by MBE 

with a RF-plasma source of nitrogen the analysis shows logarithmic enlargement of the peak 

amplitude without any temperature shift when the duration of filling pulse is increased until up to 

10 ms for the same rate window: such a behavior is typical for localized states29. However, 

saturation occurs at tpulse larger than 10 ms and the peak amplitude remains constant like in case of 

a point defect. Probably, in the case of dilute nitrides, a strong fluctuation in composition occurs 

due to non-equilibrium growth conditions and the tendency of nitrogen clusterization leads to the 

transformation of point defects into extended ones with some energy distribution.  

III.4  Structural properties 

Further correlation to previous measurements supporting the increase of defects with 

increasing thickness is provided by X-ray diffraction measurements (Figure III.10). The main peak 

is related to the response from the GaAs wafer, and the peak at slightly smaller angle is attributed 

to the InGaAsN layer. This indicates that InGaAsN is under compressive stress and exhibits a 

slightly larger average lattice constant than GaAs. We observe that the shift of the peak is increased 
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with the thickness, especially for the 1600 nm thick layer, where it becomes strongly broadened, 

indicating partial relaxation and formation of defects and dislocations. Formation of dislocations 

and other defects are known to occur in thick strained layers when it exceeds the critical thickness 

in heteroepitaxial growth145,146.  
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Figure III.10 X-ray-diffraction rocking curves of the 900 nm, 1200 nm and 1600 nm thick 

InGaAsN samples. 

III.5 Simulation of external quantum efficiency 

As shown above the external quantum efficiency of the solar cell with an active layer of 

InGaAsN drastically drops when the layer thickness increases from 1200 nm to 1600 nm (Figure 

III.3a). It occurs when photogenerated electron-hole pairs cannot effectively reach the highly 

doped GaAs layers and recombine in the InGaAsN active one. In principle, in a p+-i-n+ structure 

the built-in electric field in the active i-layer improves the separation and collection of charge 

carriers and reduces recombination in the active region of the solar cell. However, the presence of 

a background doping and of charged defects which were revealed in our layers from the 

capacitance measurements tends to replace the p+-i-n+ structure by either a p+-n-n+ or a p+-p-n+ 

structure. In the first case, the p-n junction is the top p+-GaAs/n-InGaAsN junction while in the 

second case it is the bottom p-InGaAsN/n+-GaAs junction. In order to investigate these two 

possibilities, we performed numerical simulations using AFORS-HET 2.5.  To simulate either the 

n-InGaAsN case or the p-InGaAsN case, we introduce either a donor type defect at 0.18 eV below 

the conduction band or an acceptor type defect at 0.18 eV above the valence band (as detected 

from admittance spectroscopy) with a concentration of 51015 cm-3 (that was obtained from the C-

V analysis at 300 K of the 1600 nm thick InGaAsN sample). Simulated band diagrams for n- and 
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p-InGaAsN are presented in Figure III.11a and Figure III.11b, respectively. Also, the EQE curves 

were calculated taking into account the reflection losses that were measured on solar cells (Figure 

III.3b). We introduced a bulk defect level located at 0.5 eV below the conduction band in n-

InGaAsN (above the valence band edge in p-InGaAsN), with capture cross sections of electrons 

and holes equal to 2×10-13 cm2 and 2×10-14 cm2, respectively. As noted above, me in InGaAsN is 

in 5-10 times lower than mh so electron σ should be in 5-10 times higher than hole σ for the same 

value of pre-exponential factor estimated from Arrhenius plot. The defect concentration was varied 

for both cases (Figure III.11c and Figure III.11d, respectively). In the first case, the separation of 

charge carriers generated at short wavelength will occur more efficiently, since the regions of high 

built-in electric field and high absorption (close to the front surface) coincide. In the second case, 

these regions are spatially separated. As a consequence, the EQE is more affected in the second 

case due to enhanced recombination of electron-hole pairs and the shape of the EQE curve is 

different. The big drop in EQE observed in the 1600 nm-InGaAsN sample is more pronounced at 

short wavelength, where light is absorbed in a narrow depth close to the p+-GaAs/i-InGaAsN 

interface. This behavior is well reproduced in the simulation if the InGaAsN layer is of p-type. 

This suggests that the InGaAsN layer has a p-type background doping and that the p-n junction is 

located at the bottom side. Therefore, all detected defects from AS and DLTS are traps for holes 

because they are majority-carrier traps in p-InGaAsN. Another consequence is that the defects in 

the 1600 nm thick sample were detected at the bottom side of InGaAsN, indicating that increasing 

the thickness from 900 nm to 1600 nm has not produced defects only in the upper part of the layer, 

but the defects are likely to be distributed all over the thickness. 
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Figure III.11 Band diagram of modeled p+-GaAs/n-InGaAsN/n+-GaAs (a) and p+-GaAs/p-

InGaAsN/n+-GaAs (b) structures with 1600 nm thick InGaAsN layer, and corresponding 

external quantum efficiency for various deep defect concentrations ((c) and (d)). The 

experimental curve is also shown in (d). 

Taking now the InGaAsN layer to be p-type, we also simulated the EQE curve for various 

deep defect concentrations for 900 nm and 1200 nm thick samples (Figure III.12). An increase in 

the thickness of the InGaAsN layer from 900 nm to 1200 nm leads to only very small changes in 

the EQE curve: a small increase in the long-wavelength range because of enhanced absorption. 

The increase of the defect concentration up to 0.5×1015 cm-3 induces a small decrease of EQE 

because the electric field is strong enough in the InGaAsN layer to separate the carrier and to allow 

them to be collected before they recombine. On the contrary, for the 1600 nm thick InGaAsN layer 

the EQE curve exhibits the drastic decrease at short wavelength and the same shape as observed 

experimentally when the defect concentration is above 0.5×1015 cm-3. Therefore, the concentration 

of (0.5-2.0)×1015 cm-3 estimated from AS and DLTS allows to achieve good qualitative and 

quantitative correlation between experiments and simulations.  
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Figure III.12 Measured and simulated external quantum efficiency curves of the p-i-n structures 

with InGaAsN 900 nm (a) and 1200 nm (b) thick for various deep defect concentrations. 

Consequently, the relation was demonstrated between the thickness of i-InGaAsN active 

layer grown by MBE in the form of SDA InAs/GaAsN in solar cells and their photoelectric and 

internal properties. An increase in the thickness of the active layer leads to formation of defects 

that are centers of non-radiative recombination, responsible for a strong drop in EQE in the short-

wavelength region. 

Summary 

In Chapter III, sub-monolayer digital alloys of InAs/GaAsN were grown on GaAs wafers 

by molecular-beam epitaxy for application in single-junction solar cells with undoped active layer 

of InGaAsN with bandgap closed to 1 eV. The influence of its thickness on their photoelectric and 

internal properties was explored by different techniques. According to experimental data and 

simulation following conclusion were declared: 

 Technology of SDA InAs/GaAsN allows to grow intrinsic 900 nm thick InGaAsN 

with low free carriers concentration at room temperature without Sb (less 1×1015 

cm-3). Also, deep defects were not observed for this sample. 

 Increasing of its thickness up to 1200 nm leads to formation of majority carriers 

traps with energy activation of 0.20 eV (5×1014 cm-3) and 0.50 eV (8×1014 cm-3). 

So background doping concentration remains low at room temperature and deep 

levels do not have significantly effect on photoelectric properties 

 Further layer thickening, up to 1600 nm, leads to significant increase of 0.20 eV-

level concentration to 5×1015 cm-3. InAs/GaAsN becomes p-type doped at room 
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temperature due to their ionization and band diagram of p-GaAs/i-InGaAsN/n-

GaAs changes. 

 Observed defects with Ea=0.50 eV are non-radiative recombination centers leading 

to extreme drop of external quantum efficiency in the InAs/GaAsN sample of 1600 

nm thickness. 

 

 



 

73 
 

Chapter IV  

InGaPAsN 
Introduction 

In this Chapter, single-junction SCs grown on GaP wafers and MJSCs grown on Si wafers 

with active layers of InGaPAsN are explored. The parameters of SCs are presented in Table IV.1. 

Photoelectric and electric properties are investigated at different conditions. Further, 

different capacitance methods (AS, DLTS, C-V) are performed for the characterization of defect 

and doping properties. The main problem of these studies was the absence of post-growth 

processing of grown structures in the initial steps of our work. This is why we have developed 

different methods of contact formation and etching for our structures that are described in 

Appendix. 

Type of 

SC 

#Sample Wafer Active junction 

in bottom 

subcell of MJSC 

Active layer in 

single-junction SC/ 

top subcell of 

MJSC 

Active 

layer 

thickness, 

nm 

Front 

layer 

Single 1 n-GaP - n-GaPAsN 1000 p-GaP 

 2 n-GaP - i-GaPAsN 300 p-GaP 

 3 n-GaP - i-GaPAsN 300 p-GaP 

 4 n-GaP - i-InP/GaPN 350 p-GaP 

Double 5 p-Si p-Si/n+-Si i-GaPAs 400 n-GaPAs 

 6 p-Si p-Si/n+-Si i-InP/GaPN 200 n-GaP 

 7 p-Si p-Si/n+-Si i-GaPAsN 200 n-GaP 

Triple 8 p-Si p-Si/n+-Si i-GaPNAs 

i-GaPN 

200 

150 

n-GaP 

Table IV.1 Parameters of SCs grown on GaP and Si wafers. 
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IV.1 Single-junction grown on GaP wafers 

 Samples description 

Studies of SC based on dilute nitrides, InGaPAsN, have started from single-junction SCs 

grown on n-type GaP wafers. The first one is a structure with an active layer of n-type 1000 nm 

thick GaP0.832As0.15N0.018, and with a 100 nm thick highly doped p-type GaP front contact layer, 

so the SC is based on a p-n junction where p-GaP is the emitter/wide bandgap window and n-

GaPAsN is the photoactive base layer (sample #1, Figure IV.1a). Here, n-GaPAsN has the same 

composition over the layer thickness. The second SC is based on a p–i–n structure with an undoped 

300 nm thick GaPNAs layer confined between two symmetric p- and n-type GaPAsN layers, and 

also  with a 100 nm thick front p-GaP layer as a wide bandgap window (sample #2, Figure IV.1b). 

The third SC has the same layers as in the second structure but it was treated in another post-

growth processing in MBE-chamber including growth of additional cover layer of a 80 nm thick 

p+-GaP (sample #3, Figure IV.1c). In these two samples the arsenic content varies in the range 15-

30% in quaternary GaPAsN alloy for better nitrogen incorporation. The fourth sample is also a p–

i–n structure with 350 nm thick undoped InP/GaPN (0.3 nm/10 nm) SDA confined between p- and 

n-type GaPN layers, and with a 100 nm thick front p-GaP layer as a wide bandgap (sample #4, 

Figure IV.1d). 

Before description of the experimental studies it is necessary to observe qualitative 

differences in the band diagrams for SCs based on single p-n (sample #1, Figure IV.2a) and p-i-n 

(sample #3, Figure IV.2b) junctions in the equilibrium conditions. Qualitative behavior of all p-i-

n structures investigated in the work is almost the same so any of them can be compared with 

sample #1. The main difference lies in the separation and collection of generated charge carriers 

in the SC base. In case of the p-i-n structure, absorbed photons generate electron-holes pairs which 

are effectively separated by the electric field acting on the entire thickness of the undoped layer. 

Its configuration is usually used when lifetime of charge carriers is low. For p-n structure, the 

electric field takes place only in the SCR, the carriers moving by diffusion outside the region. 

Thus, if the quality of the material is poor and its thickness exceeds the value of diffusion length, 

ldiff, charge carriers can recombine in the thick doped layer and do not reach highly doped regions, 

so carrier collection becomes ineffective. For investigated p-n junctions value of ldiff should of the 

order of 1 μm or more for high performance of SC. According to the literature, the quality of dilute 

nitrides lattice-matched to GaP is very poor so rather poor photoelectric properties of sample #1 

are expected.  
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p-GaP 100nm 1·1019cm-3 

p-GaP 100nm 5·1018cm-3 

n-GaPAsN 1000 nm 1·1017cm-3 

 

n-GaP wafer 

n-GaP 120nm 5·1018cm-3 

 

p-GaP 80nm 1·1019cm-3 

p-GaPN 100nm 1·1017cm-3 

i-GaPAsN 300 nm 

 

n-GaP wafer 

n-GaPNAs 300nm 3·1017cm-3 

 n-GaP 100nm 3·1018cm-3 

 

(a) 
(b) 

 

  

p-GaP 80nm 1·1019cm-3 

p-GaPN 100nm 1·1017cm-3 

i-GaPAsN 300 nm 

 

n-GaP wafer 

n-GaPNAs 300nm 3·1017cm-3 

 n-GaP 100nm 3·1018cm-3 

 

p-GaP 80nm 1·1019cm-3 

p-GaP 100nm 2·1019cm-3 

p-GaPN 100nm 1·1018cm-3 

i-InP/GaPN 350 nm 

 

n-GaP wafer 

n-GaPN 100nm 3·1018cm-3 

 n-GaP 200nm 3·1018cm-3 

 

(c) (d) 

Figure IV.1 Schematic view of single-junction solar cells grown on n-GaP wafers: sample #1 (a), 

sample #2 (b), sample #3 (c), sample #4 (d). 
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Figure IV.2 Band diagram of SC with single p-n (a) and p-i-n (b) junctions. 

For further electrical and capacitance measurements ohmic contacts were fabricated to the  

top and the bottom sides of samples. The detailed description of this technology is presented in 

Appendix A.  
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 Quantum efficiency and current-voltage measurements of single-

junction solar cells 

Unfortunately, there are many differences in our single-junction SCs, but it is possible to 

designate the most important factors acting on their photoelectrical properties. Usually, the quality 

of active layers has the strongest influence on their performance. In our case, there are three 

samples with an active GaPAsN layer: one with n-type doped base and two with an undoped base, 

so the influence of the doping level can be defined. Secondly, the fourth sample has an undoped 

layer of GaPN/InP with almost the same thickness so it is possible to study the influence of layer 

composition on photoelectric properties of the SC. Furthermore, both p-i-n structures with 

undoped GaPAsN differ from each other only by the post-growth processing in MBE-chamber 

including growth of additional cover layer of p+-GaP 80 nm thick. Figure IV.3a shows the current- 

voltage characteristics of all structures measured under AM1.5G illumination. 
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Figure IV.3 Current- voltage characteristic of solar cells under AM1.5G (a) and of mesa-

structures in the dark (b), 25°C. 

Sample layer VOC, 

V 

JSC, mA/cm2 FF, % 𝜂, % n Rs, 𝛺 ∙ 𝑐𝑚2 Rsh, 𝛺 ∙ 𝑐𝑚2 

#1 n-GaPNAs 0.82 1.61 48 0.63 n/e n/e n/e 

#2 i-GaPNAs 0.87 3.93 54 1.84 1.46 n/e n/e 

#3 i-GaPNAs 0.93 4.34 65 2.60 1.37 0.70 915 

#4 i-InP/GaPN 1.24 2.47 52 1.59 1.86 n/e (low) 1358 

Table IV.2 Parameters of solar cells performance on GaP (n/e - not estimated). 
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Small values of the filling factor for these I–V curves are explained primarily by large 

ohmic losses related to imperfect upper contact grid. The sample #1 with a p–n junction is 

characterized by poorer performance (especially, extremely low short-circuit current) than SCs 

with a p-i-n junction. This fact is indicative of a more effective collection of generated charge 

carriers in the short-circuit regime in the case a p–i–n structure, which can be related to the 

presence of a pulling electric field in the undoped GaPAsN layer. Despite the fact that Eg of i-

GaPAsN (1.7 eV) is smaller than n-GaPAsN (1.9 eV), VOC is also higher for sample #2 (0.87 V) 

than in sample #1 (0.82 V). Change in post-growth treatment process leads to significant 

improvement of the I-V curve for p-i-n sample #3. First of all, the fill factor has much higher value 

65% compared to 54% for sample #2. Possibly, it comes from the additional contact layer of p+-

GaP grown after annealing in MBE-chamber since it improves the GaP/metal contact. Short-circuit 

current also increases and reaches a value of 4.34 mA/cm2 in sample #3. Sample #4 shows the 

highest open-circuit voltage of 1.24 V for single-junction SCs grown on GaP wafer due to high 

bandgap energy of 2.03 eV. However, its short-circuit current is lower than the value in the sample 

with i-GaPAsN and higher than in n-GaPAsN. Consequently, using an undoped layer of GaPAsN 

is much more preferable than using n-type layer for photovoltaic applications136. For this reason, 

we are mostly focusing in the detailed study of I-V curves for p-i-n structures.  

I-V curves in the dark are presented in Figure IV.3b for samples #2-#4 with active i-layer. 

First, the reverse current is low for all mesa-structures so it will be possible to apply capacitance 

methods for deeper investigations. All p-i-n samples show exponential dependence of the current 

on the forward applied voltage (straight line in logarithmic scale). However, it exhibits clear that 

the slope of sample #4 is the smallest incline and slope of sample #3 is slightly sharper than in 

sample #2. It means differences in value of ideality factor n in p-i-n junctions thus it was estimated 

for each sample from classical equation for dark I-V dependence: n2=1.46, n3=1.37 and n4=1.86. 

Value of ideality factor describes what is determining for the transport mechanism in junction: 

diffusion (n=1) or recombination (n=2). For ideal p-n junctions without any recombination in the 

SCR transport is defined only by diffusion. When the defect concentration increases, charge 

carriers start to recombine in SCR and the recombination current also grows. According to 

Shockley-Read-Hall theory if the defect level is placed in the middle of the bandgap the ideality 

factor is equal of 2. In practice, transport is defined by both mechanisms so n takes values from 1 

to 2 like in the considered samples. Therefore, the first conclusion is the existence of recombination 

issues in p-i-n junctions based on dilute nitrides InGaPAsN. Then, the ideality factor of sample #4 

with i-InP/GaPN layer is much closer to 2 than in samples #2 and #3 with GaPAsN. It means 

higher recombination influence on carriers transport in InP/GaPN thus the defect concentration 

should be higher in this layer. The deviation from exponential voltage dependence at high current 
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for samples #2 and #3 is caused by a series resistance which value is higher for sample #2. It comes 

from a better quality of the cover contact p-GaP layer in sample #3 due to a change of post-growth 

processing in the MBE-chamber.  

The current-voltage characteristics of an ideal SC is described by equation (II.2), where the 

photocurrent is subtracted from the dark current of the ideal diode. However, the performance of 

real SC is affected by resistive effects reducing the efficiency by dissipating power in the 

resistances. The most common parasitic resistances are series Rs and shunt Rsh resistances. The SC 

circuit including resistances is shown in Figure IV.4. 

 

 

 

 

 

 

 

  

Rsh 

Rs 
Jph 

 

Figure IV.4 Parasitic series and shunt resistances in a solar cell circuit. 

Series resistance in SCs has three causes: the transport of charge carriers through the 

emitter and base of the SC, the contact resistance on the metal/semiconductor interface, and the 

resistance of metal contact to the top and bottom sides of SCs. Series resistance leads to 

deterioration of fill factor since the slope of the I-V curve becomes less steep in the region near to 

open-circuit voltage. The low shunt resistance causes power losses in solar cells by providing an 

alternate path for the current. It reduces the amount of current flowing through the SC junction 

and the voltage across SC. The effect of a shunt resistance is strongly observed at low light levels, 

and at low voltages where the equivalent resistance of the junction is high. Shunt resistance appears 

due to poor manufacturing process rather than SC design. It leads to deterioration of fill factor: 

horizontal line of I-V curve for ideal SC in the short-circuit region starts to tilt and reduces FF. 

Consequently, the realistic parameter of ideality factor and resistances of SC can be estimated by 

the equation: 

𝐽 = 𝐽𝑆 [exp (
𝑞(𝑉 − 𝐽𝑅𝑠

𝑛𝑘𝐵𝑇
) − 1] − 𝐽𝑝ℎ +

𝑉 − 𝐽𝑅𝑠

𝑅𝑠ℎ
 (IV.1) 
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For sample #2 the deviation from the conventional behavior is observed close to the open-

circuit voltage regime (Figure IV.3a). The bending of the curve can be due to high series resistance 

caused by low quality of contact layers and the metal/GaP interface. It is also confirmed by analysis 

of dark I-V curve of sample #2 (Figure IV.3b) where it changes its behavior from exponential 

(diode) to linear (resistance) at lower voltage and the value of series resistance is higher (slope of 

I-V curve in linear scale) than for sample #3. The reason of such a behavior is the difference in 

post-growth treatment in the MBE-chamber. In this case, it is difficult to estimate a precise value 

of Rsh and Rs in sample #2. But it was successfully done for samples #3 and #4: parameters are 

shown in Table IV.2.  

In result, some points can be concluded from the data. Series resistance is lower for SC 

with InP/GaPN but the fill factor is larger for p-i-n SC with GaPAsN. The ideality factor of SC 

with InP/GaPN is higher (and much closer to 2) than with GaPAsN layers. It leads to lower short-

circuit current and lower efficiency even with higher open circuit-voltage in sample #4. 

Furthermore, the dependence of open-circuit voltage on temperature was measured for samples #3 

and #4 (Figure IV.5). VOC(T) behavior is similar for both samples and it decreases with increasing 

temperature with a coefficient of 2mV/K. 

0.6

0.8

1

1.2

1.4

1.6

100 150 200 250 300 350 400

#3
#4

V
o

lt
a
g

e
, 
V

Temperature, K
 

Figure IV.5 Temperature dependence of open-circuit voltage in two SCs. 

The external quantum efficiency was also measured for structures #1-#4 (Figure IV.6). For 

all samples, it is possible to distinguish two peaks in the EQE curve. This can be explained by the 

peculiar structure of the conduction band in InGaPAsN dilute nitrides where two conduction 

subbands may exist. The detailed investigation of this phenomenon is addressed in Appendix B. 

Let us focus here on the comparison of the EQE curves of the four samples. 
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Figure IV.6 External quantum efficiency of single-junction SCs grown on n-GaP wafer. 

 The value of EQE is much larger for sample #2 with the p-i-n structure based on GaPAsN 

than in sample #1 based on the p-n junction. It means a more efficient collection of generated 

charge carriers in the short-circuit regime for the p–i–n structure. As can be seen, the p–i–n 

structure exhibits a higher EQE with respect to both the peak (35%) and the integral (area under 

curve) values as compared to those of the p–n structure which is in agreement with larger value of 

JSC (Table IV.2). In addition, the quantum efficiency significantly increases in the long wavelength 

region, which is related to lower recombination losses in the undoped layer. These differences may 

be due to larger lifetimes of carriers in the undoped layer of the GaPAsN quaternary alloy as 

compared to that in doped layers. It should be noted that the studied structures are not provided 

with antireflection coatings. However, even with allowance for the reflection losses (in the range 

of 20-40%), the values of quantum efficiency obtained in the p–i–n structure are yet insufficient 

for its effective operation in the top junction of MJSC. In order to further improve the efficiency, 

it is necessary to increase the thickness and, hence, the level of absorption in the undoped region.  

Comparing now with sample #2, we first remember that sample #4 with undoped layer of 

SDA InP/GaPN was grown for comparison of two fabrication methods for improvement of the 

photoelectric quality of GaPN. Introducing nitrogen leads to lattice-mismatch with the GaP wafer 

as described before and elastic stresses increase. The SDA method had been shown to be able to 

provide stress compensation by adding one monolayer of InAs in GaAsN grown on GaAs wafers. 

Consequently, this growth procedure can be applied for compensating stresses between GaP and 

GaPN by adding some monolayers of InP. According to the spectral response, sample #2 with 

GaPAsN layer has higher peak and integral EQE values than sample #4 with InP/GaPN (the same 

tendency was observed for JSC above). It means lower lifetime charge carriers in the InP/GaPN 

material than in GaPAsN due to the existence of higher defect concentration as suggested from the 
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ideality factor in InP/GaPN close to 2. It confirms conclusion suggested by other authors80 about 

better compensation of elastic stresses by arsenic than by indium. Nitrogen is a V-group element 

so it tries to take place in the sublattice of V-group atoms in the GaP lattice (phosphorus sites). 

Arsenic is also a V-group element so it also stands in phosphorus sites and it leads to more effective 

stress compensation than indium incorporation since the latter is a III-group element. We also 

observe that the shape of quantum efficiency has a more abrupt slope in the long-wavelength 

region in InP/GaPN than in all sample with GaPAsN. A possible reason is the smaller nitrogen 

content in the active layer of sample #4 since nitrogen has a tendency to clusterization leading to 

local inhomogeneous composition of materials.  

Finally, comparing sample #2 and #3, we observe a significant improvement in the EQE 

for sample #3 as was already noticed in the I-V curve under illumination. Sample #3 has the best 

photovoltaic properties among the studied samples. However its EQE is still very low (<40%). 

This could be explained by low lifetimes of carriers related to defect leading to recombination, 

which deserves further studies of defect properties in such dilute nitride layers. This will be the 

focus of next section using capacitance techniques. 

 Admittance spectroscopy 

In this section, the study of solar cells is performed by admittance spectroscopy. 

Measurements were made with a Janis VPF-100 nitrogen vacuum cryostat at temperatures T in the 

range from 80 to 360 K and an E7-20 RLC-meter at frequencies f in the range from 20 Hz to 1 

MHz.  

Figure IV.7 shows the temperature dependence of the capacitance at different frequencies, 

C(T,f), for the single-junction solar cells (samples #1-#4) grown on GaP wafers. The steps 

observed in the capacitance curve with increasing temperature evidence the response of a defect 

level in the bulk, or at the interface, or the presence of a potential barrier in the (In)GaPN(As)/GaP 

heterojunction. An analysis of theoretical band diagrams and of the run of the experimental 

current-voltage characteristics, which have no bends, suggests that the features observed in the 

admittance spectra are not associated with parasitic potential barriers at interfaces. Measurements 

of C(T,f) at different bias voltages demonstrated that the peak and step positions are independent 

of the applied bias voltage, which is evidence of the response of defect levels in the bulk of the 

material, rather than at the interface.  



 

83 
 

0

40

80

120

160

80 120 160 200 240 280 320 360

        200
        500
       1000
       2000
       5000
      10000
      20000
      50000
     100000
     200000
     500000
    1000000

C
a

p
a
c

it
a
n

c
e

, 
n

F
/c

m
2

Tempearture, K

(a)

Ea=0.22eV

0

40

80

120

160

80 120 160 200 240 280 320 360

        200
        500
       1000
       2000
       5000
      10000
      20000
      50000
     100000
     200000
     500000
    1000000

C
a

p
a
c

it
a
n

c
e

, 
n

F
/c

m
2

Temperature, K

Ea=0.20eV

(b)

 

0

40

80

120

160

80 120 160 200 240 280 320 360

        200
        500
       1000
       2000
       5000
      10000
      20000
      50000
     100000
     200000
     500000
    1000000

C
a

p
a
c

it
a
n

c
e

, 
n

F
/c

m
2

Temperature, K

Ea=0.20eV

(c)

0

20

40

80 120 160 200 240 280 320 360

200

500

1000

2000

5000

10000

20000

50000

100000

200000

500000

C
a
p

a
c

it
a
n

c
e

, 
n

F
/c

m
2

Temperature, K

Ea=0.08eV

(d)

 

Figure IV.7 Experimental dependence of the capacitance upon temperature at various 

frequencies (indicating in Hz) for sample #1(a), #2(b), #3(c) and #4(d). 

For the grown p–n structure (sample #1) on the GaP wafer, a clearly discernible capacitance 

step are observed at temperatures of 100–200 K (Figure IV.7a), which corresponds to a defect 

level with an activation energy of Ea=0.22 eV and capture cross section σ=2.4×10-15 cm2 (Figure 

IV.8). One more step with a low activation energy of 0.04–0.1 eV can be seen at a higher 

temperature in the admittance spectra. It is difficult to determine this value more precisely because 

of the overlapping of both responses falling within the same temperature range. Further, samples 

#2 (Figure IV.7b) and #3 (Figure IV.7c) show similar capacitance dependence: the same low 

temperature step overlapping with another high temperature response. The parameters extracted 

from the low temperature step are Ea=0.20 eV and σ=1.7×10-15 cm2 (Figure IV.8), but the 

amplitude of the step is much lower than in the p-n structure. Unfortunately, parameters for defects 

responding at higher temperature could not be estimated in both samples. In sample #2 responses 

from defects strongly overlap for low frequencies, but for high frequencies (higher than 5 kHz) the 
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temperature range does not allow to measure useful points at temperatures above 360 K, so it is 

impossible to define properly the parameters of this defect. 

For sample #4 with i-InP/GaPN capacitance curves have low temperature series of blurred 

steps and then monotonous growth of capacitance without any feature (Figure IV.7d). According 

to the Arrhenius plot (Figure IV.8), these steps correspond to a response with a thermal activation 

energy Ea=0.08 eV and a capture cross section σ=1.45×10-16 cm2. Possibly, this defect could be a 

donor-type point defect formed by silicon atoms at the site of gallium in the GaP lattice (SiGa) at a 

position of EC-0.09 eV. This defect was also observed in undoped GaP:N layers grown by VPE90. 

However, since it is a shallow impurity center, it should not be very active in recombination and 

thus not affect the lifetime of charge carriers in the material. At temperatures above 160 K, the 

capacitance is almost independent on frequency and slowly grows with heating up to 360 K, so 

there are no response from defective levels in the explored temperature range for AS 

measurements. 
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Figure IV.8  Arrhenius plot of the capacitance step for sample #1-#4. 

Let us discuss the defect level with an activation energy of 0.22 eV, observed in p–n 

structures. According to a previous studies86,88,89, the T1 level with a close activation energy and 

capture cross section is observed in the GaP:N material doped with silicon. This defect is a SiGa+VP 

complex, which appears under non-equilibrium growth conditions when a large number of gallium 

and phosphorus vacancies are formed and Si occupies their substitutional sites. The n-GaPAsN 

layer under study was also intentionally doped with silicon with significant concentration. For the 

structures with i-GaPAsN, a similar response is also observed but the step amplitude is extremely 

low. It means that this defect has much lower concentration but its existence can be associated 

with unintentional background doping of i-GaPNAs by silicon during the growth process.  
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Therefore, admittance spectroscopy allowed to detect defect with low activation energy 

which can be associated with silicon incorporation in dilute nitrides and, perhaps, responsible for 

unintentional doping of these layers. However, their low values of Ea and σ do not allow us to 

consider them as effective centers of non-radiative recombination in InGaPAsN. Consequently, 

DLTS will be used for exploration of deep levels. However, p-i-n structures show better 

photoelectric properties so only samples #2-#4 with i-layer are studied by this method. 

 Capacitance- voltage measurements 

The section is devoted to the study of single-junction solar cells with p-i-n junction grown 

on GaP wafers by the capacitance-voltage method to define the background doping in the i-layer 

of dilute nitrides. As shown above by AS there is no contribution from defect levels in the 

capacitance value at high frequency and at low temperature (Figure IV.7). Therefore, C-V curves 

were measured for all samples in reverse voltage range of 0..3 V at a frequency of 1MHz at 80 K 

(Figure IV.9a). Obviously, the capacitance decreases versus reverse voltage in all samples but the 

decrease rate is different. Sample #2 has the strongest dependence of capacitance on bias voltage 

and quickly decreases, sample #3 shows slight capacitance drop and sample #4 exhibits almost no 

capacitance change. According to Eq. (II.14), the width of SCR can be estimated from the 

capacitance value. The estimated dependence of the space charge width on applied reverse voltage 

is shown in Figure IV.9b.  
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Figure IV.9 Capacitance-voltage characteristics (a) and width- voltage dependences (b) for solar 

cells with single p-i-n junction at 80 K. 

According to the growth recipe, the i-layer of dilute nitrides must be undoped so the width 

of SCR must be equal to the thickness of the i-layer at reverse applied voltage in the classical case 
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of ideal p-i-n junction where doping concentration in p- and n-layers is much higher than in the 

undoped i-layer. However, background doping in i-layers yields to differences compared to the 

ideal case. It leads to the formation of a classical p-n junction instead of the expected “p-i-n” 

structure. Thus, the capacitance can depend on the applied voltage since the SCR extends inside 

the less doped supposed “i”-layer. In addition, the presence of silicon related defects in the i-layers 

suggests that the background doping should be of n-type. 

The SCR width is almost independent of the applied bias voltage in sample #4 and its 

estimated thickness is approximately 390 nm. It is close to the value of 350 nm estimated from the 

growth process, so the i-InP/GaPN layer must be fully depleted; the discrepancy can come from 

the unknown value of dielectric permittivity in dilute nitrides or (and) an error in the area 

estimation. Further voltage increase does not lead to an extension of SCR in the adjacent p- and n-

layers since they have very high doping concentration that is confirmed by the growth recipe 

(3×1018 cm-3 and 1×1018 cm-3 for the n- and p- layer, respectively). According to the computer 

simulation of C-V, the background n-type doping concentration should be lower than 1×1016 cm-3 

in sample #4 (Figure IV.10c).  

Both samples with i-GaPAsN exhibit a change of the capacitance with increasing of 

voltage, and the estimated SCR width is larger than the value of 300 nm announced from the 

growth procedure. It means that the SCR extends in adjacent layers, and the stronger C-V 

dependence of sample #2 suggests that the two samples should have different doping 

concentrations. In the simulation, we varied the doping concentration in the i-layer (n-type) and in 

the adjacent p- and n-layers. The best correlation with experiments was obtained when n- and p-

type layers have the doping concentration of 3×1017 cm-3 and 1×1017 cm-3 in sample #2. These 

values correspond to that announced from the growth recipe. However, they are slightly higher in 

sample #3: 5×1017 cm-3 and 4×1017 for n- and p-layers. The simulated C-V dependences are shown 

in Figure IV.10 for different concentrations of n-doping i-layer at 80 K. From the comparison with 

experimental data, we can estimate the n-type doping concentration at 3×1016 cm-3 and 1×1016 cm-

3 in sample #2 and #3, respectively.  
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Figure IV.10 Simulated capacitance-voltage characteristics for sample #2(a), #3(b) and #4(c) 

with single p-i-n junction at 80 K for different concentration of n-type doping in i-layer. 

Simulated band diagrams at zero bias voltage are presented in Figure IV.11 for all three 

samples. The space charge region is divided between i- and cover p- layer of 100 nm in sample #2 

due to their comparable doping concentration (3×1016 cm-3 and 1×1017 cm-3 respectively) in ratio 

3.5:1 at zero voltage so it is p-n junction. Further, the SCR extends simultaneously in both layers 

and at the final value of -3 V they become almost fully depleted. In sample #3 the SCR also extends 

in the p-layer at equilibrium conditions, but due to the high concentration ratio (more than one 

order of magnitude) almost total SCR is lying in the i-layer so it is almost fully depleted even at 

zero bias voltage because its thickness is almost coinciding with the SCR width.  The increase of 

reverse voltage up to 3 V leads only to a slight extension of SCR of 10 nm thus sample #3 can be 

considered as a p-i-n junction. The sample #4 shows a band diagram similar to that of an ideal p-

i-n junction since the electric field extends all across the width of i-GaPAsN layer. Low doping in 

i-layer and high doping in cover p-layer lead to full depletion of i-GaPAsN and negligible width 
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of SCR in cover p-layer. Consequently, GaPAsN alloys seen to be more unintentionally doped (1-

3×1016 cm-3) than InP/GaPN for the current growth processes. If i-GaPAsN is used as an active 

layer in SC based on p-i-n junction, cover layers must be highly doped and minimal value of 

doping can be estimated for suggested thickness of i-layer. However, reasons of background 

doping in InGaPAsN also must be explored by fabrication of special structures where doping value 

can be estimated directly from experimental data, and not from simulation. This information could 

help to decrease concentration doping in dilute nitrides lattice-matched to GaP and Si. 
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Figure IV.11 Simulated band diagram for solar cells with single p-i-n junction at 80 K. 

 Deep-level transient spectroscopy 

The samples were studied by the deep-level transient spectroscopy technique to explore 

deep defects in the i-layer of dilute nitrides.  

IV.1.5.1 GaPAsN layer of sample #2 

For sample #2 the DLTS spectra S(T) was measured for different rate windows under the 

following conditions: Vrev=-2 V, Vpulse=+1.5 V, tpulse=100 ms (Figure IV.12a). The S(T) spectra 

have two clear series of peaks associated with responses from majority-carrier traps. First series is 

placed in the temperature range 80-120 K and it corresponds to a defect level with activation 

energy Ea=0.18 eV and capture-cross section σ=3.1×10-15 cm2 estimated from Arrhenius plot in 

Figure IV.12b. These values correlate well with parameters of a similar defect detected by 

admittance spectroscopy above. Afterwards, a clear series is detected in the temperature range of 

200-280 K and it corresponds to a deep defect with parameters of Ea=0.58 eV and σ=6.9×10-13 

cm2.  



 

89 
 

0

0.1

0.2

0.3

80 120 160 200 240 280 320 360

10
20
50
100
200
500

Temperature, K

D
L

T
S

 s
ig

n
a

l,
 p

F

(a)

10
-4

10
-3

10
-2

10
-1

2 4 6 8 10 12

e
/T

2
, 

s
-1

K
-2

1000/T, K
-1

(b)

Ea=0.58 eV
Ea=0.20 eV

 

Figure IV.12 a- DLTS spectra S(T) for sample #2 (with layer of GaPAsN) for different rate 

windows (in s-1) with the following conditions: (a)- Vrev=-2 V, Vpulse=+1.5 V. b- Arrhenius plot 

of detected responses. 

Nevertheless, spectra S(T) also have some feature (shown as arrow in Figure IV.12a for 

er=500 s-1) in the high-T side of peaks related to defect at 0.18 eV in the temperature range 120-

160 K: it can suggest the existence of one additional defect with lower amplitude. Also, in the 

temperature range 140-200 K the shape of S(T) can suggest the existence of the response from a 

trap for minority carriers. However, the sample was always under reverse bias even during the 

filling pulse, meaning that a response from minority carrier traps could hardly be in the i-layer. A 

correct estimation of the parameters for these two responses is impossible due to their low peak 

amplitude and overlapping with the responses from the main defects with an activation energy 

0.18 eV and 0.58 eV. As described above sample #2 has a p-n junction lying in the i-layer and in 

cover p-layer so its band diagram is different from the usual Schottky so the DLTS data should be 

analyzed and interpreted for a correct estimation of defect concentration and clear understanding 

of processes occurring during the measurements. Figure IV.13 presents the simulated band 

diagram at a value of applied voltage of -0.5 V (during the filling pulse) and -2 V (initial and after 

filling pulse state) in sample #2. 
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Figure IV.13 Band diagram of sample #2 at -0.5 V(a) and -2 V(b). 

The band diagram consists of valence and conduction bands, electron and hole quasi-Fermi 

levels, position of electron traps at an energy 0.18 eV and 0.58 eV below conduction band, and a 

suggested hole trap at position Ev+0.44 eV. Here and further, i-layer of InGaPAsN is considered 

as n-type layer. According to the simulation, at the reverse bias of -2 V (Figure IV.13b) the electron 

quasi-Fermi level essentially shifts only in the i-layer unlike adjacent layers where it almost 

remains constant. In this case, the electron traps must be empty above the electron quasi Fermi 

level and filled below but each trap level crosses the quasi Fermi level at its own point in the SCR 

(Figure IV.13b). The quantity denoted λ in the theory of DLTS is difference between the border 

of the SCR and the position of this intercept point. When the positive filling pulse (final voltage is 

-0.5 V) is applied the electron quasi Fermi level is pushed towards the conduction band only in 

part of the i-layer and some empty traps could capture electrons (Figure IV.13a). When the sample 

returns to its initial state at Vrev=-2V the electron quasi Fermi level is placed below the defect states 

filled with electrons in a narrow region where electrons are emitted thus yielding the capacitance 
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transient that is measured by DLTS. This region defines the number of defects contributing to the 

DLTS response so it must be taken into consideration for a correct estimation of defect 

concentration. Each region is shown as a rectangle of the corresponding color for each defect level 

in the band diagram (Figure IV.13). According to equation (II.38) the defect concentration was 

estimated under the condition of ND=3×1016 cm-3  as from the C-V measurements and we find 

value of  2×1015 cm-3 and 4×1015 cm-3 for defects at Ec-0.18 eV and Ec-0.58 eV, respectively. For 

the latter we could also estimate the capture time which is of the order of 10-11 s assuming a thermal 

velocity value of 107 cm/s. It is extremely small value for the i-GaPAsN layer that can lead to low 

EQE in SC (Figure IV.6). Consequently, we must study this defect carefully in future experiments 

since lifetimes in dilute nitrides must be higher than 10-9 s for sufficient performance of MJSC74. 

The DLTS technique also allows to detect minority-carrier traps. To this purpose, minority 

carriers (holes in our undoped i-GaPAsN) must be injected in the space charge region during the 

filling pulse. However, holes and electrons are then simultaneously injected in the SCR so in DLTS 

spectra responses can be observed from both majority- and minority- carrier traps. It leads to the 

overlapping of responses and the analysis becomes more complicated. Holes can be injected by 

light or by applying a forward bias voltage. The second method is used in our measurements. 

Therefore, the DLTS spectrum S(T) was measured for different rate windows under the following 

conditions: Vinit=+0.2V, Vpulse = +0.8V, tpulse = 50 ms (Figure IV.14a). 

Significant differences are observed when comparing spectra S(T) in Figure IV.12a and 

Figure IV.14a in the temperature range below 200 K. S(T) starts to decrease from 80 K and has a 

negative value: it indicates a response from minority-carrier traps. Thereby, series of close negative 

peaks are detected in the temperature range 160..180 K. Existence of this defect leads to quenching 

of the response from the defect at Ec-0.18 eV in the range 80..120 K due to potentially higher 

concentration. Nevertheless, there are positive peaks on S(T) similar to peaks associated with the 

responses from the defect level  at Ec-0.58 eV in previous measurements. Series of both peaks are 

very close so some overlapping is observed. Since peaks have opposite signal (positive for 

majority-carrier trap and negative for minority-carrier trap) the shape of S(T) becomes complicated 

to analyze. Nevertheless, it was done in our case but obtained values must be checked in future 

experiments for minority trap. Negative peak of S(T) for rate window 10 s-1 is 156 K (Figure 

IV.14a), and S(T) of 10 s-1 associated with response from Ec-0.58 eV starts to increase at 172 K in 

previous measurements (Figure IV.12a). It suggests that the majority-carriers trap has no influence 

on the peak position from minority-carrier trap for emission rate 10 s-1. Similar situation is 

observed for the rest rate windows. Therefore, parameters of this defect level are estimated from 

the Arrhenius plot (Figure IV.14b): Ea=0.44 eV, which corresponds to a level position of 
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Ev+0.44eV, and σ=2.6×10-11 cm2. The defect concentration is 2×1015 cm-3. The defect can also be 

considered as an effective center of non-radiative recombination.  
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Figure IV.14 a- DLTS spectra S(T) for sample #2 with layer GaPAsN for different rate windows 

(in ms) with the following conditions: Vinit=+0.2 V, Vpulse=+0.8 V. b- Arrhenius plot of detected 

responses. 

The appearance of responses from Ev+0.44eV can be explained by the band diagrams at 

the corresponding bias conditions of this experiment (Figure IV.15). For majority-carrier traps, the 

behavior remains the same as in measurements at reverse bias voltage but the spatial region giving 

rise to a response changes. All equation for the DLTS describing the method were obtained under 

assumption of uniform distribution of traps and impurities but it can be incorrect in real samples. 

It can also lead to differences in S(T) spectra for different regions of SCR since the obtained trap 

concentration describes only the width between W1-λ1 and W0-λ0. However, the main distinction 

between the two experiments is the region where holes emit in valence band after the end of the 

filling pulse. It corresponds to a part of cover p-layer in Figure IV.13, and part of the i-GaPAsN 

layer in Figure IV.15. Therefore, in the second experiment the response from Ev+0.44eV leads to 

strong changes as holes contribute in the capacitance value of the p-i-n junction. Furthermore, for 

both experiments S(T) decreases at temperatures above 240 K up to the measurement limit of 360 

K for all rate windows. This indicates absence of other responses from minority- and majority-

carrier traps, so it suggests the absence of defect levels with higher activation energy in the 

considered layer of i-GaPAsN. 
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Figure IV.15 Band diagram of sample #2 at +0.2 V(a) and +1.0 V(b). 

Let us now discuss another issue related to the S(T) spectra of Figure IV.12a. Usually point-

defects with known activation energy lead to responses as narrow peaks on S(T) spectra. However, 

own peaks are broadened, especially for Ec-0.58 eV. Also, the peak amplitude increases with the 

rate window. It suggests a non-exponential behavior of responses from defect levels due to 

different possible reasons. It can come from the dependence of the capture cross section on 

temperature147, an energy distribution of the defect position in the bandgap due to alloying of 

GaPAsN144, or responses from various closely separated defect levels. Furthermore, another 

possible reason is the response from extended148 defects rather than from point defects. The useful 

method to distinguish between point and extended defects is the measurement of the dependence 

of the peak amplitude on the duration of filling pulse at fixed temperatures. The isothermal 

dependence of the peak amplitude at fixed temperature is described for point defects by 149,150: 
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𝑆𝑝𝑒𝑎𝑘(𝑡𝑝) = 𝐶1(1 − 𝑒−𝑁𝐶𝑉𝜈𝑡ℎ𝜎𝑛𝑡𝑝) + 𝐶2ln(𝐶3𝑡𝑝), (IV.2) 

where C1, C2 and C3 are constants. These parameters can be estimated by fitting of experimental 

Speak(tp) curves. Moreover, in the case of an extended defect, the peak amplitude of the DLTS 

signal versus duration of filling pulse width is a logarithmic function151:  

𝑆𝑝𝑒𝑎𝑘(𝑡𝑝) = 𝐵lnt𝑝 (IV.3) 

where B is a constant. In general, the key distinction is the saturation of the peak amplitude in case 

of point defects unlike in extended states. Spectra S(T) and the dependence Speak(tp) are presented 

in Figure IV.16 and Figure IV.17 for Ec-0.18 eV and Ec-0.58 eV, respectively. 
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Figure IV.16 (a)- spectra S(T) of the defect at Ec-0.18 eV for rate window of 50 s-1 for different 

filling pulse duration in sample #2, (b)- dependence of the peaks value on filling pulse duration. 

For both defect levels the dependence of the peak value on filling pulse duration is 

observed. Both curves saturate for tpulse>100 ms so responses from point defects can be suggested 

for the detected levels in sample #2. The width of the peak for the defect at Ec-0.18 eV is smaller 

and saturation occurs earlier than for the one at Ec-0.58 eV.  
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Figure IV.17 (a)- spectra S(T) of the defect at Ec-0.58 eV for rate window of 50 s-1 for different 

filling pulse duration in sample #2, (b)- dependence of the peak value on filling pulse duration. 

The most probable reason for the non-exponential behavior in the considered materials 

originates from alloying. Probably, in the case of dilute nitrides, a strong fluctuation in composition 

occurs due to non-equilibrium growth conditions and to the tendency of nitrogen clusterization 

leads to the transformation of point defects into extended ones with some little energy distribution. 

Furthermore, high arsenic content of 15-30% can also lead to some energy distribution for the 

defect level. Therefore, estimated values of capture cross section and activation energy can be 

considered as “average” parameters for detected defect levels. Peak value is the crucial parameter 

since the defect concentration is estimated from its value so the filling pulse duration must be 

carefully chosen for DLTS measurements. In our case, the defect concentration was estimated 

from the peak value associated with er=500 s-1 with tpulse=100 ms (Figure IV.12) since it is in the 

saturation region in the Speak(tp) curve and all traps  should contribute to the capacitance transient.  

In summary, in sample #2 we detected two majority-carrier traps (Ec-0.18 eV and Ec-0.58 

eV) and one minority-carrier trap (Ev+0.44 eV). They should be point defects with some energy 

distribution leading to broadened peaks on DLTS spectra. It can be explained by composition 

fluctuation of the GaPAsN quaternary alloy due to nitrogen clusterization and high arsenic content 

of 15-30%. Future experiments could be focused on deeper study of parameters of energy 

distribution of the defects to define their nature and the role of N and As in their formation. 

IV.1.5.2 GaPAsN layer of sample #3 

The DLTS method was applied to sample #3 having an i-layer of GaPAsN with simulated 

donor concentration of 1.0×1016 cm-3. As described above, this structure is closer to an ideal p-i-n 

junction due to lower doping of the i-layer and higher doping of cover p- and n-layers. In the first 
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step, the DLTS spectra S(T) were measured for different rate windows under the following 

conditions: Vrev=-2.0 V, Vpulse=+1.5 V, tpulse=50 ms and  Vrev=-3.0 V, Vpulse =+2.5V, tpulse=50 ms 

(Figure IV.18). We observe that the shape of the curves is very strange and different from spectra 

S(T) for sample #2 obtained with similar parameters of experiments (Figure IV.12a).  
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Figure IV.18 DLTS spectra S(T) for sample #3 (with GaPAsN layer) for different rate windows 

(in s-1) with the following conditions: (a)- Vrev=-2.0 V, Vpulse=+1.5 V and (b)- Vrev=-3.0 V, 

Vpulse=+2.5 V. 

According to these experiments, there is a capacitance transient that does not depend on 

temperature. It is very rapid so it leads to the appearance of an additional high peak on S(T) spectra 

for high rate windows at temperature 240 K. Possible, the gate window (t1 and t2) corresponding 

to high rate windows is located close to start of capacitance transient that leads to the instability of 

the signal in this region. Nevertheless, a series of peaks for low rate windows is observed in the 

temperature range 220..280 K similar to responses from the defect at Ec-0.58 eV detected in sample 

#2. However, estimation of its parameters in sample #3 is impossible due to the overlapping with 

the temperature independent high peak of unknown nature. Also, responses from the defect level 

at Ec-0.18 eV are not observed but they were detected by admittance spectroscopy (Figure IV.8) 

for this sample #3 and by DLTS in previous sample #2 in the low temperature range 80..160 K. In 

Figure IV.18a this region could not properly explored due to the influence of the capacitance 

transient described before, but in Figure IV.18b a series of peak is observed with very low 

amplitude and large width. It could be associated to responses from the defect at Ec-0.18 eV. The 

low peak amplitude can be partly explained by the band diagram for sample #3 during the DLTS 

measurements for Vrev=-3.0 V, Vpulse=+2.5 V (Figure IV.19b). The values of λ are very small (15 

nm and 40 nm for -3 V and -0.5 V, respectively) so the thickness of i-GaPAsN from which 
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electrons can emit is thin (only 25 nm). The width of SCR is almost the same at all applied reverse 

bias voltage since the i-GaPAsN layer is fully depleted. Therefore, value of correction factor 

associated with λ in equation (II.31) is 0.14 which is three times less than in sample #2 so the 

amplitude of S(T) is also lower. Furthermore, S(T) is inversely proportional to ND which is equal 

to the doping concentration in the cover layer of n-GaP (5×1017 cm-3) in sample #3 unlike in sample 

#2, where it is the unintentional  doping concentration in i-GaPAsN (3×1016 cm-3).  
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Figure IV.19 Band diagram of sample #3 at -0.5 V(a) and -3.0 V(b).  

Interpretation of experiments described above is complicated due to difficult applicability 

of classical DLTS theory to p-i-n junctions with fully depleted i-layer. This is why, forward bias 

was applied to fill traps inside the i-layer and detect their responses. The DLTS spectra S(T) were 

measured for different rate windows under the following conditions: Vinit=+0.2 V, Vpulse=+0.5 V, 

tpulse=50 ms (Figure IV.20). Band diagrams corresponding to the bias conditions are shown in 

Figure IV.21. 
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Figure IV.20 (a) - DLTS spectra S(T) for sample #3 (with GaPAsN layer) for different rate 

windows (in s-1) with the following conditions: Vinit=+0.2V, Vpulse=+0.5V. (b)- Arrhenius plot of 

detected responses. 
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Figure IV.21 Band diagram of sample #3 at +0.7 V(a) and +0.2 V(b).  
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In this case, spectra S(T) show normal behavior with series of peaks corresponding to a 

defect level with an activation energy of Ea=0.55 eV and a capture-cross section σ=3.1×10-15 cm2 

estimated from the Arrhenius plot in Figure IV.20b. These values are close to that of the defect at 

Ec-0.58 eV in sample #2 so it can be considered as the same defect. The defect concentration was 

estimated with condition of ND=1×1016 cm-3  and we found a value of  2×1015 cm-3, which is lower 

than for the similar defect in sample #2. Figure IV.22 presents spectra S(T) for two different tpulse 

values and the dependence of peak amplitude for er=50 s-1 corresponding to the defect level Ec-

0.55 eV on filling pulse duration. The peak amplitude for 50 s-1 increases with tpulse and saturates 

at tpulse>50 ms. Similar behavior was observed in sample #2 for the defect at Ec-0.58 eV, that we 

attributed to a  point defect with some energy distribution due to composition fluctuation in the 

quaternary alloy of GaPAsN. Obviously, there is also a response in the temperature range 120..170 

K associated with minority-carrier traps similar to that in sample #2, and the peak value is again 

lower than in sample #2.  The lower concentration of both majority- and minority-carrier traps 

detected in sample #3 as compared to sample #2 correlate well with the better photovoltaic 

performance and better EQE curve that were previously observed. 
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Figure IV.22 (a)- spectra S(T) of the defect at Ec-0.55 eV for filling pulse duration of 1 ms (blue) 

and 50 ms (red) in sample #2, (b)- dependence of the peak value for er=50 s-1 on filling pulse 

duration. 

IV.1.5.3 InP/GaPN layer of sample #4 

The DLTS spectra S(T) were on sample #4 measured for different rate windows under the 

following conditions: Vrev=-3V, Vpulse=+2.5V, tpulse=50 ms (Figure IV.23a).  
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Figure IV.23 DLTS spectra S(T) for sample #4 (with InP/GaPN layer) for different rate windows 

(in s-1) with the following conditions: (a)- Vrev=-3V, Vpulse=+2.5V, (b)- Vrev=-3V, Vpulse=+4.0V, 

(c)- Vinit=0.2 V, Vpulse=1.2 V. (d)- Arrhenius plot for responses detected in (b). 

In the temperature range 200..260 K positive peaks correspond to the response from a 

majority-carrier trap. However, correct estimation of its parameters is difficult due to overlapping 

S(T) with an unknown peak at temperatures 160..200 K which does not shift with the rate window. 

It leads to the appearance of a shoulder in the low-T side of peaks for high emission rates like in 

Figure IV.18 for DLTS spectra of sample #3. As suggested before, it can be associated with 

measurement problems in the start of capacitance transient since t1 and t2 are short. Also, S(T) 

starts to increase again at temperatures above 280..300 K up to the temperature limit of the used 

setup (360 K). This suggests the existence of another majority-carrier trap, but measurements up 

to 420 K in another setup also did not allow obtaining the level parameters due to monotonous 

DLTS signal increase and absence of maxima in S(T) spectra even for low er at high temperature. 

Therefore, this can be attributed to the response from a defect with large activation energy and 
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with a high peak amplitude and broad width of S(T) spectra. This behavior suggests the presence 

of a broadened defect with a high activation energy. A similar response was observed early for 

unintentionally doped layers of GaP:N152, where it was associated with EL2 defect typical for 

GaAs153. Future experiments could be focused on the modification of the setup in order to be able 

to heat the sample up to 600 K for a correct estimation of defect parameters. 

An attempt was made to improve the DLTS spectra by amplification of the defect response 

to exclude the influence of the unknown peak for high rate windows so DLTS was performed at 

the filling pulse value of +4 V instead of +2.5 V (Figure IV.23b). It leads to a deeper extension 

region inside the InP/GaPN layer during the filling pulse and emission from more defects after its 

end so the peak amplitude increases. Similar approach was used for DLTS measurements in sample 

#3 when forward bias voltage was applied (Figure IV.20a). Band diagram at these experimental 

conditions is presented in Figure IV.24 for sample #4.  
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Figure IV.24 Band diagram of sample #4 at +1.0 V(a) and -3.0 V(b).  
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Series of clear S(T) peaks is observed in the temperature range of 200..260 K like in 

previous measurements (Figure IV.23a), but their amplitude is higher and the influence of the 

unknown peak can be neglected. According the Arrhenius plot (Figure IV.23c), these peaks 

correspond to the response from a defect level with an activation energy Ea=0.44 eV, and a capture-

cross section σ=1.7×1014 cm2. A defect with similar parameters was early observed in the GaPN92 

and GaP:N86–88 layers grown on GaP wafers. This defect was a majority- carrier trap in similar n-

type layers in these works so it indirectly indicates background doping of n-type in our i-InP/GaPN 

layer. Possible structure of defect was proposed previously as the complex based on a pair of 

nitrogen atoms at the phosphorus sites (NP-NP) and the vacancy of gallium VGa, arising as a result 

of displacement of gallium due to incorporation of nitrogen in the GaP lattice. Another interesting 

question is the nature of the defect at Ec-0.55 eV in samples #2 and #3 with i-layers of GaPAsN. 

The similar temperature region of detected peaks on DLTS spectra S(T) and values of parameters 

suggest a correlation between this defect and the defect at Ec-0.44 eV detected in InP/GaPN. 

Perhaps, the latter transforms into the former due to additional arsenic content in the alloy. This 

suggestion should be considered in future studies.  

The peaks on S(T) spectra associated with the defect at Ec-0.44 eV are broadened and their 

peak value increases versus rate window. Also, the peak value increases with increasing filling 

pulse duration from 1 ms to 50 ms (Figure IV.25a). On the other hand, the peak value saturates for 

filling pulse duration longer than 100 ms (Figure IV.25b). Consequently, it suggests that point 

defects based on NP-NP and VGa with Ea=0.44 eV can transform into extended defects with some 

energy distribution in compounds of dilute nitrides (In)GaPN. It is caused by higher nitrogen 

incorporation than in GaP:N semiconductors and local composition fluctuation in alloys due to 

possible nitrogen clusterization. The similar behavior of DLTS spectra S(T) was obtained for 

defects detected in previous samples with dilute nitrides in this study. The defect concentration 

was estimated with condition of ND=7×1015 cm-3 and we found a value of 2×1014 cm-3. 

The lack of response from the defect detected by admittance spectroscopy in Figure IV.23b 

is explained by the low value of activation energy Ea=0.08 eV, since its peak on DLTS spectra 

S(T) should be at temperatures below 80 K. On the other hand, clear high-temperature peaks appear 

in the spectra S(T) when Vpulse is set to +4 V corresponding to forward bias voltage of +1V during 

the filling pulse (Figure IV.23b). We suggest these peaks are the sum of responses from deep 

minority- and majority-carrier traps since holes are injected in the SCR in this regime. Thus, 

simultaneous emissions are observed after return to Vrev=-3 V from both traps at high temperatures. 

Initially S(T) increases due to the response from an electron trap, but further the response from a 

hole trap rapidly rises leading to negative contribution in S(T) and it decreases: we observe local 

“false” peaks in S(T) spectra. To confirm the existence of minority-carrier traps DLTS was 
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measured under the following conditions: Vinit=0.2 V, Vpulse=1.2 V, tpulse=50 ms (Figure IV.23c) to 

enhance hole injection in the SCR. As a result, spectra S(T) remain almost the same at temperatures 

below 160 K, but at higher temperature the S(T) curve strongly decreases due to the contribution 

of a minority-carrier trap. The estimation of its parameters is impossible since the peaks are not 

observed in the used temperature range. Thus, according the experiments there are deep traps with 

high activation energy for holes and electrons in the i-InP/GaPN layer of sample #4, but the precise 

estimation of their parameters is impossible due to overlapping of their responses and to the limited 

available temperature range (below 400 K). 
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Figure IV.25 (a)- spectra S(T) of the defect at Ec-0.44 eV for filling pulse duration of 1 ms (blue) 

and 50 ms (red) in sample #4, (b)- dependence of peak value for er=50 s-1 on filling pulse 

duration. 

Finally, the DLTS method allowed us to detect deep levels in the i-layer of InGaPAsN. 

Sample #2 has responses from the defect levels at Ec-0.18 eV (that is also detected by AS), Ec-

0.55 eV and Ev+0.44 eV. The concentration of the latter was strongly reduced after post-growth 

treatment in sample #3, and the concentration of the defect level at Ec-0.55 eV was also slightly 

reduced. This may explain the better photovoltaic properties of sample #3 compared to sample #2 

since both defects affect the lifetime in dilute nitrides. In addition, sample #4 (with i-InP/GaPN 

layer) exhibits the defect level at Ec-0.44 eV, which has a similar nature as Ec-0.55 eV in i-

GaPAsN. Furthermore, we suggest the existence of deep-level traps near to the middle of the 

bandgap in the InP/GaPN layer, which can be considered as centers of non-radiative 

recombination. On the other hand, such responses were not observed in samples #2 and #3 with i- 

GaPAsN (in the explored temperature range). This may explain the poorer photoelectric properties 

of SCs with i-InP/GaPN (#4) compared to that with i-GaPAsN (#2, #3) layers. Therefore, i-
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GaPAsN with post-growth treatment (sample #3) is considered as the most suitable for 

photovoltaic applications and should be studied in more details in future works.  

IV.2 Double-junction solar cells on Si wafers 

 Samples description 

Fabrication of multi-junction solar cells with active layers of III-V compounds on silicon 

wafers is an attractive challenge for researchers. However, as described above there are not many 

studies of structures with good quality and high efficiency due to growth problems. Therefore, this 

work presents some investigation of MJSC grown on silicon wafers with active layers of dilute 

nitrides by the MBE method. Principle scheme of studied double-junction SCs is presented in 

Figure IV.26.  Triple-junction SC is formed by the addition of a subcell similar to the top subcell 

in double-junction SC but with larger bandgap energy of i-layer. 

 

p-Si wafer 

n-GaP(N) 

p-GaP(N) 

i-(In)GaP(NAs) 

n-GaP 

ARC 

ohmic contact 

bottom subcell 

top subcell 

tunnel junction 

 

Figure IV.26 Schematic view of double-junction GaP(AsN)/Si solar cells. 

The present SCs consist of two subcells: bottom with silicon junction (Eg=1.12 eV) and top 

with GaP(AsN) junction (Eg=1.8-2.0 eV). According to the study of single-junction solar cells 

presented above, the top subcell should be based on a p-i-n junction with undoped layer of dilute 

nitrides. However, the structure can be grown on both n- or p-type silicon wafer, furthermore the 

bottom junction can be formed as a silicon homojunction or a GaP/Si heterojunction. All these 

features were explored in detail in our previous work154. Here, only the main conclusions are 

presented. Three single-junction SCs were grown by MBE on silicon wafer with subsequent 

junction: p-GaP/n-Si, n-GaP/p-Si and n-GaP/n-Si/p-Si. In the last one n-Si layer was fabricated by 

pre-growth wafer annealing in phosphorus flow. The p-GaP/n-Si heterojunction shows the worst 

performance due to limitation of carrier transport by the potential barrier for holes caused by the 
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high valence band offset of 0.8-1.0 eV67,155. Further, the n-GaP/n-Si/p-Si isotype heterostructure 

is preferable for photovoltaic application compared to the anisotype n-GaP/p-Si heterojunction 

since quantum efficiency of the first one is higher. Reason for the difference is the defective layer 

formed in silicon wafer near to the interface. In n-GaP/n-Si/p-Si it lies in the highly doped n-Si 

emitter, but in n-GaP/p-Si it lies in lowly doped p-Si base. In the second case, defects have much 

higher influence on the SC performance due to higher impact of non-radiative recombination in 

the base. Consequently, the isotype structure of n-GaP/n-Si/p-Si shows the best performance and 

it is used in all MJSC in the current work. The phosphorous flux was being directed on the p-type 

(p=1.0×1016cm-3) silicon wafer for 10 minutes at 500 C without growth. Then the migration-

enhanced epitaxy was used for the growth of a thin nucleation layer of GaP as an initial step for 

the improvement of the quality of subsequently grown III-V compounds. More information can be 

read about growth conditions of n-GaP on p-type silicon wafer elsewhere64. 

Afterwards, tunnel junctions were grown and subsequent p-i-n junction as a top subcell. 

Three double-junction SCs were grown with undoped i-layer of III-V compounds with different 

composition. Sample #5 (Figure IV.27a) is grown with a i-layer of GaP0.70As0.30 400 nm thick as 

a test structure for studies of structural properties of III-V alloys on silicon wafers. Thickness of 

top n-GaPAs contact layer is 250 nm. As described above atoms of In and As are used for 

improvement of GaPN quality. For this reason, double-junction SC with ternary alloy was not 

grown. Thus, indium is added for compensation of elastic stresses in GaPN and SDA i-InP/GaPN 

(200nm) is used in sample #6 (Figure IV.27c). In sample #7 (Figure IV.27d) i-GaP0.882As0.10N0.018 

layer 200 nm thick is grown with additional arsenic content for compensation of elastic stresses in 

GaPN. Therefore, top subcells of sample #6 and sample #7 correspond to single-junction SCs #4 

and #3 that were described and studied in preceding sections. Finally, triple-junction SC (sample 

#8, Figure IV.27e) is formed by addition of the top p-i-n subcell with i-GaP0.987N0.013 150 nm thick 

to sample #7. Thickness of top n-GaP contact layer is 200 nm for #6- #8 samples. Studied sample 

#8 is the first triple-junction SC with active layers of dilute nitrides grown on silicon wafers since, 

to the best of our knowledge, there are no data published in literature about such SC. 
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Figure IV.27 Schematic view of multi-junction solar cells grown on p-Si wafers: sample #5 (a), 

sample #6 (b), sample #7 (c), sample #8 (d). 
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For further electrical and capacitance measurements ohmic contacts were fabricated to the 

top and the bottom side of samples. The detailed description of this technology is presented in 

Appendix C.  

 Quantum efficiency and I-V curves 

Current-voltage characteristics under illumination are presented in Figure IV.28 for MJSC. 

Their important parameters are presented in Table IV.3. The MJSC based on ternary alloys of 

GaPAs has very low value of short-circuit current of 0.79 mA/cm2 and open-circuit voltage of 0.89 

V.  It means very poor quality of materials and layers in this structure. However, sample #6 with 

InP/GaPN shows much higher VOC at 1.59 V meaning that both subcells contribute in this value 

since it is higher by 0.35 V than for single-junction SC with the same active layer of InP/GaPN. 

The short-circuit current (JSC=1.29 mA/cm2) is higher than in sample #5, but it is lower than in 

single-junction SC #4, possibly,  due to smaller i-InP/GaPN thickness of 200 nm. The substitution 

of InP/GaPN by GaPAsN in sample #7 leads to a drop of open-circuit voltage down to 1.39 V due 

to lower bandgap energy and increase of short-circuit current up to 2.1 mA/cm2 in the same time. 

The bending on I-V curve of sample with i-GaPAsN can be due to non-optimized front contact. 

Nevertheless, both samples #6 and #7 have low fill factor so the technology of front contact 

fabrication must be developed and optimized in future experiments. The I-V curve of triple-

junction SC shows JSC=1.02 mA/cm2 and VOC=2.23 V so all three subcells work, but it has bending 

and poor fill factor of 54% due to non-optimized front contact. 
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Figure IV.28 Current- voltage characteristic of multi-junction solar cells under illumination of 

solar simulator at 1 sun, 25°C. 
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Sample i-layer VOC, V JSC, mA/cm2 FF, % 

#5 GaPAs 0.89 0.79 38 

#6 InP/GaPN 1.59 1.29 40 

#7 GaPAsN 1.39 2.1 38 

#8 3J 2.23 1.02 54 

Table IV.3  Parameters of multi-junction solar cells performance. 

The external quantum efficiency was measured by the method described in Chapter II for 

MJSC. Additional illumination of infrared and ultra-violet diode is used for measurements of EQE 

in top subcells and bottom subcells, respectively. Result of experiments are presented in Figure 

IV.29 for all samples. Firstly, integral and peak values of EQE in the bottom silicon subcell are 

much higher than in the top subcell for all structures. It is due to the lower bandgap energy (1.12 

eV) and much better quality of crystalline silicon. In this case, the photogenerated current is much 

higher in the bottom subcell and it reaches a value of 20 mA/cm2. It is well-known, that the total 

current of a MJSC is equal to the smallest current value for all subcells in series. Therefore, the 

current of the top subcell with dilute nitrides limits the performance of the overall structures due 

to very low quantum efficiency.  

EQE of sample #5 with GaP0.70As0.30 exhibits a single peak, but its integral value is very 

low due to the high bandgap energy of 2.26 eV. The shape of the EQE curve of sample #6 is similar 

to that of the single-junction SC with InP/GaPN (sample #4) and has two characteristic peaks 

corresponding to two transitions with E- and E+ energies. The integral and maximal value of EQE 

is larger than in GaPAs even if the thickness of GaPAs is 400 nm and thickness of InP/GaPN is 

only 200 nm. Therefore, dilute nitrides are more favorable for photovoltaic application than 

GaPAs. Unfortunately, the lower thickness leads to lower EQE than in the single-junction SC 

(sample #4) where the thickness was 350 nm. Utilization of quaternary alloy of GaPAsN (sample 

#7) allows to enhance the quantum efficiency of the top subcell and it becomes larger than in 

sample #6 (maximal value reaches 21%). EQE curves of the top subcell in samples #5-#7 are 

shown in one graph for more comfortable perception (Figure IV.29e). Consequently, GaPAsN is 

the most preferable composition of dilute nitrides for utilization in active i-layers of top p-i-n 

subcells in MJSC grown on silicon wafers. The same conclusion was suggested for single-junction 

SCs grown on GaP wafers in the previous section. 

Fabrication of a triple-junction SC is not only a complicated growth task but also leads to 

measurement problems for the quantum efficiency. Suggested bandgap energies are very close 

between top (Eg=2.06 eV) and middle (Eg=1.90 eV) subcells so it is necessary to be very careful 

and accurate to distinguish responses from them separately. Standard UV illumination was used 



 

109 
 

for the measurement of the silicon subcell and a good curve was obtained. Further, reasonable 

measurements of the top subcell is obtained under simultaneous illumination of IR diode (900 nm) 

for saturation of the bottom subcell and red diode (650 nm) for saturation of the middle subcell. 

As a result, the shape of the curve has the behavior with two peaks typical for dilute nitrides. 

Integral and peak values of this curve are comparable with those obtained in double-junction SCs 

with InP/GaPN and GaPAsN. It means that it is technologically possible to grow a third subcell 

with photoelectrical properties similar to that of the active layers in the top subcell of double-

junction SCs. The measurement of the middle subcell is the most difficult task in the observed 

sample #8 due to close bandgap energies of active layers in wide-gap subcells so they are 

photosensitive in almost the same region of the solar spectrum. Illumination of UV diode is used 

for saturation of the top subcell, but the low thickness of its undoped i-GaPN cannot fully absorb 

the light leading to undesirable absorption in the middle subcell. Thus, the latter involves the 

contribution of an additional current therefore a reverse bias voltage of 1.6 V was applied to 

compensate its influence. Also, illumination of IR diode is used for the saturation of the bottom 

silicon subcell simultaneously. As a result, the EQE of the middle subcell could not be precisely 

measured in the short wavelengths region but long-wavelength side of the curve was successfully 

obtained. Its edge corresponds to the bandgap energy of the GaP0.882As0.10N0.018 active layer of the 

middle p-i-n junction so it generates electron-hole pairs and demonstrates photovoltaic properties. 

Consequently, the quantum efficiency of triple- junction SC was measured for each subcell and all 

three subcells work.  
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Figure IV.29 External quantum efficiency of double-junction solar cells with an active layer of 

GaPAs(a), InP/GaPN(b), GaPAsN(c) and triple- junction solar cell (d); e- zoom on the response 

of top subcells. 

 Capacitance measurements of double-junction solar cells 

In this section, capacitance methods are applied to study double-junction SCs. It is not so 

simple as in single-junctions since there are two junctions in series in the structures: bottom p-n+ 

homojunction in the Si wafer and top p-i-n junction based on III-V alloys. Thus, we can detect 

defect responses from both junctions. For this reason, firstly we grown a special structure n-GaP/ 

n+-Si/p-Si identical to the bottom subcell in MJSCs and the DLTS spectra S(T) were measured for 

different rate windows under the following conditions: Vrev = -3.0 V, Vpulse = +2.8 V, tpulse= 20 ms 

(Figure IV.30).  



 

111 
 

-0.14

-0.07

0

160 200 240 280 320 360

35

50

100

200

500
D

L
T

S
 s

ig
n

a
l,

 p
F

Temperature, K  

Figure IV.30 DLTS spectra S(T) for a test n-GaP/ n+-Si/p-Si sample for different rate windows 

(in s-1) with the following conditions: Vrev= -3.0 V, Vpulse=+2.8 V. 

DLTS spectra have features in the temperature range of 200-300 K which can be associated 

with overlapping responses from possible minority-carrier traps. However, the DLTS signal is low 

and noisy so it is impossible to correctly estimate defect parameters. Also, responses from 

minority-carrier traps are surprising since we used only reverse bias voltages in the experiments 

and according to the DLTS theory we should detect only majority-carrier responses. For this 

reason, DLTS data should be considered very critically. Nevertheless, DLTS spectra do not show 

any high positive peaks associated with responses in p-Si from majority-carrier traps. 

Consequently, if the DLTS spectra exhibit positive peaks in double-junction SCs, they must be 

associated with responses from defects in the top p-i-n junction, not in the bottom p-n silicon 

homojunction. 

Consequently, in the current section, mesa-structures of double-junction SCs with active 

layer of GaPAs (#5), InP/GaPN (#6) and GaPAsN (#7) were fabricated (see Appendix C.2) and 

investigated by admittance spectroscopy, DLTS and Laplace-DLTS. Results are subsequently 

shown for each method for the three samples and then a discussion is presented for all detected 

defects. 

First, the measured temperature dependences of the capacitance C(T,f) are shown in  

Figure IV.31. The steps in the capacitance (which are accompanied by conductance peaks) 

observed for the samples are shifted toward higher frequency when the measurement temperature 

is increased. Such steps are characteristic for the response of gap states and may be caused either 

by bulk defect levels in the undoped layer or by interface states at the III-V-N/GaP(N) 

heterojunctions. The measurements of C(T,f) at different bias voltages (not shown here) 
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demonstrate that the step positions are independent of the applied bias voltage indicating that the 

response originates from bulk defects rather than from the interface. 
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Figure IV.31 Capacitance spectrum C(T,f) for a- sample #5 with GaPAs, b- sample #6 with 

GaPN/InP, c- sample #7 with GaPAsN. d- Arrhenius plot of e/T2 for the defects identified by 

admittance spectroscopy. 

Sample #5 with an active layer of GaPAs exhibits a pronounced step in the capacitance 

curves at high temperatures 320-360 K ( 

Figure IV.31a). The Arrhenius plots are shown in  

Figure IV.31d for all structures. For the GaPAs layer only one defect level with activation 

energy of 0.30 eV and low capture cross-section of σ=3.8·10-19cm2 was observed. For the sample 

#6 C(T,f) curves ( 

Figure IV.31b) suggest the overlapping of several defect responses for the GaPN/InP layer. 

Detailed analysis of the C(T,f) derivative and G(T,f) curves (not presented here) has allowed us to 
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distinguish two capacitance steps (conductance peaks) that correspond to the response from two 

different defect levels, which are presented in  

Figure IV.31d. While the exact determination of the activation energy and capture cross 

section is difficult for this structure, the first defect level seems to have the parameters Ea=0.23 eV 

and σ=1.8·10-20cm2  and it looks similar to the defect observed for GaPAs sample #5 according to 

the Arrhenius plot. The second defect level with Ea=0.44 eV and σ=1.3·10-16cm2 has similar 

parameters to the sample #7 (GaPNAs), which according to  

Figure IV.31c exhibits only one defect response with Ea=0.47 eV and σ=2.0·10-16cm2.  

Further, the DLTS spectra S(T) were measured on mesa-structures for different rate 

windows under the following conditions: Vrev=-1.0 V, Vpulse = +1.0V, tpulse=50 ms (Figure IV.32a-

c). Arrhenius plots for the detected responses are also presented (Figure IV.32d).  
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Figure IV.32  DLTS spectra S(T) for samples: (a)- #5, (b)- #6 and (c)- #7 for different rate 

windows (in s-1) with the following conditions: Vrev=-1 V, Vpulse=+1 V. (d)- Arrhenius plot of 

e/T2 for the defects identified by DLTS for samples. 
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A series of broadened peaks with high positive amplitude is observed in spectra S(T) of 

sample #5 (with GaPAs) at temperatures above 300 K. It corresponds to a defect level with Ea=0.27 

eV and σ=1.0·10-20cm2. Measured data at low temperature are very noisy and unstable so they are 

not presented here, but there are not any responses detected in this region. The sample #6 with 

InP/GaPN also has some measurement problem. It is the shoulder on the S(T) spectra at a 

temperature of 180 K for low rate windows. But it does not affect the useful signal of responses 

from a defect level in the temperature range of 240..330 K. It allows to estimate parameters of this 

level: Ea=0.37 eV and σ=1.5·10-17cm2. The sample #7 also has one series of positive peaks in the 

temperature range of 240..350 K. However, its data on the Arrhenius plot are not a straight line in 

all the range. It can indicate the existence of responses from two defect levels in the same time but 

estimation of parameters for the defect at lower energy is impossible due to the higher responses 

from the defect detected at high temperatures. Thereby, the parameters of the latter are estimated 

from data in the straight part of the Arrhenius plot: Ea=0.40 eV and σ=4.5·10-18 cm2. According to 

the Arrhenius plots, it can be concluded the similar nature of detected defects by DLTS, but it is 

not true. It is clear that behavior of spectra S(T) of sample #5 is strongly different from responses 

in sample #6 and #7 since their peaks are narrow and close to each other. It means existence of 

point defect in InP/GaPN and GaPAsN. The higher peak amplitude means higher defect 

concentration in GaPAs layer than in other both samples. But peak amplitude is lower in sample 

#7 than in #6 so GaPAsN should have better quality than InP/GaPN. Furthermore, it is not 

observed growth of S(T) value at high temperature after peaks in both samples so it suggests 

absence of responses from defect levels with higher activation energy in this layers. Thereby, 

detected responses should be single and they can be considered as centers of non-radiative 

recombination responsible for lifetime charge carriers.  

According to admittance spectroscopy, InP/GaPN layer has two defect levels, and GaPNAs 

also should have two overlapping responses in DLTS spectra S(T). Consequently, the Laplace- 

DLTS method was used to obtain additional information about defects in considered structures. 

The Laplace-DLTS spectra for different temperatures for samples and Arrhenius plot for detected 

defects are presented in Figure IV.33.  
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Figure IV.33 Laplace DLTS spectra S(T) for samples: (a)- #5, (b)- #6 and (c)- #7 at different 

temperatures. (d)- Arrhenius plot of e/T2 for the defects identified by Laplace DLTS for samples. 

Sample #5 with GaPAs has one series of peaks corresponding to defect level with following 

parameters: Ea=0.26 eV and σ=1.3×10-20 cm2. These parameters correlates with defect detected by 

classical DLTS and admittance spectroscopy. Then, sample #6 has only one series in Laplace 

DLTS spectra associated with defect with higher values of parameters than in sample #5: Ea=0.37 

eV and σ=1.5×10-17 cm2. Therefore, it is the same response detected by classical DLTS for this 

sample. However, in sample #7 non-linear behavior of graph is observed in range 3.7..4.5 of 

1000/T on Arrhenius plot. Absolutely the same situation is observed as in classical DLTS 

experiments for this sample. It suggests responses from two defect levels, and Laplace DLTS 

should distinguish them but other peak series are not found in spectra S(T). Possible explanation 

is complex nature of defect and additional temperature dependence of pre-exponential factor in 

Arrhenius equation due to composition fluctuation in alloy of dilute nitrides. Parameters of defect 

was estimated in linear region for high temperatures: Ea=0.50 eV and σ=2.7×10-14 cm2. 
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Finally, Arrhenius data obtained by the three methods were summarized for each sample 

and are shown in Figure IV.34.  
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Figure IV.34 Arrhenius plot of e/T2 identified in capacitance measurements in samples: a- #5, b-

#6, c- #7. 

Obviously, only one defect level with Ea=0.27 eV and σ=2.0×10-20 cm2 was detected in 

sample #5 with GaPAs i-layer. It is confirmed by three independent experimental methods. It has 

higher concentration than another defect detected in sample #6 and #7, possible, due to big arsenic 

content of 30% in the ternary alloy. It leads to fluctuation of composition and favorable conditions 

for defect formation during the growth process so the quantum efficiency of this solar cell is lower 

than in samples #6 and #7. Estimated value of capture cross section is low and it should not 

strongly affect the lifetime of charge carriers, but non-exponential behavior of capacitance 

transient can lead to error in the estimation of its parameters. Unfortunately, the used temperature 

range does not allow to explore other possible defect levels, but the response from Ec-0.27 eV is 
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so strong that they would not be clearly observed even at higher temperature due to overlapping 

with it.  

For sample #6, result of classical DLTS coincide with that of Laplace DLTS, and according 

to them only one defect should exist in the i-InP/GaPN layer. Also, the capacitance-frequency 

dependence has only one knee in  

Figure IV.31b at temperature below 340 K suggesting response from only one single defect 

level. Therefore, all results show the same behavior at temperatures below 340 K. On the other 

hand, admittance spectroscopy for mesa-structures allowed to distinguish two responses at 

temperatures above 350 K (1000/T<3 in graph) unlike DLTS methods. Possibly, there are two 

defects with such parameters leading to strong overlapping of their responses at temperatures 

below 340 K corresponding to low emission rates for both methods of DLTS and admittance 

spectroscopy. Separation of responses is observed only at temperature above 340 K corresponding 

to emission rates more 5000 s-1. It is a very high value so the capacitance transient occurs extremely 

quickly for this response and it cannot be correctly detected by the DLTS methods in the used 

equipment. Therefore, only precise high frequency admittance spectroscopy at high temperature 

allowed to distinguish responses from two defects and their parameters are estimated from its 

Arrhenius plot in  

Figure IV.31d.  

The Arrhenius plot shows almost the same dependence for all data obtained by the three 

methods in sample #7 with quaternary alloy of GaPAsN. First of all, there is a clear response 

corresponding to a deep defect level with parameters of Ea=0.47..0.50 eV and σ=(1-20)×10-15 cm2. 

Also, responses from another defect is suggested at low temperature (region of 3.7..4.2 on 

Arrhenius plot), but it does not influence the dominant series of peaks associated with Ec-0.50 eV. 

Perhaps, it is also an overlapping of responses from two different levels like in sample #6. But 

measurements up to 380 K did not allow to detect another response nor appearance of additional 

features on capacitance-frequency curves. Thereby, other defects with low activation energy like 

0.27 eV in GaPAs and 0.23 eV in InP/GaPN were not detected in the i-GaPAsN layer. 

Furthermore, amplitude of capacitance step and height of DLTS peaks are lower in sample #7 than 

in sample #6 so the defect concentration is lower in the GaPAsN layer than in InP/GaPN. In the 

same time, the quantum efficiency of top subcells with GaPAsN is better than with InP/GaPN. 

Thereby, the detected defects can be centers of non- radiative recombination leading to low 

lifetime of charge carriers in dilute nitrides. Consequently, layers of GaPAsN with 10% of arsenic 

are more suitable for application as a top subcell of double-junction solar cells than layers of 

InP/GaPN.  
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The defect with an activation energy of 0.44..0.47 eV is detected in sample #6 with the i-

layer of InP/GaPN and sample #7 with i-GaPAsN, and it is not found in sample #5 with GaPAs 

layer. It suggests that nitrogen (N) plays a key role in the defect origin in the growth process. This 

defect has similar parameters with defect detected in single-junction solar cell #4 with i-InP/GaPN. 

As described above, it is associated with the formation of paired atoms of nitrogen in place of 

phosphorus in the GaP lattice (NP-NP) and gallium vacancy VGa. The observation the energy level 

at Ec-0.44 eV demonstrates a perfect correlation between properties of material in single- and 

double-junction solar cells based on dilute nitrides since it confirms that detected responses in 

double-junction SC come from the active layer of the top subcell with i-InP/GaPN unlike the 

bottom silicon subcell. Parameters of defect detected at low temperature in i-InP/GaPN look 

similar to those of defect detected in GaPAs so they can have similar nature of formation but this 

suggestion should be checked in future experiments. 

However, InP/GaPN is better matched to the silicon wafer (mismatch is only 0.19 %) 

compared to GaPAsN (0.42%). On the other hand, local mismatch can be extremely higher due to 

formation of nitrogen clusters: it leads to a decrease in the lattice constant because of nitrogen 

atoms being incorporated in phosphorus sites. Additional content of As and In compensates the 

elastic stresses since it increases the lattice constant in the local area. It improves internal 

characteristics and photoluminescence of quaternary alloys of dilute nitrides compared to ternary 

alloys of GaPN80,85,94 even if it is more lattice-mismatched to the GaP wafer. Also, according to 

photoluminescence measurements80 indium incorporation into III-V-N alloys without As leads to 

higher non-radiative recombination losses than in III-V-N alloys containing As without indium. 

Indium being a III-group element is less efficient to compensate elastic stresses in the sub-lattice 

of V-group elements compared to arsenic in phosphorus sites (both being V-group elements). 

Therefore, additional content of arsenic leads to lower defect formation in studied solar cells and 

better photovoltaic performance than indium. 

Consequently, mesa-structures of double-junction solar cells were explored by different 

capacitance methods. Sample #5 with GaPAs has the highest concentration of defect with 

activation energy of 0.22 eV. Two responses were explored in sample #6 with i-InP/GaPN: the 

defect with Ea=0.23 eV is similar to that in GaPAs, and another defect with Ea=0.44 eV associated 

with complexes of NP-NP and VGa. Sample #7 with GaPAsN has only one defect level at Ec-0.50 

eV and lower concentration than in sample #6 since As better compensates elastic stresses in GaPN 

alloys. The defects at Ec-0.44 eV and Ec-0.50 eV can be considered as the main centers of non-

radiative recombination in these layers since there are not other detected responses at high 

temperature up to the limit of our equipment. 
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IV.3 Influence of post-growth thermal annealing on solar cells 

The results of photoelectrical measurements (low value of quantum efficiency and small 

short-circuit current) indicate insufficient lifetime of minority charge carriers for the fabrication 

of high-efficiency multi-junction solar cells, which is attributed to the high defect formation in 

(In)GaP(NAs) layers partially detected in the previous section. Thus, the study of the influence of 

growth conditions and post-growth methods on the behavior of defects in GaP(NAs) layers is an 

important task for optimization of the technological process for their fabrication in order to 

improve their quality. In this section, the attention is focused on the exploration of the influence 

of post-growth methods - thermal annealing on the properties of the structures. It is known that 

post-growth annealing can lead to an improvement of the layers quality of As-rich dilute nitrides30–

32. Furthermore, the intensity of photoluminescence in GaP(N) layers grown on GaP wafers 

significantly increased after thermal annealing156. Therefore, the section presents the results of 

investigations of the influence of the post-growth annealing outside the MBE- chamber on the 

properties of defect levels in GaPAsN layers.  

To this purpose, sample #1 with n-GaPAsN on GaP wafer and sample #7 with i-GaPAsN 

on silicon wafer were chosen. Sample #1 was annealed in a phosphorus flow at a temperature of 

700 °С, and sample #7 was annealed at temperatures of 500 and 600 °С in a nitrogen ambient. 

Ohmic contacts to sample #1 and #7 were fabricated by methods described in Appendix A.1 and 

C.1, respectively. Further, structures are explored by admittance spectroscopy and their quantum 

efficiency was measured at conditions described above. The temperature dependences of the 

capacitance C(T,f) of samples for different frequencies are shown in Figure IV.35 and Figure IV.36 

for samples #1 and #7, respectively.  
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Figure IV.35. Experimental dependences of the capacitance upon temperature at various 

frequencies (indicating in Hz) for initial (a) and annealed (b) sample #1. 
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Figure IV.36 Experimental dependences of the capacitance upon temperature at various 

frequencies (indicating in Hz) for initial (a), annealed at 500 °C (b) and annealed at 600 °C (c) 

sample #7. 

Figure IV.35a is the same as Figure IV.7a where C(T,f) curves are presented for the initial 

structure with n-GaPAsN grown on GaP. As described above, the detected defect at 0.22 eV 

corresponds to defect T189 with composition of SiGa+VP. After the thermal annealing procedure 

(Figure IV.35b), the amplitude of the capacitance step corresponding to the response from this 

defect is significantly reduced for high frequencies (10 kHz and 50 kHz), which can indicate a 

drastical drop of their concentration in the n-GaPAsN layer. According to computer modeling, the 

number of T1 defects decreased by a factor of four and it became 5.0∙1016 cm-3 after thermal 

annealing. At the same time, no changes were detected for the concentration of defects responsible 

for the blurred high-temperature capacitance step.  
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Figure IV.36a shows C(T,f) curves for the  initial p-i-n structure with i-GaPAsN layer 

grown on a Si wafer. The defect with an activation energy of 0.23 eV was detected in the 

temperature range 220-300 K in the initial sample as described above. Further, it can be seen that 

the C(T,f) behavior strongly changes:  the amplitude of the step decreases and it becomes more 

blurred upon annealing at 500 °C for the whole frequency range (Figure IV.36b). Perhaps, we 

observe the modification of the defect level in GaPAsN leading to a drop of its concentration to 

~1015 cm–3 according to simulation. Upon annealing at 600 °C (Figure IV.36c), the shape of C(T,f) 

curves remains the same without high steps as in initial structure. Therefore, thermal annealing 

leads to a drop of defect concentration detected by admittance spectroscopy in layers of dilute 

nitrides in considered structures. 

Further, the EQE was measured before and after thermal annealing for the considered 

structures (Figure IV.37). The EQE of both samples significantly increases in whole wavelength 

region after thermal annealing. However, for sample #7 grown on silicon wafer, the quantum 

efficiency does not change with an increase in annealing temperature from 500 °С to 600 °С 

(Figure IV.37b). Consequently, it can be suggested that thermal annealing improves of the internal 

properties of the active GaP(NAs) layers. Consequently, such annealing is a technologically simple 

and effective method for improvement of the material quality in dilute nitrides of InGaPAsN alloys 

lattice-matched to GaP and Si.  
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Figure IV.37 External quantum efficiency of sample #1 (a) and sample #7 (b) with GaPAsN 

layer before and after post-growth thermal annealing. 
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Summary 

In Chapter IV, solar cells with layers of dilute nitrides grown by MBE on GaP and Si wafers 

were explored by different methods. According to experimental data following conclusions could 

be drawn: 

 Undoped i-layer of dilute nitrides is more suitable for photovoltaic applications than n-type 

layers. 

 SCs with active layers of i-GaPAsN alloys have higher short-circuit current, than those 

with i-InP/GaPN. 

 Two peaks on quantum efficiency spectra are explained by the peculiar band structure of 

dilute nitrides with two conduction subbands leading to two light absorption mechanisms. 

 Post-growth treatment improves photoelectrical and external properties of SC based on 

GaPAsN layers. 

 Additional As content is preferable for SC compared to In since it leads to lower defect 

formation in i-layers and increase of quantum efficiency. 

 Different defects were explored by capacitance methods. Some of them are centers of non-

radiative recombination responsible for low lifetime of charge carriers in dilute nitrides. 
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Chapter V  

PE-ALD growth 
Introduction 

As described in previous sections, epitaxial technologies require high temperatures for the 

pre-growth treatment of silicon wafers and growth of III-V compounds. It leads to different 

problems in the grown structures: deterioration of wafer quality, interdiffusion of atoms etc. 

Therefore we explored another route, with GaP layers grown by a low-temperature method in a 

plasma-enhanced chemical vapor deposition equipment for application in multi-junction solar 

cells. This is the topic of this chapter. 

Structural properties of grown GaP are explored by scanning electron, Raman, and 

transmission electron microscopies. The electrical properties GaP/Si heterojunction structures are 

investigated. Then, capacitance techniques (C-V profiling and DLTS) are used to explore internal 

properties of grown layers. Finally, the influence of PE-ALD process on the quality of silicon 

wafers is explored by capacitance methods. 

V.1 Growth of structures 

Thin films of GaP with thickness of 50-75 nm were grown at 380 °C on p-type (boron-

doped, 0.8-1.2 Ω·cm) and n-type (phosphorus-doped, 2-7 Ω·cm) (100) silicon wafers by 

continuous and PE-ALD methods using an Oxford PlasmaLab System 100 PECVD (13.56 MHz) 

setup. In the PE-ALD method phosphine (PH3) and trimethylgallium (TMG) were alternatively 

changed with continuous plasma discharge due to constant hydrogen (H2) flow during the growth 

and purge steps. On the contrary, flows of PH3 and TMG occurred simultaneously in continuous 

process. The total flow and pressure were kept constant and equal to 100 sccm and 350 mTorr, 

respectively. Detailed description of technological process is given elsewhere157. In this study, one 

sample (#1) was grown by continuous method at RF plasma power of 100 W. Second sample was 

grown by PE-ALD method at constant RF plasma power of 20 W (#2) during the process. Then, 

it was increased to 100 W (sample #3) only during steps of TMG and PH3. Schematic view of this 

process is shown in Figure V.1. The Table V.1 gives the general description and key differences 

of samples.  
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As described in a preceding chapter, the n-GaP/p-Si structure is more suitable for 

photovoltaics than the p-GaP/n-Si one due to the high valence band offset. Our main goal is to 

obtain n-GaP layers because the n-GaP/p-Si heterojunction can form a bottom subcell in 

perspective of multi-junction solar cells. To have n-type doping in GaP, silicon can be a good 

candidate, thus we introduced an additional step with a flow of silane in the PECVD reactor (Figure 

V.1). If silicon provides an effective n-type doping of GaP the GaP:Si/p-Si heterojunction should 

be a n-p junction, while the GaP:Si/p-Si heterojunction should be an isotype heterojunction (Figure 

V.2). 

 

Sample Growth 

process 

RF plasma  

power, W 

Type of GaP 

#1 Continuous 100 amorphous 

#2 PE-ALD 20 amorphous 

#3 PE-ALD 100 microcrystalline 

Table V.1 Description of GaP/Si samples grown in the PECVD chamber. 

 Flow 

TMG 

PH3 

RF-power 

t1 t2 t3 t8 t9 t4 t5 Time 

Time 

Time 

t3 

One cycle 

SiH4 

Time 

 

Figure V.1 Schematic view of PE-ALD growth of GaP:Si of sample #3. For sample #2, the RF 

power is kept constant all over the time. 
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Figure V.2 GaP:Si/p-Si and GaP:Si/n-Si structures. The first should act as an n-p junction while 

the second should be an anisotype junction. 

V.2 Structural properties 

Initial structural properties were explored by classical scanning electron microscopy: SEM-

images are presented in Figure V.3. The interface of sample #1 is not flat and the GaP thickness 

depends on the considered region (Figure V.3a). Also, its surface is totally inhomogeneous: there 

are many crystallites with absolutely different sizes located in chaotic order and a high number of 

deep holes which can lead to degradation of the sample quality and of the properties of the GaP 

layer. On the contrary, for samples grown by PE-ALD the thickness of GaP has almost the same 

value everywhere so it can be estimated without any difficulties. However, the surface morphology 

depends on the deposition parameters. Despite homogeneous surfaces, they have different view 

for samples. The surface of GaP grown at an RF plasma power of 20 W is smooth (Figure V.3b) 

unlike that of another sample grown at 100 W where a lot of small nanocrystallites are visible 

(Figure V.3c). Higher plasma power may lead to preferable formation of crystalline structures due 

to higher migration of atoms on the surface. On the other hand, low plasma power does not transfer 

enough energy to atoms so they rather stay where they are absorbed which provides a smooth and 

homogeneous surface. Owing to the poor interface quality and structural properties of the GaP 

layer grown by continuous PECVD we are focused in this work on samples grown by the PE-ALD 

technique. 
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Figure V.3 SEM-image of GaP layer grown on silicon wafer by continuous (#1, a) and PE-ALD 

methods at RF plasma power of 20 W (#2, b) and 100 W (#3, c). 

Raman spectra for samples #2 and #3 are presented in Figure V.4. The high peak at 309 

cm-1 corresponds to the response from the silicon wafer and it has a similar shape in both curves. 

A major difference between the two samples can be seen in the graph in the region of 350-420  

cm-1. A broad feature at 360 cm-1 is detected in sample #2. It corresponds to the response from 

amorphous GaP158 suggesting that the GaP layer grown at 20 W plasma power has an amorphous 

structure, so it will be called a-GaP in the following. On the contrary, two clear peaks can be 

distinguished at 365 and 402 cm-1 in sample #3. According to literature, these correspond to TO 

and LO phonon positions in microcrystalline GaP159 suggesting that the GaP layer grown at 100 

W plasma power has a microcrystalline structure, so it will be called µc-GaP in the following. 
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Therefore, the structure of GaP changes from amorphous to microcrystalline with increasing the 

RF plasma power from 20 W up to 100 W, while other growth conditions remain the same. 
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Figure V.4 Raman spectra of GaP films deposited by PE-ALD method at RF plasma power of 20 

W (#2) and 100 W (#3). 

Transmission electron microscopy (TEM) has also been performed on these samples.  

TEM-images are shown in Figure V.5. 

    

(a) 
(b) 
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Figure V.5 TEM- images of a GaP layer grown onto a silicon wafer by the PE-ALD method at 

an RF plasma power of 20 W (left) and 100 W (right) for bright field modes (a, b), 

microdiffraction pattern (c, d) and high-resolution (e, f).  

According to the images of bright field mode, a similar picture as from SEM measurements 

is observed. Sample #2 has flat surface and homogeneous composition without any feature (Figure 

V.5a). On the contrary, sample #3 has rough surface with high numbers of different objects on it 

and inside the GaP layer. It is possible to distinguish antiphase domains in the Figure V.5b 

revealing the existence of some crystalline growth in sample #3. In the microdiffraction pattern, 

both samples have diffraction spots coming from the monocrystalline silicon wafer. Then, sample 

#3 has three rings corresponding to diffraction on different crystal planes, {111}, {220} and {311}. 

Diffraction spots coming from silicon are lying in the ring since the lattice constant of GaP 

(c) 

 

(d) 

(e) 
(f) 
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coincides with that of Si. Consequently, according to the classification sample #3 appears as a 

polycrystalline (microcrystalline) GaP semiconductor. On the other hand, sample #2 shows mean 

substrate diffraction spots between central halo and diffused ring. These diffused rings mean that 

the structure of this sample grown at an RF plasma power of 20 W is amorphous. High-resolution 

TEM also confirms the observed differences between samples. Crystalline order and oriented 

features can be distinguished in the image for µc-GaP (Figure V.5f). It suggests that the silicon 

wafer defines the direction of growth in this process so it can be considered as crystalline growth. 

It is an attractive conclusion because the crystalline structure was obtained even at low growth 

temperature (380 °C). On the contrary, such a behavior is not observed in sample #2 where atoms 

grow in the same direction in strongly short distances so it has an amorphous nature. On the other 

hand, the interface region of sample #3 shows alignments of the {111} Si and GaP atomic planes 

through the interface. This indicates epitaxial relationship. Even if microcrystalline, the GaP layer 

is locally epitaxially oriented, in such manner it is elastically strained, even if presence of grain 

boundaries and differently oriented interfaces of adjacent grains make more complex the situation 

than for a monocrystalline interface. However, it is observed the absence of elastic stresses in 

sample #2 because of the GaP amorphous state. 

In conclusion, all structural characterizations indicate that the GaP layer is amorphous for 

an RF plasma power of 20 W, and microcrystalline for 100 W. Therefore, the RF plasma power is 

an important parameter affecting the crystalline properties of the GaP layer.  

V.3 Electrical properties  

Since GaP/p-Si is suggested as a solar cell structure, ohmic contacts must be formed to 

GaP and p-Si. The isotype structure GaP/n-Si is also interesting for experiments because properties 

of the GaP layer and heterointerface can be explored from C-V measurements if a Schottky diode 

is formed on GaP, and an ohmic contact to n-Si. Ohmic contacts to p-Si can be achieved by 

methods described in the previous Chapter in double-junction solar cells: using indium and iron 

soldering, or deposition of amorphous p-Si, vacuum evaporation of silver and subsequent 

annealing at low temperature. Also, ohmic contacts to the n-Si wafer can be formed by the latter 

procedure where amorphous p-Si is replaced by n-Si.  

The structural difference between layers of GaP grown by PE-ALD and MBE is a crucial 

issue for the fabrication of Schottky barriers and ohmic contacts to GaP. PE-ALD samples can be 

either amorphous or microcrystalline. Unfortunately, by now, there are no well documented 

articles on the fabrication of Schottky barriers and ohmic contacts to layers of amorphous gallium 

phosphide. Indeed, there are only a few papers devoted to the study of amorphous GaP, performed 
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in Japan at the end of the XXth century160–163. However, the problem of Schottky barriers and 

ohmic contacts were not explored. In these works the authors deposited gold161 on the grown GaP 

layer to measure current-voltage characteristics in the structures: the gold contact was indicated as 

a “usual” electrode without investigation of its behavior. In our work, we used literature data and 

the experience gained for GaP layers grown by epitaxial technologies. 

At the first stage of Schottky barriers investigation, the values of the barriers formed 

between metals and epitaxial n-GaP were found in literature164. A wide range of metals forms 

high-energy barriers on monocrystalline n-GaP. The most widely  used for capacitance techniques 

are silver165, gold88  and nickel89.  

The difference between our layers and the epitaxial GaP layers may significantly affect the 

height of the barrier for the same metal, and hence the quality of the Schottky diode. The optimal 

Schottky diode has a current-voltage characteristic where the current is small and saturates at 

reverse bias voltages, but it increases exponentially versus forward bias voltage. Five metals were 

chosen to form contacts to our samples: in addition to silver, gold and nickel, we also tested 

palladium and a chromium/gold stack. The materials were deposited through a mask with circular 

holes of 2, 1, 0.5 and 0.25 mm in diameter. The hole diameters are selected according to 

requirements for capacitance values which must be less than some hundreds of picofarads for 

precise and reliable measurements. The thickness of the deposited metals was in range 80-100 nm. 

Figure V.6a presents dark I-V curves obtained with a dot diameter of 0.5 mm from different metals.  
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Figure V.6 (a)- current-voltage characteristic of Schottky diode to GaP/n-Si structures at reverse 

bias voltage for different metals. (b)- current-voltage characteristic between Ti/Ag contacts 

deposited on n-GaP. 
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According to these curves, nickel and gold are preferable for barrier formation to our GaP 

samples since the value of dark current at reverse voltage is low and remains constant even at high 

voltage amplitude. Samples with gold contact have shown stable behavior before and after 

applying reverse voltage larger than 2 V compared to that with nickel contact. Furthermore, nickel 

has tendency to oxidation leading to change of Schottky diode properties over the time. Thereby, 

gold was chosen as the main metal for Schottky diode fabrication to GaP/n-Si heterojunctions. 

As described above, properties of PE-ALD GaP can be different from that of GaP grown 

by epitaxial methods so we should also check if ohmic contacts could also be obtained on our 

samples using methods that normally provide ohmic contacts on epitaxially grown GaP. In the 

previous Chapter, In and alloys of Au/Ge were used for ohmic contact fabrication to epitaxial n-

GaP. But indium is fragile and unstable, and Au/Ge requires temperature annealing that can lead 

to shunts due to germanium diffusion through the thin layer of GaP. Furthermore, structures are 

grown at temperatures below 400 °C so the contact should be fabricated at low temperature above 

deposition one to avoid changes in sample properties. A Ti/Ag alloy was evaporated as a top 

contact onto n-GaP. The I-V curve between two adjacent contacts is presented in Figure V.6b. It 

shows a nice linear behavior corresponding to an ohmic contact. 

We also fabricated Schottky diodes on both types of silicon wafer after removal of the GaP 

layer (to test if GaP deposition could create defects in the c-Si wafers). To this purpose, gold and 

titanium were used for n- and p-type, respectively. After contact fabrication, selective etching was 

used for creation and separation of mesa-structures. GaP layers were wet etched, and silicon wafers 

were dry etched in the ICP chamber at conditions described in Chapter II.  

Figure V.7 presents the schematic view of preparation of all samples explored in this study. 

The first type consists in samples with a gold Schottky barrier on isotype GaP/n-Si heterojunctions 

(Figure V.7a). In a first step, 50 nm of n-type amorphous silicon was deposited on the bottom of 

the silicon wafer by PECVD. Then silver was evaporated onto a-Si:H to form the bottom contact. 

This bottom contact became ohmic after thermal annealing during 20 min at 170 °C in the air 

atmosphere. Gold contact dots with diameter of 0.5 and 1 mm were evaporated on the top of the 

structures to form Schottky barrier (SB) diodes to GaP. Finally, mesa-structures were formed by 

dry etching of the GaP layer and of 2 µm of silicon using an Oxford PlasmaLab System 100 ICP 

380. A photograph of such samples is presented in Figure V.8a.  

The second type of samples consists in solar cells with front Ti/Ag ohmic contact to 

anisotype GaP/p-Si heterojunctions (Figure V.7c). In the first step, the Ti/Ag alloy was deposited 

on GaP by vacuum evaporation as a contact grid for photoelectric measurements. Then, silicon 

was dry etched at the same condition. Finally, an indium ohmic contact was formed to p-Si. The 

photograph of such samples is shown in Figure V.8b.  
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(a) (b) 

 

Figure V.8 Photograph of mesa-structures based on GaP/p-Si used for electric measurements (a) 

and mesa-structures (b) formed for capacitance measurements. 

The third and fourth types of samples are Schottky barriers to n- and p-type silicon wafers 

after etching of GaP (Figure V.7b and Figure V.7d, respectively). In the first step, the GaP layers 

were selectively removed by wet etching. For n-type silicon, an ohmic contact was formed by the 

procedure described above. Then, gold dots with diameters of 0.5 and 1 mm were evaporated on 

the top of the n-type silicon wafer to form Schottky diodes to n-Si (Au/n-Si). For p-type silicon, 

indium was used as an ohmic back contact instead of silver/(n)a-Si:H in the case of n-Si. Also, 

Schottky barriers to p-Si were fabricated by evaporation of a titanium layer that was covered by a 

gold layer to protect the contact (Au/Ti/p-Si) during dry etching. Finally, mesa-structures were 

formed by dry etching of 2 µm of silicon. The view of these samples is identical to that of the first 

types of samples and it is presented in Figure V.8b. 

Samples fabricated by the described technology are used for different measurement 

techniques. The squares with contact grid in Figure V.8a are solar cells and their photoelectrical 

properties are measured.  The mesa-structures for the Hall method were also fabricated and they 

are shown in Figure V.8a (cross-like contacts with large extremities). Mesa-structures in Figure 

V.8b were fabricated for capacitance investigations. Structural properties of GaP layers were 

explored in raw as-grown samples. 

Mesa-structures with Schottky diodes on GaP/n-Si (sample #1 and sample #3) were 

fabricated by the method shown in Figure V.7a. Capacitance-voltage characteristics were 

measured for both samples at a frequency of 100 kHz at 80 K (Figure V.9). Again, there is a clear 
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difference between continuous and PE-ALD samples. Capacitance of sample #1 is almost 

independent of the applied reverse bias voltage down to -2.5 V. It is a strange behavior because it 

suggests that the space charge region does not extend into the structure with the applied voltage. 

The width of SCR at 0 V is approximately 350 nm as estimated from the capacitance value, 

however the thickness of GaP is only 100 nm according to SEM-images (Figure V.3a): it means 

that the edge of SCR must be in the silicon wafer at 0 V. In this case, the SCR should extend in 

the wafer and the capacitance should decrease with increasing reverse voltage. This suggests that 

the GaP grown by the continuous method may form a highly defective interfacial layer. On the 

contrary, the C-V curve of sample #3 shows the conventional junction behavior: the capacitance 

decreases versus reverse voltage. It means that the SCR is controlled by the applied voltage so the 

considered sample can be analyzed by capacitance methods. The NCV-W profiling yields a doping 

level value in reasonable agreement with the doping value in the silicon wafer at voltages below  

-1 V; more detailed quantitative and qualitative analysis will be presented below for the structure 

obtained by PE-ALD. 

Consequently, sample #3 with GaP grown by PE-ALD shows better structural and electric 

properties than sample #1 obtained by the continuous process. As a consequence, following studies 

are focused only on structures grown by the PE-ALD method. 
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Figure V.9 Capacitance-voltage characteristics of samples grown by continuous (#1) and PE-

ALD (#3) methods. 

 Current-voltage characteristics of n-GaP/p-Si structures grown by 

PE-ALD 

In this section, we used samples described in Figure V.7c with top contacts onto both a-

GaP and µc-GaP grown on p-Si. Electric properties are explored by current-voltage characteristics 
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of the solar cell structure and by Hall measurements using coplanar top contacts. The current-

voltage characteristics of the solar cells under AM1.5 light are shown in Figure V.10a. These 

characteristics reflect the existence of a p-n junction, thus revealing the existence of an n-type 

layer, which will be discussed below. Obviously, the a-GaP sample (JSC=21.82 mA/cm2 and 

VOC=0.44 V) shows much better performance than the µc-GaP one (JSC=3.75 mA/cm2 and 

VOC=0.32 V). It can be explained by previous structural characterization, in particular by TEM-

images where µc-GaP was shown to be defective and inhomogeneous. Thus, a-GaP leads to better 

passivation of the silicon surface with less interface defects, which leads to higher VOC. 

Hall measurements performed at 300 K on both samples confirm the presence of an n-type 

layer. In order to get an order of magnitude of the electron concentration, assuming a homogenous 

50 nm thick n-type layer yields a value of 1.2×1019cm-3 and an electron mobility of 23.45 cm2/Vs 

while the conductivity of the µc-GaP sample was three times lower. The n-type layer may have 

three origins: 

- the GaP layer itself is highly doped and n-type. 

- there is an electron rich strong inversion layer at the p-Si surface. 

- an n-Si layer is formed during the growth process due to phosphorous diffusion into 

the wafer. 
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Figure V.10 Light current- voltage characteristics for a-GaP/p-Si and µc-GaP/p-Si (a) and 

between two planar electrodes before and after selective GaP etching. 

The third one was excluded after following experiments. First, lateral conductivity was 

measured between two top contacts in the initial sample (Figure V.10b). Then, the GaP layer was 

selectively etched from the as-grown structure down to the wafer, then the contacts were formed 

onto silicon and the I-V curve between two contacts was measured again (Figure V.10b). As a 
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result, the conductivity drastically drops in the structure without GaP so the reason of n-type 

conductivity is related to the existence of GaP on p-Si.  

Comparing the two first possible origins, it is worth emphasizing that both imply that the 

GaP layer is n-type and highly doped. Indeed, a strong inversion layer in c-Si can only occur if 

there is sufficient band bending, which in turn implies that the GaP layer is n-type in order to have 

sufficient low work function to provide such a strong and bending. An example of band diagram 

with strong inversion at the c-Si surface is shown in Figure V.11. In conclusion, we have 

demonstrated that GaP was grown with n-type doping by the PE-ALD method at low temperature 

under silane flow. 
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Figure V.11 Example of band diagram of n-GaP/p-Si at 300 K. 

 Capacitance characterization of GaP/n-Si structures grown by PE-

ALD 

In this section, we used Schottky diodes fabricated onto GaP/n-Si heterojunctions in 

samples #2 and #3 by the method shown in Figure V.7a. We also used one sample with gold 

Schottky barrier to n-Si prepared by the method shown in Figure V.7b. Capacitance-voltage 

characteristics of the GaP/n-Si samples at 80 K and Au/n-Si at 300 K are shown in Figure V.12a. 

The capacitance decreases with increasing amplitude of reverse bias voltage for all samples. 

Consequently, the extension of the space charge region inside the structures is observed: this is the 

conventional behaviour of C-V curves. NCV -V and NCV -W profiles were plotted for the three 

samples in Figure V.12b and Figure V.12c, respectively. 
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The concentration profile for Au/n-Si is almost constant with a value of 11015 cm-3. It 

corresponds to the doping concentration of the silicon wafer (2-7 Ω·cm). The experimental profile 

for a-GaP/n-Si shows the constant value of 71014 cm-3, which also corresponds to the doping 

concentration of the silicon wafer. However, for the µc-GaP/n-Si structure a clear peak of 

concentration is observed at low bias voltage, which corresponds to the lowest depth of SСR. With 

the increase of reverse bias voltage (increase of SСR depth) the concentration becomes constant 

with the same value as in the Si wafer. Also, the capacitance is much higher for bias voltage close 

to zero in µc-GaP/n-Si so the SCR width is lower than in a-GaP/n-Si and Au/n-Si structures. 
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Figure V.12 (a, b, c, d). Analysis of the bias dependence of the measured capacitance of the three 

types of structures: C-V (a), NCV-V (b) and NCV-W (c). Capacitance-frequency dependence of 

samples (d). 

Two differences are observed from the comparison of profiles for a-GaP/n-Si and µc-

GaP/n-Si: smaller width of SCR for µc-GaP/n-Si and existence of a peak on its profile at low 

reverse bias voltage. One of the possible explanations is the different n-type doping level in GaP. 
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We suggest that µc-GaP is more doped compared to a-GaP so the concentration peak appears when 

SCR extends from GaP to Si through the n-GaP/n-Si interface166. Figure V.13 shows the simulated 

band diagram for GaP (n= 11017 cm-3)/Si (n= 11015 cm-3) heterojunction at zero bias voltage 

and the concentration profile of electrons at 80 K. The position of the peak in the concentration 

profile corresponds to the GaP/Si interface: for the experimental µc-GaP/n-Si sample a similar 

phenomenon is observed (Figure V.12c). However, values of SCR width are higher in the 

experiment than in the simulation. Disparity in the values can come from an imperfect bottom 

contact to the silicon wafer. Consequently, estimation of the absolute value of interface position 

from the experiment can be incorrect and should be considered more critically. On the opposite, 

the described peak does not appear on the profile for a-GaP. It means that the SCR extends inside 

the silicon wafer even at zero bias voltage. Consequently, a-GaP should be fully depleted at any 

reverse bias voltage. It explains why the capacitance of µc-GaP/n-Si is much higher compared to 

that of a-GaP/n-Si. It is a very important issue because it means that the border of SCR for the a-

GaP/n-Si sample is further from the heterojunction compared to the µc-GaP/n-Si one. Therefore, 

in case of the a-GaP/n-Si sample the DLTS experiment is expected to rather detect the response of 

defects far from the a-GaP/n-Si interface in the bulk silicon. According to the C-f dependence in 

Figure V.12d, µc-GaP/n-Si should be more defective than a-GaP/n-Si due to higher capacitance 

step associated with responses from defect levels. 
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Figure V.13 Band diagram of n-GaP/n-Si and profile of electron concentration at 80 K. 

Results of DLTS measurements are shown in Figure V.14. 
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Figure V.14 (a, b, c, d). DLTS spectra S(T) of µc-GaP/n-Si (a), a-GaP/n-Si (b), and Au/n-Si (c) 

for different rate windows (in s-1). (d)- Arrhenius plots of e/T2 for the two DLTS peaks detected 

in the µc-GaP/n-Si structure. 

DLTS spectra of µc-GaP/n-Si (Figure V.14a) have two series of peaks, which are 

characteristic for the response from two defect levels. According to the Arrhenius plot (Figure 

V.14d) activation energies for low- and high-temperature levels are equal to 0.30 eV and 0.80 eV, 

respectively. Both peaks are broadened so non-exponential behavior of the capacitance relaxation 

due to extended defects can be suggested in this structure148. Unfortunately, low thicknesses of the 

GaP layer and low SCR width estimated from C-V measurements do not allow us to define exactly 

the region in the µc-GaP/n-Si structure where the response takes place. The response can be from 

the GaP/Si interface, from the GaP layer or from the bulk Si. S(T) spectra for a-GaP/n-Si do not 

allow one to extract any defect response within our measurement accuracy (Figure V.14b), because 

the signal is much lower compared to that of the µc-GaP/n-Si sample. Nevertheless, defects 

described above were not detected in a-GaP/n-Si. However, according to the above explanation 



 

140 
 

the a-GaP layer is fully depleted and the SCR extends deeper in the silicon bulk as opposed to the 

µc-GaP/n-Si structure so a possibility of defect detection is lower in a-GaP. Also, we did not find 

any peak on the S(T) spectra of the Au/n-Si structures in the used temperature range (Figure 

V.14c). It means that the silicon bulk was not degraded by the deposition of the GaP layer in our 

low-temperature deposition method. Consequently, the detected defects in the µc-GaP/n-Si 

structure are attributed to the µc-GaP layer. Since the detected peaks are broad, the defects can 

tentatively be attributed to crystalline defects in µc-GaP generated during the growth process. It is 

confirmed by TEM measurements described above where the layer of µc-GaP has a very defective 

structure unlike the amorphous GaP (Figure V.5). Thereby, amorphous GaP provides better 

passivation of the silicon surface by PE-ALD than µc-GaP that leads to defects. Analysis of their 

nature and value of pre-exponential factors is a complicated issue and it should be explored in 

future experiments in more details. 

In conclusion, according to previous sections a-GaP samples show better photoelectrical, 

structural and defect-related properties than µc-GaP ones. It can be associated with better 

passivation of silicon by amorphous GaP, while defects were observed in µc-GaP by DLTS and 

TEM methods. 

V.4 Influence of PE-ALD of GaP on the silicon wafers quality 

According to previous discussions, the epitaxial technology requires high temperatures of 

500-900 °C leading to degradation of bulk properties of silicon wafers due to activation of non-

radiative recombination centres116,167. This is why the influence of the PE-ALD growth method on 

the properties of silicon wafers must be also explored, because the wafer quality is a very crucial 

issue for the performance of SCs based on the GaP/Si heterojunction. In this section, we used 

Schottky diodes fabricated to p-Si in samples #3 (µc-GaP) and #2 (a-GaP) by the method shown 

in Figure V.7d. Furthermore, reference samples were fabricated with the same top Schottky diode 

and back ohmic contact to the initial p-type silicon wafer (i.e. without the GaP deposition and 

etching sequence). All the samples are investigated by capacitance-voltage and DLTS methods. 

It was theoretically simulated and experimentally confirmed that the n-GaP/p-Si 

heterojunction has advantages over the p-GaP/n-Si one for photoelectrical structures grown by 

MBE154. Thus, the influence of the PE-ALD growth process of GaP on the electronic quality and 

properties of p-type silicon is a crucial issue for future performance of high efficiency multi-

junction solar cells. Here we present measurements of three samples which were fabricated using 

p-type silicon wafer as described above: Au\Ti\p-Si  is the reference (ref) sample (i.e no PE-ALD 

of GaP), a-PE-ALD is a Schottky barrier formed on p-Si after etching of amorphous GaP, µc-PE-
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ALD is a Schottky barrier to p-Si after etching of microcrystalline GaP. For these samples 1/C2(V) 

curves and NCV-W profiles (Figure V.15) were plotted from capacitance-voltage measurements 

(not shown here) at 80 K. 

0

2 10
15

4 10
15

6 10
15

8 10
15

-3 -2 -1 0 1

ref
a-PE-ALD

c-PE-ALD

1
/С

2
, 

F
-2

*c
m

4

Voltage, V

(a)

10
15

10
16

10
17

300 400 500 600 700 800 900

ref
a-PE-ALD

c-PE-ALD

N
C

V
, 

c
m

-3
Depth, nm

(b)

 

Figure V.15 Analysis of the bias dependence of the measured capacitance of the three structures 

(Schottky diodes on a reference sample, after etching of a-GaP, after etching of µc-GaP): 1/C2-V 

(a) and NCV-W (b). 

For all the samples 1/C2(V) curves have a linear behavior so the charge carrier 

concentration is uniform in p-type silicon. NCV-W profiles show a constant concentration value of 

about 1×1016 cm-3 that corresponds to the boron concentration in silicon. This means that 

passivation of boron doping is not observed after the PE-ALD growth process, which is an 

encouraging result. Indeed this is for instance a typical problem for solar cells based on a-Si:H/p-

Si heterostructures due to interaction between hydrogen atoms from the plasma and boron atoms 

in the silicon wafer during the growth process. It leads to non-linear behaviour of 1/C2(V) as a 

sharp drop when the space charge region approaches the heterointerface168–170. In our case, 

hydrogen plasma is also used during low-temperature PE-ALD growth of GaP, but it does not lead 

to boron passivation in p-Si. The estimated intercept voltage for 1/C²(V) curves are close for the 

three samples: 0.60 V for reference, 0.73 V for a-PE-ALD and 0.70 V for µc-PE-ALD. It means 

that the Schottky barrier height has similar values of 0.65-0.75 eV for Ti/p-Si at 80 K, but it is 

slightly higher than 0.61 eV obtained at room temperature171. However, the value of Schottky 

barrier height should increase with decreasing temperature, so the characteristics of our explored 

samples are in good correlation with literature data. 

DLTS spectra S(T) of the reference p-type silicon wafer were measured under the following 

experimental conditions: Vrev= -0.2 V, Vpulse= 0.2 V and tpulse=50 ms, respectively. Results are 

shown in Figure V.16. 
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Figure V.16 DLTS spectra S(T) of reference Au/Ti/p-Si for different rate windows (in s-1). 

DLTS spectra exhibit peaks, which are characteristic of the response from defect levels. 

Experimental peaks are narrow and have almost the same amplitude for different rate windows. It 

means that the response comes from point defects in silicon. The activation energy and the capture 

cross section were estimated directly from a linear fit of e/T2 in an Arrhenius plot. Activation 

energy and capture-cross section for detected defects in reference p-Si are 0.38 eV and 1.8×1015 

cm-2, respectively. Defect concentration was estimated from the peak amplitude at 3×1013 cm-3. 

DLTS peaks have a positive value so the detected responses correspond to traps for majority charge 

carriers in p-Si. Therefore, the energy position of the defect level is Ev+0.38eV and the capture 

cross section is for holes. This defect is common for boron-doped p-type silicon and can be 

attributed to interstitial iron in Si (Fei)
172,173.  

The existence of Fei in our initial silicon wafer is a drawback if we want to properly study 

the effect of the PE-ALD process on the silicon wafer, so silicon wafers with better quality must 

be used in the future to exclude the influence of initial defects on the detection of potential defects 

after the PE-ALD process. 

DLTS spectra S(T) were obtained for Schottky diodes on silicon wafers, where a-GaP and 

µc-GaP were wet etched (Figure V.17a and Figure V.17b, respectively). Measurements were done 

for a reverse bias of 0.2 V, amplitude and duration of filling pulse were equal to 0.2 V and 50 ms, 

respectively. Both DLTS spectra show a similar shape of DLTS peaks that is different from that 

in the reference sample. All peaks in the reference sample are narrow and symmetric: it means that 

the response comes from point defects. However, peaks in both samples in Figure V.17 have 

broadened asymmetric shape with blurred low-temperature side. There are dominant peaks in the 

temperature range 150..220K, but estimated values of activation energy are different for a-PE-
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ALD (0.17 eV) and µc-PE-ALD (0.09 eV) samples. Nevertheless, peak positions suggest that the 

defects may have the same nature as those detected in the reference sample above. Discrepancy of 

activation energies comes from overlapping of responses from several defect levels in these 

structures.  Responses from another defect in the low temperature range are the main differences 

between the reference sample and that after PE-ALD process. Detailed observation of S(T) spectra 

allows us to propose the existence of a second defect in the temperature range 80..150 K. However, 

the estimation of its parameters is complicated, because the peak is wide and its amplitude is lower 

than that of the high-temperature peak. The latter became wider after growth process and its 

amplitude decreased for the µc-GaP sample. This suggests that the initial Fei configuration could 

be modified after the PE-ALD process. Temperature of growth of the GaP layers is 380 °C which 

could lead to migration of irons and change of its surroundings due to high diffusion coefficients. 

Additionally, the plasma treatment of the Si surface takes place, which could lead to local heating. 

Indeed for µc-GaP grown with significantly higher RF power DLTS spectra are strongly modified. 

Therefore, future experiments should be focused on studies of the influence of plasma power on 

defect modification in silicon wafers. 
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Figure V.17 DLTS spectra S(T) of Au/Ti/p-Si after etching of a-GaP (a), and µc-GaP (b) for 

different emission rates (in s-1) obtained by changing the DLTS gate window. 

Nevertheless, responses associated with defect levels were not detected at temperatures 

above 250 K. Therefore, it can be concluded that the PE-ALD growth process does not lead to the 

formation of deep-levels with high activation energy, suggesting that the quality of boron-doped 

p-type silicon would not be hardly deteriorated during growth of GaP by PE-ALD. This 

assumption is valid for studied samples grown at RF power of 20 W and 100 W and at low 

temperature, 380 °C, not leading to deep level formation. Future experiments should be focused 
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on the improvement of crystal quality of GaP by increasing plasma power rather than the 

temperature. However, it can lead to degradation of wafer properties so it will be controlled by 

DLTS measurements for each sample to define optimal growth parameters for future application 

in photovoltaic. 

Summary 

In Chapter V, GaP layers were grown on silicon wafers by the standard continuous method 

and by an innovative method of atomic-layer deposition at low temperature (below 400 °C) in a 

PECVD-chamber for photovoltaic applications. They were explored by different techniques. 

According to experimental data the following conclusions can be drawn: 

 PE-ALD process has to be favored over continuous PECVD since it leads to better 

structural and electric properties of the grown GaP layer. 

 Increase of RF plasma power from 20 W to 100 W leads to a change of crystalline 

structure of GaP from amorphous to microcrystalline. 

 Silane flow in the GaP growth process induces n-type doping of the GaP layer.  

 Growth of amorphous GaP leads to passivation of the silicon surface and absence 

of responses in DLTS spectra and TEM-images. 

 Growth of microcrystalline GaP leads to appearance of defects in the structures. 

  PE-ALD process does not lead to passivation of boron-doping in p-Si. 

 Defect level associated with interstitial iron was detected in initial p-Si. PE-ALD 

process leads to modification of this defect level. 

 PE-ALD process does not deteriorate the underlying silicon wafers. 
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Conclusion and perspectives 
Photovoltaic nowadays requires new approaches for the fabrication of low-cost high-

efficiency multi-junction solar cells. Three different ways were considered to this purpose in the 

current study that is devoted to perspective III-V semiconductor materials in multi-junction solar 

cells grown on wafers of IV group elements. 

The first method is the introduction of an additional subcell based on 1eV-InGaAsN in the 

classical GaInP/GaAs/Ge MJSC. It will allow to increase its efficiency for terrestrial and space 

applications. Single-junction solar cells with different thickness of active layer of i-InGaAsN were 

explored. Dilute nitrides of InGaAsN were grown by the new method of sub-monolayer digital 

alloys in an MBE chamber. It consists in using original nanoheterostructures based on the 

InAs/GaAsN superlattice where 7-12 nm thick layers of GaAsN are separated by few monolayers 

of InAs 0.5 nm thick. As a result, low p-type background doping (less 1×1015 cm-3) was 

demonstrated at room temperature in samples with 900 nm and 1200 nm thick InGaAsN layers. 

According to admittance spectroscopy and deep-level transient spectroscopy measurements the 

SDA approach leads to defect-free growth up to a thickness of 900 nm. An increase of thickness 

to 1200 nm leads to the formation of non-radiative recombination centers with an activation energy 

of 0.5 eV and concentration of (1-2)×1015 cm-3 and of a shallow defect level at 0.20 eV. The latter 

leads to the appearance of additional doping at room temperature but its concentration is low 

(5×1014 cm-3) so it does not have strong effect on the energy band diagram and on the value of 

external quantum efficiency. However, further increase in thickness to 1600 nm leads to significant 

increase of its concentration to a value of (3-5)×1015 cm-3, while the concentration of deep levels 

almost remains constant. Therefore, additional free charge carriers appearing due to the ionization 

of the shallow level change the band diagram from p-i-n to p-n junction at room temperature. It 

leads to a drop of external quantum efficiency due to the collapsing of electric field in part of the 

absorber layer, and to detected non-radiative recombination centers that negatively impact the free 

carrier lifetimes in InGaAsN.  

In a second approach, dilute nitrides of InGaPAsN were studied as perspective alloys for 

top subcells in MJSC grown on silicon. Single-junction SCs on GaP wafers and MJSC on Si wafers 

were grown with various composition of the active layers of these alloys. It was established that 

undoped i-layers of GaPAsN are more suitable for photovoltaic application in SC based on p-i-n 

junctions than n-type layers in p-n junctions due to a more effective built-in electric field acting as 

a driving force for the photogenerated carriers. This leads to much higher short-circuit current in 

SCs with i-InGaPAsN. Then, a specific feature in the spectral quantum efficiency curves of the 
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structures was observed: the presence of two peaks, which is explained by the peculiar band 

diagram of dilute nitrides with two conduction subbands leading to two light absorption 

mechanisms in these alloys. Additional incorporation of In and As leads to the improvement of 

photoelectric properties of GaPN according to measurements of EQE and I-V characteristics, and 

the defect concentration was found to decrease according to admittance spectroscopy 

measurements. This is related to the compensation of elastic stress arising in GaPN due to 

incorporation of nitrogen in the phosphorus sublattice and its clusterization. Furthermore, addition 

of As is preferable to that of In in SCs since this leads to lower defect formation in active i-layers 

of dilute nitrides according to AS and DLTS measurements, and to the improvement of 

photovoltaic performance according to EQE and I-V experiments. Different defects were detected 

by capacitance methods in InGaPAsN layers. Some of them can be considered as centers of non-

radiative recombination responsible for the low lifetime of charge carriers in these alloys; they are 

located at Ec-0.44 eV in InP/GaPN layers, and Ec-(0.50-0.55) eV in GaPAsN. Also, the post-

growth treatment improves photoelectric properties (EQE increases by 25%) and electronic quality 

(defect concentration drastically drops) of single- and double- junction SCs based on GaPAsN 

layers. Finally, the first triple-junction SC with subcells of dilute nitrides was grown on a silicon 

wafer: its parameters are VOC=2.23 eV and JSC=1.02 mA/cm2.  

The third part of the study was devoted to the investigation of GaP layers grown on silicon 

wafers in a PECVD chamber for photovoltaic applications. It will allow us to decrease the final 

cost of perspective MJSCs for industrial production and to exclude the negative influence of high 

temperatures required in the MBE process. The proposed novel technology is based on plasma-

enhanced atomic-layer deposition with alternation of P and Ga sources at low temperature (below 

400 °C). Layers of GaP were grown on n- and p-type silicon wafers at different conditions. 

Samples with GaP grown by PE-ALD show better structural (SEM) and electric (C-V) properties 

than samples obtained by a continuous process where flows of P and Ga were used simultaneously. 

Thus, the PE-ALD method is better adapted to the growth of GaP. According to Raman 

spectroscopy and TEM measurements, the increase of RF plasma power in the growth process 

from 20 W to 100 W leads to a change in the structure of GaP from amorphous (a-GaP) to 

microcrystalline (µc-GaP). The sample with GaP grown with additional silane flow on p-Si wafers 

showed photovoltaic effect explained by the existence of a strong inversion layer in silicon near 

to the GaP/p-Si interface, demonstrating that the grown GaP should be doped and n-type. The a-

GaP/p-Si sample (JSC=21.82 mA/cm2 and VOC=0.44 V) shows much better performance than the 

µc-GaP/p-Si one (JSC=3.75 mA/cm2 and VOC=0.32 V). This is explained by a better passivation of 

the silicon surface during the growth process by a-GaP. Firstly, it is confirmed by TEM images 

since the interface of c-GaP/p-Si is more inhomogeneous and defective. Secondly, two defect 
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levels with an activation energy of 0.30 eV and 0.80 eV were detected by DLTS in µc-GaP/n-Si 

unlike in a-GaP/n-Si where no defect response was found. Both defects could be attributed to the 

µc-GaP layer. For boron doped p-Si there is no deactivation of boron doping after the PE-ALD 

process as could be expected from the presence of hydrogen in the plasma. In the reference p-Si, 

defects were detected at a concentration of 3×1013 cm-3 and at an energy position of Ev+0.38eV, 

suggesting the presence of interstitial iron in the wafers. PE-ALD growth of GaP leads to some 

modification of this defect and to the appearance of another response in the low temperature range. 

However, deeper levels with larger activation energies were not detected in p-Si after PE-ALD, 

suggesting that the quality of p-Si does not strongly deteriorate.  

In conclusion, all three approaches showed promising result for future investigation. The 

SDA approach allowed to grow 1 eV-InGaAsN and to define defects that impact the photoelectric 

properties. In the future, the growth process will be optimized to exclude defect formation in layers 

thicker than 1 µm, and triple-junction GaInP/GaAs/InGaAsN solar cells will be grown on GaAs 

wafers. Secondly, we have shown that i-GaPAsN layers have better performance than SDA i-

InP/GaPN in solar cells grown on GaP and Si wafers. Also, we detected deep levels responsible 

for low lifetimes in these layers. Future experiments will be focused on the growth and the 

improvement of i-GaPAsN layers thicker than 1 µm. Double-junction solar cells will be fabricated 

on Si wafers with the top subcell based on p-i-n junction with such quaternary alloy where high 

arsenic content of 20-30% is used to reach the bandgap energy of 1.7 eV. Finally, the PE-ALD 

method showed the possibility to grow GaP layers on Si wafers, and the solar cells based on n-

GaP/p-Si was fabricated. In the future we will study ways to obtain p-type GaP layers and to better 

monitor the n-type doping concentration. Also, nitrogen will be introduced in the growth process 

to obtain i-GaPN layer, and p-i-n single-junction solar cells will be grown on Si wafers. 

Consequently, all methods will be developed in future experiments for the fabrication of low-cost 

high efficiency solar cells. 
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Appendix A. Contact formation 

for single-junction SC on GaP 
The deposition of metal electrode, used as ohmic contact, is required to study electrical 

properties of materials of p-n junctions. Here, we focus on the contact formation for single-junction 

SCs grown on n-GaP wafers. Two methods are studied: indium contacts and gold-based contacts 

for mesa-structures. 

A.1 Indium contacts 

As described in Chapter II, n-GaP wafer must be covered by titanium from bottom side for 

its heating during the growth process by IR irradiation in used MBE-equipment. However, the 

Ti/n-GaP is well-known to be a Schottky contact. So titanium could not be used as a bottom 

electrode, and it was removed after the growth. For our photoelectrical measurements on GaP 

wafers, indium contacts were chosen due to its simple and quick fabrication procedure.  

Firstly, indium dots were deposited on the bottom side. It has been experimentally shown 

that simultaneous evaporation of indium contacts to front and bottom layers of GaP and subsequent 

RTA at a temperature higher than 330 °C leads to shunting of the samples due to indium diffusion 

in active layers. Therefore, initially the indium dots were deposited on the wafer and  annealed at 

420 °C for 30 seconds in a nitrogen ambient. The I-V characteristics in lateral geometry between 

adjacent indium dots before and after annealing are shown in Figure A.1.1a. We observe that (i) 

the In/n-GaP contact is ohmic, (ii) and that the resistance value decreases after annealing. In next 

step, indium dots were deposited on the front side to p-GaP layer but it was annealed at 300 °C. 

The Figure A.1.1b shows the I-V characteristic in lateral geometry for In/p-GaP contact. As for 

In/n-GaP, the annealing effect significantly reduces contact resistance. The I-V is almost 

symmetric but, unfortunately, it is not perfect linear so In/p-GaP is a non-ideal ohmic contact even 

after temperature treatment.  
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Figure A.1.1 Current-voltage characteristics in lateral geometry between adjacent indium dots on 

n-GaP (a) and p-GaP (b) in single-junction SC. 

Then, I-V curves under illumination of AM1.5G were measured in SC with p-i-n junction 

with initial and annealed indium contacts to p-GaP front layer (Figure A.1.2). As a result, the I-V 

curve behavior strongly improved since the bend is not observed after annealing. Finally, RTA 

leads to significant enhancement of fill factor and consequently efficiency of SCs. 
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Figure A.1.2 Current-voltage characteristics of SC with the p-i-n junction under illumination 

AM1.5 with initial and annealed indium contact to p-GaP in single-junction SC. 

A.2 Mesa-structures 

Indium dots are useful contact for express measurements and research of qualitative 

behavior of structures but titanium polishing and their non-ideal ohmic behavior limits an accurate 
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quantitative analysis. Thus, the post-growth technology described in Chapter II was applied to 

fabricate mesa-structures and SCs with desirable geometry.  

In the method, metal sandwiches based on classical alloys of Au/Ge and Au/Zn were 

evaporated for formation of ohmic contacts to bottom n-GaP and top p-GaP layers, respectively. 

Further, samples were annealed at 330 °C in a nitrogen ambient during 1 minute. The initial Au/Zn 

contact showed ohmic behavior due to the high doping level of the top p-GaP layer, and it did not 

almost change after RTA (see I-V curves in Figure A.2.1a). On the other hand, the initial Au/Ge 

contact resistance on n-GaP was high but it significantly decreased by two orders after annealing, 

and the behavior became ohmic (Figure A.2.1b). As a result, the fabricated contacts are ohmic to 

both sides of structures so we did not used RTA at higher temperatures. 
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Figure A.2.1 Current-voltage characteristic in lateral geometry between two adjacent contacts to 

p-GaP (a) and n-GaP (b) in mesa-structure. 

Dark current-voltage characteristics are presented for several mesa-structures with 

diameter of 0.5 mm for two samples in Figure A.2.2. They have classical rectifying behavior (low 

current at reverse applied voltage and its exponential growth at forward one) as expected for p-n 

junction with a good reproducibility. Only one mesa is shunted in each sample. The reverse current 

looks very noisy due to extremely low value close to the measuring limit of 10 pA in the used 

device. It means an absence of shunting and good quality of etching. Therefore, SCs and mesa-

structures were fabricated with optimized contacts for accurate measurements.  
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Figure A.2.2 Dark current-voltage characteristic of SC with an active layer of GaPAsN (a) and 

InP/GaPN (b) for different mesa-structures with diameter 0.5 mm. 
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Appendix B. Analysis of the 

spectral response in InGaPAsN 

based solar cell 
As shown in Chapter IV, SCs based on dilute nitrides have two peaks in the spectral 

response of quantum efficiency that is not due to interference effects. A similar behavior of the 

spectral characteristics of GaPAsN/GaP heterostructures was also observed in another work95, 

where the presence of a short-wavelength maximum is explained by the absorption in the GaP 

layers (Eg=2.26 eV). For subsequent experiments, the sample #1 is chosen for the investigation of 

EQE behavior due to its homogeneous composition of GaPAsN and the largest thickness allowing 

to carry out optical measurements more precisely and to obtain more clear and understandable 

results. In this work, it was performed a control experiment with wet etching of the p-GaP layer 

and simultaneous EQE measurements. Figure B.1 shows the dependence of EQE on the etched 

thickness. The shape of the quantum efficiency spectrum remains unchanged during removal of 

the top p- GaP layer. EQE catastrophically falls when 135 nm of p-GaP is etched due to 

disappearance of effective p-n junction. Therefore, the existence of two peaks in the quantum 

efficiency spectrum is related to intrinsic properties of the quaternary alloy of GaPAsN. 

The observed behavior of spectral characteristics can be related to specific features of the 

energy-band structure of diluted nitrides such as GaAsN and GaPN100,101. According to the band-

anticrossing (BAC) model, these solid solutions have two conduction subbands (E- and E+) formed 

as a result of the interaction of a nitrogen level with the conduction band of the initial 

semiconductors (GaAs and GaP). It is possible to calculate the positions of conduction subbands 

for the GaPAsN layer in sample #1 for the following hybridization parameters: VN(GaNAs) = 2.7 

eV and VN(GaNP) = 3.05 eV105. As a result, the energies of conduction subbands were found to be 

E- = 1.88 eV and E+ = 2.86 eV. 
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Figure B.1 Dependence of quantum efficiency on etched p-GaP thickness in linear (a) and 

logarithmic (b) scale. 

Then, the value of bandgap energy of GaP0.832As0.15N0.018 was estimated from different 

experimental methods applied to sample #1. Firstly, according to the EQE curve, the long-

wavelength photosensitivity threshold is located at 650 nm (Figure B.1a). Secondly, the 

photoluminescence spectrum for this structure has the maximum at the wavelength of 650 nm 

(Figure B.2). 
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Figure B.2 Photoluminescence spectra of GaP0.832As0.15N0.018 layer. 

Furthermore, spectra of transmittance and reflection are measured for sample #1 by 

“Spectrum-SC” setup (Figure B.3a). It allowed to estimate the spectrum of absorption coefficient 

α for GaP0.832As0.15N0.018 material. In case of semiconductor with direct bandgap, subsequent well-

known equation is applied: 
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(𝛼ℎ𝜐)2 = 𝐴2(ℎ𝜐 − 𝐸𝑔), (B.1) 

where A is a constant, ℎ𝜐 is the light quantum of absorbed energy. Therefore, the value of 

absorption edge 𝐸𝑔 corresponded to bandgap energy can be estimated from dependence of (αhv)2  

on hv (Figure B.3b). In result, it has value 1.95 eV for investigated GaP0.832As0.15N0.018 

semiconductor material. 
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Figure B.3 (a)- Spectra of transmittance and reflection of sample #1, (b)- dependence of (𝛼ℎ𝜐)2 

on ℎ𝜐. 

Finally, all obtained above data are summarized for simple understanding in Figure B.4. It 

shows a dependence of the external quantum efficiency on the incident photon energy for the p–n 

structure with layer of GaP0.832As0.15N0.018. The long-wavelength photosensitivity threshold and 

PL peak position (1.9 eV) corresponds to the absorption edge (1.95 eV) estimated from Figure 

B.3b. Dashed lines of E- and E+ correspond to values estimated from BAC-model for dilute 

nitrides. 

A comparison of the calculated energies (dashed lines in Figure B.4) of conduction 

subbands to experimental spectra leads to a conclusion that the value of 1.9 eV corresponds to an 

electron transition from the valence band to E- subband of GaP0.832As0.15N0.018. The presence of 

this conduction subband accounts for the appearance of a long-wavelength maximum on the 

spectrum of quantum efficiency (Figure I.6). As the photon energy increases above this value, the 

EQE decreases as a result of the small probability of photon absorption in the E- subband. 

However, when the photon energy reaches a value corresponding to the E+ subband, the absorption 

increases again to provide the short-wavelength maximum (Figure B.4). Little quantitate disparity 
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between experiments and estimated energies can be explained by “suggested” arsenic content of 

15% in quaternary alloy of GaPAsN. However, in real grown sample it can be less so Eg raises.  

Nevertheless, a good agreement between theoretical estimates and experimental data confirms the 

above assumption that the peculiarities of the spectral characteristics of GaPAsN/GaP 

heterostructures are related to specific features of the energy-band structure of GaPAsN structures. 
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Figure B.4 Plot of external quantum efficiency vs. photon energy for the sample #1 with p–n 

junction (see text for explanations). 

It is interesting to note that shape of quantum efficiency for single-junction SC based on 

InGaAsN/GaAs heterostructures also has the same feature of two overlapping peaks in spectral 

response due to absorption in both subbands. However, transition energy to E- and E+ subbands in 

InGaAsN lie closer to each other thus it is not easy to discover and distinguish each mechanisms 

separately.  
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Appendix C. Contact formation 

for multi-junction SC on Si 
Here, we focus on the contact formation for double-junction SCs grown on p-Si wafers 

with front layer of n-GaP. Two methods are studied: indium contacts and gold-based contacts for 

mesa-structures. 

C.1 Indium contacts 

As for single-junction SCs, metal contacts must be fabricated with an ohmic behavior for 

reliable experimental study of MJSCs. Here, n-GaP is the front contact layer and wafer p-Si is the 

bottom layer. Both contacts are formed as indium dots deposited by soldering iron. Contact to p-

Si has perfect ohmic behavior and low resistance without any additional treatment (I-V curve in 

in Figure C.1.1a). However, initial contact to n-GaP did not show the good performance so it was 

annealed at temperature 330 °C in a nitrogen ambient (Figure C.1.1b). It slightly improved and 

had linear dependence so it is possible to carry out experimental research of these samples.  

-50

0

50

-1 -0.5 0 0.5 1

initial

C
u

rr
e
n

t,
 m

A

Voltage

(a)

 

-0.8

-0.4

0

0.4

0.8

-1.5 -1 -0.5 0 0.5 1 1.5

initial
annealed

C
u

rr
e
n

t,
 m

A

Voltage, V

(b)

 

Figure C.1.1 Current-voltage characteristics in lateral geometry between adjacent indium dots on 

p-Si (a) and n-GaP (b) in double-junction SC. 

Subsequent increase in annealing temperature leads to degradation of I-V characteristics: 

open-circuit voltage catastrophically dropped. We suppose that it is due to deterioration of the 

tunnel junction and shunting of the top subcell. The small thickness of cover n-GaP layer is the 

main disadvantage of grown structures due to ohmic contact of Au/Ge formed by germanium 
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diffusion into n-GaP, and it can diffuse in the active i-layer and shunt it. Therefore, in the future 

samples cover layer of n-GaP must be thicker. These contacts were used for measurements of 

photoelectric properties of MJSCs. 

C.2 Mesa-structures 

Further, mesa-structures were fabricated for capacitance study. The used indium contact to 

p-Si is not useful for future application in industry. Thereby, planar contacts to p-Si were done in 

three steps. First step is chemical vapor deposition of amorphous p-Si on the wafer. The second 

one is vacuum evaporation of silver on the amorphous silicon. The third one is the thermal 

annealing at 170 °C in an air ambient during the 20 min. The I-V characteristics in lateral geometry 

are presented in Figure C.2.1a. Then, contacts to front n-GaP were fabricated by the evaporation 

of indium through the mask with holes with diameter of 0.5 mm and 1.0 mm without annealing. 

As noted above the utilization of classical Au/Ge annealed alloys is dangerous due to a possible 

degradation of SCs. Finally, the selectively dry etching was applied to form mesa-structures.  
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Figure C.2.1 Current-voltage characteristics in lateral geometry between two adjacent contacts to 

p-Si (a) and n-GaP (b) in mesa-structure. 

Therefore, all fabricated contacts have good quality for carrying out electrical and 

capacitance measurements of SCs in Chapter IV. 
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Appendix D. List of 

abbreviations and symbols 
Abbreviations: 

  

AS admittance spectroscopy 

BAC band-anticrossing 

C-V capacitance-voltage 

DLTS deep-level transient spectroscopy 

DOS density of states 

EQE external quantum efficiency 

HEMT high-electron-mobility transistor 

HRTEM high-resolution transmission electron microscopy 

I-V current-voltage 

ICP inductively coupled plasma 

IR infra-red 

IQE internal quantum efficiency 

LED light-emitting diode 

MBE molecular beam epitaxy 

MEE migration-enhanced epitaxy 

MJSC multi-junction solar cell 

ML monolayer 

MOCVD metalorganic chemical vapor deposition 

MOVPE metalorganic vapor phase epitaxy 

PE-ALD plasma-enhanced atomic layer deposition 

PECVD plasma-enhanced chemical vapor deposition 

PL photoluminescence 

PV photovoltaics 

RF radio-frequency 

RIE reactive ion etching 

RTA rapid thermal annealing 

SC solar cell 
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SCR space charge region 

SDA sub-monolayer digital alloy 

SEM scanning electron microscopy 

SL superlattice 

TEM transmission electron microscopy 

TJ tunnel junction 

TLM transfer line measurements 

UV ultra-violet 

VPE vapor phase epitaxy 

XPS X-ray photoelectron spectroscopy 

 

Symbols: 

  

C capacitance 

cn capture coefficient of electrons 

en electron emission rate 

ep hole emission rate 

Ec energy position of conduction band 

EN energy position of nitrogen level 

ET energy position of defect level 

Ev energy position of valence band 

Eg bandgap energy 

f frequency 

f0 characteristic frequency 

FF fill factor 

h Planck constant 

G conductance 

I current 

JPM current at maximum power point 

JSC short-circuit current 

kB Boltzman’s constant 

ldiff diffusion length 

m0 electron mass 

me effective mass of electron 
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mh effective mass of hole 

NA acceptor concentration 

NC effective density of states in the conduction band 

NCV concentration from C-V curve 

ND donor concentration 

NT defect concentration 

NV effective density of states in the valence band 

PPM maximum power of solar cell 

Rs series resistance of solar cell 

Rsh shunt resistance of solar cell 

S surface area 

S(T) DLTS spectra 

T temperature 

T0 characteristic temperature 

tpulse time of filling pulse 

V voltage 

Va applied bias voltage 

Vbi build-in potential 

VN parameter of hybridization in BAC-model 

VOC open-circuit voltage 

VPM voltage at maximum power point 

Vpulse amplitude of filling pulse 

W width of space charge region 

q electron charge 

α absorption coefficient 

ε absolute dielectric permittivity 

ε0 dielectric permittivity of vacuum 

εs relative dielectric permittivity of semiconductor 

η efficiency of solar cell 

λ wavelength 

σ capture-cross section 

υth thermal velocity 

ω angular frequency 

ω0 characteristic angular frequency 
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Résumé de thèse 
Les sources actuelles d'énergie électrique ont divers types d'inconvénients : sécurité 

(énergie nucléaire), réserves limitées de combustibles fossiles et émission de gaz à effet de serre 

(pétrole, gaz, charbon), influence négative sur l'environnement (hydroélectricité), etc. Le 

photovoltaïque (PV) ne présente pas ces inconvénients et constitue un moyen durable de fournir 

de l'électricité nécessaire au développement et au bien-être de l'humanité sur notre terre. Il permet 

d'utiliser une source d'énergie infinie à notre échelle - le Soleil - et convertit son rayonnement en 

énergie électrique. 

Par conséquent, le PV est considéré comme une source d'énergie renouvelable prometteuse 

pour l'avenir. Le dispositif à semi-conducteurs utilisé dans le mécanisme de conversion d'énergie 

et de production d'électricité est appelé une cellule solaire. Les cellules solaires à jonctions 

multiples (MJSC pour Multiple Junction Solar Cells) basées sur les composés III-V ont les 

rendements de conversion les plus élevés et ont presque atteint la barrière psychologique de 50% 

pour les cellules photovoltaïques à concentrateur1. Les valeurs record sont obtenues pour des 

MJSC réalisées par collage2 (46%) ou en structure inversée3 (44,4%) à partir des composés GaInP 

et GaAs. Cependant, ces méthodes de réalisation posent problème pour un déploiement industriel 

à grande échelle du fait des étapes mécaniques nécessaires et de leur coût. Par conséquent, la 

réalisation de MJSC par intégration et croissance monolithique directe sur un substrat présente un 

grand intérêt. Le record de rendement de conversion est de 45,7% pour une cellule monolithique 

à quatre jonctions basée sur le système GaInP / GaAs / GaInAs / GaInAs à une concentration de 

294 soleils4.  

Cette thèse est donc consacrée à l'étude de méthodes prospectives pour augmenter 

l'efficacité de cellules à multijonctions par croissance monolithique. Le travail est basé sur l'étude 

des cellules et sur celle des propriétés des matériaux par des techniques photoélectriques et 

capacitives, et il peut être divisé en trois parties. 

La première partie du travail est l'étude de cellules à simple jonction avec des couches 

absorbantes non intentionnellement dopées (qui seront appelées "intrinsèques" par la suite) 

d'InGaAsN (Eg = 1,03 eV) avec différentes épaisseurs (900 nm, 1200 nm et 1600 nm) obtenues 

par épitaxie par jets moléculaires (MBE) sur substrats de n-GaAs, et recouvertes par une couche 

de p-GaAs. Selon des estimations théoriques, la substitution du germanium (bande interdite de 

0,66 eV) par un autre semi-conducteur avec une bande interdite de 1 eV pour former la sous-cellule 

inférieure pourrait augmenter de quelques pourcents l'efficacité de cellules (GaInP / GaAs / Ge) et 

l'insertion d'une telle sous-cellule comme cellule intermédiaire dans une cellule à 3 jonctions 

réalisée sur un substrat de Ge permettra d'atteindre une valeur d'efficacité de 52% sous 

concentration5,6. Les couches intrinsèques d'InGaAsN ont été produites sous la forme d'un 

superréseau InAs / GaAsN obtenu par la séquence de croissance du ternaire GaAsN, de 7 à 12 nm 

d'épaisseur, suivie de la croissance du binaire InAs, de 0,2 à 0,5 nm d'épaisseur (une monocouche), 

la séquence étant ensuite répétée pour atteindre l'épaisseur visée. Cette technologie permet la 

croissance d'alliages InGaAsN avec des flux séparés d'indium et d'azote. Ainsi, des couches minces 

d'InAs de quelques monocouches compensent les contraintes élastiques apparaissant lors de la 

croissance de GaAsN sur le substrat de GaAs en raison du désaccord de maille. Le composé semi-

conducteur développé par la méthode décrite est désigné par "SDA" (Sub-monolayer digital alloy) 

et il a été appliqué avec succès pour la croissance des composés III-V7-9 et II-VI10,11 par MBE. 
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La figure 1 présente les courbes courant-tension sous éclairement AM1.5G et l'efficacité 

quantique externe (EQE) à température ambiante. L'échantillon avec InGaAsN de 900 nm 

d'épaisseur présente les meilleures performances avec des valeurs de tension de circuit ouvert et 

de courant de court-circuit de VOC = 0.40 V et JSC = 15.5 mA / cm2, et la valeur EQE dépasse 50% 

pour un échantillon sans revêtement antireflet (AR), de sorte qu'il pourrait atteindre 75% dans le 

cas de l'absence de pertes par réflexion. Lorsque l'épaisseur est augmentée à 1200 nm, la valeur 

d'EQE diminue légèrement dans la plage des courtes longueurs d'onde en raison des pertes 

possibles par recombinaison tandis qu'elle augmente légèrement dans la plage des grandes 

longueurs d'onde en raison de l'absorption améliorée. Ceci conduit à une légère augmentation de 

JSC (16,0 mA / cm2) et à une diminution de VOC. Une augmentation supplémentaire de l'épaisseur 

à 1600 nm conduit à une chute catastrophique de JSC (6,8 mA / cm2) liée à la diminution de la 

valeur d'EQE dans la région des courtes longueurs d'onde en raison des pertes par recombinaison 

élevées. 
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Figure 1. Caractéristiques courant-tension sous éclairement AM1.5G (a) et rendement 

quantique externe (EQE) (b) de cellules à simple jonction constituées d'un absorbeur d'InGaAsN 

intrinsèque obtenu par croissance de type SDA de InAs/GaAsN sur substrat GaP. 

 

Les différences observées ont été expliquées par des mesures de capacité de jonction des 

cellules solaires. Premièrement, à partir des caractéristiques de capacité-tension (C-V), des courbes 

EQE et à l'aide de simulations, nous avons montré que les échantillons avec InGaAsN (de type 

SDA) de 900 nm et 1200 nm d'épaisseur présentaient un dopage résiduel de type p avec des 

concentrations de porteurs libres (trous) estimées à moins de 1,0 × 1015 cm-3 et à 5,0 × 1015 cm-3 

lorsque l'épaisseur de InGaAsN est de 1600 nm. Par conséquent, dans nos couches InAs / GaAsN, 

les valeurs de dopage résiduel non intentionnel de type p sont nettement inférieures à celles 

trouvées pour les couches de InGaAsN obtenues traditionnellement par MBE12 (plus de 1,0 × 1016 

cm-3). La spectroscopie d'admittance (AS pour Admittance Spectroscopy) et la spectroscopie 

transitoire de niveaux profonds (DLTS pour Deep Level Transient Spectroscopy) ont ensuite été 

appliquées aux échantillons. Ces méthodes ont permis de détecter des défauts dans la couche 

intrinsèque d'InGaAsN: leurs paramètres obtenus à partir des tracés d'Arrhenius (figure 2) sont 

présentés dans le tableau I. 
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Thickness, nm Еa, eV σ, cm2 NT, cm-3 Method 

 0.20 3.010-17 5.01014 AS 

1200 0.46 1.410-15 8.41014 AS 

 0.82 4.510-13 n/e DLTS 

 0.18 1.410-16 3.51015 AS 

1600 0.54 3.410-14 1.31015 AS 

 0.78 1.910-11 1.01015 DLTS 

Table I. Paramètres des défauts détectés dans nos couches non intentionnellement dopées 

d'InAs/GaAsN. 
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Figure 2. Tracés d'Arrhénius des signatures de défauts obtenus à partir des techniques AS 

(cercles) et DLTS (carrés) pour les couches de type SDA d'InAs/GaAsN pour des épaisseurs de 

couches de 1200 nm (symboles ouverts) et 1600 nm (symboles pleins). 

Selon les mesures de type AS et DLTS, l'approche SDA conduit à une croissance sans 

défaut jusqu'à une épaisseur de 900 nm. Une augmentation de l'épaisseur à 1200 nm entraîne la 

formation de centres de recombinaison non radiatifs avec une énergie d'activation de 0,50 eV (et 

une concentration estimée à 8,4 × 1014 cm-3) et d'un défaut de faible profondeur à 0,20 eV, qui 

contribue à l'apparition d'un dopage supplémentaire. Cependant, la concentration de ce dernier est 

faible (NT = 5 × 1014 cm-3), donc elle n'affecte pas fortement les propriétés photoélectriques. Une 

augmentation supplémentaire de l'épaisseur de la couche d'absorbeur d'InGaAsN jusqu'à 1600 nm 

conduit à une augmentation significative de sa concentration à (3-5) × 1015 cm-3, tandis que la 

concentration des niveaux profonds augmente également à 1,3 × 1015 cm-3. Selon les mesures de 

diffraction de rayons X, un tel comportement des défauts peut s'expliquer par une relaxation 

partielle des couches plus épaisses lorsqu'on dépasse l'épaisseur critique dans la croissance 

hétéroépitaxiale13,14. Dans ce cas, il est énergétiquement favorable à ce que les inadaptations de 

paramètres de maille soient partagées entre les contraintes dans la couche et l'apparition de 

dislocations. Ainsi, nous pouvons proposer que la couche de 900 nm d'épaisseur est sous contrainte 

de tension et a une faible concentration de défauts tandis qu'une augmentation de l'épaisseur de 

couche à 1200 nm conduit à la formation de dislocations et donc des réponses de défauts sont 

détectées par les techniques capacitives. En outre, des porteurs de charge libres supplémentaires 
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apparaissant du fait de l'ionisation du niveau peu profond font que les couches a priori non dopées 

d'InAs / GaAsN deviennent de type p, ce qui tend à remplacer les structures de type p+-i-n+ par 

des structures de type p+-p-n à température ambiante. Ceci conduit à une chute d'EQE due à 

l'effondrement du champ électrique dans la couche InGaAsN de l'absorbeur et à l'augmentation du 

nombre de centres de recombinaison non radiatifs qui ont un impact négatif sur la durée de vie des 

porteurs libres. 

La deuxième partie du travail est consacrée à l'étude de cellules solaires à une et plusieurs 

jonctions avec des couches actives d'InGaPAsN obtenues par croissance MBE sur des substrats de 

GaP et de Si. Selon les simulations, les valeurs optimales de l'énergie de la bande interdite sont 

respectivement de 1,1 eV et de 1,7 eV pour les sous-cellules inférieure et supérieure dans les 

cellules solaires à double jonction15. Le silicium constitue le semi-conducteur optimal et le moins 

cher pour la cellule inférieure, et les nitrures dilués d'InGaPAsN riches en P peuvent voir leur 

énergie de bande interdite varier dans la plage de 1,5 à 2,1 eV et rester en accord de maille avec 

GaP et Si. Quatre cellules solaires à simple jonction ont été fabriquées sur des substrats n-GaP 

avec des couches de contact avant de p-GaP, et avec des couches actives de 1000 nm d'épaisseur 

de n-GaPAsN pour un échantillon, 300 nm d'épaisseur de i-GaPAsN dans deux autres échantillons 

(avec des différences de traitement de post-croissance (PGT) dans la chambre MBE) et d' InP / 

GaPN de 350 nm d'épaisseur pour le quatrième. La figure 3 montre les caractéristiques courant-

tension sous éclairement AM1.5G et les courbes d'EQE à température ambiante. 
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Figure 3. Caractéristiques courant-tension sous éclairement AM1.5G (a) et rendement 

quantique externe (EQE) (b) de cellules solaires à simple jonction d'InGaPAsN sur GaP. 

Ces résultats montrent que  les jonctions p-i-n présentent de meilleures performances que 

les jonctions p-n en raison de valeurs plus élevées de JSC et d'EQE. Ceci indique une collection 

plus efficace des porteurs de charge générés en régime de court-circuit de la structure p-i-n, qui 

peut être liée à la présence d'un champ électrique plus fort dans la couche InGaPAsN non dopée. 

Par conséquent, en cas de mauvaises durées de vie dans ces nitrures dilués, les jonctions p-i-n sont 

plus adaptées aux applications photovoltaïques et nous avons concentré nos recherches sur les 

couches non dopées. Le matériau obtenu InP / GaPN a une énergie de bande interdite plus élevée 

(2,03 eV) que i-GaPAsN (1,7 eV), donc il a une tension de circuit ouvert (VOC) plus élevée, mais 

une valeur plus faible de JSC et d'EQE en raison des durées de vie plus faibles, qui sont suggérées 

par le facteur d'idéalité de 1,94 de la caractéristique courant-tension dans les diodes InP / GaPN, 

plus proche de 2 que celui des diodes en GaPAsN (1,50). Ceci confirme la conclusion d'études 

antérieures16 sur la meilleure compensation des contraintes élastiques par l'arsenic par rapport à 

l'indium. L'azote est un élément du groupe V donc il essaie de se placer dans le sous-réseau des 

atomes du groupe V dans le réseau de GaP (sites phosphore). L'arsenic est également un élément 
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du groupe V donc cet atome se trouve également dans les sites de phosphore et il conduit à une 

compensation de contrainte plus efficace que l'incorporation de l'indium puisque ce dernier est un 

élément du groupe III. Un traitement de post-recuit supplémentaire améliore la qualité de la cellule 

avec i-GaPAsN (JSC = 4.34 mA / cm2 et VOC = 0.93 V) donc ce procédé technologique est mieux 

adapté, mais ses performances sont encore très médiocres. Notons que les courbes d'EQE ont des 

caractéristiques spécifiques présentant deux pics. Nous l'avons expliqué en détail par deux 

mécanismes d'absorption dus à l'existence de deux sous-bandes de conduction dans des nitrures 

dilués de GaPAsN selon le modèle appelé band anticrossing17,18. 

La spectroscopie d'admittance a détecté des défauts avec une énergie d'activation et une 

section efficace de capture respectives de Ea = 0,20 eV et σ = 1-2 × 10-15 cm2, dans des couches 

de GaPAsN, et leur concentration est beaucoup plus grande dans n-GaPAsN (un facteur 2) par 

rapport à celle dans les couches non dopées. Ceci a permis de l'associer au défaut T1 étudié 

auparavant dans GaP: N dopé par Si19, décrit comme un complexe SiGa + VP. Un seul défaut avec 

Ea = 0,09 eV et une concentration extrêmement faible a été détecté dans InP / GaPN. Il peut s'agir 

d'un défaut ponctuel de type donneur formé par des atomes de silicium en site gallium dans le 

réseau GaP (SiGa)
20. Ainsi, la spectroscopie d'admittance nous a permis de ne trouver que des 

impuretés peu profondes pouvant être responsables du dopage de fond dans les couches. Les 

mesures C-V ont montré un dopage de fond de type n plus faible dans les couches InP / GaPN 

(moins de 1 × 1016 cm-3) que dans les échantillons avec GaPAsN (3 × 1016 cm-3 et 1 × 1016 cm-3 

avec traitement de post-croissance) à 80 K. Les mesures de DLTS nous ont permis de détecter 

deux pièges à porteurs majoritaires (0,20 eV et 0,56 eV en dessous de la bande de conduction) et 

un piège à porteurs minoritaires (0,44 eV au-dessus de la bande de valence) dans le GaPAsN non 

dopé. Après le traitement de post-croissance, la concentration du piège le plus profond a 

légèrement diminué, mais les réponses de celui à 0,44 eV ont considérablement diminué (voire 

presque disparu). Un autre recuit des deux échantillons n'a montré aucune réponse d'un autre défaut 

possible dans la couche de GaPAsN non dopé, donc le défaut observé à Ec-0.56 eV peut être 

considéré comme le principal centre de recombinaison non radiatif responsable des limitations de 

durée de vie dans GaPAsN non dopé. Les mesures sur des échantillons InP / GaPN ont révélé des 

réponses de pièges à porteurs majoritaires avec une énergie d'activation de 0,44 eV. Ces défauts 

ont déjà été détectés dans GaP (N) 21-24 et ont la structure possible de complexes basés sur une 

paire d'atomes d'azote sur les sites de phosphore (NP-NP) et la lacune de gallium VGa, résultant du 

déplacement de gallium en raison de l'incorporation d'azote dans le réseau de GaP. En outre, des 

défauts à Ec-0,55 eV dans GaPAsN non dopé ont été détectés dans la même plage de température 

et avec des paramètres similaires, ce qui suggère une relation étroite entre les deux défauts. Peut-

être celui-ci se transforme –t-il en celui-là en raison de la teneur supplémentaire en arsenic dans 

l'alliage ? Cependant, un recuit supplémentaire a montré l'existence d'une forte concentration de 

niveaux profonds dans InP / GaPN, qui agissent comme des centres efficaces de recombinaison 

non radiative pour les trous et les électrons: elle peut être responsable des durées de vie plus faibles 

observées dans cet alliage comparées à celles dans GaPAsN. L'échantillon avec GaPAsN non dopé 

a montré une meilleure performance photoélectrique et une faible concentration de défauts après 

traitement post-croissance, il devrait donc être utilisé et développé pour les futures cellules 

solaires. 

Plusieurs cellules à multi-jonctions ont également été étudiées (cellules tandem et triple). 

Pour les cellules tandem, la sous-cellule inférieure a été fabriquée sous la forme d'une 

homojonction p-n de silicium dans un substrat de p-Si par traitement de pré-croissance dans un 

flux de phosphore. Ensuite, une jonction tunnel a été développée. Enfin, la sous-cellule supérieure 

a été déposée. Trois sous-cellules p-i-n supérieures ont été étudiées, l'une à base d'une couche de 

GaPAs non dopé de 400 nm d'épaisseur, l'autre à partir d'une couche de InP / GaPN non dopé de 

200 nm d'épaisseur, la dernière à partir d'une couche de GaPAsN non dopé de 200 nm d'épaisseur. 

Nous avons également fabriqué une cellule à triple jonction SC, où les sous-cellules du milieu et 
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du haut étaient respectivement basées sur du GaPAsN non dopé de 200 nm d'épaisseur et du GaPN 

non dopé de 150 nm d'épaisseur. La couche de contact avant a été fabriquée à partir de n-GaP pour 

toutes les cellules. La figure 4 présente les courbes courant-tension sous illumination AM1.5G et 

l'EQE pour les sous-cellules supérieures dans les cellules à double jonction. Tout d'abord, il 

convient de noter que les cellules à double et triple jonction sont fonctionnelles car les valeurs 

élevées des tensions obtenues en circuit ouvert ne peuvent être expliquées que par la somme des 

contributions de toutes les sous-cellules. L'échantillon avec GaPAs dans la sous-cellule supérieure 

a des performances inférieures à celles des échantillons avec des nitrures dilués. En ce qui concerne 

les cellules à simple jonction, la couche de i-GaPAsN est préférable à i-InP / GaPN pour les 

applications photovoltaïques puisque les valeurs d'EQE sont meilleures et celle de JSC est plus 

élevée. Cependant, leurs valeurs sont encore très faibles pour deux raisons: une faible épaisseur de 

couches non dopées (200 nm) et une relative mauvaise qualité de ces couches. La faible épaisseur 

conduit à une absorption de lumière insuffisante, et la faible qualité conduit à une recombinaison 

non radiative élevée dans les sous-cellules supérieures. Par conséquent, la faible qualité des 

alliages III-V dans les sous-cellules supérieures est le facteur limitant de la performance des 

cellules à multi-jonctions, de sorte que ces alliages doivent être améliorés à l'avenir. En outre, les 

contacts avant non optimisés entraînent un faible facteur de forme et de faibles valeurs d'efficacité 

des cellules. 
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Figure 4. Caractéristiques courant-tension sous éclairement AM1.5G (a) de cellules à 

multijonctions (3 cellules tandem et une triple) et courbe de rendement quantique externe (b) des 

sous-cellules supérieurs dans les cellules tandem. 

 

Les techniques de spectroscopie d'admittance, de DLTS et de Laplace-DLTS ont été 

appliquées à l'étude des défauts de la couche intrinsèque des composés III-V dans les cellules à 

double jonction. Toutes les méthodes ont montré des résultats similaires et nous ont permis 

d'obtenir des informations qualitatives sur les propriétés des défauts. L'échantillon avec la couche 

de GaPAs a la plus forte concentration de défauts avec une énergie d'activation de 0,22 eV. Deux 

réponses ont été étudiées dans InP / GaPN non dopé: le défaut avec Ea = 0,23 eV est similaire à 

celui de GaPAs, et un autre défaut avec Ea = 0,44 eV (similaire au défaut détecté dans les cellules 

à simple jonction à base de InP / GaPN non dopé). GaPAsN a un seul niveau de défauts à Ec-0,50 

eV (similaire au défaut détecté dans les cellules à simple jonction à base de ce matériau GaPAsN) 

avec une concentration plus faible car As compense mieux les contraintes élastiques dans les 

alliages GaPN que In. Les défauts à Ec-0.44 eV et Ec-0.50 eV peuvent être considérés comme les 
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principaux centres de recombinaison non-radiative dans ces couches puisqu'il n'y a pas de réponses 

détectées à des températures plus élevées (jusqu'à la limite de notre équipement). 

La troisième partie du travail est consacrée à l'étude des couches de GaP que l'on a fait 

croître sur des substrats de Si dans un équipement de dépôt chimique en phase vapeur assisté par 

plasma. Les méthodes d'épitaxie habituelles nécessitent des températures élevées de 500 à 800 °C 

pour la croissance des composés III-V, ce qui conduit à une dégradation des interfaces et des 

propriétés de volume du substrat de silicium25. De plus, ces technologies sont coûteuses en raison 

des fortes exigences de vide poussé dans la chambre, de source d'atomes ultra-purs, de 

maintenance plus compliquée des équipements, etc. Nous avons donc proposé une nouvelle 

méthode de dépôt de type ALD assistée par plasma. (PE-ALD) pour la croissance de GaP sur Si à 

des températures inférieures à 400 °C. Elle consiste à faire interagir alternativement de la 

phosphine (fournissant des atomes de P) et du thriméthylgallium (fournissant des atomes de Ga) 

sur la surface, conduisant alors à une croissance 2D couche par couche de GaP atomiquement lisse. 

Des couches minces de GaP de 50-75 nm ont été déposées sur des plaquettes de silicium 

de type n et de type p par trois variantes de la méthode: (i) par des flux continus et simultanés de 

P et Ga à une puissance de plasma RF de 100 W, (ii) par PE-ALD à une puissance de plasma RF 

de 20 et 100 W pendant les étapes de dépôt, et (iii) avec un flux supplémentaire de silane visant à 

utiliser des atomes de Si pour fournir un dopage de GaP de type n. La couche de GaP obtenue par 

le processus continu présente des propriétés structurelles (à partir de mesures de microscopie 

électronique à balayage) et électriques (à partir de mesures de capacité-tension) inférieures à celles 

de GaP obtenu par PE-ALD. En outre, la structure du GaP obtenu par PE-ALD passe de amorphe 

à microcristallin avec l'augmentation de la puissance du plasma RF de 20 W jusqu'à 100 W, tout 

en maintenant constantes les autres paramètres de croissance. D'après des mesures de 

spectroscopie Raman (figure 5a), on distingue deux pics à 365 et 402 cm-1 dans l'échantillon 

préparé à 100 W contrairement à celui préparé à 20 W: ils correspondent aux positions des phonons 

TO et LO dans le GaP microcristallin26. Cependant, les structures a-GaP / p-Si présentent de 

meilleures propriétés photoélectriques que celles de μc-GaP / p-Si (Figure 5b) en raison d'une 

meilleure passivation de l'interface GaP / Si confirmée par des mesures en microscopie 

électronique à transmission. En outre, nous avons révélé l'existence d'une couche d'inversion forte 

dans le substrat de p-Si à l'hétérojonction GaP / p-Si due au dopage de type n du GaP, démontrant 

que l'utilisation de flux de silane est une méthode efficace pour obtenir du GaP de type n par PE-

ALD. 

0

1

2

3

4

250 300 350 400 450 500

20 W
100 W

In
te

n
s
it

y
 (

1
0

3
),

 a
.u

.

Raman shift, cm
-1

TO LO

Si 

wafer
GaP

(a)

-30

-20

-10

0

10

20

30

0 0.2 0.4 0.6 0.8

20 W
100 W

C
u

rr
e
n

t,
 m

A
/c

m
2

Voltage, V

(b)

 

Figure 5. Spectres Raman (a) et caractéristiques courant-tension sous éclairement AM1.5G (b) 

de films de GaP déposés sur p-Si par la méthode PE-ALD pour deux valeurs de puissance RF du 

plasma. 
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Selon les mesures C-V effectuées sur les diodes Schottky formées sur les hétérojonctions 

GaP / n-Si, le GaP microcristallin devrait avoir un niveau de dopage plus élevé que le GaP amorphe 

puisque ce dernier est presque entièrement dépeuplé à tension nulle (la zone de charge d'espace de 

la jonction s'étend sur toute son épaisseur). De plus, deux défauts avec des énergies d'activation de 

0,30 eV et de 0,80 eV ont été détectés par DLTS dans la structure μc-GaP / n-Si, alors qu'aucune 

réponse n'a été observée dans la structure a-GaP / n-Si. Par conséquent, les couches de a-GaP 

présentent de meilleures propriétés photoélectriques, structurelles et moins de défauts que les 

couches de μc-GaP grâce à une meilleure passivation de la surface du silicium. 

Enfin, l'influence du processus de croissance sur la qualité des substrats de silicium a été 

explorée. Du GaP a été déposé par PE-ALD sur des substrats de type n puis retiré (par gravure) 

pour étudier la détérioration potentielle des propriétés électroniques dans la tranche de silicium 

durant le processus de croissance de GaP. Aucun pic DLTS n'a été observé, ce qui signifie que la 

concentration de défauts est très faible (moins de 1 × 1012 cm-3) et que le processus de croissance 

n'affecte pas les propriétés du substrat de n-Si. Pour le silicium de type p dopé au bore, le profil 

C-V montre qu'il n'y a pas de désactivation du dopage au bore après le procédé PE-ALD, comme 

on aurait pu s'y attendre de par la présence d'hydrogène dans le plasma. Des mesures sur des diodes 

Schottky de référence formées sur le substrat de Si de type p révèlent la présence de défauts 

interstitiels de Fe bien connus à une position Ev + 0,38 eV avec une concentration de 3 × 1013 cm-

3. Le GaP obtenu par PE-ALD conduit à une modification de la réponse de ce défaut et à 

l'apparition d'une autre réponse dans la gamme des basses températures éventuellement liée à des 

changements de l'environnement ou de la configuration du défaut interstitiel lié au fer. Cependant, 

des niveaux profonds n'ont pas été détectés dans p-Si après PE-ALD, ce qui signifie que la qualité 

de p-Si ne se dégrade pas fortement. 

En conclusion, les trois approches explorées au cours de ces travaux de thèse ont donné 

des résultats prometteurs. L'approche SDA a permis de développer des couches d'InGaAsN avec 

un gap de 1eV, et de préciser les défauts qui affectent les propriétés photoélectriques. À l'avenir, 

le processus de croissance sera optimisé pour exclure la formation de défauts dans des couches 

plus épaisses que 1 μm, et des cellules solaires GaInP / GaAs / InGaAsN à triple jonction seront 

réalisées sur des substrats de GaAs. Deuxièmement, nous avons montré que les couches i-GaPAsN 

ont de meilleures performances que celles de SDA i-InP / GaPN dans les cellules solaires réalisées 

sur des substrats de GaP et Si. De plus, nous avons détecté des niveaux profonds responsables des 

faibles durées de vie dans ces couches. Les futures recherches pourront être axées sur la croissance 

et l'amélioration des couches de i-GaPAsN plus épaisses que 1 μm. Des cellules solaires à double 

jonction seront fabriquées sur des substrats de Si à partir d'une sous-cellule supérieure utilisant une 

jonction p-i-n reposant sur un tel alliage quaternaire avec une teneur élevée en arsenic de 20-30% 

afin d'atteindre l'énergie de bande interdite de 1,7 eV. Enfin, la méthode PE-ALD a montré la 

possibilité de faire croître des couches de GaP sur des substrats de Si, et des cellules solaires à 

base de n-GaP / p-Si ont été fabriquées. Dans le futur, nous étudierons des moyens d'obtenir des 

couches de GaP de type p et de mieux contrôler la concentration de dopage de type n. De plus, de 

l'azote sera introduit dans le processus de croissance pour obtenir une couche d'i-GaPN, et des 

cellules solaires à simple jonction p-i-n seront réalisées sur des substrats de Si. Par conséquent, 

toutes les méthodes explorées pourront être développées dans le futur pour la fabrication de 

cellules solaires à haut rendement et à faible coût. 
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