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Spécialité de doctorat : Mathématiques appliquées
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Professeur, Université de Versailles-Saint-Quentin-en-Yvelines Directeur de thèse
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de mon travail. Je remercie vivement Mohammed El Rhabi, Sylvie Le Hégarat et Roman
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un train sans se parler! Ila, tu as une caractère et personnalité que j’admire sincèrement,
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surement oublié d’autres, dans tous les paragraphes.

Mis panas ”a distancia” desde Ecuador, un abrazo especial a David (nuestro 10, crack),
Diego, Santiago, Adrian, Stephanie, Nicky, Christian, Edmundo, Nestor, Carlos...
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1

Introduction

The present work deals with the mathematical aspects of a radiation imaging modality to
characterize heterogeneous ancient materials objects. Such characterization is performed
in terms of the electronic density of objects. Indeed, the knowledge of the internal elec-
tronic density distribution of an object provides us informations about the morphology and
chemical composition of the object and then a study focused on other research fields, such
as material sciences or art history, can be realized [2]. Unfortunately, the flattened geome-
try of the objects prohibits some well studied imaging techniques like photo-absorption or
phase contrast tomography. The radiation imaging modality used here, is based on Comp-
ton Scattering Tomography, developed in recent years mostly for applications in emission
imaging techniques [21, 23, 34, 29]. More precisely, it consists in a external scanning imag-
ing system allowing a three-dimensional mapping of heritage objects.

Modelling of imaging systems requires to study both the direct and inverse problems.
The direct problem is called the image formation process, which aim is to provide a model
of the image generated from a given input object. The inverse problem is called object
reconstruction, or inversion, and is focused in providing an approximation of the distribu-
tion of an unknown specific physical characteristic of the object. In Compton Scattering
Tomography, the output image is an spectral image resolved both in energy and in space
whereas the reconstructed object is a mapping of the electronic density distribution of the
input object.

After a theoretical study of the direct and inverse problem, numerical simulations have
been performed on discrete input objects, representative of flattened ancient material ob-
jects. The output spectral image is obtained through a numerical implementation of the
direct problem. A numerical reconstruction of the object from the simulated image is then
performed by solving the inverse problem. The quality of the reconstructed object is finally

1



2 Introduction

Figure 1.1: Paint cross-section showing a stratigraphical assemblage of The Anatomy
Lesson of Dr. Nicolaes Tulp, 1632 by Rembrandt, Mauritshuis, The Hague. c© Sample
taken and prepared as cross-section by P. Noble during the conservation treatment of
the painting in 1997, and re-photographed by A. van Loon, Mauritshuis, in 2010 for the
Rembrandt Database.

measured by calculating some distance between the initial object and its reconstruction.

Two major objectives can be identified in this PhD thesis. The first one is to develop
a mathematical model of the direct problem of image formation. This model must take
into account all the parameters encountered in a realistic scenario and then to be able
to numerically estimate for a given input object the output spectral image. The image
formation process will be compared with Monte Carlo simulations of photon transport as
defined in [30]. The second main objective of this thesis is the definition of a reconstruction
procedure for the inverse problem. An analytical inverse formula will be obtained and
then numerically discretized to lead to a numerical reconstruction of the input object. A
real synchrotron experience collecting Compton scattering data under the configuration
proposed is the remaining step to fully validate the presented approach.

A more detailed description of the particular context of ancient material objects and
the associated experimental setup is proposed below. This introduction ends with a brief
outline of the next chapters.

1.1 Specificities of ancient materiel 3D studies

Ancient material objects are remnants of the past that have historical value. Such objects
are encountered in archaeology, palaeoenvironments, palaeontology, or cultural heritage.
The study of their chemical composition and their morphology not only provides infor-
mations about their historical context (origin, use...) but also allows to understand their
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Figure 1.2: A flat fossil actinopterygian over a high thick X-ray absorbing support from
the Kem Kem Beds in Morocco dated back to the Lower Cretaceous (95 million years ago).
c© P. Gueriau (MHNM/MNHN).

alteration processes and suggest the most suitable strategies for their restoration and con-
servation. Details about the specific characteristics of heterogeneous ancient materials in
synchrotron examinations can be found in [2].

Imaging or spectroscopic studies, such as absorption, emission or phase contrast to-
mography among other X-ray based imaging techniques, have been developed to access
to this information. When one deals with heritage objects, the non-invasiveness and non-
destructiveness properties of inspections are a requirement that X-ray imaging method-
ology provides, enabling two-dimensional imaging of the sample. Nevertheless, one can
easily be faced with samples presenting a flattened geometry, that is, samples presenting
a large ratio between their front area and thickness. The challenge is then to perform a
three-dimensional probing without using a relative rotation between the sample and the
imaging system as it would be done in conventional tomography, using either absorption
or phase contrast modality, since probing would suffer from the high differential light path
in distinct directions.

Samples presenting such characteristics are encountered in particular in studies of con-
servation and restoration of easel painting. Indeed, they require the characterization of the
stratigraphical assemblage of pigments often over a very dense background layer such as
one made of lead white. An example of this kind of studies is shown in Figure 1.1 which
was performed by means of an invasive method. Figure 1.2 presents another example of
objects possessing this morphology, namely in palaeontology with the Lagerstätten fossils
[14] which are mechanically flattened during the fossilisation process and stand on one side
of a thick sedimental slab which can not be thinned for the study. In both cases, the volume
of interest forms a layer on top of a material support which is opaque to X-ray either due
to its density or its thickness.

Two alternatives are available to work out this issue : either to perform a stratigraphical
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E0

M

D

Eω

ω

Figure 1.3: A single Compton scattering event. A photon of energy E0 is scattered at M

and arrives at D with energy Eω.

section of the sample which is an invasive method, or to limit the study to a bi-dimensional
analysis of the front surface of the sample, for example with synchrotron X-ray fluorescence
spectral raster-scanning as performed in [14], remaining however a three-dimensional study
still to be done.

To overcome the limitations of the mentioned methodologies for such samples, an imag-
ing modality based on Compton Scattering Tomography is proposed in this work.

1.2 Main principles of Compton Scattering Tomography

Classical X-ray tomography considers mainly four basic photon-matter interaction phe-
nomena, namely, the photoelectric absorption, electron-positron pair production, Rayleigh
scattering which is both elastic and coherent, and Compton scattering which conversely
is both inelastic and incoherent. In X-ray imaging and tomography, Compton scattered
signal is considered as noise added to photoelectric absorption and coherent scattered data
in the image formation process. This is because X-ray transmission signal is dominated
by the photoelectric absorption whilst coherent scattering may produce significant ampli-
tude variations at low scattering angles thanks to constructive and destructive interference
effects due to the coherent nature of this scattering.

In Compton scattering tomography (CST), an incident photon of energy E0 is absorbed
by a target electron, who re-emits a secondary photon scattered by an angle ω relative to
the direction of the original photon (see Figure 1.3). The scattered photon has an energy
Eω which is related to the scattering angle ω by the identity (1.1) called the Compton
equation

Eω =
E0

1 +
E0

mec2
(1− cosω)

, (1.1)

where mec
2 = 511 keV is the rest mass energy of the electron.

Depending on the material, if the incident radiation has a larger energy of about 4×104
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electron-volts, Compton scattering becomes the dominant phenomenon in the process, even
more when detection is performed outside the direct transmission area (ω = 0). Under these
conditions, by using CST, we are able to avoid relative rotations between the sample and
the imaging system.

Furthermore, because of a potentially opaque supporting material, transmission and
forward Compton scattering data, that is, with a scattering angle inferior of π2 , is impossible
to collect. This motivates the proposal of a modality tapping on back-scattered data, that
is, data collected with a scattering angle ω comprised between π

2 and π (see figure 1.5).

The idea of exploiting scattered radiation by Compton effect in imaging techniques has
been introduced and studied simultaneously. It has given birth to Compton scattering
tomography [6, 21, 23, 24, 34], which focuses on reconstructing the electron density map of
the object. The first CST scanner was proposed in 1994 by Norton [24] through a Radon
transform over circle arcs starting at a γ-ray source and ending at a moving detecting site.
Radon transforms over conical surfaces having fixed axis directions and variable opening
angle were proposed and studied in [23] where a first analytic inversion formula is proposed
using circular component analysis, with applications to emission imaging based on Compton
scattered radiation. Generalisations of this kind of transforms to higher dimensions spaces
with related inverse formulae in a filtered back-projection type are presented in [17]. A
back-projection inversion algorithm for a conical Radon transform in R

3 was developed
recently in [6].

1.3 The imaging configuration device

Compton Scattering Tomography aims to reconstruct the electron density map of the
studied object. In this work, the electron density is represented mathematically by a
nonnegative function defined on the Schwartz space (both smooth and rapidly decreasing)
on R

2 f : R2 × R
+ → R

+.

A synchrotron radiation setup with a parallel monochromatic X-ray beam (about 50
keV) and a space-energy resolved detector are considered. As presented in Fig. 1.4, an
incident photon of energy E0, in the Oz-axis direction and with a square section, is Comp-
ton scattered by an electron situated inside the object at M subtending an angle ω varying

in
π

2
< ω < π with the direction of incidence. The scattered photon, of energy Eω approx-

imated by (1.1), reaches a detecting site D = (ζ, ξ, 0) on the 2D detector that is located
over the xOy-plane.

As represented in Fig. 1.4, the detector will be placed between the source and the object
to capture back-scattered photons. It will have a hole in the middle of area 4ζ0ξ0 for some
two positive real numbers (ζ0, ξ0) to allow the beam to go through. Therefore, we will
have data for values of (ζ, ξ) on the xOy-plane verifying |ζ| > ζ0 or |ξ| > ξ0. Horizontal
and vertical translations of the sample will be needed to allow the imaging of the full
object. When all electrons of the material are both free and at rest, the Compton equation
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Figure 1.4: The general imaging configuration device. A scattering site M produces scat-
tered radiation captured at a detecting site D. The incident photon is coming from a
parallel beam with a square cross-section.

y
ζm

−ζm

x
x0

l

τ

O

detectors

object

incident beam (E0)

Eω

ζ0

−ζ0

Dζ

Mω̄

dΩ

Figure 1.5: The 2D imaging configuration. A scattering siteM produces scattered radiation
by an angle ω̄ = π−ω captured at a detecting site D. The incident photon is coming from
a parallel beam. Three vertical translations have been performed to irradiate the whole
object.
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establishes in (1.1) a diffeomorphism between the scattering angle and the scattered energy,
provided that the incident beam is monochromatic.

In such circumstances the Compton scattering image formation process mathematically
corresponds to a Radon transform over the surface of a cone, called the conical Radon
transform.

For sake of clarity, a 2D configuration is going to be studied first. This is due to fact
that the azimuthal scattering angle is uniformly distributed in a Compton event, that is to
say, the angular distribution of scattered photons has axial symmetry around the direction
of incidence. This framework is represented in Figure 1.5. Here, the detector is located
over the Oy-axis of the Cartesian reference plane and noted Dζ = (0, ζ). This 1D detector
is placed between the source and the object to capture back-scattered photons as in the 3D
case and it will have a hole in the middle of length 2ζ0 to allow the beam to go through. We
will thus have data for values of ζ verifying |ζ| > ζ0 for some ζ0 > 0. Vertical translations
of the sample will also be needed. In this case, the integration is performed over two lines
in a half-space, leading to the so-called V-line Radon transform.

1.4 Brief outline of chapters 2 to 6

The Radon transform models the image formation process in classical photo-absorption
tomography. In the simplest two-dimensional case, a continuous function f belonging to
the object input space X of functions defined on R

2 is given. This integral transform
returns a function Rf defined in the image output space Y that models the output of
the imaging system. This output function performs integrations over lines in R

2 of the
input function following a given radiation direction y that characterizes the line. Each line
integral is called a projection of the object, and can be written as

Rf(y) =
∫

y

f(x) dx. (1.2)

Solving this last equation for f is the main issue of the inverse problem, together to a
workable numerical implementation for large output datasets.

Chapter 2 reviews the direct and inverse problem for the originally introduced Radon
transform, covering the continuous and discrete framework. The Radon transform in carte-
sian coordinates is studied as a preliminary step to the half space-Radon transform, which
turns to be itself a preliminary step to the V-line Radon transform exposed in chapter 3.
For the cartesian transform, functions in the output image space are defined on the carte-
sian space Y = R

2. The half-space Radon transform has the same output image space
Y but the input object space is restricted to functions defined on R

+ × R. Continuous
and discrete formulations of the direct and inverse problem are treated and illustrated by
numerical simulations for each Radon transform.
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Various generalizations of the Radon transform has been studied since the seminal
Radon work. They are mostly applied in imaging sciences where integration is performed
over different manifolds according to the imaging configuration. The proposed Compton
scattering modality studied in this thesis is first restricted to a two-dimensional framework
for a first understanding of the model in Chapter 3. In that case, integrations of the input
function must be performed over two half lines with common vertex that forms a V-line in
R
2. The V-line Radon transform V is applied on functions defined on R

+ ×R whereas the
output image space Y is defined by some parametrization of these V-lines:

Vf(y) =
∫

V−line(y)

f(x) dx. (1.3)

The inverse problem associated to this Radon transform is then defined by means of a
filtered back-projection procedure.

Chapter 4 details the numerical implementation of both direct and inverse problems,
the sampling details and simulations results for two test input objects representing some
flat heritage sample.

A complete three-dimensional framework is then studied in Chapter 5 by means of
the conical Radon transform C. This integral transform acts on functions defined on some
domain of R

3 and integrate theses functions over conical surfaces with a fixed axis di-
rection. The output image space is thus made of functions on a space defined by some
parametrization of these cones:

Cf(y) =
∫

cone surface(y)

f(x) dx. (1.4)

These manifolds are considered because the opening angle of the cone stands for a
scattering angle in a Compton event. The model will take into account a realistic scatter-
ing scenario with the correspondent physical parameters, for both the direct and inverse
problem.

Finally, Chapter 6 presents the associated discrete model for both the direct and in-
verse problem and numerical simulations results to validate the workability of the approach
and to propose the development of the device.
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Introduction

Le présent travail porte sur les aspects mathématiques d’une modalité d’imagerie par rayon-
nement dans le but de caractériser des matériaux anciens hétérogènes. Cette caractérisation
est effectuée du point de vue de la densité électronique des objets. En effet, la connaissance
de la distribution de la densité électronique interne d’un objet nous fournit des informations
sur la morphologie et la composition chimique de l’objet qui va nous permettre d’accomplir
une étude focalisée sur d’autres domaines de recherche, tels que les sciences des matériaux
ou l’histoire de l’art [2]. Malheureusement, la géométrie aplatie des objets interdit cer-
taines techniques d’imagerie bien étudiées comme la photo-absorption ou la tomographie
par contraste de phase. La modalité d’imagerie par rayonnement utilisée ici est basée sur
la tomographie de rayonnement Compton diffusé, développée ces dernières années princi-
palement pour des applications dans les techniques d’imagerie par émission [21, 23, 34, 29].
Plus précisément, il s’agit d’un système d’imagerie avec une source parallèle externe sans
rotation relative permettant une cartographie tridimensionnelle des objets du patrimoine.

La modélisation des systèmes d’imagerie nécessite d’étudier à la fois le problème direct
et inverse. Le problème direct est appelé le processus de formation d’image, qui vise à
fournir un modèle de l’image générée à partir d’un objet d’entrée donné. Le problème
inverse est appelé reconstruction d’objet, ou inversion, et fournit une approximation de la
distribution d’une certain caractéristique physique inconnue de l’objet. Dans la tomogra-
phie de rayonnement Compton diffusé , l’image de sortie est une image spectrale résolue
à la fois en énergie et en espace alors que l’objet reconstruite est une cartographie de la
distribution de la densité électronique de l’objet d’entrée.

Après une étude théorique du problème direct et inverse, des simulations numériques
ont été effectuées a partir d’objets d’entrée discrets représententatifs d’objets aplatis du
patrimoine. L’image spectrale de sortie est obtenue grâce à une implémentation numérique
du problème direct. Une reconstruction numérique de l’objet à partir de l’image simulée
est ensuite effectuée en résolvant le problème inverse. La qualité de l’objet reconstruit est

11
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finalement mesurée en calculant une certaine distance entre l’objet initial et sa reconstruc-
tion.

Deux objectifs majeurs peuvent être identifiés dans ce travail doctoral. Le premier est
de développer un modèle mathématique du problème direct de la formation d’image. Ce
modèle doit prendre en compte tous les paramètres rencontrés dans un scénario réaliste et
ensuite être capable d’estimer numériquement pour un objet d’entrée donné l’image spec-
trale de sortie. Le processus de formation d’image sera comparé aux simulations Monte
Carlo du transport de photons telles que définies dans [30]. Le deuxième objectif prin-
cipal de cette thèse est la définition d’une procédure de reconstruction pour le problème
inverse. Une formule inverse analytique sera obtenue et discrétisée numériquement pour
ainsi obtenir une reconstruction numérique de l’objet d’entrée. Une expérience synchrotron
réelle où des données associées à la diffusion Compton seraient récupérées avec la configu-
ration d’imagerie proposée est l’étape restante pour une validation de l’approche présentée.
Ce travail a été publié partiellement dans [16, 15].

Une description plus détaillée du contexte particulier des objets aux matériaux anciens
et de la configuration expérimentale associée est proposée dans la section suivante. Cette
introduction se termine par un bref aperçu des chapitres suivants.

1.6 Spécificités des études tridimensionnelles des matériaux
anciens

Les objets aux matériaux anciens sont des vestiges du passé qui ont une valeur historique.
De tels objets sont rencontrés en archéologie ou en paléontologie et appartiennent au pat-
rimoine culturel. L’étude de leur composition chimique et de leur morphologie fournit
non seulement des informations sur leur contexte historique (origine, utilisation ...) mais
permet aussi de comprendre leurs processus d’altération et de proposer les stratégies les
plus appropriées pour leur restauration et leur conservation. Une étude complète des car-
actéristiques spécifiques des matériaux anciens hétérogènes dans le contexte des expériences
synchrotron est présentée dans [2].

Des modalités d’imagerie ou de spectroscopie, telles que la tomographie d’absorption,
d’émission ou de contraste de phase parmi d’autres techniques d’imagerie à base de rayons
X ont été développées pour accéder à cette information. Quand on travaille avec des objets
du patrimoine, les propriétés non invasives et non destructives des inspections sont une
exigence que la méthodologie d’imagerie par rayons X fournit, permettant l’imagerie bidi-
mensionnelle de l’échantillon. Néanmoins, on peut facilement faire face à des échantillons
présentant une géométrie aplatie, c’est-à-dire des échantillons présentant un rapport im-
portant entre leur surface frontale et leur épaisseur. Le défi consiste alors à effectuer
une exploration tridimensionnelle sans utiliser de rotation relative entre l’échantillon et le
système d’imagerie comme cela serait fait en tomographie conventionnelle, en utilisant la
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modalité d’absorption ou de contraste de phase.

Des échantillons présentant de telles caractéristiques se rencontrent notamment dans
des études de conservation et de restauration de la peinture de chevalet. En effet, ils
demandent une caractérisation de l’assemblage stratigraphique de pigments souvent sur
une matrice de fond très dense telle que celle en plomb blanc. Un exemple de ce genre
d’études est montré dans la figure 1.1 qui a été réalisée par une méthode invasive. La
figure 1.2 présente un autre exemple d’objets possédant cette morphologie, à savoir en
paléontologie les fossiles Lagerstätten [14] qui sont mécaniquement aplatis au cours du
processus de fossilisation et se tiennent d’un côté d’une matrice sédimentaire épaisse qui ne
peut pas être éclaircie pour l’étude de l’objet. Dans les deux cas, le volume d’intérêt forme
une couche au-dessus d’un support matériel opaque aux rayons X, soit par sa densité, soit
par son épaisseur.

Deux alternatives sont disponibles pour résoudre ce problème: soit effectuer une sec-
tion stratigraphique de l’échantillon qui est une méthode invasive, soit limiter l’étude à
une analyse bidimensionnelle de la surface frontale de l’échantillon, par exemple avec une
technique basée sur la flourescence de rayons X synchrotron réalisée dans [14], ce qui laisse
cependant une étude tridimensionnelle à réaliser.

Pour surmonter les limites des méthodologies mentionnées pour de tels échantillons,
une modalité d’imagerie basée sur la tomographie de rayonnement Compton diffusé est
proposée dans ce travail.

1.7 Principes généraux de la tomographie de rayonnement
Compton diffusé

La tomographie classique aux rayons X considère principalement quatre phénomènes fonda-
mentaux d’interaction photon-matière, à savoir l’absorption photoélectrique, la création de
paires électron-positon, la diffusion de Rayleigh à la fois élastique et cohérente et la diffusion
Compton qui est à la fois inélastique et incohérente. Dans la tomographie par rayons X, le
signal Compton diffusé est considéré comme du bruit ajouté à l’absorption photoélectrique
et aux données de diffusion cohérente dans le processus de formation d’image. En effet,
le signal de transmission des rayons X est dominé par l’absorption photoélectrique tandis
que la diffusion cohérente peut produire des variations d’amplitude importantes aux faibles
angles de diffusion grâce aux effets d’interférence constructifs et destructifs dus à la nature
cohérente de cette diffusion.

Dans la tomographie de rayonnement Compton diffusé (TCD), un photon incident
d’énergie E0 est absorbé par un électron cible, qui réémet un photon secondaire diffusé
d’un angle ω par rapport à la direction du photon original (voir Figure 1.3). Le photon
diffusé a une énergie Eω qui est liée à l’angle de diffusion ω par l’identité (1.1) appelée
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l’équation de Compton qui est donnée par

Eω =
E0

1 +
E0

mec2
(1− cosω)

, (1.5)

où mec
2 = 511 keV est l’énergie d’un électron au repos.

En fonction du matériau, si le rayonnement incident a une énergie supérieure à environ
4× 104 électrons-volts, la diffusion Compton devient le phénomène dominant dans le pro-
cessus, d’autant plus lorsque la détection est effectuée en dehors de la zone de transmission
directe (ω = 0). Dans ces conditions, en utilisant la TCD, nous pouvons éviter les rotations
relatives entre l’échantillon et le système d’imagerie.

D’autre part, en raison de la potentielle présence d’un matériau de support opaque, les
données de transmission et de diffusion Compton vers l’avant, c’est-à-dire avec un angle
de diffusion inférieur à π

2 , sont impossibles à collecter. Ceci motive la proposition d’une
modalité basée sur des données rétro-diffusées, c’est-à-dire des données collectées avec un
angle de diffusion ω compris entre π

2 et π (voir figure 1.5).

L’idée d’exploiter le rayonnement diffusé par l’effet Compton dans les techniques
d’imagerie a été introduite et étudiée simultanément. Elle a donné naissance à la TCD
[6, 21, 23, 24, 34], dont le but est la reconstruction de la carte de densité électronique
de l’objet. Le premier TCD scanner a été proposé en 1994 par Norton [24] à travers une
transformation de Radon sur des arcs de cercle partant d’une source γ vers un site de
détection en mouvement. La transformation de Radon sur des surfaces coniques ayant
des directions axiales fixes et des angles d’ouverture variables a été proposé et étudié dans
[23] où une première formule d’inversion analytique est proposée en utilisant l’analyse en
composants circulaires, avec des applications en imagerie d’émission. Des généralisations
de ce type de transformations vers des espaces de dimensions supérieures avec des formules
inverses associés du type rétroprojection filtrée sont présentées dans [17]. Un algorithme
d’inversion par rétroprojection filtrée d’une transformée de Radon conique dans R

3 a été
développé récemment dans [6].

1.8 La configuration du système d’imagerie

La TCD vise à reconstruire la carte de la densité électronique de l’objet étudié. Dans ce
travail, la densité électronique est représentée mathématiquement par une fonction non
négative définie sur l’espace de Schwartz des fonctions lisses et à décroissance rapide sur
R
2.

Une configuration synchrotron avec un faisceau parallèle de rayons X monochroma-
tique (environ 50 keV) et un détecteur résolu spectralement et spatialement est considéré.
Comme présenté sur la figure 1.4, un photon incident d’énergie E0, dans la direction de
l’axe Oz, est diffusé par effet Compton par un électron situé à l’intérieur d’un objet au
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point M sous-tendant un angle ω qui varie dans l’intervalle
π

2
< ω < π avec la direction

de l’incidence. Le photon diffusé, d’énergie Eω approximée par (1.1), atteint un point de
détection D = (ζ, ξ, 0) sur le détecteur 2D qui est situé sur le plan xOy.

Comme représenté dans la figure 1.4, le détecteur sera placé entre la source et l’objet
pour capturer des photons rétro-diffusés. Un trou sera donc présent au milieu du détecteur
possédant une surface de 4ζ0ξ0 pour deux nombres réels positifs (ζ0, ξ0) pour permettre
la circulation du faisceau. Par conséquent, nous aurons des données pour des valeurs de
(ζ, ξ) sur le plan xOy vérifiant |ζ| > ζ0 et |ξ| > ξ0. Des translations horizontales et
verticales de l’échantillon pourront être nécessaires pour permettre la radiation de l’objet
entier. Lorsque tous les électrons du matériau sont à la fois libres et au repos, l’équation
de Compton établit dans (1.1) un difféomorphisme entre l’angle de diffusion et l’énergie
diffusée, à condition que le faisceau incident soit monochromatique.

Dans de telles circonstances, le processus de formation d’image associé à la TCD corre-
spond mathématiquement à la transformation de Radon sur des surfaces coniques, appelée
la transformée de Radon conique.

Une configuration 2D va être étudiée préliminairement dans l’intérêt d’avoir des calculs
simplifié dans les simulation numériques. Ceci est dû au fait que l’angle de diffusion
azimutale est uniformément distribué dans un événement Compton, c’est-à-dire que la
distribution angulaire des photons diffusés a une symétrie axiale autour de la direction
d’incidence. Ce cadre est représenté dans la figure 1.5. Ici, le détecteur est situé sur l’axe
Oy du plan cartésien de référence et noté Dζ = (0, ζ). Ce détecteur 1D est placé entre la
source et l’objet pour capturer des photons rétro-diffusés comme dans le cas 3D et il aura un
trou de longueur 2ζ0 pour permettre au faisceau de traverser le détecteur. Nous aurons donc
des données pour des valeurs de ζ vérifiant |ζ| > ζ0 pour ζ0 > 0. Des translations verticales
de l’échantillon seront également nécessaires. Dans ce cas, l’intégration est effectuée sur
deux lignes dans un demi-espace, conduisant à ce que l’on appelle la transformation de
Radon en V.

1.9 Bref résumé des chapitres 2 à 6

La transformée de Radon modélise le processus de formation d’image en tomographie
de photo-absorption classique. Dans le cas bidimensionnel le plus simple, une fonction
continue f appartenant à l’espace des objets d’entrée X des fonctions définies sur R

2

est donnée. La réponse de cette transformation intégrale est une fonction Rf définie dans
l’espace des images de sortie Y qui modélise la sortie du système d’imagerie. Cette fonction
de sortie effectue des intégrations sur des lignes dans R2 de la fonction d’entrée suivant une
direction de rayonnement donnée y qui caractérise la ligne. Chaque intégrale curviligne
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est appelée une projection de l’objet, et peut s’écrire comme

Rf(y) =
∫

y

f(x) dx. (1.6)

La résolution de cette dernière équation pour f est le sujet principal du problème
inverse, conjointement à une implémentation numérique réalisable à partir d’un ensemble
de données de taille importante.

Le chapitre 2 rappelle le problème direct et inverse de la transformation de Radon
originale, couvrant le cadre continu et discret. La transformée du Radon en coordonnées
cartésiennes est étudiée comme une étape préliminaire à la transformation en demi-espace
de Radon, qui devient elle-même une étape préliminaire à la transformée de Radon en
V exposée au chapitre 3. Pour la transformée cartésienne, les fonctions de m’image de
sortie sont définies dans l’espace cartésien Y = R

2. La transformée en demi-espace de
Radon a le même espace d’image de sortie Y mais l’espace d’objet d’entrée est limité aux
fonctions définies sur R+×R. Les formulations continues et discrètes du problème direct et
inverse sont traitées et illustrées par des simulations numériques pour chaque transformée
de Radon.

Diverses généralisations de la transformée de Radon ont été étudiées à partir du travail
initial de Radon. Elles sont principalement appliquées dans les sciences de l’imagerie où
les intégrations sont réalisées sur des différentes variétés selon la configuration d’imagerie.
La modalité de diffusion Compton proposée dans cette thèse est d’abord limitée à un cadre
bidimensionnel pour une première compréhension du modèle dans le chapitre 3. Dans ce
cas, les intégrations de la fonction d’entrée doivent être effectuées sur deux demi-droites
de sommet commun qui forment une ligne brisée d’allure V dans R

2. La transformée de
Radon en V,V, est appliquée sur les fonctions définies sur R+×R alors que l’espace d’image
de sortie Y est défini par une certaine paramétrisation de ces lignes en V:

Vf(y) =
∫

V−ligne(y)

f(x) dx. (1.7)

Le problème inverse associé à cette transformation de Radon est ensuite défini avec une
procédure de rétroprojection filtrée.

Le chapitre 4 détaille l’implémentation numérique des problèmes directs et inverses,
les détails de l’échantillonnage et les résultats des simulations pour deux objets d’entrée
représentant un échantillon plat du patrimoine.

Un cadre tridimensionnel complet est ensuite étudié dans le chapitre 5 basé sur la
transformée de Radon conique C. Cette transformée intégrale agit sur des fonctions définies
sur un domaine de R

3 et intègre ces fonctions sur des surfaces coniques avec une direction
axiale fixe. L’espace d’image de sortie est donc constitué de fonctions sur un espace défini



Bref résumé des chapitres 2 à 6 17

par une certaine paramétrisation de ces surfaces coniques:

Cf(y) =
∫

surface conique(y)

f(x) dX. (1.8)

Ces variétés sont considérés sachant que l’angle d’ouverture du cône représente un angle
de diffusion dans un événement Compton. Le modèle prendra en compte un scénario de
diffusion réaliste avec les paramètres physiques correspondants, aussi bien pour le problème
direct que pour le problème inverse.

Finalement, le chapitre 6 présente le modèle discret associé ainsi que des résultats
de simulations numériques de problèmes directs et inverses afin de valider la faisabilité de
l’approche.
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2

Recall of the forward and inverse standard Radon

transforms

2.1 Introduction

The Radon transform is an integral operator that maps a function defined on R
n into the

set of its integrals over the hyperplanes of Rn [22]. It was first studied by H.A. Lorentz who
gave a solution, i.e., an inverse formula, for the case n = 3. Although it was not published
and it is not known either the motivation of his work or which techniques he used, it was
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(a) Parallel imaging configuration.
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Figure 2.1: The reconstruction problem related to a parallel source.
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referenced and the result was used afterwards by Bockwinkel in 1906 [3].
Later on, the Radon transform was formally introduced by the Austrian mathematician

Johann Radon in his 1917 paper [26] where he investigates the problem of recovering a
function of two dimensions from its line integrals. The article includes in particular a
solution for the inverse problem when n = 2. An english translation of this paper is found
in [10]. Although the transform was studied only from a theoretical point of view, it became
afterwards a key tool in applied mathematics, namely in tomography.

Since Radon’s paper, there have been various rediscoveries of the transform. A. Cor-
mack gave a remarkable solution to the bi-dimensional case and applied it on tomography
in 1963 [7]. He used Fourier techniques to invert the transform and proposed to apply the
solution to reconstruct the absorption coefficient of an object using a X-ray scanner.

In 1972 G. Hounsfield developed an imaging system based on parallel X-rays. This
gave birth to the so-called X-ray computed tomography. It uses the Radon transform
and Cormack’s inverse procedure to produce medical diagnostics at first. The principle
is to recover the attenuation coefficient of a studied object. To achieve this, a parallel
X-ray source radiates the object and the non-absorbed radiation that cross the object is
collected by X-ray detectors, as illustrated in Figure 2.1. The procedure is repeated by
rotating the imaging system or the object to obtain the data or projections of the object,
corresponding to the Radon transform. The target attenuation coefficient is then recovered
by an inversion procedure of the transform.

A complete review of the history of the Radon transform is exposed in [8]. For deeper
reviews about the Radon transform see references [10, 18, 22] whereas a good summary
can be found in [28] and recent developments or generalisations for instance in [27, 35].
Numerical implementation details are presented in [33].

In this chapter, the original Radon transform is first recalled. Then, an equivalent
definition is derived, called the Radon transform in cartesian coordinates. Finally, the half-
space Radon transform is introduced as a preliminary step to the V-line Radon transform
that will be applied in Compton scattering tomography in section 3.1.1.

The main inversion techniques for these three Radon transforms are also presented, all
based on Fourier transforms. The chapter ends with simulations for each cases, illustrating
the X-ray computed tomography applications.

2.2 The original Radon transform

Radon’s original definition of the transform introduced in [26] can be formulated as a
transform R mapping functions from the Schwartz space S(R2) to S(R × S1) where S1

represents here the one-dimensional unit sphere. A general definition related to functions
defined on R

n is first given below.

Definition 1. Let f : Rn → R
+ be a S(Rn)-function, (p,n) ∈ R× Sn−1 and

H(p,n) = {x ∈ R
n : p = x · n}. (2.1)
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the affine hyperplane perpendicular to the vector pn.

The Radon transform of f is the function Rf defined for (p,n) as the integral of f over
the hyperplane H(p,n), i.e.,

Rf(p,n) =
∫

H(p,n)

f(x) dx. (2.2)

Or it is equivalently defined by means of the Dirac δ function as

Rf(p,n) =
∫

Rn

f(x)δ(p− x · n) dx. (2.3)

It is convenient to let the function f belong to a nice class of functions such as the
Schwartz space S(Rn) of rapidly decreasing C∞ functions. Among the advantages of
working with this space, there is the fact that the function Rf can be differentiated as
often as desired and the possible application of the Fubini’s theorem [10]. A more general
definition is possible, for instance in the space L2

loc(R
n).

Remark 1. The Radon transform is a linear mapping

R : S(Rn) → S(R× Sn−1)

f 7→ Rf.
(2.4)

For a proof of the last assertion, see [18].

Remark 2. Since H(p,n) = H(−p,−n), the mapping (p,n) 7→ H(p,n) is a double cover-
ing of R× Sn−1 onto the space of hyperplanes in R

n. Hence, we can consider p ∈ R
+ or n

in a half of the unit sphere Sn−1.

For each couple (p,n), Rf(p,n) is called a projection of f over the hyperplane H(p,n),
and for all (p,n) ∈ R × Sn−1, Rf(p,n) is called the image formed from the function or
object f . This process is known as image formation or the direct problem of the Radon
transform.

The obvious question is how to recover f(x), for all x ∈ R
n, given the projections

Rf(p,n). Such inverse process is known as object reconstruction. This section deals with
both problems for the two-dimensional (2D) case.

2.2.1 The 2D direct problem

This section gives an outline of the direct formulation, i.e., the study of the resulting
function Rf for a given function f in the two dimensional case.
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Figure 2.2: Geometrical representation of the original (p, ϕ)-Radon transform.

The 2D framework is particularly relevant due to its applications in computed tomog-
raphy. Following previous notations when n = 2, x belongs here to R

2 and n to the unit
sphere S1. Let us introduce the notations, for ϕ ∈ [0, 2π[

x = (x, y), n = (cosϕ, sinϕ). (2.5)

The affine hyperplane perpendicular to pn is in this case the line of parameters (p, ϕ)
defined by

L(p, ϕ) = {(x, y) ∈ R
2 : p = x cosϕ+ y sinϕ}. (2.6)

Definition 2. The two-dimensional Radon transform, or the (p, ϕ)-Radon transform of a
function f ∈ S(R2), noted f̌ , is given by

f̌(p, ϕ) =

∫

L(p,ϕ)

f(x, y) dl, (2.7)

where dl is the measure along the line L(p, ϕ). The geometry of the (p, ϕ)-Radon transform
is represented in Figure 2.2.

As in R
n, it can also be defined through the Dirac δ function as

f̌(p, ϕ) =

∫

R2

f(x, y) δ(p− x cosϕ− y sinϕ) dxdy. (2.8)
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This (p, ϕ)-Radon transform can also be written in a more explicit form, by means of
a change of variables or an axis rotation by ϕ via

x = p cosϕ− r sinϕ, y = p sinϕ+ r cosϕ, dr = dl. (2.9)

Then, (2.8) can be rewritten as

f̌(p, ϕ) =

∫

R

f(p cosϕ− r sinϕ, p sinϕ+ r cosϕ) dr. (2.10)

This last integral is more adapted to perform numerical simulations of the Radon
transform.

Remark 3. To let L(p, ϕ) cover the space of affine hyperplanes of R2, as pointed out in
Remark 2, ϕ only needs to vary in [0, π[ supposing we still have p ∈ R.

2.2.2 The 2D inverse problem

The goal of this section is to solve (2.7) for f(x, y), i.e., to reconstruct an object represented
by the function f from the measured projections f̌(p, ϕ). Note that to cover the topics
treated in this work, we only need to focus on the inversion of the two-dimensional Radon
transform (see [10, 18] for a general case).

2.2.2.a A first reconstruction: the Fourier slice theorem

The crucial connection between the Radon transform and the Fourier transform has been
known with no doubt shortly after the discovery of the first one. But the most contributory
connection was brought to light by Bracewell in 1956 [4]. It is the Fourier slice theorem,
that states the relationship between the 1D Fourier transform of a projection and the 2D
Fourier transform of the original object.

In the following, let Fn be the n-dimensional Fourier transform operator and for a given
angle ϕ, let f̌ϕ be the 1D function

f̌ϕ : p 7→ f̌(p, ϕ). (2.11)

The Fourier slice theorem relates the 1D Fourier transform of a projection for a given angle
F f̌ϕ(q) with a line slice of the 2D Fourier transform of the object F2f(u, v) subtending an
angle ϕ with the u-axis, i.e., a line of equation v cosϕ = u sinϕ.

Theorem 1 (Fourier slice theorem). Let f ∈ S(R2) and ϕ ∈ [0, π[, then we have

F f̌ϕ(q) = F2f(q cosϕ, q sinϕ), (2.12)

or reciprocally, for (u, v) ∈ R
2

F2f(u, v) = F f̌ϕ(u,v)(||(u, v)||), (2.13)

where ϕ(u, v) and ||(u, v)|| are respectively the angle and the Euclidean norm of (u, v).



24 2. Recall of the forward and inverse standard Radon transforms

Proof. The 1D Fourier transform of f̌ϕ reads

F f̌ϕ(q) =
∞∫

−∞

f̌ϕ(p)e
−2πipq dp

=

∞∫

−∞

f̌(p, ϕ)e−2πipq dp.

(2.14)

Using definition (2.8) and applying Fubini’s theorem, we get from the last integral

F f̌ϕ(q) =
∫

R2

f(x, y)

∞∫

−∞

e−2πipqδ(p− x cosϕ− y sinϕ) dp dxdy, (2.15)

where the last inner p-integration can be easily solved and gives

F f̌ϕ(q) =
∫

R2

f(x, y)e−2πi(xq cosϕ+yq sinϕ) dxdy. (2.16)

The result claims by definition of the 2D Fourier transform.

This result gives us a first inversion of the Radon transform using Fourier transforms.
We actually have the 2D Fourier transform of f on radial lines v cosϕ = u sinϕ. The
inverse formula is announced in the following corollary.

Corollary 1 (inverse formula). The 2D Fourier transform of the object F2f(u, v) is avail-
able through the Fourier slice theorem for all (u, v) ∈ R

2. Therefore, the object f is recovered
by the 2D inverse Fourier transform, that is by the inverse formula

f(x, y) =

∫

R2

F f̌ϕ(u,v)(||(u, v)||)e2πi(ux+vy) dudv. (2.17)

This reconstruction method is often referred as the direct Fourier method. Numeri-
cally, it requires a 2D interpolation in the Fourier domain and computations of 2D Fourier
transforms.

2.2.2.b A second reconstruction: the filtered back-projection

The filtered back-projection reconstruction method, detailed in [10, 19, 22] was introduced
due to its numerical advantages compared to the Fourier slice theorem. It only involves 1D
Fourier transforms and 1D (linear) interpolations. It is the most important reconstruction
algorithm in tomography [22].
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Basically, it consists in modifying, or filtering the projections f̌ of a target object in
the Fourier domain, then computing the resulting filtered projections f̌∗ and finally to
back-project them by means of the adjoint operator R† defined in this section.

We first need to introduce the adjoint Radon transform, concept related to back-
projecions.

The adjoint transform. In the following, let us consider the notation

X = S(R2), Y = S(R× [0, π[), (2.18)

with respective inner products

(f1, f2)X =

∫

R2

f1(x, y)f2(x, y) dxdy,

(g1, g2)Y =

π∫

0

∫

R

g1(p, ϕ)g2(p, ϕ) dpdϕ.

(2.19)

Definition 3. The adjoint to the Radon transform R† is the unique operator

R† : Y → X

g 7→ R†g,
(2.20)

that verifies,

∀f ∈ X, ∀g ∈ Y, (Rf, g)Y = (f,R†g)X . (2.21)

In order to derive an expression for R†, we start from the left hand side of the previous
identity

(Rf, g)Y =

π∫

0

∫

R

Rf(p, ϕ)g(p, ϕ) dpdϕ, (2.22)

and insert definition (2.8) together with Fubini’s theorem to have

(Rf, g)Y =

∫

R2

f(x, y)

π∫

0

∫

R

g(p, ϕ)δ(p− x cosϕ− y sinϕ) dpdϕ dxdy. (2.23)

Finally, inner p-integration is performed and we have

(Rf, g)Y =

∫

R2

f(x, y)

π∫

0

g(x cosϕ+ y sinϕ,ϕ) dϕ dxdy, (2.24)
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from where one is able to extract the adjoint transform R† of R that verifies (2.21). R† is
therefore defined by

R†g(x, y) =

π∫

0

g(x cosϕ+ y sinϕ,ϕ) dϕ. (2.25)

In the way it is defined, the adjoint transform can be interpreted as a back-projection
procedure of projections at the same angle ϕ. It will be clarified subsequently.

Theorem 2 (Filtered back-projection). Under same hypotheses of Theorem 1, define the
filtered projections of f by

f̌∗(p, ϕ) = F−1
1

(
|q|F f̌ϕ(q)

)
(p), (2.26)

where f̌ϕ is defined in (2.11).

Then, f is recovered by means of identity the f = R†f̌∗, i.e., by

f(x, y) =

π∫

0

f̌∗(x cosϕ+ y sinϕ,ϕ) dϕ. (2.27)

Proof. The Fourier slice theorem plays a key role in this proof. Let us express the function
f through its 2D Fourier transform:

f(x, y) =

∫

R2

F2f(u, v)e
2πi(ux+vy) dudv. (2.28)

The 2D Fourier transform of f can be replaced by the 1D Fourier transform of the projec-
tions thanks to (2.13) and then

f(x, y) =

∫

R2

F f̌ϕ(u,v)(|(u, v)|)e2πi(ux+vy) dudv. (2.29)

Applying a change of variables to polar coordinates:

u = q cosϕ, v = q sinϕ, dudv = q dqdϕ, (2.30)

equation (2.29) becomes

f(x, y) =

2π∫

0

∞∫

0

F f̌ϕ(q)e2πiq(x cosϕ+y sinϕ) q dqdϕ. (2.31)
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In order to make appear an inverse Fourier transform and the adjoint operator in the
last double integral, the limits of integration can be adapted as

ϕ ∈ [0, π[, q ∈ R. (2.32)

due to the fact that
F f̌q(ϕ) = F f̌−q(ϕ+ π), (2.33)

Then (2.31) reads

f(x, y) =

π∫

0

∫

R

|q|F f̌ϕ(q)e2πiq(x cosϕ+y sinϕ) dqdϕ. (2.34)

The q-integration corresponds to the inverse Fourier transform of the function

q 7→ |q|F f̌ϕ(q) (2.35)

evaluated at x cosϕ+ y sinϕ, i.e.,

f(x, y) =

π∫

0

F−1
1

(
|q|F f̌ϕ(q)

)
(x cosϕ+ y sinϕ) dϕ. (2.36)

That is to say with the filtered projections

f(x, y) =

π∫

0

f̌∗(x cosϕ+ y sinϕ, p) dϕ. (2.37)

the announced result thus follows
f = R†f̌∗. (2.38)

Remark 4. The filter in the Fourier domain q 7→ |q|F f̌ϕ(q) is referred as the ramp filter.
It numerically reduces the low frequencies (blurring or noise effects) and accentuates the
high frequencies (contrasting features).

Remark 5 (Radon inversion formula). The filter |q| can be expressed as the product

|q| = −i sign q
2π

2πiq, (2.39)

and then the filtered projections in (2.26) can be written using the convolution theorem as

f̌∗(p, ϕ) = F−1(
−i sign q

2π
) ∗ F−1(2πiqF f̌ϕ(q)), (2.40)



28 2. Recall of the forward and inverse standard Radon transforms

from where, in terms of the Hilbert transform in R, noted H, we have

f̌∗(p, ϕ) =
1

2π2p
∗ ∂

∂p
f̌ϕ(p)

= − 1

2π
H
∂

∂p
f̌ϕ(p).

(2.41)

This last equation give rise to the inversion formula found by Radon in [26], by different
means, that reads

f = − 1

2π
R†H

∂

∂p
f̌ . (2.42)

2.3 The Radon transform in cartesian coordinates

By means of a change of variables, the Radon transform in Cartesian coordinates can be
formulated, that is, a transform R mapping from the Schwartz space S(R2) to S(R2).
This version of the transform is applied in fields like seismology or slant stacking. It is
numerically interesting because it allows the replacement of the computationally expensive
back-projection by a series of fast Fourier transforms [13, 35]. The associated direct and
inverse problem of the transform are studied in this section.

2.3.1 The direct problem

p
x

O

y

ϕ

u

u/v

f (x, y)

Figure 2.3: Geometrical representation of the (u, v) cartesian Radon transform.

Definition (2.8) of the Radon transform in terms of coordinates (p, ϕ) ∈ R× [0, π[ can
be reformulated with cartesian coordinates (u, v) ∈ R

2 via

u =
p

cosϕ
, v = tanϕ which implies

√
1 + v2 =

1

cosϕ
. (2.43)
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The geometrical representation of the new variables (u, v) of the transform is depicted
in Figure 2.3.

With these new variables, (2.8) can be rewritten as

f̌(u, v) =
√
1 + v2

∫

R2

f(x, y) δ(u− x− vy) dxdy, (2.44)

and after performing x-integration:

f̌(u, v) =
√

1 + v2

∞∫

−∞

f(u− vy, y) dy. (2.45)

Note the use of the same notation f̌ for sake of simplicity.

Remark 6. The cartesian Radon transform is now a linear mapping

S(R2) → S(R2)

f 7→ f̌ .
(2.46)

2.3.2 The inverse problem

As in the (p, ϕ)-Radon transform, we write in this section the inversion procedure for the
cartesian Radon transform starting with an inverse formula derived from the Fourier slice
theorem. Then, a filtered back-projection expression type is derived.

2.3.2.a A first inversion formula

Fourier techniques are used here to write an inversion formula for (2.45). The Fourier slice
theorem corresponding to the cartesian Radon transform is the following.

Theorem 3 (Fourier slice theorem). Let f ∈ S(R2) , µ ∈ R and denote Let Faf be the 1D
Fourier transform of f according to the variable a. Then, the following identity is verified

Fuf̌(µ, v) =
√
1 + v2F2f(µ, vµ). (2.47)

Proof. Let f(x, y) be expressed using its 1D x-Fourier transform, Fxf : µ 7→ f̂(µ, ·), as

f(x, y) =

∞∫

−∞

Fxf(µ, y)e2πixµ dµ. (2.48)
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Then (2.45) takes the form

f̌(u, v) =
√

1 + v2
∫

R2

Fxf(µ, y)e2πiµ(u−vy) dµ dy, (2.49)

and applying Fubini’s theorem,

f̌(u, v) =
√

1 + v2

∞∫

−∞

e2πiuµ
∞∫

−∞

Fxf(µ, y)e−2πiyvµ dy dµ. (2.50)

The last inner integral is the 1D y-Fourier transform of the function y 7→ Fxf(·, y)
evaluated at vµ, i.e., it is Fy(Fxf)(µ, vµ). Thus, (2.50) becomes

f̌(u, v) =
√

1 + v2

∞∫

−∞

Fy(Fxf)(µ, vµ)e2πiuµ dµ

=
√

1 + v2

∞∫

−∞

F2f(µ, vµ)e
2πiuµ dµ.

(2.51)

From where, by definition of the 1D u-Fourier transform of f̌ , the result of the theorem
claims.

From (2.47), we can apply the inverse and scaling property of the Fourier transform to
get the inverse formula of (2.45). This result is announced in the following corollary.

Corollary 2. If f̌ is the cartesian Radon transform of a function f ∈ S(R2), f is then
recovered via the formula

f(x, y) =

∞∫

−∞

|µ|
∞∫

−∞

1√
1 + v2

Fuf̌(µ, v)e2πiµ(x+vy) dvdµ. (2.52)

2.3.2.b Inversion via filtered back-projection

Back-projections reconstructions can be adapted to Radon transforms defined over different
manifolds. In all cases, the back-projection process is obtained via the associated adjoint
transform.

In the present case of the cartesian Radon transform, the adjoint transform is introduced
and then a back-projection inversion is presented below.
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Definition 4. The adjoint transform of the cartesian Radon transform is defined in the
same way as in (2.21). It is then easy to verify that it is given by

R†g(x, y) =

∫

R

√
1 + v2 g(x+ yv, v) dv. (2.53)

From the inverse formula (2.52), we can apply apply Fubini’s theorem to have a filtered
back-projection inverse with the ramp filter |µ| in the Fourier domain, namely

f(x, y) =

∞∫

−∞

dv√
1 + v2

∞∫

−∞

|µ|Fuf̌(µ, v)e2πiµ(x+vy) dµ. (2.54)

The previous inverse formula also writes

f(x, y) =

∞∫

−∞

dv√
1 + v2

F−1
u (|µ|Fuf̌)(x+ vy, v). (2.55)

This last formula can also be expressed in terms of the adjoint transform after intro-
ducing the filtered projections

f̌∗(u, v) = F−1
u (|µ|Fuf̌)(u, v). (2.56)

Theorem 4 (filtered back-projection for the Radon transfom in Cartesian coordinates).
A function f ∈ S(R2) can be recovered via

f = R†(
1

1 + v2
f̌∗(u, v)),

or equivalently

f(x, y) =

∫

R

1√
1 + v2

f̌∗(x+ yv, v) dv. (2.57)

2.4 The half-space Radon transform

The half-space Radon transform and its analytic inverse formula were introduced recently
in [35]. It is a Radon transform defined on half-lines, starting on points laying over a fixed
line (here the line x = 0) towards the direction of where an object is placed.
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Figure 2.4: Geometrical representation of the half-space Radon transform for three different
angles ωi and a given starting position ζ.

2.4.1 The direct problem

The half space Radon transform acts on functions having support in R
+ × R and has the

following definition.

Definition 5. Let f ∈ S(R+ × R). The half-space Radon transform, denoted by H, is

defined, for −∞ < ζ <∞ and −π
2
< ω <

π

2
, as the integral

Hf(ω, ζ) =
∞∫

0

f(r cosω, ζ − r sinω) dr, (2.58)

where dr is the measure on the half-line.

This transform acts as the integral of a function over all points laying on the half-line
starting at (0, ζ) towards the half-plane x > 0, and having a slope equal to tan(π − ω).
This half-line is noted Lω,ζ and is represented in Figure 2.4.

Note that if this transform is applied on a function defined in R
2, the reconstruction

that will be defined below will only recover the part of the function located in the half
space x > 0.

Through the following change of variables

x = r cosω and t = tanω, (2.59)
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the transform can also be defined in terms of the Dirac δ function as the transform

S(R+ × R) → S(R2)

f 7→ Hf,
(2.60)

by

Hf(t, ζ) =
√

1 + t2

∞∫

0

f(x, ζ − tx) dx

=
√

1 + t2
∫

R×R+

f(x, y) δ(y − ζ + tx) dxdy.

(2.61)

Remark 7. The half space transform is an intermediary step before defining the V-line
Radon transform to be done on the next chapter. It is defined for functions on R

+×R but
can also be written through the Radon transform on R

2 (cartesian or the (p, ϕ)- transform)
via the Heaviside step function H, restricting the definition domain to R

+ × R. In other
words, the half-space Radon transform also writes as

f̌(p, ϕ) =

∫

R2

f(x, y)H(x) δ(p− x cosϕ− y sinϕ) dxdy. (2.62)

2.4.2 The inverse problem

In order to obtain an inverse formula for (2.58), we still use Fourier techniques. An ana-
lytical inverse formula and then an inversion via a filtered back-projection procedure are
presented below.

2.4.2.a A first inversion formula

The Fourier slice theorem relates the 1D ζ-Fourier transform of H with a slice of the 2D
Fourier transform of f given by the equation x = ty.

Theorem 5 (Fourier slice theorem). Let f ∈ S(R+ × R), q ∈ R, then

FζHf(t, q) =
√

1 + t2F2f(qt, q), (2.63)

or equivalently, with the angular variable w:

cosωFζHf(ω, q) = F2f(q tanω, q). (2.64)

We are then able to recover the function f via the inverse formula
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f(x, y) = F−1
2

( |q|√
1 + t2

FζHf(t, q)
)
(qx, y). (2.65)

Proof. By means of Fubini’s theorem and definition (2.61), we write the ζ-Fourier transform
of H as

FζHf(t, q) =
∫

R

Hf(t, ζ)e−2πiqζ dζ

=
√
1 + t2

∫

R×R+

f(x, y)

∫

R

δ(y − ζ + tx)e−2πiqζ dζ dxdy,
(2.66)

from where the result claims by definition of the δ function as

FζHf(t, q) =
√
1 + t2

∫

R×R+

f(x, y)e−2πiq(tx+y) dxdy

=
√

1 + t2F2f(qt, q).

(2.67)

2.4.2.b Inversion via filtered back-projection

As the classical Radon transform on straight lines, the filtered back-projection inversion
on a half-space combines a back-projection operation and a filtering operation. It says
that the back-projection bω(x, y) at (x, y) for an angle ω assigns to (x, y) the value of the
projection recorded at ζ = y + x tanω where (x, y) was projected. That is to say, the
back-projection of (x, y) at ω is given by

bω(x, y) = Hf(ω, y + x tanω), (2.68)

and equivalently, with t = tanω as

bt(x, y) = Hf(t, y + tx). (2.69)

The filtering operation is applied to the ζ-Fourier transform of Hf(t, ζ). To obtain
the correct filter, the inversion formula of (2.61) can be derived from (2.65) and Fubini’s
theorem as

f(x, y) =

∞∫

−∞

∞∫

−∞

|q|FζHf(t, q)e2πiq(tx+y) dq
dt√
1 + t2

, (2.70)
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The inner integral can be identified as the inverse Fourier transform of the function q 7→
|q|FζHf(·, q) evaluated at y + xt

f(x, y) =

∞∫

−∞

F−1
(
|q|FζHf(t, q)

)
(t, y + xt)

dt√
1 + t2

. (2.71)

Equivalently, in terms of the angle ω, the last inversion formula writes:

f(x, y) =

π/2∫

−π/2

F−1(|q|FζHf)(ω, y + x tanω)
dω

cosω
. (2.72)

Using as before the ramp filter q 7→ |q|, the filtered projections are noted H∗f and
defined by

H∗f(t, ζ) = F−1 [|q|FζHf( t, q)](t, ζ). (2.73)

Then, one is able to write the back-projection of (x, y) related to filtered projections as

b̃t(x, y) = H∗f(t, y + xt). (2.74)

A filtered back-projection reconstruction of f(x, y) for all (x, y) is also expressed in the
following compact form:

Theorem 6. For all f ∈ S(R+ × R), one has:

f(x, y) =

∞∫

−∞

H∗f(t, y + xt)
dt√
1 + t2

. (2.75)

Remark 8. The last reconstruction can also be written with the angular parametrization
as

f(x, y) =

π/2∫

−π/2

H∗f(ω, y + x tanω)
dω

cosω
. (2.76)

2.5 Point Spread Function

The Point Spread Function (PSF) or the impulse response characterizes the output of an
integral transform. More precisely, for (x0, y0) ∈ R

2, the PSF is defined as the response of
the Radon transform applied to the Dirac function

f0(x, y) = δ(x− x0, y − y0). (2.77)

Due to the linearity of the transform, the PSF gives us an idea of the general response
for a given input function.
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Remark 9. Until now, the Radon transform has been defined for functions on S(R2) and
the Dirac delta function doesn’t belong to the mentioned space as requested. Nevertheless,
the Radon transform of distributions can also be defined in a week sense [18] by using
identity (2.21). In particular, the integral (2.8) when f is a Dirac function does exist in
terms of distributions.

As mentioned before, the PSF characterizes a linear transform and then its support
suggests us the shape of a corresponding output image. In this section, PSF are computed
for (x0, y0) ∈ R

2 (with x0 > 0) for the three Radon transforms described above. The
corresponding PSF supports are plotted in Figure 2.5, correspond to a case where (x0, y0) =
(1, 1).
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(a) (p, ϕ)-Radon transform.
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Figure 2.5: Point Spread Function supports related to the three different Radon transforms
for an impulse function located at (1, 1).

Regarding the (p, ϕ)-Radon transform, the PSF support has a sinusoidal shape. Indeed,
from (2.8), the PSF at (x0, y0), denoted f̌0, is given by

f̌0(p, ϕ) = δ(p− x0 cosϕ− y0 sinϕ), (2.78)

which has a sinusoidal shape support in the Radon space (p, ϕ), given by the equation

p = x0 cosϕ+ y0 sinϕ. (2.79)

This output image is called a sinogram, and is represented in Figure 2.5a. Note that
the ϕ axis of sinogram is located vertically following most of the literature.

In the case of the cartesian transform, by using (2.44), the PSF related to the point
object f0 writes as

f̌0(u, v) =
√

1 + v2δ(u− x0 − vy0). (2.80)

This PSF has a rectilinear shape support of equation u = x0 + vy0 and is called a
linogram (see the case (x0, y0) in Figure 2.5b).
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Concerning the half-space transform, the PSF support related to this transform is
obtained from expression (2.61) either in terms of t or ω:

Hf0(t, ζ) =
√
1 + t2 δ(y0 − ζ + tx0), (2.81)

Hf0(ω, ζ) =
√
1 + tan2 ω δ(y0 − ζ + x0 tanω). (2.82)

If x0 > 0, the first support is a line (as expected) having a slope t. For the second
expression, the support is given by the equation

ζ = y0 + x0 tanω, (2.83)

and is represented in Figure 2.5c.

2.6 Some simulations

The Shepp-Logan phantom [32], that represents a human head, is commonly used to test
reconstruction algorithms. It is illustrated in figure 2.6 and it will be used to expose
reconstructions by means of the filtered back-projection method. It has dimensions of
240×240 pixels where each pixel value varies between 0 and 1 representing a target feature
of the object.

Simulations are carried out with the Radon transform in (p, ϕ)-coordinates, in cartesian
coordinates and finally by using the half-space Radon transform. Reconstructions are per-
formed with the filtered back-projection formulas given in (2.27), (2.57), (2.76) respectively.
Correlations between the original Shepp-Logan phantom and its different reconstructions
will be computed to give a numerical value of their quality. Simulations are implemented
in the R-language [25].
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Figure 2.6: Test object, the Shepp-Logan phantom.

Before presenting the corresponding results, the numerical filter used with the ramp
function and the discrete formulation of the Radon transform are first described.
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Figure 2.7: Cosine related window functions for different values of n. As n increases, the
effect of the filter does the same and may over-smooth reconstructions.

2.6.1 Window functions

A so-called window function or apodization function q 7→ w(q) is applied to the ramp filter
q 7→ |q| in numerical reconstructions to control high frequencies due to the divergence of
the ramp filter and to attenuate noise in reconstructions.

In such case, filtered projections written in (2.26), (2.56) and (2.73) for the (p, ϕ)-Radon,
cartesian and half space Radon transforms are rewritten to be numerically implemented
respectively in the form

f̌∗(p, ϕ) = F−1
1

(
|q|w(q)F f̌ϕ(q)

)
(p), (2.84)

f̌∗(u, v) = F−1
u

(
|µ|w(µ)Fuf̌

)
(u, v), (2.85)

H∗f(ω, ζ) = F−1
(
|q|w(q)Ĥf

)
(ω, ζ). (2.86)

Cosine functions are widely used as window functions:

w(q) = cosn(πq). (2.87)

The behaviour of this function according to n is shown in Figure 2.7. As the value of
n increases, reconstructions are smoother due to the apodization reducing for example the
presence of noise. Important details in object reconstructions may also disappear if n is
too large so the choice of n depends on the imaging configuration and expected results.
In other words, it is a compromise between regularity and resolution. For the numerical
simulations presented in this section, in the absence of noise, the value n = 1 will be chosen.
Other window functions are presented in literature such as Hann, Hamming, Shepp Logan
(see [12] for more details about window functions).
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2.6.2 The discrete formulation

Up to now, the direct and inverse problem have been worked out on a continuous frame-
work, that is, the object function is a continuous function defined on R

2 and the related
projections are also continuous functions. However, imaging systems collects only a finite
number of discrete projections that will consist on the data. Therefore, reconstruction
algorithms recover the input function as a discrete and finite object defined on some grid.
Discrete versions of the direct and inverse problem must be derived.

2.6.2.a Sampling details

In simulation works, test objects as the Shepp-Logan phantom are known on a finite and
discrete array of size N ×M represented by the set

{f(xi, yj), 0 ≤ i < M, 0 ≤ j < N}. (2.88)

Each (xi, yj) represents a pixel position in the object domain having dimensions ∆x and
∆y. In the case of the Shepp-Logan phantom, we have N =M = 240 and ∆x = ∆y = 1.

Image reconstructions will also be a discrete array of same dimensions as the input
object.

The image projection, discrete as well, will be an array which size depends on the
number of detectors positions and the number of rotations made. Consequently, the di-
rect problem modelled by equations (2.10) for the (p, ϕ)-Radon transform, (2.45) for the
cartesian case and (2.58) for the half-line transform are no longer integrals but finite sums
performing numerical integrations. In presents simulations, the trapezoidal rule is used to
implement those integrals with an uniform sampling step ∆r. Discretization parameters
are given in what follows.

Integrals (2.10), (2.45) and (2.58) for the presented transforms request sampled values
that may not coincide with values on the grid (2.88). Interpolation of the discrete object
f is then needed. The most common methods to face this problem are, from the less to
the most computationally expensive, the nearest neighbour, linear and sinc interpolation.
Details and comparisons of each approach applied to the Radon transform can be found in
[33]. In present simulations, linear interpolation is chosen due to the fact that the Shepp
Logan phantom does not present strong sharp edges.

The inverse problem is solved with the filtered back-projection procedure. The method
also involves discrete Fourier transforms, implemented with the fast Fourier transform
algorithm. Back-projections need to be performed from the discrete filtered data by means
of the adjoint transform appearing in inverse formulas (2.27), (2.57), (2.76) respectively. As
in the direct formulation, these integrals are numerically computed through the trapezoidal
rule. They also need sampled values that are obtained by performing linear interpolation
on discrete filtered projections.
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2.6.2.b Setup configurations

In the context of computed tomography, particularly in absorption tomography, as ex-
plained in section 2.1, a target object is radiated from an external source of some kind of
radiation, e.g., X-rays. The radiation interacts with the object and it absorbs some of the
radiation. The remaining radiation is collected on detectors placed on the other side of the
source with respect to the object.

The geometrical parameters are adapted for each Radon transform. Two parameters
should be detailed, namely one describing the 1D detector sampling and the second de-
scribing angular variations of radiations. They are chosen for each transform as follows.

Regarding the (p, ϕ)-Radon transform, relative rotations between the object and the
system can be made. Thus, every pixel in the input object is radiated equally for all
sampled values of the ϕ angle with an angular step ∆ϕ = 0.01 radians. Detectors can
be placed perpendicular to radiations and then p is sampled with a step ∆p = 1. 340
samples of p are sufficient to detect radiation crossing the maximal cross section of the

object when ϕ =
π

4
. The object is centred at the origin and then −120 < xi, yi ≤ 120

while 170 < p ≤ 170. The integration step ∆r is set equal to 1.

In the case of the cartesian Radon transform, the detectors are always parallel to the
x-axis (no rotations are made). Radiation directions are described by the tangent of the
angle or the line slope and therefore, to compensate the rotationless process, detectors are
sampled with −512 < u ≤ 512 and ∆u = 1. The object is also centered at the origin and
we have v = tanϕ sampled with 314 values within [−5, 5]. ∆r is also set to 1.

Finally, as the half-space transform only integrates the function over the plane x > 0,
the object is placed obeying 0 < xi ≤ 240 and −120 < yi ≤ 120. As in the cartesian
transform, detectors are not rotating. They are parallel to the y-axis and sampled by ζ
suche that −512 < ζ ≤ 512 with ∆ζ = 1. Radiation directions are given by ω sampled in
]− π

2 ,
π
2 [ with ∆ω = 0.01 radians.

2.6.3 Numerical results

Graphical reconstructions of the Shepp-Logan phantom as well as projections are showed
in figures 2.8, 2.9 and 2.10. Correlations between input and output objects together with
a summary of sampling parameters are presented in table 2.1.

Clearly, better results in terms of correlation are obtained through the (p, ϕ)-Radon
transform, then through the cartesian version and lastly through the half-line transform.
This is clearly due to the rotation by ϕ of detectors for the first one. Rotations allow to
irradiate in all sampled directions the object and then back-project the filtered data. It
explains the homogeneous quality in reconstruction for the first transform.

For the second one, some artifacts can be observed on the top and bottom of the
reconstruction. It is due to the the lack of data in those sections related to large angle
values and thus limited by the length of detectors placed horizontally.
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(c) Reconstruction.

Figure 2.8: The original Radon transform, reconstruction via the filtered back-projection
procedure.
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(c) Reconstruction.

Figure 2.9: The cartesian Radon transform, reconstruction via filtered back-projections.
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(a) Half-line Radon space.

−1.5 −0.5 0.0 0.5 1.0 1.5

−
4
0
0

−
2
0
0

0
2
0
0

4
0
0

ω

ζ

−2

−1

0

1

2

(b) Filtered projections.

0 50 100 150 200

−
1
0
0

−
5
0

0
5
0

1
0
0

x

y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(c) Reconstruction.

Figure 2.10: The half-line Radon transform, reconstruction via filtered back-projections.
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Table 2.1: Simulations parameters for the Shepp Logan phantom reconstruction.

Transform rotation steps detector sampling correlation

(p, ϕ)-Radon 314 values, 340 values, 0.99
ϕ ∈ [0, π[ p ∈]− 169, 170]

(u, v)-cartesian 314 values, 1024 values, 0.92
v ∈ [−5, 5] u ∈]− 512, 512]

(ω, ζ)-half line 314 values, 1024 values, 0.90
ω ∈]− π

2 ,
π
2 [ ζ ∈]− 512, 512]

The half-space Radon transform suffers from the same limitations than the cartesian
one. Moreover, as it only allows radiation towards one side, in this case from right to left
to the y−axis, a strong artifact on the right side of the reconstruction is visible, as we have
less data on that region related to large angles.

Note that computing time is also more important in the cartesian and half-space ver-
sions due to the size of detectors, leading to larger projection arrays to compute, to filter
and to back-project.
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Backward Compton Scattering Tomography: 2D

framework

In this chapter, a simplified two-dimensional preliminary version of the proposed Compton
Scattering Tomography configuration is mathematically described. It is based on the V-
line Radon transform which models the scattered photon flux density. The related inverse
problem is solved by using a filtered back-projection procedure. Numerical simulations on
two phantoms representative of flattened heritage objects will be presented in chapter 4.

In the presented 2D framework, note that electrons are considered to be free and at rest.
In other words, objects are made of a single material with different electronic densities.
In this case, the Doppler broadening and binding effect are not considered in the direct
problem and then leading to a bijective relationship between the scattering angle and the
related energy-loss. Doppler and binding phenomena will be taken into account in the 3D
framework presented in chapters 5 and 6.

The work presented in this chapter has been partly published in [15].

3.1 The direct problem

The V-line Radon transform is defined in this first section. Although it has been already
exploited in emission configurations in [21, 34], it is adapted and applied here to an imaging
configuration based on transmission tomography, that is an external scanning system with
a parallel monochromatic source and limited energy resolved detectors.

In the direct problem, the scattered photon flux density is studied, that is the number
of photons recorded by a detector per unit time and at a given energy range. Physical
factors playing a role in a real scenario, such as the Klein-Nishina cross-section will have
to be discussed.

43
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3.1.1 The V-line Radon transform

The V-line Radon transform and its inverse formula were first introduced in [21]. Exten-
sions and applications of the transform in emission imaging are discussed in [34]. More
properties of the transform written in cartesian coordinates are developed in [35].

Briefly speaking, it is a Radon transform defined on a pair of half-lines of the 2D
plane having a V shape. This V-line has a fixed axis direction, parallel to the horizontal
axis and its vertex is located on the vertical y-axis. Therefore, it has two geometrical

parameters, namely, the opening angle ω, varying in ]0,
π

2
[ and the y-coordinate of the

vertex ζ, belonging to R. A graphical representation of these two parameters is visible on
Figure 3.1.
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Figure 3.1: Geometrical representation of the V-line Radon transform.

Definition 6. The V-line Radon transform is a linear mapping

V : S(R+ × R) → S(]0, π
2
[×R)

f 7→ Vf,
(3.1)

such that

Vf(ω, ζ) =
∞∫

0

[
f(r cosω, ζ − r sinω) + f(r cosω, ζ + r sinω)

] dr
r
, (3.2)

where dr is the measure on the V-line.
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The V-line Radon transform is well adapted in the context of Compton scattering
tomography. Indeed, it can be interpreted as the integration of a function, representing an
electron density distribution, over all locations of a given object where photons, scattered
by the same angle, have the same energy.

Note that the factor
1

r
in (3.2) is added because of the photometric law or the difference

in solid angle from the scattering site to the detecting site in CST (see below).

Remark 10. This transform can be seen as the sum of two half-space Radon transforms,
already discussed in chapter 2, with a modified measure on the half-line and with respective
parameters (ω, ζ) and (−ω, ζ).

An equivalent definition for the V-line Radon transform will be useful. It comes from
the change of variables

t = tanω, x = r cosω. (3.3)

The V-line transform then becomes a mapping

V : S(R+ × R) → S(R+ × R), (3.4)

such that

Vf(t, ζ) =
∞∫

0

[
f(x, ζ − xt) + f(x, ζ + xt)

] dx
x
. (3.5)

3.1.2 Point Spread Function and kernel function

As pointed out in chapter 2, the Point Spread Function, that is the image of an impulse
function, characterizes a transform due to its linearity property. It can easily be obtained
after computing the kernel of the integral transform, that is the function k such that

Vf(ω, ζ) =
∫

R+×R

f(x, y)k(ω, ζ|x, y) dxdy, (3.6)

Following [21], we can express the kernel function k with Dirac functions and Heaviside
step function H as

k(ω, ζ|x, y) =
∞∫

0

[
δ(ζ + r sinω − y)H(y − ζ) + δ(ζ − r sinω − y)H(ζ − y)

]

δ(r cosω − x)
dr

r
.

(3.7)
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By making the change of variables u = r sinω, the kernel k writes as

k(ω, ζ|x, y) =
∞∫

0

1

u

[
δ(−ζ + y − u)H(y − ζ) + δ(ζ − y − u)H(−y + ζ)

]

× δ(u cotω − x) du,

(3.8)

and then thanks to the relationship

x tanω = |ζ − y|, (3.9)

we have an expression of the kernel after performing u-integration

k(ω, ζ|x, y) = 1

ζ − y
δ
[
(ζ − y) cotω − x

]
H(y − ζ)

+
1

−ζ + y
δ
[
(−ζ + y) cotω − x

]
H(−y + ζ).

(3.10)

Due to the relationship (3.9), to 0 < ω <
π

2
and to the scaling property of the delta

function, the kernel is finally expressed as

k(ω, ζ|x, y) = sinω

|ζ − y|δ
(
|ζ − y| cosω − x sinω

)

=
cosω

x
δ
(
|ζ − y| cosω − x sinω

)
.

(3.11)

The Point Spread Function at P0 = (x0, y0) related to the V-line transform is then
derived by writing

Vf0(ω, ζ) =
∫

R+×R

k(ω, ζ|x, y)δ(x− x0)δ(y − y0) dxdy

= k(ω, ζ|x0, y0),
(3.12)

where, from (3.11) we have the expression of the PSF as

Vf0(ω, ζ) =
cosω

x0
δ
(
|ζ − y0| cosω − x0 sinω

)
. (3.13)

This PSF has an arctangent support in the Radon space (ω, ζ) given by the equation

ω = arctan
|ζ − y0|
x0

. (3.14)

Figure 3.2 shows the support of PSF related to the V-line transform for an impulse
input function at (20, 0). It gives an idea of the image shape in the Radon space of an
input function obtained as a decomposition of delta functions.
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Figure 3.2: Point Spread Function related to the V-line transform for an impulse function
located at (20, 0).

3.1.3 An image formation model in CST

The V-line Radon transform defined above was addressed in a continuous framework.
However, the image formation processes has to considerer a realistic imaging configuration
with radiation detectors having a finite spectral and spatial resolution. In this section, we
give a discrete model related to the 2D Compton scattering tomography.

The experimental configuration is a backward scattering configuration and is visible on

figure 3.3. Thus, the scattering angle lies in ]
π

2
, π]. For sake of simplicity, we call from now

on ω̄ = π − ω the supplementary angle of ω, therefore, we will have 0 < ω̄ <
π

2
. Also on

this figure, it can be seen that the detecting sites Dζ are placed over the Oy-axis, centred
at a position (0, ζ) and with a length equal to τ . Incident photons are coming parallel to
the 0x-axis towards the positive direction having a constant incident energy E0.

3.1.3.a Klein-Nishina differential cross-section

Klein and Nishina in [20] introduced an expression for the differential cross-section for
Compton scattering of photons by a free electron at rest. It describes the angular distribu-
tion of scattered photons as a function of the scattering angle ω returning the probability
of a photon to be scattered into this specific direction. It is equivalently defined as the
normalisation of the scattered photon flux density by both the solid angle of the detector
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Figure 3.3: A single scattering event from M detected at Dζ with a solid angle dΩ.

and the incident photon flux density [1].

Assuming that the azimuthal angle is uniformly distributed in the interval [0, 2π[ (no
polarisation), the Klein-Nishina differential cross-section (or DCS) in a three dimensional
medium is given by

σ(ω) =
1

2
r2eP (ω), (3.15)

where re is the classical electron radius and P (ω) is the Klein-Nishina Compton scattering
probability given by

P (ω) =

(
Eω
E0

)2(Eω
E0

+
E0

Eω
− sin2 ω

)
. (3.16)

The factor
1

2
r2e comes from the diametrical transversal area of an electron πr2e and the

uniformity of the azimuthal angle
1

2π
. We also recall that Eω the scattered energy is given

by the Compton equation (1.1).

The Klein-Nishina differential cross-section in a two dimensional medium is a function
giving the probability of a photon to be scattered by ω limited to a bi-dimensional scatter
plane. It will not incorporate the uniformity of the azimuthal angle but the factor 1

2
indicating the same probability for a photon to be scattered on one or the other branch of
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a two dimensional cone, i.e., a V-line [11]. Therefore, it is given by

σ2D(ω) =
1

2
πr2eP (ω). (3.17)

3.1.3.b Scattered photon flux angular density

Denote dI(ω, ζ) the recorded scattered photon flux density, that is the number of photons
of energy laying in ωdω recorded per unit time at Dζ .

If a scattering site M is fixed, let’s first write this density only for photons scattered at
M, and call it dI(ω, ζ|M). It incorporates the following parameters:

− I0: the incident photon flux density before the scattering event.

− σ2D(ω): the 2D Klein-Nishina differential cross-section at an angle ω.

− f(M): the electron density at M.

− Ω(M,Dζ): the solid angle from M to Dζ .

− dω: the elementary variation of ω.

− dM: the elementary length around M over the V-line.

The solid angle Ω(M,Dζ) can be seen from Fig. 3.3 to be

Ω(M,Dζ) = 2 arctan
( τ
2r

cos ω̄
)
, (3.18)

where τ is the length of the detecting element located at D and r the Euclidean distance

from M to D. If τ is small enough, then Ω(M,Dζ) can be approximated by
τ

r
cos ω̄.

Therefore, the scattered photon flux density at Dζ , for a fixed site M, is given by

dI(ω, ζ|M) =
τ

r
I0 cos ω̄ σ2D(ω) f(M) dω dM. (3.19)

From the last equation, we can write the scattered photon flux density dI(ω, ζ) recorded
at Dζ . It is the integral of (3.19) over all scattering sites laying on the V-line that starts
at Dζ towards the object with opening angle ω, called Vω,ζ and represented in Figure 3.1.
This density is hence given by the integral

dI(ω, ζ) =

∫

M∈Vω,ζ

dI(ω, ζ|M), (3.20)

that can be expressed with the V-line Radon transform as

dI(ω, ζ) = τI0 cos ω̄ σ2D(ω)Vf(ω̄, ζ) dω. (3.21)
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3.1.3.c Scattered photon flux energy density

It is convenient to express the last angular density as a energy density. This is due to the
fact that when dealing with limited energy resolved detectors, we need to integrate the
output density into a given energy channel. A density in terms of the scattered energy will
be more practical to handle when performing this integration numerically.

Th angular density in (3.21) can also be expressed through a change of variables from
ω to Eω given by the Compton equation in (1.1) as

dI(Eω, ζ) = τI0 cos ω̄ σ2D(ω)Vf(ω̄, ζ) dω

dEω
dEω, (3.22)

where

dω

dEω
(Eω) =

mec
2

Eω

(
1− cos2 ω

)− 1

2

=
mec

2

Eω

(
1− (1−mec

2(
1

Eω
− 1

E0
))2
)− 1

2

.

(3.23)

3.1.3.d Limited spectral resolved images

A realistic simulation of a Compton scattering modality requires to consider a discrete
energy-resolved detector. Let ∆E be the energy resolution of the detector. Hence, for a
fixed detector, we will have a limited number of energy channels recording photons laying
on a specific energy interval.

Let Ci be the energy channel defined for an energy interval Ci = [Ei, Ei + ∆E]. We
are thus interested in I(Ci, ζ), the photon counting for an energy channel Ci at a detecting
site Dζ per unit time, expressed as the integral

I(Ci, ζ) =

∫

Eω∈Ci

dI(Eω, ζ). (3.24)

Note that an integration over an energy channel is equivalent to an integration over
an angular channel with the correct change of variables and the corresponding boundaries.
The boundaries of the energy channel can be equivalently defined in terms of the scattering
angle by the Compton equation. Actually, the V-line transform returns a function of the
scattering angle from where we get the angular density by (3.21) and then the energy
density by (3.22). The boundaries of the channel are set first in terms of energy and then
in terms of angle as needed to confine the angular projections.

The direct problem can be then finally modeled by the angular density as

I(Ci, ζ) = τI0

∫

ω∈Ci

cos ω̄ σ2D(ω)Vf(ω̄, ζ) dω, (3.25)
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or equivalently by the energy density as

I(Ci, ζ) = τI0

∫

Eω∈Ci

cos ω̄ σ2D(ω)Vf(ω̄, ζ) dω

dEω
dEω, (3.26)

where Ci is an energy or angular interval according to the case.

3.2 The inverse problem

We now need an inverse formula for the V-line Radon transform defined in (3.2) to write
down a reconstruction process. A filtered back-projection procedure has been built to this
aim and published in [21]. It is presented in this section.

3.2.1 A first inverse formula

In order to derive a first inverse formula, it is more convenient to work with the (t, ζ) defi-
nition of the V-line transform, given in (3.5). The corresponding Fourier Slice Theorem is
given below, linking the ζ-Fourier transform of the V-transform with 2D Fourier transforms
of the input function f or equivalently with its 2D coupled cosine-Fourier transform.

Theorem 7 (Fourier Slice Theorem). Let f ∈ S(R+ ×R), q ∈ R and let ḟ be the function

ḟ : (x, y) 7→ 1

x
f(x, y), (3.27)

then
FζVf(t, q) = F2ḟ(qt, q) + F2ḟ(−qt, q), (3.28)

or equivalently
FζVf(t, q) = 2F(cos,y)ḟ(qt, q), (3.29)

where F(cos,y) represents, for the function ḟ , a 2D coupled cosine and Fourier transform
related to variables x and y respectively

F(cos,y)ḟ(t, q) = Fcos

[
Fy(x, q)

]
(t, q)

=

∫

R2

ḟ(x, y) cos(2πtx)e−2πiqy dxdy. (3.30)

Proof. As for the half-space transform, we start by writing the ζ-Fourier transform of Vf
and by means of Fubuni’s theorem we get

FζVf(t, q) =
∫

R×R+

ḟ(x, y)

∫

R

δ(y − ζ − tx)e−2πiqζ dζ dxdy

+

∫

R×R+

ḟ(x, y)

∫

R

δ(y − ζ + tx)e−2πiqζ dζ dxdy.

(3.31)
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By definition of the delta function, the 2D Fourier transform appears as

FζVf(t, q) =
∫

R×R+

ḟ(x, y)e−2πiq(tx+y) dxdy +

∫

R×R+

ḟ(x, y)e−2πiq(−tx+y) dxdy

= F2ḟ(qt, q) + F2ḟ(−qt, q).
(3.32)

The proof of (3.29) is derived directly from (3.28). Actually, for a given function g and
a given frequency ξ ∈ R, we have the identity Fg(ξ) + Fg(−ξ) = 2Fcos(ξ), by developing
(3.28) as

FζVf(t, q) =
∞∫

0

Fyḟ(x, q)
(
e−2πiqxt + e2πiqxt

)
dx

= 2

∞∫

0

Fyḟ(x, q) cos(2πqxt) dx,

(3.33)

where the result stands by definition of the cosine transform.

The integral equation (3.33), that is the cosine transform of the function x 7→ 1

x
f̂(x, ·)

evaluated at qt, can be solved with the related inverse transform and its scaling property.
Hence, we obtain:

Fyḟ(x, q) =
1

2
|q|

∞∫

0

FζVf(t, q) cos(2πqxt) dt. (3.34)

Finally, f(x, y) can be reconstructed from (3.34) for all points (x, y) ∈ R
+ ×R through

the y-inverse Fourier transform giving the following corollary.

Corollary 3. An inverse formula for the V-line Radon transform is given for all f ∈
S(R+ × R) and for all (x, y) ∈ R

+ × R by

f(x, y) =
1

2
x

∞∫

0

F−1
y

[
|q|FζVf(t, q) cos(2πqxt)

]
dt. (3.35)

3.2.2 A filtered back-projection inversion

The ramp filter in the Fourier domain appearing in the previous formula suggests to build
as before a filtered back-projection reconstruction. This filtered back-projection inversion
on V-lines was obtained in [21]. It combines a back-projection operation and a filtering

operation. Lets first define X = S(R+ ×R) and Y = S(]0, π
2
[×R) with their respective L2

inner products (·, ·)X and (·, ·)Y and the relative adjoint transform.
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Definition 7. The adjoint transform or the back-projection operator, is then defined as
the unique operator

V† : Y → X

g 7→ V†g,
(3.36)

verifying

∀f ∈ X, ∀g ∈ Y, (Vf, g)Y = (f,V†g)X . (3.37)

This operator performs back-projections for all ω ∈]0, π
2
[, that is, it acts on a function

g ∈ Y as

V†g(x, y) =
1

x

π/2∫

0

[
g(ω, y + x tanω) + g(ω, y − x tanω)

]
dω. (3.38)

A back-projection inversion formula for (3.2) can then be written with the adequate
filters derived from the inverse formula (3.35). This results is expressed below.

Theorem 8. Let the filtered projections by the ramp filter be defined as the function

V∗f(t, ζ) = F−1 [|q|FζVf(t, q)] (t, ζ), (3.39)

where t can be replaced by ω if the angular variable is considered.

Then, a filtered back-projection inversion for the V-line Radon transform can be per-
formed via the expression

f(x, y) =
1

4
x

π/2∫

0

[V∗f(ω, y + x tanω) + V∗f(ω, y − x tanω)]
dω

cos2 ω
, (3.40)

for all (x, y) ∈ R
+ × R.

Proof. Starting from the inversion formula (3.35) through Fubini’s theorem we have

f(x, y) =
1

2
x

∞∫

0

∞∫

−∞

|q|FζVf(t, q) cos(2πqxt) e2πiqy dq dt, (3.41)

and by developing the cosine function

f(x, y) =
1

4
x

∞∫

0

dt
[ ∞∫

−∞

|q|FζVf(t, q)e2πiq(y+xt) dq +
∞∫

−∞

|q|FζVf(t, q)e2πiq(y−xt) dq
]
, (3.42)
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where inner integrals are inverse Fourier transforms of the function q 7→ |q|FζVf(·, q), and
then

f(x, y) =
1

4
x

∞∫

0

dt
[
F−1(|q|FζVf)(t, y + xt) + F−1(|q|FζVf)(t, y − xt)

]
. (3.43)

This last expression can be rewritten in terms of filtered projections defined in (3.39)
and using the angular variable ω as

f(x, y) =
1

4
x

π/2∫

0

[V∗f(ω, y + x tanω) + V∗f(ω, y − x tanω)]
dω

cos2 ω
. (3.44)

Note that this formula can also be expressed with the adjoint transform and filtered
projections by

f(x, y) =
1

4
x2 V†

[ 1

cos2 ω
V∗f(ω, ζ)

]
(x, y). (3.45)

3.2.3 Reconstruction from an infinitely energy resolved image

The previous reconstruction by a back-projection procedure requests to perform an angular
summation of the filtered projections with respect to the opening angle ω of the V-line. If
the output of the system is infinitely resolved in energy, the resulting spectral image is a
density in the form

dI

dE
(E, ζ). (3.46)

This density in terms of energy needs then to be adapted to a density in terms of
angle before the filtering and back-projection process. Moreover, the factors related to the
2D Klein-Nishina differential cross section and the solid angle not included in the V-line
transform must also be corrected to this output density.

To convert this energy density to an angular one, we apply a change of variables given
by the Compton formula to have an angular density in the form

dI

dE
(E, ζ)

dE

dω
dω, (3.47)

where

dE

dω
(ω) = − E2

0

mec2
sinω

(
1 +

E0

mec2
(1− cosω)

)−2

= − 1

mec2
sinωE2

ω.

(3.48)
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Finally, a correcting factor must be applied to (3.47) by doing

1

τI0 cos ω̄ σ2D(ω)

dI

dE
(E, ζ)

dE

dω
dω. (3.49)

The expression in (3.49) is now an angular density, we can apply to it the filtering and
back-projections process detailed previously in this section to obtain an object reconstruc-
tion.

Remark 11. In the case of dealing with a realistic limited energy resolved detector, the
output dataset {I(Ci, ζ)} represent actually a summation of photons arriving in the channel
defined by Ci, that is, the discrete spectral image. However, our reconstruction procedure

is valid from a spectral density
dI

dE
that will be converted to an angular one as explained

in the previous section 3.2.3. It remains that we need then to estimate an energy density
from the data {I(Ci, ζ)} numerically. This will be elaborated on in the next chapter 4 that
treats the problem numerically.

3.3 Conclusion

A mathematical model for a backward Compton Scattering Tomography configuration has
been presented in this chapter. The direct problem, or the image formation process, is
modeled by the V-line Radon transform which allows to compute the scattered photon
flux density for given imaging parameters, namely the incident energy and the spatial and
spectral resolution of detectors. The inverse problem is then solved by a filtered back-
projection algorithm related to the V-line Radon transform.

The image formation process should also take into account the chemical composition of
the input object. Electrons are considered here to be free and at rest without taking into
account the Doppler broadening and binding effects in the direct problem. These effects
depend on the different materials that can be present in a heterogeneous object and then
the relationship between scattered energy and scattering angle is no longer dominated by
the Compton equation (1.1). This additional factors will be treated in the 3D framework,
in chapters 5 and 6. Before that, chapter 4 is devoted to some numerical simulations in
this 2D context.
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4

Numerical simulations for the 2D framework

This chapter presents numerical simulations for the image formation process as well as for
the inverse problem or object reconstruction related to the 2D backward Compton scat-
tering tomography. As explained in the last chapter, simulations will be performed under

a back-scattering setup, i.e., data collected with a scattering angle comprised between
π

2
and π and following the setup detailed in Chapter 3. Spatial and spectral sampling details,
as well as the numerical implementation of the transforms are given.

The discrete version of the V-line Radon transform and the corresponding photon flux
density computation is presented for the direct problem, as well as the discrete object
reconstruction for two test stratigraphical samples. Different setup parameters are taken
into account to evaluate their influence in reconstructions.

4.1 The discrete formulation, sampling details

The V-line transform (3.2) integrates over the V-line a regular input function f . For
simulation purposes, we deal with discrete objects where we know their value on a finite
discrete grid, i.e., an array of M ×N values as

{f(xi, yj), 0 ≤ i < M, 0 ≤ j < N}, (4.1)

where each (xi, yj) represents the coordinates of a sampled value or a pixel of the object
of area ∆x∆y. Here ∆x = ∆y = 2 µm.

The V-line transform represents the projections of the input object in the (ω, ζ) domain,
these projections are available only from some sampling of both the opening angle and the
detector site. If uniform sampling is considered, the projections we dispose belong to the
set

{Vf(ωk, ζl), 0 ≤ k < K, 0 ≤ l < L}, (4.2)

57
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whereK is the number of angular samples and L the number of detecting sites. In presented
simulations, sampling rates are chosen to be ∆ζ = 2 µm for the spatial resolution and
∆ω = 0.03 radians regarding the angular resolved image formation simulations.

The simulation of spectral images correspondong to finite energy resolution must be
obtained from non-uniform angular projections corresponding to the uniform energy sam-
pling. Obtained dataset is then

{I(Ci, ζl), 0 ≤ i < K ′, 0 ≤ l < L}, (4.3)

where K ′ is the number of energy channels.

4.1.1 Discrete image formation

To compute the data from an input object, integral (3.2) must be performed numerically
to obtain a projection Vf(ωk, ζl). The trapezoidal rule is employed and then the V-line
transform (3.2) on a point (ωk, ζl) is expressed as the sum

Vf(ωk, ζl) =
∆r

2

R−2∑

i=0

(fikl + f(i+1)kl), (4.4)

where {ri, 0 ≤ r < R} is a discretization of the V-line onto R points with an uniform step
∆r, and

fikl =
1

ri

[
f(ri cosωk, ζl + ri sinωk) + f(ri cosωk, ζl − ri sinωk)

]
(4.5)

is a projection for each (ri, ωk, ζl).

The values f(ri cosωk, ζl ± ri sinωk) requested in sum (4.4) must be obtained from the
cartesian sampling of the input object in (4.1). Bilinear interpolation of the discrete object
f is used in that purpose as mostly done for the Radon transform due to its good com-
promise between computational complexity and quality. A nearest neighbour interpolation
can be used as well being less computationally expensive while sinc interpolation allows
better reconstructions being more expensive related the original Radon transform, this as
proven in [33].

Photon flux density. By means of the discrete V-line transform in (4.4), we will write
down the discrete version of the scattered photon flux density given in (3.26) for detectors
resolved both in energy and space. In order to do that, we need to considerer the data
we have {Vf(ω̄k, ζl)} as in (4.2) recalling that ω̄k is the supplementary angle of ωk. These
data can be uniformly sampled in space on ζ and randomly in angles on ω to produce
an angular resolved image. Detector pixels are resolved in energy and not in angle, then
for a given detector pixel, an integration over each energy channel with respect to Eω, as
explained in section 3.1.3.c, must be done. As the angular spread corresponding to each
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energy channel has a large dynamic we chose to have an adaptative sampling of ω, setting
∆ω in each energy channel to have the same number of ω samples in each energy channel.

For a single detector site, i.e., at given ζl and a given channel Ci, the discrete version
of (3.25) reads by the trapezoidal rule as

I(Ci, ζl) =
τ

2
I0∆ω

∑

ω: Eωk
∈Ci

Vfkl, (4.6)

where
Vfkl = cos ω̄k σ

2D(ωk)Vf(ω̄k, ζl) + cos ω̄k+1 σ
2D(ωk+1)Vf(ω̄k+1, ζl). (4.7)

The boundaries values of the interval Ci may not coincide with a value ωk of the angular
sampling due to the non-linearity of the Compton equation and then an interpolation
method would be needed to obtain these values. To avoid interpolations, for each energy
channel we performed a fixed number of angular projections then each boundary value
of Ci will coincide with a sampled value ωk. The different energy channels have indeed
a different angular width therefore for each energy channel, a different ∆ω sampling is
performed.

4.1.2 Discrete filtered back-projection

The input object will be reconstructed over a rectangular grid of the same dimensions, i.e.,
the reconstruction will be the set

{f(xi, yj), 0 ≤ i < M, 0 ≤ j < N}. (4.8)

Using the trapezoidal rule to perform the back-projection integral or the adjoint trans-
form (3.38), the back-projection operator, applied to some data {g(ωk, ζl)} sampled angu-
larly with a constant step, written on its discrete version reads

V†g(xi, yj) = ∆ω
M−1∑

k=0

[
g(ωk, yj + xi tanωk) + g(ωk, yj − xi tanωk)

]
, (4.9)

where ∆ω =
π

2K
is the angular sampling rate.

This discrete adjoint transform acts on a discrete angular sampling {g(ωk, ζl)}. To
recover the object, we need to apply first the ramp filter q 7→ |q| in the Fourier space of
projections Vf , x2 in the reconstruction space and 1

cos2 ω
in the image space as explained

in section 3.2.2.
Linear interpolation from the dataset {g(ωk, ζl)} is applied to compute the values

g(ωk, yj ± xi tanωk) requested in the sum (4.9), nearest neighbour interpolation can be
used as well. Comparisons of different interpolation methods are studied in [33] for the
original Radon transform.
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A discrete version of reconstruction formula (3.40) is then given, for all (xi, yj) on the
considered rectangular grid by

f(xi, yj) =
1

4
xi V†

[ 1

cos2 ωk
V∗f(ωk, ζl)

]
(xi, yj), (4.10)

through the discrete version of V† in (4.9).
V∗f(ωk, ζl) stands for the discrete filtered projections evaluated by means of (3.39).

Filtered of projections in the Fourier domain is done by applying the fast Fourier transform
implemented in the R [25] language.

From the spectral image to angular density. Last reconstruction procedure works
acting on an output photon flux angular density, uniformly sampled in the angular variable.
However, the simulated data expressed as the spectral image correspond to the summation
over finite energy channels of the photon flux density.

To obtain an estimation of the angular density from the spectral image, we consider this
spectral image as a piecewise constant function over each energy channel. Then we sample

the scattering angle ω from ]
π

2
, π[ to have {ωk} with an uniform angular step ∆ω small

enough to have more than one sample of ω on each energy channel. From the sampling
{ωk} a (non-uniform) energy sampling {Ek} is obtained through the Compton equation.
Then we assign to each energy sample Ek the corresponding value given by the mentioned
piecewise constant function. In other words, a discrete energy density is obtained from the
spectral image by nearest neighbour interpolation of this image over a energy sampling
{Ek} that corresponds to a uniform angular sampling.

Finally the uniform sampling of the angular density is estimated from this energy
sampling {Ek} via the change of variable given the Compton equation

{E dE

dω
}k. (4.11)

This density can now be filtered and back-projected to obtain the reconstructed object.

4.1.3 Window functions

As pointed out and detailed in section 2.6.1, window functions q 7→ w(q) can be applied to
the ramp filter in reconstructions to control high frequencies and then the filtered projec-
tions can be written as

V∗f(t, ζ) = F−1 [|q|w(q)FζVf ] (t, ζ). (4.12)

From the family of cosine windows having the form

w(q) = cosn(πq), (4.13)
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Figure 4.1: Parameters and setup description of the 2D backward Compton scattering
tomography.

where the case n = 2 corresponds to the well characterised Hann Window function, we
tested various values of n during our simulation work and found out that n = 2 was
the one maximising the correlation between the object and its reconstruction given the
numerical noise produced by the simulation. Still different values of n gives satisfactory
reconstructions as well.

4.2 Imaging configuration details

Simulations will considerer the following physical parameters for the imaging system: Inci-
dent energy of the X-ray source and its cross section length, spectral and spatial resolution
of the detector, length of the detector, position relative between sample, source and detector
with the corresponding maxima and minima detection angle limitations.

These parameters are illustrated in Figure 4.1. As mentioned there, vertical translations
are needed to overcome the limitations of the beam size l which induces systematic missing
data around ω̄ = 0. We are considering in these simulations parameters detailed in table
4.1 for an ideal detector resolved angularly and in table 4.3 for a limited energy resolved
detector.

In present simulations, attenuation and multiple scattering are neglected. The Doppler
broadening and binding effects will be considered in the 3D case in chapters 5 and 6.
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4.3 Test objects

Two test phantoms are going to be considered in the simulations for the 2D case. Namely,
a numerical stratigraphic phantom created by means of random layers and interior grains
and a real sample composed mostly by copper and related corrosion products reconstructed
by classical absorption X-ray tomography and filtered back projections. Each value of a
pixel represents the electron density of the object.

The first one presents three layers of about 150 µm of thickness each and 128 µm of
height. They have electron densities of 0.9, 1.1 and 1.0 respectively. Grains of random
diameter and position were inserted inside the layers, having densities of 1.3± .1, 6.0± 0.5
and 2.0±0.3 respectively. We consider 1 pixel to represent 2×2 µm2 and then the phantom
is a matrix of 284× 64 pixels.

The second one is a real sample composed by different copper corrosion products.
Reconstructed from a real imaging experience and segmented for sake of simplicity into
6 classes of electron densities by taking the mean values of each class. It is a matrix of
380× 64 pixels where each pixel represents again 2× 2 µm2.

The first phantom presents a more defined morphology where each element has a regu-
lar boundary and big discontinuities between them. Reconstructions on it will expose the
capacity of the model to identify these discontinuities. The second phantom has irregular
boundaries for the different layers and elements but the contrasting between different ele-
ments are less important. Reconstructions on it will characterise the capacity to recover
irregular boundaries. Both phantoms are represented in Figure 4.2.

4.4 Simulation results

4.4.1 Uniform angular sampling

Table 4.1: Setup parameters represented in Figure 4.1 for an ideal detector resolved angu-
larly. 1 pixel represents 4 µm2.

E0 50 keV.
dω 0.005 radians
ζ0 6 µm.
ζm 211 and 212 µm.
l 8 µm.
τ 2 µm.

The first performed simulations regard a simple application of the V-line Radon trans-
form and its inversion without considering physical constraints. The phantoms considered
are the simulated analytical stratigraphical and the real heritage sample presented in Fig-
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(a): stratigraphical sample.
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(b): copper sample, with segmentation in 6 classes.

Figure 4.2: First test objects, a simulated stratigraphic phantom (a) and a heritage cor-
roded copper sample obtained with classical transmission tomography (b) segmented in 6
classes.

ures 4.2. No vertical translations are needed, the source is set as it is irradiating the whole
sample that is placed at 40 µm corresponding to 20 pixels, from the detector plane.

Sampling parameters, namely the number of projections and the number of detectors
are given as follows. Concerning the angular sampling rate, 100 and 200 projections uni-
formly distributed in angle are considered. Concerning detectors spacial sampling, 210 and
211 detector sites are considered, in every case they are separated by 1 pixel, i.e, ∆ζ = 2µm.

First, projections are obtained from a direct application of equation (4.2) to the whole
object and applying the physical factor in the image formation cos(ω)σ2D(ω), they are
showed in Figure 4.3 for 200 uniform sampled projections and 211 detecting positions. Due
mostly to the Klein-Nishina DCS, most of the scattered energy is detected at low angles
that is used to recover the global depth structure of the object at a correct scale. The
output angular image exposed at logarithmic scale shows the shape of the image for large
angular values, data coming for these angles records the contrasting and morphological
details of the object.

These projections are then filtered by the ramp filter and the Hann window function in
the form of (4.13) when n = 2 to obtain the discrete filtered projections written in (4.12).
The choice n = 1 could be used as well as this image formation is done without introducing
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(a) Stratigraphical sample.
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(b) Copper sample.

Figure 4.3: Respective V-line transforms times the factor cos(ω)σ(ω) uniformly sampled
on the opening angle ω of objects in Figure 4.2. Notice how most of the energy of the
diffracted beam is detected at very low angles and close to the incident beam position.
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(b) Copper sample.

Figure 4.4: Respective V-line transforms times the factor cos(ω)σ(ω) in log scale of objects
in Figure 4.2. The log scale allows to appreciate the response of the different elements in
the input object, such as the grains inside the stratigraphical sample making lines in the
shape of the PSF represented in Figure 3.2.

Poisson noise.

Finally, filtered projections are back-projected by means of the discrete adjoint trans-
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Figure 4.5: Reconstructions of the simulated phantom in 4.2. First row: 210 detectors with
100 (left) and 200 (right) projections. Second row: 211 detectors with same numbers of
projections as the first row. Detectors are always separated by 1 pixel.

form uniformly sampled on the opening angle given in (4.9) for every pixel in the recon-
struction grid.

Graphical results are show in Figures 4.5 and 4.6 for both phantoms and for the different
sampling parameters summarised in table 4.2. Correlations coefficients between the two
input objects and their reconstruction are presented in the mentioned table. The correlation
coefficient measure the degree of linear dependence between two vectors in R

n, we applied
it here to obtain a scale invariant measure of comparison between the phantom and its
reconstruction. Geometrically, the correlation coefficients is also the cosinus of the angle
between the two centred vectors compared and is then bounded in the interval [−1, 1].
1 being the correlation of two linearly dependent vectors. The arccos of the correlation
coefficient is also presented in table 4.2 that stands for the angle between those two vectors;
the original and the reconstructed objects, providing a finer contrast to compare correlation
values close to 1.

Conversely, to be able to characterise the variation in scale between the original phan-
tom and its reconstructions, we are using the ratio of the variances, that is the measure

Var(reconstruction)

Var(phantom)
,

where a value of 1 means that the reconstruction is on the same absolute scale as the
phantom.

More projections implies less (almost) horizontal artifacts in reconstruction due to a
better interpolation in back-projections for small angles. Larger detectors in absolute
length means that we have more data for big angles and so less (almost) verticals artifacts
presented in reconstructions generated from the lack of back-projections coming from those
missing angles. Simulations taking into account a spectral resolved detector are going to
be presented in the next section.
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Figure 4.6: Reconstructions of the real phantom in 4.2. Same layout as in Figure 4.5.

Table 4.2: Error measurements between the object and reconstructions according to the
different sampling parameters. The dimensions and sampling affect most the correlation
coefficient and the related angle as some contrasting features are correctly recovered ac-
cording to the sampling. The variation is scale is not really remarkable here due to most
of the signal is captured at low angles.

Phantom L M correlation angle variance ratio

Stratigraphical 210 100 0.906 25.04 0.71
200 0.911 24.36 0.70

211 100 0.949 18.38 0.78
200 0.952 17.82 0.78

Copper 210 100 0.956 17.06 0.79
200 0.963 15.63 0.77

211 100 0.972 13.59 0.90
200 0.980 11.47 0.87

4.4.2 Uniform energy sampling

We present in this section the image formation and object reconstruction for a 2D backward
Compton scattering tomography considering a more realistic scenario, i.e., finite energy
resolved detectors, a beam of a limited cross-section length and incomplete data due to the
hole in the detector.

Setup parameters are summarized in table 4.3. The beam cross-section width is set
to be 32 µm and the phantoms have a width of 128 µm therefore we performed 8 vertical
translations of 16 µm to allow the imaging of the full object. As mentioned in the angular
case, regions of 16µm of width are partially overlapping between two consecutive transla-
tions and only central part of each is conserved to avoid edge artifacts in reconstructions,
these artifacts are due to the different scale between reconstructed bordering and central
pixels. These boundaries artifacts are caused both by interpolation problems of bordering
pixels in the direct problem creating aliasing effects and also for the rectangular support
of the region of interest.
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Table 4.3: Setup parameters represented in Figure 4.1 for a finite spectral resolved detector.
1 pixel represents 2× 2 µm2.

E0 50 keV.
dE 1, 5, 25, 50 and 100 eV.
ζ0 10 µm.
ζm 211 µm.
l 16 µm.
τ 2 µm.

0 50 100 150 200 250 300

0 1 2 3 4 5 6

50 100 150 200 250 300 350

0.0 0.5 1.0 1.5 2.0

Figure 4.7: A slice of 16 µm (8 pixels) of width of both phantoms.

4.4.2.a Spectral image formations

The image formation process must be performed for each slice. We selected first a het-
erogeneous slide of each phantom showed both in Figure 4.7. We recall that the direct
problem consist in obtaining the scattered photon flux density per both detecting site and
energy channel, i.e., we aim to compute I(Ci,Dζ) defined in (4.6) related to the selected
slices to then estimate the angular density dI(Ci,Dζ).

The three stages of the problem are performed. Namely, from the sample slice we
compute the projections or the angular density, i.e., the V-line projections times the Klein-
Nishina and solid angle factors. This density is presented in the left columns of Figure 4.8.
Then, summations over each energy channel of projections are performed to obtain the
finite resolved spectral image in the second column. Finally, the angular density performed
initially is estimated from the spectral image by nearest neighbour interpolations in the
third column. This latter step will be clarified in the next section.

The stratigraphical phantom slice presents two grains of about 6 times the electronic
density of the rest of the phantom. This two grains can be identified in Figures 4.8 having
a support in the form of the PSF of the V-transforms studied in section 3.1.2.

As the unit length considered is 2 µm then the spatial resolution in reconstructions
is 2 × 2 µm2 per pixel. In this backscattering setup, a single experience simulate a X-ray
beam crossing a hole of 20 µm in a 1D detector, hence we have ζ0 = 10 µm.
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(a) Stratigraphical phantom.
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(b) Copper phantom.

Figure 4.8: Direct problem, image formation process. Output angular density (left col-
umn) representing the limits of each energy channel by a vertical red line, followed by the
summation of projections in each 50 eV energy channel and then the estimation of the an-
gular sampled density by nearest neighbours interpolation of energy data (right column).
Notice the non-uniforme spacing of the angles bounding the energy channels and that a
large fraction of the information is contained in the first energy channel.

The 1D detector is located vertically over the line x = 0 and the phantom is placed at
different distances x0 to the detector. The detector has a vertical length of L = 210 pixels
including the hole. Thereby, we have L− 24 detecting sites and a resolution of 2 µm. (24
sites not considered due to the hole.)

Regarding the trapezoidal rule in calculating integrals. In the direct problem the inte-
gration spatial step over V-lines is set to dr = 2 µm and dω = 0.005 radians the angular
step to compute the limited spectral image from angular sampled projections.

4.4.2.b Reconstructions

Phantoms are reconstructed by means of the filtered back-projection procedure detailed in
section (4.1) for each slice.
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Figure 4.9: Interpolation by nearest neighbours of the scattered photon flux energy density
from the finite energy resolved data. Different spectral resolutions exposed for two detecting
sites where we can appreciate the errors caused by interpolations when the energy resolution
is larger.

First, as explained in section 4.1.2, from the spectral image, the angular density is
estimated by nearest neighbours of each energy channel. The resulting angular density is
presented in Figure 4.8 where we can appreciate a good estimation for all channels but for
the first one, the channel covering the larger angular interval.

Figure 4.9 shows the piecewise constant function representing the spectral image that is
constant on each channel for two detecting sites, namely ζ ∈ {−12, 88}. Different spectral
resolutions are represented where the case ∆E = 1 eV suggests the true energy density.
We can appreciate the errors in interpolation mostly on channels where the derivative of
the density is seen to be larger than other channels. The first channel is a particular
case because the derivative is bigger on the centric zone of the detector where most of
the signal is detected. There, errors in interpolations implies huge blurring artifacts in
reconstructions.

This issue could be addressed by performing a more regular interpolation of the spectral
image than nearest neighbours to estimate the energy density, a C1 interpolation would
avoid the seen step effect between channels and also a better approximation of the deriva-
tive of the density inside a channel.

We present the reconstruction procedure and results detailed in section 3.2 for the slice
of the copper sample. The data to filter and back-project is the estimated angular density
i.e., data in the right column of Figure 4.8.

A correction by the factor cos ω̄ σ2D(ω) must be performed to the estimate angular
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Figure 4.10: Filtering process related to the stratigraphical phantom. From the angular
density (a) the 1D Fourier transform of this density is obtained in (b) and of the same
density by replacing interpolated values of the second channel to the first one (c). The
application of the ramp filter (d), followed by the cosine apodization window (e) and the
filtered projections through the inverse Fourier transform (f). The spectral resolution is
fixed to be ∆E = 50 eV. All images are in logarithmic scale.

density. The filtering process can be performed, via (3.39) or also via (4.12) if window
apodization functions are used in the Fourier domain, applied to the corrected angular
density.

Figure 4.10 illustrates the various steps of the filtering process for the stratigraphical
phantom and a 50 eV resolved detector. The 1D Fourier transform of the angular density
per each angle are performed. The large errors introduced by the interpolation can be
appreciated mostly in the first channel, these are reduced by assigning to these channel
the values of the second channel in the next figure. Then we apply the ramp filter where
we can appreciate numerical noise due to the divergence of the filter. In the next image,
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a cosine apodization window in the form of (4.13) with n = 2 is applied to the ramp filter
to control the numerical noise, the value of n is chosen due to the fact that we have not
introduced Poisson noise and so there is not the need to over-smooth the reconstructions
with higher values of n, still n = 1 is not enough due to interpolations numerical noise.

Finally, the 1D inverse Fourier transform is performed to obtain filtered projections.
We can appreciate the acting of filters on the filtered projections comparing them with the
original projections. Contrasting features as those produced by the frontiers of different
layers or elements are better appreciated. The consequences of systematically missing data
due to the presence of the hole can be seen in figures, even if there are only few missing
pixels. The intensity of the effect is due to fact that a large part of the signal would have
been detected on these missing sites. Reconstruction will suffer mostly a error in scale due
to this missing data.

From filtered projections as those showed in Figure 4.10f, back-projections and then a
reconstruction of the slice is obtained through (3.40).

The incomplete data due to the presence of a hole in the detector affects the reconstruc-
tion at low opening angle projections. Placing the object further to the detector allows us
to reduce the missing data related to low angles but we loose data corresponding to large
angles. That is, for a given half-detector determined by ζ0 and ζm in Figure 4.1, an input
pixel in the object located at the middle of the incident beam of coordinates (x, 0) generates
diffracted radiation at respective minimum and maximum opening angles ωm(x), ωM (x)
given by

ωm(x) = arctan(
ζ0
x
) ωM (x) = arctan(

ζm
x
), (4.14)

for a given x ≤ x0. The amount of diffracted data related to this point will be given then
by the integral

g(x) =

ωM (x)∫

ωm(x)

σ2D(π − ω) cos(ω) dω. (4.15)

An optimal value of x can be easily found that maximise the (concave) function g. It
derivative is

g′(x) = σ2D(π − ωM (x)) cos(ωM (x))ω′
M (x)− σ2D(π − ωm(x)) cos(ωm(x))ω

′
m(x). (4.16)

Then the x position of a pixel generating more data is the x verifying g′(x) = 0. A
simple look for the root of this equation numerically gives x = 142 pixels for our case that
depends on lengths of both the detector and the hole.

Therefore, the choice of the distance x0 to place the object from the detector is de-
termined by the region of interest that we want to recover and not much bigger than 142
pixels due to missing data from large angles. For example, if we want to recover pixels at
40 µm (20 pixels) inside the object, x0 = 100 pixels (200 µm) should be a good choice.
The functions g as a function of x is showed in Figure 4.11 where the maximum is at 142
pixels.
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Figure 4.11: The amount of data collected as a function of the x-coordinate of a pixel.

4.4.2.c Results and conclusions

Five energy resolutions of detectors are considered in simulations, namely ∆E ∈ {1, 5, 25, 50, 100}
eV, as well as an ideal detector not resolved in energy but in angle. Different distances x0
from the phantom to the detector are also considered.

First, an ideal detector resolved angularly is considered. Simple reconstruction is per-
formed with 16 horizontal translations of 8 µm having no overlaps between them and
allowing the imaging of the full sample. Edge artifacts are present due to different scale
rates between edge pixels and centric pixels. The bordering horizontal pixel lines suffer for
a huge decay in scale, this phenomenon is also present in the classical Radon transform.

These artifacts are eliminated by performing vertical translations of a smaller length
than the complete ones, in such way that the top and bottom pixel lines can be dropped,
i.e., we perform 32 translations of 4 µm in our case. This solution shown in Figure 4.12
will be employed in the rest of the section for all reconstructions. Figure 4.13 presents
reconstructions of the copper sample with different distances x0 to the detector, with 4
µmtranslations and removing bordering pixels for each slice. The effect of the hole is ap-
preciated in the scale variations with respect to Figure 4.12 that has almost the correct
scale variation. The horizontal artifacts presented in these reconstructions are due to the
missing data due to the hole. As it has been said, pixels closer to the detector suffer more
from this missing data, as it is seen on Figure 4.13a where x0 = 1 pixel, then it has the
full data from positions x > 142 where the artifacts are no longer present as discussed
previously. Figure 4.15 presents the profile for 1 pixel slice of reconstructions, it is clear
there the difference in scales when the simulation do not have a hole in the detector. The
correlations coefficients plotted in Figures 4.16 validates the optimal distance x0 near 140
when more data is recorded. The same Figure shows that the variance ratio is increasing
as a function of x0 while the correlation coefficient presents a global maximum. The right
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(a) No intersection in translations.
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(b) Intersecting translations such as 1 bordering pixel
line per slice is removed.

Figure 4.12: Edge artifacts in reconstructions. Per each slice, bordering pixels suffers from
a huge scale diminution (a), these pixels are taken out in (b).
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(f) x0 = 200 pix.

Figure 4.13: Reconstructions placing the copper sample at different distances to the de-
tector, resolved angularly with incomplete data. The effect of the hole missing data is
appreciated following the different distances x0 from phantom to detector.

choice of x0 will depend then in the target feature of the object studied.

A finite spectral resolved detector was considered afterwards. Figure 4.17 shows full
reconstructions of the copper phantom varying the distance x0 to the detector that is
resolved in energy with a uniform resolution of 50 eV. One can see a correct identifications
of x-positions of different electronic density. The regions of the sample that are further
to the detector presents less contrasting features between different materials. This is due
to the lack of data related to larger angles, this issue can be addressed by expanding the
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(a) Stratigraphical sample, the slice considered in reconstructions at the white line is chosen to got
through the two red grains.
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(b) Copper sample.

Figure 4.14: 1 pixel horizontal line profiles to be analysed.
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(a) Reconstruction of the stratigraphical phantom profile.
Notice difference in scale when the hole is present.
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(b) Reconstruction of the copper phantom profile.

Figure 4.15: Reconstruction profile from a single slice of phantoms located at the white
lines in Figure 4.13 according to different distances between phantom and detector, in
pixels. Reconstructions from angular densities. Notice when the hole is present the main
difference is the decay in scale, due to the lack of low angles data.

absolute length of the 1D detector. The effect of the centric missing data is appreciated in
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Figure 4.16: Error measures related to the copper phantom as a function of the distance
x0.

Figure 4.17b where an important decay in scale for deeper regions of the object is presented.
This effect is indeed reduced by placing the object further at the price of losing information
corresponding to large angles.

Figure 4.18 shows reconstruction results of the same sample placed at x0 = 50 pixels,
that is, as in Figure 4.17d with different spectral resolutions, namely 1, 5, 25 and 100
eV where we can appreciate the blurring in reconstructions affected by a larger spectral
resolution. Actually, with a 5 eV resolution we dispose of more than 700 projections where
the largest angular channel spread corresponds to 0.035 radians. This angular channel
corresponds to the energy channel covering from Eπ to Eπ + ∆E, that is, the channel
related to low angular values. With a resolution of 50 eV we have 74 projections and the
largest angular channel is 0.171 radians wide while for 100 eV, we have 37 projections and
a maximum angular channel of 0.242 radians width. Notice that reconstruction in 4.13
from angular resolved data were obtained with an angular step of 0.005 radians.

An ideal detector resolved in angle is obviously not realistic and gives better results in
terms of correlation coefficient as the angular sampling is uniform and then no numerical
artifacts are generated due to interpolations from spectral images to energy densities.
Without considering the Doppler broadening effect, reconstructions depend exclusively on
the energy resolution of the detector and the quality of interpolations. Therefore, an energy
resolution broader than 100 eV (corresponding to 37 non uniform angular projections) will
not provide sufficient observations. As mentioned, nearest neighbour interpolation of the
spectral image could be improved by applying a C1 interpolation to avoid discontinuity
effects in densities and better estimation of their derivatives.

The farther the sample is placed, the less data related to big angles will be obtained.
However, if the sample is placed closer to the detector, the effect of the hole will be bigger
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(a) True phantom.
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(b) x0 = 1 pix, ∆E = 50 eV.
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(c) x0 = 25 pix, ∆E = 50 eV.
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(d) x0 = 50 pix, ∆E = 50 eV.
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(e) x0 = 100 pix, ∆E = 50 eV.
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(f) x0 = 150 pix, ∆E = 50 eV.

Figure 4.17: Reconstructions placing the copper sample at different distances to a detector
with an energy resolution of 50 eV. The effect of the low angles missing data due to the
presence of a hole is appreciated following the different distances x0 from phantom to
detector.
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(a) x0 = 50 pix, ∆E = 1 eV.
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(b) x0 = 50 pix, ∆E = 5 eV.
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(c) x0 = 50 pix, ∆E = 25 eV.
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(d) x0 = 50 pix, ∆E = 100 eV.

Figure 4.18: Reconstructions placing the copper sample at 50 pixels from the detector
with low angles incomplete data. Spectral resolutions of 1, 5, 25 and 100 eV are presented.
The blurring in reconstructions is due to the missing data generating after performing
summation of projections in each energy channel. Horizontal artifacts are due to the
vertical translations of the object.

as more data will be lost at low angular values. This is seen in the variance ratio for 1 and
5 eV that gets better by placing the object further to the detector. When dealing with
larger spectral resolutions, the interpolations errors imply a huge decay in scale and then
in the variance ratio.
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Table 4.4: Error measurements between the object and reconstructions according to the
different setup parameters. For larger spectral resolutions the variance ratio is affected
mostly due to large angular interval corresponding to the first energy channel.

∆E (eV.) x0 (pixels) correlation variance ratio
1 25 0.97 0.77

50 0.97 0.84
5 25 0.99 0.85

50 0.99 0.87
25 25 0.97 0.36

50 0.97 0.33
50 1 0.94 0.21

25 0.95 0.19
50 0.96 0.17
100 0.96 0.15
150 0.96 0.13

100 25 0.93 0.09
50 0.94 0.08

Translations of half the size of the beam cross-sections allow to eliminate edge pixels
that are not reconstructed a the correct scale generating huge edge artifacts. However, it
will require twice the time to complete the experiment than the case when no intersections
between translations are performed.

Correlations coefficients and variance ratios are presented in table 4.4. Of course higher
spectral resolution implies better coefficients. We can appreciate the huge lost in scale by
looking the resulting variance ratios due to all the data that is lost in summation per energy
channel together with the data not measure in the hole region. The correlation coefficients
suggest that the different materials of the sample are well identified in depth but with an
important lost in their morphology in deeper regions of the sample due also to the limited
detector length.

The results presented in this chapter according to the different setup configurations,
sampling parameters and the numerical implementations will help us to design numerically
the three dimensional device that is presented in the next chapters. The different arti-
facts in reconstructions are better understood now as well as the different errors caused
by numerical approximations of integrals and interpolations. As the 3D scheme is more
computationally expensive, this understanding will allow us to set the different parameters
in simulations. A GPU parallelization of both the direct and inverse problems is also de-
veloped reducing the time complexity. The different algorithms are exposed in Appendix
A.
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5

Backward Compton Scattering Tomography: 3D

framework

In this chapter, a three-dimensional Compton scattering mathematical model is developed
both for the direct and inverse problems. As in the 2D framework studied in chapters 3
and 4, the system to be modeled receives an input function defined now on some domain
of R3 representing the electronic density of an object and returns an output function that
stands for the measured spectral image.

First, the direct problem is studied in a complete physical context, that is in a contin-
uous and also a discrete framework. It is expressed with the help of the so-called conical
Radon transform, that is a transform where the output function is an integral over circu-
lar cones surfaces with a fixed axis direction. Then, the inverse problem is solved with a
filtered back-projection procedure of the output spectral image leading to the estimation
of the original 3D distribution of the electronic density of the object.

This chapter is adapted from the reference [16], partly published in Journal of Electronic
Imaging in 2017.

5.1 The direct problem

Given an input function f , the imaging system returns an output function I, the energy
resolved spectral image, defined on some bounded domain of R2 × [Em, E0[ where Em is
the lowest energy of a photon after a Compton interaction (Em is indeed near ω = π in
the Compton equation) and E0 the incident energy of photons.

In the case where photons are scattered by free electrons at rest, the conservation of
energy and momentum implies a diffeomorphism between the scattered resulting energy of
photons and the scattering angle given by the Compton equation (1.1). The conical Radon

79
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transform performs conical projections of the input object where all photons scattered at
a given energy lay over a circular conical surface.

Actually, as electrons are not at rest and move with a certain momentum distribution,
the Doppler broadening effect must be taken into account. Moreover, as the electrons are
not free, their ionization energy determines whether or not an interaction occurs leading
to the so-called binding effect [30]. In a realistic scenario where electrons belong to a given
material, the Doppler broadening and binding effects must be taken into account in the
image formation process. Then, the input function will need to be defined on a larger
domain that must contain information about the material in addition to the electronic
density.

The first section of this chapter deals with the mathematical definition of the conical
Radon transform, then a model of the spectral image formation by this Compton scattering
modality is given. In the second part of this chapter, the associated inverse transform that
can approximate a reconstruction from a spectral image resolved in energy is studied.

5.1.1 The conical Radon transform

The conical Radon transform was first defined in [9] without an inverse formula but the
imaging application based on Compton scattering of gamma rays was proposed. In [23],
a first inversion formula using circular component analysis, with applications to emission
imaging was introduced. Generalisations of this kind of transforms to higher dimensions
spaces with related inverse formulae were presented in [17]. A back-projection inversion
algorithm for a conical Radon transform in R

3 was developed in [6].

The transform output function integrates a function over circular cone surfaces. It is
the 3D analogue of the V-line Radon transform due to the the fact that the axis direction
is fixed and the vertices lay on a 2D fixed plan. Here, a cone is uniquely determined by
the vertex position and the opening angle, while its parametrization parameters are the
azimuthal angle and the slant heigh or the distance of a point on the surface to the vertex.
Such cone has been already depicted in Figure 1.4 in the introduction.

Assume that the vertices of the conical surfaces lay on the x0y-plane and that the
input function is defined for z > 0. A (ψ, r)-parametrization of the circular cone surface is
considered for a fixed opening angle, where ψ is the azimuthal angle and r the euclidean
distance to the vertex. Such parametrization for a cone with a vertex located at D = (ζ, ξ, 0)
and an opening angle ω reads

Cω,D(ψ, r) = D+ (r sinω cosψ, r sinω sinψ, r cosω), (5.1)

where ψ ∈ [0, 2π[, r ∈ R
+, ω ∈]0, π

2
[, and (ζ, ξ) ∈ R

2.

The conical surface may also be characterized by a cartesian equation valid for all
(x, y, z) ∈ R

2 × R
+ by

z2 tan2 ω = (x− ζ)2 + (y − ξ)2. (5.2)
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The conical Radon transform applied on a electron density function f returns an out-

put function, called Cf on R
2×]0,

π

2
[ that performs the integral of f over a cone surface

parametrized as in (5.1).

Definition 8. The conical Radon transform is a mapping

C : S(R2 × R
+) → S(R2×]0,

π

2
[)

f 7→ Cf,
(5.3)

defined by the integral

Cf(ζ, ξ, ω) =
∞∫

0

2π∫

0

f(ζ + r sinω cosψ, ξ + r sinω sinψ, r cosω) dψ
dr

r
. (5.4)

The measure on the conical surface r sinω dψ dr times the photometric spreading of

radiation factor
1

r2
must be included in the last integral. Note that, for simplicity reasons,

the factor sinω does not explicitly appear and will be included later in the image formation
model.

It may be useful to express (5.4) as an integral with respect to the z-axis with the
change of variable z = r cosω and also to introduce a new variable t such that t = tanω.

If notation Cf is conserved, (5.4) may be expressed as

Cf(ζ, ξ, t) =
∞∫

0

2π∫

0

f(ζ + tz cosψ, ξ + tz sinψ, z) dψ
dz

z
, (5.5)

where t ∈ R
+.

5.1.1.a Kernel and Point Spread Function

The point spread function (PSF) is the image of the input impulse function

f0(x, y, z) = δ(x− x0, y − y0, z − z0), for (x0, y0, z0) ∈ R
2 × R

+. (5.6)

Its conical Radon transform can be derived as [6]

Cf0(ζ, ξ, ω) =
1

z20 tanω
δ(z0 tanω −

√
(x0 − ζ)2 − (y0 − ξ)2). (5.7)

The support of the PSF in the (ζ, ξ, ω) domain is given by concentric circles of radius
z20 tan

2 ω centered at (x0, y0) for all ω. This arctangent type support is represented in
Figure 5.1 for an impulse function at (0, 0, 1).

Note also that the kernel of the conical Radon transform is then given by the expression

k(ζ, ξ, ω | x, y, z) = 1

z2 tanω
δ(z2 tan2 ω − (x− ζ)2 − (y − ξ)2). (5.8)
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Figure 5.1: Point spread function related to the conical Radon transform for an impulse
function located at (0, 0, 1).

5.1.2 Image formation model

The aim here is to estimate the output spectral image returned by this CST system from
a given input object. First, a rough model is going to be derived when the input object
consists of a function representing the electronic density distribution where electrons are
free and at rest. Then, the function will also include different material characteristics to
model the Doppler broadening and binding effects.

Define dI(E,D|M) as the recorded scattered photon flux density from a scattering
positionM (number of photons of energy laying in dE recorded per unit time at a detecting
region D coming from M). The recording point D can be characterized by the cartesian
coordinates of its middle point (ζ, ξ, 0) (see figure 1.4 already depicted in the introduction
for a description of the geometrical configuration). The value dI(E,D|M) then incorporates
the following parameters:

− I0: the incident photon flux density just before the scattering event at M.

− σ(ω,E): the Compton scattering double differential cross-section (DDCS) at a scat-
tering angle ω and with a scattered energy E.

− f(M): the electron density at M.

− dE the elementary variation of E.

− Ω(M,D): the solid angle from M to D.

− dM: the volume element around M.
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The solid angle Ω(M,D) can be seen from Fig. 1.4 to be

Ω(M,D) = 4 arctan
( 1

4r2
M

τ cos ω̄M

)
, (5.9)

where τ is the area of the detecting region D and rM the Euclidean distance from M to D.
ωM is the scattering angle from M to D. As ωM ∈ [0, π], then, ω̄M is defined to be bounded
in [0, π/2], namely ω̄M = min(ωM, π − ωM).

If τ is small enough, Ω(M,D) can be approximated by
τ

r2
M

cos ω̄M. Consequently, the

scattered photon flux energy density at D, surrounding a scattering site M is given by

dI(E,D|M) = τI0
1

r2
M

cos ω̄M σ(ωM, E) f(M) dM dE. (5.10)

5.1.3 The Compton scattering differential cross-section (DCS)

The Compton differential cross-section characterises each interaction between photon and
matter as a function of the photon state variables, that is, as a function of the scattering
angle and scattered energy. When dealing with free-electrons at rest the differential cross-
section (DCS) is a function of only the scattering angle leading to a diffeomorphism between
the angle and energy.

Contrary to the 2D framework where the free-electrons hypothesis was the only one
considered, we will here also consider the hypothesis that the Compton differential cross-
section is a double differential cross section (DDCS) defined as a function of both the energy
angle and also the scattering energy of the particle. This more complete formulation makes
it possible to include both the Doppler broadening and the electron binding energy into
the photon inelastic scattering model.

The general model will thus not perform integrations over a conical surface but over
the whole input domain, that is

dI(E,D) =

∫

R2×R+

dI(E,D|M)

= τI0 dE

∫

R2×R+

1

r2
M

cos ω̄M σ(ωM, E) f(M) dM.

(5.11)

5.1.3.a The Compton scattering DCS for free electrons

As in the 2D case, the Klein-Nishina differential cross-section σKN could be considered in
the image formation process when electrons are free. It is a function of only the scattering
angle ω giving the probability of a photon to be scattered in a given direction ω when
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the azimuthal angle is uniformly distributed in the interval [0, 2π[. This differential cross-
section assumes an exact relationship between scattered energy and angle given by the
Compton equation (1.1). It can be seen as a Dirac probabilistic law that reads

σ(ω,E) = σKN(ω)δ(E − Eω), (5.12)

where Eω is the energy verifying the Compton equation and σKN the Klein-Nishina function
already defined in chapter 3 limited to a 2D plane and recalled here for the general 3D case
by

σKN(ω) =
1

2
r2e

(
Eω
E0

)2(Eω
E0

+
E0

Eω
− sin2 ω

)
. (5.13)

The Klein-Nishina DCS indicates that the probability of a photon to be Compton

scattered is higher for scattering angles close to 0 or π than for angles close to
π

2
. The

support of this DCS in the ω−E plane is given by the line verifying the Compton equation,
that is a non-linear decreasing function of the scattering angle. Both curves are presented
in Figure 5.2.
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the Compton equation.

Figure 5.2: The Klein-Nishina differential cross section (DCS)

In this particular and simpler case, as the DCS depends only on the scattering angle,
the scattered flux energy density dI(E,D) in (5.11) is simplified onto an integral over a
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conical surface thanks to (5.12) by doing

dI(Eω,D) = τI0 dEω

∫

M: E=Eω

1

r2
M

cos ω̄M σ
KN(ωM) f(M) dM

= τI0 cos ω̄ σKN(ω)dEω

∫

Cω̄,D

1

r2
M

f(M) dM,
(5.14)

where Cω̄,D is the cone with an opening angle ω̄ and a vertex located at D.
In terms of the conical Radon transform of f previously defined the energy density can

also be expressed as

dI(Eω,D) = τI0 sin ω̄ cos ω̄ σKN(ω)Cf(ζ, ξ, ω̄) dEω. (5.15)

Notice that the integration measure over the cone surface dM = r sin ω̄ dψ dr explains
the presence of the factor sinω in this expression. Notice also that an angular density can
be derived by writing

dI(ω,D) = τI0 sin ω̄ cos ω̄ σKN(ω)Cf(ζ, ξ, ω̄) dEω
dω

dω. (5.16)

5.1.3.b The general Compton scattering DDCS in heterogeneous objects

As already said, electrons are not at rest but move with a certain momentum distribution
p. This phenomenon gives rise in the spectral image to the Doppler broadening effect.
Furthermore, electrons are not free and then interactions are allowed only if the energy
transfer is larger than the ionisation energy Ui of the atomic electron shell i where the
interaction has occurred, i.e., if E0 − E > Ui, where E is the energy of the scattered
photon. This is known as the binding effect. Hence, some electrons will not participate in
the inelastic scattering, depending on E0 and on their binding energy.

In this general case, the Compton Equation (1.1) and the Klein-Nishina differential
cross-section given in (5.13) are not longer valid. However, they still remain a good ap-
proximation for incident energies up to the order of few MeVs [30].

The corresponding Compton DDCS takes into account the material influence generating
the Doppler broadening and binding effects. It is a function of both the scattering angle
and the energy and it is sampled in Monte Carlo simulations, as done in [5, 30] by

σ(ω,E) = σKN(ω)F (pz)

(∑

i

ZiJi(pz)H(E0 − E − Ui)

)
dpz
dE

. (5.17)

In this expression, pz is the projection of the initial momentum p of the electron on the
direction of the scattering vector and H the Heaviside step function. Ji(pz) is the Compton
profile of the i−th atomic shell, Zi is the number of electrons in the i−th shell and the
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function F is a rejection sampling function [5]. In the Penelope code [30], the functions
F and Ji are approximated by an analytical expression. Ji also needs the value Ji(0) per
material, that is sampled and tabulated.

For a given ω, this DDCS is bell-shaped and symmetrical about the Compton line
E = Ew. The spreading of the distribution varies according to the incident energy, the
angle and of course the material. This DDCS is ploted in Figure 5.3 as a function of E for
two scattering angles and two elements, hydrogen and aluminium.
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Figure 5.3: Normalized Compton scattering DDCS with respect to atomic number and
incident energy. Two materials and two scattering angles are considered for E0 = 50 keV.

The spreading of this density increases with the scattering angle and with the atomic
number. The Compton line is also represented showing that the Klein-Nishina DCS is an
approximation of the DDCS by a Dirac law located at its expectation value.

5.1.4 Limited spectral resolved images

As in the 2D case, let Ci = [Ei, Ei+1[ be a given energy channel related to the detector
spectral resolution. The Compton Scattering Tomography system will collect the spectral
image I(Ci,D), or the summation of the scattered photon flux density over the energy
channel Ci at a detecting site D, that is

I(Ci,D) =

∫

E∈Ci

dI(E,D), (5.18)
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where dI(E,D) is the energy density defined in (5.11).

In the case of free-electrons at rest when the DDCS is given by the Klein-Nishina DCS
and the Dirac function over the Compton line, the last integral is indeed an integral over
such Delta function that is given by the Heaviside step function H, that is

I(Ci,D) = τI0

∫

R2×R+

1

r2
M

cos ω̄M σ
KN(ωM)

∫

E∈Ci

δ(E − Eω) dE f(M) dM

= τI0

∫

R2×R+

1

r2
M

cos ω̄M σ
KN(ωM)

(
H(E − Ei+1)−H(E − Ei)

)
f(M) dM.

(5.19)

The last model of the direct problem differs from the one in the 2D framework where
the equivalent here is a summation of the angular density on every related angular channel
Ci as

I(Ci,D) = τI0

∫

ω∈Ci

sin ω̄ cos ω̄σKN(ω)Cf(ζ, ξ, ω̄)dω

=

∫

Ci

∞∫

0

2π∫

0

f(ζ + r sinω cosψ, ξ + r sinω sinψ, r cosω)σKN(ω) cos ω̄
1

r3
r2 sin ω̄dψdrdω,

(5.20)

where the elementary volume element dM = r2 sin ω̄dψdrdω = dxdydz appears and then we
can perform this integral on a cartesian coordinate system. We need then the characteristic
function over the volume element laying between two conical surfaces δCi,D(x, y, z) given
by

δCi,D(x, y, z) =

{
1 for cos ω̄ = z√

(x−ζ)2+(y−ξ)2+z2
∈ cosCi,

0 otherwise.
(5.21)

Therefore, we can express the last integral as

I(Ci,D) =

∫

R2×R+

f(x, y, z) δCi,D(x, y, z)
σKN(ω̄M) cos ω̄M

r3
M

dM. (5.22)

The numerical implementation of this transform is detailed in the next chapter. It
is based either on the first expression (5.4) or on the last cartesian integral (5.22) more
suited to a parallel implementation due to its cartesian nature. This will be detailed in the
coming chapter 6 and can also be visible in the annex A.

In the more general case when electrons are not free, the full DDCS in (5.17) must be
applied in the last integrals per each material, angle and energy. This may not be possible
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numerically, then we can approximate this DDCS by a probability law fω of the scattered
energy per each angle as

σ(ω,E) ≈ fω(E), (5.23)

having its expectation value at the Compton energy Eω as the DDCS is a spreading of the
Compton line. See Figure 5.3.

Notice that in this case we can not perform the integral over an angular channel instead
of the energy channel Ci because they are not equivalent due to the diffeomorphism angle-
energy is not longer available. We must then perform integrals with boundaries as in (5.18)
and not as in (5.20).

If F is the cumulative distribution function of this law, the integral (5.19) is rewritten
as

I(Ci,D) = τI0

∫

R2×R+

1

r2
M

cos ω̄M

(
F (E − Ei+1)− F (E − Ei)

)
f(M) dM. (5.24)

In the next chapter where the problem is treated numerically, we will explain the
approximation of the DDCS by a Lorentzian law.

5.2 The inverse problem

As in the 2D case, we present here the related inverse formula to the conical Radon trans-
form (5.4) and then a filtered back-projection reconstruction for the output spectral image.
First, the Hankel transform is introduced as a preliminary step to derive the inverse for-
mula.

5.2.1 Auxiliary functions

The inverse expression of the Hankel transform, defined through the Bessel function, is
used to solve the conical transform in (5.4) due to the relationship between the 2D (ζ, ξ)-
Fourier transform of the input function f and the Hankel transform of the conical function
Cf . The definitions of the Bessel and Hankel functions are recalled below.

Definition 9. The first kind Bessel function of order 0, denoted J0, is defined for x ∈ R

by the identity

J0(x) =
1

2π

2π∫

0

e−ix cos(α−φ) dα, (5.25)

for all φ ∈ [0, 2π].
The Hankel transform, or the Fourier-Bessel transform of order 0, denoted h0, is then

defined for a function g as a weighted integral of Bessel functions by

h0g(k) =

∫

R+

g(r)J0(kr)r dr, (5.26)
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for all k ∈ R
+. Its related inverse transform is

g(r) =

∫

R+

h0g(k)J0(kr)k dk. (5.27)

5.2.2 A first inverse formula

A first analytical inverse formula, announced in [6], by means of the Hankel transform for
the conical Radon transform with a fixed axis direction comes in the following theorem.

Theorem 9. Let f in S(R2 × R
+) and C the conical Radon transform defined in (5.4).

The related inverse formula can be expressed as

f(x, y, z) = 2πz2
∫

R2

(u2 + v2)e2πi(ux+vy)

π/2∫

0

sinω

cos3 ω
Ĉf(u, v, ω)J0(2πz tanω

√
u2 + v2) dω dudv.

(5.28)

Proof. In order to derive the inverse transform, we start writing the bidimensional (ζ, ξ)-
Fourier transform of the conical Radon transform expressed with t = tanω in (5.5) as

Ĉf(u, v, t) =
∞∫

0

2π∫

0

∫

R2

f(ζ + tz cosψ, ξ + tz sinψ, z)e−2πi(uζ+vξ) dζdξ dψ
dz

z
(5.29)

With a change of variables translating the vertex of the cone to the origin, that is, with

x = ζ + tz cosψ and y = ξ + tz sinψ, (5.30)

(5.29) becomes

Ĉf(u, v, t) =
∞∫

0

2π∫

0

∫

R2

f(x, y, z)e−2πi(ux+vy) dxdy

e2πitz(u cosψ+v sinψ) dψ
dz

z
.

(5.31)

Last inner integral is actually the (x, y)-Fourier transform of f at (u, v) noted f̂(u, v, ·).
Then, the last expression writes as:

Ĉf(u, v, t) =
∞∫

0

f̂(u, v, z)

2π∫

0

e2πitz(u cosψ+v sinψ) dψ
dz

z
, (5.32)
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We can then identify the first kind Bessel function of order 0 by switching to polar coor-
dinates: u = q cosβ and v = q sinβ:

Ĉfp(q, β, t) =
∞∫

0

f̂p(q, β, z)

2π∫

0

e2πiqtz cos(β−ψ) dψ
dz

z

= 2π

∞∫

0

f̂p(q, β, z)J0(2πqtz)
dz

z
.

(5.33)

Note the use of notation Ĉfp and f̂p to point out the use of polar coordinates. Last
integral turns out to be the Hankel transform of the function

g : z → 1

z2
f̂p(q, β, z), (5.34)

then (5.33) writes as:

Ĉfp(q, β, t) = 2πh0g(2πqt). (5.35)

One can therefore apply the Hankel inverse formula to get

g(z) =
1

2π

∞∫

0

Ĉfp(q, β, t)J0(2πqzt)2πqt d(2πqt), (5.36)

where by definition of the function g, we have:

f̂p(q, β, z) = 2πz2q2
∞∫

0

Ĉfp(q, β, t)J0(2πqzt) dt. (5.37)

Finally, taking the inverse Fourier transform in polar coordinates, f can be recovered
for all (x, y, z) ∈ R

2 × R
+ as:

f(x, y, z) = 2πz2
2π∫

0

∞∫

0

∞∫

0

Ĉfp(q, β, t)J0(2πqtz)t dt q3e2πiq(x cosβ+y sinβ) dqdβ. (5.38)

Last integral can be expressed in cartesian coordinates related to the Fourier domain
(u, v) and in terms of ω that verifies t = tanω , and then the theorem holds.

Remark 12. A relationship between 3D Fourier transforms of the function f and 2D
(ζ, ξ)-Fourier transforms of Cf can be written. It follows by applying Fubini’s theorem to
(5.31). If F3 denotes the 3D Fourier transform of f , we then have:

Ĉf(u, v, t) =
2π∫

0

F3f(u, v,−t(u cosϕ+ v sinϕ)) dϕ. (5.39)
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This identity can be seen as a version of the Fourier slice theorem for the conical
transform and it can be exploited in the numerical computing of conical projections in the
direct problem.

The inverse formula (5.28) is clearly the bidimensional inverse Fourier transform of the
last inner integral times the factor (u2 + v2). A filtered back-projection inversion can then
be developed.

5.2.3 A filtered back-projection inversion

Back-projection inversions are written down by means of the adjoint transform and the
corresponding filter obtained from the inverse formula in (5.28). To define the adjoint
transform in the same way as in the 2D case, let first introduce some basic notations: C is
defined as an operator from X = S(R2 × R

+) to Y = S(R2 × [0, π2 ]), associated with the
L2 inner products:

(f1, f2)X =

∫

R

∫

R2

f1(x, y, z)f2(x, y, z) dxdydz,

(g1, g2)Y =

∫

R2

π/2∫

0

g1(ζ, ξ, ω)g2(ζ, ξ, ω) dωdζdξ.

(5.40)

Definition 10. The adjoint transform C† of C is defined as the unique transform from Y
to X that satisfies:

∀f ∈ X, ∀g ∈ Y, (g, Cf)Y = (C†g, f)X . (5.41)

In order to derive an expression for C†, we compute

(g, Cf)Y =

∫

R2

π/2∫

0

g(ζ, ξ, ω)Cf(ζ, ξ, ω) dωdζdξ

=

∫

R2

π/2∫

0

g(ζ, ξ, ω)

∞∫

0

2π∫

0

1

r
f(ζ + r sinω cosψ, ξ + r sinω sinψ, r cosω) dψdr dωdζdξ.

(5.42)

With the change of variables x = ζ + tz cosψ, y = ξ + tz sinψ and by using Fubini’s
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theorem, we have:

(g, Cf)Y =

∫

R

∫

R2

1

z
f(x, y, z)

π/2∫

0

2π∫

0

g(x− z tanω cosψ, y − z tanω sinψ, ω) dψdω dxdydz,

(5.43)

from where one is able to extract the adjoint transform C† of C in the form:

C†g(x, y, z) =
1

z

π/2∫

0

2π∫

0

g(x− z tanω cosψ, y − z tanω sinψ, ω) dψdω. (5.44)

The adjoint transform is interpreted as a back-projection procedure scaled by a factor
1

z
. Indeed, one assigns to (x, y, z) the values of projections starting at this point and

forming a cone towards the detector with an opening angle ω.

For a first rough reconstruction, f(x, y, z) can be approximated through the adjoint
transform or equivalently in this case, through a simple back-projection of the output
image as

f(x, y, z) ≈ C†Cf(x, y, z). (5.45)

The adjoint transform C† is not the inverse operator of C. Actually, the resulting
expression of C†Cf(x, y, z) and the inversion formula of C (5.28) given in section 5.2.2
differs only by some factor, or filter that must be applied to this adjoint transform before
the back-projection procedure.

Theorem 10. Let (u, v) ∈ R
2 and let the projections C∗f be defined by filtering Cf in the

2D (u, v)-Fourier space by the filter

Ĉ∗f(u, v, ω) = (u2 + v2)
sinω

cos3 ω
Ĉf(u, v, ω). (5.46)

Then f can be recovered for all (x, y, z) ∈ R
2 × R

+ by

f(x, y, z) = z2
π/2∫

0

2π∫

0

C∗f(x− z tanω cosψ, y − z tanω sinψ, ω) dψdω. (5.47)
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Proof. C†Cf(x, y, z) is obtained from (5.41) by inserting the 2D (ζ, ξ)-Fourier transform of
C to have

C†Cf(x, y, z) =1

z

π/2∫

0

∫

R2

Ĉf(u, v, ω)e2πi(ux+vy)

2π∫

0

e−2πiz tanω(u cosψ+v sinψ) dψ dudvdω.

(5.48)

This last inner ψ-integration can be performed via polar coordinates as in (5.32-5.33)
allowing us to introduce the first kind Bessel function of order 0 as:

C†Cf(x, y, z) =2π

z

∫

R2

e2πi(ux+vy)
π/2∫

0

Ĉf(u, v, ω)J0(2πz tanω
√
u2 + v2) dω dudv. (5.49)

Last expression only differs from the inverse formula (5.28) by factors z3(u2+v2)
sinω

cos3 ω
.

These factors are seen as a filter that we need to apply to data in order to have an exact
back-projection inversion procedure.

Finally, we are also able to write the inverse formula of the conical Radon transform
by applying the inverse Fourier transform on the last expression giving us the filtered
projections C∗ and through the adjoint transform C†:

f(x, y, z) = z3C†C∗f(x, y, z), (5.50)

and the theorem yields.

5.2.4 Reconstruction from the spectral image

The scattered photon flux density for all detecting regions belonging to a bounded plane
detector forms the spectral image or the output of the imaging system. This spectral image
is resolved in energy whereas we need an angular sampling to perform back-projections.
The procedure is exactly the same as in the 2D case, that is, from the spectral image

I(Ci,D) we first estimate an energy density
dI

dE
(E,D) by interpolating the spectral image

into a thin enough uniform energy sampling.
Then, through a change of variables given by the Compton equation, we obtain the

required angular density as
dI

dE
(E,D)

dE

dω
dω. (5.51)

Finally, the angular density must be corrected by the only approximation of the DDCS
we dispose, that is the Klein-Nishina DCS, the solid angle factor and the sin factor of the
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measure over conical surfaces not included in the conical transform, that is we have the
corrected angular density as

1

τI0σKN(ω) sin ω̄ cos ω̄

dI

dE
(E,D)

dE

dω
dω. (5.52)

The conical back-projection inversion assumes that the Dirac approximation of the
Compton scattering Klein-Nishina DCS holds. We will see in the next chapter that the
Doppler broadening and binding effects will actually blur these reconstructions and another
correction method is actually needed for examle by a deconvolution of signal caused by the
Doppler broadening and also iterative reconstructions.

5.3 Conclusion

The direct and inverse problem for a Compton Scattering Tomography imaging system
using an external source has been mathematically investigated. An approximation of the
direct problem in which the input function represents the electronic density distribution
of free electrons at rest on a bounded region of R3 has first been presented. In such case,
the output spectral image can be modeled by means of the conical Radon transform and
the Klein-Nishina differential cross section (DCS). To be physically more sound, and in
particular when the heterogeneity of the input object is considered, the direct problem
must take into account a more realistic differential cross-section that varies as a function
of the scattering angle, scattered energy and the material composition, termed double-
differential cross-section (DDCS).

The inverse problem has also been addressed and has led to an inverse formula of the
conical Radon transform in terms of a filtering back-projection procedure. The Klein-
Nishina DCS hypothesis is maintained in this case, as it provides the expectation value of
the real DDCS and as it allows to perform conical back-projections. Of course Doppler
and binding effects will have a negative (blurring) impact in reconstructions, having larger
incidence when the scattering angle is higher or the element is heavier. These effects will
be detailed in the numerical simulations proposed in the next chapter.
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Numerical simulations for the 3D framework

This section presents numerical simulations of both direct and inverse problems in a 3D
framework. The discrete formulation of both problems is given with its related spatial
and spectral sampling details used in simulations. The corresponding setup is designed in
Figure 1.4 and described in section 1.3.

Simulations of the direct problem are first performed by means of the conical transform
in (5.4) to compute the scattered photon flux per energy channel and per detecting site
given in (5.18). This method assumes an exact relationship between the scattering energy
Eω and the scattering angle ω according to (1.1). Through Doppler broadening effect and
electron binding energy variations due to the chemical properties of the different materials
presented in an input object, this relationship is indeed a non-Dirac probabilistic law.
In this work it has been verified that the broadening effect can be approximated with
a Cauchy distribution. That is, for a given ω, this Cauchy density distribution has the
location parameter at the Compton energy line Eω and the scale parameter depending on
the material. Simulations through this law are presented as well.

Realistic Penelope Monte Carlo simulations considering photoelectric absorption, Rayleigh
scattering and multiple Compton scattering are presented to assess the consequences of our
approximation on image formation and volume reconstruction.

Reconstruction or inversion of the Conical Radon transform is performed by the filtered
back-projection procedure summarized in (5.50). An iterative reconstruction process which,
whilst more expensive computationally, enable us to correct some artefacts produced by
the mentioned effects is a nearly perspective work.

6.1 The discrete formulation

For the Compton scattering imaging system considered, the input object, its approximative
reconstruction and the output image studied in a continuous point of view in the previous

95
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chapter need to be sampled over some grid to perform simulations. Both the direct and
inverse problem need also to be written in a discrete version. The following sections provides
this formulation.

6.1.1 The discrete input and output spaces

The input object of the system is indeed a 3D array containing sampled information about
electronic densities. The array has dimensions of I × J ×K. It will be uniformly sampled
over a grid

{f(xi, yj , zk), 0 ≤ i < I, 0 ≤ j < J, 0 ≤ k < K}, (6.1)

where the cartesian coordinates (xi, yj , zk) assigns the middle of a voxel belonging to the
discrete input object of volume ∆x∆y∆z. Note that zk > 0 for all k.

The reconstructed object is sampled on the same grid.

The output image or the spectral image is obtained first from conical projections sam-
pled both in opening angles and vertex positions, i.e., through a sampling of the (ζ, ξ, ω)
domain, in the form

{Cf(ζm, ξn, ωl), 0 ≤ m < M, 0 ≤ n < N, 0 ≤ l < L}, (6.2)

for a discreteM×N detector and L opening angles of the cone. The 2D detector is sampled
uniformly where each pixel Dmn has dimensions ∆ζ∆ξ with cartesian coordinates of its
middle point (ζm, ξn, 0). The angular sampling step is also uniform and will be noted ∆ω.

Finally the output spectral image is resolved in energy with a sampling rate ∆E and
then it is an array

{I(Dmn, Ci), 0 ≤ m < M, 0 ≤ n < N, 0 ≤ l < L′}, (6.3)

where L′ is the number of energy channels of a detector.

6.1.2 The discrete direct problem

From an input discrete object, the discrete conical transform or projections has to be
computed first. It can be written as a sum approximation of the conical transform in (5.4),
i.e., as

Cf(ζm, ξn, ωl) = ∆ψ∆r
R−1∑

i=0

P−1∑

j=0

1

ri
f(ζm+ri sinωl cosψj , ξn+ri sinωl sinψj , ri cosωl), (6.4)

where ∆ψ =
π

2P
is the azimuthal angular sampling rate into P points, and the parameter

r is discretized into R points with a sampling rate ∆r.
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From the uniform sampling (6.1) of the input object, the sampled values of f inside
the last sum

f(ζm + ri sinωl cosψj , ξn + ri sinωl sinψj , ri cosωl) (6.5)

are obtained by a trilinear interpolation of the object as these positions do not coincide
in general with those of the grid (6.1). Nearest neighbour interpolation may be an other
interesting solution as it would reduce the computational complexity of the computing of
the projections.

From the discrete conical projections {Cf(ζm, ξn, ω̄k)}, the spectral image is obtained
from integral (5.18), it is approximated, for a given pixel Dmn in the 2D detector having
its middle point coordinates (ζm, ξn, 0), by the sum

I(Ci,Dmn) = τI0∆ω
∑

k: Eωk
∈Ci

sin ω̄k cos ω̄k σ
KN(ωk)Cf(ζm, ξn, ω̄k), (6.6)

where Eωk
is the energy given by the Compton equation and ω̄ = min{ω, π − ω} whether

a forward or backward setup is considered. The Compton DDCS σ(ω,E) is approximated
by σKN(ωk) if the electrons are supposed to be free. In the next section we approximate
this DDCS by a non-Dirac law.

The last computation of the spectral image is performed with an uniformly angular
sampling on every energy channel. It means that we need to interpolate the input object
this number of angles per energy channel, per number of detecting sites over the grid
sampling the conical surface. Moreover it works only when the hypothesis of free-electrons
is considered because of the diffeomorphism angle-energy that allows us to sum projections
over energy or angular channels equivalently.

In the next section another numerical scheme is developed where the summation on
the energy channels is performed via the cumulative distribution function of a law the
model the DDCS and then no sampling over each energy channel is performed. Clearly
in the free-electron case this law is modeled by the Dirac distribution over the Compton
line where the related cumulative function is the Heaviside step function applied on the
boundaries of each energy channel.

6.1.3 The differential cross-section for heterogeneous objects

The analytic formulas of the double differential cross-section σ(ω,E) obtained from [30]
and plotted in section 5.1.3.b are going to be approximated by a Cauchy distribution, also
called Lorentzian law. This DDCS is a function of the scattering angle and energy and
having its maximum over the curve given by the Compton equation ω = Eω. For a fixed ω,
it is bell shaped as a function of E having its expectation value at Eω. This 1D curve can
be modelled by a Lorentzian law where the spreading factor γ, called the scale of the law,
which specifies the half-width of the curve depends on the fixed ω and on the material. γ
is then the objective variable in a discrete non-linear optimization problem that minimize
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the mean square error between the law and the analytic DCS per ω. The Lorentzian law
fits better than the Gaussian law due to its more picked bell shape.

The density function of a Lorentzian law is given by

fl(x;x0, γ) =
1

πγ

(
1 +

(
x− x0
γ

)2
)−1

. (6.7)

The amplitude of the law is
1

πγ
located at its median value x0. The related cumulative

distribution function

Fl(x;x0, γ) =
1

π
arctan(

x− x0
γ

) +
1

2
. (6.8)

The factor γ must be optimized per different element or material and per scattering
angle of the photon. As seen in section 5.1.3.b, larger angles induces a larger spreading of
the DDCS. Figures 6.1 shows the DDCS for aluminium compared to hydrogen in the ω−E
plane where a higher spreading of the law is appreciated for aluminium and for hydrogen, for

ω ∈ [
π

2
, π]. It can be verified that heavier elements presents higher spreading coefficients.

The increase of the spreading according to the scattering angle is also appreciated.
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(a) Hydrogen, Z = 1.
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Figure 6.1: DDCS for hydrogen and aluminium for ω ∈ [π2 , π]. The spreading increases
with the angle and is bigger for heavier elements. Notice that the maximum value per
each ω is located at the Compton line, the spreading is due to the Doppler broadening.
Discontinuities are due to the binding effect. E0 = 50 keV.

Therefore, for a given element or material the Compton double differential cross section
approximated by the Lorentzian law centred at Eω and the scale γ depending on the
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scattering angle reads

σ(ω,E) = ZσKN(ω)fl(E;Eω, γω), (6.9)

where Z is the number of electrons in the atom.

The factor γω is estimated from the real DDCS by fitting a non-linear model minimizing
the least square error between the actual DDCS and the Lorentz density fl(E;Eω, γω).

Figure 6.2 shows the real and fitted DDCS for aluminium at ω =
2

3
π. This was done

through the R function nls.

3.8 4 4.2 4.4 4.6 4.8 5

·104
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σ
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Lorentzian

Figure 6.2: Compton scattering DDCS at ω =
2

3
π for aluminium and its approximation

by a Lorentzian low with spreading factor γ = 495 eV which specifies the half-width at
half-maximum. E0 = 50 keV.

For all scattering angles ω in simulations, the related scale γω will be estimated for
different materials presented in the test input phantom in section 6.3. It is verified that
γ increases regularly with the scattering angle. For a given material, γω is estimated by
fitting a square polynomial model

γ̃ω = a+ bω + cω2, (6.10)

where (a, b, c) are the coefficients minimizing the least squares error between all γ̃ω and all
the γ obtained from the Lorentz distribution estimation for a given sampling of ω.

Therefore, the input information to the system will be the electronic density per voxel,
and also these coefficients (a, b, c) also per voxel. Figure 6.3 shows both γ and γ̃ as a
function of ω for the material used in the input phantom, namely, skin, paraffin wax, lead
oxide and aluminium oxide.

Finally, for a given energy channel Ci, the spectral image is modelled by (5.11) and
(5.18) where the integral over the conical surface is no longer available due to the non Dirac
Compton DDCS. For a given detecting site, the integral in (5.11) is then performed not



100 6. Numerical simulations for the 3D framework

1.5 2 2.5 3

200

400

600

800
lead oxide

aluminium oxide

skin

paraffin wax

ω
γ

γ
γ̃

Figure 6.3: Compton scattering DDCS at ω =
2

3
π for aluminium and its approximation

by a Lorentzian low wit spreading factor γ = 495 eV which specifies the half-width at
half-maximum. E0 = 50 keV.

over the conical surface but over R
2 × R. Per each couple detecting site - scattering site,

the scattering angle is computed and the DDCS evaluated consequently.

Therefore, for a given material, the output spectral image in integral (5.18) is rewritten
as

I(Ci,Dmn) =

∫

E∈Ci

dI(E,D)

= τI0

∫

R2×R+

1

r2
M

cos ω̄M σ
KN(ωM)

∫

E∈Ci

fl(E;EωM
, γωM

) dE f(M) dM

= τI0

∫

R2×R+

1

r2
M

cos ω̄M σ
KN(ωM)

(
F (Ei+1;EωM

, γωM
)− F (Ei;EωM

, γωM
)
)
f(M) dM.

(6.11)

Last integral is solved numerically as the sum of the contribution of each voxel Mijk

having its centre at coordinates (xi, yj , zk) in the input discrete grid to a given detector
pixel Dmn, that is,

I(Ci,Dmn) = τI0
∑

i,j,k

1

r2ijk
cos ω̄ijkσ

KN(ωijk)

(
F (Ei+1;Eωijk

, γωijk
)− F (Ei;Eωijk

, γωijk
)
)
f(Mijk),

(6.12)
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where rijk and ωijk are the distance from Dmn to Mijk and the related scattering angle
respectively.

The fundamental difference of last sum with sum (6.6) lies on the computation of the
spectral image per each couple voxel-pixel directly from a marginalisation of the energy
and then the use of the cumulative distribution of the approximative law of the DDCS.
This law can either be a Dirac law in the Klen-Nishina case or a bell shaped law when
the DDCS is employed. By doing this the integral of the object is based on the cartesian
integral of the transform (5.22) while the sum (6.6) is based on the conical integral (5.4).

6.1.4 The discrete inverse problem

From the output spectral image I(Dmn, Ci), the aim is to approximate the input object
over the same grid in (6.1). As the inverse formula of the conical Radon transform and
related filtered back-projections are going to be used, the Dirac relationship between the
scattering angle and energy given by the Compton equation is going to be assumed as being
the expectation value of the non-Dirac true relationship. Therefore, the Klein-Nishina
Compton interaction cross-section is also assumed.

From the spectral image I(Dmn, Ci) we need to estimate an angular density to perform
the inverse process. As done in the 2D case, this is done by first considering this spectral
image as a piecewise constant function over each energy channel, then we sample the
scattering angle with an uniform angular step from where an energy sampling {Ek} is
obtained through the Compton equation.

The discrete energy density is obtained from the spectral image by nearest neighbour
interpolation of this image over the energy sampling {Ek}.

Finally the angular density is estimated from this energy density {Ek} via the change
of variable given the Compton equation as

{E dE

dω
}k. (6.13)

This is the angular density to be use in the inverse problem.
Notice that the angular factors in the spectral image

sin ω̄ cos ω̄ σKN(ω) (6.14)

need also to be corrected in the last estimated angular density before performing the back-
projections.

6.1.4.a Filtering and back-projections

From some angularly resolved data, we can apply the filtering back-projection procedure
related to the conical transform. We need the discrete version of the back-projecting
operator and of the filtering process.
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The discrete adjoint transform that performs back-projections can then be written by
using the trapezoidal rule to solve integral (5.44). For some dataset {g(ζm, ξn, ω̄l)} the
adjoint discrete operator reads

C†g(xi, yj , zk) =
1

zk
∆ψ

P−1∑

p=0

L′−1∑

l=0

∆ωl
[
g(xi−zk tan ω̄l cosψp, yj−zk tan ω̄l sinψp, ω̄l)

]
, (6.15)

where ∆ψ =
π

2P
is the azimuthal angular sampling rate into P points and ∆ωl is the

angular step related to the energy channel Cl.

Linear interpolation of the dataset {g(ζm, ξn, ω̄l)} is used again here to compute the
values

g(xi − zk tan ω̄l cosψp, yj − zk tan ω̄l sinψp, ω̄l). (6.16)

Before back-projecting, the conical projections need to be filtered in the 2D Fourier
domain related to variables (ζ, ξ) with the corresponding frequency variables (u, v) by the
filters

(u2 + v2)
sin ω̄

cos3 ω̄
, (6.17)

and by the filter z3 in the object domain. Note that due to the presence of the factor
1

z
in

the adjoint transform, this filter is simplified in numerical implementations to z2.

Therefore, to perform numerically the inverse process from an output dataset I(Dmn, Ci)
of the imaging system, the procedure works as follows.

1. Compute the conical projections {Cf(ζm, ξn, ω̄l)} sampled angularly and corrected
by factors (6.14).

2. Filter the projections in the Fourier domain to get Ĉ∗f applying (5.46).

3. Perform an inverse Fourier transform to obtain the filtered projections C∗f .

4. Then the back-projection procedure is performed by means of the adjoint transform
C† by (6.15).

5. Finally, the factor z3 is applied and we obtain an approximative reconstruction of
the input object.

A discrete version of reconstruction formula (5.2.3) is then given, for all (xi, yj , zk) by

f(xi, yj , zk) = z3k C†C∗f(xi, yj , zk). (6.18)
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(c) Cosine window with n = 2.

Figure 6.4: The filter (u2 + v2) and its smoothing by two cosine apodization windows.

6.1.4.b Window functions

As in the 2D case, we can control numerically high frequencies dues to the divergence of
the filter (u, v) 7→ (u2 + v2). This effect amplifies contrasting features in reconstructions
but also amplifies numerical noise in the spectral images. This effect can be controlled by
an apodization window function (u, v) 7→ w(u, v). The resulting filtered projection at ω
now reads

Ĉ∗f(u, v, ω) = w(u, v)(u2 + v2)
sinω

cos3 ω
Ĉf(u, v, ω). (6.19)
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Cosine related window functions are going to be used in our simulations, they are
defined on its 2D form by

w(u, v) =

{
cosn(π

√
u2 + v2) ,

√
u2 + v2 ≤ 1

2

0 ,
√
u2 + v2 > 1

2 .
(6.20)

Higher values of n makes the function decrease faster and the filter has then more
effect over the (u2+ v2) filter. On the other hand, a high value of n might over-smooth the
reconstruction and therefore some contrasting details in images will be lost. The choice of
n in the cosine window, depends on the image configuration and on the expected results.
Figure 6.4 shows the behaviour of the filter (u2+v2) as well as its smoothing by two cosine
windows with n ∈ {1, 2}. Others 2D filters and more details about apodization windows
and filtering can be found in [12].

6.2 First simulations, the 3D Shepp-Logan phantom

For our first simulation work, the 3D version of the classical Shepp-Logan phantom con-
taining different ellipsoids that represent the human head [31] is going to be considered
as the input object. It is an array of dimensions 64 × 64 × 64 voxels. We will used it to
support the forward and inverse conical Radon transform and to see its limitations and
numerical artifacts in the reconstructed phantom.

Therefore, neither energy nor spatial resolution are going to be taken into account,
the sampling spatial step is given in voxels for the object and in pixels for the detector.
The conical projections are uniformly sampled angularly where the Klein-Nishina DCS and
the solid angle factor under-which the pixel sees the voxel are not included in the direct
problem of these first simulations. Doppler broadening, binding effects, multiple scattering
and attenuation are then neglected.

The 2D plane detector is located over the xOy-plane having dimensions of 192 × 192
pixels. The object is at a perpendicular distance of 10 pixels to the detector following the
z-axis, i.e., the z-coordinate of the input Shepp-Logan phantom verifies z > 10. As we
don’t have a hole producing incomplete data, there is no need to place the phantom farther
as seen in the 2D case. The beam has the same square cross-sectional area of the frontal
surface of the phantom, then no translations are performed.

6.2.1 Sampling parameters

The discrete conical Radon transform in (6.4) requires a spatial sampling over the conical
surface that is set here to ∆r = 1.2 times the voxel length for the slant heigh and ∆ψ = 0.01
for the azimuthal angular step in radians. Different cones are considered by sampling the

polar angle ω by 78 uniform opening angles of cones from 0 to
π

2
, i.e., ∆ω = 0.02 radians.

With this sampling choice we have an output dataset of dimensions 192 × 192 × 79 to
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reconstruct an object over a grid of 64 × 64 × 64. A voxel in the phantom has then the
same length to a pixel in the detector.

The same angular sampling steps are chosen to compute the discrete adjoint transform
in (6.15). A soft apodization cosine window with n = 1 is applied in the filtering process
due to the numerical noise and the non applying of random Poisson noise.
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Figure 6.5: Conical projections of the 3D Shepp-Logan phantom at a fixed ω.
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Figure 6.6: Conical filtered projections of the 3D Shepp-Logan phantom at a fixed ω. See
how contrasting details are amplified with respect to the non filtered projections.

6.2.2 Simulation results

Figure 6.5 shows the conical projections of the phantom for three different opening angles,
namely ω ∈ { 1

12π,
1
4π,

5
12π} radians. Low angles data are almost fully covered by the

detecting plane whilst data related to large angular values will be lost due to the limited
detector area. The filtering process will act on the 2D Fourier transform of each plane for
all ω fixed. Figure 6.6 shows the filtered projections for the same angles, we can appreciate
the increase of contrasting details in projections due to the filter (u2 + v2).
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(a): Phantom and reconstruction for z = 24.

−30 −10 0 10 20 30

−
3

0
−

1
0

0
1

0
2

0
3

0

x

y

0.0

0.2

0.4

0.6

0.8

1.0

−30 −10 0 10 20 30

−
3

0
−

1
0

0
1

0
2

0
3

0

x

y

0.4

0.6

0.8

1.0

1.2

(b): Phantom and reconstruction for z = 32.
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(c): Phantom and reconstruction for z = 40.

Figure 6.7: 3D Shepp-Logan phantom of dimensions 64× 64× 64 voxels. Planes presented
having equations z = z0 with z0 ∈ {24, 32, 40}. Left column, original phantom. Right
column, reconstruction. Notice the ellipsoidal artifacts more accentuated when z is bigger
due to less data from large angular values.
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(a): Phantom and reconstruction for y = 24.
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(b): Phantom and reconstruction for y = 32.
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(c): Phantom and reconstruction for y = 40.

Figure 6.8: 3D Shepp-Logan phantom of dimensions 64× 64× 64 voxels. Planes presented
having equations y = y0 with y0 ∈ {24, 32, 40}. Left column, original phantom. Right
column, reconstruction. Again, notice the influence of limited data related to large angular
values as z increases.
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The quality of the filtered back-projection inversion for some noise-less data related to
free electrons at rest depends clearly on the sampling and dimensions. Although contrasting
features are well reconstructed at the correct positions. Reconstruction results are shown
in Figure 6.7 for cross-sections given by planes parallels to the xOy-plane, that is, to the
detector, planes related to a larger value of z presents then more artifacts due to the lack of
data back-projected from bordering regions of the detector. Cross-section given by planes
parallels to the xOz-plane are also presented in Figure 6.8 where we can also appreciate
more artifacts in reconstructions in zones that are farther to the detector.

As noise was not added, higher values of n for the cosine apodization window are
not necessary, these results are not presented as we are investigating an ideal scenario
with a phantom constituted of elements showing regular boundaries as the Shepp-Logan
phantom is. The correlation coefficient of 0.70 is obtained while the variance ratio is 1.27.
Reconstructions with noise data and different apodization windows can be found in [6].

6.3 A 3D stratigraphical analytical phantom

6.3.1 The phantom

A 3D phantom is constructed in a way that allows us to compare the deterministic ap-
proach of the imaging problem presented via the conical Radon transform to Monte Carlo
simulations performed via the code Penelope [30]. This code offers constructions of scenes
based on potentially degenerated quadric surfaces, for phantoms as well as for detectors.
The test phantom is constructed correspondingly.

The phantom, corresponding to a flattened stratigraphic sample is analytically con-
structed through planar surfaces with two layers of 16× 16 µm2 regarding its frontal area
and about 64 and 48 µm thickness each layer. These layers are placed parallel to a 2D
detector. The closest layer to the detector presents two spheres of 8 µm radius, while the
further one contains one sphere of 14 µm of radius.

The object is placed at a perpendicular distance of 50 µm from the detector, the 2
layers are then limited by 3 planes parallel to the detector located at 50, 114 and 162
µm respectively from the detector following the z-axis. A rotation of an angle θ about the
y-axis was done per each layer, namely by the angles θ = {3.2,−3, 2.8} degrees respectively.

Regarding the chemical composition of the phantom, the spheres represent inorganic
grains within the two organic layers, each value in the phantom describes the electron
density of the considered material. In this section, the electron densities are the number
of electrons per cm3.

The layer closest to the detector represents an organic layer of skin, having an electron
density of 3.638981 × 1023. The other layer is composed of paraffin wax, with electron
density 3.207726 × 1023. The two grains in the first layer are grains of aluminium oxide
and the third one, in the second layer, represents a grain of lead oxide. These materials have
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electron densities of 1.172404× 1024 and 2.314164× 1024 respectively. All these electronic
densities are taken from [30].

The sample is represented in Figures 6.12 and 6.16, giving cross sections parallels to
the xOz and xOy planes respectively.

6.3.2 Dimensions and sampling details

The unit length considered in the 2D detector and in 3D objects is 1 µm. The spatial
resolution of the detector is thus 1 µm2 represented by a pixel in the spectral image and a
voxel in objects represents 1 µm3. Dimension parameters are set according to simulations
results performed in the 2D case.

The sample is therefore represented in a 16 × 16 × 120 array. The setup is configured
as follows. A square parallel X-ray beam of 8 × 8 µm2 of sectional area crosses a hole in
the detector of 10 × 10 µm2 (ζ0 = ξ0 = 10 µm in Figure 1.4) if a backward configuration
is considered. The incident energy of the beam is 50 keV. As the simulated sample has
the mentioned dimensions, then we need 1 translation of 8 µm following the 0x-axis and
the same for the Oy-axis, to cover the full sample when no intersections between the two
imaging process are performed. As noticed in the 2D case, a specific loss in scale is presented
in boundaries voxels perpendicular to the detector, then we performed translations of 4
µm instead following the axis x and y and we take only the 4 × 4 × 120 central voxels of
the reconstructed slice. The detector plane, located over the xOy-plane, has an area of
320× 320 µm2 including the hole. The number of detecting sites, having an area of 1× 1
µm2 each as mentioned, is 89900 considering the absence of detecting sites in the hole area.

6.3.3 Spectral image formation

Two numerical schemes are developed to generate the spectral image, the first is based on
the definition of the transform given in (5.4) that follows the same principle employed in
the 2D case where an uniform angular sampling is considered. The output spectral image
is obtained by integrating over the energy channel as in 6.6. Due to the complexity of
computations, this version is only suited for the free electrons case where the angular DCS
given by the Klein-Nishina formula is employed. We need to perform interpolations of the
phantom over each sampling of the cone per both each angle and each detecting site. If
the DDCS is considered, another loop must be added related to sampling of the Lorentz
law per scattering angle.

That was the reason to develop the second image formation scheme. Based now on
the definition (5.22) of the conical transform, the spectral image is computed by the sum
(6.3) for each discrete energy channel. No angular sampling is done and then no need of
interpolations over conical surface. The sum is performed over every voxel in the input
object for each pixel in the detector but instead of interpolations, only a distance and
angle are calculated. Using this numerical scheme, a GPU parallelization is possible due to
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Figure 6.9: Spectral image for the analytical phantom at different energy channels. The
free-electron case obtained by a conical integration of the object using the CPU paralleliza-
tion implementation.
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Figure 6.10: Spectral image for the analytical phantom at different energy channels. These
non-free electron simulations were obtained through a cartesian integration of the simulated
sample using a GPU implementation.
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Figure 6.11: Spectral image for the analytical phantom at different energy channels. Re-
sults obtained using a complete Monte Carlo simulation performed with the code Penelope.
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the cartesian nature of the integral. The DDCS can be approximated by a law where the
cumulative distribution function is known, as the Lorentzian law for the non-free electrons
case or the Dirac law for the free-electrons one.

For the first scheme, the conical one, cones in (6.4) are sampled by ∆r = 1.2 µm for
the slant heigh and ∆ψ = 0.01 radians for the azimuthal angle. 157 cones are simulated

per detecting site then the cone opening sampling rate is ∆ω̄ = 0.01 radians from 0 to
π

2
.

The spectral resolution of detectors is set to 5 and 50 eV in the simulations. Then we
will dispose of 740 and 74 energy channels in a backward setup sampled from Eπ/2 to Eπ.

The central region of the phantom of 8×8 µm2 of sectional area and 120 µm of depth is
going to be analysed first. Figures 6.9, 6.10 and 6.11 show respectively the spectral image
of the sample at three different energy channels obtained by the two schemas mentioned
and a third result through Monte Carlo simulations with the code Penelope [30]. The
three different rings corresponding to each grain are appreciated in the first case due to
the absence of broadening in the first scheme.

The second scheme gives the same spectral image to the first one if the Dirac law is
applied instead of the Lorentzian within numerical errors, the image is not presented but
it is remarkable the difference in computing time. Whilst the configurations are identical,
the first scheme requires a couple of hours to proceed while the latter, using GPU accel-
eration, is finished within less than a minute. Monte Carlo simulations of about 1 × 1011

incident photons to produce the thirds series of images is even more time consuming, the
computation to get those took nearly a full month on a machine with 64 CPUs.

6.4 Object reconstruction and conclusions

The phantom is reconstructed through the back-projection procedure detailed in this sec-
tion. First, filtered back-projections from angular sampled data are performed. No energy
resolution is considered and then we can back-project filtered projections directly obtained
in the detector without performing a summation into an energy channel. Therefore, the
quality of reconstructions doesn’t suffer from this averaging of projections and depends
uniquely on the angular sampling rate, here ∆ω = 0.01 radians. Horizontal and vertical
translations of 4 µm were performed to reduce the edge artifacts. As angular sampled
projections are considered, we have for these reconstructions 157 projections.

Then, energy sampled data are obtained through the sum (6.6). The Klein-Nishina and
solid angle factors are applied to these projections to generate the energy resolved image.
These factors were corrected as explained in last section to the angular density estimated
from the spectral image. Then the filtered back-projection algorithm is performed. A cosine
window function in the form of (6.20) when n = 1 due to the non presence of noise was used
in the Fourier domain of projections. Missing data not recorded in the hole area was filled
by a numerical solution of a heat diffusion problem from values of energies captured at the
hole edge as showed in Figure 6.20. This allows us to correct partially the specific loss in
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Figure 6.12: The numerical constructed phantom of dimensions 16×16×120 voxels. Planes
presented, from top to bottom: y = {4, 8, 12} µm.
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Figure 6.13: Reconstruction from angular resolved data performed with half translations.
Same layout as in Figure 6.12.



6.4. Object reconstruction and conclusions 113

60 80 100 120 140 160

−
5

0
5

z

x

0 5 10 15

60 80 100 120 140 160

−
5

0
5

z

x

−5 0 5 10 15

60 80 100 120 140 160

−
5

0
5

z

x

−5 0 5 10 15

Figure 6.14: Reconstruction from energy resolved data performed with half translations.
Same layout as in Figure 6.12. Energy resolution 5 eV.
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Figure 6.15: Reconstruction from energy resolved data performed with half translations.
Same layout as in Figure 6.12. Energy resolution 50 eV.
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Figure 6.16: The constructed phantom of dimensions 16×16×120 voxels. Planes presented,
from left to right: z = {66, 98, 138} µm.
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Figure 6.17: Reconstruction from angular resolved data performed with half translations.
Same layout as in Figure 6.16.
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Figure 6.18: Reconstruction from energy resolved data performed with half translations.
Same layout as in Figure 6.16. Energy resolution 5 eV.
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Figure 6.19: Reconstruction from energy resolved data performed with half translations.
Same layout as in Figure 6.16. Energy resolution 50 eV.
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(a) Complete data without hole.
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(b) The hole in the detector, its has no effect from the third in the free-electrons model.
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(c) The hole is filled with numerical heat propagation.

Figure 6.20: The hole in the detector is filled with heat propagation. Images presented for
the three lowest energy channels, namely the 3 channels defined by the 4 energy boundaries
(41816, 41866, 41916, 41966) eV.
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scale in reconstructions that is caused by the missing data that would have been recorded
in the hole area. The effect of these missing data in a 50 eV resolved detector affects mainly
the two lowest energy channels, that is, the channels covering energies within [Eπ, Eπ+50[
and [Eπ+50, Eπ+100[ eV. In the first one, most of the data would be recorded in the hole
area then the effect of the missing data is larger. Filling it with numerical heat propagation
corrects partially the lost in scale but also the discontinuity in the hole boundary. From
the third channel the effect of the hole is negligible in the free-electrons scenario. Of course
if a spreading of the signal is present due to the Doppler broadening, even at larger energy
channels, some signal will be lost in the hole.

First reconstructions are presented for cross sections parallels to the xOz plane, where
we can appreciate the quality of reconstructions in recovering the correct depth of different
elements. Cross sectional reconstructions parallels to the xOy planes are presented then,
that its, for planes parallels to the detector.

Reconstruction from angular sampled projections are presented in Figures 6.13 and
6.17. Figures 6.14 and 6.18 show reconstructions from an energy resolved spectral image
by 5 eV and Figures 6.15 and 6.19 for 50 eV. The error measurements are presented in
table 6.1 namely the correlation coefficient and the variance ratio for each configuration
considered.

A smoothing in reconstructions is appreciated due to the sum of all projections be-
longing to a given energy channel. This summation also generates a loss in scale in re-
constructions appreciated even more at large energy resolutions. We can appreciate that
reconstructions from uniform angularly sampled projections are reconstructed almost at the
correct scale, this is seen also in the related variance ratio. Given a low energy resolution
as 5 eV, the contrasting details of the input object are well reconstructed as appreciated in
figures and in their correlation coefficients. However the absolute scale is affected as in the
2D case because at low angles, the summation and the latter approximation of the angular
density by nearest neighbours mostly eliminates the picks in the 1D angular spectra per
detecting site. This is well appreciated in Figure 4.9. For larger energy resolution the
correlation coefficient is also affected because of the loss in details when performing the
nearest neighbour approximation of the angular density, mostly for low angles. As in the
2D case, the hole affects mostly in the scale because, first most of the signal would be
detected there and second, it corresponds to low angles projections that will be latter aver-
aged on a potentially large energy channel. For all three configurations, the hard grains are
detected at their correct depth within the lower density matrix. Half translations help to
correct the difference in scales from boundary voxels and inner ones. Reconstructions from
non-overlapping translations are not presented since strong artifacts from one translation
to another are present.

All these simulations and reconstructions were computed on the basis of the free electron
model. When taking into account a DDCS model accounting for Doppler broadening
and binding effects. The blurring of the spectral images showed in Figures 6.10 or 6.11
renders the direct application of the filtering back-projection process to those images totally
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ineffective. Other imaging alternatives may be available to face this issue, some of which
are exposed in the conclusions in chapter 7. To illustrate the problematic, a reconstruction
considering a realistic scenario including Doppler and binding effects accounted in the
DDCS model simulated through a Lorentzian distribution is exposed in Figure 6.21. The
reconstructed slice concentrates the signal at the area closest to the detector. The original
8 × 8 × 120 slice is also shown, the different grains and layer boundaries are not well
identified.

Table 6.1: Error measurements related to different configurations.

angular sampling/energy resolution correlation variance ratio
∆ω = 0.001 radians 0.97 0.84

∆E = 5 eV. 0.94 0.72
∆E = 50 eV. 0.79 0.18
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Figure 6.21: A slice of the phantom and its filtered back-projection reconstruction when
the complete DDCS model is considered that accounts for Doppler and binding effects.
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Conclusion and perspectives

A X-ray imaging modality based on Compton scattering is presented in this work, the main
objective is to perform a 3D mapping of flat heritage objects without the need of relative
rotations between object, source and detectors. Both the image formation process by means
of a conical Radon transform and the object reconstruction by a filtered back-projection
procedure are exposed and supported by numerical simulations showing feasibility with
real data. Results are already very encouraging considering the problem of non-destructive
and non-invasive 3D imaging of samples supported by a deep or dense material. Clearly,
the current method should still be worked on to eliminate some artifacts which are strong
enough to blur out some of the contrast of the electron density. Yet our methodology
enables us to strengthen our detailed understanding of the image formation process and
shows how it is coupled to the volume reconstruction itself. This is proving instrumental
in designing the physical device that will ultimately enable such imaging modality.

To be able to tackle the system computationally, we have first focused on flat objects
and using incident energy that optimise the relative importance of a single inelastic scat-
tering event versus more complex, multiple scatterings and absorption interactions. At the
chosen incident energy the probability of multiple scattering is very small since the mean
free path of the X-ray photons is in the same order of magnitude as the probed volume
thickness. When dealing with single scattering and a monochromatic incident beam, it
is easy to discriminate photons generated by elastic / inelastic scattering events. At the
selected incident energy the mean free path attached to scattering is much shorter than
that attached to the photoelectric absorption process, in other words the effects of pho-
toelectric absorption is much lower than scattering effects. It is important to note that
inelastically scattered photons have an energy which is in the same domain as the incident
photon energy when it comes to relative importance of absorption and scattering.

For a mathematical understanding of an imaging system, the related direct and inverse
problem must be modeled. Different physical parameters describing the device have to be
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chosen properly as for example spatial and spectral resolutions, dimensions or initial con-
figurations. A good understanding of these parameters in both the output image formation
process and the volume input reconstruction are crucial.

A simplified two-dimensional (2D) setup is considered first to answer this questions
where the incident beam and diffracted photons are limited to a 2D plane. This limitation is
first considered because to the equations are more easy to manipulate, simulations schemas
are less complex and time consuming, and the azimuthal scattered angle is uniformly
distributed on the interval [0, 2π[ in Compton events. We present the direct and inverse
problem related to this 2D scenario based mainly on the V-line Radon transform and its
filtered back-projection inversion [21, 15] having also the hypothesis of free electrons at
rest. That means that the input object only represents the electron density at a given
position, for the same material or element. Numerical simulations support these models
where different physical parameters are tested. An interpretation of results according to
these parameters is presented to be afterwards used in the complete three-dimensional (3D)
framework.

The 3D configuration is presented next, the direct and inverse problem are modelled
through mainly the conical Radon transform [6, 16]. The model first assumes the free-
electrons hypothesis and a more realistic scenario where the chemical composition of dif-
ferent materials are taken into account.

The image formation process is dominated by the angle-energy double differential cross-
section (DDCS) of Compton scattering in this case. In the free-electrons hypothesis the
DDCS is simply given by a Dirac distribution concentrated on the line given by the Comp-
ton equation, while in the non-free electrons case, a broadening of this line is presented due
to the Doppler effect with some discontinuities due to binding effects of electrons of a given
element. The DDCS of the latter case is approximated by a Lorentz distribution located
on the Compton line and the broadening depending on both the element and the scattering
angle. For a given element, the broadening factor of the Lorentz law varies regularly with
the angle and then a square polynomial regression is performed to estimate the factor.

The Lorentz model gives a good approximation of the spectral image formation, this
is supported by a realistic Monte Carlo simulation of the image obtained from the same
input object through the code Penelope [30].

The output spectral image obtained through the polynomial approximation is compared
with the one given by the Dirac distribution. The broadening is too strong to directly
perform a filtered back-projection inversion even if the spectral resolution is low enough.

We envisage some ideas to face this issue in a perspective work. A deconvolution of
the output spectral image can be performed. The related convolution kernel induced by
the Doppler broadening effect can be estimated directly from the relationship between the
simulated spectral images of both the Dirac and Lorentz DDCS. This can then be followed
by an iterative reconstruction process as the direct problem is well understood and, from a
given model, it provides simulated data that is a close approximation to the observed data,
such that an iterative approach to fit the simulated image to the observations should provide
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a good model. Another approach would be to consider the problem in the framework of a
linear least-square problem, then a reconstruction through a pseudo-inverse of the related
matrix of the direct problem can also not only address the Doppler broadening issue but
also the incompleteness of the data. These works are already in progress.
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Une modalité d’imagerie par rayons X basée sur le rayonnement diffusé Compton est
présentée dans ce travail, l’objectif principal est d’effectuer une cartographie 3D des ob-
jets plats du patrimoine sans mener des rotations relatives entre l’objet, la source et les
détecteurs. Le processus de formation d’image basée sur la transformée de Radon conique
et la reconstruction de l’objet par une procédure de rétro-projection filtrée sont exposés et
supportés par des simulations numériques montrant la faisabilité avec des données réelles.
Les résultats sont déjà encourageants au vu du problème complexe d’imagerie 3D non de-
structive et non invasive d’échantillons potentiellement supportés par un matériau dense.
Clairement, la méthode actuelle doit encore être nourrie avec des méthodes de correction
de certains artéfacts qui affectent le contraste de la densité électronique reconstruite. La
méthodologie présentée nous permet déjà de renforcer notre compréhension détaillée du
processus de formation d’image et montre comment il est couplé à la reconstruction du
volume. Ceci fournira les outils nécessaires pour la conception de l’instrument physique
qui permettra finalement cette modalité d’imagerie.

Pour aborder le système numériquement, nous nous sommes d’abord concentrés sur des
objets plats avec une énergie incidente qui optimise l’importance relative d’un événement
de diffusion inélastique par rapport à des interactions multiples et d’absorption plus com-
plexes. À l’énergie incidente choisie, la probabilité de diffusion multiple est très faible du fait
que le libre parcours moyen des photons est du même ordre de grandeur que l’épaisseur du
volume sondé. Lorsqu’il s’agit d’une diffusion unique et d’un faisceau incident monochro-
matique, il est facile de discriminer les photons générés par les événements de diffusion
élastique / inélastique. A l’énergie incidente considérée, le libre parcours moyen lié à
la diffusion est beaucoup plus court que celui correspondant au processus d’absorption
photoélectrique, en d’autres termes les effets de l’absorption photoélectrique sont beau-
coup plus faibles que les effets de diffusion. Il est important de noter que les photons
diffusés inélastiquement ont une énergie qui est dans le même domaine que l’énergie des
photons incidents par rapport à l’importance relative de l’absorption et de la diffusion.

Pour une compréhension mathématique d’un système d’imagerie, le problème direct et
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le problème inverse doivent être modélisés. Différents paramètres physiques décrivant le
dispositif doivent être étudies comme par exemple les résolutions spatiales et spectrales, les
dimensions ou les configurations initiales. Une bonne compréhension de ces paramètres à
la fois dans le processus de formation d’image de sortie et dans la reconstruction du volume
d’entrée est cruciale.

Une configuration bidimensionnelle (2D) simplifiée est considérée dans un premier
temps pour répondre aux cas où le faisceau incident et les photons diffusés sont limités
à un plan 2D. Cette limitation est d’abord envisagée car les équations sont plus faciles à
manipuler, les schémas numériques sont moins complexes et moins couteaux en temps de
calcul, et aussi car l’angle azimutal d’un événement de diffusion Compton est uniformément
distribué sur l’intervalle [0, 2π[. Nous présentons le problème direct et inverse lié à ce
scénario 2D basé principalement sur la transformée de Radon sur des lignes en V et son
inversion reposant sur le principe de la rétro-projection filtrée [21, 15], en considérant aussi
l’hypothèse d’électrons libres et au repos. Cela signifie que l’objet d’entrée est uniquement
représenté par la densité électronique à une position donnée et pour un même matériau.
Des simulations numériques supportent ce modèle où différents paramètres physiques sont
testés. Une interprétation des résultats selon ces paramètres est présentée pour être ensuite
utilisée dans le cadre tridimensionnel (3D) complet.

La configuration 3D est présentée ensuite, les problèmes direct et inverse sont modélisés
principalement au travers de la transformée de Radon conique [6, 16]. Le modèle suppose
d’abord l’hypothèse d’électrons libres et ensuite un scénario plus réaliste où la composition
chimique de différents matériaux est prise en compte.

Le processus de formation d’image est dominé par la double section efficace différentielle
en énergie et en angle (DSED) de la diffusion Compton dans ce cas. Sous l’hypothèse des
électrons libres, la DSED est simplement donné par une distribution de Dirac concentrée sur
la ligne donnée par l’équation de Compton, alors que dans le cas des électrons non libres, un
élargissement de cette ligne est présenté dû à l’effet Doppler avec quelques discontinuités
dues aux effets de liaison des électrons d’un élément donné. La DSED de ce dernier
cas est approché par une distribution de Lorentz située sur la ligne Compton et dont
l’élargissement dépend à la fois de l’élément et de l’angle de diffusion. Pour un élément
donné, le facteur d’élargissement de la loi de Lorentz variant régulièrement avec l’angle,
une régression polynomiale de degré 2 est effectuée pour estimer ce facteur d’élargissement.

Le modèle de Lorentz donne une bonne approximation de la formation d’image spec-
trale. Ceci est confirmé par des simulations réalistes Monte Carlo de l’image obtenue à
partir du même objet d’entrée avec le code Penelope [30].

L’image spectrale de sortie obtenue par l’approximation polynomiale est comparée à
celle donnée par la distribution de Dirac. L’élargissement est trop important pour effectuer
une inversion par rétroprojection filtrée même si la résolution spectrale est très fine. Ainsi,
le processus développé ici est insuffisant pour effectuer une reconstruction à partir de
données entachées de cet élargissement.

Nous envisageons quelques idées pour faire face à ce problème dans un travail à venir.
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Une déconvolution de l’image spectrale de sortie peut être effectuée. Le noyau de convolu-
tion induit par l’effet d’élargissement Doppler peut être estimé directement à partir de la
relation entre les images spectrales simulées avec l’approximation de Dirac et de Lorentz
pour la DSED. Ceci peut ensuite être suivi d’un processus de reconstruction itératif car
le problème direct est bien compris et la simulation mise en place ici donne une bonne
approximation des données mesurées et permet ainsi d’assurer une excellente similitude
entre les observations et le modèle. Une autre approche consisterait à traiter le problème
sous une formulation de moindre-carrée linéaire: une reconstruction à travers un pseudo-
inverse de la matrice associée du problème direct peut non seulement traiter le problème
d’élargissement Doppler mais aussi l’incomplétude des données. Ces travaux sont en cours
de réalisation.
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A

Numerical implementations

The different algorithms developed in this work are going to be detailed here. Simulations
are implemented and performed in the R language [25] together with some of its different
libraries detailed below. The C-based programming language OpenCL was employed to
implement a GPU parallelization of the algorithms. The MonteCarlo code for simulations
of electron and photon transport through matter Penelope [30] was employed as well to
simulate alternatively the direct problem.

The main part of algorithms is the compute of conical projections and their back-
projections. Only those parts are detailed here. Concerning the compute of projections
regarding the original 2D Radon transform and its different versions in chapter 2 are not
treated here as their are already well studied, for example in [33]. The V-line transform
implementation as being the 2D version of the conical transform is not provided here.

The different R packages used in codes are given in table A.1.

Table A.1: The R packages and their application.

data.table fast import of large dataset, used to import Penelope simulations data
fields spatial data tools, used in 2D interpolations and surfaces plotting
oce oceanographic data analysis, used in 3D interpolations
OpenCL Interface between R and OpenCL, used in computing forward and

backward conical projections on a GPU parallel implementation
parallel used for CPU parallelization
ptw parametric time warping, used to perform zero padding on signals
SynchWave wavelet transform, used in shifting the Fourier transform to apply filters
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A.1 The conical projections

Given an input discrete object f , the conical projections are obtained from the sum (6.4).
We recall that (ω, ψ) are the polar and azimuthal angle of a cone, (ζ, ψ) the vertex or
detecting site and r the distance from the vertex to a point in the conical surface. Pro-
jections are obtained by first, defining a function cone.proj in R with inputs omega, psi,
xyr.grid and phantom that computes all half-line projections with a same (ω, ψ)-direction
for all detecting sites (ζm, ξn) included in the input grid xyr.grid. This grid must also
contain the samples ri of the half-line characterised by (ω, ψ). That is, the function returns
the 2D array

(P(ζm, ξn))m,n(ω, ψ) =
R−1∑

i=0

1

ri
f(ζm + ri sinω cosψ, ξn + ri sinω sinψ, ri cosω). (A.1)

Projections are obtained by trilinear interpolation of the phantom over all the half-lines
given by the couple (ω, ψ). Interpolations are performed with the R function approx3d.
The sampling steps ∆ψ∆r will be included after all projections are computed, then the
projection function is

1 cone.proj <- function(phantom, xyr.grid, omega, psi)

2 {

3 # CONICAL PROJECTIONS WITH LINEAR INTERPOLATION

4 # inputs:

5 # phantom: 3D array with attributes: xs, ys, zs

6 # (coordinates of voxels middle points)

7 # xyr.grid: grid (detector.x, detector.y, r) having colnames = c("xd","yd","r")

8 # and attributes: x.size, y.size, r.size with each sampling sizes

9 # and delta.x, delta.y, delta.r with each sampling steps

10 # detector.x is the x sampling of the detector and

11 # r the sampling of distances over the conical surface from the vertex

12 # omega, psi: 2 real numbers, the polar and azimuthal angle

13 # of a half-line in the cone

14

15 # output

16 # 2D array of dimensions (x.size, y.size) with projections for (omega, psi)

17

18 # setup variables

19 x.size <- attr(xyr.grid, ’x.size’)

20 y.size <- attr(xyr.grid, ’y.size’)

21 r.size <- attr(xyr.grid, ’r.size’)

22 xs <- attr(phantom, ’xs’)

23 ys <- attr(phantom, ’ys’)

24 zs <- attr(phantom, ’zs’)

25

26 # interpolating positions

27 s1 <- sin(omega)

28 xout <- xyr.grid$xd+xyr.grid$r*s1*cos(psi)
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29 yout <- xyr.grid$yd+xyr.grid$r*s1*sin(psi)

30 zout <- xyr.grid$r*cos(omega)

31

32 # taking only on the region of interest

33 # x-coordinate

34 index.x <- which(xout >= min(xs) & xout <= max(xs))

35 xout <- xout[index.x]

36 yout <- yout[index.x]

37 zout <- zout[index.x]

38 # y-coordinated

39 index.y <- which(yout >= min(ys) & yout <= max(ys))

40 xout <- xout[index.y]

41 yout <- yout[index.y]

42 zout <- zout[index.y]

43

44 # linear interpolations

45 result.1 <- approx3d(x = xs, y = ys, z = zs,

46 f = phantom, xout = xout, yout = yout, zout = zout)

47 # remove nan

48 result.1[is.na(result.1)] <- 0

49 result.2 <- 0*index.x

50 result.2[index.y] <- result.1

51 result <- rep(0, nrow(xyr.grid))

52 result[index.x] <- result.2

53

54 # rearranging result in an array (xd,yd,r) and * by 1/r

55 result <- array(data = result/xyr.grid$r, dim = c(x.size, y.size, r.size))

56

57 # sum over r

58 result <- rowSums(result, dim = 2)

59 return(result)

60 }

Finally, the discrete conical Radon transform is obtained from last function as the 3D
array

(Cf(ζm, ξn, ωl))m,n,l = ∆ψ∆r
P−1∑

j=0

(P(ζm, ξn))m,n(ωl, ψj), (A.2)

We will apply the cone.proj function to a uniform sampling of (ω, ψ) here, an uniform
energy sampling needs a change of variables through the Compton equation and is not
detailed here.

The projections related to samples on ω are computed in a CPU parallel process by
means of the R function mcmapply. Last, due to a limited RAM memory, the samples of ψ
are added one by one through a external for loop. The sampling steps ∆ψ∆r are applied
in a last step. Then the conical function is

1 cone.transform <- function(phantom, xyr.grid, omega.vector , psi.vector)

2 {
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3 # CONICAL TRANSFORM

4 # inputs:

5 # phantom and xyr.grid as in the function cone.proj

6 # omega.vector: uniform sampling of opening angles, attribute: delta

7 # psi.vector: uniform sampling of azimuthal angles, attribute: delta

8

9 # output:

10 # 3D array of dimensions (x.size, y.size, omega.size) with attributes

11 # delta.x, delta.y, omega.vector

12

13 # setup variables

14 x.size <- attr(xyr.grid, ’x.size’)

15 y.size <- attr(xyr.grid, ’y.size’)

16 delta.r <- attr(xyr.grid, ’delta.r’)

17 delta.psi <- attr(psi.vector, ’delta’)

18 omega.vector <- attr(omega.vector, ’delta’)

19

20 # initial array to save projections

21 projections <- rep(0, x.size * y.size * omega.size)

22

23 # for loop in azimuthal angle psi

24 for (j in psi.vector)

25 {

26 # apply the function for all omega in parallel

27 projections <- projections + mcmapply(FUN = function(x)

28 cone.proj(phantom = phantom, xyr.grid = xyr.grid, omega = x, psi = j),

29 omega.vector, mc.cores = detect.cores())

30 }

31 # sampling steps

32 projections <- projections * delta.psi * delta.r

33 attributes(projections)$delta.x <- attr(xyr.grid, ’delta.x’)

34 attributes(projections)$delta.y <- attr(xyr.grid, ’delta.y’)

35 attributes(projections)$omega.vector <- omega.vector

36 return(projections)

37 }

From the conical projections, the spectral image is obtained if the Compton-Klein-
Nishina (free electrons) hypothesis is assumed. For non-free heterogeneous objects, we
need another loop in the cone.proj function that compute conical projections for a discrete
Lorentzian law per each ω. This process is time consuming, hence a GPU parallelization
through a cartesian parametrisation of the conical transform was developed in R using the
OpenCL interface provided by the OpenCL package.

A.2 The conical back-projections

The conical back-projections are implemented in R by means of the function back.proj

having as inputs the projections and the coordinates (x, y, z) of the voxel in the object where
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the projections will be back-projected and summed over all ω. This function computes per
each (x, y, z) the discrete adjoint transform in (6.15) of projections g times the filter z3,
that is,

B(xi, yj , zk) = z2k

P−1∑

p=0

L−1∑

l=0

[
g(xi − zk tanωl cosψp, yj − zk tanωl sinψp, ωl)

]
. (A.3)

The sampling steps ∆ψ∆ω are applied outside the function. The function performs
bilinear interpolations through the R function interp.surface of projections to estimate
the values g(xi − zk tanωl cosψp, yj − zk tanωl sinψp, ωl) per each ωl inside a for loop on
ω. The function is then

1 back.proj <- function(projections, x,y,z, psi.vector)

2 {

3 # CONICAL BACK-PROJECTIONS

4 # input:

5 # projections: 3D array of dimensions (x.size, y.size, omega.size)

6 # with attributes: delta.x, delta.y, delta.omega

7 # x,y,z: voxel coordinates

8 # psi.vector: uniform sampling of azimuthal angles

9

10 # output:

11 # real number of the cumulate back-projections on (x,y,z)

12

13 # setup variables

14 dims <- dim(projections)

15 x.size <- dims[1]

16 y.size <- dims[2]

17 omega.size <- dims[3]

18 psi.size <- dim(psi.vector)

19

20 # detector sampling

21 detector.x <- seq(from = -x.size*0.5+1, to = x.size*0.5, by = attr(projections, ’delta.x’))

22 detector.y <- seq(from = -y.size*0.5+1, to = y.size*0.5, by = attr(projections, ’delta.y’))

23 omega.vector <- attr(projections, ’omega.vector’)

24

25 # output array

26 result <- matrix(nrow = omega.size, ncol = psi.size)

27

28 # 2D interpolation per omega

29 for (i in 1:omega.size)

30 {

31 # object to interpolate

32 obj <- list(x = detector.x, y = detector.y, z = projections[,,i])

33

34 # locations where the object is interpolated

35 zeta <- x-z*tan(omega.vector[i])*cos(psi.vector)

36 xi <- y-z*tan((omega.vector[i])*sin(psi.vector)

37 loc <- cbind(zeta, xi)
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38 # interpolation

39 result[i,] <- interp.surface(obj, loc)

40 }

41

42 # double omega - psi integration and factor z^2

43 result <- sum(result, na.rm = TRUE)*z^2

44 return(result)

45 }

To recover the full region of interest, the last function is applied over a grid (x, y, z)
containing the voxel coordinates of the phantom to recover. This is done in parallel over
the set of voxels with the function back.proj. The sampling steps must be applied as well.

Projections are first filtered in the Fourier domain through R functions as fft that
computes the fast Fourier transform. This is not exposed here. The object is finally
recovered, for an object of dimensions (Nx, Ny, Nz) and xs, ys, zs the vector of x, y, z
coordinates respectively of the phantom with the process

1 # cartesian grid to recover the phantom

2 grid <- expand.grid(xs,ys,zs)

3 colnames(grid) <- c("X","Y","Z")

4 # parallel backprojections

5 reconstruction <- mcmapply(back.proj, grid$X, grid$Y, grid$Z, mc.cores = detect.cores())

6 # organize the output array and sampling steps

7 reconstruction <- array(reconstruction, dim = c(Nx,Ny,Nz))*delta.psi*delta.omega

A.3 A GPU cartesian parallelization

The conical projections sampled on the opening angle computed in section A.1 are based
on the definition of the conical transform (5.4) where integrals are performed over conical
surfaces. These surfaces are parametrised by (ψ, r) for different cones given by a fixed
opening angle ω and detecting pixel. The algorithm is written to compute conical projec-
tions in parallel on ω for different cones. A cartesian parallelization over each pixel in the
detector and a cartesian parametrisation of the conical surface written in (5.22) allows us
to use a GPU parallelization in the calculation of projections.

If the double differential cross-section is approximated by a probabilistic law with cu-
mulative distribution function F , the spectral image can be computed per each detecting
pixel Dmn by the sum

I(Ci,Dmn) = τI0
∑

i,j,k

1

r3ijk
cos ω̄ijkσ

KN(ωijk)

(
F (Ei+1;Eωijk

, γωijk
)− F (Ei;Eωijk

, γωijk
)
)
f(Mijk).

(A.4)
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This is done by defining a OpenCL kernel direct.ocl that will be called by R and the
OpenCL package which output is the photon flux density over a given energy sampling for
each detecting pixel.

The kernel performs 4 for loops, 3 regarding the voxel index in the phantom and a last
inner loop for each energy channel. For every voxel in the input object, the scattering angle
is calculated, and then the energy recorded in the pixel related to this angle or voxel is
determined by the double differential cross-section and the related solid angle. The DDCS
is approximated by a Lorentz probability law for every material and angle as explained in
chapter 6. The kernel follows.

1 /*

2 * Performing the integration of the scattering data from a phantom on the detector

3 *

4 * As per requested by R-OpenCL : the first two arguments have to be :

5 * - output (a large 1D-array of float : for each pixel, all energy chanels)

6 * - counts : the size (in number of float numbers) in output

7 * - inds : an small array containing the index size of both the phantom, the energies

8 * - and the detector and some extra necessary parameters (logically an unsigned integer

9 * - for the first 6,

10 * - but R-OpenCL is transmitting floats only)

11 * - phantom : a 1D array representing the /linearized/ volume density (in 1/cm3

12 * - in number of e-)

13 * - energies : a 1D array of the boundaries of the energy channels (in eV), ascending order

14 * - doppler : a 1D array of the 3 parameters per voxel to estimate

15 * - the spread gamma of the broadening

16 *

17 * The size of the detector is provided through the global_size (on axes 0 and 1).

18 * Since the GPU has a watchdog which may kill any single kernel running for too long

19 * it is important that the problem can be partitionned in such way any single kernel

20 * execution is not too long.

21 * In the current implementation, the expected partitionning is done on detector size

22 * which means that we have to be able to get an off-center detector : this is what

23 * inds[0] and inds[1] are for. When at 0 the detector is centered on the central axis

24 * of the phantom. The offset is measured in pixels.

25 *

26 * What is important is the ordered content of inds:

27 * Concerning the dimensions of output :

28 * - inds[0] : x-offset of detector (offset in pixels, 0 means center detector on x)

29 * - inds[1] : y-offset of detector (offset in pixels, 0 means center detector on y)

30 * - inds[2] : total number of E channels => inds[0]*inds[1]*inds[2] == counts

31 *

32 * Concerning the dimensions of input :

33 * - inds[3] : x-size of phantom

34 * - inds[4] : y-size of phantom

35 * - inds[5] : z-size of phantom

36 * - inds[6] : z-position of the phantom entry plane (z_0)

37 * - inds[7] : edge size of a pixel (detector sampling) in m

38 * - inds[8] : edge size of a voxel (phantom and doppler sampling) in m
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39 * - inds[9] : E0, the incident photon energy in eV

40 *

41 * Input array sizes :

42 * - phantom is inds[3]*inds[4]*inds[5]

43 * - doppler is inds[3]*inds[4]*inds[5]*3

44 * - energies : inds[2]+1

45 *

46 * Output array sizes :

47 * -

48 */

49

50 /*

51 * The general model is the one of the Compton backscattering :

52 * The incident beam is coming along the z axis (towards positive index)

53 * The detector is plan Oxy, equation z=0

54 * The phantom starts at plan parallel to Oxy, equation is z=inds[6]

55 *

56 * We need some physical constants :

57 */

58

59 const __constant float rmec2 = 1.0f / 510.998928e3f;

60 // the reciprocal energy of the electron at rest in vacuum, in eV

61 const __constant float re = 2.8179403267e-15f;

62 // radius of the /classical/ electron (in Klein-Nishina computation) in m.

63

64 /*

65 * In this version, every voxel is supposed to have Doppler broadening

66 * depending on the material

67 * Doppler broadening in this code is modeled through a Lorentzian distribution.

68 *

69 * The x0 is the Compton line energy

70 * The gamma (spread of the distribution) is approximated by a polynome of degre 2

71 * as a function of the angle per material

72 */

73

74 __kernel void

75 direct( // Frist two from R OpenCL module

76 __global float* output, // Output

77 const unsigned int count, // Size (in index) of the output array

78 __global float* inds, // The various size, see later

79 __global float* phantom, // Density of the volume, indexed by voxel

80 __global float* energies, // 1D arrays of boundaries of E channels (contiguous)

81 // should be ascending order

82 __global float* doppler // array containing the 3 coefficients to

83 //simulate doppler broadening per voxel

84 )

85 {

86 // Number of items on certain dimensions :

87 size_t det_x, det_y, en_c, pht_x, pht_y, pht_z;

88 det_x = get_global_size(0);
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89 det_y = get_global_size(1);

90 en_c = (size_t)(inds[2]); // number of energy channels

91

92 pht_x = (size_t)(inds[3]);

93 pht_y = (size_t)(inds[4]);

94 pht_z = (size_t)(inds[5]);

95 size_t pht_size = pht_x * pht_y * pht_z;

96

97 size_t pix_x_ind, pix_y_ind;

98 float pix_x_coord, pix_y_coord, pix_z_coord;

99

100 // size_t g_ind = get_global_id(0);

101 pix_x_ind = get_global_id(0);

102 pix_y_ind = get_global_id(1);

103 size_t g_ind = (pix_y_ind * det_x) + pix_x_ind; // x is the intermediate index.

104

105 // In R the output will with index E/x/y (E is fast, y is slow for the detector)

106

107 pix_x_coord = inds[7] * ((float)(pix_x_ind) - (float)(det_x)/2.0f + inds[0]);

108 pix_y_coord = inds[7] * ((float)(pix_y_ind) - (float)(det_y)/2.0f + inds[1]);

109 pix_z_coord = 0.0f; // corresponds to the setting

110

111 float E_0 = inds[9];

112 // Buffer to perform the accumulation (avoiding global store

113 // in the until the end of computation)

114 __private float detector[E_CHANNELS];

115 float re2_half = re*re / 2.0f;

116

117 // Starting index in output (corresponding to Echannel 0 for /this/ pixel):

118 size_t out_base_ind = g_ind * en_c;

119

120 // For this pixel, start by putting to 0 all energy channels of the output :

121 for (size_t i=0; en_c != i; ++i)

122 {

123 detector[i] = 0.0f;

124 }

125

126 // Loops should be organised from the slowest index (for the external loop) to the

127 // fastest index (for in the internal loop)

128 // R is using the ’Fortran order’, that is the right most index (z usualy) is slow

129 // while the left most index (x usually) is fast

130 // Now we should start computing the values for each voxel and E channel :

131 for (size_t vox_z_ind = 0; pht_z != vox_z_ind; ++vox_z_ind)

132 {

133 float vox_z_coord = (inds[8] * (float)(vox_z_ind)) + inds[6];

134

135 for (size_t vox_y_ind = 0; pht_y != vox_y_ind; ++vox_y_ind)

136 {

137 float vox_y_coord = inds[8] * ((float)(vox_y_ind) - (float)(pht_y)/2.0f);

138
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139 for (size_t vox_x_ind = 0; pht_x != vox_x_ind; ++vox_x_ind)

140 {

141 float vox_x_coord = inds[8] * ((float)(vox_x_ind) - (float)(pht_x)/2.0f);

142

143 size_t vox_g_ind = vox_x_ind + pht_x * (vox_y_ind + pht_y * (vox_z_ind));

144 float vox_dens = phantom[vox_g_ind];

145 float rec_dist, scatter_cos, scatter_sinsq;

146 float solid_angle_factor, compton_energy, KN_factor;

147 float gamma;

148

149 rec_dist = rsqrt((vox_x_coord - pix_x_coord)*(vox_x_coord - pix_x_coord) +

150 (vox_y_coord - pix_y_coord)*(vox_y_coord - pix_y_coord) +

151 vox_z_coord * vox_z_coord);

152 // Remember the incident unit vector is (0, 0, 1) : cos(theta) = x.y / (|x||y|)

153 scatter_cos = -vox_z_coord * rec_dist;

154 scatter_sinsq = 1 - scatter_cos*scatter_cos; // used in Klein-Nishina formula

155

156 // Solid angle factor

157 solid_angle_factor = - rec_dist*rec_dist*rec_dist*scatter_cos;

158 //Compton equation

159 compton_energy = E_0 / (1.0f + (E_0*rmec2 * (1.0f - scatter_cos))) ;

160 KN_factor = re2_half * pown(compton_energy/E_0, 2) *

161 // Klein-Nishina

162 (compton_energy/E_0 + E_0/compton_energy - scatter_sinsq);

163 gamma = doppler[vox_g_ind] + scatter_cos * doppler[pht_size + vox_g_ind]

164 + scatter_cos*scatter_cos * doppler[(pht_size * 2) + vox_g_ind];

165 gamma = 1;

166

167 // Doing this as a loop to prepare the architecture for Doppler broadening :

168 float E_min, E_max, Lorentz_min, Lorentz_max;

169 E_min = energies[0];

170 Lorentz_min = M_1_PI_F * atan((E_min - compton_energy) / gamma ) + .5f;

171

172 for (size_t E_ind = 0; en_c != E_ind; ++E_ind)

173 {

174 E_max = energies[E_ind+1];

175

176 Lorentz_max = M_1_PI_F*atan((E_max-compton_energy)/gamma ) + .5f;

177 // The double differential cross section

178 // using a Lorentzian distribution with spread gamma:

179 detector[E_ind] += (0.0f != vox_dens) ? (Lorentz_max - Lorentz_min)

180 * vox_dens * solid_angle_factor * KN_factor : 0;

181

182 E_min = E_max;

183 Lorentz_min = Lorentz_max;

184 }

185 }

186 }

187 }

188
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189 // Copying the results to the output buffer :

190 for (size_t i=0; en_c != i; ++i)

191 {

192 output[out_base_ind + i] = detector[i];

193 }

194 }

The kernel is executed in R with the R function OCLRun. The function input is the
kernel doppler.ocl pre-compiled previously by the R function oclSimpleKernel and all
the dimensions and sampling parameters. We define a function simulate.direct with
inputs the kernel, input phantom and configuration samplings as Rarrays that reorganize
all these arrays in the way that OCl request.

The simulation is divided by splitting the detector into some number of tiles due to the
prescence of a watchdog timer in the GPU that kill a process if a simulations takes too
much time. The function is

1 simulate.direct <- function(kernel, phantom, doppler, energies,

2 E0, num.tiles, det.size, det.pixel.edge.size)

3 {

4 start.time <- Sys.time()

5 cat("Starting date/time : ")

6 print(start.time)

7 ## Preparing the input to the OpenCL kernel

8 p <- clFloat(phantom)

9 d <- if (missing(doppler)) clFloat(c(0, 0, 0)) else clFloat(doppler)

10 e <- clFloat(energies)

11

12 counts <- prod(det.size) * (length(energies)-1)

13 inds <- c(c(0, 0), length(energies)-1, dim(phantom),

14 attr(phantom, ’entry.z’), det.pixel.edge.size,

15 attr(phantom, ’edge.size’), E0)

16

17 ## Preparing the data-object to store the results

18 res <- array(NA, dim=c(num.tiles[1]*det.size[1],

19 num.tiles[2]*det.size[2], (length(energies)-1)))

20

21 ## Sampling the tiles :

22 tile.sampling <- expand.grid(1:num.tiles[1], 1:num.tiles[2])

23 ## print(tile.sampling)

24

25 ## Computing the min.min (bottom left) corner :

26 bot.left = (num.tiles - 1)/2 * det.size * -1

27

28 for (ti in 1:nrow(tile.sampling) )

29 {

30 ## Setting properly the offset :

31 inds[1:2] <- (c(tile.sampling[ti, 1], tile.sampling[ti, 2]) - 1)

32 * det.size + bot.left
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33 cat(sprintf("Computing tile %d (%d, %d), offset (%.2f, %.2f) ..",

34 ti, tile.sampling[ti, 1], tile.sampling[ti, 2], inds[1], inds[2]))

35 flush(stdout())

36

37 ## Running the OpenCL kernel

38 res.tile <- oclRun(kernel, size=counts, inds, p, e,

39 d, wait = TRUE, dim = det.size)

40 res[(1:det.size[1]) + (det.size[1] * (tile.sampling[ti, 1]-1)),

41 (1:det.size[2]) + (det.size[2] * (tile.sampling[ti, 2]-1)),]

42 <- aperm(array(res.tile, c((length(energies)-1), det.size)), c(2, 3, 1))

43 cat((det.size[1] * (tile.sampling[ti, 1]-1)), (det.size[2]

44 * (tile.sampling[ti, 2]-1)))

45 cat(".. done\n")

46 flush(stdout())

47 }

48

49 attributes(res)$energies <- energies

50 attributes(res)$E0 <- E0

51 attributes(res)$z0 <- attr(phantom, ’entry.z’)

52 attributes(res)$det.pixel.edge.size <- det.pixel.edge.size

53

54 end.time <- Sys.time()

55 cat("Ending date/time : ")

56 print(end.time)

57 cat("Total (wall-clock) executing time : ")

58 print(end.time - start.time)

59 return(res)

60 }

If the DDCS including Doppler broadening and binding effects is considered, it is ap-
proximated by a Lorentz distribution that is integrated over a given energy channel. The
result of the integral is given by the cumulative distribution function (6.8). In the free
electrons case, considered in the previous section, the DDCS is done by a Dirac proba-
bilistic distribution concentrated on the Compton line and having a null measure support.
By marginalizing the angle by a given energy channel, the related cumulative distribution
is the Heaviside step function that is used in a new free-electron OCL kernel which most
significant change according to the last kernel is in lines 161− 175 that changes to

1 // Heaviside step function per energy channel:

2 float E_min, E_max;

3 E_min = energies[0];

4 for (size_t E_ind = 0; en_c != E_ind; ++E_ind)

5 {

6 E_max = energies[E_ind+1];

7 detector[E_ind] += (compton_energy <= E_min || compton_energy > E_max) ? 0.0f :

8 (vox_dens * solid_angle_factor * KN_factor);

9 E_min = E_max;

10 }
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The conical back-projection can also be computed in a GPU parallel architecture. To
do that, bilinear interpolations of the angular projections on every angular plane has to be
performed to compute the values on the detector corresponding to such angle. That is, for
a fixed ω, we create a GPU kernel to obtain the values

g(xi − zk tanω cosψp, yj − zk tanω sinψp, ω), (A.5)

for all coordinates (xi, yj , zk) of a voxel in the object and for all samples ψp of the azimuthal
angle. This has to be done inside a for loop on ω.

The interests of performing GPU computations lies specially on the good parallel struc-
ture of the GPU where the price to pay is one more dimension in the cartesian integration
with respect to the conical integration. Interpolations are not longer necessary and in the
inner loop only the distance and angle between pixel and voxel are calculated.

The direct and inverse problems under the first schema, the CPU parallelization, take
about 4 hours to be completed on 24 virtual 2.93 GHz CPU cores, providing an aggregated
performance of 288 GFLOPS in single precision. In the other hand, using a 3GB GPU
card with a theoretical performance de 2.87 TFLOPS, it is done in about 1 minute for the
same imaging configuration.
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Résumé : La caractérisation tridimensionnelle de
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en raison de leur morphologie anisotrope et de leur

géométrie aplatie. Pour surmonter les limites de ces

méthodologies, ce travail propose une modalité d’ima-

gerie basée sur le rayonnement diffusé Compton.

La tomographie de rayons X traite le rayonnement

diffusé Compton comme du bruit, tandis que dans

la tomographie de diffusion inélastique, le rayonne-

ment diffusé est judicieusement exploité de telle sorte

qu’il devienne l’agent imageur. Dans cette modalité,

la rotation relative entre l’objet étudié et le disposi-

tif d’imagerie n’est plus nécessaire et on peut obser-

ver des objets plats. Mathématiquement, ce système

d’imagerie est modélise par la transformée de Ra-

don conique. Nous avons premièrement abordé le

processus de formation d’image, le problème direct,

en considérant une illumination monochromatique pa-

rallèle et une détection résolue soit en angle d’inci-

dence soit en énergie. Nous avons ensuite proposé

un algorithme de reconstruction d’objet, le problème

inverse, c’est-à-dire l’estimation de la distribution 3D

de la densité électronique de l’objet à partir de l’image

échantillonnée en angle ou en énergie. Des simula-

tions numériques illustrent la faisabilité du système

d’imagerie proposé.
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Abstract : Three-dimensional characterization of flat

ancient material objects has remained a challenging

activity to accomplish by conventional X-ray tomo-

graphy methods due to their anisotropic morphology

and flattened geometry. To overcome the limitations

of such methodologies, an imaging modality based

on Compton scattering is studied in this work. Classi-

cal X-ray tomography treats Compton scattering data

as noise, while in Compton scattering tomography the

conditions are set such that Compton data become

the principal image agent. Under these conditions,

we are able to avoid relative rotations between the

sample and the imaging setup enabling the 3D ima-

ging of flat samples. Mathematically this problem is

addressed by means of the conical Radon transform.

A model of the direct problem is presented where

the output of the system is the spectral image obtai-

ned from an input object when illuminated by a paral-

lel and monochromatic beam. The inverse problem is

then addressed to estimate the 3D distribution of the

electronic density of the input object from the spectral

image. The feasibility of the proposed imaging system

is supported by numerical simulations.
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