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Résumé

Dans cette thèse, nous traiterons de partitions des sommets de graphes peu denses. Pour tout k, une
coloration propre de k couleurs d’un graphe est une partition des sommets du graphe en k ensembles in-
dépendants. Le premier résultat de ce style fut le théorème des quatre couleurs. Il indique que tout graphe
planaire admet une coloration propre d’au plus 4 couleurs.

Un sous-graphe d’un graphe G est un graphe qui contient uniquement des sommets et des arêtes de G.
À noter que comme un sous-graphe de G est un graphe, il ne peut contenir une arête de G que s’il contient
ses deux extrémités. Un sous-graphe induit d’un graphe G est un sous-graphe H de G qui contient toutes
les arêtes de G dont les deux extrémités sont des sommets de H. Pour G un graphe et S un ensemble de
sommets de G, on note G[S] le sous-graphe induit de G dont l’ensemble de sommets est S. On appelle le
graphe G[S] le sous-graphe de G induit par S. Une forêt est un graphe sans cycles, et une forêt induite d’un
graphe G est un sous-graphe induit de G sans cycles.

Albertson et Bermann [3] ont fait en 1979 la conjecture suivante :

Conjecture 1 (Albertson et Bermann [3]). Tout graphe planaire admet une forêt induite contenant au
moins la moitié de ses sommets.

Cette conjecture impliquerait que tout graphe planaire admet un ensemble indépendant contenant au
moins le quart de ses sommets, résultat dont la seule preuve connue actuellement repose sur le théorème des
quatre couleurs.

Une notion peut-être plus connue est celle de coupe-cycle de sommets (feedback vertex set). Dans un
graphe G, un coupe-cycle de sommets est un ensemble de sommets qui intersectent tous les cycles de G.
Notons qu’un ensemble S ⊆ V (G) est un coupe-cycle de sommets si et seulement si G[V (G) \ S] est une
forêt. Par conséquent, une formulation équivalente de la conjecture 1 est que tout graphe planaire d’ordre n
admet un coupe-cycle de sommets contenant au plus n

2 sommets.
Si la conjecture 1 est vraie, elle ne peut être renforcée, comme on peut le voir grâce à une union disjointe

de copies de K4, le graphe complet à quatre sommets. Le meilleur résultat connu est que tout graphe
planaire a une forêt induite sur au moins deux cinquièmes de ses sommets. C’est une conséquence directe
du théorème de Borodin [9] comme quoi tout graphe planaire admet une partition de ses sommets en cinq
ensembles indépendants tels que toute union de deux de ces ensembles induit une forêt.

La conjecture 1 a été prouvée, et même renforcée dans des sous-classes des graphes planaires. Par exemple,
Hosono [37] a montré que tout graphe planaire extérieur admet une forêt induite contenant au moins deux
tiers des sommets. Il a également donné des exemples montrant que ce résultat ne peut pas être amélioré.
D’autres résultats ont été dérivés de résultats sur les colorations acycliques. Fertin, Godard et Raspaud [33]
ont donné de tels résultats. Ceux qui concernent les graphes peu denses sont résumés dans la table 1.

Akiyama et Watanabe [1], ainsi qu’Albertson et Haas [2] ont indépendamment proposé la conjecture
suivante :

Conjecture 2 (Akiyama et Watanabe [1], Albertson et Haas [2]). Tout graphe planaire biparti admet une
forêt induite contenant au moins 5

8 de ses sommets.

Dans l’optique de prouver cette conjecture, Alon, Mubayi et Thomas [4] ont prouvé les résultats suivants :

Theorème 3 (Alon et al. [4]). Tout graphe sans triangles avec n sommets et m arêtes admet une forêt
induite contenant au moins n − m

4 sommets.
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Famille F ordre d’une plus grande forêt induite:
minorant majorant

Planaire 2n
5 ⌈ n

2 ⌉

Planaire de maille 5 ou 6 n
2

7n
10 + 2

Planaire de maille au moins 7 2n
3

5n
6 + 1

Table 1: Minorants et majorants sur l’ordre d’une plus grande forêt induite pour certaines familles F de
graphes planaires [33].

Corollaire 4 (Alon et al. [4]). Tout graphe cubique (i.e. dont tous les sommets sont de degré 3), sans
triangles et avec n sommets admet une forêt induite contenant au moins 5n

8 sommets.

Corollaire 5 (Alon et al. [4]). Tout graphe planaire sans triangles et avec n sommets admet une forêt induite
contenant au moins n

2 sommets.

Cette dernière minoration a été améliorée pour n ≥ 1 par Salavatipour [49] :

Theorème 6 (Salavatipour [49]). Tout graphe planaire sans triangles, avec n sommets et m arêtes admet
une forêt induite contenant au moins 29n−6m

32 sommets et donc au moins 17n+24
32 ≈ 0.531n sommets.

En nous basant sur les méthodes développées par Kowalik, Lužar et Škrekovski [43], nous améliorons le
résultat précédent :

Theorème 7. Tout graphe planaire sans triangles, avec n sommets et avec m arêtes admet une forêt
induite contenant au moins max{ 38n−7m

44 , n − m
4 } sommets et donc au moins 6n+7

11 ≈ 0.545n sommets.

La preuve s’appuie sur l’existence d’une série de configurations interdites dans un contre-exemple minimum,
donnant des contraintes locales sur la structure d’un tel contre-exemple. Ces contraintes locales nous per-
mettent d’aboutir à une contradiction, grâce à un argument de double comptage des sommets apparaissant
dans les frontières de certaines faces.

Kowalik, Lužar et Škrekovski [43] ont fait la conjecture suivante et ont donné des exemples pour prouver
qu’elle ne peut pas être améliorée.

Conjecture 8 (Kowalik et al. [43]). Tout graphe planaire de maille au moins 5 et avec n sommets admet
une forêt induite contenant au moins 7n

10 sommets.

Utilisant une méthode similaire à celle utilisée pour la preuve du Théorème 7, nous avons prouvé que
tout graphe planaire de maille au moins 5, avec n sommets et m arêtes admet une forêt induite contenant au
moins n − 5m

23 sommets et donc au moins 44n+50
69 ≈ 0.638n sommets. Ce résultat a par la suite été amélioré

indépendamment, d’une part par Shi et Xu [50] et d’autre part par Kelly et Liu [41] :

Theorème 9 (Shi et Xu [50], Kelly et Liu [41]). Tout graphe planaire connexe de maille au moins 5, avec
n sommets et m arêtes admet une forêt induite contenant au moins 8n−2m−2

7 sommets et donc au moins
2n−2

3 ≈ 0.667n sommets.

Pour les grandes mailles, nous faisons la conjecture suivante :

Conjecture 10. Pour tout entier g ≥ 3, tout graphe planaire de maille au moins g, avec n sommets et m
arêtes admet une forêt induite contenant au moins n − m

g
sommets et donc au moins n − n−2

g−2 sommets.

Nous donnons un exemple montrant que cette conjecture ne peut pas être renforcée. Avec cette conjecture
pour objectif, nous prouvons le théorème suivant.

8



Theorème 11. Pour tout entier g ≥ 3, tout graphe planaire de maille au moins g, avec n sommets
et m arêtes admet une forêt induite contenant au moins n − 4m

3g
sommets et donc an moins n − 4n

3g−6
sommets.

La preuve du Théorème 11 est basée sur une réduction vers les graphes 2-connexes de degré maximum
au plus 3. Elle repose sur le résultat suivant :

Theorème 12. Tout graphe 2-connexe de degré maximum au plus 3 avec au plus n sommets admet
une forêt induite contenant au moins 2n−2

3 sommets.

La conjecture 1 a aussi mené à des recherches similaires sur les forêts linéaires induites. Une forêt linéaire
(induite) est une forêt (induite) dont le degré maximum est au plus 2. Chappell a émis la conjecture suivante
(voir Pelsmajer [45]) :

Conjecture 13 (Chappell). Tout graphe planaire d’ordre n admet une forêt linéaire induite contenant au
moins 4n

9 sommets.

Cette conjecture ne peut pas être renforcée. La meilleure approche à ce jour est une conséquence du
théorème suivant de Poh [47].

Theorème 14 (Poh [47]). Tout graphe planaire admet une partition en trois forêts linéaires.

Corollaire 15. Tout graphe planaire à n sommets admet une forêt linéaire induite contenant au moins n
3

sommets.

Ce problème a été résolu sur les graphes planaires extérieurs.

Theorème 16 (Pelsmajer [45]). Tout graphe planaire extérieur avec n sommets admet une forêt linéaire
induite contenant au moins 4n+2

7 sommets.

Le théorème précédent ne peut être amélioré, comme le montrent les exemples de Chappell (voir Pels-
majer [45]).

Nous nous concentrons à présent sur les graphes planaires sans triangles, et faisons la conjecture suivante :

Conjecture 17. Tout graphe planaire sans triangles avec n sommets admet une forêt linéaire induite con-
tenant au moins n

2 sommets.

Nous donnons des exemples prouvant que cette conjecture ne peut pas être renforcée. Nous faisons un
premier pas vers cette conjecture :

Theorème 18. Tout graphe planaire sans triangles avec n sommets et m arêtes admet une forêt linéaire
induite contenant au moins 9n−2m

11 sommets et donc au moins 5n+8
11 ≈ 0.455n sommets.

Ce théorème a une preuve du même type que celle du théorème 7. Le problème de trouver une plus
grande forêt induite de degré maximum au plus d a été résolu pour tout d ≥ 2 dans les graphes de largeur
arborescente (treewidth) au plus k pour tout k par Chappell et Pelsmajer [16]. À noter que le cas d = 2
correspond à la plus grande forêt linéaire induite. Ils ont également fait la conjecture suivante :

Conjecture 19 (Chappell et Pelsmajer [16]). Soit d ≥ 2 un entier. Tout graphe planaire à n sommets
admet une forêt induite de degré maximum au plus d avec au moins 2dn

4d+1 sommets.

Pour d = 2, cela donne la conjecture 13, et pour d → ∞, cela donne la conjecture 1. Chappell et
Pelsmajer ont donné des exemples montrant que cette conjecture ne peut être renforcée. À la connaissance
de l’auteur, aucun progrès n’a été fait vers la conjecture 19 mis à part les cas d = 2 et d → ∞. Notons tout
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de même que la minoration pour d = 2 donne indirectement des minorations pour les autres valeurs de d,
donc la meilleure approche vers la conjecture 19 est le corollaire 15.

On appelle I la classe des graphes vides (i.e. sans arêtes) et F la classe des forêts. Pour tout d ∈ N, on
appelle ∆d la classe des graphes de degré maximum au plus d, Fd la classe des forêts de degré maximum au
plus d, et Dd la classe des graphes d-dégénérés, c’est-à-dire des graphes dont tous les sous-graphes ont un
degré minimum d’au plus d.

Une façon de voir une forêt induite d’un graphe G est de la voir comme une partition des sommets en un
ensemble induisant une forêt et un autre ensemble. Dans ce qui précède, nous avons tenté d’assurer que ce
deuxième ensemble de sommets n’était pas trop grand. Une autre approche est d’imposer d’autres propriétés
pour cet ensemble de sommets, par exemple qu’il induise un graphe particulier. Dans la suite, nous allons
nous intéresser à cette approche.

Soient C1, C2, ..., Ck k classes de graphes. Une (C1, C2, ..., Ck)-partition d’un graphe G, notée (H1, H2, ..., Hk),
est une partition des sommets du graphe G en k ensembles H1, H2, ..., Hk tels que pour tout i ∈ {1, ..., k},
G[Hi] ∈ Ci.

L’étude des partitions des sommets des graphes planaires a commencé avec le théorème des quatre
couleurs, qui peut être reformulé de la manière suivante :

Theorème 20. Tout graphe planaire admet une (I, I, I, I)-partition.

De nombreux théorèmes peuvent également être reformulés en terme de partitions en forêts. On rappelle
le théorème de Poh, qui peut être reformulé comme suit :

Theorème 14 (Poh [47], reformulé). Tout graphe planaire admet une (F2, F2, F2)-partition.

De plus, une conséquence du théorème de Borodin [9] (tout graphe planaire admet une partition de ses
sommets en cinq ensembles indépendants tels que toute union de deux de ces ensembles induit une forêt) est
que tout graphe planaire admet une (F , F , I)-partition.

Thomassen a étudié les (Di, Dj)-partitions des graphes planaires. Il a prouvé que tout graphe planaire
admet une (F , D2)-partition [51] et une (I, D3)-partition [52] (notez que F = D1 et I = D0).

Toutefois, il y a des graphes planaires qui n’ont pas de (F , F)-partition [17], et même des graphes planaires
qui n’ont pas de (F , I, I)-partition (Wegner [53]). Borodin et Glebov [11] ont montré le théorème suivant :

Theorème 21 (Borodin et Glebov [11]). Tout graphe planaire de maille au moins 5 admet une (I, F)-
partition.

Raspaud et Wang [48] ont prouvé que tout graphe planaire où deux triangles sont à une distance d’au
moins 2 (et donc tout graphe planaire sans triangles) admet une (F , F)-partition.

Le résultat comme quoi tout graphe planaire sans triangle admet une (F , F)-partition est du folklore, et
peut être prouvé aisément. Cependant, l’existence d’un graphe planaire sans triangles n’admettant pas de
(I, F)-partition est inconnue. Nous posons les questions suivantes :

Question 22. Tout graphe planaire sans triangle admet-il une (I, F)-partition ?

Question 23. Quel est le plus petit entier d tel que tout graphe planaire sans triangles admet une (F , Fd)-
partition ?

Notons que prouver que d = 0 à la question 23 reviendrait à répondre à la question 22 par l’affirmative.
On prouve le théorème suivant :

Theorème 24. Tout graphe planaire sans triangles admet une (F , F5)-partition.

Ce théorème implique que d ≤ 5 dans la question 23. La preuve du théorème précédent utilise la
méthode du déchargement, avec en particulier trois configurations réductibles assez complexes. La preuve
est constructive et il en découle immédiatement un algorithme en temps polynomial pour obtenir une (F , F5)-
partition d’un graphe planaire sans triangles.
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Montassier et Ochem [44] donnent, pour tout d, un graphe planaire sans triangles ne pouvant pas être
partitionné en deux sous-graphes induits de degré maximum au plus d, ce qui montre que la forêt dans le
théorème 24 ne peut pas être remplacée par une forêt de degré borné (ou même par un sous-graphe de degré
borné).

Nous montrons également que pour tout d, s’il existe un graphe planaire sans triangles qui n’admet pas
de (F , Fd)-partition, alors le problème consistant à décider si un graphe planaire sans triangles donné admet
une (F , Fd)-partition est NP-complet. La preuve est une réduction vers Planar 3-Sat.

Le degré moyen maximum d’un graphe G, noté mad(G), est le maximum, sur tous les sous-graphes H
de G, de deux fois le nombre d’arêtes de H sur le nombre de sommets de H. Il s’agit d’une mesure locale
de la densité d’un graphe, à comprendre que si un graphe a un degré moyen maximum borné, il n’est en
quelques sortes dense nulle part. La formule d’Euler nous indique que les graphes planaires ont un degré
moyen maximum strictement inférieur à 6, et plus généralement, que pour tout entier g, les graphes planaires
de maille au moins g ont un degré moyen maximum strictement inférieur à 2g

g−2 .
Borodin et Kostochka [15] ont montré le théorème suivant :

Theorème 25 (Borodin et Kostochka [15]). Pour tout j ≥ 0 et tout k ≥ 2j + 2, tout graphe G avec

mad(G) < 2
(

2 − k+2
(j+2)(k+1)

)
admet une (∆j , ∆k)-partition.

En particulier, le théorème précédent implique que tout graphe G avec mad(G) < 8
3 admet une (I, ∆2)-

partition, et que tout graphe G avec mad(G) < 14
5 admet une (I, ∆4)-partition. Avec la formule d’Euler, on

obtient le résultat suivant :

Corollaire 26. Tout graphe planaire de maille au moins 7 admet une (I, ∆4)-partition, et tout graphe
planaire de maille au moins 8 admet une (I, ∆2)-partition.

Borodin et Kostochka [14] ont montré le théorème suivant :

Theorème 27 (Borodin et Kostochka [14]). Tout graphe G avec mad(G) < 12
5 admet une (I, ∆1)-partition.

Ce dernier théorème implique que tout graphe planaire de maille au moins 12 admet une (I, ∆1)-partition,
ce qui a été amélioré par Kim, Kostochka et Zhu [42] :

Theorème 28 (Kim, Kostochka et Zhu [42]). Tout graphe G sans triangles avec mad(G) < 11
9 admet une

(I, ∆1)-partition.

Corollaire 29. Tout graphe planaire de maille au moins 11 admet une (I, ∆1)-partition.

À l’inverse, Borodin, Ivanova, Montassier, Ochem et Raspaud [13] ont exhibé, pour tout entier d, un
graphe planaire de maille au moins 6 qui n’admet pas de (I, ∆d)-partition. Montassier et Ochem [44] ont
montré que cela implique que le problème de décider si un graphe de maille au moins 6 admet une (I, ∆d)-
partition est NP -complet pour tout d ≥ 1. Ils ont également prouvé que le problème de décider si un
graphe de maille au moins 7 a une (I, ∆2)-partition est aussi NP-complet. Esperet, Montassier, Ochem et
Pinlou [30] ont montré que le problème de décider si un graphe planaire de maille au moins 9 admet une
(I, ∆1)-partition est NP-complet.

Notons que si les théorèmes 25, 27 et 28 ne peuvent voir leurs résultats en terme de degré moyen maximum
améliorés, leurs corollaires en terme de graphe planaire de grande maille le peuvent peut-être. En particulier,
les questions suivantes restent ouvertes :

Question 30. Tous les graphes planaires de maille au moins 7 admettent-ils une (I, ∆3)-partition ?

Question 31. Tous les graphes planaires de maille au moins 10 admettent-ils une (I, ∆1)-partition ?

Une façon naturelle d’étendre les résultats précédents est de considérer les partitions de graphes peu
denses en un ensemble indépendant (i.e. induisant un graphe vide) et un ensemble induisant une forêt de
degré borné, c’est-à-dire une (I, Fd)-partition. Notons que si un graphe admet une (I, Fd)-partition, alors
il admet une (I, ∆d)-partition, et qu’une (I, F1)-partition est identique à une (I, ∆1)-partition. Donc les
résultats précédents impliquent que :
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• pour tout entier d, il existe un graphe planaire de maille au plus 6 qui n’admet pas de (I, Fd)-partition ;

• il existe un graphe planaire de maille au plus 7 qui n’admet pas de (I, F2)-partition ;

• il existe un graphe planaire de maille au plus 9 qui n’admet pas de (I, F1)-partition ;

• tout graphe planaire de maille au moins 11 admet une (I, F1)-partition.

Nous prouvons les résultats suivants :

Theorème 32. Soit M un nombre réel tel que M < 3. Soit d ≥ 0 un entier et G un graphe tel que
mad(G) < M . Si d ≥ 2

3−M
− 2, alors G admet une (I, Fd)-partition.

Theorème 33. Soit M un nombre réel tel que 8
3 ≤ M < 3. Soit d ≥ 0 un entier et G un graphe tel

que mad(G) < M . Si d ≥ 1
3−M

, alors G admet une (I, Fd)-partition.

On montre les deux théorèmes précédents en appliquant la méthode du déchargement. Certaines con-
figurations peuvent être arbitrairement grandes, suite à la construction d’une structure que nous appelons
forêt légère.

Par la formule d’Euler, on obtient le corollaire suivant :

Corollaire 34. Soit G un graphe planaire de maille au moins g.

1. Si g ≥ 7, alors G admet une (I, F5)-partition.

2. Si g ≥ 8, alors G admet une (I, F3)-partition.

3. Si g ≥ 10, alors G admet une (I, F2)-partition.

Les corollaires 34.2 et 34.3 viennent du théorème 33, alors que le corollaire 34.1 vient du théorème 32. Voir
la table 2 pour un résumé des résultats sur les partitions des sommets de graphes planaires vus précédemment.

Pour autant que l’on sache, les graphes planaires de maille 7, 8 et 10 respectivement pourraient tous
avoir une (I, Fd)-partition pour d = 3, d = 2 et d = 1 respectivement. Cependant, observons :

Remarque 35. Pour tout entier d, il existe un graphe de degré moyen maximum strictement inférieur à
M = 3(1 − 1

8d
), qui n’a pas de (I, ∆d)-partition (et donc pas de (I, Fd)-partition).

Comme M = 3(1 − 1
8d

) est équivalent à d = 3
8(3−M) , cela montre que le Théorème 33 peut au plus être

amélioré d’un facteur 3
8 .

Un graphe est un chemin si ses sommets peuvent être notés v1, v2, ..., vn de telle manière que les arêtes
sont les vivi+1 pour i dans {1, 2, ..., n − 1}. Les sommets v1 et vn sont les extremités du chemin. Un graphe
G est connexe si pour toute paire de sommets de G, ces sommets sont les extremités d’un sous-graphe de
G qui est un chemin. Dans un graphe G, les composantes connexes de G sont les sous-graphes connectés
maximaux (pour la relation de sous-graphe) de G. Pour tout entier k, on note Ok la classe des graphes dont
chaque composante connexe a au plus k sommets.

Esperet et Ochem [32] ont montré le théorème suivant :

Theorème 36 (Esperet et Ochem [32]). Tout graphe planaire de maille au moins 6 admet une (O12, O12)-
partition.

Borodin et Ivanova [12] donnent une partition pour les graphes planaires de maille au moins 7:

Theorème 37 (Borodin et Ivanova [12]). Tout graphe planaire de maille au moins 7 admet une (O3, O3)-
partition.
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Classes Partitions Références

Graphes planaires

(I, I, I, I) Le théorème des quatre couleurs [5, 6]
(I, F , F) Borodin [9]
(F2, F2, F2) Poh [47]
(F , D2) Thomassen [51]
(I, D3) Thomassen [52]

Graphes planaires de maille 4
(I, I, I) Grötzsch [36]
(F , F) Folklore
(F5, F) Théorème 7

Graphes planaires de maille 5 (I, F) Borodin et Glebov [11]
Graphes planaires de maille 6 pas (I, ∆d) Borodin et al. [13]

Graphes planaires de maille 7
pas (I, ∆2) Montassier et Ochem [44]
(I, ∆4) Borodin and Kostochka [15]
(I, F5) Corollaire 34

Graphes planaires de maille 8
(I, ∆2) Borodin et Kostochka [15]
(I, F3) Corollaire 34

Graphes planaires de maille 9 pas (I, ∆1) Esperet et al.[30]
Graphes planaires de maille 10 (I, F2) Corollaire 34
Graphes planaires de maille 11 (I, ∆1) Kim, Kostochka et Zhu [42]

Table 2: Quelques partitions de graphes planaires.

Notons que O2 = ∆1, donc le théorème 28 peut être reformulé de la manière suivante :

Theorème 28 (Kim, Kostochka et Zhu [42], reformulé). Tout graphe sans triangles de degré moyen maxi-
mum au plus 11

9 admet une (I, O2)-partition.

Corollaire 29 (reformulé). Tout graphe planaire de maille au moins 11 admet une (I, O2)-partition.

Le théorème suivant est aussi démontré grâce à la méthode du déchagement. Là encore, certaines con-
figurations peuvent être arbitrairement grandes.

Theorème 38. Tout graphe G tel que mad(G) < 5
2 admet une (I, O3)-partition.

Avec la formule d’Euler, on obtient le résultat suivant :

Corollaire 39. Tout graphe planaire de maille au moins 10 admet une (I, O3)-partition.

Comme dans les graphes planaires de maille au moins 10, il n’y a pas de triangles, le corollaire 39 implique
le corollaire 34.3, c’est à dire que tout graphe planaire de maille au moins 10 admet une (I, F2)-partition.

Pour étendre notre résultat aux (I, Ok)-partitions pour d’autres valeurs de k nous prouvons le théorème
suivant.

Theorème 40. Soit k ≥ 2 un entier. Tout graphe G tel que mad(G) < 8k
3k+1 = 8

3

(
1 − 1

3k+1

)
admet

une (I, Ok)-partition.

Ce dernier théorème est prouvé à l’aide de la méthode du déchargement. Certaines configurations in-
terdites peuvent être arbitrairement grandes (même à k fixé), et ces configurations ainsi que la procédure
de déchargement reposent sur des constructions complexes dépendant directement de (I, Ok)-partitions de
sous-graphes du graphe considéré. Il est intéressant de noter que par conséquent, la preuve ne donne pas un
algorithme en temps polynomial pour construire les partitions voulues.

Par conséquent, pour k = 9, on obtient que tout graphe tel que mad(G) < 18
7 admet une (I, O9)-partition,

et donc, par la formule d’Euler, il suit :
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Corollaire 41. Tout graphe planaire de maille au moins 9 admet une (I, O9)-partition.

On peut également voir les graphes planaires de grandes mailles comme des graphes planaires avec un
ensemble de cycles interdits. Il est alors naturel de chercher, pour diverses partitions, quels sont les ensembles
S de cycles tels que les graphes planaires sans cycles dans S admettent de telles partitions.

Choi, Liu et Oum [38] ont prouvé qu’il existe deux ensembles minimaux pour l’inclusion S1 et S2 de cycles
tels que pour i ∈ {1, 2}, tout graphe planaire sans cycles appartenant à Si admet une (I, ∆d)-partition pour
une certaine constante d.

• S1 est l’ensemble des cycles de taille impaire. Les graphes sans cycles dans S1 sont exactement les
graphes bipartis, i.e. les graphes qui admettent une (I, I)-partition.

• S2 est l’ensemble des cycles de taille 3, 4 et 6. Les graphes planaires sans cycles dans S2 admettent
une (I, ∆45)-partition.

Cela soulève la question suivante :

Question 42. Quel est le plus petit entier d tel que tout graphe planaire sans cycles dans S2 admet une
(I, ∆d)-partition.

Notons qu’interdire les sous-graphes de S2 comme sous-graphe ou comme sous-graphe induit est équiva-
lent.

On prouve le théorème suivant à l’aide de la méthode du déchargement. On utilise des classes de
configurations interdites arbitrairement grandes, bien que les règles de déchargement elles-mêmes soient
locales.

Theorème 43. Tout graphe sans cycles dans S2 admet une (I, ∆6)-partition.

Notons que comme les graphes planaires de maille au moins 7 sont les graphes planaires sans cycles dans
S2 ∪ {5}, le théorème précédent peut être comparé au Corollaire 26.

Corollaire 26 (Borodin et Kostochka [15], rappel). Tout graphe planaire de maille au moins 7 admet une
(I, ∆4)-partition, et tout graphe planaire de maille au moins 8 admet une (I, ∆2)-partition.

On prouve également le théorème suivant grâce à une réduction en temps polynomial depuis le problème
de l’existence d’une (I, ∆1)-partition pour les graphes planaires de maille au moins 9 [31].

Theorème 44. Pour tout entier k ≥ 1, soit tout graphe planaire sans cycles dans S2 admet une
(I, ∆k)-partition, ou décider si un graphe planaire sans cycles dans S2 admet une (I, ∆k)-partition est
un problème NP-complet.

De plus, on construit un graphe planaire sans cycles dans S2 qui n’admet pas de (I, ∆3)-partition. Cela
implique le corollaire suivant :

Corollaire 45. Décider si un graphe planaire sans cycles dans S2 admet une (I, ∆3)-partition est un prob-
lème NP-complet.
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Summary

In this manuscript, we will talk about vertex partitions of sparse graphs. The study of vertex partitions of
graphs originated with the Four Colour Theorem, that states that the vertex set of every planar graph can
be partitioned into four sets such that no edge has both of its endpoints in one of those sets.

An induced subgraph of a graph G is a subgraph of G that is solely obtained by removing vertices (and
their pendent edges) from G. An induced forest of a graph G is an induced subgraph of G that has no
cycles. Albertson and Berman [3] conjectured that every planar graph has an induced forest containing at
least 1

2 of its vertices. One motivation for this conjecture was that it implies that every planar graph has
an independent set on at least 1

4 of its vertices, since every acyclic graph is bipartite. That last result is a
corollary of the Four Colour Theorem, the proof of which was computer assisted, and an independent proof
of that result would be appreciated.

Akiyama and Watanabe [1] on the one hand, and Albertson and Haas [2] on the other hand, independently
conjectured that every bipartite planar graph has an induced forest on 5

8 of its vertices. In an attempt to
prove that conjecture, Alon, Mubayi, and Thomas [4] showed that every triangle-free planar graph admits
an induced forest on at least 1

2 of its vertices. That bound was later improved by Salavatipour [49], who
showed that every triangle-free planar graph with n vertices and m edges admits an induced forest with at
least 29n−6m

32 vertices, and thus at least 17n+24
32 ≈ 0.531n vertices. We show that every triangle-free planar

graph with n vertices and m edges admits an induced forest with at least 38n−7m
44 vertices, and thus at least

6n+7
11 ≈ 0.545n vertices. The proof is presented in Section 2.3. See also the arXiv version [24].

An induced linear forest in a graph is an induced forest with maximum degree at most 2. Chappell
conjectured that every planar graph with n vertices admits an induced linear forest with at least 4n

9 vertices.
Poh [47] proved that the vertices of any planar graph can be partitioned into three sets inducing linear
forests, and thus that every planar graph admits an induced linear forest on at least 1

3 of its vertices. On
outerplanar graphs, Pelsmajer [45] proved that every outerplanar graph with n vertices admits an induced
linear forest with at least 4n+2

7 vertices, which is tight. We conjecture that every triangle-free planar graph
has an induced linear forest on at least 1

2 of its vertices, and prove that if this is true, it is tight. As a first
step, we prove that every triangle-free planar graph of order n and size m admits an induced linear forest of
order at least 9n−2m

11 ≥ 5n+8
11 . The proof is presented in Section 2.4. See also the arXiv version [27].

The girth of a graph is the length of a smallest cycle in the graph. Shi and Xu [50] on the one hand, and
Kelly and Liu [41] on the other hand, independently proved that every connected planar graph of girth at
least 5, with n vertices and m edges has an induced forest on at least 8n−2m−2

7 vertices, and thus at least
2n−2

3 vertices. We conjecture that for all g, every planar graph with n vertices, m edges and girth at least g
admits an induced forest on at least n − m

g
vertices. If that conjecture is true, it is the best possible, since a

disjoint union of k cycles of length g has kg vertices and kg edges, and its largest induced forest has k(g − 1)
vertices. There is a trivial bound of n − 2m

g
vertices since removing 2m

g
edges is enough to get a forest. We

prove that such a graph admits an induced forest on at least n − 4m
3g

, improving on known lower bounds
for g ≥ 8. The proof is presented in Sections 2.5 and 2.6. Those results were published in Discrete Applied
Mathematics [25].

The presence of a large induced forest in a graph G can be seen as a partition of the vertices of G into
two sets: one that induces a forest and one whose size is bounded in terms of the number of vertices of G.
One can think of other conditions on the second set of vertices, for instance that it induces an other graph
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with nice properties (for example a second forest). That leads us to study vertex partitions.
We denote by I the class of empty graphs, which are graphs with no edges, and by F the class of forests,

which are graphs with no cycles. For all d, we denote by Fd the class of forests with maximum degree at
most d. For C0 and C1 two classes of graphs, a (C0, C1)-partition of a graph G is a partition of the vertices
of G into two sets C0 and C1, such that for i ∈ {0, 1}, the graph induced by Ci in G is in Ci.

It is easy to show that every triangle-free planar graph admits an (F , F)-partition, which corresponds
to an (F , Fd)-partition where d goes to infinity. Borodin and Glebov [11] proved that every planar graph
of girth at least 5 admits an (I, F)-partition, that is an (F , F0)-partition. We raise the question for all d
whether every triangle-free planar graph admits an (F , Fd)-partition. We show that the answer is yes for
d ≥ 5, and that if the answer is no for a given d, it is NP-difficult to decide whether a triangle-free planar
graph admits an (F , Fd)-partition. The proofs are presented in Sections 3.2 and 3.3. Those results were
presented at Eurocomb 2015 and published in European Journal of Combinatorics [28].

For all d, let ∆d be the class of graphs with maximum degree at most d. The maximum average degree
of a graph is the maximum of the average degrees of its subgraphs. A lot of research has been done on
(I, ∆d)-partitions of sparse graphs. Borodin and Kostochka [15] showed that every planar graph of girth at
least 7 (resp. 8) admits an (I, ∆4)-partition (resp. an (I, ∆2)-partition), and Kim, Kostochka, and Zhu [42]
proved that every planar graph of girth at least 11 admits an (I, ∆1)-partition (or, equivalently, admits an
(I, F1)-partition). We focused on (I, Fd)-partitions and showed that every planar graph of girth at least 7
(resp. 8, 10) admits an (I, Fd)-partition for d = 5 (resp. 3, 2). Our results, as well as those of Borodin and
Kostochka [15] and Kim, Kostochka, and Zhu [42] are corollaries of more general results on graphs with low
maximum average degree. The proofs are presented in Sections 3.4 and 3.5. See also the arXiv version [26].

For all k, let Ok be the class of graphs whose components have at most k vertices. We prove that every
planar graph of girth at least 10 admits an (I, O3)-partition. We also show that for all k, every graph G with

maximum average degree less than 8k
3k+1 = 8

3

(
1 − 1

3k+1

)
admits an (I, Ok)-partition, implying that every

planar graph of girth at least 9 admits an (I, O9)-partition. Again, those results are corollaries of results on
graphs with low maximum average degree. The proofs are presented in Sections 4.2, 4.3, and 4.4.

The class C of (C3, C4, C6)-free planar graphs is the class of planar graphs with no subgraph (or equiv-
alently no induced subgraph) that is a cycle of size 3, 4 or 6. Choi, Liu, and Oum [38] showed that there
are two minimal sets of cycles such that planar graphs with no cycles in one of those sets admit an (I, ∆d)-
partition for some d. Those sets are the set of all odd cycles on the one hand (graphs with no odd cycles
are bipartite and thus have (I, ∆0)-partitions), and the set of cycles with size 3, 4, and 6 on the other
hand. They showed that graphs in C admit an (I, ∆45)-partition, and we show that such graphs have an
(I, ∆6)-partition. We also show that there exists a graph in C that has no (I, ∆3)-partition. The proofs are
presented in Sections 4.5 and 4.6. See also the arXiv version [29].
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The study of colouring of planar graphs originated in 1852 with the famed Four Colour Conjecture made
by Francis Guthrie. Allegedly, he was trying to colour a map of British counties such that no two counties
sharing a border have the same colour, and noticed that he needed exactly four colours. He then conjectured
that this result could be generalised to any map. He posed this problem to his younger brother Frederick
Guthrie, who posed it to his professor Augustus De Morgan [54].

The first proof of this result was published by Kempe in 1879, but this proof was then disproved by
Heawood in 1890. The conjecture then remained unproven until 1976, when it was proven by Appel, Haken
and Koch [5, 6] with the help of computer computation. This proof was based on a method introduced in
1948 by Heesch, the discharging method.

When it was proven, the Four Colour Theorem was now presented in terms of graphs, using the fact that
for any planar map, taking a vertex for each region of the map, and adding an edge between two vertices if
the corresponding regions share a boundary leads to a planar graph.

Theorem 1.0.1 (Appel, Haken, and Koch [5, 6]). Every planar graph admits a proper colouring with at
most four colours.

The work on the Four Colour Theorem initiated a lot of research on the colourings of graphs, especially
planar graphs [40]. In this thesis, we will prove some results on those generalised colourings for sparse graphs.

1.1 Definitions and notation

A graph G = (V, E) is a pair of sets, V and E, such that E is a set of unordered pairs of elements of V .
The elements of V are called the vertices of G, and the elements of E are called the edges of G. The set of
vertices of a graph G will be denoted by V (G). The set of edges of a graph G will be denoted by E(G). The
order of a graph G, denoted by |G|, is |V (G)|, and the size of a graph G, denoted by ||G||, is |E(G)|. See
Figure 1.1.1 for an illustration of a graph of order 5 and size 7.

An edge {v, w}, denoted by vw or wv, is incident to the vertices v and w, and those vertices are called
the endpoints of vw. Two vertices that are incident to the same edge are adjacent. The neighbours of a
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vertex v in G are the vertices that are adjacent to v. If the graph G needs to be specified, we say that a
neighbour of a vertex v in G is a G-neighbour of v. For a vertex v, the set of the neighbours of v, called the
open neighbourhood of v, is denoted by N(v), and N [v] = N(v) ∪ {v} is the closed neighbourhood of v. For
all set W ⊂ V (G), N [W ] =

⋃
v∈W N [v] is the closed neighbourhood of W , and N(W ) = N [W ] \ W is the

open neighbourhood of W . For any set S of vertices, we say that any vertex in S is an S-vertex, and if a
vertex in S is a neighbour of a vertex v, then we say it is an S-neighbour of v. For example, in the graph
G0 represented in Figure 1.1.1, N(v1) = {v0, v2, v4}, N [v1] = {v0, v1, v2, v4}, N({v0, v1}) = {v2, v3, v4}, and
N [{v0, v1}] = {v0, v1, v2, v3, v4}.

v0 v1

v2v3

v4

Figure 1.1.1: The graph G0. The circles are vertices and the lines are edges.

v0 v1

v2v3

v0 v1

v2v3

Figure 1.1.2: The graphs G1 (left) and G2 (right).

A graph isomorphism between two graphs G and H is a bijection f from V (G) into V (H) such that
for all pair of vertices v and w in V (G), vw ∈ E(G) if and only if f(v)f(w) ∈ E(H). If there exists an
isomorphism between two graphs G and H, then G and H are isomorphic. A copy of a graph G is a graph
that is isomorphic to G. Generally speaking, we will work up to isomorphism, saying that two graphs are
equal if they are isomorphic.

A subgraph H of a graph G is a graph such that V (H) ⊆ V (G) and E(H) ⊆ E(G). An induced subgraph
H of a graph G is a subgraph of G such that E(H) is the set of unordered pairs of vertices of H that are in
E(G). For a set W ⊆ V (G) of vertices of a graph G, the subgraph of G induced by W , denoted by G[W ],
is the induced subgraph of G with vertex set W . In Figure 1.1.2, the left graph (G1) is a subgraph of G0

(Figure 1.1.1), but it is not an induced subgraph of G0. The one on the right (G2) is an induced subgraph
of G0.

Let G = (V, E) be a graph. For a set W ⊆ V , we denote by G − W the graph G[V \ W ]. For simplicity,
for v ∈ V , we denote G − {v} by G − v. For a set F ⊆ E, we denote by G − F the graph (V, E \ F ). For
simplicity, for e ∈ E, we denote G − {e} by G − e. For F a set of unordered pairs of elements of V such
that F ∩ E = ∅, G + F = (V, E ∪ F ). For simplicity, when F is a singleton, we denote G + {e} by G + e.
For example, G2 = G0 − v4, and G1 = G2 − v0v2 (see Figures 1.1.1 and 1.1.2). The action of subdividing an
edge e = vw consists in considering a vertex x /∈ V , and building the graph (V ∪ x, (E \ {e}) ∪ {vx, xw}).

The degree of a vertex v is the number of edges incident to v. The degree of a vertex v in a graph G
is denoted by dG(v), or simply by d(v) if there is no ambiguity on the graph G. For all d ∈ N, a d-vertex,
d+-vertex, or d−-vertex denote a vertex with degree d, at least d, or at most d respectively. For all d ∈ N

and all v in V , a d-neighbour, d+-neighbour, or d−-neighbour of v denote a neighbour of v with degree d, at
least d, or at most d respectively. The maximum degree, resp. minimum degree, of a graph is the maximum,
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resp. minimum, of the degrees of the graph. A graph is d-regular for some integer d if all of its vertices are
d-vertices, and a 3-regular graph is called a cubic graph. For example, in G0 (Figure 1.1.1), the vertices v3

and v4 are 2-vertices, the vertices v1 and v2 are 3-vertices, and the vertex v0 is a 4-vertex.

Figure 1.1.3: The graphs K4 (left) and K1,3 (right)

An independent set of a graph G is a set of vertices of G that are not adjacent to one another. A clique
of a graph G is a set of vertices that are pairwise adjacent. A graph whose set of vertices is independent
is called an empty graph, and a graph whose set of vertices is a clique is called a complete graph. In G0

(Figure 1.1.1), the set {v0, v1, v2} is a clique, and {v1, v3} is an independent set. For all k, the complete
graph on k vertices is denoted by Kk. See Figure 1.1.3 (left) for an illustration of K4. A path of length k,
denoted by Pk+1, is the graph with k + 1 vertices {v0, v1, ..., vk} such that for i ∈ {0, ..., k − 1}, vi is adjacent
to vi+1. The cycle of length k, or k-cycle, denoted Ck, is the graph with k vertices {v0, v1, ..., vk−1} such
that for i ∈ {0, ..., k − 2}, vi is adjacent to vi+1, and such that v0 is adjacent to vk−1. A k+-cycle and a
k−-cycle denote a cycle of length at least k and at most k respectively. The graph G1 (Figure 1.1.2, left) is
a 4-cycle.

A graph is bipartite if its set of vertices can be partitioned into two independent sets V1 and V2. Such
a partition into two sets is called a bipartition of the graph, and the sets V1 and V2 are called the partite
sets. A graph G is a complete bipartite graph if it has a bipartition into sets V1 and V2, such that for all
(v1, v2) ∈ V1 × V2, v1v2 ∈ E(G). For all k1 and k2, the complete bipartite graph with partite sets of size
k1 and k2 is denoted by Kk1,k2

. For all k, the graph K1,k is called a star. See Figure 1.1.3 (right) for an
illustration of K1,3.

For two graphs G and H, a subgraph of G isomorphic to H is directly called an H of G. For example,
a cycle of length three, or triangle, of a graph G is a subgraph of G isomorphic to C3. Therefore, a graph
G has no H, or is H-free, if it has no subgraph isomorphic to H. If a graph G has a cycle C on k vertices
y0, y1, ..., yk−1 such that for all i ∈ {0, ..., k − 2}, yi is adjacent to yi+1 in C, and such that y0 is adjacent
to yk−1 in C, then we denote this cycle by y0y1y2...yk−1. For instance, the cycle v0v1v4 is a triangle of G0

(Figure 1.1.1). As another example, a path in a graph G is a subgraph of G isomorphic to a path. The
endvertices of a path are the vertices of degree 1 in the path.

Figure 1.1.4: The graph 2P3.

A graph G is connected if any two vertices of G are the endvertices of a path. For example, G0 (Fig-
ure 1.1.1) is connected, while the graph in Figure 1.1.4 is disconnected. Two vertices that are the endpoints
of a path are said to be connected by this path. The distance between two vertices in a graph G is the length
of a shortest path connecting these two vertices, if such a path exists. If two vertices are not connected by a
path, then their distance is infinite. The distance between two vertices v and w in a graph G is denoted by
dG(v, w), or simply by d(v, w) if there is no ambiguity on the graph G. In a graph G, the components of a
graph G are the maximal connected induced subgraphs of G. A vertex cut in a graph G is a set S ⊆ V (G)
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such that G − S is not connected. An edge cut in a graph G is a set F ⊆ E(G) such that G − F is not
connected. For all k ∈ N, a graph G is k-connected if |G| ≥ k+1 and G has no vertex cut of size at most k−1.
For all k ∈ N, a graph G is k-edge-connected if it has no edge cut set of size at most k − 1. In a connected
graph, a vertex v such that {v} is a vertex cut is a cutvertex, and an edge e such that {e} is an edge cut is a
bridge. In a graph G, a vertex cut S or an edge cut F separates two vertices if those vertices are in different
components of G − S or G − F respectively. For example, the graph G0 (Figure 1.1.1) is 2-connected and
2-edge-connected. The set {v0, v1} is a vertex cut that separates v2 and v4, while {v0v3, v2v3} is an edge cut
that does not separate them. Note that cuts need not be minimal. For example, {v0, v1, v3} is also a vertex
cut of G0.

The disjoint union of two graphs G and H with disjoint sets of vertices is the graph (V (G)∪V (H), E(G)∪
E(H)). If the sets of vertices are not actually disjoint, we take a copy of H such that they are disjoint. We
denote by G + H the disjoint union of the graphs G and H. For G a graph and for n ∈ N, we define nG
inductively by 0G = (∅, ∅), and for all n ∈ N, (n + 1)G = nG + G. See Figure 1.1.4 for an illustration of the
graph 2P3.

A forest, or acyclic graph, is a graph with no cycle. A tree is a connected forest. A linear forest is a forest
with maximum degree at most two. Note that the components of a linear forest are paths. The girth of a
graph G is the size of a smallest cycle in G. The girth of a forest is infinite. A star forest is a P4-free forest.
In other words, it is a graph whose components are stars. The graphs K1,3 (Figure 1.1.3, right) and 2P3

(Figure 1.1.4) are forests, and even star forests. The graph 2P3 is also a linear forest. For k ∈ N, a graph G
is k-degenerate if every subgraph of G has a k-vertex. Forests are exactly 1-degenerate graphs.

We denote by I the class of empty graphs and by F the class of forests. For all d ∈ N, we denote by
∆d the class of graphs with maximum degree at most d, by Fd the class of forests with maximum degree at
most d, by Dd the class of d-degenerate graphs, and by Od the class of graphs whose components have order
at most d.

A colouring or vertex partition of a graph G is a partition of V (G) into several disjoint sets, which are
called colour classes. A proper colouring of a graph G is a colouring of G such that every colour class is an
independent set. An acyclic colouring of a graph G is a proper colouring of G such that the union of any
two colour classes induces a forest.

For any classes of graphs C1, C2, ..., Cn, a (C1, C2, ..., Cn)-partition (S1, S2, ..., Sn) of a graph G is a
partition of the vertices of G into n sets S1, ..., Sn such that for all i ∈ {1, ..., n}, G[Si] ∈ Ci. For example,
({v0}, {v1, v2, v3, v4}) is an (I, F2)-partition of G0 (Figure 1.1.1). Note that an (I, I, ..., I)-partition is
exactly a proper colouring.

On further figures, we will sometimes draw only parts of some graphs, and we will use the drawing
conventions described in Figure 1.1.5 for all of our figures.

vertex with all of its incident edges represented

vertex with some of its incident edges not represented

3-vertex with all of its incident edges represented

3-vertex with some of its incident edges not represented

4-vertex with all of its incident edges represented

4-vertex with some of its incident edges not represented

4+-vertex with some of its incident edges not represented

Edge

Path

Non-edge

Edge that may or may not be present

Figure 1.1.5: The drawing conventions for the figures.

A directed graph G = (V, A) is a pair of sets, V and A, such that A is a set of ordered pairs of elements
of V . The difference with graphs is that the elements of A, called arcs, are ordered pairs, contrary to the
edges of a graph. In a directed graph, the arc uv corresponds to the pair (u, v) and is different from the arc
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vu. In a directed graph, an arc uv is said to go from u towards v. For all vertex v, an arc that goes from
v towards another vertex is an outgoing arc of v, and one that goes towards v is an ingoing arc of v. The
indegree of a vertex v, denoted d−(v), is the number of ingoing arcs of v, and the outdegree of a vertex v,
denoted d+(v), is the number of outgoing arcs of v.

A directed graph (V, A) is an oriented graph if for all arc uv in A, the arc vu does not belong to A. In a
graph G, an orientation of G is a function which, with each edge uv of G, associates one of the corresponding
ordered pairs, either (u, v) or (v, u). A graph together with an orientation yields an oriented graph. When
we have a graph with an orientation, we will call the outgoing (resp. ingoing) arcs of a vertex in the
corresponding oriented graph the outgoing (resp. ingoing) edges of the vertex.

A rooted tree is a tree where some specific vertex is called the root of the tree. With a rooted tree
is associated a canonical orientation, where each edge is oriented from the endpoint farther from the root
towards the endpoint closer to the root (in terms of distance in the graph). Such an orientation is called a
bottom-up orientation. A rooted forest is a forest where every component is rooted. In a rooted forest, each
vertex v that is not a root has one outgoing edge in that orientation, and the other endpoint of that edge is
called the father of v. If a vertex w is the father of a vertex v, then v is a son of w.

A multigraph G = (V, E) is a pair where V is a set of vertices and E is a multiset of unordered pairs
of vertices and singletons of vertices. The elements of E are still called edges, and the singletons of E are
called loops.

1.2 Sparse graphs

In this thesis, we will prove properties on some classes of graphs, mainly on sparse graphs. We will use
several notions of sparsity, as opposed to density, throughout this thesis. Informally, a graph is dense if it
has many edges, and sparse otherwise. The average degree of a graph G, noted ad(G), is the average of the
degrees of the vertices of G, that is 2||G||

|G| . One could take the average degree of a graph as a measure of its
density, but that notion does not capture the local structure of the graph. For instance, a graph composed
of a clique and a large independent set has a rather low average degree, though the clique itself is dense. We
will need more local notions of density, so that a subgraph of a sparse graph is sparse.

Figure 1.2.1: The graph K3,3.

A drawing or embedding of a graph G is a bijection of the set V (G) with a set of points in a surface Σ,
and a bijection of the set E(G) with a set of curves in the surface Σ, such that the image of an edge vw is
a curve with v and w as its extremities. A graph is planar if it can be drawn into the plane such that no
two edges intersect outside of their endpoints. This drawing is a planar embedding of the graph. A plane
graph is the planar embedding of a planar graph. All the graphs represented in the figures of Section 1.1
are planar graphs, and their representations are planar embeddings. The graph K3,3 (Figure 1.2.1) is not a
planar graph.

In a plane graph, a face is a maximum connected surface that do not contain any edges and vertices.
The edges and vertices that are in contact with some face φ of a plane graph G form a subgraph called the
boundary of φ and denoted by G[φ]. Two faces are adjacent if they share an edge in their boundary. The
degree of a face φ, denoted by d(φ), is the number of edges that are in its boundary, counting twice the edges
that are not in the boundary of any other face. A d-face, d+-face, or d−-face denote a face with degree d, at
least d, or at most d respectively. In a plane graph G, let F (G) denote the set of faces of G. For example,
the graph G0 (Figure 1.1.1) has four faces, bounded by the cycles v0v1v2, v0v1v4, v0v2v3, and v0v3v2v1v4.
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Note that in a plane graph, any cycle corresponds to a close curve, that thus separates the plane into two
parts, the interior and the exterior. If a cycle is not in the boundary of a face, then it is a separating cycle.
Note that if C is a separating cycle in a graph G, then G − V (C) is disconnected. A cycle C separates two
vertices if one of those two vertices is in the interior of C, and the other one is in the exterior of C. Note
that if a cycle C separates two vertices, then those vertices are in different components of G − V (C), i.e.
V (C) separates those vertices.

A planar graph is outerplanar if it admits a planar embedding where every vertex is on the boundary of
the same face. For example, G0 (Figure 1.1.1) is outerplanar, while K4 (Figure 1.1.3, left) is not.

The dual of a plane graph G is a multigraph Ĝ whose vertices are the faces of G and such that for all edge
e of G, there is an edge between the two faces containing e in their boundaries (or the only face containing
e in its boundary if there is only one such face).

For all g ∈ N with g ≥ 3, let Pg denote the class of planar graphs with girth at least g. Note that P3 is
the class of planar graphs and that P4 is the class of triangle-free planar graphs. The density of the graphs
in Pg decreases, and thus the sparsity increases, as g augments. Indeed, the larger the girth, the closer the
graph is to a tree, where the number of edges is the number of vertices minus one.

Another notion of graph density is the maximum average degree. The maximum average degree of a graph
G, denoted by mad(G), is the maximum over all subgraphs H of G of ad(H). For example, the maximum
average degree of G0 (Figure 1.1.1) is 14

5 , and is equal to its average degree. The graph G0 + K1 has an
average degree of 5

2 , but its maximum average degree is still 14
5 since it contains G0 as a subgraph.

Those two notions are not independent. Indeed, by Euler’s formula, a connected plane graph of order
n ≥ 1, size m, and f faces verifies n − m + f = 2. Moreover, a planar graph of girth at least g has all of its
faces of degree at least g, and thus 2m ≥ fg, as every edge is either in the boundary of two faces, or counted
twice in the boundary of a face. The immediate consequence is that 2m

n
< 2g

g−2 for every planar graph. As
a subgraph of a planar graph is planar, we can deduce that for any planar graph G with girth at least g,
mad(G) < 2g

g−2 .
Note that we can obtain the girth or the girth plus one in quadratic time thanks to a breadth first search

algorithm started from each vertex, stopping when the first cycle is obtained. The girth and the maximum
average degree can also be computed in polynomial time [39, 46].

1.3 Discharging method

Most of the proofs in this thesis use the discharging method. For illustration, take the proofs of Theo-
rems 3.1.4, 3.1.12, 4.1.4, or 4.1.9. Cranston and West [19] give an introduction to the discharging method,
as well as some applications to graph colouring. Borodin [10] gives a survey of application of the discharging
method to graph colourings.

The basic principle of the discharging method is rather simple. We consider a property that we want
to prove, and a class of graphs, usually sparse, on which we want to prove the property. The proof is by
contradiction, thus we assume that the property does not hold on every graph of the class. We consider an
order on the graphs of the class, for example the number of vertices, and we pick a smallest counter-example
G to the property in the class according to that order.

We then prove that some configurations, that we call forbidden configurations or reducible configurations,
do not appear in the graph G. To prove this, first assume that the configuration appears in G. We then
usually transform the graph G into a graph G′ that is smaller than G in the order we chose previously. As
G is minimum according to this order, G′ verifies the property. Then, we prove that this implies the graph
G also verifies the property, a contradiction.

Those forbidden configurations give us some local constraints on the structure of G. The remainder of the
proof is to show that there is actually no graph in the considered class that verifies all of those constraints.
This is done by first giving weight to the vertices, and sometimes to the faces of an embedding of the graph
G, such that the total weight of the graph is negative. The next step is to move the weight from some
vertices and faces to other vertices and faces, without changing the total weight of the graph, such that in
the end, every vertex and every face has non-negative weight, leading to a contradiction. This part is called
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the discharging procedure, and it gives its name to the discharging method.

1.4 Publications

Here is the list of publications and manuscripts of the author. First will be the works which are presented
in this manuscript, and then the works that are not, but are available as an appendix.

1.4.1 Works presented in this manuscript

Large induced forests in triangle-free planar graphs

An induced forest in a graph is an induced subgraph (i.e. a subgraph obtained solely by removing vertices)
with no cycles. Albertson and Berman [3] conjectured that every planar graph admits an induced forest on
at least one half of its vertices. If true, that would imply that every planar graph admits an independent
set on at least one fourth of its vertices, the only known proof of which relies on the Four Colour Theorem.
Akiyama and Watanabe [1], and independently Albertson and Haas [2] conjectured that every bipartite
planar graph admits an induced forest on at least five eights of its vertices. Salavatipour [49] proved that
every triangle-free planar graph of order n and size m admits an induced forest of order at least 29n−6m

32 and
thus at least 17n+24

32 . We improve that bound by showing that a triangle-free planar graph of order n admits
an induced forest of order at least 6n+7

11 .
The proof is presented in Section 2.3. See also the arXiv version [24].

Large induced linear forests in triangle-free planar graphs

An induced linear forest in a graph is an induced forest with maximum degree at most 2. Chappell conjectured
that every planar graph admits an induced linear forest on at least four ninths of its vertices. Poh [47] proved
that the vertices of any planar graph can be partitioned into three sets inducing linear forests, and thus that
every planar graph admits an induced linear forest on at least one third of its vertices. We conjecture that
every triangle-free planar graph has an induced linear forest on at least one half of its vertices, and prove
that if this is true, it is tight. As a first step, we prove that every triangle-free planar graph of order n and
size m admits an induced linear forest of order at least 9n−2m

11 ≥ 5n+8
11 .

The proof is presented in Section 2.4. See also the arXiv version [27].

Large induced forests in planar graphs of large girth

The girth of a graph is the length of a smallest cycle in the graph. Shi and Xu [50], and Kelly and Liu [41]
independently proved that every connected planar graph of girth at least 5, order n, and size m has an
induced forest of order at least 8n−2m−2

7 , and thus at least 2n−2
3 . We conjecture that for all g, every planar

graph with n vertices, m edges, and girth at least g admits an induced forest on at least n − m
g

vertices.
That would be tight if true because of the union of cycles on g vertices. There is a trivial bound of n − 2m

g

vertices since removing 2m
g

edges is already enough to yield a forest. We prove that such a graph admits an
induced forest on at least n − 4m

3g
, improving on known lower bounds for g ≥ 8.

The proof is presented in Sections 2.5 and 2.6. Those results were published in Discrete Applied Mathe-
matics [25].

(F , Fd)-partitions of triangle-free planar graphs

For all d, an (F , Fd)-partition of a graph is a partition of the vertices of the graph into two sets that are
the vertex sets of an induced forest and an induced forest of maximum degree at most d respectively. It is
easy to show that every triangle-free planar graph admits a partition of its vertices into two sets that are the
vertex sets of induced forests, which corresponds to an (F , Fd)-partition where d goes to infinity. Borodin
and Glebov [11] proved that every planar graph of girth at least 5 admits an (F , F0)-partition. We raise
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the question for all d whether every triangle-free planar graph admits an (F , Fd)-partition. We show that
the answer is yes for d ≥ 5, and that if the answer is no for a given d, it is NP-difficult to decide whether a
triangle-free planar graph admits an (F , Fd)-partition.

The proofs are presented in Sections 3.2 and 3.3. Those results were presented at Eurocomb 2015 and
published in European Journal of Combinatorics [28].

(I, Fd)-partitions of planar graphs of large girth

For all d, an (I, Fd)-partition of a graph is a partition of the vertices of the graph into two sets that are
an independent set and the vertex set of an induced forest of maximum degree at most d respectively. For
all d, an (I, ∆d)-partition of a graph is a partition of the vertices of the graph into two sets that are an
independent set and the vertex set of an induced subgraph (not necessarily acyclic) of maximum degree
at most d respectively. The maximum average degree of a graph is the maximum of the average degrees
of its subgraphs. A lot of research has been done on (I, ∆d)-partitions of sparse graphs. Borodin and
Kostochka [15] showed that every planar graph of girth at least 7 (resp. 8) admits an (I, ∆4)-partition (resp.
an(I, ∆2)-partition), and Kim, Kostochka, and Zhu [42] proved that every planar graph of girth at least 11
admits an (I, ∆1)-partition (or, equivalently, an admits an (I, F1)-partition). We focus on (I, Fd)-partitions
and show that every planar graph of girth at least 7 (resp. 8, 10) admits an (I, Fd)-partition for d = 5 (resp.
3, 2). Our results, as well as those of Borodin and Kostochka [15] and Kim, Kostochka, and Zhu [42] are
corollaries of more general results on graphs with low maximum average degree.

The proofs are presented in Sections 3.4 and 3.5. See also the arXiv version [26].

(I, Ok)-partitions of planar graphs of large girth

For all k, an (I, Ok)-partition of a graph is a partition of the vertices of the graph into two sets that are an
independent set and the vertex set of an induced subgraph whose components have at most k vertices. We
prove that every planar graph of girth at least 10 admits an (I, O3)-partition. We also show that for all k,

every graph G with maximum average degree less than 8k
3k+1 = 8

3

(
1 − 1

3k+1

)
admits an (I, Ok)-partition,

implying that every planar graph of girth at least 9 admits an (I, O9)-partition. Again, those results are
corollaries of results on graphs with low maximum average degree.

The proofs are presented in Sections 4.2, 4.3, and 4.4.

(I, ∆d)-partitions of (C3, C4, C6)-free planar graphs

The class of (C3, C4, C6)-free planar graphs is the class of planar graphs with no subgraphs (or equivalently
no induced subgraphs) of size 3, 4 or 6. Choi, Liu, and Oum [38] showed that there are two minimal sets
of cycles such that planar graphs with no cycles in one of those sets admit an (I, ∆d)-partition for some d.
Those sets are the set of all odd cycles on the one hand (graphs with no odd cycles are bipartite and thus
have (I, ∆0)-partitions), and the set of cycles with size 3, 4 and 6 on the other hand. They showed that
graphs in C admit an (I, ∆45)-partition, and we prove that such graphs have an (I, ∆6)-partition. We also
show that there exists a graph in C that has no (I, ∆3)-partition.

The proofs are presented in Sections 4.5 and 4.6. See also the arXiv version [29].

1.4.2 Works available as an appendix

Fractional triangle decomposition of dense graphs

A triangle decomposition of a graph is a partition of its edges into triangles. A fractional triangle decompo-
sition of a graph is an assignment of a non-negative weight to each of its triangles such that the sum of the
weights of the triangles containing any given edge is one. We prove that every graph on n vertices with min-
imum degree at least 0.9n has a fractional triangle decomposition. This improves a result of Garaschuk [35]
that the same conclusion holds for graphs with minimum degree at least 0.956n. Together with a result of
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Barber, Kühn, Lo, and Osthus [7], this implies that for all ǫ > 0, every large enough triangle divisible graph
on n vertices with minimum degree at least (0.9 + ǫ)n admits a triangle decomposition.

Those results were published in Siam Journal on Discrete Mathematics [23]. See Appendix A.

List colouring of planar graphs

A colouring of a graph G = (V, E) is a function c : V → N
∗ such that c(u) Ó= c(v) for every uv ∈ E. A

k-regular list assignment of G is a function L with domain V such that for every u ∈ V , L(u) is a subset
of N

∗ of size k. A colouring c of G respects a k-regular list assignment L of G if c(u) ∈ L(u) for every
u ∈ V . A graph G is k-choosable if for every k-regular list assignment L of G, there exists a colouring of G
that respects L. We may also ask if for a given k-regular list assignment L of a given graph G, there exists
a colouring of G that respects L. This yields the k-Regular List Colouring problem. For k ∈ {3, 4}
we determine a family of classes G of planar graphs, such that either k-Regular List Colouring is NP-
complete for instances (G, L) with G ∈ G, or every G ∈ G is k-choosable. By using known examples of
non-3-choosable and non-4-choosable graphs, this enables us to classify the complexity of k-Regular List

Colouring restricted to planar graphs, planar bipartite graphs, planar triangle-free graphs and to planar
graphs with no 4-cycles and no 5-cycles. We also classify the complexity of k-Regular List Colouring

and a number of related colouring problems for graphs with bounded maximum degree.
Those results were presented at IWOCA 2015 [20]. The full version is available on arXiv [21]. See

Appendix B.

Colouring diamond-free graphs

The Colouring problem is that of deciding, given a graph G and an integer k, whether G admits a (proper)
k-colouring. For all graphs H up to five vertices, we classify the computational complexity of Colouring

for (diamond, H)-free graphs. Our proof is based on combining known results together with proving that
the clique-width is bounded for (diamond, P1 + 2P2)-free graphs. Our technique for handling this case is
to reduce the graph under consideration to a k-partite graph that has a very specific decomposition. As a
by-product of this general technique we are also able to prove boundedness of clique-width for four other
new classes of (H1, H2)-free graphs. As such, our work also continues a recent systematic study into the
(un)boundedness of clique-width of (H1, H2)-free graphs, and our five new classes of bounded clique-width
reduce the number of open cases from 13 to 8.

Those results were published in Journal of Computer an System Sciences [22]. See Appendix C.
Here are the references to the author’s publications.

[20] K.K. Dabrowski, F. Dross, M. Johnson, and D. Paulusma. Filling the complexity gaps for colouring
planar and bounded degree graphs. In International Workshop on Combinatorial Algorithms, pages
100–111. Springer, 2015.

[21] K.K. Dabrowski, F. Dross, M. Johnson, and D. Paulusma. Filling the complexity gaps for colouring
planar and bounded degree graphs. arXiv1506.06564, 2015.

[22] K.K. Dabrowski, F. Dross, and D. Paulusma. Colouring diamond-free graphs. Journal of Computer
and System Sciences, 89:410–431, 2017.

[23] F. Dross. Fractional triangle decompositions in graphs with large minimum degree. SIAM Journal on
Discrete Mathematics, 30(1):36–42, 2016.
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Chapter 2

Large induced forests
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2.1 Introduction

One of the consequences of the Four Colour Theorem is that every planar graph admits an independent set
on at least one fourth of its vertices. This result, of independent interest, was not known before the Four
Colour Theorem, and actually no other proof of this result is known to date. An interesting other result that
would imply this one is that every planar graph admits an induced forest on at least one half of its vertices.
This was first conjectured by Albertson and Berman in 1979 [3] and has yet to be proven.

Conjecture 2.1.1 (Albertson and Berman [3]). Every planar graph of order n admits an induced forest of
order at least n

2 .

A notion that is perhaps more widely known is that of feedback vertex set. In a graph G, a feedback
vertex set is a set of vertices that intersects all the cycles of G. Note that a set S ⊆ V (G) is a feedback
vertex set if and only if G − S is a forest. Hence, an equivalent formulation of Conjecture 2.1.1 is that every
planar graph of order n admits a feedback vertex set of size at most n

2 .
Conjecture 2.1.1, if true, is best possible, as shown by the disjoint union of copies of the complete graph

on four vertices. The best result known to date is that every planar graph admits an induced forest on at
least two fifth of its vertices. This is a direct consequence of the following theorem by Borodin [9].

Theorem 2.1.2 (Borodin [9]). Every planar graph admits an acyclic colouring with at most five colours.

Corollary 2.1.3 (Borodin). Every planar graph of order n admits an induced forest of order at least 2n
5 .

Conjecture 2.1.1, however, was proven, and even strengthened, on some smaller classes of graphs. On
outerplanar graphs, Hosono [37] proved the following.

Theorem 2.1.4 (Hosono [37]). Every outerplanar graph of order n admits an induced forest of order at
least 2n

3 .
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This theorem is tight, as shown by the examples of Hosono [37]. Other results were deduced from results
on acyclic colouring, for other classes of graphs. Fertin, Godard, and Raspaud [33] gave such results for
several classes of graphs, stated in Table 2.1.

Family F Order of a largest induced forest:
Lower bound Upper bound

Planar 2n
5 ⌈ n

2 ⌉

Planar with girth 5, 6 n
2

7n
10 + 2

Planar with girth ≥ 7 2n
3

5n
6 + 1

Table 2.1: Bounds on the order of a largest induced forest for some families F of graphs [33].

On bipartite planar graphs, Akiyama and Watanabe [1], and Albertson and Haas [2] independently raised
the same following conjecture.

Conjecture 2.1.5 (Akiyama and Watanabe [1], and Albertson and Haas [2]). Every bipartite planar graph
of order n admits an induced forest of order at least 5n

8 = 0.625n.

As a first step towards Conjecture 2.1.5, Alon, Mubayi, and Thomas [4] proved the following.

Theorem 2.1.6 (Alon et al. [4]). Every triangle-free graph of order n and size m admits an induced forest
of order at least n − m

4 .

Corollary 2.1.7 (Alon et al. [4]). Every triangle-free cubic graph of order n admits an induced forest of
order at least 5n

8 .

Corollary 2.1.8 (Alon et al. [4]). Every triangle-free planar graph of order n admits an induced forest of
order at least n

2 .

This latter lower bound was improved for n ≥ 1 by Salavatipour [49].

Theorem 2.1.9 (Salavatipour [49]). Every triangle-free planar graph of order n and size m admits an
induced forest of order at least 29n−6m

32 and thus at least 17n+24
32 ≈ 0.531n.

Relying on the methods of Kowalik, Lužar, and Škrekovski [43], we improve the previous result to prove
the following in Section 2.3.

Theorem 2.1.10. Every triangle-free planar graph of order n and size m admits an induced forest of
order at least max{ 38n−7m

44 , n − m
4 }, and thus at least 6n+7

11 ≈ 0.545n.

For girth 5, Kowalik, Lužar, and Škrekovski [43] made the following conjecture, and gave examples to
show that it is tight.

Conjecture 2.1.11 (Kowalik et al. [43]). Every planar graph of girth at least 5 and order n admits an
induced forest of order at least 7n

10 .

We used similar methods to that of Theorem 2.1.10 to prove that every planar graph with girth at least
5, order n, and size m admits an induced forest of order at least n − 5m

23 , and thus at least 44n+50
69 ≈ 0.638n,

but this result was improved independently by both Shi and Xu [50] on the one hand and by Kelly and
Liu [41] on the other hand as follows:
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Theorem 2.1.12 (Shi and Xu [50], Kelly and Liu [41]). Every connected planar graph of girth at least 5,
order n, and size m has an induced forest of order at least 8n−2m−2

7 , and thus at least 2n−2
3 ≈ 0.667n.

For higher girths, we make the following conjecture.

Conjecture 2.1.13. For all g ≥ 3, every planar graph of girth at least g with n vertices and m edges admits
an induced forest of order at least n − m

g
, and thus at least n − n−2

g−2 .

This conjecture is tight, as shown in Section 2.2. As a first step towards Conjecture 2.1.13, we prove the
following in Section 2.6.

Theorem 2.1.14. For all g ≥ 3, every planar graph of girth at least g with n vertices and m edges
admits an induced forest of order at least n − 4m

3g
, and thus at least n − 4n

3g−6 .

In the proof of Theorem 2.1.14, we need the following theorem, that is of independent interest and will
be proven in Section 2.5. Let C2,3− be the family of 2-connected graphs of maximum degree at most 3. Note
that graphs in C2,3− do not need to be planar.

Theorem 2.1.15. Every graph in C2,3− of order n has an induced forest of order at least 2n−2
3 .

Conjecture 2.1.1 also led to some similar researches on induced linear forests. The following conjecture
is due to Chappell (see Pelsmajer [45]).

Conjecture 2.1.16 (Chappell). Every planar graph of order n admits an induced linear forest of order at
least 4n

9 .

This conjecture is also tight. Pelsmajer [45] claims that Chappell found examples showing the tightness
of Conjecture 2.1.16, citing personal correspondence with Chappell. The best known result to date is a
consequence of the following theorem by Poh [47].

Theorem 2.1.17 (Poh [47]). The set of vertices of every planar graph can be partitioned into three sets
inducing linear forests.

Corollary 2.1.18. Every planar graph of order n admits an induced linear forest of order at least n
3 .

Again, the problem was solved for outerplanar graphs.

Theorem 2.1.19 (Pelsmajer [45]). Every outerplanar graph of order n admits a linear forest of order at
least 4n+2

7 .

The previous theorem is tight, as shown by examples of Chappell (see Pelsmajer [45]).
Now, we focus on triangle-free planar graphs, and make the following conjecture:

Conjecture 2.1.20. Every triangle-free planar graph of order n admits an induced linear forest of order at
least n

2 .

Again, this conjecture is tight, as shown in Section 2.2. The first step towards proving Conjecture 2.1.20
is the following.

Theorem 2.1.21. Every triangle-free planar graph of order n and size m admits an induced linear
forest of order at least 9n−2m

11 , and thus at least 5n+8
11 ≈ 0.455n.

We will prove Theorem 2.1.21 in Section 2.4. As a generalisation of finding a largest induced linear forest,
the problem of finding a largest induced forest with maximum degree at most d, with d ≥ 2, was solved
for graphs with treewidth at most k for all k by Chappell and Pelsmajer [16]. They made the following
conjecture for planar graphs:
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Conjecture 2.1.22 (Chappell and Pelsmajer [16]). Let d ≥ 2 be an integer. Every planar graph of order n
admits an induced forest with maximum degree at most d of order at least 2dn

4d+1 .

Note that for d = 2, this gives Conjecture 2.1.16, and for d → ∞, this gives Conjecture 2.1.1. Chappell
and Pelsmajer gave examples to show that their conjecture is tight. Up to the best knowledge of the author,
no progress has been made towards Conjecture 2.1.22 besides the cases d = 2 and d → ∞. Note though
that bounds for d = 2 directly imply the same bounds for higher values of d, so the best result towards
Conjecture 2.1.22 is Corollary 2.1.18.

2.2 Tightness of our conjectures

Let us first prove that Conjecture 2.1.13 is tight. To show this, we will prove that for all n and all g, there
exists a graph G with ng vertices such that the maximum induced forest in G has order ng − ||G||. The
example showing this is, for all g ∈ N and n ∈ N, the graph nCg. Indeed, nCg is a planar graph of girth at
least g, and an induced subgraph of nCg is a forest if and only if it has at most g − 1 vertices in each copy
of Cg.

u1v1

u2

v2

u3v3

u4

v4

. . .

Figure 2.2.1: The graph Gk of Theorem 2.2.1.

The following Theorem proves that Conjecture 2.1.20 is tight.

Theorem 2.2.1. For all integer n ≥ 2, there exists a triangle-free planar graph of order n with an induced
linear forest of order ⌈ n

2 ⌉ + 1, and no induced linear forest of order more than ⌈ n
2 ⌉ + 1 ≈ 0.545n.

Proof. Let us consider an integer n ≥ 2, and let k = ⌊ n
2 ⌋. Let us define the graph Gk as follows: Gk =

(
⋃

1≤i≤k{ui, vi},
⋃

1≤i≤k−1 {uiui+1, uivi+1, viui+1, vivi+1}). If n is even, then the graph we consider is Gk,
and otherwise, the graph we consider is Gk + K1. It is clear that for any induced linear forest of Gk, there
exists an induced linear forest of Gk + K1 with one more vertex, that is the vertex of K1. Therefore, we can
just consider the case where n is even.

Let us first prove that there exists an induced forest with k + 1 vertices in Gk. If k = 2j for some j ≥ 1,
then Gk[{u1, v1, u3, v3, ..., u2j−1, v2j−1, u2j}] is a linear forest on 2j + 1 = k + 1 vertices. If k = 2j + 1 for
some j ≥ 0, then Gk[{u1, v1, u3, v3, ..., u2j+1, v2j+1}] is a linear forest on 2j + 2 = k + 1 vertices.

Now, consider an induced linear forest F of Gk, and prove that |F | ≤ k+1. Let us prove this by induction
on the value of k ≥ 1.

• Suppose k = 1. As F has at most as many vertices as Gk, we have |F | ≤ 2 = k + 1.

• Suppose k = 2. Since Gk is a cycle, F cannot be equal to Gk, and thus |F | ≤ 3 = k + 1.

• Suppose k = 3. Suppose |F | ≥ 5. At most one vertex of Gk is not in V (F ). This implies that for all
i ∈ {1, 2, 3}, at least one vertex among ui and vi is in V (F ). Without loss of generality, u1, u2 and
u3 are in V (F ). Moreover, either v2 ∈ V (F ), in which case F [{u1, u2, u3, v2}] is a cycle of length 4, or
v1 ∈ V (F ), in which case dF (u3) ≥ 3. In both cases, F is not a linear forest, a contradiction. Therefore
|F | ≤ 4 = k + 1.
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• Suppose k ≥ 4. By induction hypothesis, we can assume that every induced linear forest of Gk−1, Gk−2,
and Gk−3 respectively has at most k, k−1 and k−2 vertices, thus in particular, |V (F )∩V (Gk−1)| ≤ k,
|V (F ) ∩ V (Gk−2)| ≤ k − 1 and |V (F ) ∩ V (Gk−3)| ≤ k − 2. If at most one of vk and uk is in F , then
|F | ≤ k +1, thus we may assume that both vk and uk are in F . If both uk−1 and vk−1 are in F , then as
Gk[{uk−1, uk, vk−1, vk}] is a cycle, F is not a linear forest, a contradiction. Moreover, if none of uk−1

and vk−1 is in F , then |F | ≤ k − 1 + 2 = k + 1. Therefore we can assume that exactly one of uk−1 and
vk−1, say uk−1, is in F . If at least one of uk−2 and vk−2 is in F , then dF (uk−1) ≥ 3, so F is not a linear
forest, a contradiction. Therefore, none of uk−2 and vk−2 is in F , and thus |F | ≤ k − 2 + 3 = k + 1.

That ends the proof of the theorem.

2.3 Large induced forests in triangle-free planar graphs

Let us first recall the statement of Theorem 2.1.10.

Theorem 2.1.10 (recall). Every triangle-free planar graph of order n and size m admits an induced forest
of order at least max{ 38n−7m

44 , n − m
4 }, and thus at least 6n+7

11 ≈ 0.545n.

We first note that the values 38
44 and 7

44 in the statement of Theorem 2.1.10 are not arbitrary. Let a, b,
and c be some real values such that every graph G ∈ P4 admits an induced forest on at least a|G|+ b||G||+ c
vertices.

For any G ∈ P4 and for every k ∈ N, the graph kG is in P4. Moreover, for all n ∈ N, G admits an
induced forest on n vertices if and only if kG admits an induced forest on kn vertices, by picking the same
set of vertices on the different copies of G in kG. By linearity, this implies that we can take c = 0.

Let us now consider some graphs in P4. The cube, in particular, has 8 vertices, 12 edges, and the
maximum order of an induced forest in the cube is 5. In particular, this implies that 8a + 12b ≤ 5. For the
rest, we will use, in our proof, the fact that 3a + 10b ≤ 1, and that a ≤ 1. These three inequalities, together
with a ≥ 0 and b ≤ 0, define a polygon where the extremal points are (1, − 1

4 ) and ( 38
44 , − 7

44 ). Note that
3a + 10b ≤ 1 is the inequality that would need to be relaxed in order to improve the theorem. In particular,
if we could relax it to b ≤ 0, we would get the point ( 5

8 , 0), and thus a proof of Conjecture 2.1.1.
Let us now proceed with the actual proof of Theorem 2.1.10. This proof is similar to the discharging

method. The only difference is that we do not actually need a discharging procedure, and we can obtain
the final contradiction from a simple counting argument. Let us assume that Theorem 2.1.10 is false, which
means that there exists a triangle-free planar graph G with no induced forest on at least 38|G|−7||G||

44 vertices.
Consider such a graph G such that |G| is as low as possible. We consider an arbitrary embedding of G in
the plane. Let n = |G|, m = ||G||, and let f denote the number of faces of G.

Lemma 2.3.1. The graph G is 2-edge-connected.

Proof. Suppose G is not 2-edge-connected. If G is connected, this implies that G has a bridge e, and let
G′ = G − e. Otherwise, let G′ = G. In both cases, the graph G′ is not connected. Let C be a component
of G′. Both C and G′ − V (C) are in P4 and have fewer vertices than G. Therefore they both verify the
statement of Theorem 2.1.10, and there are two induced forests F1 and F2 in C and G′ − V (C) respectively
such that |F1| ≥ 38|C|−7||C||

44 and |F2| ≥ 38|G′−V (C)|−7||G′−V (C)||
44 . The graph F induced by V (F1) ∪ V (F2)

in G is a forest, since it is the union of the two disjoint forests F1 and F2, plus at most one edge (e)
connecting a vertex of F1 and a vertex of F2. Moreover, we have |F | = |V (F1) ∪ V (F2)| = |F1| + |F2| ≥
38|C|−7||C||

44 + 38|G′−V (C)|−7||G′−V (C)||
44 ≥ 38|C|+38|G′−V (C)|−7||C||−7||G′−V (C)||

44 ≥ 38|G′|−7||G′||
44 . As |G′| = |G|

and ||G′|| ≤ ||G||, we have |F | ≥ 38|G|−7||G||
44 . The induced forest F in G has order at least 38|G|−7||G||

44 , thus
G verifies Theorem 2.1.10, a contradiction.

Note that Lemma 2.3.1 implies in particular that every vertex in G has degree at least 2. Let us now
prove that some configurations are forbidden in G.

Lemma 2.3.2. Every vertex in G has degree at most 5.
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Proof. Let v be a vertex with degree at least 6. The graph G − v has n − 1 vertices and at most m − 6 edges,
and as it has fewer vertices than G, it has an induced forest F of order at least 38(n−1)−7(m−6)

44 ≥ 38n−7m
44 .

As F is an induced subgraph of G − v, that is an induced subgraph of G, F is an induced subgraph of G.
Thus G verifies Theorem 2.1.10, a contradiction.

We note that Lemma 2.3.2 can be reformulated as follows, and is thus indeed a forbidden configuration.

Lemma 2.3.2 (reformulated). The configuration where a vertex has degree at least 6 is forbidden in G.

We will usually consider another graph G′ that is smaller than G, that has a large induced forest by
minimality of G. From this forest we will deduce that G also has a large induced forest, leading to a
contradiction. Most of the lemmas also correspond to forbidden configurations, and use a similar approach.
Therefore, we will use the following observation.

Observation 2.3.3. Let α, β, γ be integers satisfying α ≥ 1, β ≥ 0 and γ ≥ 0.

Let G′ ∈ P4 be a graph with |G′| = n − α and ||G′|| ≤ m − β.

By minimality of G, the graph G′ admits an induced forest of order at least 38(n−α)−7(m−β)
44 = 38n−7m

44 −
38α−7β

44 .

Given an induced forest F ′ of G′ of order at least 38n−7m
44 − 38α−7β

44 , if there is an induced forest F of G

of order |F | ≥ |F ′| + γ, then as |F | < 38n−7m
44 , we have 38α−7β

44 > γ.

Now, the proof of Lemma 2.3.2 just becomes:

Proof. Let v be a vertex with degree at least 6. The graph G′ = G − v has n − 1 vertices and at most m − 6
edges, and any induced forest F ′ of G − v is an induced forest F = F ′ of G. By Observation 2.3.3 applied
to (α, β, γ) = (1, 6, 0), we have 38

44 − 6 7
44 > 0, a contradiction.

We are now ready to prove the next series of lemmas. The aim here is to prove that G has no 2−-vertex,
that no 3-vertex is in the boundary of a 4-face in G, and that every 4-face has at least two 4+-vertices in its
boundary. This will go through a series of lemmas on the structure of 4-faces, 5-faces, and 4-cycles in G.

Lemma 2.3.4. Let v be a 3-vertex with a 4+-neighbour w in G. The two neighbours of v distinct from w
have a common neighbour distinct from v.

Proof. Let x and y be the two neighbours of v distinct from w. Suppose by contradiction that they do not
have a common neighbour besides v. Let G′ = G+xy −{v, w}. As x and y do not have a common neighbour
in G′, G′ ∈ P4. Let F ′ be an induced forest of G′. The graph G[V (F ′) ∪ {v}] is a forest, since it is equal
to F ′ with at most an edge subdivided, or with an additional 1−-vertex. By Observation 2.3.3 applied to
(α, β, γ) = (2, 5, 1), we have 2 38

44 − 5 7
44 > 1, a contradiction.

Lemma 2.3.5. There is no 2-vertex with a 4+-neighbour in G.

Proof. Let v be a 2-vertex with a 4+-neighbour w in G. Let G′ = G − {v, w}. For all induced forest F ′

of G′, the graph G[V (F ′) ∪ {v}] is a forest. By Observation 2.3.3 applied to (α, β, γ) = (2, 5, 1), we have
2 38

44 − 5 7
44 > 1, a contradiction.

Lemma 2.3.6. There is no 3-vertex with two 2-neighbours in G.

Proof. Let v be a 3-vertex with two 2-neighbours x and y. Let G′ = G − {v, x, y}. For all induced forest F ′

of G′, the graph G[V (F ′) ∪ {x, y}] is a forest. By Observation 2.3.3 applied to (α, β, γ) = (3, 5, 2), we have
3 38

44 − 5 7
44 > 2, a contradiction.

Lemma 2.3.7. There is no 2-vertex in G.
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Proof. Assume G has a 2-vertex.
Let us first prove that G has at least one 3+-vertex. If that is not the case, then G is a collection of

disjoint cycles, and in particular n = m. To get an induced forest, we can get a feedback vertex set with at
most one vertex per cycle. As the cycles have length at least 4, this means that there is an induced forest of
order at least 3n

4 ≥ 31n
44 = 38n−7m

44 .
Let v be a 2-vertex in G with a 3+-neighbour, that exists since G is connected and not 2-regular. By

Lemma 2.3.5, the two neighbours x and y of v are 3−-vertices.
Suppose one of x and y, say x, is a 2-vertex. Let G′ = G − {v, x, y}. For all induced forest F ′ of

G′, the graph G[V (F ′) ∪ {v, x}] is a forest. By Observation 2.3.3 applied to (α, β, γ) = (3, 5, 2), we have
3 38

44 − 5 7
44 > 2, a contradiction, so both x and y are 3-vertices.

We will now consider different cases depending on the number of common neighbour of x and y.

• Suppose x and y have no common neighbour besides v. Let G′ = G − v + xy. For all induced forest
F ′ of G′, the graph G[V (F ′) ∪ {v}] is a forest. By Observation 2.3.3 applied to (α, β, γ) = (1, 1, 1), we
have 38

44 − 7
44 > 1, a contradiction.

• Suppose x and y have exactly two common neighbours v and w. Let u be the neighbour of x distinct
from v and w. Let G′ = G − {u, v, w, x, y}. By Lemma 2.3.6, since v is a 2-vertex, u and w are
3+-vertices, and since G ∈ P4, u and w are not adjacent, so ||G′|| ≤ m − 9. For all induced forest F ′

of G′, the graph G[V (F ′) ∪ {v, x, y}] is a forest. By observation 2.3.3 applied to (α, β, γ) = (5, 9, 3),
we have 5 38

44 − 9 7
44 > 3, a contradiction.

• Now x and y have three common neighbours, u, v and w. Suppose one of those, say u, is a 4+-vertex.
Let G′ = G − {u, v, w, x, y}. Again, u and w are not adjacent and w is a 3+-vertex, so ||G′|| ≤ m − 9.
For all induced forest F ′ of G′, the graph G[V (F ′) ∪ {v, x, y}] is a forest. By Observation 2.3.3 applied
to (α, β, γ) = (5, 9, 3), we have 5 38

44 − 9 7
44 > 3, a contradiction.

Therefore u and w are 3-vertices. Let z be the third neighbour of u. Let G′ = G − {u, v, w, x, y, z}.
We have ||G′|| ≤ m − 8. For all induced forest F ′ of G′, the graph G[V (F ′) ∪ {u, v, w, x}] is a forest.
By Observation 2.3.3 applied to (α, β, γ) = (6, 8, 4), we have 6 38

44 − 8 7
44 > 4, a contradiction.

This ends the proof of the lemma.

Lemma 2.3.8. Let C = v0v1v2v3 be a 4-cycle of G. If v0 and v2 are 3-vertices in G, then v1 and v3 are
3-vertices too.

In particular, there is no 4-cycle with exactly three 3-vertices in G.

Proof. Suppose v1 and v3 are 4+-vertices. Let G′ = G−V (C). Since G ∈ P4, v0 is not adjacent to v2, and v1

is not adjacent to v3. Therefore, ||G′|| ≤ m−10. For all induced forest F ′ of G′, the graph G[V (F ′)∪{v0, v2}]
is a forest. By Observation 2.3.3 applied to (α, β, γ) = (4, 10, 2), we have 4 38

44 − 10 7
44 > 2, a contradiction.

We now assume now that v0, v1, and v2 are 3-vertices and that v3 is a 4+-vertex. Let u0, u1, and u2

be the third neighbours of v0, v1, and v2 respectively. Suppose that two of the ui’s are equal. This implies
that u0 = u2. Let G′ = G − V (C) − {u0}. Since u0 is not adjacent to v3, we have ||G′|| ≤ m − 10. For
all induced forest F ′ of G′, the graph G[V (F ′) ∪ {v0, v1, v2}] is a forest. By Observation 2.3.3 applied to
(α, β, γ) = (5, 10, 3), we have 5 38

44 − 10 7
44 > 3, a contradiction.

Therefore all of the ui’s are distinct. By Lemma 2.3.4, since the 3-vertex v0 is adjacent to the 4-vertex
v3, the two vertices u0 and v1 have a common neighbour, which cannot be v2 since u0 Ó= u2, and is thus
u1. Therefore, u0u1 ∈ E(G), and similarly, u1u2 ∈ E(G). Assume u0 or u2, say u0, has at most one
neighbour w /∈ {v0, v1, v2, v3, u0, u1, u2}. Let G′ = G − V (C) − {u0, u1, u2}. We have ||G′|| ≤ m − 13. For
all induced forest F ′ of G′, the graph G[V (F ′) ∪ {v0, v1, v2, u0}] is a forest. By Observation 2.3.3 applied to
(α, β, γ) = (7, 13, 4), we have 7 38

44 − 13 7
44 > 4, a contradiction.

Therefore u0 and u2 both have at least two neighbours that are not in {v0, v1, v2, v3, u0, u1, u2}. Let G′ =
G−V (C)−{u0, u2}. We have ||G′|| ≤ m−15. For all induced forest F ′ of G′, the graph G[V (F ′)∪{v0, v1, v2}]
is a forest. By Observation 2.3.3 applied to (α, β, γ) = (6, 15, 3), we have 6 38

44 −15 7
44 > 3, a contradiction.
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Lemma 2.3.9. Let C = v0v1v2v3 be a 4-cycle of G. If v0 is a 3-vertex and v2 is a 4-vertex, then the two
neighbours of v2 distinct from v1 and v3 in G are either both in the interior of C, or both in the exterior of
C.

Proof. Suppose one of the neighbours of v2 is in the interior of C, and another one is in the exterior of C.
In particular, any path containing two neighbours of v2 contains a vertex of C. The vertices v1 and v3 are
not both 3-vertices by Lemma 2.3.8. Say v1 is a 4+-vertex. Let G′ = G − V (C). We have ||G′|| ≤ m − 10.
For all induced forest F ′ of G′, the graph G[V (F ′) ∪ {v0, v2}] is a forest. By Observation 2.3.3 applied to
(α, β, γ) = (4, 10, 2), we have 4 38

44 − 10 7
44 > 2, a contradiction.

v0 v1

v2v3

u0 u1

u2u3

Figure 2.3.1: The graph G in Lemma 2.3.10

Lemma 2.3.10. There is no 4-face in G with four 3-vertices in its boundary.

Proof. Let C = v0v1v2v3 be a cycle bounding a 4-face. For i ∈ {0, 1, 2, 3}, let ui be the neighbour of vi that
is not in V (C). In this proof, we consider the indices of he ui’s and vi’s modulo 4. As G ∈ P4, if two of the
ui’s are adjacent, they correspond to some ui and ui+2, say u0 and u2. In the cycle v0v1v2u0, the vertices
v0 and v2 are 3-vertices, thus u0 is a 3-vertex by Lemma 2.3.8. The cycle v0v1v2u0 separates the plane into
two parts, one containing u1 and the other u3. Therefore, the graph G − V (C) − u0 is disconnected, and
there are at most three edges that connect G[V (C) ∪ {u0}] to the rest of the graph. Therefore, there is a
component of G − V (C) − u0 that has at most one edge connecting it to the rest of the graph, and that edge
is a bridge, contradicting Lemma 2.3.1.

Therefore all of the ui’s are distinct. We now consider the question of the presence or not of the edges
uiui+1. Assume uiui+1 /∈ E(G) and ui+1ui+2 /∈ E(G) for some i ∈ {0, 1, 2, 3}, say for i = 0. If u0u2 ∈ E(G),
then one of u0u3 an u2u3 is not in E(G), as otherwise G would have a triangle, and, by planarity of G,
u1u3 /∈ E(G). If u0u3 /∈ E(G), then {u3u0, u0u1, u3u1}∩E(G) = ∅. If u2u3 /∈ E(G), then {u1u2, u2u3, u1u3}∩
E(G) = ∅. Lastly, if u0u2 /∈ E(G), then {u0u1, u1u2, u0u2} ∩ E(G) = ∅. In all cases, uiui+1 /∈ E(G) and
ui+1ui+2 /∈ E(G) and uiui+2 /∈ E(G) for some i ∈ {0, 1, 2, 3}. Therefore up to permutation of the indices, we
can assume that {u0u1, u1u2, u0u2}∩E(G) = ∅. Let G′ = G−{v0, v1, v2, v3}+({x}, ∅)+{xu0, xu1, xu2}. As
{u0u1, u1u2, u0u2}∩E(G) = ∅, G ∈ P4. We have ||G′|| ≤ m−5. Let F ′ be an induced forest G′. If x ∈ V (F ′),
then the graph G[(V (F ′) \ {x}) ∪ {v0, v1, v2}] is a forest, and otherwise, the graph G[V (F ′) ∪ {v0, v2}] is a
forest. By Observation 2.3.3 applied to (α, β, γ) = (3, 5, 1), we have 3 38

44 − 5 7
44 > 1, a contradiction.

Therefore for all i ∈ {0, 1, 2, 3}, either uiui+1 ∈ E(G), or ui+1ui+2 ∈ E(G). In particular, there must be
an i, say i = 0, such that uiui+1 ∈ E(G) and ui+2ui+3 ∈ E(G). Let G∗ = G − C. We have |G∗| = |G| − 4
and ||G∗|| = ||G|| − 8. See Figure 2.3.1 for a representation of the graph G.

Let us now count, for each of the ui’s, its neighbours that are not in A = {v0, v1, v2, v3, u0, u1, u2, u3}.

• Suppose one of the ui’s, say u0, has no (V (G) \ A)-neighbours, and that another one, say ui0
, has

at most one (V (G) \ A)-neighbour. Let G′ = G∗ − {u0, u1, u2, u3}. We have ||G′|| ≤ m − 12. For
any induced forest F ′ of G′, the graph G[V (F ′) ∪ {v1, v2, v3, u0, ui0

}] is a forest. By Observation 2.3.3
applied to (α, β, γ) = (8, 12, 5), we have 8 38

44 − 12 7
44 > 5, a contradiction.
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• Suppose one of the ui’s, u0 say, has at most one (V (G) \ A)-neighbour, and each of the other ui’s has
at least one (V (G) \ A)-neighbour. Since G is triangle-free, u0 cannot be adjacent both to u2 and to
u3. Let i0 ∈ {2, 3} be such that u0ui0

/∈ E(G). Let G′ = G∗ − {ui0+1, ui0+2, ui0+3} (we remove all the
vertices of A except ui0

). Let us now count the number of edges in G∗ that are incident to a vertex
in {ui0+1, ui0+2, ui0+3}. There are the two edges u0u1 and u2u3, plus one edge since u0 has degree at
least 3, plus, for all i ∈ {1, 2, 3}\{i0}, one edge for the (V (G)\A)-neighbour of ui. Therefore there are
at least five edges in G∗ incident to a vertex in {ui0+1, ui0+2, ui0+3}, and thus ||G′|| ≤ ||G|| − 13. Let
F ′ be an induced forest of G′. The graph G[(V (F ′)]∪{v1, v2, v3, u0}] is a forest, since there is not path
between u0 and ui0

in G[{v1, v2, v3, u0, ui0
}]. By Observation 2.3.3 applied to (α, β, γ) = (7, 13, 4), we

have 7 38
44 − 13 7

44 > 4, a contradiction.

• Therefore each of the ui’s has at least two (V (G) \ A)-neighbours. Let G′ = G∗ − {u0, u2}. We have
||G′|| ≤ m − 14. For any induced forest F ′ of G′, the graph G[V (F ′) ∪ {v0, v1, v2}] is a forest. By
Observation 2.3.3 applied to (α, β, γ) = (6, 14, 3), we have 6 38

44 − 14 7
44 > 3, a contradiction.

That completes the proof of the lemma.

Lemma 2.3.11. There is no separating 4-cycle with four 3-vertices in G.

Proof. Let C = v0v1v2v3 be such a cycle. For i ∈ {0, 1, 2, 3}, let ui be the neighbour of vi that is not in
V (C). In this proof, we consider the indices of he ui’s and vi’s modulo 4. By Lemma 2.3.1, the graph G
is 2-connected. Therefore all of the ui’s are distinct, two of the ui’s are inside of C, and the other two are
outside of C. There is an i ∈ {0, 1, 2, 3}, say i = 0, such that ui+1 is inside of C and ui+2 is outside of C. Let
G′ = G−C −u0. We have ||G′|| ≤ m−10. For any induced forest F ′ of G′, the graph G[V (F ′)∪{v0, v1, v2}]
is a forest. By Observation 2.3.3 applied to (α, β, γ) = (5, 10, 3), we have 5 38

44 −10 7
44 > 3, a contradiction.

Lemma 2.3.12. There is no 3-vertex with a 5-neighbour in G.

Proof. Let v be a 3-vertex and u a 5-neighbour of v. Let w and x be the two remaining neighbours of v.
Suppose first that one of w and x, say w, is a 4+-vertex. Let G′ = G − {u, v, w}. We have ||G′|| ≤ m − 10.
For any induced forest F ′ of G′, the graph G[V (F ′) ∪ {v}] is a forest. By Observation 2.3.3 applied to
(α, β, γ) = (3, 10, 1), we have 3 38

44 − 10 7
44 > 1, a contradiction. Therefore w and x are 3-vertices. By

Lemma 2.3.4, w and x have a common neighbour y distinct from v. By Lemma 2.3.8, y has degree 3, which
contradicts either Lemma 2.3.10 or Lemma 2.3.11.

Lemma 2.3.13. There is no separating 4-cycle with at least two 3-vertices in G.

Proof. Let C = v0v1v2v3 be such a cycle. By Lemmas 2.3.8 and 2.3.11, C has exactly two 3-vertices, and by
Lemmas 2.3.7, 2.3.8 and 2.3.12, the two 3-vertices are adjacent and the two remaining vertices are 4-vertices.
We can assume that the two 3-vertices are v0 and v1. Let u0 be the third neighbour of v0, and u1 be the
third neighbour of v1.

Suppose u0v2 ∈ E(G) or u1v3 ∈ E(G), say u0v2 ∈ E(G). Let u2 be the fourth neighbour of v2. By
Lemma 2.3.9 in C, u0 and u2 are either both in the interior of C or both in the exterior of C. Say that the
embedding of G in the plane is such that they are both on the exterior of C. Either u2 is in the interior of
the cycles v0v1v2u0 and v0v3v2u0, or it is in the exterior of those cycles. Moreover, if v3 is in the interior
of v0v1v2u0, then v1 is in the exterior of v0v3v2u0, and reciprocally. Thus one of v0v1v2u0 and v0v3v2u0

contradicts Lemma 2.3.9. Therefore u0v2 /∈ E(G) and u1v3 /∈ E(G).
By Lemma 2.3.4, u0u1 ∈ E(G). Therefore u0 and u1 are either both in the exterior of C or both in the

interior of C. Say they are both in the exterior of C. By Lemmas 2.3.7, 2.3.8, 2.3.10, 2.3.11 and 2.3.12, u0

and u1 are 4-vertices. By Lemma 2.3.9 in C, the two neighbours of v2 distinct from v1 and v3 are either
both in the interior of C or both in the exterior of C, and the same holds for the two neighbours of v3

distinct from v2 and v0. At least one of v2 or v3, say v2, has two neighbours inside of C, otherwise the cycle
is not separating. Let G′ = G − {v0, v1, v3, u1}. We have ||G′|| ≤ m − 10. For any induced forest F ′ of
G′, the graph G[V (F ′) ∪ {v0, v1}] is a forest. By Observation 2.3.3 applied to (α, β, γ) = (4, 10, 2), we have
4 38

44 − 10 7
44 > 2, a contradiction.
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Lemma 2.3.14. There is no 4-face with exactly two 3-vertices in its boundary.

Proof. Let C = v0v1v2v3 be a cycle bounding such a face. By Lemmas 2.3.7 and 2.3.8 the two 3-vertices are
adjacent. Say v0 and v1 are 3-vertices. By Lemmas 2.3.7 and 2.3.12, v2 and v3 are 4-vertices. Let u0 and
u1 be the third neighbours of v0 and v1 respectively. By Lemma 2.3.4, since v0 is a 3-vertex adjacent to a
4-vertex v3, its two remaining neighbours, which are v1 and u0, have a common neighbour. Similarly, by
Lemma 2.3.4 applied to v1 and v2, v0 and u1 have a common neighbour. Since by planarity, u0v2 and u1v3

are not both in E(G), we have u0u1 ∈ E(G). By Lemma 2.3.13, v0v1u1u0 cannot be a separating cycle, so it
is the boundary of some 4-face. If both u0 and u1 have degree 3, we have a contradiction to Lemma 2.3.10.
If one has degree 3 and the other has degree at least 4, we have a contradiction to Lemma 2.3.8. Finally, by
Lemma 2.3.12, u0 and u1 are 4-vertices.

If v2 is adjacent to u0, then u0v0v1v2 is a separating 4-cycle with two 3-vertices, contradicting Lemma 2.3.13.
Hence v2 and u0 are not adjacent. Similarly, v3 and u1 are not adjacent. If u0 and v2 have a common neigh-
bour and u1 and v3 have a common neighbour, then by planarity this common neighbour must be the same
vertex, say w, and u0u1w is a triangle in G, a contradiction. By symmetry, assume that u0 and v2 do not
have a common neighbour. Let G′ = G + u0v2 − {v0, v1, v3, u1}. We have ||G′|| ≤ m − 10. For any induced
forest F ′ of G′, the graph G[V (F ′) ∪ {v0, v1}] is isomorphic to the graph F ′ with the edge u0v2 subdivided
twice, hence it is a forest. By Observation 2.3.3 applied to (α, β, γ) = (4, 10, 2), we have 4 38

44 − 10 7
44 > 2, a

contradiction.

Lemma 2.3.15. There is no 4-cycle with at least two 3-vertices in G.

Proof. It follows from Lemmas 2.3.8, 2.3.10, 2.3.13 and 2.3.14.

Lemma 2.3.16. There is no 4-face with exactly one 3-vertex in its boundary.

Proof. Let C = v0v1v2v3 be a cycle bounding such a face, where v0 is the 3-vertex. By Lemma 2.3.7, v1,
v2 and v3 are 4+-vertices. By Lemma 2.3.12, v1 and v3 are 4-vertices. Let u0 be the third neighbour of v0.
Vertex u0 is different from v2 and non-adjacent to v1 and v3 since G is triangle-free.

Let us first assume that u0 is adjacent to v2. By Lemmas 2.3.7, 2.3.12 and 2.3.15, u0 is a 4-vertex.
Assume v2 has degree 5. Let G′ = G − {u0, v0, v2}. We have ||G′|| ≤ m − 10. For any induced forest F ′

of G′, the graph G[V (F ′) ∪ {v0}] is a forest. By Observation 2.3.3 applied to (α, β, γ) = (4, 10, 2), we have
4 38

44 − 10 7
44 > 2, a contradiction. Hence v2 has degree 4. Then either v0v1v2u0 or v0v3v2u0 contradicts

Lemma 2.3.9.
Thus u0 is non-adjacent to v2. By Lemma 2.3.4, v1 and u0 have a common neighbour distinct form v0,

call it u1. It is distinct from all the vertices we defined previously. By Lemma 2.3.15 applied to v0v1u1u0,
u0 and u1 are 4+-vertices. By Lemma 2.3.12, u0 is a 4-vertex.

Suppose u1 is adjacent to v3. As C bounds a face, the neighbour of v1 distinct from v0, v2 and u1,
say w1, is not in the interior of C. The cycle v0v1u1v3 separates u0 and v2. Suppose first that v0v1u1v3

does not separate u0 and w1. Then v0v1u1u0 separates v3 and w1. Let G′ = G − {v0, v1, v2, v3, u0, u1}.
We have ||G′|| ≤ m − 14. For any induced forest F ′ of G′, the graph G[V (F ′) ∪ {v0, v1, v3}] is a forest.
By Observation 2.3.3 applied to (α, β, γ) = (6, 14, 3), we have 6 38

44 − 14 7
44 > 3, a contradiction. Therefore

v0v1u1v3 separates u0 and w1. Suppose u1 has degree 5. Let H ′ = G−{v0, v3, u1}. We have ||G′|| ≤ m−14.
For any induced forest F ′ of G′, the graph G[V (F ′) ∪ {v0}] is a forest. By Observation 2.3.3 applied to
(α, β, γ) = (3, 10, 1), we have 3 38

44 − 10 7
44 > 1, a contradiction. Thus u1 has degree 4. Then v0v1u1v3,

v0u0u1v3 or v0v1u1u0 contradicts Lemma 2.3.9.
So u1 is not adjacent to v3. As u1v3 /∈ E(G) and u0v2 /∈ E(G), by Lemma 2.3.4, v3 and u0 have a

common neighbour distinct from v0, say u3. By what precedes and by symmetry, it is of degree at least 4
and non-adjacent to v0, v1, v2 and u1 (it has a role similar to that of u1, and is non-adjacent to u1 because of
the girth assumption). See Figure 2.3.2 for a reminder of the structure of G[{v0, v1, v2, v3, u0, u1, u3}]. Vertex
v0 is a 3-vertex, v1, v3 and u0 are 4-vertices, and v2, u1 and u3 are 4+-vertices. Recall that u1v3 /∈ E(G),
u3v1 /∈ E(G) and u0v2 /∈ E(G).

In the following we will no longer use the information that C bounds a face. In particular, there is a
symmetry between the vertices v1, v3, and u0 and between the vertices v2, u1, and u3. Let w0, w1, and
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v0

u3

u0

u1

v1

v2

v3

Figure 2.3.2: Graph G[{v0, v1, v2, v3, u0, u1, u3}].

w3 be the fourth neighbours of u0, v1, and v3 respectively. Since G is triangle-free, w0 is not adjacent to
u1 nor to u3. Suppose w0 is adjacent to v1 or to v3, say to v1. Then since G is triangle-free, w0 is not
adjacent to v2. However, it may be adjacent to v3. By Lemma 2.3.15 applied to v0v1w0u0, w0 is a 4+-vertex.
Let G′ = G − {v0, v1, v2, v3, u0, u1, u3, w0}. We have ||G′|| ≤ m − 19. For any induced forest F ′ of G′, the
graph G[V (F ′) ∪ {v0, v1, v3, u0}] is a forest. By Observation 2.3.3 applied to (α, β, γ) = (8, 19, 4), we have
8 38

44 − 19 7
44 > 4, a contradiction. Hence, w0 is not adjacent to v1 nor to v3, thus it is distinct from w1 and

w3. Similarly, w1 and w3 are distinct.
Suppose w0v2 ∈ E(G). Assume that C separates w1 and w3, or that it does not separate w1 and w3 nor

w0 and w1. Then either C or v0v1v2w0u0 separates w1 and w3. Let G′ = G − {v0, v1, v2, v3, u0, u1, u3, w0}.
We have ||G′|| ≤ m − 19. For any induced forest F ′ of G′, the graph G[V (F ′) ∪ {v0, v1, v3, u0}] is a forest.
By Observation 2.3.3 applied to (α, β, γ) = (8, 19, 4), we have 8 38

44 − 19 7
44 > 4, a contradiction. Thus C

does not separate w1 and w3 but separates w1 and w0. Let G′ = G − {v0, v1, v2, v3, u0, u1, u3, w3}. We
have ||G′|| ≤ m − 19. For any induced forest F ′ of G′, the graph G[V (F ′) ∪ {v0, v1, v3, u0}] is a forest. By
Observation 2.3.3 applied to (α, β, γ) = (8, 19, 4), we have 8 38

44 − 19 7
44 > 4, a contradiction. So w0v2 /∈ E(G),

and similarly w1u3 /∈ E(G) and w3u1 /∈ E(G).
Thus the only edges that may or may not exist between the vertices we defined are w0w1, w0w3 and

w1w3. See Figure 2.3.3 for a reminder of the edges and vertices we know to this point. Vertex v0 has degree
3, v1, v3 and u0 are 4-vertices and v2, u1 and u3 are 4+-vertices. Vertices v0, v1, v3 and u0 have all their
incident edges represented in Figure 2.3.3.

v0

u3

u0

u1

v1

v2

v3

w0 w3

w1

Figure 2.3.3: Vertices v0, v1, v2, v3, u0, u1, u3, w0, w1, and w3.

Suppose w0w1 /∈ E(G), w0w3 /∈ E(G), and w1w3 /∈ E(G). Let x be a vertex that is not in V (G), and
G′ = G + ({x}, ∅) + {xw0, xw1, xw3} − {v0, v1, v2, v3, u0, u1, u3}. The graph G′ is in P4 and ||G′|| ≤ m − 15.
Let F ′ be any induced forest of G′. If x ∈ V (F ′), then G[V (F ′) ∪ {v0, v1, v3, u0} \ {x}] is a forest, and if
x /∈ V (F ′), then G[V (F ′) ∪ {v1, v3, u0} is a forest. By Observation 2.3.3 applied to (α, β, γ) = (6, 15, 3),
we have 6 38

44 − 15 7
44 > 3, a contradiction. Thus there is at least one edge in G among w0w1, w0w3 and

w1w3. Moreover, since G is triangle free, there are at most two of these edges in G. We can assume that
w0w1 /∈ E(G) and w0w3 ∈ E(G).

Let us now prove some claims that we will use later :
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(a) Suppose that either w0 and w1 are 4+-vertices, or one is a 3-vertex, the other is a 4+-vertex, and v2, u1

or u3 have degree 5. Let G′ = G − {v0, v1, v2, v3, u0, u1, u3, w0, w1}. We have ||G′|| ≤ m − 24. For any
induced forest F ′ of G′, the graph G[V (F ′) ∪ {v0, v1, v3, u0}] is a forest. By Observation 2.3.3 applied
to (α, β, γ) = (9, 24, 4), we have 9 38

44 − 24 7
44 > 4, a contradiction.

(b) Suppose w0 or w3, say wi0
, is a 3-vertex and either one of the wi is a 4+-vertex, or w1w3 /∈ E(G). Let

G′ = G − {v0, v1, v2, v3, u0, u1, u3, w0, w1, w3}. We have ||G′|| ≤ m − 23. For any induced forest F ′ of
G′, the graph G[V (F ′) ∪ {v0, v1, v3, u0, wi0

}] is a forest. By Observation 2.3.3 applied to (α, β, γ) =
(10, 23, 5), we have 10 38

44 − 23 7
44 > 5, a contradiction.

(c) Suppose w0 and w3 are 3-vertices and w1w3 ∈ E(G). Let G′ = G − {v0, v1, v3, u0, u1, u3, w0, w1, w3}.
We have ||G′|| ≤ m − 23. Since w1w3 ∈ E(G) and w0w3 ∈ E(G), the cycle v0v1w1w3v3 separates v2

from w0 in G. Hence, for any induced forest F ′ of G′, the graph G[V (F ′) ∪ {v0, v1, u0, w0, w3}] is a
forest.By Observation 2.3.3 applied to (α, β, γ) = (9, 19, 5), we have 9 38

44 − 19 7
44 > 5, a contradiction.

If w1w3 ∈ E, then by (b) and (c), both w0 and w3 are 4+-vertices, and by symmetry w1 is also a
4+-vertex, which contradicts (a). Hence w1w3 /∈ E(G).

v0

u3

u0

u1

v1

v2

v3

w0 w3

w1

Figure 2.3.4: Vertices v0, v1, v2, v3, u0, u1, u3, w0, w1, and w3.

Therefore by (b), w0 and w3 are 4+-vertices. By (a), w1 is a 3-vertex, and v2, u1, and u3 are 4-vertices
(see Figure 2.3.4). Let y0 and y1 the two neighbours of w1 distinct from v1. By Lemma 2.3.4 they have a
common neighbour distinct from w1, say t. So by Lemmas 2.3.12 and 2.3.15 in the cycle w1y0ty1, the vertices
y0 and y1 have degree 4. By Lemma 2.3.4 each of y0 and y1 has a common neighbour with v1 distinct from
w1, and thus is adjacent either to v2 or to u1. If they are both adjacent to the same one, say to v2, then
either v2v1w1y0 or v2v1w1y1 is a 4-cycle with a 3-vertex (w1) not adjacent to a 4-vertex (v2) that has both
a neighbour inside and the neighbour outside of is, contradicting Lemma 2.3.8. Therefore y0 and y1 are not
both adjacent to u1 or both adjacent to v2. We can assume that y0 is adjacent to v2 and y1 is adjacent to
u1. See Figure 2.3.5 for a reminder of the edges and vertices we know to this point. At this point we know
that v0, v1, v2, v3, u0, u1, w1, y0, and y1 are distinct and do not share an edge that is not represented in
Figure 2.3.5.

Let z be the neighbour of v2 distinct from v1, v3, and y0. The only edges with vertices among v0, v1, v2,
v3, u0, u1, w1, y0, y1, and z that may or may not be in G are zy1 and zu1, and as G is triangle-free, there
is at most one of those edges. Let G′ = G − {v0, v1, v2, v3, u0, u1, w1, y0, y1, z}. We have ||G′|| ≤ m − 23.
For any induced forest F ′ of G′, the graph G[V (F ′) ∪ {v0, v1, u0, w0, w3}] is a forest. By Observation 2.3.3
applied to (α, β, γ) = (10, 23, 5), we have 10 38

44 − 23 7
44 > 5, a contradiction.

Lemma 2.3.17. There is no 5-face with five 3-vertices in its boundary.

Proof. Let C = v0v1v2v3v4 be the cycle bounding such a face, and u0, u1, u2, u3, and u4 be the third
neighbours of v0, v1, v2, v3 and v4 respectively. The ui’s are all distinct since the graph is triangle-free and
by Lemma 2.3.15. We will consider the indices of the ui’s and vi’s modulo 5. By Lemma 2.3.15, for all
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v0

u3

u0

u1

v1

v2

v3

w0 w3

w1

y1 y0

Figure 2.3.5: Vertices v0, v1, v2, v3, u0, u1, u3, w0, w1, w3, y0, and y1.

i, uiui+1 /∈ E(G). Let x and y be two vertices that are not in V (G), and let G′ = G + ({x, y}, {xy}) +
{xu0, xu1, yu2, yu3} − C. We have ||G′|| ≤ m − 5. Let F ′ be an induced forest of G′. Let S be defined
as the set of vertices that are in {v0, v3}, plus v1 if x ∈ V (F ′), and plus v3 if y ∈ V (F ′). The graph
G[V (F ′) \ {x, y} ∪ S] is a forest. By Observation 2.3.3 applied to (α, β, γ) = (3, 5, 2), we have 3 38

44 − 5 7
44 > 2,

a contradiction.

Lemma 2.3.18. There is no 3-vertex with a 3-neighbour and a 4-neighbour in G.

Proof. Let v be a 3-vertex, u a 3-neighbour of v, and w a 4-neighbour of v. Let x be the third neighbour of v.
By Lemma 2.3.4, x and u have a common neighbour distinct from v, which contradicts Lemma 2.3.15.

We now have all the forbidden configurations we need, expressed in terms of lemmas on the local structure
of G. All that is left to do is to prove that no graph in P4 verifies all of those lemmas. In a standard discharging
proof, this is done with the help of a discharging procedure. Here, however, the discharging procedure is so
simple that we can just do a double counting on the number of 4+-vertices in G.

For every face φ of G, let c4+(φ) be the number of 4+-vertices in the boundary of φ. Let f be the number
of faces of G, and for every 3 ≤ d ≤ 5 and every 4 ≤ l, let fl be the number of l-faces and nd the number of
d-vertices in G.

Each 4-vertex is in the boundary of at most four faces, and each 5-vertex is in the boundary of at
most five faces. Therefore the sum of the c4+(φ) over all the 4-faces and 5-faces is

∑
φ,4≤d(φ)≤5 c4+(φ) ≤

4n4 +5n5. From Lemmas 2.3.12, 2.3.17, and 2.3.18 we can deduce that for each 5-face φ we have c4+(φ) ≥ 2.
Moreover, by Lemmas 2.3.15 and 2.3.16, for each 4-face φ, we have c4+(φ) ≥ 4. Thus

∑
φ,d(φ)=4 c4+(φ) +∑

φ,d(φ)=5 c4+(φ) ≥ 4f4 + 2f5. Thus it follows that:

4n4 + 5n5 ≥ 4f4 + 2f5

By Euler’s formula, we have:

−12 = 6m − 6n − 6f

= 2
∑

v∈V (G)

d(v) +
∑

φ∈F (G)

d(φ) − 6n − 6f

=
∑

d≥3

(2d − 6)nd +
∑

l≥4

(l − 6)fl

≥ 2n4 + 4n5 − 2f4 − f5

≥ 0

That contradiction completes the proof of Theorem 2.1.10.
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2.4 Large induced linear forests in triangle-free planar graphs

Let us first recall the statement of Theorem 2.1.21.

Theorem 2.1.21 (recall). Every triangle-free planar graph of order n and size m admits an induced linear
forest of order at least 9n−2m

11 , and thus at least 5n+8
11 ≈ 0.455n.

This proof is similar to the proof of Theorem 2.1.10 (see Section 2.3). We will use the same reasoning:
we will first prove a series of lemmas on the structure of a minimal counter-example, and then obtain a
contradiction by a double counting argument.

Let G = (V, E) be a counter-example to Theorem 2.1.21 with minimum order. Let n = |G| and m = ||G||.
We use a similar observation to Observation 2.3.3, adapted to the framework of linear forests.

Observation 2.4.1. Let α, β, γ be integers satisfying α ≥ 1, β ≥ 0 and γ ≥ 0.
Let G′ ∈ P4 be a graph with |G′| = n − α and ||G′|| ≤ m − β.

By minimality of G, the graph G′ admits an induced linear forest of order at least 9(n−α)−2(m−β)
11 =

9n−2m
11 − 9α−2β

11 .

Given an induced linear forest F ′ of G′ of order at least 9n−2m
11 − 9α−2β

11 , if there is an induced forest F

of G of order |F | ≥ |F ′| + γ, then as |F | < 9n−2m
11 , we have 9α−2β

11 > γ.

As in the previous section, we will use Observation 2.4.1 with bounded values for α, β, and γ. However,
we would like to extend the method to enable us to remove possibly large portions of the graph with an
induced linear forest that is not too much connected to the rest of the graph. To do this, we will use
Observations 2.4.2 and 2.4.3.

L

M

L

M

u

v

Figure 2.4.1: The situation in Observation 2.4.2 (left) and Observation 2.4.3 (right).

Observation 2.4.2. Suppose L ⊂ V (G) induces a linear forest in G, and M is a set of vertices such that
M ∩ L = ∅ and M ⊇ N(L). Let G′ = G − M − L. See Figure 2.4.1 (left) for an illustration.

By minimality of G, G′ admits a linear forest F ′ with |F ′| ≥ 9
11 |G′| − 2

11 ||G′||. Observe that F =
G[V (F ′) ∪ L] is an induced linear forest of G. As G is a counter-example to Theorem 2.1.21, we have
|F | < 9

11 |G| − 2
11 ||G||. Therefore |L| = |F | − |F ′| < 9

11 (|M | + |L|) − 2
11 (||G|| − ||G′||).

Observation 2.4.3. Suppose L ⊂ V (G) induces a linear forest in G. Suppose there is a set of vertices
M and two vertices u ∈ L and v such that M ∩ L = ∅, N(L) \ M = {v}, and N(v) ∩ L = {u}. Let
G′ = G − M − L. Suppose v is a 1−-vertex in G′ and u is a 1−-vertex in G[L]. See Figure 2.4.1 (right) for
an illustration.

By minimality of G, G′ admits a linear forest F ′ with |F ′| ≥ 9
11 |G′| − 2

11 ||G′||. Observe that F =
G[V (F ′) ∪ L] is an induced linear forest of G. As G is a counter-example to Theorem 2.1.21, we have
|F | < 9

11 |G| − 2
11 ||G||. Therefore |L| = |F | − |F ′| < 9

11 (|M | + |L|) − 2
11 (||G|| − ||G′||).

Note that Observations 2.4.2 and 2.4.3 will be used to obtain a contradiction, similarly to Observa-
tion 2.4.1. Unlike in the previous section, we will have several observations and lemmas of this type, thus
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we do not expect our reader to read them every time they are used, and will directly express the implied
inequalities in the proofs where those observations and lemmas are used.

Now we want to prove some structural properties of G, so that we can later show that the counter-example
G does not exist, and thus that Theorem 2.1.21 is true. First note that G is connected, otherwise one of its
components would be a smaller counter-example to Theorem 2.1.21. Then note that every vertex of G has
degree at most 4. Otherwise, by considering a vertex of degree at least 5 and by applying Observation 2.4.1
to H∗ = G − v with (α, β, γ) = (1, 5, 0) and F = F ∗, we have 9

11 − 5 2
11 > 0, a contradiction

P

N

u

v

P

N

u0

v0

u1v1

Figure 2.4.2: A simple chain (left) and a double chain (right).

For the rest of the procedure, we will need to define some notions that will appear in the remainder of
this section. Those notions, that we will call chain and double chain, will be used to simplify the rest of the
proof, by regrouping similar arguments. We note that all of the forbidden configurations could be obtained
by doing a direct analysis of a finite number of cases on bounded structures. This analysis would however
be dull and redundant, and is rendered unnecessary by the analysis of chains and double chains.

Let us define the notion of a chain (or simple chain) of G which is a quadruplet C = (P, N, u, v) such
that:

• P ⊂ V (G), N ⊂ V (G) \ P , u ∈ P , and v ∈ V (G) \ (N ∪ P );

• G[P ] is a linear forest;

• u is a 1−-vertex of G[P ], and N(v) ∩ P = {u};

• N(P ) ⊂ N ∪ {v} in G;

• v is a 2−-vertex in G − (N ∪ P ).

See Figure 2.4.2 (left) for an illustration. We will use the following notation for a chain C = (P, N, u, v)
of G:

• |C| = |P | + |N |;

• G − C = G − (N ∪ P );

• d(C) is the degree of v in G − C (thus d(C) ≤ 2);

• ||C|| = ||G|| − ||G − C||.

The following lemma imposes a condition on the chains. It will be used to derive a contradiction whenever
a chain does not meet this condition.

Lemma 2.4.4. For every chain C = (P, N, u, v) of G, we have |P | < 9
11 |C| − 2

11 (||C|| − 1
2 ).

Proof. Let us consider by contradiction a chain C = (P, N, u, v) such that |P | ≥ 9
11 |C| − 2

11 (||C|| − 1
2 )

maximizing |C|.
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• Suppose d(C) = 0. Let G′ = (G−C)−v. The set P ∪{v} induces a linear forest, and its neighbourhood
is a subset of N . By applying Observation 2.4.2 to L = P ∪ {v} and M = N , we have |P | + 1 <
9

11 (|C| + 1) − 2
11 ||C||. As |P | ≥ 9

11 |C| − 2
11 (||C|| − 1

2 ), it follows that 1 < 9
11 − 2

11
1
2 , a contradiction.

• Suppose d(C) = 1. The set P induces a linear forest, and its neighbourhood is a subset of N ∪ {v}.
Furthermore, N(v) ∩ P = {u}, N(u) ∩ (G − C) = {v}, and u and v are 1-vertices in P and G − C
respectively. By applying Observation 2.4.3 to L = P and M = N , we have |P | < 9

11 |C| − 2
11 ||C||, thus

|P | < 9
11 |C| − 2

11 (||C|| − 1
2 ), a contradiction.

• Suppose d(C) = 2. Let w0 and w1 be the neighbours of v in G − C.

– Suppose one of the wi’s, say w0, has degree 1 in G − C. Let G′ = (G − C) − {v, w0, w1}. The set
P ∪ {v, w0} induces a linear forest and its neighbourhood is a subset of N ∪ {w1}. By applying
Observation 2.4.2 to L = P ∪{v, w0} and M = N∪{w1}, we have |P |+2 < 9

11 (|C|+3)− 2
11 (||C||+2).

As |P | ≥ 9
11 |C| − 2

11 (||C|| − 1
2 ), it follows that 2 < 9

11 3 − 2
11

5
2 , a contradiction.

– Suppose the wi’s are 2-vertices in G − C. Observe that they are not adjacent since G is triangle-
free. The set P ∪ {v} induces a linear forest, and its neighbourhood is a subset of N ∪ {w0, w1}.
Furthermore, N(w1) ∩ (P ∪ {v}) = {v}, N(v) ∩ ((G − C) − {v, w0}) = {w1}, and v and w1 are 1-
vertices in P ∪{v} and G−C −{v, w0} respectively. By applying Observation 2.4.3 to L = P ∪{v}
and M = N ∪ {w0}, we have |P | + 1 < 9

11 (|C| + 2) − 2
11 (||C|| + 3). As |P | ≥ 9

11 |C| − 2
11 (||C|| − 1

2 ),
it follows that 1 < 9

11 2 − 2
11

7
2 , a contradiction.

– Suppose the wi’s both have degree 4 in G − C. Again they are not adjacent since G is triangle-
free. The set P ∪ {v} induces a linear forest, and its neighbourhood is a subset of N ∪ {w1, w0}.
By applying Observation 2.4.2 to L = P ∪ {v} and M = N ∪ {w0, w1}, we have |P | + 1 <
9

11 (|C| + 3) − 2
11 (||C|| + 8). As |P | ≥ 9

11 |C| − 2
11 (||C|| − 1

2 ), it follows that 1 < 9
11 3 − 2

11
17
2 , a

contradiction.

– Suppose one of the wi’s, say w0, is a 3−-vertex in G−C and the other one is a 3+-vertex in G−C.
Let C ′ = (P ∪ {v}, N ∪ {w1}, v, w0). Then C ′ is a chain of G, and by maximality of |C|, we have
|P | + 1 < 9

11 (|C| + 2) − 2
11 (||C|| + 7

2 ). As |P | ≥ 9
11 |C| − 2

11 (||C|| − 1
2 ), it follows that 1 < 9

11 2 − 2
11 4,

a contradiction.

Let us now define a new notion quite similar to the notion of chain. A double chain of G is a sextuplet
C = (P, N, u0, u1, v0, v1), so that:

• P ⊂ V (G), N ⊂ V (G) \ P , u0 ∈ P , u1 ∈ P , v0 ∈ V (G) \ (N ∪ P ) and v1 ∈ V (G) \ (N ∪ P );

• v0 Ó= v1;

• G[P ] is a linear forest;

• u0 and u1 are 1−-vertices of G[P ] if they are distinct, a 0-vertex of G[P ] if they are equal, and for
i ∈ {0, 1}, N(vi) ∩ P = {ui};

• N(P ) ⊂ N ∪ {v0} ∪ {v1};

• v0 and v1 are 2−-vertices in G − (N ∪ P ).

See Figure 2.4.2 (right) for an illustration. We will use the following notation for a double chain C =
(P, N, u0, u1, v0, v1) of G :

• |C| = |P | + |N |;

• G − C = G − (N ∪ P );

• d0(C) is the degree of v0 in G − C (thus d0(C) ≤ 2);

44



• d1(C) is the degree of v1 in G − C (thus d1(C) ≤ 2);

• ||C|| = ||G|| − ||G − C||.

A double chain C = (P, N, u0, u1, v0, v1) of G such that v0 and v1 are on different components of G − C
is called a separating double chain of G. We will use the following two lemmas to get a contradiction when
double chains do not verify certain conditions.

Lemma 2.4.5. For every double chain C = (P, N, u0, u1, v0, v1) of G, |P | < 9
11 |C| − 2

11 (||C|| − 3).

Proof. Let us consider by contradiction a double chain C = (P, N, u0, u1, v0, v1) such that |P | ≥ 9
11 |C| −

2
11 (||C|| − 3) maximizing |C|.

Suppose first that v0 and v1 are not adjacent.

• Suppose d0(C) = 0. Then (P ∪ {v0}, N, u1, v1) is a simple chain of G. By Lemma 2.4.4, |P | + 1 <
9

11 (|C| + 1) − 2
11 (||C|| − 1

2 ). As |P | ≥ 9
11 |C| − 2

11 (||C|| − 3), we have 1 < 9
11 − 5

2
2

11 , a contradiction.

• Suppose d0(C) = 1. Let w be the neighbour of v0 in G−C. Then (P ∪{v0}, N ∪{w}, u1, v1) is a simple
chain of G. By Lemma 2.4.4, |P | + 1 < 9

11 (|C| + 2) − 2
11 (||C|| + 1

2 ). As |P | ≥ 9
11 |C| − 2

11 (||C|| − 3), we
have 1 < 9

11 2 − 2
11

7
2 , a contradiction.

• Suppose d0(C) = 2. Let w0 and w1 be the neighbours of v0 in G − C.

– Suppose one of the wi’s, say w0, has degree 1 in G − C. Then (P ∪ {v0, w0}, N ∪ {w1}, u1, v1)
is a simple chain of G. By Lemma 2.4.4, |P | + 2 < 9

11 (|C| + 3) − 2
11 (||C|| + 3

2 ). As |P | ≥
9

11 |C| − 2
11 (||C|| − 3), we have 2 < 9

11 3 − 2
11

9
2 , a contradiction.

– Suppose that the wi’s both have degree 2 in G − C. Note that they are not adjacent since G is
triangle-free. They may, however, be adjacent to v1.
Suppose both of the wi’s are adjacent to v1. The set P ∪ {v0, v1} induces a linear forest in G, and
its neighbourhood is a subset of N ∪ {w0, w1}. By applying Observation 2.4.2 to L = P ∪ {v0, v1}
and M = N ∪{w0, w1}, we have |P |+2 < 9

11 (|C|+4)− 2
11 (||C||+4). As |P | ≥ 9

11 |C|− 2
11 (||C||−3),

it follows that 2 < 9
11 4 − 2

11 7, a contradiction.
Therefore one of the wi’s, say w0, is not adjacent to v1. Let x be the neighbour of w0 in G − C
distinct from v0. Suppose x has degree 4 in G−C−{v0, w1}. Now (P ∪{v0, w0}, N ∪{w1, x}, u1, v1)
is a chain of G. By Lemma 2.4.4, |P |+2 < 9

11 (|C|+4)− 2
11 (||C||+ 13

2 ). As |P | ≥ 9
11 |C|− 2

11 (||C||−3),
we have 2 < 9

11 4 − 2
11

19
2 , a contradiction. Therefore x is a 3−-vertex in G − C − {v0, w1}.

Then (P ∪ {v0, w0}, N ∪ {w1}, w0, u1, x, v1) is a double chain of G, so by maximality of |C|,
|P | + 2 < 9

11 (|C| + 3) − 2
11 (||C|| + 4 − 3). As |P | ≥ 9

11 |C| − 2
11 (||C|| − 3), we have 2 < 9

11 3 − 2
11 4,

a contradiction.

– Suppose that the wi’s are 4-vertices in G − C. Now (P ∪ {v0}, N ∪ {w0, w1}, u1, v1) is a chain of
G. By Lemma 2.4.4, |P | + 1 < 9

11 (|C| + 3) − 2
11 (||C|| + 15

2 ). As |P | ≥ 9
11 |C| − 2

11 (||C|| − 3), we
have 1 < 9

11 3 − 2
11

21
2 , a contradiction.

– Suppose one of the wi’s, say w0, is a 3−-vertex in G − C and the other one is a 3+-vertex in
G − C. Then (P ∪ {v0}, N ∪ {w1}, v0, u1, w0, v1) is a double chain of G. By maximality of |C|,
|P | + 1 < 9

11 (|C| + 2) − 2
11 (||C|| + 4 − 3). As |P | ≥ 9

11 |C| − 2
11 (||C|| − 3), we have 1 < 9

11 2 − 2
11 4,

a contradiction.

Now v0 and v1 are adjacent.

• Suppose d0(C) = 1 or d1(C) = 1. Say d0(C) = 1. The set P ∪ {v0} induces a linear forest, and
its neighbourhood is a subset of N ∪ {v1}. By applying Observation 2.4.2 to L = P ∪ {v0} and
M = N ∪ {v1}, we have |P | + 1 < 9

11 (|C| + 2) − 2
11 (||C|| + 1). As |P | ≥ 9

11 |C| − 2
11 (||C|| − 3), it follows

that 1 < 9
11 2 − 2

11 4, a contradiction.

45



• Now d0(C) = 2 and d1(C) = 2. Let w be the neighbour of v0 in (G − C) − v1.

Suppose w is a 2−-vertex in (G−C)−v1. The set P ∪{v0} induces a linear forest, and its neighbourhood
is a subset of N ∪ {v1, w}. Furthermore, N(w) ∩ (P ∪ {v0}) = {v0}, N(v0) ∩ (G − C) − {v0, v1} =
{w}, and v0 and w are 1−-vertices in G[P ∪ {v0}] and (G − C) − {v0, v1} respectively. By applying
Observation 2.4.3 to L = P ∪ {v0} and M = N ∪ {v1}, we have |P | + 1 < 9

11 (|C| + 2) − 2
11 (||C|| + 3).

As |P | ≥ 9
11 |C| − 2

11 (||C|| − 3), it follows that 1 < 9
11 2 − 2

11 6, a contradiction.

Now w is a 3+-vertex in (G − C) − v1. The set P ∪ {v0} induces a linear forest, and its neighbourhood
is a subset of N ∪ {v1, w}. By applying Observation 2.4.2 to L = P ∪ {v0} and M = N ∪ {w}, we have
|P | + 1 < 9

11 (|C| + 3) − 2
11 (||C|| + 5). As |P | ≥ 9

11 |C| − 2
11 (||C|| − 3), it follows that 1 < 9

11 3 − 2
11 8, a

contradiction.

Lemma 2.4.6. For every separating double chain C = (P, N, u0, u1, v0, v1) of G, |P | < 9
11 |C|− 2

11 (||C||−1).

Proof. Let us consider by contradiction a separating double chain C = (P, N, u0, u1, v0, v1) such that |P | ≥
9

11 |C| − 2
11 (||C|| − 1) maximizing |C|.

• Suppose d0(C) = 0. Then (P ∪ {v0}, N, u1, v1) is a simple chain of G. By Lemma 2.4.4, |P | + 1 <
9

11 (|C| + 1) − 2
11 (||C|| − 1

2 ). As |P | ≥ 9
11 |C| − 2

11 (||C|| − 1), we have 1 < 9
11 − 2

11
1
2 , a contradiction.

• Suppose d0(C) = 1. Let w be the neighbour of v0 in G − C. Suppose w is a 4+-vertex in G − C. Then
(P ∪{v0}, N ∪{w}, u1, v1) is a simple chain of G. By Lemma 2.4.4, |P |+1 < 9

11 (|C|+2)− 2
11 (||C||+ 7

2 ).
As |P | ≥ 9

11 |C| − 2
11 (||C|| − 1), we have 1 < 9

11 2 − 2
11

9
2 , a contradiction.

Now w is a 3−-vertex in G − C. Let C ′ = (P ∪ {v0}, N, v0, u1, w, v1). Then C ′ is a separating double
chain of G, and by maximality of |C|, |P | + 1 < 9

11 (|C| + 1) − 2
11 (||C||). As |P | ≥ 9

11 |C| − 2
11 (||C|| − 1),

we have 1 < 9
11 − 2

11 , a contradiction.

• Suppose d0(C) = 2. Let w0 and w1 be the neighbours of v0 in G − C.

– Suppose one of the wi’s, say w0, has degree 1 in G−C. We have a simple chain (P ∪{v0, w0}, N ∪
{w1}, u1, v1). By Lemma 2.4.4, |P |+2 < 9

11 (|C|+3)− 2
11 (||C||+ 3

2 ). As |P | ≥ 9
11 |C|− 2

11 (||C||−1),
we have 2 < 9

11 3 − 2
11

5
2 , a contradiction.

– Suppose the wi’s are both 2-vertices in G−C. Note that they are not adjacent since G is triangle-
free. Let x be the second neighbour of w0 in G − C. Suppose x is a 4-vertex in G − C − {w1}.
Then (P ∪ {v0, w0}, N ∪ {w1, x}, u1, v1) is a simple chain of G. By Lemma 2.4.4, |P | + 2 <
9

11 (|C|+4)− 2
11 (||C||+ 13

2 ). As |P | ≥ 9
11 |C|− 2

11 (||C||−1), we have 2 < 9
11 4− 2

11
15
2 , a contradiction.

Now x is a 3−-vertex in G−C−{w1}, so (P ∪{v0, w0}, N∪{w1}, w0, u1, x, v1) is a separating double
chain of G. By maximality of |C|, |P |+2 < 9

11 (|C|+3)− 2
11 (||C||+3). As |P | ≥ 9

11 |C|− 2
11 (||C||−1),

we have 2 < 9
11 3 − 2

11 4, a contradiction.

– Suppose the wi’s are 4-vertices in G − C. Again they are not adjacent since G is triangle-
free. We have a simple chain (P ∪ {v0}, N ∪ {w0, w1}, u1, v1). By Lemma 2.4.4, |P | + 1 <
9

11 (|C|+3)− 2
11 (||C||+ 15

2 ). As |P | ≥ 9
11 |C|− 2

11 (||C||−1), we have 1 < 9
11 3− 2

11
17
2 , a contradiction.

– Suppose one of the wi’s, say w0, is a 3−-vertex in G − C and the other one is a 3+-vertex in
G − C. Then (P ∪ {v0}, N ∪ {w1}, v0, u1, w0, v1) is a separating double chain. By maximality of
|C|, |P | + 1 < 9

11 (|C| + 2) − 2
11 (||C|| + 3). As |P | ≥ 9

11 |C| − 2
11 (||C|| − 1), we have 1 < 9

11 2 − 2
11 4,

a contradiction.

Now we have all the lemmas we need to deal with simple and double chains. Note that Lemmas 2.4.4-
2.4.6 could also have been expressed in terms of forbidden configurations. Those configurations could be
arbitrarily large. Let us now prove some lemmas on the structure of G. Again, these lemmas can be seen as
forbidden configurations, but all of these configurations are bounded. All of these could be proven directly,
but the proof would be longer and a lot more redundant.

Lemma 2.4.7. Graph G has no 2−-vertex.
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Proof. As G is connected, if it has a 0-vertex, then G is the graph with one vertex and it satisfies Theo-
rem 2.1.21, a contradiction.

By contradiction, suppose u ∈ V is a 1-vertex. Let v be the neighbour of u. If v is a 3−-vertex in G,
then ({u}, ∅, u, v) is a chain of G, thus by Lemma 2.4.4, 1 < 9

11 − 2
11 (1 − 1

2 ), a contradiction. Now v is a
4-vertex. Let G′ = G − {u, v}. We have ||G′|| = m − 4. Let F ′ be an induced linear forest of G′. The graph
F = G[V (F ′) ∪ {u}] is a linear forest. By applying Observation 2.4.1 to (α, β, γ) = (2, 4, 1), 1 < 9

11 2 − 2
11 4,

a contradiction.
Therefore G has no 1−-vertex. Suppose now that u ∈ V is a 2-vertex. Let v0 and v1 be the two neighbours

of u.
Suppose v0 or v1, say v1, is a 3−-vertex. We have a simple chain ({u}, {v0}, u, v1). By Lemma 2.4.4,

1 < 9
11 2 − 2

11 (4 − 1
2 ), a contradiction.

Now v0 and v1 are 4-vertices. Let G′ = G − {u, v0, v1}. We have ||G′|| = m − 8. Let F ′ be an induced
linear forest of G′. The graph F = G[V (F ′) ∪ {u}] is a linear forest. By applying Observation 2.4.1 to
(α, β, γ) = (3, 8, 1), 1 < 9

11 3 − 2
11 8, a contradiction.

Lemma 2.4.8. Graph G has no 3-vertex with a 3-neighbour and two 4-neighbours.

Proof. By contradiction, suppose G has a 3-vertex u, adjacent to a 3-vertex v and two 4-vertices w0 and w1.
We have a simple chain ({u}, {w0, w1}, u, v). By Lemma 2.4.4, 1 < 9

11 3 − 2
11

17
2 , a contradiction.

Lemma 2.4.9. Graph G has no 3-vertex with two 3-neighbours and a 4-neighbour.

Proof. Let u be a 3-vertex with two 3-neighbours v0 and v1, and a 4-neighbour w. Let x0 and x1 be the
two neighbours of v0 distinct from u. Note that x0 and x1 are 3+-vertices in G by Lemma 2.4.7, and thus
1+-vertices in G′ = G − {u, w, v0} since they are not adjacent to u. Let G′ = G − {u, w, v0}.

Suppose that x0 and x1 are 2+-vertices in G′, or that one is a 3-vertex and the other a 1+-vertex. We
have a simple chain ({u, v0}, {x0, x1, w}, u, v1). By Lemma 2.4.4, 2 < 9

11 5 − 2
11

23
2 , a contradiction.

Suppose one of the xi’s, say x0, is a 2+-vertex in G′, and the other one is a 1-vertex in G′. We have a
double chain ({u, v0}, {w, x0}, u, v0, v1, x1). By Lemma 2.4.5, 2 < 9

11 4 − 2
11 7, a contradiction.

Now the xi’s are 1-vertices in G′. By Lemma 2.4.7, the xi’s are 3-vertices in G, and are both adjacent
to w. By planarity of G, one of the xi’s, say x0, is not adjacent to v1. Let y be the neighbour of x0 in G′.
By Lemmas 2.4.7 and 2.4.8, y is a 3-vertex in G. We have a simple chain ({u, v0, x0}, {w, v1, x1}, x0, y). By
Lemma 2.4.4, 3 < 9

11 6 − 2
11

21
2 , a contradiction.

Lemma 2.4.10. Graph G has no two adjacent 3-vertices in G.

Proof. By Lemma 2.4.7, every vertex in G has degree 3 or 4. By Lemmas 2.4.8 and 2.4.9, there is no 3-vertex
with a 3-neighbour and a 4-neighbour in G. Suppose by contradiction that there are two adjacent 3-vertices
in G. Then as G is connected, G only has 3-vertices.

Suppose there is a 4-cycle v0v1v2v3 in G. For all i, let ui be the third neighbour of vi. Since G has
no triangle, the only vertices among the ui’s and vi’s that may not be distinct are u0 and u2 on the one
hand, and u1 and u3 on the other hand. Suppose u0 = u2 and u1 = u3. In particular, one of those
vertices is in the interior of v0v1v2v3 and the other one is not. Let G′ = G − {v0, v1, v2, v3}. We have
||G′|| = m − 8. Let F ′ be an induced linear forest of G′. As u0 and u1 are 1-vertices in G′, separated
by v0v1v2v3 in G, the graph F = G[V (F ′) ∪ {v0, v1}] is a linear forest. By applying Observation 2.4.1 to
(α, β, γ) = (4, 8, 2), we have 2 < 9

11 4 − 2
11 8, a contradiction. Now say u0 and u2 are distinct. We have a

double chain ({v0, v1, v2}, {v3, u1}, v0, v2, u0, u2). By Lemma 2.4.5, 3 < 9
11 5 − 2

11 6, a contradiction.
Therefore there is no 4-cycle in G. Suppose there is a 5-cycle v0v1v2v3v4 in G. For all i, let ui be the

third neighbour of vi. Now all the ui’s are distinct, otherwise there is a 4-cycle and we fall into the previous
case. We have a double chain ({v0, v1, v2, v3}, {v4, u1, u2}, v0, v3, u0, u3). By Lemma 2.4.5, 4 < 9

11 7 − 2
11 11,

a contradiction.
Now G is a 3-regular planar graph with girth at least 6, which contradicts Euler’s formula.

Lemma 2.4.11. There is no 4-cycle with at least two 3-vertices in G.
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Proof. By contradiction, suppose there is such a 4-cycle v0v1v2v3. By Lemmas 2.4.7 and 2.4.10, this cycle
has exactly two 3-vertices and two 4-vertices, and the two 3-vertices are not adjacent. Say v0 and v2 are
3-vertices, and v1 and v3 are 4-vertices. Let u0 and u2 be the third neighbours of v0 and v2 respectively. By
Lemma 2.4.10, u0 and u2 are 4-vertices.

Suppose that v0 and v2 have three neighbours in common, v1, v3, and u = u0 = u2. Let G′ = G −
{v0, v1, v2, v3, u}. Let F ′ be an induced linear forest of G′. The graph F = G[V (F ′) ∪ {v0, v2}] is a linear
forest. By applying Observation 2.4.1 to (α, β, γ) = (5, 12, 2), 2 < 9

11 5 − 2
11 12, a contradiction.

Now u0 and u2 are distinct. Suppose that u0u2 ∈ E(G). We have a chain
({v0, v2}, {v1, v3, u2}, v0, u0). By Lemma 2.4.4, 2 < 9

11 5 − 2
11

25
2 , a contradiction.

Now u0u2 /∈ E(G). Let G′ = G − {v0, v1, v2, v3, u0, u2}. Let F ′ be an induced linear forest of G′. The
graph F = G[V (F ′) ∪ {v0, v2}] is a linear forest. By applying Observation 2.4.1 to (α, β, γ) = (6, 16, 2),
2 < 9

11 6 − 2
11 16, a contradiction.

v0
v1

w0

w1

x1x0

u

v2v3

Figure 2.4.3: The vertices of Lemma 2.4.12. The dashed line is an edge that may or may not be present.

Lemma 2.4.12. There is no 4-face with exactly one 3-vertex in its boundary in G.

Proof. By contradiction, suppose there is a 4-face bounded by a cycle v0v1v2v3, such that v0 is a 3-vertex and
the other vi’s are 4-vertices. Let u be the third neighbour of v0. Note that u is a 4-vertex by Lemma 2.4.10.

Suppose first that vv2 ∈ E(G). By planarity of G, v1 and v3 are in different components of G−{v0, u, v2}.
Therefore ({v0}, {u, v2}, v0, v0, v1, v3) is a separating double chain of G. By Lemma 2.4.6, 1 < 9

11 3 − 2
11 8, a

contradiction.
Now uv2 /∈ E(G). Let w0 and w1 be the neighbours of v1 distinct from v0 and v2.

• Suppose w0 and w1 are adjacent to v3. Let G′ = G − {v0, v1, v2, v3, v, w0, w1}. By Lemma 2.4.7,
the wi’s are 3+-vertices, and since G is triangle-free, they cannot be adjacent to v2. Moreover, by
planarity, one of the wi’s at least is not adjacent to u. This implies that ||G′|| ≤ m − 15. Let F ′ be
an induced linear forest of G′. The graph F = G[V (F ′) ∪ {v0, v1, v3}] is a linear forest. By applying
Observation 2.4.1 to (α, β, γ) = (7, 15, 3), 3 < 9

11 7 − 2
11 15, a contradiction.

• Suppose that one of the wi’s, say w0, is adjacent to v3 and that the other one (w1) is not adjacent to
v3. Let w2 be the neighbour of v3 distinct from v0, v2, and w0.

– Suppose w1 or w2, say w1, is a 3-vertex in G − {v0, v1, v2, v3, u, w0}. Suppose w2 is a 3-vertex
in G − {v0, v1, v2, v3, u, w0, w1} (note that this implies that w1w2 /∈ E(G)). Let G′ = G −
{v0, v1, v2, v3, u, w0, w1, w2}. We have ||G′|| ≤ m − 20. Let F ′ be an induced linear forest of
G′. The graph F = G[V (F ′) ∪ {v0, v1, v3}] is a linear forest. By applying Observation 2.4.1 to
(α, β, γ) = (8, 20, 3), 3 < 9

11 8 − 2
11 20, a contradiction.
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Now w2 is a 2−-vertex in G−{v0, v1, v2, v3, u, w0, w1}, and thus ({v0, v1, v3}, {v2, u, w0, w1}, v3, w2)
is a chain of G. By Lemma 2.4.4, 3 < 9

11 7 − 2
11 (17 − 1

2 ), a contradiction.

– Suppose w1 and w2 are 2−-vertex in G − {v0, v1, v2, v3, u, w0}. Then we have a double chain
({v0, v1, v3}, {v2, u, w0}, v1, v3, w1, w2). By Lemma 2.4.5, 3 < 9

11 6 − 2
11 11, a contradiction.

• Suppose the wi’s are not adjacent to v3. Let us prove by contradiction that the wi’s are 2−-vertices in
G − {v0, v1, v2, u}.

– Suppose the wi’s are 3-vertices in G−{v0, v1, v2, u}. The quadruplet ({v0, v1}, {v2, u, w0, w1}, v0, v3)
forms a chain. By Lemma 2.4.4, 2 < 9

11 6 − 2
11 (18 − 1

2 ), a contradiction.

– Now one of the wi’s, say w0, is a 2−-vertex in G − {v0, v1, v2, u}. Suppose w1 is a 3-vertex in
G − {v0, v1, v2, u}. Then we have the following double chain: ({v0, v1}, {v2, u, w1}, v0, v1, v3, w0).
By Lemma 2.4.5, 2 < 9

11 5 − 2
11 12, a contradiction.

Now the wi’s are 2−-vertices in G − {v0, v1, v2, u}. The wi’s are 3-vertices or 4-vertices in G, they are
not adjacent to v0 and v2 since G is triangle-free, and by Lemma 2.4.11, if for some i, wi is adjacent to
u, then wi is a 4-vertex. Therefore each of the wi’s is either a 3-vertex non-adjacent to u or a 4-vertex
adjacent to u, and thus the wi’s are 2-vertices in G − {v0, v1, v2, u}.

Let x0 and x1 be the two neighbours of w0 in G − {v0, v1, v2, v3, u}. See Figure 2.4.3 for a reminder of
the vertices considered. Let d be the sum of the degrees of x0 and x1 in G − {v0, v1, v2, u, w0, w1}.

– Suppose d ≥ 4. We have a simple chain ({v0, v1, w0}, {v2, u, w1, x0, x1}, v0, v3). By Lemma 2.4.4,
3 < 9

11 8 − 2
11 (20 − 1

2 ), a contradiction.

– Suppose d ≤ 3. Suppose one of the xi, say x0, is a 0-vertex in G − {v0, v1, v2, u, w0, w1}. We have
a simple chain ({v0, v1, w0, x0}, {v2, u, w1, x1}, v0, v3). By Lemma 2.4.4, 4 < 9

11 8 − 2
11 (16 − 1

2 ), a
contradiction.
Suppose one of the xi, say x0, is a 1-vertex in G − {v0, v1, v2, u, w0, w1} and the other one (x1) is
a 1-vertex or a 2-vertex in G − {v0, v1, v2, u, w0, w1}.
Let us prove by contradiction that x0 is not adjacent to v3. Suppose x0 is adjacent to v3.
Suppose x0w1 ∈ E(G). By Lemma 2.4.11, at least one of the wi’s, w0 say, is a 4-vertex, and
thus is adjacent to u. By planarity, w1 is not adjacent to u, and thus w1 is a 3-vertex in G. In
this case, x0 is adjacent to w0, w1 and v3, but not to any other vertex since it is a 1-vertex in
G − {v0, v1, v2, u, w0, w1} and G is triangle-free. Then x0 and w1 are adjacent 3-vertices in G,
which contradicts Lemma 2.4.10.
Now x0w1 /∈ E(G). We have a simple chain ({v0, v1, x0}, {v2, v3, u, w0}, v1, w1). By Lemma 2.4.4,
3 < 9

11 7 − 2
11 (16 − 1

2 ), a contradiction.
Therefore x0 is not adjacent to v3. Let y be the neighbour of x0 in G − {v0, v1, v2, u, w0, w1}.
Suppose y is a 3-vertex in G − {v0, v1, v2, u, w0, w1, x0, x1}. Now the following quadruplet is a
simple chain: ({v0, v1, w0, x0}, {v2, u, w1, x1, y}, v0, v3). By Lemma 2.4.4, 4 < 9

11 9 − 2
11 (21 − 1

2 ),
a contradiction. Therefore y is a 2−-vertex in G − {v0, v1, v2, u, w0, w1, x0, x1}. Then we have
a double chain ({v0, v1, w0, x0}, {v2, u, w1, x1}, v0, x0, v3, y). By Lemma 2.4.5, 4 < 9

11 8 − 2
11 15, a

contradiction.

For every face φ of G, let c4(φ) be the number of 4-vertices in the boundary of φ. Let f be the number
of faces of G, and for every 3 ≤ d ≤ 4 and every 4 ≤ l, let fl be the number of l-faces and nd the number of
d-vertices in G.

Each 4-vertex is in the boundary of at most four faces. Therefore the sum of the c4(φ) over all the 4-faces
and 5-faces is

∑
φ,4≤d(φ)≤5 c4(φ) ≤ 4n4. Now, by Lemmas 2.4.7, 2.4.11, and 2.4.12, every 4-face of G has

only 4-vertices in its boundary, so for each 4-face φ, c4(φ) = 4. By Lemma 2.4.10, every 5-face of G has at
least three 4-vertices in its boundary, so for each 5-face φ, c4(φ) ≥ 3 ≥ 2.

Thus
∑

φ,d(φ)=4 c4(φ) +
∑

φ,d(φ)=5 c4(φ) ≥ 4f4 + 2f5. It follows that:
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4n4 ≥ 4f4 + 2f5

By Euler’s formula, we have:

−12 = 6m − 6n − 6f

= 2
∑

v∈V (G)

d(v) +
∑

φ∈F (G)

d(φ) − 6n − 6f

=
∑

d≥3

(2d − 6)nd +
∑

l≥4

(l − 6)fl

≥ 2n4 − 2f4 − f5

≥ 0

That contradiction completes the proof of Theorem 2.1.21.

2.5 Large induced forests in 2-connected graphs with maximum
degree at most 3

Let us first recall the statement of Theorem 2.1.15.

Theorem 2.1.15 (recall). Every graph in C2,3− of order n admits an induced forest of order at least 2n−2
3 .

The following lemma is folklore, but we include a proof for the sake of completeness.

Lemma 2.5.1. For every k ∈ {1, 2, 3}, a graph with maximum degree at most 3 is k-connected if and only
if it is k-edge-connected.

Proof. Let G be a graph with maximum degree at most 3. One can easily check that the result holds for the
complete graphs on at most four vertices.

Suppose now that G is not complete. Let Cv be a vertex cut of G and Ce be a edge cut of G, both of
minimum size. If we show that |Cv| = |Ce|, then the lemma holds.

Let V1 and V2 be the vertex sets of the two components of G − Ce. We have V1 ∪ V2 = V (G). By
minimality of |Ce|, every edge of Ce has an endpoint in V1 and the other one in V2. Suppose every vertex of
V1 is adjacent to every vertex of V2 in G. We have |Ce| = |V1||V2| ≥ |V1| + |V2| − 1 = |V (G)| − 1. Moreover,
for any vertex in G, the set of the edges incident to this vertex is an edge cut of G. Therefore, since G
is not complete, by minimality of Ce, |Ce| ≤ |V (G)| − 2, a contradiction. Therefore there are two vertices
v1 ∈ V1 and v2 ∈ V2 such that v1v2 /∈ E(G). Let C ′

v = {x Ó= v1|∃y ∈ V2, xy ∈ Ce} ∪ {y|v1y ∈ Ce}. Note that
|C ′

v| = |{x Ó= v1|∃y ∈ V2, xy ∈ Ce}| + |{y|v1y ∈ Ce}| ≤ |Ce|. For each edge in Ce, one of the endpoints of this
edge is in C ′

v. As neither v1 nor v2 is in C ′
v, C ′

v separates v1 from v2 in G. Therefore |Cv| ≤ |C ′
v|, and thus

|Cv| ≤ |Ce|.
Let W1 and W2 be the vertex sets of two components of G − Cv. Let x ∈ Cv. Since x has degree at most

3, x has at most one neighbour in W1 or at most one neighbour in W2, and it has at least one neighbour
in W1 and one in W2 by minimality of Cv. Let yx be the neighbour of x that is in W1 if there is only one
neighbour of x in W1, and the neighbour of x in W2 otherwise, and ex = xyx. Observe that this defines a
unique edge ex for every x ∈ Cv. Let C ′

e = {ex|x ∈ Cv}. Assume C ′
e does not separate W1 and W2. There

are v1 ∈ W1 and v2 ∈ W2 such that there is a path P from v1 to v2 in H − C ′
e. Let us consider v1 and v2

such that P has minimal length. Then there are w1 and w2 in Cv such that v1w1 ∈ E(P ) and v2w2 ∈ E(P ).
If w1 = w2, then either v1w1 ∈ C ′

e or v2w2 ∈ C ′
e, a contradiction. If w1 Ó= w2, then w1 has a neighbour in

V (G) \ (W1 ∪ W2), so it has only one neighbour in W1, that is v1, so v1w1 ∈ C ′
e, a contradiction. Therefore

C ′
e separates W1 and W2. We have |C ′

e| = |Cv|, thus |Ce| ≤ |Cv|. Finally, since |Cv| ≤ |Ce|, |Cv| = |Ce|.
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Let us consider G a counter-example to Theorem 2.1.15 of minimum order, and let n = |V | ≥ 3 be the
order of G. Let us prove some lemmas on the structure of G.

Lemma 2.5.2. Graph G is cubic (i.e. every vertex in G has degree 3).

Proof. Suppose there is a 2−-vertex v in G. As G is 2-connected, v is a 2-vertex. Let u and w be the two
neighbours of v in G. Suppose uw /∈ E(G). Let G′ = G − v + uw. Since u and w have degree at least 2
in G (since G is 2-connected), |V (G′)| ≥ 3. Then G′ is in C2,3− since G is. By minimality of G, G′ has
a an induced linear forest F ′ of order |F ′| ≥ 2(n−1)−2

3 . The graph F = G[V (F ) ∪ {v}] is a forest of order
|F | = |F ′|+1 ≥ 2n−1

3 ≥ 2n−2
3 vertices, a contradiction. Therefore uw ∈ E(G). If both u and w are 2-vertices,

then G = C3, and G admits an induced forest of order 2 ≥ 2n−2
3 = 4

3 , a contradiction. If one of u and w has
degree 2 and the other one has degree 3, then G is not 2-connected, a contradiction. Therefore u and w are
3-vertices. Note that more generally, we proved that there are no two adjacent vertices of degree 2 in G.

Let u′ and w′ be the third neighbours of u and w respectively. If u′ = w′, then V (G) = {u, v, w, u′}
(since G is 2-connected), and G admits an induced forest of order 3 ≥ 2n−2

3 = 2 ({v, w, u′} for example), a
contradiction. Thus u′ and w′ are distinct. Suppose u′w′ ∈ E(G). Let G′ = G − {u, v, w}. If |V (G′)| < 3,
then u′ and w′ are adjacent 2-vertices in G and we fall into a previous case. Therefore |V (G′)| ≥ 3. The
graph G′ is in C2,3− since G is. By minimality of G, G′ has an induced forest F ′ of order |F ′| ≥ 2(n−3)−2

3 .
The graph F = G[V (F ′) ∪ {v, w}] is a forest of order |F | ≥ 2n−8

3 + 2 = 2n−2
3 , a contradiction. Therefore

u′w′ /∈ E(G). Let G′ = G − {u, v, w} + u′w′. The graph G′ is in C2,3− since G is. By minimality of
G, G′ has an induced forest F ′ of size |F ′| ≤ n−3+2

3 . The graph F = G[F ′ ∪ {v, w}] is a forest of order
|F | ≥ 2n−6−2

3 + 2 = 2n−2
3 , a contradiction.

In the rest of this section, we will use the fact that G is cubic without referring explicitly to Lemma 2.5.2.

Lemma 2.5.3. No two triangles share an edge in G.

Proof. Assume that there are two triangles v0v1v2 and v0v1u sharing an edge v0v1 in G. If v2u ∈ E(G),
then G = K4 (since G is connected), and G has an induced forest of order 2 = 2n−2

3 . Therefore v2u /∈ E(G).
Let w be the neighbour of v2 in G distinct from v0 and v1. Observe that uw /∈ E(G), since G is cubic and
2-connected. Let G′ = G − {v0, v1, v2} + uw. The graph G′ is in C2,3− since G is. By minimality of G, G′

has an induced forest F ′ of order |F ′| ≥ 2(n−3)−2
3 . The graph F = G[V (F ′) ∪ {v0, v2}] is a forest of order

|F | ≥ 2(n−3)−2
3 + 2 = 2n−2

3 , a contradiction.

v0

v1

v3

w

v2

u

Figure 2.5.1: The configuration of Lemma 2.5.4.

Lemma 2.5.4. There is no triangle that shares an edge with a 4-cycle in G.

Proof. By Lemma 2.5.3, there is no triangle that shares two edges with a 4-cycle in G. Assume that there
are a triangle v0v1u and a 4-cycle v0v1v2v3 that share the edge v0v1. Let w be the neighbour of u distinct
from v0 and v1. By Lemma 2.5.3, w /∈ {v2, v3}.
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Suppose first that w adjacent to v2. See Figure 2.5.4 for an illustration of those vertices. If v3w ∈
E(G), then V (G) = {v0, v1, v2, v3, u, w} (since G is connected), and G[{v0, v1, v2, w}] is a forest of order
4 ≥ 2n−2

3 = 10
3 a contradiction. Therefore v3w /∈ E(G). Let G′ = G − {v0, v1, u} + v3w. Graph G′ is in

C2,3− since G is. By minimality of G, G′ admits an induced forest F ′ of order |F ′| ≥ 2(n−3)−2
3 . The graph

F = G[V (F ′) ∪ {v0, u}] is a forest of order |F | ≥ 2(n−3)−2
3 + 2 = 2n−2

3 , a contradiction.
Therefore w is not adjacent to v2. Let G′ = G − {v0, v1, u} + wv2. Graph G′ is in C2,3− . By minimality

of G, G′ admits an induced forest F ′ of order |F ′| ≥ 2(n−3)−2
3 . The graph F = G[F ′ ∪ {u, v0}] is a forest of

order |F | ≥ 2(n−3)−2
3 + 2 = 2n−2

3 , a contradiction.

v0

v1

v2

v3

v4

u0 u2 u4

Figure 2.5.2: The configuration of Lemma 2.5.5.

Lemma 2.5.5. There are no two 4-cycles that share two edges in G.

Proof. Let v0v1v2v3 and v1v2v3v4 be two 4-cycles of G. Let u0, u2 and u4 be the third neighbours of v0, v2

and v4 respectively. By Lemma 2.5.3, they are distinct from the vertices defined previously. If u0 = u2 = u4,
then G = K3,3 admits an induced forest of order 4 ≥ 12−2

3 = 2n−2
3 (for example G[{v0, v2, v3, v4}]), a

contradiction.
Suppose u0 Ó= u2 Ó= u4 Ó= u0. See Figure 2.5.2 for an illustration of the configuration. Let G′ =

G − {v0, v1, v2, v4} + {v3u0, v3u2, v3u4}. If G′ is not 2-connected, then without loss of generality v4 separates
u0 and u2 in G′, and thus v0 separates u0 and u2 in G, a contradiction. Therefore G′ is in C2,3− . By minimality
of G, G′ admits an induced forest F ′ of order at least 2(n−4)−2

3 . The graph F = G[V (F ′) ∪ {v0, v2, v4}] is a
forest of order |F | = |F ′| + 3 ≥ 2n−2

3 , a contradiction.
Thus the ui’s are not all equal and not all distinct, thus we can assume that u0 = u2 Ó= u4. Let w be

the neighbour of u0 = u2 distinct from v0 and v2. Observe that w is distinct from u4 since G is cubic and
2-connected. Let G′ = G − {v0, v1, v2, v3, v4, u0} if u4w ∈ E(G) and G′ = G − {v0, v1, v2, v3, v4, u0} + u4w
otherwise. Graph G′ is in C2,3− since G is. By minimality of G, G′ admits an induced forest F ′ of order
|F ′| ≥ 2(n−6)−2

3 . The graph F = G[V (F ) ∪ {v0, v1, v2, v4} is a forest of order |F | = |F ′| + 4 ≥ 2n−12−2
3 + 4 =

2n−2
3 , a contradiction.

Lemma 2.5.6. Graph G is 3-connected.

Proof. Suppose by contradiction that G is not 3-connected. By Lemma 2.5.2, |V (G)| ≥ 4. Since G ∈ C2,3− ,
G is 2-connected. By Lemma 2.5.1, G is 2-edge-connected but not 3-edge-connected. Let {e, f} be an edge
cut of G that induces two componentss V1 and V2 such that |V1| is minimum.

We will now prove the two following properties:
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u
v

x

w

w0

w1

w00

w01

w10

w11

e

Figure 2.5.3: The vertices of Lemma 2.5.6. The vertices w00, w01, w10, and w11 may coincide.

• Pe: The deletion of any edge in G[V1] preserves the 2-edge connectivity of G.

By contradiction, suppose there is an edge e′ ∈ G[V1] such that G − e′ is not 2-edge-connected (but
connected since G is 2-edge-connected). Let v be the endpoint of e in V1, and w be the endpoint of
f in V1. Suppose e′ is a bridge in G[V1]. Then at least one of the components of G[V1] − e′ does not
contain w. It is also a component of G − {e, e′}, contradicting the minimality of V1. Therefore there is
a path from one endpoint of e′ to the other in G[V1]. Let f ′ be a bridge of G − e′. By what precedes,
f ′ ∈ E(G[V1]). As {f, f ′} is an edge cut of G, it is also an edge cut of G[V1]. Note that v and w
have a path connecting them that does not contain any edge of G[V1]. Therefore, they are in the same
component of G \ {f, f ′}. The other component of G \ {f, f ′} then contradicts the minimality of |V1|.

• Pv: For every vertex v in V1 with no V2-neighbour, H − v is 2-edge-connected, and thus 2-connected
by Lemma 2.5.1.

Suppose there is a vertex v ∈ V1 that is not incident to an edge of {e, f} such that H − v is not
2-edge-connected. Let f ′ be a cut edge of H − v. As vertex v has degree 3, there is an edge e′ incident
to v such that H − {e′, f ′} is disconnected. As v is not incident to an edge of {e, f}, e′ is an edge of
G[V1], a contradiction with Pe.

For the rest of the proof, you can refer to Figure 2.5.3 for a reminder of the vertices considered. Let
v ∈ V1 and u ∈ V2 be the endpoints of e. Let w and x be the two neighbours of v distinct from u. Vertices
w and x are in V1, otherwise either f = vw or f = vx, say f = vw, and vx is a bridge of G, a contradiction.

Let us show that wx /∈ E(G). By contradiction assume that wx ∈ E(G). Let w′ be the neighbour of
w distinct from v and x, and x′ be the neighbour of x distinct from v and w. By Lemmas 2.5.3 and 2.5.4,
w′, x′ and u are distinct and pairwise not adjacent. Moreover, if w′ /∈ V1 or x′ /∈ V1, say w′ /∈ V1, then
f = ww′, and thus xx′ is a bridge of G, a contradiction. Hence v, w, x, w′ and x′ are all in V1, and thus,
by Pv, G − w is 2-connected. Let G′ = G − {v, w, x} + ux′. Graph G′ is in C2,3− . By minimality of G, G′

admits an induced forest F ′ of order |F ′| ≥ 2(n−3)−2
3 . The graph F = G[V (F ′) ∪ {v, x} is a forest of order

|F ′| + 2 ≥ 2n−6−2
3 + 2 = 2n−2

3 , a contradiction. Therefore wx /∈ E(G).
Let w0 and w1 be the two neighbours of w distinct from v. If w0 or w1 is in V2, say w0 ∈ V2, then

ww0 = f , and {vx, ww1} is an edge cut of G, contradicting the minimality of |V1|. Therefore w0 and w1 are
in V1.

Let us show that w0w1 /∈ E(G). By contradiction assume that w0w1 ∈ E(G). Let w′
0 be the neighbour

of w0 distinct from w and w1, and w′
1 be the neighbour of w1 distinct from w and w0. By Lemmas 2.5.3

and 2.5.4, w′
0 and w′

1 are distinct and not adjacent. Vertices v, w, w0 and w1 are all in V1, thus, by Pv,
G − w is 2-connected. Let G′ = G − {w, w0, w1} + w′

0w′
1. Graph G′ is in C2,3− . By minimality of G, G′

admits an induced forest F ′ of order |F ′| ≥ 2(n−3)−2
3 . The graph F = G[V (F ′) ∪ {w0, w1}] is a forest of

order |F ′| + 2 ≥ 2n−6−2
3 + 2 = 2n−2

3 , a contradiction.
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Let w00 and w01 be the two neighbours of w0 distinct from w. Let us show that w00w01 /∈ E(G). By
contradiction assume that w00w01 ∈ E(G). By Lemma 2.5.4, w00 and w01 are distinct from x. Let w′

00 be the
neighbour of w00 distinct from w0 and w01, and w′

01 be the neighbour of w01 distinct from w0 and w00. By
Lemmas 2.5.3 and 2.5.4, w′

00 and w′
01 are distinct and not adjacent. Suppose w00 or w01 is in V2, say w00 ∈ V2.

Then w0w00 = f , and e, f is not an edge cut of H (since w0w00w01 is a triangle), a contradiction. Therefore
w, w0, w00 and w01 are in V1, and thus, by Pv, G−w0 is 2-connected. Let G′ = G−{w0, w00, w01}+w′

00w′
01.

Graph G′ is in C2,3− . By minimality of G, G′ admits an induced forest F ′ of order |F ′| ≥ 2(n−3)−2
3 . The

graph G[V (F ′) ∪ {w00, w01} is a forest of order |F ′| + 2 ≤ 2n−6−2
3 + 2 = 2n−2

3 , a contradiction.
Let w10 and w11 be the two neighbours of w1 distinct from w. By symmetry, w10w11 /∈ E(G). Suppose

{w00, w01} = {w10, w11}; say w00 = w10 and w01 = w11. Lemma 2.5.5 leads to a contradiction. Therefore
the pairs {w00, w01} and {w10, w11} are not equal. As v, w, w0 and w1 are in V1, by Pv, G − w is 2-
connected. Let G′ = G − {w, w0, w1} + {w00w01, w10w11}. Graph G′ is in C2,3− . By minimality of G, G′

admits an induced forest F ′ of order |F ′| ≥ 2(n−3)−2
3 . The graph G[V (F ) ∪ {w0, w1}] is a forest of order

|F ′| + 2 ≥ 2n−6−2
3 + 2 = 2n−2

3 , a contradiction, which completes the proof.

Lemma 2.5.7. There is no triangle in G.

Proof. Suppose there is a triangle v0v1v2 in G. Let u0, u1, and u2 be the third neighbours of v0, v1

and v2 respectively. By Lemmas 2.5.3 and 2.5.4, u0, u1 and u2 are distinct and non-adjacent. Let G′ =
G − {v0, v1, v2} + u1u2. Observe that by Lemma 2.5.6, G − v0 is 2-connected. Therefore G′ is in C2,3− . By
minimality of G, G′ admits an induced forest F ′ of order |F ′| ≥ 2(n−3)−2

3 . The graph G[V (F ′) ∪ {v1, v2}] is
a forest of order |F ′| + 2 ≥ 2n−6−2

3 + 2 ≥ 2n−2
3 , a contradiction.

Let v be a vertex of G, and x and y be two neighbours of v. They are not adjacent by Lemma 2.5.7.
Let x0, x1, y0, and y1 the two other neighbours of x and y respectively. Vertices x0 and x1 are not adjacent
by Lemma 2.5.7, and similarly y0 and y1 are not adjacent. The pairs {x0, x1} and {y0, y1} are distinct by
Lemma 2.5.5. Let G′ = G−{v, x, y}+{x0x1, y0y1}. By Lemma 2.5.6, G−v is 2-connected, so G′ is in C2,3− .
By minimality of G, G′ admits an induced forest F ′ of order |F ′| ≥ 2(n−3)−2

3 . The graph G[V (F ′)∪{x, y}] is
a forest of order |F ′|+2 ≥ 2n−6−2

3 +2 ≥ 2n−2
3 , a contradiction. That completes the proof of Theorem 2.1.15.

2.6 Large induced forests in planar graphs of large girth

Let us first recall the statement of Theorem 2.1.14.

Theorem 2.1.14 (recall). For all g ≥ 3, every planar graph of girth at least g with n vertices and m edges
admits an induced forest of order n − 4m

3g
, and thus at least n − 4n

3g−6 .

Let g ≥ 3 be a fixed integer. For G a planar graph, ω : E(G) → N a weight function, and F ⊆ E(G), we
denote

∑
e∈F ω(e) by ω(F ), and

∑
e∈E(G) ω(e) by ω(G). We will prove the following claim:

Claim 2.6.1. Let G be a planar graph, and ω : E(G) → N a weight function such that for each cycle C of

G, ω(C) ≥ g. There exists an induced forest F of G of order at least |G| − 4ω(G)
3g

.

Observe that fixing ω constant equal to 1 in Claim 2.6.1 yields Theorem 2.1.14.
In the following, we will generally reason on 2-connected plane graphs. A particularity of those graphs

is that every edge is always in the boundary of exactly two faces, and that the boundary of every face is a
cycle.

Let G be a 2-connected plane graph. Three faces f0, f1, and f2 of G are said to be mergeable if:

1. there exists a vertex v that is in the boundary of f0, f1, and f2.

2. w.l.o.g. f0 and f1 (resp f1 and f2) have at least one common edge in their boundary.
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Given three mergeable faces f0, f1, and f2, the merge of f0, f1, and f2 consists in removing the edges
belonging to the boundary of two faces among f0, f1, and f2 as well as the vertices that end up being
isolated. The common vertex v of f0, f1, and f2 is called the crucial vertex of the merge. A merge is nice
if the sum of the weights of the edges removed is at least 3g

4 . Observe that a merge cannot decrease the
minimum weight of a cycle in G, since we only delete vertices and edges. See Figure 2.6.1 for an example of
the merge of three faces.

v

f0

f1

f2

v
f

Figure 2.6.1: The merge of faces f0, f1, and f2 into f with crucial vertex v.

Lemma 2.6.2. Let G be a 2-connected plane graph, and let G′ be a graph obtained from G by applying a
merge with the crucial vertex v. If F ′ is an induced forest of G′, then F = G[(V (F ′) ∪ (V (G) \ V (G′)) \ {v}]
is a forest.

Proof. Let C be a cycle of G that contains an edge e ∈ E(G) \ E(G′). Edge e is in the boundary of two of
the faces that are merged, say φ0 and φ1. Cycle C separates φ0 and φ1 (i.e. one of the φi’s is in the interior
of C and the other one is in the exterior of C). Therefore C contains all the vertices of that are both in the
boundary of φ0 and in that of φ1. In particular, it contains v.

Therefore each cycle of G either is entirely contained in G′, or contains v. Thus as F ′ is a forest, F is
also a forest.

Lemma 2.6.3. Let G be a 2-connected plane graph, and G′ be obtained from G by applying a nice merge.
If graph G′ satisfies Claim 2.6.1, then graph G also satisfies Claim 2.6.1.

Proof. Let v be the crucial vertex of the merge. We have ω(G′) ≤ ω(G) − 3g
4 . Since G′ verifies Claim 2.6.1,

there exists an induced forest F ′ of G′ such that |F ′| ≥ |G′| − 4ω(G′)
3g

≥ |G′| − 4ω(G)
3g

+ 1. Then F =

G[(V (F ′) ∪ (V (G) \ V (G′)) \ {v}] is a forest (by Lemma 2.6.2), and |F | ≥ |F ′| + |G| − |G′| − 1 ≥ |G| − 4ω(G)
3g

,
which completes the proof.

Let us assume by contradiction that there are couples (G, ω) that do not satisfy Claim 2.6.1. Among
all counter-examples (G, ω) to Claim 2.6.1 minimizing ω(G), we consider such a couple (G, ω) minimizing∑

v∈V (G)(max{0.5, d(v) − 2.5}).

Lemma 2.6.4. Graph G is 2-connected.
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Proof. By contradiction, assume G is not 2-connected. Graph G has at least 2 vertices, otherwise it would
satisfy Claim 2.6.1. Let S be a minimal vertex cut of G. We have |S| ≤ 1. Let V1 and V2 be non-empty sets
of vertices separated by S.

Let ω1 = ω(G[V1 ∪ S]) and ω2 = ω(G[V2 ∪ S]). By minimality of (G, ω), there exist F1 and F2 which
are induced forests of G[V1 ∪ S] and G[V2 ∪ S] respectively, such that |F1| ≥ |V1| + |S| − 4ω1

3g
and |F2| ≥

|V2| + |S| − 4ω2

3g
. Now G[V (F1) ∩ V (F2)] is an induced forest of G, and |V (F1) ∩ V (F2)| ≥ |F1| + |F2| − |S| ≥

|V1| + |V2| + |S| − 4ω1

3g
− 4ω2

3g
= 4ω(G)

3g
. Thus G satisfies Claim 2.6.1, a contradiction.

Lemma 2.6.5. No nice merge can be done in G.

Proof. It follows from Lemma 2.6.3 and the minimality of (G, ω).

Lemma 2.6.6. Every face in G has at least three 3+-vertices in its boundary.

Proof. Let us assume that there is a face φ in G with at most two 3+-vertices in its boundary. Face φ
is adjacent to at most two other faces in G. Suppose φ is adjacent to exactly one face, say φ′. As G is
2-connected by Lemma 2.6.4, G[φ] and G[φ′] are cycles. As φ is adjacent only to φ′, E(G[φ]) ⊆ E(G[φ′]),
and thus G[φ] = G[φ′]. So two faces of G have exactly the same boundary, and so the graph G has only two
faces. In particular, G is a cycle, thus it satisfies Claim 2.6.1, a contradiction.

Thus φ is adjacent to exactly two other faces, say φ0 and φ1. Then E(G[φ]) ⊆ E(G[φ0]) ∪ E(G[φ1]), and
E(G[φ]) ∩ E(G[φ0]) Ó= ∅ Ó= E(G[φ]) ∩ E(G[φ1]). As G[φ] is a cycle, and in particular is connected, there
is a vertex v in V (G[φ]) incident to an edge in E(G[φ]) ∩ E(G[φ0]) and to an edge in E(G[φ]) ∩ E(G[φ1]).
Merging the faces φ, φ0 and φ1 with crucial vertex v is nice, since we remove all the edges of G[φ] and
ω(φ) ≥ g ≥ 3g

4 . This contradicts Lemma 2.6.5.

Lemma 2.6.7. There is no 4+-vertex in G.

Proof. Suppose v is a d-vertex in G with d ≥ 4. Let u0, ..., ud−1 be the neighbours of v. Let w and w′ be fresh
vertices (i.e. vertices that are not in V (G)). Let G′ = G−v+({w, w′}, ∅)+{wu0, wu1, ww′, w′u2, ..., w′ud−1},
ω(wu0) = ω(vu0), ω(wu1) = ω(vu1), ω(w′u2) = ω(vu2), ..., ω(w′ud−1) = ω(vud−1), and ω(ww′) = 0. See
Figure 2.6.2 for an illustration of this construction. Clearly, ω(G′) = ω(G). As we removed a d-vertex, added
a 3-vertex and a (d−1)-vertex, and did not change the degree of the other vertices,

∑
v∈V (G′)(max{0.5, d(v)−

2.5}) =
∑

v∈V (G)(max{0.5, d(v) − 2.5}) − 0.5.
For any cycle C ′ of G′, there is a cycle in G that has the same weight, so ω(C ′) ≥ g.
By minimality of (G, ω), let F ′ be an induced forest of G′ with |F ′| ≥ |G′| − 4ω(G′)

3 . For any cycle C of G
there is a cycle C ′ of G′ such that C = C ′ or V (C) = (V (C ′)\{w, w′})∪{v}. If w /∈ V (F ′) or w′ /∈ V (F ′), then
let F = G[V (F ′)\{w, w′}∪(V (G)\(V (G′)∪{v})) and otherwise let F = G[V (F ′)\{w, w′}∪(V (G)\V (G′)).
Then |F | ≥ |F ′| − 1 ≥ |G′| − 4ω(G′)

3 − 1 = |G| − 4ω(G)
3 , and F is an induced forest of G, a contradiction.

Lemma 2.6.8. Every cycle has at least three 3-vertices in G.

Proof. Let C be a cycle of G. By Lemma 2.6.7, every vertex in V (C) has degree at most 3. Suppose C is a
separating cycle. By Lemma 2.6.4, graph G is 2-connected, so at least two vertices of V (C) have a neighbour
in the interior of C, and at least two vertices of V (C) have a neighbour in the exterior of C. Therefore C
has at least four 3-vertices. Now if C is not separating, then it is the boundary of a face, and Lemma 2.6.6
concludes the proof.

Lemma 2.6.9. Graph G is cubic (i.e. 3-regular).

Proof. Suppose v is a 2−-vertex in G. Vertex v has degree 2 by Lemma 2.6.4. Let u and w be the two
neighbours of v. By Lemma 2.6.8, uw /∈ E(G).

Let G′ = G−v+uw and ω(uw) = ω(uv)+ω(vw). See Figure 2.6.3 for an illustration of this construction.
Clearly, ω(G′) = ω(G). As we removed a 2-vertex and did not change the degree of the other vertices,∑

v∈V (G′)(max{0.5, d(v) − 2.5}) =
∑

v∈V (G)(max{0.5, d(v) − 2.5}) − 0.5.
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vu0

u1

u2

u3

u4

ud−1

...

u0

u1

w

w′

ud−1

...
u4

u3

u2

Figure 2.6.2: The construction of Lemma 2.6.7.

v

u

ω(vw)

ω(uv)

w

u
ω(uv) + ω(vw)

w

Figure 2.6.3: The construction of Lemma 2.6.9.

Let C ′ be any cycle of G′. If uw /∈ E(C ′), then C ′ is a cycle of G, and so ω(C ′) ≥ g. Otherwise,
C = C ′ − uw + ({v}, ∅) + {uv, vw} is a cycle of G, and ω(C) = ω(C ′), so ω(C ′) ≥ g.

For any cycle C of G there is a cycle C ′ of G′ that contains all the vertices of V (C)\{v}. By minimality of
(G, ω), let F ′ be an induced forest of G′ with |F ′| ≥ |G′|− 4ω(G′)

3 = |G|−1− 4ω(G)
3 . The graph G[V (F ′)∪{v}]

is a forest of order |F ′| + 1 ≥ |G| − 4ω(G)
3 , a contradiction.

By Lemmas 2.6.4 and 2.6.9, the graph G is a 2-connected cubic graph. By Theorem 2.1.15, G admits an
induced forest of order at least 2|V (G)|−2

3 . Let us denote by n the order of G, by m the size of G and by f
the number of faces of G.

By Euler’s formula, we have n − m + f = 2. We have 3n = 2m as G is cubic. Therefore, f = 2 + m − n =

2 + n
2 , i.e. n = 2(f − 2). Therefore G has an induced forest F of order |F | ≥ n−(2f−4)−2

3 ≥ n−2f
3 . As each

face has weight at least g, we have gf ≤ 2ω(G), so |F | ≥ n − 4ω(G)
3g

, a contradiction, completing the proof of
Theorem 2.1.14.

57



2.7 Conclusion

We thus proved lower bounds on the order of the largest induced forest in triangle-free planar graphs and in
planar graphs of large girth, as well as on the order of the largest induced linear forest in triangle-free planar
graphs. Namely, we recall our three main theorems.

Theorem 2.1.10 (recall). Every triangle-free planar graph of order n and size m admits an induced forest
of order at least max{ 38n−7m

44 , n − m
4 }, and thus at least 6n+7

11 ≈ 0.545n.

Theorem 2.1.14 (recall). For all g ≥ 3, every planar graph of girth at least g with n vertices and m edges
admits an induced forest of order at least n − 4m

3g
, and thus at least n − 4n

3g−6 .

Theorem 2.1.21 (recall). Every triangle-free planar graph of order n and size m admits an induced linear
forest of order at least 9n−2m

11 , and thus at least 5n+8
11 ≈ 0.455n.

We note that those bounds have some consequences on other bounds. For example, consider a forest F ,
pick a vertex r in F as the root, and for i ∈ {0, 1, 2}, let Si = {v ∈ V (F ), d(r, v) ≡ i[3]}. The graph induced
by the union of any two of the Si’s is a star forest. Therefore, every forest of order n has an induced star
forest of order 2n

3 . Consequently, our results on induced forests directly extend to star forest. Thus we have
the following two corollaries, which are the best know results to date on induced star forests in these classes
of graphs:

Corollary 2.7.1. Every triangle-free planar graph of order n and size m admits an induced star forest of
order at least max{ 38n−7m

66 , 2n
3 − m

6 }, and thus at least 12n+14
33 .

Corollary 2.7.2. For all g ≥ 3, every planar graph of girth at least g with n vertices and m edges admits
an induced star forest of order at least 2n

3 − 8m
9g

, and thus at least 2n
3 − 8m

9g−18 .

We note that every forest also has an independent set on at least half of its vertices (since they are
bipartite), and has an induced linear forest on at least three fourth of its vertices, and these bounds are
tight. However, those do not improve existing bounds for independent sets, nor does Theorem 2.1.10 imply
Theorem 2.1.21.
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Chapter 3

Partition into independent sets,
forests, and forests of bounded degree
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3.1 Introduction

We recall that we denote by I the class of empty graphs and by F the class of forests. For all d ∈ N, we
denote by ∆d the class of graphs with maximum degree at most d, by Fd the class of forests with maximum
degree at most d, and by Dd the class of d-degenerate graphs.

The study of vertex partitions of planar graphs originated from the Four Colour Theorem, which can be
restated this way:

Theorem 1.0.1 (restated). Every planar graph admits an (I, I, I, I)-partition.

Many of the theorems in the literature can also be restated in terms of vertex partitions. We recall the
theorem of Poh that we previously stated for one of its corollaries.

Theorem 2.1.17 (recall). Every planar graph admits an (F2, F2, F2)-partition.

Moreover a consequence of Theorem 2.1.2 of Borodin [9] (every planar graph admits an acyclic colouring
with at most five colours) is that every planar graph admits an (I, F , F)-partition.

Thomassen launched a study on the (Di, Dj)-partitions of planar graphs. He proved that every planar
graph admits an (F , D2)-partition [51], and an (I, D3)-partition [52] (recall that F = D1 and I = D0).
However, there are planar graphs that do not admit any (F , F)-partition [17]. Wegner [53] even showed
that there are planar graphs that do not admit any (I, I, F)-partition. Borodin and Glebov [11] proved the
following.

Theorem 3.1.1 (Borodin and Glebov [11]). Every planar graph of girth at least 5 admits an (I, F)-partition.
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Raspaud and Wang [48] proved that every planar graph with no triangles at distance at most 2 (and thus
in particular every triangle-free planar graph) admits an (F , F)-partition.

The result that every triangle-free planar graph admits an (F , F)-partition is folklore, and can be proven
very easily. Indeed, if we consider a minimum counter-example (in terms of the number of vertices) to this
result, then this counter-example does not have any 3−-vertex (just put it in a forest that contains at most
one neighbour of the 3-vertex). A direct application of Euler’s formula leads to a contradiction (triangle-free
planar graphs must contain at least one 3−-vertex).

However, it is not known whether every triangle-free planar graph admits an (I, F)-partition. We pose
the following questions:

Question 3.1.2. Does every triangle-free planar graph admit an (I, F)-partition?

Question 3.1.3. More generally, what is the lowest d such that every triangle-free planar graph admits an
(F , Fd)-partition?

Note that proving d = 0 in Question 3.1.3 would prove Question 3.1.2. We prove the following:

Theorem 3.1.4. Every triangle-free planar graph admits an (F , F5)-partition.

Theorem 3.1.4 will be proven in Section 3.2. It implies that d ≤ 5 in Question 3.1.3. Our proof uses the
discharging method. It is constructive and immediately yields an algorithm for finding an (F , F5)-partition
of a triangle-free planar graph in quadratic time.

Montassier and Ochem [44] give an example showing that not every triangle-free planar graph can be
partitioned into two graphs of bounded degree (which shows that Theorem 3.1.4 is tight in some sense).

In Section 3.3, we show that if for some d, there exists a triangle-free planar graph that does not admit
an (F , Fd)-partition, then deciding whether a triangle-free planar graph admits such a partition is an NP-
complete problem. That is, if the answer to Question 3.1.3 is some k > 0, then for all 0 ≤ d < k, deciding
whether a triangle-free planar graph admits an (F , Fd)-partition is NP-complete. We prove this by reduction
to Planar 3-Sat.

Borodin and Kostochka [15] showed the following:

Theorem 3.1.5 (Borodin and Kostochka [15]). For all j ≥ 0 and k ≥ 2j +2, every graph G with mad(G) <

2
(

2 − k+2
(j+2)(k+1)

)
admits a (∆j , ∆k)-partition.

In particular, Theorem 3.1.5 implies that every graph G with mad(G) < 8
3 admits an (I, ∆2)-partition,

and every graph G with mad(G) < 14
5 admits an (I, ∆4)-partition. With Euler’s formula, this yields the

following corollary.

Corollary 3.1.6. Every planar graph with girth at least 7 admits an (I, ∆4)-partition, and every planar
graph with girth at least 8 admits an (I, ∆2)-partition.

Borodin and Kostochka [14] proved the following theorem.

Theorem 3.1.7 (Borodin and Kostochka [14]). Every graph G with mad(G) < 12
5 admits an (I, ∆1)-

partition.

Theorem 3.1.7 implies that every planar graph with girth at least 12 admits an (I, ∆1)-partition. This
last result was improved by Kim, Kostochka, and Zhu [42]:

Theorem 3.1.8 (Kim, Kostochka, and Zhu [42]). Every triangle-free graph with maximum average degree
less than 11

9 admits an (I, ∆1)-partition.

Corollary 3.1.9. Every planar graph with girth at least 11 admits an (I, ∆1)-partition.
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In contrast to this, Borodin, Ivanova, Montassier, Ochem, and Raspaud [13] proved that for every d,
there exists a planar graph of girth 6 that admits no (I, ∆d)-partition. Montassier and Ochem [44] showed
that this implies that deciding if a planar graph of girth 6 admits an (I, ∆d)-partition is an NP-complete
problem for all d ≥ 1, and they proved that deciding if a planar graph of girth 7 has an (I, ∆2)-partition is
NP-complete. Esperet, Montassier, Ochem, and Pinlou [30] showed that deciding if a planar graph of girth
9 has an (I, ∆1)-partition is NP-complete.

Note that although Theorems 3.1.5, 3.1.7, and 3.1.8 are tight, their corollaries in terms of planar graphs
are not necessarily so. In particular, the following questions remain open:

Question 3.1.10. Does every planar graph of girth 7 admit an (I, ∆3)-partition ?

Question 3.1.11. Does every planar graph of girth 10 admit an (I, ∆1)-partition ?

A natural way to extend the previous results is to consider partitions of sparse graphs into an independent
set and a set inducing a forest of bounded degree, that is (I, Fd)-partitions. Note that if a graph admits
an (I, Fd)-partition, then it admits an (I, ∆d)-partition, and that an (I, F1)-partition is the same as an
(I, ∆1)-partition. Therefore the previous results imply that:

• for every d, there exists a planar graph of girth 6 that admits no (I, Fd)-partition;

• there exists a planar graph of girth at least 7 that admits no (I, F2)-partition;

• there exists a planar graph of girth at least 9 that admits no (I, F1)-partition;

• every planar graph with girth at least 11 admits an (I, F1)-partition.

We will prove the following theorems in Sections 3.4 and 3.5 respectively.

Theorem 3.1.12. Let M be a real number such that M < 3. Let d ≥ 0 be an integer and let G be a
graph with mad(G) < M . If d ≥ 2

3−M
− 2, then G admits an (I, Fd)-partition.

Theorem 3.1.13. Let M be a real number such that 8
3 ≤ M < 3. Let d ≥ 0 be an integer and let G be

a graph with mad(G) < M . If d ≥ 1
3−M

, then G admits an (I, Fd)-partition.

By a direct application of Euler’s formula, every planar graph with girth at least g has maximum average
degree less than 2g

g−2 . That yields the following corollary:

Corollary 3.1.14. Let G be a planar graph with girth at least g.

1. If g ≥ 7, then G admits an (I, F5)-partition.

2. If g ≥ 8, then G admits an (I, F3)-partition.

3. If g ≥ 10, then G admits an (I, F2)-partition.

Corollaries 3.1.14.2 and 3.1.14.3 are obtained from Theorem 3.1.13, whereas Corollary 3.1.14.1 is obtained
from Theorem 3.1.12. See Table 3.1 for an overview of the results on vertex partitions of planar graphs
presented above.

Recently, Chen, Yu, and Wang [18], improved Theorems 3.1.12 and 3.1.13, as well as the case j = 0 of
Theorem 3.1.5 by proving the following:

Theorem 3.1.15 (Chen, Yu, and Wang [18]). For all integer d ≥ 2, every graph with maximum average
degree less than 2 + d

d+1 has an (I, Fd)-partition.
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Classes Vertex-partitions References

Planar graphs

(I, I, I, I) The Four Color Theorem [5, 6]
(I, F , F) Borodin [9]
(F2, F2, F2) Poh [47]
(F , D2) Thomassen [51]
(I, D3) Thomassen [52]

Planar graphs with girth 4
(I, I, I) Grötzsch [36]
(F , F) Folklore
(F5, F) Theorem 3.1.4

Planar graphs with girth 5 (I, F) Borodin and Glebov [11]
Planar graphs with girth 6 no (I, ∆d) Borodin et al. [13]

Planar graphs with girth 7
no (I, ∆2) Montassier and Ochem [44]
(I, ∆4) Borodin and Kostochka [15]
(I, F5) Corollary 3.1.14

Planar graphs with girth 8
(I, ∆2) Borodin and Kostochka [15]
(I, F3) Corollary 3.1.14

Planar graphs with girth 9 no (I, ∆1) Esperet et al.[30]
Planar graphs with girth 10 (I, F2) Corollary 3.1.14
Planar graphs with girth 11 (I, ∆1) Kim, Kostochka and Zhu [42]

Table 3.1: Known results on planar graphs.

With Euler’s formula, that implies the following:

Corollary 3.1.16. Every planar graph with girth at least 8 (resp. 7) has an (I, F4)-partition (resp. an
(I, F2)-partition).

in terms of tightness, it is not known whether every planar graph of girth 7, 8 or 10 admits an (I, Fd)-
partition for d = 3, d = 2, and d = 1 respectively. However, we note that Borodin, Ivanova, Montassier,
Ochem, and Raspaud [13] constructed, for all d, a planar graph of girth 6 with 16d + 14 vertices that has no
(I, ∆d)-partition (and thus in particular no (I, Fd)-partition). Let us denote this graph by Gd. By Euler’s
formula, for every planar graph with girth at least g, n vertices, m edges, and at least one cycle, we have

m
n−2 ≤ g

g−2 . Moreover, if a graph with n vertices, m edges has no cycle, then m
n−2 ≤ 1 ≤ g

g−2 for all g ≥ 3.
Therefore for every planar graph of girth at least 6 with n vertices and m edges, we have 2m

n
≤ 3 · n−2

n
. In

particular, this is true for every subgraph of Gd. Thus, as n−2
n

increases when n ≥ 2 increases, if we denote
the number of vertices of Gd by n, then mad(Gd) ≤ 3 · n−2

n
= 3 − 6

n
= 3 − 3

8d+7 < 3 − 3
8d

. That shows the
following claim.

Claim 3.1.17. For all integer d, there exists a graph with maximum average degree less than M , with
d = 3

8(3−M) , that admits no (I, ∆d)-partition (and thus no (I, Fd)-partition).

That shows that Theorem 3.1.13 is tight up to a multiplicative factor of 3
8 .

3.2 (F , F5)-partition of triangle-free planar graphs

This proof will make full use of the discharging method, and can be a good example of this kind of proof.
Contrary to the proofs in the previous chapter, we will actually use a non-trivial discharging procedure in
addition to the reducible configurations.

Let us first recall the statement of Theorem 3.1.4.

Theorem 3.1.4 (recall). Every triangle-free planar graph admits an (F , F5)-partition.
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v0

v1

b0

b1

s0

s1

Figure 3.2.1: The forbidden configuration of Lemma 3.2.5. The big vertices are represented with big circles,
and the small vertices with small circles. The filled circles represent vertices whose incident edges are all
represented.

We prove Theorem 3.1.4 by contradiction. Let G = (V, E) be a counter-example to Theorem 3.1.4 with
minimum order.

Graph G is connected, otherwise at least one of its components is a counter-example to Theorem 3.1.4,
contradicting the minimality of G.

Let us consider any planar embedding of G. Let us prove a series of lemmas on the structure of G, that
correspond to forbidden configurations in G.

Lemma 3.2.1. There is no 2−-vertex in G.

Proof. Suppose there is a 2−-vertex v in G. By minimality of G, G − v admits an (F , F5)-partition (F, D).
If v is a 1−-vertex, then G[F ∪ {v}] ∈ F . Suppose v is a 2-vertex. If both of its neighbours are in F , then
G[D ∪ {v}] ∈ F5. Otherwise, G[F ∪ {v}] ∈ F . In all cases, one can obtain an (F , F5)-partition of G, a
contradiction.

In this section, a big vertex is an 8+-vertex, and a small vertex is a 7−-vertex. By extension, a big
neighbour of a vertex v is a big vertex that is adjacent to v, and a small neighbour of a vertex v is a small
vertex that is adjacent to v.

Lemma 3.2.2. Every 3-vertex in G has at least one big neighbour.

Proof. Suppose there is a 3-vertex v in G that has three small neighbours. By minimality of G, G − v
admits an (F , F5)-partition (F, D). If v has at least two D-neighbours, then G[F ∪ {v}] ∈ F . If v has
no D-neighbour, then G[D ∪ {v}] ∈ F5. Suppose v has exactly one D-neighbour u. If u has at most one
F -neighbour, then G[F ∪ {u}] ∈ F , and G[D\{u} ∪ {v}] ∈ F5. Otherwise, since u is small, at most four of
the neighbours of u are in D, thus G[D ∪ {v}] ∈ F5. In all cases, one can obtain an (F , F5)-partition of G,
a contradiction.

Lemma 3.2.3. Every 4-vertex or 5-vertex in G has at least one 4+-neighbour.

Proof. Suppose there is a 4-vertex or 5-vertex v in G that has no 4+-neighbour. Let the ui’s be the neighbours
of v, for i ∈ {0, ..., 3} or i ∈ {0, ..., 4}. Let G′ = G − v −

⋃
i{ui}. By minimality of G, G′ admits an (F , F5)-

partition (F, D). Add v to D, and for all i, add ui to D if its two neighbours distinct from v are in F , and
add ui to F otherwise. Vertex v has at most five D-neighbours, and each of the ui’s that is in D has one
D-neighbour. Each of the ui that is in F has at most one F -neighbour. We have an (F , F5)-partition of G,
a contradiction.

We will need the following observation in the next two lemmas.
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Observation 3.2.4. Let v0v1v2v3 be the boundary of a face of G, u0 be a neighbour of v0 distinct from v1

and v3, and u1 be a neighbour of v1 distinct from v0 and v2. Either u0 and v2 are at distance at least 3, or
u1 and v3 are at distance at least 3.

By contradiction, suppose that u0 and v2 are at distance at most two, and that u1 and v3 are at distance
at most two. Since G is triangle-free, a shortest path from u0 to v2 (resp. from u1 to v3) does not contain
any of the ui and vi except for its extremities. Then by planarity there exists a vertex w adjacent to u0, v2,
u1, and v3. In particular v2v3w is a triangle, a contradiction.

Lemma 3.2.5. The following configuration does not occur in G: two adjacent 3-vertices v0 and v1 such that
for all i ∈ {0, 1}, vi has a big neighbour bi and a small neighbour si distinct from the vi’s, and such that
v0v1s1b0 bounds a face of G.

Proof. Suppose such a configuration exists in G. See Figure 3.2.1 for an illustration of this configuration.
Observe that all the vertices defined in the statement are distinct (since G is triangle-free). By Observa-
tion 3.2.4, either b0 and b1 are at distance at least 3, or s0 and s1 are at distance at least 3. For the remainder
of the proof, we no longer need the fact that b0s1 ∈ E(G) or that v0v1s1b0 bounds a face. We forget this
assumption, and only remember that either b0 and b1 are at distance at least 3, or s0 and s1 are at distance
at least 3. This provides some symmetry in the graph.

Let G0 = G − {v0, v1} + b0b1 and G1 = G − {v0, v1} + s0s1. By what precedes, either G0 or G1 is
triangle-free, thus there exists a j such that Gj is a triangle-free planar graph. By minimality of G, Gj

admits an (F , F5)-partition (F, D).
Let us first prove that if we do not have b0 and b1 in D, and s0 and s1 in F , then the conditions G[F ] ∈ F

and G[D] ∈ F5 lead to a contradiction. We will see that we can always extend the (F , F5)-partition of Gj

to G.

• If at least three of the bi and si are in D, then G[F ∪ {v0, v1}] ∈ F .

• If all of the bi’s and si’s are in F , then G[D ∪ {v0, v1}] ∈ F5.

• Suppose now that exactly three of the bi’s and si’s are in F . W.l.o.g., b0 ∈ D or s0 ∈ D. We have
G[F ∪ {v0}] ∈ F and G[D ∪ {v1}] ∈ F5.

• Suppose now that exactly two of the bi’s and si’s are in F . If b0 and s0 are in F (resp. b1 and s1 are
in F ), then G[D ∪ {v0}] ∈ F5 and G[F ∪ {v1}] ∈ F (resp. G[F ∪ {v0}] ∈ F and G[D ∪ {v1}] ∈ F5).

Now since we assumed that b0 and b1 are not both in D, one of them, say b0, is in F , and by what
precedes, s0 ∈ D. If s0 has at most one G-neighbour in F , then G[F ∪ {s0}] ∈ F , we can replace F
by F ∪ {s0} and D by D\{s0}, and we fall into a previous case. We can thus assume that s0 has at
least two of its G-neighbours in F , and thus it has at most four of its G-neighbours in D. Therefore
G[D ∪ {v0}] ∈ F5, and G[F ∪ {v1}] ∈ F .

In all cases, G has an (F , F5)-partition, a contradiction.

Remains the case where b0 and b1 are in D, and s0 and s1 are in F . In the case where we added the
edge b0b1 (i.e. the case j = 0), we have G[D ∪ {v0, v1}] ∈ F5, since G[D ∪ {v0, v1}] is equal to G0[D] where
an edge is subdivided twice. Similarily, in the case where we added the edge s0s1 (i.e. the case j = 1), we
have G[F ∪ {v0, v1}] ∈ F , since G[F ∪ {v0, v1}] is equal to G0[F ] where an edge is subdivided twice. Again,
G has an (F , F5)-partition, a contradiction.

Lemma 3.2.6. The following configuration does not occur in G: a 3-vertex v0 adjacent to a 4-vertex v1 such
that v0 has a big neighbour b and a small neighbour s0 distinct from v1, and v1 has three small neighbours
s1, w0, and w1 distinct from v0 such that v0v1s1b bounds a face of G and s1 has degree 3.
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v0

v1

s1

b

s0

w0 w1

Figure 3.2.2: The forbidden configuration of Lemma 3.2.6.

Proof. Suppose such a configuration exists in G. See Figure 3.2.2 for an illustration of this configuration. Ob-
serve that all the vertices defined in the statement are distinct (since G is triangle-free). By Observation 3.2.4,
either b and w0 are at distance at least 3, or s0 and s1 are at distance at least 3. Let G0 = G−{v0, v1}+ bw0

and G1 = G − {v0, v1} + s0s1. By what precedes, either G0 or G1 is triangle-free, thus there exists a j such
that Gj is a triangle-free planar graph. By minimality of G, Gj has an (F , F5)-partition (F, D).

Let us first prove that except in the case where {b, w0, w1} ⊂ D and {s0, s1} ⊂ F , the conditions G[F ] ∈ F
and G[D] ∈ F5 lead to a contradiction. We will see that we can always extend the (F , F5)-partition of Gj

to G.
If at least four among the wi’s, the si’s, and b are in D, then G[F ∪ {v0, v1}] ∈ F .
Suppose now that at most three among the wi’s, the si’s, and b are in D. Suppose x ∈ {b, s0, s1, w0, w1}

is in D. If x has at most one G-neighbour in F , then G[F ∪ {x}] ∈ F , and we could consider F ∪ {x} instead
of F and D\{x} instead of D. Note that this cannot lead to the case we excluded ({b, w0, w1} ⊂ D and
{s0, s1} ⊂ F ) unless at least four among the wi’s, the si’s, and b are in D. Thus we can assume that for
any x among the wi’s and si’s such that x ∈ D, x has at most four G-neighbours in D, and thus adding one
neighbour of x in D cannot cause x to have at least six D-neighbours. We consider two cases according to b:

• Suppose b ∈ F . If at least three of the wi’s and si’s are in F , then G[D ∪ {v0, v1}] ∈ F5.

If at least two among the wi’s and s1 are in D, then G[F ∪ {v1}] ∈ F and G[D ∪ {v0}] ∈ F5. Else, at
least two among the wi’s and s1 are in F . If s0 ∈ F , then G[D ∪ {v0, v1}] ∈ F5, and if s0 ∈ D, then
G[D ∪ {v1}] ∈ F5 and G[F ∪ {v0}] ∈ F .

• Suppose now that b ∈ D. As s1 has degree 3, it has at most one G-neighbour in F , and thus as
previously, if s1 ∈ D then we can consider F ∪ {s1} instead of F and D\{s1} instead of D. Again, this
cannot lead to the case we excluded ({b, w0, w1} ⊂ D and {s0, s1} ⊂ F ) unless at least four among
the wi’s, the si’s, and b are in D. Therefore we can assume that s1 ∈ F . The wi’s are not both in D
(otherwise we fall into the case we excluded). We have G[D ∪ {v1}] ∈ F5 and G[F ∪ {v0}] ∈ F .

In all cases, G has an (F , F5)-partition, a contradiction.
Remains the case {b, w0, w1} ⊂ D and {s0, s1} ⊂ F . In the case where we added the edge bw0 (i.e.

the case j = 0), b has at most five G0-neighbours in D, and thus at most four G-neighbours in D, so
G[D ∪ {v0}] ∈ F5, and G[F ∪ {v1}] ∈ F . In the case where we added the edge s0s1 (i.e. the case j = 1), we
have G[F ∪ {v0, v1}] ∈ F , since G[F ∪ {v0, v1}] is equal to G0[F ] where an edge is subdivided twice. Again,
G has an (F , F5)-partition, a contradiction.

We define a specific configuration:

Configuration 3.2.7. Two 4-faces bounded by b0v0v1w0 and v0v1v2v3, such that b0 is a big vertex, v0 and
w0 are 3-vertices, v1 is a 4-vertex, v2 and v3 are small vertices, and the neighbour of v1 distinct from v0,
w0, and v2, say b1, is a big vertex. See Figure 3.2.3 for an illustration of this configuration.
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b0

w0

v0

v1

v2

v3

b1

Figure 3.2.3: Configuration 3.2.7.

b0

w0

v0

v1

v2

v3

b1

w1

Figure 3.2.4: The forbidden configuration of Lemma 3.2.8.
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Lemma 3.2.8. The following configuration is forbidden: Configuration 3.2.7 with the added condition that
there is a 4-face b1v1v2w1 with w1 a 3-vertex, v2 a 4-vertex, and the fourth neighbour of v2, the third neighbour
of w1, and the third neighbour of w0 are small vertices.

Proof. Suppose such a configuration exists in G. See Figure 3.2.4 for an illustration of this configuration.
Observe that all the vertices named in the statement are distinct since G is triangle-free and w1 is a small
vertex whereas b0 is a big one.

Let us prove that either b0 and b1 are at distance at least 3, or w0 and w1, and w0 and v3 are at distance
at least 3. By contradiction, suppose that b0 and b1 are at distance at most two, and that either w0 and
w1 are at distance at most two, or w0 and v3 are at distance at most 2. Since G is triangle-free, a shortest
path from b0 to b1, from w0 to w1 or from w0 to v3 does not go through any of the vertices named in the
statement. Then by planarity there exists a vertex w adjacent to b0, b1, w0 and either w1 or v3. In particular
b0w0w is a triangle, a contradiction.

Let G0 = G − {v0, v1} + b0b1 and G1 = G − {v0, v1} + w0w1 + w0v3. By what precedes, either G0 or G1

is triangle-free, thus there exists a j such that Gj is a triangle-free planar graph. By minimality of G, Gj

has an (F , F5)-partition (F, D).
Let s0 be the third neighbour of w0, s1 be the third neighbour of w1 and s2 be the fourth neighbour of

v2. They are all small vertices, but there may be some that are equal between themselves, or equal to some
vertices named in the statement of the lemma. However, if one of the si is in {v0, v1, v2, w0, w1}, then this
si is a 4−-vertex in G (and in particular it has at most 4 D-neighbours in G).

Suppose first that b0 and b1 are both in D.

1. Suppose w0 is in D. Here we only consider (F, D) as an (F , F5)-partition of G − {v0, v1}.

If v3 is also in D, then adding v0 and v1 to F leads to an (F , F5)-partition of G. Suppose v3 is in F .
We show now that we can assume that v2 is in D. By contradiction, suppose v2 is in F . We remove
v2 from F .

Observe that we can assume that v2 has no G-neighbour in D with five G-neighbours in D. Indeed,
suppose v2 has a G-neighbour in D with five G-neighbours in D. This G-neighbour is a 5+-vertex,
so it is s2. Moreover, s2 is not equal to v3 (because v3 is in F ), and is not equal to any of the other
vertices named in the statement (because of the degree conditions). As s2 is a small D-vertex, has at
least five G-neighbours in D and is adjacent to v2 that is neither in F nor in D, s2 has at most one
F -neighbour. Therefore we can put s2 in F .

Observe that we can assume that v2 has at most one G-neighbour in D. Suppose v2 has two G-
neighbours in D. These G-neighbours must be s2 and w1. Vertex w1 has at most one F -neighbour,
that is s1, so we can put w1 in F .

Now v2 has at most one G-neighbour in D, and no G-neighbour of v2 in D has five G-neighbours in D,
so we can put v2 in D. Therefore we can always assume that v2 is in D. Note that we do not need to
change where s2 is in the partition if it is equal to one of the vertices named in the statement. Adding
v0 and v1 to F leads to an (F , F5)-partition of G.

2. Suppose w0 is in F , v3 is in D, and w1 is in D. If s2 is in D, then putting v0, v1 and v2 in F leads
to an (F , F5)-partition of G. Suppose s2 is in F . We put v0, v1 and w1 in F , and v2 in D. If this
increases the number of G-neighbours of v3 in D above five, then since v3 is small, v3 has at most one
F -neighbour, which is v0, and we put v3 in F . This leads to an (F , F5)-partition of G.

3. Suppose w0 is in F , v3 is in D and w1 is in F . Suppose s2 is in F . We put v0 and v1 in F , and v2 in D.
If this increases the number of G-neighbours of v3 in D above five, then since v3 is small, v3 has at most
one F -neighbour, which is v0, and we put v3 in F . This leads to an (F , F5)-partition of G. Suppose
s2 is in D. If v2 is not in F , we may put it in F , since it has only one Gj-neighbour in F , that is w1.
Therefore we can assume that v2 is in F . If j = 0, then b1 has at most four G-neighbours in D (since
it has at most 5 such G0-neighbours), so adding v0 to F and v1 to D leads to an (F , F5)-partition of
G. If j = 1, then adding v0 and v1 to F leads to an (F , F5)-partition of G.
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4. Suppose w0 is in F and v3 is in F . Suppose j = 0. The vertex b0 has at most 4 G-neighbours in D
(since it has at most 5 such G0-neighbours), so we can add v0 to D. If v2 is in D, then adding v1 to
F leads to an (F , F5)-partition of G. If v2 is in F , then adding v1 to D makes G[D] equal to G0[D]
with an edge subdivided twice, and this leads to an (F , F5)-partition of G. Suppose j = 1. Here we
only consider (F, D) as an (F , F5)-partition of G − {v0, v1} + w0v3. As in 1, we can suppose, up to
changing where s2 and w1 are in the partition, that v2 is in D. Note that if s2 is equal to one of the
vertices named in the statement, we do not need to move s2 in the partition. Adding v0 and v1 to F
leads to an (F , F5)-partition of G.

Now we may assume that at least one of b0 and b1 is in F . From now on we only consider (F, D) as an
(F , F5)-partition of G − {v0, v1}.

• Suppose b0 is in F and b1 is in D. In that case we put v0 and w0 in D, and v1 in F . Adding v0 in
D (resp. w0 in D) may violate the degree condition of G[D] ; however, if it happens, one can put v3

(resp. s0) in F . In any case, we obtain an (F , F5)-partition of G.

• Suppose b0 is in D and b1 is in F . If at least one of w0 and v2 is in F , then adding v0 in F and v1 in
D leads to an (F , F5)-partition of G. Assume w0 and v2 are both in D. If v3 is in D, then adding v0

and v1 in F leads to an (F , F5)-partition of G. Assume v3 is in F . We consider three cases:

– Suppose s2 and w1 are in F . Adding v0 in F and v1 in D leads to an (F , F5)-partition of G.

– Suppose s2 is in F and w1 is in D. If s1 is in D, then we can put w1 in F and we fall into the
previous case. If s1 is in F , then adding v0 in F and v1 in D leads to an (F , F5)-partition of G.

– Suppose s2 is in D. If s1 is in D and has five G-neighbours in D distinct from w1, then as s1 is
small, it is distinct from all the vertices named in the statement, and we can put it in F . Therefore
we can put w1 in D and v2 in F . We fall into a previous case (at least one of w0 and v2 is in F ).

• Suppose b0 and b1 are in F . If s0 is in D and has five G-neighbours in D distinct from w0, then as s0

is small, it is distinct from all the vertices named in the statement aside from v3, and we can put it in
F . Therefore we can put w0 in D. We consider the following cases:

– If v2 and v3 are in F , then adding v0 and v1 to D leads to an (F , F5)-partition of G.

– If v2 is in F and v3 is in D, then adding v0 to F and v1 to D leads to an (F , F5)-partition of G.

– If v2 is in D and v3 is in F , then adding v0 to D and v1 to F leads to an (F , F5)-partition of G.

– If v2 and v3 are in D, then adding v0 to D and v1 to F leads to an (F , F5)-partition of G. Adding
v0 to D may violate the degree condition of G[D], but in that case we can put v3 in F .

We have proven all of the forbidden configurations we need, and we are now ready for the discharging
procedure. Initially, for all j, every j-vertex v has a charge equal to c0(v) = j − 4, and every j-face φ has a
charge equal to c0(φ) = j − 4. Let n denote the number of vertices of G, m be the number of edges of G,
and f the number of faces of G. By Euler’s formula, we have:

−8 = 4m − 4n − 4f

=
∑

v∈V (G)

d(v) +
∑

φ∈F (G)

d(φ) − 4n − 4f

=
∑

v∈V (G)

(d(v) − 4) +
∑

φ∈F (G)

(d(φ) − 4)

=
∑

v∈V (G)

c0(v)) +
∑

φ∈F (G)

e(c0(φ))
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Therefore the total charge is negative (equal to −8). Observe that, since G is triangle-free, every face has
a non-negative initial charge, and by Lemma 3.2.1, the vertices that have negative initial charges are exactly
the 3-vertices of G, and they have an initial charge of −1. The following discharging procedure distributes
the weight of the vertices in five steps, and is a bit more complex than classic discharging procedures.

Discharging procedure

• Step 1 : Every big vertex gives 1
2 to each of its small neighbours. Furthermore, for every 4-face bounded

by a cycle uvwx where u and v are big, and w and x are small, v gives 1
4 to x (and u gives 1

4 to w).

• Step 2 : Consider a 4-vertex v such that there is no instance of Configuration 3.2.7 where v = v1.
Vertex v gives 1

4 to each of its small neighbours that are consecutive (as neighbours of v) to exactly
one big vertex, and 1

2 to each of its small neighbours that are consecutive (as neighbours of v) to two
big vertices.

Consider a 4-vertex v corresponding to v1 in an instance of Configuration 3.2.7. We use the notation
of Configuration 3.2.7. If w0 has two big neighbours, then v1 gives 1

4 to v0 and 1
4 to v2. Otherwise, it

gives 1
4 to w0 and 1

4 to v0.

Every small 5+-vertex that has a big neighbour gives 1
4 to each of its small neighbours, and an additional

1
4 to each of its small neighbours that is consecutive (as neighbours of v) to at least one big vertex.
Every small 5+-vertex that has no big neighbour gives 1

4 to each of its 3-neighbours.

• Step 3 : For every 4-face bounded by a cycle uvwx, with u a big vertex, v a 3-vertex, w a 4-vertex, and
x a small vertex such that x gave charge to w in Step 2, w gives 1

4 to v.

• Step 4 : Every 5+-face that has a big vertex in its boundary gives 1
4 to each of the small vertices in its

boundary. Every 5+-face that has no big vertex in its boundary gives 1
5 to each of the vertices in its

boundary.

• Step 5 : For every 4-face bounded by a cycle uvwx, with u a big vertex, v a 3-vertex, w a 4-vertex and
x a 3-vertex such that the other face that has vw in its boundary is a 5+-face, w gives 1

5 to v.

For every vertex or face x of G, for every i ∈ {1, 2, 3, 4, 5}, let ci(x) be the charge of x at the end of Step
i. Observe that during the procedure, no charge is created and no charge disappears; hence the total charge
is kept fixed.

We now prove that every vertex and every face has a non-negative charge at the end of the procedure.
That leads to the following contradiction:

0 ≤
∑

x∈V (G)∪F (G)

c5(x) =
∑

x∈V (G)∪F (G)

c0(x) = −8

Lemma 3.2.9. Every face has non-negative charge at the end of the procedure.

Proof. At the beginning of the procedure, for every j-face φ we have c0(φ) = j − 4 ≥ 0 (as j ≥ 4). The
procedure does not involve 4-faces. Hence if j = 4, then c5(φ) = c0(φ) = 0. If j = 5, then φ gives at most
four times 1

4 if it is incident to a big vertex and at most five times 1
5 otherwise in Step 4. It follows that

c5(φ) ≥ 0. If j ≥ 6, then φ can give 1
3 to each of its incident vertices (and so 1

4 or 1
5 ) during Step 4, and

c5(φ) ≥ j − 4 − j
3 ≥ 0.

Lemma 3.2.10. A 4+-vertex never has negative charge.

Proof. Consider a j-vertex z with j ≥ 4. At the beginning, c0(z) = j − 4 ≥ 0. We will show that ci(z) ≥ 0
for i = 1, ..., 5.

• Suppose z is a big vertex. Such a vertex only loses charge in Step 1. Since j ≥ 8, we have c0(z) ≥ j
2 . In

Step 1, vertex z loses 1
2 for each of its small neighbours, and at most 1

2 for each of its big neighbours.
Therefore it has more charge than what it gives, and thus it keeps a non-negative charge.
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• Suppose z is a small 5+-vertex. It does not lose charge in Steps 1, 3, 4 and 5.

Suppose z has a big neighbour. It has at most j −1 small neighbours, and it has charge at least 1
4 (j −1)

at the beginning of the procedure, since j ≥ 5. Moreover, it receives 1
2 from each of its big neighbours

in Step 1. Therefore it does not give more charge that it has in Step 2.

Suppose now that z has no big neighbour. If z is a 5-vertex, then by Lemma 3.2.3, it has at most four
3-neighbours, and c2(z) ≥ 1 − 4 · 1

4 ≥ 0. If z is a 6+-vertex, then c2(z) ≥ j − 4 − j · 1
4 ≥ 0.

• Suppose z is a 4-vertex. It does not lose charge in Steps 1 and 4. Suppose z gives charge in Step 2.
Consider first that z does not correspond to v1 in an instance of Configuration 3.2.7. If z is adjacent
to a small vertex that is consecutive (as a neighbour of z) to two big neighbours, then z gives at most
twice 1

2 in Step 2 and received twice 1
2 in Step 1; hence c2(z) ≥ 0. Otherwise, z gives at most twice 1

4
in Step 2, and received at least once 1

2 in Step 1; hence c2(z) ≥ 0. Let us now consider the case where
z corresponds to v1 in an instance of Configuration 3.2.7. The vertex z has a big neighbour that gave
1
2 to z in Step 1, and z gives 1

4 to two of its neighbours in Step 2. Therefore z received in Step 1 at
least as much charge as what it gives in Step 2.

u

v z

x u

v

u′

v′z

x

Figure 3.2.5: Some configurations that appear in Lemma 3.2.10.

Suppose z gives charge in Step 3. There is a 4-face bounded by a cycle uvzx with u a big vertex, v
a 3-vertex, and x a small vertex such that x gave charge to z in Step 2. Suppose z is consecutive to
exactly one big vertex (as neighbours of x). The vertex x gave at least 1

4 to z in Step 2, and there
is exactly one such face with the same z and x (i.e. there is no pair (u′, v′) distinct from (u, v) that
verifies the properties we stated for (u, v))(see Figure 3.2.5, left). Therefore z can give 1

4 to v in Step
3. Suppose z is consecutive to exactly two big vertices (as neighbours of x). The vertex x gave 1

2 to z
in Step 2, and there are at most two such faces with the same z and x (i.e. there is at most one pair
(u′, v′) distinct from (u, v) that verifies the properties we stated for (u, v)) (see Figure 3.2.5, right).
Therefore z can give 1

4 to each of the corresponding v’s in Step 3. Therefore z received in Step 2 at
least as much charge as what it gives in Step 3.

Suppose z gives charge in Step 5. There is a 4-face bounded by a cycle uvzx, with u a big vertex, v
a 3-vertex, and x a 3-vertex such that the other face, say φ, that has vz in its boundary is a 5+-face.
Vertex z received at least 1

5 from φ in Step 4, and it gives 1
5 to v. We would lack charge only if there

was another 4-face bounded by a cycle u′v′zx′, such that vz and zv′ are on the boundary of φ, u′ is
a big vertex, and x′ and v′ are 3-vertices. But then z would have four 3-neighbours, contradicting
Lemma 3.2.3. Therefore z received in Step 4 at least as much charge as what it gives in Step 5.

In all cases, z never has negative charge.

Lemma 3.2.11. At the end of the procedure, every 3-vertex has non-negative charge.

Proof. Let z be a 3-vertex. It never loses charge in the procedure, so we only need to prove that it received
at least 1 over the whole procedure. Assume by contradiction that it received less than that.

By Lemma 3.2.2, vertex z has at least one big neighbour b. Let x0 and x1 be its two other neighbours.
Vertex b gives 1

2 to z in Step 1, so z only needs to receive 1
2 from x0, x1, and its surrounding faces. In
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particular, if one of the xi’s is a big vertex, then it gives 1
2 to z in Step 1, and z receives all the charge it

needs, a contradiction. Therefore x0 and x1 are small vertices.
Let φ be the face that contains x0z and zx1 in its boundary, φ0 be the face that contains x0z and zb in

its boundary and φ1 the face that contains x1z and zb in its boundary. Let y0 and y1 be such that bzx0y0

and bzx1y1 are 4-paths that are in the boundaries of φ0 and φ1 respectively. Let us count the charge that
x0, y0, and φ0 give to z plus half the charge that φ gives to z. If we show that this sum is at least 1

4 , then
by symmetry we will know that z received at least 1

2 from x0, x1, y0, y1, and the faces φ, φ0, and φ1, and
that leads to a contradiction.

Observe that φ0 is a 4-face. If it was a 5+-face, then since it has the big vertex b in its boundary, it would
gives 1

4 to z in Step 4, a contradiction.
Observe that y0 is a small vertex. If y0 was a big vertex, then y0 would give 1

4 to z in Step 1, a
contradiction. See Figure 3.2.6 for a representation of the vertices we know.

zb

x0

x1

y0

φ0

φ

Figure 3.2.6: The face φ0 and the vertex x1.

Observe that x0 has degree 4. Indeed, suppose x0 is a 5+-vertex. It gives at least 1
4 to z in Step 2, a

contradiction. Suppose x0 is a 3-vertex. Then x0 has a big neighbour by Lemma 3.2.2, and it cannot be y0.
That contradicts Lemma 3.2.5.

Let a and a′ be the neighbours of x0 distinct from z and y0, such that a is consecutive to z(as a neighbour
of x0). Suppose a is a big vertex. If x0 does not correspond to v1 in an instance of Configuration 3.2.7, then
x0 gives 1

4 to z in Step 2. If x0 corresponds to v1 in an instance of Configuration 3.2.7, then z corresponds
to w0 and is not adjacent to two big vertices, so x0 also gives 1

4 to z in Step 2. Therefore a is a small vertex.
Observe that y0 is a 4+-vertex. Indeed, suppose y0 is a 3-vertex. By Lemma 3.2.6, there is at least

one big vertex in {a, a′}, which has to be a′. If φ is a 4-face, then x0 corresponds to v1 in an instance of
Configuration 3.2.7, and it gives 1

4 to z in Step 2. Therefore φ is a 5+-face, and it gives at least 1
5 to z in

Step 4, and x0 gives 1
5 to z in Step 5. As 1

10 + 1
5 ≥ 1

4 , this leads to a contradiction.

b0

w0

v0

y0 = v1

x0 = v2

a′ = v3

b = b1

z = w1

x1

a

Figure 3.2.7: The case in Lemma 3.2.11 where y0 corresponds to v1 in Configuration 3.2.7.

Suppose first that y0 corresponds to v1 in an instance of Configuration 3.2.7. See Figure 3.2.7 for an
illustration of the vertices we know, and of the correspondence with vertices of Configuration 3.2.7. By
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Lemma 3.2.8, the third neighbour of w0 is big. Therefore y0 gives 1
4 to x0 in Step 2. It follow that x0 gives

1
4 to z in Step 3, a contradiction.

Now y0 does not correspond to v1 in an instance of Configuration 3.2.7. Vertex y0 gives 1
4 to x0 in Step

2, since x0 is a neighbour of y0 consecutive (as a neighbour of y0) to a big neighbour. Therefore x0 gives 1
4

to z in Step 3, a contradiction.

Lemmas 3.2.9–3.2.11 conclude the proof of Theorem 3.1.4.

3.3 Complexity of finding an (F , Fd)-partition

By Theorem 3.1.4, there exists a smallest integer d0 ≤ 5 such that every triangle-free planar graph has an
(F , Fd0

)-partition. For all d ≥ d0, every triangle-free planar graph has an (F , Fd)-partition. Let us assume
that d0 ≥ 1.

In this section, for a fixed integer d we consider the complexity of the following problem Pd: given a
triangle-free planar graph G, does G have an (F , Fd)-partition? This can be answered positively in constant
time for d ≥ d0. However, we prove the following:

Theorem 3.3.1. For d < d0, the problem Pd is NP-complete.

The problem is clearly in NP, since checking that a graph is acyclic and/or has maximum degree at most
d can be done in polynomial time. Let us show that the problem is NP-hard.

The general idea is first to build some gadgets that can force where some vertices are in the partition.
Then we will use these gadgets to make some polynomial reductions and prove that our problem is NP-hard.

Let G be a counter-example to the property that every triangle-free planar graph admits an (F , Fd)
partition. We consider such a counter-example G with minimum number of vertices, and with minimum
number of edges among the counter-examples with minimum number of vertices. Let e = uv be an edge of
G, and G′ = G − e. By minimality of G, G′ admits an (F , Fd)-partition. In such a partition (F, D), u and v
are either both in F or both in D, and if they are in F , then there is a path from u to v in G′[F ] (otherwise
it would be an (F , Fd)-partition of G). Observe that in G′, u and v are at distance at least 3, since G is
triangle-free. We call a copy of G′ an anti-edge uv.

We want to make a gadget H with a vertex x that admits an (F , Fd)-partition, and such that x is in F
for all (F , Fd)-partition (F, D) of H.

x

u0 u1 ud

v0 v1 vd

...

F

D D D

D D D

...

Figure 3.3.1: The gadget H in Case 1, and an (F , Fd)-partition. Dashed lines are anti-edges.

We construct H as follows:

1. Suppose for all (F , Fd)-partition (F, D) of G′, u and v are in D. See Figure 3.3.1 for an illustration of
the construction of H and an (F , Fd)-partition of H in this case. Take d + 1 copies of G′, called G′

0,
..., G′

d, and add a new vertex x adjacent to each instance of u in those copies. Consider an (F , Fd)-
partition (F, D) of G′. This leads to an (F , Fd)-partition (Fi, Di) of each Gi, and (

⋃
i Fi ∪ {x},

⋃
i Di)

is an (F , Fd)-partition of H.

Let us now prove that for any (F , Fd)-partition (F, D) of H, x belongs to F . For any (F , Fd)-partition
(F, D) of H, if x ∈ D, then there exists a ui that is in F , so the corresponding G′

i admits an (F , Fd)-
partition with ui ∈ F , a contradiction.
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x

u00

u10

ud0

u01

u11

ud1

v0

v1

vdw0

w1

wd...

F

F

F

F

F

F

F

F

F

FD

D

D...

Figure 3.3.2: The gadget H in Case 2, and an (F , Fd)-partition.

2. Suppose there exists an (F , Fd)-partition (F, D) of G′ such that u and v are in F . See Figure 3.3.2 for
an illustration of the construction of H and an (F , Fd)-partition of H in this case. We construct H as
follows. Consider a vertex x. We add new vertices v0, ..., vd and w0, ..., wd to the graph, adjacent to x.
Then for 0 ≤ i ≤ d and 0 ≤ j ≤ 1, we add a new vertex uij , the anti-edge viuij , and the edge uijwi.

Graph H admits an (F , Fd)-partition. Indeed, consider an (F , Fd)-partition of G′ with u and v in F ,
and apply it to every anti-edge of H (as before, we take the union of the Fi and the union of the Di).
Then the vi and uij are all in F . Add all the wi to D. Add x to F . We then have an (F , Fd)-partition
of H.

Let us now prove that for any (F , Fd)-partition (F, D) of H, x belongs to F . For any (F , Fd)-partition
(F, D) of H, if x ∈ D, then there exists an i such that vi and wi are in F , thus ui0 and ui1 are in F ,
so there is a cycle in H[F ], a contradiction.

yD

F

F

F
H

H

H

Figure 3.3.3: The gadget H ′ with an (F , Fd)-partition.

Observe that we can make a gadget H ′ with a vertex y that admits an (F , Fd)-partition, and such that
y is in D for all (F , Fd)-partition (F, D) of H ′ (see Figure 3.3.3): we take three copies of H, and make a
4-cycle with the corresponding copies of x and a new vertex y. Taking an (F , Fd)-partition of H for each
copy of H, and adding y to D leads to an (F , Fd)-partition of H ′. Conversely, in an (F , Fd)-partition (F, D)
of H ′, all the copies of x are in F , so y is in D.

We will first make a reduction from the problem Planar 3-sat to P0, and then from P0 to Pd with
d < d0.

First reduction: from Planar 3-sat to P0

Here we will use the gadget H for d = 0.
Consider an instance I of Planar 3-sat. The instance I is a boolean formula in conjunctive normal

form, associated with a planar graph GI . For each clause C of I with variables x, y and z, we make a
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4-cycle KC = xCyCzCaC . For each variable x that appears kx times in the formula, we make the following
gadget Gx: a path px,0...px,2kx−1, and for all i ∈ [0, 2kx − 2], we add two adjacent vertices, qx,i and rx,i+1,
adjacent to px,i and px,i+1 respectively (see Figure 3.3.5). We then add a copy of H for each clause C such
that aC corresponds to the vertex x of H, and a copy of H for each qx,i and each rx,i such that qx,i and rx,i

respectively correspond to the vertex x of H. Then for every clause C and every variable x that appears in
C, we add an edge from xC to a px,i, with an even i if the literal associated with x in C is a positive literal
and an odd i otherwise, such that no two xC are adjacent to the same px,i (see Figure 3.3.4). It is possible
to do so without breaking planarity, since the graph GI is planar. We call G′

I the graph we obtain.

Gx Gy Gz

xC

yC

zC

aC

H

Gx Gy Gz

D

F

F

F

H

Figure 3.3.4: The cycle KC of a clause C with variables x, y and z, and an (F , Fd)-partition in the case
where variable x satisfies the clause.

KC0
KC1

KC2

px,0 px,1 px,2 px,3

qx,0 qx,1 qx,2rx,1 rx,2 rx,3

H H H H H H

...

KC0
KC1

KC2

F D F D

F F FF F F

H H H H H H

...

Figure 3.3.5: The gadget Gx for a variable x, with an (F , Fd)-partition that corresponds to the assignation
of x to true. Here the literal associated with x in C0 is positive, and that associated with x in C1 and C2 is
negative.

Suppose I is satisfiable, and let us consider an assignation σ of the variables that satisfies I. Let us make
an (F , F0)-partition of G′

I . We first take an (F , F0)-partition for each copy of H. All the aC , qx,i and rx,i

are in F . For each variable x, if σ(x) = 1, then we put all the px,2i in F and the px,2i+1 in D, else we put all
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the px,2i in D and the px,2i+1 in F . Then for each clause C, we choose a variable x of C that satisfies the
clause (i.e. x is true if the literal associated with x in C is a positive literal, and false otherwise), we put xC

in D and for the two other variables of C, we put the corresponding yC in F .
All the vertices are in F or in D. Let v be a G′

I -vertex in D. If v is in a copy of H, then it has no
D-neighbour. If v is a xC , then the three other vertices of KC are in F . If v is a px,i, then px,i+1 and px,i−1

are in F if they exist, and all the qj and rj are in F . Suppose there are two G′
I [F ]-neighbours in D. One is

a xC and the other is a px,i (with the same x). Then by construction the variable x satisfies clause C (i.e. x
is true if the literal associated with x in C is a positive literal, and false otherwise). If x is associated with a
positive literal in clause C, then σ(x) = 1 and i is even, thus px,i is in F , a contradiction. If x is associated
with a negative literal in clause C, then σ(x) = 0 and i is odd, thus px,i is in F , a contradiction. Graph
G′

I [F ] has no cycle: there is no cycle in the copies of H with every vertex in F ; for each clause C, KC has a
vertex in D, and for each i ∈ [0, 2kx − 2], px,2i or px,2i+1 is in D. Therefore (F, D) is an (F , F0)-partition of
G′

I .
Suppose now that there is an (F , F0)-partition (F, D) of G′

I . All the aC , the qx,i and the rx,i are in
F . For all variable x and all i ∈ [0, 2kx − 2], either px,i ∈ F and px,i+1 ∈ D, or px,i ∈ D and px,i+1 ∈ F .
Therefore for all x, either all the px,i are in F for i even and in D for i odd, or all the px,i are in D for i
even and in F for i odd. Let σ be the assignation of the variables x such that σ(x) = 1 if px,0 is in F , and
σ(x) = 0 otherwise. Let C be a clause of I. At least one of the xC is in D (otherwise KC is a cycle with
every vertex in F ), and it is adjacent to a px,i with i even if x is positive and i odd if x is negative in C.
This px,i is in F , so if x is positive in C, then σ(x) = 1, else σ(x) = 0. Therefore σ satisfies clause C, and
this is true for all C, so σ satisfies I.

It is easy to see that the reduction is polynomial, and that G′
I is a triangle-free planar graph. Thus this

is a polynomial reduction from Planar 3-sat to P0.

Second reduction: from P0 to Pd with d < d0

Consider an instance I of P0. For each vertex v in I, add d copies of H ′, such that the corresponding copies
of y are adjacent to v. We call Id the resulting graph.

Suppose I admits an (F , F0)-partition. Consider an (F , Fd)-partition of H ′. Apply it to every copy of
H ′ we made in Id. Complete it with an (F , F0)-partition of I. The obtained partition is an (F , Fd)-partition
of Id.

Suppose now that Id admits an (F , Fd)-partition (F, D). In each copy of H ′, we have y ∈ D, so each
vertex in I has exactly d (Id − V (I))-neighbours in D and no (Id − V (I))-neighbours in F . Therefore
(F ∩ V (I), D ∩ V (I)) is an (F , F0)-partition of I.

It is easy to see that the reduction is polynomial, and that Id is a triangle-free planar graph. Thus this
is a polynomial reduction from P0 to Pd.

3.4 (I, Fd)-partition of graphs with maximum average degree less

than to 3

Let us first recall the statement of Theorem 3.1.12.

Theorem 3.1.12 (recall). Let M be a real number such that M < 3. Let d ≥ 0 be an integer and let G be
a graph with mad(G) < M . If d ≥ 2

3−M
− 2, then G admits an (I, Fd)-partition.

This section and the following one will use the same kind of proof, the second one being more involved.
In particular, some of the lemmas of this section will be used in the following one. This is again a good
example of an application of the discharging method. Additionally, besides finite configurations that appear
in previous sections, here we will use some families of configurations that can be arbitrarily large. Because
of this, the proof does not immediately yield a polynomial time algorithm for finding an (I, Fd)-partition.
We will see, however, that there is still a polynomial time algorithm.
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Let M < 3, and let d be an integer such that d ≥ 2
3−M

− 2. Let us first define a notion that will enable
us to deal with 2-vertices. Let us call a good d-partition of a graph G a partition (I, F ) of the vertices of G
such that I is an independent set of G, G[F ] is a graph with maximum degree at most d, and every cycle in
G[F ] contains a 2-vertex of G. Note that for any graph G, if G admits a good d-partition, then G admits
an (I, Fd)-partition: while there is a vertex v with degree 2 in G that is in F and has two neighbours in F ,
move v from F to I. Therefore Theorem 3.1.12 is implied by the following lemma:

Lemma 3.4.1. Every graph G with mad(G) < M has a good d-partition.

For the sake of contradiction, assume that Lemma 3.4.1 is false. Let G be a counter-example to
Lemma 3.4.1 with minimum order.

A (d + 1)−-vertex of G is a small vertex, and a (d + 2)+-vertex of G is a big vertex. Let v be a vertex of
G. A neighbour of v that is a big vertex is a big neighbour of v, and a neighbour of v that is a small vertex
is a small neighbour of v. We start by proving some lemmas on the structure of G. Specifically, we prove
that some configurations are reducible, and thus cannot occur in G.

Lemma 3.4.2. There is no 1−-vertex in G.

Proof. Assume there is a 1−-vertex v in G. The graph G − v has one fewer vertex than G, and thus, by
minimality of G, admits a good d-partition (I, F ). If v has no neighbours in I, then we can add it to I.
Otherwise, it has no neighbours in F , and we can add it to F . In both cases, that leads to a good d-partition
of G, a contradiction.

Lemma 3.4.3. Every 2-vertex of G has at least one big neighbour.

Proof. Assume v is a 2-vertex adjacent to two small vertices, u and w. The graph G−v has one fewer vertex
than G, and thus, by minimality of G, admits a good d-partition (I, F ). If u and w are both in F , then we
can put v in I, and if they are both in I, then we can put v in F . Therefore without loss of generality, we
can assume that u ∈ I and w ∈ F . If w has no neighbours in I, then we can put it in I, and put v in F .
Therefore we can assume that w has at least one neighbour in I and thus at most d − 1 neighbours in F
(since w is a small vertex in G). Then v has at most one F -neighbour, and this neighbour w has at most
d − 1 neighbours in G[F ], thus we can add v to F . In every case, this leads to a good d-partition of G, a
contradiction.

We are going to build a structure on the graph G that we will call the light forest, and that will enable
us to state some more lemmas. To define this light forest, we need several notions, that we are now going to
define. A 2-vertex is a light 2-vertex if it is adjacent to a small vertex, and it is a heavy 2-vertex otherwise.
Note that by Lemma 3.4.3, each 2-vertex has at most one small neighbour.

Lemma 3.4.4. Let B be a set of small 3+-vertices such that G[B] is a tree. There exists a 3+-vertex v /∈ B
that is adjacent to a vertex of B.

Proof. Assume the lemma is false, that is every vertex that is not in B but has a B-neighbour is a 2-vertex
in G. By minimality of G, G − B admits a good d-partition (I, F ). For every vertex v in B, successively, we
put v in I if v has no I-neighbours and we put it in F otherwise. Note that this way a vertex that we add
to F has at most d neighbours that are not in I, and we cannot make any cycle in G[F ] that does not go
through a 2-vertex of G, since G[B] is a tree. Thus we have a good d-partition of G, a contradiction.

Let B be a (maximal) set of small 3+-vertices of G such that:

(a) G[B] is a tree,

(b) there is only one edge that links a vertex of B to a 3+-vertex u outside of B,

(c) u is a big vertex.

76



v
u

v
u

v w
u

Figure 3.4.1: The construction of the light forest L. The big vertices are represented with big circles, and the
small vertices with small circles. The filled circles represent vertices whose incident edges are all represented.
The dashed lines are the continuation of the light forest. The arrows point from son to father in L.

We call B a bud with father u.
We will now build the light forest inductively on the graph G. We notice that although the light forest

can be arbitrarily large, finding it can be done in polynomial time due to its inductive nature (just follow
the following three steps, each iteration of a step adding at least one vertex to the light forest).

We note that at this point, the light forest is not necessarily unique, since we can choose the order in
which the vertices are treated. We do not need the construction to be uniquely defined. We just build one
instance of the light forest, and we will always use the same one.

We start with L = (∅, ∅), the graph with no vertices and no edges.

1. While there is a light 2-vertex that is not in L, do the following. Pick a light 2-vertex v, and let u be
the big neighbour of v (that exists by Lemma 3.4.3). Add to L the vertex v, the edge uv, and the vertex
u (if it is not already in L). Also set that u is the father of v (and v is a son of u). See Figure 3.4.1,
left. Note that by doing this, we obtain a star forest with only big vertices and light 2-vertices. Also
note that the set of the big vertices and the set of the light 2-vertices are independent sets in L (but
not necessarily in G).

2. While there are buds whose vertices are not all included in L, do the following. Pick a bud B. Let u
be the father of B, and let v be the vertex of B adjacent to u. Add G[B] to L, as well as the edge
uv, and the vertex u (if it is not already in L). The vertex u is the father of v, and the father/son
relationship in B is that of the tree G[B] rooted at v. See Figure 3.4.1, middle. We recall that the
buds do not share vertices. Since we add the vertices of the buds to L all in one go, in the end all
the vertices of the buds are in L. Note that each iteration of this step always adds to L a tree with
at most one vertex (u) that was already in L. Hence, L is still a forest. Moreover, it is still a rooted
forest since the tree we add has the orientation of a tree rooted at u.

3. While, for some k, there exists a big k-vertex w ∈ L that has k − 1 sons in L and a 2-neighbour v
that is not in L, do the following. Let u be the neighbour of v distinct from w. Note that v is a heavy
2-vertex (since it was not added to L in Step 1), therefore u is a big vertex. Add to L the vertex v,
the edges uv and vw, and the vertex u (if it is not already in L). We set that v is the father of w, and
that u is the father of v. See Figure 3.4.1, right. Note that this operation just takes a root of L, adds
a vertex as a father of this root and another vertex as a father of that new vertex. Therefore, L is still
a rooted forest. Also note that each of the set of the big vertices and the set of the 2-vertices remains
independent in L.

As noticed previously, L is a rooted forest. We say that a vertex v is a descendant of a vertex u Ó= v in
L if there are vertices v0 = v, v1, ..., vk = u in L, such that for i ∈ {0, 1, ..., k − 1}, vi+1 is the father of vi

in L. Consider a vertex v in L. If v is a heavy 2-vertex, then v was added in Step 3, and its two incident
edges were added at the same time. If v is a big vertex and is not the root of its component in L, then the
father of v was added in Step 3, thus all the neighbours of v distinct from its father are its sons in L. If v
is a small 3+-vertex in L, then v was added in Step 2 and thus is in a bud. Therefore, a vertex v in L is

77



incident to an edge that is not in L only if either v is a big vertex and the root of its component in L, or
v is a light 2-vertex, or v is in a bud. The pending vertices of L are the vertices that are not in L but are
adjacent to a light 2-vertex. Note that the pending vertices are small.

Now we would like to prove that the light forest respects some properties, by proving that some config-
urations are reducible. To prove this, we will need to add some whole parts of the light forest to a good
d-partition. Let us develop some ways to do that.

Let B be a bud with father u. Let S ⊆ V (G) \ (B ∪ {u}) and let (I, F ) be a good d-partition of S ∪ {u}
such that u either is in I or has at most d − 1 neighbours in F . We show that we can extend the good
d-partition to S ∪ {u} ∪ B. We proceed as follows: for every vertex v ∈ B successively, we add v to I if it has
no neighbours in I or to F otherwise. The vertices in I clearly form an independent set. Moreover, G[F ]
has maximum degree at most d and every cycle of G[F ] goes through a 2-vertex by construction of a bud.
This leads to a good d-partition of S ∪ B ∪ {u}. We call that process colouring the bud B.

Let v be a 2-vertex of L, u its father and Dv the set of the descendants of v. Let (I, F ) be a good
d-partition of S ⊆ V (G) \ (Dv ∪ {u, v}). We show that we can extend the good d-partition to S ∪ Dv ∪ {v}.
We proceed as follows:

Step 1. We add every big vertex of Dv to I. We can do this, since big vertices form an independent set in L
by construction, and as we noted previously, big vertices that are in L and are not the root of their
component (in particular big vertices that are in Dv) have no incident edge outside of L.

Step 2. While there is a pending vertex w ∈ S that has no neighbours in I, we add one such vertex to I.

Step 3. We add every 2-vertex of Dv and v to F . We can do that, since the 2-vertices of Dv form a stable set
in L. Moreover, Step 2 ensures that the maximum degree of G[F ] is at most d.

Step 4. Finally, we colour every bud. We can do that, since the father of every bud whose vertices are in Dv

has been put in I in Step 1.

This leads to a good d-partition of S ∪ Dv ∪ {v}. We call that process descending v.
We will now use the previous construction to prove the following lemma on the structure of the Light

forest.

Lemma 3.4.5. For all k, there is no big k-vertex in G that is in L and has k sons in L.

Proof. Let u be a big k-vertex that has k sons in L. Note that this implies that u is the root of its component
in L. Let C be the component of u in L. Let H = G − V (C). The graph H has fewer vertices than G and
thus, by minimality of G, H admits a good d-partition (I, F ). Let N be the set of the 2-neighbours of u.
We descend every vertex of N . Note that this implies that every vertex of N is put in F . We add u to I.
Then we colour every bud of father u. That leads to a good d-partition of G, a contradiction.

Discharging procedure

Let ǫ = 3 − M . Recall that d ≥ 2
3−M

− 2 = 2
ǫ

− 2, therefore ǫ ≥ 2
d+2 > 0. For all k, we assign to each

k-vertex a charge equal to k − M = k − 3 + ǫ. Note that since M is bigger than the average degree of G, the
sum of the charges of the vertices is negative. The initial charge of each 3+-vertex is at least ǫ, and thus is
positive.

For every big vertex v, v gives charge 1 − ǫ to each of its 2-neighbours that are its sons in L, does not
give anything to its father in L (if it has one), and gives 1−ǫ

2 to its other 2-neighbours.

Lemma 3.4.6. Every vertex has non-negative charge at the end of the procedure.

Proof. The small 3+-vertices start with a non-negative charge, and do not give or receive charge throughout
the procedure, thus they have non-negative charge at the end of the procedure.

Every 2-vertex is either in L, in which case it receives 1 − ǫ from its father in L, or is not in L and is a
heavy 2-vertex, in which case it receives 1−ǫ

2 from each of its neighbours. As 2-vertices have charge ǫ − 1 at
the start of the procedure, and as they receive 1 − ǫ, they have charge 0 at the end of the procedure.
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Let v be a big k-vertex. By Lemma 3.4.5, v has at most k − 1 sons in L. Moreover, by construction of L,
if v has k −1 sons in L, then either its neighbour that is not its son in L is a 3+-vertex, or it is the father of v
in L (and in both cases v does not give charge to this vertex). Therefore v gives charge amounting to at most
(k−1)(1−ǫ). Since its initial charge is k−3+ǫ, in the end it has at least k−3+ǫ−(k−1)(1−ǫ) = kǫ−2. Since
every big vertex has degree at least d+2 ≥ 2

ǫ
, the final charge of each big vertex is at least 2

ǫ
ǫ−2 = 2−2 = 0.

By Lemma 3.4.6, every vertex has non-negative charge at the end of the procedure, thus the sum of
the charges at the end of the procedure is non-negative. Since no charge was created nor removed, this
is a contradiction with the fact that the initial sum of the charges is negative. That ends the proof of
Lemma 3.4.1.

3.5 (I, Fd)-partition of graphs with maximum average at least 8
3

and less than 3

Let us first recall the statement of Theorem 3.1.13.

Theorem 3.1.13 (recall). Let M be a real number such that 8
3 ≤ M < 3. Let d ≥ 0 be an integer and let

G be a graph with mad(G) < M . If d ≥ 1
3−M

, then G admits an (I, Fd)-partition.

This proof is quite similar to the proof of Theorem 3.1.12 above, but is a bit more involved. Let
8
3 ≤ M < 3, and let d be an integer such that d ≥ 1

3−M
. We define good d-partitions as in Section 3.4.

Theorem 3.1.13 is implied by the following lemma:

Lemma 3.5.1. Every graph G with mad(G) < M has a good d-partition.

For the sake of contradiction, assume that Lemma 3.5.1 is false. Let G be a counter-example to
Lemma 3.5.1 with minimum order.

We take the same definitions as before. Lemmas 3.4.2–3.4.5 of the previous section still hold in this
setting.

In this section, we will not only consider components of the light forest independently, we will consider
several of those components together to get some more charge. To explain our method, let us first consider
a small example.

Assume that in G there is a cycle of length 6 v1v2v3v4v5v6 of vertices that are all in V (L), such that

• v1 and v4 are (d + 2)-vertices, and each of them either has d + 1 sons in L or has d sons in L. If one
of them has d sons in L, then all of its neighbours are 2-vertices.

• v2 and v6 are 2-vertices of G that are sons of v1.

• v3 and v5 are 2-vertices of G that are sons of v4.

Note that this corresponds to an instance where the weights of the vi’s are exactly 0 at the end of the
discharging procedure of the previous section. Let H = G − (Dv1

∪ Dv4
∪ {v1, v4}). As H has fewer vertices

than G, it has a good d-partition (I, F ). We descend every son of v1 and every son of v4. This implies that
every son of v1 and v4 is in F .

If v1 and v4 have no neighbours in I, then put them both in I. If one of them, say v1, has a neighbour
in I and the other one has no neighbour in I, then put v1 in F , v2 and v6 in I, and v4 in I. If v1 and v4

both have a neighbour in I, then put them both in F , and put v2 and v5 in I. In all cases, each of v1 and
v4 that is in F has at least two neighbours in I, and thus at most d neighbours that are not in I. We colour
every bud of father u. That leads to a good d-partition of G, a contradiction.

In what follows, we are going to generalise the previous reasoning to more general cases, where the big
vertices considered may be farther away than v1 and v4, and may have degree more than d + 2. To do
this, we will consider a subgraph of G induced by vertices that belong to the light forest, together with an
orientation of this subgraph that will enable us to distribute the charges. Frank and Gyárfás [34] prove the
following theorem:
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Theorem 3.5.2 (Frank and Gyárfás [34]). Let H = (V, E) be a graph, and let ω : V → N. There exists an
orientation such that ∀v ∈ V, d+(v) ≥ ω(v) if and only if for all X ⊂ V , ω(X) ≤ |{uv ∈ E, u ∈ X}|.

Given H = (V, E) and ω : V → N, a good ω-orientation of H is an orientation of H such that ∀v ∈
V, d+(v) ≥ ω(v). We prove some additional lemmas.

Lemma 3.5.3. Let H = (V, E) be a graph on n ≥ 1 vertices and m edges. Let ω : V → N such that
ω(V ) ≤ m. There exists a subgraph S of H with at least one vertex such that S admits a good ω-orientation.

Proof. For a graph I and a set X ⊂ V (I), let eI(X) = |{uv ∈ E(I), u ∈ X}|. If ω(X) ≤ eI(X), we say that
X is good in I.

If every subset of V is good in H, then by Theorem 3.5.2, we have a good ω-orientation of H. Therefore
we may assume that there is a subset of V that is not good in H. Let X be a maximum subset of V that is
not good in H. Let Y = V − X, and let H ′ = H[Y ]. Note that V is good in H, since ω(V ) ≤ m, so Y Ó= ∅.

If every subset of Y is good in H ′, then by Theorem 3.5.2, we have a good ω-orientation of H ′. Therefore
there is a Z ⊂ Y such that Z is not good in H ′, i.e. ω(Z) > eH′(Z). As X is not good in H, we also
have ω(X) > eH(X). Therefore we have ω(X ∪ Z) = ω(X) + ω(Z) > eH(X) + eH′(Z) = |{uv ∈ E(H), u ∈
X}| + |{uv ∈ E(H ′), u ∈ Z}| = |{uv ∈ E(H), u ∈ (X ∪ Z)}| = eH(X ∪ Z). Therefore X ∪ Z is not good in
H, which contradicts the maximality of X.

We recall that L is the light forest of G.

Lemma 3.5.4. Let U be a non-empty subset of V (L) with no small 3+-vertices. Let H = G[U ] (i.e. the
subgraph of G induced by the 2-vertices and the big vertices of U ⊆ L). Suppose:

1. There is an orientation of the edges of H such that every 2-vertex in H has at least one out-going edge,
and for all i ≥ 1, every big (d + i + 1)-vertex in G has at least i out-going edges.

2. There are no 1−-vertices in H.

Then H contains an edge that is not in L and that is incident to a big vertex.

The graph H of Lemma 3.5.4 is as follows: it is composed by subtrees of L plus some additional edges
(that do not belong to L). Such edges are edges between light 2-vertices, and maybe edges between roots of
trees of L. The aim of Lemma 3.5.4 is to prove the existence of such latter edges.

The orientation in Lemma 3.5.4 does not correspond to the orientation defined by the father/son relation
in the light forest. This orientation will allow us to extend a partial partition (I, F ): consider a big (d+i+1)-
vertex v being in F . Vertex v must have at least i + 1 neighbours in I. The orientation will point towards i
sons of v that will be added to I. Moreover we will see that v will have one extra neighbour in I: either its
father in L, or a neighbour outside L.

Proof of Lemma 3.5.4. Assume the lemma is false: every edge of H that is not in L is between two 2-vertices.
Let R0 be the set of the vertices of H that are not the descendants in L of a vertex of H. In particular, R0

contains the roots of L that are in H, plus big vertices that have no ancestor in U . Note that R0 contains
only big vertices ; otherwise, H would contain 1-vertices. Moreover, H −R0 has at least one vertex, otherwise
U would contain only big vertices, there would be an edge between two big vertices, and this edge could not
be in L. Let S be the set of the vertices that are not in H, but are descendants of vertices of H.

By minimality of G, the graph G − (V (H − R0) ∪ S) admits a good d-partition (I, F ). While there is a
vertex v ∈ R0 that is in F and has no neighbours in I, we put v in I. Now we can assume that every vertex
in R0 ∩ F has a neighbour in I. Let R = R0 (in the following we describe a procedure that modifies R but
we need to refer to vertices of R0). While there is a vertex in R, do the following:

• Suppose u is in I. We descend every 2-vertex with father u (by the procedure every 2-vertex is added
to F ) and colour every bud with father u. This leads to a good d-partition of u and all its descendants.
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• Suppose u is in F . We remove u from R. For every 2-vertex v in H with father u such that the edge
uv is oriented from u to v (according to the orientation defined in the statement of the lemma), we
first add v to I, and then add the son of v to F and R. By hypothesis, if u is a (d + i + 1)-vertex, then
it has at least i outgoing edges. These edges lead to sons of u:

– either u ∈ R0, thus u has no ancestor in H by construction and all its neighbours in H are its
sons ; moreover it has a neighbour outside H that is in I (by construction).

– or, u ∈ R \ R0, this means that u was added to R during the procedure, this implies that his
father, say w, is a 2-vertex added to I and the edge wv is oriented from w to v (as every 2-vertex
has an out-going edge by hypothesis). It follows that all the out-going neighbours of u are sons
of u.

It follows that u has at least i + 1 neighbours in I, and so all other neighbours can be added to F
without violating the degree condition on F . Now we descend every 2-vertex v /∈ H with father u, and
every 2-vertex v ∈ H with father u such that the edge uv is oriented from v to u, and colour every bud
with father u. The only problem that could occur is when two adjacent light 2-vertices ℓ and ℓ′ are
added to I: in that case, since ℓ and ℓ′ were added to I, the edge that links ℓ (resp. ℓ′) to its father is
towards ℓ (resp. ℓ′); it follows that one of ℓ, ℓ′ has no out-going edges, contradicting the hypothesis.

In all cases, that leads to a good d-partition of G, a contradiction.

Lemma 3.5.5. Let U be a non-empty subset of V (L) with no small 3+-vertices. Let H = G[U ] (i.e. the
subgraph of G induced by the 2-vertices and the big vertices of U ⊆ L). Suppose that H has no edge linking
two roots of two components of L. Let us denote by nG

2 (H) the number of vertices of H that are 2-vertices
in G. Then,

|E(H)| < nG
2 (H) +

∑

big v∈H

(dG(v) − d − 1) .

Proof. By contradiction, suppose there is such an H such that |E(H)| ≥ nG
2 (H)+

∑
big v∈H (dG(v) − d − 1).

Let us define a weight function ω : V (H) → N such that, for every 2-vertex u, ω(u) = 1 and, for every
(d + i + 1)-vertex v with i ≥ 1 in N, ω(v) = i. By hypothesis, |E(H)| ≥

∑
v∈V (H) ω(v). By Lemma 3.5.3, H

contains a non empty subgraph I that has a good ω-orientation.
Suppose that I has a vertex of degree 1, say v, and let u be the neighbour of v in I. As ω(v) ≥ 1, the

only edge incident to v goes from v to u. It follows that, for all w Ó= v, w has the same number of outgoing
edges in I and in I − {v}. Hence I − {v} is a subgraph of H with at least one vertex (it contains u) and
has a good ω-orientation. By successively removing vertices of degree 1 from I, we can assume that I has
no 1-vertices.

By Lemma 3.5.4, I has an edge e that is not in L and is incident to a big vertex. As no light 2-vertex is
adjacent to a big vertex besides its father, edge e has to link the roots of two connected components of L,
contradicting the hypothesis.

Let L̂ be the graph induced by V (L), where we remove every edge that links the roots of two components
of L and we remove every bud. An internal 2-vertex is a 2-vertex in L̂ that has its two neighbours in L̂. By
applying Lemma 3.5.5 to L̂, we can bound the number of internal 2-vertices in L̂. We obtain the following
lemma:

Lemma 3.5.6. The number of internal 2-vertices is at most 2
∑

big v∈H(dG(v) − d − 1).

Proof. Let L̂′ be the graph L̂ where every 2-vertex is removed in the following way: if v is an internal
2-vertex with neighbours u and w, then we remove v and add an edge from u to w, and we iterate. For the
2-vertices that are not internal, we just remove them. Note that L̂′ may have multiple edges and even loops.
As for each 2-vertex that was removed, exactly one edge was removed, the number of edges in L̂′ is at most∑

big v∈H (dG(v) − d − 1). By Lemma 3.4.3, every edge of L̂′ corresponds to at most two internal 2-vertices.
Therefore there are at most 2

∑
big v∈H(dG(v) − d − 1) internal 2-vertices.
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Discharging procedure

Let ǫ = 3 − M (recall that 8
3 ≤ M ≤ 3). Recall that d ≥ 1

3−M
= 1

ǫ
, therefore ǫ ≥ 1

d
> 0.

We assign to each k-vertex a charge equal to k − M = k − 3 + ǫ. Note that since M is bigger than the
average degree of G, the sum of the charges of the vertices is negative.

Every 3+-vertex has a charge of at least ǫ > 0. Therefore every vertex that has a negative charge is a
2-vertex and has charge ǫ−1. We will redistribute the weight from the 3+-vertices to the 2-vertices, in order
to obtain a non-negative weight on each vertex, by the following three steps:

• Step 1 : Let S be a maximal set of small 3+-vertices such that G[S] is connected. Let S2 be a set
of 2-vertices that have exactly one (by Lemma 3.4.3) neighbour in S. Note that since ǫ ≤ 1, every
k-vertex in S has charge at least (k − 2)ǫ. The vertices in S give ǫ to each of the vertices in S2.

Suppose that the total charge of S becomes negative. This implies that the number of vertices in S2 is
more than

∑
v∈S(d(v) − 2). Therefore there are at most |S| − 1 edges in G[S]. Since G[S] is connected,

this implies that G[S] is a tree. Now by Lemma 3.4.4, there is at least one big vertex outside of S that
has a neighbour in S. Note that if there are at least two of these vertices, or if one of them has at
least two neighbours in S, then one can observe that G[S] has at most |S| − 2 edges, contradicting the
connectivity of G[S]. Therefore S is a bud. In this case, S ends up with a charge of at least −ǫ. We
will, in Step 2, make sure that every son of a big vertex in L receives at least 1 − 2ǫ ≥ ǫ (since ǫ ≤ 1

3 )
from its father, and this will ensure that every bud ends up with a non-negative charge.

We do this step for every maximal set S of small 3+-vertices such that G[S] is connected successively.
Note that such sets are distinct.

• Step 2 : For every big vertex v, v gives 1 − 2ǫ to each of its sons, does not give anything to its father (if
it has one), and gives 1−ǫ

2 to its other 2-neighbours. Additionally, every big k-vertex gives 2(k −d−1)ǫ
to a common pot.

• Step 3 : The common pot gives ǫ to every internal 2-vertex.

Lemma 3.5.7. Every vertex has non-negative charge at the end of the procedure.

Proof. Note that by what precedes every small 3+-vertex v has non-negative charge.
Every 2-vertex that is not in L receives 1−ǫ

2 from each of its neighbours. Every light 2-vertex that is not
adjacent to a 2-vertex (i.e. every 2-vertex of L that is not an internal 2-vertex) receives 1−2ǫ from its father
and ǫ from its other neighbour (which is a small 3+-vertex). Every internal 2-vertex receives 1 − 2ǫ from its
father and ǫ from the common pot. Therefore every 2-vertex has charge 0 at the end of the procedure.

Let us prove that every big vertex has non-negative charge at the end of the procedure. Let v be a big
k-vertex. Let c(v) be the initial charge of v, and c′(v) be the final charge of v. Suppose by contradiction
that c′(v) < 0. By Lemma 3.4.5, vertex v has at most k − 1 sons. Moreover, if v has k − 1 sons, then its
last neighbour is either the father of v, or a 3+-vertex (by construction of L). Recall that ǫ ≤ 1

3 , therefore
1 − 2ǫ ≥ 1−2ǫ

2 . If v has k − 1 sons, then v gives 1 − 2ǫ to each of its k − 1 sons, and 2(k − d − 1)ǫ to
the common pot, therefore c′(v) = c(v) − (1 − 2ǫ)(k − 1) + 2(k − d − 1)ǫ, and thus as c′(v) < 0, we have
c(v) < (1 − 2ǫ)(k − 2) + 1 − ǫ + 2(k − d − 1)ǫ. If v has k − 2 sons, then it gives 1 − 2ǫ to each of its k − 2
sons, and may give at most 1−ǫ

2 to its two other neighbours and 2(k − d − 1)ǫ to the common pot, therefore
c(v) < (1 − 2ǫ)(k − 2) + 1 − ǫ + 2(k − d − 1)ǫ. If we decrease the number of sons of v further than k − 2, we
will still have c(v) < (1 − 2ǫ)(k − 2) + 1 − ǫ + 2(k − d − 1)ǫ.

Thus if c(v) ≥ (1 − 2ǫ)(k − 2) + 1 − ǫ + 2(k − d − 1)ǫ, we get a contradiction. Recall that c(v) is equal to
k − 3 + ǫ. Therefore we only need to prove that k − 3 + ǫ ≥ (1 − 2ǫ)(k − 2) + 1 − ǫ + 2(k − d − 1)ǫ, which is
equivalent to d ≥ 1

ǫ
.

Let us prove that the common pot also has non-negative charge at the end of the procedure. It receives
charge

∑
v big 2(d(v) − d − 1)ǫ. By Lemma 3.5.6, this charge is at least ǫ times the number of internal

2-vertices. The common pot gives ǫ to each internal 2-vertex, therefore it has non-negative charge at the
end of the procedure.
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By Lemma 3.5.7, every vertex has non-negative charge at the end of the procedure, thus the sum of the
charges at the end of the procedure is non-negative. Since no charge was created nor removed, and since the
common pot also has non-negative charge, this is a contradiction with the fact that the initial sum of the
charges is negative. That ends the proof of Theorem 3.1.13.

3.6 Conclusion

We proved some results on vertex partitions of sparse graphs into independent sets, forests, and forests of
bounded degree. Namely, we proved the following results.

Theorem 3.1.4 (recall). Every triangle-free planar graph admits an (F , F5)-partition.

Theorem 3.1.12 (recall). Let M be a real number such that M < 3. Let d ≥ 0 be an integer and let G be
a graph with mad(G) < M . If d ≥ 2

3−M
− 2, then G admits an (I, Fd)-partition.

Theorem 3.1.13 (recall). Let M be a real number such that 8
3 ≤ M < 3. Let d ≥ 0 be an integer and let

G be a graph with mad(G) < M . If d ≥ 1
3−M

, then G admits an (I, Fd)-partition.

The proofs of the previous theorems yield polynomial time algorithms to find these partitions. It is
clear for Theorem 3.1.4, since all of the reducible configurations have bounded size. For Theorems 3.1.12
and 3.1.13, it is less obvious since some configurations can be arbitrarily large. However, as argued in
Section 3.4, one can construct these configurations in polynomial time, and all the reductions can also be
done in polynomial time.

In contrast to that, we proved that if for some d, there is a triangle-free planar graph with no (F , Fd)-
partition, then it is an NP-complete problem to find such a partition in a triangle-free planar graph.

In the following chapter, we will consider some other partitions. First we will consider partitions into
sets inducing graphs with bounded components. We note that putting a lower bound on the girth of a graph
is the same as forbidding all cycles of small length. We will consider partitions of graphs with some other
sets of forbidden cycles.
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Chapter 4

Partitions into independent sets and
graphs of bounded degrees/with
bounded components

4.1 Introduction
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In the previous chapter, we treated on the one hand partitions into a forest and a forest of bounded
degree, and on the other hand partitions into an independent set and a forest of bounded degree. In this
chapter, we will introduce some new partitions. First, we will treat partitions where one of the sets induces
a graph with bounded components.

We recall that I denotes the family of empty graphs and that for all k, Ok denotes the family of graphs
whose components have at most k vertices, and ∆k denotes the family of graphs with maximum degree at
most k.

Esperet and Ochem [32] proved the following:

Theorem 4.1.1 (Esperet and Ochem [32]). Every planar graph with girth at least 6 admits an (O12, O12)-
partition.

Borodin and Ivanova [12] showed a similar result:

Theorem 4.1.2 (Borodin and Ivanova [12]). Every planar graph with girth at least 7 admits an (O3, O3)-
partition.

Note that O2 = ∆1, therefore Theorem 3.1.8 can be restated as follows:

Theorem 3.1.8 (Kim, Kostochka, and Zhu [42], restated). Every triangle-free graph with maximum average
degree at most 11

9 admits an (I, O2)-partition.

Corollary 4.1.3. Every planar graph with girth at least 11 admits an (I, O2)-partition.
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We prove the following theorem in Section 4.2:

Theorem 4.1.4. Every graph G with mad(G) < 5
2 admits an (I, O3)-partition.

Euler’s formula yields the following corollary:

Corollary 4.1.5. Every planar graph with girth at least 10 admits an (I, O3)-partition.

Note that graphs with girth at least 10 do not contain triangles, so Corollary 4.1.5 implies Corol-
lary 3.1.14.3, that is that every planar graph with girth at least 10 admits an (I, F2)-partition.

To extend our result to (I, Ok)-partitions for other values of k, we prove the following theorem in
Section 4.4, after giving the rough ideas of the proof in Section 4.3:

Theorem 4.1.6. Let k ≥ 2 be an integer. Every graph G with mad(G) < 8k
3k+1 = 8

3

(
1 − 1

3k+1

)
admits

an (I, Ok)-partition.

Consequently, for k = 9, we get that every graph with mad(G) < 18
7 admits an (I, O9)-partition, and

thus, as by Euler’s formula, every planar graph of girth 9 has a maximum average degree of less than 2×9
9−2 ,

we get the following:

Corollary 4.1.7. Every planar graph with girth at least 9 admits an (I, O9)-partition.

Another quite interesting way to see planar graphs of large girth is as planar graphs with some forbidden
set of (induced or not) cycles. A natural question is then what sets of forbidden cycle lengths imply some
partitions on planar graphs.

Choi, Liu, and Oum [38] proved that there exist exactly two minimal sets of forbidden cycle lengths such
that every planar graph admits an (I, ∆d)-partition for some constant d:

• Planar graphs without odd cycles are bipartite, i.e. admit an (I, I)-partition.

• Planar graphs without cycles of length 3, 4, or 6 admit an (I, ∆45)-partition.

This raises the following question:

Question 4.1.8. What is the smallest integer d such that every planar graph without cycles of length 3, 4,
or 6 admits an (I, ∆d)-partition.

Notice that forbidding cycles of length 3, 4, or 6 as subgraphs or induced subgraphs result in the same
graph class. We denote by C the class of (C3, C4, C6)-free planar graphs.

We will prove Theorems 4.1.9 and 4.1.10 in Sections 4.5 and 4.6 respectively.

Theorem 4.1.9. Every graph in C admits an (I, ∆6)-partition.

We note that since planar graphs of girth at least 7 are exactly C5-free graphs of C, Theorem 4.1.9 can
be compared with Corollary 3.1.6.

Corollary 3.1.6 (Borodin and Kostochka [15], recall). Every planar graph with girth at least 7 admits an
(I, ∆4)-partition, and every planar graph with girth at least 8 admits (I, ∆2)-partition.

We also worked on the complexity of the related decision problem:
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Theorem 4.1.10. For every k ≥ 1, either every graph in C admits an (I, ∆k)-partition, or deciding
whether a graph in C admits an (I, ∆k)-partition is an NP-complete problem.

In addition, we construct a graph in C that does not admit an (I, ∆3)-partition in Section 4.6. This
graph and Theorem 4.1.10 imply the following.

Corollary 4.1.11. Deciding whether a graph in C admits an (I, ∆3)-partition is an NP-complete problem.

4.2 (I, O3)-partition of graphs maximum average degree less than 5
2

Let us first recall the statement of Theorem 4.1.4.

Theorem 4.1.4 (recall). Every graph G with mad(G) < 5
2 admits an (I, O3)-partition.

In this proof, we will use a similar method to that of Sections 3.4 and 3.5. This gives an insight that this
method can be applied to several problems. As our discharging procedure is different, we have a different
definition for the light forest.

In our (I, O3)-partitions, we will usually call the colour sets I and O respectively. Note that I and O will
indifferently be considered as colours or as the sets of vertices with those colours. We say that an O-vertex
is saturated if it has either two O-neighbours, or an O-neighbour u that has two O-neighbours. We say
that an O-vertex is partially saturated if it has an O-neighbour and is not saturated. At last, we say that
an O-vertex is unsaturated if it has no O-neighbour. Note that O-vertices that are not saturated are not
necessarily unsaturated, as they can also be partially saturated.

We will prove Theorem 4.1.4 via the discharging method. Let G = (V, E) be a counter-example to
Theorem 4.1.4 with as few vertices as possible.

The graph G is connected, since otherwise at least one of its components would be a counter-example to
Theorem 4.1.4 with fewer vertices than G.

Lemma 4.2.1. Every vertex in G has degree at least 2.

Proof. Let v be a 1−-vertex in G. Since G is connected, if v has degree 0, then V = {v} and G admits an
(I, O3)-partition, a contradiction. Therefore v has degree 1. The graph G − v has fewer vertices than G.
Thus it admits an (I, O3)-partition, which can be extended to an (I, O3)-partition of G by giving to v a
colour distinct from that of its neighbour. That is a contradiction.

Lemma 4.2.2. Every 3−-vertex in G has at least one 3+-neighbour.

Proof. Let v be a 3−-vertex such that every neighbour of v is a 2−-vertex (and thus a 2-vertex by Lemma 4.2.1).
Let G′ = G − N [v]. The graph G′ has fewer vertices than G, therefore it admits an (I, O3)-partition. For
every vertex in N(v) that has a neighbour in G′, we can colour that vertex with the colour distinct from
that of its neighbour that is in G′. If two vertices of N(v) are adjacent, we can colour one with colour O and
one with colour I. If all the vertices in N(v) have colour O, then we can colour v with colour I. Otherwise,
v has at most two neighbours in G that are coloured O, and each of them has no neighbours in G that are
coloured O. Therefore we can give v colour O, and we obtain an (I, O3)-partition of G, a contradiction.

A 2-vertex that has a 2-neighbour is called a light 2-vertex, and a 2-vertex that does not have a 2-
neighbour is a heavy 2-vertex. Let us build a rooted forest in G, that we will call the light forest L, using
the following rules.

1. For all light 2-vertex v, let u be the 3+-neighbour of v (that exists by Lemma 4.2.2), we add v and u
(if it is not already in L) to the light forest, as well as the edge uv. We set that u is the father of v.
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2. Whenever there is a 4-vertex w that is the father of three vertices in L, such that w has a 2-neighbour
v that is not in L, do the following. Let u be the neighbour of v distinct from w. Since v is not in L,
v is a heavy 2-vertex, and thus u is a 3+-vertex. Add the vertices u (if it is not already in L) and v to
L, as well as the edges uv and vw. The vertices u and v are the fathers of v and w respectively.

Whenever there is a 3-vertex w that is the father of a vertex in L and has a 2-neighbour v that is not
in L, do the following. Let u be the neighbour of v distinct from w. Since v is not in L, v is a heavy
2-vertex, and thus u is a 3+-vertex. Add the vertices u (if it is not already in L) and v to L, as well
as the edges uv and vw. The vertices u and v are the fathers of v and w respectively.

A vertex u is a son of a vertex v if v is the father of u. By construction, every son of a 3+-vertex is a
2-vertex, and every son of a 2-vertex is a 3+-vertex.

Note that, by Lemma 4.2.2, every 3-vertex has a 3+-neighbour, thus every 3-vertex that has a son can
have at most one father (its sons and fathers being 2-vertices). Hence, every vertex has at most one father.
Moreover, there are no cycles, thus that construction leads to a rooted forest. We say that a vertex v
descends from a vertex u if there are vertices w1 = u, w2, ..., wk−1, wk = v for some k ≥ 2, such that for all
1 ≤ i ≤ k − 1, wi is the father of wi+1.

Lemma 4.2.3. Let v be a 3+-vertex of L that has a father u and let D be the set of vertices that descend
from v in L. Let H be an induced subgraph of G − (D ∪ {u, v}). We can find an (I, O3)-partition of
G[V (H) ∪ D ∪ {v}] such that, if v is coloured O, then it is not saturated.

Proof. Since H has fewer vertices than G, the graph H admits an (I, O3)-partition.
We will prove the lemma by induction. We assume that, for every 3+-vertex x that descends from v, we

can colour x and all of its descendants such that, if x is coloured O, then it is not saturated.
Note that by construction of the light forest, since v is a 3+-vertex that has a father, v is either a 4-vertex

with three sons or a 3-vertex with one son.
Suppose v is a 4-vertex. Vertex v has three sons, say v1, v2 and v3. Note that they are 2-vertices by

construction. For all i in {1, 2, 3}, let wi be the neighbour of vi distinct from v. Let i ∈ {1, 2, 3}. Assume
first that vi is a light 2-vertex, that is that wi is a 2-vertex. Let x be the neighbour of wi distinct from vi.
If wi and x are both in O, then we can recolour wi to I. Therefore we can assume that, if wi is coloured
O, then it is unsaturated. Assume now that vi is not a leaf of L. By induction, we can colour wi and its
descendants such that, if wi is coloured O, then it is not saturated. Now, for all i, we can colour vi with
colour O. Finally, we can colour v with colour I.

Suppose now that v is a 3-vertex with son v1 (which is a 2-vertex). Let v2 be the third neighbour of v,
and w be the neighbour of v1 distinct from v. If v1 is a heavy 2-vertex, then we colour w and its descendant
such that if w is in O, then it is not saturated. If v1 is a light 2-vertex, then we can also assume as above
that, if w is in O, then it is not saturated (otherwise we can recolour w with I). If v2 is in I, then we colour
v1 with the colour distinct from that of w, and we colour v with colour O. Note that in that case v is not
saturated. If v2 is not in I, then we can colour v1 with colour O and v with colour I.

That ends the proof of the lemma.

Lemma 4.2.4. Every 3-vertex of G has at most one son in L.

Proof. Let v be a 3-vertex with at least two sons, v1 and v2, in L. Let w1 and w2 be the neighbours of v1

and v2 respectively distinct from v, and let v3 be the neighbour of v distinct from v1 and v2. Note that by
Lemma 4.2.2, v3 is a 3+-vertex. Let D be the set of the descendants of v. The graph G − (D ∪ {v}) has
fewer vertices than G. Therefore it admits an (I, O3)-partition. For i ∈ {1, 2}, if vi is a light 2-vertex, then
we can assume, up to recolouring wi, that if wi is in O, then it is unsaturated. For i ∈ {1, 2}, if vi is a heavy
2-vertex, then wi is a 3+-vertex, and by Lemma 4.2.3, we can colour wi and all of its descendants such that,
if wi is in O, then it is not saturated.

If v3 is in I, then, for all i ∈ {1, 2}, we give to vi the colour distinct from that of wi, and since v has at
most two O-neighbours and each of them is unsaturated, we can give colour O to v. If v3 is in O, then we
put v1 and v2 in O and v in I. In both cases, that leads to an (I, O3)-partition of G, a contradiction.
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Lemma 4.2.5. Every 4-vertex of G has at most three sons in L.

Proof. Let v be a 4-vertex with four sons, v1, v2, v3, and v4, in L. Let w1, w2, w3, and w4 be the neighbours
of v1, v2, v3, and v4 respectively, distinct from v. Let D be the set of the descendants of v. The graph
G − (D ∪ {v}) has fewer vertices than G. Therefore it admits an (I, O3)-partition. For i ∈ {1, 2, 3, 4}, if vi

is a light 2-vertex, then we can assume up to recolouring wi that, if wi is in O, then it is unsaturated. For
i ∈ {1, 2, 3, 4}, if vi is a heavy 2-vertex, then wi is a 3+-vertex, and by Lemma 4.2.3, we can colour wi and
all of its descendants such that, if wi is in O, then it is not saturated. We can put all of the vi’s in O, and v
in I. That leads to an (I, O3)-partition of G, a contradiction.

Now all the structural lemmas we need have been proven, and we can move on to the discharging
procedure. We give an initial charge to each vertex of degree d equal to d − 5

2 . Since mad(G) < 5
2 , the sum

of the initial charges in the graph is negative.

Discharging procedure

• Step 1 : Every 3+-vertex of L gives 1
2 to each of its sons.

• Step 2 : Every 3+-vertex gives 1
4 to each of its 2-neighbours that are not its neighbours in L.

Throughout that procedure, no charge is created and no charge is deleted. It follows that the sum of the
final charges of the vertices is negative. Let us now prove that every vertex has a non-negative final charge.
That contradiction completes the proof of Theorem 4.1.4.

Lemma 4.2.6. Every vertex has a non-negative final charge.

Proof. Each 2-vertex has initial charge equal to − 1
2 . Every 2-vertex that is in L receives 1

2 from its father in
Step 1 (recall that every 2-vertex in L has a father in L that is a 3+-vertex). Every 2-vertex that is not in L
has two 3+-neighbours by construction of L, and thus receives 1

4 from each of its two neighbours in Step 2.
Thus every 2-vertex has a non-negative final charge.

Let v be a 3-vertex. Vertex v has initial charge equal to 1
2 . By Lemma 4.2.2, v has at most two 2-

neighbours. Thus, if v is not in L, then it gives no charge in Step 1 and at most twice 1
4 in Step 2. Suppose

v is in L. By Lemma 4.2.4, v has at most one son in L, and by construction, if it has one son and another
2-neighbour u, then u is the father of v. Therefore either v has at most one 2-neighbour, or it has two
2-neighbours and one of its 2-neighbours is its father in L. Consequently, if v is in L, then it gives 1

2 to its
son in Step 1 and gives nothing in Step 2. In all cases, v has non-negative final charge.

Let v be a 4-vertex. Vertex v has initial charge equal to 3
2 . By Lemma 4.2.5, v has at most three sons

in L. If v has at most three 2-neighbours, then it gives charge amounting to at most 3 × 1
2 = 3

2 in Step 1
and Step 2. Suppose v has three sons in L and has another 2-neighbour u. By Lemma 4.2.5, v cannot have
four sons, therefore u is not the son of v. Hence, if u is not the father of v, then u is not in L, and we would
have applied Step 2 of the construction of the light forest. Thus u is the father of v, and v gives 3 × 1

2 = 3
2

in Step 1 and nothing in Step 2. The remaining case is when v has at most two sons in L. In that case, it
gives charge amounting to at most 2 × 1

2 + 2 × 1
4 = 3

2 in Step 1 and Step 2. In all cases, v has a non-negative
final charge.

For all d ∈ N, d ≥ 5, every d-vertex has initial charge equal to d − 5
2 ≥ d

2 , and gives charge amounting to
at most d

2 over Step 1 and Step 2. Therefore every 5+-vertex has non-negative final charge.

4.3 Ideas for (I, Ok)-partition of graphs with bounded maximum

average degree

Let us first recall the statement of Theorem 4.1.6.

Theorem 4.1.6 (recall). Let k ≥ 2 be an integer. Every graph G with mad(G) < 8k
3k+1 = 8

3

(
1 − 1

3k+1

)

admits an (I, Ok)-partition.
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In our (I, Ok)-partitions, we will usually call the colour sets I and O respectively. Sets I and O will
indifferently be used to call the vertex sets of the partition and their respective colours.

Let us give some intuition on how our reasoning proceeds. We are going to use the discharging method.
We first consider a counter-example G to Theorem 4.1.6 with as few vertices as possible.

Lemma 4.3.1. The graph G is connected and its minimum degree is at least 2.

Proof. If G is not connected, then one of its components is a smaller counter-example to Theorem 4.1.6,
contradicting the minimality of G.

If G contains a 0-vertex, then G is reduced to that vertex and admits an (I, Ok)-partition.
Let v be a 1-vertex of G. The graph G − v has fewer vertices than G, therefore it admits an (I, Ok)-

partition. If the neighbour of v is coloured I, then we put v in O, and otherwise we put v in I. That leads
to an (I, Ok)-partition of G, and thus to a contradiction.

We would like to prove that some more configurations are reducible. Consider a 2-vertex v. The graph
G−v has fewer vertices than G, and thus admits an (I, Ok)-partition. Since this partition cannot be extended
to G, one of the neighbours of v is in I, and the other is in O, and its component in G[O] has exactly k
vertices. We add v to O. This gives us a near (I, Ok)-partition of G, where G[I] is an independent set and
every component of G[O] has at most k vertices, except for one component which has exactly k + 1 vertices.
Now, every configuration in which the near (I, Ok)-partition can be transformed into an (I, Ok)-partition
of G is reducible.

There are some reducible configurations that can be directly deduced from that. Mainly, from the fact
that each vertex in the component of v in G[O] (recall that v is now in O in the near (I, Ok)-partition)
must have an I-neighbour. This implies in particular that if k ≥ 2, then the O-neighbour of v must be a
3+-vertex (it has an I-neighbour and an O-neighbour distinct from v), and thus every 2-vertex in G has a
3+-neighbour.

Let w be the O-neighbour of v, and x be an I-neighbour of w. Suppose w has degree 3 and x has degree
2 (those are the minimum degrees these vertices can have). Then the neighbour z of x distinct from w is in a
component of G[O] with exactly k vertices, otherwise we could exchange the colours of w and x and obtain
an (I, Ok)-partition of G. Let us exchange the colours of w and e. We obtain a new near (I, Ok)-partition
and we can apply the same reasoning as before for vertex z. That way, we can derive arbitrarily many
forbidden configurations. Our aim is to give a scheme for these configurations so that we can actually use
them in a discharging procedure.

The initial repartition of the charges will be mainly on the vertices of high degree (we can give each
vertex v a weight of d(v) − mad(G)). Therefore with the idea that the higher the degree, the higher the
charge, we can start by reasoning with vertices whose degree is as small as possible. By applying that rule,
we can assume that w0 = w has degree 3 with an I-neighbour x0 = x of degree 2 and an O-neighbour w1

distinct from v, that w1 has degree 3 and has an I-neighbour x1 of degree 2 and an O-neighbour w2... until
wk−1, that actually has degree 2 and has an I-neighbour xk−1. The same reasoning can then be done taking
any of the xi’s instead of v, and thus for all i, xi has a similar structure to the one described above where
it takes the place of v and its neighbour distinct from wi takes the place of w. That is, if we put wi in I
and xi in O, then we obtain a partition where the component of xi in G[O] has more than k vertices, and
we can reason on that new partition.

If every vertex v has an initial weight of d(v) − mad(G), and assuming that mad(G) < 3, only the 2-
vertices have a negative initial weight. In the previous configuration, one would like the vertices w0, w1, ...,
wk−2 to give all their weight (that is (k − 1)(3 − mad(G))) to v and wk−1, such that v and wk−1 receive the
weight they need (that is mad(G)−2 each). The xi’s then receive the weight they need from their neighbour
distinct from the wi’s. We do that inductively, obtaining layers of vertices as in Figure 4.3.1. That gives
us a local discharging procedure on some vertices of the graph, including the vertex v, such that the final
weight of those vertices in non-negative. The idea is then to do that same reasoning around each 2-vertex.

There are several problems with what is described above.
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Figure 4.3.1: The configuration considered around a 2-vertex v.

Problems

1. We just considered the extremal case where the wi’s form a path, but they could form any other graph.
We need to check that in case the components of G[O] are not actually paths we can still do our weight
distribution.

2. The xi’s do not need to be 2-vertices. Actually, we have a similar weight distribution if they are for
example 3-vertices inside a path of G[O] instead of 2-vertices at the end of that path. This implies that
the discharging procedure described above cannot easily be described in terms of the structure of the
graph, and is heavily dependant on the near (I, Ok)-partition of G we considered. Since that partition
depends in particular on the vertex v we started with, we will need to make sure that the discharging
procedures devised around each 2-vertex are compatible with one another.

3. The structure can sometimes not be that easy to determine. Starting from the second layer, the
components of G[O] can become arbitrarily large. For example, in the previous reasoning, the vertex
x1 could have degree 3 and have two O-neighbours besides w1, each being in a component of G[O] with
k vertices. That would lead, by changing the colours of x1 and w1, to a partition where the component
of x1 in G[O] has a lot more than k + 1 vertices (here 2k + 1 vertices). Then some of these vertices can
be recoloured to O without there being a contradiction. Therefore it can be complicated to find which
vertices can take the place of the xi’s in the previous reasoning and give the weight needed.

4. The xi’s do not need to be all distinct. That could be dealt with if it was only on one layer, but
there can actually be an I-vertex that is adjacent to vertices of several layers, which makes things a
lot more complicated. Actually, we could not completely remove this issue, and we had to revise our
discharging procedure so that in that case, the two O-neighbours of the I-vertex considered each give
it the necessary weight, which produced a worse bound than what we hoped to get.

The first of those problems is quite easy to handle. The idea is that if instead of a path, the graph
considered is any tree with the same number of vertices, then the number of edges remains the same, and
thus the sum of the degrees of the vertices also remains the same. Therefore, we actually have the same
weight if the component of v in G[O] is any tree instead of a path, and we have a larger weight if it is not a
tree.

Let us move on to the second of those problems, that is the fact that different local discharging procedures
may interfere. We will always insure that vertices only give weight to their neighbours, and give at most
mad(G)−2 to their neighbours (which is the weight needed by the 2-vertices). In each of the local discharging
procedure, we describe some discharging that apply among vertices of a specific set S, in such a way that
vertices in S end up with non-negative weight and give mad(G) − 2 to their neighbours outside of S. That
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way, we can just choose one of the two overlapping local discharging procedures, and say that it applies in
priority over the other ones. For the vertices of the local discharging procedure that has priority, they end up
with a non-negative weight since the discharging that is applied is that of that procedure. For the vertices
of the other local discharging procedure, they get at least as much weight from each of their neighbours as
in that local discharging procedure, so they also end up with a non-negative weight.

For the third problem, we move on to more complex aspects of the reasoning. In large components of
G[O], we need to know, for each vertex, whether that vertex can give weight or if it can be recoloured to
I. If when every vertex that can be put in I is put in I, the remaining component of G[O] still contains at
least k + 1 vertices, then there is (locally) enough weight to do the discharging procedure, and otherwise the
recolouring is (locally) an (I, Ok)-partition. But to know if one of those vertices can be put in I, we need
to put it in I and check if we can make the colouring consistent in the next layer. To do that, we build a
recursive procedure that chooses, at each layer, whether to recolour or ensure the weight is enough for the
discharging procedure. We will describe that procedure (actually, two procedures because of the changes
between the first layer and the following ones) in Section 4.4, and we will give a series of lemmas on this
procedure. It can be noted that this reasoning cannot actually be done layer by layer (breadth first), and
actually needs to be done, in each layer, completely for one vertex before getting to the next one (depth
first). That is why we do not consider layers in our recursive procedure, and instead consider the local layer
associated with each vertex (that will be called the cluster set of that vertex).

For the fourth problem, we did not find a way to recolour the vertices when an I-vertex is adjacent to
vertices in different layers. The resulting change in the discharging procedure quite worsens our results. If
the wi’s did not need to give any weight to the xi’s, as described above the problems, we would only need
to ensure that (k − 1)(3 − mad(G)) > 2(mad(G) − 2), i.e. mad(G) < 3k+1

k+1 . This would imply, for k = 3,
Theorem 4.1.4, and for k → ∞, mad(G) → 3. Our actual bound of mad(G) < 8k

3k+1 in Theorem 4.4 (the
calculations are done in Section 4.4) is quite worse, but still gives the best known bounds to date for k ≥ 9.

4.4 (I, Ok)-partition of graphs with bounded maximum average
degree

Let us first recall the statement of Theorem 4.1.6.

Theorem 4.1.6 (recall). Let k ≥ 2 be an integer. Every graph G with mad(G) < 8k
3k+1 = 8

3

(
1 − 1

3k+1

)

admits an (I, Ok)-partition.

Let us consider a counter-example G to Theorem 4.1.6 with as few vertices as possible. In this section,
unless we specify otherwise, the degrees of the vertices we consider are the degrees in G. That is, when we
speak for example about a k-vertex, we mean a vertex of degree k in G. Our discharging procedure consists
in giving weights to vertices so that the total sum of the weights is negative and then in moving these weights
according to some rules from vertex to vertex so that all the vertices eventually have non-negative weights
(due to some structural properties of G). That contradiction completes the proof.

Given an (I, Ok)-partition of a graph, we say that a vertex v with colour O is saturated if the component
in G[O] containing v is of order k.

The following lemma was proven in the previous section:

Lemma 4.3.1 (recall). The graph G is connected and its minimum degree is at least 2.

The key point of the proof is the use of two procedures, a main one (Procedure 4.4.13) that calls a
secondary inductive one (Procedure 4.4.1). Procedure 4.4.13 starts with a colouring that is a near (I, Ok)-
partition of G. From that partition, the procedures try to deduce an (I, Ok)-partition of G, leading to a
contradiction when it is possible. When this is not possible, the procedures build a structure that will later
enable us to apply a discharging procedure on G, leading to a contradiction.

The vertices of G will be marked up to twice. At the start the vertices are unmarked. We will mark the
vertices up to twice and may unmark some of them. The principle is that vertices are marked once when we
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first encounter them, and a second time when we actually treat them. In the end, each vertex will be either
twice marked or unmarked (i.e. the state of being marked once is only temporary), and the twice marked
vertices will be able to give weight to their neighbours that are unmarked. For the rest, the weight will move
between twice marked vertices. For all i ∈ {0, 1, 2}, let V i (resp Ii, Oi) be the set of vertices of V (G) (resp.
I, O) marked i times.

In Procedures 4.4.1 and 4.4.13, for some of the vertices v ∈ V , we will define the cluster set S(v) of v to
be a set of vertices such that v /∈ S(v), S(v) ∪ {v} induces a connected graph. Given a vertex v, an element
of S(v) is a subordinate of v. We say that v supervises the elements of S(v). We will also sometimes define
some cluster sets with no supervisor. For some of the vertices v ∈ V , we will also define a giving edge e(v)
incident to v. Finally, some edges of E may become neutral edges. All these notions are useful to describe
our discharging process. Some ideas to keep in mind are the following:

• We will specify the discharging procedure in each cluster set.

• Only twice marked vertices will give weight.

• A twice marked vertex will give less weight to its adjacent subordinates than to its unmarked neigh-
bours.

• A giving edge will link two twice marked vertices. A giving edge e(v) = vw of v means that w will be
able to give weight to v as if v is unmarked (at some point of the procedures, w is twice marked and
v is not marked yet, and thus w could give weight to v).

• Neutral edges are edges between vertices that do not give weight to each other.

Procedures 4.4.1 and 4.4.13 try to recolour some of the vertices of V . When we recolour some vertices,
we remember the colour they had, such that we can revert all the recolourings that have been done since
the start of the procedure. When we say that we revert all the recolourings that have been done since the
start of the procedure, or that we reset the colourings, we mean since the start of the call of the procedure
that we are currently treating. This is important since the procedure calls itself recursively. For example,
suppose we make a call A to the procedure, and that call makes a call B to the procedure. If we say in the
code of A before the call to B that we reverse all the recolourings that have been done, then we undo all the
recolourings done since the start of call A. If we say this in the code of B, then we only reverse what has
been recoloured since the start of call B. Lastly, if we say this in the code of A after the call to B, then we
reverse all the changes that were done since the beginning of call A, including those that were done in call
B.

Similarly, we will also reverse all the markings that have been done since the beginning of the procedure.
When we do so, we also reset the cluster sets and the giving and neutral edges as they were at the start of
the procedure.

Procedure 4.4.1 supposes that all the vertices of G are coloured with colours O and I, such that no two
adjacent vertices have colour I (but no assumption is made on vertices with colour O). Considering an
O2-vertex v, the aim of Procedure 4.4.1 is either to recolour v with colour I, or to get a cluster set or a
neutral edge for v.

The sets W , C, and C ′ in Procedure 4.4.1 are not sets defined for the whole procedure, but local sets
defined at each call of the procedure.

Let us present now Procedure 4.4.1 that is applied to an O2-vertex v:

Procedure 4.4.1. Let W be the set of I-neighbours of v.

1. If a vertex w of W is twice marked, then we set S(v) = ∅, we set vw as a neutral edge, and we end the
procedure.

Now every vertex of W is marked up to once.

2. If a vertex w of W has an O2-neighbour u distinct from v, then we set S(v) = {w} and e(w) = wu,
we mark w twice, and we end the procedure.
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3. If a vertex w of W has an O1-neighbour u, then we set S(v) = S(u) = {w}, we mark u a second time,
we mark w twice, and we end the procedure.

4. All the vertices of W only have O0-neighbours. We recolour v with I and every vertex of W with O0.
Let X be the set of the vertices of W that are in a component of G[O] having at least k + 1 vertices.
Let C be the set of vertices of the components of G[O0] containing (at least) a vertex of X.

While there exists a vertex in C \ X that has all its neighbours in O, put that vertex in I, and redefine
X and C as before (but with respect with the new colouring of the graph).

Mark once all the 3+-vertices of C \ X, and twice the vertices of X.

Now while there is a vertex c ∈ C \ X marked once, do the following:

(a) Mark c a second time and apply Procedure 4.4.1 to the vertex c.

(b) If c is in I, then we undo all the markings that have been done since the start of the procedure,
reset the cluster sets and giving and neutral edges as they were at the start of the procedure,
redefine X and C as before (but with respect to the new colouring of the graph), mark once all the
3+-vertices of C \ X and twice all the elements of X.

5. If X is empty at the beginning of (4) or becomes empty during (4).b, then we stop the procedure (in
that case, we succeed to recolour v with I and to manage all the resulting conflicts).

Now, set S(v) = ∅.

For every component C ′ of G[C] with at least k + 1 vertices, we add to S(v) the 3+-vertices of C ′, plus
the 2-vertices of C ′ ∩ X.

For every component C ′ of G[C] with at most k vertices such that a 3+-vertex x in C ′ is adjacent to
a vertex y that was already twice marked at the start of the procedure, we add to S(v) the 3+-vertices
of C ′, plus the 2-vertices of C ′ ∩ X, and set e(x) = xy for one such x.

We undo all the recolourings that have been done since the start of the procedure.

We now prove a series of properties of Procedure 4.4.1.

Lemma 4.4.2. In a given call to Procedure 4.4.1, the only vertices that become unmarked are vertices that
have been marked during the procedure.

Proof. Every time we undo the markings that have been done in the procedure, the marking state resets to
what it was at the start of the procedure. Since we never unmark a vertex aside from those resets, no vertex
that was marked at least once at the start of the procedure becomes unmarked in the procedure.

By single call, we mean a call without considering the inner recursive calls. When we say that a change
(of the colouring or the markings, for example) happens directly, we mean it does not happen during a reset
of the colouring or the markings of the vertices. The following lemma is straightforward.

Lemma 4.4.3. In a single call to Procedure 4.4.1 applied to vertex v, the only time a vertex is recoloured
from O to I is by undoing some recolourings (end of Step 5), except for v and some vertices in O0 with no
neighbours in I during Step 4.

Lemma 4.4.4. At the end of a call to Procedure 4.4.1 applied to vertex v, either all the vertices have the
same colour as before the call, or they have all the same markings, subordinates, giving edges and neutral
edges as before the call. Moreover, at the end of Procedure 4.4.1, v is in O if and only if all the vertices have
the same colour as before the call.

Proof. In Steps 1, 2, and 3, there are no recursive calls and no recolourings, therefore if the procedure stops
in one of those, then all the vertices have the same colour as before the call. In those cases, the vertex v is
still in O. If Step 4 is reached, then Step 5 is also reached, and either all the recolourings are undone (end
of Step 5), or all the markings, subordinates and giving edges are reset (Step 4.b) or unchanged (the case
where X is empty). As v is given colour I in Step 4, if the colourings are not undone, then v is in I. If all
the recolourings are undone, then v is back in O. That ends the proof of the lemma.
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In the following, we will generally ignore what was done then undone. In particular, by Lemma 4.4.4, we
can assume that every call to Procedure 4.4.1 either does not change the colouring or does not change the
markings, subordinates, and giving and neutral edges of the vertices.

The following two lemmas ensure that the procedure keeps the colouring at least as good as it was.

Lemma 4.4.5. If no two vertices of I are adjacent before a call to Procedure 4.4.1, then no two vertices of
I are ever adjacent during the call.

Proof. By contradiction, let v and w be two adjacent vertices that are not both in I and that become
adjacent I-vertices during a call A to Procedure 4.4.1. Let us consider the first time v and w are both in I.
This happens after one of v and w, say v, was recoloured from O to I. That recolouring cannot be the result
of a reset of the colourings, since v and w were never in I together before. Thus v was recoloured to I while
its neighbour w was in I. By Lemma 4.4.3, since v has a neighbour in I, this implies that v was recoloured
as the vertex for which some call B to Procedure 4.4.1 was applied. In call B, v was recoloured from O to
I in Step 4, and w, that was in W at this point as an I-neighbour of v, was recoloured from I to O at the
same time. Therefore v and w were never in I at the same time.

Lemma 4.4.6. After a call to Procedure 4.4.1, the vertices of all the components of G[O] with more than k
vertices were in O at the start of the call.

Proof. Consider a call to Procedure 4.4.1 for which the lemma is not true. We assume by induction that
the recursive calls verify the lemma. By Lemma 4.4.4, we can assume that we are in a call for a vertex v
which is in I at the end of the call (otherwise the colouring is the same as before the call). This implies
that in Step 5, the set X was empty, and thus that all the elements of W were not in components of G[O]
with more than k vertices. The only time when vertices are put from I to O in Procedure 4.4.1 is when we
recolour the vertices of W in the beginning of Step 4. That proves the lemma.

The next two lemmas prove that Procedure 4.4.1 terminates.

Lemma 4.4.7. In Step 4 of Procedure 4.4.1, every time the set C changes, it ends up with fewer vertices
than before.

Proof. Let A be the current call to Procedure 4.4.1. Assume that the set C of call A has changed after a
call A′ to Procedure 4.4.1 for some vertex c ∈ C. By the definition of C in Step 4b and by Lemma 4.4.4,
this implies that c has changed colour from O to I. The vertex c is no longer in G[O0], thus it is removed
from C.

Let us prove that no new vertex was added to C. Consider a vertex that is in C after a change of C and
was not in C the previous time C was defined. Note that the state of the markings just before the change of
C is the same as at the start of call A, either because they did not change or because they were reset. Also
note that the only time a vertex may have been recoloured from I to O is in a recursive call called by A.
As the elements of X correspond to vertices of W that are in components of C with at least k + 1 vertices,
by Lemma 4.4.6 no new vertex is put in X. Furthermore, the elements of X that remained in X do not
have any new vertex in their component of G[O], and thus, since the markings are the same, no new vertex
in their component of G[O0] either. Therefore C does not have any new vertex. This ends the proof of the
lemma.

Lemma 4.4.8. Procedure 4.4.1 terminates, and at the end of the procedure, every vertex that is marked
once was marked once at the start of the procedure.

Proof. Procedure 4.4.1 calls itself recursively. To make sure that it terminates, we only need to make sure
on the one hand that such calls cannot be infinitely nested, and on the other hand that each of these calls
only makes a finite number of calls to the procedure. First, note that every time we call Procedure 4.4.1
recursively, at least one additional vertex is twice marked (the vertex for which the new call is applied).
Therefore there cannot be infinitely nested inductive iterations.

Now we proceed by induction. Assume that for a given call A to the procedure, each recursive call stops
while not marking once any vertex that was not marked once. If the procedure stops in Step 1, 2 or 3 then
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clearly no new vertex is marked once. Now we assume that Step 4 is reached. Let n1 be the number of
vertices in C, and let n2 be the number of vertices that are marked once in C.

By Lemma 4.4.7, every time C changes, n1 decreases strictly. When it does not change during an iteration
of Step 4b, then at least one vertex of C that was marked once is now twice marked, thus n2 decreases strictly.
At each iteration of Steps 4a and 4b, the lexicographical order (n1, n2) decreases strictly, therefore there
are finitely many such iterations. Moreover, whenever the set C changes, all the markings made during the
procedure are cancelled, and in the end, all the vertices that have been marked once (only vertices of C, by
induction hypothesis), are now twice marked. In Step 5, there are no new vertices that are marked once,
and the procedure stops.

Lemma 4.4.9. Throughout the procedure, no vertex is ever in I1.

Proof. Let v be the first vertex that is put in I1. We consider the call A where v was first in I1. As we
never alter the colourings and markings at the same time, either v was put from O to I while marked once,
or it became marked once while in I.

Suppose v was put from O to I while marked once. If call A was applied for vertex v, then v was twice
marked at the start of call A, and by Lemmas 4.4.2 and 4.4.8 v remained twice marked throughout call A, a
contradiction. Therefore call A was not applied for vertex v, and thus by Lemma 4.4.3, the recolouring from
O to I of v was done during a reset of the recolouring, and thus at the end of Step 5 for call A. Therefore v
was marked once at the end of call A. This implies by Lemma 4.4.8 that v was already marked once at the
start of call A. Moreover, since v was recoloured from O to I during the reset of the colouring in Step 5, it
was in I at the start of call A. Therefore v was in I1 at the start of call A, a contradiction.

Suppose v became marked once while in I. The only vertices that we mark once directly are vertices of
C, that are in O. Therefore v became marked once due to a reset of the markings, thus v was marked once
at the start of call A, thus it was in O1. By Lemma 4.4.2, v never became unmarked until the end of call
A. By Lemma 4.4.3, the first time v was put in I, v was the vertex that a certain call B of Procedure 4.4.1
was applied for. But this implies that when the call B was applied, v was in some set C, and thus had been
unmarked at some point since the start of call A, which leads to a contradiction.

Lemma 4.4.10. Every time Procedure 4.4.1 changes the cluster set of a vertex, if this change is not undone
afterwards during the procedure, then that vertex either is the vertex we are applying the procedure for, or
was not twice marked at the start of the procedure and is twice marked at the end of the procedure.

Proof. We consider a call A to the procedure. Let v be a vertex whose cluster set is changed during call A
or one of its recursive calls. If v is the vertex some call B Ó= A is applied for, then it became twice marked
just before call B, since calls to Procedure 4.4.1 are always made for vertices that have just become twice
marked. By Lemmas 4.4.2 and 4.4.8, since we only mark once vertices that were previously unmarked, v was
not twice marked at the start of call A and it remains twice marked until the end of call A. The only time
the procedure changes the cluster set of another vertex is when u was marked once in Step 2, in which case
the vertex u is also marked a second time. Similarly, by Lemmas 4.4.2 and 4.4.8, and since we only mark
once vertices that were previously unmarked, u was not twice marked in the beginning of the procedure. As
the cluster sets and the markings are always reset together, the lemma follows.

Note that this implies that as long as we only apply Procedure 4.4.1 to vertices that just became twice
marked (as we do in Step 4a), we will never set twice the cluster set of a vertex.

Let us define a property Π:

Property (Π). No 3+-vertex in O0 has an O1-neighbour, and no 2-vertex in O0 has a neighbour in O1 and
the other neighbour in O.

That property is ensured by the fact that when we put vertices in O1, all the vertices of the component
in O0 are put there together, except from some 2-vertices that have an I-neighbour.

Lemma 4.4.11. If Π is true before a call A to Procedure 4.4.1 until the end of call A, every time Π becomes
false, it is restored before any recursive call is applied, and before the procedure ends.
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Proof. We consider the first time Π is not true at the start or the end of some call to Procedure 4.4.1. We
consider the event that caused Π to fail. By induction, we suppose that every recursive call preserves Π. Let
us consider the change that caused the property Π to be broken, and prove that Π is restored immediately.

Suppose the change was direct, i.e. not because of some reset. When we mark a vertex u once, which
only happens in Step 4, we do so for all the vertices in the component of u in G[O0] except some 2-vertices
that have an I-neighbour, and thus Π is maintained. Moreover, by Lemma 4.4.2, no vertex directly becomes
unmarked. Therefore the change was a change in the colouring. Hence some vertex w was put from I to O.
Moreover, as no vertex that is marked once ever changes colour directly, w was unmarked when it changed
colour. Therefore either w has a neighbour u in O1, or it has a 2-neighbour u in O0 that has a neighbour
x in O1. Vertex w is put in O as a vertex of W in Step 4 of some call B to Procedure 4.4.1. If call B was
applied for vertex u, then u is put in I when w is put in O, and the property is not broken. Therefore call
B was not applied for u. Then u is not in O1, otherwise we would have stopped call B in Step 2. Thus u is
a 2-vertex in O0 incident to w with two O-neighbours, and thus it is put in I in Step 4 of call B.

Now we suppose the considered change is some reset. Suppose first that the reset was a reset of the
colouring. This happens only at the end of Step 5, therefore at the end of the procedure, and the colouring
is reset to what it was at the start of the procedure. By Lemmas 4.4.2 and 4.4.8, no new vertex is marked
once or zero times at the end of the procedure compared to the start, so the property was already broken at
the start of the current call to the procedure, a contradiction.

Thus the reset was a reset of the markings, subordinates and giving edges. Then some vertex w must have
been put from I to O between the start of the procedure and this reset was such that w has an O-neighbour
u that either was in O1 at the start of the procedure, or is a 2-vertex that was in O0 at the start of the
procedure, such that the other neighbour x of u was in O at the start of the procedure. Since the resets are
well parenthesised, we may assume that the recolouring of w was not the consequence of a reset, i.e. was
done directly. We are now interested in the state of the procedure at the time when w is put from I to O.
Note that this recolouring must happen in Step 4 for some call B, and that the marking in the beginning of
Step 4 is still the same as at the start of call B. Also note that, unless u is a 2-vertex with its two neighbours
in O, u cannot be in O0 by Lemma 4.4.2. If call B was applied for vertex u, then u is put in I when w is
put in O, and the property is not broken. Therefore call B was not applied for u. Then u is not in O1 nor
O2, otherwise we would have stopped call B in Step 2. Thus u is a 2-vertex in O0 incident to w with two
O-neighbours, and thus it is put in I in Step 4 of call B.

The following lemma implies that Procedure 4.4.1 either manages to recolour vertex v with colour I, or
gives it a neutral edge or a cluster set.

Lemma 4.4.12. Let A be a call to Procedure 4.4.1. Suppose that before a call A to Procedure 4.4.1, Π is
true. After call A, if the vertex v for which the call was applied is in O, then either v is incident to a neutral
edge, or S(v) Ó= ∅.

Proof. If Procedure 4.4.1 stops in Step 1, then v is incident to a neutral edge. If Procedure 4.4.1 stops in
Step 2 or Step 3, then S(v) is not empty. If the procedure reached Step 4, then it reached Step 5. We
can assume that the vertex v is in O at the end of the procedure, and thus by Lemma 4.4.4 that all the
recolourings have been undone.

All that remains to prove is that S(v) Ó= ∅. We know that X is not empty in Step 5, otherwise v would be
in I. Let x be a vertex of X. By Lemma 4.4.9, since x was in I at the start of the procedure (as a member
of W ), it was not marked once. Therefore x ∈ C. By definition of X, the component K of x in G[O] has at
least k + 1-vertices. By Lemma 4.4.6, since K still has at least k + 1 vertices the last time X is redefined,
K did not gain any new vertex since the beginning of the recursive calls. Let C ′ be the component of x in
G[C]. If C ′ has at least k + 1 vertices, then x ∈ S(v). Otherwise, by definition of X, there is a vertex y in
C ′ that has a neighbour z that was in O1 or O2 last time X was defined. By Lemma 4.4.11, the graph G
verified Π just before we last marked once all the vertices of C \ X in Step 4, and thus the last time X was
defined. Therefore z was in O2 the last time X was defined, and thus also the first time C was defined. The
vertex y is not in W (otherwise we would have stopped in Step 2), therefore it is not a 2-vertex (otherwise
we would have put it in I as a 2-vertex in C with two O-neighbours). Therefore x ∈ S(v).
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Let us now define a new procedure, applied on the graph G with no colouring, but where some vertices
may be twice marked. The aim of that new procedure is, for some unmarked 2-vertex v, to make one of its
neighbours become twice marked.

We start with every vertex of G unmarked. While there is a 2-vertex v that is not twice marked and has
no neighbour that is twice marked, we apply the following procedure.

Procedure 4.4.13. 1. The graph G − v has fewer vertices than G, therefore it admits an (I, Ok)-
partition. The vertex v has a neighbour u in I and a neighbour w in O that is saturated, otherwise
we can colour v with either I or O, which leads to a contradiction. Give colour O to v (note that this
leads to a component of order k + 1 in G[O]).

2. Let us consider the component C of v in G[O0]. Mark once every 3+-vertex of C. For every once
marked vertex x of C, we mark x a second time and we apply Procedure 4.4.1 for x. Note that there
is no 2-vertex in C with both neighbours in O, as otherwise we could put such a vertex in I and get
a colouring of G. We define a cluster set S as the set of 3+-vertices in C. The set S is defined with
no supervisor, and if there is an edge from a vertex x of S to a vertex y that was twice marked at the
beginning of Procedure 4.4.13, then let e(x) = xy for one such x.

We are now ready to prove some more lemmas, to ensure that the graph obtained after all the calls to
Procedure 4.4.13 have been applied verifies the properties we will need in the discharging procedure.

Lemma 4.4.14. In Procedure 4.4.13, no vertex of C is ever put in I, and at the end of each call to
Procedure 4.4.1, all the recolourings have been undone.

Proof. By Lemma 4.4.6, the calls to Procedure 4.4.1 never add any new vertex to the component of v in
G[O], otherwise this component ends up with at most k vertices, and by Lemmas 4.4.5 and 4.4.6, we get an
(I, Ok)-partition of G, a contradiction.

Procedure 4.4.13 cannot lead to recolouring to I any of the vertices of C. Indeed, by Lemmas 4.4.5
and 4.4.6, this would lead to an (I, Ok)-partition of G. Thus by Lemma 4.4.4, in every application of
Procedure 4.4.1, all the recolourings have been undone.

Lemma 4.4.15. After any number of calls to Procedure 4.4.13, no vertex is marked once.

Proof. The property is true initially, when every vertex is unmarked. Suppose that no vertex is marked once
at the beginning of some call to Procedure 4.4.13. We mark each 3+-vertex in C once. Afterwards, for each
vertex x ∈ C that was marked once, we mark it twice and apply Procedure 4.4.1, that does not mark once
any new vertex by Lemma 4.4.8. Therefore at the end of the call, no vertex is marked once. The lemma
follows by induction.

Lemma 4.4.16. After any number of calls to Procedure 4.4.13, every twice marked vertex is either adjacent
to one of its supervisors, or has a neutral edge, or has a non-empty cluster set.

Proof. Let w be a twice marked vertex. Initially, no vertex is twice marked. Therefore w became twice
marked at some point, and this change was not reset afterwards. Let us consider the moment w became
twice marked. If w is twice marked in Step 2 or 3 of Procedure 4.4.1, then either it is adjacent to one of it
supervisor, or it is given a subordinate. If w is twice marked in Step 4 of Procedure 4.4.1 as a vertex of W ,
it later becomes adjacent to its supervisor v in Step 5.

Suppose v became twice marked in Procedure 4.4.13 or in Step 4a of Procedure 4.4.1. Then some call
A to Procedure 4.4.1 is applied for this vertex right after. Therefore, by Lemma 4.4.12, since Π is true
at the start of each call to Procedure 4.4.1, at the end of call A, either v has a neutral edge, or it has a
non-empty cluster set, or it is in I. If it is in I, then by Lemma 4.4.14, v became twice marked in Step 4a
of Procedure 4.4.1, and thus the marking of v is reset in Step 4b, a contradiction. Therefore v has a neutral
edge or a non-empty cluster set. That ends the proof of the lemma.

Lemma 4.4.17. No unmarked vertex has a cluster set or a giving edge.
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Proof. This is true in the beginning as no vertex has a cluster set or a giving edge. Every time a vertex is
given a cluster set or a giving edge in Procedures 4.4.1 and 4.4.13, this vertex is twice marked. We always
reset the cluster sets, the giving edge and the markings together. Finally, no twice marked vertex directly
becomes unmarked or marked once.

Lemma 4.4.18. Every vertex belongs to at most two cluster sets. Moreover if a vertex belongs to two cluster
sets, then that vertex has no giving edge and the two sets contain only that vertex.

Proof. Let v be a vertex in two cluster sets S and T . When S was set, v was twice marked. Indeed, every
vertex that is put in a cluster set is twice marked. As the cluster sets are reset together with the markings,
and no twice marked vertex directly becomes unmarked or marked once, this implies that v remains twice
marked afterwards.

Let us prove that v was unmarked at the start of the call to Procedure 4.4.1 or 4.4.13 in which S is set. If
S is set in Steps 1, 2 or 3 of Procedure 4.4.1, this is trivial. If S is set in Step 5 of Procedure 4.4.1, then the
last time C was set in Step 4, v was put in C, and therefore v was in O0. Furthermore, at that point the set
of the markings was the same as it was at the start of the procedure. Therefore if S is set in Procedure 4.4.1,
then v was unmarked at the start of the procedure. If S is set in Procedure 4.4.13, then v is in C, and thus
was unmarked at the start of the procedure.

Therefore v was unmarked at the start of the call to Procedure 4.4.1 or 4.4.13 in which S was set, and
was twice marked at the end of that call. The same holds for T . Therefore S and T were set in the same
call to Procedure 4.4.1 or 4.4.13. The only time this can happen is in Step 2 of procedure 4.4.1, and this
implies that S = T = {v}, and v has no giving edge by Lemma 4.4.17. By what precedes, if v is also in a
third cluster set U , then U was also set in the same call to Procedure 4.4.1 or 4.4.13 as S and T , which is
impossible.

Note that the previous proof also implies the following lemma.

Lemma 4.4.19. Every vertex that is in a cluster set is twice marked.

Lemma 4.4.20. After any number of calls to Procedure 4.4.13, every twice marked vertex is in a cluster
set.

Proof. In Procedures 4.4.1 and 4.4.13, whenever a vertex that was in V 2 is put in V 0 ∪ V 1, it happens
because of a reset of the markings. Therefore, since the resets are well nested (they correspond to the nested
calls to Procedures 4.4.1 and 4.4.13), the resets of the markings can never put a vertex from V 0 ∪ V 1 to V 2.

When a vertex w that was unmarked becomes twice marked in Procedure 4.4.1 or 4.4.13, it either happens
in Steps 2 or 3 of Procedure 4.4.1, in which case w is put in S(v), or it happens in Step 4 of Procedure 4.4.1,
in which case w is in C. Besides that, whenever a vertex w becomes twice marked, w was marked once, so it
was in C for some call A to Procedure 4.4.1 or Procedure 4.4.13. Hence every time a vertex w becomes twice
marked, either it is in a cluster set or it is in C for some call A to Procedures 4.4.1 or 4.4.13, in which case,
when call A stops, either the vertex w is still in C, in which case it is put in a cluster set, or it is no longer
in C and the markings were reset since w became twice marked. Since the cluster sets and the markings are
reset at the same time, this proves the lemma.

Lemma 4.4.21. After any number of calls to Procedure 4.4.13, if a vertex x has a giving edge e(x) = xw,
then x and w are twice marked, they are not in the same cluster set, neither of them is the subordinate of
the other one, and we do not have e(w) = wx.

Proof. Whenever a giving edge xw is given to a vertex x in a call A to Procedure 4.4.1 or 4.4.13, w was
already twice marked at the start of call A, and x was unmarked at the start of call A. This implies that
we do not have e(w) = wx unless the considered edge is reset. Moreover, x is put in the cluster set defined
at the end of call A, and w is not since it was already twice marked at the start of call A. This implies that
x and w are not put in the same cluster set. Moreover, by Lemmas 4.4.17 and 4.4.19, x and w were not the
subordinates of one another before the start of call A. Furthermore, no vertex that was twice marked before
the start of a procedure is ever put in a cluster set or given a subordinate in that procedure unless it has just
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become twice marked and Procedure 4.4.13 is applied to it. Therefore x and w were not the subordinates
of one another at the end of call A. After call A, by Lemma 4.4.17, x and w are both twice marked, and
thus neither of them is given new subordinates. As the cluster sets and the giving edges are always reset
together, that proves the lemma.

Lemma 4.4.22. A neutral edge is incident to two twice marked vertices. A neutral edge is not incident to a
vertex and one of its subordinates. A neutral edge is not incident to two vertices belonging to a same cluster
set. A neutral edge is not a giving edge.

Proof. Let us consider a neutral edge vw. The only time it can have been set as a neutral edge is in Step 1
of a call A to Procedure 4.4.1 for vertex v. The cluster set of v is empty, therefore w is not a subordinate of
v. Moreover, w is a vertex in I2 when A is called in some call B to Procedure 4.4.1 or 4.4.13, and v became
twice marked just before A was called. The vertex v is in C for call B, and will be put in the set S containing
all the element of C (unless C is redefined, in which case the giving edge vw is reset). Let us consider the
time when call A is applied. When the set C (for call B) was defined, it contained only elements of O, and
if after some call A′ called by B before A, the colouring had changed, then by Lemma 4.4.4 the set C would
have been redefined. Therefore when A is applied, all the elements of C for call B are in O, therefore w is
not in that set C. Therefore v and w are not in the same cluster set. Additionally, when the giving edges
are defined in B, they are between vertices in O, so vw is not defined as a giving edge in B. Before call A,
the vertex v is not twice marked, and after call A, the vertices v and w are both twice marked, thus vw is
never defined as a giving edge. Moreover, if B is a call to Procedure 4.4.1, then v is not in the set W of call
B, therefore v is not adjacent to its supervisor if it has one, and thus v is not a subordinate of w. As the
markings, the cluster sets, the giving edges and the neutral edges are reset together, that ends the proof of
the lemma.

Lemma 4.4.23. After any number of calls to Procedure 4.4.13, every non-empty cluster set S satisfies one
of the following:

• S is a singleton {v} with two supervisors ; moreover v has no subordinates and no giving edges.

• For each component K of G[S], either K has a vertex with a giving edge, or
∑

x∈K(d(x) − 2) ≥ k − 1.

Proof. The lemma is true initially as there are no cluster sets.
Let us consider a set S that does not verify the lemma. The set S is defined in some call A to Pro-

cedure 4.4.1 or 4.4.13. If S is defined in Step 1, 2, or 3 of Procedure 4.4.1, then the lemma is trivially
verified for S. We can assume that A is either a call to Procedure 4.4.13, or that Step 5 is reached. We
consider the set C as it is last defined in call A, and if A is a call to Procedure 4.4.13, then let X = ∅.
Let K be the component of S defined from a component C ′ of G[C] (K is defined from C ′ by removing
some vertices that have degree 1 in C ′, and degree 2 in G). By construction, either C ′ contains a 3-vertex
with a giving edge, or |C ′| ≥ k + 1. Suppose |C ′| ≥ k + 1. For every vertex u of C ′ \ X, since u was
not put in I in Step 4, u has a neighbour that is not in C (that was in I when C was defined), and
thus not in C ′. For every vertex u of X, u is adjacent to its supervisor, which is not in C ′. Therefore∑

x∈K(d(x) − 2) =
∑

x∈C′(d(x) − 2) =
∑

x∈C′(dC′(x) − 1), where dC′(x) is the number of neighbours of x
in C ′. The graph C ′ being connected,

∑
x∈C′(dC′(x) − 1) ≥ |C ′| − 2 ≥ k − 1. Therefore, the set S verifies

the lemma.

Lemma 4.4.24. Let v be a 2-vertex in V 2. The vertex v is adjacent to all of its supervisors.

Proof. Procedure 4.4.13 does not mark twice a 2-vertex, except in its calls to Procedure 4.4.1. Moreover,
every time a vertex becomes marked once, that vertex is a 3+-vertex, thus only 3+-vertices are ever marked
once.

In Procedure 4.4.1, if a 2-vertex becomes twice marked in Step 2 or 3, then it is adjacent to its supervi-
sor(s), and if a 2-vertex becomes twice marked in Step 4, then it belongs to X ⊆ W and thus is also adjacent
to its supervisor. No vertex becomes twice marked anywhere else in Procedure 4.4.1. As the cluster sets and
the markings are reset together, that proves the lemma.
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Discharging procedure

Let M = 8k
3k+1 . Every vertex v starts with a weight equal to d(v) − M . As M is larger than the average

degree of G, the sum of the weights of the vertices is negative. We will move some weights from vertices to
other vertices, without introducing or removing weights, so that every vertex has non-negative weight at the
end of the procedure. That contradiction will complete the proof.

In the discharging procedure, the weights will move via the edges (i.e. the weights will always move from
one vertex to one of its neighbours). We apply the following four steps.

• Step 1 : Every vertex w with two supervisors receives M−2
2 from each of its supervisors.

• Step 2 : Every vertex, that is twice marked, gives M − 2 to each of its unmarked neighbours.

• Step 3 : Every vertex v that has a giving edge, say e(v) = vw, receives M − 2 from w.

• Step 4 : For every component C of the graph induced by a cluster set S, we do the following. Let T be
a spanning tree of C. For each pair of adjacent vertices u and v, let nT uv be the sum, for all vertex w
of the component of v in T −u, of d(w)−2. For each vertex u of T and each neighbour v of u in T , the
vertex u gives M − 2 − nT uv(4 − 3M

2 ) to v if this value is positive, unless v is in the same component
of T − u as a vertex that has a giving edge (in that case u does not give weight to v).

Lemma 4.4.25. No unmarked vertex gives weight to another vertex.

Proof. By contradiction, suppose there is an unmarked vertex v that gives weight to another vertex u.
By Lemma 4.4.17, v has no subordinate, so it does not give weight in Step 1 of the discharging procedure.
Since v is unmarked, v does not give weight in Step 2.
Suppose v gives weight to u in Step 3. Then e(u) = uv. Every time a giving edge is set in Procedures 4.4.1

and 4.4.13, its other endpoint is twice marked. Moreover the marking and giving edges are always reset
together. That implies v is twice marked, a contradiction.

Suppose v gives weight in Step 4. Then v is in a cluster set and thus v is twice marked by Lemma 4.4.19,
a contradiction.

Lemma 4.4.26. Every unmarked vertex has non-negative weight at the end of the discharging procedure.

Proof. We applied Procedure 4.4.13 until every 2-vertex is either twice marked or has a neighbour that is
twice marked. Each unmarked vertex either has degree at least 3 > M or has initial weight 2 − M and
receives at least M − 2 in Step 2 of the discharging procedure. Furthermore, each of these vertices does not
give weight by Lemma 4.4.25. That ends the proof of the lemma.

Lemma 4.4.27. No weight is given through a neutral edge.

Proof. This is a direct consequence of Lemma 4.4.22.

Lemma 4.4.28. A subordinate does not give weight to its supervisor. A supervisor does not give weight to
its subordinates except maybe in Step 1.

Proof. Suppose v is the supervisor of a vertex w. By Lemmas 4.4.15, 4.4.17, and 4.4.19, v and w are twice
marked and thus do not give weight to each other in Step 2. By Lemma 4.4.21, they do not give weight to
each other in Step 3. By Lemma 4.4.18, v and w cannot be both contained in a same cluster set ; hence
they do not give weight to each other in Step 4.

Now, if w gives weight to v in Step 1, then v is in two cluster sets. Then, by Lemma 4.4.18, v has no
giving edge and is alone in its cluster sets, therefore by Lemma 4.4.23, w has no subordinates, a contradiction.
Thus w does not give weight to v in Step 1.

Lemma 4.4.29. Every vertex v gives weight to each of its neighbours w at most once in the discharging
procedure. Moreover, if v gives weight to w, then w does not give weight to v.
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Proof. Let v and w be two adjacent vertices. Suppose that v gives weight to w at some point in the
discharging procedure. By Lemmas 4.4.15 and 4.4.25, v is twice marked.

Suppose first that v gives weight to w in Step 1. By Lemma 4.4.28, w does not give weight to v and v
does not give weight to w in Steps 2-4.

Suppose now that v gives weight to w in Step 2. As w is then unmarked, it does not give weight by
Lemma 4.4.25. By Lemma 4.4.17 (resp. Lemma 4.4.19), v does not give weight to w in Step 3 (resp. Step 4).

Suppose that v gives weight to w in Step 3. By Lemma 4.4.21, v and w are in distinct cluster sets, thus
they do not give weight to each other in Step 4. Also by Lemma 4.4.21, we do not have e(v) = vw, thus w
does not give weight to v in Step 3.

Lastly, suppose for contradiction that v gives weight to w and w gives weight to v in Step 4. Then v and
w are in the same (unique by Lemma 4.4.18) cluster set S and in the same component C of G[S]. Let T be
the tree that was chosen in Step 4 of the discharging procedure for C.

Observe that no vertex in the component of v in T − w nor in the component of w in T − v has a giving
edge, and thus that no vertex of C has a giving edge. Also observe that nT vw + nT wv =

∑
x∈C(d(x) − 2) ≥

k − 1 by Lemma 4.4.23. Since v and w both give weight, we have M − 2 − nT wv(4 − 3M
2 ) > 0 and

M − 2 − nT vw(4 − 3M
2 ) > 0. Therefore 2M − 4 − (k − 1)(4 − 3M

2 ) > 0, i.e. M > 8k
3k+1 , a contradiction. That

ends the proof of the lemma.

Lemma 4.4.30. Every vertex that is twice marked has non-negative weight at the end of the discharging
procedure.

Proof. Let v be a d-vertex that is twice marked (d ≥ 2). By Lemma 4.4.20, v is in a cluster set S. By
Lemma 4.4.23,

• either S is the singleton {v} with two supervisors, say u and w, and no giving edge,

• or the component of G[S] containing v, say C, has a vertex having a giving edge or satisfies
∑

x∈C(d(x)−
2) ≥ k − 1.

Consider the former case. The vertices u and w both give M−2
2 to v in Step 1. The vertex v gives nothing

to u and w by Lemma 4.4.29, and at most (d(v) − 2)(M − 2) ≤ d(v) − 2 to its other neighbours. It follows
that v has weight at least equal to d(v) − M + 2 M−2

2 − (d(v) − 2) = 0.
Consider the latter case. Let T be defined for C in Step 4 of the discharging procedure. By Lemma 4.4.16,

v is either adjacent to one of its supervisors, or is incident to a neutral edge, or has a non-empty cluster set. In
each case, v is adjacent to a vertex w that is either the supervisor of v, or the other endpoint of a neutral edge,
or one of the subordinates of v. By Lemmas 4.4.18 and 4.4.22, w does not belong to S. By Lemmas 4.4.27
and 4.4.28, v gives weight at most M−2

2 to w, and it does not give weight to w if w is the supervisor of v.
Let v1, ..., vd−1 be the neighbours of v distinct from w. For the vi’s that are not the neighbours of v in T ,
nT vvi

is not defined and we set nT vvi
= 0, and v gives at most M − 2 = M − 2 − nT vvi

(4 − 3M
2 ) to vi.

Suppose that at least two of the vi’s give weight to v or are in a component of T − v containing a vertex
that has a giving edge. Those two vertices do not receive weight from v by Lemma 4.4.29 and Step 4. As
v has initial weight equal to d − M and gives at most M − 2 to each of its neighbours distinct from w, the
final weight of v is at least d − M − M−2

2 − (d − 3)(M − 2) = (d − 3)(3 − M) + 4 − 3M
2 ≥ 0 since M < 8

3 .
Suppose one of the vi’s, say v1, gives weight to v (by Step 3 or 4) or is into a component of T − v

containing a vertex that has a giving edge. By Lemma 4.4.29 and Step 4, v does not give weight to v1. If
e(v) = vv1, then v receives M − 2 from v1. In that case, nT vvi

is not defined and we set nT v1v = 0. So by
Step 3 or 4, v receives at least M − 2 − nT v1v(4 − 3M

2 ) = 4−M
2 − (nT v1v + 1)(4 − 3M

2 ) from v1. Moreover v

gives at most 4−M
2 − (nT vvi

+ 1)(4 − 3M
2 ) to each of the other vi’s. Observe that

∑
i>1(nT vvi

+ 1) ≥ nT v1v

(since v has one neighbour outside from the vi’s). At last, v gives at most M−2
2 to its last neighbour w.

Overall, v receives at least 4−M
2 − (nT v1v +1)(4− 3M

2 ) and gives at most (d−2) 4−M
2 −nT v1v(4− 3M

2 )+ M−2
2 ,

and initially it has a weight equal to d − M . Therefore, the final weight of v is at least d − M + 4−M
2 −

(nT v1v + 1)(4 − 3M
2 ) − (d − 2) 4−M

2 + nT v1v(4 − 3M
2 ) − M−2

2 = d − M − (d − 3) 4−M
2 − (3 − M) = (d − 3) M−2

2 .
Hence, if d ≥ 3, then the final weight of v is non-negative. If d = 2, then v is adjacent to its supervisor by
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Lemma 4.4.24 and v gives nothing to its supervisor. Therefore the final weight of v is at least M−2
2 more

than what we computed above, and thus is non negative.
Suppose now that none of the vi’s give weight to v and that none of them are into a component of

T − v containing a vertex having a giving edge. That implies that no vertex of C has a giving edge,∑
x∈C(d(x) − 2) ≥ k − 1 by Lemma 4.4.23, and thus

∑
i nT vvi

≥ k − d + 1. For all i, v gives at most
M − 2 − nT vvi

(4 − 3M
2 ) to vi. Moreover, v gives at most M−2

2 to its last neighbour w. Overall, v gives at
most (d−1)(M −2)−(k−d+1)(4− 3M

2 )+ M−2
2 , and initially it has a weight equal to d−M . Therefore the final

weight of v is at least d−M−(d−1)(M−2)+(k−d+1)(4− 3M
2 )− M−2

2 . As M = 8k
3k+1 , we have k(4− 3M

2 ) = M
2 ,

therefore the final weight of v is at least d−M − (d−1)(M −2)+ M
2 − (d−1)(4− 3M

2 )− M−2
2 = (d−3) M−2

2 .
As in the previous paragraph, the final weight of v is at least 0 if d ≥ 3. If d = 2, then v is adjacent to its
supervisor by Lemma 4.4.24, so v does not give weight to its supervisor, and so its final weight is at least
(d − 2) M−2

2 = 0. That ends the proof of Lemma 4.4.30.

By Lemmas 4.4.15, 4.4.26, and 4.4.30, every vertex has non-negative weight at the end of the procedure.
As the sum of the weights of the vertices is negative, that leads to a contradiction. Therefore the counter-
example G to Theorem 4.1.6 does not exist and that ends the proof of Theorem 4.1.6.

4.5 (I, ∆6)-partition of planar graphs with no C3, C4 or C6

Recall that C denotes the set of planar graphs with no cycles of length 3, 4 or 6. We are going to prove the
following theorem.

Theorem 4.1.9 (recall). Every graph in C admits an (I, ∆6)-partition.

Given an (I, ∆6)-partition of a graph, we call the respective colour sets I and ∆, and we similarly call
the corresponding colours I and ∆.

The proof will be using the discharging method. Let us define the partial order °. Let n3(G) be the
number of 3+-vertices in G. For any two graphs G1 and G2, we have G1 ≺ G2 if and only if one of the
following conditions holds:

• n3(G1) < n3(G2);

• n3(G1) = n3(G2) and |V (G1)| < |V (G2)|.

Note that the partial order ° is well-defined and is a partial linear extension of the subgraph poset.
We suppose for contradiction that G is a graph in C that has no (I, ∆6)-partition and is minimal according

to °. We consider an embedding of G in the plane. Let n denote the number of vertices, m the number
of edges, and f the number of faces of G. In this section, a 7−-vertex will be called a small vertex and an
8+-vertex will be called a big vertex. A small neighbour (resp. big neighbour) of a vertex v is a neighbour of
v that is a small vertex (resp. a big vertex).

Let us first prove some results on the structure of G, and then we will prove that G cannot exist, thus
proving the theorem.

Lemma 4.5.1. G is connected.

Proof. If G is not connected, then every component of G is smaller than G and thus admits an (I, ∆6)-
partition. The union of these (I, ∆6)-partitions gives an (I, ∆6)-partition of G, a contradiction.

Lemma 4.5.2. G has no 1−-vertex.

Proof. Since G is connected and the graph with one vertex is not a counter-example, G has no 0-vertex. Let
v be a 1-vertex and w be the neighbour of v. The graph G − v admits an (I, ∆6)-partition since G − v ≺ G.
We get an (I, ∆6)-partition G by assigning to v the colour distinct from the colour of w, a contradiction.

Lemma 4.5.3. Every small vertex of G has a big neighbour.
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Proof. Let v be a small vertex with no big neighbours. The graph G − v admits an (I, ∆6)-partition since
G − v ≺ G. If there is a neighbour w of v with no I-neighbour, then we colour w with I. Thus, we can
assume that every neighbour of v that is coloured ∆ has an I-neighbour in G − v, and thus at most five
∆-neighbours in G − v. Also, we can assume that v has at least one I-neighbour, since otherwise v can be
coloured I. Thus, v has at most six ∆-neighbours and v can be coloured ∆, a contradiction.

Lemma 4.5.4. Every small 3+-vertex has two big neighbours.

Proof. Suppose for contradiction that G contains a d-vertex v such that 3 ≤ d ≤ 7 and such that v has at
most one big neighbour. By Lemma 4.5.3, v has exactly one big neighbour w. Let w1, . . . , wd−1 be the other
neighbours of v. Let H be the graph obtained from G − v by adding d − 1 2-vertices v1, . . . , vd−1, such that
for every i ∈ {1, d − 1}, vi is adjacent to w and wi.

Notice that H ≺ G since n3(H) = n3(G) − 1. Moreover, every cycle of length ℓ in H is associated with
a cycle of length ℓ or ℓ − 2 in G. Therefore H ∈ C, so H has an (I, ∆6)-partition.

If w is coloured I, then every vi is coloured ∆, and colouring v with ∆ leads to an (I, ∆6)-partition of
G, a contradiction. Therefore w is coloured ∆.

If at least one of the vi’s is coloured ∆, then w has at most five ∆-neighbours in G − v. We then give
colour ∆ to v, and every wi that has all of its neighbours in ∆ is put in I. That leads to an (I, ∆6)-partition
of G. Otherwise, every vi is coloured I, every wi is coloured ∆, and w is coloured ∆. Thus we can colour v
with I to obtain an (I, ∆6)-partition of G, a contradiction.

Lemma 4.5.5. No 3-vertex is adjacent to a 2-vertex.

Proof. Let w be a 3-vertex adjacent to a 2-vertex v, let x1 and x2 be the other two neighbours of w, and let
u be the other neighbour of v. Let H be the graph obtained from G − {v, w} by adding five 2-vertices v1, v2,
w1, w2, and x which form the 8-cycle uv1w1x1xx2w2v2. It is easy to check that H is in C. By Lemmas 4.5.3
and 4.5.4, u, x1, and x2 are big vertices in G and thus are 9+-vertices in H. Since w is in G but not in H,
n3(H) = n3(G) − 1, so H ≺ G. Therefore H has an (I, ∆6)-partition.

Suppose that v1 and v2 are both coloured I. Then w1, w2, and u are coloured ∆. We colour v with I
and w with ∆. The number of ∆-neighbours of x1 (resp. x2) in G is at most the number of ∆-neighbours of
x1 (resp. x2) in H. Thus we have an (I, ∆6)-partition of G, a contradiction. Now we assume without loss
of generality that v1 is coloured ∆. We colour w with the colour of x and we colour v with ∆. The number
of ∆-neighbours of u (resp. x1, x2) in G is at most the number of ∆-neighbours of u (resp. x1, x2) in H.
Thus we have an (I, ∆6)-partition of G, a contradiction.

A special face is a 5-face with three 2-vertices and two non-adjacent big vertices. See Figure 4.5.1, left.
A semi-special face is a 5-face with, in this order, a big vertex, a 3-vertex, another big vertex, and two
2-vertices. A special configuration is three semi-special faces sharing a common 3-vertex. See Figure 4.5.1,
right. We say special structure to speak indifferently about a special face or a special configuration.

Let us define a hypergraph Ĝ whose vertices are the big vertices of G and the hyperedges correspond to
the sets of big vertices contained in the same special structure. For every vertex v of Ĝ, let d̂(v) denote the
degree of v in Ĝ, that is the number of hyperedges containing v.

Lemma 4.5.6. Let α be a special structure, with the notation of Figure 4.5.1, and consider an (I, ∆6)-
partition of α.

We can change the colour of the xi’s, yi’s, and u such that the vi’s have no more neighbours with colour
∆ than before, and for all i, if vi has colour ∆, then vi has an I-neighbour.

Proof. If all of the vi’s are in I, then there is nothing to do. If they are all coloured ∆, then we give colour
I to u. If one of the vi’s, say v0, is coloured I and another one, say v1, is coloured ∆, then u and x0 are
coloured ∆ and we can give colour I to y0. Moreover, if α is a special configuration and v2 is coloured ∆,
then y2 is coloured ∆ and we can give colour I to x2.

Lemma 4.5.7. For every vertex v in Ĝ, d(v) − d̂(v) ≥ 7.
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Figure 4.5.1: A special face (left) and a special configuration (right).

Proof. Let v be a vertex that does not verify the lemma, i.e. such that d(v) − d̂(v) ≤ 6. As v is a big vertex
in G, d̂(v) ≥ 2. Let α be a special structure incident to v in Ĝ. We use the notation of Figure 4.5.1, with say
v = v0. The graph G − x0 is smaller than G, thus it admits an (I, ∆6)-partition. As G does not admit such
a colouring, v0 has colour ∆ and y0 has colour I. By Lemma 4.5.6, we can assume that v has an I-neighbour
in each of its special structures distinct from α. Since y0 has colour I, v1 is coloured ∆. If α is a special
face, or if v2 has colour ∆, then we can colour u with I. If α is a special configuration and v2 has colour I,
then x2 has colour ∆ and we can colour y2 with I. In both cases, v has at least d̂(v) I-neighbours, thus even
if we give colour ∆ to x0, v has at most d(v) − d̂(v) ≤ 6 neighbours in ∆, thus G has an (I, ∆6)-partition, a
contradiction.

Lemma 4.5.8. Every component of Ĝ has at least one vertex v such that d(v) − d̂(v) ≥ 8.

Proof. Suppose the lemma is false, and let C be a component of Ĝ that does not verify the lemma. If C has
only one vertex, then this vertex is a big vertex, which verifies d(v) − d̂(v) ≥ 8 (as d̂(v) = 0.) Therefore C
has at least one hyperedge, which corresponds to a special structure α of G. By Lemma 4.5.7, every vertex
of C verifies d(v) − d̂(v) = 7. We use the notation of Figure 4.5.1. The graph G − {x0, y0} is smaller than
G, thus it admits an (I, ∆6)-partition. Since G admits no (I, ∆6)-partition, v0 and v1 are coloured ∆. If α
is a special configuration and v2 is coloured I, then x2 and y1 are coloured ∆ and we can colour y2 and x1

with I. Otherwise, we can colour u with I. Note that v0 and v1 both have six ∆-neighbours. Moreover, by
Lemma 4.5.6, we can assume that each of the vi’s that is in ∆ has at least one I-neighbour in each of its
special structures other than α.

If one of the either v0 or v1, say v0, has an additional neighbour with colour I, it verifies d(v0)− d̂(v0) ≥ 8,
a contradiction. In particular each of v0 and v1 has at most one I-neighbour in α. Suppose α is a special
configuration and u is in I. Then x2 and y1 are also in I and v2 has six ∆-neighbours, otherwise one of y2

and x1 could be put in I and one of v0 and v1 would have at most five ∆-neighbours, a contradiction. Thus,
for every vi, either vi is coloured I or vi has no I-neighbour outside of its special structures and at most one
I-neighbour in each special structure other than α.

We uncolour u and all the xi’s and yi’s, and let H be equal to G where u, the xi’s and the yi’s are
removed. By symmetry, we only consider the vertex v0. The following procedure either gives colour I to v0

or makes it so that it has two I-neighbours in one of its special structures:

• For each special structure β containing v0 and completely contained in H, we use the notation of
Figure 4.5.1, keeping the same vertex for v0, but changing the other ones for the vertices in β, and do
the following:

– By Lemma 4.5.6, we can assume that every vi coloured ∆ has an I-neighbour in each of its special
structures that are completely contained in H.
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– Suppose that one of the big vertices of β distinct from v0, say v1, has two I-neighbours in a
special structure distinct from β or an I-neighbour that is not in one of its special structures. As
d(v1) − d̂(v1) = 7, v1 has at most five ∆-neighbours outside of β if β is a special face, and at most
four ∆-neighbours outside of β if β is a special configuration. We colour y0 with colour ∆ and x0

with colour I. If v2 exists and is coloured I, then we can colour y2 with I, and otherwise we can
colour u with I. We end the procedure.

– We uncolour the small vertices of β and remove them from H.

– For every big vertex w Ó= v0 in β coloured ∆, we apply the procedure with w instead of v0. Now
w is coloured I or has two I-neighbours in the same special structure.

– We add back to H the small vertices of β. If v0 is coloured I, then we give colour ∆ to those that
have an I-neighbour, we give colour I to the other ones, and we end the procedure. Now v0 is
coloured ∆. If β is a special face and v1 is coloured ∆, or if β is a special configuration and v1

and v2 are coloured ∆, then we colour u and x0 with I, we colour the other 2-vertices with ∆,
and we end the procedure. Suppose β is a special configuration, either v1 or v2, say v1, has colour
∆, and the other one has colour I. We give colour I to x0, x1, and y2, and colour ∆ to u, y0, y1,
and x1, and we end the procedure. Now all of the vi’s distinct from v0 have colour I. We colour
x0 and y2 (if it exists) with I and we colour the other small vertices in β with colour ∆.

• If we reach this point, then in each special structure containing v0 and completely contained in H, all
of the big vertices distinct from v0 have colour I. We give colour ∆ to all of the neighbours of v0, and
colour I to v0.

Let us prove that the previous procedure terminates. It always calls itself iteratively on a graph with
fewer vertices, thus the number of nested iterations is bounded by the order of the initial graph. Furthermore,
each iteration of the procedure only does a bounded number of calls to the procedure (at most two). That
proves that the procedure terminates.

In the end, if one of the vi’s is coloured ∆, then it has at most five ∆-neighbours outside of α if α is a
special face, and at most four ∆-neighbours outside of α if α is a special structure. If every vi is coloured
∆, then colour u with colour I and the other small vertices of α with colour ∆. Otherwise, give colour ∆ to
u, and do the following:

• If every vi is coloured I, then colour all of the xi’s and yi’s with colour ∆.

• If α is a special face and one of the vi’s, say v0, is coloured I while the other one is coloured ∆, then
give colour ∆ to x0 and I to y0.

• If α is a special structure, then give colour ∆ to the yi’s, and for all i ∈ {0, 1, 2}, if vi is coloured ∆,
then give colour I to xi, and if vi is coloured I, then give colour ∆ to xi.

In all cases, we get an (I, ∆6)-partition of G, a contradiction.

For each component C of Ĝ, we choose a vertex v in C such that d(v) − d̂(v) ≥ 8 (by Lemma 4.5.8) as
the root of C. We set that the vertex v sponsors all of its hyperedges. Then while there is a hyperedge α in
C that has no sponsor, we choose a vertex in one such hyperedge that is also in a hyperedge that is already
sponsored, and we set it to sponsor α. We can always do that until all of the hyperedges are sponsored, since
C is connected. That way, every vertex in C other than v is in at least one hyperedge it does not sponsor.
As the hyperedges of Ĝ correspond exactly to the special structures of G, we say that a vertex sponsors one
of its special structures in G if and only if it sponsors the corresponding hyperedge in Ĝ.

Discharging procedure

We are now going to give some weight on the vertices and faces of the graph. Initially, for all integer d ≥ 2,
every d-vertex has weight d − 4, and every d-face has weight d − 4. Thus every face and every 4+-vertex has
non-negative initial weight.
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Figure 4.5.2: The discharging steps. From left to right, Steps 1 to 5.

We are now ready to give the discharging procedure. See Figure 4.5.2 for an illustration of the different
steps.

• Step 1 : Every big vertex gives weight 1
2 to each of its small neighbours, 1

2 to each special face it
sponsors, and an additional 1

2 to the 3-vertex of each special configuration it sponsors. Additionally,
for every edge vw where v and w are big vertices, v and w each give 1

4 to each of the faces containing
the edge vw, and 1

4 more to the face containing vw if there is only one face containing vw.

• Step 2 : For each small 3+-vertex v in G, v gives 1
2 to each of its 2-neighbours. Moreover, it gives 1

2 to
each of its incident 5-faces where it is adjacent to two big vertices and where there are two 2-vertices.

• Step 3 : Every time a small 3+-vertex v appears in the boundary of a face f , if (at least) one of the
two neighbours of v that appear consecutively to v in the boundary of G is a big vertex, f gives 1

4 to
v.

• Step 4 : Each 5-face gives 1
4 to each of its 2-vertices with no 2-neighbour and 5

8 to its 2-vertices with a
2-neighbour.

• Step 5 : Each 7+-face gives 3
4 to each of its 2-vertices that belong to a 5-face and have no 2-neighbours,

7
8 to each of its 2-vertices that belong to a 5-face and have a 2-neighbour, 1

2 to each of its 2-vertices
that do not belong to a 5-face and have no 2-neighbours, and 3

4 to each of its 2-vertices that do not
belong to a 5-face and have a 2-neighbour.

Let ω be the initial weight distribution, and let ω′ be the final weight distribution (after the discharging
procedure).

Lemma 4.5.9. Every vertex v verifies ω′(v) ≥ 0.

Proof. Let v be a vertex of degree d. We have ω(v) = d − 4.

• Suppose first that d ≥ 8. The vertex v gives 1
2 to each of its small neighbours and twice 1

4 for each
of its big neighbours in Step 1, for a total of d

2 . As d ≥ 8, we have ω(v) = d − 4 ≥ d
2 . Therefore if v

sponsors no special structure, then ω′(v) = d − 4 − d
2 ≥ 0.

Suppose v sponsors a special structure. If v sponsors all of its special structures, then v is the root of
its component in Ĝ, thus d− d̂(v) ≥ 8, and we have ω′(v) = d−4− d̂(v)

2 − d
2 = d− d̂(v)−4− d−d̂(v)

2 ≥ 0.

If v does not sponsor all of its special structures, then d − d̂(v) ≥ 7, and ω′(v) = d − 4 − d̂(v)−1
2 − d

2 =

d − d̂(v) − 7
2 − d−d̂(v)

2 ≥ 0.
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• Suppose now that 4 ≤ d < 8. By Lemma 4.5.4, v has at least two big neighbours. The vertex v only
gives weight in Step 2. Moreover, it gives at most 1

2 to each of its 2-neighbours plus 1
2 for each pair of

consecutive big vertices in Step 2. If v has only big neighbours, then it receives d
2 in Step 1, and gives

at most d
2 in Step 2, so ω′(v) ≥ ω(v) = d − 4 ≥ 0. Suppose v has at least one small neighbour. Let

d′ ≥ 2 be the number of big neighbours of v. The vertex v receives d′

2 in Step 1. It gives at most d−d′

2

to the 2-vertices and at most d′−1
2 to the faces for a total of at most d−d′

2 + d′−1
2 = d

2 − 1
2 in Step 2. It

receives at least d′

4 in Step 3. We have ω′(v) ≥ d − 4 − d
2 + 3 d′

4 + 1
2 ≥ 0, since d′ ≥ 2 and d ≥ 4.

• Suppose that d = 3. By Lemma 4.5.4, v has at least two big neighbours, and by Lemma 4.5.5, v has
no 2-neighbours. If v has exactly two big neighbours, then it receives 1 in Step 1, gives 1

2 in Step 2,
and receives 3

4 in Step 3, therefore ω′(v) ≥ 1
4 > 0. If v has three big neighbours and is not in a special

configuration, then v receives 3
2 in Step 1 and an additional 3

4 in Step 3, and it gives at most 1 in Step 2
to its semi-special faces. If v is in a special configuration, then it receives 2 in Step 1 an additional 3

4 in
step 3, and it gives at most 3

2 in Step 2. Therefore if v has three big neighbours, then ω′(v) ≥ 1
4 > 0.

• Suppose that d = 2. Note that v cannot be in two 5-faces since G ∈ C (otherwise there would be a C6

in G).

– If v is in a 5-face and adjacent to another 2-vertex, then it receives 1
2 from its big neighbour in

Step 1, 5
8 from its 5-face in Step 4, and 7

8 from its other face in Step 5.

– If v is in a 5-face and adjacent to no other 2-vertex, then it receives 1 from its 3+-neighbours in
Steps 1 and 2, 1

4 from its 5-face in Step 4, and 3
4 from its other face in Step 5.

– If v is not in a 5-face and is adjacent to another 2-vertex, then it receives 1
2 from its big neighbour

in Step 1, and 3
2 from its faces in Step 5.

– If v is not in a 5-face and adjacent to no other 2-vertex, then it receives 1 from its 3+-neighbours
in Steps 1 and 2, and 1 from its faces in Step 5.

In all cases, v receives 2 over the procedure, and thus ω′(v) = 2 − 4 + 2 = 0.

Lemma 4.5.10. Every face α satisfies ω′(α) ≥ 0.

Proof. Let α be a face of degree d. We have ω(α) = d − 4. When we consider the vertices in the boundary
of α, we will assume that they are all distinct. If that is not the case, i.e. if one vertex appears several times
in the boundary of α, we can treat all of these appearances independently. Let S be the set of small vertices
in the boundary of α that appear consecutively to a big vertex in this boundary. Note that one big vertex
in this boundary is consecutive to at most two vertices in S, so S contains at most two thirds of the vertices
of the boundary. Note that the only vertices that α gives weight to are vertices of S, in steps 3 and 4 (recall
that a 2-vertex always has a big neighbour).

• Suppose d = 5. Since 2
3 · 5 < 4, there are at most three vertices in S. If α is a special face, then it

receives 1
2 in Step 1 and gives 1

4 + 2 · 5
8 = 3

2 in Step 4.

If α has no two consecutive 2-vertices, then it gives at most 1
4 to vertices in S over Steps 3 and 4.

If α has two consecutive 2-vertices and its three other vertices are big vertices, then it receives 1 in
Step 1 and gives at most 2 · 5

8 = 5
4 ≤ 2 overall.

The only remaining case is when α has, in this consecutive order, two 2-vertices, a big vertex, a small
3+-vertices, and another big vertex. In that case, α receives 1

2 in Step 2, and gives 2 · 5
8 + 1

4 = 3
2 over

Steps 3 and 4.

In all cases, ω′(α) ≥ 1 − 1 = 0.

108



• Suppose d = 7. Note that if there are two adjacent 2-vertices in α, then these two vertices are not
in a 5-face, otherwise there would be a cycle of length 6 in G. The face α has an initial charge of
3, gives at most 3

4 to vertices of S, and there are at most 4 = ⌊ 2
3 · 7⌋ of those vertices. Therefore

ω′(α) ≥ 3 − 4 · 3
4 = 0.

• Suppose d = 8. Note that at most one pair of adjacent 2-vertices in α is also in a 5-face, otherwise
there would be a cycle of length 6 in G. The face α has an initial charge of 4 and gives at most 7

8 to
vertices in S. There can be at most 5 = ⌊ 2

3 · 8⌋ of these vertices, and at most two are given 7
8 , the

other being given at most 3
4 . Therefore ω′(α) ≥ 4 − 2 · 7

8 − 3 · 3
4 = 0.

• Suppose d = 9. Note that at most two pairs of adjacent 2-vertices in α are also in a 5-face, otherwise
there would be a cycle of length 6 in G. The face α has an initial charge of 5, and gives at most 7

8 to
vertices in S. There can be at most 6 = ⌊ 2

3 · 9⌋ of these vertices, at most four are given 7
8 , and the

others are given at most 3
4 . Therefore ω′(α) ≥ 5 − 4 · 7

8 − 2 · 3
4 = 0.

• Suppose d ≥ 10. The face α has an initial charge of d − 4 and gives at most 7
8 to vertices in S. There

are at least ⌈ 10
3 ⌉ = 4 vertices in the boundary of α that are not in S. There can be at most d − 4

vertices in S, therefore ω′(α) ≥ d − 4 − (d − 4) · 7
8 > 0.

By Euler’s formula, since G is connected by Lemma 4.5.1 and has at least one vertex, n+f −m = 2. The
initial weight of the graph is

∑
v∈V (G) ω(v) +

∑
α∈F (G) ω(α) =

∑
v∈V (G)(d(v) − 4) +

∑
α∈F (G)(d(α) − 4) =∑

v∈V (G) d(v) +
∑

α∈F (G) d(α) − 4n − 4f = 4m − 4n − 4f = −8 < 0. Therefore the initial weight of the
graph is negative, thus the final weight of the graph is negative. Since by Lemmas 4.5.9 and 4.5.10, the final
weight of every face and every vertex is non-negative, we get a contradiction. This completes the proof of
Theorem 4.1.9.

4.6 NP-hardness of finding (I, ∆k)-partitions

Let k ≥ 3 be a fixed integer. Suppose that there exists a graph in C that has no (I, ∆k)-partition. We
consider such a graph Hk that is minimal according to ° (see Section 4.5, page 103). By adapting the
proofs of Lemmas 4.5.1, 4.5.2, and 4.5.3, we obtain that the minimum degree of Hk is at least two and
every (k + 1)−-vertex in Hk is adjacent to a (k + 2)+-vertex. Suppose for contradiction that Hk contains
no 2-vertex. We consider the discharging procedure such that the initial charge of every vertex is equal to
its degree and every 5+-vertex gives 1

3 to every adjacent 3-vertex. Then the final charge of a 3-vertex is at
least 3 + 1

3 = 10
3 , the final charge of a d-vertex with d ≥ k + 2 is at least d − d × 1

3 = 2
3 d ≥ 2(k + 2)/3 ≥ 10

3 ,
and the final charge of every remaining vertex is at least 4 > 10

3 . This implies that the maximum average
degree of Hk is at least 10

3 , which is a contradiction since Hk is a planar graph with girth at least 5. Thus,
Hk contains a 2-vertex v adjacent to the vertices u1 and u5.

By minimality of Hk, Hk − v has an (I, ∆k)-partition, every (I, ∆k)-partition of Hk − v is such that u1

and u5 get distinct colours, and the vertex in {u1, u5} that is coloured ∆ has exactly k ∆-neighbours.
Consider the graph H ′

k obtained from Hk − v by adding three 2-vertices u2, u3, and u4 which form a
path u1u2u3u4u5. Notice that an (I, ∆k)-partition of Hk − v can be adapted into an (I, ∆k)-partition of H ′

k

and that every (I, ∆k)-partition of H ′
k is such that u3 is coloured ∆ and is adjacent to exactly one vertex

coloured ∆. It is easy to see that H ′
k is in C.

We are ready to prove that deciding whether a graph in C admits an (I, ∆k)-partition is NP-complete.
The reduction is from the NP-complete problem of deciding whether a planar graph with girth at least 9
admits an (I, ∆1)-partition [31]. Given in instance G of this problem, we construct a graph G′ ∈ C, as follows.
For every vertex v in G, we add k − 1 copies of H ′

k and we add an edge between v and the vertex u3 of each
these copies. Notice that G′ is in C since G′ is planar and every cycle of length at most 8 is contained in a
copy of H ′

k which is in C. Notice that an (I, ∆1)-partition of G can be extended to an (I, ∆k)-partition of G′.
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x y

Figure 4.6.1: The gadget Fx,y. Figure 4.6.2: The graph in C with no (I, ∆3)-partition.

Conversely, an (I, ∆k)-partition of G′ induces an (I, ∆1)-partition of G. So G admits an (I, ∆1)-partition
if and only if G′ admits an (I, ∆k)-partition.

We thus proved that for all k ≥ 3, if there is a graph in C that has no (I, ∆k)-partition, then the problem
of deciding whether a graph in C has an (I, ∆k)-partition is NP-complete. Let us now build a graph in C
that has no (I, ∆3)-partition.

Consider the graph Fx,y depicted in Figure 4.6.1. Suppose for contradiction that Fx,y admits an (I, ∆3)-
partition such that all the neighbours of x and y are coloured I (the white vertices in the picture). Then
the neighbours of those white vertices are coloured ∆. We consider the eight big vertices. Each of them is
coloured ∆ and is adjacent to two vertices coloured ∆. For every pair of adjacent red vertices, at least one
of them is coloured ∆. Notice that every red vertex is adjacent to a big vertex. Since there are nine pairs of
adjacent red vertices, there exists a big vertex that is adjacent to at least two red vertices coloured ∆. This
big vertex is thus adjacent to four vertices coloured ∆, which is a contradiction.

In the graph depicted in Figure 4.6.2, every dashed line represents a copy of Fx,y whose extremities are
x and y. Suppose for contradiction that this (C3, C4, C6)-free planar graph admits an (I, ∆3)-partition.
Each of the two drawn edges has at least one extremity coloured ∆. Thus, there exist two vertices u and v
coloured ∆ that are linked by seven copies of Fx,y. Since at most three neighbours of u and at most three
neighbours of v can be coloured ∆, one of these seven copies of Fx,y is such that all the neighbours of x and
y are coloured I. This contradiction proves Theorem 4.1.10.

Following the proof above, we see that if we remove the green parts in Figures 4.6.1 and 4.6.2, we obtain a
planar graph with girth 7 that has no (I, ∆2)-partition. A graph with such properties is already known [44],
but this new graph is smaller (184 vertices instead of 1304) and the proof of non-(I, ∆2)-partition is simpler.

4.7 Conclusion

We proved some results on the vertex partitions of sparse graphs into an independent set and a graph with
bounded components:

Theorem 4.1.4 (recall). Every graph G with mad(G) < 5
2 admits an (I, O3)-partition.

Theorem 4.1.6 (recall). Let k ≥ 2 be an integer. Every graph G with mad(G) < 8k
3k+1 = 8

3

(
1 − 1

3k+1

)

admits an (I, Ok)-partition.

Additionally, we focused on (I, ∆6)-partition in the class C of (C3, C4, C6)-free planar graphs:

Theorem 4.1.9 (recall). Every graph in C admits an (I, ∆6)-partition.
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Theorem 4.1.10 (recall). For every k ≥ 1, either every graph in C admits an (I, ∆k)-partition, or deciding
whether a graph in C admits an (I, ∆k)-partition is NP-complete.

We additionally exhibited a graph in C that has no (I, ∆3)-partition.
On the algorithmic side, the proof of Theorem 4.1.4 easily yields a polynomial time algorithm to find an

(I, O3)-partition of planar graph, as the light forest can be found in polynomial time quite readily thanks
to its inductive construction.

For the proof of Theorem 4.1.9, the special structures can be identified in polynomial time, and thus the
multigraph Ĝ can be computed in polynomial time. However, the procedure presented in Lemma 4.5.8 is not
necessarily polynomial. To get a polynomial algorithm, we would need to do the reductions in polynomial
time, which is not the case. However, if one can obtain a polynomial version of the procedure of Lemma 4.5.8,
then the resulting algorithm would be polynomial.

In the proof of Theorem 4.1.6, Procedures 4.4.1 and 4.4.13 are not polynomial. Moreover, each application
of Procedure 4.4.13 requires the computation of an (I, Ok)-partition of a graph with one fewer vertex than
the graph considered, and there can be several such applications. Although that proof uses the discharging
method, the computations to obtain the forbidden configurations are so complicated that the current proof
does not yield a polynomial algorithm.

To sum up, the proofs of Theorems 4.1.6 and 4.1.9, although constructive, rely on complex constructions,
and thus the algorithms obtained by simply translating the proofs are not efficient, and if one wants an
algorithm to compute the desired partitions, we would rather advise using the naive algorithm of trying
every possible partition, especially in the case of Theorem 4.1.6.
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Chapter 5

Conclusion

In this thesis, we saw a series of results, first on large induced (linear) forests on planar graphs of large girth,
then on vertex partitions of sparse graphs into forests, forests of bounded degree, independent sets, graphs
of bounded degrees, and graphs with bounded components. All our results can be seen as a partition of the
vertices of the graphs of some class into two sets with some specific properties.

Most of our proofs were based on the discharging method. The first proofs (Sections 2.3 and 2.4) relied
on basic counting arguments, later proofs (Section 3.2) relied on standard discharging arguments, while some
other ones relied on global discharging (Sections 3.4, 3.5, and 4.2). The last discharging proofs (Sections 4.4
and 4.5) used some complex constructions to build the forbidden configurations.

These methods enabled us to prove some new theorems on the partition of some classes of sparse graphs,
and can probably be applied to other such partitions. Among classes we did not study, there are the classes
of graphs with bounded degeneracy, the classes of graphs with bounded diameter... We could also study
partitions of vertices into more than two sets.

We note that some of our results are for graphs with bounded maximum average degree and imply results
on planar graphs of large girth, and that others are directly proven for planar graphs of large girth. Some
proofs in the literature [8] were first made for planar graphs, and then generalised for graphs of bounded
maximum average degree, sometimes even strengthened such that the bound on the maximum average degree
is better than what we need for the bound on planar graphs. In these cases, the generalisation is of course
worthwile. However, sometimes, as in the case of the Four Colour Theorem, it is possible to get better bounds
by making full use of the planarity of the graphs studied. It is thus also interesting to directly study planar
graphs of large girth to get better bounds (although in less general cases) than those obtained for graphs
of bounded maximum average degree. For instance, it would be interesting to try and prove that for some
integer k, planar graphs of girth at least 8 admit an (I, Ok)-partition, which would improve Theorem 4.1.6
in the specific case of planar graphs.

The idea of Choi, Liu, and Oum [38] of restricting not only the girth of the considered graphs, but
forbidding any set of cycles, can also be extended to some other partitions (they do it for some of these
partitions), and it can be interesting to study them.

Another interesting future work would be to try and apply our methods on edge partition instead of
vertex partition. Note that edge partitions can be seen as vertex partition of line graphs. However, since
line graphs of planar graphs are not planar in general, and as line graphs of graphs with bounded maximum
average degree do not have bounded maximum average degree (they can have arbitrary large cliques), our
results do not directly apply.
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Abstract

A triangle decomposition of a graph is a partition of its edges into triangles.

A fractional triangle decomposition of a graph is an assignment of a non-negative

weight to each of its triangles such that the sum of the weights of the triangles

containing any given edge is one. We prove that every graph graph on n vertices

with minimum degree at least 0.9n has a fractional triangle decomposition. This

improves a result of Garaschuk that the same conclusion holds for graphs with

minimum degree at least 0.956n. Together with a recent result of Barber, Kühn,

Lo and Osthus, this implies that for all ǫ > 0, every large enough triangle divisible

graph on n vertices with minimum degree at least (0.9 + ǫ)n admits a triangle

decomposition.

1 Introduction

Decomposition and packing problems are central and classical problems in combinatorics,
and, in particular, in design theory. Kirkman’s theorem [8] from the middle of 19th century
gives a necessary and sufficient condition on the existence of a Steiner triple system with
a certain number of elements. In the language of graph theory, Kirkman’s result asserts
that every complete graph with an odd number of vertices and a number of edges divisible
by three can be decomposed into triangles. Note that if a graph can be decomposed into
triangles, then its vertex degrees are even and the total number of edges is divisible by
three. Barber, Kühn, Lo and Osthus [2] showed that the same conclusion is true for large
graphs satisfying these divisibility conditions if their minimum degree is not too far from
the number of their vertices. In this short paper, we study the fractional variant of the
problem and we use it, together with a result of Barber, Kühn, Lo and Osthus [2], to
improve the best known bound.

Let us fix the terminology we are going to use. A graph is a pair of sets (V, E) such
that elements of E are unordered pairs of elements of V . The elements of V are called
vertices and the elements of E are called edges. We denote by uv (or vu) the edge with
vertices u and v. We denote by |G| the number of vertices of G. Two distinct vertices
contained in the same edge are said to be adjacent or to be neighbours. Two edges that
share a vertex are said to be adjacent. The degree of a vertex v is equal to the number

1
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of neighbours of v. Let gcd (G) denote the greatest common divisor of the degrees of the
vertices of G.

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there exists a bijection
b from V1 to V2 such that uv is an edge of G1 if and only if b (u) b (v) is an edge of G2

for every two vertices u and v of G1. The complete graph Kk is the graph with k vertices
all mutually adjacent. The graph K3 is also called a triangle. A graph G1 = (V1, E1) is
a subgraph of G2 = (V2, E2) if V1 ⊆ V2 and E1 ⊆ E2. The subgraphs of G2 isomorphic to
G1 will be referred to as copies of G1.

Let H be a graph. An H-decomposition of a graph G is a set of subgraphs of G
isomorphic to H that are edge disjoint such that each edge of G is contained in one of
them. A graph is H-decomposable if it admits an H-decomposition. A K3-decomposition
is also called a triangle decomposition and a graph is triangle decomposable if it is K3-
decomposable. A graph G is H-divisible if gcd (G) is a multiple of gcd (H) and the number
of edges of G is a multiple of the number of edges of H. It is easy to see that every H-
decomposable graph is H-divisible. However, the converse is not true. For example a cycle
on six vertices is K3-divisible, but not K3 decomposable. As noted previously, Kirkman [8]
proved that every K3-divisible complete graph is K3-decomposable. The fact that, for all
H, every H-divisible complete graph is H-decomposable remained an open problem for
over one hundred years before it was solved by Wilson [10].

The first generalisation to graphs that are near complete is due to Gustavsson [6].
He proved that for every graph H, there exist n0(H) and ǫ(H) such that every H-
divisible graph with n ≥ n0(H) vertices and minimum degree at least (1 − ǫ(H))n
is H-decomposable. This has been generalised to hypergraphs in a recent result of
Keevash [7]. The best that is known to date for a general graph H is due to Bar-
ber, Kühn, Lo and Osthus [2], who gave a way to turn a fractional decomposition
into an integral one. They proved the following: Let F be a graph with minimum
degree δ(F ) and let H be a graph with chromatic number χ(H) and e(H) edges. Let
C := min{9χ(H)2(χ(H) − 1)2/2, 104χ(H)3/2} and let t := max{C, 6e(H)}. Then for all
ǫ > 0, there exists an n0 such that every H-divisible graph G on n ≥ n0 vertices with
δ(G) ≥ (1 − 1/t + ǫ)n has an H-decomposition. For some particular classes of graphs, the
exact asymptotic minimum degree threshold is known [2][11].

A fractional H-decomposition of a graph G is an assignment of non-negative weights
to the copies of H in G such that for an edge e, the sum of the weights of the copies of
H that contain e is equal to one. A graph is fractionally H-decomposable if it admits a
fractional H-decomposition. A graph can be fractionally H-decomposable without being
H-divisible. A fractional K3-decomposition is also called a fractional triangle decomposi-
tion and a graph is fractionally triangle decomposable if it is fractionally K3-decomposable.
For all r ≥ 2, Yuster [12] proved that every graph on n vertices with minimum degree

at least
(
1 − 1

9r10

)
n is fractionally Kr-decomposable, and Dukes [3][4] proved that the

same result holds for sufficiently large graphs on n vertices with minimum degree at least(
1 − 2

9r2(r−1)2

)
n. Our paper already led to further research: Barber, Kühn, Lo, Mont-

gomery and Osthus [1] proved, using our method, that every graph on n ≥ 104r3 vertices
with minimum degree at least (1 − 1/104r3/2)n has a fractional Kr-decomposition.

In this paper we will focus on triangle decompositions of graphs with large minimum
degree. The following conjecture is due to Nash-Williams [9]:

Conjecture 1 (Nash-Williams [9]). Let G be a K3-divisible graph with n vertices and
minimum degree at least 3

4
n. If n is large enough, then G is K3-decomposable.

2
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The best result towards a proof of Conjecture 1 is due to the combination of results
of Garaschuk [5] and Barber, Kühn, Lo and Osthus [2].

Theorem 2 (Garaschuk [5], Barber, Kühn, Lo and Osthus [2]). There exists an n0 such
that every K3-divisible graph G on n ≥ n0 vertices with minimum degree at least 0.956n
is K3-decomposable.

The proof of Theorem 2 relies on a result on fractional K3-decomposability, which we
now state. The following appears as a conjecture in [5]. Note that for K3-divisible graphs,
this is a consequence of Conjecture 1.

Conjecture 3 (Garaschuk [5]). Let G be a graph with n vertices and minimum degree at
least 3

4
n. If n is large enough, then G is fractionally K3-decomposable.

The best known result towards proving Conjecture 1 was established by Garaschuk
[5].

Theorem 4 (Garaschuk [5]). Let G be a graph with n vertices and minimum degree at
least 0.956n. The graph G admits a fractional triangle decomposition.

In this paper we use a different method to prove the following.

Theorem 5. Every graph with n vertices and minimum degree at least 9
10

n admits a
fractional triangle decomposition.

In [2], a particular case of Theorem 11.1 and Lemma 12.3 imply the following.

Theorem 6 (Barber, Kühn, Lo and Osthus [2]). Suppose there exist n0 and δ such that
every graph on n ≥ n0 vertices with minimum degree at least δn is fractionally K3-
decomposable. For all ǫ > 0, there exist n1 such that every K3-divisible graph on n ≥ n1

vertices with minimum degree at least
(
max

(
δ, 3

4

)
+ ǫ

)
n vertices is K3-decomposable.

Together with Theorem 6, our result improves Theorem 2.

Theorem 7. Let ǫ > 0. There exists an n0 such that every K3-divisible graph on n ≥ n0

vertices with minimum degree at least ( 9
10

+ ǫ)n is K3-decomposable.

2 Proof of Theorem 5

Let δ = 1
10

. Fix a graph G with n vertices and minimum degree at least (1 − δ) n. Suppose
the graph G has at least one triangle with three vertices of degree at least (1 − δ) n+2. Let
G′ be the graph G where the edges of one such triangle are removed. Observe that G′ has
minimum degree at least (1 − δ) n and that if G′ has a fractional triangle decomposition,
then G has one too. By doing this operation several times, we can assume that G has no
triangle with three vertices of degree at least (1 − δ) n + 2. Let m be the number of edges
of G.

Initially, we give the same weight w∆ to every triangle such that the sum of the weights
of the triangles is equal to m

3
. We will modify the weights of the triangles to obtain a

fractional triangle decomposition. We will do so in a way that the total sum of the weights
is preserved.

We define the weight of an edge e to be the sum of the weights of the triangles that
contain e. Given H a copy of K4 in G, and two non-adjacent edges e1 and e2 in H, let

3
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Figure 1: By removing some weight w from the two triangles containing the thick edge
and adding w to the two triangle containing the dashed edge, we remove 2w from the
dashed edge and add 2w to the thick edge.

us call (H, {e1, e2}) a rooted K4 of G. We will use the following procedure to modify the
weights of the edges of a rooted K4 of G:

Let (H, {e1, e2}) be a rooted K4 of G. By removing a weight w from the two triangles
of H that contain e1 and adding the same weight w to each of the other two triangles (i.e.
those that contain e2), we transfer a weight of 2w from e1 to e2. The weights of all the
other edges of the graph remain unchanged (see Figure 1).

To prevent the weight of any triangle from becoming negative, we have to restrict
how much weight we can transfer using the procedure above. If for some w we use the
procedure to transmit a weight of 2w from an edge to another one, then any triangle’s
weight is lowered by at most w for triangles that are in the K4, and does not change
for other triangles. Moreover, since every triangle contains a vertex with degree at most
(1 − δ)n + 1, any triangle is in at most (1 − δ)n − 1 copies of K4, and thus in at most
3(1 − δ)n − 3 rooted K4 (since for each K4 there are three possible choices for the pair of
edges). Since each triangle has an initial weight of w∆, if each rooted K4 containing that
triangle is used to transfer weight of at most 2w∆

3(1−δ)n−3
between its labelled edges, its final

weight will be non-negative.
For each edge e, let Te be the number of triangles of G containing e. We express

redistributing the weights as a flow problem in an auxiliary graph, which is denoted by
Ĝ. The vertices of Ĝ are the edges of G, plus two special vertices, called the supersource
and the supersink. Two edges of G are adjacent as vertices in Ĝ if they form a pair in
a rooted K4. The edge between them is set to have the capacity c = 2w∆

3(1−δ)n−3
. Let

Ec be the set of these edges. If Tew∆ > 1, then the vertex of Ĝ corresponding to e is
joined to the supersource and the capacity of the corresponding edge of Ĝ is Tew∆ − 1.
Likewise, if Tew∆ < 1, then the vertex of Ĝ corresponding to e is joined to the supersink
and the capacity of the corresponding edge is 1 − Tew∆. The vertices of G adjacent to the
supersource are referred to as sources and those adjacent to the supersink as sinks. Let

M =
∑

e source

(Tew∆ − 1) =
∑

e sink

(1 − Tew∆) .

We will show that Ĝ has a flow of value M from the supersource to the supersink.
If Ĝ does not have a flow of value M , then it has a vertex cut (A0, B0) such that the

supersource is contained in A0, the supersink in B0 and the sum of the capacities of the
edges from A0 to B0 is less than M . Let A be the edges of G corresponding to the vertices
of A0 and B the edges corresponding to the vertices of B0. Note that |A| = |A0| − 1 and
|B| = |B0| − 1. Finally, let k = |A|, and observe that |B| = m − k.

4
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Let TA and TB be the average Te for e in A and in B respectively. Let e = uv be
an edge of G. Let We be the set of the vertices w such that uvw is a triangle. By the
definition of Te, |We| = Te. Each vertex of We is non-adjacent to at most δn vertices of G,
and thus is non-adjacent to at most δn vertices of We. So each vertex of We is adjacent
to at least Te − δn vertices of We. Therefore e is in at least Te(Te−δn)

2
distinct copies of K4.

Let e be a vertex of A. It is adjacent to at least Te(Te−δn)
2

− k vertices of B. Therefore
the cut contains at least

∑

e∈A

(
Te (Te − δn)

2
− k

)

edges of Ec. Similarly, it contains at least

∑

e∈B

(
Te (Te − δn)

2
− (m − k)

)

edges of Ec. Moreover, for each source e that is in B and each sink e that is in A, the
cut contains the edge between e and the supersource or the supersink. Recall that the
capacities of the edges of E1 is c = 2w∆

3(1−δ)n
. Therefore the sum of the capacities of the

edges of Ĝ is at least

∑

e∈A

(
Te (Te − δn)

2
− k

)
c +

∑

e source∈B

(Tew∆ − 1) +
∑

e sink∈A

(1 − Tew∆) .

At the same time, it is also at least

∑

e∈B

(
Te (Te − δn)

2
− (m − k)

)
c +

∑

e source∈B

(Tew∆ − 1) +
∑

e sink∈A

(1 − Tew∆) .

Since the sum of the capacities of the edges in the considered cut is less than M , we get
that

∑

e∈A

(
Te (Te − δn)

2
− k

)
c +

∑

e source∈B

(Tew∆ − 1) +
∑

e sink∈A

(1 − Tew∆) < M (1)

and

∑

e∈B

(
Te (Te − δn)

2
− (m − k)

)
c +

∑

e source∈B

(Tew∆ − 1) +
∑

e sink∈A

(1 − Tew∆) < M. (2)

The inequalities (1) and (2) can be rewritten using that

M =
∑

e source

(Tew∆ − 1)

and
M =

∑

e sink

(1 − Tew∆)

respectively as follows.

∑

e∈A

(Te (Te − δn) − 2k) c − 2
∑

e∈A

(Tew∆ − 1) < 0 (3)

∑

e∈B

(Te (Te − δn) − 2(m − k)) c − 2
∑

e∈B

(1 − Tew∆) < 0 (4)

5
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Since the summand is a convex function of Te, we obtain the following.

(TA(TA − δn) − 2k)c − 2(TAw∆ − 1) < 0 (5)

(TB(TB − δn) − 2(m − k))c − 2(1 − TBw∆) < 0 (6)

The inequality (5) implies that

TA(TA − δn) +
2

c
(1 − TAw∆) < 2k. (7)

The inequality (6) implies that

2k < 2m − TB(TB − δn) +
2

c
(1 − TBw∆). (8)

We now combine the inequalities (7) and (8) and we substitute c = 2w∆

3(1−δ)n−3
to get

the following.

TA(TA − δn) − (3n(1 − δ) − 3)TA < 2m − TB(TB − δn) − (3n(1 − δ) − 3)TB (9)

Let e be an edge of G. Each end-vertex of e is non-adjacent to at most δn vertices
of G. Hence, the edge e is contained in at least n − 2δn triangles. Since e cannot be
contained in more than n triangles, we get that n − 2δn ≤ Te ≤ n. Consequently, we have
n − 2δn ≤ TA, TB ≤ n.

A standard analytic argument shows that the left hand side of (9) is minimized when
TA = n and the right hand side is maximized when TB = n − 2δn. Consequently, it must
hold that

n(n−δn)−3(1−δ)n2+3n < 2m−(n−2δn)(n−3δn)−3n(1−δ)(n−2δn)+3n−6δn. (10)

Therefore (2 − 12δ + 12δ2)n2 < 2m − 6δn.
Note that we proved that in G there is no triangle with three vertices of degree at least

(1 − δ)n + 2. Let Vb be the set of vertices of degree at least (1 − δ)n + 2 in G, and let nb

be the number of vertices in Vb. Let us prove that nb ≤ 2δn − 4. Assume by contradiction
that nb ≥ 2δn − 3. Since every vertex in Vb has at most δn − 3 non-neighbours in V (G),
every vertex in Vb has at most δn−3 non-neighbours in Vb, and thus has at least nb−δn+2
neighbours in Vb. The graph induced by Vb is triangle-free, has nb ≥ 2δn − 3 vertices, and
has minimum degree at least nb − δn + 2. A triangle-free graph on k vertices has at most
k2

4
edges, thus it has minimum degree at most k

2
. This implies that nb − δn + 2 ≤ nb/2,

i.e. nb/2 ≤ δn − 2, and thus δn − 1.5 ≤ δn − 2, a contradiction. Therefore there are at
most 2δn − 4 vertices in Vb. We have

2m ≤ (2δn − 4)n + ((1 − 2δ)n + 4)((1 − δ)n + 1) = (1 − δ − 2δ2)n2 + 4 + n − 6δn (11)

and thus
(2 − 12δ + 12δ2)n2 < (1 − δ − 2δ2)n2 + 4 + n − 12δn. (12)

Assume n < 20. Since G has minimum degree at least (1 − δ)n = 0.9n, the graph G
is a complete graph. Then giving the same weight to every triangle leads to a fractional
triangle decomposition of G.

Therefore we can assume that n ≥ 20, and thus 4 + n − 12δn ≤ 0. We get that
(1 − 10δ)(1 − δ) = 1 − 11δ + 10δ2 < 0. Since δ = 0.1, this leads to a contradiction.
Therefore, there must exist a flow of value M in Ĝ, and hence, as described previously,
the weights of the triangles can be adjusted in such a way that these weights now form a
fractional decomposition of G. This finishes the proof of Theorem 5.
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3 Conclusion

In this paper we proved that every graph on n vertices with minimum degree at least
9
10

n is fractionally triangle decomposable. Together with a result of Barber, Kühn, Lo
and Osthus [2], this implies that, for all ǫ > 0, there exists a constant n0 such that every
triangle divisible graph on n ≥ n0 vertices with minimum degree at least (0.9 + ǫ) n is
triangle decomposable.

4 Acknowledgements

This work was done during the author’s visit to the group of Dan Král’ at the University
of Warwick; the visit was partially supported from the European Research Council un-
der the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant
agreement no. 259385. I am deeply grateful to Tereza Klimošová for her helpful comments
and to Dan Král’ for his careful reading and many suggestions. Special thanks to Ben
Barber and Richard Montgomery for pointing out that we can assume that every triangle
has a vertex with low degree.

References

[1] B. Barber, D. Kühn, A. Lo, R. Montgomery, and D. Osthus. Fractional clique de-
compositions of dense graphs and hypergraphs. arXiv preprint arXiv:1507.04985,
2015.

[2] B. Barber, D. Kühn, A. Lo, and D. Osthus. Edge-decompositions of graphs with
high minimum degree. arXiv preprint arXiv:1410.5750, 2014.

[3] P. Dukes. Rational decomposition of dense hypergraphs and some related eigenvalue
estimates. Linear Algebra and its Applications, 436(9):3736–3746, 2012.

[4] P. Dukes. Corrigendum to "rational decomposition of dense hypergraphs and some
related eigenvalue estimates"[linear algebra appl. 436 (9) (2012) 3736–3746]. Linear
Algebra and its Applications, 467:267–269, 2015.

[5] K. Garaschuk. Linear methods for rational triangle decompositions. PhD thesis,
University of Victoria, 2014.

[6] T. Gustavsson. Decompositions of large graphs and digraphs with high minimum
degree. PhD thesis, University of Stockholm, 1991.

[7] P. Keevash. The existence of designs. arXiv preprint arXiv:1401.3665, 2014.

[8] T.P. Kirkman. On a problem in combinatorics. Cambridge Dublin Mathematical
Journal, 2:191–204, 1847.

[9] C.S.J. Nash-Williams. An unsolved problem concerning decomposition of graphs into
triangles. Combinatorial Theory and its Applications III, pages 1179–1183, 1970.

[10] R.M. Wilson. Decomposition of complete graphs into subgraphs isomorphic to a
given graph. Congressus Numerantium XV, pages 647–659, 1975.

7

126



[11] R. Yuster. The decomposition threshold for bipartite graphs with minimum degree
one. Random Structures & Algorithms, 21(2):121–134, 2002.

[12] R. Yuster. Asymptotically optimal Kk-packings of dense graphs via fractional Kk-
decompositions. Journal of Combinatorial Theory, Series B, 95(1):1–11, 2005.

8

127



128



Appendix B

Filling the Complexity Gaps for
Colouring Planar and Bounded
Degree Graphs

Konrad K. Dabrowski, François Dross, Matthew Johnson, and Daniël Paulusma
arXiv prerpint 1506.06564

129



Filling the Complexity Gaps for Colouring

Planar and Bounded Degree Graphs⋆

Konrad K. Dabrowski1, François Dross2,
Matthew Johnson1 and Daniël Paulusma1
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Abstract. A colouring of a graph G = (V,E) is a function c : V →
{1, 2, . . .} such that c(u) 6= c(v) for every uv ∈ E. A k-regular list
assignment of G is a function L with domain V such that for every u ∈ V ,
L(u) is a subset of {1, 2, . . . } of size k. A colouring c of G respects a
k-regular list assignment L of G if c(u) ∈ L(u) for every u ∈ V . A graph G

is k-choosable if for every k-regular list assignment L of G, there exists a
colouring of G that respects L. We may also ask if for a given k-regular
list assignment L of a given graph G, there exists a colouring of G that
respects L. This yields the k-Regular List Colouring problem. For
k ∈ {3, 4} we determine a family of classes G of planar graphs, such
that either k-Regular List Colouring is NP-complete for instances
(G,L) with G ∈ G, or every G ∈ G is k-choosable. By using known
examples of non-3-choosable and non-4-choosable graphs, this enables us
to classify the complexity of k-Regular List Colouring restricted to
planar graphs, planar bipartite graphs, planar triangle-free graphs and
to planar graphs with no 4-cycles and no 5-cycles. We also classify the
complexity of k-Regular List Colouring and a number of related
colouring problems for graphs with bounded maximum degree.

Keywords: list colouring, choosability, planar graphs, maximum degree

1 Introduction

A colouring of a graph is a labelling of its vertices such that adjacent vertices do
not have the same label. We call these labels colours. Graph colouring problems are
central to the study of combinatorial algorithms and they have many theoretical
and practical applications. A typical problem asks whether a colouring exists

⋆ An extended abstract of this paper appeared in the proceedings of the 26th Interna-
tional Workshop on Combinatorial Algorithms (IWOCA 2015) [11]. The research in
this paper was supported by EPSRC (EP/K025090/1) and the Leverhulme Trust
(RPG-2016-258).
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under certain constraints, or how difficult it is to find such a colouring. For
example, in the List Colouring problem, a graph is given where each vertex
has a list of colours and one wants to know if the vertices can be coloured using
only colours in their lists. The Choosability problem asks whether such list
colourings are guaranteed to exist whenever all the lists have a certain size k
(if so, then the graph is said to be k-choosable). In fact, an enormous variety of
colouring problems can be defined and there is now a vast collection of literature
on this subject. For longer introductions to the type of problems we consider we
refer to two recent surveys [10, 21].

In this paper, we are concerned with the computational complexity of colouring
problems (we give formal definitions of these problems in Section 2). For many
such problems, the complexity is well understood in the case where we allow
every graph as input, so it is natural to consider problems with restricted inputs
in order to increase our understanding of their hardness. Our two main objectives
are related to this aim. They are:

1. to exploit structural results in order to obtain complexity results;

2. to fill a number of complexity gaps in order to obtain complete complexity
classifications.

The graph classes we consider are the classes of planar graphs and of graphs with
bounded maximum degree. As such our paper consists of two main parts.

In the first (Section 3), we study planar graphs and consider a natural variant of
the List Colouring problem, closely related to the Choosability problem. As
we will discuss later in more detail, there exist many results for the latter problem
restricted to planar graphs (see for example [1,8,14,23,25,26,28–31,35–37,39–41]).
Most of these results are structural. They either show that every graph of some
subclass G of planar graphs is k-choosable for some small value of k, or construct
a concrete example of a non-k-choosable graph that belongs to G. When not
every graph in G is k-choosable, it is natural to ask if the vertices of a given graph
from G can be coloured in polynomial time using only colours from their lists for
some given list assignment L, which assigns a list of size k to each vertex. For
k ∈ {3, 4}, we prove two general theorems, which give us a family of subclasses G
of planar graphs, such that either this problem is NP-complete for instances
(G,L) with G ∈ G or every graph in G is k-choosable. We will then combine
known structural choosability results with these theorems to obtain NP-hardness
results for this problem on planar graphs and on a number of subclasses of planar
graphs. This enables us to fill some complexity gaps in order to obtain a complete
classification of the computational complexity of the problem for these graph
classes.

Some of the known results we use in the first part of our paper are for planar
graphs with bounded degree. In the second part of the paper (Section 4), we
combine these and other old and new results to fill some more complexity gaps
and obtain complete complexity classifications for a number of colouring problems
on graphs with bounded maximum degree.

We first introduce necessary definitions and terminology in Section 2.
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2 Preliminaries

A colouring of a graph G = (V,E) is a function c : V → {1, 2, . . .} such that
c(u) 6= c(v) whenever uv ∈ E. We say that c(u) is the colour of u. For a positive
integer k, if 1 ≤ c(u) ≤ k for all u ∈ V , then c is a k-colouring of G. We say
that G is k-colourable if a k-colouring of G exists. The Colouring problem is to
decide whether a graph G is k-colourable for some given integer k. If k is fixed,
that is, not part of the input, we obtain the k-Colouring problem.

A list assignment of a graph G = (V,E) is a function L with domain V such
that for each vertex u ∈ V , L(u) is a subset of {1, 2, . . . }. This set is called the
list of admissible colours for u. If L(u) ⊆ {1, . . . , k} for each u ∈ V , then L is a
k-list assignment. The size of a list assignment L is the maximum list size |L(u)|
over all vertices u ∈ V . A colouring c respects L if c(u) ∈ L(u) for all u ∈ V .
Given a graph G with a k-list assignment L, the List Colouring problem is to
decide whether G has a colouring that respects L. If k is fixed, then we have the
List k-Colouring problem. Fixing the size of L to be at most ℓ gives the ℓ-List
Colouring problem. We say that a list assignment L of a graph G = (V,E)
is ℓ-regular if, for all u ∈ V , L(u) contains exactly ℓ colours. This gives us the
following problem, which is one focus of this paper. It is defined for each integer
ℓ ≥ 1 (note that ℓ is fixed; that is, ℓ is not part of the input).

ℓ-Regular List Colouring

Instance: a graph G with an ℓ-regular list assignment L.
Question: does G have a colouring that respects L?

A k-precolouring of a graph G = (V,E) is a function cW : W → {1, 2, . . . , k} for
some subset W ⊆ V . A k-colouring c of G is an extension of a k-precolouring cW
of G if c(v) = cW (v) for each v ∈ W . Given a graph G with a precolouring cW , the
Precolouring Extension problem is to decide whether G has a k-colouring
that extends cW . If k is fixed, we obtain the k-Precolouring Extension

problem. The relationships amongst the problems introduced are shown in Fig. 1.
For an integer ℓ ≥ 1, a graph G = (V,E) is ℓ-choosable if, for every ℓ-

regular list assignment L of G, there exists a colouring that respects L. The
corresponding decision problem is the Choosability problem. If ℓ is fixed, we
obtain the ℓ-Choosability problem.

We emphasize that ℓ-Regular List Colouring and ℓ-Choosability are
two fundamentally different problems. For the former we must decide whether
there exists a colouring that respects a particular ℓ-regular list assignment. For
the latter we must decide whether or not every ℓ-regular list assignment has
a colouring that respects it. As we will see later, this difference also becomes
clear from a complexity point of view: for some graph classes ℓ-Regular List

Colouring is computationally easier than ℓ-Choosability, whereas, perhaps
more surprisingly, for other graph classes, the reverse holds.

For two vertex-disjoint graphs G and H, we let G+H denote the disjoint
union (V (G)∪V (H), E(G)∪E(H)), and kG denote the disjoint union of k copies
of G. If G is a graph containing an edge e or a vertex v then G− e and G− v

3
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k-Regular List Colouring

ℓ-List Colouring

k-List Colouring

List Colouring

List ℓ-Colouring

List k-Colouring

k-Precolouring Extension

k-Colouring

Precolouring Extension

Colouring

Fig. 1. Relationships between Colouring and its variants. An arrow from one problem
to another indicates that the latter is (equivalent to) a special case of the former; k
and ℓ are any two arbitrary integers for which ℓ ≥ k. For instance, k-Colouring

is a special case of k-Regular List Colouring. This can be seen by giving the
list L(u) = {1, . . . , k} to each vertex u in an instance graph of Colouring. We also
observe that ℓ-Regular List Colouring and k-Regular List Colouring are not
comparable for any k 6= ℓ.

denote the graphs obtained from G by deleting e or v, respectively. If G′ is a
subgraph of G then G−G′ denotes the graph with vertex set V (G) and edge set
E(G) \ E(G′).

We let Cn, Kn and Pn denote the cycle, complete graph and path on n
vertices, respectively. A wheel is a cycle with an extra vertex added that is
adjacent to all other vertices. The wheel on n vertices is denoted Wn; note that
W4 = K4. A graph on at least three vertices is 2-connected if it is connected and
there is no vertex whose removal disconnects it. A block of a graph is a maximal
subgraph that is connected and cannot be disconnected by the removal of one
vertex (so a block is either 2-connected, a K2 or an isolated vertex). A block
graph is a connected graph in which every block is a complete graph. A Gallai
tree is a connected graph in which every block is a complete graph or a cycle. We
say that B is a leaf-block of a connected graph G if B contains exactly one cut
vertex u of G and B \ u is a component of G− u.

For a set of graphs H, a graph G is H-free if G contains no induced subgraph
isomorphic to a graph in H, whereas G is H-subgraph-free if it contains no
subgraph isomorphic to a graph in H. The girth of a graph is the length of its
shortest cycle.

3 Planar Graphs

3.1 Known Results for Planar Graphs

We start with a classical result observed by Erdős et al. [17] and Vizing [33].
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Theorem 1 ([17,33]). 2-List Colouring is polynomial-time solvable.

Garey et al. proved the following result, which is in contrast to the fact that
every planar graph is 4-colourable by the Four Colour Theorem [2].

Theorem 2 ([19]). 3-Colouring is NP-complete for planar graphs of maxi-
mum degree 4.

Next we present results found by several authors on the existence of k-
choosable graphs for various graph classes.

Theorem 3. The following statements hold for k-choosability:

(i) Every planar graph is 5-choosable [30].
(ii) There exists a planar graph that is not 4-choosable [35].
(iii) Every planar triangle-free graph is 4-choosable [25].
(iv) Every planar graph with no 4-cycles is 4-choosable [26].
(v) There exists a planar triangle-free graph that is not 3-choosable [36].
(vi) There exists a planar graph with no 4-cycles, no 5-cycles and no intersecting

triangles that is not 3-choosable [29].
(vii) Every planar bipartite graph is 3-choosable [1].

We note that smaller examples of graphs than were used in the original proofs
have been found for Theorems 3.(ii) [23], 3.(v) [28] and 3.(vi) [41] and that
Theorem 3.(vi) strengthens a result of Voigt [37]. We recall that Thomassen [31]
first showed that every planar graph of girth at least 5 is 3-choosable, and that a
number of results have since been obtained on 3-choosability of planar graphs in
which certain cycles are forbidden; see, for example, [8, 14, 39,40].

We will also use the following result of Chleb́ık and Chleb́ıková.

Theorem 4 ([9]). List Colouring is NP-complete for 3-regular planar bipar-
tite graphs that have a list assignment in which each list is one of {1, 2}, {1, 3},
{2, 3}, {1, 2, 3} and all the neighbours of each vertex with three colours in its list
have two colours in their lists.

3.2 New Results for Planar Graphs

Theorems 1–3 have a number of immediate consequences for the complexity of
ℓ-Regular List Colouring when restricted to planar graphs. For instance,
Theorem 2 implies that 3-Regular List Colouring is NP-complete for planar
graphs, whereas Theorem 3.(i) shows that 5-Regular List Colouring is
polynomial-time solvable on this graph class. In fact, we notice a complexity
jump from being NP-complete to being trivial (that is, the answer is always yes)
when ℓ changes from 3 to 5. It is a natural question to determine the complexity
for the missing case ℓ = 4.

In this section we settle this missing case and also present a number of new
hardness results for ℓ-Regular List Colouring restricted to various subclasses
of planar graphs. At the end of this section we show how to combine the known
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results with our new ones to obtain a number of dichotomy results (Corollaries 2–
5). We deduce some of our new results from two more general theorems, namely
Theorems 5 and 7, which we state below, but which we prove in Sections 5.1
and 5.2, respectively.

Theorem 5. Let H be a finite set of 2-connected planar graphs. Then 4-
Regular List Colouring is NP-complete for planar H-subgraph-free graphs if
there exists a planar H-subgraph-free graph that is not 4-choosable.

Note that the class of H-subgraph-free graphs is contained in the class of
H-free graphs. Hence, whenever a problem is NP-complete for H-subgraph-free
graphs, it is also NP-complete for H-free graphs.

An alternative formulation of Theorem 5 is that, for every finite set H of 2-
connected planar graphs, either every pair (G,L), where G is a planarH-subgraph-
free graph, is a yes-instance of 4-Regular List Colouring, or 4-Regular

List Colouring is NP-complete for planar H-subgraph-free graphs. Results
of the same flavour were proved for 3-Colouring, Acyclic 3-Colouring,
(1, 0)-Colouring and C2p+1-Colouring restricted to classes of planar graphs
by Esperet et al. [18]. To give a more recent example of such a result, Dross,
Montassier and Pinlou [12] proved that either every triangle-free planar graph is
near-bipartite – that is, can be decomposed into an independent set and a forest –
or recognizing near-bipartite triangle-free planar graphs is NP-complete. By using
their construction and the existence of a planar graph that is not near-bipartite
(for instance K4), Bonamy et al. [3, see arXiv version] observed that the problem
of recognizing near-bipartite graphs is NP-complete on planar graphs.

We will exploit the power of Theorem 5 by combining it with Theorem 3. For
instance, combining Theorem 5 with Theorem 3.(ii) yields that 4-Regular List

Colouring is NP-complete for planar graphs. We are not aware of any paper
proving this result although it seems to have been known: the result is mentioned
by Thomassen [32] without proof, and Dvořák and Thomas [15] mistakenly
attribute it to [23]. We can sharpen this result as follows. By the Four Colour
Theorem [2], every planar graph is 4-colourable, that is, has a colouring respecting
the list assignment that assigns list of colours {1, 2, 3, 4} to every vertex of the
graph. In contrast, Voigt and Wirth [38] showed the existence of a planar graph
that does not allow a colouring respecting some specific list assignment L, in
which each list contains four distinct colours from {1, 2, 3, 4, 5}. We use their
example to prove the following result in Section 5.1.

Theorem 6. 4-Regular List Colouring is NP-complete for planar graphs
even if every list contains four colours from {1, 2, 3, 4, 5}.

As we will see later, the k = 4 case was the only one for which the complexity
of k-Regular List Colouring for planar graphs was not settled.

Theorem 5 has further applications and can also be combined with other
results from the literature. For instance, consider the non-4-choosable planar
graph H from the proof of Theorem 1.7 in [23]. It can be observed that H
is Wp-subgraph-free for all p ≥ 8. Wheels are 2-connected and planar. Hence,

6
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if H is any finite set of wheels on at least eight vertices, then 4-Regular List

Colouring is NP-complete for planar H-subgraph-free graphs.
Our basic idea for proving Theorem 5 is similar to the proof technique used

in [12, 18]. We pick a minimal counterexample H with list assignment L. We
select an “appropriate” edge e = uv and consider the graph F ′ = F − e. We
reduce from an appropriate colouring problem restricted to planar graphs and use
copies of F ′ as a gadget to ensure that we can enforce a regular list assignment.
The proof of the next theorem also uses this idea.

Theorem 7. Let H be a finite set of 2-connected planar graphs. Then 3-
Regular List Colouring is NP-complete for planar H-subgraph-free graphs if
there exists a planar H-subgraph-free graph that is not 3-choosable.

Just like Theorem 5, Theorem 7 has a number of applications. For instance,
if we let H = {K3} then Theorem 7, combined with Theorem 3.(v), leads to
the following result (Dvořák and Kawarabayashi also briefly mentioned how to
obtain this result in their paper [13] but do not provide a full proof).

Corollary 1. 3-Regular List Colouring is NP-complete for planar triangle-
free graphs.

Theorem 7 can also be used for other classes of graphs. For example, let H
be a finite set of graphs, each of which includes a 2-connected graph on at least
five vertices as a subgraph. Let I be the set of these 2-connected graphs. The
graph K4 is a planar I-subgraph-free graph that is not 3-choosable (since it is not
3-colourable). Therefore, Theorem 7 implies that 3-Regular List Colouring

is NP-complete for planar H-subgraph-free graphs. We can obtain more hardness
results by taking some other planar graph that is not 3-choosable, such as a
wheel on an even number of vertices. Also, if we let H = {C4, C5} we can use
Theorem 7 by combining it with Theorem 3.(vi) to find that 3-Regular List

Colouring is NP-complete for planar graphs with no 4-cycles and no 5-cycles.
We strengthen this result as follows (see Section 5.3 for the proof).

Theorem 8. 3-Regular List Colouring is NP-complete for planar graphs
with no 4-cycles, no 5-cycles and no intersecting triangles.

Theorem 6, Corollary 1 and Theorem 8 can be seen as strengthenings of Theo-
rems 3.(ii), 3.(v) and 3.(vi), respectively. Moreover, they complement Theorem 2,
which implies that 3-List Colouring is NP-complete for planar graphs, and
a result of Kratochv́ıl [24] that, for planar bipartite graphs, 3-Precolouring
Extension is NP-complete. Theorem 6 and Corollary 1 also complement results
of Gutner [23] who showed that 3-Choosability and 4-Choosability are Π

p
2-

complete for planar triangle-free graphs and planar graphs, respectively. However,
we emphasize that, for special graph classes, it is not necessarily the case that
ℓ-Choosability is computationally harder than ℓ-Regular List Colouring.
For instance, contrast the fact that Choosability is polynomial-time solvable
on 3P1-free graphs [20] with our next result, which we prove in Section 5.4.

7
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Theorem 9. 3-Regular List Colouring is NP-complete for (3P1, P1 + P2)-
free graphs.

Our new results, combined with known results, close a number of complexity
gaps for the ℓ-Regular List Colouring problem. Combining Theorem 6 with
Theorems 1, 2 and 3.(i) gives us Corollary 2. Combining Theorem 8 with Theo-
rems 1 and 3.(iv) gives us Corollary 3. Combining Corollary 1 with Theorems 1
and 3.(iii) gives us Corollary 4, whereas Theorems 1 and 3.(vii) imply Corollary 5.

Corollary 2. Let ℓ be a positive integer. Then ℓ-Regular List Colouring,
restricted to planar graphs, is NP-complete if ℓ ∈ {3, 4} and polynomial-time
solvable otherwise.

Corollary 3. Let ℓ be a positive integer. Then ℓ-Regular List Colouring,
restricted to planar graphs with no 4-cycles and no 5-cycles and no intersecting
triangles, is NP-complete if ℓ = 3 and polynomial-time solvable otherwise (even
if we allow intersecting triangles and 5-cycles).

Corollary 4. Let ℓ be a positive integer. Then ℓ-Regular List Colouring,
restricted to planar triangle-free graphs, is NP-complete if ℓ = 3 and polynomial-
time solvable otherwise.

Corollary 5. Let ℓ be a positive integer. Then ℓ-Regular List Colouring,
restricted to planar bipartite graphs, is polynomial-time solvable.

4 Bounded Degree Graphs

4.1 Known Results for Bounded Degree Graphs

First we present a result of Kratochv́ıl and Tuza [25].

Theorem 10 ([25]). List Colouring is polynomial-time solvable on graphs
of maximum degree at most 2.

Brooks’ Theorem [7] states that every graph G with maximum degree d
has a d-colouring unless G is a complete graph or a cycle with an odd number
of vertices. The next result of Vizing [34] generalizes Brooks’ Theorem to list
colourings.

Theorem 11 ([34]). Let d be a positive integer. Let G = (V,E) be a connected
graph of maximum degree at most d and let L be a d-regular list assignment for G.
If G is not a cycle or a complete graph then G has a colouring that respects L.

And we need another result of Chleb́ık and Chleb́ıková [9].

Theorem 12 ([9]). Precolouring Extension is polynomial-time solvable on
graphs of maximum degree 3.

8
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4.2 New Results for Bounded Degree Graphs

In Section 5.5 we prove the following result by making a connection to Gallai
trees (which is a standard approach) and using a result of Bonomo, Durán and
Marenco [4] on List Colouring for block graphs.

Theorem 13. Let k be a positive integer. Then k-Precolouring Extension

is polynomial-time solvable for graphs of maximum degree at most k.

We have the following two classifications. The first one is an observation
obtained by combining only previously known results, whereas the second one
also makes use of our new result.

Corollary 6. Let d be a positive integer. The following two statements hold for
graphs of maximum degree at most d.

(i) List Colouring is NP-complete if d ≥ 3 and polynomial-time solvable if
d ≤ 2.

(ii) Precolouring Extension and Colouring are NP-complete if d ≥ 4
and polynomial-time solvable if d ≤ 3.

Proof. We first consider (i). If d ≥ 3, we use Theorem 4. If d ≤ 2, we use
Theorem 10. We now consider (ii). If d ≥ 4, we use Theorem 2. If d ≤ 3, we use
Theorem 12. ⊓⊔

Corollary 7. Let d and k be two positive integers. The following two statements
hold for graphs of maximum degree at most d.

(i) k-List Colouring and List k-Colouring are NP-complete if k ≥ 3 and
d ≥ 3 and polynomial-time solvable otherwise.

(ii) k-Regular List Colouring and k-Precolouring Extension are NP-
complete if k ≥ 3 and d ≥ k + 1 and polynomial-time solvable otherwise.

Proof. We first consider (i). If k ≥ 3 and d ≥ 3, we use Theorem 4. If k ≤ 2 or
d ≤ 2, we use Theorems 1 or 10, respectively.

We now consider (ii). We start with the hardness cases and so let k ≥ 3 and
d ≥ k + 1.

First consider k-Precolouring Extension. Theorem 2 implies that 3-
Colouring is NP-complete for graphs of maximum degree at most d for all
d ≥ 4. The k = 3 case follows immediately from this result. Suppose k ≥ 4 and
d ≥ k + 1. Consider a graph G of maximum degree 4. For each vertex v, we add
k−3 new vertices xv

1, . . . , x
v
k−3

and edges vxv
1, . . . , vx

v
k−3

. Let G′ be the resulting
graph. Note that G′ has maximum degree at most 4 + k − 3 = k + 1 ≤ d. We
define a precolouring c on the newly added vertices by assigning colour i+ 3 to
each xv

i . Then G′ has a k-colouring extending c if and only if G has a 3-colouring.
Now consider k-Regular List Colouring. The k = 3 case follows imme-

diately from Theorem 2. Suppose k ≥ 4 and d ≥ k + 1. Consider a graph G
of maximum degree 4. We define the list L(v) = {1, . . . , k} for each vertex
v ∈ V (G). For each vertex v, we add k − 3 new vertices xv

1, . . . , x
v
k−3

and edges

9
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vxv
1, . . . , vx

v
k−3

. We define the list L(xv
i ) = {i, k+1, k+2, . . . , 2k−1} for each xv

i .
For each vertex xv

i , we also add k new vertices w1(x
v
i ), . . . , wk(x

v
i ) and edges

such that xv
i , w1(x

v
i ), . . . , wk(x

v
i ) form a clique (on k + 1 vertices). We define

the list L(wj(x
v
i )) = {k + 1, . . . , 2k} for each wj(x

v
i ). Let G′ be the resulting

graph. Note that G′ has maximum degree at most k + 1 and that the resulting
list assignment L is a k-regular list assignment of G′. Then G′ has a k-colouring
respecting L if and only if G has a 3-colouring.

We continue with the polynomial-time solvable cases. If k ≤ 2, the result
follows from Theorem 1. Suppose that k ≥ 3 and d ≤ k. Then the result for
k-Regular List Colouring follows from Theorems 10 and 11 and the result
for k-Precolouring Extension follows from Theorem 13. ⊓⊔

Note that Corollary 7 does not contain a dichotomy for k-Colouring re-
stricted to graphs of maximum degree at most d. A full classification of this
problem is open, but a number of results are known. Molloy and Reed [27] classified
the complexity for all pairs (k, d) for sufficiently large d. Emden-Weinert et al. [16]
proved that k-Colouring is NP-complete for graphs of maximum degree at
most k + ⌈

√
k⌉ − 1. It follows from Brooks’ Theorem [7] that for every integer

k ≥ 1, k-Colouring is polynomial-time solvable for graphs of maximum degree k.
Combining this observation with the result of [16] means that the smallest open
case is when k = 5 and d = 6.

5 Proofs

In Section 5.1 we prove Theorems 5 and 6. In Section 5.2 we prove Theorem 7,
whereas in Section 5.3 we prove Theorem 8, and in Section 5.4 we prove Theorem 9.
Finally, in Section 5.5 we prove Theorem 13.

5.1 The Proofs of Theorems 5 and 6

We need an additional result.

Theorem 14. For every integer p ≥ 3, 3-List Colouring is NP-complete for
planar graphs of girth at least p that have a list assignment in which each list is
one of {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.

Proof. By Theorem 4, List Colouring is NP-complete for 3-regular planar
bipartite graphs that have a list assignment in which each list is one of {1, 2},
{1, 3}, {2, 3}, {1, 2, 3} and all the neighbours of each vertex with three colours in
its list have two colours in their lists. We modify the hardness construction as
follows. Note that for each edge at least one of the incident vertices has a list of
size 2. We replace each edge by a path on an odd number of edges in such a way
that the girth of the graph obtained is at least p. The new vertices on the path
are all given the same list of size 2, identical to the list on one or other of the
end-vertices. It is readily seen that these modifications do not affect whether or
not the graph can be coloured. ⊓⊔
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We are now ready to prove Theorem 5, which we restate below.

Theorem 5 (restated). Let H be a finite set of 2-connected planar graphs.
Then 4-Regular List Colouring is NP-complete for planar H-subgraph-free
graphs if there exists a planar H-subgraph-free graph that is not 4-choosable.

Proof. The problem is readily seen to be in NP. Let F be a planar H-subgraph-
free graph with a 4-regular list assignment L such that F has no colouring
respecting L. We may assume that F is minimal (with respect to the subgraph
relation). In particular, this means that F is connected. Let r be the length
of a longest cycle in any graph of H. We reduce from the problem of 3-List
Colouring restricted to planar graphs of girth at least r + 1 in which each
vertex has list {1, 2}, {1, 3}, {2, 3} or {1, 2, 3}. This problem is NP-complete
by Theorem 14. Let a graph G and list assignment LG be an instance of this
problem. We will construct a planar H-subgraph-free graph G′ with a 4-regular
list assignment L′ such that G has a colouring that respects LG if and only if G′

has a colouring that respects L′.
If every pair of adjacent vertices in F has the same list, then the problem of

finding a colouring that respects L is just the problem of finding a 4-colouring
which, by the Four Colour Theorem [2], we know is possible. Thus we may assume
that, on the contrary, there is an edge e = uv such that |L(u) ∩ L(v)| ≤ 3. Let
F ′ = F − e. Then, by minimality, F ′ has at least one colouring respecting L,
and moreover, for any colouring of F ′ that respects L, u and v are coloured alike
(otherwise we would have a colouring of F that respects L). Let T be the set of
possible colours that can be used on u and v in colourings of F ′ that respect L
and let t = |T |. As T ⊆ L(u) ∩ L(v), we have 1 ≤ t ≤ 3. Up to renaming the
colours in L, we can build copies of F ′ with 4-regular list assignments such that

(i) the set T is any given list of colours of size t, and
(ii) the vertex corresponding to u has any given list of 4 colours containing T .

We will implicitly make use of this several times in the remainder of the proof.
We say that a vertex w in G is a bivertex or trivertex if |LG(w)| is 2 or 3,

respectively. We construct a planar H-subgraph-free graph G′ and 4-regular list
assignment L′ as follows.

First suppose that t = 1. For each bivertex w in G, we do as follows. We add
two copies of F ′ to G, which we label F1(w) and F2(w). The vertex in Fi(w)
corresponding to u is labelled uw

i for i ∈ {1, 2} and we set Uw = {uw
1 , u

w
2 }. We

add the edges wuw
1 and wuw

2 . We give list assignments to the vertices of F1(w)
and F2(w) such that T = {4} for F1 and T = {5} for F2. We let L′(w) =
LG(w) ∪ {4, 5}. For each trivertex w in G, we do as follows. We add one copy
of F ′ to G, which we label F1(w). The vertex in F1(w) corresponding to u is
labelled uw

1 and we set Uw = {uw
1 }. We add the edge wuw

1 . We give list assignments
to vertices of F1(w) such that T = {4} for F1. We let L′(w) = LG(w)∪{4}. This
completes the construction of G′ and L′ when t = 1.

Now suppose that t = 2. Let s = r if r is even and s = r + 1 if r is odd
(so s is even in both cases). For each bivertex w in G, we do as follows. We
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add a copy of F ′ to G, which we label F1(w), and identify the vertex in F1(w)
corresponding to u with w. We give list assignments to vertices of F1(w) such
that T = LG(w) and L′(w) = LG(w) ∪ {4, 5}. For each trivertex w in G, we do
as follows. We add s copies of F ′ to G which we label Fi(w), 1 ≤ i ≤ s. The
vertex in Fi(w) corresponding to u is labelled uw

i . Let Uw = {uw
i | 1 ≤ i ≤ s}.

Add edges such that the union of w and Uw induces a cycle on s+1 vertices. For
all 1 ≤ i ≤ s, we give list assignments to vertices of Fi(w) such that T = {4, 5}.
We let L′(w) = {1, 2, 3, 4}. This completes the construction of G′ and L′ when
t = 2.

Now suppose that t = 3. For each bivertex w in G, we do as follows. We
add two copies of F ′ to G which we label F1(w) and F2(w), such that for
i ∈ {1, 2}, the vertex in Fi(w) corresponding to u is identified with w. We give list
assignments to vertices of F1(w) and F2(w) such that T = LG(w)∪{4} for F1(w),
T = LG(w)∪{5} for F2(w) and L′(w) = LG(w)∪{4, 5}. For each trivertex w in G,
we do as follows. We add a copy of F ′ to G which we label F1(w), such that the
vertex in F1(w) corresponding to u is identified with w. We give list assignments
to the vertices of F1(w) such that T = {1, 2, 3} and L′(w) = {1, 2, 3, 4}. This
completes the construction of G′ and L′ when t = 3.

Note that G′ is planar. Suppose that there is a subgraph H in G′ that is
isomorphic to a graph of H. Since F is H-subgraph-free, and since F ′ is obtained
from F by removing one edge, F ′ is also H-subgraph-free. Therefore for all w, H
is not fully contained in any Fi(w). Since H is 2-connected and since for all w
only one vertex of any Fi(w) has a neighbour outside of Fi(w), we find that H
has at most one vertex in each Fi(w). In particular, H cannot contain any vertex
of any Fi(w) in which the vertex corresponding to u has been attached to w
(as opposed to being identified with w); this includes the case when the union
of w and Uw induces a cycle on s + 1 vertices. Hence we have found that H
is a subgraph of G, which contradicts the fact that G has girth at least r + 1.
Therefore G′ is H-subgraph-free.

Note that in any colouring of G′ that respects L′, each copy of F ′ must be
coloured such that the vertices corresponding to u and v have the same colour,
which must be one of the colours from the corresponding set T . If t = 1 and w is
a trivertex, this means that the unique neighbour of w in Uw must be coloured
with colour 4, so w cannot be coloured with colour 4. Similarly, if t = 1 and w
is a bivertex or t = 2 and w is a trivertex then the two neighbours of w in Uw

must be coloured with colours 4 and 5, so w cannot be coloured with colours 4
or 5. If t = 2 and w is a bivertex or t = 3 and w is a trivertex then w belongs to
a copy of F ′ with T = LG(w), so w cannot have colour 4 or 5. If t = 3 and w
is a bivertex then w belongs to two copies of F ′, one with T = LG(w) ∪ {4}
and one with T = LG(w) ∪ {5}. Therefore, w must be coloured with a colour
from the intersection of these two sets, that is it must be coloured with a colour
from LG(w). Therefore none of the vertices of G can be coloured 4 or 5. Thus the
problem of finding a colouring of G′ that respects L′ is equivalent to the problem
of finding a colouring of G that respects LG. This completes the proof. ⊓⊔

We will now prove Theorem 6.
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Theorem 6 (restated). 4-Regular List Colouring is NP-complete for
planar graphs even if every list contains four colours from {1, 2, 3, 4, 5}.

Proof. Recall that there exists a planar graph F ∗ with a 4-regular list assign-
ment L in which each list L(u) contains four colours from {1, 2, 3, 4, 5} such
that F ∗ has no colouring respecting L [38]. We may assume without loss of
generality that F ∗ is minimal (with respect to the subgraph relation) and use F ∗

as the graph F in the proof of Theorem 5. This means that we give each vertex
of the graph G′ in the proof of Theorem 5 a list of colours from {1, 2, 3, 4, 5}.
The result follows. ⊓⊔

5.2 The Proof of Theorem 7

Theorem 7 (restated). Let H be a finite set of 2-connected planar graphs.
Then 3-Regular List Colouring is NP-complete for planar H-subgraph-free
graphs if there exists a planar H-subgraph-free graph that is not 3-choosable.

Proof. The problem is readily seen to be in NP. Every graph in H is 2-connected,
and therefore contains a cycle. Let r be the length of a longest cycle in any
graph of H. By assumption, there exists a planar graph F and 3-regular list
assignment L such that F is H-subgraph-free and has no colouring respecting L.
We may assume that F is minimal by removing edges and vertices until any
further removal would give a graph with a colouring respecting L. In particular,
we note that F is connected.

We distinguish two cases.

Case 1. L(v) is the same for every vertex v in F .
Then we may assume without loss of generality that L(v) = {1, 2, 3} for all v.
We reduce from 3-Colouring which is NP-complete even for planar graphs by
Theorem 2. Let G be a planar graph. We will construct a planar H-subgraph-free
graph G′ as follows.

Let e = uv be an edge of F . Let F ′ = F − e. Then, by minimality, F ′ has at
least one colouring respecting L, which must be a 3-colouring as every list consists
of the colours 1, 2, 3. For every 3-colouring c of F ′, it holds that c(u) = c(v)
(otherwise c would be a colouring of F that respects L). Moreover, since we can
permute the colours, there is such a colouring c that colours u (and thus v) with
colour i for each i ∈ {1, 2, 3}. Note that in F ′ the vertices u and v must be at
distance at least 2 from each other.

Let s =
⌈

r
6

⌉

. Assume that the vertices of G are ordered. For each edge
xy ∈ E(G) with x < y, we do the following:

(i) delete xy;
(ii) add s copies of F ′ labelled F1(xy), . . . , Fs(xy) and, for 1 ≤ i ≤ s, let uxy

i

and vxyi be the vertices in Fi(xy) corresponding to u and v;
(iii) identify x with uxy

1 and, for 1 ≤ i ≤ s− 1, identify vxyi with uxy
i+1

;
(iv) add an edge from vxys to y.
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Let G′ be the obtained graph and note that G′ is planar. Every cycle in G′ that
is not contained in a copy of F ′ has length at least 3(2s+ 1) ≥ r + 1, since it
corresponds to a cycle in G and in which every edge has been replaced by s
successive copies of F ′ plus an edge.

Suppose that there is a subgraph H in G′ that is isomorphic to a graph of H.
Since F is H-subgraph-free, and since F ′ is obtained from F by removing one
edge, F ′ must also be H-subgraph-free. Therefore H is not fully contained in a
copy of F ′. Since H is 2-connected, this implies that there is a cycle in H that is
not fully contained in a copy of F ′. By definition, this cycle has length at most r,
a contradiction.

Suppose the graph G′ has a 3-colouring c. For each copy of F ′, the vertices
corresponding to u and v must be coloured the same. For all edges xy with x < y
in G, there is a vertex in G′ coloured the same as x in G that is adjacent to y
in G′, so c(x) 6= c(y). Therefore c restricted to V (G) is a 3-colouring of G.

On the other hand, suppose the graph G has a 3-colouring c. We can extend
this 3-colouring to G′ by doing the following: for all edges xy with x < y in G,
colour every Fi(xy) in such a way that the vertex corresponding to u and the
vertex corresponding to v have colour c(x). This leads to a 3-colouring of G′.

Case 2. F contains two vertices u and v with L(u) 6= L(v).
As F is connected, we assume without loss of generality that u and v are adjacent;
let e = uv.

We reduce from the problem of 3-List Colouring restricted to planar
graphs of girth at least r + 1 in which each vertex has list {1, 2}, {1, 3}, {2, 3}
or {1, 2, 3}. This problem is NP-complete by Theorem 14. Let a graph G and
list assignment LG be an instance of this problem. We will construct a planar
H-subgraph-free graph G′ with a 3-regular list assignment L′ such that G has a
colouring that respects LG if and only if G′ has a colouring that respects L′.

We define F ′ = F − e. Then, by minimality, F ′ has at least one colouring
respecting L, and moreover, for any colouring of F ′ that respects L, u and v are
coloured alike (otherwise we would have a colouring of F that respects L). Let T
be the set of possible colours that can be used on u and v in colourings of F ′

that respect L and let t = |T |. As T ⊆ L(u) ∩ L(v), we have 1 ≤ t ≤ 2. Let us
assume, without loss of generality, that T ⊆ {4, 5} and that 4 ∈ T .

We say that a vertex w in G is a bivertex or trivertex if |L(w)| is 2 or 3,
respectively. We construct a planar H-free graph G′.

First suppose that t = 1. For each bivertex w in G, we do as follows. We add
a copy of F ′ to G which we label F (w). The vertex in F (w) corresponding to u
is labelled uw and we set Uw = {uw}. We add the edge wuw. This completes the
construction of G′ when t = 1.

Now suppose that t = 2. Let s = r if r is even and s = r+1 if r is odd (so s is
even in both cases). For each bivertex w in G, we add s copies of F ′ to G which
we label Fi(w), 1 ≤ i ≤ s. The vertex in Fi(w) corresponding to u is labelled uw

i .
Let Uw = {uw

i | 1 ≤ i ≤ s}. Add edges such that, for each bivertex w in G,
the union of w and Uw induces a cycle on s + 1 vertices. This completes the
construction of G′ when t = 2.
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Note that G′ is planar, since it is made of planar graphs (G and copies of F ′)
connected in a way that does not obstruct planarity. Suppose that there is a
subgraph H in G′ that is isomorphic to a graph of H. Since F is H-subgraph-free,
and since F ′ is obtained from F by removing one edge, F ′ is also H-subgraph-free.
Therefore for all w, H is not fully contained in F (w). Since H is 2-connected and
since for all w, only one vertex of F (w) has a neighbour outside of F (w), we find
that H has at most one vertex in each F (w). This means that H is a subgraph
of G, which contradicts the fact that G has girth at least r + 1. Therefore G′ is
H-subgraph-free.

Now we define a list assignment L′. We give the vertices of each copy of F ′

the same lists as their corresponding vertices in F , and for each bivertex w
in G, we define L′(w) = LG(w) ∪ {4}, and for each trivertex w in G, we define
L′(w) = LG(w). This gives us the 3-regular list assignment L′ of G′.

The graph G′ −G has a colouring that respects (the restriction of) L′ and
we notice that in such a colouring each copy of F ′ must be coloured in such a
way that, for each bivertex w in G, the t vertices of Uw that are adjacent to w
are coloured with the t colours of T . So one of the neighbours of w in Uw must
be coloured 4. Thus the problem of finding a colouring of G′ that respects L′

is equivalent to the problem of finding a colouring of G that respects LG. The
proof is complete. ⊓⊔

5.3 The Proof of Theorem 8

Theorem 8 is not quite implied by Theorem 7. However, we can adapt the proof
of Theorem 7 to prove Theorem 8, which we restate below.

Theorem 8 (restated). 3-Regular List Colouring is NP-complete for
planar graphs with no 4-cycles, no 5-cycles and no intersecting triangles.

Proof. Let B be the graph on five vertices with two triangles sharing exactly one
vertex (this graph is known as the butterfly). Consider the previous proof with
H = {C4, C5, B}. Note that the only problem is that B is not 2-connected.

Consider the example in [29] of a graph with no 4-cycle, no 5-cycle and no
intersecting triangles that is not 3-choosable. Let I be this example, with L a
3-regular list assignment such that there is no colouring of I respecting L. We
remove edges and vertices from I until any further removal would give a graph
with a colouring respecting L. This leads to a connected graph F . There are no
four vertices in I with the same list inducing a connected subgraph, so there
are no such four vertices in F . Therefore in F there is an edge uv such that
L(u) 6= L(v) (otherwise F would have at most three vertices, and thus would be
3-choosable).

Therefore we can skip Case 1 and directly adapt the proof in Case 2. Note
that the only thing to prove is that in this case G′ does not contain a subgraph
isomorphic to B. Suppose H is such a subgraph. Since F ′ is B-subgraph-free,
H cannot be fully contained in F (w) for any w. Since no vertex is in two
different F (w) and no vertex of F (w) has two adjacent neighbours outside F (w),
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this implies that there is a triangle in G, which is impossible since G has girth at
least 6. ⊓⊔

5.4 The Proof of Theorem 9

The proof is obtained by a modification of the NP-hardness construction of 3-List
Colouring for (3P1, P1 + P2)-free graphs from [22]. Recall that we included
this result in our paper to illustrate that k-Choosability and k-Regular List

Colouring can have different complexities when restricted to special graph
classes. Indeed, since Choosability is polynomial-time solvable on 3P1-free
graphs [20], Theorem 9 shows that k-Choosability may even be easier than
k-Regular List Colouring.

Theorem 9 (restated). 3-Regular List Colouring is NP-complete for
(3P1, P1 + P2)-free graphs.

Proof. The problem is readily seen to belong to NP. Golovach et al. [20] showed
that 3-List Colouring is NP-complete for (3P1, P1 + P2)-free graphs in which
every vertex has a list of size 2 or 3. Let G be such an instance. We add three
new vertices s, t, u to G. We make s, t, u, v adjacent to each other and to each
original vertex of G. This results in a (3P1, P1 +P2)-free graph G′. We take three
new colours 1, 2, 3 and set L(s) = L(t) = L(u) = {1, 2, 3}. This forces colour 1 to
be used to colour one of s, t or u. Then all that remains is to add colour 1 to the
list of every vertex of G that has a list of size 2. ⊓⊔

5.5 The Proof of Theorem 13

We need some additional results. We begin with a theorem of Bonomo, Durán
and Marenco.

Theorem 15 ([4]). List Colouring is polynomial-time solvable on block
graphs.

By generalizing their proof we extend this result to classes of graphs where
List Colouring is polynomial-time solvable on the blocks of graphs in the
class.

Theorem 16. Let G be a class of graphs and let GB be the class of graphs that
appear as blocks of graphs in G. If List Colouring is polynomial-time solvable
on GB then it is polynomial-time solvable on G.

Proof. Let G be a graph in G that, together with a list assignment L, forms an
instance of List Colouring. We may assume G is connected. If G /∈ GB then
consider a cut-vertex u in a leaf-block B (such B and u exist). Let LB be the
restriction of L to V (B) \ {u}. For each colour i ∈ L(u), we do as follows. We
remove i from the list of every neighbour of u in B and check whether B admits
a colouring that respects LB . Note that we can do this in polynomial time, as B
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is in GB . If so then we put i in a set Au for vertex u; otherwise we do not do this.
If, after considering each colour in L(u), we find that Au = ∅ then we return no.
Otherwise we define a new list assignment L′ for the subgraph G′ of G induced
by V (G) \ (B \ {u}) by setting L′(u) = A(u) and L′(v) = L(v) if v ∈ V (G) \B.
Note that G has a colouring that respects L if and only if G′ has a colouring
that respects L′. We continue with the pair G′, L′. We do this exhaustively
until we obtain in polynomial time a graph in GB. Since List Colouring is
polynomial-time solvable in GB , this completes the proof. ⊓⊔

Theorem 16, combined with Theorem 10, leads to the following generalization
of Theorem 15.

Corollary 8. List Colouring is polynomial-time solvable on Gallai trees.

We also state the following theorem, proved independently by Borodin and
Erdős et al.

Theorem 17 ([5, 6, 17]). Let G = (V,E) be a connected graph with a list
assignment L such that |L(u)| = deg(u) for all u ∈ V . If G is not a Gallai tree
then G has a colouring respecting L.

We now restate and prove Theorem 13.

Theorem 13 (restated). Let k be a positive integer. Then k-Precolouring
Extension is polynomial-time solvable for graphs of maximum degree at most k.

Proof. Let G = (V,E), together with a k-precolouring cW defined on a subset
W ⊆ V , be an instance of k-Precolouring Extension. We let G′ be the
subgraph of G induced by V \W . For each v ∈ V (G′), we set L(v) = {1, . . . , k} \
{cW (u) | u ∈ W ∩N(v)}. Observe that G has a k-colouring extending cW if and
only if G′ has a colouring that respects L. Hence we may consider G′ instead.

Note that, for every vertex v ∈ V (G′), the colours that are removed from
{1, . . . , k} to obtain L(v) are exactly the colours of those neighbours of v in G that
are not in G′. This implies, together with the assumption that G has maximum
degree at most k, that every v ∈ V (G′) has at most |L(v)| neighbours in G′.

We now apply the following procedure on G′ exhaustively. If a vertex v has
fewer than |L(v)| neighbours then remove v from G′. In the end we obtain a
graph G∗ with the property that L(u) = degG∗(u) for all u ∈ V (G∗). Moreover,
G′ has a colouring that respects L if and only if G∗ has a colouring that respects
the restriction of L to V (G∗). Hence we may consider G∗ instead. We consider
every connected component C of G∗ in turn. If C is a Gallai tree then we apply
Corollary 8. Otherwise we apply Theorem 17. ⊓⊔

6 Conclusions

As well as filling the complexity gaps of a number of colouring problems for
graphs with bounded maximum degree, we have given several dichotomies for the
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k-Regular List Colouring problem restricted to subclasses of planar graphs.
In particular we showed NP-hardness of the cases k = 3 and k = 4 restricted to
planar H-subgraph-free graphs for several sets H of 2-connected planar graphs.
Our method implies that for such sets H it suffices to find a counterexample to
3-choosability or to 4-choosability, respectively. It is a natural to ask whether we
can determine the complexity of 3-Regular List Colouring and 4-Regular

List Colouring for any class of planar H-subgraph-free graphs. However, we
point out that even when restricting H to be a finite set of 2-connected planar
graphs, this would be very hard (and beyond the scope of this paper) as it
would require solving several long-standing conjectures in the literature. For
example, when H = {C4, C5, C6}, Montassier [28] conjectured that every planar
H-subgraph-free graph is 3-choosable.

A drawback of our method is that we need the set of graphs H to be 2-
connected. If we forbid a set H of graphs that are not 2-connected, the distinction
between polynomial-time solvable and NP-complete cases is not clear, and both
cases may occur even if we forbid only one graph. We illustrate this below with
an example.

Example. Let H contain only the star K1,r for some r ≥ 2. Note that K1,r-
subgraph-free graphs are exactly those graphs that have maximum degree at
most r − 1. Hence, if r = 3, then 3-Regular List Colouring is polynomial-
time solvable due to Theorem 10. However, there exist larger values of r for
which the problem is NP-complete. In order to see this we adapt the proof of
Theorem 7. The hardness reductions in this proof multiply the maximum degree
of our instances by some constant d that is at most the maximum degree of
the no-instance F . By Theorems 2 and 4, the problems we reduce from are
NP-complete even for graphs with maximum degree at most 4. Hence, we have
proven the following: if H is a finite set of 2-connected planar graphs and F
is a non-3-choosable planar H-subgraph-free graph with maximum degree d,
then 3-Regular List Colouring is NP-complete on planar H-subgraph-free
graphs with maximum degree at most 4d. We can take F = K4 to deduce that
3-Regular List Colouring is NP-complete on planar K1,13-subgraph-free
graphs.
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Abstract. The Colouring problem is that of deciding, given a graph G

and an integer k, whether G admits a (proper) k-colouring. For all graphs H

up to five vertices, we classify the computational complexity of Colouring

for (diamond, H)-free graphs. Our proof is based on combining known results
together with proving that the clique-width is bounded for (diamond, P1 +2P2)-
free graphs. Our technique for handling this case is to reduce the graph under
consideration to a k-partite graph that has a very specific decomposition. As
a by-product of this general technique we are also able to prove boundedness
of clique-width for four other new classes of (H1, H2)-free graphs. As such,
our work also continues a recent systematic study into the (un)boundedness
of clique-width of (H1, H2)-free graphs, and our five new classes of bounded
clique-width reduce the number of open cases from 13 to 8.

1 Introduction

The Colouring problem is that of testing whether a given graph can be coloured with
at most k colours for some given integer k, such that any two adjacent vertices receive
different colours. The complexity of Colouring is fully understood for general graphs:
it is NP-complete even if k = 3 [35]. Therefore it is natural to study its complexity
when the input is restricted. A classic result in this area is due to Grötschel, Lovász,
and Schrijver [26], who proved that Colouring is polynomial-time solvable for perfect
graphs.

As surveyed in [14,20,25,43], Colouring has been well studied for hereditary
graph classes, that is, classes that can be defined by a family H of forbidden induced
subgraphs. For a family H consisting of one single forbidden induced subgraph H, the
complexity of Colouring is completely classified: the problem is polynomial-time
solvable if H is an induced subgraph of P4 or P1 + P3 and NP-complete otherwise [34].
Hence, many papers (e.g. [13,18,29,34,37,40,41,45]) have considered the complexity
of Colouring for bigenic hereditary graph classes, that is, graph classes defined by
families H consisting of two forbidden graphs H1 and H2; such classes of graphs are
also called (H1, H2)-free. This classification is far from complete (see [25] for the state
of art). In fact there are still an infinite number of open cases, including cases where
both H1 and H2 are small. For instance, Lozin and Malyshev [37] determined the
computational complexity of Colouring for (H1, H2)-free graphs for all graphs H1

and H2 up to four vertices except when (H1, H2) ∈ {(K1,3, 4P1), (K1,3, 2P1 + P2),
(C4, 4P1)} (we refer to Section 2 for notation and terminology).

The diamond is the graph 2P1 + P2, that is, the graph obtained from the complete
graph on four vertices by removing an edge. Diamond-free graphs are well studied in the

⋆ First and last author supported by EPSRC (EP/K025090/1) and The Leverhulme Trust
(RPG-2016-258). An extended abstract of this paper appeared in the proceedings of SWAT
2016 [17].
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literature. For instance, Tucker [46] gave an O(kn2) time algorithm for Colouring for
perfect diamond-free graphs. It is also known that that Colouring is polynomial-time
solvable for diamond-free graphs that contain no induced cycle of even length [32] as
well as for diamond-free graphs that contain no induced cycle of length at least 5 [8].
Diamond-free graphs also played an important role in proving that the class of P6-free
graphs contains 24 minimal obstructions for 4-Colouring [15] (that is, the Colouring

problem for k = 4).

1.1 Our Main Result

In this paper we focus on Colouring for (diamond, H)-free graphs where H is a graph
on at most five vertices. It is known that Colouring is NP-complete for (diamond, H)-
free graphs when H contains a cycle or a claw [34] and polynomial-time solvable for
H = sP1 + P2 (s ≥ 0) [18], H = 2P1 + P3 [5], H = P1 + P4 [11], H = P2 + P3 [19] and
H = P5 [1]. Hence, the only graph H on five vertices that remains is H = P1 +2P2, for
which we prove polynomial-time solvability in this paper. This leads to the following
result.

Theorem 1. Let H be a graph on at most five vertices. Then Colouring is polynomial-
time solvable for (diamond, H)-free graphs if H is a linear forest and NP-complete
otherwise.

To solve the case H = P1 + 2P2, one could try to reduce to a subclass of diamond-free
graphs, for which Colouring is polynomial-time solvable, such as the aforementioned
results of [8,32,46]. This would require us to deal with the presence of small cycles up
to C7, which may not be straightforward. Instead we aim to identify tractability from
an underlying property: we show that the class of (diamond, P1 + 2P2)-free graphs has
bounded clique-width. This approach has several advantages and will lead to a number
of additional results, as we will discuss in the remainder of Section 1.

Clique-width is a graph decomposition that can be constructed via vertex labels and
four specific graph operations, which ensure that vertices labelled alike will always
keep the same label and thus behave identically. The clique-width of a graph G is the
minimum number of different labels needed to construct G using these four operations
(we refer to Section 2 for a precise definition). A graph class G has bounded clique-width
if there exists a constant c such that every graph from G has clique-width at most c.

Clique-width is a well-studied graph parameter (see, for instance, the surveys [27,31]).
An important reason for the popularity of clique-width is that a number of classes
of NP-complete problems, such as those that are definable in Monadic Second Order
Logic using quantifiers on vertices but not on edges, become polynomial-time solvable
on any graph class G of bounded clique-width (this follows from combining results
from [16,23,33,44] with a result from [42]). The Colouring problem is one of the best-
known NP-complete problems that is solvable in polynomial time on graph classes of
bounded clique-width [33]; another well-known example of such a problem is Hamilton

Path [23].

1.2 Methodology

The key technique for proving that (diamond, P1+2P2)-free graphs have bounded clique-
width is the use of a certain graph decomposition of k-partite graphs. We obtain this
decomposition by generalizing the so-called canonical decomposition of bipartite graphs,
which decomposes a bipartite graph into two smaller bipartite graphs such that edges
between these two smaller bipartite graphs behave in a very restricted way. Fouquet,
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Giakoumakis and Vanherpe [24] introduced this decomposition and characterized
exactly those bipartite graphs that can recursively be canonically decomposed into
graphs isomorphic to K1. Such bipartite graphs are said to be totally decomposable
by canonical decomposition. We say that k-partite graphs are totally k-decomposable
if they can be, according to our generalized definition, recursively k-decomposed into
graphs isomorphic to K1. We show that totally k-decomposable graphs have clique-
width at most 2k. We prove this result in Section 3, where we also give a formal
definition of canonical decomposition, along with our generalization.

Our goal is to transform (diamond, P1 + 2P2)-free graphs into graphs in some class
for which we already know that the clique-width is bounded. Besides the class of
totally k-decomposable graphs, we will also reduce to other known graph classes of
bounded clique-width, such as the class of (diamond, P2 + P3)-free graphs [19] and
certain classes of H-free bipartite graphs [21]. Of course, our transformations must
not change the clique-width by “too much”. We ensure this by using certain graph
operations (described in Section 2) that are known to preserve (un)boundedness of
clique-width [31,38].

1.3 Consequences for Clique-Width

There are numerous papers (as listed in, for instance, [22,27,31]) that determine the
(un)boundedness of the clique-width or variants of it (see e.g. [4,28]) of special graph
classes. Due to the complex nature of clique-width, proofs of these results are often
long and technical, and there are still many open cases. In particular, gaps exist in
a number of dichotomies on the (un)boundedness of clique-width for graph classes
defined by one or more forbidden induced subgraphs. As such our paper also continues
a line of research [5,6,19,21,22] in which we focus on these gaps in a systematic way. It
is known [22] that the class of H-free graphs has bounded clique-width if and only if H
is an induced subgraph of P4. Over the years many partial results [2,7,9,10,11,12,20,39]
on the (un)boundedness of clique-width have appeared for classes of (H1, H2)-free
graphs, but until recently [22] it was not even known whether the number of missing
cases was bounded. Combining these older results with recent progress [5,18,19,22]
reduced the number of open cases to 13 (up to an equivalence relation) [22].

As a by-product of our general methodology, we are able not only to settle the case
(H1, H2) = (diamond, P1 + 2P2), but in fact we solve five of the remaining 13 open
cases by proving that the class of (H1, H2)-free graphs has bounded clique-width if

1–4: H1 = K3 and H2 ∈ {P1 + 2P2, P1 + P2 + P3, P1 + P5, S1,2,2} or

5: H1 = diamond and H2 = P1 + 2P2.

The above graphs are displayed in Fig. 1. Note that the (K3, P1 + 2P2)-free graph
case is properly contained in all four of the other cases. These four other newly solved
cases are pairwise incomparable. In Section 4 we use our key technique on totally
k-decomposable graphs to find a number of sufficient conditions for a graph class to
have bounded clique-width. We use these conditions in Section 5 to prove Results 1–4
and we then prove Result 5 (which relies on Result 1) in Section 6.

Updating the classification (see [22]) with our five new results gives the following
theorem. Here, S is the class of graphs each connected component of which is either a
subdivided claw or a path, and we write H ⊆i G if H is an induced subgraph of G; see
Section 2 for notation that we have not formally defined yet.
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K3 diamond P1 + 2P2 P1 + P2 + P3 P1 + P5 S1,2,2

Fig. 1. The forbidden graphs considered in this paper.

Theorem 2. Let G be a class of graphs defined by two forbidden induced subgraphs.
Then:

(i) G has bounded clique-width if it is equivalent1 to a class of (H1, H2)-free graphs
such that one of the following holds:

1. H1 or H2 ⊆i P4;
2. H1 = sP1 and H2 = Kt for some s, t;
3. H1 ⊆i P1 + P3 and H2 ⊆i K1,3 + 3P1, K1,3 + P2, P1 + P2 + P3, P1 + P5,

P1 + S1,1,2, P6, S1,1,3 or S1,2,2;
4. H1 ⊆i 2P1 + P2 and H2 ⊆i P1 + 2P2, 2P1 + P3, 3P1 + P2 or P2 + P3;
5. H1 ⊆i P1 + P4 and H2 ⊆i P1 + P4 or P5;
6. H1 ⊆i 4P1 and H2 ⊆i 2P1 + P3;
7. H1, H2 ⊆i K1,3.

(ii) G has unbounded clique-width if it is equivalent to a class of (H1, H2)-free graphs
such that one of the following holds:

1. H1 6∈ S and H2 6∈ S;
2. H1 /∈ S and H2 6∈ S;
3. H1 ⊇i K1,3 or 2P2 and H2 ⊇i 4P1 or 2P2;
4. H1 ⊇i 2P1 + P2 and H2 ⊇i K1,3, 5P1, P2 + P4 or P6;
5. H1 ⊇i 3P1 and H2 ⊇i 2P1 + 2P2, 2P1 + P4, 4P1 + P2, 3P2 or 2P3;
6. H1 ⊇i 4P1 and H2 ⊇i P1 + P4 or 3P1 + P2.

1.4 Future Work

Naturally we would like to extend Theorem 1 and solve the following open problem.

Open Problem 1. What is the computational complexity of the Colouring problem
for (diamond, H)-free graphs when H is a graph on at least six vertices?

Solving Open Problem 1 is highly non-trivial. It is known that 4-Colouring is
NP-complete for (C3, P22)-free graphs [30]. Hence, the polynomial-time results in
Theorem 1 cannot be extended to all linear forests. The first open case to consider
would be H = P6, for which only partial results are known. Indeed, Colouring is
polynomial-time solvable for (C3, P6)-free graphs [9], but its complexity is unknown
for (C3, P7)-free graphs (on a side note, a recent result for the latter graph class is that
3-Colouring is polynomial-time solvable [3]).

1 Given four graphs H1, H2, H3, H4, the class of (H1, H2)-free graphs and the class of (H3, H4)-
free graphs are equivalent if the unordered pair H3, H4 can be obtained from the unordered
pair H1, H2 by some combination of the operations (i) complementing both graphs in the
pair and (ii) if one of the graphs in the pair is K3, replacing it with P1 + P3 or vice versa.
If two classes are equivalent, then one of them has bounded clique-width if and only if the
other one does (see [22]).
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We observe that boundedness of the clique-width of (diamond, P1 + 2P2)-free graphs
implies boundedness of the clique-width of (2P1 + P2, P1 + 2P2)-free graphs (recall
that the diamond is the complement of the graph 2P1 + P2). Hence our results imply
that Colouring can also be solved in polynomial time for graphs in this class. After
incorporating the consequences of our new results and this additional observation, there
are 13 classes of (H1, H2)-free graphs for which Colouring could potentially still be
solved in polynomial time by showing that their clique-width is bounded (see also [25]):

Open Problem 2. Is Colouring polynomial-time solvable for (H1, H2)-free graphs
when:

1. H1 ∈ {3P1, P1 + P3} and H2 ∈ {P1 + S1,1,3, S1,2,3};

2. H1 = 2P1 + P2 and H2 ∈ {P1 + P2 + P3, P1 + P5};

3. H1 = diamond and H2 ∈ {P1 + P2 + P3, P1 + P5};

4. H1 = P1 + P4 and H2 ∈ {P1 + 2P2, P2 + P3};

5. H1 = P1 + P4 and H2 ∈ {P1 + 2P2, P2 + P3};

6. H1 = H2 = 2P1 + P3.

As mentioned in Section 1.3, after updating the list of remaining open cases for clique-
width from [22], we find that eight non-equivalent open cases remain for clique-width.
These are the following cases.

Open Problem 3. Does the class of (H1, H2)-free graphs have bounded or unbounded
clique-width when:

1. H1 = 3P1 and H2 ∈ {P1 + S1,1,3, P2 + P4, S1,2,3};
2. H1 = 2P1 + P2 and H2 ∈ {P1 + P2 + P3, P1 + P5};
3. H1 = P1 + P4 and H2 ∈ {P1 + 2P2, P2 + P3} or
4. H1 = H2 = 2P1 + P3.

Bonomo, Grippo, Milanič and Safe [4] determined all pairs of connected graphs
H1, H2 for which the class of (H1, H2)-free graphs has power-bounded clique-width. In
order to compare their result with our results for clique-width, we would only need to
solve the single open case (H1, H2) = (K3, S1,2,3), which is equivalent to the (open)
case (H1, H2) = (3P1, S1,2,3) mentioned in Open Problem 3. This follows because our
new result for the case (H1, H2) = (K3, S1,2,2) has reduced the number of open cases
(H1, H2) with H1, H2 both connected from two to one.

2 Preliminaries

Throughout our paper we only consider finite, undirected graphs without multiple
edges or self-loops. Below we define further graph terminology.

The disjoint union (V (G) ∪ V (H), E(G) ∪ E(H)) of two vertex-disjoint graphs G
and H is denoted by G+H and the disjoint union of r copies of a graph G is denoted
by rG. The complement of a graph G, denoted by G, has vertex set V (G) = V (G) and
an edge between two distinct vertices if and only if these vertices are not adjacent
in G. For a subset S ⊆ V (G), we let G[S] denote the subgraph of G induced by S,
which has vertex set S and edge set {uv | u, v ∈ S, uv ∈ E(G)}. If S = {s1, . . . , sr}
then, to simplify notation, we may also write G[s1, . . . , sr] instead of G[{s1, . . . , sr}].
We use G \ S to denote the graph obtained from G by deleting every vertex in S, i.e.
G \ S = G[V (G) \ S]. We write H ⊆i G to indicate that H is an induced subgraph
of G.
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The graphs Cr,Kr,K1,r−1 and Pr denote the cycle, complete graph, star and path
on r vertices, respectively. The graph K1,3 is also called the claw. The graph Sh,i,j ,
for 1 ≤ h ≤ i ≤ j, denotes the subdivided claw, that is, the tree that has only one
vertex x of degree 3 and exactly three leaves, which are of distance h, i and j from x,
respectively. Observe that S1,1,1 = K1,3. The graph S1,2,2 is also known as the E, since
it can be drawn like a capital letter E (see Fig. 1). Recall that the graph 2P1 + P2 is
known as the diamond. The graphs K3 and P1 + 2P2 are also known as the triangle
and the 5-vertex wheel, respectively. For a set of graphs {H1, . . . , Hp}, a graph G is
(H1, . . . , Hp)-free if it has no induced subgraph isomorphic to a graph in {H1, . . . , Hp};
if p = 1, we may write H1-free instead of (H1)-free.

Let X be a set of vertices in a graph G = (V,E). A vertex y ∈ V \X is complete
to X if it is adjacent to every vertex of X and anti-complete to X if it is non-adjacent
to every vertex of X. Similarly, a set of vertices Y ⊆ V \X is complete (anti-complete)
to X if every vertex in Y is complete (anti-complete) to X. A vertex y or a set Y is
trivial to X if it is either complete or anti-complete to X. Note that if Y contains both
vertices complete to X and vertices not complete to X, we may have a situation in
which every vertex in Y is trivial to X, but Y itself is not trivial to X.

For a graph G = (V,E), the set N(u) = {v ∈ V | uv ∈ E} denotes the neighbour-
hood of u ∈ V . Let X and Y be disjoint sets of vertices in a graph G = (V,E). If every
vertex of X has at most one neighbour in Y and vice versa then we say that the edges
between X and Y form a matching. If every vertex of X has exactly one neighbour in Y
and vice versa then we say that the edges between X and Y form a perfect matching.

A graph is k-partite if its vertex set can be partitioned into k independent sets
(some of which may be empty). A graph is bipartite if it is 2-partite. A graph is complete
bipartite if its vertex set can be partitioned into two independent sets that are complete
to each other. For integers r, s ≥ 0, the biclique Kr,s is the complete bipartite graph
with sets in the partition of size r and s respectively. The bipartite complement of a
bipartite graph G with bipartition (X,Y ) is the graph obtained from G by replacing
every edge from a vertex in X to a vertex in Y by a non-edge and vice versa.

Clique-Width. The clique-width of a graph G, denoted cw(G), is the minimum number
of labels needed to construct G by using the following four operations:

1. creating a new graph consisting of a single vertex v with label i;
2. taking the disjoint union of two labelled graphs G1 and G2;
3. joining each vertex with label i to each vertex with label j (i 6= j);
4. renaming label i to j.

An algebraic term that represents such a construction of G and uses at most k labels is
said to be a k-expression of G (i.e. the clique-width of G is the minimum k for which G
has a k-expression). Recall that a class of graphs G has bounded clique-width if there
is a constant c such that the clique-width of every graph in G is at most c; otherwise
the clique-width of G is unbounded.

Let G be a graph. We define the following operations. For an induced subgraph
G′ ⊆i G, the subgraph complementation operation (acting on G with respect to G′)
replaces every edge present in G′ by a non-edge, and vice versa. Similarly, for two
disjoint vertex subsets S and T in G, the bipartite complementation operation with
respect to S and T acts on G by replacing every edge with one end-vertex in S and
the other one in T by a non-edge and vice versa.

We now state some useful facts about how the above operations (and some other
ones) influence the clique-width of a graph. We will use these facts throughout the
paper. Let k ≥ 0 be a constant and let γ be some graph operation. We say that a graph
class G′ is (k, γ)-obtained from a graph class G if the following two conditions hold:
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(i) every graph in G′ is obtained from a graph in G by performing γ at most k times,
and

(ii) for every G ∈ G there exists at least one graph in G′ obtained from G by
performing γ at most k times.

We say that γ preserves boundedness of clique-width if for any finite constant k and
any graph class G, any graph class G′ that is (k, γ)-obtained from G has bounded
clique-width if and only if G has bounded clique-width.

Fact 1. Vertex deletion preserves boundedness of clique-width [38].

Fact 2. Subgraph complementation preserves boundedness of clique-width [31].

Fact 3. Bipartite complementation preserves boundedness of clique-width [31].

The following lemma is easy to show.

Lemma 1. The clique-width of a graph of maximum degree at most 2 is at most 4.

Two vertices are false twins if they have the same neighbourhood (note that such
vertices must be non-adjacent). The following lemma follows immediately from the
definition of clique-width.

Lemma 2. If a vertex x in a graph G has a false twin then cw(G) = cw(G \ {x}).

We will also make use of the following two results.

Lemma 3 ([19]). The class of (diamond, P2 + P3)-free graphs has bounded clique-
width.

Lemma 4 ([21]). Let H be a graph. The class of H-free bipartite graphs has bounded
clique-width if and only if

• H = sP1 for some s ≥ 1;
• H ⊆i K1,3 + 3P1;
• H ⊆i K1,3 + P2;
• H ⊆i P1 + S1,1,3 or
• H ⊆i S1,2,3.

In some of our proofs we will use the fact that S1,2,3-free bipartite graphs have
bounded clique-width, which follows from Lemma 4. Alternatively we could have used
the result of Lozin [36], who showed that S1,2,3-free bipartite graphs have clique-width
at most 5.

3 Totally k-Decomposable Graphs

In this section we describe our key technique, which is based on a decomposition of
bipartite graphs introduced by Fouquet, Giakoumakis and Vanherpe [24], which is
defined as follows.

Let G be a bipartite graph with a vertex bipartition (V1, V2). A 2-decomposition of G
with respect to (V1, V2) consists of two non-empty graphs G[V ′

1 ∪ V ′

2 ] and G[V ′′

1 ∪ V ′′

2 ]
such that:

(i) for i ∈ {1, 2}, V ′

i ∪ V ′′

i = Vi and V ′

i ∩ V ′′

i = ∅;
(ii) V ′

1 is either complete or anti-complete to V ′′

2 in G;
(iii) V ′

2 is either complete or anti-complete to V ′′

1 in G.
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Note that V ′

1 ∪ V ′′

1 and V ′

2 ∪ V ′′

2 are independent sets in G and that the last two
conditions imply that each of G[V ′

1 ∪ V ′′

2 ] and G[V ′′

1 ∪ V ′

2 ] is either an independent
set or a biclique. Observe that we do not impose restrictions on the bipartite graphs
G′ = G[V ′

1 ∪V ′

2 ] and G′′ = G[V ′′

1 ∪V ′′

2 ]. If G has a 2-decomposition G′, G′′ with respect
to some bipartition, we say that G can be 2-decomposed into G′ and G′′. A graph G is
totally decomposable by canonical decomposition if it can be recursively 2-decomposed
into graphs isomorphic to K1. Note that if G has a 2-decomposition G′, G′′ with respect
to some bipartition (V1, V2), this does not force us to decompose G′ and G′′ with
respect to a sub-partition of (V1, V2). As we will see, this distinction does not make a
difference for bipartite graphs, but it will become an issue when we extend the notion
to k-partite graphs when k ≥ 3.

Fouquet, Giakoumakis and Vanherpe proved the following characterization, which
we will need for our proofs (see Fig. 2 for pictures of P7 and S1,2,3).

Lemma 5 ([24]). A bipartite graph is totally decomposable by canonical decomposition
if and only if it is (P7, S1,2,3)-free.

P7 S1,2,3

Fig. 2. The forbidden graphs from Lemma 5.

For our purposes we need to generalize the notion of totally decomposable bipartite
graphs to k-partite graphs for k ≥ 2, and we will also need to partially classify graphs
with this modified notion, in effect generalizing Lemma 5.

Let G be a k-partite graph with a fixed vertex k-partition (V1, . . . , Vk). A k-
decomposition of G with respect to the partition (V1, . . . , Vk) consists of two non-
empty graphs, each with their own partition: G′ = G[V ′

1 ∪ · · · ∪ V ′

k] with partition
(V ′

1 , V
′

2 , . . . , V
′

k) and G′′ = G[V ′′

1 ∪ · · · ∪ V ′′

k ] with partition (V ′′

1 , V ′′

2 , . . . , V ′′

k ), such that:

(i) for i ∈ {1, . . . , k}, V ′

i ∪ V ′′

i = Vi and V ′

i ∩ V ′′

i = ∅;
(ii) for all i, j ∈ {1, . . . , k}, V ′

i is either complete or anti-complete to V ′′

j in G.

Note that the last condition holds for i = j by definition, since Vi = V ′

i ∪ V ′′

i is
an independent set in G. Also note that in the above definition, (V ′

1 , V
′

2 , . . . , V
′

k) and
(V ′′

1 , V ′′

2 , . . . , V ′′

k ) are sub-partitions of (V1, V2, . . . , Vk), in the sense that V ′

i = Vi∩V (G′)
and V ′′

i = Vi ∩V (G) for i ∈ {1, . . . , k}, so the original partition on G uniquely specifies
the partitions on G′ and G′′.

If a graph G with a fixed k-partition has a k-decomposition with respect to this
partition into two graphs G′ and G′′ (with their associated sub-partitions), we say
that G can be k-decomposed into G′ and G′′ (with each of these subgraphs getting the
appropriate sub-partition). We say that G is totally k-decomposable with respect to
some fixed partition if G can be recursively k-decomposed with respect to this fixed
partition into graphs isomorphic to K1. Note that by definition, if a graph H appears
in a total k-decomposition of G with respect to some fixed partition (V1, . . . , Vk), then
the k-partition (V H

1 , V H
2 , . . . , V H

k ) of H used to partition H satisfies V H
i = Vi ∩ V (H)

for i = 1, . . . , k. This property will be necessary for us to be able to use inductive
arguments “safely.”
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To compare graphs that are totally decomposable by canonical decomposition and
graphs that are totally 2-decomposable, we observe that every connected bipartite
graph G has a unique bipartition (up to isomorphism and swapping the two independent
sets in the bipartition). Also, if G is totally decomposable by canonical decomposition,
then this decomposition can recursively be done component-wise. Hence, in each step of
the recursion, we may decompose with respect to an arbitrary bipartition of the graph
under consideration. This means that the definitions of total canonical decomposability
and total 2-decomposability are equivalent. However, for k > 2, a connected graph can
have multiple k-partitions, even up to isomorphism and permuting the independent
sets of the partition. Therefore, unlike for k = 2, we need to fix the partition of the
subgraphs G′ and G′′ in the definition of total k-decomposability.

As mentioned, for our proofs we need to generalize Lemma 5. It seems difficult to
give a full characterization of totally k-decomposable graphs for k ≥ 3. However, the
following lemma is sufficient for our purposes.

Lemma 6. A 3-partite graph G is totally 3-decomposable with respect to a 3-partition
(V1, V2, V3) if the following two conditions are both satisfied:

– G[V1 ∪ V2], G[V1 ∪ V3] and G[V2 ∪ V3] are all (P7, S1,2,3)-free, and
– for every v1 ∈ V1, every v2 ∈ V2 and every v3 ∈ V3, the graph G[v1, v2, v3] is

isomorphic neither to K3 nor to 3P1.

Proof. Let G be a 3-partite graph with a 3-partition (V1, V2, V3) such that both
conditions are satisfied. Note that any induced subgraph H of G (with partition
(V (H) ∩ V1, V (H) ∩ V2, V (H) ∩ V3)) also satisfies the hypotheses of the lemma. This
enables us to apply induction. It is therefore sufficient to show that G has a 3-
decomposition with respect to the given 3-partition.

If V1 is empty then G is a (P7, S1,2,3)-free bipartite graph and is therefore totally
2-decomposable with respect to the partition (V2, V3) by Lemma 5 (and is thus totally
3-decomposable with respect to the partition (V1, V2, V3)). By symmetry, we may
therefore assume that every set Vi is non-empty.

Now G[V1, V2] is a bipartite (P7, S1,2,3)-free graph, so by Lemma 5, G[V1 ∪ V2] is
totally 2-decomposable. Since V1 and V2 are both non-empty, it follows that V1 can be
partitioned into two sets V ′

1 and V ′′

1 and V2 can be partitioned into two sets V ′

2 and V ′′

2 ,
such that V ′

1 is either complete or anti-complete to V ′′

2 , and V ′

2 is either complete or
anti-complete to V ′′

1 . Since the graphs G[V ′

1 ∪V ′

2 ] and G[V ′′

1 ∪V ′′

2 ] in this decomposition
must be non-empty, it follows that V ′

1 ∪ V ′

2 and V ′′

1 ∪ V ′′

2 must be non-empty. Since
for i ∈ {1, 2} we know that Vi = V ′

i ∪ V ′′

i is non-empty, at least one of V ′

i and V ′′

i is
non-empty. Hence, combining these two observations, we may assume without loss of
generality that V ′

1 and V ′′

2 are non-empty. Assume that these sets are maximal, that is,
no vertex of V ′′

1 (respectively V ′

2) can be moved to V ′

1 (respectively V ′′

2 ). Note that V ′′

1

or V ′

2 may be empty.
We will prove that we can partition V3 into sets V ′

3 and V ′′

3 , such that for all
i, j ∈ {1, 2, 3}, V ′

i is complete or anti-complete to V ′′

j . Note that we already know
that V ′

1 (respectively V ′

2) is complete or anti-complete to V ′′

2 (respectively V ′′

1 ). Also
note that for i ∈ {1, 2, 3}, V ′

i is automatically anti-complete to V ′′

i , since Vi is an
independent set.

First suppose that V ′

1 is complete to V ′′

2 . If a vertex of V3 has a neighbour in
both V ′

1 and V ′′

2 then these three vertices would form a forbidden K3, so every vertex
in V3 is anti-complete to V ′

1 or V ′′

2 . Let V ′

3 be the set of vertices in V3 that are anti-
complete to V ′′

2 and let V ′′

3 = V3 \ V ′

3 . Note that V ′′

3 must be anti-complete to V ′

1 .
Suppose, for contradiction, that z ∈ V ′

3 has a non-neighbour v ∈ V ′′

1 . Since V ′

1 is
maximal, v must have a non-neighbour w ∈ V ′′

2 . This means that G[v, w, z] is a 3P1.
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This contradiction means that V ′′

1 is complete to V ′

3 . Similarly, V ′

2 is complete to V ′′

3 .
Therefore G[V ′

1 ∪ V ′

2 ∪ V ′

3 ] and G[V ′′

1 ∪ V ′′

2 ∪ V ′′

3 ] form the required 3-decomposition
of G.

Now suppose that V ′

1 is anti-complete to V ′′

2 . If a vertex of V3 has a non-neighbour
in both V ′

1 and V ′′

2 then these three vertices would induce a forbidden 3P1, so every
vertex in V3 is complete to V ′

1 or V ′′

2 . Let V ′

3 be the set of vertices in V3 that are
complete to V ′′

2 and let V ′′

3 = V3 \ V
′

3 . Note that V ′′

3 must be complete to V ′

1 . By using
similar arguments to those in the previous case, we find that V ′′

1 is anti-complete to V ′

3

and V ′

2 is anti-complete to V ′′

3 . Hence, G[V ′

1 ∪ V ′

2 ∪ V ′

3 ] and G[V ′′

1 ∪ V ′′

2 ∪ V ′′

3 ] form the
required 3-decomposition of G. This completes the proof. ⊓⊔

We also need the following lemma.

Lemma 7. Let G be a k-partite graph with vertex partition (V1, . . . , Vk). If G is totally
k-decomposable with respect to this partition, then the clique-width of G is at most 2k.
Moreover, there is a 2k-expression for G that assigns, for i ∈ {1, . . . , k}, label i to every
vertex of Vi.

Proof. We prove the lemma by induction on the number of vertices. If G contains
only one vertex then the lemma holds trivially. Suppose that the lemma is true for all
k-partite graphs H on at most n vertices and for all k-partitions (V H

1 , . . . , V H
2 ) with

respect to which H is totally k-decomposable. Let G be a graph on n+ 1 vertices that
is totally k-decomposable with respect to a vertex partition (V1, . . . , Vk). Then, we can
partition every set Vi into two sets V ′

i and V ′′

i in such a way that each set V ′

i is either
complete or anti-complete to each set V ′′

j for all i, j ∈ {1, . . . , k} and G′ = G[V ′

1∪. . .∪V
′

k]
and G′′ = G[V ′′

1 ∪ . . . ∪ V ′′

k ] are totally k-decomposable with respect to the partitions
(V ′

1 , . . . , V
′

k) and (V ′′

1 , . . . , V ′′

k ), respectively.

As both G′ and G′′ are smaller graphs that G, we can apply the induction hypothesis.
Hence, we can find a 2k-expression that constructs G′ such that the vertices in each
set V ′

i have label i for i ∈ {1, . . . , k}. Similarly, we can find a 2k-expression that
constructs G′′ such that the vertices in each set V ′′

j have label k + j for j ∈ {1, . . . , k}.
We take the disjoint union of these two constructions. Next, for i, j ∈ {1, . . . , k}, we
join the vertices with label i to the vertices with label k+ j if and only if V ′

i is complete
to V ′′

j in G. Finally, for i ∈ {1, . . . , k}, we relabel the vertices with label k + i to have
label i. This completes the proof of the lemma. ⊓⊔

4 Sufficient Conditions for (K3, S1,2,3)-free Graphs

We observe that the classes of (K3, P1+2P2)-free, (K3, P1+P2+P3)-free, (K3, P1+P5)-
free and (K3, S1,2,2)-free graphs are all subclasses of the class of (K3, S1,2,3)-free graphs.
In order to prove that each of the four subclasses has bounded clique-width, we
investigate, in this section, sufficient conditions for a subclass of (K3, S1,2,3)-free graphs
to be of bounded clique-width. We present these conditions in Corollary 1 and Lemma 9.
Corollary 1 follows from a structural result (Lemma 8), which we prove first. The proof
of Lemma 9 uses the results from the previous section. We will not use Corollary 1 and
Lemma 9 directly when proving that the class of (diamond, P1 + 2P2)-free graphs has
bounded clique-width. However, our proof of that result does rely on these two results
indirectly, as it depends on the (K3, P1 + 2P2)-free case.

Lemma 8. Let G be a connected (K3, C5, S1,2,3)-free graph that does not contain a
pair of false twins. Then G is either bipartite or an induced cycle.
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Proof. Let G be a connected (K3, C5, S1,2,3)-free graph that does not contain a pair of
false twins. We may assume that G is not bipartite, otherwise we are done. We know
that G is (C3, C5)-free (since C3 = K3). We may therefore assume that G contains an
induced odd cycle C on k vertices, say v1 − v2 − · · · − vk − v1, where k ≥ 7. Assume
that C is an odd cycle of minimum length in G.

Suppose that not every vertex of G is in C. Since G is connected, we may assume
that there is a vertex v not in C that has a neighbour in C. Suppose v is adjacent to
precisely one vertex of C. If v is adjacent to v3, but has no other neighbours on C then
G[v3, v, v2, v1, v4, v5, v6] is an S1,2,3, a contradiction. By symmetry, it follows that v
must be adjacent to at least two vertices of C. Note that since G is K3-free, no vertex
outside of C can be adjacent to two consecutive vertices of C.

Suppose that v is adjacent to v1 and vi and non-adjacent to v2, . . . , vi−1 for some
even i with i ≤ k − 2. Then G[v, v1, v2, . . . , vi] would be an odd cycle on less than k
vertices, contradicting the minimality of k. By a parity argument, since C is an odd
cycle, it follows that v must be adjacent to precisely two vertices of C, which must be
at distance 2 away from each other on the cycle.

Let Vi be the set of vertices outside of C that are adjacent to vi−1 and vi+1

(subscripts interpreted modulo k) and let U be the set of vertices that have no
neighbour in C. Suppose, for contradiction, that U is non-empty. Since G is connected,
without loss of generality there is a vertex u ∈ U that has a neighbour v ∈ V1. Then
G[v2, v1, v, u, v3, v4, v5] is an S1,2,3, a contradiction. We conclude that U must be empty.

Now since G is K3-free, for every i the set Vi is anti-complete to the set Vi+2.
Moreover, if i and j are such that the vertices vi and vj are at distance more than 2 on
the cycle, then Vi and Vj must be anti-complete, as otherwise there would be a smaller
odd cycle than C in G, which would contradict the minimality of k.

Note that every set Vi is independent in G, since G is K3-free. If a vertex x1 ∈ V1

is non-adjacent to a vertex x2 ∈ V2 then G[v3, x2, v2, x1, v4, v5, v6] is an S1,2,3, a
contradiction. Therefore a vertex xi ∈ Vi is adjacent to a vertex xj ∈ Vj if and only
if vi and vj are consecutive vertices of C. In other words, for every i, every vertex in Vi

is a false twin of vi. Therefore every set Vi must be empty, so G is an induced odd
cycle. This completes the proof. ⊓⊔

We immediately get the following corollary, which implies that the four triangle-free
cases in our new results hold when the graph class under consideration is in addition
C5-free.

Corollary 1. The class of (K3, C5, S1,2,3)-free graphs has bounded clique-width.

Proof. Let G be a (K3, C5, S1,2,3)-free graph. If G contains a pair of false twins then by
Lemma 2 we may delete one of them. By Lemma 8, every component of the resulting
graph is either a bipartite graph or an induced cycle. In the first case, such a component
is an S1,2,3-free bipartite graph, so it has bounded clique-width by Lemma 4. In the
second case, the component has clique-width at most 4 by Lemma 1. The corollary
follows. ⊓⊔

In our second lemma we state a number of sufficient conditions for a subclass of
(K3, S1,2,3)-free graphs to be of bounded clique-width when C5 is no longer a forbidden
induced subgraph. To prove it we will need Lemmas 6 and 7.

Lemma 9. Let G be the subclass of (K3, S1,2,3)-free graphs for which the vertices in
each graph G ∈ G can be partitioned into ten independent sets V1, . . . , V5,W1, . . . ,W5,
such that the following seven conditions hold (we interpret subscripts modulo 5):

(i) for all i, Vi is anti-complete to Vi−2 ∪ Vi+2 ∪Wi−1 ∪Wi+1;
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(ii) for all i, Wi is complete to Wi−1 ∪Wi+1;
(iii) for all i, every vertex of Vi is trivial to at least one of the sets Vi+1 and Vi−1;
(iv) for all i, every vertex in Vi is trivial to Wi;
(v) for all i, Wi is trivial to Wi−2 and to Wi+2;
(vi) for all i, j, the graphs induced by Vi ∪ Vj and Vi ∪Wj are P7-free;
(vii) for all i, there are no three vertices v ∈ Vi, w ∈ Vi+1 and x ∈ Wi+3 such that

v, w and x are pairwise non-adjacent.

Then G has bounded clique-width.

Proof. Let G be a (K3, S1,2,3)-free graph with such a partition that satisfies Con-
ditions (i)–(vii) of the lemma. Note that for all i, every vertex v ∈ Vi is trivial to
Vi−2, Vi+2,Wi−1,Wi+1,Wi and either trivial to Vi−1 or trivial to Vi+1. Therefore a
vertex v ∈ Vi can only be non-trivial to Wi−2,Wi+2 and at most one of Vi−1 and Vi+1.
Likewise, every vertex w ∈ Wi is trivial to Wi−1,Wi+1,Wi−2,Wi+2, Vi−1 and Vi+1.
Therefore, a vertex w ∈ Wi can only be non-trivial to Vi, Vi−2 and Vi+2 (and every
vertex in Vi is trivial to Wi).

For i ∈ {1, . . . , 5}, let W ′

i be the set of vertices in Wi that are non-trivial to
both Vi−2 and Vi+2, let V ′

i be the set of vertices in Vi that are non-trivial to both Vi+1

and Wi−2 and let V ′′

i be the set of vertices in Vi that are non-trivial to both Vi−1

and Wi+2. Note that V ′

i ∩ V ′′

i = ∅ by Condition (iii).
We say that an edge is irrelevant if one of its end-vertices is in a set Vi, V

′

i , V
′′

i ,Wi

or W ′

i , and its other end-vertex is complete to this set, otherwise we say that the edge is
relevant. We will now show that for i ∈ {1, . . . , 5}, the graph G[V ′

i ∪V ′′

i+1∪W ′

i−2] can be
separated from the rest of G by using a bounded number of bipartite complementations.
To do this, we first prove the following claim.

Claim 1. If u ∈ V ′

i ∪ V ′′

i+1 ∪W ′

i−2 and v /∈ V ′

i ∪ V ′′

i+1 ∪W ′

i−2 are adjacent then uv is
an irrelevant edge.
We split the proof of Claim 1 into the following cases.

Case 1: u ∈ V ′

i .
Since u is in Vi, v must be in Vi−1 ∪ Vi+1 ∪ Wi−2 ∪ Wi+2, otherwise uv would be
irrelevant by Condition (i) or (iv). We consider the possible cases for v.

Case 1a: v ∈ Vi−1.
Since u is in V ′

i , it is non-trivial to Vi+1, so by Condition (iii), u is trivial to Vi−1.
Therefore uv is irrelevant.

Case 1b: v ∈ Vi+1.
Suppose, for contradiction, that v is complete to Wi−2. Let w ∈ Wi−2 be a neighbour
of u (such a vertex w exists, since u is non-trivial to Wi−2). Then G[u, v, w] is a K3,
a contradiction, so v cannot be complete to Wi−2. Now suppose, for contradiction
that v is anti-complete to Wi−2. We may assume that v has a non-neighbour u′ ∈ V ′

i ,
otherwise v would be trivial to V ′

i , in which case uv would be irrelevant. Since u′ ∈ V ′

i ,
u′ is non-trivial to Wi−2, so it must have a non-neighbour w ∈ Wi−2. Then, since v is
anti-complete to Wi−2, it follows that G[u′, v, w] is a 3P1, contradicting Condition (vii).
We may therefore assume that v is non-trivial to Wi−2. We know that v /∈ V ′′

i+1.
Therefore v must be trivial to Vi, so uv is irrelevant.

Case 1c: v ∈ Wi−2.
Reasoning as in the previous case, we find that v cannot be complete or anti-complete
to Vi+1. Hence, as v /∈ W ′

i−2, v must be trivial to Vi, so uv is irrelevant.

Case 1d: v ∈ Wi+2.
Since u is non-trivial to Wi−2 (by definition of V ′

i ), there is a vertex w ∈ Wi−2 that is
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adjacent to u. By Condition (ii), w is adjacent to v. Therefore G[u, v, w] is a K3. This
contradiction implies that v /∈ Wi+2. This completes Case 1.

Now assume that u /∈ V ′

i . Then, by symmetry, u /∈ V ′′

i+1. This means that the following
case holds.

Case 2: u ∈ W ′

i−2.
We argue similarly to Case 1b. We may assume that v is non-trivial to W ′

i−2, oth-
erwise uv would be irrelevant. By Conditions (i), (ii), (iv) and (v), it follows that
v ∈ Vi ∪ Vi+1. Without loss of generality assume that v ∈ Vi. Since v /∈ V ′

i and v is
non-trivial to Wi−2, it follows that v is trivial to Vi+1. If v is complete to Vi+1 then
since u is non-trivial to Vi+1, there must be a vertex w ∈ Vi+1 adjacent to u, in which
case G[u, v, w] is a K3, a contradiction. Therefore v must be anti-complete to Vi+1.
Since v is non-trivial to W ′

i−2, there must be a vertex u′ ∈ W ′

i−2 that is non-adjacent
to v. Since u′ ∈ W ′

i−2, u
′ must have a non-neighbour w ∈ Vi+1. Then G[u′, v, w] is

a 3P1, contradicting Condition (vii). This completes Case 2.

We conclude that, if u ∈ V ′

i ∪ V ′′

i+1 ∪ W ′

i−2 and v /∈ V ′

i ∪ V ′′

i+1 ∪ W ′

i−2 are adjacent,
then uv is an irrelevant edge. Hence we have proven Claim 1.

By Claim 1 we find that if u ∈ V ′

i ∪ V ′′

i+1 ∪ W ′

i−2 and v /∈ V ′

i ∪ V ′′

i+1 ∪ W ′

i−2 are
adjacent then u or v is complete to some set Vj , V

′

j , V
′′

j ,Wj or W ′

j that contains v
or u, respectively. By applying a bounded number of bipartite complements (which
we may do by Fact 3), we can separate G[V ′

i ∪ V ′′

i+1 ∪W ′

i−2] from the rest of G. By
Conditions (vi) and (vii) and the fact that G is (K3, S1,2,3)-free, Lemmas 6 and 7 imply
that G[V ′

i ∪ V ′′

i+1 ∪ W ′

i−2] has clique-width at most 6. Repeating this argument for
each i, we may assume that V ′

i ∪ V ′′

i+1 ∪W ′

i−2 = ∅ for every i.

For i ∈ {1, . . . , 5} let V ∗

i be the set of vertices in Vi that are either non-trivial
to Vi+1 or non-trivial to Wi+2 and let V ∗∗

i be the set of the remaining vertices in Vi.
For i ∈ {1, . . . , 5}, let W ∗

i be the set of vertices that are non-trivial to Vi+2 and let W ∗∗

i

be the set of the remaining vertices in Wi.
We claim that every vertex in Vi that is non-trivial to Vi−1 or that is non-trivial

to Wi−2 is in V ∗∗

i . Indeed, if v ∈ Vi is non-trivial to Vi−1 then by Condition (iii), v is
trivial to Vi+1 and since V ′′

i is empty, v must be trivial to Wi+2. If v ∈ Vi is non-trivial
to Wi−2 then v must be trivial to Vi+1 since V ′

i is empty. Moreover, in this case v
must also be trivial to Wi+2, otherwise, by Condition (ii) the vertex v, together with
a neighbour of v in each of Wi+2 and Wi−2, would induce a K3 in G. It follows that
every vertex in Vi that is non-trivial to Vi−1 or that is non-trivial to Wi−2 is indeed
in V ∗∗

i . Similarly, for all i, since W ′

i is empty, every vertex in Wi that is non-trivial
to Vi−2 is in W ∗∗

i .
We say that an edge uv is insignificant if u or v is in some set V ∗

i , V
∗∗

i ,W ∗

i or W ∗∗

i

and the other vertex is trivial to this set; all other edges are said to be significant. We
prove the following claim.

Claim 2. If u ∈ W ∗

i ∪V ∗∗

i+2∪V ∗

i+1∪W ∗∗

i−2 and v /∈ W ∗

i ∪V ∗∗

i+2∪V ∗

i+1∪W ∗∗

i−2 are adjacent
then the edge uv is insignificant.
To prove this claim suppose, for contradiction, that uv is a significant edge. We split
the proof into two cases.

Case 1: u ∈ Wi.
We will show that v ∈ V ∗∗

i+2 or v ∈ V ∗

i−2 if u ∈ W ∗

i or u ∈ W ∗∗

i , respectively. By
Conditions (i), (ii), (iv) and (v) we know that u is trivial to Vi−1, Vi+1, Wi−1, Wi+1,
Wi−2 and Wi+2, and that every vertex of Vi is trivial to Wi. Furthermore, u is trivial
to W ∗∗

i \ {u} since Wi is independent. Therefore v ∈ Vi−2 ∪ Vi+2. Note that v is
non-trivial to Wi (by choice of v). If u ∈ W ∗

i then u must be trivial to Vi−2, since W ′

i is
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empty. Therefore v ∈ Vi+2. Now if v ∈ V ∗

i+2 then v is non-trivial to Vi−2 or non-trivial
to Wi−1. In the first case v is non-trivial to both Vi−2 and Wi, contradicting the fact
that V ′

i+2 is empty. In the second case v has a neighbour w ∈ Wi−1. By Condition (ii),
w is adjacent to u, so G[u, v, w] is a K3. This contradiction implies that if u ∈ W ∗

i

then v ∈ V ∗∗

i+2, contradicting the choice of v. Now suppose u ∈ W ∗∗

i . Then u is trivial
to Vi+2, so v ∈ Vi−2. If v ∈ V ∗∗

i−2 then v is trivial Wi (by definition of V ∗∗

i−2). Therefore
if u ∈ W ∗∗

i then v ∈ V ∗

i−2, contradicting the choice of v.

We conclude that for every i ∈ {1, . . . , 5} the vertex u is not in Wi. Similarly, we may
assume v /∈ Wi. This means that the following case holds.

Case 2: u ∈ Vi, v ∈ Vj for some i, j.
Then i 6= j, since Vi is an independent set. By Condition (i), j /∈ {i− 2, i+2}. Without
loss of generality, we may therefore assume that j = i+ 1. If u ∈ V ∗∗

i then u is trivial
to Vi+1, so we may assume that u ∈ V ∗

i . If v ∈ V ∗

i+1 then v is non-trivial to Vi+2, so by
Condition (iii) v is trivial to Vi, contradicting the fact that uv is significant. Therefore
v ∈ V ∗∗

i+1, contradicting the choice of v.

We conclude that if for some i, u ∈ W ∗

i ∪V ∗∗

i+2∪V ∗

i+1∪W ∗∗

i−2 and v /∈ W ∗

i ∪V ∗∗

i+2∪V ∗

i+1∪
W ∗∗

i−2 are adjacent then the edge uv is insignificant. Hence we have proven Claim 2.

Note that W ∗

i , V
∗∗

i+2, V
∗

i+1 and W ∗∗

i−2 are independent sets. By Condition (i), W ∗

i is
anti-complete to V ∗

i+1 and V ∗∗

i+2 is anti-complete to W ∗∗

i−2. Therefore W ∗

i ∪ V ∗

i+1 and
V ∗∗

i+2 ∪W ∗∗

i−2 are independent sets. Thus G[W ∗

i ∪ V ∗∗

i+2 ∪ V ∗

i+1 ∪W ∗∗

i−2] is an S1,2,3-free
bipartite graph, which has bounded clique-width by Lemma 4. Applying a bounded
number of bipartite complementations (which we may do by Fact 3), we can separate
G[W ∗

i ∪ V ∗∗

i+2 ∪ V ∗

i+1 ∪ W ∗∗

i−2] from the rest of the graph. We may thus assume that
W ∗

i ∪ V ∗∗

i+2 ∪ V ∗

i+1 ∪W ∗∗

i−2 = ∅. Repeating this process for each i we obtain the empty
graph. This completes the proof. ⊓⊔

5 The Four Triangle-free Cases

We can now give the following result, which also implies the (K3, P1 + 2P2)-free case.

Theorem 3. For H ∈ {P1 +P5, S1,2,2, P1 +P2 +P3}, the class of (K3, H)-free graphs
has bounded clique-width.

The proofs for all three cases are broadly similar. We will prove the H = P1+P2+P3

case separately, as it is a little more involved than the other two cases.

5.1 Proof of the H = P1 + P5 and H = S1,2,2 Cases.

Proof. Let H ∈ {P1+P5, S1,2,2} and consider a (K3, H)-free graph G. We may assume
that G is connected.

By Corollary 1, we may assume that G contains an induced cycle on five vertices,
say C = v1 − v2 − · · · − v5 − v1. Again, we will interpret subscripts on vertices and
vertex sets modulo 5.

Since G is K3-free, no vertex v is adjacent to two consecutive vertices of the cycle.
Therefore every vertex of G has either zero, one or two neighbours on the cycle and if
it has two neighbours then they must be non-consecutive vertices of the cycle.

We partition the vertices of G that are not on C as follows:

– U : the set of vertices adjacent to no vertices of C,
– Wi: the set of vertices whose unique neighbour in C is vi and
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– Vi: the set of vertices adjacent to vi−1 and vi+1.

In the remainder of the proof we will show how to modify the graph using operations
that preserve boundedness of clique-width, such that in the resulting graph the set U is
empty and the partition V1, . . . , V5,W1, . . . ,W5 satisfies Conditions (i)–(vii) of Lemma 9.
In order to do this we prove a number of claims.

The first two claims follow immediately from the fact that G is K3-free.

Claim 1. For all i, Vi and Wi are independent sets.
Claim 2. For all i, Vi is anti-complete to Vi−2 ∪ Vi+2 ∪Wi−1 ∪Wi+1.

Claim 3. We may assume that U is empty.
We prove Claim 3 as follows. First consider the case where H = S1,2,2 and suppose, for
contradiction, that U is not empty. Since G is connected there must be a vertex u ∈ U
that is adjacent to a vertex v /∈ U that has a neighbour on the cycle C. Without loss
of generality, we may assume that v ∈ V1 ∪W2, in which case v is adjacent to v2 and
non-adjacent to v1, v3 and v4. Now G[v2, v1, v3, v4, v, u] is an S1,2,2. This contradiction
means that U = ∅ if H = S1,2,2.

Now consider the case where H = P1 + P5 and suppose that U is non-empty.
Suppose, for contradiction, that there are two vertices u, u′ ∈ U that do not have
the same neighbourhood in some set Vi or Wi. Without loss of generality, assume
v ∈ V1∪W2 is adjacent to u, but not u′. Note that v is adjacent to v2, but non-adjacent
to v1, v3 and v4. Then G[v4, u

′, u, v, v2, v1] is a P1 + P5 if u and u′ are adjacent and
G[u′, u, v, v2, v3, v4] is a P1 + P5 if they are not. This contradiction means that every
vertex in U has the same neighbourhood in every set Vi and every set Wi. Since G is
connected there must be a vertex v in some Vi or Wi that is adjacent to every vertex
of U . Since G is K3-free, U must therefore be an independent set. Applying a bipartite
complementation (which we may do by Fact 3) between U and the vertices adjacent to
the vertices of U disconnects U from the rest of the graph. Since G[U ] is independent,
it has clique-width at most 1. We may therefore assume that U is empty.

Claim 4. For all i, Wi is complete to Wi−1 ∪Wi+1.
Suppose, for contradiction, that v ∈ W1 has a non-neighbour w ∈ W2. Then G[w, v, v1,
v5, v4, v3] is a P1 + P5 and G[v1, v, v2, w, v5, v4] is an S1,2,2. This contradiction proves
the claim.

See Fig. 3 for an illustration of the graph G.

Claim 5. For all i, every vertex of Vi is trivial to at least one of the sets Vi+1 and Vi−1.
Suppose, for contradiction that the claim is false. Without loss of generality, there is a
vertex v ∈ V2 with non-neighbours u ∈ V1 and w ∈ V3. By Claim 2, u and w must be
non-adjacent. Then G[v5, u, v1, v, v4, w] is an S1,2,2 and G[u, v1, v, v3, v4, w] is a P1+P5.
This contradiction completes the proof of the claim.

Claim 6. For all i, every vertex in Vi is trivial to Wi.
Suppose, for contradiction, that the claim is false. Without loss of generality, we may
assume there are vertices v ∈ V1 and w,w′ ∈ W1 such that v is adjacent to w, but
not to w′. Then G[v2, v, v1, w

′, v3, v4] is an S1,2,2 and G[w′, w, v, v2, v3, v4] is a P1 + P5.
This contradiction completes the proof of the claim.

Claim 7. For all i, Wi is trivial to Wi−2 and to Wi+2.
Suppose, for contradiction, that this does not hold. Without loss of generality, assume
v ∈ W1 is adjacent to w ∈ W3 and non-adjacent to w′ ∈ W3. Then G[v1, v2, v5, v4, v, w]
is an S1,2,2 and G[w′, w, v, v1, v5, v4] is a P1 + P5. This contradiction proves the claim.

Claim 8. For all i, j, the graphs induced by Vi ∪ Vj and Vi ∪Wj are P7-free.
Note that P1 + P5 is an induced subgraph of P7. Therefore if H = P1 + P5 then the
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W1

W2

W3W4

W5

v1

v2

v3
v4

v5
V1

V2

V3V4

V5

Fig. 3. The graph G. The black points are the vertices of the cycle C. The circles are (possibly
empty) independent sets of vertices and the lines are complete bipartite graphs. Note that G

may contain additional edges that are not represented in this figure.

claim follows immediately. Now suppose H = S1,2,2. Without loss of generality, we
may assume i = 1. Suppose that G[V1 ∪ Vj ] or G[V1 ∪ Wj ] contains an induced P7,
for some i, j. By Claims 1, 2 and 6 and symmetry, we may assume that G[V1 ∪ V2] or
G[V1 ∪W3] contains this P7. This P7 contains an induced subgraph isomorphic to 2P2,
say on vertices v, v′, w, w′. Then G[v5, v4, v, v

′, w, w′] is an S1,2,2. This contradiction
completes the proof of the claim.

Claim 9. For all i, there are no three vertices v ∈ Vi, w ∈ Vi+1 and x ∈ Wi+3 such
that v, w and x are pairwise non-adjacent.
Suppose, for contradiction that such pairwise non-adjacent vertices exist, say with
v ∈ V1, w ∈ V2 and x ∈ W4. Then G[v4, x, v3, w, v5, v] is an S1,2,2 and G[x, v3, w, v1, v5, v]
is a P1 + P5. This contradiction completes the proof of the claim.

We now consider the graph obtained G′ from G by removing the five vertices of C.
Claims 1 and 3 show that we may assume V1, . . . , V5,W1, . . . ,W5 are independent sets
that form a partition of the vertex set of G′. Claims 2 and 4–9 correspond to the seven
conditions of Lemma 9. Therefore G′ has bounded clique-width. By Fact 1, G also has
bounded clique-width. This completes the proof. ⊓⊔

5.2 Proof of the H = P1 + P2 + P3 Case.

Proof. Consider a (K3, P1+P2+P3)-free graph G. We may assume that G is connected.
By Corollary 1, we may assume that G contains an induced cycle on five vertices,

say C = v1 − v2 − · · · − v5 − v1. Again, we will interpret subscripts on vertices and
vertex sets modulo 5.

Since G is K3-free, no vertex v is adjacent to two consecutive vertices of C. Therefore
every vertex of G has either zero, one or two neighbours on C and if it has two neighbours
then they must be non-consecutive vertices of C.

We partition the vertices of G that are not on C as follows:

– U : the set of vertices adjacent to no vertices of C,
– Wi: the set of vertices whose unique neighbour in C is vi and
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– Vi: the set of vertices adjacent to vi−1 and vi+1.

In the remainder of the proof we will show how to modify the graph using operations that
preserve boundedness of clique-width, such that in the resulting graph the set U is empty
and the partition V1, . . . , V5,W1, . . . ,W5 satisfies Conditions (i)–(vii) of Lemma 9.

The first two claims follow immediately from the fact that G is K3-free.

Claim 1. For all i, Vi and Wi are independent sets.
Claim 2. For all i, Vi is anti-complete to Vi−2 ∪ Vi+2 ∪Wi−1 ∪Wi+1.

Claim 3. We may assume that U is empty.
In order to proof Claim 3, we first suppose that there are two adjacent vertices u, u′ ∈ U .
Since G is connected, we may assume without loss of generality that u is adjacent to
some vertex v ∈ V1∪W2. Then u′ must be non-adjacent to v, otherwise G[u, u′, v] would
be a K3. Note that v is adjacent to v2, but not to v1, v3 or v4. Now G[v1, v3, v4, u

′, u, v]
is a P1 + P2 + P3. This contradiction implies that U must be an independent set.

Now suppose, for contradiction, that a vertex u ∈ U has two neighbours in some
set Vi ∪Wi+1. Without loss of generality assume that u is adjacent to v, v′ ∈ V1 ∪W2.
Note that v and v′ are adjacent to v2, but not adjacent to v1, v3 and v4. Now
G[v1, v3, v4, v, u, v

′] is a P1 +P2 +P3. This contradiction implies that every vertex of U
has at most one neighbour in Vi ∪Wi+1 for each i. In particular, this means that every
vertex of U has degree at most 5. Therefore, if u ∈ U then we delete {u} ∪N(u) (a set
of at most 6 vertices). This gives us a (K3, P2 + P3)-free graph, which has bounded
clique-width by Lemma 3. By Fact 1, we may therefore assume that U is empty, that
is, we have proven Claim 3.

We say that a set Vi or Wi is large if it contains at least two vertices and small if it
contains exactly one vertex. If any set Vi is not large then by Fact 1 we may assume
that it is empty. (Later in the proof, we may delete vertices from some sets Vi or Wi.
In doing so, some sets that were previously large may become small. If this happens,
we will simply repeat the argument. We will only do this a bounded number of times,
so boundedness of clique-width will be preserved.)

Claim 4. For all i, Wi is complete to Wi−1 ∪Wi+1.
Suppose, for contradiction, that v ∈ W1 has a non-neighbour w ∈ W2. Since W2 is
non-empty, it must be large, so it must contain a vertex w′ distinct from w. Then
G[w, v3, v4, v1, v, w

′] is a P1+P2+P3 if v and w′ are adjacent and G[v, v4, v5, w, v2, w
′]

is a P1 + P2 + P3 if they are not. This contradiction completes the proof of Claim 4.

Claim 5. For all i, every vertex of Vi is trivial to at least one of the sets Vi+1 and Vi−1.
Suppose, for contradiction that the claim is false. Without loss of generality, there is
a vertex v ∈ V2 with non-neighbours u ∈ V1 and w ∈ V3 and neighbour u′ ∈ V1. By
Claim 2, w and must be non-adjacent to both u and u′. Then G[u, v4, w, v1, v, u

′] is a
P1 + P2 + P3. This contradiction completes the proof of Claim 5.

Claim 6. For all i, every vertex in Vi is trivial to Wi.
In fact we will prove a stronger statement, namely that for all i, Vi is trivial to Wi.
Suppose, for contradiction, that this is not the case. Without loss of generality, assume
that V1 is not trivial to W1. First suppose that there are vertices w ∈ W1 and v, v′ ∈ V1

such that w is adjacent to v, but not to v′. Then G[v′, v3, v4, v1, w, v] is a P1 +P2 +P3.
Therefore every vertex in W1 must be trivial to V1. Since we assumed that V1 is not
trivial to W1, there must therefore be vertices v ∈ V1 and w,w′ ∈ W1 such that v
is adjacent to w, but not to w′. Since V1 is non-empty, it must be large, so there
must be another vertex v′ ∈ V1. Since every vertex of W1 is trivial to V1, v

′ must be
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adjacent to w and non-adjacent to w′. Then G[w′, v3, v4, v, w, v
′] is a P1 + P2 + P3.

This contradiction completes the proof of Claim 6.

Claim 7. We may assume that for all i, Wi is anti-complete to Wi−2 and to Wi+2.
We start by showing that the edges between Wi and Wi+2 form a matching. Indeed,
suppose for contradiction that there is a vertex v ∈ W1 with two neighbours w,w′ ∈ W3.
Then G[v2, v4, v5, w, v, w

′] is a P1 + P2 + P3, a contradiction. By symmetry, no vertex
of W3 has two neighbours in W1. We conclude that the edges between Wi and Wi+2

form a matching.
Let W ′

1 be the set of vertices in W1 that have a neighbour in W3. Similarly, let W ′′

3

be the set of vertices in W3 that have a neighbour in W1. Note that |W ′

1| = |W ′′

3 | since
the edges between W ′

1 and W ′′

3 form a perfect matching. We will show that every vertex
of G\ (W ′

1∪W ′′

3 ) is trivial to W ′

1 and W ′′

3 . This follows immediately if |W ′

1| = |W ′′

3 | = 1.
Assume |W ′

1| = |W ′′

3 | ≥ 2. Suppose there is a vertex w ∈ V (G) \ (W ′

1 ∪W ′′

3 ) that
is non-trivial to W ′

1. Then we may choose u, u′ ∈ W ′

1 and v, v′ ∈ W ′′

3 such that u is
adjacent to v and w, but non-adjacent to v′ while u′ is adjacent to v′, but non-adjacent
to v and w. Since w is non-trivial to W1, it cannot be in W1 (by Claim 1), V2 ∪ V5 (by
Claim 2), W2 ∪W5 (by Claim 4), V1 (by Claim 6) or W3 (since we assumed w /∈ W ′′

3 ).
Furthermore, w /∈ C by definition of W1. Therefore w ∈ V4 ∪W4 ∪ V3. By Claims 2,
4 and 6 respectively, we conclude that w is trivial to W3. Since u is adjacent to v
and w, it follows that w must be non-adjacent to v, otherwise G[u, v, w] would be
a K3, a contradiction. Therefore w must be anti-complete to W3. If w ∈ V3 ∪W4, let
z = v5 and otherwise (if w ∈ V4) let z = v4. Then z is non-adjacent to u, u′, v, v′ and w.
Now G[z, u′, v′, v, u, w] is a P1 + P2 + P3, a contradiction. Therefore every vertex in
V (G) \ (W ′

1 ∪W ′′

3 ) is trivial to W ′

1. By symmetry, every vertex in V (G) \ (W ′

1 ∪W ′′

3 )
is trivial to W ′′

3 .
Therefore, by applying a bipartite complementation (which we may do by Fact 3)

between W ′

1 and the vertices in V (G) \ W ′′

3 that are complete to W ′

1 and another
bipartite complementation between W ′′

3 and the vertices in V (G)\W ′

1 that are complete
to W ′′

3 , we separate G[W ′

1 ∪ W ′′

3 ] from the rest of the graph. Since G[W ′

1 ∪ W ′′

3 ] is
a perfect matching, it has clique-width at most 2. We may therefore assume that
W ′

1 ∪W ′′

3 is empty i.e. that W1 is anti-complete to W3. Repeating this argument for
each i ∈ {1, . . . , 5}, we show that we may assume that Wi is anti-complete to Wi−2 for
every i. This completes the proof of Claim 7.

Note that when applying Claim 7 we may delete vertices in some sets Wi, which may
cause some large sets to become small. In this case, as stated earlier, we may simply
delete the small sets as before. Thus we may assume that every set Wi is either large
or empty.

Claim 8. For all i, j, the graphs induced by Vi ∪ Vj and Vi ∪Wj are P7-free.
Suppose, for contradiction, that the claim is false. Then there is an i and a j such
that G[Vi ∪ Vj ] or G[Vi ∪Wj ] contains an induced P7, say on vertices u1, . . . , u7. There
must be a vertex vk ∈ C that is non-adjacent to every vertex of Vi ∪ Vj or Vi ∪Wj ,
respectively (since every vertex not in C has at most two neighbours in C). Then
G[vk, u1, u2, u4, u5, u6] is a P1 + P2 + P3, a contradiction. This completes the proof of
Claim 8.

Claim 9. For all i, if there are vertices v ∈ Vi, w ∈ Vi+1 and x ∈ Wi+3 such that v, w
and x are pairwise non-adjacent then G has bounded clique-width.
Suppose that such pairwise non-adjacent vertices exist, say with v ∈ V1, w ∈ V2 and
x ∈ W4. We start by showing that V3 ∪ V4 ∪ V5 ∪W1 ∪W2 ∪W3 ∪W5 is empty.

First suppose there is a vertex y ∈ V3. Then y is non-adjacent to v and x by
Claim 2. Then G[x, v, v5, v3, w, y] or G[v, v1, w, x, v4, y] is a P1+P2+P3 if y is adjacent
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or non-adjacent to w, respectively. This contradiction implies that V3 is empty. By
symmetry V5 is also empty.

Next, suppose there is a vertex y ∈ V4. Then y is non-adjacent to v and w by
Claim 2. Then G[v, v1, w, v4, x, y] or G[y, v4, x, v2, v1, w] is a P1+P2+P3 if y is adjacent
or non-adjacent to x, respectively. This contradiction implies that V4 is empty.

Next, suppose there is a vertex y ∈ W1. Then y is non-adjacent to w and x
by Claims 2 and 7, respectively. Then G[w, x, v4, v2, v, y] or G[v, x, v4, w, v1, y] is a
P1 + P2 + P3 if y is adjacent or non-adjacent to v, respectively. This contradiction
implies that W1 is empty. By symmetry W2 is also empty.

Finally, suppose that W3 is not empty. Then W3 must be large, so it contains two
vertices, say y and y′. Then y and y′ are each non-adjacent to w and adjacent to x by
Claims 2 and 4, respectively. If y is non-adjacent to v then G[v, v1, w, v4, x, y] would
be a P1 + P2 + P3, a contradiction. Therefore y is adjacent to v, and similarly y′ is
adjacent to v. Now G[v4, v1, w, y, v, y

′] is a P1 + P2 + P3. This contradiction implies
that W3 is empty. By symmetry, we may assume that W5 is also empty.

The above means that V3 ∪ V4 ∪ V5 ∪ W1 ∪ W2 ∪ W3 ∪ W5 is indeed empty, so
V (G) = V1 ∪ V2 ∪W4 ∪ V (C).

Let V ′

1 and V ′′

1 be the set of vertices in V1 that are anti-complete or complete to
{w, x}, respectively. Let V ′

2 and V ′′

2 be the set of vertices in V2 that are anti-complete
or complete to {v, x}, respectively. Let W ′

4 and W ′′

4 be the set of vertices in W4 that
are anti-complete or complete to {v, w}, respectively. Observe that v ∈ V ′

1 , w ∈ V ′

2 and
x ∈ W ′

4. We will show that V ′

1 , V
′′

1 , V ′

2 , V
′′

2 ,W ′

4 and W ′′

4 form a partition of V (G)\V (C).

Suppose, for contradiction, that there is a vertex v′ ∈ V1 with exactly one neighbour
in {w, x}. Then G[v, v4, x, v

′, w, v1] or G[v, v1, w, v4, x, v
′] is a P1 + P2 + P3 if this

neighbour is w or x, respectively. Therefore every vertex of V1 is in V ′

1 ∪ V ′′

1 . Similarly,
every vertex of V2 is in V ′

2 ∪ V ′′

2 .

Suppose, for contradiction, that there is a vertex x′ ∈ W4 with exactly one neighbour
in {v, w}. Without loss of generality, suppose that x′ is adjacent to v, but not to w.
Then G[x,w, v3, v5, v, x

′] is a P1+P2+P3. Therefore every vertex of W4 is in W ′

4∪W ′′

4 .
Thus every vertex of V (G) \ V (C) is in V ′

1 ∪ V ′′

1 ∪ V ′

2 ∪ V ′′

2 ∪ V ′

4 ∪ V ′′

4 .

Observe that the remarks made above for v, w and x also hold if one of these is
replaced by a vertex of V ′

1 , V
′

2 or W ′

4, respectively. Indeed, suppose v′ ∈ V ′

1 \ {v}, then
every vertex of W4 must be either complete or anti-complete to {v′, w}. Since the
vertices of W ′

4 are non-adjacent to w, but the vertices of W ′′

4 are adjacent to w, it follows
that W ′

4 is anti-complete to {v′, w} and that W ′′

4 is complete to {v′, w}. Therefore W ′

4

is anti-complete to V ′

1 , and W ′′

4 is complete to V ′

1 . Since G is K3-free and every vertex
of V ′′

1 ∪ V ′′

2 is adjacent to x, it follows that V ′′

1 is anti-complete to V ′′

2 . Similarly, we
conclude that V ′

1 , V
′

2 and W ′

4 are pairwise anti-complete, V ′′

1 , V ′′

2 and W ′′

4 are pairwise
anti-complete and for every pair of sets S ∈ {V ′

1 , V
′

2 ,W
′

4} and T ∈ {V ′′

1 , V ′′

2 ,W ′′

4 } such
that (S, T ) /∈ {(V ′

1 , V
′′

1 ), (V ′

2 , V
′′

2 ), (W ′

4,W
′′

4 )}, S and T are complete to each-other.

Now if we delete the vertices of C (which we may do by Fact 1) and apply bipartite
complementations between V ′

1&V ′′

2 , V ′

1&W ′′

4 , V ′

2&V ′′

1 , V ′

2&W ′′

4 , W ′

4&V ′′

1 and W ′

4&V ′′

2 ,
we obtain an edgeless graph, which therefore has clique-width at most 1. By Fact 3, it
follows that G has bounded clique-width. This completes the proof of Claim 9.

We now consider the graph G′ obtained from G by removing the five vertices of C.
Claims 1 and 3 show that we may assume V1, . . . , V5,W1, . . . ,W5 are independent sets
that form a partition of the vertex set of G′. Claims 2 and 4–9 correspond to the seven
conditions of Lemma 9. Therefore G′ has bounded clique-width. By Fact 1, G also has
bounded clique-width. This completes the proof. ⊓⊔
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6 The Diamond-free Case

In this section, we prove that (diamond, P1 + 2P2)-free graphs have bounded clique-
width. In order to do this, we first need to prove the following two lemmas.

Lemma 10. The class of disconnected (diamond, P1 + 2P2)-free graphs has bounded
clique-width.

Proof. If G is a disconnected (diamond, P1 + 2P2)-free graph then it contains at least
two components. Therefore every component of G must be (diamond, 2P2)-free and thus
has bounded clique-width by Lemma 3. We conclude that G has bounded clique-width.

Lemma 11. The class of (diamond, P1 + 2P2)-free graphs that contain a K4 has
bounded clique-width.

Proof. Let G be a (diamond, P1 + 2P2)-free graph containing an induced K4. By
Lemma 10, we may assume that G is connected. Let K be a maximum clique of G and
note that |K| ≥ 4. We may assume that G contains vertices outside K, otherwise G is
a clique on at least four vertices, in which case it has clique-width 2.

Suppose there is a vertex v in G that is not in K, but has at least two neighbours
x, y ∈ K. By maximality of K, there must be a vertex z ∈ K that is not adjacent to v.
However this means that G[x, y, v, z] is a diamond, a contradiction. Therefore every
vertex not in K has at most one neighbour in K.

Choose v1, v2, v3, v4 ∈ K arbitrarily. For i ∈ {1, 2, 3, 4}, let Vi be the set of vertices
not in K whose unique neighbour in K is vi. Let U be the set of vertices not in K that
do not have a neighbour in {v1, v2, v3, v4}. Note that vertices of U may have neighbours
in K \ {v1, v2, v3, v4}.

Claim 1. For i, j ∈ {1, 2, 3, 4}, G[U ∪ Vi ∪ Vj ] must be (P1 + P2)-free.
Indeed, if G[U ∪ V1 ∪ V2] contains an induced P1 + P2 on vertices y1, y2, y3, say, then
G[y1, y2, y3, v3, v4] is a P1 + 2P2, a contradiction. The claim follows by symmetry.

Claim 2. For i ∈ {1, 2, 3, 4}, we may assume G[Vi] is either a clique on at most two
vertices or an independent set.
If G[V1] contains an induced P3 on vertices y1, y2, y3, say, then G[v1, y2, y1, y3] is a
diamond, a contradiction. Therefore G[V1] is a disjoint union of cliques. Claim 1 implies
that G[V1] is either a clique, or else every clique in G[V1] contains at most one vertex
i.e. V1 is an independent set.

Suppose, for contradiction, that V1 is a clique on at least three vertices. We will show
that the clique-width of G is bounded in this case. First suppose, for contradiction, that
there is a vertex u ∈ U ∪V2 ∪V3 ∪V4. Since G[{u}∪V1] is (P1 +P2)-free by Claim 1, u
must be adjacent to all but at most one vertex of V1. Let x, y ∈ V1 be neighbours of u.
Then G[x, y, u, v1] is a diamond, a contradiction. We conclude that U ∪V2∪V3∪V4 = ∅,
so V (G) = K∪V1. Deleting v1 we obtain a disconnected (diamond, P1+2P2)-free graph,
which has bounded clique-width by Lemma 10. Therefore G has bounded clique-width
by Fact 1. Therefore if V1 is a clique then it contains at most two vertices. The claim
follows by symmetry.

Claim 3. For distinct i, j ∈ {1, 2, 3, 4}, if Vi is an independent set then every vertex
of Vj is either complete or anti-complete to Vi.
Indeed, this follows directly from Claim 1, which states that G[Vi∪Vj ] is (P1+P2)-free.
(Note that if Vj is a clique then it may contain a vertex that is complete to Vi and
another that is anti-complete to Vi.)

Claim 4. We may assume U contains at least three vertices.
Suppose that U has at most two vertices. By Fact 1 and Claim 2, we may remove every
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vertex of U and every vertex of Vi for those Vi that are cliques. After this, by Claim 2,
every set Vi will either be empty or an independent set. Furthermore, for distinct
i, j ∈ {1, 2, 3, 4}, by Claim 3, every vertex of Vi is trivial to Vj and vice versa, so Vi is
complete or anti-complete to Vj . By Fact 3, we may apply a bipartite complementation
between Vi and Vj if they are complete. By Fact 1, we may delete v1, v2, v3, v4. We
obtain a graph that is the disjoint union of a clique and at most four independent sets
and therefore has clique-width at most 2. It follows that the graph G must also have
had bounded clique-width. We may therefore assume that U contains at least three
vertices. This completes the proof of the claim.

We now consider a number of cases:

Case 1: Every vertex of K has at most one neighbour outside of K.
By Fact 2, we may remove all the edges connecting pairs of vertices in K. Let G′ be
the resulting graph and note that in G′, every vertex of K has at most one neighbour.
Then cw(G′) ≤ cw(G′ \K) + 1. (Given a k-expression for G′ \K, whenever we create
a vertex v that has a neighbour w in K, we immediately create w with a special new
label ∗, take the disjoint union and join v to w by an edge. For any vertices in K with
no neighbours outside of K, we simply add them with label ∗ at the end of the process.
This will give a (k + 1)-expression for G′.) Now G′ \K = G \K. Since V1 contains
at most one vertex, by Fact 1, it is sufficient to show that G \ (V1 ∪K) has bounded
clique-width. However, G \ (V1 ∪ K) is (diamond, 2P2)-free, since if it contained an
induced 2P2 then this, together with v1 would induce a P1 + 2P2 in G. Therefore
G \ (V1 ∪K) has bounded clique-width by Lemma 3 and therefore G also has bounded
clique-width. This completes the proof of this case.

We may now assume that at least one vertex of K has at least two neighbours
outside of K.

Case 2: Exactly one vertex of K has neighbours outside K.
Suppose that v1 is the only vertex of K that has neighbours outside of K (at least
one vertex of K has a neighbour outside of K since G is connected and not a clique).
Now G \ {v1} is a disconnected (diamond, P1 + 2P2)-free graph, so it has bounded
clique-width by Lemma 10. By Fact 1, G also has bounded clique-width. This completes
the proof of this case.

We may now assume that at least two vertices of K have neighbours outside of K.
Without loss of generality, we may therefore assume that the following case holds.

Case 3: V1 contains at least two vertices and V2 contains at least one vertex.
Fix x, y, z ∈ V1 ∪ V2, with two of these vertices in V1 and one in V2. If these vertices
are pairwise adjacent then G[x, y, v1, z] would be a diamond, a contradiction. We
may therefore assume that x and y are non-adjacent. Now every vertex of v ∈ U is
either complete or anti-complete to {x, y}, otherwise G[v, x, y] would be a P1 + P2 in
G[U ∪ V1 ∪ V2], which would contradict Claim 1.

Suppose u, v ∈ U . If u and v are adjacent then they cannot both be complete
to {x, y}, otherwise G[u, v, x, y] would be a diamond and they cannot both be anti-
complete to {x, y}, otherwise G[x, u, v] would be a P1 + P2 in G[U ∪ V1 ∪ V2], which
would contradict Claim 1. Therefore if u and v are adjacent then one of them is
complete to {x, y} and the other is anti-complete to {x, y}. If u and v are non-adjacent
then they must either both be complete to {x, y} or both be anti-complete to {x, y}.
Indeed, suppose for contradiction that u is complete to {x, y} and v is anti-complete
to {x, y}. Then G[v, u, x] would be an induced P1 + P2 in G[U ∪ V1 ∪ V2], which would
contradict Claim 1. The above holds for every pair of vertices u, v ∈ U . This implies
that G[U ] is a complete bipartite graph with one of the sets in the bipartition consisting
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of the vertices complete to {x, y} and the other consisting of the vertices anti-complete
to {x, y}. (Note that one of the parts of the complete bipartite graph G[U ] may be
empty, as we allow the case where U is an independent set.)

Note that the arguments in the above paragraph only used the facts that G[U ∪
V1 ∪ V2] is (P1 +P2, diamond)-free and that V1 ∪ V2 contains two non-adjacent vertices.
Let U1 and U2 be the independent sets that form the bipartition of U . Note that
since U contains at least three vertices (by Claim 4), we may assume without loss of
generality that U1 contains at least two vertices. If U2 contains exactly one vertex, by
Fact 1, we may delete it. (Note that this may cause U to contain only two vertices,
rather than at least three, however this does not affect our later arguments.) We may
therefore assume that U2 is either empty or contains at least two vertices. Repeating
the argument in the previous paragraph with the roles of U and V1 ∪ V2 reversed, we
find that G[V1 ∪ V2] is a complete bipartite graph, with one side of the bipartition
complete to U1 and the other anti-complete to U1 and if U2 is non-empty then one side
of the bipartition is complete to U2 and the other is anti-complete to U2. Similarly, for
each pair of distinct i, j ∈ {1, 2, 3, 4}, the same argument shows that G[Vi ∪ Vj ] is also
a complete bipartite graph with a similar bipartition.

We now proceed as follows: if Vi is a clique for some i then it contains at most two
vertices, in which case we delete them and make Vi empty. For every pair of distinct
i, j ∈ {1, 2, 3, 4} (Vi or Vj may be empty) G[Vi ∪ Vj ] must then be an independent set,
in which case we do nothing, or a complete bipartite graph with bipartition (Vi, Vj),
in which case we apply a bipartite complementation between Vi and Vj . Now every
set Vi is either complete or anti-complete to U1 and complete or anti-complete to U2.
Applying at most 4 × 2 = 8 bipartite complementations, we can remove all edges
between V1 ∪ · · · ∪ V4 and U . Next, we apply a bipartite complementation between U1

and U2. Finally, we apply a complementation to the clique K. Let G′ be the resulting
graph and note that G′[V1 ∪ · · · ∪ V4 ∪ U ] and G′[K] are independent sets and that
in G′ every vertex in V1 ∪ · · · ∪ V4 ∪ U has at most one neighbour in K. Therefore G′

is a disjoint union of stars, and so has clique-width at most 2. By Facts 1, 2 and 3, it
follows that G also has bounded clique-width. This completes proof for this case and
therefore completes the proof of the lemma. ⊓⊔

To prove the main result of this section, we will need an additional notion. Let G
be a graph. For each set T that induces a triangle in G, let UT be the set of vertices
in G that have no neighbour in T . Let U = {u ∈ UT | T induces a triangle in G}.
We say that the graph G is basic if we can partition the vertices of G \ U into three
sets V1, V2, V3 and also into sets T 1,W1, T

2,W2, . . . , T
p,Wp for some p such that the

following properties hold:

(i) No triangle in G contains a vertex of U .
(ii) For every triangle T , the set UT is independent and there is a vertex x ∈ V (T )

such that N(x) = N(u) ∪ (V (T ) \ {x}) for all u ∈ UT .
(iii) V1, V2 and V3 are independent.
(iv) {G[T 1], . . . , G[T p]} is the set of all induced triangles in G and each of them has

exactly one vertex in each of V1, V2 and V3.
(v) G[Wi] is (P1 + 2P2)-free and does not contain an induced 3P1 with one vertex in

each of V1, V2 and V3.
(vi) If i < j and k + 1 6≡ ℓ (mod 3) then:

1. T i ∩ Vk is anti-complete to T j ∩ Vℓ,
2. T i ∩ Vk is anti-complete to Wj ∩ Vℓ,
3. Wi ∩ Vk is anti-complete to T j ∩ Vℓ and
4. Wi ∩ Vk is anti-complete to Wj ∩ Vℓ,
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(vii) If i < j and k + 1 ≡ ℓ (mod 3) then:

1. T i ∩ Vk is complete to T j ∩ Vℓ,
2. T i ∩ Vk is complete to Wj ∩ Vℓ and
3. Wi ∩ Vk is complete to T j ∩ Vℓ.

(viii) If i+ 1 < j and k + 1 ≡ ℓ (mod 3) then:

1. Wi ∩ Vk is complete to Wj ∩ Vℓ.

(ix) If i+ 1 = j and k + 1 ≡ ℓ (mod 3) then:

1. Wi ∩ Vk is either complete or anti-complete to Wj ∩ Vℓ.

(x) If i = j and k + 1 ≡ ℓ (mod 3) then:

1. T i ∩ Vk is complete to Wj ∩ Vℓ.

(xi) If i = j and k + 1 6≡ ℓ (mod 3) then:

1. T i ∩ Vk is anti-complete to Wj ∩ Vℓ.

Next, we show that basic graphs have bounded clique-width.

Lemma 12. If G is a basic graph then it has clique-width at most 9.

Proof. Let G be a graph with vertices partitioned into sets as above. This means
that we have sets of vertices T 1,W1, T

2,W2, . . . , T
p,Wp in order, such that if X

and Y are sets in this order with X coming before Y then X ∩ Vk is complete to
Y ∩ Vℓ if k + 1 ≡ ℓ (mod 3) and anti-complete otherwise in all cases except where
X = Wi, Y = Wi+1 for some i, in which case X ∩ Vk may either be complete or

anti-complete to Y ∩ Vk+1. Also recall that UT i

is an independent set for every i and

there is a vertex x ∈ T i such that every vertex of UT i

has the same neighbourhood in
G \ T i as x.

Note that Wi ⊆ V1 ∪ V2 ∪ V3. Then G[Wi] is a 3-partite graph with 3-partition
(Wi∩V1,Wi∩V2,Wi∩V3). Furthermore, G[Wi] is K3-free, and contains no induced 3P1

with exactly one vertex in each Vj . Since G[Wi] is (P1 + 2P2)-free it must therefore be
(P7, S1,2,3)-free. Therefore, by Lemma 6, the graph G[Wi] is totally 3-decomposable
with respect to this partition. By Lemma 7, we can construct G[Wi] using at most six
labels such that the resulting labelled graph has all vertices in Wi labelled with label i
for i ∈ {1, 2, 3}.

We are now ready to describe how to construct G. We do this by constructing
G[T i ∪ UT i

] then G[Wi] for each i ∈ {1, . . . , p} in turn and adding it to the graph.
More formally, we start with the empty graph, then for i = 1, . . . , p in turn, we do the
following:

1. Let {xi
1, x

i
2, x

i
3} = T i, where xi

j ∈ Vj for j ∈ {1, 2, 3}. Add vertices xi
1, x

i
2 and xi

3

with labels 4, 5 and 6, respectively, then add edges between vertices labelled
4&5, 5&6 and 4&6.

2. If UT i

is non-empty then the vertices in this set have the same neighbourhood in
G \ T i as xi

1, x
i
2 or xi

3. Add the vertices of UT i

with label 4, 5 or 6, respectively.
3. Add edges between vertices labelled 1&5, 2&6 and 3&4.
4. Relabel vertices labelled 4, 5 or 6 to have labels 1, 2 or 3, respectively.
5. Construct G[Wi] with vertices labelled 4, 5 or 6, if they are in V1, V2 or V3, respec-

tively.
6. Add edges between vertices labelled 1&5, 2&6 and 3&4.
7. If i > 1 then add edges between vertices labelled 4&9, 5&7 and 6&8 if Vk ∩Wi is

complete to Vk−1 ∩Wi−1 for k = 1, 2, 3, respectively.
8. Relabel vertices labelled 7, 8 or 9 to have labels 1, 2 or 3, respectively.
9. Relabel vertices labelled 4, 5 or 6 to have labels 7, 8 or 9, respectively.
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Note that at the end of any iteration of the above procedure, the vertices of Wi will
have labels in {7, 8, 9} and all other constructed vertices will have labels in {1, 2, 3}.

This construction builds a copy of G using at most nine labels. Thus G has clique-
width at most 9. This concludes the proof of the lemma. ⊓⊔

We are now ready to prove our main theorem of this section. To do so, we show that
if a graph G is (diamond, P1 + 2P2)-free then either we can show that G has bounded
clique-width directly (possibly by applying some graph operations that do not change
the clique-width the graph by “too much”) or else the (unmodified) graph G is itself
basic (in which case it has clique-width at most 9).

Theorem 4. The class of (diamond, P1 + 2P2)-free graphs has bounded clique-width.

Proof. Let G be a (diamond, P1 + 2P2)-free graph. By Lemma 10, we may assume
that G is connected. By Theorem 3, we may assume that G contains an induced K3.
By Lemma 11, we may assume that G is K4-free.

Let T be an arbitrary induced triangle (i.e. K3) in G with vertices vT1 , v
T
2 and vT3 .

Since G is (diamond,K4)-free, every vertex not in T has at most one neighbour in T .
For i ∈ {1, 2, 3} let V T

i be the set of vertices not in T whose unique neighbour in T
is vTi and let UT be the set of vertices that have no neighbour in T . We will now prove
a series of claims. More formally, we will show that if the conditions of any of these
claims are not satisfied, then either we obtain a contradiction or we can directly prove
that G has bounded clique-width, in which case we are done.

Claim 1. For every triangle T , the sets V T
1 , V T

2 and V T
3 each contain at least three

vertices.
If for some i the set V T

i contains at most two vertices then vTi has at most four
neighbours in G. If we delete every vertex in N(vTi ), then vTi has no neighbours in
the resulting graph. Therefore either G has at most five vertices (in which case it has
clique-width at most 5), or G\N(vTi ) is a disconnected (diamond, P1+2P2)-free graph,
so it has bounded clique-width by Lemma 10. By Fact 1, it follows that G has bounded
clique-width. This completes the proof of the claim.

Claim 2. For every triangle T , the sets V T
1 , V T

2 and V T
3 are independent.

Suppose, for contradiction, that V T
1 is not an independent set. Since G is K4-free

and every vertex of V T
1 is adjacent to vT1 , it follows that G[V T

1 ] is K3-free. Since V T
1

contains at least three vertices by Claim 1, there must be vertices x, y, z ∈ V T
1 such

that x is adjacent to y, but not to z. Then G[vT1 , y, x, z] is a diamond if y and z are
adjacent and G[z, x, y, vT2 , v

T
3 ] is a P1 + 2P2 if they are not. This contradiction implies

that V T
1 is an independent set. The claim follows by symmetry.

Claim 3. Every pair of triangles in G is vertex-disjoint.
Consider a triangle T with vertex vT1 . The neighbourhood of vT1 is V T

1 ∪ {vT2 , v
T
3 }.

Now V T
1 is independent by Claim 2 and anti-complete to {vT2 , v

T
3 } by definition.

Therefore, if a triangle in G contains vT1 then it must also contain vT2 and vT3 . In other
words, vT1 is contained in only one triangle in G, namely T . The claim follows by
symmetry.

Claim 4. For every triangle T , the set UT is independent.
By Claim 1, we can choose x, y ∈ V T

1 and by Claim 2, x must be non-adjacent to y.
If a vertex u ∈ UT is adjacent to x, but not to y then G[y, u, x, vT2 , v

T
3 ] is a P1 + 2P2,

a contradiction. Therefore every vertex of UT is either complete or anti-complete to
{x, y}. Suppose u, v ∈ UT . First suppose u and v are non-adjacent. If x is adjacent
to u but v is not, then G[v, u, x, vT2 , v

T
3 ] is a P1 + 2P2, a contradiction. Therefore

if u, v ∈ UT are non-adjacent, then {u, v} is either complete or anti-complete to
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{x, y}. Now suppose u and v are adjacent. Then G[u, v, x, y] is a diamond if {u, v}
is complete to {x, y} and G[x, u, v, vT2 , v

T
3 ] is a P1 + 2P2 if {u, v} is anti-complete to

{x, y}. Therefore if u, v ∈ UT are adjacent then exactly one of them is complete to
{x, y} and the other is anti-complete to {x, y}. This means that G[UT ] is a complete
bipartite graph, with partition classes UT

1 and UT
2 , say, and furthermore, one of UT

1

and UT
2 is complete to V T

1 and the other is anti-complete to V T
1 . Similarly, this holds

with the same partition (UT
1 , UT

2 ) if we replace V T
1 by V T

2 or V T
3 . Thus every vertex

of UT
1 (respectively UT

2 ) has the same neighbourhood in V T
1 ∪ V T

2 ∪ V T
3 .

Suppose that V T
i and V T

j are both complete to UT
k for some i, j ∈ {1, 2, 3} with

i 6= j and some k ∈ {1, 2} and that UT
k contains at least two vertices, say u and v.

If x ∈ V T
i and y ∈ V T

j are adjacent, then G[x, y, u, v] is a diamond, a contradiction.

Therefore V T
i is anti-complete to V T

j .

Suppose that UT
1 and UT

2 each contain at least one vertex, say u and v, respec-
tively. We will show that in this case the clique-width of G is bounded. Suppose, for
contradiction, that G \ (T ∪ {u, v}) contains an induced K3, say with vertex set T ′.
Since G[UT ] is a complete bipartite graph with bipartition (UT

1 , UT
2 ) and no vertex of

a set V T
i can have neighbours in both UT

1 and UT
2 , at most one vertex of T ′ can be

in UT . Suppose that UT
1 contains at least two vertices (so UT

1 \ {u} is non-empty) and
that UT

1 is complete to V T
i and V T

j for some i 6= j (in which case UT
2 is anti-complete

to V T
i and V T

j ). Then V T
i and V T

j must be anti-complete. We conclude that in this

case no vertex of UT
1 can belong to T ′. No vertex of UT

2 can belong to T ′ either, since
vertices in UT

2 can only have neighbours in UT
1 and in V T

k where k /∈ {i, j} (if UT
1 is

anti-complete to V T
k ). Furthermore, since V T

i is anti-complete to V T
j , and V T

1 , V T
2 , V T

3

are independent (by Claim 2), there is no induced K3 in G[V T
1 ∪ V T

2 ∪ V T
3 ]. Thus T ′

cannot exist, a contradiction.

The above means that if such a triangle T ′ does exist and a set UT
i contains at

least two vertices, then UT
i must be anti-complete to at least two distinct sets V T

j

and V T
k (in which case UT

i cannot contain a vertex of T ′). Since T ′ consists of vertices of
G\ (T ∪{u, v}), this means that no vertex of UT is in T ′ (if UT

i contains a single vertex
for some i then by definition T ′ does not include it). By Claim 2, it follows that T ′ must
consist of vertices x ∈ V T

1 , y ∈ V T
2 and z ∈ V T

3 . Since each set V T
i is anti-complete to

exactly one of UT
1 and UT

2 , we may assume without loss of generality that UT
1 (and

therefore u) is complete to both V T
1 and V T

2 . Now G[x, y, z, u] is a K4 or diamond
if u and z are adjacent or non-adjacent, respectively. This contradiction means that
G \ (T ∪ {u, v}) must in fact be K3-free. Since G \ (T ∪ {u, v}) is a (K3, P1 + 2P2)-free
graph, it has bounded clique-width by Theorem 3. By Fact 1, we conclude that G also
has bounded clique-width. We may therefore assume that either UT

1 or UT
2 is empty. It

follows that UT is an independent set. This completes the proof of the claim.

Claim 5. For every triangle T , there is a vertex x ∈ V (T ) such that N(x) = N(u) ∪
(V (T ) \ {x}) for all u ∈ UT .
By the previous claim, we may assume that UT is independent. Note that by the same
arguments as for the previous claim, for all i ∈ {1, 2, 3}, UT is trivial to V T

i . Suppose
u ∈ UT . By the same arguments as for the previous claim, UT must be anti-complete to
at least two distinct sets V T

i and V T
j , otherwise G\ (T ∪{u}) would be K3-free and the

clique-width of G would be bounded as before. Since G is connected, it follows that UT

must be complete to at least one set V T
i . Therefore UT must be complete to exactly

one set V T
i . It follows that N(vTi ) = V T

i ∪ (V (T ) \ {vTi }) = N(u) ∪ (V (T ) \ {vTi }) for
all u ∈ UT . This completes the proof of the claim.

Claim 6. No triangle in G contains a vertex of U .
If u ∈ U then u ∈ UT for some triangle T . By the previous claim, the neighbourhood
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of every vertex of UT is V T
i , for some i. Since V T

i is an independent set, the claim
follows immediately.

Claim 7. If T and T ′ are distinct triangles in G then the edges between them form an
induced matching.
Suppose T and T ′ are distinct triangles in G. By Claim 3, T and T ′ must be vertex-
disjoint. By Claim 6, it follows that every vertex of T ′ is in V T

1 ∪ V T
2 ∪ V T

3 , so every
vertex of T ′ has exactly one neighbour in T . By Claim 2, for i ∈ {1, 2, 3}, the set V T

i

is an independent set, so it can contain at most one vertex of T ′. Therefore T ′ has
exactly one vertex in each of V T

1 , V T
2 and V T

3 . By definition of V T
i , this means that

every vertex of T ′ has a different neighbour in T . The claim follows.

Claim 8. For every triangle T and for every pair of distinct i, j ∈ {1, 2, 3}, G[V T
i ∪V T

j ]
is 2P2-free.
Suppose, for contradiction, that G[V T

1 ∪ V T
2 ] contains an induced 2P2. Then this 2P2,

together with the vertex vT3 would induce a P1 + 2P2 in G. The claim follows by
symmetry.

Claim 9. For every triangle T , there is no induced 3P1 in G with one vertex in each
of V T

1 , V T
2 and V T

3 .
Suppose that there are three vertices x ∈ V T

1 , y ∈ V T
2 and z ∈ V T

3 that are pairwise
non-adjacent. We will show that in this case G has bounded clique-width. Suppose
u ∈ UT . By Claim 5, u has exactly one neighbour in {x, y, z}. Without loss of generality,
assume that u is adjacent to x. Then G[z, u, x, y, vT2 ] is a P1 + 2P2, a contradiction.
We may therefore assume that UT is empty. If there is a vertex x′ ∈ V T

1 \ {x} that is
adjacent to y, but not to z then G[x, x′, y, vT3 , z] is a P1 + 2P2 in G. This contradiction
means that every vertex of V T

1 is either complete or anti-complete to {y, z}. Similarly,
every vertex of V T

2 is either complete or anti-complete to {x, z} and every vertex of V T
3

is either complete or anti-complete to {x, y}. Note that the above holds for any three
pairwise non-adjacent vertices in V T

1 , V T
2 and V T

3 , respectively.

Let V ′T
1 and V ′′T

1 be the sets of vertices in V T
1 that are anti-complete or complete to

{y, z}, respectively. Let V ′T
2 and V ′′T

2 be the sets of vertices in V T
2 that are anti-complete

or complete to {x, z}, respectively. Let V ′T
3 and V ′′T

3 be the sets of vertices in V T
3 that

are anti-complete or complete to {x, y}, respectively. Note that x ∈ V ′T
1 , y ∈ V ′T

2 and
z ∈ V ′T

3 .

Suppose x′ ∈ V ′T
1 and y′ ∈ V ′T

2 . Since x′ is non-adjacent to y and to z, it follows
that G[x′, y, z] is a 3P1. Since y′ is non-adjacent to z, it must therefore be anti-complete
to {x′, z}. In particular, this means that if i, j ∈ {1, 2, 3} are distinct then V ′T

i is
anti-complete to V ′T

j .

Suppose x′ ∈ V ′T
1 and y′ ∈ V ′′T

2 . Since x′ is non-adjacent to y and to z, it follows
that G[x′, y, z] is a 3P1. Since y′ is adjacent to z, it must therefore be complete to
{x′, z}. In particular, this means that if i, j ∈ {1, 2, 3} are distinct then V ′T

i is complete
to V ′′T

j .

Note that for all i ∈ {1, 2, 3}, V ′T
i is anti-complete to V ′′T

i , since V T
i is an indepen-

dent set.

Suppose x′ ∈ V ′′T
1 and y′ ∈ V ′′T

2 . If x′ and y′ are non-adjacent then G[x′, y, x, y′] is
a 2P2 in G[V T

1 ∪V T
2 ], which would contradict Claim 8. This means that if i, j ∈ {1, 2, 3}

are distinct then V ′′T
i is complete to V ′′T

j .

We now proceed as follows: from G, we delete the three vertices of T . We then apply
a bipartite complementation between every pair of sets V ′T

i and V ′′T
j and every pair of

distinct sets V ′′T
i and V ′′T

j (a total of nine bipartite complementations). After doing
this, we obtain an edge-less graph, which therefore has clique-width at most 1. By
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Facts 1 and 3, it follows that G must also have bounded clique-width. This completes
the proof of the claim.

Claim 10. G contains at least three vertex-disjoint triangles.
Suppose, for contradiction, that the claim is false. Then G contains at most two
vertex-disjoint triangles, in which case, we can delete at most six vertices to obtain a
(K3, P1 + 2P2)-free graph, which has bounded clique-width by Theorem 3. By Fact 1,
G also has bounded clique-width. This completes the proof of the claim.

We will now assume that the above claims are satisfied and show that this implies
that G is basic. We arbitrarily fix a triangle T 1 with vertices vT

1

1 , vT
1

2 and vT
1

3 . To

simplify notation, set vi = vT
1

i for i ∈ {1, 2, 3}. Recall that by Claim 6, no K3 in G has
a vertex in U . By Claim 2, it follows that every K3 in G apart from T 1 has exactly one
vertex in each of V T 1

1 \ U , V T 1

2 \ U and V T 1

3 \ U . We now set V1 = (V T 1

1 ∪ {v2}) \ U ,

V2 = (V T 1

2 ∪ {v3}) \ U and V3 = (V T 1

3 ∪ {v1}) \ U .

Claim 11. V1, V2 and V3 are independent.
The vertices in V T 1

i are exactly the vertices outside T 1 whose unique neighbour in T 1

is vi. The claim follows by Claim 2.

By Claim 3 any two triangles in G must be vertex-disjoint. By Claim 7, the edges
between any two triangles in G form a perfect matching. Let T x = {x1, x2, x3} and
T y = {y1, y2, y3} be two distinct triangles in G with xi, yi ∈ Vi for i ∈ {1, 2, 3}. By
Claim 11, xi is non-adjacent to yi for i ∈ {1, 2, 3}. This means that the set of edges
between T x and T y is either {x1y2, x2y3, x3y1} or {x1y3, x2y1, x3y2}. We say that
T x < T y holds in the first case and T y < T x holds in the second. Note that exactly
one of these statements holds for any two distinct triangles in G. Furthermore, note
that if T x is a triangle other than T 1 then the definition of the sets Vi implies that
T 1 < T x.

We show that the relation < is transitive. Suppose, for contradiction, that this
is not the case. Then there must be three pairwise distinct triangles in G, say T x =
{x1, x2, x3}, T

y = {y1, y2, y3} and T z = {z1, z2, z3}, where xi, yi, zi ∈ V T
i for i ∈

{1, 2, 3}, with T x < T y, T y < T z and T z < T x. Then x1 is adjacent to y2, y2 is
adjacent to z3 and z3 is adjacent to x1. Therefore G[x1, y2, z3] is a K3 which shares
exactly one vertex with T x, which would contradict Claim 3. Therefore < is a transitive,
anti-symmetric relation on the triangles in G. We may now order the triangles in G, say
T 1 < T 2 < · · · < T p for some p. By Claim 10, it follows that p ≥ 3. We now conclude
the following:

Claim 12. {G[T 1], . . . , G[T p]} is the set of all induced triangles in G and each of them
has exactly one vertex in each of V1, V2 and V3.
Claim 13. If i < j and k + 1 6≡ ℓ (mod 3) then T i ∩ Vk is anti-complete to T j ∩ Vℓ.
Claim 14. If i < j and k + 1 ≡ ℓ (mod 3) then T i ∩ Vk is complete to T j ∩ Vℓ.

Consider a vertex x that is not in any induced triangle in G. If x /∈ U then
x ∈ V1 ∪ V2 ∪ V3 and x must have exactly one neighbour in every triangle in G. Let W
be the set of vertices that are not in any triangle in G and have exactly one neighbour
in every induced triangle in G.

We extend the relation < as follows: suppose T = {x1, x2, x3} is an induced triangle
in G with x1 ∈ V1, x2 ∈ V2 and x3 ∈ V3 and suppose w ∈ W . Then w is a vertex in Vi

for some i ∈ {1, 2, 3}. By Claim 11, w is not adjacent to xi. Since w ∈ W , w must be
adjacent to exactly one vertex of T . We say that x < T holds if x is adjacent to xi+1

and T < x if x is adjacent to xi−1 (we interpret indices modulo 3).
Let w ∈ W and let T and T ′ be triangles in G such that w < T and T < T ′. We

will show that w < T ′. Say T = {x1, x2, x3} and T ′ = {y1, y2, y3}, where xi, yi ∈ Vi for
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i ∈ {1, 2, 3}. Without loss of generality, assume w ∈ V1. Since w < T , w is adjacent
to x2. Since T < T ′, x2 is adjacent to y3. Since w ∈ V1, w is non-adjacent to y1.
Now w cannot be adjacent to y3, otherwise G[w, x2, y3] would be a triangle that is
not vertex-disjoint from T , which would contradict Claim 3. Since w ∈ W , it must
have a neighbour in T ′, so w must therefore be adjacent to y2. It follows that w < T ′.
Similarly, if T < T ′ and T ′ < w then T < w and if T < w and w < T ′ then T < T ′.

This means that we can now partition W into sets W1, . . . ,Wp where Wi contains
the vertices x ∈ W such that T j < x for j ≤ i and x < T j for j > i. (Note that T 1 < w
for all w ∈ W , by construction.) We immediately conclude the following:

Claim 15. If i < j and k + 1 6≡ ℓ (mod 3) then T i ∩ Vk is anti-complete to Wj ∩ Vℓ.
Claim 16. If i = j and k + 1 6≡ ℓ (mod 3) then T i ∩ Vk is anti-complete to Wj ∩ Vℓ.
Claim 17. If i < j and k + 1 6≡ ℓ (mod 3) then Wi ∩ Vk is anti-complete to T j ∩ Vℓ.
Claim 18. If i < j and k + 1 ≡ ℓ (mod 3) then T i ∩ Vk is complete to Wj ∩ Vℓ.
Claim 19. If i = j and k + 1 ≡ ℓ (mod 3) then T i ∩ Vk is complete to Wj ∩ Vℓ.
Claim 20. If i < j and k + 1 ≡ ℓ (mod 3) then Wi ∩ Vk is complete to T j ∩ Vℓ.

We also prove the following claim:

Claim 21. G[Wi] is (P1 + 2P2)-free and does not contain an induced 3P1 with one
vertex in each of V1, V2 and V3.
Since G is (P1 + 2P2)-free, it follows that G[Wi] is also (P1 + 2P2)-free. Since the
vertices of Wi do not belong to any triangle of G and do not belong to U , it follows
that Wi ⊆ V T 1

1 ∪ V T 1

2 ∪ V T 1

3 . The claim then follows by Claim 9.

It remains to analyse the edges between the sets W1, . . . ,Wp.

Claim 22. If i < j and k + 1 6≡ ℓ (mod 3) then Wi ∩ Vk is anti-complete to Wj ∩ Vℓ.
Let i, j ∈ {1, . . . , p} be such that i < j. Let T j = {x1, x2, x3} with xk ∈ Vk for
k ∈ {1, 2, 3}. Note that if x ∈ Wi and y ∈ Wj then x < T j and T j < y. Now
Wi ∩ Vk is anti-complete to Wj ∩ Vk for k ∈ {1, 2, 3}, since Vk is an independent set
by Claim 11. Suppose x ∈ Wi ∩ V1 and y ∈ Wj ∩ V3. Then x and y are both adjacent
to x2. Therefore x and y cannot be adjacent, otherwise G[x2, x, y] would be a triangle
which is not vertex-disjoint from T j , which would contradict Claim 3. By symmetry
we conclude that Wi ∩ Vk is anti-complete to Wj ∩ Vk+2 for k ∈ {1, 2, 3} (interpreting
subscripts modulo 3). This completes the proof of the claim.

The edges between Wi ∩ Vk and Wj ∩ Vk+1 for k ∈ {1, 2, 3} are more complicated,
as shown in the following two claims:

Claim 23. If i+ 1 < j and k + 1 ≡ ℓ (mod 3) then Wi ∩ Vk is complete to Wj ∩ Vℓ.
Let i, j ∈ {1, . . . , p} be such that i+1 < j. Suppose, for contradiction, that x ∈ Wi∩V1

and y ∈ Wj ∩ V2 are non-adjacent. Since i + 2 ≤ j we find that x < T j−1, x <
T j , T j−1 < y and T j < y. Let T j = {x1, x2, x3} with xk ∈ Vk for k ∈ {1, 2, 3}. Let
T j−1 = {y1, y2, y3}, where yk ∈ Vk for k ∈ {1, 2, 3}. Then x is adjacent to y2, but
non-adjacent to x1, while y is adjacent to x1, but non-adjacent to y2. Since T j−1 < T j

it follows that y2 is non-adjacent to x1. Since T 1 < x, y, the vertex v3 must be non-
adjacent to x and y (recall that v3 = vT

1

3 and that this vertex has no neighbours in V1

or V2 apart from v1 and v2). Now G[v3, x, y2, x1, y] is a P1 + 2P2, a contradiction. By
symmetry this completes the proof of the claim.

Claim 24. If i + 1 = j and k + 1 ≡ ℓ (mod 3) then Wi ∩ Vk is either complete or
anti-complete to Wj ∩ Vℓ.
Let i, j ∈ {1, . . . , p} with i+1 = j. Let T j = {x1, x2, x3} with xk ∈ Vk for k ∈ {1, 2, 3}.
Assume, for contradiction, that the vertex sets Wi∩Vk and Wj ∩Vk+1 are not trivial to
each-other for some k ∈ {1, 2, 3}. Without loss of generality, we may assume that there
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is a vertex x with a neighbour y and a non-neighbour y′ such that either x ∈ Wi ∩ V1

and y, y′ ∈ Wj ∩V2 or y, y′ ∈ Wi ∩V1 and x ∈ Wj ∩V2. Note that x3 is non-adjacent to
x, y and y′. Since T 1 < x, y, y′, the vertex v3 must be non-adjacent to x and y (recall
that v3 = vT3 and that this vertex has no neighbours in V1 or V2 apart from v1 and v2).
Now G[y′, x, y, v3, x3] is a P1 + 2P2, a contradiction. By symmetry this completes the
proof of the claim.

The claims proved above imply all the necessary properties for G to be basic. Indeed,
Claim 6 implies Property (i) and Claims 4 and 5 imply Property (ii). Claims 11, 12,
21, 13, 15, 17, 22, 14, 18, 20, 23, 24, 19 and 16 imply Properties (iii), (iv), (v), (vi).1,
(vi).2, (vi).3, (vi).4, (vii).1, (vii).2, (vii).3, (viii).1, (ix).1, (x).1, (xi).1 and respectively.
Therefore G is basic, so it has bounded clique-width by Lemma 12. This completes the
proof. ⊓⊔
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