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Résumé

Le suivi de la mise en place du magma à faible profondeur et de sa migration vers la
surface est crucial pour prévoir les éruptions volcaniques. Or, la prédiction des éruptions
est sans doute l’un des domaines les plus difficiles en volcanologie, non seulement à cause
du comportement non linéaire complexe et de l’imprévisibilité intrinsèque des volcans,
mais aussi à cause de notre manque d’observation directe de ce qui se passe sous la surface.
Pourtant la nécessité de fournir des prédictions précises est fondamentale, en particulier
pour les agences de protection civile afin d’évaluer correctement l’aléa et de diminuer les
risques.

Avec les progrès récents de l’imagerie SAR (Synthetic Aperture Radar) et le nombre
croissant de réseaux GNSS (Global Navigation Satellite System) continus sur les volcans,
il est maintenant possible de fournir une évolution continue et spatialement étendue des
déplacements de surface pendant les périodes inter-éruptives. Pour les volcans basaltiques,
ces mesures combinées à des modèles dynamiques simples peuvent être exploitées pour
caractériser et contraindre la mise en pression d’un ou de plusieurs réservoirs magma-
tiques, ce qui fournit une meilleure information prédictive sur l’emplacement du magma
à faible profondeur. L’assimilation de données—un processus séquentiel qui combine
au mieux les modèles et les observations, en utilisant parfois une information a priori
basée sur les statistiques des erreurs, pour prédire l’état d’un système dynamique—a
récemment gagné en popularité dans divers domaines des géosciences (par exemple, les
prédictions océan-météo, le géomagnétisme et l’exploration des ressources naturelles).
Dans cette thèse, je présente la toute première application de l’assimilation de données en
volcanologie en allant des tests synthétiques à l’utilisation de données géodésiques réelles.

La première partie de ce travail se concentre sur le développement de stratégies afin
d’évaluer le potentiel de l’assimilation de données. En particulier, le filtre de Kalman
d’Ensemble (EnKF) a été utilisé avec un modèle dynamique simple à deux chambres
(Reverso et al. [2014]) et de données géodésiques synthétiques pour aborder les points
suivants : 1) suivi de l’évolution de la pression magmatique en profondeur et des dé-
placements de surface et estimation des paramètres statiques incertains du modèle, 2)
assimilation des données GNSS et InSAR, 3) mise en évidence des avantages ou des
inconvénients de l’EnKF par rapport à une technique d’inversion bayésienne (par exemple,
la méthode de Monte Carlo par châıne de Markov). Les résultats montrent que l’EnKF



fonctionne de manière satisfaisante et que l’assimilation de données semble prometteuse
pour la surveillance en temps réel des volcans.

La deuxième partie de la thèse est dédiée à l’application de la stratégie mise au point
précédemment à l’exploitation des données GPS inter-éruptives enregistrées de 2004 à
2011 au volcan Gŕımsvötn en Islande, afin de tester notre capacité à prédire la rupture
d’une chambre magmatique en temps réel. Nous avons introduit ici le concept de “niveau
critique” basé sur l’estimation de la probabilité d’une éruption à chaque pas de temps.
Cette probabilité est définie à partir de la proportion d’ensembles de modèles qui dé-
passent un seuil critique, initialement assigné selon une distribution donnée. Nos résultats
montrent que lorsque 25±1 % des ensembles du modèle ont dépassé la surpression critique
une éruption est imminente. De plus, dans ce chapitre, nous élargissons également les
tests synthétiques précédents en améliorant la stratégie EnKF d’assimilation des données
géodésiques pour l’adapter à l’utilisation de données réelles en nombre limité. Les outils
de diagnostiques couramment utilisés en assimilation de données sont mis en oeuvre et
présentés.

Enfin, je démontre qu’en plus de son intérêt pour prédire les éruptions volcaniques,
l’assimilation séquentielle de données géodésiques basée sur l’utilisation de l’EnKF présente
un potentiel unique pour apporter une information sur l’alimentation profonde du système
volcanique. En utilisant le modèle dynamique à deux réservoirs pour le système de
plomberie de Gŕımsvötn”et en supposant une géométrie fixe et des propriétés magmatiques
invariantes, nous mettons en évidence que l’apport basal en magma sous Gŕımsvötn”
diminue de 85 % au cours des 10 mois précédant le début de l’événement de rifting
de Bárdarbunga. La perte d’au moins 0.016 km3 dans l’approvisionnement en magma
de Gŕımsvötn” est interprétée comme une conséquence de l’accumulation de magma
sous Bárdarbunga et de l’alimentation consécutive de l’éruption Holuhraun à 41 km de
distance.
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Abstract

Tracking magma emplacement at shallow depth as well as its migration towards the
Earth’s surface is crucial to forecast volcanic eruptions. Indeed, eruption forecasting is
perhaps one of the most challenging field in volcanology, not only because of the complex
nonlinear behavior and intrinsic unpredicitability of volcanoes but also because of our
lack of direct observation on what is exactly happening underground. Yet, the need
to provide accurate forecast is certainly fundamental especially for the civil protection
agencies to mitigate risks and properly assess hazards.

With the recent advances in Interferometric Synthetic Aperture Radar (InSAR) imag-
ing and the increasing number of continuous Global Navigation Satellite System (GNSS)
networks recorded on volcanoes, it is now possible to provide continuous and spatially
extensive evolution of surface displacements during inter-eruptive periods. For basaltic
volcanoes, these measurements combined with simple dynamical models can be exploited
to characterise and to constrain magma pressure building within one or several magma
reservoirs, allowing better predictive information on the emplacement of magma at shallow
depths. Data assimilation—a sequential time-forward process that best combines models
and observations, sometimes a priori information based on error statistics, to predict the
state of a dynamical system—has recently gained popularity in various fields of geosciences
(e.g. ocean-weather forecasting, geomagnetism and natural resources exploration). In this
dissertation, I present the very first application of data assimilation in volcanology from
synthetic tests to analyzing real geodetic data.

The first part of this work focuses on the development of strategies in order to test the
applicability and to assess the potential of data assimilation, in particular, the Ensemble
Kalman Filter (EnKF) using a simple two-chamber dynamical model (Reverso et al.
[2014]) and artificial geodetic data. Synthetic tests are performed in order to address the
following: 1) track the magma pressure evolution at depth and reconstruct the synthetic
ground surface displacements as well as estimate non-evolving uncertain model parameters,
2) properly assimilate GNSS and InSAR data, 3) highlight the strengths and weaknesses
of EnKF in comparison with a Bayesian-based inversion technique (e.g. Markov Chain
Monte Carlo). Results show that EnKF works well with the synthetic cases and there
is a great potential in utilising data assimilation for real-time monitoring of volcanic unrest.



The second part is focused on applying the strategy that we developed through syn-
thetic tests in order to forecast the rupture of a magma chamber in real time. We basically
explored the 2004-2011 inter-eruptive dataset at Gŕımsvötn volcano in Iceland. Here, we
introduced the concept of “eruption zones” based on the evaluation of the probability of
eruption at each time step estimated as the percentage of model ensembles that exceeded
their failure overpressure values initially assigned following a given distribution. Our
results show that when 25±1 % of the model ensembles exceeded the failure overpressure,
an actual eruption is imminent. Furthermore, in this chapter, we also extend the previous
synthetic tests by further enhancing the EnKF strategy of assimilating geodetic data
in order to adapt to real world problems such as, the limited amount of geodetic data
available to monitor ice-covered active volcanoes. Common diagnostic tools in data
assimilation are presented.

Finally, I demonstrate that in addition to the interest of predicting volcanic erup-
tions, sequential assimilation of geodetic data on the basis of EnKF shows a unique
potential to give insights into volcanic system roots. Using the two-reservoir dynamical
model for Gŕımsvötn ’s plumbing system and assuming a fixed geometry and constant
magma properties, we retrieve the temporal evolution of the basal magma inflow beneath
Gŕımsvötn that drops up to 85 % during the 10 months preceding the initiation of
the Bárdarbunga rifting event. The loss of at least 0.016 km3 in the magma supply of
Gŕımsvötn is interpreted as a consequence of magma accumulation beneath Bárdarbunga
and subsequent feeding of the Holuhraun eruption 41 km away.
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√
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√
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3.13 The radial and vertical displacements as a function of the radial distance
from the volcano axis given the values of the parameters listed in Table
3.1. The scale of the vertical axis is chosen to emphasize the far-field
displacements (i.e. r = 6− 50 km), whereas, the smaller figures show the
full extent of displacements (i.e. r = 0− 50 km). The grey solid lines are
displacements related to the shallow reservoir and the broken lines (red
and blue) are from the deep reservoir. . . . . . . . . . . . . . . . . . . . 138

20



LIST OF FIGURES

3.14 A) The locations of the 242 observations (i.e. 121 radial and 121 vertical
points) in gray dots and their corresponding displacement values at t =
10. The observations are assimilated every time-step such that fobs = 1.
Note that the x and y axis are in kilometers. The EnKF-estimated
B) overpressures and C) uncertain parameters after performing state-
parameter estimation using the observations in A). We used a biased prior
distribution for the uncertain parameters like in Figure 3.5C or Figure
3.7C. Note that the pink shades represent the spread (1σ) of the estimation.
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4.1 (A) Landsat TM map of Iceland in RGB colors showing the outlines of
the volcanic zones with emphasis on the Gŕımsvötn volcanic system. The
image is based on the mosaicked data from the National Land Survey
of Iceland (Landmaelingar Islands [1995]).(B) The caldera of Gŕımsvötn
volcano with the location of its past eruptions (e.g. 1934, 1983, 1998,
2004 and 2011). The red line and brown outline mark the 2011 fissure
eruption and the melted part of the glacier as a result of the eruption,
respectively. The colored data points are the North and East components
of the horizontal displacement measured from GFUM station indicating
the evolution of the displacements from the day of the eruption (e.g. 0h00
UTC of 21 May 2011); from Hreinsdóttir et al. [2014]. . . . . . . . . . . . 154

4.2 The GPS time series of GFUM station from 21 Nov 2004 to 21 May 2011.
The actual data are in blue points. The red broken lines mark the onsets of
the 01 Nov 2004 and 21 May 2011 eruptions. The horizontal black broken
line is the zero-displacement reference. The shaded green area covers
the time window of the inversion (see Step 1: MCMC of Section 4.3.2).
The NS and EW components are corrected for tectonic trend whereas the
vertical component (UD) is not corrected for GIA or seasonal effects. . . 155

4.3 Posterior probability density functions (PDF) of the uncertain model
parameters after performing MCMC inversion using only the initial part of
the 2004-2011 inter-eruptive dataset. The marginal PDF for each uncertain
parameter is shown in the diagonal histogram plots. The green vertical
lines with numbers indicate the best-fit values of the parameters. The off-
diagonal contour plots are the joint kernel-density estimate between pairs
of parameters with their corresponding Pearson correlation coefficients. A
p-value close to ±1 implies strong correlation between the parameters. . 164
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4.4 Data fit (green) for the radial and vertical displacement using the MCMC-
derived best-fit values of the uncertain model parameters and re-defined
Qin distribution. The actual data are represented by black solid lines. Note
that the vertical component is not corrected either for GIA or seasonal
effects. The radial component is corrected for tectonic trend. . . . . . . 165

4.5 Data-fits and Qin estimates. (A) The entire 2004-2011 inter-eruptive radial
dataset used in this study (black) and the resulting data-fits by: 1) solely
free-running the dynamical model (green) and 2) data assimilation via
EnKF (red). The green dotted box covers the dataset used to estimate the
non-evolving uncertain parameters (step 1). (B) Estimated value of the
magma inflow rate, Qin, as a function of time using: the free-run (green)
and EnKF (red). (C) The distribution of Qin used as a prior information
for the free-run and the data assimilation. . . . . . . . . . . . . . . . . . 167

4.6 The shallow and deep overpressure values after performing EnKF (red).
Note that the corresponding data fit is illustrated in Figure 4.5. The
pink color represents each model ensemble members whereas the dark
red shade is the standard deviation. It follows that the pink line within
the dark red shade is the mean of the ensemble. For comparison, we
also presented the result of “free-running” the dynamical model (green)
using the prior distribution of Qin and the MCMC-derived non-evolving
uncertain parameters from Figure 4.3. Similarly, the light green colors
are the ensemble members and the darker green shade is the standard
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4.7 (A) The evolution of the EnKF-derived shallow overpressure—constrained
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evolution of the overpressure. (C) The probability of rupture calculated
from the N -ensemble of models that exceeded the failure overpressure
described by the distribution in (D). (E) The percentage of ensemble
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4.8 (A) Forecast day of eruption based on a “probability of rupture” criterion
(i.e. 0.25 ± 0.01). The blue line is the forecast day based on the 25%
probability whereas the light blue shade corresponds to the ±1%. (B)
Number of days prior to eruption as a function of time calculated from
Figure 4.8A. (C) The probability of rupture at the end of the assimilation
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a function of time using: the free-run (green), EnKF (red) and MCMC
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5.1 Landsat-8 image taken on 06 September 2014, showing the principal
volcanoes and fissure swarms (e.g. Bárdarbunga (Br), Gŕımsvötn (Gr)
and Askja(As)) near the Vatnajökull icecap. The image is based on the
mosaicked data from the National Land Survey of Iceland (NASA Landsat
Program [2014], Landmaelingar Islands [2015])). Fissure eruptions of
Laki (1783-1784) and Gjálp (1996) as well as the on-going Holuhraun
eruption when the image is captured are also presented. The locations of
GFUM and DYNC GPS stations which are discussed in the main article
are marked as yellow triangles. Inset: map of Iceland (modified after
Reverso et al. [2014]) outlining its volcanic zones (e.g. West Volcanic
Zone (WVZ), East Volcanic Zone (EVZ), North Volcanic Zone (NVZ))
and transform zones (e.g. South Iceland Seismic Zone (SISZ) and Tjornes
Fracture Zone (TFZ)). The Reykjanes Ridge and Reykjanes Peninsula Rift
(RPR), and the Kolbeinsey Ridge which mark the limits of the volcanic
zone are illustrated for reference. The rate of the plate spreading is 9.8 mm
yr−1 (DeMets et al. [2010], Reverso et al. [2014]). The shaded gray area is
the region covered by the Landsat-8 image in the main figure. . . . . . . 184

5.2 GPS time series of GFUM station from 22 May 2011 to 30 Nov 2014. The
actual data are in blue points, the red solid line is the linear fit of the
points within the shaded gray area (assumed shift from linear to constant
trend), and the black solid line represents the linear fit prior to the shaded
gray area. The latter was extended up to the end of the dataset to estimate
the expected displacements after the assumed change of slope (14 October
2013). The red broken lines mark the onset of the May 2011 eruption and
the August 2014 rifting event at Gŕımsvötn and Bárdarbunga, respectively.
The horizontal black broken line is the zero-displacement reference. The
shaded green area covers the dataset used during the inversion (step 1 of our
approach). The insets (orange box) provide a closer look on the data points
near the time of the rifting episode. Note that the vertical displacement is
not corrected for GIA and seasonal effects. We applied a tectonic correction
for the NS and EW components following the estimations of Reverso et al.
[2014]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.3 GPS time series measured at GFUM station from 30 Sep 2004 to 01 Sep
2016. The blue dots are the actual data. The red broken lines mark
the 2004 and 2011 Gŕımsvötn eruptions as well as the 2014 major rifting
event. The black solid lines are the linear fit to the linear part of each
post-eruptive event. The black broken lines are shown as a reference for
the zero-displacement value. The shaded gray area corresponds to the
assumed shift from linear to constant trend around 10 months before the
2014 rifting event. Note that the vertical component of the time series is
not corrected for either GIA or seasonal effects. The horizontal component
is however, corrected for tectonic trend. . . . . . . . . . . . . . . . . . . . 187
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5.4 GPS time series measured at DYNC station from 22 May 2011 to 30 Nov
2014. The blue dots are the actual data, the red solid line is the linear fit
of the points within the shaded gray area (i.e. area that corresponds to the
assumed shift from linear to constant trend detected at GFUM station),
and the black solid line represents the linear fit prior to the shaded gray
area. The latter was extended up to the end of the dataset. The red broken
lines mark the onset of the May 2011 eruption and the August 2014 rifting
event at Gŕımsvötn and Bárdarbunga, respectively. The horizontal black
broken line is the zero-displacement reference. The insets (orange box)
provide a closer look on the data points near the time of the rifting episode.191

5.5 The ratio of the radial and vertical displacements (gray solid line) at
GFUM GPS station from 24 May 2011 to 16 Aug 2014. The horizontal
black line is the mean ratio (i.e. UR/Uz = 2.4). The blue points are the
actual radial and vertical displacements. Tectonic correction is applied
on the radial component. The vertical component is neither corrected for
GIA nor seasonal effects. The black broken line marks the assumed change
of slope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.6 The expected radial displacement time series measured at a GPS station
located 15 km away from Gŕımsvötn’s volcanic center. (A) Ur,s and (B)
Ur,d are the radial displacements contributed by the shallow and deep
reservoirs, respectively. (C) Ur,tot is the combined displacement of the two
reservoirs (the data measured at the surface). The black arrow in Figure
5.6C points at the deflected part of the surface displacement curve. This
is similarly observed in the radial displacement contribution of the deep
reservoir (Figure 5.6B), implying that the measured radial displacement
at 15km is mainly dominated by the deep reservoir. The black broken line
marks the assumed change of slope prior to the start of the 2014 rifting
event (tstep = 875 d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.7 EnKF synthetic test to track sudden change in Qin value. The true behavior
of the system is the black solid line. The radial displacement data used
for the EnKF is in gray. The result of free running the forward model
is in green (the darker green is the mean and the lighter green lines are
the ensemble members of the model state), whereas the EnKF result is in
red (dark red is the mean value and the lighter red color are the ensemble
members of the model state). The vertical black broken lines mark the
change of slope (i.e. 875 d). Note that the prior distribution of Qin used
for the assimilation is also presented. . . . . . . . . . . . . . . . . . . . . 196
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5.8 Posterior probability density functions (PDF) of the uncertain model
parameters after MCMC inversion (step 1). The marginal PDF for each
uncertain parameter is shown in the diagonal histogram plots. The green
vertical lines with numbers indicate the best-fit values of the parameters.
The off-diagonal contour plots are the joint kernel-density estimate between
pairs of parameters with their corresponding Pearson correlation coefficients.
A p-value close to ±1 implies strong correlation between the parameters. 200

5.9 Data-fits and Qin estimates. (A) The entire 2011 post-eruptive dataset
used in this study (black) and the resulting data-fits by: 1) solely free-
running the dynamical model (green), 2) performing MCMC based on
a classical inversion approach/setup (blue), and 3) data assimilation via
EnKF (red). The green dotted box covers the dataset used to estimate
the non-evolving uncertain parameters (step 1). The robustness of each
approach is depicted on how it fits the radial displacement dataset which
clearly favors the EnKF method. (B) Estimated value of the magma inflow
rate, Qin, as a function of time using: the free-run (green), EnKF (red)
and MCMC (blue). Note that the gray and black broken lines (Figure
5.9A and 5.9B) correspond to the points where a decreasing trend in Qin,
tracked via EnKF, are observed. (C) The distribution of Qin used as a
prior information for the free-run, the data assimilation and the inversion. 202

5.10 Data fit (green) using the MCMC-derived values of the uncertain model
parameters as inputs to the forward model. The actual data are represented
by gray solid lines. Note that the vertical component is not corrected either
for GIA or seasonal effects. The black broken line marks the assumed
change of slope preceding the start of the 2014 rifting event (tstep = 875 d).203

5.11 Testing different sets of uncertain model parameters as prior inputs to
EnKF to track the evolution of Qin. Case I: The values of the 6 uncertain
parameters are derived using the entire 2004 post-eruptive radial dataset.
Case II: Values of ad, Hd and ∆ρ from Case I are adopted, whereas
the remaining 3 uncertain parameters are determined by inverting the
initial part of the 2011 post-eruptive radial dataset. Case III (Main result
discussed in the paper): The 6 uncertain model parameters are estimated
using the initial part of the 2011 post-eruptive radial dataset. The black
broken line marks the assumed change of slope before the start of the 2014
rifting event (tstep = 875 d). . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.12 Proposed schematic cross-section beneath Gŕımsvötn and Bárdarbunga
illustrating the two possible deep mechanism connecting the two volcanic
systems: 1) lateral flow hypothesis and 2) magma reservoir hypothesis.
GFUM and DYNC GPS stations are represented as yellow triangles. The
link between Bárdarbunga and Holuhraun during the 2014-2015 eruption
(green sketch) is shown after Gudmundsson et al. [2016]; however it does
not follow the cross-section path in the inset figure. . . . . . . . . . . . . 208
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A.1 An example of the InSAR displacement field at t = 10 in (a) ascending and
(b) descending LOS view. The observation error is 10 mm. Note that the
gray dots are the locations of the 121 observations used in the assimilation.
The x and y-axes are in kilometers. . . . . . . . . . . . . . . . . . . . . 247

A.2 The EnKF-estimated (A) overpressures and (B) uncertain model parame-
ters after performing state-parameter estimation using jointly GNSS and
descending InSAR data. Note that we used prior distribution for the
uncertain parameters that are similar to Figure 15C. The red solid lines
are the mean of the ensemble whereas the pink lines represent each of the
ensemble members. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

B.1 The resulting (A) overpressures and (B) uncertain model parameters after
assimilating data with gaps. The gray area in (A) emphasizes the time
where gaps in the data are introduced. The black broken lines represent
the ground truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

B.2 The resulting (A) overpressures and (B) uncertain model parameters after
assimilating data with gaps and subsequently “re-running” the forward
model using the estimated values of the uncertain parameters at the analysis
step (see Appendix B.1 for details). The gray area in (A) emphasizes
the time where gaps in the data are introduced. The black broken lines
represent the ground truth. . . . . . . . . . . . . . . . . . . . . . . . . . 251

B.3 The (A) innovation and (B) residual vectors as well as the L2-norms of
the (C) cumulative mean innovation and (D) cumulative mean residual. . 252

B.4 The evolution of the error covariance of the state variables (∆Ps and ∆Pd)
before (i.e. forecast error covariance, P f) and after (i.e. analysis error
covariance, P a) the correction given by the observations. The correction is
in the order of (0.001MPa)2 such that it appears almost overlapping in this
figure. The pink lines correspond to the absence of data to assimilate. In
Figure B.5 we provide a closer look to the covariances during the last few
days prior to the 2011 eruption. Note that the square root of the diagonal
is simply the standard deviation of the overpressures. . . . . . . . . . . . 253

B.5 A closer look on the evolution of the covariance of the state variables (∆Ps
and ∆Pd) before (i.e. forecast covariance, P f ) and after (i.e. analysis co-
variance, P a) the correction given by the observations, 10 days to eruption.
The square root of the diagonal is simply the standard deviation of the
overpressures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

B.6 Mean residual of Bayesian-based inversion (MCMC) and data assimilation
(EnKF). The average residual over time is ∼ 0.71 mm and ∼ 4.10 mm for
EnKF and MCMC, respectively. . . . . . . . . . . . . . . . . . . . . . . . 255

27



LIST OF FIGURES

B.7 (A) The evolution of the EnKF-derived shallow overpressure embedded on
the eruption zones—based on using the entire 2004-2011 radial displacement
dataset for the step-1 of our approach as described in section 4.3.2. Note
that we define the eruption zones according to the estimated rock tensile
strength in Iceland which consequently provides the failure overpressure
value (i.e. Pf) needed to trigger the rupture of a magma chamber (i.e.
Albino et al. [2010]). (B) The cumulative distribution function (CDF)
illustrating the failure overpressue (blue) as well as the overpressures
at the end of the assimilation window (red) and at the end of free-run
(green). Note that the latter is performed just after the assimilation to
further predict the evolution of the overpressure. (C) The probability
of eruption calculated from the N -ensemble of models that exceeded the
failure overpressure described by the distribution in (D). (E) The percentage
of ensemble members entering each eruption zones as a function of time. 256

C.1 Schematic sketch of the two-chamber model, modified after Reverso et al.
[2014] and Bato et al. [2017]. The uncertain model parameters in this study
are highlighted in gray. Except for the bottom magma inflow rate, Qin,
which is bounded by a dotted box, the rest are considered as non-evolving
uncertain parameters. The GFUM GPS station, with a distance r from the
center of the volcanic system C, records the displacement induced by the
two reservoirs. Rs =

√
r2 +Hs

2 and Rd =
√
r2 +Hd

2 are the distances of
the shallow and deep reservoirs from GFUM station, respectively. . . . . 259

C.2 The step-by-step EnKF strategy implemented in this study, modified from
Chapter 3. The broken border and lines imply that the step is a tuning
step for the assimilation. . . . . . . . . . . . . . . . . . . . . . . . . . . 260

28



List of Tables

1.1 Past and present (highlighted in gray) SAR systems. The wavelengths
of the satellite missions are: L-band=23.5 cm, C-band=5.6 to 5.8 cm,
X-band=3 to 3.1 cm. Modified after Pinel et al. [2014]. . . . . . . . . . . 48

2.1 The advantages (+) and limitations (-) of EnKF and 4DVar. . . . . . . . 101

3.1 Model parameters and true values assigned for the synthetic case. The
highlighted parameters are the ones which are considered as uncertain in
this study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.2 Results of EnKF via state estimation after 500 time steps. . . . . . . . . 123

3.3 Results of EnKF via state-parameter estimation after 500 time steps. . . 129

4.1 Best-fit values of the uncertain model parameters obtained from the MCMC
posterior distribution using a) only the inital part of the dataset (i.e. up to
d=769) and b) the entire 2004-2011 inter-eruptive dataset. Except for Qin

(highlighted), all the other parameters are considered constant in time and
are fixed to their values during data assimilation. Estimates from previous
works are also presented.(Fixed parameters are: E=25 GPa, ν = 0.25,
Hs = 1.7 km, as = 2 km) . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.1 Analyzed displacements at GFUM GPS station at the start of the rifting
event (marked as the red broken line in Figure 5.2). Linear Fit corre-
sponds to the expected displacement value (black solid line in Figure 5.2),
and “Actual” means the actual displacement value. . . . . . . . . . . . . 188

5.2 Description of the parameters and the values at GFUM and DYNC stations
used to model the displacements induced by an inflating Bárdarbunga
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General Introduction

To the best of my knowledge, this manuscript—Towards the assimilation of deforma-

tion measurements in volcanology —is the first dissertation dedicated on the application

of data assimilation in volcanology. Here, I will attempt to demonstrate the potential of

EnKF from synthetic cases to assimilation of real geodetic data. Indeed, it is too ambitious

to be able to totally describe all the capabilities of volcanic data assimilation in just three

years of research. However, I believe that the work that I will present in this dissertation,

despite its infancy, is a leap towards a better approach in combining vast amount of

dataset and physics-based models not only to forecast volcanic eruptions but also to fill-in

some of the gaps in our understanding of subsurface processes occuring beneath volcanoes.

I think that we are in an era in the field of geodesy, where we benefit a lot from rapid

technological developments both in terms of satellite imaging of the Earth and in situ

measurements. Permanent GNSS stations permit daily or even hourly measurements of

ground deformation such that, with GNSS we can have a good temporal resolution of

the evolution of ground deformation. Because of this, having permanent GNSS network

installed on an active volcano has become one of the “must-haves” of a volcano observatory.

Satellite-based acquisitions, in particular, the Sentinel 1 satellite, can be considered as a

game changer in the scientific community providing unprecedented spatial coverage every

6-12 days. The data availability of Sentinel-1 allowed each and everyone of us to have free

access to tremendous amount of SAR data around the world. In terms of volcano defor-

mation studies, this means we can literally observe and extract signals of every deforming

volcano on Earth. However, measuring and/or monitoring volcano deformation is not

enough. We have to dig deeper and understand the causative processes that brought these

observations. Typically, in order to fill the gaps in our understanding, we use models to

interpret our data through inversion techniques. Inversion is a proven, very effective tool

for volcanologists to infer parameters of the deformation source. When bayesian-based

inversion such as MCMC—which is a much sophisticated inversion technique—is coupled
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with physics-based forward models, important questions can be addressed that are related

to the processes within the volcanic system and are expressed in the form of probabilities

to allow uncertainties in the results. For example, Anderson et Segall [2013] were able to

demonstrate this by estimating not only the volume of the magma chamber at Mount

St. Helens but also its volatile content which is several kilometers deep into the Earth.

Although the model is deterministic, the results yield probabilistic estimates since their

model parameters are sampled from a prior distribution and constrained by a given

dataset. As a reader, you might be wondering, if all is working well with inversion, then

“What else can data assimilation bring new to the volcano community?”. This basic yet

very challenging question is indeed the core objective of this thesis which I will attempt

to answer towards the end of this manuscript.

Thesis Roadmap

Chapter 1 describes the 1) the common volcano monitoring practices with emphasis

on ground deformation monitoring, 2) the development of volcano models, from kinematic

to physics-based approaches used to deduce information from deformation data, and

3) the common eruption forecasting approach in terms of long- and short-term time scales.

Chapter 2 provides an overview about data assimilation, basically, the mathematical

formulation as well as the elements and the two main approaches of data assimilation

based on: 1) estimation theory and 2) optimal control theory. I will give focus on

sequential data assimilation in particular, EnKF which is the main assimilation method

used in this thesis. In the last part of this chapter, I will provide a brief review of the

studies that have applied Kalman filter-based approaches to problems in volcanology as

well as the recent developments in volcanic data assimilation.

Chapter 3 is primarily concerned with the development of a strategy to assimilate

GNSS and InSAR data into a two-magma chamber model based on synthetic simulations.

This chapter is built on the material published in Frontiers in Earth Science as “Assimi-

lation of Deformation Data for Eruption Forecasting: Potentiality Assessment Based on

Synthetic Cases” (Bato et al. [2017]).
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Chapter 4 describes an application of the strategy developed in Chapter 3, with

slight improvements on the approach, using real GNSS data recorded at Gŕımsvötn

volcano in Iceland between 2004 and 2011 in order to forecast the rupture of a magma

chamber in real time. This chapter will be submitted as “Forecasting the rupture of a

magma chamber in real-time using sequential data assimilation”.

Chapter 5 showcases the potential of data assimilation other than the interest of

eruption forecasting. I demonstrated the unique potential of EnKF to give insights into

volcanic system roots and how neighboring volcanoes, such as Bárdarbunga and Gŕımsvötn

volcanoes in Iceland, interact. This chapter was published as “Possible deep connection

between volcanic systems evidenced by sequential assimilation of geodetic data”, Nature

Scientific Reports (2018) 8:11702, https://doi.org/10.1038/s41598-018-29811-x.

Chapter 6 concludes this thesis and gives future directions about further exploitation

of data assimilation in volcanology.
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Chapter 1

Volcano Monitoring and Eruption

Forecasting

Contents

1.1 Monitoring volcanic unrest . . . . . . . . . . . . . . . . . . . . 41

1.2 Modeling deformation . . . . . . . . . . . . . . . . . . . . . . . 57

1.3 Eruption forecasting . . . . . . . . . . . . . . . . . . . . . . . . 68

1.4 Summary and Perspectives . . . . . . . . . . . . . . . . . . . 71

Forecasting volcanic eruption is perhaps one of the most challenging and at the same

time, one of the most exciting field in volcanology. Not only because of the complex

nonlinear behavior and intrinsic unpredicitability of volcanoes (e.g. Sparks [2003]) but

also because of our lack of direct observation on what is exactly happening underground.

Yet, the need to provide accurate forecast on when and where the eruption will occur,

how long it will last and what other impending catastrophic or transient events that

might happen, is indeed fundamental especially for the civil protection group to mitigate

risks and properly assess hazards.

Current practices that lead to successful eruption forecasting are mostly based on

empirical pattern recognition, which relies on combining monitoring data with information

from global volcanic databases, local knowledge of a volcano’s past behavior (geological

and historical) and scientific insights based on experience and knowledge about the

volcano (Segall [2013]). In general, volcano observatories subdivide their monitoring

system based on three major categories: 1) gas emission, 2) seismicity and 3) ground
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deformation. Although the contributions of other datasets in volcanology (e.g. electrical

resistivity, gravity, magnetics, thermal anomaly and infrasound) are also acknowledged

with importance. On one hand, geochemical data are used to measure gas fluxes and

fumerole compositions to constrain the dynamics of magma degassing or the separation of

dissolved gases from the melt as the magma moves towards weaker pressure or shallower

depth. Magmatic gas fluxes in volcanic plumes allow estimation of the volume of degassing

magma, magma supply rates (Allard et al. [1994], Sutton et al. [1992]) and the depth of a

residing magma reservoir (Harris et Stevenson [1997], Lu et Dzurisin [2014]). Gas fluxes

can also aid in detecting recently active volcanic systems (e.g. Sutton et al. [1992], Lu et

Dzurisin [2014]). On the other hand, seismicity as well as ground deformation are often

associated with the ascent of magma, such that geophysical signals recorded on active

volcanoes are used to infer magma path and magma plumbing system characteristics

(e.g. Swanson et al. [1983], Voight et al. [1998], Aoki et al. [1999], Roult et al. [2012],

Sigmundsson et al. [2015]).

Geodetic observations are proven effective and have always provided meaningful in-

sights on what is going-on beneath the Earth’s surface. Traditionally, simple kinematic

models are constrained by geodetic data to infer properties of magma reservoirs such

as source location and volume change (Anderson et Segall [2013]). Kinematic models

provide a way to interpret these surface displacements at a given time step in terms

of “source” by a distribution of the displacement field at depth (i.e. displacement field

induced by magma inflow) without considering the processes, forces and mechanisms

at the origin of this displacement field. When they are used in inversion, a lot of infor-

mation (e.g. overpressure evolution in the magma chamber) that often gives rise to the

temporal evolution of the dataset is not fully exploited. Recently, major advancement in

forecasting involves the development of more realistic physics-based models where diverse

datasets are coupled with dynamical models of volcanic processes to relate properties

of volcanic systems (Segall [2013]). Sparks [2003] have previously noted the need to

evolve from forecasting based on empirical pattern recognition to forecasting based on the

understanding of the physics of causative processes, and the forecast should be expressed

in probabilistic terms to account for uncertainties. Recent studies in Mount St. Helens

have demonstrated such idea with success by applying a probabilistic (Bayesian-based)

inversion technique to a deterministic (physics-based) model and geophysical datasets

such as lava dome extrusion and GPS data (Anderson et Segall [2013], Wong et al. [2017]).
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In this chapter, I will present the common volcano monitoring practices with emphasis

on ground deformation monitoring. Afterwards, I will discuss the development of volcano

models, from kinematic to physics-based approaches, that are used to deduce information

(e.g. change in pressure, change in volume, radius of the reservoir, etc.) from deformation

data. Finally, I will briefly discuss common eruption forecasting methods in terms of: 1)

long-term (i.e. also known as long-range forecasting) and 2) short-term (i.e. also known

as short-range forecasting) time scales. Long-range forecasting involves interpretations of

the evidences of magma emplacement at depth in storage zones (i.e. increasing pressure)

which can take up to several years or decades. Determining the moment of rupture of

the chamber walls is crucial since this will give an idea when the magma will further

migrate after being stored in a chamber. Indeed, long-range forecasting is largely the

motivation of this work by integrating a dynamical model and dense amount of incoming

deformation data during inter-eruptive periods, particularly, at basaltic volcanoes. Short-

range forecasting is more of intended to track the migration of magma. It could be within

weeks, days or minutes prior to the eruption. In this kind of forecasting, determining if,

when, and where the magma will reach the surface (e.g. Cannavò et al. [2015], Guldstrand

et al. [2018]) are essential to aid in the decision-making of the authorities or civil protection

groups.

1.1 Monitoring volcanic unrest

The ascent of magma towards the Earth’s surface often leads to anomalous signals

(precursors) that are detectable by geochemical and geophysical instruments. As the

magma moves, it actually interacts with the surrounding rock, such that subsurface

process occuring beneath the volcano can be recorded. The behavior of each volcano

is unique, as a consequence, interpreting the precursors should be done per specific

case. Volcano monitoring serves two purposes: 1) it provides deeper understanding

on the physical and chemical processes that governs the volcanic system, and 2) it is

crucial to mitigate risks, assess hazards and issue warnings in times of unrest (Pallister et

McNutt [2015]). The 1991 Pinatubo eruption in the Philippines and the 2010 Merapi

eruption in Indonesia are two of the most successful eruption forecasting in the history of

mankind. Although the events are catastrophic, costing millions of euros in properties,

still, thousands of lives were saved. In this section, I will discuss the monitoring practices

currently implemented in volcano observatories around the world (Figure 1.1).
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Figure 1.1: Three major monitoring practices carried out by volcano observatories around
the world. Liliana Torres of the Instituto Geof́ısico del Perú, taking a) gas and b) seismic
measurements. c) CGPS instrument for monitoring deformation installed near Hofn in
Iceland.
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Volcanic gases

Magmatic chambers contain gas volume fraction of volatiles (insoluble and relatively

soluble gases). As the magma depressurizes during ascent, volatiles escape from the

magma, leading to magma degassing which consequently supplies gas flux to the at-

mosphere and also lowers the density of the residing magma in the chamber. When

volatiles are released as gases through active vents, fumeroles and hotsprings, they can be

considered as precursors to an imminent eruption. Such that, monitoring volcanic gases

have long been acknowledged as an important aspect in volcano monitoring. Magma

degassing mainly controls the eruption style (i.e. explosive or effusive) by either releasing

or not the magmatic pressure. It can also provide insights about the sources of magma

and how magma interacts [if present] with a hydrothermal system beneath a volcano.

However, the interpretation of volcanic gases alone is not always straightforward and

requires expertise and years of experience.

When magma is located very deep into the Earth, it is rich in SO2, CO2, H2O and

HCl. However, as it moves towards lower pressure conditions, less soluble gases such as

SO2 and CO2 are gradually lost while gases with high solubility such as H2O and HCl

are retained. Magmatic water often mixes with atmospheric and/or meteoric water hence

water obviously dominates the gas emitted at the surface of the Earth. Typically, when

volcanoes are reactivated, elevated volcanic gas flux is observed. If continuous degassing

of magma occurs but without any injection of fresh magma into the chamber, SO2 and

CO2 concentrations decline with time whereas H2O concentration progressively increases

due to the infiltration of surface water into the system. In 1980 at Mount St. Helens

(Washington, USA), CO2 measurements were initially high but declined slowly towards

the end of 1981 as the gas was enriched in water due to the absence of new magma input

(Stix et Gaonach [2000]).

Monitoring volcanic gases can also indicate if there is any transient process that

occurred within the volcano (i.e. if the plumbing system was initially “open” and after-

wards became partially sealed due to plug formation). Elevated magmatic gas flux and

increased amounts of SO2 and HCl are often indicative that the volcanic system is “open”

whereas, the decline in magmatic gas flux and increased concentrations of CO2 and H2S

(i.e. produced by the interaction of acidic magmatic water with meteoric water) are often

associated with “closed or partially closed” system. Note that when the system is sealed,

43



VOLCANO MONITORING AND ERUPTION FORECASTING

undegassed magma can result in accumulation or built-up of internal pressures within

the volcano. For example, in early June of 1991, prior to the Pinatubo eruption, SO2

flux suddenly decreased indicating that the system was sealed, pressurizing and soon to

reach critical conditions for an explosive eruption (Daag et al. [1996], Sparks [2003]).

Measuring volcanic gases can either be done by direct sampling (i.e. from a fumerole,

crater or volcanic flanks) or through ground-based (e.g. FTIR spectrometer, COSPEC,

DOAS) and satellite-based remote sensing (e.g. ASTER, MODIS, OMI, SEVIRI, TOMS,

TOVS). Although magma degassing plays a crucial role in understanding the behavior of

a volcano, measuring volcanic gases remains challenging up to now. Direct measurements

are often dangerous as it requires sampling close to the vent or crater. If the volcano is

very active or in the course of unrest, sampling may only be limited (i.e. weeks, months

or even years in terms of sampling interval), thus inhibits our ability to use gas emission

data alone to forecast eruption. Remote sensing can often circumvent the issue, but

detectability of volcanic gases other than SO2 remains a limitation for satellite-based

measurements. Basically, SO2 emissions from satellite-based measurements are only

useful when gas plumes reach high in the atmosphere, that is to say, when the eruption

already occured. For a more comprehensive review of satellite measurements of global

volcanic degassing, the reader should refer to Carn et al. [2016]. The 2018 Mayon volcano

eruption provides as an example of the difficulty of using satellite data to detect and

quantify SO2 emissions. The Mayon phreatic eruption started on the 13 January 2018

followed by lava dome formation and lava flow eruption the next day. However, SO2 gases

were only detected by satellite measurements after the volcano spewed ∼ 3− 5 km of

ash into the atmosphere. Ground-based gas sensors are often more useful for forecasting

eruption and can complement the satellite measurements. As for the 2018 Mayon eruption,

elevated SO2 emission was measured using ground-based instruments at an average of

856 tonnes/day weeks before the unrest (PHIVOLCS [2018]).

Seismicity

Prior to volcanic eruption, as the magma finds its way to the surface, rocks are pushed

apart resulting in fracturing and small earthquakes. Earthquakes are often clustered

around magma chambers or on fractures associated with magma conduit or dyking events.

Migrating magma can also be tracked with migrating earthquakes. As a consequence,

seismicity has been used effectively for decades as a forecasting tool. Seismic monitoring
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is relatively cheap and more importantly, provides real-time data. To properly evaluate

precursors, it requires years of gathering data to first establish a baseline for each volcano.

When seismicity rates are above ambient, they usually signal magma migration that

could potentially lead to eruption. Seismicity before eruption typically occurs in swarms

characterized by: 1) earthquake magnitude M < 5, 2) many similar events of the same

waveform, 3) high b-values (i.e. b is the slope in the Gutenberg-Richter relation; it is

used to determine large vs. small earthquake events), and 4) occur near the eruption

locations (McNutt et al. [2000]). In many cases, seismic precursors are often presented

in terms of the number of events, energy released or RSAM/RSEM (Endo et al. [1996],

Boué [2015]). Note that not all detected seismic events lead to eruptions (Newhall [2000],

McNutt et al. [2000], Sparks [2003]). This is because seismic sources at volcanoes are

difficult to distinguish as they involve complex interaction of melts, gases and the host

rock (McNutt et al. [2000]).

Seismologists are adept at classifying different types of volcanic events. Four of the

important types of events are: 1) High-frequency earthquakes (i.e. also known as VT

events), 2) Low-frequency earthquakes (i.e. also known as LP events), 3) Explosion and

4) Tremors. VT events correspond to the formation of fractures as the magma forcibly

creates its path. The number of recorded VT events is usually high at the beginning of

volcanic unrest because of the accumulation of damage in the edifice of the volcano. LP

events are more complex. They are possibly due to: a) resonance in magmatic conduit, b)

magmatic-hydrothermal interactions, c) degassing of magma, d) brittle failure of melt, e)

stick-slip of a plug (e.g. Boué [2015]). Explosion events, sometimes accompanied by shock-

waves are, by its name, related to explosive eruptions. Although smaller explosions can

also be detected, they are usually indicative of intense surface degassing. Volcanic tremors

are periods of long-lasting vibrations that can last from minutes to years suggesting: a)

the movement of magma, gas and/or hydrothermal fluids, b) excitation and resonance

of fluid-filled cracks, c) magma wagging (i.e. alternate compression and restoration of

gas spring force in a bubble-filled part of the magma conduit) and d) hydrothermal

processes in the volcano (Newhall [2007]). The last mechanism can result in phreatic

eruptions. Other recorded seismic signals on volcanoes include: 5) Hybrid earthquakes

(i.e. earthquakes that share the characteristics of high- and low-frequency events), 6) Very

Long Period earthquakes (i.e. also known as VLP events) and 7) Superficial events (e.g.

landslides, rockfalls, glacier activities, shore ice events, pyroclastic flows, and outburst

floods and lahars).
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The Pinatubo 1991 plinian eruption is by far, one of the most succesful forecasting

that was based mainly on seismic data. Although visual observations, reconnaissance

mapping, gas emission (e.g. SO2), and deformation (e.g. tiltmeter) were also considered.

Between March and April 1991, seismicity increased at Pinatubo due to the magma

rising towards the surface, roughly ∼ 32 km beneath the volcano. In early April, phreatic

eruption occured, blasting three craters located on the North flank of the volcano. Seismic

events intensified and epicenters shifted towards shallower depth beneath the NW flank

near the summit of the volcano on 03 June. At the same time, tremors were also detected.

By 07 June, a lava dome was emplaced. The first plinian eruption occurred on 12 June ac-

companied by the build up of LP events before Pinatubo’s cataclysmic eruption on 15 June.

The 2014 Bárdarbunga dyking event in Iceland is another remarkable example of

monitoring volcanic unrest using seismicity. Seismic data allowed scientists to actually“see-

through” beneath the ground to follow the propagation of the dyke until its eruption on 29

August 2014 at Holuhraun. The volcanic unrest started as intense seismic swarm beneath

Bárdarbunga volcano, followed by its ∼ 41 km lateral migration, overcoming topographic

barriers, before breaching the surface and becoming a fissure eruption (Sigmundsson et al.

[2015], Gudmundsson et al. [2016]).

Deformation

Magma from the deep part of the Earth (e.g. lower crust, CMB) migrates towards

shallower depths in the form of melt “pockets” or series of dyke injections. Discontinuities

within the crust allows favourable condition for these pockets of melt and/or intrusions to

accumulate, forming a so-called “magma chamber” or “magma reservoir”. As the chamber

is continuously filled with magma, pressure increases within the system, also driven by

the exsolution of gases from the melt. An excess pressure (i.e. also known as overpressure)

is generated if the chamber pressure exceeds the lithostatic pressure (i.e. pressure of

the surrounding rock). This continuous pressurization causes the ground to deform (i.e.

inflate in this case) and can be measured as displacement, tilt or strain on the surface

of the Earth. Once the overpressure reaches a critical value, the magma chamber may

rupture allowing the stored magma to “leak” and further migrate towards the surface.

When the overpressure is released, a “deflating” signal can be observed.
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For many volcanoes, ground deformation is a powerful indicator of their long-term

and short-term behaviors. Although in terms of timescales, inflation and/or deflation

varies from volcano to volcano. It is worth noting that ground deformation measured

on volcanoes is not only limited to the behavior of magmatic storages at depth that

can be linked to volcanic unrest. Indeed, some of the deformations related to volcanic

activities have been discussed by Pinel et al. [2014], including: a) the emplacement

and displacement of erupted volcanic materials (e.g. Voight [1981], Briole et al. [1997],

Grandin et al. [2010], Bato et al. [2016]), b) hydrothermal system activity (e.g. Vadon et

Sigmundsson [1997]), c) intrusion propagation and emplacement (e.g. Froger et al. [2004],

Sigmundsson et al. [2015]), d) flank sliding (e.g. Clarke et al. [2013], Tridon et al. [2016],

Chen et al. [2017]), e) caldera collapse (e.g. De Natale et al. [1997], Gudmundsson et al.

[2016], Coppola et al. [2017]) and glacier surface loading (e.g. Pinel et al. [2014], Spaans

et al. [2015]).

Measuring ground deformation can be performed in several ways using: 1) GNSS, 2)

InSAR, 3) tiltmeter, 4) strainmeter and 5) precision leveling. Although in this thesis,

we have mainly developed strategies using GNSS and InSAR as they are nowadays the

common tools used to study deformation on volcanoes.

GPS or more generally called as GNSS (i.e. generic term for satellite navigation

systems including but not limited to GPS (US), GLONASS (Russia), Galileo (Europe)

and Beidou (China)) is a constellation of satellites, where each satellite transmits radio

navigation signals about its location and time at current intervals. The information is then

intercepted by a receiver, which computes the distance between each satellite based on

the timing of the arrival of information. The position of the receiver can be derived when

these distances are combined with ephemerides for the satellite orbits and satellite clock

corrections (i.e. available from commercial vendors or IGS). Multi-GNSS receivers are

becoming common, allowing simultaneous measurements from multiple navigation satellite

systems, therefore providing high-precision measurements. Typically, the positions are

averaged in either static (i.e. daily or hourly) or kinematic mode (i.e. series of independent

position at each epoch). Static mode is preferred for permanent GNSS measurements

whereas kinematic mode is favoured for the campaign type of measurement (i.e. field

surveying). An accuracy of ∼ 1 mm for the horizontal component and ∼ 3 mm for the

vertical component is typical from static daily postprocessed data and about one order

of magnitude higher for kinematic measurements (Freymueller et al. [2015]). Note that
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Table 1.1: Past and present (highlighted in gray) SAR systems. The wavelengths of the
satellite missions are: L-band=23.5 cm, C-band=5.6 to 5.8 cm, X-band=3 to 3.1 cm.
Modified after Pinel et al. [2014].

Mission Band Period of operation Repeat orbit time

SEASAT L Jun-Oct 1978 17 days
JERS-1 Feb 1992 to Oct 1998 44 days
ALOS Jan 2006 to Apr 2011 46 days
ALOS-2 2014 to present 14 days

ERS-1 C Jul 1991 to Mar 2000 3 or 35 days
ERS-2 Apr 1995 to Sep 2011 3 or 35 days
RADARSAT-1 Nov 1995 to Mar 2013 24 days
ENVISAT Mar 2002 to Apr 2012 35 days
RADARSAT-2 Dec 2007 to present 24 days
SENTINEL-1A Apr 2014 to present 6 or 12 days
SENTINEL-1B Apr 2016 to present 6 or 12 days

COSMO-SKYMED X Jun 2007 to present 16 days
(constellation Dec 2007 to present 16 days
of 4 satellites) Oct 2008 to present 16 days

Nov 2010 to present 16 days
TerraSAR-X Jun 2007 to present 11 days
TanDEM-X Jun 2010 to present 11 days

SIR-C/X-SAR L,C,X 09-20 Apr 1994; 30 Sept to 11 Oct 1994 NA
SRTM C,X 11-22 Feb 2000 NA

the vertical component is always less accurate than the horizontal component because it

is more sensitive to atmospheric delays. Most active volcanoes around the world have

at least one CGPS installed to monitor its activity in real-time. Indeed, a network of

permanent GNSS scatterred around the volcano is an ideal monitoring system. Campaign

GNSS measurements can be performed at least once a year to provide better spatial

coverage, however, this painstaking fieldwork is sometimes very costly especially when

the volcano of interest is in a remote area.

Radar interferometry or more commonly known as InSAR, circumvents the spatial

coverage issue of GNSS. SAR technology uses the microwave region of the electromagnetic
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Figure 1.2: How SAR system acquires image on Earth. (a) The radar satellite follows a
LEO polar orbit in a side-looking view (i.e. normally right-looking). (b) The satellite
emits signal towards the LOS direction with a look angle (i.e. θ incidence angle) that
varies from 20− 50 degrees. Radar interferometry measures the phase difference between
two acquisitions (i.e. t1 and t2). This will give the actual ground displacement (e.g.
displacement due to the inflation of the volcano) along the LOS direction.

spectrum to image the Earth, thus it can work even with the presence of clouds. SAR is

usually mounted in a satellite or aircraft while orbitting the Earth. The satellite-based

SAR systems, for example, move in a sun-synchronous LEO polar orbit (Figure 1.2).

SAR satellites operate as an active system (i.e. no need for the radiation emitted by the

sun), thus they have the capabilities to image the Earth during day and night. Most of

the operational SAR systems today are in L, C and X-bands (Table 1.1). SAR images

are formed when microwave signals emitted by the satellite are backscattered by the

ground after it has been “illuminated” by a radar pulse. Each pixel in a radar image

contains amplitude and phase information. The amplitude is the record of the reflected

energy transmitted by the radar to the ground and then back to the radar. A calm water

body for example, appears dark in a radar image because it acts as a perfect reflector,

similar to a mirror. The incident radar wave in this case is reflected away from the

satellite. Indeed, cornered structures such as built-ups (e.g. buildings, roads, bridges,

roofs) appear bright in a radar image because they transmit part of the energy back to

the radar sensor (i.e. multiple scattering process).
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A SAR image alone cannot give information about any surface change. Obviously,

at least two properly co-registered SAR images taken at two distinct dates are needed.

The first image acquired by the satellite is called the “master” image which is typically

the reference image. The second acqisition is called the “slave” image. This pair of SAR

image can be useful to detect any surface change (e.g. emplacement of volcanic materials)

by calculating the amplitude and/or phase variation. Amplitude change can be quantified

by differencing the amplitude of the master and slave images or by computing for their

ampitude ratio. Although in some cases, amplitude information is also used in the family

of offset tracking methods to calculate for ground surface displacements. The phase

variation on the other hand, can be measured by calculating the decorrelation of the

pixels or “coherence”, γ̂, between the two images:

γ̂ =
E [z1z2]√

E [|z1|2]E [|z2|2]
(1.1)

where E [] is the expectation, z1 and z2 are the complex values of the images. Figure 1.3

provides a good example on mapping and estimating the area of recently emplaced lava

flow by computing for the coherence.

The principle of InSAR exploits the phase differences of the two SAR images (Figure

1.2). If there is a local surface displacement of the ground occurring between two

acquisition, concentric pattern of “fringes” can be observed. The resulting phase map

(e.g. Figure 1.4) is basically the sum of the phases contributed by the topography, φtopo,

orbit of the satellites, φorb (i.e. φtopo and φorb are due to the small difference of satellite

position between the two acquisitions), ground displacement, φdisp, atmospheric delay,

φatm, and other noise signals, φε, (Massonnet et Feigl [1998]). Such that,

∆φ = φtopo + φdisp + φorb + φatm + φε (1.2)

Obviously in monitoring volcanic unrest, only the phase due to the displacement

of the ground is important whereas the others are corrected and/or reduced (e.g. φorb

for example can be removed by using the satellite’s orbit data). In other cases where

mapping and possibly quantifying the volume of erupted volcanic deposits (e.g. lava flow

emplacement and lava dome formation) are of priorities, the phase due to topography is

rather retained (Bato et al. [2016]); provided that the temporal baseline (i.e. difference
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1.1 Monitoring volcanic unrest

Figure 1.3: The coherence map computed from (a) ascending (20100919 and 20101022)
and (b) descending (20100901 and 20101026) TSX radar data used to map the October
2010 lava flow emplacement at Piton de la Fournaise, La Reunion, France. A value close
to zero signifies strong decorrelation, whereas closer to 1 means strong correlation between
the master and slave images. Note that the area covered by the lava flow in (a) is 0.71
km2 (blue outline), whereas in (b) the area is 0.75 km2 (red outline). The maps are in
UTM km coordinate systems. From Bato et al. [2016].

between the acquisition dates) remains small such that the magnitude of displacement

can be ignored.

The ground displacement retrieved from one pair of interferogram is in fact the

displacement along the LOS direction. In order to derive the three-component displace-

ment vector, a more discriminating dataset characterized by several interfergrams having

different acquisition geometries (i.e. different look angles and orbit directions) is needed

(e.g. Wright et al. [2004],Yan [2011]).

When interferograms are stacked together, persistent deformation can be highlighted

while minimizing the contribution of unwanted signals. Indeed, this can only be appro-

priate when the source of deformation is episodic or in steady-state (Pinel et al. [2014]).

InSAR time-series analysis addresses decorrelation issues as well as permits the estimation

of non-deformation signals. Most of the multi-temporal InSAR processing algorithms

nowadays are based on: 1) PSInSAR (e.g. Perissin et Ferretti [2007], Hooper et al. [2004]),
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Figure 1.4: Example of InSAR ground deformation data covering the October 2010
eruption at Piton de la Fournaise, La Reunion Island, France. (a) Interferogram calculated
from ascending TSX radar images. (b) Interferogram calculated from descending TSX
radar images. (c) Corresponding horizontal and (d) vertical displacements, obtained from
(a) and (b). The maps are in UTM km coordinate system. From Bato et al. [2016].
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2) SBAS (e.g. Berardino et al. [2002], Doin et al. [2011]) and 3) phase linking or phase

triangulation (e.g. Ferretti et al. [2011], Samiei-Esfahany et Hanssen [2013], Fornaro et al.

[2015]). For a comprehensive review of PS-based and SBAS multi-temporal processing,

the reader is encouraged to see Hooper et al. [2012]. Note however, that another huge

family of multi-temporal InSAR processing methods have been developed after 2012 (e.g.

Ferretti et al. [2011], Samiei-Esfahany et Hanssen [2013], Fornaro et al. [2015]). To learn

more about the recent progress and application of SAR data in volcanology, see Pinel

et al. [2014].

All in all, InSAR is a valuable tool in deformation monitoring. Although it cannot

beat the [near] real-time data capability of GNSS, still, the progress in terms of temporal

and spatial resolution of InSAR has escalated over the years. The launch of Sentinel-1A

satellite in 2014 and Sentinel-1B in 2016 are indeed a game changer for everyone working

on deformation monitoring, given that one can have access to free SAR data once every 6

or 12 days. This is crucial especially during volcanic crisis. Surely, the next challenge is

how to integrate and use the large amount of datasets to fill the gaps in our understanding

of Earth processes.

Tiltmeters and strainmeters are also important tools to measure ground deforma-

tion continuously. Tiltmeters measure the relative inclination due to the movement of the

ground. They are known as a good indicator of deformation source geometry (Dzurisin

[2003]). Wheareas borehole strainmeters measure small changes (i.e. strains on the order

of 10−11) in the dimension of a borehole (e.g. diameter or volume). However, both the

tiltmeters and strainmeters are also known to suffer from instrument drift (Freymueller

et al. [2015]). Moreover, strainmeters are very expensive to install and maintain and

require expertise in order to properly position them in a volcano.

The 2000 Hekla eruption in Iceland is one of the most remarkable forecasting story

using strainmeters. Five borehole strainmeters, located ∼ 15 − 45 km away from the

volcano detected the injection of a dyke, 30 mins before the magma reached the surface

(Sturkell et al. [2006]). Thanks to this, along with seismic data, Icelandic scientists were

able to issue aviation warning of an impending eruption ∼ 17 mins prior to the actual

eruption (Sparks [2003]).
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Precision leveling and other conventional ground surveying methods such as using

EDM, theodolite and total stations, are already classified as obsolete defomation moni-

toring practices. Before, leveling was used to study the 1910 Usu and 1914 Sakurajima

eruptions in Japan (Freymueller et al. [2015]). Indeed, surveying techniques still remain as

the most accurate means to measure relative displacements up until today (i.e. 0.88 mm

for 1 km area, Freymueller et al. [2015]). With the advances in GNSS technology, in

particular, the installation of permanent GPS stations, these surveying techniques are

only conducted when submillimeter accuracy is needed. The reason behind involves

intensive amount of fieldwork and that it requires a lot of time as well as expensive

logistics.

Other monitoring tools: gravity, magnetics, electrical-resistivity,

thermal anomaly, water level and infrasound

Other precursory to volcanic unrest involves changes in microgravity, magnetic and

electrical resistivity. However, these are typically performed irregularly since they require

fieldwork and expensive logistics, and sometimes the results are ambiguous. The resolu-

tion of the resulting maps is also dependent on the density of points taken in the field.

Furthermore, solid expertise and experience is crucial for modeling and more importantly

for the interpretation. Microgravity measures small gravitational changes (i.e. usually in

Gal units; 1 Gal = 0.01 m s2) due to variation in elevation or heteregeneities in subsurface

density. Spatial variation mapping of gravity changes allows to identify buried dykes,

feeder conduits and magma chamber (Freymueller et al. [2015]). It follows that repeated

surveys can detect the addition or removal of magma. One important application of

microgravity monitoring refers to its ability to distinguish changes in pressurization due

to variations in mass from those that reflect exsolution of volatiles or other chemical

processes (Freymueller et al. [2015]). Similarly, muon tomography, electrical-resistivity

and magnetic monitoring can be used to model internal structures of a volcano and to

characterize its plumbing system. For example, fumerolic system at Solfatara volcano

in Italy was imaged using 3D resistivity tomography (Gresse et al. [2017]) and muon

radiography was used to determine average density of geologic bodies at La Soufriére

volcano in Guadeloupe (Lesparre et al. [2012]).

Thermal anomaly and infrasound monitoring are used in complementary with volcanic

gas and seismic monitoring, respectively, especially for well-monitored active volcanoes.
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The advances in satellite remote sensing permit automatic global “hotspots” (i.e. areas

with anomalously high temperatures) detection (e.g. Wright et al. [2002, 2004]) that

would indicate that an eruption already occured. But of course, these thermal anomalies

can often be confused with forest fires resulting in false warnings. One advantage of

detecting hotspots and taking their surface radiances during an on-going eruption allows

daily estimations of lava discharge rates and volume of the lava flow (e.g. Harris et al.

[2007]). Infrasound monitoring is rather a new field in volcano monitoring. Infrasound

sensors measure sound waves below 20 GHz as a result of explosive release of fluid into

the atmosphere (e.g. explosions, degassing bursts, jetting and eruption tremor, Pallister

et McNutt [2015]) and can therefore act as an indicator that an eruption already happened.

Lastly, changes in water level measurements are often use as another precursory to

an impending eruption. The rationale was based on the water’s response to mechanical

compression or dilatation of confined aquifers (Newhall [2007]). In Mayon volcano for

example, local residents typically correlate the lowering of the water table to an eruption

that is soon to happen. However, in most cases of volcanic unrest worldwide, changes in

water level are not often observed, therefore can be inconclusive.

Further discussion

It has long been recognized that deformation alone is not sufficient to provide compre-

hensive insights about the mechanism of a volcano. For example, at Campi Flegrei, three

episodes of rapid uplift have been documented for the last seven decades but no eruption

occurred (Kilburn et al. [2017]). Indeed, integrated datasets are highly recommended

to ensure successful forecasting and timely delivery of warning especially to population

at risk. However, geodesy as a whole, has also been proven effective to detect volcanic

unrest that might have been neglected otherwise. For instance, out of the 198 volcanoes

systematically monitored by InSAR, Biggs et al. [2014] reported that 54 deformed and 25

from these deforming volcanoes actually erupted. Moreover, several basaltic volcanoes

have demonstrated pre-eruptive inflation behaviour such as: Kilauea and Mauna Loa vol-

canoes in Hawaii (e.g. Dvorak et Dzurisin [1993], Lengliné et al. [2008]), Axial Seamount

in Pacific ridge (e.g. Nooner et Chadwick [2009]), Gŕımsvötn, Krafla and Askja volcanoes

in Iceland (e.g. Sigmundsson [2006], Sturkell et al. [2006], Lengliné et al. [2008], Reverso

et al. [2014]) and Okmok volcano in Alaska (e.g. Lu et Dzurisin [2014]). It is worth

emphasizing that although magma can accumulate or be intruded at shallow depths,
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Figure 1.5: The mogi model in Cartesian coordinate system, N and E denote Northings
and Eastings. Hs is the depth and as is the radius of the magma chamber (spherical
cavity). Elastic constants, ν and G are the Poisson’s ratio and shear modulus (i.e.
modulus of rigidity of the medium surrounding the sphere), respectively. In practice,
modelers use ν = 0.25 and G = 10 − 30 GPa. uR and uz are the radial and vertical
displacements measured by GNSS and/or InSAR at point S. The radial distance of S from

the magma chamber is Rs =
√
x2 + y2 +Hs

2 whereas, from the center of the volcano
axis it is given by, r =

√
x2 + y2. Modified after Mogi [1958] and Lisowski [2007].
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resulting in deformation at the surface, they can be arrested by cooling and solidification

or by intersection with a stress barrier (Rivalta et al. [2015], Biggs et al. [2016]). Thus,

volcanic eruption may be postponed or impeded. Nonetheless, deformation can be used

to detect precursors earlier than what volcanic gas and seismic monitoring can. For

example, according to Sparks [2003], seismicity does not start until ∼ 10−4 of strain is

exceeded. Dzurisin [2003] believes, including the author of this thesis, that the next

step is to formulate a deformation monitoring strategy especially at volcanoes where

magma accumulates aseismically, due to subsurface processes that are not detectable at

the surface by other monitoring techniques.

1.2 Modeling deformation

Modeling deformation data is necessary not only to understand the forces that acted

beneath the Earth but more importantly because it gives information regarding a potential

eruption. For example, what volume of magma must be injected into the shallow reservoir

to facilitate the rupture of this magma chamber and allow the magma to propagate as

hydrofracture? Or perhaps, what is the critical overpressure value (or displacement value)

required to initiate the tensile failure of the surrounding rock? (e.g. Pinel et Jaupart

[2003], Albino et al. [2018]).

Scientists approach the problem by comparing or fitting the data to the model predic-

tions provided by mathematical/numerical models. Often times, kinematic models are

used because of their simplicity and convenience. As mentioned earlier, kinematic models

interpret the observations without considering the processes, forces and mechanisms that

lead to these observable fields. In the context of volcano source modeling, kinematic

models are characterized by the location, shape and strength of the source of deformation.

In many cases, these models are based on elastic half-space assumption—a first approxi-

mation of the Earth. Basically, the Earth’s crust is assumed to be an ideal semi-elastic

body that is materially homogeneous and mechanically isotropic, such that it behaves

as an isotropic linear elastic solid (Lisowski [2007]). Laboratory tests show that rocks

behave elastically at low temperatures such that this becomes a valid approximation at

least for the upper crust. It follows that a viscoelastic medium is more appropriate for

the lower crust.
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The most famous and widely used model is the Mogi model (i.e. also known as point

pressure source, Mogi [1958]) or more generally known as the spherical pressure source

model after the corrections made by McTigue [1987]. The spherical source model can

actually be either kinematic or dynamical, depending on how the modeler approaches the

problem. If the change in volume is inferred at depth, then it is purely kinematic, however

if the change in pressure is rather estimated then it becomes dynamical. Note however,

that change in pressure can only be inferred if the radius of the magma chamber is quite

known (e.g. obtained from tomography), otherwise, it is impossible to separate the radius

and the pressure change for Mogi model. In Iceland, most of the deformation data are

interpreted using this spherical pressure source (Sigmundsson [2006]). Although, there

are other existing volcano source models which are tied to specific geometries such as

sills, dykes, and ellipsoidal shapes (i.e. a comprehensive discussion on analytical volcano

deformation source models is written by Lisowski [2007]).

In this section, I will not review all the models used in deformation modeling, rather,

I will attempt to build a discussion on the development of volcano deformation source

models, starting from a simple Mogi source model to more complex physics-based dynam-

ical models (e.g. Lengliné et al. [2008], Anderson et Segall [2011, 2013], Reverso et al.

[2014], Wong et al. [2017]). The latter offers great potential for eruption forecasting.

The point pressure source model (Figure 1.5) was proposed by Kiyoo Mogi after

observing that the vertical and horizontal displacements at Sakurajima volcano, Japan

and Kilauea volcano, Hawaii (Mogi [1958]) can be explained by the inflation and deflation

of a magma body within the volcanoes. The accumulation of magma is represented

as a dilating point source in an elastic half-space. Given the elastic assumptions, the

3D surface displacement generated by the hydrostatic pressure change, ∆Ps, within the

spherical shell is expressed as:

 uE

uN

uz

 = as
3∆Ps

(1− ν)

G


x
Rs3

y
Rs3

Hs
Rs3

 (1.3)

It follows that the radial displacement can be written as, uR =
√
uE2 + uN 2.

One assumption of the point source model is that as and ∆Ps cannot be separated
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since they are characteristics of the source strength, C:

C = as
3∆Ps (1.4)

To show this, consider the two cases in Figure 1.6. Indeed, the same deformation field

can be observed given two different sets of as and ∆Ps.

Mogi [1958] assumes that the radius of the magma chamber is very small compared to

its depth so that it acts like a dilating point. But this is not often the case because magma

bodies can be shallow and have finite shapes. McTigue [1987] introduced a correction to

account for the finite shape of the source by applying higher order corrections for stresses

reflected back on the source by its image (Lisowski [2007]). Equation (1.3) therefore

becomes:

 uE

uN

uz

 =

(
C

(1− ν)

G

)(
1 +

(
as
Hs

)3

×
(

(1 + ν)

2(−7 + 5ν)
+

15Hs
2(−2 + ν)

4Rs
2(−7 + 5ν)

))
x
Rs3

y
Rs3

Hs
Rs3


(1.5)

The first term describes the point pressure source and the second term is the correction

for a finite-sized cavity. If Mogi’s assumption is satisfied (i.e. as << Hs), the ratio of

the radius and the depth of the cavity will approach to zero (i.e. (as/Hs) → 0), and

everything will be simplified to equation (1.3).

In practice, modelers typically follow Mogi’s assumption as this offers diverse appli-

cations. For example, the point pressure source is valid to represent either a magma

intruding into a non pre-existing magma chamber or into a pre-existing one.

Volume estimation is one interesting advantage of using deformation data when com-

pared with any other monitoring techniques. Deformation can directly give information

about the volume of magma that flows in or out of the reservoir (∆Vmagma) based on the

volume of the uplifted/subsided surface, ∆Vedifice. The latter is defined as the integrated

ground surface change expressed as (Sigmundsson [2006]):

∆Vedifice =

∫ ∞
r=0

uz2πrdr = 2πC
(1− ν)

G
(1.6)
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Case A: as = 1 km
               ΔPs = 200 bars

Case B: as = 1.6 km
               ΔPs = 50 bars

Vertical displacement, cm

Figure 1.6: Vertical displacement maps given two different conditions of the magma
reservoir: Case A) smaller radius but higher overpressure, Case B) larger radius but lower
overpressure. Obviously, there is almost no difference between the two deformation maps.
This example is based on Westdhal volcano, Alaska (Lu et al. [2000]) where an inflation
of 16 cm was measured by InSAR between September 1993 and October 1998 due to an
inferred 9 km deep reservoir. After Pinel [2015].

According to Delaney et McTigue [1994], for a spherical chamber, the ratio between

the surface volume change, ∆Vedifice, and the change in the chamber’s volume, ∆Vchamber,

only depends on the Poisson’s ratio:

∆Vedifice
∆Vchamber

= 2(1− ν) (1.7)

This implies that for incompressible materials (i.e. ν = 0.5), ∆Vedifice = ∆Vchamber. In

practice, modelers use ν = 0.25 (i.e. Poisson’s ratio for perfectly isotropic elastic material).

In this case,

∆Vchamber =
2

3
∆Vedifice (1.8)

Note that the volume of expansion/contraction of the magma chamber is not necessarily

equal to the volume of magma that flows in/out of the chamber (i.e. ∆Vchamber =
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∆Vmagma). This can be true, only if, the magma can be considered as incompressible,

otherwise if the magma is considered compressible, according to Johnson et al. [2000]:

∆Vmagma =

(
1 + 4G

3K

)
2(1− ν)

∆Vedifice (1.9)

where G is the modulus of rigidity of the host rock and K is the bulk modulus of magma

in the chamber.

For an oblate reservoir with a small thickness compared to its lateral dimension (i.e.

sill-type), a scaling factor, γs = 8(1−ν)
3π

, can be introduced (Amoruso et Crescentini [2009],

Reverso et al. [2014]), equation (1.9) then becomes:

∆Vmagma = γs

(
1 + 4G

3K

)
2(1− ν)

∆Vedifice (1.10)

=
4

3π

(
1 +

4G

3K

)
∆Vedifice (1.11)

and equation (1.7) is expressed as (i.e. if ∆Vmagma = ∆Vchamber):

∆Vmagma =
4

3π
∆Vedifice (1.12)

Although the mathematics is simple and beautifully formulated to model volcanic

deformation, the spherical/point pressure source is mostly used as kinematic (i.e. because

it is not at all times that the radius of the reservoir is known to infer the change in

pressure). Therefore, it is not well-suited for constraints given by diverse time-dependent

data (Anderson et Segall [2013]). For example, the ambiguity in Figure 1.6 can easily be

determined by exploiting the temporal evolution of the displacement field considering sim-

ilar magma and crustal rheologies—the pressurization of a small chamber is much quicker

than the larger one. Furthermore, although we can estimate the location of the source

and the surface volume change using the spherical pressure source model, the magmatic

processes (e.g. evolution of the stresses) or magma properties (e.g. viscosity, magma

compressibility) that give rise to the observations are difficult to obtain. Physics-based

dynamical models can rather relate magmatic processes to diverse sets of time-dependent

observations and allow predictions of the full evolution of the system (Anderson et Segall
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[2013]).

Consider a simple case where there is a continuous flow of magma towards the magma

chamber as shown in the physical model in Figure 1.7. Under these circumstances,

magma travels towards shallow depth like a fluid flowing through a cylindrical conduit

(or pipe). Assuming that the ascent of magma follows a Poiseuille flow, then we can

derive the volumetric flow rate within the pipe (i.e. also equivalent to mass flux when

considering a given density) using (Pinel et Jaupart [2003]):

Q =
πac

4

8µ

[
− dP

dz
− ρmg

]
(1.13)

where ac is the radius of the conduit, µ is the viscosity of magma, ρm is the density of

magma, g is the gravitational force and dP/dz is the vertical pressure gradient.

In this model, there are two different pressures acting on the magma in the conduit: 1)

the [deep] source pressure, Pd, which can be considered as a constant and 2) the evolving

pressure at the top of the hydraulic pipe within the magma chamber, Ps(t). The latter

is caused by the constant replenishment from the deep source (Lengliné et al. [2008]).

After accounting for these pressure sources, the evolution of the flow rate, Q(t), can be

expressed as (Pinel et Jaupart [2003]):

Q(t) =
πac

4

8µHc

[
(ρr − ρm)gHc + ∆Ps(t)−∆Pd

]
(1.14)

where ρr is the density of the surrounding rock, ∆Ps(t) is the overpressure on top of the

conduit (within the magma chamber) and ∆Pd is the overpressure that corresponds to

the deep source pressure. If no magma flows out of the chamber during the accumulation

period, then using equations (1.4), (1.6), (1.7) and (1.14), the overpressure evolution

within the chamber is given by the differential equation (modified from Lengliné et al.

[2008]):

d∆P (t)

dt
=

Ga4
c

8µγsHca3
s

(P −∆P (t)) (1.15)

where P = ∆Pd −∆Ps,t0 + (ρr − ρm)gHc with ∆Ps,t0 being an initial overpressure value.
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Figure 1.7: A spherical reservoir fed by constant inflow of magma through a cylindrical
conduit. The model is presented in cartesian coordinate system (N and E denote Northings
and Eastings). Hs is the depth and as is the radius of the magma chamber (spherical
cavity). Hc and ac are the length and radius of the conduit, respectively. The magma is
defined by its viscosity, ν, and density, ρm. The host rock is characterized by its density,
ρr, and elastic constants, ν (i.e. Poisson’s ratio, ν = 0.25) and G (i.e. shear modulus,
G = 10 − 30 GPa). uR and uz are the radial and vertical displacements measured by
GNSS and/or InSAR at point S. The radial distance of S from the magma chamber is

Rs =
√
r2 +Hs

2 where r =
√
x2 + y2 is the radial distance from the center of the volcano

to point S. Modified after Lengliné et al. [2008].
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The analytical solution to this differential equation is simply:

∆P (t) = P

(
1− exp

(−t
τ

))
(1.16)

where τ = 8µγsHca3s
Ga4c

. For a sill-like reservoir, γs = 8
3π

(1− ν) whereas for a Mogi source,

γs = 1. It follows that equation (1.3) remains valid in relating the pressure evolution

to the time-dependent surface displacements.

Reverso et al. [2014] extended the physical forward model of Lengliné et al. [2008]

to having a deep magma reservoir fed by a basal magma inflow rate, Qin, instead of

having only a deep pressure source that supplies the upper magma reservoir (Figure 1.8).

Basically, in this case, there are two magma chambers embedded in an elastic medium

that are connected by a hydraulic pipe and fed by a constant basal magma inflow. The

model fits well with the post-eruptive displacements observed at Gŕımsvötn for its last

three eruptions (e.g. 1998, 2004, 2011). Instead of equation (1.15), the evolution of

the overpressures for the shallow and deep reservoirs are given by:

∆Psti = A(1− e−
ti
τ ) +

GQin

π(as3γs + ad3γd)
ti + ∆Pst0 (1.17)

∆Pdti =
γsA

γd
(1− e−

ti
τ ) +

GQin

π(as3γs + ad3γd)
ti + ∆Pdt0 (1.18)

with A = ad
3γd

as3γs+ad3γd
[∆Pdt0 −∆Pst0 + (ρr − ρm)gHc − 8γsQinµHcas

3

πac4(as3γs+ad3γd)
], ad is the radius of

the deep reservoir and γd is a scaling factor defined for the shape of the deep reservoir.

The overpressures are related to the displacements via:

uR(r, ti) =
(1− v)

G
r
(
αs
as

3

R3
s

∆Psti + αd
ad

3

R3
d

∆Pdti

)
(1.19)

uz(r, ti) =
(1− v)

G

(
Hsαs

as
3

R3
s

∆Psti +Hdαd
ad

3

R3
d

∆Pdti

)
(1.20)

where αs and αd are scaling factors for the shape of the reservoirs (i.e. 1 for Mogi

source and 4H2

πR2 for a sill), Hd and Rd are the depth and radial distance of the reservoir,

respectively.
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Figure 1.8: The sketch of Reverso et al. [2014]’s two-chamber model presented in cartesian
coordinate system (N and E denote Northings and Eastings). The shallow reservoir with
dimensions, Hs (depth) and as (radius), is connected to a deeper reservoir with dimensions,
Hd (depth) and ad (radius), by a hydraulic pipe of radius, ac, and length, Hc. The shape
of the reservoirs can either be a sill or a sphere. This would only depend on some scaling
factor, γs,d (i.e. for volume-pressure relationship) or αs,d (i.e. for displacement-pressure
relationship). The magma flowing through the hydraulic pipe is defined by its viscosity,
ν, and density, ρm. Note that the deep reservoir is continuously fed by basal magma
inflow rate, Qin. The host rock is characterized by its density, ρr, and elastic constants,
ν (i.e. Poisson’s ratio, ν = 0.25) and G (i.e. shear modulus, G = 10 − 30 GPa). uR
and uz are the radial and vertical displacements measured by GNSS and/or InSAR at

point S. The distance between S and the shallow chamber is Rs =
√
r2 +Hs

2 whereas,

Rd =
√
r2 +Hd

2 for the deep chamber. Note that r =
√
x2 + y2 is the radial distance

from the center of the volcano axis to point S. Modified after Reverso et al. [2014].
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Figure 1.9: a) The physics-based forward model of Anderson et Segall [2011] for effusive
silicic eruptions, which was further developed by Wong et al. [2017] to include gas
transport and crystallization (b). After Wong et al. [2017].
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Physics-based models that rather relate magma ascent from a magma chamber flowing

to a conduit and then exiting to a vent (e.g. Figure 1.9) have been developed to

understand intermediate and silicic eruptions (e.g. Melnik et Sparks [1999, 2002], Mastin

et al. [2008]). Anderson et Segall [2011] developed a physics-based forward model of

an effusive silicic eruption that links magmatic processes to observed time-dependent

data. The authors successfully estimated the volume, pressure, depth, volatile content

and properties of the conduit, by combining the model with Bayesian-based inversion

(i.e. MCMC) of GPS and lava dome extrusion data of Mount St. Helens volcano, USA

(Anderson et Segall [2013]). Wong et al. [2017] elaborated Anderson et Segall [2011]’s

model to include crystallization and gas transport in the conduit to more realistically

emulate phase changes during magma ascent.

Other existing models like BEM, which is also a dynamical model, can account for

realistic topographies and any shape of a pressurized source (Cayol et Cornet [1997]).

BEM, however, requires intensive calculations as stresses are calculated within patches or

mesh.

Further discussion

Kinematic models can be considered as valuable proxies to explain the displacements

measured at the surface despite the inherent simplifications in their formulation. However,

because they are kinematic, the magmatic processes and/or magma properties that give

rise to the time-dependent dataset are not fully and directly determined. Therefore

kinematic models are not really suitable for analyzing time series of data and thus,

become less interesting in terms of forecasting and undestanding the temporal behavior

of a volcano.

Concerning the Reverso et al. [2014]’s two-chamber model, indeed, the model is

based on idealized assumptions representing the complex plumbing system. For example,

magma compressibility and different crustal rhelogies have so far been disregarded in the

model. However, it is also worth mentioning that the two-chamber model is generic as it

can represent either a single or a multiple reservoir system. The former would require

that ad/as ≈ ∞ with Qin = 0. As for the latter case, the model only represents the

upper part of the multi-reservoir system. Furthermore, the two-chamber forward model

can be implemented with ease and speed. Therefore it becomes an attractive tool, at
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least for first-order approximations, to relate the evolution of subsurface processes to

time-dependent displacements observed at the surface. When coupled with an optimal

estimation technique, which can also accommodate large amount of incoming data, the

strategy can offer great potential to perform [near] real-time forecasting of the rupture of

a magma chamber that may subsequently lead to an eruption. These arguments justify

the choice of using the Reverso et al. [2014]’s two-chamber model as the [only] forward

dynamical model used in this thesis. This choice is to first build a fast and effective data

assimilation strategy which is a crucial requirement during the monitoring of volcanic

unrest. Further discussion regarding the pros and cons of using this dynamical model

will be presented in the succeeding parts of this work.

1.3 Eruption forecasting

The emplacement and migration of magma at shallow depth leads to precursors that

can be recorded by geophysical and/or geochemical instruments signaling that the volcano

is restless. Eruption forecasting can be divided in at least two phases (Figure 1.10): 1)

long-range (i.e. forecasting up to the rupture of the magma chamber) and 2) short-range

(i.e. forecasting the timing and location of a possible eruption) forecast. Geodesy allows

tracking of the pressure while it builds up inside the magma chamber during inter-eruptive

periods (typically in years or decades) such that scientists are able to issue long-range

forecast on whether the inflating shallow magma chamber will likely to rupture or not.

Indeed, this thesis is focused mainly on this time window of forecasting by using the

two-chamber dynamical model and fixing a failure overpressure value that would indicate

that the reservoir is already in a critical stage of rupturing. Others link seismicity to the

progressive failure of rocks to model the strain weakening of rocks and the subsequent ac-

celeration of the deformation prior to the failure of the magma chamber using the“damage”

concept (Carrier et al. [2014], Got et al. [2017]). However, one limitation of the damage

model is related to the downtrending pressure evolution leading to an eruption, which is

actually inconsistent with what is empirically observed and the volume of extruded magma.

One of the most traditional approaches in eruption forecasting is the material failure

forecast (i.e. popularly known as FFM) introduced by Voight [1988]. The basic idea

of FFM is to predict the timing at which failure can be reached and eventually initiate

an eruption by fitting a power law curve into the seismicity. However, its successful

application in real-time eruption forecasting as in the case of the explosive eruption
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Figure 1.10: Sketch showing the two phases in eruption forecasting—long-range and
short-range forecasting.
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at Tungurahua volcano in Ecuador (Tárraga et al. [2008]), is not always the scenario

especially when seismicitiy is characterized by multiple acceleration patterns (Boué et al.

[2015]).

The fate of a rising magma or propagating dyke once tensile failure has started

remains unknown. More often, the propagating magma does not get through at the

surface of the Earth as they get arrested at depth. Nevertheless, once magma migration

is evidenced, the exact timing and the location of the eruption needs to be estimated

in real-time to ensure the timely delivery of warnings. Recent studies in tracking the

migration of magma have been proposed by Cannavò et al. [2015] and Guldstrand et al.

[2018], highlighting the importance of high-rate deformation data to ensure accuracy in

predicting the location of its emplacement at the surface. In particular, Guldstrand et al.

[2018] demonstrated through scaled laboratory experiments that following the evolution

of the “vector” between the center of the uplifted area and the point of maximum uplift

can eventually provide the timing and location of the eruption. Cannavò et al. [2015]

takes advantage of real-time GPS data and a free geometry magmatic source model to

track the inflation and deflation sources in time also allowing to estimate the location of

eruption. Both studies are great examples of helpful tools to activate eruption warning in

time which are indeed beneficial for the civil protection groups. Segall [2013] on the other

hand, emphasized the need to combine diverse datasets, such as seismic and geodetic

data to improve the “imaging” of a propagating dyke. This has been proven effective

during the 2014 Bárdarbunga-Holuhraun eruption (Sigmundsson et al. [2015]).

Following the onset of eruption, the next step is to predict the future state of the

volcano. In Segall [2013]’s work, the author was able to successfully combine the physics-

based dynamical model of Anderson et Segall [2011] and MCMC inversion. The model

parameters from the inversion were used as input to the physics-based forward model

in order to estimate the total erupted volume at Mount St. Helens after 3.5 yrs, given

only 2 yrs of data. The resulting volume agrees well with the observed eruptive volume.

However, since the model does not include cooling and crystallization, it was impossible

to actually determine when the eruption will cease.

Newhall [2007] is rather focused on disaster risk and mitigation as well as the timely

delivery of warnings, believing that information from short-term and long-term forecast

must be integrated through the use of event trees (e.g. Newhall et Hoblitt [2002], Neri
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et al. [2008], Marzocchi et al. [2008]) and Bayesian belief (e.g. Aspinall et Woo [2014],

Hincks et al. [2014]) by estimating the probabilities at each node of an event tree and

then performing a Bayesian update once new pieces of information come.

1.4 Summary and Perspectives

Volcano monitoring techniques allow us to record subsurface processes occuring be-

neath the volcano and to detect anomalous signals that can be correlated with imminent

volcanic eruption. However, when used individually, they provide ambiguous analyses

and sometimes unrealiable forecasting results. It has long been recognized the need to

use various datasets and combine them with realistic physics-based dynamical models

(Sparks [2003], Segall [2013]) in order to fill the gaps in our understanding of the causative

processes that lead to volcanic unrest. In the next chapter, I will address the issue of

filling the gaps in information and how one can objectively combine models and data to

obtain an optimum result in forecasting.

Without a doubt, in terms of eruption forecasting, we have to move from pattern-

based recognition to a more intuitive physics-based approach. The first step is to build

realistic and deterministic models that we can use as a framework to include various

observation datasets in a single forecast. Subsequently, these physics-based models should

be coupled with a probabilistic technique in order to consider and estimate uncertainties.

In this case, Bayesian-based inversion like the MCMC as adopted by Anderson et Segall

[2013], demonstrated great potential to infer unknown model parameters. The estimated

model parameters which are in a form of posterior distributions, can then be used as

input to the physics-based forward model to allow forecasting of the next state of the

system, in this case, the next behavior of the volcano. Indeed, although the model is

deterministic, the results yield probabilistic forecast since the model parameters are

sampled from a prior distribution and constrained by given dataset. However, inversion

still has some limitations which includes: a) inefficiency to incorporate data in real time,

b) model errors are often neglected during the process and c) difficulty in estimating

time-dependent parameters. In the following chapters, I will address these issues by

proposing a complementary tool to inversion in order to follow the evolution of the

pressures within the magma chambers as well as to estimate constant and/or evolving

uncertain parameters of the model.
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Overview of Data Assimilation
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The motivation of this chapter is to present the mathematical formulation of data

assimilation. I will begin by discussing the role of data assimilation in filling the gaps

in information, followed by the fundamentals of data assimilation, its elements and the

two main approaches of data assimilation based on: 1) estimation theory and 2)

optimal control theory. I will give focus on sequential data assimilation which is a

subcategory of estimation theory, discussing the family of Kalman Filter methods, in

particular, EnKF which is the main assimilation method used in this thesis. Then, I

will present the strengths and weaknesses of the two standard techniques currently used

in NWP centers—EnKF and 4DVar. Finally, I will provide a review of several studies

that have applied KF-based approaches to problems in volcanology as well as the recent

developments in volcanic data assimilation.



OVERVIEW OF DATA ASSIMILATION

2.1 Data assimilation and the need to fill informa-

tion gaps

Whether we are talking about climate change, thinning of the ozone layer, impact

of natural disasters to humans or simply asking “will it rain tomorrow?”, there is the

obvious need for information in order to make intelligent decisions about our future

actions. Information are obtained not only from observations but also from the results

of model simulations, as such, the reader should refer to this definition of information.

Indeed, the more accurate the information that we have, the better that we can design our

plan of actions. According to Lahoz et al. [2010], there is a generic chain of information

processing which involves the following:

1. Gathering of information.

2. Testing of hypotheses given the information.

3. Building strategies using the information in order to change, mitigate and/or adjust

to the course of events.

4. Making predictions based on these strategies.

There are two important steps in this processing chain: the first one corresponds to

acquiring information and the second one is developing methodologies using these informa-

tion. On one hand, observations are the measurements of a particular system-of-interest.

However, because observations are discrete in space and time whereas the true state of

the system is continuous, these often result in [information] gaps. Linear interpolation is

one of the common ways to fill the gaps in the observations especially if a dense amount of

observation is available. Although this approach is consistent 1, it is not objective and we

gain little to nothing of the actual system properties that would explain these observations.

Furthermore, observations are not free of noise, particularly during acquisition and pre-

or post-processing. Models on the other hand, provide quantitative and/or qualitative

understanding on how the system evolves (i.e. spatially and temporally) and give rise to

the observations. In practice, we seek for models that are realistic and tractable. Take

note that it is impossible to represent the true state of the system hence models always

incorporate errors. Combining models with observations while taking into account their

1An estimator is consistent when it converges towards the true value of the parameter if the number
of samples or measurements approach towards infinity
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respective errors are the best way to fill information gaps. However, to determine the

optimal combination that will give the best result remains a challenge.

Thanks to data assimilation, one can have the “best” estimate of the state of the

system objectively by either minimizing a so-called penalty function (i.e. cost function)

or taking the maximum of the a posteriori distribution (i.e. MAP) given an a priori

information about the state. In terms of formal definition, data assimilation refers to a

set of statistical method that uses all the information available in order to improve our

knowledge about the past, present and most importantly, the future state of a system. It

is the opposite of a forward problem where model parameters are known and are used to

estimate or predict the model state that is fully or partially observed. Data assimilation

is rather an inverse problem that utilizes observations to gain information about the

sources of the phenomenon under consideration. The basic concept of data assimilation

consists of correcting the trajectory of a dynamical model of a phenomenon such that it

will provide an optimal fit with the observations over a time window of interest (Fournier

et al. [2010]) by controlling: 1) the state variables2 and/or 2) other model parameters

(Jarlan et Boulet [2014]). State variables are updated at each time step once observations

are available (e.g. case of KF-based approaches and the Particle Filter) or corrections

are made to the initial state of the state variables while using all the observations within

a given time window (e.g. case of the variational techniques, Kalman Smoother-based

approach). Other model parameters are adjusted or calibrated in order to reduce the

discrepancy between forecasts and observations.

A rough timeline of the development of data assimilation (i.e. based on Fournier et al.

[2010] and Cosme [2017]) is presented in Figure 2.1. It was initially intended for NWPs

and started even before the invention of computers. Nowadays, it also gained popularity

in many other fields of geosciences (e.g. natural land surfaces, hydrology, natural resource

exploration and geomagnetism), including the very recent interest to solve problems in

volcanology.

2Model parameters or variables that fully define the physical state of a dynamical system. They have
direct link to the observations through an operator and can evolve from one step to another via model
operator; also known as the prognostic variables.
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1922

1950

1954

1955
1963

1970s

1980s

1990s

Lewis Fry Richardson  �rst tried the Numerical Weather Prediction (NWP)
using human calculators, but without success.

Early computers led to the numerical interpolation approach of Charney
et. al. [1950]

Bergthorsson Döö interpolated a numerical forecast to observation location 
by introducing the innovation vector (i.e. di�erence between
observation and forecast) then interpolating back to the numerical grid.

Statistical interpolation: Bayesian approach to put weights to the forecast
and data (Eliassen [1954] and Gandin [1963]).

Nudging

3DVar and Optimal Interpolation

4DVar and Kalman �lter

Figure 2.1: The historical perspective of atmospheric data assimilation.
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2.2 The physical system: State, observations and er-

rors

The main elements of data assimilation include the dynamical model, the observations

of all or part of the model variables, the variables related to the model variables and the

error statistics. In this section I will further elaborate their definitions as presented in

data assimilation.

Consider a vector, X, of size Nx. Each element of X is a variable defining the

full physical state of a dynamical system (i.e. magma overpressure or volume change).

However, in practice, we may also want to correct and/or estimate several variables

which include control variables such as the initial conditions, the forcing function and/or

uncertain model parameters (e.g. height of the conduit, radius of the reservoir, magma

inflow rate and etc.). If other control variables are included in X, we call it as the

augmented state vector . X represents a continuous state in time and space rather

than a vector of finite dimensional discrete variables. One way to represent a continuous

variable consists of discretizing it:

X† = Π(X) (2.1)

Π is the operator that projects the infinite dimensional space to a finite-dimensional

vector and X† is the projection or sample of X, such that, X† can be considered as the

numerical true state vector or simply the “truth”. The explicit estimate of the true state

X† is written as:

Xb = X† + εb (2.2)

Xb stands for the background estimate of the unknown state vector X or the prior

obtained from a recent forecast or model simulation, and εb is the background error.

The data measurements or vector of observations, D, with size Nm is linked to the

continuous space via:

D = h(X) + εm (2.3)

h is the vector that maps the infinite-dimensional state into the observation space and

εm is the instrumental error often related to acquisition process. Discretizing equation
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(2.3), it then takes the form:

D = HΠ(X) + εm (2.4a)

D = H(X†) + εr + εm (2.4b)

D = H(X†) + ε (2.4c)

H is the discretised observation operator that creates a link between the numerical true

state and the observations, ε is the combined representation, εr, and instrumental errors,

εm. The representation error, εr, provides an additional source of error to account for

the imperfect representation of the map H, as our knowledge of D only gives a partial

and flawed information about X† (Bocquet [2017]). Moroever, in some cases, there is

no absolute relationship between the true state of the system and the observations. For

example, in volcano deformation studies, we measure the ground deformation at the

Earth’s surface through ground-based or satellite-based instruments and then relate it to

a reservoir beneath a volcano to infer the pressure. However, simple relationship between

ground deformation and pressure such as the Mogi model (Mogi [1958]), is characterised

by geometrical parameters like the radius or the depth of the reservoir, which are often

an oversimplified representation of the actual shape and form of a magma reservoir. Also,

traditionally, volcanologists only consider a single reservoir contributing to the surface

deformation when in reality there may be multiple reservoir governing the system. All of

these arguments further complicate the transformation between D and X†.

Note that εb and ε are usually uncorrelated (i.e. EεbεT = 0) in data assimilation. The

covariance of εb is called the background error covariance with dimension, Nx ×Nx. It is

defined by:

P b = E [εbεb
T

] (2.5)

whereas the error covariance of ε is called the observation error covariance having a

dimension, Nm ×Nm and is of the form:

R = E [εεT ] (2.6)

A good knowledge about P b and R are important in data assimilation, since they

condition the quality of the analysis. In most cases, a diagonal matrix is used for R

for the sake of simplicity, implying that observation errors are assumed independent
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from each other. However, temporally and/or spatially correlated noise may be present

in the displacement measurement dataset. For instance, in radar interferometric data,

atmospheric noise is embedded within the displacement signal over large area. Bekaert

et al. [2016] pointed out that ignoring the covariance of InSAR measurement errors would

result in treating the spatially correlated atmospheric noise as part of the signal. It

is worth noting that a precise characterization of the covariance between observation

errors is not always possible. An ill-estimated observation error covariance may result in

erroneous estimations. In order to take into account the observation error correlation,

the observation error is usually increased.

Given a discrete series of observations (i.e. ti = [0, 1, 2, ...K]), equation (2.4c) takes

the following form:

Dti+1
= Hti+1

(X†ti+1
) + εti+1

(2.7)

In practice, we use a dynamical model, M, to propagate the true state from one time

step to another (i.e. ti to ti+1):

X†ti+1
=Mti+1

(X†ti) + qti+1
(2.8)

where q is the model error. The model error can be related to errors due to the: 1)

misrepresentation of the system (i.e. simplification and idealization in the modeling),

2) computational grid and discretization of the model, and 3) errors related to model

parameters. In the case of “perfect model” assumption, the dynamical model uniquely

translates the state of the system at all times. Note that data assimilation methods may

or may not consider model errors. For instance, in 4DVAR, model errors are typically

neglected on the basis of “strong constraint” assumption (Talagrand [2010]) whereas in

Kalman-based assimilation, the model errors are taken into account. The covariance

matrix of the model error, Q, is written as:

Q = E [qqT ] (2.9)

Similar to R, a good knowledge about Q is necessary to satisfy the quality of the resulting

state estimation.

Theoretically, it is impossible to exactly know even the numerical true state vector,

79



OVERVIEW OF DATA ASSIMILATION

thus we estimate it and the result of the optimal estimation is called the analysis, Xa:

Xa = X† + εa (2.10)

The error covariance of the analysis, εa, (i.e. dimension is Nx ×Nx) is defined as:

P a = E [εaεaT ] (2.11)

2.3 Data assimilation methods

If the model and observation errors are considered as random variables, as in the case

of equations (2.7) and (2.8), the model state and observations can also be interpreted

as stochastic variables allowing a Bayesian probabilistic approach of combining them to

obtain an optimal estimation. In this section, I will discuss the Bayesian foundation of

data assimilation followed by the mathematics behind data assimilation methods based

on either the 1) estimation theory or 2) optimal control theory.

The discussion about data assimilation methods that are based on estimation theory

begins with the statistical interpolation technique, in which under special conditions

would lead to the BLUE equations. After that, the KF is introduced. KF is basically

an extended but a more sophisticated approach of the BLUE analysis as it considers

an important factor—the temporal evolution of the system. Afterwards, I will present

some spin-offs of KF that were previously applied in volcanology with focus on the EnKF

approach. EnKF is the assimilation method used in this thesis.

A general discussion about data assimilation methods based on optimal control theory

will be presented. In particular, I will briefly introduce 3DVar and 4DVar. 3DVar is the

variational equivalence of the BLUE analysis (i.e. if the errors are Gaussian) and under

some conditions, the 4DVar becomes a rigorous equivalence of the KF at the end of a

certain time window of interest (i.e. 1) the observation operator H, and model operator,

M, are linear and 2) the evolution of the model is deterministic, meaning, the error of

the model is negligible).

The last part of this section focuses on the advantages and limitations of EnKF and

4DVAR—the two operational methods currently used in NWP.
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2.3 Data assimilation methods

2.3.1 Bayesian formulation of data assimilation

Here, I will revisit the bayesian formulation discussed by Evensen [2009] as the basis

of the assimilation methods. Consider the Bayes’ theorem:

p(x|D) =
p(x)p(D|x)

p(D)
(2.12)

where p(x|D) is the posterior density of x given observation D, p(x) is the prior density

for the first guess Xb, p(D|x) is the likelihood of the observations given x, p(D) is a

normalization factor necessary to ensure that the integral of the posterior distribution is

equal to one. Equation (2.12) can be expressed as:

p(x|D) ∝ p(x)p(D|x) (2.13)

Assuming that the prior and likelihood functions are Gaussian, then from equations

(2.2) and (2.10) we can define:

x ∼ N (Xb, P b), p(x) ∝ exp

(
− 1

2
(x−Xb)TP b−1

(x−Xb)

)
(2.14)

and

D|x ∼ N (Hx,R), p(D|x) ∝ exp

(
− 1

2
(D −Hx)TR−1(D −Hx)

)
(2.15)

This will allow us to write the posterior density as:

p(x|D) ∝ exp

(
− 1

2
J (x)

)
(2.16)

where

J (x) =

[
(Xb − x)TP b−1

(Xb − x) + (D −Hx)TR−1(D −Hx)

]
(2.17)

The optimal solution for x (i.e. x = Xa) can be done in many ways, such as 1) finding

the mode of p(x|D) (i.e. MLE) by least squares solution or 2) computing for the minimum

variance estimation (i.e. ∇J(x) = 0). Note that in the case of Gaussian distribution, the

least square solution is also the minimum variance estimation.
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ti+1t0 tKti

Figure 2.2: The sequential assimilation approach (from Fournier et al. [2010]). Given
initial conditions at t0, the model can be propagated forward without any constraints
up to a time window of interest, tK . The result is the green dashed line. Notice the
growth of the forecast error while no observation (red star) is available (i.e. error bars of
the green points from t0 to ti+1). When observation is entered into the sequential data
assimilation method (i.e. at ti+1), an analysis (bright green point characterized by a small
error) is performed, correcting the trajectory of the state initially given by the forecast.
The process is repeated until the next observation is available.

2.3.2 Data assimilation based on estimation theory

Statistical interpolation: Best linear unbiased estimate (BLUE)

Statistical interpolation is a basic approach that consists of extrapolating the data

based on statistics and its historical behavior. Under certain conditions that the mean

and covariance of the variables being estimated satistfy the BLUE analysis (i.e. optimal,

linear and unbiased), the statistical interpolation becomes the “optimal” estimator.

Consider Xa as the final estimate described by the linear combination of the back-

ground state and the observations, such that:

Xa = AXb +KD (2.18)
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A is a matrix of size Nx × Nx and K is a matrix of dimension Nx × Nm. To achieve

optimality, we seek for A and K such that:

E [εa] = 0 (2.19)

tr(Pa)→ minimum (2.20)

tr(P a) is the trace of the analysis error covariance. These conditions can be satisfied if:

A = I −KH (2.21)

K = P bHT (HP bHT +R)−1 (2.22)

The following analysis equation (i.e. updated equation (2.18)) and corresponding

error covariance define the best linear unbiased estimate (BLUE) equations based on

minimum variance constraint:

Xa = Xb +K (D −HXb)︸ ︷︷ ︸
innovation vector

(2.23)

P a = (I −KH)P b (2.24)

Sequential data assimilation: Kalman Filter

The sequential assimilation method on the basis of Kalman Filtering, extends the

BLUE analysis to a temporal dimension. It introduces the dynamical model in order to

simulate the real evolution of the system through time. Resulting model predictions are

corrected whenever data are made available (Figure 2.2).

KF or often called as linear KF is the optimal sequential assimilation for linear

dynamical problems initially proposed by Kalman [1960] to track the evolution of the

error covariance. However, KF has been extended to further applications depending

on a given time of observation, ti. There are three possible scenarios (Figure 2.3) to

constrain the state of the system (Kalman [1960], Fletcher [2017]):

1. If ti < tK , this is called data interpolation or smoothing problem. All observa-

tions are used to estimate the past state of the system.
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t0 tKti

t0 ti=tK

t0 titK

1. Smoothing

2. Filtering

3. Prediction

Figure 2.3: Schematic diagram describing the three possible scenarios of the estimation
problem: estimating the 1) past (smoothing), 2) present (filtering) and 3) future (predic-
tion) state of the system. The blue bar corresponds to the dataset used to estimate the
state of the system at ti (vertical broken line).

2. If ti = tK , this is called filtering problem. All observations are used to estimate

the state of the system at all times (i.e. estimating the present state of the system).

3. If ti > tK , this is then called prediction problem. Observations up to tK are used

to estimate the future state of the system.

Note that all of these cases are considered by Kalman [1960] as an estimation problem.

The KF method follows a two-step procedure: 1) the forecast step and 2) the analysis

step. In the previous sections, we denote the prior knowledge about the state and its

error covariance as Xb and P b, respectively, where b stands for the background. In

the context of sequential assimilation, we shall use Xf and P f (i.e. f denotes the term

forecast) instead as this comes from a previous forecast. If ti = 0, then f is simply the

background state that often comes from initial conditions.
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Forecast step. The forecast step is basically time stepping the system from ti to ti+1.

As presented in equation 2.8, the true state will evolve according to the dynamical

model, M. The numerical state will evolve by:

Xf
ti+1

=Mti+1
(Xa

ti
) (2.25)

Xa
ti

is the result of the analysis from the previous time step. From equation (2.2) we

can write the forecast error as:

εfti+1
= Xf

ti+1
−X†ti+1

(2.26)

=Mti+1
(Xa

ti
)−X†ti+1

(2.27)

If M is linear, then using equation (2.10) will give us:

εfti+1
=Mti+1

εati +Mti+1
(X†ti)−X

†
ti+1︸ ︷︷ ︸

qti+1

(2.28)

and the forecast error covariance matrix:

E
[
εfti+1

(εfti+1
)T
]

= P f
ti+1

=

[
(Mti+1

εati + qti+1
)(Mti+1

εati + qti+1
)T
]

(2.29)

=Mti+1
E
[
εati(ε

a
ti

)T
]
MT

ti+1
+ E

[
qti+1

(qti+1
)T
]

(2.30)

P f
ti+1

=Mti+1
P a
ti
MT

ti+1
+Qti+1

(2.31)

Analysis step. This step is where corrections to the forecast state vector are made

using available observations at time step, ti+1. Unless necessary, I will drop the time

descriptor when presenting the analysis step equations for the sake of simplicity. This will

also be the case for the succeeding subsections describing other members of the KF-family.

The KF analysis step follows exactly the BLUE equations in section 2.3.2, such that:

K = P fHT (HP fHT +R)−1 (2.32)

Xa = Xf +K(D −HXf ) (2.33)

P a = (I −KH)P f (2.34)

85



OVERVIEW OF DATA ASSIMILATION

Practical implementation: Kalman Filter (KF)

1. Initialisation

Xf
t0 and P f

t0

2. Forecast step

a. Propagate the model (i.e. ti to ti+1):

Xf
ti+1

=Mti+1
(Xa

ti
)

b. Calculate the forecast covariance error:

P f
ti+1

=Mti+1
P a
ti
MT

ti+1
+Qti+1

3. Analysis step (i.e. for ti+1)

a. Calculate the Kalman Gain:

K = P fHT (HP fHT +R)−1

b. Update the state estimate:

Xa = Xf +K(D −HXf )

c. Compute for the analysis covariance error:

P a = (I −KH)P f

K is called the Kalman gain, which gives weight to the innovation vector (i.e. additional

information brought in by the observations in comparison with the model prediction).

Because this step follows the conditions of the BLUE analysis, Xa becomes the optimal

estimate of X† given a vector of observations D. Note that, Xa is often called the

updated state vector or analysis state vector.

The innovation vector, Y = D −HXf , and the residual, R = D −HXa, are common

diagnostic tools to assess the posterior consistency of the data assimilation method

(Fournier et al. [2010]).

Discussions: No observation. What happens when there is lack of data that can be

sequentially assimilated due to unexpected events such as perhaps, problems with the

instrument itself or poor quality of the data? For example, ground-based instruments

such as GPS (or GNSS in general) may require on-site maintenance, replacement of
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antennas or in a more unfortunate scenario, total destruction of the instrument. Another

example concerns the quality of received data, in operational weather forecasting, low

quality data are often disregarded. InSAR data are often perturbed by the atmosphere

and the ionosphere (i.e. for L-Band radar data) and most volcanoes are highly covered by

vegetation which then affects the coherence of the pairs of radar data therefore affecting

their quality. These examples can obviously result in losing several days up to months of

data.

In sequential data assimilation, the dynamical model has the ability to predict the

next state of the system hence the answer simply boils down to the forecast step equations

(e.g. equations (2.25) and (2.31)) while no observation is available. However, it is

important to note that if the dynamics is unstable and the interval without observation

is sufficiently long, the error will grow uncontrolled and only the re-introduction of data

will reduce the error (Bocquet [2017]) as shown in Figure 2.2.

Perfect observations. Assuming a strong confidence on the observations (i.e. ε = 0)

the Kalman gain from equation (2.32) is equal to H−1 and provided that there are as

many observations as the state variables and that they are independent (Bocquet [2017])

(i.e. H is invertible). The rest of the KF equations follow the forms:

1. The analysis covariance, P a = 0.

2. The analysis state, Xa = H−1D.

3. The forecast error covariance, P f = Q.

4. The forecast state, Xf =MH−1D.

In the case that H is an identity matrix, the system is fully estimated by the observations

(i.e. Xf
ti+1

=Mti+1
(Xa

ti
) =Mti+1

(Dti)) and the errors are only dependent on the model

error (i.e. P f
ti+1

=Mti+1
P a
ti
MT

ti+1︸ ︷︷ ︸
=0

+Qti+1
= Qti+1

).

Limitations. Two main issues arise from the KF algorithm (Evensen [2009]): 1) stor-

age and computational cost considering high dimensional problems, and 2) when the

dynamical model model, M, is non-linear. For the first issue, the forecast/analysis error

covariance is of the size Nx
2 given a state vector of dimension Nx. Rank reduction could
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address the issue in dimensionality (Cosme [2017]). Furthermore, the computational cost

of propagating the error covariance becomes 2Nx of the model integration time. This

makes it impractical for volcano applications especially if one is using a finite element

model with high resolution mesh. A way to get around this is to use the square root

formulation of the covariance matrix. Others settle to adopt a frozen covariance matrix

instead (i.e. known as the optimal interpolation) however, this approach suffers from the

lack of the dynamical information on the error statistics (Sanchez [2016]).

The second problem concerns the non-linearity of the dynamical model which can

destroy the Gaussianity of statistics. Although replacing M by its tangent linear opera-

torM′ (i.e. EKF) can solve the issue at least for those systems that are weakly non-linear.

In addition to the aforementioned limitations, take note that KF equations require to

have an estimate of Q in order to calculate P f . This is something that is very difficult

if not impossible to accurately define. In volcanology, available dynamical models are

oversimplified representation of the reality. Besides, there is no direct observation on how

the volcanic system works which adds to the complication when defining the model error.

Kalman Filter spin-offs

Since the development of the linear KF, a lot of studies have been dedicated to improve

and address its main issues. Three of these are discussed below and have been applied to

problems in crustal deformation: 1) EKF, 2) UKF and 3) EnKF.

Extended Kalman Filter As briefly mentioned above, in the case of weakly non-

linear dynamics, the model and observation operators can be linearised by their tangent

linear approximations extending the application of KF to non-linear case hence the name

Extended Kalman Filter :

M′ =
∂M
∂X

∣∣∣∣
Xt0

(2.35)

H′ = ∂H
∂X

∣∣∣∣
Xt0

(2.36)
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Forecast step. The forecast step for the state vector uses the non-linear model

propagator whereas for the error covariance the tangent linear approximation is adopted:

Xf
ti+1

=Mti+1
(Xa

ti
) (2.37)

P f
ti+1

=M′
ti+1

P a
ti
M′T

ti+1
+Qti+1

(2.38)

Analysis step. The analysis step at ti+1 of the EKF is desribed below, except for

Xa, the rest of the equations use the tangent linear operator.

K = P fH′T (H′P fH′T +R)−1 (2.39)

Xa = Xf +K(D −HXf ) (2.40)

P a = (I −KH′)P f (2.41)

Discussion. The EKF equations are similar in form to the linear KF equations

replacing M and H with their tangent linear approximations for the calculation of the

error covariances and the Kalman Gain. Although it addresses the issues related to

the non-linearities of the model operator or observation operator, EKF often leads to

poor error covariance evolution and unstable error covariance growth (Evensen [2009]).

Furthermore, like in the linear KF method, EKF can only be used with low-dimensional

dynamical models. UKF and the ensembled-based KF are improvements of the EKF,

targeting high-dimensional non-linear data assimilation problems.

Unscented Kalman Filter UKF is an improvement of the EKF algorithm based on

a deterministic sampling approach (Wan et Van Der Merwe [2000]). Like in the EKF,

the state of the system is also a Gaussian Random Variable for UKF. We know from

section 2.3.2 that in the case of EKF, the state is propagated by computing the tangent

linear approximations of M and H to perform first-order linearisation of a non-linear

system. However, this often leads to suboptimal performance and also divergence of the

filter (Wan et Van Der Merwe [2000]). A rigorous discussion and derivation of the UKF

equations can be found from the works of Julier et Uhlmann [1997] and Wan et Van

Der Merwe [2000]. Below, we will only provide the necessary equations to implement the

technique.
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Practical implementation: Extended Kalman Filter (EKF)

1. Initialisation

Xf
t0 and P f

t0

2. Forecast step:

a. Propagate the model (i.e. ti to ti+1):

Xf
ti+1

=Mti+1
(Xa

ti
)

b. Compute for the tangent linear of M:

M′ =
∂M
∂X

∣∣∣∣
Xt0

c. Calculate the forecast covariance error:

P f
ti+1

=M′
ti+1

P a
ti
M′T

ti+1
+Qti+1

3. Analysis step (i.e. for ti+1):

a. Compute for the tangent linear of H:

H′ = ∂H
∂X

∣∣∣∣
Xt0

b. Calculate the Kalman Gain

K = P fH′T (H′P fH′T +R)−1

c. Update the state estimate:

Xa = Xf +K(D −HXf )

d. Compute for the analysis covariance error:

P a = (I −KH′)P f

Selection of sigma points. In UKF, the state distribution is represented by a

set of sample points called sigma points, therefore the algorithm starts by carefully

selecting these points. The vector of sigma points, X , is a collection of 2L + 1 sigma

points defined as:

X a
ti

=

[
X̂a
ti
±
√

(L+ λ)P a
ti

]
(2.42)

where λ is a composite scaling parameter (hyperparameter), L is the dimension of the

augmented state, X̂a
ti

= [Xa
ti
T qti

T εti
T ]. Note that hyperparameters are used to optimize
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the performance of the filter to get an efficient choice of sample points (Fournier et al.

[2009]).

Forecast step. The forecast state step follows the equation of the linear KF (i.e.

equation (2.25)) when propagating the state to the next time step. The equation is

applied for each of the sigma points, l = 0, ..., 2L:

Xf
l,ti+1

=Mti+1
(X a

l,ti
) (2.43)

The mean and covariance of the forecast state is given by:

Xf =
2L∑
l=0

Wm
l (X a

l ) (2.44)

P f =
2L∑
l=0

Wc
l (X

f
l −Xf )(Xf

l −Xf )T (2.45)

Wm
l and Wc

l are the mean and covariance weights, respectively. Where, Wm
l =Wc

l =
1

2(L+λ)
. Note that at l = 0, Wm

0 = λ
(L+λ)

and Wc
0 = λ

(L+λ)
+ 1 − α2 + β. α is used to

determine the spread of the sigma points and β is used to incorporate prior knowledge of

the distribution (e.g. β = 2 for Gaussian distribution, Wan et Van Der Merwe [2000]).

The sigma points are projected to the observation space via:

Dfl = H(Xf
l ) (2.46)

with its mean defined as:

Df =
2L∑
l=0

Wm
l (Dfl ) (2.47)

Analysis step. To calculate the Kalman Gain, K, it is necessary to first calculate

the covariance of the forecast observation vector D and the cross-covariance of the forecast

state Xf and D:

P f
D,D =

2L∑
l=0

Wc
l (D

f
l −D

f
)(Df

l −D
f
)T (2.48)
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Figure 2.4: The construction of the error covariances in EnKF (from Sanchez [2016]).

P f
X,D =

2L∑
l=0

Wc
l (X

f
l −X

f
)(Df

l −D
f
)T (2.49)

K = P f
X,DP

f
D,D
−1

(2.50)

The analysis state vector and the error covariance at ti+1 are given by:

Xa = Xf +K(Df
l −Df ) (2.51)

P a = P f −KP f
D,DK

T (2.52)

Discussion Although UKF can better address non-linear dynamics than EKF by

capturing accurately the posterior mean and covariance up to the 3rd order (Wan et

Van Der Merwe [2000]), the technique is highly dependent on initialization task and the

selection of hyperparameters that are typically problem-dependent (Julier et Uhlmann

[1997], Shirzaei et Walter [2010]). Moreover, it is more computationally intensive than

EKF as it requires Cholesky factorizations on every step.

Stochastic Ensemble Kalman Filter EnKF was first developed by Evensen [1994]

to address issues related to EKF in the case of stronger non-linear dynamics of the state.

There are two basic approaches to EnKF: 1) stochastic and 2) (deterministic) square

root filter (e.g. Evensen [2004], Yan et al. [2015]). In this thesis, we will mostly present

92



2.3 Data assimilation methods

Practical implementation: Unscented Kalman Filter (UKF)

1. Initialisation

Xf
t0 ; P

f
t0 ; and X̂a

t0
= [(Xf

t0)
T 0 0]

a. Selection of sigma points:

X a
ti

=

[
X̂a
ti
±
√

(L+ λ)P a
ti

]
2. Forecast step:

a. Propagate the model for each sigma points (i.e. from ti to ti+1):

Xf
l,ti+1

=Mti+1
(X a

l,ti
)

b. Compute the mean and covariance of the forecast points:

Xf =
2L∑
l=0

Wm
l (X a

l )

P f =
2L∑
l=0

Wc
l (X

f
l −Xf )(Xf

l −Xf )T

where, Wm
l =Wc

l = 1
2(L+λ)

. At l = 0, Wm
0 = λ

(L+λ)
and Wc

0 = λ
(L+λ)

+ 1− α2 + β.

3. Analysis step (i.e. for ti+1):

a. Calculate the observation error covariance, P f
D,D:

P f
D,D =

2L∑
l=0

Wc
l (D

f
l −D

f
)(Df

l −D
f
)T

where, Dfl = H(Xf
l ) and Df =

∑2L
l=0Wm

l (Dfl ).

b. Calculate the cross-covariance, P f
X,D:

P f
X,D =

2L∑
l=0

Wc
l (X

f
l −X

f
)(Df

l −D
f
)T

c. Compute for the Kalman Gain:

K = P f
X,DP

f
D,D
−1

d. Update the state estimate:

Xa = Xf +K(Df
l −Df )

e. Compute for the analysis covariance error:

P a = P f −KP f
D,DK

T
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results based on the stochastic EnKF which is the classic prototype of EnKF. This was

proposed by Burgers et al. [1998] to avoid the underestimation of the analysis covariance

error by perturbing the observations prior to the computation of the analysis. Unlike the

EKF and UKF which are deterministic, the stochastic EnKF is a Monte Carlo alternative

route to address non-linearities (Evensen [2009]). Basically, EnKF is rooted on the

Nn-ensemble of realizations to approximate the mean and covariance of the state vector.

Each ensemble member is propagated by the model without the need for linearizion (i.e.

computation of the tangent linear approximations). Because of its simplicity, relative

ease on implementation and low computational cost when compared with KF, the EnKF

algorithm has gained a lot of development recently and has been proven effective to solve

operational data assimilation problems, thus, adopted by many operational NWP centers.

One important feature of EnKF is the way to construct the model error covariance,

given by equations (2.55) and (2.58)). Figure 2.4 illustrates the construction of the

forecast and analysis covariance error in EnKF. The initial model ensemble of size Ne

from the previous time step (i.e. t −∆t) are forecasted toward t. These result in the

evolution of the model covariance error, P f . Once the observations characterized by

observation error covariance, R, are available, the model ensemble is updated with a new

model error covariance, P a. The process reiterates to the next time step.

Forecast step. The forecast is carried out by the model integration under the

control of the model operator that represents the physical process governing the system.

For each ensemble member, n = 1, ..., Nn (i.e. where Nn is the size of the ensemble):

Xf
ti+1,n =Mti+1

(Xa
ti,n

) (2.53)

The forecast estimate is the mean of the forecast ensemble:

X
f

=
1

Nn

Nn∑
e=1

Xf
n (2.54)

The forecast error covariance is of the form:

P f = (Xf
n −Xf )(Xf

n −Xf )T (2.55)
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Practical implementation: [Stochastic] Ensemble Kalman Filter (EnKF)

1. Initialisation

Xf
t0 and P f

t0

2. Forecast step:

a. Propagate the model for each ensemble member (i.e. from ti to ti+1):

Xf
ti+1,n =Mti+1

(Xa
ti,n

)

b. Compute the mean of the forecast ensemble:

X
f

ti+1
=

1

Nn

Nn∑
n=1

Xf
ti+1,n

c. Calculate the forecast covariance error for ti+1:

P f = (Xf
n −Xf )(Xf

n −Xf )T

3. Analysis step (i.e. for ti+1):

a. Calculate the Kalman Gain

K = P fHT (HP fHT +R)−1

b. Perturb each observation point (i.e. m = 1, ..., Nm):

D̂m = Dm + η

c. Update the state estimate:

Xa
n = Xf

n +K

(
D̂ −HXf

n

)
d. Compute the mean of the forecast ensemble:

X
a

=
1

Nn

Nn∑
n=1

Xa
n

e. Compute for the analysis covariance error:

P a = (Xa
n −Xa)(Xa

n −Xa)T
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Analysis step. To update the estimation, equation (2.33) is applied to each of the

ensemble members once observations are available. However, there is a slight issue with the

analysis error covariance when the observation vector is used directly. In order to mimic

the BLUE equations, P a should be equal to (INx−KH)P f (INx−KH)T +KRK. However,

equation (2.33) leads only to (INx −KH)P f (INx −KH)T , hence underestimating the

error. This can give rise to filter divergence (Bocquet [2017]). One solution is to perturb

the observations prior to the computation of the analysis; hence the term stochastic.

Consider a dataset, Dm, having a total of Nm observation points. Each of the points

m = 1, ..., Nm will take the form:

D̂m = Dm + η

where η is a random variable with distribution N (0, R). Now, replacing D with D̂, the

stochastic EnKF analysis becomes :

Xa = Xf +K(D̂ −HXf ) (2.57)

The Kalman Gain is similar to the formalism given by equation (2.32) and the analysis

covariance is of the form:

P a = (Xa
n −Xa)(Xa

n −Xa)T (2.58)

where the mean analysis state is :

X
a

=
1

Nn

Nn∑
n=1

Xa
n (2.59)

Discussion When the error covariance is sampled from a small number of ensemble

that is insufficiently representative of the model error, divergence of the filter is often the

consequence. Fortunately, localisation and inflation can overcome this issue. Locali-

sation is more to reduce spurious long range correlation in the model error covariance. By

performing localisation, the computational cost can also be reduced since only a portion

of the model state is updated (Caya et al. [2005]). Assuming a short time scale, distant

observations are almost independent such that they can be restricted spatially. One

localisation approach is to multiply each term of the forecast error covariance P f by, for

example, an approximation of the Gaussian function exp(−r2
ij/2S

2) (i.e. rij is the distance

between grid points i and j. S is the localisation length.) (Houtekamer et Mitchell [2001],

Hamill et al. [2001], Lahoz et al. [2010]). This is called as the P-localisation . Another
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is to multiply the inverse of the observation error covariance R−1 by a Gaussian function

(Hunt [2005], Miyoshi [2005], Lahoz et al. [2010], Barth et al. [2016]). This is called the

R-localisation .

Proper localisation can reduce long range correlation errors (i.e. just part of the

sampling error, however localisation cannot work for covariance error that does not

correspond to the real error due to small ensemble size) in the model error covariance, but

these errors can accumulate and propagate through time. Multiplicative inflation is

a trick performed before or after the analysis, by multiplying a factor of (1 + ρinfl)
2, i.e.

ρinfl is between 0 and 1, to the forecast/analysis error covariance:

P f → (1 + ρinfl)
2P f (2.60)

or (1 + ρinfl) to each ensemble of the state vector:

Xf
n → (1 + ρinfl)X

f
n (2.61)

Sampling errors and the approximate assumption of Gaussianity are compensated by

the multiplicative inflation in the case of a “perfect” model therefore “curing” the intrinsic

source of the EnKF method (Bocquet [2017]). There is also an additive way of inflation

in order to compensate underestimated errors due to the presence of unaccounted model

errors. This is implemented by perturbing the ensemble members or adding Q to the

forecast error covariance:

P f → P f +Q (2.62)

Xf
n → Xf

n + qn, E [qnqn
T ] = Q (2.63)

Note that Q is the model error and as discussed previously in the KF approach, it

requires a good knowledge of the dynamics of the sytem to define it. Either way, inflation

allows the expansion of the distribution (before or after the analysis) such that it helps

the filter to converge to the true state of the system (rather reduce the ensemble collapse

problem).
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2.3.3 Data assimilation based on optimal control theory: The

variational methods

3DVar vs. 4DVar

All the variational methods aim to minimize the cost function J rather than finding

the maximum of a certain probability distribution function given an analyzed state, as

in the case of the sequential assimilation methods. The 3DVar analysis is the simplest

case where the observations and the background are both available at the same time or

over a period of time, short enough to assume that the state is fixed (Talagrand [2010]).

Its cost function is given by Equation (2.17) which can be minimized at the analysis

time, ti. Clearly, The first term in the right hand side of equation (2.17) evaluates the

deviation of x from the background state, Xb and the second term measures the distance

between the observations and the model predictions.

In the case where the evolution of the state cannot be neglected (i.e. time-dependent

problem) the following objective function is defined (Fournier et al. [2010], Talagrand

[2010]):

J (x = Xt0) =
1

2

[ K∑
i=0

(x−Xb
t0

)TP b−1
(x−Xb

t0
)+(Htixti−Dti)

TRti
−1(Htixti−Dti)

]
(2.64)

The minimization of J over a time window of interest, K, is now termed as the

four-dimensional variational analysis or 4DVar. The state evolves the same way as

described in equation 2.8. Note that equation (2.64) remains valid only if the model

error is neglected. Here, it stresses the fact that the dynamical model is perfect and

determines exactly the sequence of the estimated state vector, hence the term strong

constraint . Equation (2.64) follows the form of equation (2.17) where the first term

evaluates the distance between the initial state and the background state weighted by the

background error covariance matrix, P b. While the second term measures the discrepancy

between the model predictions and the observations performed over a time window of

interest and is weighted by the confidence given by the observation error covariance, Rti→K
.

If the model error is considered, the cost function takes the following form:
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tKt0

Figure 2.5: The variational approach to data assimilation. Given a time window of
interest, the initial condition, X0 is adjusted using iterative minimization algorithms. The
result is an optimal fit to the data. The dashed line corresponds to the model trajectory
prior to adjustment of the initial condition. (from Fournier et al. [2010])

J ([Xt0 , Xt1 , ...XtK ]) =
1

2

[ K∑
i=0

(Xt0−Xb
t0

)TP b−1
(Xt0−Xb

t0
)+(Htixti−Dti)

TRti
−1(Htixti−Dti)

+
K−1∑
i=0

(Xti+1
−Mti+1

Xti)
TQti

−1(Xti+1
−Mti+1

Xti)

]
(2.65)

defined for the whole sequence [Xti , i = 0, ...K]. Note that Q is the model error

covariance, uncorrelated with either the background or the observations. This model

error is presented as an additional set of “noisy” data (Talagrand [2010]) to be fitted by

the analyzed state and is termed as the weak constraint 4DVar analysis. However,

this is obviously computationally expensive as it requires to evaluate the cost function

over the whole sequence [Xti , i = 0, ...K] and a proper modeling of the not so-well known

Q can also be an issue. Having said the issues, the strong constraint 4DVar analysis is

typically implemented especially in operational weather forecasting centers.
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Note that in 4DVar analysis, the initial condition or control vector , Xt0 , is adjusted

while everything else is fixed through an iterative minimization algorithm within the

chosen time window. This minimization can become numerically costly and almost

impossible to calculate with increasing size of the state vector, Nx, as it requires the

computation of the gradient of J (i.e. ∇Xt0J
T ) therefore implying Nx realizations of the

forward model over the time window of interest. The so-called adjoint method (Le Dimet

et Talagrand [1986], Talagrand et Courtier [1987]) is typically implemented wherein the

computation of one gradient requires one forward integration of the full model equations

over the time interval on which the observations are available, followed by one backward

integration of the adjoint equation (Talagrand et Courtier [1987]). The term adjoint

approach introduces the transpose of the tangent linear equations as initially described

in the EKF where both the model operator and the observation operator are nonlinear.

The computational cost of the adjoint equations makes it possible to then use iterative

minimization algorithms such as the descent methods and quasi-Newton algorithm to

accommodate large-scale problems.

Advantages and limitations of EnKF and 4DVar

Many studies have already discussed the pros and cons of EnKF and 4DVar (e.g.

Lorenc [2003], Caya et al. [2005], Fournier et al. [2010], Talagrand [2010]). Here, I have

itemized in Table 2.1 and summarized below their strengths and limitations.

The variational approach is versatile and flexible. It allows easy introduction of the new

observations although its ability to fit detailed observations is limited by the resolution

of simplified model. Static model parameters can also be adjusted and be consequently

part of the control vector. In 4DVar, information are automatically propagated forward

and backward in time, making it easy to account for temporally correlated errors (either

observation or model error). Furthermore, variational approach has the natural ability

to handle time-dependent observation operators and non-Gaussian observation errors as

long as H is differentiable. There are three drawbacks that limit the variational approach:

1) it is costly in a way that it requires expertise to develop, validate and even maintain

the adjoint model; 2) there is no direct access to the error statistics of the analysis and 3)

most of the time, the model is assumed perfect; although the weak constraint approach

has already gained attention after its successful introduction and implementation.
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Table 2.1: The advantages (+) and limitations (-) of EnKF and 4DVar.

EnKF 4DVar
(+) Ease of implementation. (+) Versatile and flexible.

(+) Direct access to the forecast and
analysis error statistics.

(+) Propagates error forward and back-
ward in time within the time window of
interest.

(+) Allows the use of nonlinear obser-
vation operator, H.

(+) Natural ability to handle time-
dependent observation operators and
non-Gaussian observation errors.

(+) Although it can be tunned through
localisation and inflation,

(-) Costly in terms of the development,
validation and maintenance of the ad-
joint of the model and observational
operators.

(-) EnKF can suffer from undersampling
issues that would lead to ensemble col-
lapse and long range spurious correla-
tion in the error covariance matrix.

(-) No direct access to the analysis error
statistics.

(-) Forbids the use of non-Gaussian ob-
servational errors.

(-) Generally assumes the model is per-
fect (strong constraint).

The sequential assimilation approach via EnKF is practically much simpler to im-

plement than the 4DVar. Mainly, because 1) it does not require the development and

maintenance of an adjoint model and 2) the forecast and analysis error covariances

are always provided. EnKF permits nonlinear observation operator, H, but it treats

the resulting posterior density function as Gaussian. It is worth mentioning that non-

Gaussian observational errors are prohibited. As discussed in section 2.3.2, EnKF is

known to suffer from undersampling issues due to insufficient ensemble size and could re-

sult in ensemble collapse and long range spurious correlation in the error covariance matrix.

In summary, EnKF and 4DVar are the two most advanced and powerful data assimi-

lation techniques currently used as standard forecasting methods in NWP. Despite the

aforementioned weaknesses, their estimates are convergent at the end of the assimilation

period in the case of having linear operators, perfect model and Gaussian statistics

(Talagrand [1997], Sanchez [2016]). Kalnay [2010] proposed hybrid analysis using 4DVar
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and EnKF to better assimilate data and obtain more reliable results.

2.4 Application to problems in volcanology

Although data assimilation is already an operational technique in the field of numerical

weather prediction, its application to solve problems in volcanology is still very much

in infancy. Early efforts to follow the behavior of volcanoes are focused on applying

various KF spin-offs using kinematic models (e.g. Mogi [1958], McTigue [1987], Yang

et al. [1988]) and geodetic data. It is only until recently that dynamical models have

been proposed to assess the potential of volcanic eruptions by assimilating synthetic

deformation data. Kinematic models have no predictive capability and cannot be used

to determine the evolution of deformation with time given a set of initial parameters

(Anderson et Segall [2013]). For example, the physical and chemical processes that gave

rise to the observed deformation are not taken into account when using kinematic models.

In this section, I will attempt to provide a chronological listing of the publications involv-

ing the recent developments of volcanic data assimilation and also discuss their limitations.

The first application of KF to understand changes that occurs beneath a volcano

was performed by Fournier et al. [2009]. The authors applied UKF to track the magma

recovery at Okmok volcano using GPS data and a Mogi source model. This allowed

them to quantify ∼ 60− 80 % of total volume recovery from 1997 to 2007 at Okmok and

simultaneously follow the evolution of the source strength which is a nonlinear parameter.

However, there are some initialization issues in the strategy that can result in trade-offs

between parameters, then leading to incorrect parameter estimates. Furthermore, selec-

tion of hyperparameters (i.e. λ in section 2.3.2) are problem-dependent (Shirzaei et

Walter [2010], Julier et Uhlmann [1997]).

A hybrid approach of combining Random Iterated Search and Statistical Competency

Generic Algorithm (RISC-GA) and KF was next introduced by Shirzaei et Walter [2010].

The rationale of the hybrid approach is based on the “good a priori” requirement of KF.

The strategy was developed to monitor the volcano source underneath Campi Flegrei

volcano in Italy and provide new insights about the physical process that occurs at this

volcano. However, the three-step method (i.e. RISC-GA→LKF→RISC-GA) that they

developed requires repeating the steps until a stopping criteria is reached making the
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whole process computationally expensive.

Gregg et Pettijohn [2016] have successsfully first applied the EnKF technique using a

viscoelastic finite element model (FEM) of an inflating magma reservoir and synthetic

geodetic data to assess volcanic unrest. However, the shear modulus and the host rock

viscosity which controls the evolution of the medium are considered constant in the syn-

thetic tests. These limit the interests of considering the temporal evolution of the system

and the ability to gain more information about the magmatic properties controlling the

system. Moreover, the comparison made between inversion and EnKF is not consistent.

The authors used a viscoelastic FEM for EnKF wheareas an analytical elastic model

(McTigue [1987]) for the inversion.

Zhan et Gregg [2017] extended the synthetic tests of Gregg et Pettijohn [2016] by: 1)

setting up a 3D viscoelastic FEM in order to allow future efforts in volcanic data assimi-

lation to account for asymmetric magma reservoirs, topography, faults, and host rock

heterogeneities; 2) adding distance-correlated noise in the InSAR data and a combination

of white and flicker noise for the GPS data; and 3) adopting an iterative EnKF approach

and performing sensitivity analyses. Although the numerical model was designed for a

3D environment, the authors performed synthetic tests using a highly idealized terrestrial

volcano (e.g. no topographic change was considered and the material properties of the

crust were fixed). Also, the distance-correlated and combination of noise added in the

synthetic data were removed prior to EnKF implementation by applying a low-pass

filter. This limit the ability to assess the performance of EnKF when non-Gaussian

observation errors are embedded in the signal. It is suggested that in proper assimilation

practice, one should incorporate direct (raw) observations (Talagrand [1997], Sanchez

[2016]). The iterative EnKF approach allowed better convergence of their uncertain

parameters to the nominal values except for a few (e.g. radius of the magma chamber)

that diverged tremendously. Furthermore, note that the joint usage of FEM and the

iterative assimilation strategy requires expensive calculations making it unsuitable for

real-time forecasting of volcanic unrest.

Zhan et al. [2017] first applied the EnKF using real InSAR data to perform hindcasting

of the 2009 Kerinci volcanic eruption in Indonesia. Using the estimated overpressure

and chamber radius, Mohr-Coulomb failure models were used to assess tensile failure in

the host rock that could potentially signal an impending eruption. However, similar to
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the studies of Fournier et al. [2009] and Shirzaei et Walter [2010] which are based on

kinematic pressurized source model, Zhan et al. [2017] used two-step kinematic modelling

(e.g. spherical pressurized source (McTigue [1987]) and then deflating near-vertical oblate

source (Yang et al. [1988])) to reproduce the deformation observed at Kerinci volcano. Due

to the lack of predictive capability in using kinematic models, the authors were not able to

forecast the evolution of the system when there is a gap in the acquisition of InSAR data.

This diverged from the concept and huge potential of the sequential assimilation methods

discussed in the aforementioned sections and EnKF synthetic tests (e.g. Zhan et Gregg

[2017]). The use of a dynamical model and not only a time-dependent kinematic model is

crucial in implementing the sequential assimilation methods, of particular interest is the

EnKF approach. It is worth noting that in physical volcanology, dynamical models allow

better understanding of the evolution of magmatic processes that lead to observations

measured on the surface of the Earth.

2.5 Summary and Perspectives

Clearly, there is a need to combine observations and models objectively in order to

fill the gaps in information and be able to gain knowledge about the past, present and

future state of our system-of-interest. Data assimilation has been proven effective in

NWP and shows great potential in other fields of geosciences. In volcanology, however,

data assimilation is still an emerging topic and there are a lot of things that are yet to

be explored. This thesis aims to further build and improve data assimilation strategies

that are useful not only in terms of forecasting but also to improve our knowledge on

how volcanoes behave. In particular, the next chapters will focus on EnKF assimilation

method, discussing the approach that we developed using synthetic and real geodetic

observations in order to: 1) forecast the rupture of a magma chamber potentially leading

to an eruption, 2) better understand subsurface processes occuring underneath a volcano

and 3) improve our knowledge on how neighboring volcanoes interact with each other.
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Abstract

In monitoring active volcanoes, the magma overpressure is one of the key parameters

used in forecasting volcanic eruptions. This parameter can be inferred from the ground

displacements measured on the Earth’s surface by applying inversion techniques. However,

in most studies, the huge amount of information about the behaviour of the volcano

contained in the temporal evolution of the signal is not fully exploited by inversion. Our

work focuses on developing a strategy in order to better forecast the magma overpressure

using data assimilation. We take advantage of the increasing amount of geodetic data

(i.e. Interferometric Synthetic Aperture Radar (InSAR) and Global Navigation Satellite

System (GNSS)) recorded on volcanoes nowadays together with the wide-range availability

of dynamical models that can provide better understanding about the volcano plumbing

system. Here, we particularly built our strategy on the basis of the Ensemble Kalman

Filter (EnKF). We predict the temporal behaviours of the magma overpressures and

surface deformations by adopting a simple and generic two-magma chamber model and by

using synthetic GNSS and/or InSAR data. We prove the ability of EnKF to both estimate

the magma pressure evolution and constrain the characteristics of the deep volcanic system

(i.e. reservoir size as well as basal magma inflow). High temporal frequency of observation

is required to ensure the success of EnKF and the quality of assimilation is also improved

by increasing the spatial density of observations in the near-field. We thus show that

better results are obtained by combining a few GNSS temporal series of high temporal

resolution with InSAR images characterized by a good spatial coverage. We also show

that EnKF provides similar results to sophisticated Bayesian-based inversion while using

the same dynamical model with the advantage of EnkF to potentially account for the

temporal evolution of the uncertain model parameters. Our results show that EnKF

works well with the synthetic cases and there is a great potential in using the method for

real-time monitoring of volcanic unrest.

3.1 Introduction

Tracking the migration of magma as it propagates to the Earth’s surface is crucial in

eruption forecasting as well as in volcanic hazard assessment. When magma accumulates

at shallow depth or propagates towards the surface, it induces seismicity as well as surface

displacements, such that geophysical signals recorded at volcanoes have long been used to

infer magma path and magma plumbing system characteristics (e.g. Swanson et al. [1983],

108



3.1 Introduction

Voight et al. [1998], Aoki et al. [1999], Roult et al. [2012], Sigmundsson et al. [2015]).

Recently the ability of geodesy to provide continuous and spatially extensive evolution of

surface displacements during inter-eruptive periods has been drastically improved as a

consequence of the increasing number of continuous Global Navigation Satellite System

(GNSS) networks installed on volcanoes (e.g. Geirsson et al. [2012], Peltier et al. [2016])

together with the improvement of the availability of Synthetic Aperture Radar (SAR)

data (i.e. better spatial coverage, improved spatial and temporal resolution of SAR data

from new satellite missions) (e.g. Pinel et al. [2014]). This progress allows to characterise

the geometry of magmatic plumbing systems underlying volcanoes in terms of reservoir

shapes, depths and numbers. In particular, at some specific volcanoes, deep magmatic

reservoirs, which had been ignored so far, are evidenced (e.g. Elsworth et al. [2008],

Hautmann et al. [2014], Chadwick et al. [2011], Bagnardi et Amelung [2012]). However,

most of the models used to interpret geodetic data are kinematic and cannot provide

information on the pressure within the magmatic system, which is the key parameter to

control the timing of magma reservoir rupture as well as the ability of magma to reach the

surface and thus to feed an eruption. Besides, the difficulty to determine independently

the size of a magma chamber and its pressure change has been recognized for many years

(McTigue [1987], Segall [2013]). Basically, the same displacement field is expected from a

small pressure change affecting a large magma reservoir and from a large pressure change

experienced in a small magma chamber. However, consequences are not the same as the

latter case is more prone to end in a short-term eruption. The good point is that the

temporal evolution of the displacement field should help deciphering between those two

cases, considering similar magma and crustal rheologies, the pressurization of a small

chamber being much quicker than for a large one. One limitation of this approach, as

recently demonstrated by Segall [2016], is that the temporal evolution actually results

from of a convolution between the history of a pressure source and the magma and crustal

rheology (Reverso et al. [2014]). It follows that additonal observations such as gravity

data might be useful to discriminate both effects.

In addition to the recent progress in geodetic observations, several dynamical models

of magmatic system evolution have been recently derived. They provide an interpretation

of the temporal evolution of geodetic data as well as seismic observations considering

either the rheology of the encasing medium (Nooner et Chadwick [2009], Carrier et al.

[2014], Got et al. [2017]) or the evolution of the magma inflow at the bottom (Lengliné

et al. [2008], Pinel et al. [2010], Reverso et al. [2014]). The latter type of models has
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proven to be useful in recovering information of the deepest part of the magma plumbing

system, such as the size of the deep storage zone as well as the bottom magma inflow

(Reverso et al. [2014]), which is always quite difficult to constrain. Segall [2013] has nicely

demonstrated the interest to combine deformation data and a physics-based model of

the plumbing system with a bayesian-based approach in order to forecast eruptions. In

particular, the Markov Chain Monte Carlo method was applied with success to Mount

St Helens (Anderson et Segall [2011, 2013]). As noticed by Segall [2013], a limitation of

this approach is that it cannot account for epistemic uncertainties. Another limitation is

potentially that it is not efficient to estimate model parameters evolving through time.

Also, the challenge remains in accommodating incoming data and using them efficiently.

Inversion methods are data intensive (i.e. uses all observations from the beginning) and

typically requires expensive calculations at each observation period, hence may not be

suitable for real-time eruption forecasting. To address these issues, data assimilation–a

common method used in ocean-weather forecasting and monitoring–is here applied as a

way to combine volcano deformation data and physics-based models.

Data assimilation is a time-stepping process that combines models, observations and

a priori information based on error statistics to predict the state of a dynamical system.

It was initially developed in ocean-atmosphere science (e.g. Talagrand et Courtier [1987],

Talagrand [1997], Houtekamer et Mitchell [2005], Yan et al. [2014]), and has gained

popularity in many other fields of geosciences such as vegetation and soil moisture (e.g.

Reichle et al. [2007], Barbu et al. [2011]), natural resource exploration (e.g. Lorentzen

et al. [2001], Geir et al. [2003], Gu et al. [2005], Chen et al. [2010], Zoccarato et al. [2016])

and geomagnetism (e.g. Fournier et al. [2007, 2010], Kuang et al. [2010], Gillet et al.

[2015]). Many assimilation algorithms are already available nowadays. Among them, is

the Kalman Filter (KF). It was first introduced by R.E. Kalman in 1960 (Kalman [1960])

and was regarded as the greatest achievement in estimation theory and control systems

applications of the twentieth century, enabling the precise and efficient navigation of

spacecrafts in the solar system (Grewal et Andrews [2008]). In earthquake research, KF

has been used to determine fault slip evolutions (Segall et Matthews [1997], McGuire

et Segall [2003], Bartlow et al. [2014], Bekaert et al. [2016]). At active volcanoes where

nonlinear processes are typical, variants of KF have been used in order to solve nonlinear

equations. For example, Fournier et al. [2009] used unscented KF to track the magma

recovery at Okmok, but the strategy is strongly dependent on assumptions such as

initialisation task and selection of hyperparameters that are typically problem-dependent
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(Shirzaei et Walter [2010], Julier et Uhlmann [2004]). Shirzaei et Walter [2010] coupled

genetic algorithm with KF to monitor volcano source at Campi Flegrei, which requires

rerunning of KF for several times. In all these studies in the Earth Science field, the KF

is used as a temporal filter without considering any forward dynamical model. So far, the

application to volcanology of the KF based on a dynamical model has been restricted

to one study (i.e. Gregg et Pettijohn [2016]) using a forward model accounting for a

viscous rheology of the encasing medium. However, the model parameter controlling the

temporal evolution of the medium and the crustal viscosity, was in this study considered

as a fixed parameter, thus limiting the interest of considering the temporal evolution of

the system. Also, their approach was based on a finite element model which limits the

application to real-time forecasting and their joint assimilation of GNSS and InSAR data

was still problematic.

In this work, our main goal is to test the ability of Ensemble Kalman Filter (EnKF)

to quantify the magma pressure evolution at depth from surface displacement data and

thus to forecast pressure-based volcanic eruptions. As a first attempt, we focus on a

specific dynamical model that well-describes the behavior of several often erupting basaltic

volcanoes. We developed an efficient approach to assimilate GNSS and InSAR data

into a two-magma reservoir model, which is a simple and generic dynamical model for

the magma plumbing system, in order to predict the overpressures and to constrain

two model parameters related to the deepest part of the reservoir system. We begin by

briefly discussing the two-magma reservoir model of Reverso et al. [2014] in section 3.2.1,

then reviewing the fundamentals of the EnKF approach in section 3.2.2, followed by the

experiment setup and the step-by-step implementation of our EnKF strategy in section

3.2.3. We then present two synthetic cases (i.e. case A and case B) when considering the

magma inflow at the bottom of the system as well as the size of the deepest reservoir

as uncertain and given two kinds of initial conditions about the uncertain parameters

(i.e. biased or unbiased distribution). In particular, case A is about state estimation

wherein we only track the behavior of the overpressures, while case B demonstrates state-

parameter estimation where the uncertain model parameters are estimated in parallel

with the overpressures. In the discussion part, we tackle the effects of the spatial and

temporal characteristic of the datasets (i.e. GNSS-like and InSAR-like data) used during

the assimilation and how far-field data affect the performance of assimilation. We also

compare the performance of EnKF with a bayesian-based inversion. Then we present the

advantages and limitations of the dynamical model we considered as well as the possibility
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Figure 3.1: Schematic sketch of the two chamber model, modified after Reverso et al.
[2014]. The magma inflow rate at the bottom chamber Qin and the radius of the deep
reservoir ad are the two parameters considered to be uncertain in this study. Observations
(vertical and horizontal displacements) are recorded at the surface at a given location S
characterized by its distance r from the center of the volcanic system C. Rs =

√
r2 +Hs

2

and Rd =
√
r2 +Hd

2 are distances between S and the shallow and deep reservoirs,
respectively.
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of applying data assimilation to other types of models. Lastly, we discuss the ease of

implementing our strategy and the future of EnKF for real-time volcano monitoring.

3.2 Methods

3.2.1 Forward Dynamical Model

We use the two-magma reservoir model proposed by Reverso et al. [2014]. This model

consists of two reservoirs embedded in an elastic medium and connected by a hydraulic

pipe. The deeper reservoir is assumed to be fed by a constant magma inflow, which

corresponds to the bottom boundary condition of the system. The magma is assumed

to be incompressible. This model, presented on Figure 3.1, is characterized by a set of

geometrical and rheological parameters listed in Table 3.1 and solves for the temporal

evolution of the magma overpressures, ∆Ps and ∆Pd, for the shallow and the deep

reservoirs, respectively. As shown by Reverso et al. [2014], this simple model provides

a consistent explanation for the temporal evolution of the post-eruptive displacement

measured at Gŕımsvötn volcano, Iceland after the three last eruptions (1998, 2004 and

2011). The initial and transient exponential behavior is due to the refilling of the shallow

reservoir by the deeper one after the eruption. Then, once the system has been readjusted,

a constant displacement rate is observed due to the constant magma inflow at the bottom

of the system.

In this model, the values of the overpressure within the shallow and deep reservoirs,

respectively, ∆Ps and ∆Pd, at a given time, ti+1, are derived from their values at the

previous time step, ti, using the following discrete time-step equations (see equations

derived in Appendix A of Reverso et al. [2014]):

∆Psti+1
−∆Psti

ti+1 − ti
=

Gac
4

8µγsHcas3
((ρr − ρm)gHc + ∆Pdti −∆Psti ) (3.1)

∆Pdti+1
−∆Pdti

ti+1 − ti
=

G

γdπad3
Qin −

γsas
3

γdad3

∆Psti+1
−∆Psti

ti+1 − ti
(3.2)

The shapes (i.e. spherical or sill-like) of the shallow and deep reservoirs are charac-

terised by two geometrical constants, respectively, γs and γd (Reverso et al. [2014]). The

discrete formula stays valid as long as the time interval ∆t = ti+1 − ti remains small

113



ASSIMILATION OF DEFORMATION DATA FOR ERUPTION FORECASTING

Table 3.1: Model parameters and true values assigned for the synthetic case. The
highlighted parameters are the ones which are considered as uncertain in this study.

Parameters Description Value Unit
Geometry

ac Radius of the conduit. 1.6 m
ad Radius of the deep reservoir. 2.2 km
as Radius of the shallow reservoir. 2.0 km
Hd Depth of the deep reservoir. 35.0 km
Hs Depth of the shallow reservoir. 3.0 km
γd 1.0 for Mogi point source, 8(1− ν)/3π for sill. 1.0
γs 1.0 for Mogi point source, 8(1− ν)/3π for sill. 8(1− ν)/3π
αd 1.0 for Mogi point source, (4Hd

2)/(πRd
2) for sill. 1.0

αs 1.0 for Mogi point source, (4Hs
2)/(πRs

2) for sill. (4Hs
2)/(πRs

2)

Physics
G Shear modulus. 81.9 GPa
ν Poisson’s ratio. 0.25
µ Viscosity. 2000.0 Pa s
ρ Density contrast, (ρr − ρm). 300.0 kg m−3

g Gravity. 9.81 m s−2

Basal condition
Qin Magma flow rate in the deep reservoir. 0.02 km3 y−1

Initial conditions
∆Ps0 Value of the shallow chamber overpressure at t0. 0.0 Pa
∆Pd0 Value of the deep chamber overpressure at t0. 0.0 Pa

compared to the time constant τ of the system given by τ = 8µHcas3ad
3γsγd

Gac4(as3γs+ad3γd)
(Reverso

et al. [2014]). Note that when Qin is set to zero and the deep reservoir is sufficiently large

when compared to the shallower one (ad/as ≈ ∞), this model corresponds to the case

of a unique magma reservoir fed by a deep magma source which remains at constant

pressure as previously proposed for several basaltic volcanoes (Lengliné et al. [2008]).

This model can also represent the upper part of more complex plumbing system made of

a large number of magma reservoirs lying at increasing depth. It thus benefits from the

advantage of being both generic and simplistic.

Based on the Mogi model (Mogi [1958]), the radial uR and vertical uz displacements

observed at the surface can be expressed using:
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uR(r, ti) =
(1− v)

G
r
(
αs
as

3

R3
s

∆Psti + αd
ad

3

R3
d

∆Pdti

)
(3.3)

uz(r, ti) =
(1− v)

G

(
Hsαs

as
3

R3
s

∆Psti +Hdαd
ad

3

R3
d

∆Pdti

)
(3.4)

The shapes (i.e. spherical or sill-like) of the shallow and deep reservoirs are characterised

by two geometrical constants, respectively αs and αd (Reverso et al. [2014]). Provided

that one has access to the deformation fields related to the activity of the volcano (i.e.

inferred from GNSS observations and/or InSAR), equations (3.3) and (3.4) create a

link between the dynamical model and the observations, necessary for data assimilation.

3.2.2 Data Assimilation: Ensemble Kalman Filter

On one hand, predictions given by a dynamical model incorporate errors due to the

choices or limitations related to the model physics and parameters: including errors

associated with assumptions, theory and/or conceptualisations within the underlying

equations, errors due to the computational grid and its discretisation, numerical errors

related to the time-step or numerical methods used to solve the mathematical equations,

and errors associated with the model parameters. On the other hand, uncertainties are

also present in the observations due to the instrument itself, different perturbations during

data acquisition, and noise generated during pre- and post-processing of data. More-

over, in most cases, observation is not spatially nor temporally complete because of the

limitation in data acquisition. Data assimilation takes advantage of the complementary

information provided by the dynamical model and the observations. It corrects model

predictions whenever observations are available in order to provide model state trajectory

as accurate as possible. In ocean-atmosphere science, it has become the common approach

for monitoring and forecasting.

Ensemble Kalman Filter is an ensemble-based stochastic data assimilation technique

developed by Evensen (Evensen [1994, 2003]) as an alternative route to solve the limita-

tions of the classic Kalman Filter. The main characteristic lies on the use of N -ensemble

of realisations to construct a Monte Carlo approximation of the mean and covariance of

the state vector (i.e. vector containing all the model parameters to be improved by data

assimilation).
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We adopted the EnKF method in this work. In general, the assimilation is divided

into two steps: 1) the forecast step and 2) the update step (also known as the analysis

step). The EnKF begins with the ensemble generation. N realisations (ensembles)

of uncertain model parameters are performed according to an a priori distribution.

Then, Monte Carlo simulation is performed while running forward the dynamical model

for each ensemble member, resulting to the ensemble of model state forecast X, i.e.

X =


x1,1 x1,2 x1,Nn

x2,1
. . .

...

...

xNx,1 ... xNx,Nn

 where Nx is the number of state variables and Nn is the

ensemble size, and the associated covariance error P f .

In the following section we further describe the EnKF scheme and equations based on

Evensen [1994, 2003].

Forecast step

The forecast is carried out by the model integration under the control of the model

operator that represents the physical process governing the system. The model predicts

the state at the current instance from the model state at previous instance according to

the model operator as expressed in equation (3.5).

Xf
ti+1

=MXa
ti

+ qti (3.5)

f and a: denote the forecast and analysis, respectively, M: the model operator derived

from equations (3.1) and (3.2) that relates the state of the system at time, ti to ti+1 (see

Appendix A.1 and A.2), and q: the model error. Initial conditions of the model state

variables are necessary to start the model.

At each time step, the error covariance, P f , of the model forecast which is an Nx×Nx

matrix can be obtained using:

P f = (Xf −Xf )(Xf −Xf )T (3.6)
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Update step

The update stage consists of correction of the model prediction by the observations in

order to obtain a more precise estimation of the model state. The observations, D, i.e.

D =


d1

d2

...

dNm

 where Nm is the total number of observations, can be anything that are

related to the true model state x† by the observation operator H.

D = Hx† + ε (3.7)

Note that the observation error ε allows the derivation of the error covariance of the

observations R, i.e. R = E(εεT ).

Updating Xf is straightforward and can be performed by first computing the Kalman

gain, K, using equation (3.8). The Kalman gain simply represents the magnitude of

which the incoming observation corrects the model estimates in equation (3.5).

K = P fHT (HP fHT +R)−1 (3.8)

To formalise the update, we use equation (3.9).

Xa = Xf +K(D −HXf ) (3.9)

The result of the update is called the analysis, Xa. It is the linear sum of the model

forecast and the correction introduced by the observation given the difference between the

observations and model predictions. In general, the analysis must be at least statistically

as accurate as any of the individual observation or the model prediction.

Lastly, the error covariance of the analysis, P a, is calculated using equation (3.10).

P a = (Xa −Xa)(Xa −Xa)T (3.10)
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3.2.3 Experiment Set-up

We will now describe in detail how the assimilation experiments are implemented. The

state variables are the magma overpressures ∆Ps and ∆Pd within the shallow and deep

magma reservoirs, respectively. The observations are the vertical and the radial surface

displacements observed at a given time, ti, and at a given distance, r, from the axis of

symmetry of the system. From a model simulation with a given set of parameters listed

in Table 3.1 (see section 3.2.3), we generate a set of synthetic observations and then

using these observations and considering two of the parameters as uncertain, we perform

the assimilation as described in section 3.2.3 and compare the derived overpressures

and model parameters obtained in two synthetic cases (i.e. state-only, state-parameter).

Generating synthetic observation

We perform a model simulation to produce synthetic data by setting each model

parameter to a given value as defined in Table 3.1, in data assimilation, this step is

referred to as the true run. These values are chosen such that they are consistent with the

case of Gŕımsvötn volcano in Iceland. In particular, at Gŕımsvötn Volcano, the shallow

storage zone has been well characterized by seismic and geodetic studies (Alfaro et al.

[2007], Hreinsdóttir et al. [2014]). Other geometrical parameters are chosen in consistent

with the study of Reverso et al. [2014]. The value taken for the shear modulus, G,

however, represents an upper bound for the lower part of the crust (Auriac et al. [2014]).

This large value results in large magma overpressure values but it does not influence the

interpretation of the assimilation technique.

To produce the synthetic overpressures, the analytical solution of Reverso et al. [2014]

to the differential equations (3.1) and (3.2) are used, i.e. x† =

[
∆P †s

∆P †d

]
:

∆P †sti = A(1− e−
ti
τ ) +

GQin

π(as3γs + ad3γd)
ti + ∆P †st0 (3.11)

∆P †dti
=
γsA

γd
(1− e−

ti
τ ) +

GQin

π(as3γs + ad3γd)
ti + ∆P †dt0

(3.12)

with A = ad
3γd

as3γs+ad3γd
[∆P †dt0

− ∆P †st0 + (ρr − ρm)gHc − 8γsQinµHcas
3

πac4(as3γs+ad3γd)
]. The resulting

overpressures are considered as the true values and are then used as input in equations
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(3.3) and (3.4) in order to generate synthetic displacements d†m, i.e. d†m =

[
u†Rm
u†zm

]
.

The observation is then generated by adding a white Gaussian noise, i.e. N (µu = 0, σ2
u),

to the synthetic displacements, where σu represents the instrument precision along the

radial and vertical directions. We use the typical GNSS instrument errors that are 1 mm

and 10 mm for uR and uz, respectively.

Figure 3.4 shows the observations (vertical and radial displacements) generated at

various distances from the volcanic center (i.e. r = 1 to 4.9 km). Notice that for all

the radial displacements and for those vertical displacements that are nearest to the

volcano axis (i.e. r = 1 to 2.5 km), it is very difficult to discern the synthetic observation

because the amplitude of the noise is very small relative to the signal. Note that in the

results part (section 3.3) we use a total of 80 observations (i.e. Nm = 80) to define the

observation vector D, which comprises the vertical and radial displacements, uniformly

(every 100 m) located at distance r = 1 to 4.9 km away from the volcano axis. The effect

of the number of observations used as well as the frequency of incoming observations are

discussed in Section 3.4.

Assimilation Strategy: Using EnKF

The state variables are the overpressures ∆Ps and ∆Pd and we consider two parameters

ad and Qin as uncertain. We focused on these particular parameters characterizing the

deeper part of the magma pumbing system because they are the most difficult to recover

using surface displacement data.

The time interval, ∆t, is fixed to 2 days, which is much smaller than the true time

constant τ (i.e. τ = 0.11 y). The start of the assimilation begins just after an eruption

when the reservoirs are refilling and terminates after 500 time-steps (i.e. tf ∼ 2.74 y).

The initial values of magma overpressures are set to zero (See Table 3.1), assuming that

both reservoirs had been fully depressurized by the previous eruption. The frequency

of available observation, fobs, is usually fixed to one; meaning that at each assimilation

step (i.e. every 2 days) there is always an available observation. In the case where no

observation (fobs = 0) is available, the model prediction cannot be corrected by the obser-

vation. This particular case is hereafter called the free run and is presented for comparison.
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Figure 3.2: The step-by-step EnKF strategy that we implemented in this study. The
broken borders and lines imply that the step is optional.
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Two cases are considered here: case A) where only the state variables are predicted and

case B) where the state variables and the two uncertain parameters are both estimated.

We used the classic EnKF where the observations are perturbed prior to assimilation

(Burgers et al. [1998]). Below we describe in detail the practical implementation of EnKF

as summarized in Figure 3.2:

1. We start by defining an initial ensemble of 1000 members. For ensemble generation,

two distributions are considered for the uncertain parameters: 1) using a truncated-

Gaussian distribution wherein the mean of each distribution is centered on the

true value of the uncertain parameters (hereafter called unbiased) and 2) using a

Gaussian-prior distribution that does not include the true value of the uncertain

parameters, the mean of each distribution being very far from their true values

(hereafter called biased).

2. For each of the ensemble members:

(a) We run the forward model step-by-step from the initial condition until the

data assimilation step ti+1. The state vector is built depending on which case

is being tested. See Appendix A.1 and A.2 for the state-only estimation

and state-parameter estimation, respectively.

Tip 1: When performing either state-only estimation or state-parameter

estimation, an inflation factor ρinfl ∈ [0, 1) can be multiplied to the ensemble

of state variables, i.e. Xf = (1 + ρinfl)X
f , to prevent the ensemble from

collapsing to a single value. For all the synthetic cases performed (section

3.3), we used an inflation factor equal to 0.1 at each assimilation step. Note

that prior to the application of an inflation factor, the forecast state vector

must be mean-centered.

Tip 2: In state-parameter estimation using EnKF, the parameters are only

updated by the covariance between them and the state variables. When doing

so, we randomly perturb the uncertain parameters by adding noise, N (0, α2
p),

where αp is the additive inflation. This would help the filter to explore more

possible values since their values do not change during the forecast step, i.e.,

pfti+1,n = pati,n. In our synthetic cases, we used an additive inflation of αad = 5

and αQin = 0.005 to tune the uncertain parameters during the assimilation.

These are derived from empirical observations after several adjustments.
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(b) The error covariance of the forecast, P f , is computed using equation (3.6).

(c) We perturb the field observation vector using:

d̂m = dm + η (3.13a)

D̂ = [d̂1, d̂2, ..., d̂Nm ] (3.13b)

where η is a random variable with distribution N (0, R).

(d) The state vector is then updated using equation (3.9), replacing D with D̂ :

Xa = Xf +K(D̂ −HXf ) (3.14)

Tip 3 : Resample the analysis state vector, Xa, using the strategy proposed

by (Evensen [2009]) before moving to the next data assimilation time step

if the updated values of the uncertain parameters fall beyond or exceed the

boundary conditions.

(e) The error covariance of the analysis, P a, is obtained using equation (3.10).

3.3 Results

Synthetic Case A: State Estimation

The first test case tracks only the evolution of the overpressures in the shallow and

deep reservoirs, i.e. equation (A.1), given an initial condition where the distributions

of the uncertain parameters are unbiased (Figure 3.3C) or biased (Figure 3.5C).

In both cases, the EnKF performed well in predicting the shallow and deep overpres-

sures towards the end of the assimilation as evidenced by the red line (i.e. EnKF) that

closely follows the black broken line (i.e. true value) in Figures 3.3 and 3.5. In fact for

the shallow overpressure, even with a poor knowledge about the uncertain parameters,

the EnKF was able to catch almost perfectly the true overpressure. Unsurprisingly, the

predicted overpressure for the deep reservoir is more likely affected by poor parameter

initialisation because the displacement induced by the deeper chamber is smaller, such

that its overpressure is indirectly constrained by the dynamical model and consequently

more influenced by the two uncertain parameters.
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Table 3.2: Results of EnKF via state estimation after 500 time steps.

True Value Free Run EnKF
Unbiased Biased Unbiased Biased

Mean Stdev % error Mean Stdev % error Mean Stdev % error Mean Stdev % error
∆Ps(MPa) 150.81 153.02 50.23 1.47 180.12 18.38 19.44 150.71 0.05 0.07 149.78 0.04 0.69
∆Pd(MPa) 62.02 64.02 53.44 3.22 91.79 19.55 48.00 62.00 0.73 0.04 59.38 0.40 4.25

In Figure 3.5B, the result of EnKF is found closer to the free model prediction

(i.e. results in green, labeled as free run) at the start of the experiment when the prior

information about the uncertain parameters is far from their true values (see inset 2 for a

magnified version). The model error seems smaller at the beginning as compared to the

observation error, hence, the contribution of the model prediction is found to dominate

the process. As the experiment goes on, the model error increases tremendously (i.e. the

mean overpressure from the free run deviates away from the true overpressure) but thanks

to the small measurement error, the analysis was able to converge closer to the true state

of the system. Although overpressure estimation may have been unsuccessful towards

the end of the assimilation, still, the resulting error differences between the true values

and the EnKF-estimates are very small (i.e. 0.69 % and 4.25 % for the shallow and deep

reservoirs, respectively). Note that this error difference may increase if the assimilation

window is extended. The failure of estimation is due to the observation operator that

relates the model and the observation, since it incorporates an uncertain parameter ad

which is fixed to a bad value in this case.

In Table 3.2, we present the summary of the synthetic results after performing the

experiments for the state estimation case. As expected, there is a significantly higher

percentage of error when the model is freely propagated forward in time without the

correction of the observations (free run).

We estimated the displacements using the overpressures derived from the assimilation

run, i.e. applying equations (3.3) and (3.4). Figures 3.4 and 3.6 show 10 out of

the 80 combined radial and vertical displacements used during the assimilation. Notice

that in the case where the uncertain parameters are well-constrained (i.e. Figure 3.3C),

the displacements are well forecasted even at distances where the signal-to-noise ratio

starts to weaken (i.e. vertical displacements at r ≥ 3 km, see Figure 3.4) . However, in

the case of poorly initialised parameters (i.e. Figure 3.5C), displacement prediction is

not favorable especially along the vertical component (Figure 3.6) where the forecast

worsens as one goes farther away from the volcano axis.
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Figure 3.3: The evolution of the overpressures after performing the state estimation
(Figure 3.3A and 3.3B), given that the initial ensemble of the uncertain parameters
(Figure 3.3C) are non-Gaussian, centered on their true values (black broken lines). In
Figures 3.3A and 3.3B, the black broken line represents the true value of the overpressures.
The green ones represent the model forecasts where the green solid line is the mean, the
dark green fill is the spread (1σ) and the light green fill covers the full extent of the
ensemble (i.e. [min, max]). The red ones represent the result of EnKF where the red
solid line is the mean, the dark red fill is the spread (1σ) and the light red is the full
extent of the ensemble. Notice that the spread of the ensemble is very narrow for the
assimilation case (∼ 104 − 106).
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Figure 3.4: The EnKF-estimated displacements after performing assimilation via state
estimation (i.e. blue solid line) given that the prior distribution of the uncertain parameters
are close to their true values (Figure 3.3C). The synthetic displacements used as D during
assimilation are the noisy red lines that are more evident in the vertical component at
far-field distances. The black broken lines correspond to the true values.
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Figure 3.5: The evolution of the overpressures after performing the state estimation
(Figures 3.5A and 3.5B); given that the initial ensemble of the uncertain parameters
(Figure 3.5C) are Gaussian, not centered on their true values (black broken lines). The
insets provide a magnified image of the overpressures at the beginning of the assimilation.
In Figures 3.5A and 3.5B as well as in the insets, the black broken line represents the true
value of the overpressures; the green ones represent the result of the free run where the
green solid line is the mean, the dark green fill is the spread (1σ) and the light green fill
covers the full extent of the ensemble (i.e. [min, max]); the red ones represent the result
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narrow for the assimilation case (∼ 104 − 106).
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Figure 3.6: The EnKF-estimated displacements after performing assimilation via state
estimation (i.e. blue solid line) given that the prior distribution of the uncertain parameters
are far from their true values (Figure 3.5C). The synthetic displacements used as D during
the assimilation are the noisy red lines that are more evident in the vertical component
at far-field distances. The black broken lines correspond to the true values.
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Synthetic Case B: State-Parameter Estimation

There are two possible ways to solve the issue in displacement prediction: 1) extend

the state vector X incorporating the model-predicted displacements, i.e., X =

[
xf

df

]
,

where df = Hxf and 2) extend the state vector incorporating the uncertain parameters

(i.e. equation (A.4)). We opted for the second strategy because it will not only improve

the field observation estimates but will also allow us to properly estimate the overpressures

and to be able to constrain and gain more knowledge about the uncertain parameters.

Furthermore, in performing the first option, the computational cost can increase signif-

icantly when we increase the number of observations used during the assimilation, i.e.

using InSAR data.

Parameter estimation is very challenging especially when the parameters have no

direct link to field observations and if there are no means to compare them to the actual

values. The characteristics of the deep magmatic reservoir for example is poorly known

in volcanology since it is buried very deep (i.e. > 10 km) into the Earth.

We followed the same initial conditions performed in the first case given that: 1) the

uncertain parameters are “unbiased” or have truncated-normal distributions, centered on

their true values (Figure 3.3C) and 2) the uncertain parameters are “biased” or have

normal distributions but are not centered on their true values (Figure 3.7C). We used

the augmented state vector in equation (A.4) to include the uncertain parameters in

the forecasting.

Results show that the filter tracks almost perfectly the true behavoir of the overpres-

sures given the two different types of parameter initialisation as shown for example in

Figure 3.7, where the prior distributions of ad and Qin are biased. In fact, the final

values of the overpressures have as little as 0.0− 0.01% and 0.04− 0.06% error difference

with respect to their true values for the shallow and deep overpressures, respectively.

In Figure 3.8, we plotted ad and Qin at each assimilation step given two diferent

a priori assumptions for the uncertain parameters. Notice how the EnKF-estimated
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Table 3.3: Results of EnKF via state-parameter estimation after 500 time steps.

True Value Free Run EnKF
Unbiased Biased Unbiased Biased

Mean Stdev % error Mean Stdev % error Mean Stdev % error Mean Stdev % error
∆Ps(MPa) 150.81 153.51 51.29 1.79 180.53 18.15 19.71 150.82 0.04 0.01 150.81 0.04 0.00
∆Pd(MPa) 62.02 64.54 54.57 4.06 92.22 19.31 48.70 62.05 0.22 0.04 62.06 0.23 0.06
ad(m) 2200.00 2141.67 91.08 2.65 2249.62 89.13 2.26

Qin(km3y−1) 0.02 0.019 0.002 4.91 0.021 0.002 5.47

parameters converged well near their true values regardless of how they were initialised.

In fact, at the beginning of the assimilation, the filter immediately recognises its sup-

posed trajectory hence decreases ad and Qin allowing convergence to their true values.

Interestingly, we find Qin more sensitive to the estimation than ad as evidenced by the

steep drop at the start especially when the prior parameter distribution is biased. To

a greater extent, it fell beyond the true value but eventually recuperates and adjusts

to its correct behavior. In Table 3.3 we summarized the results of synthetic case B,

showing that there is a very good fit between the EnKF-estimated state variables and

model parameters and their true values.

Figure 3.9 confirms our initial recommendation that augmenting the state vector to

include the uncertain parameters in the estimation will result to well-predicted radial

and vertical displacements.

3.4 Discussions

Influence of Spatial and Temporal Resolutions

High spatial resolution vs. high temporal resolution dataset

Our results show the huge potential of EnKF in predicting the overpressures and

displacements as well as in estimating the uncertain model parameters. However, having

40 near-field GNSS stations that will provide 80 observations every two days is often not

the case for most volcanoes. In Figure 3.10 we show how EnKF performs when the

number of observations is varied using two types of dataset: 1) a GNSS-like dataset and

2) an InSAR-like dataset. The GNSS-like dataset is composed of 10 observations (i.e.

five radial and five vertical displacements) located at distance r = 1− 5 km away from

the volcano axis and is uniformly spaced every 1 km. The InSAR-like data is an 11 x

11 grid centered on zero-axis (i.e. r = 0 as the volcano axis) with two components (i.e.
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Figure 3.7: The evolution of the overpressures after performing the state-parameter
estimation (Figures 3.7A and 3.7B); given that the prior distributions of the uncertain
parameters (Figure 3.7C) are Gaussian, not centered on their true values (black broken
lines). In Figures 3.7A and 3.7B, the black broken line represents the true value of the
overpressures; the green ones represent the result of the free run where the green solid
line is the mean overpressure, the dark green fill is the spread (1σ) and the light green fill
covers the full extent of the ensemble (i.e. [min, max]); the red ones represent the result
of EnKF where the red solid line is the mean, the dark red fill is the spread (1σ) and the
light red is the full extent of the ensemble. Notice that the spread of the ensemble is very
narrow for the assimilation case.
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vertical and radial directions) that have spatial resolutions of 1 km. This provides a total

of 242 observations located at distance r = 1 to 5
√

2 km away from the volcano axis.

Each of the datasets is assimilated every two days (fobs = 1), consistent with the time

interval of the model. We use a prior distribution which is Gaussian and not centered

on the true values for the uncertain parameters (Figure 3.7C) because it is the most

realistic and most critical case. Our findings show that both datasets are able to track

the true behaviour of the shallow and deep overpressures. However, when it comes to

estimating the uncertain model parameters, only the InSAR-type data were able to allow

convergence of Qin and ad to their true values.

The challenge remains with the availability of InSAR data every two days. At the

time of writing, only the Sentinel-1 satellite has the capability to provide radar data

as frequent as every 6-12 days. TerraSAR-X can provide data every 11 days whereas

COSMO SkyMed’s routine return period can acquire data every 8 days by using different

satellites in its constellation. To be more realistic, we then assimilated the InSAR-like

dataset every 12 days (fobs = 1/6) and kept the frequency of available GNSS data to

two days (fobs = 1). This means that for the InSAR-like data, the model predictions are

only corrected every 12 days. Figure 3.11 illustrates that the InSAR-like data failed

to recover the true behavior of the overpressures towards the end of the assimiliatin

experiment. More precisely, it failed to recover the exponential part of the system or

during the time when the shallow reservoir is refilled by the deep one after an eruption.

As a consequence of the poor overpressure prediction at the beginning, parameter estima-

tion cannot be performed because their resulting posterior distributions are physically

meaningless (i.e. negative radius of the deep reservoir). Performing the resampling

option cannot even solve the issue. Take note that in EnKF, uncertain model parameters

are only updated by the sample covariance between them and the state variables (i.e.

in this case, the overpressures), and that the model evolution for them is simply an identity.

Given the aforementioned results, we know that the advantage of using GNSS data to

capture the behavior of the overpressures is its high temporal resolution, in which it is

possible to obtain daily observations that can be used for assimilation. InSAR data on

the other hand, are less frequent to acquire but provide better spatial information about

the surface deformations and constraints on the uncertain parameters. In order to exploit

the advantages of both dataset, we jointly assimilated the GNSS-like and InSAR-like

data. Figure 3.12 shows how the evolution of the overpressures is well captured and
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Figure 3.10: Influence of the spatial density of observations on the assimilation:
GNSS (10 observations that are assimilated every time-step, fobs = 1, with distance to
the volcanic center ranging from 1 to 5 km) vs. InSAR-like dataset (242 observations
that are assimilated every time-step, fobs = 1, with distance to the volcanic center ranging
from 1 to 5

√
2 km). Figure 3.10A and 3.10B illustrates the estimated overpressures

and uncertain parameters, respectively, given that the initial conditions of the uncertain
parameters are similar to those of in Figure 3.5C. The insets in Figure 3.10A provide a
closer look on the overpressures at the beginning of the assimilation. The light blue and
red shades correspond to the spreads (1σ). Note that for the overpressures, the spreads
are difficult to discern since they are very small when compared to the scale of the plot.
The black broken lines represent the true values.
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Figure 3.11: Influence of the frequency of observations on the assimilation:
GNSS (10 observations that are assimilated every time step, fobs = 1, with distance to
the volcanic center ranging from 1 to 5 km) vs. InSAR-like dataset (242 observations
that are assimilated every 12 days, fobs = 1/6, with distance to the volcanic center ranging
from 1 to 5

√
2 km). Since parameter estimation is not possible to perform when InSAR

dataset is used (see text), only the estimated overpressures are presented. Note that the
initial conditions of the uncertain parameters are similar to those of in Figure 3.5C. The
insets provide a closer image of the overpressures at the beginning of the assimilation.
The light blue and red shades correspond to their spread (1σ). Note that these values
are difficult to discern since they are very small when compared to the scale of the plot.
The black broken lines represent the true values.
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Figure 3.12: The estimated overpressures (A) and uncertain parameters (B) after jointly
assimilating GNSS (10 observations that are assimilated every time-step, fobs = 1, with
distance to the volcanic center ranging from 1 to 5 km) and InSAR-like observations
(242 observations that are only assimilated every 12 days, fobs = 1/6, with distance to
the volcanic center ranging from 1 to 5

√
2 km). The initial conditions of the uncertain

parameters are similar to those of in Figure 3.5C. The inset in A) provides a magnified
view of the overpressures at the start of the assimilation. The pink shade corresponds to
the spread (1σ). The black broken lines represent the true values.

136



3.4 Discussions

how the uncertain model parameters converged to their true values. In fact for this case,

in as early as ∼ 6 months of jointly assimilating GNSS and InSAR, it may already be

possible to forecast the long term overpressure values that can later tell whether a critical

ovepressure–unique for each volcano–will most likely be achieved.

Retrieving the three-dimensional (3D) displacement vector using InSAR is not always

possible and most of the time, only the line-of-sight (LOS) displacement is available. In

the supplementary section, we show that the joint assimilation of GNSS and InSAR in

either ascending or descending LOS view can still capture the temporal behavior of the

overpressures as well as estimate the two uncertain model parameters, thereby allowing

the possibility of near-real time forecasting.

Including far-field data

While InSAR data can cover up to hundreds of kilometers with one swath, most

volcanoes are small in size and thus volcano deformation signals may cover only a small

portion in the image. In Figure 3.13 we plot the radial and vertical displacements as a

function of the distance from the volcano axis given the values of the parameters in Table

3.1. As one goes farther away from the volcano axis (i.e. r is increased), the deformation

signal weakens and almost decay to zero. Decomposing the source of deformation, we

find that the near-field signals are mostly related to the shallow reservoir whereas at

farther distances (i.e. > 16 km and > 10 km for the radial and vertical displacements,

respectively), the signals became dominated by the deep one. Given this, one can infer

that far-field data can bring more information about the deep reservoir but note also that

as one goes farther away from the volcano axis, the signal-to-noise ratio also weakens.

Thus, when assimilating InSAR data, it is important to know the effect of including

far-field data in order to avoid spikes in the root mean square error (RMSE) between the

predicted and the synthetic surface deformation associated with the use of InSAR espe-

cially when coupled with GNSS data as previously performed by Gregg et Pettijohn [2016].

To do so, we generated an 11 x 11 grid InSAR-like dataset with two components

(i.e. vertical and radial directions), giving a total of 242 data points. However, unlike in

the previous section where we assimilate near-field observations that are equally spaced

every 1 km, here, we use non-uniform spacing and intentionally limit the number of

far-field points to avoid overwhelming the dataset with noise. In Figure 3.14A, we
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Dominated by the deep reservoir

Dominated by the deep reservoir

Figure 3.13: The radial and vertical displacements as a function of the radial distance
from the volcano axis given the values of the parameters listed in Table 3.1. The scale of
the vertical axis is chosen to emphasize the far-field displacements (i.e. r = 6− 50 km),
whereas, the smaller figures show the full extent of displacements (i.e. r = 0− 50 km).
The grey solid lines are displacements related to the shallow reservoir and the broken
lines (red and blue) are from the deep reservoir.

plotted the location of these observations. Figures 3.14B and 3.14C show the estimated

overpressures and the uncertain parameters after assimilating near-field and far-field

observations every two days. Results show that while the true overpressures are well

predicted, the uncertain parameters failed to converge to their true values. In fact, the

estimated uncertain parameters worsen when we compare them to the InSAR results

in Figure 3.10 where we only assimilated near-field data. Perturbing the uncertain

parameters was not even helpful. Cropping the InSAR data, then downsampling using

quadtree (e.g. Simons et al. [2002], Sudhaus et Sigurjón [2009]) and/or placing weights

on each pixel may be useful in the future in order to allow strategical assimilation of both

near-field and far-field data.

We emphasize that all these discussions are based on specific set of parameters we
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Figure 3.14: A) The locations of the 242 observations (i.e. 121 radial and 121 vertical
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biased prior distribution for the uncertain parameters like in Figure 3.5C or Figure 3.7C.
Note that the pink shades represent the spread (1σ) of the estimation. The true values
are the black broken lines. 139
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chose for the synthetic case. In particular, the influence of the spatial and temporal

resolution strongly depends on the time constant, τ = 0.11 years and reservoir depths set

to 3 and 35 km for the shallow and deep reservoirs, respectively.

Defining the Observation Error Covariance, R

In this study, we added a white Gaussian noise to generate all the observations. This

is one of the fundamental assumptions and a common approach in data assimilation

that implies the use of diagonal observation error covariance, R, during the computation.

Even in many operational weather forecast centers, this simplification is adopted in

order to facilitate the implementation on one hand and to ensure the quality of the

results on the other hand. In the case of complex data noise, it is usually difficult to

precisely characterise the error. Using non-reliable information of observation errors in

the computation may worsen the results. Here, we adopted a simple observation error

covariance, but in practice, the error variance can be increased in order to take into

account the part of error not represented by the error covariance used.

Spatially correlated noise can be present, especially in the case of InSAR data where

atmospheric noise are usually embedded in the data. The spatial correlation can change

the results depending on the quality, quantity and the distribution of the data points.

Bekaert et al. [2016] suggest that neglecting InSAR covariance should be avoided as it

may result to treating spatially correlated atmospheric noise as part of the signal. In

the future, InSAR variance-covariance shall be applied when dealing with real case data.

Furthermore, the approach presented by Brankart et al. [2009] and Ruggiero et al. [2016]

can be considered.

Comparing with Inversion

When performing the comparison between EnKF and inversion, we want to make

sure first that the model and the a priori information that we used are the same and are

suitable for the two techniques. For example, if we start from a parameter distribution

which does not cover the true values of the uncertain parameters (e.g. Figure 3.5C),

the inversion will not work. On the other hand, if we start from a uniform distribution

as we used to do in inversion, the EnKF estimation will not be the optimal solution

since it requires a prior assumption that is Gaussian in nature. We then built the prior
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distributions for ad and Qin (Figure 3.15B) that agrees with the prerequisites of both

the assimilation and inversion.

Gregg et Pettijohn [2016] have previously compared data assimilation with inversion

using two different models–a viscoelastic assumption for EnKF and an elastic one for the

inversion. In our case, to be fair and consistent, the same forward dynamical model (the

two-magma-chamber model) is applied to the two techniques.

For the EnKF, we performed the state-parameter estimation strategy similar to that

in synthetic case B. Whereas, we implemented a bayesian-based estimation, i.e. Markov

Chain Monte Carlo (MCMC), for the inversion. MCMC is most useful in cases where

models are non-linear and expressing an analytical solution is not possible (Segall [2013]).

Note that we used 80 synthetic observations (i.e. 40 radial and 40 vertical displacements)

that are uniformly (every 100 m) located at a distance r = 1− 4.9 km with frequency of

available observation consistent with the time interval (i.e. ∆t = 2 days; fobs = 1) for the

two techniques.

In performing MCMC, the posterior distribution of the uncertain parameters is sam-

pled given their a priori distribution using the forward model and a proposed likelihood

distribution. Models are selected based on the Metropolis-Hastings rules, which always

accept models that fit better to observations than the previous iteration and randomly

accept those that do not fit to avoid being trapped to a local minima (Segall [2013]).

For example, at ti, a set of ad and Qin values are drawn from their initial distributions,

generating model-predictions using the two-chamber model. These model predictions

are then compared to the GNSS and/or InSAR data and are always accepted if the fit

is better than the last sampling iteration, creating the so-called Markov-Chain. The

sampling iteration can be performed thousand to million times in order to build a full

posterior distribution. In our case, we performed 11000 MCMC sampling iterations

at each time-step and burned-in the first 10000 so that in the end we have a similar

ensemble size (e.g. 1000) to that of the EnKF. Take note that unlike in EnKF which is

sequential and only uses incoming observations to capture the temporal evolution of the

overpressures, MCMC utilizes all the observations from t0 up to the preferred time of

observation ti. We performed up to 400 time-steps with interval similar to that in EnKF

(i.e. ∆t = 2 days).
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Figure 3.15A presents the resulting overpressures after performing EnKF and

MCMC. The shallow overpressure is well-estimated by the two approaches, whereas

the overpressures in the deep reservoir both started from a deviated value but eventually

converged to their true values. The MCMC-estimates are also found smoother than the

EnKF-predictions especially in the deep reservoir. Since EnKF always assumes that the

dynamical model is uncertain and needs to be corrected by incoming observations, it

then tends to closely follow the behavior of the observations, hence we observe a noisier

estimation with EnKF. It follows that MCMC cannot account for epistemic model errors

or those uncertainties related to processes not included in the physical forward model

(Segall [2013]).

If we observe how the uncertain parameters are estimated by the two techniques in

Figure 3.15C, we will find that both are able to estimate accurately the true values, but

MCMC is faster to converge. Take note however, that the uncertain parameters we used

in this study are static parameters. In the case of an evolving model parameter, which

could be the case for the basal magma inflow (i.e. Poland et al. [2012]), the inversion

may not be the optimal method to use for estimation.

Towards More Realistic Physics-Based Models

The model that we used here is a highly simplified view on how a volcano plumbing

system works based on idealised assumptions (e.g. elastic medium in a homogeneous

half-space, incompressible magma). It can be implemented easily for real-time predic-

tion of effusive eruptions as contrary to the finite element model of Gregg et Pettijohn

[2016]. Although we only considered two uncertain model parameters in this study,

since they are the most difficult to constrain using geodetic data through conventional

approach, future work can be extended to explore other parameters such as the depth

and the shape of the reservoirs and the strength of the hydraulic connection between them.

In addition to the simplicity and specificity of the model that we tested, we base

the potentiality assessment of data assimilation on a synthetic case that is consistent

with observations recorded at a specific volcano –Gŕımsvötn in Iceland. In fact, similar

behavior has been observed at other basaltic volcanoes: Kilauea and Mauna Loa in

Hawaii (Lengliné et al. [2008]), Westdahl Volcano (Lu et al. [2003]) and Axial Seamount

Volcano (Nooner et Chadwick [2009]) such that it can be accepted as generic for this type
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of frequently erupting volcanoes. However, except for Axial Seamount, the time constant

derived at other places are larger than the one observed at Gŕımsvötn (Reverso et al.

[2014]). This parameter is expected to only influence the impact of the temporal frequency

of available observations. In the case of Gŕımsvötn, it is indeed expected to be more

restrictive regarding the importance of a high temporal resolution dataset. It was beyond

the scope of this first paper to modify the parameters chosen for the synthetic case, but

a systematic exploration of the dimensionless parameters will be required in further studies.

We emphasize that the focus of this work is to give a preliminary assessment of how

EnKF can be utilised in eruption forecasting rather than validating the dynamical model

that we considered. Unlike in the field of ocean-atmosphere science where models are

more advanced and established, realistic and generic physics-based models of volcanoes

are still in progress. However, one of the main interests in using data assimilation is

that it takes into account the fact that models are not perfect and are mostly based on

the simplification of the complex reality. This is represented by the model error, q, as

depicted in equation (3.5). Evensen [2003] have shown that the model error can be

accounted in the EnKF scheme using the following expression:

P f
ti+1

=MP a
ti
MT +Qti (3.15)

where Qti = q2
ti is the model covariance. P f

ti+1
represents the accumulated model errors

from the beginning of the assimilation until the instant ti+1. In order to overcome the

difficulty in quantifying directly the model error at each time-step, the EnKF represents the

model error by an ensemble of model state generated from a large number of perturbations

of uncertain model parameters. The model error covariance P in the EnKF paractice

is an approximation of the real model error. In case of infinite ensemble members, P is

considered to equal the real model error. For this reason, a large ensemble size is always

required. Any dynamical model can actually be used in data assimilation as long as there

is a link between the model and the observations and the model can be restarted at any

instant. However, take note that models that are too far from the reality would result in

large model errors that would be difficult or impossible to correct by the observations,

especially when the condition of the observations is not good enough (i.e. in terms of

quantity, distribution and accuracy). The use of more realistic physics-based models that

could better interpret field observations such as those that could account for magma

rheology and compressibility (e.g. Got et al. [2017], Segall [2016], Anderson et Segall

[2011, 2013]) are then highly encouraged. Data assimilation can also be extended to
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models representing other plumbing mechanism such as magma reservoirs recharged by

dikes at depth (e.g. Karlstrom et al. [2009]) or even those eruptions that are related to

dike intrusions.

Implications to Real-time Volcano Monitoring

While parameter-estimation allows us to gain more knowledge about the plumbing

system and the behavior of the volcano, in real-time crisis, one of the key variables to

infer an impending effusive eruption is the overpressure. The EnKF strategy presented

here uses a simple dynamical model that can be easily integrated with large amount

of real-time geodetic data, allowing to quickly and accurately track the value of the

overpressures both in short-term and long-term periods. Assuming a statistic distribution

for the threshold magma overpressure leading to reservoir wall rupture, based on previous

eruption for instance, the updated overpresssure forecast provided by EnKF can be used

to estimate the timing of an impeding eruption. Although the critical overpressure value

is not always known, especially for volcanoes that don’t erupt frequently, it depends on

the rock strength that can be estimated and on the local stress field strongly influenced

by the edifice geometry (Pinel et Jaupart [2003]).

Another important challenge of the assimilation approach is the availability of frequent

data. Although for GNSS we can obtain daily observations, InSAR data are less frequent

and are still dependent on the quality of interferograms produced. Also, in reality, the

3D-displacement field vector from InSAR are not always retrievable due to the satellite’s

acquisition geometry. Furthermore, while we only used deformation data alone, the

observation vector can include gas emission and seismic data for a more deterministic

approach in forecasting (i.e. seismic data in particular can be used to estimate the timing

of an eruption), as long as they can be related to the dynamical model used.

Interestingly, when it comes to near-real time monitoring, it may be possible to use

inversion and data assimilation jointly in order to accomodate vast amount of incoming

data. MCMC allows faster prediction of non-evolving model parameters whereas EnKF via

state-estimation is easy to implement and only requires incoming observations. Meaning,

the uncertain model parameters can be first constrained by MCMC and the overpressures

will then be predicted using EnKF via state-estimation strategy (e.g. synthetic case A).
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3.5 Conclusions and Perspectives

Our work presents a simple yet efficient model-data fusion strategy using data as-

similation (i.e. EnKF) that can be applied to real-time volcano monitoring. Synthetic

GNSS and/or InSAR data are assimilated to a simple yet generic dynamical model (i.e.

two-chamber model) to mainly forecast the overpressures–one of the key parameters when

assessing volcanic eruptions. The EnKF method is tested on two synthetic cases: A)

state-estimation and B) state-parameter estimation using different a priori information

about the uncertain model parameters. This technique allowed us to provide posterior

distributions of the overpressures and the uncertain model parameters at each time step.

Our results show that the filter can successfully track the evolution of the overpressures

both in the shallow and deep reservoirs using near-field observations if the prior assump-

tions about the uncertain parameters are well defined or if the uncertain parameters are

also estimated along with the state variables (overpressures).

Based on the specific case considered in this study, frequent but spatially sparse

observations like GNSS are more likely to recover the true evolution of the overpressures

than with an infrequent but spatially dense dataset (e.g. InSAR). Although, using an

InSAR-like data will better constrain the uncertain model parameters. While Gregg

et Pettijohn [2016] pointed that the assimilation of InSAR creates spikes in the RMSE

between the predicted and the synthetic displacements when coupled with GNSS, our

strategy presents a successful joint assimilation of these datasets for the first time, al-

lowing to exploit both the high temporal characteristic of GNSS and the high spatial

characteristic of InSAR. An important point to consider is the use of far-field data. While

far-field displacements can provide more information about the deep reservoir, it can

generate noisier and less accurate predictions because of their weaker signal-to-noise ratio.

Future work must be dedicated to strategically balance them with near-field observations

when used for assimilation (i.e. resampling by quadtree and/or imposing weights on the

data points). Although, we did not investigate the effect of spatially correlated noise

especially in InSAR data, we acknowledge the need to apply InSAR variance-covariance

matrix especially in real data as suggested by Bekaert et al. [2016].

The ability of the EnKF and sophisticated Bayesian inversion (MCMC) to constrain

parameters of a dynamical model are similar. Both techniques can thus be used to forecast

the temporal evolution of magma overpressure through time. Although the use of MCMC
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allows faster convergence of the uncertain model parameters to their true values, the

advantage of data assimilation is clearly to improve the forecasts in near real-time by

updating the parameter estimations (thus accounting for the temporal variations of the

parameters) based on incoming observations. Interestingly, it may also be possible to

combine both techniques in which MCMC will be used to first constrain the non-evolving

model parameters followed by applying EnKF in order to predict only the state variables

(e.g. overpressures).

The strategy that we have developed here aims to give a preliminary assessment of

EnKF as a tool to assess volcanic unrest. While our framework is simple, it offers a

great potential in using the method towards a more deterministic approach in eruption

forecasting and better understanding of the magma plumbing system. The use of more

sophisticated physics-based models as well as other types of datasets such as gas emission

and seismic data are highly encouraged for future studies. In terms of the real case

application of the strategy to Gŕımsvötn volcano, additional uncertain model parameters

such as the depth of the deep reservoir and the hydraulic strength between the two

reservoirs should be accounted.
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FORECASTING THE RUPTURE OF A MAGMA CHAMBER IN REAL-TIME
USING SEQUENTIAL DATA ASSIMILATION

Abstract

The fundamental goal of eruption forecasting is to be able to deliver an effective and timely

forecast especially to the population at risk. We focused on forecasting the tensile failure of a

magma chamber at basaltic volcanoes that exhibit inflation-deflation behaviors. In this study,

we propose a new method to mainly track the evolution of the overpressures by sequentially

assimilating geodetic data using Ensemble Kalman Filter (EnKF). We explored the 2004-2011

inter-eruptive dataset at Gŕımsvötn volcano in Iceland. Given that the overpressure is a key

parameter that would indicate the failure of a magma chamber, we introduced the concept

of “eruption zones” based on a pre-defined distribution of the failure overpressure. We also

presented the probability of the magma chamber to rupture at each time instant, estimated

as the percentage of model ensembles that exceeded their failure overpressure values initially

assigned following a given distribution. Our results show that when 25 ± 1 % of the model

ensembles exceeded the failure overpressure, an actual eruption is imminent. We further tested

our approach using the 2011 post-eruptive dataset. Our findings show that just before the 2014

rifting event, Gŕımsvötn’s shallow magma chamber was already at the critical stage of rupturing

and could have erupted in 2015. However, no eruption has occurred up to now, suggesting that

a transient event may have happened and postponed Gŕımsvötn’s supposed eruption. This is

consistent with our results discussed in Chapter 5.

4.1 Introduction

Eruption forecasting is one of the most challenging field in volcanology, covering a wide

range of approaches and perspectives. We have to provide accurate forecasts on when and where

the eruption will occur, how long it will last and what other impending catastrophic or transient

events might happen in order to help in mitigating risks and properly assessing hazards. In

general, we can divide eruption forecasting into two phases: 1) forecasting the failure of a magma

chamber and 2) forecasting the onset and location of a possible eruption after the magma

chamber ruptured. The first one is attributed to long time scales as gases exsolve and pressure

builds up within the magma chamber until it ruptures (i.e. years to decades). The second phase

occurs in a shorter time scale (i.e. probably hours to weeks or months). Basically, after the

failure of a magma chamber, the next step is to predict whether the propagating magma will end

up as an intrusion or an eruption. If an eruption is bound to happen, then we have to forecast its

timing and location. In some cases, there is a thin line between the failure of a magma chamber

and a subsequent eruption depending on how quickly the magma can reach the surface after

the chamber wall ruptured. However, it is important to point out that the rupture of a magma
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chamber does not always guarantee an eruption. There are also cases that dykes get arrested at

depth by cooling and solidification or by intersection with a stress barrier (Rivalta et al. [2015],

Biggs et al. [2016]). Most success stories in eruption forecasting are based on empirical analysis

and extrapolations of seismic and/or deformation data to determine the timing of eruption

(Voight [1988], Nooner et Chadwick [2016], Blake et Cortés [2018]). Material failure forecast

method introduced by Voight [1988] is perhaps one of the most traditional approaches. It is used

to predict the timing at which the failure can be reached and eventually initiates an eruption

by fitting a power law curve into the seismicity. More recently, Nooner et Chadwick [2016] were

able to forecast the 2015 eruption at Axial Seamount based on an observed inflation threshold

of deformation pattern. Blake et Cortés [2018] introduced a statistical approach to determine

the probability of the onset of deflation depending on a time window and a given trend for the

temporal evolution of deformation data. However, none of these methods have attempted to infer

the magma overpressure value. The drawback of these methods is that if the rupture of a magma

chamber occurs, there is actually no way to predict whether or not the magma will reach the sur-

face since we have no clue whether the propagating dyke will result to an intrusion or an eruption.

In this study, we focus on the initial phase of eruption forecasting—forecasting the

failure of a magma chamber—at a basaltic volcano. We propose a new approach that

would allow us to have an updating information on the magma chamber overpressure at

each preferred time interval such that:

1. We can predict the eruption time given some assumptions on the threshold failure

overpressure.

2. We can have information on the volcanic system (e.g. state of stress, geometry of

the reservoir).

3. We can have an idea on the initial magma overpressure, such that we can infer

whether or not the magma will reach the surface.

We tested our approach at Gŕımsvötn volcano in Iceland using the 2004-2011 inter-

eruptive deformation dataset. In the methods part (Section 4.3), we discuss the forward

dynamical model that we used. Followed by the strategy on how to first constrain

uncertain model parameters that are assumed constant in time, such that we can only

follow the evolution of the overpressures and the basal magma inflow rate using a spatially-

limited dataset via EnKF. Note that the basal inflow rate is considered as a parameter
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that may or may not vary in time, hence, it is necessary to estimate it at each time step.

Afterwards, we introduced the concept of “eruption zones” based on the evaluation of the

probability of rupture at each time step. The latter is estimated as the percentage of

model ensembles that exceeded a given failure overpressure condition. Then we provided

some discussions about the comparison between using bayesian-based inversion and data

assimilation, as well as the failure criterion that we defined in this work. Futhermore,

we also give insights after the 2011 eruption at Gŕımsvötn until and even after the 2014

rifting event.

4.2 Gŕımsvötn volcano: 2004-2011

Gŕımsvötn volcano—a subglacial basaltic volcano located beneath the Vatnajökull

icecap (Figure 4.1) and sitting on top of a mantle plume (Wolfe et al. [1997])—is one of

Iceland’s most active volcanoes erupting at least once per decade (Larsen et al. [1998]).

In fact, its last historic eruptions are in 1934, 1983, 1998, 2004 and 2011 (Figure 4.1).

Geochemical studies show that the erupted basalts at Gŕımsvötn are homogeneous and

have evolved thoelitic composition (Haddadi et al. [2017]). The volcano has a composite

caldera of 10-12 km in diameter and 200-300 m in depth. A permanent subglacial lake is

present at Gŕımsvötn volcanic system, formed by the intense heat flux from geothermal

and volcanic activities (Björnsson et Einarsson [1990], Albino et al. [2010]). Evidences

from geophysical studies show a sill-shaped shallow magma chamber (i.e. 2.0− 2.5 km

horizontal major and 0.5 km vertical minor axis, ) at around 3 km and a deeper intrusive

complex beneath the volcano (Alfaro et al. [2007], Albino et al. [2010], Hreinsdóttir et al.

[2014]). Although modeling of recent geodetic data indicates a rather shallower magma

chamber at ∼ 1.7 km (Hreinsdóttir et al. [2014]) and another deeper chamber is suggested

at 10− 35 km depth (Reverso et al. [2014]).

Before the 2004 Gŕımsvötn eruption, increased seismic activity has been detected

by the IMO since the mid of 2003 with ground inflation observed around September

2004 through GPS measurements. On 28 October 2004, three days prior to the eruption,

signs of advancing jökulhlaup beneath the icecap have been detected, forcing the IMO

to issue a warning on a possible jökulhlaup event and eventually an impending eruption

following the drainage of Gŕımsvötn’s lake (Vogfjörd et al. [2005]). At ∼ 21h50 UTC of 01

November 2004, the eruption started. Although there was a lack of visual confirmation

at the beginning of the eruption, seismic data and later, meteorological observations
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(i.e. 8-12 km plume was detected by radar at 22h50 of 01 November 2004) became

complementary monitoring tools to verify the eruption onset and location (Vogfjörd et al.

[2005]). The last sign of crater explosion was reported on 06 November 2004.

After the 2004 eruption, progressive seismic events and inflation were observed. In

particular, the deformation patterns at Gŕımsvötn volcano show a short exponential

behavior followed by a linear trend (Figure 4.2). According to Reverso et al. [2014], the

former suggests pressure readjustments due to the replenishment of the shallow magma

chamber from the deep chamber during the early post-eruptive period. The authors

attribute the subsequent linear inflation to the continuous pressurization within the

system caused by the constant basal inflow of magma. On 21 May 2011, an explosive

eruption at Gŕımsvötn occurred (i.e. VEI 4) with a plume that reached up to 25 km in

height and spewed around 0.27 km3 DRE of basaltic magma (Hreinsdóttir et al. [2014]).

Precursory earthquakes and tremors were detected a few hours before the actual eruption,

in particular, earthquakes from 2− 4 km depth migrated towards < 1 km just minutes

before the eruption (Hreinsdóttir et al. [2014]). Figure 4.1B shows the evolution of the

co-eruptive horizontal displacement between 21 and 23 May 2011. The 2011 Gŕımsvötn

eruption ceased after seven days of volcanic crisis.

In this work, we investigate the 2004-2011 inter-eruptive period measured at GFUM

GPS station located at Mount Gŕımsfjall—a nunatak at Gŕımsvötn volcano. The GPS

time series was processed using Bernesse 5.2 software (Dach et al. [2015]) providing daily

solutions from 21 November 2004 to 21 May 2011 (Figure 4.2). We corrected for the

tectonic trend following the measurements of Reverso et al. [2014], with slopes of -2.7

mm yr−1 and 7.5 mm yr−1 for the NS and EW components, respectively. However, due

to the uncertain GIA contribution and low accuracy of the vertical component at GFUM

GPS station we only use the cumulative vertical displacement to verify if the estimated

model parameters during the inversion are consistent with the observations.

4.3 Methods

4.3.1 Forward dynamical model

Similar to the previous chapter, we utilize the two-chamber model of Reverso et al.

[2014] (Figure C.1) to infer the behavior of the overpressures beneath Gŕımsvötn using
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Figure 4.1: (A) Landsat TM map of Iceland in RGB colors showing the outlines of the
volcanic zones with emphasis on the Gŕımsvötn volcanic system. The image is based on
the mosaicked data from the National Land Survey of Iceland (Landmaelingar Islands
[1995]).(B) The caldera of Gŕımsvötn volcano with the location of its past eruptions (e.g.
1934, 1983, 1998, 2004 and 2011). The red line and brown outline mark the 2011 fissure
eruption and the melted part of the glacier as a result of the eruption, respectively. The
colored data points are the North and East components of the horizontal displacement
measured from GFUM station indicating the evolution of the displacements from the day
of the eruption (e.g. 0h00 UTC of 21 May 2011); from Hreinsdóttir et al. [2014].
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Figure 4.2: The GPS time series of GFUM station from 21 Nov 2004 to 21 May 2011. The
actual data are in blue points. The red broken lines mark the onsets of the 01 Nov 2004
and 21 May 2011 eruptions. The horizontal black broken line is the zero-displacement
reference. The shaded green area covers the time window of the inversion (see Step 1:
MCMC of Section 4.3.2). The NS and EW components are corrected for tectonic trend
whereas the vertical component (UD) is not corrected for GIA or seasonal effects.
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the temporal evolution of the surface deformation. The estimated overpressures will

later allow the probabilistic forecasting of the rupture of a magma chamber which may

eventually lead to an eruption.

Basically, the model represents two magmatic reservoirs that are embedded in a

homogenous elastic half-space and are connected by a hydraulic pipe. The magma is

assumed incompressible. Reverso et al. [2014] illustrated that this model is consistent

with the post-eruptive deformation patterns observed at Gŕımsvötn volcano at least for

the last three eruptions. The overpressure evolutions are expressed as:

∆Psti+1
−∆Psti

ti+1 − ti
=

3πEac
4

128(1− ν2)µHcas3
(((ρr−ρm)gHc+(∆Pdt0−∆Pst0 ))+∆Pdti−∆Psti )

(4.1)

∆Pdti+1
−∆Pdti

ti+1 − ti
=

3E

16(1− ν2)ad3
Qin −

as
3

ad3

∆Psti+1
−∆Psti

ti+1 − ti
(4.2)

and the corresponding analytical solutions to the differential equations are of the form:

∆Psti = A(1− e−
ti
τ ) +

3E

16(1− ν2)

Qin

(as3 + ad3)
ti + ∆Pst0 (4.3)

∆Pdti = A(1− e−
ti
τ ) +

3E

16(1− ν2)

Qin

(as3 + ad3)
ti + ∆Pdt0 (4.4)

with A = ad
3

as3+ad3
[∆Pdt0−∆Pst0 +(ρr−ρm)gHc− 8QinµHcas

3

πac4(as3+ad3)
]. We assume that the shapes

of the reservoirs are sills, the Young’s modulus, E = 25 GPa, the depth and the radius of

the shallow reservoir are Hs = 1.7 km and as = 2.0 km, respectively (Hreinsdóttir et al.

[2014]).

4.3.2 Inversion and data assimilation

In simple terms, there can only be three up to four free parameters that can be inferred

from the model given one GPS time series as it actually takes the form: A(1−eBx)+Cx+D.

However, in reality, we have at least six “uncertain” parameters (e.g. radius and depth of

the deep reservoir, basal magma inflow rate, density difference between the magma and
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the surrounding medium, initial pressure values present in the system and the character-

istic of the hydraulic connection) to estimate in order to properly fit with the data. The

problem further complicates because only the NS and EW components of the time series

can be useful for us. Given the said limitations, it is worth noting that it is not possible

to find a single optimal set of values for the six uncertain parameters (i.e. no unique

solution). Fortunately, our main goal is not to find the exact values of each uncertain

parameter. Rather, we are mainly focused on tracking the evolution of the overpressures

while consistently ensuring that the inferred values agree with the physics of the model

and are well-fitted with the measured surface deformation data. In particular, we are

interested in following the evolution of the shallow overpressure since this is the key

parameter that would indicate if an eruption is about to happen.

In Chapter 3, we demonstrated through synthetic tests that the performance of

inversion (i.e. MCMC) and data assimilation (i.e. EnKF) is relatively similar when esti-

mating both the state variables (i.e. overpressures) and uncertain model parameters (i.e.

radius of the deep reservoir, ad, and a fix basal magma inflow, Qin). The main advantage

of MCMC is its faster convergence to the “truth” when compared to EnKF (Figure 3.15).

Recall that the overpressures are considered state variables in this work. State variables

have direct link to the observations, hence model-predicted overpressures are corrected

each time GPS data become available. Whereas, uncertain parameters are only updated

by the covariance between them and the state variables. It follows that in a sequential

data assimilation method such as the EnKF, performing state-parameter estimation can

produce inconsistent results if the parameters being estimated are expected to remain

constant in time. In sequential data assimilation, the model errors are only propagated

forward in time. This is can be demonstrated when we take the values of non-evolving

parameters at ti, use them as inputs to the forward model at t = 0 and afterwards

simulate the model up to ti to obtain the overpressures. The resulting overpressures

when compared to the EnKF-derived ones are not in agreement with each other. Another

scenario to illustrate the inconsistency is when observations are not available anymore and

the non-evolving uncertain model parameters have not converged yet to their true values

as shown in Figure B.1. Indeed, EnKF could not properly estimate the overpressures

since the model is propagated using incorrect values of non-evolving parameters. An

approach to circumvent the issue is to“re-propagate” the dynamical model using the values

of the uncertain model parameters at the analysis step (Appendix B.1). The results are
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obviously improved as shown in Figure B.2. However, this approach requires restarting

the forward model which is computationally expensive particularly if the forward model

is solved through a numerical method such as FEM. Obviously, in the framework of

real-time forecasting, this is not an efficient approach especially when precursors start

to indicate that an eruption might occur very soon. Zhan et Gregg [2017] performed

intra-EnKF iterations but in practice, it is very difficult to infer the number of times the

recursive EnKF algorithm should be implemented to ensure consistency and convergence

of the state variables and uncertain model parameters to their true values. Furthermore,

performing all these additional steps may lead to depreciating the strong capability of

EnKF to track parameters that can vary in time.

Given the aforementioned arguments, the number of uncertain parameters that we

need to infer and the spatially limited GPS data at Gŕımsvötn, we therefore propose a

two-step strategy: 1) we first fix non-evolving uncertain parameters of the model through

bayesian-based inversion and then 2) we estimate the shallow and deep overpressures as

well as the parameter/s that may tend to vary in time. In our case, we consider all the

aforementioned uncertain parameters as constant parameters except for the basal magma

inflow, Qin. The latter is known to fluctate in time (Parks et al. [2012], Poland et al.

[2012], Menand et al. [2015]).

Step 1: MCMC. The MCMC approach is built using the PyMC2 python module.

The classic linear inverse problem is of the form:

D = G(m) + ε (4.5)

In our case, D is the radial component of the 2004-2011 inter-eruptive dataset (i.e. we

used up to d = 769 for the inversion), G is the analytical solution (i.e. equations (4.3)

and (4.4)), m = [ad, Hd, C,∆ρ,∆Pdt0 , Qin] is a vector of the uncertain model parameters

that we intend to estimate, and ε = 0.03 is the observation error (i.e. ε is slightly increased

in order to compensate for other sources of error).

We scaled m and then we compute for the posterior distributions using the concept of

Bayesian probability (i.e. equation (2.13)). In order to avoid “trade-offs” between the

six uncertain parameters, we adopted the AM step method. The AM technique fits the

parameters by block updating them using multivariate jump distribution. We choose a
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sampling size equal to 2.0× 105 where we burned 50% of the samples and subsequently

applied a thinning factor of 100 to guarantee convergence and absence of autocorrelation

in our results. Once the posterior distributions are generated, we pick the set of best-fit

parameters by calculating the misfit relative to the radial displacement data used during

the inversion (i.e. data points within the dotted green box in Figure 4.5).

Step 2: EnKF. The step-by-step EnKF strategy is illustrated in Figure C.2. Basi-

cally, we adopted a similar approach implemented in section 3.3 except that we define

the state vector, X, as:

X =

 ∆Ps

∆Pd

Qin

 (4.6)

The dynamical model can be propagated from ti to ti+1 using the following (i.e. from

equations (4.1) and (4.2)):

 ∆Psti+1

∆Pdti+1

Qinti+1

 =

 1− C1∆t C1∆t 0

C1C2∆t 1− C1C2∆t 0

0 0 1


 ∆Psti

∆Pdti
Qinti

+

 C1A1∆t

(A2 − C1C2A1)∆t

0


(4.7)

where C1 = 3πEac4

128(1−ν2)µHcas3
, A1 = (ρr − ρm)gHc + (∆Pdt0 −∆Pst0 ), A2 = 3EQin

16(1−ν2)ad3
and

C2 = as3

ad3
. It follows that the model operator, M, is of the form:

M =

 1− C1∆t C1∆t 0

C1C2∆t 1− C1C2∆t 0

0 0 1

 (4.8)

The observation operator, H, which links the state vector and the observations is expressed

as:

H =
[

ΓDsr ΓDdr 0
]

(4.9)

since we are only using the radial component of the 2004-2011 dataset (i.e. uR). The
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observation-state relationship is described as:

Dti = uRti =
[

ΓDsr ΓDdr 0
] ∆Psti

∆Pdti
Qinti

+ εti (4.10)

where Γ = 8(1−ν2)
πE

, Ds = H2
sa

3
s

R5
s

, Dd =
H2
dad

3

R5
d

and r is the distance of GFUM GPS station

from the center of the volcanic system (e.g. 3.5± 0.2 km). We then use an observation

covariance error, R = E(εεT ) = (0.015 m)2 .

We assume that there is a GPS measurement available everyday (i.e. frequency of

observation, fobs = 1) and we fix the assimilation interval to ∆t = 1 d. Figure 4.5C

shows the truncated normal distribution of Qin which is used as a prior information to

perform EnKF. The mean value is the best-fit value of Qin determined from step-1, the

standard deviation is set to 0.003 km3 yr−1 and the upper and lower boundaries are a = 0

and b = 0.19 km3 yr−1, respectively. The initial shallow overpressure value is 0 MPa

supposing that the reservoir has fully depressurized after the previous eruption.

We scaled the state vector, X, before the analysis step and then we imposed a

multiplicative inflation (i.e. ρinfl = 0.05) whenever the standard deviation of Qin at

ti+1 falls below its initial standard deviation (i.e. 0.003 km3 yr−1). The inflation is to

prevent the ensemble from collapsing and also to help the filter track the value of the

time-dependent parameter, Qin.

4.3.3 Forecasting method

The magma chamber will rupture and initiate dyke propagation if the deviatoric

component of the minimum compressive stress, ∆σ3, compensates the tensile strength of

the surrounding rock, Ts (Pinel et Jaupart [2003]):

∆σ3 = σ3 −
σ1 + σ2 + σ3

3
≥ −Ts (4.11)

where σ1, σ2, σ3 are the principal stresses. For a two-dimensional magmatic body in an

infinite elastic medium, the tensile stress on the walls of the source is constant along

the walls and is proportional to the overpressure such that: ∆σ3 = −∆Pf
k

, where k is an

amplification factor that depends on the geometry of the magmatic source and edifice
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of the volcano (e.g. k = 2 for a spherical source in an infinite elastic half-space with

no edifice, Pinel et al. [2010]). The critical overpressure needed for the tensile failure is

therefore given by:

∆Pf = kTs (4.12)

where ∆Pf = Pf − PL, with Pf as the critical failure pressure within the reservoir and

PL as the lithostatic pressure, ρrgHs. Note that this criterion also corresponds to the

case where fluids are present in the rock adjacent to the reservoir (i.e. Albino et al. [2018]).

The tensile strength of rocks can be measured in situ through uniaxial tests of natural

samples, with values ranging from 8.6± 1.4 MPa for pristine basalts to 13.8± 2.1 MPa

for granites (Touloukian [1989], Albino et al. [2018]). In Iceland for example, tensile

strength values are between 1 and 10 MPa (Haimson et Rummel [1982]) with reported

upper boundary estimates of 13.88 MPa and 22 MPa for a spherical and oblate-shaped

magma chamber at Gŕımsvötn volcano (Albino et al. [2010]).

In this study, we will rather consider a probability distribution for the failure overpres-

sure criterion in order to forecast the rupture of the shallow magma chamber at Gŕımsvötn.

The distribution is Gaussian with the mean value centered at µ = ∆Pf = 2Ts = 44

MPa and the standard deviation fixed to σ = 11 MPa. We then introduce the so-called

“eruption zones” based on the evolution of the shallow overpressure values, ∆Ps, at each

time step:

1. No eruption zone, (i.e. 0 ≤ ∆Ps ≤ ∆Pf − 2σ).

2. Sub-critical zone, (i.e. ∆Pf − 2σ < ∆Ps ≤ ∆Pf − σ).

3. Critical zone, (i.e. ∆Pf − σ < ∆Ps ≤ ∆Pf ).

4. Super-critical zone, (i.e. ∆Ps > ∆Pf ).

To compute for the probability of rupture, we first assign a failure overpressure at

t = 0 for each of the ensemble member, e (i.e. ∆Pfe,t0 , with e = 1, ..., Nn = 1000 based

on the strategy that we adopted in Chapter 3). Note that these values are drawn

randomly from the Gaussian distribution described above for the failure criterion (see the

histogram in Figure 4.7D). In simple terms, the failure overpressure value fixed for each
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ensemble member is their reference failure overpressure that remains constant for the

entire assimilation time window (i.e. tK = 2371 d for the 2004-2011 inter-eruptive dataset).

The probability of rupture at each step is then calculated based on the percentage of

ensemble members that exceeded their assigned failure overpressure value. For example,

given 1000 model ensembles, 400 of them exceeded their overpressure criterion, therefore

the probability of rupture is 0.25 .

4.4 Results

Inversion

The PDF and the best-fit values of the uncertain parameters after inverting the initial

part of the radial displacement dataset are shown in Figure 4.3. We used the best-fit

values of the non-evolving uncertain parameters and the re-defined Qin distribution (i.e.

truncated Gaussian) as inputs to the forward model to check how well they fit the data

(Figure 4.4). Despite the non-uniqueness of the results, the data fits are good. In fact,

even if we have only inverted the initial part of the dataset, the MCMC-derived values

can fit well within the entire 2004-2011 dataset. In Table 4.1, we compared the best-fit

values when we rather inverted the whole inter-eruptive dataset. We find that the two sets

of uncertain parameters have small discrepancies and that both have remained consistent

with the physics of the model and results of previous studies (e.g. Hreinsdóttir et al.

[2014], Reverso et al. [2014], Haddadi et al. [2017]).

Data assimilation

Figure 4.5 illustrates the result of sequentially assimilating the radial displacement

data via EnKF. Indeed, we are able to closely follow the evolution of the radial displace-

ment, the time-varying uncertain parameter, Qin and the overpressures (Figure 4.6). In

Appendix B.2 we show the robustness of our results by presenting common diagnostic

tools in data assimilation. The distance between the radial displacement data and the

model-predictions after (A) the forecast step (i.e. innovation) and (B) the analysis step

(i.e. residual) are illustrated in Figure B.3. The norm of the cumulative mean innovation

and residual as a function of time (Figure B.3 C and D) converges to zero, which is

what should be expected as the number of forecast increases. EnKF equations assume

that the observation error as well as the forecast and analysis errors are unbiased, hence
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the innovation and the residual must be close to zero (Bocher et al. [2018]). The evolution

of the covariance error of the state variables are shown in Figure B.4 after the forecast

and analysis steps. Note that the correction is in the order of (0.001 MPa)2 such that it

appears almost overlapping in the figure. The spikes in the error covariances indicate large

model errors due to the lack of radial displacement data to correct the model forecasts.

Recall that if the dynamics is unstable and the interval without observation is sufficiently

long, the model error will grow uncontrolled and only the re-introduction of data will

reduce the model error. A closer look at the covariances after the forecast and analysis

steps are provided in Figure B.5.

It is important to emphasize that even without performing EnKF, the result of

inverting the initial part of the dataset and then “free-running” the dynamical model

(i.e. green results in Figure 4.6) is already satisfying since the uncertain parameters are

already well-constrained. The difference is evident only on the spread of the ensemble,

which is wider for the free-run. However, in the case that the fluctuation in the magma

inflow rate is more significant (i.e. Qin = 0), the result given by the inversion will not be

sufficient anymore. We will further discuss this in the subsequent chapter of this thesis.

Forecasting the rupture of a magma chamber

We plotted the shallow overpressure as a function of time on the eruption zones as

shown in Figure 4.7A. Here, we noted that the mean overpressure that triggered the

2011 eruption is 38.09 MPa. This value lies at ∼ 0.30 of the failure overpressure’s CDF

(Figure 4.7B). Indeed, before the eruption, all of the ensemble members are already

in the critical state with a probability of rupture equal to ∼ 24% (Figure 4.7C and

E). However, since the probability of rupture can have a small dependence on the set of

non-evolving uncertain parameters that we intially fixed (i.e. step-1) due to the limitation

of finding a unique solution, we then assessed the difference when the whole 2004-2011

dataset is rather exploited to fix the non-evolving uncertain parameters. We find that

the probability of rupture is only higher by one percent (Figure B.7). In this case,

we conclude that an eruption is imminent if 25 ± 1% of the ensembles exceeded their

corresponding failure overpressure values.

If we analyze the EnKF-derived shallow overpressures at each time step and afterwards

propagate the model (i.e. green results in Figure 4.7A), then we can actually forecast
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Figure 4.3: Posterior probability density functions (PDF) of the uncertain model pa-
rameters after performing MCMC inversion using only the initial part of the 2004-2011
inter-eruptive dataset. The marginal PDF for each uncertain parameter is shown in the
diagonal histogram plots. The green vertical lines with numbers indicate the best-fit values
of the parameters. The off-diagonal contour plots are the joint kernel-density estimate
between pairs of parameters with their corresponding Pearson correlation coefficients. A
p-value close to ±1 implies strong correlation between the parameters.
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Figure 4.4: Data fit (green) for the radial and vertical displacement using the MCMC-
derived best-fit values of the uncertain model parameters and re-defined Qin distribution.
The actual data are represented by black solid lines. Note that the vertical component is
not corrected either for GIA or seasonal effects. The radial component is corrected for
tectonic trend.
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Figure 4.5: Data-fits and Qin estimates. (A) The entire 2004-2011 inter-eruptive radial
dataset used in this study (black) and the resulting data-fits by: 1) solely free-running
the dynamical model (green) and 2) data assimilation via EnKF (red). The green dotted
box covers the dataset used to estimate the non-evolving uncertain parameters (step
1). (B) Estimated value of the magma inflow rate, Qin, as a function of time using: the
free-run (green) and EnKF (red). (C) The distribution of Qin used as a prior information
for the free-run and the data assimilation.
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Figure 4.6: The shallow and deep overpressure values after performing EnKF (red). Note
that the corresponding data fit is illustrated in Figure 4.5. The pink color represents
each model ensemble members whereas the dark red shade is the standard deviation.
It follows that the pink line within the dark red shade is the mean of the ensemble.
For comparison, we also presented the result of “free-running” the dynamical model
(green) using the prior distribution of Qin and the MCMC-derived non-evolving uncertain
parameters from Figure 4.3. Similarly, the light green colors are the ensemble members
and the darker green shade is the standard deviation. The purple broken lines mark the
2011 eruption at Gŕımsvötn.
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the timing of the eruption simply by finding the day where the probability equals 25±1 %

within the green line in Figure 4.7C. Figure 4.8 illustrates the (A) forecast day of

eruption and the (B) relative distance (in days) of this forecast-day to the assimilation

time step. For example, if we evaluate the shallow overpressure at time step ti = 1700d,

the forecast day of eruption is d = 24982526
2485 (i.e. day at which 25± 1 % is located), which

is 798826
785 days away from the assimilation time step. Clearly, at least ∼ 2 weeks prior to

the 2011 Gŕımsvötn eruption, we are able to forecast that this eruption is very soon to

happen; with the last three days even indicating that we are at ‘zero-distance’ to eruption

day. Note that the “no-data” values in Figure 4.8A and B mean that the predicted

day and distance to eruption is outside our chosen time window (i.e. time window used

for “free-running” the model is up to d = 3337). Moreover, the cumulative number

of earthquakes (i.e. data from Got et al. [2017]) actually shows correlation with the

25± 1 % probability of rupture that we observed, at least for the 2004-2011 inter-eruptive

deformation data at Gŕımsvötn (Figure 4.8C). Lengliné et al. [2008] have previously

demonstrated through joint interpretation of deformation and seismic data that the

exponential acceleration of seismicity before an eruption is linked to the accumulation of

magma in a reservoir.

4.5 Further Discussions

4.5.1 Bayesian-based inversion vs. data assimilation

Instead of using EnKF and the differential equations (i.e. equations (4.1) and (4.2))

as a step-2 of our approach, we rather used MCMC and the analytical solutions to the

diffrential equations (i.e. equations (4.3) and (4.4)) to determine the evolution of

the overpressures and the bottom magma inflow rate as well as the fit with the radial

displacement data. In Figures 4.9 and 4.10, we overlaid the results of MCMC on the

EnKF-derived estimates, showing that, in general, they both fitted well with the radial

displacement time series and that the estimated overpressures and magma inflow rate are

almost similar. Although as time progresses, MCMC tends to give smoother results than

EnKF (e.g. noisier Qin estimates in Figure 4.9B for EnKF). This is expected, since in

inversion we use all the data available from t0 until the observation time, ti, hence we

somehow filter more the noise embedded within the data. The mean residual of MCMC

and and EnKF are shown in Figure B.6.
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Figure 4.7: (A) The evolution of the EnKF-derived shallow overpressure—constrained by
the initial part of the 2004-2011 radial displacement dataset (i.e. Figure 4.6)—embedded
on the eruption zones. Note that we define the eruption zones based on the estimated
rock tensile strength in Iceland which consequently provides the failure overpressure
distribution (i.e. Pf) needed to trigger the rupture of a magma chamber (i.e. Albino
et al. [2010]). (B) The cumulative distribution function (CDF) illustrating the failure
overpressue (blue) as well as the overpressures at the end of the assimilation window
(red) and at the end of free-run (green). Note that the latter is performed just after the
assimilation to further predict the evolution of the overpressure. (C) The probability of
rupture calculated from the N -ensemble of models that exceeded the failure overpressure
described by the distribution in (D). (E) The percentage of ensemble members entering
each eruption zones as a function of time.

170



4.5 Further Discussions

Figure 4.8: (A) Forecast day of eruption based on a “probability of rupture” criterion
(i.e. 0.25± 0.01). The blue line is the forecast day based on the 25% probability whereas
the light blue shade corresponds to the ±1%. (B) Number of days prior to eruption as a
function of time calculated from Figure 4.8A. (C) The probability of rupture at the end
of the assimilation window (blue) as shown in Figure 4.7C along with the cumulative
number of earthquakes (red). Note that Figure 4.8D and E provide a closer look at the
forecast roughly 14 days prior to the actual eruption.
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It is worth emphasizing that the forecasting strategy that we propose here can also be

applied when inversion, such as MCMC, is rather used to infer the shallow overpressure

values. Basically, MCMC will still provide a probability of rupture at each step based on

the number of model ensemble that exceeded the critical overpressure that we initially

define. However, one notable feature of sequential data assimilation, in particular, EnKF,

is that it takes into account model errors that can be related to time-dependent model

parameter/s. In our case, if the fluctuation in Qin is a “true” surge or decrease, meaning

that the fluctuation is higher than the observed background noise (i.e. >∼ 0.015 km3

yr−1), then EnKF can be more useful than the MCMC approach since in classic inversion

setup, models are assumed “perfect”. We will further discuss and demonstrate this in the

subsequent chapter. Furthermore, inversion techniques are computationally expensive as

it uses all the available data to infer the uncertain model parameters which is indeed a

limitation in real-time forecasting of magma-chamber rupture. Being able to determine

the value of the shallow overpressure and update it at each time step until rupture is

crucial, since this value will indicate if the pressure is sufficient to drive the magma up to

the surface and cause an eruption.

4.5.2 Forecasting the magma-chamber rupture after 2011

We applied the same procedure discussed in Section 4.3 to the radial dataset after

the 2011 eruption at Gŕımsvötn. Figure 4.11 shows that just before the 2014 rifting

event, the shallow overpressure at Gŕımsvötn is already in a critical stage with probability

of rupture equal to 18%. Given the trend prior to the rifting event, Gŕımsvötn could

have erupted in year 2015 since this is where the 25± 1 % probability falls. However, the

probability of rupture decreased after the rifting event until around early 2016, before

accelerating once again as shown in Figure 4.12. Based on these findings, we can

say that some transient event may have affected the behavior of Gŕımsvötn volcano

by postponing its supposed eruption. Given the current dataset we have (i.e. up to

01 Sep 2016), we analyzed the value of the shallow overpressure and the probability of

rupture after the 2014 rifting event (Figure 4.12). Results indicate that by 01 Sep 2016,

the shallow overpressure is already at 39.11 MPa with probability of rupture equal to

28 %. However, it is difficult to say if the shallow magma chamber beneath Gŕımsvötn

is truly in a critical point of tensile failure since the measured radial displacement at

GFUM GPS station after the 2014 rifting event is not anymore related solely to volcanic

deformation. After the rifting event, the displacement time series is already a mix of
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Figure 4.9: Data-fits and Qin estimates of MCMC as compared to EnKF. (A) The
entire 2004-2011 inter-eruptive radial dataset used in this study (black) and the resulting
data-fits by: 1) solely free-running the dynamical model (green), 2) data assimilation via
EnKF (red) and 3) Bayesian-based inversion through MCMC (blue). (B) Estimated value
of the magma inflow rate, Qin, as a function of time using: the free-run (green), EnKF
(red) and MCMC (blue). Note that both in (A) and (B), the dark solid lines correspond
to the mean of the free-run (green), EnKF (red) and MCMC (blue), whereas the lighter
colors represent the model ensembles.
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Figure 4.10: The MCMC-derived shallow and deep overpressure values (blue) as compared
to EnKF-derived estimates (red). Note that the corresponding data fit is illustrated in
Figure 4.10. Note that we also presented the result of “free-running” the dynamical
model (green) using the prior distribution of Qin (Figure 4.5C) and the MCMC-derived
non-evolving uncertain parameters from Figure 4.3.
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contributions related to the 2014 rifting event itself, the 6-month long eruption, the

subsequent visco-elastic relaxation of the ground after the rifting, and of course, the

activities beneath Gŕımsvötn’s volcano.

4.5.3 Failure criterion

The failure overpressure criterion, ∆Pf , that we used to forecast if the magma chamber

will reach tensile failure and initiate dyke propagation is highly dependent on the rock

tensile strength, Ts. We emphasize that the mean value we used (e.g. Ts = 22 MPa) is in

fact an upper bound of what is measured in situ. Although a key parameter, the estimate

of the rock tensile strength is poorly constrained. Furthermore, the failure overpressure

can vary depending on the geometry of the magmatic reservoir and local stress field that

can actually change through time due to the effects of processes that include (but are not

limited to): faulting, fracturing or presence of hydrothermal activity (Pinel et al. [2010],

Albino et al. [2018]). It follows that the value of the failure overpressure has a large

uncertainty and should be defined carefully per individual volcano. These arguments

justify our use of a wide Gaussian distribution for the failure overpressure criterion at

Gŕımsvötn in order to account for its large variability. However, we also stress the fact

that further studies must be taken in order to constrain this failure overpressure criterion

(e.g. revisit the failure overpressure values and conditions that triggered past eruptions).

4.6 Conclusions and Perspectives

In this work, we introduced a new approach to forecast the failure of a magma

chamber in real-time by sequentially assimilating geodetic data and by defining a failure

overpressure criterion in the form of a wide Gaussian distribution for Gŕımsvötn volcano.

We tested our strategy by forecasting the 2011 Gŕımsvötn eruption using the 2004-2011

inter-eruptive dataset recorded at GFUM GPS station. Blake et Cortés [2018] explored

the idea of producing forecasts of the type, “The probability that a deflation will start

during the next N days is p”. In our case, we give forecasts in the form of, “[Given

that an eruption is imminent when the probability of rupture reaches p], an eruption

might occur within the next Nmax
min days”. Indeed we obtained succesful results based

on p = 25± 1%, with the last three days prior to the 2011 eruption even indicating [a

minimum forecast of] “zero days to eruption”. Note however, that the probability of rup-
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Figure 4.11: (A) The eruption zones with the evolution of the shallow overpressures after
the 2011 Gŕımsvötn eruption until the 2014 rifting event. (B) The cumulative
distribution function (CDF) illustrating the failure overpressue (blue) as well as the
overpressures at the end of the assimilation window (red) and at the end of free-run
(green). Note that the latter is performed just after the assimilation to further predict
the evolution of the overpressure. (C) The probability of rupture calculated from the
N -ensemble of models that exceeded the failure overpressure described by the distribution
in (D). (E) The percentage of ensemble members entering each eruption zones as a
function of time.

176



4.6 Conclusions and Perspectives

Figure 4.12: (A) The eruption zones with the evolution of the shallow overpressures after
the 2011 Gŕımsvötn eruption until 01 September 2016. (B) The cumulative
distribution function (CDF) illustrating the failure overpressue (blue) as well as the
overpressures at the end of the assimilation window (red) and at the end of free-run
(green). Note that the latter is performed just after the assimilation to further predict
the evolution of the overpressure. (C) The probability of rupture calculated from the
N -ensemble of models that exceeded the failure overpressure described by the distribution
in (D). (E) The percentage of ensemble members entering each eruption zones as a
function of time.
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ture, p, may or may not be similar to other volcanoes and hence must be further validated.

We also tested our approach for the 2011 dataset until and after the 2014 rifting event.

Our findings indicate that Gŕımsvötn could have erupted in 2015 but was postponed

after the Bárdarbunga-Holuhraun event in 2014-2015, implying that there might be a

transient event that occurred and affected Gŕımsvötn’s volcanic system. In Chapter

5, we will present evidences of this transient event and discuss how nearby volcanoes

possibly interact with each other.

The strategy that we propose is simple and can be used as a fast and first-order

approximation to forecast the possible failure of a magma chamber. Indeed, it can be

applied to other basaltic type of volcanoes that also exhibit inflation-deflation behavior.

Although we only used deformation data alone for the real-time forecasting, we emphasize

that integrating other datasets (e.g. seismic, gas emission data) are highly encouraged

along with more realistic physics-based models to provide stronger and much deterministic

results. However, when developing more sophisticated models, one must consider the

computational cost since this is very crucial in real-time forecasting of volcanic unrest.

We believe that the approach developed in this study can open doors to a whole lot

of new perspectives in eruption forecasting. In particular, we can now have real-time

information about the evolution of the overpressures that can be used not only to evaluate

the possible failure of a magma chamber but also as an initial input to dyke propagation

models. Once evidences indicate that the magma chamber has ruptured, the overpressure

becomes a key parameter to initialize dyke propagation models in order to assess whether

or not the dyke will be able to reach the surface. If there is enough driving pressure, then

the next step is to forecast the exact timing and location of the eruption.
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DEEP CONNECTION BETWEEN VOLCANIC SYSTEMS EVIDENCED BY
SEQUENTIAL ASSIMILATION OF GEODETIC DATA

Abstract

The existence of possible deep connections between nearby volcanoes has so far only

been formulated on the basis of correlation in their eruptive activities or geochemical

arguments. The use of geodetic data to monitor the deep dynamics of magmatic systems

and the possible interference between them has remained limited due to the lack of

techniques to follow transient processes. Here, for the first time, we use sequential data

assimilation technique (Ensemble Kalman Filter) on ground displacement data to evaluate

a possible interplay between the activities of Gŕımsvötn and Bárdarbunga volcanoes in

Iceland. Using a two-reservoir dynamical model for Gŕımsvötn plumbing system and

assuming a fixed geometry and constant magma properties, we retrieve the temporal

evolution of the basal magma inflow beneath Gŕımsvötn that drops up to 85% during

the 10 months preceding the initiation of the Bárdarbunga rifting event. We interpret

the loss of at least 0.016 km3 in the magma supply of Gŕımsvötn as a consequence of

magma accumulation beneath Bárdarbunga and subsequent feeding of the Holuhraun

eruption 41 km away. We demonstrate that, in addition to its interest for predicting

volcanic eruptions, sequential assimilation of geodetic data has a unique potential to give

insights into volcanic system roots.

5.1 Introduction

The rate of magma supply to volcanic systems which fundamentally controls the

eruptive activity is a determinant information mostly retrieved by geodesy and/or gas

measurements. However, this key input remains difficult to constrain. One reason is that

the ability of geodetic observations to detect or quantify magma accumulation decreases

with the increasing depth of storage zones involved. Despite this flaw, geodesy sometimes

in combination with gas measurements has been essential to estimate magma flux entering

subsurface reservoirs, proving that this supply was most probably occurring by pulse

or surge of magmas (Parks et al. [2012], Poland et al. [2012]). Indeed, this behavior is

consistent with the observation that long-term pluton growth rates, inferred from isotopic

studies, are much smaller than the minimum rates of magma supply required to ensure

magma transfer through dykes (Menand et al. [2015]). Despite this known transient

behavior in deep magma supply, classical methods used so far to invert geodetic data al-

ways consider steady-state systems with constant basal inflow (Anderson et Poland [2017]).
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Another open question related to magmatic sources concerns their spatial extent at

depth, whether or not a common deep source can be shared by different volcanic systems

or can distinct magmatic sources be mechanically connected at depth. Geochemical

arguments based on major element compositions or ratios as well as isotopic compositions

are commonly used to discriminate samples from different volcanic systems and address

the question of the lateral extension of volcanic roots (Weis et al. [2011], Hartley et

Thordarson [2013]). More recently, thanks to the improvement of deformation data spatial

coverage brought by satellite radar interferometry, geodesy has provided some significant

insights into the lateral extent of magmatic domains (Biggs et al. [2016]). In particular,

based on a statistical analysis, deformation occurring at more than 5 km away from the

nearest active volcanic vent is common, suggesting that magmatic storage zones are not

focused beneath volcanoes (Ebmeier et al. [2018]). Rifting areas where long dikes are

emplaced, represent ideal context to track lateral connections between nearby volcanic

systems.

Here, we propose a new methodology suitable to retrieve magma supply changes

from temporal series of geodetic data even with limited amount of spatial information,

allowing us to evidence a connection between two nearby volcanic systems in the Icelandic

Eastern Volcanic Rift Zone. While several studies have used real geodetic data and

applied variants of Kalman Filter as an optimization or statistical interpolation tool to

solve problems in volcanology in the past (Fournier et al. [2009], Shirzaei et Walter [2010],

Zhan et Gregg [2017]), this study is the first one to apply sequential data assimilation

based on a dynamical model as proposed in Chapter 3 using a real dataset recorded on

a volcano.

5.2 Bárdarbunga and Gŕımsvötn volcanoes

Bárdarbunga and Gŕımsvötn are two subglacial basaltic volcanoes located ∼ 27 km

apart beneath the Vatnajökull ice cap (Figure 5.1). They are isotopically distinct

systems (Sigmarsson et al. [2000]) and are both sitting at the center-top of the mantle

plume in Iceland (Wolfe et al. [1997]). Gŕımsvötn volcano hosts a 10-12 km wide and

200-300 m deep caldera complex. Geodetic measurements from its last eruption reveal

a 1.7 km-deep shallow magma chamber (Hreinsdóttir et al. [2014]). Although, a low

seismic velocity anomaly at around 3-4 km depth has been previously observed and

identified as a magma chamber along with a deeper dense body inferred from gravity
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Figure 5.1: Landsat-8 image taken on 06 September 2014, showing the principal volcanoes
and fissure swarms (e.g. Bárdarbunga (Br), Gŕımsvötn (Gr) and Askja(As)) near the
Vatnajökull icecap. The image is based on the mosaicked data from the National Land
Survey of Iceland (NASA Landsat Program [2014], Landmaelingar Islands [2015])). Fissure
eruptions of Laki (1783-1784) and Gjálp (1996) as well as the on-going Holuhraun eruption
when the image is captured are also presented. The locations of GFUM and DYNC GPS
stations which are discussed in the main article are marked as yellow triangles. Inset:
map of Iceland (modified after Reverso et al. [2014]) outlining its volcanic zones (e.g.
West Volcanic Zone (WVZ), East Volcanic Zone (EVZ), North Volcanic Zone (NVZ))
and transform zones (e.g. South Iceland Seismic Zone (SISZ) and Tjornes Fracture Zone
(TFZ)). The Reykjanes Ridge and Reykjanes Peninsula Rift (RPR), and the Kolbeinsey
Ridge which mark the limits of the volcanic zone are illustrated for reference. The rate
of the plate spreading is 9.8 mm yr−1 (DeMets et al. [2010], Reverso et al. [2014]). The
shaded gray area is the region covered by the Landsat-8 image in the main figure.

184



5.3 Related deformation before the 2014-2015 eruptive activity

measurements (Alfaro et al. [2007], Hreinsdóttir et al. [2014]). Gŕımsvötn is Iceland’s

most active volcano erupting once per decade. Its post-eruptive deformation patterns

for the last three eruptions (i.e. 1998, 2004 and 2011) are very similar and suggest a

plumbing system characterized by at least two connected magma reservoirs (Reverso et al.

[2014]) beneath the volcano. In October 1996, a subglacial eruption termed as the Gjálp

eruption (Gudmundsson et al. [1997]) occurred between Gŕımsvötn and Bárdarbunga

volcanoes. However, contrasting geochemical and geophysical analyses result to unresolved

debates on whether the eruption was fed by Bárdarbunga or Gŕımsvötn (Einarsson et al.

[1997], Sigmarsson et al. [2000], Sturkell et al. [2006], Pagli et al. [2007]). Bárdarbunga

volcano has an 11-by-18 km wide and 500-700 m deep elliptic caldera (Gudmundsson

et al. [2016]) with an associated fissure swarm extending 115 km to the southwest and

55 km north-northeast (Sigmundsson et al. [2015], Gudmundsson et al. [2016]). Activities

at Bárdarbunga consist in (i) subglacial or (ii) major effusive fissure eruptions for the

last 2000 years (Sigmundsson et al. [2015]). In August 2014, an eruptive fissure called

Holuhraun (Figure 5.1) has been reactivated between the Bárdarbunga and Askja

volcanic systems (Sigmundsson et al. [2015]). The activity began with intense shallow

seismicity that originated from Bárdarbunga and migrated toward Askja during the weeks

that followed (Gudmundsson et al. [2016]). The magmatic dyke was fed by a reservoir

located at ∼ 12 km depth beneath Bardarbunga caldera (Gudmundsson et al. [2016]).

It propagated at a distance of ∼ 41 km before it breached the surface resulting to the

Holuhraun fissure eruption. The effusive eruption lasted for 6 months and produced

1.5± 0.2 km3 of lava, a volume similar to the erupted lava of the 1783-1784 Laki eruption

(Gudmundsson et al. [2016]).

5.3 Related deformation before the 2014-2015 erup-

tive activity

Between October 2013 and August 2014, NS and EW surface displacement patterns

observed at GFUM—the sole GPS station at Gŕımsvötn volcano located on Mount

Gŕımsfjall (Figure 5.1)—shifted from a positive linear to a nearly-constant trend (i.e.

gray area in Figure 5.2). Such change of slope has not been observed during the pre-

vious post-eruptive displacement time series (Figure 5.3). The GPS times series thus

clearly shows a significant change in behavior compared to the regular trend continuously

recorded over the last 10 years (i.e. 1.5 eruptive cycle) and this change does occur
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Figure 5.2: GPS time series of GFUM station from 22 May 2011 to 30 Nov 2014. The
actual data are in blue points, the red solid line is the linear fit of the points within the
shaded gray area (assumed shift from linear to constant trend), and the black solid line
represents the linear fit prior to the shaded gray area. The latter was extended up to the
end of the dataset to estimate the expected displacements after the assumed change of
slope (14 October 2013). The red broken lines mark the onset of the May 2011 eruption
and the August 2014 rifting event at Gŕımsvötn and Bárdarbunga, respectively. The
horizontal black broken line is the zero-displacement reference. The shaded green area
covers the dataset used during the inversion (step 1 of our approach). The insets (orange
box) provide a closer look on the data points near the time of the rifting episode. Note
that the vertical displacement is not corrected for GIA and seasonal effects. We applied a
tectonic correction for the NS and EW components following the estimations of Reverso
et al. [2014].
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Figure 5.3: GPS time series measured at GFUM station from 30 Sep 2004 to 01 Sep
2016. The blue dots are the actual data. The red broken lines mark the 2004 and 2011
Gŕımsvötn eruptions as well as the 2014 major rifting event. The black solid lines are the
linear fit to the linear part of each post-eruptive event. The black broken lines are shown
as a reference for the zero-displacement value. The shaded gray area corresponds to the
assumed shift from linear to constant trend around 10 months before the 2014 rifting
event. Note that the vertical component of the time series is not corrected for either GIA
or seasonal effects. The horizontal component is however, corrected for tectonic trend.
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Table 5.1: Analyzed displacements at GFUM GPS station at the start of the rifting
event (marked as the red broken line in Figure 5.2). Linear Fit corresponds to the
expected displacement value (black solid line in Figure 5.2), and “Actual” means the
actual displacement value.

Linear Fit Actual Actual - Linear Fit

uY (mm) −279.03 −259.48 19.55
uX (mm) 243.99 208.83 −35.16
ud (mm) 180.13 151.33 −28.80

∼ 10 months before the 2014 major rifting event.

To quantify the displacement change, we apply a simple linear regression technique

using only the linear part of the dataset prior to the assumed change in behavior (i.e.

November 2011 to October 2013) and then we use the resulting slope to estimate the

expected displacements at the time of the rifting (i.e. 4 UTC, 16 August 2014 is marked as

the start of the major rifting event, Gudmundsson et al. [2016]). We obtained significant

discrepancies of up to -39.31 mm and 44.88 mm for the EW and NS directions, respectively

(see Figure 5.2 and Table 5.1).

An inflating reservoir beneath Bárdarbunga could not explain such discrepancies

as displacement contributions toward the south and the east directions are expected

instead. To demonstrate this, we modeled the expected displacements at GFUM GPS

station induced by an inflating source beneath Bárdarbunga using the results of previous

studies (Auriac et al. [2014], Gudmundsson et al. [2016], Coppola et al. [2017]) as input

parameters (Table 5.2) to a generalized point-pressure source equation:

 uY

uX

ud

 =


α (1−ν)

G
a3∆P

(
Y
R3

)
α (1−ν)

G
a3∆P

(
X
R3

)
α (1−ν)

G
a3∆P

(
d
R3

)
 (5.1)

As expected, the modeled displacements could not fit the observed displacements at

GFUM (Table 5.2). Moreover, we find no similar trend variation at neighboring GPS

stations close to Bárdarbunga, in particular the DYNC station which is ∼ 22 km away

from Bárdarbunga (Table 5.3 and Figure 5.4). These arguments imply that the sudden

change of behavior at GFUM, one year prior to the 2014-2015 Bárdarbunga-Holuhraun
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eruptive activity, is most likely not directly induced by Bárdarbunga’s plumbing system.

Furthermore, the ratio between the vertical and radial displacements measured at

Gŕımsvötn remains constant through time (see Figure 5.5) indicating that the location

of the source inducing the surface displacement has not changed through time. Based on

these observations, we conclude that the change of slope observed in the radial component

should rather be explained by some transient processes affecting Gŕımsvötn’s shallow

reservoir—such as the variation of the deep magma supply rate feeding this reservoir.

5.4 Methods

5.4.1 Forward dynamical model

We utilize the two-magma reservoir model of Reverso et al. [2014] (Figure C.1) as

the source of ground deformation at Gŕımsvötn volcano that is based on simple reservoir

systems embedded in a homogeneous elastic crust and incompressible magma. Note that

this model only represents the upper part of a multiple-reservoir system.

In this work, we slightly modified the original equations to account for initial over-

pressure values present in the system:

∆Psti+1
−∆Psti

ti+1 − ti
=

3πEac
4

128(1− ν2)µHcas3
(((ρr−ρm)gHc+(∆Pdt0−∆Pst0 ))+∆Pdti−∆Psti )

(5.2)

∆Pdti+1
−∆Pdti

ti+1 − ti
=

3E

16(1− ν2)ad3
Qin −

as
3

ad3

∆Psti+1
−∆Psti

ti+1 − ti
(5.3)

Given a set of known and uncertain model parameters, the forward model computes

the evolution of the overpressures in the shallow and deep reservoirs which are directly

related to the deformation measured at the surface. We assume the following for the

known parameters of our model: the shapes of the reservoirs are sills, the Young’s

modulus, E = 25 GPa, the depth and the radius of the shallow reservoir are Hs = 1.7 km

and as = 2.0 km, respectively (Hreinsdóttir et al. [2014]). We expect that geometrical

parameters as well as parameters related to magma properties remain unchanged in

190



5.4 Methods

Table 5.3: Analyzed displacements at DYNC GPS station at the start of the rifting
event (marked as the red broken line in Figure 5.4). Linear Fit corresponds to the
expected displacement value (black solid line in Figure 5.4), and “Actual” means the
actual displacement value.

Linear Fit Actual Actual - Linear Fit

uY (mm) 17.63 24.81 7.18
uX (mm) 172.74 173.45 0.71
ud (mm) 16.72 17.91 1.19

Figure 5.4: GPS time series measured at DYNC station from 22 May 2011 to 30 Nov
2014. The blue dots are the actual data, the red solid line is the linear fit of the points
within the shaded gray area (i.e. area that corresponds to the assumed shift from linear
to constant trend detected at GFUM station), and the black solid line represents the
linear fit prior to the shaded gray area. The latter was extended up to the end of the
dataset. The red broken lines mark the onset of the May 2011 eruption and the August
2014 rifting event at Gŕımsvötn and Bárdarbunga, respectively. The horizontal black
broken line is the zero-displacement reference. The insets (orange box) provide a closer
look on the data points near the time of the rifting episode.
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Figure 5.5: The ratio of the radial and vertical displacements (gray solid line) at GFUM
GPS station from 24 May 2011 to 16 Aug 2014. The horizontal black line is the mean
ratio (i.e. UR/Uz = 2.4). The blue points are the actual radial and vertical displacements.
Tectonic correction is applied on the radial component. The vertical component is neither
corrected for GIA nor seasonal effects. The black broken line marks the assumed change
of slope.
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one eruption cycle hence, we assume that all the other uncertain model parameters are

constant except for the basal magma inflow, Qin (see Table 5.4 for the description of

the uncertain parameters and Figure C.1 for the schematic diagram).

Note that any dynamical model can be used for data assimilation, however, the

interpretation we made clearly depends on our model choice. We used the two-reservoir

model because of its ability to well explain the temporal evolution of the displacement

recorded at Gŕımsvötn (i.e. exponential followed by a linear trend) after each eruptive

event. Other models considering only one reservoir fed by a deep and constant pressure

source could potentially explain the same temporal evolution by introducing either

a complexity in the encasing medium rheology (i.e. damage, viscoelastic behavior

(Got et al. [2017], Segall [2016])) and/or in the magma properties (i.e. crystallisation,

degassing, compressibility (Caricchi et al. [2014], Segall [2016])). However, there is a

strong geochemical evidence for probably at least several deep reservoirs beneath the

Gŕımsvötn system (Haddadi et al. [2017]). Besides, the deep magma supply rate is

expected to fluctuate through time (Parks et al. [2012], Poland et al. [2012], Menand et al.

[2015]). The facts that 1) such fluctuation is not observed during the previous eruptive

cycle, 2) it seems to be transient and 3) it occurs simultaneously with a rifting event

mobilizing a large volume of magma in a close volcanic system, are strong arguments in

favor of the model preferred in this study. Having GPS data at a distance of 15 km from

Gŕımsvötn could confirm this effect of the deep reservoir (see Figure 5.6).

5.4.2 Inversion and data assimilation

For the inversion and data assimilation, only the radial component of the 2011 post-

eruptive dataset is exploited due to uncertain GIA contribution and low accuracy of the

vertical component at GFUM station (Reverso et al. [2014]). We perform a synthetic

test to first check that the evolution of Qin can be tracked even with only the radial

component of one GPS station. Basically, we adopted the setup discussed in Chapter 3

in generating the synthetic observations, except that in this case, we only produce the

radial component of a GPS time series measured at one station (i.e. at r = 3.5 km). The

frequency of incoming GPS observation is daily. Also, while generating the synthetic

observations, we assumed that after tstep = 875 d, the value of Qin suddenly drops to zero

such that the synthetic displacement becomes constant afterwards (i.e. “Truth” in Figure

5.7). We considered a white Gaussian observation error appropriate for the GFUM
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Figure 5.6: The expected radial displacement time series measured at a GPS station
located 15 km away from Gŕımsvötn’s volcanic center. (A) Ur,s and (B) Ur,d are the radial
displacements contributed by the shallow and deep reservoirs, respectively. (C) Ur,tot
is the combined displacement of the two reservoirs (the data measured at the surface).
The black arrow in Figure 5.6C points at the deflected part of the surface displacement
curve. This is similarly observed in the radial displacement contribution of the deep
reservoir (Figure 5.6B), implying that the measured radial displacement at 15km is
mainly dominated by the deep reservoir. The black broken line marks the assumed change
of slope prior to the start of the 2014 rifting event (tstep = 875 d).
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dataset (i.e. R = 0.0152 m). Afterwards, we performed state-parameter estimation

following the strategy in Chapter 3 with the state vector, X, expressed as:

X =

 ∆Ps

∆Pd

Qin

 (5.4)

Clearly, successful results are obtained provided that non-evolving uncertain model

parameters are well-estimated and fixed prior to data assimilation (Figure 5.7). For the

context of data assimilation experiments, we also presented the result of “Free-run”.

Given the results of the synthetic case, we developed a two-step approach to follow

the behaviour of Qin in real time: (1) We apply a Bayesian-based inversion through

the Markov Chain Monte Carlo (MCMC) algorithm to first constrain the non-evolving

uncertain model parameters (e.g. ad, Hd, C,∆ρ,∆Pdt0 ) and obtain a prior distribution for

Qin using only the initial part of the 2011 post-eruptive dataset. (2) Then we implement

the Ensemble Kalman Filter (Evensen [2003]) as a data assimilation technique, following

the strategy developed in Chapter 3 using the entire 2011 post-eruptive radial data

until before the rifting event.

Step 1: Bayesian-based inversion. We performed a Bayesian-based inversion using

the Markov Chain Monte Carlo (MCMC) algorithm. In MCMC, uncertain model

parameters independently drawn from given a priori distributions are constrained by

accepting model predictions that better fit observations and by randomly accepting those

that do not fit to avoid being trapped to a local minima (Segall [2013]). In particular, we

built our approach using the PyMC2 python module. The classic linear inverse problem

is described as:

D = G(m) + ε (5.5)

where D is the vector of observation or data, G is the forward model, m is a vector

of the uncertain model parameters and ε is the observation error. In our case, m =

[ad, Hd, C,∆ρ,∆Pdt0 , Qin], D is the 2011 post-eruptive GPS dataset (we only use the

radial displacement component up to tstep = 409 d) and G is the analytical solution

(Chapter 3) to the forward model described in equations (5.2) and (5.3).
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Figure 5.7: EnKF synthetic test to track sudden change in Qin value. The true behavior
of the system is the black solid line. The radial displacement data used for the EnKF is
in gray. The result of free running the forward model is in green (the darker green is the
mean and the lighter green lines are the ensemble members of the model state), whereas
the EnKF result is in red (dark red is the mean value and the lighter red color are the
ensemble members of the model state). The vertical black broken lines mark the change
of slope (i.e. 875 d). Note that the prior distribution of Qin used for the assimilation is
also presented.
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In the Bayesian framework, the posterior probability associated with m is sampled

based on a likelihood function, P (D|m), that calculates how well the data fits the model

and a prior knowledge about the uncertain model parameters, P (m):

P (m|D) ∝ P (D|m)P (m) (5.6)

Note that the errors in the resulting posterior distributions are only related to the obser-

vation error and uncertainties of the prior distribution of m. Any error related to how

the model, G, represents the reality is not taken into account. Such that in the case of a

time-varying parameter, this approach is not the optimal strategy to use.

We first scale m and then we compute for the posterior distributions incorporating

an Adaptive Metropolis (AM) step method. The latter is to avoid the problem of con-

vergence due to possible “trade-offs” between the six uncertain model parameters. The

AM method is a more intelligent way of fitting the parameters by block updating them

using a multivariate jump distribution. We performed 2.0× 105 individual samples with

each calling the forward model G. To make sure we converged to a good estimate and

maintain no autocorrelation, half of the samples are burned and the remaining samples

are thinned by a factor of 100 such that we end up by having 1000 samples. Because of

the simplicity of the forward model, it only took around 30 minutes to simultaneously

obtain the posterior distributions of the uncertain model parameters.

From the constructed posterior distribution, we pick the set of best-fit parameters by

computing the misfit relative to the data points within the time frame we used during

the inversion (dotted green box in Figure 5.9).

Step 2: Data assimilation. We closely followed the strategy developed in Chapter

3 to assimilate geodetic data into a forward dynamical model. A step-by-step data

assimilation strategy using EnKF is presented in Figure C.2. The assimilation is divided

into two steps: 1) the forecast step and 2) the update step (or analysis). The forecast

step is the part where an N-ensemble of models (i.e. N = 1000) are generated using the

forward dynamical model given a previous or prior distribution of the state vector, X:

Xf
ti+1

=MXa
ti

+ qti (5.7)
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f and a: denote the forecast and analysis, respectively, M: the model operator that

relates the system from time ti to ti+1 and q: the model error. Equation 5.7 is fully

expressed as:

 ∆Psti+1

∆Pdti+1

Qinti+1

 =

 1− C1∆t C1∆t 0

C1C2∆t 1− C1C2∆t 0

0 0 1


 ∆Psti

∆Pdti
Qinti

+

 C1A1∆t

(A2 − C1C2A1)∆t

0


(5.8)

where C1 = 3πEac4

128(1−ν2)µHcas3
, A1 = (ρr−ρm)gHc+(∆Pdt0−∆Pst0 ), A2 = 3EQin

16(1−ν2)ad3
and C2 =

as3

ad3
. Note that the model operator has the form, M =

 1− C1∆t C1∆t 0

C1C2∆t 1− C1C2∆t 0

0 0 1

.

The assimilation interval is set to ∆t = 1 day and we expect to have GPS data every

day (i.e. frequency of observation, fobs = 1). A Gaussian prior for the uncertain model

parameter is required by EnKF to achieve an unbiased and optimal estimate. However,

to ensure that the predicted value is within the correct physical boundaries, we redefine

the distribution of Qin (expressed in km3 yr−1) prior to the implementation of EnKF to

a truncated Gaussian distribution with the mean centered on its best-fit value obtained

from the inversion, the standard deviation is set to ∼ 0.003 km3 yr−1 and the upper and

lower limits are fixed to [a = 0, b = 0.19] (see Figure 5.9C).

In the context of data assimilation, ∆Ps and ∆Pd are called state variables because

they are directly linked to the observations, while Qin is termed as an uncertain model

parameter and is only updated by the covariance between it and the state variables during

the update step. We scaled the forecast state vector, Xf , (i.e. 107 and 10−1 for the over-

pressures and Qin, respectively) and then we imposed an inflation factor, ρinfl = 0.05 (i.e.

Xf = (1 + ρinfl)X
f , see Chapter 3) if the standard deviation of Qin at ti+1 falls below

its standard deviation at t0. The latter is to prevent the ensemble from collapsing to a

single value and also to help the filter to track the value of the time-varying parameter, Qin.

Once observation is available, Xf is updated by computing the Kalman Gain, K,

(equation 3.8) and then applying the update equation,
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Xa = Xf +K(D −HXf ) (5.9)

to obtain the vector of analysis, Xa. Note that the value of Qin remains unchanged if

there is no observation. Since we only use the radial component of the displacement time

series, we define the observation operator, H =
[

ΓDsr ΓDdr 0
]
, such that:

Dti = uRti =
[

ΓDsr ΓDdr 0
] ∆Psti

∆Pdti
Qinti

+ εti (5.10)

where Γ = 8(1−ν2)
πE

, Ds = H2
sa

3
s

R5
s

, Dd =
H2
dad

3

R5
d

and r is the distance of GFUM GPS station

from the center of the volcanic system (e.g. 3.5± 0.2 km). Lastly, we use an observation

error covariance, R = E(εεT ) = (0.015 m)2.

5.5 Results

The best-fit values of the uncertain model parameters after step 1 are summarized in

Table 5.4 and are also marked as green lines in Figure 5.8. Despite the non-uniqueness,

these values are consistent with the data, physics of the model and results of previous

studies (e.g. Hreinsdóttir et al. [2014], Reverso et al. [2014], Haddadi et al. [2017]).

If no observation is used to correct the dynamical model, the result is called the

“Free-run” (Figure 5.9) where the model is only propagated forward in time. Obviously,

if the model is almost a perfect representation of the observations wherein the model

parameters are well-constrained and remain constant in time as in the case of the initial

part of our dataset, we expect to have a good fit with the radial dataset. Note that

although we only use radial displacement data within the dotted green box in Figure

5.9 for the inversion, the inferred best-fit values of the uncertain model parameters are

able to match the dataset for the radial component up to tstep = 545 d and appear to be

consistent with the vertical component (Figure 5.10). It is unclear though if tstep = 545 d

marks an episode of a true decrease in magma inflow rate or is just a part of some tran-

sient noise that affected the dataset. The latter case would require a lower value of Qin

at tstep = 0 to fit the time series up to our assumed change of slope using the forward model.
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Figure 5.8: Posterior probability density functions (PDF) of the uncertain model parame-
ters after MCMC inversion (step 1). The marginal PDF for each uncertain parameter
is shown in the diagonal histogram plots. The green vertical lines with numbers indi-
cate the best-fit values of the parameters. The off-diagonal contour plots are the joint
kernel-density estimate between pairs of parameters with their corresponding Pearson
correlation coefficients. A p-value close to ±1 implies strong correlation between the
parameters.
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Figure 5.9: Data-fits and Qin estimates. (A) The entire 2011 post-eruptive dataset used
in this study (black) and the resulting data-fits by: 1) solely free-running the dynamical
model (green), 2) performing MCMC based on a classical inversion approach/setup (blue),
and 3) data assimilation via EnKF (red). The green dotted box covers the dataset used
to estimate the non-evolving uncertain parameters (step 1). The robustness of each
approach is depicted on how it fits the radial displacement dataset which clearly favors
the EnKF method. (B) Estimated value of the magma inflow rate, Qin, as a function of
time using: the free-run (green), EnKF (red) and MCMC (blue). Note that the gray and
black broken lines (Figure 5.9A and 5.9B) correspond to the points where a decreasing
trend in Qin, tracked via EnKF, are observed. (C) The distribution of Qin used as a prior
information for the free-run, the data assimilation and the inversion.
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Figure 5.10: Data fit (green) using the MCMC-derived values of the uncertain model
parameters as inputs to the forward model. The actual data are represented by gray solid
lines. Note that the vertical component is not corrected either for GIA or seasonal effects.
The black broken line marks the assumed change of slope preceding the start of the 2014
rifting event (tstep = 875 d).
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The assimilation of radial displacement using the strategy that we have developed

not only results to a robust fit to the entire dataset but also enables us to follow closely

the decreasing trend of Qin (Figure 5.9). We obtain a minimum rate of 0.007 km3 yr−1

from the ensemble of Qin estimates which corresponds to a drop of 0.039 km3 yr−1 (85%

decrease) relative to its prior value.

Bayesian-based inversion vs. data assimilation

Another interesting result is that if we follow the similar approach to track Qin by first

fixing non-evolving uncertain parameters, but use an inversion approach (i.e. MCMC) as

a second step instead of data assimilation, we find that MCMC was able to slightly detect

the change in Qin but the resulting fit with the data is not satisfying (Figure 5.9). The

main difference comes from the fact that with MCMC, we invert at each given time step

all the observations that are previously acquired considering an effective constant value of

Qin over the whole period (i.e. integral analytic formula). Whereas with the assimilation

strategy, we apply the differential equation between each time step such considering an

evolving magma supply rate, Qin.

In classic inversion setup, the model used to interpret the data is assumed “perfect”.

In that case, the source of error is often only attributed to the data, whether due to

perturbation in acquisition, instrument noise, data pre-processing or sum of these errors.

However, in reality, models are embedded with noise and are oversimplified representations

of the complex system that we observe. In Chapter 3, we illustrated through synthetic

case that if the dynamical model used well-explains the observed data time series and that

there is no transient change in the uncertain model parameters (i.e. they are constant

through time), both data assimilation through EnKF and inversion via MCMC can track

the state variables (i.e. overpressures within the reservoirs) and also estimate the true

values of the uncertain model parameters (i.e. basal magma inflow rate and radius of the

deep reservoir).

However, if the uncertain model parameter varies through time, such as the case

of Qin in this study, EnKF is then most useful. In EnKF, the model error covariance,

P = (X −X)(X −X)T , computed from a large number of perturbations of uncertain

model parameters (Qin for example) is an approximation of the real model error. In

practice, we use a large ensemble of models to represent the model error. Furthermore, by
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using a multiplicative inflation (Chapter 2) which is a tuning step in data assimilation,

underestimated model errors related to external process in EnKF and/or unaccounted

source of model error are compensated.

The influence of the set of uncertain model parameters as prior

input to EnKF

Note that the set of best-fit values summarized in Table 5.4 and illustrated in Figure

5.8 is only one of the many solutions that could satisfy the observed displacement we

used for the inversion. The non-uniqueness of the solution is a consequence of the poor

spatial resolution of the dataset since we only have one GPS station at Gŕımsvötn with

six uncertain model parameters to infer. However, our main goal is not to find a unique

solution to our inverse problem rather to obtain values that are consistent with the

data, physics of the model and results of previous studies (e.g. Hreinsdóttir et al. [2014],

Reverso et al. [2014], Haddadi et al. [2017]) such that we can fix the non-evolving ones

and follow the variation of Qin.

To ensure that the decrease in Qin is a true episode after our assumed change of slope

and is not influenced by the set of values that we fixed, we run two independent cases of

data assimilation. We perform similar inversion procedure described in the section 5.4

(i.e. bayesian-based inversion) to obtain the two other set of priors that we tested. In

the first case, we obtain a set of values for the six uncertain model parameters using the

2004 post-eruptive radial dataset. In the second case, we assume that ad, Hd and ∆ρ are

constant from one eruption to another so we adopted their values from case 1 and then

recalculated Qin, C and ∆Pd,t0 using only the initial part of the 2011 radial displacement

time series. Figure 5.11 clearly shows that regardless of the set of prior values used as

inputs to the EnKF scheme, a sudden drop in the magma inflow rate is evident after the

observed change of slope, ∼ 10 months before the rifting event.

5.6 Implications of the change in magma supply rate

at Gŕımsvötn

The estimated decrease of the magma supply rate measured at Gŕımsvötn corresponds

to a mimimum deficit of 0.016 km3 of magma for the Gŕımsvötn plumbing system when
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Figure 5.11: Testing different sets of uncertain model parameters as prior inputs to EnKF
to track the evolution of Qin. Case I: The values of the 6 uncertain parameters are derived
using the entire 2004 post-eruptive radial dataset. Case II: Values of ad, Hd and ∆ρ from
Case I are adopted, whereas the remaining 3 uncertain parameters are determined by
inverting the initial part of the 2011 post-eruptive radial dataset. Case III (Main result
discussed in the paper): The 6 uncertain model parameters are estimated using the initial
part of the 2011 post-eruptive radial dataset. The black broken line marks the assumed
change of slope before the start of the 2014 rifting event (tstep = 875 d).
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during the same period, magma accumulation is expected at Bárdarbunga (Gudmundsson

et al. [2016]). A similar anti-correlated behavior has previously been observed between

Kilauea and Mauna Loa based on their eruptive activities, however characterized by

isotopically different magmas (Gonnermann et al. [2012]). It was then interpreted as

due to stress transfer over the 35 km distance separating the two systems through

pore-pressure variations in a thin asthenospheric melt accumulation layer. Connections

between volcanic systems have also been evidenced by geodetic observations previously

but only for systems spaced less than 10 km apart (Biggs et al. [2016]). Mechanisms

invoked to explain nearby volcanic systems interactions include stress changes, lateral

hydraulic connections and a common asthenospheric magma supply as for the Hawaiian

case. In the Gŕımsvötn-Bárdarbunga case, we can exclude the stress change effect due

to the large distance separating the two systems (Biggs et al. [2016]). Two possible

scenarios caused the decrease in magma supply to Gŕımsvötn between October 2013 and

August 2014 (Figure 5.12): 1) the magma that feeds Gŕımsvötn’s mid-crustal reservoir

at ∼ 20 km depth was transported toward Bárdarbunga’s volcanic system through an

existing deep fracture, and 2) there was a drop in the relative pressure difference between

Gŕımsvötn’s mid-crustal reservoir and a much deeper reservoir shared by Bárdarbunga

and Gŕımsvötn at more than 20 km depth.

For the first case, we estimate a minimum of 0.016 km3 of magma that flowed toward

Bárdarbunga’s magmatic system assuming that the magma is an incompressible fluid.

Although this is only ∼ 4 − 20% of the estimated 2014 dyke intrusion (Sigmundsson

et al. [2015], Gudmundsson et al. [2016]), the volume of transported magma could be

enough to trigger a magmatic reservoir rupture beneath Bárdarbunga and initiate magma

propagation from the storage zone. It is possible, provided that this storage zone was

already in a pressurized stage before this additional magma inflow. Note that the true

volume may be largely underestimated due to magma compressibility (Poland et al. [2012],

Rivalta et Segall [2008]) and also due to the lack of spatial information having only one

GPS point that we can exploit at Gŕımsvötn. Our synthetic case shows the ability of

sequential assimilation to detect the sudden change in Qin however, the convergence to

the true value may require some time (Figure 5.7). An argument against this scenario

is that no increase of deep seismicity was recorded during the 10 months preceding the

rifting event. Deep seismicity rather indicates a continuous vertical rise of magma 12 km

to the south-east of Bárdarbunga caldera (Hudson et al. [2017]).
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Figure 5.12: Proposed schematic cross-section beneath Gŕımsvötn and Bárdarbunga
illustrating the two possible deep mechanism connecting the two volcanic systems: 1)
lateral flow hypothesis and 2) magma reservoir hypothesis. GFUM and DYNC GPS
stations are represented as yellow triangles. The link between Bárdarbunga and Holuhraun
during the 2014-2015 eruption (green sketch) is shown after Gudmundsson et al. [2016];
however it does not follow the cross-section path in the inset figure.
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For case 2, assuming that the ascent of magma from a deep source to an upper

magma chamber (Figure 5.12) follows a Poiseuille flow (Pinel et Jaupart [2003]), a

drop in the pressure between the common reservoir of Gŕımsvötn and Bárdarbunga

(Pd,shared) and the mid-crustal reservoir of Gŕımsvötn (Pd,G) will decrease the magma

inflow rate toward the latter (QG). The sudden pressure drop is due to the withdrawal

of a large amount of magma in the shared reservoir (Pd,shared) that may have been

caused by the activation or reactivation of a connection between Bárdarbunga (Ps,B) and

the shared (Pd,shared) reservoirs. Bjarnason [2008] estimated the mantle-crust boundary

in Iceland to be at ∼ 30 km depth. This mantle-crust boundary is a suitable place

for the accumulation of melt which can be the source of magma for both Gŕımsvötn

(Haddadi et al. [2017]) and Bárdarbunga’s magmatic systems (Hartley et al. [2018]). As

Gŕımsvötn and Bardabunga basalts have distinct isotopic signatures, the term of “shared

reservoir” has to be considered as a magmatic domain sharing a mechanical connection,

by pore pressure for instance, and containing different and non-homogenized magma lenses.

We provide evidences of magma inflow beneath Bárdarbunga starting at least 10

months before the dyke rifting initiation. We consequently argue that a strong interplay

between the surge in magma supply on a pressurized source and the rifting episode

favored the rupture of Bárdarbunga’s magma chamber, rather than the reduction of the

minimum principal compressive stress linked to rifting alone as proposed by Coppola

et al. [2017]. Bárdarbunga’s location, being on top of Iceland’s mantle plume and in a rift

zone, makes it a suitable place for the interplay. Subsequently, the withdrawal of magma

and the gradual collapse of the caldera are both responsible to sustain the eruption for

up to ∼ 6 months( Gudmundsson et al. [2016]).

5.7 Lessons learned

Although geodetic observations have greatly improved over the last decades, our

ability to infer the characteristics of the deep systems underlying volcanoes remains a

great challenge up to now. On one hand, we do not have a direct observation of the

plumbing system beneath volcanoes such that we only infer their characteristics based

on ground surface measurements, thus only an oversimplified representation of their

complex nature is possible. On the other hand, model-data fusion techniques applied to

inverse problems in volcanology have remained under the assumption of a “perfect” model

therefore largely ignoring errors related to the representation of the dynamics of the real
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system. In the case of estimating a parameter that varies through time, this results to an

incorrect knowledge about the parameter’s true behavior as we have shown previously

when classical static inversion was used to track the time-varying Qin.

The advantage of using sequential data assimilation over a classic bayesian-based

inversion method to follow the evolution of the deep magma supply rate is clear and repre-

sents a first successful application of EnKF in volcanology. Our framework is simple, but

it help us better understand subsurface processes occurring between magmatic reservoirs

(e.g. Gŕımsvötn and Bárdarbunga). We thus demonstrate that in addition to the interest

of predicting volcanic eruptions (Bato et al. [2017]), sequential assimilation of geodetic

data based on a dynamical model has a real and unique potential to give insights into

the deep plumbing system of volcanoes and evolution of bottom conditions though time.

The sudden decrease of magma supply to Gŕımsvötn between 2013 and 2014 was a

transient phenomenon caused by the accumulation of magma beneath Bárdarbunga’s

reservoir. The absence of such similar event based on previous post-eruptive displacement

patterns at Gŕımsvötn suggests that the observed shift is an unusual event. After the 2014

rifting episode, radial displacement pattern at GFUM GPS station began increasing again,

following a positive linear trend (Figure 5.3). However, it is difficult to analyze the

displacements after August 2014 due to the mix contributions of viscoelastic relaxation

caused by the rifting, the migration of the dyke and volcanic deformation related to

Gŕımsvötn’s activity alone. We suggest a strong interplay between surge in magma supply

at Bárdarbunga and the rifting episode that triggered the 2014-2015 eruptive activity

which was subsequently followed by gradual caldera collapse resulting to a ∼ 6-month long

eruption. This transient reduction of magma supply rate at Gŕımsvötn could postpone

the next eruption, increasing the duration of the inter-eruptive period (see Chapter 4).
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Chapter 6

General conclusions and future

directions

6.1 Summary and contributions

“What [else] can data assimilation bring new to the volcano community?”

—this is the big question that I posed at the introductory part of this thesis. As the

manuscript comes to an end, let me summarize the contributions of this thesis:

In Chapter 3, I presented two synthetic cases where I successfully demonstrated

the potential of EnKF to follow the behavior of the A) state variables alone (i.e. state

estimation) and simultaneously estimate both B) the state variables and uncertain model

parameters (i.e. state-parameter estimation). Strategies in order to appropriately assimi-

late GNSS and InSAR data are also discussed. Indeed, there is no surprise that GNSS

data have good temporal resolution whereas InSAR data have good spatial resolution

and assimilating them jointly yields optimal results in terms of both determining the

true values of the state variables and uncertain parameters of our model. Furthermore,

bayesian-based inversion such as MCMC when compared to EnKF showed similar robust

performance. Although, MCMC was able to converge faster than EnKF when estimating

uncertain model parameters that are assumed constant in time. One significant advantage

of EnKF over MCMC [at this point], is that EnKF only uses incoming data which is less

expensive in terms of computational cost than MCMC.
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In Chapter 4, I demonstrated the application of sequentially assimilating GNSS

data recorded at Gŕımsvötn volcano in Iceland via EnKF in order to forecast the failure

of a magma chamber that will initiate dyke propagation which may eventually lead to

an eruption. The strategy implemented in this chapter is slightly modified in order to

adapt to our main problem—there is only one GNSS station at Gŕımsvötn, however we

have six uncertain parameters to constrain; five of which are considered non-evolving

parameters. Basically, we jointly used MCMC and EnKF such that we can estimate only

the overpressures and the basal magma inflow rate, Qin, since the latter is considered as

a parameter that may or may not vary in time. The approach is tested for the 2004-2011

inter-eruptive dataset, aiming to provide real-time forecast up to the 2011 Gŕımsvötn

euption. The concept of “eruption zones” was introduced in this chapter as well as the

probability of the magma chamber to rupture at each time step, estimated as the percent-

age of model ensembles that exceeded their failure overpressure values initially assigned

following a Gaussian distribution. It is important to note that bayesian-based inversion,

MCMC can provide the same results as that of EnKF (i.e. in terms of estimating the

overpressures and Qin) confirming the findings based on synthetic test in Chapter 3.

However, I would like to reiterate that in terms of real-time forecasting, EnKF may

be more advantageous in terms of computational cost. In this chapter, forecasts are

provided in the form of “[Given that an eruption is imminent when the probability of

rupture reaches p], an eruption might occur within the next Nmax
min days”. Succesful results

based on p = 25± 1% are obtained with the last three days prior to the 2011 eruption

even indicating [a minimum forecast of] “zero days to eruption”. When the strategy is

further extended using the 2011 post-eruptive dataset, findings show that just before

the 2014 rifting event, Gŕımsvötn’s shallow magma chamber was already at the critical

stage of rupturing and could have erupted in 2015. However, no eruption has occurred

up to now which suggests that a transient event may have happened and postponed

Gŕımsvötn’s supposed eruption. This hypothesis is further confirmed in the subsequent

chapter. Furthermore, one of the important contributions of this work is that, for the

first time, information about the evolution of the [shallow] overpressure is achievable in

real-time which can be used not only to evaluate the possible failure of a magma chamber

but also as an initial input to dyke propagation models to assess whether or not the

migrating magma would end up as an intrusion or rather, an eruption.

In Chapter 5, I went beyond volcanic eruption forecasting and showcased the capa-

bility of EnKF to track parameter/s that can suddenly fluctuate in time—in this case,
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the basal magma inflow rate. This is difficult to follow with MCMC in a classic inversion

framework, hence, EnKF has a significant advantage over MCMC not only in terms of

computational cost but also in terms of tracking sudden change in the behavior of an

uncertain model parameter. In a volcanological point-of-view, this is more than detecting

transient events. We are able to estimate that the basal magma inflow beneath Gŕımsvötn

dropped up to 85% during the 10 months preceding the initiation of the Bárdarbunga

rifting event. We provided evidences and arguments that can support our claim. The loss

of at least 0.016 km3 in the magma supply of Gŕımsvötn is interpreted as a consequence

of magma accumulation beneath Bárdarbunga and subsequent feeding of the Holuhraun

eruption 41 km away. This transient event might have postponed Gŕımsvötn’s supposed

eruption in 2015 as inferred in Chapter 4.

6.2 Future directions

Despite the important advancements in our understanding of volcanoes, there are

many more processes occurring beneath the Earth that are yet to be unraveled. In fact,

at the moment, I think that there are a lot more things about volcanic processes that

we don’t know rather than we know. Volcanoes are indeed complex systems, and slight

changes in system properties could actually result to sudden failure, hence, some systems

may be inherently unpredictable (Sparks et al. [2012]).

Thanks to data assimilation, its remarkable potentials (e.g. follow transient processes)

can open a whole new lot of perspectives in addressing current challenges in volcanology.

Although, I believe that three years of a PhD is not enough to cover all the capabilities

of data assimilation, particularly, EnKF. Below, I outline some suggestions for the future

directions of this work.

6.2.1 Data assimilation

The EnKF approach that has been proposed here is based on the stochastic EnKF (e.g.

Burgers et al. [1998], Evensen [2003]), wherein I randomly perturb the observations prior

to the analysis step in order to avoid an underestimation of the analysis error covariance,

however it may induce additional source of sampling errors (Whitaker et Hamill [2002],
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Kalnay [2010]). A much deterministic EnKF approach that produces analysis mean and

covariance which can satisfy the Kalman Filter equations is the family of ensemble square

root filters which has not been explored in this thesis and should be considered in future

works.

Also a much accurate procedure in implementing the inflation (i.e. tuning step in

ensemble filters to avoid filter divergence) can be implemented in the future by using an

adaptive inflation algorithm (e.g. hierarchical Bayesian approach, Anderson [2007]). In

this inflation approach, observations are used to adjust the ensemble filter estimate of

the state in order to determine the appropriate values of covariance inflation rather than

empirically adjusting the inflation factor through additive or multiplicative inflation.

6.2.2 Dynamical Model

The model that I explored in this thesis is based solely on Reverso et al. [2014]’s

two-chamber model. Indeed, in Chapter 5, I have mentioned that although EnKF can

account for model errors that can be related to the misrepresentation of the true state of

the system, there are also other models that can explain the same temporal evolution

of the dataset. However, we have definitely strong arguments that support the model

that we used (e.g. 1) the fluctuation of Qin has not been observed during the previous

eruptive cycle, 2) it seems to be transient and 3) occurs simultaneously with a rifting

event mobilizing a large volume of magma in a close volcanic system). Some of the

other models consider only one reservoir fed by a deep and constant pressure source

with additional complexity in the encasing medium rheology (i.e. damage, viscoelastic

behavior (Got et al. [2017], Segall [2016])) and/or in the magma properties (i.e. crystalli-

sation, degassing, compressibility (Caricchi et al. [2014], Segall [2016])). At the moment,

there is no way to distinguish which is the “true” model that represents the volcanic

system but additonal observations such as gravity data might be useful to discriminate

between the presence of a deeper pressure source (i.e. deep reservoir) and the effects of

the crustal and magmatic rheological properties. It will therefore be interesting to test

other models in order to compare the results to what we have so far explained in this work.

Furthermore, the genericness of the two-magma chamber model should be tested to

other basaltic volcanoes having either one or multiple reservoir systems. The two-magma

chamber model should be able to distinguish between the two latter cases. Having one
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reservoir means that the basal magma inflow rate is almost zero and that the radius of

the deep reservoir is infinitely large. For multiple reservoirs, Reverso et al. [2014]’s model

can only represent the upper part of the system. Moreover, I agree that the two-magma

chamber model involves several assumptions that simplify the problem and there is indeed

a need to develop physics-based models that could be more realistic in nature and can

incorporate diverse observations (e.g. Anderson et Segall [2011], Anderson et Segall [2013],

Wong et al. [2017]).

Also, beyond understanding the properties of deep magmatic reservoirs and the

emplacement of magma at shallow depths, we have yet to explore data assimilation to

other volcanic processes such as dyke propagation models which is much important in

eruption forecasting since dyke propagation models are used to predict the exact timing

and location of an impending eruption (Pinel et al. [2017]).

6.2.3 Other datasets

It has long been recognized the need to use various datasets and combine them with

realistic physics-based dynamical models (Sparks [2003], Segall [2013]) to give us more con-

straints. One notable feature of data assimilation is that any data can be used, provided

that there is a link between the data and the dynamical model which is basically described

by the operator H. In data-driven machine learning such as neural network, predictions

can be made through a “black box” which can definitely approximate a certain function de-

scribing a system but won’t necessarily provide any insights on what is happening within it.

In this thesis, I have only explored deformation datasets. In particular, for the real-

case applications, I have only used GNSS data. When exploiting InSAR data, there are a

lot more things to be tested such as the way we have to define the observation covariance

error (i.e. which may have spatio-temporally correlated noise embedded within the signal),

as well as, the subsampling of InSAR data prior to assimilation. Furthermore, there is

also a “quality check” that needs to be considered as we cannot use all the observations

available at each time step as input to the data assimilation algorithm especially if the

signal-to-noise ratio is very low. All these have yet to be explored through synthetic tests

and real-case dataset.

217



GENERAL CONCLUSIONS AND FUTURE DIRECTIONS

Fifteen years ago, Sparks [2003] has already discussed about data assimilation methods

and bayesian updates as tools that would improve our forecasting models. He further

mentioned, as I quote,

“What is likely to happen in the next decades is the development of

ensemble models, which make volcanic forecasts that take account of both

uncertainties and nonlinear dynamics.”

It is astonishing how this “prediction” slowly unfolds.

All in all, there is indeed much more work to be done! But the future is getting

more exciting for all of us working in the field of eruption forecasting and as I always

say, I could not wait for the day that we can deliver eruption warnings the same way

meteorologists are capable in providing weather reports nowadays.
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Wübbena, G. (1985). Software developments for geodetic positioning with gps using ti-

4100 code and carrier measurements. In Proceedings of the first international symposium

on precise positioning with the global positioning system, volume 19.
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Appendix A

Supplementary material: Chapter 3

A.1 The overpressures as state variables

The state vector, X, can be expressed as:

X =

[
∆Ps

∆Pd

]
(A.1)

where ∆Ps is the overpressure in the shallow reservoir and ∆Pd is the overpressure in

the deep reservoir.

From equations (3.1) and (3.2), if we let, C1 = Gac4

8µγsHcas3
, A1 = (ρr − ρm)gHc,

A2 = GQin
γdπad3

and C2 = γsas3

γdad3
, then we can write the dynamical model as:

[
∆Psti+1

∆Pdti+1

]
=

[
1− C1∆t C1∆t

C1C2∆t 1− C1C2∆t

][
∆Psti
∆Pdti

]
+

[
C1A1∆t

(A2 − C1C2A1)∆t

]
(A.2)

where the model operator, M =

[
1− C1∆t C1∆t

C1C2∆t 1− C1C2∆t

]
.

The relationships of the surface displacements and the overpressures are described

by equations (3.3) and 3.4, if we let Γ = 1−ν
G

, Ds = αs
a3s
R3
s

and Dd = αd
ad

3

R3
d

, then we can

rewrite them into a matrix of the form:
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[
uRti
uzti

]
=

[
ΓDsr ΓDdr

ΓDsHs ΓDdHd

][
∆Psti
∆Pdti

]
(A.3)

where the observation vector, D =

[
uRti
uzti

]
and the observation operator, H =[

ΓDsr ΓDdr

ΓDsHs ΓDdHd

]
. Note that r are the GNSS locations of the observations (i.e.

distance at the surface to the center of the volcanic system) and, Hs and Hd are the

depths of the shallow and deep reservoirs, respectively (see Figure 3.1). The observation

error covariance, R =

[
σ2
uR

0

0 σ2
uz

]
, in which σuR and σuz are the typical GNSS instrument

error values equal to 1 mm and 10 mm, respectively.

A.2 The overpressures and the uncertain parame-

ters in the state vector

Let the state vector be expressed as:

X =


∆Ps

∆Pd

ad

Qin

 (A.4)

where ∆Ps is the overpressure in the shallow reservoir, ∆Pd is the overpressure in the

deep reservoir, ad is the radius of the deep reservoir and Qin is the basal magma inflow

rate. We rewrite the dynamical model into matrix form, i.e.,


∆Psti+1

∆Pdti+1

adti+1

Qinti+1

 =


1− C1∆t C1∆t 0 0

C1C2∆t 1− C1C2∆t 0 0

0 0 1 0

0 0 0 1




∆Psti
∆Pdti
adti
Qinti

+


C1A1∆t

(A2 − C1C2A1)∆t

0

0


(A.5)
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such that the model operator is now M =


1− C1∆t C1∆t 0 0

C1C2∆t 1− C1C2∆t 0 0

0 0 1 0

0 0 0 1

.

On the other hand, D and R will stay the same but the observation operator needs

to be modified in order to be consistent with the equations. Hence, it should take the

form, H =

[
ΓDsr ΓDdr 0 0

ΓDsHs ΓDdHd 0 0

]
.

Note however, that ad is included within the observation operator, H which can add

complexity to the assimilation process since ad is treated as an uncertain model parameter.

In simple terms, there is an additional source of error which comes from the observation

operator that links the observations and the state vector. To incorporate this error in the

assimilation process, we calculate for H at each time-step, ti+1, and for each ensemble, n,

by sampling from the distribution of ad from the previous analysis step such that:

Dti+1
= Hti+1,n[Xf

ti+1,n] (A.6)

A.3 Deriving the H matrix for ulos,insar

Since we intend to perform state-parameter estimation, the state vector, X, can be

expressed as:

X =


∆Ps

∆Pd

ad

Qin

 (A.7)

where ∆Ps is the overpressure in the shallow reservoir and ∆Pd is the overpressure in

the deep reservoir.

The displacement in the line-of-sight (LOS) is given by the following relationship
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(Hanssen [2001]):

ulos,insar =
[
sinθsinφ −sinθcosφ cosθ

] uN

uE

uz

 (A.8)

where θ is the angle of incidence and φ is the track heading angle of the satellite.

Let Γ = 1−ν
G

, Ds = αs
a3s
R3
s

and Dd = αd
ad

3

R3
d

. The surface displacements produced by a

pressure point source embedded in an elastic medium (Lisowski [2007]) are given by:

 uN

uE

uz

 =

 ΓDsy ΓDdy 0 0

ΓDsx ΓDdx 0 0

ΓDsHs ΓDdHd 0 0




∆Ps

∆Pd

ad

Qin

 (A.9)

Let U1 = sinθsinφ, U2 = sinθcosφ and U3 = cosθ. Using equations (A.8) and (A.9),

we can derive the LOS displacement,

ulos,insar =
[
U1 −U2 U3

] ΓDsy ΓDdy 0 0

ΓDsx ΓDdx 0 0

ΓDsHs ΓDdHd 0 0




∆Ps

∆Pd

ad

Qin



=
[
U1ΓDsy − U2ΓDsx+ U3ΓDsHs U1ΓDdy − U2ΓDdx+ U3ΓDdHd 0 0

]


∆Ps

∆Pd

ad

Qin


(A.10)

Note that x and y are the map coordinates of the observations (i.e. GNSS locations)

and, Hs and Hd are the depths of the shallow and deep reservoirs, respectively.

For the joint assimilation of GNSS and InSAR-los displacement, we can simply express
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the relationship between the state vector and the observation vector as: uR,gnss

uz,gnss

ulos,insar

 =

 ΓDsr ΓDdr 0 0

ΓDsHs ΓDdHd 0 0

U1ΓDsy − U2ΓDsx+ U3ΓDsHs U1ΓDdy − U2ΓDdx+ U3ΓDdHd 0 0




∆Ps

∆Pd

ad

Qin

 (A.11)

where the observation operator, H is:

H =

 ΓDsr ΓDdr 0 0

ΓDsHs ΓDdHd 0 0

U1ΓDsy − U2ΓDsx+ U3ΓDsHs U1ΓDdy − U2ΓDdx+ U3ΓDdHd 0 0



A.4 Joint Assimilation of GNSS and InSAR-in-LOS

The setup is somehow similar to the case where we jointly assimilated GNSS and

InSAR radial and vertical displacements, except that in this case we only have InSAR

in one direction—in the line-of-sight view. The InSAR-LOS displacement is an 11 x

11 grid, uniformly spaced every 1 km between -5 km to 5 km in x and y-axes that

provides a total of 121 data points. The incidence angle (e.g. 33.44◦ for ascending and

37.53◦ for the descening pass) and the azimuth angle (e.g. −12.27◦ for ascending and

−167.53◦ for the descending pass) that we defined to generate the synthetic LOS data

are consistent with current satellite systems (i.e. in this case, the angles are similar to

TerraSAR-X). We consider an observation error equal to 10 mm, similar to the observation

error along the vertical component of GNSS since LOS data are more sensitive to the

vertical direction. Figure A.1 shows an example of a synthetic InSAR-LOS displacement

in (a) ascending and (b) descending orbital pass. GNSS observations are assimilated

every 2 days, whereas the InSAR-LOS data are assimilated only every 12 days. Unlike in

the previous joint-assimilation approach where we used a biased prior distribution for

the uncertain parameters, here, the assimilation can only be successful if we use a prior

distribution that is unbiased (i.e. uncertain parameters are well-constrained; similar to

Figure 3C of the main manuscript) or a gaussian distribution that at least contains the

true value of the uncertain parameters (i.e. Figure 15C of the article). Since there is
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no significant difference when ascending data is assimilated, here we only present the

EnKF-predicted overpressures and uncertain parameters using descending InSAR data

(Figure A.2), given that the a priori information about the uncertain parameters are

similar to that of in Figure 15B. Results show that the true behavior of the overpressures

can be well-recovered as well as the true values of the uncertain parameters.
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Supplementary Figures
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Figure A.1: An example of the InSAR displacement field at t = 10 in (a) ascending and
(b) descending LOS view. The observation error is 10 mm. Note that the gray dots are
the locations of the 121 observations used in the assimilation. The x and y-axes are in
kilometers.
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Figure A.2: The EnKF-estimated (A) overpressures and (B) uncertain model parameters
after performing state-parameter estimation using jointly GNSS and descending InSAR
data. Note that we used prior distribution for the uncertain parameters that are similar
to Figure 15C. The red solid lines are the mean of the ensemble whereas the pink lines
represent each of the ensemble members.
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Supplementary material: Chapter 4

B.1 Assimilating limited amount of data with gaps

Recall that in section 3.4, we are able to estimate the overpressures but not the

uncertain model parameters given a GNSS-like dataset with 10 data points (i.e. 5 radial

and 5 vertical components) every assimilation time step. Here, we adopt a similar setup,

except that in this case we introduce gaps in the data (i.e. gray areas in Figures B.1

and B.2). Results show that if the gap in the data is relatively short, there is almost

no effect in the estimations. However, significant results can be obtained once data is

not available for a long period of time or if we try to forecast the behavior of the system

in a relatively large time window (Figure B.1). Obviously, the inability of the filter

to resolve the true behavior of the overpressures is due to the wrong estimations of the

non-evolving uncertain parameters. One way to reconcile this is to “re-propagate” the

dynamical model using the values of the uncertain model parameters at the analysis step.

Basically, after each assimilation step, ti+1: 1) we will take the values of the uncertain

parameters (i.e. ad and Qin), 2) re-run the forward model from t0 up to ti+1 using the

values of the uncertain parameters and then 3) take the values of the state variables (i.e.

overpressures) at ti+1. Figure B.2 illustrates the result of re-running the forward model

after the analysis step. However, there is a caveat in doing this additional step—the

uncertain parameters are assumed constant in time. When the uncertain parameters

tend to vary in time, performing this additional step may force the parameter to behave

“constant”, hence it may depreciate the capability of EnKF to track parameters that can

vary in time.
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Figure B.1: The resulting (A) overpressures and (B) uncertain model parameters after
assimilating data with gaps. The gray area in (A) emphasizes the time where gaps in the
data are introduced. The black broken lines represent the ground truth.
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Figure B.2: The resulting (A) overpressures and (B) uncertain model parameters after
assimilating data with gaps and subsequently “re-running” the forward model using the
estimated values of the uncertain parameters at the analysis step (see Appendix B.1 for
details). The gray area in (A) emphasizes the time where gaps in the data are introduced.
The black broken lines represent the ground truth.
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B.2 Diagnostic tools

Figure B.3: The (A) innovation and (B) residual vectors as well as the L2-norms of the
(C) cumulative mean innovation and (D) cumulative mean residual.
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Figure B.4: The evolution of the error covariance of the state variables (∆Ps and ∆Pd)
before (i.e. forecast error covariance, P f) and after (i.e. analysis error covariance, P a)
the correction given by the observations. The correction is in the order of (0.001MPa)2

such that it appears almost overlapping in this figure. The pink lines correspond to the
absence of data to assimilate. In Figure B.5 we provide a closer look to the covariances
during the last few days prior to the 2011 eruption. Note that the square root of the
diagonal is simply the standard deviation of the overpressures.
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Figure B.5: A closer look on the evolution of the covariance of the state variables (∆Ps
and ∆Pd) before (i.e. forecast covariance, P f) and after (i.e. analysis covariance, P a)
the correction given by the observations, 10 days to eruption. The square root of the
diagonal is simply the standard deviation of the overpressures.
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B.2 Diagnostic tools

Figure B.6: Mean residual of Bayesian-based inversion (MCMC) and data assimilation
(EnKF). The average residual over time is ∼ 0.71 mm and ∼ 4.10 mm for EnKF and
MCMC, respectively.
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B.3 Using the entire 2004-2011 inter-eruptive dataset

Figure B.7: (A) The evolution of the EnKF-derived shallow overpressure embedded on the
eruption zones—based on using the entire 2004-2011 radial displacement dataset for the
step-1 of our approach as described in section 4.3.2. Note that we define the eruption
zones according to the estimated rock tensile strength in Iceland which consequently
provides the failure overpressure value (i.e. Pf ) needed to trigger the rupture of a magma
chamber (i.e. Albino et al. [2010]). (B) The cumulative distribution function (CDF)
illustrating the failure overpressue (blue) as well as the overpressures at the end of the
assimilation window (red) and at the end of free-run (green). Note that the latter is
performed just after the assimilation to further predict the evolution of the overpressure.
(C) The probability of eruption calculated from the N -ensemble of models that exceeded
the failure overpressure described by the distribution in (D). (E) The percentage of
ensemble members entering each eruption zones as a function of time.
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Appendix C

Supplementary material: Chapter 4

and 5

C.1 GPS data and pre-processing

GPS data are analyzed using the Bernese 5.2 software, with absolute antenna phase

center offset models, together with precise orbits, earth rotation parameters, ocean tidal

loading and atmospheric tidal loading estimates. Velocities and time series were estimated

in the ITRF2014 reference frame (Dach et al. [2015]) with discontinuities associated

with this reference frame and expressed in terms of the plate boundary reference frame

(Reverso et al. [2014]). We followed the resolution strategy with (1) an initial ionosphere-

free analysis with calculation of the residuals; (2) a residual analysis; (3) code-based

wide-lane ambiguity resolution for all baselines (Wübbena [1985]), using differential

code bias (DCB) files when available and calculation of the ionosphere-free solution

with the introduction of resolved Melbourne-Wübbena linear combination ambiguities;

(4) phase-based wide-lane (L5) ambiguity resolution for baselines < 200 km and com-

putation of the ionosphere-free solution with the introduction of resolved ambiguities;

(5) resolution of the previously unresolved ambiguities for baselines < 2000 km using

the quasi ionosphere-free strategy of resolution; (6) direct L1/L2 ambiguity resolution

for baselines < 20 km with the introduction of an ionosphere model; (7) calculation

of the normal equations; (8) a compatibility test between the daily free solution and

ITRF2014 solution, selection of compatible ITRF2014 stations and (9) transformation

of the daily normal equation in the ITRF2014 reference frame with a six-parameter

Helmert solution (three translation parameters and three rotation parameters) using
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the ITRF2014 selected stations (BARH, BOGO, EPRT, ESCU, HERT, HLFX, KARL,

KHAR, NEWL, REDU, RIGA, SASS, SCH2, SHE2, SKE0, STAS, THU2, THU3, TRDS,

VARS, VOL0). During these steps, site-specific troposphere parameters are estimated

every two hours. Normal equations are analyzed together to determine accurate veloc-

ities in the ITRF2014 reference frame with the introduction of ITRF2014 coordinates

and velocities. For time series of stations supposed to be linear (not GFUM), outliers

and new discontinuities were detected using the “Find Outliers and Discontinuities in

Time Series” tool in the Bernese 5.2 software that reduces, step-by-step, the discrepancy

between the functional model and the time series due to statistical adjustment (Ostini

et al. [2008]), taking annual and seasonal fluctuations into account. As the Bernese 5.2

software underestimates the daily errors given that systematic errors or mismodeled

parameters are not included in the formal error (Dach et al. [2015]), we rescaled the for-

mal errors by multiplying them by a factor of 10 to obtain a more realistic estimated error.

Note that the tectonic trend at GFUM GPS station is removed with slopes of -2.7 mm

yr−1 and 7.5 mm yr−1 for the NS and EW components, respectively (Reverso et al.

[2014]).
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C.1 GPS data and pre-processing

C.2 Model and DA strategy applied to Gŕımsvötn

Figure C.1: Schematic sketch of the two-chamber model, modified after Reverso et al.
[2014] and Bato et al. [2017]. The uncertain model parameters in this study are highlighted
in gray. Except for the bottom magma inflow rate, Qin, which is bounded by a dotted box,
the rest are considered as non-evolving uncertain parameters. The GFUM GPS station,
with a distance r from the center of the volcanic system C, records the displacement
induced by the two reservoirs. Rs =

√
r2 +Hs

2 and Rd =
√
r2 +Hd

2 are the distances
of the shallow and deep reservoirs from GFUM station, respectively.
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Figure C.2: The step-by-step EnKF strategy implemented in this study, modified from
Chapter 3. The broken border and lines imply that the step is a tuning step for the
assimilation.
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