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Chapter 1

Introduction

The birth of nuclear physics can be traced back to 1911 with the discovery of the nucleus by
Rutherford [1]. It was only later that the proton and neutron were respectively discovered in
1919 and 1932 by Rutherford and Chadwick [2, 3]. After these discoveries, it was realized that
nuclei could be classified according to their proton and neutron numbers which lead to the nuclear
chart [4]. From that moment on, the mind of nuclear physicists was set on explaining and exploring
that new classification. During the last century, both experimental and theoretical improvements
have allowed us to expand and explore the nuclear chart, as well as to further increase our under-
standing of nuclear phenomena. Although decisive progress has been made, there are still many
open questions. In this thesis, we shall focus our attention on one of them: What is the limit of
existence for heavy nuclei and thus of elements?

The first answer to that question came from Wheeler. At the time fission had already been
discovered in 1938 by Hahn and Strassmann and a first theoretical explanation had been given
by Meitner and Frisch which was later completed by Bohr and Wheeler [5–7]. The theoretical
explanation of fission was based on the liquid drop model, separately introduced by Weizsäcker in
1935 and by Bethe in 1936 [8,9]. Based on that model, Wheeler showed that the fission barriers of
very heavy nuclei vanished. This was considered to be the major limiting factor of the existence
of heavy nuclei [7, 10]. Shortly after, the term superheavy nuclei appeared for the very first time
in a conference proceeding authored by Wheeler [11, 12]. Meanwhile, theories failed to explain
the binding energies of some nuclei having special numbers of protons or neutrons, also known as
magic numbers. The nuclear shell model was separately introduced in 1949 by Goeppert-Mayer
as well as another group formed by Haxel, Jensen and Suess, in order to interpret this empirical
observation [13–16]. As superheavy nuclei only owe their stability to shell effects, the shell model
gave a possible explanation for the existence of nuclei beyond the limit first set by Wheeler.

The first transuranium elements were discovered during the 1940’s. These elements were syn-
thesized using the intense neutron fluxes produced by nuclear reactors and bombs, consequently,
large numbers of neutrons could be captured and the subsequent β decay lead to these new el-
ements. However, in order to proceed beyond fermium, neutron capture had to be abandoned
since it lead to fission instead of the desired β decay. Thus, during the 1950’s, fusion-evaporation
reactions became the leading choice to synthesize new elements.
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Moreover, there are two kinds of fusion reactions, namely, cold-fusion and hot-fusion. On the
one hand, cold-fusion reactions are based on 208Pb and 209Bi targets as well as various projectiles,
e.g., 48Ca, 50Ti or 54Cr. In these reactions, the excitation energy of the compound nucleus is
rather low and ranges between 10 and 20 MeV. These energies correspond to low nuclear tem-
peratures, hence, these reactions were said to be cold-fusion reactions. Cold-fusion reactions have
been mainly used in GSI and RIKEN in order to synthesis the elements from 107 to 113 [17].
Note that because of the low excitation energies, the compound nucleus only needs to evaporate
one or two neutrons in order to cool down. On the other hand, hot-fusion reactions are based
on the projectile 48Ca as well as various actinides targets, e.g., Pu, Am and Cm. In these re-
actions the excitation energies extend from 30 to 60 MeV, thus, the cooling of the compound
nucleus requires the evaporation of three or more neutrons which reduces its chances of surviving
fission. Hot-fusion was mainly used as FLNR in order to produce the elements from 114 to 118 [18].

A summary of measured fusion-evaporation cross-sections is given in Fig. 1.1 [19]. One can
see that the heaviest element ever produced in a cold-fusion reaction is nihonium (Z=113) and
that the corresponding cross-section is far below the picobarn. Thus, it is clear that we cannot
proceed beyond nihonium using cold-fusion reactions because the cross-sections become too low.
Then again, we can see that the heaviest element produced in a hot-fusion reaction is oganesson
(Z=118) and that the corresponding cross-section is this time closer to the picobarn. Thus, one
might think that hot-fusion is a promising way to discover the next new element. However, we
have reached the limit of the available long-lived actinides targets in combination with a 48Ca
beam. Therefore, we are entering a new era where new combinations of projectiles and targets
will have to be used. Now more than ever, precise theoretical predictions are required in order to
successfully guide future experimental campaigns. Furthermore, let us emphasize that at GANIL
the study of the structural properties of superheavy nuclei has become one of the key topics in
the development of SPIRAL2 and S3 projects. Therefore, improving theoretical predictions is now
critical.

Figure 1.1: Summary of the measured production cross-sections for cold (on the left) and hot-fusion
(on the right). Figure reproduced from [19].
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The production of superheavy nuclei is important for nuclear structure studies. All elements
heavier than lead are unstable and have decreasing binding energies, it is expected that some
superheavy nuclei could reverse this general trend and form an island of metastability. As the
presence of superheavy nuclei is singularly due to quantum arrangements, they offer an ideal case
to inspect and fine-tune nuclear structure theories. In particular, superheavy nuclei accommodate
a large number of protons by being overly deformed, and consequently, exhibit extreme Nilsson’s
level schemes [20]. Moreover, unstable superheavy nuclei have two competing decay modes, α
decay and spontaneous fission which is rather uncommon and could improve our understanding
of fancier cluster decays [21]. Finally, superheavy elements are also important in chemistry where
the extreme relativistic character of the electrons can significantly modify the expected chemical
properties [21].

The production of superheavy nuclei is mostly achieved through collisions involving a light
nucleus and a heavier one, with the pious hope that the two would fuse together. For fusion to
occur, the system needs to overcome the Coulomb barrier. Since both nuclei contain large proton
numbers, this requires a large amount of kinetic energy in the entrance channel. Furthermore,
fusion is the most inelastic reaction possible, the residual kinetic energy required to pass the
Coulomb barrier will be redistributed amongst internal degrees of freedom (heat), thus, leaving
the compound nucleus in a delicate and overly excited configuration. In order to survive and reach
its ground-state, the compound nucleus must release some of its excitation energy and in doing
so, it can either fission or evaporate light particles. Therefore, increasing the kinetic energy in
the entrance channel leads to an enhanced fusion probability along with a decrease of the survival
probability. As a result, producing superheavy nuclei is an improbable process and the corre-
sponding cross-sections are ultimately low. Consequently, the cross-sections vary promptly with
the center-of-mass energy, and so, theoretical studies are needed to choose the energy that will
simultaneously maximize fusion and survival.

It has been known for a very long time that fusion of heavy nuclei is hindered with respect
to what is observed with lighter systems. However, the precise origin of fusion hindrance was
not known before the start of the 1970’s where the first calculations [22] showed that in order for
heavy systems to fuse they had to cross the conditional saddle in a multidimensional deformation
energy landscape. Thus, hindrance was understood as coming from the saddle-point of the com-
pound nucleus which acts as an internal barrier, i.e., a barrier beyond the Coulomb barrier. As
we will discuss later, this inner barrier does not appear in the fusion of lighter systems, hence, the
absence of hindrance. However, results based only on the existence of an internal barrier under-
estimated hindrance and it was not before the inclusion of dissipation [23–27] that experimental
results [28–30] could be partially explained. Later, fluctuations were also included through the
use of Langevin and Smoluchowski equations in order to describe the diffusion over the inner bar-
rier [31–36]. The crossing of this internal barrier requires complex modelling and although fusion
hindrance is qualitatively understood, some quantitative ambiguities remain and are still to be
clarified.

A preceding investigation proved that, although the various models to calculate fusion-evapora-
tion cross-sections at our disposal, lead to similar final results, i.e., known experimental results,
the intermediate steps provide a wide and puzzling range of outcomes, thus, highlighting unre-



14 CHAPTER 1. INTRODUCTION

solved quantifiable issues [37, 38]. The approach presented here finds its roots in both, the recent
emergence of uncertainty analyses in nuclear physics and the necessity to go beyond the qualitative
consensus of the fusion-evaporation picture in order to reach a, robust, quantitative description of
the synthesis. The object of the current study is to focus on a specific fusion-evaporation model
and explore the uncertainties related to each individual step in order to unriddle the predictive
power of the model. The prior and present studies are complementary as they are both aimed at
the removal of theoretical inconsistencies.

More specifically, this thesis is aimed towards a more profound understanding of models re-
sembling the so-called “fusion-by-diffusion” model which describes the synthesis of superheavy
nuclei [36]. Such a family of models all contain three steps. The first step, referred to as capture,
corresponds to the system overcoming the Coulomb barrier, the second step, known as formation
amounts to the system overcoming the internal barrier which is responsible for fusion hindrance and
the last step, survival, characterizes the cooling of the compound nucleus through either evapora-
tion or fission. Previous studies have shown both the lack of constraints and the crucial importance
of the formation and survival steps on the cross-section calculations and in particular, on the spe-
cific quantities entering those steps, respectively, the internal and the fission barriers [37–39]. The
intent of this thesis is therefore twofold: First, to theoretically clarify the diffusion mechanism as-
sociated with the formation step and second, to lead off an uncertainty analysis concerning fission
barriers calculations.

Formation can be understood as being the inverse process of fission. Therefore, the internal
barrier of the fusing system should somehow be related to the fission barrier of the resulting com-
pound nucleus. However, things could not be so simple, for the surface energy landscape seen
by the fusing system depends on its center-of-mass energy which alters the height of the internal
barrier. This is accounted for through a shift of the initial conditions in the formation step. So
far, no theoretical explanation was found for those systematic shifts and these were only included
in a phenomenological manner. The origin of these shifts can be found in the reduction of the
number of degrees of freedom of the fusing system and are exposed as such in this thesis.

This manuscript is organized in the following way. Chapter 2 is a brief review dedicated to the
description of an entire fusion model, i.e., the capture, the formation and the survival steps. Then,
chapter 3 discusses fusion hindrance in greater detail and tends to clarify some of the notions
phenomenologically introduced in chapter 2. Then, chapter 4 exposes the proper mathematical
formalism to treat and propagate uncertainties while chapter 5 focuses on regression analysis which
is at the very origin of theoretical uncertainties. Having stressed the importance of masses entering
the fusion model, we then proceed to an uncertainty analysis of mass predictions using a simple
macroscopic model in chapter 6. The model from chapter 6 is too simple and does not encompass
the diversity of nuclear properties, i.e., deformation and shell corrections. Accordingly, a deeper
analysis is carried out in chapter 7 where a phenomenological macroscopic-microscopic model is
considered. Chapter 8 investigates the predictive power of the naive capture model presented in
chapter 2. In chapter 9, we gather all of the results obtained in this thesis in order to constrain
the formation step. Finally, a closing conclusion summarizes the important results and discusses
future endeavours.



Chapter 2

A model for fusion-evaporation

This chapter contains a detailed description of a fusion-evaporation model which is essentially
based on the fusion-by-diffusion model [35, 36, 40, 41]. Note that the two-step model described in
Refs. [33, 42] is rather close and shares most of the features of the fusion-by-diffusion model. In
all synthesis models the production cross-section is given by

σER =
π

k2

∞∑

ℓ=0

(2ℓ + 1) · Pfus(Ecm, ℓ) · Psurv(E∗, ℓ). (2.1)

Here, ℓ stands for the angular momentum, Ecm for the center-of-mass energy and E∗ for the ex-
citation energy of the compound nucleus. The wavenumber is defined as k2 = 2µEcm/~

2 where
µ is the reduced mass. The quantities Pfus and Psurv are the fusion and survival probabilities,
respectively. The subscript ER stands for evaporation residue. According to Bohr’s hypothesis,
as soon as the compound nucleus is formed, the system no longer remembers how it reached this
particular state. Thus, the production cross-section can be expressed as the product of two inde-
pendent probabilities, i.e., the fusion probability and the survival probability.

The fusion of heavy nuclei is divided into two sequential steps, namely, the capture and for-
mation steps. Thus, the fusion probability can itself be decomposed into the product

Pfus(Ecm, ℓ) = Pcap(Ecm, ℓ) · Pform(Ecm, ℓ). (2.2)

Since the production cross-section is defined as a product between probabilities, then, these prob-
abilities are considered independent of each other. This is perhaps the strongest assumption in
this fusion-evaporation model. Note that the formation step is associated with fusion hindrance
which is a unique feature of collisions involving very heavy nuclei.

As a result of the previous decompositions, the production cross-section is the product of three,
independent, probabilities. In fact, all the theoretical descriptions of fusion-evaporation contain
three models, one for each of these three probabilities. We are now going to describe each and
every one of them.

15



16 CHAPTER 2. A MODEL FOR FUSION-EVAPORATION

2.1 The capture step

The capture model describes the very first step of the fusion process. More specifically, it details
how the dinuclear system overcomes the Coulomb barrier. Here, we are particularly interested in
estimating the capture cross-section defined as

σcap (Ecm) =
π

k2

∞∑

ℓ=0

(2ℓ + 1)Pcap (Ecm, ℓ) . (2.3)

2.1.1 Classical cross-section

In the center-of-mass frame a 2-body problem reduces to a 1-body problem [43]. In that case, the
effective potential felt by the system is

Veff(r) =
L2

2µr2
+ V (r), (2.4)

where r is the relative distance between the two colliding nuclei and V (r) is the interaction poten-
tial. Now, let us assume that there is a barrier B, lying between the two nuclei and positioned at
R. Then, in order to overcome this barrier the center-of-mass energy must satisfy

Ecm ≥ L2

2µR2
+ B. (2.5)

Since angular momentum is conserved, it can be written as L = µbv where b is the impact
parameter and the initial velocity is given by v =

√

2Ecm/µ. Therefore, one can show that the
previous expression is equivalent to

b2 ≤ R2

(

1 − B

Ecm

)

. (2.6)

Thus, the classical capture cross-section is given as

σclas =

{

πR2
(

1 − B
Ecm

)

Ecm ≥ B

0 Ecm < B.
(2.7)

It should be noted that a similar quantum mechanical calculation gives the same result.

2.1.2 Barrier distribution

We have just obtained a formula for the classical capture cross-section and it was assumed that the
height of the barrier, denoted as B, was well defined. However, it turns out that this description
is too simple. Indeed, there are many reasons for the height of the barrier to vary. For instance,
if the two colliding nuclei are deformed, their relative orientation will influence the height of the
barrier. Tunnelling is another source of “variations” which may be mimic by fluctuations and is
not directly accounted for. Thus, barrier fluctuations are required in order to mimic these kinds
of aspects. We now expose the barrier distribution formalism which is entirely based on Ref. [44].
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Assuming the barrier follows the Gaussian distribution given by

P (B) =
1√

2πσB
exp

(

−(B −B0)
2

2σ2
B

)

, (2.8)

where B0 and σ2
B are, respectively, the mean and the variance of the barrier distribution. From

this, it becomes possible to compute the mean capture cross-section as

σcap (Ecm) =

∫ Ecm

0
σclasP (B) dB

=
πR2σB√
2πEcm

√
π

(Ecm −B0)√
2σB

[

erf

(
B0√
2σB

)

+ erf

(
Ecm −B0√

2σB

)]

+
πR2σB√
2πEcm

[

exp

(

− B0

2σB

)

+ exp

(

−(B0 − Ecm)2

2σ2
B

)]

,

(2.9)

where the error function is defined as

erf (x) =
2√
π

∫ x

0
e−t2dt. (2.10)

Since the width of the distribution is small with respect to its mean, then, B0
2σB

≫ 1 and the
previous relation becomes

σcap =
πR2σB√
2πEcm

{X
√
π (1 + erf (X)) + e−X2}, (2.11)

where

X =
Ecm −B0√

2σB
. (2.12)

Note that we have used the fact that limx→∞ erf (x) = 1.

2.1.3 Parametrization of the mean barrier

The barrier is in fact nothing else but the Coulomb barrier. Therefore, the resulting potential
should have the form

V (r) =
e2Z1Z2

r
, (2.13)

where r is the relative distance between the two nuclei while Z1 and Z2 are their respective proton
numbers. Note that Eq. (2.13) is only valid when the charge distributions do not overlap. Based

on the liquid drop model the contact point is defined as r = r0(A
1/3
1 +A

1/3
2 ) where A1 and A2 are

the respective mass numbers of the two nuclei. Further assuming that the barrier is located close
to the contact point, then, a sensible choice of parametrization would be

B0 (z) = az (2.14)

where a is now considered as an adjustable parameter and the Coulomb parameter is given by

z =
Z1Z2

A
1/3
1 + A

1/3
2

. (2.15)
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Although incomplete the previous argument is rather correct and resembles the parametrization
proposed in Refs. [36, 40, 41] which takes the form

B0 (z) = az + bz2 + cz3, (2.16)

where a, b and c, are adjustable parameters. There has been different sets of values for these
parameters. For instance, the values given in Ref. [36] differ from those in Ref. [40]. Here, we
reproduce the most recent one given in Ref. [40] as

B0 (z) = 0.853315z + 0.0011695z2 − 0.000001544z3. (2.17)

Is is obvious from this relation that the parameters b and c are negligible with respect to a. This
confirms the previous argument regarding the parametrization solely based on a. The regression
procedure that allows us to determine a, b and c, will be explored in great detail in chapter 8.

2.1.4 Parametrization of the width of the barrier distribution

Since the width of the distribution must account, effectively, for every possible barrier fluctuation,
the width of the barrier distribution is a very subtle quantity. Indeed, the fluctuations have various
origins and should encompass: tunnelling, vibrations, the shapes and relative orientations of the
colliding nuclei, etc. As proposed in Refs. [36, 40] we shall focus on the latter.

As previously argued, the mean barrier can be approximately expressed as

B ≈ ar0
Z1Z2

R1 + R2
, (2.18)

where as before we assume that Ri = r0A
1/3
i . Note that we have neglected the effects of b and c.

The total derivative of the previous expression with respect to R1 and R2 leads us to

dB = −B
dR1 + dR2

R1 + R2
. (2.19)

From this, first, we deduce that the barrier variations (here dB) should be proportional to the
barrier itself. Secondly, the variations of the respective radii (here dR1 and dR2) also influence the
fluctuations of the barrier.

The nuclear shapes can be described by an expansion in spherical harmonics as

R(θ, φ) = R0



1 +

∞∑

λ=0

λ∑

µ=−λ

a∗λµYλµ (θ, φ)



 , (2.20)

where a∗λµ are the parameters defining the deformation [45]. In this expansion, the first relevant
deformation corresponds to λ = 2, also known as the quadrupole deformation. Thus, neglecting
higher order as well as non-axiality, the previous expression reduces to

R(θ, φ) = R0 [1 + a∗20Y20 (θ, φ)] , (2.21)

where a20 and Y20 are real with a20 = β2. Only prolate shapes are considered here, i.e., γ = 0.
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The root-mean-square deviation from the spherical radius can characterize any kind of defor-
mation and is defined as

RMS =

[∫

(R (θ, φ) −R0)
2dΩ

] 1
2

= R0β2

[∫

Y 2
20dΩ

] 1
2

=
R0β2√

4π
. (2.22)

Notice various RMS can be combined in order to obtain the total RMS as

RMS =

√

1

n

(
RMS2

1 + RMS2
2 + · · · + RMS2

n

)
. (2.23)

From all these considerations, we can now appreciate the choice of parametrization proposed
in Refs. [36, 40] where the expression for the width of the barrier distribution is taken to be

σB = CB0

√

W 2
1 + W 2

2 + W 2
0 , (2.24)

where

W 2
i =

R2
i β

2
2i

4π
for i = 1, 2. (2.25)

In Ref. [40], the adjustable parameters are taken to be C = 0.0421 fm−1, Ri = 1.15 A
1/3
i and

W0 = 0.531 fm. Later, the regression procedure leading to the values of those parameters will be
explored in chapter 8. Fig. 2.1 shows that the mean barrier parametrization reproduces the data
much better than the one for the width of the barrier distribution.

(a) Mean of the barrier height (b) Width of the barrier height

Figure 2.1: The figure on the left shows the great agreement between the measured barriers (black
squares) and theoretical mean barrier (solid line) as a function of the Coulomb parameter z. On
the right, theoretical and measured widths are plotted against each other. One can see that
the agreement between the theoretical and experimental values is rather unsatisfactory. Figure
reproduced from [36].
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2.2 The formation step

In the present section, we will discuss the second step of the fusion-evaporation model, the forma-
tion step. This step takes place right after capture and is a special feature of the fusion leading to
superheavy nuclei. Indeed, while the fusion of light nuclei is systematic after capture, the fusion
of heavier systems is not. The formation step is a way to account for this particularity known as
fusion hindrance that is responsible for the reduction of the fusion probability and in turn for the
low production cross-sections.

2.2.1 The origin of fusion hindrance

A simple geometrical explanation for the origin of fusion hindrance can be found in Ref. [36] and
is here summarized. On the one hand, when two light systems collide, their elongation at contact
is smaller than the one of the saddle-point of the compound nucleus. In those cases fusion always
takes place. On the other hand, the total elongation of two heavy colliding systems exceeds the
one of the saddle-point configuration. In those cases the system, starting at the contact point,
must reach the saddle-point through diffusion. Therefore, the saddle acts as a barrier against
fusion. This explanation is illustrated by Fig. 2.2. Moreover, the origin of hindrance comes from
the competition between surface tension and Coulomb repulsion. The latter dominates for heavy
systems and the dinuclear system does not fuse automatically anymore.

Figure 2.2: Top figure shows that the contact point (or injection point) for light systems is located
on the inside of the saddle-point. Bottom figure shows that the contact point (or injection point)
for heavy systems is positioned on the outside of the saddle-point. Figure reproduced from [36].
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2.2.2 Formation in the fusion-by-diffusion model

We have just given a simple qualitative explanation for the origin of hindrance. Now we would
like to theoretically address the diffusion over the conditional saddle and describe how this process
is related to the formation probability. In the following, we discuss two theoretical description
of hindrance. First, we consider the Smoluchowski approach presented in the fusion-by-diffusion
model [35, 36, 40, 41]. Second, we turn to another one, the Langevin description as presented in
Ref. [34]. It should be mentioned that the Smoluchowski formulation is nothing but an approxima-
tion of the Langevin description where inertia is completely neglected. In both cases, the barrier
between the contact point (or injection point) and the saddle is approximated by an inverted
parabola. In this thesis, we only consider two simple analytical models. However, it should be
mentioned that N-dimensional Langevin equations are also used to study numerically the diffusion
process in more elaborate potential landscapes [25, 46].

2.2.2.1 The Smoluchowski equation

In the fusion-by-diffusion model, inertia is assumed to have a negligible influence on the dynamics
of diffusion [35,36,40,41]. Consequently, diffusion should be suitably described by a Smoluchowski
equation. One can show that the Smoluchowski equation is completely equivalent to the over-
damped Langevin equation. Thus, in what follows we solve the over-damped Langevin equation
instead. In chapter 3, this will allow us to draw parallels between the Smoluchowski and the
Langevin descriptions. In the following, we will indifferently refer to these equations as being
over-damped or Smoluchowski descriptions.

Therefore, diffusion is described by the following over-damped (or Smoluchowski) equation

βq̇ − ω2q = r(t) (2.26)

where β is the reduced friction and q is a collective variable describing the elongation of the system.
The potential felt by the system is taken to be an inverted parabola V (q) = −1

2mω2q2 which is
suppose to mimic the “true” potential between the contact and the saddle points (cf. Fig. 2.2).
The Gaussian random force r(t) is a defined by its first two moments as

〈r(t)〉 = 0, (2.27)

〈r(t)r(t′)〉 =
2Tβ

m
δ(t− t′), (2.28)

in order to satisfy the fluctuation-dissipation theorem [47]. In these expressions, m and T denote
the temperature and the mass, respectively. Since the top of the potential is located at the origin,
we assume that q(0) < 0 so that the compound nucleus is formed when q becomes positive. The
three previous equations along with the initial condition q(0) completely specify the problem we
need to solve.

Thus, taking the Laplace transform of the over-damped equation yields

q(s) =
1

β

r(s)

s− ω2

β

+
q(0)

s− ω2

β

. (2.29)
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The inversion of the previous expression leads us directly to the solution

q(t) = q(0)e
ω2

β
t
+

1

β

∫ t

0
r(t′)e

ω2

β
(t−t′)

dt′. (2.30)

Then, using the defining moments of the Gaussian random force, we find that the mean trajectory
is given by

〈q(t)〉 = q(0)e
ω2

β
t
. (2.31)

The fluctuations about the mean trajectory are

σ2(t) = 〈q2(t)〉 − 〈q(t)〉2

=

∫ t

0

∫ t

0
〈r(t′)r(t′′)〉e

ω2

β
(2t−t′−t′′)

dt′dt′′

=
T

mω2

(

e
2ω2

β
t − 1

)

.

(2.32)

Since the random force is Gaussian, the distribution of the trajectories will also follow a Gaus-
sian distribution. As already mentioned, formation is achieved when q becomes positive such that
the formation probability can be obtained as

Pform(t, q(0)) =

∫ ∞

0

1√
2πσ

e−
(q−〈q〉)2

2σ2 dq =
1√
π

∫ ∞

− 〈q〉√
2σ

e−q′2dq′ =
1

2
erfc

(

− 〈q(t)〉√
2σ(t)

)

, (2.33)

where an obvious change of variables was made and the complementary error function was intro-
duced as

erfc(x) =
2√
π

∫ ∞

x
e−t2dt. (2.34)

Finally, after a very long time, the formation probability is given by

Pform(t → ∞, q(0)) =
1

2
erfc

(√

B

T

)

, (2.35)

where the initial barrier is defined as B = 1
2mω2q2(0). The last expression is consistent with the

one given in Refs. [35, 36,40,41]. We have just showed that the formation probability depends on
the barrier B and the temperature T . Next, we explain how to determine this barrier and that
temperature.

2.2.2.2 The barrier

We have just found a formula for the formation probability as a function of the ratio B/T . We
now proceed by providing a way to estimate the barrier B. Close to contact, the system minimizes
its surface energy through a very rapid neck growth. In fact, the neck growth is considered to be
so fast that other collective degrees of freedom (elongation and asymmetry) are assumed frozen
during that process [35]. The neck growth turns the dinuclear system into a mononuclear one.
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This is represented schematically in Fig. 2.3. Therefore, it is assumed that, close to contact, the
system is injected into an asymmetric fission valley where the deformation energy has been min-
imized with respect to the neck size while keeping the asymmetry and elongation equal to their
initial values [35]. Clearly, injection into the asymmetric fission valley was introduced in order to,
starting from a dinuclear system (right after capture) switch to a mononuclear one (right before
the start of diffusion) without having to face too many difficulties.

(a) Shape close to contact and before neck growth. (b) Shape after neck growth and at the injection point.

Figure 2.3: The left figure shows the shape of the dinuclear system close to contact and right
before the rapid neck growth takes place. The figure on the right shows the shape of the resulting
mononucleus after neck growth and in its injection configuration. Thus, one might say that the
arrow of time points to the right. Notice that, as mentioned in the text, the rapid neck growth
is assumed to occur at constant elongation and asymmetry. Thus, the two shapes presented here
have the same elongation and asymmetry. This can be seen from the dashed lines in the rightmost
figure.

The shape parametrization consists of two spheres smoothly connected through a hyperboloidal
neck. The corresponding macroscopic energy deformation landscapes are available for this partic-
ular parametrization as a function of elongation, asymmetry and neck size [48]. By minimizing the
energy with respect to the neck parameter while, as previously explained, keeping the asymmetry
as well as the elongation equal to their original values, one obtains the deformation energy along
the asymmetric fission valley [35]. This deformation energy is given by

ξ = a + bS + cS2, (2.36)

where ξ = Edef/Esurf while Edef and Esurf are, respectively, the deformation energy of the system
and the surface energy of corresponding spherical nucleus with radius R. The separation variable
is defined as s = L − 2(R1 + R2) where L is the total length of the system while R1 and R2 are
the radii of the two colliding nuclei (the two connected spheres) and S = s/R.

The values for a, b and c, can be found in Ref. [35] and are restated here for the sake of
completeness. These parameters are functions of the asymmetry and fissility, respectively, defined
as

∆ =
R1 −R2

R1 + R2
, (2.37)

x =
Ec

2Esurf
, (2.38)

where Ec and Esurf are the Coulomb and surface energy of a sphere, respectively.
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Furthermore, a, b and c, are expressed as

a = αa + βat + γt2, (2.39)

b = αb + βbt, (2.40)

c = αc + βct, (2.41)

where

αa = −0.00557 − 0.01929 exp(−D/0.02283), (2.42)

βa = 0.048 + 0.12151 exp(−D/0.04053), (2.43)

γ = −0.073 + 0.094D, (2.44)

αb = −0.01045 − 0.05303 exp(−D/0.03205), (2.45)

βb = 0.019 + 0.25663 exp(−D/0.07331), (2.46)

αc = −0.02137 + 0.1944D, (2.47)

βc = 0.0214 + 0.6158D, (2.48)

with D = ∆2 and t = 1 − x. In the above parametrization, the surface energy and fissility should
be taken as

Esurf = 17.9439 (1 − 1.7826 I2) A2/3 MeV, (2.49)

x =
Z2/A

50.883 (1 − 1.7826 I2)
, (2.50)

where I = (N − Z)/A. Furthermore, all radii are obtained using R = 1.155A1/3.

Therefore, given a value of s, corresponding to the injection point, one can deduce the height
of the barrier B. Indeed, the barrier can be expressed as

B = Esurf · [ξ(smax) − ξ(sinj)] , (2.51)

where smax is the separation for which the deformation energy reaches its maximal value and sinj is
the separation at the injection point. In the following, we discuss the injection point parametriza-
tion which allows us to determine B using the previous relation, but first let us describe how to
determine the temperature appearing in the expression for the formation probability.

2.2.2.3 The temperature

Assuming that, at the injection point, all the collective kinetic energy has been dissipated. Then
the thermal excitation energy for the system is equal to

E∗ = Ecm + Qfus − Edef(sinj). (2.52)

The fusion Q-value is Qfus = MT + MP −MCN where MT , MP and MCN are the masses of the
target, projectile and compound nucleus masses, respectively. The deformation energy at injection
is by definition Edef(sinj).
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For a Fermi gas, the excitation energy and the temperature are related through an expression
having the form T =

√

E∗/a where a is the level density parameter. As argued in Refs. [40,41], the
temperature changes during diffusion. Thus, one can define the temperature at the injection-point
and the temperature at the saddle-point, respectively, as

Tinj =
√

E∗
inj/a, (2.53)

TSP =
√

E∗
SP/a. (2.54)

Furthermore, it is assumed as in Refs. [40,41], that during diffusion the temperature is equal to the
geometric mean T =

√
Tinj TSP. We will return to the temperatures when we discuss the survival

probability and the parametrization of entropy (cf. Sect. 2.3.2).
Again, the compound nucleus mass is experimentally unknown and must be determined by

theoretical means. Furthermore, temperature is in some sense also mass dependent, e.g., see
Eqs. (2.52) and (2.54). Therefore, this demonstrates the influence of masses and their predictions,
on fusion-evaporation models.

2.2.2.4 Injection point parametrization

As previously mentioned, for light systems the formation probability is equal to 1. In those
cases, the production cross-section is simply given as the product of the capture and survival
probability. Note that we have already explained how to determine the capture cross-section and
a method to obtain the survival probability is provided in the next section. Therefore, we are in a
position to calculate the production cross-section assuming that hindrance is negligible, i.e., only
taking into account the capture and the survival steps. Since some production cross-sections have
been measured, it is possible to divide them by the theoretical cross-section obtained neglecting
hindrance, thus, an “experimental” formation probability is determined and can be expressed as

PExp
form =

σexp
ER

σcap × Psurv
, (2.55)

where σexp
ER , σcap and Psurv, are the peak of the measured production cross-section, the calculated

capture cross-section and survival probability, respectively. Now, since the “experimental” forma-
tion probability and the diffusion temperature are known, it is possible to deduce the barrier B
entering the theoretical formation probability and from it, deduce an “experimental” injection-
point sExpinj .

Based on this empirical evidence, i.e., knowing sExpinj , one can construct a parametrization for
the injection-points in order to make predictions of the formation probability. As an example,
Ref. [40] gives the following parametrization

sinj ≈ 2.30fm − 0.062(Ecm −B0) fm/MeV, (2.56)

where (Ecm −B0) is the excess of kinetic energy over the mean Coulomb barrier. This expression
was obtained based on 27 measured cold-fusion cross-sections and using the mass predictions from
Möller [49,50]. Another example taken from Ref. [41] is based on 22 hot-fusion reactions and using
the mass predictions from Kowal [51, 52], gives

sinj ≈ 4.09fm − 0.192(Ecm −B0) fm/MeV. (2.57)
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Both parametrizations are shown in Fig. 2.4. On the one hand, the saddle-point and ground-
state masses from Kowal [51, 52] deliver very regular systematics for the injection point. On the
other hand, this is not the case when the saddle-point and ground-state masses from Möller [49,50]
are used. Note that this regularity may also be inherent to the two different datasets considered
in Refs. [40, 41].

(a) Cold-fusion
sinj = 2.30 fm − 0.062(Ecm −B0) fm/MeV

(b) Hot-fusion
sinj = 4.09 fm − 0.192(Ecm −B0) fm/MeV

Figure 2.4: On the left, the injection point parametrization based on 27 cold-fusion excitation
functions reproduced from Ref. [40]. On the right, the injection point parametrization based on
22 hot-fusion excitation functions reproduced from Ref. [41].

As the injection point is the only adjustable parameter, its parametrization has great conse-
quences on the predictions of the fusion-by-diffusion model. So far, no clear explanation about
the particular form of this parametrization and its energy dependence has been supplied. In the
next chapter, an attempt is made to, at least partially, explain the origin of this energy dependent
parametrization.

2.2.3 Formation in the Langevin description

We have just finished describing the formation step in the fusion-by-diffusion model where the
diffusion is assumed over-damped and inertia is completely neglected. However, there are other
descriptions of the diffusion process where inertia is fully considered. Such calculations are based
on the Langevin approach. Here, we closely follow the development described in Ref. [34]. The
Langevin equation describing the diffusion over an inverted parabola is

q̈ + βq̇ − ω2q = r (t) , (2.58)

where the random force is, as before, defined by

〈r(t)〉 = 0, (2.59)

〈r(t)r(t′)〉 =
2Tβ

m
δ(t− t′). (2.60)
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Taking the Laplace transform leads to

q(s)
[
s2 + βs− ω2

]
= [r(s) + q(0)s + (q̇(0) + q(0)β)] . (2.61)

In order to inverse Laplace transform the previous expression, we must use partial fraction decom-
position. This is achieved by finding the roots of the left hand side by solving

s2 + βs− ω2 = 0. (2.62)

This is a quadratic equation, consequently, finding the roots, here, is trivial. However, we will
see in chapter 3 that this step is critical and bears great physical significance. The roots are, of
course, obtained as

s± =
−β ±

√

β2 + 4ω2

2
. (2.63)

From this we deduce that

q(s) =

[
1

(s− s+)(s− s−)

]

[r(s) + q(0)s + (q̇(0) + q(0)β)] . (2.64)

The term by term inverse transformation leads to

r(s)

(s− s+)(s− s−)
→
∫ t

0
r(t′)

[

es+(t−t′) − es−(t−t′)

s+ − s−

]

dt′,

q(0)s

(s− s+)(s− s−)
→ [q(0)]

[
s+e

s+t − s−es−t

s+ − s−

]

,

q̇(0) + q(0)β

(s− s+)(s− s−)
→ [q̇(0) + q(0)β]

[
es+t − es−t

s+ − s−

]

.

(2.65)

Introducing x = β/2ω the final solution reads

q(t) =

∫ t

0
r(t′)

[

es+(t−t′) − es−(t−t′)

s+ − s−

]

dt′

+ [q(0)]e−xωt

[

cosh
(√

1 + x2ωt
)

+
x√

1 + x2
sinh

(√

1 + x2ωt
)]

+ [q̇(0)]
1

ω
√

1 + x2
e−xωt sinh

(√

1 + x2ωt
)

(2.66)

Using 〈r(t)〉 = 0, the mean trajectory is obtained as

〈q(t)〉 = [q(0)]e−xωt

[

cosh
(√

1 + x2ωt
)

+
x√

1 + x2
sinh

(√

1 + x2ωt
)]

+ [q̇(0)]
1

ω
√

1 + x2
e−xωt sinh

(√

1 + x2ωt
)

.

(2.67)
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In a similar way, it is possible to determine the fluctuations about the mean trajectory which
are given by

σ2(t) = 〈q2(t)〉 − 〈q(t)〉2

=

∫ t

0

∫ t

0
〈r(t′)r(t′′)〉

[

es+(t−t′) − es−(t−t′)

s+ − s−

][

es+(t−t′′) − es−(t−t′′)

s+ − s−

]

dt′dt′′

=
2Tβ

m(s+ − s−)2

[
1

2s+

(
e2s+t − 1

)
+

1

2s−

(
e2s−t − 1

)
+

2

s+ + s−

(

1 − e(s++s−)t
)]

.

(2.68)

The introduction of x = β/2ω reduces the previous expression to

σ2(t) =
2Tβ

m(s+ − s−)2

[

e−2xωt

(
1

2s+s−

(

s−e
2
√
1+x2

+ s+e
−2

√
1+x2

)

− 2

s+ + s−

)

− (s+ − s−)
2

2s+s− (s+ + s−)

]

=
T

mω2

[

e−2xωt

(
2x2

1 + x2
sinh2

(√

1 + x2ωt
)

+
x√

1 + x2
sinh

(

2
√

1 + x2ωt
)

+ 1

)

− 1

]

.

(2.69)

Note that we have used the identity cosh(2x) = 2 sinh2(x) + 1. This expression is consistent with
the one given in Ref. [34].

As before, the formation probability is given by

Pform (t, q(0), q̇(0), T ) =
1

2
erfc

(

− 〈q(t)〉√
2σ(t)

)

. (2.70)

After a very long time, it becomes

Pform (t → ∞, q(0), q̇(0), T ) =
1

2
erfc

(√

B

T ′ −
1

(x +
√

1 + x2)

√

K

T ′

)

, (2.71)

where the initial kinetic energy K = mq̇2(0)/2 and the initial barrier height B = mω2q2(0)/2 have
been introduced and T ′ = 2Tx(

√
1 + x2 − x). Note that this expression is consistent with the one

obtained in Ref. [34]. In order for the formation probability to be 1/2, the initial kinetic energy
should be

K = (x +
√

1 + x2)2B. (2.72)

In turn, the mean trajectory feels an effective barrier expressed as

Beff = (x +
√

1 + x2)2B. (2.73)

Notice that since x = β/2ω, the effective barrier accounts for the nuclear viscosity.
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Figure 2.5: The mean trajectory is plotted as a function of time. In the first, second and third
columns, we have, respectively, K = Beff/2, K = Beff and K = 2Beff. These plots are dimension-
less. Figure reproduced from [34].

Figure 2.6: The formation probability Pform is plotted as a function of time. In the first, second
and third column, we have, respectively, K = Beff/2, K = Beff and K = 2Beff. The solid line
corresponds to T = B/5 and the dashed line to T = B/2. These plots are dimensionless. Figure
reproduced from [34].

The mean trajectory and the formation probability are, respectively, shown in Figs. 2.5 and 2.6,
as functions of time. Finally, let us mention that with the Smoluchowski equation Pform is always
lower than 1/2 as no kinetic energy remains at the injection point. With the Langevin formalism,
the initial kinetic energy enhances the fusion probability which can then be higher than 1/2 if
K > Beff. This can be seen in Fig. 2.6.

From Fig. 2.5, one can see that when K < Beff the mean trajectory is not able to cross the
internal barrier. Therefore, in average the system does not form a compound nucleus but rather
disintegrates through quasi-fission. On the other hand, when K > Beff then the mean trajectory
easily crosses the internal barrier. More importantly, Fig. 2.6 shows that even in cases where
K < Beff the formation probability does not vanish. This is due to the thermal fluctuations which
allow the system to diffuse over the internal barrier in order to reach the excited compound nucleus
configuration. In fusion-evaporation reactions leading to the synthesis of superheavy nuclei, one
typically has that K ≪ Beff and in turn the corresponding formation probabilities are extremely
small, i.e., Pform ≪ 1. Thus, fusion is severely hindered.
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2.3 The survival step

So far, we have described the fusion cross-section consisting of the capture and formation prob-
abilities. Through these two steps an excited compound nucleus configuration has been reached.
We now focus on the de-excitation of this compound nucleus where we assume that it can either
evaporate one neutron or fission. In that special case the one neutron survival probability is given
by

Psurv =
Γn

Γn + Γf
P<, (2.74)

where Γn and Γf are, respectively, the neutron emission and fission disintegration widths. Here,
P< is the probability that the excitation energy, after the emission of a single neutron, is below
the second chance fission threshold [40]. The first factor on the left hand side is the probability
of emitting a first neutron instead of fissioning. Note that generalizations to 2 or more successive
neutron emissions and to other particles are easily obtained [53].

The evaporation of light particles and fission are usually described by two different formalisms.
On the one hand, evaporation is usually treated within the Weisskopf or Hauser-Feschbach formu-
lations [53]. On the other hand, fission is addressed in the Bohr and Wheeler framework where
modern versions include additional corrections by Kramers and Strutinsky [53]. However, it is also
possible to treat evaporation and fission on an equal footing by using the transition state theory
presented in Ref. [54]. This is what is done in the fusion-by-diffusion model [35,36] which we now
present.

2.3.1 The expressions for the widths

After the capture and formation steps a compound nucleus of mass number A is produced in a
reaction with an excitation energy E∗ = Ecm + Qfus. The fission barrier is defined as,

Bf = MSP
A −MGS

A , (2.75)

where MSP
A and MGS

A are, respectively, the saddle-point and ground-state masses of the compound
nucleus. Notice these two quantities are usually unknown for superheavy nuclei and must be de-
termined through theoretical calculations, i.e., in most cases macroscopic-microscopic calculations
Refs. [50–52].

On the other hand, the neutron separation energy is defined as

Sn = (MGS
A−1 + Mn) −MGS

A , (2.76)

where MGS
A−1 and Mn are, respectively, the daughter ground-state mass and the mass of a neutron.

As before, MGS
A and MGS

A−1 must be determined theoretically.
The transition state theory is a statistical calculation and is supported by the equiprobability

of all accessible states. Thus, probabilities can be expressed as ratios of numbers of states. The
ratio of the neutron emission width to the fission disintegration width is

Γn

Γf
=

Nn

Nf
=

∫ Un

0 ρn(ǫ)dǫ
∫ Uf

0 ρf (ǫ)dǫ
. (2.77)
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In the previous relation, Nn is the number of states, lying between Sn and E∗, the compound
nucleus can transition to by emitting a neutron. Similarly, Nf is the number of states, lying between
Bf and E∗, the compound nucleus can transition to by fissioning. The notations, Un = E∗ − Sn

and Uf = E∗ −Bf , were introduced in the previous expression for convenience. As usual, ρn and
ρf are the transitional state densities for neutron emission and fission, respectively. In both cases,
densities can be expressed as ρ = exp(Σ) where Σ is the corresponding entropy. Therefore, the
energies for which the previous integrals yield significant contributions are those close to the upper
integration bound, more precisely, Un and Uf . This allows us to expand the entropies around
those values. For the neutron, we have

Σn(ǫ) ≈ Σn(Un) + Σ′
n(Un)(ǫ− Un). (2.78)

Thus, the integral becomes

Nn =

∫ Un

0
exp(Σ(ǫ))dǫ

≈
∫ Un

0
exp(Σn(Un) + Σ′

n(Un)(ǫ− Un))dǫ

≈ 1

Σ′
n(Un)

exp(Σn(Un)).

(2.79)

A similar expression can be found for Nf , consequently, one finally has that

Γn

Γf
=

Σ′
f (Uf )

Σ′
n(Un)

exp(Σn(Un) − Σf (Uf )), (2.80)

where Σ′
n and Σ′

f are, as usual, the inverse of the temperatures.

2.3.2 The entropy parametrization

In the literature, formulas for the entropies are available and account for shell corrections, pairing,
as well as nuclear deformation. We now simply restate the formulas taken from Refs [55,56] for the
sake of completeness. These have been used in the fusion-by-diffusion model [35,36]. The entropy
is expressed as

Σ(U) = 2
√

a(U∗ + ∆sh[1 − exp(−U∗/k)]) (2.81)

where k = A1/3/0.47 MeV and ∆sh are the shell corrections also in MeV which can be taken from
Refs. [49, 57]. The level density parameter is taken to be

a = 0.076A + 0.180A2/3F (α) + 0.157A1/3G(α) MeV−1, (2.82)

where the nuclear deformation comes in through the definitions

F (α) = 1 + (0.6416α− 0.1421α2)2, (2.83)

G(α) = 1 + (0.6542α− 0.0483α2)2, (2.84)

with α = (Rmax − R)/R where Rmax is the semi-major axis in the case of axially symmetric
deformation and R is the corresponding spherical radius.



32 CHAPTER 2. A MODEL FOR FUSION-EVAPORATION

Finally, pairing is taken into account by

U∗ =







U − 24 MeV/
√
A even-even nuclei,

U − 12 MeV/
√
A odd nuclei,

U MeV/
√
A odd-odd nuclei.

(2.85)

From the previous relation, one can see that U∗ can be negative, in those cases the densities are
assumed to vanish, i.e., ρ(U) = 0, in all other cases, the above formulas for the entropy hold. Note
that other approaches include additional effects which might also be important in the calculations
of the widths. For instance, some of those effects are the dissipation and collective enhancement
factor which, respectively, decrease and increase, the survival probabilities and tend to compensate
each other [53]. More importantly, the studies [37, 38] have shown that the survival probabilities
are further influenced by the fission barriers than by the moderate differences between the various
ways of obtaining the widths.

2.3.3 The survival probability

The probability of emitting a neutron rather than fission is given by

Γn

Γn + Γf
=

Γn/Γf

1 + Γn/Γf
(2.86)

where the ratio Γn/Γf was already obtained. Here, however, we are only interested in survival
scenarios where the system emits a single neutron and then neither emits another one nor fissions.
For those two processes to be forbidden the remaining energy after emitting one neutron must be
smaller than both the neutron emission threshold and the fission threshold. The fission threshold
is, of course, the fission barrier of the daughter nucleus given by

BA−1
f = (MSP

A−1 + Mn) −MGS
A . (2.87)

This is simply the energy required for fission to take place, after the compound nucleus has emitted
one neutron. The remaining energy after a first neutron emission is simply E∗ − K where K is
the kinetic energy of the emitted neutron. On the one hand, if E∗ < BA−1

f then there are no

restrictions on K in order to avoid second chance fission. On the other hand, if E∗ > BA−1
f then

in order to forbid fission K must be larger than K1 = E∗ −BA−1
f .

Assuming the kinetic energy of the emitted neutron follows a Maxwell distribution, proportional
to K exp(−K/T ), where T is the temperature of the neutron transition state then the probability
that K > K1 is given by

∫∞
K1

K exp(−K/T )dK
∫∞
0 K exp(−K/T )dK

=

(

1 +
K1

T

)

exp

(

−K1

T

)

. (2.88)

Note that this is not the expression given in Ref. [35] where a mistake was made and corrected in
Ref. [36].
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Finally, the one neutron survival probability, i.e., the probability to emit a single neutron
without emitting a second one or fissioning, is given by

Γn

Γn + Γf
if E∗ < BA−1

f , (2.89)

Γn

Γn + Γf

(

1 +
K1

T

)

exp

(

−K1

T

)

if E∗ > BA−1
f . (2.90)
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2.4 Open questions

We have just finished exposing the three models that, when put together, form the fusion-
evaporation model. Now, we would like to precisely explain the global philosophy of this thesis.
Our primary goal is to predict, as accurately as possible, the production cross-sections of super-
heavy nuclei. This is a very challenging task and up to this day, the precision of these predictions
remains unsatisfactory.

As we have seen, the production cross-section is theoretically decomposed into three indepen-
dent contributions: the capture cross-section, the formation probability and the survival probabil-
ity. On the one hand, the capture cross-section as well as the survival probability, are theoretically
well understood because they are based on our extensive knowledge of collisions between light
partners. On the other hand, the formation step, responsible for fusion hindrance, only exists in
collisions involving very heavy nuclei. Thus, although qualitatively understood, a precise theoret-
ical description of hindrance is still unavailable. Consequently, this thesis is an attempt to both,
clarify and constrain, the formation step.

Typical predictions of the formation probability, obtained with different models, are shown
in Fig. 2.7. These predictions span 3 orders of magnitude. This immense gap between existing
models clearly demonstrates that the formation step is not properly understood and this motivates
the present investigation.

Figure 2.7: Typical predictions for the formation probability in cold-fusion reactions. Figure
reproduced from [58].

In collisions between heavy nuclei, the Coulomb repulsion is so intense that, after capture,
the composite system often re-separates before the compound nucleus is even formed. This re-
separation is usually referred to as quasi-fission and lies at the very heart of fusion hindrance.
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Moreover, since the compound nucleus is formed in an excited state, it can disintegrate through
fission. It turns out that quasi-fission and fission products are so similar that, experimentally, it
is very difficult to distinguish them. Therefore, the formation step cannot be constrained experi-
mentally and one is forced to constrain this step theoretically.

As previously mentioned, some production cross-sections, have been measured. Therefore, the
“experimental” formation probability can be expressed as

P exp
form =

σexp
ER

σcap × Psurv
, (2.91)

where σexp
ER is a measured production cross-section. Thus, our approach goes as follows. First, we

will determine the uncertainties in the capture cross-section. Then, we will obtain those in the
survival probability. Finally, by propagating these uncertainties onto the formation probability we
will constrain this quantity.

We would now like to stress that sensibility as well as uncertainty analyses, such as [37, 38],
have shown that the most crucial quantities entering the survival probability calculations are the
fission barriers. In the following, we will assume that the uncertainties in the survival probability
only come from the fission barriers. The importance of the fission barriers was put forward by
comparing the available models. More precisely, by calculating the survival probability through
diverse combinations of fission barriers as well as evaporation and fission widths calculations.
Here, however, our approach will be different, as we will study the uncertainties within a single
fusion-evaporation model. This way it becomes possible to theoretically constrain the formation
probability in this particular model.

Constraining the formation probability is certainly not sufficient because this quantity still
needs to be calculated in order to make predictions. Therefore, the theoretical description of the
formation step is crucial. However, many questions remain unanswered regarding the formation
of the compound nucleus. For instance, the influence of inertia, on the diffusion, is not perfectly
understood. Therefore, it is unclear whether one should use a Langevin or a Smoluchowski de-
scription. Furthermore, the initial conditions required to solve these equations remain unknown.
Additionally, the viscosity parameter is not well known. In the next chapter, we will focus on the
effects of inertia and on the choice of the dynamical formulation, i.e., Langevin or Smoluchowski.





Chapter 3

New mechanism to the fusion

hindrance

In chapter 2, two dynamical formulations of diffusion, considered in the formation step, were
exposed. We first saw that, in the fusion-by-diffusion model, the formation step was considered
over-damped (Smoluchowski approximation) [35, 36, 40, 41]. Then, we discussed a second model
where diffusion was described by a Langevin equation [34]. Remember that the over-damped
formulation is nothing but an approximation of the Langevin description where the effects of
inertia are completely neglected [59]. The exact quantitative influence of inertia during diffusion
is not perfectly understood. As a consequence, it is unclear whether the diffusion process should
be described by a Langevin or a Smoluchowski equation.

Furthermore, regardless of the formalism, over-damped or Langevin, the initial conditions
required to solve the equations remain unknown. Historically, the initial condition has been chosen
at the contact point which defines the border between the dinucleus models and the deformed
compound nucleus models. However, it is crucial to remember that the initial condition, entering
the Smoluchowski formulation of the fusion-by-diffusion model, is the only adjustable parameter.
Thus, for predictions to be made a parametrization of that initial condition is required. Such a
parametrization has been proposed, in Refs. [40, 41], as a function of the excess of kinetic energy
over the mean Coulomb barrier, i.e., a function of (Ecm − B0). As stated in Refs. [40, 41], at the
moment, there is no clear explanation for this energy dependent parametrization. In other models,
the situation is not much clearer and instead of an energy dependent parametrization, the initial
condition is arbitrarily chosen to always correspond to the contact point (historical choice) [33,42].

The purpose of the present chapter is to, first, clarify which description, i.e., the over-damped or
the Langevin, should be favoured and second, to provide a parametrization for the initial condition
based on first principles. In order to better identify the distinctions between the Smoluchowski and
the Langevin descriptions, we start by treating inertia using singular perturbation theory. This
can be seen as a third formulation of the diffusion process, falling right between the Langevin and
the Smoluchowski approximation. This approach is useful in those cases where inertia cannot be
completely neglected nor does it play a dominant role in the dynamics of diffusion. This treatment
allows us to formally build a bridge between the Langevin and the Smoluchowski descriptions
and to provide a simple explanation for the energy dependence of the initial condition, proposed
in [40,41].

37
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3.1 From Langevin to Smoluchowski

In this section, we discuss solutions to the Langevin equation with a parabolic potential barrier
and close to the over-damped regime. This approximation corresponds to the assumption that
β ≫ ω in the following Langevin equation

q̈ + βq̇ − ω2q = r (t) , (3.1)

that was exactly solved in chapter 2. Interestingly enough, it turns out that the Smoluchowksi
approximation is equivalent to neglecting the inertia term in this equation, i.e., completely re-
moving the second derivative term. In what follows, we explore in great detail what happens to
the solution of the previous expression when this approximation is made. Indeed, dividing the
previous relation by ω2 and making the change of variables t′ = tω2/β, we obtain

ǫ
d2q (t′)

dt′2
+

dq (t′)

dt′
− q

(
t′
)

= R(t), (3.2)

where ǫ = ω2/β2 and R(t) = r(t)/ω2. From the last expression, we plainly see that taking the
limit ǫ → 0 is equivalent to the assumption that β ≫ ω which is also equivalent to, altogether,
neglecting inertia. Here, we discuss cases where this approximation is not valid and inertia must
be treated perturbatively. As usual, the random force is statistically defined by

〈R(t)〉 = 0, (3.3)

〈R(t1)R(t2)〉 =
2TB

ω4m
δ(t1 − t2). (3.4)

3.1.1 A perturbative treatment of inertia

We now treat inertia in an approximate way by solving the previous equation using perturbation
theory. This approach was strongly influenced by the ideas presented in [60,61] where perturbation
theory and asymptotic methods are exposed. Since time was rescaled, we must use the altered
Laplace transform formulas

ǫ
d2q (t′)

dt′2
→ ǫ

(
β

ω2

)2
[
s2q(s) − sq(0) − q̇(0)

]
,

dq (t′)

dt′
→ β

ω2
[sq(s) − q(0)] .

(3.5)

Note that all other transformations remain unchanged. It is also important to mention that, in
these transformations, s is the conjugate variable of t and not of t′. In fact, this is the reason why
the usual Laplace transforms have been altered. The Laplace transform of (3.2) yields

q(s)

[

ǫ

(
β

ω2

)2

s2 +

(
β

ω2

)

s− 1

]

= s

[

ǫ

(
β

ω2

)2

q(0)

]

+

[

ǫ

(
β

ω2

)2

q̇(0) +

(
β

ω2

)

q(0)

]

+ R(s). (3.6)
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As usual, we must find the roots of the factor appearing on the left hand side. This is achieved
by solving

ǫs′
2

+ s′ − 1 = 0, (3.7)

where the change of variables s′ = sβ/ω2 was made. In turn, these roots allow us to use partial
fraction decomposition in order to inverse Laplace transform the expression for q(s) and obtain
q(t). Notice this is a quadratic equation and the exact roots are easily found. However, since
we are interested in the transition between the Langevin and the Smoluchowski description, we
will look for approximate roots, expressed as power series in ǫ. The first root is determined using
regular perturbation theory, by assuming it has the form

s′+(ǫ) ≈ a0 + a1ǫ, (3.8)

when restricting ourselves to a first order expansion. Injecting Eq. (3.8) into Eq. (3.7), we determine
that a0 = 1 to zeroth order and a1 = −1 to first order. Gathering these two results, we obtain

s′+ ≈ 1 − ǫ =⇒ s+ ≈ ω2

β
(1 − ǫ). (3.9)

Looking for the second root is much more subtle. Fortunately, we are solving a quadratic equation,
consequently, we know that ǫs′+s

′
− = −1. This allows us to directly determine the second root as

s′− ≈ −1

ǫ(1 − ǫ)
≈ −(ǫ−1 + 1) =⇒ s− = −ω2

β
(ǫ−1 + 1), (3.10)

when restricting ourselves to the first two terms. Notice that the second root blows up as ǫ →
0. This is the reason for this kind of perturbation theory to be known as, singular perturbation
theory. It is now possible to rewrite Eq. (3.7) approximately as

ǫ

(
β

ω2

)2

s2 +

(
β

ω2

)

s− 1 ≈ ǫ

(
β

ω2

)2

(s− s+) (s− s−) . (3.11)

The expression for q(s) then becomes

q(s) ≈
s

[

ǫ
(

β

ω2

)2

q(0)

]

ǫ
(

β

ω2

)2

(s− s+) (s− s−)
︸ ︷︷ ︸

I

+

[

ǫ
(

β

ω2

)2

q̇(0) +
(

β

ω2

)

q(0)

]

ǫ
(

β

ω2

)2

(s− s+) (s− s−)
︸ ︷︷ ︸

II

+
R(s)

ǫ
(

β

ω2

)2

(s− s+) (s− s−)
︸ ︷︷ ︸

III

. (3.12)

Taking the term by term inverse Laplace transform of the former expression gives

I →
ǫ β
ω2 q̇(0) + q(0)

1 + 2ǫ− ǫ2

[

e
ω2

β
(1−ǫ)t − e

−ω2

β
(ǫ−1+1)t

]

,

II → q(0)

1 + 2ǫ− ǫ2

[
(
ǫ− ǫ2

)
e

ω2

β
(1−ǫ)t

+ (1 + ǫ) e
−ω2

β
(ǫ−1+1)t

]

,

III → ω2

β (1 + 2ǫ− ǫ2)

∫ t

0
R(t′)

[

e
ω2

β
(1−ǫ)(t−t′) − e

−ω2

β
(ǫ−1+1)(t−t′)

]

dt′.

(3.13)
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Then, the mean solution reads

〈q(t)〉 ≈ e
ω2

β
(1−ǫ)t

1 + 2ǫ− ǫ2

[
q̇(0)

β
+ q(0)

(
1 + ǫ− ǫ2

)
]

+
e
−ω2

β
(ǫ−1+1)t

1 + 2ǫ− ǫ2

[

− q̇(0)

β
+ q(0)ǫ

]

, (3.14)

with the simplification ǫβ/ω2 = 1/β along with the fact that 〈R(t)〉 = 0. This last expression can
be, more conveniently, written as

〈q(t)〉
q(0)

≈ e
√
ǫ(1−ǫ)ωt

1 + 2ǫ− ǫ2

[

−
√

ǫK

B
+
(
1 + ǫ− ǫ2

)

]

+
e−

√
ǫ(ǫ−1+1)ωt

1 + 2ǫ− ǫ2

[√

ǫK

B
+ ǫ

]

, (3.15)

by introducing, as in chapter 2, the initial barrier height B = mω2q2(0)/2, the initial kinetic energy
K = mq̇2(0)/2, as well as remembering that q̇(0) > 0 while q(0) < 0.

So far, we have only spoken about the average solution and now, we would like to address the
question of the fluctuations. The latter can be obtained by computing

σ2(t) = 〈q2(t)〉 − 〈q(t)〉2

=

(
ω2

β (1 + 2ǫ− ǫ2)

)2 ∫ t

0

∫ t

0
〈R(t′)R(t′′)〉

[

e
ω2

β
(1−ǫ)(t−t′) − e

−ω2

β
(ǫ−1+1)(t−t′)

]

[

e
ω2

β
(1−ǫ)(t−t′′) − e

−ω2

β
(ǫ−1+1)(t−t′′)

]

dt′dt′′.

(3.16)

Then, using 〈R(t′)R(t′′)〉 = 2Tβδ(t′ − t′′)/(ω4m), leads us to

σ2(t) =
T

mω2

1

(1 + 2ǫ− ǫ2)2

[
1

(1 − ǫ)

(

e
2ω2

β
(1−ǫ)t − 1

)

+
ǫ

(1 + ǫ)

(

1 − e
−2ω2

β
(ǫ−1+1)t

)

+
4ǫ

(1 + ǫ2)

(

e
−ω2

β
(ǫ−1+ǫ)t − 1

)]

.

(3.17)

As before, the last expression can be, more conveniently, written as

σ2(t)

q(0)2
=

T

2B

1

(1 + 2ǫ− ǫ2)2

[
1

(1 − ǫ)

(

e2
√
ǫ(1−ǫ)ωt − 1

)

+
ǫ

(1 + ǫ)

(

1 − e−2
√
ǫ(ǫ−1+1)ωt

)

+
4ǫ

(1 + ǫ2)

(

e−
√
ǫ(ǫ−1+ǫ)ωt − 1

)]

.

(3.18)

Finally, the fusion probability is

Pform(t, q(0), q̇(0), T ) =
1

2
erfc

(

− 〈q(t)〉√
2σ(t)

)

, (3.19)

where the expressions for the mean trajectory and the fluctuations are, respectively, given by
Eqs. (3.15) and (3.18).
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3.1.2 Comparing the three formulations

We are now in a position to compare the Langevin and Smoluchowski solutions, obtained in chap-
ter 2, to the one we have just reached with our perturbative approach (cf. Eqs. (3.15) and (3.18)).
This is shown in Fig. 3.1 where one can see that the three mean trajectories exhibit similar trends.
This is also the case for the three formation probabilities. These similarities arise because we have
set ǫ = 0.1 such that inertia does not dominate the dynamics. Secondly, the kinetic energy K does
not appear in the Smoluchowski solution, thus, we chose to set K = 0 such that we could easily
compare the three approaches. We will later compare cases where K 6= 0 and explain why K does
not appear in the Smoluchowski solution. Finally, note that our perturbative calculation is closer
to a Langevin description than to a Smoluchowski one. It should also be mentioned that, in this
case with K = 0, the Smoluchowski description and the perturbative approach overestimate the
formation probability with respect to the Langevin formulation.

2 4 6 8 10
ωt

5

10

15

q(t)/q(0)

(a)

2 4 6 8 10

ωt
0.005

0.010

0.015

0.020

0.025

P(t)

(b)

Figure 3.1: The mean trajectory and formation probability are given as functions of time, respec-
tively, at the top and at the bottom. These are presented for the Smoluchowski (green dot-dashed
line), the Langevin (blue dashed line) and our perturbative approach given by Eqs. (3.15) and (3.18)
(red solid line). These are dimensionless plots where ǫ = 0.1, K = 0 and T = B/2.
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3.2 The initial conditions

We have, in some sense, reconciled the Langevin and the Smoluchowski descriptions. Let us
further examine what happens when we try to recover the Smoluchowski approximation in our
perturbative approach.

3.2.1 The shifted Smoluchowski description

We have seen, in chapter 2, that the solution to the Smoluchowski equation was given by

〈qS(t)〉 = qS(0) e
ω2

β
t
, (3.20)

σ2
S(t) =

T

mω2

[

e
2ω2

β
t − 1

]

, (3.21)

where the subscript S stands for Smoluchowski.
In our perturbative approach we have found that

〈q(t)〉 ≈ e
ω2

β
(1−ǫ)t

1 + 2ǫ− ǫ2

[
q̇(0)

β
+ q(0)

(
1 + ǫ− ǫ2

)
]

, (3.22)

σ2(t) ≈ T

mω2

1

(1 + 2ǫ− ǫ2)2

[
1

1 − ǫ

(

e
2ω2

β
(1−ǫ)t − 1

)

+
ǫ

1 + ǫ
− 4ǫ

1 + ǫ2

]

. (3.23)

Since we are only interested in the end result, i.e., knowing if the compound nucleus was formed,
all terms vanishing for long enough times, were suppressed.

Naively, one might think that setting ǫ = 0, our perturbative approach will simply reduce to the
Smoluchowski one. This is, indeed, the case for the fluctuations but not for the mean trajectory.
In fact, our perturbative solution becomes

〈q(t)〉 ≈
[
q̇(0)

β
+ q(0)

]

e
ω2

β
t
. (3.24)

This expression only reduces to the Smoluchowski solution by further assuming that q̇(0) = 0. The
physical interpretation of this assumption is that, before diffusion starts, all the collective kinetic
energy has been dissipated.

Clearly, the previous expression has the form of the Smoluchowski solution (cf. Eq. (3.20))
where the initial condition qS(0) has been replaced by q(0) + q̇(0)/β. This shift, in the initial
condition, does not come from the perturbative treatment of inertia but rather finds its roots in
the fact that the Smoluchowski equation is a first order equation and our perturbative approach is,
approximately, a second order equation. Thus, the perturbative approach requires two initial con-
ditions, namely q(0) and q̇(0), while the Smoluchowski only requires one, namely qS(0). Therefore,
the Smoluchowski description intrinsically assumes that all the kinetic energy has been dissipated
before the diffusion takes place. This is not the case in our perturbative treatment.
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More importantly, this shift in the initial condition changes the height of the fusion barrier
and, in turn, also has an influence on the formation probability. Since in our case q(0) < 0 and
q̇(0) > 0, the shift in the initial condition should reduce the hindrance to fusion.

Let us mention here that other mechanisms affect the shift in the initial condition, such as the
very rapid evolution of the neck with respect to the slow evolution of the elongation, or asymmetry,
during fusion [62].

3.2.2 Comparing the shifted Smoluchowski and the Langevin descriptions

Previously, by setting ǫ = 0 in our perturbative approach, we have obtained that

〈q(t)〉 ≈
[
q̇(0)

β
+ q(0)

]

e
ω2

β
t
, (3.25)

σ2(t) ≈ T

mω2

[

e
2ω2

β
t − 1

]

. (3.26)

From now on, we shall refer to this solution as the shifted Smoluchowski framework. Next, we
compare this framework to the Langevin description. As usual, introducing the initial barrier
height and the initial kinetic energy, makes the comparison easier.

Assuming, as in Ref. [34], the standard values of nuclear physics ~ω ∼ 1 MeV and β ∼ 5×1021 s
we deduce that ǫ ∼ 0.1. From this, it seems reasonable to believe that inertia does not play such
a critical role in the dynamics of the diffusion considered here. However, to be on the safe side,
we discuss the three values ǫ =0.05, 0.1, 0.2, in order to show that the formation probabilities
obtained within the shifted Smoluchowski framework are close to those obtained with a Langevin
description.

This can be seen in Figs. 3.2 and 3.3 where the two frameworks are compared. Notice that
these two formulations converge to the same formation probability as ǫ → 0. Also, the formation
probability obtained in the Langevin description, always, begins at Pform = 0 and then, starts
increasing because of the diffusion across the barrier. Notice this is not necessarily the case in
the shifted Smoluchowski formulation. Indeed, in Fig. 3.3, we see that the formation probability
initially starts at Pform = 1 and then, decreases to reach its final value. The explanation for
this peculiar result goes as follows. If the kinetic energy is large enough, then, the shifted initial
condition q(0) + q̇(0)/β will become positive (remember q(0) < 0 and q̇(0) > 0) and the system
will, effectively, start on the other side of the barrier, i.e., when diffusion starts the system has
already “fused”. It should be mentioned that the Figs. 3.2 and 3.3 were obtained assuming that
K = Beff/2 and K = 3Beff/2, respectively. Thus, proving that the previous interpretation was
correct. Remember that K = Beff is the energy required for the formation probability to be 1/2
in the Langevin description (cf. chapter 2 for more details).

As previously argued, we do not expect ǫ to be larger than 0.2. Therefore, this value should
lead to the largest possible disagreement between the two approaches. Based on the Figs. 3.2
and 3.3, we do not expect, the changes in the formation probability to exceed 10%.
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Figure 3.2: The formation probability is given as a function of time, for the shifted Smoluchowski
(red solid line) and Langevin (blue dashed line) formulations. These are dimensionless plots where
K = Beff/2 and T = B/2. Note that Beff is the kinetic energy required to have a formation
probability equal to 1/2 in the Langevin description.
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Figure 3.3: The formation probability is given as a function of time, for the shifted Smoluchowski
(red solid line) and Langevin (blue dashed line) formulations. These are dimensionless plots where
K = 3Beff/2 and T = B/2. Note that Beff is the kinetic energy required to have a formation
probability equal to 1/2 in the Langevin description. Also, an initial condition on the other side
of the barrier can be thought of as unphysical and in practice systems never reach contact with
suffisent energy for this to happen.
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3.3 Link to the phenomenological injection point

We have demonstrated that the initial condition qS(0) should be interpreted as q(0) + q̇(0)/β. As
already discussed, this is important if the kinetic energy has not been entirely dissipated.

One can show that if Ecm > B0, then, after capture, the remaining kinetic energy is simply
given by (Ecm −B0)/2 [63]. From this we find that the initial velocity is

q̇(0) =

√

Ecm −B0

µ
. (3.27)

Therefore, assuming that none of the kinetic energy has been dissipated, one obtains a simple
parametrization for the initial condition of the Smoluchowski problem given by

qS(Ecm) = K1 + K2

√

Ecm −B0 (3.28)

where K1 and K2 are now adjustable parameters. Note that these parameters could be interpreted
as K1 = q(0) and K2 = 1/(β

√
µ). However, we absolutely do not know the value for q(0) and the

one for β is rather uncertain.

It should be mentioned that we have found an alternative parametrization to one phenomeno-
logically introduced in Refs. [40,41]. Although these two parametrizations differ, both are functions
of (Ecm − B0). Furthermore, they follow the same trend, more precisely, as the center-of-mass
energy increases the initial condition gets closer and closer to the top of the parabolic barrier.
Consequently, both parametrizations reduce fusion hindrance.

This parametrization is based on three main assumptions. First, ǫ should be so small that
it can be taken equal to 0. Second, the long term evolution can be reasonably described by the
shifted Smoluchowski approach, i.e., the Smoluchowski solution with a shift in the initial condition.
Third, no dissipation has taken place before the start of diffusion otherwise Eq. (3.27) would not
be valid. In the previous section, we have demonstrated that the first and second were valid.

3.4 Conclusion

In this chapter, the effects of inertia on the formation step were investigated. This was achieved
through the use of singular perturbation theory. We have shown that, even when inertia was com-
pletely neglected (ǫ = 0), our perturbative approach did not reduce to a Smoluchowski description.
The reason for this unexpected turn of events is that the Smoluchowski equation is a first order
equation, with a single initial condition, while our treatment is second order and requires two initial
conditions. Consequently, complete energy dissipation, before diffusion sets in, is intrinsic to the
Smoluchowski framework. However, complete dissipation was never assumed in our perturbative
approach and this is what sets these two descriptions apart. Furthermore, we have shown that
the remaining kinetic energy (not dissipated) is at the very origin of a shift in the initial condition
within the Smoluchowski framework. Indeed, it was proven that the Smoluchowski initial condition
qS(0) became q(0) + q̇(0)/β in our perturbative framework. Moreover, this shift offers a natural
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parametrization of the initial condition and its energy dependence. We would like to stress that
the approach developed in this chapter, allowed us to fundamentally ground the phenomenolog-
ical parametrization introduced in the fusion-by-diffusion model. This investigation also proved
that the effects of inertia which were completely neglected in this parametrization, cannot affect
the final formation probability by more than 10% with respect to the Langevin description where
inertia is treated exactly.





Chapter 4

Uncertainties and their propagation

4.1 Random variables

This chapter contains a precise presentation of the mathematical concepts required to introduce
the notion of uncertainty, which will be used throughout this thesis. Nowadays, uncertainties are
still the object of many theoretical developments and, in parallel, a normalization process has
been undertaken. This thesis strictly follows the established standards described in the Guide to
Uncertainty in Measurements (GUM) [64,65].

Most physical quantities are not precisely determined, measured or deduced, and cannot be
assimilated to a constant. It is, therefore, much more rigorous to view them as random variables
rather then specific, clear-cut, values. A random variable X can take any value xi from the set
P={xi}, called the population. In order to properly define a random variable one must specify,
all the possible values for xi and their probability density distribution. The number of existing
probability distributions is countless, however, the central limit theorem states that the sum of
independent and identically distributed random variables converges to a Gaussian distribution.
It turns out that such a distribution is completely defined by its first three moments: the zeroth
moment is simply the total probability, the first moment is known as the mathematical expectation
and the second moment is called the variance, all higher order moments are exactly zero. In the
following, we first focus our attention on the mathematical expectation and then on the variance
which, as we will see, is a special case of covariance.

4.2 The expectation, variance and covariance

4.2.1 The mathematical expectation

The mathematical expectation of a random variable is defined as,

E[X] = lim
n→∞

1

n

n∑

i=1

xi, (4.1)

where P={xi} is the set of all possible values for the random variable X. The mathematical
expectation, E[X], can also be referred to as expectation, population mean or even simply mean.

49
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In practice, however, n is finite and the set P is never fully explored. Therefore, it is necessary to
define the sample mean.

Intuitively, the mathematical expectation of a random variable is the value, we expect to find,
on average, if we iterate a measurement a large amount of times. Therefrom, the value of any
physical quantity is, generally, identified to its expectation, whenever it is not treated as a random
variable. In cases where the distribution is symmetric the expectation can be seen as the central
value of a distribution. Accordingly, a random variable is said to be centred if it has a mathematical
expectation equal to 0.

However, a thorough description of any physical quantity cannot be achieved by reducing this
quantity to a single value (its mean) and the variability of such quantity must be comprised within
its description. This leads us to the notion of variance.

4.2.2 The variance

The variance of a random variable is defined as,

Var[X] = E[(X − E[X])2] = E[X2] − E[X]2, (4.2)

where E[X] is the mathematical expectation of the random variable X. The population variance
Var[X] is more often than not referred to as variance.

The variance characterizes the variability or deviation of a random variable away from its own
mathematical expectation. Consequently, it also corresponds to the square of the standard devi-
ation, the standard deviation being synonymous to the term uncertainty, the concept of variance
will, in this chapter and the next, draw most of our attention.

The variance is always positive or zero. A constant, not a random variable, has zero vari-
ance since all of its realizations are, of course, identical to the constant itself. Therefore, the
mathematical expectation of such a constant, a, is naturally given by E[a] = a and consequently,
Var[a] = E[a− E[a]] = E[0] = 0.

4.2.3 The covariance

The covariance of two random variables is defined as,

Cov[X,Y ] = E[(X − E[X])(Y − E[Y ])] = E[XY ] − E[X] E[Y ] (4.3)

where E[X] and E[Y ] are the mathematical expectations of the random variables X and Y . This
last expression, is a straightforward generalization of variance to two random variables.

Intuitively, the covariance characterizes the simultaneous deviations of two random variables:
it vanishes when the two variables vary independently and it will be positive when the deviations
between these variables and their respective expectation have the same sign and negative otherwise.
The covariance is, thus, an extension of the notion of variance to two random variables.

The correlation is a normalized form of the covariance which can be expressed as,

Cor[X,Y ] =
Cov[X,Y ]

√

Var[X] Var[Y ]
, (4.4)

which is dimensionless and only takes values in the interval [-1,1].
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The concept of covariance can be generalized to more than two random variables, this leads
to the idea of covariance matrix. For instance, the covariance matrix of a random vector X =
[X1, . . . , Xn]T is given by

Cov[X] =








Var[X1] Cov[X1, X2] . . . Cov[X1, Xn]
Cov[X2, X1] Var[X2] . . . Cov[X2, Xn]

...
...

. . .
...

Cov[Xn, X1] Cov[Xn, X2] . . . Var[Xn]







, (4.5)

and the corresponding correlation matrix is

Cor[X] =








1 Cor[X1, X2] . . . Cor[X1, Xn]
Cor[X2, X1] 1 . . . Cor[X2, Xn]

...
...

. . .
...

Cor[Xn, X1] Cor[Xn, X2] . . . 1







. (4.6)

4.3 Properties of the expectation, variance and covariance

In the following chapters, many calculations will be done using some of the properties of the
expectation, the variance and the covariance. We shall now prove some of those properties, all of
which are based on either the linearity or bilinearity of those operators.

4.3.1 Expectation

From the definition of the mathematical expectation, Eq. (4.1), one can deduce the linearity
property below,

E[aX + bY ] = lim
n→∞

1

n

n∑

i=1

(axi + byi) = a lim
n→∞

1

n

n∑

i=1

xi + b lim
n→∞

1

n

n∑

i=1

yi = aE[X] + bE[Y ], (4.7)

where a and b are constants while X and Y are random variables. This expression can be gener-
alized as follows,

E

[
n∑

i=1

aiXi

]

=

n∑

i=1

ai E[Xi], (4.8)

where ai are constants and Xi are random variables.

4.3.2 Variance

Using successively the definition of variance Eq. (4.2), the linearity of the mathematical expectation
Eq. (4.8) and the definition of covariance Eq. (4.3), one can show that

Var[aX + bY ] = E[(aX + bY )2] − E[(aX + bY )]2

= a2(E[X2] − E[X]2) + b2(E[Y 2] − E[Y ]2) + 2ab(E[XY ] − E[X] E[Y ])

= a2 Var[X] + b2 Var[Y ] + 2abCov[X,Y ],

(4.9)
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where a and b are constants while X and Y are random variables. This expression can be gener-
alized as follows,

Var

[
n∑

i=1

aiXi

]

=

n∑

i=1

a2i Var[Xi] +

n∑

i=1

n∑

j=1
j 6=i

aiaj Cov[Xi, Xj ], (4.10)

where ai are constants and Xi are random variables.

4.3.3 Covariance

Using successively the definition of covariance Eq. (4.3) and the linearity of the mathematical
expectation Eq. (4.8), one can show that

Cov[aW + bX, cY + dZ] = E[(aW + bX)(cY + dZ)] − E[aW + bX] E[cY + dZ]

= ac(E[WY ] − E[W ] E[Y ]) + ad(E[WZ] − E[W ] E[Y Z])

+ bc(E[XY ] − E[X] E[Y ]) + bd(E[XZ] − E[X] E[Z])

= acCov[W,Y ] + adCov[W,Z] + bcCov[X,Y ] + bdCov[X,Z],

(4.11)

where a, b, c and d are constants while W , X, Y and Z are random variables. This expression can
be generalized as follows,

Cov





n∑

i=1

aiXi,
m∑

j=1

bjYj



 =
n∑

i=1

m∑

j=1

aibj Cov[Xi, Yj ], (4.12)

where ai and bj are constants while Xi and Yj are random variables.

4.4 Unbiased sample estimates

In practice, samples have a finite size, thus, calculating the mathematical expectation, the variance
or the covariance, directly from their definition, is hopeless. Perhaps, a more sensible intent would
be providing estimates for these quantities which would be based on finite samples. However, we
would also like to insure that, as the size of the samples increase, the resulting estimates get closer
and closer to the values one obtains using the original definitions. This naturally leads us to the
concept of unbiased sample estimates.

The quantity θ̂ is said to be an unbiased estimator of θ if,

E[θ̂] = θ, (4.13)

or more explicitly,

E[θ̂] = lim
n→∞

1

n

n∑

i=1

θ̂i = θ, (4.14)

where θ̂i is the estimator of θ calculated with the ith sample and n is the number of samples.
Indeed, although many different samples can be obtained from the same population, they lead to
different estimates. An estimator is unbiased if the mathematical expectation, over all possible
samples, equals the value, one should obtain, for the whole population.
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4.4.1 The sample mean

As previously mentioned, in reality samples have a finite size, therefore, calculating the mathe-
matical expectation from its definition, is desperate. A more practical intent would be providing
an estimate for the mathematical expectation based on a finite sample. Having this purpose in
mind, one could define the sample mean as,

x̄ =
1

n

n∑

i=1

xi, (4.15)

where n is the size of the sample and S={xi} is now a set containing the n values obtained for
X, called sample. Of course, the sample set S is a subset of the population set P. The term,
sample, is to be understood as, a sample of the population, that is, a portion or a part of the
whole population. The sample mean of a set S={xi} is denoted x̄. The x̄ gives an estimate of
E[X], hence, x̄ is said to be an estimator of E[X].

By convention, estimators usually wear hats, for instance, if µ=E[X] then we would write µ̂=x̄.
It may be more rigorous to write ˆ̄x rather than simply x̄, however, it is customary to implicitly
view x̄ as an estimator, the hat being dropped in order to lighten the notation.

Let’s try to see if the sample mean, x̄, is an unbiased estimator of the mathematical expectation,
E[X]. Using the definition of x̄, the linearity property of E[X] and the fact that all the realizations
of X have the same expectation, we find that

E[x̄] = E

[

1

n

n∑

i=1

xi

]

=
1

n

n∑

i=1

E[xi] =
1

n

n∑

i=1

E[X] = E[X]. (4.16)

From this last calculation, one can clearly state that x̄ is, indeed, an unbiased estimate of the
mathematical expectation.

4.4.2 The sample variance

Let’s now try to find an unbiased estimate of the sample variance. From the definition of variance
Eq. (4.2), one would define the sample variance as

s2x =
1

n

n∑

i=1

(xi − x̄)2 =

(

1

n

n∑

i=1

x2i

)

− x̄2. (4.17)

The mathematical expectation of the first term leads to

E

[

1

n

n∑

i=1

x2i

]

=
1

n

n∑

i=1

E
[
x2i
]

=
n

n
E
[
x2i
]

= E
[
X2
]
, (4.18)

where we have used the linearity property of the mathematical expectation Eq. (4.8) and since all
the realizations have the same mathematical expectation, E[xi]=E[X]. Then from the definition
of variance Eq. (4.2), one obtains

E[x2i ] = E[X2] = E[X]2 + Var[X]. (4.19)
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Using that same trick, the second term of Eq. (4.17) can be rewritten as

E[x̄2] = E[x̄]2 + Var[x̄]. (4.20)

We have previously shown that x̄ was an unbiased estimate of E[X] such that E[x̄]=E[X]. From the
property of variance Eq. (4.10) and since all the realizations have the same variance Var[xi]=Var[X],
we obtain that

Var[x̄] = Var

[

1

n

n∑

i=1

xi

]

=
1

n2

n∑

i=1

Var [xi] =
1

n2

n∑

i=1

Var [X] =
Var [X]

n
. (4.21)

Such that the expectation of the second term of Eq. (4.17) yields

E[x̄2] =
Var[X]

n
+ E[X]2, (4.22)

and, together with Eq. (4.19), leads us to

E[s2x] =
n− 1

n
Var[X]. (4.23)

The factor n/(n− 1) is better known as Bessel’s correction factor. From this last result, one can
deduce the following unbiased estimate for the sample variance,

s2x =
1

n− 1

n∑

i=1

(xi − x̄)2 . (4.24)

4.4.3 The sample covariance

Based on the definition of the unbiased sample variance Eq. (4.24) along with the definition of
covariance Eq. (4.3), we propose the following definition for the sample covariance

s2xy =
1

n− 1

n∑

i=1

(xiyi − x̄ȳ) , (4.25)

or rather,

(n− 1)s2xy =
n∑

i=1

xiyi − n
n∑

i=1

xi
n

n∑

i=1

yi
n
. (4.26)

Let’s try to establish that this is truly an unbiased estimator of the covariance Cov[X,Y ]. By
taking the mathematical expectation of Eq. (4.26), one obtains

(n− 1) E
[
s2xy
]

= E

[
n∑

i=1

xiyi

]

− E




1

n

n∑

i=1

xi

n∑

j=1

yj



 , (4.27)

exploiting the linearity property of the mathematical expectation Eq. (4.8). The first term on the
right hand side leads to,

E

[
n∑

i=1

xiyi

]

=

n∑

i=1

E [xiyi] = nE[XY ]. (4.28)
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Since
n∑

i=1

xi

n∑

j=1

yj =

n∑

i=1

xiyi +
n∑

i=1

n∑

j=1
j 6=i

xiyj , (4.29)

the second term on the right hand side can be computed as follows,

1

n

n∑

i=1

E [xiyi] +
1

n

n∑

i=1

E [xi]

n∑

j=1
j 6=i

E [yj ] = E [XY ] + (n− 1) E [X] E [Y ] , (4.30)

by employing the linearity of the mathematical expectation, Eq. (4.8). Gathering the results from
Eq. (4.28) and Eq. (4.30), we obtain that

(n− 1) E
[
s2xy
]

= nE[XY ] − E[XY ] − (n− 1) E[X] E[Y ]

= (n− 1)(E[XY ] − E[X] E[Y ])

= (n− 1) Cov[X,Y ].

(4.31)

This last result clearly shows that the Eq. (4.25) already gives an unbiased estimate of the covari-
ance.

4.5 Formulas for the propagation of uncertainties

Let us assume that the output quantities Y and Z depend upon N correlated input quantities
β1, . . . , βN . The relationships are given by the functions Y =f(β1, . . . , βN ) and Z=g(β1, . . . , βN ).
For the sake of simplicity, we will assume, without any loss of generality, that there are only two
input quantities. The total derivative of Y , or total variation of Y , is

dY =
∂f

∂β1
dβ1 +

∂f

∂β2
dβ2. (4.32)

Noting µy the mathematical expectation of Y then one can approximate µy as f(β̄1,β̄2) up to first
order. As a result, we approximately have,

y − µy ≃ ∂f

∂β1
(β1 − β̄1) +

∂f

∂β2
(β2 − β̄2) (4.33)

and similarly,

z − µz ≃
∂g

∂β1
(β1 − β̄1) +

∂g

∂β2
(β2 − β̄2). (4.34)

The previous results lead to,

(y − µy)(z − µz) ≃ ∂f

∂β1

∂g

∂β1
(β1 − β̄1)

2 +
∂f

∂β1

∂g

∂β2
(β1 − β̄1)(β2 − β̄2)

+
∂f

∂β2

∂g

∂β1
(β2 − β̄2)(β1 − β̄1) +

∂f

∂β2

∂g

∂β2
(β2 − β̄2)

2.

(4.35)
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From this last expression, we end up with

u(y, z) =

N∑

i=1

N∑

j=1

∂Y

∂βi

∂Z

∂βj
u(βi, βj), (4.36)

where u(y, z) is the covariance between y and z. We change notations here in order to emphasize
the fact that we are now discussing uncertainties. It is interesting to realize that Eq. (4.36) is
similar to Eq. (4.12). In fact, Eq. (4.36) is a simple generalization of Eq. (4.12) to those cases
where f and g are nonlinear with respect to the input quantities. Since Eq. (4.36) allows us to
compute every single covariance, it will also allow us to compute every single variance and standard
deviation. As the uncertainty and the standard deviation are identical, this is the most general,
as well as the most useful formula for the propagation of uncertainties. As a consequence, we will
use it to deduce other useful formulas.

For instance, if the input quantities were uncorrelated, the equation Eq. (4.36) would reduce
to

u(y, z) =

N∑

i=1

∂Y

∂βi

∂Z

∂βi
u2(βi). (4.37)

Furthermore, it is possible to infer a variance formula from Eq. (4.36), simply by taking Y and
Z to be equal,

u2(z) =
N∑

i=1

N∑

j=1

∂Z

∂βi

∂Z

∂βj
u(βi, βj), (4.38)

which can be rewritten as,

u2(z) =

N∑

i=1

(
∂Z

∂βi

)2

u2(βi) + 2

N−1∑

i=1

N∑

j=i+1

∂Z

∂βi

∂Z

∂βj
u(βi, βj), (4.39)

where u2(z) is the variance of z. Once again, it is interesting to notice the parallel existing be-
tween Eq. (4.39) and Eq. (4.10) where Eq. (4.10) is a particular case of Eq. (4.39) if f is linear
with respect to the input quantities.

All of these expressions, Eq. (4.36), Eq. (4.37) and Eq. (4.39), can be found in the Guide to
the expression of Uncertainty in Measurement (GUM) [65] which sets the international standards
for the propagation of uncertainties, or alternatively in Refs. [64, 66].
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4.6 Matrix formulation for the propagation of uncertainties

As, Eq. (4.36) is the most general formula for the propagation of uncertainty, it is the only one
we actually need. However, for more than two output quantities, it is convenient to introduce a
matrix formulation. In the following, we use lower case bold characters for vectors and upper case
bold characters for matrices. Thus, we introduce the notations,

dyT =

[
∂Y

∂β1
, . . . ,

∂Y

∂βN

]

, (4.40)

and

dzT =

[
∂Z

∂β1
, . . . ,

∂Z

∂βN

]

, (4.41)

as well as

U =








u2(β1) u(β1, β2) . . . u(β1, βn)
u(β2, β1) u2(β2) . . . u(β2, βn)

...
...

. . .
...

u(βn, β1) u(βn, β2) . . . u2(βn)







.

We now realize that Eq. (4.36) takes the following simple matrix form:

u(y, z) = dyT U dz. (4.42)

4.7 Conclusion

In this chapter, we argued that physical quantities should be treated as random variables. This
approach bears great convenience since it naturally carries on the concepts of expectation, variance
and covariance, onto physical quantities which allows for a simple interpretation and propagation
of both uncertainties and correlations. Despite all this progress, so far, we did not explain the
origin of uncertainties or correlations, this discussion is the central topic of the next chapter which
is based on regression analysis.





Chapter 5

Regression analysis

Regression analysis is a set of tools allowing us to understand the very origin of uncertainties.
Although all the following formulas have been proven, the length and tedious character of the proofs
forbids us to repeat them here. Nevertheless, the main ideas and certainly the key assumptions of
regression analysis stand out. The complete set of demonstrations can be found in many excellent
texts, for instance Refs. [66–69].

Regression analysis is one of the most widely used statistical tools because it provides simple
methods for investigating functional relationships amongst variables. The relationship is expressed
in the form of an equation or a model connecting the response or dependent variable and one or
more explanatory or predictor variables. We denote the response variable by Y and the set of
explanatory variables by X1, X2, . . . , Xp. The true relationship between Y and X1, X2, . . . , Xp can
be approximated by the regression model,

Y = f(X1, X2, . . . , Xp) + ǫ. (5.1)

We first discuss linear regression analysis where the previous expression reduces to

Y = p0 + p1X1 + . . . + ppXp + ǫ (5.2)

where p0, p1, . . . , pp are Np parameters to be determined from the data and ǫ represents both the er-
ror of the model and the part of the variations that is not explained by the variables X1, X2, . . . , Xp.
It should be noted that in order to use linear regression the model must be linear with respect to
the parameters but does not need to be linear with respect to the explanatory variables.

We start this chapter by describing the inner workings of regression analysis in the case of a
simple two-parameter model. Then, we proceed by exposing the highly convenient matrix formu-
lation of linear regression which is very useful in cases where the model involves many parameters.
Finally, we discuss the case of regression analysis for nonlinear models which turns out to be a
simple generalization of the linear case.

59
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5.1 A simple two-parameter model

5.1.1 Deterministic versus stochastic relationships

In some cases, the relationship between the model (p0 + p1X) and the experimental data (YExp) is
assumed to be exact, even if the coefficients are unknown. Considering the case of a simple linear
relationship,

YExp = p0 + p1X, (5.3)

the intercept p0 and slope p1 are determined from a set of Nn points {(xi, yi), i = 1, . . . , Nn}
by direct use of the least squares method. Notice the only information extracted through this
approach are the coefficients themselves and nothing else.

However, there are many cases where the relationship between the model and the experimental
data is not considered to be exact. In such cases, we introduce the random variable ǫ as

YExp = YTh + ǫ, (5.4)

where YTh = p0 + p1X and ǫ represents the errors of the model. Clearly, since ǫ is a random
variable then YExp will be one as well. Of course, the basic idea is to determine the parameters of
the model. However, since their determination will be based on the experimental data, which is a
random variable, these parameters also become random variables and follow a distribution. The
standard deviation of this particular distribution will be taken as their uncertainty. The main goal
of regression analysis is to extract the uncertainties of the coefficients in order to propagate them
onto the model. Notice regression is, in this sense, much more powerful than least squares.

5.1.2 Coefficient estimation

Based on a sample of experimental data {(xi, yi), i = 1, . . . , Nn}, we wish to estimate the coeffi-
cients p0 and p1 where xi and yi are related through,

yi = p0 + p1xi + ǫi. (5.5)

These estimates are sample estimates since the population, consisting of all the possible pairs of
points (xi,yi), is usually infinite and therefore unavailable. As usual in statistics, the estimators of
these coefficients are denoted by p̂0 and p̂1. The question regarding whether these estimates are
biased or not will be discussed later.

The estimators of the intercept and slope are obtained by minimizing, the sum of the squared
errors,

S =

Nn∑

i=1

ǫ2i =

Nn∑

i=1

[yi − (p0 + p1xi)]
2 , (5.6)

with respect to p0 and p1. The derivative with respect to p0 leads us to the estimate

p̂0 = ȳ − p̂1x̄, (5.7)

where x̄ and ȳ are the sample means, defined in the previous chapter. The derivative with respect
to p1 leads to the other estimate

p̂1 =

∑Nn
i=1 xiyi −Nnx̄ȳ
∑Nn

i=1 x
2
i −Nnx̄

=

∑Nn
i=1 (xi − x̄) (yi − ȳ)
∑Nn

i=1 (xi − x̄)2
=

s2xy
s2x

. (5.8)
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The last expression was obtained using p̂0 = ȳ − p̂1x̄ and recognizing, the sample variance s2x and
sample covariance s2xy, respectively, at the denominator and numerator, as defined in the previous
chapter. Consequently, if there is no correlation between X and Y , the covariance vanishes and
so does the slope p̂1.

The regression line is simply,
ŷ(x) = p̂0 + p̂1x, (5.9)

where, as previously shown, p̂0 and p̂1 depend exclusively on the data {(xi, yi), i = 1, . . . , Nn}. For
each observation in the data, we can compute

ŷi = p̂0 + p̂1xi, (5.10)

allowing us to estimate the errors as
ǫ̂i = yi − ŷi, (5.11)

otherwise known as residuals. Notice that the Eq. (5.7) can be rewritten as

Nn∑

i=1

ǫ̂i = 0. (5.12)

Let us stress that this relation only holds for models including an intercept, i.e., a constant pa-
rameter such as p0. This will have its importance when we will review the regression hypotheses.

5.1.3 Explained and unexplained deviations

Assuming no prior understanding of the experimental data, the observations yExp,i are just a set
of distinct scattered values, thus, having a mean and a variance. A model’s ambition is, of course,
to explain why these values are all so different from each other and to uncover the origin of this
variance. Interestingly enough, one can show that the sample variance can be decomposed as

1

Nn − 1

Nn∑

i=1

(yi − ȳ)2 =
1

Nn − 1

Nn∑

i=1

(ŷi − ȳ)2 +
1

Nn − 1

Nn∑

i=1

(yi − ŷi)
2 . (5.13)

Clearly, the first term on the right hand side, is the deviation away from the mean which is explained
by the model whereas the second term, is the residual deviation that remains unexplained. Note
that this decomposition only holds for models including an intercept. Moreover, according to our
definition of the errors, ǫ̂i = yi − ŷi, the second term is simply,

Nn∑

i=1

(yi − ŷi)
2 =

Nn∑

i=1

ǫ̂i
2, (5.14)

which is minimized in order to determine the coefficients in the least squares procedure described
above. As a result, the least squares method minimizes the part of the deviation which is unex-
plained by the model. We will come back to this interpretation when we treat multiple regression.
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5.1.4 Predictions and uncertainties

Once the coefficients are obtained, it is possible to make predictions, i.e., for any value x, finding
the corresponding ŷ. Naturally, these predictions depend on the estimated parameters, namely, p̂0
and p̂1. Furthermore, it is possible, through some assumptions, to determine the uncertainties and
the correlations existing between those parameters. This allows, using the methods prescribed in
the previous chapter, to propagate the uncertainties onto the corresponding ŷ. Thus, it becomes
feasible to study the predictivity of the model.

5.1.4.1 The assumptions behind regression analysis

As mentioned before, sample estimates, such as the coefficients of the regression line, may vary
depending on the sample used to obtain them. In order to rigorously determine the standard de-
viation of the coefficients, we would need to know the set of all possible subsets of the population
(the powerset of the population set) or said differently, the set of all possible samples. Of course,
as we do not even know the population, this is completely out of reach. Therefore, we must rely
on the estimates of these standard deviations.

There are two important hypothesis, or assumptions, behind ordinary regression analysis: the
first, deals with the mathematical expectation of the random errors while the second deals with
the covariance of those same errors. The first assumption, is that the random errors have a null
mathematical expectation,

Hypothesis I:

E [ǫi] = 0. (5.15)

This first assumption is strongly supported by the fact that for models with an intercept
∑

i ǫ̂i = 0,
cf. Eq. (5.12). The second assumption, is that the random errors are assumed independent and
are normally distributed with a common variance σ2,

Hypothesis II:

Cov [ǫi, ǫj ] = σ2 δij . (5.16)

This hypothesis is also known as the homoscedastic assumption.
In regression analysis, it is usual to assume that all the samples are obtained in the exact same

conditions. In particular, all samples contain the same values for {xi} but different values for {yi}
since {ǫi} are random variables, as a result, the samples are all different. Here E[ǫi] denotes the
mathematical expectation over all existing samples and Cov[ǫi,ǫj ] the covariance over the same
samples.
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The two, previously stated, regression hypotheses are essential in order to make any calculation
possible. Since we know that yi = p0+p1xi+ǫi, a first important corollary follows, from the linearity
of the mathematical expectation along with the first regression hypothesis,

Corollary I:

E [yi] = E [p0 + p1xi + ǫi] = E [p0] + E [p1xi] + E [ǫi] = p0 + p1xi, (5.17)

where p0, p1 and xi are constants, not random variables. Similarly, one can show, using the second
regression hypothesis, that

Corollary II:

Var [yi] = Var [p0 + p1xi + ǫi] = Var [ǫi] = σ2, (5.18)

Corollary III:

Cov [yi, yj ] = Cov [p0 + p1xi + ǫi, p0 + p1xj + ǫj ] = Cov [ǫi, ǫj ] = σ2δij , (5.19)

again using the fact that p0, p1 and xi, are constants.

5.1.4.2 Expectation and variance of p̂1

To calculate the mean and the variance of the estimated slope p̂1 over all samples, we shall use
the expression,

p̂1 =

∑Nn
i=1(xi − x̄)yi

∑Nn
i=1(xi − x̄)2

, (5.20)

where yi and p̂1 are random variables. Thus, taking the expectation of the previous expression
and using the first corollary procures

E[p̂1] =

∑Nn
i=1(xi − x̄) E[yi]
∑Nn

i=1(xi − x̄)2
=

∑Nn
i=1(xi − x̄)(p0 + p1x)
∑Nn

i=1(xi − x̄)2
= p1. (5.21)

We can now conclude that p̂1 is, indeed, an unbiased estimator of p1.

Similarly, taking the variance of Eq. (5.20) and exploiting the second corollary yields

Var[p̂1] =

∑Nn
i=1(xi − x̄)2 Var(yi)
[
∑Nn

i=1(xi − x̄)2
]2 =

σ2

∑Nn
i=1(xi − x̄)2

. (5.22)

Note that the square root of this variance is adopted as the theoretical uncertainty in p̂1. Therefore,
regression analysis provides an explanation for the origin of the uncertainties in the coefficients.
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5.1.4.3 Expectation and variance of p̂0

Taking the mathematical expectation of p̂0 = ȳ − x̄p̂1, we gather that

E[p̂0] = E[ȳ] − x̄p1. (5.23)

Note that in order to obtain the previous expression, we have used the fact that E[p̂1] = p1. From
the first corollary, one can show that

E[ȳ] =
1

Nn

Nn∑

i=1

E[yi] =
1

Nn

Nn∑

i=1

(p0 + p1xi) = p0 + p1x̄. (5.24)

Hence, E(p̂0) = p0 and, thus, p̂0 is also an unbiased estimator of p0.

Similarly, taking the variance of p̂0 = ȳ − x̄p̂1 delivers,

Var[p̂0] = Var[ȳ] + x̄2 Var[p̂1] − 2x̄Cov[ȳ, p̂1], (5.25)

now using the second corollary, we find that Var[ȳ] = σ2/n. From the third corollary, it follows
that

Cov[ȳ, p̂1] =

∑Nn
i=1

∑Nn
j=1(xj − x̄) Cov[yi, yj ]

Nn
∑Nn

j=1(xj − x̄)2
=

∑Nn
i=1

∑Nn
j=1(xj − x̄) Cov[ǫi, ǫj ]

Nn
∑Nn

j=1(xj − x̄)2

=
σ2

Nn

∑Nn
i=1(xi − x̄)

∑Nn
j=1(xj − x̄)2

= 0.

(5.26)

Finally,

Var[p̂0] = σ2

(

1

Nn
+

x̄2
∑Nn

i=1(xi − x̄)2

)

. (5.27)

Again, note that the square root of this variance is adopted as the theoretical uncertainty in p̂0.
Once more, regression analysis provides an explanation for the origin of the uncertainties in the
coefficients.

5.1.4.4 Covariance of p̂1 and p̂0

As the two estimators of the regression coefficients depend on the same input quantity, they should
be correlated. Indeed, their covariance reads,

Cov[p̂1, p̂0] = −x̄Var[p̂1] =
−x̄σ2

∑Nn
i=1(xi − x̄)2

, (5.28)

by cause of Eqs. (5.22) and (5.26).
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5.1.4.5 Variance of ŷ

For any value x, we can predict the value taken by ŷ = p̂0 + p̂1x. Thus, we have that

Var[ŷ] = Var[p̂0] + x2 Var[p̂1] + 2xCov[p̂0, p̂1]. (5.29)

By injecting Eq. (5.22), Eq. (5.27) and Eq. (5.28), in the previous expression, we obtain

Var[ŷ] = σ2

(

1

Nn
+

(x− x̄)2
∑Nn

i=1(xi − x̄)2

)

. (5.30)

Note that, the further x is from x̄, the larger the uncertainty on ŷ. Therefore, extrapolations far
away from the “mean of the data” have larger uncertainties.

Furthermore, accounting for the errors of the errors leads directly to

Var[ŷ + ǫ] = σ2

(

1 +
1

Nn
+

(x− x̄)2
∑Nn

i=1(xi − x̄)2

)

, (5.31)

since from the second hypothesis, the errors are uncorrelated.

5.1.4.6 Estimation of the variance of the errors

Remarkably, all the previous results are proportional to the variance of the errors σ2 which is
unknown because the errors, themselves, are unknown. One can show, cf. Ref. [67], that the
unbiased estimator of σ2 is given by

σ̂2 =
1

Nn − 2

Nn∑

i=1

(yi − ŷi)
2 =

S

Nn − 2
. (5.32)

The denominator (Nn − 2) should be understood as the number of degrees of freedom, i.e., the
total number of observations minus the number of parameters, namely, (Nn − Np). We can use
this result in all the variances and covariance calculated before. For instance, Eq. (5.22) becomes,

Var[p̂1] =
σ̂2

∑Nn
i=1(xi − x̄)2

. (5.33)
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5.2 Multiple linear regression

We have just treated the case of a particularly simple two-parameter model. We now move on to
models containing many parameters. It is, therefore, convenient to introduce a matrix formulation,
then, generalizations from two-parameters to many more become fairly easy to understand.

5.2.1 The matrix formulation

In this section, the mathematical formalism of multiple regression, used throughout this text, is
exposed and special attention is directed towards the distinction between the least squares method
and regression analysis which is based on additional hypotheses and opens the door to uncertainty
analysis. Most of the forthcoming material can be found in Refs. [67, 68].

The model now reads,

yTh,i = p0 + p1x1,i + p2x2,i + · · · + ppxp,i. (5.34)

Consequently, it can be put into the matrix form,

yTh = X · p, (5.35)

where yTh and p are column vectors, respectively, containing all the values of yTh,i and pj while
the matrix X is defined as

X =










∂yTh,1

∂p0

∂yTh,1

∂p1
. . .

∂yTh,1

∂pNp
∂yTh,2

∂p0

∂yTh,2

∂p1
. . .

∂yTh,2

∂pNp

...
...

. . .
...

∂yTh,Nn

∂p0

∂yTh,Nn

∂p1
. . .

∂yTh,Nn

∂pNp










, (5.36)

where the ith line of X is associated with the ith datum while the jth column is related to the
parameter pj. Thus, the matrix X has as many lines as there are points in the data Nn and as
many columns as there are parameters Np and naturally, the vector p has as many lines as there
are parameters.

5.2.1.1 The ordinary least squares method

The least squares method is, more often than not, the favoured method to determine the param-
eters. This method consists in minimizing the sum of the squared errors,

S =

Nn∑

i=1

(
yExp,i − yTh,i

)2
, (5.37)

with respect to the model parameters entering yTh,i. The previous expression can be put into
matrix form as

S = (yExp −X · p)T · (yExp −X · p) , (5.38)

and its minimization with respect to the parameters yields the following solution,

p =
(
XT ·X

)−1 ·XT · yExp. (5.39)



5.2. MULTIPLE LINEAR REGRESSION 67

5.2.1.2 The regression hypotheses

In the least squares method, the model is assumed exact and experimental uncertainties are ig-
nored, therefore, theoretical uncertainties cannot be reached. However, this may be achieved,
using regression analysis and in particular, by involving the errors of the model. It is assumed, in
regression analysis, that the experimental data can be described by

yExp = X · p + ǫ, (5.40)

where ǫ represents the error associated with the model.
As for the two-parameter model, assuming no prior understanding of the experimental data, the

observations yExp,i are just a set of distinct scattered values, thus, having a mean and a variance.
A model’s ambition is, of course, to explain why these values are all so different from each other
and to uncover the origin of this variance. Thus, on the one hand, the model X · p is responsible
for the explained variations, i.e., the variations that the model is able to account for. On the other
hand, the error ǫ is accountable for the unexplained variations, i.e., the variations left unexplained
by the model and yet present in the experimental data.

In order to determine the uncertainties in the parameters, we shall assume the same assump-
tions as for the two-parameter model. For the simplest regression analysis, the first hypothesis
concerns the mean of the errors which is assumed to vanish, i.e., E[ǫi]=0. The second hypothesis
deals with the dispersion and the mutual influence of the errors which are assumed to possess a
common variance σ2 and to be uncorrelated, i.e., Cov[ǫi,ǫj]=σ2 δij. The errors having the same
variance, the second hypothesis is also known as the homoscedastic assumption. Thus, according
to these hypotheses, the errors follow a Gaussian distribution with zero mean and variance σ2.
Highly convenient regression corollaries derive from these two prior assumptions:

E [yExp] = X · p, (5.41)

Cov [yExp] = σ2I, (5.42)

where I is the identity matrix.

5.2.1.3 Unbiased sample estimates

As usual, it is assumed that only a restricted sample of all existing data is known and an even
smaller sample may actually be considered, as a result, all of the quantities upon which any study
is based, will be sample estimates. Hence, a more appropriate notation for Eq. (5.39) would be,

p̂ =
(
XT ·X

)−1 ·XT · yExp. (5.43)

Using the first regression hypothesis, one can indeed show that E[p̂]=p, thus, making p̂ an unbiased
sample estimate of p.

5.2.1.4 Uncertainty in the parameters

The parameters uncertainties are deduced from the Np×Np covariance matrix,

Cov [p̂] = Cov
[(
XT ·X

)−1 ·XT · yExp

]

= σ2
(
XT ·X

)−1
.

(5.44)
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In the previous expression X is a constant matrix while yExp is a random vector, implicitly carrying
the variability, or said differently the variance, coming from the errors, cf. Eq. (5.40). The diagonal
elements of Cov[p̂] are the variances of the parameters, i.e., the square of their uncertainties, while
the off-diagonal elements are the covariances between the parameters and characterize their mutual
influence. This relation concentrates within a unique formula, uncertainties and covariances which
are absolutely essential ingredients to any thorough uncertainty analysis.

The corresponding correlation matrix can always be deduced from the covariance matrix
through the ensuing expression,

Cor [p̂] = Var [p̂]−
1
2 ·Cov [p̂] ·Var [p̂]−

1
2 , (5.45)

where Var[p̂] is formed from the diagonal of Cov[p̂].

5.2.1.5 Uncertainties in the observables

Once the covariance of the parameters is known, one can determine the uncertainties in ŷTh

expressed in terms of the Nn×Nn covariance matrix,

Cov [ŷTh] = Cov [X · p̂]

= X ·Cov [p̂] ·XT.
(5.46)

This expression only accounts for the uncertainty in the model. Thus, further including the errors
of the model yields the Nn×Nn covariance matrix,

Cov [ŷTh + ǫ] = Cov [ŷTh] + σ2I. (5.47)

Note that this expression differs from second corollary because it involves the estimates of the
parameters, i.e., ŷTh = X · p̂ instead of yTh = X · p in Eqs. (5.40) and (5.42).

In the following chapters, we will encounter many physical observables defined as differences.
Accordingly, differences such as D̂Th = ŷTh,1−ŷTh,2, have the following Nn×Nn covariance matrix,

Cov
[

D̂Th

]

= X12 ·Cov [p̂] ·XT
12, (5.48)

where X12 = X1 −X2 and X1 together with X2, refer to matrices similar to X, cf. Eq. (5.36).

5.2.1.6 Error estimates

Notice the presence of σ2, i.e., the variance of the errors, in all of the previous expressions involving
Cov[p̂] = σ2(XTX)−1. However, in practice, these relations cannot be applied since we do not
dispose of an actual estimate, for either the errors or their variance. Fortunately, intuitive sample
estimates for the errors, also known as residuals, can be found to be

ǫ̂ = yExp −X · p̂. (5.49)
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Furthermore, one can show that the following expression,

σ̂2 =
(yExp −X · p̂)T · (yExp −X · p̂)

Nn − Np
, (5.50)

is an unbiased sample estimate of the variance of these errors and therefore, is a precise measure
of the variability left unexplained. It also turns out that this relation is the square of a well-known
quantity, the root-mean-square deviation (RMS), usually characterizing the goodness-of-fit.

Replacing the variance of the errors by its estimate, i.e., σ2 becomes σ̂2 in the preceding
expressions, we gather a new set of useful formulas for the unbiased sample estimates of the
covariance matrices, listed above, and at the heart of the present work.

5.2.2 Weighted regression

At this stage, experimental uncertainties or correlations between experimental data were not taken
into account. In the present section, we extend the regression analysis previously exposed to
encompass this empirical evidence. Strong support for such an extension can be found in Bayesian
inference [70].

5.2.2.1 Generalized regression

The uncertainties in the experimental data were previously disregarded and can be accounted for
through a weighting matrix. The formalism developed hereafter can be found in Ref. [67]. In this
weighted formulation, the sum of squared errors becomes,

S = (yExp −X · p)T ·W · (yExp −X · p) , (5.51)

where W is referred to as a weight matrix and assigns a weight to each datum or pair of data if
they are correlated. Minimizing this expression with respect to the parameters leads to

p̂ = (XT ·W ·X)−1 · (XT ·W · yExp). (5.52)

Note that the regression assumptions are revised in this extension and the corollaries now
become:

E [yExp] = yTh, (5.53)

Cov [yExp] = σ2W−1. (5.54)

As before, the parameters are correlated and the covariance matrix reads,

Cov [p̂] = σ2 (XT ·W ·X)−1. (5.55)

The covariance matrix Cov[ŷTh] can be obtained from Eq. (5.46) and accordingly, observables
expressed as differences have the covariance matrix given by Eq. (5.48) where in both cases Cov[p̂]
is now defined by Eq. (5.55) instead of Eq. (5.44).

For all practical purposes, the estimate for the variance of the errors is

σ̂2 =
(yExp −X · p̂)T ·W · (yExp −X · p̂)

Nn − Np
. (5.56)
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5.3 Multiple nonlinear regression

We have just discussed a convenient matrix formulation for multiple linear regression analysis. Of
course, this formalism applies to linear models containing many parameters (here we mean linear
with respect to the parameters). However, most models are not linear and, therefore, another
approach, multiple nonlinear regression, must be used in those special cases. In fact, nonlinear
regression can be viewed as a simple generalization of linear regression. We now summarize the
excellent discussion concerning nonlinear regression that was found in Ref. [69]. As usual, when
facing nonlinearities, the idea is to use linearization in order to reformulate the problem as a linear
one. The solutions are then approached iteratively and through successive approximations, until
convergence is reached.

We now assume that we have a current guess for the parameters p∗. Then, it is possible to
make an expansion of the model about this guess as

yTh(p) ≈ yTh(p∗) + J(p∗) (p− p∗), (5.57)

where

J(p) =










∂yTh,1

∂p0

∂yTh,1

∂p1
. . .

∂yTh,1

∂pNp
∂yTh,2

∂p0

∂yTh,2

∂p1
. . .

∂yTh,2

∂pNp

...
...

. . .
...

∂yTh,Nn

∂p0

∂yTh,Nn

∂p1
. . .

∂yTh,Nn

∂pNp










, (5.58)

Thus, the matrix J(p) is constructed from derivatives of the model and clearly plays a role analo-
gous to X in linear regression. Note, however, that because of the linearity of the model X does not
depend on the parameters while J(p) usually does, again, because of the nonlinearity of the model.

The current residuals can be obtained as

ǫ
∗ = yExp − yTh(p∗). (5.59)

Then the sum of the squared errors can then be written as

S = [yExp − yTh]T · [yExp − yTh]

= [ǫ∗ − J(p∗) (p− p∗)]T · [ǫ∗ − J(p∗) (p− p∗)] ,
(5.60)

using the expansion from Eq. (5.57). Minimizing S with respect to p leads to

p̂ = p∗ +
[
JT(p∗) · J(p∗)

]−1 · JT(p∗) · ǫ̂∗. (5.61)

Now that we have explained how, by starting with an initial guess, we can find an estimate for
the parameters. We can now proceed iteratively until convergence is reach and a “true” estimate
for the parameters is found.



5.4. CONCLUSION 71

We now describe the Gauss-Newton algorithm.

1. Iteration j=0. Start with an initial guess for the parameters p(0) and then compute S(0).

2. Set the iteration counter at j=0.

3. Compute J(p(j)) and ǫ̂
(j).

Then compute p̂ = p∗ +
[
JT(p∗) · J(p∗)

]−1 · JT(p∗) · ǫ̂∗.
Finally, compute S(j+1).

4. Stop, if |S(j+1)-S(j)| is sufficiently small.
Otherwise, go back to step 3.

Once this procedure has converged, we know the “true” estimates for the parameters p̂ as well
as the “true” errors of the model ǫ̂. If the sample is large enough (cf. Ref. [69]) then one can show
using Bayesian inference that

Cov[p̂] = σ̂2 · [JT(p̂) · J(p̂)]−1, (5.62)

Cov[ŷ] = J(p̂) ·Cov[p̂] · JT(p̂). (5.63)

All of the previous expressions for multiple linear regression are in fact valid for nonlinear regression
as well. This means that extensions to weighted nonlinear regression can easily be obtained. One
only needs to replace X in the linear case by J(p̂) in the nonlinear case. Again, we stress that this
in only valid in the case of large samples and after the iterative algorithm has converged.

5.4 Conclusion

In this chapter we have laid the ground upon which regression analysis is built. First, we have
examined a simple two-parameters model. This allowed us to introduce most of the ingredients
required to fully understand the core of regression analysis. In particular, it was shown that re-
gression analysis was based on two hypothesis. The latter should always be verified a posteriori.
More specifically, the mean of the errors should be zero for models including an intercept and the
errors should follow a Gaussian distribution. In the case of the two-parameter model, the calcula-
tions were simple and could be done analytically. However, this approach is to cumbersome to be
applied to models involving many parameters. Therefore, a matrix formulation was introduced to
treat multiple linear regression. Furthermore, most models are not linear and so the end of this
chapter focused on nonlinear regression. It was shown that linearization along with an iterative
algorithm allowed to treat these cases in a formulation closely related to linear regression.





Chapter 6

A simple macroscopic model

Remember that the goal of the present work is to constrain the formation probability, expressed
as

P exp
form =

σexp
ER

σcap × Psurv
. (6.1)

Therefore, in order to constrain the formation probability, we must first evaluate the uncertain-
ties in all the quantities entering this expression. Since we already know the uncertainty in the
measured cross-section, in this thesis, we shall focus on the two remaining quantities, the capture
cross-section and the survival probability. Here, we shall start by the latter.

A previous investigation has demonstrated that by far the most influential factor in the calcu-
lation of the survival probability is the fission barrier of the compound nucleus [37,38]. Therefore,
in this thesis, we will focus our attention on fission barriers and try to evaluate the accuracy of
their predictions.

Fission barriers are defined as the difference between the saddle-point and the ground-state
masses. It should also be mentioned that fission barriers are very difficult to calculate and that the
disagreement between different available approaches spans few MeV’s [39]. Thus, in this chapter,
we will begin our investigation with ground-state masses and use a simple macroscopic model in
order to determine them. The following uncertainty analysis of the liquid drop model has been
submitted for publication [71].

In the two previous chapters, we have described how to determine the uncertainties in the
parameters of a model using regression analysis and how to propagate these uncertainties through
a model. Therefore, our strategy is to, first, determine the parameters and their uncertainties
and second, to propagate these uncertainties onto the ground-state masses. Finally, it should be
mentioned that in the spirit of our approach the uncertainties are interpreted as constraints since
they provide a range in which a parameter or a mass must lie.

73
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6.1 Uncertainty analysis of the liquid drop model

6.1.1 Introduction

The phenomenological Bethe-Weizsäcker formula, proposed in 1935, can describe the binding en-
ergy of a broad range of nuclei, using only few elementary concepts [8, 9]. Since then, many
refinements have been introduced allowing for a better description of the ever-expanding nuclear
chart. The most significant development, was provided by Strutinsky, as semi-classical corrections,
i.e., shell corrections, to the original model [72, 73]. A detailed first application of this method
can be found in Ref. [74]. An analogous prescription may be applied to procure pairing correc-
tions. Later, deformation was included, both microscopically, i.e., shell and pairing corrections,
and macroscopically, i.e., liquid drop model [49, 57]. Although recent investigations [75, 76] have
initiated detailed studies of such family of models, a thorough uncertainty analysis is yet to be
provided and the ambition of the present text is to fill the current void.

Note that a few uncertainty analysis of mass models within the mean field formalism are
available, e.g., Refs. [77–81]. For instance, in Ref. [77] the uncertainty in a parameter is obtained
by varying that parameter until a 10% increase in the root-mean-square deviation is observed. Then
the corresponding uncertainties in the masses obtained within the HFB-24 model are discussed.
Refs. [78–80] detail the Bayesian approach used to determine the uncertainties in the parameters
entering the UNEDF1 directly from experimental masses. More important is the Ref. [81] where
a brand-new bootstrap method is introduced in order to account for the correlations between the
residuals (errors of the model). It is shown that accounting for these correlations yields a better
estimate of the uncertainties in the model parameters. It should be stressed that the existing
correlations between the residuals will be disregarded in the following study.

The liquid drop model has tremendous implications when it comes to nuclear physics. In
particular, the values of some parameters are directly related to infinite nuclear matter, e.g.,
the binding energy per nucleon or the symmetry energy, having profound consequences on our
understanding of the equation of state and consequently, on precise stellar features. Furthermore,
numerous observables can be deduced from binding energies, e.g., Q-values influencing the energies
either required or released by nuclear reactions, thus, affecting nucleosynthesis and particularly,
the r-process involving overly neutron rich systems. The liquid drop parameters are also used to
calculate fission barriers, defined as the difference between the ground-state and the saddle-point
energies and are crucial quantities for the synthesis of superheavy nuclei. Moreover, separation
energies, as well as pairing effects may also be approached directly through masses. Therefore, one
can only recognize the dramatic consequences of binding energies and their predictions upon our
deepest understanding of nuclear physics.

Since the last decade, theoretical descriptions are being complemented by uncertainty analysis
which aims, is to encompass the unexplained variations of the binding energy. Statistical methods,
such as regression analysis, have been introduced to specifically address this question in precise
quantitative terms. Regarding the current inquiry, we adopt the regression formalism presented
in the previous chapters along with an extended version of weighted regression to simultaneously
address experimental and theoretical uncertainties as well as their respective correlations. The
parameters in the liquid drop model are determined through standard regression analysis, thus,
going beyond least squares by involving the errors of the model, the uncertainties, as well as the
mutual influence of the parameters. These uncertainties can then be propagated onto observables
to reveal the reliability of the predictions, disprove models or even guide further research.
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There are several liquid drop formulas in the scientific literature, however, we shall focus on a
single one found in Ref. [82]. Nevertheless, the ideas developed here may be applied to any linear
model and can further be extended to account for nonlinearities as exposed in Ref. [76].

6.1.2 Liquid drop model

The liquid drop model considered in the present work is taken from Ref. [82] and gives the following
expression, for the theoretical binding energy,

B′
Th,i =

(
p1 + p2I

2
i

)
Ai +

(
p3 + p4I

2
i

)
A

2
3
i + p5

Z2
i

A
1
3
i

+ p6

Z2
i

Ai
+ p7 |Ni − Zi| e−

(

Ai
50

)2

+ p8e
−80I2i ,

(6.2)

for the ith nucleus having Ni neutrons, Zi protons, mass number Ai=Ni+Zi, isospin Ii=(Ni-Zi)/Ai

and where pj are the parameters entering the model with j = 1, . . . , 8.
The parameters in Eq. (6.2) are determined through regression using the following expression

for the theoretically corrected experimental binding energies,

B′
Exp,i = BExp,i + EPair,i + EShell,i. (6.3)

It includes the uncorrected experimental binding energy (BExp,i), the average pairing energy
(EPair,i) and the shell correction energy (EShell,i). The uncorrected experimental nuclear bind-
ing energy is deduced from the atomic mass excess, found in the 2016 mass evaluation, accounting
for the masses of the electrons as well as their binding energy [83, 84]. The pairing energy was
directly taken from the Thomas-Fermi model [57], and is restated here for the sake of completeness:

EPair,i =







4.8
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+
4.8
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i
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4.8

Z
1
3
i

(Ni even, Zi odd)

4.8

N
1
3
i

(Ni odd, Zi even)

0 (Ni even, Zi even)

(6.4)

Notice the minus sign before the term 30/Ai instead of the plus sign appearing in Ref. [57] which
seems to be a typographical error. In the following, the Thomas-Fermi shell corrections from
Ref. [57] are used.

Note that Eq. (6.2) is linear and can easily be written in the matrix form,

B′
Th = X · p, (6.5)

where B′
Th and p are column vectors, respectively, containing all the values of B′

Th,i and pj.



76 CHAPTER 6. A SIMPLE MACROSCOPIC MODEL

The matrix X is defined as,

X =











∂B′
Th,1

∂p1

∂B′
Th,1

∂p2
. . .

∂B′
Th,1

∂pNp
∂B′
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∂B′
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∂B′
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...
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∂p1

∂B′
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∂p2
. . .

∂B′
Th,Nn

∂pNp











, (6.6)

where the ith line of X is associated with the ith nucleus while the jth column is related to the
parameter pj. Thus, the matrix X has as many lines as there are nuclei, Nn and as many columns
as there are parameters, Np and naturally, the vector p has as many lines as there are parameters.

In order to ease the notations of the following sections, the primes will be dropped while still
implicitly referring to the corrected experimental binding energies defined by Eq. (6.3).

6.1.3 Primary results

The formalism presented in chapter 5 is now exploited in order to examine the uncertainties and
the correlations of the parameters entering the liquid drop model, cf. Eq. (6.2). A particular
emphasis is given to the parameters, their uncertainties and correlations, as well as a diversity of
observables.

The following results are based on the nuclear binding energies deduced from the atomic mass
excesses found in Refs. [83, 84] for all nuclei satisfying N,Z ≥ 8 with uncertainties below 150 keV,
thus, a total of 2315 nuclei are considered.

Note that the uncertainties in the experimental binding energies, the shell corrections and the
pairing energies are disregarded at this stage. However, uncertainties in the shell corrections will
be considered in the next chapter.

6.1.3.1 Parameters

The parameters obtained using Eq. (5.43) are displayed in Table 6.1. The corresponding uncer-
tainties, also appearing in this table, were inferred from the diagonal elements of the covariance
matrix, cf. Eq. (5.44), given in the appendix at the end of this section (cf. Sect. 6.1.7). Careful
examination of the relative uncertainties establishes that the parameters, p6, p8 and to an even
greater extent p7, are loosely constrained with respect to the other parameters. More detailed
discussions about constraints on the nuclear matter parameters obtained within the mean field
formalism can be found in Refs. [77, 85].

Table 6.1: The parameters along with their uncertainties and relative uncertainties.

p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8

p̂ [MeV] 15.4829 -27.8219 -17.5783 31.1447 -0.7058 0.9251 -0.2942 2.7265
û(p̂)[MeV] 0.0145 0.0843 0.0505 0.3797 0.0008 0.0288 0.0293 0.1693
|û(p̂)/p̂| [%] 0.1 0.3 0.3 1.2 0.1 3.1 10.0 6.2
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From the covariance matrix, cf. Table 6.11, one can deduce the correlation matrix, cf. Eq. (5.45),
given in Table 6.2. At first glance, it appears that all the parameters entering the liquid drop model
are strongly correlated with one another.
Meticulous inspection of Table 6.2, shows the existence of two correlation groups, i.e., sets of
parameters with particularly strong correlations. The first involving p1, p3, p5 and p7, the second
comprising p2, p4 and p8. Notice p6 is less correlated with the other parameters and the two
groups are linked through the partial intrusion of p1 in the second group and p8 in the first group.
Besides the Wigner term p7, the first group, contains the historical liquid drop parameters while
the second group, consists of isospin dependent corrections. Such an observation may be sufficient
to physically explain the emergence of these two groups. Although not referred to as correlation
groups, their existence has been studied in Ref. [75] by either removing or adding parameters to
the regression and debating the corresponding effects on the remaining parameters. In the current
analysis, a similar conclusion is drawn, directly, from a detailed examination of the correlation
matrix shown Table 6.2.

Table 6.2: Correlation matrix of the parameters deduced from the covariance matrix, cf. Table 6.11.
Notations: group 1, group 2 and intruders.

p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8

1.00 -0.71 -0.93 0.47 -0.87 -0.32 0.74 0.82

-0.71 1.00 0.62 -0.92 0.39 0.51 -0.24 -0.87
-0.93 0.62 1.00 -0.48 0.95 -0.05 -0.81 -0.70

0.47 -0.92 -0.48 1.00 -0.22 -0.25 0.07 0.72
-0.87 0.39 0.95 -0.22 1.00 -0.15 -0.85 -0.52
-0.32 0.51 -0.05 -0.25 -0.15 1.00 0.15 -0.55
0.74 -0.24 -0.81 0.07 -0.85 0.15 1.00 0.40
0.82 -0.87 -0.70 0.72 -0.52 -0.55 0.40 1.00

6.1.3.2 Observables

Theoretical binding energies

Once the parameters are determined, one can easily compute the theoretical binding energy of
each nucleus along with its uncertainty.

The root-mean-square deviation associated with the binding energies is σ̂=602 keV. As already
mentioned, it is an estimate of the standard deviation of the errors and quantifies the goodness-
of-fit.

The uncertainties in the binding energy predictions, as deduced from Eq. (5.46), range from
21 keV to 124 keV with a mean of 33 keV. Those uncertainties are shown in Fig. 6.1. Notice the
increase of uncertainties away from the mean proton number of the sample, i.e., 57.9. This is a
well-known feature of regression procedures, even extending beyond the regression interval, thus,
making extrapolations further and further away from the known data more and more uncertain.
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Figure 6.1: Uncertainties in the predicted binding energies (blue dots) as a function of proton
number Z along with the mean of the uncertainties (red line). Inferred from the square root of the
diagonal elements of the covariance matrix, i.e., the diagonal elements of Eq. (5.46).

Thus, the uncertainties in the predicted binding energies are rather small. This suggests that
once the shell corrections and the average pairing have been specified, the liquid drop model
is extremely constrained. This could have been foreseen since the parameters, themselves, are
firmly constrained. In this work, shell corrections were included in the corrected binding energies,
however, they were excluded from the uncertainty analysis. Including the latter should significantly
increase the uncertainties in the model constructed from the liquid drop and the shell corrections.

The correlations between the binding energy of 208Pb and the binding energies of the 2315
nuclei is depicted in Fig. 6.2 (including 208Pb). As expected, the correlations with neighbouring
nuclei are very strong and fade away from this region.
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Figure 6.2: Correlations between the theoretical binding energy of 208Pb and the 2315 binding
energies. Notice the extreme correlations in the region of 208Pb and their downfall away from this
region. The position of 208Pb is indicated by the red dashed lines.
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Other observables

Additional observables can be deduced from the binding energies. We have selected here a few
mass filters for which experimental values are available over the whole nuclear chart.

For each observable the uncertainties in the predictions of the model were calculated. We
present in Table 6.3, the minimum and maximum uncertainties over the nuclear chart, as well as
a statistical indicator, the mean of the uncertainties, defined as

MU =
1

Nn

Nn∑

i=1

Var[OTh,i]
1
2 , (6.7)

for the observable O. Note that the indicator MU, has no profound statistical significance, and was
only introduced, as a substitute for tables of unreasonable length, containing 2315 uncertainties for
each observable. It appears that observables based on the difference between binding energies are
less uncertain than the binding energies themselves. This is a consequence of the severe correlations
existing between binding energies of neighbouring nuclei, cf. Fig. 6.2.

We have also compared the predicted values to the experimental ones. As a statistical indicator,
the root-mean-square deviation (RMS) of an observable O, defined as

RMS =

[

1

Nn − Np

Nn∑

i=1

[OTh,i − OExp,i]
2

] 1
2

, (6.8)

is presented in Table 6.3. As the model was adjusted to experimental binding energies, it is natural
that this quantity possesses the smallest root-mean-square deviation.

Table 6.3: The minimum, mean and maximum of the uncertainties (MinU, MU and MaxU) are
presented in the uppermost portion of the table and the root-mean-square deviation (RMS) appears
below, for the 2315 nuclei.

B̂Th Ŝn Ŝ2n Ŝp Ŝ2p Q̂α Q̂β

MinU [keV] 21 2 3 3 5 2 4
MU [keV] 33 6 11 8 15 5 13
MaxU [keV] 124 72 120 70 120 36 120
RMS [keV] 602 1273 1050 1367 985 1346 1847

The correlations between the theoretical Qα-value of 208Pb and the 2315 Qα-values is exposed
in Fig. 6.3 (including 208Pb). As formerly argued, the correlations with neighbouring nuclei are
very strong and vanish away from this region. However, one can also distinguish more sophisticated
patterns which were absent from the correlations between binding energies, cf. Fig. 6.2. Notice
these observations can further be extended to the remaining observables considered here. These
complex patterns are owed to the involvement of twice as many nuclei. Indeed, binding energy
correlations, only, involve two distinct nuclei while those between separation energies, or Q-values,
require four, thus, making the structure much more intricate.
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Figure 6.3: Correlations between the theoretical Qα-value of 208Pb and the 2315 Qα-values. Notice
the extreme correlations in the region of 208Pb and their downfall away from this region, as well as
the complex patterns due to the involvement of a greater number of nuclei. The position of 208Pb
is indicated by the red dashed lines.

6.1.3.3 Assessment of the regression hypotheses

The results presented beforehand were procured through regression analysis which is based on
hypotheses, regarding the distribution of the errors, as described in the previous chapter. This
distribution of errors, associated with the binding energies, is shown Fig. 6.4. The corresponding
mean and standard deviation are, respectively, 2 keV and σ̂ = 602 keV. These values were used
to plot the normal distribution that exhibits a fair agreement with the histogram representing the
distribution of the errors.

Other, more elaborate, methods are available to support the normality of the errors. The
quantile-quantile plot is a graphical tool used to confirm that a set of data follows a specific proba-
bility distribution, e.g., a normal distribution. This is usually done by plotting the quantiles of the
observed distribution of errors against the quantiles of the normal distribution having the same
mean and variance, i.e., 2 keV and 602 keV. Indeed, if the observed errors do follow a normal
distribution, then, the quantiles should be equal and the plot should form a straight line. The
corresponding quantile-quantile plot is given Fig. 6.5 and confirms that most of the observed errors
follow a normal distribution. However, the plot also makes it clear that the tails of the distribution
of the errors do not correspond to those of a normal distribution. Nevertheless, the central part,
ǫ̂ ∈ [-1,1] MeV containing around 95% of the errors, does follow a normal distribution. Thus,
the normality assumption, although not perfectly satisfied, should be enough to insure that the
outcome of the current endeavour offers serious results.
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Figure 6.4: Histogram (blue bars) formed of 50 bins restricted to ǫ̂ ∈ [-2.1;2.1] MeV and represent-
ing the distribution of the errors (ǫ̂ = BExp −X · p̂). The normal distribution constructed from
the mean (2 keV) and the standard deviation (σ̂ = 602 keV) of the errors, is also provided (red
line).
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Figure 6.5: Quantile-quantile plot (blue dots) for the distribution of the errors restricted to ǫ̂ ∈
[-2.1;2.1] MeV and the expected theoretical straight line (dashed blue) in the case where normality
is perfectly satisfied.

Notice the mean of these errors does not exactly vanish and one can show that this hypothesis
is only strictly satisfied by models including an intercept which macroscopic models do not, in
general, contain. We now investigate the impact of adding a constant parameter p0 to the liquid
drop model, Eq. (6.2).
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The parameters and their uncertainties were recalculated and the results are reported in Ta-
ble 6.4. It appears that the additional intercept does not significantly alter the previous outcome,
i.e., p6, p7 and p8 are still loosely constrained as well as the intercept p0.

Table 6.4: The parameters along with their uncertainties and relative uncertainties obtained for
the model with intercept.

p̂0 p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8

p̂ [MeV] 1.5896 15.5399 -27.9838 -17.9250 31.8989 -0.7088 1.0017 -0.3448 2.5587
û(p̂)[MeV] 0.3542 0.0193 0.0914 0.0922 0.4138 0.0010 0.0334 0.0313 0.1727
|û(p̂)/p̂| [%] 22.3 0.1 0.3 0.5 1.3 0.1 3.3 9.1 6.7

Table 6.5 reveals noticeable changes in the correlations, however, the group structure remains
quite similar. There are still two correlation groups, a first consisting of p1, p3 and p5, the second
involving p2 and p4. Parameters, outside these groups, display moderate correlations and there
are no intruders in this particular case.

Table 6.5: Correlation matrix obtained for the model with intercept deduced from the covariance
matrix, cf. Table 6.12. Notations: group 1 and group 2 .

p̂0 p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8

1.00 0.66 -0.39 -0.84 0.41 -0.64 0.51 -0.36 -0.22
0.66 1.00 -0.75 -0.93 0.59 -0.93 0.13 0.28 0.46

-0.39 -0.75 1.00 0.64 -0.93 0.53 0.20 -0.06 -0.70
-0.84 -0.93 0.64 1.00 -0.58 0.94 -0.45 -0.11 -0.19
0.41 0.59 -0.93 -0.58 1.00 -0.42 0.01 -0.09 0.55

-0.64 -0.93 0.53 0.94 -0.42 1.00 -0.43 -0.38 -0.25
0.51 0.13 0.20 -0.45 0.01 -0.43 1.00 -0.07 -0.57

-0.36 0.28 -0.06 -0.11 -0.09 -0.38 -0.07 1.00 0.44
-0.22 0.46 -0.70 -0.19 0.55 -0.25 -0.57 0.44 1.00

Regarding the binding energy, the mean uncertainty and root-mean-square deviation, respec-
tively, become MU = 34 keV and σ̂=600 keV. Thus, the differences between the uncertainties and
the predictions obtained with and without an intercept are negligible. Note that, apart from the
binding energy, the other observables are not affected by the intercept.

This assessment confirms that, although a more rigorous analysis should include an intercept
in order to satisfy the first regression hypothesis, not doing so, does not significantly affect the
outcomes of the study.
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6.1.3.4 The impact of shell effects

In this study, an attempt was made to examine the impact of shell effects by using both, the
Thomas-Fermi [57] and the Nix-Möller [49] microscopic corrections. The results show that the
parameters marginally vary with the change of shell corrections, similarly, the absolute and relative
uncertainties are barely altered and the correlation matrices are identical. The meagre influence of
shell corrections is not surprising since they are identical for nuclei having N, Z > 30 in Refs. [57]
and [49]. As only light nuclei contribute to this change, the effects are rather limited. Therefrom,
no conclusions could be drawn about the exact impact of shell effects on either the estimation of
the parameters, their uncertainties or even their correlations. Nevertheless, the outcome of the
study suggested that the parameters could be significantly affected by the microscopic corrections
while uncertainties and correlations suffered more minor changes.

6.1.3.5 Primary comments

As mentioned before, other uncertainty analysis of mass models based on SCMF or EDF are avail-
able, e.g., Refs. [77,79]. Here we have focused our attention on the liquid drop approach. It should
be mentioned that for all observables considered in this work, the uncertainties are insufficiently
broad to account for the errors, thus, pointing towards some missing variability, e.g., additional
uncertainties should also come from shell corrections and were not included in the present work.
Indeed, Fig. 6.6 reveals errors spreading way beyond the bounds of uncertainties which is coherent
with prior results and can be understood from the root-mean-square deviation being virtually 20
times larger than the mean uncertainty. Certainly, the scope of our uncertainty analysis, i.e., disre-
garding pairing and shell corrections, may be too crude and the resulting uncertainties too modest,
to properly describe the uncertainties of the entire “macroscopic-microscopic” model. Neverthe-
less, it serves to distinguish the precision of the predictions from the uncertainties originating
from only a limited portion of the model. This suggests that, once the microscopic corrections
have been fixed, the experimental data leaves hardly any room for macroscopic variability, i.e.,
the macroscopic model is extremely constrained. Consequently, any further improvement of such
model must be focused on constraining and evaluating uncertainties in the microscopic corrections.
Another possibility would be to study models in which there is no distinction between macroscopic
and microscopic contributions (e.g. SCMF or EDF type models). To summarize, the errors dom-
inate over the uncertainties. This can be explained because first, the uncertainties in the shell
corrections were neglected and second, the correlations between the residuals were not accounted
for in the estimation of the uncertainties in the parameters (for more details cf. Ref. [81]).

6.1.4 Empirical weights

At this stage, experimental uncertainties or correlations were not taken into account. Note that
these will be accounted for through the weighted regression formalism we have exposed in chapter 5
(cf. Sect. 5.2.2). In the present section, we extend our previous analysis in order to encompass this
empirical evidence. Considering both the uncertainties and correlations or only the uncertainties
is investigated in the following. Unfortunately, the uncertainties or the correlations regarding
microscopic corrections are not currently known, however, when available, these contributions may
be included through the extended formalism used here. For now, we shall focus on experimental
uncertainties and their correlations.
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Figure 6.6: The errors (ǫ̂ = BExp −X · p̂) restricted to ǫ̂ ∈ [-2.1;2.1] MeV are shown (blue dots)
as a function of proton number Z. The mean of the errors (red line) and the standard deviation of
the errors (red band), i.e., the root-mean-square deviation, are also displayed.

The experimental data are correlated through the specific measurement method that was em-
ployed, these correlations are contained in the empirical covariance matrix ECM also included in
Refs. [83, 84] and having the structure bellow,

ECM [yExp] =








u2
1 u1,2 . . . u1,n

u1,2 u2
2 . . . u2,n

...
...

. . .
...

u1,n u2,n . . . u2
n








(6.9)

where u2
i and ui,j are, respectively, the variance of the ith observation and the covariance between

the ith and the jth observations. We hereby describe three possible choices for the weight matrix
all of which are constructed from the empirical covariance matrix.

(i) When all data are presumed equivalent, i.e., experimental uncertainties and correlations
are ignored, the weight matrix is simply the identity, W1=I. This corresponds to the ho-
moscedastic hypothesis.

(ii) While neglecting correlations and only considering experimental uncertainties, the weight
matrix preserves its diagonal form, the ith element being the inverse uncertainty squared
associated with the ith binding energy, i.e., u−2

i . Accordingly, the weight matrix is in fact the
inverse of the empirical variance matrix, i.e., W2=EVM[yExp]−1. Thus, in this particular
weighing scheme, data having larger uncertainties lose their influence over the regression.

(iii) Finally, the inclusion of correlations along with uncertainties leads to the weight matrix,
W3=ECM[yExp]−1. This weighing scheme incorporates every single empirical evidence at
our disposal. Data having larger uncertainties or being correlated, both lose their leverage
over the regression. The latter is important such that no over-counting of information occurs.



6.1. UNCERTAINTY ANALYSIS OF THE LIQUID DROP MODEL 85

6.1.5 Secondary results

Here, weighted regression (cf. Sect. 5.2.2) is applied in order to determine the uncertainties and
the correlations in the parameters entering the model. A special attention is directed towards the
choices of empirical weights and their effects on the outcomes.

The subsequent results are based on the nuclear binding energies deduced from the atomic
mass excesses found in Refs. [83,84] for all nuclei satisfying N,Z ≥ 8 with uncertainties below 150
keV and present in the empirical covariance matrix. Thus, a total of 1088 nuclei were considered.

6.1.5.1 The parameters

The parameters obtained using weighted regression are presented in Table 6.6 with the correspond-
ing uncertainties, deduced from the diagonal elements of the covariance matrix, cf. Eq. (5.55),
given in the appendix at the end of this section (cf. Sect. 6.1.8).

Table 6.6: The parameters along with their uncertainties and relative uncertainties as determined
using the regressions (i), (ii) and (iii).

p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8

p̂ [MeV]
W1 15.343 -27.034 -16.980 27.423 -0.698 0.840 -0.669 1.365
W2 15.651 -44.040 -19.340 118.319 -0.683 1.188 -0.070 12.130
W3 15.599 -38.012 -18.540 87.799 -0.690 0.739 -0.445 9.858

û(p̂) [MeV]
W1 0.025 0.141 0.087 0.633 0.001 0.045 0.060 0.255
W2 0.020 0.635 0.162 3.820 0.002 0.130 0.110 0.401
W3 0.016 0.531 0.159 3.488 0.002 0.151 0.117 0.385

|û(p̂)/p̂| [%]
W1 0.2 0.5 0.5 2.3 0.2 5.3 8.9 18.7
W2 0.1 1.4 0.8 3.2 0.3 11.0 157.6 3.3
W3 0.1 1.4 0.9 4.0 0.2 20.4 26.3 3.9

Since the sets of nuclei involved are not identical, the parameters obtained with the regres-
sion (i) differ from those obtained in Sect. 6.1.3.1. The inclusion of experimental uncertainties,
i.e., regressions (ii) and (iii), changes the weight of each nucleus, thus, influencing the values taken
by the parameters. In particular, p2, p4, p7 and p8 suffer dramatic changes and correspond to
isospin dependent terms. On the one hand, exotic nuclei, characterized by larger isospins, have
larger uncertainties and therefore, loose their influence over the regression. On the other hand,
p1 and p5 are quite stable as the volume and Coulomb terms are constrained by larger number
of nuclei, i.e., all nuclei independently of their isospin. The prior argument is supported by the
Fig. 6.7 proving that exotic nuclei have larger uncertainties. Furthermore, the distribution of the
uncertainties presented in Fig. 6.8 is very peaked around the origin where nearly half of the sample
is grouped. Combining the conclusions drawn from Figs. 6.7 and 6.8 demonstrates that exotic nu-
clei should significantly loose their influence over the regressions (ii) and (iii). Also note that the
inclusion of experimental covariances seems to reduce the effects of the experimental uncertainties,
consequently, the departure away from the results obtained with the homoscedastic regression (i)
is diminished.
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Figure 6.7: The 1088 nuclei involved in the study were divided into two equal groups each contain-
ing 544 nuclei. The first group (blue) includes those having a binding energy uncertainty below
2.6 keV while the second (red) contains those having a binding energy uncertainty above 2.6 keV.
The second group is composed of more exotic nuclei than the first group.
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Figure 6.8: Histogram formed of 25 bins, representing distribution of the binding energies uncer-
tainties, restricted to the range [0;25] keV and including 1029 nuclei. A fourth of the 1088 nuclei
have uncertainties below 1 keV and half below 2.6 keV.



6.1. UNCERTAINTY ANALYSIS OF THE LIQUID DROP MODEL 87

A cautious analysis of the correlation matrices, given in Tables 6.7, 6.8 and 6.9, shows, in the
case of homoscedastic regression (i), the same two correlation groups as in Sect. 6.1.3.1. The first
involving p1, p3, p5 and p7 and the second implicating p2, p4 and p8 while p6 is almost uncorrelated
with the other parameters. These two groups communicate mostly through the incursions of p1 in
the second group and p8 in the first group. For both regressions (ii) and (iii), two groups can also
be distinguished, a weakly correlated first group consisting of p1, p5 and a second with stronger
correlations containing all of the six remaining parameters. In both cases, the two groups are well
separated and are not coupled through decisive correlations, i.e., there are no intruders. Notice
regression (i) leads to overall weaker correlations than regression (iii) which, itself, leads to weaker
correlations than regression (ii). Thus, the empirical evidence, contained in the weight matrices,
seems to globally strengthen the correlations and to change the group structure.

Table 6.7: Correlation matrix deduced from the covariance matrix, cf. Table 6.13, with regres-
sion (i). Notations: group 1, group 2 and intruders.

p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8

1.00 -0.75 -0.94 0.52 -0.89 -0.27 0.76 0.88

-0.75 1.00 0.67 -0.92 0.47 0.44 -0.43 -0.90
-0.94 0.67 1.00 -0.55 0.96 -0.07 -0.84 -0.79

0.52 -0.92 -0.55 1.00 -0.32 -0.18 0.33 0.74
-0.89 0.47 0.96 -0.32 1.00 -0.16 -0.83 -0.65
-0.27 0.44 -0.07 -0.18 -0.16 1.00 0.17 -0.44
0.76 -0.43 -0.84 0.33 -0.83 0.17 1.00 0.55
0.88 -0.90 -0.79 0.74 -0.65 -0.44 0.55 1.00

Table 6.8: Correlation matrix deduced from the covariance matrix, cf. Table 6.14, with regres-
sion (ii). Notations: group 1 and group 2 .

p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8

1.00 -0.42 -0.58 0.37 -0.76 0.20 0.44 0.54
-0.42 1.00 0.91 -0.99 0.17 -0.85 -0.88 -0.94
-0.58 0.91 1.00 -0.94 0.47 -0.91 -0.97 -0.99
0.37 -0.99 -0.94 1.00 -0.22 0.92 0.92 0.96

-0.76 0.17 0.47 -0.22 1.00 -0.26 -0.33 -0.38
0.20 -0.85 -0.91 0.92 -0.26 1.00 0.94 0.90
0.44 -0.88 -0.97 0.92 -0.33 0.94 1.00 0.98
0.54 -0.94 -0.99 0.96 -0.38 0.90 0.98 1.00



88 CHAPTER 6. A SIMPLE MACROSCOPIC MODEL

Table 6.9: Correlation matrix deduced from the covariance matrix, cf. Table 6.15, with regres-
sion (iii). Notations: group 1 and group 2.

p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8

1.00 -0.37 -0.32 0.25 -0.71 -0.00 0.04 0.26
-0.37 1.00 0.90 -0.98 0.39 -0.79 -0.80 -0.91
-0.32 0.90 1.00 -0.95 0.56 -0.94 -0.95 -0.99
0.25 -0.98 -0.95 1.00 -0.41 0.89 0.90 0.96

-0.71 0.39 0.56 -0.41 1.00 -0.41 -0.39 -0.48
-0.00 -0.79 -0.94 0.89 -0.41 1.00 0.99 0.94
0.04 -0.80 -0.95 0.90 -0.39 0.99 1.00 0.96
0.26 -0.91 -0.99 0.96 -0.48 0.94 0.96 1.00

6.1.5.2 The observables

The set of observables considered in Sect. 6.1.3.2 is reexamined with special care regarding the
impact of empirical weights on predictions as well as uncertainties. The same statistical indicators
are summarized in Table 6.10.

In the case of the homoscedastic regression (i), the regression encompasses a reduced number of
nuclei and leads to a smaller root-mean-square deviation than in the primary analysis. Since it is
no longer the quantity being minimized, the RMS in the heteroscedastics regressions (ii) and (iii)
are far larger than in the homoscedastic regression (i). On the other hand, the uncertainties in the
predictions of the model are larger for the homoscedastic regression (i). A closer look at Table 6.10
shows a different outcome regarding regressions (ii) and (iii) where the binding energy exhibits the
worst predictions as well as the most uncertain ones, i.e., associated with the largest RMS and
mean uncertainty.

Analyzing the values obtained for the RMS, shows that regression (iii) yields systematically
superior predictions than regression (ii).

Table 6.10: The root-mean-square deviation (RMS) as well as the mean of the uncertainties (MU)
are calculated for various observables and for the regressions (i), (ii) and (iii).

B̂Th Ŝn Ŝ2n Ŝp Ŝ2p Q̂α Q̂β

MU [keV]
W1 42 8 14 11 19 7 17
W2 258 35 68 53 106 42 86
W3 296 29 55 42 83 33 68

RMS [keV]
W1 524 1333 1158 1394 986 1371 1758
W2 4841 1480 1658 1670 1918 1500 2261
W3 2365 1371 1267 1465 1165 1400 1891
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6.1.5.3 Secondary comments

Although the weights considered did not improve the adjustment of the model, incoming theoreti-
cal developments, leading to enhanced model precision and the future, large scale, mass measure-
ments campaigns, will further increase the importance of empirical uncertainties and correlations,
consequently, weighted regression should replace standard regression. Moreover, uncertainties in
microscopic corrections are expected to be highly correlated, therefore, when available, their inclu-
sion will require the use of regression (iii). Finally, as the parameters seem to be better constrained
and the corresponding predictions are more accurate, the present work seems to suggest that em-
ploying regression (iii) may be preferable to using regression (ii).

Note that the weights used in the present study penalize the least precise data which are
associated with more exotic nuclei. For a detailed discussion about the importance of exotic nuclei
in the adjustment of a relativistic mean field model based on a few selected masses see Ref. [86].
Alternatively, Ref. [80] examines the adjustment of an EDF, based on a larger number of masses
and investigates the effects of adding exotic nuclei to the adjustment of the functional.

6.1.6 Conclusion

Standard regression analysis was applied to the liquid drop model which lead us to the covariance
of the parameters and more precisely, to their uncertainties and correlations which were then
propagated onto observables, thus, providing all of the elements for a thorough uncertainty analysis.

The first part of the present work confirms the presence of strong correlations between the
parameters and furthermore, the emergence of correlation groups, i.e., involving many parameters
and coupled together through the intrusion of members of other groups. It was also shown that
although some parameters are better constrained than others, once the microscopic corrections are
fixed, the experimental evidence leaves hardly any room for macroscopic variability, consequently,
further research must be focused on constraining microscopic corrections in order to improve the
model as a whole.

The second part focuses on the influence of empirical uncertainties and correlations on the
results obtained in the first part of the study. The errors being much greater than the empirical
variances or covariances, the weights did not improve the adjustment of the model. Neverthe-
less, it was shown that the inclusion of empirical correlations yields more suitable results than
those obtained only accounting for experimental uncertainties. With future experimental and the-
oretical achievements, weighted regression, involving empirical correlations, will prove to be more
attractive than only considering experimental uncertainties. This method opens the doors to the
inclusion of uncertainties associated with the microscopic corrections which are expected to be
highly correlated.

Independently of the method, uncertainties in the error of the model are far larger than the
uncertainties in the liquid drop model. The extent of our uncertainty analysis, i.e., neglecting
pairing and shell corrections, may be too coarse to properly describe the uncertainties of the
entire “macroscopic-microscopic” model. Moreover, the coherence, between the macroscopic and
microscopic contributions, can only be achieved if the same deformation is assumed for both of
these components.
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In this development, this coherence was lost, as the macroscopic model considered above, bears no
deformation while microscopic corrections do, thus making the two contributions inconsistent with
one another. Furthermore, the present work disregards any uncertainty or correlation for either
the shell or the pairing corrections and are hereby, presumed, independent of the macroscopic
component. As such, all of the conclusions drawn from this analysis were reached consciously
neglecting these inconsistencies and we will try to correct some of these in following chapter.
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6.1.7 Appendix: Covariance of primary results

In this appendix, the covariance between the parameters, obtained from regression analysis using
Eq. (5.44), are provided in their matrix form. These results correspond to those contained in the
first part of the present study.

In the case of the model without an intercept, the correlations between the parameters, pre-
sented in Table 6.2, can be deduced from the covariance matrix given Table 6.11, using Eq. (5.45).

Table 6.11: Covariance matrix between the parameters for the model without intercept.

p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8
0.0002112255 -0.0008757963 -0.0006794524 0.0025757144 -0.0000102194 -0.0001320633 0.0003152269 0.0020147598

-0.0008757963 0.0071133452 0.0026224132 -0.0293433212 0.0000265519 0.0012374354 -0.0005926571 -0.0124508863
-0.0006794524 0.0026224132 0.0025454952 -0.0092533611 0.0000386468 -0.0000681243 -0.0012004781 -0.0059446316
0.0025757144 -0.0293433212 -0.0092533611 0.1441782758 -0.0000678873 -0.0027366304 0.0007282969 0.0460073012

-0.0000102194 0.0000265519 0.0000386468 -0.0000678873 0.0000006481 -0.0000035655 -0.0000200434 -0.0000701814
-0.0001320633 0.0012374354 -0.0000681243 -0.0027366304 -0.0000035655 0.0008284236 0.0001229168 -0.0026805039
0.0003152269 -0.0005926571 -0.0012004781 0.0007282969 -0.0000200434 0.0001229168 0.0008585116 0.0019737292
0.0020147598 -0.0124508863 -0.0059446316 0.0460073012 -0.0000701814 -0.0026805039 0.0019737292 0.0286534371

In the case of the model with an intercept, the correlations between the parameters, presented
in Table 6.5, can be deduced from the covariance matrix given Table 6.12, using Eq. (5.45).

Table 6.12: Covariance matrix between the parameters for the model with an intercept.

p̂0 p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8
0.1254667086 0.0044991307 -0.0127792513 -0.0273692844 0.0595335998 -0.0002367796 0.0060480260 -0.0039936493 -0.0132486054
0.0044991307 0.0003708226 -0.0013268437 -0.0016553016 0.0046893470 -0.0000186260 0.0000859004 0.0001694244 0.0015230991

-0.0127792513 -0.0013268437 0.0083564328 0.0053885001 -0.0351656109 0.0000504503 0.0006112401 -0.0001810128 -0.0109990240
-0.0273692844 -0.0016553016 0.0053885001 0.0084948821 -0.0221638752 0.0000899799 -0.0013868790 -0.0003194269 -0.0030056724
0.0595335998 0.0046893470 -0.0351656109 -0.0221638752 0.1712405408 -0.0001796800 0.0001556571 -0.0011726707 0.0393423395

-0.0002367796 -0.0000186260 0.0000504503 0.0000899799 -0.0001796800 0.0000010896 -0.0000149500 -0.0000123417 -0.0000446014
0.0060480259 0.0000859004 0.0006112401 -0.0013868790 0.0001556571 -0.0000149500 0.0011131480 -0.0000706053 -0.0032970883

-0.0039936493 0.0001694244 -0.0001810128 -0.0003194269 -0.0011726707 -0.0000123417 -0.0000706053 0.0009785672 0.0023791976
-0.0132486054 0.0015230991 -0.0109990240 -0.0030056724 0.0393423395 -0.0000446014 -0.0032970883 0.0023791976 0.0298166653
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6.1.8 Appendix: Covariance of secondary results

In this appendix, the covariance between the parameters, obtained from weighted regression analy-
sis using Eq. (5.55), are provided in their matrix form. These results correspond to those contained
in the second part of the present study, using the regressions i, ii and iii which were defined in
Sect. 6.1.4.

The correlations between the parameters, presented in Table 6.7, can be deduced from the
covariance matrix given Table 6.13, using Eq. (5.45).

Table 6.13: Covariance matrix between the parameters using regression (i).

p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8
0.0006082522 -0.0025984253 -0.0020193653 0.0081677050 -0.0000304887 -0.0002948485 0.0011131294 0.0055410398

-0.0025984253 0.0199312841 0.0082768795 -0.0824713403 0.0000920849 0.0027833281 -0.0036521942 -0.0322768133
-0.0020193653 0.0082768795 0.0076229685 -0.0306027904 0.0001158646 -0.0002666849 -0.0043696777 -0.0176287206
0.0081677050 -0.0824713403 -0.0306027904 0.4000871096 -0.0002827051 -0.0051879688 0.0123767162 0.1200788307

-0.0000304887 0.0000920849 0.0001158646 -0.0002827051 0.0000019082 -0.0000097643 -0.0000681658 -0.0002287967
-0.0002948485 0.0027833281 -0.0002666849 -0.0051879688 -0.0000097643 0.0019854801 0.0004409849 -0.0050006166
0.0011131294 -0.0036521942 -0.0043696777 0.0123767162 -0.0000681658 0.0004409849 0.0035569094 0.0082877888
0.0055410398 -0.0322768133 -0.0176287206 0.1200788307 -0.0002287967 -0.0050006166 0.0082877888 0.0649826247

The correlations between the parameters, presented in Table 6.8, can be deduced from the
covariance matrix given Table 6.14, using Eq. (5.45).

Table 6.14: Covariance matrix between the parameters using regression (ii).

p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8
0.0003819971 -0.0052531624 -0.0018352767 0.0277998983 -0.0000260665 0.0004993266 0.0009365340 0.0042188415

-0.0052531624 0.4034694831 0.0940782882 -2.3921066309 0.0001885700 -0.0699538700 -0.0617906364 -0.2389822932
-0.0018352767 0.0940782882 0.0262915121 -0.5825888711 0.0001329309 -0.0191423309 -0.0173332023 -0.0645221741
0.0277998983 -2.3921066309 -0.5825888711 14.5912280071 -0.0014604903 0.4572853381 0.3881599979 1.4663478275

-0.0000260665 0.0001885700 0.0001329309 -0.0014604903 0.0000030415 -0.0000600708 -0.0000636914 -0.0002641005
0.0004993266 -0.0699538700 -0.0191423309 0.4572853381 -0.0000600708 0.0169847741 0.0134145574 0.0472166671
0.0009365340 -0.0617906364 -0.0173332023 0.3881599979 -0.0000636914 0.0134145574 0.0121098120 0.0431063890
0.0042188415 -0.2389822932 -0.0645221741 1.4663478275 -0.0002641005 0.0472166671 0.0431063890 0.1604514629

The correlations between the parameters, presented in Table 6.9, can be deduced from the
covariance matrix given Table 6.15, using Eq. (5.45).

Table 6.15: Covariance matrix between the parameters using regression (iii).

p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8
0.0002444162 -0.0030966569 -0.0007898135 0.0138980286 -0.0000171969 -0.0000074066 0.0000744017 0.0015884903

-0.0030966569 0.2820927098 0.0756541571 -1.8124261615 0.0003224603 -0.0631928071 -0.0495966682 -0.1865929987
-0.0007898135 0.0756541571 0.0252066878 -0.5265266243 0.0001383686 -0.0225791476 -0.0176880512 -0.0607295316
0.0138980286 -1.8124261615 -0.5265266243 12.1680573525 -0.0021906101 0.4706768938 0.3653808853 1.2958749960

-0.0000171969 0.0003224603 0.0001383686 -0.0021906101 0.0000023828 -0.0000955509 -0.0000702254 -0.0002826310
-0.0000074066 -0.0631928071 -0.0225791476 0.4706768938 -0.0000955509 0.0227856426 0.0174302753 0.0548222841
0.0000744017 -0.0495966682 -0.0176880512 0.3653808853 -0.0000702254 0.0174302753 0.0136646136 0.0432448396
0.0015884903 -0.1865929987 -0.0607295316 1.2958749960 -0.0002826310 0.0548222841 0.0432448396 0.1484077708
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6.2 Constraining shell correction energies

We have just studied the uncertainties in a simple macroscopic model. In this analysis the uncer-
tainties in the shell corrections were neglected. However, it turns out that these shell corrections
are crucial contributions in ground-state masses as well as fission-barrier calculations of super-
heavy nuclei. Therefore, based on our previous uncertainty analysis of the liquid drop model, we
describe a method in to order to constrain the shell corrections of superheavy nuclei. In turn, this
provides a test to verify that the macroscopic and microscopic contributions are consistent with
one another. The following study has been submitted for publication [87].

6.2.1 Introduction

The existence of superheavy nuclei (SHN) can only be explained by the introduction of stabilizing
ground-state shell effects. In addition to ground-state properties, shell effects strongly influence
the fission barriers which insure the survival of the compound nucleus. Therefore, shell effects play
a crucial role in our understanding of both the structure and the production of SHN.

As discussed in Ref. [88], shell corrections can be obtained from a broad spectrum of models.
However, the results are ultimately dispersed, thus proving the compelling need to find suitable
experimental constraints. Furthermore, these additional quantum effects are included in various
ways within the few theoretical approaches at hand. This leads to discrepancies of few MeVs in
the fission barriers calculations [39]. In turn, these discrepancies also result in critical changes of
the survival probability, and therefore, on the production cross-section of SHN [38].

Given that masses are very sensitive to structural properties, they contain an impressive amount
of insight about shell effects. However, most SHN masses are not precisely known. Nevertheless,
assuming that the last mass in an α decay chain is well-established, masses can be deduced from
measured Qα-values of decaying nuclei. In particular, we focus our study on the decay chains:

291
116Lv → 287

114Fl → 283
112Cn → 279

110Ds → 275
108Hs → 271

106Sg → 267
104Rf

277
112Cn → 273

110Ds → 269
108Hs → 265

106Sg → 261
104Rf → 257

102No

The first following from a hot-fusion reaction and the second from a cold-fusion one.
On the grounds that macroscopic-microscopic (MM) models incorporate many structure effects,

they provide the most accurate mass predictions. The MM masses are the sum of a macroscopic
liquid drop (LD) energy contribution and a microscopic shell correction energy (SCE) contribution
which are obtained from single-particle spectra using the Strutinsky method [72, 73]. In a similar
way, SCE can be inferred by subtracting the LD contribution to the experimental mass. In order
to procure realistic results, the LD model should, itself, be fitted using theoretical SCE. From
this, it is clear that the SCE deduced from the subtraction of LD contribution to the experimental
mass, will depend on both the chosen theoretical SCE and LD model.

In the following, we repeat the study done in Ref. [88] including a detailed uncertainty analysis
of the experimental masses and more importantly, of the LD masses [71]. Considering these
uncertainties delivers decisive theoretical constraints on SCE. In addition to the SCE and their
uncertainties, we provide correlation matrices for experimental and LD masses, as well as for SCE
for all nuclei in the studied decay chains. In order to fully comply with international standards, the
formulas needed to compute uncertainties, covariances and correlations were taken from Refs. [64,
65].
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Table 6.16: Table containing the results concerning the first decay chain along with their uncer-
tainties. The Qα-values and their uncertainties were taken from Ref. [89] and ∆mExp(267Rf) from
Refs. [83, 84]. The last column gives the theoretical SCE taken from Refs. [57, 90]. All quantities
are given in MeV.

Nuclei Qα ∆mExp ∆mLD SCE SCE from refs. [57, 90]

267
104Rf - 113.440±0.580 117.140±0.059 -3.700±0.583 -5.08
271
106Sg 8.67±0.08 124.535±0.585 128.126±0.063 -3.591±0.589 -5.18
275
108Hs 9.44±0.06 136.400±0.589 139.725±0.068 -3.325±0.592 -4.90
279
110Ds 9.84±0.06 148.665±0.592 151.929±0.074 -3.264±0.596 -4.91
283
112Cn 9.67±0.06 160.760±0.595 164.731±0.081 -3.971±0.600 -6.19
287
114Fl 10.16±0.06 173.345±0.598 178.124±0.090 -4.779±0.604 -7.74
291
116Lv 10.89±0.07 186.659±0.602 192.101±0.099 -5.442±0.610 -8.07

Table 6.17: Table containing the results concerning the second decay chain along with their un-
certainties. The Qα-values and their uncertainties were deduced from the α particle’s energies
presented in Ref. [91] and ∆mExp(257No) from Refs. [83,84]. The last column gives the theoretical
SCE taken from Refs. [57, 90]. All quantities are given in MeV.

Nuclei Qα ∆mExp ∆mLD SCE SCE from refs. [57, 90]

257
102No - 90.247±0.007 94.833±0.049 -4.586±0.050 -5.77
261
104Rf 8.65±0.02 101.322±0.021 106.075±0.054 -4.753±0.058 -6.79
265
106Sg 8.84±0.03 112.587±0.037 117.918±0.061 -5.331±0.071 -6.38
269
108Hs 9.35±0.02 124.362±0.042 130.357±0.068 -5.995±0.080 -5.30
273
110Ds 11.31±0.02 138.097±0.046 143.383±0.076 -5.286±0.089 -4.34
277
112Cn 11.42±0.02 151.942±0.050 156.991±0.085 -5.049±0.099 -4.11

6.2.2 Experimental mass excess

Most SHN masses are not precisely known. Nevertheless, assuming the last mass in an α decay
chain is known, masses can be deduced from measured Qα-values:

∆mExp (A,Z) = ∆mExp (A− 4, Z − 2) + Qα (A,Z) + ∆α (6.10)

where ∆mExp (A,Z) and Qα (A,Z) are respectively the mass excess of the mother nucleus and the
Qα-value of the α decay. The quantity ∆mExp (A− 4, Z − 2) is the mass excess of the daughter
nucleus and ∆α is the α particle’s mass excess. In particular, knowing the Qα-values for all nuclei
in the decay chain and the mass excess of the last nucleus, here ∆mExp(267Rf) or ∆mExp(257No),
we can deduce all masses within the decay chain. In the present work, it is assumed that the
measured Qα-values correspond to transitions from the ground-state of the mother nucleus to the
ground-state of daughter nucleus.
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In the following, ∆mExp(267Rf), ∆mExp(257No) and ∆α are taken from the AME2016 ta-
ble [83, 84] and the Qα-values were extracted from Refs. [89, 91]. All of these quantities are given
in Tables 6.16 and 6.17 alongside their uncertainties and are assumed to be uncorrelated as they
were measured independently. They appear in italic to indicate that they were not obtained in
the present work.

As the quantities entering Eq. (6.10) are uncorrelated, the variance can be estimated using the
familiar uncertainty propagation formula:

u2
(
∆mExp (A,Z)

)
= u2 (Qα (A,Z)) + u2 (∆α) + u2

(
∆mExp (A− 4, Z − 2)

)
. (6.11)

Apart from ∆mExp(267Rf) and ∆mExp(257No), all ∆mExp and their uncertainties, shown in Ta-
bles 6.16 and 6.17, were calculated using Eqs. (6.10) and (6.11), respectively. Clearly, the dominat-
ing uncertainty, for the first decay chain, is the one associated with ∆mExp(267Rf). This however, is
not the case for the second decay chain where the Qα-values uncertainties are the dominating ones.

From Eq. (6.10), it is clear that the mass of the mother nucleus depends on the mass of
the daughter nucleus. Thus, all experimental masses within a decay chain are correlated. The
covariance can be easily obtained,

u
(
∆mExp (A,Z) ,∆mExp (A− 4, Z − 2)

)
= u2

(
∆mExp (A− 4, Z − 2)

)
. (6.12)

Similarly, all other covariances can be calculated and correlation coefficients can be deduced from
these. The results are presented in Tables 6.18 and 6.19. The correlation matrix for the first
decay chain, cf. Table 6.18, shows strong positive correlations between the experimental masses.
This undoubtedly confirms, the influence of the large uncertainty in ∆mExp(267Rf) upon all other
experimental masses in the decay chain. The outcome for the second decay chain, cf. Table 6.19,
is quite different and shows weak positive correlations between the experimental masses, thus,
establishing the limited impact of the small uncertainty in ∆mExp(257No) on the experimental
masses.

Table 6.18: Experimental mass excess correlation matrix for the first decay chain.

267Rf 271Sg 275Hs 279Ds 283Cn 287Fl 291Lv

1.00 0.99 0.98 0.98 0.97 0.97 0.96
0.99 1.00 0.99 0.98 0.98 0.97 0.97
0.98 0.99 1.00 0.99 0.98 0.98 0.97
0.98 0.98 0.99 1.00 0.99 0.98 0.98
0.97 0.98 0.98 0.99 1.00 0.99 0.98
0.97 0.97 0.98 0.98 0.99 1.00 0.99
0.96 0.97 0.97 0.98 0.98 0.99 1.00
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Table 6.19: Experimental mass excess correlation matrix for the second decay chain.

257No 261Rf 265Sg 269Hs 273Ds 277Cn

1.00 0.33 0.19 0.16 0.15 0.13
0.33 1.00 0.57 0.50 0.45 0.41
0.19 0.57 1.00 0.87 0.79 0.72
0.16 0.50 0.87 1.00 0.90 0.82
0.15 0.45 0.79 0.90 1.00 0.91
0.13 0.41 0.72 0.82 0.91 1.00

6.2.3 Liquid drop mass excess

The LD contribution to the mass can be deduced from the binding energy using the specific LD
model we have previously used in the last section, cf. Eq. (6.2) in Sect. 6.1. However, here the
average pairing in also adjusted and reads:

Epair =
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(6.13)

In fact, the LD from Eq. (6.2) is fitted upon experimental masses with added theoretical shell
corrections. As before, the experimental masses were taken from the AME2016 table [83, 84] and
the theoretical SCE from the Thomas-Fermi model [57,90]. As the sole existence of SHN is based
on shell effects, the addition of theoretical SCE to experimental masses is certainly required. The
detailed fitting method has been presented in the previous section (cf. Sect. 6.1). In this study,
the parameters, their uncertainties and correlation matrix, obtained as in the previous section,
are reported in the appendix at the end of this section (cf. Sect. 6.2.6). The LD contributions
to the masses of the nuclei entering an α decay chain, are established with the same formula and
parameters, consequently, they are very strongly correlated. Results for the two decay chains,
are presented in Tables 6.16 and 6.17 while the corresponding correlation matrices are exposed in
Tables 6.20 and 6.21, respectively.
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Table 6.20: Theoretical LD mass excess correlation matrix for the first decay chain.

267Rf 271Sg 275Hs 279Ds 283Cn 287Fl 291Lv

1.00 0.99 0.97 0.94 0.91 0.88 0.84
0.99 1.00 0.99 0.97 0.95 0.93 0.90
0.97 0.99 1.00 0.99 0.98 0.96 0.94
0.94 0.97 0.99 1.00 0.99 0.98 0.97
0.91 0.95 0.98 0.99 1.00 0.99 0.99
0.88 0.93 0.96 0.98 0.99 1.00 0.99
0.84 0.90 0.94 0.97 0.99 0.99 1.00

Table 6.21: Theoretical LD mass excess correlation matrix for the second decay chain.

257No 261Rf 265Sg 269Hs 273Ds 277Cn

1.00 0.99 0.97 0.95 0.92 0.90
0.99 1.00 0.99 0.98 0.96 0.94
0.97 0.99 1.00 0.99 0.98 0.97
0.95 0.98 0.99 1.00 0.99 0.99
0.92 0.96 0.98 0.99 1.00 0.99
0.90 0.94 0.97 0.99 0.99 1.00

6.2.4 Deduced shell correction energies

In Sect. 6.2.2, informations regarding the α decay chains were used to determine ∆mExp and in
Sect. 6.2.3, a specific LD model was used to obtain ∆mLD. As mentioned in the introduction,
SCE can be inferred by subtracting the LD contribution to the experimental masses:

SCE = ∆mExp − ∆mLD. (6.14)

Notice the two terms entering the right hand side of Eq. (6.14) are independent, thus, SCE uncer-
tainties simply read:

u2 (SCE) = u2
(
∆mExp

)
+ u2

(
∆mLD

)
. (6.15)

The SCE are given side by side with their uncertainties in Tables 6.16 and 6.17 and contrast-
ing these tables yields the ensuing conclusion. Since the last masses in decay chains, following
from hot-fusion reactions, are not precisely known, the corresponding SCE are loosely constrained
and certainly, one could assert the opposite for decay chains subsequent to cold-fusion reactions.
Nevertheless, climbing-up the decay chain, the uncertainties in the SCE tend to grow, reaching
their maximum for the mother nucleus. This is a direct consequence of the increasing number of
Qα-values involved, along with their uncertainties, and causing the escalation of uncertainties in
the SCE.
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As discussed in Sects. 6.2.2 and 6.2.3, the values taken by ∆mExp and ∆mLD for various nuclei
are correlated. Accordingly, this is also the case for SCE of all nuclei in a decay chain. As for the
experimental and LD masses, we can construct the SCE correlation matrices given in Tables 6.22
and 6.23. Notice in the case of the first decay chain that the correlations regarding experimental
masses, cf. Table 6.18, and those concerning SCE, cf. Table 6.22, are very resemblant. This can
be interpreted as coming from the uncertainty in ∆mExp(267Rf) which plainly prevails over all
other sources of both uncertainties and correlations. However, in the case of the second decay
chain, Tables 6.19 and 6.23 do not share this similarity. This can be understood as coming from
the minute uncertainty associated with ∆mExp(257No). Consequently, the SCE correlations may
only be explained by the strong correlations between LD masses.

Table 6.22: SCE correlation matrix for the first decay chain.

267Rf 271Sg 275Hs 279Ds 283Cn 287Fl 291Lv

1.00 0.99 0.98 0.97 0.97 0.96 0.96
0.99 1.00 0.99 0.98 0.98 0.97 0.97
0.98 0.99 1.00 0.99 0.98 0.98 0.97
0.97 0.98 0.99 1.00 0.99 0.98 0.98
0.97 0.98 0.98 0.99 1.00 0.99 0.98
0.96 0.97 0.98 0.98 0.99 1.00 0.99
0.96 0.97 0.97 0.98 0.98 0.99 1.00

Table 6.23: SCE correlation matrix for the second decay chain.

257No 261Rf 265Sg 269Hs 273Ds 277Cn

1.00 0.93 0.83 0.81 0.79 0.77
0.93 1.00 0.90 0.87 0.85 0.83
0.83 0.90 1.00 0.96 0.93 0.90
0.81 0.87 0.96 1.00 0.97 0.94
0.79 0.85 0.93 0.97 1.00 0.97
0.77 0.83 0.90 0.94 0.97 1.00
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6.2.5 Discussion and conclusion

In the present work, SCE were inferred by subtracting the LD contributions to their corresponding
experimental masses. Assuming the last masses entering the decay chains were known, experimen-
tal masses were deduced from measured Qα-values. The LD contributions to the masses were
calculated using a specific LD model which was fitted to experimental masses, corrected by theo-
retical SCE.

Excluding the correlation matrices, all the results gathered in this work are presented in Ta-
bles 6.16 and 6.17. Efforts were made to provide uncertainties for every calculated quantity within
the present work. Considering these uncertainties brings decisive theoretical constrains on SCE
which play a crucial role in our understanding of both the structure and the production of SHN.

As some of the SHN masses, e.g., ∆mExp(267Rf), bear considerable uncertainties which plainly
prevail over all other sources of both uncertainties and correlations. This study undeniably shows
that improved SHN mass measurements are absolutely necessary in order to better constrain SCE.
Following up on this idea, reducing the mass uncertainty of the last nucleus in a decay chain to
about 50 keV should be enough and any further reduction would be fruitless as the dominating
uncertainties would then be coming from measured Qα-values and the LDM.

Comparing the two last columns of Table 6.16 or 6.17. We conclude that SCE, deduced in
the present work, were, in the case of the first decay chain, 2 MeV higher than the theoretical
predictions while being only 0.3 MeV higher in the case of the second decay chain. As follows,
deduced SCE indicate that SHN are less bound than what was predicted in Refs. [57,90]. However,
one should be cautious as it should be stressed that MM masses are obtained by minimizing the
total sum of the LD energy and the theoretical SCE with respect to deformation. Thus, both
the macroscopic and microscopic parts of the MM model are coherently glued together through
deformation. As the chosen LD model bears no deformation and the theoretical SCE were obtained
independently, this coherence is lost in the present study. Once again, it is clear that the SCE
deduced in the present work depend on both the chosen theoretical SCE and LD model.
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6.2.6 Appendix: Liquid drop parameters

In this appendix, we present the results relative to the regression analysis of the liquid drop model
used in this work, cf. Eqs. (6.2) and (6.13). The model is adjusted to the nuclear binding energies
deduced from the atomic mass excesses found in Refs. [83,84] for all nuclei satisfying N,Z ≥ 8 with
uncertainties below 150 keV, thus, a total of 2315 nuclei are considered.

As previously discussed, the uncertainties in the parameters and the correlations between
them, are a direct consequence of the regression hypotheses. According to these hypotheses, the
errors follow a Gaussian distribution with zero mean and variance σ2. This variance can then be
propagated onto the parameters leading to their covariances, from which, their uncertainties and
correlations can be deduced.

Table 6.24 contains the parameters and their uncertainties while Table 6.25 presents the cor-
relations between the parameters. The detailed regression analysis was exposed in the previous
section. However, in the present work, the pairing, cf. Eq. (6.13), is adjusted as well which was
not previously done. Nevertheless, the method remains unchanged.

Table 6.24: LDM parameters and uncertainties in MeV [71]. Here RMS= 0.602 MeV.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

Parameters 15.4841 -27.8539 -17.5768 31.2893 -0.7056 0.9107 -0.3071 2.8128 -4.75 -4.68 6.63 12.89
Uncertainties 0.0145 0.0850 0.0507 0.3824 0.0008 0.0294 0.0296 0.1726 0.13 0.12 1.00 6.04

Table 6.25: LDM parameters correlation matrix [71].

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

1.00 -0.71 -0.92 0.47 -0.87 -0.31 0.73 0.80 0.04 0.03 -0.03 -0.02
-0.71 1.00 0.61 -0.92 0.37 0.52 -0.22 -0.87 -0.03 -0.02 0.01 0.12
-0.92 0.61 1.00 -0.48 0.95 -0.06 -0.80 -0.67 -0.08 -0.07 0.05 -0.04
0.47 -0.92 -0.48 1.00 -0.21 -0.26 0.05 0.72 0.03 0.03 -0.01 -0.12

-0.87 0.37 0.95 -0.21 1.00 -0.17 -0.85 -0.48 -0.04 -0.02 0.03 -0.09
-0.31 0.52 -0.06 -0.26 -0.17 1.00 0.16 -0.57 0.05 0.04 -0.02 0.19
0.73 -0.22 -0.80 0.05 -0.85 0.16 1.00 0.37 -0.03 -0.05 -0.01 0.13
0.80 -0.87 -0.67 0.72 -0.48 -0.57 0.37 1.00 -0.03 -0.03 0.02 -0.19
0.04 -0.03 -0.08 0.03 -0.04 0.05 -0.03 -0.03 1.00 0.45 -0.66 0.06
0.03 -0.02 -0.07 0.03 -0.02 0.04 -0.05 -0.03 0.45 1.00 -0.67 0.07

-0.03 0.01 0.05 -0.01 0.03 -0.02 -0.01 0.02 -0.66 -0.67 1.00 -0.24
-0.02 0.12 -0.04 -0.12 -0.09 0.19 0.13 -0.19 0.06 0.07 -0.24 1.00



Chapter 7

Phenomenological

macroscopic-microscopic model

In the previous chapter, we have studied the uncertainties in a simple macroscopic model in order
to determine the uncertainties in ground-state masses. However, the previous study neglected shell
corrections. Remember that these are crucial contributions to the masses as well as the fission
barriers of superheavy nuclei. Furthermore, the simple model we have just considered did not
contain any deformation degrees of freedom. Therefore, it is impossible with such a model to
determine the saddle-point mass and consequently, the fission barrier. In this chapter, we examine
the simplest “macroscopic-microscopic” model. This model includes deformation as well as very
phenomenological shell corrections. In turn, this allows us to estimate the uncertainties in the
fission barriers. Note that there are more advanced and far superior macroscocopic-microscrocopic
fission barrier calculations, cf. Refs. [50, 52]. However, in these models the propagation of un-
certainties is rather delicate and complex. Thus, we have decided to start with a simpler model.
Finally, let us remember that our final goal is to constrain the formation probability. This is
achieved by first constraining the survival probability which was shown to be very sensitive to
fission barriers. This is the reason why we focus our attention on the fission barriers uncertainties.

7.1 Introduction

The goal of this chapter is to present one of the simplest “macroscopic-microscopic” model which
includes a liquid drop model, shell corrections and deformation. The idea is to present the foun-
dations of the macroscopic-microscopic approach without facing too many technical difficulties.
Extensions of this simple model then become fairly easy to understand. What follows is merely a
summary as well as an uncertainty analysis of the model described in Ref. [74].

This model is largely based on the liquid drop model which is a macroscopic approach. More
precisely, it does not account for individual effects of single nucleons, but, only the altogether
statistical behaviour of the system as a whole. Later, it was realized that there were ways to add
quantum effects to the liquid drop. This idea gave birth to macroscopic-microscopic approaches
which are macroscopic because they are based on the liquid drop and microscopic because they
also include quantum mechanical corrections. These corrections are referred to as shell corrections
because they originate from what can be viewed as, single-particle shells.

101
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It is possible to include quantum effects by forming allowed bands, from the continuous level
density, separated by gaps. When filled, the bands correspond to magic closed-shells. The level
scheme with bands is said to be bunched and the continuous one is said to be unbunched.

Another improvement was the introduction of nuclear deformation. This has consequences on
both the macroscopic and microscopic contributions. Macroscopically, volume remains unchanged
while the surface and Coulomb contributions may be altered, thus, leading to a change in the
macroscopic energy. Microscopically, the energy change is related to the breaking of symmetries
due to deformation which in turn changes the degeneracies and alters the gaps between the levels.
From this, it is obvious that shell corrections and deformation should be intertwined.

7.2 Liquid drop model

The spherical macroscopic mass formula used in [74] is simply,

M (N,Z) = MNN + MHZ − c1A + c2A
2
3 + c3

Z2

A1/3
− c4

Z2

A
+ δ, (7.1)

where MN and MH are, respectively, the mass excess of the neutron and the hydrogen. The
parameters appearing in the previous expression can themselves be expressed as

c1 = a1

[

1 − k

(
N − Z

A

)2
]

, (7.2)

c2 = a2

[

1 − k

(
N − Z

A

)2
]

, (7.3)

c3 =
3

5

e2

r0
, (7.4)

c4 =
π2

2

(
d

r0

)2 e2

r0
. (7.5)

Such that the spherical macroscopic model includes the historical volume, surface, Coulomb and
symmetry terms. The model further includes terms corresponding to surface symmetry, charge
diffusion and pairing. Surface symmetry term was introduced by analogy to the original symmetry
term. Charge diffusion corrects the Coulomb contribution to account for the continuous decline of
proton density across the sharp surface. The corresponding surface-thickness parameter d = 0.5461
is assumed to be known from electron-scattering experiments. Finally, the pairing term comes
from the empirical evidence that even-even nuclei are more bound than odd mass nuclei which
are, themselves, more bound than odd-odd nuclei. This term reads,

δ =







11√
A

for N and Z odd

0 for A odd

− 11√
A

for N and Z even.

(7.6)



7.3. SHELL CORRECTIONS 103

So far, the constants which are assumed to be known are summarized in Table 7.1 while the
adjustable parameters are a1, k, a2 and r0.

Table 7.1: The known constants entering the spherical macroscopic model.

MH (MeV) MN (MeV) e2 (MeV·fm) d (fm)

7.28899 8.07144 1.4399764 0.5461

7.3 Shell corrections

We have described the macroscopic part of the model and now follow through with the microscopic
one. So far, no quantum effects have been introduced, however, as previously mentioned, these
can be accounted for through shell corrections.

7.3.1 Strutinsky’s method

The shell corrections are defined as,

∆E =
∑

i

ǫi(Bunched) −
∑

i

ǫi(Unbunched)

= EBunched − EUnbunched,

(7.7)

where the ǫ represent the single-particle energies while the E correspond to the total energies.
Thus, the shell corrections are the energy difference between a bunched and an unbunched level
scheme. On the one hand, the unbunched level scheme is a smooth distribution of single-particle
levels which will be taken to be a degenerate Fermi gas for both protons and neutrons. On the
other hand, the bunched level scheme will be constructed from the unbunched one. The bunching
procedure consists of grouping together levels of the Fermi gas in order to form allowed bands.
Each of the bands constructed through that procedure should, when completely filled, contain a
magic number of either protons or neutrons. Nothing forbids the bunched level scheme to be dif-
ferent for neutrons and for protons, however, for simplicity, we will assume that they are the same.
Of course, a smooth level distribution corresponds to a classical description while a discrete level
distribution corresponds to a quantum description. Therefore, shell corrections can be understood
as semi-classical corrections.

It should be mentioned that, although this model seems to follow the original ideas introduced
by Strutinsky [72,73], it was built a couple of years before. Furthermore, this model starts from an
unbunched level scheme, and, from it, forms the bunched spectrum. Consequently, this implies a
more phenomenological approach than starting from a Nilsson level scheme and then constructing
the unbunched one through a folding procedure which is, truly, at the heart of Strutinsky’s method.
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7.3.2 The smooth distribution of single-particles levels

As already mentioned, the unbunched level scheme will be a Fermi gas. We, hereby, recall the
expression for the energy of nth neutron in such a gas,

ǫn =
~
2

2m

(

3π2 n

V

) 2
3
. (7.8)

Therefore, the total energy of N neutrons is simply

EUnbunched =

∫ N

0

~
2

2m

(

3π2 n

V

)2/3
dn

=
~
2

2mr20

(
9π

4A

)2/3 ∫ N

0
n2/3dn

=
tN

N2/3

∫ N

0
n2/3dn,

(7.9)

where

V =
4

3
πr30A, (7.10)

tN =
~
2

2mr20

(
9π

4

N

A

) 2
3

. (7.11)

The prior expression reduces to

tF =
~
2

2mr20

(
9π

8

) 2
3

, (7.12)

in cases where N = Z. This quantity is introduced for practical reasons.
Notice all these relations remain unchanged for protons and can simply be obtained by replacing

N by Z in the preceding expressions.

7.3.3 The completely bunched spectrum

The bunched level scheme can be constructed from the smooth distribution of single-particle levels.
There are many options regarding that matter, however, the simplest one is retained here. The
idea is to group together a set of smoothly distributed levels in order to form a unique energy
level. By repeating this procedure, one constructs a set of discrete and degenerate levels, i.e., the
bunched spectrum. In a sense, this phenomenological approach leads to the discreteness typically
found in quantum mechanics and to the degeneracy characteristic of the spherical shell model
and associated with angular momentum. Here, only single-particle levels belonging to the smooth
distribution, and lying between levels corresponding to two spherical magic numbers will be part of
the same group. This way all the particle numbers between two magic numbers will contribute the
same energy. Notice this is not the case in the shell model where major shells are not degenerate,
only subshells are. The construction of the bunched spectrum is sketched in Fig. 7.1.
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Figure 7.1: On the left, the smooth distribution of single-particle levels along with the corre-
sponding magic numbers. On the right, the discrete and degenerate spectrum resulting from the
bunching procedure. In this figure, all energies were divided by tN/N2/3.

Here, these two magic numbers will be labelled, respectively, Mi−1 and Mi. The resulting single
energy will be taken to be the weighted average energy between these two magic numbers. The
resulting set of energies can be expressed as

t(n) =
tN

N2/3
q(n) for Mi−1 < n < Mi, (7.13)

where q(n), also known as the staircase function, is given by

q (n) =

∫Mi

Mi−1
n2/3dn

∫Mi

Mi−1
dn

=
3

5

M
5
3
i −M

5
3
i−1

Mi −Mi−1
for Mi−1 < n < Mi. (7.14)

Indeed, this function has the shape of a staircase because it is constant between two magic num-
bers. Thus, the function q(n) is in fact responsible for the bunching. It is represented Fig 7.2
where it is compared to n2/3, describing the smooth distribution of single-particle levels.

Consequently, the total energy of N neutrons in the completely bunched case is simply,

EBunched =
tN

N2/3

∫ N

0
q (n) dn. (7.15)

Again, all these expressions are valid for both protons and neutrons.
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Figure 7.2: The staircase function q(n) (solid blue) and n2/3 (dashed red) are plotted against the
particle number n. The difference between these two curves is proportional to the shell corrections.
In this figure, all energies were divided by tN/N2/3.

7.3.4 Shell correction

From the former discussion, the shell correction energy for the neutrons is

∆EN = EBunched − EUnbunched

=
tN

N2/3

∫ N

0

[

q(n) − n2/3
]

dn.
(7.16)

The total shell correction is simply the sum of the neutron and proton shell corrections which can
be written as

∆E = tF
F (N) + F (Z)
(
1
2A
)2/3

, (7.17)

where

F (N) =

∫ N

0

[

q(n) − n2/3
]

dn. (7.18)

7.3.5 Partial bunching

Despite the fact that solving Schrödinger’s equation for a bound system yields discrete energy
eigenstates, partial bunching of levels rather than complete bunching of the smooth level distri-
bution is sometimes used. In the case of partial bunching, the levels formed from the smooth
distribution are no longer discrete nor degenerate but rather bands, having a width (1 − b) times
their unbunched width. One can show that in cases where incomplete bunching is considered, tF
is simply replaced by btF , in the former expression for the shell corrections. More precisely,

∆E = btF
F (N) + F (Z)
(
1
2A
)2/3

. (7.19)



7.3. SHELL CORRECTIONS 107

7.3.6 Velocity dependent potentials

In the particular case where the depth of the potential v is assumed to be linearly depend on the
kinetic energy of the nucleons, we have that

v = v0 + kt, (7.20)

where v0 and k are constants while t is the kinetic energy. Then, for this velocity-dependent
potential and accounting for partial bunching, the tF should be replaced by (1 + k/n)btF in
the expression for the completely bunched shell corrections. Here, the variable n is the number
of interacting nucleons held responsible for the potential itself. In the following, the product
(1 + k/n)btF will be taken to be an adjustable parameter, namely C. Concretely, this translates
into,

∆E = C
F (N) + F (Z)
(
1
2A
)2/3

. (7.21)

7.3.7 Overall-shift of the bunched energies

It turns out that in order to reproduce experimental data an overall-shift of the bunched energies
is also required. This is accounted for by redefining the staircase function as,

q (n) =
3

5

M
5
3
i −M

5
3
i−1

Mi −Mi−1
− c

22/3
for Mi−1 < n < Mi, (7.22)

where c is an adjustable parameter characterizing the overall-shift and the factor 22/3 is introduced
for convenience. Thus, the contribution of this shift to the shell corrections is simply

−
∫ N
0 c dn +

∫ Z
0 c dn

22/3
(
1
2A
)2/3

= −cA1/3, (7.23)

and the shell correction can now be expressed as

S (N,Z) = C




F (N) + F (Z)

(
1
2A
) 2

3

− cA
1
3



 . (7.24)
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7.4 Macroscopic deformation

The possible deformations for the nucleus are generally associated with shape degrees of freedom
which are incorporated into the spherical liquid drop. The more degrees of freedom are added,
the more complex the shape will possibly be. Here, the simplest possible shape parametrization
was retained. This parametrization is the one allowing for ellipsoidal deformation. The ellipsoidal
shape can be described by the deformation parameter σ and the shape parameter γ, respectively,
characterizing quadrupole deformation and non-axiality. Those two parameters define the semi-
axes of the ellipsoidal shape through,

a = R0 exp

[

σ cos

(

γ − 2

3
π

)]

,

b = R0 exp

[

σ cos

(

γ +
2

3
π

)]

,

c = R0 exp [σ cos (γ)] .

(7.25)

The Jacobian of the transformation from an ellipsoid to a sphere is

abc

R3
0

= exp

[

σ

(

cos

(

γ − 2

3
π

)

+ cos

(

γ +
2

3
π

)

+ cos (γ)

)]

= exp

[

σ

(

cos γ cos
2

3
π + sin γ sin

2

3
π + cos γ cos

2

3
π − sin γ sin

2

3
π + cos γ

)]

= exp

[

σ

(

2 cos (γ) cos

(
2

3
π

)

+ cos (γ)

)]

= exp

[

σ cos (γ)

(

2 cos

(
2

3
π

)

+ 1

)]

= 1.

(7.26)

From this, we realize that this transformation does not change the volume of the nucleus. There-
fore, the volume term will not be affected by deformation. A set of similar computations can be
used to show that this is not the case for the surface and Coulomb contributions.

This is the reason for including the macroscopic deformation functions alongside the c2 and
c3 coefficients in Eq. (7.1). Of course, when no deformation is considered the deformed ellipsoidal
liquid drop should reduce to the spherical one. Hence, with deformation, the macroscopic model
reads

M (N,Z) = MNN + MHZ − c1A + c2 f(σ, γ)A
2
3 + c3 g(σ, γ)

Z2

A1/3
− c4

Z2

A
+ δ. (7.27)

For convenience, one can define another shape parameter α, constructed from σ and γ, through

α2 = σ2

(

1 − 1

7
σ cos (3γ) + O

(
σ2
)
)

, (7.28)

then, the expressions for the functions f and g become

f(α, γ) = 1 +
2

5
α2 − 4

105
α3 cos (3γ) + O

(
α4
)
, (7.29)

g(α, γ) = 1 − 1

5
α2 − 4

105
α3 cos (3γ) + O

(
α4
)
. (7.30)
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The equation (7.29) is, basically, an expression for the surface ratio between an ellipsoid and a
sphere. Therefore, if the ellipsoid’s area surpasses that of a sphere the contribution of the surface
term grows. The equation (7.30) is the same type of ratio for the Coulomb term. Both (7.29)
and (7.30) are third order expansions of integrals which are difficult to compute. Thus, restricting
these expansions to third order may limit the range of validity of the model to small ellipsoidal
deformations. However, note that as deformation grows higher multipoles become important and
the quadrupole approximation breaks down.

7.5 Microscopic deformation

The quantum effects introduced through the shell corrections are also related to the shape of the
nucleus. Indeed, solving the Schrödinger equation for differently shaped potentials, all having
the same volume, yields, in general, different eigenvalues. As they have different shapes these
potentials exhibit different symmetries. The symmetries are at the origin of the degeneracies of
the levels, when those symmetries are broken, due to deformation, the degeneracies disappear
as well. Thus, deformation causes the degenerate discrete levels to spread into many different
energy levels. As the symmetries disappear the degenerate levels scatter away from each other.
When this happens, more and more, different energy levels fill the well and resemble, more and
more, a continuous smooth distribution of levels. Hence, the disappearing of the shell effects with
the deformation away from the spherical shape. Of course, shapes other than the sphere may also
display symmetries as well as degeneracies and could result in significant shell effect as well. These,
however, are neglected here. From the prior argument the shell corrections must be attenuated by
deformation. Thus, the general expression for the shell term is given by

S (N,Z) · exp

[

−(δR)2

a2

]

, (7.31)

where

(δR)2 = R2
0

1

5
α2, (7.32)

is the root-mean-square deviation away from a sphere with an average radius taken as R0 = r0A
1/3.

The variable a is in fact an attenuation factor which is considered to be an adjustable parameter.
As it is difficult to know when and how the symmetry breaking occurs through deformation,
distortions away from the spherical shapes will be taken to be the root-mean-square deviation

noted (δR)2. Notice the root-mean-square is not sensitive to the kind of deformation which is
highly convenient.
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7.6 Macroscopic-microscopic model

We hereby summarize the expressions from the previous sections and provide the complete and
final version of the model considered in the ensuing analysis. Thus, disregarding non-axiality, the
full model reads

M (N,Z, α) = MnN + MHZ

− c1A + c2A
2
3 f(α) + c3

Z2

A
1
3

g(α) − c4
Z2

A
+ δ

+ S (N,Z) exp
(
−α2/α2

0

)
,

(7.33)

where

f(α) = 1 +
2

5
α2 − 4

105
α3, (7.34)

g(α) = 1 − 1

5
α2 − 4

105
α3, (7.35)

α2
0 = 5

(
a

r0

)2

A−2/3. (7.36)

It should be noted that these third order expansions in α only allow for prolate ground-states.
The shell correction function is,

S (N,Z) = C




F (N) + F (Z)

(
1
2A
) 2

3

− cA
1
3



 , (7.37)

where one can show that

F (N) = q(n) (N −Mi−1) −
3

5

(

N
5
3 −M

5
3
i−1

)

for Mi−1 < n < Mi. (7.38)

The model contains 4 macroscopic parameters, namely, a1 , k, a2 and r0, as well as 3 micro-
scopic parameters, specifically, C, c and a. Thus, in total 7 parameters must be adjusted to the
experimental data.

7.7 The adjustment of the model

Previously, a simplified “macroscopic-microscopic” model was presented. In this particular de-
scription, the mass of a nucleus is assumed to be a function of the number of neutrons, protons,
as well as deformation. Consequently, the experimental masses and deformations are required in
order to adjust the model. Using the regression analysis exposed in chapter 5, the macroscopic
parameters a1, k, a2 and r0, as well as the microscopic parameters, C, c and a, are determined,
along with their uncertainties and their correlations.

As usual, empirical data is used in order to adjust the parameters entering the model. The
nuclear masses play a central part in this adjustment, however, they do not allow to constrain
the deformation. Consequently, another observable must be employed in order to do so, i.e., the
electric quadrupole moment.
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7.7.1 The masses

The following results are based on the nuclear binding energies deduced from the atomic mass
excesses found in Refs. [83, 84] for all nuclei satisfying N,Z ≥ 8 and with uncertainties below
150 keV. Furthermore, only selecting those nuclei for which the ground-state electric quadrupole
moment was measured, a total of 457 nuclei were considered.

7.7.2 Electric quadrupole moments

The deformation parameter α can be extracted from electric quadrupole moments. Indeed, the
following expression for the theoretical electric quadrupole moment can be found in Ref. [92],

Q0 =
3√
5π

ZR2β

[

1 +
2

7

√

5

π
β

]

(7.39)

where β is the quadrupole deformation parameter and the average radius was taken to be R=1.19A1/3.
In order to obtain β, from the prior relation, one has to solve a quadratic equation. It turns out,
the only physical solution is

β =
−a1 +

√

a21 + 4a0
2

, (7.40)

where

a1 =
7

2

√
π

5
, (7.41)

a0 =
7πQ0

6ZR2
. (7.42)

Finally, the tie between α and β is taken to be

α =

√

5

4π
β. (7.43)

In the case of axially symmetric nuclei, the theoretical electric quadrupole moment is related
to the measured one through

Q0 =
(I + 1)(2I + 3)

3K2 − I(I + 1)
Qs, (7.44)

where I and K are, respectively, the total spin and the spin projection onto the symmetry-axis.
However, in most cases, it is not possible to know the exact value for K. Here, it was assumed, as
in the original work, that K=I. Thus, the previous expression reduces to,

Q0 =
(I + 1)(2I + 3)

I(2I − 1)
Qs. (7.45)

The total spins I and measured electric quadrupole moments Qs were taken from Ref. [93]. From
them, the values for Q0 were deduced, then, β and α were inferred.
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7.7.3 The regression

In the original work [74], the adjustment of the parameters was achieved separately for the macro-
scopic and microscopic contributions. On the one hand, it was realized that the effects described
by the liquid drop were, in some sense, universal, and described the whole nuclear chart. On the
other hand, deformation and shell corrections were specific to regions of the chart and could vary
rapidly, i.e., neighbouring nuclei could have distinct deformations and shell corrections. Conse-
quently, the macroscopic and microscopic parameters could be considered independent. Thus, an
initial guess for the macroscopic parameters was made, then, using both the experimental masses
and the liquid drop parameters, the microscopic parameters were determined. In the second step,
the microscopic parameters were fixed and the macroscopic ones were adjusted. By repeating these
steps the spherical macroscopic and microscopic parameters were determined. The remaining pa-
rameter a was adjusted afterwards by using the quadrupole moments. In our approach, after an
initial guess of all parameters both macroscopic and microscopic parameters are determined at one
fell swoop. Here, the initial guess was taken to be the converged result from the original work [74].

7.8 The parameters

The root-mean-square deviation is σ̂=1.53 MeV. Adjusting only the macroscopic model while
keeping the same deformation and disregarding the shell corrections leads to a root-mean-square
deviation of σ̂=2.53 MeV. Thus, the inclusion of the shell corrections does, indeed, yield a sig-
nificant improvement in the description of nuclear masses. However, it should be mentioned that
more accurate shell corrections such as those from the Thomas-Fermi model [57], lead to σ̂ ≈
600 keV, as shown in the previous chapter. Nevertheless, this model is very simple and yet, the
improvement is rather serious.

The parameters along with their uncertainties and relative uncertainties are presented in Ta-
ble 7.2. As usual, the uncertainties were inferred from the diagonal of the covariance matrix given
in Table 7.4. When examining the relative uncertainties, the macroscopic parameters are firmly
determined while those describing the shell corrections are more loosely constrained. More specifi-
cally, the overall-shift parameter and the attenuating parameter, i.e., respectively c and a, are not
precisely known.

Table 7.2: The parameters along with their uncertainties and relative uncertainties. The parame-
ters obtained in the original work are presented in the last line [74].

a1 k a2 r0 C c a

p̂ [MeV] 15.63695 1.78798 18.40844 1.21103 3.69404 0.22215 0.28959
û(p̂)[MeV] 0.03529 0.00495 0.13072 0.00434 0.14356 0.02965 0.03597
û(p̂)/p̂ [%] 0.23 0.28 0.71 0.36 3.89 13.35 12.42
p̂ [MeV] from Ref. [74] 15.677 1.79 18.56 1.2049 5.8 0.26 0.325
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The correlations between the parameters are exposed in Table 7.3 as deduced from the co-
variances given in Table 7.4. Again, it is clear that the volume, surface and Coulomb parameters
exhibit strong correlations and form a correlation group. These three parameters are also corre-
lated, to a lesser extent, with the parameter describing isospin dependence, i.e., the volume and
surface symmetry parameter k, which is part of that first group. Furthermore, the shell correction
parameter C is almost uncorrelated with any other parameter. Remember, this was an assumption
made in the original work which is now confirmed by the present analysis. More interesting, are
the existing correlations between the overall-shift parameter c and the attenuating parameter a.
These parameters form the second correlation group. Both c and a were introduced in order to
moderate the shell corrections. Thus, shell effects can be altered by, indifferently, changing c or a,
this is the reason for their correlation. Notice this correlation is negative, clearly showing that if c
is too large to properly determine the shell corrections then a will decrease in order to compensate
the change in c and vice-versa.

Table 7.3: Correlation matrix deduced from the covariance matrix Table 7.4.
Notations: group 1 and group 2 .

a1 k a2 r0 C c a

1.00 0.73 0.97 -0.97 0.15 0.27 -0.18
0.73 1.00 0.74 -0.60 0.21 0.31 -0.22
0.97 0.74 1.00 -0.90 0.18 0.46 -0.31
-0.97 -0.60 -0.90 1.00 -0.12 -0.12 0.09

0.15 0.21 0.18 -0.12 1.00 0.26 -0.39
0.27 0.31 0.46 -0.12 0.26 1.00 -0.71

-0.18 -0.22 -0.31 0.09 -0.39 -0.71 1.00

Table 7.4: Covariance matrix for the parameters.

a1 k a2 r0 C c a

0.0012450119 0.0001273946 0.0044954844 -0.0001482834 0.0007801377 0.0002802700 -0.0002276940
0.0001273946 0.0000244730 0.0004767682 -0.0000129862 0.0001483606 0.0000459051 -0.0000394312
0.0044954844 0.0004767682 0.0170887151 -0.0005115828 0.0032982450 0.0017919812 -0.0014759566

-0.0001482834 -0.0000129862 -0.0005115828 0.0000188338 -0.0000756432 -0.0000157301 0.0000145733
0.0007801377 0.0001483606 0.0032982450 -0.0000756432 0.0206094480 0.0011127571 -0.0020027538
0.0002802700 0.0000459051 0.0017919812 -0.0000157301 0.0011127571 0.0008791023 -0.0007569549

-0.0002276940 -0.0000394312 -0.0014759566 0.0000145733 -0.0020027538 -0.0007569549 0.0012938005
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7.9 The theoretical ground-state masses

In the last section, the parameters, their uncertainties and correlations were presented and com-
mented. We now follow through with their propagation onto the theoretical binding energies.
Naturally, this leads us to the ground-state masses along with their uncertainties and correlations.

As in the study focusing on the liquid drop (cf. chapter 6), the uncertainties differs from
one nucleus to the other. Indeed, this is made obvious by looking at Fig. 7.3 which shows these
uncertainties for the 457 masses entering the adjustment of the model. The values range from 104
keV to 637 keV with a mean of 178 keV. Notice also the growth of uncertainties away from the
mean proton number of the sample, i.e., 54.9.
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Figure 7.3: Uncertainties in the predicted binding energies (blue dots) as a function of proton
number Z along with the mean of the uncertainties (red line). Inferred from the square root of the
diagonal elements of the covariance matrix, i.e., the diagonal elements of Eq. (5.46).

Furthermore, the theoretical masses are all obtained using the same model with the same pa-
rameters, therefore, it is obvious that all masses should be correlated together. This is illustrated
in Fig. 7.4 where the correlations between the mass of 235U and the 457 other masses are shown
(including 235U). In the case of the liquid drop model, the correlations were shown to be very strong
with neighbouring nuclei and to quickly fade away from this region. Likewise, this is also the case
for this phenomenological model. Much more surprising is the fact that correlations between the
mass of 235U and distant nuclei, are not that negligible. For instance, the masses of heavy nuclei
in the region of 65 < Z < 80 and 90 < N < 110 or those of light nuclei in the region of 8 < Z < 20
and 8 < N < 25 are quite correlated with the mass of 235U. Note that these regions are in between
magic numbers. Moreover, the global structure of the correlations between the masses is more
difficult to comprehend. This is related to local effects due to both deformation and shell effects
which were disregarded in the liquid drop analysis.
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Figure 7.4: Correlations between the theoretical binding energy of 235U and the other 457 binding
energies. Notice the correlations in the region of 235U and their downfall away from this region
with the exceptions of heavy nuclei in the region 65 < Z < 80 and 90 < N < 110, as well as light
nuclei in the region 8 < Z < 20 and 8 < N < 25.

Comparing the results of this study to the ones obtained in the previous chapter, we see that the
uncertainties have significantly increased with the inclusion of quadrupole deformation and shell
corrections. This can be partially explained by the increase in σ̂. However, these uncertainties
are still insufficient to include the errors of the model. This is shown Fig. 7.5 where the errors are
depicted and compared with the mean uncertainty. Since the shell corrections were not included
in the study concerning the liquid drop model, we were lead to believe that their inclusion should
result in a significant growth of the uncertainties and that the latter should reach, more or less,
the magnitude of the errors. Here, however, the shell corrections were included and yet the issue
remains unresolved, i.e., the root-mean-square (RMS) is still 9 times larger than the mean of
the uncertainties (MU). Only 30% of the 457 experimental masses, entering the regression, fall
within the theoretical uncertainties when assuming a 99.7% level of confidence. Thus, the analysis
disproves the model and shows that most masses do in fact require a more complex theoretical
treatment in order to be properly described.
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Figure 7.5: The errors (ǫ̂ = BExp −X · p̂) restricted to ǫ̂ ∈ [-5.7;5.7] MeV are shown (blue dots)
as a function of proton number Z. The mean error (red line) as well as the standard deviation of
the errors (red band) are also displayed.

Table 7.5 contains the best and the worst examples the model can provide. The lower-half of the
table, containing the worst examples, consists mostly of light nuclei while the upper-half consists
of mid-mass nuclei. This confirms the fact that although capable of describing heavier systems, the
liquid drop model struggles with the description of light nuclei where the structural effects prevail
over the statistical mechanical ones. More importantly, the uncertainties are relatively constant
and, because of their statistical nature, struggle to reflect the predictive capabilities of the model.

Table 7.5: Comparison of experimental and theoretical binding energies in MeV. The table is
divided in two by a horizontal line. Above, the 5 binding energies which are best reproduced by
the model, below, the 5 binding energies which are worst reproduced by the model. All nuclei in
the table were part of the regression.

N Z BExp BTh

100 71 1382.095517 1382.096801 ± 0.261098
65 54 996.841874 996.844858 ± 0.138962
30 25 482.049012 482.045308 ± 0.149996
52 37 771.039232 771.043621 ± 0.112122
41 36 663.426617 663.418327 ± 0.143238

25 20 388.359672 392.862662 ± 0.193628
11 11 174.141948 169.610653 ± 0.247345
13 12 205.584076 200.675385 ± 0.246627
13 13 211.889292 206.602533 ± 0.355101
14 13 224.947442 219.232098 ± 0.242517
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Up to now, it was assumed that the ground-state deformation was known. Of course, as previ-
ously discussed, this is the case for the nuclei entering the adjustment of the model. However, there
are many nuclei for which this deformation remains unknown and must be determined theoreti-
cally in order to predict their masses. In those prevailing cases, this is achieved by minimizing the
potential energy, i.e., the mass, with respect to deformation. An example of such a minimization
is illustrated in Fig. 7.6 where the mass excess of 208Pb is presented as function of deformation. Of
course, this nucleus is known to be spherical and consequently, its energy minimum corresponds
to the case where there is no deformation, i.e., α=0. Another example may be found in Fig. 7.7
where the mass excess of 238U is given as function of deformation. As can be seen from this figure,
nuclei may also be deformed in their ground-state and need not be spherical. More precisely, the
minimization yields a prolate ground-state with α=0.152.
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Figure 7.6: The mass excess of 208Pb as a function of deformation. The minimization yields a
mass excess of -21.654 MeV at α/α0=0.
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Figure 7.7: The mass excess of 238U as a function of deformation. The minimization yields a mass
excess of 44.691 MeV at α/α0=1.7607.
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7.10 The assessment of the regression hypothesis

As in the liquid drop study, the analysis is based on regression assumptions regarding the distribu-
tion of the errors. More precisely, the errors should follow a Gaussian distribution with zero mean.
This distribution is depicted Fig. 7.8 where the corresponding mean and standard deviation are,
respectively, 6 keV and σ̂ = 1.53 MeV. These values were employed to plot the normal distribution
that exhibits a decent agreement with the histogram representing the distribution of the errors.
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Figure 7.8: Histogram (blue bars) formed of 25 bins restricted to ǫ̂ ∈ [-5.7;5.7] MeV and represent-
ing the distribution of the errors (ǫ̂ = BExp −X · p̂). The normal distribution constructed from
the mean (6 keV) and the standard deviation (σ̂ = 1.53 MeV) of the errors, is also provided (red
line).

The quantile-quantile plot, presented in Fig. 7.9, confirms the normality of the errors. Once
more, the tails of the distribution of the errors do not, strictly, correspond to those of a normal
distribution. Nonetheless, the region around the mean, ǫ̂ ∈ [-2,2] MeV, containing around 90%
of the errors, does follow a normal distribution. Again, this should be enough to insure that the
outcome of this analysis delivers dependable results.
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Figure 7.9: Quantile-quantile plot (blue dots) for the distribution of the errors and the expected
theoretical straight line (dashed blue) in the case where normality is perfectly satisfied.
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Again, since the model does not include an intercept, the mean of these errors does not exactly
vanish. As for the liquid drop model, we now consider the impact of an additional constant pa-
rameter c0 on the previous analysis. A look at Table 7.6 reveals that the parameters are affected
by the additional intercept, not to mention, the parameters c and a are still loosely constrained
and, to an even greater extent, c0 as well.

Table 7.6: The parameters along with their uncertainties and relative uncertainties for the model
with an intercept.

c0 a1 k a2 r0 C c a

p̂ [MeV] 5.24442 15.89887 1.81075 19.63452 1.19013 3.66316 0.17900 0.33129
û(p̂)[MeV] 2.13978 0.11305 0.01060 0.52277 0.00938 0.13974 0.03848 0.04278
û(p̂)/p̂ [%] 40.80 0.71 0.59 2.66 0.79 3.82 21.49 12.91

Naturally, the parameters undergoing the most change should be those strongly correlated with
the intercept, i.e., the macroscopic parameters. A look at the correlation matrix given Table 7.7
confirms this naive intuition. The correlations are altered by the inclusion of the intercept. In par-
ticular, the inclusion of an intercept increases the correlations between all macroscopic parameters,
i.e., the volume, the surface, Coulomb and symmetry parameters, all of which are very strongly
correlated with the intercept. Nevertheless, the correlation group structure remains unchanged.
The four macroscopic parameters form a correlation group along with the intercept. As before,
the second group consists of the overall-shift and attenuation parameters. Although they are not
directly correlated with the intercept, the overall-shift and attenuation parameters, also change.
This is a consequence of the deformation which enters both the macroscopic and the microscopic
contributions. Recall that in this analysis, deformation is assumed known from electric quadrupole
moments, and therefore, is not an adjustable parameter. Thus, if the macroscopic parameters are
correlated to the intercept they will change and in turn, since deformation is fixed, the microscopic
parameter a responsible for the description of microscopic deformation will change as well. Finally,
as already mentioned, a and c are responsible for the moderation of shell corrections and as such
are correlated, therefore, the change in a will, definitely, induce a change in c.

With the additional intercept, the standard deviation of the errors remains unchanged, i.e.,
σ̂ = 1.53 MeV, while the mean uncertainty increases and becomes MU=187 keV. Again, only 30%
of the experimental masses, entering the regression, are correctly reproduced and fall within the
theoretical uncertainties when assuming a 99.7% level of confidence. Although the inclusion of the
intercept does change the previous results, these effects are not significant.
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Table 7.7: Correlation matrix deduced from the covariance matrix Table 7.8 for the model with
an intercept. Notations: group 1 and group 2 .

c0 a1 k a2 r0 C c a

1.00 0.94 0.88 0.96 -0.90 -0.02 -0.39 0.24
0.94 1.00 0.94 0.99 -0.99 0.04 -0.28 0.16
0.88 0.94 1.00 0.94 -0.92 0.08 -0.20 0.10
0.96 0.99 0.94 1.00 -0.97 0.03 -0.25 0.14
-0.90 -0.99 -0.92 -0.97 1.00 -0.05 0.28 -0.17
-0.02 0.04 0.08 0.03 -0.05 1.00 0.27 -0.37
-0.39 -0.28 -0.20 -0.25 0.28 0.27 1.00 -0.76
0.24 0.16 0.10 0.14 -0.17 -0.37 -0.76 1.00

Table 7.8: Covariance matrix for the parameters for the model with an intercept.

c0 a1 k a2 r0 C c a

4.5786805061 0.2296977834 0.0200871148 1.0803260309 -0.0179590060 -0.0032911282 -0.0315007617 0.0223479780
0.2296977834 0.0127810949 0.0011351442 0.0588536712 -0.0010438759 0.0006604539 -0.0011849194 0.0007925102
0.0200871148 0.0011351442 0.0001122817 0.0052305823 -0.0000911112 0.0001309628 -0.0000778973 0.0000479548
1.0803260309 0.0588536712 0.0052305823 0.2732892658 -0.0047377677 0.0028439207 -0.0048865862 0.0031375015

-0.0179590060 -0.0010438759 -0.0000911112 -0.0047377677 0.0000878918 -0.0000625250 0.0001018073 -0.0000674291
-0.0032911282 0.0006604539 0.0001309628 0.0028439207 -0.0000625250 0.0195277012 0.0014920870 -0.0022118866
-0.0315007617 -0.0011849194 -0.0000778973 -0.0048865862 0.0001018073 0.0014920870 0.0014802894 -0.0012499882
0.0223479780 0.0007925102 0.0000479548 0.0031375015 -0.0000674291 -0.0022118866 -0.0012499882 0.0018303145

7.11 The theoretical saddle-point masses

As opposed to the model used in the previous chapter, the macroscopic contribution considered
here does contain a deformation degree of freedom, i.e., the variable α. Therefore, it becomes pos-
sible to exploit this, in order to make symmetric fission barriers calculations accompanied by their
uncertainties. Of course, the third order expansions in the deformation may restrict the accuracy
of the predictions in a significant manner. Another limiting factor comes from the fact that the
saddle-point corresponds, in most cases, to large values of α, consequently, the attenuating expo-
nential completely kills the shell corrections at the saddle. Thus, the saddle-point shell corrections
are simply neglected in this theoretical description. It should be mentioned that today’s fission
barrier calculations involve many deformation degrees of freedom, thus, allowing the system to
follow extremely intricate fission paths, going way beyond the range of capabilities of the model
considered here.

The fission barrier is defined as,

Bf = MSP −MGS , (7.46)

where MSP and MGS are, respectively, the saddle-point and ground-state masses.
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As described earlier on, the ground-state mass is obtained by minimizing the energy with
respect to deformation. The saddle-point mass is obtained by finding the smallest energy peak
that restricts deformation and forbids fission. Extending the Figs. 7.6 and 7.7 to account for larger
deformations, saddle-points naturally appear. This is illustrated in Figs. 7.10 and 7.11 where the
ground-state, the saddle-point and the corresponding fission barrier are shown.

Bf

-5 0 5 10 15 20

α/α0-20

-10

0

10

20

Mass (MeV)

Figure 7.10: The mass excess of 208Pb as a function of deformation. The ground-state mass (red
dashed line) is -21.654 MeV at α/α0=0. The saddle-point mass (green dashed line) is 10.483 MeV
at α/α0=9.9054. The resulting fission barrier (black brace) is 32.137 MeV which is to be compared
with Möller’s calculation 24.95 MeV [50].
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Figure 7.11: The mass excess of 238U as a function of deformation. The ground-state mass (red
dashed line) is 44.691 MeV at α/α0=1.7607. The saddle-point mass (green dashed line) is 52.381
MeV at α/α0=7.7718. The resulting fission barrier (black brace) is 7.69 MeV which is to be
compared with Möller’s calculation 5.63 MeV [50].
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The uncertainties in the fission barrier can be decomposed into

u2 (BF ) = u2 (MSP ) + u2 (MGS) − 2u (MSP ,MGS) , (7.47)

where

u2 (MSP ) = JSP ·Cov[p] · JT
SP , (7.48)

u2 (MGS) = JGS ·Cov[p] · JT
GS , (7.49)

u (MSP ,MGS) = JSP ·Cov[p] · JT
GS , (7.50)

with

JSP =

[
∂M

∂a1
,
∂M

∂k
, . . . ,

∂M

∂a

]

, (7.51)

JGS =

[
∂M

∂a1
,
∂M

∂k
, . . . ,

∂M

∂a

]

, (7.52)

which are, respectively, evaluated at the saddle-point and ground-state deformations. Further-
more, the parameters also take their final estimated value, i.e., after their convergence has been
insured by the nonlinear regression procedure [67, 68].

From the previous explanations we know how to determine both the fission barriers and their
uncertainties. An illustration of such calculations is given Table 7.9 where the fission barriers and
their associated uncertainties are listed for the plutonium isotopes. The results obtained here are
compared with Möller’s calculations [50]. These two outcomes differ, on average, by a little less
than 1 MeV and the uncertainties seem to demonstrate the incompatibility of the two outcomes
when assuming the barriers from Ref. [50] have no uncertainties. Since subtracting both results
does not yield a constant, the models appear to follow different trends.

This analysis based on plutonium isotopes allows us to give a rough estimate of the uncertainties
in the fission barriers. Here, we shall retain that the overall uncertainty in the fission barrier is of
the order of 0.5 MeV.
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Table 7.9: Fission barriers for plutonium isotopes, extending from 228Pu to 247Pu, are reported
and compared with those obtained in Ref. [50].

A Z Bf BM
f from Ref. [50] Bf −BM

f

228 94 4.31 ± 0.44 2.93 1.38
229 94 4.40 ± 0.44 2.95 1.45
230 94 4.50 ± 0.44 3.07 1.43
231 94 4.60 ± 0.44 3.05 1.55
232 94 4.70 ± 0.45 3.23 1.47
233 94 4.81 ± 0.45 3.50 1.31
234 94 4.92 ± 0.46 3.83 1.09
235 94 5.03 ± 0.46 4.09 0.94
236 94 5.13 ± 0.46 4.49 0.64
237 94 5.24 ± 0.47 5.00 0.24
238 94 5.35 ± 0.47 5.26 0.09
239 94 5.45 ± 0.48 5.74 -0.29
240 94 5.56 ± 0.48 5.98 -0.42
241 94 5.66 ± 0.48 6.35 -0.69
242 94 5.77 ± 0.49 6.41 -0.64
243 94 5.87 ± 0.49 6.66 -0.79
244 94 5.97 ± 0.50 6.59 -0.62
245 94 6.07 ± 0.50 6.93 -0.86
246 94 6.17 ± 0.50 7.07 -0.90
247 94 6.26 ± 0.51 7.12 -0.86

7.12 Constraining shell correction energies

Previously, in chapter 6, we deduced empirical constraints on the shell corrections. This was
achieved by assuming that the last mass in an α decay chain was know and then extracting the
experimental masses along with their uncertainties from measured Qα-values. Just before that an
uncertainty analysis of the liquid drop model was provided. In turn, this allowed us to predict
the nuclear masses with their corresponding uncertainties. Shell corrections were then inferred by
subtracting the liquid drop contribution to the experimental mass. The uncertainty propagation
from both, the experimental masses and the liquid drop masses, lead us to decisive theoretical
constraints on the shell corrections. In this section, we repeat this study for the phenomenological
“macroscopic-microscopic” model considered in this chapter. The same two α decay chain are
considered here and every single step of the study is done in the exact same way it was described
in chapter 6. The respective outcomes for the two decay chains are reported in Tables 7.10 and 7.11.

The uncertainties obtained here are far larger than those obtained with the liquid drop model.
On can now see that in the case of the first decay chain (cf. Table 7.10) the theoretical uncertainty
is about the size of the experimental one. In the case of the second decay chain (cf. Table 7.11)
the dominating uncertainty comes from the model.
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Nevertheless, the constraints on the shell corrections range from 0.5 MeV to 1 MeV. Thus, the
conclusions of the two outcomes are rather different. Notice also that the theoretical shell correc-
tions are smaller than the experimental ones. This is due to the fact that superheavy nuclei are
known to be strongly deformed and in the model considered here the shell corrections vanish with
increasing deformation.

Table 7.10: Table containing the results concerning the first decay chain along with their un-
certainties. The Qα-values and their uncertainties were taken from Ref. [89] and ∆mExp(267Rf)
from Refs. [83,84]. The last column gives the theoretical SCETh obtained with the “macroscopic-
microscopic” model considered here. All quantities are given in MeV. Results are obtained in
the quadratic approximation otherwise it is well known that fission barriers vanish for superheavy
elements. Since the microscopic parameters and the macroscopic ones are correlated, it is not
possible to give separate uncertainties for both contributions. Thus, the uncertainties in ∆mLD

are those of the entire model, including the shell corrections.

Nuclei Qα ∆mExp ∆mLD SCE SCETh

267
104Rf - 113.440±0.580 110.735±0.526 2.705±0.783 0.269
271
106Sg 8.67±0.08 124.535±0.585 121.575±0.565 2.960±0.813 0.236
275
108Hs 9.44±0.06 136.400±0.589 133.023±0.611 3.377±0.849 0.202
279
110Ds 9.84±0.06 148.665±0.592 145.071±0.662 3.594±0.888 0.168
283
112Cn 9.67±0.06 160.760±0.595 157.714±0.718 3.046±0.933 0.133
287
114Fl 10.16±0.06 173.345±0.598 170.942±0.773 2.403±0.977 0.099
291
116Lv 10.89±0.07 186.659±0.602 184.727±0.772 1.932±0.979 0.064

Table 7.11: Table containing the results concerning the second decay chain along with their un-
certainties. The Qα-values and their uncertainties were deduced from the α particle’s energies
presented in Ref. [91] and ∆mExp(257No) from Refs. [83,84]. The last column gives the theoretical
SCETh obtained with the “macroscopic-microscopic” model considered here. All quantities are
given in MeV. Results are obtained in the quadratic approximation otherwise it is well known that
fission barriers vanish for superheavy elements. Since the microscopic parameters and the macro-
scopic ones are correlated, it is not possible to give separate uncertainties for both contributions.
Thus, the uncertainties in ∆mLD are those of the entire model, including the shell corrections.

Nuclei Qα ∆mExp ∆mLD SCE SCETh

257
102No - 90.247±0.007 89.163±0.449 1.084±0.449 0.294
261
104Rf 8.65±0.02 101.322±0.021 100.268±0.491 1.054±0.492 0.259
265
106Sg 8.84±0.03 112.587±0.037 111.968±0.538 0.619±0.539 0.225
269
108Hs 9.35±0.02 124.362±0.042 124.257±0.592 0.105±0.594 0.190
273
110Ds 11.31±0.02 138.097±0.046 137.131±0.654 0.966±0.656 0.155
277
112Cn 11.42±0.02 151.942±0.050 150.584±0.724 1.358±0.726 0.120
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7.13 Modern macroscopic-microscopic model

As already mentioned, there are other available models which are far superior to the one we have
considered here. With this idea in mind, we started investigating the uncertainties in Warsaw’s
macroscopic-microscopic model described in Ref. [51]. The differences between Warsaw’s model
and the one considered in this chapter are significant to say the least. Indeed, the macroscopic
part of the model examined here only includes one deformation degree of freedom while Warsaw’s
model considers ten. Furthermore, the impact of these complex deformations on the surface and
Coulomb contributions are obtained through the explicit calculations of integrals whereas here
they were simply expressed as third order expansions. On the one hand, Warsaw’s model is based
on a microscopic potential and from this potential shell corrections are deduced using Strutinsky’s
method. On the other hand, the model from this chapter does not contain a microscopic poten-
tial and the shell corrections are obtained by bunching levels of a Fermi gas. Finally, Warsaw’s
model includes pairing correlations within the Bardeen-Cooper-Schrieffer theory while there is no
microscopic pairing in the phenomenological model we have studied. It should be noted that
the macroscopic and microscopic parts of Warsaw’s model were adjusted separately. The micro-
scopic part was fitted on a few selected nuclei for which the single-particle spectra is particularly
well-known while the macroscopic part was adjusted on the masses of heavy nuclei, i.e., Z ≥ 84 [51].

As already mentioned, we started to investigate the uncertainties in Warsaw’s macroscopic-
microscopic model. Up to now, we have concentrated our efforts on the macroscopic part of this
model. However, the analysis is more complicated than for the models we have examined so far.
Notice that in all of our previous analyses, experimental data was required in order to adjust
the model. Our preliminary tests on a few macroscopic parameters, have shown that Warsaw’s
model is so finely tuned that minor changes in the experimental data used in the adjustment may
have important consequences on the outcome of our analysis. Furthermore, since this model was
adjusted many years ago, knowing precisely what data was used is very difficult. So far, we did
not manage to reach satisfying results, i.e., the parameters obtained were not compatible (up to
uncertainties) with those currently used. However, this analysis is still underway and we hope
that the issues we have encountered will quickly be resolved by finding a suitable set of data for
the adjustment of this realistic model.

7.14 Conclusion

In this chapter, we have studied the uncertainties in a simple phenomenological “macroscopic-
microscopic” model. Although the model we have considered here is very simple it allowed us to
account for some of the effects that were previously neglected in our analysis of the liquid drop
model. More specifically, this model included shell corrections as well as a single deformation
degree of freedom that described quadrupole deformations. Thus, we were able to determine the
uncertainties in the ground-state and saddle-point masses which were then propagated onto the
fission barriers. Note that the correlations between the ground-state and saddle-point masses are
important and that they were accounted for in this analysis. Finally, we have seen that within this
model, the uncertainties in the fission barriers were rather stable and about 0.5 MeV. Although in
this thesis we have only presented the results for the plutonium isotopes, it should be mentioned
that other similar results were obtained in the actinide region.





Chapter 8

Uncertainties in the capture step

As mentioned in chapter 2, fusion of heavy nuclei is divided into two steps, the first of which
is known as the capture phase and essentially describes how the system overcomes the Coulomb
barrier. The present chapter consists of an uncertainty analysis of the capture model presented
in chapter 2. It is crucial to remember that our goal is to constrain the formation step and the
analysis presented in this chapter plays an important part in our strategy. As in the previous
chapters, this uncertainty analysis is based on regression analysis presented in chapters 4 and 5.
Before jumping into this investigation and without duplicating all of the content formerly discussed
in chapter 2, a brief summary of the major equations and of the way they enter the following study,
may come in handy.

8.1 Equations and methodology

8.1.1 Summary of the major equations

As seen in chapter 2, the capture cross-section is expressed as

σcap =
πR2σB√
2πEcm

[

X
√
π(1 + erf(X)) + e−X2

]

, (8.1)

where

X =
Ecm −B0√

2σB
. (8.2)

The cross-section normalization parameter, the mean barrier and the width of barrier distribution
are, respectively, given by

R = r0(A
1/3
1 + A

1/3
2 ), (8.3)

B0 = az + bz2 + cz3, (8.4)

σB = CB0

√

W 2
1 + W 2

2 + W 2
0 . (8.5)

The Coulomb parameter is defined as z = Z1Z2/(A
1/3
1 + A

1/3
2 ) and W 2

i = R2
i β

2
2i/(4π) with Ri =

1.15A1/3 and i = 1, 2. Thus, the parameters that have to be determined in order to make capture
cross-section predictions are: r0, a, b, c, C, W0.
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8.1.2 The methodology of the analysis

In order to determine the parameters entering the capture model, one must rely on experimental
data. It is possible to extract the “experimental” barrier distribution by directly fitting Eq. (8.1)
to well measured capture cross-sections. Consequently, for each reaction, one ends up with three
values for Rexp, Bexp

0 and σexp
B . It should be stressed that these values are specific to a single

reaction. This extraction has been done in Ref. [94] where 48 reactions have been analysed in
this way. The values obtained in Ref. [94] are reproduced in Table 8.1. It should be noted that
the quadrupole deformations of the two colliding nuclei enter the expression for the width of the
barrier distribution σB. These were taken from the tables of Möller [49] and are reproduced in
Table 8.1.

These two sets of data, i.e., the “experimental” barrier distributions and quadrupole defor-
mations, are at the heart of the forthcoming uncertainty analysis. It is important to notice that
both, the “experimental” barrier distributions as well as the quadrupole deformations, should be
accompanied by their respective uncertainties. However, these uncertainties are, at the moment,
unavailable. Therefore, in our analysis we consider these quantities to be perfectly well defined
and so, we neglect the fact that they could have uncertainties.

Now that we have described the data that we are about to use, we would like to explain how
the next analysis is structured. The analysis is divided into three regressions:

1. The parameter r0 is determined based on the “experimental” values for Rexp.

2. The parameters a, b and c are obtained using the “experimental” values for Bexp
0 .

3. The parameters C and W0 are determined using the “experimental” values for σexp
B .

It is important to realize that the mean barrier enters the expression of the width of the dis-
tribution, cf. Eq. (8.5). Therefore, the results from step 2 must be used in step 3. We would
like to stress that in step 2 the uncertainties in a, b and c, are obtained. However, in our anal-
ysis, these are not propagated onto step 3. Thus, only the parameters a, b and c, are used in
step 3 but not their uncertainties. In all three regressions, the uncertainties as well as the corre-
lations between the parameters are obtained through regression analysis, as explained in chapter 5.

Once the uncertainties in the parameters have been determined, then, one can propagate them
onto the parameters describing the theoretical barrier distribution, i.e., R, B0 and σB. Finally,
these uncertainties are, themselves, propagated onto σcap. In turn, this allows us to predict capture
cross-sections accompanied by their uncertainties. Let us mention that, in the coming analysis,
the propagation of uncertainties is done according to chapter 4 and in particular, using Eq. (4.42).

In this chapter, we investigate the uncertainties in the capture cross-section in three different
ways. Thus, this chapter is composed of three parts. Part I, is based on linear regression. In this
first part, only the “experimental” barrier distributions and the quadrupole deformations are used.
Part II is also based on linear regression and on the same quadrupole deformations. However, the
“experimental” barrier distributions will be supplemented by theoretical mean barriers. The rea-
sons for including this additional data will be discussed later. Finally, in part III, we use the same
set of data that in part II. However, in this third part, we use nonlinear regression instead. This
allows us to quantify the effects of nonlinearity on the previous results.
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8.2 Part I

Linear regression with “experimental” data

We now present the first part of our analysis, based on linear regression and on the data contained
in Table 8.1. This table contains the “experimental” barrier distribution parameters from Ref. [94]
as well as the quadrupole deformations from Ref. [49].

Reaction A1 Z1 A2 Z2 Bexp
0 σexp

B Rexp β1 β2
Number (i,j) (MeV) (MeV) (fm)

1 48 20 48 20 51.2 1.11 11.2 0 0
2 30 14 64 28 51.4 1.38 9.6 0 -0.087
3 30 14 62 28 52.1 1.55 9.7 0 -0.096
4 28 14 64 28 50.4 1.12 7.6 -0.478 -0.087
5 28 14 62 28 51.3 1.20 7.7 -0.478 -0.096
6 30 14 58 28 52.8 1.59 8.8 0 0
7 40 20 48 20 51.8 1.78 11.5 0 0
8 28 14 58 28 52.9 1.32 8.1 -0.478 0
9 40 20 44 20 51.8 1.59 7.9 0 0
10 40 20 40 20 53.6 1.60 9.5 0 0
11 36 16 64 28 56.8 1.17 8.5 0 -0.087
12 34 16 64 28 56.9 1.25 8.5 0 -0.087
13 40 20 50 22 57.3 1.72 9.4 0 0
14 40 20 48 22 57.1 1.50 9.4 0 0
15 32 16 64 28 57.3 1.57 8.1 0 -0.087
16 36 16 58 28 58.4 1.53 7.7 0 0
17 40 20 46 22 57.3 1.45 9.4 0 0
18 16 8 154 62 58.4 2.25 9.6 0.021 0.270
19 34 16 58 28 58.5 1.25 7.6 0 0
20 17 8 144 62 60.6 2.06 10.8 0.107 0
21 16 8 148 62 59.4 1.98 10.2 0.021 0.161
22 32 16 58 28 59.6 1.35 8.3 0 0
23 16 8 144 62 60.5 1.45 10.3 0.021 0
24 16 8 186 74 68.3 2.29 10.6 0.021 0.230
25 16 8 208 82 73.6 1.57 10.5 0.021 0
26 36 16 96 40 74.9 1.34 11.0 0 0.217
27 36 16 90 40 77.0 1.24 10.8 0 0.035
28 36 16 110 46 85.5 1.91 8.2 0 0.218
29 32 16 110 46 86.3 2.63 8.0 0 0.218
30 64 28 64 28 92.7 1.58 7.8 -0.087 -0.087
31 58 28 64 28 94.6 2.18 6.5 0 -0.087
32 40 20 96 40 93.6 2.65 9.3 0 0.217
33 58 28 60 28 96.6 1.93 7.5 0 0.027
34 40 20 90 40 96.1 1.53 10.0 0 0.035
35 58 28 58 28 95.8 1.18 6.0 0 0
36 40 18 122 50 103.6 2.58 9.8 0 0
37 40 18 116 50 103.3 2.23 8.7 0 0
38 40 18 112 50 104.0 2.26 8.9 0 0.018
39 64 28 74 32 103.2 1.97 6.5 -0.087 -0.224
40 58 28 74 32 106.8 2.96 7.0 0 -0.224
41 40 20 124 50 113.4 2.75 9.6 0 0
42 28 14 198 78 120.9 3.41 9.8 -0.478 -0.139
43 34 16 168 68 121.5 4.21 10.3 0 0.294
44 40 18 154 62 121.0 3.40 7.3 0 0.270
45 40 18 148 62 124.7 3.15 8.5 0 0.161
46 40 18 144 62 124.4 2.19 8.3 0 0
47 40 20 192 76 167.9 5.46 10.7 0 0.155
48 40 20 194 78 171.0 4.12 9.6 0 -0.148

Table 8.1: The “experimental” barrier distribution parameters obtained in Ref. [94] from 48 mea-
sured cross-sections are reproduced. The respective quadrupole deformations come from Ref. [49].
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8.2.1 Parameters

Since the relationship between r0 and R is linear, then, r0 and its uncertainty are easily determined
using multiple regression (cf. chapter 5). Similarly, a, b and c, are linearly related to B0, so they
can also be obtained in this way. The parameters along with their uncertainties and relative
uncertainties are presented in Table 8.2. Examining the relative uncertainties, we see that r0 and
a are firmly determined while b and c are more loosely constrained.

r0 a b c

p̂ 1.147 fm 0.918436 MeV -0.0000963 MeV 0.000003898 MeV
û(p̂) 0.027 fm 0.013668 MeV 0.0002567 MeV 0.000001136 MeV
|û(p̂)/p̂| 2.3 % 1.5 % 37.5 % 29.1 %

Table 8.2: Values and uncertainties of the parameters obtained through multiple regression using
exclusively the “experimental” data from Table 8.1.

The correlations between the parameters a, b and c, are presented in Table 8.3 as deduced
from the covariance matrix given in Table 8.4. It is clear that all three parameters are strongly
correlated. Notice that parameters can only be correlated if they were determined from a common
set of data. For instance, a, b and c, are correlated because they were all determined from the
“experimental” mean barriers. This also explains why there are no correlations between r0 and a,
for instance.

a b c

1.00 -0.98 0.93
-0.98 1.00 -0.99
0.93 -0.99 1.00

Table 8.3: Correlation matrix between the coefficients a, b and c, obtained through multiple
regression using exclusively the “experimental” data from Table 8.1. In dimensionless units.

a b c

1.8683e-04 -3.4333e-06 1.4518e-08
-3.4333e-06 6.5913e-08 -2.8766e-10
1.4518e-08 -2.8766e-10 1.2924e-12

Table 8.4: Covariance matrix between the coefficients a, b and c, obtained through multiple re-
gression using exclusively the “experimental” data from Table 8.1. In MeV2 units.
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Notice that the relationship between W0 and σB is not linear. Consequently, in order to use
linear regression, we must rewrite Eq. (8.5) as

y = p1x1 + p2x2, (8.6)

where y = (σexp
B )2 with the new parameters defined as p1 = C2 and p2 = C2W 2

0 while the new
variables are given by X1 = B2

0(W 2
1 + W 2

2 ) and X2 = B2
0 . This transformed expression enables

us to use linear regression. Notice that through this method, we determine the uncertainties in p1
and p2, instead of those in C and W0. Therefore, we must propagate the uncertainties in p1 and
p2 onto C and W0. Doing so, leads to the following expressions for the variances,

u2(C) =
u2(p1)

4p1
, (8.7)

u2(W0) =
[

−
√
p2

2(β1)3/2
1

2
√
p1p2

] [ u2(p1) u(p1, p2)
u(p1, p2) u2(p2)

] [

−
√
p2

2(p1)3/2
1

2
√
p1p2

]T
, (8.8)

where u2(p1), u
2(p2) and u(p1, p2), were directly obtained from multiple regression.

The parameters, their uncertainties and relative uncertainties are presented in Table 8.5. In-
specting the relative uncertainties, we identify that both C and W0 are not precisely determined.
As mentioned in Ref. [94], the widths of the barrier distributions are not very well reproduced by
the model. Thus, the fact that the width parameters are not tightly constrained should not be a
surprise (cf. chapter 2).

C W0

p̂ 0.0432 fm−1 0.531 fm
û(p̂) 0.0048 fm−1 0.079 fm
|û(p̂)/p̂| 11.1 % 14.9 %

Table 8.5: Values and uncertainties of the parameters obtained through multiple regression using
exclusively the “experimental” data from Table 8.1.

The covariance is given by

u(C,W0) =
[

1
2
√
p1

0
] [ u2(p1) u(p1, p2)

u(p1, p2) u2(p2)

] [

−
√
p2

2(p1)3/2
1

2
√
p1p2

]T
. (8.9)

From the previous expression, we find that the covariance is u(C,W0) = −3.7190 × 10−4 and the
correlation coefficient is equal to -0.98. Therefore, the width parameters are extremely correlated.
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8.2.2 Predictions of R, B0 and σB for a given reaction

We have previously determined all the parameters entering the capture model along with their
uncertainties and their correlations. Therefore, we can now propagate these uncertainties onto R,
B0 and σB. The propagation of these uncertainties leads us to

u2(R) =

[

(A
1
3
1 + A

1
3
2 )

]

u2(r)

[

(A
1
3
1 + A

1
3
2 )

]T

, (8.10)

u2(B0) =
[
z z2 z3

]





u2(a) u(a, b) u(a, c)
u(a, b) u2(b) u(b, c)
u(a, c) u(b, c) u2(c)




[
z z2 z3

]T
, (8.11)

u2(σB) =






C
√

W 2
1 + W 2

2 + W 2
0

B0

√

W 2
1 + W 2

2 + W 2
0

CB0W0√
W 2

1+W 2
2+W 2

0






T 



u2(B0) 0 0
0 u2(C) u(C,W0)
0 u(C,W0) u2(W0)










C
√

W 2
1 + W 2

2 + W 2
0

B0

√

W 2
1 + W 2

2 + W 2
0

CB0W0√
W 2

1+W 2
2+W 2

0




 . (8.12)

The theoretical values for R, B0 and σB, are reported in Table 8.6 with their uncertainties and
for every reaction in Table 8.1. Notice that most of these predictions are incompatible with their
corresponding “experimental” values. Nevertheless, it should be noted that the distance between
theory and “experiment” is rather significant for σB while being much more minor for R and B0.
This was already noticed in Ref. [94] where it was graphically shown that the model is capable of
accurately reproducing the mean barriers and that the widths of the distributions are not so finely
reproduced (cf. Figs. 2.1a and 2.1b in chapter 2). Additionally, one may argue that, although
Rexp, Bexp

0 and σexp
B , are not perfectly reproduced, it does not imply that the cross-section will

suffer from the same imperfections. Indeed, all three quantities enter the cross-section prediction
and the correlations, involving the mean barrier and the width of the barrier distribution, may
resolve part of these issues.

The covariance between the mean barrier and the width of the barrier distribution is given by

u(B0, σB) = C
√

W 2
1 + W 2

2 + W 2
0 u2(B0). (8.13)

It turns out that this quantity enters the variance of the capture cross-section as

u2(σcap) =
[
∂σcap

∂R
∂σcap

∂B0

∂σcap

∂σB

]





u2(R) 0 0
0 u2(B0) u(B0, σB)
0 u(B0, σB) u2(σB)





[
∂σcap

∂R
∂σcap

∂B0

∂σcap

∂σB

]T
, (8.14)

where

∂σcap
∂R

=

√
2πRσB
Ecm

[

X
√
π(1 + erf(X)) + e−X2

]

, (8.15)

∂σcap
∂B0

= − πR2

2Ecm
(1 + erf(X)), (8.16)

∂σcap
∂σB

=
πR2

√
2πEcm

e−X2
. (8.17)

With the previous expression, it is now possible to predict the capture cross-section with its
uncertainty for any given center-of-mass energy.
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Reaction B0 σB R Bexp
0 σexp

B Rexp

Number (i,j) (MeV) (MeV) (fm) (MeV) (MeV) (fm)

1 50.90 ± 0.19 1.17 ± 0.06 8.34 ± 0.20 51.2 1.11 11.2
2 51.02 ± 0.19 1.20 ± 0.05 8.16 ± 0.19 51.4 1.38 9.6
3 51.33 ± 0.19 1.21 ± 0.05 8.11 ± 0.19 52.1 1.55 9.7
4 51.54 ± 0.19 1.60 ± 0.06 8.07 ± 0.19 50.4 1.12 7.6
5 51.86 ± 0.19 1.62 ± 0.06 8.03 ± 0.19 51.3 1.20 7.7
6 51.98 ± 0.19 1.19 ± 0.06 8.01 ± 0.19 52.8 1.59 8.8
7 52.48 ± 0.19 1.21 ± 0.06 8.09 ± 0.19 51.8 1.78 11.5
8 52.52 ± 0.19 1.61 ± 0.06 7.93 ± 0.19 52.9 1.32 8.1
9 53.28 ± 0.19 1.22 ± 0.06 7.98 ± 0.19 51.8 1.59 7.9
10 54.16 ± 0.19 1.24 ± 0.06 7.85 ± 0.19 53.6 1.60 9.5
11 56.89 ± 0.18 1.34 ± 0.06 8.38 ± 0.20 56.8 1.17 8.5
12 57.39 ± 0.18 1.35 ± 0.06 8.31 ± 0.20 56.9 1.25 8.5
13 57.44 ± 0.18 1.32 ± 0.06 8.15 ± 0.19 57.3 1.72 9.4
14 57.86 ± 0.18 1.33 ± 0.06 8.09 ± 0.19 57.1 1.50 9.4
15 57.92 ± 0.17 1.36 ± 0.06 8.23 ± 0.19 57.3 1.57 8.1
16 57.94 ± 0.17 1.33 ± 0.06 8.23 ± 0.19 58.4 1.53 7.7
17 58.29 ± 0.17 1.34 ± 0.06 8.04 ± 0.19 57.3 1.45 9.4
18 58.40 ± 0.17 1.79 ± 0.06 9.04 ± 0.21 58.4 2.25 9.6
19 58.46 ± 0.17 1.34 ± 0.06 8.16 ± 0.19 58.5 1.25 7.6
20 58.92 ± 0.17 1.37 ± 0.06 8.97 ± 0.21 60.6 2.06 10.8
21 58.94 ± 0.17 1.53 ± 0.04 8.96 ± 0.21 59.4 1.98 10.2
22 59.01 ± 0.17 1.36 ± 0.06 8.08 ± 0.19 59.6 1.35 8.3
23 59.32 ± 0.17 1.36 ± 0.06 8.91 ± 0.21 60.5 1.45 10.3
24 67.03 ± 0.16 1.98 ± 0.06 9.44 ± 0.22 68.3 2.29 10.6
25 72.59 ± 0.15 1.67 ± 0.08 9.69 ± 0.23 73.6 1.57 10.5
26 76.04 ± 0.15 2.04 ± 0.05 9.04 ± 0.21 74.9 1.34 11.0
27 77.04 ± 0.15 1.78 ± 0.08 8.93 ± 0.21 77.0 1.24 10.8
28 85.66 ± 0.17 2.34 ± 0.06 9.29 ± 0.22 85.5 1.91 8.2
29 87.11 ± 0.17 2.37 ± 0.06 9.14 ± 0.22 86.3 2.63 8.0
30 92.75 ± 0.18 2.23 ± 0.08 9.18 ± 0.22 92.7 1.58 7.8
31 94.38 ± 0.19 2.22 ± 0.09 9.03 ± 0.21 94.6 2.18 6.5
32 94.79 ± 0.19 2.55 ± 0.06 9.18 ± 0.22 93.6 2.65 9.3
33 95.49 ± 0.19 2.20 ± 0.10 8.93 ± 0.21 96.6 1.93 7.5
34 96.05 ± 0.19 2.22 ± 0.10 9.07 ± 0.21 96.1 1.53 10.0
35 96.07 ± 0.19 2.21 ± 0.10 8.88 ± 0.21 95.8 1.18 6.0
36 102.36 ± 0.21 2.35 ± 0.11 9.62 ± 0.23 103.6 2.58 9.8
37 103.47 ± 0.21 2.38 ± 0.11 9.52 ± 0.22 103.3 2.23 8.7
38 104.24 ± 0.21 2.40 ± 0.11 9.46 ± 0.22 104.0 2.26 8.9
39 104.31 ± 0.21 2.81 ± 0.07 9.41 ± 0.22 103.2 1.97 6.5
40 106.13 ± 0.22 2.81 ± 0.07 9.26 ± 0.22 106.8 2.96 7.0
41 114.45 ± 0.23 2.63 ± 0.12 9.65 ± 0.23 113.4 2.75 9.6
42 118.96 ± 0.24 3.90 ± 0.17 10.17 ± 0.24 120.9 3.41 9.8
43 120.09 ± 0.24 3.89 ± 0.16 10.05 ± 0.24 121.5 4.21 10.3
44 123.19 ± 0.25 3.78 ± 0.13 10.08 ± 0.24 121.0 3.40 7.3
45 124.30 ± 0.25 3.22 ± 0.08 9.99 ± 0.24 124.7 3.15 8.5
46 125.08 ± 0.25 2.87 ± 0.14 9.94 ± 0.23 124.4 2.19 8.3
47 166.93 ± 0.58 4.37 ± 0.11 10.54 ± 0.25 167.9 5.46 10.7
48 171.77 ± 0.67 4.46 ± 0.12 10.57 ± 0.25 171.0 4.12 9.6

RMS 0.92 0.44 1.47

Table 8.6: Predictions and their uncertainties, obtained through multiple linear regression using
exclusively the “experimental” data given in Table 8.1. The last line shows the root-mean-square
deviation between the “experimental” data and the corresponding predictions. The three rightmost
columns reproduce the “experimental” data used in order to adjust the model.



134 CHAPTER 8. UNCERTAINTIES IN THE CAPTURE STEP

8.2.3 Examples solely based on “experimental” data

Thus far, we have determined the parameters, their uncertainties and their correlations which
were then propagated onto the capture cross-section. We now present a few examples where the
theoretical capture cross-sections are presented and accompanied by their uncertainties.

The capture cross-section for the reaction 36S+90Zr→126Ba∗ is displayed in Fig. 8.1a. This is
one of the reactions that we have used in order to adjust the model (cf. Table 8.1). Note that
for energies away from the barrier energy, the model is not able to reproduce the data. More
specifically, the cross-section is too large at low energy and too small at high energy. This type of
behaviour is typical of an overestimated width of the barrier distribution. As mentioned several
times before, the width of the barrier distribution is, in general, not very well reproduced by this
model.

However, the purpose of this model is to make capture cross-section predictions for the syn-
thesis of superheavy nuclei. Therefore, we now take a look at a reaction outside the scope of
the “experimental” data used to adjust the model. The capture cross-section for the reaction
48Ca+238U→286Cn∗ is given in Fig. 8.1b. The results suggest that the model reproduces the data
even better than in the previous case. Nevertheless, the energy range where the finest agreement
can be found is close to the barrier energy. It should be mentioned that for the synthesis of super-
heavy nuclei, near barrier energies are of the outmost importance, since they, certainly, maximize
the probability of overcoming the Coulomb barrier while keeping the system at low excitation
energy, thus improving the chances of survival.

Furthermore, predictions in regions where no measurements have ever been made are also
possible. For instance, Fig. 8.2a shows the estimated capture cross-section for the reaction
51V+248Cm→299119∗ which is currently used at RIKEN as a first attempt to produce the element
119. Similarly, Fig. 8.2b shows the capture cross-section for the reaction 54Cr+248Cm→302120∗

which will be used in Dubna to synthesize the element 120 for the first time. Notice Fig. 8.1
display thinner uncertainty bands than Fig. 8.2. The former describes reactions closely resembling
the data used to adjust the model while the latter shows extrapolations way beyond this data,
consequently, the associated uncertainties are significantly larger.

The Figs. 8.1 and 8.2 exhibit a bottleneck shape associated with the apparent reduction of
uncertainties with increasing center-of-mass energy. This however, is only owed to the logarithmic
scale and switching scales disproofs this interpretation. To illustrate this remark, Fig. 8.2b was
transformed to a linear scale. The result, displayed in Fig. 8.3, clearly shows the growth of
uncertainties with increasing center-of-mass energy.
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Figure 8.1: Capture cross-section as a function of center-of-mass energy. Theoretical capture
cross-section (black line) with lower uncertainty bound (green dashed line) and upper uncertainty
bound (orange dashed line). The arrow represents the barrier energy. Fig. 8.1a presents the results
for the reaction 36S+90Zr→126Ba∗ along with the experimental data (red dots) which were taken
from Ref. [95]. Fig. 8.1b presents the results for the reaction 48Ca+238U→286Cn∗ along with the
experimental data (red dots) which were taken from Ref. [96].



136 CHAPTER 8. UNCERTAINTIES IN THE CAPTURE STEP

230 240 250 260 270 280 290

Ecm (MeV)

0.1

1

10

100

1000

σ (mb)

(a) 51V+248Cm→299119∗

250 260 270 280 290 300

Ecm (MeV)
0.1

1

10

100

1000

σ (mb)

(b) 54Cr+248Cm→302120∗

Figure 8.2: Capture cross-section as a function of center-of-mass energy. Theoretical capture
cross-section (black line) with lower uncertainty bound (green dashed) and upper uncertainty
bound (orange dashed). The arrow represents the barrier energy. Fig. 8.2a represents the capture
cross-section prediction for the reaction 51V+248Cm→299119∗. Fig. 8.2b represents the capture
cross-section prediction for the reaction 54Cr+248Cm→302120∗.
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Figure 8.3: Capture cross-section as a function of center-of-mass energy for the reaction
54Cr+248Cm→302120∗ in linear scale. Theoretical capture cross-section (black line) with lower
uncertainty bound (green dashed line) and upper uncertainty bound (orange dashed line).

8.3 Part II

Linear regression with “experimental” and theoretical data

The capture model we are currently investigating is based on Refs. [36,40]. In those references, the
model is adjusted with the same data that we have used the in previous section (cf. Table 8.1).
However, in addition to this “experimental” data, a handful of theoretical values for the mean
barriers are also used. In Refs. [36, 40] the supplementary mean barriers are calculated using
the nucleus-nucleus potential from the proximity theory [97]. Then, as explained in Ref. [36],
these mean barriers are systematically lowered by several MeVs in order to better reproduce the
measured mean barriers of lighter systems. Here instead, we have chosen to use the empirical
nucleus-nucleus potential taken from Ref. [94]. Using this potential, we do not systematically
lower the theoretical mean barriers. It should be mentioned that, although we use a different
nucleus-nucleus potential, our results are very close to those presented in [40]. Next, we present
the empirical nucleus-nucleus potential and then, return to our uncertainty analysis.
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8.3.1 The empirical nucleus-nucleus potential

In the following, the additional mean barriers are obtained from the empirical nucleus-nucleus
potential [94]. Let us now describe how this potential is constructed. Note that our presentation
follows very closely the one of the original work [94].

The empirical nucleus-nucleus potential V is built as the sum of two independent components,
the attractive nuclear interaction Vn and the repulsive Coulomb interaction, Vc. Thus, the nucleus-
nucleus potential reads

V (r) = Vn(r) + Vc(r), (8.18)

where r is the relative distance between the two colliding nuclei.

The Coulomb nucleus-nucleus interaction, prior to contact, takes its usual form

Vc(r) =
Z1Z2e

2

r
when r ≥ R1 + R2, (8.19)

where Z1 and Z2 are the respective proton numbers of the two colliding nuclei. Similarly, R1 and

R2 are the respective radii of the two nuclei engaged in the collision. As usual, Ri = r0A
1/3
i and

for heavy systems, it was found that r0 = 1.11 fm [94]. Although the notations are identical, the
above r0 is different from the one entering the capture model.

The nuclear interaction is given by the following Woods-Saxon contribution,

Vn(r) =
−V0

1 + exp[(r − (R1 + R2))/a]
, (8.20)

where a is the nuclear diffuseness parameter and for heavy systems, it was found that a =
0.895 fm [94].

Unlike r0 and a, the value for V0 is specific to every reaction. The maximal depth of the nuclear
contribution is reached at r = 0 when the system has completely fused. Therefore, V0 will be a
property of the compound nucleus and of the two colliding nuclei. Excluding shell effects, the depth
of the nuclear contribution to the nucleus-nucleus interaction, denoted V ′

0 , is the difference between
the binding energies resulting from the nuclear interaction before and after fusion, respectively,
N1 + N2 and NCN , thus

V ′
0 = NCN −N1 −N2. (8.21)

Assuming that the total binding energy B is increased by an attractive nuclear contribution N
and reduced by a repulsive Coulomb contribution C, then, B = N −C. From this, it follows that

V ′
0 = (BCN −B1 −B2) + (CCN − C1 − C2), (8.22)

where CN stands for compound nucleus and the numeral indices stand for either one of the two
colliding nuclei. From the relationship connecting binding energies to masses (M = ZMP +NMN−
B, in units where c = 1) we gather,

V ′
0 = (M1 + M2 −MCN ) + (CCN − C1 − C2). (8.23)
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We recognize, in the last expression, the fusion Q-value,

Qfus = M1 + M2 −MCN . (8.24)

We also identify the Coulomb contribution

C0 = CCN − C1 − C2 = 0.7054

[

(Z1 + Z2)
2

(A1 + A2)1/3
− Z2

1

A
1/3
1

− Z2
2

A
1/3
2

]

(8.25)

where the pre-factor has been obtained through a liquid drop model and is given in MeV (cf.
Ref. [94] for more details).

In some cases, the mass of the compound nucleus, appearing in the above relationships, has
never been measured, consequently, it has to be determined from theoretical calculations. Here, we
have used Möller’s table [49]. In this table macroscopic masses are corrected in order to account
for shell effects. Strong shell effects are a consequence of special nuclear shapes, giving rise to
degeneracy, that stabilize the system. The nuclear potential is valid over a wide range of values
of r, all of which, correspond to different shapes of the dinuclear system. Most of these shapes
may not give rise to significant shell effects. Consequently, for the nuclear potential to be valid
over a broad range of relative distances, the shell corrections must be removed from the theoretical
estimate of MCN . Finally, we gather from all prior arguments that the expression for the depth
of the nuclear contribution is

V0 = Qfus + C0 + SCN , (8.26)

where SCN is the shell correction energy of the compound nucleus taken directly from Ref. [49].
Note that for the sake of consistency, all other masses will also be taken from Möller’s table [49].

Since the Coulomb barrier is positioned prior to contact, going beyond the point-charge approx-
imation of Eq. (8.19) seems fruitless, nevertheless, it is possible to construct a potential extending
beyond the contact point. Consequently, the Coulomb contribution is expressed as

Vc(r) = k1 +
k2

1 + exp [(r −R1 −R2) /ac]
when r ≤ R1 + R2. (8.27)

A pair of equations, for the parameters k1, k2 and ac, can be obtained by enforcing the continuity
of the potential and its first derivative, at contact. A third equation is given by the fact that
Vc(r = 0) = C0. The system can then be solved which leads to

k1 = 2CR0 − C0, (8.28)

k2 = 2C0 − 2CR0, (8.29)

ac = R0(C0 − CR0)/(2CR0), (8.30)

CR0 = Z1Z2e
2/R0. (8.31)

The various contributions of the empirical nucleus-nucleus potential are depicted in Fig. 8.4,
for the reaction 54Cr + 208Pb −→ 266Sg∗.



140 CHAPTER 8. UNCERTAINTIES IN THE CAPTURE STEP

C

5 10 15 20

r

150

200

250

300

Vc

(a) Coulomb potential

C

5 10 15 20

r

-140

-120

-100

-80

-60

-40

-20

Vn

(b) Nuclear potential

C

5 10 15 20

r

150

160

170

180

190

200

210

V

(c) Total potential

Figure 8.4: The empirical nucleus-nucleus potential is shown as a function of the relative distance
between the two colliding nuclei. The Coulomb, nuclear and total potentials are, respectively,
placed at the top, middle and bottom of this figure. The reaction considered here is 54Cr + 208Pb
−→ 266Sg∗. The arrow pinpoints the energy of the Coulomb barrier and C labels the position of
the contact point.
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8.3.2 Additional theoretical mean barriers

Using the empirical nucleus-nucleus potential, we have deduced the theoretical mean barriers BTh
0 .

This additional data is presented in Table 8.7 where only lead targets have been considered as well
as typical projectiles. Note that the differences between BTh

0 and BPartI
0 are important. Con-

sequently, we expect that the additional data will strongly influence the results of our extended
analysis. The inclusion of bismuth targets while keeping the same projectiles, does not, signifi-
cantly alter the following results.

Reaction A1 Z1 A2 Z2 ME1 ME2 MECN SCN BTh
0 BPartI

0

Number (i,j) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

49 48 20 208 82 -43.79 -21.15 87.42 -4.19 176.1 174.4 ± 0.7
50 46 22 208 82 -45.10 -21.15 92.39 -4.12 193.0 197.4 ± 1.3
51 50 22 208 82 -52.30 -21.15 95.80 -4.49 193.0 194.8 ± 1.2
52 56 26 208 82 -60.72 -21.15 118.73 -4.86 225.4 237.0 ± 2.8
53 64 28 208 82 -66.96 -21.15 113.82 -6.55 237.9 255.6 ± 3.7
54 58 28 208 82 -60.84 -21.15 131.78 -4.53 241.4 260.2 ± 4.0
55 74 32 208 82 -73.34 -21.15 165.00 -6.57 271.6 299.5 ± 6.4
56 86 36 208 82 -83.00 -21.15 195.88 -7.67 302.1 345.1 ± 9.7
57 54 24 208 82 -57.47 -21.15 107.83 -4.63 209.1 214.8 ± 1.9
58 62 28 208 82 -66.44 -21.15 132.68 -5.85 240.9 257.1 ± 3.8
59 70 30 208 82 -69.92 -21.15 151.01 -5.06 255.7 276.4 ± 4.9

Table 8.7: Supplement of theoretical data for the mean barrier parametrization. The theoretical
barriers, denoted BTh

0 , were obtained from the empirical nucleus-nucleus potential [94]. The mass
excess of the projectile, the target and compound nucleus, respectively, ME1, ME2 and MECN ,
along with the shell correction energy of the compound nucleus SCN , were taken from Ref. [49].
The rightmost column contains the predictions and their uncertainties obtained using the results
of part I.

8.3.3 Analysis based on theoretically supplemented “experimental” data

Now that we have obtained a set of supplementary theoretical mean barriers, we return to our
uncertainty analysis regarding the capture model. What follows is a repetition of the previous un-
certainty analysis, based on the “experimental” data (cf. Table 8.1). However, here the additional
theoretical mean barriers are included in the regression (cf. Table 8.7).

Of course, as can be seen in Table 8.8, the parameter r0 is left unchanged by the additional data
and obviously, the coefficients a, b and c, are those that suffer the most change. Less expected, are
the variations of C and W0, coming from the mean barrier entering the expression of the width of
the barrier distribution. It should be mentioned that all the coefficients are compatible with those
obtained in Ref. [40]. Let us stress that the additional mean barriers used in Ref. [40] are provided
by the proximity theory [97] which is different from the empirical nucleus-nucleus potential [94],
used in the present work. Although the additional reactions considered here are typical, they may
also differ from those considered in Ref. [40]. Since our results are compatible with those of the
original work [40], it seems that these differences are not too important.
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r0 a b c C W0

p̂ from [40] 1.16 fm 0.853315 MeV 0.0011695 MeV -0.000001544 MeV 0.0421 fm−1 0.531 fm
p̂ 1.147 fm 0.857638 MeV 0.0011158 MeV -0.000001467 MeV 0.0428 fm−1 0.535 fm
û(p̂) 0.027 fm 0.008285 MeV 0.0001067 MeV 0.000000306 MeV 0.0048 fm−1 0.081 fm
|û(p̂)/p̂| 2.3 % 1.0 % 9.6 % 21.1 % 11.2 % 15.1 %

Table 8.8: Values and uncertainties of the parameters obtained through multiple regression using
the “experimental” data from Table 8.1 and the theoretical supplement from Table 8.7. All the
coefficients are compatible with those obtained in Ref. [40], presented in the first row.

The covariances and correlations of a, b and c, are scaled down by the addition of theoretical
data. This can be seen by confronting the results in Table 8.3 to those in Table 8.9.

Again using Eq. (8.9), we find that the covariance is u(C,W0) = −3.8799 × 10−4 and the
correlation coefficient is equal to -0.98 which is the value we had previously found in part I. As
before, the width parameters are extremely correlated.

a b c

1.00 -0.96 0.91
-0.96 1.00 -0.99
0.91 -0.99 1.00

Table 8.9: Correlation matrix between the coefficients a, b and c, obtained through multiple
regression using the “experimental” data from Table 8.1 and the theoretical supplement from
Table 8.7. In dimensionless units.

a b c

6.8657e-05 -8.4854e-07 2.2979e-09
-8.4854e-07 1.1395e-08 -3.2236e-11
2.2979e-09 -3.2236e-11 9.3918e-14

Table 8.10: Covariance matrix between the coefficients a, b and c, obtained through multiple
regression using the “experimental” data from Table 8.1 and the theoretical supplement from
Table 8.7. In MeV2 units.

The predictions for R, B0 and σB are provided with their uncertainties, for every reaction
considered, either experimentally or theoretically, in Table 8.11.
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Reaction B0 σB R Bexp
0 σexp

B Rexp

Number (i, j) (MeV) (MeV) (fm) (MeV) (MeV) (fm)

1 50.33 ± 0.20 1.16 ± 0.06 8.34 ± 0.20 51.2 1.11 11.2
2 50.45 ± 0.20 1.19 ± 0.05 8.16 ± 0.19 51.4 1.38 9.6
3 50.77 ± 0.20 1.20 ± 0.05 8.11 ± 0.19 52.1 1.55 9.7
4 50.99 ± 0.20 1.58 ± 0.06 8.07 ± 0.19 50.4 1.12 7.6
5 51.31 ± 0.20 1.59 ± 0.06 8.03 ± 0.19 51.3 1.20 7.7
6 51.44 ± 0.20 1.18 ± 0.06 8.01 ± 0.19 52.8 1.59 8.8
7 51.95 ± 0.20 1.19 ± 0.06 8.09 ± 0.19 51.8 1.78 11.5
8 52.00 ± 0.20 1.59 ± 0.06 7.93 ± 0.19 52.9 1.32 8.1
9 52.77 ± 0.21 1.21 ± 0.06 7.98 ± 0.19 51.8 1.59 7.9
10 53.68 ± 0.21 1.23 ± 0.06 7.85 ± 0.19 53.6 1.60 9.5
11 56.48 ± 0.21 1.33 ± 0.06 8.38 ± 0.20 56.8 1.17 8.5
12 57.00 ± 0.21 1.34 ± 0.06 8.31 ± 0.20 56.9 1.25 8.5
13 57.05 ± 0.21 1.31 ± 0.06 8.15 ± 0.19 57.3 1.72 9.4
14 57.48 ± 0.20 1.32 ± 0.06 8.09 ± 0.19 57.1 1.50 9.4
15 57.54 ± 0.20 1.35 ± 0.06 8.23 ± 0.19 57.3 1.57 8.1
16 57.56 ± 0.20 1.32 ± 0.06 8.23 ± 0.19 58.4 1.53 7.7
17 57.93 ± 0.20 1.33 ± 0.06 8.04 ± 0.19 57.3 1.45 9.4
18 58.04 ± 0.20 1.77 ± 0.06 9.04 ± 0.21 58.4 2.25 9.6
19 58.10 ± 0.20 1.34 ± 0.06 8.16 ± 0.19 58.5 1.25 7.6
20 58.57 ± 0.20 1.36 ± 0.06 8.97 ± 0.21 60.6 2.06 10.8
21 58.60 ± 0.20 1.52 ± 0.04 8.96 ± 0.21 59.4 1.98 10.2
22 58.67 ± 0.20 1.35 ± 0.06 8.08 ± 0.19 59.6 1.35 8.3
23 58.98 ± 0.20 1.36 ± 0.06 8.91 ± 0.21 60.5 1.45 10.3
24 66.94 ± 0.20 1.97 ± 0.06 9.44 ± 0.22 68.3 2.29 10.6
25 72.67 ± 0.20 1.67 ± 0.08 9.69 ± 0.23 73.6 1.57 10.5
26 76.22 ± 0.20 2.04 ± 0.05 9.04 ± 0.21 74.9 1.34 11.0
27 77.25 ± 0.20 1.78 ± 0.08 8.93 ± 0.21 77.0 1.24 10.8
28 86.12 ± 0.19 2.34 ± 0.06 9.29 ± 0.22 85.5 1.91 8.2
29 87.60 ± 0.19 2.38 ± 0.06 9.14 ± 0.22 86.3 2.63 8.0
30 93.38 ± 0.19 2.24 ± 0.08 9.18 ± 0.22 92.7 1.58 7.8
31 95.05 ± 0.19 2.23 ± 0.09 9.03 ± 0.21 94.6 2.18 6.5
32 95.47 ± 0.19 2.56 ± 0.06 9.18 ± 0.22 93.6 2.65 9.3
33 96.18 ± 0.20 2.22 ± 0.10 8.93 ± 0.21 96.6 1.93 7.5
34 96.75 ± 0.20 2.23 ± 0.10 9.07 ± 0.21 96.1 1.53 10.0
35 96.77 ± 0.20 2.22 ± 0.11 8.88 ± 0.21 95.8 1.18 6.0
36 103.17 ± 0.20 2.37 ± 0.11 9.62 ± 0.23 103.6 2.58 9.8
37 104.29 ± 0.20 2.40 ± 0.11 9.52 ± 0.22 103.3 2.23 8.7
38 105.07 ± 0.20 2.42 ± 0.11 9.46 ± 0.22 104.0 2.26 8.9
39 105.14 ± 0.20 2.83 ± 0.07 9.41 ± 0.22 103.2 1.97 6.5
40 106.98 ± 0.20 2.83 ± 0.07 9.26 ± 0.22 106.8 2.96 7.0
41 115.34 ± 0.22 2.65 ± 0.13 9.65 ± 0.23 113.4 2.75 9.6
42 119.83 ± 0.23 3.91 ± 0.17 10.17 ± 0.24 120.9 3.41 9.8
43 120.96 ± 0.23 3.90 ± 0.16 10.05 ± 0.24 121.5 4.21 10.3
44 124.02 ± 0.24 3.79 ± 0.14 10.08 ± 0.24 121.0 3.40 7.3
45 125.13 ± 0.24 3.24 ± 0.09 9.99 ± 0.24 124.7 3.15 8.5
46 125.89 ± 0.24 2.89 ± 0.14 9.94 ± 0.23 124.4 2.19 8.3
47 165.76 ± 0.33 4.33 ± 0.11 10.54 ± 0.25 167.9 5.46 10.7
48 170.17 ± 0.34 4.41 ± 0.12 10.57 ± 0.25 171.0 4.12 9.6

49 172.57 ± 0.35 3.97 ± 0.19 10.97 ± 0.26 176.1 - -
50 192.87 ± 0.37 4.43 ± 0.21 10.91 ± 0.26 193.0 - -
51 190.63 ± 0.37 4.38 ± 0.21 11.03 ± 0.26 193.0 - -
52 225.52 ± 0.38 5.18 ± 0.25 11.19 ± 0.26 225.4 - -
53 239.95 ± 0.39 5.51 ± 0.26 11.39 ± 0.27 237.9 - -
54 243.42 ± 0.40 5.59 ± 0.27 11.24 ± 0.27 241.4 - -
55 271.71 ± 0.56 6.24 ± 0.30 11.62 ± 0.27 271.6 - -
56 301.68 ± 0.98 6.93 ± 0.33 11.86 ± 0.28 302.1 - -
57 207.57 ± 0.38 4.77 ± 0.23 11.14 ± 0.26 209.1 - -
58 241.07 ± 0.40 5.54 ± 0.26 11.34 ± 0.27 240.9 - -
59 255.37 ± 0.44 5.87 ± 0.28 11.53 ± 0.27 255.7 - -

RMS 1.24 0.45 1.47 - - -

Table 8.11: Predictions and their uncertainties, obtained through multiple linear regression using
the “experimental” data from Table 8.1 and the theoretical supplement from Table 8.7. The table
is divided in two by a double horizontal line. The reactions appearing above this line, are part of
the “experimental” set of data from Table 8.1, those below, are part of the supplementary set of
data from Table 8.7. The last line shows the root-mean-square deviation between the data and
the corresponding predictions. Below the double horizontal line the 5th column (Bexp

0 ) contains
the values for BTh

0 taken from Table 8.7.
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8.3.4 Examples based on theoretically supplemented “experimental” data

Using the supplemented set of data, we have, as before, determined the parameters, their uncer-
tainties and their correlations which were then propagated onto the capture cross-section. We
now revisit some of the examples that were previously discussed in part I, with the exception that
we now consider the reaction 58Ni+74Ge→132Nd∗ instead of 36S+90Zr→126Ba∗. As the former
reaction corresponds to an enhanced barrier and leads to a heavier compound nucleus it is much
more representative of the supplemented set of data.

Fig. 8.5a displays the capture cross-section for the reaction 58Ni+74Ge→132Nd∗ which is part
of the original set of reactions (cf. Table 8.1). The experimental cross-section is well reproduced
at sub-barrier energies. However, for energies higher than the barrier, the model struggles to re-
produce the data, although the overestimation of the width of the barrier distribution does not
seem to be the issue in this particular case.

Again, the sole purpose of this capture model is to make predictions extending beyond the data
employed to tune the model. With this idea in mind, we return to the reaction 48Ca+238U→286Cn∗

whose capture cross-section is provided in Fig. 8.5b. The outcome suggests that the model re-
produces the data rather poorly, except in a limited region right above the Coulomb barrier. A
comparison of Figs. 8.1b and 8.5b shows that the predictions do not benefit from the supplemen-
tary data.

Once more, it is possible to make predictions in regions where no measurements are available.
We revisit the predictions leading to the synthesis of elements 119 and 120, respectively, shown
in Figs. 8.6a and 8.6b. Comparing the results of part I (smaller figure) with those obtained here
(larger figure), makes the changes in mean barrier estimates very clear, respectively, going from
240.34 MeV to 228.19 MeV. A similar conclusion can be drawn by contrasting Figs. 8.2b and 8.6b.
Thus, including the theoretical data significantly reduces the mean barriers. This change in mean
barrier predictions is almost exclusively due to the modification of the value of the parameter a.

Notice that the uncertainties obtained here are narrower than those obtained in part I. In
part I, the adjustment of the model was based on lighter systems, while here, heavier systems are
considered in the additional theoretical data. Thus, leading to a shrinkage of the uncertainties.
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Figure 8.5: Capture cross-section as a function of center-of-mass energy. Theoretical capture cross-
section (black line) with lower uncertainty bound (green dashed) and upper uncertainty bound
(orange dashed). The arrow represents the barrier energy. The small figure is a reproduction of
the result obtained in part I. Fig. 8.5a presents the results for the reaction 58Ni+74Ge→132Nd∗

along with the experimental data (red dots) which were taken from Ref. [98]. Fig. 8.5b presents
the results for the reaction 48Ca+238U→286Cn∗ along with the experimental data (red dots) which
were taken from Ref. [96].
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(b) 54Cr+248Cm→302120∗

Figure 8.6: Capture cross-section as a function of center-of-mass energy. Capture cross-section
(black line), lower uncertainty bound (green dashed) and upper uncertainty bound (orange dashed).
The arrow represents the barrier energy. The small figures are reproductions of the results
obtained in part I. Fig. 8.6a represents the capture cross-section prediction for the reaction
51V+248Cm→299119∗. Fig. 8.6b represents the capture cross-section prediction for the reaction
54Cr+248Cm→302120∗.
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8.4 Part III

Nonlinear regression with “experimental” and theoretical data

As formerly mentioned, the linearity that made the adjustment of R and B0 so simple, cannot be
exploited in the case of σB. Therefore, we had to rewrite the expression for σB into a linear form in
order to determine C and W0 using linear regression, cf. Eq. (8.6). This section presents another
set of results obtained using nonlinear regression and based on the data contained in Tables. 8.1
and 8.7.

Here, nonlinear regression is only applied in order to estimate C and W0, thus, the values, the
uncertainties and correlations of, R and B0, are left unaltered by this change of methods. The
novel estimates, for the coefficients C and W0, are provided with their uncertainties in Table 8.12.
These results are identical to those obtained using multiple regression, Table 8.8.

C W0

p̂ from [40] 0.0421 fm−1 0.531 fm
p̂ 0.0428 fm−1 0.535 fm
û(p̂) 0.0048 fm−1 0.081 fm
|û(p̂)/p̂| 11.2 % 15.1 %

Table 8.12: Values and uncertainties of the parameters obtained through nonlinear regression using
the “experimental” data from Table 8.1, as well as the theoretical supplement from Table 8.7.

From Eq. (8.9), we obtain that u(C,W0) = −4.7110× 10−4 and once more, the correlation co-
efficient is equal to -0.98. Therefore, the effects of nonlinearity, on the covariances and correlations
between C and B0, are meagre. In fact, we have verified that the results obtained using nonlinear
regression are so close to those obtained with linear regression (cf. part II) that the resulting
capture cross-sections can be considered identical. We have compared the results obtained with
linear and nonlinear regression because the available samples are rather limited and remember
that, as mentioned in chapter 5, nonlinear regression only holds for large samples. This explains
the motivation behind this comparison.
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8.5 Conclusion

In this chapter, we have studied the uncertainties in the capture model using both linear and
nonlinear regression as well as “experimental” and theoretical data. Our first step was to determine
the uncertainties in the parameters (r0, a, b, c, C and W0), then, as an intermediate step we have
propagated these uncertainties onto the barrier distributions (R, B0 and σb) and finally, we have
obtained the uncertainties in the capture cross-sections. In part I, the regression was based on a
set of 48 “experimental” barrier distributions which were taken from the original work [94]. In the
second part, we have simply followed the ideas of the original work where the “experimental” data
was complemented by theoretical mean barriers. Note that despite the differences between the
nucleus-nucleus potentials and the reactions that were considered the parameters obtained here
were fully compatible with those given in the original work [94]. Let us note that based on the
small samples of data at our disposal, we have chosen to use linear regression which we felt was
more robust than nonlinear regression (cf. chapter 5 or Ref. [69] for more details). In the third
part, we have simply quantified the effects of nonlinearities on the results obtained in part II and
have shown that these were negligible. Finally, let us again recall that the motivation behind the
uncertainty analysis of the capture step is to reach better constraints on the formation step.



Chapter 9

Wrap-up

From the very beginning, our goal was to constrain the formation probability. In general, this
cannot be done experimentally because we are not able to distinguish quasi-fission from fission
products. However, this can be achieved, theoretically, by expressing the “experimental” formation
probability as

P exp
form =

σexp
ER

σcap × Psurv
, (9.1)

where σexp
ER , σcap and Psurv, are the measured production cross-section, the capture cross-section

and the survival probability, respectively. All along this thesis, we have tried to determine the
uncertainties in σcap and Psurv, in order to reach this final step and constrain P exp

form. Note that we
did not directly constrain Psurv, rather we have directed our efforts towards the fission barriers.
This choice was made based on a previous analysis showing that the most influential quantities in
the survival probability calculations are the fission barriers [37, 38].

In order to illustrate the philosophy of our approach, we now examine the reaction:

208Pb + 50Ti −→ 257Rf + 1n.

For this reaction the one-neutron evaporation residue cross-section is

σexp
ER = 10419 ± 1284 pb. (9.2)

It should be mentioned that this value was taken from Ref. [99] and that it corresponds to the peak
of the one-neutron excitation function located at Ecm =185.02 MeV. Note that all the following
results were determined at this center-of-mass energy.

In the previous chapter, we have studied the uncertainties in the capture model described in
chapter 2. From this analysis, we are now able to provide capture cross-section predictions along
with their uncertainties. For this particular reaction, we have found

σcap = 0.4291 ± 0.1073 mb. (9.3)

This value was obtained using Möller’s ground-state deformations [49]. Note that here the capture
model was adjusted using linear regression (cf. part II of chapter 8).
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In chapter 7, we have investigated the uncertainties in the fission barriers with a very simple
macroscopic-microscopic model. There, we have seen that the uncertainties in the fission barriers
were about 0.5 MeV. However, since this model is really too simple to properly reproduce fission
barriers and especially those of superheavy nuclei, here, we will use Möller’s fission barrier [50].
Thus, the compound nucleus fission barrier is given by

Bf = 5.65 ± 0.5 MeV. (9.4)

As mentioned before, the fission barriers are the most important input parameters in the cal-
culations of survival probabilities [37, 38]. Therefore, we shall assume that the only source of
uncertainty in the survival probability is the fission barrier of the compound nucleus. Then, the
survival probability is obtained using the transition state theory of reaction rates, presented in
chapter 2. Recall that in this theory, the survival probability is defined as

Psurv =
Γn

Γn + Γf
, (9.5)

where we have neglected the possibility for second chance fission. In order to obtain the uncertainty
in Psurv, we have propagated the fission barrier uncertainty (±0.5 MeV) through the transition
state theory. In doing so, we gather that

Psurv = 0.089 ± 0.072. (9.6)

The previous result can be expressed as

Pmax
surv

Pmin
surv

=
0.089 + 0.072

0.089 − 0.072
≈ 9.5. (9.7)

This allows us to appreciate the fact that an uncertainty of 0.5 MeV in the fission barrier roughly
corresponds to an order of magnitude difference in the survival probability which is not negligible.

From the prior considerations, we are now in a position to give constraints on the formation
probability since one can easily show that

[
u(P exp

form)

P exp
form

]2

=

[
u(σexp

ER )

σexp
ER

]2

+

[
u(σcap)

σcap

]2

+

[
u(Psurv)

Psurv

]2

. (9.8)

From the previous expression, we deduce our final result

P exp
form = 0.00025 ± 0.00021. (9.9)

Therefore, we have managed to constrain the formation probability. Applying this strategy to
other reactions will helps us unravel part of the remaining mysteries of fusion hindrance. Note that
the survival and formation probabilities have large uncertainties and that they become negative
if we extend the confidence interval to twice the standard uncertainty. Therefore, in order to
be completely rigorous the uncertainties in the survival and formation probabilities should be
confirmed by Bayesian inference where the impossibility for the probabilities to become negative
should be included in the prior.



Chapter 10

Conclusion and perspectives

In this thesis, we investigated the uncertainties in a fusion-evaporation model describing the syn-
thesis of superheavy nuclei. As previously mentioned, although the basic qualitative features of
fusion-evaporation have reached a consensus, the quantitative outcomes of the available models
are still unsatisfactory. One should remember that the production cross-sections of superheavy
nuclei are ultimately low and therefore, having accurate predictions is necessary in order to guide
experimental campaigns. The inaccuracy of the current descriptions can be explained as follows.
Theoretically, the production cross-section is assumed to be the product of three independent
quantities, i.e., the capture cross-section, the formation probability and the survival probability.
Therefore, one should be able to constrain each of these three quantities by relying on experimen-
tal data. However, the formation probability cannot be constrained experimentally because it is,
in general, not possible to discriminate between quasi-fission and fission products. Furthermore,
fission barriers have a strong influence on the survival probability and only very few measurements
have been made in the superheavy region. Thus, one must rely on theoretical calculations in
order to estimate them. Finally, even though the capture cross-section is well established, both
experimentally and theoretically, extrapolations to heavier systems may be doubtful. Here, we
should clearly state that the lack of constraints on the formation probability is known to be the
leading cause of unreliable predictions. Therefore, in this thesis we have decided to theoretically
constrain this quantity and in order to do so, we have investigated the uncertainties in the capture
cross-section and the survival probability.

We started out by studying the uncertainties in the survival probability. Since the fission bar-
rier is known to be the most important factor in the calculation of the survival probability, we have
assumed that it was the only source of uncertainty. Seeing that the fission barrier is defined as the
difference between the saddle-point and the ground-state masses, we started by investigating the
uncertainties in masses. The first model we considered was a simple liquid drop model. It should
be mentioned that in this analysis we had neglected the uncertainties in the shell correction ener-
gies. This allowed us to get familiar with regression analysis. More importantly, we have seen that
the macroscopic parameters were extremely constrained once the shell correction energies were
specified. As a consequence, the uncertainties in the masses were much smaller than the errors of
the model. This lead us to believe that a significant part of these errors came from the shell correc-
tion energies and that these should be part of the uncertainty analysis. Here, we should emphasize
that the existence of superheavy nuclei is due shell effects, thus, it was also natural to include shell
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corrections from a physical point of view as well. Furthermore, in order to assess the uncertainties
in the fission barriers we also had to include, at least partially, deformation. Then, as a way to
include both shell corrections and deformation, we have investigated a simple phenomenological
macroscopic-microscopic model. There, we were able to determine the uncertainties in the ground-
state and saddle-point masses and in turn, those in fission barriers which were about 0.5 MeV. As
before the uncertainties in the masses were much smaller than the errors of the model. This may
be explained by the simplicity of the model but also by the method used in order to extract the
theoretical uncertainties. Here, we would like to stress that the phenomenological model that was
considered is really too simple to properly describe the fission barriers. Clearly, future investiga-
tions should focus on realistic fission barrier calculations involving many deformation degrees of
freedom and shell corrections obtained from a microscopic potential using Strutinsky’s method.
This way the fission barrier uncertainties will perfectly suit the predictions of the model. Finally,
by propagating the uncertainties in the fission barrier through an evaporation model we were able
to deduce the uncertainties in the survival probability.

Based on our studies of ground-state masses, we have refined a method in order to constrain the
shell correction energies of superheavy nuclei. In this method, the shell corrections were defined
as the difference between the experimental and the macroscopic masses while the experimental
masses were deduced from measured Qα-values. As we have already mentioned, the stability of
superheavy nuclei is only due to shell effects and therefore, being able to constrain them should be
seen as an important step. Furthermore, this method also offers a robust way to test the consis-
tency between the macroscopic and microscopic contributions to the masses. Again, as the models
we have considered were too simple, it would be very interesting to repeat this study using more
realistic models in order to verify their internal coherence. Systematically applying this method to
many α decay chains would certainly help us better understand the stability of superheavy nuclei.
However, it should be stressed that in order to truly constrain the shell corrections, the mass of the
last nucleus in the decay chain must be well established. Therefore, precise mass measurements of
“light” superheavy nuclei are really essential if we want to constrain shell corrections.

After, having investigated the uncertainties in the fission barriers, we have turned our attention
to the uncertainties in the capture cross-section which is the second quantity required in order to
constrain the formation probability. In this thesis, we have considered a phenomenological model
based on a simple parametrization of the barrier distribution. In particular, we have seen that the
description of the width of the barrier distribution was unsatisfactory and that this was the main
cause of miscalculations. It is expected that the better part of the barrier fluctuations comes from
the respective shapes of the colliding nuclei. In our analysis, we have used theoretical values for
the quadrupole deformations which are provided without their corresponding uncertainties. This
is the reason why our study does not include the uncertainties in the quadrupole deformations.
Here, instead it may be more suitable to use (when possible) the measured values of the electric
quadrupole moments which are provided with their uncertainties. However, let us not forget that
the uncertainties in the deformations can also be obtained from the uncertainty analysis of a
realistic macroscopic-microscopic model. Finally, we would also like to stress that the model we
have considered is only valid close to the barrier.
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However, sub-barrier energies are also relevant to the fusion leading to superheavy nuclei and were
only accounted for effectively in the model we have studied. Therefore, it could be interesting to
compare the uncertainties of the model that was considered here with another model, for instance
a semi-classical approach where the description at sub-barrier energies is expected to be much
more reliable.

From the prior investigations on the uncertainties in the capture and survival probabilities
we were able to constrain the formation probability. This was achieved by propagating the un-
certainties in the fission barriers through the transition state theory of reaction rates. First, we
should recall that we have used an estimate of the uncertainty in the fission barriers which we
have obtained with a simple model and that we have used a reasonable value for the fission barrier
itself which was taken from a more realistic model. This method is only partially satisfying and
this is the reason why we are currently investigating the uncertainties in Warsaw’s macroscopic-
microscopic model. Secondly, it should be noted that other approaches can be used in order to
calculate the evaporation widths, for instance the Weisskopf-Ewing model or the Hauser-Feshbach
formalism. An interesting next step would be to verify that changing the way the evaporation
width is calculated does not affect significantly our results.

We have also tried to improve our understanding of fusion hindrance by examining the effects
of inertia on the dynamics of diffusion. This was achieved by using singular perturbation theory.
Thanks to this approach we were able to build a formal bridge between the Langevin and the
Smoluchowski descriptions. More precisely, we have demonstrated that (at zeroth order) the dif-
ference between these to approaches came from a shift in the initial condition which is responsible
for the reduction of fusion hindrance. In turn, this allowed us to give a simple explanation to
the energy dependence of the initial condition within the Smoluchowski framework. The origin
of this shift in the initial condition can be traced back to the reduction of the number degrees of
freedom due to the fast time evolution of some of them. For instance, it is known that during the
fusion process, the evolution of the neck is much faster than the changes in the elongation of the
system. As a consequence, completely removing the neck degree of freedom from the description
should result in a shift in the initial conditions. Thus, studies to come should include additional
dimensions in order to systematically investigate these effects.

Therefore, this thesis has demonstrated that the use of uncertainty analysis can help us con-
strain quantities which simply cannot be constrained experimentally. However, let us not forget
the fact that uncertainty analysis is only a tool in order to better constrain models and will never
allow us to discover new mechanisms such as those regarding the shift in the initial conditions we
have previously discussed.

Let us emphasize that although we have managed to constrain the formation probability,
the constraints we have obtained depend on our ability to properly describe the other steps of
the fusion-evaporation model, i.e., the capture and survival steps. Therefore, we will always be
limited by our knowledge of these two other steps and we will not be capable to reach satisfactory
predictions, say below an order of magnitude inaccuracy.
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Let us stress that because the production cross-sections of superheavy nuclei are so low, a single
order of magnitude is what separates a successful experiment from no measurements at all. Thus,
every step towards more accurate predictions will be highly rewarded by entirely new and exciting
experimental evidence. Therefore, the question that comes to mind is: How can we proceed any
further in order to reach more accurate predictions ?

A possibility would be to improve our descriptions of the capture cross-section and the survival
probability, such as to reduce the uncertainties in those quantities and to more firmly constrain the
formation probability. This could be done in three complementary ways. The first strategy would
be to use more sophisticated models. For instance, the capture model we have used is extremely
simple, however, as a consequence its predictive power may be restricted. An example of studies
going in that direction can be found in Ref. [100] where the deformation of the target is better
described and its consequences on the production cross-section are explored. Note that, although
more difficult to achieve, improving fission barrier calculations may also be possible. The second
strategy would be to look for observables that could help us experimentally constrain the capture
or survival steps independently. For instance by making fission barrier measurements of a few
selected superheavy nuclei. This was shown to be possible in Ref. [101] where the fission barrier
of nobelium was deduced from gamma-ray multiplicities. However hard this may be, directly con-
straining the formation probability by studying quasi-fission should also be considered [102]. All
along we have assumed that the production cross-section could be expressed as a product of three
independent quantities. This clearly is only approximately true. Thus, our third strategy would
be to examine the correlations between the three steps of the fusion-evaporation model. The basic
idea behind this strategy is that correlations usually restrict the freedom of the parameters and so,
this will help us to more firmly constrain the formation probability. For instance, in order to study
the correlations between the formation and survival probabilities, one could try to determine the
internal and fission barriers within the same model. Note that this is very promising but has never
been attempted within the macroscopic-microscopic formalism. Another possibility would be to
use more microscopic models, e.g., SCMF or EDF.

Thus, many open questions remain and we would like here to name a few. What sophisticated
models should we use instead? How can we improve fission barrier calculations? How can we
experimentally determine the fission barrier of superheavy nuclei? What observables should be
used in order to better constrain the capture cross-section and the survival probability? How
can we study and constrain the correlations between the three steps and what observables should
be used in order to do so? How can we simultaneously constrain the formation and survival
steps? How can we distinguish quasi-fission and fission products and what would be the relevant
observables to do so? Finally, we would like to stress that these are only some of the unanswered
questions and that there are many more calling for answers.
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[54] W.J. Świa̧tecki. Aust. J. Phys. 36, 641 (1983).

[55] A.V. Ignatyuk, G.N. Smirenkin, and A.S. Tishin. Sov. J. Nucl. Phys. 21, 255 (1975).

[56] S.F. Mughabghab and C. Dunford. Phys. Rev. Lett. 81, 4083 (1998).
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Title: Uncertainty analysistTowards more accurate predictions for the synthesis of superheavy nuclei.

Keywords: Superheavy nuclei, Uncertainty analysis, Nuclear collisions, Liquid-drop model, Regression 

analysis, Macroscopic-microscopic model.

The nuclear reaction theories describing the synthesis of superheavy nuclei are not firmly established. Although, the basic

qualitative features of fusion-evaporation have reached a consensus, the quantitative predictions of the available models are

still unsatisfactory. The production cross-section is the product of the capture cross-section, the formation probability and

survival probability. Previous studies have shown that the dominating part of the remaining discrepancies came from our

inability to properly constrain the formation probability. The main goal of this thesis is to theoretically constrain this

quantity. This is achieved by examining the uncertainties in the capture cross-section and the survival probability using

regression analysis. The fission barrier being the most influential factor in survival probability calculations, it is assumed to

be the only source of uncertainties. Since the fission barrier is the difference between the ground-state and saddle-point

masses, we started investigating the uncertainties in the liquid drop model. Based on this analysis we have refined a method

to constrain the shell correction energies.  To determine the uncertainties in the fission barriers, a simplified

phenomenological macroscopic-microscopic model was used. The uncertainties in the capture step were determined using a

model based on a parametrization of the barrier distribution. From the propagation of the uncertainties in the capture cross-

section and fission barrier, the constraints on the formation probability were  determined. Separately, the effects of inertia

on the formation probability were investigated using perturbation theory and a new mechanism reducing fusion hindrance

was described as a shift in the initial condition within the Smoluchowski approximation.  Additionally, based on this

approach, an explanation for the phenomenological energy dependent parametrization of the injection point was found.   

Titre: Analyse d'incertitude t Vers des prédictions plus précises pour la synthèse des noyaux superlourds.

Mots-clés: Noyaux superlourds, Analyse d'incertitude, Collisions nucléaires, Modèle de la goutte liquide, Analyse de

régression, Modèle microscopique-macroscopique.

Les théories de réaction nucléaire décrivant la synthèse des noyaux superlourds ne sont pas fermement établies. Bien qu'un

consensus existe sur les caractéristiques qualitatives de la fusion-évaporation, les prédictions quantitatives des modèles

disponibles sont encore insatisfaisantes. La section efficace de production est le produit de la section efficace de capture, de

la probabilité de formation et de la probabilité de survie. Des études antérieures ont établi que la partie dominante des

divergences restantes provenait de notre incapacité à contraindre correctement la probabilité de formation. L'objectif

principal de cette thèse est de contraindre théoriquement cette quantité. Celui-ci a été atteint en examinant les incertitudes

associées à la section efficace de capture ainsi qu'à la probabilité de survie par le biais de l'analyse de régression. La barrière

de fission étant le facteur le plus influent dans les calculs de probabilité de survie, on supposera qu'elle est la seule source de

ses incertitudes. Et puisque la différence entre les masses du fondamental et du point-selle définit la barrière de fission, nous

avons commencé par étudier les incertitudes d'un modèle de type goutte liquide afin d'obtenir les incertitudes sur les masses.

Sur la base de cette analyse, nous avons affiné une méthode permettant de contraindre les énergies de correction de couches.

Afin de déterminer les incertitudes sur les barrières de fission, un modèle microscopique-macroscopique simplifié a été

utilisé. Les incertitudes sur la phase de capture ont été obtenues à l'aide d'un modèle basé sur une paramétrisation de la

distribution de barrières.  Les contraintes portant sur la probabilité de formation ont été ensuite déduites à partir de la

propagation des incertitudes sur la section efficace de capture et sur la barrière de fission. Par ailleurs, les effets de l'inertie

sur la probabilité de formation ont été étudiés en utilisant la théorie des perturbations et un nouveau mécanisme réduisant

l'entrave à la fusion a été décrit comme un décalage de la condition initiale dans l'approximation de Smoluchowski. Enfin,

sur la base de cette approche, une explication de la dépendance en énergie du point d'injection phénoménologique a été

obtenue.
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