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Abstract 
Current networks serve millions of mobile customer devices. They encompass heterogeneous 

equipment, transport and management protocols, and vertical management tools, which are very 

difficult and costly to integrate. Fault management operations are far from being automated and 

intelligent, where only around 40% of alarms are redundant only around 1-2% of alarms are corre-

lated at most in a medium-size operational center. This indicates that there is a significant alarm 

overflow for human administrators, which inherently derives in high OPEX due to the increasing 

need to employ high-skilled people to perform fault management tasks. In conclusion, the current 

level of automation in fault management tasks in Telco networks is not at all adequate for pro-

grammable networks, which promise a high degree of programmability and flexibility to reduce 

the time-to-market. 

Automation in fault management has become more necessary with the advent of programmable 

networks, led by SDN (Software-Defined Networking), NFV (Network Functions Virtualization) and 

the Cloud. Indeed, the implantation of those paradigms has accelerated the convergence between 

networks and IT realms, which is accelerating the transformation of current networks and leading 

to a rethinking of network and service management and operations, in particular fault manage-

ment operations. 

This thesis envisages the application of self-healing principles in SDN and NFV combined infrastruc-

tures, focuses on self-diagnosis tasks as the main enabler of self-healing. The core of the thesis is 

to devise a self-diagnosis approach able to diagnose at run-time the dynamic virtualized network-

ing services. This self-diagnosis approach correlates the state of those services with the states of 

their underlying virtualized resources (VNFs and virtual links) and the underlying network infra-

structure state. This approach takes into account the mobility, dynamicity, and sharing of re-

sources in the underlying infrastructure. 

Keywords 

Autonomics; self-healing; programmable networks; SDN;NFV; fault management; Bayesian Net-

works; self-modeling; self-diagnosis; alarm correlation; fault-isolation;  
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Résumé 
Les réseaux actuels servent millions de clients mobiles et ils se caractérisent par équipement hété-

rogène et protocoles de transport et de gestion hétérogènes, et des outils de gestion verticaux, qui 

sont très difficiles à intégrer dans leur infrastructure. La gestion de pannes est loin d’être automati-

sée et intelligent, ou un 40 % des alarmes sont redondantes et seulement un 1 ou 2% des alarmes 

sont corrélées au plus dans un centre opérationnel de taille moyenne.  Ça indique qu’il y a un dé-

bordement significatif des alarmes vers les administrateurs humains, lequel a comme conséquence 

un haut OPEX vue la nécessité d’embaucher de personnel expert pour accomplir les tâches de ges-

tion de pannes. Comme conclusion, le niveau actuel d’automatisation dans les tâches de gestion de 

pannes dans réseaux télécoms n’est pas adéquat du tout pour adresser les réseaux actuels.  

L’automatisation de la gestion des pannes devient de plus en plus nécessaire avec l’arrivée des ré-

seaux programmables, lesquels promettent la programmation des ressources et la flexibilité afin de 

réduire le time-to-market des nouveaux services et la gestion plus efficace. En fait, les paradigmes 

SDN (Software-Defined Networking), NFV (Network Functions Virtualization) et le Cloud accélèrent 

la convergence entre les domaines des réseaux et la IT, laquelle accélère de plus en plus la transfor-

mation des réseaux télécoms actuels en menant à repenser les opérations de gestion de réseau et 

des services, en particulier les opérations de gestion de fautes. 

NFV vise à déployer les fonctions réseau en hardware banalisée qui soit indépendant des fournis-

seurs d’équipement afin de réduire le cout d’intégration des nouvelles fonctions réseau dans 

l’infrastructure de l’opérateur. SDN c’est une nouvelle architecture de réseau qui vise à flexibiliser la 

connectivité entre ces fonctions réseau virtualisées (VNF), étant basée sur des interfaces ouvertes, 

une claire séparation entre la couche de control et de donnés, et de l’abstraction.  

Les réseaux évoluent vers des réseaux programmables avec l’approche de Software-Defined Net-

working. Cependant la couche de gestion n’est pas encore définie: la gestion des fautes, la gestion 

des performances ainsi que le provisioning sont à faire évoluer pour bénéficier de la programmabili-

té des réseaux avec SDN. Un système d’autodiagnostic, tel comme est proposé dans ces travaux de 

thèse, est nécessaire pour assurer la continuité des services et la pérennité des réseaux avec SDN. Le 

but de ces travaux de thèse est d’étudier l’opportunité d’introduire de l’autonomie dans les réseaux 

de demain afin d’optimiser la gestion des pannes et des dysfonctionnements à travers un système 

d’autoréparation. 

Mots-clés 

Autonomics; systems d’auto réparation; réseaux programmables; SDN;NFV; gestion de pannes; ré-
seaux bayésiens; auto modélisation; self-diagnotique; correlation d’alarmes; fault-isolation 
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HMM Hidden Markov Model 
JSON JavaScript Object Notation 
KPI Key Performance Indicator 
LLDP Link Layer Discovery Protocol 
MAC Media Access Control 
MANO Management And Orchestration 
MDT Mean Downtime 
MIMO Multiple Input Multiple Output 
MPLS Multiprotocol Label Switching 
MTTF Mean Time To Failure 
MTTR Mean time to repair 
NACF Network Access Configuration Function 
NBI Northbound Interface 
NFV Network Function Virtualization 
NFVI Network Function Virtualized Infrastructure 
NIC Network Interface Card 
NMS Network Management System 
NOC Network Operations Center 
NSR Network Service Record 
OLT Optical Line Terminal 
ONF Optical Line Terminal 
ONT Optical Network Terminal 
OSS Operations Support Systems 
RAN Radio Access Network 
RCA Root Cause Analysis 
SBC Session Border Controller 
SBI Southbound Interface 
SDN Software-Defined Networking 
SDO Standards Development Organization 
SFC Service Function Chaining 
SIP Session Initiation Protocol 
SISO Single Input Single Output 
SLA Service Level Agreement 
SOM Self-Organizing Maps 
TCP Transmission Control Protocol 
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UDP User Datagram Protocol 
UE User Equipment 
VIM Virtualization Infrastructure Manager 
VLAN Virtual Local Area Network 
VLD Virtual Link Descriptor 
VLR Virtual Link Record 
VNF Virtual Network Function 
VNF FG Virtual Network Function Forwarding Graph 
VNF NCT Virtual Network Function Network Connectivity Topology 
VNFC Virtual Network Function Component 
VNFI Virtual Network Function Instance 
VNFM Virtual Network Function Manager 
VNFR Virtual Network Function Record 
VPN Virtual Private Network 
WDM Wavelength Division Multiplexing 
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List of variables 

Variable Meaning 

𝑁 Number of networking services modelled 
𝑀𝑖 Number of virtual links composing the i-th networking service 
𝑁𝑖 Number of VNFs composing the i-th networking service 
𝑃 Number of links in the network topology 
𝑄 Number of nodes in the network topology 
𝑋 Number of switches in the network topology 
𝑌 Number of hosts in the network topology 
𝑍 Number of controller in the network topology 

𝑆 = {𝑆1, … , 𝑆𝑋} Set of switches of the network topology 
𝐻 = {𝐻1, … , 𝐻𝑌} Set of hosts of the network topology 
𝐶 = {𝐶1, … , 𝐶𝑍} Set of controllers of the network topology 

𝑟 Number of control links in the network topology 
𝑞 Number of data links in the network topology 

𝐶𝐿 = {𝐶𝐿1, … , 𝐶𝐿𝑟} Set of control links of the network topology 
𝐷𝐿 = {𝐷𝐿1, … , 𝐷𝐿𝑞} Set of data links of the network topology 

𝑉𝐿𝑚,𝑛
(𝑘)  Virtual link between two VNFs VNFm and VNFn 

𝜌
𝑚,𝑛

(𝑘)  Physical path between two hosts’ NICs 

𝑛𝑓
(𝑘) Number of flows installed to establish𝑉𝐿𝑚,𝑛

(𝑘) and 𝜌
𝑚,𝑛

(𝑘)  

𝑛𝑓
(𝑘) Number of intermediate switches composing each virtual link 𝑉𝐿𝑚,𝑛

(𝑘)  

𝑛𝑙
(𝑘) Number of data links composing each virtual link  𝑉𝐿𝑚,𝑛

(𝑘)  

𝐺𝑁𝑖 Dependency sub graph of the i-th network node 

𝐺𝐿𝑖  Dependency sub graph of the i-th network link 

𝐸𝑁 Set of edges inside a node’s subgraph 

𝐸𝐿 Set of edges of a link subgraph 

𝐸𝑉𝐿 Set of edges between the physical resources and a virtual link 

𝐸𝑆 Set of edges between a virtual resource and a networking service 

𝐸𝑉𝑁𝐹 Set of edges between a VNFI and a VNF 
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Chapter 1 Introduction 
 

 

1.1 Research context 

The advent of programmable networks with SDN (Software-Defined Networking) and NFV (Network Functions 

Virtualization) is accelerating faster and faster the transformation of current networks towards elastic, on-

demand and flexible usage. SDN and NFV are two novel phenomena that are on the wish list of major industrial 

players (vendors, operators, content providers, software editors) as the means to achieve greater flexibility in 

managing the network, faster service deployment and provisioning while reducing operational costs. SDN and 

NFV are thought to be “better together” as considered by the IT and telecommunication industries, due to the 

incredible synergy coming from the combination of both paradigms. SDN proposes to transition from network 

configurability to network programmability through network abstractions, open interfaces and the separation of 

control and data plane. NFV proposes to virtualize network functions with two goals: firstly to remove the vendor 

lock-in barrier and secondly allow networking services to be flexibly instantiated and scaled according to traffic 

demands.   

However, the flexibility and elasticity in combined SDN and NFV infrastructures is a doubled-edge sword, mainly 

due to paramount need to rethink network and service management and operations, in especial fault manage-

ment operations (detection, diagnosis, and recovery). Diagnosis in particular must be sufficiently intelligent, 

automated and rapid to enable the SDN and NFV promises and fully exploit the advantages from their synergy. 

Indeed, SDN and NFV are still in a preliminary stage concerning diagnostics aspects, evidenced on the state of the 

art in both SDN and NFV.  

In addition, the dynamicity of virtualized resources in combined SDN and NFV infrastructures complicate the 

already complex today diagnosis tasks. Networking services are composed of virtualized network functions (VNF) 

and those VNFs can be migrated across the infrastructure by making an elastic usage of the compute, storage 

and networking resources.  

The high dynamicity of the SDN infrastructure–topological changes at both control and data planes and rapid 

forwarding changes through flows–becomes even higher when we combine SDN with NFV. This is because the 

networking services rely on run-time configurable VNFs, which can be scaled, instantiated, deleted, and migrat-

ed. This dynamicity urgently calls for an efficient, automated, fast and intelligent diagnosis by automating the 

modelling the networking services, their virtual resources, and the physical infrastructure.  

The aim of this thesis is to provide with a self-diagnosis framework able to diagnose in an automatic manner such 

dynamic networking services based on fully virtualized network functions over SDN and NFV combined infra-

structures. 

1.2 Software-Defined Networking  

Software Defined Networking (SDN) paves the way towards network programmability by proposing network 

architecture based on abstraction, open interfaces, and control plane-data plane separation. Many definitions 

surround the SDN concept, all of them centered on the abstraction and network programmability. ONF (Open 
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Networking Foundation) defines SDN as “The physical separation of the network control plane from the forward-

ing plane, where the control plane controls several devices” (ONF, 2011).  

Network programmability: SDN introduces the programmability of the network behavior through network appli-

cations. Programmability is an enabler that can enhance network elements with the ability to change and to 

accept a new configuration, which modifies their behaviors in response to changes in the network state. In fact, 

programmability conveyed by SDN can achieve a logical centralized control of the network through the control 

plane for a group of network elements. The control plane exposes an Application Programming Interface (API), 

which abstracts the complexity and thus hides unnecessary inner details belonging to underlying layers. The SDN 

applications program the control plane through APIs. There are several examples of APIs such as the REST API 

(Representational State Transfer). In fact, each SDN controller defines its own API with its own set of functions 

and properties.  

Abstraction: As defined in the survey on SDN in (Kreutz et al, 2015), there are three types of abstraction in SDN 

such as forwarding abstraction, distribution abstraction, and specification abstraction. Firstly, the forwarding 

abstraction consists of separating data and control plane. This separation consists in adopting a higher-level 

namespace and exploiting a logically centralized controller to enforce the network policies by communicating 

them to generic forwarding hardware (via the southbound interface) in terms of language rather than technolo-

gy-specific encoding. The separation between control and data planes means that the control plane, which con-

tains the SDN controller, decides on behalf of the data plane resources. From an OpenFlow perspective, the SDN 

controller decides how to forward packets across the data plane elements by sending a set of flows. Secondly, 

the distribution abstraction consists of embedding logically the intelligence in the control plane. The control 

plane is composed of one SDN controllers and there are two types of control plane: a distributed control plane, 

where several SDN controllers take the control of the network, or a centralized control plane, only composed of 

one SDN controller. In both cases, the SDN controller necessarily becomes a single point of failure as it is in 

charge of providing with the instructions sent by the network applications to the data plane. Finally, the specifi-

cation abstraction consists of specifying the network behavior from network applications running on the applica-

tion plane through commands sent to the control plane, which are in turn translated into low-level specific com-

mands delivered to the data plane via to the southbound protocol. 

1.3 Networks Function Virtualization (NFV)  

NFV is a networking initiative led by Telcos (Guerzoni et al, 2012), to replace Network Functions by virtualized 

network functions usually implemented as software embedded in commodity hardware (high-volume standard 

servers, storage and switches).  

Nowadays, most network functions are sophisticated, expensive and dedicated customized hardware provided 

by vendors. Each vendor provides with a different network function with its own set of management tools. Due 

to the heterogeneity of these network functions is very costly for Telcos to integrate with the rest of their 

equipment. Network functions can carry out multiple and different types of operations such as firewall, load 

balancing, cipher, TCP (Transmission Control Protocol) accelerators, concentrators, DNS (Domain Name System), 

QoE (Quality of Experience) Management, or video optimizers, EPC (Evolved Packet Core), among others. 

This approach reduces power consumption, maintenance costs and time to deploy new functions/services. This 

solution allows us to both remove the vendor lock-in barrier and networking services to be flexibly instantiated 

and scaled according to network traffic demands at run-time by making an elastic usage of the compute, storage 

and networking resources. 

1.4 Research problem: Why do we need automation on diagnosis of network-

ing services over programmable infrastructures? 

SDN propose as main features network programmability, abstraction, and logical centralization. However, those 

features are going to compel network operations such as FCAPS (Fault, Configuration, Accounting, Performance, 

Security) to be rethought, especially fault management operations.  
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The logical centralization of the intelligence inside the control plane makes resilience even more crucial because 

the entire SDN infrastructure depends on the elements of the control plane, what leads to the paramount need 

to empower the SDN architecture with resilience properties. Resilience properties are paramount because mal-

functions at the control layer propagate to the data layer.  As consequence from this centralization, the control 

plane becomes target of multiple types of attacks, potential resource conflicts when SDN applications allocate 

resources simultaneously, and the lack of scalability of the SDN controller to handle flow requests. To this end, 

fault management approaches are to ensure resilience at the control and the data plane in SDN infrastructures 

by means of self-healing mechanisms able to detect, diagnose and recover any type of malfunction.  

The thesis focuses on the combination of SDN and NFV, which makes the network infrastructure and resources 

even more dynamic. The focus of this thesis is self-diagnosis, in charge of automatically finding the origin of a 

given malfunction by analyzing a set of symptoms, procedure known as root cause analysis. We resort to model-

based self-diagnosis approaches, which perform the root cause analysis by first generating a fault propagation 

model and then exploiting to find the root cause. In SDN and NFV combined infrastructures, this model will be 

multi-layered covering physical, logical, and virtual resources composing each networking service. 

However, the high degree of dynamicity in SDN infrastructures resulted of changes on the network topology, the 

type of control, and the flow-based forwarding influences the way faults and failures propagate among network 

resources. The way faults and failures propagate are explained by dependencies established among SDN re-

sources which depends on how those resources are connected, interact and exchange both control and data 

information. However, due to the dynamicity of the network topology, type of control and flows, those de-

pendencies change fast and continuously, what makes mandatory to establish a self-modeling methodology to 

automatically generate in an online manner and update this fault propagation model at run-time to diagnose 

in an automatic, flexible, and effective way SDN infrastructures. 

On the other hand, in NFV solutions VNFs can be migrated, scaled, duplicated, among other operations, which 

make network services and their virtual resources highly dynamic and elastic. The SDN infrastructure dynamically 

allocates the virtual links to connect the VNFs through flows sent to from the control to the data plane and those 

can be rapidly migrated or modified. The high degree of dynamicity of virtual resources inn combined SDN and 

NFV infrastructures influences the way faults and failures propagate among the physical, logical, and virtual and 

services layers. The way faults and failures propagate are explained by the dependencies established among 

the networking services and the virtualized resources. However, due to the high dynamicity of the virtual 

resources, those dependencies change fast and continuously, what makes mandatory to establish a self-

modeling methodology to automatically generate in an online manner and update this fault propagation mod-

el at run-time to diagnose in an automatic, flexible, and effective way SDN and NFV combined infrastructures. 

1.5 Motivating example 

As example, we show in Figure 1 two different end-to-end services delivered in a SDN and NFV combined infra-

structure, where each service is composed of a different set of VNFs. In the presence of hardware faults or soft-

ware faults affecting several VNFs in the blue service, those can be migrated to other physical locations to avoid 

any outage in the service. This change of location implies to re-establish the virtual links interconnecting the 

VNFs by sending a request to the SDN controller, which in turn, installs new flows on the nodes to ensure this 

communication.  

In addition, the network topology is already dynamic in the radio access due to several reasons like the connec-

tions and disconnections of users to the Access Points (AP), or handovers that transfer users among APs. Howev-

er, in SDN and NFV, the network topology becomes much more dynamic, especially due to the aforementioned 

dynamicity of both virtual and network resources. 
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Figure 1. Service topology changes in NFV-SDN infrastructures 

Challenge 1: Network dynamicity 

In SDN, the network infrastructure becomes dynamic because of the changes in the network topology, composed 

of the control and data networks. This dynamicity is due to the continuous connections and disconnections of 

nodes, discovered by the SDN controller at run-time, but also because of changes in the type of control, which 

change the way the SDN controller interacts with the data plane’s elements. 

The challenge here is to generate the fault propagation model containing the dependencies among the nodes in 

the infrastructure in an online and automatic manner. A self-modeling methodology generates this model. This 

model must contain two components:  

 the network topology, to model how SDN resources are connected, and 

 the type of control, to model how the SDN controller is connected with the data plane’s resources. 
 

Indeed, the network infrastructure and the type of control are dynamic, adding a first dimensionality of dy-

namicity that a self-diagnosis mechanism must consider to diagnose those infrastructures. 

 
Challenge 2: Virtual resources dynamicity 

In NFV, virtual resources composing network services become dynamic because VNFs can be moved, duplicated 

or migrated to different physical locations and the virtual links connecting the VNFs are dynamically set by the 

control plane of SDN infrastructure through flows, which can be migrated and modified by the SDN controller at 

any time. 

The challenge here is to generate the fault propagation model containing dependencies of several networking 

services from its corresponding virtualized resources. A self-modeling methodology generates this model. How-

ever, this model must also include the dependencies of those virtualized resources from the physical substrate. 

Concretely, this fault propagation model must contain the dependencies between a network service and its 

virtualized resources (VNFs and VLs), the dependencies between VNFs from their physical locations in the net-

work infrastructure (chosen by the VIM (Virtualization Infrastructure Manager)), and the dependencies between 

the VLs from their physical resources in the network topology (chosen by the SDN controller).  

Indeed, virtual links are allocated over the network infrastructure through flows sent by the control plane. The 

network infrastructure is already dynamic, adding a second dimensionality of dynamicity that a self-diagnosis 

mechanism must consider to diagnose those infrastructures. 
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The main challenge comes when both dynamicity dimensions come together in SDN and NFV combined infra-

structures, where the network infrastructure may change, but at the same time, the virtual resources deployed 

over such a dynamic infrastructure. 

1.6 Thesis objectives and principles 

The aim of this thesis is to define a self-diagnosis framework to ensure resilience of end-to-end network services 

in SDN and NFV combined infrastructures. However, to diagnose those highly changing and dynamic infrastruc-

tures, we need to establish a self-modeling methodology that tracks the dynamic network topology, the type of 

control, the virtualized network resources involved in the networking services and flows. This self-modeling 

methodology generates and updates a fault propagation model containing the dependencies among those dy-

namically deployed resources. We distinguish two levels of dynamicity on combined SDN and NFV infrastruc-

tures, and, as a result, two challenges to generate this fault propagation model, coming from the high dynamicity 

of physical, logical, and virtual resources in SDN and NFV combined infrastructures. 

An automated and flexible self-diagnosis requires being as flexible and dynamic as SDN and NFV infrastructures, 

that is why the self-diagnosis framework conceived in this thesis should be based on a self-modeling approach 

that generates a fault propagation model. From our perspective, this fault propagation model generation should 

fulfil the following requirements in order to automate the diagnosis in programmable networks with finer preci-

sion: 

Automated: The self-diagnosis framework should be a completely automated process where the way faults and 

failures propagate are automatically generated from the information of the network infrastructure, the services 

deployed as well as their logical and virtual resources sharing or not resources. 

Multi-layered: The self-diagnosis framework should be based on a multi-layered fault propagation model com-

prising the multi-level dependencies among physical, logical, virtual, and service layers in accordance with the 

layers in SDN and NFV combined infrastructures. 

Updatable: The self-diagnosis framework should be based on an automatically update fault propagation model in 

accordance with the topological changes, the type of control, the forwarding flows, changes on the locations of 

the VNFs or in the interconnecting virtual links. 

Fast: The self-diagnosis framework should be able to diagnose the root cause in a reasonable time, taking into 

account that the infrastructure and deployed virtual resources may change in a fast manner. 

Extensible: The self-diagnosis framework should be based on a fault propagation model generated in such a way 

that new discovered elements can be added when the topology changes, or when the networking service adds a 

new virtual resource. 

Fine-grained: The self-diagnosis framework should be based on a fault propagation model that contains not only 

the dependencies among SDN resources but also the dependencies among the internal resources or components 

inside each SDN resource such as cards, ports, software, among others to allow the detection of specific root 

causes inside nodes. 

1.7 Research Questions 

In this section, we decompose the previous problem statement into four main research questions (RQ), each of 

them leading to different contributions. 

RQ 1:  How to conceive a self-healing mechanism for an SDN and NFV combined infrastructure? 

Contribution 1: State of the art on SDN and NFV 

Contribution 2: State of the art on self-healing systems 



End-to-end Self-Diagnosis of Programmable Networks 

24 
 

Contribution 3: Self-Healing mechanism for SDN and NFV 

RQ 2:   What mechanisms allow for an automated and dynamic diagnosis of the root cause in multi-layered net-

works such as SDN and NFV? 

Contribution 4: State of the art on diagnosis mechanisms 

 

RQ 3: What self-modeling methodology can we propose to generate the diagnosis model for centralized SDN 

infrastructures that evolve over time and exploit this model for finding the root cause? 

Contribution 5: Definition of multi-layered, fine-granular, machine-readable, extendable templates containing 

the resources to supervise at physical and logical layers.   

Contribution 6: Proposal of a self-modeling approach to generate the diagnosis model for dynamic network 

topologies 

Contribution 7: Conception of a topology-aware self-diagnosis module. This module takes into account the 

logical and physical resources in dynamic network topologies. 

 

RQ 4: What self-modelling methodology can we propose to generate the diagnosis model of a centralized SDN 

infrastructure ensuring NFV-based network services where both, the network topology and virtual resources 

evolve over time, and exploit this model for finding the root cause? 

Contribution 8: Extension of the proposed templates to include the virtual and service layers.  

Contribution 9: Conception of a self-modeling module that takes as input these extended templates, instanti-

ates them and generates on-the-fly the diagnosis model that includes the physical, logical, and the virtual 

dependencies of networking services in combined SDN and NFV infrastructures. 

Contribution 10: Conception of a service-aware self-diagnosis module. This module takes into account the 

networking service view and the state of the underlying network resources. 

1.7.1 Research methodology and scientific contributions 

In this section, we first detail the adopted research methodology and then we describe the scientific contribu-

tions. We adopted the following research methodology along the thesis: 

To resolve the first research question RQ 1, we first surveyed the state of the art on SDN and NFV. This step is 

paramount to identify and understand the potential challenges faced in a combined SDN and NFV scenario, in 

contrast to traditional networks. The first contribution of this thesis is the identification of the challenges of SDN 

and NFV infrastructures. The most prominent challenges found were the centralization of the SDN controller and 

the high dynamicity of the virtualized and physical resources. We also studied self-healing systems, as the identi-

fied autonomic mechanism to counter the identified vulnerabilities in SDN and NFV in an automatic and in an 

intelligent manner. The second contribution of the thesis is the identification of the architecture, functional 

blocks, and the techniques used in each functional block of a self-healing system. We also analyzed which inputs 

could a self-healing mechanism take in a SDN and NFV context, taking into account those infrastructures and 

their associated challenges. The third contribution of the thesis is a high-level self-healing architecture to counter 

the identified challenges of SDN and NFV. This self-healing architecture is based on a multi-layered control-loop. 

This control-loop includes different recovery procedures to be carried out in the different planes of the SDN 

architecture. We proposed a set of several metrics in Chapter 3 for SDN infrastructures as input for this self-

healing architecture.  
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To resolve the second question RQ 2, we centered our research on the self-diagnosis task. The fourth contribu-

tion of this thesis is an extensive review of the literature on diagnosis algorithms and the identification of Bayesi-

an Networks algorithm as the most used across different network technologies. This algorithm diagnoses the 

network by identifying how faults propagate in a given network infrastructure through a fault propagation model 

or dependency graph. This type of self-diagnosis is model-based because it identifies the root cause by exploring 

how faults propagate through a diagnosis model.  

However, the main limitation is how to automate the generation of the diagnosis model for modelling dynamic 

networks such as SDN and NFV. As a result, we then centered our efforts on providing with a self-modeling 

methodology capable of generating but also updating this diagnosis model with perspective to apply it to SDN 

and NFV combined infrastructures. The fifth contribution of this thesis is the definition of multi-layered tem-

plates to identify what to supervise while taking into account the physical and logical layers. As sixth contribution 

in this thesis to address the Challenge 1, we propose a topology-aware self-modeling mechanism to automatical-

ly model dynamic network topologies and types of control by using a set of finer granularity templates that en-

compass the dependencies among SDN nodes (physical and logical) as well as smaller sub-components inside 

those nodes (e.g. CPU, network cards, etc.). Topology-aware self-modeling builds the dependency graph from the 

network topology and this graph only considers how faults in network resources could affect other network 

resources. We centered our efforts in understanding how to feed the generated model in the model-based diag-

nosis engine based on Bayesian Networks. As seventh contribution, we propose a topology-aware self-diagnosis 

module that takes into account the logical and physical resources in dynamic network topologies. 

However, the dependency graph generated by our topology-aware self-modeling approach does not model the 

impact of faults in network resources on services. To this end, we solve the third research question RQ 3 that 

answers the second Challenge 2. As eight contribution of this thesis, we extended our proposed multi-layered 

templates to take into account the virtual and services layers. Thanks to these extended templates, we devel-

oped a Service-aware self-modeling approach, the ninth contribution of this thesis, and as an extension of the 

topology-aware approach to consider how faults in network resources affect each other but also how those 

resources affect the service layer. As tenth and final contribution in this thesis, we propose a service-aware self-

modelling approach, which allows us to model network services and their dynamic dependencies with the under-

lying logical and physical resources in combined NFV and SDN infrastructures. A service-aware diagnosis reduces 

uncertainty by automatically extending or reducing the dependency graph according to the faulty networking 

service. Moreover, we propose two diagnosis strategies to reduce the high uncertainty obtained in the previous 

work, which we describe in chapter 4.  

In addition, and as proof of concept of this thesis, we implemented a self-healing system to supervise a multicast 

video streaming service delivered in a dynamic network topology with several clients connected, where the 

network could be updated and the model regenerated. The self-healing block was located in the management 

plane. This self-healing framework could detect, diagnose and recover from link failures, traffic transport failures, 

and application failures by sending several reconfiguration commands to restore the service. This framework was 

presented at the Orange research Exhibition which took place the 1st, 2nd, and 3rd or December. 

This thesis has led to five scientific articles, three full papers, a short paper, and demo paper. In addition, we have 

also submitted a demonstration paper and we plan to write a journal. The references of those accepted articles 

are the following:   

 J. Sanchez, I. Grida Ben Yahia, N. Crespi, “ THESARD: on The road to resiliencE in SoftwAre-defined network-
ing thRough self-Diagnosis ” 2nd IEEE Conference on Network Softwarization, Seoul, Korea, 6-10 June 2016. 
 

 J. Sanchez, I. Grida Ben Yahia, N. Crespi, “Self-Modeling Based Diagnosis of Software-Defined Networks,” 
Workshop MISSION 2015 at 1st IEEE Conference on Network Softwarization, London, 13-17 April 2015. 

 

 J. Sanchez, I. Grida Ben Yahia, et. al., “Softwarized 5G networks resiliency with self-healing,” 1st Internation-
al Conference on 5G for Ubiquitous Connectivity (5GU), 2014. 

 

 J. Sanchez, I. Grida Ben Yahia, N. Crespi, “Self-Modeling based Diagnosis of Services over Programmable 
Networks,” 2nd IEEE Conference on Network Softwarization, Seoul, Korea, 6-10 June 2016. 
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 J. Sanchez, I. Grida Ben Yahia, N. Crespi, “Self-healing Mechanisms for Software Defined Networks”. AIMS 
2014, 30 June-3rd July 2014. 

1.8 Project Contributions and presentations 

Presentations on conferences 

We presented three articles in international conferences: 

1) We presented one article at the 1st International Conference on 5G for Ubiquitous Connectivity, which took 

place 26
th

 and 27
th

 of November in Levi, Finland. The article was entitled “Softwarized 5G Networks Resiliency 

with Self-healing”. The content of this article is available in the annex. 

2) We presented one article at the Workshop on Management Issues in Software-defined networks, Software-

defined infrastructure and network function virtualization (MISSION 2015) located inside the 1st IEEE Interna-

tional Conference on Network Softwarization, which took place from 13
th

 to 15
th

 of April in London, England. The 

article was entitled “Self-Modeling based diagnosis of Software-Defined Networks”. The content of this article is 

available in the annex.  

3) We presented one article at the 2nd IEEE International Conference on Network Softwarization, which took 

place from the 6
th

 to 10
th

 of June in Seoul, South Korea. The article is entitled “Self-Modeling based Diagnosis of 

Services over Programmable Networks”. This article was awarded with the Best Student Paper award. The 

content of this article is available in the annex. 

We presented three posters in conferences and seminars: 

1) We presented a poster at the « Journée des doctorants 2013 », entitled « Mécanismes d’autoréparation pour 

Software Defined Networking », which took place in Orange premises the 12
th

 of Septembre of 2013.  

2) We presented a poster at the Autonomous Infrastructure, Management and Security conference (AIMS2014), 
which is entitled « Self-healing Mechanisms for Software Defined Networks », which took place from the 30th of 
June to the 3rd of July in Brno, Czech Republic. The content of its corresponding article is available in the annex.  
 
3) We presented a poster in the ‘Journée Cloud 2015’, entitled « Topology-Aware Self modeling for SDN-NFV 
diagnosis », which took place 14th September of 2015 in UPMC LIP6 premises. The program is available at: 
https://rsd-cloud.lip6.fr/journee.html.  
 
We presented one demonstration at the 2nd IEEE International Conference on Network Softwarization, which 

took place from the 6
th

 to 10
th

 of June in Seoul, South Korea. The demonstration is entitled “THESARD: on The 

road to resiliencE in SoftwAre-defined networking thRough self-Diagnosis”.The content of this article is available 

in the annex. 

Invited talks 

We gave a talk in the seminar ‘Séminaire Francilien de Sûreté de Fonctionnement’, entitled « Self-Diagnosis and 
Service Restoration in SDN and NFV infrastructures », which took place the 11th of March 2016 at the Université 
Scientifique de Versailles (UPVSQ). The program is available at: http://www.lurpa.ens-cachan.fr/version-
francaise/manifestations/seminaire-francilien-de-surete-de-fonctionnement/. 
 
Orange Research exhibition 

Orange research exhibition is an annual event where the innovative research led inside Orange premises is 

shown in the shape of innovative platforms, demonstrations, and proofs of concepts in order to give an insight 

on Orange’s current research lines and interests. These demonstrations are the outcome from European pro-

jects, French national projects or other types of collaborations. Last edition of the Orange research exhibition 

took place the 1st, 2
nd

, 3rd of December 2015 in Paris, where we prepared a demonstration on “Self-Diagnosis 

for Software-Defined Networks”. 

https://rsd-cloud.lip6.fr/journee.html
http://www.lurpa.ens-cachan.fr/version-francaise/manifestations/seminaire-francilien-de-surete-de-fonctionnement/
http://www.lurpa.ens-cachan.fr/version-francaise/manifestations/seminaire-francilien-de-surete-de-fonctionnement/
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Project contributions to European projects 

We have contributed to the FP7 European project Univerself during this thesis. This project lasted three years, it 

started in September 2010 and it ended in August 2013. The aim of this project was to overcome the growing 

management complexity of future networking systems, and to reduce the barriers that complexity and ossifica-

tion pose to further growth by realizing autonomics for future networks.  

Our concrete contribution to this project was to study autonomic principles, self-* properties, and the autonomic 

architectures such as the proposed by ETSI GANA. 

Website: http://www.univerself-project.eu/ 

Project contributions to National projects 

We have contributed to the French national project ANR REFELXION (REsilient and FLEXible Infrastructure for 

Open Networking) during this thesis. This project lasts two years, and it is still ongoing, it started in October 2014 

and it will end in October 2016. The aim of this project is to bring (i) robustness and flexibility in NFV-SDN archi-

tectures, in particular to support critical services, and (ii) dynamicity and efficiency for the provisioning and the 

chaining of virtualized network functions.  

Our concrete contribution to this project network failure diagnosis and fault management for NFV in SDN so that 

services can keep operating in a seamless way.  

Website: http://anr-reflexion.telecom-paristech.fr/ 

1.9 Thesis organization 

We organize this thesis in the following chapters: 

The Chapter 2, entitled “programmable networks and fault management challenges”, contains a detailed state-

of-the-art on fault management on programmable networks, which is the research context of this thesis. This 

chapter unveils the issues and challenges when it comes to ensuring fault management. It presents also the 

related work on fault management for SDN and NFV infrastructures. 

Chapter 3, entitled “State of the art on self-healing systems”, contains a detailed state-of-the art on self-healing 

systems, which is the adopted solution in this thesis This chapter first describes the purpose of self-healing sys-

tems, their architecture, their functional tasks, and the techniques used. Later on, this chapter focuses on the 

self-diagnosis task, with especial emphasis on diagnosis algorithms.  

Chapter 4, entitled “Self-Diagnosis architecture for programmable networks”, presents our proposal, a self-

diagnosis framework for SDN and NFV combined infrastructures. First, we describe the self-diagnosis architecture 

and its functional blocks, and then, we describe the different algorithms composing this architecture are ex-

plained. 

Chapter 5, entitled “Results and evaluation”, shows the results and evaluates performance of the results. We 

split this chapter in use cases, where each use case shows a different aspect covered by the self-diagnosis 

framework proposed in chapter 4. 

Chapter 6, entitled “Conclusions and future work”, highlights the future work derived from these results and 

concludes this thesis manuscript. 
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Chapter 2 Programmable Net-

works and Fault Management 

Challenges 
 

 

2.1 Introduction 

We explain in this chapter the concept of programmable networks, the concepts of SDN and NFV and their re-

spective architectures and give an insight on their associated fault management challenges and related work 

addressing those challenges. It also provides with an insight on the combination of SDN and NFV. 

2.2 Overview of SDN 

In this section, we describe briefly the SDN architecture, its functional blocks and its modes of operation.  

2.2.1 SDN Architecture 

SDN architecture is composed of four planes, namely the infrastructure layer (or data plane), the control layer, 

the application layer and the management plane, as shown in Figure 2 

 
Figure 2. SDN layered architecture by ONF 

The data plane is composed of the SDN resources belonging to the infrastructure layer, which are in charge 

transporting the traffic. The SDN resources located in the data plane are the OpenFlow switches, the 

hosts/servers acting as traffic sources and sinks and all the control and data links seen in the infrastructure.  

The control plane mediates between the data plane and the application plane and it is based on a control soft-

ware intelligence that relies on a logically centralized abstraction level. The control plane performs the orchestra-

tion of resources in the sense that dictates the forwarding rules to the data plane by means of the resource-

control interfaces (a.k.a southbound interface). OpenFlow is the de facto southbound protocol to communicate 

the control plane and data plane (ONF, 2016). The control plane is composed of different SDN controllers, which 

use the southbound interface to communicate with their underlying OpenFlow switches belonging to the data 

plane. OpenFlow protocol formalizes the communication between the control plane and the data plane and it is 

based on the transmission of rules (a.k.a flows) sent by the OpenFlow controller to the switches.  
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The application plane is composed of SDN applications in charge of programming the network through Applica-

tion Programming Interfaces (APIs). SDN applications act as clients of aforementioned exposed interfaces by the 

control plane, named application-control interfaces (a.k.a. northbound interface). The application plane dynami-

cally programs the data plane through these APIs exposed by the control plane.  

2.2.2 Forwarding in SDN OpenFlow  

An Openflow switch is a forwarding device with one or several flow tables, as shown in Figure 3, where the flow 

tables are populated with flows entries that are sent by the control plane, concretely the SDN controller. These 

flow entries consist of match fields, counters, and a set of instructions or actions to apply for each matching 

incoming packet. Counters gather forwarding statistics, which are grouped per flow table, per flow, per port, or 

per queue. Those statistics give a precise idea of the percentage of flows matched, for instance. 

 

Figure 3. Main components of an OpenFlow switch by ONF  

Each flow installed in any OpenFlow switch is composed of a set of tags (a.k.a. matching fields), some of them 

shown in Table 1. Each installed flow, remains installed inside the switch for a given amount of time, specified by 

two timers namely, the idle time and hard time. On one hand, the hard time parameter determines for how long 

the flow remains installed, despite this flow is matched or not. A null value of hard time indicates that the flow 

will not be deleted in any case, regardless if it matches or not incoming packets. On the other hand, the idle time 

parameter determines for how long the flow is installed as long it still matches any incoming packet. It no packet 

matches that flow, it will be deleted after this idle time. A null value of idle time indicates that a non-matching 

flow will not be deleted in any case. 

Table 1. Tag fields defined in OpenFlow 1.0 

Ingress 
port 

MAC 
src 

MAC 
dst 

Eth 
type 

VLAN 
id 

VLAN 
priority 

IP src IP dst IP 
protocol 

IP 
ToS 
bits 

TCP/UDP 
src port 

TCP/UDP 
dst port 

 

When a packet arrives to the OpenFlow switch, it is matched against the installed flows entries in its flow table. If 

the packet matches any flow, it applies the action associated to that matching flow, otherwise, additional flows 

are asked to the SDN controller to be installed to know what to do with that unmatched packet. OpenFlow de-

fines several actions, some of them shown in Table 2. 

Table 2. Some examples of actions in OpenFlow 1.0 

Action Sub-action Explanation 

FORWARD 

ALL It sends the packet to all the output ports 

IN_PORT It sends the packet to the incoming port 

CONTROLLER It sends the packet to the SDN controller 

ENQUEUE  It forwards the packet to a given queue 
attached to an output port. This is mainly 
to provide with basic QoS 

DROP  It drops the incoming packet if the match-
ing rule includes no action 

Controller
OpenFlow

protocol

OpenFlow
channel

Group 
table

Flow
table

Flow
table

…

pipeline

OpenFlow switch
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Packet matching is based on priorities, where each flow is installed by the SDN controller with a given priority. 

For instance, when the packet arrives to the incoming port of a switch, it is matched against the flows and in the 

case, there are duplicated flows, the matching flow chosen is the one with the highest priority. The maximum 

value of priority defined in OpenFlow is 665535 (2^16-1 bits), but there are exceptions where this maximum 

value is exceed, as it will be seen later.  

The forwarding behavior of switches can be dictated by the SDN controller in a proactive manner (proactive 

forwarding), where the flows are installed by the controller in advance, or in a reactive manner a.k.a reactive 

forwarding, where the controller replies to the queries made by the switches. In proactive forwarding, the SDN 

controller installs the flows in a proactive manner, before those are asked by the switches. This type of forward-

ing can be applied when we need to preallocate the path in advance, but this is not always possible. The ad-

vantage in this type of forwarding is that the SDN controller does not have to answer any new request and does 

not add any unknown and uncertain delay like in reactive installation mode. Also, the control plane is less con-

gested than in reactive rule installation mode. There are techniques that preinstall alternatives routes in the 

switches in advance as a backup in the presence of link faults. In reactive forwarding, the SDN controller installs 

the flows into the network elements by request of the switches. When a network element does not know what 

to do with the incoming packets, it sends a copy of the incoming packet to the controller. Then, the SDN control-

ler responds to this request after a given delay by installing the proper flow with the corresponding action to 

apply to this packet. A conversation between the controller and the switch takes place before installing the rules 

on the switch. In that dialog, the controller receives a Packet_IN message from the switch and it returns certain 

amount of Packet_OUT messages in exchange. Reactive means that, when the switches do not know how to 

forward the packets (they do not match any already installed flow), they send a PACKET_IN to the controller to 

get the appropriate flow installed. 

We show one example of reactive forwarding in Figure 4, which is the most used in SDN infrastructures. The SDN 

controller is connected to one OpenFlow switch and this one is in turn connected to four different hosts. The 

OpenFlow switch is running a software OpenFlow client application to communicate to the SDN controller appli-

cation. Host H4 (which IP adress is 1.2.3.4) sends a packet towards host H1 (which IP address is 5.6.7.8) through 

this intermediate switch. The switch receives this packet and tries to match it with its installed flows, however, 

none of those flows matches that packet so the switch does not know how to treat this packet and it queries the 

controller, by sending a Packet_IN notification to request the actions to apply to that incoming packet.  In re-

quest, the controller sends back a Packet_OUT notification packet and installs a new flow on the switch’s flow 

table to forward all packets coming from host H4. This flow indicates that the packets coming from host H4 must 

be forwarded through the port 1. The rests of the fields in that flow are asterisks, which means that those fields 

will not be taken into account in the matching of incoming packets i.e. incoming packets can have any value on 

those fields. 
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Figure 4. SDN forwarding in OpenFlow  

2.2.3 Types of control in SDN 

In this section we define how control and data plane interact. This interaction is different in accordance with the 

type of control led by the control plane. First, we define both types of control and then we analyze the main 

differences between both types of control. 

An SDN infrastructure is generally composed of the several controllers. Each controller’s domain is composed of a 

different network topology. Each network topology is composed of the SDN resources such as hosts, switches 

and links. There are two types of control in SDN infrastructures, in-band and out-of-band. The control network is 

composed of the SDN controller, the control links (a.k.a control-to-data links) and the control ports located at the 

switches (Figure 5 in red) to connect to the SDN controller, whilst the data network is composed of the network 

elements in the infrastructure layer such as data links, switches and hosts (Figure 5 in blue).  

2.2.3.1 In-band control 

In in-band control, both control and data network overlap as seen in Figure 5 (a). Links transport both data traffic 

and control traffic (Figure 5 (a)) so there is not notion of control or data link as both are intertwined. The SDN 

controller is only directly connected the master switch via the control-to-data interface (S1 in Figure 5 (a)). The 

rest of switches are slave switches (S2, S3 and S4 in Figure 5 (a)) and receive the flows via the master switch S1.  

The control traffic is transported in an OpenFlow network, which is implemented by installing flows with higher 

priorities than the maximum value admissible on the switches at the beginning, where the SDN controller be-

comes aware of their presence (proactive forwarding). The goal of these flows is to ensure that the rest of flows 

sent by the SDN controller, which are sent by request of the switches (reactive forwarding), will always reach the 

switches e.g. the master and the slaves. The priority of these flows proactively installed must be always higher 

than the maximum admissible value to avoid any modification of these flows. A modification on these flows 

would have as consequence that the reactive flows would not be installed on the switches.  For instance, in Fig-

ure 5, those flows ensure that: 

 the switch S1 redirects the flows sent by the SDN controller towards the switch S2 

 the switch S2 redirects the flows sent by the switch S1 towards the switch S3 

 the switch S3 redirects the flows sent by the switch S2 towards the switch S4 
 

Although, in principle, in-band control can be a bit misleading, as control and data traffic is intertwined in the 

same links despite the principle of separating control and data planes on SDN, the model of control remains the 
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same as well as the centralized principle, so we can conclude that the type of control is more a question of im-

plementation. However, the type of control influences largely several aspects of a SDN infrastructure. 

2.2.3.2 Out-of-band control 

In out-of-band, the control network and the data network are clearly separated as seen in Figure 5 (b). Out-of-

band control represents better the centralization philosophy of SDN, where control traffic is transported apart 

from data traffic in a dedicated control network (Figure 5 (b) in red).  The SDN controller is connected to all the 

switches under its control, what we call controller’s domain. In this type of control is the most extended in the 

SDN literature, where all the switches have a specific port to connect to the SDN controller through the control-

to-data interface (or control link).  

 

Figure 5. Example of flow installation: (a) In-band control and (b) out-of-band control 

2.2.4 Influence of the type of control  

We analyze hereafter the influence of both types of control on the following aspects: fault propagation, centrali-

zation, control traffic load, and flow installation delay. Among the few works in the literature on SDN that men-

tion the type of control, such as in (Panda et al, 2013), (Sharma et al, 2013), and (Behesti & Zhang, 2012). Those 

works focus on one type of control, but do not detail their differences a great extent. We focus on centralized 

SDN infrastructures, composed of one controller, and we detail of the differences in both types of control and its 

impact on other aspects not treated so far in the state of the art. 

In general, it is often said in the literature of SDN that both types of control mostly differ in cost and resilience. 

On one hand, they differ in terms of cost because in-band control is less expensive to implement than out-of-

band control because, in out-of-band control, every switch must be provided with an additional control port to 

connect to the SDN controller, while in in-band control, only the master switch must be provided with that addi-

tional control port.  On the other hand, they differ in terms of resilience because in-band control is less resilient 

than out-of-band control as both types of traffic are separated in out-of-band. On the contrary, the work done by 

Panda et. al. for distributed SDN infrastructures, call this into question. These authors investigated the enforce-

ment of network policies in distributed SDN infrastructures under out-of-band control. The authors analyzed how 

the partitioning of the control plane in distributed infrastructures constrained the enforcement of network poli-

cies. The partition of the control plane consists of the following: each controller as the view of a given subset of 

the network topology because a controller can only query the switches in its domain and hence the hosts con-

nected to those switches.  

2.2.4.1 Fault propagation 

From a fault propagation perspective, in-band and out-of-band are quite different from each other. Faults on 

links in in-band control affect both control and data traffic, whilst in out-of-band control, links are separated in 

control and data links, so faults on data links do not affect the control traffic and vice versa.  
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Figure 6. Fault propagation differences: (a) In-band control and (b) out-of-band control 

This can be seen by a simple example in a linear network topology with 4 switches (Figure 6), connecting a client 

(C1) with a server (C2), where C1 is attached to S2 and C2 is attached to S4.  

In out-of-band control (Figure 6 (b)), a faulty link between switches S1 and S2 will only affect the communication 

between both switches, but it does not affect the communication between clients C1 and C2. Indeed, this fault 

does not prevent the switches (S1, S2, S3, S4) from receiving flows through their respective dedicated control links.  

However, in in-band control, the same faulty link, has much worse consequences than in out-of-band control, as 

this links transports both control and data traffic. The first consequence is that none of the slave switches (S2, S3, 

S4) will be able to receive the corresponding flows and the network will become completely inoperative, because 

those three switches will not be able to know what to do with the incoming packets from C1 and C2, interrupting 

completely the communication between both clients. This simple example confirms that in-band control is less 

isolated and less resilient than out-of-band control for the same given network topology. We can conclude that 

an in-band controlled network has two points of failure, the SDN controller but also the master switch, while in 

an out-of-band controlled network, the SDN controller is the only point of failure. 

2.2.4.2 Centralization 

When the degree of centralization of the SDN controller is high, and the SDN controller has to control so many 

switches, their number of requests to the SDN controller can eventually congest the control links. 

We can get an idea on how both types of control impact the scalability of centralized SDN infrastructures by 

considering the degree of centralization of network elements. The degree of centralization is a metrics that de-

picts the number of connections seen by each network element in the network topology, including the elements 

in the control network and in the data network. As example, we consider a linear topology with n network ele-

ments (Figure 7), when the hosts attached to the switches are omitted for the sake of clarity. 

In in-band control (Figure 7 (a)) the degree of centralization of the SDN controller is always one because the SDN 

controller is only directly connected to the master switch. This means that the degree of centralization of the 

SDN controller is independent of the number of elements for any network topology.  

In out-of-band control (Figure 7 (b)) the degree of centralization of the SDN controller is n and it changes with the 

number of switches attached to the SDN controller. We can see that in this network topology example, the de-

gree of centralization of the switches is quite similar; however, this parameter depends on the number of hosts 

attached to each switch. 
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Figure 7. Degree of centralization: (a) in-band, (b) out-of-band control 

Basil et. al in (Basil et al, 2015) define a metrics called control session capacity that measures the maximum num-

ber of control sessions that the SDN controller can maintain with each SDN node, (or OpenFlow switch). Never-

theless, the control session capacity will not be influenced by the type of control because the number of switches 

managed by the SDN controller is the same on both types of control. However, this metrics is affected when the 

number of switches grows. 

2.2.4.3 Control traffic load  

We first analyze the control traffic load in both types of control. In out-of-band control, the control traffic from 

each switch is directly sent to the SDN controller through the dedicated control links via the four ports attached 

to the SDN controller. However, in in-band control, there is only one control link to the SDN controller, so the 

control link may become congested more easily because it contains the aggregated control traffic from all 

switches towards the SDN controller. We illustrate these differences in Figure 8, where all switches send one 

Packet_IN simultaneously to the SDN controller to request a flow.  

In out-of-band control, Figure 8 (b), the SDN controller receives four Packet_IN from different control links. As 

the SDN controller only has four ports, each Packet_IN is receive via each port. However, in in-band control, 

Figure 8 (a), the SDN controller receives the same amount of Packet_IN packets aggregated in the same control 

link, which is in turn connected to the only port of the controller, which may risk of congestion 

In conclusion, given the same request rate per switch (one Packet_IN), in-band control tends to congest more 

easily the control link than in out-of-band control, because the number of Packet_IN is four times bigger in in-

band control than in out-of-band. 

 

Figure 8. Control link congestion: (a) in-band, (b) out-of-band control 

We analyze the traffic load generated by the control traffic on the rest of links in both types of control. 

Controller Controller

Control Traffic

Data Traffic
(a) (b) Control Traffic

Data Traffic

… …

1

2 12 2 2 2 2

n

2 3

s1 s2 s3 sns4 s5 s6 s1 s2 s3 sns4 s5 s6

3 3 3 3 2

Controller Controller

Control Traffic

Data Traffic
(a) (b)

s1

Control Traffic

Data Traffic

(master) (slave) (slave) (slave)

4 flow 

requests
1 flow 

request

C1

s2 s3 s4 s1 s2 s3 s4

C2 C1 C2

1 flow 

request

1 flow 

request

1 flow 

request

3 flow 

requests

2 flow 

requests

1 flow 

request



End-to-end Self-Diagnosis of Programmable Networks 

35 
 

In out-of-band control, the data traffic and control traffic are separated, so the rest of links (called in this type of 

control data links) will not be charged with any control traffic. However, in in-band control, control and data 

traffic are intertwined. The control traffic from the slave switches will be retransmitted to the rest of switches 

until the controller. This can see in the example of Figure 8 (b) where switch S4 sends a Packet_IN towards the 

controller, which in turn will traverse first the switches S3 , S2 , S1 until it reaches the SDN controller. 

Given the same request rate per switch (one Packet_IN), in-band control tends to congest more easily the rest of 

links than in out-of-band control. This phenomenon appears because in in-band control 6 Packet_INs are gener-

ated (3+2+1) in the links among the switches, while in the out-of-band control, no control packets are generated 

(these packet were directly transmitted through the control links). 

The control traffic load towards the SDN controller will influence the control session capacity that measured the 

maximum number of sessions that the SDN controller can maintain. In addition, the forwarding table capacity in 

the SDN controller will have great importance to determine which level of control traffic congests the SDN con-

troller.  

2.2.4.4 Flow installation delay 

We analyze here how the type of control could influence the delay of the flows installed by the SDN controller on 

the switches. The same type of analysis can be done to measure the delay in the other way round, to measure 

the delay in the flows requests sent by the switches to the controller. We assume that in in-band control the 

control links have a uniform delay 𝐷𝐶  and the rest of links have a uniform delay 𝐷. In out-of-band control the 

control links have a uniform delay 𝐷𝐶  and the data links have also a uniform delay 𝐷.  

In in-band control, the flow installation delay Dc is lower at the master switch because it is directly connected to 

the controller through the control link. However, this flow delay increases in slave switches (by a factor D per 

hop) depending on the number of hops of distance to the controller, which depends on the considered network 

topology. Contrariwise, in out-of-band control, each switch is directly connected to the SDN controller by one 

control link, which delay is Dc, which does not vary largely. 

 

Figure 9. Flow installation delay: (a) in-band, (b) out-of-band 

We illustrate these differences in Figure 9, where two linear network topologies with n=25 switches, one under 

in-band control and its equivalent topology under out-of-band control. We consider a delay on control links 

Dc=10 ms and in data links D=20 ms. The flow installation delay in in-band control increases with the number of 

hops separating each switch with the controller. Indeed, if we compare the delay at the nth switch Sn (the most 

distant element from the SDN controller) in both types of control, it should be close to Dn=(n-1)D+Dc=490 ms in 

in-band control and Dn=Dc =10 ms in out-of-band control. Nevertheless, the flow installation delay in out-of-band 

control does not increase and should remain stable around Dc in this example.  
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The type of control influences in a great extent the flow installation delay. Indeed, this extreme example gives an 

idea how important is to consider a relatively low number of switches per SDN controller domain, otherwise, the 

number of controllers should be increased to reduce this flow delay. 

Basil et. al in (Basil et al, 2015) define two metrics called reactive path provisioning time and proactive provision-

ing time, where both are defined as the time taken to the SDN controller to establish a path between a given 

source and a destination node. It is clear that both reactive and proactive path provisioning times will be influ-

enced by the type of control as seen in this section, as the path provisioning time is the addition of the different 

flow installation delays. 

As a conclusion, due to the differences seen between both types of control in terms and its influence on aspects 

such as fault propagation, centralization, control traffic load, and flow installation delay, is a fundamental reason 

to consider the type of control when modelling an SDN infrastructure with the network topology to understand 

the behavior of an SDN infrastructure.  

2.3 Related work on Fault Management in SDN  

In this section, we analyze the related work on fault management for SDN. We have classified those fault man-

agement challenges and the respective related work in accordance with the different planes of SDN. 

In general, we have seen that there is a prominent lack of multi-layer fault management solutions covering all the 

planes of the SDN architecture e.g. data plane, control plane, and application plane. Indeed, most of the existing 

fault management solutions for SDN only handle physical faults in the data layer but only a few solutions focus 

on the control plane, where, although the control traffic only represents less than 1% of the traffic volume, more 

than 95% of errors are due to the control plane itself. 

2.3.1 Fault management solutions for the data plane 

Most solutions for fault management in SDN mainly propose traffic engineering recovery solutions that reconfig-

ure the data plane by providing alternative paths to avoid the affected nodes (traffic engineering solutions).  

For instance, (Sharma et al, 2013) proposed a fast failure recovery technique exclusively for centralized SDN 

infrastructures under in-band control. On this article, the authors provide with a traffic restoration scheme that 

allows the SDN controller to circumvent failures on certain links by proactively sending a set of protection paths 

that it will utilize in case of failure. Similarly, (Behesti & Zhang, 2012) provide with a resiliency mechanism for in-

band controlled SDN infrastructures. This mechanism is based on a resiliency protection metric that allows each 

switch to protect itself with an alternative path towards the SDN controller. 

Turchetti and Duaerte in propose a failure detector, called NFV-FD, which detects faults on the data links of a 

SDN infrastructure. The NFV-FD block is implemented as a SDN application that communicates with the SDN 

controller through the REST API so it can detect the data links through an OpenFlow SDN controller. However, 

the authors assume that the SDN controller does not crash and only focus on faults in the data links, omitting the 

control links.  

Gheorghe et. al. propose SDN-RADAR, a multi-agent distributed network troubleshooting mechanism for SDN 

that identifies faulty network links impacting user experience. This is a SDN application running on top of the SDN 

controller, which is running at run-time, and it is intended to support human administrators in charge of perform-

ing troubleshooting in SDN.  

2.3.2 Fault management solutions for the control plane 

The SDN approach logically centralizes all the intelligence in the controller, which becomes a single point of fail-

ure. Indeed, the controller, centralized or distributed, performs all the intelligent tasks, which implies problems 

of security, scalability and resiliency. Indeed, fault management solutions are paramount to maintain the control 

plane operative in the presence of high control loads towards the control plane, or in the presence of correlated 
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or uncorrelated faults. In addition, as derived consequence from centralization, SDN architectures suffer from 

scalability. Scalability can be defined as the capability of the control plane to handle the incoming requests from 

switches. This means that the control plane, and in particular, the SDN controller, needs to be robust enough 

facing failures, malfunctions, or attacks.  Nevertheless, a few solutions focus on the control plane and especially 

on the SDN controller in itself. 

According to (Basil et al, 2015), three metrics can characterize the scalability of a SDN controller: the control 

sessions capacity, the network discovery size, and the forwarding table capacity of SDN controller. 

In SDN infrastructures, there are three key parameters: the location of the controller(s), the number of SDN 

controllers deployed, and the number of switches assigned per each controller. These three parameters can have 

a huge impact on the scalability and performance (e.g. latency of an SDN, the number of needed flows in the 

switches, or control plane’s availability). For instance, when the number of forwarding elements connected to 

the SDN controller augments the SDN controller risks of becoming congested due to their requests. Similarly, for 

a given set of switches, the number of SDN controllers may be not enough to deal with all the control traffic 

generated by those switches. One solution is to distribute the control plane to alleviate the control load towards 

the control plane, by means of westbound/eastbound API interfaces to ensure the communication among differ-

ent SDN controllers or clustering techniques, which instantiate several instances of the SDN controller. 

(Heller et al, 2012) calculated the number of SDN controllers needed for different network topologies and their 

optimal location in those topologies. The authors studied 256 different topologies, including linear, ring, hub-

and-spoke, tree, and mesh. In their study, the number of needed controllers and their location was calculated to 

reduce the latency. The authors demonstrated how the latency could be reduced when the number of controllers 

augmented, and how the latency depends on their position in the network. However, this calculation does not 

consider if that number and location of controllers is sufficient to ensure fault tolerance. (Yazici et al, 2014) 

solved a similar problem, by proposing a distributed OpenFlow controller framework and its associated coordina-

tion mechanism to augment scalability and reliability under high load in datacenters. This is based on a set of 

controllers, a.k.a. controller cluster, with are continuously communicating. There is a master node per cluster, 

which plays the role of controller, but is continuously monitored to detect its failures to replace it immediately by 

any other node in the cluster.  

(Curtis et al, 2011) proposed DevoFlow, a slight modification in the OpenFlow protocol in order to reduce the 

number of necessary flows installed in the switches. The authors demonstrate that the number of flows can be 

reduced up to 53 times and the need control messages between the SDN controller and the switches can be 

reduced up to 42 times. (Li et al, 2014) proposed a secure SDN distributed infrastructure able to resist Byzantine 

attacks on the SDN controllers and empowered with resiliency. On their proposal, the authors advocate to assign 

several controllers to each OpenFlow switch. With this controller redundancy per switch, switches are resilient to 

correlated failures because there are several assigned controllers and, on the condition that there is at least one 

SDN controller available at any time. The authors also study the controller assignment problem that reduces the 

number of controllers deployed for a given set of switches.  

As a consequence of the logical centralization of the intelligence in the control plane, the SDN controller becomes 

vulnerable to attacks that as a result, compromise the data plane. For additional information concerning types of 

vulnerabilities and attacks in SDN, the European Union Agency for Network and Information security provides in 

(ENISA, 2016) with an extensive threat landscape for SDN.  

On one hand, the topology discovery procedure in SDN is based on the OpenFlow Discovery Protocol OFDP. This 

protocol is based on LLDP (Link Layer Discover Protocol), which is vulnerable to link spoofing attacks because 

LLDP packets are not authenticated. Link spoofing attacks consist of fabricating LLDP packets and corrupt the 

network topology information seen by the SDN controller. Nevertheless, there are several countermeasures like 

the proposed in (Alharbi et al, 2015), which consists of adding a cryptographic MAC to LLDP packets. On the other 

hand, the SDN controller is vulnerable to DoS and DDoS (distributed) attacks. Those attacks inject huge amount 

of signaling traffic from one infected host (or several infected hosts in DDoS) to the SDN controller in order to 

overload it. This overload, together with the centralization of the SDN architecture, causes the control plane to 

become inoperative, as a result, the data plane.  
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(Fonseca et al, 2012) proposed an Openflow-based replication mechanism to improve the resilience in SDN that 

detects abrupt failures on the SDN controller and use replication techniques to transition to a back-up controller. 

This mechanism could detect failures on the SDN controller and use replication techniques to transition to a 

back-up controller, but it could also detect DDoS where one attacker host sent packets with random IP source, 

what forces the SDN controller to install new flows so often that becomes inoperative. Nevertheless, this solution 

can detect the unresponsiveness of the SDN controller and transition to a back-up controller as soon as this is 

detected. This technique instantiates replicas of the primary SDN controller and sends the appropriate messages 

to those replicas when the primary SDN controller fails in order to inform them to take the control of the net-

work. The authors considered the abrupt abortion of the SDN controller and SDN application failures. However, 

this approach only considers when the SDN controller is compromised, leaving out faults in the rest of compo-

nents such as the switches, the hosts connected, or any link at the control or data network. However, it only 

considers when the SDN controller is compromised, leaving out faults in the rest of components in the network.  

2.3.3 Fault management solutions for the application plane 

Closely related to attacks is the lack of control in the application plane of SDN. As SDN proposes the application 

plane composed of many SDN applications to take control of the data plane via the SDN controller, the policies 

sent by the different SDN applications could conflict in the SDN controller (Ma et al, 2014) , (AuYoung et al, 2014) 

, and (Paladi, 2015). A possible solution is a mediator between the application plane and the control plane (the 

SDN controller) to check and validate the policies sent by the SDN applications to avoid conflicts.  

With this concern, (Ma et al, 2014) and (AuYoung et al, 2014) proposed Athens, a programming framework that 

detects and resolves dynamic resource conflicts between black-box SDN applications and cloud applications. 

Given the load on the links in the network as constraint, each SDN application will try to install a set of flows on 

the switches without taking into account the flows installed by other SDN applications, leading to a resource 

allocation conflict, where this problem becomes more and more complicated with the augment of the number of 

SDN applications. The authors propose a configurable coordinator that solves conflicts among SDN applications 

by automatically assigning a number of votes to each SDN application to decide the priorities of each flow in-

stalled and achieve an optimal allocation.  

(Paladi, 2015) proposed a framework to manage policies over SDN infrastructures, shown in Figure 10. This 

framework creates, verifies, and enforces SDN policies as well as controls the access of management applica-

tions. This framework is based on two types of policy checkers, one offline policy checker and a real-time policy 

checker. The real-time is in charge of continuously verifying the incoming policies and tagging them in order to 

identify to issuing source component. Once those policies are accepted, those are sent towards the SDN control-

ler. The offline policy checker is in charge of conducting periodic and static policy verification in order to ensure 

isolation, network reachability, and liveness. 

 

Figure 10. Policy Management architecture 

Additionally, the northbound interfaces of the controller must be secured with mechanisms like TLS or SSL to 

avoid malicious SDN applications to take control of the controller and, by extension, of the data plane. In addi-
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SDN Controller

Network Management applications

Network Administration

Data Plane

APP1

NBI

SBI

APPN…Policy Collector

Real-time 
Policy Checker

Offline 
Policy Checker Accepted

Policies

Installation of 
accepted
Policies



End-to-end Self-Diagnosis of Programmable Networks 

39 
 

The work from (Fonseca et al, 2012) also detects when an SDN application may lead the SDN controller to a 

failure state. The authors prove this by creating a SDN application that creates a socket to connect to the second-

ary controller and waits for a message. When the switch does not receive any confirmation coming from the SDN 

controller due to the failure on the SDN application, it reconnects to the secondary controller. 

2.3.4 Fault management solutions for legacy and OpenFlow equipment 

Another constraint in fault management solutions for SDN is that most of them are OpenFlow centric, and so 

they ignore legacy equipment and non-OpenFlow devices. Hence, several fault-tolerance mechanisms propose 

solutions for OpenFlow-based equipment and do not seem to be extensible to other equipment such as legacy 

equipment. Indeed, we identify a lack of fault management frameworks for both OpenFlow-based and non-

OpenFlow or legacy equipment—such as programmable eNodeBs (Evolved Node for LTE/UMTS), legacy switches 

and routers, no matter which southbound protocol they use (e.g. SNMP, NETCONF, etc.).  

(Sharma et al, 2013b) proposed a hybrid framework, called i-NMCS (Integrated Network Management and Con-

trol System), that includes legacy network management functions as well as SDN based management functions. 

This framework includes the traditional network management functionalities for topology discovery and fault 

detection but also the dynamic control based on SDN for provisioning end-to-end flows. The architecture of i-

NMCS can be seen in Figure 11. Its main elements are:  

 An event manager: it collects events such as new flows or link state changes and updates the provision 
repository. 

 A policy manager: it provides with interfaces to specify network requirements to ensure a given QoS,  

 The control decision engine: it is the core of the i-NMCS architecture and it translates the policies from the 
operator to specific SDN control actions. 

 
The SDN controller integrates several southbound plugins to communicate with several types of equipment such 

as OpenFlow, legacy switches, SNMP switches, of virtualized equipment. 

Its functioning is as it follows. When a user connects to the network, it is authenticated and starts using a VoD 

service (Video On Demand service) in the enterprise. The OpenFlow switch detects the first packet of that new 

service and asks the QoS solver for a new flow. The QoS solver is a SDN application running over the SDN control-

ler and computes the required path to connect the user and the streaming service satisfying the QoS level. 

 

Figure 11. i-NMCS architecture embedded in the SDN controller  
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2.3.5 Fault management solutions including diagnosis  

Most solutions for SDN do not tackle the diagnostic aspects, as exception of some troubleshooting mechanisms. 

These exception are: NICE (Canini et al, 2012) to test OpenFlow applications, OFRewind (Wundsam et al, 2011) to 

pinpoint invalid controller actions and packet parsing errors between control and data planes, STS (Scott et al, 

2014)  to analyze software bugs, NDB (Handigol et al, 2012) to trace packets, or NetSight (Handigol et al, 2014) to 

detect forwarding loops, among others. Indeed, tracing packets in OpenFlow networks seems to be a hot topic, 

as indicated by (Georghe et al, 2015) not the diagnostic aspects in itself. 

To cite some work that somehow performs some kind of diagnostics on SDN, we can cite the aforementioned 

multi-agent distributed network troubleshooting mechanism for SDN (SDN-RADAR) proposed in (Georghe et al, 

2015) that identifies faulty network links impacting user experience. This is a SDN application running on top of 

the SDN controller, which is running at run-time, and it is intended to support human administrators in charge of 

performing troubleshooting in SDN. The output of the troubleshooting approach is a weight which is calculated 

per link that augments with the probability of that link to be the root cause of the bad quality experienced by the 

user. This information is given to the human administrator for a deeper analysis on each suspected link. 

As a conclusion in this section, diagnostic aspects are not well covered so far in the state of the art on SDN infra-

structures, in especial multi-layered diagnostic approaches, what indicates a research line to follow, that is why in 

this thesis we covered this essential aspect for SDN infrastructures. 

2.4 Overview of NFV 

In this section, we describe the NFV architecture, with its functional blocks and its mode of operation. We first 

define the different components of the NFV architecture, following the terminology provided by the ETSI NFV ISG 

in (ETSI NFV, 2012) and (ETSI NFV, 2014). We will also give shed on the main challenges in NFV-based solutions. 

2.4.1 NFV Architecture 

A VNF is commonly referred to a virtualized network function, but is formally known as an implementation of a 

network function susceptible to be deployed in a NFVI. The NFVI infrastructure (a.k.a NFVI) is composed of the 

virtual and physical computing, network, and storage resources necessary to ensure the functionality of VNFs 

(Figure 12). The virtual resources of the NFVI rely on a virtualization layer which in turn relies on the physical 

substrate. 

NFV architecture is composed of the following blocks, namely, the NFV infrastructure (NFVI), the NFV Manage-

ment and Orchestration block (MANO), and the OSS/BSS block, shown in Figure 13. In turn, the MANO block is 

transversal to the OSS/BSS (Operations Support Systems/ Business Support Systems) and it is composed of the 

NFV orchestrator, the VNF Manager, and the Virtualized Infrastructure Manager (VIM).  

 

Figure 12. NFV definition 
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VIM: This block controls and manages the NFVI compute, storage and network resources. This block exposes 

northbound APIs to manage the virtualized resources inside the NFVI. This block is in charge of creating the un-

derlying virtual links and virtual networks necessary to ensure the VNFFGs of each networking service. It also 

keeps updated a database with the allocation of virtual resources on the physical substrate. 

NFV orchestrator: This block ensures the life cycle of network services, and it orchestrates NFVI resources across 

several VIMs, manages the policies for the networking services, validates and authorizes NFVI resource requests. 

VNF Manager: This block is responsible for handling the life cycle of the VNFIs. It is in charge of managing, modi-

fying, healing, terminating, updating, upgrading, scaling, and migrating the VNFIs. 

 

Figure 13. Functional NFV architecture by ETSI NFV 

The procedure to instantiate a network service in the NFV architecture is at it follows: First the OSS/BSS sends a 

service order to the NFV orchestrator which translates it into a resources order, which will be sent as output to 

the NFVI infrastructure to allocate the necessary resources to instantiate that network service. 

 

Figure 14. Network service instantiation in the NFV architecture by ETSI NFV 
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A network service is instantiated in NFV by following these three steps: reception of the service order, instantia-

tion of the VNFs, and instantiation of the virtual links, where this process can be seen in Figure 14. 

Reception of the service order: Firstly, the NFVO receives a service order from the OSS/BSS. This service order is 

a data model, which consists of parameters such as the identifiers of the network service to be instantiated, the 

identifiers of the VNFFG, the identifiers of its composing VNFs, or the identifiers of the Virtual Links (VL) inter-

connecting the VNFs.  

The NFVO then consults the service catalog where it reads the NSD (network service descriptor). The NSD pro-

vides with the VNFs and the Virtual Links (VL) to be instantiated, which are contained in the associated VNFFG 

(VNF forwarding graph) to that network service. The VNFFG describes how traffic is forwarded among VNFs 

composing this network service. The NFVO will then instantiate the corresponding VNFs and VLs composing that 

network service. 

VNF instantiation: Secondly, the NFVO consults the element catalog to read the VNF Descriptor (VNFD). The 

element catalog contains all the on-boarded VNF packages the NFV architecture can provide. The VNFD contains 

the requirements of each VNF composing the network service such as the VNFC (VNF component) composing 

that VNF as well as their intra connections, the computer requirements and SLA (Service Level Agreement) pa-

rameters.  VNFC is usually mapped to a given VM embedded in a physical hardware. The requirements of VMs 

(required storage, compute parameters, scaling limits, etc.) are given by their respective VDU (Virtual Deploy-

ment Unit) descriptors.  

The VNF Manager (VNFM) instantiates each VNF. It first reads the VNFD of the VNF to be instantiated, which 

contains information of the VNFC composing that VNF.  The VNFM then gets the number and types of the VNFC 

to be instantiated. For each VNFC, the VNFM reads the VDU of each VNFC and requests a new VM for that VNFC 

and network and storage resources to the NFVI. Depending on the number of VNFC composing the VNF, this 

instantiation process can be more or less complex. For instance, if there are several VNFCs, firstly the different 

VNFC are instantiated and secondly those are connected to each other. Once those VNFCs are connected, a 

series of messages are sent among VNFCS in order to find a suitable VNFC to play the role of master and coordi-

nate all the VNFCs (master function). Only the master function communicates with the VNF Manager. After the 

resources of the VNFC are allocated, the VNF Manager asks to start that VM and it then informs that the VNF is 

ready for configuration. 

VL instantiation: The NFVO consults the element catalog to read the Virtual Links Descriptor (VVLD). The VVLD 

contains the type of virtual link (point-to-point, point-to-multipoint, etc.), the associated KPIs (Key Performance 

Indicators) such as QoS, latency, bandwidth), and the network type (hypervisor vSwitch, etc.).  

The VIM (Virtualized Infrastructure Manager) allocates the necessary components in the NFVI for each VL. The 

virtual links connect the VNF in that network service. The VNF NCT (Virtual Network Function Network Connectiv-

ity Topology) is a set of VLs to connect the different VNFs. These VNFs are connected through connection points 

(CP). In Figure 15 (a) is given an example of NCT composed of 4 VNFs linked by three VLs. 

On the other hand, the NFP (Network Forwarding Path) is an instance of a given VNF FG (Virtual Network Func-

tion Forwarding Graph), to indicate the concrete flows for the traffic among VNFs. A NFP can be defined as and 

ordered list of CPs traversed to compose a chain of VNFs. There may be several NFP for describing different types 

of traffic (e.g. media, control, etc.) for the same network service, an example of NFP is given in Figure 15 (b), 

where those NFP are associated to three different types of communication (media, control, etc.) transmitted 

over the same VNF NCT of Figure 15 (a). 
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Figure 15. (a) VNF NCT, and (b) NFP (blue, red, and yellow) 

Once a VNF is instantiated, it becomes a VNF instance (VNFI), a.k.a as the runtime instantiation of a given VNF. A 

VNFI is susceptible to be upgraded, update, roll backed, scaled-in/out, scaled-up/down. On one hand, scale-out 

means adding additional virtualization container for an additional VNFC associated to a given VNFI. The inverse 

operation is scale-in, and consists of removing that additional virtualization container (VM) associated to a given 

VNFI. On the other hand, scale-up means increasing the CPU, memory, and storage of a given VM currently sup-

porting a given VNF. The scaling limits supportable by the VM are described in the VNFD. The inverse operation is 

scale-down, and consists of reducing such parameters. There are three VNF scaling models in NFV: 

 Auto-scaling: the VNF Manager triggers the scaling of a given VNF following the VNFD, 

 On-demand scaling: launched whether by the VNF instance or the EM without having to request to the VNF 
Manager,  

 Scaling based on a management request: manually triggered by a NOC operation for example. 
 

Each VNFI is characterized by a VNF life-cycle (Figure 16), composed of five states and its corresponding transi-

tions among states. The VNFI life cycle is managed at all times by the VNF Manager. These states are described 

hereafter: 

 VNFI Null: the VNF instance does not exist yet and has to be created or instantiated 
 

 VNFI Instantiated not configured: the VNF instance exists but is not configured. Once it is configured in 
transitions to an inactive state. 
 

 VNFI Instantiated and configured: the VNFI exists and it is configured, it can be active or inactive.  
o VNFI Active: the VNFI is involved in a networking service  
o VNFI inactive: the VNFI is not involved in a networking service 

 

 VNFI Terminated: the VNFI has been deleted 
 

VNF-1 VNF-2 VNF-3

NFP1

NFP2

NFP3

VNF-4

CP2 CP4 CP8

CP1 CP5 CP7

CP3 CP9

CP10

VNF-1 VNF-2 VNF-3 VNF-4

CP2 CP4 CP8

CP1 CP5 CP7

CP3 CP9

CP10

CPi CPo

VL2

VL1

VL3

VL2

VL1

VL3

CPi CPo

(a)

(b)



End-to-end Self-Diagnosis of Programmable Networks 

44 
 

 

Figure 16. VNFI state transitions by ETSI NFV  

2.5 Related work on Fault Management in NFV  

We consider in this thesis as fault management mechanisms for NFV as those mechanisms to prevent that any 

fault in the NFV architecture lead to a failure on the network services. As advantage of NFV approach, network 

services become more resilient, in terms of both traffic tolerance and redundancy.  

On the one hand, network services become more traffic tolerant. This is because sudden increases in the service 

requests towards the VNFs can be managed whether by replicating the VNF and distributing new VNF instances 

into multiple physical nodes (scale-out) and distributing the service requests to the rest of nodes, or by assigning 

more physical resources to the current VNF where the service requests are sent (scale-up). On the other hand, 

network service can benefit from dynamic redundancy, as VNFIs can be duplicated with redundancy mechanisms 

at run-time or migrating them on live with pre-emption and regression mechanisms what ensures resilient net-

working services. 

However, networking services defined in NFV have different fault management requirements, not only in terms 

of SLA and network constraints, but also specific requirements coming from the NFV approach, which will influ-

ence the way fault management mechanisms will cope with their respective malfunctions. Indeed, there are two 

types of networking services, stateful and stateless services.  On one hand, stateless services do not require the 

maintenance of the session parameters to ensure their continuity. As a result, it suffices to migrate the affected 

VNF to a new physical location containing the VM, if its computing and storage parameters are appropriate. 

Examples of stateless services are DNS (Domain Name System) and LDAP (Lightweight Directory Access Protocol). 

On the other hand, stateful services do require the maintenance of the session parameters to ensure their conti-

nuity. As a result, it does not suffice to migrate the affected VNF to a new physical location containing the VM, 

because the state information of the network service must be restored in the new physical location containing 

the new VM. Stateful services are those based on SIP (Session Initiation Protocol). 

In addition, NFV introduces new types of failures as identified by the ETSI NFV group in (ETSI NFV, 2015b) , due to 
internal composition of the VNFs. Indeed, the NFVI is composed of Network Functions Virtualization Infrastruc-
ture Nodes (NFVI nodes). NFVI nodes are the physical devices providing the necessary NFVI Functions for the 
execution environment of the VNFs. These execution environments are called also virtualization containers or 
Virtual Machines (VM). ETSI NFV defines four manners to implement a NFVI node. These modes are shown in 
Figure 17, and explained further here: 

 Figure 17 (a): The network function is physical (black-box model)  

 Figure 17 (b): The network function is virtualized (VNF) by means of a VM and a hypervisor.  

 Figure 17 (c): The hardware is sliced to contain several VNFs.  

 Figure 17 (d): The VNF is composed of several VNFC that span across different hosts and VMs.  
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Figure 17. Different types of implementation of a NFVI node by ETSI NFV 

 

Figure 18. Detailed VNF layered architecture by ETSI NFV 

Figure 18 shows the layered architecture of a NFVI node, composed of the VNF and the underlying hardware. The 

VNF is decomposed in the application specific layer, the application common middleware, the operating system 

of the VNF and the hardware.  We provide in Table 3 with those new types of faults in NFV, classified in energy 

faults, hardware faults, software faults, and virtual resource faults. Inside each category, we define those typical 

faults imposed by the NFV technology. The goal of a self-healing system is to avoid that any type of these faults 

compromises the network infrastructure, supported services and eventually lead to service failures.  

Table 3. Some examples of faults in NFV combined infrastructures 

Type of fault Examples 

Energy fault Rack, board 

Hardware fault computing resources faults: disk, memory, CPU 
network resources faults: NIC, board, bridge 

Software fault VNF application specific fault 
VNF application common middleware fault 
VNFC fault 
VM fault 
Hypervisor fault 
Host Operating System 
Controller kernel flaws 
Controller Buffer overflows 
switch buffer overflows 

virtual resource fault virtual network sources faults: virtual links 
virtual computing resources faults: vNIC, vCPU, vBridges, 
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In addition, NFVI nodes have a specific layered architecture but also those can be implemented in four different 

ways, what introduces new types of failures and security threats due to the inclusion of the virtualization layer.  

 The additional software introduced in a NFVI node such as the VM, the hypervisor, and the operating sys-
tem, adds new types of failures and security threats at both a hypervisor level and a virtual machine level.  
 

 The additional layers introduced in the VNF such as Application specific layer, application common middle-
ware, VNF operating system and the VNF hardware introduce different types of faults per layer.  
 

 The slicing of the hardware in order to embed different VNFs, introduces performance impact of among the 
VNFs embedded if those VNFs are not properly isolated. 

 

 The spreading of VNFs across different VMs embedded in different but remotely connected hardware nodes 
is vulnerable to link communication failures. 

 
Indeed, NFV-based architectures suffer from several security weaknesses inherited from this virtualization layer. 

As examples, the Virtual Infrastructure Manager (VIM) is vulnerable to DoS attacks that may prevent users from 

requesting virtual resources, to VIM intrusion attacks that may free resources, or VIM session hijacking that 

exploit the weak authentication. For instance, VM side-channel attacks are similar to virtual resource intrusion 

attacks, what leads to loss of confidentiality and loss of integrity of the virtual resources, unless the VM-to-VM 

traffic is encapsulated in a secure way to avoid any malicious interceptions. Man-in-the-middle attacks consist of 

compromising the management channel between the virtual resources and the management system, which will 

have the same consequences as the VM side-channel attacks and the virtual resource intrusions. While uncon-

trolled-illegitimate resource requests consist of demanding a high amount of virtual resources, leading to denial 

of resources to other tenants/slices. 

Due to these aforementioned aspects, fault management solutions are necessary for NFV. However, and alt-

hough there are some management platforms as seen in the survey on NFV in (Mijumbi et al, 2015) such as 

Cloud4NFV or NetFATE, those platforms do not consider the inclusion of SDN as underlying infrastructure, which 

is the context of this thesis. There are interesting works concerning fault management in NFV, but the diagnostics 

aspects are not explore largely, to the best of our knowledge. For instance, the failure detector proposed in 

(Turchetti & Duarte, 2015) that detects faults on the data links and distributed processes inside a SDN infrastruc-

ture, exploits the NFV principles that allow to design, manage and deploy Network Functions in less time than 

traditional network functions. The failure detection mechanism is based on liveness request messages sent to the 

monitored process in a periodic manner. If processes do not reply to those messages in a given time interval, the 

NFV-FD suspects the process is failed, otherwise it states the process is healthy. The NFV-FD is connected to the 

FDMod block, which discards information of non-interest and analyzes the header information.  The NFV-FD 

failure detector is located at control plane directly communicating to the SDN controller. 

(Miyazawa et al, 2015) proposed a fault detection mechanism based on Self-Organized Maps (SOM) to detect 

failures in NFV-based services. The authors propose a failure model to explain degradations in VNFs such as 

network congestion and memory leaks. However, SOM parameters are tuned manually and in advance in ac-

cordance with the type of failure to detect.  

Another important aspect is fault isolation, as identified in (Esteves et al, 2013) and (Chowdhury & Boutaba, 

2009) as an open research field, where virtual resources are dynamically mapped over one common physical 

infrastructure and faults may propagate among networking services. With this concern, (Scholler et al, 2013) 

propose an information model to ensure a resilient deployment of VNF composing complex services in NFV 

where redundant components are strategically placed to avoid cascade effects. However, this approach does not 

ensure resilience in the operational phase. In addition, and as Cloud4NFV or NetFATE platforms, none of these 

considers SDN as underlying architecture. 

2.6 Overview of SDN and NFV combined infrastructures  

SDN and NFV are thought to be “better together” by the IT and telecommunication industry in order to exploit 

their potential benefits. Nevertheless, the way to combine both SDN and NFV architectures is still under discus-
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sion, evidenced by the lack of consensus on the position of the SDN elements within the NFV framework. Indeed, 

there are several manners of combining SDN and NFV, as identified in (ETSI NFV, 2015a), depending on the posi-

tion of the SDN elements. For instance, there several positions in the NFV architecture for the SDN controller, the 

SDN applications, and the SDN resources, defined hereafter: 

Position of the SDN controller in the NFV architecture: the SDN controller could be considered as part of the 

VIM, a fully virtualized entity as VNF, part of the NFVI, part of the OSS/BSS or a PNF (Physical Network Function). 

Position of the SDN resources in the NFV architecture: the SDN resources (or switches) could be physical switch-

es or routers, virtual switches or routers, a switch or router as a VNF, or a host or server enabled with software 

(e-switch). 

Position of the SDN applications in the NFV architecture: SDN applications use the application control interface 

(northbound API) of the SDN controller. These SDN applications could be part of a PNF, part of the VIM, virtual-

ized as a VNF, part of an EM (Element Manager) or part of the OSS/BSS. 

In this thesis, we will consider that the SDN is the underlying infrastructure ensuring the connectivity among 

VNFs. The control plane ensures this connectivity among VNFs by establishing virtual links. We consider that both 

the SDN controller and the SDN applications are part of the VIM. Indeed the SDN controller is managed by the 

VIM. The SDN resources could be both physical and virtual resources, on the condition that the SDN controller 

has knowledge those SDN resources in the network topology by means of its topology manager.  

In NFV ETSI draft specification (ETSI NFV, 2015a) two types of SDN controller are defined: the infrastructure SDN 

controller and the tenant SDN controller. On one hand, the SDN tenant controller is located in the EM layer and 

coordinated with the SDN infrastructure controller. On the other hand, the SDN infrastructure controller is man-

aged by the VIM and it is in charge of ensuring the communication among VNFs mainly providing with connectivi-

ty services through the NFVI. This means that the SDN infrastructure controller is in charge of establishing virtual 

links among the VNFs.  

In this thesis, we will focus on the first type of SDN controller, the SDN infrastructure controller and we will refer 

to it as the SDN controller. In combined SDN and NFV infrastructures, each networking service is composed of a 

chain of virtualized networking functions (VNFs) connected through virtual links, where the SDN infrastructure 

controller establishes those virtual links. Figure 19 shows two networking services deployed in a combined SDN 

and NFV infrastructure. The networking service 1, composed of two VNFs, connects end points C and D (in green) 

and the networking service 2, composed of three VNFs, connects two end points called A and B (red). Networking 

service 1 relies on a virtual link VLC,D and the networking service 2 relies on a virtual link VLC,D. 

First, the NFV MANO block decides where to deploy the VNFs according to the network constraints (nodes capa-

bilities, faults, etc.) and requirements to be fulfilled by the network service specifications (bandwidth, delay, 

etc.), and it sends the location of the VNFs to the SDN controller, through the orchestration interface, which, in 

turn, will establish the virtual links connecting the VNFs. It is the SDN controller who decides this path at run-time 

i.e. it decides the physical network elements on which to allocate the virtual links by establishing flows on the 

corresponding forwarding elements. The SDN controller and NFV MANO cooperate through the orchestration 

interface, which is normally the northbound API of the SDN controller.  
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Figure 19. Networking service deployment in a combined SDN and NFV infrastructure 

The inherent multi-layer architecture of SDN and NFV, but also the decoupling between virtual and physical 

layers, pushes towards a multi-layered network architecture, which raises several concerns: 

2.7 Dynamicity of SDN and NFV infrastructures 

Dynamicity is the main challenge to provide SDN infrastructures with fault management and thus. A fault man-

agement mechanism considers this dynamicity by modelling first the dynamic dependencies to reproduce relia-

bly how faults propagate. The dynamicity comes given by the two approaches SDN and NFV.  

2.7.1 Dynamicity in SDN 

In this section, we discuss those cases deriving in dynamicity of the software-defined infrastructures. We identify 

three factors: changes on the network topology, changes on the type of control, and changes on the forwarding 

flows. Indeed, these three factors influence how control and data planes interact, and as a result determine the 

paths followed by control and data packets. 

2.7.1.1 Changes on the network topology 

The network topology continuously evolves with those network elements discovered by the SDN controller at 

run-time. This discovery process usually takes a few milliseconds in an OpenFlow network, where the protocol 

LLDP (Link Layer Discovery Protocol) ensures the discovery of the newly added switches and hosts.   

The dynamicity in the network topology can be seen from two different perspectives: The first case is when the 

network topology changes over time, where the switches and hosts continuously appear and disappear leading 

to the fact that the network topology constantly changes as a result, as shown in Figure 20. 
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Figure 20. Changes on the network topology in a centralized SDN infrastructure 

The second case is when considering the network topology per controller’s domain. This case refers to distribut-

ed SDN infrastructures, where each SDN controller sees a different network topology so faults propagate in a 

different way in each controller’s domain, as seen in Figure 21. 

 

 

Figure 21. Different network topologies in a distributed SDN infrastructure 

2.7.1.2 Changes on the type of control of the SDN infrastructure 

The interactions between the control plane and the data plane vary substantially for the same network topology 

depending on the type of control (in-band or out-of-band), as we shown in previous sections in this chapter how 

the type of control influenced such different aspects such as fault propagation, centralization, control traffic load, 

and flow installation delay. In addition, in distributed SDN infrastructures, each SDN controller can control the 

data plane in a different manner (in-band or out-of-band) so faults propagate differently in each controller’s 

domain due to this factor, as shown in Figure 21.  

Additionally, we can imagine the case where the SDN controller is attached to several switches under out-of-

band control, and it detects a failure in a control link towards one of those switches, what impedes the SDN 

controller to install flows on that switch. In this situation, a fault management mechanism could switch the type 

of control to in-band, and choose as master that switch with which the SDN controller can communicate directly 

via a dedicated control link. In this way, the SDN controller does not have to use the failing control link to install 

flows on the switches, and it can send those flows via the master switch. Figure 22 shows this situation with 

simple example. 
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Figure 22. Changing the type of control to overcome a fault on a control link 

However, this change in the type of control makes the network topology dynamic, because the interactions 

established among SDN resources change.  

2.7.1.3 Changes on the flows sent by the control plane 

The SDN forwarding is based on flows, where the SDN controller establishes paths by installing a set of flows on 

the switches. Flows can be deleted, modified and installed in a few milliseconds, which makes virtual links and 

physical paths dependencies change continuously and in a rapid manner. 

 

Figure 23. Traffic restoration in SDN 

The SDN controller sets a virtual link by sending a set of flows to a selected set of switches and it allocates the 

physical path between two end points according to a given criterion (end-to-end delay, shortest path, minimum 

number of hops, etc.). The network elements composing a virtual link can be modified at any time by the SDN 

controller i.e. by modifying the flows associated to that path, what it means that the dependencies of that virtual 

link from the physical elements change continuously and in a rapid manner.  

As example, we show a typical traffic restoration mechanism in Figure 23, where the SDN controller has already 

installed a virtual link (in green) to connect 2 clients, client 1 and client 2. However, one physical link fails and 

then it affects the virtual link. The role of the SDN controller is then to set an alternative path (in red) to ensure 

the connectivity between both clients. This change in the physical path changes the dependencies of the virtual 

link from the physical resources. 

2.7.2 Dynamicity in NFV 

In this section, we discuss those cases deriving in dynamicity of the NFV architecture. We identify four cases: 

scaling-up/down, scaling-out/in, changes on the VNF locations, and changes on the virtual links. 

NFV boosts the flexibility by permitting network services to be composed in an elastic manner at run-time by 

dynamically chaining VNFs. However, dynamicity is a challenge from a fault management perspective, where 

network services dependencies become highly dynamic, because the composing VNFs and virtual links can be 
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moved and migrated across the NFVI, what implies that the dependencies between the network service and 

VNFs and the dependencies between the VNFs and the NFVI are in a constant change.  

2.7.2.1 Scaling-up and scaling-down 

In NFV is possible to increase the computing resources granted to VNFs, by means of VNF post-deployment oper-

ations such as scaling-up and scaling-down. Scaling-up permits to increase the computing resources of the VM 

supporting the given VNFIs such as the CPU, memory, or storage size. If the physical resources of the virtual 

machine used by a VNFI are not enough to guarantee the performance of the networking service, those can be 

upgraded. 

For instance, Figure 24(a) shows how a VNFI is upgraded. This is the only case where the dependencies of the 

VNFs from underlying physical elements are maintained. 

2.7.2.2 Scaling-out and scaling-in 

In NFV is possible to increase or decrease the instances of a given VNF, by means of VNF post-deployment opera-

tions such as scaling-out and scaling-in. Scaling-out permits to add new instances of a given VNF, by adding addi-

tional VMs embedding more VNFC. This allows treating huge users’ traffic demands by forwarding the traffic 

excess to the newly deployed VNFCs. 

For instance, Figure 24 (b) shows how an additional VNFC is added, however this change must be notified to the 

SDN controller in order to establishing a new virtual link to connect that new VNFC to the rest of VNFC compos-

ing the VNF. 

2.7.2.3 Changes on the VNF locations  

VNFIs can be migrated to other physical hardware in the presence of physical faults on links or in the internal 

hardware. As the VNF location was changed, the virtual links among them will also change. Additionally, the VNFI 

can be duplicated different physical resources to ensure the resilience of a given service or for load-balancing 

purposes, so additional virtual links will be allocated. In these two cases, the dependencies of the VNFs from 

underlying physical elements changes, but also the dependencies of the connecting virtual links from the under-

lying physical elements in the NFVI. 

2.7.2.4 Changes on the virtual links 

The virtual links that connect the different VNFs can be modified and set over different physical paths, in the 

event of faults and failures. Scaling-out permits to add resources instances such as VMs for a given VNF. As a 

result, this new instance will need to be connected through virtual links, possibly in different physical paths. For 

instance, in Figure 24, in the presence of a link fault, to ensure the service availability the VNF2 is migrated. In this 

case, the virtual link interconnecting the VNFs will change in consequence (from red to green). In this case, as in 

the previous case, the dependencies of the virtual links change. 
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Figure 24. Examples of dynamicity in NFV architectures: (a) scaling-up, (b) scaling-out, and (c) VNFI migration 

2.8 Conclusion 

This chapter has analyzed both SDN and NFV architectures, functioning modes, and vulnerabilities as well as the 

related work on fault management in order to identify how to diagnose in an automated and intelligent manager 

such networks. We identified as main challenge the dynamicity in combined SDN and NFV infrastructures to 

provide the m with fault management capabilities, where this dynamicity comes given by the changes on the SDN 

infrastructure (e.g. topological changes, forwarding changes, control changes) but also by the elasticity in the 

NFV architecture (e.g. VNF scaling, migration, etc.). 
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Chapter 3 Related Work on Self-

Healing Systems 
 

 

3.1 Introduction 

This chapter describes self-healing systems as well as their internal architecture and functional blocks.  It also 

describes and details the origins of self-healing systems, their properties and mission to fulfil in a telecommunica-

tions network supporting one or several services. This chapter also compares the control-loop of a self-healing 

with the control loop of a resilience system as well as their functional tasks and architectures.  It describes the 

most used algorithms in each of these functional blocks as focuses on the self-diagnostics aspects, the core of 

this thesis manuscript.  

In the last part of this chapter, we review the most important self-diagnosis approaches for different network 

technologies with the aim to understand their limitations and the key learning aspects worth been taken into 

account in the context of programmable networks. 

3.2 Self-Healing overview 

Partially and statically automated network and service management characterize Telcos infrastructures and this 

static automation has reached the limit of its capacity due to the increasing complexity and heterogeneity of 

current networks. A huge number of operational challenges are inherent in this complex context. On the one 

hand, recent statistics state in (Wallin, 2012) "operators need to handle millions of alarms per day in each medi-

um-sized NOC". On the other hand, around 40% of alarms are redundant and that the current alarm correlation 

level is around 1-2% at most. This indicates that there is a significant alarm overflow for human administrators, 

who are simply not able to handle such amount. The current level of automation in fault management is not at all 

adequate for future networks. In addition, the quality of most emitted alarms is low due to vendor dependency: 

each vendor proposes a different alarm interface and provides different documentation. 

Fault management is always one of the most in vogue fields of research, due to the increasingly complexity and 
lack of manageability in all related information technology (IT) environments. Operator’s infrastructures are 
composed of IT systems to provide their services and control the access of users. This issue emphasizes the need 
to explore the autonomic approaches, as these networks are growing faster and faster caused by the large 
amount of increasingly more demanding new applications and services. These huge demands in turn cause an 
unmanageable growth of the complexity and heterogeneity of network and equipment, what impacts efficiency 
and cost for the operators. In this regard, autonomics is the next generation of management solutions with its 
self-healing properties. 

Network Operations Center (NOC) teams handle fault and service quality degradations within Telcos infrastruc-

tures. Their role is to establish the necessary steps to repair and re-establish services for end users. These steps 

are directory based but those may rely on operational brains that utilize the expertise of NOC teams. The Net-

work Management Systems (NMS) detect the alarms sent by network equipment or their overlying Element 

Management System (EMS) through the northbound Interface (NBI). The NBI delivers the fault information to the 
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NMS by means of traps. The NMS aggregates and filters these alarms triggered by different equipment and vari-

ous network segments. Each alarm generates a trouble ticket that is, considered to be valid, to determine the 

root cause of that alarm. NOC teams process each ticket separately (or globally if a global error is suspected) and 

access to the various directory bases to determine the appropriate steps to follow. This approach is error-prone 

as it relies on manual interaction of operational teams with supervision applications built on to silos and directo-

ry bases that are not up to date.  

The main reason to empower a network with Self-Healing properties is to reduce the outages and the service 

downtime. For instance, in an operator infrastructure, applications and data servers are functioning continuously 

giving service to millions of clients simultaneously, so this downtime is an important parameter to be taken into 

consideration, due to the fact it represents the overall performance of their services and applications.   

3.2.1 Preliminaries 

A self-healing system has as main role to prevent, defend, detect, and recovery challenges and faults that may 

threat the network infrastructure operating services. A self-healing mechanism ensures resilience of a SDN and 

NFV combined infrastructure, which operates one or virtualized several networking services. The network infra-

structure is characterized with some operational parameters depicted by metrics, as the overlying services are 

characterized by a set of service parameters and KPIs indicating their state. 

Along this thesis will use the definitions for active and dormant fault, failure, and error given in (Avizienis et al, 

2004). A fault has two states, dormant and active. An active fault may be enabled by challenges or system opera-

tions. A challenge, if not prevented by the system defenses, may turn a dormant fault into an external active fault 

(or equivalently, a system operation may turn a dormant fault into an internal active fault). Faults manifest as 

errors, where those can pass to the operational state and become failures if not avoided by a handling error 

system. A fault, or active fault, is “the hypothesized cause of an error” while an error is a deviation between an 

observed value and a specified correct value, also known as the manifestation of an active fault.  

A service failure, also known as failure, implies a deviation of the service from its initial specification, where the 

functional specification relies on two aspects: the service content, and the service timing. Service content refers 

to the provision of the correct content regardless of the timing, and service timing refers to the provision of the 

content in a timely manner regardless of the content. We consider that a self-healing system must ensure the 

delivery of the service content and the service timing regardless of any type of challenges present in the system. 

 

Figure 25. Fault-error-failure chain 

One simple example of system operation is a database update, where, by accident, the new version changes the 

current update repository to a wrong repository, which is not available. However, this is a dormant fault because 

the symptoms of that wrong repository will not perceived in the network or services exploiting that database as 

long as no update is required. That dormant fault will turn into an error in the next update (missing repository) 

and, if the error is not properly handled, it will evolve into a service failure, because the service accessing to that 

database will experience a database connection error coming from that unsuccessful update. 

In the fault management community there is a prominent lack of consensus on what is considered fault and 

failure. Indeed, in the latest document by ETSI NFV on resiliency requirements for NFV in (ETSI NFV, 2015b), the 
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authors considered that a fault management system should be renamed as failure management system. Indeed, 

fault and failure largely differ. According to the English dictionary, a fault is defined as “a problem that may not 

be obvious and could cause something to fail”. (Smith et al, 2011) , (Avizienis et al, 2004), and (Salfner et al, 

2010), considered that service failure, often referred to failure has as consequence the aforementioned deviation 

of the service functional specifications. Indeed, the following examples show this lack of consensus on faults and 

failures. For instance, in the optical communications field, malfunctions in the links and nodes in the optical 

infrastructure are considered themselves as failures, although those malfunctions are not impacting service 

delivered. Similarly, (Tipper, 2013) uses the term failure to describe faults in nodes and links that do not affect 

services, as well as (Cholda et al, 2007), which considered that faults in links and errors in software are failures 

but those could not lead directly to service failures and those should be faults in our perspective. We considered 

that in these aforementioned examples, failures should be defined as faults because the service is not affected. 

3.2.2 Definition  

There are many different definitions for self-healing systems, also known as self-repairing or self-recovering 

systems. (Kephart & Chess, 2003) considered that a self-healing system is derived from autonomic systems and 

defined as “a system that automatically detects diagnoses and repairs localized software and hardware prob-

lems”. Indeed, a self-healing mechanism is an autonomic-based mechanism that performs the fault-management 

tasks (fault-detection, fault-isolation, and fault-removal). 

On the other hand, (Ganek & Corbi, 2003) defined a Self-Healing system as an organized process of detecting and 

isolating a defective component, disconnecting it of the system, fixing it, and reintroducing it or even replace it if 

necessary without any apparent disruption, accomplishing with the target of minimizing the services outages. 

Contrarily, the ETSI AFI (European Telecommunications Standard Institute-Autonomic network engineering for 

the self-managing Future Internet) has a rather a proactive vision of a self-healing system: “a system encompass-

ing processes for problem discovery through fault-detection, diagnosis and triggering appropriate actions to 

prevent disruptions”. On the other hand, (Gosh et al, 2007) defined a self-healing system as a system able to 

perceive that is not performing well and, with or without human intervention, adopt the necessary measures to 

restore the normal state.  

The goal of a self-healing system is to provide a system with resilience. (Sterbenz et al, 2010) define resilience as 

“the ability of the network to provide and maintain an acceptable level of service in the face of various faults and 

challenges to normal operation”. It is interesting the differentiation the authors made between fault and chal-

lenge. One one hand, challenges have an external nature, those can be environmental, natural disasters, or ex-

ternal attacks to the network. On the other hand, faults are inherent to the network and are generated within 

the network infrastructure. Faults occur inside the system operation processes such as accidents, misconfigura-

tions, operations, or even attacks from inside the network.  

3.2.3 Origins of self-healing 

As said before, the origins of self-healing come from the autonomic properties defined in (Kephart & Chess, 

2003) , known as Self*-properties or self-X properties: Self-Configuring, Self-Optimizing, Self-Protecting and Self-

Healing. As a result, Self-healing is one of the aforementioned autonomic self-* properties, and it has autonomic 

behavior. Autonomics is rooted in the plethora of biological mechanisms found in nature. As an example of bio-

logical mechanism, our human body is composed of motile ciliary cells, which have as role to prevent our organ-

ism from being infected by keeping the airways clear from mucus, what allows us to breathe normally. Indeed, if 

the beat frequency of those cilliar cells is not sufficient, they cannot expulse the mucus from our organism, and 

as consequence, it may compromise our health. The important point is that humans are not even aware when 

those autonomic biological mechanisms are functioning. This is one cornerstone feature of self-*properties, 

those are function without being perceived, in an autonomous manner. We present here the mission carried out 

by each self-* property: 

 Self-Configuring: This refers to the automatic configuration of the network equipment by means of high-
level policies. This implies that, when a new equipment is connected to the network, it should self-advertise 
by sending its capabilities and the system should configure it automatically as well as providing its capabili-
ties to the rest of network equipment to be aware of this new equipment. 
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 Self-Optimizing: a.k.a. self-tuning or self-adjusting. This refers to the automatic setting of parameters of the 
equipment installed in the network in order to optimize the global behaviour of the network i.e. end-to-end 
delay.  

 Self-Protecting: This refers to the capability of defending the system against correlated failures such as 
external attacks, massive disasters, or cascading effects. Its role is also to support self-healing systems when 
those are not able to deal with such problems. 

 Self-Healing: This refers to the capability of detecting abnormalities, diagnose them and identify the reason 
for those abnormalities by calculating the root cause, i.e. the element or elements origin of the abnormality. 
The abnormality may imply a service failure, a simple fault having non-disastrous consequences on the ser-
vice layer, or even a mismatch in a given operational parameter that could evolve in a service failure. 

Each self-* property has strong relationships with certain quality factors, as proposed in (Salehie & Tahvildari, 

2009). We focus on the quality factors related to Self-Healing properties, shown in Figure 26, and the focus on 

this chapter. As defined by Kephart and Chess, the main target of a Self-Healing system is to maximize the availa-

bility, survivability, maintainability and reliability of a given system. We define these four properties hereafter: 

 Availability: The capability of the system to be ready for use. Mathematically defined as the probability of 

the system or service to operate when needed (Sterbenz et al, 2010) 

 Reliability: The capability of a service to continue providing its content. Mathematically  defined as the 

probability of the system or service to stay operational in a given time interval 𝑇 (Sterbenz et al, 2010) 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑡) = 𝑃𝑟𝑜𝑏(𝑛𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒[0, 𝑇]) 

 Survivability: The capability of a system to fulfill its mission in a timely manner in the presence of attacks, 

failures, or accidents (Avizienis et al, 2004) 

 Maintainability: The capability of a self-healing system to repair and make the system evolve (Avizienis et al, 

2004) 

 

Figure 26. Quality factors associated to Self-Healing  

(Salehie & Tahvildari, 2009) go beyond these definitions and classify self-* properties in a three-layered hierar-
chical structure composed of: general level, major level and primitive level, as shown in (Figure 27).  Properties of 
lower layers are used by the properties located in higher layers to perform more complex autonomic behaviours. 
For instance, self-healing properties located in a major level may use self-awareness and context-awareness 
properties located at primitive level to carry out with their healing functions. 
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Figure 27.  Hierarchy of Self-* properties  

General level: This level is composed of self-organizing and self-adaptiveness properties. On one hand, self-
organizing is a bottom-up approach where the local spontaneous interactions among elements inside the system 
give as result an ordered global behaviour. However, the elements are not aware of the emerging global behav-
iour but only of their local behaviour, as those can only see their neighbours. On the other hand, self-
adaptiveness is a top-bottom approach where a global objective is given to the system, which adapts to meet 
that objective. Self-Adaptiveness is composed of Self-Managing, Self-Governing, Self-Maintenance, Self-Control 
and Self-Evaluating properties.  

Major level: This level is composed of the aforementioned self-* properties (Self-Configuring, Self-Optimizing, 
Self-Protecting and Self-Healing). 

Primitive level: This level is composed of self-monitoring, self-situated, self-awareness and context-awareness 
properties. Self-awareness means that the system is aware of its own state and its behaviour, while context-
awareness means that the system is aware of its surrounding environment. 

This hierarchical view provides us with a more accurate idea on the properties of a self-healing system and the 
metrics that can be used to measure its performance. 

3.2.4 Properties of a self-healing system 

(Psaier & Dustdar, 2011) state that self-Healing systems inherit their properties from Fault-tolerance, self-

stabilizing approaches and survivability. In general, those approaches are not recovery-oriented and are intended 

to act in a reactive manner and secure the most important systems. Nevertheless, in recovery-oriented ap-

proaches the goal is to recover the system and to reestablish the operational state as it was before the disrup-

tion. 

Fault-tolerance properties: Fault tolerance properties are those identified in fault-tolerant systems. Fault-

tolerance is the property of being resilient to uncorrelated faults, as defined by Sterbenz. et. al. Uncorrelated 

faults mean those faults that do not imply services outages. However, fault-tolerant systems would not be able 

to prevent service failures in the presence of correlated faults, attacks and massive disasters. The main role of 

fault-tolerant systems is to handle transient failures and mask permanent failures to return to a valid state by 

mirroring their operations as a redundancy mechanism. A fault-tolerant system is based on backup components 

and the appropriate procedures to take over the failing one with no downtime penalties.  

Survivability properties: Survivability properties are those identified in survival systems. Sterbenz et. al.  define 

survivability as resilience to correlated faults, the capability of providing a given service without any performance 

deviation in presence of correlated faults. Survivable systems classify their subsystems as a function of their 

overall indispensability, in order to maintain only the essential services and turn off the non-essential ones in 

case of an attack or malicious attempt. Once this threat is removed from the system, non-essential services are 

recovered again. Survability approaches only contain failing components and secure the most important services, 

depicting a not optimal but functioning configuration. Fault-tolerance does not imply survivability (i.e. survivabil-

ity comprises fault-tolerance), but survivability implies fault-tolerance properties.  
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Self-stabilization properties: Self-stabilization properties are those identified in self-stabilizing systems. Self-

stabilizing systems are a non-fault masking approach for fault-tolerant systems based on the definition given in 

(Dijkstra, 1974) that says that a system is self-stabilizing if and only if it returns to a legitimate state regardless of 

the state on which it started. As identified by (Arora & Gouda, 1993) and (Psaier & Dustdar, 2011), two main 

properties characterize self-stabilizing systems: (1) are guaranteed to return to a valid state in a bounded time 

regardless of the interference (a.k.a convergence), and (2) when it reaches a valid state they attempt to remain 

at the same legitimate state (a.k.a closure).   

3.2.5 Discussion 

The quality factors of a self-healing system (availability, survivability, reliability, and maintainability) define the 

trustworthiness of a self-healing system, in other words, how the network and overlying services managed by the 

self-healing system are maintainable, reliable, and available. However, a self-healing system is not dependable, 

because a dependable system must include safety, and integrity properties in addition to the aforementioned 

properties. Nevertheless, this is the case of a resilience system, where defined that trustworthiness of resilience 

systems can be measured through dependability, security and performability, where dependability is in turn 

divided in reliability, maintainability, availability, safety, and integrity. Figure 28 shows how a self-healing ensures 

reliability, maintainability, and availability but not the rest of properties ensured by a resilience system. 

 

Figure 28.  Comparison of quality factors ensured by a self-healing system and a resilience system 

Concerning properties of a self-healing system, there are other two types of properties such as traffic tolerance 

and disruption tolerance. Traffic tolerance is defined in (Caini et al, 2011) and (Khabbaz et al, 2012) as resilience 

to abnormal traffic conditions. On the other hand, disruption tolerance is defined as resilience to connectivity 

disruptions due to harsh environmental conditions such as deep space and satellite communications character-

ized by the difficulty to maintain an end-to-end connection due to the power, battery constraints and high atten-

uation. 

However, a self-healing system does not guarantee traffic tolerance and disruption tolerance properties. Never-

theless, a resilience system, as defined by (Sterbenz et al, 2010), can tolerate all these types of challenges, name-

ly, survivability, fault-tolerance, traffic tolerance and disruption tolerance. It is important to highlight that fault-

tolerant systems are resilient to uncorrelated faults and survivable systems are resilient to correlated faults, 

massive faults and attacks. Figure 29 shows the challenges solved both self-healing systems and resilience sys-

tems, where it can be seen how self-healing properties are guaranteed by resilience systems, but not in the other 

way round. 
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Figure 29. Self-Healing challenges from a resilience perspective 

Psaier and Dustdar conclude that a self-healing system encompasses fault-tolerance, self-stabilization, and sur-

vivability properties, and if needed, human assistance. However, we could consider additional properties. The 

conclusions we can draw from the state of the art is that a Self-Healing system:  

A self-healing system does not affect performance: The healed system should not perceive that the self-healing 

system is running.  

A self-healing system must be reactive and proactive: It should detect both faults and failures. The definition of 

proactive in this thesis is treats faults and errors that could evolve into failures (the service is not disrupted at this 

stage) and reactive treats failures (the service is already disrupted).  

A Self-Healing is self-aware: A Self-Healing system relies on Self-Awareness properties, as it is aware of the ef-

fects of their actions, by evaluating the impact of its actions on the environment. It perceives that it is not operat-

ing in a correct way by monitoring its own state (self-monitoring), and perform the necessary adjustments to 

remediate the situation.  

A Self-Healing is context-aware: It relies on Context-Awareness properties, as it should be aware of what hap-

pens by using self-monitoring properties that continuously evaluate the state of its internal elements through 

sensors. It can evaluate the impact of their actions by sensing the environment before applying those actions and 

after. 

A Self-Healing is recovery-oriented: Its goal is to mitigate the challenges by using a recovery strategy or a reme-

diation strategy whilst the challenge is not mitigated. 

A Self-Healing is human-assisted: Its goal is to supervise the self-healing system at all times by human operators 

and disable it when its response is inaccurate. 

A self-healing system is trustworthy: It ensures reliability, maintainability, and availability. However, it is not 

dependable. 

A Self-Healing has resilience properties: It has fault-tolerance, survivability properties and self-stabilizing proper-

ties. However, a self-healing system does not guarantee traffic tolerance and disruption tolerance. 

3.3 Self-Healing architecture 

3.3.1 Control-loop architecture 

In this section, we present the architecture of a self-healing system, their corresponding control-loop and their 
tasks. The architecture of a self-healing system relies on a control-loop, which implies a continuous interaction 
between a manager system and a managed system. The managed system can be any kind of resource (hardware 
of software) susceptible to be controlled and affected by a manager. The sensor and actuator of the manager is 
the physical interface through which it can interact with the managed system.  

A control-loop is a continuous and sequential process of an input data received from a sensor. This sequential 
process consists of a set of chained tasks that process an input, taken by a sensor, and it is sent through the 
effector. The self-healing system embeds and implements that loop so it manages the data-flow among the 
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different tasks. This data-flow is a continuous interaction between the manager and the managed system 
through sensor and effector. From now on, we will refer to manager system as the self-healing system and to the 
managed system as the healed system. 

We first focus on the MAPEK autonomic control loop to derive its particular case of self-healing control-loop and 
corresponding tasks. Kephart and Chess defined the MAPEK loop (Monitor, Analyse, Plan, Execute and 
Knowledge). This control-loop is implemented by an autonomic manager. These authors defined the autonomic 
element, as a combination of the autonomic manager and the managed element. The autonomic manager is an 
intelligent agent, very similar to the agent concept in Artificial intelligence field, as defined by (Russell & Norvig, 
2003) as “those who can perceive their environment and perform actions”.  

  

Figure 30. Autonomic manager 

The MAPEK control-loop implemented by the autonomic manager is composed of four essential tasks, namely: 
monitor, analyse, plan, and execute, shown in Figure 30. It can be seen a continuous data-flow of knowledge 
which is continuously transformed among the different tasks, Knowledge is produced n and consumed by the 
different tasks of the control-loop. The monitor task acquires data from the environment to be later processed 
for analysing, the analyse task determines whether the monitored information must follow certain action, the 
plan task choses an organised set of actions according to the information given by the diagnosis task, the execute 
task executes the selected plan on the managed element.  

Self-Healing control-loop is a particular case of MAPEK control-loop. In fact, the Self-Healing control-loop moni-
tors the data captured from the environment by the sensors and obtains data to be analysed and processed to 
detect degradations or faults/failures. It plans a clear and organized strategy from the diagnosis performed on 
the analysed symptoms, and finally it suggests one or several actions to be executed in the healed system to 
recover or remediate the abnormality. The Self-healing control loop architecture can be seen in Figure 31. 

Depending on the level of autonomics, those actions are directly executed by the self-healing system itself, or 
those are suggested to a human administrator who will validate after having checked they are appropriate for 
solving the current problem. 

In conclusion, a self-healing control-loop is composed of three main blocks: 

Detection: The aim of this block is to maintain the system in stable and healthy conditions to provide optimal 
performance. Otherwise, if any malfunctioning is detected, the diagnosis task is launched to determine the root 
cause behind that fault or failure and launch the appropriate recovery actions to solve that specific fault of fail-
ure. 

Diagnosis: The aim of this block is both understand why a failure or a fault occurred in the network, but also why 
and how a fault could compromise the system.  

Recovery: The aim of this block is to restore the normal operational state by returning back to those service 
quality levels previous to the disruption. 

Figure 31 shows a self-healing system composed of these three blocks detection, diagnosis, and recovery. In this 

thesis, the healed system is a network element e.g. a router, an OpenFlow switch, a database. The information 

retrieved from the healed system depends on the type of element, as well as the type of recovery action sent to 

the healed system. 
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Figure 31. Self-Healing system architecture  

A self-healing system receives raw data (e.g. logs or performance measurements) from the healed system. Sec-

ondly, these data are analyzed to detect degradations of performance measurements and failures which are 

usually referred as alarms. The self-healing system can also detect faults. In case of failure, the root cause is 

diagnosed and a proper recovery algorithm or action is executed to solve the problem. This execution is translat-

ed into actions upon the healed system to change its behavior. A self-healing closed-loop receives information 

from sensors and acts over their elements to be healed with the actuators.  

There is a huge diversity in terms of architectures (hierarchical/flat, distributed/centralized, multi-agent/single-

agent, decoupled/highly coupled), target context, algorithms used for each self-healing task, nature of the recov-

ery approach (strong or weak adaptation), monitoring granularity (semi-wide or wide-network), monitoring 

persistence (continuous/adaptive, proactive/reactive) and degree of autonomics. The right choice of implemen-

tation may depend on technical constraints or best practices coming from SDOs (Standards Development Organi-

zation) recommendations. 

For instance, if each healed system requires a dedicated self-healing mechanism we are talking about a distribut-

ed self-healing architecture. This is the case where the elements to heal are really different (database, router, 

switch, logical applications, etc.), what makes different the detection and recovery blocks, due to the difference 

of data retrieved and recovery actions sent to the healed equipment. This architecture alleviates the load to 

upper layers and is more scalable. On the other hand, there are cases where centralized self-healing architec-

tures are more appropriate, regardless of the fact that, may be seen as less scalable, as one single self-healing 

system must heal different equipment almost simultaneously. This is the most suitable architecture when the 

healed system is the whole network topology seen by a SDN controller. 

Depending on whether the self-healing system is embedded inside the healed system (highly coupled) or is ex-

ternally connected (decoupled), the self-healing mechanism can be reused for monitoring/managing more 

equipment or not. It is desirable for the self-healing system to be decoupled from the managed system, due to 

scalability and maintainability issues. 

Sterbenz et. al. propose a two-fold continuous process based on two control loops with very different time-scales 

to ensure resilience. This double control-loop, known as 𝑫𝟐𝑹𝟐 + 𝑫𝑹, has two strategies: first to heal the net-

work at run-time with short-term measures by a real-time control loop 𝑫𝟐𝑹𝟐 and second to refine and improve 

the network with medium-term or long-term measures by a background loop 𝑫𝑹. Those long-term measures 

may be architectural changes or the inclusion of new mechanisms and algorithms, or new protocols to face new 

vulnerabilities and challenges. Both control loops are continuously interacting in order to take into account the 

feedback of the 𝑫𝟐𝑹𝟐 control loop to foresee new updates and upgrades of the resilience system. 

𝑫𝟐𝑹𝟐 Real-time control-loop: This loop runs at run-time to solve the urgent and immediate abnormalities in the 

network. This control-loop is conceived for the operational phase, and it is composed of defend, detect, remedi-

ate, as well as recover functional blocks. We consider that this loop must be based on autonomics to react auto-
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matically and in time (ms or ns) to the faults and failures occurring in the network. It is composed of the following 

tasks: 

 Detection of challenges and failures: This task is similar to the failure detection task of self-healing systems, 
where the failure is discovered and eliminated. In both cases, this is a reactive approach, where the resili-
ence or the self-healing system just waits for the service to be in a failure state and then triggers the appro-
priate actions to restore the system. 
 

 Defense against challenges:  This task is similar to maintenance of health of self-healing systems, where the 
fault is preventively detected and eliminated. This task has a proactive connotation, where proactive detec-
tion approaches have to do with the anticipatory capability, instead of just waiting for the change to occur 
and react, the system is able to predict from the degradation symptoms and act in consequence to change 
the behaviour as soon as possible.  
 

 Remediation during challenges: This task has as main goal to transition the system bring the system from an 
unacceptable state, what is considered broken state in a self-healing system. It is normally considered as a 
rapid recovery solution to minimize the adverse effect of the challenges. This task is not recovery-oriented 
because it does not imply a removal of the challenge and it coexists with it. Examples of remediation-
oriented systems are fault tolerant, self-stabilizing, and fault masking systems.  

 

 Recovery to normal operations: This task acts on the root problem, and it is considered in this thesis as 
equivalent to the recovery functional task given in a self-healing system. This task may imply maintenance 
actions such repairing actions, mostly human-based (e.g. repairing links, replacing hardware, manual resets, 
re-establish power supply, etc.) or modification actions such as upgrading hardware, updating software, 
adaptive mechanisms, or optimization algorithms. 

 

𝑫𝑹 Background control-loop: This loop refines the network by performing a deeper analysis of the vulnerabili-

ties found and proposes improvements of the network at medium or long-run.  This loop implies further analysis 

and diagnosis to understand why a fault or failure has occurred and propose future refinement and ameliorations 

of the network. This control-loop is a non-real time loop which should be human-assisted to supervise autonomic 

systems running at operational stage and refine and upgrade the network.  

It is composed of the following tasks: 

 Diagnosis faults: This task seems to be equivalent to the diagnosis task of a self-healing system. It is intend-
ed to perform post-mortem root cause analysis of faults, but it does not seem to cover failures. In this the-
sis, we focus on diagnosis of both faults and failures.  

 

 Refinement future behavior: This task is to take the past events to refine the system. An example of this can 
take into account the bottlenecks identified by the diagnosis block and propose redundancy mechanisms to 
alleviate them. 

3.3.2 Self-healing system state diagram  

First (Gosh et al, 2007) and afterwards (Psaier & Dustdar, 2011) considered that a self-Healing system can be at 
any of three states: normal, broken and degraded. This diagram can be seen in Figure 32. A normal state is when 
the system fulfils its conceived mission and meets certain observable and quantifiable quality parameters. A 
degraded state is there is a deviation on the specified parameters of the system provoking that its mission is not 
fulfilled and it is thus compromised. The system is in a faulty state, i.e. the system is still operational, but does 
not perform as conceived. A broken state is the managed system is not operational at all. The system is in a 
failure or broken state.  

The transitions among states describe possible state sequences traversed by a self-healing system over time. 
Some transitions are provoked by faults and failures but others are provoked by corrections performed by func-
tional tasks such as recovery actions. Psaier and Dustdar and afterwards Gosh et. al. define six state possible 
transitions grouped into three functional tasks, which are defined hereafter: maintenance of health, detection of 
system failure, and system recovery.   
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Maintenance of health: Its aim is to monitor certain parameters or performance of the system and maintain the 
operational parameters inside proper limits of operation. Many researchers have been dealing with different 
strategies such as redundancy components, diversity or with probes to assess its state, for example. 

Detection of system failure: Its aim is to discern between a normal state and a degraded state in a precise and 
rapid manner, a.k.a. “self and non-self states determination”, defined by Gosh et. al. This difference between 
normal and degraded state is known as the fuzzy zone. This depends on a threshold to quantify when the system 
starts performing at a sub-optimal level. However, the definition of a precise threshold requires knowing in ad-
vance the nominal conditions of the system. 

System recovery: Its aim is to set the system back to a normal state, regardless of the current state is degraded 
or even broken. Once the self-healing system is aware is not in a normal state, it has to restore that disruption, 
and it uses a set of recovery techniques to bring the system into a normal state. Notice that system recovery 
always restores the system to a normal state, and does not transitions to an intermediate state. 

 

Figure 32. Self-healing state diagram 

From a resilience perspective, resilience is tightly coupled with the notion of service as the goal of a resilience 
system is to avoid any deviation of a service from its functional specification.  The operational state is defined by 
a set of k operational metrics taken from the network 𝑁 = {𝑁1 , … , 𝑁𝑘}, while the service state is defined by a set 
of l service parameters 𝑃 = {𝑃1 , … , 𝑃𝑙}. 

The authors define resilience at a given boundary between two adjacent layers, and consider a multi-layer resili-
ence space where resilience of one layer is a pre-requirement for those services acting on upper layers to be 
resilient. This concept was further explained by (Smith et al, 2011), where the authors explained that a resilient 
routing needs a resilient topology (e.g. with the appropriate and enough level of redundancy deployed). 

Figure 33 shows the state diagram of a resilience system, where the different transitions among states are 
shown. In the next section, we describe the different tasks responsible for those transitions. 

 

Figure 33. Resiliency state diagram 

On one hand, the service state is defined as normal, degraded and unhealthy.  

 Normal state: This state means that the service is not deviated from its functional specification. 

 Degraded state: This state means that the service is degraded, and somehow it does not meet its functional 
specification. 

 Unhealthy state: This state indicates that the service is severely deviated from this functional specification.   
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On the other hand, we can see the service parameters states, namely, acceptable, impaired, and unacceptable. 
These states refer to those KPI or indicators of the different operational parameters involved in a given service.  

3.3.3 Restoration stages of a self-healing system 

In this section, we describe the restoration stages of a self-healing system, having taken into account the afore-

mentioned diagram state and associated functional tasks and mechanisms from a resilience point of view and a 

self-healing point of view. 

 
Figure 34. Stages of a Self-Healing system  

The state of a given service is described by service parameters, which describe the health and operational state 

of that service through a set of KPIs (Key Performance Indicators). The service can transition among three states 

namely, acceptable, degraded, and unacceptable. 

 Acceptable state: the service is fulfilling its functional specification.  
 

 Degraded state: the service is degraded from the functional specification. 
 

 Unacceptable state: the service cannot be delivered due to an outage. 
 

The network is composed of different network resources and protocols interacting and cooperating. Each of 

these resources and protocols are characterized by a set of operational states. This depicts a kind of overall met-

rics to depict the health of the network infrastructure providing the service. This operational state of the network 

may traverse three states, healthy (in green), degraded (in orange), and broken (in red).  

Figure 34 depicts the performance 𝑃(𝑡) of a given service (characterized by service parameters) running in a 

given network infrastructure (characterized by some operational state). It can be seen the four phases of a resili-

ence system, namely detection, diagnosis, remediation, and recovery. 

While the service performance is optimal 𝑃(𝑡) = 1, the self-healing mechanism is in a maintenance of health 

surveyance mode to force the network to be in a healthy state and keep the service in an acceptable state. Once 

the detection mechanism finds a fault, the diagnosis and remediation tasks should find a quickly answer to avoid 

this fault turns into a failure and affects the service parameters in such a way that the service transitions to a 

degraded or unacceptable state. tunavailable depicts that amount of time when the service is not ready for use. 

The remediation task is to bring the service performance out of the unacceptable state, while the challenge is still 

in the network. This task is characterized by tremediate, the necessary amount of time for the self-healing system to 

bring the system out form the unacceptable state. 

On one hand, the remediation phase does not guarantee an optimal service performance but an acceptable 

service level, because its aim is to minimize the impact on the service delivery while the challenge is present in 

the network. On the other hand, the recovery phase does ensure an optimal normal operation and a return of 

the operational parameters to the healthy state and to the service parameters to an acceptable state. 

In this figure, several parameters describe the performance of a self-healing system. 
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Mean time to repair (MTTR): This is the average time to repair the managed system or service. Recovery time 

trecovery comprises the remediation time tremediate. The MTTR is defined as an average between trecovery times: 

𝑀𝑇𝑇𝑅 =
∑ 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦

(𝑖)𝑁
𝑖=1

𝑁
 

Mean Downtime (MDT): This is the total time the system is non operative and cannot fulfill the service. The cor-

rective actions, recovery, remediation, diagnosis and detection are comprised in tunavailable. MDT corresponds to 

the average between tunavailable times 𝑀𝐷𝑇 =
∑ 𝑡𝑢𝑛𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

(𝑖)𝑁
𝑖=1

𝑁
 

Mean Time To Failure (MTTF): This is the average time it takes a system to fail. MTTF corresponds to the average 

between tunavailable times where tfailure is the instant of time when the system enters in a broken state (red) 

and the service is in an unacceptable state. 𝑀𝑇𝑇𝐹 =
∑ 𝑡𝑓𝑎𝑖𝑙𝑢𝑟𝑒

(𝑖)𝑁
𝑖=1

𝑁
 

Mean Time Between Failures (MTTF): This is the average time between two consecutive failures, defined as 

𝑀𝑇𝐵𝐹 = 𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅 

 
These parameters are tightly related to the aforementioned quality factors optimized by a self-healing system. 

For instance, Availability is mathematically described as 𝐴 = 𝑀𝑇𝑇𝐹/𝑀𝑇𝐵𝐹. 

In conclusion to this point, the self-healing mechanism takes as reference the state of the operational parameters 

of the network infrastructure, while resilience takes as reference the state of the service delivered. 

3.3.1 Discussion 

We first compare the aforementioned resilience control-loop with the self-healing control-loop and then we 

compare the self-healing state diagram and the resilience state diagram and we propose a state diagram for a 

self-healing system that comprises additional functional tasks and mechanisms to ensure fault and failure man-

agement in programmable networks. 

Interestingly, the resilience double control-loop has some similarities with the self-healing control-loop. Indeed 

resilience control-loop extends the self-healing blocks, with remediation, defense, or refinement, blocks. The 

self-healing control-loop is a single autonomic control-loop with detection, diagnosis, and recovery. In contrast, 

the control-loop seems to be more complete as it takes into account design aspects in the background control-

loop and operational aspects in the real-time control-loop.  

 

Figure 35. Similarities between the Self-Healing control-loop (in red) and the D2R2+DR control-loop 

Interestingly, the diagnosis block is not included in the real-time loop, but in the background control-loop as if 

the diagnosis was considered an offline task, which in self-healing seems to be more at run-time. In this thesis, 

we advocate by an online diagnosis able to pinpoint the root cause in a rapid manner to launch the remediation 

or recovery actions based on that root-cause. Figure 35 shows the resilience double-control loop and the self-

healing control-loop and its blocks in red. 
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The main difference is the dimensionality (number of state variables) of both diagram states. This comparison 
can be seen in Figure 36. Firstly, the self-healing system diagram state is unidimensional and it refers in principle 
to the states of a generic system, without considering the notion of service. Secondly, the resilience diagram 
state is bidimensional as it refers to service state and its parameters and to the operational state of the network 
encompassing the infrastructure and protocols. However, in this thesis, the concept of self-healing is applied to 
ensure resilience of both network and services deployed, that is why we also show the resilience diagram state 
that considers both aspects. 

In the self-healing diagram state, the transition from broken to broken state does not have any associated func-
tional task. We consider that, once in a broken state, other failures as consequence of the first failure may arise 
and, if not treated, they could affect more equipment. 

 

Figure 36. Comparison between self-healing and resilience diagram states 

There are only recovery tasks that take the system from a broken state to a healthy state and from a degraded 
state to a healthy state. However, there is not any remediation task to take the system from a broken state to a 
degraded state. One example is when the self-healing system does not have more choice than isolating some 
faulty elements and keep the system in a degraded state while the malfunction is being diagnosed. Remediation 
task is a temporary solution that returns the system to a degraded state (instead to a broken state) while the 
abnormality is being restored. 

The diagram state always transitions from a healthy state to a broken state by visiting an intermediate degraded 
state, which in our perspective is not true, as there could be direct transitions from healthy states to broken 
states. We consider that, depending if it is a fault or a failure, this degraded state is visited or not. Failures direct-
ly make the self-healing system transition from a healthy state towards a broken state, as the service is affected, 
without visiting a degraded state. Faults make the self-healing system transition from a healthy state towards an 
intermediate degraded state.  

This diagram state does not consider the level of proactivity of each functional task. We consider in this thesis 
that proactive techniques prevent a failure while reactive ones are launched after the failure has been detected.  

As a result, we propose the following self-healing state diagram in Figure 37, where we have extended the 
aforementioned functional tasks: maintenance of health, system recovery, system remediation, and detection of 
system failure. In turn, each functional task comprises a set of mechanisms as shown in Table 4. 
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Figure 37. Proposed diagram state of a Self-Healing system  

Table 4. Proposed functional tasks and corresponding mechanisms 

State transition Functional Task Mechanisms used 

normal-normal Maintenance of health Proactive Detection 
Proactive Diagnosis 

Recovery 
normal-broken Detection of system failure Reactive detection 

normal-degraded Detection of system fault Proactive detection 

degraded-normal System recovery Proactive Diagnosis 
Recovery 

degraded-broken Detection of system failure Reactive detection 

broken-broken Detection of system failure Reactive detection 
broken-degraded System remediation Reactive diagnosis 

Remediation 
broken-normal System recovery Reactive diagnosis  

Recovery 

 

In this proposed state diagram, all the restoration mechanisms are preceded by a type of diagnosis (reactive or 

proactive) depending if the diagnosis mechanism is diagnosing a failure, a fault, or an error. Table 4 summarizes 

all the considered state transitions, as well as the functional tasks for each state transition and the mechanisms 

required to force each transition. 

3.4 Self-healing mechanisms 

This section reviews the self-healing mechanisms, defined here as those mechanism ensuring the self-healing 

functional tasks detection, diagnosis, remediation, and recovery. 

3.4.1 Detection mechanisms 

Two types of proactive detection mechanisms are considered in this section:  failure prediction mechanisms and 

defensive mechanisms. 

Failure prediction mechanisms try to anticipate to future service failures by analysing performance metrics of 

resources and services. Sterbenz et. al. propose to assess when the system is challenged by detecting deviations 

on service requirements, or by understanding the context of challenge to perform more accurate remediation 

mechanisms. By contrast, (Cholda et al, 2007) classified the proactive detection mechanisms into signal degrada-

tions (e.g. dispersion in fibers, Signal-to-Noise ratio, Bit Error Rate, etc.), or quality degradation (e.g. high delay, 

low throughput, etc.).   

(Sterbenz et al, 2010) and (Salfner et al, 2010)  agree on the fact that error detection is key to prevent failures. An 

error is a deviation, which is monitored and quantified. In this sense, (Salfner et al, 2010)  focus on online failure 

prediction mechanisms to avoid future service failures as consequence to errors or faults. The authors propose 

four main mechanisms: tracking of failures, symptom monitoring, or error reporting detection, and undetected 

error auditing. Tracking of past mechanisms failures predict future failures by analyzing past failures. A first ap-

proach is to estimate the probability distribution of the time to next failure from the current set of failures. A 

second approach is co-occurrence mechanisms, where two failures may follow a special or temporal distribution, 

which may repeat in future. Symptom monitoring mechanisms analyze the errors symptoms such as the amount 

of free memory in a periodic basis. Error reporting detection mechanisms analyze errors reported by some entity 

and assess the risk of failure. For instance, this error may be due to a memory violation or an exception thrown 

by a given application. Undetected error auditing mechanisms search for incorrect states in the system, regard-

less of the fact those errors impact the system at current time.  

Defensive mechanisms try to anticipate to future service failures by preventing the system state from moving 

outside a normal state. If we consider Sterbenz’s perspective, those mechanisms would act in two levels: passive 
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defensive mechanisms to prevent the challenges from becoming active faults, and active defensive mechanisms 

to prevent errors from passing to the operational state. On the one hand, active defensive mechanisms are most-

ly security mechanisms and error handling mechanisms based on cryptographic algorithms, firewalls, or trust 

boundaries. On the other hand, passive defensive mechanisms would be in the prevention stage according to 

(Tipper, 2013) and their main goal is to defend the system from threats and challenges to maintain the health of 

the system by using structural defences that use the redundancy and diversity deployed at network design stage. 

We consider redundancy and diversity techniques as both passive defensive mechanisms but also as the base of 

remediation mechanisms. For instance, a protection scheme, a proactive mechanism that pre-computes an alter-

native path (backup) based on redundancy provided in the network, may be used as defensive mechanism. Ex-

amples of protection mechanisms: are Linear Automatic Protection Switching, Self-Protecting Multi-paths, pro-

tection rings, redundant trees, resilient routing layers, protection cycles, and p-cycles.  

As identified by (Gosh et al, 2007) mechanisms for maintaining redundancy imply the automatic replication of 
network resources to ensure redundancy to transmit the information. Those techniques are inspired by biological 
mechanisms like cell division or self-assembling properties. For instance, (Nagpal et al, 2003) propose a pro-
gramming methodology able to self-assemble complex structures from identically programmed agents that in-
teract among each other locally.  

Diversity is about providing redundant alternatives to elude failures provoked by challenges. We cite several 
types of diversity:  

 Temporal diversity: It refers to send the same information duplicated in time 

 Spatial diversity: It refers to send information simultaneously through redundant paths (e.g. 1+1 glob-

al/local protection scheme) 

 Information diversity: It refers to send redundant information but differently coded from the original (e.g. 

forward error correction, ARQ (Automatic Repeat-request)) 

 Implementation/operational diversity: It refers to implement the same functional behaviour differently to 

avoid that the same fault causes the same results 

 Medium diversity: it refers to send information through different media (e.g. optical and wireless accesses).  
 

These mechanisms are reactive because that act upon a service failure, when the system is in a broken state and 

the service state is inacceptable, therefore its availability is compromised. Their goal is then to react to failures by 

analysing the alarms indicating failures and then launching the appropriate countermeasures as soon as possible 

to  revert the situation and take the broken state to a normal or, at least, to a degraded temporary state. As 

examples of such mechanisms, Gosh et. al. identify several mechanisms for detecting failures such as something 

amiss, which consists of finding something missing that was supposed to be in the system during a normal state, 

and foreign element notification, where new elements not supposed to be during a normal state are notified. By 

contrast, (Cholda et al, 2007) considered that the reactive detection mechanisms are those related to the physi-

cal layer observed by the symptoms such as loss of light in fibers, loss of signal or modulation, or loss of clock, for 

instance. 

3.4.2 Diagnosis mechanisms 

Two types of diagnosis are considered, proactive and reactive mechanisms, both defined hereafter. 

Proactive diagnosis mechanisms are in charge of identifying faults and errors in the network infrastructure in 

order to predict and avoid any future service failure and avoid the system to fall into a degraded or a broken 

state and keep it in a normal state. Those mechanisms are also known as online failure prediction mechanisms, 

identified by (Salfner et al, 2010). Given a misbehavior in the network, online failure prediction is to predict fu-

ture failures from the present observations of that misbehavior (fault or error), as shown in Figure 38.  A proac-

tive diagnosis mechanism means that it diagnosis in advance to the service failures. 
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Figure 38. Proactive diagnosis  

Reactive diagnosis mechanisms act once the service failure has occurred, as shown in Figure 39. Their goal is to 

understand which fault caused the given failure observed at present time. Nevertheless, it is important to high-

light that the result given by those mechanisms (i.e. the root cause analysis responsible for that failure) can be 

used to foresee degradations and failures in the future. 

 

Figure 39. Reactive diagnosis 

3.4.3 Recovery and remediation mechanisms 

When the self-healing system detects that the service is not available, it triggers the appropriate recovery or 

remediation mechanisms to restore it as soon as possible. Those recovery actions can be based on redundancy 

mechanisms that react to failures. For instance, a reactive restoration scheme calculates a path on demand once 

the service failure occurs. Of course, this reactive mechanism could be launched in the event of a simple fault, 

but is considered proactive because it is launched before the service failure appears. Example of restoration 

mechanisms are ECMP (Equal-cost Multi-Path routing), MPLS (Multiprotocol Label Switching), or IP Fast Reroute, 

among others. 

As said before, a recovery mechanism sets the system back to a normal state, while a remediation mechanism 

sets the system back to a degraded state. 

Recovery and remediation mechanisms have diverse particularities according to several criteria, detailed hereaf-

ter: 

Restoration scope (segment and domain): the network segment to restore can be local (e.g. a link, or a node) or 

global (e.g. the entire path). This segment can be a single domain (intra-domain) or multiple domains (inter-

domains). Recovery and remediation mechanisms are more popular for intra-domains, due to the reluctance of 

each domain’s owner to share information from its domain with others. 

Targeted equipment: The type of device will determine the recovery or remediation mechanism used. For in-

stance, we may use rollback and roll forward for databases and redundancy for link failures. 

Level of dedication and redundancy of spare resources: Spare resources replace the malfunctioning elements. 

Those spare resources may be dedicated (e.g. 1:1 one dedicated backup per malfunctioning resource) or shared 

(e.g. 1:2 one shared backup between two malfunctioning resources). 

Layers of intervention: In multi-layer networks, coordination between recovery and remediation procedures is 

necessary. For instance, SDN and NFV architectures are inherently multi-layered. Three types of coordination are 

possible: bottom-up, top-down or a hybrid one, combining advantages of the two first. 

Duration of abnormality: Transient abnormalities may disappear by themselves and may not be necessary to use 

recovery mechanisms. However, permanent abnormalities will be always there unless  are fixed using recovery 

mechanisms (e.g. use of maintenance actions). 
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Type of challenge: The self-helaing system may trigger a recovery or a remediation mechanism according to the 

type of abnormality (i.e. fault, error or failure). 

Strength of the restoration action: Depending on the type of malfunction, the recovery/remediation action can 

be strong or weak. Strong actions require aggressive and invasive approach (e.g. structural changes in the net-

work, components replacement, redundancy, diversity, etc.). Weak actions are related to changing data parame-

ters of the managed resource to achieve optimization, adjusting certain parameters to meet certain goals (con-

trol theory approaches), load balancing mechanisms or even changing the algorithms to achieve these autonomic 

properties at run-time.   

3.4.4 Discussion 

Once the failure appears, the self-healing system launches a remediation action to bring the system to an inter-

mediate and temporary state, and, in a parallel way, it launches a post-mortem reactive diagnosis mechanism in 

order to identify what happened and how to avoid it in the future. Once the self-healing system knows the origi-

nating root cause, it can feed it back to a refinement block (such as the shown in the resilience control-loop), able 

to redesign the network infrastructure to ensure the right level of redundancy to avoid this failure. This redesign 

is a set of strong actions that redefine and ameliorate the redundancy and diversity of the network, or the con-

ception, implementation and the put in place new mechanisms in the network. 

Strong actions will have an impact on the service downtime or performances due to the time taken to perform 

this action, so those actions should be accompanied of remediation actions that bring the system back to a tem-

porary degraded state while the strong action is being applied. Strong actions are related to maintenance ac-

tions, e.g. replacement of the optical fibre to your home. It is more desirable a weak adaptation action instead of 

a strong action, but it depends on the gravity of the detected failure and it corresponds to the recovery process 

to decide if it is necessary to go to the extreme of such a solution. In contrast, weak actions are seen here as a 

tuning or adaptive based on control-theory approaches.  

In conclusion, recovery mechanisms and remediation mechanisms differ in the type of mechanism and algo-

rithms or techniques used, but fundamentally, those differ in the final state where the system is after their appli-

cation. For instance, a recovery mechanism brings the healed system back in a normal state, while a remediation 

mechanism brings the healed system back in a degraded state.  
In general, remediation mechanisms rely on redundancy and diversity, where the root cause of the problem may 

not be removed but at least is isolated or alleviated. Concretely, a remediation mechanism builds on top of re-

dundancy and diversity by defining a procedure that send the correct policies or orders to activate that redun-

dancy and diversity deployed in the network. For instance, a remediation mechanism may simultaneously trans-

mit information through both the working resources and the spare ones by combining redundancy and diversity 

(1+1 global/local protection) or it may switch from the malfunctioning resources to the spare resources when 

working resources fail. Those redundant resources may be dedicated (1:1 global/local protection) or shared 

(shared M:N global/local protection). In addition, ther are protection schemes that pre-plan and previously allo-

cated those resources to react faster to the fault or restoration schemes that simply calculate the available re-

dundant resources on demand in the presence of a failure. Resource dedication is the most classical redundancy 

approach - and certainly not the most efficient – and relies on dedicating spare equipment for each resource and 

re-route the flow to the spare one when a fault occurs. Nevertheless, this a priori fixed resource allocation can be 

reoriented to a dynamic resource allocation, relying on optimization approaches such as control theory-based, 

utility-based or reinforcement learning algorithms. 

Examples of remediation mechanisms are dynamic re-routing, self-healing rings, node/link/path restoration, 

node/link/path protection, trunk diversity, multiple homing, or p-cycle protection. In addition, migration based 

techniques such as pre-emption based process migration, VM migration, or stop-and-copy VM migration to ena-

ble dynamic migration of resources in a similar way to a redundancy-based technique, are examples of remedia-

tion mechanisms.  

For instance, challenges like increases in the traffic load, can be resolved by these remediation or recovery mech-

anisms: overload mechanisms, load balancing mechanisms, scaling-up strategies, scaling-out strategies or con-

gestion control mechanisms to handle that unexpected amount of traffic.  For instance, virtual services or appli-

cations may be relocated onto other physical nodes on the fly for this purpose.  Remediation mechanisms to deal 
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with extreme conditions such as deep-space communications and terrestrial networks are based on specific 

forwarding mechanisms, which are further explained in the surveys led by (Caini et al, 2011) and (Khabbaz et al, 

2012). Examples of those forwarding mechanisms are opportunistic forwarding, probabilistic forwarding, encoun-

ter-based forwarding, among others. In addition, the authors point out the definition of new application layer 

protocols or transport layer protocols to face disruption in such harsh environmental conditions. 

Alternatively, Gosh et. al. proposed a set of mechanisms that can be used for recovery and remediation, such as 

the ones briefly explained hereafter:  

Redundancy for healing mechanisms: It refers to the capability of the components to replicate in order to re-
place dead neighbors and achieve the total recreation of the entire structure. This may or not be based on self-
organizing or self-assembling approaches such as the works from (Nagpal et al, 2003). 

Repair plans for healing mechanisms: It refers to policies that firstly determine the root cause to repair later the 
problem. Those policies are dictated according to a diagnosis block 

Event-based action mechanisms: These techniques are very similar to the previous ones, but the recovery action 
here is triggered by a given event.  

Voting method mechanisms: It refers to a making decision approach that determines if a fault replica in a group 
of processes has impact on the rest of the processes.  

Error handling mechanisms: Recovery can be based on error handling mechanisms that eliminate errors or on 

fault handling mechanisms to prevent faults from being newly activated. As example of these mechanisms, we 

have Rollback and roll forward mechanisms that create an image of the system, which is loaded in the event of 

errors, which ensures that the network is back into an error-free state. 

3.5 Self-healing algorithms  

This section reviews and classifies the algorithms that could be implemented inside a self-healing system accord-

ing to three different criteria: per application domain, per objective, and per self-healing functional block (detec-

tion, diagnosis, and recovery). 

3.5.1 Algorithm classification per application domain 

The application domain is defined as the context where the algorithm is applied and it is given by the network 

technology, the network equipment, the communication protocol, among many others factors. For instance, in 

this thesis, the application domain is SDN and NFV combined infrastructures. We provide with a possible algo-

rithm classification per application domain in Table 5.    

We can observe that both Bayesian Networks and control theory approaches are extensively use in many differ-

ent contexts and applications domains. On one hand, Bayesian Networks have been used in such different con-

texts such as: 

 IP Multimedia Subsystem (Hounkonnou, 2013),  

 VPN ((Bennacer et al, 2012), (Bennacer et al, 2013), and (Bennacer et al, 2015)),  

 Software-Defined Networking (Al-Jawad et al, 2015),  

 Wireless Sensor Networks (Yunkhao et al, 2010),  

 Electrical Power Systems (Mengshoel et al, 2010),  

IT systems/ Enterprise Networks ((Bahl & Chandra, 2007), (Zhao, 2008), (Kandula & Mahajan, 2010)), and (Cooper 
& Herskovits, 1992) 

 GPON-FTTH Optical Networks (Tembo et al, 2015), and  

 Bridged networks ((Steinder & Sethi, 2004), (Steinder & Sethi, 2002)).  
 

In these contexts, Bayesian Networks is mainly used as a reactive diagnosis algorithm, but the same algorithm 

can also be used for ensuring QoS when forwarding in SDN. With this concern, (Al-Jawad et al, 2015) propose and 

describe BaProbSDN, a probabilistic-based QoS routing mechanism for Software Defined Networks. This ap-

proach is based on calculating the probability enough bandwidth on links by means of a Bayesian Networks based 
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algorithm and selecting the forwarding path based on those metrics. On the other hand, control theory ap-

proaches have been applied to many different applications domains, as example we can cite contexts such as: 

 IT systems ((Storm et al, 2006), (Diao & Hellerstein, 2005), (Parekh et al, 2000), (Parekh et al, 2003), (Diao et 
al, 2002),), 

 cached services ((Lu et al, 2001), and (Lu et al, 2002)),  

 multimedia communication networks (Xiaoyuan et al, 2007),  

 virtualized resources control (Padala & Hou, 2009),  

 software-defined networks and network function virtualization (Akhtar, 2016). 
 

It can be also seen that hybrid techniques are also used to compensate the drawbacks of algorithms when used 

individually. A first example of hybrid algorithm is the combination of Case-based reasoning with Bayesian Net-

works, which was proposed by Bennacer et. al. in their works (Bennacer et al, 2012), (Bennacer et al, 2013), and 

(Bennacer et al, 2015). Case-based reasoning reduces the cost of inference for Bayesian Networks when the 

number of vertices is high, acting as an auxiliary technique to support Bayesian Networks inference and enhanc-

ing the scalability. Another example of hybrid algorithm is the combination of Artificial Neural Networks with 

digital signal processing techniques the application domain of optical networks such as Internet Proto-

col/Synchronous Digital Hierarchy (IP/SDH) and Internet Protocol/Wavelength Division Multiplexing (IP/WDM, 

Wavelength Division Multiplexing) given by (Marilly et al, 2002). 

Table 5. Algorithms classification per application domain 

Algorithm Application domain Reference 

Control theory 

IT systems/entreprise networks (Storm et al, 2006), 

(Diao & Hellerstein, 2005), 
(Parekh et al, 2000),  

(Parekh et al, 2003), 

 (Diao et al, 2002), 

Cached services (Lu et al, 2001), 

 (Lu et al, 2002)) 

Multimedia communication networks (Xiaoyuan et al, 2007), 

Virtualized resources control (Padala & Hou, 2009), 

SDN and NFV (Akhtar, 2016) 

Bayesian Networks + Case-based reasoning VPN networks (Bennacer et al, 2012), 
(Bennacer et al, 2013), 
(Bennacer et al, 2015) 

Bayesian Networks 

IMS (IP Multimedia Subsystems) (Hounkonnou, 2013) 

SDN (Al-Jawad et al, 2015) 

Wireless Sensor Networks (Yunkhao et al, 2010) 

 

Electrical Power Systems (Mengshoel et al, 2010) 

IT systems/entreprise networks (Bahl & Chandra, 2007), 
(Zhao, 2008),  

 (Kandula & Mahajan, 
2010)),   

(Cooper & Herskovits, 1992) 

Optical Networks (GPON-FTTH) (Tembo et al, 2015) 

Bridged networks (Steinder & Sethi, 2004), 
(Steinder & Sethi, 2002)  

Hidden Markov models Intrusion detection systems (Univerself, 2013), 

(Tcholchev et al, 2010) 

Clustering IT systems/entreprise networks (Vaarandi et al, 2015) 

Self-Organizing Maps IP networks (Univerself, 2013) 

Fuzzy reasoning IP networks (Univerself, 2013) 
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Artificial Neural Networks Virtual networks (Univerself, 2013) 

Feature vectors IP networks (Kimura et al, 2015) 

Feature adaptation+ Structural Corresponding 
Learning 

IT systems/entreprise networks (Zhou et al, 2015) 

Support Vector Machines Electronic Gaming machines (Butler & Keselj, 2010) 

Machine learning techniques Core networks (Univerself, 2013) 

Game-Theory Multi-agent systems (Buchegger & Boudec, 
2002), 

(Hardin, 2002), 

(Sen & Dutta, 2002) 

Reinforcement learning Web applications in autonomic software 
systems 

(Salehie & Tahvildari, 2009), 

Utility-based Dynamic resource allocation (Salehie & Tahvildari, 2009), 

Architectural difference Software architecture (Salehie & Tahvildari, 2009), 

(Psaier & Dustdar, 2011) 

Artificial Neural Networks + Signal Processing 
Techniques 

Optical networks (IP/SDH IP/WDM) (Marilly et al, 2002) 

3.5.2 Algorithm classification per objective 

In this section, we classify algorithms according to the objective achieved, shown in Table 6. It can be seen that 

different algorithms such as support vector machines and artificial neural networks can be used for helping the 

automation and optimizing the decision making process by using machine learning approaches. However, the 

focus of this thesis is to automate the diagnostics in programmable networks. 

We identify two main research applications of control theory mechanisms: SLA compliance and self-

management. SLA compliance: With this first concern, (Xiaoyuan et al, 2007) proposed autonomous network 

architecture for proactive policy business management in multimedia communication networks. This architecture 

allows for a better QoS / SLA management in service differentiation, by applying certain high-level objectives or 

policies into more specific commands (known as policy derivation) by means of a control theory mechanism.  

Another interesting work contributing to SLA enforcement is made by (Parekh et al, 2000), who proposed a con-

trol theory algorithm to control the maximum number of users allowed by a Lotus server with the aim of ensur-

ing service level objectives (SLA) concerning database access delay. Also, Lu in (Lu et al, 2001) has applied control 

theory to differentiated content caching services to achieve performance distribution for resource management, 

but Lu in has also applied control theory in (Lu et al, 2002) to manage cache resources in a manner that adjusts 

the quality spacing between classes (QoS differentiation). In all these mechanisms, the control theory approach 

has been generalized to establish a methodology for designing controllers, by identifying the appropriate targets 

to be taken into account. Finally, (Akhtar, 2016) propose a Recursive InterNetwork Architecture, a clean-slate 

network architecture based on a control theory approach that balances the load among the different VNF in-

stances deployed in a SDN infrastructure. 

Self-management: Control-theory can also be used as self-adaptive mechanisms to achieve self-management 

capabilities. For instance, (Parekh et al, 2003) proposed a control theory mechanism to reduce the impact of 

administrative utilities such as file backups or garbage collection on databases. The authors successfully demon-

strate the translation of high-level policies like maximum admissible degradation limit for database performance 

at an administrative level. This is carried out by a throttling system, which limits the execution of these adminis-

trative tasks in order to reduce their impact on database performances. This throttling mechanism regulates the 

resource consumption of utilities by using self-imposed sleep (SIS).  All the aforementioned works on control 

theory algorithms refer to SISO systems (Single Input Single Output), where only one input is adapted to reduce 

its deviation to a reference given. Nevertheless, MIMO systems (Multiple Input Multiple Output) are increasing 

more used for optimizing different inputs. Indeed, there is an important research work on MIMO control-theory 

mechanisms for optimizing multiple database server parameters such as CPU and memory utilization. For in-

stance, (Storm et al, 2006) proposes a MIMO control-theory algorithm as a tuning model for a DB2 Self-Tuning 

Manager system for memory allocation purposes. Alternatively, in (Diao & Hellerstein, 2005) they propose a 
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MIMO control-theory algorithm for load balancing in computing systems, which aim to reduce the service delay 

and increment the throughput.  

Table 6. Self-healing algorithms classification per objective 

Algorithm Objective Reference 

Control theory 

Minimizing the impact of administrative 
utilities on databases workloads 

(Parekh et al, 2003) 

SLA enforcement (Parekh et al, 2000) 

Memory allocation optimization  (Padala & Hou, 2009) 

Load balancing  (Akhtar, 2016) 

Guarantee of QoS differentiation  (Lu et al, 2002), 

(Lu et al, 2001) 

Proactive policy business management (Xiaoyuan et al, 2007) 

Bayesian Networks + Case-based reasoning Reactive diagnosis (Bennacer et al, 2012),  

(Bennacer et al, 2013),  

(Bennacer et al, 2015) 

Bayesian Networks 

Reactive diagnosis 

(Hounkonnou, 2013) 

(Al-Jawad et al, 2015) 

(Yunkhao et al, 2010) 

(Mengshoel et al, 2010) 

(Bahl & Chandra, 2007),  

(Zhao, 2008),  

 (Kandula & Mahajan, 2010)),   

(Cooper & Herskovits, 1992) 

(Tembo et al, 2015) 

(Steinder & Sethi, 2004),  

(Steinder & Sethi, 2002) 

Traffic engineering (Al-Jawad et al, 2015) 

Proactive Diagnosis (Cooper & Herskovits, 1992) 

Hidden Markov models Anomaly detection (security) (Univerself, 2013), 

(Tcholchev et al, 2010) 

Clustering Reactive diagnosis (Vaarandi et al, 2015) 

Self-Organizing Maps Congestion prediction (Univerself, 2013) 

Feature vectors Proactive diagnosis (Univerself, 2013) 

Feature adaptation+Structural Corre-
sponding Learning 

Reactive diagnosis (Univerself, 2013) 

Fuzzy reasoning QoS degradation identification (Kimura et al, 2015) 

Artificial Neural Networks Proactive diagnosis (Zhou et al, 2015) 

Support Vector Machines Proactive diagnosis (Butler & Keselj, 2010) 

Machine learning techniques QoS degradation identification (Univerself, 2013) 

Game-Theory Trust model building (Buchegger & Boudec, 2002), 

(Hardin, 2002), 

(Sen & Dutta, 2002) 

Reinforcement learning Decision making (Salehie & Tahvildari, 2009), 

Utility-based Decision making (Salehie & Tahvildari, 2009), 

Architectural difference Abnormality detection (Salehie & Tahvildari, 2009), 

(Psaier & Dustdar, 2011) 

Artificial Neural Networks + Signal Pro-
cessing Techniques 

Reactive diagnosis (Marilly et al, 2002) 
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3.5.3 Algorithm classification per self-healing functional task 

In this section, we classify the algorithms according to the realized self-healing functional task, shown in Table 7. 

In each self-healing functional task, the algorithm has a different objective to achieve, e.g. detect malfunctions, 

diagnose the root cause or recover the system. We propose a non-exhaustive table where we classify some of 

the algorithms present in the literature that would fit inside a self-healing system.  

As seen in Table 7, some of the algorithms can perform some self-healing functional tasks. For instance, the 

codebook technique, as an approach that relates faults with symptoms seen in a given application domain, it 

cannot be used for recovery tasks. Nevertheless, other algorithms such as control theory can be used to recover 

as they can adapt the system to restore the normal state but also can be used to detect certain deviations from a 

set of operational parameters by monitoring the deviation in a daily basis. 

Bayesian Networks can be used to perform the recovery functional task as shown in the work (Al-Jawad et al, 

2015) that calculates the probability of enough bandwidth on links by means of a Bayesian Networks based algo-

rithm. The recovery solution would be based on selecting the best forwarding path based on the probability of 

enough bandwidth in each underlying link.   

Table 7. Algorithm classification per self-healing task 

Algorithm Detection Diagnosis Recovery/Remediation 

Bayesian Networks x x x 

Genetic algorithms  x  

Codebook technique  x  

Hidden Markov modelsa x x  

Case-based reasoning  x x 

Control theory x  x 

Fuzzy reasoning x x x 

Classification/ Patter recognition x x  

Decision trees  x  

Data clustering x x x 

Reinforcement learning   x 

Utility-based algorithms   x 

Policy-based algorithms   x 

Artificial Neural Networksb x x  

Component interaction   x 

Process coordination   x 

Event-based techniques   x 

Architectural difference x x  
a. 

Markov chains are framed in Hidden Markov Models (HMM). 
b. 

Techniques like Self-Organizing Maps (SOM) are framed in Artificial Neural Networks (ANN) 

 

Hybrid approaches can also be used to extend the functionality that a single algorithm has in itself. For instance, 

we could combine a Bayesian Networks algorithm with a control theory algorithm to extend it with diagnosis 

capabilities and recovery capabilities.  

3.6 Self-Diagnosis algorithms 

This section focuses on self-diagnosis task as a key operation inside a self-healing system. We focus on those 

aforementioned algorithms used in diagnosis and review the most important taking into account a network 

diagnosis as general context and programmable networks as application domain. 

3.6.1 Data mining algorithms 

This section reviews the data mining algorithms reviewed along this thesis. We classify them in supervised tech-

niques or unsupervised techniques. 
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3.6.1.1 Supervised techniques 

These types of algorithms learn how to classify future samples from an input training data set i.e. which is already 

classified. Each data is a tuple 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑠𝑎𝑚𝑝𝑙𝑒 = {𝑖𝑛𝑝𝑢𝑡, 𝑐𝑙𝑎𝑠𝑠}. Each input is composed of a set of N features 

or attributes 𝑖𝑛𝑝𝑢𝑡={𝑥1, … , 𝑥𝑁}.These algorithms learn from this training data set the function that will allow to 

classify new samples 𝑛𝑒𝑤_𝑠𝑎𝑚𝑝𝑙𝑒 = {𝑖𝑛𝑝𝑢𝑡}.  

Classification algorithms 

The task of a classification algorithm is to learn the function that allows classifying new observed data into a set 

of classes. The output of a classification algorithm is the class of the incoming data set. 

k-Nearest Neighbor classifier (k-NN) is a popular classification method that classifies each new data sample by a 

voting method among the k closest training samples. The closest training samples are computed through a dis-

tance metrics between the sample to classify and the N the training samples (there are N training samples). 

Several distance metrics can be defined; here we only show three examples: Euclidean (1), Manhattan (2), or 

Minkowski (3). 

√∑ (𝑥𝑖 − 𝑦𝑖)2𝑁
𝑖=1    (1) 

∑ |𝑥𝑖 − 𝑦𝑖|𝑁
𝑖=1    (2) 

(∑ (|𝑥𝑖 − 𝑦𝑖|)𝑞𝑁
𝑖=1 )2  (3) 

k is an input parameter (an integer). When k has a value k=1 it implies that the current sample is classified only by 

considering its nearest neighbor, while a high value of k is expected to minimize noise and be more accurate. 

We show how this algorithm works with a simple example, shown in Figure 40, where data samples are com-

posed of two features (feature1 and feature2). We have N=3 training samples to classify, and each data sample is 

classified according to the labels of their k closest neighbors. If we consider k=3, the sample is classified according 

to three training samples (2 samples of class 2 and one sample of class 1) so the classification algorithm associ-

ates that sample to class 2 (c2). Contrarily, if we consider k=1, sample is classified according to 1 training sample 

(one sample of class 1) so the algorithm associates that sample to class 1 (c1).  

 

 

Figure 40. k-NN classification algorithm example 

The main drawbacks of this algorithm are two: (1) the computation of the nearest neighbors for each sample due 

to the computational cost for a large number of samples to classify, and (2) how to tune the k-value for an opti-

mal classification, because this tuning requires analyzing previously the data. 

Regression algorithms  

A regression algorithm predicts a real number from a set of training data. The output of regression algorithms is 

indeed a real number rather than a class, where this real number represents the dependent variable to be 

learned 𝑌. 

https://en.wikipedia.org/wiki/K-nearest_neighbor
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3.6.1.2 Unsupervised methods 

Clustering algorithms  

The main task of a clustering algorithm is to partition the incoming observations into different clusters or sets. 

Those observations are composed of d features (or dimensions). In the context of machine learning, these types 

of algorithms are referred to as unsupervised learning methods. 

The most used algorithm for clustering is k-Means, an iterative algorithm that partitions the incoming observa-

tions in k sets 𝑆 = {𝑆1, … , 𝑆𝑘}. The goal of k-means is to minimize the distance between the observation points 

with their respective centroid µi, mathematically formalized as: 

arg 𝑚𝑖𝑛𝑠 ∑ ∑‖𝑥 − 𝑐𝑖‖2

𝑥∈𝑆𝑖

𝑘

𝑖=1

 

ci is the cluster center of Si. The number of clusters k is an input for the k-means algorithm, as well as the d-

dimensional n observations. The output of the algorithm is the k clusters, composed of the centroids and the 

members belonging to each cluster. 

 Step 1: the algorithm chooses randomly k of those observations as cluster centers: c1,…, ck 

 Step 2: it calculates the distance between the observations and those means 

 Step 3:it assigns each observation to its nearest mean, generating k clusters 

 Step 4:it updates the centroid of each generated cluster ci 

𝑐𝑖 =
1

|𝑘𝑖|
∑ 𝑥𝑗

𝑘

𝑥𝑗∈𝑘

 

 Step 5: if the cluster centers change, repeat from step 2. Otherwise, the algorithm successfully finished. 
 

The main limitation of this approach, but not the only one, is choosing the right value of the number of clusters k. 

To overcome this limitation, there are algorithms that do not require a priori knowledge of the number of clus-

ters. Those algorithms rely on the relative difference on the observations and tend to work well in those cases 

where the difference between the clusters is higher than the difference between intra-cluster elements. 

3.6.2 Control-theory  

Control theory is an interdisciplinary branch in charge of designing adaptive mechanisms. Their aim is to minimize 
the existing error between the current and the reference input. In modern control theory the target is to design 
systems which maximize certain objective function over time, what matches very well the artificial intelligence 
perspective: designing systems that behave optimally. Control theory is then an adaptive mechanism to control 
the dynamic behavior of a given system, which interacts periodically in a sense-response-action loop, by compos-
ing a control loop.  

As far as control classical theory is concerned, the negative feedback control loop is the most extended approach 
to control the dynamic behavior of a system, shown in Figure 41. The term negative comes from the subtraction 
between the reference input and the measured output coming from the transducer. This subtraction is more 
known as error signal. This error signal is fed to the controller and adapts its output in order to force a behavior 
change in the target and in turn to reduce the gap between the desired goal and the current state. This differ-
ence is increasingly reduced over time according to certain convergence properties a.k.a SASO properties: Stabil-
ity, Accuracy, Settling time, and Overshoot, only guaranteed if the whole system (controller+target+transducer) is 
well designed. Normally, when the number of inputs and outputs to be controlled is one, this system is called 
SISO (Single Input Single Output), otherwise is called MIMO (Multiple Input Multiple Output). 
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Figure 41. Control theory control-loop 

3.6.3 Case-Based Reasoning 

Case-based reasoning (CBR) systems are based on the adaptation and application of previously applied solutions 

to previous problems (gathered as cases in a database) to new problems. 

There are several types of reasoning in CBR systems, namely, exemplar-based, instance-based, memory-based, 

case-based, and analogy-based. For instance, in exemplar-based reasoning, solving a problem is a classification 

task where an unclassified exemplar is classified in a given class, while case-based reasoning is richer in the sense 

that cases can be modified and adapted when applied to a different problem. 

A CBR is based on four main phases, namely, retrieve, reuse, revise, and retain. The retrieve phase is in charge of 

receiving the new case and retrieving the most similar cases to the new case from the database (knowledge). The 

reuse phase is in charge of suggesting a new solution for the current case based on the retrieved cases that are 

similar to the current case. The revise phase is in charge of revising the suggested solution in order to evaluate 

possible dysfunctions, and the retain phase is in charge of storing the already revised case for being exploited in 

future problems. 

The granularity of CBR is the case, as each new problem is translated to a case. The general structure of a case 

may vary as a function of the context application. In fact, the knowledge representation is an open research area 

as pointed out by (Aamodt & Plaza, 1994). They identify five main open research questions: knowledge represen-

tation, retrieval methods, and reuse methods, revise methods, and retain methods. 

 

Figure 42. Case-Based Reasoning control loop 

CBR has as advantages the capability to learn from experience by adapting old cases to the new problems. How-

ever, the CBR performance is not time efficient when it comes to real-time applications. Indeed, performance 

strongly depends on the structure chosen for the cases that is why is so important to know which characteristics 

and structure to store per case, and how to efficiently index to optimize the retrieve and reuse phases.  Figure 43 
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shows two possible case structures further detailed by Aamodt et al., the dynamic memory model of Schank and 

Kolodner (a) and the category-exemplar model of Porter and Bareiss (b). 

Memory models organize cases sharing similar properties under a generalized episode. This generalized episode 

contains norms, cases and indices. Indices, which are composed of indexes names and values, are the necessary 

features to discriminate among cases in the generalized episode, while norms are common features to the cases 

indexed in the generalized episode. Category and exemplar models represent concepts in an extensible manner, 

as we do in our memory. This structure is composed of categories, cases and index pointers, where each case has 

a given category, and indexes point to a case or category. There are three types of indexes: feature links point 

from problem descriptors (features) to cases or categories, case links point from categories to their related cases, 

and difference links point from cases to the neighbor cases only differing in a small number of features. 

 

Figure 43. Two different types of case structures: (a) memory-model, (b) category and exemplar model  

Additional drawbacks of CBR are dealing with new problems, the need to be specifically designed for the domain 

application, and its strong dependence from expert knowledge. 

This algorithm is interesting to use it as support for other algorithms, where CBR can be used to establish and 

maintain a database of cases that may be used and adapted for new cases, but each case can be solved by using 

other different algorithms. 

3.6.4 Discussion 

We identified the versatility of control theory algorithms to cover quite a broad range of different application 

domains such as IT systems, cached services, multimedia communication networks, virtualized resources control, 

or software-defined networks and network function virtualization. However, we identified that control theory 

approaches, were mainly used for SLA compliance and self-management, but not for network diagnosis, which is 

the focus of the present thesis. 

We also identified that data mining techniques, and more concretely supervised learning based techniques such 

as artificial neural networks, classification, pattern recognition, decision trees, or data clustering are not the 

optimal techniques for diagnosing networks. The lack of precedents in using this type of approaches for diagnos-

ing telecommunication networks can be explained by two major factors: 

 the own nature of these type of networks, characterized by its complexity, heterogenerity and size,  

 the nature of data mining algorithms : their scalability concerns, their need of real-time processing, or their 
need of high amount of data to train them 
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-Supervised techniques may need huge amounts of training data to be able to predict accurately from the train-

ing data because its prediction capability is linked to the size of the training data. However, in telecommunication 

networks there may not be enough available training data (cases) for training the algorithms.  

-In such dynamic networks where there are so many changes occurring so fast there may not be time to train the 

algorithm to predict the output with enough accuracy. For instance, ANN (Artificial Neural Networks) approaches 

for network diagnosis are not common in the existing literature to the best of our knowledge. ANN requires 

intensive training before being able to relate inputs and outputs in an accurate manner. 

BN are very versatile as identified by Irish in (Rish,_), (Steinder & Sethi, 2002) , and (Bennacer et al, 2012), BN can 

be used to predict, classify, make decisions and diagnose. Indeed, Bayesian Networks are a suitable approach for 

fulfilling the three self-healing functional tasks i.e. detection, diagnosis, and recovery.  

BN are widely and extensively used in many different application contexts such as IP Multimedia Subsystem, 

Software-Defined Networking, Wireless Sensor Networks, Electrical Power Systems, Enterprise Networks/ IT 

systems, GPON-FTTH Optical Networks, and Bridged networks. Indeed, BN are used for network diagnosis pur-

poses, which is the goal of this thesis, so in the next section we will elaborate on those types of approaches in 

order to apply their principles to model and diagnose programmable networks. 

3.7 Bayesian Networks  

3.7.1 Definitions 

A Bayesian Network (BN) is a probabilistic graphical model that models a set of n random variables and their 

dependencies in a given domain. The BN is a pair (𝐺, 𝑝) composed of a Directed Acyclic Graph (DAG) 𝐺 = (𝑉, 𝐸) 

and  𝑝 , which can be either a probability distribution or a family of probability distributions indexed by a param-

eter set ϴ defined over the n discrete random variables {𝑋1 … 𝑋𝑁}. The design of the Bayesian Network concerns 

both parameters defined in this pair (𝐺, 𝑝) and those satisfy the following criteria : 

 For each 𝜃 belonging to the parameter set ϴ, there exist 𝑝(. |𝜃): 𝜒 → [0,1] where ∑ 𝑝(�̅�|𝜃) = 1�̅�  
 

 For each vertex 𝑋𝑣 ∈ 𝑉 with a parent set composed of n parents, 𝜋𝑣 = 𝑃𝑎𝑟𝑒𝑛𝑡𝑠 (𝑋𝑣) = (𝑋𝑏
1(𝑣)

, … , 𝑋𝑏
𝑛(𝑣)

), 

there exists a potential 𝑝𝑋𝑣|𝜋𝑣 
 providing the conditional probability distribution of the random variable 

𝑋𝑣 given its n parent variables 𝑋𝑏
1(𝑣)

, … , 𝑋𝑏
𝑛(𝑣)

.  

 

 For each parentless vertex 𝑋𝑣 ∈ 𝑉 , there exists a potential denoted by 𝑝𝑋𝑣
providing the probability distribu-

tion of the discrete random variable 𝑋𝑣. Indeed, this is a particular case where the parent set corresponds to 
the empty set 𝜋𝑣 = 𝜙 and therefore 𝑝𝑋𝑣|𝜋𝑣

= 𝑝𝑋𝑣
 

 

 The joint probability function 𝑝 is then factorized by using the aforementioned potentials 𝑝𝑋𝑣|𝜋𝑣
 as it follows  

 

𝑝𝑋1,…,𝑋𝑁
= ∏ 𝑝𝑋𝑣|𝜋𝑣

𝑁

𝑣=1
 

 
The aforementioned potentials 𝑝𝑋𝑣|𝜋𝑣

 are usually given in the shape of CPT (conditional Probabilty Table). This 

table is composed of rows defining each possible set of values for the parent set 𝜋𝑣 = (𝑋𝑏
1(𝑣)

, … , 𝑋𝑏
𝑛(𝑣)

) describ-

ing the different values of random variable 𝑋𝑣. 

The DAG 𝐺 = (𝑉, 𝐸) is composed of a set of 𝑁 vertices and 𝐾 edges. On one hand, vertices represent a set of 

random variables {𝑋1 … 𝑋𝑁}. Those variables can be continuous or discrete. Discrete random variables have a 

finite set of mutually exclusive states 𝑠. On the other hand, edges 𝐸 = {𝑒1 … 𝑒𝐾}, 𝐾 ∈ 𝑁𝑥𝑁 represent the de-

pendencies among those variables. 

Two types of dependency graphs exist. On one hand, undirected dependency graphs are composed of bidirec-

tional edges so that propagation is possible in both senses. On the other hand, directed dependency graphs are 
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composed of unidirectional edges so that propagation is possible in only one sense. We show a directed acyclic 

graph and an undirected acyclic graph in . 

 

Figure 44. Examples of (a) directed acyclic graph, (b) undirected acyclic graph 

A dependency graph, whether is directed or undirected, is depicted by an adjacency matrix 𝐴𝑁𝑥𝑁 consisting of a 

squared matrix of size 𝑁𝑥𝑁, where 𝑁 is the number of vertices of the dependency graph 𝐺 = (𝑉, 𝐸). The values 

of the adjacency matrix represent the existence of a dependence between two vertices, where ‘1’ means there is 

a dependence and ‘0’ there is not any dependence between two any vertices. The mathematical expression for 

each value of the adjacency matrix 𝐴𝑁𝑥𝑁 is given here: 

𝑎𝑖𝑗 = {
1, 𝑖𝑓 ∃  𝐸𝐺(𝑣𝑖 , 𝑣𝑗)

0, 𝑖𝑓 ∄ 𝐸𝐺(𝑣𝑖 , 𝑣𝑗)
 

In the case where the dependency graph is weighted, one scalar value 𝑤𝑖𝑗 depicts the strength of that edge 

between two any vertices, given here. 

𝑎𝑖𝑗 = {𝑤𝑖𝑗 , ∀  𝐸𝐺(𝑣𝑖 , 𝑣𝑗) 

Three important characteristics of acyclic graphs can be noticed here:  

1) Both directed or undirected graphs have a null diagonal adjacency matrix i.e. aii = 0 ∀ i ∈ [1, N], as there is 

no any edge or dependency between one vertex and itself.  

2) The adjacency matrix of undirected graphs is symmetric i.e. aij = aji ∀ ij ∈ [1, N], but not in case of directed 

graphs.  shows the adjacency matrices of a directed acyclic graph and an undirected acyclic graph. 

3) A directed acyclic dependency graph must be topologically sorted. Indeed, only a directed acyclic graph can be 

topologically sorted. The topological sort is defined by Skiena in (Skiena, 1990) as a permutation 𝑚 of the vertices 

of an acyclic dependency graph such that an edge (𝑖, 𝑗) implies that 𝑖 appears always before 𝑗 in 𝑚 . shows a non-

topologically ordered dependency graph and a topologically ordered one. 

 

Figure 45. Topological order in dependency graphs 
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3.7.2 Reasoning in Bayesian Networks 

There are three types of queries for a BN, enumerated hereafter:  

Probability updating: The observations 𝑜 are given on some variables and the posterior probability potentials for 

the rest of variables are calculated. 

Most probable configuration: The observations 𝑜 are given on a set S, and the most probable values (states) on 

the rest of the variables are computed. 

Maximum aposterior hypothesis: The observations 𝑜 are given on some variables on a set S, and a hypothesis h 

over a subset of variables, which maximizes the probability 𝑝(ℎ|𝑒), is found. 

We can classify the vertices of the BN according to their position on the graph such as leaf vertices as those 

which do not have children, and root vertices as those which do not have parents. We can also classify the verti-

ces according to the information they contain such as observed vertices as those which state is known with prob-

ability one, and non-observable vertices 𝑉𝐻 as those which state is not known. We call observations to the evi-

dences injected to the BN, where 𝑂 is the array of observations of value 𝑜. Querying the BN means computing 

the a posteriori probability by injecting the evidences on the observable vertices in that BN.  

The posterior probability or belief of a given vertex 𝑋𝑣 ∈ 𝑉 is defined as 𝐵𝑒𝑙(𝑋𝑣) = 𝑝(𝑋𝑣 = 𝑠|𝑜) and it is com-

puted by marginalization. This value indicates the overall belief in the statement 𝑋𝑣 = 𝑠 given all the observa-

tions 𝑜 introduced in the BN.This set of observations or evidences can be separated into two complementary 

subsets: 𝑜𝑋
−for those observations coming from the edges towards the parents of 𝑋𝑣 and 𝑜𝑋

+for those observa-

tions coming from the edges towards of the children of 𝑋𝑣. 

The posterior probability calculation is based on the Bayes rule, which is as follows 𝑝(𝐻|𝑜) =
𝑝(𝑜|𝐻)𝑝(𝐻)

𝑝(𝑜)
, where 

𝑝(𝑜) is a normalization constant, 𝑝(𝐻) is the prior probability, 𝑝(𝑜|𝐻) is the likelihood of the evidence, and 

𝑝(𝐻|𝑜) the posterior probability.  

This rule is applied taking into account these two subsets of observations to determine the posterior probability 

for the random variable 𝑋𝑣 as it follows: 𝐵𝑒𝑙(𝑋𝑣 = 𝑠) = 𝑝(𝑠|𝑜𝑋
−, 𝑜𝑋

+) =
𝑝(𝑜𝑋

−|𝑠,𝑜𝑋
+)𝑝(𝑠|𝑜𝑋

+)

𝑝(𝑜𝑋
−,𝑜𝑋

+)
=

𝑝(𝑜𝑋
−|𝑠)𝑝(𝑠|𝑜𝑋

+)

𝑝(𝑜𝑋
−,𝑜𝑋

+)
=

𝜇𝑣(𝑠)𝜋𝑣(𝑠)

𝑝(𝑜𝑋
−,𝑜𝑋

+)
 

The condicional probabilities 𝜇𝑣(𝑠)= 𝑝(𝑜𝑋
−|𝑠) and 𝜋𝑣(𝑠) = 𝑝(𝑠|𝑜𝑋

+) are propagated among the neighbours to 

update the aposterior probability distributions on each variable. In this propagation process, each vertex updates 

its posterior probabilities by applying the Bayes rule based on messages 𝜇𝑣(𝑠) from its children and 𝜋𝑣(𝑠) from 

its parents. This propagation process is shown for a chain Figure 46 (a) and a tree Figure 46  (b). 

 

Figure 46. Belief propagation in chain and tree 

When BN are used for diagnosis, the type of reasoning is called evidential reasoning or explanation. In this type 

of reasoning, also known as root cause analysis (RCA), we inject a set of observations for which we need an ex-

planation (the root cause responsible). This explanation is obtained by querying the rest of variables in the BN 

given those observations. This explanation has an associated value of uncertainty. 

One typical example of this type of inference is the QMR-DT model, a decision-theoretic reformulation of the 

Quick Medical Reference (QMR) model, shown in . Its model is a two-layered dependency graph, composed of N 

diseases (depicted by N root vertices) and M symptoms (depicted by M leaf vertices). In general, any of the N 

X2 X3

X1
(b)

X2

X3

X1
(a)
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diseases can lead to any of the M symptoms (a.k.a findings). The main goal of the diagnosis is to infer which 

disease is the most probable taking as input the set of M symptoms. 

 

Figure 47. QMR-DT dependency graph: (a) N diseases, M symptoms, (b) N=2 diseases, M=1 symptoms 

To reason over this BN, we set the evidences on the state of the symptoms vertices 𝑌𝑖 and the BN algorithm 

propagates these injected observations through the dependency graph to calculate the a posteriori probability of 

each root cause vertex 𝑋𝑖. The joint probability describing the diseases and symptoms can be given by the equa-

tion:  

𝑃(𝑋, 𝑌) = 𝑃(𝑋|𝑌)𝑃(𝑌) = ∏ 𝑃(𝑌𝑖|𝑋)

𝑀

𝑖=1

∏ 𝑃(𝑋𝑗)

𝑁

𝑗=1

 

where 𝑌 is the symptoms vector 𝑌 = { 𝑌1, … , 𝑌𝑀} and 𝑋 is the diseases vector 𝑋 = { 𝑋1, … , 𝑋𝑀}. 

3.7.3 Properties of Bayesian Networks 

3.7.3.1 Conditional independence property 

As said in previous section, any DAG can be decomposed in three types of sub-graphs, where each sub-graph 

represents a basic way of connecting two variables to a third variable: chain (Figure 48(a)), fork (Figure 48 (b)), 

and collider (Figure 48 (c)). The conditional independence in these three cases is different. 

 

Figure 48. Three ways of connecting three variables in a DAG: (a) chain, (b) fork, (c) collider 

For instance, in (a), knowing the state of variable 𝑋2 makes 𝑋1 and 𝑋3 conditionally independent. In (b), knowing 

the state of 𝑋1 makes 𝑋2 and 𝑋3 conditionally independent. However, in (c) the situation is slightly different, as 

not knowing the state of 𝑋3 makes 𝑋1 and 𝑋2 independent.  

3.7.3.2 Factorization property  

In large dependency graphs, where the number of modelled variables is huge, the joint probability distribution is 

too big to be handled due to the large size of the CPTs defined per variable in the graph. 

Nevertheless, thanks to the factorization property of BN, the number of parameters required to describe the 

joint probability distribution 𝑝𝑋1,…,𝑋𝑁
 can be drastically reduced by leveraging the conditional relationships among 

variables. For instance, for a given collection of variables {𝑋1 … 𝑋𝑁}, the probability distribution can be factorized 

as  𝑝𝑋1,…,𝑋𝑁
= 𝑝𝑋1

 𝑝𝑋2|𝑋1
𝑝𝑋3|𝑋2

… 𝑝𝑋𝑁|𝑋𝑁−1
 , expressing the joint probability distribution as a product.  

X1 …

…

Diseases or root causes

Observed symptoms or findings

XN
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This factorization has the benefit of a reduction in the number of parameters to describe the joint probability 

distribution, which depends on the size of the CPTs. For instance, for a k-state random variable with n parents, k
n 

parameters are needed to describe its corresponding CPT.  

The CPT of parentless vertices is composed of one unique parameter, their a priori distribution 𝑝𝑋𝑣
. For binary 

vertices with n parents, 2
n 

parameters are needed to describe their CPT.  

 

Figure 49. Example of probabilistic dependency graph 

As example, we consider the four-vertex chain of , composed of binary variables (k=2). In this chain, X1 and X3 

are independent on the condition that X2 is instantiated. The same happens with X2 and X4 and and X3. 

The joint distribution 𝑝𝑋1,…,𝑋𝑁
 would need 2

4
=16

 
parameters, whilst, thanks to the factorization property of BNs 

that allows expressing the joint probability distribution as 𝑝𝑋1,𝑋2,𝑋3,𝑋4
= 𝑝𝑋1

𝑝𝑋2|𝑋1
𝑝𝑋3|𝑋2

𝑝𝑋4|𝑋3
, the number of 

parameters required to describe the joint probability distribution 𝑝𝑋1,𝑋2,𝑋3,𝑋4
  is drastically reduced. For instance, 

X1 is parentless, so it needs 1 parameter (𝑝𝑋1
), while X2 X3 and X4 need 2 parameters, 𝑝𝑋2|𝑋1

, 𝑝𝑋3|𝑋2
, and 𝑝𝑋4|𝑋3

. The 

joint probability is then described with 7 parameters instead of 16 parameters initially needed. 

3.7.3.3 Explaining away property 

The explaining away property is a phenomenon that appears when the number of observations introduced in the 

BN increases.  

This property is paramount when diagnosing, because the state of a given variable may be due to multiple possi-

ble causes, and we are interested in discarding as many root causes as possible and reducing the diagnosed 

variables to the minimal set. Indeed, the fact of adding new observations to the BN makes clearer which variables 

are responsible for that symptom found. The explaining away concept is tightly linked to the uncertainty of the 

aposterior probability distribution.  

We can measure its uncertainty to quantify how the inference engine can discriminate among the different root 

causes. The uncertainty of a given distribution is quantified via the Shannon entropy (measured in bits). In gen-

eral, the entropy 𝐻(𝑋) of a discrete random variable 𝑋 with alphabet 𝛼 and probability mass function Pr (𝑋 = 𝑥) 

is at follows: 

𝐻(𝑋) = − ∑ Pr (𝑋 = 𝑥)

𝑋∈𝛼

𝑙𝑜𝑔 Pr (𝑋 = 𝑥) 

Note that 𝐻(𝑋) ≥ 0. In a perfect and doubtless system, 𝐻(𝑋) = 0. 

Entropy depends on the number and quality of the observations added to the BN. The lower entropy, the lower 

uncertainty and the better the BN engine discriminates among different root causes. Nevertheless, if additional 

observations Y are added in the graph, entropy 𝐻(𝑋) is reduced by 𝐺(𝑌) = 𝐻(𝑋) − 𝐻(𝑋 |𝑌), where 𝐻(𝑋 |𝑌) =

− ∑ Pr(𝑋 = 𝑥, 𝑌 = 𝑦)𝑥,𝑦 𝑙𝑜𝑔 Pr(𝑋 = 𝑥, 𝑌 = 𝑦). This phenomenon is known as information gain. 

We exemplify the explaining away effect with the following BN, shown in  , composed of two diseases (X1 and X2) 

and one observed symptom (Y). We want to determine which of these diseases is the root cause given an obser-

vation on Y.  

X1 X2 X3 X4
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Figure 50. Diagnosis with Bayesian Networks 

In this first example, we have as observations that X1=True and Y=True, and we query the variable X2 to see how 

probable is that variable to be the root cause given these observations seen on X1 and Y (in blue). The a priori 

probabilities in X1 and X2, specified in their corresponding CPTs, are p1=p2=p=0.5. The equation that allows calcu-

lating the aposteriori probability for the disease X2 is 

P(X2 = T|X1 = T, Y = T)=
P(Y=T|X1=T,X2=T) P(X2=T) 

P(Y=T|X1=T,X2=T) P(X2=T)+P(Y=T|X1=T,X2=F) P(X2=F) 
= 0,58. 

We can see in this example that X1 is more probable than X2 and this is explained by the CPT of the variable Y, 

fixed in the green column because Y = T, which value is P(Y|X1 = T, X2 = T)=0.7. 
 
In this second example, we inject on the BN the observations X1=False and Y=True, and we query the variable X2 
to see how probable is the variable X2 to be the root cause given these observations on X1 and Y (in blue). In this 
case, given that the other posible variable to be the cause X1 has zero probability (X1=False), the other posible 
cause X2, seems to be the most probable explanation as the explaining away property would predict. 
 

P(X2 = T|X1 = F, Y = T)=
P(Y=T|X1=F,X2=T) P(X2=T) 

P(Y=T|X1=F,X2=T) P(X2=T)+P(Y=T|X1=F,X2=F) P(X2=F) 
= 0,9 

 
We can see in this second example that the fact that the a posteriori distribution reveals that X2 is more probable 

than X1 and this is explained by the CPT of the variable Y, fixed in the green column due to the fat that  Y = T, 

which final value is P(Y|X1 = F, X2 = T)=0.9. 
 
This property is very important in the root cause analysis procedure to discard some variables with respect to 
other variables depending on the incremental addition of evidences. 

3.7.4 Challenges of Bayesian Networks in diagnosis 

When Bayesian Networks (BN) are used for diagnostics or fault-localization, the dependency graph is then used 

as diagnosis model, which indicates how faults propagate. The Bayesian Network inference engine exploits the 

probabilistic dependency graph to propagate the probabilities over that graph in a process called the Root Cause 

Analysis (RCA). However, many other techniques can be used to this perform the RCA such as Occam’s Razor or 

Markov chains. 

In this context, two important issues must be solved. Firstly, the generation of the probabilistic dependency 

graph and secondly, the scalability of the inference process a.k.a the Root Cause Analysis, where the graph is fed 

with the observations from the network. 

Scalability limitations: One first limitation of Bayesian Networks is the scalability due to the need to make the 

inference over large dependency graphs. This comes as a result of the growth in the number of parents of a given 

vertex, which leads to an explosion in the number of states of that vertex, impacting on the size of its CPT. In-

deed, the size of the CPT grows exponentially according to the value 𝑠𝑡𝑎𝑡𝑒𝑠𝑛. For instance, a discrete binary 

random variable with one parent has a CPT with size 21 = 2, while the same discrete binary random variable 

with 5 variables will have a CPT size of 25 = 32. Nevertheless, the scalability of BN-based solutions, as identified 

by Bennacer their works (Bennacer et al, 2012) , (Bennacer et al, 2013), and (Bennacer et al, 2015),  can be allevi-

Y P(Y=T|X1 X2) P(Y=F|X1 X2)

P(X1=T, X2=T) 1 0

P(X1=F, X2=T) 0.9 0.1

P(X1=T, X2=F) 0.7 0.3

P(X1=F, X2=F) 0.1 0.9

X1 X2

Y

p1=0.5

Y=T

P(X1=T) P(X1=F)

p1 1-p1

Evidence:

P(X2=T) P(X2=F)

p2 1-p2

p2=0.5

CPT(Y)

CPT(X1) CPT(X2)

? Root causes:

A priori probabilities:
p1

p2

X1 X2

Y
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ated by combining the BN with a CBR based system that reduces the inference process to a great extent. Another 

approach is the proposed by Hounkonnou et al in (Hounkonnou, 2013), where the dependency graph is extended 

in such an intelligent way to reduce the inference to the necessary subset of the network to be diagnosed and 

avoid generate a large dependency graph. 

Bayesian Network generation limitations: The second limitation of Bayesian Networks as model-based approach 

is that it depends on a model that must be generated. However, much more attention is paid to the inference 

and RCA algorithms in use by assuming that the model is already there, to the detriment of the generation of the 

probabilistic dependency graph, which in most cases, is manually built from operational team’s knowledge. This 

manual generation is valid for static networks, where networks resources and their interaction tend to be stati-

cally fixed, and there is no need to generate and update a model of network and services every other few 

minutes or seconds.  When it comes to diagnosing dynamic network topologies and services as expected with 

SDN and NFV, the static generation of the dependency graph is not appropriate at all, mainly due to the fact that 

the model has to be continuously regenerated to encompass those dynamic changes. In our context, SDN and 

NFV, network topology becomes highly dynamic due to the rapid and flexible programmability of the underlying 

connections among switches by the SDN controller (up to ms). Networking services defined over SDN and NFV 

will rely on a dynamic placement and migration of the virtual network functions as well as an elastic usage of the 

compute, storage and networking resources. Therefore, in combined SDN and NFV environments, the high net-

work dynamicity provided by SDN–topological changes and rapid forwarding changes through flows–becomes 

even higher with NFV, since the VNF can be scaled, instantiated, deleted, and migrated, as a result, the subse-

quent changes in the virtual links. In this context, service dependencies from the underlying resources are in a 

continuous change and need to be managed dynamically. 

In this thesis we make a contribution on this second limitation by proposing a self-modeling approach to gener-

ate the probabilistic dependency graph in an automatic and online manner. Therefore, in this section, we explore 

the approaches used to generate the probabilistic dependency graph and we explore how those graphs are ap-

plied and exploited in different contexts. In addition, we will explore further different network contexts and 

compare them to programmable networks in order to identify which elements are worth being applied to diag-

nose programmable networks. 

3.7.5 Related work on the generation of the Bayesian Network  

BN are very versatile because those can be used for classification, prediction and diagnosis, the focus of this 

thesis. Firstly, BNs can be used for clustering and classification problems. In a clustering problem, the input data 

is partitioned into clusters. This problem, seen from a BN perspective, is to determine which class or cluster 

maximizes the probability that a given input symptom is consequence of a given root-cause, mathematically 

formalized as 𝑃(𝑐𝑙𝑎𝑠𝑠|𝑑𝑎𝑡𝑎)𝑐𝑙𝑎𝑠𝑠
𝑚𝑎𝑥 . As example of this application, Hamerly and Elkan in (Hamerly & Elkan, 2001) 

proposed a clustering-based failure predictor for hard disk drive failures.  This failure predictor is based on two 

different Bayesian Methods: first, a naïve Bayes sub model and, secondly, a naïve Bayes classifier trained by an 

Expectation-Maximization supervised learning method.  Secondly, BNs can be used to predict failures by estimat-

ing the probability distribution of the next time to failure by using the current probability distribution given by 

the Bayesian Network algorithm. This is formally defined as 𝑃(𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠|𝑟𝑜𝑜𝑡 − 𝑐𝑎𝑢𝑠𝑒).  As mentioned before, 

Salfner et. al, showed several examples of BN algorithms that tracks previous failure occurrences and estimates 

the probability distribution of the next time failures. And thirdly, BNs can be used for diagnosis. Indeed, as it was 

seen in the previous section this is the most popular application of BNs. Diagnosis consists of calculating the a 

posteriori probability of those root vertices given the state of those known vertices which state is propagated 

through the BN. The problem is formalized as finding the a posteriori probability distribution given a set of symp-

toms 𝑃(𝑟𝑜𝑜𝑡 𝑐𝑎𝑢𝑠𝑒|𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠).  

Bayesian Networks is a suitable approach for network diagnosis, mainly due to the following aspects: 

 BN combines the probability theory with the graph theory, what allows exploiting the synergy between both 
fields in one single algorithm.  
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 The knowledge representation is compact, reliable, and models randomness, everything together in the 
shape of probabilistic dependency graph. In contrast to codebook and fault-symptom models, which are bi-
layered, a probabilistic dependency graph models intermediary layers and other more complex relationships 
that can be seen in the application domain of networks. 
 

 BN has training capabilities, not to the extreme of ANN or similar machine learning approaches, but rather 
on the sense to tune the a priori probabilities and build the dependency graph. However, networks is not 
the proper environment to train an algorithm because the data may not be available neither the time to 
train the algorithm. 

 

3.7.5.1 Generation of the Bayesian Network through approaches 

In this section, we survey those different approaches that generate the Bayesian Network structure. The genera-

tion of the Bayesian Network infrastructure means generating the dependency graph and the conditional proba-

bility distributions associated to the dependency graph. In general, the dependency graph is manually generated 

from an operational team’s knowledge, but the core of this thesis is its automatic generation to cope with its high 

dynamicity that requires generating it an update at run-time. 

Indeed, this is a complex mathematical problem, which is found to be a NP-hard. Indeed, the number of possible 

dependency graphs for a given problem grows in an exponentially with the number of modelled variables 𝑛. 

Indeed, this was already quantified by Robinson in (Robinson, 1977), which defined a recursively-based formula 

to compute the number of possible dependency graphs for a given number of modelled variables 𝑛, shown here-

after: 

𝑓(𝑛) = {

1, 𝑖𝑓 𝑛 = 0

∑(−1)𝑖+1𝐶𝑛
𝑘2𝑖(𝑛−1)𝑓(𝑛 − 1),    𝑖𝑓 𝑛 > 0

𝑛

𝑖=1

 

For instance, for a 3-variable problem would have 25 possible dependency graphs and a 6-variable problem 

would have the astronomic figure of 3,781,503 possible dependency graphs. Figure 51 shows 13 out of the 25 

possible combinations of dependency graphs for a 3-variable model. 

 

Figure 51. Example of possible dependency graphs for a 3-variable problem 

The probabilistic dependency graph can be generated by using different approaches. We identify two types of 

approaches to learn the network structure: search and score methods and conditional independence testing 

methods.  

The search-and-score method iterates over all the candidate network structures and scores each network struc-

ture according to a given criterion or metrics that evaluates the goodness of that network structure. This method 

receives as input a cases database, defined as a matrix 𝐷𝑀𝑥𝑁 ≡ 𝐷 composed of m rows depicting the cases and n 

columns depicting the corresponding values of each modelled variable 𝑋𝑗  for each case.  

Each case 𝐶𝑗 ∀ 𝑖 ∈ [1, 𝑚] contains the values of the modelled variables included in the Bayesian Network 𝑣𝑖,𝑗. 

Figure 52 shows a cases database example for m=9 cases and n=3 variables modelled, as well as the generated 

dependency graph given as output by a search-and-score method. In this concrete case, the modelled variables 

are binary, i.e. 𝑣𝑖,𝑗  ∈ [0,1]. 
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Figure 52. Cases database example for m=9, n=3 and generated dependency graph 

A search and score method receives as input this database of cases and it provides as output the calculated de-

pendency graph and the conditional probabilities relating those variables. K2 is one of the most popular search 

and score algorithm for learning the Bayesian Network structure, which is based on a greedy search algorithm 

proposed by Cooper and Herskovits in (Cooper & Herskovits, 1992). This algorithm considers the following as-

sumptions:  

 All the candidate network structures are equally probable 
 

 Modelled variables are ordered  
 

 There is a maximum number of parent vertices per vertex (phi) 
 

K2 algorithm finds the best network structure 𝐵𝑆. It starts with an empty set of parents for each given vertex and 

it is incrementally adding parents until reaching that maximum number phi. The number of parents for each 

vertex is increased until the CH score of the resulting network structure is maximized, and the algorithm stops 

when adding more parents does not improve the CH score. The CH score was defined by Cooper and Herskovits 

in (Cooper & Herskovits, 1992). This metrics seeks to maximize the probability 𝑃(𝐵𝑆, 𝐷), defined as it follows:  

𝑃(𝐵𝑆, 𝐷)=𝑃(𝐵𝑆) ∏ 𝑔(𝑖, 𝜋𝑖) = 𝑃(𝐵𝑆) ∏
(𝑟𝑖−1)!

(𝑁𝑖𝑗+𝑟𝑖−1)!

𝑞𝑖
𝑗=1

∏ 𝑁𝑖𝑗𝑘!
𝑟𝑖
𝑘=1

𝑛
𝑖=1  

However, as disadvantage, the K2 algorithm does not have to choose that network structure with the highest 

probability and it is prone to local optima. 

The conditional independence testing method is based on by performing statistical tests among modelled varia-

bles to determine if those variables have a significant degree of correlation. This means that the behavior of 

modelled variable 𝑋𝑖 can help us determine the behavior of 𝑋𝑗  or vice versa. A statistical test is based on an 

analysis plan, which describes how to use the input data to accept or reject the null hypothesis 𝐻0. If the varia-

bles are dependent, the null hypothesis 𝐻0 is true, otherwise, both variables are assumed independent and the 

alternative hypothesis becomes true. An analysis plan has the following shape: 

{
𝐻0: 𝑋𝑖 , 𝑋𝑗 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 

𝐻𝑎: 𝑋𝑖 , 𝑋𝑗  𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡
 

C
as

es

Variables

X1 X2 X3

X1 X2 X3

C1 1 0 0

C2 1 1 1

C3 0 0 1

C4 1 1 1

C5 0 0 0

C6 0 1 1

C7 1 1 1

C8 0 0 0

C9 1 1 1
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This plan depends on two key parameters: the significance level and the test method. The most popular test 

method is the chi-squared test, usually calculated from a sum of squared errors. Its value can be calculated as 

𝜒2 = ∑
(𝑓𝑂−𝑓𝐸)2

𝑓𝐸
, where 𝑓𝐸  are the frequency of the expected values, and 𝑓𝑂  are the frequency observed values. 

This algorithm is based on the following steps: (1) Conjecture and Analysis Plan, (2) 𝜒2value calculation, (3) signif-

icance level calculation (1 − 𝑝) and degree of freedom 𝑣, (4) critical value calculation, and (5) comparison be-

tween 𝜒2 and critical value and interpretation of result. 

As example, we study the degree of correlation a symptom in the network such as the packet loss and a possible 

cause, the congestion in a given link. We first conjecture that the observed packet loss is related to congestion 

(null hypothesis 𝐻0). The following table gathers information of the observed congestion and packet loss. 

Observed Data Packet Loss 

Congestion Yes No 

Yes 50 25 

No 40 45 

 

The observed data is added up per columns and rows to compute the frequencies: 

 Software  

Hardware Failure No Failure Frequency 
per line (L) 

Failure 50 25 70+25=95 

No Failure 40 45 40+45=85 

Frequency per 
column (C) 

50+40=90 25+45=70 90+90=160 

 

Expected frequencies are calculated based on the previous calculation: 

 Software  

Hardware Failure No Failure L 

Failure 90*75/160=42.1875 70*75/160=32.8125 70+25=95 

No Failure 90*85/160=47.8125 70*85/160=37.1875 40+45=85 

C 50+40=90 25+45=70 90+90=160 

 

The chi-squared calculation is made by using the aforementioned equation 𝜒2 = ∑
(𝑓𝑂−𝑓𝐸)2

𝑓𝐸
 , giving as a result: 

𝜒2 =
(50 − 42.19)2

42.19
+

(25 − 32.81)2

32.81
+

(40 − 47.81)2

47.81
+

(45 − 37.19)2

37.19
= 6.22 

The degree of freedom is calculated as 𝑣 = (#𝑟𝑜𝑤𝑠 − 1)(#𝑐𝑜𝑙𝑢𝑚𝑛𝑠 − 1) = 1, and the significance level is cho-

sen 0.01 this means that the probability that the null hypothesis 𝐻0is true becomes 𝑝 = 1 − 0.01 = 0.99. The 

Critical value of chi square distribution is found in its given table described by the table of pairs (𝑝, 𝑣). The critical 

value found in the table for the pair (𝑝 = 0.99, 𝑣 = 1) is 6.635. Given the fact that  𝜒2 = 6.22 ≤ 6.635 , the null 

hypothesis is accepted and under those conditions on significance level it can be said that packet loss is depend-

ent on the congestion of that given link.  

3.7.5.2 Generation of the Bayesian Network from datasets 

The BN can be generated from different types of data sets. Here, we survey those types of data sets from which 

the probabilistic dependency graph has been automatically obtained in the literature. 

Relational models like databases can be converted in probabilistic dependency graphs to include the notion of 

uncertainty and probabilities on it. For instance, S. Singh and T. Graepel in (Singh & Graepel, 2013) proposed a 

methodology to generate the probabilistic dependency graph containing the information extracted from a rela-
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tional model. This approach allows the authors to generate the probabilistic dependency graph from many dif-

ferent types of databases without any manual intervention.  

A database or relational model is a set of tables composed of attributes with links to other tables.  

In their approach, the authors cover two types of tables: linked tables (i.e. tables which attributes are linked to 

other tables) and non-linked tables. Figure 53 shows one example of generated dependency graph built from a 

database composed of three linked tables (User, Movie, and Rating), where the rating table is pointing to User 

and Movie tables. In the corresponding dependency graph, the interdependencies among tables are translated to 

arrows in the dependency graph that will connect the different sub-dependency graphs User and Movie, which 

are in turn composed of sub-dependency graph for each of their components detected in that database. 

 

Figure 53. Probabilistic dependency graph extraction from a database 

The probabilistic dependency graph can also be obtained from ontologies. In general, ontologies are composed 

of concepts and their interrelationships with other concepts, but no notion of uncertainty is taken into account in 

the ontologies, because concepts are related (or not) to other concepts in a binary relationship but there is no 

notion of the probability that there is a relationship among different concepts. 

Messaoud et. al. in (Messaoud et al, 2009b)  propose the SemCado (Semantic Causal Discovery) framework, 

which learns CBN (Causal Bayesian Networks) using prior knowledge extracted from ontologies. Indeed, this work 

is based on their previous framework named MyCado in (Messaoud et al, 2009a), which was based on a contraint 

based structure-learning algorithm. The authors exploit the similarities between ontologies and CBNs by follow-

ing a three-step procedure: 

 A concept in the ontology is translated to a random variable and thus a vertex in the CBN 
 

 A semantic causal relation between two concepts in the ontology is translated into a dependency between 
two vertices in the CBN 
 

 Concept-attribute instances in the ontology are translated to observational data in the CBN 
 

Alternatively, Fenz et. al. in (Fenz, 2011) propose an enhanced Bayesian threat probability determination calcula-

tion scheme that enriches the BN with information extracted from the security ontology, shown in Figure 54, in 

the context of information security risk management for business organizations.  

An asset or a given organization requires from a given level of security to overcome vulnerabilities. In the event 

of a threat, that threat may exploit a vulnerability of the asset (let’s imagine the vulnerability of a SDN controller 

against DoS attacks) and make it vulnerable. The vulnerability has a given severity level. Nevertheless, a control 
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strategy, able to mitigate that threat should be put in place. However, in this state, the security ontology does 

not take into account uncertainty, that is why the authors want to enrich the security ontology with the probabil-

ities associated to each of those concepts and interrelationships extracted from the ontology. 

 

Figure 54. Security ontology used by Fenz et al. in (Fenz, 2011) and derived BN example  

Indeed, the authors propose a BN structure which is derived from the security ontology, shown in Figure 54. This 

structure is compose of a set of n threats with their corresponding probabilities PP, and three probability states 

e.g. high, medium, and low. The BN is used to determine the threat probability taking into account that threats 

have predecessor threats (PT) and successor threats (ST). 

3.7.6 Related work on Network Diagnosis through Bayesian Networks  

In this section, we present the related work on Bayesian Networks applied to different network infrastructures 

such as bridged networks, VPN, IMS, IT infrastructures, enterprise networks, and optical networks. We discuss 

the different diagnosis strategies used, the limitations and the key learnings that could be worth being consid-

ered for programmable networks. 

3.7.6.1 Optical Networks 

Tembo et. al. in (Tembo et al, 2015) propose a self-diagnosis approach for GPON-FTTH access networks based on 

a reconfigurable three-layered dependency graph. The generic model covers two main fault cases, where the 

fault remains inside a component, not propagating to the rest of the network (local fault propagation) and dis-

tributed fault propagation, where faults are spread to the rest of the network. Their proposed generic model 

covers both local fault propagation and distributed fault propagation.  

The first layer models the network topology and the distributed fault propagation among network components, 

the second layer models the local propagation  inside a network component by means of a set of directed de-

pendency graphs interconnected via the first layer, and the layer 3 describes a junction tree relying on the layer 

2. This generic model is self-reconfigurable, in the sense that it can automatically learn changes in the network 

topology and in the local dependencies inside each network component.  

The authors apply this generic model to diagnose a FTTH access network based on GPON (Gigabit Passive Optical 

Network), to model the upstream and the downstream accesses and diagnose loss of communication between 

the OLT (Optical Line Terminal) and the ONT (Optical Network Terminal), attenuation of the branching fiber 

between ONTs, and loss downstream communication between OLT and ONT. 
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In this context, the authors consider three types of layer 2 nodes, root causes, intermediate faults and alarms, 

where the root causes are the fibers, a faulty ONT or a misconfigured ONT. As advantage, some of the modelled 

variables included in the generic model such as the power supply of the OLT (AltOLT) take two values (faulty, not 

faulty) while other modelled variables such as the fibers take up to three values (OK, Attenuated (AT), Broken 

(BK)).  

 

Figure 55. GPON-FTTH network architecture considered  

Key learning and limitations: Two main limitations are considered in this work. Firstly, the self-reconfigurability 

capability of the generic model and the capability to track dynamic changes on the network topology is enunciat-

ed in a theoretical manner, but it has not been implemented. Secondly, the granularity of this generic model 

reaches the node components considered. For instance, they consider ONT (Optical Network Termination), OLT 

(Optical Line Termination), the transport and branching fibers acting as links or RG (Residential Gateway), but do 

not consider internal components inside the ONT or the OLT and those dependencies among those internal 

components, although it has also been enunciated in a theoretical manner that those interactions are comprised 

in the layer 2 model. 

3.7.6.2 Bridged networks 

Steinder and Sethi in (Steinder & Sethi, 2002) and (Steinder & Sethi, 2004) proposed a self-diagnosis approach for 

end-to-end services delivered over bridged networks. The authors propose an end-to-end service model decom-

position where the connectivity between two network nodes at layer L+1 to realize a given service composed of 

two network functions of layer L+1 relies on a set of intermediate nodes (called by the authors as host-to-host 

services) operating at lower layers.  Figure 56 shows this layered model where a service at layer L+1 between two 

nodes a and c relies on the service layer L which is in turn relying on two network functions of layer L in nodes a 

and c and so on in a hierarchical manner. 
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Figure 56. End-to-end service model proposed by Steinder and Sethi 

With this service decomposition, the diagnosis model can be built from the network topology by following a 

divide-and-conquer mechanism that decomposes the end-to-end service in several host-to-host services, each of 

them relying on a single physical link. Figure 57 shows this decomposition, where the path realizing the end-to-

end service is composed of several links, and each link is a possible root cause of a path failure. For instance, the 

path from hosts H1 and H2 which traverses bridges A, B and D, can be divided in host-to-host segments composed 

of one single physical link. For instance, two link root causes would explain a path failure on the network seg-

ment A-D: the links A-B or the link B-D. Thanks to this decomposition of physical paths, the authors can build the 

probabilistic dependency graph of end-to-end services in an automatic manner. 

 

Figure 57. Decomposition of a bridge-to-bridge network topology in a dependency graph 

The authors studied the inference to a great extent. Indeed, the authors proposed three different algorithms for 

the inference process such as the bucket elimination algorithm, an interactive belief updating, and the iterative 

most probable explanation. Also, the authors compare them in terms of detection rate, false positive rate, pre-

diction capabilities, and maximum network size below 10 seconds of inference time, among other criteria. 

Key learnings and limitations: The proposal to decompose a given service at a given layer in simpler services in 

lower layers will be taken into account for programmable networks, where those are composed of several layers: 

physical, logical virtual and service layers, as it will be further described in chapter 4.  

The decomposition of a given network path in links as root causes is a very interesting approach for modelling 

programmable networks, which can be also composed of virtual and physical links. However, the authors do not 

consider as root causes the nodes connecting those different links, which was taken into account on other recent 

approaches such as (Bennacer et al, 2012),  (Bennacer et al, 2013), and (Bennacer et al, 2015), (Kandula & Maha-

jan, 2010) or, (Hounkonnou, 2013)  among other works. We will consider as possible root causes nodes and links 

in our self-diagnosis approach shown in chapter 4. 

However, the authors only diagnose faulty links and do not provide with any methodology to build and update 

the probabilistic dependency graph with changes in the network topology, although the authors can take the 

traces of the network topology by using SNMP traps for their proof of concept, do not explicitly tackle this con-

cern. 
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3.7.6.3 Virtual Private Networks 

Bennacer et al. in (Bennacer et al, 2012), (Bennacer et al, 2013), and (Bennacer et al, 2015), proposed a self-

diagnosis approach for VPN services. A VPN is shown in Figure 58 where a VPN backbone is connecting to sites 

(VPN1 and VPN2). There is one egress node CE (Customer Equipment) that connects the clients in between both 

sites through the VPN backbone. The VPN backbone is composed of PE (Premises equipment) nodes.  

 

Figure 58. Example of VPN and example of calculated dependency graph for the packet loss problem 

In their first work (Bennacer et al, 2012), they proposed a hybrid RCA module based on the combination of 

Bayesian Networks (BN) with Case-Based reasoning, called BN-CBR hereafter. Thanks to this hybrid approach, the 

high diagnosis time and the low accuracy provided by the BN algorithm can be improved to a great extent for 

large networks. The BN algorithm performs diagnosis by exploring the generated dependency graph and this 

inference process grows exponentially with the size of the network. The authors proposed the following meth-

odology, shown in Figure 59: 

Construction of the Bayesian Network through statistical chi-squared tests: Bennacer et al. in (Bennacer et al, 

2013), proposed to generate the probabilistic dependency graph by computing the dependencies among the 

physical symptoms observed in VPN nodes through Chi-squared statistical tests. Thanks to this statistical ap-

proach, the probabilistic dependency graph can be built in an automatic manner and be updated with changes in 

the network topology. 

The BN includes the metrics of the network equipment as vertices and the dependencies among the metrics as 

edges. The self-modeling algorithm starts with no dependencies in the BN and, each time a new equipment 

vertex in the BN, the self-modeling algorithm computes the dependency of that vertex with the rest of vertices in 

the BN and, if the chi-squared method considers there is enough statistical dependence, it adds the edge in the 

BN between both vertices. The approach can update the graph with the addition and removal of vertices by 

computing the dependencies of the newly added vertices with the rest of vertices in the graph.  

The dependency graph includes as modelled variables the metrics associated to each network node in the VPN 

such as CE, PE, or P. The following metrics are monitored for each network node and link: router status, proces-

sor, memory, HDD (Hard Disk Drive), link bandwidth, connection, congestion, buffer, delay, among others. 

Let’s imagine that the PE-CE link is experiencing packet losses, so the dependency graph proposed (shown in 

Figure 58) assumes two main root causes explaining packet loss, whether congestion on the link and the connec-

tion of both routers (PE and CE). In turn, congestion on the link depends on the link bandwidth, and the load in 

the routers. The load on the routers depends on metrics such as memory, HDD, buffering, or processing. The 

connection of the routers depends on their status, which in turn depends on the power supply. Also, the connec-

tion depends on the interfaces of the router, which both must be available and must respond to ping. 

VPN1 VPN2
P

PE CECE PE

Site1 Site2

VPN backbone

PE-CE linkRoutStat

Conn

Avail Interfa

Ping

Power

LPLoad

Congestion

BW

Buff

HDD
ProcMem

Link Congestion Connection

Packet Loss

Modelled network 
segment



End-to-end Self-Diagnosis of Programmable Networks 

96 
 

Expression of a failure as a problem-case: Once the dependency graph is built by using the independence tests in 

the previous step, the failure occurrence is expressed as a problem-case. The failure occurrence is injected as a 

problem in the BN, while the failure occurrence is injected as a case in the CBR. This inference approach is based 

on examining the subset of vertices in the BN that experience discrepancies. First, BN is examined from the faulty 

vertex, where the problem is detected, and examines those vertices at two hops of distance identifying a subset 

in the BN, as shown in Figure 59 example, where V1 and V3 are at two hops of distance. 

Optimizing the inference procedure by using Message Parsing inference: Once is identified that the problem is 

not similar to any case stored in the CBR, the inference process starts. This inference process is based on Mes-

sage Parsing, a variant of Bayesian Networks to reason over graphical models, especially poly-trees. As the BN is a 

DAG, this algorithm only is executed on the potential root cause vertices, excluding those outside the aforemen-

tioned subset. In this way, the authors tackle the high computational cost in the inference process and the inher-

ent scalability concerns in BN. 

Expressing and saving the result or the RCA as a solution-case: Once the problem is solved by the inference 

process is stored as a solved case.  

 

Figure 59. Hybrid BN-CBR self-diagnosis approach for VPN proposed by Bennacer et al. 

In (Bennacer et al, 2015), the authors proposed another inference mechanism to improve further the scalability 

of BN. This mechanism is based on partitioning the BN graph into clusters. This approach duplicates some verti-

ces of the BN in other clusters when those impact several segments in the network. The approach is a recursive 

inference mechanism. This inference procedure works as it follows:  

 It first applies the aforementioned inference based on BN and CBR in the cluster where the fault is identified 
to identify the most probable root cause 

 If that root cause is a duplicated vertex leading to other cluster, the inference is then launched in that new 
cluster taking that duplicated vertex as evidence 

 Once the inference is done over all the clusters, a comparison among the root causes per cluster is made to 
establish the root cause 
 

Key learnings and limitations: The authors tackle several problems in BN, the scalability, the inference speed, the 

accuracy, and the automation in the generation of the BN. However, it is not clear how the dependency graph 

can be updated and regenerated in such a high network as expected in SDN and NFV. As additional limitation, the 

authors only diagnosed at a physical level, leaving out application and logical resources in thee VPN connections. 

The granularity of the diagnosis remains at the network node level, only considering links and routers, where 

smaller sub-components are not considered.  Furthermore, the diagnosis is focused on the physical network 

nodes and is not considering the logical resources (e.g. virtual resources) running over them.  
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However, the authors chose independence tests as self-modelling approach, where the value of the significance 

level, which determines if variables are dependent or not, may lead to errors when building the dependency 

graph. Indeed, the authors chose a value of 0.05, which has a higher degree of tolerated risk than like 0.01, for 

instance, but it requires less time to compute the dependencies. There is a trade-off between the degree of 

tolerated risk and the time taken to compute the dependency graph. Other limitation is that the dependency 

graph built from the VPN always has the same dependencies as it was composed in a modular manner, so those 

dependencies could be established by means of templates to be assembled according to the network topology. 

Bennacer et al. focus not propose any specific approach to deal with uncertainty in any of their works, because in 

part this issue was solved by reducing the root causes with the information stored in previous problems and 

cases, and by reducing the subset explored in the BN with their proposed clustering and message parsing infer-

ence algorithms.  

3.7.6.4 Enterprise networks 

Kandula et. al. in (Kandula & Mahajan, 2010) present NetMedic, a self-diagnosis approach for diagnosing enter-

prise networks based on computing networks by exploiting the information retrieved from the operative systems 

and applications stored in logs. Firstly, the authors examine carefully the trouble tickets from an enterprise net-

work and identify their symptoms and associated root causes by analysing the logs of the system. The authors 

then classify the top ten most recurrent faults in enterprise networks in three main categories: how the fault 

manifests, if the fault impacts an individual application of an entire machine, and what is the identified cause of 

the fault (root cause). Once the authors have identified the needs of the diagnosis system, they focus on a web 

server example to identify those variables worth modelling. For instance, the authors identify generic variables 

for the web servers and application variables, both of them shown in Table 8. 

Table 8. Variables considered in a Web server 

Generic variables Application variables 

% processor time current files cached 

% user time connections attempts/sec 

input-output data bytes/sec files sent/sec 

thread count get requests/sec 

page faults/sec put requests/sec 

page file bytes head requests/sec 

working set not found errors/sec 

 

The authors generate in an automatic manner the dependency graph by using a modular approach that connects 

a set of templates. They define specific templates for each network element in the IT infrastructure such as a 

machine, an application process, a neighbour set and a path, which are shown in Figure 60. Each template is 

characterized by several state variables to achieve a detailed diagnosis. For instance, for a web server it includes 

the aforementioned application and generic variables. 

The authors also define weights for the edges in the dependency graph (low, medium, and high) to take into 

account the dynamic dependencies that depend on how the network resources interact. For instance, a weighted 

dependency graph includes additional information in the edges that may influence on the propagation of faults 

despite the CPT are the same. However, adding weights to the dependency graph implies a higher computational 

cost for the inference because the CPT are bigger in size. 
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Figure 60. Proposed templates: (a) Machine, (b) Application, (c) NbrSet, and (d) Path 

Their self-diagnosis framework can diagnose faults in the machines, but it can also pinpoint those applications as 

the origin of the malfunction if needed. The authors deal with the trade-off of keeping a minimum level of speci-

ficity to diagnose until applications running on machines but without being aware of application specific 

knowledge. This is because the needed variables to be modelled by a self-diagnosis system would not be reason-

able to perform fast diagnosis. 

Key learnings and limitations: The identified variables by the authors for the servers can be easily applied to 

NFV, where the VNFs are embedded in commodity servers. For instance, the application variables will be differ-

ent in accordance with the specific VNF, while the generic variables will refer to the hosting machine, but taking 

also into account the VM and hypervisor architecture. 

The advantage of adding weights to the dependency graph is a promising idea for programmable networks 

where there will be even more dynamic dependencies that may depend on the interaction among components 

that static dependencies with binary values will not model with enough accuracy. For instance, the network 

topology is dynamic in programmable networks, but the interactions between the components are much more 

dynamic so a weighted dependency graph could be useful to model the strength of those dynamic interactions. 

In those cases, the update of the dependency graph would consist of updating only the weights (as a null or a 

near to zero value implies the removal of the edge). 

The idea to model each network component per separate by using a template allows creating a more complex 

dependency graph by using a divide-and-conquer approach. We propose in the chapter 4 a self-modeling ap-

proach that builds the diagnosis model from a set of finer-grained templates, inspired by this approach based on 

templates. Nevertheless, our templates are extendable and describe the inner dependencies of a given network 

resource with respect to its inner components, which it has not been done yet in SDN and NFV. 

3.7.6.5 IT networks 

Bahl et. al. in (Bahl & Chandra, 2007)  propose Sherlock, a self-diagnosis algorithm for IT infrastructures based on 

a self-modeling approach that computes the service dependencies in a given network topology when clients 

access to some database in the IT infrastructure.   

The authors consider a multi-layered model covering both hardware and software root causes in an IT infrastruc-

ture. The Sherlock solution is shown in Figure 61, where it can be seen that it identifies and models the service 

dependencies in a service-level dependency graph, and then it adds information on the network topology on that 

service-level dependency graph by using the traceroute results. The network topology information is translated 

into a set of vertices where the root causes vertices are the routers and links for each path traversed by each 

user. 
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Figure 61. Sherlock architecture 

The dependencies between the services and underlying hosts are reported by the agents, which are deployed in 

the hosts or near the routers, and monitor the packets sent by the users when they access to a given file in a 

database. The authors consider as root-cause only physical network elements such as routers, client hosts, and 

webservers that may lead to end-user failures. 

Key learnings and limitations: The authors proposed a self-modeling block that automatically builds the model 

by first discovering the services’ dependencies and then adding the network topology dependencies in a multi-

level dependency graph. The Sherlock architecture, that first generates a service-level dependency graph and 

adds the dependencies of the underlying network topology, is identified as a suitable architecture to build a 

topology-aware and a service-aware multi-layered dependency graph for networking services over SDN and NFV. 

Nevertheless, our proposed multi-level dependency graph is going up to the subcomponent level and including 

also logical and virtual layers on that model.  

An interesting characteristic of this work is that this multi-layered dependency graph takes into account unmod-

elled root causes by adding two types of root –cause vertices (always troubled and always down) that model 

external factors that may lead the user to perceive a degradation. 

However, this approach does not consider the software running on the hosts. In SDN and NFV, software running 

on hosts such as OpenFlow applications on the switches and SDN controllers, or the VNFIs must be modelled, but 

also their dependencies with the underlying physical network topology. In addition, the authors not consider 

finer granularity on the root cause, as the granularity considered remains at node level e.g. a computer, a DNS 

server, a service, any server, a router or an IP link. Other sub-components inside nodes such as interfaces or CPU 

are not included in the diagnosis. In addition, this approach does not consider that a single host may embed a 

virtual machine which in turn embeds several virtualized servers, which in programmable networks is already a 

fact, where a host embeds one hypervisor as the base of one or several VM embedding one or several VNFs. 

3.7.6.6 IP Multimedia Subsystem Networks (IMS) 

Hounkonnou et al. in (Hounkonnou, 2013) propose a self-diagnosis approach to diagnose the IP Multimedia 

Subsystem (IMS). The authors deal with two main limitations of model-based self-diagnosis: firstly the generation 

of the dependency graph and secondly the inference over large dependency graphs. The self-diagnosis approach 

is based on five main steps, defined hereafter: 

 Generation of the generic model (generic BN) describing the resources used by the failing resource 

 Locate BN instances of the generic model in the IMS network 

 Perform inference in the current BN instance 

 If uncertainty is high explore and add other patterns to the current BN 

 Repeat extension of the current BN until root cause is diagnosed with enough confidence 
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Figure 62. Simplified IP configuration sequence diagram in IMS 

We explain the different steps by considering a malfunction in the IP configuration service in IMS affecting a 

given user. The self-diagnosis approach is to determine which network resource at any of the four IMS layers is 

responsible for that failure. 

Generation of the generic model: First, it generates offline a generic model that is based on the IMS standard 

sequence traces.  

In this concrete case, the authors analyse the traces from the IMS standard of the IP configuration service. This 

service assigns an IP address to a given UE (User Equipment) by means of DHCP (Dynamic Host Configuration 

Protocol). Figure 62 shows a simplified diagram of this process, which generally consists of two stages, involving 

the following entities, the UE, the ARF (Access Relay Function), the NACF (Network Access Configuration Func-

tion), and the CLF (Connectivity Location Function).  

From these IMS traces, the authors proposed a generic model, which is formalized as a BN (or probabilistic de-

pendency graph) and depicts the dependencies among the different types of resources across the four IMS layers 

(physical, functional, procedural and service) involved. This generic model is shown in Figure 63, where it can be 

seen that it does not contain the users, or the instances of the network resources actually involved in the IP 

configuration service. The generic model depicts how fault may propagate in the IP configuration service when a 

UE asks for an IP address. Briefly described, if any of the IMS functional blocks or underlying physical resources 

involved in the IP configuration service fails, the UE will not get any IP. 

The generic model contains as vertices the network segments (the first mile, the aggregation and the metro 

core), the physical nodes, the functional interfaces (UE-ARF, ARF-NACF, UE-NACF, and NACF-CLF), the procedural 

blocks or stages, and the failing service, which is rather an input vertex.  
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Figure 63. Generic model proposed for the IP configuration service 

Locate BN instances of the generic model in the IMS network: The following phase of the self-diagnosis is to 

identify the users deployed in the network using the affected IP configuration service in IMS. Then, the authors 

observe the state of the IP configuration service and detect that a given user UserX cannot get the IP. The user 

instance is retrieved and the BN instance is built from the generic model for the user UserX, as shown in Figure 

64. This BN instance is represented by a probabilistic dependency graph comprising the actual dependencies of 

the current user UserX. This BN instance depicts the actual equipment making possible the connection of the 

user to the IMS network and performing the IP configuration service.   

Perform inference in the current BN instance: Then, the inference is made over the current BN instance, which is 

composed of one user. This BN instance is fed with a set of observations such as the state of the IP configuration 

service, which is down (vertices have two states, up and down), and other observations retrieved from the user’s 

equipment, for instance, the state of the CPE (up) or the DSLAM (up). 

 

Figure 64. BN instance extracted from the generic model for a user User X 

The inference engine is based on BN and starts propagating the observations based on the CPT through the 

probabilistic dependency graph giving a set of a posteriori probabilities for each network resource at each IMS 

layer. The authors calculate the entropy of the a posterior distribution to quantify how uncertain the root cause 

is. However, this root cause may be uncertain because several network resources can be responsible for the 

failure. 
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Figure 65. Extension of the BN with two BN instances from users User X and User Y 

Extension the current BN with more patterns: If the root cause previously calculated over the current BN is not 

pinpointed with enough confidence, the authors propose to extend the BN with more users that are sharing 

resources with the previous user UserX.  

This is a novel approach to analyse large networks and reduce the uncertainty based on an intelligent exploration 

of the user instances connected. The authors proposed to progressively extend the BN by adding those instances 

of the users sharing resources with the impacted user (User X) and performing the diagnosis over the resulting 

BN, shown in Figure 65. For instance, the addition of UserY instance to the current BN will imply that the re-

sources shared between both users Userx and UserY are discarded if and only if the UserY is not impacted by the 

failure on the IP configuration service. This process is iterative, until the root cause is calculated with enough 

confidence, which is measured in terms of uncertainty. 

Key learnings and limitations: Although the authors consider a multi-layered generic model containing the physi-

cal network elements, the functional elements, and the procedural elements, the granularity of those elements is 

limited the internal components inside those blocks are not modelled, as a result, the diagnosis granularity re-

mains at the IMS node level. Alternatively, the generic model is only extracted from the IP configuration service, 

but the authors did not work on other interesting cases such as the plenty of procedures in IMS such as the IMS 

registration or IMS call origination.  

In addition, the dependencies between the physical infrastructure and the functional blocks shown in the generic 

model are statically fixed. However, those dependencies may change and this was not taken into account by the 

authors on their work. In programmable networks, we cannot assume that a given physical node is going always 

to embed the same VNFI, otherwise this would constraint to a great extent the flexibility of programmable net-

works what goes against NFV principles. 

The authors assume that the network topology remains static during the diagnosis process, so the dependency 

graph is static. However, this is not true in programmable networks, indeed, we will provide with the capability to 

regenerate and update the dependency graph even once the diagnosis is already exploiting the dependency 

graph. 

Indeed, in the generic model, the aggregation, metro core and first mile are vertices do not contain finer-

granularity such as the actual network segments composing them (until a physical link level). In addition, the 

DSLAM, the BRAS, and the CPE are static in this work. 

However, although the methodology proposed for reducing the uncertainty on the root cause on the malfunc-

tioning service by exploring the clients connected to that service is significantly novel, it seems is not automatic. 

Indeed, the BN is extended with a few user instances, but it has not been devised how a given user instance is 

added in an automatic manner to an existing BN and how it can be removed from the BN. The author of this 

thesis worked on how to extend automatically a given BN with a set of users’ instances, where each user instance 

is described by a set of identifiers of the equipment and the instances of the network used. 
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3.7.7 Topology-Aware and Service-Aware self-diagnosis 

We propose to classify the aforementioned self-diagnosis approaches into topology-aware and service-aware, 

which are defined here. On one hand, topology-aware self-diagnosis approaches build the dependency graph 

from the network topology and this graph only considers how faults in network resources could impact other 

network resources. The impact of faults in network resources on services or clients is not then considered. On 

the other hand, service-aware self-diagnosis approaches are an extension of topology-aware self-diagnosis ap-

proaches in order to take into account the impact of faulty network resources on services as well as the clients 

using them. The diagnosis can then focus on faults leading to service failures and affecting client experience.  

We make this distinction because a self-diagnosis approach needs additional information apart from the ob-

served malfunction to pinpoint the root cause more accurately. A self-diagnosis mechanism receives some infor-

mation on the context of the fault such as the network segment where the fault occurs or how many services are 

simultaneously impacted by that fault. This additional information will help to delimit the possible root causes by 

discarding some network elements because those do not add valuable information. 

To exemplify why the service-aware self-diagnosis is more accurate than the topology-aware self-diagnosis and 

how the service-aware self-diagnosis can discard network elements with this additional information, we show 

the following example, a faulty link in a network composed of 10 nodes and 20 links. Three types of network 

components are considered: the CPU of the nodes, the interfaces of the nodes and all the links in the network 

topology. If we consider a topology-aware self-diagnosis mechanism, it includes in the diagnosis all the network 

components and their respective observations, but it does not include any additional information. This means 

that, there are ki + 1 possible root causes per node (the interfaces of each node and its CPU), and 20 additional 

root causes for links. This yields 66 possible root causes that explain the faulty link. This example is seen in Figure 

66(a). 

 

Figure 66. Differences between both types of self-diagnosis: (a) topology-aware, (b) service-aware  

Nevertheless, if the self-diagnosis mechanism is service-aware it then considers additional information such as 

the state of virtual links deployed over that network topology, so the aforementioned root causes will be drasti-

cally reduced and thus the uncertainty because it only includes in the diagnosis those network components used 

by the virtual link which is affected by that faulty link. In this concrete example, the possible root causes will be 

reduced from 66 to 28, which is a 57.5 % of fewer possible root causes. This example is seen in Figure 66(b). 

However, the service-aware self-diagnosis mechanism needs to retrieve the dependencies of each virtual link 

from the network topology, which is even more challenging in virtualized environments such as programmable 

networks, where those are highly dynamic, as we will present in next chapter. 

In conclusion, service-aware correlates additional information to reduce the possible root causes in the network 

and this approach is necessary for multilayered networks in general, but especially in programmable networks, 

where information coming from physical, logical, virtual and services layers is correlated to delimit the fault. 

3.7.7.1 Topology-Aware self-diagnosis approaches 

A first example of topology-aware self-diagnosis mechanism is the proposed by Steinder and Sethi in (Steinder & 

Sethi, 2002) for end-to-end services over bridged networks. The authors consider as symptoms the loss of con-
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nectivity, excessive delay or excessive packet loss, respectively due to broken links, buffer overflows, or transmis-

sion link noise, but the authors do not model how those faults, failures and degradations could affect the users 

over that bridged network.  

A second example is the self-diagnosis mechanism proposed in (Bennacer et al, 2012), (Bennacer et al, 2013), and 

(Bennacer et al, 2015) for VPN. The diagnosis mechanism took into account the metrics of the different nodes 

such as buffer, delay, processing, or router status, among others. However, this mechanism did not consider the 

impact of those metrics on the VPN service in itself or the clients using that service.  

A third example of topology-aware self-diagnosis mechanism is the proposed by (Tembo et al, 2015) for GPON-

FTTH infrastructures, where the diagnosis mechanism took into account attenuations on the fibers, faulty OLTs 

and ONT, misbehaviors on their configuration, but the authors did not take into consideration how those faults 

and failures impact the end-users provided with services over the FTTH infrastructure. 

3.7.7.2 Service-Aware self-diagnosis approaches 

A first example of service-aware self-diagnosis mechanism is the proposed in (Bahl & Chandra, 2007) for IT infra-

structures. This mechanism only focuses on faults impacting the clients of the IT infrastructure by taking into 

account the service response times measured by a set of agents deployed in the IT infrastructure. Indeed, Sher-

lock is conceived to not report those faults that do not impact the users e.g. if a server has a high CPU usage, 

Sherlock does not even detect it as long as the users requests are not affected. Service availability is classified in 

three possible states: up when its response time is normal, down when there is no response or there is an error, 

or troubled when the response falls outside of normalcy. 

A second example of service-aware self-diagnosis mechanism is the one proposed by in (Hounkonnou, 2013) for 

IMS networks. Indeed, this mechanism is service-aware because it only diagnoses the user affected in a given IMS 

service by building the corresponding BN of that user and incorporating its observations. If this mechanism ana-

lyzes other users is with the only aim to reduce the uncertainty in the root cause for the affected user. Indeed, 

the strategy to reduce the uncertainty by progressively extending the current BN instance allows adapting the 

diagnosis in accordance to the observations found in the user of the IMS network.   

A third example is the self-diagnosis mechanism proposed by Kandula et al. in (Kandula & Mahajan, 2010), where 

the self-diagnosis mechanism is to solve those experienced issues of the users of the IT infrastructure. Indeed, 

the users open the experienced incidences and upload them in a trouble ticket system which are analyzed by the 

authors to conceive that framework.  

A fourth and last example is the work from (Georghe et al, 2015). The authors propose SDN-RADAR, a multi-

agent distributed network troubleshooting mechanism for SDN that identifies faulty network links in the data 

plane impacting user experience. This approach is service-aware because it focuses the diagnosis only on those 

malfunctions that impact user experience in terms of degradations. This approach is to be further explained in 

the chapter on fault management on SDN, in chapter 3. However, this approach only focuses on links in the data 

plane and does not deal with large and dynamic network topologies. 

3.8 Conclusion 

We propose a multi-layer self-diagnosis framework to diagnose networking services over combined NFV and SDN 

environments, which to the best of our knowledge has not been tackled before. This framework is composed of a 

topology-aware and a service-aware self-modeling approach, by diagnosing and correlating physical, logical, 

virtual and services layers, while considering the dynamic dependencies of the networking services with the 

underlying virtual, logical and physical resources. As conclusion, we describe here the most important contribu-

tions of our proposed self-diagnosis framework with respect to the aforementioned works. 

Multi-layer self-diagnosis framework: Our approach utilizes a multi-layered probabilistic dependency graph, like 

(Bahl & Chandra, 2007) and (Hounkonnou, 2013). In our approach, this dependency graph is adapted to SDN and 

NFV specificities, and it covers the diagnosis of physical, logical, virtual resources and the corresponding network-

ing services. Contrarily to (Georghe et al, 2015), which only diagnoses faults in the data plane links, our multi-
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layer approach diagnoses data plane and control plane, by diagnosing control links, the SDN controller and its 

internal physical and logical inner components, but also the internal physical and logical components (ports, CPU, 

applications, VNFs, etc.) inside hosts and switches. 

Finer diagnosis granularity: Contrarily to the approaches from Steinder in, (Bennacer et al, 2012), (Bennacer et 

al, 2013), and (Bennacer et al, 2015), (Bahl & Chandra, 2007) and (Hounkonnou, 2013), which diagnose up to 

node level, we propose a self-modeling approach that builds the diagnosis model from a set of finer-grained 

templates, inspired by the diagnosis approach of Kandula et. al. in (Kandula & Mahajan, 2010)  for enterprise 

networks, based on templates. Nevertheless, our templates are extendable and describe the inner dependencies 

of a given network resource with respect to its inner components, which it has not been done yet in SDN and 

NFV. 

Reduced diagnosis uncertainty: In this thesis we will propose a two-level self-diagnosis approach for diagnosing 

SDN and NFV combined infrastructures. We first propose a self-diagnosis approach at a topology level (topology-

aware self-diagnosis) that generates on-the-fly the probabilistic dependency graph from the network topology, 

the type of control, and the logical resources running on top of nodes. However, this self-diagnosis approach 

does not take into account the impact of faulty physical and logical nodes on services. As a result, the diagnosis is 

focused on the entire network topology and logical resources so the uncertainty on the root cause is high when 

the diagnosed network topology becomes large.  

To solve this issue, we propose to extend the self-diagnosis approach to be service-aware approach, by taking 

into account the impact of the physical and logical resources on the service layer. This second approach corre-

lates the service view with its underlying network states at virtual, logical, and physical layers, in order to reduce 

the uncertainty in the root cause. This approach allows us to extend and reduce the multi-layer probabilistic 

dependency graph in accordance with the diagnosed malfunction to reduce the uncertainty, following a similar 

strategy to the one proposed by Hounkonnou in (Hounkonnou, 2013). 

On-the-fly self-modeling: Contrarily to the approaches from (Bennacer et al, 2012), (Bennacer et al, 2013), and 

(Bennacer et al, 2015), (Bahl & Chandra, 2007), (Hounkonnou, 2013), (Georghe et al, 2015), and (Tembo et al, 

2015) that diagnose static network topologies, we propose a self-modeling approach to diagnose dynamic net-

work topologies and dynamic deployed services based on virtualized network functions. Our self-diagnosis 

framework is based on a self-modelling approach that discovers the dependencies in a deterministic manner and 

regenerates the model on-the-fly with changes, unlike the self-modeling approaches proposed by Bennacer and 

Bahl, which may have false positives as a result of an inappropriate ‘significance level’ parameter when calculat-

ing the dependencies. 
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Chapter 4 Self-Diagnosis archi-

tecture for programmable net-

works 
 

 

4.1 Introduction 

This chapter presents in details the PhD approach. The first section discusses where to possibly locate  a self-

healing system inside a SDN architecture. It also motivates the best position to be considered of it. The second 

section presents the systemic view of a Self-Healing system to ensure the availability of end-to-end services.  

The third section of this chapter is to detail a self-diagnosis framework that is relying on multi-layered and finer 

granular templates for diagnosing the dynamic networking services within an SDN and NFV environment.  

The Self-diagnosis framework encompasses:  

1) Multi-layered templates definition: these are to identify what to supervise while taking into account the physi-

cal, logical, virtual and service layers. These templates are finer granular, extendable and machine-readable.  

2) Self-modeling module:  It takes as input the previously cited templates, instantiates them and generates on-

the-fly the diagnosis model that includes the physical, logical, and the virtual dependencies of networking ser-

vices. 

3) A service-aware root-cause analysis module: It takes into account the networking services’ views and their 

underlying network resources observations within the aforementioned layers. 

4.2 Proposal of a Self-Healing architecture for SDN 

In this section, we propose a self-healing architecture for SDN infrastructures. We first evaluate the possible 

locations of a self-healing system and evaluate the drawbacks and advantages of each position. 

4.2.1 Position of a self-healing system in the SDN infrastructure 

In the following section, we discuss the possible locations of the self-healing system in the SDN infrastructure. 

We have taken into account the following requirements: 

 The information taken as input by the Self-Healing system 

 The visibility of a self-healing system of the network topology 

 The entities interacting with the Self-Healing system and their interfaces 

 The frequency of the interactions with the Self-Healing system 

 The time scale of the recovery actions sent by the Self-Healing 
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 The time scale of the monitored information analyzed by the Self-Healing  
 

In this regard, we identify and discuss four different alternatives for its placement in accordance with the four 

planes identified in a SDN infrastructure:  a) the application plane, b) the data plane, c) the control plane, and d) 

the management plane. 

 

Figure 67. Locations of the self-healing architecture: (a) application, (b) data, (c) control, and (d) management plane 

4.2.1.1 In the application plane 

In this case, the self-healing system is located in the application plane of SDN. It acts as a SDN application running 
above the SDN controller, as shown in Figure 67(a).   
 
The self-healing system uses the northbound interface to communicate with the SDN controller (2). Thanks to 

this interface, the self-healing system can obtain a global view of the network provided by the SDN controller. 

However, the network topology information is only available if the SDN controller is healthy. The recovery ac-

tions and root cause suggestions are directly sent to the SDN controller, which will install flows to avoid the fail-

ing elements. However, those types of faults non avoidable by changing the flows, will not be solved. 

The self-healing system can also act on the SDN applications via the northbound interface (1) or other type of 

interface defined by the SDN applications. Thanks to this interfaces the self-healing system can send them orders 

to reprogram the data plane via the SDN controller. One example is when the self-healing system detects a mas-

sive registration of switches in the network topology. Then, the self-healing system can send an order to the 

Firewall SDN application to block their access to the network by installing on those registered switches blocking 

flows. However, for a large number of SDN applications, there can be scalability issues.  

4.2.1.2 In the data plane 

The self-healing system is located in the data plane as a module embedded inside each switch of the network, as 
shown in Figure 67(b).  
 
The self-healing system is connected to the SDN controller via the southbound interface (3), where the ad-

vantages of such a self-healing system is the capability to act fast on the root cause without involving the SDN 

controller and avoiding unnecessary overhead. However, the distribution of the self-healing module may intro-

duce scalability concerns where several self-healing modules try to contact the SDN controller simultaneously.  

In addition, a central self-healing manager should interface with those distributed agents to relax this condition. 

The self-healing system perceives local faults and failures on that switch and in the neighborhood, but it does not 

have a network-wide vision. The self-healing system can only apply local recovery actions. 

4.2.1.3 In the control plane 

 
The self-healing system is located in the control plane, as shown in Figure 67(c).  
 
The self-healing system can interact with the SDN controller through its northbound interface API (5). It can also 
interact with it through the westbound or eastbound API interface, if those are defined. Thanks to this interface, 
the SDN controller is aware of the network topology. 
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The self-healing system can also interact with the SDN applications via the northbound interface (4) or other type 

of interface defined by that SDN application. This is necessary when the encountered malfunction must be solved 

by changing the configuration set by the SDN application.  

4.2.1.4 In the management plane 

 
In the management plane, the self-healing system takes a transversal role, as shown in Figure 67(d). This position 

is very similar to the application plane, but in this case, the self-healing system can interact with the three planes 

of the SDN infrastructure. The main advantage is the transversality, where the self-healing module will then 

receive different measurements of the different planes and it will integrate them.  The recovery actions will be 

different for each type of equipment and the considered plane, which will depend on the root cause.  The self-

healing system interacts with the SDN controller through the northbound API (7) to take profit of its centraliza-

tion and it network-wide view of the network topology.  

Alternatively, the self-healing system can also dialogue with the SDN applications (6) to send orders that repro-
gram the data plane via the SDN controller, but also, the self-healing system can directly act on the data plane via 
the southbound protocol (8) for more urgent actions and avoid unnecessary intermediation with the applications 
or the SDN controller. 
 
In this last architecture, several actions are possible:  

 The capability to interact with the SDN controller via the northbound interface and extract the network 
topology independently from the southbound protocol.  
 

 The capability to send network-wide recovery actions to the SDN or the SDN applications (e.g. modification 
of a network path) 
 

 The capability to interact with the SDN applications to reprogram the data plane via high-level policies  sent 
through the northbound interface 

 

 The capability to directly interact with the elements inside the data plane to set local recovery actions in a 
local manner which do not involve the SDN controller (e.g. change the master controller in a given switch) 
 

As conclusion, the location of the self-healing system, the option (d) was chosen, due to the possibility to interact 

with the data plane, application, and control planes because of its transversal nature. 

4.2.2 Self-Healing architecture for SDN infrastructures 

This section proposes a self-Healing architeture to ensure the availability of end-to-end services over SDN infra-

structures, shown in Figure 68.  As presented in the previous section, this framework is located in the transversal 

management plane of the SDN infrastructure to leverage the logical centralization of the intelligence inside the 

SDN controller, which has a global view of the network topology. This centralization has the advantage that the 

self-healing system can take into account the whole network topology state and proceed with more global re-

covery actions based on this wide view. 

The self-healing system acts in the three planes of SDN and in the service plane located on the top of the SDN 

infrastructure, by taking observations from the network and launching or suggesting recovery actions. It interacts 

with the SDN architecture by:  

Manageming the SDN applications: The self-healing system manages the SDN applications to face malfunctions 

and changing conditions on the underlying nodes where they are deployed. One example is a threshold alarm on 

the CPU of a VM hosting the Firewall SDN application, where the self-healing system should redeploy that SDN 

application on another location.  

Programming the data plane: The self-healing system acts on the data plane to set specific configurations on 

legacy equipment or executes a manual installation that the SDN controller cannot perform by itself. 
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Programming the data plane through the SDN controller: The self-healing system programs the data plane by 

means of the SDN controller. In this case, it uses its provded northbound interface to program the data plane in a 

hardware-abstracted manner (e.g. a SDN application that establishes a given path between two hosts). 

 

Figure 68. Multi-control loop Self-Healing architecture for SDN 

This architecture can be applied to centralized SDN infrastructures, or distributed SDN infrastructures, where 

several controllers take the control of the different domains. Those SDN controllers are communicating through 

well define west/eastbound interfaces. 

This Self-Healing architecture is composed of a multi-control loop, composed of a control-loop per plane, as 

shown in Figure 68. , where it can be seen a control-loop per plane with its corresponding sensors and effectors 

and respective monitoring and recovery blocks. These detectors and recovery blocks must be specific to the 

plane of the SDN infrastructure. This is due to the type of information retrieved that is specific to the northbound 

API provided by each type of SDN controller, for instance. The recovery block is also specific to the context or 

equipment on which the actions are applied. 

Each control-loop retrieves symptoms from each plane and correlates them with the symptoms coming from the 

rest of planes.  As the context of this thesis is SDN and NFV combined infrastructures, where the SDN infrastruc-

ture ensures the connectivity among the VNFs, this Self-Healing framework can be used to manage the NFV 

architecture and its related vulnerabilities. 

4.2.2.1 Detection actions per plane 

This section describes several examples of detection actions per plane, proposed in   
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Table 9. For instance, in the presence of a network service composed of a set of VNFs, which virtual links are set 

by a given SDN application that programs the SDN controller, the self-healing system retrieves symptoms from 

the application plane, the control plane, the data plane and correlates them.  

In the presence of a failing element in the underlying physical path of the virtual link connecting two VNFs, the 

self-healing system can access to the SDN application that set that virtual link. Indeed, it can correlate the state 

of that virtual link with the state of the physical network elements involved in that virtual link chosen by the SDN 

controller, which are retrieved from the data and the control planes to pinpoint as responsible that physical link.  

Once the diagnosis task clarifies which physical network element is the failing element, the self-healing system 

sends a as recovery action a forwarding instruction to the SDN application that sets that virtual link to modify the 

flows to avoid that failing element or root cause. 
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Table 9. Detection actions at each plane  

Plane Task 

Service 

Lists the running services 
Monitors the status of each network service 
Lists the users using the service 
Lists the Forwarding Graph of SDN applications for each service 

Application 
Monitors the state of applications 
Monitors the allocated path of each application 

Control 
Monitors the SDN controller(s) 
Monitors the control links 
Lists the managed switches by each controller across different domains 

Data 

Monitors the status of switches 
Monitors the data links 
Lists the flows in each switch and their operation mode (standalone or secure) 
Monitors the status of clients 
Monitors the status of servers and hosts 

4.2.2.2 Recovery actions per plane 

We envisage two types of recovery actions for our Self-Healing framework in NFV-SDN based networks: 1) recov-

ery actions that recover the SDN architecture and 2) actions that cooperate with the NFV infrastructure to avoid 

any service interruption by upgrading, scaling up/down, scaling out/in or migrating the VNFs composing the 

network services. Table 10 depicts examples of both types of recovery actions on SDN and NFV combined infra-

structures.  

Specifically, a Self-Healing system can be the intermediate entity between the NFV orchestrator and the VNF 

Manager to propose dynamic migrations, instantiations or deletions of VNFIs in response to failures on the SDN 

network.  

Table 10. Recovery actions at each plane  

Plane Root cause Recovery action 

Service End-to-end service misconfiguration 1) Reconfigure end-to-end service 
2) Reconfigure involved SDN applications  

Crash of end-to-end service  1) Reinitiate involved SDN applications  
2) Restart end-to-end service 

Application Crash of SDN application 1) Restart application 
2)Migration to other VM 

Too many requests to SDN application 1) Instantiate other VM to carry out this application 
2) Augment memory and CPU of VM 

Misconfiguration of SDN application  Configure SDN application 

Control Control link failure (in-band control) 1) Set standalone mode on affected switches   
2) Reconfigure switches to avoid the affected switch 

Control link failure (out-of-band control) Set standalone mode on affected switches  

Controller failure Balancing to a secondary controller 

Data Bridge misconfigured Bridge reconfiguration 

High interference level Reduction of uplink power on Access Point 

Misconfiguration on client application Application reconfiguration 

Switch ignores how to reach client Installation of flow on switch 

As example, in an end-to-end service composed of four chained VNFs whose locations may change dynamically 

across the network, we define the service topology as the subset of the network topology that contains the VNFs 

used by that service. In the presence of malfunctions that affect the VNFs, they are migrated to other physical 

locations to avoid the service interruption, what changes the service topology. The SDN controller dynamically 

reallocates the path to chain the four VNFs. 
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4.2.2.3 Diagnosis actions per plane 

In Figure 68, the diagnosis block is transversal to all the control loops. This is because the diagnosis block is based 

on a model-based approach, as it was explained in chapter 2. This diagnosis approach is based on a multi-layer 

dependency graph, automatically generated from the resources detected at each of the planes of the SDN infra-

structure. It retrieves the physical resources involved in the data plane and control planes, the logical resources 

running on those physical resources such as applications and VNFIs, and the virtual resources such as VNFs and 

their interconnecting virtual links. 

4.3 Overall Self-Diagnosis architecture  

We describe the self-diagnosis architecture that is based on three modules: a detection module, a self-modeling 

module, and a RCA module. Self-modeling and RCA modules include a methodology and associated algorithms as 

well as extensive validation. The detection module is a set of scripts to feed the other modules as the observabil-

ity techniques are out of the scope of this paper. In Figure 69 we sketch how those modules are related. 

 

Figure 69. Multi-layer Self-diagnosis architecture 

This multi-layer diagnosis system is part of the management and orchestration plane of NFV as it needs to be 

aware of all the resources coming from these different layers.  

Detection module: The detection module builds a view on the networking services and their underlying re-

sources at instant t. It receives the following data: the network topology, including the type of control led by the 

controller, the logical resources running on networked nodes, the deployed networking services and their respec-

tive VNFs and Virtual links, and the flows sent by the SDN controller to establish the physical path to connect the 

VNFIs.  

The detection module keeps the dependency graph updated, by ordering the self-modeling module to regener-

ate the dependency graph to prevent that the root cause had been calculated based on an outdated model.The 

self-modeling block tracks changes on the network and service to prevent that the root cause had been calculat-

ed based on an outdated model. When the self-modeling module is triggered at tREF, the detector sets as refer-

ence the retrieved topology and services present at tREF and the self-modeling module generates the services 

dependency graph from that reference. From that time on, the detector continuously monitors the topology and 

services to detect changes and, if so, it orders the self-modeling module to regenerate the services dependency 

graph and it stops the RCA in case it had already been triggered. 
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Figure 70. Detection block that updates the network and services dependency graph 

Self-Modeling module: The self-modeling module builds the multi-layered dependency graph. It relies on two 
sub-blocks: 

 Topology-aware self-modeling algorithm: it generates a first dependency graph from the network topology 
(physical nodes and links) and logical applications running on the network nodes, hereafter named network 
dependency graph.This self-modeling algorithm classifies the networked elements into a set of fine-grained 
templates to model their inner dependencies and automatically builds the network dependency graph by 
assembling these templates. 

 Service-aware self-modeling algorithm: it generates a second dependency graph, hereafter named services 

dependency graph, by extending the network dependency graph with the dependencies of the networking 

services. The services dependency graph contains the dependencies between networking services and virtu-

al resources, and the dependencies of virtual resources from logical and physical resources underneath. 

Root Cause Analysis module: The RCA module finds the root cause explaining the service failures by propagating 
the retrieved network observations through the services dependency graph given as input. 

4.4 Self-Modeling module 

4.4.1 Types of resources modelled 

In this section, we formalize the different types of resources in programmable networks as well as their composi-

tions and properties. We base our model in three types of resources: physical, logical, and virtual running undern 

a given networking service. 

4.4.1.1 Physical resources 

The physical resources are those belonging to the infrastructure, nodes and links. There are two types of links, 

control links and data links.  

A link connects two nodes through their interfaces, and the type of node determines to which other nodes it 

connects to.  

A network node is an entity with given capabilities and a given role. We group nodes in three main types: switch-

es, hosts and controllers. Hosts act as source or destination of traffic while switches are intermediate nodes 

transporting that traffic among host nodes. The controllers, as seen in chapter 2, are those nodes to decide how 

the traffic is forwarded. 

contains: This relationship indicates that the node encompasses internal components. For instance, all the nodes 

contain a CPU and a set of interfaces. 
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is_connected_to: This relationship indicates that a given node is connected to a given link. As said before, a link 

connects two nodes through their interfaces, and the type of node determines to which other nodes it connect 

to. This means that a control link is always to connect a switch with a controller, whilst a data link can connect 

two switches, or a switch with a host node. 

4.4.1.2 Logical resources 

The logical resources are applications running on the network nodes. We grouped them in three types: VNFIs, 

SDN application controllers, and OpenFlow client applications. 

contains: This relationship indicates that the logical resource encompasses internal components. For instance, all 

the logical resources contain a process (PID) and a configuration related to that process. 

is_embedded_in: This relationship indicates that the logical resource is embedded in a given physical resource. 

For instance, a VNFI is to be embedded in a given host, an OpenFlow client application is to be embedded in an 

OpenFlow compatible switch, and a SDN controller application is to be embedded inside a controller. 

4.4.1.3 Virtual resources 

The virtual resources run and are composed of logical resources. We distinguish two types, VNFs and virtual links.  

is_connected_to: This relationship indicates that the virtual resource is connected to another virtual resource 

through its CP (connection points). 

is_composed_of: This property is only valid for VNFs and it indicates that the virtual resource is composed of 

logical resources such as VNFIs). 

4.4.1.4 Inter-layer relationships 

There are a number of relationships among the different types of network resources that are inherently multi-

layer. Those relationships need to be defined in order to enrich the model with inter-layer propagation. 

is_supported_by: This property indicates that a given resource relies on another type of resource located in a 

lower layer. For instance, a virtual resource such a VNF relies on a process (VNFI) that in turn relies on a host 

where it is embedded. 

is_composed_of: This property indicates that a given resource is composed of other resources ubicated at lower 

layers. For instance, a VNF is composed of VNFIs in the sense that the VNFI is the core process of that VNF. An-

other example is a virtual link, where it is composed of a set of physical resources (links and nodes). 

4.4.1.5 Class hierarchy of network resources 

Based on these types of network resources, their relationships and charactersitics defined in previous version we 

can conceive a hierarchy class grouping all these types of network resources with their relationships among 

them. This descomposition is similar in shape to the decomposition of network resources done by Hounkonnou 

for IMS networks in (Hounkonnou,2013). Nevertheless, this decomposition is to formalize all these resources for 

programmable networks, and beyond that, it reaches a subcomponent granularity, which, as it will be shown 

later, will be paramount for an accurate diagnosis. 
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Figure 71. Hierarchy class of network resources in programmable networks 

4.4.2 Problem formalization 

The objective of this thesis is to diagnose networking service in SDN and NFV combined infrastructures. The aim 

is to define a self-modeling methodology as support for diagnosis capable of generating the dependency graph of 

a given networking service, encompassing its dependencies among the aforementioned network resources. 

A networking service is composed by a set of VNFs interconnected by a set of virtual links. We formalize the 

networking services to  be modelled  as it follows: 

 There are N networking services deployed over the network infrastructure. Each networking servicei ∀ 𝑖 =

[1, 𝑁] is composed of Mi virtual links connecting Ni VNFs.  

 The network infrastructure is composed of a set of 𝑃 links and 𝑄 nodes.  

 The nodes are a set of switches 𝑆 = {𝑆1, … , 𝑆𝑋} , a set of hosts 𝐻 = {𝐻1, … , 𝐻𝑌}, and a set of controllers 

𝐶 = {𝐶1, … , 𝐶𝑍} in such a way that 𝑋 + 𝑌 + 𝑍 = 𝑄, the total number of nodes in the network topology.  

 The nodes are interconnected by a set of control links 𝐶𝐿 = {𝐶𝐿1, … , 𝐶𝐿𝑟} and a set of data links 𝐷𝐿 =

{𝐷𝐿1, … , 𝐷𝐿𝑞} in such a way that 𝑟 + 𝑞 = 𝑃, the number of links in the network topology. In in-band infra-

structures 𝑟 = 1 , whilst in out-of-band infrastructures 𝑟 = 𝑋. Control links are only connectable switches 

with controllers, and data links are connectable to hosts, switches, or both. 

 Each virtual link 𝑉𝐿𝑚,𝑛
(𝑘)

∀ 𝑘 = [1, 𝑀𝑖] connects two any VNFs, VNFm and VNFn, through their CP (connection 

points) CPm and CPn. 

 VNFIs (VNF instances) are logical resources embedded in hosts and send and receive traffic through their 

hosts’ NICs 

 A physical path 𝜌𝑚,𝑛
(𝑘)

 interconnects two any hosts Hm and Hn. 

 The SDN controller allocates each physical path 𝜌𝑚,𝑛
(𝑘)

∀ 𝑘 = [1, 𝑀𝑖] through its 𝑛𝑓
(𝑘)

  control links by installing 

𝑛𝑓
(𝑘)

 flows on 𝑛𝑓
(𝑘)

 intermediate switches traversing 𝑛𝑙
(𝑘) data links. This can be seen in Figure 72, for 

𝑛𝑓
(𝑘)=4 flows installed on 4 switches and 𝑛𝑙

(𝑘)=5 data links. 
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Figure 72. (a) End-to-end service, (b) Underlying network topology of a virtual link 

In Figure 72 presents the underlying network topology, where the SDN controller installs flows in order to estab-

lish that virtual link interconnecting two VNFs.  

We use the ‘divide-and-conquer’ principle to decompose a given networking service into simpler to model seg-

ments (blue, green, and red). This methodological approach is similar to the layered model proposed by (Steinder 

& Sethi, 2002), but adapted to a SDN and NFV context. The virtual links supporting VNF-to-VNF and PNF-to-VNF 

communications are established by the SDN controller, which sends flows to a set of switches of the network 

topology. Figure 73 shows the segments composing a networking service, external and internal virtual links.  

 

Figure 73. Networking service decomposition in different network segments 

We conceive in this thesis a multi-layer diagnosis methodology based on a multi-layered model that includes the 

supervised resources within the following layers: 1) physical, 2) logical, virtual and 3) networking services. Exam-

ples of the supervised resources are given in Table 11. Figure 74 zooms on the components involved in an exter-

nal virtual link connecting two VNFs (VNFIm and VNFIn), which are embedded in hostm and hostn. Those compo-

nents are located at virtual, logical, and physical layers. 

Table 11. Types of resources considered per layer 

Layer Resources 

physical links, switches, hosts, controllers, ports, NICs, CPU 

logical Flows, controller application, OpenFlow application, VNFIs 

virtual virtual links, VNFs 

service VPN,  NAT, firewall, streaming, etc. 
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These physical, logical, and virtual resources can belong to the control plane (in white) or the data plane (in yel-

low). All the switches of the data plane in this physical path will receive flows from the SDN controller with the 

following format: {"in_port":portx,"out_port":porty,"src":"CPi","dst":"CPj"}. 

 

Figure 74. Zoom on the underlying resources involved in an external virtual link between VNFs 

4.4.3 Description of resources dependencies through templates 

We define a network element as any type of network nodes and links. We propose a template for each network 

element, so a template for network nodes and another for links. These templates describe the relationships in 

terms of dependencies between the components inside each network element. The template of a network node 

is composed of a physical layer and a logical layer, following the TMF Information framework specifications. 

 The physical layer encompasses the state of physical resources such as CPU, network cards, and connection 
ports.  

 The logical layer encompasses logical resources such as VNFs or applications running inside each node.  
 

The templates are predefined, but are extensible and adaptable. Each type of network node discovered in the 

network topology such as controllers, switches, and hosts are characterized by a different set by of dependencies 

and components so they will require a different template and hence a different dependency graph. 

On the templates, those VNFs running on hosts and OpenFlow client applications running on switches are com-

posed of a life-cycle based on three states: instantiated, configured, and active, VNFs have three states: instanti-

ated, configured, and active, following the ETSI NFV GS specification in (ETSI NFV, 2014).  

The finer granularity of these templates allows a detailed diagnosis, down to the sub-component level, which is 

to the best of ou knowledge was not handled in the state of the art and that complements our work in (Sanchez 

et al, 2015). These templates adapt in accordance with the network topology information. 

4.4.3.1 Dependency graph of a Host  

The host’s dependency graph is predefined, but automatically extensible with the information discovered from 

each given host in the topology at instant t.  

The number of VNFIs, ports and NICs of those dependency graphs are extendable with the VNFIs embedded in 

each host and the connections found in the topology. 

At a physical level, the number of NICs (network interface cards) depends on the number of interfaces discovered 

in that host, retrieved from the network topology.  

At a logical level, hosts may run one or several applications (e.g. Video streaming application) or one or several 

VNFIs in an NFV environment. If we focus on VNFIs as software running on them, this VNFI must be instantiated, 

must be configured (the type of VNF and its associated configuration), and must be active (the VNF must be 

physically reachable to be chained to compose a given networking service). In particular in these templates, the 
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number of VNFIs added to each host’s template corresponds to the number of VNFs detected running on each 

host, information which is automatically discovered and detected as it will be seen in next sections. 

 

Figure 75. Dependency graph of a host: (a) embedding K Applications, (b) embedding K VNFIs 

There are incoming EL edges coming from the dependency graphs GLK of the K links connected to that host in the 
network topology. 

As the host can embed different VNFIs, the EVNF outgoing edges represent the impact over the VNFs relying on 
these instances. 

In addition, as the NIC (Network Interface Card) of the host will be involved in a series of virtual links to chain 
VNFs embedding in it, there are also outgoing edges EVL to represent the impact of faults in the host’s NIC on the 
virtual links established. 

VNFIs have three states: instantiated (VNFII), configured (VNFIC), and active (VNFIA), following the ETSI NFV GS 

specification.  

The K VNFIs embedded in hosts are given by the VNFI_Locations variable, which is used by the topology-aware 

self-modeling algorithm to update the dependency graph of hosts with their corresponding embedded VNFIs 

(Figure 75). 

4.4.3.2 Dependency graph of a SDN Controller  

The controller’s dependency graph is predefined but the number of ports to communicate with the switches is 

extensible with the number of ports discovered on the controller. This number of ports depends on the type of 

control led by the controller (in-band or out-of-band). In in-band control, only one port is added to the graph to 

connect the controller to the master switch. In out-of-band control, the number of ports added to the graph 

corresponds to the number of switches managed by the controller found in the topology at instant t.  

At a logical level, the controller runs an SDN application (e.g. OpenDaylight, Floodlight, NOX, POX, etc.) which 

sends the southbound commands to the switches. Ths SDN application can in turn be decomposed in many other 

inner applications such as the topology manager or similar, bu in those templates only a SDN application is con-

sidered. This application must be instantiated (the process is running), must be configured (the type of control 

carried by the controller and other more advanced commands dependable from the type of controller applica-

tion), and must be active (the controller must be physically reachable by the switches to send/receive the Open-

Flow commands). 
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There are incoming EL edges from the n control links, to connect the dependency graph of the controller to the 
dependency graphs of those n control links seen in the network topology GLn. 

As the SDN controller is allocating at run-time a series of virtual links to chain VNFs composing networking ser-
vices, there are also outgoing edges EVL to represent the impact of faults in the controller ports on the virtual links 
established. 

 

Figure 76. Dependency graph of a Controller 

4.4.3.3 Dependency graph of a Switch  

The switch’s dependency graph is predefined, but the number of ports is extensible with the number of ports 

discovered per switch. 

At a physical level, it contains the number of ports per each switch discovered in the network topology at instant 

t. The port connecting to the SDN controller is also included.  

At a logical level, each switch runs an OpenFlow client application to connect to the SDN controller and interpret 

the southbound commands received. This application must be launched (the process is running), must be config-

ured (the corresponding controller’s IP address must be correctly set), and must be active (the switch must be 

physically reachable by the controller to send the OpenFlow commands). 

 

Figure 77. Dependency graph of a switch 

There are incoming EL edges from the control and data links, to connect the dependency graph of the switch to 
the dependency graphs of those links seen in the network topology. 

As the switches compose virtual links to chain VNFs composing networking services, there are also outgoing 
edges EVL to represent the impact of faults in those switches ports on the virtual links established. 

4.4.3.4 Dependency graph of a Link  

The dependency graph GL of a network link is simpler and it is composed of the physical layer and one single 

vertex. Each type of link found in the topology will have this dependency graph GL. This dependency graph has 

two outgoing edges EL  that will connect to two  nodes dependency graphs GNi . 
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Figure 78. Dependency graph of a link 

4.4.4 Generation of the network dependency graph 

The network dependency graph is generated by the topology-aware self-modeling approach, described hereaf-

ter. The network dependency graph is built from the network topology, which contains the dependencies among 

the network nodes at a physical level, but also those dependencies of the logical resources running on the 

switches and the SDN controller and those logical resources running on the network nodes.  

The network dependency graph in four steps, described here: 

 Step 1: Network topology interpreter 

 Step 2: The dependency graph instantiation algorithm 

 Step 3: The topological sorting algorithm 

 Step 4: The EL edge addition algorithm 

Step 1: Network topology interpreter algorithm 

The network topology interpreter retrieves the network topology seen by the SDN controller and generates two 

machine-readable descriptors that encompass the network nodes and links classified in the following types: 

controllers, switches, hosts, control links, access links and inter switch links.  

This algorithm extracts the network topology from the northbound interface of the SDN controller. The network 

topology has a JSON (JavaScript Object Notation) data structure format. As example, we show the JSON data 

structure of a topology composed of one switch connected to the SDN controller. This format depends on the 

specific controller’s northbound API. OpenDaylight and a Floodlight controller provide two different data struc-

tures, differing in the number and type of fields and the field names (Figure 79). For example, the MAC (Media 

Access Control) field can be whether dataLayerAddress or mac and the ip address can be named networkAdress 

or ipv4, according to the SDN controller used. 

 

Figure 79. JSON data structures provided by: (a) OpenDaylight, (b) Floodlight 

Based on the two data structures provided by two different controllers, this topology interpreter algorithm ana-

lyzes and extracts the following parameters per network node shown in Table 12. However, these parameters do 

not include the control links connecting the controller to the switches. Indeed, the network topology seen by the 

SDN controller only considers the elements in the data plane. We need to extend these parameters with all these 

control links to include them in the network dependency graph. 

Table 12. Topology parameters analyzed by the topology interpreter algorithm 

Network element Parameters 

Host 
MAC address  

IP Address  

Link’s

Dependency Graph

GNi GNj

ELEL

Link

{"hostConfig":
[{"dataLayerAddress":"00:00:00:00:00:01",
"nodeType":"OF",
"nodeId":"00:00:00:00:00:00:00:01",
"nodeConnectorType":"OF",
"nodeConnectorId":"1",
"vlan":"0","staticHost":false,
"networkAddress":"10.0.0.1"}]} (a) (b)

[{"entityClass":"DefaultEntityClass",
"mac":["00:00:00:00:00:01"],
"ipv4":["10.0.0.1"],"vlan":[],
"attachmentPoint":
[{"switchDPID":"00:00:00:00:00:00:00:01"
,
"port":1,"errorStatus":null}],
"lastSeen":1401877225763}]

(1)

(2)

(3)
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Access switch  DPID port 

Switch 
DPID 

ports 

Data link source switch DPID port 

destination switch DPID port 

 

As a result, the topology interpreter algorithm provides as output with Nt and Lt: 

Nt is the topology descriptor containing the network elements, classified in controllers, control links, switches, 

data links, and hosts. It contains the links connected to the nodes. Lt is the link descriptor containing the nodes 

attached to each link.  

We describe here two common topologies analyzed along the thesis, the tree topology and the linear topology. 

The tree topology, Tree(D,F) is shown in (a), and it is a hierarchical topology of D+1 layers, D layers composed of 

switches and one layer composed of hosts. Each switch in each layer is splitted in F branches. The linear topology, 

Linear(N), is composed of N host-switch pairs connected by inter switch links. 

 

Figure 80. Definition of network topologies: (a) Tree(D,F), (b) Linear(N)  

Table 13. Output format of Nt and Lt descriptors for Linear (N=5) and Tree(D=2,F=2) topologies 

Topology Parameter Nt  Lt  

Linear (N=5) 

controllers c0 [Ms01, Ms02, Ms03, Ms04, Ms05] 

control links 
 

[CL1, CL2, CL3, CL4, CL5] [c0-Ms01, c0-Ms02, c0-Ms03, c0-Ms04, c0-
Ms05] 

switches 
 

[Ms01, Ms02, Ms03, Ms04, Ms05] [(Ms02, h1), (Ms01, Ms03, h2), (Ms02, Ms04, 
h3), ( Ms03, Ms05, h4), (Ms04, h5)] 

access links 
 

[AL1, AL2, AL3, AL4, AL5] 
 

[Ms01-h1, Ms02-h2, Ms03-h3, Ms04-h4, Ms05-
h5] 

inter switches links [IL1, IL2, IL3, IL4] 
 

[Ms01-Ms02, Ms02-Ms03, Ms03-Ms04, Ms04-
Ms05] 

hosts [h1, h2, h3, h4, h5] [Ms01, Ms02, Ms03, Ms04, Ms05] 

Tree 
(D=2,F=2) 

controllers  c0 [cMs01, Ms02, Ms03] 

control links [CL1, CL2, CL3] [c0-Ms01, c0-Ms02, c0-Ms03] 

switches [Ms01, Ms02, Ms03] [(Ms02, Ms03), (Ms01, h1, h2), (Ms01, h3, h4)] 

access links [AL1, AL2, AL3, AL4] [Ms02-h1, Ms02-h2, Ms03-h3, Ms03-h4] 

inter switches links [IL1, IL2] [Ms01-Ms02, Ms01-Ms03] 

hosts [h1, h2, h3, h4]  [Ms02, Ms02, Ms03, Ms03] 

 

SDN controller SDN controller(a) (b)

D=2

F=2 F=2

F=2
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…
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We provide in Table 13 the format required for these descriptors Nt and Lt for a linear (L=5) and tree (D=2, F=2) 
topology.  This algorithm generates these descriptors Nt and Lt from the network topology, and includes in these 
descriptors the control links (in red).  

Step 2: The dependency subgraph instantiation algorithm 

This algorithm receives as input the network descriptor. It provides as output the dependency subgraphs of the 

discovered nodes and links in the network topology at instant t. It follows this methodology for each network 

element found in the network descriptor:  

1) Identifies the type of network element (node or link) 
2) Instantiates its corresponding template according to the type of element (GN for nodes or GL for links) 
3) Instantiates the dependency subgraph of that network element 
4) Appends the instantiated dependency graphs to the network dependency graph 

 

Table 14. Dependency subgraph instantiation algorithm 

Algorithm: Dependency subgraph instantiation algorithm 

IN: Network Descriptor Nt  
IN: Templates {THOST,TSWITCH,TCONTROLLER,TLINK} 
OUT: Network Dependency Graph NDG(VUNSORTED,EN) 
for each element in the network descriptor 
  inspection of type of element  
  if element is of type link 
    TLiinstantiation of link template {TLINK } 
    GLi extract dependency sub graph of template TLi 
    NG append GLn to global dependency graph 
  else 
    TNninstantiation of node template {THOST,TSWITCH,TCONTROLLER} 
    GNn extract dependency sub graph of template TNi 
    NGappend GNn to global dependency graph 
  end if 
end for 

 

The dependency subgraph of nodes is GNi (VN, EN) are different subgraphs for switches, controllers and hosts and 

the dependency subgraphs of links is GLi (VL, EL)  and are the same for control links and data links. These edges EN 

(in red) depict the dependencies among components inside the dependency subgraph of a node GN.  

The network dependency graph is composed of these instantiated dependency subgraphs. However, the vertices 

of the network dependency graph are not topologically sorted yet. We call this set of vertices as VUNSORTED. 

Step 3: The topological sorting algorithm 

This algorithm sorts topologically the vertices of the network dependency graph. It receives as input the network 

dependency graph with non-topologically ordered vertices (VUNSORTED) and it provides as output the same net-

work dependency graph but topologically sorted (VSORTED).  

As an example, we present a non-topologically sorted network dependency graph in Figure 81, where the topo-

logical order is not respected, as all the instantiated dependency subgraphs contain repeated vertex indexes (e.g. 

value ‘1’ is repeated). The topological sorting algorithm reorders the vertices to solve this issue and respect the 

topological order, i.e. parents are always before children. The sorting scheme is shown in Figure 81 (b), where it 

can be seen that the edges outgoing EL edges to connect the dependency subgraphs of nodes are not added yet.  
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Figure 81. (a) Non–topologically sorted network dependency graph, and (b) topologically sorted network dependen-
cy graph 

Table 15. Topological Sorting algorithm 

Algorithm: Topological Sorting 

IN: Network Dependency Graph NG(VUNSORTED,EINTRA)  
OUT: Network Dependency Graph NG(VSORTED,EINTRA)  
for each instantiated dependency graph appended to NG 
  for each layer in template 

    obtain vertices of appended graph at current layer 
    sort its vertices topologically 
  end for 
end for 

Step 4: The EL edge addition algorithm 

This algorithm adds the dependencies among instantiated dependency subgraphs. It receives as input the link 

descriptor and the topologically sorted network dependency graph. EL depicts the dependencies among depend-

ency subgraphs of nodes. An EL edge connects the dependency subgraph of m-th node 𝐺𝑁𝑚with the dependency 

subgraph of n-th node 𝐺𝑁𝑛. This edge consists of the following pair: 𝐸𝐿
(𝑘)

= (𝐺𝑁𝑚
(𝑘), 𝐺𝑁𝑛

(𝑘)). These EL edges 

represent the impact of faults in links on nodes interfaces (ports and NICs). 

The network dependency graph is built by assembling the dependency graphs GN and GL belonging to the P links 

and Q nodes found in the network topology, composed of P links and Q nodes. 

 𝑁𝐷𝐺 = ⋃  𝐺𝐿(𝑘)(𝑉𝐿
(𝑘)

, 𝐸
𝐿

(𝑘)

) ∪ ⋃ 𝐺𝑁(𝑘)(𝑉𝑁
(𝑘)

, 𝐸
𝑁

(𝑘)

)

𝑄

𝑘=1

𝑃

𝑘=1

 

Table 16. EL Edge addition algorithm 

EL Edge addition algorithm 

IN: Link Descriptor, Network Dependency Graph G(VSORTED,EN) 
OUT: Network Dependency Graph G(VSORTED,EN,EL) 
for each link in Link Descriptor 
   extract end points attached to link 
   for each end point in link 
     ELadd edge from GLm[link,link] to GNn[node,card] 
   end for  
end for 

 

Figure 82 represents an example of the network dependency graph built by the topology-aware self-modeling 

approach. This network dependency graph is composed by the different subgraphs with their inner EN edges (in 

red), and it is assembling these subgraphs through EL edges (in blue). In both examples, the control links and the 

SDN controller are not shown for the sake of clarity. Figure 83 shows the generic dependency graph correspond-

ing to an end-to-end path between two hosts, where the control plane’s elements have been omitted also for 

simplicity. It is important to recall the fact that the network dependency graph is composed of the whole net-

work topology not only of end-to-end paths as shown in these two images. 
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Figure 82. Example of Network dependency graph (Q=3 nodes and P=2 links) 

 

Figure 83. Generic Network dependency graph (Q nodes and P links) 

4.4.5 Generation of the service dependency graph 

The service dependency graph is generated by the service-aware self-modeling approach, described hereafter.  

The service dependency graph is an extension of the network dependency graph. The services dependency graph 

is built in two steps, as described herefter: 

 Step 1: Virtual resources dependency graph generation 

 Step 2: Service dependency graph generation 
 

Step 1: Virtual resources dependency graph generation 

This algorithm creates an auxiliary graph, called virtual resources dependency graph (VRG), containing the dis-

covered networking services and their virtual resources (VNF and virtual links). 

Table 17. Virtual resources dependency graph generation algorithm 

Virtual resources dependency graph generation algorithm  

Input: NSR(Network Service record) 
Output: VRG (Virtual Resources Dependency Graph) 
nsrNSR[i]   ∀i={1,…,N} //retrieval of NSR of that network service            
V(VRG) V(VRG) ∪ nsr:id 
VLnsr:vlr[j]* ∀j={1,…, Mi} //retrieval of virtual links 
V(VRG) V(VRG) ∪ VL   //adds virtual link vertex to virtual layer 
E(VRG) E (VRG) ∪ ES∶=(orig:[VL:id*],dest:[VL:parent_ns*])  // adds ES edge                                        
VNFRnsr:vnfr[k]* ∀k={1,…,Ni}  //retrieval of VNFs 
V(VRG) V(VRG) ∪ VNF    //adds VNF vertex to virtual layer 
E(VRG) E (VRG) ∪ ES∶=(orig:[VNF:id*],dest:[VNF:parent_ns*])//adds ES edge  

 

 

Figure 84. Virtual Resources dependency Graph generation 
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The VRG is composed of a virtual layer and a service layer (Figure 84). For each discovered networking service, 
both layers are filled as follows: 

Service layer: the algorithm adds a networking servicei vertex to the VRG.  

Virtual layer: the algorithm adds Mi virtual links vertices and Ni VNFs vertices. It then adds Mi+Ni ES edges (in 
black in Figure 84) from those virtual resources vertices to the networking servicei vertex. ES edges represent the 
impact of faults in virtual resources on that networking service networking servicei. If the SDN controller is ena-
bled with the SFC (Service Function Chaining) module such as in OpenDaylight, the VRG could be directly gener-
ated from the VNF FG information. 

Step 2: Service dependency graph generation 

This algorithm connects the network dependency graph to the VRG and builds the service dependency graph. It 
maps each network service withs its corresponding underlying physical and logical resources. 

 For each networking service, two mappings are done: 

-VNF mapping: The VNFI vertices of the hosts in the network dependency graph are connected to the VNFs verti-
ces in the VRG through edges EVNF (in dash black in Figure 85). EVNF edges represent the impact of faults in the 
VNFI embedded in hosts on VNFs composing a networking service. 

-Virtual Links mapping: The physical network resources involved in each virtual link (hosts NICs, switches ports, 
and OpenFlow client applications inside switches) are connected to their respective virtual links vertices through 
edges EVL (in dash black in Figure 85). EVL edges represent the impact of faults in physical and logical resources on 
a virtual link. These network resources are extracted from the flows, defined in section IV. 

Service dependency graph generation algorithm  

Input: NDG, VRG, Flows, VNFI_Locations, NSR(Network Service Record) 
Output: SDG (Service Dependency Graph) 

SDGNDG ∪ VRG  //initialization 
nsrNSR[i]   ∀i={1,…,N}          //retrieval of networking services 
VLnsr:vlr[j]* ∀j={1,…, Mi}//retrieval of virtual links 
VNFnsr:vnfr[k]* ∀k={1,…,Ni}  //retrieval of VNFs 
flowsPerVLFlows[VL] // retrieval of flows composing virtual links 
flowflowsPerVL[l] ∀l={1,…, ni(j)} 
[switch,ports,OFAPP] ExtractSwitchInfo(flow) //extracts switch storing flow 
[hosts,NICs] ExtractHostsInfo(flow)  //extracts hosts connected by that flow 
VNFIDVNFI_Locations[hosts] //finds VNFID of VNFI embedded in host 

E (SDG) E(SDG) ∪ EVNF∶=(orig:[VNFID],dest:[VNF:id*])  //adds edge  

E(SDG) E(SDG) ∪ EVL∶= (orig:[hosts:NIC],dest:[VL:id*])  //adds edge 

E(SDG) E(SDG) ∪ EVL∶= (orig:[switch:ports],dest:[VL:id*])  //adds edge  

E(SDG) E(SDG) ∪ EVL∶= (orig:[switch:OFAPP],dest:[VL:id*]) //adds edge  

 

Figure 85 shows an example of services dependency graph sent to the RCA. This services dependency graph be-
longs to one networking service (N=1) composed of one virtual link (Mi=1) connecting two VNFs (Ni =2) deployed 
over a physical path. The services graph includes the network graph shown in Figure 82. 

 

Figure 85. Services dependency graph of one network service 
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This example is a simplied service dependency graph for one networking service, only composed of a physical 
path between two VNFIs hosted in two hosts, but it does not show the SDN controller and the control links. The 
service-aware self-modeling methodology allows to compose this service dependency graph for as many services 
as found in the 𝑀𝑘 virtual links connecting 𝑁𝑘 VNFs. This service dependency graph can be extended to include 
all these services. 

 

Figure 86. Generic Services dependency graph of N network services 

4.5 Exploitation of the service dependency graph for Root Cause Analysis 

The root cause analysis approach is based on Bayesian Networks. It receives as input the service dependency 

graph generated by the self-modeling approach, which includes the network dependency graph. The root cause 

analysis block reasons over the service dependency graph built from the networking services and their underlying 

network resources. The service dependency graph depicts how failures in a given networking service are origi-

nated in the underlying infrastructure and are propagated. 

Each vertex on the service dependency graph represents any subcomponent whithin the physical, logical, and 

virtual network resources of the SDN infrastructure. For each component within any network resource, p repre-

sents the probability of failure for that component. Each vertex is a random variable with two states (up, down).  

The CPT for a given subcomponent/resource is given in Table 18 and it  is based on the following properties: 

 All the network subcomponents/resources can always fail by themselves, with an a priori probability p, 
regardless of the fact the parent subcomponents/resources function as expected.  

 One fault in one network subcomponents/resources immediately propagates to the children network 
subcomponents/resources and eventually to those networking services depending on that network 
resource. 

This choice is justified by the self-diagnosis approach led by (Hounkonnou,2013) to describe the dependencies 

among IMS  resources and our self-diagnosis framework for SDN (Sanchez et al, 2015) and (Sanchez et al, 2014).  

Table 18. CPT of a generic component Y in a network resource 

CPT(Y) Pr(Y=’down’) Pr (Y=’up’) 

at least one parent ’down’ 1 0 

if all parents of Y ’up’ p 1- p 

 

This value p could be different according to the type of subcomponent and resource. For instance p can be 

different for logical and physical resources and subcomponents.  

Physical resources: In CPU vertices, this a priori value p can depend on the measured CPU load at instant  t. In 

SDN controller ports, p can depend on the number of incoming ports of the SDN controller, the more ports the 
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controller has, the higher probability of failure p, as the SDN controller has more physical connections from the 

switches and this can induce to congestions and and a high number of flows per second.  

 

Table 19Table 21 shows the CPT of a CPU component inside a network node and Table 20 shows the CPT of a 

port  within a switch node. 

 

 

Table 19. CPTs for the CPU component  

CPT(CPUC ) P(CPUC=down) P(CPUC=up) 

 p=0.1 1-p=0.9 

 

Table 20. CPTs for the switch port component 

CPT(port) P(port=down) P(port=up) 

CPUC=down & link=down 1 0 

CPUC=up & link=down 1 0 

CPUC=down & link=up 1 0 

CPUC=up & link=up p=0.1 1-p=0.9 

 

Logical resources: Applications or processes can be better designed (lower value of p), or worse designed (higher 

value of p). The p  value in those applications with the same software and same version should have the same 

probability, to model bugs in those versions.  p can depend on the amount of total memory or CPU consumed by 

each application, indicating possible degradations. In VNFIs, p can depend on how centralized this instance is at a 

given time, being p higher. Table 21 shows the CPT of a process running on a network node and  Table 22 shows 

the CPT of the configuration related to that process. 

Table 21. CPTs for the process components  

CPT(process) P(process=down) P(process) 

CPUC=down  1 0 

CPUC =up   p=0.1 1-p=0.9 

 

Table 22. CPTs for the configuration of a process 

CPT(configuration) P(configuration=wrong) P(configuration) 

CPUC=down & process=down 1 0 

CPUC=down & process=up 1 0 

CPUC=up & process=down 1 0 

CPUC=up & process=up p=0.1 1-p=0.9 
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Figure 87. Root Cause Analysis over the generated services dependency graph of one network service 

The BN is composed of the physical, logical, and virtual network resources ans inner subcomponents character-

ized by binary random variables, which indicate their state (‘down’ or ‘up’) and the edges represent the depend-

encies among network components.  

The root cause analysis works as follows: the RCA starts propagating evidence/symptoms on the network service 

vertex through the graph based on the CPTs until it reaches the root vertices, yielding a posteriori probability for 

each vertex. The services dependency graph modelling allows the RCA to diagnose dynamic networking services 

on dynamic network topologies. 

Figure 87 shows an example of root cause analyisis over the generated service dependency graph. The RCA en-

gine receives an alarm indicating that the networking service is under failure and introduces this evidence on the 

graph (red vertex, network service). This evidence is propagated through the graph by updating the aposteriori 

probabilities by the Bayes rule. In this example, one VNF composing the sevice is failing due to a failure on a 

physical resource (CPU) which impacts the logical resource VNFI. 

4.6 Conclusion 

This chapter considers solving two major problems towards self-diagnosis and resilient networks in the context of 

SDN and NFV: in such context it is needed to define a template or a model that describes the managed elements 

including physical, virtual infrastructure and other inner details such network cards, or CPU. To fill this gap, we 

define a template with finer granularity describing the essential managed elements within SDN and NFV. Fur-

thermore, we propose a topology-aware self-modeling diagnosis that builds automatically at runtime the diagno-

sis model (dependency graph), which answers the challenges of updating the diagnosis model to identify the root 

causes. Our approach is suitable to any network topology and to any control type in SDN. In addition, it is inde-

pendent from the controller implementation (e.g. Floodlight or OpenDaylight). 

This chapter also extends this topology-aware self-diagnosis towards a multi-layer service-aware self-diagnosis 

framework capable of diagnosing faults in programmable networks with SDN and NFV, while taking into account 

the networking service, virtual, logical, and physical layers.  

This service-aware self-diagnosis framework diagnoses and correlates two additional layers, virtual and services 

layer, while considering their dynamic dependencies with the underlying logical and physical resources. The core 

of the self-diagnosis framework is a self-modeling module that relies on two algorithms to generate on-the-fly 

and update the diagnosis model from the network topology, logical resources and networking services with a set 

of adaptable templates.  
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Chapter 5 Results and Evaluation 

 

5.1 Introduction 

In this chapter we present the results conerning our multi-layer self-modeling based diagnosis approach. We first 

evaluate the topology-aware self-diagnosis approach, which diagnoses based on the network topology and 

logical resources running on top, and then we focus on evaluation of the service-aware self-modeling approach. 

For each of these cases, we evaluate three essential apsects: the generatoin of the model, the explitation of this 

model to find the root cause, and the performance of the diagnosis, which comprises both the self-modeling 

methodology and root cause analysis algorihtm. 

The last section, presents an implementation of the topology-aware self-diagnosis concept of chapter 4 that 

enables a self-healing system for streaming applications running over softwarized networks. 

5.2 Topology-Aware Self-Diagnosis Evaluation 

In this section we evaluate how the network dependency graph is generated and then exploited to find the root 

cause. 

5.2.1 Generation of the network dependency graph 

We test our self-modeling based diagnosis in a centralized SDN architecture based on a Floodlight controller. This 

module runs over the controller for two reasons: (1) to have a global view of the network, and (2) to keep the 

diagnosis framework independent from any specific southbound protocol. The network topology is obtained via 

the northbound interface (REST API) trough passive monitoring, to avoid introducing traffic overhead like ping 

tool. We use Mininet to simulate the SDN network.  

First, we prove that our self-modeling algorithm can interpret both the network topology and the control type of 

SDN (out-of-band and in-band). Next, we study the scalability of this algorithm and finally we validate the diagno-

sis results and their variation under changing network conditions. 

We test the model generation of a linear topology with two switches and a controller with two hosts connected 

with out-of-band control Figure 88 and in-band control Figure 89. 
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Figure 88. Network Dependency graph of a linear topology (N=2) with out-of-band control 

 

Figure 89. Network Dependency graph of a linear topology (N=2) with in-band control 

 Figure 88 and Figure 89 show the resulting global dependency graph built by the self-modeling algorithm based 

on the different templates, topologically ordered.  

-The self-modeling algorithm interprets the type of control: In out-of-band control, the self-modeling algorithm 

instantiates two control links (instances: GL1, GL2, vertices: 2, 3), where GL1 connects both the network card of 

the master switch (instance: GN2, vertex: 13) and the network card of the controller (instance: GN1, vertex: 11). 

The controller template (GN1) has two network cards connected to two switches (vertices: 11, 12) through the 

control link instances GL1 and GL2. In in-band control, it only instances one control link (instance: GL1, vertex: 2) 

because the controller is only connected to the master switch (GN2). The controller template then has one net-

work card (vertex: 10), which is connected to the network card of the master switch instance (vertex: 11) through 
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the control link instance. The other switch is slave (instance: GN3) and communicates to the controller trough the 

link IL1 that connects to the master switch. 

-The self-modeling algorithm interprets the network topology: For both types for control, it connects both 

switches through the inter switch link instance (GL2). It connects both hosts’ instances (GN4 and GN5) to their 

respective access links (GL3 and GL4).The algorithm can automatically generate ring, star, linear and tree network 

topologies for different numbers of hosts and switches. 

5.2.2 Exploitation of the Network dependency graph for Root Cause Analysis  

We analyse in this section how RCA module exploits the network dependency graph generated by the topology-

aware self-modeling approach to diagnose logical and physical resources over the SDN infrastructure. We con-

sider a homogeneous failure probability (p), so that all the components inside the network ressources in the 

dependency graph have the same p=0.1.  

5.2.2.1 Diagnosis in SDN infrastructures 

We show several examples on how the diagnosis module exploits the network dependency graph to analyze how 

faults may propagate in the control links between one SDN controller and one OpenFlow switch. 

Diagnosis of control-data plane communication at a physical level 

We diagnose the communication between an SDN controller and OpenFlow switch at a physical level (Figure 90). 

The SDN controller is a physical machine with a CPUC as the base of an SDN controller application like Floodlight 

to install the OpenFlow rules demanded by the OpenFlow switches. The OpenFlow switches are also physical 

machines with a CPUS as the base of the application running on them (OpenFlow client application). Both net-

work entities connect through their respective physical ports to establish the communication. 

 

Figure 90. Modelled variables in a control link at physical level 

 

Figure 91. Network dependency graph of a control link at physical level 

The network dependency graph of this network link and both SDN nodes is shown in Figure 91, where it can be 

seen that the control link is linking both dependency graphs, and its fault would propagate to both nodes’ ports. 

The CPTs considered for this example were shown in Erreur ! Source du renvoi introuvable., with a probability of 

failure p for each network resource (CPU, both ports, and control link) equal to 0.1. 

In the first case (a), when we inject as observations to the RCA that the controller’s port is down and the switches 

port is up, the RCA infers that must be an internal problem inside the CPU of the controller. In the second case 

(b), both ports are down simultaneously, indicating that the link is the most probable root cause. This is the typi-

cal connectivity fault between the controller and the switch. 
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Figure 92. Root Cause analysis: (a) switch’s port up, (b) switch’s port down 

Diagnosis of control-data plane communication at a physical and logical level 

We diagnose the communication between an SDN controller and OpenFlow switch at a physical and logical level 

(Figure 90). 

In this case, the network graph, shown in Figure 93, considers also the logical resources running on top of these 

two SDN nodes, the SDN controller application running on the controller and the OpenFlow client application 

running on the switch. Both applications have two states: the applications are installed and running, what means 

that their process identifier would be found in that node, and both applications are connected, what means that 

they can send or receive information through the corresponding port. 

The CPTs considered for this example are shown inErreur ! Source du renvoi introuvable.. The probability of 

failure p of each network resource (CPU, both ports, and control link) was set to 0.1. 

  

Figure 93. Modelled variables in a control link at physical and logical level 
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Figure 94. Dependency graph of a control link at physical and logical level 

We can see how logical resources running on the nodes add very valuable additional information for the diagno-

sis. For example, when we launch the RCA taking as observations that the controller’s and switch’s ports are 

down, instead of pinpointing the control link as the most probable root cause as in the previous case, both CPU 

are considered as the most probable root cause (with probability of 0.4) while the control link has as a posteriori 

probability 0.15. Also, as it is seen in (b), thanks to the addition of the state of the logical resources running on 

nodes, both CPU components can be discarded from the root cause list and the control link is the root cause, 

indicating it is a physical fault. 

  

Figure 95. Root Cause analysis with two different observations of controller’s card, switch’s port and applications state 

5.2.2.2 Reactive scenario: diagnosis of faults in the SDN infrastructure 

We analyze in this section two cases, we firstly analyze a fault in the SDN controller, and secondly three simulta-

neous faults in three links at both control and data planes. 

Case 1: Fault in the SDN controller 

In this first case, the actual root cause is a total shutdown of the SDN controller. The first symptom found in the 

network is that the SDN controller does not respond to ping. This absence of ping response is understood by the 

monitoring module as evidence that its interfaces are down, so it informs to the BN module that those control-

lers’ ports are down. The observations with the state of the rest of interfaces and ports of hosts and switches at 
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both control and data networks are also sent to the BN engine. Those interfaces and ports are shown in Figure 96 

in green (healthy interface) and in red (red interface). 

The BN engine determines that the most probable root cause is the controller (94.2 %). Thanks to the finer-

granularity of these templates proposed, we can zoom on the internal components of the SDN controller (ports, 

CPU, the Floodlight SDN application, and its associated configuration), on the hosts, and in the switches. 

 

Figure 96. Root Cause analysis: Case 1, Faulty SDN controller 

The BN engine determines that the CPU (31.4 %), the Floodlight SDN application (31.4 %) or its configuration 

(31.4 %) could be the source of the failure. It discards the rest of resources in the rest of network nodes such as 

switches and hosts (probability below 1 %). 

Case 2:  Simultaneous faults in control and data links 

In this second case, the actual root causes are three: simultaneous link failures in the control link CL1 and two 

access links AL1 and AL2. As in the previous case, we provided as observations to the BN engine with the state of 

all the interfaces and ports at both control and data networks. At this case, the SDN controller does respond to 

ping requests so its interfaces will be up, as seen in Figure 96 in green. However, the SDN controller will not be 

able to install rules to the switch S1, as a result, that interface is down, shown in red. In addition, hosts H1 and H2 

cannot ping their respective switches S1 and S2 so their interfaces will be down. 

With this information, the BN engine pinpoints those affected links CL1, AL1, AL2 as the most probable root causes 

(31.1 %), having discarded the second control link CL2. The SDN controller is almost discarded with a probability 

of 0.9 % and both switches S1 and S2 with 1.8 % as probability of root cause. 

Thanks to the finer-granularity of these templates proposed, we can zoom on the internal components of the 

SDN controller (ports, CPU, the Floodlight SDN application, and its associated configuration), on the hosts, and in 

the switches. 
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Figure 97. Root Cause analysis: Case 2, simultaneous faulty links at control and data planes 

5.2.2.3 Proactive scenario: degradations on the SDN infrastructure 

The goal of this section is to show of the RCA can adapt the result of the diagnosis in accordance with the evolu-

tion of CPU load in the nodes of the SDN infrastructure. This section also shows how possible future service deg-

radations could be detected in advance by our proposed diagnosis module. We study in this section two different 

topologies to see how the RCA can receive the network dependency graph of different network topologies. 

Linear network topology L=2, out-of-band control 

We consider the following centralized SDN infrastructure, composed of a linear network topology L=2 where a 

service between clients H1 and H2 is delivered. In this infrastructure, each network node has a different CPU load. 

In the event of any degradation on the service, this degradation may be explained by a high CPU load in any of 

the intermediate nodes involved in the service. In this concrete network, the nodes S1, S2, H1, H2 and the SDN 

controller are involved. The SDN controller installs the corresponding flows on both switches S1 and S2 in order to 

connect both clients H1 and H2.  

The BN engine incorporates observations with the actual load of the CPU on each node, including the CPU load of 

the SDN controller. The CPU load is included as observation in the CPT table of the CPU vertices in the dependen-

cy graph, which will influence the a priori distribution of those vertices, and this, will propagate to the rest of 

vertices in the dependency graph. As consequence, the calculated root changes as a result of changes on these 

observations.  

At the beginning, the host H2 is heavily loaded (CPU use 95%) and it is the cause of the service degradation, while 

the rest of nodes have a normal level of CPU load. In this current situation, the BN engine determines that host 

H2 is the most probable root cause (97%) due to this high CPU use, while it discards all the links ( with probability 

of 1 %) as well as the SDN controller (with probability of 7.9 %) as probable causes. Figure 98 shows the a poste-

riori probability distribution per network node. 

Suddenly, the distribution of the CPU load changes, where the CPU load on the host H2  plummets  to a 5 %, while 

the CPU load on the SDN controller starts raising rapidly until 95%  while the rest of nodes have normal level of 

the CPU load.  

Then, the BN engine adapts to the current situation and diagnoses by taking into account the observations with 

the current CPU load of the network nodes. It then pinpoints the SDN controller as the most probable root cause 

to explain the degradation on the SDN infrastructure (a transition of root cause probability from 7.9 % to 96.6 %).  
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Table 23. CPU loads at both instants of time 

CPU load SDN controller C1 Switch S1 Switch S2 Host H1 Host H2 

Instant t1  5 % 20 % 40 % 2 % 95% 

Instant t2  95 % 2 % 10 % 35 % 5% 

 

Figure 98. Root Cause Analysis on changing CPU conditions in linear L=2 network topology 

Single network topology, out-of-band control 

We consider the following centralized SDN infrastructure, composed of a single network topology where a ser-

vice between clients H1 and H2 is delivered. In this concrete network, the nodes S1, H1, H2 and the SDN controller 

are involved.  

At the beginning, there is not service degradation, because any network node is heavily loaded (all the CPU loads 

are below 30%). In this current situation, the BN engine determines that the switch S1 is the most probable root 

cause (27.3%) due to this the fact its CPU load most network is at 30 %, while it discards all the links ( with proba-

bility of 1 %) as well as the SDN controller (with probability of 13.5 %) as probable causes. Figure 99 shows the a 

posteriori probability distribution per network node. 

Suddenly, the distribution of the CPU load changes, where the CPU load on the switch S1  plummets from 30% to 

10% %, while the CPU load on the SDN controller starts raising rapidly from 15 to a moderate CPU load 65%  

while the rest of nodes have normal level of the CPU load (5-10%).  

Then, the BN engine adapts to the current situation and diagnoses by taking into account the observations with 

the current CPU load of the network nodes. It then pinpoints the SDN controller as the most probable root cause 

to explain the degradation on the SDN infrastructure (a transition of root cause probability from 13.5% to 59.2 

%).  

Table 24. CPU loads at both instants of time 

CPU load SDN controller C1 Switch S1 Host H1 Host H2 

Instant t1  15 % 30 % 15 % 15% 

Instant t2  65 % 10 % 5 % 5% 
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Figure 99. Root Cause Analysis on changing CPU conditions in single network topology 

5.2.3 Performance Evaluation 

In this section, we evaluate performance of the topology-aware self-diagnosis approach. 

Growth in number of generated vertices 

We study the growth in number of vertices (V) of the network dependency graph for linear and tree topologies 

for out-of-band control. We analyze both topologies for a varying number of connected hosts (NHOSTS) from 4 up 

to 256. The number of network elements (NELEMENTS) (nodes and links) is the same for both topologies NELE-

MENTS=3NSWITCHES+2NHOSTS. The number of vertices in the global dependency graph G is: 

V=VCONTROLLER+VSWITCHESNSWITCHES+VHOSTSNHOSTS+VLINK(2NSWITCHES+NHOSTS-1). If we particularize with the values for the 

aforementioned topology (Figure 88) in out-of-band control: 5 vertices per host template (VHOST=5), 8 vertices per 

switch template (VSWITCHES=8), 1 vertex per link template (VLINK=1) and 5 vertices per controller template (VCONTROL-

LER=5), this equation becomes V=5+10NSWITCHES+6NHOSTS, which explains the linear trend of vertices with the num-

ber of hosts described in Table II. 

Table 25. Number of vertices (V) as a function of the number of hosts (NH) 

Topology/𝑁𝐻 4 8 16 32 64 128 256 

Tree 62 130 266 538 1082 2170 4346 

Linear 72 140 276 548 1036 2180 4356 

Speed of self-modeling algorithm 

We study the speed of the self-modeling algorithm as a function of the number of network elements (NELEMENTS) 

to evaluate the impact of the number of network elements in the performance of the algorithms. We launched 

the self-modeling algorithm for both linear and tree topologies in out-of-band control, ranging from 15 up to 500 

network elements. The number of network elements includes the control and data links, the hosts, the switches 

and the SDN controller. 

We averaged the computing time 20 times per network topology to obtain values that are more reliable.  

Figure 100 shows the curve of time required by the topology-aware self-modeling algorithm as a function of the 

number of network elements considered in the network topology. It can be seen an exponential trend in the 

growth of self-modeling time with the number of network elements for both linear and tree topologies.  

Linear topologies scale a little better than tree topologies, but there are not very significant differences between 

both network topologies in terms of speed. In both cases, the self-modeling time remains less than 30 seconds 

even when the number of network elements is in 500 elements. 
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Figure 100. Speed as a function of the number of elements 

5.3 Service-Aware Self-Diagnosis 

In this section we evaluate how the service dependency graph is generated and then exploited to find the root 

cause. 

5.3.1 Generation of the services dependency graph 

In this section, we diagnose two networking services delivered in two different network topologies (Figure 101 

(a) and Figure 101 (b)) where we apply the two aforementioned RCA strategies. Each networking service is com-

posed of two VNFs, whose instances VNFIAi and VNFIBi, are embedded in different hosts. Both VNFIs are connect-

ed through a virtual link VLAi,Bi, which is established at run-time by the SDN controller. Table 26 shows the de-

pendencies of each networking service from the underlying physical elements. 

 

Figure 101. Diagnosis of two networking services in different network topologies: (a) tree topology, (b) linear topology 

Table 26. Affected networking services and underlying physical paths  

Topology Service Virtual Link Host:VNFI Physical path 

Tree 
D=2, F=3 

NS1 VLA1,B1 H1:VNFIA1 
H9:VNFIB1 

DP:[AL1,S2,IL1,S1,IL3,S4,AL9], 
CP:[C0,CL1,CL2,CL3, CL4,C1] 

Linear L=10 
 

NS4 VLA4,B4 H4:VNFIA4 
H5:VNFIB4 

DP:[AL4,S4,IL4, S5,AL5], CP:[C0,CL4,CL5,C1] 
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*S: switch, IL: inter switch link, CL: control link, AL: access link, C: controller, H:host 

DP: Data plane (hosts,switches,datalinks), CP: Control plane (controllers,control links)  

First, the self-modeling module generates on-the-fly the services dependency graph (that includes the network 

dependency graph). The services dependency graph is generated in the three following situations: 

Changes on the network topology: The network dependency graph is generated for a tree topology (D=2, F=3), in 

Figure 101 (a), and a linear topology with L ∈ [5,10] Figure 101 (b). In addition, the self-modeling module models 

changing topologies by discovering new network resources and regenerating the network dependency graph, as 

shown in this video (Sanchez et al, 2016). The network dependency graph includes the connections from the SDN 

controller to the switches, not shown here.  

VNF migrations: The self-modeling algorithm generates the services dependency graph taking into account both 

distributions of VNFIs. If VNFIs migrate, the self-modeling regenerates the services dependency graph with the 

new distribution of VNFIs. For instance, in  Figure 102 (b), the VNFIs are embedded in different hosts and th 

eservice dependency graph takes this into consideration to be able to propagated hardware failures on the hosts 

to their VNFs embedded. 

Changes on the virtual links: VNF migrations and topological changes lead to changes on the virtual links con-

necting them. Table 31 presents the underlying physical resources involved in all the networking services present 

in each network topology. In both topologies, networking services share some physical network resources such 

as physical links, switches and part of the control plane. The shared network resources are depicted in bold. This 

information will be exploited by the RCA to reduce the uncertainty.  

Table 27. VNF forwarding graphs and physical dependencies  

Topology Network Service Virtual Links Host:VNFI Physical Dependencies 

Linear N=10 NS1 VLA1,B1 H1: VNFA1 

H2:VNFB1 
H1, AL1, Ms1, IL1, Ms2, AL2, H2, CL1, CL2, C1 

NS2 VLA2,B2 H1: VNFA2 

H3: VNFB2 
H1, AL1, Ms1, IL1, Ms2, IL2, Ms3, AL3, H3, CL1, CL2, CL3, C1 

NS3 VLA3,B3 H3: VNFA3 

H4: VNFB3 
H3, AL3, Ms3, IL3, Ms4, AL4, H4, CL3, CL4, C1 

NS4 VLA4,B4 H4: VNFA4 

H5: VNFB4 
H4, AL4, Ms4, IL4, Ms5, AL5, H5, CL4, CL5, C1 

Tree D=2,F=3 NS1 VLA1,B1 H1: VNFA1 

H9: VNFB1 
H1, AL1, Ms2, IL1, Ms1, IL3, Ms4, AL9, H9, CL1, CL2, CL3, CL4, C1 

NS2 VLA2,B2 H1: VNFA2 

H3: VNFB2 
H1, AL1, Ms2, AL3, H3, CL1, C1 

NS3 VLA3,B3 H1: VNFA3 

H6: VNFB3 
H1, AL1, Ms2, IL1, Ms1, IL2, Ms3, AL6, H6, CL1, CL2, CL3, C1 

NS4 VLA4,B4 H1: VNFA4 

H8: VNFB4 
H1, AL1, Ms2, IL1, Ms1, IL3, Ms4, AL8, H8, CL1, CL2, CL3, CL4, C1 

NS5 VLA5,B5 H4: VNFA5 

H7: VNFB5 
H4, AL4, Ms3, IL2, Ms1, IL3, Ms4, AL7, H7, CL1, CL4, C1 

 NS6 VLA6,B6 H2: VNFA6 

H5: VNFB6 
H2, AL2, Ms2, IL1, Ms1, IL2, Ms3, AL5, H5, CL1, CL2, CL3, C1 

*S: switch, IL: inter switch link, CL: control link, AL: access link, C: controller, H:host 

5.3.2 Exploitation of the Service dependency graph for Root Cause Analysis  

In this section, we show how the RCA can adapt and exploit the services dependency graph and the network 

dependency graph to efficiently diagnose networking services failures in two different cases. The diagnosis is 

automated by the on-the-fly generation of both dependency graphs. The RCA calculates the root cause. i.e. the 

RCA identifies physical, logical and virtual network resources presumed to be the root cause of a given network-

ing service failure. We consider that all the network resources and their internal components have the same a 

priori probability of fault (p=0.1) in the conducted experiments.  
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We apply the definition of the entropy 𝐻(𝑋) to evaluate the uncertainty of the aposteriori distribution probabil-

ity 𝑝𝑋1,…,𝑋𝑁
 calculated by the RCA based on the injected observations from the network. This calculation is based 

on the probability of each network resource in the root cause list is down. 

𝐻 = − ∑ Pr (𝑋𝑖 = 𝑑𝑜𝑤𝑛)

𝑋𝑖∈𝑁

𝑙𝑜𝑔 Pr (𝑋𝑖 = 𝑑𝑜𝑤𝑛) 

We propose two RCA strategies to reduce this uncertainty, which effectiveness is proved in this section. 

Extension of the services dependency graph: we define an RCA strategy that extends the services dependency 

graph to include the dependencies of the healthy networking services that are sharing resources with the affect-

ed service. This RCA strategy allows discarding those network resources involved in healthy services.  

Reduction of the network dependency graph: we define an RCA strategy that reduces the network dependency 

graph to only consider the dependencies of network resources that are involved in the identified faulty network-

ing services, thereby reducing the uncertainty and the diagnosis time. 

5.3.2.1 Extension of the services dependency graph 

We consider the tree topology (Figure 102), where the services are deployed sequentially i.e. at ti=t0 + (i-1)T, 

i=1…N. A failure is injected in service NS1 and the self-modeling algorithm is launched at t1 = t0, generating the 

services dependency graph from the affected service NS1 and the RCA gives a posteriori distribution probability 

(Figure 104 dark blue bar on the bottom) so spread over all the network resources that no root cause can be 

clearly identified (entropy: 4.1 bits). The uncertainty can be reduced by adding the healthy services sharing re-

sources with the affected service. Indeed, if the graph is regenerated at t2=t0+T, when a healthy service NS2 is 

deployed (N=2), the root cause becomes less uncertain (entropy: 3.6 bits). Adding the new healthy service NS2 

allows the RCA to discard those shared resources between the affected service NS1 and NS2 (S2, AL1 and the con-

trol plane resources). The RCA module extends the services dependency graph to reduce the entropy four times 

more by including the healthy services as those appear: NS3 at t3=t0+2T, NS4 at t4=t0+3T, NS5, at t5= t0+4T, and NS6 

at t6=t0+5T. Figure 103 shows how the entropy is reduced from 4.1 (dark blue bar on the bottom), with the only 

affected service added, to 0.9 bits (brown bar on top), with the affected service and 5 healthy services added.  

 

Figure 102. RCA strategy on extending the services dependency graph with network services 

In the brown bar probability distribution (Figure 104 on the bottom), the root cause list consists of the hosts H1 

(33%) and H9 (67%). The rest of hosts are discarded, as those are not involved in the affected service. Our finer 

granular templates enable a deeper analysis. Not only links and switches are shared among services, but also the 

CPU and NIC inside hosts. Host H1 embeds four VNFIs, as a result, those VNFIs share NIC and CPU. Nevertheless, 

NIC and CPU are immediately discarded when at least one of these VNFIs is involved in a healthy service as it 

means that NIC and CPU is working fine. Indeed, we see that the most probable explanations (Table 28) are that 

VNFIA1 and VNFIB1 are not initiated, configured, or activated (adding up all VNFI states: VNFIA1 (33%) and VNFIB1 

(51%)), which is coherent with the injected failure in NS1, composed of those VNFs. In addition, the RCA can 
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discard those VNFIs embedded in H1 (VNFIA2, VNFIA3, and VNFIA4), because they are not involved in the affected 

service NS1.  

 

Figure 103. Entropy reduction with the RCA strategy on extending the services dependency graph 

Table 28. Zoom on the root cause probabilities per host (%)  

Host CPU NIC  VNFI Not Instantiated VNFI Not Configured VNFI Not Active 

H1 0 0 VNFIA1 6 11 16 

VNFIA2 0 0 0 

VNFIA3 0 0 0 

VNFIA4 0 0 0 

H9 6 11 VNFIB1 11 16 24 

 

5.3.2.2 Reduction of the network dependency graph  

We first inject a failure in service NS4 and generate the network dependency graph from the network topology of 

the blue region in Figure 105 and we incrementally reduce the diagnosis region until the optimal one (brown 

diagnosis region) that gives the lowest uncertainty because the minimum amount of networking resources are 

diagnosed. 

5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

 

 

Diagnosed NS: NS
1
, Entropy = 4.1

Diagnosed NS: NS
1
,NS

2
,  Entropy = 3.6

Diagnosed NS: NS
1
,NS

2
,NS

3
,  Entropy = 3

Diagnosed NS: NS
1
,NS

2
,NS

3
,NS

4
,  Entropy = 2.5

Diagnosed NS: NS
1
,NS

2
,NS

3
,NS

4
,NS

5
,  Entropy = 1.9

Diagnosed NS: NS
1
,NS

2
,NS

3
,NS

4
,NS

5
,NS

6
,  Entropy = 0.9

CL1 CL2 CL3 CL4C0 IL1 IL2 IL3AL9 H1 H2 H3 H4 H5 H6 H7 H8 H9AL8AL7AL6AL5
AL4AL3S1 S2 S3 S4 AL2AL1



End-to-end Self-Diagnosis of Programmable Networks 

143 
 

 

Figure 104. RCA strategy on reducing the network dependency graph 

Blue region: the network dependency graph is built from a linear topology L=10 and it includes the following 

services to build the services dependency graph: 

 (i) the affected service NS1: the a posteriori distribution probability has as entropy 4.7 bits. 
 

 (ii) the affected service and the healthy services NS2, NS3, and NS4: the a posteriori distribution probability (, 
Figure 105 dark blue bar on the bottom) has lower entropy (3.9 bits), because the added networking ser-
vices help discard those network resources involved in them.  

 
In both situations (i) and (ii), the a posteriori distribution is so spread over the existing network resources that no 

root cause can be identified. 

Brown region: the network dependency graph is built from a linear topology L=5 and it includes the following 

services to build the services dependency graph: 

 (i) the affected service NS1: the a posterior distribution probability has as entropy 2.2 bits. 
 

 (ii) the affected service and the healthy services NS2, NS3, and NS4: the a posteriori distribution probability 
(brown bar on top) has lower entropy (1.6 bits) because the added services help discard those network re-
sources involved in them. 
 

Figure 105 shows that the uncertainty on the root cause is reduced when the diagnosis region gets closer to the 

brown diagnosis region: In situation (i) there is a reduction from 4.7 to 2.2 bits with one service added. In situa-

tion (ii) there is a reduction from 3.9 to 1.6 bits with 4 services added (Figure 105 on the bottom). We focus on 

the situation (ii), where a clear subset of the networkS5 (48%), AL5 (3%), H4 (15%), and H5 (35%)is presumed to 

be the root cause. This result is coherent with the injected failure in NS4 as its underlying virtual resources, the 

VNFI embedded in hosts H4 (VNFIA4) and H5 (VNFB4), are pinpointed as possible root causes. Analogously as in 

previous section, we can zoom on hosts H4 and H5 (Table 29) to obtain the probability of fault in the VNFIs run-

ning inside those hosts. The most probable explanation is that those VNFIs embedded on H4 and H5 are not initi-
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ated, configured, or active (adding up all VNF states: VNFIA4 (17%), and VNFIB4 (25%)). Contrarily, the hosts em-

bedding VNFIs which are not involved in the affected service (i.e. H1, H2, and H3) are discarded. Furthermore, 

other VNFIs (e.g. VNFIB3) embedded in the hosts presumed to be the root cause (H4) but not involved in the af-

fected service are discarded. In all regions, those network resources not involved in the affected service NS4 are 

discarded (e.g. S1, S2, S3, H1, H2, H3 among others). 

 

Figure 105. Entropy reduction with the RCA strategy on reducing the network dependency graph 

Table 29. Zoom on the root cause probabilities per host (%)  

Host CPU NIC  VNFI Not Instantiated VNFI Not Configured VNFI Not Active 

H4 0 0 VNFIB3 0 0 0 

VNFIA4 3 5 7 

H5 3 7 VNFIB4 5 7 13 

 

5.3.3 Performance Evaluation 

We evaluate the performance of both RCA strategies that reduce the uncertainty on the diagnosis of networking 

services, measured in terms of generated vertices and edges in the dependency graph and diagnosis time. 

Case 1, extension of the services dependency graph: The RCA strategy that extends the services dependency 

graph in Figure 101 (a), adds a lower number of vertices per service added compared to the number of edges 

added, as seen in Table 30. This difference is due to the high number of dependencies (EVL edges) of each virtual 

link from the physical resources (NICs, switches ports, and OpenFlow client applications inside switches). For 

instance, Figure 106 shows 7 edges (5 EVL and 2 EVNF) and 4 vertices added. These added edges and vertices in-

crease the diagnosis time tD= tSM+tRCA, where tSM is the self-modeling time and tRCA is the RCA time, both averaged 

20 times. tSM represents at least 51% of the diagnosis time tD. When six services are added to the graph, tSM is 

increased a 57% of tD with respect to one service added, whilst the tRCA is increased by 72% of tD, proving that the 

BN engine inside the RCA scales worse than the self-modeling algorithm in itself. 
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Figure 106. Example of Network dependency graph (Q=3 nodes and P=2 links) 

Table 30. Cost of extending the services dependency graph 

Services added  #Vertices #Edges tRCA tSM 

NS1 108 306 1.1 1.4 

NS1, NS2 115 334 1.2 1.6 

NS1, NS2, NS3 122 372 1.6 1.7 

NS1, NS2, NS3, NS4 129 410 1.7 2 

NS1, NS2, NS3, NS4, NS5 133 440 1.7 2.1 

NS1, NS2, NS3, NS4, NS5, NS6 137 470 1.9 2.2 

 

Case 2, reduction of the network dependency graph:  The RCA strategy that reduces the diagnosis region reduc-

es also the diagnosis time, as the diagnosed network topology is smaller. As example of this reduction, we com-

pare the size of the services dependency graph when it is generated from the blue region in (linear topology 

L=10) to the services dependency graph generated from the brown region in Figure 101 (b) (linear topology L=5) 

resulting from reducing the diagnosis region. The graph includes the 4 networking services (NS1 … NS4). The 

number of vertices is reduced from 196 to 111 vertices while the number of edges is reduced from 592 to 350 

edges, and the diagnosis time is almost divided in half, transitioning from 4 to 2.1 seconds (averaged 20 times).  

Table 31. Vertices generated in several network topologies  

Network Topology Type of Control Network Elements Networking services Generated vertices 

Tree (D=2, F=15) in-band 482 2 1486 

out-of-band 497 1533 

in-band 482 100 1780 

out-of-band 497 1827 

Linear (N=100) in-band 400 2 1409 

out-of-band 499 1707 

in-band 400 100 1703 

out-of-band 499 2001 

 

5.4 Self-Healing framework for video streaming applications over SDN 

We include our topology-aware self-diagnosis block inside a self-healing framework to be able to detect, diag-

nose and recover dynamic SDN infrastructures delivering streaming services. This section evaluates this self-

healing framework as a whole when enabled by a topology-aware self-diagnosis approach. 
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5.4.1 Overall description of the self-healing testbed 

 

Figure 107. Implementation of the self-healing framework 

The workflow of the tesbed is as it follows: A new client arrives and demands the content to the streaming server 

(1), which starts sending the content. The SDN controller installs the necessary flows on the intermediate Open-

Flow switches (2) to allow the streaming packets coming from the content server to be sent to the client and vice 

versa. Then, the Graphical User Interface (GUI) retrieves the network topology from the SDN controller and clas-

sifies the network elements in hosts, switches, links and logical ports, which are shown in the GUI (3). The self-

modeling algorithm generates the fault propagation model (4) from this classified list of network elements by 

instantiating their corresponding templates and assembling their respective dependency graphs, as explained in 

the previous chapter. If the network topology changes, the self-modeling block regenerates the fault propagation 

model by incorporating the newly added elements. Once the model is generated, the root cause analysis module 

will be triggered by the alarms indicating a malfunction in the streaming service and it will update the fault prop-

agation model (5) with the root cause(s). It indicates as root cause a network node but also its internal compo-

nent (CPU, port, card, application, etc.). Once the root cause is identified, the root cause analysis block suggests a 

recovery action (6) that will be validated by a human administrator (7) once is proved it re-establishes the 

streaming service. 

5.4.2 Implementation  

The self-healing framework is composed of the self-diagnosis block and the SDN infrastructure. The self-diagnosis 

block includes the self-modeling and the RCA blocks. The self-healing framework is mostly composed of open 

source software, as exception of MATLAB R2013A used in the self-diagnosis block. 

The probabilistic dependency graph depicting the fault propagation model is visualized through the 3-D graph 

visualizer named UbiGraph in(UbiGraph,-) . A graphical user interface (GUI), to show the network topology with 

the network elements already classified, is implemented in python with the Qt software library in (Qt, 2015). 
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This self-healing framework is running on a single physical machine running on a Windows 7 professional 64 bits 

as OS. Inside this OS we run the self-diagnosis module based on the Bayesian Network algorithm which is based 

on the Kevin Murphy’s Bayesian Networks Toolbox in (Murphy et al., 2001) running in MATLAB R2013A.  

The SDN environment is completely virtualized and embedded in a VM (managed by VirtualBox) which is running 

a Xubuntu OS. The SDN controller is Floodlight, while the SDN infrastructure is emulated through Mininet (Lantz 

et al, 2010). For instance, in our previous testbed (Sanchez et al, 2014), the SDN controller used was POX 

(McCauley, 2012). Inside the Mininet emulator, the video streaming application is running on several nodes of 

that virtualized network topology and sends streaming videos through the SDN infrastructure managed by the 

SDN controller.  

In order to share information among the guest OS (Windows 7) and the host OS (Ubuntu), a shared folder is used, 

where we embed several descriptors of the network topology extracted from the SDN controller, the logical ports 

of the OpenFlow switches, among other necessary information to build the probabilistic dependency graph. In 

addition, there are two files that contain the state of the network and updates in the network topology. When 

there is a network topology change, an alarm is generated and this information is notified to the Windows OS by 

changing the state on this file, which is continuously read by the self-modeling algorithm running in MATLAB. 

Similarly, in the presence of a fault in the network, an alarm is generated and this information is notified to the 

Windows OS by changing the state on a file, which is continuously read by the RCA algorithm running in MATLAB. 

5.4.3 Transformation of the network topology into a machine-readable format 

Most open source SDN controllers such as OpenDaylight or Floodlight only provide with a visual description of 
the network topology which is just not enough for advanced processing like diagnosis. Nevertheless, we devel-
oped an algorithm that takes as input the network topology given by the SDN controller (in a JSON format) and 
generates a machine readable format descriptor containing the information of the network topology at instant t. 
First, once the user clicks on the ‘Retrieve and Refresh Network Topology Information’ button of the GUI, the 
network topology is retrieved from the SDN controller through the northbound API at instant t, as it was dis-
cussed in previous chapters. Then, each network element retrieved is classified in links and network nodes and 
then each network nodes is classified in switches, controllers or hosts and are shown in their corresponding 
section in the GUI. 
The developed GUI is shown in Figure 108, where the following elements of a linear (N=3) network topology can 
be found. This GUI shows advanced information of the network topology such as the communication ports to 
communicate switches with the OpenFlow controller, the hosts identifiers, the switches identifiers, the control 
links identifiers, the inter switch links identifiers and the access links identifiers.  

 

Figure 108. Transformation of the network topology into a machine-readable format 

5.4.4 Construction of the dependency graph  

Each time the user clicks on the ‘Retrieve and Refresh Network Topology Information’ button of the GUI, the 

dependency graph is regenerated with the current information of the network topology given by the controller. 

The self-modeling algorithm generates the dependency graph first and represents it as a 3-D graph to make 

easier the interpretation by human operators. This 3-D graph is composed of different types of network compo-

nents, depicted with different vertices with shapes specified in the following table. The size of each symbol is the 

same at the beginning, as long as the RCA has not been launched yet. 
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Table 32. Shape of the supervised network components included in the dependency graph  

Symbol Type of network component 

ball application or VNF 

cone switch port or network card interface 

torus link 

cube CPU 

 

 

Figure 109. Construction of the dependency graph from templates 

5.4.5 Root cause analysis 

The RCA block is in charge of identifying the root cause with the Bayesian networks approach to calculate the 
probability of faulty elements in the current network topology.  
 
Firstly, the network dependency graph is generated by the self-modeling algorithm and is then filled with the 
observations gathered from the following network components:  

 CPU load on network nodes 

 state of switches’ ports,  

 state of SDN controller’s ports,  

 state of hosts’ network cards,  

 state of the SDN controller application,  

 state of the OpenFlow client applications running on switches,  

 state of VNFIs  

 state of the video streaming application running on the clients and on server 
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Figure 110. Root Cause Identification process 

Secondly, the RCA is triggered and the root cause is calculated by propagating those network observations. As it 

can be seen in Figure 110, the RCA provides with the same network dependency graph but the vertices are col-

oured and resized according to their a posteriori probability calculated by the RCA for each network component. 

For instance, the redder a vertex and the bigger is, the higher its root cause probability is, contrarily, the greener 

a vertex and the smaller is the lower its a posteriori probability is. Figure 110 shows how the root cause focuses 

on a subset of the network components, depicted in red and bigger sizes, with respect to the rest of network 

components, which become smaller and greener. 

The most important advantage of our finer-grained templates is that those help identifying the root cause with 

finer granularity, by identifying faults at a component level.  

We describe here two possible faults: one on a data link between a switch and a host (Figure 111 (a)) and one on 

the SDN controller application (Figure 111 (b)).  

In the faulty link between the switch Ms2 and the host H2, the RCA provides with two different resolutions, at a 

node-level, where the most probable root causes are both nodes and the link interconnecting them, and at com-

ponent-level, where the most probable root causes are the respective nodes’ interfaces.  

In the faulty SDN controller application, the RCA provides with two different resolutions also, at a node-level, 

where the most probable root causes is the SDN controller, and at component-level, where the most probable 

root cause is its respective application, and its configuration, having completely discarded the physical compo-

nents of the SDN controller as it responds to ping requests. 

Demo & Innovation
Identification of root cause

Network observations
•CPU load on the network nodes
•state of switch ports
•state of network cards
•state of the controller
•VNF state

Root Cause 
Identification

Based on Bayesian 
Networks



End-to-end Self-Diagnosis of Programmable Networks 

150 
 

 

Figure 111. Finer-Granularity of the Root Cause Identification until component level: (a) faulty link, (b) faulty controller 

5.4.6 Update of the dependency graph 

When there are changes on the network topology, the self-modelling algorithm is triggered to regenerate and 
update the network dependency graph. This triggering of the self-modeling algorithm is based on a change de-
tector, which utilizes a comparator, previously shown in chapter 4, that stores a previous snapshot of the net-
work topology (reference snapshot) and periodically monitors for network topology changes to be compared 
with the reference snapshot.  
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Figure 112. Network dependency graph regeneration and update process 

Figure 112 shows the regeneration and update of the network dependency graph.  

 Firstly, the network topology at instant t is updated by the SDN controller  

 Secondly, the topological information is converted into a machine-readable format file with the updated 
classified network elements received by the GUI 

 Thirdly, the GUI triggers the self-modeling algorithm automatically (shown in Figure 112 in a red square) and 
it sends this information to the self-modeling block to generate the network dependency graph by showing 
a message “Network Change Detected> Launching Self-Modeling”.  

 Finally, the 3-D network dependency graph is first regenerated and then updated by including those newly 
added elements in the network topology at instant t+1 found in the machine-readable descriptor 

 

We evaluate here how the RCA module updates the root cause due to topological changes in the network infra-

structure with two different use cases. On both use cases, the application consists of a video streaming service 

where a video is first sent to one single client and then to another new streaming clients that join the streaming 

service (client 2, client 3, and client 4) with the subsequent topological change.  

In the first use case, there is a faulty link which is being diagnosed and a sudden network topology change occurs 

during the diagnosis. In this case, the network topology is updated and the root cause analysis now includes in 

the diagnosis those newly added nodes, but the faulty link remains there. The root cause analysis should be 

consistent enough to pinpoint the same elements as previously to the network change. Now it determines as 

root causes (root causes: Ms2-switch, AL2-link,hh2-client1), the same as before the change. However, when new 

topology(t) topology(t+1)
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nodes are included in the diagnosis with the same network observations, the uncertainty will be higher as seen in 

Figure 113 due to the changes in the a posteriori probability distribution.  

 

Figure 113. Case 1: Persistence of the root cause calculation with topological changes 

In the second use case, there is a faulty link which is being diagnosed and eventually repaired. Later on, a sudden 

network topology change occurs after the diagnosis was ended, and the self-modeling algorithm regenerates the 

network dependency graph including the new elements. It is at this time when a different link from the previous-

ly diagnosed becomes faulty. In this case, the root cause analysis now includes in the diagnosis those newly add-

ed nodes but the network observations are different as the fault is different. The root cause analysis should be 

updated in two senses: first to include the new elements found in the topology but also to pinpoint the actual 

root cause (root causes: Ms3-switch, AL6-link, hh6-client2). 
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Figure 114. Case 2: Update of the root cause calculation with topological changes 

5.4.7 Recovery actions 

The recovery block is based on a set of predefined actions to recover the network. Once the RCA gives us the list 

of root causes and associated probability, the root cause list is sorted according to the probability and the N most 

probable root causes are selected.  Each root cause in this filtered list is associated with a different recovery 

action. For instance, for recovering a NIC (Network Interface Card), we set the command ‘ipconfig eth0 up’, or for 

recovering a link between two network nodes by a forwarding action where this link is avoided or replacing it. 

We inject link failures in the network through the Mininet CLI with the command link node1 node2 down. The 

RCA can suggest recovery actions by setting the command link node1 node2 up. 

We inject failures in the SDN controller application by shuting it down, and the RCA suggests as recovery action 

to launch a new instance of the SDN controller. 

 

Figure 115. Recovery action suggestion according to the calculated root cause 

Once the recovery actions are set into the network, we can measure how long it takes the self-healing module to 

restore a given failure. We evaluate how fast the re-establishment of the traffic is in the network composed of 

two clients (Client1 and Client2) and one server delivering that content, which is shown in Figure 116. 

We consider two use cases, one faulty link (a) and one faulty SDN controller application (b). 

 

Figure 116. Service restoration in two different cases: (a) faulty link, (b) faulty SDN controller application 

Service restoration due to faulty link: Figure 117 shows the traffic (measured in packets) seen by the interface of 

of the streaming client client1. It can be seen that the first time a fault is injected, it takes 6 seconds the self-

healing systemto restablish the service, while it takes 3 seconds, and 1 second afterwards. This value is highly 

oscilating as it depends on many factors, the time it takes the self-modeling and the RCA algorithms to suggest 

the action, or the time taken to detect the alarm. The measured window is 314 seconds and the time during 

which the streaming application is under failure is 6+3+1+1 = 11 seconds, giving an availability factor in this con-

crete example of (314-11)/314= 96,5. 

Possible root cause 1: Physical Error: Failure on NIC of host (H2) 

Associated probability: 83.3 (%)
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Figure 117. Fault injection and unavailabililty on streaming application due to faulty link 

Service restoration due to faulty SDN controller application: Figure 118 shows the traffic (measured in packets) 
seen by the interface of of the streaming client client1 under a faulty SDN controller application. When we inject 
a fault in the SDN controller application, it takes 9 seconds the self-healing system to restablish the service. In 
this case the service is restablished by launching another SDN controller instance. This value is also highly oscilat-
ing as it depends on the aforementioned factors but also on the time it takes the detection block to detect that 
the SDN controller is under failure. The measured window in this case is smaller, 190 seconds and the time during 
which the streaming application is under failure is 9 seconds, giving an availability factor in this concrete example 
of (190-9)/190= 95,3. 

 

Figure 118. Fault injection and unavailabililty on streaming application due to faulty SDN controller application 

Both calculated unavailability values are just given as example, but the important point here is the capability to 

recover rapidly. We have seen that the self-healing system can provide predefined recovery actions the the en-

tire self-healing loop (detection, self-modeling, RCA, recovery) is under 10 seconds. As conclusion, these recovery 

times are at the scale of seconds, which affects the unavailability of the streaming application. However, in SDN 

based infrastructures, which operate at a ms scale, those unavailability values are still so high. 

5.5 Conclusion 

This chapter evaluated the multi-layer self-diagnosis framework capable of diagnosing faults in programmable 

networks with SDN and NFV, while taking into account the networking service, virtual, logical, and physical layers.  

We evaluated the topology-aware self-diagnosis approach by diagnosing faults in the SDN controller and on both 

the control and data links. We also evaluated how the RCA can adapt the root cause proposed by taking into 

account dynamic information such as the CPU load on the nodes in the SDN infrastructure. However, we saw that 

the uncertainty on the root cause was high due to the finer-granularity of our proposed templates and the con-

sideration of the whole network infrastructure in the diagnosis. 

We evaluated the service-aware self-diagnosis approach by diagnosing two network services in two different 

situations, while applying two different RCA strategies. Both RCA strategies helped reduce the uncertainty on the 

root cause of our previous topology-aware approach due to the capability to adapt the dependency graph with 

the appropriate information such as the portion of the network topology or the set of appropriate services. 
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We evaluated the self-healing framework based on the topology-aware self-diagnosis to show how an automated 

diagnosis can support self-healing to recover both a streaming service and its underlying SDN infrastructure. 

However, we also saw that the time taken to the self-healing testbed to recover the streaming application  

We found the following limitations on the tests made: 

The topologies analyzed in this thesis are Linear and tree topologies with different number of network elements. 

However, there are far more complex topologies in data centers such as fat-tree or other topologies.  

The parameters detected and fed to the self-modelig module are all the elements in the network topology, in-

cluding the control plan resources. However, no traffic is measured to include in the model the state of a link. 

The detection is based on the information seen by the SDN controller, but other in a real network many other 

sources of information are available and should be integrated in this diagnosis module.  

The number of controllers in the topology has always been one main controller. However, in real infrasructures 

there a number of them to ensure the control of the network is maintiained at all times. In this case, the connec-

tions between each controller and its set of switches has to be detected and included in the network graph. This 

has to include the type of control led by each of thes controllers. 

The root cause analyzes has analyzed so far mainly unavailability on the networking services or in the underlying 

infrastructure, but not degradations. Nevertheless, the automated construction of this graph will serve as a base 

to understand how degradations can propagate in the network and eventually lead to service abnormalities. 

In terms of performance, the self-modeling approach takes a long time with respect to the reconfiguration 

changes in SDN infrastructures, which can reach milliseconds. This is mainly due to the large topologies analysed. 

In chapter 4 we tried to address this issue by exploring part of the network topology instead of the whole topolo-

gy. However, a possibility is to only diagnose a subset of the network and the appropriate dependencies with 

respect to the alarm received by the diagnosis engine. 
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Chapter 6 Conclusions and Fu-

ture work 

 

 

6.1 Conclusions 

The chapter 2 describes the context of this thesis, programmable networks. It gives an insight on SDN and NFV, 

its faut management challenges and related work. This chapter motivates the resilience needs of combined SDN 

and NFV infrastructures and it describes the research challenges to conceive a self-diagnosis mechanism to cope 

with the high dynamicity of those infrastructures. 

The chapter 3 details self-healing systems, as the autonomic mechanism able to introduce autonomic priniciplies 

in programmable networks. We survey the state of the art on self-healing systems, the related work on the algo-

rihtms put in place, focusing especially on the self-diagnosis algorithms such as model-bbased approaches like 

Bayesian Networks, due to its many advantageous properties and use on the network diagnosis context. 

The chapter 4 describes the core of this thesis, a cross-layered self-modeling based self-diagnosis approach that 

automates the diagnosis of programmable networks. This cross-layered self-diagnosis approach takes into ac-

count the topological changes in the infrastructure, the type of control led by the control plane, the updates in 

the forwarding flows, placement of the virtual links and VNFs composing the networking services deployed over 

the infrastructure. This cross-layered self-diagnosis approach is based on a topology-aware self-modeling ap-

proach and a service-aware self-modeling approach. The topology-aware self-modeling approach builds automat-

ically and at runtime the fault propagation model by assembling a set of multi-layered, fine-granular, machine-

readable, extendable templates containing the resources to supervise at physical and logical layers.  The service-

aware self-modeling approach is an extension of the topology-aware self-modeling to diagnose networking ser-

vices, by including in the diagnosis the virtual and service layers that generates on-the-fly the diagnosis model 

that includes the physical, logical, and the virtual dependencies of networking services in combined SDN and NFV 

infrastructures. This cross-layered self-diagnosis approach is suitable to any network topology and any control 

type in SDN. In addition, it is independent from the controller implementation (e.g. Floodlight or OpenDaylight) 

because it directly interacts with the SDN controller through its northbound API interface, which introduces a 

high degree of abstraction with respect to the underlying southbound protocol. 

The chapter 5 evaluates the cross-layered self-diagnosis approach. It first shows how it can automatically gener-

ate the fault propagation model for several network topologies, types of control and different networking ser-

vices composed of different chains of VNFs. It also evaluates several faults at the control plane, the data plane, 

and the networking services deployed over different network topologies. It also evaluates the scalability of the 

self-diagnosis approach, by evaluating the time taken to generate the fault propagation model as a function of 

the network topology size and the number of services included in the diagnosis. IT finally evaluates a self-healing 

mechanism that can suggest predefined recovery actions based on the self-diagnosis approach. 

In conclusion, we investigated self-healing properties in order to apply them into programmable networks to 

provide them with resilience properties so needed in such centralized networks. We proposed a self-diagnosis 



End-to-end Self-Diagnosis of Programmable Networks 

157 
 

framework to diagnose automatically and on-the-fly SDN and NFV combined infrastructures.  This framework is 

based on a self-modeling methodology that generates at runtime a fault propagation graph to describe how 

faults and failures propagate in such dynamic multi-layer SDN and NFV infrastructure. This model contains the 

different dependencies among the resources located at physical, logical, virtual and service layers and it is ex-

ploited by the root cause analysis to find the root cause. This approach is cornerstone as demonstrated in the 

thesis to suggest recovery actions based on the calculated root causes at data, control, as ell as application plane. 

6.2 Future work 

This thesis points out several research directions worth being explored in the future. We structure these research 

directions in four: proactive self-diagnosis techniques, machine-learning techniques, observability techniques and 

extension of the current fault propagation model. 

6.2.1 Proactive self-diagnosis techniques to avoid service failures 

In the thesis we have focused on reactive cases where the faults and failures to find the root causes. However, 

there are other cases where degradations may end up with the failure of the system or the services deployed. 

Proactive self-diagnosis mechanisms are an interesting research direction, because those mechanisms are able to 

evaluate the impact of degradations in network resources such as CPU load and throughput on the VNFs and 

networking services to predict future failures. It could also include metrics related to SDN and NFV layers to 

prevent future malfunctions by monitoring degradations and it will integrate the defined metrics for SDN in the 

self-diagnosis framework to help predicting future degradations due to congestions on the control-to-data inter-

faces. 

6.2.2 Exploration of machine-learning techniques 

We identify machine-learning algorithms and techniques to introduce intelligence on the recovery actions sug-

gested by a self-healing system, instead of predefined actions. Those intelligent recovery actions can comprise 

reconfiguration orders, swapping mechanisms for the controller, alternative forwarding for OpenFlow-enabled 

switches or load balancing on access points.   

We also identify machine-Learning algorithms to automarically learn the template of a new node in the fly, with-

out having to predefine its template. This means to compute the inner dependencies of a newly added node by 

analyzing its output and input data. 

6.2.3 Observability and detection techniques 

Another interesting research direction is the conception of intelligent detection techniques to cover two major 

aspects: 

-Automatically adapt the diagnosis to the appropriate and relevant network segment and services affected, 

instead of considering the whole network topology, which leads as a result to high uncertainty. 

-Discern between topological changes and malfunctions. A typical example is when a malfunction occurs in a 

given link, which can be seen as a topological change (the node and the link attached disappears) and the diagno-

sis module would include the impacted link in the diagnosis. 

6.2.4 Extension of the fault propagation model  

The granularity of our diagnosis model considers that the VNFI is embedded in a host, representing the depend-

encies between the embedding host and the VNFI, as well as it considers the three states of a VNFI (instantiated, 

configured, and active). However, it could be possible to extend this fault propagation model to make it more 

accurate and diagnose other malfunctions in additional components such as the hypervisor, VM or other addi-

tional layers. Concretely, we identify the following extensions of our fault propagation model: 
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-Inclusion of the type of the internal components inside a host such as the hypervisor, and the VM(s) composing 

the VNFI 

-Inclusion of the VNFC (VNF components) composing a VNF and the dependencies of a given VNF with the under-

lying VNFC.  

-Inclusion of the electrical network supporting the network infrastructure  

-Inclusion of the dynamic interactions between control and data planes that may lead to glitches  

 



End-to-end Self-Diagnosis of Programmable Networks 

159 
 

Bibliography 



End-to-end Self-Diagnosis of Programmable Networks 

160 
 

 (ONF, 2011) ONF, OpenFlow Switch specification 1.1.0 [Online]. Available at: 

http://archive.openflow.org/documents/openflow-spec-v1.1.0.pdf 

(ONF, 2016) ONF, SDN architecture https://www.opennetworking.org/images/stories/downloads/sdn-

resources/technical-reports/TR-521_SDN_Architecture_issue_1.1.pdf 

(Kephart & Chess, 2003) J. Kephart, D. Chess, The Vision of Autonomic Computing, IEEE Computer Society. 2003 

(Salehie & Tahvildari, 2009) M. Salehie, L. Tahvildari, Self-adaptive software: landscape and research challenges. 

ACM Trans Autonomous Adaptive Systems 4(2):1–42. 2009 

(Dijkstra, 1974) EW. Dijkstra, “Self-stabilizing systems in spite of distributed control”. Commun ACM 17(11): 643–

644.107. 1974 

(Sterbenz et al, 2010) J. P. G. Sterbenz, D. Hutchison, et. al. “Resilience and survivability in communication net-

works: Strategies, principles, and survey of disciplines”. Comput. Netw. 54, 8 (June 2010), 1245-1265.  

(Psaier & Dustdar, 2011) H. Psaier, S. Dustdar, “A survey on Self-Healing systems: approaches and systems”. 

Computing 91, 1, 43-73. 2011 

(Gosh et al, 2007) D. Ghosh, R. Sharman, H. Raghav Rao, and S. Upadhyaya, “Self-Healing systems—survey and 

synthesis”. Decis Support Syst 42(4):2164–2185. 2007 

(Russell & Norvig, 2003) S. Russell and P. Norvig, “Artificial Intelligence: A Modern Approach”, 2nd ed. Prentice 

Hall. 2003. 

(Dobson & Denazis, 2009)  S. Dobson, S. Denazis, S. et. al. “A Survey of Autonomic Communications. ACM Trans-

actions on Autonomous and Adaptive Systems, Vol.1, No.2, Pages 223-259. 2009 

(Nagpal et al, 2003) R. Nagpal, A. Kondacs, C. Chang, Programming methodology for biologically-inspired self-

assembling systems, AAAI Symposium. 2003. 

(Kliger et al, 1997) S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S. Stolfo.  “A coding approach to event correla-

tion”.  In Intelligent Network Management (IM). 1997 

(Huebscher & McCann, 2008) MC. Huebscher, JA. McCann, “A survey of autonomic computing: degrees, models, 

and applications”. ACM Computing Survey 40(3):1–28. 2008 

(Salehie & Tahvildari, 2005) M. Salehie and L. Tahvildari, “Autonomic computing: emerging trends and open 

problems”. SIGSOFT Software Engineering Notes 30(4):1–7. 2005 

(Avizienis et al, 2004) A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, "Basic concepts and taxonomy of depend-

able and secure computing," in Dependable and Secure Computing, IEEE Transactions on , vol.1, no.1, pp.11-33. 

2004 

(Singh & Graepel, 2013) S. Singh and T. Graepel, “Automated probabilistic modelling for relational data”, in CIKM, 

pages 1497–1500, 2013. 

(Kabli et al, 2007) R. Kabli, F. Herrmann, J. McCall, “A Chain-Model Genetic Algorithm for Bayesian Network Struc-

ture Learning,” GECCO. 2007 

(Fenz, 2011) S. Fenz, “An ontology and bayesian-based approach for determining threat probabilities,” In Pro-

ceedings of the 6th ACM Symposium on Information, Computer and Communications Security, pages 344–354. 

2011. 

(Rish,_) I. Rish, “A Tutorial on Inference and Learning in Bayesian Networks”, IBM T.J. Watson Research Center, 

[Online], Available at: http://www.ee.columbia.edu/~vittorio/lecture12.pdf 



End-to-end Self-Diagnosis of Programmable Networks 

161 
 

(Skiena, 1990) S. Skiena, "Topological Sorting." §5.4.3 in Implementing Discrete Mathematics: Combinatorics and 

Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 208-209. 1990. 

(Tipper, 2013) D. Tipper, “Resilient Network Design: Challenges and Future Directions”. Telecommunication 

Systems, 56 (1), pp. 5.  

(Cholda et al, 2007) P. Cholda, A. Mykkeltveit, B.E. Helvik, O.J. Wittner, A. Jajszczyk, "A survey of resilience differ-

entiation frameworks in communication networks," Communications Surveys & Tutorials, IEEE , vol.9, no.4, 

pp.32,55, Fourth Quarter 2007. 

(Butler & Keselj, 2010) M. Butler and V. Keselj. In Proceedings of Canadian AI'2010, Ottawa, ON, Canada,, volume 

LNAI 6085 of Lecture Notes in Computer Science, Springer pp. 366-369. 2010.  

(Alharbi et al, 2015) T. Alharbi, M. Portmann and F. Pakzad, "The (in)security of Topology Discovery in Software 

Defined Networks," Local Computer Networks (LCN), 2015 IEEE 40th Conference on, Clearwater Beach, FL, 2015, 

pp. 502-505.  

(Heller et al, 2012) B. Heller, R. Sherwood, and N. McKeown. “The controller placement problem”. In Proc. 1st 

workshop on Hot topics in software defined networks, ACM HotSDN ’12, pages 7–12, New York, NY, USA. 2012 

(Curtis et al, 2011) A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee. “Devoflow: 

scaling flow management for high-performance networks”. SIGCOMM Comput. Commun. Rev., 41(4):254–265. 

2011. 

(Panda et al, 2013) A. Panda, C. Scott, A. Ghodsi, T. Koponen, and S. Shenker, “CAP for Networks”. In Proceedings 

of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, HotSDN. 2013 

(Sharma et al, 2013a) S. Sharma, D. Staessens, D. Colle, M. Pickavet, P. Demeester, "Fast failure recovery for in-

band OpenFlow networks," in Design of Reliable Communication Networks (DRCN), 2013 9th International Con-

ference on the, vol., no., pp.52-59, 4-7 March 2013 

(Behesti & Zhang, 2012) N. Beheshti, Y. Zhang, "Fast failover for control traffic in Software-defined Networks," in 

Global Communications Conference (GLOBECOM), 2012 IEEE , vol., no., pp.2665-2670. 2012 

(Li et al, 2014) H. Li, P. Li, S. Guo and A. Nayak, "Byzantine-Resilient Secure Software-Defined Networks with 

Multiple Controllers in Cloud," in IEEE Transactions on Cloud Computing, vol. 2, no. 4, pp. 436-447, Oct.-Dec. 1 

2014. 

(Yazici et al, 2014) V. Yazıcı, M. Oğuz Sunay, Ali Ö. Ercan. “Controlling a Software-Defined Network via Distributed 

Controllers”. Özyeğin University, Istanbul, Turkey. 2014 

(ETSI NFV, 2012) ETSI NFV Group Specification: “Network Functions Virtualisation (NFV); Virtual Network Func-

tions Architecture”, Dec. 2012 

(ETSI NFV, 2014) ETSI NFV Group Specification: “Network Functions Virtualisation (NFV); Management And Or-

chestration”, Dec. 2014 

(ETSI NFV, 2015a) ETSI NFV Group Specification Draft: “Network Functions Virtualisation (NFV); Ecosystem; Re-

port on SDN Usage in NFV Architectural Framework”, Sept. 2015. 

 (ETSI NFV, 2015b) ETSI NFV Group Specification: “Network Functions Virtualisation (NFV); Resiliency Require-

ments”, Jan. 2015 

(Guerzoni et al, 2012) R. Guerzoni et. al., “Network Functions Virtualisation: An Introduction, Benefits, Enablers, 

Challenges and Call for Action. Introductory white paper,” in SDN and OpenFlow World Congress, June 2012. 



End-to-end Self-Diagnosis of Programmable Networks 

162 
 

(Kreutz et al, 2015) D. Kreutz, F.M.V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodolmolky, S. Uhlig, 

"Software-Defined Networking: A Comprehensive Survey," Proceedings of the IEEE , vol.103, no.1, pp.14,76. 

2015. 

(Ma et al, 2014) Y. Ma, A. AuYoung, S. Banerjee, J. Lee, and P. Sharma, “Automatic resolution of dynamic re-

source conflicts between SDN applications” 

(AuYoung et al, 2014) A. AuYoung, Y. Ma, S. Banerjee, J. Lee., et. al.,” Democratic Resolution of Resource Conflicts 

Between SDN Control Programs”, Proceedings of the 10th ACM International on Conference on emerging Net-

working Experiments and Technologies, Sydney, Australia. 2014 

(Chickering et al, 1994) D. M. Chickering, D. Geiger, and D. Heckerman. “Learning bayesian networks is np-hard”. 

Technical report, Technical Report MSR-TR-94-17, Microsoft Research Technical Report. 1994. 

(Robinson, 1977) R. W. Robinson. “Counting unlabeled acyclic digraphs”. In C. H. C. Little, editor, Combinatorial 

Mathematics V, volume 622 of Lecture Notes in Mathematics, pages 2843, Berlin. 1977. 

(Messaoud et al, 2009a) M. B. Messaoud, P. Leray, and N. Ben Amor. “Semcado: a serendipitous strategy for 

learning causal bayesian networks using ontologies”.   In Proceedings of  the  11th  European  Conference  on  

Symbolic  and Quantitative  Approaches  to  Reasoning  with  Uncertainty, pages 182–193. 2009 

(Messaoud et al, 2009b) M. B. Messaoud, P. Leray, and N. Ben Amor, “Integrating ontological knowledge for 

iterative causal discovery and visualization”. In ECSQARU'09, pages 168-179,hal-00596260,2009 

(Friedman et al, 1999) N. Friedman et. al. , “Learning probabilistic relational models”, Proceedings of the Six-

teenth International Joint Conference on Artificial Intelligence (IJCAI-99), Stockholm, Sweden, August 1999 

(Tjoa, 2009) A. M. Tjoa, “Ontology-based generation of Bayesian networks”, CISIS 09 

(Wallin, 2012) S. Wallin, “Rethinking Network Management: Models, Data-Mining and Self-Learning”, Ph.D dis-

sertation, Dept. Comp. Sciencies, Luleå, Sweden, 2012. 

(IUT-T, 2001) FCAPS Management Framework: ITU-T Rec. M. 3400, available at: http://www.itu.int/rec/T-REC-

M.3400-200002-I 

(Ganek & Corbi, 2003) A.G. Ganek and TA. Corbi, “The dawning of the autonomic computing era”. IBM Syst J 

42(1):5–18. 2003 

(Arora & Gouda, 1993) A. Arora and M. Gouda, “Closure and convergence: a foundation of fault-tolerant compu-

ting”. IEEE Trans Softw Eng 19(11):1015–102. 1993 

(Paladi, 2015) N. Paladi, “Towards secure SDN policy management. In: 1st International Workshop on Cloud 

Security and Data Privacy by Design”. 2015 

(Steinder & Sethi, 2002) M. Steinder and A. S. Sethi. “End-to-end Service Failure Diagnosis Using Belief Net-

works”. In Network Operations and Management Symposium, NOMS 2002, pages 375-390, 2002 

(Bennacer et al, 2012) L. Bennacer, L. Ciavaglia, et.al., “Optimization of fault diagnosis based on the combination 

of Bayesian Networks and Case-Based Reasoning,” in NOMS, 2012 IEEE , vol., no., pp.619,622, 16-20 April 2012.  

(Bennacer et al, 2013) L. Bennacer, L. Ciavaglia, et. al. "Scalable and fast root cause analysis using inter cluster 

inference," in Communications (ICC), 2013 IEEE International Conference on , vol., no., pp.3563-3568, 9-13 June 

2013 

(Bennacer et al, 2015) L. Bennacer, Y. Amirat, A. Chibani, A. Mellouk, L. Ciavaglia, "Self-Diagnosis Technique for 

Virtual Private Networks Combining Bayesian Networks and Case-Based Reasoning," in Automation Science and 

Engineering, IEEE Transactions on , vol.12, no.1, pp.354-366, 2015 

http://www.itu.int/rec/T-REC-M.3400-200002-I
http://www.itu.int/rec/T-REC-M.3400-200002-I


End-to-end Self-Diagnosis of Programmable Networks 

163 
 

(Zhao, 2008) Y. Zhao “Towards Noise-Tolerant Network Service Diagnosis”. EECS Department. Northwestern 

University. SIGMETRICS 2008 

(Steinder & Sethi, 2004) M. Steinder, A.S. Sethi, "Probabilistic fault localization in communication systems using 

belief networks," in Networking, IEEE/ACM Transactions on , vol.12, no.5, pp.809-822, Oct. 2004 

(Mengshoel et al, 2010) O.J. Mengshoel, M. Chavira, K. Cascio, S. Poll, A. Darwiche, S. Uckun, "Probabilistic Mod-

el-Based Diagnosis: An Electrical Power System Case Study," in Systems, Man and Cybernetics, Part A: Systems 

and Humans, IEEE Transactions on , vol.40, no.5, pp.874-885. 2010 

(Tembo et al, 2015) S.R.Tembo, J.L. Courant, S. Vaton, "A 3-layered self-reconfigurable generic model for self-

diagnosis of telecommunication networks," in SAI Intelligent Systems Conference (IntelliSys), 2015 , vol., no., 

pp.25-34, 10-11. 2015 

(Yunkhao et al, 2010) L. Yunhao, K. Liu; M. Li, "Passive Diagnosis for Wireless Sensor Networks," in Networking, 

IEEE/ACM Transactions on , vol.18, no.4, pp.1132-1144, Aug. 2010 

(Al-Jawad et al, 2015) A. Al-Jawad, R. Trestian, P. Shah, O. Gemikonakli, "BaProbSDN: A probabilistic-based QoS 

routing mechanism for Software Defined Networks," in Network Softwarization (NetSoft), 2015 1st IEEE Confer-

ence on , vol., no., pp.1-5, 13-17 April 2015 

(Bahl & Chandra, 2007) P. Bahl, R. Chandra, et. al., “Towards highly reliable enterprise networking services via 

inference of multi-level dependencies,” in SIGCOMM, 2007. 

(Hounkonnou, 2013) C. Hounkonnou, “Active Self-Diagnosis in Telecommunication Networks”. PhD thesis. Uni-

versité de Rennes 1. July 2013.  

(Fonseca et al, 2012) P. Fonseca, R. Bennesby, E. Mota and A. Passito, "A replication component for resilient 

OpenFlow-based networking," Network Operations and Management Symposium (NOMS), 2012 IEEE , vol., no., 

pp.933,939, 16-20 April 2012 

(Mijumbi et al, 2015) R. Mijumbi, et.al., "Network Function Virtualization: State-of-the-art and Research Chal-

lenges," in Communications Surveys & Tutorials, IEEE , vol.PP, no.99, pp.1-1. 2015 

(Esteves et al, 2013) R.P. Esteves, L.Z. Granville, R. Boutaba, "On the management of virtual networks," in Com-

munications Magazine, IEEE , vol.51, no.7, pp.80,88, July 2013. 

(Chowdhury & Boutaba, 2009) N.M.M.K. Chowdhury, R. Boutaba, "Network virtualization: state of the art and 

research challenges," in Communications Magazine, IEEE, vol.47, no.7, pp.20-26, July 2009. 

(Kandula & Mahajan, 2010) S. Kandula, R. Mahajan, et. al, “Detailed diagnosis in enterprise networks,” in 

SIGCOMM, 2010. 

(Scholler et al, 2013) M. Scholler et. al., "Resilient deployment of virtual network functions," in Ultra Modern 

Telecommunications and Control Systems and Workshops (ICUMT), 2013 5th International Congress on , vol., 

no., pp.208-214, 10-13 Sept. 2013 

(Miyazawa et al, 2015) M. Miyazawa et.al., "vNMF: Distributed fault detection using clustering approach for 

network function virtualization," in Integrated Network Management (IM), 2015 IFIP/IEEE International Symposi-

um on , vol., no., pp.640-645, 11-15 May 2015 

(Smith et al, 2011) P. Smith, D. Hutchison, J.P.G. Sterbenz, M. Schöller, A. Fessi, M. Karaliopoulos, L. Chidung , B. 
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