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Titre : Modélisation numérique des fluides fortement compressibles proches du point 

critique 

Résumé court 

Un fluide porté à une température et pression supérieures à celles du point critique est 

communément appelé fluide supercritique. Ce fluide possède des propriétés particulièrement 

intéressantes à cheval entre celles des gaz et celle des liquides. En effet, la masse volumique d’un 

fluide supercritique est proche de celle d’un liquide tandis que sa viscosité est proche de celle d’un 

gaz. Une des caractéristiques particulières de ces fluides quand ils s’approchent du point critique 

est que plusieurs des propriétés thermo-physiques montrent un comportement singulier 

(compressibilité divergente, diffusivité thermique évanescente etc). Dans ce travail, un modèle 

mathématique basé sur les équations de Navier-Stokes couplées à celle de l’énergie est proposé 

afin d’étudier les écoulements de ces fluides très proches de leur point critique. La validation du 

modèle a été effectuée sur un problème de propagation d’onde acoustique dans l'eau. Nous avons 

ainsi observé que des solutions précises avec des schémas implicites pour des systèmes non 

linéaires sont possibles avec des nombres de Courant élevés. L’étude des écoulements dans des 

fluides supercritiques, lorsqu'ils sont assujettis à une trempe thermique et à une vibration 

simultanées ont montré que de telles conditions pouvaient conduire à la formation d’instabilités 

thermo-vibrationnelles, en particulier les instabilités de Rayleigh-vibrationnelles et paramétriques. 

Les simulations numériques nous ont permis de relever deux phénomènes particulièrement 

surprenants : (i) la température du fluide à l’intérieur du domaine devient inférieure à la trempe de 

température imposée à la frontière et (ii) une oscillation des doigts d’instabilité apparaît dans la 

couche limite thermique dans la direction de la vibration.  Dans le cas des fluides sous le point 

critique (cas diphasique), le modèle compressible développé est couplé à un de champ de phase 

(“phase field”) dans les conditions isothermes. Des cas tests élémentaires ont été considérés avec 

succès. Une discussion est proposée afin d’étendre le modèle dans le cas d’une transition continue 

du régime supercritique au régime sous-critique et vice-versa.  

Mots clés: ECOULEMENT COMPRESSIBLE, FLUIDES CRITIQUES, EFFET PISTON, MODÉLISATION 

NUMÉRIQUE, CHAMP DE PHASE 
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Title: Numerical modelling of highly compressible near-critical fluids 

Short Resume 

A fluid, in addition to its liquid and gas phase, is known to exist in another phase, wherein the fluid 

inherits some properties of both the phases. Such a fluid is called a supercritical fluid and the 

conditions (pressure and temperature) beyond which the fluid exists in this state is called the 

critical point. One of the peculiar feature of the fluids near the critical point is that the various 

thermo-physical properties show a singular behavior, such as diverging compressibility, vanishing 

thermal diffusivity etc. The flow behavior near the critical point leads to intriguing flow features 

ascribed to the strong thermo-mechanical coupling whose in-depth investigation can be limited by 

experimental constraints especially during a continuous transition from supercritical to subcritical 

regime.  The current work focuses on analyzing the flow behavior in near-critical fluids with prime 

focus on supercritical fluids. This is achieved by developing a mathematical and numerical model 

which is followed by the validation study and error analysis of the numerical scheme wherein 

unusual behavior of the Courant number is observed. Subsequently, the flow behavior of 

supercritical fluid is studied when simultaneously subjected to thermal quench and vibration, 

mainly Rayleigh-vibrational and parametric instabilities, their physical mechanism and various 

parameters affecting them. In addition, two captivating phenomena, firstly where the temperature 

of the fluid region drops below the imposed boundary condition and secondly, the see-saw motion 

of the thermal boundary layer are observed and physical explanations are provided. In order to 

investigate the flow dynamics in subcritical regime, phase-field modelling approach is explored 

for isothermal conditions. The model is examined for elementary test cases illustrating the 

feasibility to extend the model for a continuous transition from supercritical to subcritical regime. 

 

KEYWORDS: COMPRESSIBLE FLOW, NEAR CRITICAL FLUID, PISTON EFFECT, NUMERICAL 

MODELLING. 

Institut de Mécanique et d'Ingénierie 

ENSCBP bât A, 16 avenue Pey-Berland, 33607 PESSAC Cedex 
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ABSTRACT 

 

A fluid in general is known to exist primarily in two phases, a liquid or a gas phase. 

However, beyond a critical point, defined in terms of pressure and temperature, a clear distinction 

between the liquid and vapor phase ceases to exist and the fluid is classified as a supercritical fluid. 

A peculiar attribute on approaching the critical point is the singular behavior of thermo-physical 

properties, such as a diverging compressibility and a vanishing thermal diffusivity, which makes 

near-critical or supercritical fluids promising candidates in diverse applications varying from space 

to microtechnology. From a more fundamental perspective, the singular behavior of the properties 

leads to intriguing flow features primarily attributed to thermo-mechanical coupling of the flow 

field. While experimental constraints can limit an in-depth analysis of these systems, an 

appropriate mathematical model can help to gain insights into the flow features in near-critical 

fluids, especially a continuous transition from subcritical to supercritical and vice-versa in the 

realm of continuum mechanics. Addressing the issue of this continuous transition, the research 

work in this thesis marks a first step towards this goal wherein a compressible mathematical model 

is developed and used to analyze the flow behavior in supercritical fluids. The model calculates 

density directly from the continuity equation thus circumventing the need of any pressure-velocity 

coupling algorithm to solve the governing equations. The model is numerically solved using Finite 

Volume Method with a home-made code Thetis. The primary validation study analyzes the 

propagation of acoustic wave in water. It is also observed that accurate solutions with implicit 

schemes for non-linear systems are possible with higher Courant numbers. This unusual behavior 

is explained by virtue of contributions to error arising not only from conventional error growth 

rate but also due to phase-lag and difference in the group velocity of numerical and physical waves. 

The model is subsequently used to investigate the flow phenomena in supercritical fluids when 

subjected to simultaneous thermal quench and vibration, 𝑖. 𝑒. thermo-vibrational instabilities 

particularly Rayleigh-vibrational and parametric instabilities. With density being evaluated 

directly from the continuity equation, the current model evades the constraint of small thermal 

perturbations as imposed by the assumption of linear equation of state in the literature. The 

numerical simulations yield a close match with the experimental observation. A detailed 

description of the physical mechanisms causing these instabilities is succeeded by the analysis of 
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the effect of various parameters (quench rate, proximity to critical point) on critical amplitude of 

vibration for onset of these instabilities and the behavior of wave/finger like patterns. A captivating 

phenomenon where the temperature of the fluid region drops below the imposed boundary 

condition (termed as sink-zones) in Rayleigh-vibrational instabilities is also observed. In addition, 

the thermal boundary layer (TBL) is observed to move like a see-saw. This is ascribed to 

temperature change caused by pressure variations arising by virtue of vibrational force and is 

termed as forced piston effect owing to its close resemblance to the piston effect. In order to 

investigate the flow behavior in sub-critical state (two-phase flow) and subsequent continuous 

transition, phase field modeling approach in conjunction with developed compressible model is 

explored. The proposed phase field model is analyzed for elementary test cases in subcritical state 

near the critical point followed by discussion of means to extend the model for a continuous 

transition.  

KEYWORDS: COMPRESSIBLE FLOW, NEAR CRITICAL FLUID, PISTON EFFECT, NUMERICAL 

MODELLING. 

 

 

 

 

 

 

 

 

 

 

 

  



x 

 

RÉSUMÉ 

 

Un fluide est connu généralement pour exister principalement sous forme de liquide ou gaz. 

Cependant, au-delà du point critique thermodynamique, défini en termes de pression et de 

température du fluide, une distinction claire entre les phases liquide et vapeur cesse d'exister. Le 

fluide est alors appelé fluide supercritique. Lorsque l’on s’approche du point critique les propriétés 

thermophysiques deviennent singulières, par exemple la compressibilité diverge et la diffusivité 

thermique s’annule, ce qui rend les fluides proches du point critique particulièrement intéressants 

dans de nombreuses applications allant de l'espace à la micro technologie. D'un point de vue plus 

fondamental, le comportement singulier de ces propriétés conduit à des caractéristiques 

d'écoulement surprenantes et inattendues, principalement attribuées au couplage thermomécanique 

du champ d'écoulement. Alors que les contraintes expérimentales peuvent limiter une analyse en 

profondeur de ces systèmes, un modèle mathématique approprié peut aider à mieux comprendre 

les caractéristiques d'écoulement dans les fluides proches du point critique, notamment la 

transition continue de l’état sous critique à l’état supercritique et vice-versa dans l’hypothèse d’un 

milieu continu. Les  travaux de recherche dans cette thèse marquent un premier pas vers cet objectif 

dans lequel un modèle mathématique compressible est d’abord développé pour analyser les 

écoulements dans les fluides supercritiques suivi d’une modélisation par champ de phase du cas 

diphasique sous le point critique. Le modèle développé calcule la masse volumique directement à 

partir de l'équation de la conservation de la masse sans la nécessité d’un algorithme itératif de 

couplage vitesse-pression. Le modèle est résolu numériquement par la méthode des volumes finis 

avec le code du laboratoire, Thetis. La validation du modèle a été faite dans le cas de la propagation 

de l'onde acoustique dans l'eau. De plus, on a observé que des solutions précises avec des schémas 

implicites pour des systèmes non linéaires sont possibles avec des nombres de Courant élevés. 

Ceci s’explique par les contributions à l'erreur provenant non seulement du taux de croissance des 

erreurs conventionnelles mais aussi du retard de phase et de la différence des vitesses de groupe 

des ondes numériques et physiques. Le modèle est ensuite utilisé pour étudier les phénomènes 

d'écoulement dans des fluides supercritiques lorsqu'ils sont assujettis à une trempe thermique et à 

une vibration simultanées qui mènent aux instabilités thermo-vibrationnelles, en particulier celles 

de Rayleigh-vibrationnelles et paramétriques. La masse volumique étant évaluée directement à 
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partir de l'équation de conservation de la masse, le modèle n’est pas alors limité par des petites 

perturbations thermiques imposées par l'hypothèse de l’équation d'état linéarisée dans la littérature. 

Les résultats des simulations numériques et des expériences concordent bien. Une description 

détaillée des mécanismes physiques à l'origine de ces instabilités est menée par l'analyse de l'effet 

des différents paramètres (telles que l’amplitude de la  trempe de température, la proximité du 

point critique, l’amplitude et la fréquence de la vibration) sur l'amplitude critique de vibration pour 

le démarrage de ces instabilités et le comportement des motifs ondulatoires observés dans les 

couches limites thermiques. Un phénomène intéressant a été observé : la température du fluide à 

l’intérieur de la cellule complètement fermée descend en dessous de la température imposée à la 

limite. Cette anomalie a été expliquée en détail pour différentes conditions aux limites pour la 

température. Par ailleurs, les doigts d’instabilité apparaissant proche de la paroi subissant la trempe 

de température, ont montré un mouvement de va-et-vient dans la direction de vibration et ceci a 

été expliqué en termes d’effet piston forcé (vibration) par analogie à l’effet piston classique dû au 

changement de pression induit par le changement de température. L'étude du cas diphasique (sous 

le point critique) par une approche par champ de phase associée au modèle compressible décrit 

précédemment, a été considérée. Des cas tests élémentaires sous le point critique et relativement 

proche du point critique ont été considérés. Une discussion de l’extension de ce modèle pour 

différentes applications dans le domaine diphasique sous-critique est également proposée.  

 

Mots clés: ECOULEMENT COMPRESSIBLE, FLUIDES CRITIQUES, EFFET PISTON, MODÉLISATION 

NUMÉRIQUE, CHAMP DE PHASE 
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NOMENCLATURE 

Symbols 

𝑎 Radius mm 

𝐴 Amplitude mm 

Area m2 

𝐴𝑐𝑟 Critical amplitude mm 

𝑐 Wave speed m.s-1 

𝑐𝑠 Sound speed m.s-1 

𝑐𝑁 Phase speed m.s-1 

𝐶𝑃 Specific heat at constant pressure J.kg-1.K-1 

𝐶𝑉 Specific heat at constant volume J.kg-1.K-1 

𝐶𝑛 Cahn number --- 

𝐷𝑇 Thermal diffusivity  m2.s-1 

𝑒 Energy J 

error --- 

𝑓 Frequency Hz 

𝑓𝑜 Bulk free energy function --- 

𝐹 Free energy per unit volume J.kg-1 

𝐹𝑉 Free energy per unit volume J.m-3 

𝑓𝑆𝑇 Diffusive force at the interface per unit volume N.m-3 

𝐹𝑆𝑇 Force in Navier-Stokes corresponding to surface 

tension 

N.m-3 

𝐹𝑇 Total free energy J 

𝑭 Force vector N 

𝑔 Magnitude of acceleration due to gravity m.s-2 

𝐺 Error growth rate --- 

ℎ Cell size mm 

𝑖 Complex indices -- 

𝐽𝑑𝑖 Diffusive Flux of 𝑖𝑡ℎ fluid kg.m-2.s-1 
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𝑘 Thermal conductivity W.m-1.K-1 

Wavenumber m-1 

𝐿 Length  m 

𝑀0 Mobility S.I 

𝑛 Iteration number --- 

𝒏 Normal vector --- 

𝑁𝑐 Courant Number --- 

𝑃 Pressure N.m-2 

𝑃𝑒 Peclet number --- 

𝑞 Quench rate % 

𝑞̇ Volumetric heat source J.m-3 

R Gas constant J.kg-1.K-1 

𝑅𝑎𝑣 Rayleigh-vibrational number --- 

𝑡 Time s 

𝑡𝑎 Acoustic time s 

𝑡𝐷 Thermal diffusion time s 

𝑡𝑃𝐸 Piston Effect time s 

𝑡𝑛 nth time step s 

𝑇 Temperature K 

𝑇𝐵 Bulk temperature K 

𝑇𝑖 Initial temperature K 

𝑇𝑊 Wall temperature K 

𝑢 Velocity in 𝑥 −direction m.s-1 

𝑉 Volume m3 

𝑽 Velocity vector m.s-1 

𝑉𝑔𝑁 Group velocity of waves m.s-1 

𝑥, 𝑦, 𝑧 Cartesian coordinates m 

 

 

 



xiv 

 

Greek Letters 

𝛼 Coefficient of gradient term in free-energy function 

(per unit mass) 

J.m-2.kg-1 

Critical exponent (universal) of specific heat at constant 

volume. 

--- 

𝛼̅ Coefficient of gradient term in free-energy function 

(per unit volume) 

J.m-1 

𝛽 Coefficient of bulk free-energy in free-energy function 

(per unit mass) 

J.kg-1 

𝛽̅ Coefficient of bulk free-energy in free-energy function 

(per unit volume) 

J.m-3 

𝛽𝑃 Thermal expansion at constant pressure K-1 

𝛿𝑡 Time step s 

𝛿𝑇 Temperature quench K 

𝛿𝑇𝐵𝐿 Thermal boundary layer thickness m 

𝜀 Reduced proximity to critical point --- 

𝛾 Critical exponent (universal) of isothermal 

compressibility, specific heat, thermal expansion 

--- 

ratio of specific heat --- 

𝛾𝑖 Mass fraction of 𝑖𝑡ℎ phase --- 

𝜉 Interface thickness m 

𝜆 Second coefficient of viscosity Pa.s 

wavelength m 

𝜔 Radial frequency rad.s-1 

𝜑 Critical exponent (universal) of thermal conductivity --- 

viscous dissipation per unit volume J.m-3 

𝜇 Dynamic viscosity Pa.s 

𝜐 Kinematic viscosity m2.s-1 

𝜂 Potential of free energy function per unit volume J.m-3 

Critical exponent (universal) of kinematic viscosity --- 



xv 

 

𝜌 Density kg.m-3 

𝜌𝑖 Density of 𝑖𝑡ℎ fluid kg.m-3 

𝜌𝑖̃ Apparent density of 𝑖𝑡ℎ fluid kg.m-3 

𝜎 Surface tension N.m-1 

𝜒𝑇 isothermal compressibility Pa-1 

𝜐 kinematic viscosity m2.s-1 

𝜈 Critical exponent (universal) of correlation length --- 

   

Subscript 

𝑎𝑡𝑚 Atmospheric   

𝑐 Critical variable  

𝐼. 𝐺 Ideal gas  

𝑙 Liquid   

𝑖 1,2 for phase  

1,2,3 for directions  

𝑗 1,23 for directions  

Node number  

𝑁 Numerical  

𝑟 Reduced variable  

𝑣 Vapor   

𝑊 wall  

Abbreviations 

FPE Forced Piston Effect  

MUMPS Multifrontal Massively Parallel sparse direct Solver  

RV Rayleigh Vibrational   

SCF Supercritical fluid  

TBL Thermal boundary layer  
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CHAPTER 1. INTRODUCTION  
 

 

 

A fluid in general is known to exist primarily in two phases, either a liquid or a gas. 

However, a French scientist, Baron Charles Cagniard de Latour [1], while analyzing a phase 

equilibrium between equal volumes of liquid and gaseous CO2 in a sealed gun, found that the 

expected splashing noise of a liquid phase disappeared above certain conditions of temperature. 

This led to the discovery of a new phase of a fluid, wherein the phase boundary between liquid and 

gas phase ceases to exist, and the fluid is called a supercritical fluid (SCF). Following this discovery, 

the subject of supercritical or near-critical fluids (fluid near the critical point) has piqued interests 

of several researchers and till date ascribed to experimental and numerical challenges, several 

expects remain unexplored.  

In the quest to further understand the fluid behavior near the critical point, the current thesis 

focuses on the study of near critical fluids, primarily supercritical fluid by developing compressible 

mathematical and numerical models.  

In this chapter, a brief introduction to the near-critical fluids is presented followed by the 

description of the thesis objectives and outline. 

1.1 Fluids near the critical point  

The fluid flow and thermal behavior of a fluid is governed by its various thermo-physical 

properties which depend on whether the fluid is in solid, liquid or gas phase. The existence of a 

fluid in either of this phase is governed by pressure and temperature conditions (𝑃, 𝑇). In each 

phase, the fluid possesses different properties which make these phases distinguishable from each 

other. The existence of a fluid in different phases as a function of pressure, temperature and volume 

is expressed using a phase-diagram as shown in Fig. 1-1 for any pure substance (a substance which 

is spatially uniform in chemical composition and homogenous). 
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Fig. 1-1: (a) 𝑃 − 𝑉 − 𝑇 surface plot for a pure substance which contracts on freezing (b) 𝑃 − 𝑇 plot 

illustrating critical point and supercritical fluid region.   

 

 The projection of this 3D illustration on 𝑃 − 𝑇 plane provides further insight into the 

existence of various phases under different conditions, as marked in the Fig. 1-1(b). Of particular 

interests are the curves known as the liquid-vapor co-existence curves, which represent the loci of 

(𝑃, 𝑇) such that the two phases are in equilibrium with each other, unlike other regions wherein the 

fluid is known to exist only in a single-phase. An interesting behavior can be observed on moving 

along the liquid-vapor co-existence curve in 𝑃 − 𝑇 plane where the co-existence curve seems to 

end at a temperature denoted by 𝑇𝑐 i.e. there is phase transition from two-phase region to single-

phase region. This point is called the critical point of a fluid (denoted by 𝑃𝑐, 𝑇𝑐) beyond which a 

clear demarcation between the liquid and the gas phase ceases to exist and a single-phase fluid is 

attained. Instead, the fluid behaves as an intermediate between the liquid and the gas phase 

exhibiting some properties of the liquid, such as high density and solubility like a liquid and low 

viscosity and high compressibility like a gas. The fluid beyond this critical point is termed as a 

supercritical fluid.  

More recently, a striking observation was reported by Simeoni  et  al. [2] and Gorelli et al.  

[3] wherein they have shown that the homogeneous regime considered above the critical point can 

be divided into liquid-like and gas-like regions, similar to the subcritical state. Using inelastic X-

ray scattering to study the dispersion,  𝑖. 𝑒.  the dependence of the sound-speed on the frequency (a 

phenomenon peculiar to liquid and not gases), they were able to attribute this property to 

supercritical fluids. The line dividing the two phases in the supercritical regime, was described as 
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an extension of the co-existence curve below the critical point whose properties were investigated 

by Sciortino et  al. [4] using molecular dynamics computations and this line was later termed as the 

‘Widom’ line (as shown in Fig. 1-2). A similar line, defined as percolation line, has also been 

identified by Campi et al. [5] and was later investigated in detail by Skor and Nezbeda [6]. 

 

 

Fig. 1-2:  Illustration of the Widom line, an extension to the coexistence line at supercritical pressure and as 

a marker of the crossover between supercritical liquid-like and gas-like states. It is a marker of the crossover 

between supercritical liquid-like and gas-like states. The dashed line at Z=PV/(RT)=0.95 denotes the 

transition to an ideal gas. The reduced density is 𝜌𝑟 =
𝜌
𝜌𝑐⁄  , 𝐶𝑃,𝑟 =

𝐶𝑃
𝐶𝑃,𝐼𝐺
⁄  , 𝐶𝑃,𝐼𝐺 = γR/(γ − 1), where 

𝜌𝑐 is the critical density, 𝐶𝑃,𝐼𝐺 is the ideal gas specific heat at constant pressure, R is the gas constant, and γ 

the isentropic exponent (reproduced from [7] ). 

 

Banuti [8] investigated the same problem by mixed analytical and empirical approaches and 

showed that unlike the phase transition in subcritical regime, the phase transition in supercritical 

state occurs over a finite temperature interval and thus categorized it as a non-equilibrium process. 

In addition to the energy required to overcome the usual intermolecular attraction, the transition in 

supercritical state requires an additional energy to increase the temperature. Banuti et al. [7] have 

further proposed a Widom line functional based on the Clapeyron equation. In their recent article, 

Banuti et al. [9] summarized the fundamental aspects in supercritical regime, highlighting the 

relevance of liquid-like supercritical and gas-like supercritical fluid in combustion and injection 

processes. However, in the current work, the supercritical region has been considered as a single-

phase region. 
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Looking at these unusual behaviors, a very important question then arises, how does this 

transition affect the thermo-physical properties?  

1.2 Behavior of the properties and critical exponents 

The behavior of various thermo-physical properties can be analyzed if the relation between 

various thermodynamic variables is known, for example using an equation of state defining the 

relation between pressure, density and temperature. Intuitively, such an equation can also be used 

to analyze the phase transition and was first described using Van der Waals (vdW) equation of state 

near the critical point of a fluid. An elementary analysis using this equation of state shows an 

unusual behavior of various properties such as vanishing density difference, diverging isothermal 

compressibility etc. However, very close to the critical point, this has been found to be incapable 

to capture an accurate behavior of the thermo-physical properties [10]. This is primarily attributed 

to the behavior of fluctuations on approaching the critical point. It is known that locally, the various 

properties exhibit fluctuations from their mean values, which are more statistical in nature. With 

majority of the macroscopic thermo-physical properties being related to the statistical distribution 

of these fluctuations, it is evident that these fluctuations will have a significant effect on various 

properties. It has been established that on approaching the critical point, the behavior of 

macroscopic properties is no longer ascribed to the local behavior of molecules but due to the 

collective behavior arising from the long-range interactions. These long-range interactions, which 

exist along short-range interactions (defining the background contribution) thus govern the 

behavior of various properties. Consequently, the specificity of a system gets hidden leading to the 

universal behavior which has been termed as critical universality. This implies, that on approaching 

the critical point, the various properties will behave in a similar manner independently of the fluid 

being considered, and thus have been defined based on a single parameter with critical exponent of 

each property [10, 11] . These critical exponents have been derived by renormalizing the 

fluctuations (Renormalization Group Theory) and are described in Table 1-1 [10] . Thus, by virtue 

of the dominance of these long-range interactions, the various thermodynamic properties tend to 

show a singular behavior, 𝑖. 𝑒. some properties such as, isothermal compressibility(𝜒𝑇), thermal 

expansion coefficient ( 𝛽𝑃), thermal conductivity (𝑘), specific heat at constant volume and constant 

pressure (𝐶𝑉, 𝐶𝑃) diverge while thermal diffusivity (𝐷𝑇) and sound speed (𝑐𝑠) tend to zero as can be 

observed from the behavior of critical exponents in Table 1-1.   
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Table 1-1: Universal power laws for thermodynamic and correlation properties [10] 

Property Power law Critical Exponent 

Isothermal Compressibility 

 (𝜒𝑇 =
1

𝜌
(
𝜕𝜌

𝜕𝑃
)
𝑇
) 

𝜀−𝛾 𝛾 = 1.239 

Coefficient of thermal expansion 

(𝛽𝑃 = −
1

𝜌
(
𝜕𝜌

𝜕𝑇
)
𝑃

) 

𝜀−𝛾 

Heat Capacity at constant pressure (𝐶𝑃) 𝜀−𝛾 

Heat Capacity at constant volume (𝐶𝑉) 𝜀−𝛼 𝛼 = 0.11 

Sound speed (𝑐𝑠) 𝜀𝛼/2 

Thermal conductivity (𝑘) 𝜀−𝜑 𝜑 = 0.58 

kinematic viscosity (𝜐) 𝜀−𝜂      𝜂 = 0.04 

Correlation length  𝜀−𝜈 𝜈 = 0.63 

 

 

The general behavior of these thermodynamic properties is obtained by fitting experimental 

results to a law with a constant background term (corresponding to the short-range interactions or 

mean contribution) and a temperature dependent critical contribution term as a function of reduced 

proximity to the critical point, 𝜀 =
𝑇−𝑇𝑐

𝑇𝑐
. These two contributions are generally separated from each 

other by assuming an additive relation, wherein the critical part is added to the regular part [10]. 

For any given quantity, 𝑌, this can be expressed as, 𝑌(𝜀) = 𝑌𝑐(𝜀) + 𝑌𝑟𝑒𝑔(𝜀), where 𝑌𝑐(𝜀) and 

𝑌𝑟𝑒𝑔(𝜀) denote the critical and regular contribution. The background is generally expressed by a 

polynomial function, as [10], 

 

𝑌𝑟𝑒𝑔(𝜀) = 𝐴0 + 𝐴1𝑇 + 𝐴2𝑇
2+ . . . . . ..   (1.2.1) 

 

while the critical contribution is represented by non-analytical functions as a power law multiplied 

by crossover functions (to account for deviations away from the critical point) as [10], 
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𝑌𝑐(𝜀) = 𝜓𝑌0𝜀
±𝜓(1 + 𝑎𝑌

(1)𝜀𝛥 + 𝑎𝑌
(2)𝜀2𝛥 +⋯)  (1.2.2) 

 

Here, 𝜓𝑌0 is the critical amplitude, while 𝜓 is a universal exponent and (1 + 𝑎𝑌
(1)𝜀𝛥 + 𝑎𝑌

(2)𝜀2𝛥 +

⋯) denotes the crossover function with 𝛥(≈ 0.502) representing the universal exponent while 𝑎𝑌
(𝑖)

 

represent coefficients which depend on the type of fluid. However, in most of the cases, the behavior 

can be well defined by neglecting the higher order terms in cross-over functions and the properties 

of a fluid in general can be represented by [10], 

 

𝑌(𝜀) = 𝐴0 + 𝜓𝑌0𝜀
±𝜓  (1.2.3) 

 

It can therefore be deduced that on approaching the critical point, the contribution from the 

critical term becomes predominant. When these distinctive properties of the fluid become 

distinguishable from mean contributions for certain values of pressure and temperature, the fluid is 

termed as near-critical fluid.  

1.3 Piston Effect: Heat transfer mechanism in near-critical fluids 

The heat transfer in any substance or system is primarily governed by its thermal diffusivity, 

which reflects how fast the thermal perturbation will homogenize the system. On approaching the 

critical point, the thermal diffusivity tends to vanish and thus, intuitively it was believed that this 

will have as an impeding effect on the thermal homogenization of a supercritical (near-critical) fluid 

when subjected to thermal heating. However, Nitsche and Straub [12] in their experimental studies 

with supercritical SF6 observed that the bulk temperature followed the wall temperature very fast 

thereby causing thermal relaxation in seconds as opposed to the predicted scale of days based on 

thermal diffusion. This phenomenon was explained in 1990s by three independent teams (Onuki et 

al. [13] , Boukari et al. [14],  and Zappoli et al. [15]) and was termed as piston effect and can be 

explained as follows. 

The phenomenon can be understood by considering a cell filled entirely with a supercritical 

fluid subjected to a heat flux at one of its boundary. A very thin thermal boundary (TBL) layer is 

formed due to the vanishing thermal diffusivity. The fluid in the TBL expands due to its high 

thermal expansion at constant pressure (𝛽𝑃) causing a propagation of an acoustic wave in the bulk 
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which compresses the bulk due to its very high isothermal compressibility (𝜒𝑇). With each passing 

compression wave, the fluid converts some of the kinetic energy into thermal energy, heating the 

bulk adiabatically. Further, the compression wave is associated with change in pressure and thus of 

the same nature as acoustic wave, which results in thermal homogenization to occur on very short 

time scales termed as piston effect time scale. Similar argument can be applied when the boundary 

wall is cooled wherein the fluid in the TBL contracts and adiabatic cooling thermalizes the bulk 

fluid. Since this resembles to the action of a piston which compresses a gas in a closed cylinder, 

this phenomenon has been termed as the piston effect and forms the basis of understanding of most 

of the phenomena in supercritical (near-critical) fluids.  

It was shown by Onuki et al. [16] that the piston effect can be present in any compressible 

fluid which can be summarized as follows. The temperature evolution of a fluid, in the absence of 

any convection can be described by the classical heat diffusion equation. However, for a 

compressible fluid, it is necessary to add the effect of thermal expansion in the form of work done 

by the pressure force. This work done varies with the average temperature of the fluid and the ratio 

of heat capacities, (𝛾 =
𝐶𝑃

𝐶𝑉
). What makes this effect dominant and observable in supercritical (near-

critical) fluids is the diverging behavior of 𝛾  (𝐶𝑃 diverges with a critical exponent much higher 

than 𝐶𝑉, see Table 1-1). Thus, even though the piston effect can be considered ubiquitous in any 

compressible medium, it becomes significant only near the critical point where the effects of 

diffusion are subdued while those of compressibility increase rapidly. The time scale corresponding 

to the homogenization caused by the piston effect is defined as a piston effect time scale and is 

defined by [16],   

𝑡𝑃𝐸 ≈
𝑡𝐷

(𝛾−1)2
  (1.3.1) 

where  𝑡𝐷 represents the diffusion time scale (
𝐿2

𝐷𝑇
),  𝐿 being the characteristic length scale.  

Table 1-2 compares the various time scales for hydrogen with varying proximities to the critical 

point. 

1.4 Applications of near-critical fluids 

The need of scientific research has been largely driven by challenging applications in various 

fields, varying from space to micro technology. Over the past several decades, there has been a 
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growing demand for supercritical fluids in various industrial and scientific applications such as 

varied as alternative eco-friendly refrigerants [17, 18], chemical extraction/separation processes, 

supercritical chromatography, drying and catalysis [19]. In addition, these also find their 

applications in particle formation ranging from nano to macro dimensions, supercritical water 

oxidation for destruction of aqueous based organic waste [20] , electronic chip manufacturing [21], 

drilling technologies [22, 23] and rocket fuels [24, 25]  

 

Table 1-2: Typical physical timescales of dynamic processes in supercritical 𝐻2 along its critical isochore 

confined in a one-dimensional slab of 10 cm 

ε(=
T−Tc

Tc
) x 103 Acoustic time x 10-6 

( 
L

cS
) in s 

Piston Effect time 

(tPE =
L2

(γ−1)2DT
) in s 

Diffusion time x 107 

(tD =
L2

DT
) in s 

0.151 456.7965 4.054067 7.117772 

0.603 407.364 31.70059 2.811667 

3.013 350.5783 330.5111 0.956432 

14.624 295.5881 3173.952 0.33188 

 

In space applications, the storage of cryogenic fluids (Oxygen, Hydrogen) is done under 

supercritical conditions as the management of these fluids is a real problem due to the uncertain 

localization of gas and liquid phases. Among these several applications, let us look at some 

applications pertinent to supercritical (near-critical) fluid and see what additional attributes lie in 

these. 

➢ In rocket engines, methane is being considered as a denser and cheaper replacement of 

hydrogen in launch vehicles. The interest in such flows for liquid rocket engines is driven by the 

fact that the thrust chamber is cooled by one of the available propellants, which flows in a suitable 

narrow channel. A peculiar behavior is observed if methane is used as coolant: it enters channels at 

supercritical pressure and subcritical temperature and then, under heating from the hot gas, its 

temperature increases and can reach the supercritical regime. A further interesting behavior can be 

ascribed when just at the start of rocket engine, the pressure will not be high and thus the methane 

can transition from supercritical to sub-critical regime. 

➢ In CO2 air to-water heat pump or in supercritical CO2 based refrigeration systems, the 

evaporation is performed at low temperatures in the subcritical regime whereas the condensation 

occurs at the supercritical state. The overall efficiency is increased which is beneficiary in a certain 
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number of applications such as the production of domestic hot water or industrial drying processes. 

This is attributed to the fact that heat rejection in supercritical state is primarily a single-phase 

phenomenon unlike conventional system wherein phase transition reduces the thermodynamic 

efficiency. An important path that completes the refrigeration/heating cycle can be identified with 

transition from supercritical to sub-critical regime. 

➢ In super-critical water reactors, supercritical water oxidation (SCWO) (a high-pressure and 

a high-temperature process for the destruction of toxic, hazardous or non-bio-degradable aqueous 

organic waste) is carried out above the critical point of water. Corrosion of reaction vessels and 

plugging due to salt precipitation are one of the major challenges of the process. In order to prevent 

these issues, it is desirable to have the inlet flow entering the reactor under subcritical conditions 

and thus the analysis of correct physics involves transition from subcritical to supercritical regime. 

➢ Recently, hydrothermal spallation drilling has been considered as an alternative for deep 

drilling, depths > 10 𝑘𝑚, for geothermal applications. In order to induce thermal spallation, the 

necessary high temperatures and heat fluxes can be achieved using hydrothermal flame 

technologies. The hydrothermal flames in such conditions are usually formed using water which at 

such depth exceeds its critical conditions and unlike in its liquid state, supercritical water is a good 

solvent for compounds such as oxygen, nitrogen or carbon dioxide. Further, in the absence of any 

mass transfer limiting phase boundaries, combustion reactions between organic fuels (e.g. methane) 

and oxidizing agents (e.g. oxygen, air) are easily facilitated in supercritical water. Therefore, while 

initial conditions on the ground pertain to the sub-critical state, below the ground water is in 

supercritical state and hence a transition from one state to other. 

 

It can be seen that while in some of the applications, only the supercritical pressures may be attained 

with sub-critical temperature, in others there is a continuous transition from single phase to two phase 

regions.   

   

1.5 Motivation and Scope of the current work 

With the description of piston effect, explaining the speeding up of thermal homogenization, it can 

be well ascertained that the singular behavior of the thermo-physical properties can cause various 

intriguing phenomena. While experimental constraints can limit an in-depth insight into the flow 
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behavior due to complex conditions near the critical point, numerical modelling can thus prove to be 

a practical and flexible tool in understanding the fundamentals of flow and transport characteristics in 

this region, especially a continuous transition from supercritical to sub-critical state and vice-versa in 

the realm of continuum mechanics. The current thesis thus marks a first step towards this goal and the 

important objectives of the thesis are three folds,  

• First, to develop a mathematical and numerical model which can capture the physics of highly 

compressible supercritical fluid. The importance of such an objective is motivated by the use 

of a linear state equation in the existing models which circumvents the analysis to a higher 

thermal heating/cooling and the closest approach to the critical point.  

• Secondly, to perform numerical investigations using the developed model in order to gain 

insights into the various fundamental mechanisms that arise in supercritical fluids in 

weightlessness conditions when subjected to simultaneous thermal quench and longitudinal 

vibrations. While this has been primarily motivated by applications in space technology, the 

absence of gravity evades the effect of convection which may otherwise subdue the effect 

arising solely from the thermo-mechanical coupling in supercritical fluid.  

• Lastly, to explore the possibility to extend this model to analyze the flow behavior in sub-

critical state which may then be extended to study a continuous transition. One of the primary 

challenge attributed to this, unlike usual two-phase liquid-vapor system wherein the liquid 

phase is considered to be incompressible, both the phases, viz. liquid and gas, are highly 

compressible.  

 

In order to reach these objectives, the current work is primarily oriented towards the 

development of mathematical and numerical models to analyze the flow behavior in near-critical 

fluids, primarily in supercritical state. The thesis is organized as follows, 

 

Chapter 2 describes the mathematical model developed to analyze highly compressible supercritical 

fluid. The current model directly incorporates the dependence of pressure on density and 

temperature into the momentum equation thereby circumventing the need of any pressure velocity 

coupling algorithm. In addition, the density is calculated directly from mass-conservation without 

the need of any explicit equation of state for the calculation of density. In order to analyze the two-

phase flow in sub-critical regime near the critical point, phase-field model is developed to analyze 
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flow in sub-critical state under isothermal conditions. One of the primary advantage of phase-field 

modelling is ascribed to its capability to model the appearance of interface.   

 

Chapter 3 describes the numerical algorithm to solve the mathematical model developed in Chapter 

2 for a single and two-phase flow which is succeeded by validation studies of these models. In 

addition, an in-depth error analysis is presented which highlights unusual behavior of Courant 

number on the accuracy of solution. 

 

Chapter 4 presents the results pertaining to the investigation of thermo-vibrational instabilities, 

mainly Rayleigh-vibrational and parametric. The results are validated with experimental 

observations followed by the description of the physical mechanism causing these instabilities. In 

addition, the effect of various parameters on the critical amplitude for onset of these instabilities, 

effect on wavelength and a stability plot is described. 

 

Chapter 5 highlights two intriguing phenomena which were observed in conjunction with Rayleigh-

vibrational instabilities. The first one being the drop of fluid temperature below the imposed 

temperature at the boundary whilst the second one explains the observed see-saw motion of the 

thermal boundary layer. Both these have been ascribed to the high compressibility leading to strong 

thermo-mechanical coupling in supercritical fluids. 

 

Chapter 6 presents elementary results in sub-critical state investigated using phase-field modelling 

approach under isothermal conditions, such as stability of stagnant bubble, coalescence of two 

drops, phase-separation etc. The primary difference with regard to other models is the use of mass-

fraction as the phase-field parameter.  

 

Chapter 7 summarizes the work presenting the concluding remarks, highlighting the challenges and 

future perspectives derived from the current work. 
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CHAPTER 2. MATHEMATICAL MODELLING 
 

 

The mathematical analysis of a fluid flow comprises of translating the physical laws of 

conservation, namely, mass, momentum and energy into the mathematical relations. These relations 

which are generally in the form of partial differential equations are termed as mathematical model 

of the fluid system. In case of a compressible fluid, such as near-critical fluids in the context of 

present work, an additional relation between pressure (𝑃), temperature (𝑇) and density (𝜌), known 

as the equation of state, is required to close the set of conservation equations. In general, it is 

inevitable to use a pressure-velocity coupling algorithm when solving the compressible model 

which renders the solution more intricate in addition to limiting the accuracy of density not reaching 

the machine precision. As in near-critical fluids, even a small variation in density can significantly 

affect the flow characteristics, it is thus highly desirable to calculate density with high precision.  

In order to address these issues, a comprehensive description of a mathematical model to 

analyze single-phase highly compressible supercritical fluid is initially presented. The salient 

feature of the model lies in its ability to calculate density directly from the mass conservation 

(continuity equation) without the need of any pressure-velocity coupling algorithm. This is 

achieved by directly incorporating the dependence of pressure on density and temperature in the 

momentum equation. The development of such a model is motivated by the eventual aim of 

modelling the continuous transition from supercritical to subcritical state and vice-versa. For the 

analysis of two phase flow in sub-critical state, the phase-field modelling approach is introduced at 

the end of the chapter, discussing the theoretical background and contemporary work in this field. 

One of the primary advantage of using phase field modelling approach is that it evades any 

geometrical reconstruction of the interfaces. Subsequently, a compressible phase-field model, 

which is in conjunction with prior developed compressible model, is described for isothermal 

systems.  
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2.1    Single-phase compressible model 

Let us consider a fluid confined in a domain 𝛺 and bounded by a surface 𝛤, described by its 

various thermo-physical properties, namely density, isothermal compressibility 𝜒𝑇 =  
1

𝜌
 (
𝜕𝜌

𝜕𝑃
)
𝑇
, 

thermal expansion at constant pressure, 𝛽𝑃 = − 
1

𝜌
 (
𝜕𝜌

𝜕𝑇
)
𝑃

 and thermal conductivity, 𝑘.  A general 

mathematical model solving conservation laws [26] can be written in non-conservative form (𝑑/𝑑𝑡 

representing the material derivative) as, 

•  Conservation of mass (continuity equation) 

𝑑𝜌

𝑑𝑡
+  𝜌𝜵. 𝑽 = 0  (2.1.1) 

 

• Conservation of momentum 

𝜌 
𝑑𝑽

𝑑𝑡
= − 𝜵𝑃 +  𝜵. (𝜇𝜵𝑽) +  𝜵((𝜆 +  𝜇) 𝜵. 𝑽)  + 𝑭  (2.1.2) 

 

Here, 𝜇 and 𝜆 correspond to the classical shear viscosity and compression (bulk) viscosity or second 

coefficient of viscosity, respectively. Further F and 𝑃 denote volumetric force and the 

thermodynamic pressure, respectively. 

• Conservation of internal energy 

𝜌
𝑑𝑒

𝑑𝑡
= −𝑃𝜵. 𝑽 + 𝑞̇ + 𝜵. (𝑘𝜵𝑇) + 𝜑  (2.1.3) 

or in terms of temperature, 𝑇 as, 

𝜌𝐶𝑉
𝑑𝑇

𝑑𝑡
= − 

𝑇𝛽𝑃

𝜒𝑇
𝜵. 𝑽 + 𝑞̇ + 𝜵. (𝑘𝜵𝑇) + 𝜑  (2.1.4) 

 

Here 𝑒 is the internal energy while φ =  𝜆(𝛁 ∙ 𝑽)2 + 2𝜇 𝐷𝑖𝑗
𝜕𝑉𝑖

𝜕𝑥𝑗
  is the dissipation energy with 𝐷𝑖𝑗 =

1

2
(
𝜕𝑉𝑖

𝜕𝑥𝑗
+
𝜕𝑉𝑗

𝜕𝑥𝑖
) being the tensor of deformation rate (The Einstein summation convention on repeated 

indices is applied) while 𝑞̇ denotes the volumetric heat source. 
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In addition, for a compressible fluid, the dependence of pressure on density and temperature, is 

usually governed by the equation of state,  

𝑃 = 𝑃(𝜌, 𝑇)  (2.1.5) 

  

Now, infinitesimal variations of temperature, pressure, and the density with time can be written as, 

{
 
 

 
 
𝑑𝑇

𝑑𝑡
= (

𝜕𝑇

𝜕𝜌
)
𝑃
 
𝑑𝜌

𝑑𝑡
+ (

𝜕𝑇

𝜕𝑃
)
𝜌
 
𝑑𝑃

𝑑𝑡

𝑑𝑃

𝑑𝑡
= (

𝜕𝑃

𝜕𝜌
)
𝑇
 
𝑑𝜌

𝑑𝑡
+ (

𝜕𝑃

𝜕𝑇
)
𝜌
 
𝑑𝑇

𝑑𝑡

𝑑𝜌 = − ∫ 𝜌 𝜵 ∙ 𝑽𝑑𝑡

  (2.1.6) 

  

The last part of (2.1.6) is obtained from continuity equation (2.1.1). The second part illustrating the 

pressure variation with time can be reduced in terms of the thermodynamic properties, 𝜒𝑇 and 𝛽𝑃 

as, 

𝑑𝑃

𝑑𝑡
= 

1

𝜌𝜒𝑇

𝑑𝜌

𝑑𝑡
+
𝛽𝑃

𝜒𝑇
 
𝑑𝑇

𝑑𝑡
  (2.1.7) 

  

Now, substituting for  
𝑑𝜌

𝑑𝑡
  and  

𝑑𝑇

𝑑𝑡
  from the continuity (2.1.1) and the energy (2.1.4) equations 

respectively in (2.1.7) we get,  

𝑑𝑃

𝑑𝑡
= 

1

𝜌𝜒𝑇
(−𝜌𝜵. 𝑽) +

𝛽𝑃

𝜒𝑇

1

𝜌𝐶𝑉
(−

𝑇𝛽𝑃

𝜒𝑇
𝜵. 𝑽 + 𝑞̇ + 𝜵. (𝑘𝜵𝑇) + 𝜑)   (2.1.8) 

  

which further reduces to, 

𝑑𝑃

𝑑𝑡
= −(

1

𝜒𝑇
+

𝑇𝛽𝑃
2

𝜌𝐶𝑉𝜒𝑇
2)  𝜵. 𝑽 +

𝛽𝑃

𝜌𝐶𝑉𝜒𝑇
( 𝑞̇ + 𝜵. (𝑘𝜵𝑇) + 𝜑)   (2.1.9) 

  

It is to be noted here that the above set of equations are going to be solved numerically. This 

implies, the integral involving the divergence of velocity field can be simplified using several 

possible choices of numerical integration such as rectangle rule (constant value), trapezoidal rule 

(averaging at two-time steps) or Simpsons rule and so on. Here considering the simplification based 
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on rectangle rule, for example, the integral ∫
1

𝜒𝑇
 𝛁 ∙ 𝑽 𝑑𝑡 can be reduced to ≅

𝛿𝑡

𝜒𝑇
𝛁 ∙ 𝑽. Thus, the 

pressure as described in (2.1.9) can be written as [27], 

𝑃 = 𝑃0 − (
1

𝜒𝑇
+

𝑇𝛽𝑃
2

𝜌𝐶𝑉𝜒𝑇
2)  𝜵. 𝑽𝛿𝑡 + (

𝛽𝑃

𝜌𝐶𝑉𝜒𝑇
( 𝑞̇ + 𝜵. (𝑘𝜵𝑇) +  𝜑)) 𝛿𝑡   (2.1.10) 

  

Here the pressure 𝑃0 here denotes the equilibrium pressure for a small time-interval 𝛿𝑡. It explicitly 

inherits the dependence on density and temperature. The expression of pressure from (2.1.10) is 

directly incorporated into the momentum equation (2.1.2) and thus it follows, 

𝜌 
𝑑𝑽

𝑑𝑡
= − 𝜵(𝑃0 − (

1

𝜒𝑇
+

𝑇𝛽𝑃
2

𝜌𝐶𝑉𝜒𝑇
2)  𝜵. 𝑽𝛿𝑡 + (

𝛽𝑃

𝜌𝐶𝑉𝜒𝑇
( 𝑞̇ + 𝜵. (𝑘𝜵𝑇) +  𝜑))𝛿𝑡) +

 𝜵. (𝜇𝛻𝑽) +  𝜵((𝜆 +  𝜇) 𝜵. 𝑽) + 𝑭  

(2.1.11) 

 

The above relation can be further simplified assuming Stokes hypothesis ( 𝜆 +
2

3
𝜇 = 0) as, 

𝜌
𝑑𝑽

𝑑𝑡
= −𝜵(𝑃0 − (

1

𝜒𝑇
+

𝑇𝛽𝑃
2

𝜌𝐶𝑉𝜒𝑇
2)  𝜵. 𝑽𝛿𝑡 + (

𝛽𝑃

𝜌𝐶𝑉𝜒𝑇
( 𝑞̇ + 𝜵. (𝑘𝜵𝑇) +  𝜑))𝛿𝑡) + 𝜵 ∙

(𝜇 (𝜵𝑽 + 𝜵𝑡𝑽 −
2

3
𝜵 ∙ 𝑽 𝐼)) + 𝑭  

      

(2.1.12) 

 

 Similarly, for a small time-step, 𝛿𝑡, the continuity equation (2.1.1) can be written 𝑤. 𝑟. 𝑡 a reference 

density (𝜌0) as, 

𝜌 = 𝜌0 𝑒𝑥𝑝 (−𝛿𝑡 𝜵 ∙ 𝑽) 
      

(2.1.13) 

 

The above set of momentum (2.1.12) and energy (2.1.4) can be further written in terms of partial 

derivatives as,  
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𝜌 (
𝜕𝑽

𝜕𝑡
+ 𝑽.𝜵𝑽) = −𝜵(𝑃0 − (

1

𝜒𝑇
+

𝑇𝛽𝑃
2

𝜌𝐶𝑉𝜒𝑇
2)  𝜵. 𝑽𝛿𝑡 + (

𝛽𝑃

𝜌𝐶𝑉𝜒𝑇
( 𝑞̇ + 𝜵. (𝑘𝜵𝑇) +

 𝜑))𝛿𝑡) + 𝜵 ∙ (𝜇 (𝜵𝑽 + 𝜵𝑡𝑽 −
2

3
𝜵 ∙ 𝑽 𝐼)) + 𝑭  

       

(2.1.14) 

 

𝜌𝐶𝑉 (
𝜕𝑇

𝜕𝑡
+ 𝑽. 𝛻𝑇) = − 

𝑇𝛽𝑃

𝜒𝑇
𝜵.𝑽 + 𝑞̇ + 𝜵. (𝑘𝜵𝑻) +  𝜑    (2.1.15) 

 

The pressure and density as calculated from equation (2.1.10) and (2.1.13), respectively are 

obtained from their total derivatives and hence are in their Lagrangian form. In order to ensure 

coherence among all the flow variables described in Eulerian form, these are subsequently advected 

from their total derivatives as follows, 

{

𝜕𝑃

𝜕𝑡
=

𝑑𝑃

𝑑𝑡
− 𝑽 ∙ 𝜵𝑃

𝜕𝜌

𝜕𝑡
=

𝑑𝜌

𝑑𝑡
− 𝑽 ∙ 𝜵𝜌

  

     

(2.1.16) 

 

 

Thus, the above set of equations (2.1.10), (2.1.14), (2.1.15)  and (2.1.16) describe a model 

including all the important physics essential to investigate any thermo-fluidic system. Some of the 

prominent features of the model can be summarized as,  

• The momentum equation (2.1.14) is completely autonomous as it does not contain any 

unknown pressure. This circumvents the need of any pressure-velocity coupling algorithm as 

required in usual solution methodologies. 

• The density is calculated directly from the continuity equation which ensures mass 

conservation resolvable to the machine precision.  

• The dependence of pressure on density and temperature is explicitly incorporated in the 

momentum equation using continuity and energy equation as described in (2.1.7) and (2.1.8). 

The thermodynamic properties in the current work are evaluated using relations obtained from 

Renormalization Group Theory as described in [10]. However, in general these may also be 

obtained from property data base such as NIST [28]. Further, in the current work the viscous 
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dissipation is neglected while no volumetric source term is considered. Thus, the final set of 

governing equations as used in the current work can be summarized as,   

𝜌 (
𝜕𝑽

𝜕𝑡
+ 𝑽.𝜵𝑽) = −𝜵(𝑃0 − (

1

𝜒𝑇
+

𝑇𝛽𝑃
2

𝜌𝐶𝑉𝜒𝑇
2)  𝜵. 𝑽𝛿𝑡 − (

𝛽𝑃

𝜌𝐶𝑉𝜒𝑇
𝜵. (−𝑘𝜵𝑇))𝛿𝑡) + 𝜵 ∙

(𝜇 (𝜵𝑽 + 𝜵𝑡𝑽 −
2

3
𝜵 ∙ 𝑽 𝐼)) + 𝑭  

       

(2.1.17) 

 

𝜌𝐶𝑉 (
𝜕𝑇

𝜕𝑡
+ 𝑽. 𝜵𝑇) = − 

𝑇𝛽𝑃
𝜒𝑇

𝜵. 𝑽 +  𝜵. (𝑘𝜵𝑇) (2.1.18) 

 

𝑃 = 𝑃0 − (
1

𝜒𝑇
+

𝑇𝛽𝑃
2

𝜌𝐶𝑉𝜒𝑇
2)  𝜵. 𝑽𝛿𝑡  − (

𝛽𝑃
𝜌𝐶𝑉𝜒𝑇

(𝜵. (−𝑘𝜵𝑇)))𝛿𝑡  (2.1.19) 

 

𝜌 = 𝜌0 𝑒𝑥𝑝 (−𝛿𝑡 𝜵 ∙ 𝑽) 
      

(2.1.20) 

 

{

𝜕𝑃

𝜕𝑡
=

𝑑𝑃

𝑑𝑡
− 𝑽 ∙ 𝜵𝑃

𝜕𝜌

𝜕𝑡
=

𝑑𝜌

𝑑𝑡
− 𝑽 ∙ 𝜵𝜌

  (2.1.21) 

 

These equations are solved numerically using Finite Volume Method as will be described in 

CHAPTER 3. 

2.2 Phase field model 

The fluid in sub-critical regime is a two-phase system with singular behavior of various 

thermo-physical properties when approaching the critical point. This implies that unlike 

conventional two-phase fluid system, where the liquid phase is incompressible, in sub-critical 

regime both phases are highly compressible. Hence in order to analyze the behavior in subcritical 

state, a phase-field model is presented. Owing to preliminary analysis in sub-critical regime, 

attention has been restricted only to isothermal conditions 𝑖. 𝑒. without the energy equation.     
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2.2.1 Basics of Phase-field approach 

The problem of multiphase flow has been intensively studied in literature owing to its 

critical importance in diverse systems, such as heat transfer systems (evaporators, condensers, 

electronic cooling systems etc.), power systems (Rankine cycle, internal-combustion engines etc.), 

process systems (chemical reactors, porous media etc.), environmental control (air conditioners 

etc.), biological systems (cardiovascular system etc.) and so on. The theoretical and numerical 

investigation of these systems is quite complex primarily attributed to the effect of surface tension 

and the existence of an interface. The mathematical approach to study two or multiphase system 

can be divided mainly into two categories, interface tracking and interface capturing. In interface 

tracking approach, such as VOF (volume of fluid method), each phase is identified using a 

continuum variable (such as color function in VOF). The effect of interface dynamics (surface 

tension) is directly incorporated into the governing equations by evaluating local gradient of the 

continuum variable. One of the main argument of this method, which is based on surface tension 

approach, is that material properties, such as density, exhibit a sharp discontinuity across the 

interface. However, as described by Gibbs [29], the interface region is actually a rapid but smooth 

transition of physical quantities between the bulk fluid values. This idea was further developed by 

Rayleigh [30] and Van der Waals [31] wherein thermodynamic principles were used to develop 

gradient theories for the interface. This concept was extended by Landau [32, 33] where the spatial 

description of material properties was described based on an order parameter (parameter which 

distinguishes one phase from the other), which laid an informal foundation of phase-field 

modelling. The interface thickness, however, is not arbitrary and is determined by the molecular 

force balance at the interface and its value is closely related to the range of molecular interactions 

[34]. This is schematically illustrated in Fig. 2-1. Thermodynamically, the effect of these finite 

interactions can be represented in free energy by including the effect of the gradient of the order 

parameter. This was initially proposed by Cahn and Hilliard [35, 36], who derived an expression of 

free energy density in a non-homogenous system based on the concentration gradient and further 

used it to the study the problem of spinodal decomposition. Their model is now well known in 

literature as the Cahn-Hilliard model or Cahn-Hilliard equation. While density or composition may 

seem to be the intuitive choice of the order parameter (also termed as phase-field parameter), any 

other variable can also be used to define the two distinct phases [35]. The bulk phase is thereby 

represented by a distinct constant value of the phase-field parameter while it varies smoothly in the 
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interfacial region. Furthermore, it is known that any isolated system will tend to maximize its 

entropy or minimize its energy (for isothermal system) which implies that the free energy defined 

on the basis of phase-field parameters, must obey this thermodynamic constraint. This forms the 

basic principle in phase-modeling approach wherein the evolution of the phase parameter is 

obtained by satisfying the aforementioned thermodynamic constraint and since the interface can be 

uniquely located by smooth change in the phase-field variable, this interface is implicitly captured 

by studying the dynamics of the free energy function. As the interface is captured rather than 

tracked, phase-field method forms a part of the family of interface capturing method. It is to be 

mentioned that since these methods assume a finite interface thickness, which is ascribed to the 

molecular interaction or diffusion in the interface region, these have also been termed as diffuse 

interface models.  

 

Fig. 2-1:Schematic illustration of sharp and smooth transition (interface). 

 

2.2.2 Contemporary work in phase-field modelling for fluid systems 

The phase-field method was initially developed to study the behavior of the solidification 

of materials. Korteweg [37] proposed that stresses and convection can be induced in a fluid system 

due to non-uniform density (or concentration or temperature) distribution. In order to include these 

effects, it was proposed to incorporate a specific stress tensor in the Navier-Stokes equations which 
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is now well known in the literature as the Korteweg stress tensor. Since in phase-field modelling, 

non-homogeneity in the system is attributed to the gradient of the phase-field parameter, it is 

therefore possible to couple the phase-field and fluid equations using the Korteweg stress tensor 

based on the phase-field parameter. This idea made it possible to extend the phase-field modelling 

to two or multiphase flow problems following which phase-field modelling has been extensively 

used to study the various fluid flow phenomena varying from flow instabilities, bubble dynamics, 

thermo-capillary effect, phase change and so on. Here, some of the pioneering works covering 

various aspects are summarized. 

The hydrodynamic coupling of phase-field models was initially studied by Gurtin et al. [38] 

where this methodology was used to analyze the coarsening effects in binary fluids. The problem 

of solidification with convection was addressed by Anderson et al. [39]. Jacqmin [40, 41] presented 

how the phase-field approach can be extended to solve the full set of governing equations of fluid 

dynamics, 𝑖. 𝑒. Navier-Stokes equations, to study the various fluid phenomena such as break-up of 

bubbles, sloshing, wave breaking, contact lines etc. Unlike the Korteweg stress form, the coupling 

was introduced using the potential form of the free energy. Faraday instabilities were studied using 

phase-field modelling by Takagi and Matsumoto [42] and the results were verified with the linear 

theory. A similar analysis pertaining to the Rayleigh–Taylor instability was performed by Celani et 

al.  [43] in case of two immiscible fluids in the limit of small Atwood numbers. Khatavkar et al. 

[44] studied the behavior of the impact of a micron size drop on a smooth and flat solid surface 

using this approach. They investigated the effect of various material parameters such as impact 

velocity, droplet diameter etc. on the impact behavior and extended the analysis to non-90-degree 

contact angles. Borcia et al. [45] used phase-field model to analyze the static and dynamic contact 

angles wherein the contact angle was controlled by boundary conditions for the density field (phase-

field parameter) at the solid walls. Using the same approach, Borcia et al. [46] further investigated 

the effect of variable wettability on the stability of a thin liquid film on a flat homogeneous solid 

and reported transition of a liquid film from a flat-film to a drop on a hydrophobic surface. In 

another work, Borcia et al. [47] investigated the effect of lateral and vertical harmonic oscillations 

on a liquid droplet resting on a solid plate and thus described a mechanism to control the motion of 

drops. 
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 The phase-field model has also been largely used to study the phenomena of 

thermocapillary in fluid systems. By including the effect of advective transport in Cahn-Hilliard 

equation, Jasnow and Vinals [48] studied the thermo-capillary induced flows, mainly the motion of 

droplets and phase separation via spinodal decomposition in a temperature gradient. A quasi-

incompressible phase-field model was derived by Antanovskii [49] for binary mixtures to study 

thermocapillary phenomena, where it was assumed that immiscible liquids can mutually penetrate 

into each other in the interface region in such a way that the sum of the mass diffusive flow rates 

of the two fluids vanishes. However, for incompressible flow, this led to a non-solenoidal velocity 

field in the interface region following which the model was termed as quasi-incompressible. Borcia 

and Bestehorn [50] studied the Marangoni convection in a liquid-gas system with a deformable 

interface heated from below by describing the Korteweg stress term to be dependent on the 

temperature field. Similar to spinodal decomposition in solids, Lamorgese and Mauri [51] studied 

the liquid-vapor phase separation in a van der Waals fluid subjected into the unstable range of its 

phase diagram. Owing to fundamentals of phase-field method arising from thermodynamic 

principles, Abels et al. [52] and Shen and Yang [53] derived the phase-field models for different 

density ratios from first principle approach.  Ding et al. [54] described the model for two-phase 

incompressible fluid flows with large viscosity and density contrasts wherein the condition of 

solenoidal velocity field was derived from the conservation of mass of binary mixtures. The model 

differed from the previously derived quasi-incompressible models owing to the assumptions made 

regarding the relationship between the diffuse fluxes of the two species. Guo and Lin [55] derived 

a thermodynamically consistent model, i.e., based on the principles of maximization of the entropy 

both for compressible as well as incompressible fluid, though illustration was made only for 

incompressible fluids. While a review of developments pertaining to phase-field models can be 

found in [56, 57] , other pioneering works regarding phase modelling have been addressed primarily 

from mathematical point of view in [58-61].  

2.2.3 Relevance to the current work 

Phase-field models hold a special significance when analyzing fluids near the critical point 

which is largely due to the assumption of finite thickness of the interface. This is in coherence with 

the physical behavior of interface thickness which shows a diverging behavior on approaching the 

critical point [62-65]. Thus, motivated by the physical nature of phase-field modelling in the context 
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of near-critical fluids in sub-critical regime, a compressible model to analyze the flow behavior in 

sub-critical state in isothermal conditions is proposed in the current work. Appropriate changes are 

incorporated in the previous developed compressible model in §2.1, for a single-phase flow to 

couple the evolution of phase-field parameter and Navier-Stokes equations. The model can be 

further extended to non-isothermal systems as will be discussed in §7.2. In the subsequent section, 

the mathematical formulation of elementary phase-field equation is presented along with the 

description as to how the current model becomes different from the ones considered in literature, 

primarily attributed to the choice of phase-field parameter.  

2.2.4 Mathematical description 

The beginning point of the phase-field method corresponds to defining the free energy of 

the whole system which includes the effect of interfacial dynamics. This was initially presented by 

Cahn and Hilliard [35] for a non-homogenous system based on the concentration though it can be 

written in terms of any intensive scalar property (called the order or phase-field parameter), denoted 

by 𝜙 in the current work. The order parameter thus helps to differentiate one phase from the other. 

For example, considering density as a parameter, then each phase can be identified based on its 

density. The free energy (𝐹𝑉) per unit volume in a generic form for a non-homogenous system 

𝑤. 𝑟. 𝑡 𝜙 can be written in terms of 𝜙 as, (see Appendix E), 

𝐹𝑉 = 𝛽̅𝑓0(𝜙) +
𝛼̅

2
|𝜵𝜙|2 (2.2.1) 

 

Here 𝑓0(𝜙) is the contribution to the free energy from the bulk while the second term incorporates 

the energy contribution due to change in 𝜙 across the interface. Further, 𝛼̅ and 𝛽̅ are constants 

related to physical parameters, surface tension (𝜎) and interface thickness (𝜉) (Appendices E.1 and 

E.2). Thus, it can be observed that there is an increase in the free energy of the system with the 

introduction of the interface which is implicitly represented by the gradient of 𝜙. However, 

governed by the thermodynamic principle in order to attain equilibrium, the system will adjust so 

that the overall free energy is always minimized for an isothermal system. In order to minimize the 

increase in free energy caused by the gradient term, an intuitive approach will be to consider a more 

diffused interface. However, this can only be achieved if there exists a higher concentration or 
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contribution of 𝜙 in the bulk (near the interface region) thereby resulting in increase of the 

contribution of bulk free energy, eventually increasing the free energy of the system. Thus, these 

two effects are opposing to each other and equilibrium will exist as a compromise between these 

two effects. Mathematically, this can be described as a condition when the variation of free energy 

𝑤. 𝑟. 𝑡 𝜙 will vanish. In the original work of Cahn and Hilliard [35], as the order parameter under 

consideration was the composition, the variation of the free energy with composition, by definition, 

was termed as chemical potential. In coherence with same analogy, the chemical potential in the 

present case is defined as, 

𝜂 =
𝛿𝐹𝑉

𝛿𝜙
  (2.2.2) 

 

The potential can be understood as, how the free energy will change as the parameter 𝜙 changes in 

the system. Thus, the equilibrium conditions can be mathematically represented by 𝜂 = 0.  Using 

(2.2.2), the equilibrium conditions can be thus represented as, (for a constant 𝛼̅) 

𝜂 = 𝛽̅𝑓𝑜′(𝜙) − 𝛼̅ 𝛻
2𝜙 (2.2.3) 

 

 

Fig. 2-2: Schematic of double-well potential (bulk-free energy) considered in the present work. 

 

In general, the bulk free energy is represented by a double well potential such that each value at its 

minima uniquely represents each phase. Fig. 2-2 shows the profile of bulk free energy function, 
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𝑓𝑜(𝜙) = 𝜙2(1 − 𝜙)2, considered in the present work, where minima corresponds to 𝜙 = 0 and 1. 

The evolution equation of the phase-field parameter is governed by whether the phase-field 

parameter is conserved or not. In case of conserved phase-field parameter, which is the case in most 

fluidic systems, this is obtained from Cahn-Hilliard equation given by,  

𝜕𝜙

𝜕𝑡
= 𝜵. (𝑀0𝜵𝜂)  (2.2.4) 

 

Here, 𝑀0 is the mobility which plays a similar role as the diffusivity in any diffusion equation, 𝑖. 𝑒. 

it governs the diffusion flux based on the gradient of the potential 𝜂. While the above Eq.(2.2.4) is 

more pertinent for non-flow system, the hydrodynamic effects are taken into account by adding the 

advection term in (2.2.4). Thus, the Cahn-Hilliard equation for fluid flow problems can be written 

as,  

𝜕𝜙

𝜕𝑡
+𝑽.𝜵𝜙 = 𝜵. (𝑀0𝜵𝜂)  (2.2.5) 

 

2.2.5 Coupling to Navier-Stokes equation 

In surface tension methods, the effect of interface is directly forced into the momentum equation 

in terms of surface tension force. In order to introduce a similar effect in phase-field modelling, 

several approaches have been described in literature such as from the direct approach of Korteweg 

[37], wherein a pre-assumed stress relation is directly introduced into the momentum equation. 

With recent developments in the phase-field modelling, several authors have developed constitutive 

relations of stress in terms of phase-field parameter thereby inducing coupling between the phase-

field and Navier-Stokes equations. Jacqmin [40, 41] derived the necessary changes in the 

momentum equation in terms of potential rather than stress form. The underlying idea behind this 

was based on the following facts, 

• the movement of interface can cause it to become thick/thin thereby causing a change in 

free energy. 

• this effect of the increase in energy is countered by a diffuse-interface force resulting in 

change of kinetic energy. 
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Based on this approach, it was found that the hydrodynamic coupling to include the effects of 

interfacial dynamics can be incorporated in terms of a force, which for compressible fluid can be 

defined as, (Appendix F),  

𝑓𝑆𝑇 = −𝜙𝛁𝜂 (2.2.6) 

 

The above potential form can be converted to the stress form and the coupling is achieved by adding 

the following term to the momentum equation (see Appendix F),  

−𝛼̅ 𝜵. (𝜵𝜙⊗ 𝜵𝜙) + 𝜵(𝛼̅|𝜵𝜙|2) (2.2.7) 

 

where the first term is known as the Korteweg stress tensor. A similar relation has been obtained 

by various authors based on different approaches. Gurtin [66] developed constitutive relations 

based on the physical reasoning that changes in interface region can be attributed to micro-forces 

acting in the interfacial region. A more general phase-field model based on thermodynamic 

principles was developed by Guo and Lin [55]. Among the stress and potential form, as described 

by Jacqmin , the stress form is more suited for dynamical situations as it ensures conservation of 

momentum [40, 41]. In the present work, the stress form will be used for the necessary coupling.  

2.2.6 Choice of phase-field parameter 

The phase-field parameter is used to identify the phase in two or multiphase system. A very 

intuitive choice in this context can be related to the density of the fluid under consideration. This 

may seem a good approach in case of incompressible fluids wherein density does not change and 

thus the stress term (Eq. (2.2.7)) will act only at the interface. However, some authors have also 

considered density as phase-field parameter in compressible fluids [51, 67, 68]. This is primarily 

facilitated by the fact that in compressible flow, the application of equation of state helps to solve 

for the pressure field while density can be calculated from continuity equation. This helps to evade 

the need to solve the phase-field equation. However, as in near critical fluids, the fluid is highly 

compressible, choosing density as a parameter will cause density gradients within the same phase 

and thus will not only affect the interface region but also the bulk phase which is not physical in 

nature. It is also to be mentioned here that unlike surface tension methods (such as VOF), where 
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the forcing term acts only at interface (by virtue of evaluation of curvature at the interface), in 

phase-field method this force is indirectly incorporated by means of a stress tensor and acts based 

on the gradient of the phase-field parameter. This necessitates the need to have an appropriate 

phase-field parameter so that its gradient will persist only at the interface. Thus, in order to prevent 

the evoked issue, in the current work, the behavior of the compressible fluid (near the critical point) 

is being investigated by means of phase-field parameter which is considered to be the mass fraction 

of each phase. The motivation to choose this as the phase-field parameter is attributed to the 

following reasons, 

• The gradient of phase-field parameter will be present only in the interface region as in the 

bulk, this term will be zero thereby precluding any effect that may arise due to density 

gradient in the bulk. 

• In a compressible flow, it is necessary to ensure mass conservation. Thus, selecting mass 

fraction as the parameter ensures the mass conservation of the system in the bulk and 

interface region thereby providing a more physical meaning to the phase-field parameter.  

2.2.7 Phase-field model with mass-fraction as order parameter 

The phase-field model with parameter other than density has been proposed by various 

authors in literature such as volume fraction by Ding et al.  [54], mass fraction by Lowengrub and 

Truskinovsky [69], Abels et al. [52], Morro [59] and more recently by Guo and Lin [55]. Most of 

these have been used to analyze incompressible flows. Guo and Lin [55] and Morro [59] proposed 

a phase-field model based on mass fraction as one of the possible choice but these models have not 

been analyzed with any test cases. In the present work, we develop a phase-field model (i.e. Cahn-

Hilliard equation) based on mass-fraction as discussed by Guo and Lin [55]. The model is coupled 

with the momentum equation using stress tensor as discussed in §2.2.5. However, unlike usual 

compressible models, where the density is explicitly calculated from the equation of state, the 

density here is calculated from mass conservation of each phase followed by the closure relation in 

terms of phase-field parameter.  

2.2.7.1 Derivation of the phase-field model 

The phase field model for the conserved parameter comprises of solving the Cahn-Hilliard 

form of equation. Here, we derive the same form of equation considering mass fraction as the 
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parameter as described by Guo and Lin [55]. To begin with let us first define some terms required 

for the derivation. Consider a small control volume 𝑉 and the two fluids be represented by 𝑖 =

1,2 individually filling up a volume 𝑉𝑖. Let 𝐶𝑖 denote the volume fraction of each fluid 𝑖. 𝑒. 𝐶𝑖 =
𝑉𝑖

𝑉
. 

Further, these fluids can mix with each other in the interfacial region (as per the theory of Gibbs 

[29]). Let 𝑀 denote the total mass of the mixture with 𝑀𝑖 being the mass of 𝑖th fluid. The mass 

fraction of each phase be denoted by 𝛾𝑖, 𝑖. 𝑒., 𝛾1 =
𝑀1

𝑀
 and 𝛾2 =

𝑀2

𝑀
. The density of each fluid in 

each phase can be represented by 𝜌𝑖 =
𝑀𝑖

𝑉𝑖
. In addition, we also define, an apparent or partial density 

(local volume-averaged mass density) taken over a 𝑉 for each fluid as 𝜌̃𝑖 =
𝑀𝑖

𝑉
. Based on the above 

terminologies, the following relations can be described, 

𝜌̃1 =
𝑀1
𝑉
, 𝜌̃2 =

𝑀2
𝑉

  (2.2.8) 

𝛾1 + 𝛾2  = 1  (2.2.9) 

𝐶1 + 𝐶2 = 1  (2.2.10) 

𝜌̃𝑖 =
𝑀𝑖

𝑉
=

𝑀𝑖 𝑀

𝑉 𝑀
= 𝛾𝑖𝜌   (2.2.11) 

𝜌 = 𝜌̃1 + 𝜌̃2   (2.2.12) 

 

Using Eq. (2.2.10), we have  

𝑉1
𝑉
+
𝑉2
𝑉
= 1  

which after simple calculations yields to,  

𝛾1

𝜌1
+

𝛾2

𝜌2
=

1

𝜌
   (2.2.13) 

 

Now assuming that the two fluids move with different velocities 𝑽𝒊, the equation of mass balance 

for each material volume (in the entire domain) in terms of apparent density can be written as,  

𝜕

𝜕𝑡
(𝜌̃1) + 𝜵. (𝜌̃1𝑽𝟏) = 0  (2.2.14) 

𝜕

𝜕𝑡
(𝜌̃2) + 𝜵. (𝜌̃2𝑽𝟐) = 0  (2.2.15) 
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In the bulk region, the mass flux is ascribed only due to the advection while in the interfacial region 

between the two fluids, there also exists a contribution from the diffusion flux. In a physical sense 

this is driven by the gradient of the parameter (𝛾1) across the interface and results in its smooth 

transition from one phase to another. Denoting the diffusive mass flux component of fluid 1 by 𝐽𝑑1 

(whose mathematical description will be provided shortly) , we can thus write, 

𝜌̃1𝑽𝟏 = 𝜌̃1𝑽 − 𝐽𝑑1 (2.2.16) 

 

Here, 𝑽 is the mean velocity of the fluid. Substituting (2.2.16) in (2.2.14) we get, 

𝜕𝜌̃1

𝜕𝑡
+ 𝜵. (𝜌̃1𝑽) =  𝜵. (𝐽𝑑1)  (2.2.17) 

A similar relation can be written for fluid 2 in terms of its diffusive flux (𝐽𝑑2) which yields,   

𝜕𝜌̃2

𝜕𝑡
+ 𝜵. (𝜌̃2𝑽) =  𝜵. (𝐽𝑑2)  (2.2.18) 

Adding (2.2.17) and (2.2.18), and using the relation from (2.2.12) we get, 

𝜕𝜌

𝜕𝑡
+ 𝜵. (𝜌𝑽) = 𝜵. (𝐽𝑑1 + 𝐽𝑑2)  (2.2.19) 

Now, as in the interface region, the total mass is conserved which means, 𝐽𝑑1 + 𝐽𝑑2 = 0. Using this 

relation, we get the continuity equation,  

𝜕𝜌

𝜕𝑡
+ 𝜵. (𝜌𝑽) = 0

  (2.2.20) 

where the mean velocity V is the barycentric velocity, given by 𝜌𝑽 = 𝜌̃1𝑽𝟏 + 𝜌̃2𝑽𝟐 which is in 

coherence with the choice of the parameter (mass-fraction) considered to derive this relation. The 

above result shows that by considering mass fraction, the continuity equation holds throughout the 

domain. In order to derive the phase-field equation, substituting for 𝜌̃1 = 𝛾1𝜌 in (2.2.17), we get, 

𝜕(𝛾1𝜌)

𝜕𝑡
+ 𝛻. (𝛾1𝜌𝑽) = 𝜵. (𝐽𝑑1)  (2.2.21) 

which can be simplified to non-conservative form,  
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𝜕𝛾1

𝜕𝑡
+ 𝑽.𝜵𝛾1 =

1

𝜌
𝜵. (𝐽𝑑1)  (2.2.22) 

 

Now, considering mass fraction of fluid 1 as the phase-field variable thereby designating 𝛾1 by 𝜙 

(which implies 𝛾2 = 1 − 𝜙 ), (2.2.22) can be reduced to, 

𝜕𝜙

𝜕𝑡
+ 𝑽.𝜵𝜙 =

1

𝜌
𝜵. (𝐽𝑑1)  (2.2.23) 

 

The diffusive flux here is attributed to the gradient of potential (𝜂) which exists near the interface 

region for a smooth transition of the parameter 𝜙 from one phase to another. Thus, we have 𝐽𝑑1 =

𝑀0𝛻𝜂, which results in the same form as the Cahn-Hilliard equation (2.2.5) with advection and can 

be written as, 

𝜕𝜙

𝜕𝑡
+ 𝑽. 𝛻𝜙 =

1

𝜌
𝛻. (𝑀0𝛻𝜂 )  (2.2.24) 

 

2.2.8 Final set of governing equations for isothermal sub-critical flow 

Based on mass fraction as the phase-field parameter, 𝜙, the final set of governing equations 

for the analysis of two-phase system in isothermal conditions is described now. It is important to 

mention here that in the current work, 𝜙 = 0 and 1 denote the two different phases, wherein 𝜙 = 1 

denotes the liquid or heavier fluid (fluid 1) which in physical terms this implies the region is 

completely occupied by the liquid phase while 𝜙 = 0 denotes the gas or lighter fluid (fluid 2). 

The free energy functional in terms of phase field parameter as described in (2.2.1) can thus be 

written as,   

𝐹𝑉 = 𝜌𝐹 =  𝜌𝛽𝑓0(𝜙) +
𝜌𝛼

2
|𝜵𝜙|2 (2.2.25) 

Here,  𝐹 is the free energy per unit mass, following which the potential, 𝜂 =
𝛿(𝜌𝐹)

𝛿𝜙
  yields,  

𝜂 = 𝜌𝛽𝑓𝑜
′(𝜙) − 𝛼 𝜵. (𝜌𝜵𝜙) (2.2.26) 
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The Cahn-Hilliard equation for the evolution of 𝜙 can thus be written as (𝑓𝑜
′(𝜙) is written as 𝑓𝑜

′ for 

the sake of brevity), 

𝜕𝜙

𝜕𝑡
+ 𝑽.𝜵𝜙 =

1

𝜌
𝜵. (𝑀0𝜵(𝜌𝛽𝑓𝑜

′ − 𝛼 𝜵. (𝜌𝜵𝜙)) )  (2.2.27) 

 

For the double-well bulk free-energy functional, 𝑓𝑜(𝜙) = 𝜙
2(1 − 𝜙)2, considered in the current 

work, the expression for potential can be written as, 

𝜂 = 𝜌𝛽(4𝜙3 − 6𝜙2 + 2𝜙) − 𝛼 𝜵. (𝜌𝜵𝜙) (2.2.28) 

 

following which the phase-field equation reduces to,  

𝜕𝜙

𝜕𝑡
+ 𝑽.𝜵𝜙 =

1

𝜌
𝜵. (𝑀0𝜵(𝜌𝛽(4𝜙

3 − 6𝜙2 + 2𝜙) − 𝛼 𝜵. (𝜌𝜵𝜙)) )  (2.2.29) 

 

Coupling with the momentum equation  

As described in §2.2.5, in order to couple the phase-field parameter with Navier-Stokes 

equation, the stress form of the interfacial force is added in the momentum equation (2.1.17) as 

described by, 

𝐹𝑆𝑇 = −𝛼 𝜵. (𝜌𝜵𝜙⊗ 𝜵𝜙) + 𝜵(𝛼𝜌|𝜵𝜙|2) (2.2.30) 

 Closure relations 

In order to ensure coherence between the evolution of phase-field variable and fluid 

properties, it is essential to write the density and other properties as a function of phase-field 

variable. This was described for the evolution of density in (2.2.13) which in terms of 𝜙 can be 

written as, 

1

𝜌
=

𝜙

𝜌1
+
1−𝜙

𝜌2
  (2.2.31) 

 

Here 𝜌1 and 𝜌2 correspond to the densities of fluid 1 (𝜙 = 1) and fluid 2 (𝜙 = 0), respectively. It 

is to be noted here that, unlike an incompressible flow, the densities of both the fluids will change. 
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The density of each phase is evaluated based on its mass conservation in the entire domain as in 

case of single-phase flow  (2.1.20) which yields, 

𝜌1 = 𝜌1
0 𝑒𝑥𝑝 (−𝛿𝑡 𝜵 ∙ 𝑽) 

      

(2.2.32) 

𝜌2 = 𝜌2
0 𝑒𝑥𝑝 (−𝛿𝑡 𝜵 ∙ 𝑽) 

      

(2.2.33) 

following which they are advected as, 

𝜕𝜌1

𝜕𝑡
=

𝑑𝜌1

𝑑𝑡
− 𝑽 ∙ 𝜵𝜌1  

      

(2.2.34) 

𝜕𝜌2

𝜕𝑡
=

𝑑𝜌2

𝑑𝑡
− 𝑽 ∙ 𝜵𝜌2  

      

(2.2.35) 

thereby leading to the density field given by (2.2.31). The other thermodynamic properties, namely 

isothermal compressibility and viscosity are closed in a similar manner as the density and can be 

written as, 

1

𝜇
=

𝜙

𝜇1
+
1−𝜙

𝜇2
   (2.2.36) 

1

𝜒𝑇
=

𝜙

𝜒𝑇,1
+
1−𝜙

𝜒𝑇,2
   (2.2.37) 

 

Thus, the system of equation comprising of (2.2.29) for the evolution of phase field parameter, 

(2.2.30) added to (2.1.17) as an additional source term, with density evaluated from (2.2.32), 

(2.2.33), (2.2.34), (2.2.35) and (2.2.31), pressure calculated from (2.1.19) in conjunction closure 

relations for thermo-physical properties, (2.2.36) and (2.2.37) represent a compressible model used 

in the present work for the analysis of fluid flow in sub-critical state.  

2.3 Chapter summary 

The mathematical description for the analysis of highly compressible near-critical fluids is 

developed in this chapter. With prime focus of this work on supercritical fluids, the model is initially 

developed for a single-phase fluid system. The model is described by the calculation of density 

directly from the mass conservation without the need of any pressure-velocity coupling algorithm. 

This is made possible by directly incorporating the dependence of pressure on density and 
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temperature in the momentum equation. In order to investigate the behavior in sub-critical regime, 

a compressible model using phase-field modelling is described for isothermal systems.  

In the next chapter, the numerical methodology to solve the developed mathematical model is 

described followed by the validation studies and the error analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 

 

 

 

 



35 

 

CHAPTER 3.  NUMERICAL MODELLING AND VALIDATION 

TEST CASES 
 

 

The solution of the mathematical model developed in the previous chapter is not feasible by 

analytical means owing to the coupled and non-linear terms involved therein. The general solution 

methodology in such situations pertains to discretizing the set of governing equations on discrete 

points in space and time and converting them into a set of linear algebraic equations. The discretized 

equations thereafter constrained by appropriate boundary conditions give solutions which represent 

the physical behavior of the system.  

This chapter presents the numerical methodology used to solve the mathematical model 

developed in the CHAPTER 2. A brief introduction to the Finite volume method is followed by the 

description of the home-made code Thetis, developed at the laboratory I2M, which is used in the 

current work. The developed models (mathematical and numerical) for the single-phase flow are 

validated by analyzing the propagation of acoustic wave in water. For the phase-field model, the 

Cahn-Hilliard equation is validated by analyzing the classical problem of spinodal decomposition. 

Furthermore, the error analysis of the numerical scheme used in the current work (implicit second-

order central difference in space and forward first order Euler in time) is presented and it is shown 

that accurate results are possible with higher Courant numbers in non-linear system while low 

Courant numbers do not always imply accuracy. 

3.1 Basics of Finite Volume Method 

The mathematical representations of the fluid system in the form of partial differential 

equations can be discretized by various approaches such as finite difference method (FDM), finite 

volume method (FVM), finite element method (FEM) etc. Among these, FVM is profoundly used 

in problems related to the fluid flow as it ensures conservation of fluxes across the control volume. 

The solution methodology is generally carried in the following steps: 

➢ The starting point of FVM is the integral form of the governing equations. The physical 

domain is divided into number of small control volumes and conservation laws are applied 

to each control volume thereby ensuring that all fluxes are conserved. This helps to establish 
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a precise relationship between the numerical methodology and conservation laws in a 

physical sense. 

In the above procedure, a very important aspect pertains to defining an appropriate grid 

points for pressure (or scalar) and velocity fields. An intuitive approach is to define all the 

flow variables, 𝑖. 𝑒. pressure and velocity, on the same grid which can lead to uniform 

pressure field even though an oscillatory pressure may exist in the system [26]. One possible 

solution is achieved by solving the pressure (and other scalar variables) at ordinary nodal 

points and velocity field on grid points which are staggered 𝑤. 𝑟. 𝑡 scalar nodes and centered 

on the cell faces. This is illustrated in Fig. 3-1 for 2D configuration, which shows the control 

volume for a scalar (such as pressure (𝑃), temperature (𝑇) etc.), 𝑥 −velocity and 

𝑦 −velocity. 

 

    

Fig. 3-1:  Schematic illustration of staggered grid in Finite Volume Method. 

 

The ordinary or scalar node under consideration is generally denoted by P while W, E, N 

and S represent scalar nodes on east, west, north and south of P, respectively. The velocity 

or flux nodes are marked on the west, east, south and north faces by w, e, s and n, 

respectively. Thus, the discretized equations for each variable is written for its respective 

cell as shown in Fig. 3-1.  
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It can thus be understood that the definition of a sub-volume or control volume in the domain 

is subjective in nature and depends on the flow variable under consideration, though these 

are usually identified based on scalar nodes.  

➢ In the next step, the surface and volume integrals are transformed into discrete algebraic 

relations over each sub-volume (or cells). The variation of the flow variables is 

approximated by appropriate interpolation profiles relating the surface values to the cell 

values. The interpolation profiles or numerical schemes, as they are commonly referred to, 

are therefore prone to errors induced by approximations. In order to effectively capture the 

physical behavior of the flow phenomena, it is essential to make an appropriate choice of 

the numerical scheme. This is primarily governed by the type of flow being investigated. 

Similarly, for unsteady problems, integration over a finite time step is performed by means 

of appropriate temporal discretization scheme. Depending on how the solution at the 

previous time step is passed to the current time step, these are classified as explicit, semi-

implicit or implicit. The choice of temporal and spatial step is however not independent of 

each other and is governed by the propagation of error dynamics in the spatial-temporal 

plane. In order to ensure a minimal error, it is always desirable to have a neutrally stable 

scheme 𝑖. 𝑒. a scheme where the error growth rate (ratio of the error at the current and 

previous time step) is unity. 

The discretized equations are then subjected to appropriate boundary conditions which 

represent physical conditions (such as heat flow, solid boundary wall 𝑒𝑡𝑐.). In physical 

terms, these conditions represent the constraint or the disturbances from the boundary 

propagating into the domain.  

➢ The final step consists of solving the system of algebraic equations. The discretization 

process results in algebraic equations which may be linear or non-linear depending on the 

type of partial differential equations and numerical schemes. The size and set of the 

equations (which are solved in matrix form of type 𝐴𝑋 = 𝑏), is largely governed by the 

dimensionality and grid points used in the domain, though the matrices obtained from this 

discretization process are usually sparse 𝑖. 𝑒. most of their elements are zero. Even though, 

theoretically any valid method may be used to solve this system of equations, computational 

power often poses constraints on the solution process. In general, the resulting matrices can 

be solved by any of the two families of methods: 
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▪ Direct methods: These methods have a definite formula to evaluate the unknown 

variables 𝑖. 𝑒. they compute the solution in finite number of steps. For example, 

Gaussian Elimination, QR factorization etc.  

▪ Iterative methods: In iterative methods, an initial guess to solution is made following 

which the solution is obtained once it converges below the preset criteria. Thus, the 

number of steps are not predefined in iterative methods. These methods are generally 

preferred in case of non-linear systems. Examples of these methods include Gauss-

Seidel, Jacobi etc.   

The above described methodology is incorporated in a programming language and used to solve 

the governing equations. In the current work, these are solved using the home-made code, Thetis, 

developed at Laboratory I2M which is described in the following section  

3.2 Numerical code Thetis 

The code Thetis is a FVM based code written in FORTRAN 90 for solving the fluid-flow 

problems in parallel computing. Some of its elementary features can be described as: 

▪ Staggered grid: The scalar and velocity grids in Thetis follow a staggered arrangement. The 

scalar nodes are defined at the boundary of physical domain while the velocity mesh is 

shifted in the appropriate direction (for example in 𝑥 direction for velocity in 𝑥 −direction). 

Thus, the computational domain corresponding to velocity field extends out of the physical 

domain. Fig. 3-2 shows the grid architecture as used in Thetis.  

▪ Mesh: In addition to a simple constant mesh, Thetis has the capability to develop a non-

uniform regular mesh of exponential nature. This type of mesh is particularly useful in 

regions such as near the walls to capture the effect of thin thermal boundary layer (as in the 

case of supercritical fluids in the current work) without the need to discretize the bulk 

domain for the same size. When initially defining the mesh, the grid points are created for 

the scalar nodes following which velocity nodes are interpolated from them. 

▪ Vector form of the solution: The momentum equation is solved in the vector form 𝑖. 𝑒. the 

components of the velocity field in all the directions (based on dimensionality of the 

problem) are evaluated simultaneously. In order to achieve this, the neighboring nodes of 

any node under consideration are located using connection matrices. These matrices help to 
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build the coefficient matrix from the values of the flow variables, grid spacing 𝑒𝑡𝑐. based 

on the type of discretization scheme used in the analysis. The same methodology is applied 

for other variables for construction of their coefficient matrices.   

 

 

Fig. 3-2: Schematic arrangement of grid in Thetis. 

 

▪ Solvers: Thetis provides parallel capabilities to solve the system of linear equations obtained 

after assembling the discretized governing equations. While both the direct and iterative 

solvers with preconditioner are available, in this work MUMPS (Multifrontal Massively 

Parallel Sparse direct Solver [70]), a direct solver based on the Gaussian Elimination method 

for large sparse system of equations, is used for the simulations.   

Thetis does not include the developed mathematical model by default. Thus, appropriate changes 

in the various subroutines are implemented to solve the desired model. The numerical model along 

with the numerical schemes used in the current work will be described now. 
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3.3 Numerical model 

The numerical algorithm to solve the mathematical model is described herein. Initially, the 

single-phase model is presented followed by numerical methodology of phase-field model (Cahn-

Hilliard equation and relevant changes in the momentum equation). 

3.3.1 Single-phase flow 

One of the salient feature of the model presented in CHAPTER 2 is that it does not involve 

any unknown pressure in the momentum equation which circumvents the need of any pressure 

velocity coupling and thus calculates pressure directly from the relation given by Eq. (2.1.10). 

These equations are solved in a sequential manner. The second order space discretization is used 

for diffusion and transport term primarily motivated by its higher accuracy. Further, most of the 

analysis in the current work pertains to flow analysis in a closed system (cavity) and thus no high 

velocity fields or Péclet numbers (ratio of convective and diffusive flux), which govern the stability 

criteria for second order scheme are expected. The temporal behavior is discretized using an implicit 

first-order Euler scheme. A step by step description of the numerical algorithm is described below.  

Step 1. Initial conditions: The initial conditions for the flow variables (𝑉 , 𝑃, 𝜌, 𝑇) at 𝑡 = 0 are 

known as given in the problem formulation. 

Step 2. Discretization of Energy equation: The energy equation solves the temperature field (𝑇) 

implicitly as:  

𝜌(𝑛)𝐶𝑉
(𝑛)
(
𝑇(𝑛+1)−𝑇(𝑛)

𝛿𝑡
+ 𝑽(𝑛). 𝜵𝑇(𝑛+1)) = −

𝛽𝑃
(𝑛)
𝑇(𝑛)

𝜒𝑇
(𝑛) 𝜵 ∙ 𝑽(𝑛) + 𝜵 ∙ (𝑘(𝑛)𝜵𝑇(𝑛+1))  (3.3.1) 

 

Step 3. Discretization of Momentum Equation: The momentum equation given by (2.1.17) is solved 

implicitly for the velocity field in vector form as,  
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𝜌(𝑛) (
𝑉(𝑛+1)−𝑉(𝑛)

𝛿𝑡
+ 𝑽(𝑛). 𝜵𝑽(𝑛+1)) = −𝜵(𝑃0(n) − 𝛿𝑡 (

1

𝜒𝑇
(𝑛) +

𝛽𝑃
2(𝑛)

𝑇(𝑛+1)

𝜌(𝑛)𝐶𝑉
(𝑛)
𝜒𝑇
2(𝑛))𝜵 ∙

𝑽𝑛+1 − 𝛿𝑡 (
𝛽𝑃
(𝑛)

𝜌(𝑛)𝐶𝑉
(𝑛)
𝜒𝑇
(𝑛))𝜵. ((−𝑘

(𝑛))𝜵𝑇(𝑛+1))) +  𝜵 ∙ [𝜇(𝑛) (𝜵𝑽𝑛+1 + 𝜵𝒕𝑽𝑛+1 −

 2

3
𝜵 ∙ 𝑽𝑛+1𝐼)]  

(3.3.2) 

Here, the updated temperature field, 𝑇(𝑛+1) , obtained by solving (3.3.1) is used. 

Step 4. Calculation of Pressure: The equilibrium Lagrangian pressure 𝑃𝐿 for time step (𝑛 + 1) can 

thus be calculated from this new velocity field 𝑉𝑛+1 and temperature field 𝑇𝑛+1 as, 

𝑃𝐿
0(𝑛+1)

= 𝑃0(n) − (
1

𝜒𝑇
(𝑛) +

𝛽𝑃
2(𝑛)

𝑇(𝑛+1)

𝜌(𝑛)𝐶𝑉
(𝑛)
𝜒𝑇
2(𝑛))𝜵 ∙ 𝑽

(𝑛+1)𝛿𝑡 −

𝛿𝑡 (
𝛽𝑃
(𝑛)

𝜌(𝑛)𝐶𝑉
(𝑛)
𝜒𝑇
(𝑛))𝜵. ((−𝑘

(𝑛))𝜵𝑇(𝑛+1))  

(3.3.3) 

The above pressure relation was derived from its total derivative (or Lagrangian form) and hence 

the subscript is used to differentiate it from 𝑃0(𝑛+1) which is obtained as explained below. 

Step 5. Calculation of density: The updated velocity field 𝑽 at (𝑛 + 1) is further used to evaluate 

the Lagrangian form of the density (𝜌𝐿) at time step (𝑛 + 1)  using the following relation (as in 

(2.1.20)), 

𝜌𝐿
(𝑛+1)

= 𝜌(𝑛) 𝑒𝑥𝑝 (−𝛿𝑡 𝜵. 𝑽(𝑛+1))  
(3.3.4) 

Here similar analogy as pressure is used to define 𝜌𝐿. 

Step 5. Advection of flow variables:  In order to ensure coherence between behavior of flow 

variables in terms of Eulerian and Lagrangian form, the density and pressure fields are then 

advected from their respective total derivatives as in (2.1.21), 

(
𝜌(𝑛+1)−𝜌(𝑛)

𝛿𝑡 
) = (

𝜌𝐿
(𝑛+1)

−𝜌𝐿
(𝑛)

𝛿𝑡 
) − 𝑽(𝑛+1). 𝜵𝜌𝐿

(𝑛+1)
   

(3.3.5) 
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(
𝑃(𝑛+1)−𝑃0(𝑛)

𝛿𝑡 
) = (

𝑃𝐿
(𝑛+1)

−𝑃𝐿
(𝑛)

𝛿𝑡 
) − 𝑽(𝑛+1). 𝜵𝑃𝐿

(𝑛+1)
   

(3.3.6) 

Step 6. Updating the properties: The thermodynamic properties as a function of temperature and 

other variables are updated using the flow variables obtained at 𝑛 + 1. 

The above process is repeated in time by setting the values at time (𝑛 + 1) to the values at time 

(𝑛). In solving the above equations, the matrix system is solved using direct solver MUMPS [70]. 

3.3.2 Phase field Model 

The phase field model to analyze two-phase flow in subcritical state was described in §2.2. 

It comprises primarily of Cahn-Hilliard form of equation for the evolution of phase-field parameter 

𝜙. The numerical discretization of the set of equations described in §2.2.8  is presented herein.  

In step-by-step algorithm described in §3.3.1, the Cahn-Hilliard equation.(2.2.29) is solved after 

the momentum equation. Thus, the additional source term to couple the phase-field equation and 

Navier-Stokes equations (as given by (2.2.30)) is discretized as,  

𝐹𝑆𝑇
(𝑛)

= −𝛼 𝜵. (𝜌(𝑛)𝜵𝜙(𝑛)⊗𝜵𝜙(𝑛)) + 𝜵(𝛼𝜌(𝑛)|𝜵𝜙(𝑛)|
2
) (3.3.7) 

 

The phase-field equation is solved implicitly with first-order Euler in time and while 

QUICK scheme is used for spatial discretization. The choice for higher order spatial discretization 

scheme is motivated by a fourth order derivative in the phase-field equation (2.2.29) and thus 

include the influence from more neighboring mesh points to reduce the discretization errors by 

bringing them in a wider influence. Further, due to the double well form of bulk-free energy 

function, the phase-field equation includes a non-linear term. In order to solve this in implicit 

manner, the non-linear terms are split as shown below. The phase-field equation, is thus discretized 

as, 
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(
𝜙(𝑛+1)−𝜙(𝑛)

𝛿𝑡
+𝑽(𝑛+1). 𝜵𝜙(𝑛+1)) =

1

𝜌(𝑛)
𝜵. (𝑀0𝜵 (4𝛽𝜌

(𝑛)𝜙
(𝑛)2𝜙

(𝑛+1)
))−

1

𝜌(𝑛)
𝜵. (𝑀0𝜵 (6𝛽𝜌

(𝑛)𝜙
(𝑛)𝜙

(𝑛+1)
))+

1

𝜌(𝑛)
𝜵. (𝑀0𝜵 (2𝛽𝜌

(𝑛)𝜙
(𝑛+1)

))−

1

𝜌(𝑛)
𝜵.(𝑀0𝜵 (𝛼 𝜵. (𝜌

(𝑛)𝜵𝜙
(𝑛+1)

)))  

(3.3.8) 

 

As Eq. (3.3.8) is solved after the momentum equation, the updated velocity field 𝑽(𝑛+1) is used for 

the advection term. The phase-field parameter is subjected to Neumann boundary conditions owing 

to its conservative property.  

The density of each fluid (or phase 1 and 0) is calculated in similar manner as for a single-phase 

flow, 

 

𝜌
𝐿,1

(𝑛+1) = 𝜌
𝐿,1

(𝑛) 𝑒𝑥𝑝 (−𝛿𝑡 𝜵.𝑽(𝑛+1))  (3.3.9) 

𝜌
𝐿,2

(𝑛+1) = 𝜌
𝐿,2

(𝑛) 𝑒𝑥𝑝 (−𝛿𝑡 𝜵.𝑽(𝑛+1))  (3.3.10) 

 

Here, the subscript 𝐿 denotes the Lagrangian form of the density as was described in §2.1 for a 

single-phase fluid. These are then advected from their total derivatives as, 

(
𝜌
1
(𝑛+1)

−𝜌
1
(𝑛)

𝛿𝑡 
) = (

𝜌
𝐿,1
(𝑛+1)

−𝜌
𝐿,1
(𝑛)

𝛿𝑡 
)−𝑽(𝑛+1). 𝛁𝜌

𝐿,1

(𝑛+1)
   (3.3.11) 

(
𝜌
2
(𝑛+1)

−𝜌
2
(𝑛)

𝛿𝑡 
) = (

𝜌
𝐿,2
(𝑛+1)

−𝜌
𝐿,2
(𝑛)

𝛿𝑡 
)−𝑽

(𝑛+1). 𝛁𝜌
𝐿,2

(𝑛+1)
   (3.3.12) 

 

The density and other thermo-physical properties for the next iteration are calculated using the 

closure relation given by (2.2.31), (2.2.36) and (2.2.37) as, 
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1

𝜌(𝑛+1)
=

𝜙(𝑛+1)

𝜌1
(𝑛+1) +

1−𝜙(𝑛+1)

𝜌2
(𝑛+1)   (3.3.13) 

1

𝜇(𝑛+1)
=

𝜙(𝑛+1)

𝜇1
+
1−𝜙(𝑛+1)

𝜇2
  (3.3.14) 

1

𝜒𝑇
(𝑛+1) =

𝜙(𝑛+1)

𝜒𝑇,1
+
1−𝜙(𝑛+1)

𝜒𝑇,2
  (3.3.15) 

  

3.4 Validation of the Numerical Model 

3.4.1 Single-phase model 

The mathematical model developed in §2.1 and solved using numerical algorithms 

described in §3.3.1 is validated by analyzing the propagation of acoustic wave in water (isothermal 

conditions) and thus only momentum and continuity equations are solved. The results obtained 

using this were further extended to explain how propagation of acoustic wave in water helps in 

walking mechanism of basilisk lizard in Sharma et al. [71].  The validation of the complete model 

has already been described in [27] wherein density change caused by piston effect is compared with 

experimental observations of Miura et al. [72]. 

3.4.1.1 Problem description: propagation of acoustic wave in water 

 Consider a 1D container filled completely with water and open only from the top to permit 

inflow into the system as shown in Fig. 3-3. The flow of water into the system from the top results 

in compression of the water present in the system to accommodate the mass entering in the fixed 

volume of the container. This leads to the generation and propagation of pressure waves in the 

system. For a pressure wave front moving at the speed of sound  𝑐𝑠, and fluid velocity 𝑉0, the 

pressure change across the control volume can be expressed as ∆𝑃 = 𝜌𝑐𝑠𝛥𝑉 [73] (Appendix A for 

details). This expression can also be re-written as: 

 

𝑃 = 𝜌𝑐𝑠𝑉0  
(3.4.1) 

 

while describing changes 𝑤. 𝑟. 𝑡 some stationary end of the control volume. The time taken by the 

pressure wave to reach back to the inlet is given by (2 𝐻0/𝑐𝑠) where 𝐻0 is the depth of the chamber. 
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For the depth considered here (𝐻0 = 0.5𝑚) the analytical time for the pressure wave to return to 

the inlet is thus 0.67 × 10−3 𝑠. Hence, to numerically capture the propagation of these acoustic 

waves, a timestep smaller than 10−4 𝑠 is selected. Table 3-1 describes the physical parameters 

required in this study. 

 

Table 3-1: Physical properties and dimensions under consideration 

𝜒𝑇 [Pa-1 ] 

Density 

(initial) 

[kg/m3
] 

Dynamic 

Viscosity [Pa-s] 

Acoustic 

Speed 𝑐𝑠 [m/s] 

(in Water) 

𝐻0 

[m] 

Velocity at 

inlet 𝑉0 [m/s] 

0.45 x 10-11 1000.0 0.001 1493.0 0.5 1.0 

 

 

Fig. 3-3: 1D Schema of the test case for propagation of acoustic wave in water. 

 

The analytical value of pressure, as obtained by Eq. (3.4.1) and normalized by atmospheric pressure 

is 
𝑃

𝑃𝑎𝑡𝑚
= 14.93 and the acoustic time for the same is 𝑡𝑎 = 670 𝜇𝑠.  
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3.4.1.2 Analysis with different Courant Numbers 

 Since the numerical schemes are prone to errors, it is essential to analyze their effect on the 

accuracy of the solution. In an unsteady problem, the choice of time-step and grid size is dependent 

on each other for the stability and accuracy of the solution. Thus, it is essential to analyze the 

behavior of the numerical scheme before validation of the numerical model. In order to achieve 

this, the propagation of acoustic wave in water is analyzed for different grid sizes and Courant 

numbers.  

 

 

Fig. 3-4: 𝑃/𝑃𝑎𝑡𝑚 at the inlet for 𝑁𝑐 = 0.11,1 and 10 with corresponding grid sizes. 

 

Fig. 3-4 shows the results (
𝑃

𝑃𝑎𝑡𝑚
) obtained for different Courant numbers (𝑁𝑐 =

𝑐𝑠∆𝑡

∆𝑥
 where 

∆𝑡 is the timestep and ∆𝑥 is the grid size ) given by the values, 0.11, 1 and 10, with corresponding 

grid sizes as marked in the figure ) at point 𝑀 marked in Fig. 3-3. In terms of time steps, these cases 
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correspond to 10 𝜇s, 1 𝜇s and 0.1 𝜇s, respectively. Thus, for the highest Courant number used here, 

the time scales resolved is the finest. One notices oscillations in several cases, particularly for 𝑁𝑐 <

1 while non-oscillatory stable solutions are observed for 𝑁𝑐 = 10. The observed behavior seems to 

contradict the conventional argument (based on the analysis of [74]) wherein stability of the 

solution is expected to decline with increasing values of Courant number [75, 76]. This unusual 

observation needs to be investigated and is discussed now. However, before proceeding further, a 

brief description to error analysis is presented herein. 

3.4.1.3 Basics of error analysis: A brief introduction 

The numerical solution to any PDE representing a physical system consists of discretizing 

the PDE over the physical domain using appropriate spatial differencing scheme such as central 

difference, upwind etc. and temporal scheme such as first order Euler scheme. However, in the 

process of discretization, different types of errors creep into the solution which may lead to 

erroneous conclusion from the numerical results. On the other hand, certain schemes may become 

unstable under certain combinations of spatial grid spacing and time step. This may eventually lead 

to growth of error in time, oscillation in solutions etc. Hence, it becomes necessary to study the 

properties and behavior of the numerical scheme and errors induced due to the same. 

When the physical system is solved numerically, the solution can be thought of as numerical 

waves travelling in the spatial and temporal domain. This can be obtained by transforming the 

solution in Cartesian domain to spectral domain of wavenumber and frequency. In order to describe 

the behavior of the numerical scheme, the following terms can be defined as: 

• Phase Velocity 

Phase velocity (𝑐𝑁) refers to velocity of individual wave. 

• Group Velocity 

Group velocity ( 𝑉𝑔𝑁) refers to the velocity of the entire group of waves as a whole, here 

denoting numerical waves. The medium through which these waves travel may be 

characterized by the relation between 𝑐𝑁 and 𝑉𝑔𝑁. 

▪ 𝑐𝑁 = 𝑉𝑔𝑁 : non-dispersive medium  

▪ 𝑐𝑁 > 𝑉𝑔𝑁 : normal dispersive medium  

▪ 𝑐𝑁 < 𝑉𝑔𝑁 : anomalous dispersive medium 
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• Dispersion Relation 

It is the relation between the wavenumber 𝑘 and the frequency 𝜔. This means that not all 

possible values of 𝑘 can be taken for all values of 𝜔. There is a constraint imposed by the PDE 

which results in a relation between 𝑘 and 𝜔 as 𝜔 =  𝜔(𝑘) known as the dispersion relation. The 

dispersion relation also helps to evaluate the group velocity which is defined as 𝑉𝑔𝑁 =
𝑑𝜔

𝑑𝑘
. A simple 

example of analytical dispersion relation for 1D wave equation is given in the Appendix B. For 

accurate and precise solution, it is desired that numerical dispersion relation be completely coherent 

with analytical dispersion relation.  

3.4.1.3.1 Error propagation equation 

 

In order to obtain accurate numerical solution in transient analysis, implicit schemes are 

known to be unconditionally stable for linear systems while non-linearity in advection systems 

often limits the stability. Nevertheless, the implicit schemes for non-linear systems allow larger 

Courant numbers than explicit schemes. In the methodology of von Neumann [74], it is assumed 

that the propagation of signal (𝑖. 𝑒. how a variable evolves in space and time) and the corresponding 

error follows the same dynamics. This assumption may intuitively seem to be satisfying for linear 

as well as quasi-linear form of non-linear equations. However, in recent works of Sengupta et al. 

[77], it has been shown that this does not hold true owing to the dispersion or phase error or when 

the numerical method is not strictly neutrally stable for the model 1D convection equation. In order 

to illustrate this, consider the 1D wave equation which is the classical linear system used for error 

analysis, 

𝜕𝑢

𝜕𝑡
+ 𝑐

𝜕𝑢

𝜕𝑥
= 0,      𝑐 > 0  

(3.4.2) 

 

𝑐, is the wave speed. The error is defined as: 𝑒 = 𝑢(𝑥, 𝑡) − 𝑢𝑁(𝑥, 𝑡), with 𝑢(𝑥, 𝑡) and 𝑢𝑁(𝑥, 𝑡) 

representing the exact and numerical solutions, respectively. The error equation can thus be written 

as (see Appendix C for details),  
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𝜕𝑒

 𝜕𝑡
+ 𝑐

𝜕𝑒

𝜕𝑥
= −𝑐 [1 −

𝑐𝑁

𝑐
]
𝜕𝑢𝑁

𝜕𝑥
− ∫

𝑑𝑐𝑁

𝑑𝑘
[∫ 𝑖𝑘′𝑈0 [|𝐺|]

𝑡

∆𝑡  𝑒𝑖𝑘
′(𝑥−𝑐𝑁𝑡)𝑑𝑘′] 𝑑𝑘 −

 ∫
𝐿𝑛|𝐺|

∆𝑡
𝑈0 [|𝐺|]

𝑡

∆𝑡  𝑒𝑖𝑘(𝑥−𝑐𝑁𝑡)𝑑𝑘  

(3.4.3) 

 

It can be seen that unlike the conventional error dynamics, which comprises only of the error growth 

rate |𝐺| (ratio of the error at the current and previous time step), the error propagation comprises of 

several terms. Thus, the characteristics of the numerical scheme for the lowest error can be primarily 

evaluated in terms of the following parameters [77-79]: 

 

• Error growth rate, 𝐺𝑗(𝑘∆𝑥, ∆𝑡) =
𝑈(𝑘∆𝑥,(𝑛+1)∆𝑡)

𝑈(𝑘∆𝑥,𝑛∆𝑡)
 at any node 𝑗, with |𝐺𝑗| = 1 representing 

neutrally stable scheme which is absolutely desirable for the removal of dissipation error (the 

last term on the right-hand side (RHS) of Eq. (3.4.3));  

• Phase error proportional to (1 − [
𝑐𝑁

𝑐
]) which quantifies the lagging or leading of numerical wave 

(𝑐𝑁 is defined as the phase speed) with respect to the physical wave speed (𝑐)) (the first term 

on the RHS of Eq. (3.4.3));  

• Ratio of group velocity (𝑉𝑔𝑁) and physical wave speed (𝑐), 
𝑉𝑔𝑁

𝑐
, representing the energy 

propagation speed and hence measuring the dispersion error, as given by the second term on the 

RHS of Eq. (3.4.3). 

The significance of the three aforementioned parameters in evaluating the behavior of any 

numerical scheme comes from the expression of the error as given by Eq. (3.4.3). The first and last 

terms in the RHS of Eq. (3.4.3) explicitly represent effects of phase lag and error growth rate, 

respectively, whereas the second term implicitly represents,  
𝑑𝑐𝑁

𝑑𝑘
=

𝑉𝑔𝑁−𝑐𝑁

𝑘
  signifying the difference 

in energy propagation. Note that the error equation depends upon 𝐿𝑛|𝐺| as one of the contributor 

(third term on RHS of Eq. (3.4.3)). For all implicit methods, |𝐺|  ≤  1, and this term vanishes for 

specific combinations of numerical parameters when |𝐺| = 1.  However, for such parameter 

combinations of the implicit method, numerical solutions are not always trouble-free, as the errors 

can be created due to the contribution of the first two terms in Eq. (3.4.3). In order to numerically 

capture the propagation of physical wave in an efficient way, it is desired to have a strictly neutrally 
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stable scheme with vanishing phase error (1 −
𝑐𝑁

𝑐
) and numerical group velocity identical to the 

phase speed. An important aspect worth mentioning here is the difference between the physical 

wave speed (𝑐) and the numerical wave speed (𝑐𝑁). The physical wave speed is the actual wave 

speed which is attempted to be captured in computational domain. Thus, in the numerical domain, 

the waves travel with speed 𝑐𝑁 and in ideal scenario 𝑐 = 𝑐𝑁, an assumption in classical error 

analysis [74]. However, based on the numerical scheme and the resulting dispersion relation, these 

are not equal and this contributes to the error as described by Eq. (3.4.3).  

3.4.1.3.2 Error characteristics of the current numerical scheme 

In order to investigate the behavior of the numerical scheme used in the current work 

(second order space discretization and first order Euler in time), it is important to analyze its 

characteristics which is done using the 1D wave equation (3.4.2). This is further used to explain the 

unusual behavior pertaining to stable solutions at high Courant numbers and inaccurate solutions at 

lower ones (Fig. 3-4).  

The numerical amplification rate for Eq. (3.4.2) with the aforementioned numerical scheme can be 

written as (see Appendix D for details), 

𝐺𝑗 =
1

1+𝑖 𝑁𝑐sin (𝑘Δ𝑥)
  (3.4.4) 

Furthermore, the relation for 𝑉𝑔𝑁/𝑐 and  1 −
𝑐𝑁

𝑐
  leads to the following expressions respectively (see 

also Appendix D for details), 

𝑉𝑔𝑁

𝐶
=

cos(𝑘∆𝑥)

1+tan2 βj
  (3.4.5) 

1 −
𝐶𝑁

𝐶
= 1 −

1

𝑁𝑐(𝑘∆𝑥)
tan−1(𝑁𝑐 sin(𝑘∆𝑥))  

(3.4.6) 

Fig. 3-5 illustrates the contour plots of the characteristics of the aforementioned numerical scheme: 

modulus of error growth rate |𝐺𝑗|, energy propagation speed (
𝑉𝑔𝑁

𝐶
 ) and phase error metric 

(1 −
𝑐𝑁

𝑐
), in the Courant number and non-dimensional wavenumber (𝑁𝑐, 𝑘∆𝑥)-plane for Eq. (3.4.2) 
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Fig. 3-5: Contour plots of |𝐺𝑗|, 
𝑉𝑔𝑁

𝑐
 and (1 −

𝑐𝑁

𝑐
) in (𝑁𝑐 , 𝑘∆𝑥)-plane for second order central difference and 

first order forward Euler in time scheme for Eq. (3.4.2). 
 

It therefore provides a possibility to analyze the propagation of error based on the chosen time step 

and grid size for the numerical analysis. It can be inferred that the selection of an appropriate 

operating point (𝑖. 𝑒. choice of spatial and temporal resolution) is not only dependent on the Courant 

Number but is also governed by the appropriate combination of the three parameters represented in 

Fig. 3-5. This means an erroneous and oscillating solution is possible even for Courant number less 

than or equal to unity owing to the contribution of various terms in Eq. (3.4.3) 

It is to be mentioned here that the error analysis (characteristics) presented herein for this 

wave equation does not include the advective and viscous terms. Though it may seem reasonable 

to question the applicability of the results obtained to explain the observations for the complete set 

of Navier-Stokes equations, it can be argued that the simple wave equation (in the form given by 
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Eq. (3.4.2)), could represent the whole problem in the following manner: in the case of inclusion of 

viscous terms in the error analysis of wave equation, the numerical oscillations would be dampened 

out while an opposite effect can be expected from the nonlinear advection term. The net effect of 

both these terms will either lead to an increase or decrease of the stability zone but the qualitative 

representation of the numerical characteristics can be asserted to remain the same. The changes that 

would be encountered, can thus be stated to affect the characteristics more in a quantitative way. 

Moreover, here the analysis pertains to investigating how effective is the current numerical scheme 

(as described above) to capture the dynamics governed by the Navier-Stokes equations. Thus, if the 

numerical scheme is unable to give precise and accurate results for a simple wave equation, it is 

highly unlikely to get precise and accurate results for the complete set of Navier-Stokes equations. 

Hence, for the sake of clarity, the characteristics obtained by correct error dynamics for simple 

wave equation are well suited to explain the observed results in Fig. 3-4. 

3.4.1.4 Discussion of observations for different Courant Numbers 

It is observed in Fig. 3-4 that highly accurate and stable results are obtained for high Courant 

number while their low values showed some oscillatory behavior. In order to explain this on the 

basis of numerical characteristics of the current scheme, Fig. 3-6(a-c) illustrates the operating points 

marked for different grid sizes for Courant number of 0.11 on the contour plots of |𝐺𝑗|, (
𝑉𝑔𝑁

𝑐
)  and 

(1 −
𝑐𝑁

𝑐
) respectively, in the (𝑁𝑐, 𝑘Δ𝑥)-plane. It is to be mentioned that the largest to smallest grid 

size corresponds to a time step of 10 𝜇𝑠, 1 𝜇𝑠 and 0.1 𝜇𝑠 for each Courant number (similar plot is 

also depicted in Fig. 3-7(a-c) for 𝑁𝑐 =10). In order to mark the considered operating points in 

(𝑁𝑐, 𝑘∆𝑥)-plane in the contour plots, the fundamental spatial frequency of the signal (
𝑃

𝑃𝑎𝑡𝑚
) for each 

combination of 𝑁𝑐 and ∆𝑥  is evaluated for three different time instances (0.3 𝑚𝑠, 0.6 𝑚𝑠 and 

0.9 𝑚𝑠). Using Fourier transform of the output signal (
𝑃

𝑃𝑎𝑡𝑚
), the relevant value of peak 

wavenumber is found to be 
𝑘

2𝜋
 ~ 1 𝑚−1. However, the pressure pulse propagating will behave like 

a Heaviside function, 𝑖. 𝑒., the wavenumber spectrum will be very wide and corresponding 

wavenumber will require fine spacing to capture discontinuous behavior (as shown in Fig. 3-4), 

with the variation now considered in space. In that respect, the case of 𝑁𝑐  =  0.11 for ∆𝑥 =

 125𝑚𝑚 will be very difficult. Comparatively, for the nominal fundamental case of  
𝑘

2𝜋
 ~ 1 𝑚−1 , 
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one seeks the properties for 𝑘∆𝑥 =  0.7854. The solutions are found to be quite satisfactory, except 

for larger grid size (∆𝑥 =  125𝑚𝑚) where the solution deviates significantly from the exact 

solution (see Fig. 3-4, 𝑁𝑐  =  0.11). An explanation for such a deviation is presented now.  

Consider firstly the case with 𝑁𝑐 = 0.11, where oscillations at the initial time are observed 

for ∆𝑥~125𝑚𝑚, for which the contour plots are zoomed in Fig. 3-6(a-c). The computed oscillatory 

solution is due to what is known as the Gibbs’ phenomenon [78] and is related to peculiar behavior 

of the numerical group velocity for high value of 𝑘∆𝑥. This is attributed to the upstream propagating 

q-waves to be noted for high value of 𝑘∆𝑥. (In general, in order to capture the physical wave 

numerically, it is essential that both physical and numerical waves travel in the same direction. 

However, due to the characteristics of the numerical scheme, some of the numerical waves can start 

moving in the opposition direction thereby causing an unphysical solution and such waves been 

termed as 𝑞 −waves [78, 79]). For other grid sizes (Fig. 3-6(b-c)) such high values of 𝑘∆𝑥 do not 

arise.  

For the numerical stability, implicit schemes are not constrained with respect to the Courant 

number and none of the computed cases display error growth. However, a comparison of the results, 

as shown in Fig. 3-4(a) and Fig. 3-4(c), illustrates that an increasing Courant number leads to more 

accurate solutions and capture a sharp step-like profile (Heaviside function) more efficiently for the 

same time step. It is observed from Fig. 3-7(a) that the error growth rate for all grid sizes is very 

close to unity for 𝑁𝑐 = 10, which explains the accuracy of the solution obtained for higher Courant 

number. Similarly, a nearly vanishing value of phase error in Fig. 3-7(c), reveals that numerical 

waves travel with nearly the same speed as the physical waves and observance of accurate solution. 

The fact that numerical waves follow the physical waves nearly at the same speed is further evident 

from the ratio of  
𝑉𝑔𝑁

𝑐
 being close to unity. This explains a stable and accurate solution observed in 

Fig. 3-4 for higher Courant numbers.  
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Fig. 3-6: Contour plots for 𝑁𝑐 = 0.11 in  (𝑁𝑐 , 𝑘Δ𝑥)-plane (a) |𝐺𝑗| (b) 
𝑉𝑔𝑁

𝑐
  (c) (1 −

𝑐𝑁

𝑐
). The marked points 

correspond to the fundamental wavenumber 
𝑘

2𝜋
 ~ 1 𝑚−1.  

 

It is to be mentioned that even though it may seem obvious to obtain an oscillation-free solution for 

higher Courant numbers (for the same time step) owing to a better spatial resolution, a deviation 

from a sharp step-like profile is still observed at time step Δ𝑡 = 10 𝜇𝑠 (largest grid spacing ∆𝑥 =

1.49 𝑚𝑚 for 𝑁𝑐 = 10). The observed lack of accuracy is due to a lower grid resolution, while the 

step-like function requires resolving larger range of wavenumbers.  

As illustrated in §3.4.1.1, 𝑡 = 0.67 𝑚𝑠 corresponds to the analytical time at which sharp-

peak is observed. Thus, at all previous times, an accurate and precise numerical solution should 

lead to 
𝑃

𝑃𝑎𝑡𝑚
≈ 15. However, as can be observed from Fig. 3-4 (for ∆𝑡 = 10 𝜇𝑠), 

𝑃

𝑃𝑎𝑡𝑚
 deviates from 

the desired value for all Courant numbers considered in the study. In order to explain this behavior 

more clearly, we draw out the difference between the two extreme cases, smallest Courant number 
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with least spatial resolution (𝑁𝑐 = 0.11  and  𝛥𝑥~125 𝑚𝑚) and largest Courant number with 

highest spatial resolution (𝑁𝑐 = 10 and 𝛥𝑥~0.0149 𝑚𝑚). 

 

 

Fig. 3-7: Contour plots for 𝑁𝑐 = 10 in  (𝑁𝑐 , 𝑘Δ𝑥)-plane (a) |𝐺𝑗| (b) 
𝑉𝑔𝑁

𝑐
  (c) (1 −

𝑐𝑁

𝑐
). The marked points 

corresponding to fundamental wavenumber 
𝑘

2𝜋
 ~ 1 𝑚−1. 

 

These extreme cases have been purposely selected so as to elucidate the results effectively in a 

quantitative manner, though a similar explanation will hold for all the cases showing such 

discrepancies. The former case corresponds to a deviation from the step like profile while the latter 

represents the desired sharp peak as shown in Fig. 3-4(a-c). Fig. 3-8 illustrates the point 

corresponding to the second dominant wavenumber in  (𝑁𝑐, 𝑘Δ𝑥)-plane for 𝑁𝑐 = 0.11. It can be 

seen that while the value of error growth rate (|𝐺|) is nearly equal to 1, the negative value of 𝑉𝑔𝑁/𝑐 

and high value of phase lag implies that the constituting numerical waves are not in coherence with 

the physical wave. Specifically, when the solution is discontinuous, a large range of 𝑘∆𝑥 is excited. 
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Along with this comes the problem of negative group velocity of the components with 𝑘∆𝑥 

exceeding 𝜋/2 (as shown in Fig. 3-5 and a zoomed view shown in Fig. 3-8 for the case of ∆𝑥 =

 125𝑚𝑚 and the corresponding 𝑘∆𝑥 ≈  𝜋).  

 

 

Fig. 3-8 (a-c): Contour plots of (a) 𝐺𝑗, (b) 
𝑉𝑔𝑁

𝑐
, (c) (1 −

𝑐𝑁

𝑐
) in (𝑁𝑐 , 𝑘Δ𝑥)-plane for 𝑁𝑐 = 0.11 and 

∆𝑥  ~125 𝑚𝑚. The marked point corresponds to second dominant wavenumber (
𝑘

2𝜋
=  4 𝑚−1) for solution 

at time 𝑡 = 0.6 𝑚𝑠. 

 

For the highest wavenumbers, the components of solution will move upstream from the point of 

discontinuity, as shown in  Fig. 3-4. This is the so-called Gibbs’ phenomenon, which is described 

in greater detail in [78]. Thus, the net signal (
𝑃

𝑃𝑎𝑡𝑚
) is not well reconstructed leading to a deviation 

from the desired value as observed in Fig. 3-4(a). On the contrary, it can be observed from Fig. 3-9 

(for 𝑁𝑐 = 10 and ∆𝑥 ≈ 0.0149 mm) that for various higher dominant wavenumbers, the values of 

characteristics are close to the desired ideal values, especially the phase lag error, 1 −
𝑐𝑁

𝑐
 unlike for 

𝑁𝑐 = 0.11 where it is significantly high (Fig. 3-8). Even though higher wavenumbers get excited 
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like the previous case, finer spatial resolution impedes group velocity from moving upstream. This 

explains an accurate solution observed in Fig. 3-4(c) and thus a sharp step like profile which 

satisfies the analytical solution.  

It can also be observed that all the three parameters for 𝑁𝑐 = 0.11 and ∆𝑡 = 0.1 𝜇𝑠 (∆𝑥 ≈

1.47 𝑚𝑚) are closer to the desired ideal values as compared to 𝑁𝑐 = 10 for the same time step and 

∆𝑥 ≈ 0.0149 𝑚𝑚. However, from the results shown in Fig. 3-4, it can be seen that solutions for 

the latter are more stable 𝑖. 𝑒. no oscillations for time instances very close to 𝑡 = 0, which may give 

an impression of an anomalous behavior. As mentioned before, the marked operating points 

correspond to time instances beginning from 0.3 𝑚𝑠 which thereby preclude the operating points 

denoting initial instances of the solution.  

 

 

Fig. 3-9(a-c): Contour plots of (a) |𝐺𝑗|, (b) 
𝑉𝑔𝑁

𝑐
, (c) (1 −

𝑐𝑁

𝑐
) in (𝑁𝑐 − ∆𝑥) plane for 𝑁𝑐 = 10 and 

∆𝑥  ~0.0149 𝑚𝑚 for different wavenumbers for solution at time 𝑡 = 0.6 𝑚𝑠. 
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In order to explain this observation, for the sake of completeness, the signal at time instances 

𝑡 = 0.5, 1, 1.5 and 2𝜇𝑠 is investigated for the fundamental wavenumber for 𝑁𝑐 = 0.11 and 10 with 

∆𝑡 = 0.1 𝜇𝑠. It is found that in both the cases, all the possible wavenumbers were nearly equally 

plausible. It is to be mentioned here that for the same time step, a higher Courant number entails a 

wider spectrum of wavenumbers. This implies that for 𝑁𝑐 = 10, the wavenumbers available to 

reconstruct/capture the signal (i.e. propagation of numerical wave) are considerably higher. 

Consequently, the output thus observed is more coherent with the exact signal (propagation of the 

physical wave) leading to no-oscillations in the solution.  

On the contrary, the possible wavenumbers for 𝑁𝑐 = 0.11 (for same time step as 𝑁𝑐 = 10) 

are considerably lower resulting in higher values of wavenumber (𝑘) and thus q-waves and 

relatively poor reconstruction of the signal. Thus, oscillations are observed in the solution as can 

be observed in Fig. 3-4(a). The above explanation therefore suggests that the lower values of 

Courant Number do not necessary entail stable solution while higher values can lead to stable 

solutions. However, obtaining stable solution for higher Courant numbers as compared to lower 

values is unusual and has been highlighted in the above discussion. This is attributed to the correct 

and complete error dynamics which includes effects of numerical error growth such as dispersion 

and phase lag errors described above.   

It is to be noted here that Courant Number has been defined based on the actual wave speed 

𝑖. 𝑒. the physical speed of the wave whose propagation is being captured numerically. Intuitively, it 

seems reasonable to ascertain that for an accurate numerical analysis of wave propagation, it is 

desirable that the smallest grid size in computational domain be greater than the distance traversed 

by the wave in a given time step i.e. 𝑐∆𝑡 <  ∆𝑥. However, in the computational domain, the physical 

waves are actually represented by the propagation of numerical waves which move with the phase 

speed 𝑐𝑁 and depend on wavenumber for dispersive schemes. Hence, the intuitive logic of grid size 

being larger than the distance moved by the wave needs to be written as 𝑐𝑁∆𝑡 <  ∆𝑥 which will be 

dependent on the wavenumber. Moreover, as the solution at a point is the summation of solution 

due to all wavenumbers, (when 𝜔 = 𝑐(𝑘)), therefore defining constraint of this sort can cause 

confusion. Instead, an analysis of the kind presented here advocates appropriate grid size and time 

step. Further, the results presented herein bring out an important fact that the criterion of numerical 
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stability (Courant numbers lesser than one) is dependent on the numerical scheme, as well as, the 

type of PDE being investigated.  

3.4.1.5 Validation results for the propagation of acoustic wave in water 

 The problem to investigate propagation of acoustic wave in water is explained in § 3.4.1.1  

while results for various Courant numbers are shown in Fig. 3-4. The knee-like jump after a certain 

time (two acoustic times) represents the addition effect of the pressure waves which reflect from 

the bottom wall and interfere with the pressure wave at the entrance. This is further illustrated in 

Fig. 3-10 showing the propagation of the pressure wave along the depth at various time intervals 

for 𝑁𝑐 = 1 and 𝛿𝑡 = 0.1 𝜇𝑠. The distance travelled by the acoustic wave front after a period of 𝑡1 =

0.2𝑚𝑠 is marked by point 𝑀1 in Fig. 3-10 and matches well with the analytical values calculated 

using the speed of sound in water as mentioned in Table 3-1 (distance ℎ = 𝑐𝑡1 ≈ 0.29𝑚).  

 

 

Fig. 3-10:Pressure wave at various time instances along the depth of the container. 
 

 Thus, the distance traversed by pressure wave (as highlighted by point 𝑀1) shows the speed 

of pressure-wave propagation is the same as the speed of sound in water. It is observed that with 

the increase in resolution in space and appropriate choice of the time step, the error between the 

analytical and numerical time (2 𝐻0/𝑐) becomes small (around 3-4% for 𝛿𝑡 = 0.1 𝜇𝑠 and 𝑁𝑐 =1 

and 0.1). Furthermore, for 𝛿𝑡 = 0.1 μs, the pressure error at time 0.2𝑚𝑠 was about 1.5%. This 
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shows that the above mathematical and numerical models can be used to study the propagation of 

pressure waves even in media with a very low compressibility (water in this case).  

 

3.4.2 Phase-field (Cahn-Hilliard) equation 

In this section, validation results for the Cahn-Hilliard equation (2.2.29) are described based 

on mass-fraction as the order parameter. Cahn and Hilliard [35, 36] proposed this equation to 

describe the spontaneous phase separation in binary fluid mixtures (binary alloy). A brief 

description of the governing mechanism is initially presented followed by the description of the 

results. Before proceeding further, it is important to mention two important parameters which play 

a crucial role in numerical aspects of phase-field modelling. These are, 

• Cahn-number (𝐶𝑛): Cahn number is the ratio of the interface thickness (𝜉) to the characteristic 

length scale (𝐿). It is to be noted that in order to effectively track the interface dynamics, it is 

essential to have a certain number of grid cells in the interface region. Jacqmin [40, 41] 

recommended to consider a minimum of three nodes in the interface region.  

𝐶𝑛 =
𝜉

𝐿
 (3.4.7) 

 

• Péclet number (𝑃𝑒): Peclet number in general represents the ratio of convective to diffusive 

fluxes. In case of phase field modelling, the diffusion is controlled by the mobility (𝑀0) 

following which 𝑃𝑒 is defined by (for free energy expression given by (2.2.25)),  

𝑃𝑒 =
𝑈𝐿

𝑀0𝛽̅
 (3.4.8) 

where, 𝑈 is the characteristic velocity while 𝛽̅ is the coefficient of bulk free energy. 

Now, in order to understand the separation mechanism, let us consider a mixture which is 

non-homogeneous 𝑤. 𝑟. 𝑡 a parameter (𝜙) following which the double well free energy function is 

defined by (2.2.25).  The equilibrium composition corresponds to potential (𝜂) equal to zero which 

thereby yields an equilibrium composition, 𝜙 = 0 and 𝜙 = 1. It is also well known that the negative 
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curvature of the free energy, 
𝜕2𝑓0

𝜕𝜙2
< 0, corresponds to an unstable region. For the bulk-free energy 

considered in the present case, this is schematically shown in Fig. 3-11. 

 

Fig. 3-11: Schematic illustration of stability regions. 

 

If the initial binary mixture has an initial state in the unstable or metastable region, the 

mixture will spontaneously separate to the two coexisting phases which represents a more 

energetically favored condition. The two minima (equilibrium compositions) of the free energy 

curve are said to be the binodal points. The decomposition into different phases is primarily 

governed by the initial condition of the mixture. In our present case, the initial condition lies in the 

unstable region, so the mixture separates by spinodal decomposition (worm-like interconnectivity). 

This is a well-established problem in literature and the developed model is validated by 

investigating the separation of phases. Thus, herein we solve the Cahn-Hilliard Eq. (2.2.29) without 

advection (𝑖. 𝑒. V=0). In the present case for the validation study, a square cavity (5 𝑚𝑚 × 5 𝑚𝑚) 

is considered to be filled with a binary mixture of two phases represented by 𝜙 = 0 and 𝜙 = 1. At 

𝑡 = 0, the initial configuration corresponds to an unstable region, 𝜙0 = 0.5 with small random 

perturbation.  

Thus, the initial condition is represented by, 

𝜙((𝑥, 𝑦),0) = 𝜙0 + 𝜙𝑟𝑎𝑛𝑑
 (3.4.9) 
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where 𝜙𝑟𝑎𝑛𝑑 is a random distribution between −0.5 × 10−2 and 0.5 × 10−2.  Fig. 3-12 shows the 

evolution and separation of the mixture into binary phases at various time instances.  

 

Fig. 3-12: Time evolution of separation of phases (spinodal decomposition) for Cahn-Hilliard Eq.  (2.2.29) 

without advection. 
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The time step for the given simulation corresponds to 𝛿𝑡 = 10−2𝑠 while Cahn-Number, 𝐶𝑛 =
𝜉

𝐿
=

5 × 10−3  and  a constant mobility 𝑀0 = 10
−7S.I is considered. The numerical studies pertaining 

to the full coupled form of Navier-Stokes and phase-field equation is presented in CHAPTER 6. 

3.5 Chapter Summary 

The numerical methodology to solve the mathematical model developed in CHAPTER 2 is 

described in this chapter followed by validation studies. For a single-phase fluid system, the results 

are validated by investigation of propagation of acoustic wave in water while for phase-field model, 

a classical problem of spinodal decomposition is investigated. In addition, the numerical scheme 

used in the current work is investigated for error analysis and based on the error propagation 

equation, unusual behavior of low and high Courant numbers affecting the solution is explained. 

In the next chapter, the model is subsequently used to analyze the thermo-vibrational 

instabilities and some new findings are highlighted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



64 

 

 

 

 

 

 

 

 

 

 

  



65 

 

CHAPTER 4. THERMO-VIBRATIONAL INSTABILITIES IN 

SUPERCRITICAL FLUID 
 

 

Among several applications and interesting phenomena ascribed to intriguing properties of 

SCFs, their behavior when subjected to simultaneous quench and vibration has piqued the interest 

of several researchers [80-83], especially in weightlessness. This has been primarily motivated by 

g-jitters experienced by space vehicles and cryogenic reservoirs aboard the International Space 

Station (ISS). Further, the complex thermo-mechanical coupling leads to the evolution of several 

intriguing behaviors in the thermal boundary layer (TBL) resulting in various thermo-vibrational 

instabilities.  

In this chapter, contemporary work pertinent to thermo-vibrational instabilities in supercritical 

fluids is reviewed followed by primary investigation of two types of instabilities, Rayleigh-

vibrational and parametric instabilities. The analysis provides an insight into the physical 

mechanism causing these instabilities and the effect of various parameters (such as amplitude of 

vibration, temperature quench, distance from the critical point etc.) on the onset of these instabilities 

and the behavior of waves/finger like patterns. A stability plot is presented describing the type of 

instabilities to be expected for a given thermo-vibrational parameters.  

4.1 Literature review 

In highly compressible fluids such as SCFs, the action of vibration induces flow ascribed 

primarily to the high compressibility and thus captivates features due to a strong thermo-mechanical 

coupling. One of the initial pioneering work was carried by Carles and Zappoli [83] who analyzed 

the problem of a container filled with a near-critical fluid when subjected to mechanical vibrations 

by means of matched asymptotic expansions and presented various characteristic regimes of the 

fluid under vibration. While the acoustic regime, defined for vibration frequencies greater than the 

inverse of acoustic times (typically a few kHz) was found to be independent of the initial proximity 

to the critical point, a specific low-frequency regime was highlighted wherein the bulk part of the 

fluid almost behaves like a solid bouncing back and forth between two highly compressible thermal 

boundary layers. This response is specific to near-critical fluids. This phenomenon was further 
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supported by the numerical studies of Jounet et al. [80] wherein the fluid was observed to oscillate 

homogenously at low frequencies with greater amplitude than in a normal gas. This was explained 

by virtue of strong thermo-mechanical coupling occurring in the thermal boundary layer. A further 

extension to the two-dimensional system revealed that the low frequency regime was affected only 

in the presence isothermal longitudinal boundaries. This was explained by virtue of the formation 

of longitudinal TBL following which a strong thermo-mechanical coupling provokes a curvature in 

the streamlines near the walls. When subjected to simultaneous thermal quench and mechanical 

vibration, evidences of instabilities have been cited by various experimental studies [81, 84-86]. 

One such work has been reported by Amiroudine and Beysens [81] where finger like instabilities 

were observed when a cell with a sample of hydrogen near its critical density was quenched from 

𝑇𝑐 + 3𝑚𝐾 to 𝑇𝑐 + 2𝑚𝐾 (𝑇𝑐 being the critical temperature) and simultaneously subjected to 

vibrations in weightlessness conditions, as shown in Fig. 4-1. 

 

Fig. 4-1: Experimental observation of boundary layer fingering with supercritical hydrogen in 

weightlessness [81]. Here double arrow denotes the direction of vibration. 

 

Amiroudine and Beysens [81] further investigated this problem numerically with a linearized 

equation of state for the calculation of density with supercritical CO2. They reported the observance 

of finger-like patterns perpendicular to the vibration direction and ascribed this to thermo-

vibrational instability which was characterized by a vibrational Rayleigh number. Recently, 

Gandikota et al. [82] further extended the instability analysis and quantified different types of 

instabilities (Rayleigh-vibrational and parametric) in terms of the critical amplitude of vibration. 

The range of vibrational amplitudes and frequencies considered were higher than the previous work 

of Amiroudine and Beysens [81] (amplitude varied from 0.05 to 5 times the cell size while 

frequencies varied between 2.78 𝐻𝑧 and 25 𝐻𝑧). Finally, they presented the stability plot which 

described the type of instability to expect under given thermo-vibrational parameters.   
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In addition to above described instabilities in zero-gravity conditions, instabilities were also 

reported for the case of 2 miscible fluids when subjected to vibration parallel to the interface [87, 

88]. Shevtsova et al. [88] showed that for amplitudes greater than cell dimensions, secondary 

instabilities (Faraday instabilities) were observed over frozen wave instabilities. 

 

Fig. 4-2: Evolution of flow pattern with two miscible fluids subjected to vibration in horizontal direction in 

microgravity experiment 𝑓 = 8 𝐻𝑧, 𝐴 =  10.7 𝑚𝑚 at (a) t =1:4 s (b) 1.8 s (c) 2.9 s (d) 3.025 s. The Faraday 

waves (secondary instabilities) can be seen on the columns in (c) and (d). Reproduced from [88]. 

 

One of the primary assumption in the aforementioned numerical studies [81, 82] in SCFs is 

the linear equation of state for the calculation of density. This assumption not only limits a higher 

temperature perturbation but also circumvents an accurate analysis very close to the critical point. 

The latter is due to the fact that the thermo-vibrational phenomenon is primarily governed by large 

density gradients in the TBL. Thus, a precise density calculation is essential to ensure that all the 

physical phenomena are accurately captured by the model. Since the model developed in §2.1 

directly evaluates density from mass conservation, it thereby permits a more rigorous investigation 

of these instabilities, in terms of higher quench rates and decreasing proximity to the critical point 

(results as close as 𝑇𝑖 − 𝑇𝑐 = 5𝑚𝐾 have been obtained). In the following section, thermo-

vibrational instabilities are presented as investigated using the developed model in model §2.1 . The 

system is analyzed for a wide range of vibration frequencies, varying from 5 𝐻𝑧 to 35 𝐻𝑧 while the 
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proximity to the critical point and the quench rate, 𝑞 (=
𝛿𝑇

𝑇−𝑇𝑐
× 100) are varied from 5 𝑚𝐾 to 2000 

𝑚𝐾 and 10% to 50%, respectively.  

4.2 Problem Description  

When subjecting SCFs to simultaneous quench and vibration, the type of instabilities will be 

governed by the relative direction between the vibrational acceleration and the temperature 

gradient. These can be categorized as Rayleigh-vibrational (RV) or parametric when the relative 

direction is normal or parallel, respectively. The nomenclature of these instabilities is attributed to 

their resemblance to Rayleigh-Bénard convection and parametric (Faraday) instabilities [82], 

respectively, as will be discussed in the following sections. Fig. 4-3 shows the schematic of the 

problem wherein a 2-D square cell (size ℎ = 7𝑚𝑚 ) with solid walls is filled with supercritical 𝐻2, 

implying an isochoric process. The dimensions of the cell are the same as considered in the work 

of Gandikota [89] .  

 

Fig. 4-3: Schematic of problem for thermo-vibrational instabilities. 

 

In order to gain insight into the physical mechanism leading to each instability, it is essential 

to analyze each of them separately. This is attained by imposing appropriate boundary conditions 
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pertinent only to each type of instability. Thus, for RV instabilities, the top (𝐴𝐵) and bottom (𝐶𝐷) 

wall are quenched while for parametric only the vertical walls (𝐵𝐶 and 𝐴𝐷) are quenched. The 

remaining walls in both cases are maintained at adiabatic conditions. Further, the system is 

investigated under the conditions of weightlessness 𝑖. 𝑒. zero gravity. Further, for numerical 

analysis, an exponential grid with a total of 300 x 300 elements is used with smallest element being 

1 𝜇𝑚 near the wall with time step as 10−3𝑠 , which corresponds to a compromise between accuracy 

and CPU time. Further, the force term in the momentum equation (2.1.17) corresponds to 𝑭 =

𝜌𝐴𝜔2sin (𝜔𝑡)𝒊 in the 𝑥 −direction. The thermo-physical properties are evaluated using relations 

obtained from Renormalization-Group (RG) Theory as described in Table 4-1. 

4.3 Comparison with experimental observations 

In order to ensure that the developed mathematical model well captures the dynamics of 

SCF, the results obtained from simulations are compared with experimental observation when SCF 

is simultaneously subjected to thermal perturbation (quench) and mechanical vibrations. For the 

experimental comparison, all the four walls of the cell are quenched while the vibration parameters 

corresponding to experimental conditions are 𝑓 = 20 𝐻𝑧 and 𝐴 = 0.875 𝑚𝑚 [89]. Further, as the 

temperature is not measured directly in the experimental study [89], the temperature boundary 

conditions are therefore prone to experimental errors. Thus, considering these values to be the exact 

conditions in numerical study is bound to yield different results. This is attributed to the 

considerable variation in the thermo-physical properties even with a slight change in the distance 

from the critical point. In lieu of these considerations, the temperature at the boundary is adjusted 

to attain a good agreement between the experimental and numerical observations. Subsequently, 

the error between experimental and numerical conditions is evaluated and the result shown here 

correspond to 22% error in the initial temperature (𝑇𝑖) and 12% error in temperature imposed at 

the boundary, 𝑖. 𝑒. wall temperature (𝑇𝑤), which is a good limit of acceptance. 

Fig. 4-4(a-b) shows the results obtained from our numerical simulation and experimental 

observations for the parameters as described in the Fig. 4-4 itself. It can be observed that finger like 

structures appear from the top wall (𝐴𝐵) as in experimental conditions. More importantly, the 

number of fingers is also the same as observed in the experiments which illustrates the reliability 

and accuracy of the numerical model to capture the dynamics of thermo-vibrational instabilities in 
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SCFs. The appearance of these finger like structures correspond to Rayleigh-vibrational instabilities 

which will be discussed in detail in §4.4. 

Table 4-1: Thermo-physical properties of 𝑛 − 𝐻2  with 𝜀 =
𝑇−𝑇𝑐

𝑇𝑐
  [10, 82] 

Property Value 

Critical Temperature (Tc) [K] 33.19 

Critical density (𝜌c) [kg.m-3] 30.11 

Critical Pressure (Pc ) [MPa] 1.315 

Isothermal Compressibility (𝜒
𝑇
) [ Pa-1] 5.8 × 10−8𝜀−1.24 

Thermal expansion at constant pressure (𝛽
𝑃
) [ K-1] 1.1 × 10−2𝜀−1.24 

Specific heat at constant volume (𝐶𝑣) [ J.kg-1] 1.5 × 10−4𝜀−0.11 − 1.2 × 104 

Thermal conductivity [𝑘] [W.m-1. K-1
] 3.3 × 10−3𝜀−0.567 

Thermal diffusivity [𝐷𝑇] [m
2. s-1] 5.1 × 10−8𝜀0.67 

Kinematic viscosity [ 𝜐 =
𝜇

𝜌
] [ m2.s-1] 1.5 × 10−7𝜀−0.04 

Speed of sound 

 [ 𝑐 ] [m.s-1] (from Mayer Relation) √
1

𝜌𝜒
𝑇

+
𝑇

𝜌2𝐶𝑉
(
𝜕𝑃

𝜕𝑇
)
2

 

 

 

Fig. 4-4: Comparison between (a) numerical simulation and (b) experimental [89] observations for thermo-

vibrational instabilities (𝑓 = 20 𝐻𝑧 and 𝐴 = 0.875 𝑚𝑚). 

 

A further verification is performed by comparing the wavelength (distance between adjacent 

fingers, 𝜆 , as marked in Fig. 4-4) of the Rayleigh-vibrational instabilities for various conditions. 
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However, unlike the previous case, the percentage error in experimental and numerical wavelengths 

is evaluated here. Fig. 4-5 compares wavelengths for different proximities to the critical point (for 

same temperature quench 𝛿𝑇 = 400 𝑚𝐾 ). As can be observed from Fig. 4-4, the wavelengths are 

not uniform along the length. The wavelength therefore obtained from experimental data is the 

average wavelength (dividing cell dimension by the number of fingers) and a similar procedure is 

adopted in case of numerical investigations. It can be observed that the wavelengths evaluated from 

the current numerical study show a similar trend and the error decreases from 29 % to 10 % on 

moving away from the critical point. This is attributed to significant variations in properties on 

approaching the critical point which can affect the behavior both in experiments and numerical 

simulation causing a higher discrepancy. Further, unlike the experimental conditions, where the 

wall temperature is changed slowly, a sudden quench in numerical study also adds up to the 

discrepancy. A noticeable observation pertains to the decrease in the wavelength on approaching 

the critical point which is explained in §4.4.3.  

 

Fig. 4-5: Comparison of wavelengths, experimental [89] and numerical, for different proximities to the 

critical point for same 𝛿𝑇 = 400 𝑚𝐾, 𝐴 = 0.6125 𝑚𝑚 and 𝑓 = 30 𝐻𝑧. 
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4.4 Rayleigh-Vibrational Instabilities 

4.4.1 Mechanism of Rayleigh vibrational instabilities 

Rayleigh-vibrational instabilities are observed when the direction of temperature gradient 

is normal to the direction of vibration. These were presented in §4.3 for the validation of the 

mathematical and numerical model. Fig. 4-6 further illustrates these instabilities highlighting the 

relative direction of temperature gradient and vibration for 𝑇𝑖 − 𝑇𝑐 = 100 𝑚𝐾, δ𝑇 = 10 𝑚𝐾, 𝑓 =

10 𝐻𝑧, 𝐴 = 4 𝑚𝑚. 

 

Fig. 4-6: Rayleigh-vibrational instability for 𝑇𝑖 − 𝑇𝑐 = 100 𝑚𝐾, 𝛿𝑇 = 10 𝑚𝐾, 𝑓 = 10 𝐻𝑧, 𝐴 = 4 𝑚𝑚. 

 

 

In order to understand the physical mechanism leading to the appearance of these 

instabilities, let us consider a schematic as shown in Fig. 4-7 when a cell filled with SCF is at initial 

temperature 𝑇𝑖  and the top wall (𝐴𝐵) is quenched by 𝛿𝑇. Subsequently, a very thin TBL (attributed 

to the vanishing behavior of thermal diffusivity 𝐷𝑇) is formed as illustrated in Fig. 4-7(a). Within 

the TBL, large density gradients are formed due to the diverging behavior of thermal expansion 
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(𝛽𝑃 = −
1

𝜌
(
𝜕𝜌

𝜕𝑇
)𝑃). This is illustrated in Fig. 4-7(b), where the TBL has been enlarged to elucidate 

the phenomenon. For the sake of simplicity, let us consider the entire TBL and bulk fluid as two 

different regions (layers) as shown in Fig. 4-7(b), primarily motivated by different densities in these 

regions. 

 

 

                             

                       

 

Fig. 4-7: Schematic illustration for mechanism leading to Rayleigh-vibrational instabilities (a) formation of 

thin TBL (b) enlarged view near the TBL. 

 

The vibration of the cell in the 𝑥-direction induces inertial forces in the TBL as well as the 

bulk as marked in Fig. 4-7(b). However, owing to the difference in density, a relative motion is 

induced due to the difference in inertial forces between these two layers. This difference results 

in a Bernoulli-like pressure difference due to the velocity difference between these layers. The 
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velocity difference (∆𝑽) due to the difference in density, ∆𝜌, between any two layers (bulk and 

TBL region in the present case) can be described as ∆𝑽 = (
∆𝜌

𝜌𝑀
)𝐴𝜔, where 𝜌𝑀 is the mean density. 

This results in a pressure difference ∆𝑃 =  𝜌𝑀(
∆𝜌

𝜌𝑀
)2𝐴2𝜔2. The destabilization due to this 

Bernoulli-like pressure difference between different fluid layers is stabilized by the effect of 

diffusive forces (viscous and thermal). However, when these weakening forces overcome the 

stabilizing effect, the TBL is destabilized resulting in the appearance of finger-like structures as 

shown in Fig. 4-6. Thus, the appearance of these finger-like structures corresponds to a minimum 

of energy, considering both potential and kinetic energy. Though the primary effect leading to 

these instabilities is attributed to the shear between fluid layers, which therefore has Kelvin-

Helmholtz type origin (the term “Kelvin-Helmholtz instability” is usually associated with two 

immiscible fluids whereas in the present context only a single fluid is considered), as suggested 

in literature [90], these are termed as “Rayleigh-vibrational instability.”  

A further motivation behind this terminology is ascribed to the similarity in the mechanism 

which leads to instability in the Rayleigh-Bénard cell configuration. Consider a fluid contained 

in a cell which is maintained between two horizontal plates separated by a distance 𝐿 and a 

constant temperature difference 𝛿𝑇, the lower plate being at a higher temperature. A fluid particle 

which lies between two plates separated by L will rise once the convective time across it is lower 

as compared to the diffusion time, 𝑖. 𝑒. 
𝐿

𝑽𝑪
<

𝐿2

𝐷𝑇
. Here, 𝑽𝑪 is the convective velocity [81], given 

by the Stokes formula 𝑽𝑪 =
𝐿2𝑔∆𝜌

𝜐
, where ∆𝜌 ≅ 𝜌𝑀𝛽𝑃δ𝑇. Here, 𝐷𝑇, 𝛽𝑃 and δ𝑇 denote thermal 

diffusivity, thermal expansion at constant pressure and temperature difference between the two 

plates, respectively. The ratio of measure of these two time-scales is given by Rayleigh number, 

𝑅𝑎 = 𝑔
𝛽𝑃δ𝑇𝐿

3

𝜐𝐷𝑇
 and the onset of convection is observed for 𝑅𝑎 > 1708 for an infinite fluid layer 

[91]. In the present case, in the absence of gravity, the rise of fluid element can be ascribed to 

Bernoulli-like pressure difference as described above,  ∆𝑃 ≅  𝜌𝑀(
∆𝜌

𝜌𝑀
)2𝐴2𝜔2. The driving force 

due to this pressure difference can thus be written as ~𝐿2∆𝑃. Similar to the terminal velocity 𝑽𝑪 

in the presence of gravity, the terminal velocity when the motion of fluid element due to the 

driving force (𝐿2∆𝑃 ) is balanced by viscous force can be described as 𝑽𝑪,𝚫𝑷 ≈
𝐿Δ𝑃

𝜇
 with 

convective time scale ≈
𝜇

∆𝑃
 (𝜇 being the dynamic viscosity). The ratio of these two time-scales 
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(diffusion and convection) is defined as, Rayleigh vibrational number, 𝑅𝑎𝑣 =
(𝛽𝑃 𝛿𝑇 𝐴 𝜔 𝐿)

2

2𝜐𝐷𝑇
 [90], 

where symbols have their usual meaning as described before. Here, 𝐿 is the characteristic length 

scale across which diffusion takes place. Since in supercritical fluids, the diffusion length scale is 

very small as compared to geometrical length scale (𝐿), it is reasonable to consider the thickness 

of the TBL (𝛿𝑇𝐵𝐿) as the characteristic length scale. Thus, the stability criterion can be defined in 

terms of a dimensionless number defined as, 𝑅𝑎𝑣 =
(𝛽𝑃 𝛿𝑇 𝐴 𝜔 𝛿𝑇𝐵𝐿)

2

2𝜐𝐷𝑇
 [81]. This includes the effect 

of various thermo-physical properties attributed to (i) the distance from the critical point, (ii) 

quench conditions (𝛿𝑇) and (iii) vibrational parameters (frequency and amplitude of vibration). 

The effect of these parameters on Rayleigh-vibrational instabilities is presented below.  

4.4.2 Critical Amplitude for Rayleigh vibrational instabilities 

As described in the previous section, since there exists a competition between shear and 

diffusive forces, it is therefore possible to define a critical amplitude (𝐴𝑐𝑟) of vibration for a fixed 

frequency beyond which these instabilities may be observed.  

 

 

Fig. 4-8: Critical amplitude (𝐴𝑐𝑟) for the onset of Rayleigh-vibrational instabilities as a function of frequency 

and (a) quench rate for three proximities to the critical point 𝑇𝑖 − 𝑇𝑐 = 2000𝑚𝐾, 500 𝑚𝐾  and 5 𝑚𝐾 (b) 

distance from the critical point for two different quench temperatures, 𝛿𝑇 = 5 𝑚𝐾 and 2.5 𝑚𝐾. 
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Fig. 4-8(a) shows the critical amplitude (𝐴𝑐𝑟) as function of frequency (𝑓) and different 

quench rates (𝑞) for 𝑇𝑖 − 𝑇𝑐 = 2000𝑚𝐾, 500 𝑚𝐾 and 5 𝑚𝐾. In order to ascertain the critical 

amplitude, the simulation was run till 𝑡 = 50𝑠 and the smallest amplitude at which instability was 

detected (waviness in the TBL) was chosen as the critical amplitude for that frequency and quench 

rate. It can be observed that the critical amplitude decreases with increase in frequency and quench 

rate. This can be explained as follows. A higher frequency entails a higher acceleration and thus a 

larger difference in the inertial forces between layers of different densities when compared to a 

lower frequency. Similarly, a higher quench rate will result in a higher temperature gradient 

thereby causing a higher density variation leading to the same conclusion, for the same vibration 

parameters (𝑖. 𝑒. frequency and amplitude). This implies that for the same stabilizing action 

provided by the diffusive forces, the desired threshold to overcome this will be attained at a lower 

amplitude for a higher frequency or quench rate as illustrated in Fig. 4-8(a). A significant remark 

not to be missed here is that physical meaningful results have been obtained as close as 𝑇𝑖 − 𝑇𝑐 =

5 𝑚𝐾 with quench rate as high as 50% illustrating the strength and capability of the model to 

capture the behavior of a highly compressible system with large property variations. 

 Another important aspect pertaining to the critical amplitude is the proximity to the critical 

point. Fig. 4-8(b) shows the critical amplitude as a function of proximity to the critical point for 

the same quench temperature (𝛿𝑇). It is important to mention here that the comparison based on 

the same quench rate (𝑞) is not reasonable and may lead to erroneous interpretations that critical 

amplitude increases on approaching the critical point as in Fig. 4-8(a). This is because, a different 

quench rate for different proximities to the critical point will induce a different value of 𝛿𝑇 in 𝑅𝑎𝑣 

and thus two independent parameters (𝛿𝑇 and 𝐴) in 𝑅𝑎𝑣. Thus, it is more judicious to compare the 

critical amplitude for the same temperature quench (𝛿𝑇) as shown in Fig. 4-8(b) wherein a decrease 

in the value of 𝐴𝑐𝑟 is observed on approaching the critical point. The diverging behavior of the 

expansivity results in a greater density gradient while diminishing diffusive forces (viscosity and 

thermal diffusivity) weakens the stabilizing effect. Consequently, the destabilization of the TBL 

occurs at a lower amplitude for the same vibration frequency as observed in Fig. 4-8(b). 

Furthermore, a higher value of 𝐴𝑐𝑟 is observed for a lower quench temperature which can be 

ascribed to a lower density gradient resulting from it. Consequently, a lower difference in inertial 
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forces for same vibrational parameters necessitates a higher amplitude to overcome the stabilizing 

action of diffusive forces leading to the observed behavior in Fig. 4-8(b).   

4.4.3 Analysis of wavelengths as a function of various parameters  

The Rayleigh-vibrational instabilities described above lead to the appearance of finger like 

structures, as reported in literature [81, 82] and are shown in Fig. 4-6. These fingers can be 

characterized by the distance between them 𝑖. 𝑒. wavelength of the instabilities. It has been 

mentioned in [81, 82] that wavelengths do not change over a period of time. However, it is 

observed that after the onset of instabilities, the wavelength remains constant for a certain period 

of time and owing to the action of diffusive forces, adjacent fingers merge resulting in the change 

of the wavelength over a longer duration of time. This is illustrated in Fig. 4-9(a-d) showing 

instabilities at various time instances for  𝑇𝑖 − 𝑇𝑐 =  100 𝑚𝐾, 𝛿𝑇 = 10𝑚𝐾, 𝑓 = 20 𝐻𝑧 and 𝐴 =

 4 𝑚𝑚.  

 

Fig. 4-9(a-d): Change in wavelength in Rayleigh-vibrational instabilities with time for 𝑇𝑖 − 𝑇𝑐 =
100 𝑚𝐾, 𝛿𝑇 = 10 𝑚𝐾, 𝑓 = 10 𝐻𝑧, 𝐴 = 4 𝑚𝑚. 

 

It can be seen that initially the distance between fingers remains constant for certain duration 

of time (Fig. 4-9(a-b)). However, after the onset, these not only grow into the bulk but also become 

thicker in size due to diffusion enhanced by vibrational acceleration. When these are close enough 
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to each other, the adjacent fingers merge with each other and hence results in the reduction of the 

number of fingers ( 𝑖. 𝑒.  increase in wavelength) as highlighted in Fig. 4-10(c-d).  The merging 

process can be further explained by virtue of interaction of vortices which are formed when fingers 

emerge at the onset of these instabilities. This is illustrated in Fig. 4-10(a-d) wherein velocity 

vectors are plotted for the merging process of 2 fingers highlighted in Fig. 4-9(b-d). For the sake 

of clarity in illustration, the velocity vectors near the wall have not been shown. It can be observed 

that the velocity field (vortices) corresponding to two individual and distinct fingers (Fig. 4-10(a)) 

begin to interact with each other as shown in Fig. 4-10(b). In addition to diffusion, this is also 

attributed to vibrational acceleration in horizontal direction which causes an increase in the 

horizontal velocity as fingers grow into the bulk. Subsequently, the velocity vectors tend to overlap 

and finally merge to form a single finger (Fig. 4-10(c-d)). The merging of fingers, in general, will 

depend on amplitude of vibration when other thermal and mechanical parameters are held constant.  

However, in the current work, the wavelength at the onset of instabilities have been measured 

at the middle of the cell in order to circumvent the influence of boundaries. 

• Effect of acceleration 

Fig. 4-11(a-b) shows wavelengths as a function of acceleration for 𝑇𝑖 − 𝑇𝑐 =  500 𝑚𝐾 and 

𝑇𝑖 − 𝑇𝑐 = 5 𝑚𝐾 for different quench rates. The dashed lines represent a power law fit to the 

measured wavelengths. It can be seen that the wavelength decreases (𝑖. 𝑒. the number of fingers 

increases) with the increase in quench rate which can be explained as follows.  
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Fig. 4-10 (a-d): Vector plot illustrating coalescence of fingers (marked in Fig. 4-9) with time ( 𝑇𝑖 − 𝑇𝑐 =
100 𝑚𝐾, 𝛿𝑇 = 10 𝑚𝐾, 𝑓 = 10 𝐻𝑧, 𝐴 = 4 𝑚𝑚) 

 

A higher quench rate implies a higher temperature gradient and thus a larger density 

difference. Thus, for the same acceleration, a higher Bernoulli-like pressure difference will exist 

between the layers for a higher quench rate. This implies that the stabilizing viscous forces will be 

weakened at more local sites along the TBL in order to minimize the energy (potential and kinetic). 

Subsequently, more fingers (or a lower wavelength) with a higher quench rate is observed for the 
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same acceleration. An anomalous behavior in this context can be seen when for 𝑇𝑖 − 𝑇𝑐 =  5 𝑚𝐾, 

wherein at the same higher acceleration, the wavelength increases with the quench rate.  

      Fig. 4-11: Wavelength in Rayleigh-vibrational instabilities for different quench rates as function of 

acceleration for (a) 𝑇𝑖 − 𝑇𝑐 = 500 𝑚𝐾 (b) 𝑇𝑖 − 𝑇𝑐 = 5𝑚𝐾. 

 

While this is clearly visible for 𝑞 = 30%, it can be visualized that when the line for 𝑞 = 50% 

is extrapolated, a similar behavior will be observed. A further investigation reveals that a similar 

behavior can also be attained with higher acceleration (greater than the ones considered in Fig. 

4-11(a)) for 𝑇𝑖 − 𝑇𝑐 =  500 𝑚𝐾, for 𝑞 = 10% and 𝑞 = 50% as demonstrated in Fig. 4-12.  

As mentioned previously, a higher Bernoulli-like pressure difference attributed to either a 

higher acceleration or a larger density variation will result in a higher number of plausible local 

sites where the TBL will be destabilized. In addition, when these fingers grow into the bulk, they 

have been found to merge as depicted in Fig. 4-9 and Fig. 4-10. Now, considering the same 

analogy, as the acceleration is increased, the wavelength at the onset becomes so small (due to the 

increase in probable sites of onset of instabilities) that as the fingers physically appear and protrude 

into the bulk, they merge into one another. As a result, a decrease in the effective number of fingers 

and thus a higher wavelength is observed. In order to further support this argument, wavelengths 

for 𝑞 = 10% and 𝑇𝑖 − 𝑇𝑐 =  500 𝑚𝐾 for cell size ℎ = 7𝑚𝑚 and ℎ = 14 𝑚𝑚 are compared in 

Fig. 4-13. It can be seen that the change from decreasing trend of wavelength is attained at a higher 

acceleration for cell size of ℎ = 14 𝑚𝑚. This is coherent with the above explanation because for 
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a longer cell, a wider span is available for the appearance of fingers before these merge into each 

other leading to a higher wavelength.  

 

Fig. 4-12: Wavelength in Rayleigh-vibrational instabilities for 𝑇𝑖 − 𝑇𝑐 = 500 𝑚𝐾 showing anomalous trend 

at higher accelerations (greater than ones considered in Fig. 4-11(a)) for 𝑞 = 10 % and 50 %.  

 

Thus, for a longer cell, a higher acceleration will be required so that plausible number of local 

sites for onset of instabilities become nearly the same as the span of TBL thereby ensuing 

coalescence of fingers when they appear as instabilities. A similar explanation holds for the 

observations in Fig. 4-11(b) wherein such an anomalous behavior is observed even at a low 

acceleration. This can be related to the diverging behavior of thermal expansion which eventually 

leads to large pressure difference even at low acceleration and hence the observed behavior as in 

Fig. 4-11(b). It is to be remarked here that a higher wavelength (which implies lower number of 

fingers) is also observed for a cell with larger dimensions (Fig. 4-13). This is due to the fact that 

for a constant vibrational acceleration, the local sites along the TBL prone to instabilities will be 

nearly the same. Hence, for a longer cell, the fingers will be separated by a larger distance resulting 

in a higher wavelength as observed in Fig. 4-13.  
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Fig. 4-13: Wavelength in Rayleigh-vibrational instabilities for 𝑇𝑖 − 𝑇𝑐 = 500 𝑚𝐾, 𝑞 = 10% for 2 different 

cell sizes. 

 

• Effect of same quench temperature  

 

Fig. 4-14: Wavelength in Rayleigh-vibrational instabilities with acceleration for different proximities to the 

critical point (a)  𝛿𝑇 = 100 𝑚𝐾 (b) 𝛿𝑇 = 5 𝑚𝐾. 
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The experimental observations in Fig. 4-5 illustrated the effect of proximity to the critical point 

for the same vibration parameters and quench value (𝛿𝑇). An additional analysis to confirm this 

behavior with proximity to the critical point is shown in Fig. 4-14 where wavelengths for two 

different quench temperatures (𝛿𝑇 = 100 𝑚𝐾 and 5 𝑚𝐾)  are compared for different proximities 

to the critical point value for various accelerations. It can be clearly seen that for a constant 

acceleration, the wavelength of instability decreases when approaching the critical point. This 

behavior is attributed to higher Bernoulli-like pressure difference when approaching the critical 

point (due to larger density variations) which results in more fingers (and hence lower 

wavelengths) as explained previously.  

4.4.4 Rayleigh vibrational number as a distance from critical point 

 The Rayleigh vibrational number was introduced in §4.4.1 and has been known to describe 

the onset criteria for Rayleigh-vibrational instabilities as a function of various thermo-physical and 

vibrational parameters [81]. One of the important parameter in 𝑅𝑎𝑣 is the thickness of the thermal 

boundary layer (𝛿𝑇𝐵𝐿) which changes as a function of time. Thus, in order to evaluate the critical 

𝑅𝑎𝑣,𝑐, the time at which the TBL becomes unstable, described by 𝑡𝑐, is noted from the numerical 

simulations following which the critical thickness of the TBL is evaluated using 𝛿𝑇𝐵𝐿,𝑐 =

2𝜋√𝐷𝑇𝑡𝑐 . Subsequently, the critical Rayleigh vibrational number 𝑅𝑎𝑣,𝑐 can be calculated using 

the expression, 𝑅𝑎𝑣,𝑐 =
(𝛽𝑃 𝛿𝑇 𝐴 𝜔 𝛿𝑇𝐵𝐿,𝑐)

2

2𝜐𝐷𝑇
 as defined in §4.4.1. Amiroudine and Beysens [81] 

evaluated 𝑅𝑎𝑣,𝑐 for a fixed frequency and amplitude as a distance from the critical point and found 

it to increase on approaching the critical point with power exponents of −0.86 and −0.31 when 

close and far from the critical point, respectively. Similarly, Gandikota et al. [82], analyzed 𝑅𝑎𝑣,𝑐 

for a fixed frequency and amplitude over a wider range of amplitudes than Amiroudine and 

Beysens [81] and observed a similar behavior.  

In the present work, the 𝑅𝑎𝑣,𝑐 is analyzed only as a function of a single parameter, vibration 

frequency. The amplitude of vibration was varied from 0.15ℎ to 1.5ℎ . In addition, the quench 

temperature was also varied for each case with quench rate was varying from 𝑞 = 5 % to 30%. 

This is motivated by the fact that it is more reasonable to draw out the behavior of 𝑅𝑎𝑣,𝑐 based on 

a single parameter rather than fixing more parameters. Thus, based on different combinations of 
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amplitude, proximity to the critical point and quench rate (and thus quench temperature), the 

critical Rayleigh-vibrational number was calculated and is shown in Fig. 4-15 for two different 

frequencies, 𝑓 = 10 𝐻𝑧 and 30 𝐻𝑧. It can be seen that 𝑅𝑎𝑣,𝑐 increases on approaching the critical 

point. This is mainly attributed to two factors, the vanishing thermal diffusivity (𝐷𝑇) on 

approaching the critical point which increases the diffusion time scale and secondly the diverging 

thermal expansion (𝛽𝑃) which causes a higher Bernoulli-like pressure difference and thus a lower 

convective time scale. Furthermore, it can be seen that, similar to the studies of Amiroudine and 

Beysens [81], 𝑅𝑎𝑣,𝑐 can be described by a power law fit as 𝑅𝑎𝑣,𝑐 = 𝑅𝑎1,2𝜀
𝑚1,2 with two different 

slopes when close and far (𝑇 − 𝑇𝑐 > 100 𝑚𝐾) to the critical point. 

 

 

Fig. 4-15: Critical Rayleigh-vibrational number with proximity to the critical point for 𝑓 = 10 𝐻𝑧 and 30 𝐻𝑧 

on log-log plot. 

 

The increase in 𝑅𝑎𝑣,𝑐 on approaching the critical point illustrates the same behavior, 𝑖. 𝑒. a 

higher exponent (𝑚1 ≈ −1.7) when near and a lower (𝑚1 ≈ −1) when far from the critical point, 

respectively (exponents obtained by power law fit 𝑅2 ~ 0.92-0.99). A lower value of exponents in 

the work of Amiroudine and Beysens [81] can be attributed to lower quench rates considered due 
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to the assumption of a linear equation of state for density calculation. However, a higher quench 

rate, as favored by the proposed mathematical model, makes it possible to account for higher 

variations especially when approaching the critical point. As a result, it is reasonable to expect a 

faster increase in the critical Rayleigh vibrational number as described above.  

4.5 Parametric instabilities 

It is well established that a two-phase fluid (miscible or immiscible) exhibits Faraday 

instabilities when subjected to vibrations perpendicular to its interface [92] . On a similar basis, 

when the SCF close to its critical point is simultaneously quenched and subjected to vibrations of 

sufficiently high amplitudes in the direction parallel to the temperature gradient, the TBL becomes 

unstable leading to the appearance of waves or finger like structures.  

 

 

Fig. 4-16: Parametric instabilities for one time-period of vibration for 𝑇𝑖 − 𝑇𝑐 = 500 𝑚𝐾, 𝛿𝑇 = 50 𝑚𝐾, 𝑓 =
10 𝐻𝑧, 𝐴 = 10 𝑚𝑚. 
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This is illustrated in Fig. 4-16 for 𝑇𝑖 − 𝑇𝑐 = 500 𝑚𝐾, 𝑓 = 10 𝐻𝑧 and 𝐴 = 10 𝑚𝑚 for one 

time-period of vibration. Here the direction of vibration (𝑥 −direction) is along the temperature 

gradient when the vertical walls (𝐵𝐶 and 𝐴𝐷) are quenched.  

 

 

 

Fig. 4-17: Schematic illustration of the mechanism leading to parametric instabilities (a) formation of thin 

TBL (b) equivalent configuration representing parametric (Faraday) instability like configuration (c) 

equivalent configuration representing stable arrangement 𝑤. 𝑟. 𝑡 Rayleigh-Taylor instability. 
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In order to understand the physical phenomenon inducing these instabilities, consider the 

schematic as shown in Fig. 4-17(a) where the SCF, initially at temperature 𝑇𝑖, is quenched on the 

left wall (𝐴𝐷). The density of the fluid in the TBL will be significantly higher than that of the bulk 

fluid due to lower temperature therein. Thus, if considering the fluids in the bulk and the TBL as 

two different fluids (owing to the significant difference in their properties), an equivalent 

configuration can be represented as shown in Fig. 4-17(b). This resembles to an arrangement similar 

to that of parametric (Faraday) instability wherein two immiscible fluids are acted upon by vibration 

under zero-gravity. Thus, when the natural frequency of the system matches with the external 

frequency, wavelike patterns as shown in Fig. 4-16 are observed which means that in one cycle of 

vibration, the TBL near each quenched wall is destabilized only once thereby exhibiting a harmonic 

behavior similar to that of parametric instabilities. This is can be observed in Fig. 4-16 where for 

one time-period of vibration (𝑓 = 10 𝐻𝑧, 𝑇 = 0.1 𝑠), the instabilities are observed once on each 

side. The appearance is hence found to depend on the vibration parameter, frequency, following 

which these are termed as parametric instabilities.  

 

Fig. 4-18: 𝑥 −velocity in the bulk for 𝑇𝑖 − 𝑇𝑐 = 500 𝑚𝐾, 𝛿𝑇 = 50 𝑚𝐾, 𝑓 = 10 𝐻𝑧, 𝐴 = 10 𝑚𝑚 for one 

time-period of vibration. 

 

Gandikota et al. [82] described these instabilities as sub-harmonic in nature. This is due to 

the fact that their characterization pertains to the observance of these instabilities once every half 

time-period of vibration.  However, it would be more appropriate to ascertain the periodicity based 
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on their behavior at a particular TBL (or interface like conditions) and not considering the cell as a 

whole.  

In continuation with the above explanation, a further insight into the mechanism leading to 

the onset of parametric instabilities is described herein. Gandikota et al. [82] ascribed these 

instabilities to formation of vortices though the exact mechanism leading to these vortices is not 

explained. Furthermore, it has also been mentioned in [82] that these instabilities are observed when 

the direction of vibration is anti-parallel to the temperature gradient and thus leads to Rayleigh-

Taylor like configuration. While the results in the present work were found to be in coherence with 

former remark, the observations differed regarding the Rayleigh-Taylor like configuration. For 

instance, the instabilities are observed near the wall 𝐴𝐷 (temperature gradient towards positive 

𝑥 −direction) when the cell moves in negative 𝑥 −direction. This is supported by Fig. 4-18 which 

shows velocity along 𝑥 −direction at 𝑦 = 3.5 𝑚𝑚 for one time-period of vibration. Here, 

𝑥 −velocity profiles have been shown only in the bulk region (1 𝑚𝑚 ≤ 𝑥 ≤ 6mm) for the sake of 

clarity. The negative values are observed for 𝑡 = 2.65 𝑠 and 2.75 𝑠 which represent the movement 

of cell towards negative 𝑥 −direction at time instances when instabilities are observed near the left 

wall 𝐴𝐷 (Fig. 4-16(a) and (e)). An equivalent configuration is shown in Fig. 4-17(c) wherein a 

lighter fluid rests atop a heavier fluid with downwards acting acceleration which is a stable 

configuration 𝑤. 𝑟. 𝑡 to Rayleigh-Taylor instability. Thus, these instabilities are described to 

resemble to parametric-like instabilities. In the following section, an in-depth explanation is 

provided leading to the appearance of these instabilities. In addition, it is also described that why 

the vortices formed near the corner lead to non-uniform onset of parametric instabilities (as in Fig. 

4-16), 𝑖. 𝑒. waves initially appear near the horizontal walls and then propagate towards the middle 

of the TBL. 

4.5.1 Mechanism of Parametric instabilities   

As illustrated in Fig. 4-17(a-b), our configuration is equivalent to parametric instabilities in 

case of two immiscible fluids under zero-gravity. However, in the present case, as there is only a 

single fluid, no interface exists between fluids of different densities. For the sake of clarity and ease 

in understanding, let us call the boundary separating the bulk and the TBL as a ‘virtual-interface’ 

(the bulk and the TBL region may be considered as two different fluids as described in the previous 
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section). Thus, the instabilities will be observed when the virtual-interface is adequately perturbed. 

The important question which arises here is, how is this perturbation obtained? In order to explain 

this, let us consider a case with left wall (𝐴𝐷) quenched and the cell vibrating along 𝑥 −direction. 

Under the same vibrational acceleration, the inertia associated with lighter fluid (bulk region) will 

be lower as compared to the heavier fluid (TBL region). When a fluid element from the bulk impacts 

the element of the TBL (or vice-versa), the transfer of momentum therefore yields different velocities 

in both the regions near the virtual-interface. Since the overall momentum is conserved, a small 

velocity field in 𝑦 −direction will be induced in the fluid-elements near the virtual-interface. 

Physically, the conditions near the virtual-interface can be visualized as several objects of same mass 

adjacent to each other (fluid elements of the bulk region) impacting objects in same arrangement but 

of different mass (fluid elements in the TBL region). As the objects are free to slide among 

themselves, upon impacting objects of different mass, a velocity will also be induced in the direction 

normal (𝑦 −direction) to their initial motion (𝑥 −direction) due to momentum conservation. Thus, 

in the present context, the net velocity field of the fluid elements near the virtual interface will be 

inclined 𝑤. 𝑟. 𝑡 the bulk velocity field (which is primarily in 𝑥 −direction). This will thereby produce 

rotational or vortex like characteristics which act as a perturbation but they are stabilized by shear 

action of viscous forces. With the growth in the thickness of the TBL, the vortex strength increases 

due to higher inertia associated with thicker TBL resulting in stronger perturbation. When the 

perturbations are able to overcome the stabilizing action of viscous forces, instabilities are observed 

as shown in Fig. 4-16.  

It is to be mentioned that even though viscous effects may be very small, as mentioned in 

Gandikota et al. [82], their action is sufficient enough to stabilize the small perturbations induced by 

the velocity field. It is the formation of these vortices as described in [82] that are responsible for 

parametric instabilities. The above explanation therefore suggests that parametric instabilities are 

possible even between infinite parallel plates. In order to verify this, the system was investigated 

with symmetric horizontal wall conditions imposed at walls 𝐴𝐵 and 𝐶𝐷 (infinite parallel plates like 

conditions) for 𝑇𝑖 − 𝑇𝑐 = 500 𝑚𝐾, 𝛿𝑇 = 50 𝑚𝐾, 𝑓 = 20 𝐻𝑧 and 𝐴 = 6 𝑚𝑚. The results are shown 

in Fig. 4-19(a-c) for symmetric conditions and in Fig. 4-19(d-f) for wall conditions at various time 

instances. The illustrations have been made only near the left wall (𝐴𝐷) for the sake of brevity. 

While instabilities observed for symmetrical conditions substantiates our explanation, it is worth 

noticing that unlike wall conditions, the instabilities appear uniformly across the entire span of TBL 
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for symmetrical conditions. This difference can be ascribed to the vortices formed near the corners 

which can be explained as follows. The thermal quench on the vertical walls leads to the formation 

of the TBL while vibration causes the fluid to move from the TBL towards the bulk and vice-versa.  

 

 

Fig. 4-19: Parametric instabilities near left wall 𝐴𝐷 for 𝑇𝑖 − 𝑇𝑐 = 500 𝑚𝐾, 𝛿𝑇 = 50 𝑚𝐾, 𝑓 = 20 𝐻𝑧, 𝐴 =
6 𝑚𝑚 with (a-c) symmetric and (d-f) wall conditions on the horizontal walls. 
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Further, a no-slip condition at the horizontal wall results in the boundary layer velocity 

profile (Fig. 4-20(a), 𝑇𝑖 − 𝑇𝑐 = 500 𝑚𝐾, 𝛿𝑇 = 50 𝑚𝐾, 𝑓 = 20 𝐻𝑧, 𝐴 = 6𝑚𝑚) which distorts due 

to a heavier fluid from the TBL squeezing in and out of the corner with change in direction of 

vibration. Subsequently, vortices are formed, as shown in Fig. 4-20(b) which act as a seed of 

perturbation. The rest of explanation follows the same suite as before wherein instability is observed 

once the stabilizing effect of viscous forces are overcome. It is to be noted that the perturbation 

arising due to corner vortices adds up to the primary mechanism of vortex formation and thus 

instability onsets earlier near the horizontal wall before propagating towards the middle of the cell 

(Fig. 4-16 and Fig. 4-19(c-d)).  

 

Fig. 4-20: Velocity vector near the corner (𝐴) with a wall condition on the top plate for 𝑇𝑖 − 𝑇𝑐 =
500 𝑚𝐾, 𝛿𝑇 = 50 𝑚𝐾, 𝑓 = 20 𝐻𝑧, 𝐴 = 6 𝑚𝑚 illustrating (a) boundary layer velocity profile (b) formation 

of vortices (scale 1:8x105 cm/ms-1). 

 

4.5.2 Critical Amplitude for parametric instabilities 

A judicious investigation into the phenomenon leading to the onset of parametric instabilities 

has been described in the previous section. It can therefore be concluded that for a fixed proximity 

to the critical point and a given frequency, there exists a critical amplitude (which represents the 
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critical acceleration) for which the perturbation will grow to overcome the stabilizing effect of 

viscous forces. Fig. 4-21(a) illustrates the critical amplitude for different proximities to the critical 

point (𝑇𝑖 − 𝑇𝑐 = 2000 𝑚𝐾, 500 𝑚𝐾 and 50 𝑚𝐾 ) as a function of frequency and quench rate. It 

can be observed that critical amplitude decreases with increase in frequency and quench rate. While 

a higher frequency entails a higher inertial force, a higher quench rate implies a heavier fluid (along-

with larger density gradient) and thus a larger difference in associated momentum. Thus, the 

threshold to overcome the stabilizing viscous forces is attained with lower amplitudes for the both 

aforementioned cases.  In order to compare the effect of proximity to the critical point, as explained 

in case of RV instabilities, it is more reasonable to compare the behavior for same quench 

conditions. This is shown in Fig. 4-21(b) for 2 different quench temperatures 𝛿𝑇 = 100 𝑚𝐾 and 

𝛿𝑇 = 5 𝑚𝐾 for initial temperature far (𝑇𝑖 − 𝑇𝑐 = 2000 𝑚𝐾, 15000 𝑚𝐾 , 1000 𝑚𝐾 and 500 𝑚𝐾 ) 

and close (𝑇𝑖 − 𝑇𝑐 = 100 𝑚𝐾, 50 𝑚𝐾 and 20 𝑚𝐾 ) from the critical point, respectively. As 

expected, the critical amplitude decreases on moving towards the critical point which follows the 

same argument as mentioned before. 

    

Fig. 4-21: Critical amplitude (𝐴𝑐𝑟) for the onset of parametric instabilities as a function of frequency and (a) 

quench rate for three proximities to the critical point 𝑇𝑖 − 𝑇𝑐 = 2000𝑚𝐾, 500 𝑚𝐾  and 50 𝑚𝐾 (b) distance 

from the critical point for two different quench temperatures, 𝛿𝑇 = 100 𝑚𝐾 (for 𝑇𝑖 − 𝑇𝑐 =
2000𝑚𝐾, 1500 𝑚𝐾, 1000 𝑚𝐾 and 500 𝑚𝐾) and 𝛿𝑇 = 2.5 𝑚𝐾 (for 𝑇𝑖 − 𝑇𝑐 = 100𝑚𝐾, 50 𝑚𝐾and 

20 𝑚𝐾). 
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4.5.3   Effect of cell size on critical amplitude 

The onset of parametric instabilities as previously described is primarily due to the 

perturbation in the velocity field near the transition region of the bulk and the TBL. The perturbation 

will be higher if larger momentum transfer occurs from the bulk fluid to the TBL and vice-versa. 

This implies that the change in cell dimensions along the direction of vibration can have effect on 

the critical amplitude. The argument is supported from Fig. 4-22 which illustrates the critical 

amplitude for 𝑇𝑖 − 𝑇𝑐 = 500 𝑚𝐾 and 𝑇𝑖 − 𝑇𝑐 = 20 𝑚𝐾 for different cell sizes for quench rate of 

𝑞 = 10% and 𝑓 = 20 𝐻𝑧. It can be seen that with all other parameters held constant, the critical 

amplitude decreases with the increase in cell dimension which can be explicated as follows. The 

induced perturbation will be of higher strength by virtue of higher momentum associated with higher 

volume (or mass) in a cell of higher dimensions thereby leading to a lower critical amplitude for 

onset of instabilities.  

 

Fig. 4-22: Critical amplitude for parametric instabilities for different cell sizes.  

 

It is also worth noticing that the exponent of the decrease of this critical amplitude is lower 

(−0.22 for 𝑇𝑖 − 𝑇𝑐 = 20 𝑚𝐾 and −0.45 𝑇𝑖 − 𝑇𝑐 = 20 𝑚𝐾 ) (based on a power law fit) when 

approaching the critical point. This physically implies that the critical amplitude is not significantly 

affected by the change in cell size when close to the critical point. This can be explained based on 

the diverging isothermal compressibility (𝜒𝑇) when approaching the critical point. When the fluid 
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from the center of the cell moves towards the walls, the transfer of momentum is highly affected by 

the compressibility of the fluid. Thus, if it was an incompressible medium, it will act as a solid body 

and transfer the same momentum. However, with an increasing isothermal compressibility (𝜒𝑇), a 

significant portion of the momentum is dampened out thereby transmitting a lower momentum. This 

implies that the overall effect of cell volume (or mass/momentum) would be lower when fluid is 

more compressible (the aspect of damping will be described in more detail in §CHAPTER 5). 

Consequently, the difference between the critical amplitude for different cell sizes does not vary too 

much on approaching critical point and thus a lower exponent as mentioned above is observed.  

4.5.4 Wavelength in parametric instabilities 

Gandikota et al. [82] calculated the wavelengths in parametric instabilities and tried to 

verify the dispersion relation for immiscible fluids given by [92]  , 

𝜔2 =
(𝜌1−𝜌2)𝑔𝑘+𝑘

3𝜎

𝜌1+𝜌2
  (4.5.1) 

Here 𝜌1 and 𝜌2 correspond to density of the two fluids while 𝜎 and 𝑘 represent surface tension and 

wavenumber, respectively.  

 

Fig. 4-23: Wavelength vs acceleration for  𝑇𝑖 − 𝑇𝑐 = 500 𝑚𝐾 with different quench rates.  
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A similar analysis is presented here with higher quench rates for a given proximity to the 

critical point (𝑇𝑖 − 𝑇𝑐 = 500 𝑚𝐾). In the work of Gandikota et al. [82], wavelength was observed 

to decrease with 𝐴𝜔2 with an exponent of −0.35 based on a power law fit.  A nearly similar 

exponent in observed in the current work for 𝑞 = 10% (𝜆 ~(𝐴𝜔2)−0.36 ) while a higher exponent 

is observed (𝜆 ~(𝐴𝜔2)−0.47 ) for 𝑞 = 50%. This can be ascribed to a larger variations in density 

causing dominance of non-linear effects thereby leading to a higher exponent (−0.47) than given 

by (4.5.1), which is obtained using linear stability analysis.  

4.6 Stability Analysis 

One of the primary motivations to analyze SCF under thermo-vibrational instabilities has 

been to gain insights into the type of instabilities one may expect at different frequencies and 

amplitudes of vibration. While these may be used in certain processes to our advantage, for example 

mixing, in others, it may be desired to isolate the system to these instabilities. For example, in case 

of a heterogeneous chemical reaction taking place on the walls of a container, large density 

perturbations near the boundaries can cause an enhancement of mass transfer rate. In the presence 

of such a reaction, in case of corrosive SCF stored in a closed container and acted upon by 

vibrations, this can accelerate the corrosion rate. Gandikota et al. [82] presented a plot limited by 

lower quench rate conditions (10% due to linear state equation). As the current model makes it 

possible to  analyze system with a higher quench rate, a similar plot, but in 3D as a function of 

different quench rates and frequencies, for two different proximities to the critical point 𝑇𝑖 − 𝑇𝑐 =

500 𝑚𝐾 and 𝑇𝑖 − 𝑇𝑐 = 50 𝑚𝐾 is illustrated in Fig. 4-24.  

The plot thus shows that for amplitudes below the blue plane, the system will be stable 𝑤. 𝑟. 𝑡 

to both the described instabilities. Similarly, for amplitude bounded by blue and yellow planes, 

Rayleigh-vibrational instabilities will be first observed while above the yellow plane, both these 

instabilities will occur simultaneously. Thus, it can be observed that higher amplitudes are required 

for the onset of parametric instabilities in both the cases. While it can be intuitively ascertained that 

it is easy to destabilize the fluid layers in parallel due to shear, it can be explained more judiciously 

based on the mechanism causing both these instabilities. The Bernoulli-like pressure in Rayleigh-

vibrational instabilities was observed to grow with square of the velocity difference while in 

parametric, owing to momentum transfer it is likely to follow a linear relation. Furthermore, since 
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the momentum transfer occurs between two highly compressible fluids, some of the momentum is 

also expended in compressing the fluid whereas no such loss can be ascertained in case of Rayleigh-

vibrational instabilities thereby leading to the observed behavior.  

 

 

Fig. 4-24: Stability plot describing critical amplitude for onset of Rayleigh-vibrational and parametric 

instabilities as a function of quench rate and frequency.  

 

It can also be seen that when close to the critical point, the difference between the critical 

amplitude of both these instabilities increase with quench rate. This can be explained by virtue of 

the fact that Rayleigh-vibrational instabilities are more sensitive to the difference in inertial forces, 

𝑖. 𝑒. density variations and thus quench rates, due to the instability arising from fluid layers in 

shear/parallel to each other.  

4.7 Chapter Summary 

The two types of thermo-vibrational instabilities, defined by the relative direction between 

the temperature gradient and vibration (Rayleigh-vibrational when perpendicular and parametric 

when parallel) are described. The physical mechanism causing these instabilities is discussed in 

detail. It is found that for both of these instabilities, it is possible to define a critical amplitude for 

their onset which is observed to decrease with the increase in quench rate and frequency of 
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vibration. Further, it also decreases on approaching the critical point. These observations are 

attributed to a higher difference in the inertial forces (higher perturbation causing vortex formation) 

at a higher value of both these factors, both in Rayleigh-vibrational and parametric instabilities. An 

interesting observation pertains to the increase in wavelength at higher acceleration in case of 

Rayleigh-vibrational instabilities while in case of parametric instabilities, the critical amplitude is 

found to depend on size of cell. Finally, a stability plot highlighting critical regions in terms of 

thermo-vibrational parameters (quench rate, frequency and critical amplitude) is presented.  

In the next chapter, we discuss two intriguing phenomena observed along with Rayleigh-

vibrational instabilities, firstly, the drop of the temperature in the fluid domain below the imposed 

temperature at the boundary and the second being the see-saw motion of the thermal boundary 

layer. 
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CHAPTER 5. HEAT-SINK AND SEE-SAW EFFECTS IN 

RAYLEIGH-VIBRATIONAL INSTABILITIES 
 

 

The simultaneous action of thermal quench and linear vibrations in supercritical fluids lead to 

thermo-vibrational instabilities as described in CHAPTER 4. In this chapter, the following 

intriguing phenomena observed along-with Rayleigh-vibrational instabilities are described and 

explained: 

• When a fluid is subjected to a temperature imposed at the boundary, it is intuitive to ascertain 

that the temperature in the fluid domain will be constrained by that temperature limit. However, 

it is observed that upon being quenched, the temperature of the SCF can fall below the imposed 

condition. These anomalous regions within the bulk are defined as sink-zones as they act like 

sink for heat (Sharma et al.  [93]) 

• The thermal homogenization in SCF is known to be caused by the action of piston effect, 𝑖. 𝑒. 

propagation of the pressure wave due to the high compressibility of the SCF resulting in a 

temperature change. But how will the temperature field be affected if the pressure change is 

caused by external means, for example vibration?  Will thermo-mechanical coupling lead to 

alteration in thermal behavior?  These aspects are described in the second half of the chapter 

and the details can also be found in Sharma et al. [94]. It is observed that coupling between 

temperature variations in the bulk due to vibration (termed as forced piston effect (FPE) in 

vibration for reasons presented therein) and temperature in the TBL causes see-saw motion of 

the TBL.  

5.1 Sink Zones: Regions with temperature below the boundary value 

5.1.1 Contemporary prior work 

The anomalous behavior of thermo-physical properties in SCFs have led to several unique 

observations such as drop in the temperature of the bulk below the initial temperature on heating. 

This unconventional cooling was observed by Beysens et al. [95] in their experimental work. A cell 

filled with SCF was subjected to a heat pulse with boundary temperatures held constant and at the 

end of heat pulse, the bulk fluid was observed to cool below the initial temperature after a long 
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thermal transient. This effect was further found to escalate with increasing acceleration of free fall 

(or gravitational field). Another captivating observation in SCF was reported by Boukari et al. [96] 

wherein they numerically investigated a 1D problem to compare the time scales of density and 

temperature equilibration in the presence and absence of gravity. A temperature gradient was found 

to be formed rather quickly in the bulk and which led to fall in fluid temperature below the boundary 

temperature. A nearly similar observation was also reported by Zappoli et al. [97] wherein they 

investigated the mechanism of heat and mass transport in a side-heated square cavity in the presence 

of gravity. In all these previous works, this surprising phenomenon has been observed but providing 

a better and more clearer explanation constitutes one of the objectives of the present study.  

In the current work, a near similar observation is made when under the action of 

simultaneous thermal perturbations and mechanical vibration, the temperature of the bulk fluid 

drops below the imposed boundary temperature when the direction of acceleration is normal to the 

temperature gradient. This is a primary difference from the study of Boukari et al. [96] wherein the 

direction of acceleration and temperature gradient are parallel to each other due to 1D study. 

Another notable difference is that the direction of acceleration (gravity plays an equivalent role of 

acceleration) remains constant while it changes in the present investigation due to vibration.  

5.1.2 Preliminary observations 

Rayleigh-vibrational instabilities were introduced and explained in §4.4. For the schematic of 

the problem as shown in Fig. 4-3, Fig. 5-1(a-b) shows these instabilities wherein temperature field 

has been shown for 𝑇𝑖 − 𝑇𝑐 = 100 𝑚𝐾, 𝛿𝑇 = 10 𝑚𝐾, 𝑓 = 20 𝐻𝑧 and 𝐴 = 5 𝑚𝑚 at different time 

instances. A more interesting behavior can be observed in Fig. 5-2 which shows the profile of 

deviation of temperature from the wall (boundary) temperature at 𝑦 = 0.3 𝑚𝑚 for various time 

instances.  It can be seen that this difference attains a negative value which subsequently grows 

with time. 
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Fig. 5-1: (𝑇 − 𝑇𝑤) contour plots for 𝑇𝑖 − 𝑇𝑐 = 100 𝑚𝐾, 𝛿𝑇 = 10 𝑚𝐾, 𝑓 = 20 𝐻𝑧 and 𝐴 = 5 𝑚𝑚 at various 

time instances (a) 𝑡 = 7𝑠 (b) 𝑡 = 10𝑠. Insets highlight the growth of sink zones with time. The dashed lines 

in (a-b) represent the boundary where 𝑇 − 𝑇𝑤 = 0. 
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Fig. 5-2: Temperature profile at 𝑦 = 0.3 𝑚𝑚 at various time instances. 

 

This implies that the temperature in the domain drops below the imposed boundary conditions 

which is also illustrated in insets of Fig. 5-1(a-b). In order to ensure that this behavior is not 

attributed to the adiabatic boundary conditions imposed at the walls 𝐵𝐶 and 𝐴𝐷, a similar analysis 

with all walls (𝐴𝐵 , 𝐵𝐶, 𝐶𝐷 and 𝐴𝐷) (Fig. 4-3) quenched is performed and same observations are 

made. Further, analysis of the system with finer mesh sizes yield similar results which disregards 

these observations being attributed to numerical artifacts. However, the results pertaining to these 

have not been shown for the sake of brevity.  

5.1.3 Features of sink-zones 

Before moving further some peculiar features of sink-zones as observed from results are 

highlighted which will help in better elucidating the physical phenomena underlying their 

formation.  

• Sink-zones are also observed when all the walls except top are adiabatic. This is depicted in 

in Fig. 5-3(a) which shows the contour plots of temperature (highlighting the sink-zones with 

negative values) when only the top wall is quenched whilst other parameters are same as in 

Fig. 5-1. However, when the bottom wall is maintained at 𝑇𝑖 𝑖. 𝑒. isothermal conditions, no 

such zones are observed as can be seen in Fig. 5-3(b). Thus, it can be remarked that the 

formation of sink-zones is attributed to the absence of any possible mechanism of heat inflow 
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into the system. This aspect can be explained for isothermal configuration (Fig. 5-3(b)) as 

follows: the decrease in temperature of the bulk caused by the piston effect leads to the 

formation of a hot thermal boundary layer near the bottom wall (𝐶𝐷) which leads to heat 

flow into the system at wall 𝐶𝐷. Thus, no local heat sink-zones are formed in the fluid 

domain. Thus, the aforementioned conditions form one of the necessary condition for the 

formation of sink-zones in the bulk. While this condition may seem quite intuitive as any 

heat flow into the system will preclude the feasibility of temperature falling below the 

boundary value, it will be shown in subsequent section that this is not the sufficient condition 

for the appearance of sink-zones. 

 

 

Fig. 5-3: : Temperature profile for 𝑇𝑖 − 𝑇𝑐 = 100 𝑚𝐾, 𝛿𝑇 = 10𝑚𝐾, 𝑓 = 20 𝐻𝑧, 𝐴 = 5𝑚𝑚 at 10𝑠 (a) 

bottom wall adiabatic, sink-zones are formed (b) bottom wall isothermal (𝑖. 𝑒. at 𝑇𝑖 ), no sink-zones are 

formed. The white dashed lines in (a) represent the boundary where 𝑇 − 𝑇𝑤 = 0. 

 

• With increase in time, the region (fluid domain) where the temperature is below the boundary 

value spans a larger section of the bulk. Thus, the domain of occupancy of sink- zones grows 

in size with time. In addition, there is a slight variation in their size depending on the direction 

of vibration 𝑖. 𝑒. sink-zones tend to decrease in size when the fluid moves towards them. 

These two aspects can be observed in Fig. 5-4. 

• The formation of sink-zone is observed even at far proximities to the critical point, though 

very late in time (depending on the proximity and for high acceleration). This further 
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supports their formation being attributed to some physical behavior peculiar to SCF which 

is further illustrated Fig. 5-5(a-b) for various proximities to the critical point.  

 

 

 

Fig. 5-4: Temperature contour plots for 𝑇𝑖 − 𝑇𝑐 = 100 𝑚𝐾, 𝛿𝑇 = 10𝑚𝐾, 𝑓 = 20 𝐻𝑧, 𝐴 = 5𝑚𝑚 at various 

instances of time along with streamlines depicting direction of motion of vibration. (a-b) for one-half period 

(c-d) growth of sink zone with time. 

 

It is to be mentioned that even though there are significant differences in the configuration 

analyzed by Boukari et al. [96], the same case is initially investigated and described for two reasons. 
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Firstly, a similar qualitative observation will serve as an additional validation of the mathematical 

model and observed phenomena. Secondly, as will be shown in subsequent section, the physical 

phenomena leading to the formation of sink-zones in 2D is closely related to the case when the 

direction of vibration (acceleration) is along temperature gradient, a clear explanation of the same 

will aid in better understanding of its formation and the results presented herein.  

 

 

Fig. 5-5(a-b): Temperature contour plots illustrating sink zones (shaded regions) for various proximities to 

the critical point and other parameters as marked in the figure. The temperature contours are represented by 

lines. 

        

5.1.4 One-dimensional analysis with both walls quenched 

We consider a 1D case similar to the work of Boukari et al. [96] which is schematically 

presented in Fig. 5-6(a). The fluid is initially at 20 𝑚𝐾 from the critical point (same as in case of 

Boukari et al. [96] ) and a quench of 𝛿𝑇 = 10𝑚𝐾 is imposed on both the sides. In addition, the 

fluid is subjected to an acceleration of 100𝑔 in the negative 𝑦 −direction, where 𝑔 is the magnitude 

of acceleration due to gravity. It is to be mentioned that the motive for selecting this large value of 

acceleration was to impede the long duration of simulations. A smaller value of acceleration will 

affect the behavior of the system only quantitatively (in time) and increase unnecessary computation 
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time. Thus, a higher value of acceleration is selected for the current analysis and explanation. 

However, in later sections, some results for lower values of acceleration are also presented. In 

addition to analyzing the case of 100𝑔, a similar case under weightlessness is also analyzed in order 

to make necessary comparisons essential to explain the results. 

 

 

Fig. 5-6: (a) Schematic of 1D case with both walls quenched (b) Evolution of the temperature field for 𝑇𝑖 −
𝑇𝑐 = 20 𝑚𝐾, 𝛿𝑇 = 10𝑚𝐾, (solid lines): 100𝑔, (dotted lines): zero-g. 

 

Fig. 5-6(b) illustrates the evolution of temperature field at various time instances for both 

the cases (𝑖)100𝑔 and (𝑖𝑖) zero-g as shown in Fig. 5-6(a). The results presented herein are coherent 

with the studies of Boukari et al. [96] wherein temperature drops below the temperature imposed 

at the boundary after a certain period of time. The principle leading to this peculiar behavior which 

will be further used to explain the formation and behavior of sink-zones is now explained. The 

quench at the top and bottom wall induces a very thin thermal boundary layer (TBL) and the high 

value of thermal expansion (𝛽𝑃)  (contraction in the present case) leads to large density gradients 

within the TBL (property of near-critical fluids). The large value of thermal expansion at constant 

pressure (𝛽𝑃) in conjunction with very high compressibility (𝜒𝑇) cause the fluid in the bulk to 
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expand and thereby its temperature to decrease. This is the classical piston effect as can be observed 

in Fig. 5-6(b) (dotted lines) in zero-g conditions. Now consider the case when acceleration is acting 

in negative 𝑦 direction (case (i)). The heavier fluid in the top TBL and fluid in the bulk, exerts a 

force (due to its self-weight) on the fluid beneath it. Consequently, the fluid is compressed with 

maximum compression being experienced by the fluid near the bottom, while near the top the fluid 

expands in addition to usual expansion by piston effect. Thus, a high compressibility in the bulk 

consequently affects the temperature field. Therefore, the overall temperature profile is then a 

superimposed effect of expansion of fluid due to the piston effect and compression/expansion due 

to self-weight depending on the location of fluid element from the bottom. This results in 

temperature near the bottom being higher than in weightlessness condition as can be clearly seen 

in Fig. 5-6(b).  

The combined action of compression of bulk fluid by this heavy fluid and action of self-

weight causes a faster decrease in temperature near the top as compared to the bottom. 

Consequently, while the temperature of the fluid near the top reaches the wall temperature, the fluid 

near the bottom is yet to attain the imposed wall temperature and thus keeps on expanding. This 

higher temperature persisting near the bottom has been mentioned as a sharp temperature gradient 

by Boukari et al. [96] in their study. This temperature gradient near the bottom thus causes the fluid 

to expand thereby decreasing the temperature everywhere. As a result, the temperature near the top 

wall falls below the boundary value and extends into the bulk fluid with time. This can also be 

observed in the Fig. 5-6(b) for 𝑡 = 5 𝑠 and 𝑡 = 25 𝑠. As mentioned in [96] , the temperature of the 

fluid will continue to fall below the wall temperature until the fluid in the top TBL starts to expand 

due to heating from the top wall and thus exerting an opposite effect 𝑖. 𝑒. compressing the bulk fluid. 

When both these opposite effects (the expansion and compression of the bulk due to bottom and 

top boundary layer respectively) become equal, the temperature would stop to fall below the 

boundary value. Subsequently, it will try to return to the imposed values as imposed by boundary 

conditions. It is to be mentioned that owing to 1D consideration, convection has been ignored in 

the present analysis. 

The above description thus illustrates the possibility that the fluid temperature can fall below 

the boundary value.  While in the above described case, both sides are quenched, a more relevant 
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analysis in the context of the present work is with one side adiabatic. This assertion will become 

clearer in the subsequent section.  

5.1.5 One-dimensional analysis with one side adiabatic 

 

 

Fig. 5-7: (a) Schematic of 1D case with bottom wall quenched and top adiabatic (b) Evolution of the 

temperature field for 𝑇𝑖 − 𝑇𝑐 = 20 𝑚𝐾, 𝛿𝑇 = 10 𝑚𝐾, (solid lines): 100𝑔, (dotted lines): zero-g. 

 

Fig. 5-7(b) and Fig. 5-8(b) illustrate the evolution of the temperature field for both cases 

shown in Fig. 5-7(a) and Fig. 5-8(a) respectively. It can be noticed that when the bottom wall is 

quenched (Fig. 5-7(b)) with top being adiabatic, the temperature at the top falls below the wall 

temperature. On the contrary, when the top wall is quenched with bottom wall being adiabatic (Fig. 

5-8(b)), the temperature of the fluid at the bottom is higher than zero-g conditions and it does not 

fall below the top wall temperature. While the explanation for the higher temperature at the bottom 

wall (in case of top wall quenched) is nearly the same as discussed for both the walls quenched, of 

peculiar interest is the reasoning pertaining to the former case (bottom wall quenched).  
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For the schematic shown in Fig. 5-8(a), when the top wall is quenched, it induces a thin 

TBL near the top wall. Due to the action of self-weight and movement of the heavier fluid 

downwards, the fluid in the bulk is compressed/expanded near the bottom/top, respectively, thereby 

causing the temperature at the top to decrease more rapidly. However, since no TBL is formed at 

the bottom due to adiabatic condition, the temperature does not fall below the boundary value, as 

can be seen in Fig. 5-8(b) even at 𝑡 = 200𝑠. This is attributed to the absence of expansion of the 

bulk fluid from the bottom as in case of both walls quenched. Further, a higher temperature near 

the bottom wall can be explained by virtue of increase in temperature due to the compression under 

self-weight.  

 

 

Fig. 5-8: (a) Schematic of 1D case with top wall quenched and bottom adiabatic (b): Evolution of the 

temperature field for 𝑇𝑖 − 𝑇𝑐 = 20 𝑚𝐾, 𝛿𝑇 = 10 𝑚𝐾, (solid lines): 100 𝑔, (dotted lines): zero-g. 

 

In case when the bottom wall is quenched while the top wall is adiabatic (Fig. 5-7(a)), the 

density gradients near the bottom are formed owing to the temperature change in the TBL near the 

bottom. It is noticeable that in this case, the heavier fluid is already at the bottom and thus it may 

seem to be a stable configuration. However, it is observed the temperature drops below the wall 
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temperature on the top adiabatic wall as can be seen in Fig. 5-7(b). The expansion of the bulk causes 

a decrease in the temperature in the bulk due to the piston effect in weightlessness conditions as 

shown by dotted lines Fig. 5-7(b). However, in the presence of acceleration an additional 

temperature change is caused due to self-weight of the fluid wherein fluid near the bottom is 

compressed and, in the process, it expands near the top. Consequently, the temperature is higher 

near the bottom and lower at the top when compared to weightlessness conditions as observed in 

Fig. 5-7(b). The rest of explanation is similar to the case when both sides are quenched as mentioned 

earlier which leads to the drop of temperature near the top wall below the boundary temperature.  

The above two cases can thus be categorized based on the direction of acceleration with 

temperature gradient near the quenched wall. When the direction of temperature gradient at 

quenched wall is anti-parallel with acceleration (case of top wall quenched), the temperature near 

the quenched wall will remain within the boundary value. On the other hand, in case of the direction 

of acceleration being parallel (case of bottom wall quenched), the temperature near the top adiabatic 

wall will fall below the imposed boundary value. Before proceeding further, for the sake of 

completeness, the result for the configurations as shown in Fig. 5-9(a) and Fig. 5-9(c) where instead 

of adiabatic conditions on one of the walls, it is maintained isothermal at the initial temperature are 

also illustrated. These are shown in Fig. 5-9(b) and Fig. 5-9(d) respectively and it can be observed 

that in none of these cases, the temperature falls below the imposed quenched temperature which 

can be explained due to heat flow into the system from the isothermal wall. Hence, from all the 1D 

cases discussed so far, it can be safely remarked that the absence of any mechanism of heat flux 

into the system and temperature gradient being parallel to acceleration are necessary for the 

formation of sink-zones (Fig. 5-6(a-b) and Fig. 5-8(a-b)). These inferences are now used to explain 

the observation related to sink-zones.  
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Fig. 5-9: Evolution of the temperature field (𝑇 − 𝑇𝑤) ((b) and (d)) for 𝑇𝑖 − 𝑇𝑐 = 20 𝑚𝐾, 𝛿𝑇 = 10 𝑚𝐾, (solid 

lines) 100 𝑔 (dotted lines) zero-g for configurations shown in (a) and (c) respectively.   
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5.1.6 Analysis of sink-zones in two-dimensional case 

In order to explain the formation of sink-zones in 2D wherein the direction of vibration (or 

acceleration) is normal to the direction of temperature, consider schematic of the process as 

presented in the Fig. 5-10(a). For the sake of simplicity, only top-left corner of the cell is shown 

and similar explanation follows for the other regions in the cell. 

 

 

Fig. 5-10: (a) Schematic of the phenomena leading to formation of sink zones in 2D flow (b) Streamlines 

near the corner for 𝑇𝑖 − 𝑇𝑐 = 100 𝑚𝐾, 𝛿𝑇 = 10 𝑚𝐾, 𝑓 = 20 𝐻𝑧, 𝐴 = 5𝑚𝑚 at 𝑡 = 10𝑠. 
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Consider the fluid elements at points 𝐹1 and 𝐹2 which are close to the boundary marked by 

𝐵1 and 𝐵2 respectively. Since the motion of the fluid is not constrained in one direction, as in the 

case of 1D problem, the dynamics of the fluid element at 𝐹2 will be significantly affected by the 

state of the fluid element at 𝐹1 (or boundary point 𝐵1 in particular). It is observed that by 

considering a line passing through 𝐵1 − 𝐵2 and the component of vibrational acceleration (𝒂⃗⃗ 𝒗𝒊𝒃) 

along its direction (𝒂⃗⃗ 𝒗𝒊𝒃,𝒙′), then this is equivalent to a 1D case as described earlier. A further 

argument to support this assertion can be seen from Fig. 5-10(b) where nearly straight streamlines 

can be seen near the corners for parameters mentioned in the figure at 𝑡 = 10𝑠. Thus, it is reasonable 

to ascertain that 2D problem can be considered as 1D along such straight streamlines. The initial 

temperature at 𝐹1 and 𝐹2 are the same while a sudden quench is applied at 𝐵1. The temperature at 

point 𝐵2 changes due to the adiabatic boundary conditions. Thus, as per explanation in previous 

section, when the direction of vibration (acceleration) is parallel to the temperature gradient near 

the wall, the conditions for the formation of sink-zone are favorable. This refers to the positive 𝑥 

direction of vibration in reference to corner 𝐴. This fact is supported from Fig. 5-4(a-b) which 

shows that sink- zone grows (or is larger in size) when the direction of acceleration (component of 

acceleration in particular) is parallel to the temperature gradient near the wall. With change in 

direction of vibration, the direction of acceleration changes and the conditions pertaining to a stable 

configuration are attained. However, even though it may not help in the growth of sink-zone but 

refers to the configuration when temperature on adiabatic side is increased which thereby shrinks 

the sink-zone by a small amount.  

It is to be mentioned that the illustration made using line 𝐵1 − 𝐵2 is not the only line along 

which the acceleration will act. Depending on the flow field, several possible combinations 

throughout the whole cell are possible (as illustrated in Fig. 5-10(b)). In general, the lines mentioned 

here will be several streamlines along which these phenomena will occur and hence lead to the 

formation and the spread of sink-zones.  
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5.1.7 Parameters affecting onset time of sink-zones 

 

 

Fig. 5-11: Evolution of the temperature field (𝑇 − 𝑇𝑤) for perfect gas (H2) with 𝑇𝑤 = 278 𝐾, quench 𝛿𝑇 =
10𝑚𝐾under an acceleration of 100 𝑔 for schematic as in Fig. 5-6(a). 

 

It can be concluded from the above discussion that the time of appearance of sink-zone 

depends primarily on the following factors, magnitude of acceleration and the compressibility for 

the same quench conditions. Higher value of both these factors will entail a faster onset of the sink- 

zone. This can be explained by the fact that a higher value of both these factors will escalate the 

effect of self-weight. This explains why even in case of  𝑇𝑖 − 𝑇𝑐 = 2000 𝑚𝐾, the formation of sink-

zone (Fig. 5-5(a)) was observed though very late in time. This is further illustrated by analyzing the 

1D case same as in Fig. 5-6(a) with perfect gas (H2) at ambient conditions ( 𝑇𝑖 = 278 𝐾 and 𝑃 =

101325 𝑃𝑎). Fig. 5-11 shows the results for the perfect gas and it can be observed due to very low 

compressibility when compared to its supercritical state, even in the presence of very high 

acceleration, no phenomena of attaining sink-zones is observed. This is also attributed to the fact 

that due to very high diffusion, the system is homogenized very rapidly. Thus, it can also be 

remarked that the phenomena of the fall of fluid temperature below the imposed boundary value is 

peculiar to near critical fluids, favored by their anomalous thermo-physical properties.  
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Fig. 5-12: Time of appearance of sink zones for the schematic as shown in Fig. 6(a) for a quench of   𝛿𝑇 =

10𝑚𝐾, (a) for different proximities to the critical point for an acceleration of 100 𝑔. (b) surface 3D plot for 

different accelerations and proximities to the critical point. 

 

 

In order to analyze the effect of acceleration and proximity to the critical point on the onset 

of sink-zones, a 1D analysis similar to Boukari et al. [96] (Fig. 5-6(a)) is evaluated. Fig. 5-12(a) 

shows the trend of time of appearance of sink-zones for an acceleration of 100 𝑔 and 𝛿𝑇 = 10 𝑚𝐾 

for various proximities to critical point. A more generic plot is shown in form of a surface 3D plot 

in Fig. 5-12(b) for different values of accelerations and proximities to the critical point for a 10 𝑚𝐾 

quench. It can be observed that with an increase in acceleration, the drop in the temperature below 

the boundary value occurs earlier. Similar observation is made for decreasing proximity to the 

critical point which is attributed to higher compressibility on approaching the critical point as 

explained earlier. It is to be mentioned that even though the results presented herein are from 1D 

case, it is logical to ascertain that same suite will be followed for higher dimensions. 

5.2 See-saw motion of the thermal boundary layer 

Rayleigh-vibrational instabilities were introduced in §4.4. In addition to the appearance of 

finger like structures, it is also observed that coupling between the temperature variations in the 

bulk due to vibration and temperature in the TBL leads to the see-saw motion of the TBL. This is 
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illustrated in Fig. 5-13 wherein TBL seems to perform the said motion about an axis normal to the 

2D plane.  
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Fig. 5-13: Temperature profiles for 𝑇𝑖 − 𝑇𝑐 = 20 𝑚𝐾 , 𝛿𝑇 = 2 𝑚𝐾, 𝑓 = 20 𝐻𝑧 and 𝐴 = 3 𝑚𝑚 for one-time 

period (50 𝑚𝑠). Here walls 𝐴𝐵 and 𝐶𝐷 are quenched. (a), (c), (e) temperature contour plots and (b), (d), (f) 

1D plot of temperature field as a function of 𝑥 at 𝑦 = 0.3 𝑚𝑚 and 𝑦 = 1 𝑚𝑚. (a-b) 𝑡 = 14 𝑠 (c-d) 𝑡 =
14.025 𝑠 (e-f) 𝑡 = 14.05 𝑠. 
 

It is to be mentioned here that the difference in the temperature profiles at these 𝑦 positions 

is because finger like structures due to the Rayleigh-vibrational instability have protruded at 𝑦 =

0.3 𝑚𝑚 but are yet to reach 𝑦 = 1 𝑚𝑚. A closer look of the contour plots shows that the defined 

see-saw motion is the variation in the relative thickness of the TBL along the direction of vibration. 

This is illustrated more clearly in Fig. 5-14(a-b) where the thickness of the TBL is marked 

(approximatively) at two arbitrary 𝑥 positions by 𝛿𝑇𝐵𝐿,1 and  𝛿𝑇𝐵𝐿,2 and is found to change along 

the direction of vibration (thickness at 𝛿𝑇𝐵𝐿,1 being greater than 𝛿𝑇𝐵𝐿,2 when moving towards 

positive 𝑥 −direction and vice versa). Though a first glance at these findings may present their 

observance as naive and intuitive, it will be shown in subsequent section that it is not the change in 

the actual thickness of the TBL but the relative thickness which thereby presents a see-saw motion 

of the TBL (hence the use of relative thickness in caption of Fig. 5-14). Further, the see-saw motion 

of the TBL is defined separately from the oscillatory behavior of temperature field purely due to its 

clear visibility as compared to the oscillations in the bulk. In order to explain this behavior of TBL, 

initially the phenomenon of forced piston effect is described by virtue of which changes in the 

temperature field occur in the bulk and coupling of these changes with the TBL eventually leads to 

see-saw motion of the TBL.  
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Fig. 5-14: Temperature contours illustrating the decrease in the relative thickness of TBL (for example, 

marked approximately at two positions by  𝛿𝑇𝐵𝐿,1, 𝛿𝑇𝐵𝐿,2 ) along the direction of vibration for 𝑇𝑖 − 𝑇𝑐 =
20 𝑚𝐾 , 𝛿𝑇 = 2 𝑚𝐾, 𝑓 = 20 Hz and 𝐴 = 3 𝑚𝑚 (a) 14 s (b) 14.025 s. 

 

5.2.1 Forced Piston Effect 

In case of heat transport by piston effect, the temperature change in the bulk is caused by 

the conversion of mechanical energy of the pressure waves (propagating in the bulk due to high 

expansion or compression of SCF in the TBL) into thermal energy. On a similar basis, the change 

in the temperature field of the bulk/TBL due to pressure change caused by an external force is 

defined here as mechanical or forced piston effect (FPE). In the present work, this effect is caused 

by vibrational forces. Further justification for the use of this terminology can be attributed to the 

similar argument which holds for the piston effect, 𝑖. 𝑒. changes in the temperature field due to 

compression/expansion in a compressible fluid. The only difference is that while piston effect is 

caused by the propagation of acoustic or pressure wave, FPE arises due to local pressure variations 

created by external forces. In addition, the visibility and the importance of FPE is attributed to the 

high compressibility of SCFs. The effect of FPE will depend on the type of external forces acting 

on the system. For example, in case of angular rotation, the FPE will cause pressure to vary along 

the radial direction and thus temperature variations will be observed in the aforesaid direction. Thus, 

in the present case, the forced piston effect (FPE) refers to the piston effect by virtue of the external 

force, |𝑭|  = 𝜌𝐴𝜔2𝑠𝑖𝑛(𝜔𝑡). In order to explain FPE in vibrations more clearly, the change in the 

temperature when the supercritical fluid is acted upon by vibrational forces only is analyzed. In 

such scenario, the top wall (𝐴𝐵) is maintained at 𝑇𝑖 while others are adiabatic. The choice of these 
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boundary conditions is motivated by the fact that it is intended to have changes in the temperature 

field only due to vibration and circumvent any change that may occur due to the main piston effect.  

Fig. 5-15(a) shows the evolution of temperature difference at points 𝑃1 and 𝑃2 (as marked 

in the Figure), denoted by the variable 𝑇𝑃1 − 𝑇𝑃2 for different amplitudes for 𝑇𝑖 − 𝑇𝑐 = 20𝑚𝐾, 

𝛿𝑇 = 2 𝑚𝐾, 𝑓 = 20 𝐻𝑧. In order to effectively capture the physics, a time step of 10−6𝑠 is used in 

this analysis (acoustic time is of ~ 30 𝜇𝑠 ). A nearly similar oscillatory behavior in the temperature 

field due to vibration has also been reported by Jounet et al. [80]. While the difference in maximum 

temperature (∆𝑇𝑝𝑒𝑎𝑘) is found to increase with amplitude, it is also observed that the maximum 

change in temperature (∆𝑇𝑚𝑎𝑥) is not the same for fluid elements along the direction of vibration 

as shown for various 𝑥 positions at 𝑦 = 3.5 mm in Fig. 5-15(b). The maximum change occurs near 

the wall while it decreases on moving towards the center. This peculiar observation has not been 

reported. These two observations can be elucidated as follows. The inertial force due to the 

vibrational acceleration cause the fluid to move in the direction of vibration. When the cell moves 

in positive 𝑥 −direction, the fluid element in the vicinity of the wall 𝐵𝐶 impacts the wall and is 

compressed by the resulting reaction force by virtue of high compressibility of the SCF. This 

compression causes an increase in the pressure in that region. However, the fluid element near the 

wall 𝐴𝐷 keeps moving towards the bulk fluid due to inertia and thus expands causing a drop in the 

pressure in that region. Consequently, a high value of isothermal compressibility (𝜒𝑇) in 

conjunction with thermal expansion (𝛽𝑃) causes a rise/drop of temperature in regions of 

compression/expansion as can be seen in Fig. 5-15(a). The initial negative difference being due to 

the fact that the temperature increases at 𝑃2 while it shows opposite trend at 𝑃1. The increase in 

the maximum value of this temperature difference (denoted by ∆𝑇𝑝𝑒𝑎𝑘 ) with amplitude can be 

explained as follows. A higher amplitude of vibration implies a higher acceleration and therefore a 

higher momentum associated with the fluid. When a fluid with higher momentum impacts the wall, 

it experiences a higher reaction force and thus a stronger compression. A similar reasoning can be 

asserted for the expansion side.  
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Fig. 5-15: (a) Difference in temperature at 𝑃1(0.5𝑚𝑚, 3.5𝑚𝑚) and 𝑃2 (6.5𝑚𝑚, 3.5𝑚𝑚) for different 

amplitudes of vibration for the schematic as shown on right. (b) Temperature at 𝑃2, 𝑃3( 5 𝑚𝑚, 3.5 𝑚𝑚).  
Plots are for 𝑇𝑖 − 𝑇𝑐 = 20 𝑚𝐾, 𝑓 = 20 𝐻𝑧 and 𝐴 = 3 𝑚𝑚. 

 

A higher compression thereby leads to a higher temperature change (or difference 𝑇𝑃1 −

𝑇𝑃2 ) as can be seen in Fig. 5-15(a). An analogous argument follows for higher frequencies, though 

results pertaining to the same have not been shown for the sake of brevity. The observations in Fig. 

5-15(b) are attributed to the fact that on moving towards the center of the cell, the compressive 
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forces from the wall experience a damping like action due to the high compressibility of the 

supercritical fluid.  

The damping action mentioned here can be explained in a more physical sense as follows. 

In case of an incompressible fluid, the fluid element can be considered as a solid, where the same 

magnitude of the force acting on one end will be transmitted to another end. However, in case of a 

compressible fluid, some part of the force will be utilized in compressing the fluid element (𝑖. 𝑒. 

performing the compressible work on the fluid element) while the remaining fraction will be 

transmitted to the subsequent fluid element. A larger fraction of the force will be utilized in doing 

the work on the fluid element when the compressibility is higher. This reduction in force transmitted 

from one fluid element to another due to compressibility is referred to as damping-like action in the 

present case as it tends to dampen the action of applied force. Therefore, it implies that for a fluid 

with higher compressibility, a lower fraction of the force will be transmitted resulting in lesser 

change in pressure of the adjacent fluid element. As a result, change in temperature of the 

subsequent fluid elements will be inferior for a fluid with lower compressibility.  

In order to quantify the above explanation, the ratio of maximum temperature change 

(∆𝑇𝑚𝑎𝑥) at two different 𝑥 positions (𝑃2 and 𝑃3, defined by 𝑟 =
∆𝑇𝑚𝑎𝑥,𝑃2

∆𝑇𝑚𝑎𝑥,𝑃3
 ,with same vibration 

parameters (𝑓 = 20 𝐻𝑧 and 𝐴 = 3 𝑚𝑚) is compared for two different proximities to the critical 

point (𝑇𝑖 − 𝑇𝑐 = 500𝑚𝐾 and 20 𝑚𝐾). Since the compressibility decreases on moving away from 

the critical point thereby implying a lower damping-like action by the fluid (or a higher 

transmittance of force to the center), it is reasonable to ascertain that the difference between 

maximum change in temperature (∆𝑇𝑚𝑎𝑥) near the wall and the center will be lower when far from 

the critical point. A higher value of 𝑟 for 𝑇𝑖 − 𝑇𝑐 = 500𝑚𝐾 ( 𝑟500 =  1.99997) as compared to 

𝑟20 = 1.99982 for 𝑇𝑖 − 𝑇𝑐 = 20𝑚𝐾 thus substantiates the above explanation. In order to further 

illustrate the effect of compressibility, Fig. 5-16 shows the evolution of difference in temperature 

at 𝑃1 and 𝑃2 for different proximities to the critical point for the same vibration parameters. It can 

be observed that on moving away from the critical point, the effect of FPE (maximum change in 

temperature due to vibration) reduces by virtue of decreasing compressibility. Thus, it can be 

remarked that change in temperature due to FPE in vibration therefore depends on the 

compressibility as well as external forces. A higher value of both these factors will entail a larger 

change in temperature.  



122 

 

 

Fig. 5-16: Difference in temperature at 𝑃1 and 𝑃2 for different proximities to the critical point for the 

schematic as shown on right for 𝑓 = 20 𝐻𝑧 and  𝐴 = 3 𝑚𝑚. 

 

5.2.2 Relative thickness of the TBL 

Before moving further, the meaning of the relative thickness in the context of the present 

work is described as it forms the basis of understanding the see-saw motion. It is well known that 

the TBL is defined as a region where the temperature change is within 99% of the temperature 

difference between the bounding surface/wall temperature and the bulk. For example, consider a 

1D case along the 𝑥 −direction where a fluid region is defined 0 ≤ 𝑥 ≤ 𝐿. Denoting the wall 

temperature (at 𝑥 = 0) by 𝑇𝑊 and temperature of the bulk (𝑖. 𝑒. the region which is yet to experience 

the effect of thermal disturbance/temperature change at the boundary by virtue of thermal diffusion) 

by 𝑇𝐵, then the TBL represents a region (from 𝑥 = 0) for which the temperature 𝑇 obeys 𝑇 − 𝑇𝑊 ≤

0.99(𝑇𝐵 − 𝑇𝑊). It is thus clear that the definition of the TBL not only depends on the wall 

temperature (𝑇𝑊) but also the bulk temperature (𝑇𝐵). Therefore, for the same wall temperature but 

a different bulk temperature, it is intuitive to have different thickness of the TBL, say 𝛿𝑇𝐵1and 𝛿𝑇𝐵2 

where the subscript denotes different bulk temperatures (𝑇𝐵1 and 𝑇𝐵2) for two systems/regions 𝐵1 

and 𝐵2, respectively. In the present work, the relative thickness is defined as the thickness of the 

TBL at a given location, say 𝐵2 𝑤. 𝑟. 𝑡 bulk temperature at some other location, say 𝐵1 and denoted 
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by 𝛿𝑇𝐵2−𝑇𝐵1. Though, a more appropriate nomenclature will be ‘relative bulk-temperature based 

thickness of the TBL’, for the sake of brevity, it is referred to relative thickness. The need and 

justification for this description will become clearer in the following section wherein it will be 

shown that owing to the high compressibility and low thermal diffusivity of SCFs, noticeable and 

significant spatial variation in the bulk temperature may exist in the same closed cell due to the 

action of external forces. Thus, the use of relative thickness holds a special significance and forms 

the basis of see-saw motion thereby making the physical explanation not so obvious.  

5.2.3 Mechanism of see-saw motion of the thermal boundary layer 

The physical mechanism resulting in see-saw motion of the TBL is now explained and is 

further shown to be attributed to FPE in vibration. Consider a schematic of the process as shown in 

Fig. 5-17(a) where the line ‘𝑀𝑁’ represents the thermal boundary layer at a time instant, say 𝑡0. 

The points marked by 𝐶1 and 𝐶2 represent the fluid elements near the left (𝐴𝐷) and right (𝐵𝐶) 

walls (see Fig. 4-3), respectively, and are symmetrically located with respect to 𝑥 = 3.5 𝑚𝑚. The 

schematic of the temperature profiles along 𝑦 −direction is further illustrated in Fig. 5-17(b-c). In 

the absence of vibration (𝑖. 𝑒. action of piston effect only) and only top and bottom wall being 

quenched, it can be well understood that the same temperature will persist at points 𝐶1 and 𝐶2 

while the temperature profile along 𝑦-axis through these points will evolve as illustrated in Fig. 

5-17(b). Here, 𝑇𝑤𝑎𝑙𝑙 denotes the wall temperature while the bulk temperature at that instant is 

represented by 𝑇𝑏𝑢𝑙𝑘,𝑡0. The thickness of the TBL at all 𝑥 −positions will thus be defined by the 

temperature which satisfies 𝑇𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑇𝑤𝑎𝑙𝑙 = 0.99(𝑇𝑏𝑢𝑙𝑘,𝑡0 − 𝑇𝑤𝑎𝑙𝑙), where 𝑇𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 denotes 

the temperature satisfying the above criteria. In order to analyze the evolution of the temperature in 

the presence of vibrational acceleration, a case when the cell moves in positive 𝑥-direction is 

analyzed. By virtue of FPE, the pressure along the line passing through 𝐶2 in 𝑦-direction will 

increase due to compression thereby resulting in a uniform increase in the temperature of fluid 

elements therein. The temperature will thus evolve as shown by dashed red line in Fig. 5-17(c). On 

the other side near the wall (𝐴𝐷), the temperature will decrease (due to expansion) leading to the 

temperature field along the 𝑦 axis as represented schematically in Fig. 5-17(c) by dashed blue lines. 
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Fig. 5-17: Schematic illustration of the see-saw motion of thermal boundary layer (a) actual (𝑀𝑁) and 

relative thickness (𝑀𝑁𝑥+ and 𝑀𝑁𝑥−) of the TBL (b) (i) temperature profile along 𝑦 axis in the presence of 

piston effect only (ii) evolution of temperature profile in the presence of vibration for vibration in positive 

𝑥-direction. 

 

It can thus be observed that at any 𝑥, FPE in vibration causes a change in temperature in the 

bulk and the TBL. Thus, the TBL (say corresponding to 𝑥 −position at 𝐶1) will be represented by 
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a region wherein 𝑇𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛,𝐶1 − 𝑇𝑤𝑎𝑙𝑙 = 0.99 (𝑇𝑏𝑢𝑙𝑘,𝐶1 − 𝑇𝑤𝑎𝑙𝑙)  where 𝑇𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛,𝐶1 and 

𝑇𝑏𝑢𝑙𝑘,𝐶1 represents the transition and bulk temperature at 𝑥 −corresponding to 𝐶1. It can be 

observed here that due to uniform effect of FPE  𝑇𝑏𝑢𝑙𝑘,𝐶1 ≈ 𝑇𝑏𝑢𝑙𝑘,𝑡0 − ∆𝑇 and 𝑇𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛,𝐶1 ≈

𝑇𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 − ∆𝑇, ∆𝑇 being the temperature change due to FPE which depends on the position of 𝑥 

from the cell wall. This implies that though the value of transition temperature marking a change 

from the TBL to bulk is different at each 𝑥 , the actual thickness of the TBL is independent of ∆𝑇.  

 A very important observation to be highlighted here is that the TBL at any 𝑥 is not defined 

𝑤. 𝑟. 𝑡 the same bulk temperature. For example, along 𝑦 direction through 𝐶1 and 𝐶2, the bulk 

temperature is 𝑇𝐶0 − ∆𝑇 and 𝑇𝐶0 + ∆𝑇 respectively,   𝑇𝐶0 being the temperature at the middle. (As 

was described in previous section, the FPE has negligible effect at the center, thus 𝑇𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 is 

nearly the same as 𝑇𝐶0 though the latter is used for the sake of brevity). Thus, the temperature 

difference for which the TBL is defined in both the cases will be different as the temperature of the 

wall (𝐴𝐵) is constant. However, on defining the TBL along the 𝑥-direction 𝑤. 𝑟. 𝑡 the bulk 

temperature at some other 𝑥 position (and call this as reference temperature), the thickness of the 

TBL will no longer be same along 𝑥 and an interesting behavior can be drawn out. Thus, the usual 

definition of the TBL loses its significance and it becomes necessary to introduce an alternative 

nomenclature in the present context, described as the relative thickness in the previous section.  

 In order to elucidate this phenomenon more clearly, consider the reference position at 𝐶1 

where the TBL is defined 𝑤. 𝑟. 𝑡 the bulk temperature therein at time 𝑡 as 𝑇𝑏𝑢𝑙𝑘,𝐶1 = 𝑇𝐶0 − ∆𝑇. 

Now, for this bulk temperature (𝑇𝑏𝑢𝑙𝑘,𝐶1) or temperature difference (𝑇𝑏𝑢𝑙𝑘,𝐶1 − 𝑇𝑤𝑎𝑙𝑙), the thickness 

of the TBL along 𝐶0 and 𝐶2 will be represented by points 𝑅 and 𝑆, as marked on the temperature 

profile (and also projected on 𝑦 axis) in Fig. 5-17(c) and can be represented by 𝛿𝑇𝐶0−𝑇𝑐1and 𝛿𝑇𝐶2−𝑇𝑐1, 

based on the nomenclature defined in §5.2.2. It can therefore be observed that the thickness of the 

TBL when defined 𝑤. 𝑟. 𝑡 different bulk temperature at 𝐶1 changes from being maximum at 𝐶1 and 

minimum at 𝐶2. Alternatively, considering the temperature in the middle as the reference state 

(which is physically more relevant as explained below), then the relative thickness of the TBL 

increases at 𝐶1 and decreases at 𝐶2. With the change in the direction of vibration, 𝑖. 𝑒. towards 

negative 𝑥-direction, the temperature profiles at 𝐶1 and 𝐶2 will be swapped as the temperature now 

increases at 𝐶1. The term relative thickness of the TBL becomes significant when dealing with 2D 

case and it is essential to examine the cell as a whole instead of considering the evolution of 
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temperature along a particular location. In such scenario, the average bulk temperature would nearly 

be same as at the center owing to the symmetric effects (about the center) of FPE and thus it is more 

reasonable to ascertain it as the reference state. Therefore, relative to this reference state, the relative 

bulk temperature based TBL thickness or relative thickness of the TBL along the 𝑥 −direction is 

maximum (minimum) near wall 𝐴𝐷(𝐵𝐶) for positive direction of vibration as shown in Fig. 5-17(a) 

by 𝑀𝑁𝑥+ (𝑀𝑁𝑥− for negative 𝑥 −direction)   

This aspect can be further elucidated from Fig. 5-18 wherein temperature contour plots and 

temperature profiles at various 𝑥 are shown for 𝑇𝑖 − 𝑇𝑐 = 20𝑚𝐾, with 𝛿𝑇 = 2 𝑚𝐾, 𝑓 = 20 𝐻𝑧 and 

𝐴 =  0.5 𝑚𝑚. These have been depicted along-side each other for clear illustration of the relative 

thickness even though the actual thickness remains the same. It can be clearly seen from Fig. 5-18 

(b,d) that the transition from the TBL to bulk occurs at nearly same 𝑦 at various 𝑥 positions and 

thus the actual thickness of the TBL at respective 𝑥 remains unaffected. However, analyzing the 

system as a whole as depicted in Fig. 5-18(a,c), where the bulk average temperature would be nearly 

the same as the one in the middle (as explained above), it can be seen that the relative thickness (as 

defined previously) changes along the direction of vibration. It is to be mentioned that low value of 

amplitude has been purposely chosen so as to evade any effects of Rayleigh-vibrational instability. 

As shown in Fig. 5-18(a), when the cell moves in the positive 𝑥 −direction, the relative thickness 

is higher at 𝐿𝑀 (𝛿𝑇𝐿𝑀−𝑇𝑀) while it is lower at 𝑅𝑀 (𝛿𝑇𝑅𝑀−𝑇𝑀)  defined 𝑤. 𝑟. 𝑡 to temperature at the 

middle (or bulk average). The scenario reverses with change in the direction of vibration as shown 

in Fig. 5-18(c) and thus supports the above explanation.  

It is also worth observing that the relative thickness decreases on moving from expansion to 

compression side (Fig. 5-18(a,c)). It was mentioned in §5.2.1 that the effect of FPE decreases on 

moving towards the center of the cell. As a result, the difference between the local bulk temperature 

and bulk temperature at the center and thus the relative thickness, which implicitly indicates this 

difference, decreases on moving towards the center as observed in Fig. 5-18(a,c) and represented 

schematically in Fig. 5-17(a) by 𝑀𝑁𝑥+ and 𝑀𝑁𝑥−. Thus, more fundamentally, the see-saw-motion 

can also be defined as change in the relative thickness of the TBL along the direction of vibration 

due to the temperature changes by virtue of FPE in vibration.  
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Fig. 5-18: (a, c) Temperature contours illustrating change in relative thickness of TBL over half-period of vibration 

(b, d) Temperature profiles at various 𝑥 along 𝑦-direction illustrating nearly the same actual thickness of the TBL, 

for 𝑇𝑖 − 𝑇𝑐 = 20 𝑚𝐾 , 𝛿𝑇 = 2 𝑚𝐾, 𝑓 = 20 𝐻𝑧 and 𝐴 = 0.5 𝑚𝑚. 
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5.2.4 Factors affecting FPE in vibration and see-saw motion  

The see-saw motion described above implicitly represents the temperature difference caused by 

virtue of FPE resulting in relative bulk temperature. Thus, analyzing the effect of various factors 

on temperature change caused by FPE in vibration can provide a first-hand means to characterize 

the see-saw motion. The effect of various parameters on ∆𝑇𝑚𝑎𝑥 using a simple 1D analysis is thus 

presented here. An important remark not be missed here is that the see-saw motion will become 

more pronounced with advancement in time. This is ascribed to the fact that with growth in the 

thickness of the TBL at the center, the difference in the relative thickness on extreme ends will 

increase making this worth noticeable.  

• Effect of proximity to the critical point and acceleration  

Fig. 5-19(a) shows a 3D plot for the maximum change in temperature (∆𝑇𝑚𝑎𝑥) as function of 

different accelerations and proximities to the critical point when the SCF is only subjected to 

vibrations, as obtained by 1D analysis for the schematic shown in Fig. 5-19(b). For the sake of 

clarification, a 2D plot for 
𝐴𝜔2

𝑔
= 1 is also shown in the inset to in order to describe decreasing 

behavior of ∆𝑇𝑚𝑎𝑥 with the proximity to the critical point. As expected, a higher temperature rise 

is observed with increasing acceleration and decreasing proximity to the critical point. In addition, 

an increase in slope (obtained by best linear fit at a fixed acceleration) from -0.009 for 
𝐴𝜔2

𝑔
= 1 to 

-0.08 for 
𝐴𝜔2

𝑔
= 9 shows that the sensitivity to FPE increases rapidly on approaching the critical 

point. This is attributed to the anomalous behavior of various thermo-physical properties, 

compressibility in particular. It can therefore be deduced that irrespective of the acceleration, FPE 

will always cause some change in temperature and thus see-saw motion of the TBL. Thus, unlike 

Rayleigh-vibrational instabilities which are observed beyond a critical amplitude for a given 

frequency, proximity to the critical point and temperature quench, it is reasonable to expect see-

saw motion for all amplitudes though its intensity (in terms of change in relative thickness from 

one end to the other) may vary.  
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Fig. 5-19: (a) Maximum change in temperature, when SCF is subjected to vibration only, as a function of 

various proximities to the critical point and acceleration (𝐴𝜔2) with inset illustrating the decrease  of ∆𝑇𝑚𝑎𝑥  

for 
𝐴𝜔2

𝑔
= 1 (b) schematic of the problem used to evaluate maximum change in temperature.  

 

• Effect of cell size 

The observance of temperature changes by FPE in vibration (and thus see-saw motion) is 

physically attributed to the reaction force acting on the SCF when it impacts the wall. It was shown 

in section §5.2.1 that a higher momentum by virtue of higher acceleration resulted in higher ∆𝑇𝑚𝑎𝑥. 

Another factor which may affect the momentum is the cell volume (and thus mass of SCFs). This 

aspect is also highlighted in Fig. 5-19 (a) wherein ∆𝑇𝑚𝑎𝑥 is plotted for 2 different cell sizes, ℎ =
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3.5 𝑚𝑚 and 7 𝑚𝑚. A higher value observed for a larger cell is ascribed to a higher mass and thus 

momentum which implies that for the same vibrational acceleration, the fluid impacts the wall with 

a higher force. Consequently, a higher reaction force causes greater change in pressure and thus 

temperature.  

5.3 Chapter summary 

In this chapter, two captivating phenomena when SCFs are subjected to simultaneous quench 

and vibration are explained which are observed along-with Rayleigh-vibrational instabilities (§4.4).  

The first one describes the drop in the temperature of the SCF below the imposed boundary 

temperature. These regions are defined as sink-zones. In order to explain these observations, several 

1D cases with different boundary conditions are analyzed in the presence of constant acceleration 

and it is found that the temperature gradient must be parallel to the direction of acceleration for the 

formation of sink-zones. Unlike the 1D case where the direction of acceleration is along the 

temperature gradient, the appearance of sink-zones in case of 2D is attributed to oblique flows with 

direction of acceleration near the corners. The component of vibration acceleration along these flow 

lines leads to similar conditions as in 1D flow and thus the appearance of sink-zones.  

The second phenomena pertain to see-saw motion of the TBL. It is shown that pressure changes 

due to external forces (vibrational acceleration in the present case) can cause significant changes in 

the temperature field due to diverging behavior of the thermo-physical properties in near-critical 

fluids and is termed as forced piston effect (FPE). The effect of FPE diminishes on moving from 

the walls towards the bulk which is ascribed to damping like action by virtue of high compressibility 

of SCFs. It is further shown that even though the actual TBL thickness may be same along the 

direction of vibration, the relative thickness (defined 𝑤. 𝑟. 𝑡 relative local bulk temperature) will 

change along the direction of vibration which over a period of vibration forms a see-saw motion of 

the TBL.  

In the next chapter, the elementary test cases are presented using phase-field modelling for two-

phase fluid system near the critical point. An important aspect pertaining to this two-phase system 

is that, both the phases, liquid as well as gas, are highly compressible.  
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CHAPTER 6. PHASE-FIELD MODELLING IN SUB-CRITICAL 

FLUIDS 
 

 

Hitherto, the analysis of the fluid behavior has been presented in supercritical regime using 

single-phase model. In order to study the behavior near the critical point in sub-critical regime, a 

phase-field model was presented based on mass fraction as the phase-field parameter in §2.2. In 

this chapter, some elementary test cases are presented in order to investigate the capability of the 

model to capture the flow behavior of highly compressible liquid and gas phases. This is a 

preliminary work which can be further extended to more intricate flow dynamics and thus attention 

is restricted only to isothermal systems.  

 

The two-phase system (near the critical point) is analyzed primarily for the following test cases. 

• Spurious currents in stagnant vapor bubble 

• Transformation of elliptical bubble to circular shape in order to minimize the energy 

• Coalescence of two drops in order to minimize the energy 

• Phase separation into liquid and vapor phases at constant temperature 

 

 In this chapter, near critical carbon-dioxide, CO2 (𝑇𝑐 = 304.13 𝐾), has been used with properties 

taken from the NIST database [28] as described in Table 6-1. Furthermore, the simulation is 

performed with time step 𝛿𝑡 = 10−4𝑠 while a constant mesh (as per the problem) has been used. 

The latter is an important condition so as to ensure that the mesh conditions for interface capturing, 

as described at the initial state, are prevalent throughout the computational time.  

 

6.1 Spurious currents in a stagnant bubble 

In a multiphase problem, an imbalance between the discretized forces in both the phases 

results in small amplitude of artificial velocity known as the spurious current. The intensity of these 

spurious currents increases with surface tension and density ratio of the two fluids. In the context 

of phase-field modelling, these spurious currents arise primarily due to the gradient of the phase-
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field parameter which can lead to diffusion. Even though it can be reduced by decreasing the 

mobility (𝑀0) or refining the mesh, the complete removal remains a big challenge. In some cases, 

these can become as large as the characteristic velocities of the problem thereby altering the real 

physical behavior. 

 

Table 6-1: Thermo-physical properties of CO2 near its critical point [28] 

𝑇 −

𝑇𝑐  (K) 

Equilibrium 

Pressure 

[MPa] 

Density  

[ kg.m-3] 

Viscosity 

 [ 𝜇Pa-s] 

Isothermal 

compressibility 

[1/MPa] 

Surface 

Tension 

[mN.m-1] 

𝜌𝐿 𝜌𝑉 𝜇𝐿 𝜇𝑉 𝜒𝑇,𝐿 𝜒𝑇,𝑉 𝜎 

0.1 7.3606 
 525.17 411.68 37.579 29.164 27.344 40.359 0.003296 

 

0.93 7.2219 
 590.99 

 

347.28 
 

43.541 25.291 1.449 3.8128 0.055113 
 

1 7.2104 
 594.22 344.25 43.857 25.123 1.3114 3.5507 0.060375 

 

 

 

Fig. 6-1: Schematic of test case (square cavity filled with liquid CO2 with vapor bubble) for the investigation 

of spurious currents. 
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In order to analyze the effect of spurious currents in our model, a quiescent CO2 vapor 

bubble of radius 𝑎 is suspended in its saturated liquid 100 𝑚𝐾 below the critical point in zero 

gravity as shown in Fig. 6-1. Symmetric boundary conditions are imposed at all the walls. The 

initial conditions for the phase field parameter are set using a hyperbolic tangent profile (as 

described in Appendix E.1 for 1D case) and is defined as, 

 

𝜙(𝑥, 𝑦) =
1

2
+
1

2
tanh (

√(𝑥−𝑥0)2+(𝑦−𝑦0)2−𝑎

0.34𝜉
)  (6.1.1) 

 

where (𝑥0, 𝑦0) = (5𝑚𝑚, 5𝑚𝑚) denotes the center of the bubble. 

 

 

Fig. 6-2: Maximum velocity as a function of time for 𝐶𝑛 = 0.02 on a 2002 mesh (a) 𝑎 = 1 mm (b) 𝑎 =
4𝑚𝑚 (100 𝑚𝐾 below the critical point). 

 

In order to evaluate the effect of spurious currents, the maximum of the velocity in either 

direction (𝑥 or 𝑦) in the domain was noted at each time, which in ideal situation should be zero. Fig. 

6-2 shows the maximum velocity for Cahn number, 𝐶𝑛 = 0.02 with different values of mobility for 

𝑎 = 1𝑚𝑚 and 𝑎 = 4𝑚𝑚. It is to be noted that in case of phase-field modelling, the diffusion due 

to the gradient of 𝜙 causes diffusion flux and thereby induce spurious velocities. A lower value of 

mobility thus impedes the effect of diffusion thereby minimizing the spurious currents as can be 

observed in the Fig. 6-2(a). A similar trend is observed for a higher radius though the magnitude of 



135 

 

the currents is higher.  This is primarily attributed to a larger interface region and thus more 

diffusion to attain equilibrium.  

Another aspect that affects spurious currents as described earlier is a higher surface tension 

and density ratio. In order to investigate this, the system is analyzed 1𝐾 below the critical point 

where surface tension and density difference between both the phases is relatively higher (see Table 

6-1). Fig. 6-3 shows the evolution of maximum velocity for 𝑎 = 1 𝑚𝑚 and 𝐶𝑛 = 0.02 . It can be 

observed that at a higher value of mobility (𝑀0 = 10−7S.I), the system initially attains a lower 

value of spurious currents only to overcome initial unsteadiness. Once that has reached, a higher 

mobility causes diffusion thereby resulting in increasing spurious currents. With the reduction in 

mobility, there is a slight increase in the spurious currents which however shows a diminishing 

behavior with time.  

 

 

Fig. 6-3: Maximum velocity as a function of time for 𝐶𝑛 = 0.02 on a 2002 mesh for 𝑎 = 1𝑚𝑚 (1 𝐾 below 

the critical point). 

 

It is to be mentioned here that the velocity plotted herein is the maximum velocity in the 

whole domain which will be prevalent only near the interface region while it is nearly zero in the 
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rest of the domain. This is illustrated in Fig. 6-4 using contour plots of 𝑥 and 𝑦  velocity at different 

time instances for 𝑎 = 1𝑚𝑚, 𝐶𝑛 = 0.01,  𝑀0 = 10
−13S.I when 100𝑚𝐾 below the critical point. 

 

 

 

 

Fig. 6-4: Velocity contours illustrating spurious velocity fields for a=1 mm (a-b) 𝑥 −velocity and (c-d) 

𝑦 −velocity at various times (𝐶𝑛 = 0.01, 𝑀0 = 10
−13 S.I). 
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6.2 Transformation of elliptical bubble to circular shape 

The interfacial energy depends on the interface area which in case of 2D problem is given by 

the perimeter of the interface. In order to minimize the energy, the interface will finally try to attain 

a shape which minimizes its energy. Since for a constant area, the perimeter of a circle is lower, an 

initial elliptical vapor bubble will transform into a circular shape. This aspect is investigated for the 

schematic as shown in the Fig. 6-5, for 𝑎/𝑏 = 2 with 𝑎 = 2𝑚𝑚 ( 100𝑚𝐾 below the critical point). 

Fig. 6-6 shows time evolution of the vapor bubble from elliptical to circular shape.    

 

 

Fig. 6-5: Schematic of test case for transformation of elliptical vapor bubble to circular bubble in a square 

cavity. 
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Fig. 6-6: Transformation of an elliptical bubble into a circular shape for 𝑎/𝑏 = 2 with 𝑎 = 2𝑚𝑚 on 4002 

mesh with 𝐶𝑛 = 0.01 and 𝑀0 = 10
−15 S.I at various time instances. 

 

One of the primary test in this regard is that once the bubble becomes stable, it should satisfy 

the Young-Laplace relation for the evaluation of surface tension given by, 
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∆𝑃 = 𝜎 (
1

𝑟1
+

1

𝑟2
)  (6.2.1) 

 

where, ∆𝑃 is the difference between the pressure inside and outside the bubble while 𝑟1 and 𝑟2 

represents radius of the curvature of the 3D surface. In case of 2D case (circular bubble), 𝑟2 = ∞ 

and the relation reduces to ∆𝑃 =
𝜎

𝑟
, 𝑟 being the radius of the bubble. In the present case, the accuracy 

of this relation is investigated by evaluating the pressure inside and outside bubble while the 

diameter (and thus the radius) is obtained by taking mean of the distance between two extremities, 

where 𝜙 = 0.5 (middle of the interface), along 𝑥 = 5 𝑚𝑚 and 𝑦 = 5 𝑚𝑚. The corresponding value 

of ∆𝑃 is found to be 2.269 × 10−3𝑁/𝑚2 following which the surface tension obtained is 

3.176 × 10−3 𝑚𝑁/𝑚  as compared to the value from Laplace relation 3.2957 × 10−3 𝑚𝑁/𝑚 𝑖. 𝑒. 

an error of 3.7 % which is well within the acceptable limit. This illustrates that the current model 

is well able to capture the dynamics of highly compressible liquid and vapor phases though accuracy 

can be improved upon by improving the numerical parameters.  

6.3 Coalescence of two liquid drops 

In this case, the coalescence of two identical quiescent liquid droplets which are at 

equilibrium with its vapor phase is analyzed as schematically represented in Fig. 6-7 for 𝑎 =

0.8𝑚𝑚 (100 𝑚𝐾 below the critical point). At the initial condition, the drop just touch each other 

such that 𝑑 = 2𝑎. As described by Lamorgese and Mauri [51], the non-equilibrium developed due 

to attractive force by virtue of surface tension will result in coalescence of the two drops. This is 

further favored by minimizing of the total energy by the interface. Fig. 6-8 shows the time evolution 

of coalescence of two drops. 
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Fig. 6-7: Schematic of the test case for the coalescence of two liquid drops suspended in square cavity filled 

with vapor. 

 

In order to verify the coalescence, the final radius of the bubble after coalescence is 

compared with the analytical value. In order to obtain the diameter (and thus radius) from 

simulation, the mean distance between 𝜙 = 0.5 along 𝑥 = 5𝑚𝑚 and 𝑦 = 5𝑚𝑚 was evaluated. The 

numerical simulation gave a value of 1.142 𝑚𝑚 as compared to analytical value of 1.131 𝑚𝑚 , an 

error of 1% which is well within the acceptable limits. 
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Fig. 6-8: Time evolution of coalescence of two liquid droplets just in contact with each other on 2002 mesh 

(𝐶𝑛 = 0.02, 𝑀0 = 10
−15 S.I). 

 

6.4 Separation of liquid and vapor phases 

As a final study, which highlights one of major strength of phase-field modelling to model 

the appearance of interface, the spinodal decomposition of a liquid-vapor mixture system is 

investigated in weightlessness conditions. The initial conditions correspond to a square cavity 

(2 𝑚𝑚 × 2𝑚𝑚) filled at the critical density of CO2, 𝜌𝑐 = 467.7 kg/m3 at 𝑇 = 303.2 𝐾 (0.93 𝐾 

below the critical point) with random perturbation added to the density. Thus, the initial conditions 

for 𝜙 thus correspond to, 

𝜙((𝑥, 𝑦),0) = 𝜙0 + 𝜙𝑟𝑎𝑛𝑑
 (6.4.1) 

 

with 𝜙0 = 0.623 and 𝜙𝑟𝑎𝑛𝑑  is a random distribution between −0.5 × 10−2 and 0.5 × 10−2.  This 

is similar to the study of Lamorgese and Mauri [51], wherein Gaussian white noise was added for 

random perturbation. As discussed in §3.4.2, the mixture will separate into individual phases as it 

is an energetically favored condition. An important difference from the classical spinodal 

decomposition (as described in § 3.4.2) is that here, the momentum equation is also solved along 

with thereby including the effect of surface tension. Fig. 6-9 schematically illustrates the 

thermodynamic representation of the initial state and densities of the liquid and vapor phase 
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expected after the separation. The results from numerical simulation are shown in Fig. 6-10 over a 

period of time where contours are depicted for the density field highlighting the separation of liquid 

and vapor phase for 𝐶𝑛 = 0.025 and mobility as 5 × 10−7S.I. It can be observed that the mixture 

separates into liquid and gas phase with densities as sobered from contour plots in Fig. 6-10 (e-h). 

 

Fig. 6-9: Schematic illustration of initial conditions of the mixture and expected densities after separation of 

phases. 
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Fig. 6-10:Time evolution of separation of liquid-vapor mixture. 

 

It is thus possible to simulate the appearance of interface using the described phase-field 

model. The model can be further developed to study the continuous transition from single-phase 

(supercritical) to two-phase region (sub-critical) region. The challenges and possible solution 

methodologies is described in perspectives, §7.2. 

6.5 Chapter Summary 

The phase-field model based on mass fraction as phase-field parameter was investigated for 

various cases in sub-critical regime near the critical point. These primarily include spurious current 

in quiescent stagnant vapor bubble, transformation of an elliptical bubble to circular shape and 

coalescence of two droplets favored by minimizing of the energy. In addition, the spinodal 

decomposition of a liquid-vapor system at equilibrium with each other is also analyzed wherein 

appearance of interface is observed. This is an essential feature which is required to extend the 

model for continuous transition from supercritical (single-phase) to sub-critical regime (two-phase) 

wherein simulating the appearance of the interface forms a vital element.  
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CHAPTER 7.  CONCLUSIONS AND PERSPECTIVES 
 

 

7.1 Conclusions  

In the present thesis, motivated by the long-term goal to model a continuous transition from 

supercritical to subcritical state in the realm of continuum mechanics, a compressible model is 

developed to analyze the flow behavior in supercritical fluids. Several intriguing phenomena, 

attributed to the behavior of thermo-physical properties near the critical point, were observed and 

physical explanations presented therein. A preliminary analysis is also presented for sub-critical 

state using phase-field methodology in isothermal conditions. The conclusions of the whole work 

can be summarized as follows, 

• A compressible model, which calculates density directly from the mass conservation and 

without the need to use any pressure velocity coupling algorithm is described. This has been 

made possible by directly introducing the dependence of pressure on density and 

temperature into the momentum equation which precludes any unknown pressure present in 

the momentum equation. The model is subsequently verified by analyzing the propagation 

of acoustic wave in water and the results are found to match well with the analytical results. 

In addition, the model is also validated by comparing numerical results with experimental 

data and a close match is observed. This highlights the capability of the model to analyze 

fluid system with very low compressibility (such as water) to highly compressible fluids 

such as supercritical fluids. 

• The numerical investigations for the propagation of acoustic wave in water reveal 

interesting numerical phenomenon wherein the accuracy of the solution is observed to be 

affected by Courant number in unusual way, oscillatory solution for low values of Courant 

number while accurate numerical solutions at higher values. This has been explained by 

virtue of contribution to the error arising from phase-lag and difference between group 

velocity of numerical waves and physical waves, in addition to the conventional error 

growth rate. While the classical analysis renders implicit schemes as unconditionally stable 
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for linear wave equation and stability decreases with increasing Courant number for non-

linear systems, the correct and complete error dynamics brings out the true behavior. It is 

thus shown that even though the scheme may be neutrally stable, the error growth rate being 

unity, it can still yield erroneous results due to phase-lag and dispersion errors. 

• The mathematical model has been used to analyze the behavior of supercritical fluids when 

simultaneously subjected to thermal quench and mechanical vibration. This leads to 

primarily two types of instabilities, Rayleigh-vibrational instabilities and parametric 

instabilities, when the direction of temperature gradient and vibration are respectively 

normal and parallel to each other. The physical mechanism leading to these instabilities has 

been described and the effect of various parameters, such as quench rate, frequency, 

proximity to the critical point on the critical amplitude leading to onset of these instabilities 

is investigated. Further, the wavelength in Rayleigh-vibrational instabilities is found to 

decrease over a period of time and can increase at higher acceleration.  

•  An interesting phenomenon observed along-with Rayleigh-vibrational instabilities is the 

drop of fluid temperature below the boundary limit in supercritical.  These regions have 

been termed as sink-zones. The problem is first explained in 1D configuration wherein the 

direction of acceleration is along the direction of temperature gradient. It is observed that 

by virtue of high compressibility and coefficient of thermal expansion, the temperature of 

the SCF increases by virtue of self-weight. The explanation is subsequently extended to 2D 

configuration, wherein it is observed that near the corners of the cell, the conditions are 

analogous to 1D configuration during one half time-period of the vibration.  

• Another notable observation alongside Rayleigh-vibrational instabilities pertains to the see-

saw motion of the TBL. It is shown that pressure changes due to external force (vibrational 

acceleration in the present case) can cause significant changes in the temperature field. We 

describe this phenomenon as forced piston effect (FPE) and its effect is observed to diminish 

on moving from the walls towards the bulk. It is further shown that even though the actual 

TBL thickness may be the same along the direction of vibration, the relative thickness 

(defined 𝑤. 𝑟. 𝑡 relative local bulk temperature) will change along the direction of vibration 

which, over a period of vibration, forms a see-saw motion of the TBL.  

• A phase-field model is presented to analyze the flow behavior in sub-critical state for 

isothermal systems. The relevance and advantage of using phase-field method in the context 
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of near-critical fluids is ascribed to the diverging behavior of the interface thickness on 

approaching the critical point which is in coherence with the assumption of finite thickness 

of the interface region in phase-field modelling. Another notable feature is that it permits 

the appearance of interface from a homogeneous mixture which is presented though the case 

of phase-separation.  The model is further used to analyze various elementary test cases, 

such as the stability of a stagnant bubble, coalescence of two bubbles etc. 

7.2 Perspectives 

While the current work contributes to the study of the behavior of near critical fluids using 

mathematical and numerical method, it opens up new horizons of investigations which can be 

considered to be of significant importance, both from the fundamental as well application 

perspectives. Some of these can be described as, 

Instabilities in supercritical fluid 

• The influence of thermo-mechanical coupling has been shown to lead to interesting results. 

However, in these studies, the external force is spatially uniform throughout the fluid cell 

by virtue of longitudinal accelerations. This aspect will be significantly different if the cell 

is subjected to angular rotation wherein due to centrifugal force a spatial varying force will 

exist in the system. This can lead to interesting flow features and needs to be investigated. 

The relevance of this perspective can be considered from the physical fact that, even a small 

longitudinal vibration when acting eccentrically 𝑤. 𝑟. 𝑡 to a fixed point inherits rotational 

characteristics and can lead to additional changes in the flow behavior.  

• In several applications, the fluid is not confined in cell but flows through channels, such as 

in the nozzle of rocket engines. While the current study was primary confined to closed 

systems, the effect of simultaneous vibration and thermal perturbation in open or flow 

system can be considered as the next step of investigation of instabilities in supercritical 

fluids.  
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Phase-field modelling in sub-critical regime with temperature change 

The current work analyzed the behavior near the critical point in two-phase using phase-field 

modelling in isothermal conditions. With promising elementary results, especially pertaining to the 

separation of a mixture into the liquid and vapor phase, the current model can be further developed 

to model a continuous transition from supercritical to sub-critical regime and vice-versa. A brief 

discussion on the challenges and possible roadmap is presented now for future investigations: 

• The current model considers the flow behavior in isothermal conditions, 𝑖. 𝑒. without any 

temperature or phase change. The first important perspective is to extend the model to non-

isothermal systems. This is an important aspect especially attributed to highly compressible 

liquid and vapor phase which can thereby induce strong thermo-mechanical coupling.  

• One of the primary investigation for non-isothermal system will be to model phase-change in 

the sub-critical regime, for example a test case of a saturated liquid drop suspended in 

superheated vapor which should subsequently be converted to vapor phase. However, an 

important point to be considered here is that, the mass-fraction of each phase will not be 

conserved. This calls for an alternative phase-field model, such as Allen-Cahn model.  

• An important role played in the phase-field model is an appropriate choice of free energy 

function. Hence, it is essential to develop an appropriate function which can include all the 

dynamics of phase transition, such as it should represent minima corresponding to two phases 

at all temperatures below the critical point while above the critical point, it should have only 

single minima thereby favoring existence of a single phase. Further, owing to the possible 

phase-change within the sub-critical regime, the function should be able to include the effects 

of latent heat. It is to be noted that for non-isothermal conditions, it is necessary to have function 

as dependent on temperature conditions. 

• It is worth noticing that parameters (𝛼) and (𝛽) are related to the interface thickness and surface 

tension. While surface tension tends to vanish on approaching the critical point, interface 

thickness tends to diverge. This additional constraint which arises from physical attributes needs 

to be considered when deriving the function. A simple means to achieve this could be to 

consider dependence 𝛽 on (𝑇 − 𝑇𝑐) with a higher power as compared to 𝛼.  
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It is worth mentioning here that while the experimental studies of thermo-vibrational studies in 

subcritical regime near the critical point are available in literature [98-100], the numerical 

investigations are still an open topic. Some future perspective in this regard can be described as,  

• It is known that when approaching the critical point, the surface tension vanishes. Thus, it will 

be interesting to analyze thermo-capillary phenomena in near-critical fluids. 

• An important aspect which governs the flow evolution in phase-field modelling is the choice of 

appropriate time step because of various time scales involved in the analysis, such as diffusion 

time scale due to the gradient of phase-field parameter, time scale of external force, viscous 

time scales. Further, when the system will be analyzed in non-isothermal conditions near the 

critical point, thermal diffusion and piston effect time scale will also play an important role. In 

order to effectively capture the exact physical mechanism, it is essential to have appropriate 

time step in relation with the mobility in the Cahn-Hilliard equation which needs to be 

investigated.  

• It will be interesting to analyze the behavior of fluid near the critical point in sub-critical regime 

when subjected to simultaneous quench and vibration which can help to gain insight into the 

several intriguing flow features ascribed to the anomalous behavior of thermo-physical 

properties near the critical point.   
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APPENDICES  

A. Propagation of a pressure wave in a 1D flow  

 

 

Fig. A.1: Schematic of the propagation of sound wave in a 1D flow 

 It is known that the speed of sound corresponds to a propagation of pressure pulse of 

infinitesimal strength through a still inviscid fluid. Consider a pulse of finite strength moving with 

speed 𝐶 towards fluid at rest with fluid properties as described in Fig. A.1. This leaves behind fluid 

with properties 𝑃 + ∆𝑃, 𝑇 + ∆𝑇, 𝜌 + ∆𝜌 on the right side as shown in Fig. A.1. Consider a control 

volume ABCD as shown in the Fig. A.1. Writing momentum balance equation [𝐹𝑟𝑖𝑔ℎ𝑡 = 𝑚̇(𝑉𝑜𝑢𝑡 −

𝑉𝑖𝑛) , where 𝐹𝑟𝑖𝑔ℎ𝑡 is the total pressure force] across faces AD and BC, we can then write,  

𝑃𝐴 − (𝑃 + ∆𝑃)𝐴 = 𝜌𝐴𝐶(𝐶 − ∆𝑉 − 𝐶)  (A.1) 

which gives, 

∆𝑃 = 𝜌𝐶∆𝑉   (A.2) 

With respect to some reference pressure and velocity, we can write the above equation  

𝑃 = 𝜌𝐶𝑉   (A.3) 
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B. Dispersion relation example 

Consider a 1-D wave equation given by, 

𝜕𝑢

𝜕𝑡
+ 𝑐

𝜕𝑢

𝜕𝑥
= 0 , 𝑐 > 0  (B.1) 

  

which can be written as, 

𝜕𝑢

𝜕𝑡
= −𝑐

𝜕𝑢

𝜕𝑥
  (B.2) 

 

We can write solution 𝑢(𝑥, 𝑡) at any position 𝑥 and time 𝑡 as 𝑢̃𝑒𝑖(𝑘𝑥−𝜔𝑡) summed over all 

wavenumbers and frequencies. In order to derive the relation between 𝑘 and 𝜔 , we substitute the 

solution in Eq. (B.2) and we get 

                                         
∂(𝑢𝑒𝑖(𝑘𝑥−𝜔𝑡))

∂t
= −𝑐

∂(𝑢𝑒𝑖(𝑘𝑥−𝜔𝑡))

∂x
  (B.3) 

⇒ −𝑖𝜔𝑢̃𝑒𝑖(𝑘𝑥−𝜔𝑡) = −𝑐𝑖𝑘𝑢̃𝑒𝑖(𝑘𝑥−𝜔𝑡)   

                                        ⇒ 𝜔 = 𝑐𝑘  (B.4) 

 

Eq. (B.4) thus represents relation between 𝑘 and 𝜔 for Eq. (1). We find that this is a constant linear 

relation. Similarly, dispersion relation can be derived for a given numerical scheme (as illustrated 

in (Appendix C)). 
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C. Error propagation equation 

In order illustrate the nature of error propagation, consider a 1D wave equation, moving 

towards right with sound velocity 𝑐, mathematically represented by, 

𝜕𝑢

𝜕𝑡
+ 𝑐

𝜕𝑢

𝜕𝑥
= 0,      𝑐 > 0  (C.1) 

Let the solution at any time 𝑡𝑛(= 𝑛∆𝑡) and position 𝑥𝑗 be represented by, 

𝑢𝑗
𝑛 = ∫𝑈(𝑘∆𝑥, 𝑛∆𝑡)𝑒𝑖𝑘𝑥𝑗𝑑𝑘   (C.2) 

where k is the wavenumber with initial condition given by, 𝑢𝑗
0 = ∫𝑈0(𝑘)𝑒

𝑖𝑘𝑥𝑗𝑑𝑘  [77, 78]. 

Defining the error growth rate as  
),(

))1(,(
),(

tnxkU

tnxkU
txkG j




 , the solution at 𝑛𝑡ℎ time step as 

described by Eq. (C.2) can also be represented by [77, 78], 

𝑢𝑗
𝑛 = ∫𝑈0(𝑘) [|𝐺𝑗|]

𝑛  𝑒𝑖(𝑘𝑥𝑗−𝑛𝛽𝑗)𝑑𝑘 = ∫𝑈0(𝑘) [|𝐺𝑗|]
𝑛  𝑒𝑖𝑘(𝑥𝑗−𝑐𝑁𝑡𝑛)𝑑𝑘  (C.3) 

More formally, 𝐺𝑗 is a complex number described as 𝐺𝑗 = 𝐺|(𝑥=𝑥𝑗) = |𝐺𝑗|𝑒
−𝑖𝛽𝑗 with 𝑡𝑎𝑛 𝛽𝑗 =

−
𝐺𝐼𝑗

𝐺𝑅𝑗
 and 𝐺𝐼𝑗 , 𝐺𝑅𝑗 are imaginary and real parts of 𝐺𝑗, respectively. The modulus of error growth is 

|𝐺𝑗| = √(𝐺𝐼𝑗)2 + (𝐺𝑅𝑗)2. Here, analogous to physical dispersion relation, 𝜔 = 𝑐𝑘, we have the 

numerical dispersion relation 𝜔𝑁 = 𝑐𝑁𝑘, which gives 𝑐𝑁 =
𝛽𝑗

𝑘∆𝑡
. The error is defined as: 𝑒 =

𝑢(𝑥, 𝑡) − 𝑢𝑁(𝑥, 𝑡), with 𝑢(𝑥, 𝑡) and 𝑢𝑁(𝑥, 𝑡) representing the exact and numerical solutions, 

respectively. Thus, we can write the spatial and temporal derivatives of 𝑢𝑁(𝑥, 𝑡) at any position 𝑥 

and time instant 𝑡 using Eq. (C.3) as, (the subscripts 𝑗 and n have been dropped for clarity in the 

following equations) 

𝜕𝑢𝑁

𝜕𝑥
= ∫ 𝑖𝑘 𝑈0 [|𝐺|]

𝑡

∆𝑡  𝑒𝑖𝑘(𝑥−𝑐𝑁𝑡)𝑑𝑘  (C.4) 

  

𝜕𝑢𝑁

𝜕𝑡
= −∫ 𝑖𝑘 𝑐𝑁 𝑈0(𝑘) [|𝐺|]

𝑡

∆𝑡  𝑒𝑖𝑘(𝑥−𝑐𝑁𝑡)𝑑𝑘 + ∫
𝐿𝑛|𝐺|

∆𝑡
𝑈0(𝑘)[|𝐺|]

𝑡

∆𝑡  𝑒𝑖𝑘(𝑥−𝑐𝑁𝑡)𝑑𝑘  (C.5) 
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Multiplying Eq. (C.4) by 𝑐𝑁 and adding to Eq (C.5) we get, 

𝜕𝑢𝑁

𝜕𝑡
+ 𝑐𝑁

𝜕𝑢𝑁

𝜕𝑥
= −∫ 𝑖𝑘 𝑐𝑁 𝑈0(𝑘) [|𝐺|]

𝑡

∆𝑡  𝑒𝑖𝑘(𝑥−𝑐𝑁𝑡)𝑑𝑘 +

∫
𝐿𝑛|𝐺|

∆𝑡
𝑈0(𝑘)[|𝐺|]

𝑡

∆𝑡  𝑒𝑖𝑘(𝑥−𝑐𝑁𝑡)𝑑𝑘 + 𝑐𝑁 ∫ 𝑖𝑘 𝑈0 [|𝐺|]
𝑡

∆𝑡  𝑒𝑖𝑘(𝑥−𝑐𝑁𝑡)𝑑𝑘  

(C.6) 

 

Subtracting Eq. (C.6) from Eq. (C.1),we get, 

𝜕𝑒

 𝜕𝑡
+ 𝑐

𝜕𝑒

𝜕𝑥
+ 𝑐 [1 −

𝑐𝑁

𝑐
]
𝜕𝑢𝑁

𝜕𝑥
= ∫ 𝑖𝑘 𝑐𝑁 𝑈0(𝑘) [|𝐺|]

𝑡

∆𝑡  𝑒𝑖𝑘(𝑥−𝑐𝑁𝑡)𝑑𝑘 −

∫
𝐿𝑛|𝐺|

∆𝑡
𝑈0(𝑘)[|𝐺|]

𝑡

∆𝑡  𝑒𝑖𝑘(𝑥−𝑐𝑁𝑡)𝑑𝑘 − 𝑐𝑁 ∫ 𝑖𝑘 𝑈0 [|𝐺|]
𝑡

∆𝑡  𝑒𝑖𝑘(𝑥−𝑐𝑁𝑡)𝑑𝑘  

(C.7) 

Now, using integration by parts on first term of Eq. (C.7), we get,  

𝜕𝑒

 𝜕𝑡
+ (𝑐 − 𝑐𝑁)

𝜕𝑒

𝜕𝑥
= 𝑐𝑁 ∫ 𝑖𝑘 𝑈0(𝑘) [|𝐺|]

𝑡

∆𝑡  𝑒𝑖𝑘(𝑥−𝑐𝑁𝑡)𝑑𝑘 −

∫
𝑑𝑐𝑁

𝑑𝑘
[∫ 𝑖𝑘′𝑈0 [|𝐺|]

𝑡

∆𝑡  𝑒𝑖𝑘
′(𝑥−𝑐𝑁𝑡)𝑑𝑘′] 𝑑𝑘 − ∫

𝐿𝑛|𝐺|

∆𝑡
𝑈0(𝑘)[|𝐺|]

𝑡

∆𝑡  𝑒𝑖𝑘(𝑥−𝑐𝑁𝑡)𝑑𝑘 −

𝑐𝑁 ∫ 𝑖𝑘 𝑈0 [|𝐺|]
𝑡

∆𝑡  𝑒𝑖𝑘(𝑥−𝑐𝑁𝑡)𝑑𝑘  

(C.8) 

Cancelling the first and fourth term, we end up with error relation as, 

𝜕𝑒

 𝜕𝑡
+ 𝑐

𝜕𝑒

𝜕𝑥
= −𝑐 [1 −

𝑐𝑁

𝑐
]
𝜕𝑢𝑁

𝜕𝑥
− ∫

𝑑𝑐𝑁

𝑑𝑘
[∫ 𝑖𝑘′𝑈0 [|𝐺|]

𝑡

∆𝑡  𝑒𝑖𝑘
′(𝑥−𝑐𝑁𝑡)𝑑𝑘′] 𝑑𝑘 −

 ∫
𝐿𝑛|𝐺|

∆𝑡
𝑈0 [|𝐺|]

𝑡

∆𝑡  𝑒𝑖𝑘(𝑥−𝑐𝑁𝑡)𝑑𝑘  

(C.9) 

It can be observed that, unlike conventional error analysis [74], wherein the contribution to error 

arises only from error growth rate, the correct error dynamics has contribution from phase lag as 

well as the difference in energy propagation (or group velocity) of the numerical as physical wave..  
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D. Numerical characteristics for second order central difference and implicit first order 

forward Euler in time numerical scheme 

 

In order to draw out the characteristics of the numerical scheme used in the current work (as 

mentioned above), the finite difference discretization methodology is used here for the sake 

simplicity. The 1D wave equation (C.1) as described above, in discretized form using the 

aforementioned numerical scheme can be thus be written as,  

𝑢𝑗
𝑛+1−𝑢𝑗

𝑛

∆𝑡
= −𝑐 [

𝑢𝑗+1
𝑛+1−𝑢𝑗−1

𝑛+1

2∆𝑥
]  (D.1) 

Thus, its solution any time 𝑡𝑛(= 𝑛∆𝑡) and position 𝑥𝑗, in the form of Eq. (C.2) can be written as 

𝑢𝑗
𝑛 = ∫𝑈(𝑘∆𝑥, 𝑛∆𝑡)𝑒𝑖𝑘𝑥𝑗𝑑𝑘 . Further, we can define, 

𝜕𝑢𝑗
𝑛

𝜕𝑥
= ∫ 𝑖𝑘𝑈(𝑘∆𝑥, 𝑛∆𝑡)𝑒𝑖𝑘𝑥𝑗𝑑𝑘  (D.2) 

We can also write 
𝜕𝑢𝑗

𝑛

𝜕𝑥
 at any 𝑥𝑗  in terms of 𝑢𝑗

𝑛 defined on other grid points as  
𝜕𝑢𝑗

𝑛

𝜕𝑥
=

1

∆𝑥
[𝐶][𝑢𝑗

𝑛] 

(=
1

∆𝑥
∑ 𝐶𝑗𝑙𝑢𝑙𝑗

𝑛𝑀
𝑙=1 ). Here 𝐶 is the matrix obtained by writing the derivative in terms of 𝑢𝑗

𝑛 defined 

on grid points. We can thus rewrite Eq. (D.1) as, 

𝑢𝑗
𝑛+1 − 𝑢𝑗

𝑛 = −𝑁𝑐[𝐶][𝑢𝑗
𝑛+1]  (D.3) 

Eq. (D.3) can now be further developed as follows, 

∫𝑈(𝑘∆𝑥, (𝑛 + 1)∆𝑡)𝑒𝑖𝑘𝑥𝑗𝑑𝑘 − ∫𝑈(𝑘∆𝑥, 𝑛∆𝑡)𝑒𝑖𝑘𝑥𝑗𝑑𝑘 = −𝑁𝑐  ∫ ∑ 𝐶𝑗𝑙
𝑀
𝑙=1 𝑈(𝑘∆𝑥, (𝑛 +

1)∆𝑡) 𝑒𝑖𝑘𝑥𝑙  𝑑𝑘  
(D.4) 

which can be simplified to, 

∫[𝑈(𝑘∆𝑥, (𝑛 + 1)∆𝑡)𝑒𝑖𝑘𝑥𝑗 −  𝑈(𝑘∆𝑥, 𝑛∆𝑡)𝑒𝑖𝑘𝑥𝑗 + 𝑁𝑐  ∑ 𝐶𝑗𝑙
𝑀
𝑙=1 𝑈(𝑘∆𝑥, (𝑛 +

1)∆𝑡) 𝑒𝑖𝑘𝑥𝑙]𝑑𝑘 = 0    
(D.5) 

Since Eq. (D.5) is valid for all values of 𝑘, the integrand must be zero. Thus, we have, 
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𝑈(𝑘∆𝑥, (𝑛 + 1)∆𝑡)𝑒𝑖𝑘𝑥𝑗 −  𝑈(𝑘∆𝑥, 𝑛∆𝑡)𝑒𝑖𝑘𝑥𝑗 = −𝑁𝑐  ∑ 𝐶𝑗𝑙
𝑀
𝑙=1 𝑈(𝑘∆𝑥, (𝑛 +

1)∆𝑡) 𝑒𝑖𝑘𝑥𝑙  
(D.6) 

By dividing Eq. (D.6) by 𝑈(𝑘∆𝑥, 𝑛∆𝑡)𝑒𝑖𝑘𝑥𝑗 , it further gives, 

𝐺𝑗 − 1 = −𝑁𝑐 ∑ 𝐶𝑗𝑙
𝑀
𝑙=1 𝐺𝑗𝑒

𝑖𝑘(𝑥𝑙−𝑥𝑗)  (D.7) 

Now, for central difference scheme, we can write,  

𝜕𝑢𝑗
𝑛+1

𝜕𝑥
=

1

2 ∆𝑥
[1  0 − 1]  [

𝑢𝑗−1
𝑛+1

0
𝑢𝑗+1
𝑛+1

]  (D.8) 

𝑖. 𝑒.  

𝐶𝑗𝑙={

−
1

2
 , 𝑙 = 𝑗 − 1

1

2
 , 𝑙 = 𝑗 + 1

0 , otherwise

  (D.9) 

Thus, we can write Eq. (D.7) for any 𝑗 as,  

𝐺𝑗 − 1 = −𝑁𝑐𝐺𝑗[
𝑒𝑖𝑘∆𝑥−𝑒−𝑖𝑘∆𝑥

2∆𝑥
]  (D.10) 

After simplifications, Eq.(D.10) gives the expression of 𝐺𝑗, 

𝐺𝑗 =
1−𝑖𝑁𝑐 sin (𝑘∆𝑥)

1+(𝑁𝑐 sin (𝑘∆𝑥))2
  (D.11) 

Here 𝐺𝑗 is complex with 𝐺𝑅𝑗 =
1

1+(𝑁𝑐 sin (𝑘∆𝑥))2
  ,  𝐺𝐼𝑗 =

−𝑖𝑁𝑐 sin(𝑘∆𝑥)

1+(𝑁𝑐 sin (𝑘∆𝑥))2
  and |𝐺𝑗| =

1

[1+(𝑁𝑐 sin(𝑘∆𝑥))2]1/2
. 

Further, we define, 

𝑡𝑎𝑛 𝛽𝑗 = −
𝐺𝐼𝑗

𝐺𝑅𝑗
= 𝑁𝑐 sin(𝑘∆𝑥)  (D.12) 
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The other two parameters 𝑖. 𝑒. 
𝑉𝑔𝑁

𝑐
 and (1 −

𝑐𝑁

𝑐
)  can now be evaluated using expressions obtained 

in Eq. (D.11). We know that 𝑉𝑔𝑁 =
𝑑𝜔𝑁

𝑑𝑘
 , where 𝜔𝑁 =

𝛽𝑗

∆𝑡
. Thus, using expression for 𝛽𝑗 from Eqs. 

(D.11) and (D.12) we get,  

𝑉𝑔𝑁

𝑐
=

1

𝑐 ∆𝑡

𝑑 tan−1(𝑁𝑐 sin(𝑘∆𝑥))

𝑑𝑘
=

1

1+tan2 βj
cos(𝑘∆𝑥)  (D.13) 

Further, we know that 𝑐𝑁 =
𝛽𝑗

𝑘∆𝑡
. Proceeding as above, we get,  

𝑐𝑁

𝑐
=

𝛽𝑗

(𝑁𝑐 𝑘∆𝑥)
=

tan−1(𝑁𝑐 sin(𝑘∆𝑥))

(𝑁𝑐 𝑘∆𝑥)
  (D.14) 

Hence, we have, 

1 −
𝑐𝑁

𝑐
= 1 −

1

𝑁𝑐𝑘 ∆𝑥
tan−1(𝑁𝑐 sin(𝑘∆𝑥))  (D.15) 
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E. Free energy of a non-homogenous system 

 

The free energy functional for an isotropic system with non-homogeneous composition or 

density, as derived by Cahn and Hilliard [35] is presented here. Even though their analysis was 

presented with composition as a parameter, it was reported that any intensive scalar property can 

be used as a parameter. Thus, let us consider a general parameter 𝜙, which can represent any 

intensive scalar property, such as composition or density etc., which varies spatially in the system 

and can be used to distinguish between two different phases or fluids.  

Let 𝐹𝑇 denote the total free energy of the system (here the free energy can be either Gibbs or 

Helmholtz depending on the case). As the free energy depends on the parameter 𝜙, we can thus 

write 𝐹𝑇 in terms of 𝜙 and its gradients as, 

𝐹𝑇 = ∫𝐹𝑉  𝑑𝑉 = ∫ 𝑓( 𝜙, 𝜵𝜙, 𝜵
2𝜙… . )𝑑𝑉  (E.1) 

 

Here 𝐹𝑉 is free energy per unit volume, denoted by function 𝑓, which can be expanded using Taylor 

series expansion in terms of 𝜙 and 𝜵𝜙 as,  

𝑓 (𝜙, 𝜵𝜙, 𝜵2𝜙. . ) =  𝑓0(𝜙) +
𝜕𝑓

𝜕(𝜵𝜙)
. 𝜵𝜙 +

𝜕2𝑓

𝜕(𝜵2𝜙)
 𝜵2𝜙 +

1

2!
 

𝜕2𝑓

𝜕(𝜵𝜙)𝜕(𝜵𝜙)
(𝜵𝜙). (𝜙) + .  .  .   

(E.2) 

Thus, we have, 

𝐹 = ∫(𝑓0(𝜙) +
𝜕𝑓

𝜕(𝜵𝜙)
 . 𝜵𝜙 +

𝜕𝑓

𝜕(𝜵2𝜙)
 𝜵2𝜙 +

1

2!
 

𝜕𝑓

𝜕(𝜵𝜙)𝜕(𝜵𝜙)
(𝜵𝜙). (𝜙)+. . )𝑑𝑉  (E.3) 

 

Let 𝛼𝑖 =
𝜕𝑓

𝜕(𝜵𝜙)
 , 𝛽𝑖𝑗 =

𝜕𝑓

𝜕(𝜵𝟐𝜙)
 and 𝛾𝑖𝑗 =

1

2!
 

𝜕2𝑓

𝜕(𝜵𝜙) 𝜕 (𝜵𝜙)
 , where 𝜵𝜙 ≡

𝜕𝜙

𝜕𝑥𝑖
𝒆𝒊 and 𝜵2𝜙 ≡

𝜕2𝜙

𝜕𝑥𝑖𝜕𝑥𝑗
. For 

a symmetrical system, it is required that all the odd rank tensors be identically equal to zero (𝑖. 𝑒. 

𝛼𝑖 = 0). Thus, we get, 

𝐹𝑇 = ∫(𝑓0(𝜙) + 𝛽𝑖𝑗𝜵
2𝜙 + 𝛾𝑖𝑗(𝜵𝜙). (𝜵𝜙)+. . )𝑑𝑉  (E.4) 

 

Now, considering ∫𝛽𝑖𝑗 𝜵
2𝜙 𝑑𝑉, we have 
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∫𝛽𝑖𝑗 𝜵
2𝜙 𝑑𝑉 = ∫𝛽𝑖𝑗

𝜕2𝜙

𝜕𝑥𝑖𝜕𝑥𝑗
 𝑑𝑉   

                               = ∫𝛽𝑖𝑗
𝜕

𝜕𝑥𝑖
(𝜵𝜙)𝑗 𝑑𝑉   

                                                   = ∫
𝜕

𝜕𝑥𝑖
(𝛽𝑖𝑗𝜵𝜙)𝑗𝑑𝑉 − ∫

𝜕𝜙

𝜕𝑥𝑗

𝜕𝛽𝑖𝑗

𝜕𝑥𝑖
𝑑𝑉  (E.5) 

The first term in (E.5) can be reduced to ∫(𝛽𝑖𝑗𝜵𝜙)𝑗. 𝒏𝑑𝐴  which is equal to zero due to boundary 

condition that intensive property is conserved. Thus, we have,   

∫𝛽𝑖𝑗 𝜵
2𝜙 𝑑𝑉 = − ∫

𝜕𝜙

𝜕𝑥𝑗

𝜕𝛽𝑖𝑗

𝜕𝑥𝑖
𝑑𝑉  (E.6) 

 The expression (E.4) thus reduces to, 

               𝐹𝑇 = ∫(𝑓0(𝜙) + (
𝛾𝑖𝑗

2

𝜕𝜙

𝜕𝑥𝑖
 
𝜕𝜙

𝜕𝑥𝑗
−

𝜕𝜙

𝜕𝑥𝑗
 
𝜕𝛽𝑖𝑗

𝜕𝑥𝑖
))  𝑑𝑉   

                        = ∫(𝑓0(𝜙) + (
𝛾𝑖𝑗

2

𝜕𝜙

𝜕𝑥𝑖
 
𝜕𝜙

𝜕𝑥𝑗
−
𝜕𝛽𝑖𝑗

𝜕𝜙
 
𝜕𝜙

𝜕𝑥𝑖
 
𝜕𝜙

𝜕𝑥𝑗
))  𝑑𝑉   

    = ∫(𝑓0(𝜙) + 𝜅𝑖𝑗(𝜵𝜙)𝑖 (𝜵𝜙)𝑗)𝑑𝑉  (E.7) 

 

where 𝜅𝑖𝑗 =
𝛾𝑖𝑗

2
−
𝜕𝛽𝑖𝑗

𝜕𝜙
. Owing to symmetry conditions, we have 𝜅𝑖𝑗 = 𝜅𝑗𝑖 and thus the above 

expression (E.7) can be reduced to  

𝐹𝑇 = ∫(𝑓0(𝜙) + 𝜅(𝜵𝜙)
2) 𝑑𝑉  (E.8) 

  

or 𝐹𝑉 = 𝑓(𝜙) + 𝜅(𝜵𝜙)
2. Here 𝑓0(𝜙) is contribution due to the bulk (𝑖. 𝑒. the bulk free energy) and 

𝜅(𝜵𝜙)2 is contribution due to the interface (interface energy). However, since we are interested 

mainly in interface dynamics, the free energy contribution from the bulk can be subtracted from the 

overall free energy and thus 𝑓0(𝜙) will then represent free energy 𝑤. 𝑟. 𝑡 base state which is the 

bulk energy. 

Note: In general, the bulk free energy function, 𝑓0(𝜙), is in the form of a double well function of 

variable 𝜙 and thus dimensionless. A more generic expression of free energy is represented by  
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𝐹𝑉 = 𝛽̅𝑓0(𝜙) +
𝛼̅

2
|𝜵𝜙|2 (E.9) 

 

where the coefficients 𝛽̅ and 𝛼̅ are related to physical parameters, interface thickness (𝜉) and 

surface tension (𝜎) and have the necessary dimensions. Further, in the current work in §2.2.8, the 

free energy function, 𝐹, is defined per unit mass and thus we have 𝐹𝑉 = 𝜌𝐹 while the coefficients 

are  𝛼̅ = 𝛼𝜌 , 𝛽̅ = 𝜌𝛽. 

  

E.1 Interface Profile in 1D case 

The free energy function as defined in previous section by Eq. (E.9) describes the 

dependence of free energy on parameter 𝜙 where 𝜙 = 𝜙(𝑥) and includes the effect of interface 

energy. The interface profile will thus depend on 𝜙 such that it minimizes the free energy, 𝐹𝑉. In 

the theory proposed by Cahn and Hilliard [35], which was primarily described for composition as 

the parameter, the variational derivative of free energy was linked with chemical potential. On 

similar terms, the variational derivative of free energy with respect to 𝜙 can be defined as potential, 

𝜂 =
𝛿𝐹𝑉

𝛿𝜙
. The equilibrium will be attained when 𝜂 = 0. For  𝐹𝑉 = 𝛽̅𝑓0(𝜙) +

𝛼̅

2
|𝜵𝜙|2, we get,   

𝜂 = 𝛽̅𝑓𝑜′(𝜙) −  𝜵. (𝛼̅ 𝜵𝜙) (E.10) 

which, for a constant 𝛼̅ can be reduced to, 

𝜂 = 𝛽̅𝑓𝑜′(𝜙) − 𝛼̅𝜵
2𝜙 (E.11) 

Here, the variational derivative relation (
𝛿𝐹𝑉

𝛿𝜙
=

𝜕𝐹𝑉

𝜕𝜙
−

𝑑

𝑑𝑥
(
𝑑𝐹𝑉

𝑑(𝛁𝜙)
)) for a functional has been used. At 

equilibrium, we have 𝜂 = 0  which implies,  

𝛽̅𝑓𝑜′(𝜙) = 𝛼̅ 𝜵
2𝜙 (E.12) 

 

Considering a 1D case, we have, (writing 𝑓𝑜(𝜙) as 𝑓𝑜 for simplicity), 

𝛽̅
𝜕𝑓𝑜

𝜕𝜙
= 𝛼̅

𝜕2𝜙

𝜕𝑥2
  (E.13) 
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By multiplying both sides of  (E.13) by 
𝑑𝜙

𝑑𝑥
, we get for 1D case, 𝛽̅

𝑑𝑓𝑜

𝑑𝜙
 
𝑑𝜙

𝑑𝑥
= 𝛼̅

𝑑2𝜙

𝑑𝑥2
 
𝑑𝜙

𝑑𝑥
 which can  

be simplified to 𝛽̅
𝑑𝑓𝑜

𝑑𝑥
=

𝑑

𝑑𝑥
(
𝛼̅

2
( 
𝑑𝜙

𝑑𝑥
)
2

) which can be integrated to give, 

 

𝑑𝜙

𝑑𝑥
= √

2𝛽̅𝑓𝑜
𝛼̅

   (E.14) 

 

In the current work, we consider 𝑓𝑜(ϕ) = 𝜙
2(1 − 𝜙)2. Thus, we have, 

𝑑𝜙

𝑑𝑥
= √2𝛽̅

𝛼̅
 𝜙(1 − 𝜙)   

⇒
𝑑𝜙

𝜙(1−𝜙)
= 𝑐1𝑑𝑥 (∀ 𝑐1 = √2𝛽̅

𝛼̅
)     

  

{  

Integrating 𝜙 = 0 to 𝜙 and 𝑥 = 0 to 𝑥, we get  

ℓ𝑛𝜙 − ℓ𝑛 (1 − 𝜙) = 𝑐1𝑥  
 

⇒
𝜙

1−𝜙
= 𝑒𝑐1𝑥 ⇒

𝜙+1−𝜙

𝜙−1+𝜙
=

𝑒𝑐1𝑥+1

𝑒𝑐1𝑥−1
   

⇒
1

2𝜙−1
= 

𝑒𝑐1𝑥+1

𝑒𝑐1𝑥−1
   

⇒ 2𝜙 − 1 =
𝑒𝑐1𝑥−1

𝑒𝑐1𝑥+1
   

                   =  
𝑒𝑐1𝑥/2−𝑒−𝑐1𝑥/2

𝑒𝑐1𝑥/2+𝑒−𝑐1𝑥/2
   

⇒ 𝜙 =
1

2
+
1

2
  (

𝑒𝑐1𝑥/2−𝑒𝑐1𝑥/2

𝑒𝑐1𝑥/2+𝑒𝑐1𝑥/2
)    

} 

 

𝜙 =
1

2
+
1

2
  𝑡𝑎𝑛ℎ (

𝑐1𝑥

2
)  (E.15) 

 

Interface thickness is defined by the region where 𝜙 changes its value by 90% [41]. Thus, we have,  
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∴ 0.05 =
1

2
+
1

2
  𝑡𝑎𝑛 ℎ (√

𝛽̅

2𝛼̅
𝑥−)  (E.16) 

and, 

0.95 =
1

2
+
1

2
  𝑡𝑎𝑛 ℎ (√

𝛽̅

2𝛼̅
𝑥+)  (E.17) 

  

Here 𝑥+ and 𝑥− denote limits of 𝑥 corresponding to interface region. The interface thickness can 

therefore be represented by, 𝜉 =  𝑥+ − 𝑥− and thus we have, 

𝜉 = (√
2𝛼̅

𝛽̅
  tanh−1(0.9)) × 2   

= 2.94√
2α̅

𝛽̅
 = 4.16 √

𝛼̅

𝛽̅
  

(E.18) 

 

Using interface thickness as defined in (E.18) the phase-field as function of 𝑥 variable can be 

reduced to, 

𝜙 =
1

2
+
1

2
  𝑡𝑎𝑛ℎ (

𝑥

0.34 𝜉
)  (E.19) 

 

E.2 Surface Tension 

Surface tension is defined as the surface energy per unit area. Thus, we have 𝜎 =
∫𝐹𝑉 𝑑𝑉

𝐴𝑟𝑒𝑎
, 

which for 1D case can be written as,   

𝜎  = ∫ (𝛽̅𝑓𝑜 +
𝛼̅

2

∞

−∞
|𝜵𝜙|2)𝑑𝑥  (E.20) 

 

From previous section, we have   𝛽̅𝑓𝑜 =
𝛼̅

2
(
𝑑𝜙

𝑑𝑥
)
2

 and thus (E.20) can be modified to,  

𝜎  = 2∫ 𝛽̅𝑓𝑜 𝑑𝑥
∞

−∞
  (E.21) 

Also, from Eq.(E.14), we have,  
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𝑑𝜙

𝑑𝑥
= √

2𝛽̅𝑓𝑜
𝛼̅
 ⇒ 𝑑𝑥 =

𝑑𝜙

√2𝛽̅𝑓𝑜

√𝛼̅  (E.22) 

Thus, (E.22) can be written as,  

𝜎  = 2∫ 𝛽̅𝑓𝑜
1

0
√

𝛼̅

2𝛽̅𝑓𝑜
 𝑑𝜙  (E.23) 

              = √2𝛼̅𝛽̅  ∫ 𝜙
1

0
 (1 − 𝜙) 𝑑𝜙  (E.24) 

For, 𝑓𝑜(ϕ) = 𝜙2(1 − 𝜙)2 the above expression reduces to, 

𝜎 =
√2𝛼̅𝛽̅

6
 (E.25) 
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F. Coupling between phase-field (Cahn-Hilliard) and Navier Stokes  

In order to couple the phase-field parameter (𝜙) with the Navier-Stokes equation, appropriate 

changes need to be incorporated in the governing flow equations so as to include the effect of 

interface dynamics. Among several means described in literature, the method adopted by Jacqmin 

is presented here [40, 41]. The main idea in this approach was based on the following two effects,  

• the movement of interface can cause it to become thick/thin thereby causing a change in 

free energy. 

• this effect of increase in energy is countered by a diffuse-interface force resulting in change 

of kinetic energy. 

The change in energy due to convection will be attributed to change in parameter 𝜙 and thus can 

be represented by, 

𝐸𝑐𝑜𝑛𝑣 = ∫𝜂
𝜕𝜙

𝜕𝑡
𝑑𝑉  (F.1) 

 

which can be written as (owing to conservation of 𝜙 over the entire domain, i.e.) 

                         𝐸𝑐𝑜𝑛𝑣 = −∫𝜂𝜵. (𝑽𝜙)𝑑𝑉 = −∫𝜂∑
𝜕(𝑉𝑗𝜙)

𝜕𝑥𝑗
𝑗 𝑑𝑉   

which can be further modified to, 

                      𝐸𝑐𝑜𝑛𝑣 = −∫∑
𝜕(𝜂𝑉𝑗𝜙)

𝜕𝑥𝑗
𝑗 𝑑𝑉 + ∫∑ 𝑉𝑗𝜙

𝜕(𝜂)

𝜕𝑥𝑗
𝑗 𝑑𝑉  (F.2) 

                                                     = ∫∑ 𝑉𝑗𝜙
𝜕(𝜂)

𝜕𝑥𝑗
𝑗 𝑑𝑉  (F.3) 

The first term first term in (F.2) is zero due to boundary condition as, ∫∑
𝜕(𝜂𝑉𝑗𝜙)

𝜕𝑥𝑗
𝑗 𝑑𝑉 =

∫𝛻. (𝜂𝜙𝑽)𝑑𝑉 =  ∫ 𝜂𝑽𝜙. 𝒏𝑑𝐴 = 0. Now, the change in energy (𝐸𝑑) due to the diffusive force, 

(𝑓𝑆𝑇) acting at the interface will be equal to its work done and can be represented by, 

                                                               𝐸𝑑  = ∫∑ 𝑓𝑆𝑇𝑗𝑉𝑗𝑗 𝑑𝑉  (F.4) 

 

As mentioned before, the change in energy due to convection in will be countered by work done by 

diffusive force,  𝑖. 𝑒. 𝐸𝑐𝑜𝑛𝑣 = −𝐸𝑑. Thus comparing (F.3) and (F.4) we get, 
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                                                               𝑓𝑆𝑇𝑗
= −𝜙

𝜕(𝜂)

𝜕𝑥𝑗
 (F.5) 

or 

               𝑓𝑆𝑇 = −𝜙𝜵𝜂
    

 (F.6) 

The above expression holds true for a compressible fluid and is in potential form. This can be 

converted to stress form as follows. We have,  

                                                     𝑓𝑆𝑇 = −𝜙𝜵𝜂 = −𝜵 (𝜙𝜂)+ 𝜂𝜵𝜙
    

    

          

(substituting for 𝜂 = 𝛽̅𝑓𝑜′(𝜙) − 𝛼̅ 𝜵
𝟐𝜙 ), we have 

                             𝑓𝑆𝑇 = −𝜵 (𝜙𝜂)+ 𝛽̅𝑓𝑜′(𝜙)𝜵𝜙− 𝛼̅ 𝜵
𝟐𝜙𝜵𝜙   (F.7) 

 

Now, we have 𝜵(𝛽̅𝑓𝑜(𝜙)) = 𝛽̅𝑓𝑜′(𝜙)𝜵𝜙 following which (F.7) reduces to, 

                                       𝑓𝑆𝑇 = −𝜵 (𝜙𝜂)+𝜵 (𝛽̅𝑓𝑜(𝜙))− 𝛼̅ 𝜵
2𝜙𝜵𝜙  (F.8) 

 

Using the vector identity, 𝜵. (𝜵𝜙⊗ 𝜵𝜙) = 𝜵𝜙𝜵2𝜙 +
1

2
𝜵(|𝜵𝜙|2) for the last term in (F.8), we 

get, 

𝑓𝑆𝑇 = −𝜵 (𝜙𝜂)+𝜵 (𝛽̅𝑓𝑜(𝜙))− 𝛼̅ 𝜵. (𝜵𝜙⊗𝜵𝜙)+
𝛼̅ 

2
𝜵(|𝜵𝜙|2)  (F.9) 

 

Now, as suggested by Jacqmin [40, 41], the above Eq. (F.9) can be reduced as,   

       𝑓𝑆𝑇 = −𝜵 (𝜙𝜂)+𝜵 (𝛽̅𝑓𝑜(𝜙))−
𝛼̅ 

2
𝜵(|𝜵𝜙|2 − 𝛼̅ 𝜵. (𝜵𝜙⊗𝜵𝜙)+ 𝛼̅𝜵(|𝜵𝜙|2)  (F.10) 

 

Since, 𝛼 and 𝛽 are constant, (F.10) can be modified to, 

       𝑓𝑆𝑇 = −𝜵 (𝜙𝜂 − 𝛽̅𝑓𝑜(𝜙)+
𝛼̅ 

2
𝜵(|𝜵𝜙|2)− 𝛼̅ 𝜵. (𝜵𝜙⊗𝜵𝜙)+𝜵(𝛼̅|𝜵𝜙|2)  (F.11) 
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The first term represents the pressure, while the remaining two terms contribute to the stress form. 

Thus, in the stress form, the coupling is achieved by adding  𝛼̅ 𝜵. (𝜵𝜙⊗ 𝜵𝜙) + 𝜵(𝛼̅|𝜵𝜙|2) to the 

to the momentum equation.  The first term is classically known as Korteweg stress tensor. 
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