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Introduction

Rough metallic surfaces with subwavelength structurations possess extraor-
dinary diffractive properties: at certain frequencies, one may observe fine
localization and very large enhancement of the electromagnetic fields. The
discovery of these phenomena has raised considerable interest as potential
applications are numerous (optical switches, sensors, devices for microscopy).
This behavior results from the combination of very complex interaction be-
tween the incident excitation, the geometry and the material properties of
the scatterer. The main goal of this thesis is to better understand these
phenomena from the mathematical point of view.

In mathematical terms, the localization and concentration of the fields
is the mark of a resonance phenomenon. In our context, the corresponding
resonant field may be surface plasmons, i.e., waves that propagate along the
interface of the grating, and that decay exponentially away from it. Another
type of resonance is due to possible cavity modes. Thus, the study of these
phenomena pertains to eigenvalue problems for the solutions of the Maxwell
system, in geometric configurations where in the whole of a dielectric (gen-
erally air) and a metal are separated by an infinite rough interface.

Our main objective is to derive asymptotic limits for such gratings, as the
parameters that measure the roughness tend to 0. The asymptotic models
are indeed very interesting for optimization and design purposes. They cor-
respond to configurations where the metal and the dielectric are separated
by a planar interface, and one may derive dispersion relations that are better
suited for precise numerical approximation of the resonance frequencies.

We are interested in particular micro-structured devices, namely metal-
lic surfaces that contain rectangular grooves with sub-wavelength apertures,
and thin plane layers. Configurations of this type can be manufactured quite
precisely and have been subject to experimental work and theoretical studies
[1, 2, 3, 4, 5, 6]. The simple geometry of the structures allows to transform
the eigenvalue problem for the Maxwell system into a nonlinear eigenvalue
problem for an integral operator that depends on a small parameter, which,
using tools from analytic perturbation theory, lends itself to a precise asymp-
totic analysis.

In chapter two and three, we considered the spectral problem for Maxwell
equations. where the frequency is the eigenvalue, in unbounded domains de-
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limited by an infinite plane interface containing rectangle cavities of width
w. Our goal is to derive the asymptotic expansion of the resonances as
w goes to zero. Our strategy is (1) to reformulate the eigenvalue problem
in the whole unbounded domain occupied by the structure, as a nonlinear
eigenvalue problem on a small bounded set of lower dimensionality w (such
as the aperture of the cavities); (2) to study the associated integral opera-
tors S(w, k) and determine their asymptotic as w tends to 0; (3) to derive
the asymptotic expansion of the resonant frequencies, using the generalized
Rouché Theorem and Fredholm theory for operator valued functions.

The enhancement and confinement of electromagnetic fields in the con-
sidered metallic structures, can indeed be quantified in term of the imaginary
part of the resonance frequencies. The reduced nonlinear spectral problem
takes the form

S(w, k)ϕ = 0

where S(w, k) is a weakly singular integral operator that contains the differ-
ent interactions between surface plasmon waves or cavity modes and the inci-
dent fields on both sides of the interface metal-dielectric. For example, in the
case of a real metal planar interface which contains a single sub-wavelength
rectangular cavity, the operator-valued function takes the following form:

S(w, k)ϕ(x1) =

∫ 1

−1
(Ge(wx1, 0;wy1, 0) +Gi(wx1, 0;wy1, 0))ϕ(y1)dy1

where (−1, 1) is the rescaled opening of the cavity of width w, and Gi, Ge
are respectively the Green functions of the Helmholtz operator inside and
outside the cavity, which are known explicitly. In the second chapter we
showed that the resonance frequencies of the micro-cavity are exactly the
zeros of the function k → S(w, k). More specifically, based on the Fredholm
theory and a rigorous analysis of the properties of the meromorphic function
we have obtained the following behavior near a resonance frequency say
kn(w):

S−1(w, k) =
S−1,n

k − kn
+Rn(k).

The rest Rn(k) is holomorphic in a small neighborhood of kn, and S−1,n

is a finite rank operator. The confinement and exaltation of the electro-
magnetic fields around the cavity occur at a frequency of the incident plane
wave (which is always real), close to Re(kn) if the imaginary part Im(kn)
is small enough. Consequently, the behavior of operator S−1,n as tends to
zero can gauge the localization and the enhancement of the electromagnetic
fields near the cavity. Using the Generalized Rouché Theorem, we derived
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in chapters two and three the asymptotic expansions of kn as w tends to 0.

In the fourth chapter we focus on a simple plasmonic waveguide that
consists in a metallic slab cladded in a dielectric media. Our objective is to
study the quasi-static resonances of the system that correspond to the case
where the thickness of the metal layer is too small compare to the wave-
length. These resonant frequencies correspond to plasmonic surface waves.

The work we propose here intends to apply techniques developed in
[4, 5, 6] to more complex and more realistic situations (real metal, periodic
gratings, thin metallic layers). In the first chapter, we present the physical
setting of the considered mathematical models. We first describe the optical
properties of metals through their dielectric permittivities which are respon-
sible for the response of the material to an applied electromagnetic field.
We focus on the Drude model which gives a good approximate expression of
the dielectric permittivity for the range of frequencies considered. Then, we
introduce the physical modeling of surface plasmon waves via the Maxwell
equations.

In the second chapter, we consider an open sub-wavelength metallic cav-
ity. At the interface dielectric /metal, we consider an impedance boundary
condition called the impedance condition. We present a theoretical study of
the electromagnetic diffraction. We begin by writing an integral representa-
tion of the magnetic field on the aperture of the cavity. The integral problem
is equivalent to the Helmholtz one. We then derive a rigorous asymptotic of
the Green functions outside and inside the cavity which represent the kernel
of the integral equation. Using an operator version of the Rouché theorem,
we show that the resonances are the poles of the kernel and we derive the
asymptotic expansion of the resonant frequencies when the width of the cav-
ity shrinks to zero.

The third chapter deals with a periodic array of rectangular metallic
sub-wavelength cavities. Here we consider a perfect metal and a Neumann
boundary condition is imposed on the interface dielectric/metal. We be-
gin by formulating the problem and unrolling some well-posedness results.
Then, thanks to the periodicity of the geometry, we reduce the problem to
the principal periodicity cell. We find an equivalent integral problem at the
aperture of the single cavity in the principal periodic unit cell. Using the
same strategy as in the second chapter, we compute an asymptotic of the
resonances of the problem when the width of the cavities goes to zero. We
studied two asymptotic regimes: the first deals with the case where only
the width of the aperture goes to zero while the period of the array remains
constant, and the second is related to the case where the period and the
width shrinks together to zero.
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In the fourth chapter, we study the enhancement and confinement of
electromagnetic fiels in a plasmonic waveguide that consists of a thin layer
of metal positioned between two infinite dielectrics. The aim of this chapter
is to analyse the resonances frequencies associated to guided modes confined
along the interface between the metal and the dielectric. We start by formu-
lating the problem as a Helmholtz equation with the adequate transmission
conditions. We first compute the Green function of the quasi-static limiting
system using Fourier techniques. We then investigate the set of frequencies
and the spatial region where it blows up.
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Chapter 1

Introduction to surface
plasmon polaritons

Sommaire
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . 9

1.2 The dielectric permittivity of a metal . . . . . . 10

1.2.1 Drude Model . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Contribution of inter-band Transitions . . . . . . . 11

1.3 Surface Plasmons Polaritons . . . . . . . . . . . . 13

1.3.1 Plasmon, surface plasmon, polariton, surface plas-
mon polariton, resonances . . . . . . . . . . . . . . 13

1.3.2 Surface plasmon polaritons at metal /insulator in-
terfaces . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.3 Subwavelength grating . . . . . . . . . . . . . . . 23

1.1 Introduction

Surface plasmon polaritons are electromagnetic excitations that propagates
at the interface between a dielectric and a metal. They are evanescent and
confined in the perpendicular direction to the interface. These surface waves
occur via the coupling of the electromagnetic fields to the oscillations of the
metam’s electron plasma. The first part of this chapter describes the Drude
model of the dielectric permittivity of a metal in the visible range. The
second part deals with the physical modeling of surface plasmon polaritons
along flat interfaces between metal and dielectric using Maxwell systems.
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1.2 The dielectric permittivity of a metal

In plasmonic field the dielectric permittivity is one of the fundamental mate-
rial parameters that affects the behavior of electromagnetic fields within the
metallic structures. The response of a non-magnetic material to an electro-
magnetic wave is directly related to the interactions between the wave and
the electrons of the material under consideration. The dielectric permittivity
of a material is the physical quantity that manages its linear response to the
propagation of electromagnetic waves inside of it.

1.2.1 Drude Model

An isolated atom has a positively charged nucleus surrounded by core elec-
trons and then one or more valence electrons. In the case of metals, this
atomic structure is preserved with the exception that the valence electrons
find themselves delocalized and free to move in the crystal lattice. Thus,
a metal consists of a lattice of atoms, each with an outer shell of electrons
that freely dissociate from their parent atoms and travel through the lat-
tice. The free electrons are called conduction electrons and form a gas (or
sea) of negatively charged free electrons. Atomic nuclei surrounded by core
electrons form a fixed crystal structure positively charged also known as a
positive ionic lattice.

Drude in 1900 [7], [8] considered the metal as a Free Electron Gas or
plasma and introduced his famous model. The Drude model is based on
certain assumptions about the movement of free electrons. Electron-electron
interactions are neglected and the movement of electrons is only perturbed
by collisions with the crystal lattice. When an electromagnetic field is ap-
plied, the free electrons oscillate and their motion is damped via collisions
occurring with a characteristic collision frequency γ = 1

τ . The constant τ
is the relaxation time of the free electron gas defined as the mean time be-
tween two successive collisions. Sommerfeld extended this classic model to
quantum-mechanics by incorporating Fermi-Dirac statistics for electrons [9].

The trajectory of an electron of massm in the presence of an electric field
E is described by the fundamental relation of the dynamics. The different
possible forces applied to the electrons are: the force produced by the electric
field E itself, and the damping force due to collisions with the ions network.
The temporal evolution of the position x of the electrons is then described
by:

m
∂2x

∂t2
+mγ

∂x

∂t
= −eE (1.2.1)

where e is the elementary charge of an electron. Assuming a harmonic time
dependence E(t) = E0e

−iωt of the driving field and a harmonic motion of
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the electron, a solution to the latter equation is given by:

x(t) =
e

m(ω2 + iωγ)
E0e

−iωt (1.2.2)

The microscopic displacement of the free electron gas results in a macroscopic
polarization P = −nex(t), that is

P = − ne2

m(ω2 + iωγ)
E0e

−iωt

where n is the free electrons density. Recalling that the permittivity in a
linear, homogeneous and isotropic material obeys to

D = ε0E + P = ε0εdE

where D is the dielectric displacement, one can find that the dielectric per-
mittivity is given by:

εd(ω) = 1−
ω2
p

ω2 + iωγ
(1.2.3)

where ωp =
√

ne2

ε0m
is the plasma frequency of the free electron gas. For noble

metals (e.g Au, Ag, Cu) an extension of this model is needed for ω > ωp
due to residual polarization of ions. More precisely we need to introduce
a dielectric constant ε∞ (1 ≤ ε∞ ≤ 10) to describe this effect. Then, the
permittivity can be rewritten as:

ε(ω) = ε∞ −
ω2
p

ω2 + iγω
. (1.2.4)

The validity limits of the free-electron description for the case of gold
(1.2.4) are illustrated in the Figure 1.1. It shows the real and imaginary parts
of the Drude dielectric function fitted to the experimental dielectric function
of the gold [10]. Clearly, the applicability of the free-electron model fails to
match the experimental graph at visible frequencies due to the occurrence
of inter-band transitions. This will be discussed in the next section.

1.2.2 Contribution of inter-band Transitions

A more rigorous consideration of the electronic structure of materials is pro-
vided by the quantum theory of bands which consists in representing the
possible energy levels of the set of electrons in a solid [11]. The electrons of
an isolated atom can occupy only discrete states of energy, and the associa-
tion of several atoms extends the number of energetic states by hybridization
of the atomic orbitals in various electronic layers. In a solid, the permissible
energies form a continuum in given intervals, called energy bands, and may
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Figure 1.1: Drude dielectric function (solid line) fitted to the literature values
of the dielectric function (dots) for gold [7].

have very complex structures, with possible overlaps. The difference between
metallic, semiconductor or insulating materials can be carried out from their
electronic band structure calculated at zero temperature. The valence band
is the last band completely filled, by localized electrons that participate in
the cohesion of the material. The conduction band is the band immedi-
ately higher in energy than that of valence, with a possible overlap between
this and the valence band. The electrons of this conduction band are then
delocalized and participate in the electrical and thermal conduction of the
material. The presence of a band of forbidden energy (band gap) between
the valence band and the conduction band is responsible of the nature of the
material. In the case of insulators, the conduction band is entirely above
the valence band and is empty, and the band gap is wide enough to prevent
the passage of electrons from the valence band to the conduction band. For
semiconductors, the conduction band is also entirely above that of valence,
with a relatively narrow band gap allowing a transition of the electrons from
the valence band to the conduction band by thermal effect or light excitation
. Finally, the case of metals is a little more complex, for the alkali metals
for example, the band which is not completely filled plays the role of both
valence and conduction bands. For transition metals, the conduction band
is partially superimposed on that of valence, each of which may be partially
fulfilled. The metals have a non-empty conduction band, which explains the
excellent conductivity of these materials.

The Drude model presented in the previous paragraph considers only
the conduction electrons in the metal response (this model is said to de-
scribe inter-band transitions). However, electron transitions from one band
to another may in some cases play a non-negligible role in the response of
metals. In other words, the Drude model adequately describes the optical
response of metals only for photon energies below the threshold of transitions
between electronic bands. For some noble metals, inter-band effects already
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start to occur for energies that exceed 1eV (corresponding to a wavelength
λ ≈ 1µm). In the case of gold, its validity breaks down already at the
boundary between the near-infrared and the visible [12]. To overcome this
inadequacy of the model for some frequencies, the relative dielectric permit-
tivity can be rewritten taking into account the inter-band transitions [13]

ε(ω) = εd(ω) + εinterband(ω) (1.2.5)

where εinterband(ω) is the added term due to inter-band transitions. To com-
pute the latter term, we consider the equation governing the motion of a
bound electron:

mb
∂2x

∂t2
+mbγb

∂x

∂t
+ αx = −eE (1.2.6)

where mb is the effective mass of the bound electrons, γb is another damping
term, and α is the constant of the potential retaining the electrons in place.
By analogy to the calculations made in the Drude model section, we find
that:

εinterband(ω) = 1 +
ω2
pb(ω0 − ω2)

(ω2
0 − ω2)2 + ω2γ2

b

+ i
γbω

2
pbω

(ω2
0 − ω2)2 + ω2γ2

b

(1.2.7)

where the frequency ωpb =
√

nbe2

ε0mb
is analogous to the plasma frequency of

the metal in the model of Drude-Sommerfeld, ω0 =
√

α
mb

, and nb is the
bound electrons density.

1.3 Surface Plasmons Polaritons

1.3.1 Plasmon, surface plasmon, polariton, surface plasmon
polariton, resonances

Plasmons

The Drude model considers the metal as a mass of positively charged ions
from which a number of free electrons were detached. These free electrons are
oscillating naturally (due to thermal energy) and their motion may increase
in the presence of an electric field. In fact when the free electrons within the
metal are displaced, the atomic nuclei surrounded by core electrons positively
charged perform a little motion due to their large mass, and hence exert on
these electrons an attractive Coulomb force. The electrons will therefore
return to their initial position, and so on. These oscillations can be similarly
found in plasma state. They are called Plasma oscillations, also known as
"Langmuir waves" (after Irving Langmuir) [14]. Plasmon is a quantum of
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plasma oscillation. Just like an optical oscillation(light) consists of photons,
the plasma oscillation consists of plasmons. The plasmon can be considered
as a quasiparticle since it arises from the quantization of plasma oscillations.
Thus, plasmons are collective (a discrete number) oscillations of the free
electron gas density.

Surface plasmon

Surface plasmons are plasmons that exist at the interface between any two
materials where the real part of the dielectric function changes sign across the
interface (e.g. a metal-dielectric interface, such as a metal layer in air). The
existence of surface plasmons was first predicted in 1957 by Rufus Ritchie
[15].

Polariton

Polaritons are quasi particles resulting from strong coupling of electromag-
netic waves with an electric or magnetic dipole carrying excitation (polar-
ization wave) [16].

Surface plasmon polariton

Surface plasmon polariton is a special case of surface plasmon when there is
coupling between electromagnetic wave coming from a dielectric medium and
a plasmon in a metal (the electric dipole carrying excitation). At wavelengths
capable of supporting plasmons, the light wave can not penetrate into the
metal, however coupling can take place at the metal / dielectric interface.
Such a surface wave is thus called a surface polariton plasmon [17]. Surface
plasmon polariton can be excited by both electrons and photons. Excitation
by electrons is created by firing electrons into the bulk of a metal however
excitation by photons occurs when both photon and Surface plasmon plariton
have the same frequency and momentum.

1.3.2 Surface plasmon polaritons at metal /insulator inter-
faces

In order to investigate the physical properties of surface plasmon polaritons,
we start by considering the diffraction of an electromagnetic wave by a plane
interface between two media, one is a metal and the other is a dielectric.

Diffraction by a flat interface

We begin by applying the Maxwell’s equations to the flat interface between
a metal and a dielectric. We present Maxwell’s equations at the macroscopic
level in the following form:

14



∇.D = ρext (1.3.1)
∇.B = 0 (1.3.2)

∇⊗E = −∂B
∂t

(1.3.3)

∇⊗H = Jext +
∂D

∂t
(1.3.4)

These equations link the four macroscopic fields : the dielectric displacement
D, the electric field E, the magnetic field H, and the magnetic induction or
magnetic flux density B with the external charge ρext and current densities
Jext. The media is supposed to be linear, isotropic and nonmagnetic. One
can define the constitutive relations

D = ε0εE

B = µ0µH

where ε0 and µ0 are the electric permittivity and magnetic permeability of
vacuum, respectively. ε is called the dielectric constant or relative permit-
tivity and µ = 1 the relative permeability of the nonmagnetic medium. In
the absence of external charge and current densities, the curl of equations
(1.3.3, 1.3.4) can be combined to yield

∇⊗∇⊗E = −µ0
∂2D

∂t2
(1.3.5)

Using the identity ∇⊗∇⊗E = ∇(∇.E)−∇2E, it becomes

∇2E− ε

c2

∂2E

∂t2
= 0 (1.3.6)

To look for the solutions to the problem, this equation has to be solved
separately in regions of constant ε, and the obtained solutions have to be
matched using appropriate boundary conditions. We assume a harmonic
time dependence of the electric field E(r, t) = E(r)e−iωt, which gives the
following Helmholtz equation

∇2E− k2
0εE = 0 (1.3.7)

where k0 = ω
c is the wave vector of the propagating wave in vacuum.

Following the cartesian coordinates shown in Figure 1.2, the plane z = 0
coincides with the interface separating the two media, and the waves are
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Figure 1.2: The flat interface sustaining the surface plasmon polariton

chosen to be propagate along the x-direction, presenting no spatial variations
in the y-direction.

Due to spatial invariance arguments, the electromagnetic field can be
described as E(x, y, z) = E(z)eiβx and H(x, y, z) = H(z)eiβx. The complex
parameter β is called the propagation constant of the propagating wave
and corresponds to the component of the wave vector in the direction of
propagation. Inserting this expression into (1.3.7) gives

∂2E

∂z2
+ (k2

0ε− β2)E = 0 (1.3.8)

Naturally, the magnetic field H verifies a similar equation. We further solve
these equations in order to recover the spatial field profile and dispersion of
the propagating waves. Back to the equations (1.3.3,1.3.4), we can combine
them in the following system

∂Ez
∂y
− ∂Ey

∂z
= iωµ0Hx (1.3.9)

∂Ex
∂z
− ∂Ez

∂x
= iωµ0Hy (1.3.10)

∂Ey
∂x
− ∂Ex

∂y
= iωµ0Hz (1.3.11)

∂Hz

∂y
− ∂Hy

∂z
= −iωε0εEx (1.3.12)

∂Hx

∂z
− ∂Hz

∂x
= −iωε0εEy (1.3.13)

∂Hy

∂x
− ∂Hx

∂y
= −iωε0εEz (1.3.14)

Along the x-direction ∂
∂x = iβ and the y-direction ∂

∂y = 0, the above system
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simplifies to

∂Ey
∂z

= −iωµ0Hx

∂Ex
∂z
− iβEz = iωµ0Hy

iβEy = iωµ0Hz

∂Hy

∂z
= iωε0εEx

∂Hx

∂z
− iβHz = −iωε0εEy

iβHy = −iωε0εEz

(1.3.15)

Regarding these equations, one can notice that they can be decomposed
into two sets of self-consistent systems of equations. The first governs the
components Ex, Ez and Hy, corresponds to the transverse magnetic (TM or
p) polarization, while the second governs Hx , Hz and Ey and is related to
the transverse electric (TE or s) polarization.

For TM modes, the system of governing equations 1.3.15 reduces to

Ex = −i 1

ωε0ε

∂Hy

∂z
(1.3.16)

Ez = − β

ωε0ε
Hy (1.3.17)

and, the wave equation is

∂2Hy

∂z2
+ (k2

0ε− β2)Hy = 0 (1.3.18)

For TE modes, the system of governing equations 1.3.15 reduces to

Hx = i
1

ωµ0

∂Ey
∂z

(1.3.19)

Hz =
β

ωµ0
Ey (1.3.20)

and the wave equation is

∂2Ey
∂z2

+ (k2
0ε− β2)Ey = 0. (1.3.21)

Thus, the recovery of only the magnetic field Hy will give a full charateri-
sation of the TM polarization. Similarly the knowledge of electric field Ey
is is enough to describe the propagation of electromagnetic waves in TE
polarization.
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Surface plasmons polariton

We consider here a dielectric material occupying the half space (z > 0) with
a real dielectric constant ε2 > 0 and a metal occupying the half space (z < 0)
with a complex dielectric permittivity ε1(ω). Our aim here is to show the
existence of surface waves that are confined along the interface between the
two materials, i.e. they are evanescent in the perpendicular z-direction, and
propagate in the x-direction. The transmission relations between the two
media yield

n⊗ (E1 −E2) = 0 (1.3.22)

n.(D1 −D2) = ρs (1.3.23)

n.(B1 −B2) = 0 (1.3.24)

n⊗ (H1 −H2) = Js (1.3.25)

where D1 = ε1(ω)E1 and D2 = ε2E
2 are the electric displacement fields

in the metallic medium and the dielectric respectively. B1 = µH1 and
B2 = µH2 are the magnetic field (µ = 1) in the dielectric and metallic
medium respectively. ρs is the surface charge density and Js is the surface
current.

Considering first the TMmodes, using the equations (1.3.16,1.3.17,1.3.18)
on both sides of the interface, we find:

For z > 0

Hy(x, z) = A2e
iβxe−k2z (1.3.26)

Ex(x, z) = iA2
1

ωε0ε2
k2e

iβxe−k2z (1.3.27)

Ez(x, z) = −A2
β

ωε0ε2
eiβxe−k2z (1.3.28)

For z < 0

Hy(x, z) = A1e
iβxek1z (1.3.29)

Ex(x, z) = −iA1
1

ωε0ε2
k1e

iβxek1z (1.3.30)

Ez(x, z) = −A1
β

ωε0ε2
eiβxek1z (1.3.31)

ki, i = 1, 2 is the component of the wave vector in the z direction.
The equations (1.3.22..1.3.25) in the case of TM polarization insure the con-
tinuity of Hy and εEz, and Ex at the interface, which in turn yields

A1 = A2 (1.3.32)
k2

ε2
= −k1

ε1
. (1.3.33)
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The surface plamson polaritons are waves that are confined at the interface
separating the two materials. The confinement can be seen in (1.3.26,1.3.29)
from the facts that Im(ki) is too mall compare to Re(ki) (waves are not prop-
agative) and Re(ki) > 0 (exponential decay). We deduce from 1.3.33, that
Re(ε1) > 0 if ε2 > 0. This fact confirms the observations of physicists that
the surface waves exist only at interfaces when the dielectric permittivities
of two materials have real parts opposite signs. The expression for Hy has
to fulfill the wave equation (1.3.18), yielding

k2
i = β2 − k2

0εi (1.3.34)

The equation (1.3.34) combined with the equation (1.3.33) gives us the dis-
persion relation of surface plasmon polaritons propagating at the interface
between the dielectric and the metal.

β = k0

√
ε1ε2
ε1 + ε2

(1.3.35)

Considering now the TE polarization, using the equations (1.3.19,1.3.20,1.3.21),
we obtain

For z > 0

Ey(x, z) = A2e
iβxe−k2z (1.3.36)

Hx(x, z) = −iA2
1

ωµ0
k2e

iβxe−k2z (1.3.37)

Hz(x, z) = A2
β

ωµ0
eiβxe−k2z (1.3.38)

For z < 0

Ey(x, z) = A1e
iβxek1z (1.3.39)

Hx(x, z) = iA1
1

ωµ0
k1e

iβxek1z (1.3.40)

Hz(x, z) = A1
β

ωµ0
eiβxek1z (1.3.41)

The continuity of Ey, Hz and Hx at the interface implies

A1 = A2 (1.3.42)
A1(k1 + k2) = 0 (1.3.43)

The confinement of the fields at the interface z = 0 requires that Re(ki) >
0 which is fulfilled only if A2 = A1 = 0. Consequently, surface plasmon
polaritons do not exist under TE polarization, they only occur under TM
polarization.
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Dispersion relations

We consider the dispersion relation (1.3.35). We assume that ε1(ω) obey to
the Drude model. For the sake of simplicity we further suppose that the
metal has a zero damping, that is

ε1(ω) = 1−
ω2
p

ω2
.

The plots of the constant (1.3.35) for an air/metal interface with ε2 = 1 are
given in Figure 1.3. We deduce from the dispersion relation (1.3.35) that

For ω > ωp, and ω <
ωp√
1+ε2

, the propagation constant β is real. Other-
wise, β is purely imaginary.

For ωp√
1+ε2

< ω < ωp, β is purely imaginary and thus in this zone, there
is no propagation at the interface.

Therefore the radiation into the metal occurs in the transparency regime
ω > ωp whereas the surface plasmon polaritons excitations correspond to
the part of the dispersion curves lying under the light line. Thus, special
phase-matching techniques such as grating or prism coupling are required
for their excitation.

Figure 1.3: Dispersion of surface plasmons polatitons (blue lline) and light
line (red line). Here ω is normalized to the plasma frequency ωp , the real
part of β is the continuous curve and its imaginary part is the broken one.
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Penetration depth in real metals

When the metal is real, the dielectric and the propagation constants ε1 and β
respectively are complex numbers. The real part of β determines the physical
wavelength λspp of the surface plasmon polariton

Re(β) =
2π

λspp
(1.3.44)

while the imaginary part of β controls the plasmonic losses during propaga-
tion. The distance at which the SPP intensity falls by a factor of 1

e is called
the propagation length Lspp, and is given by

Lspp =
1

2Im(β)
. (1.3.45)

Due to strong confinement at the boundary between the two materials,
surface plasmon ploaritons are called evanescent waves, i.e the amplitude of
their electromagnetic field decays exponentially along normal direction to
the surface both in the metal and in the dielectric layers. It is described by
the penetration depth in both metal and dielectric Lz,i

Lz,i =
1

2Re(ki)
. (1.3.46)

In order to quantify the huge confinement of surface plasmon polaritons , we
give some examples at a silver/air interface: for λ0 = 450nm , Lz,2 = 180nm;
and for λ0 = 1.5µm, Lz,2 = 2.6µm [?].

Excitation of surface plasmon polaritons at planar interfaces

We can observe in Figure 1.3 that the surface plasmon polaritons dispersion
curve is located under the light cone. It will therefore never be possible to
excite the surface plasmon directly with a light wave from the air. There
are, however, several methods for coupling the surface plasmon with light
excitation. A plane wave which impinges on the interface with an angle of
incidence θ can only excite a mode whose wavevector along the x direction
matches k0 sin θ. As the wavevector of the SPP is greater than the one of
the incident light, one needs to find ways to increase the wavevector of the
incident wave to match that of the surface plasmon polariton.

Prism coupling In 1968 Otto proposed a first approach for coupling pho-
tons to surface plasmons using a prism of refractive index n > 1 [18]. The
total reflection of the incoming light with an incident angle θ as shown in
Figure 1.4 gives rise to an evanescent wave at the back of the prism with a
wavevector k = nk0 sin θ. Thus, the wavevector of the evanescent wave is
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increased compared to the initial plane wave one. Which can excite a sur-
face plasmon polariton on a metallic surface facing the prism. The prism is
placed at a distance less than the wavelength to the metallic surface, i.e. at
a distance smaller than the decay of the evanescent wave. The control of the
relative positions of the prism and the metallic surface seems to be difficult.
Kretschmann [19] then proposed a very similar but simpler configuration to
put in place because it no longer requires the control of the distance between
the prism and the surface. The excitation of the surface plasmon is made by
illuminating a prism on which the metal is directly deposited in the form of
a thin film. The surface plasmon polariton is then excited on the side which
is not in contact with the prism as shown in Figure 1.4.

Figure 1.4: Experimental set -up to excite Surface plasmon polaritons: in
(a) the Otto configuration and in (b) the Kretschmann configuration [20]

Grating coupling. An other way of coupling the surface plasmon polari-
tons with light is to use gratings. The wavevector of the incident light is
increased via periodic metallic grating whose periodicity d induces a pseudo
momentum m2π

d parallel to the interface, with m is the order of diffraction.
This pseudo momentum is added to the momentum of light k0 sin θ to equal
the momentum β of surface plasmon polariton. More generally, each time
the following condition

β = ±k0 sin θ +m
2π

d
(1.3.47)

is fulfilled, a surface plasmon polariton mode is excited. The surface plasmon
polariton excitations by a plane wave impinging with an incidence angle θ
correspond to the intersections of the dispersion branches of the different
modes with the light cone as shown in the Figure 1.5.

Generally, any rough surface may contribute to the coupling of the surface
plasmon polaritons with light.
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Figure 1.5: Dispersion curve of the SPP surface modes of a grating (blue and
green lines). Modes which can be excited by TM polarized light are in solid
lines whereas the modes which cannot are in dashed lines. The red curves
represent the light line (solid line) and the dispersion curve of a plane wave
impinging with an angle θ of pulsation ω (dashed line). The modes excited
by a plane wave impinging with an angle θ of pulsation ω are indicated by
black dots.

1.3.3 Subwavelength grating

Metallic gratings are one of the most used techniques in applications to cou-
ple directly an incident plane wave and plasmonic surface modes. But the
particularity of the used gratings is that the amplitude of the groove is of
the order of magnitude of the wavelength of the incident electromagnetic
field. This specificity creates an additional cavity resonance contributing to
more localization and confinement of the electromagnetic wave inside the
groove itself. Hessel and Oliner were the first to theoretically investigate
electromagnetic resonances in such subwavelength structures [21], they es-
timate that deep grooves of metallic subwavelength gratings may support
additional modes to the surface modes. The additional modes consist in a
Fabry-Perot-like resonance of a propagative electromagnetic wave guided in
the groove. Many studies after were conducted in the same context by T.
Lopez-Rios and A. Wirgin [22, 23, 5, 6]. An experimental confirmation of the
thesis of Hessel and Oliner was observed later in [24]. Finally, two kinds of
resonances are ooccuring in the subwavelength metallic gratings : waveguide
or cavity modes and surface plasmon polaritons (SPP). One of the objective
of this thesis is to study how the cavity modes can be coupled with surface
waves.

23



24



Chapter 2

Asymptotic of resonances of a
real metallic plane perturbed
by a subwavelength rectangular
cavity
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2.1 Introduction

Optical micro-cavities are structures that can confine light in a small spot,
where the size of the spot is on the order of the optical wavelength. The local
amplification of the fields near the aperture can be strikingly high, sometimes
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up to a factor 106. They are especially useful to enhance light-matter inter-
actions, since light can be strongly localized in the micro-cavities. Optical
micro-cavities have found many applications, including integrated optical
circuits, low-threshold lasers, low-power switches, adiabatic wavelength con-
version, etc. Other applications include spectroscopy and imaging: For in-
stance, commercial devices for detection of single homoglobin proteins based
on local enhancement of optical fields are already on the market [25]. Mod-
eling and numerical simulations are essential in the design and optimization
of micro-cavities for various applications.

In mathematical terms, the localization and concentration of the fields
is the mark of a resonance phenomenon. In our context, the corresponding
resonant field may be surface plasmons, i.e., waves that propagate along the
interface of the grating, and that decay exponentially away from it. Another
type of resonance is due to possible cavity modes. Thus, the study of these
phenomena pertains to eigenvalue problems for the solutions of the Maxwell
system, in geometric configurations where a dielectric (generally air) and a
metal are separated by an infinite rough interface.

We are interested in metallic surfaces that contain rectangular grooves,
which have been studied experimentally in [3, 1]. Our objective is to un-
derstand the role played by the rugosity of the surfaces in the creation of
resonant modes. The case of planar devices with rectangular cavities is par-
ticularly interesting. On the one hand, they can be manufactured with con-
trolled precision by current lithographic processes at the appropriate scales,
and are widely used in opto-electronics. On the other hand, their simple
geometry allows one to develop the mathematical analysis very far. Experi-
mental results suggest that the amplification factors of the fields depend on
the width of the cavities. In [5], the case of a half plane containing a single
cavity of width w was considered. The authors studied the asymptotic of
the Green function as w → 0 using techniques based on integral representa-
tion [4, 5, 26], which are well adapted to such geometry. The limiting Green
function turns out to be that of an infinite half plane on which a dipole is
placed.

26



The paper [6] extended the analysis of [5] to two sub-wavelength cavities
separated by a sub-wavelength distance, and studied the interaction between
the cavities. The authors obtained the localization of two types of cavity
resonances, the symmetric and anti-symmetric in a small neighborhood of
each zero of some explicit function, associated to the limiting geometry. For
the symmetric modes, the fields in the cavities interact in phase, and the
system of two cavities essentially acts as a dipole. In the anti-symmetric case,
the fields oscillate in anti-phase, and the system behaves like a quadripole.

In this chapter, we would like to study the resonances of a single sub-
wavelength rectangular cavity in the case where the metal is real. A first
step will be to consider the case of a single cavity in a half plane, when
an impedance boundary condition is imposed instead of a homogeneous
Neumann condition for a perfect metal. An impedance boundary condi-
tion on the interface is an intermediate regime between the perfect and real
metal. The open problem of deriving the adequate radiation conditions in
unbounded domain with impedance boundary condition is solved recently
by J-C Nédélec and al. [27].

Due to geometrical considerations and to the choice of a time harmonic
incident field [3, 5], the scattering problem can be reduced to a Helmholtz
equation. Using the Green formula we reformulate the Helmholtz equation
as a system of integral equations defined on the aperture of the of the cav-
ity. The formalism of integral equations naturally leads itself to asymptotic
analysis, as the width w of the cavity tends to 0 while the wavelength is
fixed. Using an operator version of the Rouché theorem, we are able derive
the asymptotic of the resonant frequencies kn(w) of our system.

The outline of the chapter is as follows. Section 2 describes the scatter-
ing problem. In section 3, an integral representation of the solution to the
diffraction problem. We reduce the Helmholtz equation in the unbounded
diffraction domain to a linear system of integral equations on the aperture
of the cavity (2.3.10). By rescaling the obtained integral equation we show
that the resonances are exactly the zeros of a given operator valued function
S(w, k).

Section 4 is devoted to the asymptotic expansion of kernel of S(w, k).
Using the fact that this latter kernel is the sum of Green functions in sim-
ple geometries we obtain the asymptotic behavior of S(w, k) as w tends to
zero through the nontrivial asymptotic expansions of these Green functions
(Theorem 8 and Corollary 9).

Finally, we derive the asymptotic expansion of the resonances kn(ω) by
using the Generalized Rouché Theorem and the properties of the integral
operators appearing in the asymptotic of S(w, k) (Theorem 10).
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2.2 Formulation of the problem

2.2.1 Notations

We consider the geometry shown in Figure 1 to study the scattering of
electromagnetic waves by an optical device, that contains a small subwave-
length cavity. The scattering domain (the air above the device) is invari-

Figure 2.1: The diffracting domain Ω

ant in the x3-direction and has the form Ω × R. Its cross-section Ω con-
sists of the union of the upper-half plane Ωe = R2

+ and of the open cav-
ity Ωi = (−h, 0] × (−w,w), of width 2w and depth h. We denote by
Γw × {x2 = 0} = (−w,w) × {x2 = 0} the aperture of the cavity, and by
X = (x1, x2) a point in R2.

2.2.2 Problem Formulation

We assume that Ω is filled with a homogeneous dielectric material of mag-
netic permeability µ, and electric permittivity ε. The time-dependent, linear
Maxwell equations take the form

∇×E + µ
∂H

∂t
= 0 in Ω× R× R+,

∇×H− ε∂E
∂t

= 0 in Ω× R× R+,

where E ∈ R3 and H ∈ R3 respectively denote the electric and magnetic
fields. In this paper we only consider time-harmonic solutions, i.e., special
solutions of the form

E(x, t) = Re(E(x)e−iωt) and H(x, t) = Re(H(x)e−iωt),
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where ω denotes the time pulsation and the complex fields E(x) and H(x)
satisfy

∇× E − iωµH = 0, (2.2.1)
∇×H + iωεE = 0. (2.2.2)

Since the open cavity is deposited on a real thick conducting medium the
electric field satisfies on ∂Ω×R the following impedance boundary condition:

n× (∇×H)− iω√εµ βH = 0, (2.2.3)

where n = (n, 0), the quantity n is the outward normal vector on ∂Ω and
and β > 0 is the relative surface impedance that only depends on the electric
permittivity of the metal.

The diffraction of (time harmonic) incident fields Einc, H inc by the sur-
face ∂Ω gives rise to reflected and scattered fields. We write

E = Einc − Eref + Es,

H = H inc +Href +Hs,

where Eref and Href are the electromagnetic fields generated by the reflec-
tion of the incident fields by the whole plane interface without the cavity.

Since the scattering domain is unbounded, we require that the scattered
fields (Es, Hs) satisfy radiation conditions that fix the behavior of the solu-
tion at infinity. The impedance boundary conditions produce surface waves
propagating along the interface that can not be separated from the total
field. Hence, the scattered field does not verify the classical Sylver-Müller
radiation condition. Nédélec and al. have obtained recently a new type of
radiation conditions that describe well the behavior of the scattered fields
close and far away from the boundary.

As in [3], we focus on the transverse magnetic polarization (TM), where
the magnetic field is transverse to the invariant dimension. In this case,
Hs = (0, 0, H3(x1, x2)) and the x3−component of the magnetic field verifies
the Helmholtz equation

∆H3(X) + k2H3(X) = 0, X ∈ Ω,

with k = ω
√
εµ. As in [3], the impedance boundary approximation (2.2.3)

can be formulated as follows:
∂H3

∂n
+ ikβH3 = f X ∈ ∂Ω,

where f = −( ∂
∂n + ikβ)(H inc

3 + Href
3 ). Since Eref and Href are the re-

flected fields by the plane interface, we have f = 0 on ∂Ωe \ Γw, and hence
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f ∈ H̃−
1
2 (−w,w) =

(
H−

1
2 (−w,w)

)′
(see for instance [5]).

The scattered fields (Es, Hs) satisfy radiation conditions developed in
[27]: For large r and a fixed α ∈ (0, 1

2),


|∂H

s
3

∂r
− ikHs

3 | < crα−1, for y > crα

|∂H
s
3

∂r
− ik

√
1 + β2Hs

3 | < cr−
1
2 , for crα−1 < y < crα

|∂H
s
3

∂r
− ik

√
1 + β2Hs

3 | < crα−1, for y < crα−1

where (r, θ) are the polar coordinates, that is x = r cos θ and y = r sin θ.

The whole system is reduced to a Helmholtz equation, as the components
of E can be recovered from H3 by (2.2.2).

The scattering resonances are the values of k ∈ C such that the previous
system satisfied by H3, has a non trivial solution with f is identically zero.
The asymptotic expansion of the scattering resonances is derived in Theorem
10.

2.3 Integral representation

In this section, we aim to obtain an integral representation of the field Hs.
To do so we need to first determine the Green functions of the Helmholtz
equation inside and outside the rectangular cavity.

2.3.1 The Green function in the half-space R2
+

LetGe(k,X, Y ) be the Green function of the Helmholtz equation with impedance
boundary condition in the half space R2

+ .

Here the source point Y = (y1, y2) is fixed in Ωe with y1 is the horizontal
coordinate and y2 is the vertical one. Also when k is fixed and if there’s no
confusion, we simply denote Ge(X,Y ) instead of Ge(k;X,Y ).

Since there is no horizontal variation in the geometry of the problem,
we can suppose without loss of generality that y1 = 0. Ge(k;X,Y ) is the
solution of the boundary value problem:

 ∆Ge(x1, x2; 0, y2) + k2Ge(x1, x2; 0, y2) = δ(x1)δ(x2 − y2), X ∈ Ωe

−∂Ge
∂x2

+ ikβGe = 0, x2 = 0
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Considering the fact that Ωe is invariant in the horizontal direction, and
taking the Fourier transform with respect to x1, we get the following differ-
ential equation (with initial condition) in the vertical variable x2:


∂2Ĝe
∂x2

2

(ξ, x2; 0, y2) + (k2 − ξ2)Ĝe(ξ, x2; 0, y2) = δ(x2−y2)√
2π

, x2 > 0

−∂Ĝe
∂x2

+ ikβĜe = 0, x2 = 0

A particular solution of the diffrential equation above is given by:

gp = − e−
√
ξ2−k2|x2−y2|

2
√
ξ2 − k2

√
2π

The solution of the homogeneous equation has the form:

gh = αe
√
ξ2−k2 x2 + ηe−

√
ξ2−k2x2

The physical solutions of this equation are those which are bounded at in-
finity. So we keep only the following homogenous solutions:

gh = ηe−
√
ξ2−k2 x2

Hence, the general solution is:

Ĝe = ηe−
√
ξ2−k2 x2 − e−

√
ξ2−k2|x2−y2|

2
√
ξ2 − k2

√
2π

and −∂Ĝe
∂x2

=
√
ξ2 − k2ηe−

√
ξ2−k2 x2 + e−

√
ξ2−k2|x2−y2|

2
√

2π
.

The condition −∂Ĝe
∂x2

(x2 = 0) + ikβĜe(x2 = 0) = 0 implies that:

η = − (
√
ξ2 − k2 − ikβ)e−

√
ξ2−k2y2

√
8π
√
ξ2 − k2(

√
ξ2 − k2 + ikβ)

Thus:

Ĝe =
1√
8π

(
−
√
ξ2 − k2 − ikβ√
ξ2 − k2 + ikβ

e−
√
ξ2−k2(x2+y2)√
ξ2 − k2

− e−
√
ξ2−k2|x2−y2|√
ξ2 − k2

)
.

Ĝe is called the spectral Green’s function.
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Using the inverse Fourier Transform, the spatial Green function has the
expression:

Ge(x1, x2; y1, y2) =

1

4π

∫ +∞

−∞

(
−
√
ξ2 − k2 − ikβ√
ξ2 − k2 + ikβ

e−
√
ξ2−k2(x2+y2)√
ξ2 − k2

− e−
√
ξ2−k2|x2−y2|√
ξ2 − k2

)
e−i(x1−y1)ξdξ.

(2.3.1)

In the previous expression, we have taken the general case y1 6= 0.

2.3.2 The Green function in the rectangular cavity

Let Y = (y1, y2) be the source point fixed in Ωi. Let Gi(w, k;X,Y ) be the
Green function of the Helmholtz equation with impedance boundary condi-
tion in the rectangular cavity. If there is no confusion, we simply denote
Gi(X,Y ) instead of Gi(w, k;X,Y ).

Assume that k2 is not an eigenvalue of the Helmholtz equation with
impedance boundary condition. The Green function Gi(X,Y ) satisfies:

∆Gi(X,Y ) + k2Gi(X,Y )) = δ(X − Y ) X ∈ Ωi

∂niGi + ikβGi = 0, X ∈ ∂Ωi/Γw

∂niGi − ikβGi = 0, X ∈ Γw

Where ni denotes the outward normal vector to ∂Ωi, X = (x1, x2) and
Y = (y1, y2).

Next, we proceed by separation of variables to derive a spectral decom-
position of the Green function. We first determine a complete set of eigen-
vectors in L2(−w,w) associated to a 1d Helmholtz equation with impedance
boundary condition.

Let vn(x1) ∈ H1(−w,w) et k1,n ∈ C+ be such that


v′′n(x1) + k2

1,nvn(x1) = 0, x1 ∈ ]−w,w[

v′n(w) + ikβvn(w) = 0

−v′n(−w) + ikβvn(−w) = 0

(2.3.2)

Then vn(x1) can be written in the following form

vn(x1) = αeik1,nx1 + ηe−ik1,nx1

32



The boundary condition gives the following relation:

α = −η−k1,n + kβ

k1,n + kβ
e−2ik1,nw

Therefore, the eigenvector vn(x1) is given by:

vn(x1) = κn

(
k1,n − kβ
k1,n + kβ

e−2ik1,nweik1,nx1 + e−ik1,nx1

)
where κn ∈ C is a normalization constant that will be choosen later, and
k1,n verifies this dispersion relation:

e−2ik1,nw = τn
kβ + k1,n

kβ − k1,n
(2.3.3)

where τn = ±1. Hence

vn(x1) = κn

(
−τneik1,nx1 + e−ik1,nx1

)
(2.3.4)

We can easily check that −kβ and kβ are not eigenvalues of the problem in
order to ensure that (k1,n + kβ) and (−k1,n + kβ) are different from zero. In
fact, if −kβ is an eigenvalue, then

vn(x1) = αe−ikβx1 + ηeikβx1

On the other hand the equalities

v′n(w) + ikβvn(w) = 0 and − v′n(−w) + ikβvn(−w) = 0

imply respectively that η = 0 and α = 0. So vn(x1) = 0, which contra-
dicts the fact that vn is an eigenvector. The same analysis also applies to
the value kβ.

We further choose the complex number κn such that vn becomes real. Let
κ(s) be a fixed complex function that satisfies κ(−1) = 1

2 and κ(1) = − 1
2i .

We set
κn = κ(τn)

According to this choice of normalization, we get

vn(x1) =

{
cos(k1,nx1) if τn = −1
sin(k1,nx1) if τn = 1

We choose the indexing of k1,n by:

τn =

{
−1 if n is even
+1 if n is odd

this choice is justified in the part of "asymptotic of k1,n". Then, we obtain
that:

vn(x1) = cos(k1,nx1 +
nπ

2
). (2.3.5)
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Proposition 1. Let k1,n be the eigenvalues of (2.3.2) associated to the eigen-
function vn(x1) defined by (2.3.5). Then

Re(k2
1,n) =

∫ w
−w |v

′
n|2∫ w

−w |vn|2

Im(k2
1,n) = kβ

|vn|2(w) + |vn|2(−w)∫ w
−w |vn|2

> 0

Proof. We proceed by multiplying the equation (2.3.2) by vn and integrating
by parts to obtain the result.

Remark 2. The eigenvalues k1,n are not real because the spectral prob-
lem (2.3.2) is not self-adjoint. We observe that k1,n become real and coincide
with the Neumann eigenvalues if β = 0.

Proposition 3. Let k1,n be the eigenvalues of (2.3.2) associated to the eigen-
function vn(x1) defined by (2.3.5). Then∫ w

−w
vnvm =

{
0 if n 6= m∫ w

−w v
2
n 6= 0 if n = m

Proof. We proceed by multiplying the equation (2.3.2) by vm and integrating
by parts to find the result.

Lemma 2.3.1. There exists w0, such that for w < w0 the set (vn)n is a
complete set of L2(]−w,w[).

Proof. The proof is based on the asymptotic expansion of the eigenfunctions
vn as w tends to zero. In fact we will prove later in section 2.4 that vn
converge uniformly to the Fourier basis (subsection Asymptotic of vn(wx)).

Now, we reconstruct g(λ;x2, y2), the Green function of the 1d Helmholtz
equation with impedance boundary condition on (−h, 0). For x2 6= y2, we
have 

g′′(x2) + λ2g(x2) = δ(x2 − y2), x2 ∈ ]−h, 0[

g′(0)− ikβg(0) = 0

−g′(−h) + ikβg(−h) = 0

(2.3.6)

We first look for a function ϕ−(x2) solution to the Helmholtz equation
in (−h, 0) satisfying the impedance boundary condition at −h, that is:
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ϕ−′′(x2) + λ2ϕ−(x2) = 0, x2 ∈ ]−h, 0[

−ϕ−′(−h) + ikβϕ−(−h) = 0

Then

ϕ−(x2) = eiλx2 +
λ− kβ
λ+ kβ

e−2iλhe−iλx2

Afterwards, we seek a function ϕ+(x2) solution to the Helmholtz equation
in (−h, 0) satisfying the impedance boundary condition at 0, that is:


ϕ+′′(x2) + λ2ϕ+(x2) = 0, x2 ∈ ]−h, 0[

ϕ+′(0)− ikβϕ+(0) = 0

We similarly find

ϕ+(x2) = eiλx2 +
λ− kβ
λ+ kβ

e−iλx2

The Green function g is then given by

g(λ2;x2, y2) =
1

W (y2)


ϕ+(x2)ϕ−(y2), if y2 ≤ x2

ϕ+(y2)ϕ−(x2), if y2 ≥ x2

where W (y2) is the Wronskian of ϕ+ and ϕ− at x2 = y2, that means

W (y2) = (ϕ+)′(y2)ϕ−(y2)− (ϕ−)′(y2)ϕ+(y2)

= 2iλ
λ− kβ
λ+ kβ

(
e−2iλh − 1

)
So,

g(λ2;x2, y2) =
1

2iλ(e−2iλh − 1)
{λ+ kβ

λ− kβ
eiλ(x2+y2)+e−2iλheiλ|x2−y2|+e−iλ|x2−y2|

+
(λ− kβ)

(λ+ kβ)
e−2iλhe−iλ(x2+y2)} (2.3.7)

Using Lemma (2.3.1) and Proposition (3), we obtain

Gi(X,Y ) =
∞∑
n=0

vn(x1)vn(y1)∫ w
−w v

2
n

g(k2 − k2
1,n;x2, y2) (2.3.8)
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2.3.3 Integral equations

We recall that the scattered field satisfies
∆Hs(X) + k2Hs(X) = 0, X ∈ Ω

∂Hs

∂n
+ ikβHs = f, X ∈ ∂Ω

(2.3.9)

Let Y = (y1, y2) ∈ Ωe ∪ Ωi. If we multiply the latter system by Ge and
integrate over Ωe we obtain:

Hs(Y )χΩe(Y ) =

∫
Γw

(
∂Hs

∂x2
(x1, 0)− ikβHs(x1, 0)

)
Ge(x1, 0;Y )dσ(x1)

−
∫
∂Ωe\Γw

f(X)Ge(X;Y )dσ(X)

And if we multiply the previous equality by Gi and integrate over Ωi, we
obtain:

Hs(Y )χΩi(Y ) = −
∫

Γw

(
∂Hs

∂x2
(x1, 0)− ikβHs(x1, 0)

)
Gi(x1, 0;Y )dσ(x1)

−
∫
∂Ωi\Γw

f(X)Gi(X;Y )dσ(X)

Taking the limit Y → Γw and adding the two previous equations, we
obtain the following integral equation:∫

Γw

(
∂Hs

∂x2
(x1, 0)− ikβHs(x1, 0)

)
(Gi(x1, 0; y1, 0) +Ge(x1, 0; y1, 0)) dσ(x1)

= −
∫
∂Ωi\Γw

f(X)Gi(X; y1, 0)dσ(X)+

∫
∂Ωe\Γw

f(X)Ge(X; y1, 0)dσ(X).

(2.3.10)

We further rescale the above equation. Let Γ = (−1, 1), and consider the
integral operator S(w, k) : H̃−

1
2 (−1, 1)→ H−

1
2 (−1, 1) defined by

S(w, k)φ(x) :=

∫
Γ

(Gi(wz, 0;wy1, 0) +Ge(wz, 0;wy1, 0))φ(z)dσ(z) (2.3.11)

We finally have the following integral equation:

S(w, k)

(
∂Hs

∂x2
(wx1, 0)− ikβHs(wx1, 0)

)
= −w−1(

∫
∂Ωi\Γw

f(X)Gi(X;wy1, 0)dσ(X)+

∫
∂Ωe\Γw

f(X)Ge(X;wy1, 0)dσ(X))

(2.3.12)
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Following the works [5, 6], it can be shown that the plasmonic resonances
are exactly the zeros of S(w, k).

The objective of the next section is to derive the asymptotic expansion
of S(w, k) when w tends to zero.

2.4 Asymptotics

2.4.1 Asymptotic of Gi

In this section we aim to determine the asymptotic expansion ofGi(wx1, 0;wy1, 0)
when w tends to zero. The spectral decomposition of Gi is given by:

Gi(X,Y ) =

∞∑
n=0

vn(x1)vn(y1)∫ w
−w v

2
n

g(k2 − k2
1,n;x2, y2) (2.4.1)

Gi(wx1, 0;wy1, 0) =
∞∑
n=0

vn(wx1)vn(wy1)∫ w
−w v

2
n

g(k2 − k2
1,n; 0, 0)

Asymptotic of k1,n

Recall that the eigenvalues k1,n verify this dispersion relation (2.3.3):

e−4ik1,nw =
(k1,n + kβ)2

(−k1,n + kβ)2

We apply the following change of variables tn(w) = k1,n(w)w, and find that
tn(w) is solution of:

e−4it =
(t+ kβw)2

(−t+ kβw)2

which leads us to define two functions

{
f1,w(t) = (t+ kβw)e2it − (kβw − t)
f2,w(t) = (t+ kβw)e2it + (kβw − t)

We note {t1,n(w), n ∈ I1} and {t2,n(w), n ∈ I2} the roots of f1,w(t) and
f2,w(t) over C respectively.

Thus

{tn(w), n ∈ I} = {t1,n(w), n ∈ I1} ∪ {t2,n(w), n ∈ I2},

with I = I1 ∪ I2. We now introduce two following functions:
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{
f1,0(t) = te2it + t
f2,0(t) = te2it − t

Similarly, we note {t1,n(0)} and {t2,n(0)} the roots of f1,0(t) and f2,0(t) over
C respectively.

A simple calculation shows that:

{t1,n(0), n ∈ Z} = {(2n+ 1)π

2
, n ∈ Z}

{t2,n(0), n ∈ Z} = {nπ, n ∈ Z}

We further consider the following indexation

t1,n(0) =
(2n+ 1)π

2
t2,n(0) = nπ

If we note tn(0) = nπ
2 , we obtain

{tn(0), n ∈ Z} = {t1,n(0), n ∈ Z} ∪ {t2,n(0), n ∈ Z}

Then

t1,n(0) = t2n+1(0) =
(2n+ 1)π

2
; t2,n(0) = t2n(0) = nπ

Remark 4. ∀i = 1, 2 : fi,w and fi,0 are analytic over C, therefore the sets
{ti,n(w), n ∈ Ii} and {ti,n(0), n ∈ Z} are discrete.

In order to derive the asymptotic of k1,n when w shrinks to zero, we will
first determine the asymptotic of tn(w). We first localize {tn(w), n ∈ I} in
the complex plane.

Let

C(0, R) be the ring in the complex plane centered at the origin with ra-
dius R.
D(0, R) be the open disk in the complex plane centered at the origin with
radius R.
D′(0, R) the closed disk in the complex plane centered at the origin with
radius R.
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Proposition 5. ∀R > 0 such that C(0, R) ∩ {tn(0), n ∈ Z} = ∅ , ∃w0 such
that ∀w < w0 and i = 1, 2, we have

card{D′(0, R) ∩ {ti,n(0), n ∈ Z}} = card{D′(0, R) ∩ {ti,n(w), n ∈ Ii}}

Hence

card{D′(0, R) ∩ {tn(0), n ∈ Z}} = card{D′(0, R) ∩ {tn(w), n ∈ I}}

Proof. We first remark that fi,0, i = 1, 2 is analytic. Therefore

1

2iπ

∫
C(0,R)

∂tfi,0(t)

fi,0(t)
dt = card

{
D′(0, R) ∩ {ti,n(0), n ∈ Z}

}
and

1

2iπ

∫
C(0,R)

∂tfi,w(t)

fi,w(t)
dt = card

{
D′(0, R) ∩ {ti,n(w), n ∈ Ii}

}
On the other hand the function

∂tfi,w(t)

fi,w(t)
converges uniformly on each

compact subset of the complex plane that does not contain any isolated zero

of fi,0, to
∂tfi,0(t)

fi,0(t)
.

Consequently

lim
w→0

1

2iπ

∫
C(0,R)

∂tfi,w(t)

fi,w(t)
dt =

1

2iπ

∫
C(0,R)

∂tfi,0(t)

fi,0(t)
dt

Thus ∃w0 such as ∀w < w0

card{D′(0, R) ∩ {tn(0), n ∈ Z}} = card{D′(0, R) ∩ {tn(w), n ∈ I}}

In the rest of this section, we will fix a radius R as specified in the
previous proposition. Let t varies in D(0, R). We note IR an indexation of
the roots {tn(0), n ∈ Z} contained in D(0, R), .i.e,

{D′(0, R) ∩ {tn(0), n ∈ Z}} = {tn(0), n ∈ IR}

Likewise, we note IR,i an indexation of the roots {ti,n(0), n ∈ Z} contained
in D(0, R), .i.e,

{D′(0, R) ∩ {ti,n(0), n ∈ Z}} = {ti,n(0), n ∈ IR,i}

So, we have
card(IR) = card(IR,1) ∪ card(IR,2)
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card{D′(0, R)∩{tn(0), n ∈ Z}} = card{D′(0, R)∩{tn(w), n ∈ I}} = card(IR)

and

card{D′(0, R)∩{ti,n(0), n ∈ Z}} = card{D′(0, R)∩{ti,n(w), n ∈ Ii}} = card(IR,i)

for i = 1, 2.

Proposition 6. ∃w1 small enough such that ∀w < w1 < w0, ∀ i = 1, 2,
∀n ∈ IR,i: ∃rn,i > 0 such that D′(ti,n(0), rn,i) ∩ {tm(0), m ∈ I} = {ti,n(0)},
and there exists a unique zero of fi,w(t) contained in D′(ti,n(0), rn,i).
For this zero we will choose the same index as ti,n(0).

Then
D′(ti,n(0), rn,i) ∩ {ti,m(w), m ∈ Ii} = {ti,n(w)}

Proof. We have
1

2iπ

∫
C(ti,n(0),rn,i)

∂tfi,0(t)

fi,0(t)
dt = 1

and
∂tfi,w(t)

fi,w(t)
converges uniformly on each compact subset that does not

contain any isolated zero of fi,0, to
∂tfi,0(t)

fi,0(t)
. So, there exists w1i,n small

enough such that for w < w1i,n < w0

1

2iπ

∫
C(ti,n(0),rn,i)

∂tfi,w(t)

fi,w(t)
dt = 1

and we can take w1 the minimum of {w1i,n , i = 1, 2, n ∈ IR,i}.

The last result allows us to use the following notation for tn(w) in analogy
with the tn(0):

t1,n(w) = t2n+1(w)

t2,n(w) = t2n(w)

Now, consider the following result which will allow us to compute the asymp-
totic of tn(w):

ti,n(w)− ti,n(0) =
1

2iπ

∫
C(ti,n(0),rn,i)

(t− ti,n(0))
∂tfi,w(t)

fi,w(t)
dt

For i = 1, we have t1,n(0) =
(2n+ 1)π

2
,
e−it

sin(t)
doesn’t vanish onD(0, rn,1),

so t1,n(w) is also the unique zero of
e−it

2 sin(t)
f1,w(t) on D(0, rn,1), and we have

t1,n(w)− t1,n(0) =
1

2iπ

∫
C(t1,n(0),rn,1)

(t− t1,n(0))
∂t

e−it

2 sin(t)f1,w(t)

e−it

2 sin(t)f1,w(t)
dt
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f1,w(t) = (t+ kβw)e2it − (kβw − t) and
e−it

2 sin(t)
f1,w(t) = t

cos t

sin(t)
+ iwkβ.

We note f̃1,0(t) = t
cos t

sin(t)
. Then

t1,n(w)− t1,n(0) =
1

2iπ

∫
C(t1,n(0),rn,1)

(t− t1,n(0))
∂tf̃1,0(t)

f̃1,0(t) + wkβi
dt

On the other-hand

∂tf̃1,0(t)

f̃1,0(t) + wkβi
=

∂tf̃1,0(t)

f̃1,0(t)(1 + wkβi

f̃1,0(t)
)

=
∂tf̃1,0(t)

f̃1,0(t)

∞∑
p=0

(
−wkβi

f̃1,0(t)

)p

and also f̃1,0(t) ≡ ∂tf̃1,0(t1,n(0))(t− t1,n(0)), therefore

t1,n(w)− t1,n(0) =

1

2iπ

∫
C(t1,n(0),rn,1)

∞∑
p=0

∂tf̃1,0(t)

(t− t1,n(0))p(∂tf̃1,0(t1,n(0)))p+1
(−wkβi)pdt

=
1

2iπ

∞∑
p=0

∫
C(t1,n(0),rn,1)

∂tf̃1,0(t)

(t− t1,n(0))p(∂tf̃1,0(t1,n(0)))p+1
(−wkβi)pdt

=
1

2iπ

∞∑
p=0

∫
C(t1,n(0),rn,1)

∂tf̃1,0(t)

(t− t1,n(0))p
dt

(−wkβi)p

(∂tf̃1,0(t1,n(0)))p+1

On the other hand

∂tf̃1,0(t) =
∞∑
m=0

αm(t− t1,n(0))m

with αm =
f̃1,0

(m+1)
(t1,n(0))

m!
, and by applying the Residue theorem, we find

that:

t1,n(w)− t1,n(0) =

∞∑
p=0

αp−1

(∂tf̃1,0(t1,n(0)))p+1
(−wkβi)p

t1,n(w) =
(2n+ 1)π

2
+

∞∑
p=0

αp−1(−ikβ)p

(∂tf̃1,0(t1,n(0)))p+1
wp.

We will compute αm, αm =
f̃1,0

(m+1)
(t1,n(0))

m!
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α2m−1 = −2m22m(22m−1)B2m

(2m)!(2m−1)!

α2m = −(2n+ 1)π2
22(m+1)(22(m+1)−1)B2(m+1)

(2m)!(2(m+1))!

and,

(∂tf̃1,0(t1,n(0))) = −(2n+ 1)
π

2

For i = 2,

we have t2,n(0) = nπ,
e−it

cos(t)
6= 0 on D(0, rn,2), so t2,n(w) is also the unique

zero of
e−it

2 cos(t)
f1,w(t) on D(0, rn,2), and

t2,n(w)− t2,n(0) =
1

2iπ

∫
C(t2,n(0),rn,2)

(t− t2,n(0))
∂t

e−it

2 cos(t)f2,w(t)

e−it

2 cos(t)f2,w(t)
dt

f2,w(t) = (t+ kβw)e2it + (kβw − t), e−it

2 cos(t)
f2,w(t) = it

sin t

cos(t)
+ wkβ

We note f̃2,0(t) = it
sin t

cos(t)
, and so

t2,n(w)− t2,n(0) =
1

2iπ

∫
C(t2,n(0),rn,2)

(t− t2,n(0))
∂tf̃2,0(t)

f̃2,0(t) + wkβ
dt

On the other hand

∂tf̃2,0(t)

f̃2,0(t) + wkβ
=

∂tf̃2,0(t)

f̃2,0(t)(1 + wkβ

f̃2,0(t)
)

=
∂tf̃2,0(t)

f̃2,0(t)

∞∑
p=0

(
−wkβ

f̃2,0(t)

)p

and also f̃2,0(t) ≡ ∂tf̃2,0(t2,n(0))(t− t2,n(0)), therefore

t2,n(w)− t2,n(0) =

1

2iπ

∫
C(t2,n(0),rn,2)

∞∑
p=0

∂tf̃2,0(t)

(t− t2,n(0))p(∂tf̃2,0(t2,n(0)))p+1
(−wkβ)pdt

1

2iπ

∞∑
p=0

∫
C(0,rn,2)

∂tf̃2,0(t)

(t− t2,n(0))p(∂tf̃2,0(t2,n(0)))p+1
(−wkβ)pdt

1

2iπ

∞∑
p=0

∫
C(t2,n(0),rn,2)

∂tf̃2,0(t)

(t− t2,n(0))p
dt

(−wkβ)p

(∂tf̃2,0(t2,n(0)))p+1
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We have

∂tf̃2,0(t) =
∞∑
m=0

ηm(t− t2,n(0))m

with ηm =
f̃2,0

(m+1)
(t2,n(0))

m!
and by applying again the Residue theorem we

find that:

t2,n(w)− t2,n(0) =

∞∑
p=0

ηp−1

(∂tf̃2,0(t2,n(0)))p+1
(−wkβ)p

t2,n(w) = nπ +
∞∑
p=0

ηp−1(−kβ)p

(∂tf̃2,0(t2,n(0)))p+1
wp

 η2m−1 = i2m
22m(22m − 1)B2m

(2m)!(2m− 1)!

η2m = inπ
22(m+1)(22(m+1)−1)B2(m+1)

(2m)!(2(m+1))!

and

∂tf̃2,0(t2,n(0)) = inπ

Finally



t1,n(w) = t2n+1(w) = (2n+1)π
2 +

∞∑
p=0

αp−1(−ikβ)p

(∂tf̃1,0(t1,n(0)))p+1
wp

t2,n(w) = t2n(w) = nπ +
∞∑
p=0

ηp−1(−kβ)p

(∂tf̃2,0(t2,n(0)))p+1
wp

tn(w) =
nπ

2
+

∞∑
m=0

(−1)mi(kβ)2m+1 22(m+1)(22(m+1) − 1)B2(m+1)

(2m)!(2(m+ 1))!

w2m+1

(nπ2 )2m+1

+
∞∑
m=1

(−1)m(kβ)2m(2m)
22m(22m − 1)B2m

(2m)!(2m− 1)!

w2m

(nπ2 )2m+1

We remark that the first terms in the asymptotic expansion of the impedance
eigenvalues are the Neumann eigenvalues of the same Helmholtz operator.
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Consequently for n 6= 0:

k1,n(w)= (2.4.2)

nπ

2w
+
∞∑
m=0

(−1)m i (β)2m+1 22(m+1)(22(m+1) − 1)B2(m+1)

(2m)!(2(m+ 1))!

w2m(k)2m+1

(nπ2 )2m+1

+

∞∑
m=1

(−1)m (β)2m (2m)
22m(22m − 1)B2m

(2m)!(2m− 1)!

w2m−1(k)2m

(nπ2 )2m+1

Remark 7. We remark that 0 is a solution to the dispersion relation:

e−4ik1,nw =
(k1,n + kβ)2

(−k1,n + kβ)2

So we further denote k1,0 = 0.

Asymptotic of g(k2 − k2
1,n; 0, 0)

We start by deriving the asymptotic expansion of g(k2−k2
1,n; 0, 0) for n 6= 0.

We deduce from (2.3.7) the following equality:

g(λ2;x2, y2) =

1

2iλ(e−2iλh − 1)
{λ+ kβ

λ− kβ
eiλ(x2+y2) + e−2iλheiλ|x2−y2| + e−iλ|x2−y2|

+
(λ− kβ)

(λ+ kβ)
e−2iλhe−iλ(x2+y2)}

Hence

g(λ2; 0, 0) =
1

2iλ(e−2iλh − 1)

(
λ+ kβ

λ− kβ
+ e−2iλh + 1 +

(λ− kβ)

(λ+ kβ)
e−2iλh

)
=

1

i(e−2iλh − 1)

(
e−2iλh 1

(λ+ kβ)
+

1

λ− kβ

)

g(k2 − k2
1,n; 0, 0)=

1

i(e
−2i

√
k2−k2

1,nh − 1)

 e
−2i

√
k2−k2

1,nh

(
√
k2 − k2

1,n + kβ)
+

1√
k2 − k2

1,n − kβ


Now, we fix the branch cut defining the complex square root used in the
previous expression:

∀z ∈ C \ iR+ √
z = eln|z|+i arg(z)
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Where, arg(z) is the continuous determination of the argument in the com-
plex plane minus the non-negative imaginary axis defined as follows:

arg : C \ iR+ → (−3π
2 , π2 )

z 7→ t such that |z| eit = z

So, according to this determination of the square root we have:
√
−1 = −i

and
√

1 = 1.

We remark that Re(k2 − k1,n(w)2) 6= 0.

Then √
k2 − k1,n(w)2 = −i

√
k1,n(w)2 − k2

and consequently

g(k2 − k2
1,n; 0, 0) =

1

i(e
−2

√
(k2

1,n−k2)h − 1)

e−2
√

(k2
1,n−k2)h 1

(−i
√
k2

1,n − k2 + kβ)
+

1

−i
√
k2

1,n − k2 − kβ


In order to calculate g(k2 − k2

1,n; 0, 0), we need to consider
√
k1,n(w)2 − k2.

We have from (2.4.2) that for n 6= 0:

k1,n(w) =
nπ

2w
+

∞∑
p=1

Cp w
p−1 kp

So, the square of k1,n(w) has the following asymptotic expansion

k1,n(w)2 =

nπ
2w

+

∞∑
p=1

Cp w
p−1 kp

2

= (
nπ

2w
)
2

+ (
nπC1k

w
) + (C1k)2 + (nπC2k

2) +O(w)

Hence

k1,n(w)2 − k2 = (
nπ

2w
)
2

+ (
nπC1k

w
)− k2 + (C1k)2 + (nπC2k

2) +O(w)

= (
nπ

2w
)
2
(

1 + 4
C1k

nπ
w + 4

−k2 + (C1k)2 + nπC2k
2

(nπ)2 w2 +O(w3)

)
A forward calculation gives√
k1,n(w)2 − k2 = (

nπ

2w
)

(
1 + 2

C1k

nπ
w +

16k2(−C1
2 − 1 + C1 + nπC2)

8(nπ)2 w2 +O(w3)

)
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Then, ∀p ∈ N

e−2
√
k1,n(w)2−k2h = e−2hnπ

2wO(1) = o(wp),

and consequently

e
−2

√
(k2

1,n−k2)h 1

(i
√
k2

1,n − k2 + kβ)
= o(wp)O(w) = o(wp),

and
1

i(e
−2

√
(k2

1,n−k2)h − 1)

= −1

i

1

1− o(wp)
= −1

i
+ o(wp).

On the other hand
1

−i
√
k2

1,n − k2 − kβ
=

=
−2w

inπ
− 4k

C1 − iβ
i(nπ)2 w

2 + 2k2 6C1
2 + 2− 2C1 − 2nπC2 − 8iC1β − 4β2

i(nπ)3 w3 +O(w4)

Therefore

g(k2 − k2
1,n; 0, 0) =

−2

nπ
w−4k

C1 − iβ
(nπ)2 w2+2k2 6C1

2 + 2− 2C1 − 2nπC2 − 8iC1β − 4β2

(nπ)3 w3+O(w4)

We finally deduce from (2.4.2) that:

C1 =
2iβ

nπ
and C2 =

−16β2

(nπ)3

and the expansion of g(k2 − k2
1,n; 0, 0) is

g(k2 − k2
1,n; 0, 0) =

−2

nπ
w−4k

2iβ − iβnπ
(nπ)3 w2+2k2

(
8β2

(nπ)5 +
16β2 − 4iβ

(nπ)4 +
2− 4β2

(nπ)3

)
w3+O(w4)

(2.4.3)

Asymptotic of vn(wx)

We deduce from (2.3.5) that

vn(wx) = cos(wk1,nx+
nπ

2
)
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In order to derive the asymptotic expansion of vn(wx), we will use the al-
ready known expansion of k1,n. From (2.4.2), we have that for n 6= 0:

wkn(w) =
nπ

2
+
∞∑
p=1

Cp w
p kp

Hence

vn(wx) = cos(
nπ

2
+
nπ

2
x+x

∞∑
p=1

Cp w
p kp) = cos(

nπ

2
(1+x)+x

∞∑
p=1

Cp w
p kp)

After a long calculation, we find for n 6= 0:

vn(wx) = cos(
nπ

2
(1 + x))− sin(

nπ

2
(1 + x))xC1(wk)

− sin(
nπ

2
(1 + x))xC2(wk)2 − 1

2
cos(

nπ

2
(1 + x))x2C1

2(wk)2 + o((wk)2).(2.4.4)

Asymptotic of vn(wx)vn(wy)

Let

Rn(x, y) = cos(
nπ

2
(1 + x)) cos(

nπ

2
(1 + y))

Tn(x, y) = cos(
nπ

2
(1 + x)) sin(

nπ

2
(1 + y))

Qn(x, y) = sin(
nπ

2
(1 + x)) sin(

nπ

2
(1 + y)).

Using the previous asymptotic expansion (2.4.4), we obtain that for
n 6= 0:

vn(wx)vn(wy) =



Rn(x, y)− 2βiy

nπ
Tn(x, y)(wk)− 2βix

nπ
Tn(x, y)(wk)

−4β2xy

(nπ)2 Qn(x, y)xy(wk)2 +
2β2y2

(nπ)2Rn(x, y)(wk)2

+
16β2y

(nπ)3 Tn(x, y)(wk)2 +
2β2x2

(nπ)2 Rn(x, y)(wk)2

+
16β2x

(nπ)3 Tn(x, y)(wk)2 + o((wk)2).

(2.4.5)
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Asymptotic of
∫ w
−w vn

2(x)dx

We first recall that for n 6= 0:

∫ w

−w
vn

2(x)dx =

∫ w

−w
cos2(k1,nx+

nπ

2
)dx

=
1

4

∫ w

−w
e2i(k1,nx+nπ

2
) + e−2i(k1,nx+nπ

2
)dx

= w +
(e2i(k1,nw) − e−2i(k1,nw))(einπ + e−inπ)

8ik1,n

= w +
cos(nπ) sin(2k1,nw)

2k1,n

= w +
(−1)n sin(2k1,nw)

2k1,n
.

Again, we recall (2.4.2), for n 6= 0: wkn(w) =
nπ

2
+
∞∑
p=1

Cp w
p kp.

Thus

sin(2k1,nw) = sin(nπ + 2
∞∑
p=1

Cp w
p kp) = (−1)n sin(2

∞∑
p=1

Cp w
p kp)

Therefore∫ w

−w
vn

2(x)dx = w +
sin(2

∑∞
p=1Cp w

p kp)

2k1,n

Hence
sin(2

∑∞
p=1Cp w

p kp)

2k1,n
=

w

nπ

sin(2
∑∞

p=1Cp w
p kp)

1 + 2
nπ

∑∞
p=1Cp w

p kp

On the other hand

sin(2

∞∑
p=1

Cp w
p kp) = 2C1(wk) + 2C2(wk)2 + o((wk)2)

1

1 + 2
nπ

∑∞
p=1Cp w

p kp
= 1− 2

nπ
C1(wk) +

2

nπ
(

2

nπ
C1

2 − C2)(wk)2 + o((wk)2)

Therefore
sin(2

∑∞
p=1Cp w

p kp)

1 + 2
nπ

∑∞
p=1Cp w

p kp
= 2C1(wk) + (2C2 −

4

nπ
C1

2)(wk)2 + o((wk)2)

Consequently

sin(2
∑∞

p=1Cp w
p kp)

2k1,n
= w

(
2

nπ
C1(wk) +

2

nπ
(C2 −

2

nπ
C1

2)(wk)2 + o((wk)2)

)
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And so

∫ w

−w
vn

2(x)dx = w

(
1 +

2

nπ
C1(wk) +

2

nπ
(C2 −

2

nπ
C1

2)(wk)2 + o((wk)2)

)

Then, for n 6= 0 the following equality

1∫ w
−w vn

2(x)dx
=

1

w

(
1− 2

nπ
C1(wk) + o((wk)2)

)

holds. Finally, we obtain

1∫ w
−w vn

2(x)dx
=

1

w

(
1− 4βi

nπ2
(wk) + o((wk)2)

)
(2.4.6)

Asymptotic of
g(k2 − k2

1,n; 0, 0)∫ w
−w vn

2(x)dx

We first deduce from (2.3.7) that

g(k2 − k2
1,n; 0, 0) =

w

(
−2

nπ
− 4k

2iβ − iβnπ
(nπ)3 w + 2k2

(
8β2

(nπ)5 +
16β2 − 4iβ

(nπ)4 +
2− 4β2

(nπ)3

)
w2 +O(w3)

)

and from (2.4.6), we obtain

1∫ w
−w vn

2(x)dx
=

1

w

(
1− 4βi

nπ2
(wk) + o((wk)2)

)

So by multiplying the precedent terms, we find that for n 6= 0:

g(k2 − k2
1,n; 0, 0)∫ w

−w vn
2(x)dx

=
−2

nπ
+

4iβ

(nπ)2wk (2.4.7)

+2

(
8β2

(nπ)5 +
16β2 − 4iβ

(nπ)4 +
2− 4β2

(nπ)3

)
(wk)2 + o(w2)
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Asymptotic of
vn(wx)vn(wy)g(k2 − k2

1,n; 0, 0)∫ w
−w vn

2(x)dx

By multiplying (2.4.5) and (2.4.7), we find

vn(wx)vn(wy)g(k2 − k2
1,n; 0, 0)∫ w

−w vn
2(x)dx

= (2.4.8)

−2

nπ
Rn(x, y) +

4iβ

(nπ)2Rn(x, y)(wk) +
4βiy

(nπ)2Tn(x, y)(wk)

+
4βix

(nπ)2Tn(y, x)(wk) +
8β2xy

(nπ)3 Qn(x, y)xy(wk)2 − 4β2y2

(nπ)3Rn(x, y)(wk)2

−32β2y

(nπ)4 Tn(x, y)(wk)2 − 4β2x2

(nπ)3 Rn(x, y)(wk)2 − 32β2x

(nπ)4 Tn(y, x)(wk)2

+2
(

8β2

(nπ)5 + 16β2−4iβ

(nπ)4 + 2−4β2

(nπ)3

)
Rn(x, y)(wk)2

+ 8β2y

(nπ)3Tn(x, y)(wk)2 + 8β2x

(nπ)3Tn(y, x)(wk)2 + o(w2)

Asymptotic of Gi(wx1, 0;wy1, 0)

Recall the expression

Gi(wx1, 0;wy1, 0) =
∞∑
n=0

vn(wx1)vn(wy1)∫ w
−w v

2
n

g(k2 − k2
1,n; 0, 0)

=
v0(wx1)v0(wy1)∫ w

−w v
2
0

g(k2 − k2
1,0; 0, 0) +

∞∑
n=1

vn(wx1)vn(wy1)∫ w
−w v

2
n

g(k2 − k2
1,n; 0, 0)

A first calculation gives

v0(wx1)v0(wy1)∫ w
−w v

2
0

g(k2 − k2
1,0; 0, 0) =

1

2wi(e−2ikh − 1)

(
e−2ikh 1

(k + kβ)
+

1

k − kβ

)

Then

50



Gi(wx1, 0;wy1, 0) =

1

2wi(e−2ikh − 1)

(
e−2ikh 1

(k + kβ)
+

1

k − kβ

)
+
∞∑
n=1

−2

nπ
Rn(x, y) +

∞∑
n=1

4iβ

(nπ)2Rn(x, y)(wk)

+
∞∑
n=1

4βiy

(nπ)2Tn(x, y)(wk) +
∞∑
n=1

4βix

(nπ)2Tn(x, y)(wk)

+

∞∑
n=1

8β2xy

(nπ)3 Qn(x, y)xy(wk)2 −
∞∑
n=1

4β2y2

(nπ)3Rn(x, y)(wk)2

−
∞∑
n=1

32β2y

(nπ)4 Tn(x, y)(wk)2 −
∞∑
n=1

4β2x2

(nπ)3 Rn(x, y)(wk)2

−
∞∑
n=1

32β2x

(nπ)4 Tn(y, x)(wk)2 +
∞∑
n=1

16β2

(nπ)5Rn(x, y)(wk)2

+

∞∑
n=1

32β2 − 8iβ

(nπ)4 Rn(x, y)(wk)2 +

∞∑
n=1

4− 8β2

(nπ)3 Rn(x, y)(wk)2

+
∞∑
n=1

8β2y

(nπ)3Rn(x, y)(wk)2 +
∞∑
n=1

8β2x

(nπ)3Rn(y, x)(wk)2 + o(w2)

Using the following equalities

∞∑
n=1

cos(nπ2 (1 + x)) cos(nπ2 (1 + y))

(nπ)
=

1

π

(
− ln(2)− 1

2
ln(

∣∣∣∣sin(π
x+ y + 2

4
) sin(π

x− y
4

)

∣∣∣∣))

∞∑
n=1

cos(nπ2 (1 + x)) cos(nπ2 (1 + y))

(nπ)2 =

1

6
+

1

32

(
(x+ y + 2)2 + (x− y)2

)
− 1

8
(x+ y + 2 + |x− y|)

∞∑
n=1

cos(nπ2 (1 + x)) cos(nπ2 (1 + y))

(nπ)4 =
−1

768
x4 − 1

184
x2 − 1

128
x2y2 − 1

8

(x− y)

|x− y|
(
x3

3
− x2y)

∞∑
n=1

sin(nπ2 (1 + x)) cos(nπ2 (1 + y))

(nπ)3 =
1

96
x3 +

1

48
x+

1

32
xy2 +

1

2

(x− y)

|x− y|
(
x2

2
− xy)
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we obtain

Gi(wx1, 0;wy1, 0) =

1

2wi(e−2ikh − 1)

(
e−2ikh 1

(k + kβ)
+

1

k − kβ

)
+

2

π

(
ln(2) +

1

2
ln(

∣∣∣∣sin(π
x+ y + 2

4
) sin(π

x− y
4

)

∣∣∣∣))
+4iβ

(
1
6 + 1

32

(
(x+ y + 2)2 + (x− y)2

)
− 1

8 (x+ y + 2 + |x− y|)
)

(wk)

+

∞∑
n=1

4βiy

(nπ)2Tn(x, y)(wk) +

∞∑
n=1

4βix

(nπ)2Tn(x, y)(wk)

+
∞∑
n=1

8β2xy

(nπ)3 Qn(x, y)xy(wk)2 −
∞∑
n=1

4β2y2

(nπ)3Rn(x, y)(wk)2

−
∞∑
n=1

32β2y

(nπ)4 Tn(x, y)(wk)2 −
∞∑
n=1

4β2x2

(nπ)3 Rn(x, y)(wk)2

−
∞∑
n=1

32β2x

(nπ)4 Tn(x, y)(wk)2 +

∞∑
n=1

16β2

(nπ)5Rn(x, y)(wk)2

+(32β2 − 8iβ)

(
−1

768
x4 − 1

184
x2 − 1

128
x2y2 − 1

8

(x− y)

|x− y|

)
(wk)2

+
∞∑
n=1

4− 8β2

(nπ)3 Rn(x, y)(wk)2

+8β2y

(
1

96
y3 +

1

48
y +

1

32
yx2 +

1

2

(y − x)

|x− y|
(
y2

2
− xy)

)
(wk)2

+8β2x

(
1

96
x3 +

1

48
x+

1

32
xy2 +

1

2

(x− y)

|x− y|
(
x2

2
− xy)

)
(wk)2 + o(wk2)

We further denote

e(k, β) =
1

2i(e−2ikh − 1)

(
e−2ikh 1

(k + kβ)
+

1

k − kβ

)
(2.4.9)

Let

a1(β, x, y) = 4iβ

(
1

6
+

1

32

(
(x+ y + 2)2 + (x− y)2

)
− 1

8
(x+ y + 2 + |x− y|)

)
+

∞∑
n=1

4βiy

(nπ)2Rn(x, y) +

∞∑
n=1

4βix

(nπ)2Tn(x, y)
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a2(β, x, y) =(2.4.10)

∞∑
n=1

8β2xy

(nπ)3 Qn(x, y)xy −
∞∑
n=1

4β2y2

(nπ)3Rn(x, y)−
∞∑
n=1

32β2y

(nπ)4 Tn(x, y)

−
∞∑
n=1

4β2x2

(nπ)3 Rn(x, y)−
∞∑
n=1

32β2x

(nπ)4 Tn(x, y) +
∞∑
n=1

16β2

(nπ)5Rn(x, y)

+(32β2 − 8iβ)

(
−1

768
x4 − 1

184
x2 − 1

128
x2y2 − 1

8

(x− y)

|x− y|

)
+

∞∑
n=1

4− 8β2

(nπ)3 Rn(x, y) + 8β2y

(
1

96
y3 +

1

48
y +

1

32
yx2 +

1

2

(y − x)

|x− y|
(
y2

2
− xy)

)
+8β2x

(
1

96
x3 +

1

48
x+

1

32
xy2 +

1

2

(x− y)

|x− y|
(
x2

2
− xy)

)
So, we can rewrite Gi as follows

Gi(wx1, 0;wy1, 0) =
e(k, β)

w
+

2

π

(
ln(2) +

1

2
ln(

∣∣∣∣sin(π
x+ y + 2

4
)sin(π

x− y
4

)

∣∣∣∣)
+a1(β, x, y)(wk) + a2(β, x, y)(wk)2 + o((wk)2) (2.4.11)

2.4.2 Asymptotic of Ge

From (2.3.1) we have that:
Ge(x1, x2; y1, y2)

=
1

4π

∫ +∞

−∞

(
−
√
ξ2 − k2 − ikβ√
ξ2 − k2 + ikβ

e−
√
ξ2−k2(x2+y2)√
ξ2 − k2

− e−
√
ξ2−k2|x2−y2|√
ξ2 − k2

)
e−i(x1−y1)ξdξ.

Then
Ge(wx1, 0;wy1, 0)

=
1

4π

∫ +∞

−∞

(
−
√
ξ2 − k2 − ikβ√
ξ2 − k2 + ikβ

1√
ξ2 − k2

− 1√
ξ2 − k2

)
e−i(wx1−wy1)ξdξ

=
1

4π

∫ +∞

−∞
− 1√

ξ2 − k2

2
√
ξ2 − k2√

ξ2 − k2 + ikβ
e−i(wx1−wy1)ξdξ

=
1

4π

∫ +∞

−∞

−2√
ξ2 − k2 + ikβ

e−i(wx1−wy1)ξdξ

Operating the change of variables ξ = kζ, we get

Ge(wx1, 0;wy1, 0) =
1

4π

∫ +∞

−∞

−2√
ζ2 − 1 + iβ

e−iwk(x1−y1)ζdζ

We further denote
α = wk |(x1 − y1)| .
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Then

Ge(wx1, 0;wy1, 0) =
1

4π

∫ +∞

−∞

−2√
ζ2 − 1 + iβ

e−iαζdζ

Assuming x1 < y1 snd applying the change of variables χ = −ζ, we find

Ge(wx1, 0;wy1, 0) =
−1

π

∫ +∞

0

cos(αζ)√
ζ2 − 1 + iβ

dζ

To derive the asymptotic expansion of Ge we first calculate the leading
terms in the integral defining the Green function. We first have

1√
ζ2 − 1 + iβ

=
1

|ζ|
1√

1− 1
ζ2 + i β|ζ|

Hence√
1− 1

ζ2
= 1− 1

2ζ2
− 1

8ζ4
+ o(

1

ζ4
)

Then

√
1− 1

ζ2
+ i

β

ζ
= 1 + i

β

ζ
− 1

2ζ2
− 1

8ζ4
+ o(

1

ζ4
)

Therefore

1√
1− 1

ζ2 + iβζ

=
1

1 + iβζ −
1

2ζ2 − 1
8ζ4 + o( 1

ζ4 )

= 1− iβ

ζ
+

1− 2β2

2ζ2
+ i(β3 − β)

1

ζ3
+O(

1

ζ4
)

Consequently

1√
ζ2 − 1 + iβ

=
1

ζ
− iβ

ζ2
+ (

1

2
− β2)

1

ζ3
+ i(β3 − β)

1

ζ4
+O(

1

ζ5
) =

∞∑
p=1

ap(β)
1

ζp
,

which gives ∫ +∞

0

cos(αζ)√
ζ2 − 1 + iβ

dζ =

3∑
p=1

ap(β)

∫ +∞

1

cos(αζ)

ζp
dζ

+

∫ +∞

0

 1√
ζ2 − 1 + iβ

−
3∑
p=1

ap(β)
1

ζp
1{ζ>1}(ζ)

 cos(αζ)dζ
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=

∫ +∞

0

(
1√

ζ2 − 1 + iβ
+ (−1

ζ
+
iβ

ζ2
− (

1

2
− β2)

1

ζ3
)1{ζ>1}

)
cos(αζ)dζ

+

∫ +∞

1

cos(αζ)

ζ
dζ − iβ

∫ +∞

1

cos(αζ)

ζ2
dζ + (

1

2
− β2)

∫ +∞

1

cos(αζ)

ζ2
dζ

=

∫ +∞

0

(
1√

ζ2 − 1 + iβ
+ (−1

ζ
+
iβ

ζ2
− (

1

2
− β2)

1

ζ3
)1{ζ>1}

)
dζ

− 1

2

∫ +∞

0

(
ζ2√

ζ2 − 1 + iβ
+ (−ζ + iβ −

(1
2 − β

2)

ζ
)1{ζ>1}

)
dζα2 + O(α4) +∫ +∞

1

cos(αζ)

ζ
dζ − iβ

∫ +∞

1

cos(αζ)

ζ2
dζ + (

1

2
− β2)

∫ +∞

1

cos(αζ)

ζ2
dζ

We have
∫ +∞

1

cos(αζ)

ζ
dζ =

∫ +∞

α

cos(ζ)

ζ
dζ = −Ci(α)

with Ci(α) is the cosine integral, so we obtain the following expansion:∫ +∞

1

cos(αζ)

ζ
dζ = −γ − ln(α)−

∞∑
n=1

(−1)n
α2n

(2n)!(2n)

where γ is the Euler–Mascheroni constant.

More generally the following expansion of the exponential integral holds

∫ +∞

1

e−iαζ

ζ
dζ = −γ − iπ

2
− ln(α)−

∞∑
n=1

(−iα)n

(n)!(n)

By differentiating the latter expression with respect to α, we find that :∫ +∞

1

e−iαζ

ζ2
dζ =

1

3
+ i(γ + i

π

2
)α+ i(ln(α)− α) + i

∞∑
n=1

(−i)n αn+1

(n+ 1)!n

So,∫ +∞

1

cos(αζ)

ζ2
dζ =

1

3
− π

2
α+ i

∞∑
n=1

(−i)(2n−1) α2n

(2n)!(2n− 1)

and∫ +∞

1

e−iαζ

ζ3
dζ =

1

4
−1

3
iα+

(γ + iπ2 )

2
α2−1

2
α2−1

4
α2+

α2

2
ln(α)+

∞∑
n=1

(−i)n αn+2

(n+ 2)!n
so,∫ +∞

1

cos(αζ)

ζ3
dζ =

1

4
+ (

γ

2
− 3

4
)α2 +

α2

2
ln(α) +

∞∑
n=1

(−1)n
α2n+2

(2n+ 2)!(2n)
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Finally, we find ∫ +∞

0

cos(αζ)√
ζ2 − 1 + iβ

dζ =

∫ +∞

0

(
1√

ζ2 − 1 + iβ
− (

1

ζ
+
iβ

ζ2
− (

1

2
− β2)

1

ζ3
)1{ζ>1}

)
dζ

−γ +
(1

2 − β
2)

4
− iβ

3
+ iβ

π

2
α− ln(α) + (

−1

8
− iβ

2
+
γ

4
+

3

4
β2 − γ

2
β2)α2

−1

2

∫ +∞

0

(
ζ2√

ζ2 − 1 + iβ
+ (−ζ + iβ −

(1
2 − β

2)

ζ
)1{ζ>1}

)
dζα2

+(
1

2
− β2)

α2

2
ln(α) +O(α4)

Therefore

Ge(wx1, 0;wy1, 0) =

−1

π

∫ +∞

0

(
1√

ζ2 − 1 + iβ
+ (−1

ζ
+
iβ

ζ2
− (

1

2
− β2)

1

ζ3
)1{ζ>1}

)
dζ

+
γ

π
−

(1
2 − β

2)

4π
+
iβ

3π
− iβ

2
α

+
ln(α)

π
− 1

π
(
−1

8
− iβ

2
+
γ

4
+

3

4
β2 − γ

2
β2)α2

+
1

2π

∫ +∞

0

(
ζ2√

ζ2 − 1 + iβ
+ (−ζ + iβ −

(1
2 − β

2)

ζ
)1{ζ>1}

)
dζα2

− 1

π
(
1

2
− β2)

α2

2
ln(α) +O(α4)

=
−1

π

∫ +∞

0

(
1√

ζ2 − 1 + iβ
+ (−1

ζ
+
iβ

ζ2
− (

1

2
− β2)

1

ζ3
)1{ζ>1}

)
dζ

+
γ

π
−

(1
2 − β

2)

4π
+
iβ

3π
− iβ

2
wk |x1 − y1|+

ln(k)

π
+

ln(|x1 − y1|)
π

+
ln(w)

π
− 1

π

(
−1

8
− iβ

2
+
γ

4
+

3

4
β2 − γ

2
β2

)
(x1 − y1)2k2w2

+
1

2π

∫ +∞

0

(
ζ2√

ζ2 − 1 + iβ
+ (−ζ + iβ −

(1
2 − β

2)

ζ
)1{ζ>1}

)
dζ(x1 − y1)2k2w2

− 1

π
(
1

2
− β2)

(x1 − y1)2k2w2

2
ln(k |x1 − y1|)−

1

π
(
1

2
− β2)

(x1 − y1)2k2w2

2
ln(w)

+O(w4)
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Denote

δ(β) =
−1

π

∫ +∞

0

(
1√

ζ2 − 1 + iβ
+ (−1

ζ
+
iβ

ζ2
− (

1

2
− β2)

1

ζ3
)1{ζ>1}

)
dζ

+
γ

π
−

(1
2 − β

2)

4π
+
iβ

3π
(2.4.12)

b2(β, k, x, y) = − 1

π

(
−1

8
− iβ

2
+
γ

4
+

3

4
β2 − γ

2
β2

)
(x1 − y1)2

+
1

2π

∫ +∞

0

(
ζ2√

ζ2 − 1 + iβ
+ (−ζ + iβ −

(1
2 − β

2)

ζ
)1{ζ>1}

)
dζ(x1 − y1)2

− 1

π
(
1

2
− β2)

(x1 − y1)2

2
ln(k |x1 − y1|)(2.4.13)

Then Ge can be rewritten as follows

Ge(wx1, 0;wy1, 0) = δ(β) +
ln(|x1 − y1|)

π
− iβ

2
|x1 − y1| (wk)

+
ln(wk)

π
+ b2(β, k, x, y)(wk)2

− 1

π
(
1

2
− β2)

(x1 − y1)2

2
k2w2 ln(w) +O(w4) (2.4.14)

2.4.3 Asymptotic of S(w, k)

From the previous asymptotic expansions (2.4.14) and (2.4.11), we obtain
the following result.

Theorem 8. Let 0 < w < w0, the kernel of S(w, k) has the following ex-
pansion

Gi(wx1, 0;wy1, 0) +Ge(wx1, 0;wy1, 0) = θw + s1 + s2w + s3w
2 ln(w) + s4

where

θw(k) = e(k,β)
w + δ(β) + ln(wk)

π

s1(x1, y1) = 1
π ln |4(x1 − y1) sin(π(x1+y1+2)

4 ) sin(π(x1−y1)
4 )|

s2(k, x1, y1) = − iβ
2 |x1 − y1| k + a1(β, x, y)k

s3(k, x1, y1) = − 1

π
(
1

2
− β2)

(x1 − y1)2

2
k2

s4(w, k, x1, y1) = a2(β, x1, y1)(wk)2 + b2(β, k, x1, y1)(wk)2 + o((wk)2)
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The functions e, a2, δ(β) and b2 are given respectively in (2.4.9), (2.4.10),
(2.4.12) and (2.4.13).

We then have the following asymptotic behavior of S(w, k).

Corollary 9. The operator valued function S(w, k) verifies

S(w, k) = Θw(k) + S1 + wS2(k) + w2 ln(w)S3(k) + w2S4(w, k)

where:
Θw(k)φ(x) = θw(k)

∫ 1
−1 φ(y)dy

S1φ(x) =
∫ 1
−1 s1(x, y)φ(y)dy

S2(k)φ(x) =
∫ 1
−1 s2(k, x, y)φ(y)dy

S3(k)φ(x) =
∫ 1
−1 s3(k, x, y)φ(y)dy

S4(w, k)φ(x) =
∫ 1
−1 s4(w, k, x, y)φ(y)dy

The asymptotic expansion is uniform with respect to k within a compact set
of the complex plane.

2.4.4 Asymptotic of resonant frequencies

We derive in this section the asymptotic expansion of the resonant frequen-
cies. We will show that they converge to the zeros of the function e(k, β)
when w tends to zero.

Define the kn(0) to be the zero of the function e(k, β), that is e(kn(0)β) =
0, ordered with respect to their real values and imaginary value of the real
parts coincide.

Let

L(w, k) = S1 + wS2(k) + w2 ln(w)S3(k) + w2S4(w, k)

L(w, k) is invertible for w small enough. Using the Neumann series, its
inverse can be written as:

L−1(w, k) = S−1
1 +

∞∑
p=1

(
−S−1

1 (S2(k) + w ln(w)S3(k) + wS4(w, k))
)p
S−1

1 wp

Fix w0 small enough. For w < w0 the following expression holds:

S−1(w, k) = L−1(w, k)− L−1(w, k)1

Θw(k)L−1(w, k)1 + 1
Θw(k)L−1(w, k)

The resonances kn(w) in D π
w0

, are exactly the zeros of the function:
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fw(k) := Θw(k)L−1(w, k)1 + 1 := θw(k)〈1, L−1(w, k)1〉+ 1

where
θw(k) =

e(k, β)

w
+ δ(β) +

ln(w)

π
+
ln(k)

π

We observe that

〈1, L−1(w, k)1〉 = 〈1, S−1
1 1〉 − 〈1, S−1

1 S2(k)S−1
1 1〉w + o(w)

〈1, ∂kL−1(w, k)1〉 = O(w)

We further denote note

q0 = 〈1, S−1
1 1〉 (2.4.15)

q1(k) = −〈1, S−1
1 S2(k)S−1

1 1〉. (2.4.16)

Therefore, the function ∂kfw(k)
fw(k) tends to ∂ke(k,β)

e(k,β) when w goes to zero, uni-
formly on every compact far from the isolated zeros and poles pf the function
e(k, β).

For rn > 0 small enough, we have

1

2iπ

∫
|k−kn(0)|=rn

∂ke(k, β)

e(k, β)
dk = 1

Moreover, as lim
w→0

∂kfw(k)

fw(k)
=
∂ke(k, β)

e(k, β)
uniformly with respect to k on the

circle |k − kn(0)| = rn, we deduce

lim
w→0

1

2iπ

∫
|k−kn(0)|=rn

∂kfw(k)

fw(k)
dk = 1

Recall that the zeros of e(k, β) are noted kn(0) and those of fw(k) are
noted kn(w). Then

kn(w)− kn(0) = − 1

2iπ

∫
|k−kn(0)|=rn

(k − kn(0))
∂kfw(k)

fw(k)
dk

From the explicit form of the function θw(k) we have

fw(k) =
1

w

(
e(k, β)q0 +

q0

π
w ln(w) + (δ(β)q0 +

ln(k)

π
q0 + e(k, β)q1 + 1)w + o(w)

)

∂kfw(k) =
1

w

(
∂ke(k, β)q0 + (∂ke(k, β)q1 +

q0

πk
+ ∂kq1(k)e(k, β))w + o(w)

)
59



The asymptotic expansion of (fw(k))−1 is as follows

(fw(k))−1 =

w

e(k, β)q0

(
1− 1

πe(k, β)
w ln(w)− (

δ(β) + ln(k)
π

e(k, β)
+
q1

q0
+

1

e(k, β)q0
)w + o(w)

)
Therefore

∂kfw(k)

fw(k)
=
∂ke(k, β)

e(k, β)
− ∂ke(k, β)

πe(k, β)2
w ln(w)

+(−δ(β)∂ke(k, β)

e(k, β)2
− ∂ke(k, β) ln(k)

πe(k, β)2

−q1(k)∂ke(k, β)

e(k, β)q0

− ∂ke(k, β)

q0e(k, β)2
+
q1(k)∂ke(k, β)

e(k, β)q0
+

1

e(k, β)πk
+
∂kq1(k)

q0
)w + o(w)

On the other hand, we have∫
|k−kn(0)|=rn

(k − kn(0))
∂ke(k, β)

e(k, β)
dk = 0∫

|k−kn(0)|=rn
(k − kn(0))

∂ke(k, β)

e(k, β)2
dk =

2iπ

∂ke(kn(0), β)∫
|k−kn(0)|=rn

(k − kn(0))
1

e(k, β)k
dk = 0∫

|k−kn(0)|=rn
(k − kn(0))

q1(k)∂ke(k, β)

e(k, β)
dk = 0∫

|k−kn(0)|=rn
(k − kn(0))∂kq1(k)dk = 0∫

|k−kn(0)|=rn
(k − kn(0))

∂ke(k, β) ln(k)

e(k, β)2
dk = 2iπ

ln(kn(0))

∂ke(kn(0), β)

Using the previous equalities, we find

∫
|k−kn(0)|=rn

(k − kn(0))
∂kfw(k)

fw(k)
dk = − 2i

∂ke(kn(0), β)
w ln(w)

−
(
δ(β)

2iπ

∂ke(kn(0), β)
+ 2i

ln(kn(0))

∂ke(kn(0), β)
+

2iπ

q0∂ke(kn(0), β)

)
w + o(w)

Therefore
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kn(w) = kn(0) +
1

π∂ke(kn(0), β)
w ln(w)

+

(
δ(β)

1

∂ke(kn(0), β)
+

ln(kn(0))

π∂ke(kn(0), β)
+

1

q0∂ke(kn(0), β)

)
w + o(w)

Hence

kn(w) = kn(0) +
1

π∂ke(kn(0), β)
w ln(w)

+
1

∂ke(kn(0), β)

(
δ(β) +

ln(kn(0))

π
+

1

q0

)
w + o(w)

Recall the expression (2.4.9)

e(k, β) =
1

2i(e−2ikh − 1)

(
e−2ikh 1

(k + kβ)
+

1

k − kβ

)
A simple calculation gives

∂ke(k, β) =

h

k(e−2ikh − 1)2

(
e−2ikh 1

(1 + β)
+

1

1− β

)
+

1

2ik2(e−2ikh − 1)

(
e−2ikh 2ih+ 1

(1 + β)
+

1

1− β

)

∂ke(k, β) =
e−2ikh(1− β)(2ih+ (2ih+ 1)(e−2ikh − 1)) + (1 + β)(2ihk + (e−2ikh − 1))

2ik2(e−2ikh − 1)2(1− β2)

We resume the previous asymptotic expansions in the following main
theorem.

Theorem 10. Let kn(0) be a fixed zero of the function e(k, β) given by
(2.4.9), that is, it satisfies the dispersion equation

e−2ikh =
β − 1

β + 1
. (2.4.17)

There exists w0 > 0 small enough such that for 0 < w < w0, the unique
resonance kn(w) located near kn(0) has the following asymptotic expansion

kn(w) = kn(0) +
A(β)

π
w ln(w) +A(β)

(
δ(β) +

ln(kn(0))

π
+

1

q0

)
w + o(w),

where δ(β) is given in (2.4.12), and A(β) is defined by

A(β) =

2ikn(0)
2(e−2ikn(0)h − 1)2(1− β2)

e−2ikn(0)h(1− β)(2ih+ (2ih+ 1)(e−2ikn(0)h − 1)) + (1 + β)(2ihkn(0) + (e−2ikn(0)h − 1))
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In particular, as w tends to zero, the imaginary part of resonance kn(w)
behaves as

Im(kn(w)) = Im(kn(0)) +
1

π
Im(

1

∂ke(kn(0), β)
)w ln(w)

+Im(
1

∂ke(kn(0), β)

(
Re(δ(β)) +

Re(ln(kn(0)))

π
+

1

q0

)
)w

+Re(
1

∂ke(kn(0), β)

(
Im(δ(β)) +

Im(ln(kn(0)))

π
+

1

q0

)
)w + o(w).
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Chapter 3

Asymptotic of resonances of a
periodic array of metallic
subwavelength cavities
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3.1 Introduction

Metallic surfaces containing subwavelength cavities have been studied inten-
sively for the last two decades, and that is due to their exceptional optical
properties. These exceptional properties can be resumed in the enhancement
and the localization of the electromagnetic field inside the cavities. In fact,
at the resonance frequency, the electromagnetic fields can be enhanced lo-
cally by several orders of magnitude, first due to the multiple back and forth
reflections between the cavity’s walls, and secondly due to interaction of the
incident electromagnetic field with independent surface plasmon modes on
the surface of the metal. These amazing features could find application in
many domains like imaging, microscopy, spectroscopy and communication.
In this chapter, we study a particular case of a periodic array of subwave-
length metallic rectangular cavities.

Due to geometrical considerations and to the choice of a time harmonic
incident field [5], the scattering problem can be reduced to a Helmholtz
equation in an unbounded planar domain. Using the Green formula we
reformulate the Helmholtz equation in the whole domain as a system of inte-
gral equations defined on the aperture of the cavity in the unit periodic cell.
Rescaling the integral equation, and using the explicit spectral expression of
the periodic Green function, we determine the asymptotic expansion of the
integral operator. Using an operator version of the Rouché theorem, we are
able to derive finally the asymptotic expansion of the resonant frequencies
kn(w) of our system.

The outline of the chapter is as follows. Section 2 describes the physical
problem. In section 3, we study the well posedness of the associated scatter-
ing problem through a classical variational formulation.

In section 4, an integral representation of the solution to the diffraction
problem is derived. We reduce the Helmholtz equation in the unbounded
diffraction domain to a linear system of integral equations on the aperture
of the single cavity in the unit periodic cell (Lemma 3.4.3). By rescaling the
obtained integral equation we show that the resonances are exactly the zeros
of a given operator valued function S(w, k).

Section 5 is devoted to the asymptotic expansion of S(w, k) and the reso-
nant frequencies kn(w) as the width of the cavity w tends to 0. We consider
two asymptotic regimes: the first is the case where the period of the array
d is fixed and is independent on w, and the second case is when d depends
linearly on w, that is, d = mw for some constant m > 0 The asymptotic
expansions of the associated integral operator S(w, k) are provided Corollar-
ies 21 and 29. Using the generalized Rouché Theorem and the asymptotic
expansion of the integral operators we obtain the asymptotic behavior of the
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resonant frequencies for two different regimes in Theorems 26 and 33.

3.2 Position of the problem

3.2.1 Description of the geometry and notations

Let (e1, e2, e3) be an orthonormal basis of R3. The device is made by a per-
fectly conducting metal and consists on a periodic array of metallic cavities
of the same width w. It is invariant in the x3 direction and periodic in the
x1 direction with period d > 0.

The scattering domain is the air above the optical device, characterized
by a constant electric permittivity ε and a magnetic permeability µ. It has
the form Ω× R.

Figure 3.1: The grating of stripes Ω

Its cross-section Ω as shown in Figure 2 consists of the union of the
upper-half plane Ωe = R2

+ and the set of the open cavities Ωi = ∪j∈Z]jd −
w/2, jd+ w/2[×]− h, 0].

Figure 3.2: The diffracting domain Ω
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We likewise define the unit cell of the grid U × R by

U =]− d

2
,
d

2
[×R

and introduce the following notations:
O = Ω ∩ U, Oe = Ωe ∩ O, Oi = Ωi ∩ O, Γw = (−w/2, w/2), and ∂O =
{X ∈ ∂Ω;−d

2 ≤ x1 ≤ d
2}.

3.2.2 Formulation of the problem

Assume Ω is filled with a homogeneous dielectric material of magnetic per-
meability µ, and electric permittivity ε. The time-dependent, linear Maxwell
equations take the form

curl E + µ
∂H

∂t
= 0 in Ω× R× R+

curl H− ε∂E
∂t

= 0 in Ω× R× R+

where E ∈ R3 and H ∈ R3 respectively denote the electric and magnetic
fields. In this chapter we only consider time-harmonic solutions, i.e., special
solutions of the form

E(x, t) = Re(E(x)e−iωt) and H(x, t) = Re(H(x)e−iωt)

where ω denotes the time pulsation and the complex fields E(x) and H(x)
satisfy

curl E − iωµH = 0 (3.2.1)
curl H + iωεE = 0 (3.2.2)

We assume that the surface of the device is a perfect conductor, so that E
satisfies the following boundary condition on ∂Ω× R

curl E × n = 0

where n = (n, 0). Here n denotes is the outward normal vector to ∂Ω.
As in [3], we focus on the transverse magnetic polarization (TM), where

the total magnetic field is transverse to the invariant dimension. In this
case, H = (0, 0, H3(x1, x2)) and the x3−component of the total magnetic
field verifies the Helmholtz equation{

∆H3(X) + k2H3(X) = 0 X ∈ Ω,

∂nH3 = 0 X ∈ ∂Ω,
(3.2.3)

with k = ω
√
εµ.

We assume that the metal is illuminated under the incidence angle β by a
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harmonic incident plane wave, and we denote by ki = k1e1 +k2e2 its wave
vector, that is

H inc(x1, x2) = H inc
0 ek1x1+k2x2 ,

and
k = ‖ki‖ =

√
k2

1 + k2
2,

Let θ be the unique real verifying

k1 = k cos(β) = θ +
2p0π

d
, θ ∈

]
−π
d
,
π

d

]
(3.2.4)

We consider the diffraction of (time harmonic) incident fields Einc, H inc

by the surface ∂Ω . Then

E = Einc + Es,

H = H inc +Hs,

where E and H are the total electric and magnetic fields, and Es, Hs are
the diffracted electric and magnetic fields. Since H inc verifies the Helmholtz
equation, so from (3.2.3) and taking into account the linearity of the ∆
operator, we can show that{

∆Hs
3(X) + k2Hs

3(X) = 0 X ∈ Ω,

∂nH
s
3 = f X ∈ ∂Ω.

(3.2.5)

where f = −∂nH inc
3 .

Since the scattering domain is unbounded, we require that the scattered
fields (Es, Hs) satisfy a radiation condition that fixes the behavior of the
solution at infinity.

We further denote H,H inc and Hs the third components of the total,
incident and scattered fields respectively.

3.2.3 Quasi-periodicity

Regarding the periodicity of the domain the incident field H inc satisfies

H inc(x1 + pd, x2) = H inc(x1, x2)eiθpd, ∀(x1, x2) ∈ Ω, ∀p ∈ Z (3.2.6)

In fact, if we assume that H is a solution of (3.2.3). Then, by the periodicity
of the domain Ω, every field H(p) of the form

H(p)(x1, x2) = H(x1 + pd, x2)eiθpd

for p ∈ Z is a solution of the same problem. Of course, the associated
diffracted field(H(p))s has the same behavior for |x2| → +∞ as Hs, and
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there is no physical criterion to eliminate some of these solutions. In order
to avoid to have infinitely many solutions, we will search solutions that are
θ−periodic, that is

H(x1 + pd, x2) = H(x1, x2)eiθpd, ∀(x1, x2) ∈ Ω, ∀p ∈ Z.

The θ−periodicity condition will allow us now to write a radiation con-
dition in the x2-direction. Indeed, if the diffracted field Hs is θ−periodic, it
means that the function

Hper(x1, x2) = Hs(x1, x2)e−iθx1

is periodic. If we suppose furthermore that d < λ =
2π

k
then we get θ =

k1 = k cos(β).

3.2.4 The radiation condition

The radiation condition that we consider has been used in [28] and [29].

Let L0 > 0 , the Fourier decomposition of Hper for x2 > L0 leads to the
so-called θ−periodic Fourier decomposition of Hs:

Hs(x1, x2) =
∑
p∈Z

Hs
p(x2)ei(θ+θp)x1 , (3.2.7)

where θp =
2πp

d
and Hs

p(x2) =

∫ d

0
Hs(x1, x2)e−i(θ+θp)x1dx1.

Since Hs satisfies

∆Hs(X) + k2Hs(X) = 0, X ∈ Ω,

the Fourier coefficient Hs
p must solve the following differential equation:

d2Hs
p

dx2
2

+ (k2 − (θ + θp)
2)Hs

p = 0. (3.2.8)

This 1d-equation has two linearly independent solutions but only one of them
is physically admissible.

Classical radiation condition

Here, we deal with the physically significant case where ω is positive, which
in turn implies that k is also positive and hence k2 − (θ + θp)

2 is real. The
following radiation conditions are developed in [29].

Let
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Z+(k) = {p ∈ Z; (θ + θp)
2 − k2 > 0},

Z0(k) = {p ∈ Z; (θ + θp)
2 − k2 = 0},

Z−(k) = {p ∈ Z; (θ + θp)
2 − k2 < 0}.

(3.2.9)

Then, the radiation conditions consist on:

1. For p ∈ Z+(k), we choose the exponentially decreasing solution

Hs
p(x2) = Hs

p(L0)e−
√

(θ+θp)2−k2(x2−L0).

2. For p ∈ Z0(k), we choose the constant solution

Hs
p(x2) = Hs

p(L0)

3. For p ∈ Z−(k), we choose the solution which satisfies the outgoing
Sommerfeld radiation condition

Hs
p(x2) = Hs

p(L0)ei
√
k2−(θ+θp)2(x2−L0).

Finally, the diffracted field Hs has the following expression for x2 > L0:

Hs(x1, x2) =
∑
p∈Z

Hs
p(L0)eαp(k)(x2−L0)ei(θ+θp)x1 , (3.2.10)

where αp is given by :

αp(k) =


−
√

(θ + θp)2 − k2 if p ∈ Z+(k)

0 if p ∈ Z0(k)

i
√

(θ + θp)2 − k2 if p ∈ Z−(k)

We notice that Z0(k) and Z−(k) are finite sets, so that the previous
series expansion contains only a finite number of non decreasing terms.
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Generalized radiation conditions

The radiation condition stated first deals with real positive frequencies. In
order to apply the complex integration contour method needed in the asymp-
totic expansion of resonances we will deal with solutions to the problem
(3.2.5) with complex frequency k.

The continuation of the problem to the complex domain requires to fix
the branch cut of the complex square root function.

We further extend θ(k) to the complex domain by θ(k) = k1 = k cos(β)
where β is the incident angle.

We first need to define the square root of (θ + θp)
2 − k2

(θ + θp)
2 − k2 = − sin2(β)k2 +

4πp

d
cos(β)k +

4π2p2

d2

= − sin2(β)(k − k1,p)(k − k2,p)

where

k1,p =
2πp

d sin2(β)
(cos(β) + 1) and k2,p =

2πp

d sin2(β)
(cos(β)− 1).

We define the square root of ((θ+ θp)
2− k2) as the product of (− sin2(β))

1
2 ,

(k − k1,p)
1
2 and (k − k2,p)

1
2 using the following choice of the determination

of the complex square root function:

∀z ∈ C, z
1
2 = |z|

1
2 ei arg(z)/2 where arg(z) ∈ ]

π

2
,
5π

2
[

The previous square root is defined using the analytic branch of argument in
the whole complex plane minus the positive imaginary axis. We then obtain

((θ + θp)
2 − k2)

1
2 = i| sin(β)|(k − k1,p)

1
2 (k − k2,p)

1
2 (3.2.11)

It’s clear that the term ((θ+ θp)
2−k2)

1
2 is defined and analytic with respect

to k in the region C \ ({k1,p + iR+} ∪ {k2,p + iR+}). Consequently, the
expression (3.2.7) is defined and analytic on the region D that occupies the
whole complex plane minus all the axis {k1,p + iR+} and {k2,p + iR+} for all
p ∈ Z (see Figure 3.2.4).

D = C \ ∪
p∈Z,i∈{1,2}

{ki,p + iR+} (3.2.12)

The generalized radiation condition consist of choosing one admissible
solution to (3.2.8). So we write Hs

p(x2) as Hs
p(L0)eαp(k)(x2−L0) where
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Figure 3.3: The Domain D

αp(k) =



((θ + θp)
2 − k2)

1
2 if Re(((θ + θp)

2 − k2)
1
2 ) < 0,

((θ + θp)
2 − k2)

1
2 if Re(((θ + θp)

2 − k2)
1
2 ) = 0

and Im(((θ + θp)
2 − k2)

1
2 ) > 0,

−((θ + θp)
2 − k2)

1
2 if Re(((θ + θp)

2 − k2)
1
2 ) = 0

and Im(((θ + θp)
2 − k2)

1
2 ) < 0,

−((θ + θp)
2 − k2)

1
2 if Re(((θ + θp)

2 − k2)
1
2 ) > 0.

Now, we study the sign of Re(((θ+θp)
2−k2)

1
2 ). we deduce from (3.2.11)

the following

Re(((θ + θp)
2 − k2)

1
2 ) = −| sin(β)|Im((k − k1,p)

1
2 (k − k2,p)

1
2 ).

The term Im((k − k1,p)
1
2 (k − k2,p)

1
2 ) is equal to zero for k in the interval

]−∞, k2,p[∪]k1,p,+∞[.

Im((k − k1,p)
1
2 (k − k2,p)

1
2 ) is positive if k is in the region {Im(k) >

0 and Re(k) ∈]−∞, k2,p[∪]k1,p,+∞[} and negative if Im(k) < 0 or (Im(k) >
0 and Re(k) ∈]k2,p, k1,p[).

Then
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Re(((θ + θp)
2 − k2)

1
2 ) > 0 if Im(k) < 0

or (Im(k) > 0 and Re(k) ∈]k2,p, k1,p[)

Re(((θ + θp)
2 − k2)

1
2 ) < 0 if Im(k) > 0

and Re(k) ∈]−∞, k2,p[∪]k1,p,+∞[

Re(((θ + θp)
2 − k2)

1
2 ) = 0 if k ∈]−∞, k2,p[∪]k1,p,+∞[

Figure 3.4: The sign of Re(((θ + θp)
2 − k2)

1
2 )

When Re(((θ+θp)2−k2)
1
2 ) = 0 which is equivalent to k ∈]−∞, k2,p[∪]k1,p,+∞[,

the sign of Im(((θ + θp)
2 − k2)

1
2 ) is as follows:{

Im(((θ + θp)
2 − k2)

1
2 ) > 0 if k > k1,p

Im(((θ + θp)
2 − k2)

1
2 ) < 0 if k < k2,p

Finally, we have the expression of αp(k):

αp(k) =

{
((θ + θp)

2 − k2)
1
2 if k > k1,p or Im(k) > 0 and Re(k) ∈]−∞, k2,p[∪]k1,p,+∞[

−((θ + θp)
2 − k2)

1
2 otherwise

(3.2.13)

Hence the generalized radiation conditions are equivalent to write for
x2 > L0:

Hs(x1, x2) =
∑
p∈Z

Hs
p(L0)eαp(k)(x2−L0)ei(θ+θp)x1 , (3.2.14)
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where αp(k) is given by (3.2.13).

Remark 11. From the expression of αp(k), we remark that ∀k ∈ C , ∃M(k)

such that ∀p > M(k), αp(k) = −((θ + θp)
2 − k2)

1
2 . So we define M(k) by

M(k) = min{p ∈ Z, αp(k) = −((θ + θp)
2 − k2)

1
2 } (3.2.15)

3.2.5 The periodic problem

Let Hper(x1, x2) be defined by:

Hs(x1, x2) = eiθx1Hper(x1, x2). (3.2.16)

Consequently, Hper(x1, x2) is a periodic function with respect to x1 of period
d.

Lemma 3.2.1. The x1-periodic field Hper solves the following boundary
value problem:


∆θHper(X) + k2Hper(X) = 0 X ∈ Oe ∪Oi
∂Hper

∂θn
(x1;x2) = f (x1, x2) ∈ ∂O

(3.2.17)

where ∆θ = (∂x1 + iθ)2 + ∂2
x2
,

∂

∂θn
= (∂x1 + iθ, ∂x2)T .n and ∂O = {X ∈

∂Ω;−d
2 ≤ x1 ≤ d

2}.

Proof. We substitute the expression (3.2.16) in (3.2.3), and we use the
formula ∆eiθx1 = eiθx1∆θ. By considering the fact that Hp is periodic, we
find the result.

Remark 12. The previous lemma, allows us to reduce the problem (3.2.5)
defined in the whole Ω to the problem (3.2.17) defined in the unit cell O.
The problem (3.2.17) is more suitable for the integral equation representation
method developed in chapter two.

3.3 Wellposedness of the problem

In this part we will prove the wellposedness of the problem (3.2.3) on C
except for a discrete family of values which are the resonance frequencies.
We will first consider the case where k ∈ R and use the classical radiation
condition (3.2.10) to prove the wellposedness of the problem. Then we
extend the solution to the whole complex plane C using a clever integral
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representation and the Steinberg Theorem.

Since we look for θ−periodic solution, the problem can be rewritten on
a unique cell of the grating. Let us consider the following problem (verified
by the total field):

PO-problem:

∆H(X) + k2H(X) = 0, X ∈ O (3.3.1)
∂H

∂n
(x1;x2) = 0, (x1, x2) ∈ ∂O (3.3.2)

H(
d

2
;x2) = H(−d

2
;x2)eiθd (3.3.3)

∂H

∂n
(
d

2
;x2) =

∂H

∂n
(−d

2
;x2)eiθd (3.3.4)

Hs = H −H ins has the form (3.2.10) for x2 > L0 (3.3.5)

Thanks to conditions (3.3.3) and (3.3.4), every solution of the cell prob-
lem can be extended by pseudo-periodicity to a solution to the diffraction
problem (3.2.3) in the whole plan.

For L > L0, we set

OL = {X ∈ O;x2 < L}
ΓL = {X ∈ O;x2 = L}

Now we will set an equivalent problem set in the bounded domain OL,
where a boundary condition on ΓL is introduced. This condition will be
derived from the expression (3.2.10) of the diffracted field for x2 > L0.

Before doing that, let us define some useful functional spaces that have
been already extensively studied in [30, 31], and recall some Green formulas.

3.3.1 θ-periodic functional spaces

We consider the following spaces:

1. C∞θ (R2) is the set of all functions which are C∞(R2), satisfy (3.2.6)
and vanish for large x2.

2. C∞θ (O)(resp C∞θ (OL)) is the set of restrictions to O (resp OL) of all
functions of C∞θ (R2).
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3. H1
θ(O)(resp H1

θ(OL)) is the smallest closed subspace of H1(O)(resp
H1(OL) ) which contains C∞θ (O)(resp C∞θ (OL)).

The following Green formula holds for i = 1or 2:

∀u, v ∈ H1
θ(O),

∫
O

∂u

∂xi
v̄dx = −

∫
O
u
∂v̄

∂xi
dx+

∫
∂̄O
uv̄nidγ

where n = (n1, n2) is the outward normal to ∂̄O. We also have

∀u, v ∈ H1
θ(O),

∫
O
−∆uv̄dx =

∫
O
∇u∇v̄dx−

∫
∂O

∂u

∂n
v̄dγ (3.3.6)

Notice that these formulas involve no term on the lateral boundaries {x1 =
−d

2} and {x1 = d
2} of O. Likewise, we have

∀u, v ∈ H1
θ(OL),

∫
OL

∂u

∂xi
v̄dx = −

∫
OL

u
∂v̄

∂xi
dx+

∫
∂O∪ΓL

uv̄nidγ (3.3.7)

∀u, v ∈ H1
θ(OL),

∫
OL

−∆uv̄dx =

∫
OL

∇u∇v̄dx−
∫
∂O∪ΓL

∂u

∂n
v̄dγ (3.3.8)

We also introduce the following space:

H
1
2
θ (ΓL) =

v =
∑
p∈Z

vp(L)ei(θ+θp)x1 ;
∑
p∈Z

(1 + (θ + θp))
1
2 |vp(L)|2 < +∞


H

1
2
θ (ΓL) is a closed subspace of the usual Sobolev space H

1
2 (ΓL), and the

norm

|v|21
2
,θ

= d
∑
p∈Z

(1 + (θ + θp))
1
2 |vp(L)|2

is equivalent onH
1
2
θ (ΓL) to the classicalH

1
2 -norm. The dual space ofH

1
2
θ (ΓL)

is

H−
1
2

θ (ΓL) =

v =
∑
p∈Z

vp(L)ei(θ+θp)x1 ;
∑
p∈Z

(1 + (θ + θp))
− 1

2 |vp(L)|2 < +∞


and the associated norm is

|v|2− 1
2
,θ

= d
∑
p∈Z

(1 + (θ + θp))
− 1

2 |vp(L)|2

H
1
2
θ (ΓL) is exactly the space of the traces on ΓL of all functions of H1

θ(OL).

The duality product between H
1
2
θ (ΓL)and H−

1
2

θ (ΓL) is given by

〈u, v〉θ,ΓL = d
∑
p∈Z

up(L)v̄p(L)
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3.3.2 Truncation of the domain

If H is solution of PO -problem ,then by (3.2.10),H satisfies on ΓL, the
following boundary condition:

∂H

∂n
= −T (k, θ)H , on ΓL (3.3.9)

where the operator T (k, θ) is defined as follows:

T (k, θ) : H
1
2
θ (ΓL) → H−

1
2

θ (ΓL)∑
p∈Z

vp(L)ei(θ+θp)x1 7→
∑
p∈Z

µp(k, θ)vp(L)ei(θ+θp)x1

where

µp(k, θ) =


√

(θ + θp)
2 − k2 if p ∈ Z+(k, θ)

0 if p ∈ Z0(k, θ)

i
√
k2 − (θ + θp)

2 if p ∈ Z−(k, θ)

One can check easily that T (k, θ) is continuous. Consider now the following
truncated problem:

POL-problem: Find H ∈ H1
θ(OL) such that

∆H(X) + k2H(X) = 0, X ∈ OL, (3.3.10)
∂H

∂n
(x1;x2) = 0, (x1, x2) ∈ ∂O, (3.3.11)

∂H

∂n
(
d

2
;x2) =

∂H

∂n
(−d

2
;x2)eiθd, (3.3.12)

∂H

∂n
=
∂H inc

∂n
− T (k, θ)(H −H inc) on ΓL, (3.3.13)

Proposition 13. If H is a solution of PO such that H̃ = H|OL ∈ H
1
θ(OL),

then H̃ is a solution of POL. Conversely, if H̃ is a solution of POL, it can
be extended to a solution H of PO.

Proof. The first part of the proof is obvious. Conversely, if H̃ is a solution
of POL , then

H =


H̃ if x2 < L∑
p∈Z

H̃p(L0)e−µp(k,θ)(x2−L0)ei(θ+θp)x1 if x2 > L

This function is clearly continuous through x2 = L. Moreover the continu-
ity of the normal derivative is obtained thanks to the boundary condition
(3.3.13), and one can check easily that H is a solution to PO.
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3.3.3 The variational formulation

The problem POL has the following variational formulation:

{
Find H ∈ H1

θ(OL) such that
a(H, v) = l(v) ∀v ∈ H1

θ(OL)
(3.3.14)

where the forms a(H, v) and l(v) are defined by

a(H, v) =

∫
OL

(
∇H.∇v̄ − k2Hv̄

)
dx+ 〈T (k, θ)H, v〉θ,ΓL

l(v) = 〈∂H
inc

∂n
+ T (k, θ)H inc, v〉θ,ΓL

We now establish a Freedholm decomposition for formulation (3.3.14). The
following identity holds

a(H, v) = b(H, v) + c(H, v) (3.3.15)

where
b(H, v) =

∫
OL

(∇H.∇v̄ +Hv̄) dx+ 〈T (k, θ)H, v〉θ,ΓL

and
c(H, v) = −(k2 + 1)

∫
OL

(Hv̄) dx

Since b(H, v) and c(H, v) are continuous sesquilinear forms on H1
θ(OL), we

can define two bounded operators B and C of H1
θ(OL) by the identities

(BH, v)H1
θ(OL) = b(H, v) and (CH, v)H1

θ(OL) = c(H, v) ∀H, v ∈ H1
θ(OL).

Lemma 3.3.1. The operator B is an automorphism of H1
θ(OL) and the

operator C is compact on H1
θ(OL)

Proof. By definition of T (k, θ), we have

∀u ∈ H1
θ(OL), Re(〈T (k, θ)u, u〉θ,ΓL) = d

∑
p∈Z+(k,θ)

√
(θ + θp)

2 − k2 |vp(L)|2 ≥ 0

and consequently b(., .) is coercive on H1
θ(OL),

∀u ∈ H1
θ(OL), Re(b(u, u)) ≥

∫
OL

(
|∇u|2 + |u|2

)
dx

This proves that B is an automorphism of H1
θ(OL). The fact that C is

compas is a direct consequence of the compact embedding of H1
θ(OL) into

L2(OL)
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Let us denote by y the unique element of H1
θ(OL) such that

(y, v)H1
θ(OL) = l(v), ∀v ∈ H1

θ (OL)

Then, the problem POL can be formulated as follows:

Find u ∈ H1
θ(OL) such that Bu+ Cu = y.

By Lemma 3.3.1 and by the Freedholm alternative, the existence of a solu-
tion will follow from the study of the homogeneous problem:

Find u ∈ H1
θ(OL) such that Bu+ Cu = 0.

which has the following equivalent form

Find u ∈ H1
θ(OL) such that a(u, v) = 0 ∀v ∈ H1

θ(OL). (3.3.16)

Lemma 3.3.2. Let u be a solution of (3.3.16).Then up(L) = 0, ∀p ∈
Z−(k, θ).

Proof. It follows directly from the identity Im(a(u, u)) = 0.

Lemma 3.3.2 means that a solution of the homogeneous problem is either
exponentially decreasing or tends to a constant function for large x2.

Theorem 14. Problem POL has at least one solution and the set of solutions
is at most a finite-dimensional affine space.

Proof. This result is based on the Freedholm alternative. If (3.3.16) has only
the trivial solution, then (3.3.14) has a unique solution.
Suppose now that (3.3.16) has non-trivial solutions, and let us denote by
V the set of these solutions. Then, by Freedholm alternative dim(V ) < +∞
and problem (3.3.14) has a solution if and only if

l(v) = 0 ∀v ∈ V. (3.3.17)

Let us prove (3.3.17). We have that

l(v) = 〈∂H
inc
3

∂n
+ T (k, θ)H inc, v〉θ,ΓL

and
H inc(x1, x2) = H inc

0 ek1x1+k2x2 = H inc
0 e(θ+θp0 )x1ek2x2

Hence
∂H inc

∂n
= ik2H

inc on ΓL.
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We have that k2
2 = k2− k2

1 = k2− (θ+ θp0)2 ≥ 0. Then p0 ∈ Z−(k, θ) or
p0 ∈ Z0(k, θ) and

T (k, θ)H inc = µp(k, θ)H
inc = i

√
k2 − (θ + θp0)2H inc = i|k2|H inc

which implies
l(v) = i(|k2|+ k2)〈H inc, v〉θ,ΓL .

If p0 ∈ Z0(k, θ) then k2 = 0 , and if p0 ∈ Z−(k, θ), then by lemma (3.3.2)
〈H inc, v〉θ,ΓL = 0 ∀v ∈ V , and consequently (3.3.17) is proved.

3.3.4 Characterization of singular frequencies

We further call k a singular frequency for the problem PO, if (3.3.16) has
non-trivial solutions.

Define

TR(k, θ) : H
1
2
θ (ΓL) → H−

1
2

θ (ΓL)∑
p∈Z vp(L)ei(θ+θp)x1 7→

∑
p∈Z+(k,θ) µp(k, θ)vp(L)ei(θ+θp)x1

and set

aR(H, v) =

∫
OL

∇H.∇v̄dx+ 〈TR(k, θ)H, v〉θ,ΓL , ∀v ∈ H
1
θ(OL).

Lemma 3.3.3. If H is a non trivial solution of (3.3.16), then it is a solution
of

H 6= 0, aR(H, v) = k2

∫
OL

Hv̄dx, ∀v ∈ H1
θ(OL). (3.3.18)

Proof. It is a direct consequence of lemma 3.3.2.

The converse statement is false. Indeed, a solution u of (3.3.18) is a
solution of (3.3.16) if and only if up(L) = 0 for p ∈ Z−(k, θ).

In fact, we introduced the problem (3.3.18) because aR(., .) is hermitian
while a(., .) is not.

Let us consider the following eigenvalue problem:

Find λ such that there exists H ∈ H1
θ(OL), H 6= 0, satsifying

aR(H, v) = λ

∫
OL

Hv̄dx, ∀v ∈ H1
θ(OL).
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(3.3.19)

Since aR(H, v) +

∫
OL

Hv̄dx is coercive on H1
θ(OL), the study of problem

(3.3.19) is forward (cf. [32]), and we can state the following proposition.

Proposition 15. The eigenvalues of problem (3.3.16) form a sequence
(λm(k))m≥1 which tends to +∞ and one has the following characterisation:

λm(k) = min
E∈Em(H1

θ(OL))
sup

u∈E,u 6=0

aR(u, u)∫
OL
|u|2dx

(3.3.20)

where Em(H1
θ(OL)) denotes the set of all m-dimensional subspaces ofH1

θ(OL)).

A direct consequence of the previous proposition is the following corollary.

Corollary 16. Problem (3.3.18) has solutions if and only if k solves for
some m ≥ 1 the equation

λm(k) = k2. (3.3.21)

Theorem 17. Problem PO is well posed for every value of k ∈ R+ except
for the values k = km(θ, L) the unique solution to the equation (3.3.21).
Moreover, the sequence (km(θ, L))m≥1 tends to infinity as m → +∞.

Proof. To prove that the equation (3.3.21) has one and only one solution,
it suffices to check that the function k → λm(k) is continuous and non-
increasing. The monotonicity is given by the expression (3.3.20). The proof
is detailed in (cf. [33]).

3.4 Reduction of the problem to an integral equa-
tion

3.4.1 The Green function in Ωi

Let Gi be the Green function defined by
∆−θGi(x1, x2; y1, y2) + k2Gi(x1, x2; y1, y2) = δ(x1 − y1, x2 − y2), X ∈ Oi
∂Gi
∂−θn

(X;Y ) = 0, X ∈ ∂Oi

Lemma 3.4.1. The Green function Gi is given by

Gi(x1, x2; y1, y2) =

4eiθ(x1−y1)

hw

+∞∑
m,n=0

cos(mπ
w

(x1 + w
2
)) cos(mπ

w
(y1 + w

2
))

k2 − (mπ
w

)2 − (nπ
h
)2

cos(
nπ

h
(x2+h)) cos(

nπ

h
(y2+h))

(3.4.1)

Proof. We obtain the result by combining the Green function derived in [5]
and by using the formula eiθ(x1−y1)∆ = ∆−θe

iθ(x1−y1).
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3.4.2 The Green function in Ωe

Let Ge be the Green function defined by

∆−θGe(x1, x2; y1, y2) + k2Ge(x1, x2; y1, y2) = δp(x1 − y1, x2 − y2), X ∈ Ωe

(3.4.2)

Ge is periodic in x1 and y1 (3.4.3)
∂Ge
∂x2

(x1, x2 = 0; y1, y2) = 0 (3.4.4)

Ge verifies the radiation conditions (3.2.14) (3.4.5)

where δp(x1 − y1, x2 − y2) =
1

d

∑
l∈Z

e
−i2πl
d

(x1−y1) ⊗ δx2−y2

Lemma 3.4.2. The expression of Ge is given by the two following equivalent
sums:

Ge(x1, x2; y1, y2) =
1

2d

+∞∑
l=−∞

1

αl
e−i

2πl
d

(x1−y1)
(
eαl|x2−y2| + eαl|x2+y2|

)
(3.4.6)

Ge(x1, x2; y1, y2) = − i
4

+∞∑
l=−∞

eiθ(x1−y1+ld){H(1)
0 (k|x1 − y1 + ld, x2 − y2|)

+H
(1)
0 (k|x1 − y1 + ld, x2 + y2|)}

(3.4.7)

where H(1)
0 is the Hankel function of the first kind of order zero,

|x1−y1, x2−y2| =
√

(x1 − y1)2 + (x2 − y2)2 and αl(k) is defined by (3.2.13).

Proof. We develop the solution of (3.4.2) in Fourier basis, and we compute
the coefficients of this expansion. We find

1

2d

+∞∑
l=−∞

1

αl
e−i

2πl
d

(x1−y1)eαl|x2−y2|.

By eliminating the case where αl = 0 (see [29]) by the method of images we
obtain the expression (3.4.6) of Ge.

On the other hand, from [5], and using the formula eiθ(x1−y1)∆ =
∆−θe

iθ(x1−y1), we find
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G̃e = − i
4
eiθ(x1−y1)

(
H

(1)
0 (k|x1 − y1, x2 − y2|)−H(1)

0 (k|x1 − y1, x2 + y2|
)

satisfies
∆−θG̃e(x1, x2; y1, y2) + k2G̃e(x1, x2; y1, y2) = δ(x1 − y1, x2 − y2), X ∈ Oe
∂G̃e
∂x2

(x1, x2 = 0; y1, y2) = 0, x1 ∈ [−d
2
,
d

2
]

We then periodize it in the whole Ωe using the Fourier series expansion, and
obtain

Ge(x1, x2; y1, y2) =

+∞∑
l,l′=−∞

cl,l′e
i 2lπ
d
x1ei

2l′π
d
y1

with cl,l′ is the Fourier coefficient of G̃e given by

cl,l′ =
1

d2

∫ d
2

− d
2

∫ d
2

− d
2

G̃e(x1, x2; y1, y2)ei
−2lπ
d

x1ei
2l′π
d
y1

Finally by the Poisson summation formula, we find that

Ge(x1, x2; y1, y2) =

+∞∑
l,l′=−∞

G̃e(x1 + ld, x2; y1 − l′d, y2)

Remark 18. The Green functions Gi and Ge have different spacial singu-
larities. In fact Gi is singular when X tends to Y whereas Ge is singular
when (x1 − y1) = 0 or |x1 − y1| = pd.

3.4.3 Integral representation

Lemma 3.4.3. Let Y = (y1, y2) ∈ Oe ∪ Oi, a regular solution H of the
problem (3.2.17) admits the following integral representations in Oi and Oe∫ w

2

−w
2

(Ge(x1, 0; y1, 0) +Gi(x1, 0; y1, 0))
∂Hper

∂x2
(x1, 0)dx1 = F (y1, y2)

(3.4.8)

where

F (y1, y2) =

∫ −w
2

− d
2

Ge(x1, 0; y1, y2)f(x1, 0)dx1

+

∫ d
2

w
2

Ge(x1, 0; y1, y2)f(x1, 0)dx1 −
∫
∂Oi\Γw

Gi(x1, 0; y1, y2)f(x1, x2)dx1.
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Proof. We multiply the equation (3.2.17) by Gi and we integrate over Oi.
By Green formula we find

Hper(y1, y2)χΩi(y1, y2) + 2iθ

∫
Oi

(∂x1Gi(X,Y )Hper(X) + ∂x1Hper(X)Gi(X,Y )) dX

−
∫
∂Oi

∂Gi
∂n

(X,Y )Hper(X)dσ(X) +

∫
∂Oi

∂Hper
∂n

(X)Gi(X,Y )dσ(X) = 0

which is equivalent to:

Hper(y1, y2)χΩi(y1, y2) +

∫
∂Oi

∂Hper
∂θn

(X)Gi(X,Y )dσ(X)−
∫
∂Oi

∂Gi
∂−θn

(X,Y )Hper(X) = 0

After taking into account the boundary conditions satisfied by the different
functions, we obtain

Hper(y1, y2)χΩi(y1, y2) = −
∫ w

2

−w
2

Gi(x1, 0; y1, y2)
∂Hper

∂x2
(x1, 0)dx1

−
∫
∂Oi\Γw

Gi(x1, 0; y1, y2)f(x1, x2)dx1

(3.4.9)

We apply the same method in Oe ∪ {x2 < L}, and get

Hper(y1, y2)χΩe(y1, y2) =

∫ w
2

−w
2

Ge(x1, 0; y1, y2)
∂Hper
∂x2

(x1, 0)dx1

−
∫ − d

2

d
2

∂Hper
∂x2

(x1, L)Ge(x1, L; y1, y2)dx1 +

∫ − d
2

d
2

∂Ge
∂x2

(x1, L; y1, y2)Hper(x1, L)dx1

−
∫ −w

2

− d
2

Ge(x1, 0; y1, y2)f(x1, 0)dx1 −
∫ d

2

w
2

Ge(x1, 0; y1, y2)f(x1, 0)dx1

From the radiation condition, we have

Ge(x1, x2; y1, y2) =
1

2d

∑
l∈Z

1

αl
e−i

2πl
d

(x1−y1)
(
eαl|x2−y2| + eαl|x2+y2|

)

and

Hper(x1, x2) =
∑
l∈Z

Hper,l(L0)eαl(x2−L0)ei
2πl
d
x1

So

−
∫ − d

2

d
2

∂Hper
∂x2

(x1, L)Ge(x1, L; y1, y2)dx1 +

∫ − d
2

d
2

∂Ge
∂x2

(x1, L; y1, y2)Hper(x1, L)dx1 = 0
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We deduce the following integral representation

Hper(y1, y2)χΩe(y1, y2) =

∫ w
2

−w
2

Ge(x1, 0; y1, y2)
∂Hper

∂x2
(x1, 0)dx1

−
∫ −w

2

− d
2

Ge(x1, 0; y1, y2)f(x1, 0)dx1−
∫ d

2

w
2

Ge(x1, 0; y1, y2)f(x1, 0)dx1.

(3.4.10)

We take the limit y2 → 0 and we add (3.4.9) and (3.4.10), we obtain
the wanted result.∫ w

2

−w
2

(Ge(x1, 0; y1, 0) +Gi(x1, 0; y1, 0))
∂Hper

∂x2
(x1, 0)dx1 =

∫ −w
2

− d
2

Ge(x1, 0; y1, y2)f(x1, 0)dx1 +

∫ d
2

w
2

Ge(x1, 0; y1, y2)f(x1, 0)dx1

−
∫
∂Oi\Γw

Gi(x1, 0; y1, y2)f(x1, x2)dx1

We now rescale rescale the integral equation (3.4.8) to obtain

∫ 1
2

− 1
2

(Ge(wx1, 0;wy1, 0) +Gi(wx1, 0;wy1, 0))
∂Hper

∂x2
(wx1, 0)dx1 = F (y1, 0),

(3.4.11)

for all y ∈]− 1
2 ,

1
2 [: Let S(w, k) be an integral operator from H̃−

1
2 (−1

2 ,
1
2) to

H
1
2 (−1

2 ,
1
2), defined by

S(w, k)φ(y1) :=

∫ 1
2

− 1
2

(Ge(wx1, 0;wy1, 0) +Gi(wx1, 0;wy1, 0))φ(x1)dx1,(3.4.12)

Then,
∂Hper

∂x2
(wx1, 0) satisfies the following integral equation

S(w, k)
∂Hper

∂x2
(w., 0) = F (y1, 0), y1 ∈]− 1

2
,
1

2
[. (3.4.13)

Following the same analysis developed in [5], based on the radiation con-
dition and Green formulas, we can prove that the scattering resonances of the
gratings are exactly the poles of the operator valued function k → S−1(w, k)
(or the zeros of the function k → S(w, k)).
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3.5 Asymptotics

Here we first derive the asymptotic expansion of the operator S(w, k) as
w tends to zero. Then using complex contour techniques we determine
the asymptotic expansion of the resonances. We consider two asymptotic
regimes: the first is the case where the period of the array d is fixed and
is independent on w, and the second case is when d depends on w linearly,
that is d = mw for some constant m > 0.

3.5.1 The case d is independent of w

Asymptotic of Gi

Gi(wx1, 0;wy1, 0) = eiθw(x1−y1) 4

hw

+∞∑
m,n=0

cos(mπ(x1 + 1
2)) cos(mπ(y1 + 1

2))

k2 − (mπw )2 − (nπh )2

We deduce from [5], the following asymptotic expansion

Gi(wx1, 0;wy1, 0) =
e(k)

w
+ ie(k)θ(x1 − y1) +

2 ln(2)

π

+
1

π
ln(| sin(

π

2
(x1 − y1)) sin(

π

2
(x1 + y1 + 1))|)

− 2

h

(
1

6
+

1

8
((x1 + y1 + 1)2 + (x1 − y1)2)− 1

4
(x1 + y1 + 2 + |x1 − y1|)

)
w

+ i

(
2 ln(2)

π
+

1

π
ln(| sin(

π

2
(x1 − y1)) sin(

π

2
(x1 + y1 + 1))|)

)
θ(x1 − y1)w

− e(k)θ2(x1 − y1)2w +O(w2)

where

e(k) = −(
1

hk
+ cot(hk))

2

k
=

4

h

∞∑
n=0

1

k2 − (nπh )2 . (3.5.1)

Asymptotic of Ge

Ge(wx1, 0;wy1, 0) =
1

d

+∞∑
l=−∞

1

αl
e−i

2πlw
d

(x1−y1) (3.5.2)

The latter function series is divergent when x1 = y1 or w = 0. In fact, in

this case, the general term of the series is
1

d

1

αl
which is equivalent to − 1

2π|l|
as |l| → +∞. If x1 6= y1, the series is simply convergent by Abel Theorem.
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Extraction of the singularities and expansion of Ge

Ge(wx1, 0;wy1, 0) =
1

d

M∑
l=−M

1

αl
e−i

2πlw
d

(x1−y1) +W (w(x1 − y1)) (3.5.3)

Ge(wx1, 0;wy1, 0) =
1

dα0
+

1

d

∞∑
p=0

M−1∑
l=1

(
(−1)p

αl
+

1

α−l
)(i

2πl

d
)p(x1 − y1)pwp

+W (w(x1 − y1))

where M = M(k) defined in (3.2.15) and W is the function defined on
R\{0} by:

W (X) =

+∞∑
l=M

wl(X)

with

wl(X) =
1

d

(
1

αl
e−i

2πl
d
X +

1

α−l
ei

2πl
d
X

)
To extract the singularity of Ge which is also that of W , we will proceed
with a development of wl(X) when l is big ( l > M(k))

αl(k, θ) = −

√
(θ +

2πl

d
)
2

− k2

= −
√
θ2 − k2 +

4θπ

d
l +

(2π)2

d2
l2

= −2π

d
l

√
1 +

θd

π

1

l
+

(θ2 − k2)d2

(2π)2

1

l2

Then

1

αl
= − d

2π

1

l
(1 +

θd

π

1

l
+

(θ2 − k2)d2

(2π)2

1

l2
)
− 1

2

= − d

2π

1

l
+
θd2

8π2

1

l2
− (2θ2 + k2)d3

16π3

1

l3
− (129θ3 − 144θk2)d4

48(2π)4

1

l4
+O(

1

l5
)

On the other hand

1

αl
= −

+∞∑
n=1

an
ln

and
1

α−l
=

+∞∑
n=1

an
(−l)n
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Hence

W (X) =
+∞∑
l=M

wl(X)

=
1

d

+∞∑
l=M

e−i
2πl
d
X

αl
+

1

d

+∞∑
l=M

ei
2πl
d
X

α−l

= −1

d

4∑
n=1

an

+∞∑
l=M

e−i
2πl
d
X

ln
− 1

d

+∞∑
l=M

(
1

αl
−

4∑
n=1

an
ln

)e−i
2πl
d
X

+
1

d

4∑
n=1

an

+∞∑
l=M

ei
2πl
d
X

(−l)n
+

1

d

+∞∑
l=M

(
1

α−l
−

4∑
n=1

an
(−l)n

)ei
2πl
d
X

Denote

βl = (
1

αl
−

4∑
n=1

an
ln

) and βl = O(
1

l5
)

Then, we can rewrite W (X) as follows:

W (X) = −1

d

4∑
n=1

an

+∞∑
l=M

e−i
2πl
d
X

ln
− 1

d

+∞∑
l=M

βle
−i 2πl

d
X +

1

d

4∑
n=1

an

+∞∑
l=M

ei
2πl
d
X

(−l)n

+
1

d

+∞∑
l=M

β−le
i 2πl
d
X

= −1

d

4∑
n=1

an

+∞∑
l=M

e−i
2πl
d
X

ln
+

1

d

4∑
n=1

an

+∞∑
l=M

ei
2πl
d
X

(−l)n

− 1

d

+∞∑
l=M

+∞∑
p=0

βl
(−i2πl

d )p

p!
Xp +

1

d

+∞∑
l=M

+∞∑
p=0

β−l
(i2πl

d )p

p!
Xp

= −1

d
a1

+∞∑
l=M

e−i
2πl
d
X

l
− 1

d
a2

+∞∑
l=M

e−i
2πl
d
X

l2
− 1

d
a3

+∞∑
l=M

e−i
2πl
d
X

l3

− 1

d
a4

+∞∑
l=M

e−i
2πl
d
X

l4
− 1

d
a1

+∞∑
l=M

ei
2πl
d
X

l
+

1

d
a2

+∞∑
l=M

ei
2πl
d
X

l2

− 1

d
a3

+∞∑
l=M

ei
2πl
d
X

l3
+

1

d
a4

+∞∑
l=M

ei
2πl
d
X

l4
− 1

d

3∑
p=0

+∞∑
l=M

(−i2πl
d )p

p!
βlX

p

− 1

d

+∞∑
l=M

+∞∑
p=4

βl
(−i2πl

d )p

p!
Xp +

1

d

3∑
p=0

+∞∑
l=M

(i2πl
d )p

p!
β−lX

p

+
1

d

+∞∑
l=M

+∞∑
p=4

β−l
(i2πl

d )p

p!
Xp
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We deduce from some known sums given in [34], which are valid for 0 < X <
2π, the following equalities

+∞∑
l=1

eilX

l
= − ln(1− eiX) = − ln(2 sin

X

2
) + i

π −X
2

+∞∑
l=1

e−ilX

l
= − ln(1− e−iX) = − ln(2 sin

X

2
)− iπ −X

2

+∞∑
l=1

eilX

l2
=
π2

6
− X

4
(2π −X)− i(X ln(X)−X − X3

72
− X5

14400
− ...)

+∞∑
l=1

e−ilX

l2
=
π2

6
− X

4
(2π −X) + i(X ln(X)−X − X3

72
− X5

14400
− ...)

+∞∑
l=1

eilX

l3
=

+∞∑
n=1

1

n3
+ i(

π2

6
X − π

4
X2 +

X3

12
) + (

X2

2
ln(X)− 3

4
X2 − X4

288
+ ...)

+∞∑
l=1

e−ilX

l3
=

+∞∑
n=1

1

n3
− i(π

2

6
X − π

4
X2 +

X3

12
) + (

X2

2
ln(X)− 3

4
X2 − X4

288
+ ...)

+∞∑
l=1

eilX

l4
=

+∞∑
l=1

1

l4
+ i(

+∞∑
n=1

1

n3
)X − (

π2

12
X2 − π

12
X3 +

X4

48
) + i(

X3

6
ln(X)

− 5

12
X3 − X5

1440
+ ...)

+∞∑
l=1

e−ilX

l4
=

+∞∑
l=1

1

l4
− i(

+∞∑
n=1

1

n3
)X − (

π2

12
X2 − π

12
X3 +

X4

48
)− i(X

3

6
ln(X)

− 5

12
X3 − X5

1440
+ ...)

Consequently
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W (X) = −1

d
a1(

+∞∑
l=1

e−i
2πl
d
X

l
+

+∞∑
l=1

ei
2πl
d
X

l
) +

1

d
a1

M−1∑
l=1

1

l
(e−i

2πl
d
X + ei

2πl
d
X)

+
1

d
a2(

+∞∑
l=1

ei
2πl
d
X

l2
−

+∞∑
l=1

e−i
2πl
d
X

l2
)− 1

d
a2

M−1∑
l=1

1

l2
(ei

2πl
d
X − e−i

2πl
d
X)

− 1

d
a3(

+∞∑
l=1

e−i
2πl
d
X

l3
+

+∞∑
l=1

ei
2πl
d
X

l3
) +

1

d
a3

M−1∑
l=1

1

l3
(e−i

2πl
d
X + ei

2πl
d
X)

+
1

d
a4(

+∞∑
l=1

ei
2πl
d
X

l4
− 1

d
a4

+∞∑
l=1

e−i
2πl
d
X

l4
)− 1

d
a4

M−1∑
l=1

1

l4
(ei

2πl
d
Xe−i

2πl
d
X)

− 1

d

3∑
p=0

+∞∑
l=M

(−i2πl
d )p

p!
βlX

p − 1

d

+∞∑
l=M

+∞∑
p=4

βl
(−i2πl

d )p

p!
Xp

+
1

d

3∑
p=0

+∞∑
l=M

(i2πl
d )p

p!
β−lX

p +
1

d

+∞∑
l=M

+∞∑
p=4

β−l
(i2πl

d )p

p!
Xp

= −1

d
a1(

+∞∑
l=M

e−i
2πl
d
|X|

l
+

+∞∑
l=M

ei
2πl
d
|X|

l
) +

1

d
a2

X

|X|
(

+∞∑
l=M

ei
2πl
d
|X|

l2
−

+∞∑
l=M

e−i
2πl
d
|X|

l2
)

− 1

d
a3(

+∞∑
l=M

e−i
2πl
d
|X|

l3
+

+∞∑
l=M

ei
2πl
d
|X|

l3
) +

1

d
a4

X

|X|
(

+∞∑
l=M

ei
2πl
d
|X|

l4
− 1

d
a4

+∞∑
l=M

e−i
2πl
d
|X|

l4
)

+
1

d

M−1∑
l=1

(
a1

l
+
a3

l3
)(e−i

2πl
d
X + ei

2πl
d
X)− 1

d

M−1∑
l=1

(
a2

l2
+
a4

l4
)(ei

2πl
d
X − e−i

2πl
d
X)

− 1

d

3∑
p=0

+∞∑
l=M

(−i2πl
d )p

p!
βlX

p − 1

d

+∞∑
l=M

+∞∑
p=4

βl
(−i2πl

d )p

p!
Xp

+
1

d

3∑
p=0

+∞∑
l=M

(i2πl
d )p

p!
β−lX

p +
1

d

+∞∑
l=M

+∞∑
p=4

β−l
(i2πl

d )p

p!
Xp
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=
2

d
a1 ln(2 sin

π|X|
d

)− 2i

d
a2

X

|X|
{2π

d
|X| ln |X|+ 2π

d
ln(

2π

d
)|X|

− 2π

d
|X| − π3|X|3

9d3
− (2π)5

d5

|X|5

14400
− ...} − 2

d
a3{

∞∑
n=1

1

n3
+

2π2

d2
X2 ln |X|

+
2π2

d2
ln(

2π

d
)X2 − 3π2

d2
X2 − π4

18d4
X4 + ...}+

2i

d
a4

X

|X|
{2π

d

+∞∑
n=1

1

n3
|X|

+
4π3

3d3
|X|3 ln |X|+ 4π3

3d3
ln(

2π

d
)|X|3 − 10π3

3d3
|X|3 − (2π)5

d5

|X|5

1440
+ ...}

+
2

d

∞∑
p=0

M−1∑
l=1

(
a1

l
+
a3

l3
)

1

(2p)!
(i

2πl

d
)2pX2p

− 2

d

∞∑
p=0

M−1∑
l=1

(
a2

l2
+
a4

l4
)

1

(2p+ 1)!
(i

2πl

d
)2p+1X2p+1 − 1

d

3∑
p=0

+∞∑
l=M

(−i2πl
d )p

p!
βlX

p

− 1

d

+∞∑
l=M

+∞∑
p=4

βl
(−i2πl

d )p

p!
Xp +

1

d

3∑
p=0

+∞∑
l=M

(i2πl
d )p

p!
β−lX

p

+
1

d

+∞∑
l=M

+∞∑
p=4

β−l
(i2πl

d )p

p!
Xp

=
2

d
a1 ln(2 sin

π|X|
d

)− 2i

d
a2X{

2π

d
ln(|X|) +

2π

d
ln(

2π

d
)− 2π

d
− π3|X|2

9d3

− (2π)5

d5

|X|4

14400
− ...} − 2

d
a3{

∞∑
n=1

1

n3
+

2π2

d2
X2 ln |X|+ 2π2

d2
ln(

2π

d
)X2

− 3π2

d2
X2 − π4

18d4
X4 + ...}+

2i

d
a4X{

2π

d

+∞∑
n=1

1

n3
+

4π3

3d3
|X|2 ln |X|

+
4π3

3d3
ln(

2π

d
)|X|2 − 10π3

3d3
|X|2 − (2π)5

d5

|X|4

1440
+ ...}

+
2

d

∞∑
p=0

M−1∑
l=1

(
a1

l
+
a3

l3
)

1

(2p)!
(i

2πl

d
)2pX2p

− 2

d

∞∑
p=0

M−1∑
l=1

(
a2

l2
+
a4

l4
)

1

(2p+ 1)!
(i

2πl

d
)2p+1X2p+1

− 1

d

3∑
p=0

+∞∑
l=M

(−i2πl
d )p

p!
βlX

p − 1

d

+∞∑
l=M

+∞∑
p=4

βl
(−i2πl

d )p

p!
Xp

+
1

d

3∑
p=0

+∞∑
l=M

(i2πl
d )p

p!
β−lX

p +
1

d

+∞∑
l=M

+∞∑
p=4

β−l
(i2πl

d )p

p!
Xp
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We then get

W (X) = C0 +
1

π
ln(2 sin

π|X|
d

) + i
θ

2π
X ln |X|+ iθ

2π
{ln(

2π

d
)

+
d2

32π2
(43θ2 − 48k2)

∞∑
n=1

1

n3
− 1 +

M−1∑
l=1

(
iθ

2πl
− i(129θ3 − 144θk2)d2

24(2π)3l3
)

+
1

d

+∞∑
l=1

(i
2πl

d
)(βl + β−l)}X −

1

4π
(2θ2 + k2)X2 ln |X|

+
(2θ2 + k2)

8π
{−1

2
ln(

2π

d
) + 3− 1

2

M−1∑
l=1

(
4πl

d2
+

2θ2 + k2

2πl
)

− 1

d

+∞∑
l=1

(i2πl
d )2

2
(βl − β−l)}X2 +

iθ

96π
(43θ2 − 48k2)X3 ln |X|

+ iθ{− π

36d2
+

1

192π
(43θ2 − 48k2) +

1

6

M−1∑
l=1

(
−2iπθl

d2
+
i(129θ3 − 144θk2)

48πl
)

+
1

d

+∞∑
l=1

(i2πl
d )3

6
(βl + β−l)}X3 + o(X3)

and C0 can be computed as follows:

C0 =
1

d

M−1∑
l=1

(
1

αl
− d

2πl
) +

1

d

M−1∑
l=1

(
1

α−l
− d

2πl
) +

1

π

M−1∑
l=1

1

l

Consequently
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Ge(wx1, 0;wy1, 0) =
1

dα0(k)
+

1

d

∞∑
p=0

M−1∑
l=1

(
(−1)p

αl
+

1

α−l
)(i

2πl

d
)p(x1 − y1)pwp

+W (w(x1 − y1))

=
1

id
√
k2 − θ2

+ C +
1

π
ln(2 sin(

π

d
w|x1 − y1|)) + i

θ

2π
w(x1 − y1) ln(w|x1 − y1|)

+
iθ

2π
{ln(

2π

d
) +

d2

32π2
(43θ2 − 48k2)

∞∑
n=1

1

n3
− 1

+
M−1∑
l=1

(
iθ

2πl
− i(129θ3 − 144θk2)d2

24(2π)3l3
)}w(x1 − y1)

+
iθ

2π
{1

d

+∞∑
l=1

(i
2πl

d
)(βl + β−l) +

M−1∑
l=1

i2πl

d
(

1

α−l
− 1

αl
)}w(x1 − y1)

− 1

4π
(2θ2 + k2)w2(x1 − y1)2 ln(w|x1 − y1|)

+
(2θ2 + k2)

8π
{−1

2
ln(

2π

d
) + 3− 1

2

M−1∑
l=1

(
4πl

d2
+

2θ2 + k2

2πl
)}w2(x1 − y1)2

+
(2θ2 + k2)

8π
{−1

d

+∞∑
l=1

(i2πl
d )2

2
(βl − β−l) +

M−1∑
l=1

(
i2πl

d
)2(

1

α−l
+

1

αl
)}w2(x1 − y1)2

+
iθ

96π
(43θ2 − 48k2)w3(x1 − y1)3 ln(w|x1 − y1|) + iθ{− π

36d2

+
1

192π
(43θ2 − 48k2) +

1

6

M−1∑
l=1

(
−2iπθl

d2
+
i(129θ3 − 144θk2)

48πl
)}w3(x1 − y1)3

+ iθ{1

d

+∞∑
l=1

(i2πl
d )3

6
(βl + β−l) +

M−1∑
l=1

(
i2πl

d
)3(

1

α−l
− 1

αl
)}w3(x1 − y1)3 + o(w3)

where C = C0 + 1
d

∑M−1
l=1

1
αl

+ 1
α−l

Ge(wx1, 0;wy1, 0) =
1

dα0(k)
+C+

ln(2)

π
+

1

π
ln(

2π

d
)+

1

π
ln(w)+

1

π
ln(|x1−

y1|)+
1

π
ln(

d

πw|x1 − y1|
sin(

π

d
w|x1−y1|))+i

θ

2π
(x1−y1)w ln(w)+

iθ

2π
{ln(

2π

d
)+

d2(43θ2 − 48k2)

32π2

∞∑
n=1

1

n3
−1+

M−1∑
l=1

(
iθ

2πl
− i(129θ3 − 144θk2)d2

24(2π)3l3
)}(x1−y1)w+

iθ

2π
{1

d

+∞∑
l=1

(i
2πl

d
)(βl + β−l) +

M−1∑
l=1

i2πl

d
(

1

α−l
− 1

αl
) + ln |x1− y1|}(x1− y1)w−
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1

4π
(2θ2 + k2)(x1− y1)2w2 ln(w) +

(2θ2 + k2)

8π
{−1

2
ln(

2π

d
) + 3− 1

2

M−1∑
l=1

(
4πl

d2
+

2θ2 + k2

2πl
)}(x1−y1)2w2+

(2θ2 + k2)

8π
{−1

d

+∞∑
l=1

(i2πl
d )2

2
(βl−β−l)+

M−1∑
l=1

(
i2πl

d
)2(

1

α−l
+

1

αl
) − 2 ln |x1 − y1|}(x1 − y1)2w2 +

iθ

96π
(43θ2 − 48k2)(x1 − y1)3w3 ln(w) +

iθ{− π

36d2
+

(43θ2 − 48k2)

192π
+

1

6

M−1∑
l=1

(
−2iπθl

d2
+
i(129θ3 − 144θk2)

48πl
)}(x1−y1)3w3+

iθ{1

d

+∞∑
l=1

(i2πl
d )3

6
(βl + β−l) +

M−1∑
l=1

(
i2πl

d
)3(

1

α−l
− 1

αl
) +

(43θ2 − 48k2)

96π
ln |x1−

y1|}(x1 − y1)3w3 + o(w3)

Simple calculation gives

ln(
d

πw|x1 − y1|
sin(

π

d
w|x1 − y1|)) = −1

6

π2

d2
|x1 − y1|2w2 +O(w4)

Hence
Ge(wx1, 0;wy1, 0) =

1

dα0(k)
+C +

ln(2)

π
+

1

π
ln(

2π

d
) +

1

π
ln(w) +

1

π
ln(|x1 −

y1|) + i
θ

2π
(x1 − y1)w ln(w) +

iθ

2π
{ln(

2π

d
) +

d2(43θ2 − 48k2)

32π2

∞∑
n=1

1

n3
− 1 +

M−1∑
l=1

(
iθ

2πl
− i(129θ3 − 144θk2)d2

24(2π)3l3
)}(x1 − y1)w+

iθ

2π
{1

d

+∞∑
l=1

(i
2πl

d
)(βl + β−l) +

M−1∑
l=1

i2πl

d
(

1

α−l
− 1

αl
)+ln |x1−y1|}(x1−y1)w− 1

4π
(2θ2+k2)(x1−y1)2w2 ln(w)+

(2θ2 + k2)

8π
{−1

2
ln(

2π

d
) + 3− 1

2

M−1∑
l=1

(
4πl

d2
+

2θ2 + k2

2πl
)− 1

6
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}(x1 − y1)2w2 +

(2θ2 + k2)

8π
{−1

d

+∞∑
l=1

(i2πl
d )2

2
(βl − β−l) +

M−1∑
l=1

(
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d
)2(

1

α−l
+

1

αl
) − 2 ln |x1 −

y1|}(x1−y1)2w2+
iθ

96π
(43θ2−48k2)(x1−y1)3w3 ln(w)+iθ{− π

36d2
+
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192π
+

1

6
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(
−2iπθl

d2
+
i(129θ3 − 144θk2)
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d

+∞∑
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6
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1
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96π
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Asymptotic of S(w,k)

Lemma 3.5.1. The kernel of S(w, k) has the following asymptotic expan-
sion:

Ge(wx1, 0;wy1, 0) +Gi(wx1, 0;wy1, 0) = θw + s1 + s2w ln(w) + s3w + s4w
2 ln(w) + s5w

2,

where



θw(k) =
1

dα0(k)
+
e(k)

w
+

ln(w)

π
+ C +

1

π
ln(

8π

d
)

s1(x1, y1) =
1

π
ln(2| sin(π

2
(x1 − y1)) sin(

π

2
(x1 + y1 + 1))|) + 1

π
ln(|x1 − y1|)

+ie(k)θ(x1 − y1)

s2(x1, y1) = i
θ

2π
(x1 − y1)

s3(x1, y1) = −
2

h

(
1

6
+

1

8
((x1 + y1 + 1)2 + (x1 − y1)

2)− 1

4
(x1 + y1 + 2 + |x1 − y1|)

)
+i

(
2 ln(2)

π
+

1

π
ln(| sin(π

2
(x1 − y1)) sin(

π

2
(x1 + y1 + 1))|)

)
θ(x1 − y1)

+ iθ
2π

(
ln( 2π

d
) + d2(43θ2−48k2)

32π2

∑∞
n=1

1
n3 − 1 +

∑M−1
l=1 ( iθ

2πl
− i(129θ3−144θk2)d2

24(2π)3l3
)
)
(x1 − y1)

−e(k)θ2(x1 − y1)
2 +

iθ

2π
{1
d

+∞∑
l=1

(i
2πl

d
)(βl + β−l) +

M−1∑
l=1

i2πl

d
(

1

α−l
− 1

αl
)

+ ln |x1 − y1|}(x1 − y1)

s4(x1, y1) = − 1
4π

(2θ2 + k2)(x1 − y1)
2

s5(w, x1, y1) = O(1)

Let H
1
2 (−1

2 ,
1
2) be the classical fractional Sobolev space and H̃−

1
2 (−1

2 ,
1
2)

its dual. We define the following integral operators from H̃−
1
2 (−1

2 ,
1
2) to

H
1
2 (−1

2 ,
1
2):



Θ(w, k)φ(x) := θw(k)
∫ 1

2

− 1
2

φ(x)dx

S1φ(y) :=
∫ 1

2

− 1
2

s1(x, y)φ(x)dx

S2φ(y) :=
∫ 1

2

− 1
2

s2(x, y)φ(x)dx

S3φ(y) :=
∫ 1

2

− 1
2

s3(x, y)φ(x)dx

S4φ(y) :=
∫ 1

2

− 1
2

s4(x, y)φ(x)dx

S5φ(y) :=
∫ 1

2

− 1
2

s5(w, x, y)φ(x)dx

Theorem 19. The linear operator S1 is invertible near the zeros of e(k).
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Proof. The operator S1 can be split into two operators:

S1 = S0 + ie(k)θS̃1

where

S0φ(y) =∫ 1
2

− 1
2

(
1

π
ln(2| sin(

π

2
(x− y)) sin(

π

2
(x+ y + 1))|) +

1

π
ln(|x1 − y1|)

)
φ(x)dx,

and S̃1φ(y) =

∫ 1
2

− 1
2

(x− y)φ(x)dx.

In [5], it was proved that S0 is invertible and S̃1 is compact. Simple calcu-
lation gives

S1 = S0

(
I + ie(k)θS0

−1S̃1

)
So near the zeros of e(k), the norm of ie(k)θS0

−1S̃1 is small enough (< 1)
and consequently I + ie(k)θS0

−1S̃1 is invertible.

Theorem 20. The linear operators Sj , j = 2, 3, 4, 5 are compact .

Proof. The proof is provided in [5].

Corollary 21. S(w, k) is bounded and satisfies the following asymptotic:

S(w, k) = Θw + S1 + w ln(w)S2 + wS3 + w2 ln(w)S4 + w2S5

We deduce from the previous corollary that S(w, k) is a compact per-
turbation of the operator S1 which is invertible. Therefore S(w, k) is a
Freedholm operator with index zero. Next we shall derive the asymptotic of
its inverse and of its characteristic values as w tends to zero.

Theorem 22. 1. The operator-valued function S(w, k) is finitely mero-
morphic and of Freedholm type in D given by (3.2.12).

2. The operator-valued function S(w, k) is invertible except at some dis-
crete values.

3. The operator-valued function S−1(w, k) is finitely meromorphic on C\R−
and its poles are exactly the resonances of the scattering domain Ω.

Proof. Ge is meromorphic in D. On the other hand, we deduce from the
explicit expression of Gi that the kernel of the operator S(w, k) is finitely
meromorphic in D.
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The integral representation shows that the uniqueness of the Helmholtz
problem PO is equivalent to the invertibility of S(w, k). In theorem (17),
we showed that the Helmholtz problem PO is well-posed for every real value
of k except some discrete sequence.

Finally, we deduce from the Steinberg Theorem that the operator-valued
function S(w, k) is invertible on C except some discrete points, the operator-
valued function S−1(w, k) is finitely meromorphic on D, and its poles are
exactly the resonances of Ω.

Define

L(w, k) = S1 + w ln(w)S2 + wS3 + w2 ln(w)S4 + w2S5.

Since S1 is invertible near the zeros of e(k) and Sj , j = 2, 3, 4, 5 are compact,
the operator L(w, k) is Fredholm of index zero, and it is invertible for w
small enough near the zeros of e(k). Using the Neumann series, its inverse
can be written as:

L−1(w, k) = S−1
1 +

∞∑
p=1

(
−S−1

1 (ln(w)S2 + S3 + w ln(w)S4 + wS5)
)p
S−1

1 wp

Theorem 23. Fix w0 > 0 small enough . For w < w0 the following expres-
sion holds near the zeros of e(k):

S−1(w, k) = L−1(w, k)− L−1(w, k)1

Θw(k)L−1(w, k)1 + 1
Θw(k)L−1(w, k).

The resonances of Ω, are exactly the zeros of the function

fw(k) := Θw(k)L−1(w, k)1 + 1.

We further denote {kn(w), n ∈ Z} the set of the zeros of fw(k).

Asymptotic of the resonances

Lemma 3.5.2. The function fw(k) has the following asymptotic when w
goes to zero

fw(k) =
e(k)q0

w
+ (

q0

π
− q1e(k)) ln(w) + (1 + C1(k)q0 − e(k)q2)

−(C1(k)q1 +
q2

π
)w ln(w)− q1

π
w ln2(w)− C1(k)q2w + o(w),

where C1(k) =
1

dα0(k)
+ C +

1

π
ln(

8π

d
),

and 
q0 = 〈1, S−1

1 1〉
q1 = 〈1, S−1

1 S2S
−1
1 1〉

q2 = 〈1, S−1
1 S3S

−1
1 1〉
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which are well defined as functions of k near the zeros of e(k). Here 〈, 〉 is
the dual product between H̃−1/2 and H1/2.

Proof. Recall fw(k) := Θw(k)L−1(w, k)1 + 1 = θw(k)〈1, L−1(w, k)1〉+ 1.

On the other hand

L−1(w, k) = S−1
1 − S−1

1 S2S
−1
1 w ln(w)− S−1

1 S3S
−1
1 w + o(w).

Hence

∂kL
−1(w, k) = ∂kS

−1
1 − ∂k(S−1

1 S2S
−1
1 )w ln(w) + ∂k(S

−1
1 S3S

−1
1 )w + o(w)

〈1, L−1(w, k)1〉 = 〈1, S−1
1 1〉−〈1, S−1

1 S2S
−1
1 1〉w ln(w)−〈1, S−1

1 S3S
−1
1 1〉w+o(w)

〈1, ∂kL−1(w, k)1〉 = 〈1, ∂kS−1
1 1〉−〈1, ∂k(S−1

1 S2S
−1
1 )1〉w ln(w)−〈1, ∂k(S−1

1 S3S
−1
1 )1〉w+o(w),

which imply

fw(k) = θw(k)〈1, L−1(w, k)1〉+1 = (
e(k)

w
+

ln(w)

π
+C1(k))(q0−q1w ln(w)−q2w+o(w))+1.

where C1(k) =
1

dα0(k)
+ C +

1

π
ln(

16π

d
).

Therefore

fw(k) =
e(k)q0

w
+(

q0

π
−q1e(k)) ln(w)+(1+C1(k)q0−e(k)q2)−(C1(k)q1 +

q2

π
)w ln(w)− q1

π
w ln2(w)− C1(k)q2w + o(w).

Consequently

∂kfw(k) =
∂k(e(k)q0)

w
+ ∂k(

q0

π
− q1e(k)) ln(w) + ∂k(1 + C1(k)q0 − e(k)q2)−

∂k(C1(k)q1 +
q2

π
)w ln(w)− ∂kq1

π
w ln2(w)− ∂k(C1(k)q2)w + o(w).

Lemma 3.5.3. q0(k) = 〈1, S−1
1 1〉 is different from zero.

Proof. We begin with computing φ = S−1
1 1. We have that S1φ = 1 which

can be written as

S0φ+ ie(k)θ〈φ, x〉1− ie(k)θ〈φ, 1〉x = 1

⇒ φ+ ie(k)θ〈φ, x〉S0
−11− ie(k)θ〈φ, 1〉S0

−1x = S0
−11

⇒ φ = −ie(k)θ〈φ, x〉S0
−11 + ie(k)θ〈φ, 1〉S0

−1x+ S0
−11 (3.5.4)
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By multiplying the last equation by 1 and x respectively, we find the following
system verified by 〈φ, 1〉 and 〈φ, x〉:{
〈φ, 1〉+ ie(k)θ〈φ, x〉〈S0

−1.1, 1〉 − ie(k)θ〈φ, 1〉〈S0
−1.x, 1〉 = 〈S0

−11, 1〉
〈φ, x〉+ ie(k)θ〈φ, x〉〈S0

−1.1, x〉 − ie(k)θ〈φ, 1〉〈S0
−1.x, x〉 = 〈S0

−11, x〉

So by resolving the latter system, we can compute 〈φ, 1〉 and 〈φ, x〉 and then
compute φ by (3.5.4).
Therefore, we can determine q0(k) = 〈φ, 1〉, and finally we obtain:

q0(k) = 〈S0
−11, 1〉

(
1 + e(k)2θ2(〈S0

−1x, 1〉2 − 〈S0
−11, 1〉〈S0

−1x, x〉)
)−1

.

In [5], it was proven that 〈S0
−11, 1〉 is different from zero. So, we conclude

that q0(k) is different from zero.

Remark 24. The poles of q0(k) are different from the zeros of e(k). So near
the zeros of e(k), q0(k) is well defined, different from zero and has no poles.

We denote {kj(0), j ∈ J} the set of all the zeros of e(k) in D π
w0

, the
complex disc centered at zero and of radius π

w0
, that is

e(kj(0)) = 0 (3.5.5)

Theorem 25. Let kn(0) be a fixed zero of the function e(k), that verifies
kn(0) < π

w0
, and rn > 0 be a fixed positive real such that the set {kj(0), j ∈

J} ∩ B(kn(0), rn) is reduced to kn(0). Then, for w < w1 < w0 where w1 is
small enough, there exists a unique resonance kn(w) in Drn(kn(0)).

Proof. For k far from the zeros and poles of e(k) and q0(k), we have

∂kfw(k)

fw(k)
=
∂k(e((k)q0)

e(k)q0
+O(w).

Therefore, the function ∂kfw(k)
fw(k) tends to ∂k(e((k)q0)

e(k)q0
when w goes to zero,

uniformly on every compact far from the isolated zeros and poles of e(k) and
q0(k).

We note that q0(k) is not zero and has no poles near the zeros of e(k), the
zeros of e(k) are simple and intertwined with its poles (n−1)π

h < kn(0) < nπ
h .

So, there exists rn > 0 small enough such that

1

2iπ

∫
|k−kn(0)|=rn

∂k(e((k)q0)

e(k)q0
dk = 1.

Moreover, as limw→0
∂kfw(k)
fw(k) = ∂k(e((k)q0)

e(k)q0
uniformly with respect to k on the

circle |k − kn(0)| = rn, we see that

lim
w→0

1

2iπ

∫
|k−kn(0)|=rn

∂kfw(k)

fw(k)
dk = 1,
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and it follows from the Rouché theorem that 1
2iπ

∫
|k−kn(0)|=rn

∂kfw(k)
fw(k) dk = 1,

for w small enough. Thus, there exists a unique resonance kn(w) in the
complex disc |k − kn(0)| < rn.

Theorem 26. Let kn(0) a fixed zero of the function e(k), that verifies
kn(0) < π

w0
. Then, for w < w0, the unique resonance kn(w) located near

kn(0) has the following asymptotic expansion:

kn(w) = kn(0) +
1

π∂ke(kn(0))
w ln(w) +

1 + C1(kn(0))q0(kn(0))

q0(kn(0))∂ke(kn(0))
w + o(w)

In particular, as w goes to zero, its imaginary part behaves like:

Im(kn(w)) =

− 1

∂ke(kn(0))

(
Im(q0(kn(0))

Re(q0(kn(0))2 + Im(q0(kn(0))2
− Im(C1(kn(0)))

)
w+o(w)

Proof. Since kn(0) is a simple pole of the operator-valued function, the gen-
eralized Rouché theorem yield :

kn(w)− kn(0) = − 1

2iπ
tr[

∫
|k−kn(0)|=rn

(k − kn(0))S−1(w, k)
∂kS(w, k)

∂k
dk]

which reduces to

kn(w)− kn(0) = − 1

2iπ

∫
|k−kn(0)|=rn

(k − kn(0))
∂kfw(k)

fw(k)
dk.

We have

1

fw(k)
= w

(
1

e(k)q0
−

q0
π − q1e(k)

(e(k)q0)2
w ln(w)− 1 + C1(k)q0 − e(k)q2

(e(k)q0)2
w + o(w)

)
Hence

∂kfw(k)

fw(k)
=
∂k(e((k)q0)

e(k)q0
+ {∂k(

q0

π
− q1e(k))w ln(w) + ∂k(C1(k)q0 − e(k)q2)w}

∗ {−
q0
π − q1e(k)

(e(k)q0)2
w ln(w)− 1 + C1(k)q0 − e(k)q2

(e(k)q0)2
w}

=
∂k(e((k)q0)

e(k)q0
+ {

∂k(
q0
π − q1e(k))

e(k)q0
−

( q0π − q1e(k))∂k(e(k)q0)

(e(k)q0)2
}w ln(w)

+ {∂k(C1(k)q0 − e(k)q2)

e(k)q0
− (1 + C1(k)q0 − e(k)q2)∂k(e(k)q0)

(e(k)q0)2
}w + o(w)

Consequently

kn(w)− kn(0) = − 1

2iπ

∫
|k−kn(0)|=rn

(k − kn(0))
∂k(e((k)q0)

e(k)q0
dk
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− 1

2iπ

∫
|k−kn(0)|=rn

(k−kn(0))

(
∂k(

q0
π − q1e(k))

e(k)q0
−

( q0π − q1e(k))∂k(e(k)q0)

(e(k)q0)2

)
dkw ln(w)

− 1

2iπ

∫
|k−kn(0)|=rn

(k−kn(0))

(
∂k(C1q0 − e(k)q2)

e(k)q0
− (1 + C1q0 − e(k)q2)∂k(e(k)q0)

(e(k)q0)2

)
dkw

+ o(w).

By Residue Theorem, we find∫
|k−kn(0)|=rn

(k − kn(0))
∂k(e((k)q0)

e(k)q0
dk = 0

∫
|k−kn(0)|=rn

(k − kn(0))
∂k(

q0
π − q1e(k))

e(k)q0
dk = 0∫

|k−kn(0)|=rn
(k − kn(0))

∂k(C1(k)q0 − e(k)q2)

e(k)q0
dk.

Then

kn(w)− kn(0) =

1

2iπ

∫
|k−kn(0)|=rn

(k − kn(0))
( q0π − q1e(k))∂k(e(k)q0)

(e(k)q0)2
dkw ln(w)

+
1

2iπ

∫
|k−kn(0)|=rn

(k − kn(0))
(1 + C1(k)q0 − e(k)q2)∂k(e(k)q0)

(e(k)q0)2
dkw + o(w).

We have equivalently∫
|k−kn(0)|=rn

(k − kn(0))
( q0π − q1e(k))∂k(e(k)q0)

(e(k)q0)2
dk = 2iπ

q0
π − q1e(kn(0))

∂k(e.q0)(kn(0))
.

∫
|k−kn(0)|=rn

(k − kn(0))
(1 + C1(k)q0 − e(k)q2)∂k(e(k)q0)

(e(k)q0)2
dk

= 2iπ
1 + C1(kn(0))q0 − e(kn(0))q2

∂k(e.q0)(kn(0))
.

Then

kn(w)−kn(0) =
q0
π − q1e(kn(0))

∂k(e.q0)(kn(0))
w ln(w)+

1 + C1(kn(0))q0 − e(kn(0))q2

∂k(e.q0)(kn(0))
w+o(w)

kn(w)−kn(0) =
q0
π − q1e(kn(0))

∂k(e.q0)(kn(0))
w ln(w) +

1 + C1(kn(0))q0 − e(kn(0))q2

∂k(e.q0)(kn(0))
w+

o(w)

=
1

π∂ke(kn(0))
w ln(w) +

1 + C1(kn(0))q0(kn(0))

q0(kn(0))∂ke(kn(0))
w + o(w),

which finishes the proof.
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3.5.2 The case d = mw

In this part, we consider the asymptotic regime where d = mw where m > 0
is a fixed constant. The asymptotic expansion of the Green function Gi is
the same as in the previous section.

Asymptotic of Ge

Recall the expression of the Green function

Ge(wx1, 0;wy1, 0) =
1

mw

+∞∑
l=−∞

1

αl
e−i

2πl
m

(x1−y1) (3.5.6)

∀k > 0, ∃w0(k), such that ∀w < w0(k) we have Re((θ+ 2πl
mw )2 − k2) > 0.

Then ∀w < w0(k),∀l 6= 0, we have

αl(k,w) = −

√
(θ +

2πl

mw
)
2

− k2.

Therefore

Ge(wx1, 0;wy1, 0) =
1

mα0w
+

1

mw

∞∑
l=1

1

αl
e−i

2πl
m

(x1−y1) +
1

α−l
ei

2πl
m

(x1−y1).

To extract the singularity of Ge, we proceed by a expansion of αl(k, θ)
when l goes to +∞ and w goes to zero.

αl(k,w) = −

√
(θ +

2πl

mw
)
2

− k2

= −
√
θ2 − k2 +

4θπ

mw
l +

(2π)2

m2w2
l2

= −2π

m

l

w

√
1 +

θm

π

w

l
+

(θ2 − k2)m2

(2π)2

w2

l2
.

Then

1

αl
= −m

2π

w

l
(1 +

θm

π

w

l
+

(θ2 − k2)m2

(2π)2

w2

l2
)
− 1

2

,

and

1

αl
= −m

2π

w

l
+
θm2

8π2

w2

l2
−(2θ2 + k2)m3

16π3

w3

l3
−(129θ3 − 144θk2)m4

48(2π)4

w4

l4
+O(

w5

l5
).
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We can write the following expansion:

1

αl
= −

+∞∑
n=1

an
wn

ln
,

and
1

α−l
=

+∞∑
n=1

an
wn

(−l)n
,

with ai, i = 1, · · · , 4, are known explicitly.

Therefore

Ge(wx1, 0;wy1, 0) =

1

mα0w
+

1

mw

+∞∑
l=1

1

αl
e−i

2πl
m

(x1−y1)

+
1

mw

+∞∑
l=1

1

α−l
ei

2πl
m

(x1−y1)

=
1

mα0w
− 1

mw

+∞∑
l=1

+∞∑
n=1

an
wn

ln
e−i

2πl
m

(x1−y1)

+
1

mw

+∞∑
l=1

+∞∑
n=1

an
wn

(−l)n
ei

2πl
m

(x1−y1)

=
1

mα0w
− 1

mw

4∑
n=1

an

+∞∑
l=1

e−i
2πl
m

(x1−y1)

ln
wn

− 1

mw

+∞∑
l=1

(
1

αl
−

4∑
n=1

anw
n

ln
)e−i

2πl
m

(x1−y1)

+
1

mw

4∑
n=1

an

+∞∑
l=1

ei
2πl
m

(x1−y1)

(−l)n
wn

+
1

mw

+∞∑
l=1

(
1

α−l
−

4∑
n=1

anw
n

(−l)n
)ei

2πl
m

(x1−y1).

On the other hand

(
1

αl
−

4∑
n=1

anw
n

ln
) = O(

w5

l5
).
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Then

Ge(wx1, 0;wy1, 0) =

1

mα0w
− 1

mw

4∑
n=1

an(

+∞∑
l=1

e−i
2πl
m

(x1−y1)

ln

−
+∞∑
l=1

ei
2πl
m

(x1−y1)

(−l)n
)wn +O(w4)

=
1

mα0w
− 1

m
a1(

+∞∑
l=1

e−i
2πl
m

(x1−y1)

l

+

+∞∑
l=1

ei
2πl
m

(x1−y1)

l
)− 1

m
a2(

+∞∑
l=1

e−i
2πl
m

(x1−y1)

l2
−

+∞∑
l=1

ei
2πl
m

(x1−y1)

l2
)w

− 1

m
a3(

+∞∑
l=1

e−i
2πl
m

(x1−y1)

l3
+

+∞∑
l=1

ei
2πl
m

(x1−y1)

l3
)w2 +O(w3)

=
1

mα0w
− 1

m
a1(

+∞∑
l=1

e−i
2πl
m
|x1−y1|

l

(3.5.7)

+
+∞∑
l=1

ei
2πl
m
|x1−y1|

l
)− 1

m
a2

(x1 − y1)

|x1 − y1|
(
+∞∑
l=1

e−i
2πl
m
|x1−y1|

l2

(3.5.8)

−
+∞∑
l=1

ei
2πl
m
|x1−y1|

l2
)w − 1

m
a3(

+∞∑
l=1

e−i
2πl
m
|x1−y1|

l3
+

+∞∑
l=1

ei
2πl
m
|x1−y1|

l3
)w2 +O(w3).

(3.5.9)

Using the explicit sums cited in the previous section, we obtain
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Ge(wx1, 0;wy1, 0) =

1

mα0(k)w
+

2

m
a1 ln(2 sin

π|x1 − y1|
m

)

− 1

m
a2

(x1 − y1)

|x1 − y1|
(
+∞∑
l=1

e−i
2πl
m
|x1−y1|

l2

−
+∞∑
l=1

ei
2πl
m
|x1−y1|

l2
)w

− 1

m
a3(

+∞∑
l=1

e−i
2πl
m
|x1−y1|

l3
+

+∞∑
l=1

ei
2πl
m
|x1−y1|

l3
)w2 +O(w3),

and finally

Ge(wx1, 0;wy1, 0) =
1

mα0(k)w
+

1

π
ln(2 sin

π|x1 − y1|
m

)

+
θm

8π2

(x1 − y1)

|x1 − y1|
(
+∞∑
l=1

e−i
2πl
m
|x1−y1|

l2
−

+∞∑
l=1

ei
2πl
m
|x1−y1|

l2
)w

−(2θ2 + k2)m3

16π3
(
+∞∑
l=1

e−i
2πl
m
|x1−y1|

l3
+

+∞∑
l=1

ei
2πl
m
|x1−y1|

l3
)w2 +O(w3).

Asymptotic of S(w,k)

Lemma 3.5.4. The kernel of S(w, k) has the following asymptotic expansion
as w tends to zero

Ge(wx1, 0;wy1, 0) +Gi(wx1, 0;wy1, 0) = θw + s1 + s2w+ s3w
2, (3.5.10)

where

θw(k) = 1
mα0(k)w

+ e(k)
w

+ 2 ln(2)
π

+ ln(π)− ln(m)

s1(x1, y1) = 1
π
ln(2|(x1 − y1) sin(

π
2
(x1 − y1)) sin(

π
2
(x1 + y1 + 1))|) + ie(k)θ(x1 − y1)

+ 1
π
ln(

sin
π|x1−y1|

m
π
m
|x1−y1|

)

s2(x1, y1) = − 2
h

(
1
6
+ 1

8
((x1 + y1 + 1)2 + (x1 − y1)

2)− 1
4
(x1 + y1 + 2 + |x1 − y1|)

)
+i
(

2 ln(2)
π

+ 1
π
ln(| sin(π

2
(x1 − y1)) sin(

π
2
(x1 + y1 + 1))|)

)
θ(x1 − y1)

−e(k)θ2(x1 − y1)
2 +

θm

8π2

(x1 − y1)

|x1 − y1|
(

+∞∑
l=1

e−i
2πl
m
|x1−y1|

l2
−

+∞∑
l=1

ei
2πl
m
|x1−y1|

l2
)

s3(w, x1, y1) = O(1)

We define the following integral operators from H̃−
1
2 (−1

2 ,
1
2) toH

1
2 (−1

2 ,
1
2):
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Θ(w, k)φ(x) := θw(k) < 1, φ >

S1φ(y) :=
∫ 1

2

− 1
2

s1(x, y)φ(x)dx

S2φ(y) :=
∫ 1

2

− 1
2

s2(x, y)φ(x)dx

S3φ(y) :=
∫ 1

2

− 1
2

s3(x, y)φ(x)dx

Theorem 27. There exists m0 large enough such that for m > m0 the
linear operator S1 is invertible if k is in a small neighborhood of the zeros of

e(k) +
1

mα0(k)w
.

Proof. The operator S1 can be decomposed to two operators:

S1 = S0 + S0,m + ie(k)θS̃1,

where

S0φ(y) =

∫ 1
2

− 1
2

1

π
ln(2|(x1 − y1) sin(

π

2
(x1 − y1)) sin(

π

2
(x1 + y1 + 1))|)φ(x)dx,

S0,mφ(y) =

∫ 1
2

− 1
2

1

π
ln(

sin π|x1−y1|
m

π
m |x1 − y1|

)φ(x)dx,

and

S̃1φ(y) =

∫ 1
2

− 1
2

(x− y)φ(x)dx.

In [5], it was proved that S0 is invertible. We can show that ∃m1, such that
∀m > m0 the norm of S0

−1S0,m is less that 1. Consequently, ∀m > m0,
S0 + S0,m is invertible.

Then
S1 = (S0 + S0,m)

(
I + ie(k)θ(S0 + S0,m)−1S̃1

)
.

On the other hand, there if k is close to a zero of e(k) +
1

mα0(k)w
, there

exists m2 large enough such that the norm of ie(k)θ(S0 +S0,m)−1S̃1 becomes
less than 1 for m > m2.

In conclusion there exists m0 = max(m1,m2) such that ∀m > m0 and

inside some neighborhood of the zeros of e(k) +
1

mα0(k)w
, S1 is invertible.

105



Theorem 28. The linear operators Sj , j = 2, 3 are compact.

Proof. The proof is provided in [5].

Corollary 29. S(w, k) is bounded and satisfies the following asymptotic
expansion:

S(w, k) = Θw + S1 + wS2 + w2S3. (3.5.11)

We deduce from the previous corollary that S(w, k) is a compact per-
turbation of the operator S1 which is invertible. Therefore S(w, k) is a
Freedholm operator with index zero. In the next subsection, we derive the
asymptotic expansion of its inverse and of its characteristic values.

Theorem 30. 1. The operator-valued function S(w, k) is finitely mero-
morphic and of Freedholm type in D.

2. The operator-valued function S(w, k) is invertible except some discrete
points.

3. The operator-valued function S−1(w, k) is finitely meromorphic on C\R−
and its poles are exactly the resonances of the scattering domain Ω

Proof. The proof is similar to the one of Theorem 22.

Define
L(w, k) = S1 + wS2 + w2S3.

Since S1 is invertible and Sj , j = 2, 3 are compact, the operator L(w, k) is
Fredholm of index zero and it is invertible for w small enough and k near
the zeros of e(k). Using the Neumann series, its inverse can be rewritten as

L−1(w, k) = S−1
1 +

∞∑
p=1

(−1)p
(
wS−1

1 S2 + w2S−1
1 S3

)p
S−1

1 .

Theorem 31. Fix w0 > 0 small enough. For w < w0 the following expres-
sion holds near the zeros of e(k):

S−1(w, k) = L−1(w, k)− L−1(w, k)1

Θw(k)L−1(w, k)1 + 1
Θw(k)L−1(w, k).

The resonances frequencies are exactly the zeros of the function

fw(k) := Θw(k)L−1(w, k)1 + 1.
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Lemma 3.5.5. The function fw(k) has the following asymptotic when w
goes to zero,

fw(k) =
1

w
(q0(k)gm(k) + (1 + q0(k)c(m)− q1(k)gm(k))w)

where:
q0(k) = 〈1, S−1

1 1〉
q1(k) = 〈1, S−1

1 S2S
−1
1 1〉

gm(k) = 1
mα0(k) + e(k)

c(m) = 2 ln(2)
π + ln(π)− ln(m)

Proof. Recall fw(k) = Θw(k)L−1(w, k)1 + 1 = θw(k)〈1, L−1(w, k)1〉+ 1.

Froward calculation gives

L−1(w, k) = S−1
1 − S−1

1 S2S
−1
1 w + o(w).

Then
〈1, L−1(w, k)1〉 = 〈1, S−1

1 1〉 − 〈1, S−1
1 S2S

−1
1 1〉w + o(w).

fw(k) = θw(k)〈1, L−1(w, k)1〉 + 1 = (
1

mα0(k)w
+
e(k)

w
+ c(m))(q0 − q1w +

o(w)) + 1.

Therefore:

fw(k) =
1

w

(
q0(e(k) +

1

mα0(k)
) + (1 + q0c(m)− q1(

1

mα0(k)
+ e(k)))w

)
.

Lemma 3.5.6. The function q0(k) = 〈1, S−1
1 1〉 is different from zero.

Proof. The proof is similar to the one of lemma 3.5.3.

We note {kj(0), j ∈ J} the set of all the zeros of gm(k) in D π
w0

, that is

gm(kj(0)) = 0. (3.5.12)

A long computation shows that these zeros are all simple and located in the
low complex half plan.

Theorem 32. Let kn(0) be a fixed zero of the function gm(k), that verifies
kn(0) < π

w0
, and rn be a fixed positive real such that the set {kj(0), j ∈

J} ∩ Drn(kn(0)) is reduced to kn(0). Then, for w < w1 < w0 where w1 is
small enough, there exists a unique resonance kn(w) in Drn(kn(0)).
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Proof. We first observe that

∂kfw(k)

fw(k)
=
∂k(gm(k))

gm(k)
+O(w).

Therefore, the function ∂kfw(k)
fw(k) tends to ∂k(gm(k))

gm(k) when w goes to zero,
uniformly on every compact far from the isolated zeros and poles of gm(k).

There exists rn > 0 small enough such that:

1

2iπ

∫
|k−kn(0)|=rn

∂k(gm(k))

gm(k)
dk = 1.

Moreover, as limw→0
∂kfw(k)
fw(k) = ∂k(gm(k))

gm(k) uniformly with respect to k on
the circle |k − kn(0)| = rn, we have

lim
w→0

1

2iπ

∫
|k−kn(0)|=rn

∂kfw(k)

fw(k)
dk = 1,

It follows from the Rouché Theorem that 1
2iπ

∫
|k−kn(0)|=rn

∂kfw(k)
fw(k) dk = 1, for

w small enough. Thus, there exists a unique resonance kn(w) in the complex
disc |k − kn(0)| < rn.

Theorem 33. Let kn(0) be a fixed zero of the function gm(k), that verifies
kn(0) < π

w0
. Then, for w < w0, the unique resonance kn(w) located near

kn(0) has the following expansion:

kn(w) = kn(0)− 1

2iπ
(

1

∂kgm(kn(0))q0(kn(0))
+

c(m)

∂kgm(kn(0))
)w + o(w).

Im(kn(w)) = Im(kn(0))

+
1

2iπ

Im(∂kgm(kn(0))q0(kn(0)))

Re2(∂kgm(kn(0))q0(kn(0))) + Im2(∂kgm(kn(0))q0(kn(0)))

+
1

2iπ

c(m)Im(∂kgm(kn(0)))

Re2(∂kgm(kn(0))) + Im2(∂kgm(kn(0)))
w + o(w).

Proof. Since kn(0) is a simple pole of the operator-valued function, the gen-
eralized Rouché theorem yields

kn(w)− kn(0) = − 1

2iπ
tr[

∫
|k−kn(0)|=rn

(k − kn(0))S−1(w, k)
∂kS(w, k)

∂k
dk],
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which reduces to

kn(w)− kn(0) = − 1

2iπ

∫
|k−kn(0)|=rn

(k − kn(0))
∂kfw(k)

fw(k)
dk.

On the other hand

∂kfw(k)

fw(k)
=

∂k(q0(k)gm(k))

q0(k)gm(k)
+
c(m)∂kgm(k)− ∂kq1(k)gm(k)− ∂kgm(k)q1(k)

q0(k)gm(k)
w

−(1 + q0(k)c(m)− q1(k)gm(k))(∂k(q0(k)gm(k)))

(q0(k)gm(k))2
w + o(w).

Since kn(0) is a simple zero of the function gm(k), we deduce from the
Residue Theorem that for every holomorphic function φ in {|k − kn(0)| ≤ rn}
the following equalities hold∫

|k−kn(0)|=rn
(k − kn(0))

∂kgm(k)

gm(k)
φ(k)dk = 0,

∫
|k−kn(0)|=rn

(k − kn(0))
∂kgm(k)

gm(k)2
φ(k)dk =

φ(kn(0))

∂kgm(kn(0))
.

Then

kn(w)− kn(0) =

− 1

2iπ

∫
|k−kn(0)|=rn

(k − kn(0))
(1 + q0(k)c(m))(∂k(q0(k)gm(k)))

(q0(k)gm(k))2
dkw + o(w),

kn(w)− kn(0) = − 1

2iπ

(1 + q0(kn(0))c(m))

∂k(q0gm)(kn(0))
w + o(w),

kn(w)− kn(0) = − 1

2iπ

(1 + q0(kn(0))c(m))

∂kgm(kn(0))q0(kn(0))
w + o(w),

which achieve the proof of the theorem.
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Chapter 4

Green’s function for a real
metallic slab cladded in a
dielectric media

Sommaire
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . 111
4.2 Position of the problem . . . . . . . . . . . . . . . 112
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4.3 Thin layer limit model . . . . . . . . . . . . . . . 115
4.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . 115
4.3.2 The Green function of the limiting problem . . . . 116
4.3.3 Behavior of G0 as a function of the contrast η . . 126

4.4 Numerical results . . . . . . . . . . . . . . . . . . 132

4.1 Introduction

The first works on plasmonic waveguide date back to the end of the nineties
with the discovery of nanowires that have the ability to highly confine plas-
mon modes [35]. The metal ribbon waveguides then have been widely studied
thanks to their particular optical properties and to the fact that they are
easily realizable by lithography methods [36, 37]. Their shape is somehow
similar to rectangular section guides studied in [38]. However, they are much
thinner than the latter: about 50nm thick for a width of a few micrometers.
Moreover, their localized modes are resulting from the lateral confinement
of the surface plasmon polariton, which differs clearly from the modes of the
dielectric waveguides interpreted as resulting from the confinement of volume
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electromagnetic modes of the dielectric. The plasmonic waveguides can be
found in many high-technology products such compact lasers, electro-optic
modulators, and biosensors.

In this chapter we focus on a particular structure of plasmonic waveg-
uides which consists in a metal slab cladded in a dielectric media. Our
objective consists in studying the quasi-static resonances of the system. We
first compute the associated Green function using Fourier analysis. We then
investigate the set of frequencies and the spatial region where it blows up.
These frequencies correspond to plasmonic surface waves resonances.

The chapter is organized as follows. In the second section, we introduce
the physical problem. The second section is dedicated to the reconstruction
of the Green function of the quasi-static problem, and its behavior with
respect to the contrast and the spatial position. The explicit expression
of the Green function is given in theorem 36 while the discussion on its
singular behavior is provided in subsection 4.3.3 (Theorems 37, 38, and the
discussion at the end of the subsection). In section 4, we present some
numerical examples that validate the asymptotic analysis performed in the
previous section. This chapter is the subject of a research report [?].

4.2 Position of the problem

For simplicity many studies on scattering problems dealing with metallic
structures have considered the metal as a perfect conductor. In that case
the electromagnetic permittivity ε is a real function, and the electromagnetic
waves are totally reflected, and do not penetrate the metal. However, the
permittivity of real conductors is a complex function, does depend on the
frequency ω of the incident fields, that is ε = εm(ω) ∈ C, and the electro-
magnetic fields can propagate inside the metal layer. In this context surface
plasmon resonances may occur. Resonance phenomena related to the surface
waves along the interface may be responsible of the extraordinary transmis-
sion of electromagnetic waves through thin metallic layers.

4.2.1 Description of the geometry and notations

We consider an homogeneous infinite conductor layer of thickness 2h (Fig-
ure 4.1). We denote M = {(x, y, z) ∈ R3,−h ≤ x ≤ h} the region occupied
by this layer. We assume that the conductor is real, that is the electric
permittivity εm(ω) is a complex function of the frequency ω of the incident
wave. In other words, the incident wave can change the optical properties
of the metal layer [39]. The regions x > h and x < −h are denoted D+ and
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Dielectric D+

Dielectric D−

x

z

h

−h

Metal M

Figure 4.1: Problem geometry

D− respectively. We assume that D = D+ ∪ D− is filled with an homoge-
neous dielectric media with a positive permittivity εd ∈ R+. Therefore, the
permittivity is given by

ε(x) =

{
εd for |x| ≥ h
εm(ω) for |x| < h.

We also denote by Γ+ the plane x = h and Γ− the plane x = −h.

4.2.2 Problem formulation

We restrict our work to a non magnetic media with permeability µ = 1 and
a magnetization M = 0. Let us consider the Maxwell’s equations:

∇.D = 0

∇.B = 0

∇∧E = −iωB

∇∧B =
iω

c2
ε(ω)E

Where D is the displacement field D = ε0ε(ω)E, c is the light of speed in
the vacuum and ε0 is the vacuum permittivity.

The metallic layer is illuminated by an harmonic incident plane wave
Einc = Einc

0 ei(ωt+K.x). We can suppose without any loss of generality that
the incident wave vector K lies in the zOx plane. The problem geometry and
the incident electromagnetic field are invariants by translation in direction
y. Consequently, the fields B and E do not depend on variable y.
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We have chosen the transverse magnetic polarization to excite the SPP
as seen in the first chapter. In this case the electric field has the expression
E = (Ex, 0, Ez) and the magnetic field is given by B = (0, By, 0). Then,
Maxwell’s equations can be reduced to the following equation on By(x, z)
for (x, z) ∈ R2:

div(
1

ε
∇By) +

ω2

c2
By = 0,

with the transmission conditions at metal-dielectric interfaces:

[By]Γ± = 0,[
1

ε
∂xBy

]
Γ±

= 0.

The electric field components can be easily found using the relation

∇∧B =
iω

c2
εE.

Finally, this problem rewrites

(P )


∆u+ εdk

2u = 0 in D+ ∪D−
∆u+ εm(ω)k2u = 0 in M

[u]Γ± = 0[
1
ε∂xu

]
Γ±

= 0,

(4.2.1)

with k = ω
c .

The physical radiation conditions required to close the system and ensure
the uniqueness of solution can be found in [40].

4.2.3 Drude’s model for real conductor permittivity

According to the first chapter, the permittivity of a real metal can be de-
scribed by the Drude model

εm(ω) = 1−
ω2
p

ω2 + iγω
,

where γ = 1/τ is the characteristic electrons collision frequency and ωp the
plasma frequency of this metal. The real and imaginary part of εm(ω) are:

Re[εm(ω)] = 1−
ω2
pτ

2

1 + ω2τ2
,

Im[εm(ω)] =
ω2
pτ

ω(1 + ω2τ2)
.
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For noble metals (e.g Au, Ag, Cu) an extension of this model is needed
for ω > ωp due to residual polarization of ions. More precisely we need to
introduce a dielectric constant ε∞ (1 ≤ ε∞ ≤ 10) to describe this effect.
Then, the permittivity can be written as :

εm(ω) = ε∞ −
ω2
p

ω2 + iγω
.

Figure 4.2 illustrates the validity limit of the previous description for silver.
We observe that the Drude model does not fit the experimental data anymore

Figure 4.2: The real and imaginary part of ε(ω) for silver (dots) determined
by Johnson and Christy [41] and Drude model (continuous curve).

for high energy. This is a consequence of inter-band transitions regions, seen
in the first chapter, leading to an increase of Im[εm(ω)]. Then we restrict
ourselves to regions where the Drude’s model is still valid and we assume for
metal permittivity that{

Im[εm(ω)] > 0

Re[εm(ω)] < 0

We recall that the dielectric permittivity εd is a positive real number.

4.3 Thin layer limit model

4.3.1 Motivation

Our objective here is to understand the optical response of the considered
metallic structure to an electromagnetic excitation in the dielectric layer,
when the metal layer thickness h goes to zero. We first formally derive a
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limiting model called the quasi-static approximation, and we calculate the
its Green function. Based on the explicit expression of this Green function
we shall quantify the electromagnetic fields localization and confinement de-
pend in terms of the contrast εm(ω)

εd
, and the frequency ω of the excitation.

Let u = u(x, y) be a solution of the problem (4.2.1). We apply the
rescaling uh = u(xh ,

y
h) and we get the following equivalent problem (radiation

conditions are omitted):

(Ph)


∆uh + h2εdk

2uh = 0 in R×]−∞,−1[∪]1,+∞[

∆uh + h2εm(ω)k2uh = 0 in R× [−1, 1]

[uh]y=±1 = 0[
1
ε∂yuh

]
y=±1

= 0

We then write the limit problem when h→ 0:

(P0)


∆u0 = 0 in R2

[u0]y=±1 = 0[
1
ε∂yu0

]
y=±1

= 0

Or equivalently

(P0) div(
1

ε
∇u0)(x, y) = 0, (x, y) ∈ R2

The problem (P0) is physically meaningful when the coefficient |h2k2ε| =

|h2 ω2

c2
ε| is much smaller than 1. This condition is satisfied when h << L

where L is the wavelength. So the limit model is acceptable when there is
no propagation at the scale of the layer. The problem (P0) is called the
quasi-static limit of the problem (Ph), and u0 the quasi-static solution [42]
[39].

4.3.2 The Green function of the limiting problem

We further study the Green function G0 of the problem:

div(
1

ε
∇G0)(x, y) = δx0(x)δy0(y), (x, y) ∈ R2

The physical radiation conditions satisfied by the Green function will be
fixed later in the reconstruction of its spectral expression.

The first step in deriving G0 is to consider Ĝ0(t, y) = FTx(G0(x, y)),
where FTx is the Fourier transform with respect to the x variable.

116



Forward calculation shows that Ĝ0 solves the following equation:[
− t2

ε(y)
Ĝ0 + ∂y

(
1

ε(y)
∂yĜ0

)]
(t, y) = e−itx0δy0(y), (t, y) ∈ R2

We can rewrite the previous problem as Ĝ0 solves the next equation for
(t, y) ∈ R×]−∞,−h[∪]− h, h[∪]h,+∞[

[−t2 + ∂yy]Ĝ0(t, y) = ε(y)e−itx0δy0(y), (4.3.1)

with the following jump conditions:

[Ĝ0]±h = 0 (4.3.2)

[
1

ε
∂yĜ0]±h = 0. (4.3.3)

We now construct the Green function using the Wronskian method.

Let Φ+(t, y) in the region y > y0, be the homogeneous solution to the
previous problem, decaying as y → +∞:

Φ+(t, y) = e−|t|y, y > y0

Let Φ−(t, y) in the region y < y0, be the homogeneous solution to the previ-
ous problem, decaying as y → −∞:

Φ−(t, y) =


e|t|y, y < −h
Ae|t|y +Be−|t|y, y ∈]− h, h[

Ce|t|y +De−|t|y, y ∈]h, y0[,

where A,B,C,D ∈ C need to be determined using jump conditions at ±h.

Remark 34. Here we are looking for solutions decaying in the dielectric and
propagating along x direction. Indeed we suppose that t is real so we restrict
the calculation only to propagating modes along the x direction, and decaying
along the y direction. Physicists call this family of waves surface plasmons.
The constant t may also be viewed as the x component of the wave-vector
of a wave propagating along the x direction. In our case the source point
generates a family of plasmons waves and we sum all the contributions (we
do the summation over t ∈ R so we remove the propagation along y) to obtain
the Green function corresponding to our physical radiation conditions.

Using the continuity condition (4.3.2) at y = −h, we get:

e−|t|h = Ae−|t|h +Be|t|h (4.3.4)
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The derivative continuity condition (4.3.3) at y = −h implies:

1

εd
e−|t|h =

1

εm
(Ae−|t|h −Be|t|h)

Then

2Ae−|t|h = (1 + κ)e−|t|h

2Be|t|h = (1− κ)e−|t|h,

where

κ = εm/εd, (4.3.5)

is the contrast at fixed frequency ω. So, we get

A =
1

2
(1 + κ)

B =
1

2
(1− κ)e−2|t|h

Continuity (4.3.2) and derivative continuity (4.3.3) conditions at y = +h
give

Ae|t|h +Be−|t|h = Ce|t|h +De−|t|h

1

εm
(Ae|t|h −Be−|t|h) =

1

εd
(Ce|t|h −De−|t|h)

Then

2Ce|t|h = A(1 +
1

κ
)e|t|h +B(1− 1

κ
)e−|t|h

2De−|t|h = A(1− 1

κ
)e|t|h +B(1 +

1

κ
)e−|t|h

Hence

C =
1

4
(1 + κ)(1 +

1

κ
) +

1

4
(1− κ)(1− 1

κ
)e−4|t|h

D =
1

4
(1 + κ)(1− 1

κ
)e2|t|h +

1

4
(1 +

1

κ
)(1− κ)e−2|t|h

We now consider

Ĝ0(t, y, x0, y0) =
1

d

{
Φ+(t, y)Φ−(t, y0), y > y0

Φ−(t, y)Φ+(t, y0), y < y0,

with d the Wronskian such that

1

d
(Φ−∂yΦ+ − Φ+∂yΦ−)(t, y0) = εde

−itx0 ,∀t ∈ R
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The fact that

∂yΦ+(t, y0) = −|t|e−|t|y0

∂yΦ−(t, y0) = |t|(Ce|t|y0 −De−|t|y0)

implies

d = −2C|t| 1
εd
eitx0

with

C =
1

4

(
(1 + κ)2

κ
− (1− κ)2

κ
e−4|t|h

)
=

1

4

(1− κ)2

κ

(
η2 − e−4|t|h

)
and

η =
1 + κ

1− κ
, (4.3.6)

is the normalized contrast [?, 43].

Finally, under the conditions κ 6= 0 and κ 6= 1 we have

d = −|t|e
itx0

2εd

(1− κ)2

κ

(
η2 − e−4|t|h

)

Lower dielectric part of Ĝ0

Let y < −h < y0, then we can write

Ĝ0(t, y, x0, y0) =
1

d
Φ−(t, y)Φ+(t, y0)

=
1

d
e|t|(y−y0)

Finally for y < −h < y0 and t ∈ R

Ĝ0(t, y, x0, y0) =
2κεd

(1− κ)2

e−itx0

|t|
e|t|(y−y0)

e−4|t|h − η2
(4.3.7)

This expression corresponds to the transmitted part of the Green function.

119



Upper dielectric part of Ĝ0

For the upper dielectric part we have two case: y > y0 and y < y0.
Let first y > y0 > h > 0, then

Ĝ0(t, x0, y, y0) =
1

d
Φ−(t, y0)Φ+(t, y)

=
1

d

(
Ce−|t|(y−y0) +De−|t|(y+y0)

)
Using

D =
(κ2 − 1)

2κ
sinh(2|t|h)

We get

Ĝ0(t, x0, y, y0) = −εde
−itx0

2|t|
e−|t|(y−y0) − η εde

−itx0 sinh(2|t|h)

|t|(e−4|t|h − η2)
e−|t|(y+y0)

(4.3.8)

= −εde
−itx0

|t|

(
1

2
e−|t|(y−y0) + η

sinh(2|t|h)e−|t|(y+y0)

e−4|t|h − η2

)
(4.3.9)

This expression corresponds to the reflected part of the Green’s function.
The first term is the wave generated by the source going upward and not
interacting with the metal layer. The second term is the reflected wave. It
vanishes when h = 0 (no perturbation) and when η = 0.

Let now h < y < y0 then

Ĝ0(t, x0, y, y0) =
1

d
Φ−(t, y)Φ+(t, y0)

=
1

d

(
Ce|t|(y−y0) +De−|t|(y+y0)

)
So we get

Ĝ0(t, x0, y, y0) = −εde
−itx0

|t|

(
1

2
e|t|(y−y0) + η

sinh(2|t|h)e−|t|(y+y0)

e−4|t|h − η2

)
(4.3.10)
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Metal part of Ĝ0

Let h ≥ y ≥ −h, then

Ĝ0(t, x0, y, y0) =
1

d
Φ−(t, y)Φ+(t, y0)

=
1

d

(
Ae|t|(y−y0) +Be−|t|(y+y0)

)
We get

Ĝ0(t, x0, y, y0) = − εm
(1− κ)

e−itx0

|t|(η2 − e−4|t|h)

(
ηe|t|(y−y0) + e−|t|(y+y0+2h)

)
(4.3.11)

Remark 35. In the case η 6= 0 the function Ĝ0 is always decaying exponen-
tially when |t| → +∞. However when κ = −1 we have η = 0 and then

Ĝ0(t, x0, y, y0) =
εm
2
e−itx0e−|t|(y+y0−2h)

Ĝ0 is decaying exponentially when |t| → +∞ under the condition y+y0−2h >
0. Because h > y > −h the condition rewrites y0 > 3h. If y+y0−2h = 0 we
get a delta Dirac function at x = 0 and y = 2h− y0. In the case y+ y0− 2h
is negative then Ĝ0 is not integrable with respect to t for all the values of y
satisfying the previous condition. In other words if the source is close enough
to the metal layer with η = 0 we expect that the Green function blows up.

We easily verify that Ĝ0 as a function of variable t decays exponentially
as t → ±∞. However it is not integrable at 0 and then does not belong to
L1(R) space for t variable. So the inverse Fourier transform is undefined in
the classical sense of integration. For the same reason Ĝ0 is not a tempered
distribution with respect to t variable. To give a sense to inverse Fourier
transform we are going to regularize such an integral using Hadamard finite
part method.

Ĝ0 can be interpreted as the amplitude of a wave propagating along the
x direction with a wavevector t. Moreover zeros of the dispersion relation
η2 − e−4|t|h correspond to the poles of the amplitude. In other words if
t is such that the relation dispersion is almost zero then the amplitude of
the wave propagating along x direction with wavevector t is highly amplified.
The value of t in this case is called surface plasmon wavevector by physicists.
In Figure 4.3, we plotted the absolute value of G0 in the lower dielectric part
for different values of the parameter η2. We observe that when Imη2 → 0
a propagating wave along the x direction appears. That corresponds to the
surface plasmon described by physicists. Moreover the frequency of this
wave corresponds (visualized using a FFT) to t0/2π where t0 is a zero of the
relation dispersion: t0 = − 1

4h ln(η2).
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Figure 4.3: Plots of |G0| in the lower dielectric part (−10 ≤ y ≤ −h, −20 ≤
x ≤ 20 with h = 1) for different values of η2 such that Imη2 → 0. For figure
(a): η2 = 0.05 + 0.5i, (b): η2 = 0.05 + 0.1i, (c): η2 = 0.05 + 0.01i, (d):
η2 = 0.05 + 0.0001i

Hadamard finite part

Let f ∈ C1
pw(R) such that f(t) = o(1

t ) when t → ±∞. Here C1
pw(R) is the

space of continuous functions with piecewise continuous derivative. We now
consider the following undefined integral

I =

∫
R

f(t)

|t|
dt

To regularize it we denote the truncated integral by

Iρ =

∫
|t|≥ρ

f(t)

|t|
dt =

∫
1≥|t|≥ρ

f(t)

|t|
dt+

∫
|t|≥1

f(t)

|t|
dt
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We first remark the second integral is finite, then we denote the first integral
by

Jρ =

∫
1≥|t|≥ρ

f(t)

|t|
dt

Now using f(t) = f(0) + (f(t)− f(0)) we write

Jρ =

∫
1≥|t|≥ρ

f(0)

|t|
dt+

∫
1≥|t|≥ρ

f(t)− f(0)

|t|
dt

Because f derivative is piecewise continuous on R we can state the second
integral is finite when ρ→ 0:

lim
ρ→0

∫
1≥|t|≥ρ

f(t)− f(0)

|t|
dt < +∞

So we isolated the part of Iρ which diverges when ρ→ 0:∫
1≥|t|≥ρ

f(0)

|t|
dt = −2f(0) ln(ρ)

Then by subtracting the divergent part of Iρ to Iρ itself we get the finite
part of it:

lim
ρ→0
{Iρ + 2f(0) ln(ρ)} = lim

ρ→0
{
∫
|t|≥1

f(t)

|t|
dt+

∫
1≥|t|≥ρ

f(t)− f(0)

|t|
dt} < +∞

The Hadamard finite part of I is

Ĩ = lim
ρ→0
{Iρ + 2f(0) ln(ρ)} = lim

ρ→0
{
∫
|t|≥ρ

f(t)

|t|
dt+ 2f(0) ln(ρ)}

Inverse Fourier transform of Ĝ0

Because we denoted by FTx the Fourier transform with respect to x variable
we now denote FT−1

x its inverse formally defined by:

FT−1
x (Φ)(t) =

∫
R

Φ(x)eixtdx

Let Φ ∈ S(R) where S(R) is a Swartz space. In the sense of distributions

I =< FT−1
x (Ĝ0),Φ > =< Ĝ0, FT

−1
x (Φ) >

=

∫
R

2κεd
(1− κ)2

e−itx0

|t|
e|t|(y−y0)

e−4|t|h − η2
FT−1

x (Φ)(t)dt
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Because the last integral is undefined we will give it a sense using Hadamard
finite part introduced in subsection (4.3.2). We now consider the regulariza-
tion of the previous integral

Ĩ = lim
ρ→0
{I1
ρ + I2

ρ}

Where

I1
ρ =

∫
|t|≥ρ

h(t)

|t|
FT−1

x (Φ)dt

I2
ρ = 2h(0)FT−1

x (Φ)(0) ln(ρ)

h(t) =
2κεd

(1− κ)2

e|t|(y−y0)

e−4|t|h − η2
e−itx0

We observe that

I2
ρ =

2κεd
(1− κ)2

2 ln(ρ)

1− η2
FT−1

x (Φ)(0)

=
2κεd

(1− κ)2

2 ln(ρ)

1− η2

∫
R

Φ(x)dx

=
2κεd

(1− κ)2

2 ln(ρ)

1− η2
< 1,Φ >

=< Cρ,Φ >

With Cρ = 2κεd
(1−κ)2

2 ln(ρ)
1−η2 . Moreover

I1
ρ =

∫
|t|≥ρ

h(t)

|t|

∫
R

Φ(x)eixtdx.dt

=

∫
R

Φ(x)

(∫
|t|≥ρ

h(t)

|t|
eixtdt

)
dx

=< Pρ,Φ >

With Pρ(x) =
∫
|t|≥ρ

h(t)
|t| e

ixtdt which is a convergent integral ∀x ∈ R. So

I1
ρ + I2

ρ =< Pρ + Cρ,Φ >

And then

Ĩ = lim
ρ→0

< Pρ + Cρ,Φ >

Lemma 4.3.1. Let Φ ∈ S(R) then

Ĩ = lim
ρ→0

< Pρ + Cρ,Φ >=< lim
ρ→0
{Pρ + Cρ},Φ >
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Proof. The proof relies on convergence dominated theorem. We first know
that ∀x ∈ R, limρ→0{Pρ + Cρ} is finite. Moreover we can write

I1
ρ + I2

ρ =

∫
|t|≥1

h(t)eixt

|t|
dt+

∫
1≥|t|≥ρ

h(t)eixt − h(0)

|t|
dt

The first integral is uniformly bounded for x ∈ R. For the second integral
we write∫

1≥|t|≥ρ

h(t)eixt − h(0)

|t|
dt =

∫ 1

ρ

h(t)eixt − h(0)

t
dt+

∫ −ρ
−1

h(t)eixt − h(0)

−t
dt

Then, we can use the Taylor formula with integral reminder:

h(t)eixt − h(0)

t
=

1

t

∫ t

0
(h′(r)eixr + ixh(r)eixr)dr

So we get∣∣∣∣∫ 1

ρ

h(t)eixt − h(0)

t
dt

∣∣∣∣ ≤ ∫ 1

ρ

1

t

∫ t

0
|h′(r)|+ |x||h(r)|dr.dt

≤
∫ 1

ρ
sup
[0,1]

(h′) + |x| sup
[0,1]

(h)dt

≤ sup
[0,1]

(h′) + |x| sup
[0,1]

(h)

Similarly we get:∣∣∣∣∫ −ρ
−1

h(t)eixt − h(0)

−t
dt

∣∣∣∣ ≤ sup
[−1,0]

(h′) + |x| sup
[−1,0]

(h)

Let us remember that Imη2 6= 0 therefore e−4|t|h − η2 is never zero. So it
can be said that h ∈ C∞(R+) and h ∈ C∞(R−). We deduce sup[0,1](h

′),
sup[0,1](h), sup[−1,0](h

′) and sup[−1,0](h) are finites. Consequently
∣∣I1
ρ + I2

ρ

∣∣
is bounded by A(|x|) where A is affine. As Φ ∈ S(R), A(|x|)Φ(x) is inte-
grable over R. Finally the lemma is proved using the dominated convergence
theorem.

We proved the regularization of FT−1
x (Ĝ0) with y < −h < y0 is

G0(x, x0, y, y0) =

lim
ρ→0
{
∫
|t|≥ρ

2εm
(1− κ)2

e|t|(y−y0)

|t|(e−4|t|h − η2)
eit(x−x0)dt+

2εm
(1− κ)2

2 ln(ρ)

1− η2
}
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The expression of the Green function

Here we finally provide the expression of the Green function.

Theorem 36. The explicit expression of the Green function in different
regions.
In the upper dielectric part y > y0 > h:

Gu0(x, x0, y, y0) = lim
ρ→0
{
∫
|t|≥ρ

εd
|t|

(
1

2
e−|t|(y−y0) + η

sinh(2|t|h)e−|t|(y+y0)

e−4|t|h − η2

)
eit(x−x0)dt

+ εd ln(ρ)}

In the upper dielectric part y0 > y > h:

Gu0(x, x0, y, y0) = lim
ρ→0
{
∫
|t|≥ρ

εd
|t|

(
1

2
e|t|(y−y0) + η

sinh(2|t|h)e−|t|(y+y0)

e−4|t|h − η2

)
eit(x−x0)dt

+ εd ln(ρ)}

In the metal part −h ≤ y ≤ h:

Gm0 (x, x0, y, y0) = lim
ρ→0
{
∫
|t|≥ρ

εm
(1− κ)

eit(x−x0)

|t|(η2 − e−4|t|h)

(
ηe|t|(y−y0) + e−|t|(y+y0+2h)

)
dt

+
εm

1− κ
2 ln(ρ)

1− η
}

In the lower dielectric part y < −h:

Gl0(x, x0, y, y0) = lim
ρ→0
{
∫
|t|≥ρ

2εm
(1− κ)2

e|t|(y−y0)

|t|(e−4|t|h − η2)
eit(x−x0)dt

+
2εm

(1− κ)2

2 ln(ρ)

1− η2
}

4.3.3 Behavior of G0 as a function of the contrast η

Assuming that the source is located at (x0, y0) ∈ {y > h}, we are inter-
ested in the behavior of the Green function G0(x0, x0, y, y0) in terms of the
contrast parameter η in the lower dielectric region {y > h}. Recall the ex-
pressions (4.3.5) and (4.3.6) of the contrast κ and the normalized contrast η
respectively:

κ = εm/εd, η = 1+κ
1−κ .
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The following quantity corresponds to the transmitted part in the lower
dielectric region of the waves generated by the point source in the upper
dielectric region:

I(η2) =

∫ +∞

ρ

et(y−y0)

t(e−4th − η2)
cos(t(x− x0))dt. (4.3.12)

Let us now investigate the behavior of I(η2).

Lemma 4.3.2. Since Re(εm) < 0 and Im(εm) > 0, the contrast η lies in the
unit disk, that is

|η| < 1.

Case η2 6= 0

We first investigate the regularity of the function I(η2).

Theorem 37. I(η2) is piecewise continuous as a function of η2 for 0 <
|η2| ≤ 1.

The proof will be provided in three following lemmas.

Lemma 4.3.3. Let C be a compact set included in the unit disk and such
that it does not intersect the positive real axis. Then, I(η2) is continuous on
C.

Proof. Since e−4th ∈ [0, 1], there exist a constant 0 < c < 1 such that
∀η2 ∈ C,∀t ∈ [ρ,+∞[, |e−4th − η2| > c. Consequently∣∣∣∣∣ et(y−y0)

t(e−4th − η2)
cos(t(x− x0))

∣∣∣∣∣ < 1

cρ
et(y−y0)

Since (y − y0) < 0, the lemma is proved using the dominated convergence
theorem.

Lemma 4.3.4. If η2 is a positive real number such that 1 > |η2| > 0, then
I(η2) is finite.

Proof. We denote by t0 = − ln(η2)
4h > 0 the only root of e−4th− η2. We verify

that
∂t(e

−4th − η2)(t0) = ∂t(e
−4th − e−4t0h)(t0) 6= 0

Then t0 is a root of order one. So there exists a smooth function R such that
close to t0 it satisfies

e−4th − η2 = (t− t0)R(t0)

where R(t0) 6= 0. Consequently, the integral I(η2) is an improper integral
that converges by Cauchy principal value.
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Lemma 4.3.5. If Re(η2) 6= 0, then the function I(η2) has a finite limit when
Im(η2)→ 0+ or when Im(η2)→ 0−.

Proof. We use the Plemelj formula to prove this lemma.

Considering the previous lemmas we conclude the Green function does
not blow up for η2 6= 0 in the closed unit disk. In other words, η2 = 0 is the
only candidate to be a resonance. In the next part, we study the behavior
of I(η2) as η2 goes to zero.

Case η2 goes to zero

Let us denote α = − (y−y0)
4h −1. We distinguish two different cases depending

on the sign of α. These kinds of conditions are called localization conditions.
For example, knowing that y < −h and y0 > h, the condition α > 0 is always
(∀h < −h) fulfilled when y0 > 3h. We will see below that this condition
corresponds to the case where I(η2) remains bounded when η2 → 0. So if
the source if far enough from the metal layer, then I is bounded for all values
of y < −h.

The case y < y0 − 4h (or α > 0)

Lemma 4.3.6. If y < y0 − 4h, then I(η2) stays bounded when η2 goes to
zero.

Proof. We first apply the change of variables z = e−4th, and obtain

I =

∫ e−4ρh

0

zα

ln(z)(z − η2)
cos

(
− ln(z)(x− x0)

4h

)
dz,

which implies

|I| <
∫ e−4ρh

0

zα

| ln(z)|

|z − η2|
dz

Let now φ(z) = zα

| ln(z)| .
Then

∫ e−4ρh

0

zα

| ln(z)|

|z − η2|
dz =

∫ e−4ρh

0

φ(z)− φ(η2)

|z − η2|
dz + φ(η2)

∫ e−4ρh

0

1

|z − η2|
dz,

Since φ is Hölder continuous there exist constants C > 0 and 0 < θ ≤ 1 such
that

|φ(t)− φ(η2)| < C|t− η2|θ

So the first integral is finite when η2 → 0. Moreover a primitive of 1/|z−η2|
is − ln(|z − η2|+ Re(η2)− z). Then∫ e−4ρh

0

1

|z − η2|
dz = − ln(|e−4ρh − η2|+ Re(η2)− e−4ρh) + ln(|η2|+ Re(η2))
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We easily see that

lim
η2→0

φ(η2)
∣∣∣− ln(|e−4ρh − η2|+ Re(η2)) + ln(|η2|+ Re(η2))

∣∣∣ < +∞

So we deduce |I| is bounded when η2 → 0.

The case y > y0 − 4h (or α < 0)

Theorem 38. For x = x0, we have

|I(η)| ≥ −C1| sin(γ)|
eε1−α̃ ln(ε)

∫ e−βρ
ε

0

1

(s− cos(γ))2 + sin2(γ)

1

s1−α̃s
1

ln(ε)

ds

|I(η)| ≤ −C2e

ε1−α̃ ln(ε)

∫ e−βρ
ε

0

1

|s− eiγ |
sα̃−1s

1
ln(ε)

(1− e−1s
− 1

ln(ε) )
ds,

where η2 = εeiγ and α̃ = −y−y0

4h > 0.

We will begin by proving a useful result for our coming analysis.

Lemma 4.3.7. There exist two positive constants C1 and C2 such that,
∀t ∈]0, 1[, ∀θ > 0 ,

C2t
θ(1− tθ)
θ

< | ln(t)| < C1

θtθ

Proof. On the one hand, we have that ∃C1 > 0, ∀t ∈]0, 1[, |t ln(t)| < C1. In
particular, ∀θ > 0, |tθ ln(tθ)| < C1.

∀t ∈]0, 1[, ∀θ > 0, | ln(t)| < C1

θtθ

On the other hand, ∃C̃2 > 0, ∀t ∈]0, 1[, | t(1−t)ln(t) | < C̃2. In particular, ∀θ > 0,

| t
θ(1−tθ)
θ ln(t) | < C̃2.

∀t ∈]0, 1[, ∀θ > 0,
tθ(1− tθ)
θC̃2

< | ln(t)|

Back to the Green function and the quantity

I(η) =

∫ +∞

ρ

et(y−y0)

t(e−4th − η2)
cos(t(x− x0))dt

I(η) =
1

2

∫ +∞

ρ

et(y−y0+i(x−x0))

t(e−4th − η2)
dt+

1

2

∫ +∞

ρ

et(y−y0−i(x−x0))

t(e−4th − η2)
dt
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We apply the change of variables z = e−4th. We note α = y − y0 and
β = 4h. Then

I(η) = −1

2

∫ e−βh

0

z
−α+i(x−x0)

β
−1

ln(z)(z − η2)
dz − 1

2

∫ e−βh

0

z
−α−i(x−x0)

β
−1

ln(z)(z − η2)
dz

Let η2 = εeiγ .

I(η) = −1

2

∫ e−βρ

0

z
−α+i(x−x0)

β
−1

ln(z)(z − εeiγ)
dz − 1

2

∫ e−βρ

0

z
−α−i(x−x0)

β
−1

ln(z)(z − εeiγ)
dz

By a change of variables z = εs, we find

I(η) = −1

2

∫ e−βρ
ε

0

(εs)
− i(x−x0)

β

(εs)
α
β

+1
ln(εs)(s− eiγ)

ds−1

2

∫ e−βρ
ε

0

(εs)
i(x−x0)

β

(εs)
α
β

+1
ln(εs)(s− eiγ)

ds

We note α̃ = −α
β = −y−y0

4h > 0.

I(η) = −1

2

∫ e−βρ
ε

0

(εs)
− i(x−x0)

β

(εs)1−α̃ ln(εs)(s− eiγ)
ds−1

2

∫ e−βρ
ε

0

(εs)
i(x−x0)

β

(εs)1−α̃ ln(εs)(s− eiγ)
ds

On the other hand

|− 1

2

∫ e−βρ
ε

0

(εs)
± i(x−x0)

β

(εs)1−α̃ ln(εs)(s− eiγ)
ds| ≤ −1

2

∫ e−βρ
ε

0

1

(εs)1−α̃ ln(εs)|s− eiγ |
ds

Therefore

|I(η)| ≤ −
∫ e−βρ

ε

0

1

(εs)1−α̃ ln(εs)|s− eiγ |
ds

Lemma 4.3.8. There exist two positive constants C1 and C2 such that ∀s ∈
]0, e

−βρ

ε [,

−C1

eε1−α̃ ln(ε)s1−α̃s
1

ln(ε)

<
−1

ln(εs)(εs)1−α̃ <
−C2e

ε1−α̃ ln(ε)s1−α̃s
− 1

ln(ε) (1− e−1s
− 1

ln(ε) )

Proof. It suffices to apply lemma 4.3.7 with θ = − 1
ln(ε) .

Proof of the theorem.
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Proof. By applying lemma 3.3.2, we find:

|I(η)| ≤ −C2e

ε1−α̃| ln(ε)|

∫ e−βρ
ε

0

1

|s− eiγ |
sα̃−1s

1
ln(ε)

(1− e−1s
− 1

ln(ε) )
ds. (4.3.13)

We are in the case where α̃− 1 < 0. So, the integral∫ e−βρ
ε

0

1

|s− eiγ |
sα̃−1s

1
ln(ε)

(1− e−1s
− 1

ln(ε) )
ds

is convergent. Moreover, |I(η)| ≥ |Im(I(η))|.

I(η) = −
∫ e−βρ

ε

0

cos( (x−x0)
β ln(εs))

(εs)1−α̃ ln(εs)(s− eiγ)
ds

Im(I(η)) = −
∫ e−βρ

ε

0

sin(γ)

(s− cos(γ))2 + sin2(γ)

cos( (x−x0)
β ln(εs))

(εs)1−α̃ ln(εs)
ds

If we take x = x0.

|Im(I(η))| = | sin(γ)|
∫ e−βρ

ε

0

1

(s− cos(γ))2 + sin2(γ)

−1

(εs)1−α̃ ln(εs)
ds

By lemma 3.3.2, we find that:

|I(η)| ≥ |Im(I(η))| ≥ C1| sin(γ)|
eε1−α̃| ln(ε)|

∫ e−βρ
ε

0

1

(s− cos(γ))2 + sin2(γ)

1

s1−α̃s
1

ln(ε)

ds,

(4.3.14)

which finishes the proof of the theorem.

Discussion

Theorems 37 and 38 show that the Green function remains bounded if the
contrast η is not degenerated (κ = −1). When η tends to zero (or κ goes
to −1), the Green function G(x0, x0, y, y0) blows up like 1

|η|
y0−y

4h ln(|η|)
in the

region close to the metallic layer, that is y0−y
4h > 0 and y < −h < h < y0.

Then, the only plasmonic resonances ωj of the metallic slab are the solutions
to the following dispersion relation:

εm(ω) = −εd. (4.3.15)
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Simple calculation leads to

ωj = −iγ
2

+ (−1)j

(
ω2
p

1 + εd
− γ2

4

) 1
2

, j = 1, 2.

These resonances correspond exactly to the plasmonic resonances of a
plasmonic spherical small nanoparticle (see for instance Lemma 2.1 in [39]).
We observe that when the attenuation γ tends to zero, these resonances con-
verge to the real axis, that is Im(ωj)→ 0. Moreover, when γ becomes large,
which means that the metal becomes a perfect conductor, these resonances
move away from the real axis and will have no influence on the confinement
and localization of the electromagnetic fields.

4.4 Numerical results

2h Qm

Qu

Ql

Figure 4.4: Simulation domain Q

We propose to calculate a numerical solution to the scattering problem
(4.2.1) defined on an unbounded domain. To do this we need to restrict our-
selves to a square bounded domain Q. We denote by Qm, Qu, Ql the metal
part, the upper dielectric part and the lower dielectric part of Q respectively
(see Figure 4.4). We solve the following problem on Q:

∆u+ εdk
2
0uh = f in Qu ∪Ql

∆u+ εm(ω)k2
0u = 0 in Qm

[uh]y=±h = 0[
1
ε∂yuh

]
y=±h = 0

Additionally, we set appropriates absorbing boundary conditions on ∂Q to
avoid reflection on the boundaries. The source term f is a compactly sup-
ported function whose support is included in the upper dielectric region Ql.
Because we study a limit model when the layer thickness h is small compared
to the wavelength we suppose that k0 << 1. For the numerical simulation
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we chose k0 = 10−4 and εd = 1. Firstly we simulated the previous problem
with εm = −1 (η2 = 0). We showed earlier that η2 = 0 is a critical value.
Indeed we proved the Green’s function is always well-defined for η2 6= 0.
However in the case η2 = 0 it may not be well-defined when the source
comes close to the metal layer. We now explore the numerical behaviour of
the solution when η2 = 0 and when the source comes close to the metal layer.

The results of the simulation are given in Figure 4.5. The constant dsrc
controls the source position y0 such that y0 = h+dsrc ∗h. So here we moved
the source from y0 = 2h to y0 = h. Then, we measured the L2 norm of the
solution denoted Econf (confined energy) in different regions (see figure 4.5
for the corresponding region to each curve) and we plotted the proportion of
the total energy (Etot) confined in this region Econf/Etot. We observe that
when the source becomes very close to the metal layer, the energy confined
in the region −3h < y < 3h growths to reach 90% of the total energy
(black curve). We also plotted the repartition of the confined energy, inside
and around the metal layer (red, green, blue curves). We observe the same
growth in the tree regions when dsrc goes to 0. The difference between the
region −3h < y < −h and the region h < y < 3h can be explained by the
presence of the source in the second region increasing the measured energy.
So we showed that moving the source very close to the metal layer increases
the proportion of the energy confined around the layer. However some could

Figure 4.5: Black curve: Proportion of total energy confined in the region
−3h < y < 3h. Green curve: Proportion of total energy confined in the
region h < y < 3h (reflective part). Red curve: Proportion of total energy
confined in the region−h < y < h (metal layer part). Blue curve: Proportion
of total energy confined in the region −3h < y < −h (transmission part).
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argue the previously observed behaviour is just the consequence of moving
the source very close to the layer, such that the growth of the confinement
is only explained by the proximity between the source and the metal layer.
But that is not the case. We plotted the energy ratio confined in the region
−3h < y < 3h when the source come close to the metal layer for different
values of εm close to −1 (see Figure 4.6). That we observe is when the source
comes close to the metal, the confined energy growth rate highly depends on
εm. When εm is far from −1 (Im(εm) > 0.001), the growth rate is almost
constant (green curve). But when we come close to −1 the growth rate
increases.

Figure 4.6: We observe the proportion of total energy confined in region
−3h < y < 3h for different values of εm. The black curve corresponds to the
case εm = −1. The red curve corresponds to the case εm = −1 + 0.00001i.
The blue curve to εm = −1 + 0.0001i. The green curves corresponds to the
cases εm = −1.1, εm = −1 + 0.001i, εm = −1 + 0.01i, εm = −1 + 0.1i which
gives identical results at the figure scale.
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Conclusion

We derived the asymptotic behavior of the plasmonic resonances of rough
metallic surfaces containing subwavelength apertures and thin metallic plane
layers. We showed that the these resonances converge to the zeros of some
dispersion equations when the ratio between the roughness parameter and
the wavelength tends to zero. The obtained dispersion equations (2.4.17),
(3.5.12), (3.5.5), and (4.3.15) are independent of the roughness parameter,
provide a precise localization of the resonances in the complex plane, and are
suited for numerical approximation, shape and material optimization. We
are confident that the derived results will help physicists and engineers in
understanding the amplification and confinement of electromagnetic fields in
sub-wavelength metallic structures. We plan in future works, to derive the
asymptotic expansion of the electromagnetic fields and to validate numeri-
cally the obtained results.
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