N

N
N

HAL

open science

Control issues for some fluid-solid models

Jozsef Kolumban

» To cite this version:

Jozsef Kolumban. Control issues for some fluid-solid models. Fluid mechanics [physics.class-ph].

Université Paris sciences et lettres, 2018. English. NNT : 2018PSLED012 . tel-01885627

HAL Id: tel-01885627
https://theses.hal.science/tel-01885627
Submitted on 2 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-01885627
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT

de I’'Université de recherche Paris Sciences et Lettres
PSL Research University

Préparée a I’'Université Paris Dauphine

Control issues for some fluid-solid models

Ecole doctorale n°543

ECOLE DOCTORALE DE DAUPHINE COMPOSITION DU JURY :

Spécialité sciences
Mme Céline GRANDMONT
Inria Paris, Présidente

M Enrique FERNANDEZ-CARA
Universidad de Sevilla, Rapporteur

M David GERARD-VARET
Université Paris Diderot, Rapporteur

M Olivier GLASS
Université Paris Dauphine, Directeur

M Franck SUEUR

o A iversité de Bord , Co-direct
Soutenue par Jozsef J. KOLUMBAN Université de Bordeaux, Co-directeur

le 28 Septembre 2018 Mme Muriel BOULAKIA
Université Pierre et Marie Curie,

Membre du jury

Dirigée par Olivier GLASS
Franck SUEUR Université Paris Dauphine,

M Pierre LISSY

Membre du jury

pAUPHINEPSL %

UNIVERSITE PARIS

RESEARCH UNIVERSITY PARIS

M Ping ZHANG
The Chinese Academy of Sciences,
Membre du jury







Acknowledgements

First and foremost I would like to sincerely thank Olivier Glass and Franck Sueur for taking me on
as their PhD student and for guiding me during these last three years. I am grateful to them for giving
me such interesting and challenging problems to work on, as well as for providing me with invaluable
expertise, always being patiently available to help me out with any questions or uncertainties I had
during my PhD, no matter how big or small.

I would especially like to thank Olivier for introducing me to the field of Fluid Mechanics when I
was just a second year Master’s student looking for a dissertation advisor. Although it is never an easy
decision for an aspiring young mathematician to choose just one research area to work in for the next
foreseeable n years, I was convinced by the manner in which Olivier had presented a couple of relevant
problems the first time I walked into his office, a good three and a half years ago. Looking back, I have
never regretted the decision to work in this beautiful field (where Mathematics meets Physics in a ratio
that is just suitable to my tastes), nor the decision to work with Olivier, whose wisdom and depth of
knowledge have definitely given me courage and inspired me to tackle deeper and deeper problems with
more and more self-confidence.

I am equally grateful to Franck for the amount of time and effort invested in my PhD. They say
that having two advisors is harder because it’s twice the work, but in my case it never really felt
like a burden, rather a gift or an opportunity, since they complemented each other really seamlessly,
Olivier’s regular reassuring discussions with Franck’s occasional more “fast and furious” approach. I
recall with fondness the intense working sessions we put in together when either he was in Paris or I
was in Bordeaux, when I really learned that in this line of work you have to be ready to change, throw
out or improvise new ideas in a heartbeat, even if that meant letting older ideas (that you might have
worked on for weeks if not months) die. I do feel that our brainstorming episodes spurred me on and
brought the most out of me creatively, and that the attitude I learned from him will also help me in
my future work.

Overall I am proud to have been the doctoral student of two such outstanding Mathematicians,
and if during these three years I have indeed successfully managed to take in just a small percentage
of their knowledge and skills (and to make a convex combination out of it), then I can consider myself
in an amazing position for making it on my own in the Academic World. I hope to continue keeping in

touch and working with both of them after the completion of my PhD. Merci pour tout!

I also want to warmly thank Enrique Fernandez-Cara and David Gérard-Varet for accepting to
review this thesis, as well as for their appreciation of my work and their useful suggestions. I would
equally like to thank Muriel Boulakia, Céline Grandmont, Pierre Lissy and Ping Zhang for accepting
to be part of the jury.

I am extremely grateful to the Fondation Sciences Mathématiques de Paris, who have financed

1



both my Master’s Scholarship and my PhD thesis, allowing me to not only study at such an elite
establishment as Paris Dauphine University, but also to have had the opportunity to work at a pres-
tigious institution such as the CEREMADE Research Laboratory, where many great mathematicians
have conducted research in the past, and (I'm sure) will in the future. These past five years of my life
have definitely been an experience which I will always recall with the utmost pride. I would like to once
more thank the FSMP for this great opportunity, and especially all the help by the secretaries regarding
settling in Paris the first time I arrived here five years ago, knowing next to no French whatsoever. I
would also like to thank Filippo Santambrogio from Université d’Orsay for all his help and advice when
I was just a Bachelor’s student in Cluj-Napoca, as a consequence of which I was able to find and apply
for the FSMP Scholarship, and by such to come to Paris in the first place.

I wish to take this opportunity to thank everyone from the CEREMADE for their friendship,
kindness and openness.

In particular I would like to start by mentioning a few of my former professors from my Master’s
degree who have helped me and inspired me to stay on this career path, both through their advice and
help regarding my Master’s degree and my PhD application, as well as their interesting classes : Julien
Salomon, Pierre Cardaliaguet, Jacques Féjoz, Eric Séré and Ivar Ekeland (I am especially grateful to
Professor Ekeland for writing a letter of recommendation for my PhD application, as well as his kind
words of encouragement). I would also like to mention that even though I have decided to go down a
different career path, I have very much enjoyed the classes of Guillaume Carlier (on Optimal Control),
as well as José Trashorras and Halim Doss (on Stochastic Differential Equations).

Moving forward chronologically, I have really enjoyed my teaching duties during my PhD, and I
would like to thank Yannick Viossat, Katia Meziani, Francois Huveneers, Anne-Marie Boussion, Nejla
Nouaili, Amic Frouvelle and Emeric Bouin for their collaboration and guidance. I also want to thank
all my fellow PhD students/post-docs for the pleasant company, as well as for the various research
seminars, summer schools and nights out held for us young researchers (in the last category I also
thank Boris Haspot and Pierre Lissy for their company). Last but not least, I want to thank Vincent
Rivoirard, the director of the CEREMADE, for his generosity and promptness regarding financing
requests for various conferences, as well as the secretaries Isabelle Bellier, Marie Belle and César Faivre
for their efficiency and hard work regarding administrative issues.

I also want to take the opportunity to thank everyone from the Institut de Mathématiques de
Bordeaux (IMB) for being extremely kind and welcoming every time I visited Franck for research
purposes. Special shout out to Marco, Edoardo and the other PhD students at Bordeaux for the
camaraderie provided.

I am also thankful to my advisors for taking me to various conferences and summer schools to
meet other people working in Fluid Mechanics and Control Theory, since ultimately Mathematics (like
all proper Sciences) is about collaborating, nobody can take on the whole world by themselves. I am
grateful to have met some of my advisors’ collaborators and colleagues, and to have had the opportunity
to listen to and learn from a lot of worldwide experts in the respective fields. Since not everything is
about work, this was complemented by the odd football, dining or sight-seeing session, which I have
thoroughly enjoyed.

In particular I wish to thank Marius Tucsnak from the IMB and Alexandre Munnier from Université
de Lorraine for accepting to write letters of recommendation during my search for a post-doc position,

as well as for their helpful and insightful discussions regarding my research.



Of course I would have never arrived where I am today without certain people from my home town
Cluj-Napoca who have put me on and helped me progress on this path. I am especially grateful to
Jutka Szilagyi, my high school Math teacher, for inspiring my early love of Mathematics, as well as
Szilard Andras, my mentor during my Bachelor’s degree, for introducing me to Mathematical Research,
for setting further examples in terms of work ethics, as well as for his friendship.

I am thankful for the support of my family, especially my Dad, also for his patience and unconditional
love during this journey of coming into my own, not only as a Mathematician, but also as an adult
human being.

Last but not least, I must thank all my friends for keeping my life balanced during these years of
working on my PhD. Special shout out goes to Walid from Paris; Paul (and his lovely family), Kevin,
Stephanie and Scott from Manchester; as well as Laci, Boti, Rigo, Bence, Zoli, Zsolt and Tudor from

Cluj/Transylvania.

Thank you all!






Table des matiéres

1__Introduction Généralel 9
(1.1 Théorie ducontrolel. . . . . . . . . oL 9
1.2 Problémes de controle en mécanique des fluides| . . . . . . . . .. ... 10

[1.2.1  Le cas non vISQUEUX| . . . . .« v v v v v v e e e e e 10

[1.2.2 Lecas visqueux| . . . . . . . . . . . 12

(1.3 Modeles dinteraction fluide-solidef. . . . . . . . .. ... oL oo 14
[1.3.1 La dynamique d'un corps rigide dans un fluide non visqueux, irrotationnel et |

| incompressiblel . . ... 14
[1.3.2  La dynamique d’'un corps rigide dans un fluide visqueux incompressiblel. . . . . . 16

[1.3.3  Quelques autres modeéles fluide-solide, résultats connectés et autres rétérences| . . 17

1.4 Principaux résultats de la thesel . . . . . . . . . . .. o oo 18
[1.4.1  Controle du mouvement d’'un corps rigide immergé dans un fluide bidimensionnel |

| parfait irrotationnel|] . . . .. ..o oo 18
[1.4.2  Controle du mouvement d’'un corps rigide immergé dans un fluide bidimensionnel |

| visqueux Incompressible| . . . . . . ..o Lo 19
[1.5  Méthodologiel . . . . . . . . 21

[1.5.1 La construction dans le cas non visqueux : géodésiques et controle impulsiff. . . . 21
[1.5.2  La réduction du cas visqueux a I’état non visqueux par une méthode de viscosité |

[ evanescentel . . ... L L 25
[1.6  Directions futures et probléemes ouverts|. . . . . . . . . .. ... oL 29

[2General Introductionl 33
2.1 Control Theory|l . . . . . . . . . . 33
2.2 Control problems in fluid mechanics| . . . . . . . . .. .. ... . oL 34

22.1 Theinviscid casel . . . . . . . . .. 34

222 The viscous casel . . . . . . . .. . e 36

2.3 Fluid-solid interaction models . . . . . . . . ... oo 38
[2.3.1  The dynamics of a rigid body in an irrotational inviscid incompressible fluid| . . . 38

[2.3.2  The dynamics of a rigid body in a viscous incompressible fluid| . . . . . . .. .. 39

[2.3.3  Some other fluid-solid models, related results and further references|. . . . . . . . 40

2.4  Main results of the PhD Thesisl . . . . . .. ..o oo oo 41
[2.4.1  Control of the motion of a rigid body immersed in an irrotational perfect two- |

| dimensional fluidl . . . . . ... 41




6 TABLE DES MATIERES
[2.4.2  Control of the motion of a rigid body immersed in a viscous incompressible two- |

[ dimensional fluadl . . . . . ... 43
2.5 Methodology| . . . . . . . e 44
[2.5.1  The construction in the inviscid case : geodesics and impulsive control| . . . . . . 44

[2.5.2 The reduction ot the viscous case to the inviscid one via a vanishing viscosity |

| methodl . . . . .. 48
[2.6  Future directions and open problems| . . . . . . .. ..o 52

I3 External boundary control of the motion of a rigid body immersed in a perfect |
[___two-dimensional fluidl 55
8.1 Introduction and main resultl . . . . . .. . . .. ... L 59
[B.1.1  The model without controll . . . . . . ... ... ... ... .. ... .. ... 55

[3.1.2  The control problem| . . . . . . . ... .. .. 57

[3.2  Reformulation of the solid’s equation into an ODE| . . . . . . ... ... ... ... ... 60
[3.2.1 A reminder of the uncontrolled casel . . . .. ... ... ... ... ... ... .. 61

[3.2.2 Fxtension to the controlled casel. . . . . .. ... ... ... ... ... ... ... 64

3.3 Reduction to the case where the displacement, the velocities and the circulation are smalll 66
[3.4  Reduction to an approximate controllability result| . . . . . . ... ... ... ... ... 67
[3.5  Proof of the approximate controllability result|. . . . . . .. ... ... .. ... ... .. 68
3.5.1 First step| . . . . . . 68

[3.5.2  Illustration of the method on a toy model| . . . . . .. ... ... ... . ..... 69

13.5.3 Back to the complete model| . . . . . . ... ... ... oL 70

354 About RemarkI3. 1.1l . . . . . .. . . . 72

[3.6  Closeness of the controlled system to the geodesic|. . . . . . .. ... ... ... ... .. 72
[3.6.1  Prootf of Proposition|[3.5.2) . . . . . . ... ... o 72

[3.6.2  Proof of Proposition[3.6.1f . . . . . . . .. ... ... o 73

[3.6.3  Proof of Proposition[3.6.2) . . . . . . ... ... o 74

[3.6.4  Proof of Proposition[3.6.3] . . . . . . . .. ... o 76

[3.7  Design of the control according to the solid position| . . . . ... ... ... ... .... 76
[3.7.1 The case of a homogeneous disk|. . . . . . . . . ... .. ... ... ... .. ... 76

3.7.2 The case when Sgisnot a diskl . . . . . . . ..o 79

|4 Control at a distance of the motion of a rigid body immersed in a two-dimensional |
|  viscous incompressible fluid| 81
4.1 Introductionl. . . . . . . .. 81
[41.1 The mathematical modell . . ... ... ... . ... ... ... ... 81

412 Definition of weak solutiond . . . . . . . . ... ..o 82

413 Mainresult] . . . . . .. 84

4.2 Preliminary reductions| . . . . . . . .. . 86
[4.2.1 A reduction of Theorem |4.1.1]to the case of a fixed domain and small viscosity] . 87

[4.2.2  Proving Theorem |4.2.1f by the means of an asymptotic expansion for the solid |

| trajectory] . . . . . . .. 89
4.2.3  Proving Theorem }4.2.2] - Constructing the control via the asymptotic expansion |

for the fluid velocity] . . . . . . . . . . 91




TABLE DES MATIERES 7
4.2.4  Regarding Remark [4.2.1) . . . . . . . .. . 93

4.3 Theinviscid term «% . . . . ... 93
4.3.1 Reformulation of the solid’s equation into an ODEf . . . . . ... ... ... ... 95
|4.3.2  Proot of the exact controllability result Theorem{4.3.1) . . . . . . .. .. ... .. 98

4.4 'The boundary layer profiles| . . . . . . . . . . .. o 104
[4.4.1  The physical boundary layer profile of. . . . . . . .. ... ... 104
4.4.2  The second boundary corrector wf. . . . . . . . . . . ... L. 106
[4.4.3  The inner domain corrector 6%, . . . . . .. .. ... Lo 106

45 The firstorder term wll. . . . .. .. 107
[4.5.1  Vorticity|. . . . . . . o 108
4.5.2 An ODE reformulation in the linearized casel . . . . .. ... ... ... ... .. 110
[4.5.3  An impulsive control strategy to control the final velocity p*(T') - Proof of Theo- |

rem MOl . ..o 113

4.6 Estimating the remainder| . . . . . . . . . ... 115
[4.6.1 The equation of the remainder and weak solutions| . . . . .. ... ... ... .. 115
4.6.2  Existence and continuity|. . . . . .. ... L 117

A7 Conclusionl. . . . . . . . . . 123
[Annexe 4.A Design of the controls| . . . . . . . .. .. ... oo 125
4.A.1 Proof of Proposition|4.3.3] . . . . . . . .. ... 125
[4.A.2 Proof of Proposition[4.5.3] . . . . . . . ... 129




TABLE DES MATIERES



Chapitre 1

Introduction Générale

1.1 Théorie du controle

Le but de la théorie du controle est d’étudier les systémes dynamiques en fonction de certains
paramétres de controle. De tels systémes apparaissent dans les domaines de 'ingénierie, de la physique,
de la biologie, de la chimie, etc. Plus précisément, on peut généralement définir un systéme de controle

comme une équation d’évolution de la forme suivante :

d

—x

dt
o T' > 0 est 'horizon temporel, z : [0,7] — X est I’état du systéme, et g : [0,7] — G représente le

(t) = f(t,z(t),g(t)), pour t € [0,T], (1.1)

paramétre de controle (ou plutdt la fonction de contrdle) avec lequel nous aimerions agir sur 1’évolution
du systéme. Deux exemples mathématiques standard de telles équations d’évolution sont les systémes
de contrdle d’EDO (lorsque I'espace d’états X' et ’espace de controle G sont de dimension finie) et les
systémes de controle d’EDP (quand 1'état et le contrdle appartient & certains espaces fonctionnels de
dimension infinie). De plus, en fonction des propriétés de la fonction f par rapport a = et g, on peut
encore catégoriser les systémes de contréle linéaires et non linéaires.

La question générale de la théorie du contréle est de savoir comment utiliser la fonction de controéle
g afin d’obtenir le comportement désiré du systéme . Voici une liste (non exhaustive) de ces
problémes.

1. Controlabilité exacte. Le systéme de contréle peut-il étre conduit d’un état initial donné &
un état final donné & un moment donné ? Plus précisément, étant donné 1" > 0, xg, z1 € X, existe-t-il
un controle g : [0,7] — G tel que la solution z : [0,7] — X du systéme avec le controle g et les
données initiales z(0) = o vérifie x(T) = z1?

2. Controlabilité approchée. Une question similaire a celle ci-dessus, mais permettant une erreur
(arbitrairement petite) pour I’état final. Autrement dit, étant donné 7' > 0, xg, x1 € X et € > 0, existe-
t-il un controéle g : [0,7] — G tel que la solution z : [0,7] — X du systéme avec le controle g et
les données initiales x(0) = xg vérifie ||z(T") — z1|| <e?

3. Controlabilité & zéro. Peut-on mettre I’état du systéme au repos? Mathématiquement cela
peut étre décrit de la méme maniére que le probléme de contrélabilité exacte ci-dessus, mais au lieu
d’essayer d’atteindre un état final arbitraire z1, nous voulons seulement avoir un état final nul, ¢’est-
a~dire z(T") = 0.

4. Controlabilité aux trajectoires. Soit z : [0, 7] — X une trajectoire donnée de (1.1) associée

a un controle g : [0,7] — G. Etant donné x¢ € X, existe-t-il g : [0,7] — G tel que la solution associée

9



10 CHAPITRE 1. INTRODUCTION GENERALE

x:[0,T] — X de (L.1) avec le controle g satisfait z(T) = z(T)?

5. Stabilisation asymptotique. Pour simplifier supposons que nous sommes dans le cas autonome
(c’est-a~dire f = f(x, g) ne dépend pas de t), et que (z¢, ge) € X X G est un point d’équilibre du systeme,
c’est a dire f(ze, ge) = 0. Imaginons que nous voulions controler le systéme a cet état d’équilibre, ¢’est-a-
dire trouver un controle g et une solution associée z de tel que (z(T'),9(T)) = (e, ge ). Le probléme
est qu'un tel controle serait sensible aux perturbations dans le modéle, telles que celles provenant
du bruit, des imprécisions dans le modéle ou dans 'implémentation du contréle. Par conséquent, si
I’équilibre est instable, le systéme ne se comportera pas comme nous ’aurions voulu avec le controle g.
Pour résoudre ce probléme, nous recherchons un controle en boucle fermée, c’est-a-dire un controle de
la forme g = g[x], plus robuste aux perturbations.

La question de la stabilisabilité asymptotique devient la suivante : peut-on trouver un contréle de

feedback g : X — G tel que g. = g[z¢] et que la solution du systéme

G a(t) = F((1), glo(0), pour 1 € 0.7), (1.2)
soit asymptotiquement stable & x.? Nous rappelons que la notion de stabilité asymptotique est la
suivante :

(i) pour tout € > 0 il existe § > 0 tel que, pour tout zg € B(z,,d) et toute solution de avec

2(0) = z¢, nous avons x(t) € B(z,e) pour tout ¢ > 0;

(ii) pour tout zyp € X et toute solution maximale de (1.2]) avec z(0) = z¢ nous avons que x est une

solution globale et ||z(t) — z.|| — 0 quand t — +oc.

Notons que les questions ci-dessus ont été formulées dans un contexte global. Les versions locales
peuvent étre considérées en exigeant seulement que les données initiales et finales soient dans certaines
boules fixes de petit rayon (au lieu d’étre arbitraires) dans le cas de la question de contrdlabilité ;
respectivement en demandant seulement la stabilité asymptotique locale & x. dans le cas du probléme
de stabilisation en boucle fermée.

Nous différencions également les problémes ci-dessus & ceux du controle optimal, ot I’on cherche un
controle qui satisfait également un critére d’optimalité (comme la minimisation d’un coit fonctionnel),
plutét que de simplement conduire le systéme a un état donné.

On peut trouver une description plus détaillée de ces problémes, ainsi que I’état de l'art et les
problémes ouverts dans les livres de J.-M. Coron [21], J.-L. Lions [76], respectivement M. Tucsnak et
G. Weiss [96], ainsi que dans le papier de D. L. Russell [89].

1.2 Problémes de controle en mécanique des fluides

1.2.1 Le cas non visqueux

Présentons quelques exemples concrets de problémes de contréle EDP en mécanique des fluides.
Nous commencons par un résultat classique concernant la controlabilité exacte de ’équation d’Euler
en deux dimensions.

Soit Q2 € R? un domaine lisse, borné, connexe (mais pas nécessairement simplement connexe), et

considérons 1’équation d’Euler incompressible dans 2 :

%+(u-V)u+V7T:O et divu=0 pour t€[0,T] etz €, (1.3)
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ott u : [0,T] x  — R? est le champ de vitesse du fluide et 7 : [0, 7] x Q@ — R le champ de pression. Ce
systéme décrit 1’évolution d’un fluide homogéne, non visqueux soumis uniquement & la conservation de
la masse et & 'incompressibilité. Puisque le systéme est une EDP dans 2, nous devons ajouter
des conditions aux limites sur 9€2 pour qu’il soit bien posé. Dans le cas sans contrdle, la condition
d’imperméabilité u - n = 0 sur [0,7] x 0§ est souvent considérée comme une condition aux limites
classique associée a 7 ce qui signifie que le fluide ne peut pas traverser la frontiére 02.
Cependant, puisque nous sommes intéressés par le controle du systéme , nous allons laisser du
fluide entrer et sortir dans le domaine, ce qui sera notre controle. Plus précisément, une formulation
mathématique de tels controles est due & Yudovich [98]. On considére ¥ C 9€2 comme une partie non

vide et ouverte de la frontiére, et on prescrit d’une part la vitesse normale sur X, c¢’est-a-dire
u(t,z)-n(z) = gn(t,x) sur [0,7] x X, (1.4)

ol gn € C3°([0,T] x X) avec [s gn = 0, tandis que sur le reste de la frontiere, nous avons la condition
d’imperméabilité habituelle
u-n=0sur [0,7] x (902 \ ), (1.5)

et d’autre part le tourbillon sur ’ensemble ¥~ des points de [0,7] x X ou le champ de vitesse pointe a
Iintérieur de 2, c’est-a-dire
curlu(t,z) = g,(t,z) sur £, (1.6)

ou gy € C§°([0,T] x ¥). Notons que £~ = {(t,z) € [0,T] x £ : u-n < 0} est déduit immédiatement
de gp,. Le controle associé au systéme (|1.3) devient alors g = (gn, gv)-
Le fait que le systéeme ([1.3)), (1.4), (1.5), (1.6) soit bien posé a été prouvé par Yudovich dans [98]

pour des données initiales et controles suffisamment lisses, avec certaines hypothéses appropriées sur
3.

Nous avons le résultat de controlabilité exacte global suivant da & Coron [22].

Theorem 1.2.1. Etant donné T > 0, ug,u; € C®(Q) telle que
div ug = div ugy =0 dans Q, wug-n=wuy-n =0 sur 0f,

le systeme (1.3)), (L.4)), (1.5), (1.6) est contrdlable de maniére exacte si et seulement si ¥ rencontre

chaque composant conneze de la frontiere O).

Par controlabilité exacte, nous entendons ici qu’il existe un contréle au bord approprié g dans le
sens de Yudovich tel que la solution lisse u de , , , a partir de u(0) = up satisfait
u(T) = uy. Mentionnons que dans le cas du controle d’EDP, il n’est pas rare de rechercher implicitement
de tels contréles. Autrement dit, nous recherchons une solution u de satisfaisant seulement et
la propriété de controlabilité que nous souhaitons établir (par exemple une controlabilité exacte, c’est-
a~dire u(T) = uy on u; est donné), qui est un systéme sous-déterminé, puis en déduisant implicitement
la valeur du controle g & partir d’une telle solution u en utilisant , .

La preuve repose sur la “méthode de retour” de Coron pour les problémes de controle non-linéaire,
qui consiste & trouver une solution particuliére @ & I’équation satisfaisant u(0) = @(7") = 0 tel que le
systéme linéarisé autour de u soit contrdlable, puis prouver l'existence d’une solution au probléme de
contréle original qui est proche de .

Notons que la condition que ¥ rencontre chaque composant connexe de la frontiére 9€) est essentielle

pour deux raisons principales. La premiére raison est que, grace a la loi de Kelvin, nous savons que la
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FIGURE 1.1: Le cadre du probléme de controle

circulation de la vitesse du fluide est constante autour de toute courbe de Jordan suivant le flot. Par
conséquent, s’il y avait une composante connexe de 02 non touchée par ¥, la circulation autour de
cette composante serait conservée quel que soit le choix du contréle. Par conséquent, on ne pourrait pas
controler la vitesse du fluide de ug & w1 avec différentes circulations. La deuxiéme raison pour laquelle
la vitesse du fluide n’est pas contrélable si ¥ ne touche pas tous les composants connexes de 0f) est
que le tourbillon curlwu est transporté le long du flot de u, de sorte que toute vorticité autour d’une
composante non-contrdlée de 9S2 serait également conservée.

Un résultat similaire & Theorem [1.2.1]a ét¢ établi par Glass dans [49] en ce qui concerne la controlabi-
lité exacte de I’équation d’Euler en trois dimensions. Nous mentionnons aussi les résultats de [24] [25], [48§]

concernant la stabilisation asymptotique de 1’équation d’Euler.

1.2.2 Le cas visqueux

Considérons maintenant le probléme de controlabilité dans le cas ol le fluide est visqueux, c’est-a-
dire modélisé par les équations de Navier-Stokes incompressible. En raison de la viscosité ajoutée (que

nous notons v > 0), notre modele devient

881L+(U‘V)U+V7T—VAUZO et divu=0 pour te€[0,T]etx e (1.7)

Pour 'EDP , qui est du second ordre en x, une condition aux limites naturelle est celle de Dirichlet
ou condition de “non-glissement”, c¢’est-a-dire u = 0 sur [0,7] x 99, qui a d’abord été considérée par
Stokes dans [93]. Cette condition implique que les particules fluides adhérent & la frontiére et, par
conséquent, engendrent des couches limites de grande amplitude (voir par exemple le travail de Prandtl
[87]). Cependant, Serrin a souligné dans [92] que cette condition n’est pas toujours réaliste (par exemple
lorsqu’il s’agit d’une pression modérée, comme dans le cas de I'aérodynamique a haute altitude).
D’autre part, Navier introduit dans [82] un autre type intéressant de conditions aux limites, les
conditions dites de “glissement avec friction”, lorsque le fluide peut glisser sur la limite, mais subit une

certaine friction. Cela peut étre décrit mathématiquement comme

u-n=0et (D(u)n)an = —(t)tan sur [0,7] x 0L, (1.8)
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ou 1 > 0 est le coefficient de friction, et pour tout champ vectoriel f on définit le gradient symétrique,

respectivement la partie tangentielle par

D(f) = 5 (VS +(VI)T) et (Pan= = (7 -0} (1.9

Malgré le fait que les conditions de “non-glissement” soient plus fréquentes dans la communauté mathé-
matique, les conditions de Navier sont également bien justifiées et fréquemment considérées dans divers
contextes physiques, comme pour étudier le comportement des écoulements prés des murs rugueux (voir
instance [4}, 16}, [73], ainsi que [75] pour des données expérimentales suggérant diverses possibilités pour
que les phénomeénes de glissement se produisent). De plus, il est plus facile d’établir des résultats de
convergence de viscosité pour passer a ’équation d’Euler quand v — 0 dans le cas de Navier par rapport
au cas de Dirichlet, car les couches limites engendrées par la condition de glissement sont d’amplitude
plus petite que celles engendrées par la condition d’adhérence (voir par exemple [70] et les références
qui s’y trouvent), et I’équation des couches limites dans le cas de Dirichlet peut étre mal posée (voir
par exemple [31]). Notons également que la condition de Dirichlet peut étre vue comme une limite des

conditions de Navier lorque p — o0, voir [74].

FIGURE 1.2: Le passage entre le controle aux frontiéres et le controle intérieur

Avant d’entrer dans les détails sur la controlabilité des équations de Navier-Stokes, citons une
méthode courante dans le contréle d’EDP pour changer la perspective de certains problémes de controle.
Comme nous 'avons mentionné précédemment pour ’équation d’Euler, on considére souvent que le
controle prend la forme d’une condition aux limites non homogéne sur une partie non vide et ouverte
¥ de 09). Clairement, nous pourrions définir des types de controles similaires pour le systéme
sous les conditions de Dirichlet, respectivement les conditions de Navier. Cependant, ce point de vue
équivaut essentiellement & avoir un controle intérieur (c’est-a-dire un terme source de support compacte
sur 'EDP jouant le role de controle), tout en maintenant des conditions aux limites homogénes. En
effet, nous pouvons étendre le domaine 2 a un domaine borné  tel que Q C Q, & C Q et 90 \X C on.
Maintenant, si nous considérons un terme source supporté dans \ Q, alors établir un résultat de
controle sur € en utilisant ce controle intérieur nous donnera un résultat de contrdle aux frontiéres sur
), simplement en laissant circuler le fluide dans (en particulier sur X)) et en lisant la valeur appropriée

de notre controle sur la frontiére a partir de la vitesse du fluide passant par X..
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Nous mentionnons quelques résultats de contrdlabilité concernant les équations de Navier-Stokes.
Imanuvilov dans [71], respectivement Fernandez-Cara, Guerrero, Imanuvilov et Puel dans [36, 37| ont
obtenu des résultats de controlabilité locale aux trajectoires dans le cas de Dirichlet, alors qu’'un résultat
similaire a été établi par Guerrero dans [65] pour le cas des conditions de Navier. Ces résultats reposent
sur la linéarisation de I’équation et 1'utilisation des estimations de Carleman.

Cependant, au lieu de considérer le terme non linéaire comme une perturbation (comme dans
les résultats mentionnés précédemment), une autre approche consiste a considérer le terme visqueux
comme une perturbation du systéme non visqueux, en s’appuyant sur les résultats de controlabilité de
I’équation d’Euler pour déduire la controlabilité du systéme de Navier-Stokes. Habituellement, de telles
techniques donnent lieu a des résultats de contrélabilité approchée globaux, qui peuvent ensuite étre
combinés avec les résultats locaux (mais exacts) mentionnés ci-dessus pour fournir une controlabilité
exacte globale. Nous mentionnons les travaux de Coron [23] concernant la contrélabilité approximative
globale, ainsi que Coron et Fursikov [26], respectivement Chapouly [19], concernant les résultats de
controlabilité nulle exacte globale dans le cas de conditions de Navier. Plus récemment, ces résultats
ont été améliorés par Coron, Marbach et Sueur dans [27, 28] pour établir une contrdlabilité exacte
globale a un petit temps, en utilisant une méthode de dissipation bien préparée pour gérer les couches
limites. L’adaptation de ces méthodes au cas de Dirichlet pose toujours un probléme ouvert difficile
en raison des couches limites d’amplitude plus grandes qui sont créées. Cependant, Coron, Marbach,
Sueur et Zhang ont récemment obtenu un résultat dans [29], ou dans certains contextes géométriques
particuliers un résultat similaire était possible avec des conditions de Dirichlet, mais avec un “terme de

force fantome” ajouté.

1.3 Modéles d’interaction fluide-solide

Dans cette Section, nous présentons quelques modéles fluide-solide, & la fois dans le cas non visqueux

et visqueux.

1.3.1 La dynamique d’un corps rigide dans un fluide non visqueux, irrotationnel

et incompressible

Commencons par un modéle bidimensionnel simple d’interaction fluide-solide. Soit © C R? un
domaine régulier, ouvert, borné et simplement connexe (nous notons que la simple connexité est juste
une hypothése simplificatrice et non essentielle & 1’analyse). Le domaine contient un systéme fluide-
solide qui évolue par rapport au temps ¢ € [0, 7], plus précisément une partie ouverte F(t) contenant
le fluide, et une partie fermée S(t) := Q \ F(¢) représentant le solide. Le fluide évolue selon ’équation
d’Euler incompressible, tandis que le mouvement du corps est un mouvement rigide régi par la loi de
Newton avec une force normale due & la pression du fluide agissant sur le corps.

Plus précisément, le mouvement du solide peut étre complétement décrit par son centre de masse
h(t) € Q2 et son angle de rotation ¥(t) € R comme S(t) = h(t) + R(V(t))(So — ho), ou hg est le centre

de masse au moment initial, et
cos? —sind
R(v) = ) .
siny  cosv

En outre, la dynamique du modéle fluide-solide peut étre écrite comme le systéme couplé EDO-EDP

suivant.
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Equations fluides :

(;:—i-(u-V)u—i—VTr:O et divu=0pourte[0,T] et x € F(t). (1.10)

Equations solides :
mh’ (t) = / mndo et JU'(t) = / 7 (x — h(t))* - ndo, pour t € [0,T]. (1.11)
aS(t) a5(t)
Conditions aux limites :
u-n=0sur d, et u-n=ug-nsur IS(t), for t € [0,7], (1.12)

ott u : [0, T] x 2 — R? désigne le champ de vitesse du fluide et 7 : [0, 7] x Q — R le champ de pression,
en outre, m > 0 et J > 0 désignent respectivement la masse et le moment d’inertie du solide, et la
vitesse du solide est donnée par ug(t,z) = h'(t) + ' (t)(x — h(t))*, avec (z1,22)" := (—22,1). Pour
simplifier, on a supposé que le fluide est homogéne de densité 1.

Le probléme de Cauchy pour ce systéme avec des données initiales
ult=o = up pour = € Fy, h(0) = hg, h'(0) = h{, 9(0) =0, 9'(0) =V, (1.13)

est maintenant bien compris, voir par ex. [55] 611 69, 84] [85], alors que le cas 3D a aussi été étudié dans
[62] [88].

De plus, nous supposons que le fluide est irrotationnel au temps initial, ¢’est-a-dire curlug = 0,
ce qui implique qu’il restera irrotationnel & tout moment, en conséquence du troisiéme théoréme de

Helmholtz, c’est-a-dire
curl w = 0 pour x € F(t), Vt > 0. (1.14)
Enfin, en raison du théoréme de Kelvin, la circulation autour du corps est conservée, c’est-a-dire

/ u(t)'Tda:/ up-7do =~ €R, Vt >0, (1.15)
aS(t) 8o

ou 7 désigne le vecteur tangent dans le sens antihoraire.

FIGURE 1.3: Les domaines Q, S(t) et F(t) = Q\ S(¢)

Il a été prouvé par Glass, Munnier et Sueur dans [57] que dans le cas irrotationnel, la dynamique
du systéme — peut étre reformulée comme une EDO pour les degrés de liberté du solide, a
savoir (h,9) € Q x R, que nous détaillerons dans la Section m

L’objectif principal de la premiére moitié de cette thése est d’étudier la controlabilité du solide
dans le systéme — par un controle sur la frontiére 0€). Les résultats de cette analyse seront

présentés dans la Section [1.4.1]
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1.3.2 La dynamique d’un corps rigide dans un fluide visqueux incompressible

Présentons maintenant un probléme d’interaction fluide-solide similaire & la Section [1.3.1] mais
dans le cas ou le fluide est supposé étre visqueux incompressible (et pas nécessairement irrotationnel),
avec les conditions aux limites de Navier. Nous maintenons les autres hypothéses faites au début de la
Section [I.3.1] Le systéme peut alors étre décrit comme suit.

Equations fluides :

881L+(U‘V)U+V7T—VAUIO et divu=0 pour te€[0,T] etz e F(t). (1.16)

Equations solides :

mh’ (t) = — / (—=wld 4+ 2vD(u)) n do,
aS(t)

(1.17)
T (t) = — / (z — h(t))*t - (—nld 4+ 2vD(u))ndo, pour t € [0,T).
85(t)
Conditions aux limites :
u-n=1ug-net (Duw)n)an = —u(t — ug)tan sur 0S(t),
s (D(u)n)y 1( )t (t) (1.18)

u-n=0et (D(u)n)tan = —p(u)tan sur 0, pour t € [0,7],

ou v > 0 dénote le coeflicient de viscosité, le gradient symétrique et la partie tangentielle d’un champ
de vecteurs ont été définis dans , tandis que la vitesse du solide est donnée par ug(t,z) = h'(t) +
¥ (t)(z— h(t))*. Nous considérons le méme type de données initiales (ug, ho, hf), 9o, 9)) que dans (L.13).

Notons qu’il n’y a pas de possibilité de découpler la partie ODE du systéme — comme
cela est fait dans [57] pour le cas non visqueux irrotationnel. Cependant, en raison des conditions aux
limites de Navier, on peut voir le systéme — comme la limite du systéme — quand
v — 0 (comme déja mentionné dans la Section pour le cas du fluide seul). En effet, dans [36]
Planas et Sueur ont établi un tel résultat de convergence dans le cas 3D lorsque le domaine borné 2
contenant le systéme fluide-solide est remplacé par I’espace entier R? | mais ce résultat peut facilement
étre adapté au cas 2D.

Notons qu’'un “paradoxe de non collision” peut se produire dans le cas de modéles fluide-solide avec
des conditions aux limites de Dirichlet (voir [45], 67, [68] ), ¢’est-a-dire qu’il n’y a pas de collision possible
(en temps fini) entre le solide et la frontiére externe 0. Ceci est irréaliste car il contredit la poussée
d’Archimeéde, cependant, il a ét¢é montré dans [46] que ce paradoxe peut étre résolu en utilisant les
conditions de Navier a la place de celles de Dirichlet.

On peut également trouver des résultats d’existence pour des solutions faibles & la variante 3D du
systéme (L.16)-(L.18) dans les articles [44] et [86], pour le cas borné, respectivement non borné. Pour
I'existence de solutions fortes dans un domaine 2D borné, nous citons [97]. Enfin, nous notons que
I'existence de solutions (& la fois faibles et fortes, en 2D et 3D) dans le cas des conditions aux limites
de Dirichlet a été étudiée dans de nombreux articles, citons par exemple [30] pour des solutions faibles,
respectivement |20, 94] pour des solutions fortes.

La deuxiéme partie de cette thése consiste & étudier la controlabilité du solide dans le systéme
— par un controéle intérieur. Les résultats de cette analyse seront présentés dans la Section
1.4.2
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1.3.3 Quelques autres modéles fluide-solide, résultats connectés et autres réfé-

rences

En dehors des résultats mentionnés pour les deux modéles dans les sections précédentes, présentons
d’autres résultats connectés concernant les interactions fluide-solide.

Un autre type de résultat de controle fluide-solide est due a Glass et Rosier dans [58], concernant le
contréle du mouvement d’un bateau, ol le fluide est gouverné par I’équation d’Euler bidimensionnelle,
mais le contréle est situé sur le bord du solide, contrairement au résultat de la Section [1.4.1] ot 'on
considére des controles de type Yudovich sur la frontiére externe du domaine fluide, de méme que
-

En fait, le résultat de la Section [1.4.1| peut plutét étre vu comme une extension au cas d’un corps
immergé des résultats [51, 52 53] par Glass et Horsin, concernant la controlabilité lagrangienne des
équations incompressibles d’Euler et de Stokes (c’est-a-dire controlant le mouvement d’un ensemble de
particules fluides), ou les auteurs considérent également des controles de type Yudovich.

Comme dans le cas du fluide seul (comme mentionné dans la Section[1.2.2)), dans le cas des conditions
aux limites de Dirichlet pour les systémes de contréle “fluide visqueux-+corps rigide”, des résultats de
controlabilité locale ont déja été obtenus, dans 2D et 3D, voir par exemple les travaux de Boulakia et
Guerrero, Boulakia et Osses, respectivement Imanuvilov et Takahashi [10, (11} [72]. Comme dans le cas
du fluide seul, ces résultats reposent sur des estimations de Carleman sur I’équation linéarisée, et par
conséquent sur le caractére parabolique de I’équation fluide. Un résultat similaire a été établi par Liu,
Takahashi et Tucsnak dans [78] pour le cas de 'équation 1D visqueuse de Burgers avec une nouvelle
stratégie introduite par les auteurs sans utiliser aucune estimation de Carleman, et comme indiqué
dans cet article, ces méthodes peuvent étre étendues aux autres systémes paraboliques non linéaires.
Cependant, notons que les résultats mentionnés ci-dessus concernent la controlabilité nulle locale pour
la position du solide et les vitesses du solide et du fluide, alors que, alors que dans la Section [1.4.2] nous
obtenons une contrélabilité exacte globale pour la position et la vitesse du solide directement.

Mentionnons également quelques résultats par Badra et Takahashi concernant la stabilisation concer-
nant les systémes “fluide visqueux+corps rigide” dans un domaine borné avec des conditions aux limites
de Dirichlet, voir [6] pour les cas 2D et 3D, respectivement [7] pour un modéle simplifié dans le cas 1D.
Dans ces résultats, les auteurs stabilisent la position et la vitesse du solide ainsi que la vitesse du fluide
en utilisant un controle de feedback sur la limite extérieure du domaine fluide, en supposant que les
données initiales du systéme sont proches d’un état stationnaire, qui n’est pas nécessairement supposé
d’étre zéro.

Un type différent de probléme concernant les interactions fluide-solide est celui d’un corps dé-
formable dans un fluide, concernant la dynamique de la nage, voir par exemple les résultats dans
[17, [40, 77, 90, OT] pour le cas visqueux, respectivement [I8] par Chambrion et Munnier pour le cas
non visqueux. Dans le cas de tels problémes, le controle n’est plus a distance, il consiste plutét en la
déformation du corps lui-méme. De plus, des modeéles d’EDO simplifiés sont déduits et controlés par
Alouges et al. dans [2], B] pour le cas de robots micro-nageurs autopropulsés composés d’assemblages de
billes reliés par des bras capables d’allonger et de rétrécir, contenus dans un fluide régi par ’équation
de Stokes. Une autre étude intéressante des micro-nageurs peut étre trouvée par Alouges et Giraldi
dans [I], ot le modéle considéré posséde aussi un champ magnétique agissant sur les nageurs composés
d’une téte et d’'une queue déformable, et c’est le champ magnétique qui provoque la déformation de

leur queue qui les propulse dans le fluide.
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1.4 Principaux résultats de la thése

Dans cette Section, nous présentons les principaux résultats de la thése, concernant la contrélabilité

des modeles fluide-solide présentés dans les Sections [I.3.1] et [I.3:2]

1.4.1 Controéle du mouvement d’un corps rigide immergé dans un fluide bidimen-

sionnel parfait irrotationnel

Nous considérons le systéme ([1.10))-(1.11)) comme présenté dans la Section mais avec des
controles de type Yudovich (pareil que dans (1.4))-(1.6) dans le cas de fluide seul), c’est-a-dire les

conditions aux limites suivantes :
u-n=gonX, u-n=0sur N\ X, et u-n=uwug-nsur IS(t), pour t € [0,T], (1.19)

ol ¥ C 9 est une partie non vide et ouverte de la frontiere, et g € C5°([0,T] x ) avec [; g = 0.
Puisque nous allons travailler avec des données initiales irrotationnelles, nous définissons la vorticité

entrante sur X~ d’étre zéro, c’est-a-dire
curlu(t,z) =0 on X7, (1.20)

ou X ={(t,x) €[0,T] xX: u-n <0}

Cela garantira que la condition d’irrotationnalité est toujours valide via le théoréme de
Helmholtz.

Nous nous intéressons a controdler le solide d’une position donnée et d’une vitesse donnée a une autre
position et vitesse prescrites via la fonction g € C§°([0,7] x X). Notons que la raison pour laquelle
nous n’essayons pas de controler la vitesse du fluide u en méme temps est qu’il n’y a aucun espoir pour
un tel résultat de contrélabilité & tenir, puisque le théoréme de Kelvin donne un invariant du systéme,
indépendamment du contréle, voir .

De plus, nous voulons nous assurer que la trajectoire solide reste loin de la frontiére 0€2, puisque le
systéme — n’est plus valide s’il y a une collision entre le solide et la frontiére extérieure. Par

conséquent, nous définissons
Q={q:=(h,0) e QxR: dh+ R(U)(So — ho),00) > 0}. (1.21)
Le premier résultat principal de la thése est le théoréme suivant, qui est prouvé dans le Chapitre [3]

Theorem 1.4.1. Soit T > 0, Sg C ) borné, fermé, simplement connexe et lisse, qui n’est pas un
disque, et ug € C°(Fo;R?), v € R, qo = (ho,0),q1 = (h1,91) € Q, h{,h} € R%,9),9) € R, telle que
(ho,0) et (hi,vY1) appartiennent & la méme composante connexe de Q, et de plus
div ug = curlug = 0 dans Fy, ug-n =0 sur 051,
ug - n = (hfy + 9 (z — ho)t) - n sur So, / ug - Tdo = 7.
0Sp

Alors il existe g € C3°((0,T) x X) et une solution

(h,9,u) € C%([0,T]; Q) x C([0, T); C*(F(t); R?))

de (T.10), (T.11), (T13), (T.14), (T.15), (T.19), (T.20) telle que

(ha h,aﬁﬂ?/)(T) = (hlv 3)191719/1)‘
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FIGURE 1.4: Les positions et les vitesses initiales et finales dans le probléme de controle

Notons qu’il y a un léger abus de notation dans 1’écriture C°°([0, T]; C*°(F(t); R?)), puisque le
domaine dans lequel le fluide évolue dépend également du temps.

De plus, nous observons que le cas oil le solide est un disque est dégénéré : si le solide est un disque
homogéne par exemple, nous avons (z — h(t))t -n = 0 pour ¢t € [0,T], z € dS(t), donc la deuxiéme
équation dans implique simplement que ¢ est une fonction linéaire du temps. Cependant, un
résultat similaire & Theorem [1.4.1| peut étre établi pour A seul dans le cas d’un disque homogéne, voir
le Chapitre [3]

1.4.2 Contréle du mouvement d’un corps rigide immergé dans un fluide bidimen-

sionnel visqueux incompressible

La deuxiéme partie de la thése consiste a étudier la controlabilité du solide dans le modéle —
. Cependant, pour des raisons techniques (voir Remarque m plus tard), au lieu de travailler
dans un domaine borné Q C R?, nous considérerons plutét le cas lorsque le modéle fluide-solide occupe
'espace entier R?, et au lieu d’utiliser des controles aux limites, nous utiliserons un contrdle intérieur
(comme mentionné dans la Section [1.2.2). Par conséquent, nous définissons F(t) := R?\ S(t), pour
tout t € [0,T7.

Nous considérons le modéle suivant :

?:—F(U-V)u—FVw—Au:ﬁ et divu=0 pour t€[0,T]etze F(t),

mh () = — / (=l + 2D(u)) n do,
o5) (1.22)
T0"() = — /8 o (#HO) (I 2D (), pow ¢ € [0.7),

u-n=ug-net (Dw)n)an = —p(v — ug)tan sur 0S(t), lim |u| =0, pourt € [0,T],

|z|—=+o0

ou la fonction £ : [0, T] x F(t) — R? agira comme le controle et est supportée dans un domaine compact,
simplement connexe et lisse 2. C R? avec un intérieur non vide. Sans perte de généralité, nous pouvons

considérer que les données initiales sont
ult=o = up pour z € Fy, h(0) =0, h'(0) = hy, 9(0) =0, ¥'(0) = 95, (1.23)

Notons que dans ce cas le coefficient de viscosité est 1, alors que les autres notations sont les mémes

que dans la Section [1.3.2]
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Pour que le modéle ([1.22)) soit valide, le solide doit rester loin du support du controle, c’est-a-dire

supp &(t,-)NS(t) =0, Vvt € [0,T). (1.24)

\
AY
&
-
-

F(t) =R?\ S(t)

FIGURE 1.5: Le cadre du probléme de controéle

Nous allons travailler dans le cadre de solutions faibles pour le systéme (|1.22]), que nous ne définissons
pas ici par souci de briéveté, mais nous notons que cela se fait d’une maniére similaire & la définition
des solutions faibles de type Leray pour le fluide seul dans le cas des équations de Navier-Stokes.

Notre but est encore une fois de controéler le solide d’une position donnée et d’une vitesse donnée a
une autre position et vitesse prescrites, en prescrivant un controle intérieur agissant sur le fluide. Afin
de nous assurer que (|1.24]) est valide, nous notons que nous n’avons pas besoin de contréler sur tout
I’ensemble de €2.. Au lieu de cela, nous allons introduire un ensemble de positions admissibles pour le
solide, de sorte que tant que la position finale du solide est dans cet ensemble, il existe un sous-ensemble
ouvert fixe de €., qui ne touche pas le solide ni dans sa position initiale, ni dans sa position finale, et que

nous utiliserons comme support des contréles que nous construisons. Par conséquent, nous définissons
Q= {q:=(h,9) €eR*: int(Q) \ {(h+ RW)So) USo} # 0} . (1.25)
Comme Sy est simplement connexe, il est facile de vérifier que Q est connexe par arcs.
Nous énongons le deuxiéme résultat principal de la thése, qui est prouvé dans le Chapitre [4]
Theorem 1.4.2. Soit So C R? borné, fermé, simplement connexe et lisse, qui n’est pas un disque, et

ug € HY(Fo; R?), curlug € LY (Fo;R?), g0 = 0,95 = (hy,V¢) € Q, ho, by € R2, 0.V} € R, telle que

div ug =0 in Fo, lim |ug(z)| =0,
|z| =400

uo - n = (hy +9pxt) - n, (D(ug)n)tan = —pu(uo — (hy + 96x7)) tan sur 0Sp.

Alors il existe T > 0 telle que pour chaque T € (O,T] il existe un controle & € L*((0,T) x ), a
support compact en temps, et une solution faible (u, h,9) de (1.22)) telle que (1.24)) est valide, et de plus
(h, B, 0,9")(T) = (hy, ’f,ﬂf,ﬁ’f).

On remarque que la limite supérieure T pour les horizons temporels implique que ce résultat est un
résultat de controlabilité en petit temps, ce qui est courant dans le cas des systémes de type Navier-
Stokes, en raison des propriétés d’échelle du modéle, voir Chapitre [4 pour plus de détails ainsi que la

possibilité de passer a temps arbitraire.



1.5. METHODOLOGIE 21

De plus, la condition que Sy n’est pas un disque est essentielle car une étape importante durant notre
démonstration s’appuiera sur un résultat similaire & Théoréme (voir Section [1.5.2)). Cependant,
il est toujours possible de controler le centre de masse h seul dans le cas d’un disque homogéne, en

utilisant une stratégie similaire.

1.5 Meéthodologie

Dans cette Section, nous donnons une présentation rapide des idées principales utilisées pour
construire les controles pour prouver les Théorémes et [[.4.2] dans les Chapitres [3] et [4

1.5.1 La construction dans le cas non visqueux : géodésiques et controle impulsif
Une structure géodésique sous-jacente

Il a été prouvé par Glass, Munnier et Sueur dans [57] que dans le cas irrotationnel sans controle, la
dynamique du systéme — peut étre reformulée comme une EDO pour les degrés de liberté du
solide, a savoir (h,v) € Q2 x R. Pour rendre cela plus précis, notons ¢ := (h, ), et puisque les domaines
F(t) et S(t) ne dépendent du temps ¢t qu’en raison de la dépendance sur ¢(t), nous les notons aussi par
F(q) et S(q).

Afin de préciser la reformulation EDO mentionnée ci-dessus, nous introduisons certains objets qui
ne dépendent que de la géométrie et des constantes du systéme. En particulier, pour "se débarrasser"
de la partie EDP du systéme nous résolvons certains problémes de type elliptique sur un domaine en
fonction de la position du solide.

— Les potentiels de Kirchhoff

D = (01, P2, P3)(q, ") (1.26)

sont définis (& constante prés) comme la solution des problémes de Neumann
Ad;(q,z) =0 dans F(q), 0p,Pi(q,z) =0 sur 99, pour i € {1,2,3},

n; sur 9S(q), pour i € {1,2}, (1.27)
(z — h)* - n sur 0S(q), pour i =3,

on®i(q,x) = {

ou tous les opérateurs différentiels sont par rapport a la variable x.

— La fonction de courant 1 pour le terme de circulation est définie de la maniére suivante. Nous
considérons d’abord la solution &(q, -) du probléme de Dirichlet Azﬁ(q,x) = 0 dans F(q),
¥(g,z) = 0 sur 9Q, (g, z) = 1 sur dS(q). Alors nous mettons

-1
(g, = - / Onib(a,z)do | (g,-), (1.28)
9S5(q)

de telle sorte que nous avons

/ oY (q,x)do = —1,
0S(q)

en notant que le principe du maximum fort nous donne 8n1ﬁ(q, x) < 0 sur 9S(q).

— Nous définissons respectivement les matrices 3 x 3 de masse réelle et ajoutée par

m 0
Mg: 0 m
0 0

G o o



22 CHAPITRE 1. INTRODUCTION GENERALE

et, pour ¢ € 9,
Ma(q) = < V®i(q,z) - V®;(q,x) dﬂv)
F(q) 1<i,j<3
Notons que M, est une matrice de Gram symétrique, intuitivement qui code la quantité de fluide
incompressible que le corps rigide doit accélérer autour de lui-méme, d’oti le terme “matrice de
masse ajoutée”.

— Nous définissons l'application bilinéaire symétrique I'(¢) donnée par

<P(Q)apap> = Z Fﬁ](Q) PiPj € RS, Vp € R?)’

1<i,j<3 1<k<3

ou, pour chaque 4,75,k € {1,2,3}, Fﬁ ; désigne les symboles Christoffel du premier type définis

sur Q par
1 a a j a a)k,i a)i,j
J 2 dq; 8qj Iy
On peut vérifier que I" est de classe C° sur Q.
— Nous introduisons les champs de vecteurs C* sur Q avec des valeurs dans R3 suivants
1
E(q) = _2/ |0ntp(q,)|*0.®(q,-) do,  B(q) :/ (g, -) (0n®(q,-) x 0-®(q, ")) do.
3S(q) 98(q)
(1.30)

Le Théoréme 2.2 de [57] indique ce qui suit.

Theorem 1.5.1 (Glass-Munnier-Sueur). Pour des solutions lisses, le systéme (1.10)-(1.13|) peut étre

reformulé, jusqu’a collision, comme [’EDO de second ordre

(My+ Mala))d" + ((a),d'a) =2*E(@) + 4 x Bla), (131)

avec q(0) = qo, ¢'(0) = qfj- Dans ce cas, la vitesse du fluide u peut étre récupérée par
u(t,) = V(q'(t) - ®(q(t),-)) + 7V (q(t), ).

Notons que dans le cas o v = 0, 'EDO signifie que la particule ¢ se déplace le long des
géodésiques associées a la métrique riemannienne induite sur Q par le champ de matrice d’inertie
totale My + M,(+), c.f. [8I]. De plus, si v # 0, le membre de droite de ([1.31)) est une force qui nous
rappelle la force de Lorentz dans 1’électromagnétisme par sa structure (voir [57] pour plus de détails).
Mentionnons également que l’ensemble du systéme “fluide incompressible + corps rigide” peut étre
réinterprété comme un flot géodésique sur une variété de dimension infinie, cf. [60]. Cependant, la
reformulation établie dans repose sur la variété de dimension finie Q et éclaire davantage la
dynamique du corps rigide.

En outre, nous rappelons de Section que dans le cas ou Sy est un disque, I’équation
devient dégénérée. Si le disque n’est pas homogéne alors le modéle devient encore plus compliqué, voir
le Théoréme 2.9 de [57].

De plus, notons que 'analyse présentée ci-dessus pourrait étre répétée dans le cas avec vorticité,

mais une reformulation purement EDO comme dans (1.31)) ne serait pas possible dans ce cas, car il
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faudrait encore résoudre une EDP d’évolution afin de déterminer le tourbillon du systéme (qui dépend
aussi de ¢), ce qui aurait & son tour un effet sur I’équation solide pour g.
Dans [54], nous avons étendu le Théoréme au cas avec controle de la maniére suivante. Nous

fixons
C:= {g € C5°(Z;R) telle que / gdo = O} ,
)

et nous définissons pour tout g € Q et g € C la solution unique @ := Alg, g] € C*°(F(q); R) au probléme

de Neumann suivant :
Aa =0 dans F(q) et Opa=gly sur 0F(q), (1.32)

de moyenne zéro.

Nous avons le résultat suivant.

Theorem 1.5.2 (Glass-Kolumban-Sueur). Etant donné

g€ C([0,T];Q), ueC¥([0,T;C™(F(q(1));R?) et geC5([0,T]:C),

le couple (q,u) est une solution de (1.10), (L1.11), (1.13]), (1.14), (1.15), (1.19), (1.20)) si et seulement
si UEDO suivante est verifiée sur [0,T] :

(Mg + Ma(0))d" + (T(q),d,d) = ¥’E(q) +vd' x Blq)

(1.33)
+ Fi(q, 4, 7)[e] + Fa(q) [0,

ou Fy et Fy sont réguliers, et ot o(t,z) := Alq(t), g(t,-)](x). En outre, la vitesse du fluide u peut alors

étre récupérée par
u(t,x) = V(q'(t) - ®(q(t), ) + 7V (q(t), ) + VAlg(), g(¢, )] (2). (1.34)

Controéle impulsif

La principale raison pour établir le Théoréme[1.5.2| est la suivante. Supposons que nous ayons v = (
(si ce n’est pas le cas, on peut s’attendre au moins & étre proche du cas sans circulation quand =
est assez petit, alors que pour le cas v plus grand on pourrait exploiter les propriétés d’invariance
d’échelle de 1’équation ), et supposons que nous puissions trouver un contréle approprié g €
C§([0,T];C) tel que le terme Fi(q,q’,0)[a] + Fa(q)[0ra] dans (1.33]) se comporte approximativement
comme o8 (t) +v17(t), pour tout vy, vy € R3 données, oti & et 57 indiquent les distributions de Dirac
au temps t = 0, respectivement ¢t =T

Alors, (1.33) sera proche (dans un sens approprié) du modéle-jouet formel suivant :
(Mg + Ma((j))(j’/ + (F((j)a qlv q,> — U060 + /U15T7 (135)

et controler (au moins de maniére approchée) se réduira a controler en utilisant les vecteurs
vo, v1 € R3 comme controle.

Expliquons rapidement comment la contrdlabilité de (1.35) peut étre établie. Etant donné que
qo,q1 € Q, il existe (au moins dans le cas o gy et ¢; sont suffisamment proches, le cas général peut

alors étre traité via un argument de recollement) une géodésique associée a la métrique riemannienne
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induite sur @ par Mg+ M,(-), qui relie gy avec q;. Plus précisément, il existe une fonction lisse unique

q satisfaisant
(Mg + Ma(@))q" + (T'(q), ¢, q) = 0 sur [0,T], avec ¢(0) = qo, ¢(T) = a1 (1.36)

Ainsi, on peut arriver a la position finale désirée ¢;, mais a priori la vitesse finale ¢'(7) différe de ¢f,
et méme la vitesse initiale ¢'(0) differe de gp.

Alors, pour controler la solution ¢ de de (go,q() & (q1,4}) on peut chercher & imposer vy :=
(Mg + Ma(q0))(7(0) — gf) et vy := — (Mg + Mqa(q1))(7(T) — ¢;), qui transforme les vitesses initiales
et finales ¢'(0) et ¢'(T') exactement aux vitesses désirées afin de réaliser la controlabilité.

Nous prouverons dans le Chapitre [3| que de tels controles g € C§°([0,T];C) peuvent en effet étre

construits. Plus précisément, nous pouvons construire g de la forme suivante :

g(t,z) = ge(t, ) := B=(t)g(q0, vo)(x) + B (T — )g(q1, v1)(z), (1.37)

ou Be(t) := ﬁ (t_Te), pour € in (0,1), avec 5 : R — R une fonction lisse, non-négative supportée dans
[—1,1], telle que f_ll B(t)?dt = 1, et donc (B?). est une approximation de I'unité quand ¢ — 0F. De
plus, la fonction g est construite via ’analyse complexe, satisfaisant certaines contraintes telle que la

condition susmentionnée
Fi(q,q,0)[e] + F2(q)[0ra] = vodo(t) + vid7(t)

tient quand € — 0. En fait, en utilisant de tels controles g, le terme dominant dans I’expression ci-
dessus sera Fi(q,q’,0)[c] et se comportera comme fas(q) |Va|?0,®(q,-) do, donc nous allons imposer
une contrainte quadratique sur g (voir le Chapitre |3| pour plus de détails).

Une telle stratégie est appelée “controle impulsif” en raison de la grande amplitude du controle g,
sur un support court dans le temps (notons que supp g C ([0,2¢]U [T —2¢,T]) x ¥), nous mentionnons

[13] et les références qui y sont données pour de nombreux autres exemples sur le contrdle impulsif.

Conclusion

Comme déja mentionné, la construction ci-dessus nous permet de déduire la controlabilité approchée
de dans le cas v = 0, avec une erreur en terme de € provenant des approximations de Dirac. On
peut étendre ce résultat au cas de 7y petit, I'erreur dépend alors de € > 0 et de |7|.

Cependant, puisque nous contrdlons la quantité de dimension finie (¢(T),¢'(T)) € RS, on peut
passer de la contrélabilité approchée & la contrélabilité exacte en utilisant un argument topologique de

type Brouwer, comme le lemme suivant, qui a été utilisé dans [58, pages 32-33] a des fins similaires.

Lemma 1.5.1. Soit wg € R", k > 0, f : B(wo, k) — R™ une fonction continue telle que | f(w)—w| < 5
pour chaque x dans OB(wo, k). Alors B(wy, %) C f(B(wo, K)).

Bien stir, dans ce cas, nous devons également assurer une propriété de continuité appropriée de
notre construction par rapport a la position et vitesse finale cible (g1, ).

Par conséquent, nous pouvons conclure la controlabilité exacte de I’équation dans le cas de
~ assez petit. Le cas général peut étre déduit par un argument d’invariance d’échelle similaire a celui
utilisé par J.-M. Coron pour I'équation d’Euler [22], qui a également été utilisée dans [58] pour passer du

cas potentiel au cas avec vorticité. On obtient que contrdler (1.33)) avec une circulation arbitraire v € R
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sur Uintervalle de temps [0, 7] se réduit a controler avec un petit v sur un intervalle de temps
plus court [0, AT, avec A ~ ﬁ Cependant, il ne pose aucune difficulté pour obtenir l'intervalle de
temps désiré, en utilisant le fait que cette équation bénéficie de certaines propriétés d’invariance
par translation et inversion temporelle, il suffit de recoller ensemble un certain nombre de solutions
controlées appropriées définies chacune sur un intervalle de temps de longueur A\T'. Voir le Chapitre

pour plus de détails.

Remark 1.5.1. Nous mentionnons ici que lutilisation de controles de la forme (1.37) nous permet de
nous assurer que notre solution aura un flux total arbitrairement petit a travers X~ . C’est-a-dire, pour

tout T > 0, pour tout v > 0, il existe un controle g et une solution (h,V,u) satisfaisant les propriétés

de Théoréeme[1.].1] et de telle sorte que de plus

T
/ / u-ndadt‘<u.
0 _

En effet, en raison de la forme de 8. on obtient que le fluz total o travers 3~ , c’est-a-dire fOT fz— ge dodt,

est d’ordre \/e. Ceci est également invariant par l'argument de changement d’échelle ou de recollement.
La signification d’un tel résultat est que l'on peut dans un sens limiter la quantité de fluide échangé
pendant la phase de controle. Nous mentionnons également qu’une telle condition de flux petit ne peut

pas étre garantie dans les résultats [22, (47, [49] en ce qui concerne la controlabilité de I’équation d’Euler.

1.5.2 La réduction du cas visqueux a I’état non visqueux par une méthode de

viscosité évanescente

Dans cette Section, nous présenterons une stratégie basée sur un développement asymptotique qui
nous permet de réduire la preuve de Theorem [T.4.2]a controler certains systémes de type Euler et Euler
linéarisé, ce que nous ferons par une stratégie de controle impulsif similaire & celui dans la Section
[[.5.] Afin de réaliser ce développement asymptotique, nous allons d’abord remplacer le controle de
I’équation d’évolution par un contréle de la divergence de u in , puis transformer le domaine de
I’EDP dans en un domaine cylindrique, et introduire un petit parameétre de viscosité.

Relever le contréle de ’équation d’évolution et le placer sur la divergence

Tout d’abord, observons qu’il est équivalent de controler 'EDP d’évolution pour u et la divergence

de u. Nous rappelons la définition de l'opérateur Bogovskii (voir par exemple [9] ou [43]).

Definition 1.5.1. Etant donné un domaine lisse, borné, simplement connexe @ C R?, il existe un
opérateur B : C§°(Q) — C5°(2)? telle que, pour tout g € C§(Q) avec [ g =0, nous avons div Bg = g.
De plus, B € LIWSP(Q), §+1’p(9)2), pour tout 1 < p < 400, s > 0. Notons également que nous
pouvons étendre Bg par O en dehors de 2.

A partir de 13, soit B 'opérateur Bogovskii associé au domaine §2.. Maintenant, supposons que nous



26 CHAPITRE 1. INTRODUCTION GENERALE

ayons une solution (U, 7, h,¥, g) au systéme

ou
E—{—(U-V)U—}—V?T—AU:O et divu=g pour te€[0,T] etz e F(t),
U-n=ug-n, (DU)n)tan = —p(U — ug)tan pour x € S(t), | ‘lim |U| =0,
x| —+00
(1.38)
mh’ (t) = —/ (—mld +2D(U))n do,
a8 (1)

TV (t) = —/ (z — h(t))* - (—=nld 4+ 2D(U))n) do, pour t € [0,T],
a8 (1)

avec [g = 0 et supp g N S(t) = 0, pour tout ¢ € [0,7]. Si nous posons u := U — Bg et £ :=
—% + Bg-VBg—U-VBg— Bg-VU + ABg, nous obtenons que (u, 7, h,?,£) est une solution de
(1.22)).

La principale raison d’un tel changement de point de vue est que notre stratégie de construction
d’une solution au systéme fluide-solide visqueux reposera sur une construction pour le systéme non
visqueux. Dans le cas non visqueux, de méme que dans , de la Section on peut
décomposer linéairement 'effet d’un contrdle g sur la divergence en considérant une fonction @ €
C>(Fo;R) qui s’annule & I'infini et satisfait le probléme elliptique suivant :

Aa = gl pyr(p,—n)(z) dans Fo, lim [Va| =0, et d,a =0 sur 0Sp.

|z| =400

De telles fonctions peuvent étre facilement étudiées au moyen de ’analyse complexe.

Un changement de variables pour passer 4 un domaine fixe avec une petite viscosité

Comme mentionné précédemment, notre stratégie reposera sur le lien entre le cas visqueux et le
cas non visqueux. Pour ce faire, nous aimerions introduire un petit paramétre de viscosité (noté e > 0)
que nous ferons tendre & zéro. En méme temps, nous aimerions changer le domaine de 'EDP, F(¢), qui
dépend de la position solide, & un domaine qui est fixé. Heureusement, puisque le systéme fluide-solide
occupe tout le plan R?, ceci peut étre réalisé simplement par un mouvement rigide.

Etant donné ¢ > 0, on peut introduire un changement de variables qui consiste en un mouve-
ment rigide dans la variable spatiale, correspondant au mouvement solide, et un changement d’échelle

temporelle par rapport a ¢, tel que ([1.38)) est équivalent au systéme suivant :

a £
aut + (uf — ug) - Vuf 4+ rf(uf)t + Vaf —eAu® =0 et div u® = ¢° pour z € Fy,
un=u5-n, (DU)N)tan = —p(u® — ug)tan pour z € 9Sy, lim |u®| =0,

|z| =400
(1.39)
m(lf) = —/ (=7 Id + 2eD(u®))n do — mra(la)l,
0S80

J (rf) = —/ zt - (=7°1d 4 2eD(uf))ndo, pour t € [0,T/¢],
0Sp

ot ug(t,x) = I5(t) + ré(t)at, pour t € [0,T/¢], us(0,) = eup(-), (I5,7)(0) = e(h{,p), et le terme
de controle est maintenant g¢ € C§°((0,7/e) x Fo) telle que supp ¢°(¢,-) € R(95(t))T(Qe — h5(t)) et
J ¢°(t,-) dz = 0, pour tout ¢t € [0,T/e]. De plus, nous pouvons associer la position solide (h¢,9°), qui

ne joue plus un role (directement) dans la résolution du systéme (|1.39)), par

B (1) = /0 ROF(s))E(s)ds, 0°(1) = /0 r<(s) ds, (1.40)
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et en particulier, nous avons la mise a 1’échelle suivante de la trajectoire solide par rapport a ¢,
(P°(2),9°(1)) = (h(et),9(et)), (I°(t),r°(1)) = e(R(D(et))T ' (et), &' (et)), (1.41)

pour t € [0,T/¢].

Notons que la résolution du systéme sur un intervalle de temps [0, 7] se réduit alors a résoudre
(1.39) sur [0,T/¢]. Cependant, étant donné que T' > 0 est fixe, on peut chercher a résoudre sur
[0, 7] et déduire I'existence d’une solution a sur [0,eT], ce qui prouvera Théoréme dans le
temps 7', pour un certain € € (0,1). C’est exactement ce sur quoi notre stratégie s’appuiera.

Maintenant, comme £ — 07, on s’attendrait & ce que converge vers un systéme fluide-solide
non visqueux dans tout le plan. Cependant, afin d’obtenir la controlabilité désirée pour le solide, nous
devons étudier le comportement de u® comme un développement asymptotique jusqu’a des ordres

supérieurs de €.

Le développement asymptotique
Nous aimerions avoir le développement asymptotique suivant pour la trajectoire du solide :
he = h0 +ehl +eh%, 9° =90 + el 4 e09%,

(1.42)
=014l el =1 +erl +ersy,

avec (1%,70), (I, rY), (I%,7%) € L°°(0,T). A chaque ordre de €, nous aurons aussi une vitesse de fluide
associée, a savoir u?, u', u%,, dont nous préciserons la construction plus tard. Cependant, nous pou-
vons déterminer une équation pour chacun de ces termes a ordre O(1), O(e), O(¢") en branchant
formellement le développement asymptotique dans 1’équation de (uf,1%,7%) et en séparant les termes
en fonction des ordres de ¢.
Nous obtenons ce qui suit.
— alordre O(1), (u°,1°,70) satisfont un systéme “corps rigide + fluide non visqueux” ot le fluide est
gouverné par 1’équation de Fuler. Nous voudrions conduire, au moyen d’un contréle approprié,
(RO, 99)(T) & (hf, V) et (19,79(T) a 0.
— alordre O(e), (ul, 1}, r!) satisfont un systéme fluide-solide qui est une lindarisation du systéme a
O(1). Nous voudrions conduire, au moyen d’un controle approprié, (I', r')(T) a (R(9¢)TH %)
— a lordre O(e™), (ug, %, %) satisfont une équation de reste. Nous voudrions prouver que
(15,7%)(T) — 0 quand € — 0.
Si nous avions ce qui précéde, en tenant compte de , il s’ensuit que nous avons (approximative-
ment) conduit (h%,9°)(T) a (hy,9f) et (I5,7°)(T) a e(R(I;)TH, ;0'), pour € > 0 assez petit .
On peut alors passer de la controlabilité approchée mentionnée ci-dessus & une contrélabilité exacte
au moyen d’un argument topologique de type Brouwer, comme dans Lemma de la Section [1.5.1
Cela nécessite en outre une certaine propriété de continuité pour ’ensemble de notre construction par
rapport aux données cibles pour la trajectoire solide. Enfin, en rappelant 1’échelle dans , on peut
conclure le résultat de controlabilité souhaité (h, 9, h',9')(T) = (hy, O, by, 0%).
Pour obtenir un développement comme dans (|1.42)) pour la trajectoire solide, nous considérons les
contrdles ¢¢ sous la forme de ¢° = g% + £¢, dans le style de [27], et nous cherchons le développement

asymptotique suivant pour la vitesse et la pression du fluide :

uf = u® 4 Ve{v} +eut +eus, 7 =7 +{Q} +en! +en5;, (1.43)
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ou, pour f = f(t,x,z), nous dénotons {f} son évaluation a z = %, avec une fonction ¢ telle que
l¢(z)| = d(x, Sp) dans un voisinage du solide (voir le Chapitre[d] pour plus de détails). Donc, la preuve du
Théoréme se réduit a construire les termes du coté droit de , d’une maniére appropriée.
Notons que nous allons utiliser une estimation d’énergie pour prouver la petitesse de (I%,7%), qui
est la raison principale pour étudier non seulement les termes du développement asymptotique de la
trajectoire solide, mais aussi la termes dans le développement de u®, qui inclut un profil de couche
limite v et la pression associée @, apparaissant du fait que la solution du systéme fluide-solide non
visqueux ne satisfait pas les conditions de Navier, comme mentionné dans la Section [1.2.2

Par conséquent, notre stratégie sera la suivante :

— Nous construisons ¢° et une solution u° de I’équation d’Euler (avec le controle g°), avec des
données initiales nulles, donc zéro tourbillon et zéro circulation autour du solide, de telle sorte que
nous avons un résultat de controlabilité exact pour (hY,9%)(T) avec (1°,7°)(T) nulle. Cependant,
nous notons que contrairement a [27], notre stratégie ne reposera pas sur une méthode de retour
pour 1, nous préférons simplement utiliser u® pour controler la position solide (h°,9°)(T), en
utilisant une stratégie de controle impulsif similaire & celle présentée dans la Section [1.5.1]| pour
le cas d’'un domaine borné.

— En raison des conditions aux limites de Navier, la couche limite v apparaitra prés du solide &
Vordre O(y/¢), avec sa pression @ a lordre O(e). Notons qu’il n’y aura pas de contribution a
Pordre O(/€) dans (1.42), cependant v apparaitra dans les équations solides pour (I!,r!). En
outre, nous soulignons que puisque nous ne contrélons pas la vitesse du fluide u®, il n’est pas
nécessaire de contrdler v (contrairement a [27]), il suffira de prouver des estimations de régularité
pour gérer 'effet des couches limites & I'ordre O(g) dans les équations solides pour (I!,7!), et
dans les équations du reste. Notez que v et @ ne dépendent que de (u?,1°,7%) et leur existence
est immédiate & partir de 'existence de (u®,7°,1°,7°, ).

— Nous construisons g' et une solution u! d’une équation d’Euler linéarisée autour de u’ (avec le
controle g'), avec des données initiales dérivées du systéme original , de telle sorte que nous
aurons un résultat de controlabilité approchée pour (I',71)(7T") (nous nous contenterons ici d’une
controlabilité approchée car cela simplifie notre construction). Un tel résultat peut étre établi
par une stratégie de contrdle impulsif plus simple que dans le cas du terme non visqueux uY,
puisque I'équation est linéaire, et nous voulons seulement controler la vitesse solide (I, r)(T),
pas la vitesse et la position en méme temps.

— Nous construisons (u%, %, %) comme la solution d'un systéme que nous déduisons des équations
vérifiées par tous les autres termes dans , (notons qu’a ce stade nous n’avons pas
encore prouvé 'existence de (uf, %, %), mais nous savons que cela devrait étre une solution de
avec g° = g" +£g'). Nous prouvons au moyen d’une estimation d’énergie que (ug: 1%, 7R)
est petit dans L>°((0,T); L?(Fo) x R3), quand € > 0 est petit.

A partir de la construction ci-dessus, nous pouvons définir (u, 1%, r%) comme étant les cotés droits

de , , puisque maintenant tous les termes respectifs sont construits et bien définis, et on

peut conclure la preuve du Théoréme [I.4.2] Voir le Chapitre [4] pour I'analyse détaillée.

Remark 1.5.2. Notons que pendant toute la construction, nous devons également nous assurer que
la condition de "non-collision” (1.24) est valide (il suffit d’assurer une condition similaire pour g¢),
et que (h®,9°,1°,7°)(T) dépend continuellement de (hy,Jy, },19}), afin de pouvoir appliquer Lemme

1.5. 1, comme mentionné précédemment.
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Remark 1.5.3. Ezpliquons maintenant pourquoi nous avons choisi de travailler dans tout le plan R?
au liew d’un domaine borné. La difficulté technique clé dans la gestion du cas d’un domaine borné
avec une stratégie similaire serait ’étape de transformation du domaine mobile F(t) en un domaine
fixze. Comme mentionné ci-dessus, dans le cas du plan, cela peut se faire par un simple mouvement
rigide. Cependant, dans le cas borné, il faudrait aussi tenir compte du bord externe 0S), et construire
un difféeomorphisme qui est un mouvement rigide dans un voisinage du solide, mais qui laisse la fron-
tiere 02 intacte. Ce difféomorphisme dépendrait clairement de la position du solide, et contribuerait
a des termes non linéaires plus compliqués dans ’EDP (voir par exemple [12] ou [61] pour une telle
construction). Le probléme principal est alors d’étudier ce qu’il advient de ces termes quand on cherche
un développement asymptotique de la forme de (1.42) pour la trajectoire solide, en plus de les séparer
en termes d’ordres de €. Pour le faire correctement, il faudrait établir un développement asymptotique
rigoureuz du difféomorphisme (et des termes associés dans ’EDP) par rapport a la position solide, ce

qui est plutot difficile.

1.6 Directions futures et problémes ouverts

Une généralisation naturelle des résultats de ce doctorat serait le passage du cas bidimensionnel
au cas tridimensionnel, car il est souvent plus commun et réaliste de considérer des modéles tridimen-
sionnels au lieu de bidimensionnels pour décrire des phénoménes réels. Les principales difficultés pour
adapter les méthodes présentées dans les Chapitres [3] et [4] au cas tridimensionnel sont d’une part la
théorie de Cauchy pour le systéme visqueux en 3D, et d’autre part 1'utilisation d’une analyse complexe
pour construire explicitement les parties des controles en fonction de la variable spatiale (par exemple
dans (L.37)).

En effet, dans le cas borné par exemple (dans le méme cadre que dans la Section avec
F(q) =\ S(q)), on veut construire une fonction @ € C*°(F(q); R) telle que

Aa = 0 dans F(q), Opa =0 sur 0F(q) \ X, et / |Val? 9,®(q,-) do = v,
98(q)

pour v € R3 donné, et ¢ € Q. Dans le cas bidimensionnel, ceci est fait en construisant d’abord une
fonction définie uniquement dans un voisinage de dS(q) et en satisfaisant la contrainte intégrale ci-
dessus avec v, en utilisant une série de Laurent. Ensuite, on peut déduire ’existence d’une fonction
appropriée définie sur I’ensemble de ﬁq) via le théoréme de Runge.

Cependant, une direction méritant d’étre étudiée serait de remplacer ces arguments par une construc-
tion de type Cauchy-Kovalevskaya et un théoréme de type Runge en dimension supérieure (c.f. [38]),

de sorte qu’un résultat similaire puisse étre établi dans le cas tridimensionnel.

De plus, on pourrait aussi s’intéresser au controle de plusieurs solides. En effet, les arguments
d’analyse complexe mentionnés ci-dessus sont assez locaux autour du solide (et ensuite rendus globaux
via le théoréme de Runge), donc on pourrait imaginer que des méthodes similaires pourraient étre
adaptées au cas des solides multiples tant qu’il n'y a pas de collision entre eux. Cependant, il serait
également intéressant d’un point de vue de modélisation de rechercher s’il est encore possible d’utiliser
I'une des trajectoires solides pour controler les autres (sans collision bien sir). Notons que le modéle
avec plusieurs solides lorsque le nombre de solides est assez grand pourrait étre un bon moyen de

modéliser les sprays par exemple.
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Mentionnons également le probléme ouvert suivant concernant la planification du mouvement pour
le corps rigide, a la fois dans le cas visqueux et dans le cas non visqueux. Etant donné une courbe &
dans C2([0, T]; ), existe-t-il un controle approprié et une solution au systéme fluide-solide qui satisfait
¢ = q sur [0,7]? Méme la planification de mouvement approximative en C2, c’est-a-dire la méme
question que ci-dessus mais avec || — ql[c2(jo,r)) < € (avec € > 0 arbitraire) au lieu de § = ¢, est
un probléme ouvert. Ces problémes ouverts sont intéressants du point de vue des applications, car
il serait utile de pouvoir faire en sorte que la trajectoire solide reste proche d’une courbe donnée,
d’effectuer certains mouvements prescrits, d’éviter certaines régions du domaine fluide. En revanche,
les méthodes du Chapitre [3| s’appuient sur la trajectoire solide suivant une courbe géodésique qui
est définie uniquement par la géométrie, et non par la construction du contrdle, qui est la principale
difficulté & surmonté. Cependant, dans le Chapitre [f] nous avons développé une stratégie pour passer
de la controlabilité approchée du solide a la controlabilité exacte en utilisant un argument de théoréme
de fonction inverse (par opposition & un argument topologique, comme mentionné dans Lemma .
Nous espérons qu’une telle stratégie pourrait étre adaptée pour résoudre ce probléme en ce qui concerne

la planification du mouvement du solide dans ’avenir.

Une autre direction intéressante serait d’étudier les modeéles d’interaction fluide-solide ou le fluide
est compressible, car cela pourrait donner lieu a des applications ou le fluide entourant le solide est
en fait un gaz. La controlabilité approchée de la vitesse et de la densité du fluide pour les équations
compressibles d’Euler a été établi dans [83], alors qu'il existe des résultats partiels pour le cas de
Navier-Stokes (voir [32]). Cependant, il se pourrait que le contrdle de la trajectoire solide puisse étre
réalisé plus facilement. La principale différence entre les cas compressibles et incompressibles est que
la reformulation de 'EDO pour la trajectoire solide de [54] ne s’appliquera plus, puisqu’elle repose
sur certaines fonctions harmoniques. Néanmoins, il serait intéressant d’étudier si les équations solides
dans le cas compressible peuvent encore étre mises sous une forme qui permet une stratégie de controle
impulsif. Un probléme intermédiaire pourrait étre d’étudier le cas des fluides incompressibles, mais &
densité variable, souvent considérés pour la modélisation des océans, des riviéres ou des fluides dans de

grands domaines (voir par exemple [35] pour le controle du fluide seul).

Un autre suivi de la question de la controélabilité pourrait étre celui de stabilisation, comme men-
tionné dans I'introduction, qui consiste a trouver une loi de rétroaction stationnaire g = g[u, ], de telle
sorte que si nous la mettons comme controle, le systéme fluide-solide en boucle fermée est globalement
bien défini et asymptotiquement stable & un point d’équilibre (ue, ge, ¢.). Bien str, le systéme fluide-
solide ne peut étre stabilisé que sur un point ot le solide et le fluide sont au repos. Cependant, il peut y
avoir une certaine vorticité initiale dans le fluide, qui pourrait étre éliminée par une stratégie similaire

a celle utilisée par J.-M. Coron dans [24], tant que le tourbillon initial ne touche pas la frontiére solide.

Nous mentionnons également que la contrélabilité exacte globale d’un systéme “fluide visqueux -+
corps rigide” avec des conditions aux limites de Dirichlet “sans glissement” est complétement ouverte,
et un probléme trés difficile di au fait que les conditions aux limites de Dirichlet créent des couches
limites avec une amplitude plus grande que dans le cas des conditions aux limites de Navier. Notons que
méme le probléme de contréle de la vitesse du fluide dans un tel contexte est ouvert et difficile, certaines
avancées récentes ont été faites dans [29] dans le cas trés particulier ou le domaine est supposé étre un

rectangle, utilisant un force fantéme distribuée additionnelle. Comme nous ’avons déja mentionné dans
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la Section [1.3.3] nous différencions a nouveau ces types de résultats globaux avec les résultats locaux
existants (comme dans [10], 1], [72]), qui sont basés sur une stratégie différente et pas sur I’étude des
couches limites.

Cependant, le probléme moins ambitieux de contréler uniquement la vitesse du solide, et pas la
position (qui peut étre utilisée par exemple pour arréter le solide) pourrait étre abordé plus facilement
dans le cas de Dirichlet, en utilisant une stratégie similaire a celle du Chapitre[d] En effet, si nous devions
implémenter un développement asymptotique comme dans — pour le cas de Dirichlet, on
aurait des couches limites apparaissant & O(1), & savoir le développement pour la vitesse du fluide
serait de la forme

u® = u’ + {v} +eul +euf.

Cependant, comme expliqué dans la stratégie présentée dans la Section le contréle de la position
solide correspondrait 4 u?. Puisque nous ne voulons plus faire cela, il s’ensuit que nous pouvons consi-

I se simplifie en

dérer u® = 0 pour réduire I'effet de v. Bien stir, cela implique que 'équation pour u
Owu! + V! = 0, mais peut-étre on peut l’exploiter en utilisant des contréles qui ne s’annulent pas a la
fin de I'intervalle de temps afin de controler I’équation solide pour p'.

De plus, dans Uesprit de [29], on pourrait considérer le mouvement d’un solide & l'intérieur d’un
rectangle avec des conditions aux limites de Dirichlet, et permettre du fluide de sortir & travers deux
cOtés paralléles du rectangle. Il serait intéressant d’étudier la possibilité de faire sortir le solide du

rectangle et de faire reposer le fluide a 'intérieur du rectangle.
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Chapitre 2

(zeneral Introduction

2.1 Control Theory

The aim of control theory is to study dynamical systems depending on some control parameter.
Such systems arise in the fields of engineering, physics, biology, chemistry, etc. More precisely, we may
generally define a control system as an evolution equation of the form

%w(t) = f(t,z(t),9(t)), for t € [0,T], (2.1)
where T > 0 is the time horizon, x : [0,7] — X is the state of the system, and g : [0,7] — G represents
the control parameter (or rather control function) with which we would like to act on the evolution of
the system. Two standard mathematical examples of such evolution equations are ODE control systems
(when both the state space X’ and the control space G are finite-dimensional), and PDE control systems
(when the state and the control belong to some infinite-dimensional functional spaces). Furthermore,
depending on the properties of the function f with respect to x and g, one can further categorize linear
and nonlinear control systems.

The general question of control theory is how to use the control function ¢ in order to achieve some
desired behaviour of system . Let us present a (non-exhaustive) list of such problems.

1. Exact controllability. Can the control system be driven from any given initial state to any
given final state in any given time ? More precisely, given T' > 0, zg,x1 € X, does there exist a control
g : [0,T] — G such that the solution z : [0,7] — X of system with control ¢ and initial data
x(0) = xq satisfies z(T') = x1 ?

2. Approximate controllability. A similar question as above, but allowing for some (arbitrarily
small) error when reaching the final state. That is, given 7' > 0, xg, 21 € X and € > 0, does there exist
a control g : [0,T7] — G such that the solution = : [0,7] — X of system with control g and initial
data x(0) = x¢ satisfies ||z(T") — z1|| <e?

3. Null controllability. Can the state of the system be put to rest 7 Mathematically this can be
described in the same way as the problem of exact controllability above, but instead of trying to reach
an arbitrary final state z1, we only want to have a vanishing final state, i.e. (T") = 0.

4. Controllability to trajectories. Let z : [0,7] — X be a given trajectory of associated
with a control g : [0,7] — G. Given zp € X, does there exist g : [0,7] — G such that the associated
solution z : [0,7] — X of with control g satisfies z(T") = z(T) ?

5. Asymptotic stabilization. For simplicity let us assume that we are in the autonomous case

(that is f = f(x,g) does not depend on t), and that (z,g.) € X x G is an equilibrium of the system,

33
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ie. f(ze,ge) = 0. Imagine that we wanted to control the system to this equilibrium state, i.e. to
find a control g and an associated solution x of such that (x(7),¢(T)) = (x¢, ge). The problem
is that such a control would be sensitive to perturbations in the model, such as those arising from
noise, imprecisions in the model or in the implementation of the control. Therefore, if the equilibrium
is unstable, the system will not behave in the way we would have intended with the control g. To
overcome this issue, we look for a closed-loop control, i.e. a control of the form g = g[x], which is more
robust to perturbations. The question of asymptotic stabilizability becomes the following : can one find
a feedback control g : X — G such that g. = g[z.] and the solution of the system
d
T
is asymptotically stable at x, 7 We recall that the notion of asymptotic stability consists of the following :
(i) for any e > 0 there exists 6 > 0 such that, for any z¢ € B(z,,d) and any solution of with
2(0) = o, we have z(t) € B(xe,¢) for any t > 0;
(ii) for any z¢p € X and any maximal solution of with 2(0) = z¢ we have that z is a global
solution and ||z(t) — z|| — 0 as t — +o0.

(t) = f(x(t), glz(@®)]), for ¢ € [0,T], (2.2)

Let us note that the questions above have been formulated in a global context. Local versions can
be considered by only requiring that the initial and final data are in some fixed small radius balls
(instead of being arbitrary) in the case of the controllability question ; respectively by only asking for
local asymptotic stability at x. in the case of the closed-loop stabilization problem.

We also contrast the above problems with that of optimal control, where one looks for a control
that also satisfies some optimality criterion (such as minimizing a cost functional), rather than just
driving the system to a given state.

One may find a more detailed description of such problems, as well as the state of the art and open
problems in the books of J.-M. Coron [21], J.-L. Lions [76], respectively M. Tucsnak and G. Weiss [96],
as well as in the paper of D. L. Russell [89].

2.2 Control problems in fluid mechanics

2.2.1 The inviscid case

Let us present some concrete examples of PDE control problems in fluid mechanics. We start with
a classical result regarding the exact boundary controllability of the Euler equation in two dimensions.
Let Q C R? be a smooth, bounded, connected (but not necessarily simply connected) domain, and

consider the incompressible Euler equation in 2, namely

?;Z +(u-V)u+Vr=0 and divu=0 for ¢t€[0,7] and x € , (2.3)
where u : [0, 7] x © — R? denotes the fluid velocity field and 7 : [0, 7] x Q — R the pressure field. This
system describes the evolution of a homogeneous, inviscid fluid subject only to conservation of mass
and incompressibility. Since system is a PDE in €, we need to add boundary conditions on 052 for
it to be well-posed. In the case without control the impermeability condition w-n = 0 on [0,7] x 9 is
often considered as a classical boundary condition associated with , meaning that the fluid is not
allowed to cross the boundary 9f).

However, since we are interested in controlling system , we are going to let some fluid go in

and out of the domain, which will be used as the control. More precisely, a possibility of giving a
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mathematical formulation of such controls is due to Yudovich [98]. One considers ¥ C 92 a nonempty,

open part of the boundary, and one prescribes on the one hand the normal velocity on X, i.e.
u(t,z) -n(x) = gn(t,x) on [0,T] x X, (2.4)

where g, € C§°([0,T] x X) with [5, g, = 0, while on the rest of the boundary we have the usual
impermeability condition

u-n=0on[0,T] x (002 %), (2.5)

and on the other hand the vorticity on the set X~ of points of [0, 7] x ¥ where the velocity field points
inside €, i.e.
curlu(t,z) = g,(t,x) on X7, (2.6)

where g, € C§°([0,T] x ). Note that ¥~ = {(t,z) € [0,T] x ¥ : w-n < 0} is deduced immediately
from g,. The control associated with system then becomes g = (gn, gu)-

The well-posedness of system , , , is proven by Yudovich in [98] for sufficiently
smooth initial data and control, as well as some appropriate assumptions on 3.

We have the following global exact controllability result due to Coron [22].

Theorem 2.2.1. Given T > 0, ug,u; € C®(Q) such that
divug=divur =0 Q, wuy-n=wuy-n=0 on i,

then system (2.3), (2.4), (2.5), (2.6) is exactly controllable if and only if ¥ meets every connected
component of the boundary Of).

By exact controllability here we mean that there exists an appropriate boundary control g in the
sense of Yudovich such that the smooth solution u of , , , starting from u(0) = wug
satisfies u(T") = w;. Let us mention that in the case of PDE control it is not uncommon to look for such
controls implicitly. That is, we look for a solution u of satisfying only and the controllability
property we wish to establish (for instance exact controllability, i.e. having w(7T) = u; for some given
u1), which is an underdetermined system, and then deducing the value of the control g implicitly from
such a solution u by using , .

The proof relies on Coron’s seminal “return method” for non-linear control problems, which consists
of finding a particular solution @ to the equation satisfying #(0) = u(7") = 0 such that the linearized
system around # is controllable, and then proving the existence of a solution to the original control
problem which is close to .

Note that the condition that ¥ meets every connected component of the boundary 0f2 is essential
for two main reasons. The first reason being that due to Kelvin’s law we know that the circulation of the
fluid velocity is constant around any Jordan curve in the flow. Consequently, if there was a connected
component of 92 not met by ¥, the circulation around this component would be conserved regardless
of the choice of control. Hence, one could not control the fluid velocity from ug to u; with different
circulations. The second reason for which the fluid velocity is not controllable if 3 doesn’t meet every
connected component of 92 is that the vorticity curl u is conserved along the flow of u, so any vorticity
around an uncontrolled component of 92 would also be conserved.

A similar result to Theorem [2.2.1]has been established by Glass in [49] regarding the exact controlla-
bility of the Euler equation in three dimensions. We also mention the results from [24} 25 48| regarding

the asymptotic stabilization of the Euler equation.
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FIGURE 2.1: The setting of the boundary control problem

2.2.2 The viscous case

Next let us consider the controllability problem in the case when the fluid is viscous, i.e. modelled
by the incompressible Navier-Stokes equations. Due to the added viscosity (which we denote by v > 0),

our model becomes

0
ai:—i—(u-V)u—l—Vﬁ—I/Au:O and divu=0 for ¢t€[0,7] and z € Q, (2.7)

gaining a dissipative second order term, which can actually be seen as a dissipation of momentum
between the fluid particles. Since the PDE ([2.7)) is second order, appropriate boundary conditions have
to be set (already in the case without control). The most classical possibility is that of Dirichlet or “no-
slip” boundary condition, namely setting u = 0 on [0, 7] x 92, which was first considered by Stokes in
[93]. This condition implies that the fluid particles adhere to the boundary, and consequently generates
large amplitude boundary layers (see for instance the work of Prandtl [87]). However, Serrin pointed
out in [92] that this condition is not always realistic (for instance when moderate pressure is involved,
such as in the case of high-altitude aerodynamics).

On the other hand, Navier introduced in [82] another interesting type of boundary conditions, the
so-called “slip-with-friction” conditions, when the fluid is allowed to slip on the boundary, but subject

to some friction. This can be described mathematically as
u-n=0and (D(u)n)tan = —p(u)tan on [0,7] x 09, (2.8)

where p > 0 is the friction coefficient, and for any vector field f we define the symmetric gradient,

respectively the tangential part as

D(f) = 5 (Vi +(VHT) and (Flean = f — (F -m)n. (29)

Despite the fact that the “no-slip” conditions are more common in the mathematical community, the
Navier conditions are also well justified and frequently considered in various physical settings, such as
for studying the behaviour of flows near rough walls (see for instance [4], 16} [73], as well as [75] for
experimental data suggesting various possibilities for the slip phenomena to occur). Furthermore, it is
easier to establish vanishing viscosity convergence results for passing to the Euler equation as v — 0 in

the case of the Navier conditions compared to the Dirichlet case, since the boundary layers generated
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by the slip condition are of smaller amplitude than those generated by the adherence condition (see for
instance [70] and the references therein), and the equation of the boundary layers in the Dirichlet case
can be ill-posed (see for instance [3I]). Also observe that the Dirichlet condition can be seen as a limit
of the Navier conditions as u — +00, see [74].

Before going into details on the controllability of the Navier-Stokes equations, let us mention a
common method in PDE control for changing the perspective of certain control problems. As we have
previously mentioned for the Euler equation, the control is often considered to take the form of a
non-homogenous boundary condition on some nonempty, open part X of 0f). Clearly, we could define
similar types of controls for system under the Dirichlet, respectively Navier boundary conditions.
However, this point of view is equivalent to having an interior control (i.e. a compactly supported source
term on the PDE acting as the control), while maintaining homogenous boundary conditions. Indeed,
we may extend the domain Q to some bounded domain Q such that Q ¢ Q, ¥ ¢ Q and 92\ ¥ C 9.
Now, if we consider a source term supported in \ 2, then establishing a control result on Q using this
interior control will give us a boundary control result in €, simply by letting the fluid circulate in €2 (in
particular over 3) and reading the appropriate value of our boundary control from the fluid velocity

that passes over X.

FIGURE 2.2: The passage between boundary control and interior control

We mention a couple of controllability results regarding the Navier-Stokes equations. Imanuvilov
in [71], respectively Fernandez-Cara, Guerrero, Imanuvilov and Puel in [36, 37] have obtained results
of local controllability to trajectories in the case of Dirichlet condition, while a similar result has been
established by Guerrero in [65] for the case of Navier conditions. These results rely on linearizing the
equation and using so-called Carleman estimates.

However, instead of considering the nonlinear term as a perturbation (as done in the previously
mentioned results), another approach is to consider the viscous term as a perturbation of the inviscid
system, relying on controllability results for the Euler equation in order to deduce the controllability of
the Navier-Stokes system. Usually such techniques give rise to global approximate controllability results,
which can then be combined with the aforementionted local (but exact) results to provide global exact

controllability. We mention the works of Coron [23] regarding global approximate controllability, as
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well as Coron and Fursikov [26], respectively Chapouly [19], regarding global exact null controllability
results in the case of the Navier conditions. More recently, these results were improved by Coron,
Marbach and Sueur in [27, 28] to establish small-time global exact controllability, using a well-prepared
dissipation method to handle the boundary layers. Adapting such methods to the Dirichlet case still
poses a challenging open problem due to the larger amplitude boundary layers which are created.
However, there has been a recent result by Coron, Marbach, Sueur and Zhang in [29], where in certain
particular geometric settings a similar result was possible under Dirichlet boundary conditions, with

an added “phantom force term”.

2.3 Fluid-solid interaction models

In this section we present some common fluid-solid models, both in the inviscid and viscous case.

2.3.1 The dynamics of a rigid body in an irrotational inviscid incompressible fluid

Let us start with a simple two dimensional model of fluid-solid interaction. Let © C R? be a simply
connected, bounded, open domain (we note that the simply connectedness is merely a simplifying
assumption and not essential to the analysis). The domain contains a fluid-solid system which evolves
with respect to time ¢ € [0,7], namely an open part F(t) containing the fluid, and a closed part
S(t) := Q\F(t) representing the solid. The fluid evolves according to the incompressible Euler equation,
while the motion of the body is a rigid movement governed by Newton’s law with a normal force due
to the fluid’s pressure acting on the body.

More precisely, the movement of the solid can be completely described by its center of mass h(t) € §2
and angle of rotation J(t) € R, as S(t) = h(t) + R(V(t))(So — ho), where hg is the center of mass at

initial time, and
R(9) costy —sind '
sind  cosd

Furthermore, the dynamics of the fluid-solid model can be written as the following coupled ODE-PDE
system.

Fluid equations :

%+(u-V)u+V7T:0 and divu=0 for t€[0,T] and z € F(t). (2.10)

Solid equations :

mh’ (t) = / an do and J9'(t) = / 7 (x — h(t))* - ndo, for t € [0,T]. (2.11)
8 (t) oS (t)

Boundary conditions :
u-n=0o0ndf, and u-n=ug-non dS(t), fort € [0,T], (2.12)

where once more u : [0, T] x © — R? denotes the fluid velocity field and 7 : [0, T] x & — R the pressure
field, furthermore, m > 0 and J > 0 denote respectively the solid’s mass and moment of inertia,
and the solid velocity is given by ug(t,z) = K (t) + ' (t)(z — h(t))t, with (21,22)t := (—x2,71). For

simplicity, the fluid is assumed to be homogeneous of density 1.
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The Cauchy problem for this system with initial data
ult—o = ug for z € Fy, h(0) = hg, K’ (0) = h{, 9(0) =0, 9'(0) = 9y, (2.13)

is now well-understood, see e.g. |55 (61, [69], 84], [85], while the 3D case has also been studied in [62, [8§].
Furthermore, we assume that the fluid is irrotational at initial time, i.e. curlug = 0, which implies

that it will remain irrotational at all times, as a consequence of Helmholtz’s third theorem, i.e.
curl u =0 for x € F(t), Vvt > 0. (2.14)
Lastly, we have that due to Kelvin’s theorem the circulation around the body is conserved, i.e.

/ u(t)'TdO':/ up-7do =v€eR, Vt >0, (2.15)
OS(t) 0S80

where 7 denotes the unit counterclockwise tangent vector.

FIGURE 2.3: The domains Q, S(t) and F(t) = Q\ S(t)

It has been proven by Glass, Munnier and Sueur in [57] that in the irrotational case, the dynamics
of system — can be recast as an ODE for the degrees of freedom of the solid, namely
(h,) € Q x R, which we will detail in Section m

The main goal of the first half of this thesis is to investigate the controllability of the solid in system
— by the means of a boundary control on 9€). The results of that analysis will be presented
in Section 2.4.1]

2.3.2 The dynamics of a rigid body in a viscous incompressible fluid

Let us now present a similar fluid-solid interaction problem as in Section but in the case
when the fluid is assumed to be viscous incompressible (and not necessarily irrotational), with Navier
boundary conditions. We maintain the other assumptions from the beginning of Section The
system can then be described as follows.

Fluid equations :

% +(u-Vu+Vr—vAu=0 and divu=0 for t€[0,7] and z € F(t). (2.16)

Solid equations :

mh” (t) = — / (—wld 4+ 2vD(u)) n do,
o5(t) (2.17)
T (t) = — /BS(t) (z — h(t))* - (=xld 4+ 2vD(u))n do, for t € [0,T).
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Boundary conditions :

u-n=ug-n and (D(u)n)tan = —p(t — us)tan on OS(t),

(2.18)
u-n=0and (D(u)n)tan = —(t)tan on 09, for ¢t € [0, 7],

where v > 0 denotes the viscosity coefficient, the symmetric gradient and the tangential part of a vector
field were defined in (2.9), while the solid velocity is given by ug(t,z) = h/'(t) + 9'(t)(z — h(t))*. We
consider the same type of initial data (ug, ho, h{, Yo, Jp) as in (2.13).

Note that there is no possibility of decoupling the ODE part from the system — as done
in [57] for the irrotational inviscid case. However, due to the Navier boundary conditions, one could see
system - as the limit of system — as v — 0 (as mentioned already in Sectionm
for the case of the fluid alone). Indeed, in [86] Planas and Sueur have established such a convergence
result in the 3D case when the bounded domain €2 containing the fluid-solid system is replaced by the
whole space R3, but the aforementioned result can easily be adapted to the 2D case as well.

We also mention that having a vanishing viscosity convergence is not the only reason for considering
Navier conditions instead of the Dirichlet case. In fact, it has been proven in [45, 67, 68] that a so called

)

“no-collision paradox” can occur in the case of fluid-solid models with Dirichlet boundary conditions,
i.e. there is no collision possible (in finite time) between the solid and the outer boundary 9€2. This is
quite unrealistic since it contradicts Archimedes’ principle, however, it has been shown in [46] that this
paradox can be addressed by using the Navier conditions instead.

One can also find existence results for weak solutions to the 3D variant of system — in
the papers [44] and [86], for the bounded, respectively unbounded case. For the existence of strong
solutions in a bounded 2D domain, we cite [97]. Finally, we note that the existence of solutions (both
weak and strong, in 2D and 3D) in the case of Dirichlet boundary conditions has been investigated in
many papers, we cite for instance [30] for weak solutions, respectively [20, [94] for strong solutions.

The second part of this thesis consists in investigating the controllability of the solid in system
— by the means of an interior control. The results of that analysis will be presented in

Section R.4.2]

2.3.3 Some other fluid-solid models, related results and further references

Apart from the results mentioned for the two models in the previous sections, let us present some
other related results in fluid-solid interactions.

A different type of fluid-solid control result is due to Glass and Rosier in [58], regarding the control
of the motion of a boat, where the fluid is governed by the two-dimensional Euler equation, but the
control is located on the solid’s boundary, contrary to the result in Section where we consider
Yudovich-type controls on the outer boundary of fluid domain, similarly to —.

Actually, the result of Section [2.4.1] can rather be seen as an extension to the case of an immersed
body of the results |51, 52, 53] by Glass and Horsin, concerning Lagrangian controllability of the
incompressible Euler and Stokes equations (i.e. controlling the motion of a set of fluid particles), where
the authors also consider external boundary controls of Yudovich type.

Similarly to the case of the fluid alone (as mentioned in Section [2.2.2)), for the case of Dirichlet
boundary conditions for “viscous fluid + rigid body” control systems, local controllability results have
already been obtained in both 2D and 3D, see e.g. the works of Boulakia and Guerrero, Boulakia and

Osses, respectively Imanuvilov and Takahashi [10] 11} [72]. As in the case of the fluid alone, these results
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rely on Carleman estimates on the linearized equation, and consequently on the parabolic character of
the fluid equation. A similar result has been established by Liu, Takahashi and Tucsnak in [78] for the
case of the 1D viscous Burgers equation with a new strategy introduced by the authors without the use
of any Carleman estimates, and as noted in the aforementioned article, those methods can be extended
to other nonlinear parabolic systems. However, note that the results mentioned above concern local
null-controllability for the solid position and the velocities of both the solid and the fluid, whereas in
Section [2:4.2] we achieve global exact controllability for both the solid position and velocity directly.

Let us also mention some stabilization results by Badra and Takahashi regarding “viscous fluid +
rigid body” systems in a bounded domain with Dirichlet boundary conditions, see [6] for the 2D and
3D cases, respectively [7] for a simplified model in the 1D case. In these results the authors stabilize
the position and velocity of the solid and also the velocity of the fluid using a feedback control on
the exterior boundary of the fluid domain, assuming that the initial data of the system is close to a
stationary state, which is not necessarily assumed to be zero.

A different type of problem regarding fluid-solid interactions is that of a deformable body in a
fluid, regarding the dynamics of swimming, see for instance the various results [17, 40, [77, ©0] O]
for the viscous case, respectively [I8] by Chambrion and Munnier for the inviscid case. In the case
of such problems, the control is no longer at a distance, rather it consists of the deformation of the
body itself. Furthermore, simplified ODE models are deduced and controlled in [2) B] by Alouges et
al. for the case of self-propelled microswimmer robots composed of assemblies of balls linked by arms
which are capable of elongating and shrinking, contained in a fluid governed by the Stokes equation.
Another interesting study of microswimmers can be found in [I] by Alouges and Giraldi, where the
model considered also has a magnetic field acting on swimmers composed of a head and a deformable

tail, causing the deformation of their tails which propels them forward in the fluid.

2.4 Main results of the PhD Thesis

In this section we present the main results of the PhD Thesis, regarding the controllability of the
fluid-solid models presented in Sections and 2.3.2]

2.4.1 Control of the motion of a rigid body immersed in an irrotational perfect

two-dimensional fluid

We consider system ([2.10)-(2.11)) as presented in Section but with Yudovich-type controls
(similarly to (2.4)-(2.6) in the case of the fluid alone), i.e. the following boundary conditions :

u-n=gond, u-n=00n00\%E, and u-n=ug-non dS(t), fort e [0,T], (2.19)

where ¥ C 02 is a nonempty, open part of the boundary, and g € C§°([0,T] x ¥) with fz g=0.

Since we will work with irrotational initial data, we set the entering vorticity on >~ to be zero, i.e.
curlu(t,x) =0 on X7, (2.20)

where we recall that ¥~ = {(¢,z) € [0,7] x ¥ : w-n < 0}. This will guarantee that the irrotationality
condition (2.14) still holds via Helmholtz’s theorem.
We are interested in controlling the solid from a given position and a given velocity to some other

prescribed position and velocity via the function g € C§°([0,T] x X). Note that the reason for which
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we do not attempt to control the fluid velocity u at the same time is that there is no hope for such a

controllability result to hold, since Kelvin’s theorem gives an invariant of the system, regardless of the

control, see ([2.15)).

Furthermore, we want to ensure that the solid trajectory stays away from the boundary 0f2, since
system ([2.10)-(2.11]) is no longer valid if there is a collision between the solid and the outer boundary.

Therefore we introduce
Q={q:=(h,0) € Q2 xR: dh+ R(9)(Sp — ho), Q) > 0}. (2.21)
The first main result of the PhD is the following Theorem, which is proved in Chapter [3]

Theorem 2.4.1. Let T > 0. Consider Sg C €2 bounded, closed, simply connected with smooth boundary,
which is not a disk, and ug € C®(Fp; R?), v € R, qo = (ho,0),q1 = (h1,91) € Q, hy, h} € R, 9},9] €
R, such that (ho,0) and (hi,vY1) belong to the same connected component of Q and

div ug = curlug = 0 in Fo, ug-n =0 on 99,

ug -n = (hfy +94(z — ho)t) -n onaSo,/ ug - Tdo =1.
0So

Then there exists a control g € C3°((0,T) x X) and a solution

(h,9,u) € C*([0,T]; Q) x C([0, T]; C=(F(t); R?))

to 2.10), @.11), @.13), @.14), @.15), @.19), @-20) which satisfies

(h, b, 9,9 )(T) = (hy, b, 91,9)).

Note that there is a slight abuse of notation in writing C°°([0, T]; C*°(F(t); R?)), since the domain

in which the fluid evolves is also time-dependent.

FIGURE 2.4: The initial and final positions and velocities in the control problem

Note that the case when the solid is a disk is a degenerate one, if the solid is a homogeneous disk
for example, we have that (x — h(t))* -n = 0 for t € [0,T], z € 9S(t), so the second equation in
just implies that 1 is a linear function of time. However, a similar result to Theorem can
be established for h alone in the case of a homogeneous disk, see Chapter
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2.4.2 Control of the motion of a rigid body immersed in a viscous incompressible

two-dimensional fluid

The second part of the PhD consists in investigating the controllability of the solid in model —
. However, for technical reasons (see Remark later), instead of working in a bounded domain
Q C R?, we will instead consider the case when the fluid-solid model occupies the whole space R?, and
instead of using boundary controls, we will use an interior control (as mentioned in Section .
Therefore, we set F(t) := R?\ S(t), for any t € [0,T].

We consider the following model :

ou

a—i—(u-V)u—&—Vﬂ'—Au:g and divu =0 for t€[0,7] and = € F(t),

mh’ (t) = —/ (=7Id +2D(u)) n do,
o5() (2.22)
TV (t) = — /88@) (z — h(t))* - (=xld 4 2D(u))n do, for t € [0,T),

u-n=ug-nand (D(u)n)tan = —p( — ug)tan on OS(t), lim |u| =0, for t € [0, T,

|z| =400

where the function ¢ : [0,7] x F(t) — R? is supported in a smooth, compact, simply connected set
Q. C R? with non-empty interior, and will act as the control. Without loss of generality, we may

consider the initial data to be
uli=o = ug for x € Fy, h(0) =0, R'(0) = h{), 9(0) =0, ¥'(0) = 196. (2.23)

Note that in this case the viscosity coefficient is 1, while the other notations are the same as in Section
2.3.2

For the model to be valid, the solid needs to stay away from the support of the control, i.e.
the following has to hold :

supp &(t,-) NS(t) =0, vt € [0,T7. (2.24)

~
AY
&
-
-

F(t) =R?\ S(¢t)

FIGURE 2.5: The setting of the control problem

We will be working in the setting of weak solutions for system (2.22)), which for the sake of brevity
we do not define here, instead we note that it is done in a similar manner as defining the Leray-type

weak solutions for the fluid alone in the case of the Navier-Stokes equations.
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Our goal is once again to control the solid from a given position and a given velocity to some other
prescribed position and velocity, by the means of prescribing an interior control £ acting on the fluid. In
order to ensure that holds, we note that we do not need to control on the whole of €2.. Instead,
we will introduce a set of admissible positions for the solid, such that as long as the final position of
the solid is in this set, there exists a fixed open subset of )., which does not touch the solid neither in
its initial nor in its final position, and which we will use as the support of the controls we construct.

Therefore, we introduce
Q= {q:=(h,9) €eR*: int(Q)\ {(h+ RW)So) USo} # 0} . (2.25)

Since Sy is simply connected, it can be easily checked that Q is path-connected.
We state the second main result of the PhD, which is proved in Chapter [4

Theorem 2.4.2. Consider Sy C R? bounded, closed, simply connected with smooth boundary, which is
not a disk, and uy € H*(Fo; R?), curlug € L (Fo;R?), qo = 0,q7 = (hy,9f) € Q, hy, h’f € R?, 6,19’f €
R, such that
div ug = 0 in Fp, lim |up(x)| =0,
|z| =400

ug - = (hy +96x) -1, (D(uo)n)tan = —p(uo — (b + 92™))tan on 9So.

Then there exists T > 0, such that for any T € (0,T), there exists a control ¢ € L*((0,T) x Q.),
compactly supported in time, and a weak solution (u,h,?) of system (2.22)) such that (2.24) holds and
we have (h, W, 9,9")(T') = (hg, Iy, 0, 9%).

We note that the upper limit 7 for the time horizons implies that this result is a small time
controllability result, which is common in the case of Navier-Stokes type systems, due to the scaling
properties of the model, see Chapter [4 for further details as well as a possibility of passing to arbitrary
time.

Furthermore, the condition that Sy is not a disk is essential because a significant step during our
proof will rely on a similar result to Theorem m (see Section . However, it is still possible to

control the center of mass h alone in the case of a homogeneous disk, using a similar strategy.

2.5 Methodology

In this section we give a quick presentation of the main ideas used to construct the controls to prove

Theorems and in Chapters [3] and

2.5.1 The construction in the inviscid case : geodesics and impulsive control
An underlying geodesic structure

It has been proven by Glass, Munnier and Sueur in [57] that in the irrotational case with no control,
the dynamics of system — can be recast as an ODE for the degrees of freedom of the solid,
namely (h,9) € Q x R. To make this more precise, let us denote ¢ := (h,?), and since the domains
F(t) and S(t) only depend on time ¢ due to the dependence on ¢(t), we also denote them by F(q) and
S(q). Furthermore, recall the definition of the admissible set of positions for ¢, denoted by Q given in
(2.21]).



2.5. METHODOLOGY 45

In order to precise the ODE reformulation mentioned above, we introduce certain objects which
only depend on the geometry and the constants in the system. In particular, to “get rid of” the PDE
part of the system we solve some elliptic-type problems on a domain depending on the solid position.

— The Kirchhoff potentials

® = (D1, P2, 3)(q, ") (2.26)

are defined (up to a constant) as the solution of the Neumann problems

A®;(q,x) =01in F(q), 0,Pi(q,z) =0 on 09, fori € {1,2,3},

n; on 0S(q), for i € {1,2}, (2.27)

On®; ) =
(@.2) { (x —h)* -n on dS(q), for i =3,

where all differential operators are with respect to the variable x.

— The stream function ¢ for the circulation term is defined in the following way. First we consider
the solution z/;(q, -) of the Dirichlet problem Azﬁ(q, x) = 0in F(q), zﬁ(q, x) = 0 on 012, ﬁ(q, x)=1
on 05(q). Then we set

-1
B(g,) = - / Onib(a,z)do | (g,-), (2.28)
0S(q)

such that we have

/ Db, x) do = —1,
0S(q)

noting that the strong maximum principle gives us 9,%(q, ) < 0 on dS(q).

— We respectively define the genuine and added mass 3 x 3 matrices by

m 0
Mg=1 0 m
0 0

G o o

and, for g € Q,
Ma(q) = < V®i(q,z) - V®j(q,x) dx)
7@ 1<i,j<3
Note that M, is a symmetric Gram matrix, which intuitively encodes the amount of incom-
pressible fluid that the rigid body has to accelerate around itself, hence the term “added mass
matrix”.

— We define the symmetric bilinear map I'(¢) given by

<F(Q)apap> = Z Fﬁ](‘]) PiPj € RS, vp € R?)’

1<i,j<3 1<k<3

where, for each i, j, k € {1, 2,3}, I’ﬁ ; denotes the Christoffel symbols of the first kind defined on
Q by

i 1(6(Ma)k,j (M), 3(Ma)i’j>.

=5 ("o e e (2.29)

It can be checked that I' is of class C*° on Q.
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— We introduce the following C'* vector fields on Q with values in R? by
1
E(q) = —2/ 0nt (g, ) P0n®(q,-) do,  B(q) = / ntp(q,-) (On®(q,-) x 0-0(g,")) do.
aS(q) 95(q)

(2.30)

Theorem 2.2 from [57] states the following.

Theorem 2.5.1 (Glass-Munnier-Sueur). For smooth solutions, system (2.10])-(2.13|) can be recast, up

to collision, as the second order ODE

(My+ Mala))d" + ((a),d'a) =2*E(@) +d % Bla), 231)

with q(0) = qo, ¢'(0) = qp- In this case the fluid velocity u can be recovered as

u(t,") = V(q'(t) - 2(a(t), ) + 7V (a(t), ).

Note that in the case where v = 0, the ODE means that the particle ¢ is moving along
the geodesics associated with the Riemannian metric induced on Q by the total inertia matrix field
Mg + Mg(-), c.f. [81]. Furthermore, if v # 0, the right-hand side of is a force which reminds
us of the Lorentz force in electromagnetism by its structure (see [57] for further details). Let us also
mention that the whole “inviscid fluid + rigid body” system can be reinterpreted as a geodesic flow on
an infinite dimensional manifold, cf. [60]. However the reformulation established in relies on the
finite dimensional manifold Q and sheds more light on the dynamics of the rigid body.

Furthermore, we recall from Sectionthat in the case when Sy is a disk, equation becomes
degenerate. If the disk is not homogeneous then the model becomes even more complicated, see Theorem
2.9 from [57].

Also, note that the analysis presented above could be repeated in the case with vorticity, however
a purely ODE reformulation as in (2.31) would not be possible in that case, since one would have to
still solve an evolution PDE in order to determine the vorticity of the system (which also depends on
q), which would in turn have an effect on the solid equation for g.

In [54] we have extended Theorem to the case with control in the following manner. We set

C:= {gEC{)’O(E;R) such that /ng':O},
b

and define for any ¢ € Q and g € C the unique solution @ := Alg, g] € C*°(F(q);R) to the following

Neumann problem :

Aa=0in F(g) and 0O,a=gly on dF(q), (2.32)

with zero mean.

We have the following result.

Theorem 2.5.2 (Glass-Kolumban-Sueur). Given

¢ € C®(0,T;:Q), ueC™([0,T];C*(F(q(1));R?) and g e C§([0,T];C),

we have that (q,u) is a solution to (2.10)), (2.11)), (2.13), (2.14), (2.15)), (2.19), (2.20) if and only if the
following ODE holds on [0,T] :

(Mg + Ma(q))d" + (I'(q),q. ¢') = v*E(q) + 74 x B(q)
+ Fi(q, 4, 7)o + F2(q)[0:c],

(2.33)
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where Fy and Fy are reqular, respectively o(t, x) := Alq(t), g(t,-)](x). Furthermore, the fluid velocity u

can then be recovered as
u(t,z) = V(q'(t) - ®(q(t), x)) + YV 0 (q(t), 2) + VAlg(t), g(t, )] (). (2.34)

Impulsive control

The main reason for establishing Theorem is the following. Suppose we have v = 0 (if this is not
the case, one can at least expect to be close in some sense to the case without circulation when ~ is small
enough, while for ~ large one can exploit the time-rescale properties of equation ), and suppose
that we can find some appropriate control g € C§°([0, T|; C) such that the term F(q, ¢, 0)[a]+Fa(q)[01c]
in behaves approximately like vodo(t) +v1d7(t), for any given vy, vy € R3, where 6y and §7 denote
the Dirac distributions at time ¢ = 0, respectively t = T.

Then, is going to be close (in an appropriate sense) to the following formal toy model :

(Mg + Ma(9))q" + (0(4), 7, 7') = vodo + v167, (2.35)

and controlling (2.33)) (at least approximately) reduces to controlling by using the vectors vg, v1 €
R3 as our control.

Let us quickly explain how such a controllability can be established. Given qq, g1 € Q, there exists
(at least in the case when ¢p and ¢; are sufficiently close, the general case can then be treated via a
gluing argument) a geodesic associated with the Riemannian metric induced on Q@ by My + M,(-),

which connects gg with g1. More precisely, there exists a unique smooth function g satisfying
(Mg + Ma(@))q" + (I'(9),d, ') = 0 on [0,T], with g(0) = qo, 4(T) = 1. (2.36)

So, one can arrive at the desired final position g1, but a priori the final velocity ¢'(T) differs from ¢,
furthermore even the initial velocity ¢’(0) differs from gj.

Then, controlling the solution ¢ of from (qo,q}) to (q1,¢}) just amounts to setting vy :=
(Mg + Ma(40))(7(0) — ¢f) and vy := — (Mg + Mq(q1)) (7 (T) — ¢}), which transforms the initial and
final velocities ¢'(0) and ¢'(T") exactly to the desired velocities in order to achieve controllability.

We will prove in Chapter |3 that such controls g € C§°([0,T;C) can indeed be constructed. More

precisely, we can construct g of the following form :

9(t, ) = ge(t, ) := Be(t)g(qo, vo) (#) + Be(T = t)g(g1, v1)(2), (2.37)

where [5.(t) := % (t_Ta), for £ in (0,1), with 5 : R — R being a smooth, non-negative function
supported in [—1, 1], such that f_ll B(t)?dt = 1, so that (82). is an approximation of the unity when
¢ — 0%, Furthermore, the function g is constructed via complex analysis, satisfying certain constraints

such that the aforementioned condition
Fi(q,q',0)[a] + F2(q)[0s] = vodo(t) + v107(t)

holds when € — 07. In fact, using such controls g., the dominant term in the expression above will be
Fi(q,4q',0)[a] and will behave like fBS(q) |Val? 9,®(q, ) do, so we will impose an appropriate quadratic
constraint on g (see Chapter |3 for further details).

Such a strategy is called “impulsive control” due to the large amplitude of the control g. over a short
support in time (note that supp g. C ([0,2¢] U [T — 2¢,T]) x ), we mention [13] and the references

therein for many more examples on impulsive control.
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Conclusion

As already mentioned, the construction above allows us to deduce the approximate controllability of
in the case v = 0, due to there being an error in terms of € coming from the Dirac approximations.
One can extend this result to the case of small v, the error in the approximate controllability will then
depend on € > 0 and |v|.

However, since we are controlling the finite dimensional quantity (¢(7),¢'(T)) € RS, one can pass
from approximate controllability to exact controllability by using a Brouwer-type topological result

such as the following lemma, which was used in |58, pages 32-33| for similar purposes.

Lemma 2.5.1. Let wyg € R", k > 0, f : B(wg, k) — R™ a continuous map such that we have |f(w) —
w| < % for any x in OB(wo, k). Then B(wo, %) C f(B(wo, K)).

Of course in this case we also need to ensure an appropriate continuity property of our construction
with respect to the target final position and velocity (g1, ¢})-

Therefore, we may conclude the exact controllability of equation in the case of vy small enough.
The general case can be deduced via a time-rescaling argument similar to the one used by J.-M. Coron
for the Euler equation [22], which has been also used in [58] in order to pass from the potential case to
the case with vorticity. One obtains that controlling with arbitrary circulation v € R over the
time interval [0, 7] reduces to controlling with small v over a shorter time interval [0, AT, with
A~ ﬁ However, it poses no difficulty to get the desired time interval, by using that equation (2.33)
enjoys some invariance properties by translation and time-reversal, it is sufficient to glue together a
number of appropriate controlled solutions each defined on a time interval of length XT'. See Chapter

[Bl for further details.

Remark 2.5.1. We mention here that using controls of the form (2.37)) allows us to further ensure
that our solution will have an arbitrarily small total flux through X~. That s, for any T > 0, for any
v > 0, there exists a control g and a solution (h,9,u) satisfying the properties of Theorem and

such that moreover .
/ / uU-n dadt‘ < v.
0 _

Indeed, due to the expression of B. one obtains that the total flux through X, that is fOT fz— ge dodt,

is of order \/e. This is also left invariant by any time-rescaling or gluing arguments. The significance of

such a result is that one can in a sense limit the amount of exchanged fluid during the control phase. We
also mention that such a small flux condition cannot be guaranteed in the results [22, [7, [49] regarding

the controllability of the Fuler equations.

2.5.2 The reduction of the viscous case to the inviscid one via a vanishing viscosity
method

In this section we will present a strategy based on an asymptotic expansion which allows us to
reduce the proof of Theorem to controlling certain Euler- and linearized Euler-type systems,
which we will do by a similar impulsive control strategy as in Section [2.5.1] In order to achieve such an
asymptotic expansion, we will first replace the control on the evolution equation with a control on the
divergence of u in , then transform the domain of the PDE in into a cylindrical domain,

and introduce a small viscosity parameter.
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Lifting the control from the evolution equation and placing it on the divergence

First, let us observe that it is equivalent to control the evolution PDE for « with controlling instead

the divergence of u. We recall the definition of the Bogovskii operator (see for instance [9] or [43]).

Definition 2.5.1. Given a smooth, bounded, simply connected domain Q C R?, there exists an operator
B : C§(Q) — C§°(2)? such that, for any g € C§°(Q) with [ g =0, we have div Bg = g. Furthermore,
B e L(WP (), W5+1’p(ﬂ)2), for any 1 < p < 400, s > 0. Also observe that we may extend Bg by 0
outside of €.

From here on let B denote the Bogovskii operator associated with the domain €2.. Now, suppose

we have a solution (U, 7, h, ¥, g) to the system

%—lt]wL(U'V)UJrVW—AU:O and divu=g for t€[0,7] and x € F(¢),
U-n=ug-n, (D(U)n)an = —p(U —ug)tan for x € S(¢t), lim |U|=0,

|| —=+o0 ( )
2.38
mh”(t) = / (=7Id +2D(U))n do,
a8 (t)

TV (t) = — /88(t)(93 — h(t)t - (=7ld + 2D(U))n) do, for t € [0,T],

with [ g = 0 and supp gNS(t) =0, for all ¢ € [0,T7]. Setting u := U — Bg and & := —%%—BQ'VBL(]—
U-VBg— Bg-VU+ ABg, we have that (u,r, h,9,£) is a solution to .

The main reason for such a shift in the point of view is that our strategy for constructing a solution
to the viscous fluid-solid system will rely on a construction for the inviscid system. In the inviscid
case however, similarly to , from Section one may linearly decompose the effect of
a control g on the divergence by considering a function @ € C°(Fy; R) which vanishes at infinity and

satisfies the following elliptic problem :

Aa = glpu)yr(p.—n)(®) in Fo, lim [Va| =0, and 9, @ =0 on 9Sp.

|z| =400

Such functions can be easily studied by the means of complex analysis.

A change of variables for passing to a fixed domain with small viscosity

As mentioned previously, our strategy will rely on linking the viscous case to the inviscid one. For
this purpose, we would like to introduce a small viscosity parameter (denoted by & > 0), which we
will make go to zero. At the same time, we would like to change the domain of the PDE, F(t), which
depends on the solid position, to a domain which is fixed. Luckily, since the fluid-solid system occupies

the whole plane R?, this can be achieved simply by a rigid movement.

Given € > 0, one may introduce a change of variables which consists of a rigid movement in the

space variable, corresponding to the solid movement, and a time-rescale with respect to e, such that
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(2.38)) is equivalent to the following system :

&€
85; + (uf —ug) - Vuf +1r5(uf)t + Vrf —eAu® =0 and div u® = ¢° for x € Fy,
us-n=ug-n, (DU )n)tan = —p(u® — ug)tan for x € Sy, Iw\lirioo luf| = 0,
(2.39)
m(lf) = —/ (—=7°Id + 2eD(uf)) n do — mre(I°)*,
0So
J (rf) = / zt - (=7°Id + 2eD(uf))ndo, for t € [0,T/¢],
0So

where u§(t, 7) = I(t) +7°(t)zt, for t € [0,T/e], uf(0, ) = euo(-), (I,7%)(0) = £(hj, ¥}), and the control
term is now ¢g° € C§°((0,T/e) x Fo) such that supp ¢°(t,-) C R(9°(t))T (Q—he(t)) and [ ¢°(t,-) dx = 0,
for any ¢ € [0,7/¢]. Furthermore, we may associate the solid position (h®,¥*), which no longer plays a

role directly in solving system (2.39)), through

t t
he(t) = / R(V°(s))I(s)ds, vV°(t) = / re(s) ds, (2.40)
0 0
and in particular we have the following scaling for the solid trajectory with respect to ¢,
(A1), 0°(1)) = (h(et),9(et)),  (I°(1), 75 (1)) = e(R(I(et)) W' (et), V' (et)), (2.41)

for t € [0,T/¢].

Notice that solving system on a time interval [0, T'] then reduces to solving (2.39) on [0, 7 /e].
However, given a fixed T' > 0, one may instead look to solve on [0, 7] and deduce the existence
of a solution to on [0,eT], which would prove Theorem in time 7', for some € € (0,1).
This is exactly what our strategy will rely on.

Now, as ¢ — 0%, one would expect to converge to an inviscid fluid-solid system in the
whole plane. However, in order to achieve our desired controllability for the solid, we need to further

investigate the behaviour of u® as an asymptotic expansion up to higher orders of €.

Asymptotic expansion
We would like to have the following asymptotic expansion for the solid trajectory :

hE = h0 + eh! + eh5, 9° = 9 + 9! + 0%,

(2.42)
=0 +el +els, r*=r"+er! +er,,

with (19, 70), (11, r1), (I5,7%) € L>=(0,T). At each order of & we will also have an associated fluid velocity,

namely u, u!

, UR, the construction of which we specify later. However, we can determine an equation
for each of these terms at order O(1), O(g), O(e™) by formally plugging the asymptotic expansion into
the equation of (uf,[%,7¢) and separating the terms in function of orders of e.
We then obtain the following.
— at order O(1), (u°,1°,70) satisfy a “rigid body + inviscid fluid” system where the fluid is governed
by the Euler equation. We would like to drive, by the means of an appropriate control, (h°, 9°)(T)
to (hs,¥y) and (1% r°)(T) to 0.
— at order O(e), (ul,l1!,7!) satisfy a fluid-solid system which is a linearization of the system at
O(1). We would like to drive, by the means of an appropriate control, (I*,71)(T) to (R(ﬁf)Th’f, V).
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— atorder O(e%), (u5%, [5, r5) satisfy a remainder equation. We would like to prove that (15, r5,)(T) —
Oase— 0T,
If we had the above, taking into account , it would follow that we have (approximately) driven
(R, 95)(T) to (hg,9y) and (I5,7°)(T) to e(R(I;)T R/ ,0'), for € > 0 small enough.

We may then pass from the above mentioned approximate controllability to exact controllability
by the means of a topological argument of Brouwer-type, as in Lemma [2.5.1] from Section [2.5.1] This
further requires some continuity property for our whole construction with respect to the target data
for the solid trajectory. Finally, recalling the scaling , we may conclude the desired controllability
result (h, 9, ', 9")(T) = (hg, Vg, Iy, 0%).

In order to achieve an expansion as in for the solid trajectory, we consider controls ¢° in the
form of ¢° = g° + ¢!, in the style of [27], and we look for the following asymptotic expansion for the

fluid velocity and pressure :

u® = ul + Ve{v} +eul +euf, 7 =104+ £{Q} +en! +en§, (2.43)

p(z)
Ve
|p(z)| = d(z,Sp) in some neighbourhood of the solid (see Chapter {4 for further details). Hence, proving

Theorem reduces to constructing the terms in the right-hand side of (2.42)), (2.43]) in an appropriate

way. Note that we will use an energy estimate to prove the smallness of (I%,7%), which is the main

where, for f = f(t,z,z), we denote {f} its evaluation at z = with some function ¢ satisfying

reason for investigating not only the terms in the asymptotic expansion for the solid trajectory, but
also the terms in the expansion for u®, which includes a boundary layer profile v and the associated
pressure (), appearing due to the fact that the solution of the inviscid fluid-solid system does not satisfy
the Navier boundary condition, as mentioned in Section [2.2.2

Therefore, our strategy will be the following :

— We construct ¢° and a smooth solution u" to the Euler equation (with control ¢%), with zero
initial data, hence zero vorticity and zero circulation around the solid, such that we have an
exact controllability result for (h%,9°)(T) with (1% 7°)(T) = 0. However, we note that contrary
to [27], our strategy will not rely on a return method for u°, we will rather just use u° to control
the solid position (h°,9°)(T'), by using an impulsive control strategy similar to the one presented
in Section 2.5.1] for the bounded case.

— Due to the Navier slip-with-friction boundary conditions, the fluid velocity boundary layer v
will appear near the solid at order O(y/¢), together with its pressure @ at order O(e). Note that
there will be no contribution at order O(/¢) in the solid equations due to the boundary layers,
however v will appear in the solid equations for (I*,r!). Furthermore, we stress that since we do
not control the fluid velocity u¢, there is no need to control v (contrary to [27]), it will suffice to
prove some regularity estimates to handle the effect of the boundary layers at O(e) in the solid
equations for (I!,7!), and in the equations of the remainder. Note that v and @ only depend on
(u®,1°,79) and their existence is immediate from the existence of (u®, 7%, 1,70, ¢0).

— We construct g' and a smooth solution u' to a linearized Euler equation around u° (with control
g"), with initial data derived from the original system , such that we have an approximate
controllability result for (I*,7Y)(T) (we settle for an approximate controllability here because
it simplifies our construction). Such a result can be established by a simpler impulsive control

0

strategy than in the case of the inviscid term u”, since the equation is linear, and we only want

to control the solid velocity (I',71)(T), not the velocity and the position at the same time.
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— We construct (u%,(%,7%) as the solution of a system which we deduce from the equations
verified by all the other terms in , (note that at this point we have not yet proven
the existence of (u®, [, r¢), but we know that it should be a solution of with g° = ¢ +eg').
We prove by the means of an energy estimate that (u, 15, 7%) is small in L>((0, T); L*(F) xR?),
when € > 0 is small.

From the above construction we may define (u®, [%, 7€) as the right-hand sides of , , since

now all the respective terms are constructed and well-defined, and conclude the proof of Theorem 2.4.2]
See Chapter [4] for the detailed analysis.

Remark 2.5.2. Note that during the whole construction we also need to ensure that the “no-collision”
condition (2.24) holds (it suffices to ensure a similar condition for g¢%), and that (h®, V% 1%, 7)(T)
depends continuously on (hy, V¢, h’f,ﬁ’f), in order to be able to apply Lemma as mentioned pre-

viously.

Remark 2.5.3. Let us now explain why we chose to work in the whole plane R? instead of a bounded
domain. The key technical difficulty in handling the case of a bounded domain with a similar strategy
would be the step of transforming the moving domain F(t) into a fixred domain. As mentioned above, in
the case of the plane this can be done through a simple rigid movement. However, in the bounded case
one would also need to account for the outer boundary 0X), and construct a diffeomorphism which is a
rigid movement in a neighbourhood of the solid, but leaves the boundary 0S) intact. This diffeomorphism
would clearly depend on the solid position, as well as contribute more complicated nonlinear terms in
the PDE (see for instance [12] or [61)] for such a construction). The main problem then is investigating
what happens to these terms when we look for an asymptotic expansion of the form of for the
solid trajectory, moreover separating them in terms of orders of €. To properly do this, one would need
to establish a rigorous asymptotic expansion of the diffeomorphism (and the associated terms in the
PDE) with respect to the solid position, which is rather difficult.

2.6 Future directions and open problems

A natural generalisation of the results of this PhD would be the passage from the two-dimensional
case to the three-dimensional one, since often it is is more common and realistic to consider three-
dimensional models instead of two-dimensional ones for describing real-world phenomena. The main
difficulties in adapting the methods presented in Chapters |3 and [4] to the three-dimensional case are
on hand the Cauchy theory for the viscous system in 3D, and on the other hand the use of complex
analysis to explicitly construct the parts of the controls depending on the space variable (for instance
in (£37).

Indeed, in the bounded case for instance (in the same setting as in Section , with F(q) =
2\ S8(q)), one wishes to construct a function @ € C*(F(q); R) satisfying

Aa =01in F(q), Opa =0on 0F(q) \ ¥, and / \Val? 0,®(q, ) do = v,
a8(q)
for any given v € R3, and fixed ¢ € Q. In the two-dimensional case this is done by first constructing
a function only defined in a neighbourhood of dS(¢) and satisfying the integral constraint above with
v, by using a Laurent series. Then, one can deduce the existence of an appropriate function defined on

the whole of F(gq) via Runge’s theorem.
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However, one direction worth investigating would be replacing these arguments by a Cauchy-
Kovalevskaya type construction and a higher dimensional generalization of Runge’s theorem (c.f. [3§]),

so that a similar result can be established in the three-dimensional case.

Furthermore, one could also be interested in controlling several solids. Indeed, the complex ana-
lysis arguments mentioned above are quite local around the solid (and then made global via Runge’s
theorem), so one would imagine that similar methods could be adapted to the case of multiple solids,
as long as there is no collision between them. However, it would be also interesting from a modelling
point of view to investigate whether it is still possible to use one of the solid trajectories to control
the others (without collision of course). Note that the model with multiple solids when the number of

solids is quite large could be a good way to model sprays for instance.

Let us also mention the following open problem regarding the motion planning for the rigid body,
both in the viscous and inviscid case. Given a curve ¢ in C2([0,T]; ), does there exist an appropriate
control and a solution to the fluid-solid system which satisfies £ = ¢ on [0,7]? Even the approximate
motion planning in C?, i.e. the same question as above but with ||¢ — dlle2ory < € (with e > 0
arbitrary) instead of £ = ¢, is an open problem. These open problems are interesting from the point of
view of applications, as it would be useful to be able to make the solid trajectory stay close to a given
curve, to perform certain prescribed movement, perhaps avoid certain regions of the fluid domain. By
contrast, the methods in Chapter [3| rely on the solid trajectory following a geodesic curve which is
defined solely by the geometry of the setting, and not by the construction of the control, which is the
main difficulty that would need to be overcome. However, in Chapter 4] we have developed a strategy
for passing from approximate controllability of the solid to exact controllability by using an inverse
function theorem argument (as opposed to a topological one, as mentioned in Lemma . We hope
that such a strategy could be adapted to tackle this problem regarding the motion planning of the solid

in the future.

Another interesting direction would be studying fluid-solid interaction models where the fluid is
compressible, as this could give rise to applications where the fluid surrounding the solid is in fact
a gas. The approximate controllability of the fluid velocity and density for the compressible Euler
equations has been estabilshed in [83], while there are some partial results for the Navier-Stokes case
(see [32]). However, it could be that controlling the solid trajectory alone might be achieved more easily.
The main difference between the compressible and incompressible cases is that the ODE reformulation
for the solid trajectory from [54] will no longer apply, since it relies on certain harmonic functions.
Nonetheless, it would be worth investigating if the solid equations in the compressible case can still
be put into a form where perhaps some sort of impulsive control strategy could be implemented. An
intermediary problem could be to investigate the case of incompressible, but variable density fluids,
which are often considered for modelling oceans, rivers or fluids in large domains (see for instance [35]
for the control of the fluid alone).

A further follow-up to the question of controllability could be that of stabilization, as mentioned in
the Introduction, that is finding a stationary feedback law g = g[u, q], such that setting this as control,
the closed-loop fluid-solid system is globally well-defined and asymptotically stable at an equilibrium
point (e, ge, qL.). Of course, the fluid-solid system can only be stabilized around a point where both the

solid and the fluid are at rest. However, there can be some initial vorticity present in the fluid, which
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could be eliminated by a strategy similar to the one used by J.-M. Coron in [24], as long as the initial

vorticity does not touch the solid boundary.

We also mention that the global exact controllability of a “viscous fluid + rigid body” system with
Dirichlet “no slip” boundary conditions is completely open, and a very challenging problem due to the
fact that the Dirichlet boundary conditions create boundary layers with a larger amplitude than in the
case of Navier slip-with-friction boundary conditions. Note that even the problem of controlling only
the fluid velocity in such a context is open and similarly challenging, some recent advances have been
made in [29] in the very particular case when the domain is assumed to be a rectangle, using an added
distributed phantom force. As already mentioned in Section [2.3.3] we once again contrast these global
type of results with the existing local result (as in [10, 11}, [72]), which are based on a different strategy
and therefore do not require the study of boundary layers.

However, perhaps the less ambitious problem of only controlling the solid velocity, and not the
position (which can be used for instance to stop the solid) could be tackled more easily even in the
Dirichlet case, using a strategy similar to that of Chapter[d Indeed, if we were to implement an asymp-
totic expansion as in - for the Dirichlet case, one would have boundary layers appearing at
O(1), namely the expansion for the fluid velocity would be of the form

uf = u® 4 {v} + eu! +euf.

However, as explained in the strategy presented in Section [2.5.2] controlling the solid position would
correspond to controlling u°. Since we no longer want to do this, it follows that we may consider u® = 0
to reduce the effect of v. Of course this implies that the equation for u! simplifies into d,u' + V! = 0,
but perhaps one may exploit this by using controls which do not vanish at the end of the time interval
in order to control the solid equation for p'.

Furthermore, in the spirit of [29], one could consider the movement of a solid inside a rectangle with
Dirichlet boundary conditions, and allow fluid in an out through two parallel sides of the rectangle. It
would be worth investigating the possibility of making the solid leave the rectangle and putting the

fluid inside the rectangle to rest.



Chapitre 3

External boundary control of the motion
of a rigid body immersed in a perfect

two-dimensional fluid

3.1 Introduction and main result

3.1.1 The model without control

A simple model of fluid-solid evolution is that of a single rigid body surrounded by a perfect
incompressible fluid. Let us describe this system. We consider a two-dimensional bounded, open, smooth
and simply connectedE] domain Q C R2. The domain Q is composed of two disjoint parts : the open
part F(t) filled with fluid and the closed part S(¢) representing the solid. These parts depend on time
t. Furthermore, we assume that S(¢) is also smooth and simply connected. On the fluid part F(t),

the velocity field u : [0,T] x F(t) — R? and the pressure field 7 : [0,7] x F(t) — R satisfy the

incompressible Euler equation :

?;Z—i—(u-V)u—FVW_O and divu=0 for ¢t €[0,7] and x € F(t). (3.1)

We consider impermeability boundary conditions, namely, on the solid boundary, the normal velocity

coincides with the solid normal velocity
u-n=ug-non dS(t), (3.2)
where ug denotes the solid velocity described below, while on the outer part of the boundary we have
u-n =0 on 09, (3.3)

where n is the unit outward normal vector on 0F(t). The solid S(¢) is obtained by a rigid movement
from S(0), and one can describe its position by the center of mass, h(t), and the angle variable with

respect to the initial position, ¥(¢). Consequently, we have

S(t) = h(t) + RI(£))(So — ho), (3.4)

1. The condition of simple connectedness is actually not essential and one could generalize the present result to the

case where () is merely open and connected at the price of long but straightforward modifications.
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where hg is the center of mass at initial time, and

R(9) costy —sind '
sing  cosv
Moreover the solid velocity is hence given by

us(t,x) = ' (t) + 9 (t)(z — h(t))*, (3.5)

where for = (1, 29) we denote 2t = (—x9, 21).
The solid evolves according to Newton’s law, and is influenced by the fluid’s pressure on the boun-

dary :

mh' (t) = / mndo and J9"(t) = / 7 (x — h(t)t - ndo. (3.6)
S (t) oS (t)

Here the constants m > 0 and J > 0 denote respectively the mass and the moment of inertia of
the body, where the fluid is supposed to be homogeneous of density 1, without loss of generality.

Furthermore, the circulation around the body is constant in time, that is
/ u(t)-Tda—/ up-7do =~ €R, Vt >0, (3.7)
aS(t) 380

due to Kelvin’s theorem, where 7 denotes the unit counterclockwise tangent vector.

FIGURE 3.1: The domains Q, S(t) and F(t) = Q\ S(¢)

The Cauchy problem for this system with initial data

uli—o = up for x € F(0),

(3.8)
h(0) = ho, W(0) = R, 9(0) =0, ¥'(0) = 0},

is now well-understood, see e.g. [59] [61], [69, [84] [85]. Furthermore, the 3D case has also been studied in
[62, [88]. Note in passing that it is our convention used throughout the Chapter that 9(0) = 0.

In this Chapter, we will furthermore assume that the fluid is irrotational at the initial time, that
is curl ug = 0 in F(0), which implies that it stays irrotational at all times, due to Helmholtz’s third

theorem, i.e.

curl u = 0 for x € F(t), Vt > 0. (3.9)
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3.1.2 The control problem

We are now in position to state our main result.

Our goal is to investigate the possibility of controlling the solid by means of a boundary control
acting on the fluid. Consider ¥ a nonempty, open part of the outer boundary 0€2. Suppose that one can
choose some non-homogeneous boundary conditions on ¥. One natural possibility is due to Yudovich
(see |98]), which consists in prescribing on the one hand the normal velocity on X, i.e. choosing some
function g € C§°([0,T] x ¥) with [;, g = 0 and imposing that

u(t,z) -n(z) =g(t,x) on [0,T] x X, (3.10)
while on the rest of the boundary we have the usual impermeability condition
u-n=0on[0,T] x (002 ), (3.11)

and on the other hand the vorticity on the set ¥~ of points of [0, 7] x ¥ where the velocity field points
inside ). Note that X7 is deduced immediately from g.
Since we are interested in the vorticity-free case, we will actually consider here a null control in

vorticity, that is
curlu(t,z) =0 on ¥~ = {(¢t,z) € [0,T] x ¥ such that wu(t,z) n(z) < 0}. (3.12)

Condition enforces the validity of as in the uncontrolled setting despite the fact that some
fluid is entering the domain.

The general question of this Chapter is how to control the solid’s movement by using the above
boundary control (that is, the function g). In particular we raise the question of driving the solid from
a given position and a given velocity to some other prescribed position and velocity. Remark that we
cannot expect to control the fluid velocity in the situation described above : for instance, Kelvin’s
theorem gives an invariant of the dynamics, regardless of the control.

Throughout this Chapter we will only consider solid trajectories which stay away from the boundary.

Therefore we introduce
Q={q:=(h,0) € QxR: dh+ R(9)(Sp — ho),00) > 0}.
The main result of this Chapter is the following statement.

Theorem 3.1.1. Let T > 0. Consider Sg C 2 bounded, closed, simply connected with smooth boundary,

which is not a disk, andug € C*°(F(0);R?), v € R, qo = (ho,0),q1 = (h1,91) € Q, hj, b} € R?,9),9, €
R, such that (ho,0) and (hi,Y1) belong to the same connected component of Q and

div ug = curlug = 0 in F(0), up-n =0 on 99,

ug - n = (hfy + 9 (z — ho)t) - n onaSo,/ ug - Tdo = 1.
9So

Then there exists a control g € C3°((0,T) x ¥) and a solution

(h,9,u) € C°([0,T]; Q) x C*=([0,T]; C*®(F(t); R?))

to G1), B2), B8), G2, G3). B9, BI0), GII), which satisfies (h, k', 9,9')(T) = (hy, by, 91, 9}).
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FIGURE 3.2: The initial and final positions and velocities in the control problem

Note that there is a slight abuse of notation in writing C°°([0, T]; C*°(F(t); R?)), since the domain

in which the fluid evolves is also time-dependent.

Remark 3.1.1. In Theorem the control g can be chosen with an arbitrary small total flux through
Y7, that is for any T > 0, for any v > 0, there exists a control g and a solution (h,¥,u) satisfying the
properties of Theorem [3.1.1] and such that moreover

T
/ / u-ndadt‘<l/.
0 _

See Section for more explanations. Let us mention that such a small fluz condition cannot be

guaranteed in the results [22, [47, [49] regarding the controllability of the Euler equations.

When Sj is a disk, the second equation in (3.6) becomes degenerate, so it needs to be treated
separately. For instance, in the case of a homogeneous disk, i.e. when the center of mass coincides with
the center of the disk and we have (x — h(t))* -n = 0, for any € 9S(t), t > 0, hence we cannot

control ¥. However, we have a similar result for controlling the center of mass h.

Theorem 3.1.2. Let T > 0. Given a homogeneous disk Sy C Q, ug € C(F(0);R?), v € R, hg,hy €
Q, h{, | € R% such that (ho,0) and (h1,0) are in the same connected component of Q, and div ug =
curlug = 0 in F(0), ug-n = 0 on 9Q, ug - n = hj - n on 98y, faSO ug - Tdo = 7, there exists g €
C°((0,T) x ) and a solution (h,u) in C°°([0,T]; Q) x C=([0,T); C=°(F(t); R?)) of , , (@,
), (3.9), (310), (5-11), (3.19) with initial data (ho, h{, uo), which satisfies (h, ')(T) = (h1, h}).

The proof is similar to that of Theorem with the added consideration that (x — h(t))*-n = 0,
for any x € 9S(t), t > 0. We therefore omit the proof. In the case where the disk is non-homogeneous

the analysis is technically more intricate already in the uncontrolled setting, see [57], and we will let

aside this case in this Chapter.

References. Let us mention a few results of boundary controllability of a fluid alone, that is without
any moving body. The problem is then finding a boundary control which steers the fluid velocity
from ug to some prescribed state u;. For the incompressible Euler equations small-time global exact
boundary controllability has been obtained in [22] [49] in the 2D, respectively 3D case. This result has
been recently extended to the case of the incompressible Navier-Stokes equation with Navier slip-with-

friction boundary conditions in [27], see also [28] for a gentle exposition. Note that the proof there
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relies on the previous results for the Euler equations by means of a rapid and strong control which
drives the system in a high Reynolds regime. This strategy was initiated in [23|, where an interior
controllability result was already established. For “viscous fluid + rigid body” control systems (with
Dirichlet boundary conditions), local controllability results have already been obtained in both 2D and
3D, see e.g. [10, 11}, [72]. These results rely on Carleman estimates on the linearized equation, and

consequently on the parabolic character of the fluid equation.

A different type of fluid-solid control result can be found in [58], where the fluid is governed by the
two-dimensional Euler equation. However in this Chapter the control is located on the solid’s boundary

which makes the situation quite different.

Actually, the results of Theorem [3.1.1] and Theorem [3.1.2] can rather be seen as some extensions to
the case of an immersed body of the results [51, 52] [53] concerning Lagrangian controllability of the

incompressible Euler and Stokes equations, where the control takes the same form as here.

Generalizations and open problems. First, as we mentioned before, using the techniques of this
Chapter, the result could be straightforwardly generalized for non simply connected domains. One
could also manage in the same way the control of several solids (the reader may in particular see that
the argument using Runge’s theorem in Section is local around the solid). We would also like to
underline that the absence of vorticity is not central here. This may surprise the reader acquainted with
the Euler equation, but actually following the arguments of Coron [22] 23], one knows how to control
the full model when one can control the irrotational one. This is by the way the technique that we use
to take care of the circulation 7 (see in particular Section [3.3). But the presence of vorticity makes
a lot of complications from the point of view of the initial boundary problem, in particular for what
concerns the uniqueness issue, see Yudovich [98]. To avoid these unnecessary technical complications,
we restrain ourselves to the irrotational problem. But the full problem could undoubtedly be treated
in the same way.

There remain also many open problems. Considering the recent progresses on the controllability in
the viscous case, a natural question is whether or not the results in this Chapter could be adapted to
the case where a rigid body is moving in a fluid driven by the incompressible Navier-Stokes equation,
with Navier slip-with-friction boundary conditions. We hope that the analysis performed here in the
case of “inviscid fluid + rigid body” control systems could be used in order to get small-time global
controllability results of “viscous fluid + rigid body” control systems.

Let us mention the following open problem regarding the motion planning of a rigid body immersed

in an inviscid incompressible irrotational flow.

Open problem 3.1.1. Let T > 0, (ho,0) in Q, & in C%([0,T); Q), with £(0) = (ho,0). Let us decompose
€'(0) into &'(0) = (h{, V). Consider Sy C Q bounded, closed, simply connected with smooth boundary,
which is not a disk, v € R, and ug € C®(F(0); R?) such that div ug = curlug = 0 in F(0), ug-n =0
on 09, ug-n = (hf + 9 (x — ho)t) -n on 8Sy and Jas, o - Tdo = 1. Do there exist g € Co([0,T] x )
and a solution (h,9,u) € C%([0,T]; Q) x C°°([0,T]; C*(F(t);R?)) to , , , , ,
@), , , which satisfies & = (h, V) ¢

Even the approximate motion planning in C?, i.e. the same statement as above but with [|¢ —

(hy 9)llc2(po,rp) < € (with € > 0 arbitrary) instead of £ = (h, ), is an open problem.
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Plan of the Chapter. The Chapter is organized as follows. In Section we first recall from [57]
a reformulation of the Newton equations (3.6) as an ODE in the uncontrolled case and then extend it
to the case with control. In particular in the case with zero circulation and no control this ODE is the
geodesic equation associated with a metric which encodes the added mass phenomenon.

In Section [3:3] we prove that Theorem can be deduced from a simpler result, namely Theorem
[3.3.1] where the solid displacement, the initial and final solid velocities and the circulation are assumed
to be small.

In Section [3.4] we prove that another reduction is possible, as we prove that an approximate control-
lability result (rather than an exact one), namely Theorem allows to deduce Theorem m

Section [3.5] is devoted to the proof of Theorem [3.4.1] and is the core of the Chapter.

In Section [3.6] we prove a Proposition that is important for Theorem [3.4.1] namely that we can
approximate the whole system by a simpler one in a certain regime.

Section [3.7] explains how one can construct the control by means of complex analysis : it can be

considered as the cornerstone of our control strategy.

3.2 Reformulation of the solid’s equation into an ODE

In this section we establish a reformulation of the Newton equations as an ODE for the three
degrees of freedom of the rigid body with coefficients obtained by solving some elliptic-type problems
on a domain depending on the solid position. Indeed the fluid velocity can be recovered from the solid
position and velocity by an elliptic-type problem, so that the fluid state may be seen as solving an
auxiliary steady problem, where time only appears as a parameter, instead of the evolution equation
(3.1). The Newton equations can therefore be rephrased as a second-order differential equation on the
solid position whose coefficients are determined by the auxiliary fluid problem.

Such a reformulation in the case without boundary control was already achieved in [57] and we will
start by recalling this case in Section cf. Proposition below. A crucial fact in the analysis is
that in the ODE reformulation the pre-factor of the body’s accelerations is the sum of the inertia of the
solid and of the so-called “added inertia” which is a symmetric positive-semidefinite matrix depending
only on the body’s shape and position, and which encodes the amount of incompressible fluid that the
rigid body has also to accelerate around itself. Remarkably enough in the case without control and
where the circulation is 0 it turns out that the solid equations can be recast as a geodesic equation
associated with the metric given by the total inertia.

Then we will extend this analysis to the case where there is a control on a part of the external
boundary in Section [3.:2.2] cf. Theorem [3.2.1] In particular we will establish that the remote influence
of the external boundary control translates into two additional force terms in the second-order ODE
for the solid position ; indeed we will distinguish one force term associated with the control velocity
and another one associated with its time derivative.

To simplify notations, we denote the positions and velocities ¢ = (h, ), ¢’ = (h/,¢'), and
S(q) = h+ R(9)(So — ho) and F(q) = 2\ S(q),

since the dependence in time of the domain occupied by the solid comes only from the position q.
Furthermore, we denote ¢(t) = (h(t),9(t)).
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3.2.1 A reminder of the uncontrolled case

We first recall that in the case without any control the fluid velocity satisfies (3.2)), (3.3), (3.7) and
(3.9). Therefore at each time ¢ the fluid velocity u satisfies the following div/curl system :

div u = curlu =0 in F(q),
u-n=0on 0 and u-n:(h'+19'(x—h)L>-non88(q),

/ u-7do =",
98(q)

where the dependence in time is only due to the one of ¢ and ¢/. Given the solid position ¢ and the
right hand sides, the system ([3.13]) uniquely determines the fluid velocity « in the space of C'*° vector
fields on the closure of F(gq). Moreover thanks to the linearity of the system with respect to its right

(3.13)

hand sides, its unique solution u can be uniquely decomposed with respect to the following functions
which depend only on the solid position ¢ = (h,¥) in Q and encode the contributions of elementary
right hand sides.

— The Kirchhoff potentials

® = (D1, P2, 3)(q, ") (3.14)

are defined as the solution of the Neumann problems

A®;(q,x) =01in F(q), 0,Pi(q,z) =0 on 09, fori e {1,2,3},

n; on dS(q), for i € {1,2}, (3.15)

an(bl ) =
(.2) { (x — h)* -non 8S(q), for i =3,

where all differential operators are with respect to the variable x.

— The stream function ¢ for the circulation term is defined in the following way. First we consider
the solution zﬁ(q, -) of the Dirichlet problem Azﬁ(q, xz) =01in F(q), @(q, x) = 0 on 09, 1&((]7 x)=1
on 05(q). Then we set

-1
b(g,) = - / Onib(a,z)do | Dg,-), (3.16)
0S(q)

such that we have

/ anw(q')x) do = _17
a5(q)

noting that the strong maximum principle gives us 8711;(6_[, x) < 0 on dS(q).

Remark 3.2.1. The Kirchhoff potentials ® and the stream function v are C* as functions of ¢ on Q.
We will use several times some properties of reqularity with respect to the domain of solutions to linear
elliptic problems, included for another potential Alq, g] associated with the control, see Deﬁnitionm
below. We will mention along the proof the properties which will be used and we refer to [18, (66, [79/

for more on this material which is now standard in fluid-structure interaction.

The following statement is an immediate consequence of the definitions above.
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Lemma 3.2.1. For any q = (h,9) in Q, for any p = (£, w) in R2xR and for any v, the unique solution
u in C*°(F(q)) to the following system :

div u = curlu =0 in F(q),
u-n=0ondQandu-n= (€+w(:nfh)J‘) -n on 0S(q), (3.17)

/ u-Tdo =",
95(q)

is given by the following formula, for x in F(q),
u(@) = V(p- ®(g,7)) + 7V (g, ). (3.18)
Above p - ®(q, x) denotes the inner product p - (g, x) = Z?:l pi®i(q, x).

Let us now address the solid dynamics. The solid motion is driven by the Newton equations ((3.6))
where the influence of the fluid on the solid appears through the fluid pressure. The pressure can in
turn be related to the fluid velocity thanks to the Euler equations . The contributions to the solid
dynamics of the two terms in the right hand side of the fluid velocity decomposition formula are
very different. On the one hand the potential part, i.e. the first term in the right hand side of ,
contributes as an added inertia matrix, together with a connection term which ensures a geodesic
structure (see [81]), whereas on the other hand the contribution of the term due to the circulation, i.e.
the second term in the right hand side of , turns out to be a force which reminds us of the Lorentz
force in electromagnetism by its structure (see [57]). We therefore introduce the following notations.

— We respectively define the genuine and added mass 3 x 3 matrices by

m 0
Myg=1 0 m
0 0

G o o

and, for g € O,
Ma(Q) = < vq)z(q7 33) : vq)](qa (L‘) dl’)
]:(Q) 1<’i,j<3
Note that M, is a symmetric Gram matrix and is C*° on Q.

— We define the symmetric bilinear map I'(q) given by

(C(@),pp) = | Y Tii(@)pip; e R’ VpeR?,

1sij<3 1<k<3

where, for each i, j, k € {1,2,3}, Fﬁ ; denotes the Christoffel symbols of the first kind defined on

Q by
éﬂ' _ 1 a(Ma)k,j + a(Ma)k,i . 8<Ma)i,j ' (319)
2 9q; dq; Oqx

It can be checked that I' is of class C°° on Q.

— We introduce the following C'* vector fields on Q with values in R? by
1
E(q) = _2/ |00t (q,-)?0n®(q, ) do, Blq) = / I(q,-) (0n®(q,-) x 0: (g, ")) do.
dS(q) 9S(q)

(3.20)
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We recall that the notation ® was given in (3.14)).
The reformulation of the model as an ODE is given in the following result, which was first established

in [8I] in the case v = 0 and in [57] in the case v € R.

Theorem 3.2.1. Given ¢ = (h,9) € C*>([0,T);Q), u € C>([0,T]; C>°(F(q(t)); R?)) we have that

(q,u) is a solution to , , , (@, and (@) if and only if q satisfies the following
ODE on [0,T]

(Mg + Ma(Q))Q” +(T(q),d.d) =v*E(q) +vd' x B(q), (3.21)

and u s the unique solution to the system (3.15). Moreover the total kinetic energy %(Mg—i-/\/la(q))q/-q'

is conserved in time for smooth solutions of (3.21)), at least as long as there is no collision.

Note that in the case where v = 0, the ODE means that the particle ¢ is moving along the
geodesics associated with the Riemannian metric induced on Q by the matrix field Mg+ M,(q). Note
that, since Q is a manifold with boundary and the metric My + M,(¢) may become singular at the
boundary of Q, the Hopf-Rinow theorem does not apply and geodesics may not be global. However we

will make use only of local geodesics.

Remark 3.2.2. Let us also mention that the whole “inviscid fluid + rigid body” system can be rein-
terpreted as a geodesic flow on an infinite dimensional manifold, cf. [60]. However the reformulation
established by Theorem relies on the finite dimensional manifold @ and sheds more light on the
dynamics of the rigid body.

Below we provide a sketch of the proof of Theorem [3.2.1]; this will be useful in Section when

extending the analysis to the controlled case.

Proof. Let us focus on the direct part of the proof for sake of clarity but all the subsequent arguments
can be arranged in order to ensure the converse part of the statement as well. Using Green’s first

identity and the properties of the Kirchhoff functions, the Newton equations (3.6 can be rewritten as

Myq" = o V- V&(q,z)dx. (3.22)
q

Moreover when u is irrotational, Equation can be rephrased as

Vi = —hu — %wuﬁ, for 2 in F(g(t)), (3.23)
and Lemma [3.2.1] shows that for any ¢ in [0, 7],

ult, ) = V(q'(t) - (q(t),-)) + 7V (q(t),-)- (3.24)

Substituting (3.24)) into (3.23) and then the resulting decomposition of V7 into (3.22)) we get

no_ /- T V|V(q’-<1>(q,x))\2 ) ) da
Myt == [ (05 000,00+ TEEFODD gagq
—y /f(q) <8tviw(q,x) +V (V(q/ - (g, x)) - Vﬂb(q,x))) . V®(q, z) dx (3.25)
VIVi(g, )

—72/ I S— -VO&(q,z)dx.
F(q)
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According to Lemmas 32, 33 and 34 in [57], the terms in the three lines of the right-hand side above
are respectively equal to —Mq(q)q” — (I'(¢),d’,¢'), v¢ x B(q) and v2E(q), so that we easily deduce

the ODE (3.21)) from ({3.25]).

The conservation of the kinetic energy % (M g +Ma(Q)> ¢ ¢ is then simply obtained by multiplying
the ODE (3.21)) by ¢’ and observing that

((Mg + Ma(Q))Q” +(I'(a), ¢, q’>) q' = (f (Mg + Ma(Q))q’ : q')l. (3.26)

3.2.2 Extension to the controlled case

We now tackle the case where a control is imposed on the part ¥ of the external boundary 9. At
any time this control has to be compatible with the incompressibility of the fluid meaning that the flux

through ¥ has to be zero. We therefore introduce the set

C:= {geC{)’O(E;R) such that /gda—O}.
b

The decomposition of the fluid velocity u then involves a new potential term involving the following

function.

Definition 3.2.1. With any ¢ € Q and g € C we associate the unique solution & = Alq,g] €
C>(F(q);R) to the following Neumann problem :

Aa=0inF(q) and O,a=gly ondF(q), (3.27)
with zero mean on F(q).

Let us mention that the zero mean condition above allows to determine a unique solution to the
Neumann problem but plays no role in the sequel.
Now Lemma [3.2.1] can be modified as follows.

Lemma 3.2.2. For any q = (h,9) in Q, for any p = ({,w) in R? x R, for any g in C, the unique

solution u in C*(F(q)) to

divu =curlu =0 in F(q),
u-n=1xg on 0Q andu-n = (€+w(:v7h)J‘> -n on 05(q),

/ u-Tdo =1,
0S(q)

is given by

u(x) = V(p- 0(q,2)) + YV (g, 2) + VAl gl(z), for z € F(q). (3.28)

Let us avoid a possible confusion by mentioning that the V operator above has to be considered
with respect to the space variable x. The function A[g,g] and its time derivative will respectively be

involved into the arguments of the following force terms.
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Definition 3.2.2. We define, for any q in Q, p in R3, a in C°(F(q);R) and v in R, Fi(q,p,)[a]
and Fy(q)[a] in R3 by

1

Agpolel =5 [ VaP a0, )do (3.29)
q

—/ Va (V(p"l)(q, ) + V(g -)) On®(q;-) do,
9S8(q)
Fy(q)la] :=— /83( )a@nq)(q, ) do. (3.30)

Observe that Formulas (3.29)) and (3.30) only require @ and Vo to be defined on 0S(q). Moreover
when these formulas are applied to @ = A[g, g] for some g in C, then only the trace of o and the

tangential derivative d-av on 9S(q) are involved, since the normal derivative of o vanishes on S(q) by

definition, cf. (3.27]).

We define our notion of controlled solution of the “fluid+solid” system as follows.

Definition 3.2.3. We say that (¢, g) in C*([0,T]; Q) x C§°([0,T];C) is a controlled solution if the
following ODE holds true on [0,T)] :

(Mg + Ma(@)d" +(L(q),d. ') =7E(q) + 74 x B(a) + Fi(q.d,7)[a] + P (q)[dha],  (3:31)
where a(t,-) = Alq(t), g(t,)].
We have the following result for reformulating the model as an ODE.
Proposition 3.2.1. Given

g€ C=([0.1];Q), ueC®([0,T];C*(F(q(t));R?)) and ge C5([0,T];C),

we have that (q,u) is a solution to (5.1), (3.4), (5.6), (3-7), (3-8), (5-9). (3-10), (3-11), (5.19) if and

only if (¢, g) is a controlled solution and w is the unique solution to the unique div/curl type problem :

divu =curlu =0 in F(q),
u-n=1xg ondQ andu-n= (h’—i—’ﬂ’(aj—h)J‘) -n on 05(q),

/ u-7do =",
98(q)
with ¢ = (h,v).

Proposition [3.2.1] therefore extends Theorem [3.2.1] to the case with an external boundary control
(in particular one recovers Theorem in the case where ¢ is identically vanishing).

Proof. We proceed as in the proof of Theorem [3.2.1| recalled above, with some modifications due to the

extra term involved in the decomposition of the fluid velocity, compare (3.18)) and (3.28). In particular
some extra terms appear in the right hand side of after substituting the right hand side of
for u in . Using some integration by parts and the properties of the Kirchhoff functions we
obtain integrals on dS(¢q) whose sum precisely gives Fi(q, ¢, v)[a(t, )] + F2(q) [0 (t, -)]. This allows to

conclude. n
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3.3 Reduction to the case where the displacement, the velocities and

the circulation are small
For 6 > 0, we introduce the set
Qs ={gc QxR : d(S(q),00) > §}. (3.32)

The goal of this section is to prove that Theorem [3.1.1] can be deduced from the following result.
The balls have to be understood for the Euclidean norm (rather than for the metric My + M,(q)).

Theorem 3.3.1. Given § > 0, Sg C 2 bounded, closed, simply connected with smooth boundary, which
is not a disk, qo in Qs and T > 0, there exists r > 0 such that for any q1 in B(qo,r), for any v € R with
|v| < r and for any q}), ¢y € B(0,r), there is a controlled solution (g, g) in C([0,T]; Qs)x C§ ([0, T]x %)
such that (¢,4')(0) = (g0, qp) and (¢,¢')(T) = (q1.¢})-

Remark in particular that for > 0 small enough, B(qp,r) is included in the connected component

of Qs containing qg.

Proof of Theorem[3.1.1] from Theorem[3.5.1. We proceed in two steps : first we use a time-rescaling
argument in order to deduce from Theorem a more general result covering the case where the
initial and final velocities ¢, and ¢} and the circulation ~ are large. This argument is reminiscent of
a time-rescaling argument used by J.-M. Coron for the Euler equation [22], which has been also used
in [58] in order to pass from the potential case to the case with vorticity. Then we use a compactness
argument in order to deal with the case where go and g; are remote (but of course in the same connected
component of Qy).

The time-rescaling argument relies on the following observation : it follows from that (¢, 9)
is a controlled solution on [0,7] with circulation v if and only if (¢*,¢") is a controlled solution on
[0, AT] with circulation 3, where (¢*, g*) is defined by

AE) =g (;) and g (¢, ) = %g <§ x) . (3.33)

Of course the initial and final conditions

(¢,4')(0) = (g0, qp) and (q,¢')(T) = (q1,4})

translate respectively into

/

@ @0 = (.2 ) and (A NOT) = (%) (3.3)

Now consider ¢y in Qs and ¢; in B(qo,r) in the same connected component of Qs as g, with r > 0
as in Theorem and ¢(, ¢ and v without size constraint. For A small enough, (qo, Aq(), (g1, Aq})
and Ay satisfy the assumptions of Theorem m Hence there exists a controlled solution (g, g) on
[0, T, achieving (¢, ¢")(0) = (qo, Ag)) and (¢,¢")(T) = (g1, Ag}). On the other hand, the corresponding
trajectory ¢ constructed above will satisfy the conclusions of Theorem on [0, A\T], in particular
that (¢*, (¢)")(0) = (qo,¢) and (¢, (¢*))(AT) = (g1, q}) - Moreover we can assume that it is the case
without loss of generality that A is small, and in particular that A < 1. Thus the result is obtained but

in a shorter time interval.
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To get to the desired time interval, using that Equation enjoys some invariance properties
by translation and time-reversal (up to the change of the sign of ) it is sufficient to glue together
an odd number, say 2N + 1 with N in N*, of appropriate controlled solutions each defined on a time
interval of length AT with A\ = ﬁ, going back and forth between (qo,q() and (q1,q}) until time
T = (2N + 1)AT. Moreover one can see that the gluings are not only C? but even C*°.

We have therefore already proven that Theorem [3.1.1]is true in the case where ¢; is close to qg, or
more precisely for any qo in Qs and q1 in B(qo, rq,)-

For the general case where gg and ¢; are in the same connected component of Qs for some § > 0,
without the closeness condition, we use again a gluing process. Consider indeed a smooth curve from
go to q1. For each point ¢ on this curve, there is a ry > 0 such that for any ¢ in B(q,rq), any ¢, ¢}
and any 7y, one can connect (g, q)) to (¢,q}) by a solution of the system, for any time 7' > 0. Extract
a finite subcover of the curve by the balls B(q, 7). Therefore we find N > 2 and (q%)izl,m,N,l in the
same connected component of Qg as qg such that for any ¢ = 1,..., N, qi is in B(qi%, rq%) (note
that this includes gy and ¢;). Therefore, using again the local result obtained above, there exist some
controlled solutions from (q%,O) to (q%,O) (for i = 1 and i = N we use (qo, %) and (q1, %) rather
than (go,0) and (g1,0)), each on a time interval of length T associated with circulation ;. One deduces
by time-rescaling some controlled solutions associated with circulation v on a time interval of length

%. Gluing them together leads to the desired controlled solution. O

3.4 Reduction to an approximate controllability result

The goal of this section is to prove that Theorem [3.3.1] can be deduced from the following ap-
proximate controllability result thanks to a topological argument already used in [58], see Lemma
below. Let us mention that a similar argument has also been used for control purposes but in other
contexts, see e.g. [0l [15, [63] 64].

Theorem 3.4.1. Given § > 0, Sy C Q bounded, closed, simply connected with smooth boundary, which
is not a disk, qo in Qs and T > 0, there is ¥ > 0 such that B(qo,T) is included in the same connected
component of Qs as qo, and furthermore, for any n > 0, there exists ' = r'(n) > 0 such that for any
v € R with |y| < 1" and for any g} in B(0,7), there is a mapping

T : B((q0, q0),7) = C*([0,T]; Qs)

which to (q1,q}) associates g where (g, g) is a controlled solution associated with the initial data (qo, q(),

such that the mapping
(q1,44) € B((q0.40),7) = (T (a1, 1), T (q1,41)')(T) € Q5 x R?
is continuous and such that for any (q1,4}) in B((q0,44):7),
(T (g1, 1), T, 1)) (T) — (a1, 1)l < -

The proof of Theorem [3.4.1] will be given in Section Here we prove that Theorem follows
from Theorem [3.4.1

Proof of Theorem[3.3.1] from Theorem[3.4.1. Let 6 > 0, So C © bounded, closed, simply connected
with smooth boundary, which is not a disk, ¢y in Qs and T > 0. Let # > 0 as in Theorem and
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. We deduce that for any v € R with |y| < =+/(%) and ¢} in B(0,7), there is a mapping T :

N

n =
B((q0,40),7) — C>([0,T]; Q5) which maps (g1,4q}) to ¢ where (g, g) is a controlled solution associated
with the initial data (qo,q(), such that for any (g1,q}) in E((qo,qg),f), H(T(q1,q/1),7-(q1,qi)’) (T) —
(q1,9))| < g We define a mapping [ from E((qo,q(’)),f) to RS which maps (q1,q}) to f(q,q}) =
(T(q1,41), T (q1,41)")(T). Then we apply the following lemma borrowed from [58, pages 32-33], to

wo = (o, () and Kk = 7.

Lemma 3.4.1. Let wyg € R", k > 0, f : B(wg, k) — R™ a continuous map such that we have |f(w) —
w| < & for any x in dB(wo, k). Then B(wo, %) C f(B(wo, k)).

This allows to conclude the proof of Theorem [3.3.1| by setting » = min {2%/5,7" (%)}, since the

conditions 1 € B(qo,7), || < r and ¢}, ¢} € B(0,r) imply |v| < +'(5) and (q1,¢}) € B((q0, %)), 5). O

3.5 Proof of the approximate controllability result

In this section we prove Theorem by exploiting the geodesic feature of the uncontrolled system
with zero circulation, cf. the observation below Theorem [3.2.I] To do so, we will use some well-chosen
impulsive controls which allow to modify the velocity ¢’ in a short time interval and put the state of
the system on a prescribed geodesic (and use that || is small). We mention here [I3] and the references

therein for many more examples on the impulsive control strategy.

3.5.1 First step

We consider Sy C ) as before and consider > 0 so that gy € Q5. We let 1 > 0 be small enough
so that B(qo,r1) C Qs. We also let T > 0.

The first step consists in considering the geodesics associated to the uncontrolled, potential case
(v = 0). The following classical result regarding the existence of geodesics can be found for instance in

[80, Section 7.5], see also [39] for the continuity feature.

Lemma 3.5.1. There ezists ro in (0, %7"1) such that for any q1 in B(qo,r2) there exists a unique C™

solution q(t) lying in B(qo, %1"1) to
(Mg +Ma(@)7" +(T(2).7,7) =0 on [0,T], with G(0) = g0, @(T) = q1. (3.35)
Furthermore the map q1 € B(qo,m2) — (co,c1) € R® given by co = ¢(0), c1 = @(T) is continuous.

Let us fix 9 as in the lemma before. Let ¢} in B(0,72) and (q1,4}) in B((qo0,q)),72)-

Our goal is to make the system follow approximately such a geodesic § which we consider fixed
during this section. For the geodesic equation in , qo and g1 determine the initial and final
velocities (which of course differ in general from ¢, and ¢}). But we will see that is possible to use the
penultimate term of in order to modify the initial and final velocities of the system. Precisely,
the control will be used so that the right hand side of behaves like two Dirac masses at time
close to 0 and T, driving the velocity ¢’ from the initial and final velocities to the ones of the geodesic

in two short time intervals close to 0 and T'.
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3.5.2 Illustration of the method on a toy model

Let us illustrate this strategy on a toy model. We will later on adapt the analysis to the complete
model, cf. Proposition [3.6.1

Let §: R — R be a smooth, non-negative function supported in [—1, 1], such that f_ll B(t)?dt =1
and, for ¢ in (0,1), B(t) := %ﬂ (t_Ts), SO thatﬂ (8?)c is an approximation of the unity when ¢ — 0%.

For a function f defined on [0, 7], we will denote

I fllre = I fllcoo,ry) + 1l (oe,r—26))- (3.36)

Lemma 3.5.2. Let qo, r2, q1, g, and ¢} as above. Let

vo == (Mg + Ma(qo))(co(qr) — o) and v1 == — (Mg + Ma(q1))(c1(q1) — dh). (3.37)

Let, for e in (0,1), g= the maximal solution to the following Cauchy problem :

(Mg + Malge))d? + (T(qe), aL, a2) = BZ(-) vo + B2(T = Juy, (3.38)

with q-(0) = qo and ¢.(0) = q{. Then for e small enough, q.(t) lies in B(qo,r1) for t in [0,T] and, as
e = 0%, [lge — qllre = 0 and (g, 4-)(T) — (q1,41)-

Proof. For ¢ in (0, 1), let us denote T. = sup {T > 0 such that ¢.(t) € B(qo,r1) for t € (O,T)} Let us
first prove that there exists 7' > 0 such that for any e in (0,1), T. > T. Using the identity (3.26)), we
obtain indeed, for any ¢ in (0,1), for any ¢ € (0,7T;),

(Mo + Maa:() gl (8) - aL(t) = (Mo + Malao) ) a6 - dh +2 /0 (B2()vo + BT =)o) - .

Moreover, relying on Remark we see that there exists ¢ > 0 (which depends on §) such that for
any q in Qs, for any p in R3,

elpl? < (Mg + Ma(g) )p-p < [l (3.39)

Therefore using Gronwall’s lemma we obtain that there exists C' > 0 such that for any ¢ in (0, 1), for
any t € (0,7%), supe(o.1,) [1¢2(t)]] < C. Therefore by the mean value theorem for T :=r1/2C, one has
for any ¢ in (0,1), T, > T

We now prove in the same time that for € > 0 small enough, 7. > T', and the convergence results
stated in Lemma In order to exploit the supports of the functions . (-) and (T —-) in the right
hand side of the equation we compare the dynamics of ¢. and ¢ during the three time intervals
[0,2¢], [2¢,T — 2¢] and [T — 2¢,T].

For ey :=1T /2 and € in (0,£1), one already has that 7. > 2¢ and we can therefore simply compare
the dynamics of ¢. and ¢ on the first interval [0, 2¢]. Indeed using again the mean value theorem we
obtain that sup;¢jg o |g: — qo| converges to 0 as € goes to 0. Moreover integrating the equation ((3.38])
on [0, 2¢] and taking into account the choice of vy in ([3.37)), we obtain

(Mg " Ma(qs(%)))qé(%) :<Mg + Ma(QO))Co(Ch)

- 2 (3.40)
_/ (DM“(‘JE) 'q2> cqLdt —/ (T(qe), 42, ¢2) dt.
0 0

2. In the next lemma we are going to make use only of the square function 52 but we will also have to deal with the
function B. itself in the sequel, see below Proposition @
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Now, there exists C' > 0 such that for any ¢ in Qs, for any p in R3,

[(DMa(q) - p) - pl + [{T(q),p, p)| < Clp|*. (3.41)

Combining this and the bound on ¢. we see that the two terms of the last line of above converge
to 0 as € goes to 0. Since g — M,(q) is continuous on Qg and ¢-(2¢) converges to g as € — 0, the
matrix Mg(g:) converges to Mg(qp) as € — 0. Therefore, using that the matrix My + M, (qo) is
invertible we deduce that ¢.(2¢) converges to cy(q1) as £ goes to 0.

During the time interval [2e,T — 2¢], the right hand side of the equation vanishes and
the equation therefore reduces to the geodesic equation in . Since this equation is invariant by
translation in time, one may use the following elementary result on the continuous dependence on the
data, with a time shift of 2e.

Lemma 3.5.3. There exists n > 0 such that for any (do,q}) in B((qo,co(q1)),n) there exists a unique
Co solution §(t) lying in Blgo,r) to (My + Ma(@)@" + (0@, 7-@) = 0 on [0,T], with G(0) =
o, 4'(0) = qy. Furthermore ||G — qllc1(jo,r7) — 0 as (qo, dy) — (o, co(q1))-

Since ¢-(2¢) and ¢.(2¢) respectively converge to qo and co(q1), according to Lemma there
exists €2 in (0,£1) such that for € in (0,e2), there exists a unique C'* solution ¢(t) lying in B(qo,71)
to (Mg + Ma(G))d + (L(G), ¢, ¢z) = 0 on [0,T], with (0) = ¢-(2¢), (0) = ¢/(2¢) and |Gz —
dllcr o) — 0 ase — 0.

Since the function defined by G- (t) = g=(t + 2¢) also satisfies (Mg + Mq(d:)) @ + (T'(4:), ¢4, 4.) =0
on [0,T — 4e], with ¢-(0) = ¢-(2¢), ¢.(0) = ¢.(2¢), by the uniqueness part in the Cauchy-Lipschitz
theorem one has that 7. > T — 2¢ and ¢. and ¢. coincide on [0, T — 4¢], so that, shifting back in time,
g — (- — 2¢)llcr(j2e,7—2¢]) — 0 as € — 0. Since g is smooth, this entails that |g: — /¢ (j2e,7—2e)) — 0
as e — 0.

Finally one deals with the time interval [T'— 2¢, T in the same way as the first step. In particular,
reducing € one more time if necessary one obtains, by an energy estimate, a Gronwall estimate and the
mean value theorem, that T, > T. Moreover the choice of the vector v; in allows to reorient the
velocity ¢, from c¢1(q1) to g whereas the position is not much changed (due to the uniform bound of

¢, and the mean value theorem) so that the value of ¢. at time T' converges to ¢; as € goes to 0. [

3.5.3 Back to the complete model

Now in order to mimic the right hand side of (3.38)) we are going to use one part of the force term Fy

introduced in Definition [3.2.2l Let us therefore introduce some notations for the different contributions

of the force term Fy. We define, for any ¢ in Q, p in R?, o in C*®(F(q); R),

Fra(@)la] i= —% /8 o, Vel ou( ) do (3.42)
Fia(g.p)l] == — /a o, Ve V0 000,200, do (3.43)
Fi(9)a] :==— /BS( )Va . VLw(q, ) 0n®(q, ) do, (3.44)

so that for any v in R,

Fi(q,p,7)[e] = F1a(q)[e] + F1p(q, p)[e] + vF1c(q)[a].
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The part which will allow us to approximate the right hand side of is F1 4. More precisely we are
going to see (cf. Proposition that there exists a control v (chosen below as a = Alqg, g:| with g.
given by ) such that in the appropriate regime the dynamics of behaves like the equation
with only Fi, on the right hand side. Moreover the following lemma, where the time parameter does
not appear, proves that the operator Fi ,(¢)[-] can actually attain any value v in R3. Recall that § > 0
has been fixed at the beginning of Section [3.5.1

Proposition 3.5.1. There exists a continuous mapping g : Qs x R3 — C such that for any (q,v) in
Qs x R3 the function @ := Alq,g(q,v)] in C=(F(q);R) satisfies :

Aa =0 in F(q), and 0, =0 on 0F(q) \ &, (3.45)
/ \Val|? 0,®(q, ) do = v, (3.46)
95(a)
/ a0, ®(q,-)do = 0. (3.47)
95(a)

We recall that the operator A was introduced in Definition [3.2.1] The result above will be proved
in Section Note that when S(g) is a homogeneous disk, an adapted version of Proposition m
still holds, see Proposition in Section The condition (3.47) will be useful to cancel out the

last term of (3.31)).

We define
9=(t, ) == B:(t)g(q0, —2v0) () + B(T — t)g(qr, —2v1) (=), (3.48)

where vy and v; defined in (3.37)), for (¢1,¢}) in E((qo, q0) 7‘2), and ¢ is given by Proposition The
goal is to prove that for € and |y| small enough, this control drives the system (3.31)) with o = A[q, g.]

from (qo, q;) to (¢1,¢}), approximately.

1. We first observe that

F1a(a)[Alg, g:]] = B2(t) Fra(q) [A[q,ﬁ(qo, —2vo)ﬂ +B2(T — t)Fi1,0(q) [A[q,ﬁ(m, —201)]], (3.49)
and is therefore a good candidate to approximate the right hand side of (3.38)) if ¢ is near gy for ¢ near
0 and if ¢ is near ¢; for ¢ near T. One then may indeed expect that

Fi.a(a) [Alg, 9(a0, ~2v0)]| and Fia(a)[Alg, (a1, ~201)]| are close to
F14(q0) [A[CIOJ(Qm _QUO)]} and F14(q1) [A[ql,y(ql, —21}1)]], respectively,

on the respective supports of 5.(-) and (T — -). Moreover, according to Proposition these last
two terms are equal to vy and vy (see (3.42) and (3.46)).

2. Next we will rigorously prove in Proposition below that the conclusion of Lemma for the
toy system also holds when one substitutes the term Fi ,(¢)[Alg, g¢]] in (3.49). This corresponds also
to (3.31) with v = 0 and the term Fp and F> put to zero.

3. Finally it will appear that in an appropriate regime, in particular for small e and ||, the second last
term of (3.31]) is dominant with respect to the other terms of the right hand side (here the condition
(3.47)) above will be essential in order to deal with the last term of (3.31)).
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Let us state a proposition summarizing the claims above. According to the Cauchy-Lipschitz theo-
rem there exists a controlled solution ¢ associated with the control g. introduced in (3.48)), starting
with the initial condition g ,(0) = go and ¢. ,(0) = g5, with circulation v, and lying in B(qo,71) up to

some positive time T 5. More explicitly ¢. , satisfies on [0, 7} 5],

(Mg + Malen)) @y + T(Gery)s @ den) =V E(Gery) + 76 X Bley)
+ F (QE,'77 Q,»Is;ya 'Y) [A[QS,fya ge]] + F2(q<€,'y) [atA[Qs,w gs]] . (3'50)

Observe that due to the choice of the control g. in (3.48)) the function g., also depends on (qi,¢})
through vy and vy, see their definition in (3.37]).

We have the following approximation result.

Proposition 3.5.2. For ¢ and || small enough, T. > T and, as € and |7y| converge to 0T, ||g. —

qllre = 0 and (¢zy, 6. ,)(T) = (q1,¢1), uniformly for (q1,4};) in B((qo,qp),72)-

This result will be proved in Section Once Proposition [3.5.2] is proved, Theorem follows
rapidly. Indeed, let us set 7 = r9, according to Proposition for n > 0, there exists e = ¢(n) > 0
and 7’ = r'(n) in (0,7) such that for any v € R with |y| < v and for any ¢}, in B(0,7) the mapping
T defined on E((qo,q(’)),f) by setting 7(q1,¢]) = ge,y, has the desired properties. In particular the
continuity of 7 follows from the regularity of ¢y in Lemma [3:5.1] and of the solution of ODEs on their
initial data. This ends the proof of Theorem [3.4.1

3.5.4 About Remark [3.1.1]

Now that we presented the scheme of proof of Theorem let us explain how to obtain the
improvement mentioned in Remark It is actually a direct consequence of the explicit formula for
g:(t,z) given in and of a change of variable in time. Due to the expression of . given at the
beginning of Section one obtains that the total flux through 7, that is fOT Js- g dodt, is of
order y/e. Hence one can reduce ¢ again in order to satisfy the requirement of Remark

On the other hand observe that the time-rescaling argument used in the proof of Theorem [3.1.T
from Theorem cf. , leaves the total flux through ¥~ invariant, while the number N of steps

involved in the end of the same proof does not depend on e.
3.6 Closeness of the controlled system to the geodesic
In this section, we prove Proposition [3.5.2

3.6.1 Proof of Proposition [3.5.2

The proof of Proposition is split in several parts. To compare g, , and g, we are going to consider
an “intermediate trajectory” ¢. which imitates the trajectory ¢. of the toy model of Lemma [3.5.2] by
using the part F , of the force term. More precisely we define ¢. by

(Mg + Ma(@a))@fs/ + <F(q}), q~é7 q;;> = Fl,a(éia) [A[ng,gg]]7 with @3(0) = qo, (Zt(o) = Q67 (3‘51)
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where g. was defined in (3.48|) and where the operator A was introduced in Definition Note that
due to the definition of g., the function ¢. also depends on ¢1, ¢}. The statement below is an equivalent

of Lemma [3.5.2] for ¢., comparing ¢. to the “target geodesic” g.

Proposition 3.6.1. There exists £1 > 0 such that, for any € € (0,£1], for any (¢1,¢}) in E((qo, a)s 7"2),
the solution G- given by (3.51) lies in the ball B(qo,r1) at least up to T. Moreover ||Ge — q||7c converges
to 0 and (e, @.)(T) converges to (q1,q}) when e converges to 0T, uniformly for (¢1,4q}) in B((q0,}).2)

for both convergences.

We recall that the norm || - |7 was defined in (3.36). The proof of Proposition can be found
in Subsection [3.6.2

The following result allows us to deduce the closeness of the trajectories g. o, given by with
v =0, and . given by . Let us recall that by the definition of 7T}  that comes along ({3.50)), ¢- o
lies in B(qo,r1) up to the time T} o, which depends on ¢i, ¢}.

Proposition 3.6.2. There exists €2 in (0,e1] such that for any € € (0,e2], one has Tr o > T. Moreover

1Ge = geoller o)) — O when e — 0%, uniformly for (q1,q)) in B((q0,40),72)-

The proof of Proposition [3.6.2] can be found in Subsection [3.6.3
Finally, we have the following estimation of the deviation due to the circulation v, which will be

proved in Subsection [3.6.4]

Proposition 3.6.3. There exists €3 in (0,e3] such that for all € € (0,¢e3], there exists y9 > 0 such that
for any v € [=0,70], we have T, > T and ||ge — q=0llc1j0,7] converges to 0 when v — 0, uniformly

Jor (q1.¢}) in B((q0,q0),72)-

Propositions [3.6.1], [3.6.2] and [3.6.3] give us directly the result of Proposition [3.5.2

3.6.2 Proof of Proposition 3.6.1

We proceed as in the proof of Lemma with a few extra complications related to the fact that
the right hand side of the equation is more involved than the one of the equation and to
the fact that we need to obtain uniform convergences with respect to (¢q1,q}) in E((qo, q4) 7"2).

As in the proof of Lemma we introduce, for € in (0, 1), the time

T. = sup {T > 0 such that G.(t) € B(qo,r1) for t € (0,T)}
and we first prove that there exists T > 0 such that for any ¢ in (0,1), T. > T thanks to an energy
estimate. In order to deal with the term coming from (3.49) in the right hand side of the energy
estimate, recalling Remark and the definition of Fy, in (3.42), we observe that for any R > 0,
there exists C' > 0 such that for any ¢, ¢ in Qs, for any v in B(0, R),

| F1a(q)[Alg, (g, 0)]] | < C. (3.52)

This allows to deduce from the expressions of vg and vy in that there exists T > 0 and C > 0
such that for any (g1, ¢}) in B((qo, ¢)),r2), for any € in (0,1), T > T and @l cqo,z)) < C. We deduce
that for 1 :=T'/2 and ¢ in (0,€1), T: > 2¢ and that sup,cjg o) |¢e — go| converges to 0 as € goes to 0
uniformly in (g1,4¢}) in B((qo0,q)),72)-
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Now let us prove that ¢.(2¢) converges to co(q1) as € goes to 0 uniformly in (¢1,¢}) in B((qo, (), 72)-
We integrate the equation (3.51)) on [0, 2¢]. Thus

(M + Ma(@-(22)))2-(22) = (Mg + Malao) ) db
2e

2e 2e
- [ (oMa@) )i [ 0@ daydes [ RG] de (35
0 0 0

Then we pass to the limit as € goes to 0 in the last equality. Here we use two extra arguments with
respect to the corresponding argument in the proof of Lemma On the one hand we see that the
convergences of M, (G-(2¢)) to My (qo) and of the two first terms of the last line to 0, already obtained
in the proof of Lemma hold uniformly with respect to (g1, ¢}) in E((qo, ) 7‘2), as a consequence
of the uniform estimates of ¢ — go and ¢. obtained above. On the other hand the term F} , enjoys the
following regularity property with respect to ¢ : we have that ¢ — Fj 4(q) [A[q,?(qo,v)]} is Lipschitz
with respect to ¢ in Qs uniformly for v in bounded sets of R3. Therefore using that SUPyeo,2¢] 1Ge — o
converges to 0 as € goes to 0 uniformly in (¢1,¢}) in E((qo,qf)),rg), the expressions of vg and v in
and that Fi 4(qo) [A[qo,g(qo, —21}0)} = v, according to Proposition [3.5.1| we deduce that

sup | F1.a(@) [Ald, (a0, —200)] | = vo|

te(0,2¢]

converges to 0 as £ goes to 0 uniformly in (g1, ¢}) in E((qo, ), 7"2). Since for t in [0, 2¢], the equation
(3.49) applied to ¢ = G- is simplified into

F1a(@)[Alde, 9] = B2 Fia(d:) | Alde, 3(a0, —200)]

and that fOQE B2(t) dt = 1, we get that the last term in converges to vy when € goes to 0. Moreover,
due to the choice of vy the first and last term of the right hand side of can be combined at the
limit to get (Mg + /\/la(qo))co(ql).

Therefore, inverting the matrix in the right hand side of and passing to the limit, we see that
d.(2¢) converges to co(q1) as € goes to 0 uniformly in (q1,¢}) in E((qo, ), 7“2).

When ¢ is in [2¢,T — 2¢], the equation reduces to a geodesic equation so that the same
arguments as in the proof of Lemma [3.5.2] apply.

Finally for the last step, for ¢ in [T' — 2, T, we proceed in the same way as in the first step. This
ends the proof of Proposition [3.6.1

3.6.3 Proof of Proposition [3.6.2

We begin with the following lemma, which provides a uniform boundedness for the trajectories g. o
satisfying (3.50) with v = 0, that is

(Mg + Ma(Qa,O))Qé,,o + <F(QE,O); qz,07 q;,o> = Fl,a(Qa,O) [-A[q&‘,[)v gaH
+ F15(¢e,0 42 0) [Alge,0, 9¢]] + F2(4e0) [00Alge0, 92]] - (3.54)

We recall that g is given by (3.48) with vy and vy given by (3.37). The terms F 4 and Fy j were defined

in (3.42)-(3.43)), F» in (3.29)). Also we recall that by definition of 7, (see the definition of T  in the
end of Subsection [3.5.3)), during the time interval [0, T} o], g0 remains in B(qg,r1).
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Lemma 3.6.1. There exists €, > 0 such that

sup HQQ,OHC([O,TE,O]) < Fo0.
(q1,41)€B((90,4)),72),
€€(0,eq]

Proof. First we see that the mappings

q = F1,a(9)[Alg; 9(qo, v)]] and g — F1(q,-)[Alg, 9(q0, v)]]

are bounded for ¢ in Qg, uniformly for v in bounded sets of R?. Let us now focus on the F term. For
tin [0, 2¢], g-(t) = B:(t)g(qo0, —2vp) so that, by the chain rule, for ¢ in [0, min(2¢e, T} o)],

90 AlGe0, 92 = B=DgAlge,0,5(q0, —2v0)] - 4L o + BeAlge,0,9(q0, —2v0)].

For what concerns Fy we have, using the property (3.47)),

Fu(a:0)[OrAlgc0. 9] = B [ (Dulaeo.3lan, ~2) - ) 0u(az, ) do

05(ge,0)

+ﬁé(/ Alge0,9(q0, —2v0)] On®(ge 0, ) do —/ Alqo, 9(qo, —2v0)] 0, P(qo, ')da)-
05(ge,0)

9S8(qo0)

Using that the mapping ¢q > fas(q) VAlq,9(q0,v)] ® 0, P(q, -) do is bounded for g over Qs and that
the mapping ¢ — fas(q) Alq,7(qo,v)] 0,P(q, ) do is Lipschitz with respect to ¢ in Qg, both uniformly for
v in bounded sets of R3, we see that this involves (recalling the expression of 3. given at the beginning

of Section [3.5.2))
1 1
}F2(q€,0) [@A[q&o,gsﬂ ’ SC (61/2|q‘2‘,0| + @ME,O - %) ) (3-55)

uniformly for (g1, ¢}) in B((go, ¢}), r2). Then, multiplying (3.54) by gz o and using once more the identity
(3.26)), we obtain, for any € in (0,1), for ¢ in [0, min(2¢e, T, )],

(Mg + Malae0(®))dLo®) - aLo(®) = (Mg + Mala0))dh - g
+ 2/0 (Fl,a(QE,O)[A[Qa,OygsH + F14(¢205 42 0) [Alge.0, 92]] + FQ(Qa,O)[at-A[QE,Oage]]> ¢l (3.56)

Then, using (3.39), the boundedness of the mappings ¢ — F1 4(q)[Alg, 9(qo0,v)]], F1 (¢, -)[Alg, (g0, v)]]
already mentioned above, the definition of S and the bound (3.55)), we get

1 t
a0 < (14 [ oo ds+ 5 [ ig(olaeats) - alds).

Then using the mean value theorem and that ¢ < 2¢, we have that

Lo <C(1+Y%  sup  |glol*),
[0,min(2e,T¢ 0)]

so that for e small enough, and for ¢ in [0,min(2¢,T0)], |gzo(t)] < C, uniformly for (qi,q;) in
E((qo, ) rQ). As a consequence of the usual blow-up criterion for ODEs, we have that T; o > 2¢.
During the next phase, i.e. for ¢ in [2,T — 2¢], the control is inactive so that the equation is
a geodesic equation. Then by a simple energy estimate we get again that |g. o(¢)] < C on [0, min(T —
2¢,T:0)]-
Finally if T; o > T — 2¢, then we deal with the last phase as in the first phase. This concludes the
proof of Lemma [3.6.1 O
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We then conclude the proof of Proposition[3.6.2] by a classical comparison argument using Gronwall’s
lemma and the Lipschitz regularity with respect to ¢ of the various mappings involved (Mg, I', F 4,
Fyp and F3). This allows to prove that there exists €5 in (0,¢1] such that for any € € (0,e2], Tz 0 > T
and ||G: — g=0llc1(o,77) — 0 when & — 07", uniformly for (q1,q}) in F((qo, ), 7“2). This ends the proof

of Proposition [3.6.2]

3.6.4 Proof of Proposition [3.6.3
First we may extend Lemma to the solutions ¢. 5 to (3.50) in the following manner.

Lemma 3.6.2. There exists ¢, in (0,e2) such that ||q. . |lc(o,1...)) is bounded uniformly in e € (0, €],
for any v € [-1,1], and for (q1,4}) € B((q0,q}),2)-

It is indeed a matter of adding the “electric field” F in (3.56|), and noting that E is bounded on Qs ;

the “magnetic field” B gives no contribution to the energy.

We now finish the proof of Proposition [3.6.3] Using a comparison argument we obtain that there
exists 3 in (0,¢ep] such that for all € € (0, &3], there exists vy > 0 such that for any v € [—v0, 0], we
have T. , > T and [|¢c y — gz 0/l ¢1[0,r) converges to 0 when v — 0, uniformly for (g1, ¢}) in E((qg, ) 7“2).
This concludes the proof of Proposition [3.6.3

3.7 Design of the control according to the solid position

This section is devoted to the proof of Proposition [3.5.1]

3.7.1 The case of a homogeneous disk

Before proving Proposition [3.5.1] we establish the following similar result concerning the simpler
case where the solid is a homogeneous disk. In that case, the statement merely considers ¢ of the form

q = (h,0). Thus in order to simplify the writing, we introduce
QF := {h € R? such that (h,0) € Qs}.

Also in all this section when we will write ¢, it will be understood that ¢ is associated with h by
q = (h,0).

Proposition 3.7.1. Let § > 0. Then there exists a continuous mapping g : Q? x R? — C such that the
function @ := Alg,g(q,v)] in C°(F(q);R) satisfies :

Aa(q,xz) =0 in F(q), and 0,a(q,z) =0 on 0F(q) \ &, (3.57)
/ |Va(q,z)|*ndo = v, (3.58)
95(a)
/ a(q,x)ndo = 0. (3.59)
95(a)

In order to prove Proposition [3.7.1] the mapping g will be constructed using a combination of some
elementary functions which we introduce in several lemmas.
To begin with, we will make use of the elementary geometrical property that {n(qo,z) : « € 9S(q)}

is the unit circle S' and of the following lemma.
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Lemma 3.7.1. There exist three vectors ey, ea,es € {n(qo,x) : = € 9S(qo)} and positive C*° maps
(pi)1<i<3 : R?2 — Ry such that for any v € R?,

3
Z pi(v)e; = v. (3.60)
=1

Proof. One may consider for instance e; := (1,0), ez := (0,1), e3 := (—1,—1), and

pi(v) = v + \/1 + 1|2 + a2, pa(v) = vy + \/1 + 1?2 + Jv2]? and ps(v) = \/1 + |12 + |v2]?.
]

In the next lemma, we introduce some functions that are defined in a neighbourhood of 9S(qp) (for
some qo = (hg, 0) fixed), satisfying some counterparts of the properties (3.57) and (3.58)).

Lemma 3.7.2. There exist families of functions (dé’j)ge(oyl), i,7 € {1,2,3}, such that for any i,j €
{1,2,3}, for any ¢ € (0,1), abl s defined and harmonic in a closed neighbourhood Vi of 0S(qo),

satisfies Opa? =0 on 0S(qo), and moreover one has for any 1,7, k, in {1,2,3},
/ Vd?j : Vé/g’l ndo — 5(i,j),(k7l) €; ase —0t.
9S(qo0)

Proof. Without loss of generality, we may suppose that S(gop) is the unit disk. Consider the pa-
rameterisation {c(s) = (cos(s),sin(s)), s € [0,27]} of 9S(qp) and the corresponding s; such that
n(qo, c(si)) = ei, i € {1,2,3}.

We consider families of smooth functions 527 : [0,27] — R, 4,5 € {1,2,3}, € € (0,1), such that
supp A% N supp ﬁf’l = () whenever (i,5) # (k,1), diam (supp ﬂé’j> —0ase— 0T,

2

2
B29(s)do =0 and '/ 1829 (5)[ n(go, e(s))ds — ;| — 0 as < — 0.
0

Then we define &2 in polar coordinates as the truncated Laurent series :
~4,j 1 L/ 1 X P
ag? (r,0) = B Z P\t (=by-. cos(kb) + ay-_ sin(k0)),
0<k<K

where dz’jg and l;;c’je denote the k-th Fourier coefficients of the function 5273' . It is elementary to check

that the function &2’ satisfies the required properties for an appropriate choice of K. O

Now, for any h € Q?, we may define Vg’j(q) := V2 — ho + h, which is a neighborhood of 0S(q),
and dé’j(q,m) = dé’j(:c + ho — h), for each z € Vé’j(q). We have for i, 7, k, [ in {1,2,3},

/ Vo?é’j (¢, ) - leg’l(q, x)n(q,z)do = / de’j(x) . Vd’§7l(x) n(qo, ) do.
05(q) 08 (qo)

Proceeding as in [47] (see also |50}, p. 147-149]) and relying in particular Runge’s theorem, we have
the following result which asserts the existence of harmonic approximate extensions on the whole fluid

domain.

Lemma 3.7.3. There exists a family of functions (a%j)ne(o,l), i,j € {1,2,3}, harmonic in F(q),
satisfying Gnaf,’j(q, x) =0 on 0F(q) \ ¥, with for any k in N,

Ha;ly’j(q7 ) - déjj(q7 ')”Ck(vgi’j(q)ﬁm) — 0 when n— O+' (361)
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We now check that the above construction can be made continuous in q.

Lemma 3.7.4. For any v > 0, there exist continuous mappings h € QF — @I (q,-) € C*(F(q)) where
q = (h,0), i,j € {1,2,3}, such that for any h € QF, A,a™(q,z) = 0 in F(q), Opa™(q,z) = 0 on
0F(q) \ £ and

/ vai(q,-)  Vai(q,-)ndo — 8ig), (k) €| S V- (3.62)
98(q)

Proof. Let us assume that the functions a%’j were previously defined not only for h € Q? but for
h € ag; this is possible by using a smaller §. Hence we may for each h € ag find functions af;j (for
some 1 > 0) satisfying the properties above, and in particular such that is valid.

Next we observe that for any h € ag, setting ¢ = (h,0), the unique solution df;j (4,q,-) (up to an
additive constant) to the Neumann problem Azdi,’j((j, q,z) = 0in F(q), ﬁndijj (@,q,2) =00on 0F(q)\ %,
(9ndf;j (q,q,2) = 8na£;j (¢, x) on X, is continuous with respect to § € Q. It follows that when a family of
functions ay’ satisfies at some point h € fo, it satisfies (with perhaps 2v in the right hand
side) in some neighborhood of h. Since Qf; is compact and can be covered with such neighborhoods,
one can extract a finite subcover and use a partition of unity (according to the variable ¢) adapted to
this subcover to conclude : one gets an estimate like (3.62)) with C'v on the right hand side (for some

constant C). It is then just a matter of considering v/C rather than v at the beginning. O

Finally our basic bricks to prove Proposition [3.7.1] are given in the following lemma, where we can

add the constraint (3.59)).

Lemma 3.7.5. For any v > 0, there exist continuous mappings ¢ = (h,0) € Qs > a'(q,-) € C*°(F(q)),
i € {1,2,3}, such that for any q = (h,0) € Qs5, Az (q,z) = 0 in F(q), Opa'(q,z) =0 on OF(q) \

and

/ Va'(q,-) - Val(q,)ndo — 6 ;e < v, (3.63)
95(q)

/ a'(q,")ndo = 0. (3.64)
05(q)

Proof. Consider the functions @/ given by Lemmam For any g = (h,0) € Qs, for any i € {1,2,3},
the three vectors | 85(q) a(q,-)ndo, where j € {1,2,3}, are linearly dependent in R?; therefore there
exists A(g) € R such that

3 3
SN [ atilgnde =0and YN = 1 (3.65)
= aS(

q) j=1

Then one defines @'(q, ) := 23:1 Ao (q)a®I(q,-), and one checks that it satisfies (3.63) with some Cv
in the right hand side. Again changing v in v/C allows to conclude. O

We are now in position to prove Proposition [3.7.1]

Proof of Proposition[3.7.4 Let § > 0. Let v > 0. We define the mapping S which to (h,v) € QF x R?

associates the function
3
d(Q? ) = Z \/ iul(v) az(qv ')a
i=1



3.7. DESIGN OF THE CONTROL ACCORDING TO THE SOLID POSITION 79

in C*°(F(q)), where the functions u' were introduced in Lemma and the functions &' were
introduced in Lemma Next we define T : le x RZ - Qg x R? by

(h,v) = (T1,T2)(h,v) := (h,/as( : |Va(q, ‘)lznda> , where &= S(h,v).

Using (3.60) and (3.63)), one checks that 7 is smooth and that

0Ty
B = Id 4+ O(v).

Hence taking v sufficiently small, we see that % is invertible, hence % is invertible. Consequently

one can use the inverse function theorem on 7T : for each hy € 6731 it realizes a local diffeomorphism
at (ho,0), and hence on @} x B(0,r) for r > 0 small enough. This gives the result of Proposition
for v small : given (h,v) € Q% x B(0,r), we let (h,0) := T (h,v). Then the functions @ :=
Z?:l V(D) @ (q,-) and g := 1y O,a satisfy the requirements. The general case follows by linearity of
(3.57) and (3.59) and by homogeneity of (3.58)). This ends the proof of Proposition [3.7.1} O

3.7.2 The case when S, is not a disk

We now get back to the proof of Proposition [3.5.1} We will denote by coni(A) the conical hull of A,
namely
k
coni(A) := {Z Nai, k€N, N >0, a; € A} ,
i=1
The first step is the following elementary geometric lemma.

Lemma 3.7.6. Let Sy C 2 bounded, closed, simply connected with smooth boundary, which is not a
disk. Then coni{(n(z), (x — ho)* - n(z)), x € Sy} = R3.

Proof. Suppose the contrary. Then there exists a plane separating (in the large sense) the origin in R3
from the set coni({(n(x), (x —ho)* -n(z)), = € dSy}). We claim that a normal vector to this plane can
be put in the form (a,b, 1), with a,b € R. Indeed, otherwise it would need to be of the form (a,b,0),
and the separation inequality would give (a,b) - n(x) > 0, Vo € 0Sy. However, since Sy is a smooth,
closed curve, the set {n(z): = € dSy} is the unit circle of R?, therefore we have a contradiction.

Now we deduce that we have the following separation property :
(a,b) -n(z) + (x — ho)* - n(z) >0, Ve dS,.

Denoting w = (a,b) — hg, this translates into (w + 1) - n(x) > 0. But using Green’s formula, we get

0 S/ (’LU—FQS‘L)-TL(J})CZO':/ div(w + ) dx = 0,
88() SO
and consequently, we deduce that (w + x%) - n(x) = 0 for all 2 in dSp. This is equivalent to (z — w') -
7(z) = 0 for all z in Sy. Parameterizing the translated curve dSy —w* by {c(s), s € [0, 1]}, it follows
that c(s) - ¢(s) = 0, for all s in [0, 1], and therefore |c(s)|? is constant. This means that 0Sy — w™ is a

circle, so Sy is a disk, which is a contradiction. ]

Fix gy € Q5. Recalling the definitions of the Kirchhoff potentials in (3.14]) and (3.15]), we infer from

the previous lemma that

coni{0,®(qo, x), = € ISy} = R3.



80 CHAPITRE 3. CONTROL OF A RIGID BODY IN AN INVISCID INCOMPRESSIBLE FLUID

In place of Lemma we have the following lemma which is a straightforward consequence of Lemma
and of a repeated application of Carathéodory’s theorem on the convex hull.

Lemma 3.7.7. There are some (%i)icq1,.. 16y 0 0So and positive continuous mappings ji; : R3 —
R, 1<i<16, v ;(v) such that 31°, 1i(v)9,®(qo, i) = v.

We are now in position to establish Proposition We deduce from Lemma that for any
q:= (h,?) € Qs, for any v in R3,

16
> pi(R(0)) 0 (q, 2i(q)) = R(I)v,
i=1
where x;(q) := R(V)(z; — ho) + h and R(J) denotes the 3 x 3 rotation matrix defined by

R(V) := ( Réﬂ) (1) ) .

Due to the Riemann mapping theorem, there exists a biholomorphic mapping ¥ : C\ B(0,1) — C\
S(q) with S(q) = ¥(9B(0, 1)), where C denotes the Riemann sphere. We consider the parametrisations
{c(s) = (cos(s),sin(s)), s € [0,27]} of B(0, 1), respectively {¥(c(s)), s € [0,27]} of S(q), and the
corresponding s; such that x;(q) = ¥(c(s;)), for i € {1,...,16}.

Then, for any smooth function « : 9S(q) — R, due to the Cauchy-Riemann relations, we have the

following :
1
V|det(DW(x))]

2 = (67 €T 2 T L
Lo [Fe@P ot o= [ V@@ o ¥e) s

On(¥(x)) = Onp (0 W) (2),

)

for any = € 0B(0,1), where n and np respectively denote the normal vectors on 9S(q) and 9B(0,1).
Note that, since ¥ is invertible, we have |det(DW¥(z))| > 0, for any = € 9B(0, 1).

For each ¢ > 0, i € {1,...,16},j € {1,2,3,4} (here the index j belongs to {1,2,3,4} rather
than {1,2,3} in order to adapt the linear dependence argument of Lemma to the case of the
three linear constraints (3.47)), we consider families of smooth functions Bé’j : [0,27] — R satisfying
supp A% N supp ﬁf’l = () for (i,7) # (k,1), diam <supp Bé’j) —0ase— 0T,

2
B (s)ds =0,
0

and
2 1
LI ()2 0@ (q, U(c(s ds—é;| »0ase— 0T,
‘ f) 1B OR el s | 0=
where .
éi = 8n(p y Ly .
N

Then one may proceed essentially as in the proof of Proposition The details are therefore left

to the reader.



Chapitre 4

Control at a distance of the motion of a
rigid body immersed in a two-dimensional

viscous incompressible fluid

4.1 Introduction

In this section we present the fluid-solid model we consider and we state our main results.

4.1.1 The mathematical model

We split the two dimensional plane into two disjoint parts : the closed part S(t) representing the
solid and the open part F(t) = R?\ S(¢) filled with fluid. These parts depend on time ¢t € [0,7],

where T' > 0. Furthermore, we assume that S(¢) is smooth and simply connected. On the fluid part

F(t), the velocity field u : [0,T] x F(t) — R? and the pressure field 7 : [0, 7] x F(t) — R satisfy the

incompressible Navier-Stokes equations with an added source term ¢ : [0, 7] x F(t) — R2, that is

?Z‘F(U‘V)U—FVW—AU,:f and divu=0 for ¢t€[0,7] and x € F(t). (4.1)

Furthermore, we assume that the support of £ is in a smooth, compact, simply connected set . C R?
with non-empty interior.
We consider an impermeability boundary condition and a Navier slip-with-friction condition on the

solid boundary, namely,
u-n=ugs-n, (Dun)an =—puu— ug)tan on 9S(t), (4.2)

where ug denotes the solid velocity described below, n is the unit outward normal vector on 9S(t),

1 > 0 is the coefficient of friction, and for any vector field f, we have

(VF+(VHT) and (flean = f — (f - n)n.

N | —

D(f) =
Furthermore, we consider a zero limit condition at infinity, namely,
lu| — 0 as |z| — +o0. (4.3)

81
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The solid S(t) is obtained by a rigid movement from S(0) = Sp, and one can describe its position by
the center of mass, h(t), and the angle variable with respect to the initial position, ¥(t). Consequently,

we have
S(t) = h(t) + R(¥(t))So, (4.4)

where the center of mass at initial time is assumed to be hg = 0 without loss of generality, and
R(9) costy —sind '
sing  cosv
Moreover the solid velocity is hence given by
us(t, ) = '(8) +9'(t) (@ — h(1) ", (4.5)

where for = (1, 29) we denote 2+ = (—x9, 21).
The solid evolves according to Newton’s law, and is influenced by the Cauchy stress tensor on the

boundary :

mM@f——/‘ (—rld + 2D(u)) n do,
95() (4.6)
jﬂ%ﬂ—fiéaxx—h@DL(—ﬂd+2Dw»n¢n

Here the constants m > 0 and J > 0 denote respectively the mass and the moment of inertia of the
body, where the fluid is supposed to be homogeneous of density 1, without loss of generality.

We consider the following initial conditions :

U= = ug for z € Fy,

(4.7)
h(0) =0, K'(0) = hy, 9(0) =0, ¥(0) = ;.

For the initial data we will asume uy € H*(Fy) and curluy € L'(F), satisfying the compatibility
conditions div ug = 0 in Fo, ug - n = (hy + 9)pzt) -n and (D(up)n)tan = —(uo — (A + 9pzt))tan on
08y. The integrability of the initial vorticity is assumed in order to guarantee that the circulation at
infinity is well-defined.

Throughout this Chapter we will only consider solid trajectories which stay away from the control

zone, therefore our construction will satisfy the following condition :

supp &(t, ) NS(t) =0, vt €[0,T). (4.8)

4.1.2 Definition of weak solutions

We will now present a notion of Leray-type weak solution to the fluid-solid system.
Let & € L2((0,T) x Q.) be fixed. In order to define a notion of weak solution to (4.1)), (4.2)), (4.3),
(4.6), (4.7), we introduce for each t € [0,T] the following spaces :

H(t) :={¢p € L*(R*}R?*): divg=0inR? D(¢)=0inS(t)}, 49)
V(t):={p e H(t): Voe L}(F(t)}. '

Note that the above spaces depend on the solution itself through the domains F(¢) and S(t). Further-
more, according to Lemma 11 in [95], for any ¢ € H(t), there exists (Iy,74) € R® (which may depend



4.1. INTRODUCTION 83

F(t) =R\ S(t)

FIGURE 4.1: The setting of the control problem

on t) such that ¢(x) = ¢g(z) := ly +14(x — h(t))* in S(t). Therefore, we extend the initial data ug by
hfy + Dbzt in Sp.
We further define the following scalar product, which endows #(t) with a Hilbert space structure,

(u, V)p ) = / u-vdr +mly - ly + Tryrs.
F(t)
We give the following definition of a weak solution “a la Leray”.
Definition 4.1.1. We say that
u € C([0, T H(t) N L*((0,T); V(1)

is a weak solution to the system (4.1)), (4.2)), (4.3), (4.6), (4.7) if (4.8) holds, and we have that for all

¢ € C([0,T); H(t)) such that ¢|m € C°°([0,T]; C5°(F(t); R?)), the following holds on [0,T],

t t
(u(t, ), ot -))awy — (w0, (0, )20 :/( (5,:), 0r9(s,-))m )d5+/ 5 ¢ dx ds

//}_(Su Vé- udxdt—Q// D(u) : D(¢) d ds

o / /88 ) = us(s,)) - (6(s,) — bs(s,) do ds,

where the spaces H(t) are associated with S(t) as in (4.9), and we have that S is transported by the

flow of ug.

It can be easily checked, by performing some integration by parts, that a strong solution to ,
@2, (4.3), (4.6), is also a weak solution in the above sense (see for instance [86] for further
details).

Note that there is a slight abuse of notation in writing C'([0, T']; H(t)) for instance, since the domain
in which the fluid evolves is also time-dependent. Furthermore, the test functions also depend on the

solution u as noted above in the definition of the spaces H(t) and V(t).
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4.1.3 Main result

Our goal is to investigate the possibility of controlling the solid by the means of prescribing an
interior control & acting on the fluid. In particular we raise the question of driving the solid from a
given position and a given velocity to some other prescribed position and velocity.

In order to ensure that holds, we note that we do not need to control on the whole of €.
Instead, we will introduce a set of admissible positions for the solid, such that as long as the final
position of the solid is in this set, there exists a fixed open subset of 2., which does not touch the solid
neither in its initial nor in its final position, and which we will use as the support of the controls we

construct. More precisely, we set
Q= {q:=(h,9) eR*: int(Q)\ {(h+ R(I)So) USo} # 0} . (4.10)

Since Sy is simply connected, it can be easily checked that Q is path-connected.
We are now in position to state our main result regarding the small-time global exact controllability

of the solid position and velocity.

Theorem 4.1.1. Consider Sy C R? bounded, closed, simply connected with smooth boundary, which is
not a disk, and ug € H*(Fo; R?), curlug € L (Fo;R?), qo = 0,q5 = (hy,95) € Q, hy, h’f € R?, 6,19’f €
R, such that
div ug =0 in Fo, lim |ug(z)| =0,
|z|—+o0

ug - n = (hfy +9x) -n, (D(uo)n)an = —p(uo — (b + 99z)) tan on dSo.

Then there exists T > 0 such that, for any T € (0,T), there exists a control € € L*((0,T) x Q.), com-
pactly supported in time, and a weak solution u € C([0,T]; H(t)) N L2((0,T); V(t)) in the sense of Defi-
nition[4.1.1 to the system (L)), (12), (43), (4.6), with ([4.8), such that we have (h,k',9,9")(T) =
(hy, Wy 95, 9)).

Note that the condition that Sy is not a disk is essential because a significant step during our
proof will rely heavily on a strategy similar to the one presented in Chapter [3] As mentioned in the
aforementioned Chapter, it is possible to treat the case of a homogeneous disk with a similar strategy,
controlling only the center of mass h.

Furthermore, we will present in Section [4.7]a possible strategy for passing to arbitrary time control-
lability, given a sufficiently strong autoregularization property of the system (that would also allow
for less regular initial data), which up to our best knowledge is currently still an open problem in the
literature for this type of systems.

We also note that the reason for working in the whole plane instead of a bounded domain will be
given in Remark in Section below, once the main ideas behind our proof have been presented.

References. Our result can be contrasted with the result from [27] (see also [28] for a gentle exposition)
regarding the controllability of the fluid velocity alone in the case of the incompressible Navier-Stokes
equation with Navier slip-with-friction boundary conditions. However, in our case we are only interested
in controlling the solid position and velocity, and unlike in [27] we achieve this without any control on
the solid boundary. Note that the proof relies on the previous results for the Euler equations by means

of a rapid and strong control which drives the system in a high Reynolds regime, a strategy which
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originates from [23], where an interior controllability result was already established. For this purpose in
our case we generalize the control result regarding 2D “perfect fluid + rigid body” systems from Chapter
[B] to treat the viscous case with a similar strategy, but without using the return method, in contrast to
[23 27]. Note also that the main result in Chapter Was presented in the absence of vorticity, however,
it was mentioned that the effect of the vorticity could be handled by some appropriate control strategy.
In this Chapter there will indeed be some vorticity created at the solid boundary, which we will handle
by the means of an asymptotic boundary layer expansion.

For “viscous fluid + rigid body” control systems (with Dirichlet boundary conditions), local null-
controllability results have already been obtained in both 2D and 3D, see e.g. the works of Boulakia
and Guerrero, Boulakia and Osses, respectively Imanuvilov and Takahashi [10, [I1), [72]. These results
rely on Carleman estimates on the linearized equation, and consequently on the parabolic character of
the fluid equation. A similar result has been established in [78] for the case of the 1D viscous Burgers
equation with a new strategy introduced by the authors without the use of any Carleman estimates,
and as noted in the respective article, those methods can be extended to other nonlinear parabolic
systems. However, note that the results mentioned above concern local null-controllability for the solid
position and the velocities of both the solid and the fluid, whereas in this Chapter we achieve global
exact controllability for both the solid position and velocity directly.

Let us also mention some stabilization results regarding “viscous fluid + rigid body” systems in a
bounded domain with Dirichlet boundary conditions, see [6] for the 2D and 3D cases, respectively [7]
for a simplified model in the 1D case. In the respective articles the authors stabilize the position and
velocity of the solid and the velocity of the fluid using a feedback control on the exterior boundary of
the fluid domain, assuming that the initial data of the system is close to a stationary state (which is
not necessarily assumed to be zero).

A different type of problem regarding fluid-solid interactions is that of a deformable body in a
fluid, regarding the dynamics of swimming, see for instance [17, [40, [77, 00, OI] for the viscous case,
respectively [I8] for the inviscid case. In the case of such problems, the control is no longer at a distance,

rather it consists of the deformation of the body itself.

Generalizations and open problems. A natural generalization of the problems above would be the
passage from the two-dimensional case to the three-dimensional one. The main difficulty in adapting
our methods to the 3D case (apart from the Cauchy theory of the 3D system) is the use of complex
analysis to explicitly construct the spacial part of the control (see the Appendices of the Chapter).
However, one could replace these arguments by a Cauchy-Kovalevskaya type construction and a higher
dimensional generalization of Runge’s theorem (c.f. [38]), so that a similar result could be established
in the three-dimensional case.

Furthermore, one could also be interested in controlling several solids. Indeed, one can see in the
Appencides of the Chapter that the construction of the spacial part of the vector field associated with
control is quite local around the solid, so the arguments in our proof should be adaptable to the case
of multiple solids, also guaranteeing that there is no collision between the solids.

Another interesting open problem is that of the motion planning of a rigid body immersed in
a viscous incompressible fluid. Namely, suppose that we have a fixed curve I' € C?([0,7];R3), and
the conditions of Theorem are satisfied with (ho, o, ho, J5) = (I'(0),17(0)) , (hy,Jp, by, 0%) =
(T(T),T'(T)). Does there exist a control and a solution to the fluid-solid system as described in Theorem
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, satisfying in addition T' = (h, ) on [0, T]? Even the approximate motion planning in C? i.e. the
same statement as above but with ||I' — (h,9)| c2(o,77) < € (with e > 0 arbitrary) instead of I' = (h, 9),
is an open problem. Furthermore, as mentioned in Chapter [3], the motion planning for a rigid body in an
inviscid fluid is also open. However, there might be some hope to adapt certain techniques presented in
this chapter (specifically in Section to pass from approximate controllability to exact controllability),

in order to tackle this problem in the future.

Finally, we mention that the global exact controllability of a “viscous fluid + rigid body” system
with Dirichlet “no slip” boundary conditions is completely open, and a very challenging problem due
to the fact that the Dirichlet boundary conditions create boundary layers with a larger amplitude than
in the case of Navier slip-with-friction boundary conditions. Note that even the problem of controlling
only the fluid velocity in such a context is open and similarly challenging, some recent advances have
been made in [29] in the very particular case when the domain is assumed to be a rectangle, using an

added distributed phantom force.

Plan of the Chapter. The Chapter is organized as follows.

In Section we give some preliminary results, such as reducing Theorem to the case of a
fixed domain and small viscosity, which we further reduce to constructing an appropriate asymptotic

expansion with respect to the viscosity.

In Section we construct the terms of order O(1) in the asymptotic expansion by a generalization
of the geodesic method used in Chapter [3

In Sectionwe construct the boundary layer profiles associated with u°, which appear in particular
at order O(y/¢) and O(e).

In Section we construct the linearized terms of O(g) in the asymptotic expansion by a different

impulsive control strategy.

In Section we construct and estimate the remainder in the asymptotic expansion and prove that

it converges to zero in an appropriate space.

We conclude the Chapter in Section [£.7 with some visual representations of the controls constructed

during our strategy, as well as some remarks regarding the passage to arbitrary time controllability.

In Appendix we explicitly construct the controls by the means of complex analysis.

4.2 Preliminary reductions

In this section we will prove that Theorem can be reduced to the case where the fluid domain
is fixed and the fluid viscosity is small. Furthermore, we will show that in this case one can introduce

a vanishing viscosity asymptotic expansion for the solid trajectory in order to prove our main result.
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4.2.1 A reduction of Theorem [4.1.1] to the case of a fixed domain and small vis-
cosity

The goal of this section is to prove that Theorem can be deduced from a controllability result

for the following system :

8 €
81; + (uf —ug) - Vuf +r5(uf)t + Vrf —eAu® =0 and div u® = ¢° for x € Fo,
ut n=ug-n, (DU)n)tan = —p(u® — ug)tan for z € 0S5y, lim |u®| =0,
|z| =400

(4.11)
m(l°) = — /88 (—7°1d + 2 D(u®)) n do — mre(I5)*,

J (rf) = —/ zt - (=7°1d + 2 D(uf))n do,
9So

where ug(t,z) = I(t) + ré(t)at, for t € [0,T], with € > 0, u5(0,-) = eug(-), (I5,7%)(0) = e(h{), 9}),
and the control term is now g° € C§°((0,T) x Fo) such that supp ¢°(¢,-) C R(9°(t))T(Qe — h°(¢)) and
J g¢(t,-)dz = 0, for any t € [0,T].

Note that in the viscosity coefficient £ appears in front of the term D(u®) in the solid equations
(as part of the Cauchy stress tensor), but not in the Navier slip-with-friction boundary condition on
08p. This will be essential in the asymptotic expansion presented in Section 4.2.3

Furthermore, we may associate the solid position (h%,19¢), which no longer plays a role directly in
solving system (4.11]), through

B (L) = /0 R(05(s))I5(s) ds, 0% (t) = /0 r=(s) ds, (4.12)

for t € [0,T7.
We have the following adaptation of (4.8)) for ¢¢,

supp ¢°(t,-) NSy =0, YVt € [0,T]. (4.13)

Let us first give a definition of so-called “very weak solutions” to viscous fluid-solid models as (4.11))
with non-zero divergence (similarly to the same notion for the fluid alone, as done for instance in [33]).

To do so, we further introduce the following spaces :
H:={¢¢c L*(R*R?) : D(¢) =0 and div ¢ =0 in So}, Vi= HN HY(F).

Once more, note that for any ¢ € H, there exists (I5,74) € R? such that ¢(z) = ¢g(z) := ly + rezt
in Sp. Therefore, we may once again extend the initial data uy by hj + Jhr" in So. We consider the

following scalar product, which endows H with a Hilbert space structure,
(u,v)y == / w-vdr +mly - ly + Trure.
Fo

Note that (-,-)y coincides with the scalar product for the Hilbert space H(0) defined in (4.9)), however,
H(0) is a strict subspace of H.

Definition 4.2.1. We say that

uf € C([0,T];H) N L2((0,T); V)
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is a very weak solution to the system (4.11)) if - ) holds, if we have
div u® = ¢°, for a.e. t € [0,T],

and if, for all ¢ € C*>([0,T};H(0)) such that ¢z € C([0,T]; C§°(Fo; R?)), the following holds on
[0, 71,

(W (1), Bt )t — (0, 6(0, ) )gy = / (u (s, ), Buh(s, ) ds + / /F u - pduds

// u —uS Vo - u® —7“( ) d)} dxds—/ mTa(ls)L-hﬁds
Fo 0

t
_25/0 . D(u®) : D(9) dmds—leu/O /E)So(ue_u§)'<¢_¢5)dad3-

Note that in fact the above definition can be extended to less regular divergence terms ¢° (as done
in [33] for example). But for our purposes the case of smooth g° will suffice, since our construction for
such solutions will rely on a linear decomposition into a smooth term which has divergence g°, and the
remaining term defined as the weak solution of a Navier-Stokes type system with zero divergence (in
the Leray sense, since the divergence is considered to be zero).

We claim that Theorem follows from the following result.

Theorem 4.2.1. Consider T > 0, Sy C R? bounded, closed, simply connected with smooth boundary,
which is not a disk, and ug € H*(Fo; R?), curlug € LY (Fp;R?), qo = 0,q5 = (hy,9f) € Q, hos 'y €
b» 19’f € R, such that

div ug =0 in Fo, lim |ug(z)| =0,
|z| =400

ug -n = (hfy + 9x) - n, (D(uo)n)an = —u(to — (b + 9pz)) tan on 8Sp.

Then there exists € € (0,1) such that, for any e € (0,&|, there exists a control g¢ € C§°((0,T") x Fo) with
[ g5 =0, supp g°(t,-) C R(°(t))T (Q—h%(t)), and a very weak solution u® € C([0,T]; H)NL2((0,T);V)
in the sense of Definition to (4.11)) such that we have

(h*,15,9°,7°)(T) = (hy,eR(9p) 1y, 0,20, (4.14)

with (h®,9°) given by (4.12)).

Proof of Theorem [{.1.1] from Theorem[].2.1. We will show that given T' > 0, g° as above, there exists
some & € L?((0,eT) x €.) and some appropriate transformations such that we may deduce the existence
of a solution to system , , , , on [0,eT] from the existence of a solution to
system , on [0,7]. We will introduce a change of variables for passing from small viscosity
to viscosity 1 and for passing from a fixed domain to a moving domain, and we will switch from a
control on the divergence to a control on the evolution equation via the Bogovskii operator (see for
instance [9] or [43]), defined as follows.

Definition 4.2.2. Given a smooth, bounded domain 0 C R?, there exists an operator B : C§°(Q2) —
Cs°(Q)? such that, for any g € C§(Q) with [g = 0, we have div Bg = g. Furthermore, B €
LOWSP(Q), WSTHP(Q)2), for any 1 < p < +o0, s > 0. Also observe that we may extend Bg by 0
outside of €.
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From now on we consider B to be the Bogovskii operator associated with Q.. Given g° € C§°((0,T) x
Fo) with supp ¢°(t,-) C R(9°(t))T (2 —he(t)) and u® € C([0,T); H)NL?((0,T); V) as in Theorem

we define

glt,@) = tg (TR (97 (7)) (2 — 07 (e7'1))) |

Ultx) = R (0 (7)) (7, R (97 (7)) (2 = 7 (=710))) (4.15)
W(t)=e 'R (05 (e7')) 15 (e7'), d(t):=er" (e 1t),

for t € [0,eT] and = € F(t).
We set

B
£ = —% +Bg-VBg—U-VBg— Bg-VU+ ABg € L*((0,eT) x ) (4.16)

and u := U — Bg. It can be easily checked that (u,h,¥,§) defined in this way allow us to deduce a
weak solution in the sense of Definition 111

Finally, we may conclude the proof by noting that we have (h,9)(eT) = (h%,9°)(T) = (hy,Vy)
and (h/,9")(eT) = e Y (R (T))IF(T),r¢(T)) = (W}, 9%), by using (4.14). Therefore, the conclusions of
Theorem [LT.T] are satisfied with 7" instead of T'. O

Remark 4.2.1. In Theorem[.2.1] the control g° can be chosen with an arbitrary small total flux through
its support, that is for any 6. > 0, there exists a control g° and a very weak solution uf satisfying the
properties of Theorem and such that moreover

T
/ / (¢°(t,x))_ dxdt| < de.
0 JRW=(t)T (Qe—h(t))

See Section for more explanations. Let us mention that such a small fluz condition cannot be

guaranteed in the results [23, [277] regarding the controllability of the Navier-Stokes equations.

4.2.2 Proving Theorem by the means of an asymptotic expansion for the

solid trajectory

We introduce the following asymptotic expansion for the solid trajectory :

he = h0 + ehl +eh5, 95 = 9° + 9! + 0%,

(4.17)
F=0+e' +el5, r*=r0 4 erl 45,

with (1%, 70), (I',r), (15, r%) € L>=(0,T).

Now suppose that we could exactly drive (hY,9°)(T) to (hs,9y), while we had (h',91)(T) and
(h%,9%)(T) bounded in ¢ > 0. It would follow that we have approximately driven (h%,9°)(T) to
(hg,U5), for € > 0 small enough.

Furthermore, suppose that at the same time we managed to exactly drive (1°,7°)(T) to 0 and
(approximately) drive (I%,71)(T) to (R(vﬁ‘f)Th}, '), while (I%,73)(T) — 0 as e — 0. It would follow
that we have approximately driven (I5,7)(T) to e(R(J;)TH, ,9%), for € > 0 small enough.

However, we want to prove the exact controllability in (4.14]). To do so, we may pass from the above
mentioned approximate controllability to exact controllability by the means of a topological argument

of Brouwer-type, as done in Chapter [3] This further requires some continuity property for our whole
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construction with respect to the target data for the solid trajectory. Therefore, we will realize the above
construction not only for (hg, ¥y, R(ﬂf)Th}, 19’f) as given in Theorem but for any (hi,v1,1l1,71) in
a small enough ball centered at (hy, ¢, R(1) f)Th’f, 19/f), such that the construction depends continuously
on (hl, 191, ll, 7‘1).

More precisely, we claim that Theorem [£.2.1] follows from the following controllability result.

Theorem 4.2.2. Suppose that the conditions of Theorem[{.2.1] are verified. Let k > 0 such that

nt() \ U {(h+ R(9)Sy) U Sy} # 0.

(h9)eB((hy,0y),k)
For any v > 0 there exists g = £o(v) > 0, which only depends on v > 0, such that for any ¢ € (0,¢€g],
for any (hy,V1,l1,7r1) € E((hf,'ﬁf,R(ﬁf)Th'f,ﬁ'f),/f), there exists a control g° € C§°((0,T') x Fo) with
[ g5 =0, supp g°(t,-) C R(°(t))T (Q—h(t)), and a very weak solution u® € C([0,T]); H)NL((0,T);V)
to (4.11), (4.12)), such that (4.17)) holds, and we have

(hovﬁoaloaro)(T) = (h17§17070)7 ’(llvrl)(T) - (llvrl)‘ <v,

(W19 (D) < C, |15 r5)(T)] < CM3, 1)

where C' > 0 can depend on v > 0, but is independent of (hy,V1,1l1,71) € E((hf,ﬁf,R(ﬂf)Th’f,ﬁ'f),/i)

and € > 0. Furthermore, the map
(hl, 191, ll, 7’1) S E((hf, 19f, R(ﬁf)Thl ,’l9lf), /i) — (hE, 1987 lE, ’I’E)(T) (4.19)
18 continuous.

Remark 4.2.2. We note that we settle for approzimate controllability for (I*,r') because it simplifies
elements of the proof of Theorem [{.2.3 and it will be sufficient to prove Theorem [{.2.1 Furthermore,
the introduction of eo(v) > 0 serves the purpose of making the trajectory (h®,9°) stay sufficiently close
to (h?,19°) such that in order to guarantee condition , it suffices to guarantee a similar condition
for (h2,9°), which we will detail during the proof of Theorem .

Proof of Theorem [{.2.1] from Theorem[].2.3. We will conclude the proof of Theorem [£.2.1] by a topo-

logical argument based on the result below borrowed from [58, pages 32-33].
Lemma 4.2.1. Let wg € R", k > 0, f : B(wo, k) — R™ a continuous map such that we have |f(w) —
w| < % for any x in OB(wo, k). Then B(wo, %) C f(B(wo, K)).

We set wg = (hy, V5, R(v“f)Th}, V') as in Theorem and £ > 0 as in Theoremm
Let T >0, v > 0 and (h1,91,11,71) € B(wo, k). We apply Theorem to deduce that, for ¢ > 0
small enough, we have
(A%, 9°)(T) = (ha, 91)] =[(h5,9°)(T) — (A%, 0°)(T)| = e| (B, 0")(T) + (W, V5)(T)| < Ce,
61 )(T) — ()] < M r9)(T) — (10, 0)(T) — 01, #)(T)] + v (120)
= ()T v < Ot 4,

where, C' = C(v) > 0 is independent of ¢ and (hy,91,1,71).

Therefore, we fix v = 2—\“/5 and € € (0,g9(v)] such that Css < #, and for any € € (0, £] set

f(hl,’lgl,ll,rl) = (haaﬁaag_llavg_lra)(T)'
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It follows from (4.20)) that |f(h1, V1, 11,71)—(h1,91,11,71)| < §, uniformly for (hy,91,11,71) € B(wo, k),
and f is continuous due to Theorem We may conclude the exact controllability result of Theorem

by setting applying Lemma to deduce that wy = (hy,9s, R(9s)TH ,¥';) is in Range(f).
O

4.2.3 Proving Theorem - Constructing the control via the asymptotic ex-
pansion for the fluid velocity

In order to achieve an expansion as in (4.17]) for the solid trajectory, we consider controls ¢¢ in the
form of g° = ¢° 4+ e¢', in the style of [27], and we look for the following asymptotic expansion for the

fluid velocity and pressure :

uf = u® 4+ Ve{v} 4+ eut + VO + ef{w} + eu,

e _ .0 1 £ € (4.21)
=7 +e{Q} +em +ep° +enh,

where, for f = f(t,x, z), we denote {f} its evaluation at z = @

in Section Therefore, proving Theorem reduces to constructing the terms in the right-hand
side of (4.17), (4.21) in an appropriate way. Note that we will use an energy estimate to prove the
smallness of (I%,7%) as stated in Theorem [4.2.2] which is the main reason for investigating not only

, with some function ¢ to be specifyd

the terms in the asymptotic expansion for the solid trajectory, but also the terms in the expansion for
uf, which include certain boundary layer profiles v, w and V6°.

Furthermore, let us emphasise that our whole construction will be done in order to have that the
fluid and solid velocities (u%, 1%, %) associated with the remainder satisfy a Navier-Stokes-type fluid-
solid system with small initial data, some added small source term and small viscosity (“small” with
respect to € > 0), such that an appropriate energy estimate can be achieved.

Therefore, our strategy will be the following :

— We construct ¢° and a smooth solution u° to the Euler equation (with control ¢%), with zero
initial data, hence zero vorticity and zero circulation around the solid, such that we have an
exact controllability result for (h°,9°)(T) with (1°,r%)(T") = 0. However, we note that contrary
to [27], our strategy will not rely on a return method for u°, we will rather just use u" to control
the solid position (h°,9°)(T). See Theorem in Section

— Due to the Navier slip-with-friction boundary conditions, the fluid velocity boundary layer v will
appear near the solid at order O(y/£), together with its pressure @ at order O(g). Furthermore,
at order O(e) we introduce a boundary corrector w and an inner domain corrector V6, together
with its pressure p°, as done in [27]. Note that there will be no contribution at order O(1/¢) in
the solid equations due to the boundary layers, however, at order O(e) the solid position and
velocity (h!, 91,1, 1), and therefore the fluid velocity u!, will depend on ¢ in a subtle manner
due to p°. However, we mention that, for simplicity of notation, we will not write this dependence
explicitly in the notations u', h', etc. Furthermore, we stress that since we do not control the
fluid velocity u®, there is no need to control v (contrary to [27]), it will suffice to prove some
regularity estimates to handle the effect of the boundary layers at O(g) in the solid equations for
(I*,7!), and in the equations of the remainder. Note that v, w and V¢ only depend on (u?, 1%, %)
and their existence is immediate from the existence of (u°, 7, 1%, 70, ¢°). See Section for some
regularity estimates for these boundary layer profiles, which we will use in the energy estimate
in Section , but also to estimate the above-mentioned impact of p° on (1%, r1).
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— We construct g' and a smooth solution u' to a linearized Euler equation around u° (with control
g") such that we have an have an approximate controllability result for (I*,7!)(T) (we settle for
an approximate controllability here because it simplifies our construction). It would be natural
to assume that the initial data of the original system, that is , would be the initial data
in the equation of the linearized term (u!,l',r!). However, we only have uy € H*, and for
simplifying reasons, we would like to work with an initial data which has smooth and compactly
supported curl, so that the vorticity associated with the linearized equation for u' stays smooth
and compactly supported at all times.

This can be achieved with the following modification. We construct a family of divergence-free
u* € C®(Fy) N L?(Fy) which is bounded in C? with respect to € > 0 such that we have
curlu* € C§°(Fy), u* -n = ug - n on dSp, |u*(x)] — 0 as |z| — +o0, and

g — u*||p < /5. (4.22)

Indeed such a u* can be straightforwardly constructed using a Helmholtz decomposition and an
appropriate mollification of curl ug.

We then set the initial data for (ul,i',r!) to be (u*, hj,J}), and implicitly leave the remaining
up — u* in the initial data for u%, namely we consider (u%,(%,7%)(0) = (up — u*,0,0). Note
that u* implicitly depends once more on € > 0, and this gives rise to further dependence of u'
with respect to € > 0, which we once again omit from the notations for the sake of simplicity.
However, since we have that u* is bounded in C? uniformly with respect to € > 0, we expect
this dependence to be slight enough such that we can have some uniform estimates for u!' with
respect to € > 0. See Theorem in Section

— We construct (u%, %, r%) as a weak solution (in the sense of Leray) of a system which we deduce

from the equations verified by all the other terms in , (note that at this point we
have not yet proven the existence of (uf,1%,7¢), but we know that it should be a very weak
solution in the sense of Definition with ¢° = ¢ +eg'). We prove by the means of an energy
estimate that (u%, (5, r%) is small in L>°((0,7); L*(Fy) x R3), when € > 0 is small. In particular,
we have |(15,75)(T)| < Ce'/8, and we may conclude the estimates in Theorem [4.2.2, See
Proposition in Section

From the above construction we may define (u®,[%,7¢) as the right-hand sides of , ,
since now all the respective terms are constructed and well-defined. Furthermore, in order to ensure
the continuity of the map , we make sure that the terms on the right-hand side of at time
T are constructed continuously with respect to (hi,v1,l1,71) in the steps above. In particular it is
sufficient to guarantee that (19,7°), (I*,r1), ( % TR) € L(0,T) depend continuously on (h1,v1,11,71),
which gives the continuity of the map by using .

However, as mentioned in Remark , (uf, %, 1) defined in such a way will only qualify as a very
weak solution in the sense of Definition if is verified as well, so we proceed in the following
manner.

We fix an open ball B, C int(€) \ U {(h+ R(9)Sp) U Sp} such that d(Be, ) > 0.

(h9)eB((hs,9y),k)
During our construction we make sure that g%(¢,-) and g'(¢,-) are supported in R(9°(¢))T (B, — h°(t))

and that we have

B. N (R(W°(t))So + hO(t)) = 0, VYt € [0,T]. (4.23)
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Since (h!,91) and (h%,,¥%) are bounded in L>(0,T) by C' = C(v) > 0, there exists g9 = go(v) > 0
such that implies , for any e € (0,e0], with ¢°(t,-) = ¢°(t,-) + eg'(t,-) supported in
R(95(1))T (e — he(t)), for any t € [0,T].

This concludes the proof of Theorem [4.2.2

Remark 4.2.3. Let us now explain why we chose to work in the whole plane R? instead of a bounded
domain. The key technical difficulty in handling the case of a bounded domain with a similar strategy
would be the step of transforming the moving domain F(t) into a fized domain. As mentioned above, in
the case of the plane this can be done through a simple rigid movement. However, in the bounded case
one would also need to account for the outer boundary 0X), and construct a diffeomorphism which is a
rigid movement in a neighbourhood of the solid, but leaves the boundary 9S) intact. This diffeomorphism
would clearly depend on the solid position, as well as contribute more complicated nonlinear terms in
the PDE (see for instance [12] or [61] for such a construction). The main problem then is to investigate
what happens to these terms when we look for an asymptotic expansion of the form of for the
solid trajectory, moreover separating them in terms of orders of €. To properly do this, one would need
to establish a rigorous asymptotic expansion of the diffeomorphism (and the associated terms in the
PDE) with respect to the solid position, which is rather difficult.

4.2.4 Regarding Remark

In order to prove that the small flux condition mentioned in Remark can indeed be achieved,

we ensure during our construction that ¢" satisfies in addition the small flux condition

T
/ / (go(t,x))_ dx dt
0 JR(¥O(t))T (Bc—hO(1))

This can be achieved by similar arguments as in Chapter [3] which we will detail in Remark [4.3.1] at the
end of Section [£.3.2

Consequently, we have

de
<3 (4.24)

<

T
/ / (go(t,x))_ dx dt
0 JR(WO)T(Bc~hO(t))

T
/ / (gl(t, x))_ dx dt
0 JR(WO())T(Be—hO(t))

where C € (0, 400) is independent of € > 0, therefore we may in fact further reduce the € > 0 in the

proof of Theorem from Theorem from Section so that it satisfies C'¢ < %C. This allows
us to prove the small flux condition from Remark

T
/ / (¢°(t,2))_ ddt
0 JR(=(1)T (Qe—he(t))

0,
+e€ <§C+€C,

4.3 The inviscid term u°

In this section we construct a controlled solution to the inviscid terms appearing in the asymptotic

expansion (.17), (E21).
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At order O(1), we look for (u,7%,1° 70, ¢°) satisfying the following system.

0
8(‘;; + (u® —ul) - Vul + W)t +Vr® =0 and divu® = ¢° for z € Fo,
won= u% -n for z €8Sy, lim |u’] =0, (4.25)

|z|—+o0

m(lo)/:/ Wonda—mro(ZO)J‘ and J (ro)’:/ 0zt ndo,
85() 8SO

where ul(t,x) = 1°(t) + rO(t)at, for t € (0,7, with u°(0,-) = 0, (1% r%)(0) = 0. The position of the

solid is associated through the system

O—tosossoztross .
h(t)—/onU)u)d, (1) /0 (s) ds, (4.26)

for t € [0, 7.

We introduce the following notation.

Definition 4.3.1. The space CX,, k > 0 is defined as follows : for any bounded set A C R?, we define

Ck (R?\ A) := {f € CF(R*\ A) such that lim |V'f(z)| =0, Vi€ {0,...,k}}.

|| —+o00

Note that, for any f € CE (R?\ A), we have || f||cx = sup max |[Vif(x)| < +oo.
= eRe\4 0Si<h

In the sequel we will use some regularity results with respect to the position g for certain integral
terms, which only hold on a bounded set of admissible positions. Therefore, we consider ¢y and x > 0
as in Theorem and we pick some open ball B C R? such that E(qf, k) C QN B, and for § > 0

we introduce the set
Qs ={q= (h,9) € B: d(h+ R()Sy, B:) > d}. (4.27)

Consequently, as long as ¢” stays in @5, condition will hold. For é > 0 small enough, Qj is clearly
path-connected.

Furthermore, we will look for solutions (I, r% u°) satisfying the following additional condition,
which will not be needed for the construction of u°, however it will be helpful in the construction of
u!, which as already mentioned, is a linearized solution around u°. We will therefore look for solutions

satisfying
span {(n(x), at - n(x)), x € dSyNsupp {u’(T/2,-) — u(T/2, )}} =R, (4.28)
We have the following exact controllability result for (h°,4°,1°,70).

Theorem 4.3.1. Let T > 0, 6 > 0 small enough such that Qg is path-connected, So C R? bounded,
closed, simply connected with smooth boundary, which is not a disk, and qo,q1 € Qs with go = 0 and
q1 = (h1,91). There ezists a control g° € C§°((0,T) x Fo) and a solution (h°,9°,u’) € C>([0,T]; Qs) x
C>([0,T] x Fo; R?) to ([#.25)), (4.26) with zero initial conditions for (h°,9°,1°,7°, u%), such that (4.28)
holds, u® € C([0,T); L*(Fo)) and

(R, 9°,1°,7°)(T) = (h1,91,0,0), supp ¢°(t,-) C R(9°(t))" (B. — B°(t)), Vt € [0,T].
Furthermore, one may define a continuous map (hy,91) — (1°,79,u°) € C3([0, T); R? x C3,(Fo)).

The proof will be given in Section Note that the specific regularity C3(C3,) will serve to
establish appropriate higher order energy estimates for the boundary layer profiles constructed in

Section (4.4
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4.3.1 Reformulation of the solid’s equation into an ODE

In this section we establish a reformulation of the solid equations from as an ODE for the
three degrees of freedom of the rigid body with coefficients obtained by solving some elliptic-type
problems.

To simplify notations, we denote the positions and velocities ¢° = (h°,9°), p® = (1°,7°). Observe
that a smooth solution u° of satisfies the following div/curl type system :

div v’ = ¢°, curlw® =0 in Fp,

u-n = (lo + rOmJ‘> -non Sy, lim |u’| =0,
|z|—+o0

/ u0~7'da:0,
9S8y

for t € [0, T, the last equation above coming from Kelvin’s theorem regarding the conservation of the

(4.29)

circulation around the body.

We observe that the unique smooth solution of the above system can be uniquely decomposed
in a linear manner. We introduce the Kirchhoff potentials, which in our case are simplified due to
the fact that we have moved our evolution PDE onto a cylindrical domain. Let ® = (®1, ®o, P3) €
C>=(Fo) N CS (Fo) be the solution (up to a constant) of the elliptic problems

Ad;(z) =0 in Fy, | ‘lim |V®;(z)| =0, foric {1,2,3},
x|—+400

n; on 08y, for i € {1,2}, (4.30)

On®i(w) = { 't -n on 88y, fori=3.
Note that V®(x) = O(1/|z|?) as |z| — +oo, implying that V@ is in fact square-integrable (see for
instance Section 2.3 in [55]).
Furthermore, we will also be looking for potential flows to handle the term in the decomposition of
u® due to the control. In order to satisfy the condition supp ¢°(t,-) € R(9°(¢))T (B. —h°(t)), for all t €
[0, 7] in Theorem we introduce, for any ¢ = (h,9) € Qj ,the set

C(q) := {g € C(R(W)T(B, — h);R) such that /g = 0} ,
and we only consider potential flows of the following type.

Definition 4.3.2. With any ¢ = (h,V) € Qs and g € C(q) we associate the unique solution @ :=
Alg, g] € C=(Fo; R) which vanishes at infinity to the following elliptic problem :

Aa = glpyr(p.—n)(z) in Fo, lim [Val=0, and d,a@=0 on 0Sp. (4.31)
N |z| =400
Note that since @ is harmonic outside of a compact set and lim |Va| = 0, in particular we

|z| =400

also have @ € CY , by using a Laurent series development to investigate its behaviour at infinity.
Furthermore, noting that [, 5, Va7 do = /. os, Va - n do =0, we may in fact conclude as in Lemma
A8 from [56] that Va(z) = O(1/|z|?) as |x| — +oo, implying that Va is in fact square-integrable.
Finally, we observe that the map ¢ — Alg, g] is smooth.

The following statement is an immediate consequence of the definitions above.
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Lemma 4.3.1. For any q = (h,9) in Qs, for any p = (I,r) in R?2 x R, and g € C(q), the unique

solution u in C°(Fy) to the following system :

div u = glgwyr(B.—ny, curlu =0 in Fy,

u-n= (l—l—rmj‘> -n on 08y, lim |u| =0,

|| =+ (4.32)
/ u-Tdo =0,
0Sp
is given by the following formula, for x in Fo,
u(@) = V(p- &(z)) + VAg, g)(). (4.33)

Above p - ®(x) denotes the inner product p- ®(z) = 320, pi®;(z).

Let us now address the solid dynamics. We aim for a reformulation as in Chapter [3] however due
to the fact that we are now in a domain which does not depend on ¢°, there will be terms that become

simplified. We introduce the following notations.

Definition 4.3.3. We respectively define the genuine and added mass 3 X 3 matrices by

m 0
Mg: 0 m
0 0

G o o

and,
M, = < Vo;(z) - Vo,(x) dac) ,
Fo
and we denote their sum by M.
We define the symmetric bilinear map T for any p = (I,7),p = (I,7) € R® by

1

O = [ (V- 8(@) (VG- $(2)00b(w) do -+ . ) € B

where T5Y™ denotes the symmetric part of the bilinear map T defined by

(Typ,p) = — /85 (I + m:J‘) -V(p-®(x))0,P(x) do + (mfll,()) € R3.

Note that T is no longer symmetric, however, we have 2<f‘sym,p,ﬁ> = (F,p,ﬁ)—i—(f‘,ﬁ,p), for allp,p € R3.
Let us first give the reformulation of the model as an ODE when there is no control.

Proposition 4.3.1. Given p® = (1°,7%) € C([0,T];R?), u® € C>=([0,T] x Fo;R?), we have that
(u®,p°) is a solution to with ¢° = 0 and zero initial conditions if and only if p* satisfies the
following ODE on [0,T]

M) +(T,p%,p°) =0 (4.34)
and u® is the unique smooth solution to the system with ¢° = 0.

Observe that the position of the solid plays no role in this case.
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Proof. The proof is straightforward based on the above definitions, and due to the fact that (4.25)) is
on a fixed domain, contrary to the case of Chapter 3| or [81].
We recall Lamb’s form : for any differentiable functions v;, vy defined on a subset of R? with values

in R? we have
V(vy - vg) = vy - Vg +vg - Vug — curl vy (vg)L — curl vg(vl)L, (4.35)

and we use it to obtain that the gradient of the pressure 7° in (4.25) with ¢° = 0 can be expressed as

vVl = —9u0 — %V(\u0|2) + V(ul - uOS) Note that the solid equations can be rewritten as
M) + (mr(1°)*+,0) z/ 1Op®do= | Vr-Vodx
aSO .7:0

1
= / <—8tu0 — —V(ulP?) + V(u® u%)) -V dx,
Fo 2

since even though uOS grows like z at infinity, the integration by parts above is justified since V® (and
implicitly u°) behaves like 1/|x|? as |z| — +00. We may conclude by using Lemma integrating
once more by parts and rearranging the appropriate terms to get (4.34)). O

Now we may move to the case with control. We introduce the following force terms.
Definition 4.3.4. We define, for any p = (I,7) in R3, a in C™®(Fp;R), Fi(p)[a] and Fy[a] in R3 by
Fi(p)la] = Fiala] + Fip(p)lel, where

1

Fiala] = — 2/88 Va()[2 0,8(z) do,

Fiy(p)la] =— . Va(z)-V(p-®(x)) 0,P(x)do + /BS 1+ TCCJ‘) -Va(x)0,®(x) do, (4.36)

Fla) =— /as a(z) 0p,®(z) do.

Observe that Formulas (4.36)) only require o and Ve to be defined on 9Sy. Moreover when these
formulas are applied to a = Alq, g] for some g in C, then only the trace of a and the tangential derivative
Ora on 08y are involved, since the normal derivative of « vanishes on 0S8y by definition, cf. (4.31)).

We define our notion of controlled solution of the “fuid+solid” system as follows.

Definition 4.3.5. We say that (¢°, p%, g°) in C([0,T]; Qs x R?) x C§°((0,T);C(q°(t))) is a controlled
solution associated with (4.25)), (4.26), if the following ODE holds true on [0,T] :
M@ + (T, p%,0°) = F1(p)[a”] + F2[8:0°), (4.37)
(@°) = R(¢")’,
where a°(t,-) :== Al¢°(t), ¢°(t, )] and

R(¢°) = R(W°) := ( R() 0 ) .

0 1

We have the following result for reformulating the model as an ODE.
Proposition 4.3.2. Given (¢°,p°) € C>®([0,T]; Qs x R?), v € C>®([0,T] x Fo;R?) and ¢° €
C§°((0,T); C((1))), we have that (1, ¢°,p°, ¢°) is a solution to (L28), (E28), if and only if (¢°,p°, ¢°)
is a controlled solution and

u’(t,z) = V(p°(t) - ®(x)) + VA (1), " (¢, )] (),
for any (t,z) € [0,T] x Fo, with ® and A given in (4.30)), respectively (£.31)).
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The proof is a straightforward adaptation of the proof of Proposition [4.3.1] noting that the regularity

of the functions involved allows us to perform all the integration by parts, and is therefore omitted.

4.3.2 Proof of the exact controllability result Theorem |4.3.1

In this section we observe that it is possible to prove Theorem by exploiting the geodesic
feature of the uncontrolled system and an impulsive control strategy, as done in Chapter [3] We will
skip certain straightforward parts of the proof and refer the reader to the aforementioned chapter for
more details. We will instead focus on presenting the strategy and highlighting the main differences
between our case and the bounded case in Chapter

We observe that Theorem can be deduced from a simpler approximative controllability result,
namely Theorem where the solid displacement is assumed to be small. The proof of passing from
small solid displacement to an arbitrary one is a straightforward adaptation of Section in Chapter
[B] therefore will be omitted.

As mentioned in the proof of Theorem in this chapter, respectively in Section of Chapter
[B] it is possible to pass from approximate controllability of the final position and velocity to exact
controllability using a topological argument (see Lemma . In this section however we will proof
that this argument could be replaced by a local inversion argument, both in our case and in the case
of Chapter |3l For simplicity, we will present the method only in the case of (u?,¢°,p?), where the fluid
is irrotational and the circulation around the body is zero, however, it can be extended to the general
case through some straightforward but technical modifications.

We have the approximate controllability result below, which can be seen as a generalization of
Theorem [3.4.1] from Chapter [3]

Theorem 4.3.2. Consider 6 > 0, So C R? bounded, closed, simply connected with smooth boundary,
which is not a disk, qo in Qs and T > 0. Then there exists 7 > 0 such that B(qo,T) C Qs, and for any

v > 0, there exists a mapping
T: E((Q(Ja 0)’7:) — OOO([Oa T]7 QJ X R3)

which with (q1,q}) associates (¢°,p°) where (¢°,p°, g°) is a controlled solution associated with ,
(4.26), and the initial data (qo,0), such that we have the following :
— holds and the map g1 — (1°,7°,u%) € C3([0, T}; R3) x C3([0,T); C3,(Fo)) is continuous,
where u® is the associated fluid velocity given by Proposition ;
— the mapping
(a1,41) € B((90,0),7) = T(q1,4)(T) € Q5 x R?

is C', and for any w in E((QO,O),f), we have

%T(w)(T) =1d+ O(v). (4.38)

Using this result, we may prove Theorem in the case of small solid displacement. Indeed, we set
T(w) = T (w)(T), for any w in B((qo,0), 7). Taking v sufficiently small, we see that g—g(w) is invertible.
Consequently one can use the inverse function theorem on T : there exists > 0 small enough such that
if ¢1 € B(qo,r), then T is invertible at w = (g1, 0). Therefore, 7(T~!(g1,0)) is a trajectory associated

with a controlled solution which at time 7" > 0 takes exactly the value (g1, 0). This concludes the proof
of Theorem [4.3.11
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Proof of Theorem without (4.28))

For simplicity, we will organise the proof of Theorem [4.3.2] into two steps. In this subsection we first
give our construction without trying to satisfy (4.28)). In Section we show how our construction
can be straightforwardly modified to ensure that (4.28]) holds, without interfering with the conclusions

presented in this subsection.

The choice of the form of the control - constructing the operator 7. Let us first present

our impulsive control strategy based on the intuition that we want to exploit the underlying geodesic

structure of . See [I3] and the references therein for examples of impulsive control strategies.
Let w = (q1,q}) € E((qo, 0), 77). We consider controls of the form

gg(t, x) = By(t)go(z) + By(T — t)g1(x), (4.39)

where 3, > 0, (6%),7 is compactly supported in (0,2n) and is an approximation of the unity when
n — 0%. Furthermore, we denote by (¢",p") the solution of with control gg, dropping the
dependence with respect to n > 0 from the solid trajectory for simplicity of notation.

It can be proven that, for a right choice of go, g1, the trajectory (q°, p°) will be close to the solution
(q,p) of the following toy system :

M + (T, 5,5) = B3(-) vo + BT = Ju1, § = R(D)p, (4.40)

with zero initial conditions and some wvg, v; € R? given.

On the other hand, we claim that there exists a local solution in Qs to the ODE system

M(p) + (T, p,p) =0, (7) = R(q)p, on [0,T], with g(0) = qo, ¢(T) = qi, (4.41)

where the map ¢; € E(qo,f) > (co,c1) € RO given by co(q1) = p(0), c1(q1) = p(T), is C'. Note that,
contrary to Chapter 3] M and I' do not depend on ¢ here, so proving the existence of (g,p) at first
glance does not seem to follow as in Chapter [3] at least not directly.

However, a simple way to prove the existence of a solution to is to first introduce a change
of coordinates which corresponds to changing back from a fixed domain to a domain which moves

according to the trajectory (g, p). Namely, setting

7(t, ) = ROI() (x = h(t)), alt,z) = ROV (p(t) - ®(7(t,x))), (4.42)
allows us to switch back to the setting where the solid position (and implicitly the fluid domain) evolves
and the control zone stays fixed in time. More precisely, (u,q) will satisfy an “inviscid fluid + rigid
body” system as in Chapter [3] but in the whole plane, without any control, with zero initial data for
1, and the endpoints of ¢ fixed as gg and ¢;. For a geodesic reformulation of the equation of ¢ in this
setting, see Section 4.1 in [57], and note that the existence of g then follows in the same way as the
proof of Lemma from Chapter

Setting

we obtain, similarly as in Section of Chapter [3] that the solution (g, ) of (4.40) satisfies

nli%h (@, ) — (@ D)llc(2nr—2m) =0 (4.44)
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and (q,p)(T") = (q1,q1) as m — 0.

The construction of the controls gg, g1 relies on the observation that when we approximate the
solution (¢°,p°) with (q,7), the term from which will behave like ﬁ% v; is Fi 4, and we use a
complex analysis argument to prove that it can attain any direction v € R3. Since we are in the
unbounded case, the construction of potential flows needs to be adapted in order to guarantee that the
flow velocity is in C3,(Fp) for instance.

We consider BC C B, closed such that d(BC, 0B.) > 0 and set

C(q) = {g € CYHR(W)T(B. — h);R) such that /g = 0} , (4.45)

for any ¢ € Qs. Note that the purpose of introducing C (q) is twofold : on one hand it allows us to
construct our controls more robustly with respect to ¢ € Qg, since if g € é(q) and ¢ is close to ¢,
it follows that g € C(§), in particular this will be useful to prove that the support of the control we
construct will stay sufficiently far away from Sp; and on the other hand we will construct a C'' map
with respect to ¢ below, which is easier to accomplish on the Banach space C (¢). Furthermore, we will
extend g € C(q) by 0 in B, \ B..

We have the following generalization of Proposition [3.5.1] from Chapter [3] which will be proved in
Appendix Recall that A was defined in Definition

Proposition 4.3.3. There exists a C' mapping g° : Q5 x R3 — é(Q(;) such that for any q € Qs we
have Range(3°(q,-)) C C(q) NC(q), and for any (¢,v) in Qs x R? the function a° = Alq,3°(¢,v)] in
C>(Fo; R) N CS (Fo; R) satisfies

AR =0 in Fo\ RW)T(B. - h), | ‘lim |Va’| = 0 and 9, @ = 0 on dSy, (4.46)
x|——+00
/ Va®|* 9,% do = v, (4.47)
080
/ a’8,®do =0, (4.48)
d0So
span{(n(:zc),acL -n(z)), = € supp Va(qg,-) N 880} = R3. (4.49)

Using Proposition we set
_ =0 _ =0
90 =g (0, —2v0), g1 =9 (q1,—2v1)

in , with v; as in .

It follows that for n > 0 small enough, since the solid displacement during the control phase
[0,2n] U [T — 2n, T is small enough, the interior control gg given by is truly supported inside the
control zone R(9°(-))T (B, — h°(-)).

With the choice of control presented above, we set T (w) := (¢°, p") and T = (q,p) the solutions of
(4.37)), respectively . We will prove that given any v > 0, for n > 0 small enough, the following
hold

(i) The toy model satisfies a similar condition to which we want to prove for 7, namely

T (w)(T) = 1d+ O). (4:50)
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(ii) The differentials with respect to w € P((qo, 0), 77) of the toy model and the real trajectory are
close in C([0,7]; R6%6), uniformly with respect to w € E((qo, 0), 7’), namely we have

< v, Yw € B((go,0),7). (4.51)

0 0 =
o700 gpTwo|

The result of Theorem without clearly follows from (i) and (ii), by fixing n = 19 > 0
small enough, and by observing that once 7 is fixed, we may easily deduce the continuity result with
respect to ¢; for (p°,u’) mentioned in Theorem Indeed, it follows from (4.30)), (4.31)), (4.37) and
Proposition that the only issue which needs further investigation in order to establish such a
continuity result is what happens when we differentiate A[¢%(%), gg(t,x)](x) with respect to ¢. Using
, the fact that gg defined in does not depend on ¢°, we obtain that

0 Alg°(2), gy (t, 2)](2) = 04 Al (1), gy (8, 2))() - (¢°)' () + Alg°(2), Degy (¢, 2)](x) = Alg°(), Degy (£, )] (2).

From here it is straightforward to conclude that the map
g1 = (1°7°,u°) € C3([0, T); R?) x C3([0, T); C2 (Fo))
is continuous.
Differentiating the toy model with respect to w € E((qo,O),F). We will prove the following
Lemma, which exactly implies (4.50)).

Lemma 4.3.2. Let w = (q1,¢}) € B((4,0),7), and consider the solutions (g,p) of [.A0) with v; =
(=1)M(ci(q1) — ¢}), i = 0,1, respectively (q,p) of (&.A41). Then (q,p) and (q,p) are differentiable with

respect to w, and we have that
im_[|(0wq; Owp) — (0w, Ouwb)llc(2n,7—27)) =0 (4.52)
n—0~+

and (0wq, Owp)(T) — Id as n — 0.

Proof. The existence of the differentials of (g, p) and (g, p) with respect to w = (q1,¢;) € B((g0,0),7) is
immediate. Furthermore, we may formally differentiate (4.40]) and (4.41)) to find that the aforementioned
differentials satisfy the following ODE systems :

M(0wp) +2((T, B, Ow,P))1<i<e = 53(%00 + ,6’7273111111,

(4.53)
(0wq)" = (DR(Q) - 0w, @) P)1<i<g + R(Q) O,
on [0,77], with Bn = Bp(T — -) and (0§, Owp)(0) = 0; respectively,
M(@wﬁ)' +2 (<F7]§a 6w¢15>)1§i§6 =0, (au@), = ((DR@) : a’wi(j) ﬁ)1§i§6 + R(‘?)awﬁa (454)

on [0,T], with 9,,¢(0) = 0, 0,5,q¢(T) = 1d, 8q/1c7(0) =0, (9q/1zj(T) = 0. In particular note that due to
944(0) =0, 94 q(T) = 0, we in fact have that 0, q and 9y p vanish on [0,T7]. It further follows from
[AT) that 9up(0) = duco(dr) = (g colar),0) and Bup(T) = dues(q1) = (B 1 (1), 0).

On the other hand, we may further develop 9,v; = (8qlvi,3q/1 v;) that appear in (4.53)), recalling

the forms of v; in the statement of the Lemma. We have

9qvi = Ogy ((—1)'M(ci(q1) — ¢}) = (—1)' My, ci(q1),

. (4.55)
Oy vi =0y (=1)"M(ci(q) — ¢}) = iM.
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Before we proceed to comparing the trajectories (09,,q, p) and (0, q, Owp), let us explain how one
can prove that they are uniformly bounded in L>°(0,T") with respect ton € (0,1) and w € E((CIO, 0), f).
Through similar methods as in Section of Chapter [3| it can be checked that ||p|lo is uniformly
bounded with respect to (n,w), respectively ||p||oo is uniformly bounded with respect to w. Using
Gronwall estimates for and (1.54), we get that ||0yp|/e is uniformly bounded with respect to
(n,w), respectively ||Owp|loo is uniformly bounded with respect to w. We refer the reader to Chapter
for further details.

Now we are ready to compare the trajectories (0y,G, Oyp) and (9 q, Owp), which we will do on three
time intervals, namely [0,2n], [2n,T — 2n] and [T — 2n,T], in order to exploit the supports of the
functions 3, and Bn-

Integrating on [0, 2] and taking into account (4.55]), we get that

2n
MOyp(2n) = MOy, co(q1) — 2/0 (T, p, 6wi13>)1§i§6 dt.

Using that ||p|lec and [|0ywp||cc are uniformly bounded with respect to (n,w), it follows that d,,p(2n)
converges to 9y, co(q1) as 7 — 01, uniformly for w € E((qo, 0), f), while the position 9,,G(2n) converges
to 9,G(0) =0 asn — 0T,

During the time interval [2n, T — 27|, the right-hand side of the first line in vanishes, so the
equation satisfied by (0,,q, Owp) is close to , provided that p is close to p (in the L® norm). We
may take the difference of (4.53)) and (4.54)), use a Gronwall argument, and the boundedness of
1Pllocs [|Dlloc, |OwD||ccs respectively ||Owp||oo, to conclude that holds. Implicitly, we have that

Id 9
(9w, Dup) (T — 27) — ( . ‘“C(l)(ql) ) L asn — 0% (4.56)

Finally, during the interval [T'—2n, T we proceed as we did during [0, 2n7]. More precisely, integrating
(4.53)), using a Gronwall estimate and the form of 9,,v1 from (4.55)) allows us to reorient the final velocity
Owp(T) from (9g,¢1(g1),0) to (0,1Id), while the position d,,¢(T") converges to (Id,0) as n — 01, which

concludes the proof. ]

Differentiating and estimating the real model. As we have also noted at the beginning of Section
4.3.2 a lot of the arguments we will use, in particular those using Gronwall type estimates to prove
the boundedness or closeness of certain trajectories, work in the same way as in Section of Chapter
[B] so for the sake of brevity we will often skip such details, only sketch the main elements of the proof
and refer the reader to Chapter

For simplicity of notation, we rewrite into the following form, in which we only consider the

dependences with respect to ¢%, p°, w and By. We have

M(po)/ + <F,p0,p0> = B%FLO(qO, w) + Bgﬁlﬂ(qov w) + (677 + ,377)F2(q0,p0, w) + (ﬁiy + /67/7)F3(q0)7
(4°) =R(¢")’,
(4.57)

where Bn = B,(T — -), the maps FLO,FM, Fy, Fy can be deduced from (4.37) and are of class C* in

(¢°,p") and C*' in w. Furthermore, note that we have

Fl,i(Qa w) = Fl,a [-/4 [Qago (CI% _2U2)H ) = 07 17 (458)
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where A was given in Definition 4.31] F} , in Definition 4.36| and v; in (4.43).
Using similar estimates as in Section of Chapter [3 it can be shown that ||p°||s is uniformly

bounded with respect to 0 < n << 1 and w € E((qo, 0),77).
The differentiability with respect to w of the solution (¢°,p°) to the ODE system (4.57) can be
inferred from the regularity of the maps involved. We deduce the following ODE system for (9,,q°, 3,p°).

M(awpo)/ +2 (<F’p07 8wip0>)1gi§6 = 6727 (8(11:—’1,0((]07 w)awq() + 8wF170(q07 ’LU))
+ 32 (04F11 (¢, )0 + 00 Fi1 (", w))
+ (/87’] + BW)VFQ(q07pOa w) ' (awq07 6wp0> Id) (459)
+ (B, + B1)04Fs(0) 0w,
(awqo)/ = ((DR(qO) ' 8wiq0) p0)1§i§6 + R(qo)a’wpoa
with (9q°, 0p?)(0) = 0. As before, it can be shown that ||0,,p°||oo is uniformly bounded with respect
to0<n<<landwE€ P((qo, 0), f), by a Gronwall estimate and the uniform boundedness of ||p°||oo-
Let us show that (9,q°, 0,p®) is close to (0§, dwp) in C([0,T]) by the means of a Gronwall
argument. In order to see this, we claim that the only terms in (4.59)) that need further investigation
are Oy, F LZ-(qO, w), ¢ = 0,1, since all the other terms are sufficiently regular for a Gronwall-type estimate,
uniformly with respect to n > 0. Indeed, (p°, 9,,p°, w) is uniformly bounded in (w,n), the other terms

on the right-hand side of (#.59) are regular with respect to (¢°, p°, w), we have By € L? uniformly with

respect to nn > 0, furthermore, we may estimate

|%ﬂ§/ 10u1°] < Ci
[0,2n|U[T—2n,T

on the support of 3, + BN,’W so that we can obtain ‘f(ﬁ;] + B;])(‘)qﬁ‘:,)(qo)awqﬂ < Cyn.

For the terms 8y, F} ;(q°, w), let us first observe that, since ||p°||o is uniformly bounded with respect
to0<np<<landw € E((QO, 0), f), there exists C' > 0 independent of (w, 1) such that |¢"(t)—qo| < Cn
for t € [0,2n] and |¢°(t) — q1| < O for t € [T — 21, T). Since 8,,F} ; are Lipschitz in ¢, we get that

‘&UFLZ'((]O(t), w) — 8w Fi(a:, w)( < Oy for t € [i(T — 20),i(T — 2n) + 21], i = 0, 1. (4.60)

Therefore, it suffices to estimate dy, F1 i (gi, w) on [0, 2] U[T — 27, T] instead of 8y, F1 ;(¢°(t), w). We use
(4.58)) and recall that w = (g1, ¢}), to infer from Proposition and Definition that

1
8’L)F1,a [A [QZ7§0 (QM v)jH = _QIda aqul,a [A [szgo (qhv)]] =0. (461)
On the other hand, using (4.58]), we get that
8wF1,i(qi, w) = &w’l}i. (4.62)

We may conclude by using (4.53)), (4.59), the respective uniform bounds for the solutions of the two

systems, furthermore, (4.60)), (£.62), and a Gronwall argument, that ||(9,q°, 8wp®)— (0w, Owd)le o) —
0 as 7 — 0T, uniformly with respect to w € E((qo, 0), 77), which exactly gives us (4.51)).

Proof of Theorem with (4.28)

Finally, in order to ensure that (4.28) holds, we will add another impulsive control around time 7'/2
which we will show does not affect (4.37) in any substantial manner.
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More precisely, we change the control given by (4.39) to the following

go(t,x) =P (t)7°(q0, —2v0) () + By(t — T/2+ n)g" (°(T/2 — 1), 0) () + By(T — t)g°(q1, —2v1) (),
(4.63)

where we note that due to Proposition m the function g° (¢°(7/2 — n),0) is non-trivial and uni-
formly bounded with respect to n > 0, due to the boundedness of ¢°(T/2 — ). By the same considera-
tions as in Section the associated solution (¢°,p°) will be converge to the solution (g, p) of
in C([0,T]) as n — 0%, since we deduced g° (qo (T/2 —n), 0) by applying Proposition with v = 0,

so its effect on the solid equation is neglectable as 7 — 07. Furthermore, we have
6w}?l,a [-’4 [QO(T/2 - 77),50 (qo(T/2 - 7])7 O)” = 07

SO0 we may repeat the same arguments as in Section for (0wq°, 0wp°) to arrive at the same
conclusion.
To ensure that (4.28) holds, we note that from Proposition and by continuity it follows that

span {(n(az),:vL -n(z)), = € supp VA [qO(T/Z),go (qO(T/Q -1),0)] N 380} = R3,
for n > 0 small enough. Due to , we have
u(T/2,) =V (p°(T/2) - @) + By(MVA["(T/2),5° (¢"(T/2 — 1), 0)] .

Since 3,(n) = O(1//n) and p? € L™ is uniformly bounded with respect to n > 0, it follows that for
n > 0 small enough (4.28) holds.
We conclude the proof of Theorem by further reducing (if necessary) and fixing n = n9 > 0

such that (4.28) also holds.

Remark 4.3.1. The fact that one can guarantee the small flux condition (4.24)) is a direct consequence
of the explicit formula for gg(t,x) given in and of a change of variables in time. Due to the
properties of 3, given at the beginning of Section one obtains that the flux is of order \/n. Hence
one can reduce 1 again in order to satisfy . It can be easily seen that this argument is also invariant

for passing from small solid displacement to an arbitrary one.

4.4 The boundary layer profiles

In this section we prove the existence of the boundary layer profiles appearing near the solid, and
provide some regularity estimates which we will use in the sequel to handle the boundary layers’ effect
on the linearized and remainder terms in the asymptotic development (4.17)), (4.21)).

4.4.1 The physical boundary layer profile v

At order O(y/€), we look for v = v(t, x, z) which satisfies the following equations

0

(u® —ug) -

o +v - Vu + (u® —ul) - Voo + %t —0.Qn — nzﬁzv =0%vin [0,T] x Fo x Ry,

82”('7 '?O)tan = 2X(') (D(uo)n + M(uo - U%))tan, in [O?T] X f07

v(0,-,-) =0in Fy x Ry,
(4.64)
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Here ¢ : R? — R denotes a smooth function which is introduced in the spirit of [27] and [70] such
that ¢ = 0 on 08y, ¢ > 0 in Fy, ¢ < 0 in the interior of Sy, and |p(x)| = dist(x,dSy) in a small
neighbourhood V of 08y, such that the normal n can be computed as n = —V close to the boundary
and extended smoothly in Fy. Furthermore, we consider x € C§°(Fo; [0, 1]) such that supp x C V and
X = 1 in a neighbourhood of 98y, constructed as in Section 3.4 of [27] such that the z-support of v
does not include points where V¢ vanishes.

Note that the introduction of such a boundary layer profile v in is due to the fact that the
PDE satisfied by u® is of first order, hence it can only satisfy a single scalar boundary condition on
08y, namely u® - n = (I° +r%1) - n, and therefore the full Navier slip-with-friction condition does not
hold for u°. This issue is corrected by v at order O(+/€) satisfying system . In particular, due to
the definition of x in the paragraph above, v is compactly supported in a neighbourhood of 9Sy.

We further introduce the spaces in which we will look for a solution v to , namely the weighted

anisotropic Sobolev spaces H*™P_ k. m,p € N, defined by their norms

+00 )
[ /0 /f(1+22)k|8§“8§v\2dazdz.
0

le|<m, j<p

We have the following existence and regularity result for v, which can be seen as a generalization

of Proposition 5 from [70].

Proposition 4.4.1. Let (h°,9°,u%) € C>®([0,T]; Qs) x C>([0,T] x Fo;R?) as given by Theorem
4.3.1 There exist a unique solution v € L?((0,T); H*>1) N L>((0,T); H*2%) to such that
0,v € L™([0,T] x Fo x Ry) and v satisfies the orthogonality property v -n = 0, for any z > 0.
Furthermore, we have that v is bounded in L*((0,T); H*>3), for any k € N, and one may define a
continuous map (hy,91) — v € L2((0,T); H*>3).

Scheme of proof. We follow the same strategy as in the proof of Proposition 5 from [70].
We first show that the pressure @ in (4.64) can be separated from the first equation, so we may

simply consider v as the solution of the linear PDE

.
2

0:0(+, 0)tan = 2X(-) (D(u)n + pu(u’ — ug))san, in [0, 7] x Fo,

v(0,+,+) =01in Fy x Ry.

(u

v+ [v- Vul + (u® — 1) - Vou + v pan — Do = 92 vin [0,T] x Fo x Ry,

(4.65)

Therefore it suffices to prove the conclusions of Proposition for v satisfying (4.65]). Indeed, once
the existence of such a v is determined, we may associate () as the unique function that vanishes as

z — +o00o and satisfies
2.Q =[v-Vul + (u® — ul) - Vv + %1 - n, in [0,T] x Fo x Ry. (4.66)
Since v vanishes for x outside of V, so does (). Furthermore, it is easy to check that we have

1R, -, )

L1 S ()]

3,2,05 for any t € [0, T}, (467)

where “ <7 denotes an estimation with a constant which does not depend on the parameter (hq, ;).
To deduce the existence of v, we note that the fact that Fy is unbounded does not interfere with

the methods used in [70] to prove the existence of such boundary layers, since as mentioned before, v
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is compactly supported in V, due to the definition of x. Therefore, the same methods as used in the
proof of Proposition 5 from [70] can be applied to deduce that there exists a unique solution v of
which satisfies v € L2((0,7); H**') N L>=((0,T); H*29), 0,0 € L=([0,T] x Fo x R}) and v-n = 0,
for any z > 0.

To obtain the higher regularity estimates in Proposition [£.4.1} we bootstrap the methods from the
proof of Proposition 5 from [70] in the following manner.

First, we note that having higher regularity with respect to x follows simply from the regularity
of u’ and repeating the same methods used to obtain v € L2((0,7T); H*?1). This allows us to prove
v e L2((0,T); H>1).

Next, we differentiate with respect to ¢ to obtain similar estimates on dyv, by using the higher
regularity of (u°, p®). This in turn allows us to estimate §2,v, using (4.65)). We iterate the process once
more to achieve the desired regularity v € L2((0,T); H*>3).

The continuity part of the result is also straightforward due to Theorem [4.3.1] The details are left
to the reader.

O

4.4.2 The second boundary corrector w

As in [27], v generates a non-vanishing slow divergence and tangential boundary flux, i.e. {div v} in
Fo, and (D(v(-,-,0))n+ pv)tan on So do not vanish a priori. This is undesirable if we take into account
, , since we would like to have that the boundary layers do not contribute to the divergence
of u® and that the Navier condition holds for u°.

To address this we introduce w given by
+oo
w(t,x, z) == —2e¢ *(D(v(t,z,0))n(z) + pv(t,x,0))tan — n(x) / div v(t,z,2") d2’. (4.68)
z
It is easy to check that we have
1
(D(v(+y+,0))n + pv)tan — 5(0zw)tan =0on Sy, and {div v} —n-{0,w} =0 in Fy. (4.69)
Furthermore, w also vanishes for x outside of V, and for any k, m,p € N we have
Hw(t? ) ')”k,m,p 5 ||1)(t, ) ')”k+2,m+1,p+17 for any t € [OvT]a (4‘70)

where once again we recall that we use “ <7 to denote an estimation with a constant which does not

depend on the parameter (hy, 7).

4.4.3 The inner domain corrector 6°¢

Finally, we note that w generates a non-vanishing boundary flux w-n on Sy and a slow divergence.
To address this, for fixed time t € [0, 7], we define 6° as the solution to

AG° = —{div w} in Fy, 0,0° = —w(t,-,0)-n on 95y, lim |V =0, (4.71)

|z| =400

plz)

where we recall that for f = f(¢,x, z), we denote {f} its evaluation at z =

B
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Proceeding as in [27], we see that V¢ satisfies

VO + (u® —ul) - V(VO?) + V6 - Vi +rOVE0° + Vpf =0 for = € Fy,
div ° = —{div w} for x € Fy, (4.72)
VO° - n=—w(t,-0) nforxzedSy, lim |VI|=0.

|z| =400

with pressure term p® := —9;6° — (u® — u2) - V6°. Furthermore, we have

16t e S & 5wt Momtzm + [0 lmi1.0, (4.73)

for any t € [0,7], m =0,1,2.
Gathering (4.69), (4.71)), and the fact that v-n = 0 for any (¢, z, z), we may conclude that we have

div (ve{v} +e{w} 4+ Vo) =0 in Fo,
(D501 + 10)ian = 5 (0ot0)ian = 0 01 S,
(Ve{v} +e{w} +eVO) - n =0 on Sp.

Taking into account (4.25), (4.64)), this allows us to look for a linearized term u' (with divergence g')

and a divergence-free remainder u% satisfying the boundary conditions

utn=ug-n,

UR M =URg N,

(D(uR)n)tan = —p(ufz — uf g)tan — (D (u' + VO +w(-,-,0)) n) + p (u' — ug + VO +w(-,-,0))

tan ’

on Sy, so that u® defined via (4.17)), (4.21]) satisfies the Navier boundary conditions in (4.11]) and has
divergence ¢° + eg'.

4.5 The first order term u!

In this section we construct a controlled solution to the linearized terms appearing in the asymptotic

expansion ([L17), ([E21).

At order O(¢), we look for (ul, 7!, 1!, 7!, g') satisfying the following system.

0
8ut + (u® —ud) - Va' + (u' —ug) -Vl + 0%t + ot (0 + vt = Vg,
div ul = ¢! for x € Fo, u'-n=u}-n for z € dSy, | |1g$ lul| = 0,
m(l') = / (7" +Q(++,0) + p°) ndo — / 2D (u®)n — d,v(-, -,0)) do (4.74)
85() 850

— mr0 (1Yt — mart (1974,
J () = / (' +Q(-,-,0) + p°) zt -ndo — / zt - (2D(u%)n — d,u(,-,0)) do,
630 aSO
where u}(t,z) = I1(t) + rl(t)at, for t € [0,T], with

ut(0,)) =u*,  (1Y,71)(0) = (b, 9)). (4.75)
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Note once again the subtle dependence on £ > 0 due to p° and u*, which we have ommited from the
notation, and recall that u* was constructed as per (4.22) and is uniformly bounded in C? with respect

0 is irrotational.

to € > 0. Furthermore, Vg¢" = AuY, since u

The position of the solid ¢! = (h',9¥') can be associated analogously with , however, we
remark that the solid position ¢! does not play an important role in our control strategy, as long as
it is bounded independently of &, due to the scaling in . Once again, observe that using Lamb’s

form from (4.35), the gradient of the pressure 7! in (4.74) can be expressed as

Val = 9! = V(@ -ub) + V(u' - ul) + V(- ul) + Vg® — w(u® —ud)t, (4.76)

1

where w! = curl u!.

We have the following approximate controllability result regarding the solid velocity (I*, 7).

Theorem 4.5.1. Let T > 0, Sy C R? bounded, closed, simply connected with smooth boundary, which is
not a disk, and u* € C™(Fo)NL?*(Fo), v € R constructed as per [£22)), po = (hf,94),p1 = (l1,71) € R3,
such that

div u* =0 in Fo, curlu* € C§°(Fp), lim |u*(x)| =0,

|z|—=+o0
u*-n = (hy +9x") - n on dSo, / u* - Tdo = 7.

0So
Given v >0, 6§ > 0, ¢ > 0 and a solution (u°, h°,9°, ¢°) as described in Theorem there exists
a control g' € C$°((0,T) x Fo), and a solution (I',r,ut) € C°°([0,T];R? x C(Fo; R?)) to ([{.74),
[@.75), which satisfies ut € C([0,T); L*(Fo)) and

(1Y, 7 (T) = (11,71)] < v, supp g'(t,-) € R(W°(t))T (B. — hO(t)), for all t € [0,T).
Furthermore, (11,71, u') is uniformly bounded in L>®(R3) x L>(C% (Fo)) with respect to e € (0,1];
and one may define a map (hy,91,11,71) — (11,71, ult) € L2(R3) x L>®(C2,(Fy)) which is continuous,
uniformly with respect to € € (0, 1].
The rest of the section is dedicated to proving Theorem [£.5.1] The proof will be based on a similar

strategy as that of Theorem before, with a slight simplification due to the fact that we do not

want to control the solid position, but only the velocity. Hence one impulsive control will be enough.

4.5.1 Vorticity

First we consider w! as the regular solution of the vorticity equation

Ow' 0_,0 1 1.0
W+(u —ug)-Vw +wg’ =0 for z € Fo,

w!(0,-) = curlu*(-).

(4.77)

Note that for w! we have once more omitted the dependence with respect to € > 0 from the notation.
We recall the definition of the hydrodynamic Biot-Savart operator on Fp, which can be seen as the
“inverse” of the curl operator, namely for w € C§°(Fy), we consider Kylw] € C®(Fy) given as the

unique solution of the system
div Kglw] =0, curl Kyw] =w in Fo,

Kyglw]-n=0o0n 0S8y, lim |Kg[w]| =0,
x oo

||+ (4.78)

Kylw]-7do = 0.
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We have the following existence and regularity result regarding the vorticity, in particular to inves-

tigate the dependence with respect to (hy,91) € Qs and € € (0, 1].

Proposition 4.5.1. Let (h1,91) € Qs, (¢°,p°, u°) as in Theorem . There exists a unique smooth
solution w' € C>([0,T); C§°(Fo)) of such that we have the following.

(i) Kglw'] is bounded in L°°(C%(Fo)), wt is bounded in C([0,T] x Fo), both uniformly with respect
to (h1,91) € Qs and £ € (0,1], furthermore, the maps (hi,91) — Kylw!'] € L>®(C% (Fo)),
(h1,91) = w! € C([0,T] x Fo) are continuous, uniformly with respect to € € (0,1].

(ii) There exists R > 0, which does not depend on (h1,91) € Qs ore € (0, 1], such that supp w!(t,-) C
supp w'(0,-) + B(0, R), for all t € [0,T].

(iii) Kpg[0ww!] is uniformly bounded in L*(L3(Fy)) with respect to (hy,91) € Qs and € € (0,1], and
the map (h1,Y1) — Ky[ow!] € L*(L3(Fy)) is continuous, uniformly with respect to e € (0, 1].

Proof. Note that the existence and regularity of w' is not in question here, it is classical that if the
initial vorticity is smooth and compactly supported, then there exists a unique smooth solution to
which is also compactly supported at any time. However, tracking the effect of the control ¢°
and initial data u* in to get uniform estimates with respect to (h1,v;) and £ € (0,1] is not
trivial. Recall that u* is uniformly bounded in C? with respect to ¢ € (0, 1].

(1) It is classical that, for any a € (0,1) and for any w € Cé’a, we have

K w]l20 S e (4.79)

On the other hand, from (4.77)) it follows (c.f. [§]) that

d
it — =l (t Mo < 9% ) @ (2, loa + allV(u® = ug)(t, sl (t, ) llo.ay

where dt denote the right derivative. A Gronwall estimate gives us
0 0
@ ¢ Yo < Clla (0, Yo e e Tl < (4.80)

due to the regularity given by Theorem [4.3.1] Iterating this argument once again by differentiating

(4.77) with respect to x gives us

d
aﬂvwl(t,')\lo,aﬁ||V90(tw)w1(tw) +lg°(t, ) VWl (t, loa + Ve () - VEO(t, )0

2OV (¢, o + allV(u® = ug) ()l [V (2, )lo,as

from where we deduce once more by a Gronwall estimate and (4.80]) that
0 0
(¢l < Ol (0, ) e ettt > < €, (4.81)

thanks to Theorem Therefore, (i) follows.
(ii) We define ¢(-) € C1(Fy), t € [0, T, as the flow of u® — u2,

Son(a) = (0 — )t 0(2), dole) = . (1.82)

It is classical that, for any t € [0,7], ¢; : R? — R? is a C'-diffeomorphism, and (#.77) can be solved

by the method of characteristics, namely we have

- t (s, ¢s 0 ;1 () ds
wht,z) = w0, 07 1 (z)) e /09( $e0 9 (2) (4.83)
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Therefore, the support of w! is transported by ¢;, and for any x € supp w(0, -) we have

t
|6e(x) — | < [[u’llLreg) + T loo + TNr%le ~ max 2] +/ 70(s)[| s () — x| ds,
z€supp w(0,-) 0

once again a Gronwall estimate gives us
|91(2) — 2| < R,

with R > 0 uniform in (h1,%1) € Qs and € € (0, 1], due to the regularity given by Theorem This

concludes the proof of (ii).

(iii) From (ii), (4.77)) and (4.81)) we deduce that
18:0" (¢, Moo < CUP° ()] + [[u°(t, oo + 19°(E )loo)s

for some C' > 0 which is uniform in (hy,91) € Qs and ¢ € (0, 1]. Therefore, using the fact that w! is
supported in supp w'(0,-) + B(0, R), we have

||atw1HL2(L6/5) <C. (4.84)
Finally, we apply Lemma 1 from [59] with p = g and v = 0 to get that
1Ko | 2ws) < Cllow* 2o < C.

with C' > 0 uniform in (h;,91) € Qs and € € (0, 1]. The continuity part of the result follows once again
from Theorem [4.3.1]
U

4.5.2 An ODE reformulation in the linearized case

In this section we will give a different ODE reformulation of the solid equations in compared
to Section due to the fact that the equations are now linear.
We introduce the stream function 1) € C*°(Fy) for the circulation term in the following way. First
we consider the solution v of the Dirichlet problem A¢) = 0 in Fy, ¥ = 1 on 88, | ligls— [Vip(z)| = 0.
)

|
Then we set

-1
Y= — </aso Ot da> Y, (4.85)

such that we have

/ O do = —1,
0Sp

noting that the strong maximum principle gives us 8,7 < 0 on 8Sy. Note that we have V¢ € C2 (Fo).

We remind the reader of the definition of the Kirchhoff potentials given in , as well as M
from Definition [£:3:3] We further introduce the following notations for some new force terms appearing
in the solid equations in , which do not depend on the control.

Definition 4.5.1. Given a solution p° = (1°,79) € C*°([0, T};R3), u® € C>([0,T] x Fo; R?) to
with zero initial conditions, we define for any p = (I,r) € R?, w,0 € C*(Fy), € € (0,1] and t € [0,T),
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the functions

A(t) =M1 Q(t,,0)n = 2D(u(t, ))n + 0zv(t, -, 0) do
| aso \ &+ (Q(t,,0)n —2D(u’(t,))n + d:v(t, -, 0)) ’

Be(t) =M1 [ pF(t,-) 8, @ do,

0S8y
Clw,d)(t) == — M. (KH[@] +w (W0t ) — ul(t, -))L) Vb dr
Fo
M @) = ug(t ) - (YT () + Kl (@) ) 0,0 do,
0S8y
(L),p) =M [ (4 rat) () = (W)~ ub(t, )V (p- @) 0, do
9S8y

— M (mro(t)zl +mr(0(1), o) .

The following Lemma gives us the regularity of the terms introduced above with respect to (hy, %) €

Qs.

Lemma 4.5.1. Let (h1,%1) € Qs, (¢°,p° u°) as in Theorem and w' be the solution of (4.77).
We have A, B, Clw!,0w!] and L are uniformly bounded in L*(0,T) with respect to ¢ € (0,1] and
(h1,91) € Qs. Furthermore, the map (h1,91) € Qs — (A, Be, Clw', 0], L) € (LQ(O,T))4 is uniformly

continuous with respect to € € (0,1].

Proof. We have
IAB] SNQW 11 + Ve’ () [loo + 10:0(B) 1,1 S No@)llz.21 + Ve ()l + [[0(E)[|1,1,2-

due to . The boundedness result for A follows from Theorem and Proposition so does
the continuity in (h1,91).

Note that we have p* = —9;0° — (u® — uOS) - V¢, so the result for B. holds as soon as 0;0° and V6°
are uniformly bounded in L?(H?!) with respect to e > 0 and (hy,9;) € Qs.

Since 6° depends linearly on w, which in turn depends linearly on v, similarly to and ,

we may estimate
10:6° () |1 S N10pv(E)ll2,3,1 + (|00 ()] 1,0,1-
We estimate 0,v by using equation (4.65)), to get that

190 @llkmp S (14 O + 100 ) O 1ms1942,

therefore, using Theorem and Proposition we get that 0;6° is bounded in L?(H1), uniformly
with respect to e > 0 and (h,v1) € Qs.

Finally, using (4.70) and (4.73), we estimate
VO ()l S llv(®)ll23,1,

and conclude the boundedness and continuity in (hj,%;) of Be by once again using Proposition m

and Theorem 3.1
The results for Cfw!, d;w'] and L follow from Theorem and Proposition In particular, for
the term f]_.o Ky[0uw'|V® dx recall that V®(z) = O(1/|z|?) as |z| — 400, therefore V® € L3/%(F).
O
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In order to treat the effect of the control, we recall Fo from Definition [4.3.4] and complete it with
the following.
Definition 4.5.2. Given a solution p° = (1°,r9) € C*°([0, T}; R?), u® € C>([0,T] x Fo; R?) to

with zero initial conditions, we define for any o € C™°(Fo; R) the map

Filal(t) = — . Va - (u'(t,-) — ud(t,)) 0,® do.

We define our notion of controlled solution of the linearized fluid-solid system as follows.

Definition 4.5.3. Given a controlled solution (¢°,p°, g°) associated with ([#.25)), ([#.26), we say that

(pt, g') in C°°([0,T; R3) x C5°((0,T);C(q"(t))) is a controlled solution associated with (4.74]), (4.75))
if the following ODE holds true on [0,T] :

(') = S: + (L,p") + M Fi[a!] + M R[0,a'], (4.86)
with p*(0) = (h{,¥}), where a'(t,-) = Al¢°(t), ' (¢,-)] with A given in [£.31), and S. := A+ B. +
Clwt, dwl].
We have the following reformulation result for the linearized fluid-solid system.
Proposition 4.5.2. Given a controlled solution (¢°,p°, g°) associated with , ,
pt e C®([0, T RY), u' € C([0,T] x Fo; R?)  and g* € C3°((0,T);C(¢°(1))),

we have that (u',p', g') is a solution to (£.74), (L.75) if and only if (p*,g') is a controlled solution
associated with (&.74), [.75) and u' is the unique smooth solution to the div/curl type problem

div u! = gl]lR(lgO)T(Bc_hO), curlu! = wh in Fp,

ul-n = (ll + rlxl) ‘n on 0S8y, lim |u'| =0,
—+00

(4.87)

||

/ul-TdO':/ u* - Tdo =:7,
68() 880

Remark 4.5.1. The last equation in (4.87) can be easily checked as a generalization of Kelvin’s theorem
of conservation of the circulation around the body for the linearized Euler equation (4.74]), (4.75)).

fort €[0,T].

Remark 4.5.2. Integrating (4.77) on Fo, using the fact that ¢° = div (u® — u%) and the divergence
theorem, it follows that [w'(t,-) is conserved for t € [0,T). Since we have ug € L*(Fy) and that
the circulation around the solid is conserved in (4.87), this implies that we have ul(t,-) € L?(Fy) for
te[0,T].

Scheme of the proof of Proposition[{.5.3. We have the following result for solving div/curl systems of
type (4.87)), which is a simple consequence of (4.30), (4.31]), (4.78]) and (4.85)).

Lemma 4.5.2. For any ¢ = (h,9) in Qs, y €R, p=(I,7) in R? xR, g € C(q) and w € C§°(Fy), the

unique solution u in C(Fy) to the following system :
div u = glgyr(p.—p), curlu=w in Fo,

u-n= (l—i—rxL) -n on 08y, lim |u| =0,
|z| =400

/ u-7do =ry
0Sp

(4.88)
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is given by the following formula, for x in Fy,
u(@) = V(p- ®(x)) + VAlg, gl(2) + 7V (2) + Kplw)(z). (4.89)

From here on it is straightforward to conclude the proof of Proposition [1.5.2]in the same manner as
for the proof of Proposition by using to express the pressure appearing in the solid equations
in , expressing u! appearing in with the help of Lemma and using integration by parts
(by noting the regularity at infinity of the functions involved) to obtain the terms given in Definitions
A5 and 5.3l The details are left to the reader.

O

4.5.3 An impulsive control strategy to control the final velocity p'(T) - Proof of
Theorem [4.5.1]

Similarly to the case of (¢°,p°), we will control the ODE by the means of impulsive control,
however, due to the fact that we only want to control p!(T) and that equation is linear, the
geodesic argument can be omitted and it is sufficient to use one impulsive control at for instance time
T/2 (hence condition (4.28))). The form of the control will also change from due to the linearity
of with respect to the control.

Let (h1,91) € Qs and (q°, p°,u®) be given as in Theorem We consider controls of the form

gy(t,2) = Bt = T/2 +n)g' [W’(T/2,) — ug(T/2,)] (¢°(T/2 = n),v) (x), (4.90)

where v € R3, (ﬁ%)n is supported in [0,2n] and is an approximation of the unity when 7 — 0%, and g

is deduced from the following result.

Proposition 4.5.3. Let K be a compact subset of C1(0Sy;R?) such that for any V € K we have
V.n=0 ondSy and

span {0, ®(z), x € 0Sy N supp V} = R3. (4.91)

For any V € K, there exists a continuous mapping §'[V] : Qs xR® — C(Qs) such that for any q € Qs we
have Range(3'[V](q,-)) C Cq)NC(q), and for any (q,v) in Qs x R3, the function @' = Alq,5'[V](q, v)]
in C®(Fo;R) N C3 (Fo; R) satisfies :

Aa' =0 in Fo\ RW)T(B. - h), | ‘lim |Val| =0 and 9, @ =0 on 8Sy, (4.92)
T|—-+00
val Vo, ®do =v. (4.93)
0S80

Furthermore, the map V € K — g[V] € C(Qs x R3;C(Qs)) is also continuous.

Proposition will be proved in Appendix Note that to deduce g' in (4.90) we apply
Propositionwith K= {u’(T/2,-) —u%(T/2,-), (h1,91) € Qs}. Therefore, we have that the map
(h1,91) € Qs = g [u®(T/2,-) —ud(T/2,)] (¢"(T/2 —1n),-) € C(R*C(¢°(T/2—n))) is also continuous,
thanks to Theorem [£.3.11

We recall that BC C B¢ and C were introduced in to reduce the size of the activ control zone
B, enough such that for n > 0 small enough, as long as the solid displacement during the control phase
[T/2 —n,T/2+ 7] is small, we have that g'(¢,-) given by is supported in R(¥°(¢))T(B. — h°(¢)),
for any ¢ € [0, 7.
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We set

vi=—M|e YzTN

+ ./\/le/O

in (4.90), which is uniformly bounded with respect to n,e € (0,1] and (h1,91) € Qs due to Lemma

4.5.1 We define p! to be the smooth solution of (4.86) with control (4.90) and initial data (h{,d}),
dropping once more the dependence on n > 0 from the notation for the sake of simplicity.

T t
. /T L(t) dt . /T L(s) ds
p1— / e 72N S.(t) dt
T4

(4.94)
T

L(t)d L-n — | L(s)ds
0 po+/ 77e /0 ) S:(t)dt
0

We will prove that p'(T) — p; as  — 0%, uniformly with respect to € € (0,1] and (h1,91) € Qs.
First let us observe that on the time interval [0,7/2 — 7] the control vanishes, so using Duhamel’s
principle on (4.86)), we may express

z N ¢
pl(T/Q—n):e/O o po + / 2ne_/0 L(S)dsSs(t)dt . (4.95)
0

On the other hand, integrating ([4.86) on [T/2 — n,T/2 + n] and using that g, vanishes at the
endpoints of this interval in order to eliminate the term M~!Fy[0;al], we get
Z+n

P24+ ) = p(T/2— ) + / S.(t)dt
bl

I+
b BT/ MU R LA, 5 T2 ) o)

2
Using again Lemma [4.5.1] we get that the first integral term in the right-hand side above converges
to zero as 7 — 07, uniformly with respect to ¢ € (0,1] and (hy,91) € Qs. On the other hand, from
Theorem [4.3.1], Proposition [4.5.3] and the uniform boundedness of v it follows that the second integral
term converges to —M~lv as  — 0T, uniformly with respect to e € (0,1] and (h1,9;) € Qs. We
deduce that

p (T/2+n) —p (T/2—n) = —M1vasn— 0T, (4.96)

uniformly with respect to € € (0,1] and (h1,91) € Qs.
Finally, applying Duhamel’s principle on [T'/2 4+ n, T] gives us

T t
/T L(t)dt T —/T L(s)ds
pH(T) =e 2t P (T/2+n) + /T e Tzt S.(t)dt | . (4.97)
P

We may therefore deduce from (4.94]), (4.95)), (4.96]) and (4.97) that

pH(T) — prasn — 0T,

uniformly with respect to € € (0,1] and (h1,91) € Os.
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We conclude the proof of Theorem by fixing n = 11 > 0 in function of v > 0, associating an
appropriate fluid velocity u! with (p!, g}]) as in Proposition and observing that the regularity
with respect to € € (0,1] and (hy,%;) € Qs stated in Theorem is guaranteed by our construction
(by using Theorem Proposition Lemma and Proposition . In particular we note
that since n > 0 is now fixed, there is no issue with establishing the regularity with respect to ¢ and
(h1,91) of the term M~ Fy[9,@!] via Proposition which we did not need to investigate previously

in our strategy.

4.6 Estimating the remainder

In this section we establish the existence (in a weak sense) of the remainder terms in (4.17)),
(4.21)), such that they satisfy an appropriate energy estimate and continuity property with respect
to (hl,ﬁl,ll,’rl).

4.6.1 The equation of the remainder and weak solutions

As noted before, at this point we have not yet proven the existence of the terms (u®, 7<%, r®),
however our goal is to define a weak solution (u%,1%,7%) for the remainder in an appropriate way such
that defining (u®, %, r%) by the right-hand sides of the asymptotic development (4.17), (4.21) gives us

a very weak solution to (4.11)) in the sense of Definition
Therefore, formally we can look for the equations of the remainder (u%,7%,0%,7%) by replacing

(uf, 7,15, 7%) in (4.11]) with the terms given in the expansion (4.17)), , and by simplifying the
equations using the systems (4.25)), (4.64), (4.68)), (4.72) and (4.74) satisfied by the respective terms in

the expansion, which we have constructed in the previous sections. We obtain the following.

8 £
I ek — ufyg) - Vil + erh(ui)t + Yk — eAuk = {£7} - A%(uf pR),

divugk =0 for x € Fo, lim |ufk| =0,
|z|—+o0

(D(uz)n)tan = —p(uf — u%,s)tan + (N)tan, ugp-n = Uf%,s -n for x € 0S5,
(4.98)
m(lg) = / mhn do — 24/ Y do —2¢ D (uR)ndo
850 830 aSO
— merk(Ip)" — F&(pR),

\7(7“%)/—/88 hat - ndo — 242 l‘L'ZEdU—Q&/ zt - D (u§)ndo,
0

88() 8S(J

where ug, o(t, ) = I5(t) + re(t)zt, for t € [0,T], with u%(0,-) = up — u*, (I%,7%)(0) = 0, and recall
that as per (4.22)), we have

luz:(0, )|z < €V/°.

Furthermore, we have

N¢ = — (D (u1 + V6 4+ w(-, -,O)) n) +p (u1 — U}g + V6 4+ w(-, ~,O)) , (4.99)

S = D (u(-,-,0))n — %azw(-, L0) 4 VED (u! + V6 +w(-,-0))n, (4.100)
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A (s ) = (85, — us) - V(0 + VE{w} +eul + e{w} + Ve
+r5(u® 4+ Ve{v} 4 eul + e{w} +eVO) Lt + (0 + erl) (up)t (4.101)
+(u® 4+ Ve{v} +eul +e{w} + eV —ul — cul) - Vug,

Fa(pg) = m((r0 +er') (%) +er' (DT + 50 +elh)h), (4.102)
and
fF=TA+ e+ T (4.103)
where
f& = (Apd.v —2(n - V)0,v + 02,w) + Ve (Av + Apdw — 2(n - V)0,w)
+€ (Aw + Aut + AVGE) )
fo=—(v+ve(u —ug+w—+Ve)) -V (v+ e (u' +w+ V)
— (u —uQ) - Vw —w-Vul + (u! —ug +w + V) - nd, (v + Vew)
—Vertot —ert(u! + w+ Voot — Ot
ff=-vQ - dw.

(4.104)

Note that the solid position ¢ = (h%,¥%) can be associated analogously with (4.12), but in order to
get the desired convergence in (4.17)), we do not need to work with it explicitly.
Recall the definition of the spaces H(0), V(0) from (4.9). We define a notion of weak solution to

(4.98) in the following manner.

Definition 4.6.1. We say that
ug € C(10, T]; #(0)) N L*((0,7); V(0))

is a weak solution to the system (4.98)) if we have that, for all ¢ € C*°([0,T];H(0)) such that ¢|f0 €
C>([0,T7; C§°(Fo; R?)), the following holds on [0,T],

t
(ur(t, ), (Do) = (WR(0, ), #0, Do) = /O (w5, ), Bud (s, o) ds
t
+5/0 /fo [(U% —ups) - Vo uh —ri(ug) " gb} da ds
t
—25/ . D(u%) : D(¢)dxds — 2&7#/ /aso(u% _ U%S) (¢ — ¢g) do ds

_/ (mgrR(F) l¢—|—FC(pR) ly d3+// (Lf} — A% (w5, p5)) - b dx ds

—2\[/ /BSO< >da (g, 70) ds—|—2s/ /880 (¢ — bs) - 7) do ds.

In order to see that the above definition of a weak solution is justified, we suppose that (u%, 7%, l%, %)
is a sufficiently regular strong solution to and that ¢ is a test function as in Definition . In
this case one may multiply the PDE in by ¢ and perform the usual operations for der1v1ng the
variational formulation for Leray-type weak solutions for viscous fluid-solid systems. The terms on the
right-hand side of the PDE in can be treated as a source term and as such pose no problem.
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However, let us explain how to treat the terms containing N¢ and 3¢. One may integrate by parts

D(ug)n do - (1.1
(mL-(D@%)n)) (g:7s)

and proceed as in Lemma 1 from [86] to obtain

Bui-o=—2 [ D(uz): D) +2
Fo Fo 9S8y

2 / (D)) - 7) (6 — bs) - 7) dor
0S8y

Combined with (D(ug)n) - 7 = —p(uy — ugz g) - 7+ N° - 7, the solid equations from (4.98), and the

usual formula for the pressure term

(4.105)

/ vt o= | w5 ( V! ) do - (lg, 7o), (4.106)
Fo 0So r—-n
one can easily check that the terms with N and ¥° in Definition [4.6.1] are justified.

Finally, note once more that if u, € C([0, T]; H(0)) N L%((0,T); V(0)) is a weak solution in the sense
of Definition m then u® € C([0,T]; H) N L?((0,T); V) constructed via (4.17), is a very weak
solution in the sense of Defintion 2.1

4.6.2 Existence and continuity
We have the following result for the existence of the remainder.

Proposition 4.6.1. There exists &y > 0, independent of (h1,91,11,71), such that for any e € (0,0,
there exists a unique weak solution u% € C([0,T];H(0)) N L2((0,7);V(0)) to in the sense of
Definition [4.6.1 with initial data given by u5(0,-) = ug — u*, (I5,7%)(0) = 0. Furthermore, we have the
following :

(i) This unique solution satisfies the following energy inequality at time T :

T
DT + 0T, VI3 + D)y e [ [ o sl dods < €%, (4107
0 0S8y

where C = C(v) > 0 is independent of ¢ > 0, and depends continuously on (hy,91,11,71).
(ii) The map (h1,91,l1,r1) = pR € L>(0,T) is continuous.

Note that to prove Theorem we only need the estimate |(15,75)(T)| < Ce'/3. However, the
PDE satisfied by u% in is no longer of Euler- or linearized Euler-type, but truly of Navier-Stokes-
type. That is why we estimate the fluid and solid velocities of the remainder together via an energy
estimate, instead of examining only the solid equations and using some well-constructed decomposition
of the fluid velocity as we have done in the previous sections, which would not work in this case.

We split the proof of Proposition [4.6.1] into three parts : first we give an a priori estimate for the
added source terms in Definition [£.6.1]; then we prove the existence result with the energy estimate

from (i); and finally we explain how to obtain the continuity result from (ii).

Estimation of the source terms

The proof of the existence relies on the classical Faedo-Galerkin method for Navier-Stokes-type
problems, therefore it requires an energy estimate on the whole time interval [0, T for weak solutions
in the sense of Definition F.6.1]

In preparation for such an energy estimate, we will bound the terms containing N€¢, ¢, A¢ and f¢
in Definition using the following Lemma (recall the definition of the space #(0) from ([£.9)).
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Lemma 4.6.1. There exist C > 0 and b € C([0,T];R;) which depend continuously on (hy,91,1l1,71),
such that

(i) /T /BS (12512 + |N®|?) dodt < O(1 + %),
0 0
(ii) ‘/f A€(¢7p¢>)~¢‘ <b(t) (Ips ()] + l6(t,)13) , V¢ € [0,T],

¢
i) [ [y o] ds < 02 (14 max (o) + o) ) vt € 0,71,
0 F s€|o0,
uniformly with (;’espect to e € (0,1], for all ¢ € C([0,T];H(0)) such that ¢(t,-) is compactly supported
in R? for every t € [0,T) .
Proof. (i) We have the following, by using (4.70) and (4.73]),
1D, )l < w2,
10w (t, - )l g S lw(®)ll112 S [lo(B)]3.23,
[D(w(t, - 0) g S w12 < llo()3,3.2,

1DV )l S 16" Ol S e lo(@)llziaz + o) 1,20,

T
/0 /8 1D o dt S

Similar estimates hold for the lower order terms in (4.99), noting that we have p' € L. The result
follows from Theorem [£.3.1] and Proposition [£.4.1]

(ii) Since ¢ is compactly supported in the space variable, we have

~— ~— ~— ~—

)
)

1
/f (W0 VE{0) + eul +<{w) + <V —u - cul) - Vo bz = /f (¢° + eg")lof da,
0 0

which can be estimated by C ([[u®(t)]|c1. + llu' (t)llcr ) ll¢(t, )II3.

Next we set

Ve = +eul +eVEE.
We may estimate
‘ i ¢-VVE- ¢’ < OV’ (t)l|oo + IVt (t)lloo + |65 ()| ) (1113,
0

where C' > 0 does not depend on ¢.

Recall that (4.70) and (4.73) give us

ello° ()l S e/ o@®)llzs.3 + ello(®)ll,3.0-
We use Lamb’s form from to get
—V (s V) = —¢g - VVE +rs(V)" +ew'(ds)" (4.108)
On the other hand,

Vips-V®)-¢= ¢s - VO, Pdo - py. (4.109)
Fo 9Sp

Therefore, we may conclude by using once again that w' is smooth and compactly supported, that

‘/J‘—o ((¢ = ¢s) - V(u' +eu’) +ro(u’ + 5u1)L) ' ¢‘

< C ([ @)lloy, + lu Olloy, + lo@)ll253) (P + 9(D)]3) - (4.110)
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Finally, all the remaining terms in (4.101)) contain some derivatives of either {v} or {w}, which
are compactly supported. Therefore, we may estimate the terms containing ¢g more straightforwardly,
since the procedure above was done only because we do not have ¢g € L?(Fy) and we wanted estimates
independent of the support of ¢. Taking the L>(Fp) norm of all the derivatives of {v} and {w} in the

remaining terms in (4.101)), then using once again (4.70) and (4.73]) with the right Sobolev embeddings,
we get

‘ ~ A%(¢,pg) - ¢’ < b(t) (Ipe()* + 6(t,)I13) , (4.111)

with
b(t) = C ([’ ®)llcs, + llu' O)ller, + lv@)ll253)

where C' > 0 does not depend on any other parameter. We conclude the proof of (ii) by using Theorem

[4:3.1] Proposition and Theorem
(ili) As in the previous point, let us first estimate the contribution of the terms in fg from (4.104)

which are not compactly supported in Fy. We set
We = u! + Ve°.
Using Lamb’s form from (4.35]), we observe that
(W& —ul) - VIVE + 7 (W) - = %v (W) =V (We - uf) +w' (W —ug)*,
therefore we may estimate
[ wepy-of =| [ WP awdr | < 0 (1aty iy + 10701 o

Hence, using (4.70) and (4.73), we get

/
0

/fo v (Iwe?) -¢‘ ds < C (5\|u1||§2(cgo) + 53/4||v||iz(H2,4,2)) max s (s)]
< 0/ (10 o + ol + i a9

Proceeding similarly for the term containing V (W6 . u}g), and using that w! is smooth and compactly

supported, we get that

8/
0

/ ((WE —u) VW 4ot (WE)L) : ¢’ ds
Fo
< ¥ (Il + Iolncey + 191 + s (o) + (e, 1B) )

For the rest of the terms in fg from , respectively for fX and f¢, the same estimates can be
applied as in Section 4.3 of [27], noting that the terms appearing at O(1) benefit from a fast variable
scaling gain of /4 in L?(Fp). One can then conclude the proof of Lemma by using Theorem
[4:3.3] Proposition [£.4.1] and Theorem [£.5.1] The details are left to the reader. O
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A Faedo-Galerkin method for proving the existence of weak solutions

Now we are in position to prove the existence result from Proposition Since the proof uses
classical methods, we will only focus on the parts that are different from the existing literature, for the
other details we refer the reader to [86] and the references therein.

The proof consists of a straightforward generalization of the methods presented in [86], where the
authors give an extension of Leray’s theorem to prove the existence of solutions to a similar fluid-solid
system in the three-dimensional case with no source term, based on the method of Faedo-Galerkin
approximations. We will show that being in the two-dimensional case and having some extra terms in
due to N¢, ¥¢, A%, F§ and f¢ will pose no difficulty in adapting the same proof to our case.

To simplify notations we define, for any u,v,w € Ho such that v, w € C§°(R?), the quantities

a(u,v) =—2 | D(u): D(v)dx — 2u/ (u—wug) - (v—uvg)do,
Fo 9So

b(u, v, w) :/ {(u —ug) - Vw-v— ruvt w] dx — mru(lq,)L s
Fo

- (4.112)

xL'EE

e (u,v) = —2ve ( >da-pv—|—28/ (N®-7)((v—wg)-7) do
8So 080

" / ({7} = A%(u,pa)) - vl — F&(pu) - Lo,
Fo

Therefore, the equation satisfied by the weak solution u% from Definition can be reformulated as

t
(uf% ¢)7-l(0) - (u%(ov ')7 d)(O, ))H(O) = /0 [(u%7 atd))H(O) + Sa(u%’ ¢) + db(”?% u%? ¢) + Ce(u%v ¢)] ds.

Following the same methodology as in the proof of Theorem 1 from [86], we first consider a truncated
system in which the term ug(t,-) in b above is modified in order that it becomes bounded in L>°(R?).
More precisely, let My € R such that So C B (O, %), and for M > My we consider yys : R? — R?
such that yas(z) = = in B(0, M) and xa(z) = 2 in R?\ B(0, M). We then truncate the term b

from by .

b (u, v, w) :/

Fo

We claim that for any M > My there exists a solution uy; € C([0,7];H(0)) N L((0,T); V(0))

(dropping the dependence on ¢ from the notation for simplicity) to the truncated system, i.e. satisfying
for any ¢ € C*°([0,T];H(0)) such that ¢|70 € C>([0,T); C5°(Fo; R?)), the equation below on [0, 7],

Lol

[(u — (ly + ruxﬁ)) Vw v —ryvt - w| de — mry(ly)

t
(unts @)200) — (unr (0, ), @0, )3 (0) = /0 [(unr, Bed) (o) + ealunr, @) + ebar(unr, unr, ¢) + < (unr, ¢)] ds.
(4.113)

Indeed, we consider a Hilbert basis (w;);>1 of V(0) such that
w; € {¢ € CP(R?) : div ¢ =0 in Fy, D(¢) =0in Sp}, 5 > 0.

Using a Faedo-Galerkin method, we may construct a sequence of approximate solutions (un)n>1 C

C([0,T); H(0)) N L2((0,T); V(0)) (dropping the dependence on M from the notation for simplicity),
N

uy = ng(t)wi satisfying, for any j € {1,..., N},
i=1

(Orun, wj)a o) = ealun, wj) + eby(un, un, wj) + < (uy, w;),
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with initial data u o, which is defined as the projection of u%(0) onto the space spanned by w1, ..., wy.
It follows that un(t, )|z € CF° (Fo), for all t € [0,T7], due to regularity of wy,. .., wy.
It can be checked that uy will satisfy the following energy equality.

1 1 1 t
|yuN(t,.)|y§+m|zN(t)\2+J|7~N(t)y2+2e// D(un) 2 da ds
2 2 2 o Jr

¢ t
1
+25u/ / lun — un s> dods = HuNgHg—i—/ e (un,un)ds. (4.114)
0 Jos, 2 0

Furthermore, one has |[ungll2 < [|[u%(0,-)|l2 = |Juo — u*||2. Note that as long as we can bound the
left-hand side of by a constant that does not depend on the approximation or the truncation,
one can straightforwardly adapt the rest of the proof of Theorem 1 from [86] to establish the existence
part of the result.

Let us prove that this is indeed the case. In the rest of the section, C' > 0 will denote a generic
constant, which we usually deduce by using Theorem and Theorem to estimate the res-
pective norms of u®,p° u!,p!, and which can depend on (hy,91,11,71), but in a continuous manner.
Furthermore, C' is independent of ¢ € (0, 1].

Since p°, p! € L™, we may use (#.102) to estimate

[F&(pn) - In| < C(e + [pn (8) ). (4.115)

On the other hand,

X e 2
/ N do - pN <C’/ 125(8)|? do + [pn ()2 (4.116)
sy \ x— - X°
Finally, we have
N¢ -7 ((uny —un,g)-7) do| <C \Ng(t)IQda—i— HVuN( ME+Clpn )7, (4.117)
9S8 0So

where Cx > 0 is the constant on the right hand side of the Korn inequality :

1hl13: < Crx (IRN5 + ID(R)]3) , for any h € H' (Fo).

We sum up (4.114), (4.115)), (4.116]) and (4.117) and use Lemma to obtain

1
(1-ce) max o (s, )5+l () + T (s)P) + el D) e

t
+2eu/ / lun — un.s)|? dods < Cllug — u*||3 4+ Ce'/4 (4.118)
0 JOSy

e / (luw (s, )12 + o (%) ds,

for some C' > 0 and b € C([0,7];R4) which depend continuously on (hi,?1,11,71), and do not depend
on M > M used for the truncation or N € N used in the Faedo-Galerkin method. Therefore, there
exists &y > 0, uniform for (hy,91,01,71) € B((hy,J¢, R(ﬁf)Th},ﬁ’f), k), such that for any € € (0,&0] we
have 3 < (1 — Cel'/4).

Using the fact that |jug — u*||2 < €'/® as per (#22), a Gronwall argument for (£.118), and further

reducing the left-hand side to get rid of any unnecessary constants, we get that

t
lpn ()] + |lun(t, )13 + €HD(UN)H%2(L2) + 5/1,/ / lun — UN,SP dods < Ce'/4, (4.119)
0 JOSo
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for any t € [0, 7.

Since the bound in the right-hand side above is uniform for N > 1 and M > Mj, we may on one
hand conclude the proof of the existence of a weak solution u% to in the sense of Definition
by the same methods as used in the proof of Theorem 1 from [86]. More precisely, we may first
pass to the limit as N — +o0o to deduce the existence of a solution up; to , for any M > M.
Then we may extract a convergent subsequence (unz, k>0 with limit u% and conclude that we may
pass to the limit in as k — +oo, in particular using once more the energy inequality
and Lemma @l when needed in order to bound the time derivative of uj, in a similar fashion as in
the aforementioned result (we refer the reader to [86] for further details). Therefore, we obtain that uf,
satisfies and also (4.119). This concludes the proof of the existence and the energy estimate,

the uniqueness of the solution follows from classical theory since we are in the 2D case.

Proving the continuity result

The continuity result (ii) from Proposition follows in a straightforward (but lengthy) manner
by first observing that the same arguments used to prove Lemma can be adapted to prove the
following result regarding the continuity of the terms in (4.98) which depend on (h1,¥1,11,71).

Lemma 4.6.2. The elements
— X°,N° € L?((0,T); L?(08)),
— Fg € L(R%R?),
— Ai(-) € L(L*((0,T); H(0)e); L*((0,T) x Fo)),
— [y ds € LCQO.TERO)R), for any ¢ € 0.7),

depend continuously on (h,91,l1,m1) € B((hs, 9y, R(ﬂf)Th’f, V'), k), where H(0). denotes all functions
in H(0) which are compactly supported in R?, respectively L(-;-) is used to denote the space of linear

continuous operators between two given spaces.

From here, the standard method for concluding the continuity is the following. One may consider two
weak solutions associated with two different values of the parameters (hy,¥1,11,71) and compare them
using an energy estimate of their difference, proving that the right-hand side of the energy estimate will
go to zero as the difference of the parameters goes to zero (as done for instance in standard methods
to prove the uniqueness of weak solutions, see eg. [12] 61| for the - more complicated - bounded case).
However, one needs to take care when handling the trilinear convective terms, so one may consider
the energy estimate first using the truncated approximate solutions corresponding to the two weak
solutions, as explained in the construction above for the proof of the existence result. This allows one
to deduce that py (as well as uy € L(L?) N L?(H"Y)) depends continuously on (hy, 91,11, 71), for any
N > 1. However, since the right-hand side of does not depend on (hy,91,01,71), nor on N, it
follows that the convergence of (un,pn) to (u%, p%) mentioned in the previous section is uniform with
respect to (hi,91,11,71), from where the desired continuity result follows for p%. The details are left to

the reader.

This concludes the proof of Proposition [4.6.1]
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4.7 Conclusion

It follows from Sections to that we have completed the construction of the asymptotic
expansion from Section [£:2:3] which gives us the result of Theorem [I.1.1]due to the reductions presented
in Sections and We present below an overview of the amplitude with respect to time of the
controls g and g' constructed in Theorem respectively Theorem [4.5.1]

1

m

1
V70

0- .........

FIGURE 4.2: A comparison of the amplitudes of the controls g° (red continuous line) and g' (black
dotted line) over the time interval [0, T']

We recall that the forms of ¢° = 920 and ¢g' = g,ll1 were given in , respectively , where
By >0, |Byllec = O//1), (ﬁ%)n is supported in [0,27] and is an approximation of the unity when
n — 0. The parameter 19 > 0 was fixed at the end of the proof of Theorem in Section m
while the parameter n; > 0 was fixed (in function of the parameter v > 0, roughly such that 71 < O(v))
at the end of the proof of Theorem [£.5.1] in Section [£.5.3] However, for the purpose of illustration in
Figure and without loss of generality, we may assume that 0 < n; < np.

A possibility of passing to arbitrary time via autoregularization

Let us present a possibility for passing to arbitrary time in Theorem i.e. deducing a control
result in any given time 7" > 0. Since we know how to control in small-time, one possibility would be
to let the system evolve without control for a long time period and control during a short time interval
at the end of [0,7]. The main technical issue with this strategy is the following. For our small-time
controllability result Theorem to hold, we assume H* regularity on the initial data ug. Intuitively,
one would think that due to the smoothing properties of the Navier-Stokes equations, even with initial
data that is only L?, after a short time the solution would become H* and stay that way for all times
until T'. However, up to our knowledge no such results exist in the literature for fluid-solid interaction
problems such as the one considered in this chapter. We have tried to establish such a result ourselves,
but we have ran into some technical difficulties due to the fact that we are in a moving exterior domain
with Navier conditions on the solid boundary, which we will precise below.

So, for the time being let us formulate this autoregularization property as the following Open
Problem.

Open problem 4.7.1. Given uy € H(0), T > 0, the associated weak solution u € C([0,T]; H(t)) N
L2((0,T); V(t)) in the sense of Definition[.1.1] satisfies (w, ', 9") € C((0,T); HY(F(t)) x R3).
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If Open Problem is proven, then the following result holds.

Theorem 4.7.1. Given T > 0, Sy C R? bounded, closed, simply connected with smooth boundary, which
is not a disk, and ug € H(0), curlug € LY (Fo;R?), g0 = 0,q5 = (hy,9f) € Q, h6,h’f € R2,79’0,19’f €R,
such that

div ug =0 in Fy, lim |up(x)| =0,
|z| =400

uo - n = (hly + 9xt) - n, (D(ug)n)tan = —pu(uo — (hy + 925)) tan on dSp.

Then there exists a control ¢ € L*((0,T) x §.), compactly supported in time, and a weak solution
u € C([0,T];H(t)) N L2((0,T); V(t)) in the sense of Definition to the system (4.1), (4.2), (4.3),
[.6), (@.7) with (4.8), such that we have (h,h',9,9")(T) = (hy, h},ﬁf,ﬁ’f).

Proof. First we observe that 7' > 0 in Theorem can be made uniform for (h(, ¥, up) in compact
sets of R® x H*(Fy;R?). Indeed, the initial data only comes into effect on the level of u! in our
construction. However, it is easy to see that (I!,71,u!) depend continuously on (h{, ¥}, up), since they
satisfy a linear equation (and therefore depend continuously on the initial data) and the control g'
constructed in Section depends continuously on (h, ). This regularity is carried over to the
remainder terms in Section , since they can be estimated by various norms of (1!, 7!, '), which are
all uniformly bounded for (h{, ¥}, u) in compact sets of R3 x H*(Fo; R?).

Using Open Problem we deduce the existence of a weak solution u € C([0,T];H(t)) N

L%((0,T); V(t)). For A > 0 we then consider the following compact set
S = {(l,rv) € R® x HY(Fo;R?), [(,7) — (W(T), 0" (T)| + llv — a(T, )l < A}

It follows that we may apply Theorem with initial data in this set (without loss of generality we
may assume that the initial position of the solid is once more the origin, since else one may simply
apply a translation and a rotation to the system of coordinates in R?) to deduce T > 0, which is now
uniform for all initial data in S.

All that needs to be proven is that there exists T\ € (T’ — T, T) such that we have

(W (T), 0 (Tn), u(Ty, ")) € S,

since then we can let the system evolve without any control on [0,7)] to ensure the regularization
property of the equation, then use Theorem to deduce the existence of a control on [T, T] which
drives the solid to the desired position and velocity. However, the existence of such a Ty follows from
the regularity in Open Problem [£.7.1] therefore the proof of Theorem [£.7.1] follows.

O

Let us give a few remarks regarding the difficulties in proving Open Problem

A direct possibility for the proof would be to consider (i, h',?9’) as the solution of a Stokes system
and use for instance the regularity of the Stokes operator with Navier conditions in an exterior domain
proven in [34], in particular the analyticity of the associated semigroup, to conclude the desired regula-
rity. Of course, in order to do this, one transforms the PDE onto a fixed domain (with transformations
similar to ), and then put all the unwanted terms into an inhomogeneous force term acting on the
Stokes equation, which one would then estimate. The problem with this approach is that the change
of variables creates a term of the type ug - Vu (as seen for instance in the PDE ), which is not



4.A. DESIGN OF THE CONTROLS 125

even L? when v € H'. Note that this is not an issue in the Galerkin method presented in Section
or in [86] for instance, since the trilinear term f]__o (u—ug) - Vu - udz can be defined as 0 as a limit of

approximations.

Another, more “manual” approach would be to bootstrap the regularity by classical Navier-Stokes
methods. One obtains that after arbitrarily small time, the solution becomes H', and then using some
appropriate test functions, the H? regularity can also be obtained after some manipulation of the weak
solutions. However, for the H? regularity to hold, one usually differentiates the equation with respect
to t € [0,T], proves an energy estimate for d,u and then concludes by the means of a stationary Stokes
problem (which in theory could be also done on a moving domain, without a change of variables). And
it is at this point where this strategy breaks down in our setting. If one differentiates the equation on
F(t), without switching to a fixed domain, then higher order unwanted terms appear in the Navier
boundary conditions, which pose a problem when trying to estimate them in the energy inequality (we
contrast this with the Dirichlet case, for instance in [I0], which is more robust to differentiation with
respect to time, and where such a strategy worked without issue). On the other hand if one switches
to the fixed domain Fy to avoid this issue, then the term dyug - Vu will be created, which will pose the

same problems as mentioned above.

We plan to investigate this problem in a future article, and perhaps by a more lengthy and technical
approach of considering a different change of variables, which behaves like a rigid movement near the
solid, but behaves like the identity operator outside of a large enough ball (as done for instance in [42]
for the Dirichlet case, where the authors only went as far as H? regularity) some sort of breakthrough
could be made. This echoes the issues presented in Remark for the bounded case, since such a
change of variables would still create extra terms on the PDE which need to be estimated, but since this
step is separate from the asymptotic expansion, perhaps those terms can be handled with sufficiently

strong estimates, similarly to [42].

4.A Design of the controls

4.A.1 Proof of Proposition [4.3.3

We will use the notation of Section of Chapter [3] for the rest of this proof, in contrast to the
previous notations of this Chapter. Therefore, for the sake of simplicity, we will be working in the case
when the solid is a homogeneous disk, however, using the same methods as in Section of Chapter
our construction can be adapted to the general case as well. We recall from that we had B, C B,
and, for ¢ € Qg, we defined

Clq) = {g € C(R(W)T (B, — h);R) : /g = o} , Clg) = {g € CH(R(W)T (B, — h);R) : /g = o} .
Let us give the corresponding result in the case of a homogeneous disk.

Proposition 4.A.1. There exists a C* mapping 3° : (Q5 N {q = (h,0) € R?}) xR2 — C(Q;) such that
for any q = (h,0) € Qs we have Range(g°(q,-)) C C(q) NC(q), and for any ((h,0),v) in Qs x R? the
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function @° = A[q,3%(q,v)] in C=(Fo; R) N CS (Fo; R) satisfies

AT =0 in Fo\ (B.—h), lim |Va’| =0 and d,a’ =0 on 8So, (4.120)
|z| =400
/ IVa|* ndo = v, (4.121)
0Sp
/ a’ndo =0, (4.122)
9So
span{n(z), = € supp Va’(q,") NSy} = R*. (4.123)

We follow the same construction as in Section of Chapter [3| We have the following Lemma,
which appears as Lemma in Chapter [3| and also applies in our case without any modification, we

refer the reader to the aforementioned Chapter for the proof.

Lemma 4.A.1. There exist three vectors ej,ez,e3 € {n(z) : x € 0Sp} and positive C*° maps
(pi)i<i<s : R2 — [1,4+00) such that for any v € R?,

3
> pilv)e; = . (4.124)
=1

Note that there exist x; € Sy such that n(x;) = e;, i = 1,2,3. We will now modify Lemma m
from Chapter |3|in order to guarantee (4.123]). We have the following result.

Lemma 4.A.2. There exist families of functions (dé’j)ae(og); i,j € {1,2,3}, such that for any i,j €
{1,2,3}, for any e € (0,1), &b s defined and harmonic in a closed neighbourhood V7 of 88y, satisfies
Opd? =0 on 08y, and moreover one has the following :

(i) for anyi,j,k,l in {1,2,3},

Vdi_’j . V@f’l ndo — 0y, (k1) € aSE — (I
080

(id) for any i, .k, 1 in {1,2,3}, (i) £ (k, 1),
HVdé’j : Vd’?lHC’(@So) —0 as € — 0+;
(iii) for any i,j in {1,2,3} there exist z&) € 08y such that |Va2! (zt))| > 1 and 2t — a; as
e—0T.

Proof. The proof is essentially the same as that of Lemmal[3.7.2 from Chapter [3] noting that the manner
in which the functions /Bé’j were constructed in the aforementioned proof allows us to deduce points (ii)
and (iii). The details are left to the reader. O]

Next we adapt Lemma from Chapter [3] to our setting. We have the following result.
Lemma 4.A.3. Let ¢ = (h,0) € Qs. There exists a family of functions (a%’j(q, Nneo,1), 4,7 € {1,2,3},
harmonic in Fo \ (B, — h), satisfying | |lim |Vaf7’j(q, ) =0, 8uai’(g,-) =0 on 8Sy and ol (¢,-) €

x| —+00
CS (Fo) N C>(Foy), such that, for any k in N,

05(4,) = 69Ol iy — 0 when n = 07 (4129)

Proof. We construct af;j from &é’f using an approximation by rational functions, as mentioned in
Chapter |3| and as used in [50], pages 147-149. We use the following generalization of Runge’s theorem

on the Riemann sphere (see for instance [41], page 238).
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Theorem 4.A.1. Let K be a compact subset of the Riemann sphere C, containing at least two points,
and let P be a subset of C. A necessary and sufficient condition in order that for each holomorphic
function f on K and each n > 0, there be a rational function r, whose poles lie in P, such that

1f = rllenxy <m, for any k >0, is that P meet each connected component of C\ K.

We use the above result with K = (C\ B(0,R)) U Vi for some R > 0 large enough such that
((Bc —h)U V;’j> C B(0,R), set f =0on C\ B(0,R) and f = &cldy — i@xgdé’j on V;’j, and choose
P such that it is made up of a point from int (B. — k) and a point from (int So) \ V7. We conclude as

in [50] that there exists some function 6 (ignoring the dependence on the parameters for this notation)
which is harmonic on Fy \ (B. — k), lim V(z) = Cy € R?, |Cy| = O(n), and 9,0 = O(n) on Sy in

|z| =400

any C* norm, such that § € C% (Fy) and
|6 — &;jHCk(V'L,jme) — 0 when  — 0", for any & > 0.

Proceeding as in [50], we introduce a corrector function, to ensure the vanishing boundary conditions
of our potential flow, by setting

AV =0on Fy, lim V¥(z)=Cy, and 9,V = 9,0 on 9Sy.

|z| =400

Note that the function 6 — ¥ satisfies all the conclusions of Lemma except the smoothness
on Fy, since it has a singularity in B, — h as per Runge’s theorem above. To address this issue, we
use Whitney’s extension theorem (see for instance [I4], Chapter 2) to deduce that for any function
F e C* (]—"0 \ (B. — h)) there exists a smooth extension E(F) € C®(Fy) satisfying E(F) = F on
Fo \ (BC — h). We conclude the proof by setting afjj(q, ) =E(6— 7).

O

We have the following result, which corresponds to the adaptation of Lemma from Chapter

to our setting.

Lemma 4.A.4. For any v > 0, there exist C* mappings ¢ = (h,0) € Qs — a*I(q,-) € C% (Fo), i,]j €
{L 2, 3}7 such that fO'I” any q = (h’70) S Q&; Aa:ai’j((b ) =01 Fo \ (BC - h)7 lim |v aid(q, )| =0,
—+00

||
On@®(q,+) = 0 on 88y, @ (q,-) € CS(Fo) N C>®(Foy), and the following hold :

va'l(q,-) - Va*(q, ) ndo — 8 ) wa €| < v;
0Sp

(i) for any i,j,k,1 in {1,2,3}, (i,7) # (k,1),

IVa™i(q,-) - Va*'(q, )l case) < vs
(iii) for any i,7 in {1,2,3} there exist 2 € Sy such that |Va's (z7)| > 1 and |z™ — x;] < v.

Proof. The proof of Lemma from Chapter [3| can be easily adapted to our setting, simply by
considering an elliptic problem of the type instead of the Neumann problem mentioned in its
proof. It can be easily checked that the solutions obtained this way are still in CS (Fp) and that the
map q = (h,0) € Q5 — @I (q,-) € C%(Fo) is C*. Finally, points (ii) and (iii) follow from Lemmam
and Lemma [£.A3] O
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Next we have the following result, which corresponds to Lemma from Chapter
Lemma 4.A.5. For any v > 0, there exist C' mappings ¢ = (h,0) € Qs — a'(q,-) € C%(Fo),
i € {1,2,3}, such that for any ¢ = (h,0) € Q;, Aya@'(q,) =0 in Fo\ (B — h), ‘ |1im |V @(q,-)| =0,
T|—+00
Ot (q,+) =0 on 8Sy, a@'(q,-) € CS.(Fo) N C*(Fo), and the following hold :
(i) for any i, j in {1,2,3},

Va'(g,-) -Vl (g, ) ndo — 8 j e
9So

(ii) for any i,j in {1,2,3}, i # j,

<, / @(¢,)ndo = 0;
0S8y

IVa(q,-) - Va (g, )l cosy) < v;
(iii) for any i in {1,2,3} there exist T € Sy such that |Va'(q,7)|> > 1 —v and |T° — 2] < v.

Proof. Consider the functions @/ given by Lemma For any g = (h,0) € Qs, for any i € {1,2,3},
the three vectors fas(q) a’(q,-)ndo, where j € {1,2,3}, are linearly dependent in R?; therefore there
exist A/ (q) € R such that

3 3
> W’(q)/ @ (g, )ndo=0and > |\ (q)* =3, (4.126)
) 9S(q) j=1
Then one defines @'(q, ) := 2?21 Ao (g)at (g, -), and one checks that it satisfies (i) and (ii) with some
Cv in the right hand side.
On the other hand, for each i € {1,2,3} let k € argmax |\ (q)|?, so that we have |A"*(q)|? > 1.
Using (i) and (iii) from Lemma [£.A.4]it follows that ’

Va' (g, ") P > (X (g)P| Vet (g, ") P = Cv > 1 - Cw,

for some C' > 0.
Changing v in min{r/C,v/C,v} allows to conclude. O

Before concluding the proof of Proposition let us show how condition (4.123)) can be satisfied.
Let v € R?, using Lemma we set

It follows from (ii) and (iii) in Lemma and the fact that u‘(v) > 1,7 € {1,2,3}, that
Va(q, @) > [Vai(q,7)* — Cv > 1— (C + 1),

and |z° — x;| < v, for any i € {1,2,3}. Since span{n(z;), i = 1,2,3} = R2, it follows by continuity
that, for v > 0 small enough, we have span{n(z’), i = 1,2,3} = R?, and @' € supp Va(q, ), for any
i € {1,2,3}. Therefore, holds for a.

To conclude the proof of Proposition|4.A.1] we proceed as at the end of the proof of Proposition|3.7.1
from Chapter [3| namely that when v > 0 is small enough, one may apply a local inversion argument.
The details are left to the reader.
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Remark 4.A.1 (A remark on the case when the solid is not a disk). Lemma[3.7.7 from Chapter[3 can
be improved in the following way : there exist vectors e; € {0, ®(x) : x € 05y}, 1 < i < 16, a constant
M >0, and positive C*° maps (11;)1<i<16 : R? — [M, +00) such that for any v € R3,

16
Z wi(v)e; = v.
1=1

This allows us to prove (4.49)) similarly as we have done above in the case of a disk.

4.A.2 Proof of Proposition [4.5.3

Again, for simplicity we will present the proof in the case when the solid is assumed to be a
homogeneous disk, then one can deduce the general case in a similar manner as in Section from
Chapter [3] which will be explained at the end of the section. Furthermore, the notations of this section
will be self-contained.

We prove the following adaptation of Proposition to the case of a a homogeneous disk.

Proposition 4.A.2. Let K be a compact subset of C*(0Sp;R?) such that for any V € K we have
V-n=0 ondSy and

span{n(z), = € 8Sy N supp V} = R?. (4.127)

For any V € K, there ezists a continuous mapping g'[V] : (Qs N {g = (h,0) € R3}) x R* — C(Q;s) such
that for any q = (h,0) € Qs we have Range(g'[V](q,-)) C C(q) N é(q), and for any (g,v) in Qs x R,
q = (h,0), the function @' := Alq,g*[V](g,v)] in C>(Fo;R) N C2,(Fo; R) satisfies :

Aa' =0 in Fo\ (B — h),‘ llim \Va'| =0 and 0, @ = 0 on Sy, (4.128)
x|—400
va' - Vndo =wv. (4.129)
0Sp

Furthermore, the map V € K — g[V] € C(Qs x R?;C) is also continuous.

We may suppose without loss of generality that Sy is the unit disk, parametrized by c(s) =
(cos(s),sin(s)). We have the following geometrical property.

Lemma 4.A.6. Given V € K, there exist x; € 0So N supp V', s; € [0,27], such that n(z;) = x; =
(cos(s;i),sin(s;)), i = 1,2, and that span{by,by} = R?, where

bi = 71(x;) - V(i) n(z;) — 1 /83 7(z) - V(z)n(x)do. (4.130)

s

Proof. For each i € {1,2}, using (4.127) and V - n = 0 on 9S8y, there exist z; = (cos(s;), sin(s;)) such
that we have 7(z;) - V(Z;) # 0 and

span{7(Z;) - V(z;) n(z;), i = 1,2} = R% (4.131)

1 -
Clearly, — / 7(z)-V(x) n(x) do does not depend on the choice of Z;, so either b; = 7(z;)-V (Z;) n(z;)—
T Joso
1
/ 7(x) - V(x)n(z)do, i = 1,2, are collinear or they span R2.
T Jas,
If Othey are collinear, we may modify the one out of the two which has the smaller norm (in order

to also handle the case in which one of them is zero) in the following way in order to break the
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collinearity. Without loss of generality we may suppose that |b1| < |ba|. We observe that (#.131) is
robust to perturbations, due to (4.127)) and the continuity of V, i.e. there exists n > 0 such that for
any s € (81 — 1,51 +1n) we have

span{T(c(s)) - V(c(s)) n(c(s)), 7(z2) - V(22) n(22)} = R?.

It follows that there exists some x1 = (cos(s1),sin(s1)) with s; € (51 — 1,51 + 1), such that setting
To = T, the vectors b; given by (4.130)) are no longer collinear. O

We will base our construction on the existence of such vectors b; given by Lemma [4.A.6] in order
to satisfy (4.129)). We have the following result.

Lemma 4.A.7. There exist families of functions (GL).c(0,1), © € {1,2}, such that for any i € {1,2},
for any € € (0,1), & is defined and harmonic in a closed neighbourhood V! of dSy, satisfies Opal = 0
on 08y, and moreover one has the following :

Val-Vndo —b; ase—0".
0So

Proof. For each i € {1,2} we consider families of smooth functions ¢ € C§°((0,27);R), € € (0,1), such
that /52 =1, diam (supp 5Z’j) = (Ce¢, and

2w

32(s) f(s)ds — f(si) ds| < Ol f|looe,

0
for any f € C1([0,27]). Then we define a2 in polar coordinates as the truncated Laurent series :

~i 1 Lk, 1 2i ~i

a(r,0) := 20;}{ 27 ) (Sbic cos(kO) + aj. . sin(k6)), (4.132)

where d};’s and 326 denote the k-th Fourier coefficients of the function 2. It is elementary to check that
the function &. satisfies the required properties for an appropriate choice of K. In particular, noting
that V,al = 8,a 7 on 08y, for each @ € [0, 2] we have

. . . 1 27 .
O-ag(cos(0),sin(f)) = Opas(1,6) = 02(0) — 7T/o 92(0) df + O(e),

and due to the properties of 5;, this implies

Va.-Vndo — b

S C (HV”01(650) + 1) e.
9So

O]

We combine the methods used to prove Lemma [{-A73] and Lemma [{-A74] from Section [f.A] to get

the following result.

Lemma 4.A.8. There exist continuous mappings (q,V) € (QsN{q = (h,0) € R¥})xK — @;[V](q,") €
C>(Fo), such that for any (q,V) € Qs x K, ¢ = (h,0), we have Aya;[V](q,-) = 0 in Fo \ (Be — h),
lim |Va;[V](g,-)| =0, 0.a;[V](g,") = 0 on 8Ss, @;[V](q,-) € C3.(Fo), i € {1,2}, and

|x| =400

span{ Va;[V](g,-) - Vndo, i= 1,2} = R? (4.133)
9So
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Proof. The proof follows the same principles as the proofs of Lemma [4.A.3] and Lemma from
Section The only difference is that instead of using a compact covering and partition of unity
argument for ¢ € Qs, we use one for the pair (¢, V) € Q5 x K by observing that if @;[V] satisfy
for some fixed V € K, then there exists dy > 0 such that

Sp&n{ va;[V](q,-) - V ndo, i:1,2} = R2.
9So

holds for any V € K with ||V — V||c1 < dy.
This allows us to make our construction continuous with respect to V.
O

We conclude the proof of Proposition by using Lemma above to deduce @;(q,-), 7 =1,2.
For each v € R? we may obtain \;[V](g,v) € R, i = 1,2, such that

al [V](% ) = )\1[‘/] (Q7 U)al [V] (Q7 ) + )\Z[V](Qa U)aZ[V](Qa ')v

which satisfies the required properties of Proposition [4.A.2] in particular the regularity with respect to
q, v and V follows from the construction above and the fact that A;, ¢ = 1,2, are the solutions of a

linear system whose coefficients are regular with respect to the aforementioned parameters.

Remark 4.A.2 (The case when Sy is not a disk). We may follow a similar construction as in Section
of Chapter[3 to reduce the general case to the case of a disk, by using a conformal mapping ¥ :
C\ B(0,1) — C\ Sy. The key observation is that the condition 7(x) -V (z) # 0 for x € Sy N supp V,

will be conserved by ¥ since it is a conformal mapping. Therefore we can deduce

span{T(z) - V(x)0, ®(z)} = R3,

1
and proceed as in Lemma|4.A.6 to prove that subtracting the vector / 7(z) - V(z) 0,P(x) do does
T JaSy

not change the above span. The details are left to the reader.
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Résumé

Dans cette thése nous étudions cer-
tains problemes de contrdle des
modeles d’interactions fluide-solide.
Dans la premiere partie nous démon-
trons la contrélabilité exacte de la
position et de la vitesse d’un corps
rigide immergé dans un fluide par-
fait bidimensionnel, irrotationnel et in-
compressible. Le systéme occupe un
domaine borné avec une condition
d’'imperméabilité sur une partie de
la frontiere externe. Sur l'autre par-
tie de la frontiére, nous utilisons des
contréles de type Yudovich (permet-
tant du fluide d’entrer et de sortir
du domaine). Dans la seconde par-
tie nous considérons le mouvement
d’'un corps rigide immergé dans un
fluide visqueux incompressible bidi-
mensionnel avec des conditions de
Navier a la frontiére du solide. Le
systéme fluide-solide occupe tout le
plan. Nous prouvons la contrélabi-
lité exacte de la position et de la vi-
tesse du solide lorsque le controle
est une force supportée dans un
sous-ensemble compact (d’intérieur
non-vide) du domaine fluide, loin du
corps.

Mots Clés

Interaction fluide-solide, mécanique
des fluides, théorie du contrle, sys-
teme couplé EDO-EDP.

Abstract

In this PhD thesis we study cer-
tain control problems related to fluid-
solid interaction models. In the first
part of the thesis we prove the exact
controllability of the position and ve-
locity of a rigid body immersed in
a two-dimensional irrotational perfect
incompressible fluid. The system is
assumed to be confined in a boun-
ded domain with an impermeable
condition on a part of the external
boundary. On the remaining part of
the boundary we use Yudovich-type
controls (allowing some fluid going in
and out the domain). In the second
part of the thesis we consider the mo-
tion of a rigid body immersed in a
two-dimensional viscous incompres-
sible fluid with Navier slip-with-friction
conditions at the solid boundary. The
fluid-solid system occupies the whole
plane. We prove the exact controlla-
bility of the position and velocity of
the solid when the control takes the
form of a distributed force supported
in a compact subset (with nonvoid in-
terior) of the fluid domain, away from
the body.

Keywords

Fluid-solid interaction, fluid mecha-
nics, control theory, coupled ODE-
PDE system.
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