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Abstract
Blind Source Separation (BSS) is a technique for estimating individual

source components from their mixtures at multiple sensors, where the mixing

model is unknown. Although it has been mathematically shown that for

linear mixtures, under mild conditions, mutually independent sources can be

reconstructed up to accepted ambiguities, there is not such theoretical basis

for general nonlinear models. This is why there are relatively few results

in the literature in this regard in the recent decades, which are focused on

specific structured nonlinearities.

In the present study, the problem is tackled using a novel approach uti-

lizing temporal information of the signals. The original idea followed in this

purpose is to study a linear time-varying source separation problem deduced

from the initial nonlinear problem by derivations. It is shown that already-

proposed counter-examples showing inefficiency of Independent Component

Analysis (ICA) for nonlinear mixtures, loose their validity, considering in-

dependence in the sense of stochastic processes instead of simple random

variables. Based on this approach, both nice theoretical results and algo-

rithmic developments are provided. Even though these achievements are not

claimed to be a mathematical proof for the separability of nonlinear mix-

tures, it is shown that given a few assumptions, which are satisfied in most

practical applications, they are separable.

Moreover, nonlinear BSS for two useful sets of source signals is also ad-

dressed: (1) spatially sparse sources and (2) Gaussian processes. Distinct

BSS methods are proposed for these two cases, each of which has been widely

studied in the literature and has been shown to be quite beneficial in mod-

eling many practical applications.

Concerning Gaussian processes, it is demonstrated that not all nonlinear

mappings can preserve Gaussianity of the input. For example being re-

stricted to polynomial functions, the only Gaussianity-preserving function is

linear. This idea is utilized for proposing a linearizing algorithm which, cas-

caded by a conventional linear BSS method, separates polynomial mixtures
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of Gaussian processes.

Concerning spatially sparse sources, it is shown that spatially sparse

sources make manifolds in the observations space, and can be separated

once the manifolds are clustered and learned. For this purpose, multiple

manifold learning problem has been generally studied, whose results are not

limited to the proposed BSS framework and can be employed in other topics

requiring a similar issue.

Keywords— Blind Source Separation, Independent Component Analy-

sis, Nonlinear Signals Processing, Nonlinear Regression, Nonlinear Mixtures,

Nonlinear Distortion, Gaussian Processes, Polynomial Mappings, Sparse Sig-

nals, Manifold Learning



Résumé
La séparation aveugle de sources aveugle (BSS) est une technique d’estimation

des différents signaux observés au travers de leurs mélanges à l’aide de

plusieurs capteurs, lorsque le mélange et les signaux sont inconnus. Bien

qu’il ait été démontré mathématiquement que pour des mélanges linéaires,

sous des conditions faibles, des sources mutuellement indépendantes peuvent

être estimées, il n’existe dans de résultats théoriques généraux dans le cas de

mélanges non-linéaires. La littérature sur ce sujet est limitée à des résultats

concernant des mélanges non linéaires spécifiques.

Dans la présente étude, le problème est abordé en utilisant une nouvelle

approche utilisant l’information temporelle des signaux. L’idée originale

conduisant à ce résultat, est d’étudier le problème de mélanges linéaires,

mais variant dans le temps, déduit du problème non linéaire initial par

dérivation. Il est démontré que les contre-exemples déjà présentés, démon-

trant l’inefficacité de l’analyse par composants indépendants (ACI) pour les

mélanges non-linéaires, perdent leur validité, considérant l’indépendance au

sens des processus stochastiques, au lieu de l’indépendance au sens des vari-

ables aléatoires. Sur la base de cette approche, de bons résultats théoriques

et des développements algorithmiques sont fournis. Bien que ces réalisations

ne soient pas considérées comme une preuve mathématique de la séparabil-

ité des mélanges non-linéaires, il est démontré que, compte tenu de quelques

hypothèses satisfaites dans la plupart des applications pratiques, elles sont

séparables.

De plus, les BSS non-linéaires pour deux ensembles utiles de signaux

sources sont également traités, lorsque les sources sont (1) spatialement parci-

monieuses, ou (2) des processus Gaussiens. Des méthodes BSS particulières

sont proposées pour ces deux cas, dont chacun a été largement étudié dans

la littérature qui correspond à des propriétés réalistes pour de nombreuses

applications pratiques.

Dans le cas de processus Gaussiens, il est démontré que toutes les ap-

plications non-linéaires ne peuvent pas préserver la gaussianité de l’entrée,
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cependant, si on restreint l’étude aux fonctions polynomiales, la seule fonc-

tion préservant le caractère gaussiens des processus (signaux) est la fonction

linéaire. Cette idée est utilisée pour proposer un algorithme de linéarisation

qui, en cascade par une méthode BSS linéaire classique, sépare les mélanges

polynomiaux de processus Gaussiens.

En ce qui concerne les sources parcimonieuses, on montre qu’elles con-

stituent des variétés distinctes dans l’espaces des observations et peuvent

être séparées une fois que les variétés sont apprises. À cette fin, plusieurs

problèmes d’apprentissage multiple ont été généralement étudiés, dont les

résultats ne se limitent pas au cadre proposé du SRS et peuvent être utilisés

dans d’autres domaines nécessitant un problème similaire.

Mots clés— Séparation des sources aveugles, Analyse en composantes in-

dépendantes, Traitement des signaux non-linéaires, Régression non-linéaire,

Mélanges non-linéaires, Distorsion non-linéaire, Processus Gaussiens, Fonc-

tions polynomiales, Signaux parcimonieux, Apprentissage sur variétés
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1 Introduction

The Blind Source Separation (BSS) problem was firstly introduced in 1980’s,

and since then, it has been thoroughly studied in the signal processing com-

munity [Hérault and Jutten, 1986]. Roughly speaking, in this problem sev-

eral source signals are mixed through an unknown mixing function to make

a number (probably not the same number as the sources) of observation

signals. The goal is to reconstruct the sources having access only to the

observations, i.e. knowing neither the sources nor the mixing model.

BSS problem is formally described as follows. At each time (more gen-

erally, sample) t let us consider m observations xi(t), i = 1, . . . ,m, which

are unknown time-invariant functions fi(·) of unknown sources sj(t), j =

1, . . . , n. For t = 1, . . . , T measurements, we can mathematically express the

model as

x(t) =


x1(t)

x2(t)
...

xm(t)

 =


f1(s(t))

f2(s(t))
...

fm(s(t))

 = f(s(t)), t = 1, . . . , T (1.1)

where x(t) = [x1(t), ..., xm(t)]† († stands for matrix transposition) and s(t) =

[s1(t), ..., sn(t)]† represent the observation and source vectors, respectively,

and f(·) denotes a function from Rn to Rm. The goal is to find a separating

system g(x) reconstructing the sources based only on the observations x(t)

knowing neither the sources nor the mixing function f .

The problem model is depicted in Fig. 1.1. In this model, we generally

expect each of the elements of y(t) = g(x(t)) to be a function of only one of

1
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x = f(s) y = g(x)

s1

sn

x1

xm

y1

yn

Unknown

Figure 1.1: Nonlinear BSS problem basic model

the source signals (and each source signal appears in only one entry of y(t)).

The problem is generally ill-posed, but it has been shown that assuming f

has some particular structure, and/or given some statistical properties of the

sources, it can be solved to some extent and the sources can be reconstructed

with ambiguities in their amplitude and their order. The book [Comon and

Jutten, 2010] provides a comprehensive survey on different structures and

proposed algorithms. The key idea to perform separation is trying to recover

some characteristics of the sources by estimating a mapping on the observa-

tions able to inverse f . Mostly these characteristics include one of the “non-

properties” (a word borrowed from [Mei et al., 2009]); e.g. non-dependence

(independence), non-Gaussianity [Comon, 1994], non-stationarity [Parra and

Spence, 2000], non-whiteness [Buchner et al., 2003] and non-negativity [Ci-

chocki et al., 2006].

The simplest form of the problem is when the mixture model is instan-

taneous linear and the number of the sources is equal to the number of the

observations, i.e. n = m, so that (1.1) becomes x(t) = As(t) where A is

an unknown mixing matrix. Even this problem is still ill-posed and that

priors on sources are mandatory for it to be solved. Source independence is

the earliest example of such prior which was used in [Hérault and Jutten,

1986,Comon, 1994] for introducing the concept of Independent Component

Analysis (ICA). The independence employed in ICA is in the sense of random

variables assuming that each source consists of Independent and Identically

Distributed (iid) samples, i.e. without taking care of the sample order.

It should be recalled that if two random variables U and V are mutually

2
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independent, the joint probability density function (pdf) of them ρU,V (u, v)

factorizes as

ρU,V (u, v) = ρU (u)ρV (v) (1.2)

where ρU (u) and ρV (v) are the marginal pdf’s of U and V respectively.

On the other hand, two stochastic processes U(t) and V (t) are said

to be mutually independent iff they are mutually independent for any se-

quence of time instants, i.e. for any positive integer r < ∞ and any se-

quence t = (t1, . . . , tr), random vectors Ut = (U(t1), . . . , U(tr)) and Vt =

(V (t1), . . . , V (tr)) are mutually independent, i.e.

ρUt,Vt(u(t1), . . . , u(tr), v(t1), . . . , v(tr)) =

ρUt(u(t1), . . . , u(tr))ρVt(v(t1), . . . , v(tr)) (1.3)

where ρUt,Vt(·, ·), ρUt(·) and ρVt(·) denote the joint pdf of (Ut,Vt) and

the marginal pdf’s of Ut and Vt, respectively. Accordingly, the two notions:

random variable (RV) independence and stochastic process (SP) indepen-

dence, should be distinguished.

Nevertheless, it is shown that in linear BSS problem, if the sources

are mutually RV independent, i.e. ignoring the sample dependence of each

source, they can be blindly reconstructed up to ambiguities in their scale

and their order (for the reference and more details, refer to the following

chapter). However, this result cannot be generalized to the general nonlin-

ear BSS problem. Indeed it is shown by counter-examples, e.g. [Hosseini and

Jutten, 2003,Babaie-Zadeh, 2002], that ICA in the sense of random variables

is not able to separate the sources in nonlinear mixtures (see the following

chapter).

For this reason, the general nonlinear BSS problem had been left almost

unexplored. However, in this work, novel approaches for performing nonlin-

ear BSS are proposed. The proposed general approaches assume that signals

have temporal correlation, i.e. colored, which usually happens in realistic

physical signals.

3
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The first proposed approach is based on finding the connection between

the linear and nonlinear problem, and discovering circumstances under which

it works [Ehsandoust et al., 2017a]. Another approach is based on modeling

the sources by Gaussian processes, and approximating the mixture by a

polynomial [Ehsandoust et al., 2017b]. In addition, a special case of the

problem where sources are assumed to be spatially sparse, is investigated in

this work [Ehsandoust et al., 2016]. For each of these methods, interesting

theoretical results along with separating algorithms are provided.

Thesis Overview

In the following, the chapters of this document are briefly described.

Chapter 2

In Chapter 2 the state of the art in BSS, especially nonlinear BSS is pre-

sented. For this purpose, to better clarify the problem, we first review linear

BSS techniques and approaches. Then it is shown through counter-examples

why conventional approaches are not applicable to nonlinear problems.

Chapter 3

The key innovative idea for tackling general nonlinear BSS problems is pre-

sented in Section 3.1. A recent application of this approach in hyperspectral

images is also briefly explained. Then the problem and its assumptions are

precisely described, and the principal idea is mathematically expressed. In

order to shed light on the proposed approach, in Section 3.1.4 it is shown

that given a parametric model for the unmixing function, how the parameter

would be estimated for the separation. Afterwards, separating algorithms are

proposed in details and source reconstruction indeterminacies are discussed.

Finally in this chapter, by investigating the simulation results, a discussion

is made and directions for future studies are suggested.

4
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Chapter 4

Gaussian Processes have recently attracted a lot of attentions in different

fields of signal processing and are shown to be very beneficial in modeling

several signals. As a consequence, this chapter is concerned with the nonlin-

ear problem given the sources to follow Gaussian distribution. The problem

of interest in this chapter is even more general than nonlinear BSS; in fact,

it is questioned under which conditions an unknown nonlinear mixture of

Gaussian signals can be blindly transformed to a linear one. Evidently, a

nonlinear BSS approach can be structured by such linearizing techniques

cascaded by traditional linear BSS methods for Gaussian signals. In this

chapter, the theory of the proposed idea is firstly studied, based on which a

linearizing algorithm is proposed and simulated.

Chapter 5

This chapter addresses the nonlinear BSS problem conditioned that the

sources are spatially sparse. For this purpose, after a summarized review

on the related works on linear mixtures, the approach is proposed to be split

into two consecutive steps: 1) clustering and multiple manifold learning 2)

Separating the sources. Since the first step may have diverse applications in

other domains of signal processing and pattern recognition, it is investigated

more deeply in Section 5.2.1. Then in Section 5.2.1, the sources are separated

and reconstructed up to accepted ambiguities. Like the other chapters, the

proposed method is supported by simulation results on synthetic data.
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In this chapter, the literature of BSS problem is shortly reviewed. For this

purpose, ICA is introduced as the main approach for linear BSS, followed by

its different algorithms, applications, and extensions. Then, it is shown why

ICA is not able to separate general nonlinear mixtures and which specific

nonlinear mappings are shown to be separable.

2.1 Linear BSS and its applications

Assuming the mixing function is linear, the system of Fig. 1.1 is simplified

as Fig. 2.1. In this model, given the observations x(t) for t = 1, . . . , T , the

goal is to find matrix B such that y(t) = Bx(t) is the best reconstruction of

the unknown sources. The problem is equivalent to factorize the data matrix

X (size m × T ) as the product of two matrices A (size m × n) and S (size

n× T ).

The indeterminacy in the problem is any regular matrix M (size n ×

n), since X = AS = (AM)(M−1S). Thus the problem is evidently ill-

posed and priors on sources are mandatory for avoiding this unacceptable

7
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x(t) = As(t) y(t) = Bx(t)

s1(t)

sn(t)

x1(t)

xm(t)

y1(t)

yn(t)

Unknown

Figure 2.1: Linear BSS problem basic model

indeterminacy and solving the problem. Source independence is an example

of such prior.

This problem has been intensively investigated for the past three decades

(refer to [Comon and Jutten, 2010]). For linear instantaneous mixtures,

where the number of the observations is equal to the number of the sources,

a very nice result is that signal separation can be achieved if the sources

si(t) and sj(t), for any pair i 6= j, are mutually independent random vari-

ables [Comon, 1994]. More precisely, [Comon, 1994, theorem 11] says that

Theorem 1. Let s be a vector with independent components, of which at

most one is Gaussian, and whose densities are not reduced to a point-like

mass. Let C be an orthogonal n× n matrix and y the vector y = Cs. Then

the following three properties are equivalent:

1. The components yi are pairwise independent.

2. The components yi are mutually independent.

3. C = ΛP, Λ diagonal, P permutation.

This theorem gives the main idea of linear BSS as “find B such that

the components of y = Bx are pairwise independent” (see Fig. 2.1). It is

thus outstanding to note that SP independence (refer to Chapter 1) is not

required in the linear case.

It should be emphasized that according to Theorem 1, without further

information, sources can be reconstructed up to a scaling indeterminacy and

a change of order. This can be understood by considering the fact that

8
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any matrix B satisfying BA = ΛP is an acceptable answer. Therefore,

the problem does not contain any information about either the order of the

sources or their scale. Accordingly, a “linear copy” of a vector is defined as

follows.

Definition Let s be an n-dimensional vector. y is called a “linear copy” [Car-

doso, 1998] of s if it has the same dimension as s and each element yi of it

is one and only one of the elements of s which is scaled by an arbitrary

coefficient. It can be written as

∀ 1 ≤ i ≤ n yi = cisτi (2.1)

where ci for i = 1, . . . , n is a scalar and (τ1, τ2, . . . , τn) is a permutation of

(1, 2, . . . , n). �

Many algorithms have been designed based on different approximations of

RV independence (refer to Chapter 1), e.g. CoM2 [Comon, 1994], JADE [Car-

doso and Souloumiac, 1993], Normalized EASI [Cardoso and Laheld, 1996],

HOSVD [De Lathauwer et al., 2000] and FastICA [Hyvärinen, 1999a]. We

can also cite AMUSE [Tong et al., 1990, Tong et al., 1991] and SOBI [Be-

louchrani et al., 1997] which, conversely to previous algorithms assuming iid

samples, exploit the assumption that the source samples are not iid, and

consider the statistical independence of delayed samples. Afterwards, tak-

ing into account any of the mentioned “non-properties”, any combination of

them, or even some other characteristics such as sparsity, other separation

algorithms have been proposed, e.g. INFOMAX [Bell and Sejnowski, 1995]

(a thorough study of different methods is provided in [Comon and Jutten,

2010]).

However, the linear instantaneous model is too simple to fit in many

practical applications. Therefore, it has to be extended in many directions;

e.g.

• considering additive noise

x(t) = As(t) + n(t), (2.2)

9
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• dealing with complex signals (instead of real ones),

• considering the mixture to be convolutive

x(t) = [A(z)]s(t)
4
=
∑
k

Aks(t− k), (2.3)

• considering over-determined/under-determined cases (when the num-

ber of the sources is less/more than the number of the observations)


m > n over-determined

m = n determined

m < n under-determined

. (2.4)

There are several works in the literature on each of the mentioned directions:

for more details refer to [Comon and Jutten, 2010].

These extensions made BSS applicable to numerous realistic problems,

such as LVA (Latent Variable Analysis; e.g. in economics [Kiviluoto and

Oja, 1998]), bio-medical signal processing (e.g. separating signals from dif-

ferent sections of the brain in EEG (Electroencephalogram) and MEG (Mag-

netoencephalography) [Vigário et al., 2000] and extraction of FECG (Fe-

tal Electrocardiogram) [De Lathauwer et al., 1995]), multiple antennas and

MIMO (Multiple Input Multiple Output) communications [Li and Liu, 1998],

analysis of multi-spectral astronomical images [Nuzillard and Bijaoui, 2000],

etc. (more details about all these applications and several other ones can be

found in [Hyvärinen et al., 2004]).

2.2 Nonlinear BSS and its applications

In many applications the mixing system of the sources has to be modeled as

nonlinear. Hyperspectral imaging [Dobigeon et al., 2014,Golbabaee et al.,

2013], remote sensing data [Meganem et al., 2011], determining the con-

centration of different ions in a combination via smart chemical sensor ar-

rays [Duarte and Jutten, 2014], and removing show-through in scanned doc-

10
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uments [Merrikh-Bayat et al., 2011] are some well-studied examples of such

applications.

However, although for linear mixtures, conventional ICA (i.e. based on

RV independence) ensures identifiability and separability even for iid sources,

it is not sufficient for nonlinear mixtures. In other words, one can find some

nonlinear mixtures (with non-diagonal Jacobian) of mutually independent

sources which are still mutually independent. In the following, it is shown

by counter-examples why RV-based ICA does not work for nonlinear BSS.

As introduced in [Taleb and Jutten, 1999,Hosseini and Jutten, 2003], let

us consider two independent iid source signals s1(t) and s2(t), whose samples

follow the following pdf’s

ρ1(s1(t)) = s1(t)× e−s1(t)2/2 (2.5)

ρ2(s2(t)) = 1/2π; 0 ≤ s2(t) < 2π (2.6)

and the nonlinear transform

x1 = s1 × cos(s2) (2.7)

x2 = s1 × sin(s2). (2.8)

On the other hand, we know that for a bijective and differentiable func-

tion f

x = f(s) ⇒ ρX(x) =
ρS(s)

| det(Jf (s))|
(2.9)

where det(Jf (s)) is the determinant of the Jacobian matrix of the nonlinear

transformation and is defined as

Jf (s) =


∂f1
∂s1

· · · ∂f1
∂sn

...
...

∂fn
∂s1

· · · ∂fn
∂sn

 . (2.10)

After simple calculations, one can easily compute the joint pdf of x1 and

x2 which factorizes as

ρX1,X2(x1, x2) =
ρS1,S2(s1, s2)

|Jf |
= (

1√
2π
e−x

2
1/2)(

1√
2π
e−x

2
2/2). (2.11)

11
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Therefore, the observations are statistically independent while they are still

mixtures of both sources.

Another counter-example was introduced In [Babaie-Zadeh, 2002, Section

3.3], which showed that even for smooth nonlinear mixing functions, source

independence (in the sense of random variables) was not a powerful enough

criterion for separating the sources. In this example, at each sample t, the

sources are mixed nonlinearly asx1(t)

x2(t)

 =

cosα(s(t)) − sinα(s(t))

sinα(s(t)) cosα(s(t))

s1(t)

s2(t)

 (2.12)

where α(s(t)) is a differentiable function. In this particular example, the

determinant of the Jacobian matrix of the nonlinear transformation is cal-

culated as

Jf (s) =

cosα(s) − sinα(s)

sinα(s) cosα(s)

 1− s2
∂α(s)
∂s1

−s2
∂α(s)
∂s2

s1
∂α(s)
∂s1

1 + s1
∂α(s)
∂s2

 (2.13)

⇒ det(Jf (s)) = 1 + s1
∂α(s)

∂s2
− s2

∂α(s)

∂s1
. (2.14)

If α(s(t)) is only a function of the norm of the input vector, i.e. r(t) 4=√
s2

1(t) + s2
2(t), (2.14) will be equal to one for any source vector. Conse-

quently

ρX1,X2(x1, x2) =
1

| det(Jf (s))|
ρS1,S2(s1, s2) = ρS1,S2(s1, s2).

Particularly, if the source samples are iid and uniformly distributed be-

tween −1 and 1, i.e. ρS1,S2(s1, s2) = 0.25 for (s1, s2) ∈ [−1, 1] × [−1, 1] and

0 elsewhere, and given

α(s(t)) =

θ0(1− r(t))α0 if 0 ≤ r(t) ≤ 1

0 if r(t) ≥ 1
(2.15)

where θ0 and α0 are real and integer constants respectively, the observations

will also follow a joint uniform distribution as ρX1,X2(x1, x2) = 0.25 for

(x1, x2) ∈ [−1, 1] × [−1, 1] and 0 elsewhere, which factorizes. Thus the

12
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(b) Mixture grid-map

Figure 2.2: Illustration of the nonlinear mapping of (2.12)

observations are instantaneously mutually independent, even though each

of them is a nonlinear mixture of both sources. Fig. 2.2 illustrates this

mapping for θ0 = π/2 and α0 = 2.

These counter-examples prove that RV independence is not sufficient

for separating nonlinearly mixed signals. As a consequence, except a few

dispersed works (e.g. [Blaschke et al., 2007] and [Levin, 2010]), studies in

nonlinear BSS were mainly focused on specific mixing models or specific

source signals, which were concerned by practical applications and for which

RV independence is sufficient for ensuring identifiability and separability.

2.2.1 Specific nonlinear models

There are two main classes of nonlinear models investigated [Deville and

Duarte, 2015] and for which ICA leads to source separation under mild con-

ditions.

1. Post-Nonlinear (PNL) [Achard and Jutten, 2005, Taleb and Jutten,

1999, Altmann et al., 2012]: the unknown mixing nonlinear system

contains a linear mixture cascaded by component-wise nonlinear dis-

tortions as depicted in Fig. 2.3. Convolutive PNL is an extension of

this basic model [Babaie-Zadeh, 2002].

2. Bi-Linear (or Linear Quadratic) mixtures [Deville and Hosseini, 2007,

13
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Figure 2.3: PNL problem model

Merrikh-Bayat et al., 2011,Halimi et al., 2011]: each observation is a

linear mixture of the sources and their second-order multiplications,

i.e. the nonlinear function is linear with respect to each source if the

other are constant. This model can be formulated as

∀1 ≤ i ≤ n xi =

n∑
j=1

aijsj +

n∑
j=1

n∑
k=j

bijksjsk. (2.16)

Conformal mappings [Hyvärinen and Pajunen, 1999] and linear-transformable

mappings [Kagan et al., 1973] are two other categories that have been ad-

dressed so far and for which RV independence leads to source separation.

We have also studied some other specific models (e.g. polynomial mixtures)

whose results will come in the following chapters.

2.2.2 General Approach

As stated before, it had been shown by counter-examples that ICA does

not work for nonlinear mixtures. So studies on nonlinear mixtures were

limited to specific cases where the mixing function and/or the sources are

parametrized or they follow an already-known structure.

However, these limitations are mainly due to the fact that the temporal

information of the sources is not exploited. For example in [Hosseini and

Jutten, 2003] it is shown that even though for each time instant t0, x1(t0)

and x2(t0) are independent random variables, stochastic processes x1(t) and

x2(t) might not be independent stochastic processes, and random variables
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x1(t0) and x2(t0 − 1) could be dependent. Taking this fact into account,

previous “counter-examples” lose their validity for proving that general non-

linear mixtures are not separable.

Therefore, using a more general definition of independence than RV in-

dependence (1.2), but simpler than SP independence (1.3), a more general

problem may be addressed without being restricted to any specific mixture

or parametric model. Actually there is a similar story in convolutive linear

mixtures; ICA in the RV sense does not separate the sources, but a more

general definition of ICA does. In that case, it is shown that if the signals

and their delayed versions are independent, they are separable. Therefore,

dealing with nonlinear mixtures, the key idea is that although the mixture

is instantaneous, RV independence is not powerful enough to separate the

sources. This is the main idea of the Chapter 3.

A similar approach is taken in [Levin, 2010] for “performing BSS for

nonlinear mixtures using signal invariants”. In that paper, the mixture is

modeled as (1.1) where the number of the sources is assumed to be equal to

the number of the observations, i.e. m = n.

In that work, the source signals are assumed to be independent in the

sense of

ρS(s, ṡ) =

n∏
k=1

ρk(sk, ṡk) (2.17)

where “ ˙ ” denotes time(or sample)-derivative.

Note that (2.17) is more powerful than RV independence (1.2) used in

ICA, but it is simpler than SP independence (1.3). In other words, SP inde-

pendence results (2.17), and (2.17) results RV independence, but reciprocals

do not hold. It is also interesting to note that using time-derivatives implies

considering temporal information of signals.

The paper [Levin, 2010], as well as [Levin, 2017], proposes a method for

diagonalizing the local correlation matrix of the data’s velocity. For this
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purpose tensors Ckl...(x) are defined as

Ckl...(x)
4
=

∫
ρX(x, ẋ)(ẋk − ¯̇xk)(ẋl − ¯̇xl) . . . dẋ∫

ρX(x, ẋ)dẋ
(2.18)

≈ 〈(ẋk − ¯̇xk)(ẋl − ¯̇xl) . . .〉x (2.19)

where in (2.19), ¯̇x = 〈ẋ〉x, the bracket denotes the time average over the

trajectory’s segments in a small neighborhood of x and “. . . ” denotes possible

additional indices on both the left side, and correspondingly, the right side.

For better understanding, let us change the notation of the paper and

rewrite (2.18) for second order correlations (only two indices) as

⇒ Cx 4= E{ẋẋ†} (2.20)

where E represents the statistical expected value. Note that the superscript

x shows that it is calculated locally.

Now, a linear transformation matrix M

y
4
= Mx ⇒ ẏ = Mẋ (2.21)

is locally found such that (1) the M-transformed velocity correlations (ẏ)

are orthonormal and (2) a projection matrix of the forth-order correlation

tensor of ẋ is diagonal.

The M-transformed velocity correlations can be calculated as

Cy 4= E{ẏẏ†} = E{Mẋẋ†M†} = ME{ẋẋ†}M† = MCxM†. (2.22)

The first condition imposes that

Cy = MCxM† = In×n. (2.23)

From Linear Algebra we know that a solution to this equation can be ob-

tained by eigenvalue decomposition (EVD) of Cx

E†CxE = Λ, (2.24)

where E contains the eigenvectors of the matrix Cx and Λ is a diagonal

matrix of the eigenvalues ordered the same as the corresponding eigenvectors
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in E. Thus

⇒ Λ−
1
2 E†CxEΛ−

1
2 = In×n ⇒M† = Λ−

1
2 E† (2.25)

and M† is a transformation which diagonalize the data’s velocity correlations.

It is easy to show that the general form of the solution of (2.23) is a

rotated version of the calculated M†, i.e.

M = UM† s.t. UU† = In×n. (2.26)

The second condition proposed in the paper on (2.21) results in the proper

rotation and unifies the transformation M. It says∑
m

Cy
klmm(x) = [D(x)]kl (2.27)

where C is the four-dimension correlation tensor of ẏ defined as

[C]ijklmn
4
= E{ẏiẏj ẏkẏl}, (2.28)

and D is a diagonal matrix.

The left side of (2.27) can be written as∑
m

Cy
klmm =

∑
m

E{ẏkẏlẏ2
m} = E{

∑
m

ẏkẏlẏ
2
m} (2.29)

= E{ẏkẏl
∑
m

ẏ2
m} = E{ẏkẏl‖ẏ‖2} (2.30)

Defining an n× n matrix named T1, whose entries are equal to
∑

m Cy
klmm

with the corresponding index, we will have

[T1]kl =
∑
m

Cy
klmm = E{ẏkẏl‖ẏ‖2} ⇒ T1 = E{ẏẏ†‖ẏ‖2}. (2.31)

Now let us write the above equations for the M†-transformed version of

ẋ as

ẏ†
4
= M†ẋ ⇒ ẏ = Uẏ† ⇒

∑
m

∑
m

Cy†

klmm = E{ẏ†kẏ
†
l ‖ẏ
†‖2}. (2.32)

Similarly, T2 can be defined as

[T2]kl =
∑
m

Cy†

klmm ⇒ T2 = E{ẏ†ẏ††‖ẏ†‖2}. (2.33)
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Considering (2.32) and (2.33), the relation between T1 and T2 can be

formulated as

T1 = E{ẏẏ†‖ẏ‖2} = E{Uẏ†ẏ†
†
U†‖Uẏ†‖2} (2.34)

= E{Uẏ†ẏ†
†‖ẏ†‖2U†} (2.35)

= UE{ẏ†ẏ††‖ẏ†‖2}U† (2.36)

= UT2U
†, (2.37)

where (2.35) comes from the fact that rotations do not change the norm.

Eq. (2.27) says that T1 needs to be a diagonal matrix. Therefore from

(2.37), it is concluded that the eigenvectors of the matrix T2 should be used

as the columns of the rotation matrix U. Therefore, the transformation

matrix M is constructed by multiplying three matrices as

M = UM† = UΛ−
1
2 E† (2.38)

where E and Λ contain the eigenvectors and eigenvalues of the matrix Cx,

respectively, and U contains the eigenvectors of the matrix T2.

The transformation M which is constructed according to (2.38), is a

unique “whitening” transform that is proposed to be calculated locally. In

other words, the probability distribution function of the velocity of the obser-

vations is estimated at each point (neighborhood) by time-averaging (consid-

ering the observations to be ergodic) and then the whitening transformation

is calculated for this specific neighborhood. So it will be more accurate to

use the notation M(x) to show that it depends on the location. The pro-

posed method recalls performing an ICA-like algorithm “locally” and for the

“derivatives” of the observations.

It is easy to show that if the data is separable (i.e. if the transformation

has whitened the velocity of the observations), the auto-correlation of each

of the transformed signals, in any order, is only a function of one of the

sources. Thus the paper proposes to calculate data’s autocorrelations in the

transformed domain in different orders to see if they are whitened or not. For
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this purpose, the following triples are plotted in a three dimensional space.

I1 = {Cy
111(x),Cy

1111(x),Cy
11111(x)}

I2 = {Cy
222(x),Cy

2222(x),Cy
22222(x)}

...

In = {Cy
nnn(x),Cy

nnnn(x),Cy
nnnnn(x)}

(2.39)

Since each of the triples of (2.39) is supposed to be a function of only

one of the source signals, it is expected to lie in a one dimensional sub-space.

The paper claims that the data has been separated iff it happens.

There are parts in the paper that are not clear enough, and claims which

are neither mathematically proven nor thoroughly explained. Even the above

notes on the proposed method and the mathematical expressions do not

exist in the paper and come from our understanding of that. However,

our interpretation of the main idea of the paper, i.e. using a more general

definition of independence (2.17) than RV independence, was inspiring for

our approach to general nonlinear BSS problem.

2.3 Conclusion

As stated before, linear BSS problem has been vastly studied in the past 30

years and many algorithms and methods are proposed for that. However,

since ICA was shown not to be able to separate general nonlinear mixtures,

nonlinear BSS has only been considered for some particular structured mod-

els. Nonetheless, considering temporal information of the signals leads to a

more general definition of independence than RV independence, which results

in separability of more general nonlinear mixtures.

It should be mentioned that this work, as well as other general nonlinear

BSS methods [Comon and Jutten, 2010,Jutten and Karhunen, 2003,Jutten

and Karhunen, 2004,Ehsandoust et al., 2016], suffers from the ambiguity of a

nonlinear transformation that cannot be resolved. However, it is important

to differentiate between source separation and source reconstruction. In fact,
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once the sources are separated, the task of BSS is done. Source reconstruction

is a more general task that is out of the scope of this work.

Although source separation can be sufficient and efficient in the cases

where BSS is used as a first step before classification, in practical applications

of source reconstruction, the proposed method of this work, as well as most

other papers on nonlinear BSS, serves as a first step which separates the

sources and maybe needs to be followed by a reconstruction method. For

this last step, simple and weak priors on a source like sparsity [Duarte et al.,

2015], bandwidth [Dogancay, 2005], zero-crossing [Marvasti and Jain, 1986],

etc. can be used for reconstructing a signal without knowing the nonlinear

distortion. This point is more elaborated in the following chapters.
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CHAPTER 3. A GENERAL APPROACH TO NONLINEAR BSS

In this chapter, the separability of general nonlinear BSS is studied and

a basic algorithm for source separation is proposed. The proposed approach

is mainly based on using signal derivatives in order to employ temporal

information of the signals, as introduced in previous chapters.

Please note that this chapter will provide a method, on which different

algorithms can be developed for solving nonlinear BSS problems. It proposes

a general approach for performing the separation in nonlinear mixtures as

well as the necessary conditions on the model. A separation algorithm is

also provided and its efficiency is proved by simulations.

The idea of this chapter is original and has been published in [Ehsan-

doust et al., 2015] and [Ehsandoust et al., 2017a]. This chapter is organized

as follows. The novel approach for solving the nonlinear BSS problem is

introduced in Section 3.1. Then a discussion on the separability and the

assumptions on the model is provided. Section 3.2 contains the basic al-

gorithms proposed for performing the separation. The algorithms are im-

plemented and tested with examples, the results of which are presented in

Section 3.4. Finally, conclusions, remained questions and future works are

discussed in the last section.

3.1 The Main Idea

The proposed approach for nonlinear BSS in this chapter is mainly based on

local linear approximation of the nonlinear mixture. So, it is applicable to

any nonlinear model satisfying the mentioned assumptions. In addition, a

discussion is made in Section 3.4 showing how its performance relates with

the amount of the nonlinearity of the mixture (supported by simulation

results).
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3.1.1 An Example of Local Linear Approximation

of Nonlinear Functions

In this subsection, we show how the idea of local linear approximation can be

applied on nonlinear BSS in hyperspectral images. We have published this

concept, with more details and simulation results, in [Drumetz et al., 2017].

In that paper, the locally approximated model is called “space-variant”, where

its relationship with the original nonlinear mixture is investigated. The theo-

retical results are employed in the well-known hyperspectral image unmixing

application, which confirm the validity of the proposed approach.

3.1.1.1 Hyperspectral Image Unmixing

Hyperspectral image unmixing is a source separation problem whose goal is

to identify the spectral signatures of the materials present in the imaged scene

(called endmembers), and to estimate their proportions (called abundances)

in each pixel. Usually, the contributions of each material are assumed to be

perfectly represented by a single spectral signature and to add up in a linear

way. However, the main two limitations of this model have been identified

as nonlinear mixing phenomena and spectral variability, i.e. the intra-class

variability of the materials.

The former limitation has been addressed by designing nonlinear mixture

models, while the second can be dealt with by using space varying models

(usually keeping the linear mixture assumption). The typical example is a

linear mixing model where the sources can vary from one pixel to the other.

A hyperspectral image is represented as a matrix X ∈ RL×N , where L is

the number of considered wavelengths, and N is the number of pixels in the

image. The endmembers are gathered in the columns of a matrix S ∈ RL×P ,

where P is the number of considered materials. The abundance coefficients

for each pixel and each material are stored in a matrix A ∈ RP×N . Then a
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simple linear mixing model (LMM) writes, for a given pixel xk ∈ RL:

xk =

P∑
p=1

apksp + ek (3.1)

where ek is an additive noise, often assumed to be zero mean Gaussian-

distributed, with an isotropic covariance matrix.

The endmembers, being reflectance spectra, are constrained to be non-

negative. In addition, the abundances are proportions, so they are usually

constrained to be positive, and to sum to one in each pixel. Geometrically,

the LMM constrains the data to live in a simplex spanned by the endmem-

bers. In many cases, the LMM is a reasonable approximation of the physics

of the mixtures. However, in more complex cases nonlinear mixture models

are necessary, for instance when rays of light undergo multiple reflections be-

fore reaching the sensor (e.g. in tree canopies) [Heylen et al., 2014,Dobigeon

et al., 2014].

This issue fostered research on nonlinear mixing models and the corre-

sponding unmixing algorithms (e.g. [Meganem et al., 2014,Altmann et al.,

2014, Févotte and Dobigeon, 2015]). A popular choice for modeling this

problem is the class of linear-quadratic models, which take into account sec-

ond order interactions between materials, under the form of product spectra

sp � sq, where � is the Hadamard (element-wise) product as

xk =

P∑
p=1

apksp +

P∑
p=1

P∑
q=p

bpqksp � sq + ek (3.2)

where bpqk are positive quadratic interaction coefficients for each pixel k

and each pair of materials (p, q). The higher order interactions are usually

omitted, since they are considered to have a low contribution to the final

at-sensor reflectance. The data is now bound to lie in a nonlinear manifold

which is more complex than a simplex.

The other limitation comes from the representation of a single endmem-

ber by a unique spectral signature. This is a very convenient approximation,

but an endmember is actually more accurately described by a collection of

24



CHAPTER 3. A GENERAL APPROACH TO NONLINEAR BSS

signatures, which account for the intra-class variability of that material [Zare

and Ho, 2014]. Many physical phenomena can induce variations on the spec-

tra of pure materials, be it a change in their physico-chemical composition,

or the topography of the scene, which locally changes the incidence angle of

the light and the viewing angle of the sensor. This phenomenon is referred

to as endmember variability [Thouvenin et al., 2016,Halimi et al., 2015,Hen-

rot et al., 2016]. A physics-inspired model to explain illumination induced

variability is the Extended Linear Mixing Model (ELMM) [Drumetz et al.,

2016], which writes

xn =

P∑
p=1

apnψpnsp + en (3.3)

where ψpn is a positive scaling factor whose effect is to rescale locally each

endmember, the variations between variants of the same material due to

changing illumination conditions being reasonably well explained by a scaling

variation. Geometrically, the data may now lie inside a convex cone spanned

by the endmembers. More specifically, each pixel belongs to a simplex, whose

vertices can slide on lines (passing through the origin) which correspond to

the edges of the convex cone.

Spectral variability and nonlinear mixtures are physically very different

phenomena. Mathematically, spectral variability essentially amounts to us-

ing a space varying (usually linear) mixing model, while a general nonlinear

mixing model is spatially invariant. In [Revel et al., 2016], the joint consider-

ation of both nonlinearities (through a linear-quadratic model) and spectral

variability was experimentally shown not to give substantially better abun-

dance estimation results than considering endmember variability alone. The

dataset considered was acquired over an urban area, where both phenomena

were expected to be nonnegligible, which suggests that using a nonlinear

model along with a variability model was not necessary, and that the latter

can already handle nonlinear effects to some extent.

Nonetheless, following the ideas of [Ehsandoust et al., 2017a], we provide

theoretical insight to these results, by showing that there is a mathematical
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connection between both approaches. We show that a local Taylor expan-

sion of a generic nonlinear model can be related to a variant of the spatially

varying ELMM. This derivation, as well as the experiments, show that the

ELMM has the ability to recover abundances from nonlinear mixtures, even

though it was derived from physical considerations about endmember vari-

ability in linear mixtures.

3.1.1.2 Connection Between Nonlinear Models and Variability

Models

A generic (noise free) nonlinear mixing model can be expressed, for a given

pixel n and wavelength l, as:

xln = fn(sl1, sl2, ..., slP ) (3.4)

where slp is the value of endmember p at wavelength l, and fn : RP → R is a

generic nonlinear function, which does not depend on the considered spectral

band. Assuming the nonlinear function fn is sufficiently regular, and that the

sources are allowed to vary, we can perform an M th order Taylor expansion

around (0, 0, ..., 0) as

xln = fn(0) + s>l:∇fn(0) + s>l:∇2fn(0)sl: + · · ·+ o(‖sl:‖M ) (3.5)

=
P∑
p=1

∂fn
∂slp

(0)slp +
P∑
p=1

P∑
q=1

∂2fn
∂slp∂slq

(0)slpslq + · · ·+ o(‖sl:‖M ) (3.6)

where in 3.6, we have discarded the constant term (if the sources are zero,

nothing is observed, i.e. we assume that fn(0) = 0), and where sl: =

[sl1, ..., slP ]> ∈ RP . Note that even though this expansion is performed

in 0, the error term o(||sl:||M ) is likely to be small around sl:, because linear-

quadratic and multilinear mixing models approximate the physics of hyper-

spectral imaging well, i.e. if the underlying nonlinear function is close to

polynomial, we expect the coefficients of the expansion to be very close to

the actual coefficients of the polynomial. In addition, even with a more gen-

eral model, the expansion will also be valid in the neighborhood of sl: with

a high enough order M of the expansion.
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We change the notation of the coefficients of the expansion, keeping in

mind their dependence with respect to the different variables of the model,

and also change the indexing such that the identical second order terms are

gathered in only one term as

xln =
P∑
p=1

αpnslp +
P∑
p=1

P∑
q=p

βpqnslpslq + · · ·+ o(‖sl:‖M ). (3.7)

There is no dependence of the coefficients on the spectral band since we

assumed the nonlinearity affects all spectral bands equally. If, following the

physics of the problem, we assume the true nonlinear model is close enough

to a multilinear model, that is a generalization of model (3.2) to higher order

interaction terms, then considering the uniqueness of Taylor expansion, we

can safely assume that αpn ≈ apn and βpqn ≈ bpqn, and then model (3.2) is

a truncation at the second order of

xln =

P∑
p=1

apnslp +

P∑
p=1

P∑
q=p

bpqnslpslq + · · ·+ o(‖sl:‖M ). (3.8)

On the other hand, if we factor the coefficient αpnslp in terms of Eq. (3.7),

we obtain

xln =

P∑
p=1

αpn

(
1 +

P∑
q=p

βpqn
αpn

slq + · · ·+ o(‖sl:‖M )

)
slp. (3.9)

In order to make this factorization possible, we had to assume that all ma-

terials have a nonzero linear coefficient in pixel n. If the true model is

multilinear, then these coefficients correspond to the abundances, and we

simply have to remove the endmembers with zero abundance in pixel n from

the equation.

By denoting the factor between the parentheses by ψlpn, and again by

assuming the true model is close to multilinear, we obtain

xln =

P∑
p=1

apnψlpnslp (3.10)

which is formally close to the variability model (3.3), with the notable ex-

ception that the scaling factor now depends on the wavelength. The ELMM
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is essentially a linear model where each endmember is allowed to vary spa-

tially according to the law spn = ψpnsp, where sp is a reference signature for

material p. The scaling factor does not depend on the wavelength here.

Note that model (3.10) is very general and may be too flexible to provide

reliable performance without additional well chosen regularizations. Still,

this shows that the space invariant (in terms of the endmembers) nonlinear

model (3.4) can be locally approximated by a spatially varying linear model.

Model (3.10) is more general than truncating model (3.8) at the sec-

ond order, since the scaling factor incorporates information about the linear

and quadratic terms of the expansion, but also about higher order terms.

In [Drumetz et al., 2017], we have also shown experimental evidences of

the capability of space-variant models, and in particular ELMM, to extract

information related to nonlinear mixtures, confirming that this model can

actually obtain better abundance estimations than a linear-quadratic model-

based algorithm in several cases, and thus better handles more general non-

linear mixtures than a model which is specifically designed for this purpose.

3.1.2 Signal Derivatives

Our main idea for general nonlinear BSS is based on the fact that the deriva-

tives of the sources are locally mixed linearly even though the mixture model

is nonlinear in general. Indeed, if the nonlinear mapping f is differentiable

at each point, one can derive a local linear approximation of it involving the

derivatives of sources and observations. This is easily seen from

xi(t) = fi(s(t)) ⇒ dxi
dt

=

n∑
j=1

∂fi
∂sj

dsj
dt

(3.11)

⇒ ẋ = Jf ;t(s)ṡ, (3.12)

where Jf ;t(s) is the Jacobian of the mixing function f defined as (2.10).

It should be noted that the precise definition of the derivative of a random

process p(t) is in the mean square sense, i.e. a random process ṗ(t) is the

time-derivative of a random process p(t) iff limε→0 E[|p(t+ε)−p(t)ε − ṗ(t)|2] = 0.
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In this sense, it can be shown that if p(t) is stationary, the auto-correlation

function Rp(τ) and its first and second order derivatives, R′p(τ) and R′′p(τ)

exist. Nonetheless, in the rest of the chapter, for the reason of simplicity,

we use the equality symbol “=” for the equality of random processes in the

mean squared sense as well.

It is worth noting that Jf ;t(s) is the Jacobian of the nonlinear time-

invariant function f and is a function of the sources s. However, since the

source vector is a random process and varies over time, the elements of Jf ;t(s)

change over time as well. This is why t does not directly appear in (2.10),

and in (3.12) is considered as an index of the Jacobian matrix, but not an

input argument. Thus, (3.12) is a local linear mixture model.

So, one can firstly separate the local linear mixtures of the source deriva-

tives using an adaptive linear BSS technique, and then, use an integration

step to reconstruct the source signals themselves. Applying a linear BSS

method on derivatives of the sources imposes some necessary conditions on

them, which will be studied in the following section. Particularly, the DC

value of signals is removed in the first step of any classical linear BSS method,

hence the derivatives in our framework. Nonetheless, as mentioned earlier,

the goal in this work is to reconstruct a “nonlinear copy” of the sources

which can still be achieved considering this DC-removal pre-processing (the

“nonlinear copy” is mathematically defined in the next section).

This idea can also be understood from a totally different point of view

as follows. Considering the general model of Fig. 1.1, let us define the

matrix ∇ ∈ Rn×n containing the partial derivatives of the output signals

with respect to the sources as follows

∇ 4
=
∂y

∂s
=


∂y1
∂s1

∂y1
∂s2

. . . ∂y1
∂sn

∂y2
∂s1

∂y2
∂s2

. . . ∂yn
∂sn

...
...

. . .
...

∂yn
∂s1

∂yn
∂s2

. . . ∂yn
∂sn

 (3.13)

or equivalently

[∇]ij =
∂yi
∂sj

. (3.14)
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So separation is performed if and only if the matrix ∇ is a so-called “non-

linear copy” or a “trivial mapping” matrix, which contains only one non-zero

element at each row and column (this term will be defined more precisely in

Section 3.1.3).

One can use the chain rule to expand (3.14) as

y = g(x) = g(f(s)) (3.15)

⇒ [∇]ij =
∂yi
∂sj

=

m∑
k=1

∂yi
∂xk

∂xk
∂sj

(3.16)

where m is the number of the observations (not necessarily equal to the

number of the sources). Therefore we have

∇ =
∂y

∂s
=
∂y

∂x

∂x

∂s
= Jg

n×m

Jf

m×n

(3.17)

where Jg and Jf represent the Jacobian matrices of the nonlinear functions

g and f respectively.

Making ∇ contain only one non-zero element at each row and column, is

very similar to linear BSS (Theorem 1) where the goal is to make the matrix

C = BA contain only one non-zero element at each row and column. The

only difference is that in linear BSS, the mixing and separating matrices A

and B are fixed, while in the nonlinear problem (3.17), the multiplicands Jg

and Jf vary as the sources take different values along time.

This fact inspires the idea that considering (3.17) locally such that the

variations of the matrices are negligible, linear BSS methods may be utilized

for solving the nonlinear BSS problem. However, it should be mentioned that

the local equivalent linear BSS problem to (3.17), would be a linear mixture

whose mixing matrix equals to Jf . As proposed in (3.11) and (3.12), it is

derivatives of the sources that are mixed through the matrix Jf . Thus locally

solving (3.12) results in nonlinear BSS.

In the following, the problem of interest is formulated and all the as-

sumptions are mentioned. Then the proposed approach is described and the

separability is discussed. The discussion is made from two points of view:

mathematical expressions and system analysis.
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3.1.3 Problem Definition and Assumptions

Similar to definition 2.1, a “nonlinear copy” is defined as follows.

Definition Given s an n-dimensional vector, y = c(s) is called a “nonlinear

copy” of s if it has the same dimension as s and each element yi of it is an

invertible nonlinear function of one and only one of the elements of s. It can

be written as

∀ 1 ≤ i ≤ n yi = ci(sτi) (3.18)

where ci for i = 1, . . . , n is an invertible nonlinear function and (τ1, τ2, . . . , τn)

is a permutation of (1, 2, . . . , n). �

The transformation c(·), which only contains component-wise nonlinear func-

tions and permutations, is called a “nonlinear copy function” or a “trivial

nonlinear mapping”.

Thus, the general nonlinear BSS problem can be defined as follows. Let

an observation vector x(t) be an unknown nonlinear mixture of an unknown

source vector s(t) as (1.1), or equivalently

∀ i xi(t) = fi(s(t)). (3.19)

Source separation consists of finding a nonlinear mapping g as

find g s.t. g ◦ f = c (3.20)

where c = g ◦ f is a “nonlinear copy” function.

According to (3.17) the following basic theorem can be proposed.

Theorem 2. In the model of Fig. 1.1 the sources s1, . . . , sn are mixed through

a nonlinear function f resulting in the observations x1, . . . , xm. A function g

is separating, i.e. y = g(x) is a “nonlinear copy” of the source vector s, if and

only if ∇ = JgJf is a permuted diagonal matrix of functions, i.e. ∇ = ΛP

where P is a permutation and Λ is a matrix whose off-diagonal entries are

equal to zero (the diagonal elements are not necessarily constant).

31



CHAPTER 3. A GENERAL APPROACH TO NONLINEAR BSS

It should be noted that each element of Jf is in fact a nonlinear function

of the sources. Thus, as sources take different values along time, the value

of the elements of Jf should change such that JgJf always remains a copy

function.

As a consequence, “finding a function g whose Jacobian Jg makes ∇ =

JgJf a permuted diagonal matrix” is equivalent to “finding a matrix of func-

tions Jg which linearly separates the derivatives of the sources for all values

taken by s”. This interpretation complies with previous nonlinear BSS re-

sults, especially those concerning derivatives of signals, e.g. [Levin, 2010].

Note that an ambiguity of a permutation and a nonlinear function in

reconstruction of the sources cannot be resolved. It is evident from the

definition of a nonlinear copy function and (3.20). In addition, it can also

be understood from another point of view by looking at the Jacobian of the

mixing function (see Section 3.1.5).

The above source separation problem is ill-posed without additional as-

sumptions, either on the nonlinear mapping f or on the sources. In this

chapter, we consider the following assumptions:

1. The number of the sources is equal to the number of the observations,

2. f is invertible,

3. f is memoryless,

4. f is time-invariant,

5. f ∈ C1 (i.e. it is differentiable with continuous first-order derivative),

6. Sources s1(t), . . . , sn(t) are differentiable, hence colored (this assump-

tion implies continuity and smoothness),

7. Derivatives of the sources {ṡ1(t), . . . , ṡn(t)} are mutually independent

and

8. At most, one of the derivatives of the sources follows the Gaussian

distribution.
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These assumptions are satisfied in most practical applications where the

signals and the nonlinear mixing model correspond to real physical phenom-

ena. In fact, the assumptions 1 to 4 are classical assumptions of BSS that

are assumed even in linear cases. If the source signals have different origins

(i.e. their physical origins are independent), then they will also be mutually

independent stochastic processes, hence assumptions 6 and 7 hold.

As a consequence, all applications introduced in the Section 2.2, includ-

ing hyperspectral imaging [Golbabaee et al., 2013] and determining the con-

centration of different ions in a combination via smart chemical sensor ar-

rays [Duarte and Jutten, 2014] satisfy the mentioned assumptions. There-

fore, nonlinear BSS problems, which can be treated through the proposed

approach in this work, do not belong to a specific set of functions and are

quite general.

These assumptions are necessary for the proposed approach which will

come in Section 3.1.5. Needless to mention, in this approach, derivatives of

the signals should contain some information; in other words, signals with

constant time-derivatives cannot be treated through this framework. Never-

theless, it is worth adding some remarks about some of them.

The assumption f ∈ C1 imposes the continuity of Jf . Moreover, ac-

cording to the inverse function theorem [Spivak, 1965], if a function f is

invertible on a region in its domain and f ∈ C1, 1) its Jacobian Jf will be

non-singular on that region and 2) the Jacobian of its inverse is equal to the

inverse of its Jacobian (J−1
f = Jf−1). Consequently, assumptions 5 and 2

result in continuity and non-singularity of Jf , which makes the local linear

BSS problem (3.12) solvable with ICA. Note that if the function is not in-

vertible, although (3.12) is always true, since the Jacobian matrix would not

be full-rank everywhere, it does not lead to a solvable BSS problem.

In addition, f needs to be memoryless and time-invariant, because oth-

erwise Jf in (3.12) would also vary along time, hence the variations of local

linear approximation would be too difficult to be followed by a BSS algo-

rithm. This limitation will be better understood after Section 3.2 in which
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we utilize it for amending the initially proposed method.

Moreover, assumption 6, in combination with the differentiability and

continuity of f , implies the smoothness of the variations of the nonlinear

function, hence its Jacobian Jf , along time so that it is tractable by adaptive

local BSS algorithms. In other words (as it will be elaborated in Section 3.2

and simulation results), the performance of the proposed method depends

on the speed of the variations of Jf along time, which is due to the spectral

colorfulness of the sources and the nonlinearity of f itself.

As mentioned before, the proposed algorithm in this work is based on

the statistical independence of the sources. Therefore, as assumed in ICA-

based classical BSS methods, mixed signals in (3.12) need to satisfy certain

conditions [Comon, 1994]. This is where the assumptions 7 and 8 come from.

It should be noticed that the assumptions 7 and 8 concern derivatives of

the sources, because in (3.12), the mixed signals are the derivatives of the

sources. The assumption 7 can be expressed as

ρS(ṡ) =
n∏
k=1

ρk(ṡk) (3.21)

where ρS(ṡ) and ρk(ṡk) correspond to the joint and marginal pdf’s of the

derivatives of the sources. It should be noted that a stronger assumption

than (3.21) was proposed as a necessary and sufficient condition for sep-

arability of nonlinear mixtures in [Levin, 2010] (but without any proof or

explanation), which needed the signals and their derivatives to be jointly

statistically independent (2.17).

Note that (3.21) is a completely different condition from RV independence

of the source signals and is not a result of that. Generally, a signal and

its derivative can be instantaneously independent: for instance, given the

position of a particle at a time, one cannot say anything about its speed

at that time. However, the derivative of a signal contains some information

about the variations of it (which can be translated to the bandwidth or the

amount of spectral colorfulness).

It should be finally declared that the mentioned assumptions are not

34



CHAPTER 3. A GENERAL APPROACH TO NONLINEAR BSS

claimed to be necessary for the general separability of nonlinear mixtures.

One may suggest other approaches and methods for nonlinear BSS, based

on other assumptions. However, in the proposed framework, they should

necessarily be satisfied and they are sufficient in the sense that if they hold,

it will be possible to separate the sources based on the proposed approach.

3.1.4 A Parametric Model

As a result of the section 3.1.3, the separating matrix Jg(x) should be found

such that ∇ = JgJf is a permuted diagonal matrix (see Theorem 2). Re-

calling the basic linear BSS problem, especially Theorem 1 [Comon, 1994],

enforcing the independence guarantees the separation. In other words, it

would be necessary and sufficient that components of the output vector

ẏ(t) = Jg(x)ẋ(t) be mutually independent for achieving the separation.

For making ẏ(t) signals mutually independent, the well-known classic

cost function of their statistical mutual information, I(ẏ), is chosen to be

minimized. However, the difficulty here is that this cost function should

be minimized with respect to the m × n nonlinear functions of the matrix

Jg(x) (equations are firstly written for the more general case m 6= n, then

in Section 3.1.4.3 the assumption m = n is exploited). Although one may

propose a method for optimizing a cost function with respect to functions,

in this section, for simplicity, a parametric model for the separating function

is assumed. Consequently, the cost function is minimized with respect to

those parameters.

3.1.4.1 The Model

Now, let us model the separating function g(·) in a parametric manner as

g(x) =


g1(x)

g2(x)
...

gn(x)

 =


θ1
†

θ2
†

...

θn
†

k(x) = Θn×Pk(x) (3.22)
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where θi for i = 1, . . . , n is an P × 1 column vector of the parameters

(constant scalars), k(x) ∈ RP is the column vector of kernel functions of the

parametric model and P is the number of the parameters of each entry gi(·)

which is obviously equal to the number of the kernel functions in k(·). For

example, in order to model an Lth order polynomial of n sources, one has

to take all monomials of the degree less than or equal to L as the kernel

functions. The interesting point of this model is that it is linear with respect

to the parameters, which simplifies the algorithm significantly.

It is worth noting that the kernel functions can be chosen according to

the application in order to best fit the nonlinearity of the mixture. However,

there are two conditions that should be met:

1. Avoiding the redundancy of parameters which causes the degeneration

of the matrices, the kernels should be linearly independent functions,

i.e. they should really make a P -dimensional sub-space in the infinite-

dimensional space of the functions. For example, different monomials

are linearly independent functions. Nevertheless, it is better to choose

a set of orthonormal functions as the kernels, which for all 1 ≤ i, j ≤ P

satisfy

< ki(x), kj(x) >=

1 i = j

0 i 6= j
(3.23)

where < ki(x), kj(x) >
4
=
∫
ki(x)kj(x) d x is the inner product of the

functions and the integral is over the domain of the functions. In this

case, the kernels make a basis for the P -dimensional subspace.

2. The number of kernel functions should be at least equal to the number

of sources, i.e. P ≥ n, in order to be capable of estimating the n source

signals. Note that in linear BSS, k(x) = x and P = n, which is the

simplest form of the problem.

According to Taylor’s theorem, any smooth enough nonlinear function

can be approximated by a polynomial with an arbitrary small error (choosing
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the order L high enough). Thus normalized monomials up to a high enough

order are generally a good choice of kernel functions.

Parametrizing g(x) as (3.22) with P ≥ n can also be interpreted from

another point of view: nonlinearly projecting the observations x to a high di-

mensional kernel-induced space in order that they are more easily separated.

This implies a connection between the proposed method and the well-known

kernel method for dealing with nonlinearities [Bach and Jordan, 2002,Muller

et al., 2001].

3.1.4.2 Mutual Information Minimization

For minimizing the mutual information between derivatives of the output

signals I(ẏ) with respect to the parameters, the Steepest Descent framework

can be used as

Θ ← Θ− µ∂ I(ẏ)

∂Θ
(3.24)

where I(ẏ) = (
∑n

i=1 H(ẏi)) − H(ẏ) is the mutual information of ẏ, H(·) de-

notes the statistical Shannon entropy, and µ is the step size of the algorithm.

It is worth recalling that for any 1 ≤ i ≤ n, the entropy of ẏi is defined as

H(ẏi) = −E{ln ρẎi(ẏi)} (3.25)

where ρẎi(ẏi) is the pdf of ẏi and E denotes the expected value.

Taking the derivative of I(ẏ) with respect to any parameter vector θk for

1 ≤ k ≤ n leads to

∂ I(ẏ)

∂θk
=

n∑
i=1

m∑
j=1

∂ I(ẏ)

∂[Jg(x)]ij

∂[Jg(x)]ij
∂θk

(3.26)

where [Jg(x)]ij represents the (i, j)th element of the matrix Jg(x).

The Jacobian of the separating function is formulated as

Jg(x) =
∂g(x)

∂x
= [

∂gi(x)

∂xj
] = Θ

∂k(x)

∂x

= Θ[
∂ki(x)

∂xj
] = ΘK(x) (3.27)
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where by [∂gi(x)
∂xj

] (respectively [∂ki(x)
∂xj

]) we mean the matrix whose (i, j)th

element is ∂gi(x)
∂xj

(respectively ∂ki(x)
∂xj

) and K(x) ∈ RP×m is the Jacobian of

the vector k(x) of the kernels. From (3.27) we have

[Jg(x)]ij =

P∑
p=1

Θipkpj = θi
†kj (3.28)

where kj is the jth column of K. It can be easily seen from (3.28) that for

any 1 ≤ i ≤ n, [Jg(x)]ij only depends on θi. In other words

∂[Jg(x)]ij
∂θk

=

kj i = k

0 i 6= k
(3.29)

for k = 1, . . . , n.

Therefore (3.26) for any 1 ≤ k ≤ n can be rewritten as

∂ I(ẏ)

∂θk
=

m∑
j=1

∂ I(ẏ)

∂[Jg(x)]kj
kj =

[[
∂ I(ẏ)

∂Jg(x)

]
kth row

K†(x)

]†
(3.30)

or equivalently [
∂ I(ẏ)

∂θk

]†
=
∂ I(ẏ)

∂θk
† =

[
∂ I(ẏ)

∂Jg(x)

]
kth row

K†(x). (3.31)

Stacking (3.31) for k = 1, . . . , n on top of each other yields to the deriva-

tive of I(ẏ) with respect to the parameters which can be written as

∂ I(ẏ)

∂Θ
n×P

=
∂ I(ẏ)

∂Jg(x)

n×m

K†(x)

m×P

. (3.32)

In fact, considering (3.27), the last equation (3.32) could also been achieved

by directly applying the chain rule for matrices.

3.1.4.3 Final Computations

Keeping (3.32) in mind, let us formulate ∂ I(ẏ)/∂Jg(x). For the rest of the

section, we exploit the assumption that the number of the observations is

equal to the number of sources, i.e. the determined case (m = n).
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Note that ∂ I(ẏ)/∂Jg(x) is formulated similar to the linear BSS case.

Considering

I(ẏ) =

(
n∑
i=1

H(ẏi)

)
−H(ẏ), (3.33)

the partial derivative of both terms should be calculated with respect to the

matrix Jg(x).

Considering (3.11) and (3.12), one can conclude

∂H(ẏi)

∂[Jg]kj
=


0 k 6= i

−E
{ ∂

∂[Jg]kj
ρẎi

(ẏi)

ρẎi
(ẏi)

}
k = i

. (3.34)

Thus for any 1 ≤ k = i ≤ n

∂H(ẏi)

∂[Jg]ij
= −E

{
ρ′
Ẏi

(ẏi)

ρẎi(ẏi)

∂ẏi
∂[Jg]ij

}
= −E

{
ρ′
Ẏi

(ẏi)

ρẎi(ẏi)
ẋj

}
= E{Ψi(ẏi)ẋj}

(3.35)

where (·)′ denotes the derivative with respect to the input argument, the last

equation is a result of (3.12) and for i = 1, . . . , n, Ψi(ẏi) is the score function

of ẏi defined as

Ψi(ẏi)
4
=
−ρ′

Ẏi
(ẏi)

ρẎi(ẏi)
= −

[
ln(ρẎi(ẏi))

]′
. (3.36)

Therefore,
n∑
i=1

∂H(ẏi)

∂Jg
= E{Ψ(ẏ)ẋ†} (3.37)

where Ψ(·) represents the component-wise score function defined as

Ψ(ẏ) =


Ψ1(ẏ1)

Ψ2(ẏ2)
...

Ψn(ẏn)

 . (3.38)

Regarding the second term of the right side of (3.33), we have

H(ẏ) = −E{ln ρẎ(ẏ)} = −E{ln
ρẊ(ẋ)

|det(Jg)|
}

= ln |det(Jg)| − E{ln ρẊ(ẋ)} (3.39)
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which is concluded from the fact that in (3.12), assuming that the nonlinear

mixing function is invertible, ρẎ(ẏ) = ρẊ(ẋ)/|det(Jg)|. Thus

∂H(ẏ)

∂Jg
=
∂ ln |det(Jg)|

∂Jg
= J−†g (3.40)

where J−†g = (J−1
g )† = (J†g)−1. It should be noted that, as mentioned earlier

in Section 3.1.3, according to the inverse function theorem [Spivak, 1965],

the invertibility of the function f ends to the non-singularity of its Jacobian

Jf and the nice result that the Jacobian of its inverse is equal to the inverse

of its Jacobian (J−1
f = Jf−1). Eq. (3.40) is a special case of a theorem1 in

linear algebra and matrix calculations [Petersen et al., 2008, Section 2.1.2].

Using (3.37) and (3.40) in (3.33) ends to

∂ I(ẏ)

∂Jg(x)
= E{Ψ(ẏ)ẋ†} − J−†g (x). (3.41)

Finally, substituting (3.41) for computing the derivatives of (3.32) leads to

∂ I(ẏ)

∂Θ
=
(
E{Ψ(ẏ)ẋ†} − J−†g (x)

)
K†(x) (3.42)

=
(
E{Ψ(ẏ)ẋ†} −

(
ΘK(x)

)−†)
K†(x) (3.43)

where the last equation comes from (3.27). It should be noted the ΘK(x) is

supposed to be invertible as far as the conditions of choosing kernel functions

(orthonormality and P ≥ n) are satisfied.

Finally, the update rule of the steepest descent algorithm (3.24) will

become

Θ ← Θ− µ
(
E{Ψ(ẏ)ẋ†} −

(
ΘK(x)

)−†)
K†(x). (3.44)

To conclude, given a parametric model for the separating matrix as (3.22),

Eq. (3.44) proposes an update rule for the parameters based on minimizing

the mutual information between the derivatives of the outputs.

Nonetheless, in the rest of this chapter we consider general nonlinear

functions, hence no parametric model is assumed for either the mixing or the

separating functions. As a consequence, a general non-parametric approach

will be proposed that is not based on mathematical derivations of the current

section, but is based on locally solving linear BSS for the derivatives.
1 ∂
∂X

det(AXB) = det(AXB)X−†.
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f(s) d
dt

∫
g(x)

s1

sn

x1

xn

ẋ1

ẋn

x1

xn

y1

yn

Unknown

Figure 3.1: Nonlinear BSS problem alternative model

3.1.5 The Proposed General Approach

In order to get ẋ, a component-wise derivative operator should be applied on

the output of the mixing function f(s) of Fig. 1.1. Then, in order to cancel

the effect of the differentiation operator (so that the separating function g(·)

in Fig. 1.1 remains unchanged), an integration operator needs to be added

right after the differentiation operator. This will lead to the system which

is depicted in Fig. 3.1.

Therefore, the problem (3.20), i.e. finding a nonlinear mapping g such

that g ◦ f = c is a nonlinear copy, can be equivalently written as

find g s.t. g ◦ d−1 ◦ d ◦ f = c (3.45)

where c is a nonlinear copy function and d and d−1 are the component-

wise differentiation and integration operators respectively. For the reason

of homogeneity in expressions, we use the same notation as functions for

operators even though it is not mathematically accurate. In fact, it must be

noted that d−1 ◦ d is not necessarily equal to identity function because the

result of integration is not unique and it could be added by any constant:

d−1 ◦ d ◦ f = f + cte. However, since d and d−1 operate component-wise,

applying them may just add a constant value to each signal, which does not

affect the proposed framework.
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d
dt

Jf ;t Jg;t
∫s1

sn

ṡ1

ṡn

ẋ1

ẋn

ẏ1

ẏn

y1

yn

Unknown

Figure 3.2: Transforming the nonlinear BSS problem model to the linear time-variant

one

However, recalling (3.12)

ẋ = Jf ;t(s)ṡ, (3.46)

the derivatives of the observations are locally linear mixtures of the deriva-

tives of the sources, i.e. in each small neighborhood, the derivatives of the

sources are linearly mixed through an approximately constant matrix. It

means that they can be achieved by mixing the derivatives of sources via the

Jacobian matrix of the nonlinear mixing function. In other words, consider-

ing (3.12), each half of this new model (which is nonlinear) can be replaced

by an equivalent one (which is locally linear) shown in Fig. 3.2.

Mathematically speaking, denoting Jf ;t = ∂f/∂s and Jg;t = ∂g/∂x the

Jacobian matrices of the mixing function f and separating function g respec-

tively, the equivalence of the systems of Fig. 3.1 and Fig. 3.2 can be written

as  d ◦ f ≡ Jf ;t ◦ d

g ◦ d−1 ≡ d−1 ◦ Jg;t

. (3.47)

This equation says that instead of taking derivatives of a mixture of sources

(i.e. d◦f), one can equivalently mix derivatives of the sources via the Jacobian

of the mixing function (i.e. Jf ;t ◦ d).

Then, replacing d◦f and g◦d−1 in (3.45) with their equivalents in (3.47),

the nonlinear BSS problem becomes

∀t, find Jg;t s.t. d−1 ◦ Jg;t ◦ Jf ;t ◦ d = c. (3.48)
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This new model (depicted in Fig. 3.2) will be used for a discussion on the

separability and for proposing an algorithm.

Regarding (3.48) and Fig. 3.2, the goal is to find a linear time-variant

system Jg;t such that each of the output signals y1(t), . . . , yn(t) is a function

of only one of the sources, hence y is a nonlinear copy of the sources.

By left-multiplying both sides of (3.48) by d, and right-multiplying them

by d−1, we will have

d ◦ d−1 ◦ Jg;t ◦ Jf ;t ◦ d ◦ d−1 = d ◦ c ◦ d−1 (3.49)

⇒ Jg;t ◦ Jf ;t = d ◦ c ◦ d−1 = c1 (3.50)

where the last equation comes from the fact that c is a nonlinear copy func-

tion and, therefore, in combination with d and d−1 makes another nonlinear

copy function named c1. As a consequence, the basic problem (3.20) is

equivalent to

∀ t find Jg;t s.t. Jg;t ◦ Jf ;t = c1 (3.51)

where c1 is a nonlinear copy function. This is a traditional linear BSS prob-

lem where the mixing matrix is not constant along time, and can be solved via

existing adaptive linear BSS methods (probably, with some modifications).

As a conclusion, any nonlinear BSS problem is equivalent to a time-varying

linear one and if the linear problem is solved correctly, the nonlinear problem

will be solved as well.

It is worth adding two remarks which help better understanding the

proposed concept:

Firstly, the local linear mixing Jf ;t and separating Jg;t matrices are the

Jacobian matrices of the nonlinear mixing f and separating g functions,

respectively. Despite the indeterminacies in reconstructing the sources, it is

obvious from Fig. 3.2 that the matrix Jg;t should be the inverse of the matrix

Jf ;t. Actually, as mentioned in Section 3.1.3, the inverse of the Jacobian of

a function is the Jacobian of the inverse function [Spivak, 1965]. This can

also be easily shown by writing the equivalency equations of the right half

of the systems of Figs. 3.1 and 3.2.
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Secondly, the Jacobian matrix of a nonlinear function at each point is the

best linear approximation of it at that point. Thus, the proposed approach

could also be derived by linearly approximating the nonlinear function via

Taylor expansion as

x(t) = f(s(t))⇒

∀t x(t+ ε) = x(t) +
∂f

∂s
(s(t+ ε)− s(t)) + o(ε) (3.52)

⇒ x(t+ ε)− x(t) ≈ Jf ;t(s)
∣∣∣
s=s(t)

(s(t+ ε)− s(t)) (3.53)

⇒ ∆x(t) ≈ Jf ;t(s)
∣∣∣
s=s(t)

∆s(t), (3.54)

where o(ε) represents higher-order terms and ∆x(t) and ∆s(t) are the differ-

ences (increments) of the observation and source vectors respectively.

Eq. (3.54) can also be considered as a discrete-time approximation of (3.12)

using the difference instead of the derivative. Nevertheless, the proposed

framework can also be understood as the (local) linear approximation of the

nonlinear mixing function at each point, and trying to separate the sources

using adaptive linear BSS methods.

3.2 Proposed Algorithms

It follows from Fig. 3.2 that

ẏ(t) = Jg;t(x(t))ẋ(t) = Jg;t(x(t))Jf ;t(s(t))ṡ(t). (3.55)

Therefore, it is necessary and sufficient for the separation to find a matrix

Jg;t(x(t)) such that the off-diagonal elements of Jg;t(x(t))Jf ;t(s(t)) are zero

everywhere and its diagonal elements are nonlinear copy functions.

In this section, we are going to propose algorithms in order to perform

nonlinear BSS based on the proposed idea. To this end, firstly an adaptive

linear BSS method is reviewed in subsection 3.2.1, which plays an important

role in the proposed algorithms. In this subsection, the necessity of utilizing

an adaptive algorithm is highlighted and its exact formulation is provided.
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Then a basic algorithm is proposed in subsection 3.2.2 derived from the

sequencing steps of the mentioned approach of Section 3.1. Afterwards, in

subsection 3.2.3, the main problem of the proposed preliminary algorithm is

discussed and addressed by nonlinear regression of the separating function.

Finally, in subsection 3.2.4 a modified algorithm is proposed employing the

“Nonlinear Regression” technique.

3.2.1 Adaptive Linear BSS (Normalized EASI)

An adaptive BSS algorithm is an algorithm whose estimation of mixing

and/or separating matrix is on-line, i.e. adjusted by observing each new

sample. Generally speaking, algorithms of this kind start from an initial es-

timation (which can be randomly generated) and then update the estimation

iteratively by receiving each sample. Normalized EASI (Equivariant Adap-

tive Separation via Independence) [Cardoso and Laheld, 1996] is an adaptive

BSS algorithm that is based on the statistical independence of the sources.

This powerful real-time algorithm is used in this work as the adaptive lin-

ear BSS method for estimating the Jg;t matrix, which cancels the mixture

Jf ;t. In this purpose, components of ṡ should be statistically independent.

In other words, while the independence of the derivatives of the sources (as-

sumption 7) is necessary for the ICA, using other algorithms might impose

other assumptions on the sources.

Since the mixing matrix in (3.55) (i.e. Jf ;t) changes along time, an adap-

tive technique needs to be utilized to perform the linear BSS (so that it can

follow the variations of the inverse Jg;t). Benefiting from the equivariancy

(i.e. its performance does not depend on the condition number of the mixing

matrix), good convergence rate and low computational cost of Normalized

EASI [Cardoso and Laheld, 1996], it has been used as the adaptive linear

BSS algorithm in our work.

The update formula of the separating matrix Jg;t according to this algo-
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rithm will be as

Jg;t+1 = Jg;t − λt
[ y(t)y(t)† − I

1 + λty(t)†y(t)

+
h(y(t))y(t)† − y(t)h(y(t))†

1 + λt|y(t)†h(y(t))|

]
Jg;t (3.56)

where λt is a sequence of positive adaptation steps and h(·) is an arbitrary

component-wise (n-dimensional) nonlinear function. For a more detailed

discussion on the choice of the components hi(·) of h(·), the reader is invited

to refer to [Cardoso and Laheld, 1996].

Plainly, at each iteration, (3.56) is followed by an update of the output

vector as

ẏ(t+ 1) = Jg;t+1 ẋ(t+ 1). (3.57)

3.2.2 Preliminary Algorithm

As mentioned earlier, assuming Jg;t(x(t)) in (3.55) is varying slowly enough

such that it remains almost constant in the temporal neighborhood of each

point x(t), a preliminary algorithm can be suggested simply as locally solving

linear BSS problems at all time instants.

Accordingly, the first algorithm, called Adaptive Algorithm for Time-

Variant Linear mixtures (AATVL), is sketched in Algorithm 1, where in

lines (2) to (9), EASI or any other adaptive linear BSS technique can be

employed.

The main problem with this algorithm is the issue of convergence: it

always needs to be updated at each new sample of observations. In conven-

tional applications of Normalized EASI, where the mixing matrix is assumed

to be constant, after a number of iterations the algorithm (hopefully) con-

verges to the exact separating matrix. However, in our case where Jf ;t varies

from one sample to another, the algorithm should not only estimate the exact

separating matrix Jg;t at each sample, but it should also track the variations

of Jf ;t along time. In linear BSS, Normalized EASI should converge to a

steady target (i.e. the exact separating matrix), while in our problem it
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Algorithm 1 Adaptive Algorithm for Time-Variant Linear mixtures

(AATVL)

1: ẋ ← Derivative (difference) of x

2: procedure Adaptive Linear BSS Method ( ẋ(t) )

3: Jg;0 ← Random Initialization

4: ẏ(0) = Jg;0 ẋ(0)

5: for t = 0, . . . , T − 1 do

6: Jg;t+1 ← Update by Eq. (3.56)

7: ẏ(t+ 1) ← Update by Eq. (3.57)

8: end for

9: end procedure

10: y ← Integral of ẏ

needs to converge to a moving one and track it. So the convergence issue is

much more severe than the classic linear problem.

It is worth noting that the variations of Jf ;t(s(t)) depend on both the

nonlinearity of the mixing model f(·) and the dynamics of the sources s(t).

Thus, even if the nonlinear mixing function f(·) is smooth, bursty sources

may lead to bursty changes in the mixing values, and consequently, the

separating matrix cannot be tracked by the separating algorithm. This is

the reason why the proposed approach needs both time-invariance of the

mixture and coloration of the sources (assumptions 4 and 6) to impose the

smoothness on Jf ;t(s(t)) along time.

Another issue, which makes the convergence problem even more severe, is

that the output of this adaptive linear BSS algorithm is going to be integrated

through a following step to estimate the separated sources (see Fig. 3.2). This

integration will propagate the estimation error to the other samples as well.

As a consequence, the AATVL algorithm (algorithm 1) needs to be modified.
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3.2.3 Nonlinear Regression

In this subsection, the main problem of the proposed preliminary algorithm

(i.e. convergence) is addressed by a nonlinear regression technique. The con-

cept is explained in details providing 2 different methods (subsections 3.2.3.1

and 3.2.3.2). The second method (which is actually used in the modified al-

gorithm 2) is supported by a simulated preliminary example and a discussion

on its performance.

The convergence problem of the algorithm 1 is because it does not ex-

ploit the time-invariance and smoothness of the mixing function f . In fact,

the original nonlinearity f , and its inverse g, are time-invariant. Therefore

the dependence of Jf ;t (respectively Jg;t) on s (respectively x) is not time-

varying.

In other words, s and x are themselves time-varying, and Jf ;t and Jg;t

are evaluated for sources and observations at successive times as

Jf ;t(s(t)) =
∂f

∂s
(s)
∣∣∣
s=s(t)

, (3.58)

Jg;t(x(t)) =
∂g

∂x
(x)
∣∣∣
x=x(t)

. (3.59)

As a result, a modification on the algorithm 1 can be suggested by learn-

ing the nonlinear model of Jg;t(x) from its estimations at different sam-

ples (say Ĵg(x(t)) for t = 1, . . . , T , the outputs of the adaptive linear BSS

method). It should be noted that Jg;t(x) is an n×n matrix and contains n2

nonlinear functions that should be learned in this approach.

For example, let [Jg;t(x)]i,j denote the (i, j)th element of the separating

matrix. In the “nonlinear regression” stage, we aim at estimating the non-

linear function [Jg;t(x)]i,j from [Ĵg(x(t))]i,j for t = 1, . . . , T . In the simplest

case, it can be mathematically expressed as for all 1 ≤ i, j ≤ n

minimize
[Jg;t(x)]i,j

T∑
t=1

(
d2
w([Ĵg(x(t))]i,j , [Jg;t(x)]i,j)

)
(3.60)

where d2
w represents a weighted squared distance of a point and a manifold
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defined as

d2
w(·, ·) = d2(·, ·)× w(d2(·, ·)) (3.61)

and

d2([Ĵg(x(t))]i,j , [Jg;t(x)]i,j) =
(

[Jg;t(x)]i,j
∣∣
x=x(t)

− [Ĵg(x(t))]i,j

)2
, (3.62)

is the vertical distance of a sample point [Ĵg(x(t))]i,j from its corresponding

point on the estimated nonlinear function [Jg;t(x)]i,j
∣∣
x=x(t)

.

Since the error in the estimation [Ĵg(x(t))]i,j might be large for some

samples (especially due to the convergence issue), there might be some out-

liers in the data. Although the outliers are supposed to be rare, due to the

power of 2 in (3.62), they can highly affect the result of the manifold learn-

ing process. Consequently, using a weighted distance in (3.60) is essential in

order to reduce the effect of the estimations that are too far from the learned

manifold.

Using a weighted squared distance, long distances of outliers will be less

weighted and their effect on the learned manifold will be limited. The weight-

ing function is designed such that it is close to 1 for short distances and it

tends to zero as the distance increases. As an example, Gaussian weighting

function can be defined as

w(d2) = e
− d2

2ζ2 (3.63)

where ζ is a parameter which can be adjusted according to the data.

The optimization (3.60), where the cost function should be minimized

with respect to a nonlinear manifold, can be performed using either a para-

metric model (when the nonlinear function is assumed to belong to a specific

set of functions, e.g. polynomials) or a non-parametric one (utilizing an inter-

polation method like smoothing splines). One may also modify a dimension

reduction technique (e.g. ISOMAP [Tenenbaum et al., 2000]) in order to

solve (3.60).
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3.2.3.1 Parametric Approach

In this approach, a parametric model for each [Jg;t(x)]i,j is assumed and then

the minimization of (3.60) is performed with respect to those parameters.

In other words, we assume that each manifold is formulated as

[Jg;t(x)]i,j = Qi,j(x;θi,j) (3.64)

where θi,j is a vector of the parameters in nonlinear model of [Jg;t(x)]i,j .

For example, a second-order polynomial modeling can be assumed as

[Jg;t(x)]i,j = Qi,j(x;θi,j) = x†Ai,jx + b†i,jx + ci,j (3.65)

where the vector of the parameters θi,j consists of the n×n matrix Ai,j , the

n-dimensional vector bi,j , and the scalar ci,j (for each [Jg;t(x)]i,j there are

n2 +n+1 parameters in this model). One may suggest any other parametric

model depending on either prior information about the mixing model (if it

exists) or a general form which is able to model a wide range of nonlinear

functions.

As a consequence, with this parametric model, (3.60) becomes

minimize
θi,j

T∑
t=1

(
d2
w([Ĵg(x(t))]i,j , [Jg;t(x)]i,j)

)
(3.66)

where d2
w([Ĵg(x(t))]i,j , [Jg;t(x)]i,j) can be calculated as a function of the

parameters according to (3.61) and (3.62). Thus it can be solved, and the

optimal parameter vectors θ∗i,j will let us formulate the [Jg;t(x)]i,j ’s.

3.2.3.2 Non-Parametric Approach

The other approach proposed for nonlinear regression is non-parametric

where no model for the nonlinearity is assumed. To this end, the non-

linear functions are learned by fitting curves using a smoothing method

(e.g. smoothing splines [Reinsch, 1967]) to the estimations [Ĵg(x(t))]i,j for

t = 1, . . . , T .

In this work, smoothing spline [De Boor, 1978] is utilized as the smoothing

method, for which the second order derivative of [Jg;t(x)]i,j is added to the
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Figure 3.3: The nonlinear function of [Jg(x)]1,1 of (3.69) with respect to the observations

cost function (3.60) as a penalty term to impose the smoothness. In this

method, there is a smoothing parameter, controlling the trade-off between

fidelity to the data and roughness of the function estimate.

This method is explained via studying its performance on an example

with a mixing function f as (2.12). This model is a rotation with the angle

which depends to the norm of the source vector. So the inverse function g

can be easily achieved by another rotation with the negative angle asy1(t)

y2(t)

 =

 cosα(x(t)) sinα(x(t))

− sinα(x(t)) cosα(x(t))

x1(t)

x2(t)

 (3.67)

where

α(x(t)) = α0 + γ ×
√
x2

1(t) + x2
2(t). (3.68)

Therefore, the exact Jacobian Jg(x) is calculated as

Jg(x) =

 cosα(x) sinα(x)

− sinα(x) cosα(x)

1 + x2
∂α(x)
∂x1

x2
∂α(x)
∂x2

−x1
∂α(x)
∂x1

1− x1
∂α(x)
∂x2

 . (3.69)

Now consider one of the elements of Jg(x), say [Jg(x)]1,1. In this exam-

ple, n = 2 and the 2-dimensional nonlinear function [Jg(x)]1,1 with respect

to x1 and x2 (calculated in (3.69)) is depicted in Fig. 3.3a.

As an example, suppose that the sources s1(t) and s2(t) are integrals of

a triangle signal (with the amplitude of 6 and the primitive period of 200π
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Figure 3.4: The estimated (learned) nonlinear model of [Jg(x)]1,1 from 300 (Fig. 3.4a) and

700 (Fig. 3.4b) samples of observations. The circles are the outputs of the adaptive linear

BSS method [Ĵg(x(t))]1,1, and hyper-surface is the learned manifold using the introduced

smoothing spline technique.

samples) and a sinusoidal signal (with the amplitude of 6 and the frequency

of
√

3/200π samples), respectively. The trajectory of the observation vector

along time projected onto the 2-dimensional manifold of [Jg(x)]1,1 for 300

time instants is plotted in Fig. 3.3b. It illustrates the changes in the value of

[Jg;t(x)]1,1 over time. It is nice to note that as time passes, the observation

vector will take different values, hence the whole range will be spanned by

the time trajectory, which will result in having enough samples for learning

the entire shape of the nonlinear function.

Fig. 3.4 shows the learned nonlinear model (the hyper-surface) given

300 and 700 samples of [Ĵg(x(t))]1,1 using the smoothing spline technique.

It can be seen that the learned nonlinear model from 700 samples based on

smoothing spline is quite accurate in the region of interest, i.e. where samples

are available.

The normalized Root Mean Squared (RMS) error in reconstruction of

[Jg(x)]1,1 in (3.69) with respect to the number of observation samples, i.e. the
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error Enrms, can be defined as

Enrms =

( ∫∫
|x1|,|x2|≤M

(
[Jg(x)]1,1 − [Ĵg(x)]1,1

)2
) 1

2

( ∫∫
|x1|,|x2|≤M

(
[Ĵg(x)]1,1

)2
) 1

2

(3.70)

where M = max
(

max(|x1(t)|),max(|x2(t)|)
)
is the maximum range of vari-

ations of the observations. However, a more meaningful definition of the

N-RMS error, say empirical error, is when it is calculated over the region of

interest (where the observation vector spans) as

Ẽnrms =

( ∑
t=1,...,T

(
[Jg(x(t))]1,1 − [Ĵg(x(t))]1,1

)2
) 1

2

( ∑
t=1,...,T

(
[Ĵg(x(t))]1,1

)2
) 1

2

. (3.71)

Fig. 3.5 shows how both Ẽnrms and Enrms decrease as the number of

given samples increases. As it can be seen in this figure, the accuracy of

the estimated model improves as the number of input samples grows, until a

certain number at which the estimation is close enough to the correct model

and the error does not decrease anymore. As expected, although the error

on the region of interest is larger that the one on the whole region (which

does not mathematically mean and depends on the simulation), it tends to

zero after enough iterations when the nonlinearity is learned.

It should be added that the utilized algorithm in this example (smooth-

ing splines) does not force the model to pass the input points. Neverthe-

less, depending on the application, other smoothing algorithms with differ-

ent properties: more robust to noise, forcing to pass the points, etc., may

be exploited. Such algorithms can include Kalman filter, kernel smoother,

Laplacian smoothing, exponential smoothing, and so on.

3.2.4 Modified Algorithm

Employing the nonlinear regression idea introduced in Section 3.2.3 in com-

bination with algorithm 1 leads to a second algorithm which outperforms
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Figure 3.5: The N-RMS error of the estimation of the nonlinear model of [Jg(x)]]1,1 with

respect to the number of samples over 1) an M ×M square (the dashed line) and 2) the

region of interest in which the samples exist (the solid line)

the first one. This algorithm includes 2 steps: 1) an “Adaptive linear BSS”

method for estimating Ĵg(x(t)) for t = 1, . . . , T and 2) a “Nonlinear Separa-

tion” process through which the nonlinear functions Jg;t(x) are learned by

the proposed smoothing spline method and are used to separate the sources.

Once the nonlinear functions Jg;t(x) are estimated, they are used for sepa-

rating the derivatives of the sources.

The Batch Algorithm for Time-Invariant Nonlinear mixtures (BATIN)

can thus be proposed as algorithm 2.

It should be finally noted that the Normalized EASI and the smoothing

spline algorithms that are used in algorithm 2, could be replaced by other

equivalent algorithms depending on the application.

3.3 Reconstruction Indeterminacies

Linear BSS methods generally suffer from ambiguities both in the order of

the sources and their scales. On the other hand, as pointed earlier and will be

explained in the following, the proposed framework in this chapter is based

on the local linear approximation of the nonlinear mixture. So it is important
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Algorithm 2 Batch Algorithm for Time-Invariant Nonlinear mixtures

(BATIN)

1: ẋ ← Derivative (difference) of x

Step Adaptive linear BSS:

2: procedure Adaptive Linear BSS Method ( ẋ(t) )

3: Ĵg(x(0)) ← Random Initialization

4: ẏ(0) = Ĵg(x(0)) ẋ(0)

5: for t = 0, . . . , T − 1 do

6: Ĵg(x(t+ 1)) ← Update by Eq. (3.56)

7: ẏ(t+ 1) ← Update by Eq. (3.57)

8: end for

9: end procedure

Step Nonlinear Separation:

10: procedure Nonlinear Regression ( Ĵg(x(t)),x(t) )

11: Jg;t(x) ← Smoothing Spline of Ĵg(x(t))

12: end procedure

13: for t = 1, . . . , T do

14: ẏ(t) ← Jg;t(x) ẋ(t)

15: end for

16: y ← Integral of ẏ

to understand how these local permutation and scaling ambiguities perform

globally.

3.3.1 Permutation

Let us consider Theorem 1 related to ICA identifiability and the prob-

lem (3.51), i.e. finding Jg;t such that Jg;t ◦ Jf ;t = c1 is a nonlinear copy

function. Thus ICA for linear BSS problem guarantees Jg;tJf ;t = ΛtPt

where Λt is a diagonal matrix, and Pt is a permutation matrix. So one

could say that the permutation would potentially change as the algorithm

progresses; i.e. linear ICA algorithm could converge to several instances of
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this form, depending on the initialization. This seems to bring an issue about

the alignment of permutations at different times. Considering the fact that

the proposed algorithm is in the form of tracking algorithms, is there still a

danger of permutation pattern change during the algorithm’s course?

Mathematically speaking, the permutation matrix Pt might change over

time which might cause the alignment issue. However, any change in the

permutation matrix results in discontinuity (because of the structure of a

permutation matrix which can take exactly one “1” value at each row and

each column and the rest of the entries should be equal to zero). Conse-

quently, if the derivatives of the observations are continuous functions of

the state space coordinate (which is true in most realistic applications), Jf ;t

will be continuous, thus the continuity of Jg;t imposes the continuity (in the

time/sample domain) of Pt.

The only exception of the above argument is the case when two entries of

the Jacobian matrix have simultaneous zero-crossings. At such instances, the

two corresponding entries of the permutation matrix Pt may also swap values

without violating the continuity of Jg;t. This phenomenon has also been

experienced in linear time-varying ICA (for instance using EASI with slowly

moving or rotating sources), where the estimated sources smoothly approach

to zero and instantaneous permutations occur between the extracted sources.

In this work, we have ignored this very special case, for which a more detailed

study on the alignment of local permutations can be proposed as a future

study.

Therefore, as long as the local separating matrix Jg;t is estimated adap-

tively and continuously, the local permutation matrix Pt should also be

continuous, hence constant along time. Therefore, in any neighbourhood of

observation state space, there will always be a continuous separating solution

which is unique, up to an arbitrary global permutation.

It is worth noting that a similar result is obtained for different frequencies

in IVA (independent vector analysis) for convolutive mixtures, by considering

joint source separation in different frequency bands, with continuity between
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successive bands [Lee et al., 2007].

To summarize, since the local separating matrix Jg;t is estimated adap-

tively and continuously, the local permutation matrix should also change

continuously. Therefore, local permutations in any neighbourhood of obser-

vations result in an arbitrary global permutation, and do not cause any issue

about the alignment of permutations at successive time instants.

3.3.2 Scaling

A similar argument may also be asked regarding the scaling indeterminacy;

even though two different time instants may correspond to the same input

(i.e. x(t1) = x(t2)), may the corresponding linear algorithm convergence

points, Jg,t1 and Jg,t2 , be different according to initialization of the algo-

rithm? In this regard, two issues should be distinguished:

1. The final estimated separating matrix at each observation point, i.e. “al-

gorithm convergence point”, is continuous. Since the “convergence

points” of Jg,t(x) for different time instants corresponding to the same

observation value make a continuous function with the estimations for

neighbouring observation vectors, they cannot be different.

Mathematically speaking, if for two time instants t1 and t2, x(t1) =

x(t2) and Jg,t1 6= Jg,t2 , then there would be two different trajectories in

the x domain by which we could approach to Jg,t(x(t1)) = Jg,t(x(t2))

getting different values

lim
t→t1

Jg,t(x) 6= lim
t→t2

Jg,t(x). (3.72)

Thus the continuity of Jg,t(x) unifies the convergence points.

2. However, since the algorithm is adaptive and it performs just one it-

eration at each time instant, it does not necessarily results the “con-

vergence point” depending on the initialization. This issue relates to

the performance of the adaptive linear BSS method (not the proposed
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framework) and depends on the smoothness and bandwidth of the non-

linear model and sources, respectively. Nevertheless, assuming that

there are a sufficiently high number of observation samples, the small

estimation errors in adaptive BSS process will be cancelled through

the nonlinear regression procedure proposed in BATIN.

This could also be understood from another point of view. In a small

neighbourhood of any particular value of the observation, the problem

can be well approximated and can be exactly solved via a linear BSS

technique with a scaling ambiguity (without the indeterminacy of the

convergence point for different time instants). Combining this result

throughout the observation domain and imposing the continuity and

smoothness assumption leads to a global separating function which

contains a global permutation and a smooth component-wise nonlinear

function (because of the smoothly varying scaling) on each source.

Nevertheless, the amplitude-varying values of the scaling ambiguity on

the whole domain of the signals cause a component-wise nonlinearity which

cannot be resolved by the proposed algorithm, i.e. each output of the algo-

rithm does depend on only one of the sources but with a time-varying scaling

factor (i.e. a nonlinear function).

This indeterminacy in reconstructing the sources could also be seen from

another point of view. Assume u(·) is a component-wise nonlinear function

as

ỹ(t) = u(y(t)) (3.73)

such that

∀ 1 ≤ k ≤ n ỹk(t) = uk(y(t)) = ûk(yk(t)) (3.74)

where ûk(·) for k = 1, . . . , n are 1-dimensional R → R nonlinear functions.

Obviously, the Jacobian of a component-wise function is diagonal. As a

consequence, if Jg;t satisfies (3.51), i.e. Jg;t ◦ Jf ;t = c1 is a nonlinear copy

function, Ju◦g = JuJg will satisfy (3.51) as well. Indeed, if a function g

(resulting in y as the separated sources) is a separating function, the function
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u ◦ g (resulting in ỹ(t) = u(y(t))) will also separate the sources. Therefore,

the proposed approach may result in any component-wise nonlinear function

of the sources.

3.4 Simulations

In this section, simulation results of both proposed algorithms for two dif-

ferent nonlinear functions are shown as a proof of concept. The data model,

nonlinear functions, the parameters and the details of the simulations come

in Section 3.4.1. Afterwards, the results of the simulations and their perfor-

mance evaluations are reported in Section 3.4.2.

3.4.1 Simulated Data and Mixture Models

In the first example, consider the two-input two-output system of (2.12) asx1(t)

x2(t)

 =

cosα(s(t)) − sinα(s(t))

sinα(s(t)) cosα(s(t))

s1(t)

s2(t)

 (3.75)

where α(s(t)) is defined by the parametric model

α(s(t)) = α0 + γ ×
√
s2

1(t) + s2
2(t) (3.76)

where α0 and γ are some parameters.

In our first simulation, (3.76) is considered for α0 = 0 and γ = 1.

Secondly, the proposed method is applied to another mixing model de-

fined as

x(t) =

x1(t)

x2(t)

 = f(s(t)) =

 es1(t) − es2(t)

e−s1(t) + e−s2(t)

 (3.77)

which is a nonlinear but invertible mixing model, as well as the first one.

The function mappings of the two simulated models are illustrated in

Fig. 3.6: the figure shows how a regular grid in the input domain is trans-

formed through the functions. As it can be understood from this figure as

well as (2.12) and (3.77), both models are nonlinear but bijective (one-to-

one) in the input range.

59



CHAPTER 3. A GENERAL APPROACH TO NONLINEAR BSS

x1

-1.5 -1 -0.5 0 0.5 1 1.5

x
2

-1.5

-1

-0.5

0

0.5

1

1.5

(a) Simulation 1

x1

-3 -2 -1 0 1 2 3

x
2

0

1

2

3

4

5

6

(b) Simulation 2

Figure 3.6: Illustration of the nonlinear mappings. a) the mapping follows model (3.75)

and (3.76) for α0 = 0 and γ = 1 and b) the mapping follows model (3.77). In both

figures, we represent the grid obtained by applying the nonlinear mapping (3.75) or (3.77)

to the regular grid in the domain [−1,+1]× [−1,+1], and the input domain is mapped to

nonlinear grids in the output domain which are shown.

In both simulations, the two sources that are mixed are the integrals of

a sine wave

ṡ1(t) = sin(
√

3t/100) ⇒ s1(t) ∝
∫

sin(
√

3t/100) d t (3.78)

and a triangle wave

ṡ2(t) = saw(t/100) ⇒ s2(t) ∝
∫

saw(t/100) d t (3.79)

where saw(t) is defined as a sawtooth wave with period 2π passing through

the points (0, 0), (π/2, 1), (3π/2,−1) and (2π, 0) (see Fig. 3.7).

The sources are chosen well-known simple signals with non-harmonically

related frequencies to avoid any coherence, and satisfying assumptions on s,

and especially independence of the derivatives (assumption 7).

It should be noted that the integral can be practically approximated

by either a recursive summation s(t) = ∆t ṡ(t) + s(t − 1) or a continuous

function estimation based on an interpolation method. Simulations (not
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Figure 3.7: Illustration of a sawtooth signal saw(t)

presented in this work) show that these two approaches result in almost the

same estimation. Thus the summation is used as an approximation of the

integral everywhere.

The observations are then calculated by (3.75) and (3.77), and are de-

picted in Fig. 3.8 as well as the sources themselves.

In order to see the time-variations of the mixing matrix, each element of

the Jacobian matrix of the first simulation (3.75) for α0 = 0 and γ = 0.1 is

plotted separately in Fig. 3.9. It can be seen that their variations along time

is periodic (because of the dynamics of the source). As mentioned earlier,

variations of the value of the Jacobian are due to both time-variations of the

sources and nonlinearity of the mixing function (which make the Jacobian

dependent on the value of the sources).

AATVL and BATIN algorithms are applied on the observations of Fig. 3.8

to separate the sources. As mentioned earlier, smoothing spline is the al-

gorithm that is utilized for the nonlinear regression step of algorithm 2.

Note that the smoothing parameter, which determines the smoothness of

the learned manifold in smoothing spline method, is adjusted heuristically

in this work. It should be noted that similarly with the integral, the differ-

ence between two successive time samples is used as an approximation of the

time-derivative everywhere in this work.

In the implementation of Normalized EASI (3.56) in this work, h(·) is

chosen as h(y) = y3. In addition, the adaptation step λt in (3.56) is chosen
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Figure 3.8: The sources s1(t) and s2(t) (the integral of a sine and a triangle wave) in the

top row, and the observations x1(t) and x2(t) for the two simulations with the nonlinear

model (2.12) in the middle and with the nonlinear model (3.77) in the bottom.
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Figure 3.9: Variations of the elements of the Jacobian matrix of (3.75) along the samples
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Figure 3.10: The results of AATVL and BATIN algorithm in the mixture (3.75)

as

λt =

1/t, 1 ≤ t ≤ 1000

1/1000, 1000 < t
. (3.80)

Even though a decreasing adaptation step (tending to zero as t moves for-

ward) is traditionally taken in order to stabilize the algorithm after the

convergence [Cardoso and Laheld, 1996], in this case it does not go below a

threshold. This is because the mixing matrix Jx;t is not constant and should

be followed by the algorithm.

3.4.2 Simulation Results

Applying AATVL and BATIN algorithms on the observations, we get the

results shown in Fig. 3.10 for the first simulation (mapping of Eq. (3.75)),

and Fig. 3.11 for the second one (mapping of Eq. (3.77)). As expected,

BATIN outperforms AATVL in estimating the separated sources in both

simulations. Especially, the late convergence problem with AATVL has been

almost completely resolved by BATIN.
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Figure 3.11: The results of AATVL and BATIN algorithm in the mixture (3.77)

It should be noted that since in nonlinear BSS, sources can be recon-

structed up to a nonlinear function which remains as an ambiguity, the per-

formance of the algorithms may not be evaluated by looking at the waveform

of the signals. For this reason, we have proposed a novel performance index

for nonlinear BSS which will be introduced in Section 3.4.3.

In our simulations, in order to reduce the computational cost, the nonlin-

ear regression is performed based on the result of the “Adaptive Linear BSS”

procedure on down-sampled signals. However, one can utilize a smarter

method (than a uniform down-sampling) for picking some points in order to

estimate the nonlinear functions, which may highly affect the performance

of the algorithm.

Additionally, in order to see that adaptive linear BSS algorithms are

not able to separate the sources (since the mixture is nonlinear), we have

also implemented the same algorithm Normalized EASI for separating the

mixture (3.77). It can be seen from Fig. 3.12 that the nonlinear mixture is

not separated at all since EASI never converges.
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Figure 3.12: The result of performing adaptive linear BSS (Normalized EASI method)

on the sources which are mixed through (3.77)

3.4.3 Performance Evaluation

As mentioned earlier in Section 3.1.3 and Section 3.3, unlike linear BSS

where the sources may be estimated up to a scaling (and a permutation), in

nonlinear problem, they can be estimated up to a nonlinear transformation

(and a permutation). Depending on the application, there should be some

known characteristics of the sources (e.g. band-limited, sparse in some do-

main, bounded amplitude, and so forth) allowing the exact reconstruction of

the sources. As a consequence, traditional performance index (e.g. normal-

ized RMS error) cannot be applied in nonlinear BSS.

Without loosing generality, assume that the sources are separated as

yi(t) = ci(si(t)) for i = 1, . . . , n where ci’s are nonlinear functions. There-

fore, in noiseless problems, the pairs (si(t), yi(t)) for t = 1 . . . , T lie on a

1-dimensional manifold in a 2-dimensional space. However, if yi depended

on another source sj (i 6= j), it would not be a mathematical function of

si which would make the scatter plot of (si(t), yi(t)) thick instead of a 1-
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Figure 3.13: The estimated sources y1(t) and y2(t) against the actual sources s1(t) and

s2(t), where the thickness of a plot indicates how much the estimated signal (vertical axis)

depends on the other source

dimensional manifold. This fact is also illustrated in Fig. 3.13. Since the pairs

(s1(t), y1(t)) (similarly (s2(t), y2(t))) approximately lie on a 1-dimensional

manifold, one concludes that y1 (y2) is only a function of s1 (s2).

If the separation is perfect, y1 (y2) will be exactly just a function of s1

(s2), hence the pairs (s1(t), y1(t)) (similarly (s2(t), y2(t))) exactly make a

1-dimensional manifold. The thicker the plot of the pairs (si(t), yi(t)) is, the

more separation error we have. So the thickness of the scatter plot indicates

whether there is a dependence to another signal or not.

We thus propose this error as a general index for evaluating the perfor-

mance of nonlinear BSS methods. It can also be understood by modeling
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each output yi(t) as yi(t) = hi(si(t)) + interference. This model highlights

that the proposed index approximates the normalized interference to signal

ratio of the output.

Although the thickness of data in linear 2-dimensional cases can be easily

represented by the second eigenvalue of the auto-correlation matrix, it is not

trivial in nonlinear problems. Two estimations for this index in nonlinear

frameworks can be proposed:

3.4.3.0.1 Local Approximation Since nonlinear manifolds can be ap-

proximated linearly in small neighborhoods, an estimation of the index can

be made by summing local linear thickness errors over the whole domain. In

other words, the data should be split into small bins, the second eigenvalue

of the auto-correlation matrix of the data in each bin should be calculated

as the local linear RMS error, and then the summation of the local errors is

proposed as the estimation of the global thickness index.

3.4.3.0.2 Curve Fitting Another approach for estimating the evaluat-

ing index, which is used in our simulations, is based on the error in fitting

a nonlinear curve onto the data points. For this purpose, firstly a nonlinear

curve is fitted onto the data and then the RMS error of this fitting (similar

to (3.70) but for a 1-dimensional manifold fitting) is introduced as the per-

formance indicator (named as normalized Error of Nonlinear Fit (N-ENF)).

Normalized ENF of the ith source separation can be formulated as

Ẽnenf =

( ∑
t=1,...,T

(
ĉi(si(t))− yi(t)

)2
) 1

2

( ∑
t=1,...,T

(
ĉi(si(t))

)2
) 1

2

, (3.81)

where ĉi(si(t)) is the best nonlinear curve which can be fitted onto the pairs

(si(t), yi(t)). In this work, the curve is fitted using smoothing splines [Rein-

sch, 1967] as

minimize
ĉi

T∑
t=1

(
yi(t)− ĉi(si(t))

)2
+ δ

∑
t=1,...,T

(
ĉ
′′
i (si(t))

)2
(3.82)
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Table 3.1: N-ENF Error for AATVL and BATIN in the simulations

AATVL BATIN

N-ENF for the Source 1 in the mixture (3.75) & (3.76) 0.0030 0.0019

N-ENF for the Source 2 in the mixture (3.75) & (3.76) 0.0084 0.0031

N-ENF for the Source 1 in the mixture (3.77) 0.0025 0.0023

N-ENF for the Source 2 in the mixture (3.77) 0.0064 0.0040

where ĉ′′i (si(t)) is the second-order time-derivative of ĉi(si(t)) and δ is a

smoothing parameter.

Simulation results of the algorithms are also compared in terms of nor-

malized ENF error and can be found in table 3.1.

These results show that the proposed idea is able to separate the sources

that are mixed nonlinearly, which proves the proposed concept. However,

as mentioned earlier, the performance of the proposed approach depends on

the amount of the nonlinearity of the mixing function, i.e. as the mixing

model gets distant from a linear mixture, the performance of the algorithm

decreases. In order to show how the performance changes according to the

nonlinearity level, a 3rd experiment is provided as follows.

Recall example (3.75) with α(s(t)) defined as (3.76), when α0 = π/6 and

parameter γ varies. In this example, if γ = 0, the mixture will be linear (a

π/6 rotation). But as γ grows, the mixture will become “more” nonlinear.

Thus γ can be considered as a level of nonlinearity of this parametric model.

Finally, the algorithm BATIN is employed for separating two sources

of (3.78) and (3.79) mixed by (3.75), for different values of γ in (3.76). The

normalized ENF error of BATIN for both sources is calculated and plotted

in Fig. 3.14. Evidently, the more the mixture is nonlinear, the less efficient

the proposed method is in separating the sources.
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Figure 3.14: The normalized ENF error in separating the mixture (3.75) for different

levels of nonlinearity (represented by γ in (3.76)) using BATIN algorithm

3.5 Conclusions and Perspectives

In this chapter, a novel approach for performing nonlinear BSS is proposed.

Through this approach, it is shown that nonlinear mixtures are generally

separable under a few assumptions (see subsection 3.1.3). So the counter-

examples provided in the literature to show that nonlinear mixtures are not

separable, are not valid any more.

The key idea is to consider the time-derivative of the observed signals as

a time-varying linear mixture of the (mutually independent) time derivatives

of the sources. As a consequence, the model (3.12) will be obtained, where

the mixing matrix is a function of the sources (not to be confused with a

time-variant mixing matrix which is a function of time).

Assuming both sources as functions of the time and nonlinear mapping

as a function of the sources to be smooth enough yields a sufficiently smooth

mixing matrix which can be considered as a time-variant model (AATVL al-

gorithm). However, the model (3.12) being a function of the sources instead

of conventional time-variant mixing models, enables performing the non-

linear regression (as explained in Section 3.2.3) and dramatically improves
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the performance of the separation, which resulted in proposing the second

algorithm (BATIN).

Once the sources are separated, BSS has been performed. However, aim-

ing at exactly recovering the sources (not only separating them), the problem

reduces to compensating an unknown nonlinear distortion. In other words, in

order to precisely estimating the source signals (compensating the nonlinear

function), each of the separated signals should be considered separately.

Numerous algorithms have been proposed for blind restoration of nonlin-

early distorted signals (e.g. [Marvasti and Jain, 1986,Dogancay, 2005]). The

proposed methods are fundamentally based on retrieving some characteris-

tics of the signal which are affected by nonlinear distortions. For example,

nonlinear functions generally widen the bandwidth of signals. Thus, given a

distorted band-limited signal, one may recover the original signal by trying

to minimize its bandwidth via a nonlinear (compensating) function.

Moreover, assuming that the nonlinearly distorted signal is sparse in some

domain, it can be blindly reconstructed [Malek, 2013,Duarte et al., 2015].

Since nonlinear distortions generally tend to reduce the sparsity, the pro-

posed algorithms compensate the distortion via a sparse recovery procedure.

Nonetheless, depending on the application, there should be some known

characteristics of the sources (e.g. band-limited, sparse in some domain,

bounded amplitude, and so forth) allowing the exact reconstruction of the

sources. However, being focused on source separation, source reconstruction

is out of the scope of our work and is suggested as a direction for future

studies.

The basic idea proposed in this chapter for nonlinear BSS is to utilize

time-derivatives of the signals. Working with time-derivatives implicitly uti-

lizes temporal information in the signals. This fact also supports the propo-

sition in [Hosseini and Jutten, 2003], which says that although we may mix

two sources such that the mixtures are instantaneously independent of each

other, it is highly probable that their delayed versions are not mutually inde-

pendent when each of them is temporally correlated. In other words, it was
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implied in that paper that utilizing the temporal information of the sources

might lead to solve nonlinear BSS problems.

It is worth noting that the proposed idea is quite different with respect

to the previous works in the literature on nonlinear mixtures; it is more the-

oretic and general and does not assume any specific mixing model or source

signals. Two basic methods, AATVL and BATIN were provided in this

chapter to show how the idea is to be employed. Nevertheless, many differ-

ent separation algorithms can be suggested based on the proposed approach

and they can be optimized to deal with more complex signals/mixtures of

practical applications.

However, there are several issues to be considered in the future. Firstly,

the statistical characteristics of the derivative of a signal with respect to

those of the signal, itself, should be investigated. This might be the key to

better understanding of the key feature of derivatives that lets perform the

separation, and accordingly, it may lead to new algorithms of nonlinear BSS.

Secondly, the “Nonlinear Regression” used in the proposed algorithm

should be improved. The main objective of this step is to accumulate the

information of the separation at each sample. For example, if at two different

times, the source vector takes the same value, the mixing matrix will remain

the same as well.

Moreover, assuming a parametric model like Section 3.1.4 would be very

interesting in cases where such information exists. So simulating the math-

ematical derivations of that section, particularly Eq. (3.44), can be a short-

term perspective which will validate the theoretical results.

In this thesis, the problem is considered in the simplest form where there

is no noise added to the signals. Since all the signals in practical applications

are noisy, and considering the fact that taking the derivatives may dramati-

cally amplifies the noise, new methods should be developed which are more

robust to noise. It may also enforce some modifications on “Adaptive Linear

BSS” procedure of the algorithms as well.

Last but not least, finding out the relations between autocorrelation func-
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tions of the sources (i.e. how much colored they are) and the performance of

the proposed approach and trying to quantify it is also an interest for future

studies.
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As hypothesized in previous chapters, given sources having temporal cor-

relation, nonlinear mixtures may be blindly separated by retrieving the inde-

pendence. This information was utilized in the proposed approach of Chap-

ter 3 by assuming that the variations of the Jacobian of the mixing function

is smooth enough, and by locally linear approximating the mixture. In this

chapter, instead, sources are assumed to be modeled by Gaussian processes.

Our proposed approach for this purpose is to linearize the nonlinear mixture
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such that it can then be separated via a linear BSS technique. This is the

reason why the chapter is named “Blind Linearization of Nonlinear Mixtures”

which has applications not only in nonlinear BSS, but also in other signal

processing domains which are briefly introduced in the following.

A notable practical application for blind linearization of nonlinear mix-

tures is for electroencephalogram (EEG) and electromagnetogram (EMG)

signals, for which the sources can be very well approximated by a Gaussian

distribution (according to the central limit theorem and numerous neural

activities), but may have passed a nonlinear transformation before being

recorded on the body surface.

In this chapter, a mathematical proof is provided to show that Gaussian

signals will lose their Gaussianity if they are passed through a polynomial of

an order greater than 1. This can help in blind compensation of polynomial

nonlinearities on Gaussian sources by forcing the output to follow a Gaussian

distribution, as done for post-nonlinear mixtures [Larue et al., 2004].

The idea of this chapter is original and has been partially published

in [Ehsandoust et al., 2017b] and [Fantinato et al., 2017]. The chapter is

organized as follows. Firstly, the assumed model is presented and some

of its applications are introduced. Then in Section 4.2 the linearization of

nonlinear mixtures of Gaussian sources is mathematically investigated and

theoretical results are derived. In Section 4.3 a simple algorithm is proposed

based on the results of Section 4.2, which is then supported by simulations in

Section 4.4. Finally, the results are discussed in Section 4.5, where directions

for future works are also suggested.

4.1 Introduction

As mentioned before, in signal processing applications, including BSS, it is

usual to have a number of signals measured by some sensors, while each of

them might be a mixture of a number of source signals. Even though this

problem is relatively easy to solve when the mixture is linear (more generally
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linear time-invariant), it becomes mostly too difficult for general nonlinear

functions. Thus it is often wanted to transform the nonlinear system to a

linear one in order that it can be processed by already established signal

processing methods for linear mixtures. So the problem would be decom-

posed into two consecutive steps: 1) the problem is linearized and 2) the

transformed linear problem is processed using traditional linear approaches.

In this framework, the current chapter is only focused on the first step and

can be used in different applications.

Linearizing a nonlinear problem generally needs some prior knowledge

about the input signals and/or the nonlinear mapping. Mainly, the source

signals are assumed to have some known characteristics. Trying to retrieve

these specifications in the output may result in linearizing the problem in

some cases. For example, sparsity in [Duarte et al., 2015], bandwidth in [Do-

gancay, 2005], zero-crossing in [Marvasti and Jain, 1986], etc. are shown to

be useful for not only linearizing the mixture, but also reconstructing the

sources without knowing the nonlinear distortion.

In this chapter, in order to employ the spectral colorfulness of the sources,

they are assumed to follow Gaussian (normal) distribution. Thus the ques-

tion in this case is whether retrieving normality in the output results in

compensating the unknown nonlinearity or not.

On the other hand, in many applications of signal processing, signals

are modeled as stochastic processes. In this sense, Gaussian random vari-

ables and Gaussian Processes (GPs) are interesting models because of their

simplicity, generality and nice characteristics.

A GP [Rasmussen and Williams, 2006] is a collection of random vari-

ables, any finite subset of which has a multivariate Gaussian distribution

as t ∼ N (m,K), where N (m,K) is a Gaussian distribution with the mean

vector m = [m1, . . . ,mn]† and the n×n covariance matrix K. However, the

probability distribution can be specified not only over random variables, but

also over functions with an infinite-size domain.

A GP is completely determined by only its mean and covariance func-
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tions. This property facilitates model fitting as only the first- and second-

order moments of the process require specification. Thus, a random function

s(t), as a statistical process, can be fully described at the second order by

its mean function m(t), and its covariance function k(t, t′) defined as

m(t) = E[s(t)], (4.1)

k(t, t′) = E[
(
s(t)−m(t)

)(
s(t′)−m(t′)

)
]. (4.2)

The set of real valued functions s(t) ∈ R, can then be described as a

Gaussian process as

s(t) ∼ GP
(
m(t;θ), k(t, t′;θ)

)
. (4.3)

By choosing particular mean and covariance functions for the GP, we can

introduce some hyperparameters, notated as the set θ, to the prior of the

GP. These hyperparameters control the behavior of the functions over which

the GP is defined. Now, considering (4.3), it can be said that a collection of

random variables s(t)t∈t is drawn from a GP with mean functionm(t;θ), and

covariance function k(t, t′;θ), if the associated finite set of {s(t1), · · · , s(tn)}

indexed by the inputs {t1, · · · , tn} ∈ t has a distribution as
s(t1)
...

s(tn)

 ∼ N


m(t1)

...

m(tn)

 ,


k(t1, t1) · · · k(t1, tn)

...
. . .

...

k(tn, t1) · · · k(tn, tn)


 . (4.4)

GPs can be used to track nonlinear communication channels or for proba-

bilistic channel equalization [Pérez-Cruz et al., 2013], for classification [Ras-

mussen and Williams, 2006] or to perform linear source separation [Rivet

et al., 2012,Noorzadeh et al., 2015a].

In this chapter, the goal is to blindly transform a nonlinear system to a

linear one under the assumption that the sources are normally distributed.

As a result of this work, problems in any domain of signals processing which

satisfy the mentioned assumptions, can be pre-processed in order to be trans-

formed to linear ones and then treated linearly.
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x = τ (s) ŷ = g(x) y = Bŷ

s1

sn

x1

xn

ŷ1

ŷn

y1

yn

Unknown Nonlinear BSS

Figure 4.1: Nonlinear BSS can be decomposed to a blind linearization step cascaded by

a conventional linear BSS method

It will be shown that if the unknown mixing function is an invertible

polynomial mapping of the sources, the Gaussianity property is sufficient

for inverting the nonlinear mapping and reducing the problem to a source

separation problem with linear mixtures.

4.1.1 Application to Nonlinear BSS

Accordingly, in nonlinear BSS problems, blind linearization can be utilized

as a pre-processing step before linear BSS (see Fig. 4.1). In this approach, a

linearizing function g, cascaded by a linear BSS technique, would be capable

of separating nonlinear mixtures.

It is worth noting that there are numerous practical applications of BSS

where the sources are modeled by GPs, e.g. [Liutkus et al., 2011,Rivet et al.,

2012,Noorzadeh et al., 2015a,Noorzadeh et al., 2015b]. In these applications,

utilizing the proposed method leads to a set of signals that are linear mixtures

of mutually independent sources.

Therefore, in order to reconstruct the sources after linearizing the mix-

ture, one can use either conventional linear BSS techniques that use the

temporal correlation of the sources (like SOBI [Belouchrani et al., 1997]) or

recent specific methods for GPs (like [Noorzadeh et al., 2014]).
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y = f(s)

s1

sn

y1

yn

Figure 4.2: Unknown mapping f preserving normality

4.2 Theory

In this section, we aim at studying functions preserving normality to see

whether they are limited to be linear or not. It will be seen that even in one

dimension, this hypothesis is not valid, i.e. there are normality-preserving

nonlinear mapping.

As mentioned earlier, the current chapter only focuses on the lineariza-

tion of nonlinear mixtures (g in Fig. 4.1). So, for the sake of simplicity of

notations, let us slightly change the notation of Fig. 4.1, after removing the

last block, as follows.

Let n sources s1, · · · , sn be jointly normally distributed and mixed via

an invertible nonlinear mapping f : Rn → Rn providing n outputs y1, · · · , yn
(Fig. 4.2). The main question is the following: if the outputs y1, · · · , yn
also follow a joint normal distribution, is the mapping f limited to have any

specific structure? In other words, which class of functions f can result in

normal outputs?

4.2.1 One-Dimensional Functions

It is tempting to think that in one-dimensional space, if a Gaussian input

is transformed into a Gaussian output, then the transformation has to be

linear. However, it is not difficult to find counter-examples. For example,

one can consider

f(x) =

−x a ≤ |x| < b

x otherwise
(4.5)
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where 0 ≤ a < b are positive real numbers. As long as the input comes from

a symmetric distribution (including Gaussian), function (4.5) preserves it in

its output.

Since function (4.5) has discontinuities, it is natural to conjecture that

under continuity assumption the only possible transforms are linear. How-

ever, that is not the case again. This is shown in [Wesołowski, 1997] by

introducing a one-dimensional continuous mapping which preserves normal-

ity as follows (refer to [Wesołowski, 1997] for the proof). Define

b(x)
4
= Φ(

x− 3

4
) + Φ(

x+ 3

4
)− Φ(x), (4.6)

where Φ is the cumulative distribution function (cdf) of the standard normal

distribution N (0, 1), defined as

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2 d t. (4.7)

Then the normality-preserving function is constructed as

f(x) =



x, |x| ≥ 1,

4x+ 3, −1 < x < −0.5,

B(x), −0.5 ≤ x ≤ 0.5,

4x− 3, 0.5 < x < 1,

(4.8)

where B = b−1 ◦ Φ.

4.2.2 High Dimensional Functions

Considering Section 4.2.1, it is evident that there are N -dimensional con-

tinuous functions preserving normality. For example, if f is a continuous

one-dimensional function which preserves normality, let us define the func-

tion f : Rn → Rn as f(x) = (f(x1), ..., f(xn))† where x = (x1, . . . , xn)† ∈ Rn,

which is a continuous nonlinear function as well. It can be shown that if x

is an n-variate random vector with independent and identically distributed

(iid) standard normal components then, obviously, f(x)
d
= x, where d

= stands

for equality of probability density functions.
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Nonetheless, it will be interesting to study functions preserving normality

in more details aiming at being able of restricting such functions to some

specific classes which may be useful in practical applications.

4.2.3 Polynomial Functions

This section aims at mathematically understanding what happens to the

GPs passing through a polynomial. As follows, it is proved that polynomials

distort the Gaussianity characteristic of their inputs, except linear ones. It

should be noted that this result cannot be directly extended for any kind of

nonlinear functions (it will be elaborated in the following).

Definition An n-dimensional mapping p : Rn → Rn, defined as p(s) =

(p1(s), . . . , pn(s))† (where s is an n × 1 vector of variables) is called an n-

dimensional polynomial mapping if each pi is a polynomial (of order Oi of n

variables s1, . . . , sn). �

Thus we propose a theorem concerning polynomial mappings as follows.

Theorem 3. Let n sources s1, · · · , sn be jointly normally distributed and

mixed via an invertible polynomial mapping p : Rn → Rn providing n outputs

y1, · · · , yn. If the outputs y1, . . . , yn also follow a joint Gaussian distribution,

the polynomial p is limited to be linear as

y = p(s) = As + b (4.9)

where A and b are an n×n matrix and an n×1 vector of constant numbers

respectively.

In other words, the Theorem 3 says that the only polynomial which pre-

serves the Gaussianity is the linear one. It is worth noting that the reverse

is a well known result: a linear mixture of Gaussian processes (random vari-

ables) leads to Gaussian processes (random variables).

Proof. Let us assume (s1, . . . , sn) has a mean vector µs = E[s] and a co-

variance matrix Ks = E[(s − µs)(s − µs)
†]. Similarly, the output vec-

tor (y1, . . . , yn) has a mean vector µy = E[y] and a covariance matrix
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Ky = E[(y − µy)(y − µy)†]. Considering the Gaussianity, the probability

density function (pdf) of the vectors s and y, denoted by ρS(s) and ρY (y)

respectively, can be expressed as

ρS(s) =
1√

(2π)n|Ks|
e
−1
2

(s−µs)†K−1
s (s−µs) (4.10)

ρY (y) =
1√

(2π)n|Ky|
e
−1
2

(y−µy)†K−1
y (y−µy) (4.11)

where |Ks| and |Ky| are the determinants of Ks and Ky respectively. On

the other hand, according to (2.9), the pdf of y follows

ρY (y) =
ρS(s)

|Jp|
(4.12)

where |Jp| is the determinant of the Jacobian of p.

By definition, it is easy to see that all elements of the Jacobian of a

polynomial mapping are polynomials. As a consequence, the determinant of

the Jacobian is the absolute value of a polynomial. Let q(s) be a polynomial

such that

det(Jp) = |q(s)|. (4.13)

Thus (4.12) can be rewritten as

|q(s)| × ρY (y) = ρS(s) (4.14)

⇒ ln |q(s)|+ ln ρY (y) = ln ρS(s). (4.15)

Using (4.10) and (4.11) to explicit (4.15) leads to

ln |q(s)| − 1

2
ln |Ky| −

1

2
(y − µy)†K−1

y (y − µy) =

− 1

2
ln |Ks| −

1

2
(s− µs)

†K−1
s (s− µs), (4.16)

that is

c+ (y − µy)†K−1
y (y − µy) = (s− µs)

†K−1
s (s− µs) + 2 ln |q(s)| (4.17)

where c = ln(|Ky|/|Ks|) = ln |KyK−1
s | is a constant independent of s and

y. Now it should be proved that since (4.17) holds for all s ∈ Rn, y must be

a linear function of s.
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In particular, (4.17) holds for any vector s that lies on the line where all

entries of the vector take the same value, i.e. s = (s, . . . , s)†n×1 = s1n×1. In

this case, y = p(s) = p̃(s) and q(s) become single variable polynomials of s

as follows

s = s1n×1 ⇒ y = p̃(s) = [ p̃1(s), . . . , p̃n(s) ]† (4.18)

and q(s) = q̃(s) where

∀1 ≤ k ≤ n p̃k(s) = pk(s)
∣∣
s=s1n×1

=

dk∑
j=0

akjs
j (4.19)

q̃(s) = q(s)
∣∣
s=s1n×1

=

dJ∑
i=0

bis
i. (4.20)

Replacing (4.19) and (4.20) in (4.17) results in

c+ (p̃(s)− µy)†K−1
y (p̃(s)− µy)

= (s1n×1 − µs)
†K−1

s (s1n×1 − µs) + 2 ln |q̃(s)|

= αs2 + βs+ γ + 2 ln |q̃(s)| (4.21)

where α = 1†n×1K
−1
s 1n×1, β = −21†n×1K

−1
s µs and γ = µ†sK

−1
s µs are con-

stant scalars.

Particularly, it is interesting to study the equality (4.21) when s tends to

infinity. From (4.19) it can be seen that for large s, the right side behaves

as αs2 (considering the fact that the asymptotic growth of s2 is faster than

both s and logarithms), so the left side should also behave as a second order

polynomial. In other words, all monomials in p̃(s), hence p(s), have a degree

at most 1 and p(s) is limited to be linear as (4.9).

Thus, being restricted to invertible polynomials, normality-preserving

functions are necessarily linear. The statistics of y can be easily expressed

with respect to the ones of s as

µy = E[y] = E[As + b] = Aµs + b (4.22)
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and

Ky = E[(y − µy)(y − µy)†]

= E[(A(s− µs))(A(s− µs))
†] = AKsA

†. (4.23)

Corollary 1. In the model of Fig. 4.2, assuming that f : Rn → Rn is an

invertible polynomial, and given Gaussian Processes as the sources, if we find

a polynomial mapping g(x) such that the outputs y1(t), y2(t), . . . , yn(t) are

Gaussian Processes, the whole function h = g ◦ f will be a linear mixture,

i.e. y(t) = g(x(t)) = h(s(t)) = As(t). It should be noted that the constant

vector b is dropped because it would affect the mean of the signals, while in

the proposed framework, they are assumed to be zero-mean.

It should be noted that although Theorem 3 holds for a more general

class of signals than GPs, they are very useful and flexible in modeling many

practical signals (as introduced in Section 4.1).

Proof. By definition, si(t) is a Gaussian Process if for any set of Mi time

instants ξi = {ti1, . . . , tiMi}, the vector siξi = (si(ti1), . . . , si(tiMi))
† follows

a Gaussian pdf with a mean µsi
(ξi) and and a covariance matrix Ksi(ξi).

Consequently, the vector sξ = (s1
†
ξ1
, . . . , sn

†
ξn

)† is normally distributed.

On the other hand, since both f and g are polynomial mappings, their

composition h = g ◦ f will be a polynomial mapping as well. According to

Theorem 3, since the output vector yξ = (y1
†
ξ1
, . . . ,yn

†
ξn

)† = h(sξ) is also a

normally distributed vector, h is limited to be linear.

4.2.4 Algebraic Functions

According to Taylor expansion theorem, smooth-enough nonlinear functions

can be approximated by polynomials. However, Theorem 3 is not shown to

hold for polynomials of infinite order. Thus, studying other sets of nonlinear

functions would be of interest.

Algebraic functions can be seen as a generalization of polynomials. Thus

one may initially hypothesize that they may not preserve Gaussianity either.
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In this subsection, we investigate whether the Gaussianity can survive pass-

ing through either algebraic or transcendental functions. The short answer is

“no”; Theorem 3 cannot even be generalized to algebraic functions in general.

Let us firstly define algebraic and transcendental functions.

Definition In mathematics, an algebraic function is a function that can be

defined as the root of a polynomial equation. Quite often algebraic functions

can be expressed using a finite number of terms, involving only the algebraic

operations addition, subtraction, multiplication, division, and raising to a

fractional power. In more precise terms, an algebraic function of degree d in

one variable x is a function y = A(x) that satisfies a polynomial equation

ad(x)yd + ad−1(x)yd−1 + · · ·+ a0(x) = 0 (4.24)

where the coefficients ai(x) are polynomial functions of x. A function which

is not algebraic is called a transcendental function, as it is for example the

case of exp(x), tan(x), ln(x) and Γ(x). �

Remark 1. To gain an intuitive understanding, algebraic functions mainly

comprise polynomials, rational functions and roots of natural orders.

Remark 2. A composition of transcendental functions can give an algebraic

function, e.g. A(x) = cos(arcsin(x)) =
√

1− x2.

As declared before, Theorem 3, which concerned polynomial mappings,

cannot even be generalized to algebraic functions. It is shown through the-

orems in the literature as follows.

1. [Baringhaus et al., 1988,Quine, 1994]: if X1 and X2 are independent

normal random variables (rv’s) with zero means and variances σ2
1 and

σ2
2, then Y = X1X2/

√
X2

1 +X2
2 is normal with zero mean and variance

σ2
3, where 1/σ3 = 1/σ2

1 + 1/σ2
2.

2. [Reid, 1987]: let X = [X1, X2]† ∼ N2(0,Σ) where

Σ =

σ2
1 0

0 σ2
2

 (4.25)
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and define Y as

Y =

Y1

Y2

 =

 (σ−1
1 + σ−1

2 )X1X2/‖X‖

sign(X1)(σ−1
1 X2

1 − σ
−1
2 X2

2 )/‖X‖

 . (4.26)

Then Y ∼ N2(0, I).

4.2.5 Generalized Rotations

It is evident that there are also other nonlinearities which preserve normality.

For example, inspired by [Babaie-Zadeh, 2002], we propose the following

theorem.

Theorem 4. In Fig. 4.2, suppose s is an n× 1 standard normal vector and

f is a differentiable one-to-one mapping with a continuous derivative. If f

satisfies the following two properties, it will preserve normality:

1. f should be norm-preserving; hyper-spheres in the s-space will be mapped

into hyper-circles in the y-space (y = f(s)).

2. |Jf (s)| should be constant equal to 1.

It is worth noting that |Jf (s)| = 1 geometrically means that the transfor-

mation f does not change the volume of differential elements (it is proved that

the determinant of the Jacobian of a function is the proportion of the change

in the differential volumes). Therefore, Theorem 4 claims that functions f

preserving both the differential volume and the norm, preserve Gaussianity.

Proof. Let us firstly recall (2.9), i.e. the relationship between the pdf of the

input and the output of a differentiable function f , as

y = f(s) ⇒ ρY(y) =
ρS(s)

|det(Jf (s))|
. (4.27)

Therefore, considering the standard normal pdf, for normal input and output

vectors, we will have

1√
2πn

e
−1
2

(ry)2 =
1

|det(Jf (s))|
1√
2πn

e
−1
2

(rs)2 (4.28)

⇒ (ry)2 = (rs)2 + 2 ln |Jf |, (4.29)
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where rs =
√

s†s and ry =
√

y†y. Obviously, (4.29) holds for functions

satisfying |Jf | = 1 and ry = rs.

In the following, generalized rotations are defined and shown to be non-

linear mappings preserving normality. They can also be continuous and

differentiable everywhere. Let us firstly define n-dimensional spherical coor-

dinate systems, based on [Vilenkin, 1978, p. 435], as follows.

Definition An n-dimensional spherical coordinate system (analogous to the

one defined in 3-dimensional space) consists of a radial coordinate, r and

n− 1 angular coordinates θ1, θ2, . . . , θn−1 where θn−1 ranges over [0, π) and

the other angles range over [0, 2π) radians. If x1, x2, . . . , xn are the Cartesian

coordinates as x = (x1, x2, . . . , xn)†, the coordinates transformation can be

expressed as

x1 = r cos(θ1)

x2 = r sin(θ1) cos(θ2)

...

xn−1 = r sin(θ1) . . . sin(θn−2) cos(θn−1)

xn = r sin(θ1) . . . sin(θn−2) sin(θn−1). (4.30)

Reciprocally (refer to [Vilenkin, 1978, p. 436])

r =
√
x2

1 + x2
2 + · · ·+ x2

n

θ1 = arccot
x1√

x2
2 + · · ·+ x2

n

θ2 = arccot
x2√

x2
3 + · · ·+ x2

n

...

θn−2 = arccot
xn−2√

x2
n−1 + x2

n

θn−1 = 2 arccot
xn−1 +

√
x2
n−1 + x2

n

xn
. (4.31)

�
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Therefore, we define generalized rotations as follows.

Definition An n-dimensional mapping Φ : Rn → Rn is called an n-

dimensional generalized rotation iff it preserves the norm and the angle of

rotation may depend on the norm. It can be formulated in n-dimensional

spherical coordinate system as

y =



ry

θy
1

θy
2
...

θy
n−1


= Φ(x) =



rx

θx
1 + φ1(rx)

θx
2 + φ2(rx)

...

θx
n−1 + φn−1(rx)


. (4.32)

where φi(rx) for i = 1, . . . , n − 1 is an arbitrary function of the norm of x.

�

A figurative illustration of a 2-dimensional generalized rotation applied

on a 2-dimensional standard normally distributed vector is depicted in Fig. 4.3.

As shown in this figure, a generalized rotation is a rotation whose angle may

vary depending on the norm of the input vector. Fig. 4.3a contains the pdf

of a joint normal 2-dimensional vector (s1, s2). It shows that performing

rotations with different angles φ1, φ2 and φ3, for different norms r1, r2 and

r3, respectively, twists the pdf but does not affect its bell shape. Fig. 4.3b

shows the scatter plot of the s vector. As it can be seen from the figure,

since the standard normal distribution is spherically symmetric, hence rota-

tion invariant, a rotation of the points on a circle with specific radius, does

not have any statistical effect.

Remark 3. It can be easily shown that generalized rotations are invertible

and their inverse is another generalized rotation.

As it can be guessed from Fig. 4.3, generalized rotations do not affect

jointly standard normal pdf’s. In fact, this intuition is also supported by the

following mathematical theorem.
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(a) Probability density function
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(b) Scatter plot

Figure 4.3: Illustration of a generalized rotation; a rotation whose angle may vary

depending on the norm of the input

Theorem 5. If the inputs x1, x2, . . . , xn of an n-dimensional generalized

rotation Φ are jointly normally distributed and mutually uncorrelated, hence

mutually independent, as

ρX(x) =
1√

(2π)n
e
−1
2

(x†x) =
1√

(2π)n
e
−1
2

(rx)2 , (4.33)

then the outputs y = Φ(x) will be jointly normally distributed and mutually

independent as well

y = Φ(x) ⇒ ρY (y) =
1√

(2π)n
e
−1
2

(ry)2 . (4.34)

In other words, according to the above theorem, n-dimensional general-

ized rotations preserve the normality characteristic of mutually independent

signals.

Proof. According to (2.9), for any invertible function Φ, the pdf of y follows

ρY (y) =
ρX(x)

|JΦ|
. (4.35)

According to (4.32) and considering (4.35) in the spherical coordinate system,
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|JΦ| can be calculated as

|JΦ| =

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0

φ′1(rx) 1 . . . 0
...

...
. . .

...

φ′n−1(rx) 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣
= 1 (4.36)

where “ ′ ” denotes derivative with respect to the input argument. This result

also complies with the fact that the volume element changes by the absolute

value of the Jacobian determinant of the transformation and that we expect

(generalized) rotations not to change it.

Consequently, (4.35) can be calculated in the spherical coordinate system

as

ρY (y) =
ρX(x)

1
=

1√
(2π)n

e
−1
2

(rx)2 =
1√

(2π)n
e
−1
2

(ry)2 (4.37)

where the last equation comes from the face that ry = rx according to the

definition of a generalized rotation (4.32).

It is also interesting to recall that the counter-example firstly introduced

in [Babaie-Zadeh, 2002], showing that ICA fails in separating nonlinear mix-

tures, is a particular 2-dimensional generalized rotation (2.12),. The angle

of the rotation in that example is designed such that it maps the square of

[−1, 1] × [−1, 1] to itself, hence also preserves the uniform distribution on

[−1, 1]× [−1, 1].

Finally, the following interesting Theorem 6, proposed in [Hamedani and

Volkmer, 2001], claims that normality-preserving algebraic functions also

preserve Euclidean norm. In fact, the authors of [Hamedani and Volkmer,

2001] have claimed to be informed by A. M. Kagan that V. L. Eidlin had

passed away before publishing his proof and no one possessed a proof of

this theorem. Therefore, it would be more accurate if Theorem 6 had been

presented as a conjecture.

Theorem 6. Let σ > 0 be a given number. Consider a random vector x =

(x1, x2, . . . , xn)† with every xj ∼ N (0, σ2). Every algebraic transformation
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A preserving normality of such a vector also preserves spheres. In other

words, if y = A(x) is normally distributed, then

ry = ‖y‖ = rx = ‖x‖, (4.38)

where ‖ · ‖ represents Euclidean norm.

Given Theorem (conjecture) 6, it is straightforward to prove the following

corollary.

Corollary 2. If A is an invertible algebraic function preserving normality,

then the determinant of its Jacobian will be constant and equal to 1 every-

where, i.e.

det(JA) = |JA| = 1. (4.39)

Proof. Since A is assumed to be normality-preserving, it maps a random

vector x = (x1, x2, . . . , xn)† with joint normal distribution into y = A(x)

which will be normally distributed as well. Therefore, according to (2.9),

ρX(x) =
1√

(2π)n
e
−1
2

(rx)2 =

ρY (y)× |JA| =
1√

(2π)n
e
−1
2

(ry)2 × |JA|, (4.40)

where ρ(·) represents the pdf.

From theorem (conjecture) 6, we know that A should preserve the norm,

i.e. ry = rx. Consequently, (4.40) results in (4.39).

It is interesting to note that although Theorem 3 was precisely proved,

it could have also been easily proved using theorem (conjecture) 6.

4.3 Proposed Algorithm

In this section, we aim at proposing an algorithm for blind linearizing an

invertible polynomial based on Theorem 3. Although, based on Section 4.2,

this theorem holds for any invertible polynomial mapping, our proposed al-

gorithm particularly focuses on polynomials, the inverse of which are also
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polynomials. An example of this kind of polynomials is provided in Sec-

tion 4.4.

In this case, it is necessary and sufficient for linearizing the mixture to

estimate a polynomial g such that y(t) = g(x(t)) is a vector with Gaussian

distribution (see corollary 1 for the proof). Consequently, one can propose

an algorithm which takes a cost function of “non-Gaussianity” and minimizes

it with respect to the polynomial g.

Here we assume a parametric model for the inverse polynomial g and

then the optimization is done with respect to the parameters of our model.

The parametric model of an Lth order polynomial of n signals is chosen as

g(x) =


g1(x)

g2(x)
...

gn(x)

 =


θ1
†

θ2
†

...

θn
†

k(x) = Θk(x) (4.41)

where θi for i = 1, . . . , n is a P -dimensional column vector of the parameters

(constant scalars), k(x) ∈ RP×1 is the column vector containing all mono-

mials with degree less than or equal to L and P =
(
n+L
L

)
= (n+L)!

n!L! is the

number of the parameters of each entry gi(·) which is equal to the number

of monomials with degree at most L. Note that this model is linear with

respect to the parameters, which simplifies the algorithm significantly.

For any 1 ≤ i ≤ n, the entropy of yi is defined as

H(yi) = −E{ln ρYi(yi)} (4.42)

where ρYi(yi) is the pdf of the ith output signal yi. Consequently, the neg-

entropy [Comon, 1994,Hyvärinen, 1999b] is calculated as

J (y) = H(ỹ)−H(y) (4.43)

where ỹ is a Gaussian random variable with the same co-variance matrix as

y’s.

It can be easily shown that among all distributions with a given mean and

variance, Gaussian pdf is the one with the highest entropy; the value of the
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Algorithm 3 Calculation of the Neg-Entropy
1: procedure Neg-Entropy ( y(t) )

2: for i = 1, . . . , n do

3: ρYi(yi)← The estimated pdf of yi based on the histogram of yi(t)

for t = 1, . . . , T

4: σi ← The variance of yi

5: H(yi) ← −E{ln ρYi(yi)}

6: end for

7: J (y(t)) ← (1 + ln(2πσ))/2−H(y)

8: end procedure

entropy of a random variable ν ∼ N (µ, σ) is calculated as H(ν) = ln(σ
√

2πe).

Thus, neg-entropy is always nonnegative and invariant by any linear invert-

ible transformation, and vanishes iff the signal is Gaussian. Therefore, as

well as some previous works on BSS (e.g. [Girolami and Fyfe, 1996,Hyväri-

nen, 1999a]), we also use neg-entropy as a measure of Gaussianity. It should

be emphasized that in this work, neg-entropy is the cost function that is min-

imized, because we need to recover the Gaussianity of the sources. While in

classical BSS methods, it is maximized in order to retrieve non-Gaussianity.

The pseudo-code for calculating the proposed cost function is provided

in Algorithm 3. In this algorithm the order of the inverse polynomial is

assumed to be known (L).

Thus the algorithm should optimize

minimize
Θ

‖J (Θk(x))‖22, (4.44)

where ‖ · ‖2 represents the `2 norm, i.e. Euclidean norm defined as ‖v‖2 =

2

√
v2

1 + v2
2 + · · ·+ v2

N where v = [v1, v2, . . . , vN ] is either a column or a row

vector. Considering the fact that each entry of J (Θk(x)) depends only on

one row of Θ, minimizing all the entries of J (Θk(x)) will be equivalent to

minimizing its norm.

This cost function is not convex or even close to convex, hence seems

to have too many local minima. In our simulations, classical optimization
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Algorithm 4 Blind Linearization of Polynomial Mixtures of Gaussian

Sources
1: k(x) ← All monomials with degree less than or equal to L

2: P ←
(
n+L
L

)
= (n+L)!

n!L!

3: Θ: An n× P matrix of unknown parameters

4: y(t) ← g(x(t)) = Θk(x)

5: procedure Simulated Annealing ( ‖Neg-Entropy(y(t))‖22,Θ )
...

6: return Θ

7: end procedure

methods like steepest descent and Newton always trapped in a local mini-

mum (even for thousands of simulations with different random initialization).

Therefore we had to implement a probabilistic method, e.g. particle swarm

optimization [Kennedy, 2011] and simulated annealing [Hwang, 1988]. Fi-

nally we achieved the best performance by taking the minimum cost function

among several runs of simulated annealing [Hwang, 1988] algorithm with dif-

ferent random initializations. It should be noted that even with simulated

annealing, hundreds of simulations were needed to finally achieve the global

minimum.

The pseudo-code of our proposed algorithm is provided in Algorithm 4.

In this algorithm, the order of the inverse polynomial is assumed to be known

(L), and the procedure Simulated Annealing of lines 5 to 7 corresponds to the

traditional well-known simulated annealing algorithm [Hwang, 1988], which

take some parameters and a cost function as inputs, and returns the optimal

parameters.

Finally it should be noted that when the order of the inverse polynomial

is not known, one can start from a linear polynomial, and gradually increase

the order until getting a low enough cost function. In addition, considering

the fact that the polynomial function is assumed to be invertible, one might

confine the search over odd-valued polynomial functions or even monotonic
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Algorithm 5 Iterative Blind Linearization of Polynomial Mixtures of Gaus-

sian Sources
1: L0 ← 0

2: repeat

3: L ← L0 + 1

4: L0 ← L

5: k(x) ← All monomials with degree less than or equal to L

6: P ←
(
n+L
L

)
= (n+L)!

n!L!

7: Θ: An n× P matrix of unknown parameters

8: y(t) ← g(x(t)) = Θk(x)

9: procedure Simulated Annealing ( ‖Neg-Entropy(y(t))‖22,Θ )
...

10: return Θ

11: end procedure

12: until ‖Neg-Entropy(Θk(x(t)))‖22 > ε

functions. This idea can be implemented as Algorithm 5

4.4 Simulation Results

The main theorem proposed in this work is supported by a simple 2-by-2

simulated example as follows. The two sources s1 and s2 are randomly chosen

as N (0, 1) and are mixed through a 2-dimensional polynomial mapping ass1

s2

→
x1

x2

 =

s1 + (s1 + s2)3

s2 − (s1 + s2)3

 . (4.45)

The function (4.45) can be exactly inverted asŝ1

ŝ2

 =

x1 − (x1 + x2)3

x2 + (x1 + x2)3

←
x1

x2

 . (4.46)

From the scatter plot of the sources (Fig. 4.4a) and the observations

(Fig. 4.4b), it is obvious that the observations (x1, x2) do not follow a Gaus-

sian distribution.
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Figure 4.4: The scatter plot of the sources and the observations of (4.45) for 1000 samples.

The neg-entropy for s1, s2, x1 and x2 are calculated 0.0524, 0.0476, 0.8664 and 1.1073

respectively.

Now, we want to retrieve the Gaussianity by applying a polynomial on

the observations. In this experiment, given a cubic model with respect to

the two signals x1 and x2 (i.e. with 10 parameters), we are looking for the

parameters θ1
† = [θ10, . . . , θ19] in

y1 = θ10x
3
1 + θ11x

2
1x2 + θ12x

2
1 + θ13x1x

2
2 + θ14x1x2

+ θ15x1 + θ16x
3
2 + θ17x

2
2 + θ18x2 + θ19 (4.47)

such that y1 follows a Gaussian distribution. To this end, as proposed in

the previous section, the neg-entropy (4.43) of y1 should be minimized with

respect to the parameters θ1 which leads to a linear mixture of s1 and s2.

Our simulations show that the 10-dimensional minimization of θ1 is quite

difficult mainly because of 1) too many local minima and non-convexity and

2) the high dimension of the space and the computational cost of the mini-

mization. Thus, practically, numerous runs of the algorithm, each of which

taking a long time to converge, were needed for in order to reach to a global

minima. However, the following simulation results validate the proposed

method by showing how the cost function behaves around its theoretical
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Figure 4.5: The histogram of y1 = x1 + x2 = s1 + s2 from (4.45) for 1000 samples.

The neg-entropy for y1 is equal to 0.0535

global minima.

It should be noted that, since s1 and s2 are assumed to be mutually

independent normal signals, any linear mixture of them, particularly the

sum of them s1 + s2 also follows the normal distribution [Eisenberg and

Sullivan, 2008], hence is a global minimizer of the neg-entropy. Therefore,

linearizing algorithm does not necessarily converge to the exact inverse; ev-

idently a scaled sum of the sources, i.e. c(s1 + s2) where c is a constant

coefficient, can be a convergence point for the proposed method. Particu-

larly, it is interesting to see the behavior of the cost function (4.43) around

θ1 = [0, 0, 0, 0, 0, 1, 0, 0, 1, 0], where y1 = x1 + x2 = s1 + s2 is expected to be

a global minimizer. Fig. 4.5 shows how the histogram of the first output y1

fits a Gaussian function.

Fig. 4.6 illustrates the partial variation of the neg-entropy with respect

to any of entries of θ1 around its optimal value [0, 0, 0, 0, 0, 1, 0, 0, 1, 0]. As

declared in Algorithm 3, the neg-entropy is calculated through estimating

the pdf of y1 via the histogram technique. It is evident that although the

neg-entropy is relatively far from zero in the neighborhood, it rapidly tends

to zero (global minimum) for the exact optimal value. It should also be

noted that changing θ19 does not affect the linearity of the mixture y1 with
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Figure 4.6: The neg-entropy of y1 in (4.47) with respect to the entries of θ1 centered

around their optimal value [0, 0, 0, 0, 0, 1, 0, 0, 1, 0] (from θ10 to θ19 in figures (a) to

(j) respectively). Plotting with respect to each entry, the other parameters are kept

constant.

respect to s1 and s2, hence does not change the neg-entropy.

Moreover, the value of the neg-entropy while simultaneously changing θ11

and θ17 around zero is plotted in Fig. 4.7a. As it can be seen in this figure,

although the global minimum is in the origin, there are too many other local

minima that may trap the minimizing algorithm. Fig. 4.7b also shows that

the value of the neg-entropy is minimized with respect to the coefficients of

x1 and x2 (while not changing the other parameters) as long as we stay on

the line θ15 = θ18 where the two coefficients are equal. This can also be

mathematically seen that at any point of the line θ15 = θ18, y1 is a linear

mixture of s1 and s2, hence follows a Gaussian pdf.
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Figure 4.7: The value of the neg-entropy of y1 in (4.47) with respect to 2 coefficients of

the parametric model, while the other parameters are kept constant and equal to their

optimal value in [0, 0, 0, 0, 0, 1, 0, 0, 1, 0].

4.5 Discussion and Future Works

In this chapter, nonlinear mappings preserving normality were studied. Al-

though the only invertible polynomial which preserves the normality is a

linear function, there are other normality-preserving nonlinear mappings in-

cluding algebraic functions.

These theoretical results, as suggested in Section 4.3, can be used for

blindly linearizing unknown nonlinear mixtures where the input follows nor-

mal distribution. In this application, the goal is to blindly transform a

nonlinear system to a linear one, under the assumption that the sources are

normally distributed. As a result of this approach, the nonlinear problem can

be initially transformed to a linear one through a linearization pre-processing

phase, and then be treated linearly.

Our proposed blind linearization approach could be used in some applica-

tions dealing with unknown polynomial nonlinearities. The idea of lineariza-

tion has also been proposed in [Kagan et al., 1973] under the name NL model

satisfying the addition theorem, where instead of normality, independence-

preserving functions are considered. As an example, in nonlinear BSS prob-

lems, in order to transform the problem to a linear one, one may propose a
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two-step separating scheme (see Fig. 4.1), where at the first step the mix-

ture is linearized based on the result of this work, and the second step

is a linear BSS method which can separate normal sources based on non-

stationnarity [Pham, 2000] or correlation [Belouchrani et al., 1997]. How-

ever, this is a preliminary result and is to be extended and generalized in

both theoretic and algorithmic aspects.

4.5.1 Theoretic Development

It would be interesting to discover other structured models of nonlinear func-

tions that cannot preserve normality. For example, the simplest generaliza-

tion of Theorem 3 might be reciprocal polynomials, i.e. polynomials with

negative powers, or combinations of positive and negative powers for differ-

ent sources.

Moreover, not all polynomials can be inverted by polynomials. So it is

important to study the problem when the parametric model of the inverse

function is not polynomial. Again, in this case, some special cases like re-

ciprocals and rational function are of more interest.

In addition, in many practical applications, nonlinear mixtures are not

exactly polynomials, but they can be approximated by polynomials. Thus it

is interesting to see how a similar result can be achieved in those cases when

the equations are not exact. Especially, it can be speculated that normality-

preserving functions that can be well approximated by polynomials are limited

to be linear, where by “well approximated” we mean with arbitrarily small

error, i.e. functions that the coefficients of their Taylor expansion tend to

zero as the order tends to infinity.

4.5.2 Algorithmic Development

In Section 4.3, neg-entropy is introduced as the cost function to be optimized.

However, the minimization of the neg-entropy is too difficult because of the

local minima and the computational cost. Thus it would be interesting
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to develop algorithms based on other cost functions which may be more

convex and simpler to calculate. Approximations of the neg-entropy (similar

to [Hyvärinen, 1999a]) and cost functions based on higher order statistics

are two examples that are suggested for future studies.
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BSS problem for linear mixtures of sparse sources has already been stud-

ied e.g. in [Babaie-Zadeh et al., 2006, Bofill and Zibulevsky, 2001] (a very

nice comprehensive survey on sparse component analysis for blind source

separation is provided in [Gribonval and Lesage, 2006]). Results for sepa-

rating nonlinear mixtures of sparse sources are limited to specific models,

e.g. post-nonlinear mixtures [Van Vaerenbergh and Santamaría, 2006] and

smart ion-selective electrode arrays [Duarte et al., 2009]. However, up to our

best knowledge, it has not been considered for general nonlinear mixtures so

far.
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Our contribution in this chapter is performing nonlinear BSS for spa-

tially sparse sources. Although our proposed separation algorithm in this

chapter concerns determined cases, it can be shown that in this case, sources

are separable even if the problem is under-determined, i.e. the number of

observations is less than the number of source signals (see (2.4)). However,

similar to the results of Chapter 3, an unknown nonlinear transformation of

each source is reconstructed.

The idea of this chapter is original and has been partially published

in [Ehsandoust et al., 2016]. The chapter is organized as follows. The prob-

lem model and the main idea for solving it is introduced in Section 5.1. The

proposed approach and the algorithm for performing the separation are then

proposed in Section 5.2. In this section, related background on both linear

and nonlinear manifold learning and clustering is also reviewed. Simulation

results are finally shown in Section 5.3, which is followed in Section 5.4 by a

comprehensive discussion on the performance of the proposed approach and

how to develop it for the future works.

5.1 Introduction

As mentioned earlier, in this chapter we are going to investigate the sep-

arability of nonlinearly mixed spatially sparse sources and mathematically

formulate the proposed approach. For performing the separation, we have

the following four assumptions on the sources:

1. Sources are instantaneously mutually independent,

2. Source signals are sparse in the space domain, i.e. they rarely take

non-zero values at the same time,

3. The number of sources is equal to the number of observations,

4. The nonlinear mixing function f(·) (see Fig. 1.1) is time-invariant.

A signal s(t) is sparse, if it takes zero value with high probability. A
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sparse signal is said to be “active” at time t0, if its corresponding value is

non-zero, i.e. s(t0) 6= 0.

Definition A signal s(t) is said to be κ-sparse if the fraction of the number of

non-zero samples of a it over the total number of the samples is κ. Similarly,

activity rate can be defined as the chance of the sparse signal being active.

�

While being sparse refers to the time samples of the signal, unless other-

wise stated, the sparsity can also be defined in other domains. For example,

a signal may be sparse in the frequency domain, meaning that it has few

frequency components.

Similarly, spatially sparse signals can be defined as follows. Signals

s1(t), . . . , sn(t) are said to be spatially sparse if it is quite rare that all of

them are simultaneously active. In other words, if the signals are spatially

sparse, the signal vector s(t) = [s1(t), s2(t), . . . , sn(t)]† has few non-zero en-

tries at all time instants t. For example, people’s talks in a meeting make

a set of spatially sparse signals, because usually people do not talk at the

same time, i.e. when someone speaks (is active), the others are silent.

Lemma 1. If sources are individually sparse and mutually independent, they

also make a spatially sparse set.

Proof. Let us assume that each source si(t), 1 ≤ i ≤ n is κi-sparse, 0 <

κi � 1, and is ergodic. By definition, if a signal is ergodic, its statistical

properties can be calculated from its time samples. Thus the probability of

all sources being simultaneously active is equal to
∏n
i=1 κi ≈ 0.

If all spatially sparse signals have the same sparsity, i.e. κi = κ0 for

1 ≤ i ≤ n, most probably η ≈ nκ0 signals will be simultaneously active,

thus the data mostly lies on η-dimensional manifolds in the n-dimensional

space [Naini et al., 2008].

For investigating what would happen in the case of sparse sources from

a geometrical point of view, the scatter plots of the observations for the two
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Figure 5.1: Comparing scatter plots of the source and observation vectors of a linear

mixture, whether the sources are sparse or not

cases whether the sources are sparse or not, are compared in Figs. 5.1 (for a

linear mixture) and 5.2 (for a nonlinear mixture).

The linear mixture is made by random 2× 2 mixing matrix A asx1(t)

x2(t)

 = A

s1(t)

s2(t)

 . (5.1)

Fig. 5.2 is plotted for a nonlinear 2× 2 mixing system of

x1(t) = es1(t) − es2(t) (5.2)

x2(t) = e−s1(t) + e−s2(t) (5.3)
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where the observations x1(t) and x2(t) are centered before being plotted.

As it can be seen from the figures, when the sources are sparse (Figs. 5.2c

and 5.1c), the samples of the source vector are mainly concentrated around

the axes because it is quite rare that both of the sources take a non-zero

value at the same time. So in this case, the scatter plot of the observations

(Figs. 5.2d and 5.1d) contains two manifolds each of which is the result of

the transformation of one of the axes in the source space.

In this work, we mainly consider that the signals are enough sparse so

that the samples corresponding to more than one active source are very

rare, i.e. η = 1. Thus, most of the samples lie on 1-dimensional manifolds

corresponding to data where only one source is active. However, as it will

be discussed in Section 5.4, the proposed approach does not fundamentally

depend on this assumption, could be easily generalized for less sparse sources

by minor modifications in the proposed method.

In order to better explain the idea which is proposed, let us start from

separating linear mixtures. Then the proposed method can be generalized

to the nonlinear mixtures which will be studied in the following.

5.1.1 Linear Mixtures

When the mixture is linear, the relationship between the sources and the

observations can be written as

x(t) = As(t) (5.4)

where A is an invertible n × n mixing matrix. As a consequence, axes in s

domain will be transformed to direct lines in x space as

x =

n∑
i=1

aisi, (5.5)

where A = [a1,a2, . . . ,an].

It can be shown through the following equations. From (5.4) we have

s(t) = A−1x(t) = Bx(t) (5.6)
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Figure 5.2: Comparing scatter plots of the source and observation vectors of the nonlinear

mixture (5.2) and (5.3), whether the sources are sparse or not
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where B = A−1 is the inverse of the mixing matrix A. So when only one of

the sources, sk, is active, (5.6) leads to

0
...

0

sk(t)

0
...

0


= B


x1(t)

x2(t)
...

xn(t)

 (5.7)

and then

⇒ ∀1 ≤ i 6= k ≤ n b†ix(t) = 0 (5.8)

where b†i is the i
th row of B. Therefore, when sk is the only active source, the

observation vector satisfies (5.8) which determines a line set in n-dimensional

space.

The separability of this model is proven in [Babaie-Zadeh et al., 2006,

Bofill and Zibulevsky, 2001], and the separation algorithms are also provided.

Nonetheless, it would be interesting to see what happens when the n sources

are less sparse such that most probably n − 1 of them are simultaneously

active [Rivet, 2006,Rivet et al., 2010]. This case is studied in Appendix A,

where the separability of the mixture is proved in Theorem 7.

To conclude, it is shown that when n spatially sparse mutually indepen-

dent sources are mixed linearly, the scatter plot of the observation vector

consists of low dimensional subspaces. Learning these subspaces leads to

construct the separating matrix. This idea can be generalized for the non-

linear case which is elaborated in the following.

5.1.2 Nonlinear Mixtures

As mentioned in the beginning of Section 5.1 and shown in Fig. 5.2, and

similar to the linear model, nonlinear mixtures of n spatially sparse mutually

independent sources, with high probability lie on η-dimensional manifold in
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n-dimensional space (η < n). As stated before, for the rest of this chapter,

it is assumed that the sources are enough sparse such that rarely more that

one of them are simultaneously active, i.e. η = 1. Given this assumption, the

n-dimensional observation space comprises n 1-dimensional manifolds, each

of which corresponds to exactly one of the sources.

Mathematically speaking, using the same notation as in Chapter 3, the

nonlinear mixture is modeled as x(t) = f(s(t)). The model can be inverted

as s(t) = g(x(t)) where g = f−1 is the inverse function.

If only one source is active, i.e. sk(t) 6= 0 and for all 1 ≤ i 6= k ≤ n,

sk(t) = 0, we will have 

0
...

0

sk(t)

0
...

0


= g


x1(t)

x2(t)
...

xn(t)

 (5.9)

and then

⇒ ∀1 ≤ i 6= k ≤ n gi(x(t)) = 0 (5.10)

where gi is the ith component of the n-dimensional nonlinear function g.

Consequently, 1-dimensional manifolds Γk can be defined as

Γk : ∀1 ≤ i 6= k ≤ n gi(x(t)) = 0, (5.11)

which determine intersections of n−1 (n−1)-dimensional manifolds gi(x(t)) =

0 in the n-dimensional x space.

This is the main idea for performing nonlinear BSS for spatially sparse

sources, which is elaborated in Section 5.2. So the mixing model that is

concerned in this work is not restricted to a specific kind and can be any

invertible function. The idea in [Babaie-Zadeh et al., 2002] for separating

post-nonlinear mixtures of bounded signals is also very close to the sparsity
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where the edges of the parallelogram of the source scatter plot is utilized to

learn the nonlinearity.

It should be noted once more that the goal of BSS is to “separate” the

sources and not to “reconstruct” them. In nonlinear BSS, a component-wise

nonlinear function remains as an ambiguity in reconstructing the sources

that can only be resolved using other prior information about the source

signals, which is out of the scope of BSS.

5.2 Proposed Method

Based on the results of the previous section, we are now going to propose an

approach to separate sparse sources which are nonlinearly mixed through an

unknown mixing function. The algorithm consists of two steps:

1. Clustering the observations and manifold learning,

2. Separating the sources,

In the first step, n 1-dimensional manifolds in the observation space are

learned and the data is clustered so that each class corresponds to the ac-

tivity of one of the sources. Then the sources are reconstructed based on

subsection 5.1.2.

As mentioned before, the output of the last step will be a component-

wise nonlinear function of the source vector, which can be considered as

nonlinear distortion. Thus, in an additional post-processing step, a signal

restoration technique can be proposed aiming at blind compensating the

nonlinear distortion of the sources.

5.2.1 Clustering and Multiple Manifold Learn-

ing

The first step in the proposed algorithm is to cluster the observation points

due to the manifolds that they lie on. It means that the n 1-dimensional

manifolds, Γk of (5.11) for k = 1, . . . , n, should be learned simultaneously.
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In Appendix B we provide a relatively deep investigation on the problem

of manifold clustering followed by proposing robust algorithms, which may

also be used separately for other applications in signal processing and pattern

recognition. So Appendix B concerns a more general definition of manifold

clustering problem in the sense that 1) additive noise is considered, 2) the

number of the manifolds and their dimensions are not necessarily equal to n

and 1, respectively (but it is assumed that they are given in advance).

In the proposed method, we have used the non-parametric multiple man-

ifold learning method proposed in Section B.4 of Appendix B. In this ap-

proach, the manifolds are learned based on an iterative method similar to the

well-known k-means [MacQueen, 1967]. Our method comprises three steps

as follows.

1. Initially, data points are randomly assigned to the manifolds. The label

of each point x(t) for t = 1, . . . , T at rth iteration is represented by

Ω(r)(t) ∈ {1, 2, . . . , n}).

2. A 1-dimensional manifold is fitted on the points assigned to each class

using smoothing splines as

∀ 1 ≤ i ≤ n Ω
(r)
i : F({x(t)}|Ω(r−1)(t) = i) (5.12)

where F represents the 1-dimensional smoothing spline procedure and

the superscript (r) denotes the number of the iteration.

3. The labels of data points are updated to their closest manifold as

∀ 1 ≤ t ≤ T Ω(r)(t) = argmin
i

(
d2
w(x(t),Ω

(r)
i )
)
, (5.13)

where dw denotes a weighted distance from a point to a manifold.

The sequencing steps 2 and 3 should be iteratively repeated until the algo-

rithm converges and the labels Ω(r)(t) do not change.

Please refer to Section B.4 of Appendix B for more details, and Algo-

rithm 6 for the pseudo-code of the proposed algorithm.
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Figure 5.3: Observation data points of (5.2) and (5.3), which are going to be clustered

using the proposed non-parametric approach

The proposed idea can be well illustrated visually. For example, assume

two observations x1(t) and x2(t) for t = 1, . . . , 50, which are realized us-

ing (5.2) and (5.3) from uniformly distributed source signals (see Fig. 5.3).

In order to cluster the data and learn the two manifolds simultaneously,

the proposed non-parametric approach is utilized, and the outputs of each

step in every iteration is depicted in the sequence of figures 5.4a to 5.4l. In

this simulation, the data is assumed not to contain outliers, hence distances

are not weighted. In these figures, two 1-dimensional manifolds in a 2-

dimensional space are to be clustered and learned.

In Fig. 5.4a, each data point is randomly assigned to either red or blue

class. Then, performing the smoothing splines algorithm on red (respectively,

blue) points has resulted the red (respectively, blue) manifold. Then in

Fig. 5.4b, distances of all data points to both red and blue manifolds are

calculated and the label (color) of the points are updated to the color of

their closest manifold. The algorithm iteratively does these procedures until

it converges.

As shown in Fig. 5.4, the proposed algorithm has converged to the global
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(d) Iteration 2: step 3
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(e) Iteration 3: step 2
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(f) Iteration 3: step 3
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(g) Iteration 4: step 2
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(h) Iteration 4: step 3
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(i) Iteration 5: step 2
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(j) Iteration 5: step 3
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(k) Iteration 6: step 2
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(l) Iteration 6: step 3

Figure 5.4: Illustration of the proposed non-parametric approach for learning 2 manifolds

in 2-dimensional space; in figures corresponding to step 3, the minimum distance of each

point to the manifolds is plotted
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minimum in 6 iterations. As stated in Appendix B, if the weighting function

used in (5.13) for calculating d2
w(x(t),Ω

(r)
i ) is monotonic, the clustering error

in this approach may not increase as the algorithm progresses, hence the

proposed algorithm does converge. However, in order to avoid being trapped

in local minima, it is necessary to run the algorithm several times, each with

a different random initialization, and finally take the best result.

Coming to a conclusion, the first step of the proposed framework is clus-

tering the manifolds in the observations space. The outputs of this step are

the n 1-dimensional manifolds of (5.11) in the observation space that fit the

data the best.

5.2.2 Separating the Sources

As mentioned before, each manifold in the observation space corresponds to

the activity of only one of the sources. So once the manifolds are learned,

sources are separated. In fact, for any time instant t = 1, . . . , T , if x(t)

belongs to manifold Γi, then the sources are reconstructed as

∀ 1 ≤ t ≤ T x(t) ∈ Γi ⇒

ŷi(t) = Ξi(x(t))

ŷj(t) = 0 1 ≤ j 6= i ≤ n
(5.14)

where ŷ(t) = [ŷ1(t), . . . , ŷn(t)]†1 is the reconstruction of the sources, and Ξk

is an arbitrary nonlinear function.

Please note that x(t) ∈ Γi means that only si is active, i.e. x(t), hence

any function of that Ξi(x(t)) will only be a function of si as well. Thus,

although a nonlinear distortion is remained as an ambiguity, the sources are

separated and BSS is done.

One of simplest possibilities for Ξi(·) can be suggested as Ξi(x(t)) = xk(t)

for arbitrary 1 ≤ k ≤ n, i.e. the kth observation signal. However, it should

be noted that the nonlinear function Ξi(·) should be an injection (one-to-

one), hence invertible in its domain. For example, in order to reconstruct
1 ŷ is not the final estimation of the sources, this is the reason why a “hat” is used in

the notation
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Figure 5.5: A manifold whose projections on the axes are not invertible

the source corresponding to the red data points in 2× 2 example of Fig. 5.5,

none of the axes (neither x1, nor x2) could be taken as either Ξ1(·) or Ξ2(·).

In this figure, observations are constructed as

x1 = −3s2 + 0.76 cos(3.5s1) + 0.43 sin(3.5s1)− cos(7s1)− 0.24, (5.15)

x2 = es2(0.57 + 1.24 sin(3.5s1) + 0.43 cos(3.5s1) + sin(7s1)). (5.16)

A good choice for Ξi(·) can be based on a nonlinear dimension reduction

algorithm (e.g. ISOMAP [Tenenbaum et al., 2000] and diffusion maps [Tal-

mon et al., 2013]), which is supposed to transform 1-dimensional manifolds

to direct lines. Besides, prior knowledge about either the sources or the un-

known nonlinear mapping may even lead to find a Ξi(·) which restores the

sources and resolve the ambiguity in source reconstruction.

Nonetheless, as declared in Section B.2, probably there are few time

instants where more than one source are simultaneously active. These data

points in the first step of the proposed method (Section 5.2.1) are found

as outliers. Since outliers do not lie on any manifold, their corresponding

reconstructed sources will be different from (5.14).

5.2.2.1 Separating the Outliers

Please note that the problem of estimating the sources corresponding to the

outliers is ill-posed. Since the observations are mainly concentrated close to
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1-dimensional manifolds, too little data is in hand to estimate the unknown

mixing function f for the rest of the n-dimensional space. In other words,

although looking at the scatter plot of the observations, marginal values of

the n-dimensional function f are learned, infinite n-dimensional functions

may have the same marginals. Thus observations do not contain enough

information for separating the outliers.

Nevertheless, given some prior knowledge about either specifications of

the nonlinear mapping or characteristics of the sources, the separation can

be approximately achieved for the outliers. Two different approaches can

be suggested for the separation of outliers which will be introduced in the

following.

5.2.2.1.1 Signal-Dependent Methods One approach is to estimate

the sources in case of outliers based on other estimated values for them,

i.e. inliers. Through this approach, sources are firstly reconstructed for inlier

observations, without any estimation in case of outliers. Then each source is

individually processed in order that the missing samples are estimated based

on the known ones.

This problem is known as signal restoration, which has been well studied

in the literature. The restoration filter is usually designed by trying to

retrieve known characteristics of the signal, e.g. band-limited, sparse in a

domain, bounded amplitude, and so forth.

For example, [Duarte et al., 2015] has considered band-limited signals,

hence sparse in the frequency domain. In this case, a nonlinear transfor-

mation of a signal will generate harmonics, which leads to enlarging the

bandwidth, hence lessens its sparsity in the frequency domain. Thus, a non-

linear transformation can be applied on each “pure signal” for restoring the

sparsest possible signals in the frequency domain. It should be emphasized

that this is a different assumption from the sources being spatially sparse,

which is the main assumption of this chapter.

Nonetheless, considering (5.14), the separated sources in this approach
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can be expressed as

∀1 ≤ i ≤ n yi(t) =


ŷi(t) = Ξi(x(t)) x(t) ∈ Γi

0 x(t) ∈ Γj ; 1 ≤ j 6= i ≤ n

φ ({ŷi}t∈T ) else (x(t) is outlier)
(5.17)

where T denotes the set of time indexes that their corresponding observa-

tion x(t) belong to Γi, and φ(·) is a restoration function which takes the

already-estimated samples ŷi as input, and provides an estimation of the

corresponding source in case of outliers.

5.2.2.1.2 Mixture-Dependent Methods The other class of methods

for performing the estimation is based on the separated manifolds and as-

sumptions on the mixing function. In this approach, we propose nonlinear

projections of the outliers on the learned manifolds as estimations for corre-

sponding sources. However, the nonlinear projection is not unique, and the

accurate projection for separating the outliers needs side-information about

the mixing model.

One of the methods for performing the nonlinear projection can be de-

fined in accordance with the concept of “curvilinear coordinate systems”. In

geometry, curvilinear coordinates are coordinate systems for Euclidean space

in which the coordinate lines may be curved. They can be seen as a gen-

eralization of linear or affine coordinate systems. Well-known examples of

curvilinear coordinate systems in three-dimensional Euclidean space (R3) are

cylindrical and spherical polar coordinates.

In the Cartesian system, the standard basis vectors can be derived from

the derivative of the location of point p with respect to the local coordinates.
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For example in 3-dimensional space,

e1 = ex =
∂rp

∂x
(5.18)

e2 = ey =
∂rp

∂y
(5.19)

e3 = ez =
∂rp

∂z
, (5.20)

where ei represents the ith basis vector and rp = ‖p‖ is the Euclidean norm

of p. Applying the same derivatives to the curvilinear system locally at point

p defines the natural basis vectors as

e1 =
∂rp

∂ε1
, e2 =

∂rp

∂ε2
, e3 =

∂rp

∂ε3
, (5.21)

where (ε1, ε2, ε3) represents the coordinates in the curvilinear system.

Such a basis, whose vectors change their direction and/or magnitude from

point to point is called a local basis. All bases associated with curvilinear

coordinates are necessarily local. Basis vectors that are the same at all points

are global bases, and can be associated only with linear or affine coordinate

systems.

In this approach, the n learned 1-dimensional manifolds play the role of

“coordinate curves”, based on which the coordinates of the outliers are to

be estimated. Since each manifold corresponds to the activity of only one

source, the coordinates of the outliers based on them are introduced as the

estimations of the sources.

This concept is illustrated in Fig. 5.6. In this figure, the projections

of the point p onto the curvy axes denote the values of the corresponding

sources.

The source estimation based on this idea is not always exact, and depends

on the off-diagonals of Hessian of the nonlinearities. In other words, our

proposed nonlinear projection is exact iff all components of the unknown

mapping, fi(s) for i = 1, . . . , n, have diagonal Hessian matrices. The Hessian

of a function fi(s) : Rn → R comprises of all second partial derivatives of
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ε2

ε1

p

Figure 5.6: The illustration of our proposed nonlinear projection based on curvi-

linear coordinate system

that, and is defined as

Hfi =



∂2fi
∂s21

∂2fi
∂s1∂s2

. . . ∂2fi
∂s1∂sn

∂2fi
∂s2∂s1

∂2fi
∂s22

. . . ∂2fi
∂s2∂sn

...
...

. . .
...

∂2fi
∂sn∂s1

∂2fi
∂sn∂s2

. . . ∂2fi
∂s2n

 . (5.22)

Evidently, the Hessian of fi(s) is diagonal iff

fi(s) = f
(1)
i (s1) + f

(2)
i (s2) + · · ·+ f

(n)
i (sn) + ci (5.23)

where for all j = 1, . . . , n, f (j)
i (·) is an R → R nonlinear function, and ci

is scalar. Considering (5.23) for all j = 1, . . . , n restricts the n-dimensional

function f to be formulated as

f(s) = f (1)(s1) + f (2)(s2) + · · ·+ f (n)(sn) + c (5.24)

where or all j = 1, . . . , n, f (j)(·) = [f
(j)
1 (·), f (j)

2 (·), . . . , f (j)
n (·)]† and c =

[c1, c2, . . . , cn]†. In other words, the Hessian of fi(s) for i = 1, . . . , n is

diagonal iff the mixing function f is a linear mixture of nonlinearly filtered

sources, i.e. a linear mixture of sources with distortions.

Considering this structure in our separation problem, for all 1 ≤ i ≤ n,

the manifold Γi corresponding to the activity of only one source si, would

be the set of f (i)(si). As a consequence, for time instants when more than
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one source are simultaneously active, observed data will be a linear mixture

of corresponding points on the learned manifolds.

Other methods of nonlinear projection may be proposed based on known

specifications of the mixture model. For example preserving the local angles,

the time-derivative being continuous, following a parametric model, and so

forth, may lead to different different projections, hence different estimations

of the sources signals.

Any method of the nonlinear projection imposes some restrictions on the

mixture model, and should be chosen regarding the application. Neverthe-

less, the separated sources in this approach can be written as

∀1 ≤ i ≤ n yi(t) =


ŷi(t) = Ξi(x(t)) x(t) ∈ Γi

0 x(t) ∈ Γj ; 1 ≤ j 6= i ≤ n

Ξi(x
◦
i (t)) else (x(t) is outlier)

(5.25)

where x◦i (t) is the nonlinear projection of x(t) onto Γi.

5.3 Simulation Results

In order to simulate the proposed algorithm, we have used three 2×2 nonlin-

ear mixing models and one linear one. The simulated algorithm, as proposed

previously, consists of the following steps:

1. Outliers are detected via a hard threshold weighting based on (B.8)

and (B.9), hence not considered in the clustering step.

2. The outlier-free data is clustered into two classes, each of which cor-

responding to a manifold in the observation space. For this purpose,

a parametric approach is employed based on Section B.3, where the

parametric model is assumed to be polynomial. Since the order of

the polynomial is not known, the algorithm starts from the first order

(i.e. a linear model), and gradually increases the order until the fitting

error is low enough.
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3. The reconstruction of the sources is then performed, as suggested in

Section 5.2.2, i.e. based on some assumptions on the mixing function,

where the functions Ξ1 and Ξ2 are chosen as Ξ1(x(t)) = Ξ2(x(t)) =

x1(t).

4. Finally, the outliers are separated using the nonlinear projection based

on curvilinear coordinates system, which is a mixture-dependent method

proposed in Section 5.2.2.1.2.

In order to see the efficiency of the simulated algorithm in separating

the sources, separated sources (outputs) are plotted versus original ones.

As pointed in Section 3.4.3, thickness of this plot represents the separation

error. It is shown that in all simulations, the proposed method has efficiently

separated the sources.

Simulation results are provided in figures 5.7 to 5.10. In each figure, (a)

contains the scatter plot of the observations. Then in part (b), in addition

to the observation scatter plot, the two learned manifolds are also plotted in

green and purple. Moreover, outliers are shown by black crosses, and data

points corresponding to the green (respectively, purple) manifold are plotted

in blue (respectively, red), hence the classification is apparent. Parts (c) and

(d) of the figures contain the separated signals versus the original sources.

It should be mentioned that the sources in all simulations are 1000 sam-

ples of two sparse sources (with the activity rate of 25%) that are uniformly

distributed in [−0.5, 0.5] when they are active. The sources are not included

in the figures, in order to avoid repetition.

As shown in Fig. 5.7b, the clustering method has clustered the data with

very few errors, while the learned manifolds are very well fitted to the data.

According to Figs. 5.7c and 5.7d, the sources are well separated and each

separated source is a function of only one source. Otherwise, the scatter plot

would not be a function and y1 (respectively, y2) would take different values

for a given s1 (respectively, s2).

The second simulation aims at evaluating how the algorithm can han-

dle complicated nonlinearities. As it can be seen in Fig. 5.8b, although the
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Figure 5.7: Simulation results for x1(t) = es1(t) − es2(t) and x2(t) = e−s1(t) + e−s2(t);

observations based on (5.2) and (5.3)
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Figure 5.8: Simulation results for x1(t) = cos(α(t))s1(t) − sin(α(t))s2(t) and x2(t) =

sin(α(t))s1(t) + cos(α(t))s2(t) where α(t) = π
2
(1−

√
s21(t) + s22(t))

2
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Figure 5.9: Simulation results for x1(t) = sin(2s1(t)−s2(t)) and x2(t) = sin(s2(t)−s1(t))

mixture, hence the manifolds, are relatively complicated, the algorithm has

relatively well classified the data and has learned the manifolds with accept-

able errors. Note that the implemented clustering algorithm is based on a

parametric polynomial. Thus, since the mixture in this simulation is very far

from polynomials, it was expected that the learned manifolds do not exactly

fit the data.

The simulation of Fig. 5.9 is designed such that the manifolds are close to

each other, which might make it more difficult for the clustering algorithm to

perform correctly. However, Fig. Fig. 5.9b proves that it works successfully

with a quite acceptable error. In fact, most of the errors in this simulation

concern the outlier-detection pre-processing step, where it has mistaken data

points as outliers in less dense areas.

The last simulation is devoted to a linear mixture x(t) = As(t) with a

random mixing matrix A. The performance of the proposed algorithm is

still quite well in this simulation, which brings with it the certainty that one

can use this approach even for cases when even the linearity/nonlinearity of
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Figure 5.10: Simulation results for a linear mixture x(t) = As(t) with a random mixing

matrix

the mixture is unknown.

Finally it should be recalled that, as it can be seen from the simulation

results, in nonlinear BSS, a nonlinear function remains as an ambiguity in

source reconstruction and it can not be resolved without further information.

This could also be deducted from a mathematical point of view, similar to

Section 3.3.

5.4 Discussion and Future Works

In this work, nonlinear BSS approach is proposed for sparse sources. The

proposed method is mathematically studied and its performance is approved

by simulation results.
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5.4.1 Discussion

We believe that the proposed algorithm works even for under-determined

cases, where the number of observations is less than the number of source

signals. This outstanding capability comes from the fact that the separa-

tion of sparse sources is based on separating n 1-dimensional manifolds, and

even in a 2-dimensional space we can have infinite number of different 1-

dimensional manifolds. In fact, the number of manifolds is limited by the

practical resolution and the number of samples. Therefore, the minimum re-

quired number of the observation signals, regardless of the number of sources,

is always two.

The proposed method could also be useful for cases when the number

of source signals is unknown. There could be multiple manifold learning

algorithms (see Section 5.2.2) in which the number of clusters is not given

in advance. Utilizing such algorithms enables the proposed framework to

perform nonlinear BSS when the number of the sources is unknown.

As stated before, the proposed approach separates nonlinearly mixed

spatially sparse sources. For example, independent block sparse signals which

are sparse enough, will make a set of spatially sparse signals. Moreover, the

proposed approach works even if each source signal takes a constant value

for most of the time (not necessarily zero) and has sparse variations. In this

case, based on similar arguments to the discussions in this chapter, and via

a similar algorithm to the one proposed in Section 5.2, the signals can be

separated.

The proposed method is also applicable for smooth-enough mixtures of

compressible signals. A signal is compressible in a domain when its coeffi-

cients in that domain observe a power law decay. In other words, given a

signal s expressed as

s = Ψα (5.26)

where Ψ is a matrix comprising the orthonormal vectors (which can be con-

sidered as the basis of a domain) and α is the vector of the coefficients of s
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with respect to Ψ, s it is compressible if

∀ i |αi| ≤ Ci−q (5.27)

where C and q are constants. The largest possible q is the compressibility

index, thus the larger the compressibility index, the faster the coefficients

decay. For example, images are compressible in Wavelet domain.

The key idea which let us apply the proposed framework on smooth

mixtures of compressible signals is that it performs, as long as the scatter plot

of the observations contains the manifolds. In fact, the proposed algorithm

does not fundamentally require the “sparsity”; it is only needed so that the

observations forms manifolds which bring information about the unknown

nonlinear mapping. Consequently, since compressible signals, hence their

smooth mixtures, still lie on low-dimensional manifolds and can be modeled

as noisy sparse signals, they are expected to be separable by the proposed

method.

It should also be emphasized that in this work, the source vector s is as-

sumed to be enough sparse such that the data mostly lives on 1-dimensional

manifolds in the n-dimensional space. However, the proposed approach does

not fundamentally require this assumption. In the first step, Section 5.2.1,

the clustering algorithm can be modified so as to be able to learn higher di-

mensional manifolds, as proposed in Appendix B. The generalization of both

parametric and non-parametric approaches for these cases is straightforward.

Once the higher-dimensional manifolds are learned, the 1-dimensional

ones corresponding to the activity of exactly one of the sources can be re-

constructed estimated by looking at their intersections. Particularly, the

intersection of n−1 (n−1)-dimensional manifolds each of which correspond-

ing to the simultaneous activity of n− 1 sources, comprises a 1-dimensional

manifold corresponding to the activity of exactly one source.

In other words, 1-dimensional manifolds corresponding to the activity

of exactly one source, are reconstructed by the intersection of a number of

higher-dimensional manifolds. As a result, n 1-dimensional manifolds can
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be learned by intersecting higher-dimensional ones, thus the second step,

Section 5.2.2, can be applied without any modification.

Finally, in the proposed algorithm we assumed that there are enough

number of the signals such that the manifold learning algorithm converges.

However, the less the signals are sparse, and the less samples we have, the

less the performance of the manifold learning will be. But it should be noted

that the learned manifolds are intermediate extracted information aiming

at clustering the data; i.e. the manifolds, themselves, are not fundamental,

it is the clustered data which plays the important role. Therefore, even

if the manifold learning is not perfectly done, as long as the classification

of the data is well done, its error does not propagate into the separation

(e.g. Fig. 5.8).

5.4.2 Future Works

For future works, it will be interesting to develop the proposed framework

for the sources that are not sparse in time domain, but in some other domain

like frequency domain. In these cases, one has to firstly transform the mixing

model to the sparse domain for both sources and observations in order to be

able to cluster the observation from the manifolds in the sparse domain and

then apply the proposed method.

It should be noted that such generalization is not straightforward. For

example, even if a signal is sparse in frequency domain, its nonlinear transfor-

mation may generate frequency components that did not exist in the signal,

hence make it not sparse anymore. However, for studying such cases, one

should consider nonlinearities which have limited effects on the domain of

sparsity. For example, smooth nonlinear functions are expected not to dis-

tort the frequency domain dramatically, hence interesting to be investigated

when mixing signals having few frequency components.

Moreover, it would be useful to apply the proposed approach to practical

applications and to utilize the prior information (related to the real case) for

reconstruction of the sources. This information may either be related to the
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source signals or the mixing model.

Due to the diverse practical applications of Gaussian Processes (GP’s),

it would also be interesting to study them in the proposed framework. Con-

sidering the simplicity of GP modeling and their interesting characteristics,

it may also lead to noticeable theoretical results, especially for resolving the

problem of separating outliers.
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Conclusion and Perspectives

In this work, nonlinear BSS problem is investigated and new results and

approaches are proposed. It is shown that nonlinear mixtures, which had

been thought not to be generally separable for many years, can be separated

assuming the sources to change enough smoothly along time, i.e. having

temporal correlation. Two different approaches were proposed which utilize

this information for performing the separation.

In the first approach, the global nonlinear mixture of the sources is locally

transformed to linear mixture of their velocities (time-derivatives), which is

treated via conventional adaptive methods. A nonlinear regression technique

is also utilized in order to learn the global nonlinear de-mixing function from

the local estimations, which dramatically enhances the performance of the

proposed approach.

Since the proposed approach is based on local linear approximation of

the nonlinear function, its efficiency evidently depends on both the level of

nonlinearity of the mixture and the colorfulness of the sources. Although

this relationship is visually illustrated by simulation results, it is not demon-

strated by mathematical formulations, which might lead to a theoretical

proof of for blind separability of nonlinear mixtures.

The second general approach is based on modeling the signal by means

of Gaussian processes. As Gaussian processes attract more attentions in

the signal processing domain because of their flexibility and generality in

modeling diverse signals, it becomes more and more beneficial and fruitful

to consider them exclusively in nonlinear mixtures. Particularly, it is in-

teresting to see whether GPs survive passing through nonlinear mixtures or
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not. It is shown that although there are nonlinear mappings which do not

manipulate the distribution of the signal (especially, its Gaussianity), being

restricted to polynomials, they are limited to be linear. As a consequence, it

is sufficient for blind linearization of nonlinear mixtures of GPs, to retrieve

the Gaussianity of the signals. Such a linearizing function followed by a

traditional linear BSS method results in nonlinear BSS. Since general non-

linear functions can be approximated by polynomials with arbitrary small

error (based on Taylor expansion theorem), they are supposed to separable

(conditioned to satisfy some assumptions) through this approach as well.

It should be noted that our work, as well as other general nonlinear BSS

algorithms, suffers from an ambiguity of a component-wise nonlinear func-

tion and a change of orders. This can be understood as the generalization

of the well-known permutation and scaling indeterminacy of source recon-

struction in linear BSS, to the nonlinear problem. In other words, while the

continuity of local linear approximations imposes a global permutation in

the nonlinear problem, local scales perform as a nonlinear function globally.

These ambiguities can only be resolved employing prior knowledge about

either the sources or the mixing model, hence not addressed in this word.

Nonetheless, nonlinear BSS has also been investigated for a particular

case where there are further assumptions on the sources: being spatially

sparse. Special characteristics of these signals lead to constraints which

can be employed for the separation. Even though linearly-mixed sparse

sources had already been perused and proved to be separable via effective

separation algorithms, their nonlinear mixtures were left unstudied. Like

linear mixtures, the observations of nonlinear mixtures of spatially sparse

sources mainly lie on nonlinear manifolds whose dimensions, depending on

the sparsity of the sources, is less than the dimension of the space. Thus,

similar to the geographical approaches for separating linear mixtures, the

nonlinear manifolds can be classified and learned to perform the separation.

130



CONCLUSION AND PERSPECTIVES

Future Works

Considering above explanations, future works in nonlinear BSS can continue

in the following directions.

1. As mentioned earlier, formulating the level of smoothness of the sources,

and quantifying its relation with the correctness of local linear approx-

imations of the nonlinear model might end to a proof for separability

of nonlinear mixtures. Indeed, considering the current results and the

proposed approach which is capable of separating general nonlinear

mixtures, looking for an exact theoretical proof is of huge interest.

2. This work was mainly concentrated on theoretical aspects of nonlinear

BSS, thus the generated methods were just verified by simulations on

synthetic data. Although the fundamental idea of local linear approxi-

mations has been examined on real hyperspectral images and has been

shown to perform well, it would be interesting to utilize the introduced

approaches on practical applications and realistic data. Moreover, ac-

cording to the application, additional assumptions and constraints are

imposed which might be employed in order to boost the performance

of the algorithm.

3. General nonlinear mixtures seem to be too diverse to be processed

though a single algorithm. Being focused on specific problem models,

inspired from practical applications, let us develop application-oriented

separation methods which are supposed to be more impressive. This

is why parts of this work were also devoted to spatially sparse sources

and Gaussian processes. Therefore, it is certainly suggested for fu-

ture works to consider particular problem models which happen in real

world, in order that the separation algorithm benefits from further

characteristics and assumptions. For example, single frequency source

signals, or more generally sinusoidal ones, sound advantageous to be in-

vestigated, because of both their capability of modeling any arbitrary
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signal (based on Fourier expansion) and their specifications passing

through mixing systems (which is employed, for example, in DUET2

algorithm [Jourjine et al., 2000] for linear BSS). Moreover, validating

the theoretical derivations, given a parametric model as proposed in

Section 3.1.4, through simulations would be an interesting short-term

perspective.

Last but not least, suggested future works in regard with the discussed

models of chapters 4 and 5, are individually proposed at the last section of

the chapter, hence not repeated here.

2Degenerate Unmixing Estimation Technique
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A Separability of Linear Mixtures

of Sparse Sources

Assume that all the sources si(t), 1 ≤ i ≤ n, are κ0-sparse, κ0 ≈ (n− 1)/n,

and are ergodic. Therefore nκ0 ≈ n − 1, which means that most probably

n−1 signals will be simultaneously active,i.e. only one source is inactive. In

this case, given the linear model of (5.4), the scatter plot of the observations

x(t) = [x1(t), x2(t), . . . , xn(t)]† mostly lies on (n − 1)-dimensional hyper-

planes in the n-dimensional space [Rivet et al., 2007].

The following nice theorem can be derived for this case as follows.

Theorem 7. In linear mixtures of n mutually independent spatially sparse

sources n− 1 of which are most probably simultaneously active, the observa-

tion vector makes n hyper-planes of

qk(x) = b†kx = 0 k = 1, . . . , n (A.1)

each of which corresponds to the case where one of the sources sk is not

active. In this case, the n× n matrix B whose rows are b†k for k = 1, . . . , n

separates the sources, i.e. y = Bx is the reconstructed source vector up to

the order and scaling ambiguities.

Theorem 7 claims that in order to separate the sources in this case, one

should look at the scatter plot of the observations and estimate the normal

vector of the hyper-planes, then stack them over each other in a matrix to

construct the separating matrix.
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Proof. Combining (A.1) and (5.4) we have

b†kAs
∣∣∣
sk=0

= c†ks
∣∣∣
sk=0

= 0 k = 1, . . . , n (A.2)

where ∀k c†k = b†kA. Defining the matrix C, whose kth row k = 1, . . . , n is

equal to c†k, (A.2) can rewritten as

y = Cs = BAs (A.3)

such that ∀k, if sk = 0 then yk = 0. In other words, if sk = 0 then

yk =
n∑
i=1

ckisi

∣∣∣
sk=0

=
n∑
i=1
i 6=k

ckisi = 0. (A.4)

Since the polynomial of (A.4) for all the values of si (i 6= k) equals to

zero, all the coefficients should be equal to zero which means ∀k, i k 6= i,

cki = 0 and C = BA is a diagonal matrix.

Theorem 7 also inspires an idea for another proof for the separability of

very sparse sources which mostly lie on 1-dimensional subspaces, like (5.7).

The proof would be based on the orthogonal complement of the subspaces

on which the data lies, but the details are not brought here.

It would also be interesting to study the situation when a smaller number

of the sources are simultaneously active, i.e. nκ0 ≈ η < n−1. In this case, the

data is located on η-dimensional subspaces in the n-dimensional space, which

should be learned. Note that each subspace corresponds to the activity of η

sources and inactivity of the others. Therefore, all 1-dimensional subspaces

(lines) corresponding to the activity of only one sources, can be constructed

by intersecting some of the η-dimensional subspaces. Once these lines are

learned, according to Section 5.1.1, sources can be separated.

Besides, another approach might be proposed based on constructing the

n (n − 1)-dimensional hyper-planes corresponding to the activity of n − 1

sources and the silence on the other one, through unions of the η-dimensional

subspaces. These hyper-planes would be subject to theorem 7, thus the

sources would be separable.
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B Clustering and Multiple Man-

ifold Learning

In this appendix we provide a relatively deep investigation on the problem

of manifold clustering followed by proposing robust algorithms, which may

also be used separately for other applications in signal processing and pat-

tern recognition. While the problem has already been addressed for linear

manifolds [Babaie-Zadeh et al., 2006], the development for nonlinear ones

proposed in the current appendix is original. Relative results in the literature

for this problem could be found under the name of curvilinear component

analysis, e.g. [Demartines and Hérault, 1997].

Let us firstly review the related background of the problem.

B.1 Related Background

Manifold clustering problem can be understood both as a generalization of

the regression and curve fitting and a generalization of unsupervised classifi-

cation. The connection between this problem and the literature is explained

in the following.

B.1.1 Single Linear Regression

The n-dimensional linear regression problem consists of a set of n-dimensional

data [y(t), x1(t), x2(t), . . . , xn−1(t)]† for t = 1, . . . , T , where y(t) follows a
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Figure B.1: Linear regression

noisy linear model as

∀ 1 ≤ t ≤ T y(t) = a†x(t) + c+ n(t) (B.1)

where x(t) = [x1(t), x2(t), . . . , xn−1(t)]†, a ∈ Rn−1 and c are a vector and

a scalar parameters, respectively, and n(t) is an additive noise. In order to

find the parameters of the model, the mean squared error in estimation of

the output should be minimized as

minimize
( T∑
t=1

(y(t)− ŷ(t))2
)

=

minimize
a,c

( T∑
t=1

(y(t)− (a†x(t) + c))2
)

(B.2)

where

∀ 1 ≤ t ≤ T ŷ(t) = a†x(t) + c. (B.3)

Fig. B.1 shows the result of a 2-dimensional linear regression. In this

figure, each “ * ” corresponds to a data point and the red line is the result

of the regression.

It can be seen from (B.2) that in this case the “vertical distance” [Babaie-

Zadeh et al., 2002] of the points and the line is minimized (in mean squared

sense). This is due to the assumption that in the regression problem, the

scalar y is supposed to be a noisy linear mixture of the other n−1 signals. In
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Figure B.2: The difference between vertical and orthogonal distances

other word, the goal in this case is to estimate the best model of the scalar

output as a linear function of the inputs.

However, in fitting applications, we have an n-dimensional noisy input

data x(t) = [x1(t), x2(t), . . . , xn(t)]† for t = 1, . . . , T that lies on a hyper-

plane in the n-dimensional space. It can be modeled as

a†x(t) = c+ n(t). (B.4)

In this case, in order to fit the best hyper-plane to the data, it is necessary

to consider the orthogonal distance [Babaie-Zadeh et al., 2002] of the points

to the hyper-plane (see Fig. B.2).

Therefore, the fitted hyper-plane Γ : a†x = c is estimated by solving the

minimization

minimize
( T∑
t=1

d2(x(t),Γ)
)

= minimize
a,c

( T∑
t=1

(a†x(t)− c)2

a†a

)
(B.5)

where d(x(t),Γ) is the distance from the point x(t) to Γ which is calculated

in the linear model as

d2(x(t),Γ) =
|a†x(t)− c|2

a†a
. (B.6)
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B.1.2 Dealing with Outliers

Possible outliers in the data dramatically affect the result of the fitting. It

is due to the fact that the squared distance for the outliers will be much

greater than the other point and may become dominant in the summation

which is going to be minimized. Thus it is better to use a weighted distance

of points to manifolds so that the effect of very far distances are reduced.

The weighted distance, similar to (3.61), can be defined as

d2
w(x(t),Γ) = d2(x(t),Γ)× w(d2(x(t),Γ)) (B.7)

where w(·) denotes a weighting function.

There are several options of w(·) that can be used according to the data.

For example, one may suggest a masking weight which simply ignores the

outliers in the learning process. In this case, outliers should be detected via

calculating a criterion through a pre-processing step, hence be removed from

the data. This is why this method is called Hard Thresholding.

For example, outliers are usually much farther from their closest neigh-

bors than the average. In other words, outliers are commonly in much less

dense areas of the space. This fact can be employed in order to design

the outlier-detecting pre-processing step. Mathematically speaking, x(ti) is

detected as an outlier if

1

T

T∑
t=1

‖x(ti)− x(t)‖22 �
1

J

J∑
j=1

‖x(ti)− x(tij)‖22 (B.8)

where x(tij) for j = 1, . . . , J are the J closest observation points to x(ti).

Consequently, the corresponding weighting function can be defined as

wHT (d2(x(t),Γ)) =

0, x(t) is an outlier

1, else
. (B.9)

The second method of reducing the effect of outliers is based on Soft

Thresholding. In this approach, instead of completely removing the outliers,

a weighted squared distance is used so that the long distance of outliers
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Figure B.3: Gaussian weighting function of (B.10) for different values of ζ

is less weighted and their effect on the manifold is limited. The weighting

function is designed such that it is close to 1 for short distances and it tends

to zero when the distance gets too large. As an example, Gaussian weighting,

similar to (3.63), function is defined as

wG(d2) = e
− d2

2ζ2 (B.10)

where wG(d2) is the Gaussian weight as a function of the squared distance

and ζ is a parameter which can be adjusted according to the specifications

of the data. The general shape of this weighting function is illustrated in

Fig. B.3.

B.1.3 Single Manifold Learning

The generalization of the idea introduced in subsection B.1.1 to nonlinear

manifold learning is straightforward. A manifold Γ is best fitted to the data

x(t) for t = 1, . . . , T if it minimizes

minimize
( T∑
t=1

d2
w(x(t),Γ)

)
(B.11)

where dw(x(t),Γ) is the weighted Euclidean distance between the point x(t)

and the manifold Γ. The distance is formulated as

d(x(t),Γ) = min
p
‖p− x(t)‖2 s.t. p ∈ Γ, (B.12)
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which is supposed to be weighted according to subsection B.1.2.

The minimization (B.11) can be solved through either a parametric ap-

proach or a non-parametric one.

B.1.3.1 Parametric Approach

In this approach, a parametric model for the manifold Γ is assumed and

then the mean squared distance is minimized with respect to those pa-

rameters. The manifold Γ is a D-dimensional manifold living in the n-

dimensional space, thus it can be formulated as the intersection of n − D

(n − 1)-dimensional manifolds, each of which is determined by equation

q(d)(x;θ(d)) = 0 (1 ≤ d ≤ n − D). Thus the manifold Γ will be formu-

lated as

Γ : ∀ 1 ≤ d ≤ n−D q(d)(x;θ(d)) = 0 (B.13)

where θ(d) are vectors of the parametric model of Γ.

As an example, a second-order polynomial modeling of the manifold can

be assumed as (for all 1 ≤ d ≤ n−D)

Γ : q(d)(x;θ(d)) = x†A(d)x + b(d)†x + c(d) = 0 (B.14)

where each vector of the parameters θ(d) includes all the parameters of the

n×nmatrix A(d), the n-dimensional vector b(d), and the scalar c(d) (there are

n2 +n+1 parameters in this model). One may assume any other parametric

model depending on either prior information on the mixing model (if it exists)

or a general model which is able to model a wide range of nonlinear functions.

As a consequence, (B.11) can be expressed with respect to unknown

parameters as

minimize
θ(d)

d=1,...,n−D

T∑
t=1

(
d2
w(x(t),Γ)

)
(B.15)

where d2
w(x(t),Γ) can be calculated as a function of the parameters according

to (B.12).
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B.1.3.2 Non-Parametric Approach

The manifold can also be learned in a non-parametric approach. In this

case, one may constructively employ a D-dimensional smoothing method

(e.g. smoothing spline) to fit a manifold to the data. Naming theD-dimensional

smoothing function FD(·), the learned manifold can be expressed as

Γ = FD({x(t)}) (B.16)

where {x(t)} is the set of all data points (1 ≤ t ≤ T ). It should be noted

that the smoothing criterion of the function FD(·) needs to be robust to the

outliers.

Now the related background to the manifold clustering problem is briefly

reviewed and the corresponding notation is introduced. In the following,

the nonlinear manifold clustering problem is defined and then the proposed

algorithms are introduced.

B.2 Problem Definition

Given T sample vectors x(1), . . . ,x(T ) in an n-dimensional space lying on

a union of K manifolds Γ1, . . . ,ΓK , and assuming that each of them is a

noisy sample of its corresponding manifold, we aim at classifying the data

according to the manifold they belong to. However, the data points do not

exactly lie on the manifolds, they may be noisy, they contain outliers, i.e. the

data points which do not fit any manifold, evidently they are not labeled,

and each manifold Γi for i = 1, . . . ,K has a dimension Di which is known

in advance.

Our problem of interest in nonlinear BSS for spatially sparse sources, is

a special case of above problem, where K = n, Di = 1 for i = 1, . . . , n and

the amplitude of the additive noise is zero.

It should be emphasized that with a low probability, more than one

source may happen to be active simultaneously. Since these observations do
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not lie on any of the manifolds of (5.11), they are considered as outliers in

the clustering step.

The goal is to find the manifolds such that they best fit the data. These

manifolds are supposed to minimize the total fitting error of all data points.

The fitting error for each data point is calculated as its distance to its cor-

responding manifold, and the corresponding manifold to each data point is

the closest one to it. So the fitting problem can be expressed by minimizing

the (weighted) mean squared error of the estimated models as

minimize
Γi

i=1,...,K

T∑
t=1

(
min

1≤i≤K

(
d2
w(x(t),Γi)

))
(B.17)

where dw(x(t),Γi) is the weighted distance from the point x(t) to the man-

ifold Γi. In (B.17), the term between the big parentheses formulates the

weighted squared distance of each observation x(t) to its closest manifold.

The reason why the squared distance in above formulation is weighted

has been described in details in subsection B.1.2. The weighted distance

dw(x(t),Γi), similar to (B.7), is mathematically defined as

dw(x(t),Γi) = d(x(t),Γi)× w(d(x(t),Γi)) (B.18)

where w(·) is a weighting function and d(x(t),Γi) represents the Euclidean

distance of the point x(t) and the manifold Γi. This Euclidean distance,

similar to (B.12), can be expressed as

d(x(t),Γi) = min
p
‖p− x(t)‖2 s.t. p ∈ Γi. (B.19)

It can also be interpreted as the squared distance of the point x(t) from the

closest point on the manifold Γi to it.

Since the data contains outliers, the proposed algorithm needs to be

robust enough such that the solution is not influenced too much by them.

Please note that although the outliers are supposed to be few, according

to the power of 2 in (B.17), they might highly affect the manifold learning

process (normally, manifold learning techniques are sensitive to outliers). For
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this purpose, it is suggested to use a nonlinear weighting for the distance, in

order that it limits the effect of large distances.

Considering (B.19), in order to calculate the distance from each observa-

tion to each manifold, generally a minimization over all points of the manifold

should be performed. However, considering the structure of manifolds in our

BSS problem, it can be more simplified. Returning to (5.11), the distance

defined in (B.19) can be rewritten as

d2(x(t),Γi) = min
p
‖p− x(t)‖22 s.t. ∀1 ≤ j 6= i ≤ n gj(p) = 0. (B.20)

Assuming that the manifold Γi, or alternatively gj(x) for all 1 ≤ j 6=

i ≤ n, has continuous first partial derivatives (which is normally true for

practical applications), we can use the method of Lagrange multipliers for

calculating the distance of (B.20). The Lagrange (Lagrangian) function is

defined by

Li(p, λ)
4
= ‖p− x(t)‖22 −

n∑
1≤j 6=i≤n

λjgj(p) (B.21)

where λj ’s are Lagrange multipliers. Thus, the necessary condition for an

optimal solution is given by

∇p,λ Li(p∗, λ∗1, . . . , λ∗i−1, λ
∗
i+1, . . . , λ

∗
n) = 0 (B.22)

where 0 is a vector whose elements are all equal to zero, ∇ denotes the

gradient and p∗ and λ∗j for all 1 ≤ j 6= i ≤ n are the optimal values of p and

λj for all 1 ≤ j 6= i ≤ n respectively.

Expanding (B.22) ends to
∂Li
∂p = 2(p∗ − x(t))−

∑n
1≤j 6=i≤n λ

∗
j∇gj(p

∗) = 0

∂Li
∂λj

= gj(p
∗) = 0 ∀1 ≤ j 6= i ≤ n

(B.23)

which is a system of 2n− 1 equations and 2n− 1 unknowns (λ∗j for 1 ≤ j 6=

i ≤ n and n elements of p∗). The solutions of this system are candidates

for minimizing (B.20). Therefore we have to calculate the distance from the

point x(t) to all the solutions of (B.23) to find the global minimum, which

is called as the distance between the point and the manifold.
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Nevertheless, the optimization problem (B.17) can be solved through

both parametric and non-parametric approaches. These approaches will be

described in the following.

B.3 Parametric Approach

Similar to subsection B.1.3, in the parametric approach the manifolds are

expressed in a parametric model. Thus (B.17) can be rewritten with respect

to the parameters.

The K manifolds Γi for i = 1, . . . ,K of Di dimensions, lying in the

n-dimensional space, are formulated as

Γi : ∀ 1 ≤ di ≤ n−Di Q
(di)
i (x;θ

(di)
i ) = 0 (B.24)

where θ(di)
i is the vector of the parametric model of Γi.

It is worth noting again that Di-dimensional manifolds lying in the n-

dimensional space are determined by systems of n−Di independent equations

of Q(di)
i (x) = 0 for di = 1, . . . , n−Di.

As a consequence, the problem (B.17) can be expressed with respect to

unknown parameters as

minimize
θ
(di)
i

i=1,...,K
di=1,...,n−Di

T∑
t=1

(
min

1≤i≤K

(
d2
w(x(t),Γi)

))
(B.25)

where d2
w(x(t),Γi) can be calculated as a function of the parameters.

The value of the cost function which is minimized in (B.25), for the

calculated optimal parameters, indicates how well the manifolds are learned.

So, especially when there is no prior information about the mixing model, one

may try to solve (B.25) many times, each time given a different parametric

model, and finally selects the one with the best result which has the minimum

value of cost function.

For instance, in our simulations (which are described in more details in

Section 5.3), a polynomial model is chosen for clustering the data. Assuming
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a first-order polynomial (linear model) to cluster the manifolds, the value of

the cost function for the optimal solution found is calculated to see whether

the model fits well enough or not. The order of the polynomial model is

gradually increased until the value of the cost function based on the learned

manifolds is low enough, i.e. less than a predefined threshold.

B.4 Non-Parametric Approach

The idea of this section basically comes from the well-known K-means method

for unsupervised classification. K-means comprises two different steps which

should be run in an iterative manner. Starting from a random assignment of

the data to the classes, the first step is to calculate the centroid (center) of

each class and the second one is to update the label according to the latest

centroids (each point is labeled as its closest centroid).

Therefore, the non-parametric multiple manifold learning can be pro-

posed as follows.

1. Firstly, data points are randomly assigned to the manifolds. Let us

denote the label of each point x(t) for t = 1, . . . , T at rth iteration by

Ω(r)(t) ∈ {1, 2, . . . ,K}).

2. A manifold is fitted on the points assigned to its class using a non-

parametric smoothing approach (B.16) as

∀ 1 ≤ i ≤ K Ω
(r)
i = FDi({x(t)}|Ω(r−1)(t) = i) (B.26)

where the superscript (r) denotes the number of the iteration.

3. The labels of data points are updated regarding their closest manifold

as

∀ 1 ≤ t ≤ T Ω(r)(t) = argmin
i

(
d2
w(x(t),Ω

(r)
i )
)
. (B.27)

The steps 2 and 3 should be iteratively repeated until the algorithm con-

verges.
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Algorithm 6 Non-Parametric Multiple Manifold Learning
1: procedure Step1: Random Initialization

2: for t = 1, . . . , T do

3: Ω(0)(t) ← rand(1, 2, . . . ,K)

4: end for

5: r ← 0

6: end procedure

7: repeat

8: r ← r + 1

9: procedure Step2: Updating Manifolds (Ωr(t); t = 1, . . . , T )

10: for i = 1, . . . ,K do

11: Ωr
i ← FDi({x(t)}|Ω(r−1)(t) = i)

12: end for

13: end procedure

14: procedure Step3: Updating Labels (Ωr
i ; i = 1, . . . ,K)

15: for t = 1, . . . , T do

16: Ω(r)(t) ← argmin
i

(
d2
w(x(t),Ω

(r)
i )
)

17: end for

18: end procedure

19: until Ωr(t) 6= Ωr−1(t); t = 1, . . . , T

Algorithm 6 contains the pseudo-code of the proposed non-parametric

multiple manifold learning method.

It can be generally shown that if the weighting function used in (B.27) for

calculating d2
w(x(t),Ω

(r)
i ) is monotonic, the clustering error in this approach

may not increase as the algorithm progresses. Therefore, since the number

of different possibilities for labeling the observations is finite, the proposed

algorithm does converge. However, depending on the initial labeling, it may

converges to a local minimum instead of the global one (this is also a well-

known drawback of conventional k-means). Thus, it has to be run several

times with different random initialization, and finally the best answer that
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has been achieved should be taken.
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C Résumé en Francais

C.1 Introduction

Dans un problème de séparation aveugle de source (BSS), on dispose de

plusieurs signaux d’observation qui sont des mélanges par une fonction in-

connue de plusieurs signaux également inconnus nommés sources. Le but est

de reconstituer les sources ayant uniquement accès aux observations, c’est-

à-dire sans connaître ni les sources, ni le modèle de mélange.

Le problème BSS est formellement décrit comme suit. À chaque instant

t considérons m observations xi(t), i = 1, . . . ,m, qui sont des fonctions

inconnues invariantes dans le temps fi(·) des sources inconnues sj(t), j =

1, . . . , n. Pour chaque échantillons t = 1, . . . , T , nous pouvons exprimer

mathématiquement le modèle comme

x(t) = f(s(t)), t = 1, . . . , T (C.1)

où x(t) = [x1(t), ..., xm(t)]† († note la transposition de matrice) et s(t) =

[s1(t), ..., sn(t)]† représentent les vecteurs d’observation et source, respective-

ment, et f(·) est une fonction de Rn à Rm. Le modèle associé à ce problème

est représenté sur la figure C.1. Dans ce modèle, nous désirons généralement

que chacun des éléments de y(t) = g(x(t)) soit fonction d’un seul des sig-

naux sources (et que chaque signal source apparaisse dans un seul element

de y(t)).

La séparation de sources est généralement un problème mal-posé, mais

on montre que, dans le cas de mélanges linéaires instantanés, si les sources

sont mutuellement indépendantes, elles peuvent être reconstruites à un une
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x = f(s) y = g(x)

s1

sn

x1

xm

y1

yn

Inconnu

Figure C.1: Modèle de base de problème non-linéaire BSS

permutation et un facteur d’échelle près. Cependant, ce résultat ne peut

pas être généralisé au cas de mélanges non-linéaires. En effet, il est montré

par des contre-exemples, par exemple [Hosseini and Jutten, 2003, Babaie-

Zadeh, 2002], que l’ACI1, où l’indépendance est mesurée au sens de variables

aléatoires, n’est pas capable de séparer les sources dans des mélanges non-

linéaires.

Pour cette raison, le problème BSS non-linéaire est presque inexploré

dans le cas général. Dans ce travail, de nouvelles approches pour résoudre le

BSS non-linéaire sont proposées. Ces approches supposent que les signaux

ont une autocorrélation temporelle, c’est-à-dire qu’ils sont colorés, ce qui est

une hypothèse réalistes pour la plupart des signaux physiques.

C.2 Une approche générale pour résoudre

la BSS non-linéaire

L’approche proposée est principalement basée sur l’utilisation de dérivées de

signaux afin d’utiliser l’information temporelle des signaux, comme précédem-

ment introduit [Ehsandoust et al., 2017a]. La relation entre cette approche

pour des mélanges non-linéaires et la séparation dans des images hyper-

spectrales dans le cas de variabilité spectrale, a été établie, et présentée

dans [Drumetz et al., 2017].

L’idée principale est basée sur le fait que les dérivés des sources sont

1Analyse en Composantes Indépendantes
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mélangés localement linéairement même si le modèle de mélange est non-

linéaire. En effet, si la transformation non-linéaire f est différentiable en

chaque point, on peut en déduire une approximation linéaire locale impli-

quant les dérivées de sources et d’observations. Ceci s’écrit facilement :

xi(t) = fi(s(t)) ⇒ dxi
dt

=

n∑
j=1

∂fi
∂sj

dsj
dt

(C.2)

⇒ ẋ = Jf ;t(s)ṡ, (C.3)

où Jf ;t(s) est le jacobien de la fonction de mélange f .

En supposant que Jf ;t(x(t)) dans (C.3) varie assez lentement pour qu’il

reste presque constant dans le voisinage temporel de chaque point x(t), un

algorithme préliminaire (appelé AATVL2) a été proposé pour résoudre lo-

calement les problèmes BSS linéaires déduits à chaque instants. Le principal

problème de cet algorithme est la question de la convergence, qui doit être

atteinte à chaque nouvel échantillon d’observations. Ce problème peut être

résolu par une technique de régression non-linéaire. En fait, le problème

de convergence de l’algorithme AATVL est dû au fait qu’il n’exploite pas

l’invariance temporelle et la régularité de la fonction de mélange f . En fait,

la non-linéarité f et son inverse g étant invariantes dans le temps, la dépen-

dance de Jf ;t (respectivement Jg;t) sur s (respectivement x) ne varie pas dans

le temps. Par conséquent, une modification de l’algorithme AATVL (appelé

BATIN3) est proposée en apprenant le modèle non-linéaire de Jg;t(x) à partir

de ses estimations à différents échantillons (disons Ĵg(x(t)) pour t = 1, . . . , T ,

les sorties de la méthode linéaire adaptative BSS).

C.2.1 Résultats de la simulation

Considérons le système à deux entrées et à deux sorties dex1(t)

x2(t)

 =

cosα(s(t)) − sinα(s(t))

sinα(s(t)) cosα(s(t))

s1(t)

s2(t)

 (C.4)

2Algorithme adaptatif pour les mélanges linéaires variant dans le temps
3Batch algorithme pour les mélanges non-linéaires invariants dans le temps
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(a) La première source
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(b) La seconde source

Figure C.2: Résultats des algorithmes AATVL et BATIN pour le mélange (C.4)

où α(s(t)) est défini par le modèle paramétrique

α(s(t)) = α0 + γ ×
√
s2

1(t) + s2
2(t) (C.5)

et où α0 et γ sont quelques paramètres. Tout d’abord, (C.5) est considéré

pour α0 = 0 et γ = 1. Les deux sources qui sont mélangées dans cette sim-

ulation sont les intégrales d’un signal sinusoïdal et d’un signal triangulaire.

En appliquant les algorithmes AATVL et BATIN sur les observations,

nous obtenons les résultats présentés dans la figure C.2. Comme prévu,

BATIN surpasse AATVL dans l’estimation des sources séparées dans les

deux simulations. En particulier, le problème de convergence tardive avec

AATVL a été presque entièrement résolu par BATIN.

Cependant, dans le cas de mélanges non-linéaires, les sources ne peuvent

être reconstruites qu’à une fonction non-linéaire près. Ainsi, l’erreur RMS4

classique ne peut pas représenter l’erreur de séparation dans le cas non-

linéaire. Nous avons donc proposé un nouvel indice de performance pour le

BSS non-linéaire qui sera introduit dans la suite.
4Root Mean Squared
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Figure C.3: Les sources estimées y1(t) et y2(t) par rapport aux sources théoriques s1(t)

et s2(t), où l’épaisseur du tracé indique combien la source estimée (axe vertical) dépend

de l’autre source

L’épaisseur du nuage des points (source estimée, source théorique) in-

dique s’il existe une dépendance à une autre source. En effet, si la séparation

est parfaite, la source estimée sera une fonction mathématique de la source

théorique, et les points sont localisés sur une courbe unidimensionnelle. Les

diagrammes de dispersion de la sortie par rapport aux sources sont illustrés

sur la figure C.3.

Nous proposons donc cette mesure de dispersion comme indice général

pour l’évaluation des performances des méthodes BSS non-linéaires, et nous

la nommerons Erreur normalisée d’ajustement non-linéaire (N-ENF). Les

résultats de simulation des algorithmes sont également comparés en termes
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Table C.1: Erreur N-ENF pour AATVL et BATIN

AATVL BATIN

N-ENF pour la Source 1 0.0030 0.0019

N-ENF pour la Source 2 0.0084 0.0031

d’erreur ENF normalisée et peuvent être trouvés dans la table C.1.

C.3 Linéarisation aveugle des mélanges

non-linéaires

Une autre approche est basée sur la modélisation des sources par des proces-

sus gaussiens et l’approximation du mélange par un polynôme [Ehsandoust

et al., 2017b]. En utilisant ces hypothèses, nous proposerons une nouvelle

méthode dont la première étape linéarise ce mélange non-linéaire. Il reste

ensuite à résoudre ce mélange résiduel linéaire par un algorithme BSSlinéaire.

Nous avons prouvé que les mélangespolynômiaux perdent la propriété de

Gaussianité, sauf si ces mélanges se réduisent à une transformation affine

linéaire, ce qui est mathématiquement énoncé dans le théorème suivant.

Théorème 1. Soient n sources s1, · · · , sn de distribution conjointe normal

et mélangées via un transformation polynômiale inversible p : Rn → Rn

fournissant n signaux y1, . . . , yn. Si les signaux y1, . . . , yn suivent aussi une

distribution gaussienne, le polynôme p est limité à une transformation affine

:

y = p(s) = As + b (C.6)

où A et b sont respectivement une matrice n × n et un vecteur n × 1 de

constantes.

Corollaire 1. En supposant que f : Rn → Rn est un polynôme inversible, et

que les sources sont des processus gaussiens, si nous trouvons un polynôme
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g(x) tel que les sorties y1(t), y2(t), . . . , yn(t) sont des processus gaussiens, la

fonction totale h = g ◦ f sera un mélange affine des sources, c’est-à-dire de

la forme y(t) = g(x(t)) = h(s(t)) = As(t) + b.

Par conséquent, pour linéariser le mélange il est nécessaire et suffisant

d’estimer un polynôme g tel que y(t) = g(x(t)) soit un vecteur à distribu-

tion gaussienne. On peut donc proposer un algorithme, dont la fonction de

coût est une mesure de “non-gaussianité” qui est minimisée par rapport au

polynôme g.

Dans ce travail, la néguentropie [Comon, 1994, Hyvärinen, 1999b] est

choisie comme mesure de la gaussianité, parce qu’elle est toujours non-

négative et invariante par toute transformation linéaire inversible, et s’annule

si le signal est gaussien. En supposant un modèle paramétrique pour le

polynôme inverse g, l’optimisation est faite par rapport aux paramètres de

notre modèle comme

g(x) = Θk(x) (C.7)

où Θ est la matrice des coefficients et k(x) ∈ RP×1 est le vecteur colonne

contenant les monômes.

C.3.1 Résultats de la simulation

Le théorème proposé est illustré par un simple exemple simulé 2-par-2 comme

suit. Les deux sources s1 et s2 sont aléatoirement choisies comme N (0, 1) et

sont mélangées par un polynôme bidimensionnel commes1

s2

→
x1

x2

 =

s1 + (s1 + s2)3

s2 − (s1 + s2)3

 . (C.8)

Dans cette expérience, nous avons choisi un modèle cubique pour le

mélange polynomial de deux signaux x1 et x2 (donc avec 10 paramètres),

nous recherchons les paramètres θ1
† = [θ10, . . . , θ19] dans

y1 = θ10x
3
1 + θ11x

2
1x2 + θ12x

2
1 + θ13x1x

2
2 + θ14x1x2

+ θ15x1 + θ16x
3
2 + θ17x

2
2 + θ18x2 + θ19 (C.9)
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Figure C.4: Néguentropie de y1 dans (C.9) par rapport aux entrées de θ1 centrées

autour de leur valeur optimale [0, 0, 0, 0, 0, 1, 0, 0, 1, 0] (de θ10 à θ19 dans les figures

(a) à (j) respectivement). Tracé par rapport à chaque entrée, les autres paramètres

sont maintenus constants.

tel que y1 suive une distribution gaussienne. Les résultats de simulation

valident la méthode proposée en montrant comment la fonction de coût (ici,

la nég-entropie) se comporte autour d’un minimum global, par exemple θ1 =

[0, 0, 0, 0, 0, 1, 0, 0, 1, 0], ce qui donne y1 = x1 + x2 = s1 + s2.

La figure C.4 illustre la variation de la néguentropie par rapport à l’une

des entrées de θ1 autour de sa valeur optimale [0, 0, 0, 0, 0, 1, 0, 0, 1, 0]. Il est

à noter que changer θ19 n’affecte pas la linéarité du mélange y1 par rapport

à s1 et s2, donc ne change pas la nég-entropie.

De plus, la valeur de la néguentropie tout en changeant simultanément

θ11 et θ17 autour de zéro est représentée sur la figure C.5a. Comme on peut
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Figure C.5: La valeur de la néguentropie de y1 dans (C.9) par rapport à 2 coefficients du

modèle paramétrique, tandis que les autres paramètres sont maintenus constants et égaux

à leur valeur optimale en [0, 0, 0, 0, 0, 1, 0, 0, 1, 0].

le voir sur cette figure, bien que le minimum global soit dans l’origine, il

y a beaucoup d’autres minima locaux qui peuvent piéger l’algorithme de

minimisation. La fig. C.5b montre aussi que la valeur de la néguentropie est

minimisée par rapport aux coefficients de x1 et x2 (sans changer les autres

paramètres) tant que θ15 = θ18 .

C.4 Mélanges non-linéaires de sources

parcimonieux

Dans cette section [Ehsandoust et al., 2016], nous avons étudié un cas par-

ticulier du problème BSS non-linéaire où les sources sont supposées spa-

tialement parcimonieuses, c’est-à-dire qu’elles prennent rarement des valeurs

non-nulles en même temps. Voyons d’abord ce qu’il advient des observations

données spatialement parcimonieux.

La Fig. C.6 montre les observations pour un système de mélange non-

linéaire 2× 2 de

x1(t) = es1(t) − es2(t) (C.10)

x2(t) = e−s1(t) + e−s2(t) (C.11)
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où les observations x1(t) et x2(t) sont centrées avant d’être tracées. Comme

on peut le voir sur les figures, lorsque les sources sont parcimonieuces (Fig. C.6c),

rarement plus d’une d’entre sont simultanément actives, donc le nuage de

points des observations (Fig. C.6d) contient des variétés dont chacune est le

résultat de la transformation de l’un des axes dans l’espace de source.

Par conséquent, nous proposons un algorithme en deux étapes: (1) re-

grouper les observations et l’apprentissage des clusters, et (2) séparer les

sources. Dans la première étape, n 1-dimension clusters dans l’espace d’observation

sont appris et les données sont regroupées de sorte que chaque classe cor-

responde à l’activité de l’une des sources. Pour ce faire, les variétés sont

apprises sur la base d’une méthode itérative similaire aux k-means bien con-

nus [MacQueen, 1967]. Notre méthode comprend trois étapes comme suit.

1. Initialement, les points de données sont assignés au hasard aux clusters.

2. Un cluster à 1 dimension est ajusté sur les points assignés à chaque

classe en utilisant des splines pour le lissage.

3. Les étiquettes des points de données sont associées au cluster le plus

proche.

Les étapes de séquencement 2 et 3 doivent être répétées itérativement jusqu’à

ce que l’algorithme converge et que les étiquettes ne changent plus.

L’idée proposée peut être facilement illustrée visuellement en représen-

tant les sorties de chaque étape dans chaque itération pour un vecteur

d’observation bidimensionnel synthétique dans la séquence de figures C.7a à

C.7l. Dans ces figures, deux clusters unidimensionnels dans un espace 2-D

doivent être groupés et appris.

Une fois les clusters appris, les sources sont séparées. En fait, à tout

instant t = 1, . . . , T , si x(t) appartient àu cluster Γi, alors chaque source est

reconstruite par une fonction arbitraire non-linéaire de l’un des clusters. Le

choix des fonctions non-linéaires dépend de l’application et de la nature du

mélange, mais une bonne option peut être basée sur un algorithme de réduc-

tion de dimension non-linéaire (par exemple ISOMAP [Tenenbaum et al.,

158



APPENDIX C. RÉSUMÉ EN FRANCAIS

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(a) Sources uniformément réparties

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(b) Observations centrées de (C.10) et

(C.11) pour des sources uniformément dis-

tribuées

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(c) Sources parcimonieuses

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(d) Observations centrées de (C.10) et

(C.11) pour des sources parcimonieuses

Figure C.6: Comparaison des diagrammes de dispersion des vecteurs de source et

d’observation du mélange non-linéaire (C.10) et (C.11), si les sources sont parcimonieuses

ou non

159



APPENDIX C. RÉSUMÉ EN FRANCAIS

-0.6 -0.4 -0.2 0 0.2 0.4
-0.6

-0.4

-0.2

0

0.2

0.4

(a) Itération 1: étape 2

-0.6 -0.4 -0.2 0 0.2 0.4
-0.6

-0.4

-0.2

0

0.2

0.4

(b) Itération 1: étape 3

-0.6 -0.4 -0.2 0 0.2 0.4
-0.6

-0.4

-0.2

0

0.2

0.4

(c) Itération 2: étape 2

-0.6 -0.4 -0.2 0 0.2 0.4
-0.6

-0.4

-0.2

0

0.2

0.4

(d) Itération 2: étape 3

-0.6 -0.4 -0.2 0 0.2 0.4
-0.6

-0.4

-0.2

0

0.2

0.4

(e) Itération 3: étape 2

-0.6 -0.4 -0.2 0 0.2 0.4
-0.6

-0.4

-0.2

0

0.2

0.4

(f) Itération 3: étape 3

-0.6 -0.4 -0.2 0 0.2 0.4
-0.6

-0.4

-0.2

0

0.2

0.4

(g) Itération 4: étape 2

-0.6 -0.4 -0.2 0 0.2 0.4
-0.6

-0.4

-0.2

0

0.2

0.4

(h) Itération 4: étape 3

-0.6 -0.4 -0.2 0 0.2 0.4
-0.6

-0.4

-0.2

0

0.2

0.4

(i) Itération 5: étape 2

-0.6 -0.4 -0.2 0 0.2 0.4
-0.6

-0.4

-0.2

0

0.2

0.4

(j) Itération 5: étape 3

-0.6 -0.4 -0.2 0 0.2 0.4
-0.6

-0.4

-0.2

0

0.2

0.4

(k) Itération 6: étape 2

-0.6 -0.4 -0.2 0 0.2 0.4
-0.6

-0.4

-0.2

0

0.2

0.4

(l) Itération 6: étape 3

Figure C.7: Illustration de l’approche non-paramétrique proposée pour l’apprentissage de

2 clusters dans un espace bidimensionnel; en chiffres correspondant à l’étape 3, la distance

minimum de chaque point aux clusters est tracée.
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2000] et les cartes de diffusion [Talmon et al., 2013]), qui est supposé trans-

former des collecteurs unidimensionnels en lignes directes. Pour les valeurs

aberrantes, c’est-à-dire aux rares instants où plusieurs sources sont actives,

une méthode de projection non-linéaire nous permet d’estimer les valeurs de

sources correspondantes.

C.4.1 Résultats de la simulation

Un résultat de simulation est fourni sur la figure C.8. Dans cette figure,

(a) contient le nuage de points des observations. Ensuite, dans la partie

(b), en plus du diagramme de dispersion d’observation, les deux clusters

appris sont également représentés en vert et en violet. De plus, les valeurs

aberrantes sont représentées par des croix noires, et les points de données

correspondant àu collecteur vert (respectivement, violet) sont représentés en

bleu (respectivement, en rouge), d’où la classification est apparente. Les

parties (c) et (d) de la figure contiennent les signaux séparés par rapport

aux sources originales. Il convient de mentionner que dans cette simulation,

les sources parcimonieuses sont constituées de 1000 échantillons (avec un

taux d’activité de 25%) uniformément réparties en [−0.5, 0.5] lorsqu’elles

sont actives.

C.5 Conclusion et perspectives

Dans ce travail, le problème se séparation de sources dans le cas non-linéaire

est étudié et de nouvelles approches générales sont proposées. Il a été mon-

tré que les mélanges non-linéaires, que l’on pensait ne pas être générale-

ment séparables pendant de nombreuses années, peuvent être séparés en

supposant que les sources sont suffisamment lisses au cours du temps, c’est-à-

dire qu’elles ont une autocorrélation temporelle. Deux approches différentes,

exploitant cette information pour réaliser la séparation, ont été proposées. La

première méthode repose sur une approximation locale du mélange linéaire,

la seconde exploite l’hypothèse que les sources sont des processus gaussiens.
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Figure C.8: Résultats de la simulation pour x1(t) = cos(α(t))s1(t) − sin(α(t))s2(t) et

x2(t) = sin(α(t))s1(t) + cos(α(t))s2(t) où α(t) = π
2
(1−

√
s21(t) + s22(t))

2

De plus, le BSS non-linéaire a également été étudié pour le cas particulier de

sources spatialement parcimonieuses, pour lequel une approche géométrique

de la séparation a été proposée.

En considérant les résultats ci-dessus, nous suggéronts les travaux futurs

dans le BSS non-linéaire dans les directions suivantes.

1. La formulation du niveau de régularité des sources et la quantification

de sa relation avec l’exactitude des approximations linéaires locales du

modèle non-linéaire pourraient aboutir à une preuve de séparabilité des

mélanges non-linéaires. En effet, compte tenu des résultats actuels et

de l’approche proposée qui permet de séparer les mélanges non-linéaires

généraux, la recherche d’une preuve théorique précise est d’un grand

intérêt.

2. Ce travail était principalement concentré sur les aspects théoriques du

BSS non-linéaire, donc les méthodes générées ont été vérifiées par des
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simulations sur des données synthétiques. Bien que l’idée fondamen-

tale des approximations linéaires locales ait été examinée sur de vraies

images hyperspectrales et se soit révélée performante, il serait intéres-

sant d’utiliser les approches introduites sur des applications pratiques

et des données réalistes.
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