
HAL Id: tel-01885914
https://theses.hal.science/tel-01885914

Submitted on 2 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Balance properties on Christoffel words and applications
Lama Tarsissi

To cite this version:
Lama Tarsissi. Balance properties on Christoffel words and applications. General Mathematics
[math.GM]. Université Grenoble Alpes, 2017. English. �NNT : 2017GREAM097�. �tel-01885914�

https://theses.hal.science/tel-01885914
https://hal.archives-ouvertes.fr


THÈSE
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Résumé

De nombreux chercheurs se sont intéressés à la combinatoire des mots aussi bien
d’un point de vue théorique que pratique. Pendant plus de 100 ans de recherche, de
nombreuses familles de mots ont été découvertes, certaines sont infinies et d’autres
sont finies. Dans cette thèse, on s’intéresse aux mots de Christoffel. On aborde
aussi les mots de Lyndon et les mots Sturmiens standards. De plus, nous donnons
de nombreuses propriétés sur les mots de Christoffel et on approfondit l’étude de la
notion d’équilibre. Il est connu que les mots de Christoffel sont des mots équilibrés
sur un alphabet binaire et sont formés par la discrétisation de segments de droite
de pente rationnelle. Les mots de Christoffel sont aussi retrouvés dans l’étude de
la synchronisation de k processus à l’aide de k mots équilibrés. Pour k = 2, on
retombe sur les mots de Christoffel, tandis que pour k > 2, la situation est plus
compliquée et nous amène à la conjecture de Fraenkel qui est ouverte depuis plus de
40 ans. Comme c’est difficile d’atteindre cette conjecture, alors nous avons cherché
à construire des outils qui nous aide à s’approcher de cette conjecture. On introduit
ainsi la matrice d’équilibre Bw où w est un mot de Christoffel et la valeur maximale
de cette matrice est l’ordre d’équilibre du mot binaire utilisé. Comme les mots de
Christoffel sont équilibrés alors la valeur maximale dans ce cas-là sera égale à 1 et
chaque ligne de cette matrice sera formée des mots binaires. Cela nous pousse à
tester de nouveau l’ordre d’équilibre de chaque mot obtenu et une nouvelle matrice
est obtenue qui s’appelle matrice d’équilibre du second ordre . Cette matrice admet
plusieurs propriétés de symétrie et a une forme particulière comme on est capable
de la partager en 9 blocs où c’est suffisant de savoir 3 parmi eux pour construire
le reste. Ces trois blocs correspondent à des matrices de mots de Christoffel qui
se trouvent dans des niveaux plus proches de la racine de l’arbre des mots de
Christoffel. La valeur maximale de cette nouvelle matrice Uw est appelée équilibre
du second ordre. En regardant les chemins qui minimisent cette valeur tout au long
de l’arbre, on remarque que le chemin suivi par les fractions obtenues du rapport
des nombres consécutifs de la suite de Fibonacci, appelé chemin de Zig-zag est l’un
des chemins minimaux. On retrouve ces chemins géométriquement sur le chemin de
Christoffel en introduisant une nouvelle factorisation pour les mots de Christoffel
appelée la factorisation standard symétrique. Nous avons, également, pu trouver
une relation directe entre la matrice Uw et le mot de Christoffel initial sans passer
par la matrice Bw et cela en étudiant l’ensemble des vecteurs abéliens associés.
Tout ce travail nous a permis de réfléchir au sujet initial qui est la synchronisation
de k mots équilibrés. Ainsi, pour le cas de 3 générateurs, nous avons pu étudier
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tous les cas possibles de la synchronisation et une discussion bien détaillée est faite
en utilisant un nouvel élément appelé la graine qui est la première colonne de la
matrice de synchronisation. La matrice du second ordre d’équilibre, avec toutes
ses propriétés va être un bon outil pour étudier la synchronisation de k générateurs
et cela constitue mon projet de recherche dans le futur. Nous avons aussi utilisé
toutes nos connaissances autour des mots de Christoffel pour avancer dans la
reconstruction de polyominoes convexes. Comme le contour d’un tel polyomino
est formé des mots de Christoffel de pentes décroissantes, on a introduit un nouvel
opérateur qui modifie ce chemin tout en gardant la décroissance des pentes c’est-
à-dire en conservant la convexité qui est un premier pas vers la reconstruction.
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Abstract

Many researchers have been interested in studying Combinatorics on Words in
theoretical and practical points of view. Many families of words appeared during
these years of research some of them are infinite and others are finite. In this thesis,
we are interested in Christoffel words and we introduce the Lyndon words and
Standard sturmian words. We give numerous properties for this type of words and
we stress on the main one which is the order of balancedness. Well, it is known that
Christoffel words are balanced words on two letters alphabet, where these words are
exactly the discretization of line segments of rational slope. Christoffel words are
considered also in the topic of synchronization of k process by a word on a k letter
alphabet with a balance property in each letter. For k = 2, we retrieve the usual
Christoffel words. While for k > 2, the situation is more complicated and lead to
the Fraenkel’s conjecture that is an open conjecture for more than 40 years. Since
it is not easy to solve this conjecture, we were interested in finding some tools that
get us close to this conjecture. A balance matrix Bw is introduced, where w is a
Christoffel word, and the maximal value of this matrix is the order of balancedness
of the binary word. Since Christoffel words are one balanced then the maximal
value obtained in this matrix is equal to 1 and all the rows of this matrix is made of
binary words. Testing again the balancedness of these rows, a new matrix arises,
called second order balance matrix. This matrix has lot of characteristics and
many symmetries and specially the way it is constructed since it is made of 9 blocks
where three of them belong to some particular Christoffel words appearing in some
levels closer to the root of the Christoffel tree. The maximal value of this matrix
is called the second order of balancedness for Christoffel words. From this matrix
and this new order of balancedness, we were able to show that the path followed
by the fractions obtained from the ratio of the consecutive elements of Fibonacci
sequence is a minimal path in the growth of this second order. In addition to that,
these blocks are geometrically found on the Christoffel path, by introducing a new
factorization for the Christoffel words, called Symmetric standard factorization.
Similarly, we worked on finding a direct relation between the second order balance
matrix Uw and the initial Christoffel word without passing by the balance matrix
Bw but by studying the set of factors of abelian vectors. All this work allow us to
think about the initial topic of research which is the synchronization of k balanced
words. A complete study for the case k = 3 is given and we have discussed all the
possible sub-cases for the synchronization by giving its seed, which is the starting
column of the synchronized matrix. The second order balance matrix, with all its
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properties and decompositions form a good tool to study the synchronization for
k generators that will be my future project of research. We have tried to use all
the knowledge we apply them on the reconstruction of digital convex polyominoes.
Since the boundary word of the digital convex polyominoe is made of Christoffel
words with decreasing slopes. Hence we introduce a split operator that respects
the decreasing order of the slopes and therefore the convexity is always conserved
that is the first step toward the reconstruction.
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Introduction

A solar year is composed of 365.25 days where the moon appears fully illuminated
each 29.53 days. Doing the calculations, we can note that a solar year can have 12
full moons or 13 full moons. Scientists have realized that by assigning the number
0 to the year with 12 moons and the number 1 to the year with 13 moons, the
sequence of numbers obtained is a balanced binary word. Note that a binary word
is balanced if for any two factors of the same length, the number of occurrences of
the letter 1 in both words is either the same or different by one occurrence [5, 53].
This is a direct application for the combinatorics on words, the field that has been
widely studied in recent years. We can observe that balancedness is something
that we can find in our day to day life without notice. Indeed, most of this the-
ory is developed implicitly as a tool to attack several problems which arise from
Computer Science. This thesis deals with finite binary words called Christoffel
words. Those words are fundamental objects in combinatorics which share many
geometric, algebraic and arithmetic properties [5, 14]. Among them and in dis-
crete geometry, Christoffel words are coding of a discrete segment on a grid from
(0, 0) to (a, b) [40]. Christoffel words have an algebraic interpretation using Cayley
graph and two generators g1 = a, g2 = b over Z/nZ, with n = a + b [5, 14]. The
study of these words began in 1873 by Elwin Christoffel [14] and the community
of combinatorics on words. They were able to give new applications to Christoffel
words because these words are balanced. In fact, we are able to find many studies
done by Elwin Christoffel [25] and Reutenauer [5] to find characterizations of these
words.

Finding balanced words was always the purpose of many mathematicians like
Etian Altman [2], Pascal Hubert [32] and Robert Tijdeman [51]. In this thesis, we
try to refine this balancedness concept by studying a second order of balancedness
in the interest of classifying the Christoffel words by their order of balancedness
and understanding deeply the structure of balanced words. Hence, we start by in-
troducing a matrix called the balanced matrix of a binary word that tests its order
of balancedness. As we said before, since we will be dealing only with Christoffel
words, and since those words are 1−balanced, the matrix obtained for this family
of words, is composed of binary words which pushed us to investigate another or-
der of balancedness. Therefore, we propose a second order balance for 1-balanced
binary words and show some of its properties. The second order balance can be
summarized as the maximal balancedness of the words that describes the num-
ber of occurrences of a given letter in all factors of a given length. This allows
a classification among 1-balanced words. In another words, we can say that for
each given length j, we can find, in a balanced word v, blocks containing kj or
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kj+1 the letter 1. The second order balance is the balancedness over the words
coding the successive positions of the blocks containing kj or kj+1 the letter 1 in
the balanced word v. Hence, we are working for a given value j on the repartition
of these blocks in a binary balanced word. This second order balance is computed
via a matrix called the Second order balance matrix. The properties of this matrix
are obtained by checking the composition of the Christoffel words and considering
some of its particular rows.

In another perspective, since doing things on time is universal, nearly every
activity requires synchronized timing to operate at peak levels. During an air-
plane’s departure, on signal lights at an intersection, in robotics or in any factory’s
assembly line, synchronization is needed, otherwise everything would happen si-
multaneously and in disarray. Therefore synchronization is an important concept
to study. In addition to that, many algorithms in discrete geometry and computer
imagery deal with plotting segments on a computer screen and thus Christoffel
words are also fundamental objects for this topic [40]. In parallel, many computer
scientists work on synchronization of processes. They try to design optimization
algorithms in order to balance the charge between more than two servers and the
optimal solution. In the case of two servers, the word obtained due to the synchro-
nization is given either by aperiodic balanced words named the Sturmian words
or by periodic balanced words named Christoffel words repeated periodically [2].
The question that comes to the mind immediately is the following: What will
happen if we have three servers or more? It is clear that the problem would be-
come more complicated and would lead to the study of balanced words on a three
letter alphabet or more. We can see that a good example of synchronization is
the one given by another community that used the Beatty sequences in order to
give the positions of each of the letters in balanced words. For more details of
this approach, see the works of Fraenkel [24, 25]. In fact, the usual Christoffel
word can be seen as a synchronization using two generators like the work done
by Reutenauer [38]. Aviezri Fraenkel, in his papers[24, 25, 50, 52] has mentioned
many ways to prove that the unique solution for balanced words on k-letters alpha-
bet with pairwise distinct frequencies of letter, where 3 ≤ k ≤ 6, is the sequence
of generators of the form: 2k−1 called Fraenkel’s conjecture for all k ≥ 3. Many
studies use either balanced words or Beatty sequences like Ronald Graham [30],
nevertheless Christoffel words can give a better insight on Fraenkel’s conjecture.
These studies were able to prove the conjecture for k = 7, using approaches which
do not have similar methods to the one used by Fraenkel. In particular, Fraenkel
stated its famous conjecture from 40 years (translated in combinatorics on words
vocabulary) that the unique solution (up to permutation of letters) for balanced
words on k-letters alphabet with pairwise distinct frequencies of letters is given
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by repeating periodically the Fraenkel word Frk = Frk−1kFrk−1 for k > 2 and
Fr2 = 121. For instance, we have Fr3 = 1213121 and Fr4 = 121312141213121.

The formulation of the original statement of the Fraenkel conjecture is the
following:

Conjecture 1 There exists a unique periodic balanced words (up to permutation
of letters) on k letters with pairwise distinct frequencies of letters and the k fre-

quencies are exactly 2k

2k+1−1
, ·, 2

2k+1−1
, 1

2k+1−1
.

Example 1 The frequencies of letters in Fr3 = 1213121 are given by 4
7
,2

7
,1

7
and

in Fr4 = 121312141213121 by 8
15

, 4
15

, 2
15

, 1
15

.

This conjecture is proved for k = 3, · · · , 7 in the following works [2, 46, 52] and
the approach uses extensively the properties of Beatty sequences [30, 47], while
it is still open for k > 7. Nevertheless, the study of balanced words on k letters
for k > 2 is of course a topic in combinatorics on words. For example Tijdeman’s
and Hubert’s works use Sturmian sequences in order to construct balanced words
[32, 50, 53]. We remark that the work of Hubert is a type of restatement of Gra-
ham’s work in combinatorics on words vocabulary.

Now, in another perspective, we need to investigate a new discrete tool in the
study of the synchronization of Christoffel words. This tool was introduced in the
work of G. Paquin and L. Vuillon in 2007. In fact, they were able to give a link
between Fraenkel’s conjecture and Christoffel word construction by introducing
the column invariant on the synchronization of k Christoffel words [38]. In paral-
lel, G. Paquin and C. Reutenauer wrote an article about the synchronization of k
Christoffel words on k letters and an extra symbol ∗ and found many properties of
partial synchronization of Christoffel words (the ∗ materialize an extra gap letter
in the synchronization) and formulate many properties from the Beatty sequences
point of view to the combinatorics on words point of view [39]. Based on this
link and using the properties of the second order balance matrix, we aim in this
thesis to give a new tool and a new perspective to discuss the synchronization of
Christoffel words. Since it is difficult to reach the Fraenkel’s conjecture during
those three years of research, we let the second order balance matrix and its prop-
erties be a good tool to get closer to this conjecture.

Organization of the thesis

Chapter I: Combinatorics on words is a wide domain of research. Many family
of words were discovered and studied in the last decades. Therefore, in this chap-
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ter, we start by introducing the common literature used all over these years. We
define what is an alphabet, the set of letters used to form a word. We give the
definition of palindromes, suffixes and prefixes. To be able to reach the goal of
this thesis, we have to illuminate on some properties and mention some families
of words over the binary alphabet A = {0, 1}. Hence, we start by introducing the
lexicographic order to be able to define the Lyndon words. After that, we pass to
the family of Standard strumian words that is the family of infinite words used for
the discretization of a line with irrational slope starting from the origin. In the
finite case, when the slope is a rational number of the form a/b, we get the family
of Christoffel words. These Christoffel words can be written in a particular way
using a specific factorization called Standard factorization where this factorization
leads to construct the Christoffel tree that is the tree containing all the Christoffel
words and starting with the word w = 01 = (0, 1) at the top of the tree. The
balancedness of the words formed by the last two families is a special character-
istic that will be the main topic of this thesis. The balance property allows us
to define a balance matrix that gives the order of balancedness, noted δ, for any
binary word. This value is equal to 1 for the particular case of Christoffel and
Strumian words since they are balanced words. Many properties of this matrix
are exposed in this chapter. Several examples are given in this chapter to explain
those properties and relations like the complementary rows concept and the case
of non primitive Christoffel words.

Chapter II Christoffel words can be seen with another perspective and can
have an equivalent algebraic definition. In this chapter, we present in algebraic way
the Christoffel words, where we determine the position of the decreasing positions
for each word using the link to the Cayley graph and the theorem of Paquin-
Reutenauer [38]. The Christoffel word is the discretization of the line segment of
rational slope a/b, hence we can’t talk about this family without mentioning the
development of continued fractions of its slope. Therefore, we can also see in this
chapter the definition of the continued fractions and its link with the Christoffel
words. Rational numbers push us to think immediately to the tree that contains
all the rational numbers with numerator and denominator relatively prime. This
tree, with all its properties, is revealed in this chapter and the most valuable part
is the link given between this tree and the Christoffel tree. Finally, using the al-
gebraic definition of the Christoffel words, we give for the balance matrix Bw a
second construction based on the set of decreasing positions of the word defined
at the beginning of this chapter.

Chapter III The balance matrix Bw defined in two different ways in Chapters
1 and 2 is used in this thesis over a binary alphabet. In particular, when we restrict
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the work to Christoffel words w = C(a
b
) that are balanced words, we have that δw

which is the order of balancedness and the maximal value of this matrix is equal to
1. In this case, we remark that each row of Bw is composed of a binary word. This
pushes us to think and try to study again the balancedness of each row of Bw.A
second order balance matrix Uw is constructed from the balance matrices of each
row of the initial balance matrix Bw. We let the second order of balancedness be
the maximal value of Uw. After computing this new matrix, we realize that this
matrix has many symmetries and properties that are shown in this chapter. Much
more, a recursive construction using the Stern-Brocot tree is obtained while com-
paring the result given by this second oder balance matrix. We are able to show
that each matrix Uw can be decomposed into 9 blocks, and due to the symmetries
already shown it is enough for us to study the construction of three of them. Those
three blocks, and depending on the position of the slope of w on the Stern-Brocot
tree, use three or four previous and smaller matrices belonging to some fractions
situated in the Stern-Brocot tree few levels before a/b. We show in detail how each
block is constructed using the algebraic definition of the Christoffel words and the
continued fractions expansion of these smaller rational numbers.

Chapter IV: Two important properties are deduced from the second order
balance matrix. By contributing to each fraction a

b
on the Stern-Brocot tree the

value corresponding to δ2(C(a
b
)), we remark that using the recursion used to con-

struct the second order balance matrix, this value is obtained recursively. Hence,
we show how can we obtain this value by passing from level to level in the tree
and what are the boundaries of this δ2. We also try to refine this result by linking
it to the development in continued fraction of each rational number. A very inter-
esting result appears by following the path formed by the fractions obtained from
the ratio of two consecutive numbers of the Fibonacci sequence. First of all, this
path is particular because it has a zig-zag form since the expansion in continued
fractions is of the form [0, 1, 1, 1 . . .]. Secondly, this path converges to the golden
number ϕ and is one of the paths that minimizes the growth of δ2 in this tree and
achieves the minimal value for each level of the tree. A second point is discussed
in this chapter, in fact, while constructing the second order balance matrix Uw,
we had to pass by the balance matrix Bw and study the balancedness of each
binary word obtained in this matrix. A trivial question arises after computing
this matrix, are we able to get these entries immediately from the Christoffel word
itself without passing by its balance matrix? In Chapter 5, we show that the
answer to this question is positive and using the abelian vectors of the Christof-
fel word w, we are able to determine the exact value of each element of this matrix.

Chapter V Not too far from what we said before, in this chapter and as we



6

did with the Christoffel words, we give a second interpretation for the second order
balance matrix. In fact, in Chapter 3, we have shown the algebraic construction
of the matrix Uw, while in this chapter, we explain the geometric point of view
and construction of this matrix on the Christoffel path. To be able to manifest
this part, we define a new type of factorization for Christoffel words called the
Symmetric standard factorization that is deduced from the standard factorization
defined in Chapter 1 and the palindrome concept. The Christoffel path has two
particular points that are mentioned in Chapter 1. Their utility starts to appear
from this chapter since this new factorization uses these two points and helps us
to see all the blocks of the second order balance matrix on the Christoffel path.

Chapter VI The initial problem of studies in this thesis is the synchronization
of Christoffel words. We let two Christoffel words of same length n over the binary
alphabets {1, ∗} and {2, ∗} where ∗ represents the increasing step or position in
each Christoffel word. We mean with synchronization, when certain circular per-
mutations are applied to each word in such a way in each column we have no ∗
or no intersecting values. The first column in the synchronized form, where the
synchronized form is constructed from the multiples of each generator modulo n,
is called seed. In fact, we know that two generators are always synchronized and

have the following seed: S =

(
n− 1

0

)
. In this chapter, we generalize the work

and we introduce a new constant called In,k that helps us to study all the pos-
sible cases with three generators. We give the general form of the seed when we
have equal generators and in particular, for the case of three generators, we prove

that depending on the parity of n we can get either the seed: S =

 n− 1
n−1

2

0


if n is odd or S =

 n− 1
n−2

2

0

 if n is even if we have two equal generators and

one distinct. Indeed, the row starting with 0 corresponds always to the distinct
generator. While when the generators are all distinct, we came back to Fraenkel’s
conjecture that was proved for k ≤ 7, hence sine we know that for k = 3 the
generators are synchronized, we had only to give the form of the seed. Well, we
prove that for any number of generators the seed of the generators of the form

1, · · · 2k−1 is always of the form: S =


In,k
k
...

In,k
k

. Due to the lack of time, and since

it is a difficult conjecture, we were not able to go further in this work to study the
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synchronization for 4 generators or to see how to prove the Fraenkel’s conjecture
for k > 7. But on the other hand, and using the second order balance matrix, we
can read several information that can be a tool leading us in further works to solve
this conjecture.

Chapter VII In this chapter, we apply the Christoffel words and Lyndon
words in discrete tomography. Working in a discrete and digital plane Z2, a con-
vex path is said 4 connected if we can move from a digital square to another moving
in 4 directions, up, down, left or right. While the path is said to be 8 connected
if in addition to these four directions, we are able to move in the four diagonal
directions. A polyominoe is a 4 connected path with no holes, which means that
the complementary of this polyominoe in Z2 is also convex. The boundary of a
digital convex polyominoe is a word over an alphabet of cardinal 4 basically noted
A = {0, 1, 0, 1}. Several studies appear to get a reconstruction algorithm for dig-
ital convex discrete sets. In fact the recent result by J.O.Lachaud and al. have
shown that if the boundary word can be factorized using the Lyndon factorization
where each factor is a Christoffel word, hence it is a digital convex polyominoe.
In other words, the boundary word is formed of Christoffel words with decreasing
slopes. In addition to that, in this chapter, we provide some local properties that
a boundary word has to fulfill in order to allow a single point modification and to
preserve the convexity. As we have mentioned before, the Christoffel path has two
particular points. The first one is the closest point of the path with respect to the
line segment and the other is the furthest point of the path with respect to the
line segment. In fact, the point needed for this modification is the furthest one, in
fact, at this position we do a split operation by exchanging the 0 by 1 and the 1
by 0. With this operation, we are able to show that digital convexity is conserved
so that the slopes are always in a decreasing order.

During all this work, all the computations and tests were verified and checked
using the software Sage based on Python. Therefore, in each chapter, you can find
the code used to test each result followed by an example of application.
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Chapter 1

Some combinatorics on words

1.1 Notation and preliminaries

Combinatorics on words are related to several branches of mathematics and con-
sidered as an interesting topic of studies. We recall some classical notations and
concepts on words basically introduced and defined in [33].

An Alphabet A is a finite set of symbols such that its elements are called
letters. We call a word w over an alphabet A, a sequence of letters over this
alphabet. In another way, a word w is obtained by concatenating letters of the
alphabet A and we write w ∈ A∗, where A∗ represents the set of all the words
formed by the alphabet A.

A* is considered as a free monôıd where its identity element is noted ε and is
called the empty word. We let A+ represents the set of all non-empty words over
the alphabet A, i.e A+ = A∗ \ ε. We denote wn ∈ A* the concatenation of the
word w, n times, which means: wn = www · · ·w where w is repeated n times with
the convention that w0 = ε. A word w is said primitive if it is not the power of
a nonempty word.

Example 2 Consider the alphabet A={0,1}, the word w = 00100101 belongs to
A∗.

Let w ∈ A∗, we represent by n the length of the word, which is the number
of letters of the word w denoted by n = |w|, where |ε| = 0. For all ` ∈ A, |w|`
denotes the number of occurrences of the letter ` in the word w and we write:

|w| =
∑
`∈A

|w|`.
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Example 3 Consider the word w = 1001010010, we have |w| = 10, |w|0 = 6, and
|w|1 = 4.

Let p, f, s ∈ A∗ such that w = pfs, we say that p is a prefix of w, f is a
factor of w and s is a suffix of w. Since any of the words p, f, s might be ε,
then prefixes and suffixes are also factors. The set of all factors of w of length
1 ≤ i ≤ |w| is denoted by: Facti(w).

For w = w1 · · ·wn, where all the wi’s belong to A, and for i ≤ j ≤ |w|, the nota-
tion w[i . . . j] refers to the factor of the word w from position i to position j which
is the factor f = wiwi+1 · · ·wj. We let Prefk(w) = w[1 . . . k] represents the prefix
of length k of w. For all 1 ≤ k ≤ |w|, w[k] represents the kth element of the word w.

We let w̃ = wn · · ·w2w1 represents the reversal of the word w and we say that
w is a palindrome if w̃ = w. We remark that w is a palindrome if and only
if wi = wn−i+1 for all i ∈ {1, · · · , |w|}. The set of all the palindromes over the
alphabet A is denoted by: Pal(A∗) = {w ∈ A∗; w̃ = w}.

Example 4 Let w = 1001010010 be a word in {0, 1}∗.

1. The reversal of w is w̃ = 0100101001.

2. The factor w′ = w[2 · · · 8] = 0010100 ∈ Pal({0, 1}∗).

Two words w and w′ are conjugate of order k, and denoted w ≡k w′ if and
only if there exists u, v such that |u| = k with w = uv and w′ = vu. When the
exact value of k is not relevant, we simply write w ≡ w′.

Example 5 For the two words w = 001100101 and w′ = 100101001 in {0, 1}∗, we
have w ≡3 w

′.

In addition to that, the circular permutation of a word w of length n at position
i, denoted σi(w), is defined by σi(w1 · · ·wn) = wi+1 · · ·wnw1 · · ·wi for all 0 ≤ i ≤
n− 1.

Given a word w = w1w
′ where w1 is a letter, we denote by w−1

1 w = w′ the
removal of the letter w1 at the beginning of w. If w ends with letter w1, then the
notation ww−1

1 is defined accordingly.

The alphabet A can be ordered since we can define many order relations on
words and we write (A,<). In this thesis, we are interested only in the total
lexicographic order or simply the dictionary order that is a total order and
denoted: <`



11

Definition 1.1 Let w,w1 ∈ A∗, we say that:

w <` w1 if

{
Pref|w|(w1) = w; or
w = uav and w1 = ubv1 where u, v, v1 ∈ A∗ and a <` b, .

Example 6 We consider the following words: w = 001000, w′ = 001 and w′′ =
001101. We remark that w<` w

′′, w′<` w
′′ and w′ <` w.

In combinatorics on words, we can find many families of words over a finite
alphabet. We have the family of Sturmian words that generates infinite words.
The family of Christoffel words that is restricted to the family formed by finite
Sturmian words. We will be interested also in a third family called family of
Lyndon words defined in the next section.

1.2 Lyndon words

In 1954 and using the lexicographic order, Roger Lyndon [34] investigated the
family of Lyndon words after being introduced by Anatoly Shirshov [45] in 1953
with a different name. The proper definition of this family of words is stated as
follows:

Definition 1.2 A word w ∈ A∗ is a Lyndon word if for all u, v ∈ A+ such that
w = uv, we have w <` vu.

In other words, we can say that the Lyndon word is the smallest word among all its
conjugates. Hence, since σi(w) is the circular permutation of w at position i which
gives the conjugate of w of order i, hence we can write w <l σi(w) ,∀i ∈ {1 . . . |w|}.
It is equivalent that for each such factorization w <l v.
Based on this definition, we can deduce one of the properties of this family of
words. In fact, we have that Lyndon words are primitive words otherwise, we can
have an equality between at least one of the conjugates of w. Therefore, if w is a
Lyndon word, ww is not Lyndon.

Example 7 Let w = 0110, we have X = {σi(w);∀ 0 ≤ i ≤ 3}, hence we can write
X = {0011, 0110, 1100, 1001}. The smallest element of X in lexicographic order is
w′ = 0011. Therefore, w is not a Lyndon word.

Over the alphabet A = {0, 1}, we represent the first 9 Lyndon words where the
trivial words are the letters of the alphabet.

0, 1, 01, 001, 011, 0011, 0111, 0001, 0001, · · ·
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We say that s is a proper suffix of w if we can write w = w′s where s 6= ε and
w 6= w′.

We define now two types of factorization for the Lyndon words, the right and
the left factorizations. We mention before, that two words u and v are elements
of the factorization of w if w is obtained by the concatenation of these two words.
We represent the factorization by w = uv = (u, v).

Proposition 1.3 Let w be a Lyndon word, if w can be written as w = (u, v) with
v its lexicographically least proper suffix, then u, v are Lyndon words and u <l v.

This is the right factorization, while if u is the longest prefix then we get the
left factorization.
In some cases these two factorizations coincide as we will see in Example 8 and in
this case the word is called a regular word. This concept was used by Melançon
in 1999 [35], then presented by (Berstel et al.2009) in [5] with a different notation
as “balanced2” and finally used by (Reutenauer 2016) [43] as “equilibrated”.

Example 8 Let w1 = xxyxxzxy, w2 = xxyy, and w3 = xxyxxyxy be three words
over the alphabet A = {x, y, z}. Table 1.1 shows the right and left factorization
of each word. We remark that the left and right factorization of w3 are the same,

Word right factorization left factorization
w1 (xxy, xxzxy) (xxyxxz, xy)
w2 (x, xyy) (xxy, y)
w3 (xxy, xxyxy) (xxy, xxyxy)

Table 1.1: The right and left factorization of w1 = xxyxxzxy, w2 = xxyy, and w3 =
xxyxxyxy.

hence w3 is a regular word.

The right factorization is simply called the standard factorization. We give
now another kind of factorization that was defined in 1958 by Chen, Fox and
Lyndon [13].

Definition 1.4 Every non empty word w admits a unique factorization as a lex-
icographically decreasing sequence of Lyndon words: w = ln1

1 l
n2
2 · · · l

nk
k , s.t l1 >l

l2 >l · · · >l lk where ni ≥ 1 and li are Lyndon words.

This factorization is called Lyndon factorization. In 1980 Duval proved that
this factorization can be computed in a linear time [22].



The word The Lyndon factorization
w1 (1)(001011)(0010101)(0)
w2 (001)(001)(0) = (001)2(0)
w3 (00101011)(001)(0)

Table 1.2: The Lyndon factorization of w1 = 100101100101010, w2 = 0010010 and
w3 = 001010110010.

13

Example 9 In Table 1.2, we find the Lyndon factorization of the following three
words:
w1 = 100101100101010, w2 = 0010010 and w3 = 001010110010.

Lyndon words give rise to a basis of some algebra. In particular, those factor-
izations were used as tools to solve problems in free groups and free Lie algebra
[42].

1.3 Standard Sturmian Words

In this section, we study another family of words. We introduce the family of
standard Sturmian words as the family of one sided infinite words over a bi-
nary alphabet that are obtained as a discretization of a line with irrational slope
starting from the origin. An old game of English billiards on a square table can
clearly represent the situation. In fact, the pounded ball follows a trajectory and
hits the billiard board in such way that the vertical intersections are denoted by
0 and the horizontal ones are denoted 1. We represent this trajectory in a square
lattice by considering the linear trajectory of irrational slope that cuts the squared
lattice and we label the horizontal intersection by 1 and the vertical one by 0. The
sequence obtained forms exactly the standard Sturmian word.

By considering the finite case of standard Sturmian words, the slope of the
line segments turns into a rational number and we get a new family called family
of Christoffel words that will be the fundamental object of this thesis. All the
properties and characteristics of this family will be given in detail in the next sec-
tion.

Figure 1.1: Beginning of a standard Sturmian word with an irrational slope.
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One of the most important characterizations of the standard Sturmian words
is the order of balancedness that is defined as follows:

Definition 1.5 [51] A word w is k-balanced if, for any two factors u,v of w, of
same length, and any letter a of the alphabet A,

If ∀ 1 ≤ i ≤ |w|, u, v ∈ Facti(w); |u| = |v| =⇒ ||u|a − |v|a| ≤ k.

By convention, a balanced word refers to a 1-balanced word, see [40]. One of the
properties of standard Sturmian words is that are balanced words. Further more
in this chapter, we will expand and explicit the balancedness property.

While studying the structure of these words, we can not avoid to mention their
periodicity defined as follows:

Definition 1.6 A positive integer p is a period of a finite word w; 1 ≤ p ≤ |w|
if w[i] = w[i+ p]; for all 1 ≤ i ≤ |w|−p.

A finite word can have more than one period and at the same time, we can
find some words with no periods.

Example 10 Let w = 0001, with Definition 1.6, we can note that for all 1 ≤ i ≤
4, the word w has no period.

The most important result concerning the periodicity is the theorem Fine and Wilf
(1965) [23] that describes the structure of words with more than one period.

Theorem 1.7 If w has two periods p and q such that |w| ≥ p+ q− gcd(p, q) then
the gcd(p, q) is also a period of w.

Example 11 Let w = 0100100100100 be a word of length n = |w| = 13.
As we can see, the word w has a first period p = 6 since w[1 · · · 7] = 0100100 =
w[7 · · · 13]. We also remark that the second period of w is q = 9 where w[1 · · · 4] =
0100 = w[10 · · · 13]. Hence this word has two periods p = 6 and q = 9 and
since n ≥ 6 + 9− gcd(6, 9) = 12, then by the theorem Fine and Wilf, we have that
3 = gcd(6, 9) is also a period as we can see: w[1 · · · 10] = w[4 · · · 13] = 0100100100.

This theorem has an optimal bound related to the case when the two periods
p and q are coprime. In this case, the maximal length of a non constant word is
p+ q− 2. Such words are called extremal Fine and Wilf words. This is the second
characterization of Sturmian words, since in 1994, de Luca and Mignosi in [17]
showed that the set of all factors of extremal Fine and Wilf words corresponds to
the set of factors of standard Sturmian words.
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1.4 Christoffel words

After defining the previous two families of words, we study in detail and we give all
the properties of this particular family of words over a binary alphabet. Christoffel
words [14] have many equivalent definitions. In 1771, Jean Bernoulli was the first
to give the definition of Christoffel words in the discrete plane and in 1990 Jean
Berstel gave them this name with respect to Elwin. B. Christoffel (1829− 1900).
In a geometric view, we consider the Christoffel words to be the discretization of
a line segment of rational slope. This was well explored in the papers (Osborne
and Zieschang, 1981 [37]; Dulucq and Gouyou-Beauchamps, 1990 [21]; Borel and
Laubie, 1993 [7]; Berstel and al., 2009 [5]). For the rest of this thesis, we restrict
the work to the binary alphabet A = {0, 1}, unless mentioned elsewhere.
We start by defining the Christoffel path which is defined on a discrete lattice, i.e
it is a sequence of unitary steps joining points of integer lattice.
We recall that if two integers a and b in the set of non-negative integers N have
the property that their difference a− b is integrally divisible by a number n (i.e.,
(a− b)/n is an integer), then a and b are said to be ”congruent modulo n.” and we
denote a ≡ b mod n. Two numbers a and b are coprime if the greatest common
divisor between them is 1, and we denote it: a ⊥ b.
Let a⊥b, the Lower Christoffel path of slope a/b is the path joining the origin
O(0, 0) to the point (b, a) and respecting the following characteristics:

(i) it is the nearest path below the line segment joining these two points;

(ii) there are no points of Z× Z between the path and line segment.

Analogously, the Upper Christoffel path is the path that lies above the line
segment. By convention, the Christoffel path is exactly the Lower Christoffel path.

Example 12 Consider the line segment joining the origin O(0, 0) to the point
(8, 5). We have a = 5, b = 8 and n = a + b = 13. The Lower and upper
Christoffel paths of slope 5/8 are represented in the Figure 1.2:

We remark that the Upper Christoffel path of slope a/b is the mirror image of the
Lower Christoffel path obtained by a rotation of an angle of 180◦.

By assigning to each horizontal step the letter 0 and to each vertical step the
letter 1 of the binary alphabet A = {0, 1}, we get the Christoffel word of slope a

b

denoted by: C(a
b
), where the fraction a

b
is exactly: |w|1|w|0 (see Figure 1.3).



O(0,0)

(8,5)

O(0,0)

(8,5)

Figure 1.2: The Lower and Upper Christoffel paths of slope 5/8 respectively.
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We define the morphism ρ : A∗ −→ Q ∪ {∞} by:

ρ(ε) = 1 and ρ(w) =
|w|1
|w|0

, ∀ w 6= ε ∈ A∗;

where 1
0

=∞. This morphism determines the slope for each given word in A∗.
In particular:

1. For a = 0, we get the Christoffel word of slope 0 represented by w = C(0
1
) =

0.

2. For b = 0, we have the Christoffel word of slope ∞ represented by w =
C(1

0
) = 1.

Example 13 Let (a, b) = (3, 5), the Christoffel word of slope 3/5 is given by:
C
(

3
5

)
= 00100101 and represented in Figure 1.3:

(0, 0)

(5, 3)

0 0

1 0 0

1 0

1

Figure 1.3: Illustration of the geometrical definition of Christoffel words. The Christof-
fel path goes from (0,0) to (5,3) and C

(
3
5

)
= 00100101.

Let A = {0, 1, . . . , k} be an alphabet with integers, we let E be the automorphism
defined as follows: ∀i ∈ A;

E :A −→ A

i −→ k − i

We have E(i) + E(k − i) = k. In particular, as we are dealing with the binary
alphabet A = {0, 1}, we have: E(0) = 1 and E(1) = 0.
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Example 14 Let u = 00100110 and v = 11011001, we have v = E(u).

Remark 1.8 With the automorphism E, we remark that if w is a Lower Christof-
fel word of slope a/b then E(w) is an Upper Christoffel word of slope b/a.

Example 15 For the Lower Christoffel word of slope 3/5, we get w = 00100101.
By evaluating E(w), we get: E(w) = 11011010 which is an Upper Christoffel word
of slope 5/3 as shown in Figure 1.4.

(0, 0)

(3, 5)

1

1 0

1

1 0

1 0

Figure 1.4: Illustration of the geometrical definition of Upper Christoffel words. The
Christoffel path goes from (0,0) to (3,5) and C

(
5
3

)
= 11011010.

In 1997, Berstel in his paper [4], gave 14 different properties for the Christoffel
words. Here, we mention four of them that are useful for the results obtained in
this thesis.

Property 1.9 Christoffel words are primitive words.

In fact, if w is a Christoffel word of slope a/b then |w|1 = a and |w|0 = b where
a⊥b. This implies that w is not a proper power of another word which means that
w is a primitive word.

Property 1.10 [5] Let w = C
(
a
b

)
be the Christoffel word of slope a/b, we write

w = 0w′1, where w′ is a palindrome.

We name w′ the central part of w. Note that the lower and upper Christoffel words
have the same central part.
For example: The word w = C(3

5
) = 0 010010 1 is a Christoffel word, where the

central part 010010 is a palindrome as shown in the Figure 1.3.
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In the previous section, we defined the Lyndon word to be the smallest between
its conjugates. This property may be equivalently stated for Christoffel words and
hence we have the third characterization of Christoffel words in terms of Lyndon
words [4].

Theorem 1.11 [35] A word w is a Christoffel word if and only if it is a 1-balanced
Lyndon Word.

We remark that the conjugate of Christoffel words are all distinct.

Example 16 Let w = C(2
3
) = 00101 be the Christoffel word of slope 2/3. In Ta-

ble 1.3, we show all the conjugates of w placed in an increasing lexicographic order:

00101
01001
01010
10010
10100

Table 1.3: The lexicographic order of all the conjugates of w = C(2
3) = 00101.

We remark that the first word in the lexicographic order is the Christoffel word
of slope 2/3, while the last word in the lexicographic order is exactly the Upper
Christoffel word of slope 2/3. Hence, we can conclude that Lower and Upper
Christoffel words are conjugate as we can see in Example 16 and this result was
proved in [17] by De Luca and Migonsi in 1994.

1.4.1 Standard factorization

One of the most important characterizations of a Christoffel word is that any
Christoffel word can be written as the concatenation of two Christoffel words in
a unique way. This concept was introduced by Borel and Laubie in 1993 [7] and
they called it the Standard factorization defined on proper Christoffel words as
follows:

Theorem 1.12 (Borel-Laubie 1993) [7] A proper Christoffel word w has a unique
standard factorization w = (u, v), where u and v are both Christoffel words.

For this theorem, we are able to find several proof in different books. I introduce
the proof given by Hugh Thomas that was mentioned in [5].
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Proof. Let w be a Christoffel word of the line segment [OF ] of slope a/b. We
prove the existence and uniqueness of this factorization as follow:

1. The existence:
Let C be the closest point on the Christoffel path to the line segment [OF ].
The triangle OCF has no interior integer points, same for the two paths
determined by the line segments [OC] and [CF ] as we can see in the Figure
1.5. The consequence of this statement is that the coordinates of C are
coprime and the two paths obtained are Christoffel ones. Hence w = (u, v),
where u is the Christoffel word corresponding to the line segment [OC] and
v is the Christoffel word corresponding to the line segment [CF ].

O

F

C

Figure 1.5: The standard factorization at the point C.

2. The uniqueness:
Let P be another point of the Christoffel path where w can be factorized as
w = (u′, v′). We have that the two triangles OCF and OPF have no interior
integer points and h, the distance of the point C to [OF ], is different than
h′, the distance of the point P to [OF ] as we can see in Figure 1.6. We recall
the PICK’s theorem stated as follows:
Let ABC be a triangle, we have: areaABC = i+ 1

2
b−1, where i is the number

of the interior points of ABC and b represents the number of the lattice point
on this triangle.
By applying this theorem to the triangles OCF and OPF , we get for both
triangles the same area d that corresponds to: d = 0 + 3

2
− 1 = 1

2
. Since the

two triangles have two different heights, this leads us to a contradiction.

�

From this theorem we can conclude that the standard factorization is always
obtained at the point C of the Christoffel path which is the closest point with
respect to the line segment.



O

F

C

P

Figure 1.6: The two triangles OPA and OCA.
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Example 17 Let w be the Christoffel word of slope 5/8. We let P be the closest
point to the line segment on the Christoffel path. We have w = 0010010100101 and
the standard factorization is given by: w = (w1, w2) = (00100101, 00101), where
w1 and w2 are Christoffel words as represented in Figure 1.7.

O(0,0)

w1

P
w2

(8,5)

Figure 1.7: The standard factorization of the Christoffel word of slope 5/8.

A direct application of the last theorem and the Property 1.10 is the following
characteristic by (Chuan, 1997) [15] and called the Palindromic factorization. We
recall that Pal(A∗) is the set of all the palindromes over the alphabet A, and we
have:

Property 1.13 Let w be a Christoffel word with (u, v) its standard factorization.
The palindromic factorization is given uniquely by writing w = p1p2, where p1 and
p2 belongs to Pal(A∗).

The proof can be obtained starting from the standard factorization of w. In fact,
we have w = (u, v) where u and v are Christoffel words. By applying the Property
1.10 to each of the Christoffel words w, u and v, we obtain the results as described
in the Figure 1.8.
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w
u v

0 u1 1 0 v1 1
0 w1 1
0 v1 0 1 u1 1

p1 p2

Figure 1.8: The words, w, u and v are Christoffel words with palindromic central parts
w1, u1, v1 resp. The property of palindromes gives the Palindromic factorization of w
denoted by w = (p1, p2).

Example 18 Let w = C(5
8
) = 0010010100101, the standard factorization as seen

in Example 17 is: w = (00100101, 00101) while the palindromic factorization is
the following: w = (00100, 10100101).

We can realize that since the standard factorization uses the closest point of the
Christoffel path to the line segment, then by construction, the Palindromic factor-
ization is exactly obtained using the furthest point of the Christoffel path. Those
two points are very important points in this thesis. We enlighten on the impor-
tance of the first point in the following section, while the furthest point will be
considered in Chapter 5 and 7 of this thesis.

1.4.2 Christoffel tree

At the beginning of this section, and in order to be able to construct the Christoffel
tree, we introduce four morphisms called Christoffel morphisms that are in partic-
ular endomorphisms of the free monôıd {0, 1}∗.
Those endomorphisms assign each Christoffel word onto a conjugate of a Christof-
fel word. We recall that an endomorphism f of A∗ is defined by a couple (w1, w2)
such that f(0) = w1 and f(1) = w2. So for the word w = a0a1 · · · ar ∈ A∗, we have
f(w) = f(a0)f(a1) · · · f(ar). The four endomorphisms are defined as follows:

G = (0, 01); D = (10, 1); G̃ = (0, 10) and D̃ = (01, 1)

We remark from the construction of these endomorphisms and the fact that every
endomorphism maps conjugate words to conjugate words, the composition of these
endomorphisms give rise to one of them. Therefore, these morphisms are called
Christoffel morphisms, which means the image of a Christoffel word is a Christoffel
word.
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In particular if we take the endomorphism G, it assigns the Christoffel word
of slope a

b
into the Christoffel word of slope a

a+b
. While the endomorphism D̃, it

assigns the Christoffel word of slope a
b

into the Christoffel word of slope a+b
b

as we
can see in the Example 19.

Example 19 Let w = C(3
5
) = 00100101, by calculating G(w) and D̃(w), we get:

G(w) = G(00100101) = G(0)G(0)G(1)G(0)G(0)G(1)G(0)G(1)

= 00010001001

= C(
3

8
).

D̃(w) = D̃(00100101) = D̃(0)D̃(0)D̃(1)D̃(0)D̃(0)D̃(1)D̃(0)D̃(1)

= 0101101011011

= C(
8

5
).

From those four endomorphisms, we choose the endomorphisms G and D̃ to con-
struct the Christoffel tree.
The Christoffel tree is an infinite binary tree whose elements are Christoffel
words. The root of this tree is the Christoffel word of slope 1/1 represented by 01.
The elements are written in their standard factorization form, hence each element
has the form of a couple starting by (0, 1) and respecting the rule given in Figure
1.9.

(u, v)

(u, uv) (uv, v)

Figure 1.9: The rule followed to construct the Christoffel tree.

We remark that the root of the tree is the Christoffel word of slope 1. Then
each node (w1, w2) has two sons: G(w1, w2) on the left and D̃(w1, w2) on the right.
In Figure 1.10, we illustrate the first levels of the Christoffel tree:



(0,1)

(0,01)

(0,001)

...
...

(001,01)

...
...

(01,1)

(01,011)

...
...

(011,1)

...
...

Figure 1.10: The first levels of the Christoffel tree.
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1.5 Balance property

In Definition 1.5, the order of balancedness is obtained by studying the balanced-
ness of the word over all the letters of the alphabet. Since we are dealing with
the binary alphabet A = {0, 1}, it is enough to study the balancedness over one
letter to deduce the order of balancedness. In this section, we introduce a matrix
called the Balance matrix that studies the order of balancedness for any binary
word. In fact, in this thesis, we choose the letter 1 to detect this order and hence
we have: A word w ∈ {0, 1}∗ is k−balanced if and only if for every factors u, v of
w, we get:

|u| = |v| =⇒ ||u|1 − |v|1|| ≤ k.

We recall that for any matrix M , the ith row of M is denoted: M [i]. By abuse of
notation, a row M [i] is seen as a word where each entry of the matrix is a letter.

The notation wω corresponds to the circular word w or simply saying w · · ·w.
The Language of w index i is the set of all the factors of length i of the word w.
Therefore, we can write: Li(w) = {w′|w′ ∈ Facti(w)}.

Example 20 For the word w = 00101, the circular factors are:

i Li(w
ω)

0 ε
1 0, 1
2 00, 01, 10
3 001, 010, 101, 100
4 0010, 0101, 1010, 0100, 1001
...

...

Table 1.4: The circular factors of the word: w = 00101.
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By [8], we have that a word w of length n is primitive if and only if the word
wω has at least k + 1 factors of length k for all k ∈ {0, · · · , n− 1}.

1.5.1 Balance matrix

After defining the balancedness, we introduce in this section, a new matrix called
the Balance matrix that gives the order of balancedness for a binary word. In fact,
it is an explicit technique that explains the approach and the process followed in
order to determine the balancedness of a binary word.
To get the Balance matrix, we have to define in a first step the matrix S whose
entries S[i, j] count the number of occurrences of letter one in all the factors of
the circular binary word. So for wω = ww · · ·w · · · , we let:

sw(`, p) := wω[p . . . p+ `− 1]

be the factor of length ` starting at position p in w where w is seen as a circular
word with 1 ≤ `, p ≤ n and n =|w|. This is a refinement of the circular permutation
σi(w), since sw(`, p) gives the exact factor at position p and of length `.
With this notation, we restrict the language of wω to words of length ` and we
denote: L`(w

ω) = {sw(`, p) | 1 ≤ p ≤ |w|}.
Using those factors, we define the matrix Sw where each element at position (i, j)
is the number of occurrences of the letter 1 in the factor of length i and starting
at position j. Hence, we can define the n× n matrix Sw as follows:

Sw[i, j] = |sw(i, j)|1.

Example 21 Let w = C(3
5
) = 00100101, if we take all the factors of length 3

and we count the number of occurrences of the letter 1, we get the following row:
Sw[3] = 11111211. The element 2 corresponds to the factor 101 at position 6; i.e
Sw[3, 6] = |sw[3, 6]|1 = |101|1 = 2. If we repeat the same method for all the factors
and at all the positions, we get:

Sw =



0 0 1 0 0 1 0 1
0 1 1 0 1 1 1 1
1 1 1 1 1 2 1 1
1 1 2 1 2 2 1 2
1 2 2 2 2 2 2 2
2 2 3 2 2 3 2 2
2 3 3 2 3 3 2 3
3 3 3 3 3 3 3 3
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Remark 1.14 We can see that by considering a sliding window of length i with
1 ≤ i ≤ n and starting from position 1 to position n, the number of occurrences of
the letter 1 in this window determines the entries of the row Sw[i].

From Theorem 1.11, we know that a Christoffel word is a 1−balanced Lyndon
word. The following technical lemma states that the prefix of a Christoffel word
always realizes the minimum number of occurrences of letter 1 among all the factors
of same length.

Lemma 1.15 For any length i and any Christoffel word w,

|sw(i, 1)|1 = min
j

(|sw(i, j)|1) .

Proof. By contradiction, suppose that a Christoffel word w admits a factor u of
length l that is not a prefix and that |u|1 < |w[1 . . . l]|1. Moreover, suppose that u
is the shortest factor of w to have this property. Consequently, u ends with letter
0 while the prefix w[1..l] ends with letter 1. By Theorem 1.11, w is Lyndon and
1-balanced. Let s be a suffix of w that admits the factor u as a prefix. Moreover,
let p be the longest common prefix to u and w. Since s is lexicographically smaller
than w, it must be that p0 is a prefix of w while p1 is a prefix of u. From the
above observations, we conclude that there exist three words u′, w′, w′′ such that
|u′| = |w′|, u = p1u′0 and w = p0w′1w′′.

w =

u =

p 0 w′ 1 w′′

p 1 u′ 0

Finally, |u|1 < |w[1 . . . l]|1 implies that |u′|1 < |w′|1. This is impossible since
w is a 1-balanced word having w′1 and u′0 as factors, both have same length and
|w′1|1 ≥ |u′0|1 + 2. Contradiction. �

In the following, we introduce the balance matrix Bw, that is obtained from Sw
by subtracting the minimum value on each row.

Definition 1.16 Let w be a binary word of length n, the balance matrix of w is:

Bw[i, j] = Sw[i, j]−min(Sw[i]), ∀ 1 ≤ i, j ≤ n

For the rest of this thesis, we denote the order of balancedness of w by δ and we
give in Definition 1.17 an equivalent definition for this order:

Definition 1.17 We say that w is δ-balanced if:

δ = max
i

(max(Sw[i])−min(Sw[i])) = max(Bw); ∀ 1 ≤ i ≤ |w|.
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Example 22 For the same Christoffel word w of slope 3/5 mentioned in Example
21, we calculate its balanced matrix B 3

5
and we get:

Sw =



0 0 1 0 0 1 0 1
0 1 1 0 1 1 1 1
1 1 1 1 1 2 1 1
1 1 2 1 2 2 1 2
1 2 2 2 2 2 2 2
2 2 3 2 2 3 2 2
2 3 3 2 3 3 2 3
3 3 3 3 3 3 3 3


⇒ Bw =



0 0 1 0 0 1 0 1
0 1 1 0 1 1 1 1
0 0 0 0 0 1 0 0
0 0 1 0 1 1 0 1
0 1 1 1 1 1 1 1
0 0 1 0 0 1 0 0
0 1 1 0 1 1 0 1
0 0 0 0 0 0 0 0


Since the order of balancedness δ of a binary word w is the maximal difference

of occurrences of the letter 1 in all the factors of same length from Definition 1.29.
This leads to realize that the maximal value obtained in the balance matrix Bw

represents exactly δ. Hence, we obviously can say that w is (maxBw)-balanced.

Remark 1.18 We can mention some remarks concerning the balanced matrix:

1. By construction, if w 6∈ 1∗ then the first row of Bw is equal to w.

2. If k < |w| is a period of wω, again by construction we have that the row
Bw[k] contains only zeros. The converse is also true, an integer k such that
the row Bw[k] contains only zeros is a period of wω.

Consequently, a row of zeros is called a period row.

Property 1.19 Let w be a binary word, the ith row of Bw, where i = n = |w| is
always a period of wω, therefore Bw[n] is a period row.

Proof. Let w be a binary word with n = |w|. By calculating Sw[n], we are look-
ing for all the factors of wω of length n that contain exactly the same number of
occurrences of letter 1 as the word itself. Suppose that |w|1 = a, then Sw[n] = an.
By applying Definition 1.16, we get Bw[n] = 0n and we have a period row. �

From this property, we can conclude that the matrix Bw is a (n−1)×n matrix
since the n-th row does not add any information.

Example 23 From Example 21, the nth row of w = 00100101 is Sw[8] = 33333333.
By applying Definition 1.16, we have to subtract by 3 = min(Sw[8]). Hence we get
a period row.
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Remark 1.20 In order to enlighten the notations, when working with the Christof-
fel C

(
a
b

)
, the balance matrix BC(ab )

is simply denoted Ba
b
.

Example 24 Let a
b

= 5
2

and n = 7, we have w = C(5
2
) = 0110111. To construct

the balance matrix Bw, we take each row of Sw and we subtract its elements by the
minimal value of this row and we get the following:

Sw =



0 1 1 0 1 1 1
1 2 1 1 2 2 1
2 2 2 2 3 2 2
2 3 3 3 3 3 3
3 4 4 3 4 4 3
4 5 4 4 5 4 4
5 5 5 5 5 5 5


, B 5

2
=


0 1 1 0 1 1 1
0 1 0 0 1 1 0
0 0 0 0 1 0 0
0 1 1 1 1 1 1
0 1 1 0 1 1 0
0 1 0 0 1 0 0

 .

Example 25 Let w = 0011 be a word on the binary alphabet A = {0, 1}. The
infinite word wω is a 2-balanced word and we have max(Bw) = 2.

Sw =


0 0 1 1
0 1 2 1
1 2 2 1
2 2 2 2

 , Bw =

 0 0 1 1
0 1 2 1
0 1 1 0

 .

Some trivial questions can be asked after defining the matrix B.

1. What happens if the alphabet is not binary?

2. How are we able to determine the order of balancedness of a word over a
d−alphabet?

In fact, in order to reply to the second question, we assign for each letter its
proper balance matrix and we let the order of balancedness to be the maximal
value obtained between those matrices.

Definition 1.21 Let A = {a1, a2, · · · , ad} and w a circular word in A∗. We
generalize the form of Bw and we write Bak

w [i, j] = |sw[i, j]|ak −mini(Sw[i]),∀ 1 ≤
k ≤ d. We say that w is δ−balanced if:

δ = max
i

[Bak
w ],∀ 1 ≤ k ≤ d.

Example 26 Let w = 01221 be a word over the alphabet A = {0, 1, 2}.
wω is 2-balanced and we have:
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B0
w =


1 0 0 0 0
1 0 0 0 1
1 0 0 1 1
1 0 1 1 1

, B1
w =


0 1 0 0 1
1 1 0 1 1
0 0 0 0 1
0 1 0 1 1

, B2
w =


0 0 1 1 0
0 1 2 1 0
1 2 2 1 0
1 1 1 0 0

.

and hence: δ = max(B0
w, B

1
w, B

2
w) = 2.

Sage code During those years of research, all the results were tested and
computed using the Sage Software based on Python.
The matrix Bw is obtained by using the following code, where s denotes a binary
word:

1 c l a s s OccurrenceCounter :
2 de f i n i t ( s e l f , l , a ) :
3 s e l f . nb occ = [ 0 ]
4 f o r i in l :
5 i f i == a :
6 s e l f . nb occ . append ( s e l f . nb occ [−1] + 1 )
7 e l s e :
8 s e l f . nb occ . append ( s e l f . nb occ [−1] )
9

10 de f nbOcc ( s e l f , i , j ) :
11 re turn s e l f . nb occ [ j ] − s e l f . nb occ [ i ]
12

13 de f Balance Matrix ( s ) :
14 oc = OccurrenceCounter ( s+s , 1 )
15 n = len ( s )
16 B = [ [ oc . nbOcc ( j , j+i +1) f o r j in range (n) ] f o r i in range (n−1)

]
17 f o r i in range (n−1) :
18 m = min( B[ i ] )
19 B[ i ] = map( lambda x : x−m, B[ i ] )
20 re turn B

Listing 1.1: Code of the Balance Matrix.

Example 27 In Example 24 and using the definition of the balance matrix, we
have determined all the entries of the balance matrix Bw where w = C(5

2
) =

0110111. Using the code 1.5.1, we get the same result by computing:

Balance−Matrix([0, 1, 1, 0, 1, 1, 1]) =


0 1 1 0 1 1 1
0 1 0 0 1 1 0
0 0 0 0 1 0 0
0 1 1 1 1 1 1
0 1 1 0 1 1 0
0 1 0 0 1 0 0

 .
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1.5.2 Properties of the balance matrix

In this section, we present some properties of the matrix Bw, where w is a binary
word of length |w| = n, that allow us to restrict the work on the upper half of the
balance matrix since the lower half is deduced by symmetry. For the Definition
1.22, we need to recall that w ≡k w′ if and only if there exists u, v such that |u| = k
with w = uv and w′ = vu in order to prove one of the properties of the balanced
matrix given in Lemma 1.26.

Definition 1.22 Two words w and w′ are complementary if w ≡k E(w′) for some
k. Moreover, a word is said to be auto-complementary if it is complementary to
itself.

Example 28 For the word w = 0110110010, we have E(w) = 1001001101, hence
w is an auto-complementary word since w ≡5 E(w). While w = 0000100 and
w′ = 0111111 are such that w ≡4 E(w′), where E(w′) = 1000000.

Lemma 1.23 Any binary word w with n = |w| can be written as:

σj−1(w) = sw[k, j]sw[n− k, k + j];∀ 1 ≤ j ≤ n and 1 ≤ k ≤ n− 1.

Proof. Let w be a binary word with n its length. By induction we have:

• sw[k, 1] = w[1 · · · k] for p = 1 and ` = k;

• sw[n− k, k + 1] = w[k + 1 · · ·n] for p = k + 1 and ` = n− k.

Therefore, we can write: σ0(w) = w[1 · · ·n] = sw[k, 1]sw[n−k, k+1] = w[1 · · · k]w[k+
1 · · ·n];∀ k ∈ {1, . . . , n− 1}. Suppose this is true for σj−1, we prove it true for σj.
We have σj−1(w) = sw[k, j]sw[n− k, k + j], and we know that:

σj(w) = a−1
j σj−1(w)aj

= a−1
j sa

b
[k, j]sa

b
[n− k, k + j]aj

= a−1
j ajaj+1 · · · ak+j−1ak+j · · · aj−1aj

= aj+1 · · · ak+j−1ak+j · · · aj−1aj

= sw[k, j + 1]sw[n− k, k − j + 1]

�

Remark 1.24 The number of occurrences of each letters in a word is stable by
conjugacy, so that for all 1 ≤ i, j ≤ n,

Sw[i, j] + Sw[n− i, (i+ j) modn] = |w|1. (1.1)
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Example 29 Let a/b = 3/8, n = 11; the circular Christoffel word of slope 3/8
can be written as:

σ2(C

(
3

8

)
) = 010001 · 00100 = wω[3, 8] · wω[9, 13].

w

00010001001

w

00010001001
wω[3, 8]wω[9, 13]

So that:

|wω[3, 8]|1+|wω[9, 13]|1 = |sw[6, 3]|1+|sw[5, 9]|1 = Sw[6, 3]+Sw[5, 9] = |w|1 = 3 = a.

Property 1.25 The matrix Sw is such that for any 1 ≤ i < n, either:

(a) maxSw[i] + minSw[n− i] = |w|1,

(b) minSw[i] + maxSw[n− i] = |w|1.

In particular, if w is a 1−balanced word, we have:

(1) minSw[i] + minSw[n− i] = |w|1 − 1,

(2) maxSw[i] + maxSw[n− i] = |w|1 + 1,

Proof. For (a), given i ∈ {1, . . . , n−1}, let j be such that Sw[i, j] is maximal on
the i-th row. By equation (1.1), Sw[n− i, i+ jmodn] is minimal on the (n− i)-th
row, so that maxSw[i] + minSw[n− i] = a. Equation (b) is shown in a similar way.

For (1) and (2), since w is a balanced word, thus max(Sw[i]) ≤ min(Sw[i]) + 1.
On the other hand, max(Sw[i]) 6= min(Sw[i]) since it would imply that i is a period
row in Bw but this is impossible since wω does not have a period smaller than n. �

Example 30 Let w = C(5
2
), we have:

Sw =


0 1 1 0 1 1 1
1 2 1 1 2 2 1
2 2 2 2 3 2 2
2 3 3 3 3 3 3
3 4 4 3 4 4 3
4 5 4 4 5 4 4


We can see that:
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1. minSw[1] + maxSw[6] = 0 + 5 = 5,

2. minSw[3] + minSw[4] = 2 + 2 = 4,

3. maxSw[2] + maxSw[5] = 2 + 4 = 6.

Lemma 1.26 The balance matrix is such that for any 1 ≤ i < n,

Bw[i] ≡n−i E(Bw[n− i]).

Proof. From the definition of Sw, we have that the elements of Sw[i] ∈ {1, . . . , ak},
where ak ≤ |w|1. Therefore, to prove that Bw[i] ≡n−i E(Bw[n− i]), it is sufficient
to prove that Bw[i, j] = E(Bw[n− i, i+ j]), or Bw[i, j] +Bw[n− i, i+ j] = ak. Two
cases are to be studied:

• First case, if Sw[i, j] = minSw[i] = 0,∀i < n
2
:

In this case, Sw[n−i, (i+j) modn] = |w|1−Sw[i, j] =|w|1, and minSw[n−i] =
|w|1 −maxSw[i] from Property 1.25.
By the definition of Bw and equation (1.1),

Bw[i, j] = |w|1 − Sw[n− i, (i+ j) modn]−min(Sw[i]) = 0,

Bw[n− i, i+ j] = Sw[n− i, (i+ j) modn]−min(Sw[n− i]),
= |w|1 − (|w|1 −maxSw[i]) = ak.

By adding both rows, we get:

Bw[i, j] +Bw[n− i, i+ j] = ak.

• Second case, if Sw[i, j] = ai > minSw[i] = 0,∀i < n
2
:

In this case, Sw[n − i, (i + j) modn] = |w|1 − Sw[i, j] = |w|1 − ai, and
minSw[n− i] = |w|1 −maxSw[i] from Property 1.25.
By the definition of Bw and equation (1.1),

Bw[i, j] = |w|1 − Sw[n− i, (i+ j) modn]−min(Sw[i]) = ai,

Bw[n− i, i+ j] = Sw[n− i, (i+ j) modn]−min(Sw[n− i]),
= (|w|1 − ai)− (|w|1 −maxSw[i]) = ak − ai.

By adding both rows, we get:

Bw[i, j] +Bw[n− i, i+ j] = ak.
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• Third case, if i = n
2
:

In this case, Sw[n
2
, (n

2
+j) modn]+Sw[n

2
, j] = |w|1, and minSw[n

2
]+maxSw[n

2
] =

|w|1. The elements of Sw ∈ {a1, . . . , ak}, therefore the elements of Bw ∈
{0, . . . , ak− a1}. Hence to reach the result, we have to prove that Bw[n

2
, j] +

Bw[n
2
, (n

2
+ j) modn] = ak − a1.

By the definition of Bw and equation (1.1),

Bw[
n

2
, j] = Sw

[n
2
, j
]
−minSw

[n
2

]
,

= |w|1 − Sw
[n

2
, (
n

2
+ j) modn

]
− |w|1 + maxSw[

n

2
],

Bw

[n
2
, (
n

2
+ j) modn

]
= Sw

[n
2
, (
n

2
+ j) modn

]
−minSw

[n
2

]
.

By adding both rows, we get:

Bw

[n
2
, j
]

+Bw

[n
2
, (
n

2
+ j) modn

]
= maxSw

[n
2

]
−minSw

[n
2

]
= ak − a1.

�

A direct consequence of this lemma is that if Ba
b

has a middle row, then this
row is auto-complementary.

Corollary 1.27 If n is an even number, Ba
b
[n

2
] is an auto-complementary row.

Proof. The matrix Ba
b

has n − 1 rows that are pairwise complementary. by

Lemma 1.26, the ith row is complementary to the (n− i)th row. In particular for
i = n

2
, we have:

Ba
b
[
n

2
] ≡n

2
E(Ba

b
[
n

2
]).

�

Example 31 Let a/b = 3/7 with n = 10, the balance matrix B 3
7

is given by:

B 3
7

=



0 0 0 1 0 0 1 0 0 1
0 0 1 1 0 1 1 0 1 1
0 1 1 1 1 1 1 1 1 1
0 0 0 1 0 0 1 0 0 0
0 0 1 1 0 1 1 0 0 1
0 1 1 1 1 1 1 0 1 1
0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 1
0 1 1 1 0 1 1 0 1 1


.
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Note that B 3
7
[5] is an auto-complementary row and we have:

B 3
7
[5] = 00110 11001

= E( 11001 11001 )

From the previous lemmas, the lower half of Bw is deduced from the upper half.
The balance matrix associated to the rational number 1

b
has a particular form.

Remark 1.28 In the case where a = 1, the balance matrix is such that: B 1
b
[i] =

0(n−i)1i.

Example 32 Let w = C(1
4
) with n = 5, the balance matrix B 1

4
is of the following

form:

B 1
4

=


0 0 0 0 1
0 0 0 1 1
0 0 1 1 1
0 1 1 1 1

 .

Property 1.29 Let w = 0x1y such that x, y > 0. For i ≤ x and i ≤ y, we have:
Bw[i] = 0x−i+112 · · · (i− 2)(i− 1)iy−i+1(i− 1)(i− 2) · · · 21.

Proof. Let w = 0x1y, for i = 2, Sw[i, p] = |wω[p, p + i − 1]|1 for all 1 ≤ p ≤
x + y, therefore Sw[2] = 0x−112y−11 = 0x−2+112y−2+11 and since x − 1 > 0
then min(Sw[2]) = 0 and Bw[2] = Sw[2]. Suppose this is true for i ≤ x, hence
Bw[i] = 0x−i+112 . . . iy−i+1 . . . 21 prove it true for i + 1 such that i + 1 ≤ x. We
have Sw[i+1, p] = 0 for all 1 ≤ p ≤ x− i, for p = x− i+1, we have Sw[i+1, p] = 1
and for x− i+ 1 ≤ p ≤ y − x− i, we get Sw[i+ 1, p] = i+ 1. The values decrease
until p = x + y and we have Sw[i + 1, x + y] = 1. Since i + 1 ≤ x, then x− i ≥ 1
and minSw[i+ 1] = 0, therefore Bw[i] = 0x−i+112 . . . iy−i+1 . . . 21. �

Example 33 Let w = 000011111 = 0415, we have x = 4 and y = 5. For i = 3
such that i ≤ x and i ≤ y, we have from Property 1.29:

Bw[3] = 02123321

= 001233321.

The same result is obtained if we take a sliding window of length 3 and counts the
occurrences of the letter 1. Since the minimal value obtained is 0 hence the values
obtained form the entries of the row Bw[3].
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1.5.3 Christoffel words with a and b not coprime

In all the previous properties we had a⊥b. In this section, we present the form of
the balance matrix Ba

b
, where a and b are not coprime. We start by noticing that

the Christoffel word of slope a/b where a = a′d, b = b′d and d = gcd(a, b) is the

concatenation of d Christoffel words of slope a′/b′ and we denote: C(a
b
) =

[
C(a

′

b′
)
]d

.

Example 34 Let w = C( 6
10

), it is the Christoffel word of slope 6/10 that dis-
cretized the line segment of slope 6

10
= 3

5
. But the two line segments of slope 6/10

and 3/5 represent the same line, hence w is the repetition of w′ = C(3
5
) as shown

in Figure 1.11.

O(0, 0)

A

(10, 6)

Figure 1.11: The Christoffel word of slope 6
10 .

We remark that w is obtained by repeating the word w′ two times since d =
gcd(6, 10) = 2. Hence, we can say that w is the concatenation of w′ and we write:
w = (w′)2.

In the last part of this chapter, we introduce a new notation for matrices that
is used for Ba

b
when a and b are not coprime. In fact, we denote (M)

|k
` the matrix

having the block M repeated k times horizontally and ` times vertically.

Example 35 Let M =

(
0 1 2
3 4 5

)
and M ′ = (M)

|2
3 =


0 1 2 0 1 2
3 4 5 3 4 5
0 1 2 0 1 2
3 4 5 3 4 5
0 1 2 0 1 2
3 4 5 3 4 5

.

The matrix M ′ is composed of the matrix M where M is repeated 3 times
horizontally and 2 times vertically.

Property 1.30 Let a
b

be an unreduced fraction with d = gcd(a, b), the balance
matrix Ba

b
contains exactly d− 1 zero rows.



35

Proof. Let a
b

be an unreduced fraction with d = gcd(a, b) and n = a + b, we
introduce the three integers a′, b′, n′ such that: a = a′d, b = b′d and n = n′d. By
construction, C(a

b
) = [C(a

′

b′
)]d and Ba′

b′
is composed of n′ − 1 rows and n′ columns

where the n′th row is the period row of this matrix.
Hence Ba

b
is obtained by the same matrix of Ba′

b′
repeated d times horizontally

and vertically. Since for each balanced matrix we have the period row which is
made of zeros and is omitted. Hence we deduce that Ba

b
is composed of exactly

d− 1 zero rows since the last row of Ba
b

is removed. �

Example 36 We let the fraction 4
8

with d = 4, from Property 1.30, we get 4

repeated blocks all over the matrix B 4
8

and 3 zero rows and we write: B 4
8

= (B 1
2
)
|4
4 .

B 1
2

=

(
0 0 1
0 1 1

)
⇒ B 4

8
=



0 0 1 0 0 1 0 0 1 0 0 1
0 1 1 0 1 1 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 1
0 1 1 0 1 1 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 1
0 1 1 0 1 1 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 1
0 1 1 0 1 1 0 1 1 0 1 1


.
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Chapter 2

Algebraic view

In the previous chapter, we mentioned that this thesis is based essentially on
Christoffel words and we gave the geometric and combinatoric definitions. Equiva-
lently to all the definitions and properties mentioned before, we give in this chapter
the algebraic definitions of Christoffel words and we show the link between those
two points of view. This definition was initially given by Christoffel (1875) [14],
and then mentioned in different articles like in [5, 7, 8].

2.1 Algebraic definition

A Christoffel word of slope a/b is a sequence of a+b letters chosen from the binary
alphabet {0, 1}. This selection of letters is not done randomly, in fact we are going
to give three equivalent algebraic definitions that help us to determine the exact
letter to be chosen.
The Christoffel word of slope a/b is denoted w = C

(
a
b

)
and defined as follows:

Definition 2.1 [14] Let w = C
(
a
b

)
and n = a + b, for 0 ≤ i ≤ n, let ri = ia

mod n. The word w is of length n and for 1 ≤ i ≤ n, the i-th letter is given by:

w[i] =

{
0 if ri−1 < ri,
1 otherwise.

Example 37 Let w = C(5
8
) of length n = 13. The sequence (ri)0≤i≤n is given as

follows:
r0 = 0, r1 = 5, r2 = 10, r3 = 2, r4 = 7, r5 = 12, r6 = 4, r7 = 9, r8 =
1, r9 = 6, r10 = 11, r11 = 3, r12 = 8, r13 = 0.
Hence by Definition 2.1, we obtain:
w[1] = 0, w[2] = 0, w[3] = 1, w[4] = 0, w[5] = 0, w[6] = 1, w[7] =
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0, w[8] = 1, w[9] = 0, w[10] = 0, w[11] = 1, w[12] = 0, w[13] = 1; and we
write w = 0010010100101 as shown in Figure 2.1.

O(0,0)

(8,5)

0 0

1 0 0

1 0

1 0 0

1 0

1

Figure 2.1: The Christoffel word of slope 5/8.

In fact, the sequence R = (ri)0≤i≤|w|, where w is the Christoffel word of slope
a/b has a special geometric signification. Each integer point (k, l) on the Christoffel
path is followed by:

1. Either the point (k + 1, l) if we do a horizontal step, and hence the letter 0
is assigned to the word.

2. Or it is followed by (k, l + 1) if we do a vertical step and in this case the
letter 1 is chosen.

In 1875, Christoffel has introduced in [14] a relation that assigns to each point
of the Christoffel path, and depending on its coordinates, a specific label. This
relation is presented in Definition 2.2:

Definition 2.2 Let w = C(a
b
) such that a⊥b and (b, a) 6= (0, 1). We assign to the

integer point (k, l) on w the label: ka−lb
b

.

This label is exactly the vertical distance obtained between the point of coor-
dinates (k, l) and the line segment joining the origin to the point (b, a).

Example 38 From Example 37, we have that the Christoffel word of slope 5/8
is given by: w = 0010010100101 and its sequence R = (ri)0≤i≤13 is the following:
R = [0, 5, 10, 2, 7, 12, 4, 9, 1, 6, 11, 3, 8, 0]. In Figure 2.2, we assign the labels to each
integer point on this path. For the point of coordinates (3, 1), the label assigned is
exactly: v = 3.5−8.1

8
= 7

8
.



0
8

5
8

10
8

2
8

7
8

12
8

4
8

9
8

1
8

6
8

11
8

3
8 8

8

0
8

Figure 2.2: The labels assigned to each integer point of the Christoffel path of slope
5/8.
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Proposition 2.3 Let a and b be two coprime numbers. If s
b

and t
b

are two labels
assigned to two consecutive integer points on the Christoffel path of slope a/b, then
t = s+ a mod (a+ b). Also, t can take exactly one value from 0, 1, · · · , a+ b− 1
each time.

From this proposition, we can get some conclusions:

1. The numerators of the labels are exactly the values of the sequence R.

2. The point P that refers to the closest point on the Christoffel path which is
the point used to obtain the standard factorization is labeled by 1

b
. In other

words, the point P is obtained for a certain 0 ≤ i ≤ (a + b) where r(i) = 1,
which means that i.a = 1 mod (a + b). This proves also the uniqueness of
this factorization.

3. The point Q used to get the palindromic factorization and that refers to the
furthest point on the Christoffel path is labeled by a+b−1

b
. Equivalently, for

the point Q, r(i) = −1 or we can write: i.a = −1 mod (a+ b) to determine
the exact position of this point.

Example 39 Let w = C(5
8
) = 0010010100101 with n = 13. From Example 37,

we have:

• r[8] = 1;w[8] = 1, then the standard factorization is exactly at position 8
and we get w[1 · · · 8] = 00100101 = u and w[9 · · · 13] = 00101 = v the two
words that form the standard factorization of w.

• r[5] = 12 = n− 1, then the palindromic factorization is exactly at position 5
and we get w[1 · · · 5] = 00100 = p1 and w[6 · · · 13] = 10100101 = p2 the two
palindromes used to obtain the palindromic factorization.



40

After this definition, we are able to give a supplementary definition for the
Christoffel word of slope a/b related to the standard factorization.

Theorem 2.4 [7] Let w be a binary word over A∗, w is a Christoffel word of slope
a/b if and only if we can find two Christoffel words (u, v) such that:

det

(
|u|0 |v|0
|u|1 |v|1

)
∈ SL2(Z),

where SL2(Z) is the group of invertible matrices in Z with determinant equal to 1.

The couple (u, v) determines the standard factorization of w.

Example 40 Let w = C(5
8
) = 0010010100101, we can write w = (u, v) =

(00100101, 00101) where |u|0 = 5; |u|1 = 3 and |v|0 = 3; |v|1 = 2. By computing
the determinant as in Theorem 2.4 we get:

det

(
|u|0 |v|0
|u|1 |v|1

)
= det

(
5 3
3 2

)
= 1.

The two Christoffel words u = C(3
5
) and v = C(2

3
) form the standard factorization

of w.

From ([5], Lemma 3.5), and using Theorem 2.4, we get the Corollary 2.5, where
p ≡n q represents the congruence between p and q modulo n.

Corollary 2.5 Let w be a Christoffel word of slope a/b with (u, v) its standard
factorization and n = a+ b. Then |u| × a ≡n 1 and |v| × b ≡n 1 with |u|⊥|v|.

Example 41 The standard factorization of w = C(5
8
) is the pair (u, v) = (00100101, 00101).

By Corollary 2.5, the Christoffel words u and v respect the following properties:
8 = |u|⊥|v| = 5, and |u| × 5 = |v| × 8 = 40 ≡13 1.

Another direct consequence can be obtained from Theorem 2.4. In fact, using
the determinants defined in Theorem 2.4, we are able to prove, in a second way,
that all the elements of the Christoffel tree are Christoffel words.

Corollary 2.6 Let w be a Christoffel word with (u, v) its standard factorization.
The words G(w) = (u, uv) and D̃(w) = (uv, v) are Christoffel words.
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Proof. To prove that G(w) and D̃(w) are Christoffel words, we use Theorem 2.4
and we say:

det

(
|u|0 |uv|0
|u|1 |uv|1

)
= det

(
|u|0 |u|0 + |v|0
|u|1 |u|1 + |v|1

)
= det

(
|u|0 |v|0
|u|1 |v|1

)
= 1,

and since u, v, w = uv are Christoffel words then G(w) is also a Christoffel word.
Similarly we prove that D̃(w) is a Christoffel word too. �

We know from the previous chapter that we are dealing with circular Christoffel
words. As we can see in Definition 2.1, the sequence (ri)0≤i≤n starts and ends with
a 0. Therefore, we are able to represent this Christoffel word on a Cayley graph
of Z/(a + b)Z with generator a. In this graph, the nodes represent the sequence
(ri)0≤i≤|w|, where w is the Christoffel word of slope a/b. While the edges are exactly
w starting from 0 at angle zero and moving anticlockwise.

Example 42 Let w = C(3
5
), the sequence R = [(ri)0≤i≤|w|] is given as follows:

R = [0, 3, 6, 1, 4, 7, 2, 5] and w = 00100101. Figure 2.3 corresponds to the Cayley
graph of this word.

0

3
6

1

4

7
2

5

0

01

0

0

1 0

1

Figure 2.3: The Cayley graph of w = 00100101.

We give now a second definition to obtain the Christoffel word w of slope a/b.
This definition is based on determining the position of the occurrences of the letter
1 in w. We call the set of these positions the set of decreasing positions and we
denote it as follows:

Definition 2.7 Let w be a Christoffel word of slope a/b. The set of decreasing
positions of w, denoted D(a, b), is: D(a, b) = {1 ≤ i ≤ n | w[i] = 1},
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The next theorem is a translation of the Corollary 3.2 in [38] given by Paquin and
Reutenauer about the set of positions of the Christoffel words. In Chapter 6, we
will see in detail the modifications of this corollary in order to get a general form
for the set of decreasing positions of a Christoffel word. While for now, we give a
simple version of this set and we have:

Theorem 2.8 Let α be such that αa ≡ −1 mod n, then the set D(a, b) is :

D(a, b) = {(iαmodn) + 1 | i = 1 . . . a}.

Note that in the previous equation, one is added to the positions since we consider
that words start at position 1 while in [38] the words start at position 0.

Example 43 Let a/b = 3/5 so that n = 8, α = 5 and w = 00100101. The set of
the indexes of the letter 1 is D(3, 5) = {(5imod 8) + 1 | i = 1 . . . 3} = {3, 6, 8}.

Axis of symmetry: After defining the Cayley graph and introducing the
algebraic definitions of Christoffel words, we try in this paragraph to compute some
calculations and determine the position of the axis of symmetry of the Christoffel
word on the Cayley graph. By Property 1.13, we know that a Christoffel word can
be written as the concatenation of two palindromes and we have w = p1p2. From
the definition of a palindrome, we can observe that each palindrome has a center of
symmetry that is located exactly at the middle of the palindrome. It can be either
an element of the word if the length is odd, or it can be located between two values
of the word if its length is even. So we let w be a Christoffel word of slope a/b
and length n. The words p1 and p2 represent the two palindromes obtained from
the palindromic factorization of w having ` as the position of the palindromic
factorization, which means the value that satisfies: `.a ≡n −1. Therefore, the
positions of the center of symmetries of w are given respectively by: xc1 = `−1

2
+1 =

`+1
2

and xc2 = `+n−1
2

+ 1 = `+n+1
2

. Now, we distribute the letters of w and the
centers in a proportional way all over the unit circle to retrieve the Cayley graph
of w. The position angle on the Cayley graph of each w[i] is θi = 2π.(i−1)

n
, ∀ 1 ≤

i ≤ n. We arrange the points on the Cayley graph such that the first center of
symmetry is always at position −π

2
, hence the position angle of each letter becomes:

θ′i =
π(4(i−1)−4xc1+n)

2n
. This order is given for a certain aim that will be developed

in Chapter 6. The axis of symmetry of w is the axis joining the two centers of
symmetries.

Example 44 Let w = C(7
5
) and n = 12, we represent w and R = r[i] on the same

row and we get:

0
0−→ 7

1−→ 2
0−→ 9

1−→ 4
0−→ 11

1−→ 6
1−→ 1

0−→ 8
1−→ 3

0−→ 10
1−→ 5

1−→ 0
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Where 0 is for every increasing step and 1 for every decreasing one. By calculating
the position of the palindromic factorization, we get ` = 5 where ` is obtained by
computing: 7.` ≡ 11 mod 12. The two centers of symmetry are at positions
xc1 = 3 and xc2 = 9 respectively, and the set of decreasing points is given by:
D(7, 5) = {2, 4, 6, 7, 9, 11, 12}. Figure 2.4 shows the distribution of the letters of
the Christoffel word with their position angles on a linear axis. The left part of
Figure 2.5 shows the positions of the letters on the Cayley graph starting from
angle 0 at position 1, and the right part shows the new positions of the letters after
the rotation in order to get the first axis of symmetry at position −π

2
.

Figure 2.4: The representation of w on a line segment with the position angle of each
letter.

Figure 2.5: The axis of symmetry of w = C(7
5) represented on the Cayley graph before

and after rotation.

Sage code This is the code used to get the positions of the centers of symme-
try for a word w of slope a/b and the position angles of each letter on the Cayley
graph.
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1 import math
2 de f pgcd ( a , b) :
3 whi le a%b != 0 :
4 a , b = b , a%b
5 re turn b
6 de f cent ( a , n ) :
7 d=pgcd ( a , n)
8 l=1
9 f o r i in range (n) :

10 i f ( a∗ i−n+d)%n==0:
11 l=i
12 break
13 xc 1=(l −1) /2 .0 +1
14 xc 2=(l−1+n) /2 .0 +1
15 ang=[0 f o r j in range (n) ]
16 w=[0 f o r k in range (n) ]
17 ang = [ math . p i ∗ ( 4∗( i −1) − 4∗ xc 1 + n ) / (2∗n) f o r i in range

( n ) ]
18 w = [ 1 i f k in s e l s e 0 f o r k in range (n) ]
19 re turn ( xc 1 , xc 2 , ang ,w)

Listing 2.1: Coding a word onthe Cayley graph with its center of symmetry.

2.2 More about Christoffel words

In the previous Chapter, we defined the trivial Christoffel words to be: w = 0
and w = 1, where the couple formed by those two elements “(0, 1)” is the root of
the Christoffel tree and forms the standard factorization of the Christoffel word
of slope 1. Without loss of generality and in order to enlighten the notation, we
denote the two endomorphisms G and D̃ by φ0 and φ1 respectively. The vertices
of this tree are all the standard factorizations of Christoffel words (see [5], Section
3.2). We recall that using the endomorphism φ0 the next move on the tree is to
the left side, while using φ1, the next move is to the right side. In this section, we
introduce some definitions related to the Christoffel words and that are going to
be essential tools in the algebraic proves of the main result in this thesis. We start
by investigating the directive sequence for the Christoffel words.

Definition 2.9 Let w = C(a
b
) be a non-trivial Christoffel word, the directive se-

quence of w, noted ∆(a
b
), is the word ∆(a

b
) = i1i2 · · · in ∈ A∗ such that w =

(φin ◦ · · · ◦ φi2 ◦ φi1)(0, 1) and ik ∈ {0, 1}.

Note that a directive sequence ∆(a
b
) = i1 · · · in describes the path from the

root of the Christoffel tree to the Christoffel word C(a
b
) as follow : at step k, if
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ik = 0 then go left, otherwise, if ik = 1 then go right. More precisely, it allows us
to determine the position of the Christoffel word on the Christoffel tree.

Example 45 Let w = C(3
7
) = 0001001001, we will show using Definition 2.9 that

∆(3
7
) = 0011. We start by calculating (φ1 ◦ φ1 ◦ φ0 ◦ φ0)(0, 1) and we get:

(φ1 ◦ φ1 ◦ φ0 ◦ φ0)(0, 1) = (φ1 ◦ φ1 ◦ φ0)(0, 01)

= (φ1 ◦ φ1)(0, 001)

= φ1(0001, 001)

= 0001001001

= w.

By using ∆(3
7
), we are able to place w on the Christoffel tree as shown in Figure

2.6

(0, 1)

(0, 01)

φ 0

(0, 001)

φ 0

(0001, 001)
φ
1

(0001001, 001)
φ
1

Figure 2.6: Position of w = C(3
7) = 0001001001 on the Christoffel tree using ∆(3

7) =
0011.

2.2.1 Continued fractions

The initial geometric definition of Christoffel words mentioned in the last Chapter
is “discretization” of a line segment of “rational” slope. Hence, we are not able to
study Christoffel words and give results concerning this family of words without
giving and understanding some properties of the rational numbers. In this section,
we introduce the continued fractions of a rational number a/b. Further more in
this chapter, we see the relation between the continued fractions and Christoffel
words [4, 7].
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Definition 2.10 The continued fraction of a positive rational number a
b

is the
finite sequence of integers a

b
= [a0, . . . , az], with a0 ≥ 0; ai ≥ 1 for 1 ≤ i ≤ z and if

z ≥ 2 then az ≥ 2.
a

b
= a0 +

1

a1 +
1

· · ·
1

az−1 +
1

az

.

We note that if the sequence is infinite then it is a continued fraction of an irrational
number. In this thesis and since we are dealing with Christoffel words that are
finite standard sturmian words, we restrict the work to the finite case and we deal
with continued fractions of rational numbers.

Example 46 We consider the rational number 5/7, and by calculating its contin-
ued fraction we get the following form:

5

7
= 0 +

1

1 + 1
2+ 1

2

, therefore
5

7
= [0, 1, 2, 2].

The development in continued fraction can be represented in an equivalent
form. The initial definition of the continued fraction imposes to have az ≥ 2
for z ≥ 2. But for some particular cases, we need to extend the length of the
continued fraction or to reduce it. Therefore, Properties 2.11 and 2.12 show us
some manipulations in this development keeping the same rational number as
result.

Property 2.11 Let [a0, . . . , az] be the continued fraction of a
b
, it can also be writ-

ten as:
a

b
= [a0, a1, . . . , az − 1, 1].

Proof. If a
b

= [a0, a1, . . . , az − 1, 1] then

a

b
= a0 +

1

a1 + 1
...+ 1

az−1+1
1

= a0 +
1

a1 + 1
...+ 1

az

.

Hence a
b

= [a0, a1, . . . , az]. �

Further in this thesis and during our work, we get ai = 0 for a certain 1 ≤ i ≤ z.
Since by definition, the ai’s can not be null for i ≥ 1, therefore Property 2.12 shows
us the modifications to do to get the correct form of the continued fraction.
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Property 2.12 Let a
b

= [a0, a1, · · · , az−1, az], a0 ≥ 0 if for k ∈ {1, · · · , z}, ak = 0,
then a

b
= [a0, a1, · · · , ak−1 + ak+1, · · · , az]

Proof. Let a
b

= [a0, a1, . . . , ak−1, ak, ak+1, . . . , an], if ∃k > 0; ak = 0 we get:

a

b
= a0 +

1

a1 + 1
...+ 1

ak−1+
1

0+ 1

ak+1+
1

...+ 1
az

= a0 +
1

a1 + 1
...+ 1

ak−1+ak+1+
1

...+ 1
az

.

Hence: a
b

= [a0, a1, . . . , ak−1 + ak+1, . . . , az] and ai > 0,∀i > 0. �
In particular if az−1 = 0, we get a

b
= [a0, a1, . . . , az−2 + az] .

Example 47 The continued fraction r = [0, 1, 2, 2, 0, 2] is written properly as:
r = [0, 1, 2, 4] = 9

13
.

9

13
= 0 +

1

1 + 1
2+ 1

2+ 1

0+1
2

= 0 +
1

1 + 1
2+ 1

4

The question that arises now is how to obtain the elements of the continued
fraction of a rational number? The answer is the recursion used to obtain the a′is
of the continued fraction, called partial denominators of the continued fraction of
a/b, found in [5, 31] and certainly in Lothaire [33].

Proposition 2.13 Let a/b be a rational number with [a0, · · · , az] its continued
fraction. The partial denominators of a/b are calculated in a recursive way as
follows: Let β0 = a

b
and a0 = ba

b
c;

• if i > 0 and ai−1 6= βi−1, then:

βi =
1

βi−1 − ai−1

and ai = bβic.

• if i > 0 and ai−1 = βi−1, then the recursion aborts and we have all the partial
denominators of the continued fraction.

Example 48 Let a
b

= 9
13

, we obtain the partial denominators of a/b by letting:

β0 = 9
13

a0 = b 9
13
c = 0;

β1 = 1
β0−a0 = 13

9
a1 = b13

9
c = 1;

β2 = 1
β1−a1 = 9

4
a2 = b9

4
c = 2;

β3 = 1
β2−a2 = 4 a3 = b4c = 4;

Since β3 = a3, the recursion terminates and we get 9
13

= [0, 1, 2, 4] as shown in
Example 47.
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2.2.2 Stern-Brocot tree

The Stern–Brocot tree is a tree that was first introduced by the German math-
ematician Moritz Abraham Stern and the French clockmaker Achille Brocot in
the 19th century [1]. We can find in this tree lot of symmetric mathematical
structures with important algebraic and combinatorial properties. It was recently
reintroduced by Graham et al. [29]. The representation of this tree is related
basically to the regular continued fraction expansion of rational numbers and is
presented in Raney [41].
In this part, we introduce the Stern-Brocot tree as the infinite tree containing all
the positive reduced fractions a

b
. This tree starts with the fraction 1

1
at level 1 and

gives the two fractions 1
2

and 2
1

on the second level using the Farey sum defined
as follows: a

b
⊕ c

d
= a+c

b+d
. For the initial cases, we have: 1

1
= 0

1
⊕ 1

0
, 1

2
= 1

1
⊕ 0

1
and

2
1

= 1
1
⊕ 1

0
. The two fractions 1/0 and 0/1 are not represented on the tree since

they are not positive reduced fractions.
To simplify the notations, we denote a

b
⊕ c

d
by a

b
c
d

and a
b
⊕ . . .⊕ a

b
repeated p times

by (a
b
)p.

On each level of the tree, every fraction is of the form a+c
b+d

where a
b

(resp. c
d
) is the

nearest ancestor above and to the right (resp. left) of a+c
b+d

. Figure 2.7 represents
the first levels of the Stern-Brocot tree.

1
1

1
2

1
3

1
4

2
5

2
3

3
5

3
4

2
1

3
2

4
3

5
3

3
1

5
2

4
1

Figure 2.7: The first levels of the Stern-Brocot tree.

Remark 2.14 By the construction of the tree, we remark the following:

1. The tree is divided into two symmetric parts. The left part refers to all the
reduced fractions a

b
with a < b, while the right part is for the reduced fractions

of the form b
a
.

2. For each level k, the rational numbers are bounded by 1
k

and k
1
.
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3. At a certain level k of the Stern-Brocot tree, the rational numbers appear in
an increasing order from the left to the right.

4. At a certain level k, all the rational numbers a
b

belonging to the first half of the
tree, i.e (a < b), have a denominator greater or equal than k. Consequently,
in the second half, the fractions have a numerator greater or equal to k.

5. If a
b

and c
d

are the two ancestors of a+c
b+d

, we always have this relation:

a

b
<
a+ c

b+ d
<
c

d
.

Example 49 At the fourth level of the Stern-Brocot tree, the following sequence
of fractions appear increasingly and respectively:

1

4
<

2

5
<

3

5
<

3

4
<

4

3
<

5

3
<

5

2
<

4

1
.

If we choose the fraction 3
5
, it has 1

2
and 2

3
as ancestors since it can be written as:

3
5

= 1
2
⊕ 2

3
. We have by Remark 2.14, 1

2
= 0.5 < 3

5
= 0.6 < 2

3
= 0.6.

Definition 2.15 For a certain level k of the Stern-Brocot tree, two irreducible
fractions a/b and a′/b′ are consecutives if they are consecutive after the projection
of all the fractions of the tree to level k where the fractions with b > k are excluded.
In this case these two fractions respect the following relation:

a′b− ab′ = 1.

We remark that at a certain level k, the consecutive fractions are exactly the
ancestors of each fraction at this level.

Property 2.16 The relation between the consecutive fractions, remains true even
between (a

b
, a+c
b+d

) and (a+c
b+d

, c
d
).

Proof. Let the couple (a
b
, a+c
b+d

), where a
b
⊕ c

d
= a+c

b+d
. The fractions a

b
and c

d
are

the consecutive fractions respecting: cb− ad = 1. The same relation holds for this
couple since: (a+c)b−a(b+d) = ab+cb−ab−ad = cb−ad = 1. Same calculation
for the second couple. �

We can generalize this relation and obtain an interesting relation that will be
used during the work in Chapter 7.

Property 2.17 Let a
b

and c
d

be two consecutive fractions in the Stern-Brocot tree,
we have:

(c+ d)a = c(a+ b)− 1.



50

Proof. If a/b and c/d are two consecutive fractions in the Stern-Brocot tree,
then:

cb− ad = 1

cb− ad− ac+ ac = 1

(a+ b)c− (c+ d)a = 1

(a+ b)c− 1 = (c+ d)a.

�

Property 2.18 Let a
b

and c
d

be two consecutive fractions in the Stern-Brocot tree,
we have:

c

d
− a

b
=

1

bd
.

Proof. If a/b and c/d are two consecutive fractions in the Stern-Brocot tree,
then by Definition 2.15, we have: cb− ad = 1. Dividing both sides by bd we get:

cb− ad = 1

cb

bd
− ad

bd
=

1

bd
c

d
− a

b
=

1

bd
.

�

Similarly, and since by Property 2.16, we can generalize the result to the couples
(a
b
, a+c
b+d

) and (a+c
b+d

, c
d
), then Property 2.17 and Property 2.18 hold also true for these

two couples.

Example 50 Let the three fractions: 2
7
< 3

10
< 1

3
. From Definition 2.15 and

Property 2.16, we have: 7(1)− 2(3) = 7(3)− 2(10) = 1(10)− 3(3) = 1.
From Property 2.17 and its consequence we have:

• 3(4) = 13(1)− 1 = 12.

• 2(13) = 9(3)− 1 = 26.

• 4(2) = 9(1)− 1 = 8.

From Property 2.18 and its consequence we have:
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• 1
3
− 3

10
= 1

30
.

• 1
3
− 2

7
= 1

21
.

• 3
10
− 2

7
= 1

70
.

Due to this tree, a strong link comes out between Combinatorics and arith-
metics. In Property 2.19, we give the relation between the Christoffel tree and the
Stern-Brocot tree.

Property 2.19 [5] The Christoffel tree is isomorphic to the Stern-Brocot tree
where each vertex of the Christoffel tree of the form (u,v) is associated to the

fraction |uv|1
|uv|0 .

Proof. Let w = C( c
d
) with (u, v) its standard factorization . We have φ0(u, v) =

(u, uv) and w′ = φ1(u, uv) = (uuv, uv). From the construction of the Christoffel
tree and its properties, we know that:

• |u|1 + |v|1 = c and |u|0 + |v|0 = d;

• φ0(u, v) = C(a
b
), and we have: 2|u|1 + |v|1 = a and 2|u|0 + |v|0 = b.

Therefore w′ = φ1(u, uv) = (uuv, uv) is a Christoffel word having |w′|0 = 3|u|0 +
2|v|0 and |w′|1 = 3|u|1 + 2|v|1. Which is exactly: |w′|1 = a + c and |w′|0 = b + d.
Hence w′ is a Christoffel word of slope a+c

b+d
. Figure 2.8 shows the position of the

Christoffel words isomorphic to their slopes. Same reasoning is repeated if we start
by φ1 then by φ0.

(u, v) = C( c
d
)

(u, uv) = C(a
b
)

φ 0

(uuv, uv) = C(a+c
b+d

)

φ
1

(u, v) = C( c
d
)

(uv, v) = C(a
b
)

φ
1

(uv, uvv) = C(a+c
b+d

)
φ 0

Figure 2.8: Relation between the Farey sum and the endomorphisms φ0 and φ1.

�
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Sage code By considering that the fraction 1/1 belongs to the first level of
the Stern-Brocot tree, we give the code used to get all the fractions of this tree
level by level. The fraction a/b is represented by the couple (a, b).

1 de f SternBrocot ( n ) :
2 a l lNodes = [ vec to r ( ( 0 , 1 ) ) , vec to r ( ( 1 , 0 ) ) ]
3 t r e e = [ a l lNodes ]
4 f o r i in range (n) :
5 newNodes = [ ]
6 tmp = [ ]
7 f o r j in range ( l en ( a l lNodes )−1 ) :
8 a = al lNodes [ j ]
9 b = al lNodes [ j +1]

10 newNodes . append ( a+b )
11 tmp . append ( a )
12 tmp . append ( a+b )
13 tmp . append ( a l lNodes [−1] )
14 t r e e . append ( newNodes )
15 a l lNodes = tmp
16 re turn t r e e
17

Listing 2.2: Coding used to get the elements of the Stern-Brocot tree represented by
couples.

Example 51 The following couples represent the fractions of the first 3 levels of
the Stern-Brocot tree.

1

2 sage : S ternBrocot (3)
3

4 [ [ ( 0 , 1) , (1 , 0) ] ,
5 [ ( 1 , 1) ] ,
6 [ ( 1 , 2) , (2 , 1) ] ,
7 [ ( 1 , 3) , (2 , 3) , (3 , 2) , (3 , 1) ] ]

The isomorphism between these two trees creates a link between the continued
fractions, the Christoffel words and the directive sequence ∆(a

b
). After identify-

ing the partial denominators of the continued fraction of a rational number using
Proposition 2.13, we introduce now the following theorem for Henry J.Smith in
1876. This theorem gives an additional characterization for the Christoffel words.
In fact, he showed that the Christoffel word can be obtained by a recursive ex-
pression using the partial denominators of the rational number.

Theorem 2.20 [49] Let a
b

= [c0, c1 . . . cn], a word w = 0u1 is a Christoffel word
of slope a

b
if and only if u01 or u10 is equal to sn+1, where sn is defined recursively

by: s−1 = 0, s0 = 1 and sn+1 = scnn sn−1 for all n ≥ 0.
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Example 52 For the rational number 9
13

= [0, 1, 2, 4], we can write:

s1 = s0
0s−1 = 100 = 0

s2 = s1
1s0 = 011 = 01

s3 = s2
2s1 = (01)20 = 01010

s4 = s4
3s2 = (01010)401 = 0101001010010100101001.

We remark that s4 can be written as: s4 = (01010010100101001010)01 where u =
01010010100101001010 is a palindrome and w = 0u1 is the Christoffel word of
slope 9

13
.

Palindromization

In this part, we define an operator on binary words that will be the key chain
between rational numbers and the Christoffel word. We start by recalling that a
palindrome is the word equal to its reversal and we define the palindromic closure
as follows:

Definition 2.21 [4] Given a word w, the palindromic closure w+ is the shortest
palindrome having w as a prefix.

Example 53 Let w = 011010010, this word is not a palindrome since w̃ =
010010110 6= w. Therefore, we can calculate its shortest palindrome and we get:
w+ = 011010010110.

Using this operator, we introduce the function iterated palindromic closure
denoted Pal(w) that is used to construct the Christoffel word.

Definition 2.22 The iterated palindromic closure, is the function Pal : A∗ → A∗

defined recursively as follows:

Pal(w) =

{
ε if w = ε,

(Pal(v)a)+ if w = va ∀a ∈ A.

N.B: Do not mix between Pal(A∗) the set of all palindromes over the alphabet
A∗ and Pal(w) the iterated palindromic closure function defined on words.

Example 54 Let w = 0110, to calculate Pal(w) we must follow these steps:

Pal(0) = 0,

Pal(01) = (Pal(0)1)+ = 010,

Pal(011) = (Pal(01)1)+ = 01010,

Pal(0110) = (Pal(011)0)+ = 0101001010.

and we get: Pal(0110) = 0101001010 where each underlined letter belongs to w.
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We know that each Christoffel word w is written as: w = 0w′1, where w′ is
the central word and moreover w′ is a palindrome. In 1994, Mignosi and Aldo de
Luca introduced a property for the Christoffel words that was a path that leaded
to the relation between these words and the directive sequence.

Proposition 2.23 [17] Any Christoffel word can be written in the following form
w = 0u1 where u = Pal(v) for some v ∈ {0, 1}∗.

Example 55 Let the Christoffel word w = C(5
7
), we let v = 0110. We know that

w = 0(0101001010)1, hence by Proposition 2.23, v = Pal(0110) = 0101001010,
that was calculated in Example 54. In the Figure 2.9, we show the path followed in
the Christoffel tree to reach w that corresponds to the same path followed on the
Stern-Brocot tree to reach the rational number 5/7.

(0,1)

(0,01)

0

(001,01)
1

(00101,01)
1

(00101,0010101)
0

1
1

1
2

0

2
3

1

3
4

1

5
7

0

Figure 2.9: Position of the w = C(5
7) comparing to the position of 5/7 on Stern-Brocot

tree.

In the following part, we will explain how to pass from the continued fraction of
a rational number a/b to the Christoffel word of slope a/b passing by the iterated
palindromic closure function. In fact, in 1987, Berstel introduced the following
relation between the partial denominators of a rational number and two particular
matrices based on the theorem 2.1 in George Raney’s paper [41] in 1973. Using

the two matrices A =
(1 1

0 1

)
and B =

(1 0
1 1

)
, and for the particular case of the

rational number a/b where a < b, we have:

Proposition 2.24 [3] For a < b, we associate for the rational number a
b

=
[0, a1, a2, . . . , an], the following matrix:

M(
a

b
) = Aa1−1Ba2 . . . Can−1,
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where C = A or C = B depending on the parity of n. We have:

M(
a

b
).
(1

1

)
=
(b− a

a

)
.

Example 56 For the rational number 9
13

= [0, 1, 2, 4], we have:

1. The associated matrix to 9
13

is given by: M( 9
13

) = A0B2A3 =
(1 3

2 7

)
.

2. By calculating M( 9
13

).
(1

1

)
, we get:

(4
9

)
.

Furthermore, in 1993, Borel and Laubie, followed by de Luca in 1997 then
Berthé, de Luca and Reutenauer in 2008, gave the following theorem, where they
linked these two particular matrices to the Christoffel word of slope a/b.

Theorem 2.25 [4, 6, 7] Let w be a Christoffel word of slope a/b, there exists a
unique palindrome v such that w = 0pal(v)1, if (w1, w2) is the standard factoriza-
tion of w then:

µ(v) =

(
|w1|0 |w2|0
|w1|1 |w2|1

)
,

where the multiplicative monoid morphism

µ : {0, 1}∗ −→ SL2(Z)

is defined by : µ(0) =
(1 1

0 1

)
= A and µ(1) =

(1 0
1 1

)
= B.

Example 57 For the rational number 3
11

= [0, 3, 1, 2], with w = C( 3
11

) = 00001000010001
the Christoffel word of slope 3/11 and w = (00001, 000010001) its standard factor-
ization, we let v = 00010 and we have:

µ(v) = µ(0310) = µ(0)3µ(1)µ(0) = A3B1A1 =
(4 7

1 2

)
=

(
|w1|0 |w2|0
|w1|1 |w2|1

)
.

Using Proposition 2.24 and Theorem 2.25, we can conclude the general form of
the directive sequence of a rational number a/b and the link between ∆(a

b
) and

the Christoffel word of slope a/b.

Theorem 2.26 Let w be a Christoffel word of slope a
b

where the continued fraction
of a/b is given by: [a0, a1, ..., az] = [a0, a1, ..., az − 1, 1]. The directive sequence of
this Christoffel word has the following form:

∆(
a

b
) = 1a00a11a2 ...paz−1

where p ∈ {0, 1}. In addition, we have: w = 0Pal(∆(a
b
))1.
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Proof. We divide the proof into two parts, the first one where a0 = 0 and the
second one for a0 > 0.

• For a0 = 0:
From Theorem 2.25, the Christoffel word of slope a/b has a unique word

v such that: w = 0Pal(v)1 with µ(v) =

(
|w1|0 |w2|0
|w1|1 |w2|1

)
. In addition,

from Proposition 2.24, for the rational number a
b

= [0, a1, . . . , az], we have:
M(a

b
) = Aa1−1Ba2 . . . Caz−1 where C = A or C = B depending on the parity

of z and with M(a
b
).
(1

1

)
=
(b− a

a

)
. If we multiply by A from the left side of

the matrix M(a
b
), we get: A.M(a

b
) = Aa1Ba2 . . . Caz−1 = µ(0a11a2 . . . paz−1),

where p = 0 or p = 1 depending on the parity of z.

A.M(
a

b
)
(1

1

)
=
(1 1

0 1

)
.
(b− a

a

)
=
(b
a

)
=
(|w|0
|w|1

)
.

In another hand, µ(v).
(1

1

)
=
(|w1|0 + |w2|0
|w1|1 + |w2|1

)
=
(|w|0
|w|1

)
. This allows us to

conclude that v = 100a1 . . . paz−1 where p ∈ {0, 1} depending on the parity
of z. By Definition 2.9, we know that the directive sequence of a rational
number a/b is the path followed in the Stern-Brocot tree to reach the rational
number. Hence we have that w = 0Pal(∆(a

b
))1.

• For a0 > 0,
From Theorem 2.20, we are able to pass from the partial denominators of
a rational number a/b = [a0, . . . , an] to the Christoffel word of slope a/b
by using the smith algorithm. In fact the word obtained is of the form
sn+1 = u01 or sn+1 = u10 where u is a palindrome and sn+1 = sann sn−1. By
Theorem 2.25, we know that the Christoffel word has the following form:
0Pal(v)1. Therefore, we can conclude that u = Pal(v). Starting from
s1 = sa00 s−1 = 1a00, if we compute s2 = sa11 s0 = (1a00)a11 and we continue
the iteration till sn+1, we remark that u always starts with 1a0 . Hence, using
the iterated palindromic closure function and since Pal(1a0) = 1a0 , we can
say that v starts with 1a0 . Finally, from the previous case, we can generalize
the form of ∆(a

b
) and say that v = ∆(a

b
) = 1a00a1 . . . pan−1, where p ∈ {0, 1}

depending on the parity of n and w = 0Pal(v)1 = 0Pal(∆(a
b
))1.
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Example 58 Let us consider the rational number 5/7 of continued fraction 5/7 =
[0, 1, 2, 2].
Using Theorem 2.26, the directive sequence of this fraction is given by: ∆(5

7
) =

10011201 = 0110. Hence, we can write: C(5
7
) = 0 Pal(∆(5

7
))1 = 0 0101001010 1

since Pal(0110) = 0101001010 as seen in Example 55.

In the following, we give some properties about the directive sequence of the ra-
tional number deduced from Theorem 2.26.

Property 2.27 If the continued fraction of a/b is of the form: a
b

= [0,m,m, ....,m]
where m is repeated ` times, then ∆(a

b
) is of the following form:

∆(
a

b
) =

{
(0m1m)f−10m1m−1 if ` = 2f

(0m1m)f0m−1 if ` = 2f + 1

Proof. Since a0 = 0 and 10 = ε then ∆ starts with 0m. We have [0,m,m, ...,m] =
[0,m,m, ..,m− 1, 1] where m is repeated `− 1 times and we have al = m− 1. By
applying Theorem 2.26 we get:

• If ` = 2f + 1, then we have 2f times the number m and the m− 1 only one
time therefore ∆ = (0m1m)f0m−1.

• If ` = 2f , then we have the m repeated 2(f −1) times followed by 1 (m) and
1 (m− 1) therefore ∆ = (0m1m)f−10m1m−1.

�

In the next Chapter, we need some particular fractions on the Stern-Brocot
tree. Therefore, we define the following terminology by reference to the position
of the fractions, relatively to a/b, in the Stern-Brocot tree. See Figure 2.10 for an
illustration. We give the definition of those particular fractions in two different
ways. First by introducing their form using the continued fraction then deducing
their directive sequence. Second, we give the definition in the opposite way by
introducing the form of the directive sequence and deducing the continued fraction
form of each fraction showing geometrically the paths needed to get each fraction.

Definition 2.28 Given a
b

= [a0, . . . , az],
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(1) the top branch fraction of a
b
, noted TBF (a

b
), is the fraction [a0, . . . , az−1 + 1],

(2) the first reduced fraction of a
b
, noted FRF (a

b
), is the fraction [a0, . . . , az−1],

(3) the first extended fraction of a
b
, noted FEF (a

b
), is the fraction [a0, a1, . . . , az+

1],

(4) the first deviation fraction of a
b
, noted FDF (a

b
), is the fraction [a0, a1, . . . , az−

1, 2],

(5) the first parallel fraction of a
b
, noted FPF (a

b
), is either [a0, a1, . . . , az−1− 1, 2]

if az−1 6= 1 or [a0, a1, . . . , az−2 + 2] if az−1 = 1.

(6) the second unidirectional father of a
b
, noted SUF (a

b
), is either [a0, a1, . . . , az−

2] if az > 2 or [a0, a1, . . . , az−2] if az = 2.

Note that SUF(a
b
) is not defined for fractions 1

1
, 1

2
and 2

1
. Using Theorem 2.26

we have the following relations between the directive sequence of a fraction and
the above definitions.

Remark 2.29 Given a
b

= [a0, a1, . . . , az], we have that ∆(a
b
) = 1a00a1 · · · paz−1qaz−1

where {p, q} = {0, 1} and:

(1) ∆
(
TBF(a

b
)
)

= 1a00a1 · · · paz−1,

(2) ∆
(
FRF(a

b
)
)

= 1a00a1 · · · paz−1−1,

(3) ∆
(
FEF(a

b
)
)

= 1a00a1 · · · paz−1qaz ,

(4) ∆
(
FDF(a

b
)
)

= 1a00a1 · · · paz−1qaz−1p,

(5) ∆
(
FPF(a

b
)
)

= 1a00a1 · · · paz−1−1q if az−1 6= 1, or 1a00a1 · · · qaz−2+1 if az−1 = 1.

(6) ∆
(
SUF(a

b
)
)

= 1a00a1 · · · qaz−1 if az > 2, or 1a00a1 · · · qaz−2−1 if az = 2.

Example 59 Let a/b = 3/5, its continued fraction is : [0, 1, 1, 2], applying the pre-
vious result, we get: TBF(3/5) = 2/3, FEF(3/5) = 4/7, FDF(3/5) = 5/8, FPF(3/5) =
1/3 and SUF(3/5) = 1/1. See Figure 2.10 for the positions of theses fractions in
the Stern-Brocot tree.

Definition 2.30 Let a/b be a rational number with ∆(a
b
) = up where u ∈ A∗ and

p ∈ {0, 1}, we define the first extended fraction of a/b as the fraction c/d such
that ∆( c

d
) = upp.

Property 2.31 Let a
b

= [a0, a1, . . . , az] then the first extended fraction of a
b

is
c
d

= [a0, a1, . . . , az + 1].



1
1

2
1

3
1

4
1

5
1

7
2

5
2

8
3

7
3

3
2

5
3

7
4

8
5

4
3

7
5

5
4

1
2

2
3

3
4

4
5

5
7

3
5

5
8

4
7

1
3

2
5

3
7

3
8

1
4

2
7

1
5

Figure 2.10: Illustration of Definition 2.28 in the Stern-Brocot tree relatively to 3/5 =
[0, 1, 1, 2]. We have : TBF(3/5) = 2/3, FRF(3/5) = 1/2, FEF(3/5) = 4/7, FDF(3/5) =
5/8, FPF(3/5) = 1/3 and SUF(3/5) = 1/1.

59

Proof. Let a
b

= [a0, . . . , az] = [a0, . . . , az − 1, 1] with ∆(a
b
) = 1a00a1 . . . paz−1 =

u′paz−2p where u = u′paz−2 and p = 0, (resp. p = 1) if φ0, (resp. φ1) is the
last morphism used to reach a/b on the Stern-Brocot tree. By definition 2.30,
∆( c

d
) = u′paz−2pp = u′paz . Thus c

d
= [a0, . . . , az, 1] = [a0, . . . , az + 1]. �

a
b

= [a1, . . . , az]

0

c
d

= [a1, . . . , az + 1]

0

a
b

= [a1, . . . , az]

1

c
d

= [a1, . . . , az + 1]

1

Definition 2.32 Let a/b be a rational number with ∆(a
b
) = up where u ∈ A∗ and

p ∈ {0, 1}, we define the first deviation fraction of a/b as the fraction c/d such
that ∆( c

d
) = upp′, where p′ ∈ {0, 1} and p 6= p′.

Lemma 2.33 Let a
b

= [a0, a1, . . . , az], then the first deviation fraction of a
b

is
c
d

= [a0, . . . , az − 1, 2].

Proof. Let a
b

= [a0, a1, . . . , az] be a rational number on the Stern-Brocot tree,
then ∆(a

b
) = 1a0 . . . paz−1 = u′paz−2p where u′ ∈ A∗, u = u′paz−2 and p = 0, resp

p = 1 if φ0, resp φ1 is the last morphism used to reach a/b. By definition 2.32,
∆( c

d
) = 1a0 . . . paz−1p′ where p′ ∈ {0, 1} and p′ 6= p. Thus c

d
= [a0, . . . , az−1, 1, 1] =

[a0, . . . , az − 1, 2].
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a
b

= [a1, . . . , az]

0

c
d

= [a1, . . . , az − 1, 2]

1
a
b

= [a1, . . . , az]

1

c
d

= [a1, . . . , az − 1, 2]

0

�

Definition 2.34 Let a/b be a rational number with ∆(a
b
) = upp′ where u ∈ A∗,

p, p′ ∈ {0, 1} and p 6= p′. We define the first parallel fraction of a/b as the fraction
c/d such that ∆( c

d
) = up′.

Lemma 2.35 Let a
b

= [a0, a1, . . . , 2], then the first parallel fraction of a/b is c/d
and is equal to:

c

d
=

{
[a0, . . . , az−1 − 1, 2] if az−1 6= 1

[a0, . . . , az−2 + 2] if az−1 = 1
(2.1)

Proof. Let a
b

= [a0, . . . , az−1, 2] be a rational number with ∆(a
b
) = u′paz−1−1pp′

where u′ ∈ A∗, p, p′ ∈ {0, 1} and p 6= p′. By definition 2.34, the first parallel
fraction c/d can be written as: ∆( c

d
) = u′paz−1−1p′. Therefore, if az−1 6= 1 we get

c
d

= [a0, . . . , az−1 − 1, 2]. If az−1 = 1 and since we can write u′ = u′′p′az−2 , where
u′′ ∈ A∗, we get ∆( c

d
) = u′′p′az−2p′ = u′′p′az−2+1. Thus c

d
= [a0, . . . , az−2 + 2]. �

[a0, . . . , az−1] = [a1, . . . , az−1 − 1, 1]

c
d

= [a0, . . . , az−1 − 1, 2]

0

[a0, . . . , az−1, 1] = [a1, . . . , az−1 + 1]

1

a
b

= [a1, . . . , az−1, 2]

0

or

[a0, . . . , az−1] = [a1, . . . , az−1 − 1, 1]

c
d

= [a0, . . . , az−1 − 1, 2]

1

[a0, . . . , az−1, 1] = [a1, . . . , az−1 + 1]

0

a
b

= [a1, . . . , az−1, 2]

1
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Definition 2.36 Let a/b be a rational number with ∆(a
b
) = uv; u ∈ A∗ and v is

the shortest suffix of ∆(a
b
) ; |v|p = k and p ∈ {0, 1}. We define the fraction c/d as

the fraction k steps before a/b and in the same direction of it, if ∆( c
d
) = u.

Lemma 2.37 Let a
b

= [a0, a1, . . . , az], then the fraction c/d which is k steps before
a/b is equal to:

c

d
=

{
[a0, . . . , az − k] if az > k

[a0, . . . , az−2] if az = k.
(2.2)

Proof. Let a
b

= [a0, . . . , az−2, az−1, az] with ∆(a
b
) = u′paz−2p′az−1paz−1 where

p 6= p′ and p, p′ ∈ {0, 1}. By definition 2.36, if az > k, we choose v = pk and we
write ∆(a

b
) = uv, hence ∆( c

d
) = u = u′paz−2p′az−1paz−1−k and c

d
= [a0, . . . , az − k].

If az = k we choose v = pp′az−1paz−1 hence ∆( c
d
) = u = u′paz−2−1 thus c

d
=

[a0, . . . , az−2]. �

In the last part of this Chapter and using the definition of Paquin, Reutenauer
for Christoffel words that we saw in Definition 2.8 [38], we give some additional
arithmetic properties for the Balanced matrix and an equivalent arithmetic con-
struction for Ba

b
.

We recall that: Ba
b
[i, j] = Sa

b
[i, j]−mini(Sw[i]), for all 1 ≤ i ≤ (a+ b).

Lemma 2.38 Let a
b

= [a0, . . . , az], and FRF(a
b
) = x

y
with |x

y
| = k. We recall the

set of decreasing positions D(a, b) = {iα+1 mod n} where n = a+b and we have:

α =

{
k if z is even

n− k if z is odd.

Proof. Let a
b

= [a0, . . . , az] and D(a, b) = {iα + 1 mod n} where α.a ≡n −1.
Using Lemma 2.5, the C(a

b
) = (w1, w2) is such that |w1|.a ≡n 1⇔ (n− |w1|).a ≡n

−1. Therefore in D(a, b), we have α = n− |w1| = |w2|.

• If z is even, then ∆(a
b
) = 1a00a1 . . . 1az−1 and the last function used is φ1

which means that the last path used to reach the fraction a
b

on the Stern-
Brocot tree is the right path. By the definitions of the two functions φ0 and
φ1, C(a

b
) is obtained by a concatenation to the left side of the word as shown

in Figure 2.11.

where w2 = C(FRF(a
b
)) and |w2| = k, therefore α = k.



w2 = (u, v)

(u,w2)

C(a
b
) = (w1, w2)

Figure 2.11: Form of the Christoffel word C(ab ) obtained by φ1.
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• If z is odd, then ∆(a
b
) = 1a00a1 . . . 0az−1 and the last function used is φ0 which

means that the last path used to reach the fraction a
b

on the Stern-Brocot
tree is the left path. In this case the concatenation is on the right side as
shown in Figure 2.12.

w1 = (u, v)

(w1, v)

C(a
b
) = (w1, w2)

Figure 2.12: Form of the Christoffel word C(ab ) obtained by φ0.

where w1 = C(FRF(a
b
)) and |w1| = k, therefore α = n− k.

�

Lemma 2.39 Let a
b

= [a0, . . . , az] and x
y

= FRF(a
b
) such that |C(x

y
)| = x+ y = k

and if z is odd, we have: {
Ba

b
[k] = 0α10n−α−1

Ba
b
[2k] = 0n−2k10k−110k−1.

(2.3)

while if z is even, we have:{
Ba

b
[n− k] = 0α10n−α−1

Ba
b
[n− 2k] = 0n−2k10k−110k−1.

(2.4)



63

Proof. We prove the case where z is odd and the second case is obtained in a
similar way. We let p1, p2 be two palindromes such that: C( s

t
) = 0p11, C( g

h
) = 0p21

where C(x
y
) = C( g

h
)C( s

t
); by composing (az − 1) the endomorphism φ1, we can

write: C(a
b
) = (C(x

y
))az−1C(u

v
) and C(u

v
) = C(x

y
)C( s

t
). The central word of C(x

y
)

is a palindrome then we have: p210p1 = p101p2. By the definition of the balance
matrix, we have for all 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n:

Ba
b
[k, j] = Sa

b
[k, j]−min(Sa

b
[k])

= |C
(a
b

)
[j . . . k + j − 1]|1 −min(Sa

b
[k]).

Summing up all this we get:

C
(a
b

)
= C

(
x

y

)az−1

.C

(
x

y

)
C
(s
t

)
= C

(
x

y

)az−1

.0P210p110p11

= C

(
x

y

)az−1

.0P101p210p11.

We know that k = |p1|+ |p2|+4 and |C
(
x
y

)
|1 = |p1|1 + |p2|1 +2 = x. Therefore all

the elements u ∈ Lk(C
(
a
b

)ω
) have |u|1 = |p1|1 + |p2|1 +2 except u′ = 1p210p11 who

is of length k and at position n − k but has |u′|1 = x + 1. Hence by subtracting
by min(Sa

b
[k]), we get Ba

b
[k] = 0n−k10k−1. By lemma 2.38, we know that since z

is odd, α = n− k, which ends the proof.

Same reasoning is used to determine the row Ba
b
[2k], where 2k = 2|C

(
x
y

)
| =

2|p1|+ 2|p2|+ 8. We also have:

C
(a
b

)
= C

(
x

y

)az−2

.C

(
x

y

)
.C

(
x

y

)
C
(s
t

)
= C

(
x

y

)az−2

.0P210p11.0P210p110p11

= C

(
x

y

)az−2

.0P101p21.0P101p210p11.

All the elements u of L2k(C
(
a
b

)ω
) have |u|1 = 2|p1|1 + 2|p2|1 + 4 = 2x except

the element u′ = 1p21.0P101p210p11 of length 2k and that appears two times in
C
(
a
b

)ω
, at position n− k and n− 2k. We have |u′|1 = 2|p1|1 + 2|p2|1 + 5 = 2x+ 1,

thus applying the definition of Ba
b
[2k, j] ∀ 1 ≤ j ≤ n, we obtain the result. �
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2.2.3 Second construction of the balance test matrix

Let w be a Christoffel word, we build the matrix Bw by computing recursively all
the positions of its 1’s. Let Di = {j | Bw[i, j] = 1} that is the set of the positions
of the 1′s on the ith row. Note that these positions are considered in the circular
word of length n so that j + n = j and 1 ≤ j ≤ n. For any set of integers S and
any integer k, we denote S + k = {a+ s | a ∈ S}.

Theorem 2.40 If a < b then the sets (Di)1≤i≤n−1 are obtained recursively by:
D1 = D(a, b) and for each i from 2 to n− 1:

Di =

{
Di−1 ∪ (D1 − (i− 1)) if i /∈ D1

Di−1 ∩ (D1 − (i− 1)) if i ∈ D1

(2.5)

Proof. From the definition of D(a, b) and since Bw[1] = w, we have D1 = D(a, b).
By construction, |D1| = a and we write D1 = {d1, d2, . . . , da}, where d1 < d2 <
. . . < da.
Since a < b the Christoffel word is the concatenation of blocks of the form: 0d+11
and 0d1 where the first block is always of the form 0d+11. We define an intersection
row Di to be a row such that i ∈ D1. First, we show that the intersection rows
are exactly the rows where the values of min(Sw[i]) and max(Sw[i]) increase.

Let Di be an intersection row, since there is one more occurrence of the letter
1 in the prefix of length i than in the prefix of length i − 1, we have Sw[i, 1] =
Sw[i− 1, 1] + 1. Lemma 1.15 implies that min(Sw[i]) = min(Sw[i− 1]) + 1. Since
a Christoffel word has no period smaller than its length and is 1-balanced, we
must have that max(Sw[i]) = min(Sw[i]) + 1 for all i ∈ {1, . . . , n − 1}. Thus
max(Sw[i]) = max(Sw[i − 1]) + 1 if and only if Di is an intersection row and
max(Sw[i]) = max(Sw[i− 1]) otherwise. There are two cases to consider.

• If i /∈ D1, in this case maxSw[i] = maxSw[i− 1] and minSw[i] = minSw[i−
1] = Sw[i, 1] = Sw[i− 1, 1]. Let j ∈ Di, then by definition:

Bw[i, j] = Sw[i, j]−minSw[i] = Sw[i, j]− Sw[i, 1] = 1.

and

Bw[i− 1, j] = Sw[i− 1, j]−minSw[i− 1] = Sw[i− 1, j]− Sw[i− 1, 1] ∈ {0, 1}.

Indeed, j ∈ Di implies Bw[i, j] = 1 but Bw[i− 1, j] can be equal to 0 or 1.

– If Bw[i− 1, j] = 1, then we have j ∈ D(i−1).
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– If Bw[i− 1, j] = 0,

Sw[i− 1, j]− Sw[i− 1, 1] = 0,

Sw[i− 1, j]− Sw[i, 1] = 0,

Sw[i− 1, j]− Sw[i, j] + 1 = 0,

Sw[i, j]− Sw[i− 1, j] = 1,

|w[j, i+ j − 1]|1 − |w[j, i+ j − 2]|1 = 1.

Therefore, w[i + j − 1] = 1 and Bw[1, i + j − 1] = Sw[1, i + j − 1] =
w[i+ j − 1] = 1, hence i+ j − 1 ∈ D1 ⇔ j ∈ D1 − (i− 1).

From the above, we conclude that j ∈ Di ⇔ j ∈ D(i−1) ∪ (D1 − (i− 1)).

• If Di is an intersection row, then i ∈ D1 and Sw[i, 1] = Sw[i− 1, 1] + 1;

j ∈ Di ⇔ Sw[i, j] = Sw[i, 1] + 1,

= Sw[i− 1, 1] + 2.

Let j ∈ Di, by construction Sw[i − 1, j] can be equal to Sw[i − 1, 1] or to
Sw[i− 1, 1] + 1. By contradiction, suppose Sw[i− 1, j] = Sw[i− 1, 1]. In this
case, Sw[i, j] = Sw[i − 1, j] + 2, which is impossible since w is 1-balanced.
Hence, Sw[i − 1, j] = Sw[i − 1, 1] + 1 and in this case Bw[i − 1, j] = 1 and
j ∈ D(i−1).

It remains to show that j ∈ D1 − (i− 1). Since j ∈ Di and Bw[i, j] = 1, we
get min(Sw[i]) = (Sw[i, j])−1. Knowing that min(Sw[i]) = min(Sw[i−1])+1,
we get min(Sw[i− 1]) = Sw[i, j]− 2 with Bw[i− 1, j] = 1 the following holds:

Sw[i− 1, j]− Sw[i, j] + 2 = 1,

Sw[i, j]− Sw[i− 1, j] = 1,

|w[j, i+ j − 1]|1 − |w[j, i+ j − 2]|1 = 1.

Therefore, w[i+ j − 1] = 1 and j ∈ D1 − (i− 1).

�

Example 60 For the same rational number 3/7 mod 10, by calculating the de-
creasing values we get:
D1 = {4, 7, 10}
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D2 = D1 ∪ (D1 − (1)) = {4, 7, 10} ∪ {3, 6, 9} = {3, 4, 6, 7, 9, 10}
D3 = D2 ∪ (D1 − (2)) = {3, 4, 6, 7, 9, 10} ∪ {2, 5, 8} = {2, 3, 4, 5, 6, 7, 8, 9, 10}
D4 = D3 ∩ (D1 − (3)) = {2, 3, 4, 5, 6, 7, 8, 9, 10} ∩ {1, 4, 7} = {4, 7}
D5 = D4 ∪ (D1 − (4)) = {4, 7} ∪ {3, 6, 10} = {3, 4, 6, 7, 10}
D6 = D5 ∪ (D1 − (5)) = {3, 4, 6, 7, 10} ∪ {2, 5, 9} = {2, 3, 4, 5, 6, 7, 9, 10}
D7 = D6 ∩ (D1 − (6)) = {2, 3, 4, 6, 7, 9, 10} ∩ {1, 4, 9} = {4}
D8 = D7 ∪ (D1 − (7)) = {4} ∪ {3, 7, 10} = {3, 4, 7, 10}
D9 = D8 ∪ (D1 − (8)) = {3, 4, 7, 10} ∪ {2, 6, 9} = {2, 3, 4, 6, 7, 9, 10}
D10 = D9 ∩ (D1 − (9)) = {2, 3, 4, 6, 7, 9, 10} ∩ {1, 5, 8} = {}.

Example 61 Let the rational number 2/7 mod 9, by calculating the decreasing val-
ues we get:
D1 = {5, 9}
D2 = D1 ∪ (D1 − (1)) = {5, 9} ∪ {4, 8} = {4, 5, 8, 9}
D3 = D2 ∪ (D1 − (2)) = {4, 5, 8, 9} ∪ {3, 7} = {3, 4, 5, 7, 8, 9}
D4 = D3 ∪ (D1 − (3)) = {3, 4, 5, 7, 8, 9} ∪ {2, 6} = {2, 3, 4, 5, 6, 7, 8, 9}
D5 = D4 ∩ (D1 − (4)) = {2, 3, 4, 5, 6, 7, 8, 9} ∩ {1, 5} = {5}
D6 = D5 ∪ (D1 − (5)) = {5} ∪ {4, 9} = {4, 5, 9}
D7 = D6 ∪ (D1 − (6)) = {4, 5, 9} ∪ {3, 8} = {3, 4, 5, 8, 9}
D8 = D7 ∪ (D1 − (7)) = {3, 4, 5, 8, 9} ∪ {2, 7} = {2, 3, 4, 5, 7, 8, 9}
D9 = D8 ∩ (D1 − (8)) = {2, 3, 4, 5, 7, 8, 9} ∩ {1, 6} = {}.
The balance test matrix B 2

7
is given by:

B 2
7

=



0 0 0 0 1 0 0 0 1
0 0 0 1 1 0 0 1 1
0 0 1 1 1 0 1 1 1
0 1 1 1 1 1 1 1 1
0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 1
0 0 1 1 1 0 0 1 1
0 1 1 1 1 0 1 1 1


.

Lemma 2.41 For the balance matrix Ba
b
, we have: card(Di) = i.a mod n.

Proof. The set D1 contains exactly a elements, then card(D1) = 1.a = a. By
induction, we let card(Di−1) = (i− 1).a mod n and we prove it true for Di. From
the previous lemma, we have if i /∈ D1, Di = Di−1 ∪ (D1 − (i− 1)) and since the
two sets are distinct, we get:

card(Di) = card(Di−1) + card(D1 − (i− 1)) = (i− 1)a mod n + a = i.a mod n.
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When i ∈ D1, we get:
card(Di) = card(Di−1) + card(D1 − (i − 1)) − card(Di−1 ∪ (D1 − (i − 1))) =
(i− 1)a mod n+ a− n = ia mod n. Since the union covers all the positions in the
Christoffel word. �

Note: This cardinality confirms that the period row is made only of zeros since
card(Dn) = n.a mod n = 0, hence we have no values of 1 on this row.

Due to the symmetry in the Stern-Brocot tree and the fact that E(C(a
b
)) =

C( b
a
), we deduce the final lemma of this Chapter that allows us to reduce our

study to the first half of the Stern-Brocot tree where a < b.

Lemma 2.42 The balance matrix Ba
b

and B b
a

are conjugate in the sense that:

Ba
b
[i] ≡α E(B b

a
[i]) ∀ 1 ≤ i < n; where αa ≡ −1 modn.

Proof. Let a/b be a rational number with n = a + b, the Christoffel words
C(a

b
) and C( b

a
) are conjugate and we have: D(a, b) = {(iαmodn) + 1; i = 1 . . . a}

and D(b, a) = {(iα′modn) + 1; i = 1 . . . b}. From [38] in lemma 3.8; we have
C(a

b
) ≡α E(C( b

a
)); where aα ≡n −1. Thus, Ba

b
[1] ≡α E(B b

a
[1]). The pattern is

preserved for the other rows and the same relation holds since they are deduced
from the first one. �

Till here, we had an overview over all the notions and tools needed to reach
our result. In the following Chapter, we introduce new tools and techniques and
we explain their aim in studying the synchronization of Christoffel words.
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Chapter 3

Second order balanced matrix

In the first chapter, we introduced several families of words and we mentioned
that in this thesis our study is focusing on Christoffel words, which means that we
restricted the work on a binary alphabet that is A = {0, 1}. This family of words
is very rich with all its properties that are considered as strong tools in different
domain of research. In addition to that, we gave the definition of the balancedness
of a word w over an alphabet A. With a matrix called the balanced matrix Bw,
we were able to provide in an explicit way the order of balancedness of a circular
word. The initial definition is given for a binary word but later, a general form is
provided for any circular word over a d alphabet. Moreover, and since we know
that the Christoffel words are finite 1-balanced words as we have seen in the first
chapter, therefore the elements of its balanced matrix are composed only of 0 and
1. This is equivalent to say that each row of this matrix is composed of a binary
word. Here comes the advanced idea of studying a second order of balancedness
for the Christoffel words. Therefore, in this chapter, we define another new matrix
called the second order balance matrix, denoted Uw, that provides us a second
oder of balancedness for Christoffel words. This matrix is obtained in a recursive
way over the rational numbers, which will be explained in detail in this chapter.
This matrix is totally new, and with all its properties, will be considered as an
useful tool in order to reach the synchronization of the Christoffel words.
In Figure 3.1, we see the Christoffel word of slope 3/5, represented on the Cayley
graph at level k = 1 with the respected positions of letters and the axis of symmetry
as explained in Chapter 2. As we know, this word is 1-balanced since for any two
factors of same length, the difference of number of occurrences for the letter 1 does
not exceed 1. In the same figure, we can identify on level 2, the word w′ = 01101111
which is the number of occurrences of the letter 1 in a sliding window of length
2. Strictly speaking, this level is the illustration of B 3

5
[2] which is a binary word.

While for the third level, we get the word w′′ = 11111211 that corresponds to a
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sliding window of length 3, and by subtracting with the minimal value, we get
w′′ = 00000100 which is B 3

5
[3] that again is a binary word. And so on, we repeat

this concept until level n = 8. Since each level is a binary word we can approach
a new order of balancedness for the Christoffel words and test how the balance
is affected in each level of this Cayley graph. In fact, this is what we will see
in this Chapter which is the considerable part of this thesis. A second order of
balancedness is defined and lot of properties and open questions arise due to this
study. We will see all those details in the coming chapters while in this one an
arithmetical and technical proof will be given to explain the construction of the
matrix that studies this new order of balancedness.

0

1
0

1

0

0
1

0 0

1

11

1

0

1 1

1

1

2

1

1

1

1

1

k = 1

k = 2

k = 3

Figure 3.1: The first three levels of balancedness for the Christoffel word of slope 3/5
representation on a cayley graph.

3.1 Second order balance matrix

We now investigate a refinement of balancedness in the case of 1-balanced circular
words by computing two times the balance property. In fact, each row is a circular
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binary word in the matrix Bw, therefore we are studying the balancedness of each
row of Bw.

Definition 3.1 Let w be a word such that wω is 1-balanced or, equivalently, that
Bw is a binary matrix. The Second order balance matrix Uw = (uij)1≤i,j≤n−1 is
defined as:

Uw[i, j] = max(B(Bw[i])[j]).

In other words, for a pair of integers i, j, consider the word Bw[i] and list all its
factors of length j. Among these factors, choose p a factor that maximizes the
number of occurrences of the letter 1 and q a factor that minimizes it. The entry
Uw[i, j] is given by |p|1 − |q|1. Equivalently,

Uw[i, j] = max
v∈Lj(Bw[i])

|v|1 − min
v∈Lj(Bw[i])

|v|1.

Definition 3.2 The second order of balance of a circular 1-balanced word w is:

δ2(w) = max(Uw).

Once again, in order to enlighten the notations, when working with the Christoffel
C
(
a
b

)
, the second order balance matrix UC(ab )

is simply denoted Ua
b
.

We recall that w denotes always a Christoffel word of slope a/b such that: w =
C(a

b
) of length n = |w|. The Second order balance matrix of a Christoffel word of

slope a
b
, Ua

b
, is of dimension (n− 1)× (n− 1).

Example 62 Let a
b

= 3
7

with n = 10. The balance matrix B 3
7

is:

B 3
7

=



0 0 0 1 0 0 1 0 0 1
0 0 1 1 0 1 1 0 1 1
0 1 1 1 1 1 1 1 1 1
0 0 0 1 0 0 1 0 0 0
0 0 1 1 0 1 1 0 0 1
0 1 1 1 1 1 1 0 1 1
0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 1
0 1 1 1 0 1 1 0 1 1


,

For example, let us choose B 3
7
[5] = [0, 0, 1, 1, 0, 1, 1, 0, 0, 1], and by computing the

balance matrix for this word and checking the fifth row by taking all the blocks of
length 5 of B 3

7
[5], we get the element U 3

7
[5, 5] of the second order balance of the

Christoffel word C(3
7
). This value is obtained from the difference between the two
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windows:11011 and 00100 that appear in the binary word 00 11011 001 . Hence
u5,5 = 4− 1 = 3, since they are the factors of length 5 that contains the maximum
and the minimum number of occurrences of the letter 1. With the same procedure
we fill all the entries of the second order balance matrix of 3

7
represented below:

U 3
7

=



1 1 1 1 1 1 1 1 1
1 2 1 1 2 1 1 2 1
1 1 1 1 1 1 1 1 1
1 1 1 2 2 2 1 1 1
1 2 1 2 3 2 1 2 1
1 1 1 2 2 2 1 1 1
1 1 1 1 1 1 1 1 1
1 2 1 1 2 1 1 2 1
1 1 1 1 1 1 1 1 1


,

we denote: δ2(C(3
7
)) = 3.

Sage code The code used to obtain the Second order balance Matrix Uw
where s denotes a Christoffel word.

1

2 de f U ( a , b) :
3 n=a+b
4 re turn matrix ( n−1, n−1, lambda i , j : max( Balance Matrix (

Balance Matrix ( s ) [ i ] ) [ j ] ) )
5

Listing 3.1: Code of the Second order balance Matrix.

3.2 Recursive construction of the second order

balance matrix

The Stern-Brocot tree contains all the irreducible fractions that are distributed
all over the tree using the Farey sum. The fraction 1/1 belongs to the first level
(k = 1), whose its left (resp. right) ancestor is 0/1 (resp. 1/0). Using these
three fractions and applying the Farey sum we get all the other fractions on this
tree. The second order balance matrix of a rational number a/b studies the second
order balance property on the Christoffel word of slope a/b. The Christoffel tree
and Stern-Brocot tree are isomorphic, hence we can assume that the construction
of Ua

b
must follow a certain pattern. At the beginning of this section, we give
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some necessary properties for the matrix Ua
b

needed for the proof of the recursive
construction. In the second part we give the general form of Ua

b
.

We recall that the Stern-Brocot tree as defined in Chapter 2 is divided into
two symmetrical parts, where on the left side, we have all the irreducible fractions
of the form a/b with a < b and on the right side, all the fractions of the form b/a.
In the next part we prove that Ua

b
= U b

a
, which restrict our study to the first left

side of the tree.

3.2.1 Properties of the matrix Ua
b

From section 1.5.2, we have that the rows of the upper half of Ba
b

are comple-
mentary to the rows of the lower half. This induces symmetries in the matrix Ua

b
.

More precisely, the second order balance matrix Ua
b

of dimension (n− 1)× (n− 1)
has horizontal, vertical and diagonal symmetries. The axes of symmetry are at
position n

2
or between n−1

2
and n+1

2
depending on the parity of n.

Property 3.3 For any position (i, j),

Ua
b
[i, j] = Ua

b
[n− i, j] = Ua

b
[i, n− j] = Ua

b
[n− i, n− j].

Proof. By Lemme 1.26, we have that for any i, 1 ≤ i ≤ n − 1, Bw[i] ≡n−i
E(Bw[n− i]) where n = a+ b, Consequently :

Uw[i, j] = max(B(
Ba
b

[i]
)[j]) (def.)

= max(B(
Ba
b

[n−i]
)[j]) (autocomplementarity of Ba

b
)

= max(B(
Ba
b

[n−i]
)[n− j]) (autocomplementarity of BBa

b
[n−i])

= max(B(
Ba
b

[i]
)[n− j]).

�

Moreover, Ua
b

has an extra diagonal symmetry;

Property 3.4 For the Christoffel word of slope a/b, w = C(a
b
), the matrix Uw

has a diagonal symmetry so that (Uw)T = Uw.

Proof. We let i < j, by definition: Uw[i, j] = max(B(Bw[i])[j]); we recall that:
Bw[i] = Sw[i]−min(Sw[i]) where Sw[i, j] = |sw[i, j]|1; and sw[i, j] = wω[j . . . j+ i−
1]. Therefore BBw[i][j] = SBw [i][j] −min(SBw[i][j]) with SBw[i][j] = |ssw[i,j][j, i]|1 =
|w[j, . . . , j+ i−1](j, i)|1 = |w[j, . . . , j+ i−1]|1. While for U [j, i] = max(B(Bw[j])[i])
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we have:Bw[j] = Sw[j] − min(Sw[j]) where Sw[j, i] = |sw[j, i]|1; and sw[j, i] =
w[i . . . j + i − 1]. Therefore BBw[j][i] = SBw[j][i] − min(SBw[j][i]) with SSw[j][i] =
|ssw[j,i][i, j]|1 = |w[i, . . . , j + i− 1][i, j]|1 = |w[j, . . . , j + i− 1]|1. Then:

Uw[i, j] = max(B(Bw[i])[j]) = max(B(Bw[j])[i]) = U [j, i] , ∀ i, j ∈ {1, . . . , n− 1}.

�

Property 3.5 Let a
b

be a rational number with n = a+ b, we have: Ua
b

= U b
a
.

Proof. From lemma 2.42, we have Ba
b
[i] ≡α E(B b

a
)[i], ∀ i ∈ {1, . . . , n}. There-

fore,
Ua
b
[i, j] = max(B(

Ba
b

[i]
)[j]) = max(B(

B b
a

[i]

)[j]) = U b
a
[i, j].

�

Example 63 Let w = C(5
8
), by evaluating the second order balance matrix U 5

8
,

we can observe the three axis of symmetries in this matrix.

U 5
8

=



1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 1 1 1 1 2 1 1 1
1 1 1 1 1 2 2 1 1 1 1 1
1 2 1 2 1 2 2 1 2 1 2 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 2 2 1 2 2 1 2 2 1 1
1 1 2 2 1 2 2 1 2 2 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 2 1 2 1 2 2 1 2 1 2 1
1 1 1 1 1 2 2 1 1 1 1 1
1 1 1 2 1 1 1 1 2 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1



.

3.2.2 General form of the second order balance matrix

The second order balance matrix is obtained from the balance matrix that has
lot of properties and a symmetry as shown in Chapter 1 and 2. Due to those
properties, we were able to show that the matrix Uw has three axis of symmetry
and that Ua

b
= U b

a
. In addition to the symmetries, this matrix has a specific

structure. In fact, it is divided into 9 blocks and due to the symmetries defined in
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properties 3.3 and 3.4, it is sufficient to know three of them to deduce the others.
But what are those blocks? Where are they located? How can we obtain them?
Why are they located at that specific position? Many and many questions can be
asked. In this section, we give the general form of the second order balance matrix
and we give a complete construction with a detailed proof and interpretation for
each block of this matrix.
We remark that in this matrix and for each Christoffel word, there are 2 rows and
2 columns full of 1 called Synchronized rows. Furthermore, we will understand
the reason of having on these rows and columns the value 1. But in fact, to
construct Ua

b
, we start by placing the 4 lines of separation that divide the matrix

into 9 blocks. Normally those lines are placed just after the first row and column
containing only 1’s and before the second row and column of the synchronized
rows. As we said and due to the symmetries found in this matrix, we reduce the
study to only three blocks which are enough to complete the full construction of
Ua
b
. These 3 blocks are noted α, β and γ and are located in the matrix in this way:

Ua
b

=

 α · 1 · 2
γ β · 3
· 4 · 5 · 6

 ,

The blocks 1, 2, 3, 4, 5 and 6 are obtained from the three blocks by the following
way:

1. Block 1 is the transpose of γ;

2. Blocks 2, 4 and 6 are exactly the bloc α obtained by horizontal and vertical
symmetries;

3. Block 3 is the block γ by vertical symmetry and block 5 is γT by horizontal
symmetry.

In Chapter 2, we introduced some particular fractions in Definition 2.28. These
fractions are very important for the construction of the second order balance ma-
trix. The Christoffel word of slope a/b is the concatenation of some Christoffel
words of smaller slopes. Therefore in the following section, we show that the blocks
α, β, γ are described by the second order balance matrices of simpler fractions.
The construction of the matrix Ua

b
depends on the position of the rational number

on the Stern-Brocot tree. In fact the rational number can be either after the first
deviation position i.e the last component of its continued fraction is equal to 2 or
it can be on an extended branch which reveals that its last partial denominator
is greater or equal to three. For both cases, the block α is deduced from UTBF(a

b
)

while β is given by adding one to each entry of the second order balance matrix
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of the 2-nd unidirectional father of a
b
. While the construction of γ depends on

the fact that in the Stern-Brocot tree, the fraction a
b

is, relatively to its father, a
deviation (first deviation fraction) or an extension (first extended fraction). For
this block and as a particular case, we will see in the next section the accurate
steps needed to construct this block.

3.3 The construction of Ua
b

In this section, we define the tools used to construct recursively the second order
balance matrix of the Christoffel word of slope a/b = [a0, . . . , az]. Figure 3.3,
displays some rational numbers that will be used later on. Since Ua

b
= U b

a
, we

reduce the work to the first half of the Stern-Brocot tree, that is the half containing
all the fractions such with a ≤ b. Given a

b
= [a0, . . . , az] and since a < b then

a0 = 0, we consider separately the cases z < 2 and z ≥ 2.

3.3.1 The trivial cases : z ∈ {0, 1}
We start by the trivial cases for z ∈ {0, 1}:

• For z = 0, we have U 0
1

= U 1
0

= [ ] and U 1
1

= [1].

• Since we mentioned that the work is restrained to the rational numbers with
a < b, then for z = 1, we have a

b
= [0, a1] which implies that a = 1 and

a1 = b. Those fractions are located on the first extended branch on the
Stern-Brocot tree.
From Remark 1.28, we have that Bw[i] = 0b+1−i1i and Definition 3.1 states
that: Uw[i, j] = max(BBw[i][j]). With these information, we can get a par-
ticular form for Uw where w is a Christoffel word of slope 1/b.

Using Properties 3.3 and 3.4, we know that it is enough to determine the values
of the first quarter of the matrix Uw and since we have a diagonal symmetry it
suffices to consider j ≤ i where i, j ≤ n

2
if n is even or i, j ≤ n−1

2
if n is odd.

Proposition 3.6 If a = 1, then for all j ≤ i and i, j ≤ n
2

we have: Ua
b
[i, j] = j.

Proof. Since Bw[i] = 0b+1−i1i and Uw[i, j] = max(BBw[i][j]), from Property
1.29 and with j ≤ i, we have: BBw[i][j] = 0b−i−j+21 · · · ji−j+1 · · · 1. Therefore,
Uw[i, j] = max(BBw[i][j]) = j. �
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Example 64 Let a/b = 1/8, the second order balance matrix U 1
8

is given as fol-
lows:

U 1
8

=



1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 1
1 2 3 3 3 3 2 1
1 2 3 4 4 3 2 1
1 2 3 4 4 3 2 1
1 2 3 3 3 3 2 1
1 2 2 2 2 2 2 1
1 1 1 1 1 1 1 1


.

We can note that this matrix can also be constructed using a recursive form
where the first (resp. last) row and the first (resp. last) column are all 1’s and in
the middle we have the matrix of SUF(1

b
) where its elements are increased by 1

(see Figure 3.2).

U 1
b

=



1 1 .. 1 1
1 1
. .
. .
. U[0,a1−2] + 1 .
. .
1 1
1 1 .. 1 1


.

Figure 3.2: The general form of the matrix U 1
b
.

For the same example, we remark that:

U 1
6

=


1 1 1 1 1 1
1 2 2 2 2 1
1 2 3 3 2 1
1 2 3 3 2 1
1 2 2 2 2 1
1 1 1 1 1 1

 then U 1
8

=



1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 1
1 2 3 3 3 3 2 1
1 2 3 4 4 3 2 1
1 2 3 4 4 3 2 1
1 2 3 3 3 3 2 1
1 2 2 2 2 2 2 1
1 1 1 1 1 1 1 1


.

3.3.2 The general case : z ≥ 2

We now assume that z ≥ 2, in order to enlighten the presentation we define the
following fractions, let : u

v
= TBF(a

b
), x

y
= FRF(a

b
), c

d
= FDF(u

v
), e

f
= FPF( c

d
),
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g
h

= SUF(u
v
), p

q
= TBF(x

y
), s

t
= FRF(u

v
). See Figure 3.3 for an illustration of their

relative positions on the Stern-Brocot tree.

s
t

p
q

g
h

x
y

e
f

u
v

c
d

a
b

Figure 3.3: Position of the fractions u
v , xy , c

d , e
f , g

h , pq and s
t relatively to a

b , for the case
where az−1 ≥ 2 and z odd. By definition, we have : a

b = [a0 . . . , az],
u
v = [a0 . . . , az−1+1],

x
y = [a0, . . . , az−1], p

q = [a0, . . . , az−2 + 1], s
t = [a0, . . . , az−2], e

f = [a0, . . . , az−1 − 1, 2],
c
d = [a0, . . . , az−1, 2], g

h = [a0, . . . , az−1 − 1].

With respect to the Farey addition we have: u
v

= x
y
s
t

and c
d

= x
y
u
v
.

Lemma 3.7 The Christoffel words of slope a
b
, g
h

and e
f

are :

a) C(a
b
) =

(
C(x

y
)
)az−1

C(u
v
) =

(
C(x

y
)
)az

C( s
t
).

b) C(x
y
) = C( g

h
)C( s

t
).

c) C( e
f
) = C( g

h
)C(x

y
).

Proof. This is a consequence of Theorem 1.10 and Remark 2.29. The equalities
are obtained by iteration of the functions φ0 and φ1. In fact, by construction

and using the Farey sum, a
b

=
(
x
y

)az−1 (
u
v

)
. Due to the isomorphism between

the Christoffel tree and stern-Brocot tree, we get the same relations between the
Christoffel words. Same reasoning is used for the other relations. �
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Separation lines

For the rest of this section, the fractions mentioned in Figure 3.3 are used to
prove the construction of Ua

b
. Now we prove that this matrix is decomposed into

9 blocks. In fact, the first step is to place the 4 separation lines in the right place
in order to get the 9 blocks of the matrix. As we mentioned in section 3.2.2, those
separation lines depend on the place of the rows and columns of 1 in the matrix.
Therefore, we show in Lemma 3.8, the exact position of these synchronized rows.
We recall that x

y
= FRF(a

b
) = [0, . . . , az−1], and we let k = x+ y.

Lemma 3.8 Let k = x+ y, for the rational number a
b

with n = a+ b, we have:

U [k, j] = U [n− k, j] = 1, ∀ j ∈ {1, . . . , n− 1}

and
U [i, k] = U [i, n− k] = 1, ∀ i ∈ {1, . . . , n− 1}.

Proof. From Properties 2.17 and 2.16, we have (x + y)a = x(a + b) − 1, and
using the consecutive fractions a/b and x/y from the Stern-Brocot tree, we get:
ka = xn − 1 hence ka ≡ −1 mod n. From lemma 2.41, we have card(Di) =
iamodn, hence card(Dk) = n − 1 and card(Dn−k) = 1 since these two rows are
complementary. Therefore, the words Ba

b
[k] and Ba

b
[n− k] are 1-balanced; hence

U [k, j] = U [n − k, j] = 1, ∀ j ∈ {1, . . . , n − 1}. Using the diagonal symmetry of
Ua
b
, we get: U [i, k] = U [i, n− k] = 1, ∀ i ∈ {1, . . . , n− 1}. �

Remark 3.9 From Lemma 3.8, we get that the row (respectively column) k and
n − k contains only values of 1′s. Therefore, we define the separation lines to be
between the rows (resp. columns) (k; k + 1) and between the rows (resp. columns)
(n− k − 1;n− k) which divide Ua

b
into 9 blocks. See Figure 3.4.

Initial blocks

In this part, we prove that each block α, β and γ of Ua
b

is formed from some smaller
second order balanced matrices.

To construct the second order balance matrix Ua
b

we first place the lines of
separation. This shows that Ua

b
is composed of 9 blocks where the three blocks

αk×k , β(n−2k−1)×(n−2k−1) and γ(n−2k−1)×k are constructed while the others are ob-
tained by symmetry.
In the following part, we construct respectively each of the blocks α, γ and β to
get Ua

b
.



Let a
b

= 5
8
, the 9 blocks are represented as follows:

U 5
8

=

Top left part of U 3
5

Left central part of U 3
4

U 1
2

+ 1
1 1 1 1 1 1 1 1 1 1 1

1 1 1 2 1 1 1 1 2 1 1 1

1 1 1 1 1 2 2 1 1 1 1 1

1 2 1 2 1 2 2 1 2 1 2 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 2 2 1 2 2 1 2 2 1 1

1 1 2 2 1 2 2 1 2 2 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 2 1 2 1 2 2 1 2 1 2 1

1 1 1 1 1 2 2 1 1 1 1 1

1 1 1 2 1 1 1 1 2 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1




Figure 3.4: The decomposition of the matrix U 5

8
into 9 blocks. We have TBF(5

8) = 3
5 ,

SUF(5
8) = 1

2 , FPF(5
8) = 3

4 , x
y = 2

3 and k = 5.
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α-block:

Recall that z ≥ 2 and we let for the rest of this section z to be odd where the
second case is obtained in a similar way. Let s

t
, g
h

and x
y

be the fractions defined
at the beginning of Section 3.3.2. The α-block is formed of k rows and columns
where k = x+ y = |FRF(a

b
)|.

Lemma 3.10 The α-block of Ua
b

is exactly the first k−1 rows and columns of the
matrix Uu

v
where u

v
= TBF(a

b
).

Proof. First we show that the k − 1 first rows of the matrix Ba
b

are exactly the
concatenation between the matrix Bx

y
repeated az − 1 times and the k − 1 first

rows of the matrix Bu
v
. Then we show that the language of the words obtained in

the first k − 1 rows at position j, for 1 ≤ j ≤ k − 1, is exactly the same as the
language of the words obtained in the first k − 1 rows of Bu

v
.

By Lemma 3.7, we have: C(a
b
) = C(x

y
)az−1C(u

v
) and C(u

v
) = C(x

y
)C( s

t
) since

z is odd. To construct Ba
b
, we need to consider all the sliding windows of length

between 1 and n − 1, then test the occurrences of the letter 1 for the circular
Christoffel word of slope a/b at all the positions from 1 to n. Therefore, Ba

b
[i, j]

for 1 ≤ i, j ≤ k− 1 is exactly the same as Bx
y
[i, j], since all the sliding windows of

different length can not exceed the kth position . This means that all these factors
are included in the prefix of length 2k of C

(
a
b

)
which is exactly C(x

y
)2.
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The same argument holds for each Ba
b
[i, j], for 1 ≤ i ≤ k − 1 and 1 ≤ j ≤

n− (u+ v) which form the az − 1 blocks composed of Bx
y
. Knowing that the last

block is also obtained because we know that C
(
u
v

)
has C(x

y
) as a prefix. For the

entries of Ba
b
[i, j] where 1 ≤ i ≤ k−1 and n− (u+v)+1 ≤ j ≤ n, we have exactly

the same values as in Bu
v

since, again, we only consider factors up to length k and

both words C
(
a
b

)
and C

(
u
v

)
start with C(x

y
) which is of length k.

Hence we have: Ba
b
[i] = Bx

y
[i]az−1 ·Bu

v
[i] for all 1 ≤ i ≤ k − 1.

Once this relation is set, we can check that Lj(C(x
y
)ω) ⊆ Lj

(
C(u

v
)ω
)

for j ≤
k − 1 since C(x

y
) ends with C

(
s
t

)
and we have C

(
u
v

)
= C(x

y
)C
(
s
t

)
. This implies

Lj

(
Bω

a
b
[i]
)

= Lj

(
Bω

u
v
[i]
)
∀ 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ k − 1.

�

γ-block:

The second block of Ua
b

is the γ-block of dimension (n− 2k − 1)× k. This block

is located between the k + 1 and the (n− k − 1)th rows and bounded by the line
of separation at the kth column. This part of the second order balance matrix
admits a recursive form. If we consider the concatenation of matrices as a vertical
stacking, then γ(a

b
) is given by:

γ
(a
b

)
=


γ
( c
d

) [
γ
(u
v

)
γ
( c
d

)]az−2

if az ≥ 3

γ

(
e

f

)
if az = 2

(3.1)

The following lemma states this property in a formal way.

Lemma 3.11 The γ−block is obtained depending on the position of the fraction
in the Stern-Brocot tree.

• If az ≥ 3 then γ
(
a
b

)
is obtained by stacking vertically γ( c

d
) over az−2 copies

of γ(u
v
) and γ( c

d
).

• Otherwise, if az = 2, then γ
(
a
b

)
is given the extension of γ( e

f
) to the k-th

column of U e
f
.

where u
v

= TBF(a
b
) ; c

d
= FDF(u

v
) ; e

f
= FPF(a

b
).
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Proof. By the Theorems 2.8 and 2.40, we have that D(a, b) = {iα+ 1 mod n}
with a

b
= [a0, . . . , az] and since z is odd then by Property 2.38 we have α = n− k.

Let x
y

= [a0, . . . , az−1], we recall that |C(x
y
)| = x+ y = k, and |C( s

t
)| = s+ t = k′′.

Let p1, p2 be the two central words of C( s
t
) and C( g

h
) so that C(x

y
) = 0p210p11 =

0p101p21 the last equality holds because the central word p210p1 is a palindrome.

• Case A: If az ≥ 3.
For az = 3, we have:

– C(a
b
) =

(
C(x

y
)
)2

C(u
v
) =

(
C(x

y
)
)3

C( s
t
); n = a+ b.

– C( c
d
) = C(x

y
)C(u

v
) =

(
C(x

y
)
)2

C( s
t
); n′ = c+ d.

– C(u
v
) = C(x

y
)C( s

t
); n′′ = u+ v.

– C(x
y
) = C( g

h
).C( s

t
) = 0p210p11.

Using Theorem 2.8 and Property 2.38, we denote by D1, D
′
1, D

′′
1 , X and S

the sets of decreasing positions of the Christoffel words of slopes: a
b
, c
d
, u
v
, x
y

and s
t

respectively defined as follows:

1. D1 = D(a, b) = {iα + 1 mod n; 1 ≤ i ≤ a}; where α = n− k,

2. D′1 = D(c, d) = {iα′ + 1 mod n′; 1 ≤ i ≤ c}; where α′ = n′ − k,

3. D′′1 = D(u, v) = {iα′′ + 1 mod n′′; 1 ≤ i ≤ u}; where α′′ = k′′,

4. X = D(x, y),

5. S = D(s, t).

We remark that: k′′ = |p1|+ 2 and α = 2k + k′′.
By construction, we have:

– X = D(g, h) ∪ {S + (k − k′′)} since C(x
y
)[k − k′ + 1 . . . k] = C( s

t
).

– C(u
v
) = C(x

y
)C( s

t
), hence D′′1 = X ∪ {S + k}, where the two sets are

disjoints and ∀s ∈ S, s+ k ≤ n′′.

Similarly and for k = max(X) we get:

D′1 = X ∪ {X + k} ∪ {S + 2k} (3.2)

D1 = X ∪ {X + k} ∪ {X + 2k} ∪ {S + 3k}. (3.3)

The following arithmetic relations exist between n, n′ and n′′:

– n′′ = k + k′′ = α′,
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– n = 3k + k′′ = 2k + n′′ = 2k + α′ = α + k = k + n′,

– n′ = 2k + k′′ = k + n′′ = k + α′ = α,

– n− n′ = k = α− α′ = n′ − α′ = n′ − n′′.

The C(a
b
) is a 1-balanced word with a < b.

– For i = a − 1, we have (a − 1)α + 1 = aα − α + 1 = −α ≡n k, hence
k ∈ D1 ⇒ k + 1 /∈ D1.

– For i = 1, we get α+ 1 ∈ D1. α+ 1 ∈ D1 ⇒ α /∈ D1 ⇒ n′ /∈ D1, where
α′ = n′ − 2k, therefore D′1 \ {n′} ⊆ D1.

By lemma 2.39, the word Ba
b
[k] = 0α10n−α−1, hence Dk = {α + 1}. Since

k + 1 /∈ D1, by theorem 2.40, we get:

Dk+1 = Dk ∪ {D1 − k}
= {α + 1} ∪ {iα + 1− k mod n}

Since iα+ 1−k = iα+ 1−n+α ≡n (i+ 1)α+ 1 for all 1 ≤ i ≤ a, we obtain:

– For 1 ≤ i ≤ a− 1, all the elements of D1 \ {α + 1} belong to Dk+1.

– For i = a, we get: (a + 1)α + 1 ≡n α, and hence α is an element of
Dk+1.

Therefore, we conclude that: Dk+1 = D1 ∪ {α}. The same reasoning is
repeated for C( c

d
), and we get

D′k+1 = D′1 ∪ {α′} = D′1 ∪ {α− n+ n′} = D′1 ∪ {n′′}.

By construction, we have: D′1\{n′} ⊂ D1 ⊂ Dk+1 and {n′} ⊂ Dk+1, therefore
D′1 ⊂ Dk+1. Since α = 2k + k′′ = 2|C(x

y
)| + |p1| + 2 and Dk+1 = D1 ∪ {α},

we have:

Ba
b
[k+1] = C(

x

y
)C(

x

y
)0p111p21C(

s

t
) and B c

d
[k+1] = C(

x

y
)0p111p21C(

s

t
).

Therefore: Ba
b
[k + 1][k + 1 . . . n] = B c

d
[k + 1]. We have |C(x

y
)| = k and,

by abuse of notation, we consider the rows of Bx
y

in a circular way so that

Bx
y
[k + 1] = Bx

y
[1] which allows to write: Ba

b
[i] = Bx

y
[i]B c

d
[i] where this

relation holds ∀ k + 1 ≤ i ≤ α′ = n− 2k.

Therefore, Lj

(
Bω

a
b
[i]
)

= Lj

(
Bω

c
d
[i]
)

for all k + 1 ≤ i ≤ α′ and 1 ≤ j ≤ k.
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Hence we have ∀ k + 1 ≤ i ≤ α′; 1 ≤ j ≤ k:

Ua
b
[i, j] = max

(
BBa

b
[i][j]

)
= max

(
BB c

d
[i][j]

)
= U c

d
[i, j].

Using Property 2.39, we have Ba
b
[2k] = Ba

b
[n − α′] = 0α

′
10k−110k−1. By

Property 1.26, we get: Ba
b
[α′] = 01k−101α−1, hence Dα′ = {2, . . . , k, k +

2, . . . , n}. Since n−n′ = n′−α′, we get n = 2n′−α′ = 2α−α′. For i = 2, we
have 2α+1 = n+α′+1 ≡n α′+1, which implies that α′+1 ∈ D1 and α

′ /∈ D1.
Using Theorem 2.40 we get:

Dα′+1 = Dα′ ∩ {D1 − α′}
= Dα′ ∩ {iα + 1− α′ mod n;∀1 ≤ i ≤ a}
= Dα′ ∩ {iα + 1− α + k mod n;∀1 ≤ i ≤ a}
= Dα′ ∩ {(i− 2)α + 1 mod n;∀1 ≤ i ≤ a}.

We have:

– for all 3 ≤ i ≤ a, D1 \ {k, n} ⊆ Dα′+1.

– For i = 1, we get the position (k + 1).

– For i = 2, we get the position 1.

– For i = a+ 1 and i = a+ 2, we get respectively the positions k,and n.

Therefore, Dα′+1 = D1 \ {k, n}.
Since α′′ = k′′, then: Bu

v
[k′′] = 01n

′′−1 ⇒ Dα′′ = {2, . . . , n′′}.
As α′′ /∈ D′′1 , hence α′′ + 1 ∈ D′′1 and by Theorem 2.40:

D′′α′′+1 = D′′α′′ ∩ {D′′1 − α′′}
= {2, . . . , n′′} ∩ {(i− 1)α′′ + 1 mod n′′;∀1 ≤ i ≤ n′′}.

1. For i = u+ 1; we get uα′′ + 1 = −1 + 1 = 0,

2. For i = 1, we get the position 1,

3. For 2 ≤ i ≤ u, we get: D′′1 \ {0} = D′′1 \ {n′′} = D′′1 \ {α′}.

Therefore, D′′α′′+1 = D′′1 \ {n′′} ⊂ D1 and then, D′′α′′+1 \ {k} ⊂ Dα′+1.
We have: Ba

b
[α′+1] = 0p210p100p210p11C(x

y
)0p10 andBu

v
[α′′+1] = C(x

y
)0p10.

Hence we get Ba
b
[α′ + 1][2k + 1, . . . , n] = Bu

v
[α′′ + 1] and we can write:

Ba
b
[α′ + 1] = 0p210p10C(

x

y
)Bu

v
[α′′ + 1],
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where the relation remains true ∀ α′ + 1 ≤ i ≤ 2k.

Therefore, Lj

(
Bω

a
b
[i]
)

= Lj

(
Bω

u
v
[i]
)

for all α′ + 1 ≤ i ≤ 2k and 1 ≤ j ≤ k

since the element 0p100p21 of length k appears in both languages thus we
have ∀ α′ + 1 ≤ i ≤ 2k; 1 ≤ j ≤ k:

Ua
b
[i, j] = max

(
BBa

b
[i][j]

)
= max

(
BBu

v
[i][j]

)
= Uu

v
[i, j].

The rows from 2k+ 1 till n− k are obtained by symmetry since 2k > n
2

and

Ua
b

is symmetric. We get: γ
(
a
b

)
= γ

(
c
d

) [
γ
(
u
v

)
γ
(
c
d

)]1
, where 1 = az − 2.

When az > 3, we have C(a
b
) =

(
C(x

y
)
)az−1

C(u
v
), where D1 = X ∪{X+k}∪

{X + 2k} . . . ∪ {X + (az − 1)k} ∪ {S + azk}. Using the same reasoning we

get γ
(
a
b

)
= γ

(
c
d

) [
γ
(
u
v

)
γ
(
c
d

)]az−2
.

• Case B: If az = 2.
For this part we have: C(a

b
) = C(x

y
)C(u

v
) and we need the word C( e

f
) =

C( g
h
)C(x

y
), where e

f
= FPF(a

b
). The same notations are used as in the case

A, where n = a+ b, n′ = e+ f , k = |C(x
y
)| and k′ = |C( g

h
)| = |p2|+ 2. The

sets D1 = D(a, b) and D′1 = D(e, f) are calculated with the same way and
we get:

– n = k + α,

– n′ = k + k′ = k′ + α′,

hence we get: k = α′. Using the same technique, we get:

1. Dk+1 = D1 ∪ {α};
2. D′k′+1 = D′1 ∪ {α′} = D′1 ∪ {k};
3. k + 1 /∈ D1 ⇒ k + 1 /∈ D1 ∪ {α};
4. α′ = k ∈ D1.

The rest of the positions are obtained due to the concatenation of the word.
We have D′k′+1 \ {α′ + 1} ⊆ Dk+1; which means:

{D′1 ∪ {α′}} \ {α′ + 1} ⊆ D1 ∪ {α}.

The Christoffel word of slope a
b

can be written as:

C(
a

b
) = 0p210p11.0p210p11.0p11

= 0p210p11.0p101p21.0p11
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and since α = n− k = n− (|p1|+ |p2|+ 4), we get:

Ba
b
[k + 1] = 0p210p11.0p111p21.0p11

= 0p101p21.0p111p21.0p11.

While for C( e
f
), we have:

C(
e

f
) = 0p21.0p21.0p11

= 0p21.0p101p21

with α′ = n′ − k′ = n′ − (|p2| + 2), hence B e
f
[k′ + 1] = 0p21.0p111p21 =

0p101p211p21. Therefore we get: Lj

(
Bω

a
b
[i]
)

= Lj

(
Bω

e
f
[i]
)

for all k+1 ≤ i ≤
n− k − 1 and 1 ≤ j ≤ k

thus ∀ k + 1 ≤ i ≤ n− k − 1; 1 ≤ j ≤ k, we have:

Ua
b
[i, j] = max

(
BBa

b
[i][j]

)
= max

(
BB e

f
[i][j]

)
= U e

f
[i, j].

�

β-block

The β−block is the center of Ua
b
, the last block needed to complete the construction

of the second order balance matrix. This block is of dimension (n− 2k− 1)× (n−
2k − 1) and located between the rows (respectively columns) k and n− k.

Lemma 3.12 The β−block of Ua
b

is exactly the second order balance matrix of
the fraction ρ

θ
= SUF(a

b
) in the Stern-Brocot tree where its elements are increased

by 1.

Proof. By definition 3.1, Ua
b

studies the maximal unbalancedness of the Christof-
fel word of slope a/b where uij = maxu∈Lj(Bw[i]) |u|1 − minu∈Lj(Bw[i]) |u|1. The el-
ements of the γ−block are obtained for k + 1 ≤ i ≤ n − k − 1 and 1 ≤ j ≤ k,
which refer to the words u ∈ Lj(Bw[i]) where Bw[i, j] = Sw[i, j] −min(Sw[i]) and
Sw[i, j] = |sw[i, j]|1 = |wω[j, j+ i−1]|1. The elements of the β−block are obtained
using the words u ∈ Lj(Bw[i]) for k+ 1 ≤ i ≤ n− k− 1 and k+ 1 ≤ j ≤ n− k− 1.
We have 2 cases:

• If az ≥ 3: In the previous section we proved that for az = 3, we have:
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– Ba
b
[k + 1] = C(x

y
)C(x

y
)C(u

v
) = C(x

y
)C(x

y
)0p111p21C( s

t
).

– SUF(a
b
) = u

v
with C(u

v
) = 0p210p11.0p21.

– The factor w′ = 0p111p210 ∈ Lk+1(Bω
a
b
[k + 1]).

– The factor w′′ = 0p101p210 ∈ Lk+1(Bω
u
v
[1]).

We remark that |w′|1 = |w′′|1 +1. Since Ba
b
[k+1] = C(x

y
)C(x

y
)w′p21 then by

identifying the elements of Lj(B
ω
a
b
[k+1]), ∀k+1 ≤ j ≤ n−k−1, we remark

that the factor that has the maximal occurrences of the letter 1 is the factor
w′. By studying the following rows of Ba

b
, the same factor causes the increase

of the maximal value. Hence, ∀ k+ 1 ≤ i ≤ n−k−1; k+ 1 ≤ j ≤ n−k−1:

Ua
b
[i, j] = max

(
BBa

b
[i][j]

)
= max

(
BBu

v
[i−k][j − k]

)
+ 1 = Uu

v
[i− k, j − k] + 1.

While for az > 3, and due to the concatenation with the C(x
y
) from the left

side for each fraction, we always get that:

Ua
b
[i, j] = U ρ

θ
[i− k, j − k] + 1.

• If az = 2, we let a
b

= [a0, . . . , 2] and we have from the previous sections:

– Ba
b
[k + 1] = C(x

y
)C(u

v
) = C(x

y
)0p111p21C( s

t
) = 0p210p110p111p210p11.

– By Definition 2.2.1, SUF(a
b
) = s

t
= [0, . . . , az−2], where C( s

t
) = 0p11.

Just like the previous case the factor that causes the difference is the factor
w′ = 0p111p210 that belongs to Lk+1(Bω

a
b
[k+ 1]). All the other factors of this

language will have the same occurrence of 1 except w′ that will be increased
by 1. Therefore, by taking the maximal occurrence of those factors in this
language, the maximal value appears in |w′|1 that gives the same value if we
study the occurrence of 1 in all the factors of L1(Bω

s
t
[1]). By studying the

following rows of Ba
b
, the same factor causes the increase of the maximal

value. Hence, ∀ k + 1 ≤ i ≤ n− k − 1; k + 1 ≤ j ≤ n− k − 1:

Ua
b
[i, j] = max

(
BBa

b
[i][j]

)
= max

(
BB s

t
[i−k][j − k]

)
+ 1 = U s

t
[i− k, j − k] + 1.

�

Finally due to the symmetries in the second order balance matrix, we complete
the construction of all the blocks of the matrix Ua

b
.
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Open questions After the detailed construction of the second order balance
matrix, and the identification of each block, we can have some several questions.

1. First of all, what is the corresponding geometric signification of this matrix
for the Christoffel words?
The answer of this question is given in Chapter 5.

2. Where can we use this order of balancedness and what information can we
get from this matrix?
The first applications for this order of balancedness are given in Chapter 4
and open a wide door in research.

3. Moreover, as in Chapter 1, we were able to generalize the balance matrix and
gives its form for a d-alphabet, we are still looking and searching for a general
form for the matrix Uw, where w can be a binary word and not necessarily
a 1-balanced word or even more, w can be a word over a d-alphabet.
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Chapter 4

Some results

In Chapter 2, we talked about the isomorphism between the Christoffel tree and
the Stern-Brocot tree that allows us to find the strong recursion in the composition
of the matrix Uw. In this chapter, the work is divided into two parts, the first one
shows some results about the second order balance δ2(w). The second part explores
the direct relation between the matrix Uw and the Christoffel word w without
passing by the balance matrix Bw. In this part, we give some results concerning
the maximal value of Uw or simply the second order balance. At the beginning,
some calculations are made in order to deduce the algorithm of the increase of this
second order in the Stern-Brocot tree. Then, with some computations, I was able
to prove that this second order has a lower bound depending on its level on the
Stern-Brocot tree and moreover, it can be determined depending on the values of
the last two partial denominators of the slope a/b

4.1 Second order balance of C(ab)

After the construction of the second order balance matrix, and as we mentioned
at the beginning of Chapter 3, we let the maximal value obtained in this ma-
trix be the second order balance of C(a

b
) which is denoted: δ2(C

(
a
b

)
). We let

a
b

= [a0, . . . , az],TBF(a
b
) = u

v
= [a0, . . . , az−1 + 1], c

d
= [a0, . . . , az−1, 2], e

f
=

[a0, . . . , az−1− 1, 2] and depending on the position of a/b in the Stern-Brocot tree,
we let ρ

θ
= SUF(a

b
).

We remark that this maximal value can be in one of these two blocks and is equal
exactly to:

Theorem 4.1 The second order balance of C(a
b
) is:

δ2
(
C
(a
b

))
= max

(
δ2
(
C
(u
v

))
, δ2
(
C
(ρ
θ

))
+ 1
)
.
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Proof. From Chapter 3, we knew that it is enough to detect the elements of the
3 blocks, α, β and γ to construct the matrix Ua

b
since the others are obtained by

symmetry. The α−block is obtained from Uu
v

from lemma 3.10, the elements of
the β−block are exactly the elements of U ρ

θ
increased by 1 from lemma 3.12 and

finally, the γ−block is obtained from the γ−blocks of u/v, c/d or e/f depending
on the position of a/b on the Stern-Brocot tree from lemma 3.11. The maximal
value of the matrix Ua

b
appears in one of these three blocks. We note that for both

cases, az = 2 and az ≥ 3, the maximal value of the γ−block of a/b is always less or
equal to the maximal values of the α or β blocks. This is due to the fractions used
to get this block and their positions on the Stern-Brocot tree. Therefore we get
that δ2

(
C
(
a
b

))
= max

(
δ2
(
C
(
u
v

))
, δ2
(
C
(
ρ
θ

))
+ 1
)
, where the +1 is added since

the elements of this block are the elements of U ρ
θ

increased by 1 from lemma 3.12. �

We have mentioned before that the Stern-Brocot tree is divided into two sym-
metrical parts and we will be studying only the left part. The fractions on this
tree can be located either on an extended branch or at the first deviation position.
In other words, the last element of the continued fraction of each rational number
can be strictly greater than 2 or equal to 2. We assign to each fraction on the first
half of the tree its proper second order balance starting from the first fraction 1

1

on the first level of the tree. Figure 4.1 shows the first 4 levels of the tree that
contains the fractions and their second order balance value.

δ2(C(1
1
)) = 1

δ2(C(1
2
)) = 1

δ2(C(1
3
)) = 2

δ2(C(1
4
)) = 2 δ2(C(2

5
)) = 2

δ2(C(2
3
)) = 1

δ2(C(3
5
)) = 2 δ2(C(3

4
)) = 2

Figure 4.1: The first four levels of the Stern-Brocot tree containing the fractions and
their second order balance value.

We can notice that depending on the position of the fraction on the tree, we
are able to determine its second order balance value. Hence, the following lemmas
study some particular cases in order to reach a general result that gives us a lower
limit for the values of δ2 on each level of the tree.

Lemma 4.2 If the fraction a/b is a first deviation fraction with respect to u/v,
then δ2(C(a

b
)) ∈ {δ2(C(u

v
)); δ2(C(u

v
)) + 1}.
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Proof. Let a/b = FEF(u/v) where δ2(C(u
v
)) = k. From theorem 4.1, we have:

δ2(C(a
b
)) = max(δ2(C(u

v
)), δ2(C(ρ

θ
)) + 1) where ρ

θ
= SUF(a/b). Depending on the

position of the fraction ρ
θ
, δ2(C(ρ

θ
)) ∈ {k, k − i} ∀ 1 ≤ i ≤ k − 1. If δ2(C(ρ

θ
)) = k

then δ2(C(a
b
)) = k + 1; Otherwise k − i+ 1 ≤ k hence δ2(C(a

b
)) = k. �

Lemma 4.3 If the fraction a/b = FEF(p/q), then δ2(C(a
b
)) is increased each 2

steps.

Proof. Let a/b = FEF(p/q) with δ2(C(p
q
)) = k. We have 2 cases to study, either

ρ
θ

= TBF(a
b
) = u

v
where ρ

θ
= SUF(a/b), or ρ

θ
6= u

v
.

• If ρ
θ

= u
v
, then δ2(C(a

b
)) = max(δ2(C(u

v
)), δ2(C(ρ

θ
)+1) = max(δ2(C(ρ

θ
)), δ2(C(ρ

θ
)+

1) = δ2(C(ρ
θ
)) + 1.

• If ρ
θ
6= u

v
, we have δ2(C(u

v
)) < k hence, δ2(C(a

b
)) = max(δ2(C(u

v
)), δ2(C(ρ

θ
))+

1) = δ2(C(ρ
θ
)) + 1.

�
We denote the second order balance of any fraction at level k in the Stern-Brocot
tree by δ2

k and we have the following result:

Theorem 4.4 For each level k on the Stern-Brocot tree, we have: δ2
k ≥ dk3e.

Proof. By induction on the levels of the Stern-Brocot tree, we have δ2
1 = δ2

2 = 1;
δ2

3 ∈ {1, 2} and δ2
4 = 2. Hence the minimal value of δ2

3 (minδ2
3) is equal to 1 and

minδ2
4 = 2. Therefore δ2

i ≥ d i3e with 1 ≤ i ≤ 4.
Suppose that it is true for all the levels till the level k = 3k′; i.e minδ2

k = minδ2
k−1 =

minδ2
k−2 = k′. We prove that δ2

k+1 ≥ dk+1
3
e = k′ + 1.

All the fractions on the level k with δ2 > k′ give fractions on the level k + 1 with
δ2 ≥ k′ + 1. It remains to study the case of the fractions that have δ2

k = k′ at
level k. We let u/v be a fraction at level k with δ2(C(u

v
)) = k′. By contradiction,

we let c/d be the fraction at level k + 1 with δ2(C( c
d
)) = k′. The fraction c/d is

either a first deviation fraction with respect to u/v or is a first deviation position
with respect to u/v. If c/d is the first extended fraction of u/v, then by lemma
4.3 we get δ2(C(a

b
)) = k′ − 1, where a/b is the fraction at level k − 1. If c/d is

the first deviation fraction with respect to u/v, then the fraction u/v is either a
first extended fraction of a/b or a first deviation fraction with respect to a/b where
m/n is the fraction at level (k − 2).
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• If u/v = FEF(a/b) then by lemma 4.3, we get δ2(C(m
n

)) = k′ − 1.

• If u/v = FDF(a/b), then if δ2(C(a
b
)) = k′, we get:

δ2(C( c
d
)) = max(δ2(C(u

v
)), δ2(C(m

n
)) + 1) = k′. If δ2(C(m

n
)) = k′ then

δ2(C( c
d
)) = k′ + 1; and if δ2(C(m

n
)) = k′ − 1 we get a contradiction since

δ2
(k−2) ≥ d

k−2
3
e = k′.

Therefore δ2 ≥ k′ + 1 for all the fractions on the level k + 1 thus

δ2
k+1 ≥ d

k + 1

3
e = d3k

′ + 1

3
e = k′ + 1.

�

We have several paths on the Stern-Brocot tree, a particular path called the
Zigzag path is introduced in the following definition. This path has a particular
property that will be discussed in the next paragraph.

Definition 4.5 We define the zigzag path to be the path followed by the fractions
in the Stern-Brocot tree having [1, 1, 1, . . .] as continued fraction.

The following proposition gives the recursion used to get the values of the
second order balance of all the fractions on the Zigzag path. We notice that the
inequality in Theorem 4.4 is also achieved.

Proposition 4.6 In the zigzag path, the value of δ2 is increased by 1 after each
3 levels.

Proof. By induction on the zigzag path, we have δ2(C(1
1
)) = δ2(C(1

2
)) = δ2(C(2

3
)) =

1, while δ2(C(3
5
)) = 2. We suppose that it is true till level k and we prove it true for

level k+1. Hence we let a/b, c/d, e/f be 3 consecutive fractions on the zigzag path
such that: δ2(C(a

b
)) = δ2(C( c

d
)) = δ2(C( e

f
)) = k′. We prove that the following frac-

tion g/h on this path has: δ2(C( g
h
)) = k′+1. We have TBF( g

h
) = e

f
and the fraction

a/b = SUF(g/h), therefore: δ2(C( g
h
)) = max(δ2(C( e

f
)), δ2(C(a

b
)) + 1) = k′ + 1. �

4.1.1 Refinement of the value of δ2(ab ) using the continued
fraction

We noticed that the value of δ2 increases every two or three levels in the Stern-
Brocot tree depending on the path followed to reach the rational number. As
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presented in Chapter 2, we can acquire the continued fraction of each rational
number. Hence, there is certainly a relation between the value attained by δ2 and
the partial denominators of the rational number a/b.
From Theorem 4.1, we know that δ2

(
C
(
a
b

))
= max

(
δ2
(
C
(
u
v

))
, δ2
(
C
(
ρ
θ

))
+ 1
)
,

where u
v

= TBF(a
b
); ρ

θ
= SUF(a

b
). From Definition 2.28, we recall:

• a
b

= [a0, a1, · · · , az];

• u
v

= [a0, a1, · · · , az−1, 1] = [a0, a1, · · · , az−1 + 1];

• p
q

= [a0, · · · , az−2, 1] = [a0, · · · , az−2 + 1];

• s
t

= [a0, · · · , az−3];

• ρ
θ

=


[a0, a1, · · · , az − 2] if az ≥ 4

[a0, a1, · · · , az−1 + 1] if az = 3

[a0, a1, · · · , az−2] if az = 2.

Without loss of generality and in order to enlighten the notation, we denote

δ2
(
C
(
a
b

))
by Da, δ

2
(
C
(
u
v

))
= Du, δ

2
(
C
(
ρ
θ

))
= Dr, δ

2
(
C
(
p
q

))
= Dp and

δ2
(
C
(
s
t

))
= Ds.

In the following theorem , we discuss all the possible cases for the distribution
of the fractions on the Stern-Brocot tree. We deduce that the value of δ2

(
C
(
a
b

))
is always equal to the value of δ2

(
C
(
ρ
θ

))
+ 1, except for the case when az−1 ≥ 2.

Theorem 4.7 For a
b

= [a0, a1, · · · , az], we have:

δ2
(
C
(a
b

))
=


Du = δ2

(
C
(u
v

))
if az−1 ≥ 2

Dr + 1 = δ2
(
C
(ρ
θ

))
+ 1 Elsewhere.

Proof. The proof of this theorem is divided into 3 parts that discuss all the
possible paths to reach the fraction a/b. Since a

b
= [a0, a1, · · · , az], we build our

study and discussion on the different possible values of az, az−1 and az−2, and we
get:

1. If az ≥ 4, we letDu = d, thenDr ≥ d since ρ
θ
> u

v
. HenceDa = max(Du, Dr+

1) = Dr + 1.(see Figure 4.2).

2. If az = 3, in this case the fractions u
v

and ρ
θ

are the same and we have:
Da = max(Du, Dr + 1) = max(Dr, Dr + 1) = Dr + 1. (see Figure 4.2).



u
v

ρ
θ

a
b

u
v

= ρ
θ

a
b

Figure 4.2: Case where az ≥ 4 and az = 3 respectively.
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3. If az = 2, in this case we get several sub-cases depending on the value of
az−1 and az−2. For all the cases, we have: u

v
> ρ

θ
. In this case, we recall:

a
b

= [a0, · · · , 2]; u
v

= [a0, · · · , az−1 + 1] and ρ
θ

= [a0, · · · , az−2].

(a) If az−1 = 1, we get the fraction u
v

= [a0, · · · , 2] and we let Dr = d.
Figure 4.3 shows the positions of the fractions in this case along the
path. We can note that 4 sub-cases arise and they are summarized in
Table 4.1.

ρ
θ

p
q

u
v

a
b

Figure 4.3: Geometric representation of the path having az = 2 and az−1 = 1.

Dr d
Dp d d+ 1
Du d d+ 1 d+ 1 d+ 2
Da d+ 1 d+ 1 d+ 1 X

Table 4.1: The representation of the 4 cases for az−1 = 1.

i- If Dp = d, then Du = d or Du = d+ 1.
If Du = d, then Da = max(Du, Dr + 1) = max(d, d+ 1) = d+ 1 =
Dr + 1,
If Du = d + 1, then Da = max(Du, Dr + 1) = max(d + 1, d + 1) =
d+ 1 = Dr + 1.

ii- If Dp = d+ 1, then Du = d+ 1 or Du = d+ 2.
If Du = d+ 1, then Da = d+ 1 = Dr + 1, already studied,
If Du = d+ 2, we get a contradiction because in this case:

Du = max(Dp, Ds + 1)

d+ 2 = max(d+ 1, Ds + 1),
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hence Ds = d + 1 which it can not be since dr = d and we have
s
t
< ρ

θ
.

(b) If az−1 = 2, the fractions are distributed in two possible ways depending
on the value of az−2 that can be equal to 2 or greater or equal to 3. The
positions of the fractions are represented in Figure 4.2. We remark that
the result is obtained depending on the value of Dp. The cases are
represented in Table 4.4 that is true for any value of az−2 ≥ 1.

ρ
θ

p
q

x
y

u
v

a
b

ρ
θ

p
q

x
y

u
v

a
b

Figure 4.4: Geometric representation of the path having az = 2 and az−1 = 2.

• If Dp = d, then by Lemma 4.3, Du = d+1 and Da = max(Du, Dr+
1) = max(d+ 1, d+ 1) = d+ 1 = Dr + 1,

• If Dp = d + 1, then Du = d + 2 and Da = max(Du, Dr + 1) =
max(d+ 2, d+ 1) = d+ 2 = Du.

Dr d
Dp d d+ 1
Du d+ 1 d+ 2
Da d+ 1 d+ 2

Table 4.2: The representation of the 2 cases for az−1 = 2.

From this calculation, we remark that we always have Da = Du regard-
less the value of az−2.

(c) Last case remained to study is when az−1 ≥ 3,
In fact, if az−1 > 3, we always have Du > Dr + 1 therefore, Da = Du.
See Figure 4.5.

While for the case where az−1 = 3, Figure 4.6, represents the geomet-
ric form of the path followed to reach the rational number a/b having

az−1 = 3. We let k
l

= FEF
(
p
q

)
with δ2

(
C
(
k
l

))
= Dk. In fact the



ρ
θ

p
q

x
y

u
v

a
b

Figure 4.5: Geometric representation for the case az−1 = 4.
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value of Da depends on the value of Dk and we have two cases that are
represented in Table 4.3.

i If Dk = d, then by Lemma 4.3, Du = d+ 1 and Da = max(Du, Dr +
1) = max(d+ 1, d+ 1) = d+ 1 = Dr + 1.

ii IfDk = d+1, then by Lemma 4.3, Du = d+2 andDa = max(Du, Dr+
1) = max(d+ 2, d+ 1) = d+ 2 = Du.

ρ
θ

p
q

k
lx

y
u
v

a
b

Figure 4.6: Geometric representation for the path az−1 = 3.

Dr d
Dk d d+ 1
Du d+ 1 d+ 2
Da d+ 1 d+ 2

Table 4.3: The representation of the 2 cases for az−1 = 3.

Similarly in this case, we also have that Da = Du.
�
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4.1.2 Fibonacci sequence

In the 18th century, the Italian mathematician ”Leonardo di Pisa” has introduced
the following substitution on the binary alphabet A = {0, 1} that gave what is
called now the Fibonacci substitution:

σ : A→ A∗{
0→ 01

1→ 0

It follows that σ(w1w2 . . . wn) = σ(w1)σ(w2) . . . σ(wn).

Example 65 Let w = 00100101 ∈ A∗, using the Fibonacci substitution we get:

σ(w) = σ(0)σ(0)σ(1)σ(0)σ(0)σ(1)σ(0)σ(1) = 0101001010010.

By applying several iterations on σ(0) i.e by calculating each time σi(0) =
σ(σi−1(0)) we get the Fibonacci word which is obtained when σ(X) = X.

Example 66 Let us calculate the first 6 iterations on σ(0), we get:

σ(0) = 01

σ2(0) = σ(01) = 010

σ3(0) = σ(σ2(0)) = σ(010) = 01001

σ4(0) = σ(σ3(0)) = σ(01001) = 01001010

σ5(0) = σ(σ4(0)) = σ(01001010) = 0100101001001

σ6(0) = σ(σ5(0)) = σ(0100101001001) = 010010100100101001010.

For each step we calculate the length of the word obtained, we suppose |σ0(0)| =
|σ−1(0)| = 1 and we obtain the following sequence: 1 1 2 3 5 8 . . . that respects
the FIBONACCI relation:

|σn+2(0)| = |σn+1(0)|+ |σn(0)| ∀ n ≥ 0.

Example 67 From Example 66, we get: |σ(0)| = 2, |σ2(0)| = 3, |σ3(0)| = 5, |σ4(0)| =
8, |σ5(0)| = 13 and |σ6(0)| = 21. We remark that the Fibonacci relation is respected
since:

5 = |σ3(0)| = |σ2(0)|+ |σ(0)| = 3 + 2

8 = |σ4(0)| = |σ3(0)|+ |σ2(0)| = 5 + 3

13 = |σ5(0)| = |σ4(0)|+ |σ3(0)| = 8 + 5

21 = |σ6(0)| = |σ5(0)|+ |σ4(0)| = 13 + 8.
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Two points are to be noticed:

1. We can note that an
bn

= |σn+1(0)|1
|σn+1(0)|0 .

2. By taking an
bn

= |σn−1(0)|
|σn(0)| , we get the zigzag path in the Stern-Brocot tree

defined in Definition 4.5.

Example 68 For the word w′ = σ6(0) = 010010100100101001010, we have |w′|1 =

8 and |w′|0 = 13, therefore we can write: 8
13

= |w′|1
|w′|0 = |σ4(0)|

|σ5(0)| .

By proposition 4.6 we see that the zigzag path associated with [1, 1, 1 . . .] minimizes
the growth of δ2 in the stern-Brocot tree. We have:

lim
n→+∞

an
bn

= ϕ =
1 +
√

5

2
.

Figure 4.7: The Fibonacci sequence in the Stern-Brocot tree.

Open questions The zigzag path is one of the paths that minimize the
growth of δ2 in the Stern-Brocot tree, is it the only path?
The following code allows us to answer this question negatively but pushes us to
ask more questions around this δ2.

1. What are the paths that minimize the growth of δ2 all over the Stern-Brocot
tree?

2. Are they any particular paths in this tree like the Fibonacci path?

3. What are the characteristics or particularities for all those paths?

4. By calculating the partitions of a fixed integer n belonging to the Fibonacci
sequence, the zigzag path is one of the paths that minimizes the growth of
δ2. Therefore the following question arises: By calculating the partition of a
fixed value n = a + b, where n is not an element of the Fibonacci sequence,
what are the paths that minimize the value of δ2 ?



99

All those questions can be asked and still points and ideas under studies. Code
4.1 gives us all the minimal paths on the Stern-Brocot tree with all the fractions
along the path. While Code 4.2 gives us the value of δ2 for all the fractions of
same length.

1 de f S(n) :
2 i f n==0:
3 re turn 1
4 i f n==1:
5 re turn 2
6 l=n . b i t l e n g t h ( )−1
7 r=n−2∗∗ l
8 i f r>= 0 and r < 2∗∗( l −1) :
9 re turn S (2∗∗ ( l −1)+r )+S( r )

10 e l s e :
11 re turn S (2∗∗ ( l +1)−r−1)
12 de f v a l 2 (L) :
13 s=” ”
14 f o r i in L :
15 s+=s t r ( i )
16 re turn i n t ( s , 2 )
17 de f f r a c t i o n (L) :
18 L 1=L [ 1 : ]
19 a=S( v a l 2 ( L 1 ) )
20 b=S( v a l 2 (L) )
21 re turn ( ( a , b ) )
22 de f cheminx min ( k ) :
23 F= [ [ ( 1 , 1 ) , ( 1 , 2 ) ] ]
24 W= [ [ 1 , 1 ] ]
25 WW=[]
26 f o r i in range ( k ) :
27 FF=[ ]
28 f o r w in W:
29 w 1=w+[0]
30 w 2=w+[1]
31 f 1=f r a c t i o n ( w 1 )
32 f 2=f r a c t i o n ( w 2 )
33 d 1=secondOrderBalancePython ( f 1 [ 0 ] , f 1 [ 1 ] )
34 d 2=secondOrderBalancePython ( f 2 [ 0 ] , f 2 [ 1 ] )
35 i f d 1==c e i l ( ( i +1)/3) :
36 WW. append ( w 1 )
37 FF. append ( f 1 )
38 de f e x e m p l e i t e r a t o r ( a ) :
39 y i e l d 1
40 y i e l d 2
41 y i e l d 3
42 de f word generator ( k ) :
43 i f k == 0 :
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44 y i e l d tup l e ( )
45 e l s e :
46 f o r w in word generator (k−1) :
47 y i e l d w + ( 0 , )
48 y i e l d w + ( 1 , )
49 de f word generator2 ( k ) :
50 i f k == 0 :
51 y i e l d [ ]
52 e l s e :
53 f o r w in word generator2 (k−1) :
54 y i e l d w + [ 0 ]
55 y i e l d w + [ 1 ]
56 de f check minimal ( word , min imal de l ta2 ) :
57 f = f r a c t i o n ( word )
58 d = secondOrderBalancePython ( f [ 0 ] , f [ 1 ] )
59 re turn d == minimal de l ta2
60 de f minimum path ( k ) :
61 i f k < 2 :
62 re turn
63 i f k == 2 :
64 y i e l d [ 1 , 1 ]
65 e l s e :
66 minimal de l ta2 = c e i l ( ( k+1)/3)
67 f o r w in minimum path (k−1) :
68 w0 = w + [ 0 ]
69 w1 = w + [ 1 ]
70 i f check minimal (w0 , min imal de l ta2 ) :
71 y i e l d w0
72 i f check minimal (w1 , min imal de l ta2 ) :
73 y i e l d w1
74

75 de f a l l f r a c t i o n s ( min paths ) :
76 re turn [ [ f r a c t i o n (w [ : i ] ) f o r i in xrange (2 , l en (w) +1) ] f o r w in

min paths ]

Listing 4.1: Code of the paths that minimize the growth of δ2 on the Stern-Brocot
tree.

1 de f fractionsQuiMinimisentSOB (n) :
2 l e sFract ionsMin = [ ]
3 valeurMinDelta2 = oo
4 F=[ ( i , n−i ) f o r i in range ( 1 , (n+1)//2 ) i f pgcd ( i , n−i ) == 1

]
5 f o r a , b in F :
6 de l ta2 = max( max( i ) f o r i in f ( a , b ) ) )
7 i f d e l t a2 < valeurMinDelta2 :
8 valeurMinDelta2 = de l t a2
9 l e s f r a c t i o n s M i n = [ ( a , b) ]
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10 e l i f d e l t a2 == valeurMinDelta2 :
11 l e sFract ionsMin . append ( ( a , b ) )
12 re turn valeurMinDelta2 , l e sFract ionsMin

Listing 4.2: Minimal value of δ2 for a fixed length.

4.2 Abelian vectors

In the main definition used to compute the second order balance matrix, we pass
through the balance matrix first and then test the balancedness of each row of this
matrix. In fact a normal question derives, aren’t we able to obtain the entries of
the second order balance matrix immediately from the Christoffel word p = C(a

b
)

without using the rows of Bp? This was an interesting question that pushes us to
look for the direct relation between Up and p. The relation is found but before
introducing it, we need to prove in Lemma 4.8 that for any factor w of p of length
i+ j − 1 where 1 ≤ i, j ≤ n− 1, the number of occurrences of 1 is conserved if we
decompose w into j consecutive factors of length i or into i consecutive factors of
length j.
We denote V j

i the list composed of j consecutive factors of length i each, and U i
j

the set of i consecutive factors of length j each.

Example 69 Let us consider the binary word w = 1001001 of length 7. We
compute the two lists: V 5

3 and U3
5 where i = 3, j = 5 and i+ j − 1 = 7 = |w|.

• V 5
3 = (100, 001, 010, 100, 001),

• U3
5 = (10010, 00100, 01001).

Lemma 4.8 Let w be a factor of the Christoffel word p = C(a
b
) such that |w| = i+

j−1 and w[1 . . . i+j−1] = p[k . . . k+i+j−2]. If the V j
i = (vli = w[l · · · l+i−1])l=1···j

and U i
j = (ulj = w[l · · · l + j − 1])l=1···i, then:

j∑
l=1

|vli|1 =
i∑
l=1

|ulj|1.

Proof. Without loss of generality, we let j < i and we write tj = i + γ where
0 ≤ γ < j and t ≥ 1. We get the following factors:

V j
i U i

j

v1
i = w[1 . . . i] u1

j = w[1 . . . j]
v2
i = w[2 . . . i+ 1] u2

j = w[2 . . . j + 1]
...

...

vji = w[j . . . i+ j − 1] uij = w[i . . . i+ j − 1]
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We decompose all the factors of length i into small factors of length j and we see
that all the factors of length j are used to cover the factors of length i.

v1
i = w[1 . . . . . . . . . . . . . . . . . . . . . . . . i]
= w[1 . . . j] . . . w[(t− 1)j + 1 . . . tj]
= w[1 . . . j] . . . w[(t− 1)j + 1 . . . tj − γ] w[i+ 1 . . . tj]

Table 4.4: Decomposition of an element of V j
i by factors of length j.

We remark that the element v1
i is covered by some elements of U i

j . In particu-

lar, we use the elements u1
j ;u

j+1
j . . . u

(t−1)j+1
j . By concatenating these factors the

element u
(t−1)j+1
j exceeded the length of v1

i with a factor of length γ. Hence we
decompose it into two parts and we name the remaining part A1 = w[i+ 1 . . . tj].
Therefore, we have:

|v1
i |1 =

t∑
l=1

|u(l−1)j+1
j |1 − |A1|1.

Similarly for the factor v2
i , we can decompose it in the same way using exactly

t vectors of U i
j and having the factor A2 = w[i + 2 . . . tj + 1] of length γ as an

exceeded factor. Therefore

|v2
i |1 =

t∑
l=1

|u(l−1)j+2
j |1 − |A2|1.

Same reasoning is followed till the factor vj−γi and we have:

As = w[i+ s . . . tj + s− 1],∀1 ≤ s ≤ j − γ.

While for the element vj−γ+1
i , we can write:

w[j − γ + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i+ j − γ]
w[j − γ + 1 . . . 2j − γ]. . . w[(t− 2)j + j − γ + 1 . . . (t− 1)j + j − γ] w[i+ 1 . . . i+ j − γ]
w[j − γ + 1 . . . 2j − γ]. . . w[i− j . . . . . . . . . . . . . . . . . . . . . i] w[i+ 1 . . . i+ j − γ]

Table 4.5: Decomposition of the element vj−γ+1
i by factors of length j.

In fact we have: (t− 1)j + j − γ = i and since vj−γi is not fully covered we still
need to start by a new factor starting from i + 1. Since we don’t have any factor
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of U i
j that starts with this value, therefore

|vj−γ+1
i |1 =

t−1∑
l=1

|u(l−1)j+j−γ
j |1 + |B1|1,

where B1 = w[i+1 . . . i+j−γ] and |B1| = j−γ. We repeat the same decomposition
until we reach vji , where we get:

|vji |1 =
t−1∑
l=1

|uljj |1 + |Bγ|1,

where Bγ = w[i+ γ − 1 . . . i+ j − 1]. Hence, we can write:

Bs′ = w[i+ s′ . . . i+ j − γ + s′ − 1],∀1 ≤ s′ ≤ γ.

If j = 2γ, we get j − γ = γ hence As = Bs′ ; ∀ 1 ≤ s, s′ ≤ γ. Otherwise, we
remark that the factors As cover all the factors of Bs′ . Hence we have:

j−γ∑
s=1

|As|1 =

γ∑
s′=1

|Bs′|1.

By adding the two members we get:

|v1
i |1 =

∑t
l=1 |u

(l−1)j+1
j |1 − |A1|1

|v2
i |1 =

∑t
l=1 |u

(l−1)j+2
j |1 − |A2|1

...+ +
...

|vj−γ+1
i |1 =

∑t−1
l=1 |u

(l−1)j+j−γ
j |1 + |B1|1

...+ +
...

|vji |1 =
∑t−1

l=1 |u
lj
j |1 + |Bγ|1∑j

l=1 |vli|1 =
∑i

l=1 |ulj|1.

�

Example 70 Let p = C( 7
18

) = 0001000100100010010001001 and w = p[7, 19] =
010010001001, where |w| = 13 = 9 + 5− 1. We let i = 9 and j = 5 and we have:
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V 5
9 = (w[1, 9], w[2, 10], w[3, 11], w[4, 12], w[5, 13])

= (p[7, 15], p[8, 16], p[9, 17], p[10, 18], p[11, 19])

= (010010001, 100100010, 001000100, 010001001, 100010010)

|V 5
9 |1 = (3, 3, 2, 3, 3)

U9
5 = (w[1, 5], w[2, 6], w[3, 7], w[4, 8], w[5, 9], w[6, 10], w[7, 11], w[8, 12], w[9, 13])

= (p[7, 11], p[8, 12], p[9, 13], p[10, 14], p[11, 15], p[12, 16], p[13, 17], p[14, 18], p[15, 19])

= (01001, 10010, 00100, 01000, 10001, 00010, 00100, 01001, 10010)

|U9
5 |1 = (2, 2, 1, 1, 2, 1, 1, 2, 2).

Where: 3 + 3 + 2 + 3 + 3 = 2 + 2 + 1 + 1 + 2 + 1 + 1 + 2 + 2 = 14.

In this part we denote by Ψ, the morphism from A∗ −→ Z2 defined by: Ψ(w) =
(|w|0, |w|1). This vector is called the Parikh vector.

Definition 4.9 Let p = C(a
b
) with n = a + b, v1, v2 ∈ Li+j−1(p) where 1 ≤ i, j ≤

n − 1. We let v∗1 = (v1[l · · · l + j − 1])(l=1···i); v
∗
2 = (v2[l · · · l + j − 1])(l=1···i) and

v ∈ Lj(p). The Parikh vector of v∗1 and v∗2 are: Ψ(v∗1) = (Ψ(v1[l · · · l+j−1]))(l=1···i)
and Ψ(v∗2) = (Ψ(v2[l · · · l + j − 1]))(l=1···i). We define the ABELIAN matrix as
follows:

ABa
b
[i, j] = max

v1∈Li+j−1(p)
v∈Lj(p)

|Ψ(v∗1)|Ψ(v) − min
v2∈Li+j−1(p)
v∈Lj(p)

|Ψ(v∗2)|Ψ(v),

where |Ψ(v∗1)|Ψ(v) is the number of occurrences of the couple Ψ(v), which is (|w|0, |w|1),
in the list of couples Ψ(v∗1).

In another words, we are counting the maximal difference of the occurrences of
the abelian vector of v in the list of all the abelian factors of v1 of length j where
v1 is of length i+ j − 1; ∀ 1 ≤ i, j ≤ n− 1.

In Theorem 4.10, we prove that the Abelian matrix and the second order
balance matrix for the Christoffel word of slope a/b are identical.

Theorem 4.10 Let p = C(a
b
) be a Christoffel word of slope a/b with n = a + b.

The second order balance matrix of a/b is equal to the Abelian matrix of a/b, i.e

Ua
b
[i, j] = ABa

b
[i, j], ∀ 1 ≤ i, j ≤ n− 1.
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Proof. From the previous chapters, we know that the second order balance ma-
trix is given by:

Ua
b
[i, j] = max

v1∈Lj(Ba
b

[i])
|v1|1 − min

v2∈Lj(Ba
b

[i])
|v2|1

with Ba
b
[i, j] = Sa

b
[i, j]−min(Sa

b
[i]) where Sa

b
[i, j] = |p[j . . . i+ j − 1]|1.

Let v1 and v2 be two vectors in Lj(Ba
b
[i]), where |v1| = |v2| = j, such that v1

starts at position k and v2 at position l. We suppose that v1 is the factor of the
maximal value and v2 is the factor of the minimal value. We consider the circular
Christoffel word pω, and since v1, v2 are factors of Ba

b
[i] then we can decompose

the factors as follow:

|v1[1]|1 = |p[k . . . k + i− 1]|1 −min(Sa
b
[i])

|v1[2]|1 = |p[k + 1 . . . k + i|1 −min(Sa
b
[i])

...

|v1[j]|1 = |p[k + j − 1 . . . k + i+ j − 2|1 −min(Sa
b
[i])

|v2[1]|1 = |p[l . . . l + i− 1]|1 −min(Sa
b
[i])

|v2[2]|1 = |p[l + 1 . . . l + i|1 −min(Sa
b
[i])

...

|v2[j]|1 = |p[l + j − 1 . . . l + i+ j − 2|1 −min(Sa
b
[i])

Since v1 and v2 are factors of Ba
b
[i], then we have the same min(Sa

b
[i]) which

allows us to write:

Ua
b
[i, j] =

j∑
t=1

|v1[t]|1 −
j∑
t=1

|v2[t]|1

=

j∑
t=1

|p[k + t− 1 . . . k + i+ t− 2]|1 −
j∑
t=1

|p[l + t− 1 . . . l + i+ t− 2]|1

= z.

In other words, z =
∑j

t=1 |w
′t
i |1 −

∑j
t=1 |w

′′t
i |1, where w

′t
i are the j consecutive

factors of length i of the word w′ = p[k . . . k+ i+ j − 2] and w
′′t
i are for the factor
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w′′ = p[l . . . l + i+ j − 2], with |w′| = |w′′| = i+ j − 1.

In another hand, we let the two factors w′, w′′ ∈ Li+j−1(p) such that w′ =
p[k . . . k + i + j − 2] and w′′ = p[l . . . l + i + j − 2]. We let (w′)∗ = (w′[l · · · l +
j − 1])(l=1···i), the vector of all the factors of w′ and of length j. Same process is
repeated with the factor w′′. We define the vectorA1 to be the vector corresponding
to the Ψ((w′)∗) which is the vector that gives the Parikh vector for each factor in
(w′)∗. Similarly, we let A2 be the Parikh vector of (w′′)∗. We know that Christoffel
words are standard strumian words with abelian complexity equal to 2 by Zamboni
[44]. Therefore we can find only two distinct elements in A1 and A2, where the
cardinality of each is equal to i. Therefore, we let (r1, r2); (n1, n2) be the two
distinct elements of A1 and A2. We let kA (resp. lA) be the number of (r1, r2)
(resp. (n1, n2)) in A1 and kA2 (resp. lA2) be the number of (r1, r2) (resp. (n1, n2))
in A2. We have the following relations:

• n1 + n2 = r1 + r2 = j.

• kA + lA = kA2 + lA2 = i.

• Since p is a 1−balanced Christoffel word then we have: r2 = n2 + 1 and
r1 = n1 − 1.

Therefore, if we let kA − kA2 = lA − lA2 = u, and by using the lemma 4.8, we get:

z = kAr2 + lAn2 − kA2r2 − lA2n2

= (kA − kA2)r2 + (lA − lA2)n2

= ur2 − un2

= u(r2 − n2)

= u.

Therefore,
Ua
b
[i, j] = ABa

b
[i, j].

�

Sage code The code 4.3 is used to determine the matrix AB.

1 import numpy as np
2 de f i t e r (w) :
3 w=Word(w, datatype=” s t r ” )
4 W=Words( ’ 01 ’ )
5 IT =[ ]



107

6 l 2 =[ ]
7 n=len (w)
8 f o r j in range (1 , n+1) :
9 SPP=[]

10 f a c t t =[ ]
11 f o r i in range (n−j +1) :
12 SPP. append (w[ i : i+j ] )
13 f a c t t . append (W(w[ i : i+j ] ) . a b e l i a n v e c t o r ( ) )
14 IT . append (SPP)
15 l 2 . append ( f a c t t )
16

17 re turn ( IT , l 2 )
18 de f AB( a , b) :
19 c r i=Word( words . Chr i s to f f e lWord ( a , b) , datatype=” l i s t ” )
20 c r i=c r i+c r i
21 #c r i=Word( c r i )
22 n=a+b
23 L=[ ]
24 W=Words( ’ 01 ’ )
25 f o r k in range (n+n+1) : L . append ( c r i . f a c t o r s e t ( k ) ) ;
26 ABL=[]
27 f o r i in range (1 , n+n+1) :
28 l i g n e =[ ]
29 f o r j in range (1 , n+1) :
30 i f j <= i :
31 XJ=[ ]
32 f o r w in L [ i ] :
33 FF=[ ]
34 f o r k in range ( j +1) :
35 FF. append ( i t e r (w) [ 1 ] [ j −1] . count ( [ k , j−k ] ) )
36 XJ . append (FF)
37 f i n =[ ]
38 f o r t in range ( j +1) :
39 su f =[ ]
40 f o r s in range ( l en (L [ i ] ) ) :
41 su f . append (XJ [ s ] [ t ] )
42 m 1=max( su f )
43 m 2=min ( su f )
44 f i n . append (m 1−m 2)
45 s o l=max( f i n )
46 l i g n e . append ( s o l )
47 e l s e :
48 l i g n e . append (0)
49 ABL. append ( l i g n e )
50 B=[[0 f o r i in range (n−1) ] f o r j in range (n−1) ]
51 f o r i in range (n−1) :
52 f o r j in range (n−1) :
53 B[ i ] [ j ]=ABL[ i+j ] [ j ]
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54 B=np . array (B)
55 re turn B

Listing 4.3: Code of the matrix AB.

Example 71 Let w = C(4
9
), Table 4.6 represents the Parikh vectors of length 5

for all the factors of length 9 of w. Therefore ABw[5, 5] = max(R1) = 3.

(5, 0) (4, 1) (3, 2) (2, 3) (1, 4) (0, 5)
001000100 0 4 1 0 0 0
001001001 0 2 3 0 0 0
001001000 0 3 2 0 0 0
010001001 0 3 2 0 0 0
000100100 0 3 2 0 0 0
010010001 0 2 3 0 0 0
010010010 0 1 4 0 0 0
100010010 0 2 3 0 0 0
100100010 0 3 2 0 0 0
100100100 0 2 3 0 0 0

R1 = max−min 0 3 3 0 0 0

Table 4.6: Table of Parikh vectors of length 5 for all the factors of w = C(4
9) of length

9.

While the second order balance matrix of w is given by:

Uw =



1 1 1 1 1 1 1 1 1 1 1 1
1 2 1 1 2 1 1 2 1 1 2 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 2 2 2 2 2 1 1 1
1 2 1 2 3 2 2 3 2 1 2 1
1 1 1 2 2 2 2 2 2 1 1 1
1 1 1 2 2 2 2 2 2 1 1 1
1 2 1 2 3 2 2 3 2 1 2 1
1 1 1 2 2 2 2 2 2 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 2 1 1 2 1 1 2 1 1 2 1
1 1 1 1 1 1 1 1 1 1 1 1


with Uw[5, 5] = 3.
The value is obtained since Bw[5] = [0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1] and
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L5(Bw[5]) = (00110, 01101, 11011, 10110, 01101, 11011, 10110, 01100, 11001, 10010,

00100, 10011)

|L5(Bw[5])|1 = (2, 3, 4, 3, 3, 3, 4, 3, 2, 3, 2, 1, 3)

Uw[5, 5] = max(|L5(Bw[5])|1)−min(|L5(Bw[5])|1)

= 4− 1 = 3.

Therefore Uw[5, 5] = 3 due to the factors |w1|1 = |11011|1 = 4 and |w2|1 =
|00100|1 = 1.
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Chapter 5

Symmetric standard factorization

At the beginning of the thesis, we gave a geometric definition for the Christof-
fel words then we introduced an algebraic form. Using the algebraic properties
and characteristics, we were able to establish a new order of balancedness for the
Christoffel words. But what is the geometric interpretation for this order of bal-
ancedness? Where are we able to see it on the Christoffel path? Those questions
are answered in this chapter, where a new factorization for the Christoffel words is
defined. In Theorem 1.12, we introduced the standard factorization of a Christoffel
word w, where for each w, we can find two Christoffel words w1 and w2 and write
w as w = w1w2 in a unique way. This factorization is represented by the couple
(w1, w2). In order to better understand the geometric interpretation of the second
order balance matrix, we define the Symmetric standard factorization in section
5.1.

5.1 Symmetric standard factorization

In this section, we define a new tool, named the symmetric standard factorization,
and used to show a geometric recursive form on the Christoffel words identical to
the recursive structure obtained while defining the second order balance matrix in
Chapter 3.

Definition 5.1 Let w = (w1, w2) be the standard factorization of the Christoffel
word w. In the case where w1 and w2 are non-trivial, let w′1, w′2 and w′ be the
three palindromes such that w = 0w′1, w1 = 0w′11 and w2 = 0w′21. The symmetric
standard factorization of w is the triplet (p, q, p) where p and q are the palindromes
such that

p =

{
w′1 if |w1| < |w2|,
w′2 if |w1| > |w2|.

(5.1)
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and q is the unique word such that: w = 0pqp1. This factorization is noted
w = 0(p, q, p)ss1.

Proposition 5.2 A Christoffel word w = (w1, w2), such that w1 and w2 are non-
trivial, has a unique symmetric standard factorization 0(p, q, p)ss1. Moreover p
and q are palindromes with |q| ≥ 3.

Proof. Let w′1, w
′
2, w

′ be the three palindromes such that: w1 = 0w′11;w2 = 0w′21
and w = 0w′1. By the construction of the standard factorization and using the
functions φ0 and φ1, we have |w1| = |w2| only if w1 and w2 are trivial Christoffel
words which is not the case here. Therefore the factor p of the symmetric stan-
dard factorization of w is well defined and 2p < |w′|. Consequently, the factor q
exists and both, p and q are palindromes since the central words w′1, w′2 and w′

are palindromes. The uniqueness of the standard factorization of w implies the
uniqueness of the symmetric standard factorization. Finally:

|q| = |w′| − 2|p|
= |w′1|+ |w′2|+ 2− 2|p|
≥ 3.

�

Example 72 Let w = C(5/8) = 0010010100101 with (w1, w2) = (00100101, 00101)
its standard factorization. From Theorem 1.12, we know that w1 and w2 are
Christoffel words and we can write: w1 = 0.010010.1 = 0w′11 and w2 = 0.010.1 =
0w′21 where w′1 and w′2 are palindromes. We have |w′2| < |w′1| then by Definition
5.1, we let p = w′2 and we are able to write:

w = (00100101, 00101) = 0(010, 01010, 010)ss1,

where p = 010 and q = 01010 as we can see in Figure 5.1.

In Chapter 3, we proved that the second order balance is formed of 9 blocks
where the blocks α, γ and β are the three main blocks needed for the construction of
the matrix. Now in this part, we define a new operator Γ, that is used to construct
and identify geometrically those three blocks of Ua

b
. Consider the definition of a

Christoffel word given in 2.2 and let (p0, p1, . . . , pn) be the integer points along the
path of the Christoffel word w of slope a/b. In the conclusions of Proposition 2.3,
we indicated the most important points on the Christoffel path that are beneficial
in this thesis. These two points are exactly the closest and the furthest points on



O(0,0)
p

Q

q

P
p

(8,5)

Figure 5.1: The symmetric standard factorization of w = C(5
8).
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the Christoffel path with respect to the line segment. So we let i be the index of
the point that is the closest to the line segment joining (0, 0) to (b, a), other than
p0 = (0, 0) and pn = (b, a). In such case, we have i.a ≡n 1 or equivalently r[i] = 1.
Similarly, let j be the index of the point that is the furthest from the line segment,
then we have j.a ≡n (n − 1) or equivalently r[j] = −1. The operator Γ extracts
the part of a Christoffel word that is between pi and pj.

Definition 5.3 Let w = C(a
b
) and i, j the integers such that i.a ≡n 1 and j.a ≡n

(n− 1), where n = a+ b. The operator Γ is defined as:

Γ : Q∗+ → A∗
a
b

7→ C
(
a
b

)
[min(i, j) + 1, . . . ,max(i, j)]

The part of w extracted by operator Γ can easily be deduced from its symmetric
standard factorization. In order to show this result, we need the following technical
lemma.

Lemma 5.4 Let w, p, q be such that w = 0(p, q, p)ss1 and let i, j be such that
i.a ≡n 1 and j.a ≡n n− 1. We have {i, j} = {|p|+ 2, |pq|}.

Proof. From Corollary 2.5, we have that w = (w1, w2) which implies that
|w1|.a ≡n 1 and |w2|.a ≡n (n− 1). If |w1| < |w2|, then by definition |p|+ 2 = |w1|
and |pq| = n − (|p| + 2) = |w2|. Conversely, if |w1| > |w2| then |p| + 2 = |w2|
and |pq| = |w1|. Finally, the case |w1| = |w2| is impossible since it implies that
a/b = 1/1 and in such case the symmetric standard factorization of w does not
exist. �
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Proposition 5.5 The word Γ(a
b
) is:

Γ
(a
b

)
=


0b−1 if a = 1,

1a−1 if b = 1,

q′ where w = 0(p, q, p)ss1 and q = aq′a for a ∈ A, otherwise.

Proof. Let i and j be two natural numbers such that: i.a ≡n 1 and j.a ≡n (n−1).

• If a = 1, then i = 1, j = n− 1 and w = C
(

1
b

)
= 0 · 0b−1 · 1.

• If b = 1 then a = n− 1 so that i = n− 1, j = 1 and w = C(a
1
) = 0 · 1a−1 · 1.

• Otherwise, if a > 1 and b > 1, then the symmetric standard factorization of
w exists and, by Proposition 5.2, |q| ≥ 3. Finally, Lemma 5.4 ensures that
{i, j} = {|p| + 2, |pq|}, so that in w, the position |p| + 2 is the second letter
of q in 0(p, q, p)ss1 and position |pq| is one letter before the end of q.

�
Note that from Proposition 5.2, |q| ≥ 3 so that |p| + 2 < |pq| which implies that
Γ(a

b
) is not empty. Same thing for the particular cases, while for the fraction 1

1
,

we let Γ(1
1
) = ε.

1. If a = 1, we have x = 1 and y = n− 1 = b. Then Γ
(

1
b

)
= C

(
1
b

)
[min(x, y) +

1 . . .max(x, y)] = C
(

1
b

)
[x+ 1 . . . y] = C

(
1
b

)
[2 . . . b] = 0n−2 = 0b−1.

2. Similarly, if b = 1, we have y = 1 and x = n − 1 = a . Therefore Γ
(
a
1

)
=

C
(
a
1

)
[min(x, y) + 1 . . .max(x, y)] = C

(
a
1

)
[2 . . . a] = 1n−2 = 1a−1.

Example 73 Let w = C(1
6
), by Proposition 5.5, we have that Γ(

(
1
6

)
= 051 re-

ferring to the path joining the two critical points of the path, the closest and the
furthest point as shown in Figure 5.2.

O(0,0) Γ
(

1
6

)
Figure 5.2: The geometrical representation of Γ

(
1
6

)
joining the closest and furthest

points of the Christoffel path.
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As we can see in Figure 5.1, the path joining the two points P and Q, that
represent the closest and furthest points of this path with respect to the line
segment, is exactly Γ

(
5
8

)
and is equal to: 101.

In Chapter 3, we have shown that the second order balance matrix is decomposed
into 9 blocks, where mainly 3 of them are sufficient to prove the recursive form
obtained. In order to show geometrically this recursive structure, we first need
to realize how C(x

y
) is decomposed using the Γ operator. This decomposition is

introduced in Lemma 5.6:

Lemma 5.6 Let x
y

= [a0, . . . , az−1], u
v

= FEF(x
y
) and c

d
= FDF(u

v
).

C

(
x

y

)
=


Γ
(u
v

)
Γ
( c
d

)
if z − 1 is odd,

Γ
( c
d

)
Γ
(u
v

)
otherwise.

Proof. Recall that we work under the assumption that x ≤ y so that the contin-
ued fraction of x

y
starts with a0 = 0. By definition, we have u

v
= [a0, . . . , az−1 + 1]

and c
d

= [a0, . . . , az−1, 2], There are two cases to consider.

Case 1. x = 1 ≤ y. In this case, x
y

= [0, y] so that z − 1 is odd, u
v

= 1
y+1

and
c
d

= 2
2y+1

. So we can write C(x
y
) = (0, 0y−11)s and C(u

v
) = (0, 0y1)s. By

Remark 2.29 (4) we have that C( c
d
) = (0y+11, 0y1)s so that the symmetric

standard factorization of C( c
d
) is 0(0y−1, 010, 0y−1)ss1. Finally, Proposition

5.5 states that Γ(u
v
) = 0y and Γ( c

d
) = 1 which proves the result.

Case 2. x, y > 1. in this case, let α, β, p, q be such that C(x
y
) = (α, β)s =

0(p, q, p)ss1. In this part, we can get 4 sub-cases depending on the value
of z − 1 and az−1:

i If z−1 is odd, from Theorem 2.26 and Lemma 2.38 we have that ∆(x
y
)

ends with letter 0 and |α| < |β|. The value of az−1 can be equal to 1
or greater or equal to 2, hence we have the following two cases:

1- If az−1 ≥ 2.
Figure 5.3 illustrates the situation and the proof and we have the
following information:

• We have C(x
y
) = (α, β) = 0(p, q, p)ss1, so that α = 0p1 and

β = 1−1qp1.

• Let p′, q′ be such that u
v

= (α, αβ)s = 0(p′, q′, p′)ss1. We
have p′ = p, q′ = 10pq and therefore Γ(u

v
) = 0pq1−1. Also,
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since p, q, p′, q′, p′q′p′ are palindromes, C(u
v
) = 0.p10pqp.1 =

0.pqp01p.1.

• Let p′′, q′′ be such that c
d

= (ααβ, αβ)s = 0(p′′, q′′, p′′)ss1. We
have that p′′ is the central part of αβ which is p′′ = pqp.
Using the previous equalities, we have C( c

d
) = ααβ.αβ =

0pqp01p1.0pqp1 so that q′′ = 01p10. Therefore Γ( c
d
) = 1p1.

Hence, Γ(u
v
).Γ( c

d
) = 0pq1−1.1p1 = 0pqp1 = C(x

y
).

C(x
y
) = (α, β)s = 0(p, q, p)ss1

C(u
v
) = (α, αβ)s = 0(p, 10pq, p)ss1

C( c
d
) = (ααβ, αβ)s = 0(pqp, 01p10, pqp)ss1

Figure 5.3: The symmetric standard factorization of the Christoffel words of slopes
x/y, u/v and c/d with an odd value for az−1 .

2- If az−1 = 1.
The relations are presented in Figure 5.4:

• We have C(x
y
) = (α, β) = 0(p, q, p)ss1, so that α = 0p1 and

β = 1−1qp1.

• Let p′, q′ be such that u
v

= (αβ, β) = 0(p′, q′, p′)ss1. We have
p′ = pq, q′ = p. We can write C(u

v
) = 0.pq1−10−101p100−11−1qp1

since p, q, p′, q′, p′q′p′ are palindromes, and therefore Γ(u
v
) =

1p1.

• Let p′′, q′′ be such that c
d

= (αβ, αββ) = 0(p′′, q′′, p′′)ss1. We
have that p′′ is the central part of αβ which is p′′ = pqp.
Using the previous equalities, we have C( c

d
) = αβ.αββ =

0pqp1.0pqpqp1 so that q′′ = 10pq. Therefore Γ( c
d
) = 0qp1−1.

Hence, Γ( c
d
).Γ(u

v
) = 0pq1−1.1p1 = 0pqp1 = C(x

y
).

ii If z− 1 is even, we have in this case |α| > |β| and two sub-cases arise:

3- If az−1 ≥ 2.
Figure 5.5 illustrates this case:

• We have C(x
y
) = (α, β) = 0(p, q, p)ss1, so that α = 0pq0−1 and

β = 0p1.

• Let p′, q′ be such that u
v

= (αβ, β)s = 0(p′, q′, p′)ss1. We
have p′ = p, q′ = qp10 and therefore Γ(u

v
) = 0−1qpq1. Also,



C(x
y
) = (α, β) = 0(p, q, p)ss1

C(u
v
) = (αβ, β) = 0(0−11−1qp, 01p10, 0−11−1qp)ss1

C( c
d
) = (αβ, αββ) = 0(pqp, 10pq, pqp)ss1

Figure 5.4: The symmetric standard factorization of the Christoffel words of slopes
x/y, u/v and c/d with an odd value for az−2 and az−1 = 2 .
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since p, q, p′, q′, p′q′p′ are palindromes, C(u
v
) = 0.pqp10p.1 =

0.p01pqp.1.

• Let p′′, q′′ be such that c
d

= (αα, αββ)s = 0(p′′, q′′, p′′)ss1. We
have that p′′ is the central part of αβ which is p′′ = pqp.
Using the previous equalities, we have C( c

d
) = αβ.αββ =

0pqp10p.01pqp1 so that q′′ = 10p01. Therefore Γ( c
d
) = 0p0.

Hence, Γ( c
d
).Γ(u

v
) = 0p00−1.qp1 = 0pqp1 = C(x

y
).

C(x
y
) = (α, β) = 0(p, q, p)ss1

C(u
v
) = (αβ, β) = 0(p, qp10, p)ss1

C( c
d
) = (αβ, αββ) = 0(pqp, 10p01, pqp)ss1

Figure 5.5: The symmetric standard factorization of the Christoffel words of slopes
x/y, u/v and c/d with an even value for az−1 .

3- If az−1 = 1.
Figure 5.6 illustrates the situation and we have:

• We have C(x
y
) = (α, β) = 0(p, q, p)ss1, so that α = 0pq0−1 and

β = 0p1.

• Let p′, q′ be such that u
v

= (α, αβ) = 0(p′, q′, p′)ss1. We have
p′ = pq0−11−1, q′ = 10p01 and therefore Γ(u

v
) = 0p0. Also,

since p, q, p′, q′, p′q′p′ are palindromes, C(u
v
) = 0.pq0−10pqp.1 =

0.pq0−11−110p011−10−1qp.1.

• Let p′′, q′′ be such that c
d

= (ααβ, αβ) = 0(p′′, q′′, p′′)ss1. We
have that p′′ is the central part of ααβ which is p′′ = pqp.
Using the previous equalities, we have C( c

d
) = ααβ.αβ =

0pqpqp1.0pqp1 so that q′′ = qp10. Therefore Γ( c
d
) = 0−1qp1.

Hence, Γ(u
v
).Γ( c

d
) = 0p00−1.qp1 = 0pqp1 = C(x

y
).
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C(x
y
) = (α, β) = 0(p, q, p)ss1

C(u
v
) = (α, αβ) = 0(pq0−11−1, 10p01, pq0−11−1)ss1

C( c
d
) = (ααβ, αβ) = 0(pqp, qp10, pqp)ss1

Figure 5.6: The symmetric standard factorization of the Christoffel words of slopes
x/y, u/v and c/d with an even value for az−2 and az−1 = 2 .

�

After this decomposition, we are able to prove the main result of this section.

Theorem 5.7 The geometrical form of the γ−block is obtained depending on the
position of the fraction in the Stern-Brocot tree and using the Γ operator.

Γ
(a
b

)
=


Γ
( c
d

) [
Γ
(u
v

)
Γ
( c
d

)]az−2

if az ≥ 3

Γ

(
e

f

)
it az = 2

(5.2)

where e
f

= FPF(a
b
).

Proof. In this proof, we have 4 distinct cases depending on the position of the
fraction in the Stern-Brocot tree and on the morphisms used to reach the fraction
a/b.
Let a

b
= [a0, . . . , az],

• Part A: If az ≥ 3: In this part we can distinguish two cases depending on
the morphisms used to reach a/b.

– If we reach a/b with the morphism φ1, we let p1, p2 be two palindromes
such that: C( s

t
) = 0p11, C( g

h
) = 0p21 where C(x

y
) = C( s

t
)C( g

h
) and

C(a
b
) = C( s

t
)(C(x

y
))az . Since p110p2 = p201p1, we get:

C
(a
b

)
= C

(s
t

)
·
(
C

(
x

y

))az
= 0p11 · (0p110p21)az−10p110p21

= 0p11 · 0p201p11(0p110p21)az−20p110p21

= 0(p110p2, 01p11(0p110p21)az−20, p110p2)ss1.



119

Therefore, Γ(a
b
) = 1p11(0p110p21)az−2 and from the first case of Lemma

5.6, we get Γ(a
b
) = Γ( c

d
)[Γ(u

v
)Γ( c

d
)]az−2.

– If we reach a/b with the morphism φ0, we let p1, p2 be two palindromes
such that: C( s

t
) = 0p11, C( g

h
) = 0p21 where x/y = C( g

h
)C( s

t
) and

C(a
b
) = (C(x

y
))azC( s

t
). Since p210p1 = p101p2, we get:

C
(a
b

)
=

(
C

(
x

y

))az
· C
(s
t

)
= (0p210p11)az−10p210p11 · 0p11

= 0p210p11(0p210p11)az−20p101p210p11

= 0(p210p1, 1(0p210p11)az−20p101, p210p1)ss1.

Therefore, Γ(a
b
) = (0p210p11)az−20p10 and from the second case of

Lemma 5.6, we get:

Γ
(a
b

)
=
[
Γ
( c
d

)
Γ
(u
v

)]az−2

Γ
( c
d

)
= Γ

( c
d

) [
Γ
(u
v

)
Γ
( c
d

)]az−2

.

• Part B: If az = 2: Same to the first part, we have two cases depending on
the morphisms used to reach a/b:

– With the same givens, if we reach a/b with the morphism φ1, we have
since p110p2 = p201p1:

C
(a
b

)
= C

(s
t

)
·
(
C

(
x

y

))2

= 0p11 · 0p110p21 · 0p110p21

= 0p110p201p110p110p21

= 0(p110p2, 01p110, p110p2)ss1.

Therefore Γ(a
b
) = 1p11. We have for the fraction e

f
= FPF(a

b
):

C

(
e

f

)
= C

(
x

y

)
C
(g
h

)
= 0p110p2100p21

= 0p201p110p21

= 0(p2, 01p110, p2)ss1.

Therefore Γ( e
f
) = 1p11 and Γ(a

b
) = Γ( e

f
).
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– If we used the morphism φ0, we have: p210p1 = p101p2 and we get:

C
(a
b

)
=

(
C

(
x

y

))2

· C
(s
t

)
= 0p210p11 · 0p210p11 · 0p11

= 0p210p110p101p210p11

= 0(p210p1, 10p101, p210p1)ss1.

Therefore Γ(a
b
) = 0p10. We have that:

C

(
e

f

)
= C

(g
h

)
C

(
x

y

)
= 0p210p210p11

= 0p210p101p21

= 0(p2, 10p101, p2)ss1.

Therefore Γ( e
f
) = 0p10 and Γ(a

b
) = Γ( e

f
).

�

5.1.1 Geometrical examples

At the beginning of this chapter, we mentioned that we will show the geometric
link between the blocks of the second order balance matrix Ua

b
and the Christoffel

word. In fact, we present the decomposition of the Christoffel path into several
parts where those parts represent exactly the 3 main blocks of the second order
balance matrix. We recall that the α−block of Ua

b
corresponds to the left part of

UTBF(a
b

), the β−block is exactly the USUF(a
b

) where all the elements of this matrix
are increased by 1. Finally the γ−block can be either the γ−block of FPF(a

b
) if

a/b is at a first deviation position (i.e a/b has the last partial denominator equal to
2), or as presented in equation 3.1, it is the concatenation between the γ−blocks
of TBF(a

b
) and FEF(TBF(a

b
)).

1. We start with the first case where a/b is at the first deviation position and
we pick the fraction 3

11
, where w = C( 3

11
) = 00001000010001.

From Stern-Brocot tree, we have: 3
11

= 1
4
⊕ 2

7
. The second order balance

matrix U 3
11

is constituted of:
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• The left part of the second order balance matrix of TBF( 3
11

) = 2
7

that
is the α−block of U 3

11
.

U 3
11

=



1 1 1 1 1 1 1 1
1 2 2 1 1 2 2 1
1 2 2 1 1 2 2 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 2 2 1 1 2 2 1
1 2 2 1 1 2 2 1
1 1 1 1 1 1 1 1



• The second order balance matrix of SUF( 3
11

) = 1
3

that is exactly the
β−block of U 3

11
where all the elements of this matrix are increased by

1.

U 1
3

=

 1 1 1
1 2 1
1 1 1

 +1→

 2 2 2
2 3 2
2 2 2



• Since 3
11

= [0, 3, 1, 2] has a last partial denominator equal to 2 which
implies that the rational number is at first deviation position. Hence,
the γ− block of U 3

11
is obtained from the FPF( 3

11
) = 1

5
.

U 1
5

=


1 1 1 1 1
1 2 2 2 1
1 2 3 2 1
1 2 2 2 1
1 1 1 1 1





122

Hence U 3
11

is given by:

U 3
11

=



1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 2 1 1 2 2 2 1 1 2 2 1
1 2 2 1 1 2 3 2 1 1 2 2 1
1 1 1 1 1 2 2 2 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 2 2 1 2 2 2 1 2 2 2 1
1 2 3 2 1 2 3 2 1 2 3 2 1
1 2 2 2 1 2 2 2 1 2 2 2 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 2 2 2 1 1 1 1 1
1 2 2 1 1 2 3 2 1 1 2 2 1
1 2 2 1 1 2 2 2 1 1 2 2 1
1 1 1 1 1 1 1 1 1 1 1 1 1


In Figure 5.7, we represent the Christoffel word of slope 3/11, we remark the
following:

2/7

2/7

1/5

1/3

α−
bl
oc
k α−

blo
ck

β−block

γ− block

Figure 5.7: The geometric representation of the α, γ and β−blocks of U 3
11

1 Starting from the beginning and the ending of the Christoffel path we are
able to find the Christoffel path of slope 2/7 that is needed to obtain the
α−block. But we remark that we need to add at the position before the
closest point to the line segment a vertical step to get the Christoffel path.

2 The intersection of these two paths is exactly the Christoffel path of slope
1/3 referring to the β−block in the second order balance matrix. The
extra vertical step in this part is the step responsible of adding +1 to all
the entries of the second order matrix of 1/3.

3 As shown in this chapter, the Γ operator gives us the path joining the
furthest point to the closest point on the Christoffel word with respect to
the line segment. Graphically we can see that by adding a horizontal step
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at the beginning of this path and a vertical step at the end tat refer to 0
and 1, we get the Christoffel path of slope 1/5 used to obtain the γ−block.

2. The second case concerns the fractions that are with a last partial denomi-
nator greater or equal to 3. Which means, the fractions that are in a certain
extended branch of the Stern-Brocot tree. We choose the rational num-
ber 6

11
that is equal to: 6

11
= 5

9
⊕ 1

2
= 1

1
⊕
(

1
2

)5
where w = C( 6

11
) =

00100100100100101. To construct the second order balance matrix of this
rational number, exactly like the first case, we need:

i For the α−block, we need the left part of UTBF( 6
11

) = U 2
3
;

U 2
3

=


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 .

ii For the β−block we need the USUF( 6
11

) = U 4
7

where a +1 has to be added
to each entry to get the β−block;

U 4
7

=



1 1 1 1 1 1 1 1 1 1
1 1 1 2 1 1 2 1 1 1
1 1 1 1 1 1 1 1 1 1
1 2 1 2 2 2 2 1 2 1
1 1 1 2 2 2 2 1 1 1
1 1 1 2 2 2 2 1 1 1
1 2 1 2 2 2 2 1 2 1
1 1 1 1 1 1 1 1 1 1
1 1 1 2 1 1 2 1 1 1
1 1 1 1 1 1 1 1 1 1


.

iii For the γ−block and as represented in 3.1, we concatenate the gamma
part of the fractions 3

5
and 2

3
.

U 3
5

=



1 1 1 1 1 1 1
1 1 1 2 1 1 1
1 1 1 1 1 1 1
1 2 1 2 1 2 1
1 1 1 1 1 1 1
1 1 1 2 1 1 1
1 1 1 1 1 1 1


U 2

3
=


1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

 .
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Hence the second order matrix has the following form:

U 6
11

=



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 1 2 2 2 2 2 2 2 2 2 2 1 2 1
1 1 1 2 2 2 3 2 2 3 2 2 2 1 1 1
1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1
1 2 1 2 3 2 3 3 3 3 2 3 2 1 2 1
1 1 1 2 2 2 3 3 3 3 2 2 2 1 1 1
1 1 1 2 2 2 3 3 3 3 2 2 2 1 1 1
1 2 1 2 3 2 3 3 3 3 2 3 2 1 2 1
1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1
1 1 1 2 2 2 3 2 2 3 2 2 2 1 1 1
1 2 1 2 2 2 2 2 2 2 2 2 2 1 2 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



.

We can see geometrically this decomposition and Figure 5.8 shows the ex-
istence of these rational numbers in w where the following remarks can be
given:

(a) In the first case, the intersection between the top branch factor of
the Christoffel word from the beginning and at the end is exactly the
Christoffel word used for the γ−block. While in this case and since no
intersection, we keep on adding the Christoffel word of the top branch
fraction and its first extended fraction and we cover the word.

(b) If we count how many times we added these fractions, we get exactly
the same number needed to construct the γ−block of the second order
balance matrix.

(c) Finally, the Christoffel word used for the β−block appears in the middle
of the path.



Figure 5.8: The geometric representation of the α, γ and β−blocks of U 6
11
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Chapter 6

Synchronization of Christoffel
words

This thesis focuses on Christoffel words and their applications. So far in Chapter
3 and 4, we presented a new order of balancedness and we did the link with the
Abelian vectors. Christoffel words are one of the special types of words in com-
binatorics that have a geometrical interpretation as we have already seen. Many
studies were done by Elwin Christoffel [25], Borel [7], Berstel [4] and Reutenauer
[5] to find all the characterization of these words. Finding balanced words was
always the purpose of lot of mathematicians like Etian Altman [2], Pascal Hubert
[32] and Robert Tijdeman [51]. The usual Christoffel word can be seen as a syn-
chronization using two generators like the work done by Reutenauer [38]. Aviezri
Fraenkel, in his papers [24],[25], [50, 52] has mentioned many ways to prove that
the unique solution for balanced words on k-letters alphabet with pairwise distinct
frequencies of letter, where 3 ≤ k ≤ 7, is the sequence of generators of the form:
2k−1 called Fraenkel’s conjecture for all k ≥ 3. Many studies use either bal-
anced words or Beatty sequences like Ronald Graham [30], nevertheless Christoffel
words can give a better insight on Fraenkel’s conjecture.
In this chapter, we present how two Christoffel words are synchronized and how
three Christoffel words can be synchronized. In the first section we define some
invariants that help us to find a simple way to write the synchronization of these
Christoffel words using a specific seed. In the second section we find a relation
between the synchronization of two and three Christoffel words, hence we are able
to pass simply from one case to another.
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6.1 Synchronization of Christoffel words

In the thesis of G.Paquin, we can find an interpretation for the synchronization
of k Christoffel words on k letters and an extra symbol ∗ and many properties
of partial synchronization of Christoffel words (the ∗ materialize an extra gap
letter in the synchronization). Many properties from the Beatty sequences point
of view to the combinatorics on words point of view [38] were used. Now we use
explicitly the properties of Christoffel words in order to make the synchronization
of 3 Christoffel words. The concepts developed will certainly help to attack the
Fraenkel’s conjecture as we will see at the end of this chapter.

Given d well chosen Christoffel words, written respectively on alphabets {1, ∗},
{2, ∗}, . . . , {d, ∗}, a synchronization provides a word on alphabet {1, 2, . . . , d}.
This notion is closely related to the superimposition defined in [38] with the
difference that we do not only require the words to be collision free on the let-
ter {1, 2, . . . , d}, we also require that there is a letter among {1, 2, . . . , d} at each
position. That is to say that the final word does not contain any occurrences of
the letter ∗. More formally, let g1, g2, . . . , gd be strictly positive integers called
generators and s1, s2, . . . , sd be integers called seeds. In order to lighten the pre-
sentation, the vector G = (g1, . . . , gd) is called a generator and S = (s1, s2, . . . , sd)
is called a seed. We denote Pa(g, n, s) the word obtained from the Graph of Cayley
of the generator g modulo n starting with the seed s over the alphabet A = {a, ∗}.

Definition 6.1 Given generators g1, g2, . . . , gd, and seeds s1, s2, . . . , sd, let n =
g1 + · · · + gd. A superposition of Christoffel words is given by the two matrices
V = (vi,j) i=1..d

j=0..n
and and E = (ei,j)i=1..d

j=0..n−1
, defined as:

vi,j = (si + jgi) mod n and ei,j =

{
i if vi,j > vi,j+1

∗ otherwise

We remark that: ei = Pi(gi, n, si).

Informally, a superposition of Christoffel words, is equivalent to the draw of
Cayley graphs of the Christoffel words of slope gi/(n− gi) linearly, one below the
other.

Example 74 For the generators g1 = 5, g2 = 3 and the seeds s1 = 0, s2 = 0, we
can write:

g1 = 5 : 0
∗−→ 5

1−→ 2
∗−→ 7

1−→ 4
1−→ 1

∗−→ 6
1−→ 3

1−→ 0

g2 = 3 : 0
∗−→ 3

∗−→ 6
2−→ 1

∗−→ 4
∗−→ 7

2−→ 2
∗−→ 5

2−→ 0
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In this example, we got a matrix that contains the values of the vertices of the
Cayley graphs of each generator and a second matrix that represents the edges.
In order to get the matrix of synchronizationV and the matrix of the edges E, we
must introduce the following definition:

Definition 6.2 The seed S synchronizes the generator G if each column of the
matrix E contains exactly d− 1 occurrences of the letter ∗ and one occurrence of
a letter in {1, 2, . . . , d}. We call the synchronization word the word obtain by the
concatenation of the letters in {1, 2, . . . , d}.

Example 75 The superposition for generators g1 = 5, g2 = 3 and seeds s1 = 0,
s2 = 7 form a synchronization :

0
∗−→ 5

1−→ 2
∗−→ 7

1−→ 4
1−→ 1

∗−→ 6
1−→ 3

1−→ 0

7
2−→ 2

∗−→ 5
2−→ 0

∗−→ 3
∗−→ 6

2−→ 1
∗−→ 4

∗−→ 7

The synchronization word is 21211211, and the seed is

(
0
7

)
. The two matrices

V and E are given as the following:

V =

(
0 5 2 7 4 1 6 3 0
7 2 5 0 3 6 1 4 7

)
and E =

(
∗ 1 ∗ 1 1 ∗ 1 1
2 ∗ 2 ∗ ∗ 2 ∗ ∗

)
.

The geometrical representation can be given by:

(0, 0)

(5, 3)

Figure 6.1: Two representation of the Christoffel word 11211212 of slope 3/5. On the
left as a lattice path and on the right as a Cayley graphs. The representation as Cayley
graphs highlights the fact that the Christoffel word of slope p/q has the same structure
then the one of slope q/p and that both synchronizes into a circular conjugate.

The aim of this chapter is to provide a complete characterization of the seeds that
provides a synchronization for any triplet of generators g1, g2, g3.
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6.2 Vertical invariant

For instance, we are going to define the vertical and horizontal invariants in order
to study and prove that any three generators that are not pairwise distinct can be
synchronized and to find their seeds.

Definition 6.3 Let w ∈ A∗ be a balanced word over a k-letter alphabet, with
k ≥ 3 such that w is the synchronization word obtained from the superposition of
k generators. We let V the proper matrix of synchronization of these generators

and we define cj =
d∑
i=1

vi,j∀j.

Theorem 6.4 The cj’s are constant if and only if there exists a unique decreasing
position in each column of the synchronization matrix starting from a specific seed.

Proof. ⇒ By contradiction, we let V be the superposition matrix of Christoffel
words defined like above. We choose a column j and we let cj be the constant value

obtained on each column. We have cj =
d∑
i=1

vi,j = u and we let all the elements of

the next column be greater than the vi,j’s but smaller than n, in this case all the
elements of ei,j are ∗, which means there are any decreasing in this column.

v1,j+1 = v1,j + g1 < n

v2,j+1 = v2,j + g2 < n

...

vd,j+1 = vd,j + gd < n

The sum of the elements of the column j + 1 is equal to: cj+1 =
d∑
i=1

vi,j+1 =

d∑
i=1

vi,j + g1 + g2 + ...+ gd = cj + n = u+ n 6= u.

Contradiction since the constant is not respected on each column.
Suppose now that we have two decreasing positions at row k and l such that k < l,
respecting all the previous conditions. We get the following:
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v1,j+1 = v1,j + g1 < n

v2,j+1 = v2,j + g2 < n

...

vk,j+1 = vk,j + gk > n = vk,j + gk − n
...

vl,j+1 = vl,j + gl > n = vl,j + gl − n
...

vd,j+1 = vd,j + gd < n

Then the elements of ei,j are all ∗ unless ek,j = k and el,j = l. By calculating

cj+1 =
d∑
i=1

vi,j+1 =
d∑
i=1

vi,j + g1 + g2 + ...+ gd − n− n = cj + n− 2n = u− n 6= u.

Hence the vertical invariant is not respected too when we have more than one
decreasing. Same result is obtained if we have s decreasing instead of two. The
ci,j+1 = u− (s− 1)n which is a contradiction.
⇐ we fix a column j and we say:

s1,j = s1,0 + jg1

...

sd,j = sd,0 + jgd

hence cj = c0 + jn and since by hypothesis we know that we have exactly one
decreasing from a column to another then to reach the jth column, we have to
remove n j times and then we have to subtract jn from cj and hence we get:
cj = c0 = u ∀j ∈ {0, . . . , n}. �

NOTATION:We call this constant the Vertical invariant and we denote it by
In,k.

Lemma 6.5 Let di = gcd(gi, n). Then k ≤
∑k

i=1 di ≤ n.

Proof. By its definition, 1 ≤ di ≤ gi. Thus, k ≤
∑k

i=1 di ≤ n. �

Proposition 6.6 In,k =
kn

2
− 1

2

k∑
i=1

di, where di = gcd(gi, n).



132

Proof. Let gi be the generator of the i-th row and let di = gcd(gi, n). Then, the
πi(w) is a conjugate of a di-th power of the Christoffel word of length n/di having
gi/di occurrences of the smallest letter. Thus, the values on the i-th row are the
ones of di times the Cayley graph of the word C(n/di, gi/di) generated by di ·gi/di.
The sum of the values of the i-th rows is di

∑n/di−1
j=1 jdi and so, the sum of the k-th

rows is
∑k

i=1

(
di
∑n/di−1

j=1 jdi

)
. Since the sum of each of the n columns are equal,

we obtain

In,k =

∑k
i=1

(
di
∑n/di−1

j=1 jdi

)
n

=

∑k
i=1

(
d2
i

∑n/di−1
j=1 j

)
n

=
1

n

k∑
i=1

d2
i

(
n
si
− 1
)

n
di

2

=
1

n

k∑
i=1

(n2 − ndi)
2

=
kn

2
− 1

2

k∑
i=1

di.

�

Lemma 6.7 For (g1, g2) mod n where n = g1 +g2 with d = gcd(gi, n) ∀i ∈ {1, 2},
we get In,k = n− d

Proof. Let (g1, g2) mod n where n = g1 + g2 with d = gcd(gi, n) ∀i ∈ {1, 2}, we
get:

In,k =
k.n

2
− 1

2
(

2∑
i=1

gcd(n, gi)) =
2n

2
− 1

2
(d+ d) = n− d,

�

Example 76 From Example 75, we presented the synchronization of the gener-
ators g1 = 3 and g2 = 5. If we compare the sum of each column obtained after
synchronization, we can notice that it is a constant value equal to: n− 1 = 7.

6.3 Seeds for two generators

Geneviève Paquin and Reutenauer in their paper [38] have proved that two gener-
ators are always synchronized for all n in particular when n is equal to their sum.
In addition to that, since we know the value of In,k = n − d, then we can deduce
that the seed for two generators is always of the form:

S =

(
0

n− d

)
=

(
0
In,k

)



Figure 6.2: The vertical invariant of the synchronized form of the generators g1 = 3
and g2 = 5.
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.

Example 77 Let (g1, g2) = (2, 4) mod 6, where In,k = I6,k = n − d = 6 − 2 = 4,
hence we get the following synchronization:

g1 = 2 : 0
∗−→ 2

∗−→ 4
1−→ 0

∗−→ 2
∗−→ 4

1−→ 0

g2 = 4 : 4
2−→ 2

2−→ 0
∗−→ 4

2−→ 2
2−→ 0

∗−→ 4

where the word formed is: w = 221221 and the seed is: S =

(
0
4

)
=

(
0

n− d

)
.

In Chapter 2, we defined the set of decreasing positions of a Christoffel word
of slope a/b in Theorem 2.8 by D(a, b). This set contains all the positions of
the letter 1 of the word, where the positions are counted from 1 to n = a +
b. In fact, as we mentioned before, Paquin and Reutenauer in their paper [38],
corollary 3.2 have defined C ′(n, g, 0) ∀n where gcd(g, n) = 1 as being the set of
all increasing positions of the generator g mod n starting by 0. It is obtained as
follows: C ′(n, g, 0) = {iα′; i = 0 . . . n− g− 1} where α′.(n− g) ≡ −1 mod n. This
result remains correct in particular where n =

∑
gi,∀i like in the case of Christoffel

words. Therefore, we denote the set of decreasing positions by: D(n, g, 0), where
in particular D(a, b) = D(a + b, a, 1). This definition is correct when g and n are
coprime and the position of the word starts at 0. The following lemma is deduced
from this theorem and determines the form of the set of decreasing positions of
a word w of slope a/b with a and b not coprime, and where the word starts at
position 0.

Lemma 6.8 Let a = a′d, b = b′d and n = n′d where d = gcd(a, b), the set of
decreasing positions for w is the set:

D(n′d, a′d, 0) = ∪d−1
j=0{iα; i = 1, . . . , a′ + jn′} where α.a ≡ −d mod n.



134

Proof. We let g1 = n−g then d = gcd(g, n) = gcd(g1, n), g1
d
⊥ n

d
and gcd(g1

d
, n
d
) =

1. We also know that any two generators are synchronized with seed

(
0

n− d

)
having the increasing positions of g correspond exactly to the decreasing positions
of g1 by Remark 1.8. We let D(n, g, 0) be the set of decreasing positions for g and
C(n, g1, n− d) be the set of increasing of g1 starting by n− d using [38].
C(n, g1, n− d) = {iα′+x; i = 0, . . . , (n−g1

d
)− 1}; n−g1

d
.α′ ≡ −1 mod n′ and x being

the number of shifts needed to start from n−d. Hence C(n, g1, n−d) = {iα′+x; i =
0, . . . , g′− 1}; g′.α′ ≡ −1 mod n′which is equivalent to say that: g.α′ ≡ −d mod n
since:

g′.α′ ≡ −1 mod n′

g′.α′ = n′k − 1; k ∈ Z
dg′.α′ = n′kd− d
g.α′ = nk − d
g.α′ ≡ −d mod n.

The step x that must be used to start from n − d instead of 0 is calculated as
follows:

n− d+ xg1 ≡ 0 mod n

xg1 ≡ d mod n

nx− xg ≡ d mod n

xg ≡ −d mod n

hence x = α′ and the set C(n, g1, n−d) = {(i+1)α′; i = 0 . . . g′−1} = {iα′; i =
1, . . . , g′}, where α′.g ≡ −d. �

In Chapter 1, we introduced the circular permutation of a word at a position
i and we said that σi(w) = σi(a1 . . . an) = ai+1 . . . ana1 . . . ai. In particular and for
a letter a in the alphabet A and a finite word w ∈ A∗, the conjugacy operator µ
is defined in [38] by µ(aw) = wa.

Proposition 6.9 Pa(g, n, s) = µxPa(g, n, 0) where xg ≡ −s mod n over the al-
phabet A = {a, ∗}.
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Proof. x represents the number of circular permutations we need to pass from
s to 0. Since the operator µ represents a circular permutation then we need to
compose µ, x times, hence we have: P (g, n, s) = µxP (g, n, 0) with:

si + x.g ≡ 0 mod n

x.g ≡ −si mod n

�

Example 78 Synchronization form with three generators

Let the triplet G = (1, 2, 4) mod 7.

g1 = 1 : 4
∗−→ 5

∗−→ 6
1−→ 0

∗−→ 1
∗−→ 2

∗−→ 3
∗−→ 4

g2 = 2 : 5
2−→ 0

∗−→ 2
∗−→ 4

∗−→ 6
2−→ 1

∗−→ 3
∗−→ 5

g3 = 4 : 0
∗−→ 4

3−→ 1
∗−→ 5

3−→ 2
∗−→ 6

3−→ 3
3−→ 0

We can note that: In,k = 9.

6.4 Horizontal invariant

P (g, n, 0) is a Christoffel word made of the product of two palindromes. As we
have defined before, P (g, n, s) = µxP (g, n, 0), then it remains the product of two
palindromes. In this case we have one center of symmetry for each palindrome,
hence two centers of symmetries for each word that we can calculate its positions
using the following relations:

xc1 =
l − 1

2
; xc2 =

l + n− 1

2
where g.l ≡ n− d mod n,

with µx(xci) = xci + x; where x.g ≡ −s mod n ∀i ∈ {1, 2}.

Definition 6.10 We define the Horizontal invariant to be the constant value
Ihgi obtained when we add any two equidistant values from the center of symmetry.

Lemma 6.11 Let k be the number of generators to study and n = g1 + g2 + . . . gk.
The horizontal invariant Ihgi = n− di ∀i ∈ {1, . . . k}, where di = gcd(n, gi).
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Proof. From the definition,

Ihgi = xc1g + (xc1 + 1)g

Ihgi =
l − 1

2
g + (

l − 1

2
+ 1)g

Ihgi = lg ≡ n− di mod n.

Or:

Ihgi = xc2g + (xc2 + 1)g

Ihgi =
l + n− 1

2
g + (

l + n− 1

2
+ 1)g

Ihgi = (l + n)g

Ihgi = lg + ng ≡ n− di mod n.

�

Example 79 Let g = 3 and n = 7 then the orbits of g in Z/7Z are:

0
∗−→ 3

∗−→ 6
1−→ 2

∗−→ 5
1−→ 1

∗−→ 4
1−→ 0, where Ih3 = n− 1 = 6.

For g = 2 and n = 6, the orbits of g in Z/6Z are:

0
∗−→ 2

∗−→ 4
1−→ 0

∗−→ 2
∗−→ 4

1−→ 0, where Ih2 = n− d = n− 2 = 4.

We can note that in this case Ihgi = d.Ih gi
d

.

6.5 Case of three generators

After defining the sets D(g, n, s) and C(g, n, s), we introduce now the seeds for
the case of k = 3 and study the synchronization of three generators. Hence, we
let the triplet G = (g1, g2, g3) with n = g1 + g2 + g3 and we start by giving some
relations and algebraic properties for some particular cases. We let two of the
generators to have the same value like for example: g1 = g2; g1 = g3 or g2 = g3

with gcd(gi, gj) = 1, ∀i, j ∈ {1, 2, 3}; i 6= j. For simplification, we assume that
g1 = g2 = g, and g3 is distinct from g, since the other cases give us exactly the
same result.

Proposition 6.12 For the triplet G = (g, g, g3) with n = 2g + g3, n is an odd
number if and only if gcd(n, g) = gcd(n, g3) = 1.
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Proof. “⇐= ” For G = (g, g, g3) and n = 2g+ g3, we can write n = 2k if n is an
even number, and in this case g3 has to be an even number too since 2g is even.
Therefore gcd(n, g3) = gcd(n, 2g) = 2, contradiction.
“ =⇒ ” By the Euclidean Algorithm, gcd(g; g3) = 1 implies gcd(n, g) =
gcd(g, g3) = 1. Let d = gcd(n; g3), then d|n and d|g3, hence d|(2g+g3). Therefore,
there exists α ∈ N; 2g+ g3 = αd and ∃ β ∈ N; g3 = βd. Hence 2g = (α−β)d and
d|2g.
Since n is odd and n = 2g + g3 therefore g3 is odd and d|g3, so we get d odd.
d|2g then ∃k ∈ N; 2g = kd. Since 2g is even and d is odd then k is even and we
can write g = k

2
d, hence d|g. Now d|g; d|n and gcd(n, g) = 1 therefore d = 1. �

Lemma 6.13 For the triplet G = (g, g, g3) and n = 2g+g3, if n is an odd number
then:

1. In,k = 3
2
(n− 1).

2. Ihg = Ihg3 = n− 1.

Proof. Since n is an odd number then gcd(n, g) = gcd(n, g3) = 1

In,k =
k.n

2
− 1

2
(

3∑
i=1

gcd(n, gi)) =
3n

2
− 1

2
(

3∑
i=1

1) =
3n

2
− 3

2
=

3

2
(n− 1).

With this, we can conclude that the horizontal invariant is: Ihg = Ihg3 = n− 1 �

Proposition 6.14 For the triplet G(g, g, g3) with n = 2g+ g3, n is an even value
if and only if gcd(n, g) = 1 and gcd(n, g3) = 2.

Proof. “ =⇒ ” Since n is even and n = 2g + g3 then g3 is even.
gcd(g, g3) = 1 implies g is odd and gcd(n, g) = 1 by the Euclidean Algorithm.
g3 is even and n is even, hence 2|g3 and 2|n.
Let d 6= 1 be another divisor of g3 and n ; d|g3 and d|n, then ∃ α ∈ N; 2g+g3 = αd
and ∃ β ∈ N; g3 = βd. Therefore, 2g = (α− β)d and d|2g.
If d - 2 then d|g, contradiction, since d|g and d|n with gcd(n, g) = 1 hence d = 1
contradiction.
Therefore, d|2 =⇒ ∃ α′ ∈ N; 2 = α′d. and hence d = 2 or d = 1 and since by
hypothesis d 6= 1 then certainly d = 2.
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“⇐= ” If gcd(n, g) = 1 and gcd(n, g3) = 2 then 2|n; 2|g3 hence g3 is even.
n = 2g + g3; 2g is even, g3 is even, then n is even. �

Lemma 6.15 For the triplet G = (g, g, g3) and n = 2g+ g3, if n is an even value
then:

1. In,k = 3
2
n− 2 = 3n−4

2
.

2. Ihg = n− 1 and Ihg3 = n− 2 .

Proof. Since n is even then gcd(n, g) = 1 and gcd(n, g3) = 2.

In,k =
k.n

2
− 1

2
(

3∑
i=1

gcd(n, gi)) =
3n

2
− 1

2
(1 + 1 + 2) =

3n− 4

2
=

3

2
n− 2.

In addition, with n as an even value and Ihgi = n − d then gcd(n, g) = 1,
gcd(n, g3) = 2 and Ihg = n− 1, Ihg3 = n− 2. �

Example G = (3, 3, 4)

Let (g1, g2, g3) = (3, 3, 4). We have n = g1 + g2 + g3 = 10. Orbits in Z/10Z of
generators g1, g2 and g3 are represented as rows below:

g1 = 3 : 4
∗−→ 7

1−→ 0
∗−→ 3

∗−→ 6
∗−→ 9

1−→ 2
∗−→ 5

∗−→ 8
1−→ 1

∗−→ 4

g2 = 3 : 9
2−→ 2

∗−→ 5
∗−→ 8

2−→ 1
∗−→ 4

∗−→ 7
2−→ 0

∗−→ 3
∗−→ 6

∗−→ 9

g3 = 4 : 0
∗−→ 4

∗−→ 8
3−→ 2

∗−→ 6
3−→ 0

∗−→ 4
∗−→ 8

3−→ 2
∗−→ 6

3−→ 0

In this example we can see that the In,k = 3.n−4
2

= 3.10−4
2

= 13 since n is an
even number, Ih4 = 8 = n− d = n− 2 and Ih3 = 9 = n− 1. The word formed is:

w = 2132312313 with S =

 4
9
0

 its seed.

Example G = (4, 4, 3)

Let (g1, g2, g3) = (4, 4, 3). We have n = g1 + g2 + g3 = 11. Orbits in Z/11Z of
generators g1, g2 and g3 are represented as rows below:
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g1 = 4 : 5
∗−→ 9

1−→ 2
∗−→ 6

∗−→ 10
1−→ 3

∗−→ 7
1−→ 0

∗−→ 4
∗−→ 8

1−→ 1
∗−→ 5

g2 = 4 : 10
2−→ 3

∗−→ 7
2−→ 0

∗−→ 4
∗−→ 8

2−→ 1
∗−→ 5

∗−→ 9
2−→ 2

∗−→ 6
∗−→ 10

g3 = 3 : 0
∗−→ 3

∗−→ 6
∗−→ 9

3−→ 1
∗−→ 4

∗−→ 7
∗−→ 10

3−→ 2
∗−→ 5

∗−→ 8
3−→ 0

In this example we can see that the In,k = 3.n−3
2

= 3.11−3
2

= 15 since n is an
odd number, Ih4 = Ih3 = 10 = n − 1 and w = 21231213213 is the word formed

with S =

 5
10
0

 its seed.

6.5.1 Generators not relatively co prime

In this part we consider that the generators have a common divisor d and we define
the invariants and the seeds in this case.

Lemma 6.16 Let gcd(gi, gj) = d then In,k = d.In
d
,k and Ihgi = n− d or n− 2d.

Proof. Since gcd(g, g3) = d then d|g; d|g3 hence d divides any combination be-
tween g and g3, in particular 2g + g3 = n, hence d|n. By dividing by d we can get
( g
d
, g
d
, g3
d

) mod n
d

with gcd( g
d
, g3
d

) = 1.
Using Propositions 6.12 and Proposition 6.14 we get:

• If n
d

is odd then Ih gi
d

= n
d
−1,∀i ∈ {1, 2, 3} hence Ihgi = n−d, ∀i ∈ {1, 2, 3}.

• If n
d

is even then Ih g
d

= n
d
− 1 and Ih g3

d

= n
d
− 2 therefore Ihg = n − d and

Ihg3 = n− 2d by multiplying by d.

In addition to that, we have:

In,k =
k.n

2
− 1

2
(

3∑
i=1

gcd(n, gi)) =
3.n

2
− 1

2
(d+ d+ 2d) =

3n− 4d

2
= d.In

d
,k

Or

In,k =
k.n

2
− 1

2
(

3∑
i=1

gcd(n, gi)) =
3.n

2
− 1

2
(d+ d+ d) =

3n− 3d

2
= d.In

d
,k.

�
We denote by V the final matrix of synchronization for the co prime generators
while Vd represent the matrix of synchronizations for generators with gcd ≥ 2
where d = gcd(g, g3).
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Lemma 6.17 The matrix Vd is obtained by multiplying all the vi,j’s of the matrix
V by d and by concatenating the matrix obtained d times and we denote:

Vd = d.V |d.

Proof. Let the triplet G′ = (g′, g′, g′3) mod n′ such that n′ = 2g′ + g′3 and the
triplet G = (g, g, g3) mod n such that n = 2g + g3 where g′ = g.d; g′3 = g3.d,
n′ = n.d and d = gcd(g′, n) = gcd(g′3, n).
Hence the orbits of g in Z/nZ are:

g : 0→ g → 2g → · · · → (n− 1)g → 0

g : 0→ g → 2g → · · · → (n− 1)g → 0

g3 : 0→ g3 → 2g3 → · · · → (n− 1)g3 → 0

By multiplying by d we get:

d.g : 0→ g.d→ 2g.d→ · · · → (n− 1)g.d→ 0
d.g : 0→ g.d→ 2g.d→ · · · → (n− 1)g.d→ 0
d.g3 : 0→ g3.d→ 2g3.d→ · · · → (n− 1)g3.d→ 0

⇔

g′ : 0→ g′ → 2g′ → · · · → (n− 1)g′ → 0
g′ : 0→ g′ → 2g′ → · · · → (n− 1)g′ → 0
g′3 : 0→ g′3 → 2g′3 → · · · → (n− 1)g′3 → 0

and since we multiplied by d so we are now working in Z/n′Z so each row must be
of length n′ which means to repeat each row d times to reach the length n′. Hence
we have: Vd = d.V |d. �

Example

Take (3, 3, 6) mod 12, the orbits of g = 3 and g = 6 in Z/12Z are given as follow:

g1 = 3 : 0
∗−→ 3

∗−→ 6
∗−→ 9

1−→ 0
∗−→ 3

∗−→ 6
∗−→ 9

1−→ 0
∗−→ 3

∗−→ 6
∗−→ 9

1−→ 0

g2 = 3 : 0
∗−→ 3

∗−→ 6
∗−→ 9

1−→ 0
∗−→ 3

∗−→ 6
∗−→ 9

1−→ 0
∗−→ 3

∗−→ 6
∗−→ 9

1−→ 0

g3 = 6 : 0
∗−→ 6

3−→ 0
∗−→ 6

3−→ 0
∗−→ 6

3−→ 0
∗−→ 6

3−→ 0
∗−→ 6

3−→ 0
∗−→ 6

3−→ 0

We have: In,k = 3.12
2
− 1

2
(3 + 3 + 6) = 12 ; Ih3 = 9 and Ih6 = 6.
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While (1, 1, 2) mod 4 has In,k = 3.4−4
2

= 4 ; Ih1 = 3 and Ih2 = 2 where the
orbits are:

g1 = 1 : 0
∗−→ 1

∗−→ 2
∗−→ 3

1−→ 0

g2 = 1 : 0
∗−→ 1

∗−→ 2
∗−→ 3

1−→ 0

g3 = 2 : 0
∗−→ 2

3−→ 0
∗−→ 2

3−→ 0

And hence we can write:

g1 = 3 : 3
∗−→ 6

∗−→ 9
1−→ 0

∗−→ 3
∗−→ 6

∗−→ 9
1−→ 0

∗−→ 3
∗−→ 6

∗−→ 9
1−→ 0

∗−→ 3

g2 = 3 : 9
1−→ 0

∗−→ 3
∗−→ 6

∗−→ 9
1−→ 0

∗−→ 3
∗−→ 6

∗−→ 9
1−→ 0

∗−→ 3
∗−→ 6

∗−→ 9

g3 = 6 : 0
∗−→ 6

3−→ 0
∗−→ 6

3−→ 0
∗−→ 6

3−→ 0
∗−→ 6

3−→ 0
∗−→ 6

3−→ 0
∗−→ 6

3−→ 0

which is equivalent to

= 3.

 1
∗−→ 2

∗−→ 3
1−→ 0

∗−→ 1

3
2−→ 0

∗−→ 1
∗−→ 2

∗−→ 3

0
∗−→ 2

3−→ 0
∗−→ 2

3−→ 0


|3

6.6 Relation between In,k and Ihgi
To summarize, whenever we have two equal generators, we are able to calculate
the values of In,k and Ihgi ,∀i ∈ {1, 2, 3} where n

d
is either an even or odd number

with d = gcd(n, gi)∀i. To unify the work, we always let the row that starts with 0
corresponds to the generator g3 that is distinct from the two others.

Lemma 6.18 For thr triplet G(g1, g2, g3) with n = g1+g2+g3 and d = gcd(n, gi)∀i ∈
{1, 2, 3},

1. Case A: If n
d

is odd, we get:

In,k = 0 +
Ihgi
2

+ Ihgi = 0 + (
n− d

2
) + (n− d) =

3n− 3d

2
,

and S =

 Ihgi
2

Ihgi
0

 represents its seed.
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2. Case B: If n
d

is even, and we get:

In,k = 0 +
Ihg3
2

+ Ihg = 0 + (
n− 2d

2
) + (n− d) =

3n− 4d

2
,

and S =

 Ihg3
2

Ihg
0

 its seed.

Proof. Case A :
We define the three sets A,B,C to be the sets of decreasing positions for each
generator starting respectively by si∀ i ∈ {1, 2, 3}.

A = {iα + x; i = 1 . . .
g

d
}

B = {iα + y; i = 1 . . .
g

d
}

C = {iβ; i = 1 . . .
g3

d
}

where: αg ≡ −d mod n; βg3 ≡ −d mod n and xg ≡ d mod n and 2yg ≡ 1 mod n
since

gy ≡ −n− d
2

mod n

2yg ≡ −(n− d) mod n

2yg ≡ d mod n

We need to prove that the sets A, B, C are pairwise disjoint, hence we can’t get
any two decreasing positions on the same column.
A ∩B = ∅
Let a ∈ A, b ∈ B we have a := iα + x and b := jα + y for some i ∈ {1 . . . g

d
} and

j ∈ {1 . . . g
d
}

By contradiction, suppose a− b ≡ 0 then:

(i− j)α + x− y ≡ 0 mod n

2(i− j)gα ≡ 2yg − 2gx mod n

2d(j − i) ≡ d mod n
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This leads to a contradiction since we know that:i − j ∈ {1−g
d
, . . . , g−1

d
}, hence

2(i− j) = ln+ d; l ∈ Z. If

• l = 0; 2d(i− j) = d contradiction in Z.

• l > 0; 2d(i− j) > n+ d contardiction.

• l < 0; 2d(i− j) < −n+ d contardiction.

therefore A ∩B = ∅.
A ∩ C = ∅
We let a ∈ A and c ∈ C; a := iα + x and c := kβ, for some i ∈ {1, . . . , g

d
} and

k ∈ {1, . . . , g3
d
}.

By contradiction, suppose a− c ≡ 0 mod n then:

iα + x− kβ ≡ 0 mod n

iαg + xg − kβ(
n− g3

2
) ≡ 0 mod n

−id+ d− kβn

2
− kd

2
≡ 0 mod n

−2id+ 2d− kβn− kd ≡ 0 mod n

−2id+ 2d− kd ≡ 0 mod n

2d(1− i)− kd ≡ 0 mod n

this result leads to a contradiction since:

1 ≤ i ≤ g
d

d− g ≤ d(1− i) ≤ 0 and − g3 ≤ −dk ≤ −d
2d− 2g ≤ 2d(1− i) ≤ 0

By adding both inequalities, we get: −n < 2d − n ≤ 2(1 − i) − k ≤ −d < 0,
this is impossible since by hypothesis 2(1 − i) − k ≡ 0 mod n, therefore the two
sets A and C are disjoint.
B ∩ C = ∅
We let b ∈ B and c ∈ C; b := iα + y and c := kβ, for some i = 1 . . . g

d
and

k = 1 . . . g3
d

.
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By contradiction, suppose b− c ≡ 0 mod n then:

iα + y − kβ ≡ 0 mod n

iαg + yg − kβ(
n− g3

2
) ≡ 0 mod n

2iαg + 2yg − kβn+ kβg3 ≡ 0 mod n

−2id+ d− kβn− kd ≡ 0 mod n

−2id+ d(1− k) ≡ 0 mod n

this result leads to a contradiction since:

1 ≤ i ≤ g
d

−2g ≤ −2id ≤ −2d and d− g3 ≤ d(1− k) ≤ 0

By adding both inequalities, we get: −n < d−n ≤ −2id+d(1−k) ≤ −2d < 0,
this is impossible since by hypothesis −2id+ d(1− k) ≡ 0 mod n, therefore B and
C are disjoint.
Case B :
When n

d
is an even number, we have: gcd(g, n) = d and gcd(g3, n) = 2d.

We define the sets A, B, C the sets of decreasing positions for each generator re-
spectively starting by si ∀i.

A = {iα + x; i = 1, . . . ,
g

d
}

B = {iα + y; i = 1, . . . ,
g

d
}

C = C0 ∪ C1

where C0 = {iβ} and C1 = {iβ + j n
2
}; i = 1, . . . , g3

2d
}, α.g ≡ −d mod n, β.g3 ≡

−2d mod n and x.g ≡ d mod n, y.g ≡ d+m mod n where n = 2m, since it is an
even number and we know that y.g ≡ −s1 modn then:

y.g ≡ −s1 mod n

y.g ≡ −n− 2d

2
mod n

y.g ≡ −2m− 2d

2
mod n

y.g ≡ d−m mod n

y.g ≡ d+m mod n
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Now we prove that three sets are pairwise distinct starting with A and B:

A ∩B = ∅
Let a ∈ A, b ∈ B, they are defined as: a := iα + x and b := jα + y where
i, j ∈ {1, . . . , g

d
}

By contradiction, suppose a− b ≡ 0 mod n then:

iα + x− jα− y ≡ 0 mod n

iα.g + x.g − jα.g − y.g ≡ 0 mod n

−id+ d+ jd− d−m ≡ 0 mod n

d(j − i)−m ≡ 0 mod n

This congruence leads to a contradiction since:

d− g ≤ d(j − i) ≤ g − d
d− g −m ≤ d(j − i)−m ≤ g − d−m

−n < d− g −m ≤ d(j − i)−m ≤ g − d−m < 0

knowing that m = n
2
> g. Hence A ∩B = ∅.

A ∩ C = ∅
In this part we divide our work into two parts since C is a union of two sets and we
prove that A is disjoint with both subsets of C. We let a ∈ A, cj ∈ Cj ∀j ∈ {0, 1},
they are defined as: a := iα+x and c0 := jβ, c1 = jβ+ n

2
where i ∈ {1, . . . , g

d
}, j ∈

{1, . . . , g3
2d
}

By contradiction, suppose a− cj ≡ 0 mod n then:

a− c0 ≡ 0 mod n

iα + x− jβ ≡ 0 mod n

iα.g + x.g − jβ.n− g3

2
≡ 0 mod n

2iα.g + 2x.g − jβ.n+ jβ.g3 ≡ 0 mod n

−2id+ 2d− 2jd ≡ 0 mod n

2d− 2d(i+ j) ≡ 0 mod n
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For c1 we get:

a− c1 ≡ 0 mod n

iα + x− jβ − n

2
≡ 0 mod n

iα.g + x.g − jβ.n− g3

2
− n

2
.g ≡ 0 mod n

2iα.g + 2x.g − jβ.n+ jβ.g3 − ng ≡ 0 mod n

−2id+ 2d− 2jd ≡ 0 mod n

2d− 2d(i+ j) ≡ 0 mod n

These two congruences lead to a contradiction since:

2 ≤ d(i+ j) ≤ g +
g3

2
4d ≤ 2d(i+ j) ≤ n

−n < 2d− n ≤ 2d− 2d(i+ j) ≤ −2d < 0

Hence A ∩ C = ∅.
B ∩ C = ∅

Finally for B and C, we will repeat the same work by letting b ∈ B and
cj ∈ Cj∀j ∈ {0, 1}, they are defined as: b := iα + y and c0 := jβ, c1 = jβ + n

2

where i ∈ {1, . . . , g
d
}, j ∈ {1, . . . , g3

2d
}.

By contradiction, suppose b− cj ≡ 0 mod n then:

b− c0 ≡ 0 mod n

iα + y − jβ ≡ 0 mod n

iα.g + y.g − jβ.n− g3

2
≡ 0 mod n

2iα.g + 2y.g − jβ.n+ jβ.g3 ≡ 0 mod n

−2id+ 2(d+m)− 2jd ≡ 0 mod n

−2id+ 2d+ 2m− 2jd ≡ 0 mod n

2d− 2d(i+ j) ≡ 0 mod n
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For c1 we get:

a− c1 ≡ 0 mod n

iα + y − jβ − n

2
≡ 0 mod n

iα.g + y.g − jβ.n− g3

2
− n

2
.g ≡ 0 mod n

2iα.g + 2y.g − jβ.n+ jβ.g3 − ng ≡ 0 mod n

−2id+ 2(d+m)− 2jd ≡ 0 mod n

−2id+ 2d+ 2m− 2jd ≡ 0 mod n

2d− 2d(i+ j) ≡ 0 mod n

These two equivalences are the same as the previous case hence we get a contra-
diction too and the sets B and C are disjoint. �

6.7 Equal generators

After showing and studying the synchronization for the case where two of the three
generators are equal, the trivial questions that arise immediately to the mind are
the following: What happened if the three generators are equal? Are we also able
to synchronize them?
In fact, the answer is positive and to prove it, we let g1 = g2 = g3 = g and we can
conclude the following:

Lemma 6.19 Let G = (g, g, g) be a triplet formed of the same generator g .Orbits
in Z/nZ where n = 3g are always of the form:

V = g

 0 1 2
1 2 0
2 0 1

|g

and the word formed is always of the form (321)g.

Proof. For equal generators, we have G = (g, g, g) mod 3g. Each row of V ha
exactly g decreasing positions, 2g increasing positions and is of length 3g. By cal-
culating the orbits of g in Z/3Z, we remark that each rows written as (0 g 2g)|g.
Factoring by g, we get: g (012)g. To accomplish the synchronization, we do a
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k − 1 circular permutation ∀k ∈ {1, 2, 3}, hence we get: g

 0 1 2
1 2 0
2 0 1

|g and the

word formed is: (321)g. �

Proposition 6.20 For the equal generators we have:

1. The seed is given by: S =

 0
g
2g

.

2. The vertical invariant is: In,k = 3g.

3. The horizontal invariant is: Ihgi = 2g ∀i ∈ {1, 2, 3}.

Proof. Since the synchronization matrix is of the form V = g

 0 1 2
1 2 0
2 0 1

|g,
then the seed in this case has always the form: S =

 0
g
2g

. Using the Lemma

6.11, the value of the horizontal invariant is calculated as follows and gives: n−d =
3g − g = 2g. Since In,k is the vertical sum of the elements of each column so in
particular we can get the value from the seed, hence In,k = 0 + g + 2g = 3g. Or
simply by computing:

In,k =
k.n

2
− 1

2
(

3∑
i=1

gcd(n, gi)) =
9g

2
− 1

2
(g + g + g) =

6g

2
= 3g.

�

6.8 Distinct generators

The last case to check for the synchronization of three generators is when the
three generators are pairwise distinct. In fact, this case can be covered by using
the Fraenkel’s conjecture see [25, 51] for k = 3 that states the uniqueness of
synchronization for pairwise distinct generators when gi = 2i−1 ∀i ∈ {1, ...k} that
was proved for 3 ≤ k ≤ 7. Therefore there exists a unique balanced word on 3 ≤ k
letters, with pairwise distinct generators obtained from the triplet (1, 2, 4) mod 7
which is the unique solution for this case. Example 78 shows that:
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1. In,k = 3n−3
2

= 21−3
2

= 9 since n is odd.

2. Ih1 = Ih2 = Ih4 = n− 1 = 6 since all the generators are co prime with n.

3. Finally, the word formed is w = 2313233.

REMARK: All the multiples of G = (1, 2, 4) are also synchronized since we
can write: G′ = dG|d, where d is the greatest common divisor between the three
pairwise distinct generators.

6.8.1 Fraenkel’s seed

For the case of pairwise distinct generators, we stated that the unique solution
corresponds to the Fraenkel’s case. We give in this part and in a more general way
the seed for the generators of the form 2i ∀i ∈ {0, . . . ,m}.

Theorem 6.21 The seed for the sequence of generators of the form 2i ∀i ∈

{0, . . . ,m} is: S =


In,k
k
...

In,k
k

 where k is the number of elements in this sequence.

Proof. Let the sequence of generators of the form 2i ∀i ∈ {0, . . . ,m} and
n = 2m+1 − 1 their sum.
We define the sets A and B of decreasing position for the two generators : gl =
2land gs = 2s where l < s ≤ m starting with the seed sl, ss and respecting all the
conditions given in the previous sections by the following:
We know that: In,k = k.n

2
− 1

2
(k) = k(n−1)

2
hence:

si =
In,k
k

=
n− 1

2
∀i ∈ {0, . . . ,m} where

n− 1

2
= 2m − 1.

A = {iα + x; i = 1 . . . 2l}
B = {jβ + y; j = 1 . . . 2s}

where: α2l ≡ −1 mod n; β2s ≡ −1 mod n and x.2l ≡ 1 − 2m mod n and y.2s ≡
1− 2m mod n since x.g must be equivalent to −s = −(2m − 1) = 1− 2m.
We need to prove that the sets A, B are disjoint, hence we can’t get any two
decreasing positions on the same column.
A ∩B = ∅
Let a ∈ A, b ∈ B we have a := iα + x and b := jβ + y for some i ∈ {1 . . . 2l} and



150

j ∈ {1 . . . 2s}
By contradiction, suppose a− b ≡ 0 then:

iα + x− jβ − y ≡ 0 mod n

2siα + 2sx− 2sjβ − 2sy ≡ 0 mod n

−2s−li+ 2s−l(1− 2m) + j − 1 + 2m ≡ 0 mod n

−2s−li+ 2s−l − 2m+s−l + j − 1 + 2m ≡ 0 mod n

2s−l(1− i)− 2m+s−l + j − 1 + 2m ≡ 0 mod n

where:

1 ≤ i ≤ 2l

2s−l − 2s ≤ 2s−l(1− i) ≤ 0 and − 0 ≤ j − 1 ≤ 2s − 1

By adding both inequalities with the constant term in a− b we get:

2m − 2m+s−l − 2s + 2s−l ≤ a− b ≤ 2s − 1 + 2m − 2m+s−l.

Our aim is to reach a contradiction by bounding the two terms A and B of this
inequality by two consecutive multiples of n and hence the term a − b who is
bounded by A ≤ a− b ≤ B can’t be null.
The power m + s − l is the highest power in the two terms of A and B, m + 1 is
the power found in n. We let p = (m + s − l) − (m + 1) = s − l − 1 and k = 2p,
we will prove that: −k.n < A ≤ a− b ≤ B < (−k + 1).n
First, −k.n = −2s−l−1.(2m+1− 1) = −2m+s−l + 2s−l−1, then −k.n < A will give us
the following:

−2m+s−l + 2s−l−1 < 2m − 2m+s−l − 2s + 2s−l

2s−l−1 − 2m + 2s − 2s−l < 0

2s−l(2−1 − 1)− 2m + 2s < 0

−2s−l−1 − 2m + 2s < 0

Which is always true since l < s ≤ m.
Now, we prove that B < (−k + 1).n by calculating at the beginning the value

of (−k + 1).n, we get the following :
(−k + 1).n = (−2s−l−1 + 1)(2m+1 − 1) = −2s−l+m + 2s−l−1 + 2m+1 − 1 then,

2s−l+m + 2s−l−1 + 2m+1 − 1 > 2s − 1 + 2m − 2m+s−l

2s−l−1 + 2m+1 − 2s − 2m > 0

2s−l−1 − 2s + 2m > 0
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which is always true since:

2l < 2s ≤ 2m

−2m ≤ −2s < −2l and 20 ≤ 2s−l−1 < 2m

by adding these two inequalities we get: 1 − 2m ≤ 2s−l−1 − 2s < 2m − 2l < 2m

confirming the positivity of 2s−l−1 − 2s + 2m.

All this work leads to a contradiction since the term a− b can’t be equivalent
to 0. �

6.9 Relation between 2 and 3 generators

Till now we are able to synchronize two and three generators but the following
question derives: Are we able to find a relation that links these two synchroniza-
tions? In other words, are we able to get the synchronizations of two generators
if the the synchronization of three generators is given? We let G = (g, g, g3) be a
triplet of three generators and we study the two cases depending on the parity of
n where n = 2g + g3.

1. If n
d

is odd:

In this case, the seed is of the form: S =

 n−d
2

n− d
0

 where the row that

starts with 0 refers to g3. Since we know that any two generators of the form

G′ = (2g, g3) can be synchronized with seed S ′ =

(
n− d

0

)
and where the

row starting with 0 belongs to g3, then the synchronization of G′ is obtained
by adding the value n+d

2
to the sum of the first two synchronized rows of G.

n− d+
n− d

2
+ x = n− d mod n

n− d
2

+ x = n mod n

x = n+d
2

mod n.

Example 80 Passing from the synchronization of (3, 3, 5) to the one of (6, 5):
Let (3, 3, 5) mod 11 we can write its configuration like the following:

V =
5 8 0 3 6 9 1 4 7 10 2

10 2 5 8 0 3 6 9 1 4 7
0 5 10 4 9 3 8 2 7 1 6



152

If we add the first two rows we get:

4 10 5 0 6 1 7 2 8 3 9

And if we write the configuration of (6, 5) mod 11 we get:

V ′ =
10 5 0 6 1 7 2 8 3 9 4
0 5 10 4 9 3 8 2 7 1 6

We can realize that by adding +6 to the sum of the two first rows of V , we get
immediately the first row of V ′ since: n+1

2
= 12

2
= 6 and in this case d = 1.

2 If n
d

is even:

In this case, similarly we have: S =

 n−2d
2

n− d
0

 is a seed where 0 belongs to the

row of g3. Since n
d

is even, then gcd(g3, n) = 2d and gcd(g, n) = d; hence the

seed for G′ = (2g, g3) will be: S ′ =

(
0

n− 2d

)
. The value to be added to the

sum of the two rows of equal generator is n
2

since we have:

n− d+
n− 2d

2
+ x = n− 2d mod n

n− 2d

2
+ x = −d mod n

x = n
2

mod n.

Example 81 Starting with the three generators (3, 3, 4) mod 10 we can easily
write its configuration like the following:

V =
4 7 0 3 6 9 2 5 8 1
9 2 5 8 1 4 7 0 3 6
0 4 8 2 6 0 4 8 2 6

If we add the first two rows we get:

3 9 5 1 7 3 9 5 1 7

And if we write the configuration of (6, 4) mod 10 we get:

V ′ =
9 5 1 7 3 9 5 1 7 3
0 4 8 2 6 0 4 8 2 6

We can realize that by adding +6 to the sum of the first two rows of V , we get
immediately the first row of V ′ since: n+2

2
= 12

2
= 6.



153

Open questions Finally we can say that any three generators can be trans-
formed to a couple of two generators that are certainly synchronized. We can
resume the study by the following:
Let(g1, g2, g3) mod n:

• If all the generators are pairwise distinct −→ The Fraenkel’s case for k = 3
is the unique solution.

• If at least two generators are not distinct −→ Always can be synchronized.

Many questions can arise after this work:

i Can we study the case of 4 generators and see when they can be synchronized?

ii Using the second order balanced matrix, we are able to get some information
about the behavior of Christoffel words. With the synchronized rows in this
matrix, we can think of extending the work of synchronization to the kth case?

iii Can we apply this result in geometry by considering each generator as a direc-
tion vector of a discrete line in kD and see what may happen?

iv Are we able to solve the Fraenkel’s conjecture for k > 7 using also all the
properties of the second order balance matrix?

Some perspectives:

The main purpose of this thesis is to find a way to synchronize several Christoffel
words. In fact, it was not an easy and direct result or way to solve this problem. We
started by introducing a new way to obtain the synchronization of three Christoffel
words using the seed and we tried to introduce a new tool called the second order
balance matrix that do a kind of classification of these balanced words. During
the work many questions were proposed and several new ideas were treated. Now,
after explaining the role of the seed and the two invariants, in this paragraph, we
will show what is the link between this tool and the synchronization.

Figure 6.3 shows the three matrices U 1
6
, U 2

5
and U 4

3
. In fact, we start with the

example of Fraenkel, using the three generators: (1, 2, 4) mod n and as we can see
in Example 78, this triplet is synchronized with In,k = 9 and with seed equals to:

S =

 3
3
3

.

We start to remark that in the second order balance matrix, we always have 4
or 3 particular rows depending on the parity of n that is the length of the word.



U 1
6

=


1 1 1 1 1 1
1 2 2 2 2 1
1 2 3 3 2 1
1 2 3 3 2 1
1 2 2 2 2 1
1 1 1 1 1 1

, U 2
5

=


1 1 1 1 1 1
1 2 1 1 2 1
1 1 1 1 1 1
1 1 1 1 1 1
1 2 1 1 2 1
1 1 1 1 1 1



U 4
3

= U 3
4

=


1 1 1 1 1 1
1 1 1 1 1 1
1 1 2 2 1 1
1 1 2 2 1 1
1 1 1 1 1 1
1 1 1 1 1 1

 .

Figure 6.3: The three matrices U 1
6
, U 2

5
and U 3

4
used for the synchronization of the

triplet (1, 2, 4) mod 7.
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Those four rows are composed of the two synchronized rows, that are the rows
containing only 1 and the two other rows are the rows that the sum of theirs
elements gives a maximal value comparing to the other rows. We name Ma

b
the

set of the number of the rows with a maximal value and ma
b

is the set of the
number of the synchronized rows. We have that:

1. M 1
6

= {3, 4} and m 1
6

= {1, 6};

2. M 2
5

= {2, 5} and m 2
5

= {1, 3, 4, 6};

3. M 3
4

= {3, 4} and m 3
4

= {1, 2, 5, 6}.

Those numbers have a particular explication since if we use the seed where all its
elements are equal to 3 and we calculate 1.x ≡7 3, 2.x ≡7 3 and 4.x ≡7 3, we get
the values 3, 5, 6 respectively. Those values are the elements of the sets m 1

6
,m 2

5

and m 3
4

distinct from the rows 1 and n − 1 = 6. In addition to that we can also
see that the six sets are related in such a way that the elements of M 1

6
appear

in m 2
5

and M 3
4

= {3, 4}. Furthermore, we can also realize that starting with the
elements of the set m 3

4
, if we double the values, distinct from 1 and n− 1, we get

the elements of m 2
5
. The same remark can be also given for the sets m 2

5
and m 1

6
.

• 2.2 = 4; 5.2 = 10 ≡7 3, where {3, 4} ⊂ m 2
5
.

• 4.2 = 8 ≡7 1; 3.2 = 6, where {1, 6} = m 1
6
.

We will see that the same remarks can be given for three Christoffel words having
two equal generators and one distinct. Let us try the triplet (3, 3, 5)mod n. We
need in this case the two matrices: U 3

8
and U 5

6
, where the synchronized form has

a seed equals to: S =

 5
10
0

. We recall that the last row with 0 corresponds to

the distinct generator. By checking the two matrices in Figure 6.4, we can get the
sets M 3

8
,M 5

6
,m 3

8
and m 5

6
.
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U 3
8

=



1 1 1 1 1 1 1 1 1 1
1 2 1 1 2 2 1 1 2 1
1 1 1 1 2 2 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 2 2 1 2 2 1 2 2 1
1 2 2 1 2 2 1 2 2 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 2 2 1 1 1 1
1 2 1 1 2 2 1 1 2 1
1 1 1 1 1 1 1 1 1 1


U 5

6
=



1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 2 2 2 2 2 2 1 1
1 1 2 2 2 2 2 2 1 1
1 1 2 2 3 3 2 2 1 1
1 1 2 2 3 3 2 2 1 1
1 1 2 2 2 2 2 2 1 1
1 1 2 2 2 2 2 2 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1


Figure 6.4: The two matrices U 3

8
and U 5

6
used for the synchronization of the triplet

(3, 3, 5) mod 11.

The sets are exactly:

1. M 3
8

= {5, 6} and m 3
8

= {4, 7};

2. M 5
6

= {5, 6} and m 5
6

= {1, 2, 9, 10}.

Again those values appear by computing: 3.x ≡11 5, 3.x ≡11 10, 5.x ≡11 10 and
5.x ≡11 5, and we get 9, 7, 2 and 1 respectively. By multiplying by 2 the elements
of m 5

6
distinct from 1 and n− 1 = 10, we get the elements of m 3

8
, since we have:

2.2 = 4 and 9.2 = 18 ≡11 7.
This work is not over yet, we are still looking for a general result to synchronize
the Christoffel words using the second order balance matrix. This is a first step
in our main goal and more small results are obtained but not yet proved, those
results will be the point of interest for my further work after the thesis.
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Chapter 7

Convexity and digital convex
polyominoes

Before starting this chapter, I would like to thank my Italian colleagues: Paolo
Dulio, Andrea Frosini and Simone Rinaldi, for their visit to the LAMA and our
fruitful discussions that led to this result represented in Chapter 7. Together
with my director Laurent Vuillon, had a paper about the reconstruction of the
polyominoes, that was presented in the conference of WORDS 2017 in Montréal.

Studying families of words has started with Bernouilli at the beginning of
1771, then was followed by Markov, Thue and Morse. Those studies are applied
in different domain of research, like number theory, group theory, probabilistic
theory. We can’t forget to mention the impact of all the results in the theoretical
computer science field and in particular all the works dealing with automaton and
formal languages. For a survey on the topic one can refers to Lothaire’s book
[33]. Finally a relation between combinatorics on words and discrete geometry has
afforded many advantages to both areas and has led to interesting results. Indeed,
such a connection realizes through the so called Freeman coding, introduced by
Freeman in 1961, that allows to uniquely determine a 4 or 8 connected finite set
of points in the discrete plane by means of its boundary word, i.e. a word over the
alphabet of cardinal four A = {0, 1, 0, 1}. This code was the bridge between these
two worlds. In addition, connected and without holes discrete sets or what is said
polyominoes or their 8 connections are coded by words using the Freeman code.
In this chapter, we introduce one of the main notions of convexity for polyominoes
present in literature: the Digital convexity (further notions and related studies can
be found in [10, 11, 16, 18, 19]) in order to present later on the first steps toward a
reconstruction algorithm for those class of discrete sets. The first steps towards the
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reconstruction of Digital convex (DC) sets play a prominent role in the framework
of digital geometry providing a natural generalization to the concept of Euclidean
convexity when we are dealing with polyominoes (who are the interior of a closed
non intersecting grid path of Z2) [20]. My approach to the reconstruction problem
relies on a recent result of Brlek, Lachaud, Provençal and Reutenauer (see [9]) that
was a bridge between digitally convex notion and combinatorics on words. Indeed,
a polyomino P is described by its border word Bd(P ). The border word Bd(P )
can be divided in 4 monotone paths. After computing the Lyndon factorization
of each path, if each of the factors of the Lyndon factorizations is composed of
Christoffel words then we have a digitally convex polyomino.

7.1 Introduction

It is well known that the digitalization process does not preserve connectedness so
that it may happen that connected sets in the Euclidean plane can be transformed
into two or more disconnected sets of points in the lattice Z2. Let us label the pixels
in a subset of a digital image, in such a way that any two pixels A and B have the
same label if and only if they are connected, i.e if there exists a sequence of pixels
A = A0, A1 . . . An = B belonging to the same subset such that Ai is a neighbor of,
or adjacent to, Ai−1 for all 1 ≤ i ≤ n. The points having the same label in a set S
are called connected component of S. So, each set can be seen as the union of its
connected components. We name a hole in S, a finite connected component of S.
A digital image has a convex subset S if the straight line segment joining any two
pixels P and Q of the subset lies entirely in S. We introduce the convex hull of S
denoted conv(S) that is the smallest convex set containing S. It is not so easy to
define digital convex sets since there is in general some difference between convex
and digital convex. As an example, in the papers of Sklansky [48] and Minsky and
Papert [48] digital convex sets may contain many connected components. In order
to have exactly non connected component, Chaudhuri and Rosenfeld [12] impose
implicitly that a digital convex set must be a polyomino. Recall that a polyomino
P is a simply connected union of finite unit points that can be visualized as set
of unit squares in a squared surface. In fact the two authors propose the notion
of DL-convexity (where DL means digital line) and by definition a discrete region
is DL-convex if, for any two squares belonging to it, there exists a digital line
between them all of whose points belong to the region. Thus for Chaudhuri and
Rosenfeld the region must be a polyomino. Debled-Rennesson, Rémy and Rouyer-
Degli have worked on the arithmetic properties of discrete segments in order to
detect the convexity of polyominoes (see [12]). In this section, we recall some basic
notions about the DC that will be used to treat the problem we want to address:
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How to insert a single point in a DC set in order to maintain the property of
digital convexity? Similar problems fit in the framework of Discrete Tomography
that is a part of the wide area of Computerized Tomography, and it studies the
reconstruction of polyominoes.

To be able to understand the reconstruction part, we need to give an explicit
definition to all the terminologies already used.

7.1.1 Discrete geometry and digital space

Let us consider the lattice Z2, the canonical basis of the euclidean vector space R2

is {e1, e2}. We call a finite discrete set any subset of the discrete space Z2 which
is the set of all the vectors having integer components. We define a path in Z2

from point A to point B as: the sequence of points (pi)1≤i≤n with pi ∈ Z2 where
we have p1 = A, pn = B and such that pi and pi+1 are neighbors with respect to
some criteria.
We mention those two notions of neighboring:

• Let p = (px, py) be a point of the discrete plane, the 4 neighborhood of a
point p is given by:

{(x, y) ∈ Z2||px − x|+ |py − y| = 1}.

In addition, a path in Z2 is said 4-connected if for all 1 ≤ i ≤ n−1, we have:

pi+1 − pi ∈ {±e1,±e2}.

• Similarly, the 8 neighborhood of a point p is given by:

{(x, y) ∈ Z2|max{|px − x|, |py − y|} = 1}.

A path in Z2 is 8-connected if for all 1 ≤ i ≤ n− 1, we have:

pi+1 − pi ∈ {±e1,±e2,±e1 ± e2}.

Figure 7.1 represents geometrically the 4 and 8 neighbors of a point in the Z2

grid.

We remark that in a 4−connected set all the elements, except the single point,
have at least one 4 neighborhood but the reverse does not hold.



Figure 7.1: The left square shows the 4 possible directions of a point in a 4-connected
path and the right square shows the 8 possible directions of a point in an 8-connected
path.
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Digital convexity During the last decades, many definitions were given of
Digital convexity. It started with Minsky and Papert in 1969 [36] then Hubler.
We show the evolution of the definitions and we conclude by the definition that
will be used during this thesis.

1. MP-convexity: The definition given by Minsky and Papert states that: For
x and y in S ⊂ Z2 and z ∈ [x, y]∩Z2 ⇒ z ∈ S, where [x, y] is the line segment
joining x to y and defined by: [x, y] = {z ∈ R2|z = λx+(1−λ)y, 0 ≤ λ ≤ 1}.

2. H-convexity: A set S is convex if it equals (the digitalization of)its convex
hull, where the convex hull of S is defined by:

conv(S) = {
∑
j=1

λjxj|
∑
j=1

λj = 1, λj ≥ 0 and xj ∈ S}.

S is H-convex if S = conv(S) ∩ Z2.

3. The definition given by Hulber is the DH-convexity; S is said Digitally
convex if for any x, y ∈ S, the line segment passing by x and y belongs to S.
Hence, we remark that S is MP−convex if and only if S is DH−convex.

4. Finally, a set S is said D−convex if it is 8−connected and H−convex at the
same time.

In this thesis, we use the last definition since we are working with digital convex
polyomino. Figures 7.2 and 7.3 show two examples to visualize the difference
between the different kinds of convexity.
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Figure 7.2: Example of an MP-convex and H-convex.

Figure 7.3: Example of an MP-convex but not H-convex.

Freeman chain code

The provided preliminary notions allow us to define the Freeman chain code that
grants us to represent any path over a discrete plane Z2 as a word over an alphabet
of four letters A = {0, 1, 0, 1} [26] such that:

1. We denote 0 for a right horizontal step (→).

2. We denote 0 for a left horizontal step (←).

3. We denote 1 for an upside vertical step (↑).

4. We denote 1 for an downward vertical step (↓).

For a polyomino, the word obtained by applying the Freeman code to the perimeter
of a polyomino P is called its boundary word, denoted Bd(P ). We are able to
characterize a polyomino by its border word see Figure 7.4.

We remark that for the same polyomino, we can have several border words
depending on the starting point of the word. So we are able to say that a polyomino
is identified by an equivalent class of words that are all the cyclic shifts of the same
one. We choose as representative of this equivalent class, the word that starts from



Figure 7.4: An example of a polyomino with border word: w = Bd(P ) =
0101001110011001.
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the uppermost element.For example, in Figure 7.4, the border word can also be
given by w′ = 0011100110010101. These two words encode the same polyomino
and therefore we can say that they are two equivalent border words and one is
obtained by a circular shift of the other. Hence we write: w ≡ w′.

Remark 7.1 Over the alphabet A = {0, 1, 0, 1}, a path with encoded word w is
said to be close if A coincides with B, equivalently A = B, where A and B are
the initial and ending points,i.e we have that p0 = pk. We can observe that in this
case, the numbers of 0s and 0̄s are equal and the same holds for the number of 1s
and 1̄s. We name it in this case the AB path.

Example 82 In Figure 7.5, it is depicted a path in Z2 with its corresponding word
encoded over the alphabet: A = {0, 1, 0, 1} where w = 111100111000.

A

B

Figure 7.5: A path coded by the word: w = 111100111000.

We remark that this path is not close since the initial and ending points, A and
B respectively are not the same. We can also notice that for the border word, we
have: 4 times the letter 1, while we have only 3 times the letter 1̄. Similarly, we
have 3 times the letter 0, while we have only 2 times the letter 0̄.
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Figure 7.6: An example of a polyomino in the Z2 lattice.

Polyominoes

In this chapter, we deal with polyominoes that were introduced by Gardner in [27].
The word polyomino was firstly used by Golomb in [28], who produced a revised
edition of Gardner’s work and covered the enormous literature of polyominoes that
has developed over the years. In this thesis, we choose to consider, as commonly
accepted, only polyomino that is a 4−connected finite subset of Z2 having no holes
and we define it as follows:

Definition 7.2 A polyomino P is said digitally convex if the convex hull of P and
Z2 are in P ; conv(P ) ∩ Z2 ∈ P .

7.2 Theoretical results

Combinatorics on Words is a tool used in all the branches of mathematics. We
will see in this section its contribution in discrete geometry. Using the Lyndon
factorization and all the properties of Christoffel words stated in chapters 1 and
2, an interesting result about convexity is stated in [9].
Each of the four letters in the alphabet A used to code the border of a connected
set,Bd(S), provides a step along the border in one of the four different directions
North, South, East and West, respectively as mentioned in the above section.

As we said before, each equivalence class of words that represents the border
word of a set or a polyomino has a unique representative. In fact, to reach a
standard coding of the border of Bd(S), it can be noticed that a convex set touches
the border of its minimal bounding rectangle in four bars, called (N)orth, (S)outh,
(E)ast and (W)est foot. Moving clockwise on the border of the set, let us denote
the ending corner of each foot by N , E, S and W according to the correspondent
foot, as shown in Fig. 7.7. The word Bd(S), that is the representative of the
equivalence class, starts from W and runs clockwise along the border of S in a
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closed path: Bd(S) can be factorized into four non-void sub-paths WN , NE, ES
and SW each using only two of the four steps in A to connect the related points;
such a factorization is called standard.

W

S

N

E

Figure 7.7: A convex polyomino and its standard factorization. The word w ∈ {0, 1}∗
coding the WN path is w = 1110110110100100001.

Definition 7.3 A word in {0, 1} is WN -convex if it is the WN path of a convex
set.

The NE, ES, and SW convexity can be defined similarly. Obviously, a path is
convex if its standard factorization is made by four paths that are WN , NE, ES,
and SW convex.

7.2.1 Perturbations on the WN paths

From now on, we will consider the WN path only, assuming that all its properties
hold for the other three paths up to rotations. In [9], the authors characterized the
words that are border of a polyomino by means of Lyndon and Christoffel words:

Property 7.4 A word w is WN-convex if and only if its unique Lyndon factor-
ization wn1

1 wn2
2 . . . wnkk is such that all wi are primitive Christoffel words.

Example 83 Consider the following WN-convex path v = 1011010100010. The
Lyndon factorization of v represented in Figure 7.8 is given by:

v = (1)1(011)1(01)2(0001)1(0)1;



Figure 7.8: Example of a Digitally convex path formed of Christoffel words using the
Lyndon factorization.
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where 1, 011, 01, 0001 and 0 are all Christoffel words. The Christoffel words are
arranged in a weakly decreasing order of slopes:

1

0
>

2

1
>

1

1
>

1

3
>

0

1
.

Such a result highlights the fact that a WN convex path is composed by line
segments, i.e. Christoffel words, having a decreasing slope, so that they respect
the lexicographical order and produce a Lyndon factorization. Furthermore, in the
same paper, the authors pointed out that such a decomposition can be obtained
in linear time.

In this chapter, we will see the importance and impact of the furthest point Q
on the Christoffel path with respect to the line segment as mentioned in Chapters
1 and 2. , Therefore, let us consider a primitive Christoffel word w and define
min(w) to be the length of the prefix needed to reach the minimal point Q.

As an example, let us consider the primitive Christoffel word w = 00100101 be
a primitive Christoffel word; its minimal point is at position (4, 1) reached by the
prefix 00100 of w, so min(w) = |00100| = 5. Since we assume w to be primitive,
then min(w) is unique. Figure 7.9 shows a WN path and the minimal points of
the Christoffel words.

w
1

2

3

4

w

w

w

Figure 7.9: A WN path and its decomposition into four Christoffel words w1, w2,
w3, and w4 related to four line segments. The four minimal points of each segment are
highlighted.
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We remark that, by definition, if k = min(w), then w[k] = 0, and w[k+1] = 1.
The following property states that if we flip the two letters of w at positions k
and k + 1, we obtain a new word w′ that is not a Christoffel word. On the other
hand, this new word w′ is the concatenation of two Christoffel words w′[1 · · · k] and
w′[k + 1 · · ·n], with n = |w′| = |w|. Furthermore, k is the only position allowing
such type of decomposition:

Proposition 7.5 Let w be a primitive Christoffel word of length n and k =
min(w).

(i) The words u = w[1 · · · k − 1] 1 and v = 0 w[k + 2 · · ·n], are two Christoffel
words;

(ii) for each k′ different from k, the words u′ = w[1 · · · k′− 1] 1 and v′ = 0w[k′+
2 · · ·n] are not both Christoffel words.

Proof. Existance In Chapter 1 and from Property 1.10, we can write w = 0w′1
where w′ is a palindrome, and using the standard factorization, w = 0w110w21
where w1, w2 are palindromes and w[1 · · ·m] = 0w11. Without loss of generality,
we consider |w1| < |w2|, then using the symmetric standard factorization defined
in Lemma 5.4, w = 0(w1, q, w1)ss1 where q is a palindrome and can be written
as; q = 1q′1 since w[1 · · ·m] = 0w11 and q′ is exactly the path joining the closest
point to the line segment at position m to the furthest point at the line segment
at position k.
In addition, we have that w[m+ 1] = 0, therefore we deduce that q = 10q′′01 and
w = 0(w1, 10q′′01, w1)ss1. With this factorization, we get w2 = q′′01w1 which is a
palindrome, hence we have q′′01w1 = w110q′′. By taking u1 = w[1 · · · k − 1]1 =
0w110q′′1 and u2 = 0w[k + 1 · · ·n] = 0w11, we get the two Christoffel words since
by construction we have w110q′′ and w1 palindromes.
Uniqueness Suppose k′ is another position where we can exchange 01 into 10 and
we will show that in this case u′1 = w[1, k′− 1]1 and u′2 = 0w[k′ + 1 · · ·n] are both
not Christoffel Words.
We have 3 cases to study, either k′ < m, or, m < k′ < m, or k′ > k

1. If k′ < m:
If k′ is a position in the factor 0w11, we have w1 = f101f2 = f210f1 since it
is a palindrome. By letting k′ be the position between the 0 and 1, we get:
u′1 = w[1 · · · k′ − 1]1 = 0f11 and u′2 = 0w[k′ + 1 · · · l] = 0f210q′′01w11. We
have that 0w21 = 0q′′01w11 where q′′01w1 is a palindrome. Therefore, if u′2
is a Christoffel Word, we must have: f210q′′01w1 a palindrome, this leads to
a contradiction even if f1 and f2 are palindromes.
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2. If m < k′ < k:
In this case the position k′ is in the factor q′′ who is a palindrome and we
write: q′′ = s101s2 = s210s1, where k′ is exactly the position between 0 and
1. Hence u′1 = w[1 · · · k′−1]1 = 0w110s1 and u′2 = 0w[k′+1 · · · l] = 0s201w11.
We have w2 = s101s201w1 which is a palindrome hence s201w1 can’t be a
palindrome then u2 is not a Christoffel Word.

3. If k′ > k:
Same reasoning as the first case.

�

Sage code We give in this part the Sage code used to determine the position
of the point Q along the Christoffel path of slope a/b:

1 de f s p l i t ( a , b ) :
2 n=a+b
3 k=0
4 f o r i in range (n) :
5 i f a∗ i % n ==n−1:
6 k=i
7 re turn ( k )

Listing 7.1: Code of the split operator.

Example 84 Let w = C(5
8
), using the code 8, we can determine the position of

Q as we can in Figure 7.10.

1 sage : s p l i t (5 ,8 )
2 5

O(0,0)

w1 K

(8,5)

Figure 7.10: Example of using the split operator on the Christoffel word of slope 5/8.
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We point out the following immediate and useful consequence:

Corollary 7.6 Let w, u and v be as in Property 7.5. It holds

(i) ρ(u) > ρ(v);

(ii) ρ(w[1 · · · k′] 1) > ρ(u), for each k′ 6= k(= min(w)), and w[k′] = 0. A
symmetric result holds for v.

7.2.2 Definition of the split operator

Proposition 7.5 allows us to define a split operator, that acts on the Christoffel
word w and provides as output the concatenation of the two words u and v, by
simply flipping the sequence 01 at position k and k+ 1 of w into the sequence 10,
i.e., split(w) = u v. From now on, we consider the extension of the operator to
sequences of Christoffel words, and we index it with the (index of the) factor where
the split takes place, i.e., if w = w1 w2 . . . wn is a sequence of primitive Christoffel
words, then splitk(w) = w1w2 . . . split(wk) . . . wn. Consecutive applications of the
split operator to the word w will be indexed by the sequence of the indexes of the
involved factors.

Given two words p1 and p2 of the same length l, we say that p1 is greater than
or equal to p2 (p1 ≥ p2), if for each k ≤ l it holds |p1[1 · · · k]|1 ≥ |p2[1 · · · k]|1. The
“ ≥ ” relation is a natural partial ordering on words.

As an immediate consequence we have:

Property 7.7 Let w = w1 w2 . . . wn be a sequence of Christoffel words. It holds:

(i) splitk(w) ≥ w, with k ≤ n;

(ii) the split operator commutes with respect to successive applications, i.e.,

splitk,h(w) = splith,k(w).

Attention must be paid when we are dealing with sequences of Christoffel words
that are paths of a convex polyomino: the split operator provides an efficient way to
add one point on a line segment of the border of the polyomino without loosing the
convexity on that segment, but it does not guarantee either to preserve the Lyndon
factorization of the related word or its convexity. We can classify the perturbations
performed by the split operator on the factor wi (i.e. split(wi) = ui vi) of the
Lyndon decomposition of a convex path into three different types, according to
the values of the slopes of the consecutive Lyndon factors after the perturbation:
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(a) the Lyndon factorization and the global convexity are preserved (see Fig. 7.11 (a)),
i.e., the two new factors ui and vi globally preserve the slope decreasing of
the line segments of the path;

(b) the Lyndon factorization is not preserved but the obtained path is still convex
(see Fig. 7.11 (b)), i.e., wi−1uiviwi+1, with wi+1 eventually void, is not a
Lyndon factorization, so it does not preserve the slope decreasing of the line
segments of the path, while the new Lyndon factorization does;

(c) neither the Lyndon factorization nor the convexity are preserved (see Fig. 7.11 (c)),
i.e., wi−1uiviwi+1, with wi+1 eventually void, is not a Lyndon factorization.
Furthermore, the new Lyndon factorization is not composed by Christoffel
words only.

7.2.3 Commutativity of the split operator

In what follow, we are interested in showing under which assumptions the com-
mutative behavior of the split operator is preserved in a WN path (as already
underlined, by symmetry the found results hold for the remaining three kinds of
paths). In particular, we are going to show that, if the split operator produces
perturbations of type (a) on two consecutive Christoffel words in a same octant
of a WN path, then the result of the two successive applications is independent
from their appliance order.

Theorem 7.8 Let w1 and w2 be two consecutive Christoffel words in the same
octant of a WN path of a polyomino, and let split(w1) = u1 v1 and split(w2) =
u2 v2. If ρ(v1) > ρ(w2) and ρ(w1) > ρ(u2) (i.e. the split operator provides two
perturbations of type (a) on w1 and w2), then it holds ρ(v1) > ρ(u2).

Proof. Let ρ(u2) = b
a

and ρ(v1) = b′

a′
, and assume without loss of generality that

w1 and w2 lie in the upper octant, i.e., a > b, and a′ > b′. Since the split operator
acts on min(w1) and min(w2), then it holds

b− 1

a− 1
< ρ(w2) <

b

a
, and

b′ − 1

a′ − 1
< ρ(w1) <

b′

a′
. (7.1)

Let us proceed by contradiction, assuming that ρ(v1) < ρ(u2), i.e.,ab′ < ba′.
We first prove that the inequality

b′ − 1

a′ − 1
<
b− 1

a− 1
(7.2)



(b)(a)

(c)

w’ w’’

w 2

w’
w’’

w 2

w’
w’’

w

w1

3

Figure 7.11: Three WN paths of a convex polyomino: (a) the Lyndon factoriza-
tion and the global convexity are preserved; (b), the global convexity is preserved,
but not the Lyndon factorization that has to be modified including w′′ in w2, i.e.,
w′2 = w′′ w2 = (01)(0101011); (c) the global WN convexity is lost. Observe that the
word w′′w2 = (001)(0010010010010010100100100100101) is not a Christoffel word. So,
we need a second split in w2 and the addition of a further point to obtain a WN path
back.
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is always satisfied: several cases have to be considered according to the mutual
dimensions of the four parameters a, a′, b, and b′:

Case 1) a = a′. From a = a′ it follows b′ < b and consequently b′ − 1 < b− 1, so
Inequality 7.2 holds. The case b = b′ is symmetrical.

Case 2) a < a′. Two sub-cases arise: if b′ < b, then we have b′ − 1 < b− 1. Since
we also have a−1 < a′−1, then Inequality 7.2 again is a direct consequence.

On the other hand, let b′ > b. In this case we show that a contradiction
arises, i.e., ρ(w1) < ρ(u2), against the hypothesis.

The Christoffel tree is isomorphic to the Stern-Brocot tree that contains all
the irreducible fractions. The fractions are distributed all over the tree using
the Farey addition, which is:
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a

b
⊕ c

d
=
a+ c

b+ d
.

Let the two Christoffel words w1 and w2, of slopes respectively ρ(w1) and
ρ(w2), be split into Christoffel factors as w1 = u1 v1 and w2 = u2 v2, as shown
in Fig. 7.12.

w

w

u  =

v  =

a

b

a’

b’

c

c’

d

d’

1

2

u  =

v  =

1

1

2

2

Figure 7.12: The split of the Christoffel words w1 and w2 into (u1, v1) and (u2, v2).

We let, ρ(u1) = c′

d′
, ρ(v1) = b′

a′
, ρ(u2) = b

a
, and ρ(v2) = c

d
.

Using the construction of the Stern-Brocot tree, we know that there exist
k, t ∈ N such that c′ = b′ − k and d′ = a′ − t.

Since, by assumption, b′ > b and a′ > a, there also exist k′, t′ ∈ N such that
b = b′ − k′ and a = a′ − t′.

The following inequalities hold:

b′

a′
<
b

a
ab′ < a′b

a′b′ − a′b < a′b′ − ab′

b′ − b
a′ − a

<
b′

a′

k′

t′
<
b′

a′

2a′k′ − 2b′t′ < 0.

Reminding that we assumed to be confined in the first octant where the slopes
of the Christoffel words are less than 1, then b < a implies b′ − k′ < a′ − t′.
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Therefore: −(a′ − t′) < −(b′ − k′) and, since by the Stern-Brocot tree we
have c′

d′
⊕ k

t
= b′

a′
, then k

t
< 1 and consequently k < t, then we get

−k(a′ − t′) < −t(b′ − k′) i.e. − k(a′ − t′) + t(b′ − k′) < 0.

The inequalities gathered up to now lead to the following ones: ρ(w1) =
b′+c′

a′+d′
= 2b′−k

2a′−t and ρ(u2) = b
a

= b′−k′
a′−t′ that are enough to prove that ρ(w1) <

ρ(u2) always holds against the hypothesis. In fact

2b′a′ − 2b′t′ − ka′ + kt′ < 2a′b′ − 2a′k′ − b′t+ k′t

2a′k′ − 2b′t′ − k(a′ − t′) + t(b′ − k′) < 0

which is always true since 2a′k′ − 2b′t′ < 0 and −k(a′ − t′) + t(b′ − k′) < 0.

Case 3) a > a′. As above, two sub-cases arise:

• if b < b′, then since 1
a
< 1

a′
we get b

a
< b′

a′
, i.e., a contradiction to the

initial hypothesis.

• The other case concerns b > b′. Let us consider a = a′+h and b = b′+k
(see Fig. 7.13), and consequently Inequality 7.2 can be written as

b′ + k − 1

a′ + h− 1
− b′ − 1

a′ − 1
> 0. (7.3)

Since by hypothesis, we have b′

a′
= b−k

a−h <
b
a
, hence ab−ak−ab+hb < 0

and b
a
< k

h
as shown in Fig. 7.13. Therefore the following relations hold:

k

h
>
b

a
>
b′

a′
>
b′ − 1

a′ − 1
.

From the last inequality, it holds that k(a′ − 1) > h(b′ − 1) and conse-
quently ka′ − hb′ − k + h > 0 that is equivalent to Inequality 7.3.

In the 3 cases, and assuming that ρ(v1) > ρ(u2), we obtain Inequality 7.2. The
following inequalities are deduced:

b′ − 1

a′ − 1
<
b− 1

a− 1
< ρ(w2) <

b′

a′
<
b

a
< ρ(w1)

and, comparing with the first inequality of the second chain in Inequality 7.1, we
get a contradiction. �

Corollary 7.9 After performing a sequence of perturbations of type (a) in a WN
path, then the obtained path is still a WN path.

This last result can be rephrased by saying that the split operator commutes
in case of perturbations of type (a) inside the same octant.



b

k

b’

a

ha’

u

v
1

2

Figure 7.13: An example of the case a > a′ and b > b′ in the proof of Theorem 7.8.
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Open questions A further analysis has to be carried on in presence of per-
turbations of type (b), both in the same octant and in the whole quadrant. Hence
some open questions can be asked at this step of work and we mention some of
them:

1. What will happen with the case in which slope(v1) < slope(w2).

2. The results is still the same if we extend the work to the case of words from
different octant.

3. Are we able to produce a final reconstruction algorithm that extends the
strategy of Del Lungo-Nivat et al.for HV convex polyominoes by preserving
step by step digital convexity.
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